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Short Summary 

 

The porcine ear skin model has become a well-accepted in vitro model for follicular uptake studies of 

nanoparticle-based drug delivery systems. The present study further confirms the suitability and 

transferability of this model to human tissue regarding chemical composition of various hair follicle 

(HF) components, as well as expression and localization of follicular tight junction (TJ) proteins 

claudin-1, -3, -4, occludin, and ZO-1, by means of confocal Raman microscopy, qPCR, and 

immunostaining, respectively. Moreover, combining confocal Raman microscopy and optical 

profilometry allowed for a 3-D analysis of cyanoacrylate biopsies, the main analytical method to 

quantify follicular uptake, showing the removal of intact HFs and thus only further corroborating 

suitability and reliability of this technique. Furthermore, functionality of follicular TJs was 

investigated and a continuous TJ barrier was detected throughout the HF via an extracellular tracer 

molecule, confirming a second line of defense for xenobiotics. Modification of this barrier using 

EDTA was feasible. Lastly, the interplay of follicular uptake and interfollicular, transdermal 

permeation of three different nanocarriers for Clobetasol was evaluated. Although differing in the 

molecular architecture, all three particles displayed similar drug-releases and a similar reduction in 

skin permeation as opposed to dissolved drug. Follicular uptake, however, was particle-dependent. 

Massage amplified this uptake. 
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Kurzzusammenfassung 

 

Das Schweineohr-Hautmodell ist ein anerkanntes in vitro-Modell für follikuläre Aufnahmestudien von 

Nanopartikel-basierten Wirkstoffträgersystemen. Die vorliegende Arbeit bestätigt die Übertragbarkeit 

dieses Modells auf den Menschen hinsichtlich chemischer Zusammensetzung der verschiedenen 

Haarfollikel (HF)-Komponenten, sowie der Expression und Lokalisierung der follikulären Tight 

Junction (TJ) Proteine Claudin-1, -3, -4, Occludin und ZO-1, welche mittels konfokaler Raman 

Mikroskopie, qPCR und Immunfärbung gezeigt werden konnten. Durch die Kombination von 

konfokaler Raman-Mikroskopie und optischer Profilometrie wurde zudem eine 3D-Analyse von 

Cyanoacrylatbiopsien durchgeführt. Diese Analyse zeigte eine Entfernung des gesamten, intakten HF, 

wodurch Nutzen und Zuverlässigkeit der Technik bewiesen wurden. Ebenfalls wurde die 

Funktionalität der follikulären TJs untersucht. Mit Hilfe eines extrazellulären Tracermoleküls wurde 

eine intakte, kontinuierliche TJ-Barriere über den gesamten HF festgestellt, welche durch EDTA 

geöffnet werden konnte. Schließlich wurde ein Zusammenspiel zwischen follikulärer Aufnahme und 

Hautpermeation durch Verwendung dreier verschiedener mit Clobetasol-beladener Nanopartikel 

gezeigt. Obwohl sich diese in ihrem molekularen Aufbau unterscheiden, erzeugten alle ähnliche 

Arzneimittel-Freisetzungsprofile, sowie eine vergleichbare Minderung der Hautpermeation. Die 

follikuläre Aufnahme war jedoch Partikelabhängig. Massage verstärkte diese Aufnahme stets. 
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1.  General Introduction 
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1.1. The Skin 

The skin is the largest visible organ of the mammalian body (in humans about 2 m
2
) and, due to its 

easy accessibility, a very attractive site for drug administration. It represents the interface between the 

body and the external environment. Due to its complex structure it is indispensable in its function as a 

barrier, regulating heat and water loss from the inside, as well as invasion of exogenous substances 

from the outside. Furthermore, the skin is important for xenobiotic metabolism and sensation [1].  

It can be roughly divided into three sections: the epidermis, the dermis, and the subcutis. Detailed 

information about anatomy, organization, and function of human skin can be found in references [2, 

3]. 

1.1.1. The Epidermis 

The epidermis is the heterogeneous, outermost layer of the skin and due to its composition it is mainly 

in charge of barrier function. It can again be subdivided into the hydrophobic stratum corneum (SC) 

and the rather hydrophilic viable epidermis (the stratum granulosum, the stratum spinosum, and the 

stratum basale, a.k.a. stratum germinativum).
1
  

The stratum corneum, the outermost layer of the epidermis, is also known as the rate-limiting barrier 

in skin permeability. It is composed of large, keratin-based, non-viable, cornified plate-like cells 

(corneocytes), which are embedded in intercellular lipids [4]. Due to this organization and its graphic 

resemblance, it can often be found in literature described as the brick-and-mortar model (see Figure 1), 

even though the in vivo structure is more complicated [5].  

Like other renewable tissue, the epidermis maintains its structural stability through a continuous 

process of cell renewal (starting at the basal cell layer) balanced by desquamation (shedding of the 

terminally differentiated corneocytes of the SC), exhibiting a turnover time of ~28 days [6]. During 

this time the cells (keratinocytes) undergo a differentiation process in which expression of many 

epidermal differentiation markers is initiated; as differentiation proceeds they move from the stratum 

basale towards the SC, where they eventually become corneocytes. Besides providing nutrients for 

this differentiation process, the viable epidermis also provides protection against exposure to 

                                                      

1
 Another layer, the stratum lucidum, is only present in some anatomical areas like the sole of the feet or the 

palm of the hand, e.g. areas of “thick skin”. It is a thin, clear layer of dead skin cells present between the stratum 

corneum and stratum granulosum. 
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ultraviolet light via melanin production by melanocytes, and is involved in the immune response 

(antigen presenting cells mainly present in stratum spinosum) [6].  

 

Figure 1: Diagram of the stratum corneum structure also known as the brick-and-mortar model (modified from [2]; not 

drawn to scale). 

Another cell type present in the basal layer of the epidermis and epithelial sheath of the hair follicle is 

the Merkel cell [7]. These sensory cells are in charge of transmitting signals via synaptic contacts to 

somatosensory neurons thereby allowing the sensation of touch.  

1.1.2. The Dermis 

The dermis is mainly composed of collagen and elastic fibers, giving rise to the skins’ pliability, 

elasticity, and tensile strength [8]. These fibers plus cells like fibroblasts (mainly responsible for the 

synthesis of collagen and elastin), macrophages, or mast cells, are embedded in a matrix made up of 

proteoglycans and gelatin. Additionally, the dermis contains vascular channels (providing nourishment 

and waste removal for dermal and epidermal cells), lymph vessels and nerves, as well as skin 

appendages like the hair follicle or secretory glands [2]. 

1.1.3. The Subcutis  

The subcutis, or hypodermis, is located beneath the dermis and is mainly responsible for insulating the 

body, providing an energy reservoir, and for acting as a shock absorber or cushion for the body. It is 

mainly composed of loose fat, connective tissue, blood vessels, and nerves. 

1.2. The Hair Follicle 

Anatomically, the hair follicle (HF) embodies a tubular invagination of the epidermis. At birth, each 

person is covered with around 5 million HFs [9]. This number does not increase with time, although 

the size of the follicles, as well as the hairs, can be subject to change throughout a person’s life.  
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Already during embryogenesis, the formation of the HF occurs and is dependent upon a series of 

signals that are sent between dermal cells and underlying epithelial cells [10]. These signals are 

responsible for triggering fate changes in both cell populations, which in turn results in the 

differentiation of the hair shaft, the root sheaths, and the dermal papillae. Once the HF is established, 

hair growth is a cyclic process with every HF undergoing an active growing phase (anagen), a 

regression and shortening phase (catagen), and a resting phase (telogen). Based on this, the mature HF 

can be divided into an “upper part”, which does not cycle visibly, and a “lower part”, which undergoes 

continuous remodeling during each hair cycle [11]. 

1.2.1.  Anatomy of the Hair Follicle 

The HF itself can be considered a complex miniorgan of the skin, which includes the pilosebacious 

unit, the apocrine gland and the arrector pili muscle [11]. For the purpose of this work, however, the 

term HF only refers to the structure made of the inner and outer root sheaths, as well as the hair shaft. 

As a whole, the HF can be divided into five sections when starting at its bottom and going up towards 

the skin surface: the bulb, the suprabulbar region, the central region, the isthmus, and the 

infundibulum (Figure 2).  

1.2.1.1. The Bulb and Suprabulbar Region 

The bulb represents the deepest, most distal part of the HF and is the site where biological synthesis of 

the hair takes place. It consists of the hair matrix (i.e. the germinative zone) and the dermal papilla, 

which is mainly composed of mesenchymal cells, and is believed to regulate the growth cycle of the 

hair [12]. The matrix cells
2
 ultimately differentiate into the inner root sheath (IRS) and the hair shaft 

(see Section 1.2.2.2 & 1.2.2.3, respectively) [13].  

The suprabulbar region is located just superior to the bulb. This is the site where the various layers of 

the hair begin to differentiate, and is also known as the keratogenous zone. As cell division unfolds 

and the matrix cells proliferate rapidly, they move up into this zone where they increase in volume, 

elongate, become larger, and begin to ‘keratinize’ [14]. Furthermore, melanin synthesis by 

melanocytes begins here, resulting in pigmentation of the hair. 

1.2.1.2. The Isthmus and Central Region 

The isthmus section of the HF marks its most superior point at the insertion point of the sebaceous 

gland, and reaches down to the insertion point of the arrector pili muscle (see Figure 2), including the 

                                                      

2
 The distal matrix cells are also sometimes referred to as trichocytes 
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so-called bulge of the HF [13, 15]. This region is of special interest to many researches, as the bulge is 

known to contain putative follicular epithelial and melanocytic stem cells which are, for example, 

involved in epithelial regeneration during wound healing [16-19]. Spanning from below the arrector 

pili muscle to the suprabulbar region of the HF is the so-called central region. In this region the hair 

undergoes its final stages of keratinization. 

 

Figure 2: Schematic overview showing the anatomy of the hair follicle. BL = basal cell layer of ORS, C = cortex of hair,     

cu = cuticle of the hair shaft, CL = companion cell layer of ORS, CCL = central cell layer of ORS, DP = dermal papilla, He = 

Henle’s layer of IRS, Hu = Huxley’s layer of IRS, icu = cuticle of IRS, IRS = inner root sheath, M = medulla of hair, MC = 

matrix cells, ORS = outer root sheath, SC = stratum corneum (not drawn to scale).  
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1.2.1.3. The Infundibulum 

The infundibulum is the uppermost segment of the HF starting at the epidermis, and reaching down to 

the beginning of the sebaceous duct. It is a continuation of the interfollicular epidermis, thus it 

represents the interface between the skin epithelium and the outside world. Even though this part of 

the HF is often regarded simply as a canal whose duty is to only guide the outwards passage of the hair 

shaft, it actually harbors a rich microflora. Many cells are found in this region dealing, among many 

other functions, with antigen recognition and presentation due to a dense network of antigen 

presenting cells [20-22]. Since the HF is an invagination of the epidermis, and the infundibulum is the 

uppermost region of it (see Figure 2), the SC is still present and intact in the upper region; however, in 

the lower part of the infundibulum it is already less developed and more permeable [23]. 

1.2.2. Compartments of the Hair Follicle 

The HF itself is composed of several morphologically distinct and concentrically organized 

compartments: the outer root sheath (ORS), the inner root sheath (IRS), and the hair shaft (see Figure 

2 & Figure 3).  

 

Figure 3: Coss-sections stained using haematoxylin & eosin (H&E) depicting the central region (a) and the bulb (b) of a 

terminal anagen hair. C = cortex Cu= cuticular layer of hair shaft, He = Henle’s layer of IRS, Hu = Huxley’s layer of IRS, 

icu = cuticle of IRS, IRS = inner root sheath, M = medulla, MC = matrix cells. 
 

All three compartments are further subdivided into sub-compartments, which will be explained in 

detail below. Using protein gel electrophoresis, a lot of insight was gained on the morphologic 

diversity of the HF in the past, as the diverse protein pattern of keratins (hair keratins vs. epithelial 

keratins) was shown to mirror this situation nicely [24].  



GENERAL INTRODUCTION 

- 9 - 

 

1.2.2.1. Outer Root Sheath  

The outer root sheath (ORS) comprises the most peripheral epithelial cell layers of the follicle and is 

contiguous with the interfollicular epidermis [13]. It envelopes almost the entire HF (except the 

dermal papilla) and contains various cell types including melanocytes, Langerhans cells (dendritic 

cells responsible for antigen presentation; mostly located in infundibulum), and Merkel cells [9]. Thus, 

this section allows the HF to act as a sensory organ, as well as being the immunological gate-keeper 

for the skin.  

It is structurally divided into three layers (Figure 2). The outermost layer is known as the basal cell 

layer (equivalent to the basal cell layer of the epidermis), followed by the central cell layer (CCL) and 

the innermost monolayer, known as the companion cell layer (CL).  

1.2.2.2. Inner Root Sheath 

As previously described, the inner root sheath (IRS) is a development which stems from the matrix 

cells in the bulb of the HF. It starts at the bulbar zone of the HF and abruptly desquamates in the 

middle of the isthmus [14, 24]. The IRS connects distally to the CL of the ORS and proximally to the 

hardening hair fiber. It can yet again be divided into three layers: Henle’s layer, a monolayer located 

on the outside of the IRS connected to the CL of the ORS, Huxley’s layer in the center, and the cuticle 

of the IRS which is in close contact with the hair shaft (Figure 2 & Figure 3). Interestingly, the order 

of differentiation and keratinization undergoes a different sequence for these three compartments. 

Differentiation starts in Henle’s layer, proceeds to Huxley’s layer and ends with the cuticle [25]. 

Keratinization, on the other hand, begins in Henle’s layer, followed by the cuticle and lastly occurs in 

Huxley’s layer.    

1.2.2.3. Hair Shaft 

The hair shaft is the other main product of the undifferentiated matrix cells in the bulb. It is a strong 

fiber which is composed of terminally differentiated, dead keratinocytes. Going from the inside to the 

outside it can be structurally divided into the medulla, comprised of living polygonal cells, the cortex, 

and, most peripherally, the cuticle of the hair shaft (Figure 2). 

1.3. Tight Junctions  

Tight junctions (TJs) are barrier-forming paracellular junctions composed of various TJ 

transmembrane proteins (e.g. claudins, occludin, tricellulin, and junctional adhesion molecules 
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(JAMs)), cytoplasmic linker or adaptor proteins, which connect them to the actin cytoskeleton (e.g. 

ZO-1, -2, -3, cingulin, MAPP1), and signaling molecules (e.g. Protein kinase C) which control the 

paracellular transport (see Figure 4) [26-28].  

They were first identified on the ultrastructural level by Farquhar and Palade in 1963 in various simple 

epithelia [29]. In that study, they were shown to be part of a tripartite junctional complex consisting of 

zonula occludens (tight junctions), zonula adhaerens (intermediary junctions), and macula adhaerens 

(desmosomes). Although differing in the precise arrangement of the complex, the existence of TJs was 

already then shown in epithelia of many organs including the stomach, intestine, gall bladder, as well 

as uterus or oviduct epithelia.  

Out of the three mentioned junctional complexes (tight junctions, intermediary junctions, 

desmosomes) TJs are the most apical ones in simple epithelia, while being intermingled in complex 

endothelia, e.g. brain endothelia [27]. Under normal conditions an intercellular membrane space is not 

present between two neighboring cells at TJ positive sites, which can be visualized in transmission 

electron microscopy as a very close contact between the neighboring cells. Therefore, they are also 

often referred to as “sites of fusion” or “kissing points” [30, 31].  

 

 

Figure 4: Schematic representation of the basic structural transmembrane components of tight junctions. Claudins and 

Occludin/tricellulin as well as JAMs are transmembrane proteins. ZO-1, ZO-2 and cingulin provide a direct link to the actin 

cytoskeleton (modified version of image in [31]). 
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For the purpose of this doctoral thesis, the focus was placed on five specific tight junction proteins: 

Occludin (Ocln), Claudin-1 (Cldn-1), Cldn-3, Cldn-4, and zonula occludens protein 1 (ZO-1). 

1.3.1.  Occludin 

Occludin (Ocln), a member of a larger protein family called TAMPs (TJ associated Marvel proteins 

(Marvel: (Myelin and Lymphocyte-related proteins for vesicle trafficking and membrane link)) has 

been under investigation regarding its exact function and role in TJs [32] for many years. It is a four-

pass integral membrane protein (ca. 65 kDa) involved in signaling pathways and TJ assembly [33]. It 

was the first TJ protein to be discovered in 1993 by Furuse and colleagues [34]. Ocln is known to 

interact with the actin cytoskeleton by binding actin directly, or via adapters like ZO-1, -2, -3, or 

cingulin [28]. During TJ assembly and disassembly it can also associate with enzymes which induce 

post-translational modifications (phosphorylation, dephosphorylation, or ubiquitination). In order to 

determine whether this protein is not only structurally important, but also essential for intact barrier 

properties, various different studies dealing with Ocln modifications have been performed in the past. 

These TJ studies of structure and functionality ranged from Ocln over-expression to knock-out 

mutations in mice. While the over-expression studies revealed that Ocln is important for TJ assembly, 

and that TJ barrier integrity may even be enhanced [35], the results from the knock-out studies 

surprised the investigators. TJs did not appear to be morphologically affected by the lack of Ocln, and 

barrier function of the intestinal epithelium, evaluated based on transepithelial resistance (TER), was 

normal [36, 37]. There are two possible explanations for this. Either Ocln is dispensable for TJ barrier 

function, or, in contrast, Ocln is so important that there is a backup system in charge of compensating 

for it by using other proteins during development. Interestingly, however, histological examinations 

revealed numerous abnormalities in various organs of these knock-out mice; most likely due to 

dramatic changes in gastric morphology and secretory function hinting at additional, non-barrier 

related functions.  

In the skin, Ocln has been shown to be confined to the granular cell layer, or stratum granulosum [38]. 

This restricted distribution was also seen in human HFs [30]. By means of immunostaining, this TJ 

protein was localized in the companion cell layer (CL) and neighboring cells of the ORS in the 

isthmus and central region, in the CL of the lower central and suprabulbar region, and completely 

negative in the ORS of the bulb. The IRS of human HF was positive for Ocln from the bulbar to the 

lower central region.  
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1.3.2. Claudins 

Cldn-1, -3, and -4 are also integral membrane proteins which span the lipid bilayer four times with the 

N- and C-termini oriented towards the cytoplasm and two extracellular loop domains [39]. They 

belong to a family of (as of now) 27 members, the first ones also identified by Furuse et al. in 1998 

[40]. Compared to Ocln they are smaller in size (22-27 kDa) and give rise to completely different 

amino acid sequences. Especially Cldn-1 and Clnd-4 have been recognized as important regulators of 

paracellular transport in various epithelia. Their C-terminus binds to the PDZ domains
3
 (for detailed 

review please refer to reference [41]) of TJ adapter proteins like ZO-1 and cingulin, which allows 

them to indirectly interact with the actin cytoskeleton. In the past, many studies have involved the 

over-expression, knock-down, or knock-out of claudins, which all consistently resulted in large 

changes in paracellular permeability in simple epithelia. While the role of Clnd-1 regarding skin 

barrier function in mice was shown to be vital (see Section 1.3.4), involvement of TJ protein Cldn-4 in 

barrier function has to date only been demonstrated in lung cells. There, inhibiting this protein resulted 

in an increase in paracellular permeability in healthy lung, yet an increase in Clnd-4 expression was 

seen in a lung injury model [42]. Thus, normal expression levels of this protein seem to be extremely 

important regarding its correct function.  

Distribution of these two TJ proteins in skin differs greatly. While Cldn-1 is localized throughout the 

entire viable epidermis, Cldn-4 is mainly found in the stratum granulosum and upper stratum 

spinosum [43]. In human HF their localization has also been investigated and Cldn-1, similarly to the 

epidermis, is found in all layers of the ORS throughout the HF [30]. In the IRS, Cldn-1 is mainly seen 

in Henle’s and Huxley’s layers from the bulb to the lower central region. Localization of Cldn-4 in 

human HF is confined to the CL of the ORS and some neighboring cells. In the lower central region, 

suprabulbar region and bulb Cldn-4 staining is present in the CL of the ORS. IRS staining of Cldn-4 is 

positive in Henle’s and Huxley’s layers except for the highly keratinized cells.  

The last claudin discussed in this work, Cldn-3, has been shown to be a good indicator and target for 

detecting and targeting cancers of various types, however its role as a tightening agent for functional 

TJs is only assumed as of now [44-47]. Nonetheless, as it has previously been shown to be expressed 

and localized in mouse skin and HFs [48], we chose to investigate its distribution and involvement in 

barrier function here as well. 

                                                      

3
 PDZ domains are protein-interaction domains often found in multi-domain scaffolding proteins 
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1.3.3. ZO-1  

Connecting the integral membrane proteins to the underlying actin cytoskeleton, plus other signaling 

proteins, is a meshwork of densely packed peripheral proteins like zonula occludens protein 1 (ZO-1), 

ZO-2, and ZO-3.  They are members of the MAGUK (membrane-associated guanylate kinase) protein 

family, and represent an essential subgroup of the PDZ proteins of TJs [49]. It has been shown that 

interaction between ZO-1, ZO-2 and claudins plays an essential role in assembling TJ strands, and, 

with that, give rise to TJ barrier function [50].  

In human skin, ZO-1 is located in the stratum granulosum and the upper layer(s) of the stratum 

spinosum [30]. Expression and localization of this TJ protein was also investigated in human HFs, 

where it was shown to be present mainly in the CL of the ORS and somewhat more weakly in 

surrounding cell layers from the isthmus down to the suprabasal region. The IRS from the bulbar 

region to the lower central region also gave rise to positive staining in Henle’s and Huxley’s layers, 

except for highly keratinized cells.  

