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Abstract 

Compartmentation contributes at controlling the mammalian metabolism and is 

important in aging and diseases. Systems biology methods were applied to study 

compartmentation between cytosol and mitochondria. 

A mathematical modeling platform for non-stationary 13C metabolic flux analysis (Inst-

13CMFA) was developed and tested. It was then extended to model also extracellular 

labeling. First, fluxes were determined for the CHO-K1 cell line metabolism using only 

extracellular labeling and one labeled substrate. The results indicate that the cells adapt 

to sustain fast growth and to manage the complex media. Then, high resolution of 

compartment fluxes, reversibility and intracompartmental concentrations resulted by 

applying Inst-13CMFA to data from two labeling experiments. In both studies, pentose 

phosphate pathway carried a large flux. The produced NADPH is used by fatty acid 

synthesis and for mitigating oxidative stress. Differences in labeling were described by a 

model with pyruvate channeling. 

Selectively permeabilized CHO-K1 cells were fed mitochondrial substrates. Using the 

elementary mode decomposition of the mitochondrial network, the observed 

extracellular rates were distributed into elementary mode fluxes. This evidenced activity 

of pathways and regulatory effects. 

By combining more systems biology methods, this thesis constructed a larger picture for 

characterizing the complex metabolism of CHO-K1 cells and uncovered many new 

characterstics of metabolic compartmentation. 
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Zusammenfassung 

Die Kompartimentierung des Stoffwechsels trägt dazu bei den Stoffwechsel des Säugetiers 

zu regulieren. Methoden aus der Systembiologie wurden angewendet um die 

Kompartimentierung zu untersuchen. 

Eine Modellierungsplattform für nichtstationäre 13C Stoffwechsel-Flussanalyse (Inst-

13CMFA) wurde erarbeitet und getestet. Die Plattform wurde erweitert um Änderungen in 

der extrazellulären Isotopenmarkierung aufzunehmen. Flüsse wurden für die CHO-K1 

Zelllinien bestimmt durch die Verwendung von extrazellulärer Markierung. Flusswerte 

deuten darauf hin, dass sich die Zellen hinsichtlich schnellem Wachstum und der 

komplexen Medienzusammensetzung anpassen. Eine hohe Auflösung von Parametern 

wurde erreicht, indem Inst-13CMFA auf die Daten aus zwei Markierungsexperimenten 

angewendet wurde. In beiden Studien trug die Pentosephosphatweg einen hohen Fluss 

um NADPH zur Fettsäuresynthese und um oxidativen Stress zu vermeiden. Weiterhin 

lieferte das Channeling von Pyruvat eine Erklärung für Unterschiede Markierungen. 

Selektiv permeabilisierten CHO-K1 Zellen wurden verschiedene Substrate zugeführt. 

Unter Anwendung der Elementarmoden Zerlegung auf das mitochondriale Netzwerk 

konnte die Aktivität von Stoffwechselpfaden und regulierenden Effekten belegt werden. 

Indem weitere Methoden der Systembiologie angewandt wurden, trägt diese Dissertation 

dazu bei ein umfassenderes Bild des Stoffwechsels von CHO-K1 Zellen zu erstellen. 

Gleichzeitig wurden neue Fragen in Bezug auf Kompartmentflüsse aufgeworfen. 
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Abbreviations 

Subscripts 

c - cytosolic 

ex – extracellular 

m – mitochondrial 
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1. Introduction 

Chapter 1 

1. Introduction in systems biology for metabolism analysis 

of eukaryotic cells 

 

“We are prone to thinking by analogy […] but very little in our human experience is truly 

comparable to the immensely crowded, membrane-subdivided interior of a eukaryotic 

cell or the intricately layered structures of a mammalian tissue. So in our daily efforts to 

understand how cells work, we are faced with a challenge: how do we develop intuition 

that works at the microscopic scale? ” (Flamholz et al., 2014). One could further ask “how 

does one harness the complexity of the eukaryotic cell to answer practical questions?” A 

complex problem requires a complex solution. Sustained research in molecular biology 

and the emergence of “omics” technologies supply vast information concerning the 

components, the structure and the interactions within the cell. However, without a 

rigorous modeling framework, this knowledge provides little insight on how the systems 

properties emerge, what are the goals of the cell and how its behavior could be predicted. 

Systems biology, an explosively developing scientific field, addresses the question by 

observing multiple components simultaneously and by integrating those using rigorous 

mathematical models (Sauer et al., 2007). Biological systems are inherently complex, and 

in the case of eukaryotic cells, structural organization and compartmentation adds 

another layer of complexity when compared to the prokaryotic cell, as it was noted for 

yeast (Castrillo and Oliver, 2011), mammalian cells (Niklas and Heinzle, 2012) or plants 

(Lucas et al., 2011). 

Studying the metabolism of eukaryotic cells at systemic level is of essential importance 

for designing and improving recombinant organisms (Carinhas et al., 2012; Dietmair et al., 

2012; Liu; Zurbriggen et al., 2012), with the goal of increasing yield or producing desired 

glycosylation pattern in therapeutic proteins. Concerning mammalian organisms, the 

development of new treatments or diagnosis strategies benefits greatly from an in depth 

understanding of disease mechanisms and drug toxicity at the metabolic level (Bugrim et 
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al., 2004; DeBerardinis and Thompson, 2012; Kell, 2006). The eukaryotic cell (Fig. 1.1) 

distinguishes itself from the prokaryotic cell by the separation of the nucleus and 

organelles from the cytosol using enclosure within a system of endomembranes. The 

major role of compartmentation is to confine metabolic processes to distinct 

compartments in which it is possible to create different environments with respect to 

metabolite concentrations, enzymes and pH. Metabolite and protein traffic between 

compartments and cytosol is tightly regulated by selective membrane permeability and 

via membrane transporters (Schell and Rutter, 2013). Isoenzymes enable the same 

reaction to occur in different subcellular compartments under sometimes very different 

conditions, especially related to substrate availability and cofactor concentrations. This 

confers the eukaryotic cell a high degree of flexibility in controlling metabolic pathways. 

The cytosol is structured by a 3D meshwork called cytoskeleton that provides spatial 

organization of the organelles in the cytoplasm and also confers shape to the cell (de 

Forges et al., 2012). Enzymes can associate in transient or permanent complexes favored 

by the 3D structure, leading to substrate channeling (Jandt et al., 2013; Zhang, 2011) in 

some metabolic pathways. Other than enhancing reaction rates, enzyme complexes can 

protect unstable intermediates, create microenvironments for otherwise kinetically 

unfavorable reaction and isolate toxic of inhibitory intermediates from the rest of the cell. 

 

Figure 1.1. Scheme of a mammalian cell 
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1. Introduction 

1.1. Mitochondria 

Mitochondria evolved as specific organelles by inclusion of protobacteria in the precursor 

of the eukaryotic cell. Although the mitochondrial genome contains a small number of 

genes coding for the respiratory complex and genes needed for mitochondrial replication, 

mitochondrial proteome contains a wealth of over 1000 proteins and varies highly 

depending on the organism and cell type (Friedman and Nunnari, 2014; Pagliarini et al., 

2008). The mitochondrial metabolism is responsible for producing most of the energy in 

the eukaryotic cell by combining the TCA cycle activity with oxidative phosphorylation. 

Electrons are transferred from NADH or succinate to oxygen and ATP is produced from 

ADP by using the proton gradient generated by the electron transfer. Most NADH is 

produced by the TCA cycle through the oxidation of organic acids involved in the cycle. 

Mitochondrial carriers (Table 1.1) belonging to the mitochondrial carrier family (Kuan and 

Saier, 1993) are proteins encoded in the nucleus, and though they are characterized by 

relatively low homology, they share a common topology (Hamel et al., 2004). They are 

localized in the mitochondrial inner membrane and control the shuttling of various 

metabolites, cofactors and ions across the mitochondrial membrane. In the framework of 

cellular metabolism, the tightly regulated transport process is essential in maintaining 

distinct compartmented microenvironments and the membrane potential (Schell and 

Rutter, 2013). 

Owing to evolution of different roles organelles play in the cell, their membranes exhibit 

distinct compositions (van Meer et al., 2008). In comparison to the plasma membrane, 

the mitochondrial membrane contains almost no sterols and includes cardiolipin, a lipid 

unique to the mitochondria. This property enables the use of detergents, e.g. digitonin or 

saponin, to selectively permeabilize only the plasma membrane, leaving the mitochondria 

intact (Kuznetsov et al., 2008; Niklas et al., 2011a). Such “ghost cells” can be utilized for 

respiration studies (Wahrheit et al., 2015), analysis of compartmented enzyme activity 

(Wahrheit et al., 2014b) or other studies of the mitochondrial metabolism. 

Considering the central role the mitochondrial metabolism plays in the functioning of the 

eukaryotic cell, mitochondrial dysfunctions are responsible for many diseases e.g. 
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diabetes type II, cancer or neurodegenerative diseases (Balaban, 2010; Pagliarini et al., 

2008; Palmieri, 2008; Wallace, 2012) and play a key role in the aging process (Bratic and 

Larsson, 2013). Also, the many bioprocesses that use eukaryotic cells for the production of 

small molecules or recombinant proteins rely on an optimal use of substrates and on the 

energy supplied by the TCA cycle (Klein et al., 2015). 

1.2. Systems biology of mammalian cells 

In the post-genomic era, where great amounts of genomic, transcriptome and proteomic 

data become available at a fast pace and sustained research effort is employed to 

coagulate this data into knowledge through systems biology, metabolism tends to be 

overlooked as the main reflection and influence of the physiological state of the cell (Ray, 

2010). Metabolism is however the final manifestation of the entire genetic-transcriptome-

proteomic apparatus. In-depth knowledge of the eukaryotic cell metabolism can impact 

how new treatments for diseases are conceived or the design of new strains and 

bioprocesses (Niklas and Heinzle, 2012). Compartmentation complicates systems biology 

studies of the metabolism because of the addition of new pools of the same metabolite 

(Fig. 1.2), the existence of compartmented isoenzymes and limited information on the 

properties of mitochondrial carriers (Wahrheit et al., 2011a).  

 

Figure 1.2. Compartmentation of metabolite A between the extracellular media (extra), cytosol (cyt) and 
mitochondria (mit). The connection between the pools is made via specific transporters. 

Channeling effects and enzyme associations (al-Habori, 1995; Niklas et al., 2011b; Zhang, 

2011) create permanent or temporary environments where certain metabolites are isolated 

from their bulk pools and reaction kinetics are very different compared to the in vitro 
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situation. Within this dissertation, the term “pool” will refer to a metabolite 

concentration confined to a cell compartment. 

The metabolism of mammalian cells differs from that of plants and fungi due to its 

characteristic use of more and sometimes complex substrates and also the wider range of 

secreted metabolites. The central carbon metabolism (Fig. 1.3) is comprised of glycolysis, 

pentose phosphate pathway (PPP), mitochondrial transport, TCA cycle, anaplerotic and 

cataplerotic reactions and the amino acid metabolism. Although it differs greatly among 

organisms and cell types, a typical mammalian cell takes up glucose as the main carbon 

source, glutamine as carbon and nitrogen source, it can simultaneously take up and 

produce non-essential amino acids, it takes up essential amino acids mostly for protein 

synthesis and it can secrete lactate as a side product. Isoenzymes catalyze certain 

reactions from the TCA cycle, anaplerosis/cataplerosis or amino acid metabolism 

simultaneously in different compartments (Table 1.2). 

 

Figure 1.3. General scheme of the mammalian cell metabolism. Abbreviations: AA – amino acid; Asn – 

asparagine; Glc – glucose; Gln – glutamine; Lac – lactate; PPP – pentose phosphate pathway; Pyr – pyruvate. 

From a systems biology point of view, characterizing the metabolism of a mammalian cell 

involves two main parts: establishing the topology of the metabolic network and in vivo 

flux analysis (Wahrheit et al., 2011a). 
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Table 1.1. Mitochondrial carriers in Baker’s yeast (Saccharomyces cerevisiae), Chinese hamster (Cricetulus griseus) and human (Homo 

sapiens). 1 – from SGD (Christie et al., 2004); 2 – from CHOgenome (Hammond et al., 2012); 3 – from Human Genome Resources (Pruitt et 

al., 2000) . 

Nr 
Mitochondrial 

carrier - 

substrate 

Process S. cerevisiae1 

 

CHO2 

 

Human3 

 

References 

 

1 pyruvate Pyr-
c + H+

c Pyr-
m + H+

m 

YGL080W (MPC1) 

YHR162W (MPC2) 

YGR243W (MPC3) 

Mpc1 

Mpc2 

LOC100772695 

LOC103162130 

MPC1 

MPC1L 

MPC2 

 

(Bricker et al., 2012; Herzig 

et al., 2012) 

2 NAD+ - 
YIL006W/ YEL006W  

(YIA6/YEA6) 

- - (Hildyard and Halestrap, 

2003; Todisco et al., 2006) 

3 citrate 
Citc + Malm   Citm + Malc 

Citc + Pepm  Citm + Pepm 

YBR291C (CTP1) Slc25a1 SLC25A1 (CIC) (De Palma et al., 2005; 

Gnoni et al., 2009; Kaplan et 

al., 1995) 

4 oxaloacetate Oaac + H+
c  Oaam + H+

m YKL120W (OAC1) - - (Palmieri et al., 1999) 

5 
pyrimidine 

nucleotide 

C/U/TTPc + C/U/TDPm  

C/U/TTPm + C/U/TDPc 

YBR192W (RIM2) Slc25a36 

Slc25a33 

SLC25A36 

SLC25A33 

(Di Noia et al., 2014; 

Marobbio et al., 2006) 

6 GTP/GDP 
GDPc + GTPm  GDPm + 

GTPc 

YDL198C (GGC1) - - (Vozza et al., 2004) 

7 dicarboxylate C4c + Pim   C4m + Pic 

YLR348C (DIC1) Slc25a10 

LOC100766192 

SLC25A10 (DIC) (Fiermonte et al., 1998; 

Palmieri et al., 1999; 

Pannone et al., 1998) 

8 thiamine phosphate ThPPc  ThPPm 
YGR096W (TPC1) Slc25a19 SLC25A19 (DNC) (Kang and Samuels, 2008; 

Marobbio et al., 2002) 

9 phosphate Pic  Pim 
YJR077C (MIR1) Slc25a25 

Slc25 A23 

SLC25A25 (APC3) 

SLC25A23 (APC2) 

(del Arco and Satrustegui, 

2004; Dolce et al., 1991; 
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Slc25a3 SLC25A24 (APC1) 

SLC25A3 (PHC) 

Phelps et al., 1991) 

10 
citrate / 

oxoglutarate 
Citm + AKGc  Citc + AKGm 

YMR241W (YHM2) - - (Castegna et al., 2010) 

11 
S-

adenosylmethionine 
SAMc  SAMm 

YNL003C (PET8) Slc25a26 SLC25A26 (SAMC1) (Marobbio et al., 2003) 

12 ADP/ATP ADPc + ATPm  ADPm + ATPc 

YBL030C 

(PET9/AAC3) 

Slc25a4 

Slc25a5 

Slc25a31 

SLC25A4 (ANT1) 

SLC25A5 (ANT2) 

SLC25A6 (ANT3) 

SLC25A31 (ANT4) 

(Houldsworth and Attardi, 

1988; Lawson and Douglas, 

1988) 

13 
aspartate / 

glutamate 

Gluc  Glum 

Gluc + Aspm  Glum + Aspc 

YPR021C (AGC1) Slc25a12 

Slc25a13 

SLC25A12 (AGC1, 

ARALAR1) 

SLC25A13 (AGC2, 

ARALAR2) 

(Cavero et al., 2003; 

Kobayashi et al., 1993) 

14 succinate / fumarate Succ + Fumm  Sucm + Fumc YJR095W (SFC1) - - (Palmieri et al., 1997) 

15 
acylcarnitine, 

basic amino acids 

AcCARc + CARm  AcCARm + 

CARc 

YOR100C (CRC1) Slc25a20 

Slc25a29 

SLC25A20 (CAC) 

SLC25A29 

(Huizing et al., 1997; 

Porcelli et al., 2014; van 

Roermund et al., 1999) 

16 

 

Calcium-binding 

carrier protein 

ATPm/ADPc + Pim  

ATPm/ADPc + Pic 

- (YMC3 in 

P.pastoris) 

SCaMC-1 SLC25A24 (Fiermonte et al., 2004) 

17 
α-ketoglutarate 

/malate 
AKGm + Malc  AKGc + Malm 

- Slc25a11 

LOC100770598 

SLC25A11(OGC) (Iacobazzi et al., 1992) 

18 ornithine Ornc + H+
m  Ornm + H+

c 
ORT1 Slc25a15 

Slc25a2 

SLC25A15 (ORC1) 

SLC25A2 (ORC2) 

(Fiermonte et al., 2003; 

Palmieri et al., 2000)  

19 glutamate Gluc  Glum 
- Slc25a18 

Slc25a22 

SLC25A18 (GC2) 

SLC25A22 (GC1) 

(Fiermonte et al., 2002) 

20 oxoadipate 
C5-C7 oxodicarboxylatec  

C5-C7 oxodicarboxylatem 

YPL134C (ODC1) Slc25a21 SLC25A21 (ODC) (Fiermonte et al., 2001; 

Palmieri et al., 2001) 
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21 folate - - Slc25a32 SLC25A32 (MFT) (Titus and Moran, 2000) 

22 uncoupling proteins - 

- Slc25a7 

Slc25a8 

Slc25a9 

Slc25a27 

Slc25a14 

SLC25A7 (UCP1) 

SLC25A8 (UCP2) 

SLC25A9 (UCP3) 

SLC25A27 (UCP4) 

SLC25A14 (UCP5) 

(Boss et al., 1997; Cassard et 

al., 1990; Sanchis et al., 

1998) 

Not yet annotated 

YHR002W (LEU5, involved in CoA transport in yeast 

mitochondria) (Prohl et al., 2001) 

MTCH1 (Palmieri, 2013) 

MTCH2 

SLC25A16 (Mitochondrial carrier, Graves disease autoantigen) 

(Zarrilli et al., 1989) 

SLC25A28 (Mitoferrin2) 

SLC25A30 (KMCP1) 

SLC25A33 (PNC1) 

SLC25A34 

SLC25A35 

SLC25A36 (PNC2) 

SLC25A37 

SLC25A38 

SLC25A39 (CGI-69) 

SLC25A40 (MCFP) 

SLC25A41 

SLC25A42 

SLC25A43 

SLC25A44 

SLC25A45 

SLC25A46 

SLC25A47 

SLC25A48 

SLC25A49 

SLC25A50 

SLC25A51 

SLC25A52 

SLC25A53 

Required by metabolism but not yet assigned 

glutamine transporter (Indiveri et al., 1998) 

neutral amino acids carrier (Cybulski and Fisher, 1977) 
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Metabolic network reconstruction aims at building a consistent network of metabolic 

events, i.e. reactions and transport, using biochemical knowledge. Biochemistry books, 

the metabolic network compilation by (Michal and Schomburg, 2012) and online 

databases (Hammond et al., 2012; Zhu et al., 2003) that collect and curate gene 

annotation, gene expression and proteomic data constitute the main starting points for 

building a metabolic network. Bioinformatics software can assist the otherwise 

cumbersome process of network reconstruction making the process automatic (Forth et 

al., 2010; Karp et al., 2010). Popular open source software like COBRA (Schellenberger et 

al., 2011) includes tools for constraint-based genome scale reconstruction and analysis. 

Table 1.2. Isoenzymes from the central carbon metabolism of Mus musculus* and 

their localization in cytosol and/or mitochondria. 

Enzyme 

Compartment 

Cytosol Mitochondria 

Acetyl-Coenzyme A 
acetyltransferase 

Acat2, Acat3 Acat1 

Aconitase Aco1 Aco2 

Branched chain 
aminotransferase 

Bcat1 Bcat2 

Fumarase Fh1** Fh1* 

Glutamic-oxaloacetic 
transaminase 

Got1 Got2 

Glutamic pyruvic 
transaminase 

Gpt Gpt2 

Isocitrate dehydrogenase 
Idh1 (NADP+-
dependent) 

Idh2 (NADP+-dependent), 
Idh3 (NAD+-dependent) 

Lactate dehydrogenase Ldha, Ldhb Ldhd 

Malate dehydrogenase Mdh1 Mdh2 

Malic enzyme 
Me1 (NADP+-
dependent) 

Me2 (NAD+-dependent), 
Me3 (NADP+-dependent) 

Phosphoenolpyruvate 
carboxykinase 

Pck1 Pck2 

Serine 
hydroxymethyltransferase 

Shmt1 Shmt2 

* (Blake et al., 2014) 
**  fumarase is present in the same form in both compartments 
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Genome scale models of the mammalian cell metabolism include cofactor (e.g. NADH, 

NADPH, ATP, etc.) balance, but this can be a potential pitfall because of the lack of 

reliable respiration measurements, limited knowledge about futile cycles and 

uncertainties in the selectivity of enzymes for NAD+ or NADP+ (Wahrheit et al., 2011a). 

Missing links and inconsistencies in the network are corrected by reevaluating the model 

based on experimental observations. Once a consistent metabolic network was 

constructed, it can be used to determine the material flow from substrates to products by 

applying flux analysis methods. Genome scale models are modeled mathematically by 

converting them into stoichiometry matrices, where the rows correspond to the 

components, and the columns represent the reactions. Stoichiometry based modeling 

involves methods for flux balance analysis (Varma and Palsson, 1994; Xie and Wang, 1996; 

Zupke and Stephanopoulos, 1995), elementary mode analysis (Schuster et al., 2000), 

extreme pathway analysis (Wiback et al., 2003) or other constraint-based modeling that 

can include e.g. thermodynamics (Henry et al., 2007) or kinetics. Such methods can be 

used to understand cellular objectives, to obtain a feasible solution space for the 

metabolic fluxes under specific conditions or to simulate possible mutants/inhibitions in 

silico. All such models rely on the assumption of metabolic steady state, which means 

that: (1) intracompartmental concentrations do not change over time and (2) only one 

metabolic state of the cell is characterized. 

1.3.   13C-based metabolic flux analysis 

Detailed metabolic flux analysis needs powerful tools to tackle complex networks as those 

of mammalian cells. Alternative pathways, intercompartmental transport and the 

presence of isoenzymes introduce new degrees of freedom in the network that weaken 

the resolution power of flux balance approaches. Flux balance analysis (FBA) methods 

rely on considering cofactor and electron balances. This can generate errors due to the 

uncertainty of cofactor preference of certain enzymes. Also, it is difficult to include 

oxidative phosphorylation uncoupling, futile cycles or electron leaking through the 

mitochondrial membrane. For answering questions regarding compartmentation, 
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metabolite exchange or channeling, while at the same time avoiding the use of cofactor 

and electron balances, 13C metabolic flux analysis (13CMFA) is currently method of choice. 

The principle of using 13C substrate labeling is that, following the distribution of carbon in 

the metabolic network, the labeling pattern of intra- or extracellular metabolites contains 

information about the metabolic flux distribution. For a molecule, there are 2n possible 

arrangements of labeled and non-labeled carbon atoms, called carbon isotopomers, in 

which n is the number of carbon atoms in the molecule. A network is then built to trace 

the distribution of carbon from substrate(s) to metabolites and more specifically, to those 

for which the labeling pattern was sampled. Simulation of the 13C distribution throughout 

a metabolic network at steady state involves carbon-transfer rules and mass balances to 

compute the label distributions in the readout metabolites (Schmidt et al., 1997; 

Wahrheit et al., 2011a; Wiechert and de Graaf, 1997; Zupke and Stephanopoulos, 1994). For 

a typical reaction A + B  C, the isotopomer distribution vector of C (IDVC) will be 

mapped from the isotopomer distribution vector of A (IDVA) and B (IDVB) using the 

isotopomer mapping matrices that maps A to C (IMMAC) and B to C (IMMBC) and 

element-wise multiplication : 

   BCBACAC IDVIMMIDVIMMIDV  
   (1.1) 

Known parameters, such as uptake fluxes vu,i (eq. 1.2) and biomass fluxes vbio,i (eq. 1.3), are 

determined by analyzing the extracellular metabolite concentrations (pools) Ci and 

biomass composition, then relating them to the cell number X, specific growth rate  

Xdt

dX 1
 and the cell volume Vcell: 

cell

i

iu
VXdt

dC
v

11
,        (1.2) 

cell

Xiibio
VXdt

dX
Yv

11
/,       (1.3) 
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The intracellular fluxes v constitute the null space of the stoichiometric matric S (eq. 1.4), 

that can be further divided to include the measured fluxes vm: 

0

0





eemm vSvS

vS
    (1.4) 

where Sm – stoichiometric matrix corresponding to measured fluxes, Se – stoichiometric 

matrix corresponding to estimated fluxes, ve – estimated fluxes. In addition to the 

condition of metabolic steady state, in compartmented systems it is also necessary to 

assume that the volume ratio between compartments does not change. The mass balance 

in the three volumes for metabolite A in Fig. 1.2 can therefore be written as: 

Aextra:   cellcultureuptakeAinA

extraA
VVXvQ

dt

dC
 ,,

,
      (1.5) 

Acyt:  transportAcytprodAcytconsAuptakeA vvvv ,,,,,,0        (1.6) 

Amit:  mitprodAmitconsAtransportA vvv ,,,,,0        (1.7) 

where: CA,extra – concentration of A in the media, [mmol  L-1]; QA,in – total feed of A in 

the culture media, [mmol  h-1]; v – fluxes of uptake, consumption (cons), production (prod) 

and transport between compartments, [mmol  (L cell)-1  h-1]; X – cell density, [cells  

L-1]; Vculture – cultivation volume, [L]; Vcell – cell volume, [L cell]. 

A problem is then constructed that estimates the free parameters Φ by fitting the 

simulated labeling patterns to labeling data retrieved from GC-MS (mass isotopomers) or 

13C-NMR (positional enrichment) (Schmidt et al., 1999; Wittmann and Heinzle, 1999) 

using an optimization algorithm that minimizes the quadratic deviation estimator (f) 

computed as the weighted sum of square differences between measured and computed 

MIDs (1.8). 
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














 


..

1

2

exp

exp
1

)(min
measnr

i ii

sim

ii

errorMID

MIDMID
f  , Φ ≥ 0   (1.8) 

In 13CMFA, the free parameters are the net and reversible fluxes at metabolic steady state. 

Classical 13CMFA uses the isotopomer distributions sampled at labeling steady state. 

Estimated flux distributions rely on several factors: (1) amount and quality of 

experimental data involving extracellular fluxes and labeling, (2) degree of complexity 

and correctness of the metabolic network, (3) numerical methods and performance of 

optimization algorithms. Sensitivity analysis or statistical methods e.g. Monte Carlo are 

then used to assess the influence of experimental errors and establish the confidence 

intervals for the estimated parameters (Antoniewicz et al., 2006; Wittmann and Heinzle, 

2002; Yang et al., 2008). Experimental design can guide the choice of substrate labeling 

and the layout of an optimal set of measurements (Chang et al., 2008; Metallo et al., 

2009). Software packages for 13CMFA are available and can vary in their user-friendliness, 

open/closed source type, flexibility and the algorithms used for isotopomer balancing and 

parameter estimation (Millard et al., 2014; Quek et al., 2009b; Srour et al., 2011; Zamboni 

et al., 2005). 

Representative 13CMFA applications for mammalian cells include the characterization of 

hybridoma cells metabolism and a comparison to flux analysis without using 13C labeling 

(Bonarius et al., 1998), unraveling compartmentation of pyruvate metabolism in 

pancreatic beta-cells (Lu et al., 2002), assessing the subtoxic effects of drugs on 

cardiomyocites (Strigun et al., 2012), probing the metabolism of an inducible expression 

system in Chinese hamster ovary cells (Sheikholeslami et al., 2013) or  using lactate 

labeling to characterize the metabolism of HEK cells (Henry et al., 2011). Efforts were 

made to establish cultivation media and techniques that help to maintain the metabolic 

steady state long enough until isotopic steady state is reached (Deshpande et al., 2009). 
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1.4. Non-stationary 13C metabolic flux analysis 

Ensuring metabolic steady state until isotopic steady state is reached is a mathematical 

necessity for applying 13CMFA, but it can prove difficult in mammalian cell cultures. The 

required time scale is usually too large to maintain a stable metabolism. Substrates 

become depleted in the media and toxic products like lactate or ammonia accumulate, 

leading to significant changes in the metabolism and sometimes even to cell death. Also, 

exchange of metabolites with the media influences the intracellular labeling while 

increasing considerably the time needed to reach isotopic steady state. Although 

computationally and experimentally much more intensive than classical 13CMFA, non-

stationary 13CMFA (Inst-13CMFA) has the potential to overcome these difficulties by using 

the isotopomer dynamics at a short time scale, when the metabolism remains at steady 

state (Antoniewicz et al., 2007; Noh et al., 2007). For applying Inst-13CMFA, the 

experimental isotopomer distributions are sampled over time and a mathematical model 

simulates the dynamics of isotopomers by integrating the carbon balance equations (eq. 

1.9) starting from the moment when the labeled substrate was fed. For the system of 

reactions shown in (Fig. 1.4), the dynamic isotopomer balance depends on the 

intracompartmental concentration of D (CD, [mmol  (L cell)-1]), on the fluxes producing 

D (vD,1 and vD,2, [mmol  (L cell)-1  h-1]) and the fluxes consuming D (vD,out, [mmol  (L 

cell)-1  h-1]): 

      DoutDCDCDBDBADAD
D

D IDVvIDVIMMvIDVIMMIDVIMMv
dt

dIDV
C   ,21,

  (1.9) 

where IDV – isotopomer distribution vector, IMM – isotopomer mapping matrix. 

Following the substrate label switch, the isotopomer distribution of D changes gradually 

from non-labeled to labeled (Fig. 1.3), at a rate proportional to the vD,out / PoolD  ratio.  

In addition to extracellular fluxes and transient intracellular isotopomer distributions, 

Inst-13CMFA (Fig. 1.5) also requires that at least some key intracellular concentrations are 

sampled experimentally (Noh and Wiechert, 2006). One major advantage is that Inst-

13CMFA permits the estimation of unknown intracompartmental, perhaps difficult to 

measure concentrations. 
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Figure 1.4. Example of a dynamical labeling experiment. Metabolite D is produced by two enzyme-

catalyzed reactions from metabolites A and B in one reaction and from C in the second. The isotopomers of 

D corresponding to the labeling in A, B and C, IDVD,xxxxxx, are formed at rates proportional to the fluxes vD,1 

and vD,2 and inversely proportional with the intracompartmental pool of D. 

The sampling time points and the labeled substrate or combination of substrates can be 

optimally chosen by applying experimental design strategies (Noh and Wiechert, 2006; 

Yang et al., 2014). Several software packages became recently available to tackle the 

numerical complexity of estimating metabolic fluxes using Inst-13CMFA, of which some 

were published (Antoniewicz, 2013b; Kajihata et al., 2014; Young, 2014) and others are 

commercially available, like 13CFlux (https://www.13cflux.net/). Metabolic networks and 

flux maps are most comprehensible in graphical representation, for which visualization 

software was developed, like Omix (Noh et al., 2015). 

Due to the complex experimental requirements, there are few published applications of 

Inst-13CMFA. Using the transient labeling in intracellular metabolites lead to an extended 

topology and better characterization of methanol metabolism in Pichia pastoris compared 

to studies that used 13C labeling in proteinogenic amino acids (Jorda et al., 2014; Jorda et 

al., 2013). 

https://www.13cflux.net/
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Figure 1.5. Experimental and simulation scheme of non-stationary 13C metabolic flux analysis. (A) In 

the labeling experiment (A1), a naturally labeled Substrate 1 is replaced with a 13C-labeled substrate. Labeled 

metabolites are sampled from the intra- and extracellular media, and then analyzed using mass 

spectrometry (A2) to determine the mass isotopomer distributions (A3). (B) Cultivation in non-labeled 

media (B1) provides the extracellular media and cells for cultivation profiling (B2) that determined the 

extracellular fluxes in the metabolic network (B3). (C) The metabolic network, mass distribution vectors 

(MDVs) and extracellular fluxes are data input for non-stationary 13C metabolic flux analysis (Inst-13CMFA) 

software that estimates the free parameters (fluxes, reversibilities and intracompartmental pools) by 

optimizing the fitting of the simulated MDVs. Once the estimation is considered successful, the confidence 

intervals of parameters are computed and sensitivity analysis is performed. 

Plants use CO2 as the only carbon source, making steady-state 13CMFA inapplicable but 

opening the door to many interesting applications of Inst-13CMFA, as  characterizing the 

leaf metabolism in Arabidopsis thaliana (Ma et al., 2014) or establishing subcellular 

compartmentation in various plant cells (Allen et al., 2007). Production of 

biopharmaceuticals using mammalian cells benefits greatly from a detailed 

understanding of the metabolism of relevant cell lines. Comprehensive flux maps were 

achieved with 13CMFA and multiple labeled substrates in CHO cells (Ahn and 
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Antoniewicz, 2011) or extracellular labeling obtained after feeding [U-13C] glucose to 

CHO-K1 cells in batch culture (Nicolae et al., 2014). Detailed metabolic aspects in cancer-

like cells (Murphy et al., 2013) could be resolved at high resolution using isotopically 

nonstationary 13C flux analysis. Transient 13C labeling was also applied to study the 

neuronal metabolism in vivo (Gruetter, 2002) and the influence of hypoglycemia (Amaral 

et al., 2011). 

1.5. Dynamic metabolic flux analysis  

Despite the high resolution of 13CMFA at determining the metabolic fluxes, sometimes the 

focus is to characterize mammalian metabolism over a longer time span. Capturing the 

dynamic change in metabolic fluxes in batch or fed-bath cultivations  could help 

understanding the metabolic shifts in mammalian cell cultures (Niklas et al., 2011c) and 

the limiting effect of glutamine availability for CHO cells (Wahrheit et al., 2014a). Two 

main mathematical approaches exist for dealing with flux dynamics: one is to separate the 

flux timeline in phases for which the metabolism is considered to be at steady state 

(Antoniewicz, 2013a; Leighty and Antoniewicz, 2011) and another is to compute 

continuous flux values by fitting the extracellular concentrations with specific functions 

or with splines (Lequeux et al., 2010; Niklas et al., 2011c; Wahrheit et al., 2014a; Willemsen 

et al., 2015). Regardless of the approach, the extracellular fluxes are determined by fitting 

the extracellular concentrations and growth curve, determining the rates by numerical 

derivation and applying eq. 1.2 and 1.3, then the intracellular fluxes are computed using a 

stoichiometric model. Because the numerical derivation of splines and the experimental 

determination of concentrations are considerable sources of errors, Monte Carlo can be 

used to determine the standard deviations of the computed fluxes (Niklas et al., 2011c). 

 

1.6. Elementary mode analysis 

A very useful method for analyzing the topology of reaction networks, elementary mode 

analysis (EMA) decomposes the fluxes at steady state into elementary modes (Schuster et 

al., 2000) (Fig. 1.6). These are a set of vectors derived from the stoichiometric matrix, that 

have the following properties: (1) for a given network, there is an unique set of elementary 
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modes; (2) each elementary modes consists of the minimum number of reactions needed 

to exist as a functional metabolic unit, and cannot function if any reaction is removed and 

(3) the elementary modes are the set of all possible pathways that satisfy the previous 

condition (Papin et al., 2004). The metabolic fluxes at a given steady state can be 

expressed as a linear combination of the elementary fluxes. EMA provides a tool for 

stoichiometry-based approaches to characterize the structure of the metabolic network in 

mammalian cells (Orman et al., 2011) and evaluate the weight of each flux or to correlate 

the influence the uptake of a certain substrate has on the products. However, the 

decomposition of a flux distribution is usually not unique for large networks, and it can 

be made only by minimizing an objective function (Zhao and Kurata, 2009). Human 

blood cell network was a target for many pathways analysis studies to describe energy 

metabolism or to relate circulatory dysfunctions to enzymes (Cakir et al., 2004; Wiback 

and Palsson, 2002). Macroscopic reaction modes for CHO cells connecting substrates and 

products were constructed based on network decomposition in elementary modes 

(Provost et al., 2006). 

 

1.7. The Chinese hamster ovary cell line 

Both theoretical studies and bioproduction using mammalian cells require stable cells 

lines that can be cultivated in reproducible conditions. The Chinese hamster ovary (CHO) 

cell line was obtained by Puck in 1957 (Puck, 1985) from a female Chinese hamster 

(Cricetulus griseus). Nowadays, CHO are considered the mammalian equivalent of E. coli 

and are ideal model mammalian systems or for recombinant expressing heterologous 

proteins owing to: (1) their stable gene expression, (2) high yields of protein production, 

(3) the ability to produce glycosylated proteins compatible with humans, (4) powerful 

gene amplification systems, such as dihydrofolate reductase or glutamine synthetase-

mediated gene amplification and (5) their ability to grow in serum-free media and 

suspension conditions found in large industrial bioreactors.  
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Figure 1.6. An example of elementary mode decomposition of a reaction network. EM – elementary mode. 
The red arrows represent each elementary mode. Adapted from (Papin et al., 2004) 

CHO are therefore the main production cell line for biopharmaceuticals, responsible for 

nearly 70% of all recombinant therapeutic production (Jayapal et al., 2007; Kim et al., 

2012). Considering the economical and scientific importance of CHO cells, there has been 

sustained effort in the field of systems biology to characterize the CHO cells (Table 1.3). 

Their genome was published in 2011 (Xu et al., 2011), sequenced from sorted chromosomes 

(Brinkrolf et al., 2013) and is available online at www.chogenome.org (Hammond et al., 

2012), a database that is continuously updated to include new annotations. Combining 

genome annotation using homology with omics studies that focused on unraveling the 

transcriptome (Becker et al., 2011; Hackl et al., 2011) and proteome (Baycin-Hizal et al., 

2012) constitutes the foundation for the CHO systems biology era (Kildegaard et al., 2013). 

http://www.chogenome.org/
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Table 1.3. Timeline of “omics” and metabolic studies of the CHO cell line. Abbreviations: CHO – 
Chinese hamster ovary; GS – glutamine synthetase; mAb – monoclonal antibody; PPP – pentose phosphate 
pathway; SHMT – serinehydroxymethyltransferase. 

“omics” studies of CHO 

cells 
YEAR Metabolic studies of CHO cells 

Cell line, 

culture type 

Development of the CHO cell 

line (Puck, 1985). 
1957   

Mitochondria isolation in 

CHO cells (Madden and 

Storrie, 1987). 

1987  
 

 1996  Partitioning of serine and glycine metabolism 

was studied using [1-13C]- or [2-13C]glycine. 

Mitochondrial SHMT is the primary pathway 

for serine into glycine interconversion 

(Narkewicz et al., 1996). 

CHO K1 

CHO glyA 

(lacks mSHMT 

activity) 

 1999 

 

FIRST METABOLIC MODEL OF CHO 

 A simplified model of the central carbon 

metabolism of CHO was used to study the 

consistency of mass balances when CHO cell 

are grown in complex media (Nyberg et al., 

1999). 

γ-CHO, 

continuous 

 2001 

 

 Metabolic flux redistribution in glutamate-

based media. Regulation of glucose feed rate 

promotes efficient use of glucose and nitrogen 

source and lowers production of byproducts 

(Altamirano et al., 2001b).  

CHO TF 70R, 

suspension 

continuous 

 Decoupling cell growth and product 

formation by generating a process with a 

growth phase and a stationary (producing) 

phase (Altamirano et al., 2001a). 

CHO TF 70R, 

suspension 

batch 

Two-dimensional 

electrophoresis map of CHO-

K1 cell line proteins (Hayduk 

et al., 2004). 

2004 

 

 

 

 2005 

 

 Metabolism of CHO cells at low glucose 

concentration analyzed by determining 

intracellular metabolites. Amino acid 

catabolism and intracellular concentrations 

increased at reduced glucose availability (Lu et 

CHO 

producing 

erythropoietin, 

monolayer 
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al., 2005). 

 2006 

 

 Macroscopic bioreaction model of CHO cell 

culture generated using elementary modes for 

each culture phase (Provost et al., 2006). 

CHO-320, 

suspension 

batch 

 Metabolic characterization of recombinant 

CHO cells expressing glutamine synthetase 

(GS) in the medium with or without glutamine 

(Zhang et al., 2006). 

CHO-GS 

producing a 

recombinant 

protein, 

monolayer 

Genomic platform for CHO 

cells containing 28,000 CHO 

transcripts obtained using 

Sanger-based sequencing 

(Kantardjieff et al., 2009). 

2009 

 

 

 

 2010 

 

 Flux analysis of an underdetermined network 

of CHO generates flux ranges (Zamorano et al., 

2010). 

CHO-320, 

suspension 

batch 

 Metabolic flux analysis of CHO cell 

metabolism in the late non-growth phase 

evidences a high PPP and low lactate 

production (Sengupta et al., 2010). 

CHO-GS SF18, 

suspension 

batch 

 Metabolic flux analysis of CHO cells in 

perfusion culture using 13C-labeled glucose 

(Goudar et al., 2010). 

n.s., perfusion 

 CHO genome published 

(Xu et al., 2011). 

 Transcriptome unraveled 

by next-generation 

sequencing (Becker et al., 

2011) 

 Next-generation 

sequencing of miRNA 

transcriptome (Hackl et al., 

2011) 

 Metabolite profiling of 

CHO cells and identification 

of nutrient bottlenecks 

(Sellick et al., 2011a) 

2011 

 

 MFA of CHO cells at growth and non-growth 

phases using [1,2-13C]glucose. Exponential 

phase: high glycolysis, lactate production, 

anaplerosis from pyruvate to oxaloacetate and 

from glutamate to α-ketoglutarate, and 

cataplerosis though malic enzyme. Stationary 

phase: reduced glycolysis, lactate uptake, PPP 

flux, and reduced rate of anaplerosis (Ahn and 

Antoniewicz, 2011). 

CHO-K1, 

monolayer 
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 Proteomic analysis of CHO 

cells included the cellular 

proteome, secretome, and 

glycoproteome. A total of 

6164 grouped proteins were 

identified from both 

glycoproteome and proteome 

(Baycin-Hizal et al., 2012). 

 Chinese hamster ovary 

database is made available as 

an online resource 

(Hammond et al., 2012). 

 Identification of the 

extracellular protein 

secretome in CHO cells 

(Slade et al., 2012). 

2012 

 

 Dynamic metabolic model of CHO cell 

culture based on decomposition provides sets 

of macroscopic bioreactions (Zamorano et al., 

2012). 

CHO-320, 

suspension 

batch 

 CHO-K1 genome sequenced 

from sorted chromosomes 

(Brinkrolf et al., 2013). 

 Comparison of the 

Cricetulus griseulus genome 

with that of six CHO cell 

lines highlights differences in 

genes related to 

bioproduction (Lewis et al., 

2013). 

2013 

 

 Kinetic model of CHO central carbon 

metabolism using Michaelis-Menten was used 

for studying the effect of sodium butyrate on 

CHO cells metabolism (Ghorbaniaghdam et 

al., 2013). 

CHO 

producing t-

PA 

 

 Flux balance analysis of Chinese hamster 

ovary cells before and after a metabolic switch 

from production to consumption showed that 

cells consuming lactate have a higher energy 

efficiency lactate producing cells (Martinez et 

al., 2013). 

CHO-XL99, 

suspension 

batch 

 Metabolic flux distributions of GS-CHO cell 

clones based on exometabolome profiling 

reveals that asparagine is the main source of 

nitrogen (Carinhas et al., 2013). 

CHOK1SV 

(producing 

IgG4 mAb), 

suspension 

batch 

 13CMFA of a high expressing recombinant 

CHO cell line in fed-batch productions applied 

to determine changes in central metabolism 

that accompany growth and mAb production 

(Dean and Reddy, 2013). 

CHO 

producing 

mAb, 

suspension 

batch 
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 Parallel labeling using [1,2-13C]glucose and 

[U-13C]glutamine in parallel produced detailed 

flux maps of CHO cells (Ahn and Antoniewicz, 

2013). 

CHO-K1, 

monolayer 

 Steady state 13CMFA applied to characterize 

CHO cell metabolism during four separate 

phases of a culture showed that a highly 

oxidative state of metabolism corresponds with 

peak antibody production (Templeton et al., 

2013). 

mAb-

producing 

CHO cell line, 

fed-batch 

 Comparative study of the intracellular flux 

distribution with and w/o the induction of 

recombinant protein synthesis studied using 

extracellular labeling showed that protein 

expression is correlated with changes in 

pathways related to ATP and NADPH 

formation (Sheikholeslami et al., 2013) 

CHO 

producing 

anti-CD20 

mAb, 

suspension 

batch 

140 synthetic promoters for 

CHO engineering (Brown et 

al., 2014). 

2014 

 

 Profiling of extracellular metabolites coupled 

with an analysis of intracellular distributions 

using 1‐13C‐pyruvate was used to trace 

metabolic rearrangements in different 

scenarios of asparagine and serine availability 

(Duarte et al., 2014). 

CHOK1SV 

(producing 

IgG4 mAb), 

suspension 

batch 

 13CMFA used to examine the effects of 

glutamine feeding on the metabolism and 

recombinant protein productivity of induced 

CHO cells. High TCA cycle at low glutamine 

levels and increased lactate production at high 

glutamine levels (Sheikholeslami et al., 2014) 

CHO 

producing 

mAb using a 

cumate gene-

switch, fed-

batch 

 Inst-13CMFA in CHO cells using only 

extracellular labeling showed that at 

exponential phase the metabolism ensures fast 

growth and mitigates oxidative stress. 

Compartmentation is used to control 

NAD(P)H availability and synthesis/catabolism 

of amino acids (Nicolae et al., 2014). 

CHO-K1, 

suspension 

batch 

 Glutamine feeding influence on CHO growth 

studied using dynamic metabolic flux analysis 

(Wahrheit et al., 2014a). 

CHO-K1, 

batch, fed-

batch 
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 2015  FBA applied to a large scale model and 

multivariate analysis to quantify intracellular 

metabolic fluxes of antibody-producing GS-

CHO cells supplemented with different lots of 

wheat hydrolysates (Lee et al., 2015). 

CHO-GS 

producing 

mAb 

 

In a typical culture of CHO cells, during the exponential growth phase, the CHO 

metabolism is characterized by a high glycolytic flux combined with a high lactate 

secretion flux. For protein production purposes, this state is highly inefficient due to low 

TCA cycle activity, glucose and media waste and the accumulation of lactate that alters 

the pH in the culture media. Later, depending on substrate availability, the culture can 

switch from producing to taking up lactate. This phase is characterized by slow growth 

but a high rate of protein production. The metabolism is responsible for handling the 

available substrates and supply the precursors related to growth and production. By 

reviewing the studies presented in Table 1.3, it is revealed that a deep understanding of 

the CHO cells metabolism is tightly correlated to improving recombinant protein 

production. 

 

  



 

 

25 
 

1. Introduction 

Compartmentation plays a key role in managing metabolites, and constitutes the major 

aspect to control the metabolism of eukaryotic cells. Dysfunctions in the mitochondrial 

metabolism are related to many widespread diseases. The aging process and many 

neurodegenerative diseases are correlated with changes in the mitochondria. Strain 

improvement for production of biopharmaceuticals relies on redirecting carbon and 

energy in the metabolic network. Mitochondria are at the core of the energy metabolism 

and are a partial location of the central carbon metabolism. Understanding 

compartmentation relates to gaining knowledge directed at engineering mammalian cell 

lines for optimized production or at designing novel treatments for diseases. Models of 

metabolism that include reaction compartmentation and mitochondrial transporter 

regulation are essential for describing the processes in the eukaryotic metabolism in a 

systemic manner. Consequently, both medicine and bioproduction would benefit greatly 

from a deeper understanding of the compartmentation of cellular processes. 

 This thesis sets the goal to understand better the compartmentation of the eukaryotic 

metabolism by applying a systems biology approach. To this goal, more mathematical 

modeling tools are developed that include compartmentation in the framework of the 

central carbon metabolism of mammalian cell. Through model building and model 

validation cycles, the task is to simultaneously determine details about the topology of 

compartmentation together with metabolic fluxes between the mitochondria and cytosol, 

all considered in the larger frame of the mammalian central carbon metabolism. The 

CHO-K1 cell line is used as a model mammalian system. In the chapters of this work are 

described the mathematical models in correlation to the specific knowledge that can be 

extracted by combining modeling with suitable experiments. 

Chapter 2: Building and calibrating an Inst-13CMFA modeling platform using data from a 

labeling experiment in a continuous culture of Saccharomyces cerevisiae. 

Chapter 3: Inst-13CMFA applied to a controlled batch culture of CHO-K1 cells aims to 

confirm that intracellular fluxes and reversibilities can be computed in a complex 

metabolic network by using only the labeling in extracellular metabolites. Experimental 
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labeling is fitted to the one computed using a model that simulates carbon and 

metabolite balance in both intra- and extracellular environments under the assumption 

of exponential growth. 

Chapter 4: Taking Inst-13CMFA one step further, it was applied to a shake flask culture of 

CHO-K1 cells fed in parallel with [U-13C6] glucose and [U-13C5] glutamine. The goal is to 

perform the most detailed metabolic flux analysis to date with respect to 

compartmentation and to uncover details related to mitochondrial traffic and reaction 

compartmentation. 

Chapter 5: Elementary mode analysis was applied to a model of the mitochondria to 

establish the contribution of enzymes and transporters to the mitochondrial metabolism. 

This was investigated by feeding several key substrates to selectively permeabilized CHO-

K1 cells. By analyzing the flux values from each feeding experiment and the modes that 

achieve the conversion of substrates into observed products, it can be possible to 

determine key bottlenecks, regulatory effects and pathway activities in the mitochondria.
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Chapter 2 

2. Platform for non-stationary 13C metabolic flux analysis 

2.1. Introduction 

As mentioned in Chapter 1, there are situation when steady state 13CMFA is not 

applicable. Besides the practical aspects related to maintaining a stable metabolism 

throughout the duration of the labeling experiment, there are also situations determined 

by the structure of the carbon network that cannot be resolved using steady state 13CMFA. 

Methods for quick quenching and sampling intracellular of metabolites allow exploring of 

the information content of dynamic carbon labeling experiments. The goal of using any 

MFA method is to estimate intracellular fluxes. In order to reach this goal, Inst-13CMFA 

requires a complex software platform that handles heterogeneous types of data 

(extracellular fluxes, biomass composition, and mass isotopomer distributions), is capable 

of simulating the dynamic carbon balance model in a numerically stable manner, 

provides options for customization, enables checkpoints and offers a user-friendly 

interface where the simulations and parameter estimation are done efficiently.  

