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Abstract I 

Abstract 

Since many years, myxobacterial cytochrome P450 enzymes from Sorangium cellu-

losum gained attention as biocatalysts for different compounds. However, their applica-

tion in the pharmaceutical and biotechnological industry, especially for the derivatiza-

tion and metabolite production of drugs, remained unclear. Investigations on EpoK, a 

P450 responsible for the epoxidation of epothilone C/D from S. cellulosum So ce90, 

resulted in the establishment of the most efficient redox system to date with potential 

biotechnological application. Additionally, three P450s of S. cellulosum So ce56, 

CYP265A1, CYP266A1 and CYP267B1, were found to hydroxylate epothilone D. The 

latter one was also able to form a novel epothilone derivative, 7-ketone epothilone D, 

with potential antitumor activity. With respect to the production of human drug metabo-

lites, the CYP267 family was found to contain versatile drug metabolizers. Especially 

CYP267B1 showed the ability to convert structurally diverse drug compounds with high 

selectivity. In combination with the established co-expression of the autologous redox 

partners Fdx8 and FdR_B in E. coli, a multi-milligram production of the human drug 

metabolites chlorpromazine sulfoxide, 4’-hydroxydiclofenac, 2-hydroxyibuprofen, 

omeprazole sulfone and thioridazine-5-sulfoxide was achieved. In addition, CYP267B1 

was characterized as a bacterial P450s with an uncommon broad substrate range and 

displays a great potential for a diverse biotechnological applicability. 



Zusammenfassung II 

Zusammenfassung 

Seit einigen Jahren sind myxobakterielle Cytochrom P450 Enzyme aus Sorangium 

cellulosum als Biokatalysatoren für verschiedenste Verbindungen bekannt. 

Allerdings blieb deren Einsatz für eine biotechnologische Herstellung von 

Arzneimittelderivaten und -metaboliten ungeklärt. Im Rahmen dieser Arbeit wurde für 

CYP167A1 (EpoK) aus S. cellulosum So ce90, verantwortlich für die Epoxidierung von 

Epothilon C/D, das zurzeit effizienteste Redoxsystem mit großem biotechnologischen 

Potenzial etabliert.  Zusätzlich wurden CYP265A1, CYP266A1 und CYP267B1 aus 

S. cellulosum So ce56 als Hydroxylasen von Epothilone D identifiziert und das neue 

Derivat 7-Keton-Epothilon D mit potenzieller Antitumoraktivität als Produkt von 

CYP267B1 charakterisiert. Des Weiteren konnte die CYP267 Familie, bestehend aus 

CYP267A1 und CYP267B1, als vielseitige und selektive Biokatalysatoren für die 

Produktion von Arzneimittelmetaboliten etabliert werden. Im Speziellen konnte mit 

CYP267B1 und der Co-expression der autologen Redoxpartner Fdx8 und FdR_B die 

Produktion der humanen Arzneimittelmetabolite Chlorpromazin-Sulfoxid, 

4’-Hydroxydiclofenac,  2-Hydroxyibuprofen, Omeprazol-Sulfon und Thioridazine-5-

Sulfoxid im multi-Milligramm Maßstab erzielt  werden. Mit CYP267B1 wurde ein 

bakterielles P450 Enzym mit einem außergewöhnlich großen Substratspektrum 

entdeckt, das ein großes Potenzial für diverse biotechnologische 

Anwendungsmöglichkeiten bereithält. 



Danksagungen III 

Danksagungen 

Ich möchte mich recht herzlich bei Frau Prof. Dr. Rita Bernhardt für die Möglichkeit 

bedanken, dass ich meine Doktorarbeit in ihrem Arbeitskreis anfertigen und dieses inte-

ressante Thema nach meinen Wünschen gestalten konnte. Ferner möchte ich ihr für die 

wertvollen Anregungen und konstruktiven Diskussionen danken.  

Im Speziellen möchte ich mich bei Dr. Yogan Khatri und Martin Litzenburger für die 

langjährige und ausgezeichnete Zusammenarbeit bedanken. Mein Dank gilt Tobias Dier 

und Prof. Dr. Dietrich A. Volmer für die unkomplizierte Kooperation und Hilfe bei 

den LC-MS/MS Experimenten sowie auch für die wertvollen Anregungen und 

Verbesserungen der entstandenen Publikation. Prof. Dr. Jean-Pierre Jacquot möchte 

ich nochmal herzlich für die Einladung nach Nancy und der Bereitstellung von 

SynFdx und FNR danken, sowie für seine Verbesserungsvorschläge beim Erstellen der 

entstandenen Publikation. Für das Überlassen der gereinigten FdR_B und ihre 

durchgehende Hilfsbereitschaft möchte ich mich auch bei Dr. Kerstin M. Ewen 

bedanken.  

Ich bedanke mich bei allen Mitgliedern der Arbeitsgruppe für das angenehme Arbeits-

klima und die hervorragende Zusammenarbeit. Vielen Dank an Birgit Heider-Lips,  

Alexander Schifrin und Tanja Sagadin für die gereinigten Redoxproteine. Für ihre Hilfe 

bei allen bürokratischen Angelegenheiten möchte ich mich auch bei Gabi Schon 

bedanken. 

Ich möchte mich im Besonderen bei meiner Frau Heike Kern bedanken. Mit ihrer 

Hilfe und Unterstützung konnte ich mich ganz auf meine Ziele fokussieren. Dieser 

Rückhalt bedeutet mir sehr viel und ich freue mich alle zukünftigen 

Herausforderungen mit ihr zusammen zu meistern. 

Mein größter Dank gilt meinen Eltern Werner und Brigitte Kern, ohne deren Unter-

stützung und bedingungsloser Aufopferung mein Studium nicht möglich gewesen wäre.  



Contents IV 

Contents 

Abstract .............................................................................................................................. I 

Zusammenfassung ............................................................................................................ II 

Danksagungen ................................................................................................................. III 

Contents .......................................................................................................................... IV 

Scientific contributions ..................................................................................................... V 

List of abbreviations ...................................................................................................... VII 

List of tables and schemes ............................................................................................ VIII 

List of figures ................................................................................................................. IX 

1 Introduction ............................................................................................................ 10 

1.1 Pharmaceutical drugs ............................................................................... 10 

1.2 Drug discovery cycle ............................................................................... 10 

1.3 Guidelines for metabolite detection ......................................................... 11 

1.4 Drug metabolizing enzymes (DMEs) ...................................................... 12 

1.5 Cytochrome P450 enzymes (P450s) ........................................................ 14 

1.6 Human P450s involved in the metabolism of drugs ................................ 19 

1.7 Application of DMEs and microorganism as biocatalysts ....................... 20 

1.8 Myxobacterial P450s from Sorangium cellulosum So ce56 .................... 22 

1.9 Myxobacterial CYP167A1 (EpoK) from S. cellulosum So ce90 ............. 23 

2 Scope and objectives .............................................................................................. 24 

3 Publications ............................................................................................................ 25 

3.1 Kern et al. 2015 ........................................................................................ 25 

3.2 Kern et al. 2016 ........................................................................................ 44 

3.3 Litzenburger et al. 2015 ........................................................................... 66 

4 General discussion ................................................................................................. 79 

4.1 CYP167A1 (EpoK): the search for efficient redox partners .................... 79 

4.2 Derivatization of epothilone D with myxobacterial P450s ...................... 81 

4.3 Selection of drugs as potential substrates for myxobacterial P450s ........ 84 

4.4 Investigation of the substrate spectrum of CYP267A1 and CYP267B1 . 88 

4.5 Production of drug metabolites with CYP267A1 and CYP267B1 .......... 90 

5 Conclusion and future prospects ............................................................................ 92 

6 Attachments............................................................................................................ 95 

7 References .............................................................................................................. 98 



Scientific contributions V 

Scientific contributions 

Kern et al. (2015) 

Highly Efficient CYP167A1 (EpoK) dependent Epothilone B Formation and Production 

of 7-Ketone Epothilone D as a New Epothilone Derivative  

Fredy Kern expressed and purified EpoK, CYP265A1, Fdx2 and Fdx8 and performed 

all in vitro conversions and the bioinformatics studies. He established the analytical 

methods for the HPLC and drafted the manuscript. Tobias K.F. Dier performed and 

evaluated all LC-MS/MS experiments, elucidated the structures of the products and par-

ticipated in writing the manuscript. Dr. Yogan Khatri expressed and purified the mem-

bers of the CYP109, CYP260, CYP264 and CYP267 family. Additionally, he supported 

the bioinformatics studies and participated in writing the manuscript. Dr. Kerstin M. 

Ewen expressed and purified FdR_B and participated in writing the manuscript. Prof. 

Dr. Jean-Pierre Jacquot expressed and purified SynFdx and FNR and participated in 

writing the manuscript. Prof. Dr. Dietrich A. Volmer supervised the LC-MS/MS 

experiments and participated in writing the manuscript. Prof. Dr. Rita Bernhardt 

supervised the project and participated in writing the manuscript. 

Kern et al. (2016) 

CYP267A1 and CYP267B1 from Sorangium cellulosum So ce56 are highly versatile 

drug metabolizers 

Fredy Kern expressed and purified CYP267A1 and performed all in vitro and whole-

cell conversions with CYP267A1 and CYP267B1. He established the analytical meth-

ods, purified and analyzed the products, and drafted the manuscript. Martin Litzen-

burger participated in the establishment of the analytical methods, expressed and puri-

fied CYP267B1, performed the inhibition experiments and participated in writing the 

manuscript. Dr. Yogan Khatri performed all bioinformatics studies and the characteriza-

tion of the CYP267 family members. Additionally, he participated in writing the manu-

script. Prof. Dr. Rita Bernhardt supervised the project and participated in writing the 

manuscript. 