1.3.4. Tight Junctions as a Barrier in Skin 

The role of TJs as a barrier in simple epithelia and endothelia has been characterized in detail over the 

years. There they have been shown to regulate the transit of ions and macro-molecules via the 

paracellular route [49, 51]. This barrier function can, in part, be measured as an electrical resistance 

(transepithelial resistance, TER), and is a prerequisite for directional transepithelial transport [41]. 

Furthermore, TJs have been attributed a so-called ‘fence function’ within the cell membrane because 

of their capability to mechanically restrict diffusion of lipids and proteins by separating the two 

components of the plasma membrane into the apical and basolateral compartment [31, 38]. This, in 

turn, results in cell polarity. However, their involvement in this ‘fence function’ was challenged 

recently [52].  

The existence of typical barrier-forming TJ structures in the epidermis of fish, amphibians and reptiles 

has been known for decades. Yet, the existence of functional TJs in mammalian epidermis was for 

long a topic of general disagreement (e.g. [53-56]). Only in recent years first barrier properties were 

confirmed [43, 57, 58]. A continuous, intact barrier to an extracellular tracer molecule (Sulfo-NHS-

LC-Biotin (Biotin-SH; 557 Da); further explained in section 1.6) was demonstrated in healthy human 

skin at Ocln and Cldn-1 positive sites in the stratum granulosum [43, 59-61]. Moreover, Cldn-1 was 

shown to have a great impact on paracellular permeability of the stratified epithelium of the skin, as 

Cldn-1 deficient mice died of dehydration within one day after birth [62, 63]. Also in human 

keratinocytes the importance of this specific TJ protein (Cldn-1) for maintaining an intact epidermal 
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barrier was shown as knock-down experiments revealed a decrease in the TER, plus an enhanced 

paracellular tracer flux for sodium fluorescein [64]. Similarly, a knock-down of Ocln resulted in 

decreased TER values in human keratinocytes [64]. Thus, in healthy skin, the previously described SC 

and epidermal TJs seem to interact in a dynamic manner to assure that a formidable barrier is given.  

The importance of this TJ barrier, or rather the lack thereof, has further been elucidated in various skin 

diseases. In atopic dermatitis, the most common inflammatory skin disease, consensus has long been 

reached that the SC barrier is dysfunctional as a result of a variety of possible defects (e.g. decreased 

levels of SC lipids [65]). In 2011, De Benedetto et al. showed significantly reduced expression of TJ 

proteins Cldn-1 and Cldn-23 in non-lesional atopic dermatitis skin in a Northern American Cohort 

[66]. This could, however, not be confirmed in a Central European Cohort. Nonetheless, it was 

recently revealed that Cldn-4 is upregulated in non-lesional skin and Cldn-1 is down-regulated in 

lesional skin [67]. Thus, in general, changes of TJ composition can be observed in atopic dermatitis. In 

Psoriasis, a skin disease characterized by hyperproliferation of keratinocytes, a broader localization 

was observed for TJ proteins Ocln, ZO-1 and Cldn-4 when compared to normal skin, while Cldn-1 and 

Cldn-7 were down-regulated [68]. This, again, highlights the involvement of TJs in skin barrier 

function. 

As was shortly described for each individual TJ protein above, Brandner et al. performed a study in 

2003, investigating the expression and localization of various TJ proteins (ZO-1, claudin-1, claudin-4, 

claudin 12, claudin 17, occludin) in human HFs [30]. In this study all proteins were localized 

throughout the entire HF, reaching from the infundibulum down to the bulb, thus including areas 

where no SC is present. These results were extremely important as they suggest that TJs in the HF, 

similarly to TJs in the epidermis, may serve as biological barrier. However, the fundamental 

functionality of mammalian follicular TJs with respect to barrier properties had not been investigated 

until now. 

1.4. Transport Pathways through the Skin 

The transdermal delivery route is a very attractive technique to administer drugs for several different 

reasons: 

 it provides an alternative for drugs which would normally undergo a significant  

first-pass effect in the liver, 

 it usually entails a non-invasive approach resulting in increased patient  

compliance, 

 

 drug release can be modified in order to optimize therapy outcome [69]. 



GENERAL INTRODUCTION 

- 15 - 

 

Even though epidermal TJs have been given increased attention over the last years regarding their 

potential as a second invasion barrier, in healthy skin the SC is still considered the bottleneck, or 

limiting barrier, for invasion of drugs. Consequently, drugs have to surpass this brick-and-mortar 

structure in order to reach the viable epidermis and/or the blood circulation. There are two basically 

different, yet feasible, non-destructive invasion pathways through the skin which have to be 

considered (see Figure 5):  

 Diffusion across the intact SC, also known as the transepidermal route. 

 Invasion via skin appendages such as hair follicles (or glands). 

1.4.1. Transepidermal Route 

The transepidermal route can be further subdivided into the transcellular and intercellular pathways 

(Figure 5). Both involve the passage of an exogenous substance from the surface of the skin into the 

SC under the influence of a concentration gradient and subsequent diffusion through the various skin 

layers [70].  

 

Figure 5: Graphic displaying the three discussed transport pathways through the skin: transcellular diffusion, intercellular 

diffusion, and the transfollicular route. Not drawn to scale. 

 

The transcellular route represents the more direct route through the SC into the viable epidermis, as 

can be seen in Figure 5. Nevertheless, this pathway is normally regarded as negligible because 



GENERAL INTRODUCTION 

- 16 - 

 

substances will have to undergo substantial partitioning between the lipid bilayer and the rather dense 

and hydrophilic corneocytes, resulting in highly reduced diffusion and penetration [71]. 

The intercellular (or paracellular) route is thus considered the predominant diffusion route for most 

substances, and leads through the lipid matrix located between the corneocytes. As this matrix is 

composed of liquid crystalline structures, the intercellular route provides lipophilic as well as 

hydrophilic domains, offering the possibility for substances of both natures, lipophilic and hydrophilic, 

to passively diffuse along this pathway. Although this path is very torturous and much longer than the 

direct transcellular route (~ 500 µm in length as opposed to approximately 20 µm [72]), the diffusion 

is relatively fast and can easily be modified by aplying chemical penetration enhancers like propylene-

glycol, DMSO, or others [73-75]. 

One thing to keep in mind for both transepidermal routes, however, is that passive diffusion through 

the SC without any penetration enhancers only occurs for relatively small molecules (< 500 Da) of a 

rather lipophilic nature (log P value ranging from 1-5), significantly limiting the possibilities of 

application. Due to these physicochemical restrictions, the encapsulation of various substances into 

nano- or micro-sized carriers, and subsequent transdermal delivery, has also been under investigation 

(for a comprehensive review on this topic the reader is kindly referred to [76]). Consensus has 

meanwhile been reached that particles (polymer-based or made of zink oxide) > 20 nm are unable to 

cross the SC and hence are unable to reach the viable part of the epidermis [77, 78]. While this is 

comforting regarding the safety aspects of nanomaterials which should not enter the skin, it restricts 

their use for drug delivery through the interfollicular epidermis.  

1.4.2. Trans-follicular Pathway 

In the past, the trans-follicular pathway was considered only a secondary route of transdermal 

penetration, as in average only 0.1% of the skin surface is affected [79]. However, this rationale was 

quickly changed when researchers from France demonstrated that percutaneous penetration of various 

drugs was significantly higher in hairy mice relative to hair-less mice [80]. In the years to come, other 

groups followed their lead and were able to show similar results on human skin in vivo [81, 82].  

In the early 2000s, many researchers also focused their efforts on the development of nanocarriers and 

the possibility of targeting the HF using these drug delivery systems. As the HF represents an 

invagination, or extension, of the epidermis it gives rise to an increased available surface area, much 

higher than what was initially assumed. Furthermore, this region is surrounded by numerous blood 

capillaries and immunocompetent cells, facilitating the absorption of drugs and/or immunologic 

response [21, 22].  
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There is convincing evidence that particles ranging between ~100-900 nm can penetrate into HFs, 

even more pronounced than dissolved molecules [83, 84]. Additionally, depending on particle 

characteristics like size, charge, or surface functionalization, differences in the degree of follicular 

uptake were observed [84-86]. In 2006, Lademann et al. also discovered that the HF shaft acts as a 

long-term reservoir of these particles for a maximum of 10 days [87]. This new information was 

revolutionizing, as it means that upon accumulation in the hair shaft, drugs can be released over time 

and continuously diffuse to the surrounding follicular and perifollicular cells (e.g. immunocompentent 

cells), or cross the capillary walls and reach the blood stream. 

Current research efforts in the field of targeted delivery of drugs to the HF span a broad field of 

different applications, ranging from cosmetic products for acne treatment to non-invasive 

transcutaneous vaccination [88-92]. In the dermatologic practice, this route of penetration would also 

be of benefit for the administration of e.g. glucocorticosteroids. These drugs entail a wide scope of 

skin disorders, ranging from atopic dermatitis or psoriasis, to various inflammatory-based scalp 

diseases for which targeting the HF is one of the goals, yet biggest challenge [93-97]. However, potent 

glucocorticosteroids are also known to bring along a wide range of side effects, even when only 

applied topically [98, 99]. Fortunately, the developments in nanotechnology over the years have not 

only enabled researchers to target specific sites in the body by using functionalized particles, but many 

researchers have also been able to show that the encapsulation of various drugs allows for a sustained 

and controlled release over time [100-106]. Thus, the combination of both, nanoparticles capable of 

releasing the drug in a controlled manner and simultaneous targeting of the HF would be of great 

benefit and immensely increase the possibilities of treating the above mentioned diseases.  

1.4.2.1. The Pig as an in vitro Model 

For skin absorption and percutaneous penetration studies, porcine ear skin has been evaluated as a 

valuable in vitro model [107]. Specifically for ex vivo follicular uptake studies, porcine ear skin has 

even become known as the ‘gold standard’ and may be considered superior to human skin for the 

following reasons: for one, it is difficult to obtain sufficient amounts of human tissue at the time points 

when they are needed for experiments, while this is not the case for porcine ear skin. Secondly, and 

more importantly, HFs in human skin are known to contract immediately upon excision, whereas in 

porcine ear skin the cartilage prevents contraction of tensile fibers, and therefore no subsequent 

closure of the HFs occurs [108]. Nevertheless, applicability and a good correlation between in vitro/ex 

vivo studies on pig and in vivo studies on human needed to be investigated in order to establish 

suitability of this model.  

Anatomically, HFs of both human and porcine descent, show an inner and an outer root sheath, a 

sebaceous gland associated with the HF, and sweat glands in the dermal layer [109, 110]. The 
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thickness of the SC and the viable epidermis, as well as density and follicle diameter of the terminal 

hairs, were also found to be similar [109].  

In 2014, a series of experiments on human forearm skin and pig ear skin was performed using five 

different types of nanoparticles in order to determine the correlation of in vivo and in vitro follicular 

uptake data, respectively [86]. They concluded that, even though the pig ear model slightly 

overestimated differences between the particles, the general trend observed was similar for both 

species (in vitro-in vivo correlation: r
2
 = 0.987).  

Based on all the published data discussed, one can assume that the porcine ear skin model is a reliable 

tool for mimicking the in vivo situation in follicular penetration studies. Nonetheless, further 

comparability studies concerning e.g. chemical components in, or TJ protein distribution throughout 

human and porcine HFs would only strengthen this assumption. 

1.5. Experimental Methods to Investigate Skin 

Permeation and Follicular Uptake 

In vitro permeation studies on skin, as well as in vivo or ex vivo follicular uptake studies on human or 

pig skin, respectively, have been optimized over the past couple of decades in order to get robust and 

most reliable data. In the next section, two state of the art techniques used by researchers all over the 

world, as well as for this thesis, will be introduced shortly. 

1.5.1. The static Franz Diffusion Cell 

For skin permeation experiments, the state of the art technique is the Franz Diffusion cell model. In 

this experimental setup, which is depicted in Figure 6, the donor and acceptor compartments are 

generally separated by a membrane, which usually consists of one or more layers of excised skin (e.g. 

whole skin, heat-separated epidermis, SC only). The cells are typically made of glass and can be 

classified into flow-through, or static cells [111]. Only the latter will be explained in detail, as the 

research performed for this doctoral thesis involved the static Franz Diffusion cell only. 

Before starting the experiment, one must be sure that the composition of the acceptor fluid does not 

limit the extent of permeation of the analyte, thus total solubility should be guaranteed. Moreover this 

fluid should not affect nor alter the integrity of the membrane used; meaning normal permeability 

properties of the skin should be given [112-114].  
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Upon addition of the test substances in a desired formulation (e.g. solution/suspension, semisolid 

preparation, etc.) into the donor compartment, samples are withdrawn from the sampling port at pre-

determined time intervals and subsequently analyzed for cumulative amount of permeated substance. 

In order to guarantee a homogeneous distribution of drug, a magnetic stirrer is placed into the acceptor 

compartment before begin of the experiment. Furthermore, the whole system is thermostatically 

controlled throughout the entire length of the experiment in order to mimic the in vivo situation as 

good as possible. 

 

Figure 6: Sketch of a static Franz Diffusion cell (modified version of image from [111]) 

Based on the amount of substance added into the donor compartment, one can differentiate between 

two scenarios: finite and infinite dosing. For finite dosing only a limited amount of substance (< 10 

µl/cm
2 
of a liquid formulation, or 1-5 mg/cm

2 
of a semisolid formulation according to the Organisation 

for Economic Co-Operation and Development (OECD) guidelines on percutaneous absorption studies 

[114]) is added to the donor compartment. In contrast, infinite dosing means that the applied dose is so 

large that for the length of the experiment an unlimited amount of substance is available to permeate 

from the donor into the acceptor compartment. Under the latter conditions the data may permit the 

calculation of a permeability constant (Kp) [114]. The amount of substance left in the skin is usually 

not quantified for this experimental set up. 

1.5.2. Differential Stripping Method 

The Differential Stripping (DS) method is the most straightforward technique to determine follicular 

uptake quantitatively [86]. For reasons mentioned above the in vitro studies are performed on porcine 
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ear skin. Thus, the allocation of porcine ears is required, and only ears with immaculate skin surface 

(no abrasions, inflammation, etc.) are to be used.  

In the past, various different approaches had been attempted in order to distinguish between the 

transepidermal pathways and follicular penetration. These approaches included (i) confocal laser 

scanning microscopy methods for investigating the distribution of various fluorescently-based 

substances in different skin layers and/or appendageal structures [115], or (ii) analyzing histology-

derived sections [116, 117]. The term ‘Differential Stripping’ was first introduced in 2005 by 

Teichmann et al., and described the combination of the tape stripping technique (cleaning of skin 

surface) with cyanoacrylate skin surface biopsies (removing the follicular cast) [118, 119]. However, 

back then the method was rather a qualitative analysis than a quantitative way of determining 

follicular penetration. In 2014, Raber et al. modified and optimized this method, and ultimately 

obtained a protocol which made it feasible to fully quantify follicular uptake of nanoparticles [86].  

The first step of this protocol entails applying the formulation (e.g. solution, nanoparticles in 

suspension or nanoparticles in a hydrogel) onto a predetermined area on the outer auricle of the pig ear 

followed by an optional massage, depending on the experimental setup. After a predetermined 

incubation time under constant temperature conditions, ten subsequent tape strips are taken in order to 

clean the skin surface and remove the SC layer by layer. To analyze the extent of follicular drug 

penetration, cyanoacrylate skin surface stripping is performed. This step implies the application of 

superglue to the pretreated skin area covered by a tape strip. Upon polymerization of the glue, the tape 

strip is quickly peeled off, removing the entire follicular cast [118]. For quantification and mass-

balance purposes the substance of interest is extracted from the tape strips, cyanoacrylate biopsies, as 

well as all application devices, and skin rest are analyzed for drug content via an analytical method of 

choice. 

1.6. Experimental Method to Determine Tight 

Junction Functionality 

Measuring TJ barrier integrity has become the main method for determining whether TJ structures are 

indeed functional. Several different methods have been employed for investigating TJ functionality, as 

has been mentioned shortly above.  

Under cell culture conditions, barrier properties of TJs have mostly been evaluated based on electrical 

and flux approaches in which the transepithelial resistance (TER) of the monolayer, or transport of 

model substances from the apical into the basolateral compartment were measured, respectively 
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[e.g.47, 120, 121, 122]. However, one has to be aware that the TER measures the ion barrier of the 

whole cellular sheet, i.e. it takes paracellular as well as transcellular ion flux into account [e.g.123] 

In 1997, Chen et al. introduced a new technique of measuring TJ tightness by using a  polar, biotin-

labeled molecule called succinimidyl-6-(biotinamido)hexanoate (NHS-LC-Biotin) of 455 Da [59]. In 

order to obtain better solubility, this compound was later modified by adding a charged sulfo-NHS 

group, as is depicted in Figure 7 [124].   

 

Figure 7: Structure of tracer molecule Sulfo-NHS-LC-Biotin (557 Da) 

Due to its structure, this molecule (with and without the added sulfo group) does not enter intact cells 

and does not penetrate through intact TJs, yet it irreversibly binds primary amine groups of proteins, 

which makes it easily traceable. Its usefulness in determining TJ tightness, and thus functionality, has 

been demonstrated in various studies over the years. In 2002, Furuse and colleagues were able to 

reveal an inside-out barrier stop to this tracer molecule in newborn mouse skin at Ocln-positive sites, 

whereas in Cldn-1 deficient mice this stop was diminished [58]. Shortly thereafter, various other 

groups were able to reproduce these experiments on human and porcine skin demonstrating its 

applicability for determining TJ barrier function in various species under various conditions [125-

127].   
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1.7. Aims of This Work 

Over the last decade, the surging interest of nanoparticle-based drug delivery to the hair follicle has 

opened many novel possibilities to researchers all over the world. Especially the field of 

transcutaneous vaccination has gained a lot of promising insights about new applicable formulations 

which embrace a non-invasive approach by using this technology. As already mentioned in previous 

chapters, porcine ear skin is widely accepted as the ‘gold standard’ for follicular penetration studies. 

Nonetheless, the crucial question as to whether this pig ear model, or more specifically the porcine 

hair follicle, is indeed equivalent in e.g. chemical composition or tight junction protein distribution, 

and thus suitable for representing the in vivo situation in human skin, remains to be further elucidated. 

Moreover, the biology of the hair follicle itself needs further clarification. Specifically the question as 

to whether follicular tight junctions are functional with regard to barrier properties, and if so, the 

ability of modulating, or opening this potential biological barrier, has not been addressed up to now. 

Also, not much is known about the fate of nanomaterials (i.e. toxins or drug delivery systems) upon 

penetration into the hair follicle. Questions about whether these particles stay intact or immediately 

disintegrate upon penetration, what specific region in the hair follicle they reach, or what types of 

barriers (besides the well-known stratum corneum) they may encounter, remain to be answered. 

Lastly, it is important to further explore the types of effects concerning release, transdermal 

permeation, and follicular uptake that can be observed as a result of encapsulating drugs into various 

carrier systems.  

In order to address these questions, the aims of this thesis were (i) to first evaluate and compare the 

chemical composition of porcine and human hair follicles using confocal Raman microscopy, and 

assess intactness and distribution of these components in cyanoacrylate skin surface biopsies in order 

to determine if, in fact, the entire follicular cast is removed during this process; (ii) to investigate 

expression and localization of tight junction proteins in porcine hair follicles via qPCR & 

immunohistochemical staining in order to compare results to previously published data in human and 

thereby determine equivalency, plus to investigate functionality of these structures using the tracer 

molecule Sulfo-NHS-LC-Biotin, and the ability to modulate barrier properties; (iii) to gain insights on 

follicular penetration depth of model polymeric nanoparticles via transmission electron microscopy, 

and simultaneously determine whether particles stay intact upon penetration or not; (iv) to study the 

effect of nanoencapsulation on the release, follicular uptake, and transdermal permeation  of 

Clobetasol, a potent glucocorticosteroid, by using three different types of nanocarriers.  
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Based on these aims, the thesis will be organized into three main chapters: 

 

Chapter 2.1: Porcine Ear Skin as a Surrogate for Human Tissue: An Analysis using 

Confocal Raman Microscopy  

Chapter 2.2: Follicular Tight Junctions as a Biological Barrier 

Chapter 2.3: Nanocarriers for Optimizing the Balance between Interfollicular 

Permeation and Follicular Uptake of Topically Applied Clobetasol  
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2.1. Porcine Ear Skin as a Surrogate for Human Tissue: 

An Analysis Using Confocal Raman Microscopy 
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2.1.1. Abstract 

Hair follicles have recently gained increasing interest in the field of transdermal drug delivery. They 

have shown to provide a facilitated uptake into the skin, as well as a high potential to enable a drug 

depot. In this area of research, excised porcine ear skin is widely accepted as an in vitro model to 

assess penetration of drug delivery systems into hair follicles. However, a comparison of porcine and 

human hair follicles in terms of chemical composition has not been reported so far. In this study, 

confocal Raman microscopy was applied as a chemically selective imaging technique in order to 

compare human and porcine hair follicle composition, and to visualize individual component 

distribution within follicular cross-sections. Based on measured and processed human and porcine 

Raman spectra, optical similarity was successfully confirmed for both species. Moreover, 

cyanoacrylate skin surface biopsies, which are generally applied to measure the extent of follicular 

penetration, were imaged using a novel complementary analytical approach which combines confocal 

Raman microscopy and optical profilometry. This all-encompassing analysis generates a 3-D image 

which permits investigation of component distribution, and intactness of the removed hair bulb. 