2.2. Theoretical aspects that require Inst-13CMFA 

2.2.1. Inst-13CMFA to study compartmentation 

Due to compartmentation of metabolites and/or metabolic reactions, the labeling of 

certain metabolites can be different in the cytosol and mitochondria when using a labeled 

substrate. Activity of compartmented enzymes such as, e.g., mitochondrial malic enzyme 

and pyruvate carboxylase or cytosolic phosphoenolpyruvate carboxykinase, will 

differentiate the mitochondrial/cytosolic labeling patterns of the involved pools, i.e. 

malate, oxaloacetate and pyruvate. If inter-compartmental exchange occurs with high 

fluxes, transported metabolites will have similar labeling patterns in both compartments. 

Observing the proposed network, there are cases (Fig. 2.1) when alternative pathways 

cannot be distinguished even by using labeling. 



 

 

28 
 

2. Platform for Inst-13CMFA 

One case (Fig. 2.1 a) is when there are several reaction pathways which connect one 

metabolite to a product, and they all transform the carbon backbone in the same manner. 

An example is the case for pyruvate dehydrogenase and pyruvate decarboxylase pathways 

leading both to mitochondrial acetyl-CoA. The second case (Fig. 2.1 b) is where a sampled 

metabolite (e.g. alanine, aspartate) originates from more precursor pools. By balancing 

metabolic fluxes and carbon it is mathematically impossible to determine compartment 

exchange fluxes and alternative synthesis pathways using only extracellular fluxes and 

steady state labeling patterns. An example of such a situation is the compartmentation of 

aminotransferases, which exist both in the cytosol and mitochondria and whose activity 

does no change the carbon backbone. 

 

Fig 2.1. Model describing alternative synthesis pathways indistinguishable using labeling. (a) Alternative 

pathways which change the carbon backbone in the same way. (b) Compartmented identical reactions 

coupled with inter-compartmental exchange. The sampled metabolite originates via two pathways (vsyn,1 and 

vsyn,2) from a precursor compartmented in two pools (1 and 2). Reversible precursor transport is active (v1, 

v1_) and pool draining into other metabolic reactions is considered measurable (vout,1, vout,2). Also 

input/output fluxes and labeling pattern are experimentally available. 

2.2.2. Reversibility 

It has already been shown that reversibility affects steady state labeling in several 

pathways (Follstad and Stephanopoulos, 1998). As Noh et al. (Noh and Wiechert, 2011) 

revealed by simulation, reversible fluxes affect the 13C dynamics through the metabolic 

network. A backflow from a large pool into a small pool modifies the labeling dynamics of 
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both metabolites considerably, as it can be seen in Fig. 2.2. The labeling dynamics of A is 

slower if there is a reverse flux from a large pool B. Because many metabolic reactions 

take place close to equilibrium, reversibility changes label dynamics in the system 

without changing the isotopic steady state. Ignoring reversibility will therefore bias the 

estimation of intracompartmental concentrations. The steady state values depend only on 

the magnitude and ratio of metabolic fluxes (Fig. 2.2). 

 

Figure 2.2. Summed fractional labeling (SFL) dynamics in a hypothetical reaction system. The label (SFL0) 
is introduced at time=0 and A and B become labeled at rates depending on the flux/pool ratio and 
reversibility. (1) there is no reversibility between A and B; (2) there is a high reversibility between A and B 

2.3. Platform structure 

A platform for simulating Inst-13CMFA experiments and for estimating parameters was 

built in Matlab®. At the core of the platform (Fig. 2.3) there is a system of differential 

equations for balancing the carbon in the metabolic network, which represents 

fundamentally the mathematical model of the dynamic carbon distribution through the 

metabolic network, from the labeled substrate to the sampled intra- or extracellular 

readout metabolites. Several procedures and functions were coded to:  

(1) generate atom mapping matrices from carbon transfer rules; 
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(2) analyze the stoichiometric matrix, determine the degrees of freedom and select free 

fluxes; 

(3) compute intracellular fluxes for determined stoichiometric systems; 

(4) simulate the dynamic of isotopomers given a set of parameters; 

(5) compute the weighed sum of square differences (SSQD) from simulated and input 

MIDs (eq. 1.5); 

(6) determine the free parameters by minimizing the SSQD using numerical 

optimization; 

(7) perform sensitivity analysis; 

(8) plot the MID dynamics and sensitivity maps; 

(9) export the results in .csv or Microsoft Excel® form. 

 

Figure 2.3. Scheme of the modeling platform for simulation and parameter estimation using non-stationary 
13C metabolic flux analysis. The main program handles the carbon transfer rules, procedures for balancing, 

data handling and optimization algorithms selection and/or customization, and also the simulation of the 

carbon balance through the metabolic network model. Data inputs: extracellular fluxes, intracellular 

concentrations and labeling. Combining data from more labeling experiments is possible. The user can 

input options related to the simulation and parameter estimation parameters.   
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2.4. Platform testing 

The software platform for simulating non-stationary 13C labeling experiments was tested 

using a metabolic network of S. cerevisiae (Fig. 2.4) developed based on genome 

annotation data retrieved from KEGG and SGD databases (Christie et al., 2004; Kanehisa 

et al., 2014). 

  

Figure 2.4. Central carbon metabolism of S. cerevisiae, using glucose as substrate.  Reversible reactions are 

indicated by double arrows. Extracellular metabolites are shown in boxes and the sampled isotopomer mass 

distributions are highlighted with gray. Biomass fluxes are not shown.  The oxaloacetate (OAA) pool is 

lumped with the malate (MAL) pool, as well as fumarate (FUM) with succinate (SUC). Pyruvate (PYR), 

oxaloacetate/malate and acetyl-coenzyme A (AcoA) are compartmented into the cytosol (cyt) and 

mitochondria (mit). Abbreviations: ACA – acetaldehyde; ACE – acetate; AKG – α-ketoglutarate; ALA – alanine; ARG – 

arginine; ASP – aspartate; CYS – cysteine; DHAP – dihydroxyacetone-phosphate; E4P – erythrose-4-phosphate; EtOH – ethanol; F6P – 

fructose-6-phosphate; G6P – glucose-6-phosphate; GAP – glyceraldehyde-3-phosphate; GLC – glucose; GLU – glutamate; GLY – 

glycine; GOX – glyoxylate; ICI/CIT – isocitrate/citrate; ILE – isoleucine;  LAC – lactate; LEU – leucine; LYS – lysine; MAL – malate; MET 

– methionine; OAA – oxaloacetate; ORN – ornithine; PEP – phosphoenolpyruvate ; PG – phosphoglycerate; PRO – proline; PYR – 

pyruvate; R5P – ribulose-5-phosphate; S7P – sedoheptulose-7-phosphate; SER – serine; THR – threonine; VAL – valine. 
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Extracellular fluxes and transient mass isotopomer data from an experiment feeding [U-

13C6]glucose and 50% [1-13C]glucose to a continuous culture of  S. cerevisiae were obtained 

from (Hans, 2003). Although several parameter estimations and metabolic network 

modifications were attempted, the best fit failed to satisfy the χ-squared test for model 

verification. Therefore, reliable parameter values could not be computed. However, the 

comprehensive data set was useful to test the functionality of the platform represented in 

Fig. 2.3. The model accurately described the labeling of intracellular alanine (Fig. 2.5), but 

it had difficulties to fit the amino acids whose labeling exhibited overshooting (Fig. 2.6), 

in particular the dynamics of the m+1 mass isotopomer of arginine and the steady state of 

the m+1 mass isotopomer of serine. 

 
Figure 2.5. Dynamic distribution of intracellular alanine mass isotopomers from a carbon labeling 

experiment using a mixture of 50% [U-13C6]glucose and 50% [1-13C]glucose. Labeled substrate was fed to a 

continuous culture of S. cerevisiae until the labeling eventually reached a steady state in the proteinogenic 

amino acids (●). Intracellular metabolites were sampled by rapid quenching and then their labeling pattern 

was analyzed by GC-MS. A dynamic model carbon distribution in the S. cerevisiae central carbon 

metabolism was used to simulate the theoretical mass distributions (continuous line) which fitted best the 

experimental data (  ). 
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A model including the vacuole for storage of arginine was not successful for fitting the 

experimental overshooting, although it was able to simulate the qualitative behavior. 

Concerning serine labeling, the isotopomer model is not able to simulate a double 

overshooting (Fig. 2.6 d). It is very likely that the amino acids are cycled between protein 

synthesis and degradation (Belle et al., 2006) and that this process is also 

compartmented, as shown for yeast vacuoles (Horst et al., 1999). 

The dataset was useful to calibrate the modeling platform and to test the performance of 

numerical algorithms for integration of differential equations and for optimization. In 

this respect, an integration algorithm for stiff systems of differential equations (Shampine 

and Reichelt, 1997) proved to be the fastest and the most stable from those tested. 

Random sets of fluxes that satisfy the numerical constraints imposed on the model by 

biochemistry (e.g. reaction direction) were generated using simulated annealing. The 

fastest converging optimization method was an internally reflective sequential quadratic 

programming optimization algorithm (Han, 1977). This algorithm accepts boundary and 

linear inequality constraints. A model simulation need approximatively 10 seconds on a 

2.3 GHz QuadCore CPU, and the optimization algorithm performed around 2000 model 

runs before converging to a local minimum. 
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Figure 2.6. Nonlinear behavior of amino acids labeling dynamics manifested by certain mass isotopomers 

of metabolites from S. cerevisiae central carbon metabolism when a mixture of 50% [U-13C6]glucose and 50% 

[1-13C]glucose was fed to a continuous culture. Glutamate m+1(a) and m+2 (b), arginine m+1 (c) and serine 

m+1 (d) behavior was modeled for the experimental conditions using estimated values for intracellular 

fluxes and concentrations.  
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Chapter 3 

3. Non-stationary 13C metabolic flux analysis of CHO cells 

in batch culture*1 

 

Abstract 

Mapping the intracellular fluxes for established mammalian cell lines is important for 

scientific and economic reasons. However, this is being hampered by the complexity of 

metabolic networks, particularly concerning compartmentation. 

Intracellular fluxes of the CHO-K1 cell line central carbon metabolism were successfully 

determined for a complex network using non-stationary 13C metabolic flux analysis. MIDs 

of extracellular metabolites were determined using [U-13C6] glucose. Compartmentation 

and transport reversibility proved essential to successfully reproduce the dynamics of the 

labeling patterns. Alanine and pyruvate reversibility changed dynamically even if their net 

production fluxes remained constant. Cytosolic phosphoenolpyruvate carboxykinase, 

mitochondrial malic enzyme and pyruvate carboxylase fluxes were successfully 

determined. Glycolytic pyruvate channeling to lactate was modeled. In the exponential 

growth phase, alanine, glycine and glutamate were excreted, and glutamine, aspartate, 

asparagine and serine were taken up. All these amino acids except asparagine were 

exchanged reversibly with the media. High fluxes were determined in the pentose 

phosphate pathway and the TCA cycle. The latter was fueled mainly by glucose but also 

by amino acid catabolism. 

The CHO-K1 central metabolism in controlled batch culture is robust. It has the purpose 

to ensure fast growth on a mixture of substrates and also to mitigate oxidative stress. It 

achieves this by using compartmentation to control NADPH and NADH availability and 

by simultaneous synthesis and catabolism of amino acids. 

 

*1This chapter was published as: Nicolae, A., Wahrheit, J., Bahnemann, J., Zeng, A. P., Heinzle, E., 2014. Non-
stationary 13C metabolic flux analysis of Chinese hamster ovary cells in batch culture using extracellular 
labeling highlights metabolic reversibility and compartmentation. BMC Syst Biol. 8, 50. 
All experimental work described herein was carried out by Judith Wahrheit and Janina Bahnemann.  
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3.1. Introduction 

Economic importance and ease of cultivation make CHO cells a desirable candidate for 

metabolic studies in eukaryotic systems. Alongside with being the most important 

mammalian cell line for producing biopharmaceuticals (Butler and Meneses-Acosta, 2012; 

Kim et al., 2012; Walsh, 2010), CHO cells are able to grow in suspension cultures using 

chemically defined media (Deshpande et al., 2009), use multiple carbon sources 

simultaneously and maintain a stable metabolism for long periods in batch cultivations. 

This has led to a wealth of studies aimed at exploring CHO metabolism. After the 

decoding of the CHO-K1 cell line genome (Brinkrolf et al., 2013; Xu et al., 2011) and 

transcriptome (Becker et al., 2011), it can be expected that such studies will increase both 

in number and complexity. Metabolic flux analysis (MFA) of CHO cell cultures evolved 

from flux balancing analysis (Altamirano et al., 2001b) to more complex metabolic or 

isotopomer dynamic models (Ahn and Antoniewicz, 2012). Newer studies rely on 13C-MFA 

applied by fitting the summed fractional labeling (Ahn and Antoniewicz, 2011) or by 

fitting steady-state labeling data (Templeton et al., 2013) resulted from using in parallel 

more labeled substrates for determining the intracellular fluxes at metabolic steady state 

in different growth phases. However, the labeling patterns of the intracellular metabolites 

or of amino acids from hydrolyzed proteins that are usually needed for non-stationary 

13C-MFA are obtained through a tedious methodology (Zamboni, 2011; Zamboni et al., 

2009) and are susceptible to errors stemming mostly from the quenching/extraction 

phase (Dietmair et al., 2010; Wahrheit and Heinzle, 2013). In the absence of metabolite 

exchange with the media, intracellular labeling would reach steady state relatively fast, in 

the order of minutes for glycolytic intermediates and few hours for TCA cycle 

metabolites, as it was determined in Pichia pastoris (Jorda et al., 2013). In mammalian 

cells, exchange with the extracellular pools (Murphy et al., 2013) delays the intracellular 

isotopic steady state usually beyond the possibility to maintain metabolic steady state. 

Due to the large extracellular pools of amino acids, their exchange will transfer the time 

constant of the extracellular labeling process, which is in the order of days, to the 

intracellular labeling. One option is to use isotopic non-stationary metabolic flux analysis 
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(Inst-13CMFA) applied at short time scales (Noh et al., 2007), but this approach has the 

drawback of requiring accurate determination of intracellular concentrations of 

metabolites (Noh and Wiechert, 2006). 

Metabolite and reaction compartmentation is important for a realistic representation of 

the mammalian cell metabolism, but determining it raises supplementary demands from 

the experimental and modeling procedures, as reviewed in (Wahrheit et al., 2011a). In the 

exponential growth phase, a typical culture of CHO is characterized by high uptake rates 

of glucose and glutamine, the Warburg effect and the exchange of non-essential amino 

acids with the extracellular media (Deshpande et al., 2009; Provost et al., 2006). We can 

expect that by feeding a 13C labeled substrate, some of the extracellular metabolites will 

exhibit labeling patterns that can then be detected using GC-MS. As these metabolites 

will be enriched in 13C dynamically, non-stationary 13C metabolic flux analysis (Inst-

13CMFA) applied to extracellular and intracellular isotopomers (Noack et al., 2010; Noh et 

al., 2006; Schmidt et al., 1997) provides a suitable framework to determine the 

intracellular fluxes. Extracellular pools have a large time scale for labeling (hours) 

compared to the intracellular pools (seconds/minutes), thus removing the need to sample 

intracellular pools provided that the labeling information in the extracellular metabolites 

is sufficient. 

It is shown in this chapter that by using only the labeling patterns of extracellular 

metabolites produced by feeding [U-13C6]glucose as the only labeled substrate, 

intracellular fluxes can be successfully determined in a complex, compartmented 

metabolic network of the CHO-K1 cell line. In parallel, the aim is to prove that a 

simplified, non-compartmented model is not sufficient for describing the metabolism. 

The importance of considering reversibility when dealing with non-stationary isotopomer 

models is also underlined. 
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3.2. Materials and Methods 

3.2.1. Cell culture and experimental set-up 

The CHO-K1 cell line was kindly provided by the Institute of Cell Culture Technology 

(University Bielefeld, AG Noll, Germany). The cells were growing in suspension under 

serum and protein free conditions in the chemically defined medium TC-42 (TeutoCell 

AG, Bielefeld, Germany) supplemented with 4 mM L-glutamine (PAA, Germany). 

Precultures were cultivated in 125 mL baffled Erlenmeyer flasks (Corning Inc., Germany) 

at an initial cell density of 0.4  106 cells/mL and a working volume of 50 mL on a 

shaking device (225 rpm) at 37°C and 5% CO2 in a humid atmosphere. For the main 

cultivation, cells were harvested during the exponential growth phase at a viability of ≥ 

98% and resuspended in TC-42 medium with 100% [U-13C6] glucose (99%, Euriso-Top, 

Saarbrücken, Germany). The main cultivation was performed in a Vario1000 bioreactor 

(Medorex e.K., Nörten-Hardenberg, Germany) at batch mode with a starting culture 

volume of 200 mL. The bioreactor was inoculated at a cell density of 0.4  106 cells/mL. 

The cultivation temperature was kept constant at 37 °C and the impeller (3-blade marine 

propeller) speed was set to 300 rpm. During the cultivation, the pH value was controlled 

at 7.2 by gassing with CO2 and by using 0.5 M sodium carbonate solution. Dissolved 

oxygen was maintained at 30% of the saturation concentration. Samples were taken three 

times a day. Cell density and viability were determined by cell counting using the Trypan 

blue exclusion method. Supernatants were transferred into fresh tubes and stored at -

20°C until further analysis. The average cell diameter was determined using an automated 

cell counter (Invitrogen, Darmstadt, Germany) in a separate experiment. This experiment 

was performed in a shaking incubator (2 inches orbit, 185 rpm, 37°C, 5% CO2 supply) 

using 250 mL baffled Erlenmeyer flasks (Corning Inc., Germany), an initial cell density of 

0.4  106 cells/mL, a working volume of 100 mL and using the same medium TC-42 

medium (TeutoCell, Bielefeld, Germany) supplemented with 4 mM glutamine. 

Differences of cell diameters during the cultivation were maximum 5% and not taken into 

account. Cell volume was computed assuming the cells are spherical using a diameter of 

10.6 µm. Glutamine degradation kinetics were determined experimentally in a cell-free 
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setup identical to the one employed for cell volume estimation. The determined 

glutamine degradation rate constant was kdGLN = 0.0033 h-1. 

3.2.2. Quantification of metabolites 

Quantification of glucose, organic acids and amino acids via HPLC was carried out as 

described previously by Strigun et al. (Strigun et al., 2011). 

3.2.3. Analysis of isotopomer labeling patterns 

3.2.3.1. Sample preparation 

For determination of labeling patterns of lactate and amino acids, 50 µl of supernatants 

were lyophilized, resolved in 50 μl N,N-dimethylformamide (0,1 % pyridine) and 

incubated at 80°C for 30 min. 50 µl N-methyl-N-t-butyldimethylsilyl-trifluoro-acetamide 

(MBDSTFA) was added followed by another incubation at 80°C for 30 min for 

derivatization of metabolites into corresponding dimethyl-t-butylsilyl derivatives. For 

determination of the labeling pattern of pyruvate, lyophilized supernatants were resolved 

in 50 µl pyridine containing 20 mg/ml methoxyamine hydrochloride and 50 µl MSTFA 

(Macherey-Nagel, Düren, Deutschland) and incubated at 80°C for 30 min for 

derivatization into the methoxyamine-trimethylsilyl derivative. Derivatized samples were 

centrifuged at 13000 x g for 5 min at 4 °C and supernatants transferred into fresh glass 

vials with micro inlets. 

3.2.3.2. GC-MS measurements 

Extracellular 13C-labeling dynamics were analyzed by gas chromatography mass 

spectrometry (GC-MS). The GC-MS measurements were carried out on a GC (HP 6890, 

Hewlett Packard, Paolo Alto, CA, USA) equipped with an HP5MS capillary column (5% 

phenyl-methyl-siloxane diphenylpolysiloxane, 30 m × 0.25 mm × 0.25 μm, Agilent 

Technologies, Waldbronn, Germany), electron impact ionization at 70 eV, and a 

quadrupole detector (Agilent Technologies). The injection volume was 1 µl (7683B 

Autosampler, Agilent, Waldbronn, Germany; PTV-Injektor, Gerstel, Mühlheim a. d. Ruhr, 

Germany). Helium was used as carrier gas at a flow rate of 1.1 ml/min for analysis of 

lactate and amino acids or 0.7 ml/min for pyruvate analysis. The following temperature 

gradient was applied for lactate and amino acid analysis: 135°C for 7 min, 10°C/min up to 
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162°C, 7°C/min up to 170°C, 10°C/min up to 325°C, 325°C for 2.5 min; inlet temperature: 

140°C and heating with 720°C/min up to 320°C; interface temperature 320°C; quadrupole 

temperature 150°C. The temperature gradient for pyruvate analysis was as follows: 70°C 

for 1 min, 1°C/min up to 75°C, 5°C/min up to 315°C, 25°C/min up to 340°C, 340°C for 5 min; 

inlet temperature: 70°C and heating with 360°C/min up to 360°C; interface temperature 

320°C; quadrupole temperature 280°C. 

3.2.3.3.Data analysis 

After identification of metabolites in the scan mode using the NIST data bank, 

quantification of labeling enrichment was done in SIM (single ion monitoring) mode in 

two technical replicates using the following unique fragments (m/z) containing the 

complete carbon skeleton of metabolites: pyruvate 174, lactate 261, alanine 260, glycine 

246, serine 390, aspartate 418, glutamate 432, glutamine 431. Mass isotopomer 

distributions were corrected for naturally occurring isotopes using the method of Yang et 

al.(Yang et al., 2009). 

3.2.4. Metabolic network models 

Two metabolic networks were established based on experimental observations related to 

metabolite uptake and production and extracellular labeling. Both networks included: 

glycolysis; TCA cycle; anaplerotic reactions; synthesis of fatty acids, proteins and 

carbohydrates for biomass production; amino acid production and degradation. 

Transport from the extracellular media was reversible in both models for all metabolites 

with the exception of glucose, asparagine and essential amino acids. Mitochondrial 

transport of malate, α-ketoglutarate, alanine, and reactions of transaminase, malate and 

lactate dehydrogenase were also reversible. The first model shown in Fig. 3.1 A considers 

the intracellular space without compartmentation. In the second model (Fig. 3.1 B), the 

mitochondrial reactions and pools are separated from the cytosol. Both models start from 

the annotation of the genomes of CHO-K1 and Mus musculus (Hammond et al., 2012; 

Kanehisa et al., 2014; Zhu et al., 2003). Enzyme localization was established using 

information from the MGI database and data from J. Wahrheit (Wahrheit et al., 2014b) 

who measured compartmented enzyme activity using a method adapted from Niklas et al. 
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(Niklas et al., 2011a). Mitochondrial transport of alanine was included to explain the 

existence of alanine aminotransferases in both compartments. Metabolite pools were 

lumped where it did not influence the simulated labeling dynamics. Pentose phosphate 

pathway was reduced to one reaction where one carbon atom is lost for each G6P 

molecule and 5/3 molecules of PG are produced. Glycolysis was lumped to three fluxes 

transforming G6P into PYRcyt. 

 

Figure 3.1. Compartmented (A) and non-compartmented (B) networks of the CHO-K1 central 

metabolism used for simulations. Irreversibility is indicated by simple arrows, and reversibility by 

double arrows. The reactions depicted in B are listed in detail in the Supplem. Table S3.1 together with 

fluxes and reversibilities determined. Subscripts meaning: ex – extracellular; c – cytosolic; m – 

mitochondrial. Abbreviations: AA –amino acids; AcoA – acetyl CoA; AKG – α-ketoglutarate; ALA – 

alanine; ASN – asparagine; ASP – aspartate; CIT/ICI – citrate/isocitrate; G6P – glucose 6-phosphate; 

GLC – glucose; GLN – glutamine; GLU – glutamate; GLY – glycine; MAL – malate; OAA – oxaloacetate; 

PEP – phosphoenolpyruvate ; PG – phosphoglycerate; PYR – pyruvate; SER – serine. 

Isocitrate and citrate were condensed into one pool. Succinate, fumarate and malate were 

condensed into one pool. Two cytosolic pyruvate pools were used to describe metabolic 

channeling to lactate. Non-essential amino acids catabolism was lumped to three fluxes 

fueling the malate, acetyl-CoA and glutamate pool respectively. No carbon mapping was 

required in this case as essential amino acids are unlabeled. Glutaminase activity was 
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mitochondrial (Xu et al., 2011) and glutamine synthetase was cytosolic (Hayward et al., 

1986). Fatty acids, protein and storage carbohydrates composition of the cell was taken 

from Altamirano et al. (Altamirano et al., 2001b). 

In total, the compartmented model consisted of 60 fluxes and 25 metabolites and the 

non-compartmented model of 42 fluxes and 16 metabolites. The complete flux list for the 

two models, together with the carbon transfer rules, is provided in the Supplem. Table 

S3.1. 

3.2.5. Non-stationary-13CMFA methodology 

Isotopic non-stationary metabolic flux analysis (Inst-13CMFA) comprises: (1) metabolic 

steady-state balancing of intracellular metabolites for determining extracellular rates; (2) 

dynamic extracellular metabolite and isotopomer balance and (3) dynamic balances of 

intra-compartmental isotopomers. 

3.2.5.1. Metabolite balancing 

Net extracellular rates vM_ex were determined for each extracellular metabolite M_ex for 

the batch cultivation situation, under the assumption of metabolic steady state, by fitting 

the cell density X(t) and extracellular concentrations of metabolites CM_ex to an 

exponential growth model with specific growth rate μ (eq. 3.1.a,b) and constant 

extracellular rates. Glutamine balance included first order degradation in the culture 

media (eq. 3.1.c). 

dX/dt  = μ∙X(t)       (3.1.a) 

dCM_ex/dt = vM_ex∙X(t)       (3.1.b) 

dCGLN/dt = vGLN∙X(t) – kdGLN∙CGLN(t)     (3.1.c) 

 

At intracellular metabolic steady state, the n metabolic fluxes that connect the m 

metabolites are constant and satisfy the material balance: 

𝑮 ∙ 𝒗 = 0                    (3.2.a) 

vj = φj,   j = 1..Rmeas     (3.2.b) 

αi ≤ vi ≤ βi, i = 1..n     (3.2.c)  
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where G is the m  n stoichiometric matrix and its null space v is the vector of net 

metabolic fluxes which are constrained by Rmeas measured fluxes φj (eq. 3.2.b) and n 

inequalities (eq. 3.2.c) determined by flux direction. To reduce the number of parameters, 

the free fluxes were extracted from the network as described (Yang et al., 2008) to 

produce a determined stoichiometric system. 

All biomass fluxes were computed considering the biomass composition listed in Suppl. 

Table S1.1 and Suppl. Table S1.2. 

3.2.5.2. Intracellular and extracellular carbon balance 

The Inst- 13CMFA framework developed in (Noh and Wiechert, 2006; Schmidt et al., 1997) 

was adapted to the case of batch culture cultivation. Isotopomer balances for extracellular 

(eq. 3.3) and intracellular (eq. 3.4) metabolites were solved together with the extracellular 

mass balances (eq. 1.a,b,c). 
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with IDVM_ex, IDVM_cyt, IDVM_in, are the isotopomer distribution vectors of the 

extracellular, cytosolic and mitochondrial fractions of metabolite M. IDVM_in,j is the jth 

reaction contribution to isotopomers of metabolite M, computed using isotopomer 

mapping matrices as described by Schmidt (Schmidt et al., 1997). Xconc is the cell 

volumetric concentration expressed in L cell / L media. CM_ex is the extracellular 

concentration of M, in

exMv _ is the production flux of M expressed in mmol  (L cell)-1  h-1, 

out

exMv _ is the uptake flux, vj is one of the RM fluxes entering the intracompartmental pool of 

M, CM_in, and 
out

inMv _  is the flux exiting the pool. The metabolite and isotopomer balances 

from equations 1,2 and 4 are then solved simultaneously to obtain the time course of the 

mass isotopomer distributions. Isotopomer balancing employs absolute fluxes that can be 

computed from the net fluxes by introducing a reversibility parameter: 
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j

reverse
j

j
v

v
rev

,
                                                          (3.5) 

where vj is the net flux and vj, forward and vj, reverse are the forward and respectively the 

reverse exchange fluxes, with vj, forward – vj,reverse = vj; vj, forward ≥0 and vj,reverse ≥0. 

The contribution of reaction j was computed using isotopomer mapping matrices 

(Schmidt et al., 1997) that trace carbon from the substrate to the reaction products. The 

initial mass distribution of all metabolites was computed considering the naturally 

occurring 13C fraction (1.1%) and the 99% atom purity of the employed 13C labeled 

substrate. 

3.2.5.3. Parameter estimation 

The simulated time course of extracellular mass isotopomer distributions (MID) was 

compared with the experimental values. The objective function to be minimized is 

expressed as the weighted sum of square differences between the experimentally 

determined and simulated MIDs: 

   exp1exp MIDMIDMIDMIDSSQD sim

MID

Tsim                        (3.6) 

where SSQD is the objective function, MIDsim is the simulated MID, MIDexp is the 

measured MID and ΣMID is the measurement covariance matrix. The optimal solution was 

accepted when it satisfied the χ-squared test for model verification with 95% probability, 

and N-p degrees of freedom, where N is the number of sampled points (size of MIDexp) 

and p is the number of free parameters. To reduce the bias in the objective function 

generated by very small standard deviations, a minimum threshold of 0.005 was imposed. 

Accurate confidence intervals and sensitivity analysis of fluxes were computed according 

to (Antoniewicz et al., 2006). All the code was programmed and simulated in Matlab 

[MATLAB and Simulink Release 2013a, The MathWorks, Inc., Natick, Massachusetts, 

United States]. 

3.3.  Results and discussion 

3.3.1. Cell growth and extracellular fluxes 
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The cells exhibited exponential growth for 72 h (Fig. 3. 2) until glutamine became 

exhausted and a shift in metabolism was observed (data not shown). Estimated specific 

growth rate as fitted to eq. 3.1.a was µ = 0.0401 h-1. Uptake and production of most 

metabolites was balanced, i.e. they were proportional to growth for the main carbon 

sources and produced metabolites (Fig. 3.2) and for other amino acids (Supplem. Fig. S 

3.1).This means that metabolic steady state was maintained during the first 72 h of 

cultivation. Glucose constituted the main carbon source (Table 3.1), providing 65% of the 

total carbon entering the central carbon metabolism, with an uptake flux of 371 mmol  

(L cell)-1  h-1. Note that all fluxes are related to the cell volume specified by L cell. 39% of 

the glucose was converted to lactate. The observed pyruvate production rate was 3.3 

mmol  (L cell)-1  h-1. 

Table 3.1. Carbon sources for the central metabolism of the CHO-K1 cell line in batch culture 

during the exponential growth phase. The contribution of AA1, AA2 and AA3 amino acid groups 

considers only catabolism. Abbreviations: AA1: amino acids catabolized to AcoA (isoleucine, leucine, lysine, 

phenylalanine, tyrosine); AA2: amino acids catabolized to four-carbon dicarboxylic acids (isoleucine, 

methionine, phenylalanine, threonine, tyrosine, valine); AA3: amino acids catabolized to glutamate 

(arginine, histidine, proline); AcoA: acetyl coenzyme A; AKG: α-ketoglutarate; ASN: asparagine; ASP: 

aspartate; OAA: oxaloacetate.  

* Excluding requirements for protein synthesis 

Metabolite 

Target 

intracellular 

metabolite 

Uptake flux 

[mmol  (L cell)-1 

 h-1] 

Uptake flux 

[Cmmol  (L cell)-1 

 h-1] 

Percentage of 

the total 

carbon-flux 

Glucose Pyruvate 371.0 2226.2 64.9 

Glutamine AKG 66.4 331.9 9.7 

AA1* AcoA 92.6 185.2 5.4 

AA2* Malate 49.6 198.4 5.8 

AA3* AKG 11.6 58.2 1.7 

ASP/ASN OAA 68.1 272.3 7.9 

Serine 
Pyruvate, 

glycine 
48.3 146.4 4.3 

TOTAL - - 3428.53 100 
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The glutamine uptake flux determined by fitting eq. (3.1.c) to the glutamine 

concentration over time was 66.4 mmol  (L cell)-1  h-1, 16% smaller compared to the 

case when degradation was ignored. Glutamine uptake contributed with 10% to the total 

carbon pool. 

 

Figure 3.2. Culture profile of the CHO-K1 cells for the first 72 h during the exponential growth 

phase. Experimental values are shown with circles and calculated values are represented by solid lines. 

The rest of the carbon feeding the central carbon metabolism, i.e. 25%, was obtained from 

amino acids catabolism. 

Alanine, glycine and glutamate were produced (Fig. 3.3), while the other amino acids 

were taken up in excess of the quantity required for biomass synthesis. As a consequence 

of amino acids catabolism, a flux of 92.6 mmol  (L cell)-1  h-1 fueled the mitochondrial 

acetyl-CoA pool from the degradation of isoleucine, leucine, lysine, phenylalanine and 

tyrosine, while a flux of 39.1 mmol  (L cell)-1  h-1 cytosolic AcoA was directed towards 

fatty acids synthesis. The catabolism of excess isoleucine, methionine, phenylalanine, 

threonine, tyrosine and valine that remained after protein synthesis produced 49.6 mmol 
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 (L cell)-1  h-1 succinate and fumarate (lumped into one pool of four carbon di-

carboxylic acids, here represented as MAL in Fig. 3.1). 

Metabolite dilution by growth was neglected due to negligible influence on the total mass 

balance. 

3.3.2. Non-stationary labeling experiment 

The MID of extracellular pyruvate, lactate, alanine, glutamate, glutamine, aspartate, 

serine and glycine was sampled at 1, 18, 24, 42, 48, 66 and 72 h. During the exponential 

growth phase of 72 h none of the labeling reached steady state as shown in Fig. 3.4. 

Lactate and pyruvate exhibited similar labeling dynamics, however with different MIDs 

towards the end of the growth. This is surprising since lactate is obtained from pyruvate 

through the lactate dehydrogenase reaction. The predominant lactate fraction, i.e. M+3, 

increased to 0.85 and the pyruvate M+3 fraction stabilized at 0.81, pointing towards 

glycolytic channeling to lactate achieved by the localized cooperation of glycolytic 

enzymes as observed in rapidly proliferating cells (Mazurek et al., 2001; Vander Heiden et 

al., 2010). From the produced amino acids, alanine, also derived from pyruvate, had a high 

M+3 fraction. Glutamate and glycine M+2 fractions increased slowly, with most of the 

change happening in the last 24 h due to the high number of producing cells present in 

the media., Extracellular aspartate, glutamine and serine were found to be labeled 

although they exhibited a net uptake. Glutamine fractional labeling, mostly the M+2 

isotopomer, increased sharply at the end of the phase, when very little glutamine 

remained in the media and the contribution of secreted glutamine played a large role to 

the labeling state. 
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Figure 3.3 Compartmentation of the CHO-K1 metabolism and the fate of extracellular 

metabolites.Net fluxes are indicated on the gray arrows in units of mmol product/ (L cell  h), and 

reversibility parameter defined as reverse flux/net flux is shown in the square brackets (n.d. = not 

determined. The thickness of the gray arrows is proportional to the forward flux (=reverse flux + net flux), 

and shown qualitatively for the fluxes with variable reversibility. Net flux direction is shown by the black 

arrow heads. Amino acids catabolism is represented as the sum of the differences between amino acid 

uptake flux and flux required for protein production, reported to the metabolite derived from catabolism. 

Subscripts meaning: ex – extracellular; c – cytosolic; m – mitochondrial. Abbreviations: AAex1 – isoleucine, 

leucine, lysine, phenylalanine, tyrosine catabolized to acetyl-CoA; AAex2 -  isoleucine, methionine, 

phenylalanine, threonine, tyrosine, valine catabolized to fumarate and succinate; AAex3 – arginine, histidine, 

proline catabolized to glutamate; AcoA – acetyl CoA; ALA – alanine; ASN – asparagine; ASP – aspartate; 

CIT/ICI – citrate/isocitrate; GLN – glutamine; GLU – glutamate; GLY – glycine; MAL – malate; PYR – 

pyruvate; SER – serine.  
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3.3.3.  Isotopomer fitting 

Both the non-compartmented and compartmented isotopomer network models (Fig. 3.1) 

were fitted to the experimental mass distributions with the goal of determining unknown 

fluxes and reversibilities. The 7 sampling time points of the 8 metabolites produced a 

total number of 252 experimental MIDs.  

Convergence to the optimal solution is difficult in isotopomer models (Srour et al., 2011) 

and the parameter space of the objective function is marked by a multitude of local 

minima (Chen et al., 2007), making gradient-based algorithms unreliable. Consequently, 

a global optimization scheme was applied that had the following steps: (1) generate an 

initial random population of (40 x p) parameter sets that satisfy constraints using a 

simulated annealing-based algorithm, (2) submit the population to a 50-generations 

genetic algorithm optimization, and (3) refine the best solution using a trust region 

reflective algorithm. Convergence to the optimal solution was verified by repeating the 

optimization scheme. One simulation took about 3 s, and the optimization procedure 

required about 40 h on a 2.3 GHz QuadCore CPU. All the numerical integration and 

optimization algorithms are found in Matlab toolboxes.  

There were initial difficulties in fitting pyruvate and alanine labeling dynamics. As it was 

shown that reversibility greatly affects labeling dynamics (Noh and Wiechert, 2011), it was 

assumed that the transport reversibility parameter changes in time, even if the net fluxes 

remain constant. The decrease with time of pyruvate transport reversibility was 

mechanistically expressed using a hyperbolic function



time

rev
rev PYR

PYR

0

, where pyruvate 

transport reversibility revPYR decreases from a starting value 0

PYRrev . To avoid division by 

zero, a negligible correction factor ε was introduced. Alanine transport into the cell 

intensifies as extracellular alanine becomes exponentially more abundant. Transport 

reversibility was expressed in this case as )exp( timerev ALA   , where α and β are 

parameters to be determined. 
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Figure 3.4 Non-stationary 13C labeling experiment. Experimental mass isotopomer distributions 

(symbols) with their standard deviations vs. simulated (line) mass isotopomer distributions of labeled 

extracellular metabolites. The plots A-C represent results from using the non-compartmented 

metabolic network specified in Figure 3.1 A. For the other eight plots (D-K), the compartmented model 

from Figure 3.1 B was simulated. 
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The 24 free parameters of the non-compartmented model (Fig. 3.1 A) consisted of 5 fluxes, 

18 reversibilities and the CO2 pool. At convergence, the model failed to fit the data with 

the minimized SSQD of 1572, larger than χ2 (0.95, 252-24) = 264.2. Pyruvate, lactate, 

alanine and glutamate labeling were fit poorly even when transport reversibility was 

variable (Fig. 3.4). In consequence, the non-compartmented model was rejected. The low 

labeling content of pyruvate, alanine and lactate simulated with the non-compartmented 

model is explained by the lumping of the cytosolic and mitochondrial pyruvate pools. 

More than 30% of the carbon feeding the TCA cycle is not labeled, therefore it would be 

expected that the cataplerotic reactions catalyzed by phosphoenolpyruvate carboxykinase 

and malic enzyme will produce a large quantity of unlabeled pyruvate, which contradicts 

the experimental observations. 

The compartmented model, consisting of 11 free fluxes and other 27 free parameters 

(reversibilities) depicted in Fig. 3.1 B, fitted the data successfully with the minimized 

SSQD = 249.0 slightly smaller than χ2(0.95, 252-38) = 249.13. The poorer fit of the 66 and 

72 h time points for lactate and 72 h for alanine can be explained by the metabolic shift 

towards the end of the growth phase. Exponential growth will add a larger contribution in 

the objective function to the labeling towards the end of the exponential phase compared 

to the beginning of the experiment because the rates of 13C accumulation in the 

extracellular media are much larger at high cell densities. This is best evidenced in Fig. 3.4 

where glutamine, aspartate, serine and glycine do not become noticeably labeled until 40 

h after the introduction of the labeled substrate. 

3.3.4. Metabolic fluxes in the CHO-K1 cell line 

Glucose was converted to phosphoglycerate mostly by bypassing glycolysis (Fig. 3.5) 

through the pentose phosphate pathway (PPP). The estimated PPP flux was 80% of the 

total molar glucose input flux, a high activity contrasting with results obtained by Ahn 

and Antoniewicz for adherently growing CHO cells (Ahn and Antoniewicz, 2011) but 

observed for hybridoma (Bonarius et al., 1996) and cancer cells (Bensaad et al., 2006). A 

wide range of PPP activities, between 0-160 % of the glucose input flux, was determined 

for a highly-productive CHO line in fed-batch cultivation conditions at different growth 
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phases (Templeton et al., 2013). The large quantities of cytosolic NADPH produced 

through PPP drive fatty acids synthesis and mitigate oxidative stress by reducing reactive 

oxygen species (Anastasiou et al., 2011; Schafer et al., 2009; Sengupta et al., 2010; Tuttle et 

al., 2000; Vizan et al., 2009), as it has also been proposed by Templeton et al. (2013). 

Overflow to lactate comprised 39% of the pyruvate produced from glycolysis. From the 

rest of the cytosolic pyruvate, 42.7 mmol  (L cell)-1  h-1 were converted to alanine, but 

most of it was transported into the mitochondria and converted to AcoA. The channeling 

flux from phosphoenolpyruvate to lactate was 122.7 mmol  (L cell)-1  h-1, accounting 

for 42% of the total lactate being produced. The low reversibility of exchange between the 

two cytosolic pyruvate pools (Fig. 3.5) means that the channeled cytosolic pyruvate is 

practically separated from the cytosolic bulk pool. However, lactate was produced from 

both cytosolic pyruvate pools, indicating that glycolytic channeling is not the only lactate 

source in the cell. One possible explanation is that multi-enzyme complexes associated to 

membrane transporters, as characterized by Campanella et al. (2005), create a micro-

compartmented environment in the cytosol. Glycolytic enzymes are partly associated and 

partly soluble, resulting in a mixed response in the lactate labeling. 

The carbon flux in the TCA cycle originated mainly from acetyl-CoA derived from 

glycolytic pyruvate transported into the mitochondria (Fig. 3.5), with significant 

contributions from glutamine and essential amino acids catabolism. Such high activity of 

the TCA cycle and high connectivity with the glycolysis is in contrast with some previous 

reports of lower activity during exponential growth phase (Ahn and Antoniewicz, 2011; 

Quek et al., 2009a; Zamorano et al., 2010) but similar to (Goudar et al., 2010; Sengupta et 

al., 2010; Sheikholeslami et al., 2013). The differences can be assigned mainly to the use of 

different cell lines and cultivation conditions like media composition, aeration mode, pH 

control and culture type e.g. suspension or immobilized, batch or fed-batch. The lower 

lactate/glucose molar ratio of 0.78 reported herein means more pyruvate is available for 

use in the TCA cycle, thus making for a more efficient metabolism. Gluconeogenesis was 

active through phosphoenolpyruvate carboxykinase with 10% of the total flux entering the 

phosphoenolpyruvate pool, a fact explained qualitatively by the presence of M+2 lactate 



 

 

53 
 

3. Non-stationary 13CMFA of CHO cells in batch culture  

and pyruvate. In the absence of gluconeogenesis, only the M and M+3 mass isotopomers 

of these metabolites would be present after feeding fully labeled glucose. Malic enzyme 

activity was negligible in the cytosol, and this is in agreement with compartmented 

enzyme activity observed by Wahrheit et al. (2014b). This observation reaffirms that PPP 

was the main source of cytosolic NADPH. Mitochondrial malic enzyme was highly active, 

producing one third of the total mitochondrial pyruvate. However, a part of the 

mitochondrial pyruvate was recycled back into the TCA cycle via pyruvate carboxylase. 

Mitochondrial malate net transport flux was small and reversible. This explained the lack 

of M+1 labeling in lactate, alanine and pyruvate that would have been otherwise linked to 

the M+2 malate isotopomers that are expected to be obtained in the TCA cycle. As a 

consequence, the M+2 labeling in these metabolites relies on mitochondrial transport of 

citrate and on the activity of citrate lyase producing cytosolic acetyl-CoA and 

oxaloacetate, which is then further converted to phosphoenolpyruvate. 

About one third of the total serine was produced from phosphoglycerate, using cytosolic 

glutamate for transamination. Serine was exchanged with the media, thus explaining 

extracellular labeling of serine. Half of the serine was not used for protein synthesis but 

was reversibly converted to glycine and C1 units to sustain the high anabolic activity. 

Glycine was then secreted. The remaining excess of serine was converted to pyruvate. 

Alanine was synthesized mainly from cytosolic pyruvate in a highly reversible reaction. 

Connectivity between cytosolic and mitochondrial alanine pools and the direction of the 

mitochondrial alanine aminotransferase flux could not be determined. However, the 

transport flux of alanine to/from mitochondria was confined between -11.6 to 13.6 mmol 

 L cell-1  h-1, i.e. ±25% of the alanine production flux. The flux of 68.1 mmol  L cell-1 

 h-1 from asparagine and aspartate uptake to oxaloacetate was split through aspartate 

aminotransferases between cytosolic and mitochondrial oxaloacetate with a 3/1 ratio, but 

no other details could be inferred due to the low labeling level in extracellular aspartate.  
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Figure 3.5. Estimated net intracellular fluxes in the CHO-K1 central metabolism qualitatively 

shown by the arrow thickness and their 95% confidence intervals (number interval) together with 

reversibility confidence intervals (square brackets), expressed in mmol  (L cell)-1  h-1. n.d. – not 

determined. 
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Isocitrate dehydrogenase (IDH) activity in the cytosol could not be reliably determined. 

This is due to lack of information in directly connected metabolites citrate and α-

ketoglutarate, but also because it affects the labeling pattern in the same way as the 

mitochondrial isozyme. As a result, the fluxes in the mitochondrial/cytosolic citrate and 

α-ketoglutarate loop could not be determined. Nevertheless, a net activity towards 

producing the high glutamate flux needed for cytosolic transamination reactions implies 

that α-ketoglutarate is either produced in the cytosol by IDH or transported from the 

mitochondria into the cytosol. Mitochondrial glutamate pool was fed by transporting 

cytosolic glutamate into the mitochondria and by glutamine through glutaminase activity 

at comparable rates. In the mitochondria, glutamate was then converted to α-

ketoglutarate and fed into the TCA cycle through mitochondrial GDH. In the cytosol, the 

glutamate produced from α-ketoglutarate in the various transaminase reactions was 

partially converted to glutamine, which was then exchanged with the media, leading to 

the presence of labeled glutamine in the media. In conclusion, simultaneous degradation 

and synthesis pathways for glutamine involve glutamine uptake, transport into the 

mitochondria and conversion to glutamate, glutamate dehydrogenation to α-

ketoglutarate, α-ketoglutarate transport to the cytosol or citrate transport and citrate 

conversion to α-ketoglutarate through cytosolic IDH activity, conversion of α-

ketoglutarate to cytosolic glutamate, and cytosolic glutamine synthesis. 

3.3.5.  Transport reversibility 

A very important part in modeling the extracellular labeling was considering the 

reversible exchange between the intracellular pools and the extracellular media, a 

phenomenon which affects the dynamics of the labeling process. All sampled extracellular 

non-essential amino acids except asparagine and proline, either produced or taken up, 

were exchanged with the culture media (Fig. 3.3). Even if the production flux of alanine 

remained constant throughout the cultivation, the fitting remained poor for alanine when 

considering a constant reversibility factor. There, the reversibility was estimated to 

increase with time. The function )0.0359exp(0.154 timerev ALA   was used to compute the 
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forward and reverse exchange fluxes (eq. 3.5), with both parameters being determined 

with a narrow confidence interval (Supplem. Table S3.1). Time is computed in hours. This 

successfully explained the dynamics of alanine labeling. The time constant of the 

reversibility function is a value close to the specific growth rate, pointing to the fact that 

alanine re-uptake is correlated to the extracellular concentration. Serine secretion flux, as 

computed with eq. 5, was up to 35 times higher than the net uptake flux. Glycine re-

uptake flux was 4.6 times the net production flux. Aspartate, glutamate and glutamine 

exchange fluxes were in the same order with the net uptake/production flux, as expressed 

by the estimated reversibility parameter values of about 1. The confidence intervals for the 

transport reversibility parameters are larger than those for fluxes because at high 

reversibilities the labeling becomes less sensitive to small changes in reversibility. 

Pyruvate transport reversibility is described by the function 
01.0

2700




time
revPYR

, where time 

is specified in hours. The hyperbolic function implies that at the beginning of the 

cultivation, the intense exchange of pyruvate (Garcia et al., 1994) eliminates the 

difference between the labeling of the intracellular and extracellular pools. Pyruvate re-

uptake decreases because pyruvate concentration changes slightly (Fig. 3.1) while lactate 

accumulates in the media to reach high concentrations and competes with pyruvate for 

the monocarboxylate transporters (Halestrap and Price, 1999; Morris and Felmlee, 2008). 

Lactate transport reversibility parameter could not be estimated because at the beginning 

of the cultivation there is no lactate present in the media that could dilute the 

intracellular pool and affect the labeling dynamics. 

3.3.6. Confidence intervals calculation and sensitivity analysis 

Most of the fluxes depicted in Fig. 3.5 were determined with narrow confidence intervals. 

Interval boundaries are not symmetrical due to the non-linear characteristics of the 

mathematical model. Determining both the flux and exchange in alternative pathways 

was not possible in the case of high reversibility e.g. for determining the 

compartmentation of alanine metabolism involving reversible transaminase reactions. 
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The sensitivity coefficients provided quantitative information about the impact of the 

measured fluxes on the estimated flux values (Fig. 3.6 A). Sensitivity analysis also 

evidenced correlations between external fluxes and network pathways when [U-13C6] 

glucose is used. In this case, the MIDs of metabolites will depend on the interplay 

between the multitude of non-labeled carbon sources and the glucose feed, as opposed to 

organisms that use only one carbon source (Sellick et al., 2011a). The determination of 

anaplerotic fluxes relied on the supply of four carbon metabolites from amino acid 

catabolism. 

Changes in the glutamine uptake flux (Fig. 3.6 A) affected most fluxes to a large extent. 

Nevertheless, the high influence was mainly computational, as any increase of the flux 

caused depletion of glutamine at the end of the cultivation and dramatically different 

labeling patterns. Glucose uptake flux affected the estimation of the PPP and TCA cycle 

fluxes. Errors in measuring glucose concentration over time will propagate in the values 

of these fluxes, as the glucose uptake flux determines the fraction of 13C entering the cell. 

