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A. Summary 

In this study we could show the biosynthetic potential of the genus Streptomyces by sequencing the 

genome of Streptomyces fulvissimus, which revealed 32 putative biosynthetic gene clusters. We were 

able to elucidate the biosynthesis of the macrodiolide antibiotic pamamycin by knocking out 

responsible genes in the pamamycin biosynthetic cluster and analyzing the resulting intermediates. We 

could show that succinyl-CoA is utilized as a starter unit and either malonyl-CoA, methylmalonyl-

CoA or ethylmalonyl-CoA are used as extender units in pamamycin biosynthesis. The knowledge of 

the pamamycin biosynthesis was used to engineer our heterologous host, the model organism 

Streptomyces albus J1074, in a specific direction. We focused our efforts to reduce or abolish the 

cellular concentration of methylmalonyl-CoA and ethylmalonyl-CoA in S. albus J1074 to reduce the 

compound spectrum of produced pamamycins. We could greatly influence the compound spectrum 

and we could identify the bottleneck of pamamycin production as succinyl-CoA. We could also prove 

that the metabolism of valine is the sole provider for the biosynthesis of pamamycin. Furthermore we 

could show the dependency of antibiotic production on gene dosage and we could increase the 

production of several secondary metabolites by increasing the number of clusters present on the 

genome. 

B. Zusammenfassung 

Wir konnten das genetische Potential des Genus Streptomyces anhand der kompletten Genom-Sequenz 

von Streptomyces fulvissimus, der 32 putative Biosynthese-Gencluster besitzt, zeigen. Außerdem 

konnten wir die Biosynthese des Makrodiolid-Antibiotikums Pamamycin aufklären, indem die für die 

Biosynthese verantwortlichen Gene ausgeknockt und die daraus entstandenen Intermediate 

nachgewiesen wurden. In der Pamamycin-Biosynthese wird Succinyl-CoA als Startereinheit 

verwendet, auf welche entweder Malonyl-CoA, Methylmalonyl-CoA oder Ethylmalonyl-CoA als 

weitere Bausteine folgen können. Dieses Wissen nutzten wir, um unseren heterologen Stamm 

Streptomyces albus J1074 gezielt zu verändern. Unser Ziel war es, die intrazellulären Konzentrationen 

von Methylmalonyl-CoA und Ethylmalonyl-CoA in S. albus zu verringern um das Substanzspektrum 

der produzierten Pamamycine einzuschränken. Wir konnten das Substanzspektrum der produzierten 

Pamamycine stark beeinflussen, dadurch Succinyl-CoA als den limitierenden Faktor der Biosynthese 

identifizieren, und nachweisen, dass sich die Pamamycin-Biosynthese ausschließlich aus dem 

Metabolismus von Valin speist. Durch das Einbringen mehrerer Biosynthesegencluster in denselben 

genetischen Hintergrund konnten wir die Produktion verschiedener Antibiotika steigern und dadurch 

zeigen, dass die Sekundärstoffproduktion von der Anzahl der Gencluster abhängig ist.  
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I. Introduction 

1. Natural products  

Natural products are a part of the human society since the early beginning. Either as ointments made 

from plants, poisons from animals or antibiotics from microorganisms. In general, natural products are 

substances isolated from various organisms. They are either products of the primary or secondary 

metabolism. Substances from the primary metabolism (polysaccharides, proteins, nucleic and fatty 

acids) are present in all biological systems. Substances from the secondary metabolism (secondary 

metabolites) are often produced exclusively by a certain group of organisms and are usually low-

molecular-weight (MW < 3000) and chemically diverse substances with many biological applications. 

Antibiotics belong to the natural products family originating from the secondary metabolism and are 

produced mostly by bacteria or fungi (Berdy 2005). 

2. Antibiotics 

Antibiotics are low-molecular-weight (MW < 2000) metabolites produced by microorganisms in a 

step-by-step biosynthesis. They inhibit growth of other microorganisms in low concentrations (< 200 

µg/ml) (Waksman & Fennes F. 1949). The definition of antibiotics has since then been extended to 

include also natural products with various structures produced by the secondary metabolism of living 

organisms and synthetic substances which show inhibitory activity against microorganisms (Lanzini & 

Lorenzeti 1993). Naturally produced antibiotics derive from the secondary metabolism and are thus 

not essential for growth and replication. Nevertheless they provide an advantage for the producer 

under unfavorable living conditions (Davis 1990). Antibiotic production often starts after reaching the 

stationary phase of growth or after reaching a growth-optimum (Bu" Lock et al. 1965). The genes 

responsible for production of individual secondary metabolites in bacteria are almost always located 

together in the genome and are referred to as biosynthetic gene clusters (Doroghazi & Metcalf 2013). 

The golden age of antibiotics spanned the 1940s and 1950s (Clardy et al. 2006). During this time, 

nearly all known groups of antibiotics have been discovered: β-lactams, tetracyclins, 

chloramphenicols, aminoglycosides, macrolides, aminocoumarines, glycopeptides, macrolactams and 

streptogramines. Since then, the only new classes of antibiotics which have been approved for therapy 

were avermectins (in 1989) and daptomycin (in 2003) Antibiotics have originally been developed for 

clinical use to treat infectious diseases. The various types of compounds discovered so far do not often 

show antibacterial activity, but instead activities against fungi, insects, herbs or even cancer cells. 

Therefore antibiotics have been applied not only in clinical therapy but also as food additives, as 

fungicides, herbicides or insecticides for plant protection or in veterinary use. 
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3. Antibiotic resistance 

After having approved a new antibiotic for clinical use, emergence of resistant bacteria to this specific 

antibiotic is inevitable. This is quite coherent because of the short replication time of bacteria and their 

typical mutation rate of 1 in 107 bacteria. The time period for bacteria to become resistant can vary 

among one year for penicillin V and up to 30 years for vancomycin (Walsh & Wright 2005). But 

people still see it as given that antibiotics are present to treat infections (Nathan 2004). Therefore new 

antibiotics have to be developed continuously. However, the antimicrobial pipeline for new 

therapeutics is now drying up. Nowadays, the big pharma companies have abandoned the research 

programs devoted to new antimicrobial compounds, and rather focus on more profitable fields like 

chronic diseases or affective dysfunctions (Leeb 2004). 

The most usual causes for development or spreading of a resistance are the use of antibiotics as a 

performance-enhancing drug in livestock farming, as a feed additive for poultry to suppress bacterial 

infections caused by factory farming, the premature termination of an antibiotic therapy, wrong 

diagnosis of an infection or long term antibiotic treatment after surgery. Infections which could be 

treated in a few days by antibiotics, like pneumonia, have to be treated for months or in some cases 

prophylactic nowadays (Zähner & Fiedler 1995). 

The most important resistance mechanisms include the inactivation of the drug by enzymes, the 

modification of the drug target and the activation of drug efflux pumps. Hydrolysis of β-Lactams is an 

example for drug inactivation by enzymes. Vancomycin resistant enterococci (VRE) protect 

themselves by modification of the drug target which causes a loss in affinity of the drug to the target. 

Efflux-pumps from the class of the ABC-transporters are used as active transportation mechanisms to 

reduce the antibiotic concentration to a sub-toxic level (Walsh & Wright 2005). Because of these 

problems it is of greatest importance to search continuously for new antibiotics and to approve them 

for clinical use.  

4. Screening for new compounds 

Classical screening for antibiotics was very successful between 1950 and 1960, but the chances for 

success are limited nowadays, because of the high rediscovery rate of already known compounds. 

Probably every year over a million of microorganisms are screened for antibiotic production, and most 

of the time the same screening-methods and the same microorganisms (Streptomyces and other 

actinobacteria, lower fungi, Bacillus, Pseudomonas, etc.) are used. After having applied this screening 

method for over 50 years, it is not surprising that from a huge pile of known compounds only a few 

new substances are discovered (Zähner & Fiedler 1995).  
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Nevertheless, the traditional search for antibiotics can be improved by using taxonomical methods for 

dereplication of the isolates and by applying taxonomical insights for cultivation and screening for 

active metabolites (Goodfellow & Fiedler 2010). The endeavor to screen Streptomyces species for new 

antibiotics should pay off, if one considers that only a small amount of antibiotics produced by 

Streptomyces species have been discovered. Watve et al. (2001) predicted that the 3000 known 

compounds produced by Streptomyces roughly account only for about 2 % of the potential products. 

With this in mind, around 98 % of hidden potential still remains undiscovered. This assumption is 

supported by the whole genome sequence of the model organism Streptomyces coelicolor A3(2) 

(Bentley et al. 2002) and Streptomyces avermitilis (Ikeda et al. 2003). Both genomes encode a large 

number of putative biosynthetic gene clusters which are not expressed under standard laboratory 

conditions. These gene clusters are referred to as cryptic or silent. Also other actinobacteria like 

Saccharopolyspora erythraea (Oliynyk et al. 2007) with 25 secondary metabolite gene clusters show 

high biosynthetic potential. These findings led many researchers to predict a renaissance for antibiotic 

discovery by genome mining (Baltz 2008; Fischbach & Walsh 2009; Challis 2008). Doroghazi & 

Metcalf (2013) performed an investigation to determine whether a cryptic biosynthetic gene cluster in 

one species is also likely to be cryptic in a second species. For this they analyzed and compared six 

actinomycete genera (Mycobacterium, Corynebacterium, Rhodococcus, Arthrobacter, Frankia and 

Streptomyces). Their research concluded that the potential to discover novel secondary metabolites is 

still high and especially for the genus Streptomyces the amount of overlapping clusters between 

genomes is very low. Especially strains which are not closely related share no secondary metabolite 

clusters aside from the most common ones (Doroghazi et al. 2014).  

With these findings and the fact that most of these clusters are not expressed under standard laboratory 

conditions, the focus shifts to gain access to this potential. Therefore, new methods have to be 

invented and applied to activate the silent (cryptic) gene clusters. But also known compounds 

previously discovered should be kept in mind because new applications can still be found in new 

screening processes.  
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5. Streptomyces  

 

Figure I.1: Life cycle of Streptomyces. 

The family Streptomyces belongs to the order Actinomycetales. They are immotile, Gram-positive, 

mostly non-pathogenic aerobic soil bacteria with a mycelium-like growth (Stackebrandt & Woese 

1981; Wright & Bibb 1992). The GC-content of their DNA is around 74 %. Streptomyces usually 

contain the LL-form of diaminopimelic acid in their peptidoglycan, their fatty acid pattern consists of 

even-numbered and uneven-numbered fatty acids with a length of 14 to 18 carbon-atoms and they 

usually contain menachinones with nine isoprenic units (Embley & Stackebrandt 1994). Streptomyces 

are able to degrade insoluble organic matter from the soil like cellulose, chitin, lignin or xylanes and 

use them as carbon source. These components are utilized by hydrolysis conferred by exo-enzymes 

like chitinases, ligninases, cellulases, proteases, lipases and nucleases. Streptomyces grow on solid 

media in various different stages of differentiation (Wildermuth 1970; figure I.1). Starting from a 

spore a branched substrate mycelium is formed, which consists of septa, strongly branched hyphae. 

When a lack of nutrients occurs, an aerial mycelium is formed by partial lysis of the substrate 

mycelium. After 3 to 7 days, exospores are formed from the aerial mycelium (Figure I.2). These 

spores are resistant to dryness and other physical stresses.  
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Figure I.2: Spores of Streptomyces sp. Tü 6406 (Diploma thesis Niko Manderscheid). 

About 70 % of all known antibiotics are produced by actinomycetes, whereof Streptomyces form the 

biggest part of the producers (Gräfe 1992). Besides antibiotics, which represent the biggest group of 

bioactive secondary metabolites, also other secondary metabolites produced by Streptomyces show 

biological activities. On the basis of their biological activity secondary metabolites of Streptomyces 

can be classified in 4 groups: (1) inhibitory substances, which include antibacterial, antifungal, 

antiprotozoal and antiviral compounds; (2) pharmacological substances, which include antitumor-

compounds, immunomodulators, neurological substances and enzyme-inhibitors; (3) agricultural 

substances, which include insecticides, pesticides and herbicides; and (4) regulatory substances like 

growth-factors, siderophores and morphogenetic substances (Tarkka & Hampp 2008). 

6. How to access the hidden potential 

New sequencing techniques allow large genomes to be sequenced rapidly and with reasonable costs. 

With the help of analysis tools like antiSMASH (Medema et al. 2011) these genomes can be screened 

quickly and efficiently for secondary metabolite clusters, which leaves us with a huge pool of cryptic 

or poorly expressed gene clusters. The major challenge in the field is therefore to find ways to turn on 

or turn up the expression of cryptic or poorly expressed pathways to provide material for structure 

elucidation and biological testing (Baltz 2011). In his review Baltz (2011) introduced five ways of 

accessing the hidden potential: (1) Disruption of negative regulatory genes; (2) Duplication of 
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secondary metabolite biosynthetic pathway gene clusters; (3) Deletion or disruption of competing 

secondary metabolite pathways; (4) Antibiotic selection for mutations that enhance transcription and 

translation of secondary metabolite genes in stationary phase; (5) Expression of secondary metabolite 

genes in heterologous hosts. Apart from the methods advertised by Baltz (2011), classical methods 

like random mutagenesis with chemical or physical agents or variation of fermentation conditions can 

be used for cluster activation or overproduction. An interesting path to explore is co-cultivation of 

Streptomyces cultures with different bacteria or fungi. Like the studies performed by Schrey et al. 

(2012) or Onaka et al. (2011) assume that microbial communities are very complex and there may be 

substances produced only in close proximity to the corresponding partner. The production of certain 

compounds could also be stimulated by adding extracts of specific organisms to the culture of the 

producing strain of interest (Beauséjour et al. 1999).  

7. Heterologous expression 

Since the natural producers of interesting compounds or strains with cryptic clusters of interest are not 

always genetically accessible, easy to cultivate or show unreliable growth or metabolite production 

profile, heterologous expression of the target genes or clusters is a commonly used tool. The principle 

is to identify genes or clusters of interest and express them in a suitable host using an optimized 

expression system. Thus it is preferred to express these clusters in a well-studied model organism, in 

which a lot of tools were already applied and for which cultivation conditions, media composition and 

storage conditions are well described.  

There are many examples of successful application of this tool. Heterologous expression was used to 

express foreign genes from animals or plants in bacteria or fungi (Frommer & Ninnemann 1995) to 

study gene function or to identify products of gene clusters (Luzhetskyy et al. 2007, Rebets et al. 

2015), to elucidate unknown genes or pathways (Baltz 2010), to engineer known or unknown 

biosynthetic gene clusters (Wenzel et al. 2005), to generate new derivatives of known compounds 

(Luzhetskyy et al. 2007) or to increase the production of desired metabolites (Baltz 2010). 

Despite the huge success of heterologous expression in a vast area of applications, there can be severe 

drawbacks in using this method. Often the yield of the desired product in the heterologous host is 

significantly lower than in the parental strain (Binz et al. 2008; Huo et al. 2012). Steps like the 

introduction of promoters upstream of the cluster to force its expression or the engineering of the 

precursor supply to ensure sufficient production of the desired metabolite have to be made. These 

steps are quite often not intuitive and very time consuming. An additional problem which occurs quite 

often is the toxicity of the produced compound for the heterologous host. To overcome the resistance 

problem, the corresponding resistance genes which are mostly located in close proximity to the gene 

cluster, can be co-expressed. Solutions like these rely heavily on deeper knowledge of the 

corresponding cluster and the produced substance.   
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8. Streptomyces albus J1074 

The S. albus G mutant defective in SalI restriction and modification was labeled S. albus J1074 

(Chater & Wilde 1976). This strain was early on discovered to be a suitable host for cloning and 

expression of streptomycete genes. It was first used as a cloning host by the Salas group (Fernández et 

al. 1996; Ma Rodriguez et al. 1993). S. albus J1074 has since been used for the heterologous 

production of steffimycin (Gullón et al. 2006), fredericamycin (Wendt-Pienkowski et al. 2005; Chen et 

al. 2008), isomigrastatin (Feng et al. 2009) and thiocoraline (Lombó et al. 2006). Since its discovery, 

S. albus J1074 has proven to be a reliable and easy to work with chassis strain for heterologous 

expression of different kinds of gene clusters from various sources and its genome has been 

completely sequenced (Zaburannyi et al. 2014).  

9. Strain development  

Since heterologous expression is a tool of choice for the production of interesting natural products 

from undeveloped natural producer strains, for the increase of production, and a tool for the 

production of compounds from cryptic clusters, suitable heterologous hosts need to be developed.  

Genome sequencing of producers of interesting secondary metabolites revealed the potential of these 

strains to produce not only the known compounds but also several other compounds which are mostly 

cryptic (Bentley et al. 2002; Ikeda et al. 2003; Doroghazi & Metcalf 2013). As a result the idea arose 

to delete all putative secondary metabolite gene clusters to produce a chassis strain for heterologous 

production of secondary metabolites. These strains should produce only the products of the expressed 

clusters and the background noise of naturally produced compounds should be reduced to a minimum. 

This should result in a much clearer spectrum of the produced compounds, which should lead to a 

much easier detection of the heterologously produced substances. With a minimized genome, the flux 

of precursors for biosynthesis should also flow directly into the production of the expressed gene 

cluster and is not divided between several clusters.  

Ikeda et al. (2014) took the industrial producer strain of avermectin, Streptomyces avermitilis, which is 

optimized for precursor supply and is genetically stable, and deleted approximately  

20 % of the genome of S. avermitilis. This deletion mutant did not produce any endogenous 

metabolites but showed no sign of growth limitation, because no essential genes were deleted from the 

chromosome. They showed an increase of production in their minimized strain for streptomycin and 

cephamycin in comparison to the original producers (Komatsu et al. 2010). This proves the genome-

minimized mutant strain to be a versatile and effective host for heterologous expression of secondary 

metabolite clusters. Gomez‐Escribano & Bibb (2011) deleted four endogenous secondary metabolite 

gene clusters from Streptomyces coelicolor M145 and introduced point mutations into rpoB and rpsL 
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to pleiotropically increase the secondary metabolite production. These changes led to an increase 

production of chloramphenicol and congocidine in comparison to the S. coelicolor M145 strain.  

Deletion of disrupting elements such as unwanted secondary metabolite clusters is one possibility to 

increase heterologous production of secondary metabolites. Another possibility is to directly divert the 

precursor production from the primary metabolism to the desired compounds. This can be achieved by 

overexpression of certain genes in order to increase the flux through a certain pathway, as for example 

the overexpression of acetyl-CoA carboxylase leads to an increased rate of fatty acid biosynthesis 

(Davis et al. 2000), by inactivation of certain genes, like the inactivation of the ADP-glucose 

pyrophosphorylase and the acyl-CoA:diacylglycerol acyltransferase led to an increase of the 

intracellular concentration of glucose-1-phosphate / glucose-6-phosphate and thus to an increase in 

mithramycin production (Zabala et al. 2013), or by remodeling or introduction of complete precursor 

pathways, like remodeling of the glycolytic pathway by deletion of two glyceraldehyde-3-phosphate 

dehydrogenases led to an increase in clavulanic acid production (Li & Townsend 2006).  

The deletion of unwanted clusters and the mutations in rpoB and rpsL can be generally beneficial for 

secondary metabolite production, or it can be product specific when the precursor production is 

channeled to enhance the formation of a certain metabolite.  

10. Pamamycin 

Pamamycin is a class of natural products which belong to the macrodiolide antibiotics. Pamamycin-

607 was first discovered in the culture of Streptomyces alboniger ATCC 12461. It is active in vitro 

against Gram-positive bacteria, Neurospora and Mycobacteria (McCann & Pogell 1979). Pamamycin-

607 was shown to be an aerial mycelium-inducing agent (Kondo et al. 1988) and a secondary 

metabolite stimulating substance (Hashimoto et al. 2011). There are at least 14 different kinds of 

pamamycins known. They reach from pamamycin 593 to 649 of which several derivatives share the 

same mass (Natsume et al. 1995; figure I.3).  

 

Figure I.3: Different types of pamamycins (not complete). 
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Pamamycin-607 consists of six acetate, four propionate and three succinate units, and the nitrogen 

atom derives from the α-amino group of an amino acid (Hashimoto et al. 2005a). The final pamamycin 

molecule is assembled from two hydroxyl acids, hereafter referred to as hydroxyl acid large and small, 

with hydroxyl acid small being a stereoisomeric homologue of the building blocks for nonactin 

(Hashimoto et al. 2005b). Nonactin was first discovered in the extracts of a Streptomyces species 

(Corbaz et al. 1955) and belongs to the macrotetrolides group as well. 

11. PKS 

Polyketides are a large family of natural products found in bacteria, fungi and plants, and include 

many clinically important drugs such as tetracycline, daunorubicin, erythromycin, rapamycin and 

lovastatin. They are biosynthesized from acyl CoA precursors by polyketide synthases (Shen 2003). 

There are three types of polyketide synthases known to date. Type I PKS are modular proteins of 

which every module carries out a specific step in the biosynthesis. Type II PKS are commonly 

multienzyme complexes with a set of enzymes which are used iteratively. Type III PKS consist of a 

single enzyme which catalyzes the biosynthesis (Shen & Kwon 2002).  

Type II PKS are of special interest because of the many clinically useful drugs derived from their 

products. PKS II types are mostly iteratively used multienzyme complexes with a minimal PKS 

consisting of the KSα and KSβ subunits and an acetyl carrier protein (ACP). The minimal PKS 

catalyses the iterative decarboxylative condensation of malonyl-CoA extender units with an acyl 

starter unit (Hertweck et al. 2007; figure I.4).  

 

Figure I.4: Basic mechanisms of aromatic polyketide biosynthesis. 

Besides the minimal PKS there are quite often other enzymes in polyketide biosynthesis. The keto 

reductase (KR) catalyzes the stereospecific hydrogen transfer from NAD(P)H onto a keto group, 

resulting in the formation of a secondary alcohol, cyclases support specific ring formation, aromatases 

dehydrate cyclic alcohols to yield aromatic ring systems, methyl transferases transfer the activated 

methyl group from S-adenosyl-L-methionine to nitrogen, carbon or oxygen, oxygenates promote the 

incorporation of oxygen into a substrate, and glycosyltransferases attach sugars to the molecule 

(Hertweck et al. 2007).  
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12. Aim of this work 

The main focus of this work was to engineer Streptomyces albus J1074 for optimized heterologous 

expression of secondary metabolites coupled with the elucidation of the pamamycin biosynthesis and 

optimization of the pamamycin production.  

A cosmid library of Streptomyces alboniger DSM 40043 was created and screened for the pamamycin 

biosynthetic gene cluster. Heterologous expression of the pamamycin biosynthetic genes was 

established in Streptomyces albus J1074 and the biosynthesis was elucidated by knockout of important 

genes and measurement of the resulting intermediates. By knocking out several of the genes 

responsible for precursor supply for pamamycin biosynthesis from the primary metabolism of 

Streptomyces albus J1074, the compound spectrum of produced pamamycins should be shifted into a 

specific direction. Furthermore the bottleneck for pamamycin production in Streptomyces albus J1074 

and the source of precursors should be detected.  

A different approach for an overproduction of secondary metabolites was performed by integration of 

additional page ϕC31 attachment sites into the genome of Streptomyces albus J1074. The effect of 

gene dosage on secondary metabolite production should be shown by the expression of four different 

antibiotic clusters in the panel of produced strains with different amounts of attachment sites.  
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II. Complete genome sequence of         

Streptomyces fulvissimus 

Members of the genus Streptomyces served as a source of new natural products and antibiotics in 

particular for a long time. With the emergence of data indicating that most streptomycetes contain up 

to 30 gene clusters involved in the synthesis of secondary metabolites in their genomes, it has become 

clear that their biosynthetic potential was underestimated (Bentley et al. 2002; Ikeda et al. 2003; 

Ohnishi et al. 2008). Nowadays, lots of efforts are made to estimate this potential and also to get 

access to natural products whose biosynthetic pathways are encoded in the genomes of the 

corresponding Streptomyces strains. Accumulation of high quality genome sequencing data will 

strongly contribute to the implementation of this task. Here we present the complete genome sequence 

of the new Streptomyces strain S. fulvissimus. 

The genome sequencing of S. fulvissimus (DSM 40593) was performed with the Roche GS FLX 

Titanium technology. High molecular mass DNA was extracted from S. fulvissimus and an 8 kb 

paired-end library as well as a shotgun library were constructed. Reads of an approximate length of 

350 bp and 2 x 125 bp were obtained for shotgun and paired-end libraries, respectively. Newbler 

software was used for the genome assembly. Gaps were closed by PCR with subsequent Sanger 

sequencing.  