Scientific contributions VI 

Litzenburger et al. (2015) 

Conversions of tricyclic antidepressants and antipsychotics with selected P450s from 

Sorangium cellulosum So ce56 

Fredy Kern performed all experiments with CYP267A1 and CYP267B1 (in vitro con-

versions, whole-cell conversions, product purification and analyses of the NMR spectra) 

and participated in writing the manuscript. Martin Litzenburger performed all experi-

ments with the enzymes CYP109C1, CYP109C2, CYP109D1, CYP260A1, CYP260B1, 

CYP264A1 and CYP264B1 (in vitro conversions, whole-cell conversions, product puri-

fication and analyses of the NMR spectra) and drafted the manuscript. Dr. Yogan Khatri 

provided the plasmids encoding the corresponding P450s as well as purified 

CYP109C1, CYP109C2, CYP109D1 and CYP264B1. Additionally, he participated in 

writing the manuscript. Prof. Dr. Rita Bernhardt supervised the project and participated 

in writing the manuscript. 



List of abbreviations VII 

 

List of abbreviations 

AdR Adrenodoxin reductase 

Adx Adrenodoxin 

Adx4-108 Truncated adrenodoxin 

Arh1 Adrenodoxin reductase homologue 1 from S. pombe 

CO Carbon monoxide 

CPR Cytochrome P450 reductase 

CYPome Cytochrome P450 complement 

DME Drug metabolizing enzyme 

DMSO Dimethylsulfoxide 

E. coli Escherichia coli 

Etp1
fd

 Electron-transfer protein 1 from S. pombe 

EpoK Cytochrome P450 167A1 

FAD Flavin adenine dinucleotide 

FDA Food and Drug Administration 

Fdx2 Ferredoxin 2 from S. cellulosum So ce56 

Fdx8 Ferredoxin 8 from S. cellulosum So ce56 

FdR_B Ferredoxin NADP+ reductase B from S. cellulosum So ce56 

FMN Flavin mononucleotide 

FNR Ferredoxin NADP
+
 reductase from Chlamydomonas reinhardtii 

FpR Ferredoxin reductase 

HPLC High Performance Liquid Chromatography 

HTS High-throughput screening 

IC50 Drug concentration that inhibits cell growth by 50% 

ICH International Conference on Harmonization of Technical Require-

ments for Registration of Pharmaceuticals for Human Use 

kcat Catalytic rate constant 

KD Dissociation constant 

kDa Kilo Dalton 

Km Michaelis-Menten constant 

KPP Potassium phosphate buffer 

LC-MS/MS Liquid chromatography coupled to Mass spectrometry 

NADP+  Nicotinamide adenine dinucleotide phosphate (oxidized form) 

NADPH Nicotinamide adenine dinucleotide phosphate (reduced form) 

NMR Nuclear magnetic resonance 

nH Hill coefficient 

P450 Cytochrome P450 

SynFdx Ferredoxin from Synechocystis sp PCC6803 

vmax Maximum reaction rate 



List of tables and schemes VIII 

 

List of tables and schemes 

Table 1. Overview of selected epothilone derivatives and their activity against cancer 

cell lines. ............................................................................................................... 82 

 

Table S 1. Cytochromes P450 used for bioinformatics studies. ..................................... 96 

 

 

Scheme 1. Overview of exemplary reactions catalyzed by flavin-containing 

monooxygenases (A), aldo-keto reductases (B) and monoamine oxidases (C). ... 14 

Scheme 2. Overview of notable reactions catalyzed by P450s with C-H hydroxylation 

and oxidation (A), N-oxidation (B), N, O, S-dealkylation (C) and C-C bond 

cleavage (D). ......................................................................................................... 16 

 



List of figures IX 

List of figures 

Figure 1. Drug discovery and development pipeline (taken from (Roses, 2008)). ........ 11 

Figure 2. Number of new pharmaceutical drugs approved for the market (data taken

from FDA drug report 2015). ................................................................................ 12 

Figure 3. Human oxidoreductases participating in drug metabolism with cytochrome 

P450s, aldo-keto reductases (AKR), monoamine oxidase (MAO) and microsomal 

flavin-containing monooxygenase (FMO). ........................................................... 13 

Figure 4. Nomenclature of cytochrome P450s. .............................................................. 15 

Figure 5. Schematic illustration of the heme cofactor in P450s. In general, the proximal 

side is coordinated by the thiol group of cysteine and the distal side is occupied by 

water (H2O) or substrate........................................................................................ 15 

Figure 6. Spectroscopic characterization of CYP267B1 from S. cellulosum So ce56. .. 16 

Figure 7. Topological illustration of P450s (taken from (Sirim et al., 2010)). Substrate 

recognition sites are marked in yellow, all -helices and -sheets are highlighted 

as light blue tubes and grey arrows, respectively. The structurally conserved 

regions are framed in red....................................................................................... 17 

Figure 8. Schematic organization of class I P450 system with soluble ferredoxin 

reductase (FdR), ferredoxin (Fdx) and cytochrome P450 enzyme (P450). .......... 18 

Figure 9. Catalytic cycle of P450s (taken from (Whitehouse et al., 2012)). .................. 19 

Figure 10. Human P450s responsible for the metabolism of drugs (data taken from 

(Rendic and Guengerich, 2015)). .......................................................................... 20 

Figure 11. Schematic overview of the genome of S. cellulosum So ce56 and the 

localization of its CYPome and redox proteins (Khatri, 2009). Ferredoxins are 

presented in brown and reductases in blue letters. ................................................ 22 

Figure 12. Epothilone biosynthesis in S. cellulosum So ce90 (modified and taken from 

(Mulzer et al., 2008)). ........................................................................................... 80 

Figure 13. Part I: Substrates investigated in this study clustered after their structure as 

tricyclic compounds (A) and pyridine analogs (B). .............................................. 85 

Figure 14. Part II: Substrates investigated in this study clustered after their structure as 

azole (A), benzene (B) and (seco-)steroid (C) compounds. .................................. 86 

Figure S 1. Overview of relevant epothilone derivatives in this thesis. ......................... 95 



1 Introduction 10 

 

1 Introduction 

1.1 Pharmaceutical drugs 

The usage of plants, parts of plants and isolated phytochemicals to treat, ease or prevent 

various health diseases is highly linked to the evolution of mankind (Sahoo et al., 2010). 

Coming from the use of this natural sources as therapeutic means, the very first pharma-

ceutical drugs were herbs already used for thousands of years (Jones, 1996; Butler and 

Newman, 2008) and described in encyclopedias like Naturalis historia. Apart from veg-

etable drugs, also minerals, beverages, certain fats or oils, honey and milk were used 

medicinally (Kremers, 1976). The fast discoveries in natural sciences in the beginning 

of the 18
th

 century played a huge role in forming the specific and related scientific fields 

investigating medicine and how they effect the human body (Müller-Jahncke and 

Friedrich, 1996). With the increasing knowledge and state of the art, more and more 

pharmaceutical effects were linked to a responsible specific chemical structure. Already 

described in 1955, the chemical structure of morphine and its derivatives is attributed to 

their analgesic effect, respectively (Braenden et al., 1955). Another example are diverse 

flavonoids, which are common secondary metabolites in the plant kingdom participating 

in their anti-inflammatory and antioxidant activity (Odontuya et al., 2005). However, 

humans have been subjected to disease, illness and accident since the beginning of time 

(Anderson, 2005). To fight these concomitants of life, medicine and drugs have always 

been highly valuable elements for health and healthcare.  

1.2 Drug discovery cycle 

To constantly improve known traditional or natural medicine toward a more effective 

treatment of diseases, drug research and discovery aroused as an intersectional field of 

medicine, biotechnology and pharmacology. Every new drug candidate in modern med-

icine, regardless of its source or manufacture procedure, is generally bound to a screen-

ing process. The classical way of pharmacological screening involved sequential testing 

of new chemical entities or extracts in isolated organs followed by pharmacological 

tests in animals (Vogel and Vogel, 1995). With the development of high-throughput 

screening (HTS) and ultra-HTS models, drug research shifted from animal studies to 
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target-oriented research (Kubinyi, 2003). However, because drug metabolism is a highly 

complex system involving simultaneous cooperation of multiple organs and cellular 

processes (Staudinger, 2013), nowadays, drug candidates have to pass different tests 

and clinical trials in drug development (Figure 1). 

 

Figure 1. Drug discovery and development pipeline (taken from (Roses, 2008)). The 

                 timeframe of 12-15 years is representative for the most common period. 

1.3 Guidelines for metabolite detection 

The pharmaceutical industry traditionally invests a high sum of money in drug research 

and development. On one side, the profit margin obtained from patented drugs or new 

drug derivatives is significantly higher and more lucrative. On the other hand, the emer-

gence of new diseases, rising concerns of drug resistance for pathogenic agents and the 

decreased efficacy of the existing drugs are of great pharmaceutical concerns (Drews, 

2000). However, the number of new drugs reaching the market has settled down in the 

past few years (Figure 2). One of the main reasons for the failure of drug candidates is 

the detection of emerging toxicity and resulting side effects (Kim and Kang, 2011). To 

encounter potential negative effects of drugs, the International Conference on Harmoni-

zation of Technical Requirements for Registration of Pharmaceuticals for Human Use 

(ICH) dictated guidelines for the qualification and the analysis of drug metabolites dur-

ing clinical trials (ICH, 2009, 2012). In detail, the Food and Drug Administration (FDA) 

published instructions for safety testing of human drug metabolites which are represent-

ing >10% of the parent drug exposure at steady state (FDA, 2008). Indeed, several 

drugs are reported to be metabolized in the human body into toxic and/or chemically 

more reactive compounds (Macherey and Dansette, 2008). The early detection of such 
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metabolites during the drug discovery and development phases will timely reveal un-

suitable candidates (Cavero, 2009) and prevent a damaging cause of withdrawal during 

clinical trials and post-marketing (Tamimi and Ellis, 2009). 