Glucose-6-phopshate loses one 13C through oxPPP, therefore estimating the split between 

glycolysis and oxPPP depends highly on determining correctly all carbon sources. This 

explains the high sensitivity of the glycolysis/oxPPP split to all extracellular fluxes. 

Unexpected correlations were observed for the glycine production flux that influenced 

most anaplerotic and aminotransferase fluxes. Glycine is produced at the expense of 

serine, which is in turn produced from 3-phosphoglycerate, also converting glutamate to 

α-ketoglutarate during transamination, and simultaneously converted to pyruvate, thus 

affecting the availability of both cytosolic pyruvate and glutamate. 

Local sensitivity of the SSQD to free parameters computed as the normalized mean 

deviation of the objective function to variations in the estimated parameters shown in 

Fig. 3.6 B evidenced the determinable parameters and the redundant parameters. The 

notoriously difficult to determine anaplerotic fluxes of the phosphoenolpyruvate 

carboxykinase enzyme and mitochondrial malic enzyme induced a noticeable sensitivity 

in the objective function.   
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Figure 3.6.  Sensitivity analysis to measured fluxes and to parameters. (A) Sensitivity of free fluxes to 
extracellular fluxes, computed for the compartmented network of CHO-K1 with [U-13C6] glucose as 

substrate, 
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the estimated value of parameter i. The rates vi correspond to the rates in the network from Supplem. Table 
S3.1. Abbreviations: subscripts: c: cytosolic, ex: extracellular, m: mitochondrial; ALA: alanine; AcoA: acetyl 
coenzyme A; AKG: α-ketoglutarate; ASN: asparagine; ASP: aspartate; CIT: citrate; G6P: glucose 6-
phosphate; GLC: glucose; GLN: glutamine; GLU: glutamate; GLY: glycine; LAC: lactate; MAL: malate; OAA: 
oxaloacetate; PEP: phosphoenolpyruvate; PG: phosphoglycerate; PYR: pyruvate; SER: serine. 



 

 

59 
 

3. Non-stationary 13CMFA of CHO cells in batch culture  

The increased network connectivity, obtained by coupling alanine or aspartate 

deamination to conversion of α-ketoglutarate to glutamate, contributed to this fact. 

Oppositely, most intracellular reversibilities did not influence the parameter estimation 

results. This can be easily inferred from the fact that while reaction reversibility affects 

the dynamics of intracellular isotopomers, it does not mirror in the extracellular labeling 

apart from the reactions altering the carbon backbone. Also, in the situation where high 

values of the reversibilities resulted from estimation, local perturbations around these 

values will not influence the MIDs.  

3.4.  Conclusions 

In the present chapter it was shown that intracellular fluxes of the CHO-K1 cell line 

central carbon metabolism in batch culture can be determined for a complex network by 

making use solely of the mass isotopomers of extracellular metabolites resulted from 

feeding [U-13C6] glucose as the only labeled substrate. To this end, non-stationary 13C 

metabolic flux analysis proved an effective tool for unraveling important details of the 

CHO-K1 metabolism. Pathway compartmentation, e.g. of anaplerotic reactions and amino 

acid metabolism had to be considered for describing the mass isotopomer distribution. It 

can be reckoned that this fact plays an essential role in controlling the availability of 

NADH and NADPH in mitochondria and cytosol, but also in facilitating amino acid 

catabolism. A cancer-like high activity of the pentose phosphate pathway produced 

reducing NADPH partly to counteract the oxidative stress generated by the mitochondrial 

respiration and partly to fuel fatty acids biosynthesis. Cultivation conditions and different 

cells lines generate a wide range of metabolic fluxes, when considering previous studies 

concerned with the metabolism of CHO cells. Cytosolic pyruvate transport is reversible 

thousand-fold compared to the net production flux, indicating that although it is not a 

carbon source, pyruvate creates an extracellular environment (O'Donnell-Tormey et al., 

1987) most probably by functioning as a balancing system for cytosolic NADH (Bucher et 

al., 1972). Considering that metabolite exchange with the media played a very important 

role in determining the intracellular fluxes, it is expected that future 13CMFA studies of 
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mammalian cells metabolism will include this essential aspect. Compartmentation 

controls the simultaneous degradation and production of non-essential amino acids. 

Most likely, the CHO-K1 cells maintain the exponential growth phase under batch 

conditions by using a well-connected multi-pool system involving metabolite and 

reaction compartmentation, exchange with the media and inter-compartment exchange 

for controlling the metabolite and cofactor pools. Further studies on localizing enzyme 

and transporter activity together with sampling intra-compartmental concentrations 

would bring valuable contributions at elucidating the function of such cycling pathways. 

Accurate enzyme kinetics and thermodynamics (Henry et al., 2007) in mammalian cells 

would complement the modeling using Inst-13CMFA with information about reaction 

direction and reversibility. The knowledge gained through Inst-13CMFA depicts the CHO-

K1 central metabolism as a robust, highly interconnected network that ensures fast 

growth and mitigates stress generated by reactive oxygen species and the accumulation of 

lactate in the culture media.  

Due to the economic importance of CHO cells, efficient production processes leading to 

high product quality with minimum effort are of utmost importance. In-depth knowledge 

about CHO metabolism is expected to provide valuable assistance in identifying targets 

for metabolic engineering and guiding the design of feeding strategies leading to the 

development of efficient production processes. Overexpression, silencing or knockout of 

the specific glycolytic enzymes that associate with channeling glucose to lactate could 

either be used to study the control of the Warburg effect in cancer cells or for improving 

glucose utilization. However, as it was shown that compartmentation is important in 

managing metabolites, mitochondrial transporters are likely to constitute important 

targets for genetic modifications. Inter-compartmental transport of metabolites is a key 

factor in connecting the cytosol and the mitochondria energetically and it can be 

reckoned that modifying the genetic expression of transporters will have significant, 

perhaps surprising effects on the overall metabolism.  

The proposed methodology of sampling the MID only in extracellular metabolites for 

determining intracellular fluxes using Inst-13CMFA has the potential of broader 
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applications, as it circumvents the need to extract intracellular metabolites and it is non-

invasive to cells. The information contained in the extracellular mass isotopomers has a 

higher resolution compared to the summed fractional labeling used previously. This is 

sufficient for resolving a complex metabolic network when more metabolites are 

produced and/or exchanged with the culture media. Therefore, future applications in the 

study of mammalian metabolism at physiological and pathological conditions, especially 

related to compartmentation, as reviewed in (Gutierrez-Aguilar and Baines, 2013), and 

oxidative stress, e.g. in cancer, neurodegenerative disorders and ageing are to be 

expected. Knowledge about the metabolism at the compartment level will be essential for 

identifying therapeutic targets and understanding disease mechanisms. Similarly, the 

method could be applied to other enzymatic systems or prokaryotic cells where extended 

metabolite exchange with the media occurs. 
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Supplementary data 3 

Supplem. Fig. S3.1. Complete culture profile of CHO-K1 cells during the 

exponential growth phase. The lines represent the fitted concentration profiles to the 

experimental values (dots) and in the boxes are the determined extracellular rates 

[mmol/(L cell  h )] together with the 95% confidence intervals. Glutamine uptake was 

determined by considering a spontaneous degradation rate of 0.0033 h-1. The exponential 

growth phase is shown in the last plot. 

Supplem. Table S3. 1. List of reactions in the non-compartmented central carbon 

metabolism of CHO-K1 (Table 1). List of metabolic reactions, fluxes and 

reversibilities in the compartmented central carbon metabolism of CHO-K1 cells 

(Table 2). Carbon transfer rules are provided in the parentheses after each reaction. 

Reversible reactions are designated by double arrows. Reversibility is computed as the 

ratio between the reverse flux and the net flux. 

Supplem. Table S3.2. Experimental and simulated mass isotopomer distributions 

of extracellular metabolites and used standard deviations 
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Chapter 4 

4. High resolution 13C metabolic flux analysis in CHO cells*2 

Abstract 

The metabolism of mammalian cells is characterized by compartmentation, metabolite 

exchange and channeling. Mass isotopomer distributions were determined from two 

parallel labeling experiments using [U-13C6]glucose and [U-13C5]glutamine as substrates in 

a CHO-K1 suspension culture. Using extra- and intracellular labeling dynamics non-

stationary 13C metabolic flux analysis (INST-13CMFA) was applied to resolve the metabolic 

fluxes in a complex metabolic network that included mitochondrial transport, metabolite 

compartmentation and channeling. Fluxes, reversibilities and intracompartmental 

concentrations were determined within narrow confidence intervals. The metabolism was 

characterized by pentose phosphate pathway activity of 90% and lactate production of 

75% of the glucose uptake, low TCA cycle, low cataplerotic fluxes, and simultaneous 

catabolism and production of non-essential amino acids. Mitochondrial glutamate was 

converted to α-ketoglutarate by aminotransferases while glutamate dehydrogenase flux 

was negligible. Malate and glutamate were cycled via several transporters between cytosol 

and mitochondria. Cytosolic NADH was partially transported into the mitochondria 

using the malate-aspartate shuttle and partially regenerated by cytosolic lactate 

dehydrogenase. The labeling dynamics of lactate and pyruvate indicate various 

metabolite channeling effects in the cytosol and the mitochondria as well as the existence 

of a mitochondrial lactate pool that serves most likely as intramitochondrial redox buffer. 

INST-13CMFA combined with targeted parallel labeling experiments allowed to unravel 

great details of mammalian metabolism. Using this strategy, a comprehensive description 

of metabolic compartmentation including detailed insights in the C3 and C5 metabolism 

of CHO suspension cells was possible for the first time. 

*2A part of this chapter was submitted as an article to Metabolic Engineering Journal (February 2015). All 

experimental work described herein was carried out by Judith Wahrheit. 
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4.1. Introduction 

In the context of a fast-developing biopharmaceutical industry (Birch and Racher, 2006; 

Walsh, 2010) and a continuous need to understand disease mechanisms at the molecular 

level, in-depth knowledge of mammalian cell metabolism is crucial. This requires a 

systems biology approach that integrates “omics” information to determine the metabolic 

network structure and function by using adequate computational tools. The major 

current challenge in metabolic flux analysis (MFA) of mammalian cells is to untangle the 

details related to compartmentation (Wahrheit et al., 2011a). Dysfunctions in metabolite 

management between compartments in mammalian cells can lead to a multitude of 

diseases (Balaban, 2010; Calvo et al., 2006; Duchen, 2004; Nassir and Ibdah, 2014; 

Palmieri, 2008). In addition, metabolite channeling (Jandt et al., 2013; Malaisse et al., 

2004; Zhang, 2011), association of enzymes (Campanella et al., 2005), and 

microcompartmentation (Holthuis and Ungermann, 2013) are forms in which the 

eukaryotic metabolism is controlled by the cellular microstructure, but are only little 

understood. 

Metabolic flux analysis of mammalian cells can rely just on flux balancing (Altamirano et 

al., 2001b; Bonarius et al., 1996; Sidorenko et al., 2008) or use also 13C-labeling information 

to resolve more complex metabolic networks (Amaral et al., 2011; Bonarius et al., 2001; 

Goudar et al., 2010; Niklas et al., 2011b). Non-stationary 13C metabolic flux analysis (INST-

13CMFA) allows a detailed characterization of metabolic network function (Noh et al., 

2006; Noh and Wiechert, 2006). By using the dynamics of mass isotopomer distributions 

(MIDs) it is possible to obtain detailed information about metabolic fluxes, reversibility 

and intracompartmental concentrations (Noh et al., 2007; Noh and Wiechert, 2011; 

Schmidt et al., 1997). However, the experimental and computational costs of this method 

are substantially higher when compared to other MFA methods (Fig. 4.1). INST-13CMFA 

also allows the estimation of intracompartmental concentrations by using only the 

labeling dynamics of selected metabolites (Wiechert and Noh, 2005). As a tool for 
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detailed metabolic flux analysis, INST-13CMFA proved to achieve the best resolution in 

resolving fluxes for cultured B-cells (Murphy et al., 2013). In eukaryotic cells, it was 

applied to study the metabolism of Pichia pastoris (Jorda et al., 2014), of hepatic cells 

(Hofmann et al., 2008; Maier et al., 2008) and of neurons (Amaral et al., 2011). I previously 

applied INST-13CMFA using the extracellular MIDs of metabolites from a reactor batch 

culture of CHO-K1 suspension cells where [U-13C6] glucose was used as labeled substrate 

to determine the fluxes in a compartmented metabolic network as well as metabolite 

exchange with the media (Nicolae et al., 2014). 

CHO cells are the main production cell line for biopharmaceuticals (Kim et al., 2012) and 

considered as the “mammalian equivalent of E. coli” given their relevance as mammalian 

model system (Jayapal et al., 2007). Economic importance made CHO cells a target for 

various MFA studies (Ahn and Antoniewicz, 2011; Altamirano et al., 2001a; Altamirano et 

al., 2001b; Duarte et al., 2014; Goudar et al., 2010; Nicolae et al., 2014; Nolan and Lee, 2010; 

Provost et al., 2006; Sengupta et al., 2010; Sheikholeslami et al., 2013; Templeton et al., 

2013; Wahrheit et al., 2014a). The most detailed MFA studies used parallel labeling 

experiments and steady-state labeling to characterize the growth and the non-growth 

phases in monolayer CHO-K1 cells (Ahn and Antoniewicz, 2011), [1-13C] glucose for 

analyzing an inducible expression system engineered into a CHO cell line 

(Sheikholeslami et al., 2013) or to characterize the metabolic shifts during antibody 

production in highly-productive CHO cell line (Templeton et al., 2013). Nevertheless, all 

previous studies did not succeed in untangling the traffic between mitochondria and 

cytosol, as these models did not fully take into consideration mitochondrial transport and 

metabolite compartmentation. 

In the present work the CHO-K1 metabolism was studied by applying two labeled 

substrates, [U-13C6] glucose and [U-13C5] glutamine, to a shake flask batch culture of CHO-

K1 suspension cells. The dynamics of intra- and extracellular MIDs was used to estimate 

the intracellular fluxes, reversibilities and intracompartmental concentrations by applying 

INST-13CMFA. Such method produces a high-resolution analysis of the mammalian cell 
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metabolism, as it allows a detailed exploration of metabolic compartmentation, 

mitochondrial transport and metabolic channeling. The metabolic network resolved 

herein offers a new perspective of the complex CHO-K1 cells metabolism in particular and 

more generally on the intricate system of metabolic fluxes in mammalian cells. 

 

Figure 4.1. Experimental requirements for metabolic flux analysis tools. 

4.2. Materials and methods 

4.2.1. Cell culture 

The CHO-K1 cell line was kindly provided by the Institute of Cell Culture Technology of 

the University Bielefeld (Germany). The cells were grown in suspension culture under 

serum and protein free conditions in the chemically defined, protein-free TC-42 medium 

(TeutoCell, Bielefeld, Germany), supplemented with 6 mM L-glutamine (Sigma-Aldrich, 

Steinheim, Germany) from a 240 mM stock solution in dH2O. Cultivation of the CHO-K1 

cells was performed in baffled shake flasks (250 ml, Corning, New York, USA) in a shaking 

incubator (Innova 4230, New Brunswick Scientific, Edison, NJ, USA) at 135 rpm (2 inches 

orbit), 37°C and 5% CO2. 
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4.2.2. Experimental set-up of labeling experiments 

The pre-culture was carried out in a 250 ml baffled shake flask (Corning Inc., Germany) at 

an initial cell density of 4  105 cells/ml and a working volume of 100 ml. For the tracer 

experiments, cells were harvested during the exponential growth phase and resuspended 

in TC-42 medium with 100% [U-13C6] glucose (99%, Euriso-Top, Saarbrücken, Germany) 

or with 100% [U-13C5]glutamine (99%, Cambridge Isotope Laboratories, Andover, MA, 

USA). Four parallel tracer experiments were performed, two replicates with fully labeled 

glucose and two replicates with fully labeled glutamine, respectively. The main cultures 

were inoculated at a start cell density of 2  106 cells/ml in a start volume of 120 ml 

medium. 

Extracellular samples of 0.5 ml were taken from all four cultivations every 6 h for cell 

counting, determination of extracellular metabolite concentrations and extracellular 

labeling dynamics. 50 µl of the sample was diluted with PBS and mixed with Trypan Blue 

for determination of cell density, cell viability and average cell diameter using an 

automated cell counter (Invitrogen, Darmstadt, Germany). The sample was centrifuged 

(10,000 rpm, 5 min, Biofuge pico, Heraeus Instruments, Hanau, Germany), 300 µl of the 

supernatant transferred to fresh tubes and stored at -20°C for further analysis. The rest of 

the sample was used for pH determination (MP 220 pH Meter, Mettler-Toledo, Giessen, 

Germany). 

Intracellular samples of 5 ml were taken alternately from the two replicates after 2 min, 10 

min, 20 min, 30 min, 1h, 2 h, 4 h, 6 h, 12 h, 18 h, 24 h, 30 h, 36 h, 42 h and 48 h. Quenching 

and extraction for determination of intracellular metabolites was performed as described 

in detail recently (Wahrheit and Heinzle, 2013; Wahrheit and Heinzle, 2014a). In brief, a 

sample of 5 ml cell suspension was quenched in 45 ml ice-cold 0.9% sodium chloride 

solution and centrifuged for 1 min at 2000  g in a pre-cooled centrifuge at 0°C. The 

supernatant was carefully decanted followed immediately by suction of residual liquid 

using a vacuum pump without touching the cell pellet. Washing was performed by 

carefully rinsing the cell pellet with 50 ml ice-cold 0.9% sodium chloride solution without 
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resuspending the cells. After repeating the centrifugation step and removal of the 

supernatant, the cell pellet was frozen in liquid nitrogen. Intracellular metabolites were 

extracted twice in 100% methanol and once in water by repeated freeze-thaw cycles as 

described previously (Wahrheit and Heinzle, 2014b) and similar to (Sellick et al., 2011b). 

Extracts were dried in a centrifugal evaporator. 

4.2.3. Quantification of extracellular metabolites 

Quantification of glucose, organic acids and amino acids via HPLC was carried out as 

described previously by Strigun et al. (Strigun et al., 2011). 

4.2.4. Analysis of isotopomer labelling patterns 

4.2.4.1. Sample preparation 

For determination of extracellular labeling dynamics, 50 µl of supernatants were 

lyophilized, resolved in 50 μl N,N-dimethylformamide (0.1 % pyridine) and incubated at 

80°C for 30 min. 50 µl N-methyl-N-t-butyldimethylsilyl-trifluoro-acetamide (MBDSTFA) 

was added followed by another incubation at 80°C for 30 min for derivatization of 

extracellular metabolites into corresponding dimethyl-t-butylsilyl derivatives. Dried cell 

extracts were resolved in 50 µl pyridine containing 20 mg/ml methoxylamine and 50 µl 

MSTFA (Macherey-Nagel, Düren, Deutschland) and incubated at 80°C for 30 min for 

derivatization of intracellular metabolites into corresponding methoxyamine-

trimethylsilyl derivatives. Derivatized samples were centrifuged at 13000  g for 5 min at 

4 °C and the supernatants transferred into fresh glass vials with micro inlets. 

4.2.4.2. GC-MS measurements 

Extra- and intracellular 13C-labeling dynamics were analyzed by gas chromatography mass 

spectrometry (GC-MS). The GC-MS measurements were carried out on a GC (HP 6890, 

Hewlett Packard, Paolo Alto, CA, USA) equipped with an HP5MS capillary column (5% 

phenyl-methyl-siloxane diphenylpolysiloxane, 30 m × 0.25 mm × 0.25 μm, Agilent 
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Technologies, Waldbronn, Germany), electron impact ionization at 70 eV, and a 

quadrupole detector (Agilent Technologies). The injection volume was 1 µl (7683B 

Autosampler, Agilent, Waldbronn, Germany; PTV-Injektor, Gerstel, Mühlheim a. d. Ruhr, 

Germany).  

Helium was used as carrier gas at a flow rate of 1.1 ml/min for analysis of extracellular 

metabolites or 0.7 ml/min for analysis of intracellular metabolites. The following 

temperature gradient was applied for analysis of extracellular metabolites: 135°C for 7 

min, 10°C/min up to 162°C, 7°C/min up to 170°C, 10°C/min up to 325°C, 325°C for 2.5 min; 

inlet temperature: 140°C and heating with 720°C/min up to 320°C; interface temperature 

320°C; quadrupole temperature 150°C. The temperature gradient for analysis of 

intracellular metabolites was as follows: 70°C for 1 min, 1°C/min up to 75°C, 5°C/min up to 

315°C, 25°C/min up to 340°C, 340°C for 5 min; inlet temperature: 70°C and heating with 

360°C/min up to 360°C; interface temperature 320°C; quadrupole temperature 280°C. 

4.2.4.3. Data analysis 

After identification of metabolites in the scan mode using the NIST data bank, 

quantification of labeling enrichment was done in SIM (selected ion monitoring) mode in 

at least two technical replicates. Unique fragments (m/z) containing the whole carbon 

backbone were chosen for secreted extracellular metabolites and selected intracellular 

metabolites of the central metabolism. Following fragments of extracellular metabolites 

(MBDSTFA derivatization) were analyzed: lactate 261, alanine 260, glycine 246, serine 

390, aspartate 418, glutamate 432, glutamine 431. Identified fragments in cell extracts 

(MSTFA derivatization) were as follows: pyruvate 174, lactate 219, alanine 218, fumarate 

245, malate 335, citrate 465, α-ketoglutarate 304, glycine 276, serine 278, aspartate 334, 

glutamate 348. Mass isotopomer distributions were corrected for naturally occurring 

isotopes using the method of Yang et al. (Yang et al., 2009). 

4.2.5. Dynamic metabolic flux analysis 

The continuous time course of the metabolic fluxes was computed similar to Niklas et al. 

(2011) following the steps: (1) interpolation of the extracellular concentrations of 
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metabolites and the cell density with a continuously derivable function, (2) computing 

the extracellular rates, and (3) computing intracellular fluxes based on a stoichiometric 

model. Cell density was interpolated using an exponential growth model. Extracellular 

concentrations of metabolites were interpolated using SLM (Shape Language Modeling), 

a user-developed fitting tool that uses customized splines (MATLAB 2012b, The 

Mathworks, Natick, MA, USA). To avoid overfitting and biological nonsense, all fitted 

values were constrained to positive values, not more than three splines per curve were 

used and, except where observed to be otherwise e.g. visual observation of metabolite 

production followed by uptake or vice versa, all fitting curves were constrained to be 

monotonous.  

Water evaporation was taken into account by correcting the concentration values prior to 

interpolation using the experimentally determined evaporation rate. Both the evaporation 

rate and glutamine degradation kinetics were determined experimentally in a cell-free 

setup identical to the one employed during the cultivation. Extracellular fluxes were 

calculated in units of mmol  (L cell)-1  h-1 using the numerically differentiated 

concentration slopes 
dt

dCi : 

cell

i

iu
VXdt

dC
v

11
,       (4.1) 

and by considering the spontaneous degradation of glutamine: 
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v




,

     (4.2) 

where vu,i is the uptake rate of metabolite i, Ci is the fitted extracellular concentration, 

kdGLN is the first order degradation constant of glutamine, X is the fitted cell density [cells 

 L-1] and Vcell is the volume of one cell [L]. Biomass fluxes were calculated using the 

time-dependent growth rate: 
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cell

Xiibio
VXdt

dX
Yv

11
/,       (4.3) 

where vbio,i is the biomass rate for metabolite i and Yi/X is the biomass yield coefficient. 

All biomass fluxes were computed considering the biomass composition listed in Suppl. 

Table S1.1 and Suppl. Table S1.2. 

The stoichiometric model of the CHO-K1 metabolism was built based on pathway data 

presented by (Ahn and Antoniewicz, 2012) and adapted to accommodate experimental 

observations (Fig. 4.2). It comprises the main pathways in the central carbon metabolism: 

biomass production using proteins, fatty acids and carbohydrates; glycolysis, pentose 

phosphate pathway (PPP), tricarboxylic acid (TCA) cycle, and amino acids syntheses; and 

catabolism (Suppl. Table S4.1). Aminotransferase reactions were always coupled with the 

conversion of α-ketoglutarate to glutamate. The stoichiometric model was simplified in 

the following way: compartmentation was neglected, anaplerotic reactions were lumped 

into one flux connecting phosphoenolpyruvate with oxaloacetate; and serine production 

and degradation reactions were modeled as one reversible flux between serine and 

pyruvate. The intracellular fluxes were calculated using the external fluxes according to 

network stoichiometry: 

)()( mmcc vGGinvv        (4.4) 

where vc and vm are the arrays of intracellular and extracellular fluxes, Gc and Gm are the 

corresponding stoichiometric matrices. The Gc matrix must be invertible. Consequently, 

the stoichiometric model was modified as described above. Following all listed 

simplifications, the PPP flux could still not be calculated directly but was fixed in order to 

obtain an invertible Gc. The PPP was therefore set at 5% of the total glucose input flux, a 

value that suffices for DNA and RNA synthesis requirements and also limits the carbon 

loss in the reaction catalyzed by phosphogluconate dehydrogenase. 

Numerical derivation is an important source of errors. In dynamic flux analysis, this issue 

can lead to computing fluxes lacking biological sense (e.g. a reversed TCA cycle). Noise 

amplification by derivation is mitigated by considering the measurement errors in the 
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computed flux values. Monte Carlo was applied to sample 1500 sets of extracellular 

concentrations using the average measured values perturbed normally with the standard 

deviations. Each set was then interpolated with piecewise splines and the metabolic fluxes 

were computed at the interpolation time points. Average flux values and flux standard 

deviations were calculated using the resulting flux sets. 

 

Figure 4.2. Simplified metabolic network of the CHO-K1 cell line central carbon metabolism. Subscripts: ex 

– extracellular. Abbreviations: AA1 – isoleucine, methionine, threonine, valine; AA2 – isoleucine, leucine, 

lysine, phenylalanine, tyrosine; AA3 – arginine, proline; AcoA – acetyl-coenzyme A; AKG – α-ketoglutarate; 

ALA – alanine, ASN – asparagine; ASP – aspartate; C3 – phosphoenolpyruvate / pyruvate; C4 – malate / 

oxaloacetate; CIT – citrate; G6P – glucose-6-phosphate; GLC – glucose; GLN – glutamine; GLU – glutamate; 

GLY – glycine; LAC – lactate; PG – phopshopglycerate; PYR – pyruvate; SER – serine. 

4.2.6. Metabolic network for non-stationary 13C MFA 

A detailed metabolic network of the CHO-K1 cell line was constructed using the 

annotated CHO genome database (Hammond et al., 2012), the Mus musculus genome 

(Zhu et al., 2003) and the KEGG Pathway database (Kanehisa et al., 2014). Information 

about enzyme compartmentation, mitochondrial transporters and metabolic channeling 

was included when available.  The network included compartmentation of cytosolic and 

mitochondrial alanine and aspartate aminotransferases, cytosolic glutamine synthesis and 

mitochondrial glutaminase, cytosolic and mitochondrial isocitrate dehydrogenase. 

Concerning mitochondrial carriers, the following were considered: irreversible pyruvate 
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carrier (confirmed by own mitochondrial studies, unpublished data), reversible 

dicarboxylate carrier, irreversible citrate carrier, reversible α-ketoglutarate carrier, 

reversible glutamate carrier, reversible aspartate-glutamate carrier, reversible alanine 

transport and irreversible glutamine transport into the mitochondria. In addition, the 

network was modified using enzyme activity localization determined by Wahrheit et al. 

(2014b). The pathways producing macromolecules e.g. carbohydrates, proteins, fatty 

acids, nucleic acids were included as sink fluxes for precursor metabolites. The catabolism 

of amino acids was lumped into fluxes feeding target metabolite pools. For the detailed 

reaction list and the carbon transfer rules see (Supplem. Table S 4.2). 

4.2.7. Flux space analysis 

Constraints imposed by extracellular fluxes and reaction direction limit the possible flux 

space. Convex analysis applied to calculating the flux polytope could be computationally 

cumbersome. This fact was circumvented by using Monte Carlo sampling to generate the 

flux space (Wiback et al., 2004). A total of 10000 flux sets was generated within the 

designated constraints and using the stoichiometry of the detailed model. The boundaries 

of the flux space were further used as constraints for the non-stationary 13C MFA.  

4.2.8. Non-stationary-13CMFA 

Metabolite and carbon balancing for both intracellular and extracellular metabolites was 

applied for simulating the mass isotopomer distribution (MID) of selected metabolites 

over time. The mathematical modeling procedure of non-stationary 13C metabolic flux 

analysis (INST-13CMFA) is the same as described and applied by Nicolae et al. (2014). In 

the present study intracellular MIDs were available therefore intracompartmental 

concentrations of metabolites with sampled MIDs could be estimated. The sampled MID 

of a metabolite is the average of the mitochondrial and cytosolic values, weighed by the 

intracompartmental concentrations of that metabolite. The total mitochondrial volume 

was set to be 20% of the total cell volume, as estimated from STED microscopy (personal 

communication, Uwe Jandt), higher than reported for HeLa cells and a different cell line 
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of CHO cells (Gandhi and Samuels, 2011; Ross and Mel, 1972) but comparable to the 

average for mammalian cells or rat liver (Else and Hulbert, 1985; Weibel et al., 1969). 

Exact 3D data are, however, still lacking. For all the metabolites that were included in the 

model but for which the MIDs were not sampled, the intracompartmental pool values 

took negligible values of 0.1 mmol/L cell. The accepted standard deviation of extracellular 

MIDs in the objective function was 0.01 and of intracellular MIDs it was 0.03.   

4.3. Results and Discussion 

4.3.1. Cell growth and extracellular metabolite concentrations 

Growth and extracellular metabolite concentrations were determined from four biological 

replicates. The CHO-K1 cells maintained exponential growth for the whole cultivation 

period of 48 h (Fig. 4.3). The parallel cultivations were reproducible as is evident from the 

low standard deviations in (Fig. 4.3,Fig. 4.4 and Supplem. Table 4.4). The estimated 

specific growth rate was μ = 0.034 h-1 (Fig. 4.3). Glucose, glutamine, pyruvate, serine, 

asparagine, aspartate and essential amino acids were taken up (Fig. 4.4). Lactate, alanine, 

glutamate and glycine were produced throughout the cultivation period. By the end of 

the 48 h cultivation, 60% of the glucose was converted to lactate. Although the specific 

growth rate was constant, the specific uptake and production rates generally decreased 

over the 48h, the most marked trend being observed for lactate production (Fig. 4.4). 

However, no switch from production to uptake or vice-versa was observed. 

 

Figure 4.3. Growth profile of the CHO-K1 cells in 250 ml baffled shake flask with a working volume of 120 

mL and the determined specific growth rate µ. The values represent the average of 4 parallel cultivations 
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Figure 4.4. Cell density (cells / mL) and extracellular metabolites concentrations (µmol / L) for a 48 h 

cultivation of CHO-K1 cells in 250 ml baffled shake flask with a working volume of 120 mL. The lines 

represent the piecewise spline interpolations and the red bars are the standard deviation computed from 4 

parallel cultivations 

4.3.2. Labeling experiment 

Extracellular MIDs were determined from two biological replicates. For determination of 

the time courses for intracellular labeling dynamics, MIDs were obtained alternatively 

from two parallel cultivations for each labeled substrate. In the experiment where [U-13C6] 

glucose was used, the sampled metabolites became labeled gradually, and no steady state 

was reached after 48 h (Fig. 4.5 A). The general trend was an increase of the labeled 

fraction, the exception being intracellular lactate, whose M3 mass fraction decreased after 

36 h. The mass isotopomer with the highest proportion for pyruvate, lactate and alanine 

was M+3, while for metabolites related to the TCA cycle e.g. citrate, α-ketoglutarate, 

fumarate and malate, it was the M2. Lactate and alanine pools were labeled differently 
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intra- and extracellularly. This evidence supports the hypothesis of metabolic 

compartmentation of these two metabolites. Partitioning of lactate dehydrogenase 

activity, either by channeling (Jandt et al., 2013; Malaisse et al., 2004; Perez-Bercoff et al., 

2011) or in cellular compartments (Baba and Sharma, 1971; Brooks et al., 1999; Gladden, 

2004; Hashimoto and Brooks, 2008; Lemire et al., 2008; Philp et al., 2005; Sagrista and 

Bozal, 1987) can also be inferred by comparing the intracellular labeling of pyruvate and 

lactate. During the first 24 h, intracellular pyruvate and lactate follow similar labeling 

patterns. At 18 h after inoculation, a switch in the partitioning of lactate dehydrogenase 

was evident from diverging labeling patterns of intracellular pyruvate and lactate.  

In the first 2 h, the labeling in pyruvate exhibited a sharp overshooting of the M+3 

fraction, that was manifested later also in lactate (Fig. 4.5 B). A similar overshooting 

behavior was observed in the M+4 isotopomer of malate, and it transmitted to aspartate.  

When [U-13C5] glutamine was used as the 13C label source, no labeling was observed in 

serine and glycine, indicating there is no gluconeogenesis. Pyruvate and lactate displayed 

a sharp overshooting in the first 2 h in all mass isotopomers (Fig. 4.5 B). However, after 12 

h, the labeling of pyruvate and lactate returned close to the natural labeling state, 

indicating the absence of fluxes that connect glutamine to pyruvate. The M+4 fraction in 

aspartate, fumarate and malate increased until 18 h, and then it decreased in favor of the 

non-labeled fraction. This is most likely the result of a metabolic shift occurring around 

18 h after inoculation. The shift is mirrored in glutamine and glutamate labeling, where 

the non-labeled fraction increased steadily after 24 h. The metabolic shift consists most 

likely of a decrease in the ratio between glutaminolysis and glycolysis in contributing to 

the TCA cycle. The specific uptake and production rates were therefore computed for the 

period of 0-18 h by fitting the model of exponential balanced growth in batch culture to 

the sampled extracellular concentrations (Fig. 4.4).  

Aspartate, fumarate and malate had similar labeling patterns on both labeled substrates, 

suggesting a high degree of connection and exchange between these metabolites. The 

MID curves that exhibited overshooting returned to a smooth behavior after 2 h on both 

labeled substrates. Overshooting can be assigned to a stress response of the cells to media 
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change at the beginning of the culture (Wellen and Thompson, 2010). The stress response 

is characterized by very high metabolic rates that quickly convert the fed substrates after 

being resuspended to replenish the depleted intracellular pools. Once these pools were 

replenished, the metabolism followed a steady state behavior as can be seen in (Fig. 4.4). 

Since there is no observable difference in the cell number and extracellular 

concentrations in the first two hours, assessing the extracellular fluxes during this brief 

period and proving the existence of metabolic steady state required for metabolic flux 

analysis tools is not possible. 

4.3.3. Dynamic metabolic flux analysis 

Flux changes throughout the 48 h cultivation period reflected the observation in the 

MIDs, namely that a shift in metabolism occurs after 18 h (Fig. 4.6). Glucose uptake flux 

decreased markedly and the relatively high standard deviation in glucose concentration 

measurement (Fig. 4.4) propagated in the computed fluxes. The initial slope of the 

interpolation curves is a significant source of uncertainty in the flux values computed in 

the first 10 h, as it can be observed by the high values of estimated standard deviations 

(Fig. 4.6.A). The metabolic shift occurring after approx. 20 h is marked by a decrease in 

the lactate production rate compared to the main extracellular fluxes: glucose uptake 

(Fig. 4.6.B), glutamine uptake (Fig. 4.6.D) and alanine production (Fig. 4.6.E). 

Remarkably, the specific growth rate remained constant despite decreasing uptake rates 

of carbon sources. It can therefore be inferred that the cells are programmed for 

maximizing growth regardless of the availability of carbon sources. It is also very likely 

that the uptake and processing rates of glucose and glutamine depend on their 

extracellular concentrations. Owing to the sharply decreasing uptake rates of carbon 

sources, after 20 h from the inoculation, the carbon sources were deployed almost 

exclusively for sustaining growth and metabolite secretion. This led to an arrest of the 

TCA cycle (Fig. 4.6 A), which can explain the switch observed in lactate and pyruvate 

labeling (Fig. 4.5 A). 
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Figure 4.5. (A) Experimentally 

determined mass isotopomer 

distributions of intracellular and 

extracellular (subscript ex) 

metabolites during the 48 h of 

the labeling experiment using [U-

13C6] glucose and [U-13C5] 

glutamine as substrates. (B) The 

first 5 h of the labeling 

experiment using [U-13C6] glucose 

and [U-13C5] glutamine as 

substrates showing the 

overshooting behavior in 

intracellular pyruvate (PYR), 

lactate (LAC), malate (MAL) and 

aspartate (ASP). Abbreviations: 

AKG – α-ketoglutarate; ALA – 

alanine; ASN – asparagine; ASP – 

aspartate; CIT – citrate; FUM – 

fumarate; GLN – glutamine; GLU 

– glutamate; GLY – glycine; Lac – 

lactate; MAL – malate; PYR – 

pyruvate; SER – serine. 
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Figure 4.6. (A) Dynamics of fluxes in the metabolic network of CHO-K1 cells. The fluxes (black lines, mmol 

 L cell-1  h-1) and their standard deviations (red bars) were determined from 1500 Monte Carlo 

simulations that fitted with piecewise splines normally perturbed extracellular. Dynamics of flux ratio 

between (B) lactate secretion and glucose uptake, (C) glutamine uptake and glucose uptake, (D) glutamine 

uptake and lactate secretion and (E) alanine secretion and lactate secretion. Subscripts: ex – extracellular. 

Abbreviations: AKG – α-ketoglutarate; ALA – alanine; ASN – asparagine; ASP – aspartate; CIT – citrate; 

FUM – fumarate; GLN – glutamine; GLU – glutamate; GLY – glycine; Lac – lactate; MAL – malate; PYR – 

pyruvate; SER – serine 
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4.3.4. Flux space 

The flux space for the detailed network of the CHO-K1 cell was computed using as 

constraint the extracellular fluxes computed for the first 18 h of cultivation and default 

boundary constraints for the free fluxes. Many fluxes were limited only by the default 

boundaries (Fig. 4.7). This outcome is not surprising considering the large number of 

degrees of freedom in the flux space i.e. 13. Fluxes in glycolysis and TCA cycle were 

limited by substrate uptake, i.e. glucose and glutamine. Pentose phosphate pathway 

consumes one carbon atom, making its flux inversely proportional to the flux in the TCA 

cycle. Interestingly, in the majority of cases the estimated fluxes did not match the fluxes 

with the highest frequency of occurrence in the flux space. Most of the fluxes estimated 

using 13C labeling data lie near the boundaries of the flux space.  

4.3.5. Fitting of MIDs and model re-adaptation 

For applying INST-13CMFA, it was considered that the cells were at metabolic steady state 

between 2-18 h after the beginning of the labeling experiments (Deshpande et al., 2009; 

Noh et al., 2006). This is a valid assumption for most metabolites, as it was shown by 

fitting the extracellular concentrations to an exponential growth using constant yield 

coefficients (Fig. 4.4). The MIDs of 15 extracellular and intracellular metabolites, 5 time 

points for [U-13C6] glucose and 4 time points for [U-13C5] glutamine were sampled, totaling 

675 experimental MID points (Fig. 4.8, Supplem. Table 4.3). Because of the highly noisy 

data, the MIDs of intracellular alanine and α-ketoglutarate were excluded from the 

objective function. After several trials in which no successful fitting was obtained, the 

initial model was modified to include: (1) two pools of cytosolic pyruvate, of which one is 

channeled to lactate that is then directly secreted, (2) two pools of mitochondrial 

pyruvate, of which one is converted to acetyl-CoA via pyruvate dehydrogenase, (3) a pool 

of mitochondrial lactate, (4) cytosolic synthesis of glutamine and (5) serine degradation 

to pyruvate. 

The parameter estimation was conducted using two strategies in parallel: one used a 

genetic optimization algorithm as described earlier (Nicolae et al., 2014), and the other 
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used the following procedure: (1) generate 1000 random initial points that satisfy 

constraints, (2) use the point that produced the smallest value of the objective function as 

the starting point of a gradient-based algorithm and (3) find the minimum using the trust 

region reflective algorithm. The second optimization strategy was repeated 30 times, and 

it provided the best fit of the MIDs. One simulation took about 6.5 s, and the 

optimization procedure required about 6 days on a 2.3 GHz QuadCore CPU. A total of 64 

parameters were estimated, of which 13 were free fluxes, 29 were flux reversibilities, 20 

were intracompartmental pools and 2 additional parameters that expressed the non-

labeled CO2 flux entering the cytosol and the mitochondria. This flux was needed to 

evaluate the labeling dynamics of CO2 used by carboxylation reactions. 

The best fit (Fig. 4.8) resulted in a minimized weighted sum of square differences value of 

665, which is smaller than the criteria for fitting χ2(0.95, 675-64) = 670. Most of the MIDs 

of metabolites were reasonably well fitted, with the exception of lactate when [U-13C6] 

glucose was used. Because the labeling of extracellular lactate is different from the 

labeling of intracellular lactate (Fig. 4.8), new cytosolic pyruvate pools from which lactate 

can derive were included in the model. While this assumption produced a much better 

approximation of lactate labeling, it is still possible that other metabolic configurations 

involving more sophisticated channeling and compartmentation are responsible for the 

observed labeling pattern in lactate. 

Confidence intervals were computed accordingly to (Antoniewicz et al., 2006) and were 

very narrow for most estimated parameters (Suppl. Table S4.2). This is a strong indication 

that fitting simultaneously the intracellular MIDs from two parallel labeling experiments 

that used two different labeled substrates validates INST-13CMFA as an effective 

methodology for untangling the details of complex metabolic networks, as it was already 

described by (Murphy et al., 2013). 
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Figure 4.7. Flux space of the metabolic network of CHO-K1 cell representing the flux frequency distribution 

computed by Monte Carlo random sampling of 10000 flux sets that satisfied imposed constraints. The fluxes 

are expressed in [mmol  L cell-1  h-1]. The red line represents the fluxes estimated using INST-13CMFA. 

Subscripts meaning: c – cytosolic; m – mitochondrial; Abbreviations: ACoA – acetyl-CoA; ALA – alanine; 

ASP – aspartate; CIT – citrate; FUM – fumarate; GLC – glucose; G6P – glucose-6-phosphate; PG – 

phosphoglycerate; PEP – phosphoenolpyruvate; GLN – glutamine; GLU – glutamate; MAL – malate; OAA – 

oxaloacetate; PPP – pentose phosphate pathway; PYR – pyruvate; SER – serine; SUC – succinate. 
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Figure 4.8. Mass isotopomer distributions (MIDs) of sampled metabolites during the first 18 h of 

cultivation of CHO-K1 suspension cells with (A) [U-13C6] glucose and (B) [U-13C5] glutamine. The values of 

the extracellular MIDs are the average of two biological replicates and the intracellular MIDs are obtained 

alternatively from two parallel cultivations for each labeled substrate. The continuous lines represent the 

best simulated fit of the MIDs. Subscripts meaning: ex – extracellular. Abbreviations: exp – experimental; 

sim – simulated; ALA – alanine; ASP – aspartate; CIT – citrate; FUM – fumarate; GLN – glutamine; GLU – 

glutamate; GLY – glycine; LAC – lactate; MAL – malate; PYR – pyruvate; SER – serine. 
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4.3.6. Metabolic fluxes, compartmentation and channeling 

Glycolysis was the main carbon source of the CHO-K1 cell metabolism (Fig. 4.9 A). 

Consistent with our previous finding for the CHO-K1 cell line cultivated in a reactor batch 

culture (Nicolae et al., 2014), most of the glucose-6-phosphate was metabolized by the 

oxidative branch of the pentose phosphate pathway (PPP) and not by the upper 

glycolysis. 75% of the glucose was converted to lactate that was then secreted. The 

remaining glucose was converted to pyruvate that was transported to the mitochondria. 

In previous studies of this CHO-K1 cell line, it was found that partial glycolytic 

channeling resulted in two cytosolic pyruvate pools (Nicolae et al., 2014; Wahrheit et al., 

2014b), a phenomenon observed before in CHO cells (Ahn and Antoniewicz, 2013; 

Deshpande, 2008) and also in other mammalian cells (Campanella et al., 2005; Cruz et al., 

2001; Peuhkurinen et al., 1983; Zwingmann et al., 2001). In the present study, the 

channeling effect was less pronounced, as the two cytosolic pyruvate pools were 

estimated to be strongly connected (Fig. 4.9 A). However, active exchange from pyruvate 

towards a second cytosolic dead-end lactate pool had to be included. Also, the exchange 

between the extracellular and intracellular lactate pool was significant. This exchange 

must be considered to describe the MIDs dynamics of intracellular lactate and pyruvate. 

Furthermore, the model was expanded by a mitochondrial lactate pool and channeling of 

mitochondrial pyruvate to describe the difference in labeling between extracellular and 

intracellular lactate. Heterogeneously distributed pyruvate dehydrogenase in the 

mitochondrial matrix as found in fibroblasts (Margineantu et al., 2002) supports the 

assumption that a part of the pyruvate entering the mitochondria is converted to acetyl-

CoA without mixing with the mitochondrial pyruvate pool (Fig. 4.9 B). These results are 

similar to those of Ahn et al. (Ahn and Antoniewicz, 2013). 
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Figure 4.9. (A) Metabolic fluxes of the central carbon metabolism of CHO-K1 cells in the 2 – 18 h period of 

cultivation estimated using non-stationary 13C metabolic flux analysis. (B) Glycolysis and pyruvate 

metabolism compartmentation in CHO-K1 cells. (C) Metabolism of oxaloacetate (OAA), aspartate (ASP) 

and malate (MAL) in CHO-K1 cells. (D) Metabolism of glutamine (GLN), glutamate (GLU), α-ketoglutarate 

(AKG) and citrate (CIT) in CHO-K1 cells. The thickness of the lines is proportional to the net flux values, 

except for the fluxes connecting PYRm1-LACm and PYRc1-LACc1, where they represent the exchange flux (the 

net flux being 0). The full arrows indicate the direction of the net flux, and the empty arrows indicate a 

reversible flux. Subscripts meaning: c – cytosolic; ex – extracellular; m – mitochondrial; Abbreviations: AcoA 

– acetyl-CoA; ALA – alanine; ASN – asparagine; ASP – aspartate; CIT – citrate; FUM – fumarate; GLC – 

glucose; G6P – glucose-6-phosphate; PG – phosphoglycerate; PEP – phosphoenolpyruvate; GLN – 

glutamine; GLU – glutamate; GLY – glycine; ICI – isocitrate; ILE – isoleucine; LAC – lactate; LEU – leucine; 

LYS – lysine; MAL – malate; MET – methionine; OAA – oxaloacetate; PHE – phenylalanine; PYR – pyruvate; 

SER – serine; SUC – succinate; THR – threonine; TYR – tyrosine; VAL – valine. 
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Mitochondrial channeling results in two pyruvate pools, observed when [U-13C6] glucose 

is used: one with high 13C fractional labeling produced in the glycolysis that is channeled 

to acetyl-coA, and a second larger one replenished with 12C by cataplerotic reactions. 

Activity of mitochondrial lactate dehydrogenase was already confirmed in various tissues, 

e.g. heart mitochondria (Brooks et al., 1999), breast cancer cells (Hussien and Brooks, 

2011), muscle cells (Hashimoto et al., 2006), liver cells (Brooks et al., 1999; Kline et al., 

1986), astrocytoma (Lemire et al., 2008) and neurons (Hashimoto et al., 2008). 

Mitochondrial metabolism of lactate occurs when lactate is being metabolized as a 

carbon source, due to its high intracellular concentration (Brooks et al., 1999). However, 

in our case, lactate was secreted by the cells and it constituted a dead end metabolite in 

the mitochondria. It can therefore be assumed that the role of lactate in the 

mito0chondria is to function as a buffer for NADH, a mediator of redox states between 

compartments (Gladden, 2004). 

Glycolytic pyruvate and glutamine constituted the main fuels of the TCA cycle as 

previously shown for this cell line (Wahrheit et al., 2014a; Wahrheit et al., 2014b). The 

catabolism of essential amino acids was limited to a small flux feeding the acetyl-CoA 

pool. Otherwise, the uptake of essential amino acids was mostly restricted to the 

requirements for protein synthesis also previously found for this cells line (Wahrheit et 

al., 2014b). 

At the cytosol-mitochondria boundary, most mitochondrial transporters carried 

significant fluxes. The mitochondrial pyruvate carrier (Bricker et al., 2012; Herzig et al., 

2012) was the only connection between glycolysis and the TCA cycle, providing most of 

the mitochondrial pyruvate, as the mitochondrial malic enzyme activity was estimated to 

be very low (Fig. 4.9 B), consistent with enzyme assays (Wahrheit et al., 2014b). The 

aspartate-malate shuttle (Fig. 4.9 C) was constituted by export of mitochondrial aspartate 

via the glutamate-aspartate carrier (Cavero et al., 2003; Lane and Gardner, 2005) and 

import of cytosolic malate in the mitochondria via the malate-α-ketoglutarate carrier. 

Cytosolic aspartate was converted to oxaloacetate by the activity of aspartate 

aminotransferase. Cytosolic malate dehydrogenase converted oxaloacetate to malate and 



 

 

87 
 

4. High resolution 13C metabolic flux analysis in CHO cells 

consumed a part of the cytosolic NADH. Another transporter that facilitated the 

transport of malate in the mitochondria was the malate-citrate carrier. Malate was 

transported in exchange for citrate, which was used in the cytosol for fatty acids synthesis 

(Gnoni et al., 2009; Zara et al., 2005). Although malate is transported in the mitochondria 

with a net flux, partial cycling of malate between mitochondria and cytosol occurred. The 

malate carrier exchanged mitochondrial malate for cytosolic phosphate (Fiermonte et al., 

1999; Mizuarai et al., 2005) (Fig. 4.9 C). Phosphoenolpyruvate carboxykinase activity was 

modest but could serve as a starting point of gluconeogenesis. However, complete 

gluconeogenesis did not occur because neither serine nor glycine was labeled when [U-

13C5] glutamine was used as tracer (Fig. 4.8 B). 

