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After you reach a certain level of talent (and quite a few have that talent) the 

deciding factor is ambition, or as I see it, how much you really need. Need to 

be loved and need to be proud of yourself. And I guess that’s what ambition is 

- it’s not all a depraved quest for position… or money.  

Maybe it’s for love. 

 

Janis Joplin 

(1943 – 1970) 
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Abstract 

Synthetic glucocorticoids are of high pharmaceutical value due to their anti-inflammatory 

and immunosuppressive effects. The low-yield chemical synthesis of glucocorticoids 

consists of multiple steps and includes toxic compounds as well as unwished by-product 

formation. Thus, one intends to replace this process by a more sustainable biocatalytic 

alternative. 

The work presented here demonstrates an enzyme-mediated approach to produce the 

synthetic glucocorticoid premedrol, a precursor of methylprednisolone (medrol), by a one-

step hydroxylation at carbon atom 21catalyzed by bovine CYP21A2, which belongs to the 

protein superfamily of cytochromes P450. Therefore, a CYP21A2-based whole-cell system 

was established, by which a maximum yield of 0.65 g/L premedrol could be achieved - a 

promising perspective for an industrial application. 

With regard to a molecular evolution of CYP21A2 as well as an elucidation of the 

biocatalytic ability of orphan CYPs in a high-throughput microtiter scale, the indole-

deficient Escherichia coli strain C43(DE3)_∆tnaA was generated, since indole is an 

inhibitor of some CYPs and massively impedes a screening. Applying C43(DE3)_∆tnaA in 

biotransformation resulted in a significantly higher product formation in case of CYP21A2 

as well as of CYP264A1 from the myxobacterium Sorangium cellulosum So ce56 and thus, 

serves as convenient host in future screening procedures. 
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Zusammenfassung 

 

Synthetische Glucocorticoide sind aufgrund ihrer antiinflammatorischen und 

immunsuppressiven Wirkung von hohem pharmazeutischem Wert. Die chemische 

Synthese von Glucocorticoiden besteht aus mehreren Schritten und beinhaltet die 

Verwendung toxischer Substanzen als auch die Bildung unerwünschter Nebenprodukte. 

Daher soll dieser Prozess durch ein nachhaltigeres biokatalytisches Verfahren ersetzt 

werden. 

Die vorliegende Arbeit demonstriert eine biokatalytische Herangehensweise zur 

Produktion des synthetischen Glucocorticoids Premedrol, einem Vorläufer von 

Methylprednisolone (Medrol), durch eine einstufige Hydroxylierung am C21, welche 

durch das zur Proteinsuperfamilie der Cytochrome P450 gehörende steroidogene bovine 

CYP21A2 katalysiert wird. Daher wurde ein CYP21A2-basiertes Ganzzellsystem etabliert, 

mit Hilfe dessen eine maximale Premedrolausbeute von 0,65 g/l erzielt werden konnte – 

eine vielversprechende Perspektive im Hinblick auf eine industrielle Anwendung. 

Hinsichtlich einer molekularen Evolution von CYP21A2 und einer Aufklärung des 

biokatalytischen Potentials unbekannter CYPs durch ein Hochdurchsatz-Screening wurde 

der Indol defiziente Escherichia coli Stamm C43(DE3)_∆tnaA generiert, da Indol einige 

CYPs inhibiert und somit ein Screening erschwert. Ein Umsatz mit C43(DE3)_∆tnaA 

resultierte in einer signifikant höheren Produktbildung im Falle des CYP21A2 und des 

CYP264A1 aus Sorangium cellulosum So ce56 und ist somit ein geeigneter 

Wirtsorganismus für künftige Screeningverfahren. 
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1. Introduction 

1.1 Biocatalysis of today 

“All our efforts to defeat poverty and pursue sustainable development will be in vain if 

environmental degradation and natural resource depletion continue unabated.” 

Kofi Annan 

With respect to global warming, the increase of greenhouse gas emissions as well as 

the overexploitation of fossil fuels, our civilized culture has to pursue sustainable 

alternatives to meet the needs of our society in the future. This includes not only a switch 

to renewable energy sources, but also a revolution in terms of the industrial production of 

bulk and fine chemicals, pharmaceuticals and food additives. Commonly used chemical 

synthesis often consists of multistep-reactions and needs harsh reaction conditions as well 

as the use of polluting substances like heavy metals and halogens. Hence, one has to 

promote sustainable, environmentally friendly alternatives by employing nature´s 

repertoire of naturally occurring enzymatic reactions [1]. In contrast to chemical synthesis 

enzymes perform highly specific reactions, ensuring enantio-, regio- and stereoselectivity, 

which reduces unwished by-products to a minimum and avoids the need of protection 

groups. Furthermore, they work under mild reactions conditions without the need of 

environment-polluting, toxic compounds. While biocatalysis in general was subjected to 

some limitations in former decades, like poor protein stability and low turnover numbers, 

biocatalysis of today benefits from modern protein engineering techniques. The broad field 

of enzyme improvement unites bioinformatics, biology, chemistry, engineering and 

biotechnology to an interdisciplinary research for an effective application of enzyme-

mediated reactions. There exist several approaches to find and to improve an enzyme of 

interest, performing a particular reaction. Apart from the classical screening of 

microorganisms, the molecular evolution of proteins by directed and undirected 

mutagenesis is a convenient method to improve the stability and the catalytic activity [2]. 

Furthermore, enzyme mutagenesis can lead to changed stereo- and enantioselectivity, 

designing the reaction according to the requirements [3, 4]. Application of bioinformatics 

is an important achievement within modern biocatalysis, since in silico modeling of 

enzymes help to predict the impact of changes in the active site concerning selectivity and 
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substrate binding [5-7]. This powerful tool helped in former years to apply improved 

enzymes for a biocatalytic process, which takes either place with purified proteins in one-

pot reactions or enzyme cascades under defined in vitro conditions or within the scope of 

metabolic engineering and synthetic biology in vivo [8-10]. The latter ones deal with the 

heterologous protein expression in a suitable microbial host as well as the modification of 

the host´s metabolic pathways for the production of a particular compound. The 

achievements in biocatalysis led to industrial application of some processes in recent years. 

The chemical synthesis of acrylamide, the precursor of polyacrylamide, which is used in 

wastewater treatment, petroleum recovery or paper making, involves the polluting catalysts 

copper and sulfuric acid and is performed under harsh reaction conditions. The biocatalytic 

alternative uses an overexpression of nitrile hydratase in Rhodococcus rhodochrous J1 and 

produces annually over 650,000 tons in Japan under mild and sustainable conditions [11, 

12]. The biotechnological production of the hormone insulin, the leading drug in the 

treatment of diabetics, is done by microbial cell factories, either in Escherichia coli or in 

Saccharomyces cerevisiae, and is one of the most impressive achievements of biocatalysis 

during the last decades, since it ensures a sufficient supply, facing the growing demand 

[13]. The next section will treat the fascinating and versatile protein superfamily of 

cytochromes P450 (CYP, P450) whose biocatalytic impact was underestimated for a long 

time, though their spectrum of catalyzed reactions is highly diverse. In the following, the 

role of cytochromes P450 in the development of terrestrial life and their high potential as 

versatile biocatalysts is enlightened. 

 

1.2 Cytochromes P450 in brief 

In biocatalysis of today, the protein superfamily of cytochromes P450 cannot be 

neglected. This group of enzymes is highly conserved through all domains of life and has a 

strong impact on the development on life on earth. In the 1960s, Omura and Sato observed 

unique spectral properties of isolated liver microsomes after reduction with sodium 

dithionate and treatment with carbon monoxide, showing an untypical absorption 

maximum at 450 nm, and postulated a CO-binding pigment, a heme-protein “with unusual 

properties” [14]. This study underlined the observation previously reported by Klingenberg 

et al. [15]. 
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Figure 1: Schematic illustration of cytochrome P450 classification. Cytochromes 

P450 belong to the same CYP family at a sequence similarity of more than 

40% (Arabic numbers) and to the same subfamily at a similarity of more than 

55% (Arabic letters). The respective individual enzyme is designated with 

Arabic numbers. 