 

Figure 2. Number of new pharmaceutical drugs approved for the market (data taken 

                 from FDA drug report 2015). 

1.4 Drug metabolizing enzymes (DMEs) 

The field of drug metabolism research arose during the first half of the 19
th

 century, 

when hippuric acid was detected in horse urine after benzoate administration (Delprat 

and Whipple, 1921). At about the same time, the responsible mechanism for the bio-

transformation of drugs or xenobiotics became the focus of attention. Since then, drug 

metabolism evolved in one headstone of the discovery and development process of 

drugs. Responsible for the biotransformation are drug metabolizing enzymes (DMEs), 

which play essential roles for the elimination and detoxification of drugs and xenobiot-

ics (Meyer, 1996). The exposure with these compounds leads to an adaptive response of 

the human body to produce the suitable DME for their degradation (Xu et al., 2005). 

The majority of DMEs participating in phase I metabolism are oxidoreductases and the 

percentages of their participation in drug metabolism is presented in Figure 3.  
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Figure 3. Human oxidoreductases participating in drug metabolism with cytochrome         
P450s, aldo-keto reductases (AKR), monoamine oxidase (MAO) and microsomal 

flavin-containing monooxygenase (FMO). The values were calculated from 860 drugs 

(taken from (Rendic and Guengerich, 2015)). 

Flavin-containing monooxygenases (FMOs) are characterized by their ability to cata-

lyze the oxidation of heteroatoms in xenobiotics, in particular soft nucleophiles such as 

amines, sulfides and phosphites (Geier et al., 2015). Specialized for the oxidation of 

monoamines, the family of monoamine oxidases (MAOs) is responsible for the deami-

nation of neurotransmitters and biogenic amines (Edmondson et al., 2004). The enzyme 

family of aldo-keto reductases (AKRs), including aldehyde and aldose reductases, own 

a wide substrate specifity for carbonyl compounds (Bohren et al., 1989). The enzyme 

families FMO and AKR are both NADPH-dependent enzymes whereas MAOs only 

need FAD as cofactor. However, all three enzyme families catalyze important reactions 

to induce the excretion of xenobiotics (Scheme 1). But taken together, FMOs, AKRs 

and MAOs are only responsible for 4% of drug metabolism (Figure 3). 
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Scheme 1. Overview of exemplary reactions catalyzed by flavin-containing mono- 

                    oxygenases (A), aldo-keto reductases (B) and monoamine oxidases (C). 

1.5 Cytochrome P450 enzymes (P450s) 

As presented in Figure 3, the remaining 96% of phase I drug metabolism is catalyzed by 

cytochrome P450 enzymes (P450s). These enzymes can be found throughout the three 

domains of life, highlighting their special purpose in living organisms, in particular for 

eukaryotes. These enzymes belong to one of the largest superfamilies of enzyme pro-

teins (Nelson, 2011) and play a crucial role in the metabolic pathways of drugs and xe-

nobiotics in the human body. Furthermore, they are involved in the metabolism of vari-

ous endogenous and exogenous compounds like bile acids, fatty acids, retinoids, ster-

oids, hormones, lipids and antibiotics (Bernhardt, 2006; Monostory and Dvorak, 2011).  

The origin of the P450 superfamily lies in prokaryotes, however, P450s were first found 

in rat liver microsomes (Klingenberg, 1958). For over 55 years, a large number of 

P450s were found and characterized in the genome of different organisms. The gram-

negative bacterium Escherichia coli is one of those organisms which lack any P450 

genes. In contrast, in the genome of higher plant species like Arabidopsis thaliana up to 

244 P450s can be found (Bak et al., 2011). For nomenclature purposes, the P450 super-

family genes are subdivided and classified on the basis of amino acid identity, phyloge-

netic criteria and gene organization (Nelson et al., 1996). The root symbol CYP is fol-
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lowed by a number for the P450 family, a letter for the subfamily and a number for the 

respective gene. Thereby, genes with an amino acid sequence identity of more than 40% 

are classified in the same family. If the identity is higher than 55%, the genes are ar-

ranged to the same subfamily (Figure 4). Furthermore, the family numbers are assigned 

according to a P450 numbering scheme, which assigns the numbers 1-49 and 300-499 

to animal P450s, 71-99 and 701-999 to plant P450s and the family numbers 101-299 to 

bacterial P450s (Nelson, 2009).  

 

Figure 4. Nomenclature of cytochrome 

                 P450s. 

 

 

Figure 5. Schematic illustration of the 

heme cofactor in P450s. In general, the 

proximal side is coordinated by the thiol 

group of cysteine and the distal side is 

occupied by water (H2O) or substrate.

 

Cytochrome P450 enzymes are heme-containing monooxygenases able to catalyze a 

large number of reactions including carbon hydroxylation, heteroatom oxygenation, 

dealkylation and epoxidation (Scheme 2) (Guengerich, 1990; Bernhardt and Urlacher, 

2014). In the prosthetic group heme b, an iron ion is coordinated by four nitrogen atoms 

of porphyrin, which is proximally linked to the apoprotein via a conserved cysteine 

(Figure 5, (Urlacher and Girhard, 2012)). Within the structural fold of P450s there are 

highly conserved single amino acids and regions, which can be assigned to the special 

characteristics of this superfamily. As shown in Figure 5, the most important conserved 

amino acid, the proximal cysteine, is found in all P450s and plays a crucial role for their 

function. The result of this unique arrangement is the characteristic 450 nm peak in the 

reduced CO-bound absorption spectrum as well as a characteristic maximum at 420 nm 

in the oxidized form including two Q-bands at approximately 530 nm ( ) and 570 nm 

( ) (Figure 6). 
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Scheme 2. Overview of notable reactions catalyzed by P450s with C-H hydroxylation

            and oxidation (A), N-oxidation (B), N, O, S-dealkylation (C) and C-C

                 bond cleavage (D). The R2 group can either be H or a random carbon chain. 

Figure 6. Spectroscopic characterization of CYP267B1 from S. cellulosum So ce56. The

            UV-visible spectra of oxidized, dithionite reduced and CO-bound CYP267B1 

               are shown as black, dotted and gray line (taken from (Kern et al., 2016)). 

In addition to the invariantly conserved proximal cysteine, P450s share a common fold 

and topology (Denisov et al., 2005). The active site of P450s contains highly conversed 

regions which consist of a four-helix bundle (three parallel helices labeled D, L, I and 

an antiparallel helix E) and several important single amino acids. The latter ones are 

responsible for the correct orientation of the substrates (substrate recognition sites 

(SRS)) or indispensable for the catalytic activity of P450s, respectively (Sirim et al., 
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2010)). Among others, it has been established that all P450 sequences contain a 10-

residue signature motif FxxGx(H/R)xCxG which includes the cysteine ligand for heme-

binding, the important (A/G)Gx(E/D)T-(T/S) region for creating an oxygen binding 

pocket and activate it (Werck-Reichhart et al., 2002; Denisov et al., 2005), and the to-

tally conserved ERR triad motif, which is involved in stabilizing the core and heme-

binding (Hasemann et al., 1995). Another important aspect is the characteristic second-

ary and tertiary structure resulting from the amino acid sequence and its responsibility 

for a similar overall topology of P450s as well as the shape and size of their active site 

(Figure 7). 

Figure 7. Topological illustration of P450s (taken from (Sirim et al., 2010)). Substrate 

recognition sites are marked in yellow, all -helices and -sheets are highlighted as 

light blue tubes and grey arrows, respectively. The structurally conserved regions are 

framed in red. 

Since P450s belong to the group of external monooxygenases, they require a two-

electron reduction. However, a low number of P450s is known, which do not require an 

external protein component as reduction equivalent like CYP55 from F. oxysporum 

(Degtyarenko and Kulikova, 2001). The vast majority of P450s are in need of redox 

equivalents supplied by one or more redox partners. The diversity of these redox sys-
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tems are in no way inferior to the diversity of P450s and are, therefore, classified by 

number, type and topology of the respective redox proteins. Most of the bacterial elec-

tron transfer systems belong to the class I P450 system, which consists of a soluble 

three protein arrangement with a FAD-containing ferredoxin reductase (FdR), a ferre-

doxin (Fdx) and the P450 (Hannemann et al., 2007). As illustrated in Figure 8, the re-

ductase transfers reduction equivalents from NAD(P)H to the ferredoxin, which in turn 

reduces the P450 itself.  

 

Figure 8. Schematic organization of class I P450 system with soluble ferredoxin 

                  reductase (FdR), ferredoxin (Fdx) and cytochrome P450 enzyme (P450). 

