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Abstract: 

Cytochromes P450 are highly versatile biocatalysts due to their ability to introduce molecular oxygen 

into a non-activated C-H bond. In this work, nine P450 enzymes from Sorangium cellulosum So ce56 

were investigated concerning their substrate range and catalytic biodiversity. Hence, terpenes, 

terpenoids, carotenoid-derived aroma compounds, aromatic compounds and drugs were tested as 

potential substrates for CYP109C1, CYP109C2, CYP109D1, CYP260A1, CYP260B1, CYP264A1, 

CYP264B1, CYP267A1 and CYP267B1. Those systems showing a highly selective product pattern 

towards a single product were chosen to be scaled up in an E. coli based whole-cell system for the 

formation of sufficient amounts of products for structure elucidation via NMR spectroscopy. During 

these studies, tricyclic psychotherapeutic drugs, ionones, damascones as well as terpenes and 

terpenoids were identified as novel substrates for some the tested P450s and several of their 

products were characterized. For the carotenoid-derived aroma compounds and sesquiterpenes, 

novel products such as the hydoxylated derivatives of allyl-ionones and δ-damascone or the 

oxyfunctionalized derivatives of zerumbone and cedrenol were identified, whereas the conversion of 

tricyclic drugs led to the same metabolites as those produced by human P450s. These results 

demonstrate the high diversity towards the substrate range and reaction types performed by the 

myxobacterial P450s and, therefore, their potential biotechnological applications. 
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Zusammenfassung: 

Cytochrome P450 sind vielseitig einsetzbare Biokatalysatoren, da sie molekularen Sauerstoff in eine 

nicht aktivierte C-H Bindung einbauen können. In dieser Arbeit wurden neun P450 Enzyme von 

Sorangium cellulosum So ce56 bezüglich ihrer Substratspezifität und katalytischen Vielfalt 

untersucht. Aus diesem Grund wurden Terpene, Terpenoide, Norisoprenoide, aromatische Moleküle 

und pharmazeutische Wirkstoffe als potentielle Substrate für CYP109C1, CYP109C2, CYP109D1, 

CYP260A1, CYP260B1, CYP264A1, CYP264B1, CYP267A1 und CYP267B1 untersucht. Die Substrate, 

deren Produktmuster eine hohe Selektivität für ein einzelnes Hauptprodukt zeigen, wurden mit Hilfe 

eines Ganzzellsystems im großen Maßstab umgesetzt, um eine ausreichende Menge an Produkt für 

die NMR Analyse zu erhalten. Dabei wurden trizyklische Psychopharmaka, Ionone, Damascone sowie 

verschiedene Terpene und Terpenoide als neue Substrate für einige dieser P450s identifiziert. Für die 

Norisoprenoide und Sesquiterpene wurden die hydroxylierten δ-Damascon- und Allyl-ionon-Derivate 

sowie die oxidierten Zerumbon- und Cedrenolderivative als neue Produkte identifiziert. Im Gegensatz 

dazu wurden die trizyklischen Wirkstoffe zu den gleichen Metaboliten umgesetzt, die schon von den 

humanen P450s bekannt sind. Diese Ergebnisse verdeutlichen die potentiellen biotechnologischen 

Anwendungsgebiete der myxobakteriellen P450s aufgrund ihres großen Substratspektrums sowie 

ihrer katalytischen Vielfältigkeit. 
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1. Introduction 

1.1 Cytochromes P450 

1.1.1 Background and nomenclature 

In 1958, Garfinkel and Klingenberg discovered red pigments out of rat and pig livers, respectively 

(Garfinkel 1958; Klingenberg 1958). These pigments were named cytochrome P450 (P450) by 

Omura and Sato in 1962 due to their characteristic absorption maximum at 450 nm in the 

reduced and carbon monoxide bound form. In contrast, other hemo-proteins show a typical 

absorption maximum at 420 nm (Omura and Sato 1962). P450s contain a Fe3+-ion that is 

coordinated by a protoporphyrin IX as well as water and cysteine as axial ligands, whereby 

cysteine causes the specific absorption maximum at 450 nm. In 1963, Estabrook, Cooper and 

Rosenthal discovered their enzymatic activity in the metabolism of steroids (Estabrook et al. 

1963). One year later, Omura and Sato published the detailed spectroscopic properties as well as 

the location of P450s in mitochondria of adrenal cortex (Omura and Sato 1964a; Omura and Sato 

1964b). The electron transfer proteins adrenodoxin reductase and adrenodoxin as well as the 

reconstitution of a NADPH-dependent steroid 11β-hydroxylase activity of a P450 were 

discovered in 1966 (Omura et al. 1966). The first bacterial P450 was found in Rhizobium 

bacteroids and, in contrast to the mammalian P450s, the Rhizobium P450 was soluble (Appleby 

1967). Since that time, P450s were discovered in all domains of life and over 21,000 different 

P450s (http://drnelson.uthsc.edu/CytochromeP450.html) were already identified (Nelson 2011). 

They were found in mammalians, bacteria, archaea, fungi, plants and in 2009 the first viral P450 

was discovered (Lamb et al. 2009). To classify this variety of P450s, a systematic nomenclature 

was introduced in 1987 (Nebert et al. 1987). The abbreviation CYP stands for cytochrome P450 

while the first number gives the membership of the family (over 40% identity of the amino acid 

sequence). The first letter indicates the subfamily (over 55% identity of the amino acid sequence) 

and the last number represents the specific isoenzyme. The following figure shows the example 

of CYP260A1 from Sorangium cellulosum So ce56. 

 

Figure 1: Nomenclature of the P450s exemplified by CYP260A1 from Sorangium cellulosum So ce56. 
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1.1.2 Functions and reactions 

P450s belong to the class of oxidoreductases, enzymes that catalyze the electron transfer from 

one molecule to another one. P450s are monooxygenases and catalyze the activation of 

molecular oxygen, whereby one oxygen atom can insert into a non-activated C-H bond, whereas 

the other oxygen atom is reduced to water. The required electrons are provided by a cofactor 

such as NAD(P)H and delivered to the P450 by electron transfer proteins. Thus, the 

oxyfunctionalization of organic compounds is performed by P450s as shown in Figure 2. 

The physiological roles of many P450s, especially for those found in bacteria, fungi and plants, 

are not discovered yet. In contrast, the physiological function of many human P450s has been 

identified, albeit there are still some orphan P450s (Guengerich and Cheng 2011). Human P450s 

are mainly involved in the biosynthesis of steroids, prostaglandins, vitamin D3 or fatty acids as 

well as in the metabolism of drugs and other xenobiotics (Bernhardt 2006). The steroid hormone 

biosynthesis takes place in the adrenal cortex, whereby 6 P450s are capable of the formation of 

mineralocorticoids, glucocorticoids and sexual hormones. In contrast, the clearance of drugs is 

mainly performed in the liver and about 75% of all drugs are metabolized by P450s. Thereby, 

about 90% of the P450 catalyzed reactions can be accounted to CYP1A2, CYP2C9, CYP2C19, 

CYP2D6, and CYP3A4. The CYP3A enzymes play the most important role by performing about 

45% of all P450 catalyzed reactions (Rendic and Guengerich 2014). In general, the liver P450s and 

steroidogenic P450s belong to the best characterized human P450s since steroidal P450s were 

discovered first and the characterization of drug metabolizing P450s is required by the 

pharmaceutical industry. 

 

Figure 2: General reaction catalyzed by P450s 

There are several different reaction types performed by P450s and still new types of reactions 

are being discovered (Coelho et al. 2013; Ren et al. 2015). The most common reactions catalyzed 

by these P450s are hydroxylation, epoxidation, N-, O- and S-dealkylation, the oxidation of 

heteroatoms as well as the oxidation of olefins and acetylenes. Besides these typical examples, 

there are several uncommon reactions catalyzed such as reduction, desaturation, oxidative ester 

cleavage, ring expansion, ring formation, aldehyde scissions, dehydration, one electron oxidation, 

coupling reactions, isomerization and several more (Guengerich 2001). These various types of 

reactions show the high diversity and importance of the P450s for the production of structurally 

diverse compounds. Also the substrate range differs for the various P450s. For example, the liver 
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P450 CYP3A4 is capable of the metabolism of about 27% of all drugs indicating its very broad 

substrate range (Rendic and Guengerich 2014). In contrast, other P450s like the steroid 

hydroxylase family CYP11B are very selective concerning their substrate range (Schiffer et al. 

2015a). This substrate diversity is caused by the substrate recognition sites (see Figure 6) and 

turns the identification of novel or natural substrates to a challenging process. 

1.1.3 Catalytic cycle  

The catalytic cycle of P450s was first postulated in 1968 and several improvements were done 

since that time (Gunsalus et al. 1975). The analysis of intermediates involved in this cycle is 

challenging caused by some instable intermediates whose presence is short-time. Nevertheless, 

spectroscopic and crystallographic methods enabled the elucidation of several intermediates and 

it is postulated that there are eight intermediates involved in the catalytic reaction of P450s as 

shown in Figure 3 (Denisov et al. 2005). The cycle begins with water as sixth distal ligand to 

stabilize the low spin state of the ferric Fe3+ (1). Then the water is displaced by the substrate and 

the five coordinated heme iron shifts to the high-spin state (2). This spin shift causes a change in 

the redox potential and Fe3+ can be reduced to Fe2+ by the uptake of an electron (3). Molecular 

oxygen and carbon monoxide are strong ligands for the Fe2+ resulting either in the CO-bound 

form or in the case of the catalytic cycle in the oxy-ferrous state (4). This state is further reduced 

to a ferric peroxoanion (5a) leading to the ferric hydroperoxo intermediate (compound 0; 5b) 

after the uptake of a proton. This intermediate can release a water molecule after the 

acceptance of a further proton forming an iron-oxo state (compound I; 6). Compound I is highly 

reactive and can, therefore, interact with the substrate to form the oxygenated product. The 

exact mechanism of the hydroxylation step is not yet clarified, however, a two-state reactivity 

mechanism (TSR), in which compound I abstracts a hydrogen followed by a rebound of the alkyl 

radical, is proposed (Shaik et al. 2002). The newly formed product is then released and the cycle 

can restart. Besides the “typical” cycle, there are some uncoupling pathways like the 

autooxidation shunt, peroxide shunt or oxidase shunt (grey dashed arrows). These shunts 

decrease the catalytic efficiency by the unproductive consumption of NAD(P)H (Meunier et al. 

2004). 
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Figure 3: Catalytic cycle of the P450 mechanism. Figure was adopted from (Kiss et al. 2015). 

The changes of the spin- and oxidation-state can be investigated by spectroscopic 

measurements. The carbon monoxide difference spectroscopy leads to the determination of the 

protein concentration (Omura and Sato 1964a; Omura and Sato 1964b). Additionally, binding 

studies of either substrates or inhibitors can be performed by studying the spin state shift of the 

heme iron. The high spin state is represented by an absorption maximum at 390-394 nm, 

whereas a maximum at 415-417 nm represents the low spin state. By adding a substrate to the 

protein solution, water is displaced as sixth ligand and the equilibrium shifts to the high spin 

state. The result is a typical type-I spectrum with a maximum at about 390-394 nm and a 

minimum at 415-417 nm. By adding an inhibitor, a typical type-II spectrum is obtained with a 

maximum at about 415-417 nm and a minimum at 390-394 nm (Meunier et al. 2004; Luthra et al. 

2011). 

1.1.4 Electron transfer partners 

As shown in the cycle before, P450s need electrons from an external source to catalyze the 

oxyfunctionalization. The most common provider for electrons is NAD(P)H, however P450s are 

not able to interact with this cofactor in a direct way. As a result, additional electron transfer 
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proteins are required to enable the electron transfer between NAD(P)H and the P450. There are 

several classes of electron transport chains, whereby the mitochondrial and microsomal systems 

are the most prominent ones. The mitochondrial system in mammalians consists of a membrane 

anchored reductase possessing FAD as prosthetic group, and a soluble ferredoxin containing an 

iron sulfur cluster. On the other hand, the mammalian microsomal system consists of a single 

electron transport protein called NADPH cytochrome P450 reductase (CPR). The CPR is also 

membrane anchored and possesses both, a FAD and a FMN domain to transfer the electrons. The 

FAD domain interacts thereby as electron acceptor for NAD(P)H, whereas the FMN domain 

delivers electrons to the P450 (Wang et al. 1997). These two systems do not only exist in 

mammals but also in bacteria with the difference that all redox partners as well as the P450 are 

soluble in bacterial systems. There are several other classes of electron transfer systems known 

for the bacterial system including fusion proteins having the P450 and reductase components 

fused into a single polypeptide chain. CYP102A1 (P450BM3) from Bacillus megaterium is the most 

prominent example of such a self-sufficient P450. Due to this specific property, P450BM3 can 

directly interact with NAD(P)H and deliver the electrons to the iron of the heme domain 

(Hannemann et al. 2007). 

 

Figure 4: Class 1 electron transfer system of bacteria. The ferredoxin reductase (FdR), ferredoxin (Fdx) 
and P450 are soluble. The electrons are provided by the cofactor NAD(P)H, transferred to FdR and 

shuttled to the P450 by the ferredoxin. 

The electron transfer proteins from Sorangium cellulosum So ce56 are analogous to the soluble 

class 1 system (see Figure 4). Two ferredoxin reductase genes and eight ferredoxin genes were 

identified in So ce56, whereby Fdr_A, Fdr_B, Fdx2 and Fdx8 were demonstrated as efficient 

electron transfer proteins for CYP260A1 (Ewen et al. 2009). Nevertheless, the application of 

autologous redox partners is not required, since several P450s are known for their interaction 

with heterologous electron transfer proteins (Hannemann et al. 2007). This can be explained by 

the highly conserved interaction domains of P450s as well as those of their redox partners 

(Hlavica 2015). Thereby, the application of heterologous redox partners is of interest for P450s 

whose natural redox partners are still not known. Additionally, replacing the redox partners by 

heterologous electron transfer proteins can lead to an increased product yield which is of 
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interest for biotechnological applications (Ringle et al. 2013; Brixius-Anderko et al. 2015; Kern et 

al. 2015). This might be explained by the higher activity of the heterologous redox partners, their 

solubility or their increased expression level. There is also a report about the altered reaction 

type after applying a fused or a non-fused hybrid redox system, respectively (Zhang et al. 2014). 

Hence, the choice of redox partners is a significant parameter regarding the efficiency of a 

catalytic system. 

1.1.5 Structure of P450s 

Although having an amino acid sequence identity frequently lower than 20%, P450s show a 

similar structural fold (Graham and Peterson 1999). In general, they usually possess 4 β-sheets 

and 12 α-helices (A-L) (see Figure 5). Thereby, the core is highly conserved showing a four helix 

bundle composed by the helices D, L, I and the antiparallel helix E, the helices J and K as well as 

two β-sheets and a coil called “meander” (Werck-Reichhart and Feyereisen 2000). The prosthetic 

heme group is confined between the distal I helix and proximal L helix and bound to the adjacent 

Cys-heme-ligand loop containing the P450 signature amino acid sequence FxxGx(H/R)xCxG. The 

cysteine residue as fifth ligand of the heme iron is conserved in all P450s and responsible for the 

characteristic 450 nm Soret band. The I-helix forms a wall of the heme pocket and contains the 

signature amino acid sequence (A/G)-Gx(E/D)T. Moreover, the highly conserved threonine is 

positioned in the active site and seems to be involved in the catalysis (Denisov et al. 2005). 