Overall, confocal Raman microscopy proves its high potential as a non-invasive and chemically 

selective analytical approach for the investigation of trans-follicular drug delivery. 

2.1.2. Introduction 

Many different studies in the field of pharmaceutical technology have recently demonstrated the 

importance of the transfollicular route for drug administration, especially with regard to drug delivery 

systems in the nano-sized range [88-90]. Varying in applicability from treating skin or hair diseases to 

transcutaneous vaccination, the HF and its ability to provide a depot effect (i.e. sustained release of 

drug) has widened the spectrum of new potential drug delivery systems [87, 91, 92].  

In Chapter 1 it was already discussed that the general application of the pig ear as an in vitro model for 

these types of follicular uptake studies (due to closure of the HF in excised human skin [108]) has 

been widely accepted. It has also been shown that both species express anatomically equivalent 

structures and compartments in the terminal anagen HF, ranging from the inner and outer root sheaths 

and their individual subdivisions, to an attached sebaceous gland and arrector pili muscle. In addition, 

thickness of the SC and the underlying viable epidermal layers, as well as follicle density and 

thickness are similar in both species [109, 110]. Also, concerning experimentally obtained data on 

porcine (ear) skin, many studies on skin absorption, percutaneous penetration, as well as follicular 

uptake have been evaluated and deemed suitable when compared to equivalent studies on human 

tissue [86, 107, 109, 128]. By using the so-called skin sandwich method, it was shown that porcine HF  
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absorption of various solutes differing in their physicochemical properties mirrored previously 

accumulated absorption data on human tissue [129, 130]. 

Nevertheless, one specific comparison between the two species, which has not at all been discussed in 

literature up to now, is the composition of various follicular components, most importantly porcine 

sebum vs. human sebum. In humans, hamsters, rats, and mice the composition has previously been 

investigated and thoroughly characterized. It mainly consists of triglycerides, sterol- or wax-esters, 

diol-diesters, free sterols, and free fatty acids [129, 131]; only human sebum additionally contains 

squalene. Yet the composition of porcine sebum has not been examined at all. Considering, however, 

that the sebum represents the release medium for drugs delivered via the transfollicular route, we 

considered this information, or the lack thereof, very important and necessary to investigate further. 

A suitable technique to obtain an all-encompassing analysis concerning chemical composition of 

sebum and other major HF components, or visualization of spatially resolved component distribution 

(sample mapping) in porcine and human HFs, is confocal Raman microscopy. It is a chemically 

selective and non-destructive technique, thus optimal for biological samples. In the past, this technique 

has been used for qualitative analysis of substance penetration into the skin in vivo [132] and in vitro 

[133, 134], as well as for an evaluation of drug distribution on the skin surface, via sample mapping 

[135]. One study also dealt with the visualization and characterization of human hair revealing 

information about the secondary structure of proteins and the disulfide bridges [136].  

In this study, confocal Raman spectroscopy was applied in order to evaluate the chemical similarities 

between human and porcine HFs. Thus, the spectral properties of the four key follicle-associated 

components—hair, sebum, dermis and follicular epidermis—were analyzed and compared for both 

species. Furthermore, confocal Raman microscopy was used to image cross-sections of HFs, 

visualizing the individual component distribution. Finally, a novel complementary analytical approach 

combining confocal Raman and optical profilometry was applied to visualize cyanoacrylate biopsies 

of HFs, used to determine follicular uptake, in 3-D. 

2.1.3. Materials and Methods 

2.1.3.1. Materials 

Tesafilm® kristall-klar (Tesa, 33 m × 19 mm, cut to 30 × 19 mm sections) was obtained from Tesa 

AG, Hamburg, Germany. UHU superglue (UHU, blitzschnell Pipette) was kindly provided by UHU 

GmbH & Co, KG, Bühl/Baden, Germany. For nuclear staining, Mayer’s haematoxylin was purchased 

from Carl Roth GmbH+ Co. KG, Karlsruhe, Germany. 
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2.1.3.2. Porcine and Human Skin 

All porcine ears used for the herein described experiments were acquired from Emil Färber GmbH & 

Co. KG, a local slaughterhouse in Zweibruecken, Germany. The ears were excised immediately before 

the brewing step, and brought to the lab where they were thoroughly cleansed.  

The human skin used for all in vitro experiments was donated from the department of Plastic and 

Hand Surgery at the Caritaskrankenhause in Lebach, Germany. The study was performed on thigh skin 

which was acquired after plastic surgery performed on a 48 year old female donor who had previously 

consented to the donation. Immediately upon arrival of the skin, all subcutaneous adipose tissue was 

carefully removed, leaving only the dermis and epidermis for further investigations. The remaining 

skin was cut into pieces of 10 x 20 cm, covered in aluminum foil and stored at -20°C until further use. 

This study was approved by the ethical commission of Saarland, Germany (Aerztekammer des 

Saarlandes, 204/08). 

2.1.3.3. Longitudinal-Sections of Hair Follicles 

Longitudinal sections of HFs were obtained by excising 8 mm biopsies out of the 20 x 30 mm intact 

frozen human thigh skin sections or porcine ear skin. Next, cryosections with a thickness of 15 µm 

were cut using a cryomicrotome set at -20°C (MEV Cryostat, Slee, Mainz, Germany). For nuclear 

staining, sections were immersed in Mayer’s haematoxylin solution for 8 min followed by the blueing 

step which entails leaving the section under running water for 10 min.  

Visualization of the sections was performed on a Zeiss AXIO Scope A1 light microscope (Carl Zeiss 

Microscopy GmbH, Oberkochen, Germany), equipped with a digital camera (Axio-Cam ERc 5 s) for 

the taking of the images. Taken images were then edited and labeled using the software Zen lite 2011 

(Carl Zeiss Microscopy GmbH, Oberkochen, Germany). 

2.1.3.4. Cyanoacrylate Skin Surface Stripping 

As shortly described in Section 1.5.2 (General Introduction: Differential Stripping Method), 

cyanoacrylate skin surface stripping was performed by first applying a drop of UHU superglue onto a 

predetermined and pre-cleansed area on the outer auricle of the excised pig ear, followed by 

immediately placing a tape strip on top. Upon complete polymerization of the glue (approx. 10 min), 

the tape strip is quickly ripped off in one continuous movement, removing the entire content of the 

HF. For further analysis, all biopsies were fixed upside down onto a glass slide, leaving the HFs facing 

upwards. 
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2.1.3.5. Confocal Raman Microscopy & Optical Profilometry 

For all confocal Raman microscopic evaluation, the 15 µm sections, as well as the cyanoacrylate 

biopsies, were fixed onto calcium fluoride slides. Measurements were performed using a Witec alpha 

300R+ (WITec GmbH, Ulm, Germany). As excitation source a diode laser with an emitting 

wavelength of 785 nm was used. The power of the laser, placed right in front of the objective, was set 

to 50 mW, as this strength had previously been tested and shown to not harm biological tissue. The 

light microscopic images obtained were taken with a 10x objective (Epiplan Neofluar N.A. 0.5, Zeiss, 

Germany), whereas Raman single spectra and maps recording was done using a 50x objective 

(Epiplan Neofluar N.A. 0.8, Zeiss, Germany). In order to reject signals from out-of-focus regions, a 

confocal pinhole of 100 μm was employed. Raman spectra were recorded using a spectral resolution 

of 4 cm
-1 

over the range of 400 - 1780 cm
-1

. For a single spectrum, three measurements, which were 

taken over a 10-s integration time, were averaged. Raman mapping was done by collecting data at 

every 5 μm in x and y directions for a total of 10 s. The obtained data was then processed using WITec 

Project Plus software (WITec GmbH, Ulm, Germany). After applying a cosmic ray removal, a spectral 

baseline correction was performed using a polynomic fit. Finally, all spectra were normalized to the 

most intense peak (1430 to 1480 cm
-1

 representing ν(C─H)) [137]. 

For surface topography measurements, a True Surface Microscopy sensor incorporated in a Witec 

alpha 300R+ confocal Raman microscope (WITec GmbH, Ulm, Germany) was implemented. With a 

high accuracy of 1 µm, this sensor is able to resolve an elevation difference of 3 mm. Data points were 

collected every 5 μm in x and y directions, generating a lateral resolution equivalent to Raman 

mapping. 

2.1.4. Results & Discussion 

2.1.4.1. Comparison of Porcine and Human Hair Follicle 

The first part of this study was a composition comparison between human and porcine tissue of the 

four major chemical components (sebum, dermis, epidermis, hair) by confocal Raman spectroscopy. 

In Figure 8, longitudinal sections of porcine (a) and human (b) HFs are depicted, showing optical and 

dimensional similarities between the two species. For each image one can clearly differentiate between 

the hair (blue cross), the follicular epidermis (yellow cross; outer root sheath and inner root sheath are 

not differentiated here), deeper skin layers (green cross), and the sebaceous gland (red cross). To 

assess spectral comparability between the two species, Raman spectra were acquired for each of the 

four components in porcine and human HFs and are shown in (c) and (d), respectively. Here, the  
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Raman spectra measured at the areas marked by the colored crosses from (a) and (b) are shown in 

corresponding colors, thus human and porcine epidermal spectra are shown in yellow, the hair in blue, 

the dermis in green, and sebum in red.    

 

Figure 8: Microscopic pictures of porcine (a) and human (b) hair follicle cross-sections. Raman spectra obtained from the 

areas marked by the colored crosses displayed in corresponding colors from porcine (c) and human (d) follicles (image taken 

from [138]). 

The follicular epidermis spectrum is mainly composed of unspecific bands indicating protein at ~1003 

cm
-1

 (aromatic amino acids), 1440 cm
-1

  δ(CH), and at 1650 cm
-1

 (amide I) with keratin being the main 

component [137]. The dermis spectrum has two additional characteristic double peaks. The first one is 

located at 815 to 850 cm
-1

, and the second one at 920 to 940 cm
-1

.This specific pattern is representative 

for collagen, which is one of the main components of the dermis layer in the skin [139]. Concerning 

the hair spectrum, both species give rise to a prominent peak at 509 cm
-1

, known to be specific for 

disulfide bridges [136, 140]. These types of bonds are characteristic for keratotic tissue like hoof, 

horn, and hair.   

For an evaluation concerning similarity of the recorded spectra from both species, a statistically robust 

method was necessary. Thus, spectral subtraction was performed, followed by a calculation of the area 

under the curve (AUC) of the obtained graphs. For the references, three spectra of each component 

from varying positions were subtracted from each other. The resulting graphs specify the internal 

spectral variability for each individual component. Figure 9(a) displays these graphs for hair (blue), 

follicular epidermis (yellow), dermis (green), and sebum (red). The 95% confidence interval (CI) of  
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spectral similarity for each of the four components was then calculated based on the absolute AUC of 

the spectral subtraction graphs. In the last step, the component spectra of human and porcine HFs were 

subtracted from each other and the resulting AUC was calculated. The values for all AUCs, along with 

the confidence intervals obtained, can be found in Figure 9(b). A significant difference was observed 

for the hair, which displayed a much higher AUC (49,03) than the reference (27,99). However, as can 

be seen in Figure 9(c), upon subtraction of the two spectra only high noise, yet no major differences, 

was observed. Moreover, no significant difference was detected for the follicular epidermis or the 

dermis. The sebum was analyzed extra carefully, as it represents the potential release medium for drug 

delivery systems. Yet, between human and porcine sebum, no significant difference was observed. All 

minor discrepancies were only intensity related and thus negligible concentration differences of sebum 

components. For this study, the inter-individual variability of porcine and human HF composition was 

not taken into account, as it would have been necessary to test an immense number of individuals to 

gain valid results. However, by means of Raman spectroscopy, chemical composition of the four main 

HF constituents were analyzed and evaluated, confirming similarity between the two species. 

 

Figure 9: (a) Spectral subtraction graphs derived from porcine and human Raman spectra of the four main chemical 

components. (b) Statistical evaluation of the absolute area under the curve (AUC) of the spectral subtraction graphs. 

Comparison of single Raman spectra and the subtraction graphs for human and porcine hair (c) and sebum (d) (image taken 

from [138]). 

The staining procedure based on haematoxylin and/or eosin is one of the most common techniques 

used to differentiate between various components in tissue sections. In Figure 10(a) a longitudinally 

cut porcine HF is displayed after undergoing haematoxylin nuclear staining. In this image one can 

clearly differentiate between the follicular epidermis, the dermis, and the hair. The entry duct to the  
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sebaceous gland can be assumed in this specific image (red arrow), but the sebum is undetectable via 

this method.  

Figure 10(b) depicts a longitudinal section of a similar location in a porcine HF, yet unstained. In that 

image, the red square indicates the area which was mapped using Raman in (c), and (d). Raman 

mapping is a method which allows discriminating between various components based on their 

obtained Raman spectra without the need of a previous staining procedure. Thus, it permits 

visualization of the component distribution without the need to treat the sample prior. For this study, 

the spectra of the region of interest were recorded with a step size of 5 µm. After measuring the 

spectral data, a processing step was performed using multi-variant analysis algorithms, in order to 

identify the component distribution. From that data a false-color Raman image was obtained where 

each picture pixel was assigned one color that represents a similar Raman spectrum (see Figure 10(c)). 

During this binary processing method, pixels with a spectrum which represents the follicular epidermis 

are displayed in yellow, dermis in green, sebum in red, and hair in blue. A similar, yet more 

sophisticated procedure was performed for Figure 10(d).  

 

Figure 10: (a) Transmittance-light microscopy pictures of a haematoxylin nuclear stained porcine hair follicle cross-section. 

The red arrow indicates the location of the sebaceous gland. (b) Incident light microscopic picture of an unstained porcine 

follicle cross-section. (c) and (d) Raman map of the area indicated by the red rectangle in (b). The hair is displayed in blue, 

the sebum is depicted in red, whereas epidermal and dermal structures are shown in yellow and green, respectively (image 

taken from [138]). 

 

However, this method includes visualizing intensity differences, plus the possibility of displaying 

multiple components (colors) simultaneously in one pixel. Thus, this type of processing method allows 

for a more specific and detailed depiction of the real component distribution. When taking a closer 

look at Figure 10(c) and Figure 10(d), one can see the advantage of the latter method. For examples, in  



PORCINE EAR SKIN AS A SURROGATE FOR HUMAN TISSUE: 

AN ANALYSIS USING CONFOCAL RAMAN MICROSCOPY 

- 33 - 

 

 

(d) traces of sebum (shown in red) can be identified on parts of the hair (shown in blue), whereas 

looking only at the binary image in (c), or the light microscopy image in (b), this conclusion cannot be 

drawn. Thus, Raman mapping allows for a more specific and more accurate components distribution 

analysis, which is not feasible by conventional microscopy. Furthermore, this methodology needs no 

labeling or previous staining, and would therefore be ideal for tracking the penetration of drugs with 

and without drug delivery systems into the HF. 

2.1.4.2. Visualization of Cyanoacrylate Skin Surface Biopsies 

For the qualitative and (semi)quantitative analysis of drug penetration into the HF, cyanoacrylate skin 

surface stripping represents the most common analytical technique. It involves removing the hair plus 

the entire follicular cast in a cyanoacrylate biopsy which can later be analyzed and quantified for drug 

content. Nevertheless, an actual quality assurance for the removal of the entire follicular cast cannot be 

given by using conventional light microscopy, as information about only one focal plane is gained via 

this method. This problematic is depicted in Figure 11(a) and (b), where each image displays a light 

microscopic picture acquired from two different focal planes of a porcine cyanoacrylate biopsy. In 

these images the tape strip, which was beforehand placed over the drop of glue in order to remove the 

follicular cast, is turned upside down, and the removed hairs are pointing upwards. However, as only 

one focal plane can be visualized via this method, only parts of the hairs can be analyzed.  

 

Figure 11: (a) and (b) depict light microscopy pictures of a cyanoacrylate skin surface biopsy recorded from two different 

focal planes. (c) Schematic of the basic principle of optical profilometry. (d) Color-coded surface map of the biopsy area 

corresponding to (a) and (b) (image taken from [138]). 
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To get a complete analysis of the entire follicle, a three-dimensional (3-D) analytical approach is 

needed. Optical profilometry presents itself as a useful method for this type of analysis. It represents a 

non-contact interferometric-based method which is used for characterizing surface topography. The 

basic principle which underlies this methodology relies on the effect of chromatic aberration. Using a 

set of hyperchromatic lenses, one obtains very good mapping-point capabilities, along with a high 

chromatic error. Consequently, the white light, which gets focused through this lens assembly, is split 

into its different colors, resulting in the assignment of a specific, yet different, color for each focal 

length. Detection of the light occurs in the confocal pinhole, and, as a result, a topography map is 

generated, as can be seen in Figure 11(c). Applying this method to the above mentioned sample, the 

whole cyanoacrylate biopsy, including the interfollicular epidermis rests plus the entire HF, can be 

visualized (Figure 11(d)). 

Another possible application of this method is to overlay the obtained sample surface topography map 

with Raman spectroscopic information. Thus, after measuring the surface structure, the same sample 

surface can be used to obtain Raman spectra. This is done by diminishing weak signal intensities 

produced by out-of-focus effects. Therefore, this technique makes it possible to apply Raman mapping 

to highly structured specimen like an individual HF obtained from a cyanoacrylate surface biopsy (see 

Figure 12).  

 

Figure 12: (a) Light microscopy picture of an excised hair follicle. (b) Surface topography map of the area indicated by the 

red rectangle in (a). (c) Raman spectra of the individual chemical components in the hair follicle. (d) Raman map displaying 

the component distribution on the excised hair follicle (image taken from [138]). 
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The red square in (a) indicates the area which was measured by optical profilometry and is shown in 

Figure 12(b). For the same area that was mapped in (b), individual Raman spectra were recorded and 

are shown in (c). Overlaying the information obtained from (b) with the spatially resolved information 

gained from the Raman spectra in (c), a 3-D components distribution map of the HF is generated and 

displayed in (d). In this false-color image, the sebum is shown in red, the epidermis in yellow and the 

hair in blue. The information that is acquired from combining these two methods is that the hair shaft 

is completely enclosed by an intact follicular epidermis (inner and outer root sheath) and, thus, the 

whole follicular cast was successfully removed by this cyanoacrylate skin surface stripping method. 

Also visible are traces of sebum along the HF, especially in the bottom areal hinting at a possible 

thinning of the epidermal layers in this region. Overall, this analytical evidence is an important finding 

because it only further corroborates the suitability of this technique (cyanoacrylate skin surface 

stripping) which is (up to date) the only measure for quantifying drug content in the HF. Furthermore, 

the novel combination of confocal Raman microscopy and optical profilometry in this setting proves 

its worthiness in evaluating biological samples, opening the possibility for other similar analytical 

approaches. 

2.1.5. Conclusion 

In this study, confocal Raman microscopy has proven to be an excellent tool for investigating the 

equivalency and suitability of porcine HFs as a model for the evaluation of trans-follicular drug 

delivery. It entails a non-destructive and chemically selective analytical approach, and was shown to 

be very successful in proving the similarities between human and porcine tissue. Based on the 

individual Raman spectra, the four main components (hair, dermis, sebum, and follicular epidermis) 

were effectively identified in both species and found to be equivalent. Moreover, a comparison 

between the common histologic staining procedure and Raman mapping was performed, and 

demonstrated the advantages of the latter. Also, based on the novel combination of confocal Raman 

microscopy and optical profilometry, a 3-D chemically resolved analysis of cyanoacrylate skin surface 

biopsies was achieved, only further proving the suitability of this analytical approach. These results 

corroborate the potential of this methodology in the field of drug delivery, like visualizing the 

penetration behavior of drug delivery systems into the HF or non-invasive depth profiling. 
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2.2.1. Abstract 

Follicular penetration has recently been given more attention regarding i) safety concerns of 

nanomaterials which should not enter the skin, and ii) the possibility for nanoparticle-based drug 

delivery. However, potential barriers in the hair follicle (HF) that a substance will encounter upon 

uptake and/or penetration into surrounding tissue remain undetermined up to now. In the interfollicular 

epidermis, functional tight junctions (TJs) have been revealed before. Moreover, several TJ proteins 

have previously been localized in human HF. However, the functionality of these follicular TJ has not 

been investigated this far. Hence, this work investigates and elucidates for the first time a continuous, 

intact TJ barrier from the infundibulum down to the suprabulbar region of mammalian HF. In the 

upper region a double-barrier comprising the stratum corneum and functional TJs was revealed, while 

in lower areas TJs likely act as the only barrier. Moreover, by modulating the permeability using 

EDTA, the dynamic character of this TJ barrier was verified. In the bulb, however, no TJ barrier was 

detected, which proves the importance of free supply for e.g. hormones or nutrients from the dermal 

microenvironment to this hair-forming part. Lastly, transmission electron microscopy revealed that 

model, polymeric nanoparticles (154 nm), which had previously been applied to the skin, were mainly 

found in the upper part of the HF where the previously mentioned double-barrier is present. Few 

particles penetrated deeper; however, they were only found in areas where functional TJs are present. 

Thus, no particles reached areas without an intact TJ barrier. To summarize, follicular regions of high 

accessibility for external substances – here model polymeric nanoparticles – are protected by two 

barriers, while areas with lower accessibility are lined with one functional barrier, TJs. 