 

As implied in Figure 8, the ferredoxin actually performs an one electron transfer from 

the reductase to the P450. Considered overall, the catalytic cycle of P450s successively 

requires two electrons for the oxygen activation and cleavage as well as the transfer into 

a substrate (Figure 9). Beginning with the resting state and Fe
III

 (I), the distal coordinat-

ed water molecule is replaced by the substrate (II) and, in the next step, the heme iron is 

reduced to Fe
II
 (ferrous state, III). After the binding of oxygen (IV), and its reduction to 

the ferric peroxy complex (V), the protonation of the terminal oxygen atom results in 

“Compound 0” (VI). A second protonation forms water and “Compound I” (VII), the 

active entity in most P450 oxidations. The superoxide (IV-II), peroxide (VI-II) or the 

oxidase (VII-II) uncoupling are side reactions within this pathway. Following the ab-

straction of a hydrogen atom from the substrate (VIII) and the subsequent combination 

to the oxidized product (IX), the coordination of a new substrate molecule initiates a 

new catalytic cycle (Whitehouse et al., 2012). 
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Figure 9. Catalytic cycle of P450s (taken from (Whitehouse et al., 2012)). 

1.6 Human P450s involved in the metabolism of drugs 

Especially in the human body, P450s are indispensable biocatalysts in the metabolism 

of drug molecules (Figure 3). They are 57 human P450s known of which some are 

abundantly expressed in the liver, gastrointestinal tract, lung and kidney. Some of these 

P450s catalyze important steps in steroid and fatty acid metabolism, respectively 

(Bernhardt, 2006). Five P450 gene families, such as CYP1, CYP2, CYP3, CYP4 and 

CYP7, are believed to play a crucial role in the capability of dealing with drugs and 

chemicals (Zanger and Schwab, 2013). In fact, the CYP1, CYP2 and CYP3 families are 

responsible for 94% of the P450-dependent drug metabolism in the human body (Figure 

10). 
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Figure 10. Human P450s responsible for the metabolism of drugs (data taken from 

(Rendic and Guengerich, 2015)). 

The analysis of literature data (Rendic and Guengerich, 2015) revealed the participation 

of five major P450s in drug metabolism (Figure 10): CYP3A4 (27%), CYP2D6 (13%), 

CYP2C9 (10%), CYP2C19 (9%) and CYP1A2 (9%). Minor contributions were as-

signed for CYP3A5 (6%), CYP1A1 and CYP2C8 (both 5%), CYP2B6 (4%), CYP2A6 

(2%) and CYP1B1 (1%). Taken together, the remaining 46 P450s are responsible for 

only 6% of metabolic reactions in the human body. The high number of accepted sub-

strates by CYP3A4 and the resulting important role in drug metabolism is a product of 

its large and flexible active site (Scott and Halpert, 2005). Despite an amino acid se-

quence identity of 85% between CYP3A4 and CYP3A5, some limiting structural differ-

ences can be observed which lead to significantly lower substrate acceptance by 

CYP3A5 (Andrew Williams et al., 2002).  

1.7 Application of DMEs and microorganism as biocatalysts 

Although the chemical synthesis is an option to produce metabolites of novel drugs and 

drug candidates, the implementation of costly multi-step chemical syntheses may not be 

sufficient enough to overcome the demand of the respective metabolites for toxicologi-

cal tests or as authentic reference standards (Rushmore et al., 2000). Besides the purifi-

cation of major metabolites from urine (Gao et al., 2012), alternative approaches with-
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out the need of subjects is needed. Although the in vitro application of oxidative en-

zymes is feasible, significant operational barriers are hindering a corresponding large-

scale drug metabolite production (Cabana et al., 2007). This led to the application of 

DMEs in biotechnological approaches and, furthermore, the screening for microorgan-

isms able to metabolize drugs and derivatives. Since the late 1960s, microbial transfor-

mations of drugs were originally performed as ‘microbial models of mammalian metab-

olism’ (Smith and Rosazza, 1975). The use of microorganisms for drug metabolism is 

well documented and the microbial production of drug metabolites by biotransformation 

is known for decades (Clark and Hufford, 1991). Several microorganisms like Cunning-

hamella and Streptomyces strains showed the ability to metabolize drugs and xenobiot-

ics to the respective human metabolites (Zhang et al., 1996; Asha and Vidyavathi, 2009; 

Bright et al., 2011; Murphy and Sandford, 2012). This opens a potential application of 

these strains for a large-scale production of these metabolites. Furthermore, the direct 

application of DMEs is also of interest to overcome the demand of drug metabolites. 

One promising option is the use of the Gram-negative bacterium E. coli, which is pre-

dominantly used as a host system for the production of enzymes. This bacterium is the 

most studied microorganism to date and easy to handle and modify toward the expres-

sion of heterologous enzymes (Rosano and Ceccarelli, 2014). It has been previously 

shown, that the expression of several DMEs like FMOs in E. coli results in the capabil-

ity for the respective drug compound conversion in vivo (Geier et al., 2015).  

As a consequence of the participation of the human CYP1, CYP2 and CYP3 families in 

94% of drug metabolism in the body (chapter 1.6), the P450 superfamily remains the 

means of choice. The human CYP3A4, CYP2C9 and CYP1A2 enzymes were successfully 

employed in such biotechnological approaches to directly produce the desired human 

metabolites in E. coli (Vail et al., 2005). However, since it is not mandatory to employ 

associated human P450s to synthesize human drug metabolites (Schroer et al., 2010; 

Geier et al., 2015), microbial, especially bacterial, P450s became the focus of attention. 

Apart from the usage of engineered CYP102A1 (BM3) from B. megaterium (Reinen et 

al., 2011; Di Nardo and Gilardi, 2012) or recently found bacterial P450s (Xu et al., 

2014; Kiss et al., 2015; Kulig et al., 2015) with drug metabolism activity, further suita-

ble P450s are desired for such an application in the biotechnological production of drug 

metabolites. 
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1.8 Myxobacterial P450s from Sorangium cellulosum So ce56 

Sequenced in 2007 (Schneiker et al., 2007), the Gram-negative soil bacterium Sorangi-

um cellulosum So ce56 caught the attention of the scientific community. For a 

timeframe of several years, the genome of S. cellulosum So ce56 was acknowledged as 

the largest bacterial genome ever sequenced. Even more interesting, the genus Sorangi-

um is regarded as the most promising resource for novel and important compounds 

(Gerth et al., 2003) including antimicrobial and antitumor macrolides (Bollag et al., 

1995; Mulzer et al., 2008; Wenzel and Müller, 2009). After the bioinformatics analysis 

of the genome, 21 P450s (Khatri, Hannemann, et al., 2010) as well as eight ferredoxins 

and two ferredoxin reductases were found and characterized (Ewen et al., 2009). A 

schematic overview of the gene distribution in the genome of S. cellulosum So ce56 is 

presented in Figure 11. 

Figure 11. Schematic overview of the genome of S. cellulosum So ce56 and the

     localization of its CYPome and redox proteins (Khatri, 2009).

                    Ferredoxins are presented in brown and reductases in blue letters. 

Followed by this, several P450s from S. cellulosum So ce56 revealed promising and 

interesting characteristics. The first P450s from S. cellulosum So ce56 characterized 

were CYP109D1 and CYP260A1. The former revealed interesting fatty acid hydrox-

ylase activity (Khatri, Hannemann, et al., 2010) followed by the characterization of the 

remaining CYP109 family members, CYP109C1 and CYP109C2 (Khatri et al., 

2013; Shumyantseva et al., 2016). The detailed characterization of the members 

of the CYP260 and CYP264 families led to new and interesting discoveries in 

norisoprenoid and sesquiterpene hydroxylations (Ly et al., 2012; Schifrin, Litzenburger, 

et al., 2015a; b; Schifrin, Ly, et al., 2015; Khatri et al., 2016; Litzenburger and 

Bernhardt, 2016). Several other P450s of S. cellulosum So ce56 remain so far 

unexplored and might ex-hibit potential activity toward other type of substrates and 

chemical compounds like drugs, xenobiotics and therapeutics.  
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1.9 Myxobacterial CYP167A1 (EpoK) from S. cellulosum 

So ce90  

Several strains of S. cellulosum were found to contain epothilones, which feature cyto-

toxic activity against a number of tumor lines (Bollag et al., 1995). This substance class 

is of great interest for the treatment of breast cancer up to Alzheimer’s and Parkinson’s 

disease (Zhang et al., 2012; Cartelli et al., 2013; Hirsch et al., 2013). In S. cellulosum 

So ce90, the P450 CYP167A1 (EpoK) is responsible for the last step of the biosynthesis 

of epothilones (Ogura et al., 2004). Thereby, EpoK catalyzes the epoxidation of a dou-

ble bond resulting in epothilone A/B. However, even thought the complete biosynthesis 

of epothilones was clarified before (Molnár et al., 2000; Tang, 2000), this last step was 

not clarified with respect to EpoK and its required natural redox partners. Additionally, 

no efficient redox system for further characterization of EpoK is known. This lack of 

knowledge hinders a potential application of a large-scale production of epothilones 

both in a biosynthetic and biotechnological manner. Furthermore, a derivatization of 

these epothilones is also of great pharmaceutical interest to improve or find more potent 

derivatives and metabolites of epothilone (Brogdon et al., 2014). Several studies aiming 

for such a modification are covering this demand (Tang et al., 2003; Basch and Chiang, 

2007; Mulzer et al., 2008; Zhang et al., 2014), highlighting the need for new approaches 

to make new and more active epothilone compounds available. 
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2 Scope and objectives 

With the focus on myxobacterial P450s from S. cellulosum, the main objective to clarify 

within this work is their potential application as drug derivatizer and metabolizer.    