Annotation was performed by automatically merging 3 annotation sources, with the following manual 

curation and problems resolution. The three sources used were: Glimmer (Delcher et al. 2007) gene 

prediction trained on annotated open reading frames of S. coelicolor and S. avermitilis with BlastP 

annotation against the NR, Nt and swissProt databases; Prodigal (Hyatt et al. 2010) gene prediction 

with AutoFACT (Koski et al. 2005) annotation against UniRef90 and COG; xbase 

(http://xbase.ac.uk/annotation/) annotation against S. coelicolor.  

The S. fulvissimus genome consists of a single linear chromosome of 7,905,758 bp (71,5 % G+C) with 

no plasmids. The chromosome is of smaller size than the ones of S. coelicolor A3(2) (8,7 Mbp),  

S. avermitilis MA-4680 (9,0 Mbp) or S. griseus IFO13350 (8,5 MbP) (Bentley et al. 2002; Ikeda et al. 

2003; Ohnishi et al. 2008). The analysis of the S. fulvissimus genome revealed that its chromosome 

contains 6925 predicted protein coding sequences as well as 73 tRNA genes (Table II.1). Also, similar 

to other streptomycetes like S. coelicolor, S. avermitilis, S. griseus, and S. vattleva etc (Barbe et al. 

2011; Bentley et al. 2002; Ikeda et al. 2003; Ohnishi et al. 2008), the genome of S. fulvissimus 

contains 6 rRNA gene clusters.  
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Table II.1: Genome statistics 

Attribute Value 

Genome size (bp) 7,905,758 

DNA coding region (bp) 7,023,792 

DNA G+C content (bp) 71,5 % 

Number of replicons 1 

Extrachromosomal elements 0 

Total genes 7,027 

rRNA genes 18 

rRNA operons 6 

tRNA genes 73 

Protein coding genes 6,925 

Genes with predicted function 5,194 

Secondary metabolite clusters 32 

 

We estimated the potential of S. fulvissimus to produce secondary metabolites. Preliminary data after 

the analysis of the genome sequence with the secondary metabolites search tool antiSMASH (Medema 

et al. 2011) indicates the presence of 32 putative gene clusters involved in the biosynthesis of different 

natural products (Table II.1). In comparison, genomes of S. griseus and S. avermitilis contain 34 and 

30 secondary metabolite clusters, respectively. Among the clusters of S. fulvissimus, 6 encode NRPS, 

5 are involved in the biosynthesis of terpenoids, 3 encode hybrid NRPS-PKS, 2 are type III PKS, 2 are 

type II PKS, 1 is a type I PKS, 2 are involved in siderophore production and 2 in the biosynthesis of 

lantibiotics. Not surprisingly most of the clusters are located on the terminal arms of the chromosome. 

This data indicates that S. fulvissimus has a high potential to produce secondary metabolites.  

It was described before that S. fulvissimus contains a NRPS gene cluster responsible for the 

biosynthesis of the cyclic depsipeptide ionophore antibiotic Valinomycin (Matter et al. 2009). Its 

structure contains three repeated tetradepsipeptide units of D-a-hydroxyisovaleryl-D-valyl-L-lactyl-L-

valyl (Cheng 2006). Indeed, the genome sequence of S. fulvissimus contains the respective cluster with 

two NRPS genes encoding two modules each. On amino acid level products of these two genes are 

highly homologous to Vlm1 and Vlm2 of S. tsusimaensis ATCC 15141 sharing 84 % and 85 % 

identity, respectively. As in case of S. tsusimaensis, the Valinomycin NRPS genes are flanked by a 

transposase gene and a discrete gene encoding thioesterase (Cheng 2006). 

Furthermore, a cluster homologous to the Nonactin biosynthetic cluster was revealed in the genome 

sequence of S. fulvissimus. Nonactin is a macrotetrolide ionophore antibiotic produced by S. griseus 

DSM40695/ ETH A7796 (Smith et al. 2000; Woo et al. 1999). Both gene organization and nucleotide 

sequence of these clusters are very similar.  
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III. Insights into the pamamycin 

biosynthesis 

1. Introduction 

Pamamycins (1) are a group of macrodiolide antibiotics produced by several Streptomyces species 

(Figures III.1, III.S1). They were identified due to their ability to stimulate formation of aerial mycelia 

in Streptomyces alboniger DSMZ40043 and were demonstrated to inhibit the growth of Gram-positive 

bacteria and fungi (McCann & Pogell 1979; Kondo et al. 1988; Lefevre et al. 2004) . Initially, the 

compound with the structure designated as pamamycin-607 (R1 - R4 = Me, R5 = H) was isolated from 

S. alboniger (Kondo et al. 1988), however, a reexamination of extracts revealed a broader chemical 

diversity of 1 differing in their side chain substituents (Figures III.1, III.S1) (Natsume et al. 1991; 

Natsume et al. 1995; Kozone et al. 1999). 1 are composed of two asymmetrical parts named hydroxy 

acids small (3) and hydroxy acids large (4) (Scheme III.1). Due to the pronounced bioactivities and 

challenging molecular structure, these natural products have stimulated intense synthetic efforts (Metz 

2005; Kang & Lee 2005), which have already culminated in several total syntheses of pamamycin-607 

(Germay et al. 2001; Lee et al. 2001; Wang et al. 2001; Kang et al. 2002) and some homologues 

(Fischer et al. 2005; Ren & Wu 2009; Ren et al. 2010; Fischer et al. 2011). Feeding experiments 

clearly demonstrated the polyketide origin of 1 by the incorporation of 13C labeled acetate, propionate 

and succinate (Hashimoto et al. 2005a). This fact is especially interesting since succinate cannot 

directly participate in Claisen condensation. Respective biochemical reaction as well as the enzyme 

conducting it remained mysterious till now. 

The only other natural products known to utilize succinate as a building block are the macrotetrolide 

antibiotic nonactin (R1 - R4 = Me) (2) produced by S. griseus and S. fulvissimus (Figure III.1) 

(Ashworth et al. 1989; Ashworth & Robinson 1983; Ashworth et al. 1982, 1988; Myronovskyi et al. 

2013). The 2 consist of two enantiomers of tetrahydrofuran rings containing hydroxy acids 

stereospecifically assembled into the final molecule. The gene cluster for the biosynthesis of 2 (non) 

contains 5 ketosynthase KS genes (Kwon et al. 2001; Walczak et al. 2000; Woo et al. 1999). These 

unusual KSs were classified as non-iterative type II PKS based on sequence similarity despite the lack 

of ACP proven by the heterologous expression and deletion experiments (Kwon et al. 2001; Walczak 

et al. 2000). Extensive studies using 13C labeled precursors showed utilization of acetate and succinate 

as building blocks for 2 assembly (Ashworth et al. 1989; Ashworth & Robinson 1983; Ashworth et al. 

1982, 1988) as well as direct incorporation of 3-oxoadipate as a precursor into the 2 (Nelson & 

Priestley 2002), leading to the idea that the first committed step in biosynthesis is condensation of 

succinate and malonate. However, the labeling pattern of 3-oxoadipate used in this study did not  
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Figure III.1: Structures of 1 and 2 and the genetic organization of the respective biosynthesis gene clusters. The origin of 

carbon atoms is color coded: blue – acetate, green – propionate, red – succinate (Hashimoto et al. 2005a; Ashworth et al. 

1989; Ashworth & Robinson 1983; Ashworth et al. 1982, 1988). Arrows indicate decarboxylation. The deduced function of 

genes is based on 2 biosynthesis studies and sequence homology. KS – ketosynthase, AT – acyltransferase, KR/DHO – 

ketoreductase/dehydrogenase, ACP – acyl-carrier protein, AmT – aminotransferase, MT – methyltransferase. 

explain how this intermediate is made by the 2 biosynthesis machinery. Lastly, the acetate 

incorporated in positions of 1 and 2 that correspond to the 3-oxoadipate location proceed through the 

double decarboxylation contributing only one carbon atom to the structure of final molecules. These 

unusual features distinguish the biosynthesis of 1 and 2 from other polyketides. Despite the excellent 

insights into 1 and 2 precursor’s origins, feeding experiments are not sufficient to establish their 

biosynthetic route. Moreover, the non genes inactivation experiments further puzzled the biosynthetic 

hypothesis of macrotetrolides (Kwon et al. 2001; Walczak et al. 2001; Kwon et al. 2002). The aim of 

this project was to elucidate the biosynthetic pathway leading to production of 1 with a focus on the 

enzyme(s) responsible for incorporation of succinate. We endeavor 1) to identify the enzymes capable 

to utilize succinate as an intact four-carbon building block in 1 and 2 biosynthesis; 2) to explain the 

incorporation of only one carbon atom from acetate into polyketide backbone of 1 and 2; 3) to identify 

enzyme(s) responsible for elongation of 3 to 4 by addition of the second succinate unit; 4) to establish 

the entire biosynthetic route leading to assembly of 1. 
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2. Materials and methods 

2.1. Strains, plasmids and culture conditions 

Strains and plasmids used are listed in Table III.S1. E. coli strains were grown in LB with appropriate 

antibiotics as necessary. TSB media was used to grow streptomycetes strains for routine applications. 

MS media was used for genetic manipulations of Streptomyces strains and spore stock preparations 

(Kieser 2000). For pamamycin in production Streptomyces strains were grown in SGG medium 

(Starch soluble 10 g, Glucose 10 g, Glycerol 10 g, Cornsteep Powder 2,5 g, Bacto Peptone 5 g, Yeast 

extract 2 g, NaCl 1 g, CaCO3 3 g, Tap water 1 L, pH 7,3). 

2.2. Preparation and manipulation of DNA 

DNA extraction and manipulation, E. coli transformation and E. coli / Streptomyces conjugation were 

performed according to standard procedures (Kieser 2000; Chong 2001). The hot start KOD DNA 

polymerase (Novagen) was used to amplify fragments used for gene expression. Dream Taq 

polymerase (Fermentas) was used for PCR for the verification of gene deletions in cosmids or 

Streptomyces strains. DNA fragments were purified from agarose gels using the QIAquick Gel 

Extraction Kit (Qiagen). Plasmid and chromosomal DNA were purified with QIAprep Spin miniprep 

kit and DNeasy Blood and Tissue Kit (Qiagen). DNA processing enzymes used in this work were 

obtained from New England Biolabs. Oligonucleotides used in this study are listed in Table III.S2. 

2.3. Sequencing of genomes of S. alboniger DSMZ and  

S. sp. HKI118 and their analysis 

Streptomyces alboniger (DSM40043) was obtained as a lyophilized culture from DSMZ 

(Braunschweig, Germany). Genomic DNA was isolated from 30 mL cultures grown in TSB at 28 °C 

for 24 hours. Total DNA isolation was performed according to the salting out procedure followed by 

RNase treatment (Kieser 2000). Isolated DNA was sent to Baseclear (Leiden, Netherlands) for 

Illumina sequencing. Two libraries were constructed, PE (insert size 250 bp, average total coverage 

225) and MP (insert size 4,000 bp, used only for scaffolding). Assembly of the reads was performed 

with the Mira assembler software version 3.9 (Chevreux et al. 2004) resulting in 330 contigs longer 

than 500 bp. Contigs were reviewed and edited in Gap4 from the Staden package (Staden 1996), 

scaffolded using SSPACE Pro (Baseclear), gaps closed using Soapdenovo GapCloser. The final 

assembly has 7965650 bp (including 1629 Ns) in 10 scaffolds. The longest scaffold has 3,041,941 bp, 

the shortest –5,131 bp, scaffold N50 is 1,406,014. Streptomyces sp. HKI 118 was obtained from 

Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute (Jena, 

Germany) and sequenced by LGC genomics (Berlin, Germany), resulting in 10,817,059 bp in 1,664 

scaffolds. Both genomes were annotated using prokka (Seemann 2014), secondary metabolite clusters 
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were predicted with the help of antiSMASH 2.0 (Blin et al. 2013). To identify pamamycin gene cluster 

1664 scaffolds of Streptomyces sp. HKI 118 were mapped using Geneious (Biomatters Ltd, Auckland, 

New Zealand) to 10 scaffolds of Streptomyces alboniger DSM40043. Sequences of pam clusters from 

both S. alboniger DSM40043 and Streptomyces sp. HKI 118 were deposited in GenBank (accession 

numbers: KM923741 and KM923742). 

2.4. Deletion of the pamD gene in the S. alboniger genome 

Regions flanking pamD gene were amplified using Pmm00734F1Bam/Pmm00734R1EcV (L) and 

Pmm00734F2EcV/Pmm00734R2Xba (R) primer pairs and cloned into pSTBlue-1 AccepTor vector 

(Novagen). The resulting plasmids pSTL and pSTR were digested with BamHI and EcoRV and the 

deletion construct was assembled by cloning the L fragment into pSTR. A spectinomycin resistance 

cassette was cloned into the EcoRV site of the resulting plasmid to give pSTRLaadA. pSTRLaadA 

was digested with BamHI and XbaI and the deletion construct was sub-cloned into pKC1139. The 

final construct was introduced into S. alboniger via intergeneric conjugation. The obtained strain was 

grown in 20 ml of liquid TSB media without antibiotics at 39 °C for 3 days, plated on MS agar 

supplemented with spectinomycin to obtain a single cross-over strain. Plasmid integration was proven 

by resistance marker inheritance after growth for several passages in liquid medium without selective 

antibiotics. After the last cycle in non-selective conditions the strain was plated on MS media and 

spore dilutions were prepared and plated on MS with spectinomycin. The secondary cross-over strains 

were selected by screening for apramycin sensitive and spectinomycin resistant colonies. Seven of 

such colonies have been obtained. The deletion of pamD was proven by PCR analysis. 

2.5. Pamamycin production analysis  

For pamamycin production 2 ml of a 2 day old pre-culture was inoculated into 50 ml of SGG media 

and grown for 3 days at 30 °C with agitation at 250 rpms. The biomass was separated from 

supernatant by centrifugation. Metabolites were extracted with ethyl acetate from cultural liquid and 

with aceton:methanol (1:1) mixture from biomass. Samples were evaporated, dissolved in 200 μl of 

methanol:DMSO (1:1) and subjected to LC-MS analysis. For quantification chemically synthesized 

pamamycin 607 was used as standard. Metabolites were separated on Waters BEH C18 column (100 

mm x 2.1 mm, 1.7 μm, column temperature 45 °C) using an UPLC-ESI-MS instrument (Dionex 

Ultimate 3000, Thermo Fisher Scientific GmbH and amaZon Speed ETD, Bruker). Samples were 

eluted with solvent A: ammonium formate buffer 90 mM and solvent B: 80:20 acetonitrile/100 mM 

ammonium formate buffer in a multistep gradient. 0.2 min 20 % B, 20 % B to 97 %B in 2.8 min, 97 % 

B to 100 % B in 6 min, 2 min 100 % B, 100 % B to 20 % B in 1 min, 3 min equilibration at 20 % B. 

Flow 0.55 mL/min. Alternatively, longer protocol was used with multistep gradient: 0.2 min 10 % B, 

10 % B to 69 % B in 4 min, 69 % B to 87.5 % B in 26 min, 87.5 % B to 95 % B in 0.5 min, 1 min 95 

% B, 100 % B to 10 % B in 0.5 min, 4 min equilibration at 10 % B. Detection for quantitative analysis 
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in srm-mode on Amazon MS-spectrometer using the ms2 fragment m/z = 396 from parent ion of 

Pamamycin m/z =  608 [M+H]+. The reference sample concentrations of Pamamycin 607 were c = 15, 

10, 5, 2.5 and 1 μg/ ml. In the case of extracts from S. albus R2ΔpamX and pamY strains the samples 

were separated on the same UPLC-ESI-MS system with the Waters BEH C18 column (100 mm x 2.1 

mm, 1.7 μm, column temperature 45 °C). 0.1 % formic acid was used as solvent A and 100 

acetonitrile as solvent B. Samples were eluted with gradient of solvent B from 5 to 95 % in 18 

minutes. The flowrate was 0.5 mL/min. 

2.6. Gene library preparation and cloning of the pam-gene cluster 

S. alboniger DSM 40043 chromosomal DNA was purified with the chloroform method (Kieser 2000). 

DNA was partially digested with Sau3A. Digested DNA was size-fragmented by agarose gel. The 27-

39 kb DNA fragments were selected, purified and ligated into pre-cut BamHI and HpaI and CIAP-

treated cosmid pOJ436 vector. Ligation was packaged with package extracts as instructed by the 

SuperCos1 Cosmid Vector Kit (Stratagene). The primary library was titrated on E. coli XL-Blue MRA 

cells. Since the vector has two Cos sites, only colonies containing cosmid plasmid with inserts of 27-

39 kb can be packaged and grown on LB-apramycin plates. Colonies were screened by hybridization 

with the two probes (480 bp each) that correspond to the 5’ and 3’ of the pam gene cluster, 

respectively. The hybridization was performed as described by manufacturer of ECL Direct Nucleic 

Acid Labeling and Detection System (GE Healthcare). Cosmids hybridized with both probes were 

isolated and end sequenced from T7 and T3 primers to prove the cloning of the respective region of 

the S. alboniger chromosome. 

2.7. Construction of the mutant strains 

The cosmids with deletions of the pam gene were constructed using the PCR-based Red/ET 

technology and a hygromycin resistance marker from the iterative markers system (Myronovskyi et al. 

2014a; Zhang et al. 1998). Gene deletions were confirmed by PCR. The mutagenized cosmids were 

introduced into S. albus J1074 by RP4-based conjugation from E. coli ET12567 containing pUZ8002 

and selected for with apramycin (Flett et al. 1997). The hygromycin cassette was removed during 

conjugation due to the activity of the ϕC31 integrase of pOJ436 based cosmid. Integration of cosmids 

into the genome of the recipient strain and loss of the marker were proved by PCR. 

2.8. Complementation of pam gene mutations 

Complementation of strains with a deleted pam gene was performed with pam genes and their 

nonactin counterparts. For this, pam and non genes were amplified using the primers described in table 

III.S2 from genomic DNA of S. alboniger and S. fulvissimus (Myronovskyi et al. 2013) respectively. 

PCR products were digested with HindIII/BamHI or HindIII/BglII and cloned into HindIII/BamHI 

digested pUWLFLPhyg (Fedoryshyn et al. 2008) under control of the ErmE* promoter. Generated 
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plasmids were introduced into S. albus strains containing the respective mutated variants of R2 cosmid 

and selected by hygromycin resistance. Metabolites production was tested as described above. 

2.9. Feeding of mutant strains with hydroxyl acids S and L 

Strains of S. albus R2 with deletions of pamL and pamB genes were grown in SGG media for 2 days 

and mixture of hydroxyl acids S and L mixture was added. Strains were cultivated for two more days, 

metabolites were extracted and production of pamamycins was analyzed as described above. 

2.10. Deletion of 3-oxoadipate:succinyl-CoA transferase gene in  

S. albus J1074 

Genes encoding both subunits of the 3-oxoadipate:succinyl-CoA transferase XNR_0219 and 

XNR_0220 were replaced with a hygromycin resistance cassette within the 1G14 BAC library clone 

using PCR-based Red/ET technology (Zhang et al. 1998; Gust et al. 2004). Recombinant BAC was 

introduced into S. albus J1074 by conjugation and clones were selected with hygromycin. Ten 

colonies were checked for secondary cross-over by PCR and three of them were found to have 

XNR_0219 and XNR_0220 replaced with a hygromycin cassette. 

2.11. Cloning, expression, purification and characterization of 

PamA  

pamA was amplified with the primers 0726ETFNcoI and 0726ETRXhoI using S. alboniger 

chromosomal DNA as a template. The obtained fragment was digested with NcoI and XhoI, and 

inserted into a similarly digested pET28b vector to generate pET28bPamA. pET28bPamA was 

transformed into E. coli BL21(DE3) for overexpression. A flask containing 1.5 L of LB was 

inoculated with overnight BL21 culture containing PamA expression plasmid, and was grown at 37 °C 

until an OD600 of 0.6, followed by a shift to 20 °C. Expression was induced through the addition of 

0.5 mM IPTG. The culture was incubated at 20 °C overnight, and then the cells were harvested by 

centrifugation (5000 x g, 4 °C, 20 min), lysed in lysis buffer (10 mM TrisHCl, pH 7.2; 400 mM NaCl, 

0.1 % Triton X100) containing benzonase nuclease and lysozyme (Novagen). Proteins were purified 

with Ni-NTA agarose (Qiagen), elution buffer replacement and concentration of the protein was done 

using Amicon Ultra spin columns with a cut off at 10 kDa (Merk Millipore). The proteins were 

analyzed by SDS PAGE and stored at -80 °C in 10 % glycerol. The assay was performed in reaction 

buffer containing 10 mM TrisHCl (pH 7.5), 200 mM NaCl, 2 mM MgCl2 and 1 mM DTT in total 

volume of 40 μl. 40 mM of succinyl-CoA and malonyl-CoA (or methyl-malonyl-CoA) were used in 

reaction mixture as substrates. In competition reactions malonyl-CoA and methyl-malonyl-CoA were 

used in concentration 20 mM each or 40 mM of malonyl-CoA and 4 mM of methylmalonyl-CoA. 

Reaction was started by adding 1 mM of purified enzyme. The reaction mixture was incubated for 30 
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min at RT, stopped by adding an equal volume of methanol. 20 μl of the reaction mixture was 

analyzed by HPLC on Dionex Ulitmate 3000 HPLC system using conditions described in (Kaschabek 

et al. 2002). CoA-esters were detected by UV absorption at 260 nm. Fractions containing new peaks 

were collected, evaporated, dissolved in methanol and subjected to HILIC LC-MS analysis on HILIC 

column (Phenomenex Luna 3μ Hilic 200A; 100 x 2.00 mm) using UPLC-ESI-MS system (Dionex 

Ultimate 3000, Thermo Fisher Scientific GmbH and amazon speed, Bruker). As solvent, linear 

gradient of water with 0.1 % ammonium formate (pH4.7) from 95 to 50% against acetonitrile in the 

course of 12 min was used. The flow rate was 0.5 ml/min. 

Table III.S1: Strains and plasmids used in this work. 

Plasmid/Strain Description Source/ reference 

E. coli DH5α General cloning host, supE44 ΔlacU169(φ80lacZΔM15) (Hanahan 1983) 

E. coli BL21 (DE3) expression host Novagen 

E. coli ET12567/ 

pUZ8002 

Host strain for conjugation from E. coli to Streptomyces (Flett et al. 1997) 

E. coli BW25113/ 

pIJ790 

Strain used for λ RED-mediated recombination (Gust et al. 2004) 

S. alboniger DSM 

40043 

S. alboniger wild type strain, 1 producer 

 

(Hesseltine et al. 

1954) 

S. sp. HKI 118 Pamamycin producing strain (Kozone et al. 

2008) 

S. albus J1074 Host for heterologous expression (Zaburannyi et al. 

2014) 

S. alboniger ΔpamD-

7 

DSM40043 derivative with pamD gene replaced by 

spectinomycin resistance cassette, 1 non-producing 

strain 

This study 

S. albus R2 R2 cosmid integrated into J1074 genome This study 

S. albus AdCoA S. albus J1074 derivative with deleted 3-

oxoadipate:succinyl-CoA transferase gene 

This study 

pSTBlue-1 T/A PCR cloning plasmid Novagen 

pET28b Protein expression and purification vector Novagen 

pUWLFLPhyg E. coli-Streptomyces replicative shuttle vector derivative 

of pUWLoriT, Hyg® 

(Fedoryshyn et al. 