 

Figure 5: Topology diagram showing the secondary structure of CYP102. Blue boxes represent the α-
helices and the cream arrows represent the β-sheets. Figure was adopted from (Werck-Reichhart and 

Feyereisen 2000). 

Despite their structural similarity, the substrate range and selectivity differ for all P450s. There 

are six substrate recognition sites (SRS) capable of the predetermination of the substrate 
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specifity (see Figure 6). The SRSs consist of the B’ helix (SRS1), parts of the F, G and I helices 

(SRS2, SRS3 and SRS4), the β4 hairpin (SRS5) and the K helix β2 connecting site (SRS6). The SRSs 

are more flexible protein regions and, therefore, involved in the substrate recognition and 

orientation (Gotoh 1992). 

 

Figure 6: Model of the tertiary structure of a P450 monooxygenase. The heme is colored in orange, the 
substrate recognition sites (1-6) are colored in red and the heme coordinating helices I and L are shown 

in green. Figure was adopted from (Urlacher and Eiben 2006). 

 

1.2 Bacterial P450s 

1.2.1 General aspects 

The first bacterial P450 was identified in Bradyrhizobium japonicum in 1967 but its natural 

function was not elucidated (Appleby 1967). P450cam (or CYP101) from Pseudomonas putida 

was described a little bit later and catalyzes the oxidation of camphor and was, therefore, the 

first bacterial P450 with a known functionality (Katagiri et al. 1968). This enzyme was also the 

first P450 for which the crystal structure was obtained (Poulos et al. 1985). In the last two 

decades, various sequencing projects revealed the appearance of P450 genes in diverse bacteria. 

The identification of the strictly conserved heme-binding domain signature is used for that 

purpose (Nelson 1999). So far, over 1,000 bacterial P450s were already identified (Kelly and Kelly 

2013). For example, Streptomyces avermitilis has 33 P450 genes, Sorangium cellulosum So ce56 

21, whereas Escherichia coli has none P450 genes (Kelly et al. 2003; Khatri et al. 2010b). The 

absence of P450s proves that these enzymes are not needed in all organisms, however, P450s 

seem to be essential for organisms with a higher complexity (Kelly et al. 2003). 
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The physiological role of many bacterial P450s is not identified yet; however, their biodiversity is 

often bound up with using different carbon sources for growth (Kelly and Kelly 2013). The 

bacterial P450 177A1 permits growth on hexahydro-1,3.5-trinitro-1,3.5-triazin (RDX) and 

subsequent phytoremediation (Rylott et al. 2006). Furthermore, Candida tropicalis is able to 

grow on oil, whereby P450s are involved in the metabolism of this carbon source (Lebeault et al. 

1971). Besides their functions as carbon source metabolizer, there are several more natural 

functions elucidated. They are involved in the catabolism of camphor, fatty acids or cholesterol 

as well as in the biosynthesis of antifungal, antibacterial or anti-tumor agents such as nystatin, 

novobiocin or epothilone (Kelly and Kelly 2013). Nevertheless, the determination of their natural 

function is a challenging task even if the CYPome is known. Operons can give first clues for their 

enzymatic activities as well as experiments such as gene knock-outs or conversions of specific 

substrates with purified enzymes. However, organisms, where P450s are not associated with an 

operon or lacking of information about the metabolomics hinder the elucidation of the 

physiological roles of these P450s (Kelly and Kelly 2013). 

Nevertheless, their unique catalytic activities towards structurally diverse compounds as well as 

their valuable properties, like high selectivity or expression rates turn these P450s in a promising 

tool for the oxyfunctionalization of organic compounds. Additionally, their solubility facilitates 

the handling of the microbial P450s compared with mammalian P450s (Bernhardt 2006). The 

solubility is not only accounting for the P450s but also for their natural redox partners influencing 

the catalyzed reactions in a significant manner (Ringle et al. 2013; Brixius-Anderko et al. 2015). 

Since there are bacterial P450s containing a fused electron transfer domain, the utilization of 

external redox partners is no longer required in these systems (Hannemann et al. 2007). The best 

characterized bacterial fusion P450 is CYP102A1 (P450BM3) from Bacillus megaterium. It was 

discovered in 1987 and since that time the substrate free as well as several substrate-bound 

crystal structures were published. Besides the crystallographic characterization, it is also one of 

the best studied P450s towards protein engineering (Whitehouse et al. 2012). P450BM3 and its 

mutants are capable of the conversion of structurally diverse classes of substrates ranging from 

fatty acids (Munro et al. 2002), over terpenes (Whitehouse et al. 2012) to drugs (Ren et al. 2015). 

Thereby, several reaction types like hydroxylation, epoxidation, dealkylation (Jung et al. 2011) as 

well as some novel reactions such as the formation of a protected imine from an amine (Ren et 

al. 2015) or the cyclopropantion by the P411BM3 variant (Coelho et al. 2013) were observed. 
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1.2.2 Myxobacterial P450s from Sorangium cellulosum So ce56 

Sorangium cellulosum So ce56 belongs to the group of myxobacteria, a group of gram-negative, 

unicellular bacteria with rod-shaped vegetative cells. Their specific characteristics are the gliding 

movement and the formation of fruiting bodies under starvation conditions (Shimkets et al. 

2006). Myxobacteria are important producers of novel classes of secondary metabolites, like the 

anti-tumor agents epothilone A and B produced by the strain So ce90 (Gerth et al. 1996). Such 

metabolites may be used as drugs or might serve as lead structures for the development of novel 

drugs and, hence, attract the attention of the pharmaceutical industry (Newman and Cragg 

2012). The involvement of P450s in the production of these complex molecules is known as 

shown for EpoK and its epoxidase activity towards epothilones C and D (Julien and Shah 2002). As 

a result, the investigation of myxobacteria as well as their P450s is of particular interest. The 

strain So ce56 has one of the largest genomes and was sequenced in 2007. Several polyketide 

synthases (PKS) and nonribosomal polypeptide synthetases (NPRS) were identified giving first 

insights into the secondary metabolism of this strain, whereby chivosazol, etnangien, myxochelin 

and flaviolin were characterized as products. Furthermore, there are additional PKS and NRPS 

domains whose products are not known as well as domains which are potentially involved in the 

carotenoid and terpenoid biosynthesis. Taken together, 17 unique loci involved in the secondary 

metabolism were identified (Schneiker et al. 2007). 

Our laboratory investigated the CYPome of So ce56 and 21 P450 genes were identified, cloned 

and successfully expressed and purified (Khatri et al. 2010b). Moreover, the ferredoxins Fdx2 and 

Fdx8 as well as the reductases FdR_A and FdR_B were identified, expressed, purified and tested 

for their ability to transfer electrons to the myxobacterial P450s revealing their natural 

functionality (Ewen et al. 2009; Khatri et al. 2010b). Besides their natural redox partners, the 

non-physiological electron transfer partners adrenodoxin reductase (AdR) and adrenodoxin (Adx) 

as well as the truncated form Adx4-108 from Bos taurus are also known for their efficient electron 

transfer (Khatri et al. 2010a). However, the physiological roles of these P450s are not known yet 

and also about potential substrates only little is known. Several substrate classes were already 

tested and fatty acids (Khatri et al. 2010b), carotenoid-derived aroma compounds (Khatri et al. 

2010a; Ly et al. 2012), terpenes, terpenoids (Ewen et al. 2009; Schifrin et al. 2015) and steroids 

(Khatri et al. 2015) were found to act as substrates for some of the P450s. 

To determine the reaction type and selectivity of the catalyzed reactions, the product(s) need to 

be analyzed. The most common techniques to elucidate the structures are mass spectrometry 

with database comparison of the fragment pattern, nuclear magnetic resonance spectroscopy or 

the comparison with an authentic standard. If standards are not available, MS or NMR analyses 
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are necessary for product identification. During MS analyses, the compounds are fragmented and 

the fragment patterns are compared with a database. Hence, an efficient database is required 

since it is very challenging to characterize novel compounds solely by their specific fragments. 

For that reason, NMR spectroscopy is preferred to elucidate the structure of novel compounds; 

however, higher amounts of products are necessary for NMR analysis. Sufficient amounts of 

products can be either obtained by scaling up the in vitro reaction or the application of a whole-

cell system. Since the in vitro reactions require high amounts of purified enzymes (P450 and 

redox partners) and the expensive cofactor NADPH, the application of a scaled up in vitro system 

is limited. To overcome this problem, an E. coli based whole-cell system was established for some 

of the myxobacterial P450s (Ringle et al. 2013). 

1.3 P450s as biocatalysts for biotechnological applications 

The regio-, and stereoselective oxyfunctionalization of a non-activated C-H bond is a challenging 

task in the organic chemistry. In contrast, P450s are known for their highly selective catalytic 

activity under mild conditions. The lack of organic solvents and the absence of toxic chemicals 

like heavy metals is especially beneficial (Koeller and Wong 2001; Roiban and Reetz 2015). 

Furthermore, their diverse reaction types and broad substrate range is advantageous for 

biotechnological applications. However, the low activity, the utilization of redox partners, the 

requirement of the expensive cofactor NAD(P)H and uncoupling reactions limit their possible 

range of applications. Many of these limitations can be overcome by using techniques like 

protein engineering, optimization of the redox chain or the application of a cofactor regenerating 

system (Julsing et al. 2008; Bernhardt and Urlacher 2014). The increasing number of P450s with 

novel biotechnological properties, efforts in protein engineering techniques and improvements 

in whole-cell biocatalysis are helpful to turn P450s into a valuable tool for the green chemistry 

(Julsing et al. 2008). Besides employing them as single catalysts, there are also examples of 

combining P450s with synthetic chemistry in chemo-enzymatic approaches or the utilization of 

multiple enzymes in a cascade reaction (Rentmeister et al. 2009; Schulz et al. 2015). 

P450s can be applied as biocatalysts for the production of fine chemicals and pharmaceutically 

active compounds (Kumar 2010). Terpenes and their oxygenated derivatives (terpenoids) 

represent an interesting group of fine chemicals that is of importance for the flavor and 

fragrance industry (Kraft et al. 2000). For example, P450BM3 mutants are involved in the 

regioselective epoxidation of α-pinene and the optimization of the production process led to the 

formation of 1 g/l after 4h (Urlacher and Girhard 2012). Another interesting compound is (+)-

nootkatone, a grapefruit flavour, formed by the oxidation of (+)-valencene. Urlacher and 

coworkers firstly used CYP109B1 from Bacillus subtilis to form the desired product nootkatone 
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out of valencene in a direct way. The utilization of a two liquid phase system to increase the yield 

led to a production of 120 mg/l with cis- and trans-nootkatol as side-products. However, the 

formation of nootkatol as side-product decreases the yield of nootkatone (Girhard et al. 2009). 

To avoid these side-products, a cascade reaction consisting of a P450 hydroxylating valencene to 

nootkatol and an alcohol dehydrogenase oxidizing the alcohol in situ to the desired nootkatone 

was used. This multi-enzyme approach led to a yield of over 300 mg/l (Schulz et al. 2015). 

Metabolic engineering is another method to obtain terpenoids. Such an approach uses several 

enzymes representing the metabolic pathway to form the precursor which is then further 

oxygenated. For example, diverse enzymes were expressed in E. coli to produce the terpene 

precursor GPP followed by a terpene synthase forming limonene. The additional expression of a 

P450 (CYP153 from mycobacterium HXN 1500) led to the formation of perillylic alcohol out of 

simple sugars with yields up to 100 mg/l (Alonso-Gutierrez et al. 2013). Besides the formation of 

terpenoids, there are several other classes of substrates which can be used for the production of 

fine chemicals such as fatty acids or alkanes (Picataggio et al. 1992; Liu et al. 2004). 

The production of pharmaceutical and medicinal compounds is also of considerable interest, 

since P450s are involved in the metabolism of drugs. Drug metabolites might have adverse 

effects and a possible toxicity must be determined. Hence, the Food and Drug administration as 

well as the European Medicines agency presented their guidelines concerning the safety testing 

of drug metabolites. Drug metabolites formed at greater than 10% of the parent drug systemic 

exposure at steady state or total drug-related exposure need to be tested in toxicological studies 

(FDA 2008; ICH 2009). Moreover, these metabolites might be used as authentic standards for 

analytical purposes or also used as drugs or lead structure to develop novel pharmaceutical 

compounds. The production of these metabolites can be performed by either mammalian or 

bacterial P450s, whereby engineering of the P450s is often necessary. Many bacterial P450s need 

to be engineered to enable the biotransformation of the non-natural substrates (Ren et al. 2015). 

In contrast, mammalian P450s are capable of the desired conversion but often show a low 

activity or the formation of multiple products and, hence, require improvements by protein 

engineering, too. However, bacterial P450s seem to be more suitable due to their high turnover 

rates, stability and expression levels (Urlacher et al. 2004; Julsing et al. 2008).  

P450s are also capable of the oxyfunctionalization of structurally diverse compounds in the 

secondary metabolism of plants and bacteria (Podust and Sherman 2012). Between 1981 and 

2010, 1334 drugs were approved of which 64 are natural products, 202 have a biological origin, 

299 are derivatives of natural products and 323 are synthetics mimicking a natural product 

(Newman and Cragg 2012). This distribution shows the influence of secondary metabolites and 
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myxobacteria are known as top producers of such biologically active compounds (Reichenbach 

and Hofle 1993). Epothilones are produced by the myxobacterium So ce90 and these compounds 

attract the attention of the pharmaceutical industry due to their anti-tumor activity (Gerth et al. 

1996). There are already examples of the biotechnological application of P450s in the 

biosynthesis of secondary metabolites such as the anticancer drug taxol or artemisinin, an agent 

for the treatment of malaria (Ajikumar et al. 2010; Paddon et al. 2013). Additionally, in the 

biosynthetic pathway for the production of the anti-cholesterol drug pravastatin, P450sca from 

streptomyces carbophilus is used (Matsuoka et al. 1989). These applications of P450s for the 

formation of biologically active secondary metabolites show the significance of these enzymes 

for the regio-, and stereoselective oxyfunctionalization of complex molecules. 

Due to their involvement in the steroid hormone biosynthesis, P450s are also employed in the 

biotechnological production of steroids and their derivatives. An article about the screening of 

bacterial P450s for their selective hydroxylase activity towards testosterone was published in 

2006 and shows the activity of such P450s for the highly selective formation of a single main 

product (Agematu et al. 2006). Two reviews about the microbial biotransformation of steroidal 

compounds were published in 2012, showing the significance of these enzymes towards steroid 

conversion (Bhatti and Khera 2012; Donova and Egorova 2012). However, microbial conversions 

employing whole organisms lack the information about the specific enzyme that is capable of the 

desired reaction. Furthermore, the probability of a multi-hydroxylation reaction caused by the 

involvement of more than one enzyme is much higher. But this screening approach is the fastest 

way to identify new product patterns. Thereby, novel hydroxylase activities are of high interest, 

since the introduction of a hydroxyl-group alters the chemo-physical properties of the molecule. 

The influence of such a functional group can be shown for steroids hydroxylated in position 11 

and their resulting anti-inflammatory effect (Ruhmann and Berliner 1967). A novel hydroxylase 

activity was recently found for a P450 from So ce56, where CYP260A1 acts as 1α-hydroxylase for 

C19 steroids, however, the functions of these new compounds were not investigated yet (Khatri 

et al. 2015). 