Concerning this, the first part of this Thesis should be the characterization of EpoK 

from S. cellulosum So ce90 and the investigation of different hetero- and 

homologous redox partners to find an efficient electron transfer system for a potential 

application of EpoK in the biotechnological production of epothilone A/B. For this 

purpose, the established bovine Adx4-108/AdR, the redox proteins Etp1/Arh1 from   

S. pombe, and Fdx2/FdR_B and Fdx8/FdR_B from S. cellulosum So ce56 are supposed 

to be investigated within the in vitro reaction of epothilone D to B by EpoK. While 

testing the homologous redox partners from So ce56, first indications for the natural 

redox partners of EpoK in S. cellulosum So ce90 might arise and could give insights 

into the biosynthesis of epothilones. Furthermore, a novel redox system for P450s, 

consisting of SynFdx from Synechocystis and FNR from C. reinhardtii, should also be 

tested in order to find a new efficient electron transfer system for EpoK.  

In the second part of this Thesis, the myxobacterial P450s of S. cellulosum So ce56 

should be characterized in terms of their substrate range, activity and their potential bio-

technological applicability. Concerning this, a library of widely used drugs should be 

tested with respect to optimized reaction and extraction conditions and detection of   

metabolites by HPLC. Afterwards, the substrates should be tested in corresponding in 

vitro experiments in order to investigate the activity of myxobacterial P450s toward 

those drug compounds. To ensure and evaluate an application of the selected 

myxobacterial P450s in a biotechnological process, the positive hits from the in vitro 

experiments should be implemented in a whole-cell system for an up-scaled production 

of the drug metabolites. Based on the published whole-cell system in E. coli with 

the redox partners Adx4-108 and Fpr (Ringle et al., 2013), the substitution of the 

former genes with the autologous redox partners Fdx8/FdR_B from S. cellulosum       

So ce56 will be performed and investigated in the following whole-cell experiments. 

The evaluation of the potential and the applicability of this whole-cell system for a 

large-scale production of drug metabolites is of great interest to produce desired and 

sufficient amounts of human metabolites as a reference standard or for toxicological 

testing during drug development. 
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4 General discussion 

In this Thesis, the myxobacterial P450 CYP167A1 (EpoK) from S. cellulosum So ce90 

was investigated with respect to different hetero- and autologous redox partners.  

Furthermore, the CYP109, CYP260, CYP264 and CYP267 families and the 

individual CYP265A1 and CYP266A1 from S. cellulosum So ce56 were investigated 

toward a conversion of epothilone D, the natural substrate of EpoK. Since the 

CYP267 family, and especially CYP267B1, turned out to be related to drug 

metabolizing bacterial P450s, their potential application as drug metabolizers was 

investigated in vitro and in a whole-cell system by testing a broad spectrum of drug 

compounds. 

4.1 CYP167A1 (EpoK): the search for efficient redox partners 

The substrates of EpoK, epothilone C and D, are 16-membered macrolides with the    

ability to block the mitosis rate by targeting microtubules (Mulzer et al., 2008). This 

characteristic makes this compound class to one of the most efficient anticancer drugs 

to date (Mukhtar et al., 2014). The products of EpoK, epothilone A and B were first 

discovered in 1987 as antifungal compounds in the fermentation broth of S. cellulosum 

and later in 1995, their cytotoxic activity was found (Gerth et al., 1996; Hofle et al., 

1996). In fact, epothilone B turned out to be the most promising and active anticancer 

drug candidate and is approved for the treatment of breast cancer in the U.S. by 

substituting the lactone with an amide functionality (Brogdon et al., 2014).  

Since the epothilones are secondary metabolites and naturally produced in the myxobac-

terium S. cellulosum (Wenzel and Müller, 2009), the large-scale isolation of these com-

pounds is hindered by their low production in this organism and by their extraction and 

purification afterwards. Even though the biosynthetic pathway of epothilones (Figure 12) 

was elucidated (Tang, 2000) and, by now, the purification of nearly 40 mg epothilone B 

out of a crude extract of S. cellulosum fermentation broth is possible, the required effort 

of using complex methods like high-speed counter-current chromatography in combina-

tion with a two-phase purification system is extraordinary high (Yang et al., 2014). 

To overcome these fermentation-dependent limitations, several other approaches are of 

in-terest to enable a sufficient production of epothilones.  
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Figure 12. Epothilone biosynthesis in S. cellulosum So ce90 (modified and taken

             from (Mulzer et al., 2008)). 

The expression of the epothilone biosynthetic gene cluster in E. coli led to the successful 

implementation and heterologous production of epothilones C and D (Mutka et al., 

2006). Analogous experiments were also performed in Myxococcus xanthus (Julien and 

Shah, 2002). With the specific optimization of the individual polyketide synthases lead-

ing to high production of intermediates of the epothilone biosynthesis (Lau et al., 2004) 

or a precursor-directed approach (Boddy et al., 2004), a complete heterologous produc-

tion of the desired epothilone B is conceivable. Nevertheless, the lack of studies heading 

toward such an approach might be attributed to the missing electron transfer system for 

EpoK and its involvement in the important last-step epoxidation of epothilone D to B. 

The only successful enhancement of epothilone B formation in the fermentation broth 

was achieved by bypassing the use of EpoK. The insertion of the genes of Vitreoscilla 

hemoglobin (to improve secondary metabolite production) and the P450 epoxidase EpoF 

in S. cellulosum So ce M4 shifted the epothilone production to the desired epothilone B 

product (Ye et al., 2016).  

However, the opportunity for a direct implementation of the natural epothilone epoxidase 

EpoK might be more beneficial. Within this study, a novel and highly efficient redox 

system for EpoK was found and characterized. The usage of SynFdx from Synechocystis 

and FNR from C. reinhardtii with EpoK resulted in the most efficient epothilone B for-

mation described to date. The experimental determination of the kinetics resulted in a 

vmax value which is remarkably more than seven orders of magnitude higher than the one 
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described for EpoK supported by the spinach redox partners (Kern et al., 2015). The in-

sertion of their genes into the organism of S. cellulosum or into a heterologous produc-

tion host like E. coli might lead to a sufficient production of the epoxidized products of 

interest, epothilone A and B. Furthermore, the search for the unknown natural redox 

partners of EpoK for the biosynthesis of the products would be promoted by a further 

investigation of the S. cellulosum So ce90 genome. Since the autologous Fdx8 and 

FdR_B from S. cellulosum So ce56 were shown to transfer electrons to EpoK in vitro 

(Kern et al., 2015), a bioinformatics study could elucidate homologs of them as natural 

redox partners and provide the opportunity for an alternative redox system for EpoK and 

its epoxidation of epothilone D to B.  

4.2 Derivatization of epothilone D with myxobacterial P450s 

As mentioned previously, epothilones are promising anticancer compounds and offer 

further conceivable application possibilities, which makes them interesting targets for 

drug design. Novel epothilone derivatives are, therefore, desirable compounds and of 

great interest for pharmaceutical research (Brogdon et al., 2014). The efforts for a deri-

vatization of epothilones by means of total chemical synthesis (Mulzer et al., 2008), 

chemical modifications (Zhang et al., 2014) or additional biotransformation steps (Basch 

and Chiang, 2007) are numerous and show the demand for new epothilone compounds. 

Although there was so far no epothilone derivative found with a higher activity toward 

cancer treatment compared to epothilone B (Table 1, chemical structures can be found in 

Figure S 1), the altered compounds might be also interesting with respect to investiga-

tions concerning their use in the treatment of Alzheimer’s or Parkinson’s diseases, since 

epothilone D has been shown to decrease the accumulation of tau protein and to rescue 

microtubule defects (Zhang et al., 2012; Cartelli et al., 2013). However, the derivatives 

26-fluoro epothilone B or sagopilone, an epothilone B analog with an additional propenyl 

group, showed IC50 values comparable to epothilone B. The alteration of the epothilone 

B structure usually results in an increased IC50 value as observed for ixabepilone, a  

lactam epothilone B analogue, or KOS-1584, an epothilone B analog with an 

additional double bond between C9 and C10. Epothilone D also features low IC50 values 

for different cell lines like MCF7 or KB-31, whereas hydroxylated epothilone D 

derivatives exhibit higher IC50 values as shown for 14-, 21- or 26-hydroxy epothilone 

D, respectively (Table 1). 
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Table 1. Overview of selected epothilone derivatives and their activity against cancer cell

           lines. (a: (Altmann et al., 2000), b: (Chou et al., 1998), c: (Tang et al., 2003),

               d: (Lee et al., 2001), e: (Chen et al., 2008), ‘alt. name’ = alternative name) 

Compound (alt. name) IC50 [nM] (cell line) Further references and comments 

Epothilone B 0.18
a
 (KB-31), 

0.5
b
 (MCF7) 

(Kowalski et al., 1997; Meier et al., 2013) 

26-Fluoro epothilone B 0.26
a
 (KB-31) (Nicolaou et al., 1998; Newman et al., 

2001; Koch et al., 2004) 

Ixabepilone  

(BMS-247550) 

2.7
d
 (MCF7) (Goodin, 2008; Pishvaian and Smaglo, 

2014) 

Sagopilone (ZK-EPO) <1
d
 (Galmarini, 2009; Stupp et al., 2011) 

KOS-1584 6 (MCF7) (Zhou et al., 2005) 

Epothilone D (KOS-682) 2.7
a
 (KB-31), 2.9

b
 (MCF7), 

9
c
 (MCF7), 16

e
 (PC3) 

(Monk et al., 2012) 

9-Hydroxy epothilone D 280
c
 (MCF7) 

11-Hydroxy epothilone D 21
c
 (MCF7) 

14-Hydroxy epothilone D 29
c
 (MCF7) 

S-14-Methoxy epothilone D 3.7 (MCF7) (Frein et al., 2009) 

21-Hydroxy epothilone D

(Epothilone F)

23
c
 (MCF7) (Basch and Chiang, 2007) 