2.2.2. Introduction 

The hair follicle (HF) represents a potential entry route for topically applied substances, or 

(exogenous) substances present in the environment [141, 142]. This entry route may be of advantage 

on one hand (e.g. for drug delivery purposes), or of disadvantage concerning the uptake of allergens or 

toxins. In the past few years, there has been an extensive debate around the topic of nanomaterials and 

toxicity, especially concerning the question whether certain particles may or may not penetrate, or 

even permeate, mammalian (in particular human) skin. General agreement has meanwhile been 

reached that nanoparticles (NPs) (both polymer-based or made of metal oxides) > 20 nm do not 

penetrate the stratum corneum (SC), and are therefore unable to reach the viable part of the epidermis, 

let alone the bloodstream [76-78, 143]. Alternatively, several studies have shown that particles in the 

size range of ~100-900 nm accumulate in hair follicles (HFs) to a higher extent than dissolved 

molecules, and even exhibit a size-dependent effect on follicular uptake [83, 84]. Furthermore, it was 
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demonstrated that various nanoparticulate-based delivery systems penetrate into the HF shaft, and can 

serve there as a long-term reservoir for a maximum of 10 days [85-87]. Thus, a possible, yet 

undesired, uptake of toxins needs to be considered. On the other hand, the possibility of targeting the 

HF has also opened novel possibilities for new drug delivery systems, like targeted non-invasive 

delivery of drugs and antigens [90, 92, 144-146]. Thus, for both, understanding the putative risk of 

unwanted uptake of substances, as well as the possibility to deliver drugs via the transfollicular route, 

knowledge about potential barriers present in the HF is crucial. 

As was shortly discussed in Chapter 1, the SC has been identified as the first invasion barrier in 

interfollicular skin [147]. Beyond this structure, located in the stratum granulosum of the viable 

epidermis, are the previously introduced tight junctions (TJs) [148]. These are multi-protein 

complexes in charge of barrier properties. In simple epithelia and endothelia, this barrier function has 

been extensively characterized over the years; however, only recently their role in a stratified 

epithelium (e.g. the skin) has gained increasing interest [31, 57, 148-150]. In 2002, an intact epidermal 

TJ barrier was demonstrated by Furuse et al., along with the revolutionizing discovery of the vital role 

of claudin-1 (Cldn-1) in mice (refer to Section 1.3.4) [58]. Shortly after, this barrier function was also 

revealed to exist in adult human interfollicular epidermis [43, 60, 61]. Using cultured keratinocytes, 

researchers were able to demonstrate that TJ proteins Cldn-1, Cldn-4, occludin (Ocln) and zonula-

occludens protein-1 (ZO-1) contribute to the TJ barrier for ions, as well as small and large molecules 

[123]. Due to their localization underneath the SC, it seems as if TJs serve as a second-line of defense 

for the outside-in passage of substances, especially when the SC barrier is impaired. However, they 

can also actively influence the SC (e.g. abnormally shaped corneocytes, altered ceramide composition 

of SC lipids, altered filaggrin processing, increase in pH of SC, increase in polar lipids and decrease in 

nonpolar lipids), and are therefore likely to be involved in the regulation of SC barrier function[63, 

123, 151]. 

The HF represents an invagination of the skin in which the SC barrier is interrupted, hence,  an intact 

SC is only present in the upper part of the infundibulum [152]. Thus, researchers were wondering 

whether TJs are present in this region of the HF or beyond. In the early 2000s this question was 

answered, as expression and localization of various TJ proteins were revealed in human HFs – 

including lower follicular areas not covered by the SC – as well as in murine skin [30, 153-155]. Also, 

the importance of regular TJ protein expression for normal hair growth was demonstrated in Cldn-1 

knock-out mice, patients with NISCH syndrome (deficiency of Cldn-1 in human), as well as Cldn-6 

over-expressing mice, which all exhibited a peculiar hair phenotype [154, 156, 157]. However, the 

intriguing question whether these follicular TJs actually serve as a barrier, which may or may not 

compensate for the non-existing SC in deeper follicular regions, had not been addressed up to now. 

We therefore took it upon us to investigate TJ barrier function in mammalian HFs. We used porcine 

ear skin, as this model has been accepted as the ‘gold standard’ for follicular uptake studies, and we 
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were interested in comparing the localization of an extracellularly applied exogenous substance – here 

model NPs  -  with the localization of existing barriers in the HF. 

In this study we therefore started by investigating expression and localization of follicular TJs via 

qPCR and immunohistochemical staining, respectively. To be able to compare our results to 

previously published clinical data on humans and preclinical data on mice, we focused our efforts on 

TJ proteins that have previously been localized in the HF of both species before, namely Cldn-1, -3, -

4, Ocln, and ZO-1. Next, barrier function of these TJs was evaluated using the tracer molecule Sulfo-

NHS-LC-Biotin (Biotin-SH), followed by the attempt to modulate this barrier using the Ca
2+

-chelator 

EDTA. Finally, transmission electron microscopy (TEM) was employed to visualize our model NP in 

the HF. 

2.2.3. Materials and Methods 

2.2.3.1. Materials 

Oleic acid-coated primary magnetite particles were kindly provided by the Leibniz Institute for New 

Materials, Saarbruecken.  Poly-D,L-lactide-co-glycolide (Resomer® RG 503 H) was purchased from  

Evonik in Essen, Germany. Uranyl Acetate was obtained from Polysciences Europe GmbH, 

Eppelheim, Germany. For tissue fixation, paraformaldehyde was purchased at VWR International in 

Radnor, PA, USA, and glutaraldehyde at Agar Scientific, Stansted, UK.  HEPES and Eosin Y solution 

0.5% in water were bought at Carl Roth GmbH + Co. KG in Karlsruhe, Germany, and RNAse 

Inhibitor at Fermentas, Waltham, MA, USA. Dulbecco’s Modified Eagle Medium (DMEM), the 

Maxima First Strand cDNA Synthesis Kit, and an O’GeneRuler
TM

 50-1000 bp DNA Ladder were 

purchased from Thermo Fisher Scientific, Darmstadt, Germany. The RLT buffer and RNeasy Mini Kit 

used for PCR experiments were bought from Qiagen, Venlo, Netherlands. All pig specific primers 

used were ordered from Applied Biosystems in Darmstadt, Germany: 1) Claudin-1 (CLDN1): 

Ss033757089, 2) Claudin-3 (CLDN3): Ss03377787, 3) Claudin-4 (CLDN4): Ss03375006, 4) Occludin 

(OCLN): Ss03377507, 5) ZO-1 (TJP1): Ss03373514, 6) GAPDH (Ss03375435), 7) β-2-microglobulin 

(Ss03391156), 8) β –actin (Ss03376160). EZ-Link
TM

-Sulfo-NHS-LC-Biotin (Biotin-SH;557 Da) was 

purchased at Pierce, Rockford, IL, USA. Formaldehyde (Formafix® 4%, buffered) was obtained from 

Formafix Global Technologies,  Duesseldorf, Germany. Mayer’s haematoxyline was provided by 

Medite GmbH, Burgdorf, Germany. All primary antibodies were purchased from Invitrogen Carlsbad, 

CA, USA. The Alexa-488-coupled secondary antibody (F(ab’)2 and Alexa-594-coupled secondary 

antibody (F(ab’)2 were provided by MoBiTec, Goettingen, Germany. For the biotinylation assay, the 

Texas-Red®-conjugated Streptavidin was purchased at Merck Biosciences, Darmstadt, Germany. For 

nuclear staining DAPI was bought at Boehringer Mannheim, Mannheim, Germany and Fluoromount-

G
TM

 at Southern Biotechnology Associates, Birmingham, Ala., USA. Aqueous polyvinyl alcohol, 1% 
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Alcian blue, phosphotungstic acid, dispase, 2-Mercaptoethanol, Hydrocortisone, fetal calf serum, 

penicillin/streptomycin and  ethylenediaminetetraacetic acid (EDTA) were all obtained from Sigma 

Aldrich, St. Louis, MO, USA.  

2.2.3.2. Porcine Ear Skin & Mice  

Fresh pig ears (Yorkshire/German Large White crossbreed; age: 6 months) were donated by a 

slaughterhouse in Schleswig-Holstein, Germany. The ears were excised before brewing, immediately 

brought to the lab, and washed thoroughly. They were carefully examined for skin abrasions prior to 

use, and only ears with immaculate looking skin were selected for experiments. For control 

experiments on the localization of TJ protein Cldn-3 in murine HFs, C57/Bl6 mice (adult) were used.  

2.2.3.3. Isolation of Hair Follicles and Epidermis for qPCR 

Porcine ear skin tissue blocks of 0.3 x 0.5 cm were incubated in a solution consisting of 4.0 mg/ml 

Dispase and 1.0 U/µl RNAse Inhibitor in DMEM at 4°C overnight. Subsequently, whole HFs were 

pinched using a pair of tweezers, washed in phosphate buffered saline (PBS) and stored in 1.0 ml of 

RLT buffer containing 10 µl 2-Mercaptoethanol. As a control, porcine heat-separated epidermis (HSE) 

was used by heating normal skin at 60°C for 90 sec resulting in a distinct separation of the epidermis 

from the dermis [158]. HSE was then washed in PBS and also stored in RLT buffer containing 10 µl 

2-Mercaptoethanol. RNA extraction was done using an RNeasy Mini Kit and tested for purity using 

the NanoDrop 2000C (Wilmington, DE, USA). After successful isolation of RNA, cDNA was 

generated by using a Maxima First Strand cDNA Synthesis Kit. qPCR was performed as previously 

described by Brandner et al. [159] using the parameters recommended by the manufacturer. Resulting 

amplified DNA of qPCR was then separated on a conventional 2% agarose gel using a 50-1000 bp and 

100-1000 bp DNA Ladder as standards. 

2.2.3.4. Biopsy Preparation and Staining Procedures 

Biopsy Preparation 

Biopsies of 8 mm diameter were removed from the inside of the pig ears and placed dermis down in 

DMEM supplemented with hydrocortisone, 2% (v/v) fetal calf serum, and 1% (v/v) 

penicillin/streptomycin. For TJ functionality experiments, 50 µl of 1 mg/ml Biotin-SH in 1 mM CaCl2 

PBS were carefully injected into the dermis and incubated for 1 h at 37°C. For barrier-modulation 

experiments, biopsies were bathed in 8.0 mM EDTA for thirty minutes, prior to injection of the tracer 

molecule Biotin-SH. After this incubation (with and without injected Biotin-SH), biopsies were fixed 

in formaldehyde at 4°C for 12 hours, embedded in paraffin, and 5 µm cross- and longitudinal section 

were cut using a Leica RM2165 Rotary Microtome (Leica Microsystems GmbH, Wetzlar, Germany). 
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Paraffin sections were deparaffinated and rehydrated, after which followed haematoxylin and eosin 

(H&E) staining or immunohistochemical staining.  

Embedding Tissue in Paraffin  

The protocol shown in Table 1 was used to embed the tissue in paraffin. The increasing alcohol 

concentrations first dehydrate the tissue. Xylol is then used to replace the alcohol. The last step, also 

known as the infiltration step, consists of placing the sample into a paraffin bath twice for 2 hours. 

Table 1: Protocol for embedding tissue in paraffin 

Time (hours) 2 2 2 4 4 6 4

Solvent H2O EtOH 70% EtOH 80% EtOH 96% EtOH abs. Xylol Paraffin
 

De-waxing Procedure of Paraffin Sections 

Paraffin sections were dewaxed and hydrated using Xylol (minimum of 2 x 15 min) followed by 

passing the tissue through a series of decreasing alcohol concentrations (EtOH abs, 96%, 80%, 70%) 

and distilled water, immediately after which followed either haematoxylin and eosin (H&E) staining 

or immunohistochemical staining. 

H&E Staining 

Sections were submerged in haematoxylin for 10 min and then left under running water for 10 min 

(bluing step). Next they were rinsed with distilled water, placed into 0.5% Eosin for 40 sec and rinsed 

again. The dehydration process was finalized by passing the tissue through a series of increasing 

alcohol concentrations (70%, 80%, 96%, EtOH abs) followed by submersion into Xylene and 

mounting coverslips using Eukit.  

Immunohistochemical Staining of Porcine and Mouse Paraffin Sections 

After being rehydrated, sections were placed in TEC buffer (0.25% w/v Tris, 0.5% w/v EDTA, 0.32% 

w/v Tri-Sodium Citrate, dihydrate) at 300 W twice for 10 min for epitope de-masking purposes. They 

were washed thoroughly using TBST buffer (6.01% w/v Tris, 8.76% w/v NaCl, 0.5% v/v Tween, 

5.67% v/v 25% HCl; pH 7.6), and incubated with a 0.001% Trypsin solution for 10 min at 37°C. 

Sections were washed again using TBST and soaked in blocking solution (DAKO® Protein Block 

Serum-Free) for 30 minutes at room temperature.  Next, sections were incubated with primary anti-

claudin-1 (1:3000; polyclonal rabbit), anti-claudin-3 (1:100; polyclonal rabbit), anti-claudin-4 (1:60; 

polyclonal rabbit), anti-occludin (1:50; monoclonal mouse), or anti-ZO-1 (1:100; polyclonal rabbit) 

antibody overnight at 4°C. Subsequently, sections were washed three times with TBST and incubated 
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with Alexa-488-coupled secondary antibody (F(ab’)2 anti-mouse/rabbit (depending on primary; 

1:500), or Alexa-594-coupled secondary antibody (F(ab’)2, anti-mouse/rabbit, 1:500, or a mixture of 

the above mentioned secondary antibodies and Texas-Red®-conjugated Streptavidin for 30 min. For 

nuclear staining, DAPI was used. At last, slides were washed twice with PBS and distilled water and 

coverslips were mounted using Fluoromount-G
TM

. 

Light and Immunofluorescence Microscopy for H&E and Immunohistochemical 

Stainings 

Immunohistochemical stainings of 5 µm sections were examined using a Zeiss axiophot II 

fluorescence microscope (Zeiss, Göttingen, Germany) with the software Openlab 5.0.2 (Improvision, 

Coventry, UK). H&E stainings were examined using a Leica DM LS microscope (Leica Microsystems 

GmbH, Wetzlar, Germany). For each analysis, at least 5 sections per skin sample were evaluated. 

2.2.3.5. Model PLGA-Nanoparticle Preparation and Characterization 

The magnetite-loaded PLGA-NP used for the TEM experiments were prepared via a modified single 

emulsion-evaporation method. In brief, oleic acid-coated primary magnetite particles, kindly provided 

by the Leibniz Institute for New Materials, Saarbruecken [160, 161] were dispersed in chloroform 

containing poly-D,L-lactide-co-glycolide (PLGA, Resomer® RG 503 H). After adding aqueous 

polyvinyl alcohol, particles were homogenized using sonication. Water was added to expand the 

volume, and the dispersion was left overnight under moderate stirring for the organic solvent to 

evaporate. To assure that only particles loaded with iron oxide were used for the experiments, 

magnetic separation was performed and agglomerates were removed by filtration. Size and 

polydispersity of the particles were determined by means of dynamic light scattering analysis using a 

Zetasizer Nanoseries (Malvern Instruments, Worcestershire, UK).  

2.2.3.6. Transmission Electron Microscopy 

Visualization of pure NP was done by negative staining electron microscopy [162]. Briefly, NP were 

adsorbed onto hydrophilized (with 1% Alcian blue) sample supports (pioloform-coated and carbon 

reinforced grids) by adding 10 µl of the NP suspension, and incubating for 10 min at room 

temperature. After three washing steps using aqua dest., samples were stained using heavy metal stains 

phosphotungstic acid and uranyl acetate, and left to air dry. 

Visualization of NP in the HF was performed by ultrathin section TEM as previously described [162]. 

Beforehand, 50 µl of 2.12 mg/ml particles suspended in water were applied onto a predetermined and 

cleansed area of porcine ear skin. A three min massage was performed using a gloved forefinger, and, 

subsequently, particles were incubated on tissue for 1 h. Next, 4 mm biopsies were taken and placed 
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into 1% paraformaldehyde and 2.5% glutaraldehyde in 0.05 M HEPES buffer at room temperature for 

fixation. Biopsies were cut using a scalpel into slices of approximately 1 mm thickness.  

Sample dehydration and embedding was done according to the rapid embedding procedure described 

in reference [162], with slightly changed incubation times on ice: ethanol 50, 70, 100, 100% for 10 

min each; mixtures of resin (LR White) and ethanol 1:1, or pure resin for 10 min each; after an 

additional step in pure resin for 15 min, samples were embedded in fresh resin which contained 5 µl of 

accelerator per ml resin. Complete polymerization was achieved after 90 min on ice. To remove 

remaining unpolymerized resin, samples were placed at 60°C for a few hours. Thin sectioning was 

performed using an ultramicrotome (UC7, Leica, Leica Microsystems GmbH, Wetzlar, Germany), and 

ultrathin sections were placed on pioloform-coated single slot grids. No section staining was done. 

Semi-thin sections were collected on glass slides, stained with toluidine blue and analysed using a 

phase-contrast light microscope (Axiophot, Zeiss, Göttingen, Germany) equipped with a digital CCD 

camera (ColorviewII, Olympus Soft Imaging Solutions (OSIS) GmbH, Muenster, Germany). 

TEM was done on a Tecnai12 Biotwin (FEI Corp., Hillsboro, Oregon, USA) microscope run at 120 

kV acceleration voltage. Images were taken using a digital CCD camera (Megaview III, OSIS GMbH, 

Muenster, Germany) and a resolution of 1376x1024 pixel. 

2.2.4. Results and Discussion 

For all results discussed in this paper, only terminal anagen HFs were considered. This phase was 

distinguished from the other growing phases based on the complete structure of the HF composed of 

an infundibulum, an isthmus, a central region, the suprabulbar zone and the hair bulb [14]. For a 

comprehensive overview of the structure of the HF see Figure 2. 

2.2.4.1. Expression of TJ Proteins in Porcine Hair Follicles and 

Epidermis 

Presence and distribution of TJ proteins have to date only been shown in human and mouse, but not 

porcine HFs. Therefore, the first objective was to look at the expression of the TJ proteins of interest 

in porcine tissue and compare them to previously published human data [30]. Using qPCR, mRNA 

from isolated porcine HFs encoding Ocln, ZO-1, as well as Cldn-1, -3, and -4 were identified and 

analyzed. Amplified DNA obtained was separated and visualized using gel electrophoresis (see Figure 

13a-b).  
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Figure 13: Expression of various TJ proteins in porcine hair follicles and epidermis. a) 2% agarose gel analysis of amplified 

DNA encoding GAPDH (lane G) as a control, ZO-1 (lane Z), Cldn-1 (lane 1), Ocln (lane O), and Cldn-4 (lane 4) in pinched 

porcine hair follicles. b) 2% agarose gel analysis of amplified DNA encoding GAPDH (lane R) as a control and Cldn-3 (lane 

3) in pinched porcine hair follicles. Lanes R = 50-1000 bp ladder, Lane NC1 and NC2 = negative controls. n=3. c) Cycle 

threshold (Ct) values for genes of interest (CLDN1, CLDN4, OCLN, TJP1 (ZO-1)), as well as three separate housekeeping 

genes (GAPDH, ß-2-microtubulin, ß-actin) in porcine hair follicles compared to porcine epidermis; n≥3. Note the higher 

differences of Ct values for housekeeping genes between hair follicle and epidermis than for TJ proteins. 

 

Normal expression of Cldn-1, -4, Ocln, and ZO-1 in porcine HFs could be detected and was in 

accordance with what had previously been shown in human HFs [30]. For Cldn-3, which had not been 

investigated before in human skin, only a weak signal was observed (Figure 13b). The results obtained 

were then compared to the expression levels in porcine epidermis, in order to determine whether the 

genes of interest are expressed alike in both structures. Interestingly enough, when using the same 

amounts of mRNA, our genes of interest, especially the ones encoding Cldn-1, were expressed more 

alike (determined via cycle threshold (Ct) values) in HFs and epidermis) than all three housekeeping 

genes used, hinting at the possibility of using CLDN1 (gene) as a more relevant housekeeping gene to 

compare HF and interfollicular skin (Figure 13c). The Ct value mentioned here is generally defined as 

the number of cycles required to obtain a fluorescence signal above the threshold (i.e. above 

background noise), and this number is inversely proportional to the amount of target nucleic acid in 

the sample [163]. When comparing our data to previously published data on TJ protein distribution in 

human HF [30], our Ct values were in accordance to what had been shown via immunofluorescence: 

Cldn-1 being expressed most and Ocln the least (Cldn-3 had not been investigated before). Overall, 

these findings gave a basis to believe that, as expression in both structures was similar quantitatively, 

function of these structures with regard to barrier properties may be similar, too. Hence TJs in the HF 
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may exert a significant barrier function as has been demonstrated for TJs in the interfollicular 

epidermis before [43]. 

2.2.4.2. Localization of TJ Proteins in Porcine Hair Follicles: a 

Comparison to Human Tissue 

The next step was to investigate the distribution of the TJ proteins of interest and compare those to 

previously published data on human. Thus, the localization pattern for the five mentioned proteins 

(Cldn-1,-3,-4, Ocln, ZO-1) among porcine follicular epithelia was identified using 

immunohistochemistry (see Figure 14). For clarification regarding the anatomy of the HF during this 

section, the reader is kindly asked to refer to Figure 2.  