In the following years, the impact of Omura and Sato´s finding became clearer, since 

essential functions in the human body, like steroid hormone biosynthesis and detoxification 

in the liver, could be attributed to 57 distinct P450s [16]. With growing progress in 

molecular biology, more and more CYPs could be isolated from distinct organisms like 

fungi, bacteria, mammals and plants showing the abundance of CYPs in all domains of life 

[17]. The role of cytochromes P450 within the evolution of higher forms was elucidated, 

since they are involved in the synthesis of membrane lipids like ergosterol in fungi and of 

important steroid hormones, without which metabolic signaling within bigger organisms 

would be impossible [18, 19]. Apart from their impact on steroid biogenesis, P450s play a 

crucial role for detoxification processes in mammals, which take place in the liver and 

include drug and xenobiotics metabolism [16]. Within the phylogenetic branch of bacteria, 

the role of cytochromes P450 has not been fully understood. In the myxobacterium 

Sorangium cellulosum So ce56, some P450s are clustered with a terpene cyclase and are 

able to hydroxylate terpenoid substrates [20-22]. Consequently, these enzymes are mainly 

involved in the synthesis of secondary metabolites, which is underlined by the aspect that 

cytochromes P450 are also embedded in the biosynthesis of antibiotics in species of the 

fungus Streptomyces [23-25]. Though CYPs share a high similarity within their secondary 

structure within all species, the primary amino acid sequence is highly diverse among them 

and even within species [26, 27]. Aside from this exciting diversity, all cytochromes P450 
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possess a highly conserved cysteinate residue, which is coordinating the prosthetic heme 

group with a central iron ion, embedded in a protoporphyrin, while other cytochromes like 

hemoglobin possess a coordinating histidine residue [28]. 

 

Figure 2: Catalytic cycle of cytochromes P450. Schematic overview of the catalytic 

P450 cycle adapted from Makris et al. [29] and Denisov et al. [28]. 

Being a heme-thiolate protein gives unique spectral properties and, reduced and in 

complex with CO, a typical absorption maximum at 450 nm. Respecting their sequence, 

cytochromes P450 can be divided into families and subfamilies: with a sequence similarity 

of ≥ 40%, they belong to the same family and with a similarity of ≥ 55% to the same 

subfamily (Figure 1) [30]. They mainly catalyze hydroxylation reactions by cleavage and 

activation of inert oxygen, whereby one oxygen atom is used for the substrate 

hydroxylation while the other one is reduced to water [31]. The catalytic cycle involves the 

substrate binding and a subsequent reduction of the central heme-iron by the transfer of an 

electron, which leads to the binding of molecular oxygen. A second electron consecutively 

reduces the bound oxygen, whose distal atom is abstracted as water molecule after proton 

transfer. Eventually, the hydroxylated substrate is released from the active site (Figure 2) 



INTRODUCTION 
 

 

7 
 

[29]. Since most of the P450s are not able to abstract electrons for the catalytic cycle from 

reduction equivalents, a successful reaction is dependent on electron transfer proteins, 

which are able to receive electrons from NADH or NADPH. The redox system either 

consists of one or of two proteins, and to date ten typical cytochrome P450 systems are 

reported, but the number is growing rapidly [32]. In the human body, class I and class II of 

the P450 systems are present. 

 

Figure 3: Cytochrome P450 redox systems. A The mitochondrial redox chain belongs 

to the class I redox systems and consists of the respective CYP, a ferredoxin 

reductase, designated as adrenodoxin reductase (AdR), and a ferredoxin, 

designated as adrenodoxin (Adx). AdR is associated with the inner 

mitochondrial membrane and receives electrons from NADPH, which 

subsequently are transferred to the CYP by the soluble Adx. B The two-

component class II redox system contains the membrane-bound NADPH-

dependent cytochrome P450 reductase (CPR) and the respective microsomal 

CYP. The electrons needed for the reaction are transferred to the FAD 

cofactor of the CPR and forwarded to the FMN domain, which interacts with 

the CYP after a conformational change. Figures according to [32]. 
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Class I CYP systems contain two electron transfer proteins: a ferredoxin reductase with 

FAD as prosthetic group, which can either be membrane associated in case of mammals or 

soluble in case of bacteria, and a soluble ferredoxin with an iron-sulfur cluster as cofactor. 

The mitochondrial redox system involved in steroid hormone biosynthesis, which consists 

of the adrenodoxin reductase (AdR) and adrenodoxin (Adx), belongs to class II CYP 

systems (Figure 3 B) [33]. Class II CYP systems only appear in eukaryotes and possess 

one single electron transfer protein, a NADPH-dependent cytochrome P450 reductase. This 

protein contains two domains, one with FAD as cofactor, which receives electrons from 

NADPH, and the other one embeds FMN that interacts with the P450 after conformational 

changes (Figure 3A) [34, 35]. The fact that cytochromes P450 need redox transfer proteins 

hamper their application in industrially relevant biocatalytic processes, as a sufficient 

electron supply must be ensured for an efficient biotransformation [36, 37]. The next 

chapter will discuss limitations, but also promising perspectives for an application of 

P450s in biocatalysis. 

 

1.3 P450s as versatile biocatalysts 

Aside from the ability to perform substrate hydroxylations, cytochromes P450 also 

catalyze other reactions, like halogenation, epoxidation and even a chemically difficult to 

perform C-C bond cleavage [36, 37]. Their broad substrate range is as diverse as the 

existing P450 isoforms and reach from terpenoids and isoprenoids to fatty acids and 

steroids. Furthermore, P450s convince by their high stereo- and regioselectivity, which 

minimizes by-product formation. Aside from well-known ones, newly characterized 

orphan P450s reveal new exciting activities, which show the high potential of this protein 

family for an application in biocatalysis, which could replace established chemical 

synthesis procedures. In 2010, the CYPome of the myxobacterium Sorangium cellulosum 

So ce56 was elucidated, which consists of 21 open reading frames encoding for P450s 

[21]. In context of a screening of possible substrates, it was figured out that CYP267B1 is 

able to convert the anti-cancer drug epothilone B to 7-ketone epothilone B – a completely 

new epothilone B derivative, whose pharmaceutical potential further has to be elucidated 

[38]. In 2013, Paddon and coworkers could publish a biocatalytic process for the 

production of artemisinic acid, the precursor of the antimalarian drug artemisinin. 
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Artemisinin is synthesized in the plant Artemisia annua and its application as powerful 

drug is hindered by altering production yields as well as fluctuating costs, since it has to be 

obtained out of the plant material. With the help of synthetic biology and metabolic 

engineering, a S. cerevisiae strain was developed which overexpresses the enzymes 

involved in the pathway of natural artemisinin synthesis in A. annua with high yield of 

artemisinic acid [39, 40]. The rate-limiting step is catalyzed by the amorphadiene oxidase 

CYP71AV1, which belongs to the highly conserved protein family of cytochromes P450 

[41]. Its overexpression strongly enhanced the catalytic efficiency and is crucial for the 

established process. But also with regard to today´s well established synthesis of 

pharmaceutically important glucocorticoid hydrocortisone, cytochrome P450 play a crucial 

role. Parts of the synthesis are performed in the fungal host Curvularia lunata, whose P450 

systems are able to catalyze the final 11β-hydroxylation gaining hydrocortisone [42, 43]. In 

2003, a Saccharomyces cerevisiae strain was published which is able to produce the 

hydrocortisone from a simple carbohydrate source by metabolic engineering [44]. For this, 

the yeast´s ergosterol biosynthesis pathway was modified to provide a steroidal substrate 

for CYP11A1, which catalyzes the first step of natural hydrocortisone synthesis by a side-

chain cleavage of cholesterol. Furthermore, CYPs which are crucial for steroidogenesis in 

mammals, CYP21A2, CYP17A1 as well as CYP11B1, could successfully be 

overexpressed mimicking a mammalian pathway which was encoded by genomic 

integration as well as by vectors. Especially the biocatalytic ability of CYP21A2 will be an 

important issue later in this thesis. These two processes are impressing examples for 

modern synthetic biology and show the impact and the convenient application of P450s 

within biocatalytic systems to produce substances of high interest. Though these examples 

prove the fundamental suitability of cytochromes P450 for a biocatalytic application, some 

principle hurdles first have to be overcome. Limitations like a lack of enzyme stability and 

a low-yield heterologous protein expression can partially be minimized by the use of an 

appropriate expression host in combination with adapted expression conditions. 