26-Hydroxy epothilone D 95
c
 (MCF7) (Nicolaou et al., 1998) 

26-Fluoro epothilone D 7.5
a
 (KB-31) (Koch et al., 2004) 

EPO490 25
c
 (MCF7) (Njardarson et al., 2002) 

Bridged epothilone D 77
e
 (PC3) IC50 value taken from compound 30 

In contrast to the majority of the described attempts toward a derivatization of epothilo-

nes via chemical synthesis or biotransformation in different microorganisms, in this 

study, the derivatization of epothilone D was achieved with the use of myxobacterial 

P450s of S. cellulosum So ce56. The P450s tested were selected by their relatedness to 

EpoK from S. cellulosum So ce90, whereby the CYP109, CYP260, CYP264 and 

CYP267 families and the individual CYP265A1 and CYP266A1 were selected for an 

epothilone D conversion. In contrast to the CYP109, CYP260 and CYP264 families of S. 

cellulosum So ce56 showing no activity, CYP265A1 and CYP266A1 were found to con-

vert epothilone D to 14-hydroxy epothilone D (Kern et al., 2015). Besides the fact that 

epothilone D is the first substrate found for these P450s, the autologous redox systems 

from S. cellulosum So ce56 were also found to be more efficient for the required electron 

supply than bovine Adx4-108/AdR. For CYP265A1, each of the tested redox systems (bo-

vine Adx4-108/AdR and the autologous Fdx2/FdR_B and Fdx8/FdR_B) showed the ability 

to support this P450 with electrons, with Fdx8/FdR_B showing highest conversion of 
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epothilone D yielding 6% 14-hydroxy epothilone D (Kern et al., 2015). In case of 

CYP266A1, attempts of using the spinach redox system or bovine Adx4-108/AdR for its 

reduction have been previously shown to be unsuccessful (Khatri, Hannemann, et al., 

2010). In this study, the ineffective use of the heterologous Adx4-108/AdR confirmed the-

se earlier studies of CYP266A1. However, the conversion of epothilone D by CYP266A1 

was achieved using autologous redox partners, where the highest activity was observed 

with Fdx2/FdR_B yielding 6.9% 14-hydroxy epothilone D (Kern et al., 2015). In addi-

tion, these results open the possibility to further investigate the substrate spectrum of 

CYP265A1 and CYP266A1. CYP266A1 owns an interesting solitary and distant position 

within the phylogenetic tree of the CYPome of S. cellulosum So ce56, which might be an 

indication for a special or extraordinary substrate acceptance. Moreover, the expression 

yield of CYP266A1 is very high (1400 nmol/l, (Khatri, Hannemann, et al., 2010)), which 

would be a supporting and encouraging basis toward further in vitro and potential whole-

cell experiments. 

Epothilone D was also converted by CYP267B1, which showed the remarkable ability to 

convert epothilone D into 5 different products. Thereby, the highest yields were also ob-

served when using the autologous redox partners Fdx8/FdR_B from S. cellulosum So 

ce56. Among epothilone B, also 14-, 21- and 26-hydroxy epothilone D were found. The 

products epothilone B and 26-hydroxy epothilone D showed a combined yield of 11.7% 

and with a yield of 4.8% and 5.5%, 14-hydroxy and 21-hydroxy epothilone D were also 

found to be side products of the epothilone D conversion by CYP267B1 (Kern et al., 

2015). However, in case of these hydroxylated epothilone D derivatives, their usage as 

precursors for a subsequent chemical modification might be of interest. Therefore, chem-

ical modifications at position 14 (etherification with methanol, (Frein et al., 2009)), posi-

tion 21 (oxidation to ketone functionality, (Nicolaou et al., 1998)) and position 26 (fluor-

ination, (Koch et al., 2004)) might be feasible by using the corresponding hydroxylated 

epothilone D derivatives as precursor instead of their complex bottom-up chemical syn-

thesis. These functionalized derivatives would be accessible more easily using a chemo-

enzymatic production. Most interestingly, the fifth epothilone derivative formed by 

CYP267B1 turned out to be a novel und unknown epothilone derivative, 7-ketone epothi-

lone D. In fact, this epothilone derivative was found to be the main product of the epothi-

lone D conversion by CYP267B1 with a 8.7% yield (Kern et al., 2015). An oxidation of 

the hydroxyl group at position 7 was not described yet and the effect of this modification 

on the pharmacological activity of epothilone D is, therefore, unexplored. This product is 
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an interesting candidate for further pharmacological testing both for potential antitumor 

activity and for the treatment of Alzheimer’s or Parkinson’s disease.  

4.3 Selection of drugs as potential substrates for myxobacterial 

P450s  

In order to investigate the substrate spectrum of myxobacterial P450s from S. cellulosum 

So ce56 toward pharmaceutical drugs and their ability to produce respective drug metab-

olites, a substrate library of different chemical structures was established. To increase the 

relevance of this substrate library, 14 of the selected drugs (amitriptyline, amodiaquine, 

carbamazepine, chlorpromazine, clomipramine, dexamethasone, haloperidol, ibuprofen, 

nifedipine, omeprazole, ritonavir, tamoxifen, testosterone, verapamil) are representatives 

of the World Health Organizations List of Essential Medicines, the most important medi-

cations needed in a basic health system (World Health Organization, 2013). The usage of 

this library should lead to a general impression of the substrate acceptance as well as po-

tential fields of application for myxobacterial P450s. An overview of the tested drug 

molecules is presented in Figure 13 and Figure 14, where the compounds are clustered 

according to similar basic chemical motifs. 
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Figure 13. Part I: Substrates investigated in this study clustered after their structure as  

                   tricyclic (A) and pyridine compounds (B). 

 

The first group of the tested substrates belong to tricyclic compounds as shown in Figure 

13 A. This substance class acts as inhibitor for serotonin and norepinephrine transporters 

(Gillman, 2007). The down-regulation of these transporters has a beneficial effect on 

mental disorders like depression and anxiety (Rénéric and Lucki, 1998). The second 

group tested consist of pyridine analogs as presented in Figure 13 B. Although amodia-

quine and papaverine share a similar overall structure, their field of application is differ-

ent. While amodiaquine is used for the treatment of malaria since the 1950s (Li et al., 

2002), papaverine is predominantly used for the treatment of cerebral vasospasm (Liu 

and Couldwell, 2005). The third substrate listed in this group is nifedipine, an antihyper-

tensive drug also used in the therapy of the Raynaud-syndrome (Varon and Marik, 2003; 

Anderson et al., 2004).  
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Figure 14. Part II: Substrates investigated in this study clustered after their structure as  

                  azole (A), benzene (B) and (seco-)steroid (C) compounds. 

 

The second overview of the tested substrates starts with the clustering of compounds con-

taining an azole group (Figure 14 A). Apart from the macrolide epothilone D, which was 

already discussed in previous sections, four more drug compounds with azole residues 

were investigated. Analogous to nifedipine, losartan is also an antihypertensive com-

pound, but with a much more specific mechanism and higher affinity to block the angio-

tensin-I receptor (McIntyre et al., 1997). Together with lopinavir, the third compound, 

ritonavir, is the first and only co-formulated HIV-1 protease inhibitor and is effectively 

used in the treatment of HIV-1 infection (Chandwani and Shuter, 2008). The next two 

substrates are omeprazole and oxymetazoline, both smaller compounds as the previously 

mentioned azole derivatives. Omeprazole is a prodrug which is converted to its active 

form only at the desired site of action, the parietal cell, to reduce gastric acid secretion 

(Oosterhuis and Jonkman, 1989). On the other hand, due to vasoconstricting properties, 
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the latter drug, oxymetazoline, is used in nasal sprays for the treatment of nasal conges-

tion (Krempl and Noorily, 1995). 

In Figure 14 B, the ten compounds with benzene functionality are clustered and provide a 

high structural variety. Dextromethorphan as well as noscapine are the active ingredients 

in a variety of widely used cough remedies (Church et al., 1989). Although dextrome-

thorphan exhibits a tricyclic basic structure, it belongs to the morphinan class. However, 

this compound was clustered within the benzene group with respect to its pharmacologi-

cal effect together with noscapine and other non-steroidal analgesics, namely diclofenac, 

ibuprofen and indoprofen. The latter three compounds are also considered as anti-

inflammatory and share the common mechanism of inhibiting cyclooxygenase activity 

(FitzGerald and Patrono, 2001). Another compound listed in this class is haloperidol, an 

effective antipsychotic for the treatment of schizophrenia or Tourette syndrome, respec-

tively (Irving et al., 2006). Analogous to the linear structure of haloperidol, terfenadine 

and verapamil are also clustered within this group. Terfenadine is an antihistamine and 

effectively used as antiallergic drug (Thompson and Oster, 1996) and verapamil is the 

third drug for the treatment of hypertension used as substrate in this study (Chen et al., 

2010). The last two compounds in this group are repaglinide and tamoxifen. The first one 

is used for the treatment of type 2 diabetes mellitus (Scott, 2012) and tamoxifen is anoth-

er anticancer compound (EBCTCG, 1998). 

The last clustered compounds tested are (seco-)steroidal structures (Figure 14 C). To test 

the activity of myxobacterial P450s toward steroids, testosterone, progesterone and dex-

amethasone were selected. Testosterone is used in replacement therapy to treat hy-

pogonadism in males (Kumar et al., 2010) and progesterone is the most important pro-

gestogen in the body involved in the biosynthesis of major hormones and corticosteroids 

(Yamazaki and Shimada, 1997) and is also used in the treatment of various diseases. The 

last steroidal compound is dexamethasone, a multifaceted drug with a broad spectrum of 

anti-inflammatory and anti-allergic benefits (Gao et al., 2003). Additionally, vitamin D3 

was also investigated during this study to extend the steroidal basic structure with one 

representative of secosteroids. Vitamin D3 is important for muscle and bone health and 

can be used as a supplement to treat deficiencies (Stroud et al., 2008). 