Taken together, P450s are valuable tools in the biotechnological production of fine chemicals and 

biologically active compounds, whereby investigations of novel or improved activities are a 

promising field of research. 
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1.4 Aims and scope 

The aim of this work is the investigation of myxobacterial P450s from Sorangium cellulosom So 

ce56 towards their substrate range and biodiversity. Their physiological roles and, hence, their 

substrate range are not identified yet. About potential substrates and performed reactions only 

little is known and, as a result, several classes of substrates should be tested for their ability to 

act as a substrate for these P450s. For that purpose, terpenes, terpenoids, carotenoid-derived 

aroma compounds, small aromatic compounds and diverse drugs, which are known to serve as 

substrates for other P450s, were chosen. Initially, all substrates should be tested in a 

reconstituted in vitro system with the P450s CYP109C1, CYP109C2, CYP109D1, CYP260A1, 

CYP260B1, CYP264A1, CYP264B1, CYP267A1 and CYP267B1. To perform such in vitro reactions, 

the expression and purification of the corresponding P450s as well as the redox partners, 

adrenodoxin and adrenodoxin reductase, is necessary. Moreover, efficient extraction methods 

need to be established for each substrate class to recover the substrates as well as their 

corresponding products. The conversions should then be analyzed by HPLC-DAD or GC-MS 

depending on the physical properties of the analytes such as UV-absorption or volatility. For this 

purpose, substrate class dependent HPLC- and GC-methods are required.  

Those systems showing a selective product pattern during the in vitro conversions should be 

further analyzed to elucidate the structures of the products. For that reason, the reactions need 

to be scaled up by utilizing an E. coli based whole-cell system harboring the corresponding P450 

as well as the redox partners Fpr and Adx. Using such an approach, sufficient amounts of 

products of at least 5 mg should be obtained to enable the structure identification via NMR-

spectroscopy. To fulfill that requirement, the whole-cell systems need optimizations towards the 

yields by testing diverse conversion conditions like performing the reaction with growing cells or 

resting cells in buffer. Furthermore, the utilization of additives such as cell permeabilizing agents 

like EDTA is often necessary to reach the desired productivity. Before the products can be 

characterized, individual purification strategies based on either preparative HPLC or column 

chromatography with silica gel need to be developed for each class of compounds. The purified 

products should then be characterized by HPLC-DAD and GC-MS as well as by several NMR 

techniques such as 1H, 13C, HSQC, HMBC, COSY and NOESY to identify the reaction types 

performed by these P450s. Furthermore, the corresponding structures should give insights into 

the regio- and stereoselectivity of the catalyzed reactions. 

The elucidated products should then be compared with the products formed by other P450s to 

check if the myxobacterial P450s are capable of some unique reaction types or showing certain 
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regio- and stereoselectivities. Moreover, the substrate range and the biocatalytic activities of the 

myxobacterial P450s should lead to some speculations about their potential natural functions. 
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2. Scientific articles 

The results of this work were published in the articles listed below: 

 

2.1 Conversions of tricyclic antidepressants and antipsychotics with selected P450s from 

Sorangium cellulosum So ce56 

Martin Litzenburger, Fredy Kern, Yogan Khatri, and Rita Bernhardt 

 

2.2 New Sesquiterpene Oxidations with CYP260A1 and CYP264B1 from Sorangium cellulosum 

So ce56 

Alexander Schifrin, Martin Litzenburger, Michael Ringle, Thuy TB Ly, and Rita Bernhardt 

 

2.3 Selective oxidation of carotenoid-derived aroma compounds by CYP260B1 and CYP267B1 

from Sorangium cellulosum So ce56 

Martin Litzenburger and Rita Bernhardt 

 

2.4 CYP267A1 and CYP267B1 from Sorangium cellulosum So ce56 are highly versatile drug 

metabolizers (submitted to Drug metabolism and Disposition) 

Fredy Kern, Yogan Khatri, Martin Litzenburger, and Rita Bernhardt 
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2.1 Conversions of tricyclic antidepressants and antipsychotics with selected P450s from 

Sorangium cellulosum So ce56 

Martin Litzenburger, Fredy Kern, Yogan Khatri, and Rita Bernhardt 

 

Drug Metabolism and Disposition, 2015 Mar, 43(3), 392-399 

doi: 10.1124/dmd.114.061937 

Reprinted with permission of the American Society for Pharmacology and Experimental 

Therapeutics. All rights reserved. 

  



Litzenburger et al. (2015) 

19 
 

 



Litzenburger et al. (2015) 

20 
 

 



Litzenburger et al. (2015) 

21 
 

 



Litzenburger et al. (2015) 

22 
 

 



Litzenburger et al. (2015) 

23 
 

 



Litzenburger et al. (2015) 

24 
 

  



Litzenburger et al. (2015) 

25 
 

  



Litzenburger et al. (2015) 

26 
 

  



Litzenburger et al. (2015) 

27 
 

  



Litzenburger et al. (2015) 

28 
 

  



Litzenburger et al. (2015) 

29 
 

  



Litzenburger et al. (2015) 

30 
 

  



Schifrin et al. (2015) 

31 
 

2.2 New Sesquiterpene Oxidations with CYP260A1 and CYP264B1 from Sorangium cellulosum So 

ce56 

Alexander Schifrin, Martin Litzenburger, Michael Ringle, Thuy TB Ly, and Rita Bernhardt 

 

ChemBioChem, December 14, 2015, Volume 16, Issue 18, pages 2624–2632 

doi: 10.1002/cbic.201500417 

Reprinted with permissions of Wiley-VCH Verlag GmbH&Co. KGaA. 
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2.3 Selective oxidation of carotenoid-derived aroma compounds by CYP260B1 and CYP267B1 

from Sorangium cellulosum So ce56 

Martin Litzenburger and Rita Bernhardt 

 

Applied Microbiology and Biotechnology [Epub ahead of print] 

doi: 10.1007/s00253-015-7269-7 

Reprinted with the permission of Springer Science and Business Media. 
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2.4 CYP267A1 and CYP267B1 from Sorangium cellulosum So ce56 are highly versatile drug 

metabolizers 

Fredy Kern, Yogan Khatri, Martin Litzenburger, and Rita Bernhardt 

 

Submitted to Drug Metabolism and Disposition 
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3 Discussion and Conclusions 

The aim of this work was the determination of novel substrates for P450s from Sorangium 

cellulosum So ce56 as well as the elucidation of their corresponding products. Hence, several 

classes of compounds were chosen to test their ability to serve as substrate. The investigation of 

substrates as well as their products is essential to obtain insights in the substrate range and 

selectivity of the P450s. In addition, knowledge about substrates is necessary to investigate these 

P450s in more detail, like for the crystallization in a substrate-bound form, determination of the 

activity or to test the influence of inhibitors. For that reason, the investigation of substrates as 

well as their corresponding products is of interest to further characterize these promising P450s. 

Carotenoid-derived aroma compounds, terpenes, terpenoids, small aromatic compounds as well 

as drugs are known to serve as substrates for other P450s and, therefore, seem to be a good 

starting point for finding novel substrates of orphan P450s. Oxygenated products of these 

compounds are of interest for different kind of applications. Terpenoids may act as flavors and 

fragrances as shown for the conversion of valencene to the grapefruit flavor nootkatone (Schulz 

et al. 2015) or used as building blocks for the synthesis of chemically and pharmaceutically 

important compounds (Wang et al. 2005). Carotenoid-derived aroma compounds are already 

applied as material in perfumery and their oxyfunctionalization alters the odor properties as well 

as the odor threshold as shown for the 3-hydroxy derivatives of α-ionone and their tobacco-like 

odor (Yamazaki et al. 1988). Furthermore, functionalized carotenoid-derived aroma compounds 

can also be used as precursors for some synthetic routes (Brenna et al. 2002). Drugs are 

predominantly metabolized by liver P450s and their respective metabolites need several safety 

tests before they can be administered and, as a result, alternative ways for their production are 

requested by the pharmaceutical industry. A further application for all these products is their 

utilization as authentic standard to simplify the product characterization for other P450-based 

conversions. 

3.1 Carotenoid-derived aroma compounds as substrates 

Many carotenoid-derived aroma compounds (apocarotenoids, norisoprenoids or norterpenoids) 

used in these studies belong to the most widespread class of C13 norisoprnoids such as ionones 

(see Figure 7 B [R=H]) and damascones (see Figure 7 A). Synthetic methyl-substituted ionones 

like n-methyl-α-ionone (see Figure 7 B [R=Me]) and isomethyl-α-ionone belong to the C14 

norisoprenoids and are of high importance for the perfumery. On the other side, α-irone is a 

naturally occurring C14 norisoprenoid, however, its higher price limits the application in 

perfumery. Additionally, allyl-α-ionone (a synthetic C16 norisoprenoid, see Figure 7 B [R=allyl]) 
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was tested in our studies, a compound of less importance for the flavor and fragrance industry, 

though, its sterically demanding side chain gives more insights into the substrate diversity of the 

myxobacterial P450s. As shown in the supplemental data (4.1.1.1), several more P450s from So 

ce56, as published in 2.3, were tested for their conversions of the selected apocarotenoids. 

Interestingly, CYP109C1 is the only P450, which is not converting any of these compounds. All 

remaining P450s convert at least one compound, albeit in low amounts. This class of substrates 

might be structurally similar to some of their natural substrates, which are not known yet. 

However, it is described that So ce56 contains a putative carotenoid gene cluster and, hence, 

there is a strong probability that the P450s are exposed to carotenoids as well as their 

corresponding degraded products (Schneiker et al. 2007). Another explanation might be the 

structural valuable properties of these compounds. Such molecules can access the active site of 

most P450s, due to their small size. Furthermore, they possess several functional groups such as 

the α-,β-unsaturated ketone and the cyclohexene moiety (see Figure 7 A and B), which enable 

diverse docking positions. Moreover, the rigid side chain and more flexible ring structure might 

simplify the correct substrate orientation turning such compounds into promising substrates. 

Previous studies with myxobacterial P450s have shown that the amino acids of the active site 

form a hydrogen bond with the keto-group of the substrate (either His94 for CYP109D1 or 

Thr285 for CYP264B1), whereby the required substrate orientation is created (Khatri et al. 2010a; 

Ly et al. 2012). However, the alignment of the most valuable P450s tested in this study 

(CYP260B1 and CYP267B1) with CYP264B1 and CYP109D1 do not show high sequence identities. 

There is only a maximum of 33% and the corresponding residues are not highly conserved in 

these myxobacterial P450s (see supplemental 4.1.1.3 and 4.1.1.4). As a result, the sequences of 

these P450s cannot be taken into account and separate homology models need to be created. In 

the case of CYP260B1, the substrate-free crystal structure will be available soon and docking 

studies might give details about the amino acids involved in the substrate orientation. 

 

Figure 7: Structures and numbering of damascones (A) and ionones (B). The location of the double bond 
is represented by a greek letter (as shown in red, blue and magenta).    
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CYP260B1, CYP264A1 and CYP267B1 are capable of the conversion of all tested norisoprenoids. 

However, only CYP267B1 showed a high selectivity for nearly all tested compounds towards a 

single product. In contrast, CYP260B1 showed the highest yields of all P450s during this study but 

a high selectivity was just achieved towards β-ionone, β-damascone and δ-damascone. 

CYP264A1 showed the lowest yields and selectivities out of these three P450s and was, 

therefore, not further investigated.  

The steric of the side chain in position 6 influences the conversion significantly as shown for the 

methyl-substituted compounds being less converted than their non-substituted counterparts 

(see supplemental 4.1.1.1). Allyl-α-ionone (see Figure 7B [R=allyl]) demonstrates this observation 

even better, since most of the P450-dependent conversions show only traces of products. This 

compound is only converted by CYP260B1 and CYP267B1 in higher amounts. As a result, 

CYP260B1, CYP267B1 as well as CYP267A1 (known for its conversion of sterically demanding 

compounds like thioridazine) were chosen for the conversion of retinol (vitamin A1). This 

sterically more demanding compound (polyunsaturated side chain at position C6) is not 

converted by any P450 indicating the sensitivity of the P450s towards the length of the side 

chain. Besides the steric effects, the location of the keto group influences the conversion as 

shown for the damascones (see Figure 7 A). CYP109C2, for example accepts only compounds 

with a keto-group at position C7 as substrate. In contrast, most of the tested P450s prefer the 

substrates of the ionone-type with a keto-group at position C9 (see supplemental 4.1.1.1). An 

increased distance between the keto moiety and the ring seems to facilitate the correct 

substrate orientation, since all known products show an endocyclic oxyfunctionalization. Most 

myxobacterial P450s showed the hydroxylation at allylic position as main catalytic activity (data 

not shown). Such hydroxylations are preferred by many P450s, since C-H bonds in this specific 

position are very reactive caused by their low bond-dissociation energy (Ortiz de Montellano 

2010). The endocyclic epoxidation of β-ionone as main catalytic activity of CYP260B1 is thereby 

an exception. Those epoxy-products are not of high interest for biotechnological applications, 

since the corresponding compounds are easily formed by autoxidation processes under light 

exposure (Gagarina et al. 1984) or by chemical synthesis with mCPBA (meta-chloroperoxybenzoic 

acid) (Barakat et al. 2008). However, the question about the factors effecting the allylic 

hydroxylation versus the epoxidation of the double bond is not clarified in detail and still topic of 

researches (de Visser et al. 2002; Ilie et al. 2015). CYP260B1 catalyzes both reactions, 

hydroxylation and epoxidation, whereby the epoxidation is formed predominantly. Further 

studies about the substrate orientation of β-ionone in CYP260B1 as well as protein engineering 

towards a high selectivity of a certain reaction type might give deeper insights in this topic. 

Moreover, to the best of our knowledge, this is the first report of a specific P450 capable of the 



Discussion 

87 
 

epoxidation of an ionone-type structure (see Figure 8, right side), even P450BM3 mutants are not 

known for this type of reaction towards α- and β-ionone (Watanabe et al. 2007).  

Taken together, the myxobacterial P450s from So ce56 represent a promising tool for the 

oxyfunctionalization of carotenoid-derived aroma compounds. Figure 8 shows a toolbox towards 

the selective oxyfunctionalization of β-ionone. CYP109D1 and CYP267B1 form the endocyclic 

allylic alcohol, CYP260B1 forms predominantly the epoxy product and CYP264B1 forms the 3-

hydroxy product. 

 

Figure 8: Toolbox of myxobacterial P450s towards the selective oxyfunctionalization of β-ionone. The 3-
OH-β-ionone and 4-OH-β-ionone products formed by CYP264B1 and CYP109D1 were identified in 

previous studies by our group (Khatri et al. 2010a; Ly et al. 2012).  

 

 

3.2 Terpenes and terpenoids as substrates 

Terpenes and terpenoids represent  the largest class of natural products with over 40,000 known 

compounds (Withers and Keasling 2007). Most of them were isolated from plants but also from 

animals and microorganisms. They are classified as primary metabolites necessary for cellular 

functions and maintenance as shown for gibberellins, carotenoids and sterols as well as 

secondary metabolites known for their use as flavor and color enhancers, agricultural chemicals 

or pharmaceuticals (Roberts 2007; Rasool and Mohamed 2015). Their selective 

oxyfunctionalization is difficult to achieve with chemical syntheses caused by the complex 

structure of the substrates and the resulting low regio-, and stereoselectivity. The involvement of 

P450s in the biosynthesis of terpenoids is already studied for several mono- and sesquiterpenes, 

thus, P450s are an efficient alternative for the production of oxygenated terpenes (Weitzel and 

Simonsen 2015). Employing plant P450s for such an approach has the advantage that the natural 



Discussion 

88 
 

P450 capable of the desired reaction is used. However, the membrane-anchor of these P450s 

needs to be removed to solubilize them and to simplify, therefore, their expression in 

prokaryotes (Pateraki et al. 2015). Bacterial P450s represent a valuable substitute concerning 

their solubility and higher activity. There are several examples of terpenoids produced by 

bacterial P450s such as camphor, vitamin D3 or pravastatin (Janocha et al. 2015). In our studies, 

two P450s were investigated with four different sesquiterpene structures of the eremophilane-, 

humulane-, caryophyllane- and cedrane-type (see 2.2). CYP264B1 was chosen because of its 

function as terpene hydroxylase and CYP260A1 was selected, since it is known for the conversion 

of nootkatone (Ewen et al. 2009; Schifrin et al. 2015). Interestingly, CYP260A1 accepts only 

oxygenated compounds as substrates, whereas CYP264B1 accepts all kinds of substrates. 