Furthermore, the enzyme stability can be improved by biotransformation with whole cells, 

avoiding a degradation of the enzyme during a purification process. In recent years, 

modification of the primary enzyme structure led to an enhanced expression of mammalian 

CYPs in the host Escherichia coli by removal and replacement of the membrane-

interacting domains, additionally leading to an improved stability [45]. One further 
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challenging bottle-neck regarding P450 mediated catalysis is definitely the sufficient 

supply with electrons for the reaction. Since P450s are external monooxygenases, they are 

dependent on electron transfer proteins, as shown in chapter 1.2. With regard to a 

biotechnological application, this means the expression and purification of one or two 

more proteins in case of in vitro applications or, concerning whole-cell catalysis, an 

enhanced metabolic burden for the host [46]. Additionally, the costly reducing equivalent 

NAD(P)H has to be abundant for a flowing electron supply, whereby whole-cell 

biocatalysis has to be preferred towards in vitro applications, since the host itself is able to 

serve as donor. An inefficient electron transfer to the CYP not only decelerates the 

biocatalysis, but also leads to an uncoupling of electrons, which subsequently leads to the 

formation of reactive oxygen species (ROS), as shown in Figure 2 [36, 47, 48]. An 

accumulation of ROS leads to an irreversible damage of the prosthetic heme group and, 

thus, to a decrease of active CYP, which consequently impedes the biocatalytic ability. 

Aside from the above-mentioned limitations, P450s in general exhibit very low turnover 

numbers and a low biocatalytic activity, which is not convenient for an industrially 

relevant biocatalytic process. Taken together, these bottlenecks are challenging with regard 

to a future biotechnological application of CYPs, but in the course of modern techniques in 

recent decades, a significant improvement of P450 systems is likely to be approximated 

[49]. Modern molecular evolution is based on three common techniques: random 

mutagenesis by using error-prone PCR addressing the whole protein sequence, site-

directed mutagenesis, which goes along with saturation mutagenesis, and gene shuffling, 

which mimics sexual evolution in nature. Reetz et al. reviewed the achievements of 

molecular P450 evolution towards an application in organic synthesis by the example of 

P450-BM3 (CYP102A1) from Bacillus megaterium, which exhibits a significantly higher 

biocatalytic activity compared with other CYPs. The higher turnover number is due to the 

fact that CYP102A1 is a fusion protein consisting of a P450 domain and a CPR domain, 

which enables a direct electron transfer and minimizes an uncoupling [50]. Therefore, this 

enzyme is of great interest for an industrial application and was object of mutagenesis in 

last years to change regio-, stereo-, and enantioselectivity or to create new non-natural 

reactions. Recently, a CYP102A1 mutant was published, which is able to carry out an 

aziridination reaction having no counterpart found in nature yet – an impressive example 

for the potential of enzyme engineering and manipulation through molecular evolution 
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[51]. Aside from new reactions and changes in selectivity, it is of great interest to improve 

the catalytic activity of established CYP-mediated reactions, since most of them have poor 

turnover numbers. For this, one of the most important aspects in context of molecular 

evolution is a suitable and reliable screening system, which ensures a high-throughput 

screening of mutant libraries focusing on the improvement of the respective enzyme 

property with an appropriate enzyme expression as well as a sufficient host cell density. In 

view of a highly stereo- and regioselective substrate conversion, mammalian cytochromes 

P450 are of increasing interest in recent years. Particularly with respect to the 

hydroxylation of steroids, steroidogenic CYPs are suitable for the production of anti-

inflammatory glucocorticoids, since a chemically performed hydroxylation exhibits a poor 

overall yield, deals with toxic compounds and forms many unwished by-products. In case 

of the S. saccharomyces strain, which was developed for a biocatalytic hydrocortisone 

production, many CYPs participating at the steroid biosynthesis are inserted into the yeast 

to mimic the natural synthesis pathway. The impact of natural and synthetic glucocorticoid 

on human and animal health as well as the role of the steroidogenic 21-hydroxylase 

(CYP21A2) in this context are treated in the next section. 
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1.4 Steroidogenic cytochromes P450 and the production of 

pharmaceutical glucocorticoids 

Natural and synthetic glucocorticoids are of high pharmaceutical interest due to their 

anti-inflammatory and immunosuppressive effects. The most important natural 

glucocorticoid is cortisol (hydrocortisone), which is synthesized originating from 

cholesterol through a multi-step CYP-mediated reaction cascade in the Zona 

fasciculata/reticularis of the adrenal glands. The final step of cortisol synthesis is 

catalyzed by the 11β-hydroxylase CYP11B1, whose expression is controlled by ACTH 

(adrenocorticotropic hormone) and a cAMP regulated signaling pathway [52]. When 

cortisol binds to the respective glucocorticoid receptor (GR), it initiates an extensive stress 

response, which includes a change in glucose metabolism including the upregulation of the 

gluconeogenesis and an inhibition of fat metabolism [53-55]. On the other hand, cortisol 

secretion leads to a suppression of the immune response, especially of the inflammatory 

response, e.g. by inhibiting the transcription factor NF-κB, which is responsible for the 

transcriptional activation of cytokines [56]. The recognition that one is able to use cortisol 

as an anti-inflammatory drug happened over fifty years ago, when researches applied an 

adrenal cortical steroid extract to a patient with rheumatic arthritis and observed a 

beneficial effect on the symptoms. From there on, the industrial production of cortisol and 

its clinical application has been started. The cortisol binding to the GR is mainly mediated 

by its interaction of the hydroxyl groups at carbon atoms 11, 17 and 21, which are 

determined to be crucial for glucocorticoid action [57]. Since GR and the 

mineralocorticoid receptor (MR) possess highly similar structures and, therefore, cortisol 

also acts as mineralocorticoid due to its affinity to the MR, new synthetic glucocorticoids 

were synthesized originating from cortisol, which have lower mineralocorticoid effects and 

higher anti-inflammatory properties to reduce unwished side effects during treatment like a 

disturbance of the mineral household [58-60]. The most crucial change in the cortisol 

structure for a higher drug activity was the introduction of the 1,2-dehydrogenation in the 

steran A ring resulting in prednisolone. Furthermore, this simple dehydrogenation led to a 

decreased affinity to the MR and thus, to a decreased mineralocorticoid activity (Figure 4, 

Table 1) [61]. 
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Figure 4: Overview of common pharmaceutical glucocorticoids. Synthetic 

glucocorticoids originate from the cortisol structure and all are modified by 

a 1,2-dehydrogenation in the steran A ring, which increases the drug 

efficiency. Additional halogenations and methylations further enhance the 

interaction with the glucocorticoid receptor and lower the mineralocorticoid 

action. 