In terms of experimental procedures, the diverse chemical structures and functional 

groups required additional consideration. To ensure an optimal extraction and HPLC 

analysis, substrate-dependent protocols and methods were established. The extraction 
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protocol was optimized by comparing the solvents ethyl acetate and chloroform as ex-

traction agents in control experiments (only 100 µM substrate in reaction buffer, 3 hours 

at 30°C). In general, the presence of a nitrogen in the chemical structure of the substrate 

resulted in additional peaks in the chromatogram. To prevent these interference factors, 

an additional step of increasing or decreasing the pH before extraction was established 

using glycine (pH 11) or acetic acid/acetate buffer (pH 4). The resulting deprotonated or 

protonated drug molecule enabled a reproducible and distinct HPLC analysis. The ab-

sorption maxima of the substrates were determined in the spectrophotometer (reaction 

buffer, 200 µM) and used in the respective HPLC methods. As a result, a favorable and 

reproducible analysis procedure was found for all drug compounds, both for in vitro and 

whole-cell experiments and a substrate-dependent protocol was established. This provid-

ed access to an interesting and diverse drug library to investigate and enlarge the known 

substrate spectrum of myxobacterial P450s from S. cellulosum So ce56. 

4.4 Investigation of the substrate spectrum of CYP267A1 and 

CYP267B1 

Bioinformatics studies showed a high relatedness of the CYP267 family to distinct bacte-

rial drug metabolizers in comparison to the other P450s of S. cellulosum So ce56 (Kern et 

al., 2016). The phylogenetic relatedness to drug metabolizing P450s proved to be a good 

indication for testing different drug molecules as substrates. This novel P450 family con-

sists of two members, of which the first, CYP267A1, was previously found to convert 

fatty acids to their respective hydroxylated products (Khatri et al., 2015). Since the se-

cond member, CYP267B1, was shown to convert the anticancer drug epothilone D in this 

study, both members of the CYP267 family, CYP267A1 and CYP267B1, were selected 

for a comprehensive investigation toward their ability to convert drug compounds. Con-

cerning this, in vitro conversions of the structurally diverse drug library were performed 

with CYP267A1 and CYP267B1. Out of the established library, seven and 14 new sub-

strates were found for CYP267A1 and CYP267B1, respectively. The activity of 

CYP267B1 towards steroidal compounds like testosterone and progesterone (Ziska, 

2011) was also confirmed. In general, the usage of the autologous Fdx8/FdR_B as redox 

partners for the CYP267 family turned out to be more favorable compared to the bovine 

Adx4-108/AdR and resulted in higher yields within the in vitro conversion of drug mole-

cules as demonstrated for the increased in vitro conversion of amitriptyline by 
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CYP267B1, respectively (from 15% to 60% 10-hydroxy amitriptyline, when using 

CYP267B1-Fdx8-FdR_B (Kern et al., 2016)). 

The rough clustering of the compounds in different groups of basic chemical motifs was 

primarily performed to screen associated substrates with different sizes and topology. 

The second motive was to find and clarify potentially favored substance classes or chem-

ical motifs as distinctive feature for the acceptance as a substrate for the CYP267 family. 

Indeed, a high number of hits was observed for the tricyclic compounds (Figure 13 A), 

with seven out of eight compounds showing an in vitro conversion with CYP267B1. In 

comparison, CYP267A1 is able to convert only thioridazine. In the group of pyridine 

analogs (Figure 13 B), only the structurally similar amodiaquine and papaverine are con-

verted by CYP267B1, whereby CYP267A1 showed no activity. All five compounds con-

taining azole functionalities (Figure 14 A) are accepted as a substrate for CYP267B1 

only, although their chemical structures range from 15-membered macrolides like epothi-

lone D to small phenol derivatives like oxymetazoline. The members of the CYP267 

family showed similar and complementary substrate acceptance for eight out of the ten 

compounds of the second last group (benzene derivatives, Figure 14 B). While dextrome-

thorphan and haloperidol are only converted by CYP267A1, ibuprofen, tamoxifen and 

terfenadine are converted by both, CYP267A1 and CYP267B1. Diclofenac and noscap-

ine are only converted by CYP267B1. The two compounds showing no conversion are 

indoprofen and verapamil. The substitution of the isobutyl group of ibuprofen with an 

isoindolin-1-one residue seems to have a significant influence on the binding of the re-

sulting derivative indoprofen in the active site of CYP267B1. Only for CYP267B1, the 

steroids testosterone and progesterone of the (seco-)steroidal group in Figure 14 C are 

accepted as a substrate with an in vitro conversion of 7% and 18% by CYP267B1-Fdx8-

FdR_B, respectively. These results confirm steroids as a potential substrate class for 

CYP267B1. 

The diverse catalytic activities, which were observed here for CYP267A1 and especially 

CYP267B1, are known only for human CYP3A4 (Park et al., 2005), but very uncommon 

for bacterial P450s (Yin et al., 2014). The most studied bacterial P450, CYP102A1 

(BM3) from B. megaterium, was genetically modified toward a broader substrate range 

by rational protein design (Whitehouse et al., 2012; Ren et al., 2015). However, native 

bacterial P450s featuring a broad substrate range are rare. CYP105D1 from S. griseus has 

been demonstrated to feature an unusually wide substrate range and was long known for 
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being the only bacterial P450 comparable to human CYP3A4 in terms of substrate range 

(Taylor et al., 1999). Likewise, CYP116B4 (P450LaMO) from L. aggregata was recently 

shown to be a versatile bacterial P450, which couples its self-sufficient nature with a 

broad substrate range toward different compounds like sulfide derivatives, aromatic and 

bicyclic hydrocarbons and olefins (Yin et al., 2014).  

4.5 Production of drug metabolites with CYP267A1 and 

CYP267B1 

As a consequence of the previously mentioned guideline for the detection of drug metab-

olites during drug development and clinical phases (chapter 1.3), the availability of hu-

man drug metabolites for toxicological tests or as authentic reference standards is desired 

by the pharmaceutical industry. Genetic polymorphisms, especially in human P450s, 

have been linked to interindividual differences in the efficacy and toxicity of many medi-

cations (Evans and Relling, 1999). The altered metabolism of drugs by poor metabolizers 

and the resulting drug-drug interaction require authentic human drug metabolites for tox-

icological studies. Another application of reference standards arises from the increased 

and self-evidently use of drugs in every day life. Excreted by humans, drug compounds 

and their metabolites reach our groundwater. An enhanced surveillance of water quality 

and detailed information on the concentration and fate of drugs in the environment or 

wastewater treatment plants is, therefore, of high interest. The whole-cell system estab-

lished in this work is able to produce the human drug metabolites 4’-hydroxydiclofenac 

and 2-hydroxyibuprofen, which could be applied as authentic reference standards in 

aquatic environmental studies (Tixier et al., 2003). Another important application of the 

drug metabolites produced by the CYP267-Fdx8-FdR_B system are investigations on 

altered pharmacological effects. The oxidized metabolite of losartan, E 3174 (losartan 

carboxylic acid), shows a higher metabolic half-life and activity (Stearns et al., 1995).   

Concerning the multifaceted use of drug metabolites, an efficient production of them is 

of great interest. To this day, the application of bacterial P450s with a wide substrate ac-

ceptance for a large-scale production of drug metabolites remained unexplored. With 

CYP267B1 from S. cellulosum So ce56, a new bacterial P450 was found with the re-

markable ability to convert 20 out of 31 tested drugs in vitro. Together with the other 

member of the CYP267 family, CYP267A1, the application of this interesting P450 

family in an E. coli based whole-cell system was the first approach of employing wild-
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type bacterial P450 for a large-scale production of different drug metabolites. Out of the 

20 positive in vitro hits, the established whole-cell system with CYP267B1, Fdx8 and 

FdR_B from S. cellulosum So ce56 was able to convert 12 drugs within the correspond-

ing whole-cell experiment in a 200 mL scale (Kern et al., 2016). Moderate whole-cell 

conversions (<10%) were observed for amodiaquine, noscapine, papaverine, repaglinide, 

tamoxifen and terfenadine. The high yields of the whole-cell conversions of chlorproma-

zine (30.3%), diclofenac (38%), ibuprofen (44.1%) and omeprazole (78.1%) allowed an 

upscaling to 2.5 L with no significant change in the yields of the corresponding drug me-

tabolites. After purification by preparative HPLC, 5-20 mg of these metabolites were 

obtained in high purity. Although CYP267A1 showed a restricted substrate acceptance, 

the CYP267A1-Fdx8-FdR_B whole-cell system was successfully established for a large-

scale conversion of thioridazine (44.7% yield) and, likewise, 5 mg of the respective me-

tabolite was obtained in high purity. 