Claudin 1 & Claudin 4 

In porcine HF, Cldn-1 was distributed throughout all viable layers of the epidermis and the outer root 

sheath (ORS) of the infundibulum and isthmus (Figure 14a-b). In the upper central region, Cldn-1 

staining was intense in the central cell layer (CCL) and companion cell layer (CL), but none was 

observed in the basal cell layer. In the lower central region, Cldn-1 was limited to the outermost layer 

of the CCL and the CL, while in the suprabulbar/bulbar zone staining was only positive in the CL 

(Figure 14c-d). Matrix cells in the bulb, as well as cortex and cuticle of the hair shaft, were faintly 

positive (see Figure 14c-d). In the inner root sheath (IRS), which consists of Henle’s layer (He), 

Huxley’s layer and the cuticle, all layers revealed strong staining, except for the fully differentiated 

and highly keratinized Henle cells (He*). These cells and their characteristic keratinization 

development have previously been described in detail by various hair specialists like Langbein or 

Alibardi and Bernd [24, 155]. For a detailed review the reader is kindly asked to refer to those 

references.  

For Cldn-4, a typical staining of the stratum granulosum and upper layers of stratum spinosum was 

observed in the epidermis and infundibulum of the HF (Figure 14e). In the ORS of isthmus and upper 

central region, Cldn-4 was found in the CCL and CL, while in the lower central and suprabulbar 

region the staining was confined to only the CL (Figure 14f-g). As for distribution within the IRS of 

the HF, Cldn-4 staining was intense in all three compartments, yet strongest for Henle’s layer, except 

again for He* (Figure 14h). Matrix cells and cuticle of the hair shaft in the bulbar region showed 

intense staining, except the ones directly enclosing the dermal papillae.  

Distribution of Cldn-1 and Cldn-4 was similar to what was shown in human HFs in the upper parts, 

while in the central and suprabulbar ORS layers, as well as in the hair shaft region, small 

contradictions were observed [30]. The previous results in human HFs exhibited a broader staining for 
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Cldn-1 and Cldn-4 in the ORS. However, after restaining human scalp tissue under the same 

conditions, the same distribution as had been observed in porcine HFs was also seen in human skin. It 

is very likely that these differences in the staining distribution can be explained by different fixation 

processes
4
 resulting in different antigen accessibility. Also, a new batch of antibodies, which may 

contain slightly different concentrations of antibody, could be a possible explanation. 

ZO-1 

An intense staining of ZO-1 was found in the stratum granulosum and the upper layers of stratum 

spinosum in the interfollicular epidermis and infundibulum (Figure 14i). In the isthmus and central 

region of porcine HF, ZO-1 was strongly positive in all cell layers of the ORS (Figure 14j-k). The 

suprabulbar region revealed a more intense staining of the CL than surrounding cell layers, yet it was 

visible throughout the entire ORS of the bulbar and suprabulbar region. Within the bulb the IRS 

exhibited strong staining of ZO-1, with the undifferentiated cells of Henle’s layer being the most 

intense. In the suprabulbar region the IRS remained positive, but staining intensity in Henle´s layer 

decreased with He* being completely negative (Figure 14k-l). The matrix cells, lower cortex and 

cuticle of hair shaft showed an intense ZO-1 staining, whereas the upper cortex displayed only 

moderate staining (Figure 14k-l). The staining pattern was overall similar to that found in human HFs 

[30]. 

Occludin (Ocln) 

In the interfollicular epidermis and infundibulum, Ocln was restricted to the stratum granulosum 

(Figure 14m). This narrow distribution continued on through the isthmus and central region, as only 

the CL of the ORS stained positive (Figure 14n-o). The suprabulbar region still exhibited staining in 

the CL, but no presence of Ocln in the ORS of the bulb was seen (Figure 14p). Among the IRS, 

Henle’s layer was positive for Ocln in the bulbar, suprabulbar, and lower central region. No staining at 

all was observed in the matrix cells, but some was seen in the more differentiated matrix cells and 

medulla (Figure 14o). The staining pattern was similar to human HFs [30] except for a slightly broader 

localization of Ocln in the ORS of the upper parts of human HFs. Again, the difference in fixation may 

be an explanation for this. 

                                                      

4
 In 2003, sections were prepared via cryo fixation while for this study formalin fixation and paraffin embedding 

was done for better quality sections 
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Figure 14: Localization of TJ proteins in adult porcine hair follicles. Immunofluorescence-based localization of Cldn-1 (red; 

a-d), Cldn-4 (green; e-h), ZO-1 (red; i-l), Ocln (green; m-p), and co-localization of Cldn-1 & Ocln (red & green;q-t) in 

infundibulum (a,e,i,m,q), isthmus/upper central region (b,f,j,n,r), lower central/suprabulbar region (c,g,k,o,s), and bulb 

(d,h,l,p,t) of HFs. Blue: nuclei; yellow: co-localization of green and red. CCL = central cell layer of the ORS, CL = 

companion cell layer of ORS, DP = dermal papilla, He = Henle’s layer of IRS, He* = differentiated cells of Henle’s layer of 

IRS, IRS = inner root sheath, MC = matrix cells, ORS = outer root sheath, ++ = regions of co-localization of all TJ proteins. 

Scalebar = 80 µm. 
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Claudin 3 

Because Cldn-3 was shown before at cell-cell membranes in murine HFs [48], and because it had 

given a weak signal via qPCR (see Figure 13), it was also examined here. However, 

immunolocalization revealed that Cldn-3 was only found very weakly and mainly intracellularly in 

porcine epidermis and HFs (Figure 15a,b) , even though it was positive in porcine sweat glands and 

murine HFs (Figure 15b,c). These results were, again, in accordance with human data, as staining of 

human HFs had also given an only very weak, mainly intracellular staining (unpublished data). This 

was an interesting finding, as it hints at differences between porcine/human and murine HFs, with 

Cldn-3 not playing a part in barrier function. 

 

Figure 15: Localization of Cldn-3 in pig (a,b,d,e) vs. Cldn-3 in mouse skin (c,f). Cldn-3 immunolocalization (green) in 

porcine epidermis (a), porcine hair follicle (b) and mouse hair follicle. (d-f) represent corresponding phase contrast pictures. 

Note that Cldn-3 is found only weakly and mainly intracellular in porcine epidermis and hair follicles while it is clearly 

positive at cell-cell borders in murine hair follicles (companion cell layer of the ORS (arrows in c) and faintly in the IRS, as 

well as sweat glands in porcine skin (arrowhead in (b)). Scalebars = 50 µm. 

Co-localization of TJ proteins 

As it is likely that functional TJs are only found in areas where TJ proteins co-localize (for review see 

[58, 148, 164]), we took a closer look to identify those areas of co-localization throughout porcine 

HFs. Figure 14q-t and Figure 16 are examples which display this co-localization nicely. In the past, 

functional epidermal TJs in healthy skin have mainly been detected at areas where Ocln is present in 

the stratum granulosum [43, 58, 164, 165]. And although a lack of Ocln does not necessarily influence 

barrier function of TJs [37, 166], this protein is the most restricted one resulting in its frequent use as a 

surrogate marker for TJ detection in skin, as it mostly co-localizes with tracer stops at TJs in the 

epidermis. 
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In Figure 14q-t and Figure 16, Cldn-1 is shown in red and Ocln in green, resulting in a yellow/orange 

appearance at points of co-localization. In the infundibulum of porcine HFs, a co-localization of all 

four TJ proteins was detected at the stratum granulosum (Figure 14a,e,i,m,q) and it continued down 

the CL of the ORS from the isthmus to the suprabulbar region (Figure 14b-d,f-h,j-l,n-p,r-t, Figure 16). 

In the lower central region, suprabulbar region, and bulb the proteins were co-expressed in Huxley’s 

layer of the IRS hinting at a possible barrier at those sites (Figure 14c-d, g-h, k-l, o-p, s-t).  

 

Figure 16: Co-localization of Cldn-1 and Ocln in companion cell layer of ORS in isthmus region of porcine hair follicle. (a) 

shows Cldn-1 in red, (b) Ocln in green, (c) DAPI in blue, and (d) represents an overlay of all three stainings. Scalebar = 

20 µm. 

 

Thus, it seems as if throughout the entire HF, from the infundibulum down to the suprabulbar region, a 

putative barrier may exists which may be involved in regulating invasion of exogenous substances 

from the outside, as well as loss of water and nutrients from the inside. Overall, (co)-localization of all 

of the investigated TJ proteins was similar between pig and human, making the porcine HF a good tool 

to investigate TJ barrier function in HFs. 

2.2.4.3. TJs as a Biological Barrier in Hair Follicles 

In healthy human skin and newborn mice, the polar, biotin-labeled extracellular tracer molecule Sulfo-

NHS-LC-Biotin (557 Da, Biotin-SH) has been used to investigate TJ functionality [43, 58, 165, 167]. 

In newborn mice and healthy human skin, this tracer molecule was stopped, when applied from the 

dermis side, at the most apical sites of TJ protein co-localization. Interestingly, changing the site of co-
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localization (e.g. in psoriasis vulgaris [168, 169]), or applying the TJ modulator cCPE [151], resulted 

in changing the localization of the Biotin-SH stop or complete abolishment of the tracer stop, 

respectively. Figure 17 shows reproducibility of these results in healthy porcine tissue.  

 

Figure 17: Biotin-SH gets halted at Cldn-4 positive sites in stratum granulosum of porcine epidermis. (a) Biotin-SH staining 

in red, (b) Cldn-4 staining in green, (c) DAPI in blue, and (d) represents an overlay of (a-c). Arrowheads denote Cldn-4-

positive sites in granular cell layer where Biotin-SH stops. Scalebar = 30 µm.  

 

Similar to human skin [43], the tracer molecule penetrates towards the skin surface and gets halted at 

the most apical point of TJ protein co-localization, e.g. granular cell layer. Next, this well-established 

and reliable assay was used to test functionality of follicular TJs in porcine skin. Thus, longitudinal-

sections (Figure 18) and cross-sections (Figure 19) of porcine HFs, which had previously been 

injected with the tracer Biotin-SH and later stained for TJ proteins, were thoroughly investigated. 

In the infundibulum, a functional barrier was to be expected in the stratum granulosum, similar to 

what was observed in the epidermis (Figure 17). As depicted in Figure 18a-c and Figure 19a-b, a 

tracer stop was indeed seen in this cell layer. In the longitudinal-, as well as the cross-sections, Biotin-

SH spreads from the dermis into the viable part of the epidermis; yet it is not able to penetrate past the 

outermost site of the Cldn-1 and Cldn-4 staining, the apical part of the stratum granulosum. Of note, 

this specific localization is also the site where the narrow Ocln staining is present (Figure 18d)). 

Similarly, in the isthmus and upper central region of porcine HFs, a TJ barrier was observed in the CL 

of the ORS (Figure 19d-i)).The lower central and upper suprabulbar region give rise to two individual 
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barrier sites in two distinct compartments of the HF, one in the CL of the ORS (Figure 18f-g) 

arrowhead pointing to the left & Figure 19j-k), and one in Huxley’s layer of the IRS (Figure 18f-g) 

arrowhead pointing to the right & Figure 19j-k)). The tracer spreads from the dermis into the ORS of 

the HF to the point of co-localization of at least four (Cldn-1, Cldn-4, Ocln, ZO-1) TJ proteins in the 

CL. Simultaneously, the tracer molecule permeates from the bulb (see below) upwards via the matrix 

cells, hair cortex, and cuticle into the IRS up to Huxley’s layer where it is stopped. 

 

Figure 18: Barrier function of follicular TJs displayed in longitudinal-sections. Immunohistochemical stainings of Biotin-SH 

(red), Cldn-1 (green), Ocln (white), and DAPI (blue, nuclei). (a-d) infundibular region, (e-k) lower central/suprabulbar 

region, and (l-o) bulb. White boxes in a, e and l represent areas magnified in b-c, f-g, i-j, and m-n, respectively. Arrowheads 

highlight points where Biotin-SH is stopped (b-h) (c-d, g-h); He = Henle’s layer, He* = differentiated cells of Henle’s layer, 

DP = dermal papilla. Scalebars = 50 µm 

This is in accordance with all data discussed before, as exactly in these layers, the CL and Huxley´s 

layer, a co-localization of various TJ proteins occurs. Of note, tracer flux into the fully differentiated 

and keratinized cells of Henle’s layer (He*) in the IRS [24, 155] is blocked from two sides: the most 

proximal layer of the ORS (CL) and the most distal layer of the IRS (Huxley). For that reason, the He* 
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cells appear black in Figure 18f & Figure 19g-f. For a simplified depiction of this situation, please 

refer to Figure 20a.  

 

Figure 19:  5 µm cross sections of porcine HFs from infundibulum (A-C), upper central region (D-F), lower central region 

(G-I), suprabulbar region (J-L) and bulb (M-O) demonstrating intact barrier properties from the infundibulum down to the 

suprabulbar region. The bulb was freely permeated. Sections on the left represent Cldn-1 (green), Biotin-SH (red) and DAPI 

(blue). Middle sections show Cldn-4 (green), Biotin-SH (red) and DAPI (blue). Sections on the right are H&E stainings of 

representative regions shown to the left. ** highlight examples of intact barrier, °° denote no barrier. SG=stratum 

granulosum, SC=stratum corneum, M=Medulla, ORS=outer root sheath, He=Henle’s layer of IRS, Hu=Huxley’s layer of 

IRS, C=cortex, Cu=cuticle, DP=dermal papillae. Scalebar = 20 µm. 
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Only about 70 µm further down the hair shaft, in the lower suprabulbar region magnified in Figure 

18i-j, these two barrier sites seem to not be established yet. Here, Biotin-SH permeates from two sides: 

1) via the bulb into the hair shaft to the IRS, and 2) from the dermis into the ORS up to the point of TJ 

co-localization in the CL of the ORS. In contrast to above, however, Henle’s layer gets freely 

permeated in this lower region. A putative explanation for this scenario could be that while two points 

of co-localization were observed in the upper suprabulbar region (in the IRS & ORS; see two X’s in 

Figure 20a), only one monolayer is subject to co-expression in the lower part (located in the CL of the 

ORS; single X in Figure 20b). Thus, in the latter situation the tracer molecule permeates from two 

sides, via the IRS and ORS, and only gets halted at one ‘fine line’, making the stop not visible to the 

normal eye. However, this is only a hypothetical explanation, and, of course, another one could be that 

simply no TJ barrier is present in this region. 

 

Figure 20: Cartoon depicting permeability of Biotin-SH in untreated porcine HFs at TJ borders in upper suprabulbar region 

(a) and lower suprabulbar region (b). Red arrows represent Biotin-SH, black lines represent functional TJs, and yellow X’s 

display the area where Biotin-SH gets blocked (a) or hypothetically may be get blocked (b).   

 

The bulb of the HF is not protected by a TJ barrier at all. Biotin-SH permeates from the dermis into 

the bulb, most likely via the dermal papilla and the matrix cells, which do not contain neither Ocln, 

nor Cldn-1 (Figure 18l-o & Figure 19m-n). This confirms previous work published on cell-cell 

communication in rat HFs in which the tracer dye Lucifer yellow was applied to demonstrate 

spreading of the dye after injection into the matrix region of rat HFs [170].  

Noteworthy is that the manual application of Biotin-SH to the epidermis (i.e. from the outside) was 

also performed in order to mimic outside-in barrier conditions in the HF. This was, however, 

unsuccessful. The tracer molecule did not penetrate past the first layer of corneocytes in the SC 

(Figure 21a), and not at all into the HF (even after massaging the skin post-administration) (Figure 
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21b). This is in accordance with what has been reported before about solutions (in contrast to NPs) not 

penetrating into HFs [83]. 

 

Figure 21: Intact barrier function of the “limiting barrier”, the stratum corneum, to Biotin-SH in porcine epidermis (a) and 

infundibulum of hair follicle (b). (a, b) Overlay of Biotin-SH (red), Cldn-1 (green), DAPI (blue) and a transmitted light 

image. Scalebars = 30 µm. 

 

Summarizing this data, barrier-forming TJs exist in the ORS from the infundibulum down to the upper 

suprabulbar region of the HF. In the infundibulum this TJ barrier is – similar to the epidermis – an 

addition to the SC, but in lower areas it is likely the only barrier. In the bulb, however, no obvious 

barrier hinting at functional TJs was detected, and the tracer molecule was able to permeate freely
5
. 

Therefore, TJs seem to compartmentalize the HF i) into areas that are freely accessible from the 

dermal microenvironment, i.e. the hair-forming area of the bulb and the ORS (containing the bulge 

area), which may be important for the supply and control of nutrients and signaling molecules; and ii) 

into areas that are restricted from the extracellular supply by the dermal microenvironment, i.e. the 

upper areas of the IRS, especially the He*. This may be important to reduce and/or prevent the loss of 

hormones, nutrients, or other solutes via the HF, plus to possibly keep exogenous substances from 

translocating into the outer layers of the HF and/or entering the bloodstream. 

2.2.4.4. Modulation of Tight Junction Barrier Function using EDTA 

After barrier properties of follicular TJs had successfully been demonstrated, EDTA was used to test 

whether this barrier can be modulated, as is displayed in Figure 22.  

                                                      

5 Of note, even though the tracer was applied only from the dermal side (inside-out barrier function), we can 

conclude that TJs also form an outside-in barrier at the same sites, because the permeation of solutes through TJs 

is bidirectional and only dependent on the gradient of the substances. Therefore, when a barrier for permeation 

exists, it exists in both directions. Because TJs form a functional inside-out barrier in the HF, especially in areas 

where NP were found, we can conclude that they also form a functional outside-in barrier in these areas [170].  
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Figure 22: Direct comparison between intact barrier in suprabulbar region of untreated porcine HF (a) and impaired barrier 

in with 8.0 mM EDTA treated tissue (b). (c) represents an intensity curve for tracer molecule Biotin-SH in images for 

selected area denoted by two white lines in (a) and (b), respectively. Blue boxes in (c) highlight region of interest 1 (ROI 1) 

of intact barrier to Sulfo-NHS-LC-Biotin in (a) indicated by intensity curve dropping down to the baseline vs. impaired 

barrier in (b) indicated by a rise in intensity in ROI 2 of ~30%. He*=differentiated cells of Henle’s layer, ROI=region of 

interest. Scalebar = 15 µm. 

 

EDTA is a well-known Ca
2+

-chelator and has been shown to impair TJ functionality in cells, resulting 

in increased permeability [171, 172]. Thus, untreated and EDTA-treated samples were analyzed 

simultaneously. For samples which had not been treated using EDTA, a clear stop of Biotin-SH was 

seen at Huxley’s layer of the IRS, as well as at the CL of the ORS, leaving He* black (Figure 22a). In 

the EDTA-treated samples, however, the tracer permeated this layer of fully differentiated cells, 

making He* appear red (Figure 22b). To further examine this matter, an intensity analysis (Figure 22c) 

of Biotin-SH was performed at the regions of interest (ROI) highlighted in Fig. 24a-b. While the 

intensity curve at He* is close to the baseline in the untreated sample (ROI 1), it is significantly higher 

(about 30%) for the EDTA-treated sample (ROI 2), only further confirming previous results. For the 

sake of correctness, it has to be noted that EDTA does not only address TJs. By chelating Ca
2+

 it also 

disturbs adherens junctions. Nonetheless, adherens junctions are no barrier-forming junctions, hence 

the observed effect on barrier function is most likely TJ-mediated. 

2.2.4.5. Visualization of PLGA-based Nanoparticles in Hair Follicles  

Based on the newly found data discussed above, the following question aroused: can the organization 

of the different barriers in the HF [two barriers in the infundibular region (SC and TJs), one barrier in 

the isthmus/central/suprabasal region (TJs), and a complete lack of a barrier in the bulb] be interpreted 
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as the biological answer to the varying accessibility of exogenous substances to the hair shaft? To 

investigate this further, model NPs were applied to porcine ear skin, and the distribution of these 

particles within the hair shaft was compared with the distribution of these various barriers in different 

follicular regions.  

Since follicular penetration of NPs with respect to drug delivery has also become a field of surging 

interest over the last decade, polymer-based NPs were used. Until now, only indirect detection of NPs 

based on fluorescence microscopy had been discussed in literature [77, 83, 85, 145]. However, for this 

study we used PLGA-based NP (mean diameter = 154 nm; polydispersity index = 0.02; see Figure 23) 

loaded with primary magnetite particles (10 nm) in order to visualize, and simultaneously evaluate, the 

uptake, intactness, as well as potential translocation of individual particles in the HF.  

In Figure 23a) the NP depicted are completely embedded in a thin film of the heavy metal stain 

(phosphotungstic acid), which makes the background appear dark. The particles are spherical in shape, 

and homogeneous in size. The bright low-scattering PLGA matrix is clearly visible with dense 

magnetite particles embedded within.  

 

 

Figure 23 Negative staining transmission electron microscopy of magnetite-loaded PLGA nanoparticles. (a) NP embedded in 

heavy metal stain (phosphotungstic acid) (b) Nanoparticles from the same sample preparation as in (a), but without a staining 

film resulting in dehydrated particles. Scalebars = 200 nm. 

 

In Figure 23b) the same NPs are shown, however, no staining was performed in order to mimic the 

situation in the non-stained biological tissue. Here, the PLGA matrix of the NPs has collapsed during 

the final drying step, leaving only magnetite particle clusters visible. This information was important 

to obtain, as such a drying effect is to be expected during the final processing steps of the tissue 

samples which contain these NPs. Dehydration, as well as plastic embedding, may be a cause of this 

effect. Nonetheless, the preserved clusters of the magnetite particles give an indication on whether the 

particles stay intact or not upon penetration. 
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As has been proposed in literature before, applying the NP suspension onto porcine ear skin, together 

with a slight massage, resulted in the highest accumulation of NP in (or on) the SC of the 

infundibulum of the HF (Figure 24ai-av) [76, 83]. Of note, in all magnifications, the homogeneously-

sized, spherically-shaped clusters of the magnetite particles are visible; hence particles stay intact upon 

penetration.   