CYP264B1 is located close to a terpene synthase in the genome of So ce56 and its natural 

function is the hydroxylation of eremophilene (Schifrin et al. 2015). Thus, it is not surprising that 

non-oxygenated compounds act as substrates. Furthermore, CYP264B1 shows a higher selectivity 

towards a single main product compared with CYP260A1, which is capable of the formation of a 

variety of products. The main products formed by CYP264B1 were identified as compounds 

predominantly hydroxylated in allylic position. In contrast, CYP260A1 did not show a main 

reaction type; hydroxylation, epoxidation and reduction of the double bond were identified, 

whereby the reduction may be caused by a consecutive reaction formed by enzymes from E. coli. 

Taken together, CYP264B1 is a potent enzyme for the oxyfunctionalization of terpenes and 

CYP260A1 might be a promising candidate for the introduction of additional oxygen atoms into 

terpenoids. 

Besides CYP260A1 and CYP264B1, several other myxobacterial P450s were tested with the 

terpenes τ-muurolol and β-phellandrene, whereby some of them were able to convert these 

substrates (see supplemental 4.1.2). However, none of the P450s showed a high selectivity 

towards a single main product and hence, the products were not available in sufficient amounts 

for structure elucidation. In addition, CYP267A1 and CYP267B1 were tested for their ability to 

convert nootkatone. The in vitro reactions showed that CYP267A1 was capable of the production 

of a single compound, whereas CYP267B1 formed predominantly two main products. However, 

the corresponding products were not scaled up by the utilization of the whole-cell system nor 

identified due to the time limit of this work. Nevertheless, those examples indicate the potential 

of the myxobacterial P450s to act as terpene/terpenoid oxidase and these first results might 

serve as good starting point for further experiments towards this large class of substrates.  
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3.3 Drugs as substrates 

Drugs are mainly metabolized in the liver by diverse P450s, whereby CYP1A2, CYP2C9, CYP2C19, 

CYP2D6, and CYP3A4 play the most important roles. Studies about the excretion of the drugs and 

the formation of metabolites are essential for the development, establishment and approval of 

novel drugs. Furthermore, drug metabolites formed greater than 10 % at steady state or total 

drug exposure need to be investigated in toxicological tests according to the Food and Drug 

administration or European Medicines agency guidelines, respectively (FDA 2008; ICH 2009). To 

obtain sufficient amounts of metabolites for such tests, efficient ways for the selective 

production of certain metabolites are requested. Liver P450s can be applied for this purpose but 

they are often capable of the formation of a variety of compounds. Furthermore, the activities 

and expression levels of mammalian P450s are often limited in a reconstituted system. In 

contrast, bacterial P450s have the benefits of a high activity and high expression levels. 

Moreover, the solubility and high stability simplifies their handling for biotechnological 

applications (Bernhardt 2006). Hence, there are several reports of bacterial P450s performing the 

production of specific drug metabolites, whereby P450BM3 represents the best studied one 

(Julsing et al. 2008; Fasan 2012; Whitehouse et al. 2012; Kang et al. 2014; Kulig et al. 2015; Ren 

et al. 2015). Myxobacterial P450s are known to be involved in the formation of secondary 

metabolites of structurally complex compounds such as epothilones and might, therefore, act as 

drug metabolizers. For that reason, several classes of drugs, which are known to be converted by 

mammalian P450s, were chosen (see 2.4 and supplemental 4.1.4) for an initial in vitro screening, 

since spin shift experiments are often not significant because nitrogen containing compounds 

often lead to a type-II shift besides acting as substrate (Locuson et al. 2007). During the in vitro 

experiments, the CYP267 family, CYP260A1 and CYP264A1 were identified as potential drug 

metabolizers. The CYP267 family represents the most promising P450s with a very high substrate 

range, however, their activity is low and, therefore, the product identification is hindered (see 

2.1 and 2.4). Likewise, CYP260A1 acts as drug metabolizer but its activity is also very low towards 

most of these compounds. On the other hand, CYP264A1 showed higher yields towards the 

conversion of some tricyclic psychotherapeutics. Since 4-methyl-3-phenyl-coumarin (also a 

tricyclic compound) was known so far as sole substrate, it seems that this P450 prefers cyclic 

compounds as substrate. To verify this assumption, several other tricyclic antidepressants and 

antipsychotics as well as their corresponding precursors were tested (see 2.1). Some of these 

compounds were converted by CYP264A1, whereby the side chain plays an important role. The 

dimethyl-amino-propyl group seems to be necessary for an efficient conversion, since the 

precursors lacking the side chain were not converted in higher amounts. Promethazine 

possessing a dimethyl-amino-isopropyl side chain is also not converted, verifying the high 
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sensitivity of CYP264A1 towards the side chain of these compounds. Besides the typical 

production of more hydrophilic compounds, CYP260A1 was capable of the formation of several 

compounds more hydrophobic than the substrate. One of the products formed by the conversion 

of promethazine showed the same retention time as phenothiazine leading to the assumption 

that the side chain was degraded or cleaved, respectively. A dealkylation of the side chain of such 

drugs is to the best of our knowledge not described yet. However, this product was not obtained 

in higher amounts by the whole-cell system, so that the product identification was not verified by 

NMR spectroscopy and further analyses by HRMS or MSn-experiments are necessary to 

characterize the product in detail.  

Other groups also tried to find bacterial drug metabolizing P450s besides P450BM3. For example, 

Kulig et al. fused diverse P450s from Rhodococcus jostii RHA1 with the P450 reductase domain 

(RhfRED) of cytochrome P450Rhf from Rhodococcus sp. NCIMB 9784 and tested them as drug 

metabolizers. One fusion protein, named Ro07-RhfRED, showed a demethylation activity towards 

imipramine and related compounds and might be used to produce the corresponding 

demethylated metabolites (Kulig et al. 2015). Interestingly, CYP264A1- and CYP267B1-dependent 

reactions achieved the 10-hydroxy derivatives of imipramine and some of its analogs. 

Additionally, CYP267A1 was able to convert the sterically more demanding thioridazine, albeit in 

lower amounts. The regioselectivity is, thereby, the same for CYP267A1, CYP267B1 and 

CYP264A1, since all tested P450s functionalized the middle ring. CYP264A1 was capable of the 

production of these metabolites in a milligram per liter scale during the whole-cell processes, 

whereas CYP267B1-dependent conversions showed considerably lower yields. However, 

optimizations of the whole-cell systems led to higher yields for the CYP267 family (see 2.4) but 

further improvements like protein engineering are required to apply these P450s for 

biotechnological applications. Nevertheless, these examples substantiate the potential of 

bacterial P450s for the production of specific drug metabolites. 
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3.4 Establishment of a whole-cell system for myxobacterial P450s towards a preparative 

scale 

The whole-cell system previously developed by our laboratory enables the production in a more 

preparative scale and is suitable for some of the myxobacterial P450s (Ringle et al. 2013). 

However, our studies demonstrated that further improvements for several P450s are needed to 

produce sufficient amounts of products for structure elucidation via NMR spectroscopy. 

Furthermore, a higher productivity towards a preparative scale of several hundred milligrams per 

liter is requested for biotechnological processes. To reach such a goal, several optimization 

strategies can be applied, whereby improvements can be performed by altering the properties of 

the proteins as well as changing the conditions of the whole-cell system. 

 

3.4.1 Improvements of the gene expression, P450 activity and electron transfer 

Since we are working with wild type enzymes, protein engineering would be a good starting point 

to optimize the productivity. Site directed mutagenesis and laboratory evolution are very 

common methods to improve the properties of P450s (Gillam 2008). Wild type enzymes often 

show a low activity towards their non-natural substrates and, therefore, optimizations towards 

their activity are essential for biotechnological relevant processes. Furthermore, improvements 

concerning the regioselectivity and reaction type would be necessary for some of the 

myxobacterial P450s. CYP260B1 for example, is very unselective for several norisoprenoid 

substrates (see 2.3) and improvements towards a higher selectivity are necessary to produce a 

single compound. The crystal structure of this P450 will be available soon and as a result, site 

directed mutagenesis might be the most promising approach to achieve a higher selectivity. The 

crystal structures of CYP260A1 and CYP109D1 are also close to be finished, however, resolving 

the crystal structures of the other P450s is not in progress yet. Nevertheless, computer aided 

mutagenesis approaches or laboratory evolution can be used for proteins, whose three-

dimensional structures are not known. Low concentrations of the corresponding P450 in the 

whole-cell system might also be critical, whereby altering the cells lines or expression plasmids 

can lead to higher expression levels of the P450s (Zelasko et al. 2013). Additionally, the genes 

encoding the P450 might be improved by codon optimization, which was already successfully 

done for CYP264B1, leading to an improved expression level (Schifrin et al. 2015). The availability 

of sufficient amounts of the cofactor might be another problematic issue, especially for 

conversions with a lower coupling efficiency. The expression of a dehydrogenase capable of the 

recycling of NAD(P)H can, therefore, lead to an increased product formation (Schewe et al. 2008). 

Furthermore, the efficiency of the redox partners need to be optimized for each P450 
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individually, since not all P450s prefer the same redox partners as shown for CYP267B1 and 

CYP260A1. CYP267B1 shows a higher efficiency with the natural electron transfer partners Fdx8 

and Fdr_B, whereas CYP260A1 prefers the heterologous redox partners Adx4-108 and AdR (Ewen et 

al. 2009; Khatri et al. 2010b; Kern et al. 2015). The influence of the electron transfer partners was 

also demonstrated for the CYP21A2-dependent whole-cell process for the production of 

premedrol by our labrartory (Brixius-Anderko et al. 2015). As a result, the selection of redox 

partners is a critical factor for the optimization of a whole-cell system. Furthermore, the electron 

transfer from the ferredoxin to the P450 is known as rate limiting step in the electron transport 

chain and the expression of additional ferredoxin by introducing two or more copies of the 

ferredoxin cDNA into the plasmid can lead to improved yields (Ewen et al. 2012; Schiffer et al. 

2015b). 

 

3.4.2 Improvements of the conditions for the whole-cell system  

The substrate uptake of the cells is often a limiting step in the establishment of a whole-cell 

system. Cell permeabilizing compounds like EDTA, polymyxin B, toluol, Tween 20 or CTAB (N-

cetyl-N,N,N-trimethylammonium bromide) can be applied to ensure the substrate availability in 

the cells (Janocha and Bernhardt 2013). This problem was also shown for the conversion of the 

tricyclic drugs, which was solved by the addition of EDTA increasing the substrate availability (see 

2.1). Another common issue in E. coli based whole-cell systems is the occurrence of indole, an 

inhibitor for many P450s as shown for CYP267A1 and CYP267B1 (see 2.4). In E. coli, the enzyme 

tryptophanase produces indole from tryptophan decreasing the efficiency of biocatalytic P450 

processes dramatically (Li and Young 2013). For that reason, complex media are often not 

suitable for E. coli based whole-cell systems harboring P450s. There are two common approaches 

to overcome this problem by either using medium, which only contains a minimum of 

tryptophan, or applying resting cells in buffer. As shown in 2.1, both approaches enable the 

production of the drug metabolites, however, there are significant differences in the productivity 

of both systems. A close correlation between the tested P450s and the conversion of the 

compounds was not observed. Hence, the application of resting cells in buffer or growing cells in 

medium need to be tested for each system individually. An additional bottleneck for P450-based 

bioconversions is the solubility of the substrates caused by their strong hydrophobic character. 

Several solvents like ethanol, DMSO or derivatives of β-cyclodextrin (complexing of substrates) 

might be tested for their influence on the conversion (Schulz et al. 2015). Furthermore, a biphasic 

system consisting of water containing the cells and a layer of organic solvent as reservoir for the 

substrates can be used. Thereby, the organic phase allows the accumulation of oxygenated 

products and hinders overoxidation. Moreover, inhibitory and toxic effects of the substrates as 
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well as products are minimized in a biphasic system. The efficiency of such an approach was 

already demonstrated for the conversion of terpenes and steroids (Girhard et al. 2009; Braun et 

al. 2012). Besides all these examples, there are several additional bottlenecks for the 

development and implementation of a whole-cell system. A recently published review by 

Lundemo and Woodley describes the most common challenges and solutions for the 

establishment of whole-cell P450 catalyzed reactions in more detail (Lundemo and Woodley 

2015). 

 

 

3.5 Potential natural functions 

In this study, compounds out of different classes of substrates such as apocarotenoids, 

sesquiterpenes, aromatic compounds and drugs were tested with nine of the myxobacterial 

P450s. Thereby, we found ionones, damascones, cedrenol, zerumbone, cinnamaldehyde as well 

as several drugs such as the tricyclic psychotherapeutics as novel substrates for some of the 

P450s. Moreover, we identified several products and got a first overview of the substrate ranges 

and selectivities for these P450s (see Table 1) leading to some speculations about their 

physiological roles.  

The CYP109 family consists of three members, which are clustered with carbohydrate-

metabolism related genes (CYP109C1), regulatory elements (CYP109C2) or unique proteins 

(CYP109D1), respectively (Khatri et al. 2011). These P450s are known for the binding and 

conversion of fatty acids and, in addition, CYP109D1 is known for the conversion of α- and β-

ionone (Khatri et al. 2010a; Khatri et al. 2013). Due to their low substrate range, it is not 

surprising that for CYP109C1 no novel substrates were found, for CYP109C2 only damascones act 

as substrate and just CYP109D1 converted several carotenoid-derived aroma compounds as well 

as cinnamaldehyde. CYP109B1 from Bacillus subtilis revealed also a small substrate range, since 

only fatty acids, ionones, indole and nootkatone were identified as substrates (Girhard et al. 

2010). This observation indicates that the CYP109 family seems to have a specific function in the 

metabolism of a certain compound and might not be capable of the degradation of xenobiotics. 

Thereby, the preference towards small cyclic compounds and fatty acids of the CYP109 family 

might lead to the conclusion that they are involved in the biosynthesis of such compounds.  

The CYP260 family shows a much broader substrate diversity, ranging from terpenoids (see 2.2) 

and apocarotenoids (see 2.3) to drugs (see 2.1 and supplemental 4.1.4) and steroids (Khatri et al. 