Glutamine uptake in the mitochondria was 3.6 times higher than the net glutamine 

uptake from the medium. This is the result of a considerable cytosolic synthesis of 

glutamine from glutamate (Fig. 4.9 D). It was previously observed in CHO-K1 cells that 

the glutamine synthesis pathway is active even at high glutamine consumption rates 

(Nicolae et al., 2014). In the mitochondria, glutamine feeds the TCA cycle via glutamate 

that is converted to α-ketoglutarate not by NADH-producing glutamate dehydrogenase, 

but by transamination reactions. Aspartate was synthesized in the mitochondria, 

exported and re-converted to oxaloacetate in the cytosol. Alanine synthesis was estimated 

to occur mostly in the mitochondria. Glutamate transporter carried a high flux leaving 

the mitochondria (Fig. 4.9 D). Glutamate was procured in the cytosol either via transport 

from the mitochondria or transamination of α-ketoglutarate. Cytosolic glutamate was 

used to fuel glutamine synthesis and as an antiport partner to the aspartate-glutamate 

transporter. Despite the high activity detected in vitro for cytosolic IDH (Wahrheit et al., 

2014b), this did not reflect in the labeling patterns, regardless of the reaction direction 

that was considered. Even setting the labeling of the CO2 pool as a free parameter did not 

result in the estimation of a significant activity. The role of such a high activity of 

cytosolic isocitrate dehydrogenase could be to control variations of the cytosolic NADPH 

content and stress response (Lee et al., 2002).   
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In what concerns compartmentation of NADH and NADPH metabolism (Table 4.1), the 

excess of cytosolic NADH produced in the glycolysis is consumed by lactate 

dehydrogenase and malate dehydrogenase that is part of the malate shuttle. Cytosolic 

NADPH is provided only by the PPP since it was found by MFA that the activity of 

cytosolic malic enzyme was virtually absent. This agrees with earlier data of enzyme 

assays (Wahrheit et al., 2014b). The very low activity of mitochondrial malic enzyme 

means that little or even no mitochondrial NADPH was produced via this route. 

Oxidative stress (Tuttle et al., 2000; Vizan et al., 2009) that can be induced by futile cycles 

of disulfide bond formation and breaking during protein folding is an important 

consumer of NADPH (Tyo et al., 2012). This might indicate cytosolic NADPH supply as a 

limit for recombinant protein production. Enhancing the NADPH producing pathways 

could be a target for genetic modification in industrially relevant CHO strains (Klein et 

al., 2015). A large part of the cytosolic NADPH (21%) is used for fatty acid synthesis. 

Mitochondrial NADPH must be supplied by other reactions, most likely the 

transhydrogenase or NADP-dependent isocitrate dehydrogenase (Ceccarelli et al., 2002; 

Hatefi and Galante, 1977). It was shown by previous enzyme assays that around 90% of 

mitochondrial IDH activity is NADP-dependent (Wahrheit et al., 2014b).  

All aminotransferase reactions and also many of the transport reactions were determined 

to be highly reversible (Suppl. Table S4.2). The shapes of the MID curves are strongly 

influenced by reversibility (Noh and Wiechert, 2011). Transport reversibility explained the 

reduced summed fractional labeling when [U-13C6] glucose was used as a substrate, as the 

intracellular labeling was diluted by the large extracellular pool of non-labeled 

metabolites, consistent with our previous observations (Nicolae et al., 2014).  

Using intracellular labeling and two labeling experiments improved considerably the 

resolution and quality of estimated fluxes (Suppl. Table S4.2) compared to our previous 

study, where the same cell line was used but only extracellular labeling and one labeling 

experiment in a batch reactor cultivation (Nicolae et al., 2014). Now it was possible to 

establish the compartmentation of alanine synthesis and to solve the cytosolic and 

mitochondrial isocitrate – α-ketoglutarate – glutamate cycling. Extracellular fluxes are 
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highly dependent on the cultivation conditions as also reported earlier (Nicolae et al., 

2014). Many observations are consistent with the earlier ones made in a bioreactor 

culture: (1) almost complete diversion of glucose-6-phosphate through the PPP, (2) 

absence of cytosolic malic enzyme activity, (3) similar phosphoenolpyruvate-

carboxykinase activities, (4) simultaneous uptake and production of glutamine, (5) 

simultaneous uptake and production of serine and (6) excessive exchange of metabolites 

with the extracellular media. There were however also some significant differences 

compared to the reactor cultivation performed earlier (Nicolae et al., 2014): (1) reduced 

glucose uptake (~80% of the previous), (2) higher lactate production from glucose (75% 

compared to 39%) , (3) smaller TCA cycle flux, (4) reduced catabolism of essential amino 

acids, (5) low mitochondrial malic enzyme activity and (6) reduced uptake of asparagine.  

The metabolic flux map determined is probably the most complex to date for mammalian 

cells with respect to metabolic compartmentation, mainly because known mitochondrial 

transporters were incorporated into the flux model applied. The results of studies that use 

13CMFA to unravel the eukaryotic cell metabolism are highly dependent on the network 

structure. Changes in the network structure, e.g. the existence of other mitochondrial 

transporters, can lead to differences in some estimated fluxes due to non-linearity of 

isotopomer balances. It is therefore difficult to compare our results with previous 13CMFA 

studies of CHO cells. A high activity of the PPP was observed in the early exponential 

growth phase in a previous study that applied INST-13CMFA of CHO cells (Nicolae et al., 

2014). A high PPP was found to be a characteristic of the late non-growth phase (Ahn and 

Antoniewicz, 2011; Sengupta et al., 2010) or late-exponential phase (Templeton et al., 

2013). A high production of NADPH (Table 4.1) is required to counteract the oxidative 

stress induced by reactive oxygen species generated by mitochondrial respiration (Schafer 

et al., 2009; Vizan et al., 2009).  

4.3.7. Estimated intracompartmental pools 

The use of INST-13CMFA and the MIDs of intracellular metabolites required the 

simultaneous estimation of fluxes, reversibilities and intracompartmental concentrations 
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of certain metabolites. Estimated intracompartmental concentrations rely on the 

mitochondrial volume ratio determination. Using the available sampled intracellular 

MIDs (Fig. 4.8), the intracompartmental concentrations of 7 metabolites were estimated 

(Fig. 4.10) and the average intracellular concentration of another 2 (Fig. 4.10 A). 

Interestingly, pyruvate and lactate cytosolic concentrations were very low (Fig. 4.10 A) 

and considerably higher in the mitochondria. Lactate and pyruvate concentration 

distributions and the considered channeling effects explained the difference between 

extracellular and intracellular labeling in lactate when [U-13C6] glucose was used (Fig. 4.8 

A). Association of pyruvate dehydrogenase to the mitochondrial pyruvate transporter 

could explain the transport of pyruvate in the mitochondria against a concentration 

gradient, because the complex can use imported pyruvate to produce acetyl-CoA without 

interfering with the mitochondrial pool. Malate and fumarate had almost identical MID 

dynamics (Fig. 4.8). This makes simultaneous determination of intracompartmental 

concentrations not possible. Fumarate intramitochondrial concentration was set to a low 

value (0.1 mmol/L cell). The estimated malate intracompartmental concentration had an 

upper value of 5.2 mmol/L cell in the mitochondria and 3.9 mmol/L cell in the cytosol, 

and lower values of 2.1 mmol/L cell and 0.8 mmol/L cell respectively. Given that high 

exchange between compartments quickly balances labeling between compartments, the 

exact values of malate concentration for each compartment cannot be determined. The α-

ketoglutarate concentration was high in the cytosol whereas citrate had a high 

concentration in the mitochondria. The high cytosolic α-ketoglutarate concentration 

together with a low cytosolic concentration of citrate might be the reason why the 

observed activity of cytosolic isocitrate dehydrogenase towards α-ketoglutarate synthesis 

was virtually zero as was also found by flux analysis in cancer cells (Metallo et al., 2012). 

Alanine had comparable concentrations in both compartments. Aspartate was 

concentrated in the mitochondria, but only the upper threshold of the cytosolic 

concentration could be estimated. A relatively high intracellular concentration of serine 

and glycine was also determined. The most concentrated metabolite was glutamate, with 

a mitochondrial concentration reaching almost 50 mmol/ L cell, which might explain why 



 

 

91 
 

4. High resolution 13C metabolic flux analysis in CHO cells 

glutamate is exported from the mitochondria to the cytosol. However, only the upper 

boundary of the cytosolic concentration of glutamate could be estimated (Fig. 4.10 A). 

Citrate, glutamate and aspartate are exported with net fluxes from the mitochondria 

following the concentration gradient, while α-ketoglutarate is exported against the 

concentration gradient. A high cytosolic α-ketoglutarate concentration might be required 

to assist the various transamination reactions. All metabolites except α-ketoglutarate 

were more concentrated in the mitochondria than in the cytosol. Also, the estimated 

concentrations of amino acids are higher than reported intracellular concentrations for 

CHO cells (Hansen and Emborg, 1994; Lu et al., 2005). By applying INST-13CMFA, the 

average intracompartmental concentrations value might be overestimated as an effect of 

assigning negligible values to concentrations that are not estimated. However, since the 

dynamics of the MIDs depends on the pool size / flux ratio, the intracompartmental 

concentrations cannot be higher than their estimated upper boundary. Parameter 

estimation using INST-13CMFA instead of experimental determination has the advantage 

that the concentrations are estimated in vivo, without the risk of metabolite leakage 

during quenching and extraction (Dietmair et al., 2010; Sellick et al., 2009; Wahrheit and 

Heinzle, 2014a; Wahrheit et al., 2011b). In addition, INST-13CMFA provided a method to 

estimate intracompartmental concentrations of key metabolites of the central carbon 

metabolism, which was not yet achieved experimentally. 

4.3.8. Energy requirement and production 

The energy requirement and production in the CHO-K1 cells was computed based on the 

intracellular fluxes (Fig. 4.9) and reaction stoichiometry (Suppl. Table 4.2). Excluding 

oxidative phosphorylation and mitochondrial ATP transport, the balance for ATP is 

positive in both compartments (Table 4.1). The main source of cytosolic ATP is glycolysis, 

and in the cytosol it is produced in the reaction catalyzed by succinate dehydrogenase, 

along with FADH2. There is a small deficit of cytosolic NADH (i.e. electrons) which could 

be covered by reactions that were not included in the model. The value also falls within 

the standard deviation of the lactate secretion flux (Suppl. Fig. 4.1), which influences 
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directly the flux of the rection catalyzed by lactate dehydrogenase, where NADH is a 

cofactor, and also in the error for estimating the glycolysis flux based on glucose uptake.  

As mentioned in subchapter 4.3.6, the high cytosolic NADPH production (Table 4.1) is 

most likely used to mitigate oxidative stress and to fuel fatty acid synthesis. The oxidation 

of NADH will consume 348.8 mmol  (L cell)-1  h-1 O2. Considering a 1/2.5 ratio of 

NADH/ATP and 1/1.5 for FADH2/ATP for the process of oxidative phosphorylation 

(Hinkle, 2005) and the total consumption of NADH during this process, the total 

estimated production of ATP is 1603.9 mmol  (L cell)-1  h-1, which is obviously much 

higher than the requirements for protein and nucleic acids production. Such a high 

production of ATP clearly points to the existence of futile cycles and various processes 

that consume energy in the CHO-K1 cells and are not related to the central carbon 

metabolism or growth. This reinforces the assumption that the CHO-K1 cells do not have 

as a cell objective optimal use of energy and resources, as bacteria are assumed to have, 

but another cell objective that at the moment one can only speculate about. 

Table 4.1. Cofactor fluxes in the cytosol (c) and mitochondria (m) computed 
based on the instracellular fluxes in CHO-K1 cells for the 0-18h cultivation period 

Cofactor 

*excluding oxidative 

phosphorylation 

Flux  

[mmol  L cell-1  h-1] 

ATPc
* 146. 

ATPm
* 114.5 

NADHc -33.0 

NADHm 501.6 

NADPHc 467.5 

NADPHm 8.2 

FADH2m 114.5 

GTPc -66.4 

GTPm -23.1 
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Figure 4.10. Cytosolic and mitochondrial concentrations of metabolites estimated using non-stationary 13C 

metabolic flux analysis by assuming a mitochondrial volume ratio of 20%. The error bar represents the 95% 

confidence interval evaluated by refitting the model until the minimized objective function took the value 

of χ2(0.95, nr. experimental points – nr. parameters). Abbreviations: AKG – α-ketoglutarate; ALA – alanine; 

ASP – aspartate; CIT – citrate; GLU – glutamate; GLY – glycine; LAC – lactate; MAL – malate; PYR – 

pyruvate; SER – serine. 

4.4. Concluding Discussion 

The fluxes and reversibility of the probably most complex metabolic network to date were 

estimated by applying INST-13CMFA and using the intracellular and extracellular MID 

dynamics of metabolites obtained from two parallel labeling experiments with [U-13C6] 

glucose and [U-13C5] glutamine as labeled substrates. The labeling of MIDs was used 

during the exponential growth phase in the 2 – 18 h interval when the cells were at 

metabolic steady state. In the first 2 h of the labeling experiment, the MIDs of 

intracellular metabolites indicated a stress response to the cultivation condition. After 18 

h, the metabolic state of the cells changed, visible by a shift in the MIDs of the 

metabolites. Most of the parameters were determined with narrow confidence intervals. 

They included: (1) metabolic fluxes in cycles and alternative pathways, (2) flux 

reversibility and (3) intracompartmental concentrations. This confirms that INST-13CMFA 
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is a powerful method that can resolve the metabolic fluxes in a network that included 

multiple mitochondrial transporters, reaction reversibility, metabolite exchange with the 

media and metabolite channeling. Consistent with our previous estimation for the CHO-

K1 cell line (Nicolae et al., 2014), most of the glucose-6-phosphate was directed to the 

PPP, resulting in a high production of NADPH. Oxidative stress and fatty acid synthesis 

are the two main consumers of the cytosolic NADPH. The activity at the mitochondria – 

cytosol boundary is complex, involving intense metabolite trafficking and cycling. Malate 

and glutamate are both imported and exported via various mitochondrial carriers with 

the purpose of managing NADH distribution in the two compartments and providing 

antiport partners for other metabolites. The anaplerotic and cataplerotic fluxes were 

negligible with phosphoenolpyruvate-carboxykinase being the highest cataplerotic flux. 

The aspartate-malate shuttle consumed cytosolic NADH and produced mitochondrial 

NADH. Aspartate and alanine were synthesized in the mitochondria, and then 

transported to the cytosol. However, this is only a single metabolic state of the CHO-K1 

cells. It was evidenced that there are significant differences between the metabolic fluxes 

in CHO-K1 cells in different cultivation setups (shake flask vs. reactor), even if the two 

cultivations used the same cell line and the same media and the sampling was done 

during the exponential growth phase.  

A most interesting finding was related to the different labeling patterns in intracellular 

and extracellular lactate, which could not be explained by cytosol-mitochondria 

compartmentation. Four pyruvate pools were included, two dead-end lactate pools and 

extracellular lactate production channeling for modeling the observed difference in 

labeling. The results show that a large mitochondrial lactate pool is maintained, most 

likely to control the mitochondrial NADH content. Also, due to channeling of lactate 

production, the cytosolic lactate concentration is very small. Because the fitting of 

intracellular lactate left room for improvement, it is possible that the network 

configuration around the pyruvate nodes consists of more complex micro-

compartmented structures (al-Habori, 1995). Such complexity is both a hindrance and an 

opportunity for INST-13CMFA to characterize metabolic networks. Observed 
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mitochondrial pyruvate channeling could be caused by the partial association between 

the recently discovered pyruvate transporter and pyruvate dehydrogenase. A systems 

biology approach that combines biological knowledge from experiments that unravel the 

spatial structure of the mammalian cell metabolism with realistic mathematical models is 

the strategy to follow when studying metabolic networks. Ideally, such strategy accepts 

feedback for guiding future experiments and creating new modeling paradigms that 

include the spatial organization of the metabolism.   
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Supplementary data 4 

Supplem. Figure 4.1. Cultivation profile of the CHO-K1 cells culture during 48 h in 250 

ml baffled shake flask with a working volume of 120 mL. The represented extracellular 

concentrations are in [µmol / L] and the time is in [h]. The values represent the average 

from 4 parallel cultivations. The curves are the fitted values of extracellular 

concentrations simulating an exponential growth model with balanced growth (metabolic 

steady state) over the first 18 h. 

Supplem. Table S4.1. List of reactions used in the stoichiometric model for dynamic 

metabolic flus analysis. 

Supplem. Table S4.2. List of metabolic reactions, fluxes and reversibilities in the central 

carbon metabolism of CHO-K1 estimated for the first 2 – 18 h cultivation period. Carbon 

transfer rules are given in the parentheses for each reaction. Reversible reactions are 

indicated by double arrows. Reversibility is computed as the ratio between the reverse 

flux and the net flux. The 95% confidence interval was evaluated by refitting the model 

until the minimized objective function took the value of χ2(0.95, nr. experimental points 

– nr. parameters). 

Supplem. Table S4.3. Experimental (exp) and simulated (sim) mass isotopomer 

distributions of extracellular metabolites and standard deviations (SD) used in 

simulations. (_ex – extracellular; _cell – intracellular); 

Supplem. Table S4.4. Extracellular concentrations sampled in a 100 mL shake flask 

culture of CHO-K1 cells. (AVG – average from 4 parallel cultivations; SD – standard 

deviation)
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Chapter 5 

5. Identification of active elementary flux modes in 

mitochondria using selectively permeabilized CHO cells*3 

Abstract 

The mitochondrial metabolism of the economically important Chinese hamster ovary 

(CHO) cells was accessed using selective permeabilization. Key substrates were tested 

without and with addition of ADP. Based on quantified uptake and production rates, it 

was possible to determine the contribution of different elementary flux modes to the 

metabolism of a substrate or substrate combination. ADP stimulated the uptake of most 

metabolites, directly by serving as substrate for the respiratory chain, thus removing the 

inhibitory effect of NADH, or as allosteric effector. Addition of ADP favored substrate 

metabolization to CO2 and did not enhance the production of other metabolites. The 

controlling effect of ADP was more pronounced when metabolites were supplied to the 

first part of the TCA cycle: pyruvate, citrate, α-ketoglutarate and glutamine. In the second 

part of the TCA cycle, the rates were primarily controlled by the concentrations of C4-

dicarboxylates. Without ADP addition, the activity of the pyruvate carboxylase – malate 

dehydrogenase – malic enzyme cycle consumed the ATP produced by oxidative 

phosphorylation, preventing its accumulation and maintaining metabolic steady state 

conditions. Aspartate was taken up only in combination with pyruvate, whose uptake also 

increased, a fact explained by complex regulatory effects. Isocitrate dehydrogenase and α-

ketoglutarate dehydrogenase were identified as the key regulators of the TCA cycle, 

confirming existent knowledge from other cells. It was shown that selectively 

permeabilized cells combined with elementary mode analysis allow in-depth studying of 

the mitochondrial metabolism and regulation. 

*3A version of this chapter was submitted as an article to Metabolic Engineering Journal (November 2014). 

All experimental work described herein was carried out by Judith Wahrheit, Christian Weyler and Yannic 

Nonnenmacher. 
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5.1. Introduction 

Eukaryotic cells are able to tune their complex metabolism through compartmentation. 

This involves confining reactions to designated compartments and controlling the access 

of metabolites through specific transporters. Mitochondria play an important part in the 

organization of the eukaryotic cell metabolism (Wahrheit et al., 2011a). They work as the 

powerhouse of the cell, being responsible for the TCA cycle, oxidative phosphorylation 

and other essential reactions in the central carbon metabolism. Furthermore, 

mitochondria play a key role in the signaling processes leading to apoptosis (Kroemer et 

al., 2007). Mitochondrial dysfunctions are associated with the aging process and with a 

wide range of human diseases (Calvo et al., 2006; Duchen, 2004; Lemasters, 2007; 

Moreno-Sanchez et al., 2014; Nassir and Ibdah, 2014; Raimundo et al., 2011; Thiele et al., 

2005). Metabolite traffic between cytosol and mitochondria is mediated by carriers. These 

carriers, excellently reviewed by Palmieri (Palmieri, 2013), have important roles in 

physiological and pathological processes (Gutierrez-Aguilar and Baines, 2013). Studies 

related to mitochondrial function and metabolism focused on isolated features, like 

respiration and the respiratory chain (Frezza et al., 2007; Kuznetsov et al., 2008) or on the 

function of single mitochondrial transporters. Even after the advent of the systems 

biology era, studies of the mitochondrial metabolic network as a whole remain scarce 

(Balaban, 2006). So far, the most complex studies related to mitochondrial metabolism 

used enzyme kinetics, but their results are limited by insufficient knowledge about 

regulation and parameter values (Wu et al., 2007). Studying the mitochondrial 

metabolism in whole cells is complicated by the overlapping with other cellular reactions 

and by the limited accessibility of the mitochondria. Selective permeabilization using 

digitonin (Kuznetsov et al., 2008) is a simple and efficient way to access mitochondria 

while maintaining their functionality (Bahnemann et al., 2014). 

Because mitochondria are capable of taking up several metabolites, either alone or in 

combination, process them through their metabolic network and secrete resulting 

metabolites, new methods are required for analyzing the data obtained from studies of 
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the mitochondrial metabolism. Elementary Mode Analysis (EMA) (Papin et al., 2004; 

Schuster et al., 2000) based on network stoichiometry generates all minimal subsets of 

reactions that can function as standalone metabolic units. Any observed flux distribution 

can be written as a linear combination of elementary modes. Therefore, the contribution 

of a reaction to the metabolic fluxes can be assessed by determining its participation and 

its flux values in the elementary modes. EMA has been used to study metabolic networks 

(Kaleta et al., 2009; Schwartz and Kanehisa, 2006), discover targets for metabolic 

engineering and drug development (Beuster et al., 2011) and to identify high-yield 

mutants of producer strains (Carlson et al., 2002; Neuner and Heinzle, 2011). The main 

application of EMA remains the microbial metabolism because available genome 

annotations and the relatively small network size allow genome-scale analyses. 

Stoichiometric analysis is however gaining an increasingly important role in studying 

mammalian cells (Orman et al., 2010; Orman et al., 2011; Schiff and Purow, 2009; 

Zamorano et al., 2012). 

CHO cells are the mammalian workhorse in the biotechnology industry, responsible for 

the biggest share of biopharmaceuticals production (Jayapal et al., 2007; Walsh, 2010). 

The wealth of studies using CHO cells as model system has led to them being nicknamed 

the “mammalian equivalent of E. coli” (Puck, 1985). They are characterized by the ability 

to grow in suspension cultures using chemically defined media, can reach high cell 

densities and high product titers of recombinant proteins. The availability of recently 

published CHO genome and other omics data (Becker et al., 2011; Brinkrolf et al., 2013; 

Hackl et al., 2011; Xu et al., 2011) facilitates network studies.  

The application of mitochondria-wide metabolic networks adds a new dimension to the 

analysis of mitochondrial metabolism. It permits access for studying interactions of 

several processes, e.g. transport, metabolite conversion, respiration as well as their 

control. This can be done in a most directed way by using intact mitochondria made 

accessible by selective permeabilization of the cell membrane. EMA was used to study the 

metabolism of CHO-K1 mitochondria made accessible through selective permeabilization. 
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Key substrates were screened for their ability to be metabolized by the permeabilized 

cells, both alone or with addition of ADP. The uptake and production of metabolites was 

then quantified. The observations were used to compute the contribution of 

mitochondrial elementary modes to the metabolic flux distribution in each tested case. 

Therefore, this analysis reaches beyond mere metabolic flux analysis by providing 

additional information, e.g. on the coupling of processes or on the control of metabolic 

pathways. Furthermore, the effect of ADP stimulation was quantified and metabolic 

bottlenecks were evidenced. Overall, it was demonstrated that great opportunities arise 

by applying this methodology to study the mitochondrial metabolism. For future studies 

it can easily be combined with other well-established methods, e.g. respiration analysis. 

5.2. Materials and methods/Experimental 

5.2.1. Cell culture 

Cultivation of the CHO-K1 cells was performed in baffled shake flasks (250 ml, Corning, 

New York, USA) in a shaking incubator (Innova 4230, New Brunswick Scientific, Edison, 

NJ, USA) at 135 rpm (2 inches orbit), 37°C and 5% CO2. The cells were cultivated in 

chemically defined, protein-free TC-42 medium (TeutoCell, Bielefeld, Germany), 

supplemented with 6 mM L-glutamine (Sigma-Aldrich, Steinheim, Germany) from a 

240 mM stock solution in dH2O. The cells were passaged at the latest 72 h after 

inoculation and seeded with a cell density of 4 - 5 × 105 cells/mL. 

5.2.2. Preparation of mitochondrial medium 

The mitochondrial medium used in this study was derived from different media used for 

the assessment of respiration in isolated mitochondria (Madeira, 2012) and optimized 

with respect to osmolarity and ionic strength. The composition of the mitochondrial 

medium was as follows: 9.6 mM K2HPO4, 2.4 mM KH2PO4, 80 mM KCl, 75 mM sorbitol, 

2 mM MgCl2 and 100 µM EGTA. The pH was set to 7.4 with 5 N KOH. The individual 

components have been chosen to minimize interactions with the downstream analytics 

(MALDI-ToF, HPLC).  
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5.2.3. Mitochondrial transport experiments 

The experimental set-up is schematically depicted in Fig. 5.1 and the different tested 

substrates and substrate combinations are listed in Table 5.1. CHO-K1 cells were 

harvested from a culture in the early exponential growth phase (48 - 50 h after 

inoculation) by centrifugation (5 min, 125 × g, Labofuge 400R, Function Line, Heraeus 

Instruments, Hanau, Germany). The supernatant was discarded quantitatively and the 

cells were resuspended in mitochondrial medium. Afterwards, the cell number was 

determined using an automated cell counter (Countess® Automated Cell Counter, 

Invitrogen, Karlsruhe, Germany) and set to 107 cells/mL by adding mitochondrial media. 

Selective permeabilization of the cytosolic membrane was performed by adding 0.01 % 

(w/v) digitonin from a 1% stock solution in dH2O and verified under the microscope using 

the Trypan blue exclusion method. 5 mL of permeabilized cell suspension were 

transferred into a 50 mL filter-tube bioreactor (TPP, Trasadingen, Switzerland) 

containing 5 mL of the respective substrate solution (2-fold concentrated in respiration 

medium). The final cell concentration was 5 × 106 cells/mL, the final concentration of 

tested substrates was 4 mM. Considering that the average cell diameter of the CHO line 

was 10.6 µm, a corresponding cell volume of 6.23 × 10-16 m3 (=0.6 pL) was calculated. 

Cytosolic volume was therefore diluted with a factor of at least about 3200. Afterwards, 

incubation was performed for 150 min in a shaking incubator (Innova 4230, New 

Brunswick Scientific, Edison, NJ, USA) at 135 rpm (2 inches orbit), 37°C and 5 % CO2. 

For experiments without ADP-stimulation, 400 µl samples were taken every 30 min. The 

samples were centrifuged (5 min, 6000 × g, Biofuge pico, Heraeus Instruments, Hanau, 

Germany) and the supernatants were frozen for subsequent analysis. For experiments 

with ADP-stimulation, 100 µL of 100 mM ADP (resolved in respiration medium) were 

added every 30 min. 350 µL samples were taken before and after each addition of ADP. 

The samples were centrifuged (5 min, 6000 × g, Biofuge pico, Heraeus Instruments, 

Hanau, Germany) and the supernatants were frozen at -20°C for subsequent analysis. 
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Metabolites in these samples were identified using MALDI-ToF and quantified using 

HPLC. 

 

Figure 5.1. Experimental set-up for mitochondrial transport studies. CHO cells from the early 

exponential growth phase were harvested and resuspended in mitochondrial medium. Selective plasma 

membrane permeabilization with 0.01% (w/v) digitonin was microscopically verified using Trypan blue 

staining. Permeabilized cells were transferred into filter-tube bioreactors, mixed with a mitochondrial 

substrate and incubated in a shaking reactor for mitochondrial transport studies. Sampling (and ADP 

feeding) was performed every 30 min. 

5.2.4. Analytical determination of organic acids and amino acids 

Quantification of tested substrates and resulting products was performed by different 

established HPLC methods as described previously (Strigun et al., 2011). In the presence of 

ADP, citrate could not be quantified at low concentrations because of an unresolvable 

overlay of metabolite peaks in the chromatogram. Identification of organic acids was 

confirmed by MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight 

mass-spectrometry) analysis.   
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Table 5.1. Substrates and substrate combinations used for metabolization by selectively permeabilized 

CHO-K1 cells.  

without ADP stimulation with ADP stimulation 

 No. Substrate(s)  No. Substrate(s) 

1a pyruvate 1b pyruvate, ADP 

2a pyruvate, aspartate 2b pyruvate, aspartate, ADP 

3a citrate 3b citrate, ADP 

4a α-ketoglutarate 4b α-ketoglutarate, ADP 

5a succinate 5b succinate, ADP 

6a fumarate 6b fumarate, ADP 

7a malate 7b malate, ADP 

8a glutamine 8b glutamine, ADP 

9a glutamate 9b glutamate, ADP 

10a aspartate  - - 

11a serine - - 

Since the analytes were negatively charged, the mass spectrometer (ABI 4800, Applied 

Biosystems, Foster City, USA) was operated in negative ion mode. The used laser is a 

Nd:YAG solid-state laser (neodymium-doped yttrium aluminum garnet) emitting UV 

radiation with a wavelength of 355 nm by third harmonic generation. The laser intensity 

was set to 3700 and the number of shots per spot was 1250. The flight distance of the ions 

was doubled by using the reflector-mode, thus achieving an improved mass accuracy. 

Prior to MALDI-TOF MS measurements, the samples were diluted 1:10 with dH2O. This 

was necessary due to the high content of phosphate in the buffer (12 mM), which might 

disturb the measurement by signal suppression. 30 µL of diluted sample were mixed with 

30 µL of matrix (9 mg/mL 9-aminoacridine in methanol) and 0.5 µL of this mixture were 

spotted on a 384-spot MALDI target (Applied Biosystems, Foster City, USA).  

5.2.5. Mitochondrial network 

The model of the mitochondrial reaction network of the CHO-K1 cells (Fig. 5.2) was 

reconstructed using the published genome annotation (Hammond et al., 2012). The 

connection with the extramitochondrial medium is made through carrier-mediated 

transport for large molecules (e.g. amino acids, organic acids, ATP/ADP) and free 

diffusion for small uncharged molecules i.e. O2, CO2 and NH3. The initially formulated 
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network model was reduced by removing reactions and metabolites that cannot 

contribute to the observed uptake and production. Information about compartmentation 

of enzyme activity as determined by Wahrheit et al. (Wahrheit et al., 2014b) for the same 

cell line was also considered. Accordingly, mitochondrial NADP+-dependent malic 

enzyme (ME) was active and mitochondrial PEP carboxykinase was not active. Carriers 

that transport C4-dicarboxylates did not discriminate between succinate and malate. 

With the exception of α-ketoglutarate, glutamine, oxygen and pyruvate, all other 

metabolites are transported reversibly. NAD(P) + transhydrogenase was added to account 

for transferring electrons from NADPH to NADH. The applied stoichiometry of oxidative 

phosphorylation was 2.5 moles of ATP per mole of NADH and 1.5 moles of ATP per mole 

of FADH2 (Hinkle, 2005). In our model, succinyl-CoA ligase used only ADP, and isocitrate 

dehydrogenase (IDH) isoenzymes and glutamate dehydrogenase (GDH) used only NAD+. 

Phosphate and NH3 transport were not included in the stoichiometric model. The 

contribution of extramitochondrial reactions could be excluded because most of the 

possible reactions involving the added substrates or metabolites exported from the 

mitochondria require either cofactors (NADH, NADPH, etc.) or other reaction partners 

that were not present in the extramitochondrial media. Due to more than 3000-fold 

dilution by the selective permeabilization procedure, these metabolites had 

concentrations too low to be detectable. Also, systems for regenerating cofactors are 

absent. In order to prove these assumptions we demonstrated that pyruvate consumption 

was strictly dependent on mitochondrial activities (Suppl. Fig. S1). Pyruvate consumption 

was completely prevented by inhibition of the mitochondrial pyruvate carrier using α-

cyano-4-hydroxycinnamate. The only possible extramitochondrial reactions are those 

that do not need any other substrates than those sampled in the media, e.g. fumarase that 

only requires water as co-substrate. 



 

 

105 
 

5. Identification of elementary flux modes in mitochondria 

 

Figure 5.2. Metabolic network of the CHO-K1 mitochondria built based on genome annotation.   - 

Mitochondrial carrier. Subscripts: m – mitochondrial. Abbreviations: AcoA – acetyl-CoA; AKG – α-

ketoglutarate; ASP – aspartate; C1 – one-carbon units; CIT – citrate; FUM – fumarate; GLN – glutamine; 

GLU – glutamate; GLY – glycine; MAL – malate; MTHF – 5-methyltetrahydrofolate; OAA – oxaloacetate; 

PYR – pyruvate; SER – serine; SUC – succinate; THF - tetrahydrofolate 
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5.2.6. Elementary mode analysis 

The elementary modes of the mitochondrial network were computed using the EFMtool 

software (Terzer and Stelling, 2008). An algorithm was then used to identify, from all the 

elementary modes, the modes that can contribute to the conversion of each tested 

substrate or substrate combinations. This meant: (1) selecting the modes that take up any 

combination of the tested substrates from Table 5.1 and then (2) selecting the modes that 

exclude production of metabolites that were not observed. All possible modes involving 

CO2 were included, though CO2 itself was not measured. The selection is listed in the 

Suppl. Table S1. An observed flux set v can be expressed as a linear combination of 

elementary modes  





M

j

jj EMv
1

       (5.1) 

where M is the total number of elementary modes described by the column vectors EM 

containing the mode stoichiometry. The size of matrix EM is RM, where R is the 

number of reactions. The weight coefficients αj are usually not unique, as the number of 

elementary modes can exceed the dimension of the flux cone. By simplifying the EM 

matrix using the experimental observations and the selection algorithm, a new matrix 

EM# was defined that contains only the transport reactions results. The size of the new 

matrix will be R# by M#, where R# is the number of transport reactions that contribute to 

the observed extracellular fluxes and M# is the number of modes selected using the 

algorithm. The mode flux α representing the contribution of each mode to the measured 

fluxes was computed when the matrix EM# was invertible:  

vEM  1#       (5. 2) 

In some cases, assumptions were made in order to obtain an invertible EM#. These are 

described in the Results and Discussion section, separately for each tested substrate. 
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5.2.7. Metabolic flux analysis 

Mitochondrial fluxes were computed for each feeding situation (Table 5.1) using the 

stoichiometry of the network from Fig. 5.2, the computed extracellular rates and by 

assuming no pyruvate carboxylase activity in the presence of ADP. The complete 

stoichiometry and the results are given in Supplem. Table S5.2. 

5.3. Results and Discussion 

5.3.1. Mitochondrial uptake and production of metabolites 

In a previous study, a high-throughput respiration screening method was applied to verify 

the uptake and metabolization of a range of potential mitochondrial substrates (Wahrheit 

et al., 2015). The outcome of this screening served as starting point to design further in-

depth mitochondrial studies. 

Here, an extended experimental set-up (Fig. 5.1) was used to investigate the 

mitochondrial metabolism of CHO cells. The mitochondrial metabolism in selectively 

permeabilized cells was stimulated by addition of selected substrates or combinations of 

substrates and quantified mitochondrial uptake and production of metabolites (Table 5.2) 

by fitting the extracellular concentrations over time (Supplem. Fig. S5.2). 

Metabolite uptake and production rates remained constant over time (Supplem. Fig. 

S5.2). This proves that the mitochondria remained intact and functioned at metabolic 

steady state throughout the sampling period. It was already shown by Deshpande et al. 

(Deshpande et al., 2009) that CHO cells can be maintained at metabolic steady state in 

defined media. Mitochondrial uptake of aspartate alone was not observed. However, 

aspartate was taken up when fed in combination with pyruvate. Uptake rates of single 

substrates increased in the order of glutamate, serine, pyruvate, citrate, α-ketoglutarate, 

malate, glutamine, and succinate, with the uptake rate for succinate being 7.3 times (C-

mol/C-mol) higher than that of glutamate (Table 5.2). Addition of ADP stimulated the 

uptake and excretion of metabolites by the mitochondria. With feeding of ADP, uptake 
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rates were all higher, increasing in the order of aspartate, pyruvate, malate, succinate, 

citrate, α-ketoglutarate, and glutamine (Table 2). In this case, the uptake rate of 

glutamine was 4.6 times higher than the uptake of aspartate (C-mole/C-mole). It was 

observed that the highest impact of ADP on stimulating the uptake of citrate and α-

ketoglutarate. ADP addition doubled the uptake of aspartate, from 6.1 to 12.2 fmol / (cell 

 min), but not of pyruvate, that increased only by 3.7 fmol / (cell  min) when both 

substrates were fed in combination. 

In accordance with previous mitochondrial studies using respiration analysis (Wahrheit 

et al., 2015), the following trends were observed: (1) stimulation of mitochondrial 

metabolism by addition of ADP, (2) without addition of ADP the highest respiration and 

uptake was observed on succinate, (3) relatively minor impact of ADP on stimulating the 

metabolization of malate and succinate, (4) relatively higher impact of ADP stimulation 

on the uptake of citrate and glutamine. 

Table 5.2. Uptake and production rates of metabolites by the selectively permeabilized CHO-K1 cells [fmol 

/ (cell  min)] and the computed 95% confidence intervals (C.I.) given in square brackets. n.m. – not 

measured. 

No. Substrate 
Uptake rate 

[95% C.I.] 
Product 

Production rate 
[95% C.I.] 

1a pyruvate 4.6 [3.4, 5.7] CO2 n.m. 

1b pyruvate 
ADP 

14.2 [12.6, 15.9] 
n.m. 

CO2 

ATP 
n.m. 
n.m. 

2a pyruvate 
aspartate 

11.9 [10.2, 13.5] 
6.1 [4.0, 8.2] 

glutamate 
CO2 

3.0 [2.5, 3.6] 
n.m. 

2b pyruvate 
aspartate 
ADP 

15.6 [13.8, 17.3] 
12.2 [6.9, 17.6] 
n.m. 

glutamate 
CO2 

ATP 

6.7 [5.4, 8.0] 
n.m. 
n.m. 

3a citrate 5.6 [3.7, 7.5] CO2 n.m. 

3b citrate 
ADP 

38.0 [25.4, 50.6] 
n.m. 

CO2 

ATP 
n.m. 
n.m. 

4a α-ketoglutarate 12.7 [8.1, 17.3] fumarate 
CO2 

0.48 [0.46, 0.50] 
n.m. 

4b α-ketoglutarate 
ADP 

40.2 [30.8, 49.6] 
n.m. 

fumarate 
CO2 

ATP 

2.5 [2.2, 2.7] 
n.m. 
n.m. 

5a succinate 24.5 [19.1, 29.9] fumarate 
malate 
citrate 
CO2 

2.2 [1.7, 2.8] 
14.5 [11, 17.9] 
1.9 [0.9, 2.8] 
n.m. 
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5b succinate 
ADP 

30.5 [27.1, 33.9] 
n.m. 

fumarate 
malate 
citrate 
CO2 

ATP 

2.1 [1.5, 2.8] 
14.6 [10.7, 18.5] 
n.m. 
n.m. 
n.m. 

6a/7a malate 
fumarate 

14.6 [10.2, 19] 
1.9 [0.9, 2.9] 

citrate 
CO2 

4.9 [3.7, 6.0] 
n.m. 

6b/7b malate 
fumarate 
ADP 

19.7 [14.6, 24.8] 
1.7 [0.9, 2.5] 
n.m. 

citrate 
CO2 

ATP 

n.m. 
n.m. 
n.m. 

8a glutamine 20.0 [17.9, 22.1] glutamate 
aspartate 
CO2 

14.4 [11.4, 17.4] 
3.3 [2.4, 4.2] 
n.m. 

8b glutamine 
ADP 

44.7 [35.7, 53.7] 
n.m. 

glutamate 
aspartate 
CO2 

ATP 

19.0 [15.4, 22.6] 
11.4 [9.98, 12.9] 
n.m. 
n.m. 

9a glutamate 2.69 [1.22, 4.16] aspartate 
CO2 

3.38 [2.61, 4.15] 
n.m. 

9b glutamate 
ADP 

3.99 [-14.2, 22.2] 
n.m. 

aspartate 
CO2 

ATP 

15.5 [13.0, 18.0] 
n.m. 
n.m. 

11a serine 4.5 [2.3, 6.7] glycine 2.6 [2.0, 3.2] 

 

5.3.2. Connection of tested substrates and observed products using elementary 

mode analysis 

The mitochondrial elementary modes that connect tested substrates and observed 

products were selected. A total of 1780 elementary modes were generated by applying the 

EFMTool (Terzer and Stelling, 2008) to the network shown in Fig. 5.2, reduced as 

described in the Materials and Methods section and summarized in Supplem. Table S5.2. 

The partitioning of a substrate metabolism into different modes was calculated (Fig. 5.3), 

which was selected using the criteria specified in Supplem. Table S5.1. The production 

rate of a metabolite from a substrate or a combination of substrates is a linear 

combination of all modes that achieve the conversion. The case presented in Fig. 5.3 

allows to compute the mode fluxes through A, B and C if the uptake of Substrate 1 and 

Substrate 2, as well as the production of Product 1 and Product 2 are measured. However, 

there were situations when the matrix describing the linear system relating mode fluxes 

to external fluxes (eq. 2) was not invertible. The contribution of each mode to the 

metabolism of all substrates was calculated without supplementary assumptions with the 
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following exceptions: (1) when pyruvate and aspartate were used together (Table 5.2), (2) 

when succinate and malate were used with ADP because citrate could not be 

experimentally determined, and (3) when glutamate was used, due to experimental noise. 

Situations that require reuptake of metabolites via antiport were also removed as 

including them would result in futile cycling between mitochondria and the 

extramitochondrial media. The selected modes and their computed contribution to each 

observed flux are given in Supplem. Table S5.3. 

 

Figure 5.3 - Example of establishing the partitioning of Substrate 1 and Substrate 2 into the elementary 

modes (A), (B) and (C) for yielding Product 1 and Product 2. The thickness of the arrows indicates the 

theoretical flux through each elementary mode. 

5.3.3.  General characteristics 

While in the majority of cases a full metabolization to CO2 was possible, many substrates 

led to partial TCA cycle activity and to secretion of metabolites. All experiments where 

ADP was supplied exhibited higher uptake rates for all tested substrates. This happens 

mainly because (1) ADP increases the availability of NAD+ via the respiratory chain and 

(2) ADP stimulates pyruvate dehydrogenase, isocitrate dehydrogenase and α-

ketoglutarate dehydrogenase (AKGDH), three key enzymes responsible for controlling 

the TCA cycle (Michal and Schomburg, 2012; Strumilo, 2005). In the modes where ADP is 

not supplied, the pyruvate carboxylase (PCX) – malate dehydrogenase (MDH) – malic 

enzyme (ME) cycle is highly active to consume the excess of ATP produced by oxidative 

phosphorylation. It was shown earlier that ME is active in the mitochondria of the CHO-

K1 cell line (Wahrheit et al., 2014b). PCX was found in the mitochondria of mouse cells 

(Da Cruz et al., 2003; Mootha et al., 2003) and was also evidenced as a necessary flux in 

CHO cells (Goudar et al., 2010; Nicolae et al., 2014; Sheikholeslami et al., 2013; Templeton 
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et al., 2013). Using 13C metabolic flux analysis (Nicolae et al., 2014), a PCX flux equivalent 

to 1.56 fmol / (cell  min) was calculated. The activity in vivo is approx. 150-fold times 

smaller than the maximum activity computed for permeabilized cells in the absence of 

ADP. This fact indicates the regulatory effect of ATP/ADP ratio on the PCX. The PCX – 

MDH – ME cycle is the rate-limiting element in metabolizing substrates in the absence of 

ADP since NAD+ and FAD are not regenerated in the respiratory chain, while 

accumulated ATP and NADH inhibit most enzymes involved in the TCA cycle (Michal 

and Schomburg, 2012). ME was responsible for replenishing pyruvate from malate to 

produce the acetyl-CoA required for initiating the citrate synthase reaction when 

pyruvate was not added. The modes that use the PCX – MDH – ME cycle to consume ATP 

were not considered when computing the mode fluxes with added ADP, although it 

would be theoretically possible for them to contribute to the observations. Using this 

assumption, the cells dispose of the produced ATP only by antiport with ADP. This is a 

valid assumption considering that PCX is strongly inhibited by high ADP concentrations 

(Keech and Utter, 1963; Walter and Stucki, 1970). 

In the mitochondria, glutamate dehydrogenase and isoenzymes of IDH can use both 

NAD+ and NADP+ as cofactors. NADPH produced by NADP+-dependent malic enzyme, 

glutamate dehydrogenase and IDH is oxidized by the transhydrogenase enzyme and 

NADH is produced. The conversion of NADPH is coupled with pumping H+ out of the 

mitochondria thereby contributing to building up the proton gradient across the inner 

mitochondrial membrane. Another pathway for transferring reducing factors from 

NADPH to NADH is by the reverse functioning (towards isocitrate) of the NADP+-

dependent IDH and isocitrate consumption by the NAD+-dependent IDH (Sazanov and 

Jackson, 1994). Also, ATP synthesis can become partially uncoupled from respiration 

through the presence of uncoupling proteins (Boss et al., 2000; Moreno-Sanchez et al., 

2014) or reduced due to proton and electron leakage (Jastroch et al., 2010). This can 

change the stoichiometry of using reducing equivalents to produce ATP, hence of the 

computed activity of the PCX – MDH – ME cycle when ADP is not provided. However, 

uncoupling proteins were not found to be expressed in wild-type CHO cells (Pecqueur et 
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al., 2008) but were shown to play a role in other cells concerning thermogenesis, 

protection against oxidative stress, export of fatty acids or mediation of insulin secretion 

(Mozo et al., 2006). One can therefore assume that the effect of uncoupling is negligible 

for balancing ADP/ATP. 

5.3.4. Pyruvate and aspartate 

Pyruvate fed alone sustained a complete TCA cycle. Upon stimulation with ADP, the 

pyruvate uptake flux increased 3.1 times (Table 5.2). Mitochondrial metabolism of 

pyruvate requires an active mitochondrial pyruvate carrier and all mitochondrial enzymes 

that metabolize pyruvate to CO2 (Figure 5.4 A1, 5.4 B1). When pyruvate and aspartate 

were fed together, the two metabolites had a reciprocal stimulating effect. In a separate 

experiment, aspartate alone was not taken up. The uptake of pyruvate in the presence of 

aspartate increased 2.6 times compared to the uptake of pyruvate alone. A double amount 

of aspartate was taken up per amount of glutamate produced (Table 5.2). Four possible 

elementary modes can be used to explain the observations: (1) uptake of pyruvate to 

produce CO2, (2) co-uptake of pyruvate and aspartate to produce CO2 and one mole of 

glutamate per mole of aspartate, (3) uptake of aspartate to produce CO2 and one mole of 

glutamate per two moles of aspartate and (4) uptake of aspartate to produce only CO2. 

Aspartate uptake through the glutamate-aspartate carrier occurs with equimolar 

secretion of glutamate. Glutamate must be partially re-transported into the mitochondria 

through a different carrier (Fiermonte et al., 2002) to account for the aspartate 

uptake/glutamate secretion rate ratio of 2. Surprisingly, the stoichiometry of the mode 

with co-uptake of pyruvate and aspartate (mode (2)), where aspartate provides one mole 

of oxaloacetate and pyruvate provides one mole of acetyl-CoA to fuel the TCA cycle, does 

not match the observed rates. Therefore, aspartate (Fig. 5.4 A3, B3) and pyruvate (Fig. 5.4 

A2, B2) must be metabolized individually. Although aspartate is only taken up in 

combination with pyruvate, its metabolization happens via modes that exclude pyruvate. 

This is possible by mutual activation of modes, i.e. activation of rate controlling enzymes.  
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Figure 5.4. Fluxes of the mitochondrial elementary modes determined after feeding the permeabilized cells 

pyruvate (A1, B1) and a combination of pyruvate and aspartate (A2, A3, B2, B3). Modes from lines 1 and 2 

metabolize pyruvate to CO2. Modes from line 3 metabolize aspartate to glutamate and CO2. The modes in 

the A-column do not use supplied ADP, and the modes in the B-column contained ADP as substrate. The 

fluxes higher than 60 fmol/ (cells  min) are indicated by numbers on the corresponding arrow. Subscripts: 

m – mitochondrial. Abbreviations: AcoA – acetyl-CoA; AKG – α-ketoglutarate; ASP – aspartate; CIT – 

citrate; FUM – fumarate; GLU – glutamate; MAL – malate; OAA – oxaloacetate; PYR – pyruvate; SUC – 

succinate. 
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The first regulatory step in the conversion of aspartate is aspartate aminotransferase, 

which is controlled by products and substrates following complex kinetics (Cascante and 

Cortes, 1988). This enzyme converts aspartate to oxaloacetate simultaneously with 

converting α-ketoglutarate to glutamate. Glutamate is exchanged when aspartate enters 

the mitochondria (Fig. 5.2). Production of α-ketoglutarate in the TCA cycle is needed to 

sustain the outflow of glutamate (Fig. 5.4 A3). Aspartate accumulation was observed in 

retina cells treated with an inhibitor of the mitochondrial pyruvate carrier (Du et al., 

2013), which suggests that aspartate needs pyruvate for metabolization. Although 

oxaloacetate could exert product inhibition on PCX (Barden et al., 1972), it is consumed 

by MDH to produce malate, while the acetyl-CoA synthesized from pyruvate activates 

PCX (Jitrapakdee and Wallace, 1999), thus favoring the PCX-MDH-ME cycle towards 

hydrolyzing the ATP produced from the intramitochondrial pool of ADP in the 

respiratory chain. ME activity could be another bottleneck in the conversion of pyruvate 

and aspartate in the absence of ADP. It was shown that α-ketoglutarate inhibits 

mitochondrial ME and MDH in brain cells (McKenna et al., 1995). Therefore, ME activity 

depends on the efficiency of α-ketoglutarate removal from the mitochondria as 

glutamate. 

Addition of ADP to the pyruvate-aspartate mixture did not change the pyruvate uptake 

flux, compared to when pyruvate and ADP were used. The most probable limitation in 

this case is pyruvate transport into the mitochondria, which was shown to influence the 

respiration capacity in yeast (Timon-Gomez et al., 2013) and is suspected to regulate 

pyruvate metabolism in cancer cells (Schell and Rutter, 2013). Aspartate uptake flux 

increased although the aspartate/glutamate ratio remained close to 2 (Table 5.2), 

comparable to the case without ADP. This result strengthens the assumption that the 

mode which uses aspartate to produce glutamate and CO2 is responsible for aspartate 

metabolism by the mitochondria.  

