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ix Zusammenfassung 

Zusammenfassung 

Die fortschreitende Verbesserung von Sequenziertechnologien ermöglicht den Zugang zu einer 

stetig wachsenden Zahl von mikrobiellen Genomsequenzen. Gleichzeitig liefern bioinformatische 

Methoden ein immer besseres Bild des genetischen Potentials der Mikroorganismen für die Produktion 

von Sekundärmetaboliten. Die vorliegende Arbeit befasst sich mit der Entwicklung von 

bioinformatischen Werkzeugen um die Entdeckung, die Dereplikation und letztendlich  die 

Charakterisierung von multimodularen Biosynthesewegen in mikrobiellen Genomen zu unterstützen. 

Kernstück des Ansatzes ist der „konzept-basierte“ Vergleich der Architekturen von komplexen PKS-, 

NRPS- und hybriden Genclustern, der sich auf Anordnung und Eigenschaften biosynthetischer Domänen 

stützt anstelle von Sequenzähnlichkeit. Das neu entwickelte Softwarewerkzeug, genannt BiosynML, 

wurde mit antiSMASH (dem de-facto Standard für die automatische Annotation von Biosynthesewegen) 

verknüpft und in eine bestehende Forschungsdatenbank (Mxbase) integriert. BiosynML Methoden 

wurden anhand der Biosynthesewege für 42 bekannte Naturstoffe in 71 myxobakteriellen 

Genomsequenzen getestet und auf öffentlich zugängliche Genome relevanter Mikroorganismen 

angewendet. Die Analyse von 1347 Biosyntheswegen aus den Genomen der Myxobakterien, darunter ein 

derepliziertes Set von 783 Typen, ergab eine nur minimale Überlappung zwischen Unterordnungen und 

ermöglichte die Abschätzung der Diversität an myxobakteriellen Sekundärmetaboliten-Genclustern. 
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xi Abstract 

Abstract  

Recent advances in sequencing technology have set the stage for a steadily growing number of 

microbial whole-genome sequences. At the same time, bioinformatic analysis increasingly sheds light on 

the genome-encoded capacity of certain microorganisms for the production of secondary metabolites. 

This work describes the development of a bioinformatic toolkit to underpin discovery and dereplication 

efforts in a genomics-based workflow aimed at the characterization of multimodular biosynthetic gene 

clusters from bacterial genomes. Key to the “conceptual genome mining” approach implemented here is 

the comparison of pathways architectures represented by arrangement and properties of domains in 

complex PKS-, NRPS- and hybrid pathways rather than resorting to DNA- or protein-level sequence 

similarity. The new analysis framework named BiosynML toolkit was interfaced to antiSMASH, the de-

facto standard for automatic annotation of biosynthetic pathways, and integrated with an existing in-

house research database system (Mxbase). BiosynML methods were tested using 42 characterized 

pathways from 71 myxobacterial genomes and also applied to publicly accessible genomes from relevant 

microbial taxa. BiosynML tools were ultimately used to create an overview of 1347 pathways of which 

783 distinct models were identified. This analysis revealed minimal overlap between suborders and 

enabled the tentative estimation of myxobacterial secondary metabolite gene cluster richness. 
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1 Introduction 

1 Introduction 

1.1 Natural products for drug discovery 

For thousands of years, natural products proved to be a rich source of drugs and drug leads, playing 

a vital role for prevention and cure of various diseases (1). During the last century, the discovery of 

natural products is filled with stories of numerous lifesaving drugs produced by microorganisms. For 

example, Sir Alexander Fleming in 1928 discovered penicillin from Penicillium notatum, which became  

world's first industrially produced antibiotic and was widely used to combat infections (2).  

 

Figure 1.1: Drugs derived from natural products. (a) Erythromycin (macrolide antibiotic drug used to treat 
different types of infections caused by bacteria, (b) Daptomycin (antibiotic drug used to treat bacterial infections 
of the skin and underlying tissues) (c) Epothilone (the semisynthetic derivative Ixabepilone is on the market for 
anticancer treatment) (d) Mitoxantrone (antineoplastic agent). 
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The majority of the drugs available in the market are derived from natural products obtained from 

various sources such as plants and microorganisms (3, 4).  For example, drugs like penicillin, 

erythromycin (Figure 1.1 a), daptomycin (Figure 1.1 b) are used clinically against bacterial infections (5–

8); drugs like epothilone (Figure 1.1 c), doxorubicin, mitoxantrone (Figure 1.1 d) (9–12) are used against 

cancer.  Other fields of application include natural product-derived drugs used as immune suppressants 

and to lower the cholesterol levels (13).  

Although natural products from microorganisms are known as therapeutic agents for the treatment 

and prevention of diseases from late 1920s (14).  The delay of clinical trials was caused by the lack of 

proper procedures to produce enough quantities of the pure products. Starting from this stage, an era 

followed which is characterized by a steady increase in the discovery of novel compounds (15, 16). 

However, natural products as a source for new medicines were largely abandoned by “big pharma” after 

the 1970’s mainly for economic reasons, leading to an “innovation gap”: basically no new structural 

classes of antibiotics were introduced until the 2000’s  (17).  

Enabled by progress in modern techniques such as next-generation sequencing and high-

resolution mass spectrometry, strategies for drug discovery for pharmaceutical applications are currently 

in a revolutionary period (18). With the availability of automated instrument systems, robots and high-

throughput screening (HTS) platforms providing powerful tools for screening large compound libraries in 

a cost-effective manner (15). Over the last two decades, development in HTS and analytical techniques in 

combination with genomics-based methods. This triggered new directions of natural product research, 

including studies of biosynthesis, revealing that genes responsible for biosynthesis of complex secondary 

metabolites are often located adjacent to each other (clustered) in microbial DNA that encode for 

polypeptides or proteins. Altogether, genes responsible for synthesis of secondary metabolite are 

encoded in a large gene cluster producing protein domains with defined functions. These insights into 

the molecular basis of natural product formation have changed the view of natural product research by 

enabling the emendation of known structures and prediction of novel compounds based on the gene 

sequences and generation of unusual compounds by combinatorial biosynthesis. 

These methods facilitate the development of new drugs which are needed to control the 

pathogenic bacteria showing resistance to the effect of antibacterial drugs. These bacteria were reported 

as “ESKAPE” pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, 

Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter species) (19). There are only a few 

natural products that pass through clinical trials and are approved as drugs. This generates a great 

demand for new compounds to fill the gaps in the pharmaceutical industry. Developing methods as such 

could ensure a steady stream of new drugs to meet the current needs. 



 

 

3 Introduction 

1.2 Assembly logic of secondary metabolism: modular pathways 

Secondary metabolites in general are chemical entities produced by but not involved in the normal 

growth of an organism. These compounds are often thought to be used as defences against competitors; 

plausible examples are compounds with antibacterial or antifungal activities. Advances in natural 

products biosynthesis research over the last 10-20 years led to an improved understanding of their 

biosynthesis including the organization of biosynthetic genes in so called gene clusters found as genomic 

islands in the chromosome of the producing organism. These gene clusters produce remarkable peptide 

secondary metabolites belonging to the class of nonribosomal peptide synthetase (NRPS) and polyketide 

synthase (PKS). As a result, several biosynthetic pathway which are multi enzymatic and multi domain 

megasyntheses were identified. In addition, several bacterial species have been identified as the source 

of novel natural products using so-called genome mining approaches (20). Since the availability of 

automated tools for genome annotation, bacterial genomes are nowadays routinely investigated for the 

presence of PKS and NRPS clusters, exposing a large number of novel gene clusters with currently 

unknown function. 

Compounds derived from PKS and NRPS biosynthetic machinery represent two large families of 

structurally diverse and complex microbial metabolites that include many potential drug leads. 

Understanding the ‘assembly line’ logic behind the formation of these compounds helps to develop 

strategies for the production improvement and targeted alteration of the metabolites associated with 

PKS and NRPS gene clusters (20). According to textbook biosynthetic logic, biosynthesis by PKSs and 

NRPSs is typically accomplished using acyl-coenzyme A monomers and amino acid building blocks in an 

assembly line fashion. Both of their biosynthesis are assisted by large multimodular proteins in which 

each enzymatic module catalysis one round of elongation and a variable set of modifications on a 

growing polyketide- or polypeptide chain, respectively (21, 22). To some extent, this knowledge allows to 

estimate the structures afforded by PKS and NRPS pathways based on bioinformatic analysis of genome 

information; however the correct prediction of precise molecular structures of products is not routinely 

possible. 

1.2.1 Polyketide synthases – PKS 

Polyketides are a class of secondary metabolites which are structurally complex organic 

compounds exhibiting wide range of biological properties. Biosynthesis of polyketides is usually 

accomplished through the decarboxylative condensation of activated dicraboxyl acid units resembling 
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fatty acid synthesis (FAS) (23, 24). Polyketide synthases (PKSs) are a group of multi-domain enzymes that 

are responsible for the production of polyketides. 

Depending on their molecular architecture and enzymatic properties like the subunit organization 

and mode of synthesis, PKSs are historically subdivided into three groups (25). Type I PKS consist of 

multifunctional mega-enzymes organized into modules in which each active site is involved in the 

enzymatic processing of intermediates along the pathway as exemplified by the 6-deoxyerythromycin B 

synthase (DEBS) for the biosynthesis of reduced polyketides such as erythromycin A (21) where each 

successive incorporation of building block which is further reduced by keto reductase (KS) from ketone 

group to a hydroxyl group (Figure 1.2). They are further divided into iterative PKS and modular PKS. 

Iterative type I PKS are monomodular exhibiting a set of domains used in a cyclic fashion. Modular PKSs 

contain several individual modules and usually do not iterate reactions, although exceptions have been 

reported. Type II PKSs, also work iteratively, featuring each catalytic site on individual mono- or bi- 

functional proteins as exemplified by the biosynthesis of aromatic polyketides such as tetracenomycin C 

(26–28). Type I and type II PKS uses acyl carrier protein (ACP) to activate the acyl CoA substrates to 

transport the polyketide intermediates. Type III PKSs also known as chalcone synthase like PKSs, are 

homodimers where each monomer catalyzes a complex set of reactions including priming, extension, 

and cyclization iteratively to form polyketide products extensively utilizing acyl-coenzyme A instead of 

ACP-bound monomers, as exemplified by the RppA synthase for the biosynthesis of aromatic polyketides 

such as flaviolin (29–32). 

Every PKS module consists of a set of core domains. A loading module generally contains an 

acyltransferase (AT) domain selecting the appropriate starter unit which frequently is an acetyl-CoA. The 

starter group is loaded on to the acyl carrier protein (ACP) domain on the starter module (Figure 1.2). 

The chain is then transferred from the ACP domain of the previous module to the Keto-synthase (KS) 

domain of the current module. The malonyl group is attached to a thiol of the current ACP domain 

catalyzed by the current AT domain. This thioester formed with the terminal thiol of a 

phosphopantetheine moiety that is posttranslationally attached to a serine of the ACP. The 

phosphopantetheine (ppant) has the function of a flexible arm, which carries the growing chain to the 

different catalytic domains that act on the biosynthetic intermediate (33).  

 Furthermore, optional domains such as ketoreductase (KR) which reduces the β-keto group to a 

β-hydroxy group, oxidation (Ox), dehydratase (DH) which chops off H2O resulting in the α-β-unsaturated 

alkene, enoylreductase (ER) which reduces the α-β-double-bond to a single-bond, methyltransferase 

(MT) domains inducing α-methyl branches, modify the growing polyketide molecule. The last module 



 

 

5 Introduction 

typically possesses a thioesterase (TE) domain to catalyse the hydrolysis of the polyketide chain from the 

final ACP-domain, resulting in the release of the final product from the enzyme (30).  

Some bacterial biosynthetic pathways lack internal AT domains, which are complemented by 

freestanding AT-domain containing enzymes, so called trans-AT pathways (34). The trans-AT PKSs are 

highly diverse often containing previously unseen arrangements of enzymatic domains, thus usually 

resulting in poor biosynthetic assignment of clusters using standard collinearity rules, i.e. the assumption 

that the order of modules encoded in a biosynthetic pathway is reflected by the order of monomer 

incorporation or elongation (35). This can be exemplified by the gene cluster for the antibiotic 

Chlorotonil, but more and more trans-AT pathway examples are now being reported (36, 37). 

Figure 1.2: Schematic representation of modules involved in initiation and chain extension steps. (a) Selection of acyl-
CoA by AT domain for chain building and trasnfer to ACP . (b) Acylation of starter unit by KS domain by first extension 
module. (c) Modification of keto group by DH,ER and KR domains. (d) Extension of reduced chain by sucessive modules 
and the final product is catalized by TE 
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Several novel compounds have been assessed by molecular and biochemical studies including 

experiments such as loading module relocation, point mutations, module deletion, module insertion, 

domain swapping, domain inactivation and more (21, 38). The biosynthetic genes can be to some extent 

transferred between pathways from different organisms has given rise to the thought that horizontal 

gene transfer (HGT) might also play a role in PKS evolution (39–41).  

 

A common graphical representation for multimodular biosynthetic pathways is the “ball scheme” 

derived from annotation or bioinformatic prediction, which can be read like an “enzymatic activity 

string” in order to get an idea of the compound produced (Figure 1.3). 

1.2.2 Nonribosomal peptide synthetases – NRPS 

A conceptual alternative to peptide synthesis on ribosomes was first demonstrated in 1971 with 

the nonribosomal peptide synthetases (NRPS) of gramicidin S and tyrocidin (42). Today, these 

nonribosomal peptide synthetases are accepted as a “factory” for synthesizing many specialized 

peptides. Similar to PKS, NRPS are also multimodular enzyme organizations comprising a series of 

functional units, each responsible for the addition of a specific and often non-natural amino acid. The 

modules of NRPSs contain a minimum of three domains catalyzing a particular set of reactions in the 

incorporation of a monomer (Figure 1.4)(43–45).  

Figure 1.3: Ball scheme representation for biosynthesis of erythromycin from strain NRRL2338 (Saccharopolyspora 
erythraea) along with the growth of polyketide chain by the addition of ketide group in each step. The blue line 
denotes the extension of individual modules. 
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In the loading step, the amino acid is activated by an adenylation (A) domain. A domains catalyze 

the ATP-dependent reaction, transforming the amino acid into an AMP-charged aminoacyl (46). Then, 

the activated monomer is loaded onto the peptidyl carrier protein domain (PCP) binding covalently with 

the thiol of a 4’-phosphopantetheinyl (Ppant) cofactor by forming a thioester, generating an enzyme- 

bound aminoacylthioester intermediate (33, 47, 48). This step enables the transport of the activated 

amino acids between the catalytic centers of the NRPS. In order to attach, transport substrates and 

intermediates, Ppant is post-translationally attached to PCP to a conserved serine residue, thereby 

converting the PCP domain into its holo form. This reaction is catalysed by a specialized external enzyme 

4‘-Ppant transferase (49–51). Elongation stage starts with loading of specific amino acid onto PCP of each 

module. The condensation domain is responsible for forming the amide bond between the amino acids 

of previous module to that of the current module (47). The extended peptide is now tethered to the PCP 

of the downstream module (Figure 1.4).  

Figure 1.4:  Domains and modules involved in the biosynthesis of Tyrocidine, a polypeptide antibiotic.  
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A module, solely containing A and PCP domains, is sometimes observed as the first module of the 

NRPS, while a module with thioester domain(TE) is considered as the terminating module responsible for 

hydrolysis or macrocyclization of the peptide chain from the PCP domain of the previous module, 

releasing peptide chain from synthetase (52, 53). In linear NRPSs, synthesis is initiated with the loading 

module, the sequence of modules acts as the template for adding a specific amino acid that dictates the 

resulting peptide's sequence, finishing it by TE domain releasing the peptide (43). The final-stage 

intermediate can also be released by cyclisation, as in the case of tyrocidine (Figure 1.4). 

Along with these three domains (C, A, PCP), additional optional domains may be present within the 

modules, which are responsible for residue modifications. For example, epimerization (E) domains lead 

to formation of D-amino acids, N-methyltransferase (N-MT) control the methylation state of the peptide 

products, heterocyclization (HC) domains from thiazolines from cysteines, oxidation (Ox) domains are 

responsible for oxidation of thiazolines, reduction (Red) reduces thiazolines or oxazolines to thiazolidines 

or oxazolidines, respectively. Formylation (F) and heterocyclisation (HC) domains induce cyclization into 

thiazoline or oxazolines.  All these additional domains facilitate NRPSs to synthesize varied number of 

biologically active peptides which are distinct from peptides synthesized by the ribosome (22, 54).  

Nonribosomal peptides not only contain proteinogenic amino acids but also frequently contain 

non-proteinogenic amino acids. In addition, A-domains may exhibit some degree of substrate 

promiscuity (exemplified by incorporation of D-Phe or D-Trp in tyrocidines). These traits make it possible 

to obtain great structural diversity of NRPS-derived natural products, yielding wide-ranging biological 

activities and pharmacological properties. Nonribosomal peptides are often the backbone for the 

biosynthesis of antibiotics (e.g. daptomycin, vancomycin) and immunosuppressants (e.g. ciclosporin), of 

which some prominent ones are used commercially (55–57).  

Since the first description of an NRPS assembly line, numerous bioactive molecules synthesized by 

NRPSs have been discovered and their biosynthetic pathways characterized (58). NORINE is a database 

extensively dedicated for collecting NRPS structures and lining them to biosynthetic gene clusters, 

equipped with computational tool for systematic study of these molecules across microorganism species 

(59).  Increase in the number of biosynthetic clusters found in the public databases provides a clear 

advantage to investigate both chemical and enzymatic properties of those pathways. In addition, 

directed evolution and combinatorial approaches also contribute valuable information to a better 

understanding and exploitation of these complex machineries, but also leading to the identification of 

new metabolites. For example, a peptide siderophore from Streptomyces coelicolor named coelichelin 
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was identified from a NRPS gene cluster sequence through prediction of the structure and biochemical 

properties (60). 

1.2.3 NRPS-PKS hybrid pathways 

Although distinct mechanisms of condensation exist in PKS and NRPS from chemical aspects, there 

are significant similarities between them in terms of structure and functionality, including similarity 

between the carrier domains of both types which are post-translationally modified by a 4’-

phosphopantetheine prosthetic group by a family of 4’-Ppant transferases (50, 51). Many secondary 

metabolites such as rapamycin (antifungal/immunosuppressive), epothilone (anticancer), bleomycin 

(antibiotic/antitumor) were found to be synthesized by the fusion of PKS and NRPS synthetases (PKS-

NRPS hybrids) (61–63). For this, new strategies are developed to exploit the potential of microorganisms 

to produce important bioactive compounds. It is the peptide-polyketide metabolites studies that also 

gained spotlight for their potential utility in the field of combinatorial biosynthesis. Therefore, a 

pronounced challenge lies ahead in the studies exposing structure-function association and molecular 

organization features of hybrid pathways so that they may contribute to the production of new peptide-

polyketide metabolites through combinatorial biosynthesis.  

 

Figure 1.5: Ball scheme representation of domains and modules involved in the biosynthesis of Dkxanthene from 
strain DK1622 (Myxococcus xanthus)  



 

 

10 [Type the document title] 

Based on the domains functions, intermodular linkers and similar modular arrangement of NRPS 

and PKS modules, construction of chimeric PKS-NRPS hybrids is in principle possible (64). An example for 

a natural occurring NRPS-PKS hybrid pathway from myxobacteria is illustrated in Figure 1.5. In fact, the 

Dkxanthene molecule was only identified through a “gene to compound” approach following the 

inactivation of the assembly line in the producing strain Myxococcus xanthus DK1622 (65). 

1.3 Role of genome mining for natural products discovery 

The process of identifying natural products from microbes is usually long and laborious. Isolation of 

a pure bacterial culture is generally followed by cultivation in laboratory conditions and description of its 

secondary metabolites via physical and chemical methods, usually following bioactivity profiling and 

chromatographic purification of active fractions (Figure 1.6).However, some gene clusters from microbes 

may not be expressed at all when grown in vitro using traditional cultivation methods (66–68). An 

estimation of the “silent” part of biosynthetic potential is therefore required for the majority of bacterial 

strains. One of the methods used to evaluate the non-expressing clusters employs initial screening 

through degenerate PCR, however, not all biosynthetic gene types can be identified by this method. As 

such a wide range of natural products that are encoded in microbial genomes are yet to be discovered. 

Much faster and comprehensive is the process of sequencing the whole genome of a given organism, 

which can grant full access to a high volume of genetic information translating into a comprehensive 

view of the potential for biosynthesis of natural products. 

Genome sequencing aims to determine the whole genetic information of an organism, including 

coding and non-coding sequences of nucleic acids (DNA) (69). Genome sequencing has been initiated 

since the seventies with the invention of the Sanger sequencing method (70–72).  

Since then, this has led to the tremendous growth of various disciplines in the field of 

bioinformatics. Enabled with efficient techniques a large number of sequencing projects were finished, 

starting from bacterial genomes to human genomes (73–76). Later, whole genome shotgun sequencing 

was proven to be more cost effective and is now widely accepted (77, 78). Since the last century, many 

new high throughput sequencing methods have emerged such as to 454/Roche, Illumina, PacBio, 

Sequencing by synthesis and Ion semiconductor sequencing etc. (79–82) resulting in the deposition of 

large quantities of sequencing data from various organisms in public databases. Such data can be utilized 

to survey genomic information for enzyme encoding genes. This process of exploiting genomic sequence 

data has intensified rapidly, expanding the knowledge of genetic and biochemical aspects of secondary 

metabolite biosynthesis especially in microorganisms (83). It became clear that many microbial genomes 
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contain genes participating in the synthesis of complex bioactive products which are not associated with 

the known metabolites. In the case of microorganisms, these circumstances were first experienced with 

complete genome sequences of Streptomyces coelicolor A3 and Streptomyces avermitilis MA-4680 (66, 

67, 84). These examples provide evidence that the availability of genomic sequences can empower the 

research of natural product producers with the help of bioinformatics approaches (i.e. genome mining). 

Genome mining is now used as a tool for discovering important and complex secondary metabolites 

such as nonribosomal peptides (NRPSs), polyketides (PKSs) and terpenoids. In other words, the term 

genome mining basically comprises actions to exploit genetically encoded information in the gene 

clusters of microbial genomes for the discovery of new metabolites.  Every family of natural products has 

a characteristic underlying pattern of proteins which is also evident on genomic level. This provides key 

for genome mining where conserved protein motifs and consensus sequences are used to identify loci of 

putative biosynthetic pathways. 

With the increasing availability of genomic data from databases and the use of computational 

comparison tools, enzymes encoding genes that are involved in biosynthesis can be readily identified in 

Figure 1.6: Schematic workflow of identifying natural products. (a) Cultivation and extraction of microbes. (b) 
Chemicals creening using insrtumentation analysis for derplication of known compounds.(c) Biological screening by 
bioactivity assays and discover novel compounds 
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genomes. This information can be used to search for biosynthetic gene loci likely involved in assembly of 

new bioactive compounds. Several routes can be taken to pursue genome-mining. These include ”gene 

to compound” correlation approaches using gene knockout experiments, statistics-based  methods that 

resemble biomarker discovery, or “compound to gene” strategy where putative biosynthetic assembly 

lines are inferred from a molecules structure. The different approaches to discover new natural product 

chemistry by genome mining are briefly explained in the following. Metabolite profiling is a well-used 

approach for identification of new metabolites and their corresponding pathways in the genomes. For 

example, the bioinformatics analysis identified 18 biosynthetic gene clusters from strain DK1622 

belonged to myxobacteria. Until 2012 only five compound classes were known but by coupling principal-

component analysis (PCA) with pre-processed LC-MS datasets resulted in three new secondary 

metabolites c506 (myxoprincomide), c844, and c329 (85). Similarly, compounds such as aurafuron A and 

B from myxobacterium Stigmatella aurantiaca (86, 87), the iron chelator coelichelin from Streptomyces 

coelicolor (60) and several other compounds were isolated by a comparative metabolic profiling genome 

mining approach. These results unarguably demonstrate the importance of genome mining for the 

identification of new secondary metabolites. 

Genome mining is supported by numerous techniques providing hints for the structure prediction 

or at least estimation of compound class, although statements about associated bioactivity cannot 

usually be made (88).   Moreover, precise structure prediction is also hindered by the fact that new 

biosynthetic logic is frequently encountered in the biosynthesis of microbial natural products by PKSs 

and NRPSs machinery (89–91).  

However, advances in the field of predictive bioinformatics tools made it possible to classify 

genes responsible for secondary metabolite production according to their functional specificities. As the 

prime example, several models have emerged that can predict substrate specificity of adenylation (A) 

and acyltransferase (AT) domains responsible (Figure 1.2) for building block selection in each module of 

NRPS and PKS assembly lines. 

Substrate specificity predictions along with the collinear enzymatic logic in modular PKS and 

NRPS pathways (although deviations are possible and notably frequent in myxobacteria) provide 

powerful tools, which in some cases can predict many of the structural features of the products of novel 

modular PKS and NRPS systems from their sequences.  However, the predictions are  not always reliable 

as many non-linear enzymatic assembly logic exist, such as iterative domain or module usage or module 

skipping both present in PKS and NRPS pathways which makes it complex for predicting the structure. 

Furthermore, for pathways where enzymatic action is unknown, prediction of structure is highly error 

prone.  
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Several bioinformatics tools are being developed for the prediction of secondary metabolite gene 

clusters including ClustScan (92), SBSPKS toolbox (93) and CLUSEAN (94) are available. Among all, the 

most user friendly and convenient tool in this field is currently antiSMASH 3.0 (95). It is a widely used 

tool that comes close to a de-facto standard for the automated genome-wide analysis of bacteria, fungi, 

and archaea for biosynthetic gene clusters and offers various modules for analyzing the pertinent 

pathways. This freely available tool enables rapid annotation studies that can be used as preliminary 

basis to prioritize species of interest by their biosynthetic potential, as well as helping with gene cluster 

annotation. However, the antiSMASH (95) could only provide the predicted secondary metabolite 

pathways that the genome is capable of producing. It does not provide any related information of the 

predicted biosynthetic pathways in terms of similarity to that of the existing characterized pathways. 

This leaves the natural product researcher to perform exhaustive search for the identification of known 

genes clusters from the pool of gene clusters reported. Currently the most widely used for the process of 

identifying known gene clusters is through sequence based approaches such as BLAST (96). These 

sequence based tools become complex and probably hard to analyse with increase in amount of 

sequenced data. In cases, where a biosynthetic pathway is hypothesized by researcher upon observing 

the novel compound extracted, it is impossible to use these sequence based tools for the identification 

of similar gene clusters without the availability of sequence information. Hence, new tools are needed 

which can efficiently analyse and generate dereplication library of biosynthetic pathways with or without 

the presence of sequence information. 