Most interestingly, the drug metabolites of chlorpromazine, diclofenac, ibuprofen, 

omeprazole and thioridazine, which are produced by the CYP267 family, are the corre-

sponding drug metabolites produced by human liver P450s (Table 2 and Supplemental 

Figure 6 of (Kern et al., 2016)). This result makes the members of the CYP267 family, 

CYP267A1 and CYP267B1, perfect candidates for an application in the pharmaceutical 

industry. In case of the in vitro experiments, the low formation of side-products for a few 

substrates was once again reduced within the corresponding whole-cell system (Kern et 

al., 2016). The connection of an unusual broad substrate range with a high selectivity of 

the conversion of drug molecules allows the usage of one whole-cell system to selective-

ly produce defined human drug metabolites for different fields of application. Due to the 

frequently upcoming new structures of drugs and drug candidates, the pharmaceutical 

industry might benefit from an established and highly versatile E. coli-based biocatalyst 

like the investigated CYP267B1-Fdx8-FdR_B system able to metabolize structurally 

diverse compounds. In particular, this would enable a cost-efficient and simplified pro-

duction procedure to accommodate the demand of authentic drug metabolites.  
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5  Conclusion and future prospects 

Myxobacterial P450s from S. cellulosum are promising biocatalysts with a high potential 

for biotechnological application. In S. cellulosum So ce90, the P450 EpoK is responsible 

for the epoxidation of epothilone C/D and produces the much more active antitumor 

compounds epothilone A/B. With the novel hybrid system Fdx from Synechocystis and 

FNR from C. reinhardtii found in this study, the most efficient electron transfer system 

to date has been established. This opens the possibility to express this highly efficient 

hybrid system for an increased heterologous and autologous production of epothilone 

A/B in E. coli and S. cellulosum, respectively. In S. cellulosum So ce56, the physiological 

role of the 21 P450s is still not known. Recent studies revealed their ability to convert 

different terpenes, terpenoids and fatty acids and showed the capability for an industrial 

and biotechnological application (Khatri, Girhard, et al., 2010; Khatri, Hannemann, et 

al., 2010; Khatri et al., 2015; Schifrin, Litzenburger, et al., 2015b; Schifrin, Ly, et al., 

2015). However, their potential as biocatalysts for the conversion and production of 

pharmaceutically interesting compounds has not been discovered until now. Within this 

study, the myxobacterial P450s CYP265A1, CYP266A1 and CYP267B1 were found to 

be capable of derivatizing the antitumor drug epothilone D to the respective hydroxylated 

products 14-, 21- and 26-hydroxy epothilone D. Furthermore, a novel epothilone deriva-

tive, 7-ketone epothilone D, was found as the main product of the CYP267B1-dependent 

epothilone D conversion, which opens access to a novel epothilone derivate with poten-

tial antitumor activity. The oxidation of the 7-hydroxy group of epothilone D by 

CYP267B1 enables the production of 7-ketone epothilone D by the use of an enzymatic 

approach. A large-scale production of this interesting derivative might be feasible when 

expressing CYP267B1, its efficient autologous redox system Fdx8/FdR_B from S. cellu-

losum So ce56 and the biosynthetic gene cluster of epothilones from S. cellulosum So 

ce90 in E. coli (exclusive EpoK, (Mutka et al., 2006)). This should result in the heterolo-

gous biosynthesis of epothilone C/D and the subsequent oxidation to 7-ketone epothilone 

D by CYP267B1/Fdx8/FdR_B. 

With respect to the production of human drug metabolites, the CYP267 family, especial-

ly CYP267B1, from S. cellulosum So ce56 were found to be highly versatile drug metab-

olizers with the ability to produce human drug metabolites with high selectivity. Together 

with the ability to catalyze three different reaction types (hydroxylation, epoxidation and 
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sulfoxidation), CYP267B1 from S. cellulosum So ce56 was found to be an exceptional 

bacterial wild-type P450 with a great potential for further biotechnological application. In 

combination with the established co-expression of the autologous redox partners Fdx8 

and FdR_B in E. coli, a multi-milligram (5-20 mg) production of the human drug metab-

olites chlorpromazine sulfoxide, 4’-hydroxydiclofenac, 2-hydroxy-ibuprofen, omeprazole 

sulfone and thioridazine-5-sulfoxide was achieved. 

An enzymatic production of drug derivatives and human metabolites with the usage of 

microbial P450s in a whole-cell system benefits from many advantages. First of all, mi-

crobial P450s are easy to handle and usually hold higher expression levels and activities 

than human P450s (Bernhardt, 2006). Secondly, in comparison with the utilization of 

drug metabolizing model microorganisms like Cunninghamella sp. (Asha and 

Vidyavathi, 2009), a whole-cell application with one P450 expressed would result in a 

defined process and a selective production of a desired metabolite. The established 

CYP267B1-Fdx8-FdR_B system is a great starting point for an application in the phar-

maceutical industry. On one hand, the high tolerance toward different chemical structures 

opens up the possibility to investigate a broad variety of drug compounds. On the other 

hand, the established whole-cell systems are an excellent starting point toward further 

optimizations in view of biotechnological upscaling and applicability. To overcome the 

substrate uptake by E. coli, EDTA and polymyxin B were successfully used to enhance 

metabolite formation. However, other permeabilizing detergents like TritonX100 are 

potential topics of interest, due to the recently shown increased product formation in re-

lated whole-cell experiments when expressing the human UDP-glucose 6-dehydrogenase 

(UGDH, EC 1.1.1.22) in S. pombe (Weyler et al., 2015). Instead of using a minimal me-

dium to avoid indole production by tryptophanase TnaA of E. coli (Li and Young, 2013), 

the recently published indole deficient E. coli strain showed promising biotechnological 

potential (Brixius-Anderko et al., 2016) and could be used as an alternative host for the 

established CYP267B1-Fdx8-FdR_B whole-cell system. Since the basic requirement of a 

whole-cell system can also be the NADPH availability of the host, a modification of the 

pentose phosphate pathway (Siedler et al., 2011) or a co-expression of NADPH regener-

ating systems (Janocha and Bernhardt, 2013) could also lead to an increased P450-

dependent conversion of the substrates of interest. 

Due to the broad substrate range of the CYP267B1 biocatalyst and the moderate to high 

conversion yields, the potential fields of application are widespread. Not only the for-
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mation of drug metabolites can be performed in a multi-milligram scale, also the conver-

sion of building blocks for further chemical syntheses and the derivatization of non-drug 

compounds for further chemical modification are conceivable biotechnological  

approaches of this remarkable P450 from S. cellulosum So ce56.  
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Figure S 1. Overview of relevant epothilone derivatives in this Thesis. 
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Table S 1. Cytochromes P450 used for bioinformatics studies. 

Organism P450 UniProtKB Organism P450 UniProtKB 

Homo sapiens CYP1A1 P04798 S. cellulosum So ce56 CYP109C1 A9GLI3 

CYP1A2 P05177 CYP109C2 A9G8X8 

CYP1B1 Q16678 CYP109D1 A9F9S4 

CYP2A6 P11509 CYP110H1 A9GI66 

CYP2A7 P20853 CYP110J1 A9GKJ2 

CYP2A13 Q16696 CYP117B1 A9G2V2 

CYP2B6 P20813 CYP124E1 A9FBP8 

CYP2C8 P10632 CYP259A1 A9F9S8 

CYP2C9 P11712 CYP260A1 A9FDB7 

CYP2C18 P33260 CYP260B1 A9FFA1 

CYP2C19 P33261 CYP261A1 A9GM12 

CYP2D6 P10635 CYP261B1 A9G7P4 

CYP2E1 P05181 CYP262A1 A9FW73 

CYP2F1 P24903 CYP262B1 A9FP31 

CYP2J2 P51589 CYP263A1 A9FJV1 

CYP2R1 Q6VVX0 CYP264A1 A9GJU5 

CYP2S1 Q96SQ9 CYP264B1 A9FZ85 

CYP2U1 Q7Z449 CYP265A1 A9FN58 

CYP2W1 Q8TAV3 CYP266A1 A9G3Q4 

CYP3A4 P08684 CYP267A1 A9EN90 

CYP3A5 P20815 CYP267B1 A9ERX9 

CYP3A7 P24462 S. cellulosum So ce90 CYP167A1 

(EpoK) 

Q9KIZ4 

CYP3A43 Q9HB55 Streptomyces griseus P450-SOY P26911 

CYP4A11 Q02928 Actinoplanes sp. ATCC 

53771 

CYP107E4 ACN71221 

CYP4A22 Q5TCH4 Labrenzia aggregate CYP116B4 EAV41564 

CYP4B1 P13584 Bacillus cereus CYP102A5 Q81BF4 

CYP4F2 P78329 

Rhodococcus jostii 

RHA1 

CYP51_RHA1 Q0S7M9 

CYP4F3 Q08477 CYP105_RHA1 Q0SDH7 

CYP4F8 P98187 CYP116_RHA1 Q0RUR9 

CYP4F11 Q9HBI6 CYP125_RHA1 Q0S7N3 

CYP4F12 Q9HCS2 CYP256_RHA1 Q0RXF8 

CYP4F22 Q6NT55 CYP257_RHA1 Q0RVH0 

CYP4V2 Q6ZWL3 CYP258_RHA1 Q0RUW2 

CYP4X1 Q8N118    

CYP4Z1 Q86W10    

CYP5A1 P24557    

CYP7A1 P22680    

CYP7B1 O75881    

CYP8A1 Q16647    
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CYP8B1 Q9UNU6    

CYP11A1 P05108    

CYP11B1 P15538    

CYP11B2 P19099    

CYP17A1 P05093    

CYP19A1 P11511    

CYP20A1 Q6UW02    

CYP21A2 P08686    

CYP24A1 Q07973    

CYP26A1 O43174    

CYP26B1 Q9NR63    

CYP26C1 Q6V0L0    

CYP27A1 Q02318    

CYP27B1 O15528    

CYP27C1 Q4G0S4    

CYP39A1 Q9NYL5    

CYP46A1 Q9Y6A2    

CYP51A1 Q16850    
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