Pyruvate catabolism to CO2 is limited to approx. 15 fmol/ (cell  min) in all the three 

cases where other substrates were used together with pyruvate (i.e. ADP, aspartate, 
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aspartate and ADP). In a previous study of CHO-K1 metabolism (Nicolae et al., 2014), the 

in vivo computed rate of pyruvate transport into the mitochondria was 4 fmol/ (cell  

min), which is in the same order of magnitude. This suggests the existence of a tightly 

controlled upper threshold in the mitochondrial pyruvate metabolism achieved using the 

pyruvate transporter and/or allosteric control by the pyruvate dehydrogenase complex. 

5.3.5. Citrate 

It was observed no metabolite production when citrate was used as substrate, also when 

ADP was added. Because citrate is taken up by antiport with C4-carboxylates, these were 

taken up again via the dicarboxylate carrier (Fig. 5.5 A, B) thus explaining their absence in 

the extramitochondrial medium. For this, several mechanisms can be assumed: (1) the 

dicarboxylate carrier can take up dicarboxylates at very low extramitochondrial 

concentrations, (2) reuptake of C4-carboxylates occurs via a mechanism that bypasses 

their dilution into the media by maintaining a high concentration in the inter-membrane 

space, (3) there is a mitochondrial carrier that takes up citrate alone, (4) there is 

cooperation between the citrate (Gnoni et al., 2009) and the dicarboxylic carriers. When 

ADP was added, there was a significant stimulation of citrate metabolization (Fig. 5.5 B), 

citrate being the metabolite taken up with the highest carbon flux and the substrate that 

produced the highest activity of the TCA cycle (Supplem. Table S5.2). 

ADP and citrate have a joint activating effect on IDH, which is a limiting step of the TCA 

cycle as previously found for this cell line by Wahrheit et al. (Wahrheit et al., 2014b). The 

effect is also in qualitative accordance with respiration studies performed on selectively 

permeabilized CHO-K1 cells (Wahrheit et al., 2015), where a high stimulation of 

respiration was observed when citrate was used together with ADP. Citrate is known to 

inhibit citrate synthase (Williamson and Cooper, 1980), which would in this case be a 

bottleneck in the TCA cycle. However, citrate is consumed quickly by enzymes 

downstream the TCA cycle, IDH and AKGH, leading to low citrate and isocitrate 

concentrations and a release of its inhibiting effect.  
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Figure 5.5. Fluxes of the mitochondrial elementary modes that completely oxidize citrate to CO2. 

Mode A does not contain added ADP, and mode B uses ADP as substrate. The fluxes higher than 60 fmol/ 

(cell  min) are indicated by numbers on the corresponding arrow. Subscripts: m – mitochondrial. 

Abbreviations: AcoA – acetyl-CoA; AKG – α-ketoglutarate; CIT – citrate; FUM – fumarate; MAL – malate; 

OAA – oxaloacetate; PYR – pyruvate; SUC – succinate. 

Citrate and isocitrate uptake by the mitochondria is not a typical physiological event 

described for the metabolism of mammalian cells. In contrast, citrate is usually 

transported from the mitochondria to supply the fatty acid synthesis in the cytosol. 

However, given the high cytosolic IDH activity (Wahrheit et al., 2014b), it is possible that 

in a physiological state the excess of NADPH generated by the pentose phosphate 

pathway (Nicolae et al., 2014) drives the reaction towards consuming α-ketoglutarate. A 

reversed functioning of the IDH (Metallo et al., 2012) has been described before for 

mammalian metabolism. Isocitrate and citrate are then produced from cytosolic α-

ketoglutarate and then taken up by the mitochondria to be used in the TCA cycle. 

5.3.6. α-ketoglutarate 

Similarly to citrate, α-ketoglutarate could sustain a complete TCA cycle (Fig. 5.6 A). And 

similar to citrate, α-ketoglutarate enters the mitochondria using the α-ketoglutarate-

dicarboxylate antiporter (Fig. 5.6 A, B1, B2) and the reuptake of malate via the C4-

dicarboxylate carrier. Malate reuptake is not quantitative, as seen in the presence of a 



 

 

117 
 

5. Identification of elementary flux modes in mitochondria 

small quantity of fumarate in the extramitochondrial media (Table 5.2, 4a), produced 

most probably by extramitochondrial fumarase activity. Though it was shown for 

astrocytes that α-ketoglutarate inhibits ME (McKenna et al., 1995), this effect was not 

manifested in our experiments, considering the high metabolization rate in the absence 

of ADP and hence the high ME flux (Fig. 5.6 A). This means that in the mitochondria, α-

ketoglutarate concentration was maintained low even when the concentration in the 

media was high. With addition of ADP, the activation of IDH and AKGDH results in a 3-

fold increase in α-ketoglutarate uptake rate.  

 

Figure 5.6. Fluxes of the mitochondrial elementary modes that completely oxidize α-ketoglutarate 

to CO2 in the absence of ADP (A), with added ADP (B1) and the mode that produces extramitochondrial 

fumarate in the presence of ADP (B2). The fluxes higher than 60 fmol/ (cell  min) are indicated by 

numbers on the corresponding arrow. Subscripts: m – mitochondrial. Abbreviations: AcoA – acetyl-CoA; 

AKG – α-ketoglutarate; CIT – citrate; FUM – fumarate; MAL – malate; OAA – oxaloacetate; PYR – pyruvate; 

SUC – succinate. 

5.3.7. C4-dicarboxylates 

Succinate and malate were metabolized by the mitochondria with a relatively high rate, 

both with and without addition of ADP. They were transported through the dicarboxylate 

carrier, which requires mitochondrial phosphate antiport (Fiermonte et al., 1998). 

Phosphate is then replenished through another transport system e.g. via the phosphate 
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carrier (Hamel et al., 2004). Extracellular fumarate was converted to malate before being 

taken up in a fast equilibrium reaction, probably by extramitochondrial fumarase activity 

(Supplem. Fig. S5.2). The equilibrium reaction explains the presence of fumarate in the 

media when malate is produced from succinate (Fig. 5.7 A4, B4). 

 

Figure 5.7. Fluxes of the mitochondrial elementary modes that metabolize succinate to CO2 (A1, 

B1), succinate to malate (A2, B2), succinate to citrate and CO2 (A3, B3) and succinate to fumarate 

(A4, B4). The modes in the A-column do not use supplied ADP, and the modes in the B-column contained 

ADP as substrate. The fluxes higher than 60 fmol/ (cell  min) are indicated by numbers on the 

corresponding arrow. Subscripts: m – mitochondrial. Abbreviations: AcoA – acetyl-CoA; AKG – α-

ketoglutarate; CIT – citrate; FUM – fumarate; MAL – malate; OAA – oxaloacetate; PYR – pyruvate; SUC – 

succinate. 

Addition of ADP increased the metabolization rate of succinate to CO2 2.5 times (Fig. 5.7 

A1, B1) and of malate 1.7 times (Fig. 5.8 A1, B1). Succinate was converted to malate with the 

same rate in both non-stimulated (Fig. 5.7 A2) and stimulated (Fig. 5.7 B2) cases. It can be 

inferred that fast pathway kinetics between succinate and malate and reduced activity in 

disposing of malate in the TCA cycle leads to accumulation that favors malate secretion 

instead of full metabolization. Compared to the high metabolization rates observed for 

citrate and α-ketoglutarate, the supply of C4-dicarboxylates resulted in a lower activity of 

the TCA cycle. This implies that the second part of the TCA cycle, involving C4-
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dicarboxylates, is mainly controlled by the concentrations of C4-dicarboxylates and less 

by the availability of cofactors. The metabolic steady state and therefore the 

intramitochondrial C4-dicarboxylates concentrations are maintained by removing the 

excess from the mitochondria via the dicarboxylate carrier. Complete catabolism to CO2 

in the absence of ADP was 17% for succinate and 48% for malate, and with ADP it was 

increased to 33% and 60% respectively. Citrate production from either succinate (Fig. 5.7 

B3) or malate (Fig. 5.8 B2) suggests that high cytosolic concentrations of dicarboxylates 

induce de novo fatty acids synthesis by providing citrate to the cytosol, as it was shown on 

mouse models (Mizuarai et al., 2005). 

Analytical determination of citrate was difficult in the presence of ADP due to an overlay 

of metabolite peaks in the chromatogram. Although the uptake fluxes of C4-

dicarboxylates increased, the modes were computed under the assumption that the 

citrate secretion rate did not increase. This assumption relied on the fact that ADP 

enhances significantly the metabolization of citrate, as it was shown above (Fig. 5.5 B). 

Also, the situation when citrate is produced and then taken up for metabolization to CO2 

is equivalent to a mode that metabolizes C4-dicarboxylates to CO2. It is therefore unlikely 

that citrate will accumulate in the media when ADP is added. 

5.3.8. Glutamine and glutamate 

Mitochondria of permeabilized cells took up glutamine via the glutamine carrier 

(Hassanein et al., 2013; Indiveri et al., 1998) and used it to produce mostly glutamate, with 

a conversion of glutamine to glutamate (computed as the glutamate production flux to 

glutamine uptake flux) of 72% in the absence of ADP (Fig. 5.9 A3). By adding ADP, the 

conversion to glutamate decreased to 42% (Fig. 5.9 B3) although the net production rate 

increased by 32%. The glutamine uptake rate of the permeabilized cells was approx. 50 

times higher than determined in vivo (Nicolae et al., 2014).  
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Figure 5.8. Metabolic fluxes of the mitochondrial elementary modes that metabolize malate to CO2 

(A1, B1) and malate to citrate and CO2 (A2, B2). The modes in the A-column do not use supplied ADP, 

and the modes in the B-column contained ADP as substrate. The fluxes higher than 60 fmol/ (cell  min) 

are indicated by numbers on the corresponding arrow. Subscripts: m – mitochondrial. Abbreviations: AcoA 

– acetyl-CoA; AKG – α-ketoglutarate; CIT – citrate; FUM – fumarate; MAL – malate; OAA – oxaloacetate; 

PYR – pyruvate; SUC – succinate. 

 

Glutamate leaves the mitochondria through a different transport system than the 

aspartate-glutamate carrier, most likely the glutamate carrier (Fiermonte et al., 2002). 

The glutamate carrier has been shown to operate in the reverse direction, hence by 

removing glutamate from the mitochondria when it is produced in excess. The supply of 

cytosolic glutamate could then be used in vivo for transamination, e.g. the production of 

alanine, and also for glutamine synthesis, as it was described previously (Nicolae et al., 

2014; Wahrheit et al., 2014a). When compared to the glutamine derivate α-ketoglutarate, 

the TCA cycle flux was four times smaller on glutamine than on α-ketoglutarate in the 

absence of ADP and half when ADP was supplied. Glutamine metabolism must therefore 
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be regulated before glutamine reaches the TCA cycle as α-ketoglutarate. Because GDH is 

activated by ADP (Fang et al., 2002), glutamine catabolism to CO2 by a full TCA cycle 

increased significantly in the presence of ADP (Fig. 5.9 A1, B1), indicating that this 

enzyme is the first step in controlling glutamine metabolism. The presence of 

extramitochondrial glutamate also activated the secretion of aspartate (Fig. 5.9 A2, B2), 

reversely as in the case with aspartate feeding (Fig. 5.4 A3, B3), when glutamate was 

produced. Most likely, the aspartate-glutamate carrier equilibrates the mitochondrial 

concentrations of these two amino acids and its response is influenced only by their 

intracompartmental concentrations. 

Glutamate was taken up in modest amounts in the absence of ADP, and aspartate was 

produced in nearly equimolar amounts, considering the confidence intervals of the rates 

computed for glutamate uptake and aspartate production (Table 5.2). Glutamate 

concentration could not be determined reliably when using ADP (Supplem. Fig. S5.1, 9b). 

Nevertheless, an increased production of aspartate was observed, which indicates that 

glutamate uptake increased considerably by adding ADP. This means that the preferred 

uptake system for glutamate is the glutamate-aspartate carrier and not the glutamate 

carrier (Fiermonte et al., 2002). 

5.3.9. Serine 

Serine was taken up by the permeabilized cells in moderate amounts (Table 5.2). 

Consistent with previous studies (Appling, 1991; Barlowe and Appling, 1988; Narkewicz et 

al., 1996), serine is converted by mitochondrial serine hydroxymethyltransferase to 

produce glycine and C1 units, that can subsequently be converted to and secreted as 

formate (not measured) (Fig. 5.2) (Kelley et al., 2002). Only 59% of the glycine that could 

be potentially produced was secreted. The remaining glycine was most likely converted 

by the glycine cleavage system into C1 units and CO2. The NADH produced in the glycine 

cleavage reaction is then consumed by the PCX-MDH-ME cycle to maintain the 

metabolic steady state in the mitochondria. Regeneration of tetrahydrofolate from 
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methyltetrahydrofolate produces NADPH that contributes significantly to the 

mitochondrial metabolism under in vivo conditions (Lewis et al., 2014).  

 

Figure 5.9. Metabolic fluxes of the mitochondrial elementary modes that metabolize glutamine to 

CO2 (A1, B1), glutamine to aspartate and CO2 (A2, B2) and glutamine to glutamate (A3, B3). The 

modes in the A-column do not use supplied ADP, and the modes in the B-column contained ADP as 

substrate. The fluxes higher than 60 fmol/ (cell  min) are indicated by numbers on the corresponding 

arrow. Subscripts: m – mitochondrial. Abbreviations: AcoA – acetyl-CoA; AKG – α-ketoglutarate; ASP – 

aspartate; CIT – citrate; FUM – fumarate; GLN – glutamine; GLU – glutamate; MAL – malate; OAA – 

oxaloacetate; PYR – pyruvate; SUC – succinate. 
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5.4. Conclusions 

Selectively permeabilized CHO-K1 cells proved to be a useful system for detailed studies 

of the mitochondrial metabolism. The permeabilized cells retain functional mitochondria 

that are able to process at metabolic steady state various single substrates or 

combinations of carbon sources. By using EMA it was evidenced that the mitochondrial 

reactions involved in the TCA cycle, anaplerotic and cataplerotic reactions, amino acid 

metabolism, as well as the oxidative phosphorylation and mitochondrial transport are 

active. Beyond demonstrating the functionality of mitochondrial metabolic pathways, 

EMA was used to support the observations from earlier screening experiments (Wahrheit 

et al., 2015). Additionally, the contributions of separate pathways at processing a certain 

substrate or combination of substrates could be quantified. 

In the absence of ADP, substrate uptake was limited in most cases. Full metabolization to 

CO2 has been observed for pyruvate, citrate, α-ketoglutarate, C4-dicarboxylic acids and 

glutamate. This requires an active PCX-MDH-ME cycle that disposes of the ATP 

generated by oxidative phosphorylation. The PCX-MDH-ME cycle is the limiting step in 

processing substrates, as the accumulation of ATP and NADH inhibits key enzymes 

involved in the TCA cycle. Since uncoupling proteins were not found to be expressed in 

wild-type CHO cells (Pecqueur et al., 2008) uncoupling can be excluded in our 

experiments. 

Stimulation by ADP enhanced respiration and the metabolization to CO2 of most 

substrates, as shown by Wahrheit et al. (2015), with considerable differences for α-

ketoglutarate and citrate and less for C4-dicarboxylic acids. The differences are explained 

by the way in which the enzymes of the TCA cycle are controlled. In the first part of the 

TCA cycle, IDH and AKGDH are positively modulated by substrate and cofactor 

availability. The fluxes of the second part of the TCA cycle involving the inter-conversion 

of C4-dicarboxylates seem to be determined primarily by the concentration of C4-

dicarboxylates. The high concentrations of C4-dicarboxylates could inhibit enzymes that 

do not process them directly. This effect may lead indirectly to a reduced TCA cycle flux. 
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Glutamine metabolism is controlled by GDH and by removing glutamate from the 

mitochondria via the glutamate carrier. The summarized conclusions are organized by 

the feeding experiments that support them in Supplem. Table S5.4. 

A question mark that is left after analyzing our results is related to the regulatory role 

played by the mitochondrial carriers. Little is known about their function to control 

metabolite concentrations for achieving a specific metabolic state in the mitochondria. 

Knowledge about regulation of mitochondrial transporters would improve the 

understanding of the mitochondrial metabolic system. Complex regulatory effects that 

span over more reactions are difficult to establish without further information about 

transporter properties. The discovery and characterization of new mitochondrial carriers 

able to transport the tested substrates and observed products would expand the number 

of elementary modes that are computed. The findings obtained using our approach 

indicate a limiting role of the pyruvate carrier, a high sensitivity of the aspartate-

glutamate antiporter for balancing the content of these amino acids in the mitochondria, 

and a potential cooperation between the citrate and the dicarboxylate carrier. Also, 

determining intracompartmental concentrations under selected feeding conditions would 

be of great value at establishing the control checkpoints in the mitochondrial 

metabolism. Off-gas analysis of O2 and CO2 would add extra constraints to the linear 

system used to calculate the mode fluxes, making possible the resolution of more 

complex modes, where e.g. more substrates are taken up together. Sampling ADP and 

ATP concentrations would enable the quantification of uncoupling effects particularly for 

the study of certain diseases or toxic effects of test compounds. 

Using selectively permeabilized cells and flux analysis methods provides a great system 

for metabolic studies that aim at understanding diseases related to mitochondrial 

dysfunctions or at debottlenecking the metabolic connection between mitochondria and 

cytosol. By removing the background noise of cytosolic reactions, it becomes possible to 

study the effect of transport or enzyme inhibitors and of genetic modifications of the 

mitochondrial enzymes on the mitochondrial metabolism.  
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Supplementary data 5 

Supplem. Figure S5.1. Experimental (o) and fitted (-) extracellular concentrations 

in the experiments with permeabilized CHO-K1 cells. r – production rate [fmol/ (cell 

 min)]. The brackets contain the 95% confidence interval for the rate. 

Supplem. Table S5.1. Selection of the elementary modes that can describe the 

observed metabolite uptake and production. The modes are selected accordingly to 

the following criteria:  u - the metabolite is taken up; p - the metabolite is produced; xu - 

the metabolite is not taken up; xp - the metabolite is not produced; iu - the metabolite is 

or is not taken up; ip - the metabolite is or is not produced. 

Supplem. Table S5.2. Mitochondrial fluxes [fmol / cell  min] in selectively 

permeabilized CHO-K1 cells under various feeding conditions. The fluxes were computed 

using the determined extracellular rates and the stoichiometry indicated by reactions R1-

R50. By addition of ADP it was assumed that the flux R44=0.  

Supplem. Table S5.3. Stoichiometry of the modes selected using the Table S1 and 

the contribution to each mode to the total flux in each feeding experiment using 

selectively permeabilized CHO-K1 cells [fmol / cell  min]. 

Supplem. Table S5.4. Conclusions on mitochondrial enzymes and transporters 

activity and about regulation of the mitochondrial metabolism resulted by applying 

elementary mode analysis to the observations from feeding experiments with selectively 

permeabilized CHO-K1 cells. The gray areas indicate the experiments on which each 

corresponding conclusion was based. 
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Chapter 6 

6. Conclusions and outlook 

In the present work, systems biology tools were developed and applied using CHO-K1 as a 

model mammalian system to study metabolic compartmentation between mitochondria 

and cytosol. The focus was to use mathematical modeling first to reveal details about the 

topology of compartmented metabolic networks in eukaryotes and second, what role 

plays compartmentation at controlling metabolic fluxes and metabolite availability in the 

larger scheme of cellular metabolism. 

The systems biology tools that were applied are (1) non-stationary 13C metabolic flux 

analysis (Inst-13CMFA), (2) dynamic metabolic flux analysis (dyMFA) and (3) elementary 

mode analysis (EMA). A software platform for Inst-13CMFA was developed and tested first 

on S. cerevisiae. The model was then extended to include the dynamics of extracellular 

isotopomers by including growth, changes in the extracellular concentrations and 

metabolite exchange with the media. The mass isotopomers of extracellular metabolites 

in a batch culture of CHO-K1 cells was sufficient to compute the metabolic fluxes for a 

detailed, compartmented network. Even though some metabolites are taken up with net 

fluxes, they were found labeled in the extracellular media. Sometimes, like in the case of 

pyruvate, they were exchanged with a very high flux. This means that the media is not 

only a source of substrates for the cells, but it is also an important environment, playing 

the role of another compartment. 

By applying what was named “high resolution Inst-13CMFA”, which is Inst-13CMFA using 

both intra- and extracellular labeling from parallel labeling experiments using different 

labeled substrates, it resulted that the metabolism of CHO-K1 cells is not only 

compartmented, but also most likely spatially structured. Enzyme association and 

metabolite channeling create microenvironments that separate metabolite pools in the 

same compartment. Pyruvate channeling was determined in both cytosol and 

mitochondria. In the cytosol, a possible association of glycolytic enzymes to the cell 
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membrane produced secreted lactate labeled differently than the cytosolic pool. The 

assumption of glycolytic pyruvate-to-secreted lactate channeling is also supported by the 

very low cytosolic concentrations that were estimated for these organic acids. 

CHO-K1 cells growing in the exponential phase require high amounts of NADPH to be 

consumed by fatty acids synthesis and to mitigate the oxidative stress related to high 

mitochondrial respiration and protein folding and unfolding futile cycles (Klein et al., 

2015). The main source of cytosolic NADPH is a high PPP activity, similar to cancer cells. 

No or little cytosolic activity of ME and IDH was estimated using Inst-13CMFA, these two 

enzymes being the only other possible sources of NADPH. Cytosolic ME activity was not 

detected experimentally (Wahrheit et al., 2014b) nor simulated, but high cytosolic activity 

of IDH determined by (Wahrheit et al., 2014b) did not reflect in flux estimations. It is 

possible that cytosolic IDH has more a protective role than as a NADPH 

producer/consumer (Lee et al., 2002). Although the in vivo activities of mitochondrial ME 

and PCX were modest, their activity together with that of MDH formed a futile cycle 

which ran at high flux. This cycle has the purpose to recycle ADP from ATP when ADP is 

not provided together with the metabolized mitochondrial substrate. The flux values are 

the maximum possible when in the mode flux calculation it is considered that uncoupling 

and proton leakage do not occur. 

Inst-13CMFA revealed that some pathways for synthesis and degradation of non-essential 

amino acids occur simultaneously, but in different compartments. Key metabolites, e.g. 

malate and glutamate, are cycled via several mitochondrial carriers between 

mitochondria and cytosol. A dynamic control of the cytosolic and mitochondrial NADH 

pools could be a reason for this observation, as these two metabolites are part of the 

aspartate-malate shuttle. The aspartate-glutamate mitochondrial carrier contributes to 

the shuttle activity by controlling the content of these two amino acids in the 

compartments, as it resulted from studies using selectively permeabilized cells. 

Selectively permeabilized cells consumed substrates at considerably higher rates than 

those estimated in vivo. An exception is uptake of pyruvate by the mitochondria, which 
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was comparable in both cases. Mitochondrial uptake of pyruvate combined with the 

activity of the PDH complex is most likely the bottleneck in the split of pyruvate between 

glycolysis and the TCA cycle.  Because of its complex regulation pattern, PDH was already 

indicated as bottleneck reaction in the pyruvate metabolism of cancer cells (Israel and 

Schwartz, 2011). However, as it was shown in Chapter 5, the control of metabolism does 

not operate through individual reactions. The example of aspartate being taken up by 

mitochondria only in the presence of aspartate is an important indication of systemic 

interactions. Enzyme co-regulation, transporter cooperation and metabolite 

inhibition/stimulation effects are all advocates for employing systemic characterizations 

of mammalian cells instead of gene-focused or reaction-focused approaches. This is 

especially important when the goal is to understand the causes/effects of a disease or to 

optimize the cell for production of biopharmaceuticals. 

Labeling experiments where exchange with the media occurs must consider the influence 

of the extracellular labeling. As this process becomes dynamic due to changes in the 

extracellular concentrations and cell growth, only a dynamic model can accurately 

describe the labeling state of the cell. In this context, Inst-13CMFA proved to be an 

effective tool for estimating metabolic fluxes considering the narrow confidence intervals 

that were computed. Experiments using selectively permeabilized cells provided direct 

access to the mitochondrial metabolism and contributed to establishing the topology of 

the mitochondrial metabolism. This led to revealing not only the activity of certain 

enzymes or transporters, but the activity of whole mitochondrial pathways. The key 

highlights of the methods that were described in this thesis are:  

● INST-13CMFA using only extracellular labeling: can be applied industrially, useful to 

reveal compartmented fluxes, can be used to estimate the fluxes of metabolite exchange 

with the media. 

● High resolution INST-13CMFA: estimate metabolic fluxes in a complex network with 

small confidence intervals, estimate reaction reversibility, estimate fluxes and exchange 
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at the cytosol/mitochondria boundary, estimate intracompartmental concentrations, 

can be used to uncover details about metabolite channeling. 

● Dynamic metabolic flux analysis: determine metabolic switches, correlate switches 

with changes in metabolite availability and with cell growth. 

● EMA applied to analyze feeding experiments using selectively permeabilized cells: 

reveal the activity of whole mitochondrial pathways (including transporters), reveal 

regulatory effects observed by using more mitochondrial substrates. 

Mammalian metabolism is a complex system that is tightly controlled at several levels. In 

this framework, compartmentation allows the cells to maintain stable states, e.g. 

exponential growth, under highly dynamic extracellular conditions where substrates are 

depleted and secreted products accumulate. For this reasons, the methods that were 

employed herein would be greatly complemented by larger scale models, which are able 

to simulate growth in a comprehensive manner. Genome scale initiatives have already 

been set in place for plant cells (de Oliveira Dal'Molin and Nielsen, 2013), the human 

genome reconstruction is already available owing to a concerted scientific effort (Mo et 

al., 2007; Thiele et al., 2013), based on which a mouse reconstruction was also built 

(Sigurdsson et al., 2010). Given the immense economic importance of this cell line, it is to 

be expected that a genome scale model of the CHO cell line will soon be available (Borth, 

2014; Kaas et al., 2014). However, if genome scale models are to be used for fluxomics, the 

same problems related to alternative pathways and cycles will be encountered. Such 

fluxes cannot be solved by flux balancing. To minimize this uncertainty, a future option 

for comprehensive genome-scale fluxomics is combining genome scale models with 

13CMFA. The labeling information can be used in the objective function that constrains 

the flux space. Genome scale atom networks could then be built to describe the atom 

mapping throughout the whole network. Mathematical frameworks that condensate 

atoms into metabolic units, similar to the elementary metabolite units introduced by 

Antoniewicz et al. (Antoniewicz et al., 2007), could greatly reduce the computational 

costs and make such applications feasible. 
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Flux analysis offers only a static image of the metabolism. Advanced dynamical models of 

the metabolism could evolve from semi-empirical fitting to considering reaction kinetics 

(Chen et al., 2012), even at genome scale (Chakrabarti et al., 2013). Recent progress was 

made by applying metabolic flux analysis and kinetic modeling to understand the shift in 

to lactate consumption in mouse myeloma cells (Mulukutla et al., 2012). Besides the 

computational costs, kinetic modeling requires the determination of intracompartmental 

concentrations. There has been much progress in this area, including the development of 

sensors sensitive to intracompartmental concentrations (Frommer et al., 2009) or of 

protocols for sampling intracellular concentrations (Wahrheit and Heinzle, 2013; 

Wahrheit and Heinzle, 2014a). 

Improvements in experimental methods would bring an essential contribution to 

constructing realistic metabolic models. There are still many mitochondrial carriers that 

have not yet been annotated (Table 1.1) or characterized, and this fact introduces a great 

deal of uncertainty in models that include compartmentation. The development of 

methods for determining in vivo multi-enzyme complexes or enzyme-transporter 

association would contribute to adding a spatial component to cell models. Quantifying 

the electron chain uncoupling (Brand and Esteves, 2005), oxidative stress (Adam-Vizi, 

2005; Milne et al., 2007) or the activity of futile cycles (Locasale and Cantley, 2011) will 

permit a better stoichiometric quantification of the energy metabolism of mammalian 

cells, which is the core of mitochondria-related diseases and aging. 

In the spirit of systems biology, meaning embracing complexity, model layering should be 

the next natural step in dealing with the compartmentation of the living into organelles, 

cells, tissues, organs and bodies. Several types of mathematical models of different 

resolution could be integrated to exchange parameters and create complete organ or even 

body models (Bordbar et al., 2011; Eissing et al., 2011) that could constitute excellent 

platforms for in silico testing. This ambitious goal would lead to the minimization of 

animal testing, optimized time for strain engineering and to the design of personalized 

therapies or diagnosis platforms. 
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Supplem. Table S1.1. Average biomass composition of the CHO-K1 cell 

Component pg/cell 

Dry weight 290 

Proteins 171.86 

Carbohydrates 22.4 (Altamirano et al., 2001a) 

Lipids 24.64 (Altamirano et al., 2001a) 

DNA 13.41 

RNA 5.79 
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Supplem. Table S1.2. Precursor requirements for the synthesis of macromolecules in the 

CHO-K1 cell line 

Precursor Average composition 
[pmol/cell] 

Macromolecule 
(unit of quantitative reference) 

Alanine 0.103670 

Proteins 
(mole of amino acid) 

Arginine 0.081327 

Asparagine / aspartate 0.130177 

Glutamine / glutamate 0.151689 

Glycine 0.140649 

Histidine 0.031833 

Isoleucine 0.055419 

Leucine 0.108359 

Lysine 0.089150 

Methionine 0.009462 

Phenylalanine 0.047120 

Proline 0.046327 

Serine 0.076950 

Threonine 0.063611 

Tryptophane 0.001068 

Tyrosine 0.053013 

Cysteine 0.079279 

Valine 0.078340 

Glucose-6-phosphate 0.138272 Carbohydrates 
(mole of glucose) 

Lipids 0.035671 Lipids 
(1 mole = C38.925H74.2O6.95P0.85) 

DNA 0.042851 DNA 
(ribose-5-phosphate) 

RNA 0.017826 RNA 
(ribose-5-phosphate) 

  



 

 

134 
 

Appendix 

Appendix to Chapter 3 

Supplem. Fig. S3.1. Complete culture profile of CHO-K1 cells during the 

exponential growth phase. The lines represent the fitted concentration profiles to the 

experimental values (dots) and in the boxes are the determined extracellular rates 

[mmol/(L cell  h )] together with the 95% confidence intervals. Glutamine uptake was 

determined by considering a spontaneous degradation rate of 0.0033 h-1. The exponential 

growth phase is shown in the last plot. 
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Supplem. Table S3. 1. List of reactions in the non-compartmented central carbon metabolism of 

CHO-K1 (Table S3.1.1). List of metabolic reactions, fluxes and reversibilities in the compartmented 

central carbon metabolism of CHO-K1 cells (Table S3.1.2). Carbon transfer rules are provided in the 

parentheses after each reaction. Reversible reactions are designated by double arrows. Reversibility (rev) is 

computed as the ratio between the reverse flux and the net flux. lb – lower boundary; ub – upper boundary. 

Subscripts meaning: c – cytosolic; ex – extracellular; m – mitochondrial; Abbreviations: AcoA – acetyl-CoA; 

ALA – alanine; ASN – asparagine; ASP – aspartate; CIT – citrate; FUM – fumarate; GLC – glucose; G6P – 

glucose-6-phosphate; PG – phosphoglycerate; PEP – phosphoenolpyruvate; GLN – glutamine; GLU – 

glutamate; GLY – glycine; ICI – isocitrate; ILE – isoleucine; LAC – lactate; LEU – leucine; LYS – lysine; MAL 

– malate; MET – methionine; OAA – oxaloacetate; PHE – phenylalanine; PYR – pyruvate; SER – serine; SUC 

– succinate; THR – threonine; TYR – tyrosine; VAL – valine. 

Table S3.1.1 

Flux Reaction 

v1 GLCex (abcdef) → G6P (abcdef) 

v2 G6P (abcdef) → PG (abc) + PG (def) 
v3 3 G6P (abcdef) → 5 PG (def) + 3 CO2 (a)  

v4 G6P (abcdef) → Biomass 

v5 PG (abc) → PEP (abc) 

v6 PEP (abc) → PYR (abc) 
v7 PYR (abc) → AcoA (bc) +CO2 (a) 
v8 OAA (abcd) + AcoA (ef) → CIT (efbcda) 

v9 CIT (abcdef)→ AKG (abcde)+ CO2 (f) 

v10 AKG (abcde)→ 0.5 MAL (abcd) + 0.5 MAL (dcba) + CO2 (e) 

v11 MAL (abcd) ↔ OAA (abcd) 

v12 PYR (abc) ↔ LAC (abc) 

v13 LAC (abc) ↔ LACex (abc) 

v14 OAA  (abcd) → PEP (abc) + CO2 (d) 

v15 MAL (abcd) → PYR (abc) + CO2 (d) 

v16 PYR (abc) + CO2 (d) → OAA (abcd) 

v17 PG (abc) → SER (abc) 

v18 SER  (abc) ↔ GLY (ab) + MTHF (c) 

v19 SERex (abc) ↔ SER (abc) 

v20 SER (abc)→ Biomass 

v21 GLY (abc) ↔ GLYex (abc) 

v22 GLY (abc) → Biomass 

v23 SER (abc) → PYR (abc) 

v24 PYR (abc) + GLU (defgh) ↔ ALA (abc)+ AKG (defgh) 

v25 ALA (abc) ↔ ALAex (abc) 

v26 ALA (abc)→ Biomass 

v27 PYR (abc) ↔ PYRex (abc) 

v28 ASP (abcd) + AKG (efghi) ↔ OAA (abcd) + GLU (efghi) 

v29 ASN (abcd) → ASP (abcd) 

v30 ASPex (abcd) ↔ ASP (abcd) 

v31 ASP (abcd) → Biomass 

v32 AKG (abcde) ↔  GLU (abcde) 

v33 GLU (abcde) ↔ GLUex (abcde) 
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v34 GLU (abcde) → Biomass 

v35 GLN (abcde) → GLU (abcde) 

v36 GLNex (abcde) ↔ GLN (abcde) 

v37 AcoA (ab) → Biomass 

v38 
AAex (ILE, VAL, MET, THR, TYR, PHE) → MAL (AA 
catabolism) 

v39 AAex (LEU, ILE, LYS, TYR, PHE) → ACOA (AA catabolism) 

v40 AKG (abcde) → GLU (abcde) (AA catabolism) 

v41 AA(PRO, HIS, ARG) → GLU (AA catabolism) 

v42 G6P (abcdef) → carbohydrates 

Table S3.1.1 

Flux Reaction 

Flux 

[mmol/L 

cell∙h] 

lb 

[mmol/L 

cell∙h] 

ub 

[mmol/L 

cell∙h] 

rev  rev lb rev ub 

v1 GLCex (abcdef) → G6P (abcdef) 371.0 326.7 415.3 0 0 0 

v2 G6P (abcdef) → PG (abc) + PG (def) 65.8 25.2 96.5 0 0 0 

v3 3 G6P (abcdef) → 5 PG (def) + 3 CO2(a)  97.5 87.6 111.0 0 0 0 

v4 G6P (abcdef) → Biomass 3.9 - - 0 - - 

v5 PG (abc) → PEPc (abc) 597.9 585.7 607.5 0 0 0 

v6 PEPc (abc) → PYRc1 (abc) 540.3 528.1 549.8 0 0 0 

v7 PYRc1 (abc)→ PYRm (abc) 375.2 363.0 384.7 0 0 0 

v8 PYRm (abc) → AcoAm (bc) +CO2 (a) 455.8 442.4 466.9 0 0 0 

v9 
OAAm (abcd) + AcoAm (ef) → CITm 

(efbcda) 
548.7 529.5 556.9 0 0 0 

v10 CITm (abcdef)→ AKGm (abcde)+ CO2 (f) 441.7 422.8 450.2 0 0 0 

v11 
AKGm (abcde)→ 0.5 MALm (abcd) + 0.5 

MALm(dcba) + CO2 (e) 
571.3 555.8 581.1 0 0 0 

v12 MALm (abcd) ↔ OAAm (abcd) 474.4 473.0 486.0 14.3 0.16 >100 

v13 PYRc2 (abc) ↔ LACc (abc) 290.8 261.1 320.4 15.3 0 >100 

v14 LACc (abc) ↔ LACex (abc) 290.8 261.1 320.4 n.d. n.d. n.d. 

v15 OAAc  (abcd) → PEPc (abc) + CO2 (d) 65.0 35.5 72.2 0 0 0 

v16 MALc (abcd) → PYRc1 (abc) + CO2 (d) 16.4 9.4 45.8 0 0 0 

v17 OAAc (abcd) ↔ MALc (abcd) 19.3 10.9 50.7 n.d. n.d. n.d. 

v18 PYRm (abc) + CO2 (d) → OAAm (abcd) 59.6 52.9 64.1 0 0 0 

v19 MALm (abcd) → PYRm (abc) + CO2 (d) 149.4 142.8 154.0 0 0 0 

v20 PG (abc) → SER (abc) 21.2 19.9 21.9 0 0 0 

v21 SER  (abc)↔ GLY (ab) + MTHF (c) 34.5 33.3 35.2 4.03 3.43 4.75 

v22 SERex (abc) ↔ SER (abc) 48.3 39.2 57.4 33.5 14.0 98.5 

v23 SER (abc)→ Biomass 4.9 - - 0 - - 

v24 GLY (abc) ↔ GLYex (abc) 25.5 22.0 29.0 4.6 2.2 6.9 

v25 GLY (abc) → Biomass 9.0 - - 0 - - 

v26 SER (abc) → PYRc1 (abc) 30.0 28.8 30.8 0 0 0 
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v27 
PYRc1 (abc) + GLUc (defgh) ↔ ALAc 

(abc)+ AKGc (defgh) 
40.1 38.3 129.2 36.6 17.3 >100 

v28 ALAc (abc) ↔ ALAex (abc)  42.7 39.9 45.5 0.154∙ 

∙e(t*0.036) 

0.142 

(0.038

) 

0.169 

(0.04

2) 

v29 ALAc (abc)→ Biomass 6.7 - - 0 - - 

v30 ALAm (abc)↔ ALAc (abc) 9.5 -10.6 13.6 0.15 0 1.15 

v31 
PYRm (abc) + GLUm (defgh) ↔ ALAm 

(abc)+ AKGm (defgh) 
9.5 -10.6 13.6 n.d. - - 

v32 PYRc1 (abc) ↔ PYRex (abc) 3.3 2.1 4.56 2700/t 2055/t 
2808/

t 

v33 
ASPc (abcd) + AKGc (efghi) ↔ OAAc 

(abcd) + GLUc (efghi) 
45.3 31.9 48.3 19.3 1.3 >100 

v34 
ASPc (abcd) + AKGm (edghi) → OAAm 

(abcd) + GLUm (efghi) 
14.5 11.4 27.9 0 0 0 

v35 ASN (abcd) → ASPc (abcd) 47.2 31.1 63.2 0 0 0 

v36 ASPex (abcd) ↔ ASPc (abcd) 20.9 1.1 40.7 0.7 0.34 0.84 

v37 ASPc (abcd) → Biomass 8.4 - - 0 - - 

v38 MALc (abcd) ↔ MALm (abcd) 2.9 0.9 5.0 6.9 0.8 15.1 

v39 CITm (abcdef) → CITc (abcdef) 106.6 40.1 n.d. 0 0 0 

v40 CITc (abcdef) → AKGc (abcde)+ CO2 (e) 67.6 1 n.d. 0 0 0 

v41 AKGm (abcde) ↔ AKGc (abcde) 26.3 -62.8 53.5 8.2 2.15 >100 

v42 AKGc (abcde) ↔  GLUc (abcde) 71.2 62.7 78.8 n.d. - - 

v43 GLUc (abcde) → GLUm (abcde) 74.8 66.4 82.5 0 0 0 

v44 GLUm (abcde) ↔ AKGm (abcde) 161.0 158.5 179.8 n.d. - - 

v45 GLUc (abcde) ↔ GLUex (abcde) 6.3 3.4 9.3 1.3 1.2 1.6 

v46 GLUc (abcde) → Biomass 9.7 - - 0 - - 

v47 GLNc (abcde) → GLUc (abcde) 14.6 13.3 15.8 0 0 0 

v48 GLNc (abcde) → GLUm (abcde) 81.0 80.1 82.4 0 0 0 

v49 GLNex (abcde) ↔ GLNc (abcde) 66.4 50.3 82.4 1.28 1.02 1.78 

v50 
CITc (abcdef) → OAAc (fcde) + AcoAc 

(ab) 
39.1 - - 0 - - 

v51 AcoAc (ab) → Biomass 39.1 - - 0  - - 

v52 
AAex (ILE, VAL, MET, THR, TYR, PHE) 

→ MALm (AA catabolism) 
49.6 5.1 99.9 0 - - 

v53 
AAex (LEU, ILE, LYS, TYR, PHE) → 

ACOAm (AA catabolism) 
92.6 27.9 161.4 0  - - 

v54 
AKGc (abcde) → GLUc (abcde) (AA 

catabolism) 
38.7 5.2 75.6 0 - - 

v55 
AA(PRO, HIS, ARG) → GLUc (AA 

catabolism) 
11.6 0.8 25.3 0 - - 

v56 PYRc1 (abcd) ↔ ALAc (abcd) 0 - - 0 - - 

v57 PYRm (abc) ↔ LAC (abc) 0 - - 0 - - 
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v58 PYRc1 (abc) ↔ PYRc2 (abc) 168.1 149.2 174.8 0.13 0 0.41 

v59 PEP (abc) → PYRc2 (abc) 122.7 103.8 129.4 0 0 0 

v60 G6P (abcdef) → carbohydrates 8.9 - - 0 0 0 
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Supplem. Table S3.2. Experimental (exp) and simulated (sim) mass isotopomer 

distributions of extracellular metabolites and used standard deviations (SD). 

exp Lactate Alanine Aspartate 

Time [h] M0 M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3 M4 

1 0.889 0.027 0.003 0.081 0.963 0.031 0.002 0.004 0.972 0.028 0.000 0.000 0.000 

18 0.345 0.013 0.029 0.613 0.802 0.024 0.007 0.167 0.973 0.026 0.000 0.001 0.000 

24 0.267 0.012 0.037 0.684 0.728 0.023 0.010 0.239 0.965 0.032 0.000 0.002 0.000 

42 0.150 0.011 0.051 0.788 0.512 0.019 0.018 0.451 0.950 0.038 0.007 0.004 0.001 

48 0.128 0.012 0.055 0.805 0.409 0.018 0.024 0.549 0.948 0.038 0.007 0.005 0.001 

66 0.092 0.012 0.057 0.839 0.206 0.015 0.034 0.745 0.936 0.039 0.011 0.011 0.004 

72 0.082 0.012 0.058 0.848 0.149 0.014 0.038 0.799 0.932 0.035 0.014 0.014 0.005 

sim Lactate 

 

Alanine Aspartate 

Time [h] M0 M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3 M4 

1 0.897 0.030 0.002 0.070 0.966 0.033 0.000 0.001 0.972 0.028 0.000 0.000 0.000 

18 0.301 0.020 0.025 0.654 0.824 0.030 0.006 0.140 0.969 0.029 0.001 0.001 0.000 

24 0.247 0.020 0.028 0.706 0.742 0.029 0.009 0.219 0.967 0.030 0.002 0.001 0.000 

42 0.169 0.019 0.032 0.780 0.475 0.026 0.021 0.478 0.959 0.032 0.005 0.004 0.001 

48 0.156 0.019 0.033 0.792 0.392 0.025 0.025 0.558 0.954 0.033 0.007 0.005 0.002 

66 0.131 0.019 0.035 0.814 0.207 0.024 0.035 0.734 0.929 0.038 0.016 0.013 0.004 

72 0.125 0.020 0.036 0.819 0.170 0.025 0.038 0.767 0.915 0.042 0.021 0.017 0.005 

  

exp SD Lactate          Alanine Aspartate 

 Time [h] M0 M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3 M4 

1 0.039 0.005 0.005 0.005 0.036 0.022 0.009 0.005 0.011 0.022 0.005 0.005 0.010 

18 0.038 0.020 0.022 0.038 0.041 0.011 0.005 0.037 0.022 0.007 0.005 0.008 0.021 

24 0.035 0.008 0.035 0.044 0.021 0.010 0.024 0.032 0.006 0.023 0.023 0.005 0.026 

42 0.035 0.006 0.042 0.040 0.036 0.022 0.024 0.025 0.024 0.005 0.023 0.021 0.022 

48 0.023 0.024 0.026 0.028 0.026 0.007 0.023 0.036 0.022 0.011 0.010 0.005 0.025 

66 0.036 0.006 0.038 0.037 0.023 0.022 0.021 0.005 0.025 0.009 0.022 0.022 0.024 

72 0.005 0.022 0.030 0.035 0.038 0.009 0.024 0.028 0.009 0.023 0.005 0.006 0.024 

(Table S3.2.cont.) 

exp Glutamate Glutamine 

Time [h] M0 M1 M2 M3 M4 M5 M0 M1 M2 M3 M4 M5 

1 0.943 0.048 0.000 0.009 0.000 0.000 0.956 0.042 0.000 0.000 0.002 0.000 

18 0.915 0.050 0.020 0.011 0.003 0.001 0.953 0.043 0.000 0.001 0.002 0.000 

24 0.895 0.052 0.034 0.011 0.005 0.002 0.951 0.043 0.002 0.001 0.003 0.000 

42 0.848 0.050 0.065 0.017 0.014 0.007 0.927 0.057 0.011 0.001 0.004 0.001 

48 0.830 0.041 0.080 0.024 0.017 0.009 0.937 0.045 0.007 0.002 0.007 0.001 

66 0.699 0.048 0.146 0.036 0.045 0.026 0.898 0.043 0.026 0.009 0.016 0.007 

72 0.634 0.049 0.175 0.045 0.059 0.038 0.780 0.054 0.078 0.023 0.042 0.024 

sim Glutamate Glutamine 
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Time [h] M0 M1 M2 M3 M4 M5 M0 M1 M2 M3 M4 M5 

1 0.957 0.042 0.000 0.000 0.000 0.000 0.958 0.042 0.000 0.000 0.000 0.000 

18 0.932 0.045 0.014 0.004 0.004 0.001 0.955 0.043 0.002 0.000 0.001 0.000 

24 0.917 0.047 0.021 0.006 0.008 0.001 0.952 0.043 0.003 0.001 0.001 0.000 

42 0.845 0.053 0.054 0.019 0.024 0.005 0.941 0.044 0.008 0.003 0.004 0.001 

48 0.812 0.055 0.069 0.025 0.032 0.007 0.934 0.044 0.011 0.004 0.005 0.001 

66 0.680 0.065 0.128 0.050 0.063 0.014 0.879 0.049 0.036 0.014 0.018 0.004 

72 0.627 0.069 0.150 0.060 0.076 0.017 0.793 0.056 0.073 0.030 0.039 0.009 

 Exp SD 

Time [h] 

Glutamate Glutamine 

M0 M1 M2 M3 M4 M5 M0 M1 M2 M3 M4 M5 

1 0.005 0.005 0.009 0.008 0.023 0.007 0.009 0.005 0.008 0.005 0.005 0.023 

18 0.020 0.005 0.005 0.026 0.025 0.010 0.024 0.005 0.023 0.022 0.005 0.007 

24 0.023 0.011 0.010 0.010 0.005 0.024 0.022 0.023 0.006 0.005 0.005 0.022 

42 0.023 0.005 0.023 0.009 0.010 0.023 0.008 0.024 0.025 0.005 0.005 0.023 

48 0.039 0.036 0.039 0.011 0.009 0.008 0.006 0.025 0.025 0.010 0.005 0.005 

66 0.028 0.033 0.041 0.025 0.010 0.024 0.030 0.005 0.025 0.005 0.035 0.005 

72 0.037 0.034 0.030 0.023 0.005 0.005 0.035 0.005 0.007 0.023 0.026 0.022 

(Table S3.2.cont.) 

exp Glycine Serine Pyruvate 

Time [h] M0 M1 M2 M0 M1 M2 M3 M0 M1 M2 M3 M5 

1 0.984 0.016 0.000 0.993 0.007 0.000 0.000 0.873 0.027 0.002 0.098 0.000 

18 0.977 0.017 0.006 0.969 0.013 0.000 0.018 0.318 0.014 0.025 0.643 0.000 

24 0.975 0.016 0.009 0.958 0.016 0.000 0.026 0.241 0.012 0.029 0.717 0.000 

42 0.961 0.017 0.022 0.913 0.029 0.010 0.049 0.177 0.012 0.034 0.777 0.001 

48 0.950 0.018 0.032 0.885 0.035 0.017 0.063 0.160 0.012 0.037 0.791 0.001 

66 0.904 0.018 0.079 0.757 0.084 0.056 0.103 0.149 0.013 0.041 0.797 0.007 

72 0.879 0.017 0.104 0.670 0.118 0.085 0.128 0.124 0.014 0.051 0.811 0.024 

sim Glycine Serine Pyruvate 

Time [h] M0 M1 M2 M0 M1 M2 M3 M0 M1 M2 M3 M5 

1 0.978 0.022 0.000 0.992 0.007 0.000 0.000 0.887 0.030 0.003 0.080 0.000 

18 0.978 0.019 0.003 0.978 0.009 0.002 0.012 0.293 0.022 0.027 0.659 0.000 

24 0.977 0.018 0.005 0.969 0.010 0.003 0.018 0.228 0.021 0.030 0.720 0.000 

42 0.966 0.014 0.020 0.925 0.020 0.010 0.045 0.160 0.021 0.035 0.784 0.001 

48 0.958 0.013 0.029 0.900 0.028 0.015 0.057 0.153 0.021 0.036 0.789 0.001 

66 0.905 0.011 0.084 0.754 0.084 0.053 0.108 0.137 0.024 0.038 0.801 0.004 

72 0.873 0.011 0.116 0.665 0.124 0.079 0.132 0.129 0.025 0.040 0.806 0.009 

exp SD Glycine Serine Pyruvate 

Time [h] M0 M1 M2 M0 M1 M2 M3 M0 M1 M2 M3 M5 

1 0.010 0.022 0.022 0.025 0.006 0.005 0.005 0.032 0.025 0.011 0.024 0.023 

18 0.024 0.026 0.011 0.011 0.007 0.022 0.022 0.005 0.023 0.020 0.042 0.007 

24 0.024 0.025 0.006 0.035 0.025 0.005 0.005 0.023 0.024 0.040 0.036 0.022 

42 0.023 0.008 0.007 0.007 0.022 0.005 0.009 0.031 0.021 0.022 0.038 0.023 
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48 0.005 0.025 0.008 0.007 0.005 0.005 0.010 0.045 0.022 0.024 0.040 0.005 

66 0.022 0.026 0.010 0.024 0.008 0.005 0.024 0.021 0.025 0.025 0.038 0.005 

72 0.022 0.010 0.005 0.024 0.021 0.005 0.005 0.007 0.005 0.029 0.030 0.022 
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Appendix to Chapter 4 

Supplem. Figure 4.1. Cultivation profile of the CHO-K1 cells culture during 48 h in 250 ml baffled shake 

flask with a working volume of 120 mL. The represented extracellular concentrations are in [µmol / L] and 

the time is in [h]. The values represent the average from 4 parallel cultivations. The curves are the fitted 

values of extracellular concentrations simulating an exponential growth model with balanced growth 

(metabolic steady state) over the first 18 h. 
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Supplem. Table S4. 1. List of reactions used in the stoichiometric model for dynamic metabolic flux 

analysis. Reactions represented with a simple arrow were constrained to be unidirectional, while those 

represented by double arrow can be reversible. Abbreviations: AcoA – acetyl-CoA; ALA – alanine; ASN – 

asparagine; ASP – aspartate; CIT – citrate; CYS – cysteine; DHAP - dihydroxyacetone-3-phosphate; FUM – 

fumarate; GLC – glucose; G6P – glucose-6-phosphate; GAP – glycerine aldehyde 3-phosphate; GLN – 

glutamine; GLU – glutamate; GLY – glycine; HIS – histidine;  ICI – isocitrate; ILE – isoleucine; LAC – lactate; 

LEU – leucine; LYS – lysine; MAL – malate; MET – methionine; MTHF – methyltetrahydrofolate; OAA – 

oxaloacetate; PEP – phosphoenolpyruvate; PG – phosphoglycerate; PHE – phenylalanine; PYR – pyruvate; 

R5P – ribose-5-phosphate; S7P – sedoheptulose-7-phosphate; SER – serine; SUC – succinate; THR – 

threonine; TYR – tyrosine; VAL – valine. 