1.4 Myxobacteria as producers of natural products 

Natural products are important as leads for drug development, and the traditionally established 

producers of secondary metabolites include many plants, fungi and various bacteria, like, for example, 

the long known actinomycetes. More recently the myxobacteria have been added to this list, and are 

now also considered as an established source for natural products (97, 98). 

Myxobacteria are a group of soil-living bacteria which are classified under the delta-subgroup of 

proteobacteria (99). They were first isolated by Roland Thaxter in 1892 recognizing them as an 

independent group. Since their discovery, this group of bacteria has fascinated scientists over 

generations due to their striking characteristics, mainly their distinct life cycle and social behaviour.  

Additionally, unique is their ability to aggregate into multicellular fruiting bodies when lack of nutrients is 

encountered (Figure 1.7). They move by gliding over the surface and are found to be ubiquitous in nature 

(100). Myxobacteria have relatively large genomes when compared to other bacteria. For example, the 
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circular genome of Sorangium cellulosum strain So ce56 contains 13,033,779 base pairs, which makes it 

one of largest bacterial genomes sequenced to date (99). Myxobacteria produce secondary metabolites 

with structural elements that are not commonly produced by other microbes such as unusual hybrids of 

polyketides and non-ribosomally made peptides (86, 101)  (Figure 1.7). Many of these myxobacterial 

compounds also exhibit structural features which were novel at the time of their discovery (100). 

 

Over the last 30 years, myxobacteria have been shown to produce compounds exhibiting a wide 

range of biological activities. For example, epothilones produced by the myxobacterium Sorangium 

cellulosum strain So ce90, show anti-tumor activity (Figure 1.8 a). Their analogues are used for the 

treatment of cancer, one such analog is the “ixabepilone”, which has recently been approved by FDA 

(U.S. Food and Drug Administration) and is now in use for the treatment of breast cancer (102). Other 

secondary metabolites such as etnangien (Figure 1.8 b), corallopyronin  (Figure 1.8 d) and ripostatin  

(Figure 1.8 c) from myxobacteria strains Corallococcus coralloides Cc c127 and  Sorangium cellulosum 

Figure 1.7: Stereophotomicrographs of myxobacterial fruiting bodies. A) Corallococcus sp. on agar. B) 
Cystobacter sp. aggregates of sporangioles C) Pyxidicoccus sp. golden yellow color sporangioles D) 
Myxococcus sp. on soil crumb and at the edge of filter paper. Photos courtesy:  Ronald Garcia. 
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Soce377 are observed to possess antibacterial activity due to their function as inhibitors of RNA 

polymerases (97, 103). Argyrin (Figure 1.8 g), Cystobactamids (Figure 1.8 i) extracted from the 

Archangium gephyra, Cystobacter sp. Cbv34 is a new myxobacterial metabolite exhibiting activity against 

gram-negative pathogens. Soraphen (Figure 1.8 h) is an immunosuppressive cyclic peptide extracted 

from Sorangium cellulosum Soce26,  exhibiting the ability to inhibit T-cell independent antibody 

formation by murine B cells (104–106), while myxochelin (Figure 1.8 e) and nannochelin (Figure 1.8 f) are 

two similar compounds extracted from the myxobacteria Angiococcus disciformis and Nannocystis 

exedens, respectively, which have iron-chelating activity (107, 108). 

Over 9,000 myxobacterial strains were isolated to date by workgroups at Helmholtz Center for 

Infection Research, Braunschweig and at the Helmholtz Institute for Pharmaceutical Research, 

Saarbruecken.  In-house data indicate that these strains yielded around 900 compounds belonging to 

more than 140 compound families (although numbers cited in the literature are lower). 

Myxobacteria are considered as “metabolite factory” with novel types of chemical structures and 

unique mode of action. However, since these microbes are difficult to isolate and are slow growing (109). 

In addition, the amount of secondary metabolites in cultures is often low which might be because of 

product degradation or end product inhibition (110). This might be one of the reasons that there are 

several unexplored metabolites   from the strains of myxobacteria which are often cultivated in the 

laboratories. With respect to their genome size, it is thought that network is essential to produce 

chemical substances enhancing the survival and competitively of both the individual and the population 

(111). This can be observed at the genetic level of myxobacteria involved in secondary metabolism. 

Exceptionally large genome of the myxobacterium Sorangium cellulosum Soce56  has around 20 

secondary metabolite loci reported, and thus should  have more than the reported compounds to be 

discovered (99). Myxococcus xanthus DK1622 has around 18 secondary metabolite gene clusters 

accounting for around 9% of its genome (112). The high abundance of secondary metabolite 

biosynthesis-related gene clusters in the genomes of these strains indicates their genetic potential for 

the production of secondary metabolites which exceeds far more the number of previously reported 

compound classes from each strain. This finding implies that there is a need for improved analytical 

methods for the detection, identification and characterization of myxobacterial secondary metabolites.   
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Figure 1.8: (a) Epothilon, drug with anti-tumor activity (b, c, d) Etnangien, Ripostatin and Corallopyronin possess 
antibacterial activity. (e, f) Myxochelin and Nannochelin are iron-chelating agents (g, h) Argyrin, and Soraphen 
possess T-cell regulatory abilities, (i) Cystobactamide is a new myxobacterial metabolite exhibiting activity against 
gram-negative pathogens. 
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1.5 Myxobase / Mxbase server:  a comprehensive chemical & biological 

database 

As the increase of the availability of sophisticated technology, multi-disciplinary research in the 

field of biology is quickly transforming it into data-rich science generating enormous amounts of 

information, steadily increasing the need for storing, analyzing and communicating this information. For 

this, a database project named "Myxobase" for collecting and linking chemical and biological information 

about known myxobacterial natural products and the producing strains has been pursued for five years 

at the Institute of Pharmaceutical Biotechnology of Saarland University and the Helmholtz Institute for 

Pharmaceutical Research Saarland (Group of Prof. Dr. Rolf Müller). This is a typical client-server 

application where the authorized user can add or update the information and the system is multi-user 

enabled. Contributing to this framework by improving existing-and adding new functionality was also an 

integral part of the work presented here. 

Mxbase is a system for retrieving, storing and analysing of chemical and biological experimental 

data in a comprehensive multi-part database. Researchers can use the database to expand and improve 

the discovery process of novel microbial natural products. This also provides functions for extracting only 

that information needed to answer a specific biological question. Mxbase is not only a powerful 

approach to collaborative knowledge management in a multi-disciplinary lab. It integrates tightly with 

instruments-based analytical workflows, and the available tool set expands continuously. The Mxbase 

Figure 1.9: Organization and information content of Myxobase 
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concept covers diverse techniques needed e.g. for the characterization of new microorganisms, 

screening and dereplication, chemical structure elucidation, mass spectrometric analysis, bioactivity 

testing, genome- and metabolome mining (contributed by the present work) and many other methods 

(Figure 1.9). 

 The concept behind the Mxbase system (Figure 1.10) is to supply a combined framework for 

knowledge management and analysis workflows centred on the discovery of natural products from large 

numbers of biological sources. Technically, Mxbase can be divided into: 

 the client software - MxbaseExplorer - which most users interact with for data deposition, 

information retrieval and specific data analysis procedures 

 and the Mxbase server, which hosts an extensive database backend and additional analysis 

functions used by the client software, but also accessible to specialized data mining procedures 

using standard tools such as KNIME, Matlab and R. 

 

In the course of this work, important additions to the Mxbase project have been made in the fields of 

genetics data, archiving and presentation of biosynthetic pathways, as well as (most importantly) the 

management and comparison of biosynthetic pathways datasets from myxobacterial strains. 

 

Figure 1.10: Framework of Mxbase demonstrating the workflow of 
various components involved 
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1.6 Aims and scope of this work: a new approach to the (myxobacterial) 

genome mining challenge 

Initial situation and prerequisites 

 In light of the latest advances in whole-genome sequencing technologies, enabling the 

bioinformatic mining of increasing numbers of large myxobacterial genomes for the presence of 

biosynthetic pathways becomes an important issue for successful genomics-based discovery of new 

natural products and biochemical processes..  

Myxobacterial genomes contain a wide variety of secondary metabolic gene clusters encoding 

polyketide synthases (PKSs), non-ribosomal peptide synthetases (NRPSs), or PKS/NRPS hybrids, besides 

other types of pathways. Thus, they offer great potential for the discovery of new bioactive metabolites. 

Different strains of myxobacteria have already been shown to produce compounds which are of 

potential clinical value. The rapid decrease in the cost of genome sequencing now allows the detection 

of hundreds or even thousands of gene clusters encoding the biosynthetic machinery for such 

compounds. However, laboratory research cannot keep pace with the speed of genomics-based 

discovery, as the experimental characterization of each gene cluster is often laborious and time-

consuming.  It is therefore important to prioritize resources for the investigation of pathways. From the 

point of view of natural products discovery, the most interesting gene clusters are those encoding 

pathways which are: i) responsible for the production of a compound with known structure exhibiting 

potent biological activity, or ii) similar to a previously characterized biosynthetic pathway so that an 

assumption about the molecule class likely produced can be made, or iii) uncommon or even unique 

pathways likely to produce novel chemistry. As a consequence, effective in silico identification and 

comparison of known and predicted biosynthetic pathways within genomes is essential for the efficient 

mining of the genomic richness available. Similar to the dereplication of known chemical entities in 

complex natural product-rich extracts, the dereplication of known biosynthetic concepts (also termed 

“models” in the following) and the underlying gene clusters has to be achieved in a genomics-based 

discovery workflow. The methods to be developed for this purpose have to take into consideration that 

there are different sources for- and ways of generating biosynthetic models (see Figure 1.11) 

1. Automated genome analysis, where large numbers of reads obtained from sequencing are 

assembled through assembler algorithms resulting in contigs or scaffolds or closed genomes. These are 

commonly submitted to antiSMASH, a software pipeline to predict and annotate secondary metabolite 

pathways. As it is the quasi-standard in the field, it was one requirement that newly developed tools in 

this project must be able to interface with the output of the antiSMASH analysis engine.     
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2. Experimental characterization of biosynthesis, where a biosynthetic model is created from the 

structure and matched with the in-silico interpretation of a confirmed biosynthetic pathway (genes 

already available). Such verified pathway-compound assignments are at the heart of a biosynthetic 

model database to be developed for the purpose of biosynthetic gene cluster dereplication. 

3. Starting from a newly discovered compounds, where a hypothetical biosynthetic pathway is 

designed manually for the freshly elucidated structure through sequential biochemical considerations, in 

a way that could be termed “retro-biosynthetic analysis” (no genetic information available yet). It is an 

additional requirement, that the toolbox to be developed in this work has to be able to accommodate 

and operate also with such “sequence-free” biosynthetic pathway models. 

 

Challenges and strategy 

Current approaches for the comparison of biosynthetic gene clusters are mostly using sequence-

based methods. Sequence alignment and comparison tools, such as BLAST and HMM, are the commonly-

used, traditional methods to identify homologous genes. These methods assume that sequences 

exhibiting significant similarity share common ancestry i.e. is homologs. However, the complex and to 

date not exhaustively understood mechanisms driving the evolution of multi-modular biosynthetic 

pathways imposes difficulties on sequence-based approaches. Furthermore, the performance of 

Figure 1.11: Methods of generating biosynthetic models 
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sequence-based tools can quickly become a serious bottleneck when it comes to compare high numbers 

of genes/pathways present in elevated numbers of sequenced genomes. For example, if the following 

myxobacterial genome data availability were to become a reality within few years from now (which is 

not far-fetched), it is foreseeable that a “real-time” or “on the fly” analysis of this data volume is hardly 

feasible unless tremendous computational capacity would be spent even for relatively simple analysis 

scenarios: 

 up to 200 myxobacterial whole-genome sequences of 9-18 Mbps 

 where each encodes 10 to 30 secondary metabolite biosynthetic pathways 

 the gene cluster for each pathway has 1 to >20 genes  with up to > 50 domains 

 each domain has multiple biochemical properties / predictions inferred from the primary 

sequence 

In addition, much of the valuable information for pathway comparison in light of the produced 

structures does not lie in the primary sequences and their similarity, but is derived from the “enzymatic 

activity string” that results from bioinformatics analysis of the genomic input. These data include (but are 

not limited to) domain types and module composition, operon organization, domain order and predicted 

substrate specificity of monomer-activating domains. 

Thus, the undertaking described in this work was met with a challenge to relate/compare the 

domain pattern of biosynthetic models with and without connection to genome sequences, linked to 

various layers of meta-information about building blocks, linkage, and enzymatic modifications that are 

expected to occur during the process of biosynthesis. These requirements motivated the development of 

a new approach to the comprehensive biosynthetic concepts-based mining of myxobacterial genomes in 

this study., Thereby, the genomic, chemical and biosynthetic knowledge which has accumulated in the 

workgroup over the past fifteen years (reflected largely in myxobase) plus genomic information from 

publicly accessible sources served as input for tool development and as test dataset for the performance 

evaluation of developed methods. 

Three basic usage scenarios could be envisaged for this bioinformatics framework: 

1. Matching a single pathway, e.g. an experimentally characterized secondary metabolite gene 

cluster or a speculative biosynthetic model from retro-biosynthetic analysis, against the 

multitude of pathways present in the database (which could themselves be pathways found in 

auto-annotated genomes, or discrete curated pathways manually deposited in the database). 

This search aids the identification of potential sources encoding a gene cluster for a newly 

discovered compound, and provides alternative sources for a gene cluster under investigation. 
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2. Assigning to each gene cluster found in a newly sequenced genome a plausibly close relative 

from the database, which helps the dereplication process and basically translates into a 

sequential procedure as in (1). When a compound produced by a reference gene cluster is 

already known, the link between gene cluster and putatively produced structure or compound 

class can be rapidly made. 

3. Creating a comprehensive overview of biosynthetic pathway diversity in the database through a 

“match all against all” approach, where the aim is to construct a comparative map of gene 

cluster similarity. This multiple relation in turn may be used to support large-scale analysis such 

as phylogenetic distributions and the study of pathway evolution across entire microbial taxa. 

The overview obtained also enables the estimation of species richness in terms of biosynthetic 

pathways and may reveal insights into the degree of “pathway uniqueness” within a given clade 

of producers. 

Implementation and deliverables 

The aforementioned concepts and prerequisites served as a guideline for bioinformatic tool 

development throughout the present work and markedly influenced the directions taken during 

implementation. Since “everyday usability” of newly established tools and analysis workflows by 

scientists working in the institute’s research environment was desirable so that the new methods 

provided can unfold their impact on scientific advancement, the project also comprised significant 

software engineering efforts.  The key components of the implementation and deliverables which were 

made available in the course of this work are briefly highlighted in the following (see also Figure 1.12). 

 Direct interfacing to the output of the antiSMASH annotation pipeline, which required the 

integration of a new module into antiSMASH to generate structured results representations. The 

developed functionality has become a standard output module since the release of antiSMASH 

version 3 (95). 

 Development of an xml-based container format named “BiosynML” to shuttle biosynthetic models 

and all their associated meta data, with or without sequence information, between different parts 

of the envisaged analysis workflows. 

 Visualization and editing tools allowing for manual inspection and curation of annotated pathways 

by scientists. This was implemented in the form of a “BiosynML plugin” for the widely used 

Geneious bioinformatics software, allowing making use of an already well-developed and familiar 

graphical frontend as well as re-using certain standard sequence-based functionality from the 

Geneious software package. In addition, the plugin enables direct submission and result retrieval 
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to/from the antiSMASH web service (public or in-house). The BiosynML plugin for Geneious has 

been released to the general public, coordinated with the publication of antiSMASH version 3 (95). 

 Addition of BiosynML import functionality to the in-house research database system Mxbase, 

including the creation of all required data schemes and software components to develop Mxbase 

towards full support for management and analysis of genomic data and biosynthetic pathway 

models. 

 The bioinformatic core of the project: development of algorithms for matching and comparing 

biosynthetic pathways and their implementation within a remote-procedure framework, based on 

the Apache Thrift technology. This approach enables future re-use of the developed BiosynML 

analysis engine for various application scenarios, including the possibility for its integration into 

analysis workflows different from the one established in this study. 

 Parametrization, critical evaluation of analytical performance and optimization of developed 

algorithms using a variety of real-world test cases. 

 Implementation of user interface functionality allowing users of Mxbase to conduct analysis using 

the BiosynML engine, including the formulation and submission of jobs to the analysis queue as well 

as graphical results representation and evaluation. These components were continuously built into 

the MxbaseExplorer software (the graphical frontend to the Mxbase system) since version 3. 

 Evaluation of the BiosynML concept in terms of its inter-operability with the MIBiG (“minimum 

information on biosynthetic gene clusters”) initiative (113), a recent community-supported move 

towards standardizing the basic information needed to describe secondary metabolite biosynthesis 

pathways. This included the tentative implementation of an adaptor to “bridge” between the 

information-rich BiosynML containers and the evolving MIBiG database. 

Following the development and implementation phase, the newly created tools and workflows 

were applied to the analysis of biosynthetic pathways from myxobacterial genomes available at the 

institute, as well as using pathways and genomes from publicly accessible sources. For this purpose a 

collection of 35 manually curated myxobacterial secondary metabolite gene clusters was compiled and 

71 myxobacterial genomes from ongoing sequencing projects were used to populate the test database. 

Several scenarios for conceptual genome mining were subsequently run in order to test-drive the 

BiosynML analysis framework and to evaluate analytical performance of the method. Furthermore, the 

power of the conceptual approach to generate an overview of pathway diversity in the database was 

explored and the method was compared to conventional sequence-based genome mining strategies. 
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Figure 1.12: Schematic overview of the BiosynML framework and interoperation of its components with publicly 
available resources (antiSMASH pipeline, Geneious software suite, MIBiG initiative) and in-house technology 
(Mxbase system, Myxobase). Green boxes highlight contributions from the present work. 
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2 Materials and methods 

2.1 DNA sequencing and assembly 

 Accurate determination of the primary DNA sequence is crucial in the field of natural product 

genome mining and discovery of novel compounds. DNA sequencing of bacterial strains used by us 

included massively parallel next-generation sequencing (NGS) technologies (Solexa/Illumina, Roche/454) 

and recently developed third generation sequencing technology (TGS) by Pacific Biosciences. The third 

generation sequencing technologies differ from NGS mostly by the ability to sequence single, 

Strain Technology Assembly software / algorithm 
Outcome, 

contigs 

Chondromyces crocatus MSr (Cm_c5)   PacBio   SMRT Portal 2.1.1 / HGAP 2  1 

Corallococcus coralloides MCy6431 (Ccc1071)   PacBio   SMRT Portal 2.2.0 / HGAP 3  1 

Pyxidicoccus sp. MCy9557 (SBCy002)   PacBio   SMRT Portal 2.2.0 / HGAP 3  1 

Sorangium cellulosum MSr8242 (Soce26)   PacBio   SMRT Portal 2.2.0 / HGAP 3  1 

Sorangium cellulosum MSr1566 (Soce836)   PacBio   SMRT Portal 2.2.0 / HGAP 3  1 

Sorangium cellulosum MSr8412 (Soce1128)   PacBio   SMRT Portal 2.1.1 / HGAP 2  1 

Sorangium cellulosum MSr7282 (SoceGT47)   PacBio   SMRT Portal 2.1.1 / HGAP 2  1 

Myxococcus virescens ST200611   454 Roche  
 Newbler unspecified version / Overlap 

Layout 
987 

Myxococcus xanthus MCy8278 (Mxx48)   Illumina   Abyss pe 1.3.6 / K mer  393 

 Myxococcus xanthus MCy8986 (DK897)   454 Roche   Newbler 2.6 / Overlap Layout 1081 

Sorangium cellulosum MSr9369 (Soce26Y2)   Illumina    Abyss pe 1.3.6 / K  350 

Sorangium cellulosum MSr1795 (Soce307)   Illumina   Abyss pe 1.3.6 / K mer  320 

Sorangium cellulosum MSr8404 (Soce38)   454 Roche   Newbler 2.6 / Overlap Layout Consensus 888 

Sorangium cellulosum MSr7234 (Soce377)   Unknown   Unknown    1478 

Sorangium cellulosum MSr6597 (Soce1525)   454 Roche   Newbler 2.6 / Overlap Layout Consensus 721 

Table 2.1: Assembly algorithms used based on overlay-layout-consensus, k-mer approaches used for strains 
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unamplified molecules. This fact also significantly reduces skews in data and context-dependence (114).  

Commercially-available Single Molecule Real-time Sequencing (SMRT) from Pacific Biosciences can 

yield read lengths up to several tens of kilobases, a figure outperforming all other available technologies 

by few orders of magnitude. Another issue specifically inherent to biosynthetic gene clusters is their 

modular structure, which contributes to difficulties of assembling them because of increased likelihood 

for repeats (115). Various algorithms were developed which to various extent mitigate the problem of 

assembling highly repetitive sequences in NGS and TGS data. For this work, we used assembly algorithms 

based on overlay-layout-consensus, k-mer approaches (MIRA, abyss-pe, HGAP) (see Table 2.1). For 

genetic sequence annotation, Prokka 1.7 was used. 

2.2 Mxbase infrastructure 

Mxbase explorer is a user interface which is designed to support efficient handling of the 

scientific data. The Mxbase explorer is equipped with several functions or methods through which a 

researcher communicates with a program to achieve desired result. Many of the functions in Mxbase 

explorer perform processing on the client computer but functions that require more computational 

power run on the Mxbase server backend via apache thrift service which provides a binary RPC protocol 

for supporting service invocations, enabling multiple programming language implementations to talk to 

each other. Thrift is a framework designed to be efficient and available across all platforms and 

programming languages. Functions like target analysis report upload and export, metabolome upload 

and mining and search and match functions of biosynML require increased computational power for 

execution; in order to optimize speed and usability of these functions they run on Mxbase server which 

directly process the data and write the information to the appropriate tables in the database. In 

addition, mxbase server has scripts that notifies information to the all users via email and has a file 

system that stores data in the database which can be downloaded through mxbase explorer. It also has 

documents about the different projects that uses mxbase server extensively. With the availability of all 

the technology the researchers can easily and quickly generate reports on various datasets stored in the 

myxobase depending upon their interest. 

A detailed schematic workflow of various components in the Mxbase infrastructure is illustrated 

in Figure 2.1. 

http://www.webopedia.com/TERM/C/command.html
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2.3 Geneious framework 

Geneious (Figure 2.2) is a cross-platform bioinformatics software suite developed by Biomatters 

for search, organize and analyze genomic and protein information via s powerful desktop program.  One 

of the main advantages is its strong focus on user-friendly interface and ease of use in combination with 

established bioinformatics tools which are “wrapped” into the application (Figure 2.2). It features wide 

variety of algorithms for sequence alignment, phylogenetic analysis, contig assembly and primer design. 

In addition, researchers can use this tool to access NCBI and UniProt databases, BLAST, protein structure 

viewing, automated PubMed searching (116). 

In addition, Geneious provides a powerful public API consisting of a set of classes and interfaces 

necessary for the programmers to develop customized plugins and integrate them into the framework. 

Exploiting the concept of plugin development kit, a plugin is developed in this study to improve the 

Figure 2.1: Mxbase infrastructure 
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quality of the biosynthetic pathways predicted. This development became instrumental for building a 

department-wide myxo pathways repository.  

2.4 antiSMASH: antibiotic and Secondary Metabolite Analysis SHell 

antiSMASH is a tool capable of identifying biosynthetic loci covering a wide range of known 

secondary metabolite compound classes (polyketides, non-ribosomal peptides, terpenes, 

aminoglycosides, aminocoumarins, indolocarbazoles, lantibiotics, bacteriocins, nucleosides, beta-

lactams, butyrolactones, siderophores, melanins and others). It aligns the identified regions at the gene 

cluster level to their nearest relatives from a database containing all other known gene clusters, and 

integrates or cross-links all previously available secondary metabolite specific gene analysis methods in 

one interactive view. Genes are extracted or predicted from the input nucleotide sequence, and gene 

clusters are identified with signature gene pHMMs and predicts the biosynthetic pathway. Finally, the 

output is visualized in an interactive XHTML web page (Figure 2.3) (95).  

antiSMASH also provides meta information including substrate specificity of PKS and NRPS which 

are predicted based on the active sites of the domains such as acyltransferase (AT) and adenylation (A) 

using various methods. Ketoreductase (KR) domain-based stereochemistry predictions for PKSs are also 

performed. A final chemical structure of the biosynthetic pathway predicted is generated as a SMILES 

string. 

Figure 2.2: Geneious: tool for search, organize and analyze genomic and protein information 
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2.5 Datasets used in this study 

In this work to perform the evaluation test of newly implemented tools, genomes of Actinomycetes 

(277), Bacillus (77), Cynobacteria (63), Proteobacteria (47) and Serratia(3) genomes and 42 published 

clusters (Table 2.4) from myxobacteria are downloaded from NCBI. These genome datasets and clusters 

are passed through antiSMASH for secondary metabolite cluster prediction which gives biosynml (.xml) 

file as output. The respective output module was added in the course of this work. The biosynML files of 

genomes and published clusters from myxobacteria were curated manually using biosynML plugin in 

Geneious. These datasets (.xml files) were imported into the Myxobase biosynthetic pathway repository 

and are used as input for targeted search query and genome annotation tools. The published and 

unpublished genomes (Table 2.2 and Table 2.3) from ongoing projects in the department were also 

channelled into the analysis. 