In the following years, prednisolone was further modified with additional methyl groups 

(C16: beta-/dexamethasone; C6: methylprednisolone) (Figure 4, Table 1). A total depletion 

of mineralocorticoid activity was achieved by halogenation of the steran skeleton, resulting 

in the highly active long-term steroids beta- and dexamethasone, to mention only the most 

important ones. Depending on the severity of the disease, synthetic steroids like cortisol 

are applied ectopically in the short-term treatment of dermal allergic reactions, while long-

term glucocorticoids like beta- and dexamethasone serve as drugs applied systematically. 

The chemical production of glucocorticoids and mainly the introduction of hydroxylations 

into the steran skeleton at the crucial positions 11 and 21 consist of a complicated multi-

step synthesis. It exhibits not only a poor selectivity, which leads to many by-products and, 

therefore, to several purification steps, but also involves toxic compounds like iodine [62-

64]. Another very popular and demanded synthetic glucocorticoid represents 

methylprednisolone (medrol), which originates from prednisolone and possesses an 
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additional methylation at carbon atom six. It exhibits a 5 fold higher anti-inflammatory 

activity than cortisol and is a convenient drug in the treatment of autoimmune diseases like 

multiple sclerosis and of rheumatic arthritis (Figure 4, Table 1) [65, 66].  

 

Table 1: Important glucocorticoids and their drug potency. Glucocorticoids 

originating from cortisol are listed in ascending order concerning their anti-inflammatory 

potency, the mineralocorticoid potency and their biological half-life. (According to [55]) 

 

 

Methylprednisolone is produced by a chemical multistep-reaction with a crucial 21-

hydroxylation at the end, resulting in premedrol, which is subsequently 1,2-

dehydrogenated to medrol by a well-established microbial biocatalysis. With regard to a 

biocatalytic alternative for the selective introduction of an 11- and 21-hydroxylation, the 

most logical procedure is to apply enzymes, which are responsible for the synthesis of 

natural glucocorticoids, the steroidogenic cytochromes P450. The only enzyme so far 

known to perform a highly selective 21-hydroxylation, is the mammalian 21-hydroxylase, 

CYP21A2, which is involved in the cholesterol-originating steroid biosynthesis and 

provides the precursors for cortisol and aldosterone, the most important glucocorticoid and 

mineralocorticoid, respectively, by a 21-hydroxylation of the natural substrates 

progesterone and 17OH-progesterone (Figure 5) [67, 68].  
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Figure 5: CYP21A2-dependent biosynthesis of aldosterone and cortisol. CYP21A2 

participates in the biosynthesis of the main mineralocorticoid aldosterone 

and the main glucocorticoid cortisol from cholesterol by a selective 

hydroxylation of progesterone and 17OH-progesterone at carbon atom 21 to 

the respective precursor 11-deoxycorticosterone and 11-deoxycortisol. 

CYP21A2 is expressed in the adrenal cortex, inserted into the endoplasmic reticulum 

membrane and represents, together with its natural redox partner CPR, a cytochrome P450 

system class II. In human, the 21-hydroxylase is encoded on chromosome 6 and its 

transcription is regulated by ACTH. Near by the CYP21A2 gene locus a second CYP21 

encoding sequence is located, which represents the pseudogene CYP21A1. The existence 

of this pseudogene is supposed to be responsible for many severe mutations within the 

CYP21A2 gene due to illegitimate crossing over events [69]. These mutations are 

responsible for 95% of cases of congenital adrenal hyperplasia (CAH), which results in an 

impaired cortisol and aldosterone production and, therefore, in an accumulation of 

androgens. For a long time the impact of mutations on the structural as well as enzymatic 
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properties of CYP21A2 could not be elucidated, since an enzyme production in sufficient 

amounts by heterologous expression and in a suitable host was not possible. Although 

protein synthesis was possible in yeast species, the expression yield was to poor for 

downstream processing. When expression in the bacterial host Escherichia coli was 

enabled by a cleavage of the hydrophobic membrane anchor of bovine CYP21A2 to 

improve the solubility, the expression yield was high enough to examine CYP21A2 on a 

molecular level regarding its kinetics and to elucidate the crystal structure [70]. 

Furthermore, efforts were done to use the 21-hydroxylase as a biocatalyst in the host 

Schizosaccharomyces pombe, but due to a low expression yield the biocatalytic efficiency 

of this system was too poor for a valuable conversion of the natural substrates progesterone 

and 17OH-progesterone [71, 72]. For this reason, the powerful ability of CYP21A2 to 

perform a highly selective 21-hydroxylation was out of focus. The 11β-hydroxylase 

(CYP11B1), which catalyzes the last step in cortisol synthesis, is a mitochondrial 

cytochrome P450 belonging to the redox system class I. Similar to CYP21A2, its 

biocatalytic application was restricted to a poor expression yield due to its membrane 

protein character. The successful expression in E. coli was the first step initiating a 

biocatalytic application for cortisol production [73]. This state of art represents the initial 

situation of this work, which focusses the biotechnological application of steroidogenic 

CYPs. 

 

1.5 Aim and scope of this work 

The biotechnological application of steroidogenic cytochromes P450 is of great interest for 

the introduction of crucial hydroxyl groups into pharmaceutically relevant glucocorticoids, 

since in the long term the current chemical hydroxylation should be replaced by a 

sustainable and more selective biocatalytic process. CYP-dependent biocatalysis is 

restricted by poor turnover numbers, which can be overcome by a molecular evolution 

combined with a suitable screening system. In this work, the recent progress in using E. 

coli as expression host for mammalian CYPs was taken up to establish whole-cell systems 

for the CYP21A2 mediated 21-hydroxylation of medrane to premedrol, the precursor of 

methylprednisolone. 
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Figure 6: Scheme of a CYP21A2 based whole-cell system in E. coli. Schematic 

representation of a medrane-converting E. coli whole cell system based on a 

heterologous expression of bovine CYP21A2 and CPR as redox transfer 

protein. 

 

Additionally, CYP11B1- and CYP11B2-based whole-cell systems were established for the 

production of important metabolites as well as pharmaceutically relevant steroids. 

Furthermore, a convenient screening host for molecular evolution should be generated to 

facilitate cultivation and biotransformation in a microtiter scale. 
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2. Scientific articles 

The obtained results presented in this work are published in the articles listed below: 

 

2.1  Simone Brixius-Anderko et al. (2015) 

A CYP21A2 based whole-cell system in Escherichia coli for the biotechnological 

production of Premedrol 

 

Simone Brixius-Anderko, Lina Schiffer, Frank Hannemann, Bernd Janocha, Rita 

Bernhardt 

Microbial Cell Factories, 2015, 14:135 doi: 10.1186/s12934-015-0333-2 

 

Reprinted with the permission of BioMedCentral. 

 

 

Patent with Sanofi Aventis, “21-Hydroxylation of Steroids“; 

Submission number 1000263078 

Application number EP14306740.3 

Submission: 30 October 2014 

 

 

 

 

 

 

 

 

 

 

 



SCIENTIFIC ARTICLES 
 

 

19 
 

 



SCIENTIFIC ARTICLES 
 

 

20 
 

 



SCIENTIFIC ARTICLES 
 

 

21 
 

 



SCIENTIFIC ARTICLES 
 

 

22 
 

 



SCIENTIFIC ARTICLES 
 

 

23 
 

 



SCIENTIFIC ARTICLES 
 

 

24 
 

 



SCIENTIFIC ARTICLES 
 

 

25 
 

 



SCIENTIFIC ARTICLES 
 

 

26 
 

 



SCIENTIFIC ARTICLES 
 

 

27 
 

 



SCIENTIFIC ARTICLES 
 

 

28 
 

 



SCIENTIFIC ARTICLES 
 

 

29 
 

 



SCIENTIFIC ARTICLES 
 

 

30 
 

 



SCIENTIFIC ARTICLES 
 

 

31 
 

 



SCIENTIFIC ARTICLES 
 

 

32 
 

 



SCIENTIFIC ARTICLES 
 

 

33 
 

 



SCIENTIFIC ARTICLES 
 

 

34 
 

2.2  Simone Brixius-Anderko et al. (2016)  

  

An indole deficient Escherichia coli strain improves screening of cytochromes 

P450 for biotechnological applications 

  

 Simone Brixius-Anderko, Frank Hannemann, Michael Ringle, Yogan Khatri, Rita 

Bernhardt 

  

Biotechnology and Applied Biochemistry, accepted 18-02-2016. 