2008) 

pKC1139 E. coli-Streptomyces replicative shuttle vector with 

temperature sensitive replicon of pSG5 

(Kieser 2000) 

phyg-OK ApR, HygR; source of hygR6Kγ and oriT for λ RED 

recombination 

(Myronovskyi et 

al. 2014a) 

pKC39pamDLRaadA pKC1139 derivative with construct for pamD 

replacement 

This study 

R2 pOJ436 derivative cosmid containing entire pam gene 

cluster 

This study 

R2ΔpamC R2 derivative with deletion of pamC gene This study 

R2ΔpamG R2 derivative with deletion of pamG gene This study 

R2ΔpamF R2 derivative with deletion of pamF gene This study 

R2ΔpamA R2 derivative with deletion of pamA gene This study 

R2ΔpamB R2 derivative with deletion of pamB gene This study 

R2ΔpamO R2 derivative with deletion of pamO gene This study 

R2ΔpamK R2 derivative with deletion of pamK gene This study 

R2ΔpamJ R2 derivative with deletion of pamJ gene This study 
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Plasmid/Strain Description Source/reference 

R2ΔpamL R2 derivative with deletion of pamL gene This study 

R2ΔpamX R2 derivative with deletion of pamX gene This study 

R2ΔpamY R2 derivative with deletion of pamY gene This study 

pUWLpamC pUWLhyg derivative with pamC gene cloned under 

control of PErmE 

This study 

pUWLlanC pUWLhyg derivative with lanC gene cloned under 

control of PErmE 

This study 

pUWLpamA pUWLhyg derivative with pamA gene cloned under 

control of PErmE 

This study 

pUWLnonU pUWLhyg derivative with nonU gene cloned under 

control of PErmE 

This study 

pUWLpamB pUWLhyg derivative with pamB gene cloned under 

control of PErmE 

This study 

pUWLnonT pUWLhyg derivative with nonT gene cloned under 

control of PErmE 

This study 

pUWLpamJ pUWLhyg derivative with pamJ gene cloned under 

control of PErmE 

This study 

pUWLnonJ pUWLhyg derivative with nonJ gene cloned under 

control of PErmE 

This study 

pUWLpamX pUWLhyg derivative with pamX gene cloned under 

control of PErmE 

This study 

 

Table III.S2: Primers used in this study 

Primer name  Sequence Description 

0729DF CCGACGCAGCGTCCCCCGGAGGAAACGGTGTA

CGAATCGTCGACCCGGTACCGGAGTA 

Deletion of  

pamC 

0729DR CCGTGCGCACCGCGCTCTCCAGGGACCTGGGC

ACGGCTCTGACTACGCCCCCAACTGAGAG 

 

0730DF ATGGACCACAACAGGACACGCGCGGCCGTGCT

GGCGGGCGTCGACCCGGTACCGGAGTA 

Deletion of  

pamG 

0730DR CGCGGTACGTATGCACGGCCAGGGCCGTGACG

TCCGGCCACACTACGCCCCCAACTGAGAG 

 

0731DF ACAGCGGCACGCAACACAGGGAGTCTCATGG

CGCATCAGTCGACCCGGTACCGGAGTA 

Deletion of  

pamF 

0731DR CCATGTCCGCGGGCCTCACGCCTTCCCCAGCA

GGATCGCTGACTACGCCCCCAACTGAGAG 

 

0732DF ATTCCCGGCGGATAGCTTTCCCGTATGGCTGC

ACAGGCTTCGACCCGGTACCGGAGTA 

Deletion of  

pamA 

0732DR GTCCGCGCGGGTTCGGCACCGGTCATGCGGCG

CCGAGTGTGACTACGCCCCCAACTGAGAG 

 

0733DF GGTGCCGAACCCGCGCGGACCGAACCCCTGAA

GGAGACCTCGACCCGGTACCGGAGTA 

Deletion of  

pamB 

0733DR TCACCTGGTGGGATCCTGCGGATCGCGTCACC

TGTAGAATGACTACGCCCCCAACTGAGAG 

 

0737DF GTGAACGGCCATGTCCGATTCCAGGAATGCGC

TGGTGACCTCGACCCGGTACCGGAGTA 

Deletion of  

pamO 

0737DR GGCGTCGTTACGGAACCCAGCCGGGCGGCCCG

CCGCCGTCACTACGCCCCCAACTGAGAG 

 

0738DF GTGAACTACGGCTTTTTCGCGGGGTACTTCGA

GTACCCGCTCGACCCGGTACCGGAGTA 

Deletion of  

pamK 
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Primer name  Sequence Description 

0738DR TCAGATCCGGTACAGGAGGCTGCCCCAGCACC

AGACGCCGACTACGCCCCCAACTGAGAG 

 

0740DF ATGCGGTGACCACGACCAAGGGCCCCCGGGA

CGCACTCGTCGACCCGGTACCGGAGTA 

Deletion of  

pamJ 

0740DR CGGGCCCGGCGCCGGGCGGCGTGTGCTCAGTC

ATCGGTGTGTGTAGGCTGGAGCTGCTTC 

 

0743DF GCCCGGGATCCCTGAATGACGGGCCCCACGAC

GTCAGCGTCGACCCGGTACCGGAGTA 

Deletion of  

pamL 

0743DR GTCACGGGTGACCTCGATCCCGGCCGCCACGC

GGTCCCAACTACGCCCCCAACTGAGAG 

 

0745DF GCCCGGGATCCCTGAATGACGGGCCCCACGAC

GTCAGCGTCGACCCGGTACCGGAGTA 

Deletion of  

pamX 

0745DR GTCACGGGTGACCTCGATCCCGGCCGCCACGC

GGTCCCAACTACGCCCCCAACTGAGAG 

 

0746DF GTGAGTGACGACATGTCCAATGCGCACACCGA

TCGCAAGTCGACCCGGTACCGGAGTA 

Deletion of  

pamY 

0746DR TCACTGCTTGCGGTAGACGGACACCGCGTCCC

TGCTGTCGACTACGCCCCCAACTGAGAG 

 

0729CF CCGGAGGAAACGGTGTACG Verification pamC 

deletion 

0729CR CTCTCCAGGGACCTGGGCA  

0730CF ATGGACCACAACAGGACACG Verification pamG 

deletion 

0730CR GACCGATTCGTACACCGTTT  

0731CF TGTCGACAGCGGCACGCAA Verification pamF 

deletion 

0731CR TGTCCTGTTGTGGTCCATGT  

0732CF GGTACTTCAAGTACCACAGG Verification pamA 

deletion 

0732CR AGGACGATGGTCCGCTCCT  

0733CF TTCGCCATCGGCAGCCAGA Verification pamB 

deletion 

0733CR GCTCCTCACCTGGTGGGAT  

0737CF GTGAACGGCCATGTCCGAT Verification pamO 

deletion 

0737CR GGCGTCGTTACGGAACCCA  

0738CF TATATCACCGGATCGGTCA Verification pamK 

deletion 

0738CR CTTCGCTCAGATCCGGTACA  

0740CF TGTACCGGATCTGAGCGAAG Verification pamJ 

deletion 

0740CR AGGGAGCCCGTTTCGAGCA  

0743CF TTGGTCAACTGGGAGCAGTA Verification pamL 

deletion 

0743CR GGTCACGGGTGACCTCGAT  

0745CF ACAGAACCAGCACGTATCCA Verification pamY 

deletion 

0745CR CATTGGACATGTCGTCACTC  

0746CF GATGACTCGTCAGGGCCAC Verification pamX 

deletion 

0746CR ATGCCTGTACGGGCAGGTT  
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Primer name  Sequence Description 

adCoAtraABDF ATTCGTACGCGCCGAGGAGCTGCCTGCCGTGG

AACGATCCGTCGACCCGGTACCGGAGTA 

Deletion of XNR_0219 

adCoAtraABDR TCAGCGGAGGTAGACCCGGCCCGGGTCGACGT

CCTCGCGCAGCACTACGCCCCCAACTGAGAG 

 

adCoAtraABCF CGTTTCCGATTCGTACGCG Verification XNR_0219 

deletion 

adCoAtraABCR ACGACTCTGATGCGCATGA  

00734F1Bam ATTGGATCCGGGATGCATCTGCACCTGG Deletion of pamD, left 

flanking region 

00734R1EcV ATTGATATCCACCTGTAGAAACCTTGCGG  

00734F2EcV ATTGATATCGCAACACATCGAGTGTGGGA Deletion of pamD, right 

flanking region 

00734R2Xba ATTTCTAGAGTGGAACACGGAGTCGATGA  

0734CheckF TGCGCAGTCTCGATCCGCAA Verification pamD 

deletion 

0734CheckR GTCACCGACGTATTCGGAGA  

0729ComFHind ATAAGCTTGCATACGTACCGCGGCTGA pamC complementation 

of pamC mutation 

0729ComRBam ATGGATCCCCTGACCACAGGAAGCAGC  

lanCFHind ATAAGCTTGATGACGCCACCCACTTCC lanC complementation 

of pamC mutation 

lanCRBam ATGGATCCTCTGTATCTCTTCTCCAGTCT  

0732ComFHind ATAAGCTTATGAGACTCCCTGTGTTGC pamA complementation 

of pamA mutation 

0732ComRBam ATGGATCCGTGCTCATGGTCTCCTTCA  

0733ComFHind ATAAGCTTGCAGCCAGACCTCGGTACT pamB complementation 

of pamB mutation 

0733ComRBam CCTGGTGGGATCCTGCGGAT  

0737ComHind ATAAGCTTTTCCGGTACCAGTGAACGGC pamO complementation 

of pamO mutation 

0737ComBam ATGGATCCGCCGTAGTTCACCCACGGGT  

0738ComHind ATAAGCTTGAATGCCGACGCCACTAGTT pamK complementation 

of pamK mutation 

0738ComBam ATGGATCCTTGGTCGTGGTCACCGCATT  

0740ComFHind ATAAGCTTAGCCTCCTGTACCGGATCT pamJ complementation 

of pamJ mutation 

0740ComRBam ATGGATCCAGGGAGCCCGTTTCGAGCA  

0743ComHind ATAAGCTTCCGGCGGTCACATGGTCGA pamL complementation 

of pamL mutation 

0743ComBgII ATAGATCTCAGACGTCGACGACACGGTG  

0745ComFHind ATAAGCTTACCTCTGGCTGTACGGCAA pamX complementation 

of pamX mutation 

0745ComRBam ATGGATCCCTCACCTTCCATCACGTGGA  

0746ComFHind ATAAGCTTTTCGCCAAGGCCATGGGATG pamY complementation 

of pamY mutation 

0746ComRBam ATGGATCCTACCTACGCCCTGGAAGTAC  

nonKS32FHind ATAAGCTTCCGGAAATCGAGTACTGGCA nonU complementation 

of pamA mutation 

nonKS32RbglII ATAGATCTTTCGGGGGCTGTGGTCATG  

nonATHind    ATAAGCTTGATCGCAGACCTCCGTCAT nonT complementation 

of pamB mutation 

nonATbglII   ATAGATCTTGGTGGTCGTCATCGGTAG  
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Primer name  Sequence Description 

nonOCBam ATAAGCTTATGACCGGCCAGGCCGTCAA NonO complementation 

of pamO mutation 

nonOCHind ATGGATCCAGAAGGTGTCCAGGTCGGTG  

nonNCBam ATAAGCTTCTCCCCGAGAAAGCGGAGAA nonN complementation 

of pamO mutation 

nonNCHind ATGGATCCAAGCCCATCCCGGTGACCAG  

nonKCBam ATAAGCTTTGGGCTCGGGCTGGTACTAC nonK complementation 

of pamK mutation 

nonKCHind ATGGATCCACCGGTCAGAAAGGTGGTCC  

nonJHind ATAAGCTTCAACAGCGCCCTGCTGCT nonJ complementation 

of pamJ mutation 

nonJBam ATGGATCCTGCTGTGAACGTGGGTCAT  

nonLCHind ATAAGCTTTACGAGAGTGTGCTCCAGCT nonL complementation 

of pamL mutation 

nonLCBam ATGGATCCTGGCCCGTCGGAAATGCTTC  

0732ETNcoF ATCCATGGCTGCACAGGCTGAAT Cloning and expression 

of pamA 

0732ETXhoR CTCGAGTGCGGCGCCGAGTGCCAG  
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3. Results and discussion 

To identify the biosynthetic genes for 1, the genomes of two producing strains, S. alboniger 

DSMZ40043 and S. sp. HKI 118, were sequenced, searched for secondary metabolism gene clusters 

with AntiSMASH (Blin et al. 2013) and aligned to identify clusters present in both strains. Only two 

regions coding for PKS and terpenoid biosynthesis were identical in S. alboniger and S. sp. HKI118. 

The PKS gene cluster from the S. alboniger contains 20 genes with counterparts in the S. sp HKI118 

and share a high degree of homology with the non clusters of S. fulvissimus (Myronovskyi et al. 2013) 

and S. griseus subsp. griseus (Kwon et al. 2001; Walczak et al. 2000; Woo et al. 1999) (Figure III.1, 

Table III.S3). This cluster (pam-cluster) consists of two “cores” of KS genes. The “right core” highly 

resembles the non gene clusters and includes 5 KS (pamA,D,E,K,J), 3 KR/DHO (pamO,M,N), AT 

(pamB), nonS-like enoyl-CoA hydratase (pamS, putatively involved in tetrahydrofuran ring closure) 

(Woo et al. 1999), acyl-CoA ligase (pamL) and putative resistance (pamH) genes (Figure III.1). In 

addition, genes for an aminotransferase (AmT) and a methyltransferase (MT) (pamX and Y) are located 

in this part of the cluster. The “left core” includes two KS (pamF and G) and ACP (pamC) genes. 

Genes encoding a putative transporter protein and two transcriptional regulators of the TetR and LuxR 

families were also found flanking the biosynthetic genes. All KS in the cluster, except for PamA, 

possess characteristic CHN active site triad with N predicted as acyl-CoA binding site (Table III.S4). 

This architecture of catalytic residues is more typical for type III PKS enzymes rather than for type II 

where CHH motif is conserved (van Lanen & Shen 2008). 

The pamD gene, encoding a KS from the “right core” of the cluster (Figure III.1), was deleted from 

the chromosome of S. alboniger. This mutant failed to produce 1, proving that the identified region is 

indeed responsible for its biosynthesis (Figure III.S2). An S. alboniger cosmid library was created and 

screened for clones containing the entire set of pam genes using two probes flanking the cluster. 

Expression of one of the positive clones, termed R2, in S. albus J1074 resulted in the production of 1 

(Figure III.S3). 

To determine the sequential biosynthetic steps resulting in 1 production, a set of mutant cosmids with 

deletions of individual pam genes was created. Metabolites produced by recombinant S. albus strains 

harboring these cosmids were analyzed by LC-MS (Table III.1). In contrast to the deletions of pamB, 

pamD and pamO, which led to the complete cessation of biosynthesis, S. albus containing cosmids 

with mutations in pamK, pamJ and pamL retained the ability to produce 3 and 4 (Table III.1, Figure 

III.S4). This indicates that PamB, D and O are responsible for the initial steps of 1 biosynthesis, which 

are shared for both 3 and 4, while PamK, PamJ and PamL are involved in the final steps of 1 

formation. Deletion of aminotransferase and methyltransferase genes pamX and pamY resulted in 

accumulation of 3 and hydroxy acid K (5) (Table III.1, Figure III.S5) (Hashimoto et al. 2005b), the 

non-aminated precursor of 4. This proves that amination and methylation occur before the closure of 
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the macrodiolide ring as proposed previously (Hashimoto et al. 2005b). In contrast, deletion of the KS 

genes pamF and pamG from the “left core” of the cluster caused accumulation of 3, whereas neither 1 

nor 4 were found, indicating that these enzymes are necessary for the extension of 3 to give 4. 

Deletion of pamC, which encodes ACP, perturbed the structural range of 1, with a shift toward 

accumulation of lower molecular weight compounds (Table III.1, Figure III.S6). This result indicates 

that PamC participates in the delivery of starter units as described in several cases of bacterial type III 

PKS (Song et al. 2006). 

Table III.1: Accumulation of 1 and their precursors produced by S. albus strains harboring cosmids with various pam gene 

deletions. 

Cosmid\Compound 1 3 4 5 

R2 + + + - 

pamC [a] + + + - 

pamG - + - - 

pamF - + - - 

pamA [a] + + + - 

pamB - - - - 

pamD - - - - 

pamO - - - - 

pamK - + + - 

pamJ - + + - 

pamL - + + - 

pamX - + - + 

pamY - + - + 

 

Deletion of pamA caused a significant decrease in 1 production as well as changes in the structural 

range of accumulated compounds (Table III.1, Figure III.S7, II.S8). Because PamA was proposed to 

participate in the first condensation step of the pathway, any perturbation of its function should lead to 

the complete cessation of 1 production. PamA catalyzed condensation of succinate and malonate 

should result in the production of 3-oxoadipyl-CoA that is one of the key intermediates in the 

degradation of aromatic compounds in bacteria (Díaz et al. 2013). A KEGG COMPOUND search 

(Hattori et al. 2003) of the S. albus genome revealed genes that could cause accumulation of this 

metabolite including the gene for 3-oxoadipate:succinyl-CoA transferase. Thus, in the absence of 

PamA, the biosynthesis machinery for 1 draws 3-oxoadipyl-CoA from the primary metabolism 

resulting in the residual accumulation of 1. S. albus lacking the 3-oxoadipate:succinyl-CoA transferase 

gene was generated. This mutant remained able to produce 1 when the pamA deficient cosmid was 
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introduced (Figure III.S8). However, the level of production was severely reduced. Thus, 3-oxoadipyl-

CoA is an intersection point for primary metabolism and the 1 biosynthesis pathway. The fact that the 

mutant strain was still able to produce 1 indicates existence of an alternative mechanism of 3-

oxoadipate production via a 3-oxoadipate:succinyl-CoA transferase independent process, most likely 

through the phenylacetic acid degradation pathway (Díaz et al. 2013). 

 

 

Figure III.2: HPLC profiles of CoA-esters standards and reaction mixtures containing PamA protein. A. CoA-SH, B. 

Malonyl-CoA, C. Succinyl-CoA, D. Reaction mixture with heat-inactivated PamA. E. Reaction mixture with PamA. F. 

Methylmalonyl-CoA. G. Reaction mixture with PamA and malonyl-CoA substituted with methylmalonyl-CoA. AdC - 3-

oxoadipyl-CoA, MAdC - 2-methyl-3-oxoadipyl-CoA. 

The function of PamA in pamamycin biosynthesis was further demonstrated by in vitro reconstitution. 

PamA was overexpressed in E. coli and purified (Figure III.S9). The enzyme’s activity was tested in 

an assay containing malonyl-CoA and succinyl-CoA. The reaction was monitored by HPLC (Figure 

III.2). Fractions corresponding to the detected peaks were collected and subjected to LC-MS analysis 

using an HILIC approach (Jandera 2011). Formation of a new compound with an HPLC retention time 

(RT) of 16.2 min and an absorption spectrum typical of CoA-esters was observed in the reaction 

mixture after 30 min of incubation (Figure III.2E), and the amount of this compound was further 

increased with increasing the reaction time. HILIC-LC- MS analysis of this product yielded an m/z of 

909.6, which corresponds to the mass of 3-oxoadipyl-CoA (calculated m/z: 909.61) (Figure III.2, 
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III.S10). The side chains R2 and R5 in several 1 contain methyl groups (Figure III.1) that are predicted 

to be incorporated by the PamA reaction, suggesting enzyme-substrate promiscuity. 

 

Scheme III.1: Proposed pathway for the biosynthesis of 1.  

Accordingly, PamA incubated with succinyl-CoA and methylmalonyl-CoA instead of malonyl-CoA 

produced a new compound with an RT of 17.1 min and an m/z of 924. (Figure III.2, III.S11). This m/z 

corresponds to the predicted mass of 2-methyl-3-oxoadipyl-CoA (calculated m/z: 924.64). When the 

reaction was performed in the presence of both malonyl- and methylmalonyl-CoA substrates, the ratio 

of the products was found to depend on the initial ratio of the substrates (Figure III.S12). Thus, unlike 
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NonU, which appears to be specific to malonate because no version of 2 with side chains substituents 

is known, PamA is more flexible in its choice of substrates. Furthermore, introduction of nonU into 

the pamA mutant strain did not restore the native range of 1 produced, due to NonU inability to 

produce 2-methyl-3-oxoadipate (Table III.S5). The ability of NonU to synthesize 3-oxoadipyl-CoA is 

masked by its supply from the primary metabolism. 

Using obtained genetic and biochemical data the entire pathway leading to the formation of 1 was 

proposed (Scheme III.1). The first pathway reaction is the PamA-catalyzed condensation of succinyl-

CoA with malonyl- or methylmalonyl-CoA. The resulting compounds are then rotated by PamB 

acyltransferase as proposed by Rong and co-authors (Rong et al. 2010). The resulting 4-oxoadipyl-

CoA and 5-methyl-4-oxoadipyl-CoA are key intermediates in the biosynthetic pathway for 1 and are 

used as extenders for a Claisen condensation facilitating the incorporation of succinate. PamD 

catalyzes the first extension of a short chain acyl starter unit with one of these compounds followed by 

the PamE-catalyzed addition of malonyl-CoA. The starter units are most likely supplied as ACP-esters 

(Song et al. 2006). After this step, the biosynthetic pathway divides into two branches. In one, the 

activity of the KRs PamO, M and N coupled with the closure of the tetrahydrofuran ring by PamS, 

results in the formation of 3. In the other branch, PamF adds the second molecule of adipate followed 

by the final extension with malonate catalyzed by PamG. Ketoreduction and closure of the 

tetrahydrofuran rings by PamO, M, N and S result in the formation of 5, which is further reductively 

aminated and methylated by PamX and PamY, respectively, to produce 4. Both 3 and 4 are re-

activated by PamL, an acyl-CoA ligase. The feeding of free acids mixture to the S. albus culture 

expressing the pamL, pamJ and K genes produced 1 (Figure III.S13). The closure of the 1 

macrodiolide ring is performed by PamJ and PamK KSs, which catalyze an unusual C-O condensation 

reaction (Kwon et al. 2002). 
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4. Conclusion 

In summary, the biosynthetic gene cluster for the unusual polyketide secondary metabolite 1 was 

cloned, and the steps leading to its production were elucidated. In particular, the mechanism of 

succinate incorporation into the polyketide backbone was demonstrated to occur through 3-oxoadipyl-

CoA, which represents a new node intermediate between the secondary and primary metabolism. To 

the best of our knowledge, PamA is the first studied enzyme responsible for the incorporation of 

succinate into a polyketide molecule. The same condensation reaction occurs in the biosynthesis of the 

2 and macrodiolide compound that consists of two molecules of homononactic acid (Jois et al. 1986). 

The biosynthetic genes responsible for the production of the latter compound may be early 

predecessors of the pam and non gene clusters. The biosynthesis of these compounds is an interesting 

example of the utilizing of unusual substrates to increase the structural diversity of polyketide natural 

products. In addition, the characterized pam genes will greatly expand the toolbox for combinatorial 

biosynthesis of new polyketides. 
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IV. Strain development of Streptomyces 

albus J1074 for pamamycin production 

1. Introduction 

Pamamycin is a macrodiolide antibiotic of polyketide origin. Its biosynthesis utilizes several building 

blocks from the primary metabolism including succinyl-CoA, malonyl-CoA, methylmalonyl-CoA, 

ethylmalonyl-CoA and 3-oxoadipyl-CoA (Rebets et al. 2015). The ketoacyl synthases act 

promiscuously and incorporate building blocks based on their abundance. This leads to a variety of 

different compounds of which 14 have already been described (Natsume et al. 1995; figure IV.1).  

 

Figure IV.1: Different types of pamamycins (not complete). 

 

Figure IV.2: HPLC-MS chromatogram of a S. albus J1074 / R2 extract. Different types of pamamycins marked by their 

corresponding m/z. 

Many different compounds produced by a single biosynthetic cluster lead to a complex HPLC-profile 

as shown in figure IV.2. This does not only result in difficulties in the analysis of the spectra but also 

leads to more pressuring problems like overall production yields for single compounds and problems 

in purification of specific products. 
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Since different pamamycins are a result of the incorporation pattern of the utilized building blocks, the 

hypothesis is that the compound spectrum could be heavily influenced by manipulation of the building 

block production levels.  

All utilized building blocks are products of the primary metabolism of the producer strain and are 

either intermediates in energy generation and precursor supply like succinyl-CoA, intermediates of 

degradation processes like 3-oxoadipyl-CoA (Díaz et al. 2013), or building blocks for cellular 

structures like malonyl-CoA, methylmalonyl-CoA or ethylmalonyl-CoA. The biosynthetic pathways 

to these compounds are well studied (Chan et al. 2009) and they are thus excellent targets for 

manipulation. 

Pamamycin biosynthetic studies revealed succinyl-CoA and 3-oxoadipyl-CoA as the essential building 

blocks, which leaves malonyl-CoA, methylmalonyl-CoA and ethylmalonyl-CoA prone to 

manipulation.  

Extender units like malonyl-CoA, methylmalonyl-CoA and ethylmalonyl-CoA are common for 

polyketide biosynthesis. Malonyl-CoA is incorporated into the type I PKS associated compounds e.g. 

lovastatin (Kennedy et al. 1999; Ma & Tang 2007), into type II PKS associated compounds e.g. 

daunorubicin, doxorubicin and griseorhodin (Strohl et al. 1997; Otten et al. 1990; Li & Piel 2002) and 

into the type III PKS associated compounds e.g. 3,5-dihydroxyphenylglycine (Chen et al. 2001). 