 

Figure 24: Localization of PLGA-NP in infundibulum of HF(a) and central region of HF(b). (ai) Light microscopy image of 

the infundibular region of the HF. Inset: TEM image of a corresponding ultrathin section. Square: stratum corneum 

magnified in (aii); circle: infundibular region magnified in (aiii-av); each image represents a magnification of the previous 

one; Scalebars = 200 µm, 1 µm, 10 µm, 2 µm, and 200 nm for a-e, respectively. (bi) Light microscopy image of a semi-thin 

section depicting overview of a diagonally cut HF in upper central region; (bii) corresponding ultrathin section of (bi); (bii-

biv) each represent magnification of previous one. Inset in (biv) represents final magnification. Scalebars = 500 µm, 100 µm, 

2 µm, and 300 nm, for bi-biv, respectively. h=hair, ORS=outer root sheath, *=sebum. 

 

Figure 24bi-iv displays the central region of a HF cut diagonally. Here, individual intact particles (see 

inset in Figure 24biv for final magnification) did penetrate into the hair shaft, reaching parts of the HF 

about 500 µm away from the skin surface. These individual particles, embedded in the epithelium, 

also demonstrated preservation of the PLGA matrix i.e. intactness of the particles upon penetration, 

revealed by the expected side of the clusters of magnetite particles (see biv including inset). As was 

expected, the particles appeared in a dried and collapsed state, which is an artifact resulting from the 

sample preparation process, as was discussed before (Figure 23b). In this study, the particles were 

mainly observed in the cuticle/Huxley layer of the IRS (Figure 24bii-iv) but a translocation of these 

individual particles into the ORS, let alone the dermis, was not observed here. 

Thus, the detection of majority of the particles in the infundibulum, which was previously shown to be 

protected by the double-barrier consisting of the SC and TJs, is only reasonable. Few particles were 

seen in deeper areas of the hair shaft, yet it seems as if they were not able to penetrate past the TJ 

barrier in those regions. No particles at all were observed in parts of the HF which is not protected by 

any barrier (i.e. the bulb). 
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2.2.5. Conclusion 

This work shows for the first time the existence of a continuous TJ barrier in the ORS of mammalian 

HF, ranging from the infundibulum down to the suprabulbar region. While in the lower follicular 

regions they are likely the only barrier, they seem to act as a second line of defense, next to the SC, in 

the infundibulum of the HF. The application of model NP to the skin and subsequent analysis using 

TEM demonstrated that majority of the particles were located in the upper follicular region protected 

by this double-barrier (SC and TJs). Fewer particles were located in parts of the HF where TJs seem to 

act as the only barrier. Thus, we hypothesize, that the two follicular barriers, the SC and TJs are 

organized according to the principle of risk stratification: areas with a high accessibility are protected 

by two barriers, whereas in areas with lower accessibility, only one barrier is present. Moreover, 

besides the continuous barrier in the ORS, another TJ barrier was detected in Huxley’s layer of the 

IRS in the suprabulbar region; the bulb, however, seemed to be completely permeable. Therefore, as a 

result of these different TJ barriers in various regions of the HF, it can be concluded that a 

compartmentalization of the HF occurs that divides it into areas accessible and non-accessible from 

the dermal microenvironment. This argues for a potential role of these barriers, not only concerning 

the invasion of exogenous substances, but also for the loss of solutes, and likely also for HF biology. 

Finally, expression and co-localization of the investigated TJ proteins in porcine HFs were shown to 

be equivalent to human skin, indicating suitability of this model regarding TJ barrier experiments, and 

thereby arguing for a transferability of our results to human HFs. 
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2.3.1. Abstract 

Glucocorticoids are essential for the treatment of many dermatological conditions, ranging from 

inflammatory-based hair disorders to eczema or psoriasis. However, these drugs are known to cause 

severe systemic as well as local adverse effects even when only applied topically. Optimizing the 

balance between the release of drug, interfollicular permeation, and follicular uptake may allow 

minimizing these adverse effects given that one succeeds in targeting a sustained release formulation 

to the hair follicle. To test this hypothesis, three different polymeric nanocarriers (nanospheres, 

nanocapsules, lipid-core nanocapsules) encapsulating the potent glucocorticoid Clobetasol propionate 

(CP) were prepared, all providing a sustained release of drug as was demonstrated by separate in vitro 

experiments. They were each formulated as a suspension and hydrogel and (partially) labeled with 

Rhodamin B for quantification purposes. Follicular uptake was evaluated using the Differential 

Stripping method and nanocapsules in suspension were found to achieve the best recovery (4%) after 

application of a massage. In contrast, only minimal amounts of CP were detected in the hair follicle 

when applied as free drug in solution or hydrogel, regardless of the use of massage. Skin permeation 

experiments using heat-separated human epidermis mounted in Franz Diffusion cells revealed similar 

decreased transdermal permeability for all three nanocarriers when compared to free drug. 

Summarizing these results, nanocapsules in suspension and applied using massage were shown to be a 

good candidate for maximizing follicular targeting, minimizing drug permeation, and releasing the 

drug in a steady and continuous manner. We conclude that such nanoparticle-based formulations offer 

a viable strategy for achieving more efficient glucocorticoid delivery to the hair follicle, while 

potentially decreasing adverse effects by releasing the drug in a controlled manner and decreasing 

interfollicular permeation simultaneously.  

2.3.2. Introduction 

Glucocorticosteroids are considered to be first-line agents for many diseases in the field of 

dermatology [173]. Their wide range of therapy includes high-prevalence skin disorders like eczema, 

atopic dermatitis, or psoriasis to diseases in which the inflamed or diseased hair follicle (HF) serves as 

the main target, e.g. lichen planopilaris (LPP), alopecia areata (AA), or frontal, fibrosing alopecia 

(FFA) [95, 174-179]. As has been discussed in Chapter 1, the skin is very effective in limiting 

xenobiotics access to the body. Nonetheless, some substances can still passively diffuse through the 

stratum corneum (SC), the outermost layer previously identified as the limiting barrier, and reach the 

viable epidermis and/or systemic circulation [147]. This effect is dependent upon different factors 

regarding the patient’s skin nature (age, application site, hydration level, etc.), the nature of the 

molecule used (size, lipophilicity, pKa, etc.), and the vehicle itself (lipophilicity, viscosity, interactions  
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with the drug, ability to release the drug, extent of follicular penetration, possible interaction with the 

skin, etc.). The most important systemic side effects that occur as a consequence of high 

glucocorticoid absorption are bodyweight gain, development of diabetes mellitus, production of 

electrolyte imbalance, hypertension, Cushing’s syndrome, osteoporosis, peptic ulcer, growth 

retardation in infants and children, and suppression of the hypothalamic-pituitary-adrenal axis [180, 

181]. Within the local adverse events the most common one observed is cutaneous atrophy [181]. A 

typical disease pattern for this condition is a characteristic reduction in epidermis and SC thickness, a 

decreased number of keratinocytes, changes in the organization of elastin and collagen fibers, a 

decreased cellularity in the dermis, elimination of fatty tissue, and loss of mast cells [98, 99]. Although 

the occurrence of this adverse event is almost unavoidable during frequent application of topical 

glucocorticoids, the degree of it observed in patients can generally be directly related to factors like 

the treated skin site (“thicker” on scalp or forearm vs. “thinner” on eyelid ), patient’s age, potency of 

the drug used, and usage of occlusion [182]. Besides these adverse events there are other major 

drawbacks that physicians and patients describe when employing topical glucocorticoid treatment, 

especially for inflammatory scalp diseases like AA, LPP, or FFA. For example current clinical trials 

employ therapies which involve the application of an ointment containing a glucocorticosteroid (e.g. 

Clobetasol Propionate, CP) to the desired site of action under occlusion with a plastic film, or 

application of a shampoo or cream several times a day [95, 96, 183]. Because these conditions are very 

tedious and time-consuming they are generally not well accepted by the patients resulting in decreased 

patient compliance. Moreover, reaching the desired site of action, e.g. the inflamed region of the hair 

follicle in patients suffering from AA or LPP in a more direct and efficient manner, presents itself as 

being extremely difficult as normal formulations like creams gels do not penetrate well into the hair 

shaft.  

One way to minimize the risk of developing the above mentioned adverse events would be to limit 

dermal permeation as well as limiting the exposure of the skin to high drug concentrations. In 

literature it has been shown that polymeric nanoparticles (NPs) are able to serve as a controlled drug 

release system [100-106]. Hence, a sustained drug release and the resulting avoidance of a burst effect 

would protect the epidermal epithelial regenerative cells from the sudden encounter of high drug 

concentrations, resulting in a reduced risk of developing local cutaneous atrophy and enhanced 

regeneration. Furthermore, Lademann et al. described that poly(lactic-co-glycolic acid) NPs 

accumulate in porcine HFs, and in that sense may serve as a drug delivery system to target this annex 

[184]. They also demonstrated a so-called `depot effect´ of these particles in the HF for up to 10 days, 

while the particles located in the SC were detectable for 24 hours. Consequently, besides the above 

mentioned specific scalp diseases, typical high-prevalence inflammatory skin disorders, e.g. eczema, 

or psoriasis vulgaris, could also benefit from a NP-based glucocorticoid therapy by achieving an  
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accumulation of particles in the hair shaft of vellus and/or terminal HFs, and simultaneously  

penetrating into upper epidermal layers, where they exhibit a steady release of drug over time. 

Due to the above mentioned arguments, it is hypothesized that a NP-based sustained-release 

formulation for CP, a very potent glucocorticosteroid, that decreased skin permeation and facilitates 

follicular targeting is a new and improved strategy to reach the desired site of action for the above 

mentioned conditions in a more efficient and direct way. It is believed that it could decrease, or even 

diminish, those described side effects due to release kinetics and decreased permeation, and potentially 

increase patient compliance in the future. Hence, in this chapter, three different types of polymeric 

NPs (nanospheres (NS), nanocapsules (NC), lipid-core nanocapsules (LNC)) were prepared and 

characterized. The particles were formulated either as an aqueous suspension or as Carbopol® 

hydrogel (HG). Targeted delivery to the HF of the different types of NPs and formulations was 

quantified to determine differences in the extent of follicular uptake between the particles and/or 

formulations. Furthermore, the influence of massage on follicular uptake was evaluated. Lastly, 

experiments with excised human skin were performed to evaluate skin permeation under conditions 

where follicular uptake is considered to be minimal [185].  

2.3.3. Materials and Methods 

2.3.3.1. Materials 

Poly(-ɛ-caprolactone), Clobetasol propionate, Caprylic/capric triglyceride mixture, Polysorbate 80, 

Polyethylene glycol 5400, and sorbitan monostearate were purchased from Sigma-Aldrich (St. Louis, 

MO, USA. Dialysis bags (Spectra Por 7, 10 Kd, Spectrum Laboratories, USA) were purchased from 

Bioagency (SaoPaulo, Brazil) and acetone from Nuclear (Sao Paulo, Brazil). Carbopol
®
 Ultrez 10 was 

purchased from Ginama (Valencia, Spain). Human skin was kindly donated by the Hospital 9 de 

Octubre, Valencia, Spain, and Caritaskrankenhaus, Lebach, Germany, after previous signed consent of 

patients. Pig ears were obtained from Emil Faerber GmbH & Co. KG Zweibrücken (Zweibruecken, 

Germany). Methanol, acetonitrile and ethanol solvents were of HPLC quality and purchased by 

Scharlau (Barcelona, Spain). HPLC water was obtained by MilliQ-purification. 

2.3.3.2. Preparation of Different Nanoparticles in Suspension and             

Hydrogel 

Drug-free and CP-loaded NS, NC, and LNC were prepared using the nanoprecipitation-solvent 

evaporation technique, previously described by Fessi et al. [186], which has been successfully applied 
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to poly(-Ɛ-caprolactone) (PCL) [15, 103, 104]. This polymer was chosen because it is biodegradable 

and has previously been approved by the Food and Drug Administration (FDA) for drug delivery 

specific purposes [187]. The NS represent a matricial system, meaning that the drug is physically and 

uniformly dispersed in the polymer matrix (Figure 25a). The NC and LNC are representative vesicular 

systems, which consist of a polymer shell and an inner core (here consisting of a liquid or an 

organogel, respectively) in which the drug is dissolved (Figure 25b-c).  

 

Figure 25: Depiction of the three different types of nanoparticles prepared. a) shows the nanospheres (NS), which give rise 

to a matrix system, b) nanocapsules (NC), and c) lipid-core nanocapsules (LNC). The latter two consist of a core-and-shell 

structure. 

 

For the preparation of NS, sorbitan monostearate was dissolved in the organic phase along with the 

polymer. NC contained PCL as the polymeric shell and capric/caprylic triglycerides (CCT) as a liquid 

lipid core, and the LNC consisted  of PCL as the polymeric shell, and CCT plus the lipophilic 

surfactant sorbitan monostearate dispersed in the core, forming an organogel [188]. Exact 

concentrations of all components for the three nanocarriers are given in Table 2.  

The LNC suspensions were prepared by dissolving PCL (unlabeled and/or Rhodamin-B labeled as has 

previously been described by Poletto et. al [189]), sorbitan monostearate, and CCT (plus CP in the 

case of the drug-loaded particles) in acetone. This organic solution was injected at a stable, continuous 

speed into the aqueous phase, containing polysorbate 80, under moderate stirring. NS were prepared in 

the same manner minus the addition of the oil phase (medium chain triglycerides), and for the 

preparation of NC, no sorbitan monostearate was added. Acetone was removed using a rotational 

evaporator, and the formulation was concentrated to reach a final volume of 10 ml at 40ºC under 

reduced pressure. As a control, free CP in water/ethanol (50:50) was prepared. All formulations were 

made in triplicates and stored at room temperature (25º C) in amber glass flasks in order to protect the 

fluorescently-labeled polymer from light degradation.  
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Table 2: Concentrations of components of nanospheres (NS), nanocapsules (NC), and lipid-core nanocapsules (LNC) in 

aqueous suspension 

 
Type of 

Particle 

PCL unlabeled 

(mg/ml) 

PCL labeled 

(mg/ml) 

SM   

(mg/ml) 

CCT  

(mg/ml) 

Polysorbate 

80(mg/ml) 

CP    

(mg/ml) 

10% labeled PCL, 

CP-loaded 

NS 9 1 3.8 - 7.7 0.5 

NC 9 1 - 16.0 7.7 0.5 

LNC 9 1 3.8 16.0 7.7 0.5 

100% labeled PCL, 

drug-free 

NS - 10 3.8 - 7.7 - 

NC - 10 - 16.0 7.7 - 

LNC - 10 3.8 16.0 7.7 - 

100% unlabeled PCL, 

CP-loaded 

NC 10 - - 16.0 7.7 0.5 

100% labeled PCL, 

CP-loaded 

NC - 10 - 16.0 7.7 0.5 

PCL, poly(ɛ-caprolactone); SM, sorbitan monostearate; CCT, capric/caprylic triglyceride; CP, clobetasol propionate 

 

The hydrogel (HG) preparation was done by dispersing Carbopol
®
 Ultrez 10 NF at 0.5 % into the 

various NP suspensions (drug-free and drug-loaded NS, NC and LNC). The formulations were mixed 

thoroughly for 5 min to guarantee complete dispersion. To obtain a suitable semisolid formulation for 

dermal application, triethanolamine (0.2 %; w/w) was added for neutralization purposes. For each type 

of NP, a corresponding HG was produced as well containing drug-free particles in order to assure that 

no changes in particle size and polydispersity are brought about via the encapsulation process of drug. 

Additionally, a control HG containing non-encapsulated/free CP, dissolved in water/ethanol (50:50), 

was prepared. All HG were prepared in triplicate, protected from light, and stored at room temperature 

(25ºC). 

2.3.3.3. Particle Characterization 

Size & ζ-potential 

For size, polydispersity and ζ-potential measurements of the three types of NPs, a Zetasizer 

Nanoseries (Malvern Instruments, Worcestershire, UK) was used. The NP suspension-samples and 

HG-samples were diluted 1:500 in aqua dest. for dynamic light scattering (DLS) analysis to measure 

size and the polydispersity index (PDI), and 1:500 in 10 mM NaCl for computing the ζ-potential. Of 

each formulation, three replicates were measured at room temperature. Results are given as mean ± 

standard deviation (SD). 
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Morphology Study 

Morphology of all three types of particles was analyzed using scanning electron microscopy (SEM) 

and transmission electron microscopy (TEM).  

SEM was only possible after a 20.000-fold dilution of the suspension, due to a thick film covering the 

particles, most likely a result of excess polysorbate 80. For the preparation, 10 µl of the diluted NP 

suspensions were added onto supports with carbon-glue, and coated with gold under an argon 

atmosphere using a gold sputter module in a high-vacuum evaporator. Samples were then measured at 

a magnification of 30 k for NS, and 25 k for NC and LNC. The SEM instrument used was an EVO LS, 

Carl Zeiss AG, Oberkochen, Germany. 

Transmission electron microscopy (TEM) images were taken on a transmission electron microscope 

(TEM, JEOL JEM-2011; Jeol GmbH, Munich, Germany; available at the Experimental Physics 

Department, Saarbrücken, Germany), using a voltage of 200 kV at a magnification of 20 k. The NP 

suspensions were first diluted 1:100 in aqua dest., 10 µl were added onto the carbon coated grid and 

left to dry for 2-3 min. Excess of water was removed from the grid using a piece of filter paper. After 

3-5 min, the deposited sample was negatively stained by addition of 10 µl of a 1% phosphotungstic 

acid solution. After 3-5 min, excess of liquid was removed again using a piece of filter paper and the 

samples were allowed to air dry before measuring.  

2.3.3.4. Drug Content and Encapsulation Efficiency  

In order to assure that no drug loss occurred during the production of the NP suspensions,  CP content 

of all three particle suspensions was analyzed following a slightly modified version of the method 

described by Fontana et al. [190]. Hence, 1 ml of each suspension, or 1 mg of each HG, was dissolved 

in 25 ml acetonitrile (ACN) (instead of methanol), and the mixture was sonicated for 20 min. Samples 

were analyzed by means of HPLC. Moreover, the encapsulation efficiency of the samples was 

determined. For that the samples were centrifuged (Ultrafree-MC 10,000 MW, Millipore) at 12,000 

rpm for a period of 5 min, and the ultrafiltrate was quantified for CP. To determine CP content in the 

particles, the difference between the total drug and the ultrafiltrate concentration was calculated. The 

encapsulation efficiency (EE %) was then calculated by dividing the drug entrapped by the total drug 

content. All measurements were made in triplicate, and samples were analyzed by means of HPLC. 

For the analysis a Kromasil® RP-18 column (5 µm particle size, 100 Å pore size, 150 x 4.6 mm) was 

used as the stationary phase and ACN:H2O (65:35 v/v) as the corresponding mobile phase with a flow 

rate of 1 ml/min. UV detection was set at 240 nm with a column temperature of 30°C, and an injection 

volume of 20 µl. 
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2.3.3.5. Stability Study 

To assure stability of the formulations over a period of time, suspensions in water (0.5 g/ml CP) were 

stored for 3 months after preparation and monitored in terms of particle size, PDI, ζ-potential, and pH. 

The samples were stored in amber glass flasks, protected from light, at room temperature. 

2.3.3.6. Drug Release Study 

For the determination of CP release from the three different particles, experiments were performed by 

means of the dialysis bag method using water/polysorbate 80/PEG 400 (60:0.5:40 v/v) as the receptor 

medium [191]. This receptor medium was chosen for comparison purposes due to previously 

published release data, in which the same particles loaded with a different drug  were used [190]. The 

components polysorbate 80 and PEG 400, at the concentrations stated above, were added in order to 

assure sink conditions during the experiment [102]. Stability of CP in the above described release 

medium was previously evaluated using HPLC, and no degradation of CP was observed for up to 72 

hours (data not shown). In short, 1 ml (0.5 mg/ml CP) of each NP suspension was pipetted into a 

dialysis bag (Spectra Por 7, 10 Kd). This dialysis membrane (molecular weight cut off: 10,000 Dalton) 

was chosen because it is only permeable to free CP, but not to the NPs. Hence, only free drug that has 

been released from the particles and permeated into the receptor medium will be quantified. The bag 

filled with sample was then placed into a 250 ml Erlenmeyer flask containing 200 ml of the previously 

mentioned receptor medium. 1 ml samples of this medium were withdrawn after 2, 4, 6, 8, 24, 30, 48, 

54, and 72 hours and immediately replaced by fresh medium. The CP concentration of each sample 

was determined via HPLC using the same method as described above [190]. As a control, 0.5 mg/ml 

CP dissolved in an ethanolic solution was prepared and tested accordingly. 

2.3.3.7. Follicular uptake studies 

The extent of follicular uptake for each type of particle (NS, NC, and LNC in suspension and in HG) 

was analyzed and assessed quantitatively on porcine ear skin based on the differential stripping (DS) 

method [118]. As a control, free drug in solution and free drug in HG were tested, too, in order to 

determine whether CP delivery to the HF is in fact enhanced by means of encapsulation. 