 

 

Figure 2.3: antiSMASH output for secondary metabolite gene cluster 
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Organism #Gene clusters 

Chondromyces crocatus Cmc5 28 

Corallococcus coralloides MCy9080 30 

Haliangium ochraceum DSM14365 14 

Myxococcus fulvus HW1 20 

Myxococcus stipitatus MCy9235 26 

Myxococcus xanthus DK1622 19 

Corallococcus coralloides Ccc1071 37 

Pyxidicoccus unclassified MCy9557 22 

Sorangium cellulosum Soce56 19 

Sorangium cellulosum So0157 26 

Sorangium cellulosum SoceGT47 18 

Sorangium cellulosum Soce836 37 

Sorangium cellulosum Soce1128 44 

Stigmatella aurantiaca DW4/3-1 28 

Sorangium cellulosum Soce26 28 

unclassified unclassified MNa9516 6 

Melittangium lichenicola Mel24 22 

unclassified unclassified MCy10635 10 

unclassified unclassified MCy11274 3 

unclassified unclassified MSr10681 14 

unclassified unclassified MSr9506 12 

unclassified unclassified MSr10575 15 

unclassified unclassified MSr9528 15 

Plesiocystis pacifica MNa11107 12 

unclassified unclassified MCy11225 15 

unclassified unclassified MCy10622 16 

Table 2.2: List of complete genomes used in this study 

 

Organism #Scaffolds #Gene clusters 

Aetherobacter fasciculatus MSr9330 6 20 

Aetherobacter fasciculatus MSr9337 3 20 

Aetherobacter rufus MSr9331 11 22 

Aetherobacter unclassified MSr9329   48 20 

Aetherobacter unclassified MSr9335 83 21 

Angiococcus disciformis AngGT8 92 40 

Archangium unclassified MCy9003 4 31 

Byssovorax cruenta Har1=Byc1 14 26 

Chondromyces apiculatus Cma2 182 26 

Chondromyces catenulatus MSr9030 9 21 

Corallococcus coralloides ST201330 26 40 



 

 

31 Materials and methods 

Cystobacter ferrugineus Cbfe23 155 24 

Cystobacter fuscus MCy9118 188 29 

Cystobacter fuscus MCy9127 2 30 

Cystobacter unclassified MCy9101 36 39 

Cystobacter unclassified MCy9104 133 31 

Cystobacter velatus Cbv34 20 28 

Hyalangium minutum NOCb10 158 17 

Minicystis unclassified MSr9310 3 26 

Myxococcus fulvus MCy9270 62 30 

Myxococcus fulvus Mxf50 141 41 

Myxococcus fulvus Mxf65 168 24 

Myxococcus unclassified MCy9171 47 24 

Myxococcus virescens ST200611 14 23 

Myxococcus xanthus DK897 42 21 

Myxococcus xanthus MxA47 73 18 

Nannocystis exedens Nae478 3 20 

Polyangium spumosum Plsm9 138 22 

Sorangium cellulosum Soce10 138 13 

Sorangium cellulosum Soce1525 14 26 

Sorangium cellulosum Soce307 51 19 

Sorangium cellulosum Soce377 31 22 

Sorangium cellulosum Soce38 17 19 

Sorangium cellulosum Soce969 101 23 

Stigmatella aurantiaca Sga32 14 28 

Stigmatella erecta Pde77 43 26 

Archangium gephyra Ar3548 57 40 

Corallococcus coralloides Ccc127 3 25 

unclassified unclassified MCy10585 2 42 

unclassified unclassified MCy10597 2 41 

unclassified unclassified MCy10634 2 7 

unclassified unclassified MCy10649 2 33 

unclassified unclassified MCy10653 2 43 

unclassified unclassified MCy9487 2 69 

Table 2.3: List of draft genomes with less than 200 scaffolds used in this study 
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Cluster Characterized from strain 

Ajudazol Cmc5 (Chrondromyces crocatus) 

Althiomycin DK897 (Myxococcus xanthus) 

Ambruticin So ce10 (Sorangium cellulosum) 

Argyrin Ar8082 (Archangium gephyra) 

Aurafuron DW4/3-1 (Stigmatella aurantiaca) 

Carolacton So ce836 (Sorangium cellulosum) 

Chivosazol So ce56 (Sorangium cellulosum) 

Chondrochloren Cmc5 (Chrondromyces crocatus) 

Crocacin Cm c5 (Chondromyces crocactus) 

Dawenol DW4/3-1 (Stigmatella aurantiaca) 

DKxanthene DW4/3-1 (Stigmatella aurantiaca) 

Etnangien So ce56 (Sorangium cellulosum) 

Hyafurone NOCB10 (Hyalangium minutum) 

Leupyrrin So ce690 (Sorangium cellulosum) 

Lipothiazole SoceGT47 (Sorangium cellulosum) 

Melithiazol Me l46 (Melittangium lichenicola) 

Microsclerodermin M MSr9139 (Jahnella unclassified) 

Myxalamid DK1622 (Myxococcus xanthus) 

Myxochromid DK1622 (Myxococcus xanthus) 

Myxoprincomide DK1622 (Myxococcus xanthus) 

Myxothiazol DW4/3-1 (Stigmatella aurantiaca) 

Myxovalargin MCy6431 (Corallococcus coralloides) 

Myxovirescin MCy9151 (Myxococcus xanthus) 

Pellasoren So ce38 (Sorangium cellulosum) 

Phenalamid MCy6431 (Corallococcus coralloides) 

Pyxidienon MCy9557 (Pyxidicoccus sp. SBCy002) 

Rhizopodin Sga 15 (Stigmatella aurantiaca) 

Ripostatin Soce377 (Sorangium cellulosum) 

Sorangicin So ce12 (Sorangium cellulosum) 

Soraphen So ce26 (Sorangium cellulosum) 

Spirangien So ce90 (Sorangium cellulosum) 

Stigmatellin Sga 15 (Stigmatella aurantiaca) 

Thuggacin Cmc5 (Chrondromyces crocatus) 

Vioprolide Cbvi35 (Cystobacter violaceus) 

Nannochelin Nae620 (Nannocystis exedens) 

Table 2.4: List of curated gene clusters used in this study 
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2.6 Programming language 

2.6.1 C# and Microsoft Visual Studio  

Microsoft Visual Studio (VS) is an integrated development environment (IDE) developed by 

Microsoft. It is used to develop console and graphical user interface applications along with so-called 

“Windows Forms” applications, web sites etc. VS can run on all versions of windows and has built-in 

languages such as Visual Basic .NET (VB.NET) and C sharp (C#).  Among these C# is versatile and powerful 

and is used widely to create applications running on the Windows platform. It is well suited to develop 

software which features graphical interfaces extensively. 

Here, the VS 2013 IDE with C# built in was used for the project. The VS 2013 is licensed under 

University of Saarland/ MSDN Academic Alliance conditions.   

2.6.2 Java and NetBeans Platform 

Netbeans is a framework written in java which is programmed for NetBeans Integrated 

Development Environment (IDE), but can support other languages such as PHP, C/C++ and HTML5. The 

modular architecture improves the usability of the application by allowing the functions to be reused. 

We mainly used this application for programming the functions for matching and scoring algorithms as 

well as for development of the BiosynML plugin for Geneious. These functions mainly run on the Apache 

Thrift service through remote procedure call framework (RPC). Because of its advanced window 

management, powerful built-in profiler, excellent integration with Apache Thrift service and easy 

modular design allowing developers to develop and distribute extensions to the modules. 

2.7 Apache Thrift 

Apache Thrift is a software framework (originally developed by Facebook, later handed over to 

the Apache foundation) for creating interoperable scalable cross-language services development. Thrift 

is composed of efficient protocols and services infrastructure which Facebook use for their back-end 

services. It combines a software stack with a code generation engine to build services that work 

efficiently and seamlessly between C++, Java, Python, PHP, Ruby, Erlang, Perl, Haskell, C#, Cocoa, 

JavaScript, Node.js, Smalltalk, OCaml and Delphi and other languages. Although thrift was originally 

developed at Facebook, it is now an open source project in the Apache Software Foundation licensed 

under the Apache 2.0 (117). The main advantage of thrift is the high-performance services that can be 

https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/C_%28programming_language%29
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/HTML5
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Apache_Software_Foundation
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called from multiple languages. The design of thrift makes it as the ideal choice where the speed is a 

concern while communication between multiple languages is needed and when clients and servers are 

co-located.  

2.8 Graph Visualization: ZedGraph 

ZedGraph (http://sourceforge.net/projects/zedgraph/) is a set of classes, written in C#, for 

creating 2D line and bar graphs of arbitrary datasets. The classes provide a high degree of flexibility in 

terms of personalization of graphs according to need. At the same time, usage of the classes is kept 

simple by providing default values for all of the graph attributes. The classes include code for choosing 

appropriate scale ranges and step sizes based on the range of data values being plotted.  

ZedGraph also includes a User Control interface, allowing drag and drop editing within the Visual 

Studio forms editor, plus access from other languages such as C++ and VB. ZedGraph is licensed under 

the LGPL. 

2.9 MySQL Database platform 

MySQL is an open source database originally developed by Michael Widenius and now 

developed further by Oracle as a community project. MySQL is the most popular database which is 

widely used in many prominent websites. Key features include efficient storage ability but also high 

performance, high reliability, scalability and ease of use.   

In order to access MySQL the user needs to have an account (username and password) on 

MySQL server. We use a MySQL database (version 5.5.43) as backend for data storage throughout the 

Myxobase project. The server system was kindly hosted by the ITS department of Universität des 

Saarlandes. 

2.10 Extensible Markup Language (XML) 

Extensible Markup Language (XML) is a simple, very flexible text format developed by World 

Wide Web Consortium (W3C). It is a markup language derived from Standard Generalized Markup 

Language (SGML), a format which is both human-readable and machine-readable. The design goals of 

XML are to meet the challenges of large-scale electronic publishing and share structured data across the 

internet. XML is a robust self-describing or self-defining document that can be stored without schemas 
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as they contain meta-data. Any XML tag can possess an unlimited number of attributes, containing 

structured information.  

An XML document contains elements, defined by beginning and an ending tag. XML documents 

must contain a root element under which all elements are contained. XML can also support nested 

elements, or elements within elements. This ability allows XML to support hierarchical structures where 

the terms parent, child, and sibling are used to describe the relationships between elements. Element 

names describe the content of the element, and the structure describes the relationship between the 

elements. An attribute in xml of elements describes the characteristics of the elements in the beginning 

tag. 

The major advantage of using xml is that there is no fixed set of tags; new tags can be created as 

they are needed, creating liberty to define a markup language in terms of specific problem set allowing 

everyone to build their own tag library which suits their needs perfectly. It is not only free style to 

develop, but also free to develop tools that meet needs exactly based on the user defined structure of 

tags. The tree structure of XML documents provides better searching and navigation efficiently element 

by element. XML data is stored in text format making it easier to expand or upgrade without losing data 

by allowing user to add additional tags. 

Altogether, xml is simple, can manage large data by consolidating them in to an xml document in 

an organized way. 

2.11 MUSCLE: alignment software 

MUSCLE (multiple sequence comparison by log-expectation) is a multiple sequence alignment 

program used for protein and nucleotide sequences. The MUSCLE algorithm process an alignment in 

three stages. First, is the draft progressive, the algorithm concentrates on speed over accuracy and 

outputs a draft multiple alignment. The second step called as improved progressive, the algorithm 

reestimates the binary tree used to create the draft alignment using the Kimura distance. In the third 

step called as refinement, the algorithm improvises the generated in the second step. Due to the speed 

and accuracy of the MUSCLE, it is widely used ahead of ClustalW as it also gives more robust results 

depending upon the chosen options. MUSCLE has been made an integral part of several free and 

commercial softwares such as Geneious, MacVector, Sequencher, MEGA and UGENE (118). 

http://searchsoa.techtarget.com/definition/tag
http://en.wikipedia.org/wiki/Multiple_sequence_alignment
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Nucleotide
http://en.wikipedia.org/wiki/Binary_tree
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2.12 Bioinformatics functions 

It was a fundamental requirement of this work to develop algorithms for the rapid comparison of 

(potentially large numbers of) biosynthetic models which can answer simple and complex questions. 

Similarity score is the measure to show how similar two or many sets of pathways are to each other. To 

find the similarity is to find the comparison between the two or more pathways and grade it after a score 

system. 

Cosine similarity 

It is a measure of similarity between two vectors of an inner product space that measures the 

cosine of the angle between them, where the range of the cosine similarity is [0, 1]. 

 ”1” indicates that x and y have the same domains 

 “0” indicates that they share no domains 

To assign a numeric score to a document for a query, the model measures the similarity between 

the query pathway (since query is also just domains and can be converted into a vector) and the 

target pathway. Typically, the angle (similarity) between two pathways is used as a measure of 

divergence between the pathway, and cosine of the angle is used as the numeric similarity (119). 

The cosine similarity between two vectors x (the target pathway) and y (query pathway) is given 

by:  

 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥, 𝑦) = cos(𝜃) =  
𝑥 . 𝑦

||𝑥|| ∗ ||𝑦||
 

The cosine similarity provides a nice metaphor. Cosine similarity gives maximum value when θ = 

0 or when the vectors coincide. It gives lowest value when the vectors are independent of each other. 

This can be seen in the Figure 2.4. The main advantage of Cosine similarity index is their ability to 

score partial matches irrespective of the order of the domains in the pathways. 

https://en.wikipedia.org/wiki/Inner_product_space
https://en.wikipedia.org/wiki/Cosine
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Smith–Waterman algorithm 

The Smith-Waterman algorithm is a dynamic programming method for determining similar regions 

between nucleotide or protein sequences. The algorithm was first proposed in 1981 by Smith and 

Waterman and is identifying homologous regions between sequences by searching for optimal local 

alignments. It is a variant to the idea proposed by Needleman and Wunsch (120) for global alignments. 

To find the optimal local alignment, instead of looking at the total sequence, the algorithm compares 

segments of all possible lengths. Based on these calculations, scores or weights are assigned to each 

character-to-character comparison: positive for exact matches/substitutions, negative for 

insertions/deletions (121). For a given strings, let x and y are the alphabets iterated over the string. H(i, j) 

stores the similarity score for the prefixes x[1, i] and y[1, j], W is the gap penalty for insertion or deletions 

of single characters. 

𝐻𝑖𝑗 = max {𝐻𝑖−1,𝑗−1 + 𝑠(𝑥𝑖 , 𝑦𝑗); 𝐻𝑖−𝑘,𝑗 − 𝑊; 𝐻𝑖,𝑗−1 − 𝑊; 0) } 

for all  𝑖, 1 ≤ 𝑖 ≤ |𝑥|,  

      and 𝑗, 1 ≤ 𝑗 ≤ |𝑦| 

The Smith-Waterman algorithm starts with the highest values and walks back to the path of the 

previous high value recursively until it reaches to the least value. Then, the alignment is reconstructed 

where gaps (insertions or deletions) are placed if a diagonal jump is observed. 

 

 

 

Figure 2.4: The projection of the vector A into the vector B. By 
Wikipedia. 
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EstimateS: Statistical estimation of species richness and shared species from 

samples 

EstimateS  (http://viceroy.eeb.uconn.edu/estimates/index.html) is a tool that computes variety of 

biodiversity statistics, estimators, and indices based on biotic sampling data. One such function is the 

estimation of species richness through non-parametric estimators (Chao1 and Chao2) (122).  

http://viceroy.eeb.uconn.edu/estimates/index.html


 

 

39 Results and Discussion 

3 Results and Discussion 

The main objectives of the present work, as outlined in chapter 1.6, can be briefly summarized as 

follows: firstly, the development of a framework to facilitate the seamless transfer of biosynthetic gene 

cluster information including extensive meta data between the antiSMASH pipeline and various 

downstream analysis tools; secondly, the development of new algorithms for the conceptual comparison 

of genome-encoded secondary metabolite pathways as opposed to primarily sequence-based analysis; 

and finally the application and critical performance evaluation of newly developed tools for genome-

mining with natural product sources, with special focus on myxobacteria. According to these objectives, 

this chapter reports first the efforts to establish the BiosynML analysis framework including a number of 

technological and implementation issues (chapter 3.1), followed by the description of BiosynML 

algorithm development (chapter 3.2).  

Datasets accumulated inside Myxobase in the course of this work form the basis for the 

development and testing of conceptual genome mining functions. Ultimately, application of the 

complete BiosynML framework to several prototypical analysis scenarios using genomic data from both 

Figure 3.1: Schematic overview summarizing the functions and interoperation of key components forming the 
BiosynML framework 
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in-house and public sources is the subject of chapter 3.3, covering in particular myxcobacterial pathways 

and genomes. The schematic overview below (Figure 3.1) summarizes the functions and interoperation 

of key components forming the BiosynML framework. 

3.1 Bioinformatics Framework for conceptual genome mining 

The routine analysis of secondary metabolite producers from various taxa which are sources for 

secondary metabolite-rich samples in the course of screening for novel compounds, in combination with 

the analysis of biosynthetic gene clusters encoded in the genomes of these producers, generates an 

overwhelming amount of biosynthetic pathway-related data. It was therefore a major aim of this project 

to develop practical tools enabling researchers to take better advantage of the high information content 

of these data. In particular, existing sequence-based analysis approaches for identifying and comparing 

biosynthetic pathways (based largely on the output of antiSMASH) should be complemented by an 

approach which can operate with or without sequence information, allowing anyone to instantly 

annotate a secondary metabolite cluster on the basis of all biosynthetic model information in the 

database available at that very moment. This ability should help to better “bridge” the knowledge from 

chemical, biochemical, biological and genomics research efforts within an integrated and highly 

interdisciplinary natural products discovery setting. Another important requirement was the ability to 

conduct targeted queries across all biosynthetic pathway datasets, to facilitate the identification of 

pathways exhibiting specific domain arrangements along with their properties of interest. It was also a 

crucial pre-requisite that all tools be implemented in conjunction with the Mxbase system, in order to 

enable distributed work across several labs and achieve “near-real time” collaboration of researchers 

concerning the data itself as well as the derived conclusions. 

The framework described in the following, reflecting these ideas, evolved gradually throughout 

this study until it reached the current state. Besides describing this state of art, the following paragraphs 

will shed light on the most important steps that lead to the development of different components in the 

framework, collectively named “BiosynML”. This explains best how the current features emerged and 

the design decisions which have been taken.  

3.1.1 BiosynML Language and container 

The basic needs for this framework start with the definition of a format and a container for storing 

biosynthetic models, including the primary sequence data (optional) and associated annotations for 

secondary metabolite gene cluster(s). A language (syntax) is essential to capture these models and 
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describe all their properties in great detail, in a systematic and extensible way. At the same time a 

container (file format) to store these descriptions and transport them between different tools and 

analysis workflows is required.  

Traditionally, the GenBank format has been widely used, as a computer and human readable flat file 

format used to store sequences and associated annotations where the fields containing different types 

of information are well-labelled. Although, GenBank has an advantage for being the de-facto standard 

used by many tools a major difficulty faced is in updating and extending the information. In addition, the 

GenBank file format was not designed to comprise the potentially verbose output of multiple prediction 

tools applied to sequence motifs (many of which co-exist in typical secondary metabolite modular 

pathways). Moreover, it is generally difficult to represent relationships between various data fields in a 

flat file, which makes it hard to group fields and link information across multiple entries.  The area of 

natural product research is a dynamic field with complex information related to the annotations which is 

hard to handle by flat files. To overcome this difficulty, an XML format, being a portable and accessible 

format, was chosen to store the annotated data where the key feature is to use identifiers to enclose the 

sections of the data.  It is also possible to further define data with appropriate tags and attributes which 

makes it easy for the researcher to identify the nature of the data. 

 

BiosynML: “Biosynthetic Markup Language”  

To overcome the lack of a suitable data format for storing and transporting complete biosynthetic 

pathway models between tools and databases, a new specialized mark-up language, named "BiosynML" 

was devised at the beginning of this study. BiosynML is an xml dialect, annotating a document in a way 

that is syntactically distinguishable from the content (text) itself. Information stored in the BiosynML 

containers can extend significantly beyond the content of GenBank files, where only relatively minimal 

information on genes and domains is included. Typically, information in xml schemes is stored in a 

systematic order in the form of hierarchic nodes. BiosynML has 6 elementary nodes: 

 Header, stores the basic information of the content like the date, author etc. (Figure 3.2a). 

 Model, stores the complete meta information of the pathway like the details of the organism the 

pathway belongs to, compound information that the pathway involved in and the gene cluster 

information. The model also has a chemical and a modules layer where the information of the 

building blocks and the modules containing set of domains which function together are stored, 
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respectively. A BiosynML file can store multiple independent pathways (models) which belong to 

the same organism (Figure 3.2b). 

 Domainslist, stores all information on biosynthetic domains, such as (observed or predicted) 

enzymatic activities and substrates used. It also stores the positions in the genes. (Figure 3.2c).  

 Genelist, stores the information of the coding sequences involved in the pathway(s). It also 

accomodates the qualifiers from antiSMASH and GenBank such as gene prediction scores, 

translated protein sequence etc. (Figure 3.2d). The information for each gene is connected to 

sequences in Sequencelist. 

 Motiflist, stores the information and predictions for signature motifs e.g. as obtained from 

antiSMASH (Figure 3.2e) or any other analysis tool. 

 Sequencelist, optionally stores the primary sequence for a sequence-related biosynthetic model, 

this could vary from single scaffold to multiple scaffolds or even a whole genome (Figure 3.2f).  

Importantly, the BiosynML format is able to capture the full information content 

available from various analysis tools and is flexible and extensible to adapt for future changes 

with regards to this information. It is designed for semantic access to this information, i.e. so 

that specialized analysis modules can easily extract the required information layer. Moreover, 

the format maintains a certain degree of “human readability”, which is an important aspect for 

its use in script language-based analysis workflows. 
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Figure 3.2: BiosynML layers a: header, b: model, c: domains, d: genes, e: motifs, f: sequences 
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3.1.2 Interfacing BiosynML to the “antibiotics & Secondary Metabolite Analysis Shell” 

(antiSMASH) 

The variety of biological activities observed from (microbial) secondary metabolites - including 

antibiotics, immunomodulation agents, receptor antagonists and agonists, enzyme inhibitors and 

antitumor agents – motivates efforts to detect their biosynthetic pathways in the genomes of producers. 

This information in turn facilitates the experimental elucidation of biosynthetic pathways for secondary 

metabolites clusters and may also support the finding of new metabolites by genome mining 

approaches.  

To underpin these endeavours, software tools are required to predict and annotate biosynthetic 

pathways and flexibly link it to the sequence information which is used for more detailed analysis in the 

course of pathway characterization. 

antiSMASH is a tool for the analysis of secondary metabolite gene clusters in bacterial and fungal 

genomes (95). It is a in fact a combination of various secondary metabolite-related prediction tools with 

high accuracy of identifying individual cluster annotations in a genome; in particular, it integrates several 

tools for the analysis of distinct types of NRPS- and PKS-related domains, such as NRPSpredictor for A-

domains (123).  

As part of this work, a new function was appended to the antiSMASH prediction pipeline which 

exports the results generated by antiSMASH into the information-rich BiosynML format. Based on the 

functional information of domains from antiSMASH, BiosynML can add extra meta information of 

domains from an online domain directory (see also 3.1.3) which is at the moment maintained specifically 

for use with BiosynML (but with official integration of BiosynML into antiSMASH could also be continued 

as a community repository in the future).   

The HTML interface of antiSMASH displays the minimum information of substrate predictions for 

domains, whereas, BiosynML files store detailed substrate predictions obtained from various prediction 

modules integrated in antiSMASH. Furthermore, when antiSMASH predicted genes lack domains, 

BiosynML can add specialized domains from the domain directory based on smCOG analysis and later 

researchers may choose to delete or modify these domains (Figure 3.3). 

The code to generate BiosynML output from antiSMASH results has been integrated into the 

publicly available antiSMASH package with the release of version 3.0 (95).  
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3.1.3 The BiosynML Geneious plugin  

In the course of analysis of secondary metabolite biosynthetic gene clusters there is a constant need 

to visualize pathways, as well as to add and edit pathway-related meta information and to create an 

overview of pathways present in one or multiple genome(s). In addition, biosynthetic models need to be 

submitted to bioinformatics tools such as antiSMASH in order to create annotated models, and the 

results must be retrieved to feed them back into in-house databases and downstream analysis 

workflows. These requirements were addressed in the course of this project by the development of a 

BiosynML plugin for the Geneious software. Geneious is a cross-platform bioinformatics software suite 

developed by Biomatters for search, organize and analyse genomic and protein information via a 

desktop program (116).  One of the main advantages is its strong focus on user-friendly interface and 

ease of use along with the seamless integration of a number of published bioinformatics methods. The 

newly devised BiosynML plugin originating from this work facilitates the creation of detailed biosynthetic 

pathway annotations, especially for modular gene clusters responsible for the production of microbial 

secondary metabolites. Typical tasks include refining the automatic predictions obtained by antiSMASH, 

addition of domains and meta-data based on manual analysis and/or experimental results (curation), 

such as grouping of domains into functional modules and assignment of biosynthetic building blocks. This 

information is key to establishing the connection between genes and chemical compounds and also a 

crucial prerequisite for the design of experiments to investigate the molecular basis for secondary 

metabolite formation. The core functionality of the BiosynML plugin for Geneious which has been 

implemented as part of this work is described in the following. 

Figure 3.3: Outline of the pipeline for genomic analysis of secondary 
metabolites (modified from (1)) 
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BiosynML Import: 

  This BiosynML plugin function creates a new sequence object in Geneious using the DNA 

sequence from the BiosynML sequencelist and creates "CDS" features and a "BiosynML" annotation 

track. The latter contains qualifiers generated on the sequence according to genelist, motiflist, 

modulelist, domainlist and nodelist (Figure 3.4). It assigns the information from various tags to the 

appropriate BiosynML annotation tracks as additional "qualifier" values which help to create annotations 

conforming to the BiosynML ontology. By observing to the guidelines for Geneious plugin construction, 

the resulting Geneious object is in principle GenBank-compatible which means, when exported in the 

widely used .gb format, BiosynML qualifiers can be preserved (albeit without the semantic access which 

the BiosynML format offers). The plugin provides an additional BiosynML tab in the Geneious user 

interface where user can add/edit the pathway information. 

BiosynML tab consist of several functions to deal with the information imported into Geneious 

such as an overview table which displays the whole information of the pathway, and a sidebar for the 

detailed information review (Figure 3.4). 

 

 

 

Figure 3.4: BiosynML tab: Ball scheme representation (box outlined in green), sidebar (box outlined in blue) and 
overview table displaying the whole information of the pathway 
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Ball-scheme representation : 

This function uses the BiosynML qualifiers to create a ball-scheme representation of a 

biosynthesis model, like it is commonly created by researchers and is the de-facto standard for 

illustration of biosynthetic models in publications. Each ball, representing a biosynthetic function carries 

its internal node number and displays a functional abbreviation alongside with selected additional data, 

such as substrate specificity for monomer-incorporating domains (e.g. A, AT). This function graphically 

enables users to have a quick overview of the domains in a biosynthetic model. A tool tip is provided to 

view the properties of the each node represented as a ball (Figure 3.4 (green box)) and the details are 

also accessible in the sidebar. 

 

Sidebar for information review and editing: 

The BiosynML plugin sidebar displays the detailed information of a node selected from the 

gridview where the user can review or modify details. The sidebar consists of panels where the 

information is displayed in a pre-organized way, e.g. a panel exists carrying the information of model, 

node, domain, motifs and modules (Figure 3.4 (blue box)). 

 

Creating modules:  

Domains in biosynthetic pathways are commonly grouped into modules based on (bio) chemical 

considerations, in order to declare their joint action to bring about specific substructures of a compound. 

BiosynML models generated from antiSMASH output initially do not contain any information about 

modules. To fill the module information, a function has been added to the BiosynML Geneious plugin for 

the users to create modules by selecting set of nodes in the gridview which the user presumes to 

function as a module. Furthermore, on module creation the ball scheme representation will also be 

updated where ball images are grouped representing their participation in modules.  

 

Automatic BiosynML: 

If the user intends to generate a BiosynML from an previously existing annotation document e.g. 

in GenBank format, then the function “Automatic BiosynML” is helpful which will guide the user to 

generate a BiosynML document. For this, the user has to select the type of annotation in the Geneious 

frontend which presumably contains domain information in GenBank format, e.g. misc_features, and 

then the function will search for the matching domains from the annotated features and generate a list 
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of domains and their properties in the BiosynML tab. If details cannot be auto-assigned by the function, 

the user can later add those details with the help of functions in the BiosynML tab. Thus, this function 

assists with the conversion of existing annotations into BiosynML format.  