Methylmalonyl-CoA is most often incorporated into the type I PKS associated compounds e.g. 

erythromycin (Rawlings 2001) and rarely into the type II associated compound e.g. nonactin 

(Ashworth et al. 1989). PKS I derived compounds incorporating ethylmalonyl-CoA include 

compounds like monensin A (Le Day et al. 1973), elaiophylin (Gerlitz et al. 1992), concanamycin 

(Bindseil & Zeeck 1994), tylosin (Omura et al. 1977), leptomycin B (Hamamoto et al. 1985) and 

spiramycin (Inoue et al. 1983).  

Malonyl-CoA and methylmalonyl-CoA derive from the primary metabolism and are mainly used for 

fatty acid biosynthesis, macrolide and polyether antibiotic formation (Zhang et al. 1999). Straight-

chain and branched-chain fatty acids of streptomycetes are formed from the catabolism of L-valine, L-

isoleucine and L-leucine (Massey et al. 1976; Wallace et al. 1995). Malonyl-CoA can either be used 

for branched-chain fatty acids (Kaneda 1991) or for n-fatty acids in mycobacteria whereas 

methylmalonyl-CoA is used for branched-chain fatty acids in mycobacteria (Kolattukudy et al. 1997).  

Ethylmalonyl-CoA is an intermediate in the ethylmalonyl-CoA pathway used for acetyl-CoA 

assimilation and hereby provision of cell constituents in bacteria that lack isocitrate lyase activity (Erb 

et al. 2007). Isocitrate lyase is a key enzyme in the glyoxylate cycle. The crotonyl-CoA carboxylase / 

reductase (CCR) which forms ethylmalonyl-CoA by carboxylation of crotonyl-CoA is not only used 

by bacteria lacking the isocitrate lyase but also in bacteria like streptomycetes to supply extender units 
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for polyketide biosynthesis (Quade et al. 2012; Wilson & Moore 2012; Alber 2011; Liu & Reynolds 

2001).  

The starter unit succinyl-CoA is very rare and is only found in one other compound class besides 

pamamycin which is nonactin (Nelson & Priestley 2002) shown in figure IV.3. In fact, pamamycin 

and nonactin biosynthesis have very similar gene clusters (figure IV.4), with nonactin having one 

additional ketoreductase / dehydrogenase gene and pamamycin having two additional ketosynthase 

genes respectively (Rebets et al. 2015).  

 

Figure IV.3: Structures of pamamycin (1) and nonactin (2). The origin of carbon atoms is color coded: blue–acetate, green–

propionate, red–succinate. Arrows indicate decarboxylation (Rebets et al. 2015). 

 

Figure IV.4: Genetic orientation of the pamamycin and nonactin gene clusters. KS: ketosynthase, AT: acyltransferase, 

KR/DHO: ketoreductase/dehydrogenase, ACP: acyl-carrier protein, AmT: aminotransferase, MT: methyltransferase (Rebets 

et al. 2015). 

The knowledge of the promiscuity of the ketosynthases in pamamycin biosynthesis and their many 

different derivatives led to the idea to simplify the compound spectrum by tuning the precursor supply.  
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Ethylmalonyl-CoA is incorporated into all pamamycins bigger than pamamycin 621 and in several 

derivatives of pamamycin 607 and 621. Methylmalonyl-CoA is incorporated into all known 

derivatives of pamamycin.  

It was hypothesized that a knockout of the ethylmalonyl-CoA producing genes should lead to a 

decrease or disappearance of the pamamycins bigger than pamamycin 621 and of several derivatives 

of pamamycin 607 and 621. This should lead to a simplified compound spectrum and an increase in 

production of the remaining pamamycins. Knockout of the genes responsible for methylmalonyl-CoA 

production should either completely abolish pamamycin production or reveal the presence of small 

pamamycins without methylmalonyl-CoA. 

A panel of several different combinations of the knocked out genes with the final mutant lacking all of 

the identified genes was created and the pamamycin cosmid with the biosynthetic gene cluster was 

brought into these strains and pamamycin production was measured. 
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2. Materials and Methods 

2.1. Materials 

2.1.1. Equipment 

Table IV.1: Devices used in this work 

Device Identifier Manufacturer 

Biological Safety 

Cabinet 

NU-437-600E Nuaire, Plymouth, USA 

Centrifuges Centrifuge 517R 

MF 48-R 

 

Micro Centrifuge AL 220VAC 

MiniStar silverline 

Eppendorf, Hamburg 

Awel centrifugation, BLAIN, 

France 

Carl Roth, Karlsruhe 

VWR, Erlangen 

Electroporator Eporator Eppendorf, Hamburg 

Gel documentation  

system  

Gel Stick “Touch” INTAS, Göttingen 

Gel elektrophoresis-

equipment 

Elektrophoresis chamber MIDI 1  

Power Supply EV 261 

CarlRoth, Karlsruhe            

Consort, Turnhout, Belgium 

HPLC-System Dionex Ultimate 3000 

 

ESI-MS amazon 

Thermo Fischer Scietific, 

Braunschweig 

Bruker, Billerica, USA 

Incubators Heraeus Function line  

 

Infors HT Multitron Standard 

Thermo Fischer Scientific, 

Braunschweig 

Infors, Einsbach 

Magnet stirrer Heat-stir CB162 Stuart, Staffordshire, UK 

pH-meter MP230 Mettler Toledo, Columbus, 

USA 

Photometer BioPhotometer plus Eppendorf, Hamburg 

Pipets Pipetman 0,2 – 2 µl, 1 – 10 µl,  

2 – 20 µl, 20 – 100 µl, 50 – 200 µl,  

200 – 1000 µl 

Gilson, Villiers le Bel 

 

Plate reader POLARstar Omega BMG labtech, Ortenberg 

Sample concentrator Dri-Bock heater DB-3, 25 - 100 °C 

Sample concentrator SC-400 

Biostep, Burkhardtsdorf 

Scales M-power 

Practum® Analysenwaage PRACTUM 

124-1S 

Sartorius, Göttingen 

Thermocycler peqSTAR 2x Gradient VWR, Erlangen 

Thermomixer Thermomixer F 1.5 Eppendorf, Hamburg 

Ultrapure water  MilliQ Water Purification System Millipore, Schwalbach 

Vortex Vortex-Genie 2 Scientific Industries, New 

York, USA 

Water bath WnB1 Waterbath Memmert, Schwabach 
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2.1.2. Consumables  

Table IV.2: Consumables used in this work 

Description Manufacturer 

Disposable cuvettes 1,5 ml Brand, Wertheim 

HPLC-vials TopSertTPX neoLab, Heidelberg  

Microtube 1,5 ml Sarstedt, Nümbrecht 

Multi-Pro PCR tubes Sarstedt, Nümbrecht 

Parafilm American National Can, Chicago 

Petri dishes 94/16 mm  Greiner bio-one, Frickenhausen 

Pipet tips Sarstedt, Nümbrecht 

Rotilabo-syringe filter CME  Carl Roth, Karlsruhe 

Safe seal microtube 2 ml Sarstedt, Nümbrecht 

Syringe Omnifix 10 ml B. Braun, Melsungen  

Tube 15ml, 50 ml Greiner bio-one, Frickenhausen 

 

2.1.3. Chemicals 

If not specifically mentioned, all used chemicals were p.a. from Sigma-Aldrich Chemie, Steinheim.   

Table IV.3: Chemicals used in this work 

Chemicals Manufacturer 

6X DNA loading dye Fischer Scientific, Schwerte 

Acetone Fischer Scientific, Schwerte 

Agarose, molecular grade  Bioline, Luckenwalde 

Ampicillin sodium salt Carl Roth, Karlsruhe 

Bacto Casaminoacids Difco Laboratories, Augsburg 

Bacto Peptone Difco Laboratories, Augsburg 

CaCl2 VWR, Erlangen 

CaCO3 Carl Roth, Karlsruhe 

CaCO3 Carl Roth, Karlsruhe 

CH3COOK Carl Roth, Karlsruhe 

Chloramphenicol  Carl Roth, Karlsruhe 

dNTPs (100 mM) Fischer Scientific, Schwerte 

Ethylacetate Fischer Scientific, Schwerte 

GeneRulerTM 1 kb DNA Ladder  Fischer Scientific, Schwerte 

Glacial acetic acid Merck, Darmstadt 

Glycerol VWR, Erlangen 

HCl Carl Roth, Karlsruhe 

Hygromycin B Carl Roth, Karlsruhe 

Kanamycin sulfate Carl Roth, Karlsruhe 

Lincomycin Alfa Aesar, Karlsruhe 

L-rhamnose Carl Roth, Karlsruhe 

Maltose monohydrate Carl Roth, Karlsruhe 
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Chemicals Manufacturer 

Methanol  Fischer Scientific, Schwerte  

MgCl2 VWR, Erlangen 

NaCl VWR, Erlangen 

Nalidixic acid Carl Roth, Karlsruhe 

NaOH Carl Roth, Karlsruhe 

Oatmeal (Holo Hafergold) Neuform, Zarretin 

Polypeptone Carl Roth, Karlsruhe 

SDS Carl Roth, Karlsruhe 

Soymeal fat-reduced / fat Henselwerk, Magstadt Sobo Naturkost, Köln-

Marsdorf Spielberg, Brackenheim 

Starch soluble Carl Roth, Karlsruhe 

 

2.1.4. Cultivation Media 

pH was adjusted accordingly with HCl or NaOH. All media were autoclaved for 20 minutes at 120 °C. 

1.5 % Agar was added prior to autoclaving to solid media unless stated otherwise.  

Table IV.4: Cultivation media used in this work 

Description Composition  

LB (Sambrook et al. 1989) NaCl 

Yeast extract 

Tryptone 

deionized water 

5 g 

5 g 

10 g 

ad 1.0 l 

MS (Kieser 2000) Mannitol 

Soymeal fat  

Agar 

deionized water 

20 g 

20 g 

20 g 

ad 1.0 l 

NL 410 (pH 7,0) Glucose 

Glycerol 

Oatmeal 

Soymeal 

Yeast extract 

Bacto Casaminoacids 

CaCO3 

Tap water 

10 g 

10 g 

5 g 

10 g 

5 g 

5 g 

1 g 

ad 1.0 l 

NL SGG (pH 7,3) Starch soluble 

Glucose 

Glycerol 

Cornsteep Powder 

Bacto Peptone 

Yeast extract 

NaCl 

CaCO3 

Tap water 

10 g 

10 g 

10 g 

2,5 g 

5 g 

2 g 

1 g 

3 g 

ad 1.0 l 
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Description Composition  

PPM (Hashimoto et al. 2005a) Maltose monohydrate 

Polypeptone 

Yeast extract 

NaCl 

CaCO3 

deionized water 

15 g 

10 g 

3 g 

3 g 

2 g 

ad 1.0 l 

 

2.1.5. Solutions and buffers 

Table IV.5: Solutions and buffers used in this work 

Description Composition   

Agarose in 1 x TAE-Puffer 1% 

TAE-buffer (50 x) Tris/HCl (pH 7,6) 

EDTA 

Glacial acetic acid 

deionized water 

242.2 g 

18.62 g 

57.1 ml 

ad 1.0 l 

Ethidiumbromide (1 % w/v) 

for staining 

 5 µg/ml in 1 l 

deionized water 

Conservation solution Glycerol 

Sucrose  

deionized water 

(autoclave) 

20 g 

10 g 

ad 70 ml 

 

 

TE-Puffer (pH 8,0) 1 M Tris 

0.5 M EDTA 

deionized water 

12.5 ml 

25 ml 

ad 500 ml 

Buffer 1 (Plasmid isolation) 

 

1 M Tris-HCl 

0.5 M EDTA 

deionized water 

12.5 ml 

10 ml 

ad 500 ml 

Buffer 2 (Plasmid isolation) 10 % SDS 

1 N NaOH 

deionized water 

50 ml 

100 ml 

ad 500 ml 

Buffer 3 (Plasmid isolation) 5 M CH3COOK 

glacial acetic acid 

deionized water  

300 ml 

57.5 ml 

500 ml 

Buffer 1 (MaxBac kit) 1 M glucose 

1 M Tris (pH 8) 

0.5 M EDTA 

deionized water 

10 ml 

5 ml 

4 ml 

ad 200 ml 

Buffer 2 (MaxBac kit) 10 % SDS 

1 M NaOH 

deionized water 

20 ml 

40 ml 

ad 200 ml 

Buffer 3 (MaxBac kit) CH3COOK 

glacial acetic acid 

deionized water 

58.8 g 

23 ml 

ad 200 ml 
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2.1.6. Enzymes and kits 

As long, as not stated otherwise, all enzymes used in this work were from Fischer Scientific, Schwerte. 

Table IV.6: Enzymes and kits used in this work 

Enzyme or Kit Manufacturer 

Lysozyme Carl Roth, Karlsruhe 

Wizard ® SV Gel and PCR Clean-Up System Promega, Madison, USA 

Pure Yield ™ Plasmid Midiprep System Promega, Madison, USA 

Wizard ® Plus SV Minipreps DNA Purification System Promega, Madison, USA 

BACMAX ™ DNA Purification Kit Epicentre, Madison, USA 

 

2.1.7. Antibiotic solutions 

All antibiotic stock solutions were stored at – 20 °C. 

Table IV.7: Antibiotics with stock solution and working concentration used in this work 

Antibiotic Solvent Stock 

solution 

Working 

concentration 

Target 

Ampicillin H2O 100 mg/ml 100 µg/ml E. coli 

Apramycin H2O 100 mg/ml 50 µg/ml E. coli / Streptomyces 

Chloramphenicol Ethanol 25 mg/ml 50 µg/ml E. coli 

Hygromycin H2O 50 mg/ml 100 µg/ml E. coli / Streptomyces 

Kanamycin H2O 30 mg/ml 50 µg/ml E. coli 

Nalidixic Acid 1 N NaOH 100 mg/ml 50 µg/ml E. coli 

Lincomycin H2O 100 mg/ml 100 µg/ml Streptomyces 

 

2.1.8. Synthetic oligonucleotides 

Oligonucleotides used in this work were synthesized by Eurofins Genomics, Ebersberg. Concentration 

of the primers in the PCR reaction was 10 µM.  

Table IV.8: Primers used in this work 

Primer name Primer sequence (5’  3’) 

ccr1SalChckF TCAGCCCTCACTACGCCCTT 

ccr1SalCheckR TTCTGGCGCTCTGTCATGGA 

ccr1SalDF CACTACGCCCTTCGCCGGAGGCACCACCGTGAAGGAAATATTCCG

GGGATCCGTCGACC 

ccr1SalDR TGGCGCTCTGTCATGGAGGGAACCTCAGATGTTCCGGAATGTGTA

GGCTGGAGCTGCTTC 

MCM_redET_for CCGTCAGCGGCTCACAGCTCGTGGCCGAGCGACGCGGCAAGCCGC

TCGACTTCCGGGGATCCGTCGACCC 
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Primer name Primer sequence (5’  3’) 

MCM_redET_rev GGGCAAGGTCACAGGCGCGGGTACTGCTGCACGCCTGCCGCGCTG

TCCTATGTAGGCTGGAGCTGCTTCG 

MCM_seq_for GATCGATCGTCGCCGCCAT 

MCM_seq_rev ATCAGCAGCGTTGCGGAGA 

PCC1_redET_for TCATGCCTGGGCCTCCTCGGCGGGGGTGGCGGGAGCCTGCCGTAC

GACGGTTCCGGGGATCCGTCGACCC 

PCC1_redET_rev TCATTAACGCCGGAGCGGTCGCCCCACCGGAGGCCGCGCCGGTCA

CGGCATGTAGGCTGGAGCTGCTTCG 

PCC1_seq_for GTGGCGGGGGTGGGTGATT 

PCC1_seq_rev GGTCGTTAGCGGTCGTTAA 

PCC2_redET_for GGCTGCGCGCCCGCCACCTCGACATCCCCGAAGCCGTCCTCAGCC

AGGAGTTCCGGGGATCCGTCGACCC 

PCC2_redET_rev TCACGCGGTTTCCTCCTGGACGACGGCGAGCAGGGCACCGACCTC

GACCTTGTAGGCTGGAGCTGCTTCG 

PCC2_seq_for ATCAGGGTGGTGGCGGTGG 

PCC2_seq_rev CTGCTCGGTGACGGTGTCG 

VDH_redET_for CACCTTTACGGACTCCGCCCATCCGCCGCATCTCACCGGGAGTCAC

CACCTTCCGGGGATCCGTCGACCC 

VDH_redET_rev CGGCGACGGGGGAAAATTGGCCGGAAATGATCCTCCGTCCGGGGT

GCGGGTGTAGGCTGGAGCTGCTTCG 

VDH_seq_for CTCATGCCACGGCGTCCGC 

VDH_seq_rev AATCCCCCGCCGCACACCT 

 

2.1.9. Plasmids and Cosmids  

Table IV.9: Plasmids and Cosmids used in this work. 

Name Marker Description 

patt-saac-OriT aac(3)IV Plasmid containing the IMES 

(Myronovskyi et al. 2014a), used for gene 

replacement by redET  

pR2 Aac(3)IV Cosmid containing the pamamycin gene 

cluster (Rebets et al. 2015). 

pSMARTgus cat Cosmid used for S. albus J1074 BAC 

library, containing the GUS gene 

pSMARTgus_1M11 cat Cosmid containing the genomic regions of 

the PCC 2 gene 

pSMARTgus_1M11_ΔPCC 2 cat/ aac(3)IV PCC 2 gene replaced with IMES 

pSMARTgus_2E5 cat Cosmid containing the genomic regions of 

the PCC 1 gene 

pSMARTgus_2E5_ΔPCC 1 cat/ aac(3)IV  PCC 1 gene replaced with IMES 

pSMARTgus_2J19 cat Cosmid containing the genomic regions of 

the VDH gene 

pSMARTgus_2J19_ΔVDH cat/ aac(3)IV VDH replaced with IMES 

pSMARTgus_3D17 cat Cosmid containing the genomic regions of 

the CCR 1 gene 

pSMARTgus_3D17_ErythAmp bla/strep cat replaced by bla/strep  
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Name Marker Description 

pSMARTgus_3D17_ΔCCR  cat/ aac(3)IV CCR replaced with IMES 

pSMARTgus_3J4 cat Cosmid containing the genomic regions of 

the MCM gene 

pSMARTgus_3J4_ΔMCM cat/ aac(3)IV MCM replaced with IMES 

 

2.1.10. Bacterial strains 

Table IV.10: Bacterial strains (E. coli and Streptomyces) used in this work 

Strain Description 

Del1 S. albus J1074 lacking the CCR 2 gene (Myronovskyi et al. 

2014b) 

Del1ΔccrD1-1 Del1 strain with the CCR 1 gene knocked out by IMES  

Del1ΔccrD1-1 / R2 Strain with deleted CCR and integrated pamamycin R2 cosmid 

Del1ΔccrD1-1 ΔMCM CCR 1 + 2 and MCM knocked out by IMES 

Del1ΔccrD1-1 ΔMCM / R2 Strain with deleted CCR and MCM and integrated pamamycin 

R2 cosmid 

Del1ΔccrD1-1 ΔMCM ΔPCC 1 CCR 1 + 2, MCM and PCC 1 knocked out by IMES 

Del1ΔccrD1-1 ΔPCC 1 CCR 1 + 2 and PCC 1 knocked out by IMES 

Del1ΔccrD1-1 ΔPCC 2 CCR 1 + 2  and PCC 2 knocked out by IMES 

Del1ΔccrD1-1 ΔPCC 2 ΔMCM CCR 1 + 2, PCC 2 and MCM knocked out by IMES 

Del1ΔccrD1-1 ΔPCC 2 ΔMCM 

ΔPCC 1 

CCR 1 + 2, PCC 1 + 2 and MCM knocked out by IMES 

Del1ΔccrD1-1 ΔPCC 2 ΔMCM 

ΔPCC 1 / R2 

Strain with deleted CCR, PCC, MCM and integrated 

pamamycin R2 cosmid 

Del1ΔccrD1-1 ΔPCC 2 ΔMCM 

ΔPCC 1 ΔVDH 

CCR 1 + 2, PCC 1 + 2, MCM and VDH knocked out by IMES 

Del1ΔccrD1-1 ΔPCC 2 ΔMCM 

ΔPCC 1 ΔVDH / R2 

Strain with deleted CCR, PCC, MCM, VDH and integrated 

pamamycin R2 cosmid  

Del1ΔccrD1-1 ΔPCC 2 ΔPCC 1 CCR 1 + 2, PCC 1 and 2 knocked out by IMES 

ET12567 pUB307 E. coli strain ET12567 (MacNeil et al. 1992) transformed with 

pUB307 (Bennett et al. 1977) used for conjugation 

GB05red  E. coli strain derived from GB2005 by integration of genes 

necessary for λ-mediated recombination  

S. albus J1074 Isoleucine-plus-valine auxotrophic derivative of S. albus G 

(Chater & Wilde 1976b), lacking SalI-restriction activity 

S. albus J1074 / R2 S. albus J174 with integrated pamamycin R2 cosmid 

S. albus J1074 ΔVDH S. albus J1074 with VDH knocked out by IMES 

S. albus J1074 ΔVDH / R2 S. albus J1074 strain with deleted VDH and integrated 

pamamycin R2 cosmid 
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2.2. Methods 

2.2.1. Methods in microbiology 

2.2.1.1. Strain maintenance 

Streptomyces strains were stored at – 80 °C. For this, the strains were grown in a 500 ml-

Erlenmeyer flask with one buffle filled with 100 ml of NL410 (Table IV.4). The flask was 

inoculated with spores and grown for at least 72 hours at 28 °C, 180 rpm. 0.8 ml of the culture 

was mixed with 0.8 ml of the sterile conservation solution (Table IV.5) mixed and frozen.    

2.2.1.2. Cultivation conditions 

2.2.1.2.1. Preculture 

100 ml of NL 410 were inoculated with spores and cultivated for 48 hours at 28 °C, 180 rpm in a 

500 ml-Erlenmeyer flask. 

2.2.1.2.2. Main culture 

100 ml of the respective media was inoculated with 6 % of the preculture medium and cultivated 

for 72 hours at 28 °C, 180 rpm.  

2.2.1.2.3. Optimization of NL SGG for pamamycin production 

The influence of different carbon / nitrogen sources on pamamycin production was tested by 

modifying the NL SGG medium. 

Table IV.11: Media composition for the media variation test 

 NL SGG Variation I Variation II Variation III Variation IV 

Starch soluble 10 g --- --- --- --- 

Cornsteep 

powder 

2.5 g --- --- --- --- 

Yeast extract 2 g --- --- --- --- 

NaCl 1 g --- --- --- --- 

CaCO3 3 g --- --- --- --- 

Glucose 10 g Glucose 15 g Maltose 20 g Glucose 15 g Maltose 20 g 

Glycerol 10 g Glycerol 15 g --- Glycerol 15 g --- 

Bacto peptone 15 g --- --- Soymeal 10 g Soymeal 10 g 

Tap water 1.0 l --- --- --- --- 

pH 7.3 --- --- --- --- 
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2.2.1.2.4. Pamamycin production dependency on O2 level 

Pamamycin production in dependency on O2 level was determined by using different shaking 

flasks, amount of medium and rotation speed. There were 10 different combinations, sorted by O2 

level. 

1. 100 ml medium; flask without buffle; 120 rpm 

2. 100 ml medium; flask without buffle; 180 rpm 

3. 50 ml medium; flask without buffle; 120 rpm 

4. 50 ml medium; flask without buffle; 180 rpm 

5. 150 ml medium; flask with 1 buffle; 120 rpm 

6. 150 ml medium; flask with 1 buffle; 180 rpm 

7. 100 ml medium; flask with 1 buffle; 120 rpm 

8. 100 ml medium; flask with 1 buffle; 180 rpm 

9. 100 ml medium; flask with 4 buffles; 120 rpm 

10. 100 ml medium; flask with 4 buffles; 180 rpm 

2.2.1.2.5. Pamamycin production curve 

To determine when pamamycin production reaches its maximum during cultivation, the S. albus 

J1074 / R2 strain was cultivated as described in IV.2.2.1.2.1 and IV.2.2.1.2.2 and samples were 

taken at 0 h, 3.5 h, 7 h, 10 h, 14 h, 24 h, 27 h, 31 h, 34 h, 38 h, 48 h, 51 h, and 53 h.  

2.2.1.2.6. Influence of ammonium ions and L-Valine on VDH activity 

To test the influence of ammonium ions or L-Valine on the activity of the VDH, 50 mM 

ammonium acetate or 50 mM L-Valine were added to the cultivation medium after sterilization. 