2015). However, all compounds need to be oxygenated to act as substrate for this family as 

shown during all studies. Interestingly, besides belonging to the same family, both P450s differ 

very much in their substrate range. CYP260B1 converts apocarotenoids with a high yield, 
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whereas CYP260A1 produces only low amounts of products. In contrast, CYP260A1 is more 

potent towards drugs, albeit the activity is very low. The aromatic compound cinnamaldehyde is 

converted by CYP260B1 producing the corresponding acid, whereas CYP260A1 only shows a very 

low activity towards this compound. The formation of cinnamic acid out of cinnamaldehyde is an 

uncommon reaction, since the structurally similar apocarotenoids are oxygenated at the ring 

moiety by CYP260B1. This reaction also occurs after the exposure to air and during all 

conversions, low amounts of cinnamic acid were detected. However, CYP260B1 converted most 

of the aldehyde to the acid and we presumed that the formation of hydrogen peroxide might be 

responsible for the reaction. However, the addition of H2O2 to the reaction mixture did not result 

in a conversion, disproving the assertion of a H2O2-driven reaction. Furthermore, cinnamyl 

alcohol, also known for its autoxidation (Niklasson et al. 2013), did not show any product 

formation verifying that the reaction is H2O2 independent. Spectral analyses showed a typical 

type-I shift for the aldehyde, whereas the alcohol and the acid did not show any shifts (data not 

shown). Therefore, this reaction is of interest for studying the interaction between the amino 

acids of the active site and the moieties of the substrate. The crystal structures of CYP260A1 and 

CYP260B1 will be available soon and docking studies of cinnamylaldehyde might give more 

details about this uncommon reaction. The comparison of the interactions of cinnamaldehyde, 

the apocarotenoids as well as some of the drugs with both P450s might identify the differences 

in the SRSs of this family and, therefore, their diverse substrate range. The physiological roles of 

the CYP260 family might be related to the degradation of xenobiotics due to their broad 

substrate range. Moreover, they could be involved in the functionalization of secondary 

metabolites. Since only oxygenated compounds are accepted as substrates, the functionalization 

would be more probably in a late state of the biosynthesis.  

The CYP264 family consists of two members, CYP264A1 and CYP264B1, which show a diverse 

substrate range. CYP264B1 is clustered to a terpene synthase in the genome of So ce56 and 

hence, its natural function is presumed as terpene hydroxylase (Khatri et al. 2011). Previous 

studies by our laboratory proved this assumption by identifying CYP264B1 as efficient 

hydroxylase for the sesquiterpene (+)-eremophilene (Schifrin et al. 2015). The conversion of 

further sequiterpenes based on eremophilane, humulane, caryophyllane and cedrane resulted 

predominantly in a main product hydroxylated in allylic position as well as some unknown side 

products (see 2.2). In contrast, the physiological role of CYP264A1 is not known and cannot be 

hypothesized, since it is clustered in open reading frames (ORFs) encoding hypothetical proteins 

(Khatri et al. 2011). During previous studies, only a derivative of coumarin was identified as 

substrate (Ringle et al. 2013). In this study, several novel substrates such as tricyclic drugs and 

apocarotenoids were identified (see 2.1 and supplemental 4.1.1.1). Only cyclic compounds seem 
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to act as substrate for this enzyme, whereby tricyclic compounds showed a higher selectivity 

towards a single main product. Homocyclic and heterocyclic compounds are both accepted by 

this P450 and hydroxylation as well as sulfoxidation is observed as catalytic activity towards the 

tricyclic drugs. In contrast, CYP264B1 did not show any activity towards the tricyclic drugs, 

although, having a similar size than sesquiterpenes. The low flexibility of the aromatic rings in the 

drugs might hinder the binding and, therefore, the conversion compared to the non-aromatic 

terpene structures possessing a more flexible structure. Interestingly, all tested carotenoid-

derived aroma compounds were converted by CYP264A1, whereby β-damascenone showed the 

highest yields. This observation shows the preference of CYP264A1 towards cyclic substrates with 

a less flexibility leading to the assumption that CYP264A1 is involved in the biosynthesis of cyclic 

or particularly tricyclic compounds with a rigid structure.  

The CYP267 family showed the widest substrate range of all tested myxobacterial P450s and is, 

therefore, a promising enzyme family for different kinds of biotechnological approaches. The 

tested substrates range from structurally diverse drugs (see 2.1 and 2.4) to simple structures like 

the carotenoid-derived aroma compounds (see 2.3). Although showing a broad substrate range 

and high selectivity, these family members show a quite low activity towards most of the 

substrates. Thereby, CYP267B1 converts more substrates and shows a higher activity compared 

to CYP267A1. Nearly all tested apocarotenoids are converted to the allylic alcohols by CYP267B1, 

whereas CYP267A1 did not show high activities and selectivities towards most of these 

compounds. Interestingly, CYP267A1 was capable of the sulfoxidation of thioridazine, a sterically 

more demanding compound that was not converted by CYP267B1. However, another study by 

our laboratory identified epothilone D as substrate for CYP267B1 indicating that both enzymes 

have the ability to convert sterically more demanding compounds (Kern et al. 2015). Thus, this 

family is capable of the conversion of small (like ionones and damascones) and large molecules 

(like thioridazine or epothilone D) as well as structurally diverse compounds (see 2.4) making it 

difficult to assume about the physiological role. Moreover, the diverse reaction types such as 

aliphatic hydroxylation, aromatic hydroxylation, alcohol oxidation and sulfoxidation do not give a 

hint about their natural functions (see 2.1, 2.3 and 2.4) (Kern et al. 2015). In the genome, 

CYP267A1 is clustered with carbohydrate-metabolism related genes, so its natural function might 

be bound up with using different carbon sources for growth. In contrast, CYP267B1 is clustered 

with some hypothetical proteins, which does not give any clue about its physiological role (Khatri 

et al. 2011). However, such a broad substrate range and variety of reaction types might indicate 

that these P450s are involved in the degradation of xenobiotics similar to the liver P450s CYP3A4 

or CYP2D6. Interestingly, there is only a low number of bacterial P450s showing a similar broad 

substrate range like P450BM3 or CYP116B4 from Labrenzia aggregata (Whitehouse et al. 2012; Yin 
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et al. 2014). These specific properties turn this family into promising biocatalysts for the 

development of biotechnological processes. 

 

Table 1: Investigated myxobacterial P450s, their substrate range, novel substrates identified in this study 
as well as their performed reaction types. 

P450 Substrate range Novel substrates found during 

this work 

Main reaction types 

CYP109C1 No substrate 

known 

- - 

CYP109C2 Small cyclic 

compounds 

Damascones  n.d. 

CYP109D1 Small cyclic 

compounds 

Derivatives of ionones, 

damascones as well as 

cinnamaldehyde 

Allylic hydroxylation 

CYP260A1 Oxygenated 

compounds 

Oxygenated drugs and 

sesquiterpenes 

Hydroxylation, epoxidation 

CYP260B1 Oxygenated 

compounds 

Ionones and derivatives of 

them, damascones as well as 

cinnamaldehyde 

Hydroxylation, epoxidation, 

aldehyde oxidation 

CYP264A1 Cyclic compounds Ionones and derivatives of 

them, damascones as well as 

tricyclic drugs 

Hydroxylation, sulfoxidation 

CYP264B1 Terpenes and 

terpenoids 

Ionones and derivatives of 

them as well as damascones  

Allylic hydroxylation 

CYP267A1 Drugs, terpenes, 

terpenoids and 

apocarotenoids 

Ionones and derivaties of 

them, damascones, diverse 

drugs, terpenes and 

terpenoids 

Allylic  hydroxylation, 

sulfoxidation 

CYP267B1 Drugs, terpenes, 

terpenoids and 

apocarotenoids 

Ionones and derivaties of 

them, damascones, diverse 

drugs, terpenes and 

terpenoids 

Aliphatic and aromatic 

hydroxylation, allylic 

hydroxylation, sulfoxidation 
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Taken together, several classes of potential substrates for the myxobacterial P450s were 

screened in this work. Those systems showing a highly selective in vitro conversion towards a 

single main product were scaled up in an E. coli based whole-cell system and the purified 

products were analyzed by NMR spectroscopy. During these studies, apocarotenoids were 

identified as substrates efficiently converted by CYP260B1, CYP264A1 and CYP267B1, whereby 

several products of the CYP260B1- and CYP267B1-dependent conversions were characterized. 

CYP267B1 showed the typical allylic hydroxylase activity, whereas CYP260B1 showed an 

additional epoxidase activity towards some of the tested compounds. Such an epoxidase activity 

towards β-ionone as well as the methyl-substituted derivatives of α-ionone is to the best of our 

knowledge not known for any specific P450. Moreover, some novel products such as 2-OH-δ-

damascone, 3-OH-allyl-α-ionone and 4-OH-allyl-β-ionone were identified. Aromatic compounds 

(see supplemental 4.1.3) were also tested in this study but did not serve as substrates for most of 

the P450s. Cinnamaldehyde was the only compound out of this class, which acts as substrate for 

CYP109D1 and CYP260B1, whereby the activity of CYP109D1 was too low to characterize the 

corresponding product. In contrast, the product formed by CYP260B1 was obtained in sufficient 

amounts for NMR analysis and thereby, elucidated as cinnamic acid. Furthermore, several 

structural diverse drugs were tested as potential substrates, whereby CYP260A1, CYP264A1, 

CYP267A1 as well as CYP267B1 were identified to act as drug metabolizers. CYP260A1 accepted 

only oxygenated drugs as substrates but its activity was too low to characterize the 

corresponding products. However, the comparison of the retention times with phenothiazine as 

standard gave a first clue about the possible degradation of the side chain of promethazine. 

Additionally, the CYP267 family was identified as highly versatile drug metabolizers. Moreover, 

CYP264A1 converted the tricyclic psychotherapeutic drugs amitriptyline, clomipramine, 

chlorpromazine and imipramine in a milligram per liter scale. Thereby, the same metabolites as 

those formed by human liver P450s were obtained. This was the first report about the 

production of pharmaceutically important compounds by a myxobacterial P450 from So ce56. 

The largest class of substrates tested in this study belongs to the terpenes and terpenoids. The 

sesquiterpenes cedrenol and zerumbone were identified as novel substrates for CYP260A1. The 

selectivity of this P450 was not high, however, several new products were characterized. 

Moreover, some other terpenes and terpenoids such as nootkatone, τ-muurolol or β-

phellandrene were identified as substrates for CYP267A1 and CYP267B1. The products were not 

elucidated during this study due to the time limit of this thesis, nevertheless, this preliminary 

work might serve as good starting point for further studies. 
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3.6 Outlook 

The obtained results demonstrate the substrate range and catalytic activity of the selected 

myxobacterial P450s. During this work, 9 out of the 21 P450s from So ce56 were investigated, 

whereas the remaining 12 P450s are still not characterized. Most of the latter ones show a low 

expression rate and hence, the expression and purification of these P450s is not efficient. 

Increasing the expression rate by optimization of the expression conditions or the change to a 

pET-system might lead to sufficient amounts of pure protein for further characterization. These 

unknown P450s may also reveal unique and novel activities. A high throughput screening 

towards a ligand library checking the spectral shifts would be helpful to identify potential 

substrates for these P450s as demonstrated for CYP260A1 (Khatri et al. 2015). New P450s with 

novel properties are valuable as shown for their increasing importance in the field of 

biotransformation (Meyer et al. 2013). 

Some of the products identified in this study are of biotechnological interest such as the drug 

metabolites or the functionalized apocarotenoids, however, the optimization of the whole-cell 

system towards a preparative scale is required. Drug metabolites are often used in toxicological 

tests or as authentic standard for analytical studies, whereby amounts from a low milligram to 

gram scale are needed. Fine chemicals such as the functionalized apocarotenoids are used as 

building blocks and, therefore, amounts in a gram scale are required. To achieve this goal, 

optimizations like protein engineering or exchange of the redox partners are necessary. Higher 

amounts of products would enable diverse synthetic routes or chemoenzymatic approaches for 

the development of novel compounds with altered characteristics. Nevertheless, the already 

obtained products might be applied for some further characterization like testing the odor 

properties of the apocarotenoid-products, which only requires a few milligrams of substance.  

The identified substrates can also be used to characterize the P450s in more detail. 

Crystallization of the P450s in a substrate-bound form will now be available for several more 

P450s. The structural analyses would give detailed insights in the active sites of the P450s. The 

crystallization of the CYP267 members with structurally diverse substrates would be of high 

interest, since these P450s show a broad substrate range.  Such an approach might be useful to 

explore the flexibility of the active site as well as the SRSs. Another interesting issue would be the 

crystallization of CYP260B1 with β-ionone as substrate. The crystal structure may be used to 

identify the amino acids and docking positions responsible for the reaction type. Site directed 

mutagenesis of these specific amino acids could help to investigate the question about the 

factors influencing the epoxidation versus the allylic hydroxylation. 



Outlook 

99 
 

Furthermore, testing several more substrates or substrate classes may identify some more 

interesting reactions and products. Some terpenes and terpenoids were already tested in this 

study, however, their corresponding products were not elucidated due to the time limit of this 

thesis. These initial tests identified activities of the CYP267 family members towards nootkatone, 

τ-muurolol or β-phellandrene. As a result, CYP267A1 and CYP267B1 may be promising candidates 

to act as terpene/terpenoid-oxidase. This preliminary work might be used for further studies 

towards this large class of substrates that is of particular interest for the production of flavor and 

fragrance as well as pharmaceutical compounds. 

The identification of their physiological roles is another important topic, which should be 

investigated in more detail. Analyses of the genomic context were already done but potential 

functions are just presumed and need to be proven (Khatri et al. 2011). The reconstitution of the 

biosynthetic gene clusters involved in the secondary metabolite formation might elucidate the 

physiological roles of the P450s. However, such an approach is only feasible for the P450s 

CYP263A1 and CYP265A1, since solely these P450s are clustered with genes potentially involved 

in the secondary metabolite formation. Another approach could be the knockout of specific 

P450s to check if their biodiversity is bound up with using different carbon sources for growth. 

CYP109C1 and CYP267A1 are clustered with carbohydrate-metabolism related genes. The 

knockout of their corresponding genes might influence the growth of the bacterium on diverse 

carbon sources. Moreover, improved analytic studies concerning the metabolomics might lead to 

the identification of diverse secondary metabolites as well as their intermediates. A comparison 

of those metabolites with the substrates and products characterized in this study may identify 

structurally similar compounds. Such an approach could be used to specify their physiological 

roles. 
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4 Appendix 

4.1 Supplemental data 

4.1.1 Carotenoid-derived aroma compounds as substrates 

4.1.1.1 Screening of carotenoid-derived aroma compounds  

The carotenoid-derived aroma compounds were screened with CYP109C1, CYP109C2, CYP109D1, 

CYP260A1, CYP264A1, CYP264B1 and CYP267A1 and analyzed by GC-MS as shown before (see 

2.3). 

Table 2: Screening of carotenoid-derived aroma compounds with selected P450s from So ce56. Conversions 
are marked with – (no conversion), + (<10%), ++ (<50%), +++ (>50%), us (unselective product formation, 3 or 

more products) and s (selective, maximum of 2 products). 

substrate CYP109C1 CYP109C2 CYP109D1 CYP260A1 CYP264A1 CYP264B1 CYP267A1 

α-ionone - - ++ (s)  

(Khatri et 

al. 2010a) 

+ (us) + (us) ++ (s) 

(Ly et al. 

2012) 

++ (us) 

β-ionone - - ++ (s)  

(Khatri et 

al. 2010a) 

++ (s) ++ (s) ++ (s) 

(Ly et al. 