 

Cleanup: 

It is a function when user wish to modify some data in the Geneious sequence view window for e.g. 

user wish to change the domain length or extending the module region, then this function will reflect the 

changes in the BiosynML tab and autocorrects the existing data with the changed data. For e.g. if the 

length of the domain is increased then this function will adjust the length of the node automatically.  

 

Add node/domain:  

Biosynthetic pathways predicted from the antiSMASH might have some shortcomings, such as a 

domain might be missing or it may predict a domain which in reality may not be present. In order to 

correct such prediction errors, users can add/delete a node/domain and can even manually assign new 

domain to an existing module (Figure 3.5). This manual refinement of biosynthetic models is commonly 

carried out in the course of experimental characterization of a biosynthetic pathway. 

 

Figure 3.5: Window to add a 
node/domain 
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Extract domains:  

It is a function to extract annotations of interest to a new document. Users are provided with 

multiple options in order to extract the regions of interest, such as “Extract currently selected domains” 

is an option useful when the user likes to extract a subset of domains selected from the grid view in 

BiosynML tab. Additionally, if user wants to extract the derived protein sequence, then the function will 

automatically translate the nucleotide sequence into protein and add annotation on to the translated 

protein sequence. On the other hand, if user wants to extract annotations of interest, for e.g. if one 

wants to extract all the “AT” domains then user can select the option “Extract domains matching these 

criteria” and can chose the extraction option to obtain the required subset of the annotation features. 

The result of the extraction can be done as a sequence list in a single document or can save them as 

individual documents (Figure 3.6). The extraction function is typically used to submit domain sequences 

from selected pathways to downstream analysis, e.g. Alignment, tree-building and visualization as 

phylogenetic trees.  

 

 

 

Add/edit building blocks:  

The output from antiSMASH carries predicted information about building blocks presumably 

incorporated by monomer-activating domains. This information can be manually amended, and in 

addition information about the building blocks which are actually incorporated (based on experimental 

Figure 3.6: Features of the Extract domains 
function 
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evidence) can be added or edited using the “Add/edit building block” function. This could also be helpful 

if the BiosynML is generated by “Automatic BiosynML generation function” or to add missing building 

block information to the nodes (Figure 3.7). 

 

 

 

 

Split model: 

Several gene clusters which represent separate pathways are sometimes “fused together” by 

antiSMASH during cluster predictions. This happens due to the simple rationale used by antiSMASH for 

the definition of independent clusters, which basically uses a 5-20 kb window depending on the type of 

the cluster. Any detected core gene within this window will be assigned to the same cluster. Split model 

function is used to manually separate those fused clusters, making BiosynML plugin recognize them as 

individual clusters. 

 

Pathways overview: 

This function is used to summarize biosynthetic clusters contained in a genome in the form of a 

collection of ball scheme representations. Thus, it creates a visual overview and at the same time 

enables users to access the detailed information on selected models / nodes (Figure 3.8). 

Figure 3.7: Window for building block 
modifications 
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Biosynthetic domains directory:  

A number of recurring enzymatic domains are involved in multi-step biosynthetic pathways, each 

with a specific role in precursor selection and activation, linkage of building blocks, or their modification, 

to name only a few processes. BiosynML uses an online domain directory that supplies the common 

"vocabulary" for biosynthetic pathway annotation, also providing basic information about common 

domains. In addition, new submissions of missing or new domains are actively curated and added to 

domains directory by experts (Figure 3.9). 

This helps to maintain controlled vocabulary used in diverse project parts, which is consistency and 

interoperability especially important for meta information such as name, class, context, function, 

chemistry, substrate and keywords associated with domains. It prevents ambiguities during data markup 

of BiosynML file. Thus, the domain directory approach can also serve in the future as a bridge between 

potentially concurring vocabularies. 

 

 

 

Figure 3.8: Window showing detailed overview of biosynthetic 
pathways within a genome 
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Building blocks registry:  

Assigning biosynthetic building blocks to enzymatic domains that activate small molecules and 

incorporate them into complex products is an important analysis step when dealing with secondary 

metabolite pathways. The BiosynML plugin assists this analysis by providing a list of previously observed 

biosynthetic building blocks, using short codes in agreement with other popular databases from the 

natural products field (such as e.g. Norine (2)). Structures are generated by using Indigo library using 

SMILES format. In addition, new submissions of missing or new building blocks are actively curated and 

added to building blocks repository by experts (Figure 3.10) (59). 

 

Figure 3.9: Overview of domain directory created by BiosynML plugin in Geneious 
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Prepare for MiBIG: 

The MiBIG initiative aims to establish a community repository of annotated natural product 

biosynthetic pathways according to the MiBIG standard ("Minimal information on biosynthetic gene 

clusters"). The BiosynML plugin helps users to prepare their curated pathways for submission into the 

MiBIG database, by pre-filling many fields in the MiBIG form with the relevant details (113). 

 

 

Submission and retrieval to/from antiSMASH:  

BiosynML plugin functions can be used to manually add and edit biosynthetic pathway information 

in Geneious, but information-enhanced documents are usually first created by submitting the sequence 

of a biosynthetic pathway (or an entire genome) online to the antiSMASH annotation engine. The 

BiosynML plugin handles job submission and retrieval of results, using the BiosynML format as a shuttle 

between the analysis server and the Geneious client. This works with both the public antiSMASH web 

Figure 3.10: Building blocks list generated within the BiosynML plugin adapted from 
Norine database 
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service and an in-house server setup using the standalone variant of antiSMASH (Figure 3.11). The 

BiosynML antiSMASH submission function basically reflects the options also available in the web 

interface. The function as become publicly available with the release of antiSMASH v3.0 (95).  

 

 

Export BiosynML:  

Once the BiosynML content is imported, Geneious provides several methods to manipulate the 

"BiosynML" qualifiers, or enables the user to manually add such qualifiers to Geneious documents which 

do not have BiosynML content. After the modification of BiosynML content, the plugin can export the 

complete information from the Geneious sequence object to the BiosynML format. The export is 

basically the reverse function as described for the Import (Figure 3.12). This is important so that 

BiosynML documents edited within Geneious can be transferred into databases, i.e. the Mxbase system 

used in this project, and also facilitates their use in script-language based analysis workflows. 

Figure 3.11: antiSMASH job submission and retrieving 
window 



 

 

55 Results and Discussion 

In summary, the BiosynML Geneious plugin provides all essential functionality for users to interact 

with biosynthetic models in the course of this project, while interfacing to the antiSMASH analysis 

pipeline ensures that the output of this de-facto standard tool can be seamlessly channelled into 

downstream analysis workflows (see also previous Figure 3.1). 

3.1.4 BiosynML Editor for manual creation of pathway models  

In order to generate hypothetical pathways, in the sense that no sequence is known but a string of 

enzymatic activities (domains) which may produce a metabolite is deduced from the chemical structure 

of a known compound, an editor has been implemented where the user can create a biosynthetic model 

using functions like drag and drop of domains. This editor is typically used by the researcher to create 

pathway models manually for newly discovered and then structurally elucidated compounds. This allows 

researchers to store and compare their “estimated” pathways making use of BiosynML functions. In 

particular, researchers can also submit their pathways directly to the matching function to find the 

similar pathways that are available in the database (Figure 3.13) even in the absence of sequence 

information for the strain producing a novel compound. 

 

Figure 3.12: Export of BiosynML file from Geneious BiosynML plugin 
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3.1.5 Integration of BiosynML with Mxbase 

Import of BiosynML models into Myxobase  

Myxobase is the Helmholtz Institute’s collection of data that is related to research on 

myxobacterial strains and compounds. The technical platform for Myxobase is the Mxbase system (see 

chapter 2.2) which is built on a relational database, making use of the widely popular MySQL technology. 

It helps to organize all accumulating research results, such as bioactivity screening results according to a 

strain or compound, thus facilitating to connect these data. Similar to metabolomic data, the BiosynML 

information on genomes and pathways encoded therein is a large amount that would become 

unmanageable in spreadsheet form or on hard disk with the increasing amount of genomes that are 

sequenced.  To enable better collaboration on results, a frontend function was added to Mxbase to 

transfer the information from the BiosynML files (generated by antiSMASH or Geneious plugin) and store 

all relevant data in the Mxbase database. In order to maintain records for ongoing use, BiosynML 

identifiers are assigned to strains and compound families which makes it easy to search and retrieve the 

information and also to generate reports (Figure 3.14). Furthermore, this biosynthetic model repository 

serves as the basis for more extensive bioinformatics analysis and genome-mining processes, triggered 

automatically or manually by individual users. Throughout this study, the BiosynML pathway repository 

Figure 3.13: BiosynML editor for drawing hypothetical modules of biosynthetic pathway which 
can be submitted for search and match algorithm 
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in Myxobase was updated whenever new genomes became available, or when new or existing pathways 

were characterized. 

All the features from BiosynML pathway datasets are stored in the Mxbase biosynthetic repository 

with a unique biosynthetic pathway key linked to strain and compound key. The interface (Figure 3.15) 

designed for importing has a function that can read the strain and compound information from the .xml 

file supplied via the Geneious BiosynML plugin after curation of the pathway annotation initially 

generated by antiSMASH. This information is then assigned to the biosynthetic pathway while it is 

imported into Myxobase biosynthetic pathway repository. 

Figure 3.15: A schematic representation of integrating BiosynML into Myxobase 

Figure 3.14: BiosynML importer interface for biosynthetic gene clusters (.xml file) 
integrated in Mxbase Explorer 
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Myxobacterial pathways overview 

The Mxbase explorer is an interface that provides access to the various gene clusters in the 

BiosynML repository that are linked to strains. This provides a medium for the researcher to have an 

overview of the clusters that a strain harbours.  The interface “pathway repository” generates a detailed 

report of all the pathways that are available or a detailed report of the pathways with restricted 

taxonomy (class, order, suborder, family, genus and species) (Figure 3.16). The import of pathways and 

assignment to a strain will immediately highlight this respective strain as a potential producer of all 

compounds linked already to gene clusters contained in that report. In addition, a function is 

implemented in the Mxbase explorer which can extract the information form the BiosynML content 

stored and generate a ball scheme representation for the biosynthetic model which is similar to the 

representation created manually by researchers. It enables users to access the detail information on 

models / nodes (Figure 3.17). 

 

 

Figure 3.16: Biosynthetic pathway repository overview window showing the list of pathways 
that is available in the database 
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3.2 The BiosynML analysis engine 

In the previous sections the establishment of peripheral components of the BiosynML 

bioinformatic framework for conceptual genome mining and the technical prerequisites for its operation 

were described. The following part of this work deals with the development of methods and algorithms 

which are at the heart of the analysis framework, i.e. which form the core analysis engine. The main 

objective is to create a set of tools allowing to compare biosynthetic models on the basis of conceptual 

similarity as opposed to primary sequence similarity. Key considerations for these tools include the 

requirement to match single pathways with a library of well-characterized pathways, to search for 

pathways showing architectural similarity and rank these accordingly, and to create an overview of 

biosynthetic model diversity within a potentially extensive database of (predicted and characterized) 

pathways. 

 

 

Figure 3.17: The “pathway overview” window showing ball scheme representation of biosynthetic gene clusters 
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3.2.1 Algorithms developed for conceptual genome mining 

A typical modular secondary metabolite biosynthetic pathway of PKS, NRPS or hybrid type 

(example in Figure 3.18) consists of a set of genes G = {g1, g2, g3,….,gn}, where each gene encodes several 

domains with predefined functions. Each domain has properties such as function (overall biochemical 

role of a domain), substrate (the monomer incorporated or modified by the catalysed reaction) and 

status (whether the domain is active or inactive).  

We consider the problem of finding the similarity of a given pathway of interest, which we call query 

pathway Q, against a database of pathways P = {P1, P2, P3,….,Pn}. Here, we call each database pathway Pi 

as a target pathway. In the course of this project three different methods for comparing and finding the 

similarity between the query and each of the target pathways were developed. Since each pathway is a 

sequence of genes, and the distribution of domains doesn’t follow a fixed pattern, hence matching 

should not be based on a symmetric relation i.e., Sim(Q, Pi) ≠ Sim(Pi, Q). Thus, we match pathways in 

both ways, i.e., we evaluate Sim(Q, Pi), Sim(Pi, Q), which enhances the similarity score between query 

and target pathways by comparing all possible genes and gene combinations in either of the pathways. 

We note that the similarity between two genes essentially depends on the domain compositions of the 

genes compared. 

 

Approach 1: LocalBestGreedy (LBG) 

The first method, termed LocalBestGreedy, performs gene-wise comparison of pathways taking into 

account the domain compositions based on similarity calculations over genes. To find the similarity 

between the query pathway Q against a database of pathways P, the first step is to find a gene (or a 

consecutive sequence of genes of a given window size w) in the target pathway having a similar domain 

composition as the query gene. 

Figure 3.18: Biosynthetic gene cluster for surfactin biosynthesis in Bacillus subtilis strain w168, repeatedly used as 
an example in the following 
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We emphasize here, that we compare a single gene from the query with a consecutive sequence of 

more than one gene from the target pathway; the length of such sequence (or the number of genes 

considered) is limited by a user-defined maximum window size wmax. 

To make it more precise, let us define Gw
P as a set of gene sequences, where each sequence is 

obtained by concatenating w consecutive genes from the target pathway P. We now describe how we 

measure similarity between query gene gQ and Gw
P. For this, we need a similarity measure between two 

genes gQ and gw
P, which we denote by Sim(gQ, gw

P). We define 

𝑆𝑖𝑚(𝑔𝑄 , 𝐺𝑃
𝑤) = max

w ∈ {1,2,…,wmax}
max

{gP
w∈GP

w}
sim(gQ, gP

w) 

The next question is how to measure the similarity between two genes gQ and gP
w. The similarity 

between the domains of two genes is calculated considering the domain properties, namely function, 

substrate and status. We call the similarity based on function, substrate and status as functional 

similarity, substrate similarity and status similarity respectively. 

We denote functional similarity, substrate similarity and status similarity as SF, SSb, SSt respectively 

between domain compositions of two genes, calculated as  

𝑆𝐹(gQ, gP
w) = max(𝑐𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(gQ, gP

w)) 

Figure 3.19: Search for genes with similar domain composition using cosine similarity. (a) query pathway from 
Bacillus subtilis strain w168, (b) target pathway from Bacillus subtilis  strain QB928. The colour of the boxes shows 
the expected matching of the genes respectively 
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𝑆𝑆𝑏(gQ, gP
w) = max(𝑐𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(gQ, gP

w)) 

𝑆𝑆𝑡(gQ, gP
w) = max(𝑐𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(gQ, gP

w)) 

the final scores for any two genes is given as the weighted mean of SF, SSb and SSt where the 

coefficients are the weight of function (WF),  the weight of substrate (WSb) and the weight of status 

(WSt) 

𝑆 = (𝑊𝐹 ∗ 𝑆𝐹(gQ, gP
w)) + (𝑊𝑆𝑏 ∗ 𝑆𝑆𝑏(gQ, gP

w)) + (𝑊𝑆𝑡 ∗ 𝑆𝑆𝑡(gQ, gP
w) 

𝑆(gQ, gP
w) = 𝑆/3 

 

 

By experimenting with various weight values, we arrived at the following combination: Through 

manual analysis of the results using various weight values, the best results are obtained at WF = 2.9, WSb 

= 0.05 and WSt = 0.05. Note that the weight of the domain function is much higher than the other 

weights. This is because the biosynthetic pathways, predicted through antiSMASH, can have occasionally 

problems with accurate substrate and status prediction whereas the type of domain is in most cases 

assigned with high confidence. Moreover, this setting also simply reflects that the basic biochemical role 

of a domain is its most relevant feature when defining the enzymatic activity string underlying the 

biosynthesis of a PKS/NPS metabolite. 

 In Figure 3.19, using cosine similarity, the query genes are mapped to that of the target gene with 

similar domain composition within a given window size. The bidirectional matching (i.e., matching 

between and query and target both ways) results in a so-called global set where all the genes in the 

query are matched to all the genes in the target. High scoring pairs (HSP) from the global set are 

extracted based on their scores. 

The overall quality between query and target is calculated based on the alignment of domains from 

HSPs found using the Smith–Waterman algorithm (121). More precisely, we count the number of 

matches and mismatches in each HSP by aligning domains of each property across all the hits. This 

contributes to the similarity score between query and target pathways. 

To enhance the similarity score of domain composition between pathways, the weight of the 

matches (m) is chosen as 3 and mismatches (mm) weight is chosen as 2 providing 60% weight to the 

matches and 40% to the mismatches. 

Let us define MF as the number of matched functional property, MMF as the number of 

mismatched functional property, MSt as the number of matched status property and MMSt as the 
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number of mismatched status property. Similarly, MSb is the number of matched substrate property and 

MMSb is the number of mismatched substrate property. 

Then the raw scores are calculated as  

𝑟𝑎𝑤𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒 (𝑅𝐹)  = (∑ 𝑀𝐹𝑖

𝑣

𝑖=0

 ) ∗ 𝑚 − (∑ 𝑀𝑀𝐹𝑖

𝑣

𝑖=0

 ) ∗ 𝑚𝑚 

𝑟𝑎𝑤𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒𝑆𝑐𝑜𝑟𝑒 (𝑅𝑆𝑏)  = (∑ 𝑀𝑆𝑏𝑖

𝑣

𝑖=0

 ) ∗ 𝑚 − (∑ 𝑀𝑀𝑆𝑏𝑖

𝑣

𝑖=0

 ) ∗ 𝑚𝑚 

𝑟𝑎𝑤𝑠𝑡𝑎𝑡𝑢𝑠𝑆𝑐𝑜𝑟𝑒 (𝑅𝑆𝑡)  = (∑ 𝑀𝑆𝑡𝑖

𝑣

𝑖=0

 ) ∗ 𝑚 − (∑ 𝑀𝑀𝑆𝑡𝑖

𝑣

𝑖=0

 ) ∗ 𝑚𝑚 

where v = 1, 2, 3, …., R, where R is the number of HSPs. 

Bit-score is a normalized score, expressed in bits, that estimates the magnitude of the search space 

to look through before finding a score as good as or better than other one by chance. Bit-score is 

calculated based on Althshul definition (124), 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐵𝑖𝑡𝑠𝑐𝑜𝑟𝑒 (𝐵𝐹) =  
𝜆 ∗ 𝑅𝐹 − ln (𝑘)

ln2
 

𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒𝐵𝑖𝑡𝑠𝑐𝑜𝑟𝑒 (𝐵𝑆𝑏) =  
𝜆 ∗ 𝑅𝑆𝑏 − ln (𝑘)

ln2
 

  

𝑆𝑡𝑎𝑡𝑢𝑠𝐵𝑖𝑡𝑠𝑐𝑜𝑟𝑒 (𝐵𝑆𝑡) =  
𝜆 ∗ 𝑅𝑆𝑡 − ln (𝑘)

ln2
 

where 𝜆 = 1.39 and k = 0.747 are the constants. 

The overall bit-score (BS, for short) is calculated by taking mean of all the bit-scores obtained from 

properties of domains in the pathways. The weights of the substrate (sb) are defined by user depending 

on the importance of substrate matched and to reduce the influence of status on the overall score, the 

weight of status (st) is set at 0.2, 

𝐵𝑆 = 𝐵𝐹 + (𝐵𝑆𝑏 ∗ 𝑠𝑏) + (𝐵𝑠𝑡 ∗ 𝑠𝑡) 

In the context of database searches, the E-value is the number of distinct matches with a score 

equivalent to or better than BS, that are expected to occur in a database search purely by chance. The 

lower the E value, the more significant the score is, 

𝐸 = 𝑘𝑋𝑌𝑒−𝐵𝑆, 

where X is the length of domains in the query pathway, Y is the size of the database, BS is the 

bitscore calculated and k is the constant from Althshul definition. 
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The advantage of the greedy approach over a window of genes (a combination of domains obtained 

by neighbouring genes with in a given window size provided by the user) is that it requires only a small 

amount of memory and it is much faster to compute. However, since the greedy approach decides the 

next best step by exploiting only the local information (here, the window size) without considering the 

global structure of the problem, one cannot guarantee to find an optimal solution. An example 

illustrating this scenario is shown in Figure 3.20, where target pathway has similar domain composition 

but different operon organization and domain distribution, i.e. the domains from the set of query genes 

are relocated in the target genes, alongside other differences such as predicted substrate specificity. In 

such cases, the algorithm fails to identify the pathways although the two pathways have overall similar 

domain composition and could be plausibly regarded as candidates for the production of related 

molecule classes, based on biochemical considerations. Without providing a proper window size the hit 

might get a low score and hence it is buried in the other hits among the results. It should be pointed out 

here that deviations shown between biosynthetic models in Figure 3.20 are not arbitrary and could 

actually occur to this extent between pathways which are nevertheless similar from a biochemical point 

of view. Modules could be re-arranged, split across several genes or combined on one gene (e.g. m1, m2, 

m3; m4, m5, m6) and still bring about the same molecular substructure in the product. Similarly, single-

standing domains in the vicinity of multimodular genes could be located differently, and additional 

domains (possibly of unassigned type) could be present in the compared pathways. Thus, in the context 

of conceptual genome mining one must demand for increased robustness of the method in order to 

include in the result set also the pathways exhibiting a considerable extent of deviation in terms of 

operon organization and the distribution of domains across genes. 

Figure 3.20: An example highlighting the disadvantage of LBG where the algorithm fails as the domains from the 
query genes are differently located in target genes. Despite the different domain distribution, these pathways 
could be considered potential conceptual relatives and in principle the chance to achieve matching through the 
BiosynML comparison engine would thus be desired. 
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 Approach 2: LocalBestCoalesce (LBC) 

Note that the first method LocalBestGreedy (LBG, for short) has the disadvantage of missing hits 

where sets of domains are distantly located/distributed in a target pathway, albeit overall domain 

composition is similar. To overcome the disadvantage a modified version of LBG, named LBC, was 

developed that matches domain compositions of pathways iteratively (Figure 3.21). 

 If a hit for domain composition of a query gene is obtained, then the hit and query gene are 

removed from the search space. The procedure is repeated with the remaining domains of the genes in 

the pathway. In this way with every iteration, the neighbouring genes will be changed and can lead to 

discovering pathways with high similarity even though the domains composition of genes are distantly 

located. Because of the iterative removal and matching, this method is able to identify domain 

subgroups which are distantly located. However, one main disadvantage is that in order to identify 

distantly located domain composition, the pathways have to be of similar size. Otherwise, the algorithm 

fails to find similar pathways which are only partially predicted and are thus missing a number of 

domains. This may happen especially when working with draft genomes scattered across increased 

numbers of scaffolds, showing a high probability that predicted biosynthetic models are incomplete. The 

problem is illustrated with an example in Figure 3.22.  

 

Figure 3.21: A flow chart describing the iterative process of matching genes between query and target pathway 
where each identical query and hit genes are mapped and removed from the search space 
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Due to the presence of genes (highlighted in blue box) with mismatching domains in between 

potential hit target genes in the pathway, LBC fails to match the domains of query gene srfA1 to the 

target genes BCB4264_A2461 and BCB4264_A2462, if a proper window size is not provided. For e.g. with 

a given window size of 2, the query gene srfA2 and srfA3 will result as a perfect match with domains of 

target gene BCB4264_A2463 in the target pathway.  But domain of query gene srfA1 will not be matched 

to domains of target genes BCB4264_A2461 and BCB4264_A2462 due to the presence of genes with 

unspecific domain between them. This results in having a low similarity score for the hit pathway despite 

of having identical domain composition along with additional domains. 

Approach 3: GlobalBestSubset (GBS) 

Since the methods LBG and LBC depend on the window size that heavily influences the outcome, 

both algorithms have problems to locate a pathway with distantly located domains groups. Thus, a new 

method is needed that is independent of the window size and should be able to identify hits where 

distinct domain arrangements are potentially disconnected or even distantly located. Considering this 

requirement, a new algorithm was developed which we call here as GlobalBestSubset (GBS for short). In 

this approach the concept of set intersection is used (125) which can find pathways that have distantly 

located domain compositions without depending on the window size. 

Let S(Q, Pi) be the similarity between the query pathway Q and one of the pathways Pi, i = {1, 2, 

3, 4,…, R} from the database P containing R pathways, and let Sg(gQ, G) be the similarity between domains 

of a gene in query and a list of genes from pathway where G = {g1, g2, g3,…. ,gn }. 

Figure 3.22: An example highlighting the disadvantage of LBC. Due to the presence of genes unidentified 
domains/genes (highlighted in blue box) in between potential hit target genes in the pathway, LBC cannot 
efficiently match the domains of query gene srfA1 those located on target genes BCB4264_A2461, A2462. 
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As described earlier in LBC ad LBG, the similarity between domains of two genes is calculated 

based on domain properties namely function, substrate and status. 

Let Sjk be the similarity score between gene gj of query pathway and gene gk of target pathway, 

calculated by intersecting the individual domain properties in the genes compared,  

Sjk = S (gQ
j, g

Pi
k)       where  gQ

j  ∈ Q, gPi
k ∈ Pi 

Again, we refer similarity based on function as functional similarity, substrate as substrate 

similarity and status as status similarity. 

We denote functional similarity, substrate similarity and status similarity as SF, SSb, SSt respectively 

between domain compositions of two genes and MF as the number of matched functional property, 

MMF as the number of mismatched functional property, MSt as the number of matched status property 

and MMSt as the number of mismatched status property. Similarly, MSb is the number of matched 

substrate property and MMSb is the number of mismatched substrate property, calculated as, 

Let M = length of gj, N= length of gk 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑀𝑎𝑡𝑐ℎ (𝑀𝐹) = |𝑔𝑗
𝐹 ∩ gk

F |  

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ (𝑀𝑀𝐹) = (M –  MF)  +  (N –  MF) 

 𝑆𝐹(𝑔𝑗
𝐹 , 𝑔𝑘

𝐹) =  
𝑀𝐹

𝑀
+

𝑀𝐹

𝑁
 

𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑀𝑎𝑡𝑐ℎ (𝑀𝑆𝑏) = |𝑔𝑗
𝑆𝑏 ∩ gk

Sb| 

𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ (𝑀𝑀𝑆𝑏) = (𝑀𝑆𝑏–  M) + (𝑀𝑆𝑏–  N) 

 𝑆𝑆𝑏(𝑔𝑗
𝑆𝑏, 𝑔𝑘

𝑆𝑏) =  
𝑀𝑆𝑏

𝑀
+

𝑀𝑆𝑏

𝑁
 

𝑆𝑡𝑎𝑡𝑢𝑠  𝑀𝑎𝑡𝑐ℎ (𝑀𝑆𝑡) = |𝑔𝑗
𝑆𝑡 ∩ gk

St| 

𝑆𝑡𝑎𝑡𝑢𝑠  𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ (𝑀𝑀𝑆𝑡) = (MSt –  M)  +  (MSt –  N) 

 𝑆𝑆𝑡(𝑔𝑗
𝑆𝑡, 𝑔𝑘

𝑆𝑡) =  
𝑀𝑆𝑡

𝑀
+

𝑀𝑆𝑡

𝑁
 

The final scores for any two genes are given by putting more weight on functional property, 

which is a linear combination of F, Sb and St with weight of function (WF), weight of substrate (WSb) and 

weight of status (WSt) 

𝑆 = (𝑊𝐹 ∗  𝑆𝐹(𝑔𝑗
𝐹 , gk

F )) + (𝑊𝑆𝑏 ∗  𝑆𝑆𝑏(𝑔𝑗
𝑆𝑏, gk

F )) + (𝑊𝑆𝑡 ∗ 𝑆𝑆𝑡(𝑔𝑗
𝑆𝑡, gk

F )) 

𝑆𝑗𝑘 = 𝑆(𝑔𝐽
𝑄 , gk

Pi) = 𝑆/3 
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This calculation is repeated for domains of each and every gene of the query pathway with all 

the genes in the target pathway. If there are no identical matches found, then the algorithm proceeds to 

the next step to find similar composition of domains by combining multiple genes with respect to the 

domain composition of the query gene. 