 

Reprinted with the permission of Wiley according to the Copyright Transfer 
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 A recombinant CYP11B1 dependent Escherichia coli biocatalyst for selective 

cortisol production and optimization towards a preparative scale 

 

Lina Schiffer, Simone Anderko, Anna Hobler, Frank Hannemann, Norio Kagawa, 
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3. Discussion 

3.1 Biotechnological oxyfunctionalization of glucocorticoids 

Natural and synthetic glucocorticoids exhibit anti-inflammatory and immunosuppressive 

effects and represent the leading drugs in the treatment of allergies, inflammations and 

autoimmune diseases like multiple sclerosis. Originating from cortisol, new modified 

molecules were designed in the last decades, which exhibit a higher anti-inflammatory 

activity and a lower affinity to the mineralocorticoid receptor to reduce side effects. All of 

these pharmaceutical steroids have in common that they have to be hydroxylated at carbon 

atoms 11, 17 and 21, since these hydroxyl groups are essential for an interaction with the 

glucocorticoid receptor [57]. Chemically these hydroxylations at the steran skeleton are 

hard to perform and, thus, one is searching for a sustainable biocatalytic solution. The 

present work demonstrates the successful application of steroidogenic cytochromes P450, 

which are responsible for the biosynthesis of natural corticoids, for the refinement of 

steroids by highly selective hydroxylations. Human CYP11B1 as well as bovine CYP21A2 

and their respective redox partners could be successfully expressed in an Escherichia coli-

based whole-cell system for the selective production of the glucocorticoids cortisol and 

premedrol. Chemically performed hydroxylations, in general, consist of multiple steps 

producing many by-products, which have to be separated in time-consuming procedures. 

For this reason, protection groups are necessary, which afterwards have to be removed. 

Moreover, these reactions are catalyzed by iodine, which makes the procedure highly toxic 

and environmentally unfriendly [62-64]. The energetic expense further increases due to the 

need of harsh reaction conditions, like significant temperature differences during the 

reaction. The overall yield is in many cases not more than 30%, which is in terms of 

economics not profitable. The here demonstrated whole-cell systems offer a solution for a 

simple one-step hydroxylation, whereby toxic compounds, complicated purification steps 

due to unwished by-products and harsh conditions are swept away. Despite of the 

successful establishment of a sustainable biocatalytic process, these cytochrome P450-

based systems still exhibit severe limitations, which have to be overcome for an industrial 

application [36, 37]. With regard to the reaction process, it is remarkable that the reaction 

stops several hours after initiation. In case of the CYP21A2-based reaction with arh1 and 

etp1
fd

 as redox partners, the reaction already stops after 4 h in shaking flasks. The 

maximum yield of 320 mg*L
-1

 is reached after 4 h, since the reaction is restricted to this 
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period, which might lead to the conclusion that 1.92 g*L
-1

 could be achieved, if the 

reaction exhibited a linear course within 24 h. Therefore, it is of great importance to 

overcome restrictions, which impede an industrial application and make the biocatalytic 

approach less competitive, by maintaining the initial reaction velocity. 

The work done on the CYP21A2-based whole-cell system showed the importance of a 

sufficient electron transfer by robust electron transfer proteins, which are easy to express 

and exhibit an optimal interaction with the CYP, since the system´s efficiency significantly 

increased with the replacement of the CPR by more soluble proteins, especially arh1 and 

etp1
fd

 [74, 75]. To ensure an ideal interaction, an optimal ratio of the CYP to its redox 

partners is imperative. Although the reductase arh1 and the ferredoxin etp1
fd

 were in 

excess over CYP21A2 as shown by Western blot analysis, a complete saturation of redox 

transfer proteins to exclude limiting effects was not achieved. Thus, it has to be considered 

that a higher expression could lead to an optimal stoichiometry leading to an improved 

conversion. One approach was followed when studying the CYP11B1 system by cloning 

multiple copies of the Adx gene into the polycistronic whole-cell system vector, 

consequently enhancing the biotransformation. Applied on the CYP21-system containing 

the Fpr and Adx as redox partners, two Adx cDNA copies only could improve the 

premedrol production by about 10% compared with about 40% in the CYP11B1-based 

system (Chapter 2.3) (Figure 7). Thereby, one has to take into account that Adx is not the 

natural redox partner of CYP21A2 and that these experiments clearly are worth to be 

repeated with etp1
fd

 and arh1. Another solution is the use of distinct vector systems for the 

expression of the CYP and the redox partners with differently strong promoters. Janocha et 

al. showed even a tenfold excess of redox partners over CYP105A1 from Streptomyces 

griseolus using two distinct vector systems [76]. The vector pETDuet™-1 represents 

another alternative, as it carries two multiple cloning sites, each under the control of 

separated promoters, which allows to express genes with no or minimized polycistronic 

sequences. 
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Figure 7: CYP21A2-based whole-cell medrane conversion with one or two copies 

of Adx cDNA. Premedrol amount gained from the whole-cell 

biotransformation with one or two copies of Adx cDNA arranged in a 

polycistronic manner with Fpr as reductase and with bovine CYP21A2. 

 

An effective electron transfer is not only essential in terms of an efficient 

biotransformation, but also to minimize an electron leakage during the transfer. An 

uncoupling of electrons subsequently leads to the formation of reactive oxygen species 

(ROS) during the catalytic cycle of cytochromes P450 [48] (Figure 2). ROS are known to 

damage the prosthetic heme group irreversibly. Thus, ROS formation due to an electron 

uncoupling during biotransformation could explain why the reactions stops. So far, ROS 

formation has never been correlated experimentally to an uncoupling in a whole-cell 

system, neither was the ROS accumulation monitored during biotransformation. However, 

the impact of ROS on the biotransformation process needs to be elucidated in detail. One 

approach to cope with the damaging effects is to mimic nature, which compensates ROS 

formation enzymatically by proteins like the superoxide dismutase or catalase, which are 

able to transform radical substances to non-damaging water and oxygen [77, 78]. These 

proteins could be co-expressed to equalize ROS production effects and to prolong the 

system´s catalytic ability. 

Although E. coli represents a suitable host for heterologous expression of CYPs, the 

whole-cell biotransformation might be hampered by an insufficient substrate uptake. E. 

coli belongs to the gram-negative bacteria, which possess an outer membrane additionally 

to the cell wall and an inner membrane. Due to the special cell barrier composition, the 

diffusion of hydrophobic substrates like steroids into the cell is hindered and no special 
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transporter system is known to date. During the establishment of the whole-cell system this 

problem was overcome by testing several substances in a microtiter scale, which are 

known to permeabilize E. coli´s cell membrane to enhance the substrate access [76, 79].  

 

 

 

Figure 8: Analysis of several E. coli permeabilizing agents. Whole-cell 

biotransformation of medrane was carried out using different cell 

permeabilizing agents, which are investigated in view of the reaction 

enhancement. 

Figure 8 shows that common solvents like toluene and acetone have negative effects on the 

product yield, while the antibiotic polymyxin B enhances the premedrol yield about 3-4 

fold compared to the control without permeabilizer. Applied in a shaking flask scale with 

resting cells in buffer, polymyxin B led to a 2-fold improvement of the biocatalysis. 