2012) 

++ (s) 

Dihydro-α-ionone - - + (s) + (us) ++ (us) + (us) ++ (us) 

Dihydro-β-ionone - - + (s) ++ (s) ++ (s) - ++ (s) 

Methyl-α-ionone - - + (s) + (us) + (us) + (us) + (us) 

Isomethyl-α-ionone - - + (s) Traces of 

product 

+ (us) + (s) Traces of 

product 

Allyl-α-ionone - - Traces of 

product 

Traces of 

product 

+ (s) Traces of 

product 

Traces of 

product 

α-ionol - - + (s) + (us) + (us) Traces of 

product 

+ (us) 

β-ionol - - + (us) + (us) + (us) + (s) ++ (us) 

α-irone 
(diastereomeric 
mixture -> No 
selectivity determined) 

- - + + ++ + + 

α-damascone - + (s) + (s) + (us) ++ (us) - + (s) 

β-damascone - + (s) + (s) + (s) ++ (s) + (s)  + (s) 

δ-damascone - + (s) + (us) + (us) +++ (s)  + (us) + (us) 

β-damascenone - + (s) + (s) + (s) +++ (us) ++ (s) + (s) 

        

 CYP260B1 CYP267A1 CYP267B1 

Retinol* - - - 

* In vitro reactions were performed as described before (see 2.3), with the exception that retinol was dissolved in 

Tween80, ascorbic acid was added as radical scavenger and that the reaction was analyzed by HPLC-DAD. 
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4.1.1.2 Whole-cell conversions of carotenoid-derived aroma compounds 

 

During the whole-cell conversion of n-methyl-α-ionone by CYP267B1, an additional product 

was isolated in sufficient amounts for NMR-characterization and characterized as 3-keto-n-

methyl α-ionone: 

1H NMR (CDCl3): 6.68 (dd, 1H, H7), 6.18 (dd, 1H, H8), 5,96 (br s, 1H, H4), 2.69 (d, 1H, H6), 2.57 

(q, 2H, H10), 2.36-2.30 (m, 1H, H2a), 2.01 (d, 1H, H2b), 1.87 (d, 3H, Me5), 1.50 (s, 3H, Me1a), 

0.98 (s, 3H, Me1b); 13C NMR (CDCl3): 200.32 (C9), 198.32 (C3), 159.49 (C5), 142.58 (C7), 

132.88 (C8), 55.67 (C6), 47.60 (C2), 34.94 (C1), 33.84 (C10), 28.17 (Me1a), 27.54 (Me1b), 

23.74 (Me5), 8.17 (C11). 

 

The whole-cell conversion of α-ionone by CYP260B1 led to a variety of compounds. The 

purification of the products was not sufficient to characterize all compounds by NMR 

spectroscopy. Nevertheless, the epoxy product was also identified for non-substituted α-

ionone: 

1H NMR (CDCl3): 6.65 (dd, 1H, H7), 6.08 (d, 1H, H8), 3.08 (t, 1H, H4), 2.28 (s, H3, Me10), 2.06 

(d, 1H, H6), 1.90-1.83 (m, 2H, H3), 1.47-1.43 (m, 1H, H1a), 1.26 (s, 3H, Me5), 1.02-0.99 (m, 

1H, H1b), 0.91 (s, 3H, Me1a), 0.73 (s, 3H, H1b); 13C NMR (CDCl3): 197.78 (C9), 145.20 (C7), 

134.07 (C8), 59.49 (C4), 58.83 (C5), 52.44 (C6), 28.65 (C2), 28.44 (C1), 27.90 (Me1a), 27.48 

(Me1b), 26.39 (C10), 22.68 (C11), 21.70 (C3). 

  



Appendix 

102 
 

4.1.1.3 Comparison of CYP260B1 and CYP267B1 with CYP109D1  

 

CYP260B1      -----------------------MLPRKNLFSFTSKDPSAFGIHLAAAAREH-SVYFDEG 

CYP109D1      -METETAPSPSPEQIDLSAPSVIADPYPAYRALRGRSPVLYARV-PAGGAAG-LGEP--- 

CYP267B1      MVDQDA-------FPELFHPSSRAEPH-----------AIYARM-RAAGRLHRLVHPRLD 

                                                                          

 

CYP260B1      LGVPVVLRGADVVAVLRDSETFSTRT--------------YDTGIMKGALVTLGGEAHTR 

CYP109D1      IRAYALLRHAEVLAALRDPQTFS------SNVTD------KIRVLPRITLLHDDPPRHTH 

CYP267B1      VPIWVAVRYDDCVELLKDPRLIRDFRKLPDEVRRRYFPLSDRTTFMDQHMLDADPPDHTR 

                                   

CYP260B1      MRRLFNAVLSPRVISRYEEATVTPVARRVVERLVRKERAELFDDFAISMPMGVTSALFGL 

CYP109D1      LRRLVSRSFTPRRIAELEP-WIGRLAASLLEATGD-GPSDLMGAYAMPLPMMVIATLLGI 

CYP267B1      LRAIVQRAFSPRMMEGLRP-RIQEIADGLIDAVIDRRRMELIADFAFPLPTAVIAELLGL 

 

CYP260B1      PEERIAENDALIRKMIRSVVMPQDPVVVAEGRSAHAAMEAQLREIAEREVAHPSDTLLGE 

CYP109D1      PAERYVQFRSWSESVMS---YSGIPA--EERASRGKAMVDFFAAELEARRRAPSGDLISA 

CYP267B1      PVEDRGRFRRWTKILLA---PAKDREFVERAQPVVEEFAAYFRALADARRKAPRDDLISG 

 

CYP260B1      IARAIVAEGLGGVEACEGVVLTLILGSYETTSWMLANLLVALLAHPDAMNQLRQQPSLLP 

CYP109D1      LVEAEIDGARLDTPEAVGFCVGLLVAGNDTTTNLIGNMAHLLSERPELYRRAQQDRSLVG 

CYP267B1      LLLAEEQEHKLSPAELSSMVFLLLVAGHETTVHLIASGMLLLLSHPAERRRLDEDPGLVG 

 

CYP260B1      QAIEESTRWCSSAAG-IVRFVEREATIGGETLAAGTILYLSLIARHYDEEIYPRPETFDI 

CYP109D1      PIIEETLRHSSPVQR-LLRVTTRPVDVSGVMIPAGHLVDVVFGAANRDPAVFEEPDAFRL 

CYP267B1      SAVEEALRCEGPAELSTIRWSLEDIELFGARVPAGEGVAAGLLAANRDPQHFPDPDRFDI 

 

CYP260B1      HRRPVGMLNFGGGLHYCVGAPLARMEARVGVSLLLERFPALRADPTVQP-TFSTAP--RG 

CYP109D1      DRPPAEHLAFGQGTHFCIGAALARMEARIALNALLDCYESITPGE---------APPLRQ 

CYP267B1      GRSPNRHIGFGGGIHFCLGAMLARIEAAIAFSTLLRRLPRIELATSTRDIVWSEWPTIRG 

 

CYP260B1      A---AAFGPDQIPALLV------  ->28% identity 

CYP109D1      TRAIMPLGFESLPLVLRRSRATA   

CYP267B1      -PAAVPVVF--------------  ->33% identity 

 

 

4.1.1.4 Comparison of CYP260B1 and CYP267B1 with CYP264B1 

CYP260B1      ---MLPRKNLFSFTS-KDPSAFGIHLAAAAREHSVY-FDEGLGVPVVLRGADVVAVLRDS 

CYP264B1      ----MTRLNLFAPEVRENPYPFYAALRRESPVCQ----VDPNGMWVVTRYDDIVAAFKNT 

CYP267B1      MVDQDAFPELFHPSSRAEPHAIYARMRAAGRLHRLVHPRLDVPIWVAVRYDDCVELLKDP 

 

CYP260B1      ETFSTRT--------------YDTGIMKGALVTLGGEAHTRMRRLFNAVLSPRVISRYEE 

CYP264B1      QVFSSAGLR-M---ATEPPYLRRQNPLSGSMILADPPRHGQLRSISSRAFTANMVSTLEH 

CYP267B1      RLIRDFRKLPDEVRRRYFPLSDRTTFMDQHMLDADPPDHTRLRAIVQRAFSPRMMEGLRP 

 

CYP260B1      ATVTPVARRVVERLVRKERAELFDDFAISMPMGVTSALFGLPEERIAENDALIRKMI-RS 

CYP264B1      -HMRSMAVRLTDDLVHRRVVEFISEFASRAQVSVLAKLIGFDPGLEGHFKRWATDLVIVG 

CYP267B1      -RIQEIADGLIDAVIDRRRMELIADFAFPLPTAVIAELLGLPVEDRGRFRRWTKILLA-- 

 

CYP260B1      VVMPQDPVVVAEGRSAHAAMEAQLREIAEREVAHPSDTLLGEIARAIVAEGLGGVEACEG 

CYP264B1      VIPPEDHARIAEVRRTIDEMEQYMLGLLASRRRHLENDLVSELLRSRRDDDGITDQDLVS 

CYP267B1      --PAKDREFVERAQPVVEEFAAYFRALADARRKAPRDDLISGLLLAEEQEHKLSPAELSS 

 

CYP260B1      VVLTLILGSYETTSWMLANLLVALLAHPDAMNQLRQQPSLLPQAIEESTRWCSSAA-GIV 

CYP264B1      LLSLLLVAGLETSTSLMTHMVLILAQRPMWMDRLRAEPALIPHFIEEVMRFEAPVH-ATM 

CYP267B1      MVFLLLVAGHETTVHLIASGMLLLLSHPAERRRLDEDPGLVGSAVEEALRCEGPAELSTI 

 

CYP260B1      RFVEREATIGGETLAAGTILYLSLIARHYDEEIYPRPETFDIHRRPVGMLNFGGGLHYCV 

CYP264B1      RLTVTETELGGTRLPAHAVVALLISSGLRDEARFQEPDRFNPERGDQANLAFGHGAHFCL 

CYP267B1      RWSLEDIELFGARVPAGEGVAAGLLAANRDPQHFPDPDRFDIGRSPNRHIGFGGGIHFCL 

 

CYP260B1      GAPLARMEARVGVSLLLERFPALRADPTVQ-PTFSTAPRGAAAFGPDQIPALLV------ 

CYP264B1      GVFLARVQARIVLEELLRRCHRIVLRT--DRLEWQAAL---NTRSPVALPIEVIPVSTTA 

CYP267B1      GAMLARIEAAIAFSTLLRRLPRIELATSTRDIVWSEWP---TIRGPAAVPVVF------- 

 

CYP260B1      ----------- ->24% identity 

CYP264B1      ARESPVVQGIW  

CYP267B1      -----------  ->33% identity 
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4.1.2 Screening of terpenes and terpenoids 

Table 3: Screening of terpenes and terpenoids by selected P450s from So ce56. Conversions are marked with 
– (no conversion), + (<10%), ++ (<50%), +++ (> 50%) and n.d. (not determined). 

substrate CYP 
109C1 

CYP 
109C2 

CYP 
109D1 

CYP 
260A1 

CYP 
260B1 

CYP 
264A1 

CYP 
264B1 

CYP 
267A1 

CYP 
267B1 

τ-muurolol - - - + - + - + ++ 
β-phellandrene - - - - - - - ++ ++ 
nootkatone n.d. n.d. -* +++ +++* -* +++ +++ +++ 
          

* Tested by Michael Ringle 

In vitro reactions were performed as shown before (see 2.3). The temperature profile for the 

measurements was adjusted for these substances; the starting temperature was 50°C and then 

the temperature was ramped to 300°C with a rate of 10°C/min. 

 

4.1.3 Screening of aromatic compounds 

Table 4: Screening of aromatic compounds by selected P450s from So ce56. Conversions are marked with – 
(no conversion), + (<10%), ++ (<50%), +++ (> 50%) and n.d. (not determined). 

substrate CYP109C1 CYP109C2 CYP109D1 CYP260A1 CYP260B1 CYP264A1 CYP264B1 

4-allylanisole - - - - - - - 
eugenol - - - - - - - 
4-ethylphenol - - - - - - - 
4-picoline - - - - - - - 
cinnamyl 
alcohol 

n.d. n.d. n.d. n.d. - n.d. n.d. 

cinnamaldehyde Traces of 
product 

Traces of 
product 

+ Traces of 
product 

+++ Traces of 
product 

Traces of 
product 

cinnamic acid n.d. n.d. n.d. n.d. - n.d. n.d. 

 

In vitro reactions were performed as shown before (see 2.3) with small modifications. After 

extraction, the solvent was removed to a total volume of about 40 µl and then analyzed by GC-

MS. The temperature profile for the measurements was also adjusted for these substances; the 

starting temperature was 40°C and then the temperature was ramped to 170°C with a rate of 

10°C/min. 

Cinnamaldehyde and derivatives were solely analyzed by HPLC-DAD. The whole-cell conversion 

of cinnamaldehyde by CYP260B1 as well as extraction and purification of the product was done 

as described previously (see 2.3). The product was characterized by NMR spectroscopy and 

identified as cinnamic acid (see Figure 9). 
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Figure 9: Structure of cinnamic acid. 

NMR data: 

1H NMR (CDCl3): 7.62 (d, J=16.0 Hz, H3), 7.40-7.00 (Ar-H, 5x), 6.29 (d, J= 16.0, H2); 13C NMR 

(CDCl3): 172.06 (C1), 147.00 (C3), 130.72 (Ar), 128.94 (Ar, 2x), 128.25 (Ar, 2x), 126.45 (Ar), 117.29 

(C2). 

 

4.1.4 Screening of drugs 

In addition to the published data (see 2.4), some drugs were additionally screened with 

CYP109C1, CYP109C2, CYP109D1, CYP260A1, CYP260B1, CYP264A1 and CYP264B1. 

Table 5: Screening of drugs with selected myxobacterial P450s. Conversions are marked with – (no 
conversion) or the value for the total conversion in [%]. 

substrate CYP109C1 CYP109C2 CYP109D1 CYP260A1 CYP260B1 CYP264A1 CYP264B1 

amodiaquine - - - - - - - 

papaverine - - - Traces of 
product 

- - - 

diclofenac - - - Traces of 
product 

- Traces of 
product 

Traces of 
product 

diltiazem - - - Traces of 
product 

- - - 

haloperidol - - - ~5% Traces of 
product 

- - 

losartan - - - - - - - 

piroxicam - - - - - - - 

quinine - - - ~30% (2 
products) 

- - - 

repaglinide - - - - - Traces of 
product 

- 

ritonavir - - - - - Traces of 
product 

- 

tamoxifen - - - - - - - 
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4.2 Abbreviations 

 

AdR Adrenodoxin reductase 

Adx Adrenodoxin 

°C Degree Celcius 

CYP Cytochrome P450 

δ Chemical shift [ppm] 

CPR Cytochrome P450 reductase 

Da Dalton 

DAD Diode array detector 

DMSO Dimethyl sulfoxide 

E. coli Escherichia coli 

EDTA Ethylenediaminetetraacetate 

FAD Flavine adenine dinucleotide 

FDA Food and drug administration 

FMN Flavine mononucleotide 

g Gram 

GC Gas chromatogaphy 

GPP Geranyl pyrophosphate 

h Hour 

HPLC High performance liquid chromatography 

Hz Hertz 

J Coupling constant 

l Liter 

M Molar 

m Meter 

MS Mass spectrometry 

min Minute 

n.d. Not determined 

NADPH Nicotinamide adenine dinucleotide phosphate 

NMR Nuclear magnetic resonance spectroscopy 

NRPS Nonribosomal polypeptide synthase 

ORF Open reading frame 

P450 Cytochrome P450 
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PKS Polyketide synthase 

ppm Parts per million 

rpm Rounds per minute 

s Second 

SRS Substrate recognition site 

T Temperature 

UV/Vis Ultraviolet–visible spectroscopy 
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Abbreviations for amino acids 

A Alanine M Methionine 

C Cysteine N Asparagine 

D Aspartate P Proline 

E Glutamate Q Glutamine 

F Phenylalanine R Arginine 

G Glycine S Serine 

H Histidine T Threonine 

I Ispleucine V Valine 

K Lysine W Tryptophan 

L Leucine Y Tyrosine 



References 

108 
 

5 References 

Agematu, H., N. Matsumoto, Y. Fujii, H. Kabumoto, S. Doi, K. Machida, J. Ishikawa and A. Arisawa 
(2006). "Hydroxylation of testosterone by bacterial cytochromes P450 using the Escherichia 
coli expression system." Bioscience, biotechnology and biochemistry 70(1): 307-311. 