Let, Gt = {g1, g2 … gm} be the top hit genes from the target pathway Pi to a gene gQ in the query 

pathway and let 𝑆𝑔𝑄𝐼𝑘

𝑘  be the similarity between gQ, let  k be the concatenation of any of the k genes of 

Gt. Here we vary k from 1 to m where m is chosen as 4 in our experiments to limit the combinatorial 

explosion in the computational time. This process is repeated for all the genes in the query pathway to 

find the best hits in the target pathway. Each gene is mapped to the target gene with a similarity score 

Sjk. Finally we take the best of all the scores max {𝑆𝑗𝑘, max
𝐼𝑘

 𝑆𝑔𝑄𝐼𝑘

𝑘 } 

The bidirectional matching (i.e., matching between query and target forward and backwards) 

results in a so-called global set where all the genes in the query are matched to all the genes in the 

target. High scoring pairs (HSP) from the global set are extracted based on their scores. To get the overall 

quality of the pathways matched, the bitscore and E-values are obtained by applying the methods 

described in section 2.2.1. 

Pesudocode: 

Method  SubsetMatchingOfPathways() 

forward = SubsetsMatching(Source, Target) 

reverse = SubsetsMatching(newTarget, newSource) 

globalmap = combine (forward, reverse) 

bestResultMapping = GetBestFromGlobalMap(globalMap); 

  Bitscore = CalculateBitScore(bestResultMapping); 

end 

Method  SubsetsMatching  

Input: Q, T 

Output: score 

for each gj ∈ Q 

     for each gk ∈ T  

  compute S (gj, gk) 

    end 
   Let Gt  = { g1, g2 … gm} be the top hit genes 

   compute Sk (gQ,  k), where  k is concatenation of any of the k genes of Gt 
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 Let  k* be the best match for gQ 

 score(gQ, k*) = Sk (gQ,  k*) 
end 
end 
 

The pathway matching algorithms described earlier in this section showed the results of LBG and 

LBC, which majorly depend on the windows size setting provided by the user. Although these algorithms 

are fast, in cases of complex pathway matching where the genes are distantly located, these algorithms 

fail to identify those particular pathways  as a good hit  that are supposed to appear on the top of the 

output with high similarity scores. GBS uses the concept of set intersection and works independent of 

windows size, which makes it robust compared to other algorithms. Since it considers evaluating all 

combinations of genes and their domain compositions, there is no chance of missing pathways with 

genes having highly similar domain composition even when domain subsets are distantly located. 

3.2.2 Usage scenarios and comparison of BiosynML methods 

The BiosynML methods presented in the previous section 3.2.1 were devised with several 

application scenarios in mind, as has been outlined already in chapter 1.6. Perhaps the most prototypical 

task which occurs repeatedly throughout research with secondary metabolite pathways is the 

comparison of previously characterized (“known”) pathways to predicted genome-encoded biosynthetic 

models stored in a database using a scoring function, where the scores account for the differences 

between the predicted and established pathways like missing modules, extra modules, ambiguity of 

predicted properties, altered positions of the genes and domains and their additional properties (meta 

information like specificity, active or inactive, etc.). Usually this initial comparison is followed by expert 

review and by additional manual analysis which may later extend to the complex genome context. The 

pathways in the database are considered for in depth comparisons based on the genes, domains and 

their arrangements, predicted substrates etc. A similar approach, though ideally with less manual 

supervision, can be basically taken for the automatic tentative identification of predicted biosynthetic 

gene clusters, by comparing each predicted pathway in a newly sequenced genome to the reference 

library of well-characterized pathways. Finally, a “compare all-to-all” approach can be taken to establish 

a similarity matrix based on gene cluster architectures, in order to reveal groups of similar clusters and 

outliers. 

Taking care of all these requirements, a “conceptual genome mining” module was developed and 

integrated into the Mxbase application.  The newly added functionality comprises of three main 

components: a windows-based application interface, additions to the Mxbase back-end (MySQL data 
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structures on the server, being the foundation of Myxobase) and a worker thread, implemented as a 

remote procedure call (RPC) framework that communicates between functions located on the server and 

the graphical user interface. The design and functions of components added to Mxbase in the course of 

this project have been depicted in Figure 3.1 and earlier in Figure 1.12, and their use is described in the 

following section.  

The interface is equipped with numerous options and enables the user to make a query against 

the Myxobase to generate results covering all pathways from the BiosynML pathway repository. The 

pathways which make up the search space are then passed to the algorithms where major 

computational tasks are involved. Myxobase is the database (the knowledge repository for secondary 

metabolite annotation) which contains information about the known gene clusters along with their 

meta-data, as well as genome sequences from different strains of myxobacteria.  

After the retrieval of pathways from the database the worker thread starts computing the 2nd pass 

calculations such as functional deviations, substrate deviations, domain status deviations and scores 

them, to finally return compiled results to the user.  

 Genome mining using the BiosynML engine 3.2.2.1

Predicted pathways from genomes enter the BiosynML repository via a route briefly consisting of 

these steps: The raw data from sequencing is passed through the genome assembly pipeline. The 

assembled data is passed through antiSMASH to extract biosynthetic meaningful information from 

complex datasets and then inventorize the full complement of putative gene clusters in the form of 

representative domains and their properties (the pathway models). The dataset obtained after 

processing through antiSMASH is deposited in the BiosynML repository inside Myxobase and consists of 

domains found and their function and meta-information attached. The “Conceptual genome mining” tool 

has the function to identify the known models from a genome using any of the algorithms developed 

such as LocalBestGreedy (LBG), LocalBestCoalesce (LBC) or GlobalBestSubset (GBS). Thereby, known 

biosynthetic clusters are highlighted and the obtained report can in principle provide the information 

regarding similar pathways that are present in various strains. Thereby, users can also take advantage of 

extended and up-to-date information from the BiosynML collection which is supplied by other users. 

Most importantly, the BiosynML workflow decouples the pathway analysis from the need to access the 

raw sequences or GenBank files. This application is used to answer common questions like, 

 which of the predicted pathways in a new genome is similar to any of the known models 
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 is there a pathway which matches the hypothetical biosynthesis for a newly elucidated 

compound 

 The user’s expectation for the algorithm is to reliably report similar pathways (“primary hits”), 

when using a biosynthetic model as input, without sequence-based comparison (=”conceptual”) and in 

presence of typical sequencing- or prediction-derived errors and uncertainties. Furthermore, the 

identification of putatively related pathways must work robustly also in a background of many pathways 

per genome, containing a multitude of modules when some of them would just by chance have a domain 

composition similar to a small portion of the query model (distinguishing them as “secondary hits”). 

The Pathway query module is implemented with input categories, the available search settings 

provided are: 

1. Input of a pathway(s) (one specific pathway or a complete set of pathways from a genome, or  

model for a hypothetical pathway designed by researcher using BiosynML Editor, see 3.1.5) 

2. Choice of available search and match algorithms (LBG, LBC, GBS)  

3. Search space (entire database or restricted to selected genus or species) 

4. Search parameters (window size, substrate specificity, additional domain penalty, collinearity 

and pathway completeness) 

 

Input  

The input for a pathway query is information relating to biosynthetic pathway(s). Based on the 

types of available information and specific interests of the user, three kinds of input are implemented 

and available, which might be biosynthetic pathway(s) from repository linked to a strain or compound  

 pathway from external source 

 pathway model designed through the BiosynML editor 

For the pathways which are given as input, the interface is able to handle a single pathway or a set 

of pathways that are obtained from a genome linked to strain. Characterized pathways typically originate 

from the Geneious plugin; hypothetical pathways are created by users in the BiosynML editor. 

Search and match algorithms 

See section 3.2.1 for detailed explanation of algorithms implemented for matching and scoring 

of biosynthetic pathways. 
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Search space 

Myxobase contains an organized collection of biosynthetic clusters that are linked to strain and 

compound information. The researcher can limit the search space to a particular genus or species prior 

to searching for pathways similar to the query pathway. While the researcher aims to find the best 

similar pathway among the all pathways across all strains, each pathway in search space represent one 

feasible solution marked by its value or fitness for the query. 

 

Search parameters 

The scoring reflects not only the overall similarity, but allows the investigator also to evaluate 

the differences regarding domain composition of modules, their distribution across genes, pathway 

organization, and match of substrate specificity (“meta information”) for domains in corresponding 

positions. The scores also accounts the differences between the predicted and established pathways like 

the missing modules, extra modules, ambiguity, positions of the genes and domains and their additional 

properties (meta information like specificity, active or inactive, etc.). The possibility to parametrize the 

search was developed which is exemplified by adding options for intuitive parameters:  

Window size: the algorithms GBG and GBC requires user to define window size to select various 

aspects of limitations for the search in order to yield more confident results. 

Substrate specificity: it defines the importance of the substrate that has to be matched during the 

search influencing the overall score of the hits. The range of the substrate specificity is [0, 1] where 

0 – no importance 

1 – very important 

Pathway completeness: it defines the importance of finding complete set of domains irrespective 

of additional domains present. This will boost the overall score of the hits which has all domains with 

respect to the query. 

Collinearity:  this is the parameter is to search efficiently for a subsequence of domains or generally 

a pattern in large sequences of domains arranged in the same order in various pathways preserving 

collinearity. This will boost the score of the hits which have highly similar arrangements of the domains 

spanning an extended range. The importance can range between 0 and 1 

0 – no importance 
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1 – very important 

Additional domain penalty: it defines how strongly extra domains present or missing domains in 

the genes that are not predicted by the tool are penalized. Values ranges between 0 and 1. 

0 – no importance 

1 – very important 

These parameters influence the scoring function of the algorithm used for search and compare, 

reflecting the positioning of pathways in the result list.  

To reduce the burden of the processing on the user’s machine, the search and match functions are 

located on Mxbase server which performs the operations based on user input and stores the results in 

the database which are subsequently retrieved by the client. Access to BiosynML functions on Mxbase 

server is through a dedicated interface integrated into the Mxbase Explorer application (Figure 3.23). 

This interface covers all the aspects with default values of the parameters. Typical use can be exemplified 

using the Chondramid gene cluster from strain Cmc5 (Chondromyces crocatus) where the query pathway 

(known and characterized for the production of Chondramides (126)) is submitted to the search and 

match class, using GBS algorithm and setting substrate specificity to 0.3 and additional domain penalty to 

0.1. The results can be accessed through the results window designed with a datagridview, giving an 

overview of the matching results (Figure 3.25), a bit score plot and also a ball scheme representation for 

visualization (Figure 3.24 and 3.26).   

Figure 3.23: BiosynML interface for submitting query pathway to the search and match class with parameters, 
integrated in the Mxbase Explorer application. 
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 The bit score plot generated reveals a confidence interval where the hits above the confidence 

interval (the “jump” in the plot) have domain architecture highly similar to that of the query pathway 

(Figure 3.24).  

We here emphasize that the first hit is always a “self-hit” which sets the theoretical maximum score 

based on which the confidence interval is generated. The second hit in this example is from the auto-

annotated Cmc5 genome and the third hit is from MSr9030 (Chondromyces catenulatus) (ball scheme 

representation of query and target pathway are displayed in Figure 3.25. The latter pathway is highly 

similar to the Chondramid (query) pathway; however it lacks the genes for a tailoring halogenase and the 

Tyr precursor-generating aminomutase. This finding might be explained by missing prediction during 

auto-annotation, or the genes are located elsewhere in the genome (in theory the pathway might also 

produce only non-halogenated derivatives; however the strain has been shown before to produce the 

chlorinated chondramides, too (127)). Distribution of PKS domains across genes is also slightly different, 

a possible consequence of operon re-arrangement during evolution, or as an artefact during sequencing 

since the split occurs in an unusual way between genes that together harbours the complement of 

domains from cmdA. Despite these deviations, the detection of a high-scoring candidate cmd gene 

Figure 3.24: Bit score plot generated for Chondramid pathway from C. crocatus Cmc5 used as query. The grey box 
represents the confidence “interval” (in the sense of a gap separating high-confidence and low-confidence hits). 
The pathways above the grey box are highly similar to the query pathway. The high affinity hits above the 
confidence interval are from auto-annotated genomes of strains Cmc5 (Chondromyces crocatus) and MSr9030 
(Chondromyces catenulatus) genomes. Note, the first hit is always the “self-hit” which sets the theoretical 
maximum score. Due to differences resulting from manual curation, the auto-annotated version of the same 
pathway from a genome might not reach the same score. 
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cluster in C. catenulatus by the BiosynML approach in this example is plausible and anticipated as the 

strain is known as a chondramide producer (128). 

Furthermore, analysing the first hit below the confidence interval, a NRPS/PKS hybrid pathway from the 

strain MSr9331 (Aetherobacter rufus) is found (Figure 3.26).  

The target gene (ctg6_orf00410) has NRPS domain modules of same functionality but different 

substrate specificity as that of the query gene (cmdD), and overall number of NPRS modules is 2 versus 3 

in chondramide biosynthesis. In addition, there are differences regarding domain composition and 

operon organization compared to that of the query, such as additional MT domains (internal as in 

Figure 3.26: Example of the first hit (MSr9331 (Aetherobacter rufus)) below the confidence interval from 
where the similarity deteriorates 

Figure 3.25: Results window with summary table and ball scheme representation of the query and hit. 
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ctg6_orf00410 and single-standing) Although still rudimentary similar to the cmd pathway, it appears 

justified that in this search the A. rufus candidate pathway is significantly down-ranked compared to the 

original pathway from C. crocatus and the model detected from C. catenulatus. 

By chosing different algorithms and varying setting of parameters the result set may change 

depending on the complexcity of the matching, as examplained earlier in section 3.2.1. Thus, in the 

following sections the limitations of the algorithms developed for search and match approach and their 

response to varying parameters will be exemplarily demonstrated. 

 Comparison of BiosynML methods 3.2.2.2

The architectural comparison of biosynthetic pathways is a crucial part for several steps of the workflows 

established here as part of the biosynthetic pathway mining tools. The characteristics of functions tried 

out in the course of this project are described and discussed in the following. 

Figure 3.27: Bitscore plot generated for Surfactin pathway from Bacillus subtilis strain w168by using LBG algorithm. 
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 As an example, applying all the three basic algorithms for comparing the Surfactin pathway against 

predicted models from biosynthetic pathways of published genomes (downloaded from NCBI and 

biosynthetic pathways predicted through antiSMASH), the results of LBG (Figure 3.27), LBC (Figure 3.28) 

and GBS (Figure 3.29) are plotted taking bitscore on y-axis and strain identifiers on x-axis. The query is 

executed with substrate weighting value of 0.3 and additional domain penalty of 0.3. 

 

Since the scoring methods are applied on the datasets, it will also be more interesting to see the 

efficiency of scoring function for pathways which has overall similar domain composition but doesn’t 

have the same domain architecture.  A careful consideration of the hits in the output reveals differences 

in the results generated by the three algorithms. 

The initial hits (Table 3.1) in the result set, identified by all three algorithms shows similar set of 

pathways from organisms since these pathways exhibit a highly similar domain architecture to that of 

the query (Figure 3.30). However, the interesting aspect is to observe the fate of the pathways which has 

similar domain composition and dissimilar domain architecture.  The LBG and LBC failed to identify 

biosynthetic pathways which deviate from the query domain architecture (in the sense of placing these 

hits above the confidence interval) and as the algorithms assign lower scores to such pathways, they are 

misplaced in the output result set, which might be considered as unspecific result by a chemist. These 

Figure 3.28: Bitscore plot generated for Surfactin pathway from Bacillus subtilis strain w168by using LBC 
algorithm 
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two algorithms (LBG and LBC) thus generate results with different levels of false negative rates, reflecting 

the lost opportunities of numerous interesting results that a natural product researcher would like to 

know or expect 

However, GBS tends to reduce the false negative results by matching the domains composition at a 

global level. Due to the concept of subset intersection, GBS has identified the pathways (Table 3.2) which 

does not follow exactly the query’s domain architecture (Figure 3.31) but having similar composition and 

are scored accordingly. Thus, GBS generates a result set which is highly relevant and is devoid of false 

negative results. The bitscore plot for LBG and LBC may be deceiving as some pathways are misplaced 

because of the limitations in both the algorithms, but the plot generated by GBS shows a set of results 

that is more accurate from the point of view of the natural products chemist. In fact, the score plot hints 

at the presence of two groups of similar pathways (two plateaus in Figure 3.29), one representing the 

Surfactin pathway family with relatively little deviations, and the other group being “Surfactin-like”, 

showing overall similar domain composition but some degree of deviation in architecture and substrate 

specificity. These two groups are well discriminated against the backdrop of many NRPS pathways in the 

test dataset using the GBS algorithm, while the second group was not revealed by the LBG and LBC 

algorithms. 

Figure 3.29: Bitscore plot generated for Surfactin pathway from Bacillus subtilis strain w168 by using GBS algorithm 
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 It has to be considered that the values of the parameters used for the processing the results affect 

the shape and confidence levels of the bitscore plot generated as these parameters influence on the 

scoring function used to measure the similarity between pathways.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

BSRC ID BSYN ID Strain Key Organism  

BSRC471 BSYN3817 11687 w168 (Bacillus subtilis)  
BSRC329 BSYN3126 11682 QB928 (Bacillus subtilis)  
BSRC334 BSYN3163 11687 w168 (Bacillus subtilis)  
BSRC326 BSYN3103 11679 JS (Bacillus sp)  
BSRC328 BSYN3119 11681 PY79 (Bacillus subtilis)  
BSRC331 BSYN3141 11684 W23 (Bacillus subtilis)  
BSRC333 BSYN3155 11686 6051-HGW (Bacillus subtilis)  
BSRC337 BSYN3185 11690 RO-NN-1 (Bacillus subtilis)  
BSRC282 BSYN2855 11635 CAU_B946 (Bacillus amyloliquefaciens)  
BSRC276 BSYN2804 11629 CC178 (Bacillus amyloliquefaciens)  
BSRC281 BSYN2846 11634 AS43_3 (Bacillus amyloliquefaciens)  
BSRC284 BSYN2873 11637 FZB42 (Bacillus amyloliquefaciens)  
BSRC285 BSYN2883 11638 UCMB5033 (Bacillus amyloliquefaciens)  
BSRC286 BSYN2891 11639 UCMB5036 (Bacillus amyloliquefaciens)  
BSRC287 BSYN2900 11640 UCMB5113 (Bacillus amyloliquefaciens)  
BSRC280 BSYN2839 11633 LL3 (Bacillus amyloliquefaciens)  
BSRC277 BSYN2813 11630 DSM_7 (Bacillus amyloliquefaciens)  
BSRC290 BSYN2929 11643 XH7 (Bacillus amyloliquefaciens)  
BSRC289 BSYN2922 11642 TA208 (Bacillus amyloliquefaciens)  
BSRC297 BSYN2977 11650 1942 (Bacillus atrophaeus)  
BSRC319 BSYN3077 11672 DSM13 (Bacillus licheniformis)  
BSRC318 BSYN3068 11671 9945A (Bacillus licheniformis)  
BSRC324 BSYN3098 11677 SAFR-032 (Bacillus pumilus)  

Table 3.1:  Hits identified by algorithms (LBG, LBC and GBS) with Surfactin as a query 
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BSRC ID BSYN ID Strain Key Organism 

BSRC304 BSYN3010 11657 B4264 (Bacillus cereus) 
BSRC350 BSYN3280 11703 YBT-1518 (Bacillus thuringiensis) 
BSRC348 BSYN3269 11701 IS5056 (Bacillus thuringiensis) 
BSRC344 BSYN3241 11697 CT-43 (Bacillus thuringiensis) 
BSRC339 BSYN3202 11692 BMB171 (Bacillus thuringiensis) 
BSRC340 BSYN3209 11693 Bt407 (Bacillus thuringiensis) 
BSRC347 BSYN3260 11700 HD73 (Bacillus thuringiensis) 
BSRC309 BSYN3036 11662 G9842 (Bacillus cereus) 
BSRC342 BSYN3224 11695 HD-789 (Bacillus thuringiensis) 
BSRC423 BSYN3592 11776 NCGM2_S1 (Pseudomonas aeruginosa) 
BSRC422 BSYN3587 11775 MTB-1 (Pseudomonas aeruginosa) 
BSRC421 BSYN3580 11774 M18 (Pseudomonas aeruginosa) 
BSRC418 BSYN3556 11771 DK2 (Pseudomonas aeruginosa) 
BSRC426 BSYN3615 11779 PA7 (Pseudomonas aeruginosa) 
BSRC231 BSYN1999 11584 RHA1 (Rhodococcus jostii) 
BSRC431 BSYN3651 11784 NFM421 (Pseudomonas brassicacearum) 
BSRC232 BSYN2030 11585 B4 (Rhodococcus opacus) 
BSRC228 BSYN1960 11581 103S (Rhodococcus equi) 
BSRC230 BSYN1991 11583 PR4 (Rhodococcus erythropolis) 
BSRC424 BSYN3598 11777 PA1 (Pseudomonas aeruginosa) 
BSRC425 BSYN3605 11778 PA1R (Pseudomonas aeruginosa) 
BSRC436 BSYN3682 11789 Pf0-1 (Pseudomonas fluorescens) 
BSRC435 BSYN3676 11788 F113 (Pseudomonas fluorescens) 
BSRC437 BSYN3689 11790 SBW25 (Pseudomonas fluorescens) 
BSRC443 BSYN3705 11796 RE1-1-14 (Pseudomonas poae) 
BSRC116 BSYN570 11469 ACN14a (Frankia alni) 
BSRC116 BSYN570 11469 ACN14a (Frankia alni) 
BSRC447 BSYN3722 11800 GB-1 (Pseudomonas putida) 

Table 3.2: Additional results displayed by GBS for Surfactin pathways which are not 
available from LBG and LBC 

Figure 3.30: Target pathways from strain QB928 (Bacillus cereus) (b) having similar domain composition, substrate 
specificities and domain architecture to that of the query pathway from strain w168 (Bacillus subtilis)(a) 
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 From the experiments mentioned in this section choosing a right algorithm is important to obtain 

comprehensive results, where throughout this project the most relevant results were stringently 

obtained by using GBS. But it is also important to evaluate the influence of the parameter settings on the 

results generated by search and match engine. 

3.2.3 Influence of parameter settings on the outcome of the pathway comparison 

A matching and scoring algorithm ideally should have parameters whose effect is intuitively clear 

and predictable. In the course of this study, we found that parameters such as substrate specificity 

match, extra domains penalty, collinearity and pathway completeness are important to feed the 

BiosynML matching algorithms in order to downgrade the appearance of irrelevant data from the 

possible outcome. These parameters influence to a great extent in the accuracy and performance of the 

algorithm. 

Influence of substrate specificity  

Intuitively, the substrate specificity parameter defines the influences of missing or wrongly assigned 

substrate specificity on the scoring function. This is currently relevant mostly for monomer-incorporating 

domains such as A- and AT domains (although it should be noted that there is no inherent limitation to 

certain domain types). The value ranges from 0 to 1 where low values meaning ‘liberal scoring of 

mismatched substrates’ and high values meaning ‘strict comparison and scoring of substrates’. To 

demonstrate the influence of this parameter, a query was executed in the BiosynML repository using 

Figure 3.31: Target pathway from strain B4264 (Bacillus subtilis) (b) which has similar domain composition but with 
varied domain architecture to that of the query pathway from strain w168 (Bacillus subtilis) (a), and also different 
predicted substrate specificities. 
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GBS algorithm with a substrate specificity weighting of 0.8 and 0.3, all other parameters are kept 

constant. As a test case, Myxoprincomide pathway from strain DK1622 (Myxococcus xanthus) (Figure 

3.32) was used to investigate the influence of different substrate specificity parameters on the outcome. 

From Figure 3.33 (query using weighting factor 0.8), it can be observed that only one pathway is 

found which shows above the confidence interval. This pathway is itself a curated pathway where 

substrate specificities have been manually corrected by the researcher. All the pathways which have the 

same domain functionality but different substrate specificities, possibly due to the prediction tool 

uncertainty are found below the confidence interval. By decreasing the influence of substrate specificity 

to 0.3, the results changed, as it can be observed that there two more pathways moved above the 

confidence interval as the specificity scoring is relaxed (Figure 3.34).  This means, giving a high value to 

Figure 3.32: Myxoprincomide pathway from strain DK1622 (Myxococcus xanthus) used to evaluate the influence of 
substrate specificity parameters on the results set. The grey-colored A-domain in module 11 was marked as 
“inactive” during manual curation (1), and substrate specificities were inferred from the elucidated structure 
myxcoprincomide-C506. 

Figure 3.33: Distribution of scores for Myxoprincomide pathway using GBS algorithm with substrate specificity 
emphasized by a weighting of 0.8 
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this parameter will decrease the score of the hit pathways whose substrate specificities deviate with that 

of the query. 

It has to be noted that there is no change in the order of the hits resulted by the algorithm (some of 

these shown in Figure 3.35) with the change in substrate specificity but this parameter has a great 

influence in deciding the range of confidence interval. It is a parameter of interest for the researcher 

during automated mining of the pathways from a newly annotated genome, to decide the extent of 

having the same postulated monomeric substrate for query and hit pathways. Note that the utility of a 

stringent parameter setting also depends critically on the overall state of the pathway repository: 

queries using a high substrate specificity weighting can make sense when searching in a library of well-

curated pathways, whereas a collection of auto-annotated genomes might make it necessary to accept a 

higher degree of mis-assigned substrates due to imperfection of preditive tools. 