Although the biotransformation could be improved, this permeabilizing antibiotic is not 

suitable for an industrial process in a large scale, since the costs would significantly 

increase and make the biocatalytic process less competitive. Thus, cheaper permeabilizing 

substances like EDTA or detergents like Triton X-100 have to be tested in the future [76, 

80]. 

Beside the substrate access into the cell, the substrate solubility represents another severe 

bottleneck in CYP-mediated steroid biotransformation [81]. Due to the hydrophobic 

properties of steroids they are not miscible with the aqueous culture environment and 

precipitate and have to be diluted in solvents. Although ethanol is a suitable solvent for 
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steroids, it is not effective enough to produce highly concentrated stock solutions. 

Furthermore, E. coli is highly sensible towards ethanol and only tolerates concentrations up 

to 5%, whereby the application of higher substrate amounts is hard to handle without 

inducing toxic ethanol effects [82, 83]. In this study, DMSO was tested as an alternative to 

ethanol, and it was figured out that not only the substrate solubility was enhanced but also 

the corresponding premedrol formation.  E. coli is able to convert DMSO by the enzyme 

dimethylsulfoxide reductase, a rare molybdenum-containing protein, to dimethylsulfide 

and is, for this reason, highly tolerant towards it [84, 85]. The ability of the DMSO 

reductase to transfer electrons to DMSO could make this solvent serving as scavenger 

molecule for ROS, which could explain the drastically increased product formation 

observed within CYP11B1- dependent biotransformation, which cannot only be explained 

by a higher solubility (chapter 2.3). Therefore, DMSO is a suitable solvent and co-solvent 

for steroids and ensures an appropriate amount of accessible substrate circulating in the 

system. In context with substrate access, a further challenge represents the establishment of 

an appropriate in-situ product removal (ISPR) technique, since the hydroxylated product 

premedrol is much more water-soluble than the substrate medrane, which subsequently 

leads to an accumulation of product in the aqueous phase resulting in a possible product 

inhibition [86, 87]. Titration of bovine CYP21A2 with premedrol results in a type I shift 

with an estimated KD value of 116 ± 10 µM, which is a clear indication for product binding 

and emphasizes the need of a product removal in future applications. One approach is the 

exploitation of the different hydrophobic properties of substrate and product, which results 

in a different affinity to solvents that could be used in a two-phase system [88, 89]. In 

recent years, resins like Amberlite™ have become of growing interest, since they represent 

a suitable tool to separate molecules from solutions through their hydrophobicity or 

polarity [90]. Though they are simple to handle, it takes much time and effort to find a 

resin, which selectively binds the product. 

In this work, a whole-cell system for the production of premedrol was chosen in preference 

of an in vitro approach with purified proteins, since the proteins remain stable inside the 

cell and do not need to be isolated via long-lasting purification procedures. Furthermore, 

the costly cofactor NADPH is provided by the host and does not need to be supplemented, 

whereby our chosen host E. coli in combination with glycerol seems to be the best choice 

regarding the cofactor regeneration ability according to literature data [91]. Despite of this 



DISCUSSION 
 

 

110 
 

obvious advantage, the cofactor accessibility represents a crucial bottleneck regarding an 

industrial process, which could lead to a stagnation of the hydroxylation reaction, as the 

host´s natural NADPH capacity is limited. To overcome NADPH limitation, the whole-cell 

biotransformation was carried out in buffer medium, which leads to a transition of the cells 

into a resting stage after protein expression. In this state, the cell´s metabolism as well as 

protein biosynthesis is restricted to a minimum, since the buffer lacks nitrogen sources and 

amino acids [92-94]. For this reason, reducing equivalents like NADPH, which mainly are 

involved in anabolic processes, can be recruited for the CYP-mediated hydroxylation 

reaction. Furthermore, the addition of a carbohydrate source to the reaction buffer serves 

for NADPH regeneration from NADP
+
 through the pentose phosphate pathway by the 

glucose-6-phosphate dehydrogenase and through the citrate cycle involved enzyme 

isocitrate dehydrogenase [95]. While biotransformation in complex medium was reduced 

to a minimum during initial investigations of the established system, the reaction velocity 

and total product yield increased significantly by using resting E. coli cells, which might be 

due to more accessible NADPH. Within mammalian electron transfer systems, the 

reductases CPR and AdR are only able to abstract electrons from NADPH, which is less 

abundant in E. coli than the non-phosphorylated NADH during a normal metabolic state 

[96, 97]. In this work, we managed to tap another electron source by using the S. pombe 

reductase arh1, which is able to abstract electrons from NADPH as well as from NADH for 

biotransformation, as shown in in vitro assays with purified enzymes (chapter 2.1). 

Dependent on the reductase, the reaction velocity as well as the overall premedrol yield 

could significantly be improved by the use of arh1 in the CYP21A2-based whole-cell 

system, emphasizing the importance of a sufficient pool of reducing equivalents. Aside 

from the NADPH-regeneration by supplemented carbohydrates, the targeted coexpression 

of NADPH-regenerating enzymes like the glucose-6-phosphate dehydrogenase, phosphite 

dehydrogenase or the lactic acid dehydrogenase was performed in other studies [76, 98, 

99]. With regard of a stable, long-lasting biotransformation this kind of cofactor 

regeneration has to be considered in the future for a competitive biocatalytic premedrol 

production. To exclude a fast depletion of the buffer medium and the carbohydrate source, 

the cells were transferred into new buffer after 2 hours and 4 hours with the result, that no 

significant difference between biotransformation with cells in fresh medium and cells 

persisting in the initial reaction buffer could be observed (Figure 9). 
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Figure 9: Impact of buffer refreshment on the biotransformation rate. The 

reaction buffer was renewed after 2 and 4 hours biotransformation to 

examine an exhaustion of carbohydrate source and to enhance 

biotransformation of medrane by the CYP21A2-dependent whole-cell 

system. 

 

Taken together, the reasons why CYP-mediated whole-cell biotransformations stop after 

several hours have not been completely identified yet and have to be elucidated in detail in 

the future to be eliminate them for the establishment of an effective biotechnological 

process.  

 

3.2 CYP21A2 as biocatalyst 

In general, cytochromes P450 exhibit low turnover numbers and, therefore, have to be 

improved for a profitable industrial application. In this work, two isoforms of CYP21A2 

were tested regarding their biocatalytic ability. Starting with bovine CYP21A2, whose 

expression has been already successfully established in E. coli, the CYP21A2 amino acid 

sequence was aligned with CYP21 sequences of other species. It was figured out, that the 

human CYP21A2 exhibits a sequence homology of 79% and, therefore, was chosen to test 

as a second CYP21 isoform in a whole-cell system. Similarly to bovine CYP21A2, the 

human CYP21A2 gene sequence was modified by an N-terminal truncation to remove 
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hydrophobic anchor regions enhancing a soluble expression, since former expression 

procedures only achieved poor yields [70, 100]. With the adapted gene sequence, the 

expression level for human CYP21A2 increased up to 327 nmol/L culture, which 

corresponds well with 398 nmol/L culture for the bovine isoform. Both isoforms were able 

to convert medrane to premedrol in in vitro assays, so that vectors for whole-cell 

biocatalysis were constructed for both enzymes. Comparative biotransformation resulted in 

a significantly higher product formation in case of the bovine CYP21A2 with the four 

tested redox systems (Figure 10). Kinetic studies in context with the crystal structure for 

human CYP21A2 revealed in 2015 that the human enzyme exhibits a much higher activity 

than the bovine one in case of the natural substrates progesterone and 17OH-progesterone, 

which is at first glance, however, contradictory to the data obtained here with medrane in 

vivo [101]. 