Reaction 

GLCex  → G6P  

G6P → F6P  
F6P → GAP + DHAP 
DHAP ↔ GAP 
GAP → 1,3PG 
1,3PG → 3PG 
3PG → PEP 
PEP → PYR 
G6P → Carbohydrates 
PYR → AcoA +CO2 

 

OAA + AcoA  → CIT 

CIT→ AKG + CO2 
AKG → SUC + CO2 
SUC → FUM 

FUM → MAL 

MAL ↔ OAA 

PEP ↔OAA (generic C3 – C4 reaction) 
PYR ↔ LAC 

G6P → R5P + CO2 

2R5P ↔ S7P + GAP 

GAP + S7P ↔ F6P + E4P 

R5P + E4P ↔ F6P + GAP 

R5P + 1.215 GLN + 0.5 GLY + 1.285 ASP + 0.715 NH3 + 0.285 MTHF → DNA + 1.215 GLU + 0.785 FUM 

R5P + 1.215 GLN + 0.5 GLY + 1.285 ASP + 0.715 NH3 → RNA + 1.215 GLU + 0.785 FUM 
0.775 DHAP + 17.075 AcoA + 0.15 SER→ Lipids 

ALA→ Proteins 

ASP → Proteins 

CYS → Proteins 

GLU → Proteins 

GLY → Proteins 

HIS → Proteins 

ILE → Proteins 

LEU → Proteins 

MET → Proteins 

LYS → Proteins 

PHE → Proteins 
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PRO → Proteins 

SER → Proteins 

THR → Proteins 

TYR → Proteins 

VAL → Proteins 

ALA + AKG ↔ PYR + GLU 

ASP + AKG ↔ OAA + GLU  

ASP + NH3 ↔ ASN 

ARG → GLU (arginine catabolism) 

CYS → PYR (cysteine catabolism) 

GLN ↔ GLU + NH3 

LEU + AKG → 3 AcoA + GLU (leucine catabolism) 

VAL + AKG → SUC + CO2 + GLU 

GLU → AKG + NH3 

SER ↔ GLY + MTHF 

HIS → GLU + MTHF (histidine catabolism) 

LYS+ AKG →2 AcoA + 2 CO2  + GLU (lysine catabolism) 

MET + AKG → SUC + MTHF + GLU (methionine catabolism) 

PHE + AKG → TYR + GLU 

PRO → GLU 

SER → PYR + NH3 (serine catabolism) 

THR → SUC (threonine catabolism) 

TYR →2 AcoA + FUM + CO2 + GLU (tyrosine catabolism) 

GLNex →GLN 

LACex → LAC 

PYRex → PYR 

NH3 → NH3ex  

ALAex ↔ ALA 

ASPex ↔ ASP 

ASNex → ASN 

ARGex → ARG 

CYSex → CYS 

GLUex ↔GLU 
GLYex ↔GLY 
HISex → HIS 
ILEex → ILE 
LEUex → LEU 
LYEex → LYS 
METex → MET 
PHEex →PHE 
PROex → PRO 
SERex → SER 
THRex → THR 
TYRex → TYR 
VALex →VAL 
MTHFsink ↔ MTHF 
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Supplem. Table S4.2. List of reactions, fluxes and reversibilities in the central carbon metabolism of CHO-

K1 estimated for the first 2 – 18 h cultivation period. Carbon transfer rules are given in parentheses for each 

reaction. Reversible reactions are indicated by double arrows. Reversibility (rev) is computed as the ratio 

between the reverse flux and the net flux. The 95% confidence interval was evaluated by refitting the model 

until the minimized objective function took the value of χ2(0.95, nr. experimental points – nr. parameters). 

lb – lower boundary; ub – upper boundary; Subscripts meaning: c – cytosolic; ex – extracellular; m – 

mitochondrial; Abbreviations: AcoA – acetyl-CoA; ALA – alanine; ASN – asparagine; ASP – aspartate; CIT – 

citrate; FUM – fumarate; GLC – glucose; G6P – glucose-6-phosphate; PG – phosphoglycerate; PEP – 

phosphoenolpyruvate; GLN – glutamine; GLU – glutamate; GLY – glycine; ICI – isocitrate; ILE – isoleucine; 

LAC – lactate; LEU – leucine; LYS – lysine; MAL – malate; MET – methionine; OAA – oxaloacetate; PHE – 

phenylalanine; PYR – pyruvate; SER – serine; SUC – succinate; THR – threonine; TYR – tyrosine; VAL – 

valine. 

Flux Reaction 

Flux 

[mmol/L 

cell  h] 

lb 

[mmol/L 

cell h] 

ub 

[mmol/L 

cell h] 

rev 
rev  

lb 

rev  

ub 

v1 GLCex (abcdef) + ATPc→ G6P 

(abcdef) + ADPc 

289.7 246.3 333.0 0 0 0 

v2 G6P (abcdef) + ADPc + 2 NAD+
c→ 

PG (abc) + PG (def)+ ATPc + 2 

NADHc 

24.3 18.6 29.2 0 0 0 

v3 3 G6P (abcdef) + 3 ADPc + 5 NAD+
c 

+ 6 NADP+
c→ 5 PG (def) + 3 

CO2(a) + 3 ATPc + 5 NADHc + 6 

NADPHc
 

87.4 85.4 89.6 0 0 0 

v4 G6P (abcdef) + 6.43ATPc + 0.72 

NADHc→ (DNA, RNA) + 6.43 

ADPc + 0.72 NAD+
c 

3.3 3.3 3.3 0 0 0 

v5 PG (abc) → PEPc (abc) 464.9 464.7 465.0 0 0 0 

v6 PEPc (abc) + ADPc → PYRc1 (abc) + 

ATPc 

498.2 492.3 500.2 0 0 0 

v7 PYRc1 (abc)→ PYRm2 (abc) 118.9 113.7 119.0 0 0 0 

v8 PYRm2 (abc) + NAD+
m→ AcoAm 

(bc) +CO2 (a) + NADHm 

77.5 77.2 77.6 0 0 0 

v9 OAAm (abcd) + AcoAm (ef) → 

CITm (efbcda) 

100.8 100.6 100.9 0 0 0 

v10 CITm (abcdef) + NAD(P)+
m→ 

AKGm (abcde)+ CO2 (f) + 

NAD(P)Hm 

58.7 57.0 67.7 0 0 0 

v11 AKGm (abcde) + NAD+
m→ 0.5 

MALm (abcd) + 0.5 MALm(dcba) + 

CO2 (e) + NADHm 

105.6 105.4 105.7 0 0 0 

v12 MALm (abcd) + NAD+
m↔ OAAm 

(abcd) + NADH 

191.6 185.1 198.9 10.3 10.2 11.3 
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v13 PYRc2 (abc) + NADHc↔ LACc2 

(abc) + NAD+
c 

431.7 391.0 472.3 31.9 18.6 32.0 

v14 LACc (abc) ↔ LACex (abc) 431.7 391.0 472.3 28.2 28.1 28.3 

v15 OAAc  (abcd) + GDPc→ PEPc (abc) 

+ CO2 (d) + GTPc 

66.4 61.2 68.5 0 0 0 

v16 MALc (abcd) + NADP+
c→ PYRc1 

(abc) + CO2 (d) + NADPHc 

5.4 0 11.0 0 0 0 

v17 OAAc (abcd) + NADHc↔ MALc 

(abcd) + NAD+
c 

90.5 88.6 90.7 22.7 21.7 23.0 

v18 PYRm1 (abc) + CO2 (d) +GTPm→ 

OAAm (abcd) + GDPm 

23.1 15.1 24.8 0 0 0 

v19 MALm (abcd) + NADP+
m→ PYRm1 

(abc) + CO2 (d) + NADPHm 

8.3 5.9 9.2 0 0 0 

v20 PG (abc) + NH3c→ SER (abc) 20.5 20.4 20.5 0 0 0 

v21 SER  (abc)↔ GLY (ab) + MTHF (c) 21.9 21.9 21.9 3.8 3.2 3.8 

v22 SERex (abc) ↔ SER (abc) 20.8 17.8 23.4 13.3 13.1 13.9 

v23 SER (abc) + 4 ATPc→ Proteins + 4 

ADPc 

4.2 4.1 4.2 0 0 0 

v24 GLY (abc) ↔ GLYex (abc) 14.3 8.7 19.9 2.9 1.9 3.1 

v25 GLY (abc) + 4 ATPc→ Proteins + 4 

ADPc 

7.6 7.5 7.7 0 0 0 

v26 SER (abc) → PYRc1 + NH3c(abc) 15.2 15.1 15.2 0 0 0 

v27 PYRc1 (abc) + GLUc (defgh) ↔ 

ALAc (abc)+ AKGc (defgh) 

5.3 4.4 6.0 0.5 0.4 0.5 

v28 ALAc (abc) ↔ ALAex (abc) 26.3 26.1 26.5 2.7 2.7 4.1 

v29 ALAc (abc) + 4 ATPc → Proteins + 

4 ADPc 

5.6 5.4 5.8 0 0 0 

v30 ALAm (abc)↔ ALAc (abc) 26.6 25.9 27.5 3.7 3.5 4.7 

v31 PYRm1 (abc) + GLUm (defgh) ↔ 

ALAm (abc)+ AKGm (defgh) 

26.6 25.9 27.5 14.4 12.9 14.6 

v32 PYRex(abc) ↔ PYRc1(abc) 4.0 2.2 5.8 1714/ 

time 

[h] 

1700/ 

time 

[h] 

>2500/ 

time 

[h] 

v33 ASPc (abcd) + AKGc (efghi) ↔ 

OAAc (abcd) + GLUc (efghi) 

123.8 118.8 124.0 30.0 1.9 n.d. 

v34 OAAm (abcd) + GLUm (efghi) ↔ 

ASPm (abcd) + AKGm (efghi) 

113.8 108.8 114.0 62.5 0 n.d. 

v35 ASN (abcd) → ASPc (abcd) 13.9 11.4 16.5 0 0 0 

v36 ASPex (abcd) ↔ ASPc (abcd) 3.1 0.0 6.7 5.8 4.4 6.4 
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v37 ASPc (abcd) + 4 ATPc → Proteins + 

4 ADPc 

7.1 7.0 7.2 0 0 0 

v38 MALm (abcd) ↔ MALc(abcd) 58.1 53.1 58.2 30.5 29.5 n.d. 

v39 CITm (abcdef) + MALc(ghij) → 

CITc (abcdef)+ MALm(ghij) 

42.1 33.1 43.7 0 0 0 

v40 CITc (abcdef) + NADPHc → AKGc 

(abcde)+ CO2 (e) + NADP+
c 

9.0 0 10.6 3.1 2.9 3.1 

v41 AKGm (abcde) + MALc(fghi) ↔ 

AKGc (abcde)+ MALm (fghi) 

101.1 100.3 105.7 18.0 17.9 18.1 

v42 AKGc (abcde) + NH3c + NAD(P)Hc 

↔  GLUc (abcde) + NAD(P)+
c 

0 0 0 n.d. - - 

v43 GLUm (abcde) → GLUc (abcde) 156.1 155.7 156.1 2.4 0 2.7 

v44 GLUm (abcde) + NAD(P)+
m↔ 

AKGm (abcde) + NAD(P)Hm + 

NH3m 

7.5 7.5 7.6 9.5 7.1 9.5 

v45 GLUc (abcde) ↔ GLUex (abcde) 8.1 7.2 8.9 1.3 1.3 1.3 

v46 GLUc (abcde) + 4 ATPc→ Proteins 

+ 4 ADPc 

8.2 7.9 8.5 0 0 0 

v47 GLUc (abcde) + NH3c+ ATPc→ 

GLNc (abcde) + ADPc 

136.8 136.4 137.2 5.2 4.6 5.2 

v48 GLNm (abcde) → GLUm (abcde) + 

NH3m 

190.3 189.9 190.7 0 0 0 

v49 GLNex (abcde) ↔ GLNc (abcde) 53.5 51.3 55.6 0.6 0.5 0.6 

v50 CITc (abcdef) + ATPc→ OAAc 

(fcde) + AcoAc (ab) + ADPc 

33.1 32.7 33.5 0 0 0 

v51 AcoAc (ab) + 1.08 ATPc + 0.09 

NADHc + 1.61 NADPHc→ Lipids + 

1.08 ADPc + 0.09 NAD+
c + 1.61 

NADP+
c 

33.1 32.7 33.5 0 0 0 

v52 AAex (ILE, VAL, MET, THR, TYR, 

PHE) → SUCm (AA catabolism) 

8.9 4.9 12.9 0 0 0 

v53 AAex (LEU, ILE, LYS, TYR, PHE) 

→ ACOAm (AA catabolism) 

23.3 10.6 36.0 0 0 0 

v54 AKGc (abcde) → GLUc (abcde) 

(AA catabolism) 

12.2 3.4 20.5 0 0 0 

v55 AA(PRO, HIS, ARG) → GLUc (AA 

catabolism) 

0.7 0 3.1 0 0 0 

v56 SUCm (abcd) + ADPm + FADm ↔ 

FUMm (abcd) + ATPm + FADH2m 

114.5 114.3 114.6 0 0 0 

v57 FUMm (abcd) ↔ MALm (abcd) 114.7 114.5 114.8 47.6 45.5 83.6 

v58 PYRc1 (abc) ↔ PYRc2 (abc) 398.5 398.0 398.6 0.13 0 0.13 

v59 PEPc (abc) → PYRc2 (abc) 33.2 33.1 33.7 0 0 0 
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v60 AAex (abcd) → FUMm(abcd) (AA 

catabolism) 

0.2 0.1 0.3 0 0 0 

v61 GLUc(abcde) + ASPm(efgh) 

↔GLUm (abcde) + ASPc(efgh) 

113.8 108.8 114.0 5.6 5.6 5.6 

v62 PYRm2(abc) ↔ PYRm1(abc)  41.4 36.4 41.5 0.06 0 0.06 

 PYRc1(abc) ↔ LACc1(abc) - - - 60.0 59.9 60.2 

 PYRm1(abc) ↔ LACm(abc) - - - 71.3 68.9 80.0 
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Supplem. Table S4.3. Experimental (exp) and simulated (sim) mass isotopomer 

distributions of extracellular metabolites and standard deviations (SD) used in 

simulations. (_ex – extracellular; _cell – intracellular); 

Time 
[h] 

[U-13C6] Glucose 

exp Lactate_ex Alanine_ex Glycine_ex 

 M0 M1 M2 M3 M1 M2 M3 M4 M0 M1 M2 

0 0.967 0.033 0.000 0.000 0.967 0.033 0.000 0.000 0.978 0.022 0.000 

2 0.709 0.030 0.016 0.245 0.891 0.035 0.007 0.067 0.970 0.026 0.004 

4 0.504 0.023 0.028 0.445 0.824 0.033 0.011 0.132 0.967 0.026 0.007 

6 0.350 0.018 0.037 0.595 0.774 0.032 0.014 0.180 0.964 0.026 0.010 

12 0.214 0.015 0.046 0.725 0.604 0.028 0.025 0.343 0.953 0.026 0.021 

18 0.169 0.015 0.050 0.766 0.491 0.025 0.033 0.450 0.943 0.026 0.030 

sim            

0 0.967 0.033 0.000 0.000 0.967 0.033 0.000 0.000 0.978 0.022 0.000 

2 0.660 0.023 0.010 0.306 0.927 0.032 0.002 0.039 0.975 0.022 0.003 

4 0.474 0.020 0.018 0.488 0.853 0.031 0.006 0.110 0.971 0.022 0.007 

6 0.370 0.019 0.023 0.588 0.779 0.032 0.010 0.179 0.968 0.022 0.011 

12 0.238 0.019 0.030 0.712 0.599 0.033 0.021 0.348 0.953 0.022 0.025 

18 0.188 0.019 0.033 0.759 0.474 0.034 0.028 0.464 0.933 0.022 0.045 

SD            

0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

6 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

12 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

18 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Supplem. Table S4.3.(cont.) 

Time 
[h] 

[U-13C6] Glucose 

exp Serine_ex Aspartate_ex 

 M0 M1 M2 M3 M0 M1 M2 M3 M4 

0.000 0.967 0.033 0.000 0.000 0.956 0.043 0.001 0.000 0.000 

0.004 0.954 0.035 0.003 0.007 0.951 0.047 0.002 0.000 0.000 

0.007 0.944 0.037 0.004 0.014 0.949 0.047 0.002 0.001 0.000 

0.010 0.937 0.039 0.005 0.019 0.948 0.048 0.003 0.001 0.000 

0.021 0.902 0.045 0.013 0.041 0.938 0.049 0.009 0.004 0.001 

0.030 0.868 0.054 0.021 0.057 0.942 0.044 0.007 0.006 0.001 

sim          

0.000 0.967 0.033 0.000 0.000 0.972 0.028 0.000 0.000 0.000 

0.003 0.958 0.034 0.002 0.007 0.971 0.029 0.001 0.000 0.000 

0.007 0.947 0.036 0.003 0.014 0.968 0.029 0.002 0.001 0.000 

0.011 0.936 0.037 0.005 0.022 0.964 0.029 0.004 0.002 0.001 

0.025 0.895 0.046 0.013 0.046 0.949 0.031 0.012 0.006 0.002 

0.045 0.844 0.058 0.024 0.074 0.931 0.033 0.021 0.011 0.004 

SD          

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
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0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Supplem. Table S4.3.(cont.) 

Time 
[h] 

[U-13C6] Glucose 

exp Glutamate_ex Glutamine_ex 

 M0 M1 M2 M3 M4 M5 M0 M1 M2 M3 M4 M5 

0 0.946 0.053 0.001 0.000 0.000 0.000 0.946 0.053 0.001 0.000 0.000 0.000 

2 0.923 0.043 0.004 0.025 0.003 0.002 0.938 0.056 0.002 0.000 0.003 0.000 

4 0.915 0.045 0.008 0.026 0.003 0.002 0.936 0.057 0.003 0.000 0.003 0.000 

6 0.908 0.047 0.011 0.028 0.004 0.002 0.935 0.058 0.003 0.000 0.003 0.001 

12 0.880 0.046 0.036 0.028 0.007 0.003 0.945 0.052 0.000 0.000 0.003 0.000 

18 0.841 0.053 0.059 0.031 0.011 0.005 0.936 0.054 0.005 0.001 0.004 0.001 

sim             

0 0.958 0.042 0.000 0.000 0.000 0.000 0.958 0.042 0.000 0.000 0.000 0.000 

2 0.954 0.043 0.003 0.000 0.000 0.000 0.957 0.043 0.001 0.000 0.000 0.000 

4 0.943 0.045 0.010 0.001 0.001 0.000 0.955 0.043 0.002 0.000 0.000 0.000 

6 0.929 0.047 0.018 0.003 0.002 0.000 0.951 0.043 0.004 0.001 0.000 0.000 

12 0.884 0.053 0.044 0.010 0.008 0.002 0.939 0.045 0.011 0.002 0.002 0.000 

18 0.837 0.059 0.069 0.017 0.014 0.003 0.923 0.047 0.020 0.005 0.004 0.001 

SD             

0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

4 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

6 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

12 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

18 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Supplem. Table S4.3.(cont.) 

Time 
[h] 

[U-13C6] Glucose 

exp Pyruvate_cell Lactate_cell 

 M0 M1 M2 M3 M0 M1 M2 M3 

0 0.967 0.033 0.000 0.000 0.967 0.033 0.000 0.000 

2 0.624 0.035 0.024 0.317 0.447 0.027 0.061 0.466 

4 0.459 0.029 0.037 0.475 0.412 0.026 0.052 0.510 

6 0.404 0.029 0.038 0.529 0.400 0.025 0.057 0.519 

12 0.378 0.028 0.040 0.554 0.368 0.024 0.062 0.546 

18 0.352 0.025 0.040 0.584 0.334 0.025 0.064 0.577 

sim         

0 0.967 0.033 0.000 0.000 0.967 0.033 0.000 0.000 

2 0.608 0.028 0.016 0.347 0.576 0.027 0.016 0.381 

4 0.481 0.031 0.025 0.462 0.442 0.029 0.026 0.502 

6 0.425 0.033 0.030 0.513 0.387 0.030 0.030 0.552 

12 0.340 0.034 0.036 0.590 0.310 0.032 0.036 0.623 

18 0.289 0.035 0.040 0.636 0.264 0.033 0.040 0.663 

SD         

0 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

2 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 
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4 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

6 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

12 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

18 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Supplem. Table S4.3.(cont.) 

Time 
[h] 

[U-13C6] Glucose 

exp Fumarate_cell Malate_cell 

 M0 M1 M2 M3 M4 M0 M1 M2 M3 M4 

0 0.956 0.043 0.001 0.000 0.000 0.956 0.043 0.001 0.000 0.000 

2 0.810 0.055 0.077 0.053 0.006 0.778 0.061 0.086 0.060 0.015 

4 0.751 0.056 0.099 0.082 0.012 0.725 0.059 0.107 0.089 0.020 

6 0.722 0.056 0.117 0.088 0.017 0.701 0.059 0.123 0.093 0.024 

12 0.688 0.058 0.140 0.091 0.023 0.665 0.061 0.148 0.097 0.030 

18 0.662 0.060 0.157 0.094 0.027 0.627 0.066 0.171 0.101 0.036 

sim           

0 0.972 0.028 0.000 0.000 0.000 0.957 0.043 0.000 0.000 0.000 

2 0.797 0.054 0.103 0.038 0.008 0.797 0.054 0.102 0.039 0.008 

4 0.710 0.062 0.145 0.065 0.018 0.710 0.062 0.144 0.065 0.018 

6 0.683 0.062 0.154 0.077 0.024 0.683 0.063 0.153 0.077 0.024 

12 0.656 0.062 0.161 0.090 0.031 0.656 0.062 0.160 0.091 0.031 

18 0.639 0.062 0.166 0.099 0.035 0.639 0.062 0.165 0.099 0.035 

SD           

0 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

2 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

4 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

6 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

12 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

18 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Supplem. Table S4.3.(cont.) 

Time 
[h] 

[U-13C6] Glucose 

exp AKG_cell Citrate_cell 

 M0 M1 M2 M3 M4 M5 M0 M1 M2 M3 M4 M5 M6 

0 0.946 0.053 0.001 0.000 0.000 0.000 0.935 0.063 0.002 0.000 0.000 0.000 0.000 

2 0.796 0.090 0.063 0.027 0.014 0.010 0.426 0.062 0.377 0.059 0.045 0.028 0.003 

4 0.656 0.107 0.146 0.039 0.032 0.020 0.334 0.054 0.411 0.070 0.069 0.054 0.008 

6 0.688 0.104 0.123 0.053 0.019 0.013 0.269 0.049 0.440 0.071 0.091 0.068 0.013 

12 0.618 0.099 0.162 0.059 0.036 0.026 0.227 0.050 0.444 0.069 0.115 0.076 0.020 

18 0.544 0.103 0.185 0.070 0.057 0.040 0.195 0.050 0.449 0.073 0.133 0.080 0.021 

sim              

0 0.947 0.053 0.000 0.000 0.000 0.000 0.942 0.059 0.000 0.000 0.000 0.000 0.000 

2 0.756 0.078 0.139 0.017 0.009 0.001 0.464 0.066 0.367 0.044 0.041 0.015 0.003 

4 0.653 0.090 0.187 0.039 0.027 0.005 0.326 0.066 0.419 0.066 0.080 0.034 0.009 

6 0.624 0.091 0.196 0.047 0.035 0.008 0.289 0.065 0.426 0.072 0.093 0.043 0.013 

12 0.600 0.091 0.202 0.053 0.043 0.011 0.263 0.063 0.424 0.076 0.103 0.053 0.017 

18 0.585 0.092 0.206 0.057 0.048 0.013 0.252 0.063 0.419 0.079 0.109 0.059 0.019 

SD              

0 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 
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2 1 1 1 1 1 1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

4 1 1 1 1 1 1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

6 1 1 1 1 1 1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

12 1 1 1 1 1 1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

18 1 1 1 1 1 1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Supplem. Table S4.3.(cont.) 

Time 
[h] 

[U-13C6] Glucose 

exp Alanine_cell Glycine_cell Serine_cell 

 M0 M1 M2 M3 M0 M1 M2 M0 M1 M2 M3 

0 0.967 0.033 0.000 0.000 0.978 0.022 0.000 0.967 0.033 0.000 0.000 

2 0.547 0.078 0.107 0.267 0.939 0.019 0.042 0.882 0.050 0.016 0.053 

4 0.526 0.043 0.094 0.337 0.916 0.022 0.062 0.875 0.045 0.013 0.066 

6 0.310 0.055 0.232 0.404 0.917 0.018 0.065 0.849 0.054 0.023 0.074 

12 0.391 0.056 0.149 0.404 0.900 0.019 0.080 0.826 0.062 0.028 0.084 

18 0.350 0.076 0.171 0.402 0.880 0.021 0.098 0.796 0.073 0.040 0.091 

sim            

0 0.967 0.033 0.000 0.000 0.978 0.022 0.000 0.967 0.033 0.000 0.000 

2 0.739 0.030 0.010 0.221 0.930 0.022 0.048 0.888 0.044 0.012 0.055 

4 0.633 0.032 0.018 0.317 0.923 0.022 0.055 0.877 0.047 0.015 0.061 

6 0.570 0.033 0.022 0.376 0.916 0.022 0.062 0.866 0.050 0.017 0.067 

12 0.447 0.034 0.030 0.489 0.892 0.022 0.087 0.826 0.061 0.027 0.086 

18 0.366 0.035 0.036 0.563 0.861 0.022 0.117 0.775 0.076 0.041 0.108 

SD            

0 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

2 1 1 1 1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

4 1 1 1 1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

6 1 1 1 1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

12 1 1 1 1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

18 1 1 1 1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Supplem. Table S4.3.(cont.) 

Time 
[h] 

[U-13C6] Glucose 

exp Aspartate_cell Glutamate_cell 

 M0 M1 M2 M3 M4 M0 M1 M2 M3 M4 M5 

0 0.956 0.043 0.001 0.000 0.000 0.946 0.053 0.001 0.000 0.000 0.000 

2 0.780 0.061 0.093 0.060 0.007 0.731 0.063 0.162 0.024 0.014 0.006 

4 0.721 0.058 0.113 0.096 0.014 0.677 0.056 0.190 0.034 0.030 0.013 

6 0.690 0.057 0.130 0.101 0.022 0.645 0.053 0.205 0.040 0.039 0.019 

12 0.644 0.062 0.159 0.104 0.031 0.585 0.055 0.230 0.050 0.054 0.026 

18 0.606 0.067 0.189 0.105 0.033 0.534 0.058 0.244 0.061 0.069 0.034 

sim            

0 0.972 0.028 0.000 0.000 0.000 0.954 0.046 0.000 0.000 0.000 0.000 

2 0.797 0.054 0.101 0.039 0.008 0.758 0.077 0.138 0.017 0.009 0.001 

4 0.712 0.062 0.142 0.066 0.018 0.655 0.089 0.186 0.039 0.026 0.005 

6 0.685 0.062 0.151 0.078 0.024 0.627 0.090 0.195 0.047 0.035 0.008 

12 0.658 0.062 0.158 0.091 0.031 0.603 0.090 0.201 0.053 0.043 0.011 

18 0.641 0.062 0.163 0.100 0.035 0.587 0.091 0.205 0.057 0.048 0.013 

SD            
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0 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

2 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

4 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

6 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

12 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

18 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Supplem. Table S4.3.(cont.) 

Time 
[h] 

[U-13C5] Glutamine 

exp Lactate_ex Alanine_ex Glycine_ex 

 M0 M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 

0 0.967 0.033 0.000 0.000 0.967 0.033 0.000 0.000 0.978 0.022 0.000 

2 0.957 0.036 0.002 0.005 0.960 0.036 0.001 0.002 0.976 0.024 0.000 

6 0.945 0.037 0.006 0.012 0.952 0.038 0.003 0.006 0.974 0.026 0.000 

12 0.936 0.039 0.007 0.018 0.941 0.041 0.006 0.013 0.973 0.026 0.001 

18 0.927 0.042 0.009 0.022 0.933 0.042 0.007 0.018 0.971 0.027 0.002 

sim            

0 0.967 0.033 0.000 0.000 0.967 0.033 0.000 0.000 0.978 0.022 0.000 

2 0.959 0.032 0.002 0.007 0.963 0.032 0.001 0.004 0.978 0.022 0.000 

6 0.938 0.033 0.007 0.021 0.943 0.034 0.006 0.017 0.978 0.022 0.000 

12 0.926 0.035 0.010 0.028 0.918 0.037 0.012 0.033 0.978 0.022 0.000 

18 0.922 0.036 0.012 0.031 0.901 0.039 0.016 0.043 0.978 0.022 0.000 

SD            

0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

6 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

12 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

18 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Supplem. Table S4.3.(cont.) 

Time 
[h] 

[U-13C5] Glutamine 

exp Serine_ex Aspartate_ex 

 M0 M1 M2 M3 M0 M1 M2 M3 M4 

0 0.967 0.033 0.000 0.000 0.956 0.043 0.001 0.000 0.000 

2 0.962 0.036 0.002 0.000 0.946 0.050 0.001 0.000 0.002 

6 0.961 0.037 0.002 0.000 0.945 0.048 0.001 0.001 0.006 

12 0.967 0.033 0.000 0.000 0.935 0.045 0.004 0.004 0.013 

18 0.964 0.034 0.002 0.000 0.925 0.047 0.005 0.005 0.018 

sim          

0 0.967 0.033 0.000 0.000 0.972 0.028 0.000 0.000 0.000 

2 0.967 0.032 0.000 0.000 0.969 0.029 0.000 0.000 0.002 

6 0.967 0.032 0.000 0.000 0.956 0.030 0.003 0.002 0.009 

12 0.967 0.032 0.000 0.000 0.934 0.033 0.008 0.004 0.021 

18 0.968 0.032 0.000 0.000 0.908 0.036 0.014 0.007 0.035 

SD          

0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

6 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

12 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
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18 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Supplem. Table S4.3.(cont.) 

Time 
[h] 

[U-13C5] Glutamine 

exp Glutamate_ex Glutamine_ex 

 M0 M1 M2 M3 M4 M5 M0 M1 M2 M3 M4 M5 

0 0.946 0.053 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.092 0.904 

2 0.916 0.057 0.000 0.004 0.003 0.020 0.003 0.000 0.001 0.009 0.108 0.879 

6 0.874 0.053 0.000 0.011 0.008 0.053 0.004 0.001 0.001 0.009 0.106 0.879 

12 0.809 0.049 0.003 0.024 0.015 0.100 0.006 0.001 0.001 0.009 0.107 0.876 

18 0.720 0.048 0.010 0.037 0.019 0.166 0.008 0.001 0.002 0.010 0.105 0.874 

sim             

0 0.958 0.042 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.096 0.904 

2 0.941 0.042 0.000 0.002 0.002 0.013 0.005 0.000 0.000 0.000 0.096 0.899 

6 0.885 0.043 0.004 0.011 0.008 0.048 0.010 0.001 0.001 0.002 0.095 0.890 

12 0.799 0.046 0.011 0.026 0.018 0.100 0.020 0.004 0.003 0.006 0.095 0.873 

18 0.715 0.049 0.018 0.040 0.028 0.150 0.032 0.006 0.005 0.012 0.094 0.851 

SD             

0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

6 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

12 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

18 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Supplem. Table S4.3.(cont.) 

Time 
[h] 

[U-13C5] Glutamine 

exp Pyruvate_cell Lactate_cell 

 M0 M1 M2 M3 M0 M1 M2 M3 

0 0.967 0.033 0.000 0.000 0.967 0.033 0.000 0.000 

2 0.864 0.084 0.018 0.034 0.871 0.085 0.036 0.008 

6 0.902 0.065 0.010 0.023 0.912 0.057 0.028 0.004 

12 0.857 0.098 0.015 0.030 0.926 0.046 0.017 0.012 

18 0.929 0.038 0.006 0.027 0.939 0.035 0.006 0.020 

sim         

0 0.967 0.033 0.000 0.000 0.967 0.033 0.000 0.000 

2 0.923 0.034 0.010 0.033 0.926 0.034 0.009 0.031 

6 0.896 0.039 0.017 0.047 0.900 0.039 0.017 0.045 

12 0.885 0.041 0.020 0.054 0.889 0.041 0.019 0.051 

18 0.878 0.043 0.022 0.057 0.883 0.042 0.021 0.054 

SD         

0 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

2 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

6 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

12 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

18 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 
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Supplem. Table S4.3.(cont.) 

Time 
[h] 

[U-13C5] Glutamine 

exp Fumarate_cell Malate_cell 

 M0 M1 M2 M3 M4 M0 M1 M2 M3 M4 

0 0.956 0.043 0.001 0.000 0.000 0.956 0.043 0.001 0.000 0.000 

2 0.584 0.058 0.076 0.057 0.225 0.552 0.071 0.076 0.064 0.237 

6 0.515 0.059 0.082 0.080 0.264 0.498 0.066 0.082 0.083 0.271 

12 0.464 0.068 0.100 0.075 0.293 0.489 0.058 0.094 0.072 0.288 

18 0.461 0.073 0.109 0.072 0.285 0.443 0.083 0.111 0.072 0.290 

sim           

0 0.972 0.028 0.000 0.000 0.000 0.957 0.043 0.000 0.000 0.000 

2 0.563 0.063 0.078 0.047 0.249 0.568 0.063 0.078 0.047 0.244 

6 0.498 0.083 0.104 0.054 0.261 0.503 0.083 0.104 0.054 0.256 

12 0.492 0.085 0.108 0.055 0.260 0.496 0.085 0.107 0.055 0.256 

18 0.488 0.087 0.111 0.056 0.258 0.492 0.088 0.110 0.056 0.254 

SD           

0 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

2 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

6 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

12 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

18 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Supplem. Table S4.3.(cont.) 

Time 
[h] 

[U-13C5] Glutamine 

exp AKG_cell Citrate_cell 

 M0 M1 M2 M3 M4 M5 M0 M1 M2 M3 M4 M5 M6 

0 0.946 0.053 0.001 0.000 0.000 0.000 0.935 0.063 0.002 0.000 0.000 0.000 0.000 

2 0.253 0.081 0.088 0.282 0.041 0.254 0.539 0.073 0.079 0.062 0.193 0.047 0.006 

6 0.173 0.114 0.093 0.395 0.036 0.189 0.485 0.071 0.084 0.081 0.212 0.058 0.009 

12 0.119 0.158 0.051 0.545 0.009 0.118 0.420 0.082 0.101 0.085 0.228 0.072 0.011 

18 0.126 0.194 0.056 0.584 0.011 0.029 0.403 0.090 0.110 0.088 0.233 0.064 0.011 

sim              

0 0.947 0.053 0.000 0.000 0.000 0.000 0.942 0.059 0.000 0.000 0.000 0.000 0.000 

2 0.367 0.043 0.028 0.091 0.070 0.401 0.514 0.083 0.076 0.051 0.208 0.050 0.019 

6 0.288 0.062 0.050 0.114 0.077 0.409 0.433 0.100 0.108 0.062 0.221 0.053 0.024 

12 0.283 0.065 0.053 0.117 0.077 0.405 0.426 0.102 0.111 0.064 0.220 0.053 0.024 

18 0.281 0.068 0.055 0.119 0.077 0.399 0.422 0.104 0.114 0.065 0.219 0.052 0.024 

SD              

0 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

2 1 1 1 1 1 1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

6 1 1 1 1 1 1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

12 1 1 1 1 1 1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

18 1 1 1 1 1 1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Supplem. Table S4.3.(cont.) 

Time 
[h] 

[U-13C5] Glutamine 

exp Alanine_cell Glycine_cell Serine_cell 
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 M0 M1 M2 M3 M0 M1 M2 M0 M1 M2 M3 

0 0.967 0.033 0.000 0.000 0.978 0.022 0.000 0.967 0.033 0.000 0.000 

2 0.818 0.097 0.044 0.041 0.954 0.029 0.017 0.959 0.038 0.001 0.002 

6 0.775 0.104 0.056 0.066 0.965 0.029 0.006 0.949 0.042 0.004 0.005 

12 0.794 0.063 0.031 0.112 0.974 0.024 0.002 0.933 0.042 0.007 0.018 

18 0.857 0.082 0.019 0.042 0.980 0.020 0.000 0.966 0.033 0.000 0.002 

sim            

0 0.967 0.033 0.000 0.000 0.978 0.022 0.000 0.967 0.033 0.000 0.000 

2 0.937 0.034 0.007 0.022 0.978 0.022 0.000 0.967 0.032 0.000 0.000 

6 0.913 0.038 0.013 0.036 0.978 0.022 0.000 0.968 0.032 0.000 0.000 

12 0.896 0.040 0.017 0.046 0.978 0.022 0.000 0.968 0.032 0.000 0.000 

18 0.885 0.042 0.020 0.053 0.978 0.022 0.000 0.968 0.032 0.000 0.000 

SD            

0 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

2 1 1 1 1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

6 1 1 1 1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

12 1 1 1 1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

18 1 1 1 1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Supplem. Table S4.3.(cont.) 

Time 
[h] 

[U-13C5] Glutamine 

exp Aspartate_cell Glutamate_cell 

 M0 M1 M2 M3 M4 M0 M1 M2 M3 M4 M5 

0 0.956 0.043 0.001 0.000 0.000 0.946 0.053 0.001 0.000 0.000 0.000 

2 0.555 0.066 0.091 0.064 0.223 0.314 0.055 0.117 0.107 0.047 0.361 

6 0.497 0.063 0.107 0.082 0.252 0.283 0.047 0.053 0.110 0.052 0.455 

12 0.460 0.071 0.114 0.069 0.286 0.270 0.052 0.047 0.129 0.043 0.458 

18 0.462 0.077 0.116 0.062 0.283 0.273 0.064 0.054 0.138 0.037 0.433 

sim            

0 0.972 0.028 0.000 0.000 0.000 0.954 0.046 0.000 0.000 0.000 0.000 

2 0.574 0.064 0.077 0.047 0.239 0.366 0.043 0.028 0.091 0.070 0.404 

6 0.509 0.083 0.103 0.054 0.251 0.287 0.062 0.049 0.113 0.077 0.412 

12 0.503 0.085 0.106 0.055 0.251 0.282 0.064 0.052 0.116 0.077 0.408 

18 0.499 0.088 0.109 0.056 0.249 0.280 0.067 0.055 0.119 0.077 0.402 

SD            

0 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

2 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

6 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

12 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

18 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 
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Supplem. Table S4.4. Extracellular concentrations sampled in a 100 mL shake flask culture of CHO-

K1 cells. (AVG – average from 4 parallel cultivations; SD – standard deviation) 

 Time 
[h] 

Cells/mL Glucose Lactate Pyruvate Alanine Arginine Asparagine 

AVG 0 1.55E+06 4.42E+04 3.74E+02 7.50E+02 5.80E+02 4.92E+03 4.25E+03 

 6.25 2.23E+06 4.11E+04 3.71E+03 6.82E+02 7.61E+02 4.87E+03 4.11E+03 

 12.5 2.58E+06 3.90E+04 7.68E+03 6.74E+02 9.87E+02 4.86E+03 4.05E+03 

 17.75 2.98E+06 3.66E+04 1.05E+04 6.45E+02 1.21E+03 4.81E+03 3.90E+03 

 23.75 3.60E+06 3.39E+04 1.49E+04 5.86E+02 1.53E+03 4.75E+03 3.63E+03 

 29.75 4.30E+06 3.15E+04 1.70E+04 4.87E+02 1.87E+03 4.64E+03 3.40E+03 

 35.75 5.45E+06 2.96E+04 1.92E+04 4.43E+02 2.27E+03 4.56E+03 3.19E+03 

 42 6.55E+06 2.71E+04 2.09E+04 3.44E+02 2.69E+03 4.49E+03 2.84E+03 

 47.75 8.40E+06 2.64E+04 2.17E+04 2.84E+02 3.23E+03 4.56E+03 2.58E+03 

          

SD 0 0.00E+00 3.49E+03 3.64E+01 7.96E+01 1.43E+01 2.81E+02 1.29E+02 

 6.25 2.53E+05 4.44E+03 2.98E+02 6.32E+01 6.29E+00 2.78E+02 1.12E+02 

 12.5 1.76E+05 5.84E+03 1.16E+03 9.92E+01 1.30E+01 2.06E+02 9.74E+01 

 17.75 1.71E+05 5.43E+03 1.22E+03 7.56E+01 2.94E+01 2.53E+02 1.19E+02 

 23.75 2.16E+05 2.82E+03 1.88E+03 6.86E+01 4.69E+01 2.17E+02 1.04E+02 

 29.75 4.58E+05 3.37E+03 1.68E+03 9.80E+01 7.71E+01 2.27E+02 1.47E+02 

 35.75 6.81E+05 3.02E+03 1.54E+03 8.50E+01 7.45E+01 2.03E+02 7.62E+01 

 42 6.40E+05 3.49E+03 2.04E+03 9.10E+01 1.16E+02 2.31E+02 1.23E+02 

 47.75 1.52E+06 2.65E+03 1.77E+03 7.18E+01 1.73E+02 2.40E+02 1.07E+02 

Supplem. Table S4.4. (cont.) 

 Time 
[h] 

Aspartic 
Acid 

Cysteine Glutamic 
Acid 

Glutamine Glycine Histidine 

AVG 0 2.89E+03 1.29E+01 8.66E+02 6.43E+03 1.54E+03 8.10E+02 

 6.25 2.79E+03 1.31E+01 9.12E+02 5.93E+03 1.67E+03 7.91E+02 

 12.5 2.83E+03 1.29E+01 9.98E+02 5.41E+03 1.79E+03 7.92E+02 

 17.75 2.79E+03 1.33E+01 1.05E+03 4.84E+03 1.88E+03 7.70E+02 

 23.75 2.64E+03 1.44E+01 1.09E+03 4.10E+03 2.03E+03 7.12E+02 

 29.75 2.58E+03 1.47E+01 1.13E+03 3.34E+03 2.10E+03 7.08E+02 

 35.75 2.55E+03 1.37E+01 1.16E+03 2.68E+03 2.15E+03 7.18E+02 

 42 2.34E+03 1.48E+01 1.15E+03 2.09E+03 2.25E+03 6.61E+02 

 47.75 2.27E+03 1.19E+01 1.16E+03 1.62E+03 2.38E+03 6.81E+02 

        

SD 0 1.36E+02 1.54E+00 4.33E+01 5.47E+02 4.46E+01 4.45E+01 

 6.25 8.39E+01 1.79E+00 3.92E+01 5.21E+02 8.31E+01 3.72E+01 

 12.5 8.76E+01 2.00E+00 3.73E+01 4.41E+02 5.74E+01 4.40E+01 

 17.75 1.09E+02 2.12E+00 5.04E+01 4.35E+02 4.48E+01 3.72E+01 

 23.75 1.27E+02 2.26E+00 4.32E+01 3.73E+02 8.22E+01 6.33E+01 

 29.75 1.72E+02 3.10E+00 5.85E+01 3.32E+02 1.10E+02 8.34E+01 

 35.75 5.70E+01 2.89E+00 4.03E+01 2.65E+02 5.91E+01 3.59E+01 

 42 1.69E+02 4.01E+00 7.44E+01 2.74E+02 3.93E+01 8.53E+01 

 47.75 9.87E+01 2.27E+00 7.40E+01 3.08E+02 1.05E+02 3.97E+01 
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Supplem. Table S4.4. (cont.) 

 Time 
[h] 

Isoleucine Leucine Lysine Methionine Phenylalanine Proline 

AVG 0 2.66E+03 3.36E+03 3.17E+03 9.00E+02 1.15E+03 1.18E+03 

 6.25 2.54E+03 3.23E+03 3.08E+03 8.76E+02 1.12E+03 1.14E+03 

 12.5 2.52E+03 3.18E+03 3.05E+03 8.62E+02 1.10E+03 1.12E+03 

 17.75 2.47E+03 3.10E+03 2.98E+03 8.36E+02 1.07E+03 1.09E+03 

 23.75 2.37E+03 3.00E+03 2.84E+03 8.04E+02 1.01E+03 1.05E+03 

 29.75 2.31E+03 2.87E+03 2.73E+03 7.57E+02 9.63E+02 9.67E+02 

 35.75 2.30E+03 2.76E+03 2.64E+03 7.16E+02 9.23E+02 9.16E+02 

 42 2.21E+03 2.64E+03 2.50E+03 6.76E+02 8.64E+02 8.63E+02 

 47.75 2.25E+03 2.62E+03 2.52E+03 6.56E+02 8.43E+02 8.45E+02 

        

SD 0 1.34E+02 1.89E+02 2.38E+02 4.76E+01 6.47E+01 6.79E+01 

 6.25 1.03E+02 1.75E+02 2.26E+02 4.81E+01 5.57E+01 5.23E+01 

 12.5 9.22E+01 1.34E+02 1.92E+02 3.39E+01 4.56E+01 4.27E+01 

 17.75 1.14E+02 1.62E+02 2.32E+02 3.77E+01 5.62E+01 7.27E+01 

 23.75 9.28E+01 1.25E+02 1.98E+02 3.03E+01 4.10E+01 8.46E+01 

 29.75 1.30E+02 1.41E+02 2.20E+02 3.24E+01 5.13E+01 6.62E+01 

 35.75 8.19E+01 1.15E+02 1.89E+02 2.48E+01 3.80E+01 5.05E+01 

 42 1.44E+02 1.33E+02 2.26E+02 2.71E+01 5.19E+01 5.86E+01 

 47.75 1.02E+02 1.36E+02 1.81E+02 3.32E+01 4.69E+01 5.42E+01 

Supplem. Table S4.4. (cont.) 

 Time 
[h] 

Serine Threonine Tryptophane Tyrosine Valine 

AVG 0 4.00E+03 1.87E+03 3.18E+02 1.52E+03 2.76E+03 

 6.25 3.79E+03 1.84E+03 3.13E+02 1.49E+03 2.66E+03 

 12.5 3.66E+03 1.84E+03 3.15E+02 1.48E+03 2.65E+03 

 17.75 3.49E+03 1.78E+03 3.11E+02 1.46E+03 2.58E+03 

 23.75 3.30E+03 1.66E+03 2.98E+02 1.38E+03 2.45E+03 

 29.75 3.08E+03 1.64E+03 2.85E+02 1.33E+03 2.39E+03 

 35.75 2.87E+03 1.68E+03 2.78E+02 1.30E+03 2.37E+03 

 42 2.64E+03 1.56E+03 2.63E+02 1.25E+03 2.25E+03 

 47.75 2.48E+03 1.60E+03 2.58E+02 1.25E+03 2.27E+03 

       

SD 0 1.55E+02 7.63E+01 3.01E+01 1.05E+02 1.24E+02 

 6.25 1.68E+02 7.01E+01 2.92E+01 8.12E+01 9.09E+01 

 12.5 1.26E+02 7.19E+01 2.42E+01 7.17E+01 8.70E+01 

 17.75 1.37E+02 6.40E+01 2.03E+01 8.32E+01 1.04E+02 

 23.75 1.25E+02 1.20E+02 1.37E+01 6.13E+01 9.61E+01 

 29.75 1.36E+02 1.63E+02 1.59E+01 7.64E+01 1.36E+02 

 35.75 9.68E+01 5.89E+01 1.20E+01 6.53E+01 7.33E+01 

 42 1.05E+02 1.76E+02 2.11E+01 8.01E+01 1.44E+02 

 47.75 1.16E+02 5.79E+01 2.28E+01 8.35E+01 9.37E+01 
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Appendix to Chapter 5 

Supplem. Figure S5.1. Experimental (o) and fitted (-) extracellular concentrations in the 

experiments with permeabilized CHO-K1 cells. r – production rate [fmol/ (cell  min)]. 

The brackets contain the 95% confidence interval for the rate. 
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Supplem. Table S5.1. Selection of the elementary modes that can describe the 

observed metabolite uptake and production. The modes are selected accordingly to 

the following criteria:  u - the metabolite is taken up; p - the metabolite is produced; xu - 

the metabolite is not taken up; xp - the metabolite is not produced; iu - the metabolite is 

or is not taken up; ip - the metabolite is or is not produced. 