 

  

Figure 3.34: Distribution of scores for Myxoprincomide pathway using GBS algorithm with a more relaxed substrate 
specificity weighting of 0.3. 
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Influence of penalty imposed on additional domains  

Another important factor of the comparison process between two pathways is the additional 

domain penalties i.e., how strongly are additional domains not present in the query pathway penalized. 

The value ranges from 0 to 1 where low values meaning ‘weak penalty’ and high values meaning ‘strong 

penalty’.  This parameter does not take into account the domains which are missing in the middle of 

multimodular genes but penalize domains from additional or missing genes from the query and target 

pathways. As an example Myxochelin from strains Sga15 (Stigmatella aurantiaca) was used to evaluate 

the influence of penalty on additional domains. The query is executed with additional domain penalty of 

0.1 and 0.8, keeping the rest of the parameters constant. 

 

 

Figure 3.35: Hits reported by GBS algorithm for Myxoprincomide gene cluster from strain DK1622 (Myxococcus 
xanthus). Query is represented in black box. Blue circle represents the domains which deviate in substrate specificity. 
Red box represents the pathways with translocated modules and orange box represents the pathways with an extra 
(C-A-PCP) module. The pathway in green box has identical domain architecture with deviations in substrate 
specificities. 
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Form the Figure 3.36, it can be observed that there is no distinction of hit pathways which have only 

the “myxochelin” domain set and pathways exhibiting additional domains. This is due to the low value 

(0.1) used for additional domain penalty.  

 

Figure 3.37: Distribution of scores for Myxochelin pathway using GBS algorithm with increased additional domain 
penalty of 0.8. There is now a noticeable distinction of scores for the pathways with additional domains as 
exemplified by the pathways outlined in green, black and blue colors. 

Figure 3.36: Distribution of scores for Myxochelin pathway using GBS algorithm with low additional domain penalty 
of 0.1. The pathway represented in green and black outline has similar domain architecture to myxochelin pathway. 
Though the black outlined pathway has additional domains there is no significant distinction of scores. 



 

 

86 [Type the document title] 

Therefore, the result set contains unsorted list of pathways which has exact matching domains with 

respect to query as well as pathways with (varying numbers of) additional domains. With increase in the 

penalty of the additional domains to 0.8, the result set is sorted and pathways with additional domains 

are well distinguished (Figure 3.37). This parameter is useful to prioritize the hits showing sets of 

matching domains which a chemist might be interested in. 

 

Impact of Collinearity weighting on the outcome  

Collinearity weighting refers to the relationship where there is a high correlation on both 

composition and order of domains between two pathways. As an example, a surfactin like pathway from 

strain CT-43 (Bacillus thuringiensis) (Figure 3.40) was used to evaluate the impact of collinearity 

parameter. The tests were done with collinearity values for 0.1 and 0.8, all the other parameters are set 

to zero. 

With a value of 0.8, the algorithm reported hits which are above the level of confidence interval. 

These hits have very high domain composition similarities as well as the order of the domains is 

preserved (Figure 3.38).  On reducing the value of collinearity to 0.1 there is a significant change in the 

range of confidence interval (Figure 3.39) where the hits with well-matching domain composition but has 

lower similarity in the sequence order of the domains are also considered.  

Figure 3.38: Results displayed using collinearity weighting value of 0.8. Only eight hits are reported above the 
confidence interval 
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 This parameter is very useful when a search claims to have hits with highly similar domain 

composition and preserving also the order of domains.  A manual observation also confirmed that, with a 

value of 0.8, the resulted top hits have similar domain arrangements (Figure 3.40). With a decrease in 

the collinearity value to 0.1, there is a change in the range of confidence interval, thus the pathway with 

high similar domain composition but with dissimilar arrangement (Figure 3.41) were also seen above the 

confidence interval.     

 

  

Figure 3.39: Results displayed using low collinearity weighting value of 0.1. Several additional hits are 
reported above the confidence interval 

Figure 3.40: High scoring hit pathways with similar domain arrangement. (a) Query pathway from strain CT-43 
(Bacillus thuringiensis) (b) hit pathway from G9842 (Bacillus cereus). 
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Influence of Pathway completeness 

 Pathways completeness is an absolute weighting parameter where the researcher requires the 

query pathway to be completely found in the hit. It imposes a strong restriction, where there is an 

inherent risk that pathways with missing modules due to sequencing errors or errors in secondary 

metabolite prediction algorithm will be prevented to appear in the top of the list, even though there is a 

significant degree of domain composition similarity. As a test case, the Althiomycin gene cluster from 

strain DK897 (Myxococcus xanthus) was used with and without pathway completeness parameter. 

Figure 3.41: Lower-scoring hit pathways with similar domain arrangement. (a) Query pathway from strain CT-43 
(Bacillus thuringiensis) (b) hit pathway from w168 (Bacillus subtilis). 

Figure 3.42: Distribution of scores for Althiomycin with Pathway completeness parameter activated 
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 There are domains which are missing in the hit pathways compared to the query pathway (blue box 

in Figure 3.43), due to which the hits are below the range of confidence interval upon activating the 

Pathway completeness parameter (Figure 3.42). Deactivating the parameter modified the confidence 

interval range, showing the hits which have very similar domain composition with that of the query 

(Figure 3.44) although preceding domain detection was apparently incomplete for some of the auto-

annotated pathways. 

 

  

Figure 3.43: Ball scheme representation of query pathway Althiomycin (pathway shown with thin border) from 
strain DK897 (Myxococcus xanthus) and hits pathways from various producers. The blue box represents the 
domains that are missing in the hits 
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3.2.4 Pathway query based on signature domains 

An additional mode of using the BiosynML database system should be briefly mentioned here, 

although it is not a strictly “concepts-based” approach for genome-mining.  

The BiosynML record representing a gene cluster contains meta data of domains that are involved 

in the biosynthesis of a product. Meta data contains description of properties such as building blocks, 

functions, status, position of the domains in the genes and many more that are linked to domains. Thus, 

availability of these data enables researchers to simply search and identify the pathways that possess 

specific information across the database. To search by metadata, researcher needs to specify 

information about a domain or a group of domains. The respective research scenario would be to 

retrieve pathways (or connected information, e.g. domain sequences) stored in the database based on 

the query provided by the user. An example would be of query of the database to find pathways from 

any strain which use a tyrosine-derived building block: It retrieves all the pathways with tyrosine-derived 

building block and outputs the detailed information of the pathway. Similarly, one might want to extract 

the protein sequences of all TE domains from hybrid NRPS/PKS pathways: it extracts the protein 

sequence from all domains of annotated type “TE” from all the pathways (Figure 3.45). 

 

 

Figure 3.44: Distribution of scores for Althiomycin with Pathway completeness parameter deactivated 
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A query can contain multiple domains and their properties linked by connector to control the 

output of the pathways from the biosynthetic pathway repository. Each operand in the connectors is 

considered as a condition that contains either true or false value. This determines the overall results of 

the query that is provided by the user. 

Connectors  

Connectors are words used to connect two or more domains and their metadata in a valid way to 

retrieve pathways of researcher’s interest from the database.  

AND (logical and): the query returns all the pathways which contain all of the specified information 

provided by the user.  

OR (logical or): the query returns all the pathways which contains contain at least one of the 

specified information provided by the user.  

NOT (logical not): Finds content items that contain the information that precedes the operator (if 

any), and ignores content items that contain the information that follows it. 

An interface has been implemented for the researchers to retrieve pathways from the database 

based on a given query. This interface provides multiple options for the researcher to search pathways 

containing a specific set of domains and their metadata information based on the keywords provided by 

the user (Figure 3.46). 

For this type of query, the search engine routinely performs a basic SQL search based on 

domains types and their properties that are considered appropriate. In the second step, the interface 

(Figure 3.46) starts with initiating a search against the database where the function performs the domain 

Figure 3.45: Querying database for pathways with specific information such as domains and its meta information 
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matching tasks and outputs the results. The results consist of the information about hits which are 

estimated to have domains and their properties to that of the query given. As mentioned earlier in the 

framework section, the parameters for the search are domain type, properties that the domains possess 

(building block, parent of the building block, subtype and status) and conditions which fits according to 

the researcher needs (AND, OR and NOT ). The output is delivered by the result window depends on the 

pathways that are considered as hits, and generally comprises the BSRC key, BSYN key, Strain identifier 

key, compound identifier as well as compound name and strain name.  

A part from the simple display of the results, a graphical output of the result pathways is 

generated, highlighting the hit domains in the pathways. In addition, to the search and visualization 

function of the interface also allows researcher to extract the protein sequences of the domains such as 

AT, A or KS which would be further helpful to perform sequence related analysis of the pathways. 

As a simple test case, a “domain query” was conducted to reveal candidate pathways which are 

indicative for presence of two activating domains “A” whose building blocks information contains 

“Serine” and “Alanine”. The domain “A” is selected from the dropdown, the building block is selected 

from the property list, the information of the building block is given in the input filed keyword and an 

appropriate condition has to be chosen which in our test case is “AND”. The aim of this query is to verify 

the functions using domains and their properties, aiming to retrieve all candidate pathways exhibiting 

similar information in the database. After the execution of the query, the results can be seen in 

Figure 3.46: Interface for querying pathways with specific domain set. Red box 
shows the query builder, blue box indicates the basic result set generated by 
the query and green box shows the options for extracting protein sequences 
for the selected domains from the results set. 
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datagridview and the graphical output can be generated in the graphical output tab as shown in Figure 

3.47. 

From the Figure 3.47, it can be seen that the best possible hits among all the pathways available in 

the database. The output in the datagridview shows minimal information such as pathway key, strain 

information and compound information (if the information is available for the hits). Along with this basic 

information the graphical interface provides the ball scheme representation of the hit pathways where 

the hit domains are highlighted (Figure 3.47). In addition, the interface also shows the details associated 

with the pathways such as internal Ids, strain details and compound details. This search provides useful 

information for the researchers to find similar pathway with signature domains and their properties of 

interest. 

In addition to the resulting pathway information, researchers can extract protein or DNA sequences 

of the domains from the pathways set for further use. The interface also has a function which can 

generate a graphical output of ball scheme representation of the resulted pathways which can explicitly 

show clusters in terms of individually identified domains and their properties highlighted. 

 

 

 

Figure 3.47: Graphical interface displaying ball scheme representation of pathways with highlighted hit 
domains in blue circle 
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Addition of sequence-based analysis functions 

Traditionally sequence analysis tools play a major role in identifying regions of similarity in DNA, 

RNA and protein through which functional, structural, or evolutionary relationships between the 

sequences are constructed. For several reasons it may be desirable to conduct sequence alignments 

between query and hit pathways following their retrieval from the pathway repository as the result of a 

conceptual query. One motivation could be to increase the confidence of the high affinity hits resulted 

from conceptual matching. In order to amend the BiosynML analysis engine with the capacity to perform 

analysis also at sequence level, MUSCLE, a program for multiple protein sequence alignment was fully 

integrated into the BiosynML framework. The researcher can chose to submit the desired hit to the 

sequence analysis tool through BiosynML interface in Mxbase Explorer to find the similarity of pathways 

at sequence level. As an example the gene clusters of Myxoprincomide from strain DK1622 (Myxococcus 

xanthus) and Althiomycin from strain DK897 (Myxococcus xacnthus) were used to evaluate the similarity 

of the top hits from conceptual matching at the protein sequence level (Figure 3.48 and Figure 3.49). 

From Figure 3.48 and Figure 3.49, it is clear that the Myxoprincomide pathway has hits from the 

strains MxBonn171 (Myxococcus unclassified) and Ccc1071 (Corallococcus coralloides). These hits have 

convincing architectural similarity. However, upon investigating the hit pathways at sequence level the 

hit from strain MxBonn171 (Myxococcus unclassified) showed overall only 68.28% similarity and the hit 

from Ccc1071 (Corallococcus coralloides) showed 66.36% similarity.  The obvious reason is the deviating 

arrangement of NRPS modules up- and downstream of the small PKS part in the center, possibly as a 

common result of pathway evolution. This intuitive example essentially underlines the fact that 

sequence alignments (including methods like blastP on that matter) are not an adequate means for 

genome mining (especially unsupervised) with long multimodular pathways. 

Figure 3.48: Sequence similarity (Similarity/Identity) of (b) hit from Strain MxBonn171 (Myxococcus unclassified) and (a) 
Myxoprincomide pathway from DK1622 (Myxococcus xanthus) used as a query. 
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 To introduce a different example: Using Althiomycin gene cluster as the query pathway against a 

database filled with public genomes, the GBS algorithm resulted in a single hit from strain Db11 (Serratia 

marcescens (129)). Investigating the protein sequence similarity, the query gene almA has 60.62% 

similarity with target gene SMDB11_RS11325, query gene almB has 58.57% similarity with target gene 

SMDB11_RS11320 and query gene almC has 54% similarity with target gene SMDB11_RS11330 (single 

standing MT domain) (Figure 3.51). Simultaneously on the contrary, comparing protein sequence of 

Althiomycin from DK897 (Myxococcus xanthus) with a top hit which is from myxobacterial strain Pde77 

(Stigmatella erecta) showed, the target gene ctg29_orf00028 has a similarity of 81.48% with query gene 

almA and target gene ctg29_orf00029 has a similarity of 85.38% with query gene almB (Figure 3.50). 

Thus, the althiomycin example shows that a conclusion about the suitable sequence similarity threshold - 

especially when thinking of any automated and largely unsupervised analysis workflow covering a wide 

taxonomic range - is not easily made.   

This results suggest that the current sequence based tool that are widely used to identify known 

biosynthetic pathways using protein sequence similarity, have anticipated difficulties in matching protein 

sequences of genes with translocated modules as in the myxoprincomide example (Figure 3.48 b and 

Figure 3.49b). Such pathways results in lower sequence similarity score because of the gaps generated by 

translocated module (Figure 3.52), although the hit pathways have similar domain compositions and 

plausibly similar architecture. In case of larger genes, partial sequences are used to identify the pathways 

which produce similar compounds; hence success critically depends on first identifying the correct part 

of the gene cluster that is to be used to find the matching pathways. Moreover, a definite confidence 

level of similarity which could determine that the query and target gene clusters encode pathways for 

Figure 3.49: Sequence similarity (Similarity/Identity) of (b) hit from Strain Ccc1071 (Corallococcus coralloides) and (a) 
Myxoprincomide pathway from DK1622 (Myxococcus xanthus) used as a query. 
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structurally similar products is not easily defined. Similar domain architecture on the contrary are likely 

to produce similar compounds even if sequence similarity is weak, commonly observed as a result of 

taxonomic distance. This could lead to unspecific results where the researcher has to invest time in 

manually filtering the result set to identify the appropriate result. This limitation highlights the necessity 

of having an automated approach which can efficiently match the biosynthetic pathways based on 

architectural similarity (with or without presence of the sequence information) and outputs the results in 

a way which is understandable to the researcher. 

Figure 3.51: Lower sequence similarity of Althiomycin pathway between (a) query strain and DK897 (Myxococcus 
xanthus) and (b) Db11 (Serratia marcescens) 

Figure 3.50: High sequence similarity of Althiomycin pathway between (a) query strain and DK897 (Myxococcus 
xanthus) and (b) Pde77 (Stigmatella erecta) 
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3.3 Conceptual genome mining with natural products sources  

In the previous sections, the establishment of the framework and the concepts of the BioynML 

analysis engine were discussed along with the preliminary results. The following part mainly focuses on 

applying the new tools on real world data. The key consideration are 1) to conduct targeted queries 

across a BiosynML repository to facilitate the identification of alternative producers of a biosynthetic 

gene cluster of interest, 2) evaluating the automated process of identifying the known pathways from a 

genome based on the architectural similarity and finally, 3) creating an overview of biosynthetic model 

diversity within a potentially extensive database of (predicted and characterized) pathways. 

3.3.1 Overview of datasets used in this study 

Two different datasets were used in this study to evaluate the performance of the BiosynML 

conceptual genome mining toolbox. The first one is the myxobacteria set, comprising 42 characterized 

biosynthetic gene clusters (see Table 2.4) as well as 71 myxobacterial genomes from various sequencing 

projects (few of them already published, many available only in-house).  

 

Figure 3.52: Result of protein alignment of the single-gene Myxoprincomide pathway from DK1622 (Myxococcus 
xanthus) and hit pathway from MxBonn171 (Myxococcus unclassified) with an overall similarity score of 68.2% 

Figure 3.53: Distribution of scaffolds across genomes used in this study 
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These include complete (27) and draft genomes with up to 200 scaffolds (44) as shown in Figure 

3.53. Including the draft genomes is important as the antiSMASH predictions of gene clusters from draft 

genomes necessarily produce annotated pathways which are partial or have some missing domains or 

even missing genes. Their inclusion in the test dataset thus could be of use to check the dependency of 

the conceptual genome mining method in matching and identifying biosynthetic pathways with 

incomplete information.  

In addition, genomes of Actinomycetes (277), Bacilli (77), Cynobacteria (63), Proteobacteria (47) 

and Serratia (3) were downloaded from NCBI and used as second dataset for the analysis. Focus was on 

covering a taxonomically diverse set of known and potential natural product sources. 

Further, the gene clusters were classified into PKS, NRPS, PKS-NRPS, TansAT-PKS and others based 

on the presence of core domains. For the myxobacteria dataset the majority of the gene clusters 

belonged to hybrid PKS-NRPS (490), NRPS (373), PKS (176), TransAT-PKS (52)  and rest of the gene cluster 

types predicted from antiSMASH are counted as others (254) (Figure 3.55). Similarly, analysing the 

distribution of gene clusters from the public collection resulted in more PKS (746), NRPS (884), hybrid 

PKS-NRPS (402), TransAT-PKS (31) and others (2036) (Figure 3.54). This observation suggests that the 

myxobacterial genomes produce a higher number of hybrid gene clusters (PKS-NRPS) compared to 

autonomous PKS and NRPS gene clusters. Since hybrid gene clusters contain both PKS and NRPS 

Figure 3.54: Distribution of gene clusters from public genome dataset according to their types. 



 

 

99 Results and Discussion 

modules, they support the production of even more structurally diverse products as opposed to pure 

PKS and NRPS compounds, which might be seen as a hint at myxobacteria following an evolutionary 

strategy to produce a large variety of natural products using multimodular NRPS, PKS and hybrid 

pathways. Notably, the genomes from the public collection have significantly more of the “other” cluster 

types than the core PKS and NRPS clusters compared to myxobacteria. 

3.3.2 Targeted genome mining:  identification of similar gene clusters 

In the context of conceptual genome mining with secondary metabolite gene clusters, a “targeted 

query” refers to the procedure of identifying all gene clusters inside Myxobase which contain pathways 

giving rise to matching functional, substrate and status properties. The functionality, substrate and 

status patterns of candidate pathways are compared to the query pathway.  

When the user creates a new “targeted query” job, the interface starts with initiating a search 

against complete database or restricted by genus and species which have been selected by the user and 

then the working thread performs the pathway matching tasks and outputs the results. The results 

consist of the information about hits which are scored to be similar or identical to that of the target 

query. As mentioned earlier in the methods section, the parameters for hit evaluation are overall 

combined into bitscore and e-value. The additional information delivered by the result interface depends 

Figure 3.55: Distribution of gene clusters from myxobacterial genome dataset according to their types. 
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on the database part which is the source of a hit, and generally comprises biosynthetic pathway dataset 

key/strain collection key/compound collection key as well as the name of the organism and compounds 

of both the query input and the hits, if previously assigned. 

As a simple test case, a “targeted query” was conducted to reveal biosynthetic pathways which are 

indicative for presence of the secondary metabolite cluster for Surfactin biosynthetic pathway (Figure 

3.56) from the Bacillus subtilis strain W168, which already served as a basic example in section 3.2.2.2. 

First this analysis the search parameters are chosen, setting substrate specificity weighting to 0.3, and 

using GBS as the method for pathway evaluation and additional domain penalty weighting of 0.3. The 

collinearity restriction is set to 0 (“off”) in order to avoid the chance of losing pathways which might be 

variants of the query pathway (similar domain composition but varied domain arrangements with 

different substrate specificity).  

Figure 3.56: Ball scheme representation of surfactin pathway from Bacillus subtilis strain W168, used in the 
following as an example for targeted genome mining with the BiosynML toolbox 

Figure 3.57: Results for surfactin biosynthetic pathway from Bacillus subtilis strain W168 queried against public 
genome dataset. The result highlighted in yellow is the “selflhit”. 
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The aim of this query is to verify the functions using a known and curated “textbook” pathway, aiming to 

retrieve all candidate pathways exhibiting similar architecture in the database. After the execution of the 

query, the results can be seen in hit summary tab as shown in Figure 3.57.  

According to Figure 3.58, several known pathways are identified which are expected as a result 

because of prior knowledge on the genome dataset from the biosynthetic repository. More specifically, 

the genome annotation in this case reveals the surfactin pathway leads to identical pathways used by 

various strains of Bacillus subtilis (Table 3.3) and different species of Bacillus (Table 3.4). The change in 

score is because of additional predicted domains that are present in the pathway and minor changes in 

the substrate specificity predicted by antiSMASH. There are also hits from Bacillus genus (Table 3.3) 

showing identical domain composition but with varied substrate specificity, which reduced the similarity 

score of the hits as we chose to give high priority to the substrate specificity. We emphasize here, that 

the pathways whose absolute domain arrangement and operon organization differs (Figure 3.59) from 

that of the query pathway (Table 3.5) but has similar composition and relative domain arrangement 

(Figure 3.59) are identified and have a decent similarity score, which are noticeable to a chemist for 

Figure 3.58: Biosynthetic pathway with near-identical domain composition and architecture (besides additional “?” 
domains). The box around the pathway represents query surfactin pathway from Bacillus subtilis strain W168 
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investigation. These pathways and could produce compound derivatives, some of which in practice may 

exhibit reduced toxicity and improved pharmaceutical properties. 

 

BSYN ID Strain key Organism Score 

BSYN5107 11739 W168 (Bacillus subtilis) 329.956 
BSYN5107 11734 QB928 (Bacillus subtilis) 329.756 
BSYN5144 11739 w168 (Bacillus subtilis) 329.756 
BSYN5084 11731 JS (Bacillus sp) 329.755 
BSYN5100 11733 PY79 (Bacillus subtilis) 329.755 
BSYN5166 11742 RO-NN-1 (Bacillus subtilis) 329.755 
BSYN5136 11738 6051-HGW (Bacillus subtilis) 329.755 
BSYN5122 11736 W23 (Bacillus subtilis) 329.755 

Table 3.3: Identical hits for Surfactin pathway from various strains 

BSYN ID Strain key Organism Score 

BSYN4836 11687 CAU_B946 (Bacillus amyloliquefaciens) 329.355 
BSYN4864 11690 UCMB5033 (Bacillus amyloliquefaciens) 329.154 
BSYN4854 11689 FZB42 (Bacillus amyloliquefaciens) 329.154 
BSYN4881 11692 UCMB5113 (Bacillus amyloliquefaciens) 329.154 
BSYN4872 11691 UCMB5036 (Bacillus amyloliquefaciens) 329.154 
BSYN4785 11681 CC178 (Bacillus amyloliquefaciens) 329.154 
BSYN4827 11686 AS43_3 (Bacillus amyloliquefaciens) 329.154 
BSYN4820 11685 LL3 (Bacillus amyloliquefaciens) 319.529 

Figure 3.59: Hit pathway with near-identical domain composition but apparently different operon organization 
and substrate specificities compared to the query surfactin pathway from Bacillus subtilis strain W168 
(represented in box) 
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BSYN ID Strain key Organism Score 

BSYN5183 11744 BMB171 (Bacillus thuringiensis) 269.595 
BSYN5190 11745 Bt407 (Bacillus thuringiensis) 269.595 
BSYN5222 11749 CT-43 (Bacillus thuringiensis) 269.595 
BSYN5261 11755 YBT-1518 (Bacillus thuringiensis) 269.595 
BSYN5250 11753 IS5056 (Bacillus thuringiensis) 269.595 
BSYN4991 11709 B4264 (Bacillus cereus) 269.595 
BSYN5241 11752 HD73 (Bacillus thuringiensis) 269.395 
BSYN5017 11714 G9842 (Bacillus cereus) 268.793 
BSYN5205 11747 HD-789 (Bacillus thuringiensis) 268.793 
    

Table 3.5: Hits for Surfactin pathway with similar domain composition but varied substrate specificity 

In fact this output compares well to the results typically obtained from sequence analysis, a finding 

which will be elaborated in more detail during performance evaluation. In contrast to the sequence 

analysis procedure, however, no access to the sequence data was necessary, and the user did not have 

to supply the protein sequence knowledge of representative domains as the starting point for analysis. 

Annotation is based instead on the pathway knowledge by applying it to the domain feature-predicted 

clusters deposited in the BiosynML biosynthetic pathway repository. For that, the raw data needs to be 

processed only once through antiSMASH, and the pathway content is then available inside the BiosynML 

repository (here: Myxobase) for multiple analyses independently done by researches. The interface is 

equipped with a function to visualize the ball scheme representation of the biosynthetic pathways where 

the researcher can analyse the disturbances in the similarity scores (Figure 3.58). 

Additionally, the interface can also plot distribution of similarity scores against all pathways from 

the database (Figure 3.60). The plot shows a sudden decline in the scores, which indicates the ability of 

the algorithm to distinguish pathways which have high confidence. A low confidence is assigned to 

pathways that disagree with modularity of domain composition and high confidence to those that 

comply with it. This provides the researcher an opportunity to identify the pathways that need more 

attention. However, the selection of the parameter values also affects the outcome of the result. So, 

researcher should follow-up analysing the results until the second jump in the plot, as some pathways 

are scored less because of various factors such as sequencing errors where the antiSMASH pipeline 

missed prediction of possible domains and errors in the prediction of substrate leads to lower score of 

BSYN4958 11702 1942 (Bacillus atrophaeus) 319.328 
BSYN4903 11694 TA208 (Bacillus amyloliquefaciens) 319.328 
BSYN4910 11695 XH7 (Bacillus amyloliquefaciens) 319.328 
BSYN4794 11682 DSM_7 (Bacillus amyloliquefaciens) 319.328 
BSYN5079 11729 SAFR-032 (Bacillus pumilus) 316.328 
BSYN5058 11724 DSM_13_=_ATCC_14580 (Bacillus licheniformis) 309.301 
BSYN5049 11723 9945A (Bacillus licheniformis) 309.301 

Table 3.4: Near-identical hits for Surfactin pathway from various species 
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the pathways even though the pathway is highly similar to that of the query pathway used for matching. 

A detailed result from the targeted results for Surfactin is presented in Appendix 6.1-Tab 

 

 

3.3.3 Architectural matching vs. sequence-based comparison  

Using Surfactin pathway as a query, the architectural matching succeeded to reveal pathways 

which are highly similar to that of the query pathway. It is of interest to check the similarity of the hits at 

sequence level, too – because this has potentially severe implications for the ability or inability of 

genome-mining approaches to reveal pathway similarity at high or low levels of taxonomic relatedness.  