 

 

Figure 10: Comparison of the whole-cell systems based on bovine and human 

CYP21A2. Bovine and human CYP21A2-based whole-cell systems were 

compared with four different redox systems in view of their time-space-

yield of premedrol. 

 

One has, however, to take into account that the data produced by Pallan et al. was achieved 

with purified enzymes and another isoform of the CPR, the rat instead of the bovine one, 

which could lead to an altered activity [101]. This study impressively shows the 

dependence of CYP activity on the choice of redox partners. Moreover, whole-cell 
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catalysis is dependent from more than one factor, not as controllable as in vitro assays and 

often leads to other results compared with purified enzymes. It was shown that the bovine 

isoform is highly stable, even after 24 h biotransformation. The stability of the human 

enzyme should be verified in the future by COD spectroscopy to exclude a stability effect. 

Additionally, the synthetic glucocorticoid medrane used as a substrate here is not a natural 

substrate of CYP21A2 and differs from 17OH-progesterone by an additional methyl group 

at C6 and an 11β-hydroxylation. Despite of the high sequence similarity, the crystal 

structures of the human CYP21A2 isoform show some crucial differences to the bovine 

one elucidated in 2012 [102]. Although the amino acids of the active side are highly 

conserved, there are some changes with a possible impact:  

 Gly-468 (bovine) instead of Val-470 (human): Gly-468 is supposed to be responsible 

for a second distal substrate binding pocket in the bovine CYP21A2. The impact of a 

second binding cavity is not clear yet, but seems to facilitate the substrate binding in the 

active site. An exchange by a larger amino acid could disrupt an interaction. 

 Ser-97 (bovine) instead of Thr-97 (human): Position 97 is near to the residues 

responsible for closing the active site. It is not known if this change has an impact. 

 Met-197 (bovine) instead of Leu-199 (human): In case of a medrane conversion, this 

change seems to be the most crucial one, since this residue interacts with the C11 of the 

steroid substrate. In contrast to the natural substrates, the C11 of medrane is 

hydroxylated. Since methionine is two times less hydrophobic than leucine according 

the Kyte and Doolittle scale, it is more suitable to stabilize the hydroxyl group than the 

hydrophobic leucine. To verify this hypothesis, the dissociation constant for medrane 

titrated to the human enzyme should be determined in the future and compared to the 

KD value for the bovine isoform. 

For a future improvement of the CY21A2 application for premedrol production, techniques 

of enzyme engineering by molecular evolution should be applied to increase the catalytic 

activity as well as the binding to the substrate medrane, whose KD value is about 100 times 

higher than that for the natural substrates. For this, the higher catalytic efficiency of the 

human enzyme should be combined with the higher output in a whole-cell system using the 

bovine one. For this, an exchange of Leu-199 to Met-199 in the human CYP21A2 by site-

directed mutagenesis would be very exciting to examine the C11-interacting position, 

possibly leading to a better medrane binding, using the higher activity of the human 
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enzyme. Since it would be very time-consuming to examine all residues to elucidate the 

ones responsible for the higher activity and to introduce them one by one into the bovine 

isoform, a gene shuffling of bovine and human CYP21A2 represents a fast method to 

generate a mutant library with hybrid DNA sequences, which may exhibit a higher activity 

in whole cells [103]. In general, site-directed mutagenesis represents a powerful tool to 

improve an enzyme and to determine crucial residues, also resolving functional protein 

properties. The above-mentioned residue Met-197 could serve as target for saturation 

mutagenesis, finding amino acids, which further stabilize the hydroxyl-group at C11 and, 

therefore, improve the medrane binding. The molecular evolution done on the human 

CYP11B1 (Chapter 2.3) revealed residues improving the enzyme´s application in a whole-

cell system regarding the initial velocity as well as its stable expression. Alignment of the 

bovine CYP21A2 sequence with the CYP11B1 sequence shows, which residues could 

have an impact on the CYP21A2-system. Since the CYP11B1_G23R mutant (shortened 

enzyme sequence) significantly increases the stability and the biotransformation rate and, 

moreover, is a conserved residue in bovine CYP21A2, the Gly-36 (wild-type enzyme 

sequence) was exchanged by an arginine via site-directed mutagenesis. 

 

 

Figure 11: Comparative biotransformation of medrane by CYP21A2 and 

CYP21A2_G36R. Wild type CYP21A2 and the mutant CYP21A2_G36R 

were compared in biotransformations regarding their premedrol endpoint 

yield. 

 



DISCUSSION 
 

 

115 
 

Product analysis revealed that the beneficial effect of this amino acid exchange in 

hCYP11B1 could not be transferred to bCYP21A2, as the total product yield decreased 

about 20% compared to the wild type sequence (Figure 11). The other described 

CYP11B1-activity increasing mutations might have no obvious impact on CYP21A2 

activity, since the corresponding residues mainly contribute to the structural integrity of the 

protein scaffold. In general, mutations within the active site of CYP21A2 are critical, since 

it has a unique amino acid arrangement enabling the energetically unfavored hydroxylation 

at C21 by forming a relatively unstable carbon radical and a tight cavity avoiding 

energetically more favored hydroxylation reactions like 16α- and 17α-hydroxylations 

[104]. Thus, aside from a site-directed mutagenesis a random mutagenesis should 

additionally be aspired, to generate mutations with an impact on redox partner interactions, 

protein stability and increase of the catalytic ability. For this, a suitable screening system is 

imperative, selecting the desired property. This issue will be treated in the next section. 

 

3.3 A screening system for CYP-mediated catalysis  

According to the slogan “You get what you screen for”, the development of a suitable 

screening system for mutants with an increased activity has to be intended for enhanced 

product formation. Lent on the already established system for hCYP11B1 (Chapter 2.3), a 

screening system for the molecular evolution of CYP21A2 was developed within the scope 

of this work, which uses the higher fluorescence of hydroxylated steroids in an acidic 

environment [105]. In initial examinations it was verified that premedrol exhibits a higher 

relative fluorescence than the substrate medrane, which was the basis for an application of 

a fluorescence-based screening assay. Since the screening system should be established in 

a microtiter scale, the expression of bovine CYP21A2 together with its most sufficient 

redox partners, arh1 and etp1
fd

, and a functional medrane conversion had to be ensured 

without performing additional steps like the transfer into buffer to exclude disturbing 

medium effects. For this, the tryptophanase gene (tnaA) was successfully disrupted in the 

E. coli strain C43(DE3) resulting in the strain C43(DE3)_∆tnaA, which is highly suitable 

for the expression of CYP systems. The tryptophanase is responsible for the synthesis of 

the aromatic compound indole, which is supposed to be a strong inhibitor of CYP-

mediated biotransformation as shown in chapter 2.2 and originates from the amino acid 

tryptophan [106-108]. Biotransformation with CYP21A2 was enhanced by about 30% by 
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using the C43(DE3)_∆tnaA strain in a microtiter scale, while an enhanced protein 

expression rate was observed. After a successful medrane conversion was verified by 

HPLC analysis, the fluorescence-based assay was applied for whole cells. It was shown 

that the induced culture exhibited a higher fluorescence than the not induced one due to the 

abundancy of medrane-hydroxylating CYP21A2 so that this screening method is supposed 

to be convenient for an undirected mutagenesis (Figure 12). Therefore, an undirected 

mutagenesis via error-prone PCR was carried out and, so far, 100 mutants were screened 

by this fast three-days-lasting screening method. Taken together, the established screening 

system is highly suitable for site directed as well as undirected mutagenesis for the 

selection of mutants with improved hydroxylation activity. 

 

 

Figure 12: Application of a fluorescence-based assay on the CYP21A2 whole-cell 

system. CYP21A2 and the redox partners arh1 and etp1
fd

 were expressed in 

the strain C43(DE3) and the indole deficient strain in 1 mL. 