2.2.1.2.7. Influence of succinate on pamamycin production 

The influence of succinate on pamamycin production was tested by adding 100 µM, 500 µM, 10 

mM and 50 mM sodium succinate to the medium after sterilization. 

2.2.2. Secondary metabolite analytics 

2.2.2.1. Extraction of pamamycin 

10 ml of the main cultures were collected in a 15 ml tube and separated by centrifugation for 10 

minutes at 8000 rpm. 5 ml of supernatant were transferred to a new 15 ml tube and extracted with 5 ml 

ethyl acetate for 30 minutes on a shaking incubator. The remaining biomass was extracted with 10 ml 

of a mixture of methanol and acetone (1+1) for 30 minutes on a shaking incubator. Both the 

supernatant and biomass extracts were evaporated to dryness using a sample concentrator. The 
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supernatant extract was then resolved in 500 µl of methanol. The biomass extract was resolved in 1000 

µl of methanol. Both kinds of extracts were diluted with DMSO (1+1) prior to HPLC measurement.  

2.2.2.2. Dry weight calculation 

To determine the dry weight, 1 ml of the main culture was collected in a previously weighted 1.5 

microtube and dried at 65 °C for 24 h. After the liquid has evaporated, the tube was weighed again. 

2.2.2.3. HPLC Data Analysis 

Measurements were performed using a 100 mm BEH C18 column (Waters, Milford, USA) with a flow 

rate of 0.55 ml/min and the following gradient: 0 min 20 % D, linear gradient to 3 min 97 % D, linear 

gradient to 11 min 100 % D (solvent C: 90 mM ammoniumformiate, solvent D: acetonitrile/100 mM 

ammoniumformiate (80 + 20)).   

Pamamycin production was measured by the change in adsorption of the derivative PMM 607, which 

was chosen because of the high abundance of this compound and the presence of a synthesized 

standard for this compound. Several other pamamycin derivatives could be detected and behaved 

accordingly 

2.2.3. Methods in molecular biology 

2.2.3.1. Plasmid isolation 

Plasmids and cosmids were isolated by scratching E. coli cells containing the corresponding vector 

from well grown LB-agar plates by adding 12 ml of sterile H2O to the plates, scratching the cells from 

the surface and transferring the cells into new 1.5 ml micro tubes. The tubes were centrifuged at 1000 

rpm and the supernatant was discarded. The cells were resuspended in 100 µl of Buffer 1 (Table IV.5). 

Buffer 1 maintains the pH, protects the DNA by inactivation of nucleases and makes the E. coli cell 

wall more sensitive. 200 µl of Buffer 2 (Table IV.5) were added and the solution was mixed by 

inverting. Buffer 2 is used for lysis of the cells. NaOH denatures the DNA and SDS lyses the cells. 

150 µl of Buffer 3 (Table IV.5) were added and the solution was mixed by inverting the tubes. Buffer 

3 contains acetic acid which neutralizes NaOH and potassium acetate to precipitate the protein 

fraction. This mixture was then incubated for 10 minutes at – 20 °C. After incubation, the tubes were 

centrifuged at 15.000 rpm and the supernatant was transferred to new 1.5 ml microtubes containing 

600 µl of 2-propanol. After mixing, the tubes were centrifuged for 20 minutes at 15000 rpm at 4 °C to 

recover the plasmid DNA. The supernatant was discarded and 600 µl of 70 % ethanol were added to 

remove the salts from the DNA. After centrifugation for 5 minutes at 15000 rpm, the supernatant was 

discarded and the washing step with ethanol was repeated once more. The remains of ethanol after 

discarding the supernatant were removed by pipetting with a 200 µl tip and the pellet was dried at  
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37 °C for 3 minutes. To dissolve the DNA, 30 µl of water was added to the tubes. After dissolving of 

the DNA, the concentration was measured with an Eppendorf photometer. 

2.2.3.2. BAC isolation by MAX BAC 

An overnight (37 °C; 180 rpm) culture of the corresponding E. coli cells containing the BAC of 

interest was inoculated from glycerol stock. 2 ml of the over overnight culture was transferred to a 2 

ml micro-tube and centrifuged at 10000 rpm for 1 minute. The supernatant was discarded and this 

procedure was repeated twice until 6 ml of the culture were processed. The cells were resuspended in 

250 µl of buffer 1 (Table IV.5) and then 250 µl of buffer 2 (Table IV.5) were added to the mixture. 

The solution was carefully mixed and 350 µl of buffer 3 (Table IV.5) were added and the solution was 

carefully mixed again. The tube was incubated on ice for 4 minutes and then centrifuged at 15000 rpm 

and 4 °C for 4 minutes. The supernatant was transferred into new 2 ml micro tubes containing 1 ml of 

2-propanol. The solution was mixed and then incubated at room temperature for 4 minutes. After 

incubation the tubes were centrifuged at 15000 rpm; 4 °C for 10 minutes. The supernatant was 

discarded and 1 ml of 70 % ethanol was added to the pellet. The pellet was gently washed and then 

centrifuged at 15000 rpm for 1 minute. This procedure was repeated once more and then the pellet was 

dried at room temperature for 4 minutes. The pellet was then resolved in 50 µl of H2O. 

2.2.3.3. Measurement of DNA concentration 

DNA concentration was measured according to the Beer-Lambert Law. Due to this, the nucleic acids 

reach their characteristic absorption maximum at 260 nm. Extinction in one unit corresponds to 50 µg 

/ mg of DNA concentration. DNA purity was measured at 280 nm, corresponding to the absorption 

maximum of aromatic amino acids. The ratio between 260 nm and 280 nm may not exceed 1.8. The 

measurements were carried out photometrically with an Eppendorf photometer (Table IV.1).   

2.2.3.4. Chemical transformation 

2.2.3.4.1. Preparation of chemically competent E. coli cells 

For preparation of chemically competent E. coli cells, a glycerol stock of the corresponding cells was 

resuspended in 1 ml of LB, dilutions (1:100 – 1:1000000) were plated on LB-agar and incubated at  

37 °C overnight. A single clone was chosen, picked in 100 ml of LB and incubated at 37 °C, 180 rpm 

overnight. 8 flasks filled with 100 ml of LB were inoculated with 1 ml of the overnight culture and 

cultivated at 37 °C, 180 rpm until an OD600 of 0.7 (+/- 0.1) was reached. Two flasks were distributed on 

4 50 ml tubes and centrifuged at 5000 rpm for 5 minutes. The supernatant was discarded and the 

procedure was repeated until all flasks were distributed on the 4 50 ml tubes. The following steps were 

performed on ice or with centrifuge a precooled to 4°C. The remaining cell pellet was resuspended by 

adding 15 ml of ice-cool sterile 0.1 M MgCl2 and vortexing. The tubes were then filled up to 40 ml 
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with ice-cooled 0.1 M MgCl2, mixed and centrifuged at 5000 rpm for 5 minutes. The supernatant was 

discarded afterwards. 15 ml of ice-cooled sterile 0.1 M CaCl2 was added into two of the 50 ml tubes, 

the cell pellets were resuspended and then transferred into the remaining two tubes and the pellets 

there were also resuspended. The tubes were then filled up to 40 ml with ice-cooled 0.1 M CaCl2, 

mixed and centrifuged at 5000 rpm for 5 minutes. The supernatant was discarded. 15 ml of ice-cooled 

0.1 M CaCl2 / 15 % glycerol was added into one 50 ml tube and the cell pellet was resuspended. The 

resuspended cells were transferred into the remaining 50 ml tube and the cells were resuspended. The 

tube was filled up to 40 ml with ice-cooled 0.1 M CaCl2/15 % glycerol, mixed and centrifuged at 5000 

rpm for 5 minutes. The supernatant was discarded and the remaining cell pellet was resuspended in 5 

ml of 0.1 M CaCl2 / 15 % glycerol. 60 µl aliquots of this cell solution were transferred into new pre 

cooled 1.5 ml micro tubes and then frozen at – 80 °C.  

2.2.3.4.2. Transformation of chemically competent cells by heat shock 

An aliquot of the previously prepared chemically competent cells was thawed on ice. 5 µl of the 

desired vector were added to the cells and mixed gently. This mixture was incubated for 30 minutes on 

ice. After incubation the cells were heat shocked at 42 °C for 1 minute. After heat shock, the cells 

were incubated on ice for 1 minute. 1 ml of 37 °C LB medium was added to the cells and then 

incubated at 37 °C while shaking for 1 hour. Afterwards the cells were plated on the appropriate 

selective medium and incubated at 37 °C for 12 hours.  

2.2.3.5. Intergenic Conjugation of E. coli and Streptomyces 

To introduce the desired vector into the genome of Streptomyces albus J1074, the method of 

intergeneric conjugation was used. This method is based on the RP1 conjugation system with a relaxed 

recipient specificity and imply transfer of DNA from the non methylating E. coli ET 12567 donor 

strain containing the RP1 derivative plasmid pUB307 (Piffaretti et al. 1988) to the recipient 

Streptomyces strain. 

2.2.3.5.1. Strain Preparation 

The desired vector was introduced into the chemically competent E. coli ET 12567 / pUB307 cells by 

heat shock transformation (IV.2.2.3.4.2). The cells were then spread on LB-agar containing 30 µg/ml 

kanamycin for pUB307 and an additional antibiotic matching the resistance of the corresponding 

vector. One of the obtained double resistant clones was picked and spread on a new plate of LB-agar 

containing the corresponding antibiotics and was incubated at 37 °C for 12 hours.  

Streptomyces strains were picked from a well grown agar plate and spread onto a new MS-agar plate. 

The plates were incubated at 28 °C for 72 hours or until sporulation was obtained. 
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2.2.3.5.2. Conjugation 

For intergeneric conjugation between E. coli and Streptomyces, 8 ml of sterile H2O was added to a 

plate of Streptomyces, the spores were scratched and 5 1.4 ml micro tubes were filled with the spore 

suspension. The spore suspension was incubated at 50 °C for 10 minutes. During the 10 minutes 

incubation, 4 ml of sterile H2O were added on each of two plates of E. coli and the cells were 

scratched. The cells suspension was distributed on two 1.5 ml micro tubes per plate and centrifuged at 

1000 rpm for 1 minute. The supernatant was discarded but approximately 60 µl were left in the tube 

and the cells were resuspended in the remaining H2O. After incubation, the Streptomyces spore 

suspensions were centrifuged at 15000 rpm for 5 minutes. The supernatant was discarded and 

approximately 60 µl were left in the tube and the spores were resuspended in the remaining H2O. For 

conjugation, 1 tube of E. coli and 1 tube of Streptomyces spores were mixed and spread on a new MS-

agar plate. These plates were incubated at 28 °C. As a control the Streptomyces spores were plated 

without E. coli. After 10 hours of incubation, the conjugations were overlaid with nalidixic acid to kill 

the E. coli and the antibiotic of which the resistance should be transferred by the vector.  

2.2.3.6. Agarose gel electrophoresis 

For agarose gel electrophoresis, a 1 % agarose gel in 1 x TAE buffer (Table IV.5) was prepared by 

melting 1 g agarose in 100 ml of 1 x TAE buffer. 20 µl of the DNA of interest was mixed with 3 µl of 

loading dye and filled in the gel pockets. The DNA was separated at 120 V in 1 x TAE buffer at room 

temperature. A 1 kb DNA ladder was used to identify the fragment size. After electrophoresis, the gel 

was stained for 15 minutes in a 2 µg / ml ethidium bromide containing water bath. The DNA 

fragments were visualized with a Gel documentation system (Table IV.1).  

2.2.3.7. DNA purification from agarose gels 

After staining the gel in a 0.6 % methylenium blue solution for 30 minutes, the desired fragment was 

cut out of the gel with a scalpel and transferred to a new 1.5 ml micro tube. DNA from this fragment 

was isolated using the Promega ™ Wizard ® Gel and PCR Clean-Up System according to the 

manufacturer’s instructions and eluted in 50 µl of nuclease free water and stored at – 20 °C for further 

use.  

2.2.3.8. Polymerase chain reaction (PCR) 

To amplify desired DNA fragments, polymerase chain reaction was used. The phusion polymerase 

was used to amplify fragments for homologous recombination purposes while dreamtaq polymerase 

was used to amplify fragments for analytical needs. The annealing temperature (TA) was determined 

specifically with a gradient PCR from 62 °C to 72 °C. The standard reaction mixtures and protocols 

used for fragment amplification are shown in tables IV.12 and IV.13. 
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Table IV.12: Standard reaction mixture for PCR used in this work 

 Dream Taq Phusion 

Buffer 5 µl 10 µl 

dNTPs 1 µl 1 µl 

Primer 1 0.5 µl 0.5 µl 

Primer 2 0.5 µl 0.5 µl 

Template 0.5 µl 0.5 µl 

Polymerase 0.5 µl 0.5 µl 

DMSO 2.5 µl 2.5 µl 

H2O 38.5 µl 34.5 µl 

 

Table IV.13: PCR methods used in this work 

 Dream Taq Phusion 
Cycle 

Temperature Time Temperature Time  

Initial denaturation 95 °C 3 min 98 °C 30 sec 1 x 

Denaturation 95 °C 45 sec 98 °C 30 sec 

30 x Annealing TA 30 sec TA 45 sec 

Extension 72 °C 30 sec 70 °C 30 sec 

Final extension 72 °C 10 min 72 °C 10 min 1 x 

Storage 4 °C ∞ 4 °C ∞ ∞ 

 

2.2.3.9. Red / ET Recombineering 

2.2.3.9.1. Fragment preparation for cosmid targeting 

For fragment deletion the primers from table IV.8 labeled Red / ET were used. These primers contain 

a 50 bp long sequence on the 5’-end matching the chromosome, flanking the region which is going to 

be deleted. The 20 bp 3’-end is matching either the right or left shoulder of the disruption cassette.   

To amplify the disruption cassette with the corresponding genome match, a PCR was performed with 

the plasmid containing the disruption cassette as a template and the primers for the corresponding 

gene. These fragments were then purified by gel electrophoresis and eluted from the gel as previously 

described (IV.2.2.3.7). 

2.2.3.9.2. Δ-red mediated recombination in E. coli GB05red 

The vector containing the region to be disrupted was purified using the MaxBAC protocol 

(IV.2.2.3.2). 5 µl of the purified vector were then transformed by chemical transformation into 

chemical competent E. coli GB05red cells and incubated overnight. 

On the next day, one clone was picked into 14 ml of LB medium, with the corresponding antibiotic, 

and incubated at 37 °C; 180 rpm overnight. From this overnight-culture 300 µl were used to inoculate 

14 ml of LB medium. This culture was incubated at 37 °C and 180 rpm until an OD600 of 0.43 was 
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reached. When the OD was reached, the expression of the recombinases was induced by addition of 

400 µl of 10 % L-rhamnose. Afterwards the strain was incubated until an OD600 of 0.8 was reached.  

1.5 ml of the culture was added into a 1.5 ml micro-tube and centrifuged at 10000 rpm for 1 minute at 

2 °C. The supernatant was discarded and again 1.5 ml of the culture were added, centrifuged, the 

supernatant was discarded and the tubes were placed on ice. On ice, the cells were resuspended in 1 ml 

of ice-cold H2O and then centrifuged at 10000 rpm for 1 minute at 2 °C. The supernatant was 

discarded and the cells were again resuspended in 1 ml of ice-cold H2O. This procedure was repeated 

twice. After washing the cells three times, the supernatant was discarded and approximately 20 - 30 µl 

were left in the tube. 2 µl of the previously obtained PCR product were added to the cells and mixed. 

The mixture was then transferred into electroporation cuvettes (1 mm) and incubated at room 

temperature for 3 minutes. After incubation the cells were electroporated at 1800 V. Then 1 ml of LB 

medium was added and the cells were transferred into a new 1.5 ml micro-tube. The transformed cells 

were incubated at 37 °C; 950 rpm for 70 minutes and then spread on LB-agar containing the 

corresponding antibiotics. 

After incubation of the plates at 37 °C for 24 hours, single colonies of transformants were detected and 

one colony was selected. 100 ml of the selective LB-medium were inoculated with this colony and 

incubated at 37 °C and 180 rpm for 12 hours. The cosmid DNA of this colony was isolated using the 

plasmid isolation protocol (IV.2.2.3.1). The recombination was verified by amplification of the 

disrupted fragment by PCR and sequencing. 

2.2.3.9.3. Transfer of the recombined cosmid into S. albus J1074 and selection of 

recombinants 

The cosmids containing the disruption cassette were introduced into E. coli ET12567 / pUB307 by 

chemical transformation (IV.2.2.3.4.2.) and thereafter transferred into S. albus J1074 (or the 

corresponding knockout strains based on S. albus J1074) by intergeneric conjugation (IV.2.2.3.5.2). 

Some of the obtained exconjugants were overlaid with X-Gluc (70 µl per 100 ml) to test for β-

Glucuronidase activity. β-Glucuronidase activity (blue color) is a sign, that a single crossover event 

has occurred. 8 exconjugants were chosen randomly and transferred to new selective MS-agar plates 

(4 exconjugants per plate). After sporulation was achieved, a drop of X-Gluc was placed in between 

the patches to check for β-Glucuronidase activity. One patch with β-Glucuronidase activity was 

chosen and dilutions (1:100000 – 1:10000000) were plated on new selective MS-agar plates 

containing X-Gluc. The appearance of white colonies is a sign for a double crossover event. One white 

colony was selected randomly and spread on a new selective MS-agar plate. Intergeneric conjugation 

of pUWLint31 and the corresponding S. albus J1074 knockout strain was performed. This was done to 

express the recombinase present on pUWLint31 in the knockout strain to excise the disruption cassette 

with the resistance marker (Myronovskyi et al. 2014a). 50 of the resulting exconjugants were picked 
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on new unselective MS-agar. This should result in a loss of pUWLint31 and the resistance it mediated. 

These patches were picked on LB-agar containing the corresponding antibiotic to screen for sensitive 

clones which successfully lost their disruption cassette. Any clone which was not able to grow on the 

selective LB-agar had the resistance cassette successfully excised. 

To check whether the disruption cassette was correctly excised, a PCR was performed with isolated 

chromosomal DNA of the recombined Streptomyces strains and the _seq_ primers from table IV.8. If 

the recombination happened successfully, a PCR product of the “scar” left on the genome should be 

obtained, which is about 300 bp in length. This fragment was separated by gel-electrophoresis 

(IV.2.2.3.6) and isolated from the gel (IV.2.2.3.7). The fragment was sequenced to obtain the exact 

sequence left on the genome. 

The cosmid containing the PCC2 gene did not contain the GUS-gene. Instead of selecting by β-

Glucuronidase activity, the resulting exconjugants were therefore checked by PCR using primers for 

the chloramphenicol gene. The chloramphenicol gene is located on the backbone of the cosmid and is 

still present after a single crossover event but lost after a double crossover event. Except for the 

determination of the crossover events, the exconjugants were treated as previously described. 
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3. Results 

3.1. Pamamycin production in Streptomyces albus J1074 

3.1.1. Heterologous expression of pamamycin cosmids R1 – R4 

The pamamycin cosmids R1 – R4 were brought into S. albus J1074 via intergeneric conjugation 

(IV.2.2.3.5.). Two exconjugants for each cosmid were cultivated in NL SGG and PPM (Hashimoto et 

al. 2005a) (IV.2.1.4.). The extraction and determination of the pamamycin production was carried out 

as described in (IV.2.2.1.2.). The synthesized standard of pamamycin 607 (Wang et al. 2001) was used 

for comparison. S. albus J1074 without a cosmid was used as a negative control to rule out any 

pamamycin production by the native S. albus J1074 host. 

 

Figure IV.5: HPLC-MS chromatogram of the synthesized pamamycin 607. A compound pamamycin 607 with a retention time 

of 6.5 minutes. B the UV-chromatogram of pamamycin 607. C the fractionation pattern of pamamycin 607 in positive mode.  

Figure IV.5 shows the synthesized pamamycin 607 measured with the method described in IV.2.2.2.3. 

This method is an optimized version of the original pamamycin measurement method used for the first 

detection of pamamycin. The two methods only differ in the length of the gradient. The original 

method had a gradient of 30 minutes and the optimized version was shortened to 15 minutes. 
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Figure IV.6: HPLC-chromatograms of the synthesized pamamycin 607, the supernatant extracts of S. albus J1074 with the 

pamamycin cosmids R1 - R4 and S. albus J1074 without the pamamycin cosmid. 

Pamamycin production could be detected in the extracts of three of the four tested cosmids as shown 

in figure IV.6 (Figure IV.6 2, 3 + 5). Only the extracts of cosmid R3 (Figure IV.6 4) did not show 

production of pamamycin 607. The negative control S. albus J1074 without a cosmid (Figure IV.6 6) 

also showed no sign of pamamycin production. 

The major peak in all extracts in comparison to the standard has a retention time shift of + 0.2 

minutes. A peak with the same retention time as the standard could also be detected but it is much 

smaller in comparison. Since both peaks show the same mass, they could be derivatives of pamamycin 

607 produced by Streptomyces albus J1074.  

Based on these results, the strain with the integrated cosmid R2 and the medium NL SGG were 

selected for further experiments because this combination led to the highest production of pamamycin 

607. 
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3.1.2. Optimization of NL SGG for pamamycin production 

To further increase the pamamycin production, the carbon and nitrogen sources of NL SGG were 

increased or replaced by different ones. The changes are noted in table IV.11 (IV.2.2.1.2.3.).   

 

Figure IV.7: Production of pamamycin 607 in NL SGG and the modified versions (I - IV). 

The increase of the carbon sources glucose and glycerol from 10 g to 15 g (SGG (I)) increased the 

pamamycin production by 37 % as shown in figure IV.7. The change from 10 g glucose to 20 g 

maltose (SGG (II)) increased the production by 109 %. The change of the nitrogen source from Bacto 

peptone to soymeal leads to a complete loss in production. SGG (II) was chosen for further 

experiments because of the increased pamamycin production. 

3.1.3. Pamamycin production dependency on O2 level 

To test the pamamycin production in dependency of the O2 level, several flasks with different numbers 

of buffles and different volumes of media were cultivated either at 120 rpm or 180 rpm as described in 

IV.2.2.1.2.4. 
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Figure IV.8: Production of pamamycin 607 in NL SGG (II) from little O2 concentration (1) to high O2 concentration (10). 

Pamamycin production is strongly dependent on the O2 level. Concentration 8 in figure IV.8 

corresponds to the standard cultivation conditions and is thus set to 100 %. Below a certain 

concentration of O2, pamamycin production stopped. The different tested conditions did not influence 

pamamycin production fundamentally and thus the standard cultivation conditions were kept 

unchanged. 

3.1.4. Pamamycin production curve 

To determine the optimal cultivation duration, a production curve for pamamycin 607 and 621 was 

created as described in IV.2.2.1.2.5. 

 

Figure IV.9: Production curve for pamamycin 607 and 621. Pamamycin quantities are each displayed by the calculated peak 

area. Supernatant (KF) and biomass (My) were extracted separately. 

Pamamycin production starts between 10 and 14 hours after inoculation of the production medium and 

reaches a plateau at around 24 hours as shown in figure IV.9. Production of pamamycin 607 is stable 
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after 24 hours and does not increase significantly from this point on. Production of pamamycin 621 

increases rapidly from 10 hours to 24 hours but keeps increasing afterwards. The ideal cultivation 

duration for production of pamamycin 607 and 621was determined to be around 48 hours. Other 

pamamycins could also be detected and increased even after cultivation for 48 hours. Thus for further 

studies a cultivation duration of 72 hours was chosen, to ensure sufficient production of all 

pamamycins.  

3.2. Streptomyces albus J1074 strain development for pamamycin 

production 

As described by Rebets et al. (2015), pamamycin biosynthesis utilizes succinyl-CoA, malonyl-CoA, 

methylmalonyl-CoA and ethylmalonyl-CoA from the primary metabolism of the producer strain to 

produce a wide variety of different pamamycins. To deepen the understanding of the pamamycin 

biosynthesis and its precursor supply, several genes, from the primary metabolism responsible for 

extender unit formation, as described by Chan et al. (2009) were knocked out and the pamamycin 

production in these strains was analyzed.  

3.2.1. Identified genes in S. albus J1074 

The genes involved in the formation of methylmalonyl-CoA and ethylmalonyl-CoA were chosen to be 

knocked out to reduce the number of pamamycin derivatives without those extender units.  

Four genes were identified as essential for the production of these extender units:  

The crotonyl-CoA carboxylase / reductase (CCR) which facilitates the formation of ethylmalonyl-CoA 

from crotonyl-CoA. 