Differential Stripping Method 

The differential stripping (DS) method is the most straightforward technique to determine follicular 

uptake quantitatively, as has recently been described by Raber et al. [86]. Since it has already been 

introduced in Chapter 1, it is only described here shortly.The formulation is first applied onto a 

predetermined area on the skin, followed by an optional 3 min massage, depending on the desired 
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experimental setup. The massage is performed using a gloved forefinger and massaging in a circular 

motion (60 rpm) for 3 min with applied pressure (~2 N). To minimize deviation, all DS experiments 

were done by one well-trained person. After 1 hour incubation, 10 subsequent tape strips (Tesa® 

adhesive tape) are taken to clean the skin surface by removing the SC layer by layer, followed by 2 

cyanoacrylate skin surface biopsies which enable the removal of the entire follicular content [192]. All 

tape strips and cyanoacrylate biopsies were pressed onto the skin using a roller to stretch the skin 

surface and guarantee reaching the skins wrinkles and furrows [193]. For quantification and mass-

balance purposes, all tape strips and cyanoacrylate biopsies, along with all used application devices 

and skin rest, were extracted in ACN, centrifuged at 20°C using 12.000 rpm for five minutes, and 

analyzed for fluorescence (Rhodamin-B labeled PCL) or CP content (see Section: Quantification 

Methods for Follicular Uptake Studies for specifics on analytic).  

Follicular Uptake of Drug-free Particles 

Preliminary follicular uptake studies of drug-free NS, NC, and LNC were performed in order to 

determine whether the type of nanocarrier and their differeing molecular architecture affect the uptake 

into the HF. Quantification of these drug-free particles was possible via fluorescence measurements, 

as Rhodamin-B labeled PCL was used for the preparation. Previous experiments had demonstrated 

that the amount of labeled PLC in the HF was below the detection limit when NPs were prepared 

using only 10% of the Rhodamin-B labeled PCL and 90% unlabeled (as was used for skin permeation 

experiments below), therefore all nanocarriers used for follicular penetration studies that were 

quantified via fluorescence were prepared using 100% labeled PCL. The composition of all particles is 

given in Table 2. Besides determining the influence of the type of particle and type of formulation on 

follicular penetration, the influence of a 3 min massage was evaluated as well. Each formulation was 

tested on two separate pig ears, each ear containing three areas of formulation, and one blank. n=6 for 

each.  

Follicular Uptake of Clobetasol-loaded Nanocapsules 

After these preliminary experiments using drug-free particles, NC in suspension were chosen as the 

best formulation for obtaining the highest follicular uptake. To evaluate delivery of encapsulated CP to 

the HF, this formulation loaded with 0.5 mg/ml CP was then tested using the DS method (including a 

3 min massage) and follicular uptake was quantified based on CP content using LC-MS, rather than 

the fluorescently labeled polymer. n=6. 
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Follicular Uptake of Clobetasol and Polymer Simultaneously 

To investigate whether changes in size influence the extent of follicular uptake, smaller CP-loaded 

NCs were prepared by increasing the stirring speed during the addition of the organic phase into the 

aqueous phase. As we were interested in co-tracking drug and polymer simultaneously, the CP-loaded 

particles were prepared using 100% Rhodamin-B labeled polymer. Follicular uptake was quantified 

based on drug content and labeled polymer for the same sample set. n=6. 

Follicular Uptake of Free Clobetasol in Solution and Hydrogel  

For control experiments free CP in an ethanolic solution (0.5 mg/ml) and free CP in HG (0.5 mg/g) 

were applied onto porcine ear skin and follicular uptake was evaluated. n=6. 

Quantification Methods for Follicular Uptake Studies 

Fluorescence 

All fluorescence measurements were performed using a Cytofluor II fluorescence plate reader (λexc = 

560 nm, λem = 662 nm) [189]. The lower limit of quantification (LLOQ), important for determining 

the analytical limitations of the quantification method [86], was calculated based on the fluorescence 

of the blanks plus the background fluorescence of the different types of matrices (tape strips, 

application devices, cyanoacrylate biopsies). The LLOQ was previously determined for each type of 

matrix.  

LC-MS 

LC-MS analysis and quantification for follicular uptake of the CP-loaded NC was carried out using a 

TSQ Quantum Access Max (Thermo Fisher Scientific) tandem quadrupole mass spectrometer coupled 

to an Accela UHPLC system. The whole system consists of a quaternary mixing pump with a built-in 

solvent degassing system, thermostated autosampler and column oven. An Accucore RP-MS column 

(150 mm x 2.1 mm, 2.6 µm, Thermo Fisher Scientific, Waltham, MA, USA) was implemented, which 

was set at 30°C during the experimental run. The system was operated by the standard software 

Xcalibur. A method described by Nam et al. was used with slight modification [194]. The LC system 

was run isocratically for 5 minutes at 400 µl/min using acetonitrile + 0.1% formic acid and water + 

0.1% formic acid (65:35). Heated-electrospray ionization (H-ESI) in positive mode was used. The 

optimized H-ESI conditions were: capillary voltage of 4500 V, vaporizer temperature of 500 °C, ion 

transfer tube temperature of 350 °C. Nitrogen was used as sheath and auxiliary gas, and the settings 

were of 40 and 5 (arbitrary units), respectively. Quantitation was performed operating in selective 

reaction monitoring (SRM) mode.  Observed ions were as follows (values are given for mother ion 

[m/z]; collision energy [V]; product ion [m/z]; scan time [s]; scan width [m/z]: 467; 12; 355; 0.2; 0.02. 
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The method was previously validated over a concentration range of 3.0-200.0 ng/ml (samples were 

diluted prior to measuring accordingly) with a correlation coefficient of r
2 = 

0.9995. 

Recovery (%) 

Total recovery (%) was calculated for each performed experiment using a mass-balance. Based on the 

guidelines of the Scientific Committee on Consumer Safety (SCCS) only data which fit the recovery 

limits of 85-115% were evaluated [195]. 

2.3.3.8. Skin Permeation Studies 

The skin was obtained from the Hospital 9 de Octubre, Valencia, Spain, and from the Department of 

Plastic and Hand Surgery at the Caritaskrankenhause in Lebach, Germany, after written consent was 

obtained from the patients. The epidermis was separated from the dermis using the well-adapted 

method first described by Kligmann et al. in 1963 [196]. In short, a previously cut skin section (25 

mm in diameter) is placed into 60°C aqua dest. for 90 sec to weaken epidermal-dermal junction. Next, 

the epidermis is carefully peeled off using two anatomical forceps and placed into PBS buffer until 

use. This study was approved by the ethical commission of Saarland, Germany (Aerztekammer des 

Saarlandes, 204/08). 

The acceptor compartment of the Franz cells was filled with an ethanol/phosphate buffer solution 

mixture (50:50) to assure sink conditions, and placed into a preheated incubator at 32°C to maintain 

the physiologic temperature of the skin throughout the experiment. The previously heat-separated 

epidermis (HSE) was placed onto a Whatman
®
 filter

6
 with the SC facing upwards for additional 

support, and positioned on top of the acceptor compartment to separate it from the donor compartment 

(refer to Figure 6). After a 30 min acclimatization period, 1 ml of each nanoparticle suspensions (NS, 

NC, and LNC) or control were pipetted into the donor compartment of the cells. The gels (0.5 g), in 

contrast, were evenly spread onto the membrane surface to cover the complete diffusion area. Both 

compartments were held together using a clamp. In addition, the donor compartment was sealed off 

using Parafilm
®
 to avoid evaporation of the ethanol in the receptor medium. Samples were taken from 

the receptor compartment after predetermined time intervals followed by an immediate replacement of 

the removed volume by fresh buffer. Subsequently the samples were analyzed by HPLC using the 

method described above and the cumulative amounts of CP permeated into the receptor compartment 

were calculated [190]. n≥6 for each formulation. 

 

                                                      

6
 Previous experiments had demonstrated that this filter membrane did not limit permeability of the substance 

(data not shown) 
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2.3.3.9. Statistical Analysis 

Results are expressed as the arithmetic mean ± SD. Significant differences between formulations were 

investigated by means of one-way analysis of variance (ANOVA) and two-way ANOVA (using 95% 

confidence interval) for all follicular uptake data, and Student’s t-test (two-sided, unpaired, with 

Welch's correction, p < 0.5) for determination of intra-individual variability of permeability data in 

vitro. All statistical analysis was done using the software SigmaPlot (version 12.5, from Systat 

Software, Inc., San Jose California USA). 

2.3.4. Results and Discussion 

2.3.4.1. Size Distribution and ζ-Potential  

The sizes measured for the three different types of particles ranged between ~100 - 260 nm (see Table 

3 for exact values).  As previously mentioned, a smaller sized-set of CP-loaded NC particles (106 nm) 

was prepared to evaluate if size is a key factor in deciding the extent of follicular penetration. 

Table 3: Size distribution, PDI values, and ζ-potential of nanospheres (NS), nanocapsules (NC), and lipid-core nanocapsules 

(LNC) in suspension using dynamic light scattering (DLS) analysis; mean ± standard deviation. 

 

NC and LNC gave rise to a generally larger size when compared to NS. This can be explained by the 

presence of the oil phase [197] leading to a core-and-shell structure for NC and LNC instead of a 

matrix system (NS). All suspensions had a PDI between 0.06 and 0.19 confirming a homogeneous size 

 

Type of 

Particle 

DLS 

(nm) 

PDI 

ζ-potential 

(mV) 

CP Content 

(mg/ml) 

Encapsulation 

Efficiency (%) 

10% labeled PCL 

90% unlabeled PCL 

CP-loaded 

NS 176 ± 07 0.12 ± 0.04 -12.17 ± 1.11 0.48 ± 0.02 98.46  ± 1.0 

NC 218 ± 02 0.18 ± 0.01 -10.38 ± 0.69 0.50 ± 0.01 98.25 ± 0.8 

LNC 222 ± 14 0.19 ± 0.06 -12.03 ± 1.12 0.51 ± 0.01 97.92 ± 0.3 

100% labeled PCL 

drug-free 

NS 128 ± 02 0.17 ± 0.02 -13.59 ± 0.73 - - 

NC 257 ± 11 0.15 ± 0.01 -14.42 ± 1.09 - - 

LNC 157 ± 04 0.14 ± 0.01 -13.29 ± 1.27 - - 

100% unlabeled 

PCL, 

CP-loaded 

NC 221 ± 07 0.06 ± 0.03 -12.21± 0.73 0.50 ± 0.03 98.45 ± 0.4 

100% labeled PCL 

CP-loaded 

NC 106 ± 01 0.08 ± 0.01 -13.22 ± 0.34 0.51 ± 0.01 98.76 ± 0.7 

PCL, poly(ɛ-caprolactone); CP, clobetasol propionate 
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distribution. The ζ-Potential of all three types of NPs was negative, ranging from -10.0 to -14.5 mV. 

This negative potential is most likely caused by the polymeric wall formed by poly(ɛ-caprolactone) 

[198]. The stability of the particles in suspension is, thus, a result of steric hindrance of the surfactant 

between the two phases preventing coalescence [199]. 

2.3.4.2. Drug Content & Encapsulation Efficiency  

The CP content quantified was approximately 0.5 mg/ml for all three nanocarriers, showing that no 

drug was lost during the preparation step for NS, NC, or LNC. Moreover, the encapsulation efficiency 

(EE %) measured was close to 100%, regardless of the type of particle (for exact values please refer to 

Table 3). Hence, no significant differences regarding the ability to encapsulate the drug were observed 

between NS, NC, or LNC, although the preparation processes and components used were slightly 

different.  

2.3.4.3. Morphology  

Scanning electron microscopy (SEM) and transmission electron microscopic (TEM) analysis were 

feasible for all three types of particles (see Figure 26).  

 

Figure 26: SEM images of NS (a), NC (c), and LNC (e) in suspension; TEM images of NS (b), NC (d), and LNC (f) in 

suspension. Scalebars in a, c, and e represent 400 nm and image was taken with 25 k magnification. Scalebars in b, d, and f 

represents 200 nm and image was taking using a voltage of 200 kV at a magnification of 20 k. 
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However, for LNC the imaging was more difficult, most likely due to the presence of the organogel. 

Both methods confirmed the expected morphology. All particles were spherical in shape, revealed a 

smooth surface, and a homogeneous size distribution. Figure 26 displays SEM (a,c,e) and TEM (b,d,f) 

images of all three particles (NS, NC, and LNC) in suspension, respectively.  

2.3.4.4. Stability Study 

Stability of the NPs in suspension was tested for a period of 3 months in terms of size, polydispersity, 

ζ-potential, and pH (see Table 4). After this period a slight increase in particle size was observed, most 

likely due to aggregation or agglomeration.  However, this effect was minimal and negligible. The ζ-

potential varied marginally over time with no general trend observed. The pH study demonstrated that 

the pH values obtained were suitable for application on the skin over the entire period of three months, 

as the pH stayed between pH 5.1 - 6.1. A slight reduction in pH was observed, but still remained 

adequate for topical application. This effect has previously been explained as a possible degradation of 

the polymer due to a release of free ɛ-hydroxycaproic, as well as a hydrolysis of the medium chain 

triglycerides, leading to an increase of free fatty acids [199]. Thus, all measurements confirmed that no 

noteworthy changes in size, polydispersity, ζ-potential, or pH occurred over time. 

Table 4: Physiochemical characteristics of nanospheres (NS), nanocapsules (NC), and lipid-core nanocapsules (LNC) 

suspensions tracked for 3 months; mean ± SD (size measured using DLS analysis) 

Type of 

Particle 
Month 

Size  

(nm) 

PDI 

ζ -Pot  

(mV) 

pH 

NS 0 158 ± 2 0.09 ± 0.02 -14.40 ± 1.75 6.12 ± 0.23 

NS 1 169 ± 1 0.12 ± 0.03 -11.90 ± 1.59 5.86 ± 0.13 

NS 2 167 ± 9 0.14 ± 0.05 -11.47 ± 1.84 5.53 ± 0.26 

NS 3 173 ± 7 0.14 ± 0.03 -13.49 ± 1.09 5.50 ± 0.14 

NC 0 195 ± 4  0.08 ± 0.02 -12.10 ± 1.93 5.99 ± 0.23 

NC 1 218 ± 3 0.16 ± 0.02 -10.30 ± 1.71 5.92 ± 0.19 

NC 2 208 ± 4 0.13 ± 0.03 -13.63 ± 0.65 5.42 ± 0.12 

NC 3 223 ± 10 0.14 ± 0.04 -13.39 ± 2.57 5.25 ± 0.13 

LNC 0 193 ± 3 0.08 ± 0.04 -10.60 ± 3.43 6.11 ± 0.21 

LNC 1 217 ± 3 0.15 ± 0.03 -12.46 ± 2.52 5.90 ± 0.11 

LNC 2 209 ± 3 0.16 ± 0.02 -14.31 ± 1.91 5.92 ± 0.19 

LNC 3 216 ± 10 0.16 ± 0.04 -12.11 ± 1.64 5.11 ± 0.10 

          PDI, polydispersity index ζ –Pot, zeta potential 
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2.3.4.5. Hydrogel Characterization  

A summary of the hydrogel characterization is given in Table 5. The pH values of the Carbopol
®
 HG 

measured were between 5.6 and 6.7, yielding a suitable pH for topical administration of semisolid 

formulations [200].  

Table 5: Hydrogel (HG) Characterization; mean ± SD. 

 Type of 

Particle 

pH 

Size 

(nm) 

CP content 

(mg/g) 

10% labeled PCL 

CP-loaded 

 

NS-HG 5.61 ± 0.22 183 ± 17 0.51 ± 0.01 

NC-HG 6.05 ± 0.11 219 ± 15 0.51 ± 0.01 

LNC-HG 5.90 ± 0.12 230 ± 18 0.52 ± 0.03 

CP-HG 5.87 ± 0.18 - - 

100% labeled 

drug-free 

NS-HG 5.92 ± 0.31 185 ± 2.05 - 

NC-HG 6.73 ± 0.57 206 ± 2.61 - 

LNC-HG 6.03 ± 0.42 143 ± 1.11 - 

     NS, nanospheres, NC, nanocapsules, LNC, lipid-core nanocapsules, CP, Clobetasol propionate, PCL, poly(ɛ-caprolactone) 

The presence of the drug did not alter the pH of the HGs for any of the formulations (p>0.05 for each 

formulation). The sizes of the particles in the HGs were still in the same range as the original 

suspensions, and drug content remained close to the desired CP concentration of 0.5 mg/g for all 

formulations.  

2.3.4.6. Drug Release Study 

To determine whether the encapsulation process results in a sustained release of drug, the dialysis bag 

method was applied. Figure 27 depicts the release profiles of the three different NPs in suspension 

(NS, NC, LNC) vs. free drug in an ethanolic solution as a control. As can clearly be seen in Figure 27, 

no significant differences were observed between the release profiles of the three nanocarriers NS, 

NC, or LNC (p>0.05). However, as was anticipated, all three CP-loaded particles revealed a sustained 

release of the drug, as after 24 h only approximately 50% of the encapsulated drug was released for all 

three carriers. Even at the end of a 72 h period, the mean amount of released drug still remained below 

80%. Free drug, in contrast, revealed a fast release profile with ~80% of CP already being detected 

after only 5h.   
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Figure 27: Release profiles of Clobetasol (CP) from nanoparticle formulations nanocapsules (NC), nanospheres (NS), lipid-

core nanocapsules (LNC) compared to free drug (CP) (mean ± SD). 

 

2.3.4.7. Follicular Uptake Studies 

The detection limit of quantification for all three NPs in suspension was as low as 0.3-0.7%, and for 

the particles in HGs ≤ 0.2% of the total amount applied in all matrices (tape strips, cyanoacrylate 

biopsies, application devices, skin rest). Thus, the goal to detect < 1.0%, set due to previous results in 

follicular uptake studies [86], was achieved for all NPs in suspension, as well as in HG. 

Follicular Uptake of Drug-Free Particles 

Follicular uptake of the drug-free particles, with and without the application of a massage, is depicted 

in Figure 28. Figure 28a) displays the recovery (w/w %) in the HF of the total amount applied for the 

three types of drug-free nanocarriers (NS, NC, LNC; suspension vs. HG) when no massage was 

applied. For this specific experimental setup NC presented a significantly higher recovery in the HF 

for both formulations in comparison to NS and LNC (two-way ANOVA, p<0.05) (also see Table 6 for 

exact values). However, no significant difference was observed between the two types of dosage 

forms. 
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Figure 28: Recovery (%) in hair follicles of total amount applied of blank NS, NC, and LNC formulated as suspension and 

hydrogel without application of massage in a) and after application of massage depicted in b); * represents statistical 

significance between types of particles (NC vs. NS and NC vs. LNC), x represents statistical significance between 

formulation (in suspension vs. in hydrogel) 

 

Figure 28b) displays the results obtained for the follicular uptake experiments when a 3 min massage 

was performed before incubation. A similar trend with a generally higher recovery of the particles in 

the HF can be seen with the additional massage. Again, NC demonstrated a significantly higher 

follicular uptake when compared to NS and LNC (two-way ANOVA, p<0.05) for both formulations. 

Moreover, the positive effect of a massage on follicular penetration, which was also observed in this 

study, has previously been discussed in literature by Lademann et al. [184]. In this work the authors 

hypothesize that the moving of the hair, which is an effect caused by the massage, acts like a so-called 

‘gear pump’, resulting in an increased transport or translocation of the particles into the hair shaft. It 

therefore mimics the natural movement of the hair.  

A reason for the higher accumulation of NCs as opposed to NS in the HF shaft could be related to the 

differences in their supramolecular organization. NCs represent a rather flexible core-and-shell 

structure, whereas NS give rise to a rigid matrix system. Differences in follicular penetration between 

the two core-and-shell systems, NC and LNC, could be attributed to the difference in the core 

viscosity and resulting flexibility. The NC core consists of mainly oil (medium chain triglycerides), 

resulting in a liquid lipid, whereas the LNC core additionally contains the lipophilic surfactant sorbitan 

monostearate. This surfactant, in presence of the oil, acts like a low molecular mass organic gelator, 

resulting in the formation of an organogel [198, 201, 202] (see Figure 25 for schematic depiction of 

particles). In a previous study using almost equivalent NC and LNC particles (only differing in the 

drug encapsulated), it was shown that the LNC, comprising this organogel core, exhibited a stiffness  
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(based on the calculated Young’s modulus MPa) almost twice as high as was measured for the NC 

using atomic force microscopy (AFM) [198]. Thus, it can be speculated that a higher follicular 

penetration may be achieved by using more flexible particles. Regarding the dosage form, the particles 

formulated in a HG resulted in an overall statistically significant lower uptake in comparison to 

particles formulated in a suspension regardless of the application of massage (two-way ANOVA, 

p<0.05). This could be related to viscosity differences which may lead to difficulties of the NPs 

leaving the more viscous matrix during the incubation time.  

 

Table 6: Recovery in hair follicle (w/w%) of total amount applied for different types of particles with and without 

application of massage as well as controls (CP in solution vs. CP in hydrogel); mean ± standard deviation. 

Particle Information 

Recovery (%) in hair follicle 

without massage 

Recovery (%) in hair follicle  

with massage 

Aqueous Suspension Hydrogel Aqueous Suspension Hydrogel 

NS drug free 0.88 ± 0.48 0.48 ± 0.49 1.73 ± 0.33 x 0.91 ± 0.51 

NC drug free 1.61 ± 0.54* 1.21 ± 0.23* 3.06 ± 1.03 x,* 1.32 ± 0.56* 

LNC drug free 0.64 ± 0.09 1.02 ± 0.04 1.84 ± 0.63 x 0.70 ± 0.11 

 

Recovery (%) in hair follicle 

without massage 

Recovery (%) in hair follicle 

with massage 

CP in ethanolic solution < LLOQ < LLOQ 

CP in hydrogel < LLOQ < LLOQ 

*represents statistically significant difference between types of particles (NC vs. NS and NC vs. LNC) p<0.05 

 x represents statistical significant difference between formulation (in suspension vs. in hydrogel) p<0.05 

 

Follicular Uptake of Clobetasol-loaded Nanocapsules, and Free Clobetasol in 

Solution and Hydrogel 

To confirm that the amount of polymer which we have quantified in the HF is also representative of 

the amount of encapsulated drug reaching the desired site of action, we compared the uptake of 

similarly sized drug-free NC and drug-loaded NC in suspension via fluorescence and LC-MS, 

respectively. A very good correlation was observed for the detected amount of polymer and drug, as 

can be seen in Table 7 (3.06 ± 1.03 % vs. 3.29 ± 0.53 % recovery in HF of total amount applied). 