Biotransformation was performed with 300 µM medrane. The fluorescence 

assay was applied on induced and not induced cells showing higher relative 

fluorescence intensity (R.F.U.) in induced cultures due to medrane 

hydroxylation to premedrol. 

 

In general, the screening of cytochromes P450 is getting growing interest in context of the 

molecular evolution of known CYPs for a wished property as well as the exploitation of 

orphan CYPs to elucidate their substrate spectrum and natural function. Since the number 

of orphan CYPs is significantly increasing, efforts have to be undertaken to facilitate and 



DISCUSSION 
 

 

117 
 

to accelerate screening and exploitation. In chapter 2.2 it was shown that the created tnaA 

knock out strain of C43(DE3), which is no longer capable to produce the CYP inhibitor 

indole, is highly suitable for the screening of CYPs of the myxobacteria Sorangium 

cellulosum So ce56, which can be considered as a model for the screening of orphan CYPs. 

Starting from the indole-deficient E. coli strain, the idea rose to create a CYP-adapted 

strain to facilitate expression and screening of orphan CYPs in a miniaturized scale. CYP 

expression based on inducible systems requires crucial additives like inducing agents (e.g. 

IPTG) and δ-aminolevulinic acid, which is a heme precursor needed for the biosynthesis of 

the prosthetic group. E. coli does not have an excess of circulating heme because of its 

toxic effects and for this reason the heme biosynthesis is strictly regulated resulting in a 

deficiency of free heme for CYP synthesis. In 2001 it was shown that the expression of 

various CYPs was enhanced without the use of δ-aminolevulinic acid by overexpression of 

the hemA gene encoding the enzyme glutamyl-tRNA reductase [109]. This enzyme 

catalyzes the committed step of the heme biosynthesis in E. coli and, hence, is highly 

regulated [110, 111]. Inspired by this work, initial effort was undertaken in the scope of 

this Thesis to integrate the hemA gene locus into the E. coli genome to avoid the addition 

of the heme precursor to the whole-cell system. For this, the hemA gene sequence was 

amplified out of the C43(DE3) genome and cloned into a pET17b-based vector together 

with human CYP21A2 in a bicistronic manner. For a proof of principle, the expression 

yield of human CYP21A2 co-expressed with hemA compared with a common expression 

with the addition of δ-Ala was examined. Spectral analysis resulted in an expression yield 

of 189 nmol/L culture for the control expression and a yield of 229 nmol/L culture for 

CYP21A2 co-expressed with hemA, indicating a successful replacement of δ-

aminolevulinic acid. In view of a future application, it is planned to perform a gene knock-

in of a controllable hemA containing operon into the genome of C43(DE3) for a stable, 

vector-independent expression without supplemented δ-Ala, which would reduce costs of 

approx. 8 € per liter [112].  

 

3.4 Outlook  

Within the scope of this Thesis it was shown that steroidogenic cytochromes P450 applied 

in biocatalytic whole-cell systems exhibit high potential for the production of 

pharmaceutically relevant glucocorticoids as well as steroid-originating metabolites. 
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Nevertheless, the established systems are restricted to only a few hours of activity and the 

reasons have to be evaluated in the future to diminish limiting factors. Although shaking 

flasks are convenient tools to develop processes on a basic level for initial investigations in 

a lab scale, an optimization has to be performed in a controllable system to minimize 

disturbing factors. For an enzymatic application it is imperative to maintain stable pH and 

temperature, which should be situated within the enzyme´s optimum. During E. coli 

cultivation in shaking flasks, the bacteria´s metabolism switches from an aerobe state to an 

anaerobe mixed acid fermentation due to an oxygen depletion, which leads to an 

accumulation of acetate [113]. Thus, the medium is acidified and the pH drops under a 

value of 6, which clearly impairs the catalytic activity of a mammalian CYP, whose pH 

optimum is in a physiological range between 7.2 and 7.4. Therefore, the transfer of the 

system from flasks to a controllable fermentation system, by which pH and temperature 

can be adjusted, is of great interest to maintain the high initial biocatalytic activity. During 

shaking flask cultivation, the oxygen supply is insufficient, though essential for a CYP-

mediated reaction, and should be enhanced with the introduction of molecular oxygen 

additionally to an adapted stir velocity to maintain the reaction. One has to take into 

account that protein expression and biotransformation have to be considered as separated 

processes to be optimized in view of the development of an industrial biotransformation 

with CYP21A2 in a bioreactor. For example, while expression of CYPs does not 

necessarily require oxygen for a high yield, it is crucial for the following 

biotransformation. That means that every parameter has to be adjusted on the one hand for 

CYP expression and on the other hand for CYP-mediated biotransformation as shown in 

[114]. In view of an industrial application, the CYP21A2-based whole-cell system clearly 

represents a promising starting point producing 0.65 g*L
-1

 in an uncontrollable Biostat® 

system and leaves room for improvement. Another future aspect will definitely be an 

enzyme engineering of CYP21A2 by molecular evolution consisting of site-directed and 

random mutagenesis. The main focus will be laid on an improved binding of the synthetic 

substrate medrane as well as on an improvement of the catalytic activity, whereby the 

residue Met-197 will surely be object of mutation approaches. In this context, the 

generated C43(DE3)_∆tnaA strain could be taken as starting point to create an E. coli 

strain adapted to CYP expression and biotransformation. For this, a genomic integration of 

the above-mentioned hemA gene locus could be taken into consideration. Aside from a 



DISCUSSION 
 

 

119 
 

hemA gene integration, the genome-originating coexpression of other proteins essential for 

CYP expression and biotransformation could be taken in consideration. The E. coli 

chaperones GroEL/ES, which are needed for a correct protein folding, as well as redox 

partner proteins, which are known to interact with a broad spectrum of CYPs like arh1 and 

etp1
fd

 could be integrated into the genome leading to the avoidance of polycistronic gene 

arrangements and antibiotic-dependent vectors [115]. This fictive CYP-adapted E. coli 

strain could serve as powerful tool for simplified screening procedures, since only the 

introduction of the CYP-containing plasmid would be required without caring about 

chaperones, redox partners and further additives (Figure 13). The cultivation would be 

enhanced by using the same promoter for each expressed gene, which is inducible by using 

an autoinduction medium making IPTG redundant [116]. 

 

 

Figure 13: Future CYP-adapted E. coli strain. The schematically presented E. coli 

strain is genetically adapted for a facilitated CYP expression and CYP-based 

biotransformation. The strain is indole deficient due to a tryptophanase 

knock out. Furthermore, the genes for chaperones, redox proteins and hemA 

are integrated into the genome. 
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Taken together, in the scope of this Thesis it could be shown that mammalian CYPs are 

promising candidates for biocatalysis to make industrial processes more sustainable. 

Furthermore, fundamental work was done for a protein engineering of CYP21A2 as well as 

an elucidation of orphan CYPomes by establishing a screening system applying an indole 

deficient E. coli strain. 
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4. Abbreviations 

 

Adx     Adrenodoxin 

AdR     Adrenodoxin reductase 

arh1     Adrenodoxin reductase homologue 1 

CYP, P450    Cytochrome P450 

CYP21A2    21-hydroxylase 

DMSO     dimethyl sulfoxide 

E. coli     Escherichia coli 

EDTA      Ethylenediaminetetraacetic acid 

etp1
fd

     Electron transfer protein 1 

FAD     Flavin adenine dinucleotide 

FMN     Flavin mononucleotide 

HPLC     High performance liquid chromatography 

NAD(P)H    Nicotinamide adenine dinucleotide (phosphate) 

KD     Dissociation constant 

S. cellulosum So ce56   Sorangium cellulosum So ce56 

S. cerevisiae    Saccharomyces cerevisiae 

S. pombe    Schizosaccharomyces pombe 
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