Ajikumar, P. K., W. H. Xiao, K. E. Tyo, Y. Wang, F. Simeon, E. Leonard, O. Mucha, T. H. Phon, B. Pfeifer 
and G. Stephanopoulos (2010). "Isoprenoid pathway optimization for Taxol precursor 
overproduction in Escherichia coli." Science 330(6000): 70-74. 

Alonso-Gutierrez, J., R. Chan, T. S. Batth, P. D. Adams, J. D. Keasling, C. J. Petzold and T. S. Lee (2013). 
"Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production." 
Metabolic engineering 19: 33-41. 

Appleby, A. C. (1967). "A soluble haemoprotein P 450 from nitrogen-fixing Rhizobium bacteroids." 
Biochimica et biophysica acta 147(2): 399-402. 

Barakat, A., E. Brenna, C. Fuganti and S. Serra (2008). "Synthesis, olfactory evaluation and 
determination of the absolute configuration of the β- and γ-Iralia® isomers." Tetrahedron: 
Asymmetry 19(19): 2316-2322. 

Bernhardt, R. (2006). "Cytochromes P450 as versatile biocatalysts." Journal of biotechnology 124(1): 
128-145. 

Bernhardt, R. and V. B. Urlacher (2014). "Cytochromes P450 as promising catalysts for 
biotechnological application: chances and limitations." Applied microbiology and 
biotechnology 98(14): 6185-6203. 

Bhatti, H. N. and R. A. Khera (2012). "Biological transformations of steroidal compounds: a review." 
Steroids 77(12): 1267-1290. 

Braun, A., M. Geier, B. Buhler, A. Schmid, S. Mauersberger and A. Glieder (2012). "Steroid 
biotransformations in biphasic systems with Yarrowia lipolytica expressing human liver 
cytochrome P450 genes." Microbial cell factories 11(106): 1475-2859. 

Brenna, E., C. Fuganti, S. Serra and P. Kraft (2002). "Optically Active Ionones and Derivatives: 
Preparation and Olfactory Properties." European Journal of Organic Chemistry 2002(6): 967-
978. 

Brixius-Anderko, S., L. Schiffer, F. Hannemann, B. Janocha and R. Bernhardt (2015). "A CYP21A2 
based whole-cell system in Escherichia coli for the biotechnological production of 
premedrol." Microbial cell factories 14(135): 015-0333. 

Coelho, P. S., Z. J. Wang, M. E. Ener, S. A. Baril, A. Kannan, F. H. Arnold and E. M. Brustad (2013). "A 
serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo." Nature 
chemical biology 9(8): 485-487. 

de Visser, S. P., F. Ogliaro, P. K. Sharma and S. Shaik (2002). "What factors affect the regioselectivity 
of oxidation by cytochrome p450? A DFT study of allylic hydroxylation and double bond 
epoxidation in a model reaction." Journal of American Chemical Society 124(39): 11809-
11826. 

Denisov, I. G., T. M. Makris, S. G. Sligar and I. Schlichting (2005). "Structure and chemistry of 
cytochrome P450." Chemical reviews 105(6): 2253-2277. 

Donova, M. V. and O. V. Egorova (2012). "Microbial steroid transformations: current state and 
prospects." Applied microbiology and biotechnology 94(6): 1423-1447. 

Estabrook, R. W., D. Y. Cooper and O. Rosenthal (1963). "The Light Reversible Carbon Monoxide 
Inhibition of the Steroid C21-Hydroxylase System of the Adrenal Cortex." Biochemische 
Zeitschrift 338: 741-755. 

Ewen, K. M., F. Hannemann, Y. Khatri, O. Perlova, R. Kappl, D. Krug, J. Huttermann, R. Müller and R. 
Bernhardt (2009). "Genome mining in Sorangium cellulosum So ce56: identification and 
characterization of the homologous electron transfer proteins of a myxobacterial 
cytochrome P450." Journal of biological chemistry 284(42): 28590-28598. 

Ewen, K. M., M. Ringle and R. Bernhardt (2012). "Adrenodoxin--a versatile ferredoxin." IUBMB Life 
64(6): 506-512. 



References 

109 
 

Fasan, R. (2012). "Tuning P450 Enzymes as Oxidation Catalysts." ACS Catalysis 2(4): 647-666. 
FDA (2008). "Food and Drug Adminitration: Guidance for Industry: Safety Testing of Drug 

Metabolites, U.S. Department of Health and Human Services, Food and Drug Administration, 
Rockville, MD." 

Gagarina, A. B., N. M. Evteena, W. Pritzkow, A. Shabanova, L. Willecke, V. Voerckel and W. Schmidt-
Renner (1984). "Elucidation of two Main Autoxidation Products of β-Ionone." Journal für 
Praktische Chemie 326(4): 686-688. 

Garfinkel, D. (1958). "Studies on pig liver microsomes. I. Enzymic and pigment composition of 
different microsomal fractions." Archives of biochemistry and biophysics 77(2): 493-509. 

Gerth, K., N. Bedorf, G. Hofle, H. Irschik and H. Reichenbach (1996). "Epothilons A and B: antifungal 
and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physico-
chemical and biological properties." Journal of antibiotics 49(6): 560-563. 

Gillam, E. M. (2008). "Engineering cytochrome p450 enzymes." Chemical research in toxicology 21(1): 
220-231. 

Girhard, M., T. Klaus, Y. Khatri, R. Bernhardt and V. B. Urlacher (2010). "Characterization of the 
versatile monooxygenase CYP109B1 from Bacillus subtilis." Applied microbiology and 
biotechnology 87(2): 595-607. 

Girhard, M., K. Machida, M. Itoh, R. D. Schmid, A. Arisawa and V. B. Urlacher (2009). "Regioselective 
biooxidation of (+)-valencene by recombinant E. coli expressing CYP109B1 from Bacillus 
subtilis in a two-liquid-phase system." Microbial cell factories 8(36): 1475-2859. 

Gotoh, O. (1992). "Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred 
from comparative analyses of amino acid and coding nucleotide sequences." Journal of 
biological chemistry 267(1): 83-90. 

Graham, S. E. and J. A. Peterson (1999). "How similar are P450s and what can their differences teach 
us?" Archives of biochemistry and biophysics 369(1): 24-29. 

Guengerich, F. P. (2001). "Common and uncommon cytochrome P450 reactions related to 
metabolism and chemical toxicity." Chemical research in toxicology 14(6): 611-650. 

Guengerich, F. P. and Q. Cheng (2011). "Orphans in the human cytochrome P450 superfamily: 
approaches to discovering functions and relevance in pharmacology." Pharmacological 
reviews 63(3): 684-699. 

Gunsalus, I. C., T. C. Pederson and S. G. Sligar (1975). "Oxygenase-catalyzed biological 
hydroxylations." Annual review of biochemistry 44: 377-407. 

Hannemann, F., A. Bichet, K. M. Ewen and R. Bernhardt (2007). "Cytochrome P450 systems--
biological variations of electron transport chains." Biochimica et biophysica acta 3: 330-344. 

Hlavica, P. (2015). "Mechanistic basis of electron transfer to cytochromes p450 by natural redox 
partners and artificial donor constructs." Advances in experimental medicine and biology 
851: 247-297. 

ICH (2009). "European Medicines Agency: ICH Guidance M3(R2) on Non-Clinical Safety Studies for the 
Conduct of Human Clinical Trials and Marketing Authorisation for Pharmaceuticals, European 
Medicines Agency, London." 

Ilie, A., R. Lonsdale, R. Agudo and M. T. Reetz (2015). "A diastereoselective P450-catalyzed 
epoxidation reaction: anti versus syn reactivity." Tetrahedron Letters 56(23): 3435-3437. 

Janocha, S. and R. Bernhardt (2013). "Design and characterization of an efficient CYP105A1-based 
whole-cell biocatalyst for the conversion of resin acid diterpenoids in permeabilized 
Escherichia coli." Applied microbiology and biotechnology 97(17): 7639-7649. 

Janocha, S., D. Schmitz and R. Bernhardt (2015). "Terpene hydroxylation with microbial cytochrome 
P450 monooxygenases." Advances in biochemical engineering/biotechnology 148: 215-250. 

Julien, B. and S. Shah (2002). "Heterologous expression of epothilone biosynthetic genes in 
Myxococcus xanthus." Antimicrobial agents and chemotherapy 46(9): 2772-2778. 

Julsing, M. K., S. Cornelissen, B. Buhler and A. Schmid (2008). "Heme-iron oxygenases: powerful 
industrial biocatalysts?" Current opinion in chemical biology 12(2): 177-186. 



References 

110 
 

Jung, S. T., R. Lauchli and F. H. Arnold (2011). "Cytochrome P450: taming a wild type enzyme." 
Current opinion in biotechnology 22(6): 809-817. 

Kang, J. Y., S. H. Ryu, S. H. Park, G. S. Cha, D. H. Kim, K. H. Kim, A. W. Hong, T. Ahn, J. G. Pan, Y. H. 
Joung, H. S. Kang and C. H. Yun (2014). "Chimeric cytochromes P450 engineered by domain 
swapping and random mutagenesis for producing human metabolites of drugs." 
Biotechnology and bioengineering 111(7): 1313-1322. 

Katagiri, M., B. N. Ganguli and I. C. Gunsalus (1968). "A soluble cytochrome P-450 functional in 
methylene hydroxylation." Journal of biological chemistry 243(12): 3543-3546. 

Kelly, S. L. and D. E. Kelly (2013). "Microbial cytochromes P450: biodiversity and biotechnology. 
Where do cytochromes P450 come from, what do they do and what can they do for us?" 
Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 
368(1612): 19. 

Kelly, S. L., D. C. Lamb, C. J. Jackson, A. G. Warrilow and D. E. Kelly (2003). "The biodiversity of 
microbial cytochromes P450." Advances in microbial physiology 47: 131-186. 

Kern, F., T. K. Dier, Y. Khatri, K. M. Ewen, J. P. Jacquot, D. A. Volmer and R. Bernhardt (2015). "Highly 
Efficient CYP167A1 (EpoK) dependent Epothilone B Formation and Production of 7-Ketone 
Epothilone D as a New Epothilone Derivative." Scientific reports 5(14881). 

Khatri, Y., M. Girhard, A. Romankiewicz, M. Ringle, F. Hannemann, V. B. Urlacher, M. C. Hutter and R. 
Bernhardt (2010a). "Regioselective hydroxylation of norisoprenoids by CYP109D1 from 
Sorangium cellulosum So ce56." Applied microbiology and biotechnology 88(2): 485-495. 

Khatri, Y., F. Hannemann, K. M. Ewen, D. Pistorius, O. Perlova, N. Kagawa, A. O. Brachmann, R. Müller 
and R. Bernhardt (2010b). "The CYPome of Sorangium cellulosum So ce56 and identification 
of CYP109D1 as a new fatty acid hydroxylase." Chemistry & biology 17(12): 1295-1305. 

Khatri, Y., F. Hannemann, M. Girhard, R. Kappl, A. Même, M. Ringle, S. Janocha, E. Leize-Wagner, V. B. 
Urlacher and R. Bernhardt (2013). "Novel family members of CYP109 from Sorangium 
cellulosum So ce56 exhibit characteristic biochemical and biophysical properties." 
Biotechnology and Applied Biochemistry 60(1): 18-29. 

Khatri, Y., F. Hannemann, O. Perlova, R. Müller and R. Bernhardt (2011). "Investigation of 
cytochromes P450 in myxobacteria: excavation of cytochromes P450 from the genome of 
Sorangium cellulosum So ce56." FEBS Letters 585(11): 1506-1513. 

Khatri, Y., M. Ringle, M. Lisurek, J. P. Kries, J. Zapp and R. Bernhardt (2015). "Substrate hunting for 
the myxobacterial CYP260A1 revealed novel 1alpha-hydroxylated products from C-19 
steroids." Chembiochem 19(10): in press. 

Kiss, F. M., Y. Khatri, J. Zapp and R. Bernhardt (2015). "Identification of new substrates for the 
CYP106A1-mediated 11-oxidation and investigation of the reaction mechanism." FEBS Letters 
589(18): 2320-2326. 

Klingenberg, M. (1958). "Pigments of rat liver microsomes." Archives of biochemistry and biophysics 
75(2): 376-386. 

Koeller, K. M. and C. H. Wong (2001). "Enzymes for chemical synthesis." Nature 409(6817): 232-240. 
Kraft, P., J. A. Bajgrowicz, C. Denis and G. Frater (2000). "Odds and Trends: Recent Developments in 

the Chemistry of Odorants " Angewandte Chemie (International Edition) 39(17): 2980-3010. 
Kulig, J. K., C. Spandolf, R. Hyde, A. C. Ruzzini, L. D. Eltis, G. Gronberg, M. A. Hayes and G. Grogan 

(2015). "A P450 fusion library of heme domains from Rhodococcus jostii RHA1 and its 
evaluation for the biotransformation of drug molecules." Bioorganic & medicinal chemistry 
23(17): 5603-5609. 

Kumar, S. (2010). "Engineering cytochrome P450 biocatalysts for biotechnology, medicine and 
bioremediation." Expert opinion on drug metabolism & toxicology 6(2): 115-131. 

Lamb, D. C., L. Lei, A. G. Warrilow, G. I. Lepesheva, J. G. Mullins, M. R. Waterman and S. L. Kelly 
(2009). "The first virally encoded cytochrome p450." Journal of virology 83(16): 8266-8269. 

Lebeault, J. M., E. T. Lode and M. J. Coon (1971). "Fatty acid and hydrocarbon hydroxylation in yeast: 
role of cytochrome P-450 in Candida tropicalis." Biochemical and biophysical research 
communications 42(3): 413-419. 



References 

111 
 

Li, G. and K. D. Young (2013). "Indole production by the tryptophanase TnaA in Escherichia coli is 
determined by the amount of exogenous tryptophan." Microbiology 159(Pt 2): 402-410. 

Liu, S., C. Li, X. Fang and Z. a. Cao (2004). "Optimal pH control strategy for high-level production of 
long-chain α,ω-dicarboxylic acid by Candida tropicalis." Enzyme and Microbial Technology 
34(1): 73-77. 

Locuson, C. W., J. M. Hutzler and T. S. Tracy (2007). "Visible spectra of type II cytochrome P450-drug 
complexes: evidence that "incomplete" heme coordination is common." Drug metabolism 
and disposition 35(4): 614-622. 

Lundemo, M. T. and J. M. Woodley (2015). "Guidelines for development and implementation of 
biocatalytic P450 processes." Applied microbiology and biotechnology 99(6): 2465-2483. 

Luthra, A., I. G. Denisov and S. G. Sligar (2011). "Spectroscopic features of cytochrome P450 reaction 
intermediates." Archives of biochemistry and biophysics 507(1): 26-35. 