Also, the smaller NC with an average size of 106 nm were taken up similarly as the original NC of 

size 257 nm (2.98 ± 0.65 % and 3.09 ± 0.17 % vs. 3.06 ± 1.06 %). Lastly, no significant difference in 

the amount detected was observed when comparing the two quantitation methods (fluorescence vs. 

LC-MS) for the same sample set of the smaller NCs (p>0.05).  
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Table 7: Type of formulation and recovery (w/w %) in hair follicle of total amount applied for differently formulated  

and quantified nanocapsules (NC) in suspension; mean ± SD. 

Type PCL 

Size 

(nm) 

Quantification Method 

Recovery (%) in hair follicle 

of total amount applied 

drug-free NC 

100%  

labeled 

257 Fluorescence 3.06 ± 1.03 

CP-loaded NC 

100% 

unlabeled 

221 LC-MS 3.29 ± 0.53 

CP-loaded NC 

100% 

 labeled 

106 

Fluorescence 2.98 ± 0.65 

LC-MS 3.09 ± 0.17 

CP, Clobetasol propionate 

*represents statistically significant difference between types of particles (NC vs. NS and NC vs. LNC NC vs. controls)     

   p<0.05 

 x represents statistical significant difference between formulation (in suspension vs. in hydrogel) p<0.05 

 

Although a size-dependent effect in the extent of follicular penetration was expected due to previous 

studies by other groups [84], the small range in particle size (106 - 257 nm) investigated in this study 

may be the reason that this effect was not observed. To investigate this topic further, a larger range in 

particle size, e.g. ~100 nm – 2 µm, should be tested in the future. 

As for the controls, follicular recovery (%) of the total amount applied of free CP in solution and free 

CP in HG, with and without the application of massage, was below the lower limit of quantification 

(LLOQ) and thus negligible [86, 184, 203]. This confirms that by means of encapsulation a more 

targeted delivery to the HF was achieved.  

Recovery 

Total mass balance was calculated for each above mentioned experiment, and the total recovery (w/w 

%) for all included formulations ranged between 86-110%, fitting well within the limits of recovery of 

85-115% given by the SCCS [195]. 

Summarizing this section, follicular penetration studies revealed that all three types of nanocarriers are 

able to achieve a better and more targeted delivery to the HF when compared to free drug in solution 

or HG. It was demonstrated that the three types of nanocarriers exhibited different penetration 

behaviors, with NCs achieving the highest follicular recovery of up to 4% when applied as an aqueous 

suspension. This only further emphasizes the possible influence of molecular organization on the 

penetration into the HF. This uptake effect was even amplified after application of a massage, as was 

expected. One thing to consider regarding the potential of these particles from a clinical perspective is 

that all follicular uptake studies described herein were performed on the porcine ear skin model. As 

previously mentioned, in vitro follicular uptake experiments on excised human skin are not feasible, as  
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excision results in immediate contraction and closure of the HFs [185]. So even though an excellent 

correlation between pig ear tissue in vitro and human forearm skin in vivo has been established by our 

group regarding the penetration of nanoparticles into the HF [86], the amount of terminal HFs 

available for this kind of therapy on the average human scalp (site of action for most inflammatory-

based hair disorders) is much higher than what is seen on porcine ear skin (124-200 hairs/cm
2
 on 

human occipital scalp vs. 11-25 hairs/cm
2
 on porcine ear skin) [109, 204, 205]. In that sense a 

substantially higher follicular recovery is to be expected in vivo, only further corroborating the 

potential of this form of application for hair disorders like AA, LPP, or FFA. 

2.3.4.8. Skin Permeation Studies 

As a substantial amount of formulation was shown to not penetrate into the HF, and we were 

interested in testing the ability to lower dermal permeation in general, Franz Diffusion cell studies 

were performed using HSE assuming that the follicular pathway is negligible [185, 206]. Figure 29 

displays the resulting permeation profiles (exact amounts can be found in Table 8).  

 

 

Figure 29:  a) depicts permeability through HHSE of free Clobetasol (CP) in solution, free CP in Hydrogel, and CP 

encapsulated into three nanocarriers (nanospheres, NS; nanocapsules, NC; lipid-core nanocapsules, LNC) formulated as 

suspensions; b) shows permeability through HHSE of free CP in solution, free CP in Hydrogel, and CP encapsulated into NS, 

NC, and LNC formulated as Hydrogels (mean ± SD). 
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Figure 29a) depicts the permeated amount of free CP in solution and free CP in HG vs. permeated CP 

after being encapsulated into the three nanocarriers (NS, NC, LNC) and formulated as suspensions. 

Figure 29b) shows the same scenario, except here the nanocarriers are formulated as a HG as opposed 

to a suspension. In both, Figure 29a) and b), the incorporation of free CP into a HG results in a 

significantly less amount of permeated CP to about 50% with respect to free CP in solution, hence the 

rate of permeation is decreased (p < 0.05). Similarly, among the three nanocarriers a statistically 

significant lower cumulative amount was observed when the viscosity of the medium was increased, 

yielding a decreased permeation (p < 0.05). Nonetheless, between the three types of particles no 

significant differences were detected when they were formulated alike (p > 0.05). These results are in 

accordance with the previously discussed release profiles of CP from NS, NC, and LNC, in which also 

no differences was to be detected. Comparing the permeation profiles of the drug after it has been 

encapsulated into the particles and non-encapsulated CP in solution, however, a clear and significant 

decrease in dermal permeation was achieved by means of encapsulation, as was desired.  

 

Table 8: Mean cumulative amounts of Clobetasol (CP) permeated (µg/cm2) for nanospheres (NS), nanocapsules (NC), and lipid-core 

nanocapsules (LNC) in suspension as well as in hydrogel. Results presented as mean ± SD. 

 Cumulative amount of Clobetasol permeated (µg/cm2) 

Sample 

Time 

(hour) 

Free Drug 

Solution 

Free Drug 

Hydrogel 

NS 

Suspension 

NC 

Suspension 

LNC 

Suspension 

NS 

Hydrogel 

NC 

Hydrogel 

LNC 

Hydrogel 

2 0.46 ± 0.03 0.60 ± 0.16 0.20 ± 0.01 0.17 ± 0.10 0.21  ± 0.05 0.00 ± 0.00 0.07  ± 0.03 0.00  ± 0.00 

4 1.62 ± 0.56 1.02 ± 0.35 0.31 ± 0.03 0.25 ± 0.13 0.27  ± 0.06 0.03 ± 0.02 0.19  ± 0.09 0.01  ± 0.01 

6 1.96 ±  0.48 1.34 ± 0.44 0.36 ± 0.02 0.42 ± 0.15 0.36  ± 0.07 0.08 ± 0.07 0.21  ± 0.08 0.03  ±  0.02 

8 2.49 ± 0.53 1.73 ± 0.58 0.41 ± 0.07 0.49 ± 0.20 0.46  ± 0.10 - 0.29  ± 0.16 - 

22 12.69 ± 0.87 6.19 ± 0.83 2.37 ± 0.47 3.03 ± 1.53 3.00  ± 0.80 0.94 ± 0.07 0.85  ± 0.38 - 

24 13.20 ± 1.13 6.82 ± 1.46 3.14 ± 0.48 3.33 ± 1.57 3.06  ± 0.58 1.10 ± 0.06 1.00  ± 0.39 1.16  ± 0.26 

26 14.48 ± 1.42 7.12 ± 1.66 3.20 ± 0.54 3.69 ± 0.77 3.37  ± 0.58 1.19 ± 0.14 1.09  ± 0.45 1.39  ± 0.32 

28 14.38 ± 1.22 7.88 ± 1.38 3.66 ± 0.80 3.81 ± 1.90 3.69  ± 0.53 1.31 ± 0.06 1.35  ± 0.46 1.55  ± 0.35 

30 16.32 ± 1.41 8.64 ± 1.17 3.90 ± 0.80 3.83 ± 1.83 4.28  ± 0.48 1.40 ± 0.05 1.36   ± 0.58 1.60  ± 0.32 

32 17.07 ± 1.41 9.15 ± 1.37 4.33 ± 0.89 4.79 ± 1.07 4.66  ± 0.54 1.49 ± 0.04 1.43  ± 0.55 1.77  ± 0.41 

 

 

One thing to keep in mind is that all results described in this study were done under in vitro conditions 

and may not be 100 % predictive of the in vivo situation, as results obtained under these conditions are 

known to generally overestimate the observed effect [207]. This is most likely due to the non-existing 

clearance in vitro, as well as the ongoing desquamation process in living tissue. Nonetheless, the 

general trend observed is indeed representative and to be expected under real-life conditions. Thus, the  
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observed decreased interfollicular permeation of CP that is achieved via encapsulating the drug into 

the various nanocarriers is beneficial in two ways. For one, less free drug is available to diffuse 

through the skin and enter the blood stream resulting in adverse events, and secondly the particles 

which to penetrate into the skin (or hair shaft) reside in the upper epidermal layers where they release 

the drug steadily over time. 

 

2.3.4.9. Interplay of Follicular Uptake and Non-follicular Permeation 

Modulating the interplay of non-follicular permeation and follicular uptake via the application of 

nanocarriers could be a new, revolutionizing strategy to treat many different skin and/or scalp diseases 

in the future. As was previously hypothesized, the data obtained from the follicular uptake and skin 

permeation studies confirmed that it is indeed possible, depending on the type of carrier and/or vehicle 

used, to vary the treatment based on the desired therapy. For example, one can maximize follicular 

uptake, and simultaneously decrease skin permeation and release of drug into the interfollicular 

epidermis, by using a carrier with the highest follicular delivery, decreased skin permeation, and a 

simultaneous sustained release effect, as in the case of the NC suspension. This could be 

revolutionizing for the treatment of various hair disorder therapies like AA, LPP, or scalp psoriasis, as 

well as more prevalent conditions like atopic dermatitis and psoriasis [95-97, 183].  

2.3.5.     Conclusion 

In conclusion, the potent glucocorticosteroid CP could successfully be formulated into three different 

types of poly-Ɛ-caprolactone NPs. All particles exhibited a sustained release of drug over a period of 

72 h, as was desired. Concerning targeted delivery to the HF, a reoccurring difference in the degree of 

follicular uptake between the various types of NPs could be detected, with NC displaying a 

significantly higher uptake when compared to NS and LNC, in suspension as well as in HG. A 

formulation-dependent trend was also observed, with a generally higher uptake for particles 

formulated as a suspension rather than a HG. This effect was even amplified by the application of a 3 

min massage before incubation. Inter-follicular skin permeation was reduced in an equivalent manner 

for all three types of NPs. Thus, the information learned from this study about the possibility of 

modulating the interplay between follicular uptake and non-follicular skin permeation could be applied 

to provide a more patient-specific and desired therapy under optimized conditions in the future. For 

now, the information obtained from the present in vitro study is a good start for facilitating the 

translation of CP nanocarriers as a means to minimize adverse effects into clinical testing.  
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The presented work illuminates the suitability and applicability of the porcine ear skin model for the 

testing of follicular tight junction (TJ) functionality and the evaluation of nanoparticle-based delivery 

systems via the hair follicle. Special emphasis was placed on the comparison and equivalency between 

the porcine and human hair follicle, as all obtained data in vitro and/or ex vivo should ideally help the 

investigators to gain insight on the in vivo situation. Furthermore, the combination of acquired 

knowledge about the suitability, along with predictions gained from the accumulated data in vitro, is 

crucial when considering the translation of follicular uptake experiments of any kind into clinical 

testing. 

The determination of suitability and equivalency of the porcine ear skin model in comparison to 

human skin was one of the main aims of this work. Thus, as presented in the first section of this thesis, 

a chemically selective and non-destructive analysis of human and porcine hair follicles was performed 

using the novel technique confocal Raman microscopy. Based on the acquired Raman spectra, we 

could identify and differentiate between the four main components of the hair follicle (hair, epidermis, 

dermis and sebum) in both species, and conclude that their chemical compositions were nearly 

equivalent. Especially the sebum, which represents the release medium for substances taken up via the 

transfollicular pathway, showed no significant differences. Advantages of this methodology, as 

opposed to a normal staining procedure, regarding specificity and accuracy of component distribution, 

were also shown. Furthermore, confocal Raman microscopy in combination with optical profilometry 

revealed the intactness of individual hair follicles in excised cyanoacrylate skin surface biopsies on a 

three-dimensional level. This new acquired insight is of great importance because up to now the most 

common quantification method for determining follicular uptake (Differential Stripping Method) had 

only been based on the assumption that the entire follicular cast gets removed by means of 

cyanoacrylate biopsies; we were able to confirm this assumption. 
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The next section of this thesis focused on the identification and testing of potential barriers in the 

mammalian hair follicle. Consequently, expression and localization of follicular TJs, known to play a  

role in epidermal barrier properties, were looked at in the porcine ear skin model. In that sense, 

suitability of the applied porcine model was investigated again in this section and confirmed, as all 

examined TJ proteins in the porcine hair follicle were shown to be expressed and distributed similarly 

in both species by means of qPCR and immunostaining, respectively. Moreover, using an extracellular 

tracer molecule, the existence of a continuous barrier consisting of TJs was discovered throughout 

porcine hair follicles located in the outer root sheath (a continuation of the viable epidermis), and 

another TJ barrier in Huxley’s layer of the inner root sheath; in contrast, the bulb was completely 

permeable. Finally, desired modification, i.e. opening, of this TJ barrier was feasible after 

administering the TJ modulator EDTA. This could be of relevance for the drug delivery of substances 

via the transfollicular pathway in the future. The last part of this section dealt with comparing the 

distribution of the existing barriers present in the hair follicle (the stratum corneum in the upper part of 

the hair follicle, e.g. infundibulum, and the TJ barrier in the outer root sheath) with the distribution of 

an externally applied model substance – here nanoparticles – in the hair shaft, and the penetration 

behavior of these types of particles. Thus, transmission electron microscopy was employed to, for one, 

confirm for the first time that polymeric particles do stay intact upon penetration. Furthermore, it was 

demonstrated that the majority of these particles accumulated in the infundibulum of porcine hair 

follicle, the region protected by both barriers, the stratum corneum and the TJs. Few intact particles 

were also discovered past this point in the central region of the hair follicle where TJs are likely the 

only barrier.  

The last section of this work was mainly focused on the applicability of the porcine ear skin model 

with regard to follicular uptake studies. Three different polymer-based nanoparticles were prepared  
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and characterized, giving rise to three varying particle structures of differing sizes, yet equivalent 

surface charge, polydispersity, and encapsulation efficiency of drug. A desired sustained release of 

drug was achieved by means of encapsulation and this effect was similar for all three nanocarriers. 

Also, the possibility of decreasing skin permeation, and simultaneous targeting to the hair follicle, was 

shown. The reduction in skin permeation (as opposed to free drug in solution) was similar for the 

different particles and was only more reduced by increasing the viscosity of the formulation/release 

medium. The extent of follicular penetration, however, was dependent upon the molecular architecture 

of the particles, as well as on the viscosity of the formulation. For all particles, the application of a 

massage enhanced follicular uptake. The particles were all loaded with Clobetasol propionate, a very 

potent drug used for many inflammatory-based skin and hair disorders, but also known to cause severe 

adverse effects even when only applied topically. The information learned from this study could 

potentially help to minimize adverse effects by (i) releasing the drug in a time-dependent manner and 

thereby not reaching toxic concentration levels, (ii) by decreasing general skin permeability, plus (iii) 

via targeting the hair follicle as this type of therapy could revolutionize the disease management of 

several specific hair disorders (e.g. inflammatory-caused scalp diseases). Furthermore, selection of a 

specific nanocarrier and/or formulation could achieve a better delivery of the drug to the desired site of 

action, as well as a more patient-specific treatment. 

Overall, this thesis has highlighted various important aspects concerning research in the field of 

sciences ranging from characterizing and evaluating potential in vitro/ex vivo models, to performing 

basic research that deals with the anatomy of the hair follicle and its barrier properties, and lastly the 

technological approach of preparing and testing novel drug delivery systems. Combining all of the 

information learned from the discussed studies, one can say that the porcine ear skin model is indeed  
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suitable to use as a surrogate for human skin regarding (i) the testing of tight junction distribution and 

functionality in the hair follicle, and (ii) experiments concerning the uptake and penetration depth of 

nanoparticle-based drug delivery systems. This confirmation is most useful for the field of 

pharmaceutical technology, as the necessity and demand for reliable models is a topic of general 

concern. In that sense, large data sets can be generated on the model and only the most promising 

candidates (e.g. for drug delivery systems) will advance to be tested in vivo. Moreover, the 

characterization of the tight junction proteins and their barrier function in the hair follicle adds to the 

information and insight which is already known about the very complex biology of the hair follicle. 

Whether these structures are in fact a deciding factor regarding nanoparticles uptake or nanoparticle 

translocation remains to be further elucidated. Hence, more studies with a wider variety of particles 

need to be performed. Moreover, the described follicular uptake studies using the nanocarriers loaded 

with the potent glucocorticosteroid Clobetasol propionate reveal that the nanoparticle-based drug 

delivery approach is very promising not only for the recently much discussed topic of non-invasive 

transfollicular vaccination [90, 92, 145, 146], but also for the field of dermatology, especially with 

regard to inflammatory-based scalp diseases.  
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4.    Outlook 

In the future, the penetration behavior of particles ranging in size (nano-micro), molecular architecture 

(core-and-shell particles, nanospheres, liposomes, solid lipid nanoparticles), and surface charge should 

be further assessed with the goal of i) obtaining a higher follicular recovery, and ii) gaining more 

insights on what parameters are deciding regarding the location in the hair follicle that is reached. For 

these studies, transmission electron microscopy (similarly to what was done here), fluorescence 

microscopy, and/or the Differential Stripping method in vitro as well as in vivo would be of aid.  

Additionally, the ability to modulate follicular and/or epidermal TJs, which was shown to be feasible 

in this work, should be further optimized. Especially the use of more specific TJ modulators (e.g. 

Occludin mimetic peptides, Sodium caprate, Chitosan, Clostridium perfringens enterotoxin, etc.) 

should be tested to determine whether it is possible to regulate the opening and closing of this TJ 

barrier, as has been described for other epithelia before. Moreover, combining this TJ modulation with 

particle-based delivery to the hair follicle would be an intriguing approach. For example, in the field of 

non-invasive transfollicular vaccination the major challenges seen consist of delivering the antigen to 

the peri-follicular antigen presenting cells located mainly in the infundibulum of the hair follicle [145, 

146, 203]. Thus, the possibilities of i) encapsulating a specific TJ modulator along with an antigen and 

adjuvant, or ii) co-administering a specific TJ modulator along with the encapsulated antigen and 

adjuvant should be further explored.  
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5.    List of Abbreviations 

A   area of application 

AA   Alopecia areata 

ACN   acetonitrile 

ANOVA  analysis of variance 

AUC   area under the curve 

Biotin-SH  EZ-Link
TM

-Sulfo-NHS-LC-Biotin 

C   cortex 

CI   confidence interval 

CL   companion cell layer 

CCL   central cell layer 

CCT   capric/caprylic triglycerides 

Cldn   claudin 

Ct   cycle threshold 

Cu    cuticular layer of hair shaft 

CP   clobetasol propionate 

C0   average initial concentration 

D   apparent diffusion coefficient 

DLS   dynamic light scattering 

DS   Differential Stripping 

DP   dermal papilla 

DMEM   Dulbecco’s Modified Eagle Medium 

EDTA   Ethylenediaminetetraacetic acid 

EE   encapsulation efficiency 

FDA   Food and Drug Administration 

FFA   Frontal, fibrosing alopecia 

h   length of the apparent diffusion path 

He   Henle’s layer of the inner root sheath 

He* fully differentiated and highly keratinized cells in Henle’s layer of the inner 

root sheath 

H&E   haematoxylin & eosin 

H-ESI   heated-electrospray ionization 

HF   hair follicle 

HG   hydrogel 

HSE   heat-separated epidermis 
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Hu   Huxley’s layer of the inner root sheath 

icu   cuticle of the inner root sheath 

IRS   inner root sheath 

Jss   steady-state flux 

K   vehicle/barrier partition coefficient 

Kp   permeability coefficient 

LNC   lipid-core nanocapsules 

LLOQ   lower limit of quantification 

LPP   Lichen planopilaris 

M   medulla 

MC   matrix cells 

M(t)   accumulated mass of substance 

NC   nanocapsules 

NP   nanoparticle 

NS   nanospheres 

Ocln   occludin 

OECD   Organization for Economic Co-Operation and Development 

ORS   outer root sheath 

PBS   phosphate buffered saline 

PCL   poly(-ɛ-caprolactone)  

PDI   polydispersity index 

PLGA   Poly-D,L-lactide-co-glycolide 

ROI   region of interest 

SC   stratum corneum 

SCCS   Scientific Committee on Consumer Safety  

SD   standard deviation 

SEM   scanning electron microscopy 

SM   sorbitan monostearate 

SRM   selective reaction monitoring 

TER   transepithelial resistance 

TEM   transmission electron microscopy 

TJ   tight junction 

ZO-1   zonula occludens protein 1 
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