SUBSTATE(S) / 
PRODUCT(S) 

pyruvate 
/ - 

pyruvate, 
ADP / ATP 

pyruvate, 
aspartate / 
glutamate 

pyruvate, 
aspartate, ADP / 
glutamate, ATP 

citrate 
/ - 

citrate, 
ADP / 
ATP 

External Flux 1a 1b 2a 2b 3a 3b 

Pyruvate u / xp u / xp iu / xp iu / xp xu / xp xu / xp 

Malate xu / xp xu / xp xu / xp xu / xp xu / xp xu / xp 

Succinate xu / xp xu / xp xu / xp xu / xp xu / xp xu / xp 

Fumarate xu / xp xu / xp xu / xp xu / xp xu / xp xu / xp 

Citrate xu / xp xu / xp xu / xp xu / xp u / xp u / xp 

Aspartate xu / xp xu / xp iu / xp iu / xp xu / xp xu / xp 

α-ketoglutarate xu / xp xu / xp xu / xp xu / xp xu / xp xu / xp 

Glutamate xu / xp xu / xp xu / ip xu / ip xu / xp xu / xp 

Glutamine xu / xp xu / xp xu / xp xu / xp xu / xp xu / xp 

CO2 iu / ip iu / ip iu / ip iu / ip iu / ip iu / ip 

Serine xu / xp xu / xp xu / xp xu / xp xu / xp xu / xp 

Glycine xu / xp xu / xp xu / xp xu / xp xu / xp xu / xp 

C1 xu / xp xu / xp xu / xp xu / xp xu / xp xu / xp 

O2 iu / xp iu / xp iu / xp iu / xp iu / xp iu / xp 

NH3 xp / xp xp / xp xp / xp xp / xp xu / xp xu / xp 

ADP xu / xp u / xp xu / xp u / xp xu / xp u / xp 

ATP xu / xp xu / ip xu / xp xu / ip xu / xp xu / ip 

(cont. Table S5.1) 

SUBSTATE(S) 
/ 

PRODUCT(S) 

α-
ketoglutarate 
/ - 

α-
ketoglutarate
, ADP /  
fumarate, 
ATP 

succinate 
/ 
fumarate
, malate, 
citrate 

succinate
, ADP / 
fumarate, 
malate, 
citrate, 
ATP 

malate 
(fumarate
) / citrate 

malate 
(fumarate)
, ADP / 
citrate, 
ATP 

External Flux 4a 4b 5a 5b 6a/7a 6b/7b 

Pyruvate xu / xp xu / xp xu / xp xu / xp xu / xp xu / xp 

Malate xu / xp xu / xp xu / ip xu / ip u / xp u / xp 

Succinate xu / xp xu / xp u / xp u / xp xu / xp xu / xp 

Fumarate xu / xp xu / ip xu / ip xu / ip xu / xp xu / xp 

Citrate xu / xp xu / xp xu / ip xu / ip xu / ip xu / ip 

Aspartate xu / xp xu / xp xu / xp xu / xp xu / xp xu / xp 

α-ketoglutarate u / xp u / xp xu / xp xu / xp xu / xp xu / xp 
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Glutamate xu / xp xu / xp xu / xp xu / xp xu / xp xu / xp 

Glutamine xu / xp xu / xp xu / xp xu / xp xu / xp xu / xp 

CO2 iu / ip iu / ip iu / ip iu / ip iu / ip iu / ip 

Serine xu / xp xu / xp xu / xp xu / xp xu / xp xu / xp 

Glycine xu / xp xu / xp xu / xp xu / xp xu / xp xu / xp 

C1 xu / xp xu / xp xu / xp xu / xp xu / xp xu / xp 

O2 iu / xp iu / xp iu / xp iu / xp iu / xp iu / xp 

NH3 xu / xp xu / xp xu / xp xu / xp xu / xp xu / xp 

ADP xu / xp u / xp xu / xp xu / xp xu / xp xu / xp 

ATP xu / xp xu / ip xu / xp xu / ip xu / xp xu / ip 

(cont. Table S5.1) 

SUBSTATE(S) / 
PRODUCT(S) 

glutamine / 
glutamate, 
aspartate 

glutamine, ADP / 
glutamate, 
aspartate, ATP 

glutamate / 
aspartate 

glutamate, 
ADP / 
aspartate, ATP 

serine / 
glycine 

External Flux 8a 8b 9a 9b 11a 

Pyruvate xu / xp xu / xp xu / xp xu / xp xu / xp 

Malate xu / xp xu / xp xu / xp xu / xp xu / xp 

Succinate xu / xp xu / xp xu / xp xu / xp xu / xp 

Fumarate xu / xp xu / xp xu / xp xu / xp xu / xp 

Citrate xu / xp xu / xp xu / xp xu / xp xu / xp 

Aspartate xu / ip xu / ip xu / ip xu / ip xu / xp 

α-ketoglutarate xu / xp xu / xp xu / xp xu / xp xu / xp 

Glutamate xu / ip xu / ip xu / xp u / xp xu / xp 

Glutamine u / xp u / xp xu / xp xu / xp xu / xp 

CO2 iu / ip iu / ip iu / ip iu / ip iu / ip 

Serine xu / xp xu / xp xu / xp xu / xp u / xp 

Glycine xu / xp xu / xp xu / xp xu / xp xu / ip 

C1 xu / xp xu / xp xu / xp xu / xp xu / ip 

O2 iu / xp iu / xp iu / xp iu / xp xu / xp 

NH3 xu / ip xu / ip xu / ip xu / ip xu / ip 

ADP xu / xp iu / xp xu / xp u / xp xu / xp 

ATP xu / xp xu / ip xu / xp xu / ip xu / xp 
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Supplem. Table S5.2. Mitochondrial fluxes [fmol / cell  min] in selectively 

permeabilized CHO-K1 cells under various feeding conditions. The fluxes were computed 

using the determined extracellular rates and the stoichiometry indicated by reactions R1-

R50. By addition of ADP it was assumed that the flux R44=0.  

Reaction 
Uptake / 

Production 
pyruvate 

/ - 

pyruvate, 
aspartate / 
glutamate 

citrate 
/ - 

α-
ketoglutarate / 

- 

  Exp. No. 

1a 2a 3a 4a   
Flux [fmol / 
cell  min] 

--> PYRc R1 4.6 11.9 0 0 

<--> MALc R2 0 0 0 0 

<--> SUCc R3 0 0 0 0 

<--> FUMc R4 0 0 0 -0.48 

<--> CITc R5 0 0 5.6 0 

<--> ASPc R6 0 6.1 0 0 

 --> AKGc R7 0 0 0 12.7 

<--> GLUc R8 0 -3 0 0 

 --> GLNc R9 0 0 0 0 

<--> SERc R11 0 0 0 0 

<--> GLYc R12 0 0 0 0 

<--> ADPc R24 0 0 0 0 

<--> CO2c R10 -13.8 -45.1 -33.6 -61.58 

<--> C1c R13 0 0 0 0 

C1c <--> C1m R14 0 0 0 0 

GLYc <--> GLYm R15 0 0 0 0 

SERc <--> SERm R16 0 0 0 0 

CO2c <--> CO2m R17 -13.8 -45.1 -33.6 -61.58 

SERm <--> GLYm + MTHFm R18 0 0 0 0 

MTHFm --> C1m + THFm R19 0 0 0 0 

GLYm + THFm + NADm --> 
MTHFm + CO2m + NADHm 

R20 0 0 0 0 

--> O2m R21 11.5 34.55 25.2 49.36 

<--> NH3c R22 0 -3.1 0 0 

NH3c <--> NH3m R23 0 -3.1 0 0 

<--> ATPc R25 0 0 0 0 

ADPc + ATPm <--> ADPm + 
ATPc 

R26 0 0 0 0 

PYRc --> PYRm R27 4.6 11.9 0 0 

FUMc <--> FUMm R28 0 0 0 -0.48 

MALc <--> MALm R29 0 0 5.6 12.7 
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SUCc <--> SUCm R30 0 0 0 0 

MALm + AKGc --> MALc + 
AKGm 

R31 0 0 0 12.7 

ASPm + GLUc <--> ASPc + 
GLUm 

R32 0 -6.1 0 0 

CITm + MALc <--> CITc + 
MALm 

R33 0 0 -5.6 0 

GLNc --> GLNm R34 0 0 0 0 

GLUc <--> GLUm R35 0 3.1 0 0 

PYRm + NADm --> ACOAm + 
NADHm + CO2m 

R36 4.6 15 5.6 12.22 

ACOAm + OAAm --> CITm R37 4.6 15 5.6 12.22 

CITm + NADm --> AKGm + 
NADHm + CO2m 

R38 4.6 15 11.2 12.22 

AKGm + ADPm + NADm --> 
SUCm + ATPm + NADHm + 
CO2m 

R39 4.6 12 11.2 24.92 

SUCm + FADm <--> FUMm + 
FADHm 

R40 4.6 12 11.2 24.92 

FUMm <--> MALm R41 4.6 12 11.2 24.44 

MALm + NADm <--> OAAm + 
NADHm 

R42 -52.9 -163.85 -120.4 -234.58 

MALm + NADPm --> PYRm + 
CO2m + NADPHm 

R43 57.5 175.85 131.6 259.02 

PYRm + CO2m + ATPm --> 
OAAm + ADPm 

R44 57.5 172.75 126 246.8 

AKGm + ASPm <--> GLUm + 
OAAm 

R45 0 6.1 0 0 

GLUm + NADm <--> AKGm + 
NH3m + NADHm 

R46 0 3.1 0 0 

GLNm --> GLUm + NH3m R47 0 0 0 0 

2 NADHm + O2m + 5 ADPm --> 
2 NADm + 5 ATPm 

R48 9.2 28.55 19.6 36.9 

2 FADHm + O2m + 3 ADPm --> 
2 FADm + 3 ATPm 

R49 2.3 6 5.6 12.46 

NADPHm + NADm <--> 
NADPm + NADHm 

R50 57.5 175.85 131.6 259.02 

  



 

 

164 
 

Appendix 

(cont. Table S5.2) 

Reaction 

succinate / 

fumarate, 

malate, 

citrate 

malate 

(fumarate) 

/ citrate 

glutamine / 

glutamate, 

aspartate 

glutamate 

/ aspartate 

serine / 

glycine 

  

5a 6a/7a 8a 9a 11a   

--> PYRc 0 0 0 0 0 

<--> MALc -14.5 16.5 0 0 0 

<--> SUCc 24.5 0 0 0 0 

<--> FUMc -2.2 0 0 0 0 

<--> CITc -1.9 -4.9 0 0 0 

<--> ASPc 0 0 -3.3 -3.38 0 

 --> AKGc 0 0 0 0 0 

<--> GLUc 0 0 -14.4 2.29 0 

 --> GLNc 0 0 20 0 0 

<--> SERc 0 0 0 0 4.5 

<--> GLYc 0 0 0 0 -2.6 

<--> ADPc 0 0 0 0 0 

<--> CO2c -19.8 -36.6 -14.8 2.07 -1.9 

<--> C1c 0 0 0 0 -6.4 

C1c <--> C1m 0 0 0 0 -6.4 

GLYc <--> GLYm 0 0 0 0 -2.6 

SERc <--> SERm 0 0 0 0 4.5 

CO2c <--> CO2m -19.8 -36.6 -14.8 2.07 -1.9 

SERm <--> GLYm + MTHFm 0 0 0 0 4.5 

MTHFm --> C1m + THFm 0 0 0 0 6.4 

GLYm + THFm + NADm --> 

MTHFm + CO2m + NADHm 

0 0 0 0 1.9 

--> O2m 27.1 27.45 15.3 0.165 0.95 

<--> NH3c 0 0 -22.3 1.09 0 

NH3c <--> NH3m 0 0 -22.3 1.09 0 

<--> ATPc 0 0 0 0 0 

ADPc + ATPm <--> ADPm + 

ATPc 

0 0 0 0 0 

PYRc --> PYRm 0 0 0 0 0 

FUMc <--> FUMm -2.2 0 0 0 0 

MALc <--> MALm -16.4 11.6 0 0 0 

SUCc <--> SUCm 24.5 0 0 0 0 

MALm + AKGc --> MALc + 0 0 0 0 0 
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AKGm 

ASPm + GLUc <--> ASPc + 

GLUm 

0 0 3.3 3.38 0 

CITm + MALc <--> CITc + 

MALm 

1.9 4.9 0 0 0 

GLNc --> GLNm 0 0 20 0 0 

GLUc <--> GLUm 0 0 -17.7 -1.09 0 

PYRm + NADm --> ACOAm + 

NADHm + CO2m 

5.9 11.6 2.3 -1.09 0 

ACOAm + OAAm --> CITm 5.9 11.6 2.3 -1.09 0 

CITm + NADm --> AKGm + 

NADHm + CO2m 

4 6.7 2.3 -1.09 0 

AKGm + ADPm + NADm --> 

SUCm + ATPm + NADHm + 

CO2m 

4 6.7 7.9 1.2 0 

SUCm + FADm <--> FUMm + 

FADHm 

28.5 6.7 7.9 1.2 0 

FUMm <--> MALm 26.3 6.7 7.9 1.2 0 

MALm + NADm <--> OAAm + 

NADHm 

-105.1 -125.65 -70.9 1.465 -4.75 

MALm + NADPm --> PYRm + 

CO2m + NADPHm 

116.9 148.85 78.8 -0.265 4.75 

PYRm + CO2m + ATPm --> 

OAAm + ADPm 

111 137.25 76.5 0.825 4.75 

AKGm + ASPm <--> GLUm + 

OAAm 

0 0 -3.3 -3.38 0 

GLUm + NADm <--> AKGm + 

NH3m + NADHm 

0 0 2.3 -1.09 0 

GLNm --> GLUm + NH3m 0 0 20 0 0 

2 NADHm + O2m + 5 ADPm --

> 2 NADm + 5 ATPm 

12.85 24.1 11.35 -0.435 0.95 

2 FADHm + O2m + 3 ADPm --> 

2 FADm + 3 ATPm 

14.25 3.35 3.95 0.6 0 

NADPHm + NADm <--> 

NADPm + NADHm 

116.9 148.85 78.8 -0.265 4.75 
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(cont. Table S5.2) 

  

Uptake / 

Production 

pyruvate, 

ADP / ATP 

pyruvate, 

aspartate, ADP / 

glutamate, ATP 

citrate, ADP / 

ATP 

Reaction Exp. No. 

1b 2b 3b   

Flux [fmol / 

cell  min] 

--> PYRc R1 14.2 15.6 0 

<--> MALc R2 0 0 0 

<--> SUCc R3 0 0 0 

<--> FUMc R4 0 0 0 

<--> CITc R5 0 0 38 

<--> ASPc R6 0 12.2 0 

 --> AKGc R7 0 0 0 

<--> GLUc R8 0 -6.7 0 

 --> GLNc R9 0 0 0 

<--> SERc R11 0 0 0 

<--> GLYc R12 0 0 0 

PYRm + CO2m + ATPm --> 

OAAm + ADPm 

R44 0 0 0 

<--> CO2c R10 -42.6 -62.1 -228 

<--> C1c R13 0 0 0 

C1c <--> C1m R14 0 0 0 

GLYc <--> GLYm R15 0 0 0 

SERc <--> SERm R16 0 0 0 

CO2c <--> CO2m R17 -42.6 -62.1 -228 

SERm <--> GLYm + MTHFm R18 0 0 0 

MTHFm --> C1m + THFm R19 0 0 0 

GLYm + THFm + NADm --> 

MTHFm + CO2m + NADHm 

R20 0 0 0 

--> O2m R21 35.5 45.45 171 

<--> NH3c R22 0 -5.5 0 

NH3c <--> NH3m R23 0 -5.5 0 

<--> ADPc R24 177.5 227.25 855 

<--> ATPc R25 -177.5 -227.25 -855 

ADPc + ATPm <--> ADPm + 

ATPc 

R26 177.5 227.25 855 

PYRc --> PYRm R27 14.2 15.6 0 

FUMc <--> FUMm R28 0 0 0 

MALc <--> MALm R29 0 0 38 

SUCc <--> SUCm R30 0 0 0 
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MALm + AKGc --> MALc + 

AKGm 

R31 0 0 0 

ASPm + GLUc <--> ASPc + 

GLUm 

R32 0 -12.2 0 

CITm + MALc <--> CITc + 

MALm 

R33 0 0 -38 

GLNc --> GLNm R34 0 0 0 

GLUc <--> GLUm R35 0 5.5 0 

PYRm + NADm --> ACOAm + 

NADHm + CO2m 

R36 14.2 21.1 38 

ACOAm + OAAm --> CITm R37 14.2 21.1 38 

CITm + NADm --> AKGm + 

NADHm + CO2m 

R38 14.2 21.1 76 

AKGm + ADPm + NADm --> 

SUCm + ATPm + NADHm + 

CO2m 

R39 14.2 14.4 76 

SUCm + FADm <--> FUMm + 

FADHm 

R40 14.2 14.4 76 

FUMm <--> MALm R41 14.2 14.4 76 

MALm + NADm <--> OAAm + 

NADHm 

R42 14.2 8.9 38 

MALm + NADPm --> PYRm + 

CO2m + NADPHm 

R43 0 5.5 38 

AKGm + ASPm <--> GLUm + 

OAAm 

R45 0 12.2 0 

GLUm + NADm <--> AKGm + 

NH3m + NADHm 

R46 0 5.5 0 

GLNm --> GLUm + NH3m R47 0 0 0 

2 NADHm + O2m + 5 ADPm --

> 2 NADm + 5 ATPm 

R48 28.4 38.25 133 

2 FADHm + O2m + 3 ADPm --> 

2 FADm + 3 ATPm 

R49 7.1 7.2 38 

NADPHm + NADm <--> 

NADPm + NADHm 

R50 0 5.5 38 
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(cont. Table S5.2) 

Reaction 
Uptake / 

Production 

α-
ketoglutarate, 

ADP /  
fumarate,  ATP 

succinate, 
ADP / 

fumarate, 
malate, 
citrate, 

ATP 

malate 
(fumarate), 

ADP / 
citrate, 

ATP 

glutamine, 
ADP / 

glutamate, 
aspartate, 

ATP 

  Exp. No. 

4b 5b 6b/7b 8b   
Flux [fmol / 
cell  min] 

--> PYRc R1 0 0 0 0 

<--> MALc R2 0 -14.6 21.4 0 

<--> SUCc R3 0 30.5 0 0 

<--> FUMc R4 -2.5 -2.1 0 0 

<--> CITc R5 0 -1.9 -4.9 0 

<--> ASPc R6 0 0 0 -11.4 

 --> AKGc R7 40.2 0 0 0 

<--> GLUc R8 0 0 0 -19 

 --> GLNc R9 0 0 0 44.7 

<--> SERc R11 0 0 0 0 

<--> GLYc R12 0 0 0 0 

PYRm + CO2m + ATPm --> 
OAAm + ADPm 

R44 0 0 0 0 

<--> CO2c R10 -191 -43.8 -56.2 -82.9 

<--> C1c R13 0 0 0 0 

C1c <--> C1m R14 0 0 0 0 

GLYc <--> GLYm R15 0 0 0 0 

SERc <--> SERm R16 0 0 0 0 

CO2c <--> CO2m R17 -191 -43.8 -56.2 -82.9 

SERm <--> GLYm + MTHFm R18 0 0 0 0 

MTHFm --> C1m + THFm R19 0 0 0 0 

GLYm + THFm + NADm --> 
MTHFm + CO2m + NADHm 

R20 0 0 0 0 

--> O2m R21 153.3 48.1 42.15 81.45 

<--> NH3c R22 0 0 0 -59 

NH3c <--> NH3m R23 0 0 0 -59 

<--> ADPc R24 766.5 210 210.75 407.25 

<--> ATPc R25 -766.5 -210 -210.75 -407.25 

ADPc + ATPm <--> ADPm + 
ATPc 

R26 766.5 210 210.75 407.25 

PYRc --> PYRm R27 0 0 0 0 

FUMc <--> FUMm R28 -2.5 -2.1 0 0 

MALc <--> MALm R29 40.2 -16.5 16.5 0 
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SUCc <--> SUCm R30 0 30.5 0 0 

MALm + AKGc --> MALc + 
AKGm 

R31 40.2 0 0 0 

ASPm + GLUc <--> ASPc + 
GLUm 

R32 0 0 0 11.4 

CITm + MALc <--> CITc + 
MALm 

R33 0 1.9 4.9 0 

GLNc --> GLNm R34 0 0 0 44.7 

GLUc <--> GLUm R35 0 0 0 -30.4 

PYRm + NADm --> ACOAm + 
NADHm + CO2m 

R36 37.7 11.9 16.5 14.3 

ACOAm + OAAm --> CITm R37 37.7 11.9 16.5 14.3 

CITm + NADm --> AKGm + 
NADHm + CO2m 

R38 37.7 10 11.6 14.3 

AKGm + ADPm + NADm --> 
SUCm + ATPm + NADHm + 
CO2m 

R39 77.9 10 11.6 40 

SUCm + FADm <--> FUMm + 
FADHm 

R40 77.9 40.5 11.6 40 

FUMm <--> MALm R41 75.4 38.4 11.6 40 

MALm + NADm <--> OAAm + 
NADHm 

R42 37.7 11.9 16.5 25.7 

MALm + NADPm --> PYRm + 
CO2m + NADPHm 

R43 37.7 11.9 16.5 14.3 

AKGm + ASPm <--> GLUm + 
OAAm 

R45 0 0 0 -11.4 

GLUm + NADm <--> AKGm + 
NH3m + NADHm 

R46 0 0 0 14.3 

GLNm --> GLUm + NH3m R47 0 0 0 44.7 

2 NADHm + O2m + 5 ADPm --
> 2 NADm + 5 ATPm 

R48 114.35 27.85 36.35 61.45 

2 FADHm + O2m + 3 ADPm --> 
2 FADm + 3 ATPm 

R49 38.95 20.25 5.8 20 

NADPHm + NADm <--> 
NADPm + NADHm 

R50 37.7 11.9 16.5 14.3 

 

  



 

 

170 
 

Appendix 

Supplem. Table S5.3. Stoichiometry of the modes selected using the Table S1 and 

the contribution to each mode to the total flux in each feeding experiment using 

selectively permeabilized CHO-K1 cells [fmol / cell  min]. 

Reaction 
Mode 

1 
Mode 

2 
Mode 

3 
Mode 

4 
Mode 

5 
Mode 

6 
Mode 

7 
Mode 

8 
Mode 

9 
Mode 

10 

--> PYRc 1 1 1 0 0 1 0 0 0 0 

<--> MALc 0 0 0 0 0 0 0 0 0 0 

<--> SUCc 0 0 0 0 0 0 0 0 0 0 

<--> FUMc 0 0 0 0 0 0 0 0 0 0 

<--> CITc 0 0 0 0 0 0 0 0 1 1 

<--> ASPc 0 0 1 1 1 1 1 1 0 0 

 --> AKGc 0 0 0 0 0 0 0 0 0 0 

<--> GLUc 0 0 -1 -0.5 0 -1 0 -0.5 0 0 

 --> GLNc 0 0 0 0 0 0 0 0 0 0 

<--> CO2c -3 -3 -2 -1.5 -4 2 -4 -1.5 -6 -6 

<--> SERc 0 0 0 0 0 0 0 0 0 0 

<--> GLYc 0 0 0 0 0 0 0 0 0 0 

<--> C1c 0 0 0 0 0 0 0 0 0 0 

C1c <--> C1m 0 0 0 0 0 0 0 0 0 0 

GLYc <--> GLYm 0 0 0 0 0 0 0 0 0 0 

SERc <--> SERm 0 0 0 0 0 0 0 0 0 0 

CO2c <--> CO2m -3 -3 -2 -1.5 -4 -2 -4 -1.5 -6 -6 

SERm <--> GLYm + MTHFm 0 0 0 0 0 0 0 0 0 0 

MTHFm --> C1m + THFm 0 0 0 0 0 0 0 0 0 0 
GLYm + THFm + NADm --> MTHFm 
+ CO2m + NADHm + NH3 0 0 0 0 0 0 0 0 0 0 

--> O2m 2.5 2.5 1 0.75 3 1 3 0.75 4.5 4.5 

<--> NH3c 0 0 0 -0.5 -1 0 -1 -0.5 0 0 

NH3c <--> NH3m 0 0 0 -0.5 -1 0 -1 -0.5 0 0 

<--> ADPc 0 12.5 0 0 0 5 15 3.75 0 22.5 

<--> ATPc 0 -12.5 0 0 0 -5 -15 -3.55 0 -22.5 

ADPc + ATPm <--> ADPm + ATPc 0 12.5 0 0 0 5 15 3.75 0 22.5 

PYRc --> PYRm 1 1 1 0 0 1 0 0 0 0 

FUMc <--> FUMm 0 0 0 0 0 0 0 0 0 0 

MALc <--> MALm 0 0 0 0 0 0 0 0 1 1 

SUCc <--> SUCm 0 0 0 0 0 0 0 0 0 0 

MALm + AKGc --> MALc + AKGm 0 0 0 0 0 0 0 0 0 0 

ASPm + GLUc <--> ASPc + GLUm 0 0 -1 -1 -1 -1 -1 -1 0 0 

CITm + MALc <--> CITc + MALm 0 0 0 0 0 0 0 0 -1 -1 

GLNc --> GLNm 0 0 0 0 0 0 0 0 0 0 

GLUc <--> GLUm 0 0 0 0.5 1 0 1 0.5 0 0 
PYRm + NADm --> ACOAm + 
NADHm + CO2m 1 1 1 0.5 1 1 1 0.5 1 1 
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ACOAm + OAAm --> CITm 1 1 1 0.5 1 1 1 0.5 1 1 
CITm + NADm --> AKGm + NADHm 
+ CO2m 1 1 1 0.5 1 1 1 0.5 2 2 
AKGm + ADPm + NADm --> SUCm + 
ATPm + NADHm + CO2m 1 1 0 0 1 1 1 0 2 2 
SUCm + FADm <--> FUMm + 
FADHm 1 1 0 0 1 0 1 0 2 2 

FUMm <--> MALm 1 1 0 0 1 0 1 0 2 2 
MALm + NADm <--> OAAm + 
NADHm -11.5 1 -5 -4.25 -15 0 0 -0.5 -21.5 1 
MALm + NADPm --> PYRm + CO2m 
+ NADPHm 12.5 0 5 4.25 16 0 1 0.5 23.5 1 
PYRm + CO2m + ATPm --> OAAm + 
ADPm 12.5 0 5 3.75 15 0 0 0 22.5 0 

AKGm + ASPm <--> GLUm + OAAm 0 0 1 1 1 1 1 1 0 0 
GLUm + NADm <--> AKGm + NH3m 
+ NADHm 0 0 0 0.5 1 0 1 0.5 0 0 

GLNm --> GLUm + NH3m 0 0 0 0 0 0 0 0 0 0 
2 NADHm + O2m + 5 ADPm --> 2 
NADm + 5 ATPm 2 2 1 0.75 2.5 1 2.5 0.75 3.5 3.5 
2 FADHm + O2m + 3 ADPm --> 2 
FADm + 3 ATPm 0.5 0.5 0 0 0.5 0 0.5 0 1 1 
NADPHm + NADm <--> NADPm + 
NADHm 12.5 0 5 4.25 16 0 1 0.5 23.5 1 

(cont. Table S5.3) 

Reaction 
Mode 

11 
Mode 

12 
Mode 

13 
Mode 

14 
Mode 

15 
Mode 

16 
Mode 

17 
Mod
e 18 

Mode 
19 

Mode 
20 

--> PYRc 0 0 0 0 0 0 0 0 0 0 

<--> MALc 0 0 0 0 0 -1 0 0 0 -1 

<--> SUCc 0 0 0 0 1 1 1 1 1 1 

<--> FUMc 0 -1 0 -1 0 0 0 -1 0 0 

<--> CITc 0 0 0 0 0 0 -0.5 0 0 0 

<--> ASPc 0 0 0 0 0 0 0 0 0 0 

 --> AKGc 1 1 1 1 0 0 0 0 0 0 

<--> GLUc 0 0 0 0 0 0 0 0 0 0 

 --> GLNc 0 0 0 0 0 0 0 0 0 0 

<--> CO2c -5 -1 -5 -1 -4 0 -1 0 -4 0 

<--> SERc 0 0 0 0 0 0 0 0 0 0 

<--> GLYc 0 0 0 0 0 0 0 0 0 0 

<--> C1c 0 0 0 0 0 0 0 0 0 0 

C1c <--> C1m 0 0 0 0 0 0 0 0 0 0 

GLYc <--> GLYm 0 0 0 0 0 0 0 0 0 0 

SERc <--> SERm 0 0 0 0 0 0 0 0 0 0 

CO2c <--> CO2m -5 -1 -5 -1 -4 0 -1 0 -4 0 

SERm <--> GLYm + MTHFm 0 0 0 0 0 0 0 0 0 0 

MTHFm --> C1m + THFm 0 0 0 0 0 0 0 0 0 0 
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GLYm + THFm + NADm --> 
MTHFm + CO2m + NADHm + 
NH3 0 0 0 0 0 0 0 0 0 0 

--> O2m 4 1 4 1 3.5 0.5 1.25 0.5 3.5 0.5 

<--> NH3c 0 0 0 0 0 0 0 0 0 0 

NH3c <--> NH3m 0 0 0 0 0 0 0 0 0 0 

<--> ADPc 0 0 20 5 0 0 0 0 16.5 1.5 

<--> ATPc 0 0 -20 -5 0 0 0 0 -16.5 -1.5 
ADPc + ATPm <--> ADPm + 
ATPc 0 0 20 5 0 0 0 0 16.5 1.5 

PYRc --> PYRm 0 0 0 0 0 0 0 0 0 0 

FUMc <--> FUMm 0 -1 0 -1 0 0 0 -1 0 0 

MALc <--> MALm 1 1 1 1 0 -1 -0.5 0 0 -1 

SUCc <--> SUCm 0 0 0 0 1 1 1 1 1 1 
MALm + AKGc --> MALc + 
AKGm 1 1 1 1 0 0 0 0 0 0 
ASPm + GLUc <--> ASPc + 
GLUm 0 0 0 0 0 0 0 0 0 0 
CITm + MALc <--> CITc + 
MALm 0 0 0 0 0 0 0.5 0 0 0 

GLNc --> GLNm 0 0 0 0 0 0 0 0 0 0 

GLUc <--> GLUm 0 0 0 0 0 0 0 0 0 0 
PYRm + NADm --> ACOAm + 
NADHm + CO2m 1 0 1 0 1 0 0.5 0 1 0 

ACOAm + OAAm --> CITm 1 0 1 0 1 0 0.5 0 1 0 
CITm + NADm --> AKGm + 
NADHm + CO2m 1 0 1 0 1 0 0 0 1 0 
AKGm + ADPm + NADm --> 
SUCm + ATPm + NADHm + 
CO2m 2 1 2 1 1 0 0 0 1 0 
SUCm + FADm <--> FUMm + 
FADHm 2 1 2 1 2 1 1 1 2 1 

FUMm <--> MALm 2 0 2 0 2 1 1 0 2 1 
MALm + NADm <--> OAAm + 
NADHm -19 -5 1 0 -15.5 -1.5 

-
4.75 -1.5 1 0 

MALm + NADPm --> PYRm + 
CO2m + NADPHm 21 5 1 0 17.5 1.5 5.75 1.5 1 0 
PYRm + CO2m + ATPm --> 
OAAm + ADPm 20 5 0 0 16.5 1.5 5.25 1.5 0 0 
AKGm + ASPm <--> GLUm + 
OAAm 0 0 0 0 0 0 0 0 0 0 
GLUm + NADm <--> AKGm + 
NH3m + NADHm 0 0 0 0 0 0 0 0 0 0 

GLNm --> GLUm + NH3m 0 0 0 0 0 0 0 0 0 0 
2 NADHm + O2m + 5 ADPm --> 
2 NADm + 5 ATPm 3 0.5 3 0.5 2.5 0 0.75 0 2.5 0 
2 FADHm + O2m + 3 ADPm --> 
2 FADm + 3 ATPm 1 0.5 1 0.5 1 -0.5 0.5 0.5 1 0.5 
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NADPHm + NADm <--> 
NADPm + NADHm 21 5 1 0 17.5 1.5 5.75 1.5 1 0 

(cont. Table S5.3) 

Reaction 
Mode 

21 
Mode 

22 
Mode 

23 
Mode 

24 
Mode 

25 
Mode 

26 
Mode 

27 
Mode 

28 
Mode 

29 
Mode 

30 

--> PYRc 0 0 0 0 0 0 0 0 0 0 

<--> MALc 0 0 1 1 1 1 0 0 0 0 

<--> SUCc 1 1 0 0 0 0 0 0 0 0 

<--> FUMc 0 -1 0 0 0 0 1 1 1 1 

<--> CITc -0.5 0 0 -0.5 0 -0.5 0 -0.5 0 -0.5 

<--> ASPc 0 0 0 0 0 0 0 0 0 0 

 --> AKGc 0 0 0 0 0 0 0 0 0 0 

<--> GLUc 0 0 0 0 0 0 0 0 0 0 

 --> GLNc 0 0 0 0 0 0 0 0 0 0 

<--> CO2c -1 0 -4 -1 -4 -1 -4 -1 -4 -1 

<--> SERc 0 0 0 0 0 0 0 0 0 0 

<--> GLYc 0 0 0 0 0 0 0 0 0 0 

<--> C1c 0 0 0 0 0 0 0 0 0 0 

C1c <--> C1m 0 0 0 0 0 0 0 0 0 0 

GLYc <--> GLYm 0 0 0 0 0 0 0 0 0 0 

SERc <--> SERm 0 0 0 0 0 0 0 0 0 0 

CO2c <--> CO2m -1 0 -4 -1 -4 -1 -4 -1 -4 -1 

SERm <--> GLYm + MTHFm 0 0 0 0 0 0 0 0 0 0 

MTHFm --> C1m + THFm 0 0 0 0 0 0 0 0 0 0 
GLYm + THFm + NADm --> 
MTHFm + CO2m + NADHm + 
NH3 0 0 0 0 0 0 0 0 0 0 

--> O2m 1.25 0.5 3 0.75 3 0.75 3 0.75 3 0.75 

<--> NH3c 0 0 0 0 0 0 0 0 0 0 

NH3c <--> NH3m 0 0 0 0 0 0 0 0 0 0 

<--> ADPc 5.75 1.5 0 0 15 3.75 0 0 15 3.75 

<--> ATPc -5.75 -1.5 0 0 -15 -3.75 0 0 -15 -3.75 
ADPc + ATPm <--> ADPm + 
ATPc 5.75 1.5 0 0 15 3.75 0 0 15 3.75 

PYRc --> PYRm 0 0 0 0 0 0 0 0 0 0 

FUMc <--> FUMm 0 -1 0 0 0 0 1 1 1 1 

MALc <--> MALm -0.5 0 1 0.5 1 0.5 0 -0.5 0 -0.5 

SUCc <--> SUCm 1 1 0 0 0 0 0 0 0 0 
MALm + AKGc --> MALc + 
AKGm 0 0 0 0 0 0 0 0 0 0 

ASPm + GLUc <--> ASPc + GLUm 0 0 0 0 0 0 0 0 0 0 

CITm + MALc <--> CITc + MALm 0.5 0 0 0.5 0 0.5 0 0.5 0 0.5 

GLNc --> GLNm 0 0 0 0 0 0 0 0 0 0 

GLUc <--> GLUm 0 0 0 0 0 0 0 0 0 0 
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PYRm + NADm --> ACOAm + 
NADHm + CO2m 0.5 0 1 0.5 1 0.5 1 0.5 1 0.5 

ACOAm + OAAm --> CITm 0.5 0 1 0.5 1 0.5 1 0.5 1 0.5 
CITm + NADm --> AKGm + 
NADHm + CO2m 0 0 1 0 1 0 1 0 1 0 
AKGm + ADPm + NADm --> 
SUCm + ATPm + NADHm + 
CO2m 0 0 1 0 1 0 1 0 1 0 
SUCm + FADm <--> FUMm + 
FADHm 1 1 1 0 1 0 1 0 1 0 

FUMm <--> MALm 1 0 1 0 1 0 2 1 2 1 
MALm + NADm <--> OAAm + 
NADHm 0.5 0 -14 -3.25 1 0.5 -14 -3.25 1 0.5 
MALm + NADPm --> PYRm + 
CO2m + NADPHm 0.5 0 16 4.25 1 0.5 16 4.25 1 0.5 
PYRm + CO2m + ATPm --> 
OAAm + ADPm 0 0 15 3.75 0 0 15 3.75 0 0 
AKGm + ASPm <--> GLUm + 
OAAm 0 0 0 0 0 0 0 0 0 0 
GLUm + NADm <--> AKGm + 
NH3m + NADHm 0 0 0 0 0 0 0 0 0 0 

GLNm --> GLUm + NH3m 0 0 0 0 0 0 0 0 0 0 
2 NADHm + O2m + 5 ADPm --> 
2 NADm + 5 ATPm 0.75 0 2.5 0.75 2.5 0.75 2.5 0.75 2.5 0.75 
2 FADHm + O2m + 3 ADPm --> 2 
FADm + 3 ATPm 0.5 0.5 0.5 0 0.5 0 0.5 0 0.5 0 
NADPHm + NADm <--> NADPm 
+ NADHm 0.5 0 16 4.25 1 0.5 16 4.25 1 0.5 

(cont. Table S5.3) 

Reaction / Mode  31 32 33 34 35 36 37 38 39 40 41 42 

--> PYRc 0 0 0 0 0 0 0 0 0 0 0 0 

<--> MALc 0 0 0 0 0 0 0 0 0 0 0 0 

<--> SUCc 0 0 0 0 0 0 0 0 0 0 0 0 

<--> FUMc 0 0 0 0 0 0 0 0 0 0 0 0 

<--> CITc 0 0 0 0 0 0 0 0 0 0 0 0 

<--> ASPc 0 -1 0 0 -1 0 0 -1 0 -1 0 0 

 --> AKGc 0 0 0 0 0 0 0 0 0 0 0 0 

<--> GLUc 0 0 -1 0 0 -1 1 1 1 1 0 0 

 --> GLNc 1 1 1 1 1 1 0 0 0 0 0 0 

<--> CO2c -5 -1 0 -5 -1 0 -5 -1 -5 -1 0 -1 

<--> SERc 0 0 0 0 0 0 0 0 0 0 1 1 

<--> GLYc 0 0 0 0 0 0 0 0 0 0 -1 0 

<--> C1c 0 0 0 0 0 0 0 0 0 0 -1 -2 

C1c <--> C1m 0 0 0 0 0 0 0 0 0 0 -1 -2 

GLYc <--> GLYm 0 0 0 0 0 0 0 0 0 0 -1 0 

SERc <--> SERm 0 0 0 0 0 0 0 0 0 0 1 1 

CO2c <--> CO2m -5 -1 0 -5 -1 0 0 -1 0 -1 0 -1 
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SERm <--> GLYm + MTHFm 0 0 0 0 0 0 0 0 0 0 1 1 

MTHFm --> C1m + THFm 0 0 0 0 0 0 0 0 0 0 1 2 
GLYm + THFm + NADm --> 

MTHFm + CO2m + NADHm + NH3 0 0 0 0 0 0 0 0 0 0 0 1 

--> O2m 4.5 1.5 0 4.5 1.5 0 4.5 1.5 4.5 1.5 0 0.5 

<--> NH3c -2 -1 -1 -2 -1 -1 -1 0 -1 0 0 -1 

NH3c <--> NH3m -2 -1 -1 -2 -1 -1 -1 0 -1 0 0 -1 

<--> ADPc 0 0 0 22.5 7.5 0 0 0 22.5 7.5 0 0 

<--> ATPc 0 0 0 -22.5 
-

7.5 0 0 0 -22.5 
-

7.5 0 0 

ADPc + ATPm <--> ADPm + ATPc 0 0 0 22.5 7.5 0 0 0 22.5 7.5 0 0 

PYRc --> PYRm 0 0 0 0 0 0 0 0 0 0 0 0 

FUMc <--> FUMm 0 0 0 0 0 0 0 0 0 0 0 0 

MALc <--> MALm 0 0 0 0 0 0 0 0 0 0 0 0 

SUCc <--> SUCm 0 0 0 0 0 0 0 0 0 0 0 0 

MALm + AKGc --> MALc + AKGm 0 0 0 0 0 0 0 0 0 0 0 0 

ASPm + GLUc <--> ASPc + GLUm 0 1 0 0 1 0 0 1 0 1 0 0 

CITm + MALc <--> CITc + MALm 0 0 0 0 0 0 0 0 0 0 0 0 

GLNc --> GLNm 1 1 1 1 1 1 0 0 0 0 0 0 

GLUc <--> GLUm 0 -1 -1 0 -1 -1 1 0 1 0 0 0 
PYRm + NADm --> ACOAm + 

NADHm + CO2m 1 0 0 1 0 0 1 0 1 0 0 0 

ACOAm + OAAm --> CITm 1 0 0 1 0 0 1 0 1 0 0 0 
CITm + NADm --> AKGm + 

NADHm + CO2m 1 0 0 1 0 0 1 0 1 0 0 0 
AKGm + ADPm + NADm --> SUCm 

+ ATPm + NADHm + CO2m 2 1 0 2 1 0 2 1 2 1 0 0 
SUCm + FADm <--> FUMm + 

FADHm 2 1 0 2 1 0 2 1 2 1 0 0 

FUMm <--> MALm 2 1 0 2 1 0 2 1 2 1 0 0 
MALm + NADm <--> OAAm + 

NADHm -21.5 
-

6.5 0 1 1 0 
-

21.5 -6.5 1 1 0 
-

2.5 
MALm + NADPm --> PYRm + 

CO2m + NADPHm 23.5 7.5 0 1 0 0 23.5 7.5 1 0 0 2.5 
PYRm + CO2m + ATPm --> OAAm 

+ ADPm 22.5 7.5 0 0 0 0 22.5 7.5 0 0 0 2.5 
AKGm + ASPm <--> GLUm + 

OAAm 0 -1 0 0 -1 0 0 -1 0 -1 0 0 
GLUm + NADm <--> AKGm + 

NH3m + NADHm 1 0 0 1 0 0 1 0 1 0 0 0 

GLNm --> GLUm + NH3m 1 1 1 1 1 1 0 0 0 0 0 0 
2 NADHm + O2m + 5 ADPm --> 2 

NADm + 5 ATPm 3.5 1 0 3.5 1 0 3.5 1 3.5 1 0 0.5 
2 FADHm + O2m + 3 ADPm --> 2 

FADm + 3 ATPm 1 0.5 0 1 0.5 0 1 0.5 1 0.5 0 0 
NADPHm + NADm <--> NADPm + 

NADHm 23.5 7.5 0 1 0 0 23.5 7.5 1 0 0 2.5 
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Experiment 1a 1b 2a*1 2b*2 3a 3b 4a 4b 5a 5b*3 6a/7a 6b/7b*4 8a 8b 9a 9b 12a 

  Contribution [fmol / cell  min] 

Mode 1 4.6 0 11.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Mode 2 0 14.2 0 15.6 0 0 0 0 0 0 0 0 0 0 0 0 0 

Mode 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Mode 4 0 0 6.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Mode 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Mode 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Mode 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Mode 8 0 0 0 12.2 0 0 0 0 0 0 0 0 0 0 0 0 0 

Mode 9 0 0 0 0 5.62 0 0 0 0 0 0 0 0 0 0 0 0 

Mode 10 0 0 0 0 0 38 0 0 0 0 0 0 0 0 0 0 0 

Mode 11 0 0 0 0 0 0 12.3 0 0 0 0 0 0 0 0 0 0 

Mode 12 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0 0 

Mode 13 0 0 0 0 0 0 0 37.73 0 0 0 0 0 0 0 0 0 

Mode 14 0 0 0 0 0 0 0 2.47 0 0 0 0 0 0 0 0 0 

Mode 15 0 0 0 0 0 0 0 0 4.07 0 0 0 0 0 0 0 0 

Mode 16 0 0 0 0 0 0 0 0 14.5 0 0 0 0 0 0 0 0 

Mode 17 0 0 0 0 0 0 0 0 3.7 0 0 0 0 0 0 0 0 

Mode 18 0 0 0 0 0 0 0 0 2.23 0 0 0 0 0 0 0 0 

Mode 19 0 0 0 0 0 0 0 0 0 10.6 0 0 0 0 0 0 0 

Mode 20 0 0 0 0 0 0 0 0 0 14.6 0 0 0 0 0 0 0 

Mode 21 0 0 0 0 0 0 0 0 0 3.7 0 0 0 0 0 0 0 

Mode 22 0 0 0 0 0 0 0 0 0 2.14 0 0 0 0 0 0 0 

Mode 23 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 

Mode 24 0 0 0 0 0 0 0 0 0 0 9.72 0 0 0 0 0 0 

Mode 25 0 0 0 0 0 0 0 0 0 0 0 11.6 0 0 0 0 0 

Mode 26 0 0 0 0 0 0 0 0 0 0 0 9.72 0 0 0 0 0 

Mode 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Mode 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Mode 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Mode 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Mode 31 0 0 0 0 0 0 0 0 0 0 0 0 2.31 0 0 0 0 

Mode 32 0 0 0 0 0 0 0 0 0 0 0 0 3.29 0 0 0 0 

Mode 33 0 0 0 0 0 0 0 0 0 0 0 0 14.4 0 0 0 0 

Mode 34 0 0 0 0 0 0 0 0 0 0 0 0 0 14.3 0 0 0 

Mode 35 0 0 0 0 0 0 0 0 0 0 0 0 0 11.4 0 0 0 

Mode 36 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 

Mode 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.69 0 0 

Mode 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Mode 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Mode 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Mode 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.61 

Mode 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.84 
* 1 In the experiments 2a and 2b it is assumed that the modes that take up ASP and PYR together are not 

active (Mode 3 and Mode 6) . Also, the modes that use ASP to produce only CO2 (Mode 5 and Mode  7) are 

considered inactive when computing the contribution factors. 

*2 In the experiments 5b, 6b and 7b the CIT concentration could not be determined. Mode contribution 

factors were computed assuming the same factors for CIT production as in 5a, 6a and 7a respectively. 

*3 In the experiment 9b, GLU concentration could not be determined reliably, therefore the mode flux was 

not computed. 

*4 The contribution of Modes 27-30 to FUM metabolism could not be determined due to extracellular 

conversion of FUM to MAL. 
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Supplem. Table S5.4. Conclusions on mitochondrial enzymes and transporters activity and about regulation of 

the mitochondrial metabolism resulted by applying elementary mode analysis to the observations from feeding 

experiments with selectively permeabilized CHO-K1 cells. The gray areas indicate the experiments on which each 

corresponding conclusion was based. 
Experime
nt No. 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a/7a 6b/7b 8a 8b 9a 9b 11a 

Substrate pyru
vate 

pyruv
ate, 
ADP 

pyruv
ate, 

aspar
tate 

pyruv
ate, 

aspar
tate, 
ADP 

citr
ate 

citrat
e, 

ADP 

α-
ketogluta

rate 

α-
ketogluta
rate, ADP 

succi
nate 

succin
ate, 
ADP 

malat
e / 

fumar
ate 

malate
/ 

fumar
ate, 
ADP 

gluta
mine 

gluta
mine, 
ADP 

gluta
mate 

gluta
mate, 
ADP 

seri
ne 

Citrate 
synthase 
flux[fmol 
/ cell x 
min] 

4.6 14.2 15 21.1 5.6 38 12.22 37.7 5.9 11.9 11.6 16.5 2.3 14.3 - - 0 

  

Uptake rates increased by adding ADP. This happens because (1) ADP is a substrate for oxidative phosphorylation and allows regeneration of NAD+ and (2) ADP 
stimulates PDH, IDH and AKGH   

  
          

In the experiments where ADP was not supplied, the highly active PCX-
MDH-ME cycle disposed of the ATP 

        
  

  
          

ME provides PYR for replenishing 
the TCA 

                  

  
          

Reducing equivalents are transferred from NADPH to NAD+ via the NNT or using cycling by 
NAD- and NADP-dependent IDH isoenzymes 

      

  
            

Full metabolization to 
CO2 is possible 

                  

  

PYR and ASP had a reciprocal 
stimulating effect. This effect did 

not manifest for PYR in the 
presence of ADP. ASP was not 

taken up without PYR. 

                        

  

  

    

ASP and PYR 
are metabolized 

by separate 
modes 
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GLU is re-
transported 

into the 
mitochondria 
via the GLU 

carrier 

                        

  

  

PYR uptake is limited  in all 
stimulating conditions (ADP, ASP, 

ASP+ADP) by the MPC. PYR 
uptake  is in the same range with 
the uptake in vivo by the CHO-K1 
mitochondria (Nicolae et al., 2014) 

                        

  

  

        

Either 
complete 

reuptake of 
MAL occurs 

or CIT is 
transported 

without 
antiport 

                    

  

  
        

Highest complete TCA cycle flux, both 
with and w/o ADP 

                
  

  

        
High TCA cycle flux confirms that IDH 
and AKGDH are the bottlenecks of the 

TCA cycle 
                

  

  

            
High cytosolic 

concentrations of AKG 
did not inhibit ME 

                

  

  

                
Transported via the C4-dicarboxylate 

carrier (antiport with phosphate) 
        

  

  

                    
Extramitochondr
ial conversion of 

FUM to MAL  
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(cont. Table S5.4) 

Experime
nt No. 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a/7a 6b/7b 8a 8b 9a 9b 11a 

Substrate pyru
vate 

pyruv
ate, 
ADP 

pyruv
ate, 

aspar
tate 

pyruv
ate, 

aspart
ate, 
ADP 

citr
ate 

citra
te, 

ADP 

α-
ketoglut

arate 

α-
ketoglut

arate, 
ADP 

succi
nate 

succin
ate, 
ADP 

malat
e / 

fuma
rate 

malat
e/ 

fumar
ate, 
ADP 

gluta
mine 

gluta
mine, 
ADP 

gluta
mate 

gluta
mate, 
ADP 

serin
e 

Citrate 
synthase 
flux [fmol 
/ cell x 
min] 

4.6 14.2 15 21.1 5.6 38 12.22 37.7 5.9 11.9 11.6 16.5 2.3 14.3 - - 0 

  

        

Either 
complete 

reuptake of 
MAL occurs 

or CIT is 
transported 

without 
antiport 

                    

  

  
        

Highest complete TCA cycle flux, both 
with and w/o ADP 

                
  

  
        

High TCA cycle flux confirms that 
IDH and AKGDH are the bottlenecks 

of the TCA cycle 
                

  

  
            

High cytosolic 
concentrations of AKG 

did not inhibit ME 
                

  

  
                

Transported via the C4-
dicarboxylate carrier (antiport with 

phosphate) 
        

  

  
                    

Extramitochond
rial conversion 
of FUM to MAL  

        
  

  

                

MAL/CIT 
secretion is 

favored instead 
of a full TCA 

cycle 

            

  

  
First half of TCA cycle is controlled by (allosteric) effectors: ADP, ATP, 

NADH --> "effector-controlled" 
    

        
  

  

                

The TCA part involving the C4-
dicarboxylates is controlled by the 
concentration of dicarboxylates and 
not by ADP (, ATP, NADH)  --> 
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"concentration-controlled" second 
half of TCA cycle 

  
                

The C4-dicarboxylates may inhibit 
enzymes involved in the TCA cycle 
that do not process then directly 

        
  

  

                        

Most of the GLN 
was converted to 

GLU, then 
exported via the 

GLU carrier 

    

  

  

            

Control by GDH 
reduces the TCA cycle  

flux on GLN  
compared to when 

AKG  is used as 
subtrate 

        

Control by GDH 
reduces the TCA 

cycle  flux on 
GLN  compared 
to when AKG  is 
used as subtrate 

    

  

  
                        

Extracellular GLU induced ASP 
secretion   

  

    

GLU uptake 
occurs via the 

GLU-ASP 
carrier; GLU 
production 

occurs via the 
GLU carrier 

                
GLU uptake occurs via the GLU-ASP 

carrier; GLU production occurs via the 
GLU carrier 

  

  

                                

Serine 
was 
conve
rted 
by 
mSH
MT to 
glycin
e 

  

          

                      

Glycin
e was 
partia
lly 
cleave
d to 
C1 
and 
CO2 

  



 

 

182 
 

References 

References 

[A] 

Adam-Vizi, V., 2005. Production of reactive oxygen species in brain mitochondria: contribution by electron 

transport chain and non-electron transport chain sources. Antioxid Redox Signal. 7, 1140-9. 