To study this aspect further, the protein sequences of the high scoring gene pairs (query and target) are 

extracted from the BiosynML files that are stored in the BiosynML repository of Myxobase. These protein 

sequences from the query and hit are passed through MUSCLE aligner for multiple sequence alignment.  

Here, the query is Surfactin cluster obtained from W168 strain of Bacillus subtilis, the top hit 

reported by architectural matching was from the strain CAUB946 belonging to Bacillus amyloliquefaciens 

Figure 3.60: Distribution of bit scores for Surfactin pathway across all the pathways in the database. The grey box 
denotes confidence interval of the scores where the domain composition of the pathways starts varying 
significantly. 
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was chosen. The best hits that have better scores than pathway from CAUB946 are from different strains 

of Bacllius subtilis, so, we chose a pathway from a different species but of the same genus Bacillus.  

The query Surfactin cluster has 4 genes that are matched against 7 genes of CAUB946, out of 

which 4 are reported as hits. The protein sequences of the high scoring pairs are aligned and the results 

are as shown in Table 3.6. 

Query W168 (Bacllius subtilis) Hit CAUB946 (Bacllius 
amyloliquefaciens) 

Similarity 

(%) 

Identity 

(%) 

  

83.54 72.09 

  

83.41 73.84 

  88.89 83.72 

sfrA4 

 

BACAU_0308 

 

83.95 75.31 

Table 3.6: Protein sequence similarity of genes between query pathways from W168 (Bacllius subtilis) and hit 
pathway from CAUB946 (Bacllius amyloliquefaciens)  

As the pathway from CAUB946 shows similar domain compositions with exact substrate 

specificities, the sequence analysis also resulted in high similarity.  
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Query W168 (Bacllius 
subtilis) 

Hit B4264 (Bacillus cereus) Similarity (%) Identity (%) 

  

54.7 35.4 

 

 

55.5 34.2 

 

 52.3 32.5 

 

 55.9 34.9 

sfrA4 

 

 

 

 

55.3 30.5 

Table 3.7:  Protein sequence similarity of genes between query pathway from W168 (Bacllius subtilis) and hit 
pathway from B4264 (Bacillus cereus). The red boxes represent the modules that are distributed differently across 
genes, still the full complement of domains could in principle bring about a Surfactin-like molecule. 

Another hit which can be a potential variant of Surfactin was chosen to check the sequence 

similarity between genes. A hit from strain B4264 from Bacillus cereus was chosen to show that the 

specificities of the pathway vary with that of the query (Table 3.7).  The sequence similarity between the 

query and hit shows very low score while the overall domain composition of the pathway looks to be 

similar, albeit with altered distribution of modules across genes and varying substrate specificity. 
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Hits of such type are very easy to be missed by chemist using sequence based analysis as the 

sequence similarity results in very low scores for genes in query pathways. The query gene srfA1 has a 

similarity of 54.7% with BCB4264_A2463. The target gene BCB4264_A2463 partially is also a hit for query 

gene srfA3 has a similarity of 55.5%,  srfA2 has two hit genes BCB4264_A2461 and BCB4264_A2462 

having a similarity of 52.3% and 55.9% respectively and query gene srfA4 has a hit to gene 

BCB4264_A2461 of similarity 55.3% (Figure 3.61). 

We furthermore constructed a cladogram for the hits based on the similarity scores obtained 

through architectural matching. Each leaf of the cladogram displays the label that provides a unique 

biosynthetic pathway identification key (BSYN ID) as well as the strain, genus and species. Considering 

the pathways which are reported as hits compared to the best possible score (score of self-hit), yields 

five distinct groups of “Surfactin-like” candidate gene clusters.  

A clade is a set of closely related pathways which is represented as a subtree as shown in Figure 

3.62. The hit pathways which resembles to Surfactin pathway in terms of both domain functionality and 

specificity are grouped together as a clade (Figure 3.62 a), the hit pathways which have high similarity in 

domain functionality but changes in predicted substrate specificity are grouped as another clade (Figure 

3.62 b) where e.g. the leucine-activating A-domain  was  replaced with isoleucine-specific A-domain. This 

variant of surfactin with isoleucine substitution was in fact already characterized and is found in Norine 

database (130). The pathways which have high similarity in the functionality but have more different 

substrate specificities are also roughly grouped together (Figure 3.62 c, Figure 3.62 d). These clades form 

Figure 3.61: Ball scheme representation of (a) Surfactin pathway from W168 (Bacllius subtilis) (b) hit pathway 
from B4264 (Bacillus cereus). The target gene BCB4264_A2463 has hits with both query genes srfA1 and srfA3, 
query gene srfA2 has two hit target genes BCB4264_A2461 and BCB4264_A2462 and query gene srfA4 has a hit 
with target gene BCB4264_A2461 
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subclades to the difference in the scores obtained because of presence of additional domains in the 

pathways which are penalised. Clade from Figure 3.62 (e) is an example for heterogeneous clade as the 

domain composition disintegrates with respect to the query domain composition. 

 Finally, to analyse the behaviour of the conceptual method with small gene clusters, the 

Myxochelin pathway from strain Sga15 (Stigmatella aurantiaca) was used (131). This pathway represents 

a challenging test case since it has merely a handful of distinct domains, as opposed to the large set of 

domains comprised in the pathway models used in previous examples. In that respect, myxochelin 

represents the “borderline” case for using the conceptual genome mining approach in this study. 

The method reported nine hit pathways from the public genome dataset which resembles 

myxochelin pathway. Among these, there are five hits which have identical domain composition as well 

as substrate specificity (Figure 3.63 a) and four pathways with deviating domain composition and 

Figure 3.62: A cladogram of the pathway established based on the scores obtained from architectural matching of 
Surfactin pathway.  a) Pathways with similar domain functionality and substrate specificity. b) Pathways with 
similar domain functionality and minor deviation in the substrate specificities. c, d) Pathways with similar domain 
functionality with deviations in the substrate specificities. e) Pathways with disintegrating similarity between 
domain functionality as well as substrate specificities. 
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deviations in the substrate specificities (Figure 3.63 b) along with missing KR domain (which is 

supposedly inactive and has no assigned role in the myxochelin biosynthesis ). The pathways which are 

below the confidence interval have overall similar domain composition (small NRPS cluster with terminal 

Red domain) but deviates with substrate specificities (Figure 3.63 c) along with missing and additional 

domains.  

  

 

 

 

 

 

On analysing the protein sequence similarity of best hit from strain DSM44728 (Stackebrandtia 

nassauensis) for Myxochelin pathway gave notable results (Table 3.8). The query gene mxcG has only a 

similarity of 47.4 % with the target gene Snas_4519, the query gene mxcE has similarity of 47.4 % with 

the target gene Snas_4516 and the query gene mxcC has 64.1% similarity with target gene Snas_4514. 

 

 

 

 

 

Figure 3.63: Bitscore plot for Myxochelin genecluster. (a) A plausible myxochelin pathway from strain DSM44728 
(Stackebrandtia nassauensis) which is a near identical hit. (b) A pathway from strain UCBPP-PA14 (Pseudomonas 
aeruginosa) showing deviations in the substrate specificity, but retaining the “C-A-PCP-Red” arrangement as in 
the myxochelin pathway and also harbouring a dhb-activating A-domain. (c) A representative pathway from 
strain EAI5 (Mycobacterium tuberculosis) that has deviations in the substrate specificities, additional and 
missing domains and not preserving the myxochelin-typical four domain NRPS gene. 
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Considering another top hit from strain Soce56 (Sorangium cellulosum) for analysing protein 

sequence similarity showed convincing agreement with the query myxochelin pathway (Table 3.9). The 

query gene mxcG has similarity of 91.6% with the target gene ctg1_orf09037, the query gene mxcE has 

similarity of 78.9 % with the target gene ctg1_orf09020 and the query gene mxcC has 79.8% similarity 

with target gene ctg1_orf09024.  

 

 

 

 

 

 

 

 

 

 

 

Query  Sga15 (Stigmatella 
aurantiaca) 

Hit DSM44728 
(Stackebrandtia nassauensis) 

Similarity (%) Identity (%) 

 
 

47.4 36.1 

 

 

67.8 56.4 

 

 

64.1 51.6 

Table 3.8: Protein sequence similarity of genes between query pathways Sga15 (Stigmatella aurantiaca) and hit 
pathway from DSM44728 (Stackebrandtia nassauensis) 
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Analysing the similarity at protein level with a hit from strain UCBPP-PA14 (Pseudomonas 

aeruginosa) which has partially similar domain composition but deviations in predicted substrate 

specificities (Table 3.10), the query gene mxcG has 41.4% similarity with target gene PA14_54920. But 

the query gene mxcE which has a single standing, dhb-activating “A” domain showing 68.6% similarity 

with hit gene PA14_54940. The mxcC gene coding for (inactive/unnecessary) KR domain is not found in 

the hit pathway. 

 

 

 

 

 

 

 

 

 

 

Query Sga15 (Stigmatella 
aurantiaca) 

Hit Soce56 (Sorangium 
cellulosum) 

Similarity (%) dentity (%) 

 
 

91.6 87.1 

 

 

78.9 67.9 

 
 

79.8 68.2 

Table 3.9: Protein sequence similarity of genes between query pathways Sga15 (Stigmatella aurantiaca) and hit 
pathway from Soce56 (Sorangium cellulosum)  
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Query Sga15 (Stigmatella 
aurantiaca) 

Hit CBPP-PA14 (Pseudomonas 
aeruginosa) 

Similarity (%) Identity (%) 

 
 

40.91 25.3 

  

68.6 52.2 

Table 3.10: Protein sequence similarity of genes between query pathways Sga15 (Stigmatella aurantiaca) and hit 
pathway from CBPP-PA14 (Pseudomonas aeruginosa) 

On the basis of examples provided in this section, the targeted query module within the BiosynML 

conceptual genome mining framework is able to annotate identical, near-identical and similar to remote-

similar pathways from the database of candidate pathways on the basis of architectural similarity in 

terms of domain compositions, domain arrangement and associated meta data. Some of the reported 

hits might have been achieved also on the basis of sequence similarity (e.g. using blast), however with 

the inherent difficulty of choosing an appropriate sequence stretch and determining the similarity 

threshold, a problematic decision especially in light of similar gene clusters appearing in phylogenetically 

distant taxa. This difficulty is illustrated by the above examples of althiomycin, surfactin and myxochelin. 

In the case of myxochelin, a top hit pathway from strain DSM44728 (Stackebrandtia nassauensis) 

was detected which has discouraging low protein similarity compared to the myxobacterial pathway, but 

has the identical domain composition as well as substrate specificities. It is not known whether this 

species is able to produce myxochelin, but the conceptual genome mining result strongly suggest it could 

be a producer of a structurally very similar molecule. On the contrary, observing the protein similarity of 

the top hit pathway from myxbacterial strain Soce56 (Sorangium cellulosum) showed high similarity with 

the genes in the Stigmatella myochelin pathway and thus would have been easily identified by sequence 

analysis, too. Since targeted query performs search on architectural level, these myxochelin candidates 

from different taxa were detected and reported; decreasing the allowed “substrate specificity” and 

“additional domain penalty” tolerance could possibly also report more hits above the confidence interval 

generated, but at the cost of expecting an increased false discovery rate in terms of deviations in 

substrate specificities and  functionality. These incidents were investigated in-detail by manual 

inspection of ball scheme represented clusters generated in the descending order of bit-score, and it 

depends on the specific application whether it is desired to include less specific hits in the result set. 
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Using a biosynthetic pathway as an input, the targeted genome mining module reports on the 

occurrence of high-scoring pathways with highly similar domain compositions and arrangements, 

regardless whether these belong to a known compound or to an unidentified feature. Output is a set of 

pathways that have highly similar domains architecture ordered in the decreasing order of bit scores 

obtained and thus can be used to rapidly identify alternative producers for the similar pathway from a 

large collection of genomic datasets. The special importance of this analysis is due to the fact that the 

genomics-guided biosynthetic pathway discovery strategies may reveal some novel pathways for 

compounds which are initially only known from the respective discovery strain. When an instant 

overview of potential alternative sources, based on the presence of the underlying pathway, is easily 

available using the targeted query, then chances to purify and structurally elucidate the novel compound 

using an alternative producer are much increased. In a different scenario, the targeted query result may 

highlight a genome-sequenced strain as a producer of the novel compound, using a hypothetical 

assembly line as query input; in that case the result paves the way to the new assignment of a previously 

“orphan” biosynthesis gene cluster to the metabolite it produces. 

Overall, the comparison of biosynthetic pathways across the BiosynML pathways repository, 

facilitated here by the targeted conceptual query tool in Myxobase, should provide a powerful method 

for the natural product researcher for the discovery and identification d of biosynthetic gene clusters. 

 

3.3.4 Genome annotation and dereplication analysis of biosynthetic gene clusters 

Genome annotation refers to the following procedure: using domain properties in a genome 

dataset stored in Myxobase, for each of the biosynthetic pathway in a given genome a query is executed 

against all the pathways in the database. A matching is performed of the candidates and hits are 

evaluated using function, substrate specificity and status deviation as criteria.  

The framework significantly enhances the search of conceptual information stored in the 

database by integrating meta information such as function, specificity and status of the domains in the 

searches. A genome sequence submitted to the procedure is pathway-wise evaluated for high scoring 

hits in the known pathways library and gene clusters are auto-assigned to pathways showing plausible 

architectural similarity. This meta information is used by search and match algorithms which outputs the 

result both in the form of a table showing scores and hits and bitscore plot showing the graphical 

representation of distribution of hits with reference to each pathway from genome queried. The bitscore 

plot generates a confidence interval based on the self-hit score, the best possible score for the query 

pathway; the hits above the confidence interval can be recognised as the clusters which are identical or 
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highly similar to that of the query cluster. When these hit clusters above the confidence interval are 

linked to the compound information of the characterized pathway in the library, any new genome-

encoded pathway used as a query could be tentatively assigned to that metabolite, too.  

As a test case for the genome annotation module, we used datasets from the myxobacterial 

strains DK1622, Cmc5 and Soce56.  A function was added to the Myxobase interface, which imports the 

data from the .xml file delivered by the antiSMASH annotation pipeline into the database. All the 

annotations from the dataset are stored in the Myxobase biosynthetic pathway repository with a unique 

pathway key. For dataset from DK1622 some of the pathways namely Myxochromid, Myxoprincomide 

and Myxovirescin are manually curated using BiosynML plugin for Geneious such that the reference 

library contained both, curated and non-curated pathways.  

The conceptual genome auto-annotation for the following example is triggered with these query 

settings: selection of genome set to be annotated, substrate specificity penalty (0.3), additional domain 

penalty (0.3), and search against all the pathways in the database. The information content is in principle 

similar to that of the targeted query results. 

Observing the results of conceptual genome annotation for strain DK 1622 (Table 3.11), six known 

pathways which are Myxovirescin, Myxochelin, Myxochromid, DKxanthen, Myxalamid and 

Myxoprincomide are identified which are expected as a result because of prior knowledge on the 

pathways from the M. xanthus genome (85, 132), which was used to create the dataset. These known 

pathways from the DK 1622 genome were reliably assigned by the algorithm. 
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Query ID Hits above 

confidence 

interval 

Bitscore  (best hit 

score/ self-hit 

score) 

Assignment to 

pathway (number of 

domains) 

Hits in suborders (frequency) 

BSYN109 0    

BSYN110 

 

 

23 49.9/49.9 (100%) Uncharacterized Short 

NRPS-PKS (6) 

Cystobacterineae (20), 

Sorangiineae (2) and 

Nannocystineae (2) 

BSYN111 

 

2 176.2/176.2 (100%) Uncharacterized NRPS 

(21) 

Cystobacterineae (3)  

BSYN112 

10 66.8/66.8 (100%) Uncharacterized Short 

NRPS (8) 

Cystobacterineae (8) and 

Sorangiineae (3) 

BSYN114 

4 201.2/201.6 (99.8%) Uncharacterized 

NRPS-PKS (24) 

Cystobacterineae (5) 

BSYN115 

 

1 541.4/572.1 (94.6%) Uncharacterized long 

NRPS-PKS  (68) 

Cystobacterineae (2)  

 

BSYN116 

 

42 56.9/58.4 (97.4%) Myxochelin (7) Cystobacterineae (35) and 

Sorangiineae (7) 

BSYN117 2 313.8/319.5 (98.2%) Myxoprincomide (38) Cystobacterineae (2) 

BSYN118 2 622.8/639.5 (97.4%) Myxovirescin (76) Cystobacterineae (2) 

BSYN119 

1 239.1/243.7 (98.1%) Uncharacterized 

NRPS-PKS  (29) 

Cystobacterineae (2) 

BSYN120 10 226.8/226.8 (100%) Myxochromid (27) Cystobacterineae (10) 

BSYN121 10 285.8/285.8 (100%) DKxanthene (34) Cystobacterineae (10) 

BSYN122 

1 403.7/403.7 (100%) Uncharacterized long 

NRPS-PKS  (48) 

Cystobacterineae (2) 

BSYN123 9 386.8/386.8 (100%) Myxalamid (46) Cystobacterineae (9) 

BSYN124 

1 252.1/252.1 (100%) Uncharacterized NRPS  

(30) 

Cystobacterineae (3) 

BSYN125 

15 49.7/49.9 (99.5%) Uncharacterized short 

PKS  (6) 

Cystobacterineae (15) 

Table 3.11: Results of genome annotation for DK 1622 using architectural matching of domains functionality, 
substrate specificity and status.  
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According to the outcome of this analysis, strain Myxococcus xanthus DK1622 has no unique 

secondary metabolite pathways, as each biosynthetic gene cluster is found in at least two other 

myxobacterial strains. This picture may however at least in part because of a fair number of additional 

Myxococcus genomes in the test database, implicitly increasing the chance/risk to encounter 

evolutionary “close” genomic content. 

 

Genome wide detection and identification of known pathways 

The availability of the BiosynML matching method made it possible to construct a dereplicated 

library for biosynthetic pathways, allowing to highlight known pathways from newly sequenced 

genomes, thereby revealing the unknown pathways which might be of interest to the chemist. The 

BiosynML framework efficiently compares the predicted pathways from a genome and assigns 

compound information to the highly similar characterized pathways identified as a hit which are in 

general found indicated above the confidence interval. This automated analysis requires very little 

human interaction to identify the known pathways from the newly annotated genome dataset.  As an 

example DK1622 (Myxococcus xanthus), Cm c5 (Chondromyces crocatus) and So ce56 (Sorangium 

cellulosum) genomes were used to test the functionality and ability of the algorithm to identify the 

known pathways by comparing them to the characterized pathways stored in the database. The queries 

are executes using GBS algorithm, Substrate specificity of 0.3 and domain penalty of 0.3. 

The algorithm identified the known clusters of Myxovirescin, Myxochelin, Myxochromid, 

DKxanthen-534 and Myxalamid clusters from DK1622 genome, Crocacin, Chondramid, Thuggacin and 

Ajudazol, Chondrochloren clusters from Cmc5 genome and Etnangien, Chivosazol and Myxochelin 

clusters from Soce56 genome as expected (Table 3.12). For example, querying myxochelin pathway from 

strain DK1622 identified the similar pathway from Soce56 with high confidence (Figure 3.64). Bitscore 

plots for the respective pathways from the three genomes can be seen in Appendix 6.2.   
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This auto recognition process facilitates the rapid identification of strains that has great potential to 

produce novel secondary metabolites as well as the strains that produce known compounds which has 

the potential for improving the process of natural product pathway characterization to a great extent. 

For example, querying myxochelin pathway from strain DK1622 identified the similar pathway from 

Soce56 with high confidence, together with a high number of additional myxochelin pathways from 

other strains (Figure 3.64). 

With development in the sequencing technologies, the secondary metabolite gene cluster 

information is increasing rapidly, and there is a great demand for a medium which can store the derived 

information efficiently, such that this can be accessible and used by researchers in a collaborative 

manner. A database system is the logical medium for this purpose, but few such specialized systems exist 

for research in the field of natural products. In that respect the Mxbase system represents a novelty, by 

integrating both chemical compound and biological data management and additionally providing the 

tools for analytical workflows in one database-driven environment for natural products research. 

Genome Cluster acknowledged 

DK1622 Myxovirescin 

Myxochelin  

Myxochromid 

DKxanthen-534 

Myxalamid  

Myxoprincomide 

Cmc5 Crocacin 

Chondramid 

Thuggacin 

Ajudazol  

Chondrochloren  

Soce56 Etnangien 

Chivosazol 

Myxochelin  

Table 3.12: Overview of known pathways recognized by BiosynML framework algorithm from genomes DK1622, 
Cmc5 and Soce56. Here, true negatives are the known pathways which are not identified by the algorithm and false 
positives are the hits reported by the algorithm as known pathways which in reality it is not. No such mis-
assignments occurred.   
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It should also be highlighted that the research questions which the tools developed here are able to 

answer, are in fact quite significant for the novel biosynthetic gene clusters discovery.  

The genome wide annotation is used to classify all known and unknown clusters from a genome 

which are stored in the database. In this case, the input is the full complement of pathways in a genome 

dataset. Each pathway features contained therein is compared to clusters stored in the database using 

the annotation properties, and matching is done using the chosen algorithm in order to confirm a 

plausible hit. Thus, this function can highlight pathways, which are to date unidentified and are actually 

likely to make the containing strain a producer of novel compounds.  

The results obtained using the newly developed tools are promising and routine operation of the 

analysis framework is feasible. For reasons of computational performance matching and scoring 

algorithms are placed on the Mxbase server that performs the calculations through a job submission 

system which leaves the interface useable for the user.  

Figure 3.64: Myxochelin pathway from strain DK1622 query resulted in the identification of a hit pathway 
from Soce56 (blue circle) with high confidence. The plot also reveals that the myxochelin pathway is 
ubiquitious in genomes of the suborders Cystobacterinaea and Sorangineae but not in the Nannocystineae 
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 Although the tools for matching are server-side functions, with the increase in the size of 

biosynthetic pathway repository, the tools require relatively high computational power for performing 

the matching functions which make the users wait for long time to obtain results.  In order to reduce the 

waiting time a future version could perform parallelized processing of the pathway comparison. 

Implementing the parallelized version of mining tools on a server-side application would surely increase 

the effective usage of the tools. The generalized workflow of the BiosynML-enhanced genome-mining 

framework is illustrated in the Figure 3.65. 

 

3.3.5 Exposing the diversity of secondary metabolite pathways in myxobacterial genomes 

The present understanding of the diversity of secondary metabolic pathways in myxobacterial 

strains are mostly based on the studies concentrated on the biosynthesis of compounds linked to PKS 

and NRPS pathways. In this study, we performed a large-scale analysis of myxobacterial biosynthetic 

pathways by combining the conceptual information of pathways obtained from the biosynthesis of 

compounds screened from myxobacterial strains as well as the genomic data of myxobacterial strains 

available in the Myxobase biosynthetic pathway repository. This suborder-level investigation allowed 

identification of biosynthetic pathways which are restricted to suborder(s) and the pathways which are 

distributed across all the suborder genomes. 

Figure 3.65: An overview of BiosynML enhanced genome-mining framework 
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The gene clusters from the genomes along with the characterized pathways were analysed using 

GBS methods and results later sorted based on the originating suborder. Due to the differences in the 

quality of the genomes used in this study, analysis in the following is carried out with relaxed 

parameters. This analysis should be repeated at a later timepoint using more stringent parameters with 

genomes of good quality. 

Analysing the distribution of characterized clusters (Figure 3.66) among the suborders, 34 pathways 

are observed to be suborder specific among which 15 pathways exclusively belong to Cystobacterineae 

(40 genomes) encoding gene clusters for NRPS (2), PKS (4), NRPS-PKS (8) and trans-AT PKS (1), 19 

pathways belonging exclusively to Sorangiineae (27 genomes) encoding gene clusters for NRPS (1), PKS 

(3), NRPS-PKS (10) and trans-AT PKS (5) and a single pathway (NRPS-PKS) was found to be suborder 

specific in Nannocystineae (4 genomes). The latter is the biosynthetic pathway for Nannochelin, the gene 

cluster characterized from a member of Nannocystineae. There are two pathways shared between 

Cystobacterineae and Sorangiineae suborders, these are the pathways for myxochelin and tubulysin. 

Myxochelin is known as an iron chelator produced by all species of Cystobacterineae and Sorangiineae 

analysed to date, albeit mass spectrometry data indicate that production titers generally depend largely 

on iron supply in the respective cultivation. Tubulysin production, however, has so far only been 

attributed to strains from Cystobacterineae suborder (133), and Myxobase contains no mass 

spectrometric evidence that strain So ce836 - which is suggested by the analysis here (see Figure 3.67) to 

contain a tubulyin gene cluster – actually produces the compound. Close inspection of the candidate 

Figure 3.66: A Venn diagram showing the distribution of previously 
characterized gene clusters with known products, from suborders 
Cystobacterineae (red), Sorangiineae (green and Nannocystineae 
(blue)). The number of genomes in each suborder was shown in 
brackets. 
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cluster from that strain, however, reveals an unusual domain arrangement where an A-domain seems to 

have been duplicated (Figure 3.67 c). Thus, it could be conceived that the gene cluster might have 

become non-functional as consequence of this mutation, which might explain non-production of 

tubulysins despite the fact that the candidate gene cluster must be clearly classified as a tubulysin 

pathway based on overwhelming architectural similarity. Another explanation may be the production of 

a tubulysin analogue which is not detected in our target screening for MS data. In fact the tubulysin 

pathway has been shown before to produce a large diversity of tubulysin congeners (134). 

 

 

 

 

 

 

 

 

Figure 3.67: Ball scheme representation of tubulysin pathway from And48 (Pyxidicoccus fallax) and hits reported. 
(a) Tubulysin (query) pathway from And48 (Pyxidicoccus fallax) (b) hit pathway from Cbv34 (Cystobacter velatus) (c) 
hit pathway from Soce836 (Sorangium cellulosum) (d) hit pathway from MCy9101 (Cystobacter unclassified) 
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An overview of the pathways found in the available myxobacterial genomes which are plausibly 

similar to characterized myxobacterial pathways can be seen in Tables 3.13 and 3.14. 

  

 Genomes Total 
pathways 

Average 
pathways 
per 
genome 

#Characterized 
pathways 

NRPS PKS Hybrid 
NRPS 
PKS 

Trans 
AT-
PKS 

Myxobacteria 71 1347 18.9 42 6  7  18  6  

Cystobacterineae 40 889 (66%) 22.2 15 (1.7%) 2  4 8 1 

Sorangiineae 27 419 
(31.1%) 

15.5 19 (4.5%) 1  3 10 5 

Nannocystineae 4 39 (2.9%) 9.75 1 (4%) 1     

Shared between 
Cystobacterineae 
and Sorangiineae 

67   2 2    

Table 3.13:Overview table for characterized pathways types distribution 

 

Among the characterized pathways, suborder specific secondary metabolite pathways  occurred in 

40 cystobacterinae at following frequency such as Myxochromide  (in 10 genomes) (Figure 3.68), 

DKxanthene (in 10 genomes),  Myxalamid (in 9 genomes), Myxothiazol (in 7 genomes),  Althiomycin (in 4 

genomes), Aurafuron (in 3 genomes), Rhizopodin (in 3 genomes), Cystobactamide (in 3 genomes), 

Myxovirescin (in 2 genomes), Myxoprincomide (in 2 genomes), Pyxidienon (in 1 genome), Phenalamid (in 

1 genome), Stigmatellin (in 1 genome), Melithiazol (in 1 genome) and Myxovalargin (in 1 genome).  