The methylmalonyl-CoA mutase, which is responsible for formation of (2R)-methylmalonyl-CoA 

from succinyl-CoA. 

The propionyl-CoA carboxylase which forms (2S)-methylmalonyl-CoA from propionyl-CoA. 

The valine dehydrogenase which is the starting point for the formation of methylmalonyl-CoA from L-

valine.  

These genes were identified by a blast (http://blast.ncbi.nlm.nih.gov) analysis with the corresponding 

gene from Streptomyces coelicolor. 

CCR 1: XNR_5889 Crotonyl-CoA reductase  

CCR 2: XNR_0456 Crotonyl-CoA carboxylase/reductase, ethylmalonyl-CoA producing 

PCC 1: XNR_2273 Acetyl/propionyl CoA carboxylase alpha subunit 

XNR_2274 Acetyl/propionyl CoA carboxylase, beta subunit 

PCC2:  XNR_4211 Acetyl/propionyl CoA carboxylase alpha subunit 

XNR_4212 Acetyl/propionyl CoA carboxylase 



IV. Strain development of Streptomyces albus J1074 for pamamycin production 

 

 

56 

 

MCM: XNR_4665 Methylmalonyl-CoA mutase large subunit 

XNR_4666  Methylmalonyl-CoA small subunit 

VDH:  XNR_2839 Valine dehydrogenase 

Six genes could be identified on the genome of S. albus J1074. These are, two genes for CCR, two 

genes for PCC one MCM and one VDH.  

3.2.2. InSilico simulations 

InSilico Biotechnology AG (Meitnerstraße 9, 70563 Stuttgart) performed a knockout simulation for 

some of the corresponding genes with regard to the pathway products of interest and the feasibility of 

the resulting knockout mutants shown in figure IV.10. 

 

Figure IV.10: Knockout simulation for the S. albus J1074 strain development for pamamycin production project by InSiIico 

Biotechnology. ACC, acetyl-CoA carboxylase; BCC, butyryl-CoA carboxylase; CCR, crotonyl-CoA carboxylase / reductase; 

MCM, methylmalonyl-CoA mutase; MSC, methylsuccinyl-CoA carboxylase; PCC, propionyl-CoA carboxylase. 
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The simulations support the assumption that by knockout of CCR, MCM and PCC the pools of 

methylmalonyl-CoA and ethylmalonyl-CoA should be significantly reduced. InSilico also identified 

additional genes which could be involved in formation of these extender units.  

3.2.3. Knockout of the identified genes 

Knockouts of the identified genes (IV.3.2.1.) were performed with the IMES system (Myronovskyi et 

al. 2014a) as described in IV.2.2.3.9. Except for the knockout of the VDH gene in Streptomyces albus 

J1074, all knockouts were done in the Del1 strain described in Myronovskyi et al. 2014b.  

A panel of strains with different combinations of knockouts was created:  

S. albus J1074       (wildtype strain) 

S. albus J1074 ΔVDH      (1 knockout) 

Del1        (1 knockout) 

S. albus J1074 Δccr      (1 knockout) 

Del1ΔccrD1-1       (2 knockouts) 

Del1ΔccrD1-1 ΔPCC1      (3 knockouts) 

Del1ΔccrD1-1 ΔPCC2      (3 knockouts) 

Del1ΔccrD1-1 ΔMCM      (3 knockouts) 

Del1ΔccrD1-1 ΔPCC2 ΔPCC1     (4 knockouts) 

Del1ΔccrD1-1 ΔPCC2 ΔMCM     (4 knockouts) 

Del1ΔccrD1-1 ΔMCM ΔPCC1     (4 knockouts) 

Del1ΔccrD1-1 ΔPCC2 ΔMCM ΔPCC1    (5 knockouts) 

Del1ΔccrD1-1 ΔPCC2 ΔMCM ΔPCC1 ΔVDH   (6 knockouts) 

Proof of knockouts can be found in the appendix. 

3.2.4. Heterologous expression of the pamamycin producing cosmid R2 in 

selected knockout mutants 

3.2.4.1. Measurements of pamamycin production in the CCR mutants 

To determine the influence of the different CCR genes on the pamamycin production, the pamamycin 

cosmid R2 was brought into S. albus J1074, Del1, S. albus J1074 ΔCCR1 and Del1ΔCCRD1-1 by 

conjugation (IV.2.2.3.5.). S. albus J1074 is the wildtype strain with both CCR genes present, the Del1 

strain is lacking the CCR 2 gene, in S. albus J1074 ΔCCR1 the CCR1 gene was knocked out and the 

Del1ΔCCRD1-1 strain is missing both CCR genes. The strains were cultivated as described in 

IV.2.2.1.2. and extracted as described in IV.2.2.2. The different pamamycins are labeled 

corresponding to their molecular weight.  



IV. Strain development of Streptomyces albus J1074 for pamamycin production 

 

 

58 

 

 

Figure IV.11: HPLC-MS chromatograms of the supernatant and biomass extracts from S. albus J1074 and the CCR knockout 

mutants with integrated pamamycin cosmid R2. 

The wildtype strain S. albus J1074 (Figure IV.11 1 + 2) as well as the Del1 strain (Figure IV.11 3 + 4) 

show no significant difference in pamamycin production levels compared to each other. Different 

types of pamamycins can be detected (594, 607, 621 and 635) whereas 607 and 621 are the major 

products.  

1 Supernatant extract from S. albus J1074 / R2. 

2 Biomass extract from S. albus J1074 / R2. 

3 Supernatant extract from Del1 / R2. 

4 Biomass extract from Del1 / R2. 

5 Supernatant extract from S. albus J1074 ΔCCR 1 / R2. 

6 Biomass extract from S. albus J1074 ΔCCR 1 / R2. 

7 Supernatant extract from Del1ΔCCRD1-1/ R2. 

8 Biomass extract from Del1ΔCCRD1-1/ R2. 
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S. albus J1074 ΔCCR1 (Figures IV.11 5 + 6) and the Del1ΔCCRD1-1 strain (Figure IV.11 7 + 8) also 

show similar traits except for the increased production of pamamycin 594 in S. albus J1074 ΔCCR1 

compared to Del1ΔCCRD1-1. These strains differ greatly from S. albus J1074 and Del1 with their 

detectable production of pamamycin 580, their increased production of pamamycin 594, 607 and 621 

as well as the loss of pamamycin 635 production.  

To compare the production levels of the different strains, pamamycin 607 production was quantified. 

 

Figure IV.12: Production of pamamycin 607 in S. albus J1074, Del1, S. albus J1074 ΔCCR1 and Del1 ΔCCRD1-1. 

Pamamycin production of strain S. albus J1074 was set to 100 %. 

Pamamycin 607 production in S. albus J1074 and Del1 show no significant difference as shown in 

figure IV.12, whereas the production in S. albus J1074 ΔCCR1 and Del1ΔCCRD1-1 was increased up 

to 3 times, to 311 %.  

3.2.4.2. Measurement of pamamycin production in the triple knockout mutants 

The Del1 ΔCCRD1-1 strain was used as a basis for further knockouts because of its lacking both CCR 

genes. In this background the MCM, PCC1 and PCC2 genes were knocked out (IV.2.2.3.9.) and the 

pamamycin biosynthetic gene cluster was introduced into these strains via conjugation (IV.2.2.3.5.). 

The strains were cultivated as described in IV.2.2.1.2. and pamamycin production was determined as 

described in IV.2.2.2. 

For a better comparison of the effects of the knockouts, the LC-MS chromatograms of the mutants 

were overlaid with the S. albus J1074 / R2 chromatogram.  
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Figure IV.13: HPLC-MS chromatograms of S. albus J1074 and the triple knockout mutants with integrated pamamycin 

cosmid R2. 

All knockouts shown in figure IV.13 have similar traits, like the lack of pamamycin 635 already seen 

in the ΔCCR1 strains in IV.3.2.4.1. Additionally, most knockout mutants show an increase of 

pamamycin 594, 607 or 621 production. Interestingly, the PCC1 knockout mutant (Figure IV.13 3+ 4) 

shows no increase in pamamycin 621 production like the MCM (Figure IV.13 1 + 2) or PCC2 (Figure 

IV.13 5 + 6) mutants.  

1 Supernatant extract from S. albus J1074 / R2 (red)  
Del1ΔCCRD1-1ΔMCM (green). 

2 Biomass extract from S. albus J1074 / R2 (blue)  
Del1ΔCCRD1-1ΔMCM (green). 

3 Supernatant extract from S. albus J1074 / R2 (red)  
Del1ΔCCRD1-1ΔPCC1 (yellow). 

4 Biomass extract from S. albus J1074 / R2 (blue)  
Del1ΔCCRD1-1ΔPCC1 (red). 

5 Supernatant extract from S. albus J1074 / R2 (red)  
Del1ΔCCRD1-1ΔPCC2 (cyan). 

6 Biomass extract from S. albus J1074 / R2 (blue)  
Del1ΔCCRD1-1ΔPCC2 (brown). 
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Figure IV.14: Pamamycin 607 production in S. albus J1074 / R2, Del1ΔCCRD1-1ΔMCM / R2, Del1ΔCCRD1-1ΔPCC1 / R2 

and Del1ΔCCRD1-1ΔPCC2 / R2. Production of S. albus J1074 / R2 is set to 100 %. 

Pamamycin 607 production is increased in all knockout mutants, as shown in figure IV.14. The PCC2 

knockout mutant with a production increase of approximately 70 % shows the biggest difference. 

3.2.4.3. Measurement of pamamycin production in the penta knockout mutant 

Based on the results of the triple knockouts (IV.3.2.4.2) all knockouts were combined in one strain 

(Del1ΔccrD1-1 ΔPCC2 ΔMCM ΔPCC1). The pamamycin gene cluster was brought into this strain by 

conjugation (IV.2.2.3.5). The strain was cultivated (IV.2.2.1.2) and the pamamycin production was 

measured (IV.2.2.2). 

 

Figure IV.15: HPLC-MS chromatogram of the biomass extract from S. albus J1074 / R2 (grey) and Del1ΔccrD1-1 ΔPCC2 

ΔMCM ΔPCC1 / R2 (brown). 

The Del1ΔccrD1-1 ΔPCC2 ΔMCM ΔPCC1, shown in figure IV.15, strain shows a significant increase 

in pamamycin 594, 607 and 621 production, whereas production of pamamycin 635 ceased below 

detection level in comparison to S. albus J1074. 

3.2.4.4. Ammonium feeding to S. albus J1074 / R2 and Del1ΔccrD1-1 ΔPCC2 ΔMCM 

ΔPCC1 / R2 

To determine the role of valine in the precursor supply for pamamycin biosynthesis, ammonium was 

fed to the cultures of S. albus J1074 / R2 and Del1ΔccrD1-1 ΔPCC2 ΔMCM ΔPCC1 / R2. 

Ammonium was shown to inhibit the valine dehydrogenase activity (Tang et al. 1994) and thus 
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pamamycin production should be blocked or decreased when valine is used as a source for precursor 

production.  

Ammonium was fed prior to inoculation of the main culture as described in IV.2.2.1.2.6., the strains 

were cultivated (IV.2.2.1.2.) and the pamamycin production was determined (IV.2.2.2.).  

 

Figure IV.16: HPLC-MS chromatograms of S. albus J1074 and Del1ΔccrD1-1 ΔPCC2 ΔMCM ΔPCC1 with integrated 

pamamycin cosmid R2 with and without addition of 50 mM of NH4+ 

The influence of NH4+ ions on pamamycin production is shown in figure IV.16. Addition of 50 mM 

ammonium inhibits (Figure IV.16 2) or decreases greatly (Figure IV.16 4) pamamycin production in 

comparison to the cultures without addition of ammonium (Figure IV.16 1 + 3).  

1 Biomass extract from S. albus J1074 / R2. 

2 Biomass extract from S. albus J1074 / R2 with 50 mM NH
4

+ 

3 Biomass extract from Del1ΔccrD1-1 ΔPCC2 ΔMCM ΔPCC1 / R2. 

4 Biomass extract from Del1ΔccrD1-1 
ΔPCC2 ΔMCM ΔPCC1 / R2 with 50 mM NH

4
+. 
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Figure IV.17: Production of pamamycin 607 in strains S. albus J1074 / R2 and Del1ΔccrD1-1 ΔPCC2 ΔMCM ΔPCC1 / R2 

with and without addition of 50 mM ammonium. Production of S. albus J1074 / R2 is set to 100 %. 

As shown in figure IV.17, production of pamamycin 607 is increased approximately 500 % in 

Del1ΔccrD1-1 ΔPCC2 ΔMCM ΔPCC1 / R2 in comparison to S. albus J1074 / R2. Addition of 

ammonium ions reduced pamamycin production almost completely in S. albus J1074 and about 350 % 

in Del1ΔccrD1-1 ΔPCC2 ΔMCM ΔPCC1 / R2. 

3.2.4.5. Measurement of pamamycin production in the VDH knockout mutants 

The role of the VDH gene in precursor supply for pamamycin production was analyzed by knockout 

of this gene in S. albus J1074 and Del1ΔccrD1-1 ΔPCC2 ΔMCM ΔPCC1. The pamamycin cosmid 

was brought into these strains via conjugation (IV.2.2.3.5.). The strains were cultivated (IV.2.2.1.2.) 

and pamamycin production was determined (IV.2.2.2.). 

 

Figure IV.18: HPLC-MS chromatograms of S. albus J1074 and Del1ΔccrD1-1 ΔPCC2 ΔMCM ΔPCC1 with integrated 

pamamycin cosmid R2 with and without knocked out VDH gene. 
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1 Biomass extract from S. albus J1074 / R2. 

2 Biomass extract from S. albus J1074 ΔVDH / R2. 

3 Biomass extract from Del1ΔccrD1-1 ΔPCC2 ΔMCM ΔPCC1 / R2. 

4 Biomass extract from Del1ΔccrD1-1 ΔPCC2 ΔMCM ΔPCC1 ΔVDH / R2. 
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As shown in Figure IV.18, pamamycin production is completely blocked by the knockout of the VDH 

gene in either strain (Figure IV.18 2 + 4).  

3.2.4.6. Influence of succinate on pamamycin production 

The influence of succinate on the production of pamamycins was tested by feeding of sodium 

succinate to S. albus J1074 with the integrated pamamycin R2 cosmid prior to inoculation to the main 

culture as described in IV.2.2.1.2.7., cultivated (IV.2.2.1.2.) and the pamamycin production was 

determined (IV.2.2.2.). Baking soda was used as a control to exclude the influence of sodium ions on 

the production of pamamycins. 

 

Figure IV.19: Production of pamamycin 607 in S. albus J1074 / R2 with and without addition of different concentrations of 

succinate or baking soda. Production of S. albus J1074 / R2 without any additive is set to 100 %. 

As shown in figure IV.19, pamamycin 607 production is increased about 70 % when 100 nM succinate 

are fed to the culture. Higher concentrations of succinate also show an increase in production, however 

they do not show further enhancement of production. The control with 50 mM baking soda shows no 

significant effects on pamamycin production.  
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4. Discussion 

4.1. Pamamycin production in Streptomyces albus J1074 

4.1.1. Heterologous expression of pamamycin cosmids R1 – R4 

Heterologous expression is a versatile tool to study antibiotic production. Pamamycin production 

was detected in Streptomyces alboniger DSM 40043 and a cosmid library was created and 

screened for clones containing the entire set of pam genes using two probes flanking the cluster 

(Rebets et al. 2015). Several cosmids were obtained and tested for the production of pamamycins 

in Streptomyces albus J1074. Previous experiments with S. alboniger DSM 40043 showed 

optimal pamamycin production in the media NL SGG and PPM, so these media were used for 

pamamycin production in S. albus J1074. To identify possible pamamycins, the synthesized 

standard pamamycin 607 (Wang et al. 2001) was used as a reference.  

Pamamycin production was observed in S. albus J1074 after introducing the three cosmids  

(R1, R2 and R4). Additional compounds similar to known pamamycins could be detected in the 

three cosmids (R1, R2 and R4), what can be explained by the biosynthetic potential of the 

pamamycin gene cluster to produce several compounds (Natsume et al. 1995). The compound 

with the same retention time as the synthesized standard was the minor peak in all extracts and 

corresponded perfectly to pamamycin 607. With a retention time shift of 0.2 minutes, an 

additional compound could be detected which also corresponded to pamamycin 607. This 

compound was the major product in all extracts.  

The cosmid R2 and the medium NL SGG have been chosen for further experiments because their 

combination yields the highest production of pamamycins.  

4.1.2. Optimization of NL SGG for pamamycin production 

Media composition influences secondary metabolite production greatly (Higashide 1984). To 

increase pamamycin production, different combinations of various carbon and nitrogen sources as 

well as different amounts of them were varied with NL SGG as a starting point. An increase of the 

carbon sources glucose and glycerol from 10 g/l to 15 g/l each also led to an increase of 

pamamycin production by 30 %. An increase of the carbon source and a switch from glucose to 

maltose (10 g/l glucose to 20 g/l maltose) further increased the production of pamamycin by  

100 %. Glucose is generally used in rich media as a fast available carbon source for rapid biomass 

formation, because glucose can be consumed without the need of specific exoenzymes. But 

glucose is not the only carbon source in these media, because of its ability to inhibit antibiotic 
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production (Sanchez et al. 2010). The switch from glucose to maltose as a rapidly available 

carbon source can explain the increase of production.  

Changing the nitrogen source from Bacto® peptone to soymeal completely abolished the 

production of pamamycins. This can be explained by the increase of nitrogen which has a 

negative effect on antibiotic production like in case of cephamycin and streptomycin (Srinivasan 

et al. 1991).  

Because of its increased pamamycin production, NL SGG (variation II) has been chosen for 

further studies.  

4.1.3. Pamamycin production dependency on the O2 level 

Aeration is very important for the production of secondary metabolites in aerobic organisms. 

Pfefferle et al. (2000) showed that ε-rhodomycinone-production in the fermentation process of 

Streptosporangium sp. NN 22303 increases with higher aeration rate, but drops after a certain 

level. To determine the influence of aeration on pamamycin production in Streptomyces albus 

J1074, several different flasks with different volumes of production medium and different 

rotations speeds were used. The two cultivations without a buffle and 100 ml medium in a 300 ml 

flask showed no pamamycin production, which indicates that pamamycin biosynthesis requires 

extensive aeration. The highest pamamycin production was achieved in a 4 buffle flask with 120 

rpm with an increase of 60 % in comparison to the standard conditions (1 buffle flask, 180 rpm). 

An increase of the rotation speed to 180 rpm in the 4 buffle flask resulted in an increase of 

approximately 20 % in comparison to the standard conditions.  

4.1.4. Pamamycin production curve 

Secondary metabolite production generally starts after the stationary phase of growth or after the 

optimal growth is reached (Bu" Lock et al. 1965). Pamamycin production in S. albus J1074 starts 

between 10 and 14 hours of inoculation and the production maximum for pamamycin 607 and 

pamamycin 621 in the biomass is reached after 30 hours, whereas the pamamycin concentration in 

the supernatant slowly increases over time until the cultures were harvested. Since S. albus J1074 

is a fast growing organism (personal experience) that needs 72 hours to achieve full sporulation in 

comparison to Streptomyces lividans that needs 168 hours, these observations are in accordance 

with the literature. Pamamycin production starts after an optimal growth phase is reached and 

continues to increase over time afterwards until the cultures are harvested. 72 hours was 

determined to be the optimal harvest time, since pamamycin production has reached a sufficient 

production level until then and the cultivation time is considered acceptable.  
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4.2. Streptomyces albus J1074 strain development for pamamycin 

production 

4.2.1. Identified genes in S. albus J1074 

Several important genes for methylmalonyl-CoA and ethylmalonyl-CoA biosynthesis have been 

identified according to the review of Chan et al. (2009)(Figure IV.20) in the fully annotated 

genome of S. albus J1074 (Zaburannyi et al. 2014). 

 

Figure IV.20: Metabolic pathways leading to the formation of (2S)-methylmalonyl-CoA and (2S)-ethylmalonyl-CoA. 

Abbreviations: ICM, isobutyryl-CoA mutase; PCC, propionyl-CoA carboxylase; CCR, crotonyl-CoA carboxylase/reductase; 

MCR, methylmalonyl CoA racemase; MCM, methylmalonyl-CoA mutase; VDH, valine dehydrogenase. 
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As the most important pathways for (2S)-methylmalonyl-CoA biosynthesis the transformation of 

succinyl-CoA to (2R)-methylmalonyl-CoA by the methylmalonyl-CoA mutase (MCM) and 

subsequent rearrangement to (2S)-methylmalonyl-CoA by the methylmalonyl-CoA racemase 

(MCR), the carboxylation of propionyl-CoA to (2S)-methylmalonyl-CoA by the propionyl-CoA 

carboxylase (PCC) and the catabolism of L-valine induced by the valine dehydrogenase (VDH) 

have been identified.  

Ethylmalonyl-CoA is formed by the carboxylation of crotonyl-CoA mediated by the crotonyl-

CoA carboxylase / reductase (CCR).  

A blast search with the corresponding genes from Streptomyces coelicolor revealed one MCM 

gene, two PCC genes, a VDH gene and two CCR genes.  

4.2.2. InSilico simulations 

InSilico Biotechnology AG (Meitnerstraße 9, 70563 Stuttgart) performed knockout simulations 

for the corresponding knockouts based on the metabolomic model of S. albus J1074 they created 

(unpublished data). Their simulations were focused on the production of malonyl-CoA, 

methylmalonyl-CoA, ethylmalonyl-CoA and the liveliness of the cells after the knockouts.  

Their simulations supported the previous decision on target genes for the specific knockouts.  

4.2.3. Knockout of the identified genes 

All identified genes could be knocked out separately or in different combinations of several or all 

target genes and the cells were still viable. As one would suspect, knockout of several genes from 

the primary metabolism responsible for important functions resulted in a reduced fitness of the 

cells but overall the biomass accumulation and growth speed were not impaired significantly. In 

contrast, the time until full sporulation was achieved even decreased slightly. This could be due to 

the reduced fitness and limited supply of cell constituents caused by the knockouts. 

4.2.4. Heterologous expression of the pamamycin producing cosmid R2 in 

selected knockout mutants  

4.2.4.1. Measurements of pamamycin production in the CCR mutants 

There are two CCR genes (CCR 1 and CCR 2) present on the genome of S. albus J1074. To 

determine the function of each of these CCR genes on the production of ethylmalonyl-CoA for 

pamamycin biosynthesis, both genes have been knocked out independently and in combination.  
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The Del1 strain (Myronovskyi et al. 2014b) lacks the CCR 2 gene and the CCR1 gene was 

knocked out in S. albus J1074 resulting in S. albus J1074 ΔCCR 1. The knockout strain with both 

genes deleted was termed Del1ΔCCRD1-1. 

Pamamycin production in the Del1 strain is not significantly altered in comparison to S. albus 

J1074. Both show a comparable compound spectrum and both produce pamamycin 635 which 

utilizes ethylmalonyl-CoA. The CCR 1 knockout mutant S. albus J1074 ΔCCR 1 and the double 

knockout mutant Del1ΔCCRD1-1 show a significantly altered compound spectrum. Not only is the 

production of pamamycin 635 reduced to levels where it is barely detectable, but also the production 

of the remaining pamamycins is increased. In this case pamamycin 607 production is increased by 

about 200 % in the CCR 1 knockout mutant and by about 160 % in the double knockout mutant. 

Pamamycin 580 is also clearly detectable in these strains in comparison to S. albus J1074 and the CCR 

2 knockout strain.  

These results support our assumption that the keto synthase genes from the pamamycin 

biosynthetic gene cluster are promiscuous and incorporate the extender units based on their 

availability. A strain, in which the supply of ethylmalonyl-CoA is reduced or absent, produces less 

or even none of the bigger pamamycins. The increase of production can also be explained by this 

observation. Because of the lack of ethylmalonyl-CoA, malonyl-CoA and methylmalonyl-CoA 

are used for the biosynthesis and thus the products using these extender units are produced in 

greater amounts. 

Interestingly the knockouts show that only the CCR 1 gene participates in ethylmalonyl-CoA 

formation. There are bacterial strains which naturally lack CCR activity like Saccharopolyspora 

erythraea (Stassi et al. 1998) and strains like Streptomyces lividans which have CCR activity (Hu 

et al. 2005). In addition, there are several cases reported of cluster associated CCR genes 

(Haydock et al. 2004; Gandecha et al. 1997; Karray et al. 2007; Haydock et al. 2005) which seem 

to provide additional ethylmalonyl-CoA for biosynthetic production. The genome sequence of  

S. albus J1074 (Zaburannyi et al. 2014) reveals that the CCR 1 gene is located near the core of the 

genome and is not associated to any putative biosynthetic gene cluster, and that the CCR 2 gene is 

located on the outer right arm of the genome and in close proximity to a putative biosynthetic 

gene cluster. S. albus J1074 is one of the strains naturally able to produce ethylmalonyl-CoA via 

the ethylmalonyl-CoA pathway which contains a cryptic cluster that needs CCR activity for 

precursor supply.  