Ly, T. T., Y. Khatri, J. Zapp, M. C. Hutter and R. Bernhardt (2012). "CYP264B1 from Sorangium 
cellulosum So ce56: a fascinating norisoprenoid and sesquiterpene hydroxylase." Applied 
microbiology and biotechnology 95(1): 123-133. 

Matsuoka, T., S. Miyakoshi, K. Tanzawa, K. Nakahara, M. Hosobuchi and N. Serizawa (1989). 
"Purification and characterization of cytochrome P-450sca from Streptomyces carbophilus. ." 
European journal of biochemistry 184(3): 707-713. 

Meunier, B., S. P. de Visser and S. Shaik (2004). "Mechanism of Oxidation Reactions Catalyzed by 
Cytochrome P450 Enzymes." Chemical reviews 104(9): 3947-3980. 

Meyer, H.-P., E. Eichhorn, S. Hanlon, S. Lutz, M. Schurmann, R. Wohlgemuth and R. Coppolecchia 
(2013). "The use of enzymes in organic synthesis and the life sciences: perspectives from the 
Swiss Industrial Biocatalysis Consortium (SIBC)." Catalysis Science & Technology 3(1): 29-40. 

Munro, A. W., D. G. Leys, K. J. McLean, K. R. Marshall, T. W. Ost, S. Daff, C. S. Miles, S. K. Chapman, D. 
A. Lysek, C. C. Moser, C. C. Page and P. L. Dutton (2002). "P450 BM3: the very model of a 
modern flavocytochrome." Trends in biochemical sciences 27(5): 250-257. 

Nebert, D. W., M. Adesnik, M. J. Coon, R. W. Estabrook, F. J. Gonzalez, F. P. Guengerich, I. C. 
Gunsalus, E. F. Johnson, B. Kemper, W. Levin and et al. (1987). "The P450 gene superfamily: 
recommended nomenclature." DNA 6(1): 1-11. 

Nelson, D. R. (1999). "Cytochrome P450 and the individuality of species." Archives of biochemistry 
and biophysics 369(1): 1-10. 

Nelson, D. R. (2011). "Progress in tracing the evolutionary paths of cytochrome P450." Biochimica et 
biophysica acta 1: 14-18. 

Newman, D. J. and G. M. Cragg (2012). "Natural Products As Sources of New Drugs over the 30 Years 
from 1981 to 2010." Journal of Natural Products 75(3): 311-335. 

Niklasson, I. B., T. Delaine, M. N. Islam, R. Karlsson, K. Luthman and A.-T. Karlberg (2013). "Cinnamyl 
alcohol oxidizes rapidly upon air exposure." Contact Dermatitis 68(3): 129-138. 

Omura, T., E. Sanders, R. W. Estabrook, D. Y. Cooper and O. Rosenthal (1966). "Isolation from adrenal 
cortex of a nonheme iron protein and a flavoprotein functional as a reduced 
triphosphopyridine nucleotide-cytochrome P-450 reductase." Archives of biochemistry and 
biophysics 117(3): 660-673. 

Omura, T. and R. Sato (1962). "A New Cytochrome in Liver Microsomes." Journal of Biological 
Chemistry 237(4): PC1375-PC1376. 

Omura, T. and R. Sato (1964a). "The Carbon Monoxide-Binding Pigment of Liver Microsomes. I. 
Evidence for Its Hemoprotein Nature." Journal of Biological Chemistry 239: 2370-2378. 

Omura, T. and R. Sato (1964b). "The Carbon Monoxide-Binding Pigment of Liver Microsomes. Ii. 
Solubilization, Purification, and Properties." Journal of Biological Chemistry 239: 2379-2385. 

Ortiz de Montellano, P. R. (2010). "Hydrocarbon hydroxylation by cytochrome P450 enzymes." 
Chemical reviews 110(2): 932-948. 

Paddon, C. J., P. J. Westfall, D. J. Pitera, K. Benjamin, K. Fisher, D. McPhee, M. D. Leavell, A. Tai, A. 
Main, D. Eng, D. R. Polichuk, K. H. Teoh, D. W. Reed, T. Treynor, J. Lenihan, M. Fleck, S. Bajad, 
G. Dang, D. Dengrove, D. Diola, G. Dorin, K. W. Ellens, S. Fickes, J. Galazzo, S. P. Gaucher, T. 



References 

112 
 

Geistlinger, R. Henry, M. Hepp, T. Horning, T. Iqbal, H. Jiang, L. Kizer, B. Lieu, D. Melis, N. 
Moss, R. Regentin, S. Secrest, H. Tsuruta, R. Vazquez, L. F. Westblade, L. Xu, M. Yu, Y. Zhang, 
L. Zhao, J. Lievense, P. S. Covello, J. D. Keasling, K. K. Reiling, N. S. Renninger and J. D. 
Newman (2013). "High-level semi-synthetic production of the potent antimalarial 
artemisinin." Nature 496(7446): 528-532. 

Pateraki, I., A. M. Heskes and B. Hamberger (2015). "Cytochromes P450 for terpene functionalisation 
and metabolic engineering." Advances in biochemical engineering/biotechnology 148: 107-
139. 

Picataggio, S., T. Rohrer, K. Deanda, D. Lanning, R. Reynolds, J. Mielenz and L. D. Eirich (1992). 
"Metabolic Engineering of Candida Tropicalis for the Production of Long-Chain Dicarboxylic 
Acids." Nature biotechnology 10(8): 894-898. 

Podust, L. M. and D. H. Sherman (2012). "Diversity of P450 enzymes in the biosynthesis of natural 
products." Natural product reports 29(10): 1251-1266. 

Poulos, T. L., B. C. Finzel, I. C. Gunsalus, G. C. Wagner and J. Kraut (1985). "The 2.6-A crystal structure 
of Pseudomonas putida cytochrome P-450." Journal of biological chemistry 260(30): 16122-
16130. 

Rasool, S. and R. Mohamed (2015). "Plant cytochrome P450s: nomenclature and involvement in 
natural product biosynthesis." Protoplasma 12: 12. 

Reichenbach, H. and G. Hofle (1993). "Biologically active secondary metabolites from myxobacteria." 
Biotechnology advances 11(2): 219-277. 

Ren, X., J. A. Yorke, E. Taylor, T. Zhang, W. Zhou and L. L. Wong (2015). "Drug Oxidation by 
Cytochrome P450BM3 : Metabolite Synthesis and Discovering New P450 Reaction Types." 
Chemistry 21(42): 15039-15047. 

Rendic, S. P. and F. P. Guengerich (2014). "Survey of Human Oxidoreductases and Cytochrome P450 
Enzymes Involved in the Metabolism of Chemicals." Chemical research in toxicology 8: 8. 

Rentmeister, A., F. H. Arnold and R. Fasan (2009). "Chemo-enzymatic fluorination of unactivated 
organic compounds." Nature chemical biology 5(1): 26-28. 

Ringle, M., Y. Khatri, J. Zapp, F. Hannemann and R. Bernhardt (2013). "Application of a new versatile 
electron transfer system for cytochrome P450-based Escherichia coli whole-cell 
bioconversions." Applied microbiology and biotechnology 97(17): 7741-7754. 

Roberts, S. C. (2007). "Production and engineering of terpenoids in plant cell culture." Nature 
chemical biology 3(7): 387-395. 

Roiban, G. D. and M. T. Reetz (2015). "Expanding the toolbox of organic chemists: directed evolution 
of P450 monooxygenases as catalysts in regio- and stereoselective oxidative hydroxylation." 
Chemical communications 51(12): 2208-2224. 

Ruhmann, A. G. and D. L. Berliner (1967). "Influence of Steroids on Fibroblasts. II. The Fibroblast as an 
Assay System for Topical Anti-Inflammatory Potency of Corticosteroids1." The Journal of 
Investigative Dermatology 49(2): 123-130. 

Rylott, E. L., R. G. Jackson, J. Edwards, G. L. Womack, H. M. B. Seth-Smith, D. A. Rathbone, S. E. Strand 
and N. C. Bruce (2006). "An explosive-degrading cytochrome P450 activity and its targeted 
application for the phytoremediation of RDX." Nature biotechnology 24(2): 216-219. 

Schewe, H., B. A. Kaup and J. Schrader (2008). "Improvement of P450(BM-3) whole-cell biocatalysis 
by integrating heterologous cofactor regeneration combining glucose facilitator and 
dehydrogenase in E. coli." Applied microbiology and biotechnology 78(1): 55-65. 

Schiffer, L., S. Anderko, F. Hannemann, A. Eiden-Plach and R. Bernhardt (2015a). "The CYP11B 
subfamily." Journal of steroid biochemistry and molecular biology 151: 38-51. 

Schiffer, L., S. Anderko, A. Hobler, F. Hannemann, N. Kagawa and R. Bernhardt (2015b). "A 
recombinant CYP11B1 dependent Escherichia coli biocatalyst for selective cortisol production 
and optimization towards a preparative scale." Microbial cell factories 14(25): 015-0209. 

Schifrin, A., T. T. Ly, N. Gunnewich, J. Zapp, V. Thiel, S. Schulz, F. Hannemann, Y. Khatri and R. 
Bernhardt (2015). "Characterization of the gene cluster CYP264B1-geoA from Sorangium 



References 

113 
 

cellulosum So ce56: biosynthesis of (+)-eremophilene and its hydroxylation." Chembiochem 
16(2): 337-344. 

Schneiker, S., O. Perlova, O. Kaiser, K. Gerth, A. Alici, M. O. Altmeyer, D. Bartels, T. Bekel, S. Beyer, E. 
Bode, H. B. Bode, C. J. Bolten, J. V. Choudhuri, S. Doss, Y. A. Elnakady, B. Frank, L. Gaigalat, A. 
Goesmann, C. Groeger, F. Gross, L. Jelsbak, J. Kalinowski, C. Kegler, T. Knauber, S. Konietzny, 
M. Kopp, L. Krause, D. Krug, B. Linke, T. Mahmud, R. Martinez-Arias, A. C. McHardy, M. 
Merai, F. Meyer, S. Mormann, J. Munoz-Dorado, J. Perez, S. Pradella, S. Rachid, G. Raddatz, F. 
Rosenau, C. Ruckert, F. Sasse, M. Scharfe, S. C. Schuster, G. Suen, A. Treuner-Lange, G. J. 
Velicer, F. J. Vorholter, K. J. Weissman, R. D. Welch, S. C. Wenzel, D. E. Whitworth, S. 
Wilhelm, C. Wittmann, H. Blocker, A. Puhler and R. Müller (2007). "Complete genome 
sequence of the myxobacterium Sorangium cellulosum." Nature biotechnology 25(11): 1281-
1289. 

Schulz, S., M. Girhard, S. K. Gaßmeyer, V. D. Jäger, D. Schwarze, A. Vogel and V. B. Urlacher (2015). 
"Selective Enzymatic Synthesis of the Grapefruit Flavor (+)-Nootkatone." ChemCatChem 7(4): 
601-604. 

Shaik, S., S. P. de Visser, F. Ogliaro, H. Schwarz and D. Schroder (2002). "Two-state reactivity 
mechanisms of hydroxylation and epoxidation by cytochrome P-450 revealed by theory." 
Current opinion in chemical biology 6(5): 556-567. 

Shimkets, L., M. Dworkin and H. Reichenbach (2006). The myxobacteria, in The Prokaryotes. New 
York, Springer: 31-115. 

Urlacher, V. B. and S. Eiben (2006). "Cytochrome P450 monooxygenases: perspectives for synthetic 
application." Trends in Biotechnology 24(7): 324-330. 

Urlacher, V. B. and M. Girhard (2012). "Cytochrome P450 monooxygenases: an update on 
perspectives for synthetic application." Trends in biotechnology 30(1): 26-36. 

Urlacher, V. B., S. Lutz-Wahl and R. D. Schmid (2004). "Microbial P450 enzymes in biotechnology." 
Applied microbiology and biotechnology 64(3): 317-325. 

Wang, G., W. Tang and R. R. Bidigare (2005). Terpenoids as therapeutic drugs and pharmaceutical 
agents. Natural products, Springer: 197-227. 

Wang, M., D. L. Roberts, R. Paschke, T. M. Shea, B. S. S. Masters and J.-J. P. Kim (1997). "Three-
dimensional structure of NADPH–cytochrome P450 reductase: Prototype for FMN- and FAD-
containing enzymes." Proceedings of the National Academy of Sciences of the United States 
of America 94(16): 8411-8416. 

Watanabe, Y., S. Laschat, M. Budde, O. Affolter, Y. Shimada and V. B. Urlacher (2007). "Oxidation of 
acyclic monoterpenes by P450 BM-3 monooxygenase: influence of the substrate E/Z-
isomerism on enzyme chemo- and regioselectivity." Tetrahedron 63(38): 9413-9422. 

Weitzel, C. and H. Simonsen (2015). "Cytochrome P450-enzymes involved in the biosynthesis of 
mono- and sesquiterpenes." Phytochemistry Reviews 14(1): 7-24. 

Werck-Reichhart, D. and R. Feyereisen (2000). "Cytochromes P450: a success story." Genome biology 
1(6): 8. 

Whitehouse, C. J., S. G. Bell and L. L. Wong (2012). "P450(BM3) (CYP102A1): connecting the dots." 
Chemical Society reviews 41(3): 1218-1260. 

Withers, S. T. and J. D. Keasling (2007). "Biosynthesis and engineering of isoprenoid small molecules." 
Applied microbiology and biotechnology 73(5): 980-990. 

Yamazaki, Y., Y. Hayashi, M. Arita, T. Hieda and Y. Mikami (1988). "Microbial Conversion of alpha-
Ionone, alpha-Methylionone, and alpha-Isomethylionone." Applied and environmental 
microbiology 54(10): 2354-2360. 

Yin, Y.-C., H.-L. Yu, Z.-J. Luan, R.-J. Li, P.-F. Ouyang, J. Liu and J.-H. Xu (2014). "Unusually Broad 
Substrate Profile of Self-Sufficient Cytochrome P450 Monooxygenase CYP116B4 from 
Labrenzia aggregata." Chembiochem 15(16): 2443-2449. 

Zelasko, S., A. Palaria and A. Das (2013). "Optimizations to achieve high-level expression of 
cytochrome P450 proteins using Escherichia coli expression systems." Protein expression and 
purification 92(1): 77-87. 



References 

114 
 

Zhang, W., Y. Liu, J. Yan, S. Cao, F. Bai, Y. Yang, S. Huang, L. Yao, Y. Anzai, F. Kato, L. M. Podust, D. H. 
Sherman and S. Li (2014). "New reactions and products resulting from alternative 
interactions between the P450 enzyme and redox partners." Journal of american Chemical 
Society 136(9): 3640-3646. 

 



Acknowledgements 

115 
 

Acknowledgements 

 

I would like to express my deepest gratitude to my supervisor, Prof. Dr. Rita Bernhardt, for giving me 

the opportunity to work in this interesting field of research. I am grateful for her patient guidance, 

enthusiastic encouragement and useful critiques of this research work. 

I would also like to thank Prof. Dr. Andreas Speicher for reviewing this thesis and being the second 

supervisor. 

Special thanks to the members of the “Myxo group” Fedy Kern, Alexander Schifrin and Yogan Khatri 

for their great support and helpful advices during the last years. 

I would also like to extend my thanks to Birgit Heider-Lips and Wolfgang Reinle for the protein 

purifications. 

I also want to show my gratitude to Dr. Josef Zapp for measuring all the NMR samples. 

Special acknowledgements go to all the current and former members of this working group for their 

scientific support and the great moments during the last three years. 

Last but not least, i wish to thank my family for their support and encouragement throughout my 

study. 

 