Other characterized pathways, suborder specific secondary metabolites occurred in 27 sorangiineae at 

following frequency such as  Lipothiazole (in 3 genomes) (Figure 3.70), Epothilon (in 2 genomes), 

Microsclerodermin (in 1 genome), Disorazol (in 1 genome), Etnangien (in 1 genome), Chondrochloren (in 

1 genome), Carolacton(in 1 genome), Chivosazol (in 2 genomes),  Chondramide (in 2 genome), Ajudazol 

(in 1 genome), Ripostatin (in 1 genome), Ambruticin (in 1 genome), Thuggacin (in 1 genomes),  Leupyrrin 

(in 1 genome), Pellasoren (in 1 genome), Crocacin (in 1 genome), Crocapeptin (in 1 genome) and 

Sorangicin (in 1 genome) are observed in suborder Sorangiineae. Nannochelin (in 1 genome) (Figure 

3.69) was only observed in Nannocystineae suborder. 
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The pathways appearing in multiple suborders Cystobacterineae and Sorangiineae are Myxochelin 

(42) (Figure 3.71) and Tubulysin (3) (Figure 3.67); regarding the latter see comment above 

 

 

 

 

 

 

Figure 3.68: Ball scheme representation of Myxochromide, a suborder specific gene cluster found in 10 
Cystobacterineae genomes 

Figure 3.69: Ball scheme representation of Nannochelin, a suborder specific gene cluster found exclusively in 
Nannocystineae genome 

Figure 3.70: Ball scheme representation of Lipothiazole A, a suborder specific gene cluster found in 3 Sorangiineae 
genomes. 
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 Due to the bad prediction of pathway from DW4/3 genome, the hit pathway expected for Dawenol 

was not found in the results set (Figure 3.72). Note that the characterized pathways (marked with * in 

Table 3.14) that are not found by the algorithm are missing simply because of the current unavailability 

of genome sequences with sufficient quality to be included in the analysis.  

As a special case, the Soraphen gene cluster produced three more unspecific hits along with the 

specific hit. This is due to high similarity in domain composition by combining domains from genes 

(Figure 3.73). These pathways actually lack precise domain architecture compared to the query Soraphen 

pathway. Since, the algorithm performs matching based on the set intersection, the unspecific hits were 

scored high with the parameter settings used (substrate specificity (0.3), additional domain penality (0.1) 

and collinearity (0)). The latter was chosen because of the presence of many draft genomes in the test 

dataset where the information is scattered across up to 200 scaffolds. However, with the increase in the 

Figure 3.72: Dawenol pathways from DW4/3 genome. (a) Curated pathway (b) predicted pathway from 
antiSMASH 

Figure 3.71: Ball scheme representation of Myxochelin, the most common characterized pathway appeared in 48 42 
myxo genomes, both in Cystobacterineae (35) and Sorangiineae(7) but not on Nannocystineae. 
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parameter values (substrate specificity (0.5), additional domain penality (0.6) and collinearity (0.7)) 

resulted in a single hit for soraphen which has similar domain architecture. 

 

 

Gene cluster Number of 
Occurrences 

Suborders Type 

Argyrin  (*) 0 Cystobacterineae nrps 

Vioprolide (*)  0 Cystobacterineae nrps 

Dawenol (**) 0 Cystobacterineae t1pks 

Spirangien (*) 0 Sorangiineae t1pks 

Hyafurone (*) 0 Cystobacterineae t1pks-nrps hybrid 

Melithiazol 1 Cystobacterineae t1pks-nrps 

Myxovalargin 1 Cystobacterineae nrps 

Phenalamid  1 Cystobacterineae t1pks-nrps 

Pyxidienon 1 Cystobacterineae transatpks-otherks-nrps 

Nannochelin 1 Nannocystineae nrps 

Stigmatellin 1 Cystobacterineae t1pks 

Ajudazol 1 Sorangiineae t1pks-nrps 

Ambruticin 1 Sorangiineae t1pks 

Carolacton  1 Sorangiineae transatpks-nrps-t1pks 

Chondrochloren A 1 Sorangiineae t1pks-nrps 

Crocacin 1 Sorangiineae nrps-t1pks 

Crocapeptin 1 Sorangiineae nrps 

Disorazol 1 Sorangiineae transatpks-nrps 

Figure 3.73: Unspecific hit (b) from strain which has similar domain composition to that of the query soraphen 
pathway (a), albeit different domain arrangement on closer inspection. 
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Etnangien 1 Sorangiineae trans-AT PKS 

Leupyrrin 1 Sorangiineae nrps-t1pks 

Pellasoren 1 Sorangiineae nrps-t1pks 

Ripostatin 1 Sorangiineae t1pks-t2pks 

Sorangicin 1 Sorangiineae transatpks 

Thuggacin 1 Sorangiineae t1pks-nrps 

Microsclerodermin 1 Sorangiineae t1pks-nrps 

Soraphen A(***) 1 Sorangiineae t1pks 

Myxoprincomide  2 Cystobacterineae NRPS-PKS 

Myxovirescin  2 Cystobacterineae PKS-NRPS 

Chivosazol  2 Sorangiineae nrps-t1pks 

Chondramide 2 Sorangiineae t1pks-nrps 

Epothilon 2 Sorangiineae t2pks-transatpks 

Tubulysin 3 Cystobacterineae 

and Sorangiineae 

nrps-t1pks 

Cystobactamide 3 Cystobacterineae nrps 

Rhizopodin  3 Cystobacterineae transatpks-nrps 

Aurafuron 3 Cystobacterineae t1pks 

Lipothiazole 3 Sorangiineae nrps-t1pks 

Althiomycin 4 Cystobacterineae t1pks-nrps 

Myxothiazol 7 Cystobacterineae t1pks 

Myxalamid 9 Cystobacterineae nrps-t1pks 

Myxochromide 10 Cystobacterineae NRPS-PKS 

DKxanthene  10 Cystobacterineae PKS-NRPS 

Myxochelin 42 Cystobacterineae 

and Sorangiineae 

nrps 

Table 3.14: Distribution of characterized pathways between suborders. (*) these pathways belong to metabolites 
produced by strains for which genome data was not present in the database, (**) the hit pathway expected for 
Dawenol has missing several domains and mispredicted domains due to which the pathway could not be found. 
(***) increase in parameter values removed unspecific hits from Soraphen which appeared because of their high 
similarity in domain composition but lack similarity in domain architecture. 
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For most of the genome-sequenced myxobacterial strains the Myxobase contains mass 

spectrometric evidence from which production of the metabolites connected to the gene clusters in its 

genome can be confirmed (or disproved). As an example, strains revealed to contain a Rhizopodin gene 

cluster based on the present analysis (Table 3.14) could be shown subsequently to produce this 

metabolite based on high-resolution LC-MS measurements. Similarly, existing LC-MS data (not shown 

here; information from Myxobase and personal communication, Daniel Krug) underpin the production of 

suborder-specific compounds by at least one representative of the respective suborder, so that we can 

regard the above analysis of non-overlapping pathways as a realistic picture.  

However, specific gene clusters were also found in strains which have not been known as producers 

of the respective candidate compound to date. In such cases the absence of compounds in LC-MS results 

could be because of the strain not expressed the genes for the pathway under laboratory conditions or 

because of degradation in the cultivating media. The cluster may also be defective, such as in the case of 

tubulysin (see above), the only other overlap seen between Sorangiineae and Cystobacterineae in this 

study besides myxochelin. This low overlap regarding known characterized pathways should be seen in 

light of only 70 currently available myxobacterial genomes.   
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On analysing the distribution of uncharacterized biosynthetic gene clusters from all the available 

genomes (Figure 3.74), resulted in suborder specific gene clusters belonging to Cystobacterineae (698) 

encoding gene clusters for NRPS (217), PKS (63), NRPS-PKS (295), Trans-AT-PKS (32), Trans-AT-PKS- NRPS 

(7) and Others (95) pathways. Similarly, Sorangiineae (304) contains gene clusters encoding for NRPS 

(80), PKS (59), NRPS-PKS (96), Trans-AT-PKS (8), NRPS-Trans-AT-PKS (8) and others (53) pathways. 

Nannocystineae (16) contains very few clusters encoding gene clusters for NRPS (4), PKS (3), NRPS-PKS 

(8) and Trans-AT-PKS (1) pathways (Table 3.15). 

Several of these uncharacterized gene clusters are shared between suborders. There are 184 

clusters belonging to both Cystobacterineae and Sorangiineae encoding gene clusters for NRPS (60), PKS 

(37), NRPS-PKS (34), Trans-AT-PKS (1) and others (52). There are fourteen gene clusters that belong to 

Cystobacterineae and Nannocystineae encoding gene clusters for NRPS-PKS (13), PKS (9) and others (1). 

There are four gene clusters belonged to Nannocystineae and Sorangiineae, all encoding gene clusters 

for NRPS-PKS (5), PKS (1) and others (6) pathways. Among all, there are only seventy four pathways 

observed in all the three suborders which potentially comprise the gene clusters for the “myxobacterial 

core secondary metabolome”, encoding gene clusters for NRPS (4), PKS (5), NRPS-PKS (19), and Others 

(46). 

Figure 3.74: A Venn diagram showing the distribution of 
uncharacterized gene clusters from suborder Cystobacterineae (red), 
Sorangiineae (green) and Nannocystineae (blue). 
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 Genome

s 

Total 

pathway

s 

Average 

pathway

s per 

genome 

Number of 

Uncharacteriz

ed pathways 

Average 

uncharacteriz

ed clusters per 

genome 

NRP

S 

PK

S 

Hybri

d 

NRPS 

PKS 

Tran

s AT-

PKS 

Myxobacteria 71 1347 18.9 1305 18.3     

Cystobacterinea

e 

40 889 

(66%) 

22.2 698 17.45 217  63 295 28 

Sorangiineae 27 419 

(31.1%) 

15.5 304 11.25 80  59 96 8 

Nannocystinea 4 39 

(2.9%) 

9.75 16 4 4  3 8 3 

Shared between 

Cystobacterinea

e and 

Sorangiineae 

67 1317  184 2.7 60 37 34 1 

Cystobacterinea

e and 

Nannocystineae 

44 912  17 0.38 3  13  

Nannocystineae 

and 

Sorangiineae 

31 449  12 0.39  5 6  

Cystobacterinea

e, Sorangiineae 

and 

Nannocystineae 

71 1347  74 1 4 19 48  

Table 3.15: Overview table for uncharacterized pathways types distribution 

 

An overview distribution of combined characterized and uncharacterized pathways across all 

genomes is summarized in a venn diagram shown in Figure 3.75. The picture is essentially similar to the 

diagram drawn for uncharacterized pathways due to the overwhelming prevalence of the latter. 
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Myxobacterial strains are well known for producing compounds with structural complexity and with 

diverse biological activities. However, there are plenty of natural products which are unexplored, which 

might be because of genes that are not expressed under laboratory conditions or simply because the 

metabolites have evaded their analytical detection to date. More attention should be put on previously 

unrecognised secondary metabolite pathways in the genomes and in extracting the end products that 

the unknown metabolic gene clusters could offer. In this analysis, using conceptual genome mining tool 

we were able to get a preliminary results on the pathways which are not yet characterized. Moreover, 

this approach allows to classify the uncharacterized pathway models which are rare (unique), common (2 

to 5 occurences) and rather frequent (>5 occurences), as listed in (Table 3.16). 

 

 

 

 

 

 

 

Figure 3.75: A Venn diagram showing the distribution of 
characterized and uncharacterized gene clusters from suborder 
Cystobacterineae (red), Sorangiineae (green) and Nannocystineae 
(blue). 
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An example of one such rare uncharacterized pathway from the suborder Cystobacterineae is 

shown in Figure 3.76 which is from strain Ccc1071 (Corallococcus coralloides) consisting of 64 domains. It 

is a PKS-NRPS hybrid pathway with a single NRPS module which could possibly produce a PKS-NRPS 

product with glycine incorporated (Figure 3.76). 

An example of rare pathway from the suborder Sorangiineae was shown in Figure 3.77 which is 

from strain MSr9329 (Aetherobacter sp.) consisting of 68 domains. It is a large PKS pathway which might 

produce a complex compound. 

Finally, an example of rare pathway from the suborder Nannocystinea is shown in Figure 3.78 which 

is from strain MNa11107 (Plesiocystis pacifica) consisting of 69 domains. It is also a PKS-NRPS pathway 

with only two NRPS modules which could possibly produce a PKS-NRPS product with glycine and cysteine 

incorporated. 

Figure 3.76: An example of the rare pathways among Cystobacterineae was from Ccc1071 (Corallococcus coralloides) 
with 64 domains. 

Figure 3.77: An example of the rare pathways among Sorangiineae was from MSr9329  (Aetherobacter sp.) with 
68 domains 
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An example of common occurring pathway from strain MCy9151 (Myxococcus xanthus) with 24 

domains belonged to suborder Cystobacterineae (Figure 3.79) appeared for five times. 

 

A pathway from strain MSr9337 (Aetherobacter fasciculatus) with 65 domains belonged to 

Sorangiineae (Figure 3.80) appeared for four times. Given the current knowledge these pathways 

reported were uncharacterized. 

Figure 3.78: An example of the rare pathways among Nannocystinea was from MNa11107 (Plesiocystis pacifica) 
with 69 domains. 

Figure 3.79: An example of the commonly occurring pathway among Cystobacterineae was from MCy9151 
(Myxococcus xanthus) with 24 domains was found 5 genomes 

Figure 3.80: An example of the common pathways among Sorangiineae was from MSr9337 (Aetherobacter 
fasciculatus) with 65 domains was found 4 genomes 
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The most frequent occurring pathways reported among the suborders among Cystobacterineae was 

from strain AngGT8 (Angiococcus disciformis) with 32 domains (Figure 3.82), among Sorangiineae was 

from strain SoceGT47 (Sorangium cellulosum) with 32 domains (Figure 3.83). Due to the limited 

abundancy of genomes, there was no frequent pathway which is exclusively specific to Nannocystineae 

reported. 

 

This analysis suggests that there are unexplored pathways abundant in myxobacterial strains. Prospects 

to identify the expected novel metabolites and to assign them to their corresponding biosynthetic 

pathways are best for those pathways where monomer cooperation can be reliably predicted, i.e. 

especially for NRPS systems with presumed incorporation of specific amino acids. To name only some 

approaches, feeding studies could be conducted to identify the new compounds as stably isotope-

labelled products using mass spectrometry (135), and recently developed strategies like 

peptidogenomics could be applied (136). Where genetic manipulation of strains is feasible, targeted 

gene inactivation (“knockout”) studies with subsequent statistical evaluation of production profiles can 

be performed (85) in order to identify novel natural products. Obstacles for identification may arise – 

among other possibilities - from the production of these metabolites being dependent on certain 

cultivation conditions and media ingredients or being subject to regulation, making their detection under 

laboratory conditions a challenge. In that case heterologous expression in alternative host strains or 

synthetic biology approaches may offer a solution, although this comes with its own specific challenges 

including possibly non-recognized promoters, complicated operon structures, precursor supply 

bottlenecks or problems with codon adaption (137). 

Figure 3.81: An example of the frequently occurring pathway among Cystobacterineae was from AngGT8 
(Angiococcus disciformis) with 32 domains, it was found in 16 genomes. 

Figure 3.82: An example of the frequent occurring most common pathway among Sorangiineae was from SoceGT47 
(Sorangium cellulosum) with 32 domains, it was found in 9 genomes. 
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Towards the estimation of myxobacterial biosynthetic pathway richness 

  Estimating the pathways richness is a persistent challenge which is interesting to the natural 

product research field in general. In the following, an approach to pathway richness estimation for 

myxobacteria is evaluated with the results obtained from conceptual genome mining. For estimating the 

richness of distinct pathways, 71 genomes of Cystobacterineae (40) and Sorangiineae (27) and 

Nannocystinae (4) were used in this study, containing a total of 1347 pathways of which 783 pathways 

are regarded as distinct models (complete distribution matrix shown in fold-out Appendix NN). Among 

the 1347 pathways, 419 pathways belonged to Sorangiineae of which 264 distinct pathways are reported 

by this analysis. Similarly, there are 889 pathways belonging to strains of suborder Cystobacterineae of 

which 492 distinct pathways are reported (Table 3.16). The software EstimateS was used to analyze 

these data with an subsequent extrapolation of rarefaction curves; classic formula of Chao1 and Chao2 

was chosen to compute the data (122). The rarefaction curves were visualized using R based on the 

results obtained from EstimateS tool (Figure 3.83). The pathway Richness estimation (y-axis) is plotted 

versus the number of genome samples (x-axis).This allows to compare rarefaction curves from suborders 

Cystobacterineae, Sorangiineae and combination of suborders Cystobacterineae and Sorangiineae (C+S). 

The rarefaction curve for the distinct pathways by suborders can be seen in Figure 3.83 and separate 

rarefaction curves for the (currently prevalent) genera Sorangium and Myxococcus are shown in Figure 

3.84.  Each of the rarefaction curves represents the rate of discovering new pathways as sampling size 

increases. The steep slope of rarefaction curve for Sorangiineae, Cystobacterineae and C+S indicates that 

the census is far from complete, when considering the currently sequenced genomes. Extrapolating each 

of the suborder populations individually, and calculating in addition also the combined suborders, 

reveals that slopes remain significantly positive when sampling was projected forward to the sequencing 

of 142 genomes, twice the amount currently available (Figure 3.83). The extrapolated rarefaction curve 

shows that, a total of 1050 distinct pathways could be estimated from those 142 myxobacterial 

genomes. Considering that only around 150 structurally distinct classes of secondary metabolites have 

been characterized from myxobacteria so far (according to Myxobase; internal statistics from Institute), 

these numbers support the notion of myxobacteria as a still underexploited resource for the discovery of 

novel natural products. 

Here, it should be emphasized that the genome samples for Sorangiineae are currently majorly 

contributed from genus Sorangium (13 out of 27) with a total of 151 distinct pathways.  Similarly, the 

suborder Cystobacterineae is dominated by Myxococcus species (16 out of 40) with a total of 309 distinct 

pathways (Figure 3.84). Several available genomes of suborder Cystobacterineae were not yet classified 

at genus level but belong to family Myxococcaceae. Since Myxococcus is a well-represented member of 
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family Myxococcaceae, we assumed in the following that the genomes which were unclassified under 

this family could be hypothetically Myxococcus species, too. Therefore, rarefaction curves were 

calculated separately for genera Sorangium and Myxococcus (including the alleged Myxococcaceae 

members), and it can be contended from the flattening-out of plots in Figure 3.84 that the discovery rate 

of new pathways in the two genera Sorangium and Myxococcus is limited. Importantly, addition of 

genomes from other genera is apparently able to increase the slope of the rarefaction curve significantly 

(compare Figure 3.83). Future isolation and sequencing efforts should be soon able to make sufficient 

genomes available to assay this anticipated effect quantitatively. Altogether, despite the currently still 

restricted sample size of myxobacterial genomes, this analysis aided to obtain a richness estimation of 

the pathways within and across suborders.   It should be noted that the present analysis is more likely to 

under- than to over-estimate pathway richness, because the heterogeneous quality of genomes involved 

in the study required to compromise during concepts-based pathway comparison. Search parameters 

such as pathway collinearity and matching substrate specificity were set to rather relaxed values to 

compensate for possible prediction gaps in pathways retrieved from multi-scaffold genomes. Thus, in 

this analysis pathways may have been grouped together to form one distinct model although they might 

actually represent individual models. Since the overall sample size (71 genomes) is not extraordinarily 

large, such effects could have noticeable impact. Nevertheless, the approach taken here can be further 

developed into a blueprint workflow for estimating multimodular pathway richness, to be executed 

again as fresh and improved whole-genome sequence information becomes available from diverse 

myxobacterial taxa. 

 

 Geno
mes 

Total count 
of pathways 

Distinct 
pathway 
models 

Avg. 
number of 
distinct 
models per 
genome 

Uncharacterized 
distinct models 
(may appear 
once or several 
times) 

Unique 
models 
(singletons, 
appear only 
once) 

Myxobacteria 71 1347 783 (58%) 11   

Cystobacterineae 40 889 (66%) 492 (55.3%) 12.3 475 (53.4 %) 261 (29.3%) 

Sorangiineae 27 419 (31.1%) 264 (63.3%) 9.8 245 (58.4%) 162 (38.6%) 

Nannocystineae 4 39 (2.9%) 27 (69%) 6.7 26 (66%) 17 (43.5%) 
Table 3.16: An overview of pathway analysis among the suborders of Cystobacterineae, Sorangiineae and 
Nannocystineae reported using BiosynML algorithm 
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Figure 3.83: Estimation of distinct pathway richness among suborders Cystobacterineae (red), Sorangiineae 
(blue) and combination of both (C+S) (green). The gap in each rarefaction curve is separation between 
experimental (left) and extrapolated curves (to the right) 

 

Figure 3.84: Estimation of distinct pathway richness among suborders Myxococcus (olivegreen) and 
Sorangium (cyan). The gap in each rarefaction curve is separation between experimental (left) and 
extrapolated curves (to the right) 
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4 Conclusion and outlook 

In this work a bioinformatic analysis framework summarized as “BiosynML toolkit” was developed, 

where the most important component is a searching and matching engine for the identification and 

conceptual comparison of multimodular biosynthetic pathways in microbial genomes. Contrary to 

existing genome-mining approaches, the methods devised here rely on previously annotated sequences 

and pathways are matched on the basis of architectural similarity, thereby taking into account overall 

domain composition of pathways, the available functional annotations for domains, their relative 

arrangement, alignment between subsets of domains and operon organization. The underlying rationale 

is that these “enzymatic collectives” together constitute the crucial determinants for the small-molecule 

structure produced by a given pathway, and thus it was anticipated that it should be possible to 

specifically recognize and compare pathways by their evolutionarily established domain pattern (or 

“concept”).  Different algorithms were tested and the “global best subset” (GBS) approach was 

empirically validated to provide best analytical power and robustness for this purpose. 

On the one hand the conceptual mining approach can achieve similar results like conventional 

sequence-base genome mining, a congruence that is understandable because the traditional procedures 

working with sequence data usually employ aligning biosynthetic signature domains, as the protein 

sequences of those domains are conserved. On the other hand, the BiosynML approach is less 

dependent on which part of a pathway is used as input for comparison, and can even accept hypothetical 

assembly lines (“sequence-free”, i.e. manually constructed by natural product chemists on the basis of 

retro-biosynthetic considerations) as input. The possibility to set several parameters for the scoring of 

results allows fine-tuning the BiosynML comparison tool for a range of applications. Examples in this 

study show that selectivity can be achieved even when using very short biosynthetic assembly lines (such 

as the myxochelin pathway) with a small number of domains as input, but also with larger pathways 

showing little diversified domain composition (such as the myxoprincomide pathway, a giant NRPS 

assembly line). Suitable parameters for running the analysis are in practice readily found for varying 

research interests, i.e. depending on whether only high-ranking near-exact matches are desired or 

remotely similar gene cluster architectures should also be reported. As a consequence of increased 

parameter tolerance hits will be included showing significant deviations to the query pathway which 

could be meaningful in a biosynthetic sense, but at the cost of expecting an increased false discovery 

rate.  It is especially encouraging that the false discovery rate using the conceptual genome mining 
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approach was very low in this study when it was applied to the recognition of known biosynthetic 

pathways in myxobacterial whole-genome sequences. 

It is clear that biosynthetic gene cluster prediction, a prerequisite for using the BiosynML approach, sets 

a limit for sensitivity, because certain domains or even entire genes could be missed by the upstream 

gene-finding and annotation pipeline. Moreover, the whole-genome assembly process may not always 

yield closed genomes, whereas every gap comes with the risk of partially losing information for a 

biosynthetic gene cluster.  However, in both fields – whole-genome sequencing and assembly as well as 

bioinformatics prediction of pathways – advancements have been recently made (and are continuously 

being made) which underpin the expectation that genome sequence quality and pathway prediction 

quality will be less and less of an obstacle for using the BiosynML genome mining approach in the future. 

The sequencing and characterization of novel myxobacterial strains and biosynthetic pathways is an 

on-going process. Updates on pathway identification and their assignment to compounds need to be 

carried out as soon as new knowledge becomes available and will contribute in turn to make the picture 

for newly annotated genomes more complete.  Therefore, the BiosynML module developed in this work 

has been tightly integrated into the in-house database system Myxobase to support everyday efforts of 

scientists working on the discovery of new myxobacterial natural products. Usage of the tool is facilitated 

by the implementation of BiosynML import and annotation functions within the Geneious plugin and 

through the addition of BiosynML export functionality to the antiSMASH system. The stringent client-

server design of the BiosynML core engine (implemented as remote procedure framework) allows for its 

re-use in other projects, whereas the perhaps most foreseeable application could be its interfacing with 

the MIBiG pathway repository which is currently being built through a community initiative. Future work 

on the BiosynML engine could incorporate more options for the matching function which could help to 

further fine-tune the search, e.g. by introducing a fundamental differentiation between scaffold—

generating and tailoring domains as it is done by the MIBiG standard. Also the algorithm GBS is regarded 

as computationally expensive; implementing it with multi thread capability should speed up the running 

time. 

The BiosynML methods were ultimately used in this study to generate for the first time an overview 

of myxobacterial biosynthetic pathway diversity, covering NRPS, PKS and hybrid pathways from all 

myxobacterial genomes currently available at the institute (with sufficient quality in terms of 

contig/scaffold numbers). In light of 71 genomes used for the study - with an uneven distribution across 

the three myxobacterial suborders and vastly unbalanced coverage of the 23 known genera (many 

genomes belonged to Myxococcus and Sorangium) - results must be regarded as preliminary. Altogether 
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1347 biosynthetic gene clusters from all genomes were involved in the analysis of which 783 were 

classified by the BiosynML comparison to represent distinct pathway architectures. Rarefaction curves 

were calculated and project significant potential for the discovery of novel pathways in the upcoming 

genomes to be sequenced. However, a more complete appreciation of myxobacterial pathway richness 

will have to await the availability of more genome sequences from more diverse species. It should be 

particularly interesting to see how isolates from hitherto underexploited habitats, belonging to novel 

genera and families and thus likely to constitute sources of additional (bio) chemical diversity, are able to 

contribute to myxobacterial pathway richness. 
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