The CCR knockouts also showed that the supply of malonyl-CoA or methylmalonyl-CoA is not 

the bottleneck for pamamycin production since the production is increased when the pool of 

ethylmalonyl-CoA is reduced. Additionally unlike monensin biosynthesis in Streptomyces 
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cinnamonensis (Li et al. 2004) CCR activity does not provide methylmalonyl-CoA for antibiotic 

production in S. albus J1074 under the tested conditions. 

4.2.4.2. Measurement of pamamycin production in the triple knockout mutants 

On the basis of the double CCR knockout strain Del1 ΔCCRD1-1 knockouts of MCM, PCC1 and 

PCC2 were performed, to determine the relevance of these genes on methylmalonyl-CoA biosynthesis 

for pamamycin biosynthesis.  

Like the Del1 ΔCCRD1-1 strain, the triple knockout strains Del1 ΔCCRD1-1ΔMCM, Del1 ΔCCRD1-

1ΔPCC1 and Del1 ΔCCRD1-1ΔPCC2 showed reduced production of pamamycin 635 and an increase 

in production of pamamycins 580, 593, 607 and 621. The increase in production of pamamycin 607 

was ranging from 130 % for the PCC1 knockout to 170 % for the PCC2 knockout. These results are in 

the range of the double CCR knockout.  

None of the knocked out genes showed a significant effect on pamamycin production, which means 

that a knockout of one methylmalonyl-CoA producing gene can be compensated by the remaining 

genes.  

4.2.4.3. Measurement of pamamycin production in the penta knockout mutant 

Since a single knockout of a putative methylmalonyl-CoA producing gene did not show an influence 

on pamamycin production, all identified major genes for methylmalonyl-CoA biosynthesis were 

knocked out in the same background. This strain lacks both CCR, the MCM, PCC1 and PCC2 genes 

resulting in a penta knockout strain termed Del1ΔCCRD1-1 ΔPCC2 ΔMCM ΔPCC1. 

Pamamycin production was measured in this strain and compared to S. albus J1074.  

Like the CCR double knockout mutant or the triple mutants with both CCR genes and either MCM, 

PCC1 or PCC2 knocked out, the penta knockout showed reduced production of pamamycin 635 and 

increased production of the remaining pamamycins. The production of pamamycin 607 and 621 in the 

penta knockout strain was even higher than in any previously obtained knockout mutant.  

Since Streptomyces albus J1074 has the biological potential to form (2S)-methylmalonyl-CoA either 

from the carboxylation of propionyl-CoA (PCC), the rearrangement and epimerization of succinyl-

CoA (MCM) or the catabolism of valine (VDH), the knockout of MCM, PCC1 and PCC2 in the 

background of the CCR knockouts should either lead to a decrease of pamamycin production if 

methylmalonyl-CoA was supplied by any of these pathways, or pamamycin production should be left 

unaltered in comparison to the double CCR knockout if methylmalonyl-CoA was solely provided by 

the catabolism of valine.  
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The increase of pamamycin production in the penta knockout mutant can be explained by the fact that 

a knocked out gene blocks a pathway which indirectly leads to the accumulation of a precursor for 

pamamycin biosynthesis, or some unspecific effects force the bacteria to channel methylmalonyl-CoA 

biosynthesis in one pathway with the result that methylmalonyl-CoA biosynthesis is unspecifically 

increased which in turn facilitates pamamycin biosynthesis.  

The observed increase of precursor supply for pamamycin production is most probably due to the 

knockout of MCM. Knockout of MCM, which rearranges succinyl-CoA to (2R)-methylmalonyl-CoA, 

could lead to an increase of the succinyl-CoA pool in the cell. Since three succinyl-CoA units are 

incorporated into the final pamamycin molecule, this could lead to an increase of production, if 

succinyl-CoA was the bottleneck of pamamycin production. 

4.2.4.4. Ammonium feeding to S. albus J1074 / R2 and Del1ΔccrD1-1 ΔPCC2 ΔMCM 

ΔPCC1 / R2 

To clarify the source of methylmalonyl-CoA for pamamycin production, ammonium was fed to the 

cultures of S. albus J1074 and Del1ΔccrD1-1 ΔPCC2 ΔMCM ΔPCC1 containing the pamamycin gene 

cluster. Ammonium was chosen because of its potential to block VDH activity (Tang et al. 1994).  

Feeding of 50 mM NH4
+ showed a nearly complete cessation of pamamycin production in S. albus 

J1074 and a reduction of more than 50 % in the penta knockout strain. This indicates that valine 

catabolism is the source of methylmalonyl-CoA for pamamycin production. 

4.2.4.5. Measurement of pamamycin production in the VDH knockout mutants 

The VDH gene was knocked out in S. albus J1074 and in the penta knockout strain to verify the results 

from the ammonium feeding and to see whether S. albus J1074 was able to compensate the loss of 

methylmalonyl-CoA biosynthesis from the catabolism of valine.  

The knockout of the VDH gene led to a complete cessation of pamamycin production both in S. albus 

J1074 and the penta knockout strain.  

This result shows that the catabolism of valine is the sole provider of methylmalonyl-CoA for 

pamamycin production, and that the strain is not able to compensate the loss of the VDH gene for 

secondary metabolite production. The catabolism of valine has already been described to be important 

for secondary metabolite production (Stevens & Chester 1958; Tang et al. 1994), and pamamycin 

biosynthesis appears to be completely dependent of this pathway under the tested conditions.  

4.2.4.6. Influence of succinate on pamamycin production 

To check if succinyl-CoA is the bottleneck for pamamycin biosynthesis, succinate was fed to S. albus 

J1074 containing the pamamycin biosynthetic gene cluster.  
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Feeding of 100 nM sodium succinate showed a significant increase in pamamycin 607 production of 

66 % which indicates that succinyl-CoA is a limiting factor for the production of pamamycins.  

The higher concentrations of fed succinate also showed a slight increase in production of 38 %, but not 

as much as the lower concentration did.  

Since succinate is an important intermediate of the citric acid cycle, excess of succinate could interfere 

with its balance and in turn meddle with cellular processes. This could have negative effects on 

pamamycin production, what explains the production increase for lower concentrations of succinate.  

 

5. Summary of the strain development of 

Streptomyces albus J1074 for pamamycin 

production 

We could prove pamamycin production in S. albus J1074 after the heterologous expression of 3 of 4 

cosmids obtained by screening for the biosynthetic gene cluster. We optimized the production 

medium, checked O2 consumption and production characteristics of pamamycin. We identified the 

pathways leading to methylmalonyl-CoA and ethylmalonyl-CoA for pamamycin production by 

knocking out the responsible genes. We could determine the level of succinyl-CoA as a bottleneck for 

pamamycin production. We demonstrated this by knocking out the MCM gene, which leads to an 

increase of succinyl-CoA, and by feeding of succinate directly to cultures of S. albus J1074 / R2. A 

panel of knockout strains was created resulting in a final mutant strain which combines six knockouts 

in the same genetic background. The compound profile for pamamycin was heavily influenced and the 

production of some pamamycin derivatives was increased by knocking out specific genes from the 

primary metabolism. In this study we could clearly show the connection between certain pathways of 

the primary metabolism for precursor supply of secondary metabolites. By knocking out certain genes 

we could exploit the promiscuous PKS of the pamamycin biosynthesis to shift the compound spectrum 

into a specific direction. 
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V. An influence of the copy number of 

biosynthetic gene clusters on the 

production level of antibiotics in a 

heterologous host 

1. Introduction 

Heterologous expression, the expression of foreign genes in a suitable host, has been shown to be a 

powerful tool in biotechnology. The principle is to identify genes or clusters of interest and express 

them in a suitable host using an optimized expression system. This method is mostly used if the native 

producer strains or organisms are not genetically accessible and/or show unreliable growth and 

metabolite production profiles. Thus these clusters are preferably expressed in a well-studied model 

organism, where a lot of tools were already successfully applied and cultivation conditions, media 

composition and storage conditions are well described. In fact, heterologous expression has already 

been used to express foreign genes from animals or plants in bacteria or fungi (Frommer & 

Ninnemann 1995), to study the function of genes or clusters (Luzhetskyy et al. 2007; Rebets et al. 

2015), to elucidate unknown genes or pathways (Baltz 2010), to engineer known or unknown 

biosynthetic gene clusters (Wenzel et al. 2005), to generate new derivatives of known compounds 

(Luzhetskyy et al. 2007), to increase the production of desired metabolites (Baltz 2010) or to create 

unnatural pathways (Gomez-Escribano & Bibb 2014). 

It is also a tool of choice to study secondary metabolite production and is widely used in that field for 

many purposes. Some fundamental works base on Actinobacteria. Actinobacteria have been shown to 

not only be a prolific source of natural products (Baltz 2008; Hodgson 2000), but also to be suitable 

hosts for their expression. Several model organisms like Streptomyces albus J1074, Streptomyces 

coelicolor, Streptomyces lividans or Streptomyces griseofuscus have been shown to be fitted for 

specific tasks whereas also industrial derived strains could be useful for heterologous expression 

(Baltz 2010). There are even great efforts undertaken to optimize some of these model organisms to be 

better hosts (Komatsu et al. 2010; Gomez‐Escribano & Bibb 2011; Komatsu et al. 2013). The 

advantage in using model organism for heterologous expression is, that these strains are well 

understood and they are genetically accessible.  

Despite a vast range of available expression hosts, heterologous expression often does not result in the 

desired outcome. Often the yield of the desired product in the heterologous host is significantly lower 
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than in the parental strain (Binz et al. 2008; Huo et al. 2012). To address this problem, additional steps 

have to be made, like introducing promoters upstream of the cluster to force its expression or to 

engineer the precursor supply (Rebets et al. 2015). These steps are quite often not intuitive and very 

time consuming. Toxicity is also a great issue, because the expression hosts are often more susceptible 

to the heterologously produced compounds than the natural producers. This problem can be solved by 

the co-expression of corresponding resistance genes, which also needs time and knowledge about the 

produced substance. 

To address problems like product yield, we integrated additional attB attachment sites of the phage 

ϕC31 into the genome of our heterologous host Streptomyces albus J1074 via Tn5 transposon 

mutagenesis (Petzke & Luzhetskyy 2009). The integration system of this phage (Lomovskaya et al. 

1971) promotes the recombination between the attB site present in the genome of the host and the attP 

site present on the vector (Thorpe & Smith, Margaret C. M. 1998). After incorporation of the 

additional attachment sites into the genome of S. albus J1074 we aim to increase the copy number of 

the integrated gene cluster, and thus to enhance the production of the desired compound.  

Here we present a nonspecific approach to increase the product yield of expressed secondary 

metabolite clusters by addition of attB attachment sites in our heterologous host Streptomyces albus 

J1074. We selected several antibiotic clusters and expressed them in a range of S. albus mutants with 

different numbers of attB attachment sites to study the effect of gene cluster dosage in these strains. 

Furthermore we were able to identify a new aranciamycin derivative produced by one of our mutants.  
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2. Materials and methods 

2.1. Construction of plasmids for transposon mutagenesis 

The hph gene was amplified using pAL1 as a template, Fr-MI-attB-hph as a forward primer, carrying 

attB and the MunI restriction site, and Rs-XI-hph as a reverse primer carrying the XbaI site. The 

amplified fragment was cloned into the MunI and XbaI sites of pTn5Oks resulting in 

pTn5OksattBhph(II). The EcoRV fragment from pTn5OksattBhph(II), containing the transposon, was 

ligated into pNLHim, linearized by EcoRV, to result in pHAT(II)3. 

To verify the obtained construct, analytical restriction mapping with EcoRV was performed. The 

obtained 1,9 kb fragment corresponds to the minitransposon construct cloned from 

pTn5OksattBhph(II). 

Table V.1: Existing plasmid constructs 

Name Description Reference or Source 

pNLTn5 
Replicative vector for actinomycetes containing pSG5-

rep, oriT, and tn5 gene under the tipA promoter 

Dissertation of Dr. Lutz 

Petzke 

p41-2C-06 
pOJ436 derivative, containing aranciamycin 

biosynthetic cluster 

(Luzhetskyy et al. 2007) 

cos2 
pOJ436 derivative, containing the mensacarcin 

biosynthetic cluster 

(Yan et al. 2012) 

DJ380pUp31 
pOJ436 derivative, containing the griseorhodin 

biosynthetic cluster 

(Li & Piel 2002) 

PMM R2 
pOJ436 derivative, containing the pamamycin 

biosynthetic cluster 

(Rebets et al. 2015) 

 

2.2. Introduction of additional attB-sites into S. albus genome  

Additional attB attachment sites were introduced by conjugation of the plasmid pHAT(II)3 into the  

S. albus J1074 chromosome (Protocol for transposon mutagenesis see (Bilyk et al. 2013)).  

The integration was proven by Southern blot.  
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Table V.2: New Plasmid constructs 

Name Vector Size, kb Tns Marker Description 

pHAT(II)3 pNLTn5 11,5 tn5 hph 
Minitransposon with hph, ϕC31-

attB,  R6Kγ origin, flanked by MEs  

pNLHim pNLTn5 9,2 himar1 aac(3)IV 
Plasmid derived from pNL1, 

containing himar1(a) gene 

pTn5Oks n/a 3,6 
himar1, 

tn5 
bla 

PCR-derivative containing  R6Kγ 

origin flanked by two MEs and two 

ITRs (Shine Gene, PRC) 

 

Table V.3: Primers used for plasmid construction 

Name Primer sequence (in 5’->3’) Features 

Fr-MI-attB-

hph 

ccccccaattgCGGGTGCCAGGGCGTGCCCTTGG

GCTCCCCGGGCGCGTACccgtatttgcagtaccagcgt-3 

MunI (in italics), attB (in 

capitals) 

Rs-XI-hph ccccctctagagaataggaacttcggaatagg XbaI (in italics) 

 

2.3. Heterologous expression of the secondary metabolite clusters 

The PMM R2 cluster was obtained by previous work in our group. The cos2 

(didesmethylmensacarcin) and the aranciamycin cosmid 41–2C-06 were obtained from Andreas 

Bechthold. The griseorhodin encoding gene cluster on the cosmid DJ380pUp31 was obtained from 

Jörn Piel.  

All cosmids were brought into E. coli ET 12567 (pUB307) by transformation. The transfer of the 

clusters from E. coli ET 12567 (pUB307) into S. albus J1074, S. albus T1, S. albus T11 and S. albus 

ΔpseB4 was accomplished by intergeneric conjugation (Sambrook & Russell 2001), to obtain  

S. albus::PMM R2, S. albus::cos2, S. albus::41-2C-06, S. albus::DJ380pUp31, S. albus T1::PMM R2, 

S. albus T1::cos2, S. albus T1::41-2C-06, S. albus T1::DJ380pUp31, S. albus T11::PMM R2, S. albus 

T11::cos2, S. albus T11::41-2C-06, S. albus T11::DJ380pUp31, S. albus ΔpseB4::PMM R2, S. albus 

ΔpseB4::cos2, S. albus ΔpseB4::41-2C-06, S. albus ΔpseB4::DJ380pUp31.  
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Table V.4: Used strains 

Name Description Reference or Source 

S. albus ΔpseB4 
S. albus J1074 strain with deleted ΔpseB4 

attachment site 

(Bilyk & Luzhetskyy 

2014) 

S. albus J1074 S. albus G mutant  (Chater & Wilde 1976) 

S. albus T1 

S. albus J1074 strain with additional attB 

attachment site introduced by transposon 

mutagenesis 

This work 

S. albus T11 

S. albus J1074 strain with additional attB 

attachment site introduced by transposon 

mutagenesis 

This work 

 

2.3.1. Pamamycin production 

The strains containing the PMM R2 cosmid were cultivated in a preculture medium containing 1 % 

glucose, 1 % glycerol, 0.5 % oatmeal, 1 % soymeal, 0.5 % yeast extract, 0.5 %  Bacto casaminoacids 

and 0.1 % CaCO3 in tap water; the pH was adjusted to 7.0 (1M NaOH) prior to sterilization. The 

production media consisted of glucose 1 %, glycerol 1 %, soluble starch 1 %, corn steep powder 0.25 

%, Bacto peptone 0.5 %, yeast extract 0.2 %, NaCl 0.1 % and CaCO3 0.3 % in tap water; the pH was 

adjusted to 7.3 (5 M NaOH) prior to sterilization. The preculture medium was inoculated using 1/8 of 

a well grown agar plate. The production medium was inoculated with 6 % of the preculture medium. 

The strains were cultivated for 48 h in the preculture medium, transferred to the production medium 

and harvested after 72 h.  

2.3.2. Didesmethylmensacarcin and griseorhodin production 

The strains containing the cos2 or DJ380pUp31 cosmid were cultivated for 48 h in tryptic soy broth 

(TSB, Sigma, Germany) as a preculture medium. The production medium contained 4 % dextrin, 0.75 

% soytone, 0.5 % baker’s yeast, 2.1 % MOPS in deionized water; the pH was adjusted to 6.8 (1 M 

NaOH) prior to sterilization. 100 ml of the preculture medium were inoculated using 1/8 of a well 

grown agar plate. The production medium was inoculated with 6 % of the preculture medium. The 

strains were cultivated for 48 h in the preculture medium, transferred to the production medium and 

harvested after 120 h. All strains were grown at 28 °C; 180 rpm.  
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2.3.3. Aranciamycin production 

The strains containing the 41–2C-06 cosmid were cultivated for 216 h on 30 ml solid medium 

containing 2 % mannitol, 2 % soymeal, 2 % agar in distilled water. The plates were inoculated using 

100 µl of a spore suspension consisting of 1/3 of a well grown plate harvested in 1 ml H2O. 

2.4. Determination of production 

One clone of each strain with the corresponding, integrated secondary metabolite cluster was chosen 

and a preculture was inoculated from spores. From this preculture three flasks of the main culture were 

inoculated to produce three technical replicates for each exconjugant. Cultivation of the pre and main 

culture were performed as previously described in V.2.3.1., V.2.3.2. and V.2.3.3.  

The cultures were harvested, separated by centrifugation and 5 ml of supernatant was extracted with 

ethylacetate. The remaining biomass was extracted with a mixture of methanol and acetone (1+1). 

Both the supernatant and biomass extracts were evaporated to dryness using a rotary evaporator 

(RV10, VWR, Germany). The supernatant extract was then resolved in 500 µl of methanol. The 

biomass extract was resolved in 1000 µl of methanol. The extracts were then measured using a 100 

mm BEH C18 column (Waters, Milford, USA) with a flow rate of 0.55 ml/min and the following 

gradient: 0 min 5 % B, 9 min 95 % B (solvent A: water + 0.1 % formic acid, solvent B: acetonitrile + 

0.1 % formic acid).    

The peak area of the corresponding compound was measured, normalized to biomass and used for 

comparison. For all secondary metabolites, the production of the ΔpseB4 strain with one attachment 

site was set as 100 %. 

2.4.1. Determination of pamamycin production 

The samples were extracted as previously described. Measurement was performed using a 100 mm 

BEH C18 column (Waters, Milford, USA) with a flow rate of 0.55 ml/min and the following gradient: 

0 min 20 % D, linear gradient to 3 min 97 % D, linear gradient to 11 min 100 % D (solvent C: 90 mM 

ammoniumformiate, solvent D: acetonitrile/100 mM ammoniumformiate (80 + 20)).   

Pamamycin production was measured by analysis of the compound area of the derivative PMM 607, 

which was chosen because of the high abundance of this compound and the presence of a synthesized 

standard (Wang et al. 2001). Several other pamamycin derivatives could be detected and behaved 

accordingly.  
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2.4.2. Determination of demethoxyaranciamycinone production 

The agar of each plate was cut into pieces and put into a 50 ml Falcon tube. 10 ml of ethylacetate was 

added and shaken at 180 rpm at 28 °C for 15 minutes. The organic phase was separated from the water 

phase by centrifugation and evaporated. This procedure was repeated three times and the 

corresponding fractions were combined. The extracts were resolved in 1.5 ml of a mixture of 

Methanol and DMSO (2+1) and measured using a 100 mm BEH C18 column (Waters, Milford, USA) 

with a flow rate of 0.55 ml/min and the following gradient: 0 min 5 % B, 9 min 95 % B (solvent A: 

water + 0.1 % formic acid, solvent B: acetonitrile + 0.1 % formic acid). 

2.5. Production and isolation of 2-(1-hydroxyethyl)-1,8-dihydroxy-

3-methylanthraquinone 

The preparative production of 2-(1-hydroxyethyl)-1,8-dihydroxy-3-methylanthraquinone was carried 

out on 120 x 120 x 17 mm square petri dishes (Greiner bio-one, Germany) containing approx. 50 ml of 

MS medium (1 % mannitol, 1 % soymeal, 1 % agar in deionized water). The plates were inoculated 

with 1 ml of spores of S. albus T11::41-2C-06 and cultivated at 28 °C for 168 h. 58 plates were 

prepared.  

For extraction, the agar was cut and filled into 2 two L bottles (Schott). The agar was extracted three 

times with 750 ml of ethylacetate. After each step the agar was filtered to remove the ethylacetate. The 

resulting extracts were combined yielding 4.5 L of the extract. This extract was reduced to dryness on 

a rotary evaporator and resolved in 13 ml of methanol. This methanol solution was further separated 

using our semiprep HPLC system using a NUCLEODUR C18 HTec column (Waters, Milford, USA) 

with a flow rate of 5.6 ml/min and a linear gradient: 0 min 5 % B to 20 min 100 % B (solvent A: water 

+ 0.1 % formic acid, solvent B: acetonitrile + 0.1 % formic acid). 

 

2.6. Structure elucidation of 2-(1-hydroxyethyl)-1,8-dihydroxy-3-

methylanthraquinone 

Mass spectra were recorded using a Thermo Finnigan LTQ Orbitrap mass spectrometer. NMR spectra 

were measured using a Varian VNMR-S 600 equipped with 3 mm triple resonance and 3 mm dual 

broadband probes in CDCl3 at T = 25 °C. The residual solvent signals were used as internal reference 

(δH = 7.25 ppm, δC = 77.0 ppm). 
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3. Results and Discussion 

3.1. Introduction of additional attB-sites into the genome of 

Streptomyces albus J1074 

Heterologous expression of biosynthetic gene clusters in streptomycetes very often involves the ϕC31-

based integration system. Integration vectors should contain the attP site for integration and the 

integrase encoding gene. The recipient chromosome typically carries an attachment attB site for 

successful integration of the vector. In our previous studies (Bilyk & Luzhetskyy 2014), we have 

shown that S. albus J1074 contains two highly active attB sites, which partially explain its excellent 

features as a heterologous host for the expression of biosynthetic gene clusters. The heterologous 

production of aranciamycin is significantly reduced when one attB site was deleted from the 

chromosome of S. albus J1074. In order to investigate the correlation between the copy number of an 

antibiotic cluster and the heterologous production of the corresponding antibiotic, we decided to 

introduce additional copies of the attB site into the chromosome of S. albus J1074 using transposon 

integration. With this aim a primer containing attB was used for the amplification of the hygromycin 

resistance gene from pAL1. The obtained PCR-fragment was cloned into pTN5Oks synthesised 

previously (Table V.3). Thus, a Tn5-transposon containing attB and the hygromycin resistance gene 

was obtained. This transposon was cloned into EcoRV-linearized pNLTn5, resulting in pHAT(II)3. 

The plasmid was introduced into S. albus J1074 by intergeneric conjugation, transposon mutagenesis 

was carried out according to the protocol described previously (Bilyk et al. 2013) and eleven mutants 

with randomly inserted attB sites were isolated and analysed by Southern hybridization. The 

hygromycin resistance gene was used as a selection marker. According to the results (Figure V.1) it 

was speculated that mutant #11 has more than one integration of the transposon into the genome. 

Thus, this mutant, marked as T11 and one mutant with one copy of the transposon, marked as T1, 

were taken for further analysis. To summarize, a set of four strains with the number of attachment sites 

ranging from one (pseB4-strain) to four (T11-strain) was obtained. 
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Figure V.1: Southern hybridization of S. albus J1074 with integrated pHAT(II)3 

 

 

 

                  

                         M      1       2  

 

 

A B 

Figure V.2: The map (A) and analytical restriction (B) of pHAT. (A) Plasmid contains following features: oriT – origin of 

plasmid transfer; pSG5rep – actinomycetes temperature-sensitive replicon; tn5(a) – synthetic transposase gene, under 

control of tipAp – thiostrepton inducible promoter; aac(3)IV – apramycin resistance marker; hph – hygromycin resistance 

marker; ME – mosaic end recognition sequence for transposase; R6Kγ-ori – origin for rescue cloning; attB – ϕC31 phage 

attachment site. (B) M - 1kb DNA Ladder; 1 – undigested plasmid; 2 – plasmid digested with HindIII and XbaI. The 

transposase fragment is visible as 1,5 kbp and the backbone as 10 kbp. 

3.2. Heterologous expression of pamamycin, aranciamycin, 

mensacarcin and griseorhodin 

Four secondary metabolite clusters for the biosynthesis of pamamycin, mensacarcin, aranciamycin and 

griseorhodin (Figure V.3) were brought into all four S. albus J1074 mutant host strains, delta pseB4, 

wild type, T1 and T11 by intergenic conjugation. The integration of the corresponding secondary 

metabolite cluster was confirmed by apramycin resistance conferred by the integrated cosmids, PCR 

and HPLC-MS profile.  

1    2   3    4    5   6   7   8    9  10  11 12  13 14  15 
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During work with these strains, several observations were made. Conjugation efficiency in the ΔpseB4 

strain was slightly increased whereas it was severely reduced in T1 and T11 in comparison to the  

S. albus J1074 wild type strain. In our previous study, we have shown that the integration of the ϕC31 

based constructs occurred in all available attB sites within the S. albus chromosome. Since integration 

into additional sites is harder to achieve for the strain, the integration efficiency dropped significantly 

in the T1 and T11 strains in comparison to the S. albus J1074 strain and increased for the ΔpseB4 

strain (Bilyk & Luzhetskyy 2014). 

 

Figure V.3: Structures of the secondary metabolites used in this work. Products with the corresponding cosmid: Pamamycin-

607 (PMM R2), Griseorhodin A (DJ380pUp31), Mensacarcin (cos2), Demethoxyaranciamycinone and 2-(1-hydroxyethyl)-

1,8-dihydroxy-3-methylanthraquinone (41-2C-06) 

The conjugation efficiency also was influenced by the type of the inserted secondary metabolite 

cluster. The integration of the pamamycin biosynthetic gene cluster was less efficient in comparison to 

the other clusters, which could be due to the fact, that pamamycin is a highly active antimicrobial 

compound. The exconjugants with the aranciamycin and griseorhodin clusters could be checked by 

phenotype for their production, since both compounds have a red color, which can be seen around the 

producing clones. The production of all four compounds was confirmed by HPLC-MS of several 

independent clones containing the corresponding gene clusters. All tested exconjugants produced 

pamamycin, whereas in case of aranciamycin, griseorhodin and mensacarcin we have observed clones 

with completely abolished production of the corresponding compound. The S. albus T11::41-2C-06 
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(aranciamycin gene cluster) also differed from the wild type by its lack of spore formation on solid 

medium and the inability to grow in liquid medium.  

 

Figure V.4: Antibiotic production by the corresponding cosmids (PMM R2 for pamamycin, cos2 for DDMM, DJ380pUp31 

for griseorhodin A and 41-2C-06 for demethoxyaranciamycinone) in ΔpseB4 (one attB site), J1074 (two attB sites), T1 (three 

attB sites), T11 (four attB sites). The pamamycin production increases roughly about 100 % for each additional attB site. The 

technical replicates of Strain T1 showed a high diversity ranging from 100 % to 300 % of the ΔpseB4 level. DDMM 

production was increased about 20 % in J1074 and about 40 % in T1. T11 showed a minor increase of about 10 % in 

comparison to ΔpseB4. Production increase for griseorhodin A from one to two attB sites was about 200 %, increase from 

one to three attB sites was 300 %. Strain T11 showed a high diversity between the three replicates and production increase in 

comparison to ΔpseB4 was around 250 %. Production increase for demethoxyaranciamycinone from one to two attB sites 

was about 180 %, increase from one to four attB sites in T11 was 770 %. Strain T1 showed no production of 

demethoxyaranciamycinone. 

The production of pamamycin proved to be greatly influenced by the copy number of the gene cluster 

present in the genome. As seen in figure V.4.A, production increased by approx. 100 % from one to 

two attachment sites. The strains with the additional attachment sites showed even greater increase 

with T11 of about 350 % in comparison to S. albus Δpse4. Strain T1 did not seem to be completely 

stable because of the great fluctuation in production. One of the three technical replicates showed the 

same production level as the ΔpseB4 strain with one attB site, another replicate showed a similar 

production level as the S. albus J1074 strain with two sites, and the third replicate produced amounts 

of pamamycin as expected from a strain with three attachment sites. Production levels were 

accordingly 100%, 200 % and about 350 %. Arguably, some of these replicates may have lost one or 

more clusters during the cultivation.  

Didesmethylmensacarcin (DDMM) production, as seen in figure V.4.B, increased roughly about 20 % 

for two attachment sites. The strains with additional attachment sites showed an increase of 40 % for 

T1 and only a minor increase of 10 % for T11. 

A B

  A 

C

  A 

D
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Griseorhodin A production, as seen in figure V.4.C, increased from one to two attachment sites around 

200 %. With additional attachment sites the production increased about 300 % for T1 and between 150 

% and 280 % for T11 in comparison to the ΔpseB4 strain.  

Demethoxyaranciamycinone, the product of the aranciamycin gene cluster, was produced on agar 

plates because of the inability of strain T11 to grow in liquid media. This inability could be the result 

of the very high demethoxyaranciamycinone production, which was observed later. The strain T11 

showed weak growth on agar plates and was not able to produce spores even after 14 days of 

cultivation. The other tested strains showed spore formation after 3 days. The production, as seen in 

figure V.4.D, increased around 180 % for S. albus J1074 and around 770 % for strain T11. Strain T1 

did not show any production of demethoxyaranciamycinone but of several byproducts, which could 

also be detected in approximately the same amount in the other strains (data not shown). 

3.3. Production and isolation of 2-(1-hydroxyethyl)-1,8-dihydroxy-

3-methylanthraquinone 

During analysis of the S. albus T11::41-2C-06 extracts, we detected a distinct compound with the 

corresponding molecular ion m/z = 299.09085 ([M+H]+) and a characteristic UV-spectrum of known 

aranciamycins. After comparison with the known aranciamycins and a search in the Dictionary of 

Natural Products, we could not assign this mass to a previously known compound. Probably due to the 

huge increase of the demethoxyaranciamycinone production level in the mutant T11, we could observe 

a significant amount of the previously unknown compound. We decided to purify the unknown 

compound in order to elucidate its structure. 

 

Figure V.5: HPLC-MS run of compound 1. (A) shows the HPLC-MS chromatogram, (B) shows the UV-chromatogram of the 

compound with a retention time of 4.44 min, (C) shows the MS pattern of compound 1. The molecular ion m / z = 339.09122 

[M+H]+ shows the molecular mass of the compound to be 338 gmol-1 

A 

B 
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Since this compound was only a byproduct of demethoxyaranciamycinone, we cultivated S. albus 

T11::41-2C-06 on 58 plates to be able to purify enough material for structure elucidation. After 

extraction and purification by semiprep HPLC we were able to obtain 8 mg of 

demethoxyaranciamycinone and 4 mg of our unknown compound. Both compounds were measured by 

HPLC-MS to determine their exact mass. Figure V.5 shows the HPLC-MS run of 

demethoxyaranciamycinone (Luzhetskyy et al. 2007) with the retention time of 4.44 min. Figure V.6 

shows the HPLC-MS run of the previously unknown compound with a retention time of 5.76 min. 

 

Figure V.6: HPLC-MS run of compound 2. (A) shows the HPLC-MS chromatogram, (B) shows the UV-chromatogram of the 

compound with a retention time of 5.76 min, (C) shows the MS pattern of compound 2. The molecular ion m / z = 299.09085 

[M+H]+ shows the molecular mass of the compound to be 298 gmol-1  

3.4. Structure elucidation of 2-(1-hydroxyethyl)-1,8-dihydroxy-3-

methylanthraquinone 

The mass spectrum of the second compound at rt = 5.76 min show ions with m / z = 299.1 [M+H]+, 

597.2 [2M+H]+ and 619.2 [2M+Na]+ proving the molecular mass to be 298 gmol-1. The molecular 

formula C17H14O5 could be determined from high resolution mass spectrometry (m/z = 299.09085 

form [M+H]+). Combination of 13C NMR and HSQC spectra show 2 methyl groups, 5 methins and 10 

quarternary carbon atoms to be present in the molecule. 2 carbonyl groups (δC = 193.1 and 181.6 ppm) 

show typical values for quinone systems. The 1H NMR spectrum shows 2 chelated phenols (δH = 

11.96 and 12.88 ppm) supporting an anthraquinone substructure. Ring A of the anthraquinone is 

substituted by a hydroxyethyl at C-2 and a methyl group at C-3 proven by HMBC correlations C-2 / 1-

OH, C-2 / 4-H, C-2 / 12-H3, C-2 / 13-H3 and C-3 / 13-H3, C-4 / 13-H3. An isolated methin in position 

C-4 is proven by the singulet at δH = 7.65 ppm supported from HMBC couplings C-10 / 4-H, C-9a / 4-

H and C-13 / 4-H. Ring C of the anthraquinone show one hydroxyl group at C-8, and a ABC system 

A 

B 
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C7-C5, deduced from COSY couplings (5-H / 6-H, 6-H /7-H) and the HMBC signal C-10 / 5-H. 

Therefore the compound could be identified as 2-(1-hydroxyethyl)-1,8-dihydroxy-3-

methylanthraquinone. Tietze et al. (2007) synthesized 2-(1-Hydroxyethyl)-1,8-dimethoxy-3-

methylantharquinone as an intermediate of the chrysophanol analogs.  

 

Figure V.7: Structure elucidation of 2-(1-hydroxyethyl)-1,8-dihydroxy-3-methylanthraquinone 

Since the demethoxyaranciamycinone seems to be very toxic to S. albus, we believe that the new 

compound resulted from the host enzymatic activity in the S. albus T11 strain as a part of a 

detoxification process, because of the high production of demethoxyaranciamycinone.   

 

4. Summary 

We were able to show a clear correlation between attachment sites / number of clusters and production 

level of secondary metabolites. We created a panel of strains for different approaches. Strain ΔpseB4 

could be used to tightly control the expression level of the desired compound or to specifically 

produce only minor amounts of compound if the compound is toxic. For some metabolites it seems 

that gene dosage should not be the only approach to increase the production. For others the number of 

clusters has an accumulative effect and the production can be increased significantly. This approach 

could be used in addition to other approaches to create a range of different expression hosts.  
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VI. Final conclusion 

In this study we were able to sequence the genome of the Streptomyces strain Streptomyces fulvissimus 

and to identify 32 putative secondary metabolite clusters. Besides valinomycin we could also identify 

several different derivatives of nonactin in the extracts of S. fulvissimus cultures and we could also 

link these compounds to the corresponding gene clusters present in the genome. The nonactin gene 

cluster helped to elucidate the pamamycin biosynthesis. Pamamycin derivatives were found in the 

extracts of S. alboniger DSM40043 and we were able to obtain several cosmids carrying the 

biosynthetic gene cluster. The cosmids were brought into S. albus J1074 and we were able to 

heterologously express the pamamycin gene cluster. We were able to elucidate the pamamycin 

biosynthesis by knocking out the responsible biosynthetic genes on the producing cosmid and 

measuring the resulting intermediates in the extracts of S. albus J1074 / R2. We could show that 

pamamycin biosynthesis uses 3-oxoadipyl-CoA and either malonyl-CoA or methylmalonyl-CoA as 

starter units and that pamamycin biosynthesis utilizes the unusual starter unit succinyl-CoA. 

Furthermore we showed the promiscuity of several KS which either utilize methylmalonyl-CoA or 

ethylmalonyl-CoA which results in a complex compound spectrum. To simplify the compound 

spectrum, to increase the production and to identify the supplying pathways for pamamycin 

precursors, we identified several pathways from the primary metabolism with the corresponding key 

genes for methylmalonyl-CoA and ethylmalonyl-CoA biosynthesis. We abolished production of the 

bigger pamamycins by knocking out the genes responsible for ethylmalonyl-CoA formation and could 

observe an increase of production of the remaining pamamycin derivatives. The knockouts of the CCR 

genes also revealed the metabolic potential of S. albus J1074 which can either use the glyoxylate cycle 

or the ethylmalonyl-CoA pathway for the biosynthesis of cell constituents. The knockout of several 

genes identified as responsible for methylmalonyl-CoA biosynthesis did not lead to a loss or decrease 

of the produced pamamycin derivatives which utilize methylmalonyl-CoA. Only the knockout of the 

MCM gene resulted in an increase of pamamycin production. We could link this production yield to 

the increased amount of available succinyl-CoA present in the cell due to this knockout. We could also 

show that pamamycin production is increased by feeding succinate to producing cultures of S. albus 

J1074, which indicates that succinyl-CoA is the bottleneck for pamamycin production. To clarify the 

source of methylmalonyl-CoA for pamamycin production, ammonium ions, which are shown to block 

the valine dehydrogenase activity, were fed to pamamycin producing cultures of S. albus J1074 / R2. 

Under these conditions, pamamycin biosynthesis was almost completely blocked and we could 

confirm the catabolism of valine as the single source of methylmalonyl-CoA for pamamycin 

production by knocking out the VDH gene. This knockout resulted in a complete cessation of 

pamamycin production. We created several different strains with different amounts of knockouts, what 

finally led to a strain with six knockouts of genes of the primary metabolism in the same genetic 
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background. This knockout strain also showed that there are no pamamycins built without 

methylmalonyl-CoA. Interestingly, the strain with six knockouts was still viable and showed only 

reduced biomass accumulation. Additionally it needed less time until full sporulation was reached. 

Lastly we created a panel of strains with different amounts of attachment sites for heterologous 

expression of secondary metabolite clusters and we could show a clear correlation between the number 

of attachment sites / number of clusters and the production level of secondary metabolites.  
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Appendix 

1. Complete genome sequence of Streptomyces 

fulvissimus 

Streptomyces fulvissimus HPLC-chromatogram (ALL MS+) (Amazon-System): 

 

Figure II.S1: Streptomyces fulvissimus HPLC-chromatogram with distinct masses (nonactins) highlighted 

Nonactin from the Dictionary of Natural Products: 

Nonactin Formula: C40H64O12 MW: 736.938  Peak 737 

Monactin Formula: C41H66O12 MW: 750.965  Peak 751 

Dinactin Formula: C42H68O12 MW: 764.992  Peak 765 

Isodinactin Formula: C42H68O12 MW: 764.992  Peak not detected 

Trinactin Formula: C43H70O12 MW: 779.019  Peak 779 

Isotrinactin Formula: C43H70O12 MW: 779.019  Peak not detected 

Tetranactin Formula: C44H72O12 MW: 793.046   Peak not detected 

Orbitrap measurements: 

 

Figure II.S2: Nonactin. 
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Figure IIS.3: Monactin. 

 

 

 

Figure II.S4: Dinactin. 
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Figure II.S5: Isodinactin. 

 

 

 

Figure II.S6: Trinactin. 
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Figure IIS.7: Tetranactin. 

 

 

 

Figure II.S8: Valinomycin. 
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2. Insights into the pamamycin Biosynthesis 

Table III.S3: pam genes, and their counterparts in non-gene cluster and their predicted function. 

 

Table III.S4: Active site catalytic triad composition of Pam and Non KS enzymes. 
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Table III.S5: Complementation of pam-genes mutations with pam-genes and their counterparts from non-gene cluster. 
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Figure III.S1: Structural features of described pamamycins 
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Figure III.S2: LC-MS traces of extracts from S. alboniger DSM40043 wild type (blue) and ΔpamD mutant (brown). 

Metabolites were extracted and analyzed as described previously. The ΔpamD strain was not able to produce pamamycins. 

Different groups of pamamycins are marked by their molecular mass. 

 

Figure III.S3: Pamamycins production in S. albus J1074 (blue). Pamamycins are marked by their molecular mass. 

chemically synthesized pamamycin 607 (0.015 μM) was used as standard (red). LC-MS analysis of combined extract from 

biomass and cultural liquid is shown. 
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Figure III.S4: LC-MS analysis of metabolites accumulated by S. albus R2 ΔpamJ, ΔpamK and ΔpamL strains. These enzymes 

are involved in the last steps of pamamycin biosynthesis, thus deletion of any of them led to accumulation of the 

intermediates of the pathway hydroxy acids S and L. Different hydroxy acids S and L are marked by their molecular mass. 

Structures of different species of hydroxy acids S, L and K accumulated by different pam gene mutants are predicted based 

on structures of known pamamycins 
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Figure III.S5: LC-MS analysis of metabolites accumulated by S. albus R2 ΔpamY and ΔpamX strains. These enzymes are 

performing amination and methylation steps in pamamycin biosynthesis. Accumulation of hydroxyl acids K rather than non-

aminated pamamycins indicates that these reactions take place before cyclization of final compound but after the formation 

of hydroxyl acid K. Different hydroxy acids K are marked by their molecular mass. Explanation of structural feature of 

identified hydroxy acids K are showed on Figure S4. 

 

Figure III.S6: LC-MS analysis of metabolites accumulated by S. albus R2 (upper panel) and ΔpamC (lower panel) strains. 

Deletion of pamC gene led to decrease in pamamycins production as well as caused changes in the structural range of 

accumulated metabolites. 
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Figure III.S7: Pamamycin production by S. albus R2 and S. albus R2ΔpamA strains. Deletion of pamA did not lead to 

complete cessation of pamamycins production but affects the level of production and spectra of produced compounds. This is 

caused by supply of 3-oxoadipyl-CoA from the primary metabolism of S. albus. Production of several pamamycins implicates 

methyl-adipyl-CoA that cannot be supplied by the host strain. This causes perturbations in spectra of pamamycins 

synthesized by the mutant strain. 

 

Figure III.S8: Production of pamamycins by S. albus AdCoA R2 (blue), S. albus J1074 R2ΔpamA (green) and S. albus 

AdCoA R2ΔpamA (red). Since deletion of XNR_0219 and XNR_0220 blocked supply of 3-oxoadipyl-CoA from the host 

primary metabolism, only trace amounts of pamamycin 607 and two 621 were found in extracts from S. albus AdCoA 

R2ΔpamA. 
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Figure III.S9: SDS PAGE of PamA protein. Lines: 1 Protein marker; 2. Soluble fraction; 3. Insoluble fraction; 4. Column 

flow (unbound proteins); 5. Washing, step 1 (no imidazole); 6. Washing, step 2 (80mM imidazole); 7. Eluted protein; 8. 

Protein samples after concentration and buffer exchange. 
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Figure III.S10: HILIC-MS analysis of PamA reaction mixture and purified product of reaction. Substrates and products are 

marked as CoASH (grey), Mal-CoA–malonyl-CoA (red), Succ-CoA–succinly-CoA (blue) and Ad-CoA–adipyl-CoA (green). 
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Figure III.S11: HILIC-MS analysis of PamA reaction mixture and purified product of reaction. Substrates and products are 

marked as CoASH (grey), MMal-CoA–methylmalonyl CoA (brown), Succ-CoA–succinly-CoA (blue) and MAd-CoA–2-

methyl-3oxoadipyl-CoA (yellow). 
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Figure III.S12: HLLC-MS analysis of PamA competition reaction with methylamalonyl-CoA and malonyl-CoA ration 10:1 

(top) and 1:1 (bottom). The ratio of 3-oxoadipyl-CoA (green) and 2-methyl-3oxoadipyl-CoA (orange) products was found to 

depend on initial ratio of methylamalonyl-CoA and malonyl-CoA when succinily-CoA is not limiting factor (60 mM in 

reaction). 

 

 

Figure III.S13: Feeding of hydroxy acids S and L to S. albus R2ΔpamB (green) and S. albus R2 ΔpamL (purple). As control 

extracts of S. albus R2ΔpamB (orange) and S. albus R2 ΔpamL (blue) were used. Feeding of mixture of hydroxy acids S and 

L to the strain expressing pamL S. albus R2ΔpamB resulted in accumulation of pamamycins. In the same time, strain with 

deleted pamL S. albus R2 ΔpamL gene was not able to activate free hydroxyl acids to complete the biosynthesis of antibiotics. 
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3. Strain development of Streptomyces albus J1074 

for pamamycin production 

Gel picture for Del1ΔccrD1-1 ΔPCC1, Del1ΔccrD1-1 ΔPCC2 and Del1ΔccrD1-1 ΔMCM 

 

FigureIV.S1: Gel picture of the PCR products for MCM (240 bp), PCC1 (265 bp) and PCC2 (281 bp) knockout sind the 

Del1ΔccrD1-1 strain after marker excision. 

Sequencing results for Del1ΔccrD1-1 ΔPCC1, Del1ΔccrD1-1 ΔPCC2, Del1ΔccrD1-1 ΔMCM, 

Del1ΔccrD1-1 ΔPCC2 ΔPCC1, Del1ΔccrD1-1 ΔPCC2 ΔMCM and Del1ΔccrD1-1 ΔMCM ΔPCC1 

and Del1ΔccrD1-1 ΔPCC2 ΔMCM ΔPCC1 

 

Figure IV.S2: Alignment of the Del1ΔccrD1-1 ΔPCC1 sequencing results to the corresponding genome sequence. 

 

Figure IV.S3: Alignment of the Del1ΔccrD1-1 ΔPCC2 sequencing results to the corresponding genome sequence. 
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Figure IV.S4: Alignment of the Del1ΔccrD1-1 ΔMCM sequencing results to the corresponding genome sequence. 

 

Figure IV.S5: Alignment of the Del1ΔccrD1-1 ΔPCC2 ΔPCC1 sequencing results to the corresponding genome sequence. 

 

Figure IV.S6: Alignment of the Del1ΔccrD1-1 ΔPCC2 ΔMCM sequencing results to the corresponding genome sequence. 

 

 

Figure IV.S7: Alignment of the Del1ΔccrD1-1 ΔPCC2 ΔMCM ΔPCC1 sequencing results to the corresponding genome 

sequence. 
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Gel picture for Del1ΔccrD1-1 ΔPCC2 ΔMCM ΔPCC1 ΔVDH and S. albus J1074 ΔVDH 

 

Figure IV.S8: Gel picture of the PCR products for the VDH (212 bp) knockout in the Del1ΔccrD1-1 ΔPCC2 ΔMCM ΔPCC1 

and S. albus J1074strain after marker excision. 
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4. An influence of the copy number of biosynthetic 

gene clusters on the production level of antibiotics 

in a heterologous host 

 

 

 

Figure 4.1: Aerial mycelium and spore formation in S. albus ΔpseB4::41-2C-06 (1), S. albus J1074::41-2C-06 (2), S. albus 

T1::41-2C-06 (3) and S. albus T11::41-2C-06 (4). Intensity of the red color, which originates from the production of 

demethoxyaranciamycinone and derivatives, increases from 1 to 4. In 4 there is no visible spore formation and the strain is 

growing weaker in comparison to 1, 2 and 3. 
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Table 4.1: NMR data of 2-(1-hydroxyethyl)-1,8-dihydroxy-3-methylanthraquinone (600 / 150MHz, CDCl3, T = 25°C, solvent 

as internal reference) 

pos. δC 

ppm 

δH ppm (J Hz) COSYa HMBCa 

1 160.6   1-OH, 13-H3 

1-OH  12.88 s   

2 137.8   1-OH, 4-H, 12-H3, 13-H3 

3 145.3   13-H3 

4 122.9 7.65 s (13-H3) 13-H3 

4a 131.4    

5 120.0 7.82 d (7.6) 6-H 6-H, 7-H 

6 137.3 7.68 t (8.0) 5-H, 7-H 5-H, 7-H, (8-OH) 

7 124.7 7.29 d (8.4) 6-H 5-H, 8-OH 

8 162.5   6-H, 7-H, 8-OH 

8-OH  11.96   

8a 115.8   5-H, 7-H, 8-OH 

9 193.1   (4-H), (5-H) 

9a 114.3   1-OH, 4-H 

10 181.6   4-H, 5-H 

10a 133.6   6-H 

11 66.9 5.16 br t (6.8) 12-H3 (4-H), 12-H3 

11-OH  3.86 br s   

12 22.2 1.62 d (6.8) 11-H 1J 

13 20.6 2.47 s (4-H) 1J, 4-H 

aweak signals in brackets 

 

 