Ahn, W. S., Antoniewicz, M. R., 2011. Metabolic flux analysis of CHO cells at growth and non-growth phases 

using isotopic tracers and mass spectrometry. Metab Eng. 13, 598-609. 

Ahn, W. S., Antoniewicz, M. R., 2012. Towards dynamic metabolic flux analysis in CHO cell cultures. 

Biotechnol J. 7, 61-74. 

Ahn, W. S., Antoniewicz, M. R., 2013. Parallel labeling experiments with [1,2-(13)C]glucose and [U-

(13)C]glutamine provide new insights into CHO cell metabolism. Metab Eng. 15, 34-47. 

al-Habori, M., 1995. Microcompartmentation, metabolic channelling and carbohydrate metabolism. Int J 

Biochem Cell Biol. 27, 123-32. 

Allen, D. K., Shachar-Hill, Y., Ohlrogge, J. B., 2007. Compartment-specific labeling information in 13C 

metabolic flux analysis of plants. Phytochemistry. 68, 2197-210. 

Altamirano, C., Cairo, J. J., Godia, F., 2001a. Decoupling cell growth and product formation in Chinese 

hamster ovary cells through metabolic control. Biotechnol Bioeng. 76, 351-60. 

Altamirano, C., Illanes, A., Casablancas, A., Gamez, X., Cairo, J. J., Godia, C., 2001b. Analysis of CHO cells 

metabolic redistribution in a glutamate-based defined medium in continuous culture. Biotechnol 

Prog. 17, 1032-41. 

Amaral, A. I., Teixeira, A. P., Sonnewald, U., Alves, P. M., 2011. Estimation of intracellular fluxes in cerebellar 

neurons after hypoglycemia: Importance of the pyruvate recycling pathway and glutamine 

oxidation. J Neurosci Res. 89, 700-10. 

Anastasiou, D., Poulogiannis, G., Asara, J. M., Boxer, M. B., Jiang, J. K., Shen, M., Bellinger, G., Sasaki, A. T., 

Locasale, J. W., Auld, D. S., Thomas, C. J., Vander Heiden, M. G., Cantley, L. C., 2011. Inhibition of 

pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. 

Science. 334, 1278-83. 

Antoniewicz, M. R., 2013a. Dynamic metabolic flux analysis--tools for probing transient states of metabolic 

networks. Curr Opin Biotechnol. 24, 973-8. 

Antoniewicz, M. R., 2013b. Using multiple tracers for 13C metabolic flux analysis. Methods Mol Biol. 985, 

353-65. 

Antoniewicz, M. R., Kelleher, J. K., Stephanopoulos, G., 2006. Determination of confidence intervals of 

metabolic fluxes estimated from stable isotope measurements. Metab Eng. 8, 324-37. 

Antoniewicz, M. R., Kelleher, J. K., Stephanopoulos, G., 2007. Elementary metabolite units (EMU): a novel 

framework for modeling isotopic distributions. Metab Eng. 9, 68-86. 

Appling, D. R., 1991. Compartmentation of folate-mediated one-carbon metabolism in eukaryotes. FASEB J. 

5, 2645-51. 

[B] 

Baba, N., Sharma, H. M., 1971. Histochemistry of lactic dehydrogenase in heart and pectoralis muscles of rat. 

J Cell Biol. 51, 621-35. 

Bahnemann, J., Kayo, S., Wahrheit, J., Heinzle, E., Pörtner, R., Zeng, A.-P., 2014. In search of an effective cell 

disruption method to isolate intact mitochondria from Chinese hamster ovary cells. Eng. Life Sci. 

14, 161–169. 



 

 

183 
 

References 

Balaban, R. S., 2006. Modeling mitochondrial function. Am J Physiol Cell Physiol. 291, C1107-13. 

Balaban, R. S., 2010. The mitochondrial proteome: a dynamic functional program in tissues and disease 

states. Environ Mol Mutagen. 51, 352-9. 

Barden, R. E., Fung, C. H., Utter, M. F., Scrutton, M. C., 1972. Pyruvate carboxylase from chicken liver. 

Steady state kinetic studies indicate a "two-site" ping-pong mechanism. J Biol Chem. 247, 1323-33. 

Barlowe, C. K., Appling, D. R., 1988. In vitro evidence for the involvement of mitochondrial folate 

metabolism in the supply of cytoplasmic one-carbon units. Biofactors. 1, 171-6. 

Baycin-Hizal, D., Tabb, D. L., Chaerkady, R., Chen, L., Lewis, N. E., Nagarajan, H., Sarkaria, V., Kumar, A., 

Wolozny, D., Colao, J., Jacobson, E., Tian, Y., O'Meally, R. N., Krag, S. S., Cole, R. N., Palsson, B. O., 

Zhang, H., Betenbaugh, M., 2012. Proteomic analysis of Chinese hamster ovary cells. J Proteome 

Res. 11, 5265-76. 

Becker, J., Hackl, M., Rupp, O., Jakobi, T., Schneider, J., Szczepanowski, R., Bekel, T., Borth, N., Goesmann, 

A., Grillari, J., Kaltschmidt, C., Noll, T., Puhler, A., Tauch, A., Brinkrolf, K., 2011. Unraveling the 

Chinese hamster ovary cell line transcriptome by next-generation sequencing. J Biotechnol. 156, 

227-35. 

Belle, A., Tanay, A., Bitincka, L., Shamir, R., O'Shea, E. K., 2006. Quantification of protein half-lives in the 

budding yeast proteome. Proc Natl Acad Sci U S A. 103, 13004-9. 

Bensaad, K., Tsuruta, A., Selak, M. A., Vidal, M. N., Nakano, K., Bartrons, R., Gottlieb, E., Vousden, K. H., 

2006. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 126, 107-20. 

Beuster, G., Zarse, K., Kaleta, C., Thierbach, R., Kiehntopf, M., Steinberg, P., Schuster, S., Ristow, M., 2011. 

Inhibition of alanine aminotransferase in silico and in vivo promotes mitochondrial metabolism to 

impair malignant growth. J Biol Chem. 286, 22323-30. 

Birch, J. R., Racher, A. J., 2006. Antibody production. Adv Drug Deliv Rev. 58, 671-85. 

Blake, J. A., Bult, C. J., Eppig, J. T., Kadin, J. A., Richardson, J. E., 2014. The Mouse Genome Database: 

integration of and access to knowledge about the laboratory mouse. Nucleic Acids Res. 42, D810-7. 

Bonarius, H. P., Hatzimanikatis, V., Meesters, K. P., de Gooijer, C. D., Schmid, G., Tramper, J., 1996. 

Metabolic flux analysis of hybridoma cells in different culture media using mass balances. 

Biotechnol Bioeng. 50, 299-318. 

Bonarius, H. P., Ozemre, A., Timmerarends, B., Skrabal, P., Tramper, J., Schmid, G., Heinzle, E., 2001. 

Metabolic-flux analysis of continuously cultured hybridoma cells using (13)CO(2) mass 

spectrometry in combination with (13)C-lactate nuclear magnetic resonance spectroscopy and 

metabolite balancing. Biotechnol Bioeng. 74, 528-38. 

Bonarius, H. P., Timmerarends, B., de Gooijer, C. D., Tramper, J., 1998. Metabolite-balancing techniques vs. 

13C tracer experiments to determine metabolic fluxes in hybridoma cells. Biotechnol Bioeng. 58, 

258-62. 

Bordbar, A., Feist, A. M., Usaite-Black, R., Woodcock, J., Palsson, B. O., Famili, I., 2011. A multi-tissue type 

genome-scale metabolic network for analysis of whole-body systems physiology. BMC Syst Biol. 5, 

180. 

Borth, N., 2014. Opening the black box: Chinese hamster ovary research goes genome scale. Pharmaceutical 

Bioprocessing. 2, 367-369. 

Boss, O., Hagen, T., Lowell, B. B., 2000. Uncoupling proteins 2 and 3: potential regulators of mitochondrial 

energy metabolism. Diabetes. 49, 143-56. 

Boss, O., Samec, S., Paoloni-Giacobino, A., Rossier, C., Dulloo, A., Seydoux, J., Muzzin, P., Giacobino, J. P., 

1997. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific 

expression. FEBS Lett. 408, 39-42. 



 

 

184 
 

References 

Brand, M. D., Esteves, T. C., 2005. Physiological functions of the mitochondrial uncoupling proteins UCP2 

and UCP3. Cell Metab. 2, 85-93. 

Bratic, A., Larsson, N. G., 2013. The role of mitochondria in aging. J Clin Invest. 123, 951-7. 

Bricker, D. K., Taylor, E. B., Schell, J. C., Orsak, T., Boutron, A., Chen, Y. C., Cox, J. E., Cardon, C. M., Van 

Vranken, J. G., Dephoure, N., Redin, C., Boudina, S., Gygi, S. P., Brivet, M., Thummel, C. S., Rutter, 

J., 2012. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and 

humans. Science. 337, 96-100. 

Brinkrolf, K., Rupp, O., Laux, H., Kollin, F., Ernst, W., Linke, B., Kofler, R., Romand, S., Hesse, F., Budach, 

W. E., Galosy, S., Muller, D., Noll, T., Wienberg, J., Jostock, T., Leonard, M., Grillari, J., Tauch, A., 

Goesmann, A., Helk, B., Mott, J. E., Puhler, A., Borth, N., 2013. Chinese hamster genome sequenced 

from sorted chromosomes. Nat Biotechnol. 31, 694-5. 

Brooks, G. A., Dubouchaud, H., Brown, M., Sicurello, J. P., Butz, C. E., 1999. Role of mitochondrial lactate 

dehydrogenase and lactate oxidation in the intracellular lactate shuttle. Proc Natl Acad Sci U S A. 

96, 1129-34. 

Brown, A. J., Sweeney, B., Mainwaring, D. O., James, D. C., 2014. Synthetic promoters for CHO cell 

engineering. Biotechnol Bioeng. 111, 1638-47. 

Bucher, T., Brauser, B., Conze, A., Klein, F., Langguth, O., Sies, H., 1972. State of oxidation-reduction and 

state of binding in the cytosolic NADH-system as disclosed by equilibration with extracellular 

lactate-pyruvate in hemoglobin-free perfused rat liver. European Journal of Biochemistry. 27, 301-17. 

Bugrim, A., Nikolskaya, T., Nikolsky, Y., 2004. Early prediction of drug metabolism and toxicity: systems 

biology approach and modeling. Drug Discov Today. 9, 127-35. 

Butler, M., Meneses-Acosta, A., 2012. Recent advances in technology supporting biopharmaceutical 

production from mammalian cells. Appl Microbiol Biotechnol. 96, 885-94. 

[C] 

Cakir, T., Tacer, C. S., Ulgen, K. O., 2004. Metabolic pathway analysis of enzyme-deficient human red blood 

cells. Biosystems. 78, 49-67. 

Calvo, S., Jain, M., Xie, X., Sheth, S. A., Chang, B., Goldberger, O. A., Spinazzola, A., Zeviani, M., Carr, S. A., 

Mootha, V. K., 2006. Systematic identification of human mitochondrial disease genes through 

integrative genomics. Nat Genet. 38, 576-82. 

Campanella, M. E., Chu, H., Low, P. S., 2005. Assembly and regulation of a glycolytic enzyme complex on 

the human erythrocyte membrane. Proc Natl Acad Sci U S A. 102, 2402-7. 

Carinhas, N., Duarte, T. M., Barreiro, L. C., Carrondo, M. J., Alves, P. M., Teixeira, A. P., 2013. Metabolic 

signatures of GS-CHO cell clones associated with butyrate treatment and culture phase transition. 

Biotechnol Bioeng. 110, 3244-57. 

Carinhas, N., Oliveira, R., Alves, P. M., Carrondo, M. J., Teixeira, A. P., 2012. Systems biotechnology of 

animal cells: the road to prediction. Trends Biotechnol. 30, 377-85. 

Carlson, R., Fell, D., Srienc, F., 2002. Metabolic pathway analysis of a recombinant yeast for rational strain 

development. Biotechnol Bioeng. 79, 121-34. 

Cascante, M., Cortes, A., 1988. Kinetic studies of chicken and turkey liver mitochondrial aspartate 

aminotransferase. Biochem J. 250, 805-12. 

Cassard, A. M., Bouillaud, F., Mattei, M. G., Hentz, E., Raimbault, S., Thomas, M., Ricquier, D., 1990. 

Human uncoupling protein gene: structure, comparison with rat gene, and assignment to the long 

arm of chromosome 4. J Cell Biochem. 43, 255-64. 



 

 

185 
 

References 

Castegna, A., Scarcia, P., Agrimi, G., Palmieri, L., Rottensteiner, H., Spera, I., Germinario, L., Palmieri, F., 

2010. Identification and functional characterization of a novel mitochondrial carrier for citrate and 

oxoglutarate in Saccharomyces cerevisiae. J Biol Chem. 285, 17359-70. 

Castrillo, J. I., Oliver, S. G., 2011. Yeast systems biology: the challenge of eukaryotic complexity. Methods 

Mol Biol. 759, 3-28. 

Cavero, S., Vozza, A., del Arco, A., Palmieri, L., Villa, A., Blanco, E., Runswick, M. J., Walker, J. E., Cerdan, 

S., Palmieri, F., Satrustegui, J., 2003. Identification and metabolic role of the mitochondrial 

aspartate-glutamate transporter in Saccharomyces cerevisiae. Mol Microbiol. 50, 1257-69. 

Ceccarelli, C., Grodsky, N. B., Ariyaratne, N., Colman, R. F., Bahnson, B. J., 2002. Crystal structure of porcine 

mitochondrial NADP+-dependent isocitrate dehydrogenase complexed with Mn2+ and isocitrate. 

Insights into the enzyme mechanism. J Biol Chem. 277, 43454-62. 

Chakrabarti, A., Miskovic, L., Soh, K. C., Hatzimanikatis, V., 2013. Towards kinetic modeling of genome-

scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological 

constraints. Biotechnol J. 8, 1043-57. 

Chang, Y., Suthers, P. F., Maranas, C. D., 2008. Identification of optimal measurement sets for complete flux 

elucidation in metabolic flux analysis experiments. Biotechnol Bioeng. 100, 1039-49. 

Chen, J., Zheng, H., Liu, H., Niu, J., Liu, J., Shen, T., Rui, B., Shi, Y., 2007. Improving metabolic flux 

estimation via evolutionary optimization for convex solution space. Bioinformatics. 23, 1115-23. 

Chen, N., Koumpouras, G. C., Polizzi, K. M., Kontoravdi, C., 2012. Genome-based kinetic modeling of 

cytosolic glucose metabolism in industrially relevant cell lines: Saccharomyces cerevisiae and 

Chinese hamster ovary cells. Bioprocess Biosyst Eng. 35, 1023-33. 

Christie, K. R., Weng, S., Balakrishnan, R., Costanzo, M. C., Dolinski, K., Dwight, S. S., Engel, S. R., 

Feierbach, B., Fisk, D. G., Hirschman, J. E., Hong, E. L., Issel-Tarver, L., Nash, R., Sethuraman, A., 

Starr, B., Theesfeld, C. L., Andrada, R., Binkley, G., Dong, Q., Lane, C., Schroeder, M., Botstein, D., 

Cherry, J. M., 2004. Saccharomyces Genome Database (SGD) provides tools to identify and analyze 

sequences from Saccharomyces cerevisiae and related sequences from other organisms. Nucleic 

Acids Res. 32, D311-4. 

Cruz, F., Villalba, M., Garcia-Espinosa, M. A., Ballesteros, P., Bogonez, E., Satrustegui, J., Cerdan, S., 2001. 

Intracellular compartmentation of pyruvate in primary cultures of cortical neurons as detected by 

(13)C NMR spectroscopy with multiple (13)C labels. J Neurosci Res. 66, 771-81. 

Cybulski, R. L., Fisher, R. R., 1977. Mitochondrial neutral amino acid transport: evidence for a carrier 

mediated mechanism. Biochemistry. 16, 5116-20. 

[D] 

Da Cruz, S., Xenarios, I., Langridge, J., Vilbois, F., Parone, P. A., Martinou, J. C., 2003. Proteomic analysis of 

the mouse liver mitochondrial inner membrane. J Biol Chem. 278, 41566-71. 

de Forges, H., Bouissou, A., Perez, F., 2012. Interplay between microtubule dynamics and intracellular 

organization. Int J Biochem Cell Biol. 44, 266-74. 

de Oliveira Dal'Molin, C. G., Nielsen, L. K., 2013. Plant genome-scale metabolic reconstruction and 

modelling. Curr Opin Biotechnol. 24, 271-7. 

De Palma, A., Prezioso, G., Scalera, V., 2005. Kinetic evidence for the uniport mechanism hypothesis in the 

mitochondrial tricarboxylate transport system. J Bioenerg Biomembr. 37, 279-87. 

Dean, J., Reddy, P., 2013. Metabolic analysis of antibody producing CHO cells in fed-batch production. 

Biotechnol Bioeng. 110, 1735-47. 



 

 

186 
 

References 

DeBerardinis, R. J., Thompson, C. B., 2012. Cellular metabolism and disease: what do metabolic outliers 

teach us? Cell. 148, 1132-44. 

del Arco, A., Satrustegui, J., 2004. Identification of a novel human subfamily of mitochondrial carriers with 

calcium-binding domains. J Biol Chem. 279, 24701-13. 

Deshpande, R., Yang, T. H., Heinzle, E., 2009. Towards a metabolic and isotopic steady state in CHO batch 

cultures for reliable isotope-based metabolic profiling. Biotechnol J. 4, 247-63. 

Deshpande, R. R., Mammalian Cell Culture: High Throughput Applications of Oxygen Sensor Plates and 

Cellular Physiological Studies Using 13C-Labeling Universität des Saarlandes, Saarbrücken, 2008. 

Di Noia, M. A., Todisco, S., Cirigliano, A., Rinaldi, T., Agrimi, G., Iacobazzi, V., Palmieri, F., 2014. The 

human SLC25A33 and SLC25A36 genes of solute carrier family 25 encode two mitochondrial 

pyrimidine nucleotide transporters. J Biol Chem. 289, 33137-48. 

Dietmair, S., Nielsen, L. K., Timmins, N. E., 2012. Mammalian cells as biopharmaceutical production hosts 

in the age of omics. Biotechnol J. 7, 75-89. 

Dietmair, S., Timmins, N. E., Gray, P. P., Nielsen, L. K., Kromer, J. O., 2010. Towards quantitative 

metabolomics of mammalian cells: development of a metabolite extraction protocol. Anal Biochem. 

404, 155-64. 

Dolce, V., Fiermonte, G., Messina, A., Palmieri, F., 1991. Nucleotide sequence of a human heart cDNA 

encoding the mitochondrial phosphate carrier. DNA Seq. 2, 133-5. 

Du, J., Cleghorn, W. M., Contreras, L., Lindsay, K., Rountree, A. M., Chertov, A. O., Turner, S. J., Sahaboglu, 

A., Linton, J., Sadilek, M., Satrustegui, J., Sweet, I. R., Paquet-Durand, F., Hurley, J. B., 2013. 

Inhibition of mitochondrial pyruvate transport by zaprinast causes massive accumulation of 

aspartate at the expense of glutamate in the retina. J Biol Chem. 288, 36129-40. 

Duarte, T. M., Carinhas, N., Barreiro, L. C., Carrondo, M. J., Alves, P. M., Teixeira, A. P., 2014. Metabolic 

responses of CHO cells to limitation of key amino acids. Biotechnol Bioeng. 111, 2095-106. 

Duchen, M. R., 2004. Roles of mitochondria in health and disease. Diabetes. 53 Suppl 1, S96-102. 

[E] 

Eissing, T., Kuepfer, L., Becker, C., Block, M., Coboeken, K., Gaub, T., Goerlitz, L., Jaeger, J., Loosen, R., 

Ludewig, B., Meyer, M., Niederalt, C., Sevestre, M., Siegmund, H. U., Solodenko, J., Thelen, K., 

Telle, U., Weiss, W., Wendl, T., Willmann, S., Lippert, J., 2011. A computational systems biology 

software platform for multiscale modeling and simulation: integrating whole-body physiology, 

disease biology, and molecular reaction networks. Front Physiol. 2, 4. 

Else, P. L., Hulbert, A. J., 1985. An allometric comparison of the mitochondria of mammalian and reptilian 

tissues: the implications for the evolution of endothermy. J Comp Physiol B. 156, 3-11. 

[F] 

Fan, L., I. Kadura, et al. 2012. Improving the efficiency of CHO cell line generation using glutamine 

synthetase gene knockout cells. Biotechnol Bioeng 109(4): 1007-1015. 

Fang, J., Hsu, B. Y., MacMullen, C. M., Poncz, M., Smith, T. J., Stanley, C. A., 2002. Expression, purification 

and characterization of human glutamate dehydrogenase (GDH) allosteric regulatory mutations. 

Biochem J. 363, 81-7. 

Fiermonte, G., De Leonardis, F., Todisco, S., Palmieri, L., Lasorsa, F. M., Palmieri, F., 2004. Identification of 

the mitochondrial ATP-Mg/Pi transporter. Bacterial expression, reconstitution, functional 

characterization, and tissue distribution. J Biol Chem. 279, 30722-30. 



 

 

187 
 

References 

Fiermonte, G., Dolce, V., Arrigoni, R., Runswick, M. J., Walker, J. E., Palmieri, F., 1999. Organization and 

sequence of the gene for the human mitochondrial dicarboxylate carrier: evolution of the carrier 

family. Biochem J. 344 Pt 3, 953-60. 

Fiermonte, G., Dolce, V., David, L., Santorelli, F. M., Dionisi-Vici, C., Palmieri, F., Walker, J. E., 2003. The 

mitochondrial ornithine transporter. Bacterial expression, reconstitution, functional 

characterization, and tissue distribution of two human isoforms. J Biol Chem. 278, 32778-83. 

Fiermonte, G., Dolce, V., Palmieri, L., Ventura, M., Runswick, M. J., Palmieri, F., Walker, J. E., 2001. 

Identification of the human mitochondrial oxodicarboxylate carrier. Bacterial expression, 

reconstitution, functional characterization, tissue distribution, and chromosomal location. J Biol 

Chem. 276, 8225-30. 

Fiermonte, G., Palmieri, L., Dolce, V., Lasorsa, F. M., Palmieri, F., Runswick, M. J., Walker, J. E., 1998. The 

sequence, bacterial expression, and functional reconstitution of the rat mitochondrial dicarboxylate 

transporter cloned via distant homologs in yeast and Caenorhabditis elegans. J Biol Chem. 273, 

24754-9. 

Fiermonte, G., Palmieri, L., Todisco, S., Agrimi, G., Palmieri, F., Walker, J. E., 2002. Identification of the 

mitochondrial glutamate transporter. Bacterial expression, reconstitution, functional 

characterization, and tissue distribution of two human isoforms. J Biol Chem. 277, 19289-94. 

Flamholz, A., Phillips, R., Milo, R., 2014. The quantified cell. Mol Biol Cell. 25, 3497-500. 

Follstad, B. D., Stephanopoulos, G., 1998. Effect of reversible reactions on isotope label redistribution--

analysis of the pentose phosphate pathway. European Journal of Biochemistry. 252, 360-71. 

Forth, T., McConkey, G. A., Westhead, D. R., 2010. MetNetMaker: a free and open-source tool for the 

creation of novel metabolic networks in SBML format. Bioinformatics. 26, 2352-3. 

Frezza, C., Cipolat, S., Scorrano, L., 2007. Organelle isolation: functional mitochondria from mouse liver, 

muscle and cultured fibroblasts. Nat Protoc. 2, 287-95. 

Friedman, J. R., Nunnari, J., 2014. Mitochondrial form and function. Nature. 505, 335-43. 

Frommer, W. B., Davidson, M. W., Campbell, R. E., 2009. Genetically encoded biosensors based on 

engineered fluorescent proteins. Chem Soc Rev. 38, 2833-41. 

[G] 

Gandhi, V. V., Samuels, D. C., 2011. A review comparing deoxyribonucleoside triphosphate (dNTP) 

concentrations in the mitochondrial and cytoplasmic compartments of normal and transformed 

cells. Nucleosides Nucleotides Nucleic Acids. 30, 317-39. 

Garcia, C. K., Goldstein, J. L., Pathak, R. K., Anderson, R. G., Brown, M. S., 1994. Molecular characterization 

of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the 

Cori cycle. Cell. 76, 865-73. 

Ghorbaniaghdam, A., Henry, O., Jolicoeur, M., 2013. A kinetic-metabolic model based on cell energetic 

state: study of CHO cell behavior under Na-butyrate stimulation. Bioprocess Biosyst Eng. 36, 469-

87. 

Gladden, L. B., 2004. Lactate metabolism: a new paradigm for the third millennium. J Physiol. 558, 5-30. 

Gnoni, G. V., Priore, P., Geelen, M. J., Siculella, L., 2009. The mitochondrial citrate carrier: metabolic role 

and regulation of its activity and expression. IUBMB Life. 61, 987-94. 

Goudar, C., Biener, R., Boisart, C., Heidemann, R., Piret, J., de Graaf, A., Konstantinov, K., 2010. Metabolic 

flux analysis of CHO cells in perfusion culture by metabolite balancing and 2D [13C, 1H] COSY 

NMR spectroscopy. Metab Eng. 12, 138-49. 



 

 

188 
 

References 

Gruetter, R., 2002. In vivo 13C NMR studies of compartmentalized cerebral carbohydrate metabolism. 

Neurochem Int. 41, 143-54. 

Gutierrez-Aguilar, M., Baines, C. P., 2013. Physiological and pathological roles of mitochondrial SLC25 

carriers. Biochem J. 454, 371-86. 

[H] 

Hackl, M., Jakobi, T., Blom, J., Doppmeier, D., Brinkrolf, K., Szczepanowski, R., Bernhart, S. H., Honer Zu 

Siederdissen, C., Bort, J. A., Wieser, M., Kunert, R., Jeffs, S., Hofacker, I. L., Goesmann, A., Puhler, 

A., Borth, N., Grillari, J., 2011. Next-generation sequencing of the Chinese hamster ovary microRNA 

transcriptome: Identification, annotation and profiling of microRNAs as targets for cellular 

engineering. J Biotechnol. 153, 62-75. 

Halestrap, A. P., Price, N. T., 1999. The proton-linked monocarboxylate transporter (MCT) family: structure, 

function and regulation. Biochem J. 343 Pt 2, 281-99. 

Hamel, P., Saint-Georges, Y., de Pinto, B., Lachacinski, N., Altamura, N., Dujardin, G., 2004. Redundancy in 

the function of mitochondrial phosphate transport in Saccharomyces cerevisiae and Arabidopsis 

thaliana. Mol Microbiol. 51, 307-17. 

Hammond, S., Kaplarevic, M., Borth, N., Betenbaugh, M. J., Lee, K. H., 2012. Chinese hamster genome 

database: an online resource for the CHO community at www.CHOgenome.org. Biotechnol Bioeng. 

109, 1353-6. 

Han, S. P., 1977. Globally Convergent Method for Nonlinear-Programming. J Optimiz Theory App. 22, 297-

309. 

Hans, M., Metabolische Charakterisierung von Hefen. Quantifizierung intrazellulärer Metabolite sowie 

metabolischer Stoffflüsse in Saccharomyces cerevisiae und Kluyveromyces marxianus. 

Naturwissenschaftlich-Technischen Fakultät III, Vol. Doktor der Naturwissenschaften. Universität 

des Saarlandes, Saarbrücken, 2003. 

Hansen, H. A., Emborg, C., 1994. Extra- and intracellular amino acid concentrations in continuous Chinese 

hamster ovary cell culture. Appl Microbiol Biotechnol. 41, 560-4. 

Hashimoto, T., Brooks, G. A., 2008. Mitochondrial lactate oxidation complex and an adaptive role for 

lactate production. Med Sci Sports Exerc. 40, 486-94. 

Hashimoto, T., Hussien, R., Brooks, G. A., 2006. Colocalization of MCT1, CD147, and LDH in mitochondrial 

inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. Am J 

Physiol Endocrinol Metab. 290, E1237-44. 

Hashimoto, T., Hussien, R., Cho, H. S., Kaufer, D., Brooks, G. A., 2008. Evidence for the mitochondrial 

lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate 

shuttles. PLoS One. 3, e2915. 

Hassanein, M., Hoeksema, M. D., Shiota, M., Qian, J., Harris, B. K., Chen, H., Clark, J. E., Alborn, W. E., 

Eisenberg, R., Massion, P. P., 2013. SLC1A5 mediates glutamine transport required for lung cancer 

cell growth and survival. Clin Cancer Res. 19, 560-70. 

Hatefi, Y., Galante, Y. M., 1977. Dehydrogenase and transhydrogenase properties of the soluble NADH 

dehydrogenase of bovine heart mitochondria. Proc Natl Acad Sci U S A. 74, 846-50. 

Hayduk, E. J., Choe, L. H., Lee, K. H., 2004. A two-dimensional electrophoresis map of Chinese hamster 

ovary cell proteins based on fluorescence staining. Electrophoresis. 25, 2545-56. 

Hayward, B. E., Hussain, A., Wilson, R. H., Lyons, A., Woodcock, V., McIntosh, B., Harris, T. J., 1986. The 

cloning and nucleotide sequence of cDNA for an amplified glutamine synthetase gene from the 

Chinese hamster. Nucleic Acids Res. 14, 999-1008. 



 

 

189 
 

References 

Henry, C. S., Broadbelt, L. J., Hatzimanikatis, V., 2007. Thermodynamics-based metabolic flux analysis. 

Biophys J. 92, 1792-805. 

Henry, O., Jolicoeur, M., Kamen, A., 2011. Unraveling the metabolism of HEK-293 cells using lactate 

isotopomer analysis. Bioprocess Biosyst Eng. 34, 263-73. 

Herzig, S., Raemy, E., Montessuit, S., Veuthey, J. L., Zamboni, N., Westermann, B., Kunji, E. R., Martinou, J. 

C., 2012. Identification and functional expression of the mitochondrial pyruvate carrier. Science. 

337, 93-6. 

Hildyard, J. C., Halestrap, A. P., 2003. Identification of the mitochondrial pyruvate carrier in Saccharomyces 

cerevisiae. Biochem J. 374, 607-11. 

Hinkle, P. C., 2005. P/O ratios of mitochondrial oxidative phosphorylation. Biochim Biophys Acta. 1706, 1-11. 

Hofmann, U., Maier, K., Niebel, A., Vacun, G., Reuss, M., Mauch, K., 2008. Identification of metabolic fluxes 

in hepatic cells from transient 13C-labeling experiments: Part I. Experimental observations. 

Biotechnol Bioeng. 100, 344-54. 

Holthuis, J. C., Ungermann, C., 2013. Cellular microcompartments constitute general suborganellar 

functional units in cells. Biol Chem. 394, 151-61. 

Horst, M., Knecht, E. C., Schu, P. V., 1999. Import into and degradation of cytosolic proteins by isolated 

yeast vacuoles. Mol Biol Cell. 10, 2879-89. 

Houldsworth, J., Attardi, G., 1988. Two distinct genes for ADP/ATP translocase are expressed at the mRNA 

level in adult human liver. Proc Natl Acad Sci U S A. 85, 377-81. 

Huizing, M., Iacobazzi, V., Ijlst, L., Savelkoul, P., Ruitenbeek, W., van den Heuvel, L., Indiveri, C., Smeitink, 

J., Trijbels, F., Wanders, R., Palmieri, F., 1997. Cloning of the human carnitine-acylcarnitine carrier 

cDNA and identification of the molecular defect in a patient. Am J Hum Genet. 61, 1239-45. 

Hussien, R., Brooks, G. A., 2011. Mitochondrial and plasma membrane lactate transporter and lactate 

dehydrogenase isoform expression in breast cancer cell lines. Physiological Genomics. 43, 255-64. 

[I] 

Iacobazzi, V., Palmieri, F., Runswick, M. J., Walker, J. E., 1992. Sequences of the human and bovine genes for 

the mitochondrial 2-oxoglutarate carrier. DNA Seq. 3, 79-88. 

Indiveri, C., Abruzzo, G., Stipani, I., Palmieri, F., 1998. Identification and purification of the reconstitutively 

active glutamine carrier from rat kidney mitochondria. Biochem J. 333 ( Pt 2), 285-90. 

Israel, M., Schwartz, L., 2011. The metabolic advantage of tumor cells. Mol Cancer. 10, 70. 

[J] 

Jandt, U., You, C., Zhang, Y. H., Zeng, A. P., 2013. Compartmentalization and metabolic channeling for 

multienzymatic biosynthesis: practical strategies and modeling approaches. Adv Biochem Eng 

Biotechnol. 137, 41-65. 

Jastroch, M., Divakaruni, A. S., Mookerjee, S., Treberg, J. R., Brand, M. D., 2010. Mitochondrial proton and 

electron leaks. Essays Biochem. 47, 53-67. 

Jayapal, K. P., Wlaschin, K. F., Hu, W.-S., Yap, M. G. S., 2007. Recombinant Protein Therapeutics from CHO 

Cells - 20 Years and Counting. Chemical Engineering Progress. 103, 40-47  

Jitrapakdee, S., Wallace, J. C., 1999. Structure, function and regulation of pyruvate carboxylase. Biochem J. 

340 ( Pt 1), 1-16. 



 

 

190 
 

References 

Jorda, J., Rojas, H. C., Carnicer, M., Wahl, A., Ferrer, P., Albiol, J., 2014. Quantitative Metabolomics and 

Instationary 13C-Metabolic Flux Analysis Reveals Impact of Recombinant Protein Production on 

Trehalose and Energy Metabolism in Pichia pastoris. Metabolites. 4, 281-99. 

Jorda, J., Suarez, C., Carnicer, M., ten Pierick, A., Heijnen, J. J., van Gulik, W., Ferrer, P., Albiol, J., Wahl, A., 

2013. Glucose-methanol co-utilization in Pichia pastoris studied by metabolomics and instationary 

(1)(3)C flux analysis. BMC Syst Biol. 7, 17. 

[K] 

Kaas, C. S., Fan, Y., Weilguny, D., Kristensen, C., Kildegaard, H. F., Andersen, M. R., 2014. Toward genome-

scale models of the Chinese hamster ovary cells: incentives, status and perspectives. 

Pharmaceutical Bioprocessing. 2, 437-448. 

Kajihata, S., Furusawa, C., Matsuda, F., Shimizu, H., 2014. OpenMebius: an open source software for 

isotopically nonstationary 13C-based metabolic flux analysis. Biomed Res Int. 2014, 627014. 

Kaleta, C., de Figueiredo, L. F., Schuster, S., 2009. Can the whole be less than the sum of its parts? Pathway 

analysis in genome-scale metabolic networks using elementary flux patterns. Genome Res. 19, 1872-

83. 

Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., Tanabe, M., 2014. Data, information, 

knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 42, D199-205. 

Kang, J., Samuels, D. C., 2008. The evidence that the DNC (SLC25A19) is not the mitochondrial 

deoxyribonucleotide carrier. Mitochondrion. 8, 103-8. 

Kantardjieff, A., Nissom, P. M., Chuah, S. H., Yusufi, F., Jacob, N. M., Mulukutla, B. C., Yap, M., Hu, W. S., 

2009. Developing genomic platforms for Chinese hamster ovary cells. Biotechnol Adv. 27, 1028-35. 

Kaplan, R. S., Mayor, J. A., Gremse, D. A., Wood, D. O., 1995. High level expression and characterization of 

the mitochondrial citrate transport protein from the yeast Saccharomyces cerevisiae. J Biol Chem. 

270, 4108-14. 

Karp, P. D., Paley, S. M., Krummenacker, M., Latendresse, M., Dale, J. M., Lee, T. J., Kaipa, P., Gilham, F., 

Spaulding, A., Popescu, L., Altman, T., Paulsen, I., Keseler, I. M., Caspi, R., 2010. Pathway Tools 

version 13.0: integrated software for pathway/genome informatics and systems biology. Brief 

Bioinform. 11, 40-79. 

Keech, D. B., Utter, M. F., 1963. Pyruvate Carboxylase. Ii. Properties. J Biol Chem. 238, 2609-14. 

Kell, D. B., 2006. Systems biology, metabolic modelling and metabolomics in drug discovery and 

development. Drug Discov Today. 11, 1085-92. 

Kelley, K. M., Hamann, J. J., Navarre, C., Gladden, L. B., 2002. Lactate metabolism in resting and contracting 

canine skeletal muscle with elevated lactate concentration. J Appl Physiol (1985). 93, 865-72. 

Kildegaard, H. F., Baycin-Hizal, D., Lewis, N. E., Betenbaugh, M. J., 2013. The emerging CHO systems 

biology era: harnessing the 'omics revolution for biotechnology. Curr Opin Biotechnol. 24, 1102-7. 

Kim, J. Y., Kim, Y. G., Lee, G. M., 2012. CHO cells in biotechnology for production of recombinant proteins: 

current state and further potential. Appl Microbiol Biotechnol. 93, 917-30. 

Klein, T., Niklas, J., Heinzle, E., 2015. Engineering the supply chain for protein production/secretion in 

yeasts and mammalian cells. J Ind Microbiol Biotechnol. 

Kline, E. S., Brandt, R. B., Laux, J. E., Spainhour, S. E., Higgins, E. S., Rogers, K. S., Tinsley, S. B., Waters, M. 

G., 1986. Localization of L-lactate dehydrogenase in mitochondria. Arch Biochem Biophys. 246, 

673-80. 

Kobayashi, K., Saheki, T., Song, Y. Z., 1993. Citrin Deficiency. 



 

 

191 
 

References 

Kroemer, G., Galluzzi, L., Brenner, C., 2007. Mitochondrial membrane permeabilization in cell death. 

Physiol Rev. 87, 99-163. 

Kuan, J., Saier, M. H., Jr., 1993. The mitochondrial carrier family of transport proteins: structural, functional, 

and evolutionary relationships. Crit Rev Biochem Mol Biol. 28, 209-33. 

Kuznetsov, A. V., Veksler, V., Gellerich, F. N., Saks, V., Margreiter, R., Kunz, W. S., 2008. Analysis of 

mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc. 3, 965-

76. 

Kyoto Daigaku. Kagaku Kenkyåujo. Seitai Johogaku., KEGG, Kyoto encyclopedia of genes and genomes. The 

Center, Kyoto, 2001. 

[L] 

Lane, M., Gardner, D. K., 2005. Mitochondrial malate-aspartate shuttle regulates mouse embryo nutrient 

consumption. J Biol Chem. 280, 18361-7. 

Lawson, J. E., Douglas, M. G., 1988. Separate genes encode functionally equivalent ADP/ATP carrier 

proteins in Saccharomyces cerevisiae. Isolation and analysis of AAC2. J Biol Chem. 263, 14812-8. 

Lee, H. W., Christie, A., Starkey, J. A., Read, E. K., Yoon, S., 2015. Intracellular metabolic flux analysis of 

CHO cells supplemented with wheat hydrolysates for improved mAb production and cell-growth. J 

Chem Technol Biot. 90, 291-302. 

Lee, S. M., Koh, H. J., Park, D. C., Song, B. J., Huh, T. L., Park, J. W., 2002. Cytosolic NADP(+)-dependent 

isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med. 32, 1185-

96. 

Leighty, R. W., Antoniewicz, M. R., 2011. Dynamic metabolic flux analysis (DMFA): a framework for 

determining fluxes at metabolic non-steady state. Metab Eng. 13, 745-55. 

Lemasters, J. J., 2007. Modulation of mitochondrial membrane permeability in pathogenesis, autophagy and 

control of metabolism. J Gastroenterol Hepatol. 22 Suppl 1, S31-7. 

Lemire, J., Mailloux, R. J., Appanna, V. D., 2008. Mitochondrial lactate dehydrogenase is involved in 

oxidative-energy metabolism in human astrocytoma cells (CCF-STTG1). PLoS One. 3, e1550. 

Lequeux, G., Beauprez, J., Maertens, J., Van Horen, E., Soetaert, W., Vandamme, E., Vanrolleghem, P. A., 

2010. Dynamic metabolic flux analysis demonstrated on cultures where the limiting substrate is 

changed from carbon to nitrogen and vice versa. J Biomed Biotechnol. 2010. 

Lewis, C. A., Parker, S. J., Fiske, B. P., McCloskey, D., Gui, D. Y., Green, C. R., Vokes, N. I., Feist, A. M., 

Vander Heiden, M. G., Metallo, C. M., 2014. Tracing compartmentalized NADPH metabolism in the 

cytosol and mitochondria of mammalian cells. Mol Cell. 55, 253-63. 

Lewis, N. E., Liu, X., Li, Y., Nagarajan, H., Yerganian, G., O'Brien, E., Bordbar, A., Roth, A. M., Rosenbloom, 

J., Bian, C., Xie, M., Chen, W., Li, N., Baycin-Hizal, D., Latif, H., Forster, J., Betenbaugh, M. J., 

Famili, I., Xu, X., Wang, J., Palsson, B. O., 2013. Genomic landscapes of Chinese hamster ovary cell 

lines as revealed by the Cricetulus griseus draft genome. Nat Biotechnol. 31, 759-65. 

Liu, L. a., Systems biology of recombinant protein production by fungi. 

Locasale, J. W., Cantley, L. C., 2011. Metabolic flux and the regulation of mammalian cell growth. Cell 

Metab. 14, 443-51. 

Lu, D., Mulder, H., Zhao, P., Burgess, S. C., Jensen, M. V., Kamzolova, S., Newgard, C. B., Sherry, A. D., 2002. 

13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-

stimulated insulin secretion (GSIS). Proc Natl Acad Sci U S A. 99, 2708-13. 

Lu, S., Sun, X., Zhang, Y., 2005. Insight into metabolism of CHO cells at low glucose concentration on the 

basis of the determination of intracellular metabolites. Process Biochemistry. 40, 1917-1921. 



 

 

192 
 

References 

Lucas, M., Laplaze, L., Bennett, M. J., 2011. Plant systems biology: network matters. Plant Cell Environ. 34, 

535-53. 

[M] 

Ma, F., Jazmin, L. J., Young, J. D., Allen, D. K., 2014. Isotopically nonstationary 13C flux analysis of changes 

in Arabidopsis thaliana leaf metabolism due to high light acclimation. Proc Natl Acad Sci U S A. 111, 

16967-72. 

Madden, E. A., Storrie, B., 1987. The preparative isolation of mitochondria from Chinese hamster ovary 

cells. Anal Biochem. 163, 350-7. 

Madeira, V. M., 2012. Overview of mitochondrial bioenergetics. Methods Mol Biol. 810, 1-6. 

Maier, K., Hofmann, U., Reuss, M., Mauch, K., 2008. Identification of metabolic fluxes in hepatic cells from 

transient 13C-labeling experiments: Part II. Flux estimation. Biotechnol Bioeng. 100, 355-70. 

Malaisse, W. J., Zhang, Y., Sener, A., 2004. Enzyme-to-enzyme channeling in the early steps of glycolysis in 

rat pancreatic islets. Endocrine. 24, 105-9. 

Margineantu, D. H., Brown, R. M., Brown, G. K., Marcus, A. H., Capaldi, R. A., 2002. Heterogeneous 

distribution of pyruvate dehydrogenase in the matrix of mitochondria. Mitochondrion. 1, 327-38. 

Marobbio, C. M., Agrimi, G., Lasorsa, F. M., Palmieri, F., 2003. Identification and functional reconstitution 

of yeast mitochondrial carrier for S-adenosylmethionine. Embo J. 22, 5975-82. 

Marobbio, C. M., Di Noia, M. A., Palmieri, F., 2006. Identification of a mitochondrial transporter for 

pyrimidine nucleotides in Saccharomyces cerevisiae: bacterial expression, reconstitution and 

functional characterization. Biochem J. 393, 441-6. 

Marobbio, C. M., Vozza, A., Harding, M., Bisaccia, F., Palmieri, F., Walker, J. E., 2002. Identification and 

reconstitution of the yeast mitochondrial transporter for thiamine pyrophosphate. Embo J. 21, 5653-

61. 

Martinez, V. S., Dietmair, S., Quek, L. E., Hodson, M. P., Gray, P., Nielsen, L. K., 2013. Flux balance analysis 

of CHO cells before and after a metabolic switch from lactate production to consumption. 

Biotechnol Bioeng. 110, 660-6. 

Mazurek, S., Zwerschke, W., Jansen-Durr, P., Eigenbrodt, E., 2001. Metabolic cooperation between different 

oncogenes during cell transformation: interaction between activated ras and HPV-16 E7. Oncogene. 

20, 6891-8. 

McKenna, M. C., Tildon, J. T., Stevenson, J. H., Huang, X., Kingwell, K. G., 1995. Regulation of mitochondrial 

and cytosolic malic enzymes from cultured rat brain astrocytes. Neurochem Res. 20, 1491-501. 

Metallo, C. M., Gameiro, P. A., Bell, E. L., Mattaini, K. R., Yang, J., Hiller, K., Jewell, C. M., Johnson, Z. R., 

Irvine, D. J., Guarente, L., Kelleher, J. K., Vander Heiden, M. G., Iliopoulos, O., Stephanopoulos, G., 

2012. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 481, 

380-4. 

Metallo, C. M., Walther, J. L., Stephanopoulos, G., 2009. Evaluation of 13C isotopic tracers for metabolic flux 

analysis in mammalian cells. J Biotechnol. 144, 167-74. 

Michal, G., Schomburg, D., 2012. Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology. 

John Wiley & Sons, Ltd., West Sussex, United Kingdom. 

Millard, P., Sokol, S., Letisse, F., Portais, J. C., 2014. IsoDesign: a software for optimizing the design of 13C-

metabolic flux analysis experiments. Biotechnol Bioeng. 111, 202-8. 

Milne, G. L., Sanchez, S. C., Musiek, E. S., Morrow, J. D., 2007. Quantification of F2-isoprostanes as a 

biomarker of oxidative stress. Nat Protoc. 2, 221-6. 



 

 

193 
 

References 

Mizuarai, S., Miki, S., Araki, H., Takahashi, K., Kotani, H., 2005. Identification of dicarboxylate carrier 

Slc25a10 as malate transporter in de novo fatty acid synthesis. J Biol Chem. 280, 32434-41. 

Mo, M. L., Jamshidi, N., Palsson, B. O., 2007. A genome-scale, constraint-based approach to systems biology 

of human metabolism. Mol Biosyst. 3, 598-603. 

Mootha, V. K., Bunkenborg, J., Olsen, J. V., Hjerrild, M., Wisniewski, J. R., Stahl, E., Bolouri, M. S., Ray, H. 

N., Sihag, S., Kamal, M., Patterson, N., Lander, E. S., Mann, M., 2003. Integrated analysis of protein 

composition, tissue diversity, and gene regulation in mouse mitochondria. Cell. 115, 629-40. 

Moreno-Sanchez, R., Marin-Hernandez, A., Saavedra, E., Pardo, J. P., Ralph, S. J., Rodriguez-Enriquez, S., 

2014. Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer 

energy metabolism. Int J Biochem Cell Biol. 50, 10-23. 

Morris, M. E., Felmlee, M. A., 2008. Overview of the proton-coupled MCT (SLC16A) family of transporters: 

characterization, function and role in the transport of the drug of abuse gamma-hydroxybutyric 

acid. AAPS J. 10, 311-21. 

Mozo, J., Ferry, G., Studeny, A., Pecqueur, C., Rodriguez, M., Boutin, J. A., Bouillaud, F., 2006. Expression of 

UCP3 in CHO cells does not cause uncoupling, but controls mitochondrial activity in the presence 

of glucose. Biochem J. 393, 431-9. 

Mulukutla, B. C., Gramer, M., Hu, W. S., 2012. On metabolic shift to lactate consumption in fed-batch 

culture of mammalian cells. Metab Eng. 14, 138-49. 

Murphy, T. A., Dang, C. V., Young, J. D., 2013. Isotopically nonstationary 13C flux analysis of Myc-induced 

metabolic reprogramming in B-cells. Metab Eng. 15, 206-17. 

[N] 

Narkewicz, M. R., Sauls, S. D., Tjoa, S. S., Teng, C., Fennessey, P. V., 1996. Evidence for intracellular 

partitioning of serine and glycine metabolism in Chinese hamster ovary cells. Biochem J. 313 ( Pt 3), 

991-6. 

Nassir, F., Ibdah, J. A., 2014. Role of mitochondria in alcoholic liver disease. World J Gastroenterol. 20, 2136-

42. 

Neuner, A., Heinzle, E., 2011. Mixed glucose and lactate uptake by Corynebacterium glutamicum through 

metabolic engineering. Biotechnol J. 6, 318-29. 

Nicolae, A., Wahrheit, J., Bahnemann, J., Zeng, A. P., Heinzle, E., 2014. Non-stationary 13C metabolic flux 

analysis of Chinese hamster ovary cells in batch culture using extracellular labeling highlights 

metabolic reversibility and compartmentation. BMC Syst Biol. 8, 50. 

Niklas, J., Heinzle, E., 2012. Metabolic flux analysis in systems biology of Mammalian cells. Adv Biochem 

Eng Biotechnol. 127, 109-32. 

Niklas, J., Melnyk, A., Yuan, Y., Heinzle, E., 2011a. Selective permeabilization for the high-throughput 

measurement of compartmented enzyme activities in mammalian cells. Anal Biochem. 416, 218-27. 

Niklas, J., Sandig, V., Heinzle, E., 2011b. Metabolite channeling and compartmentation in the human cell 

line AGE1.HN determined by 13C labeling experiments and 13C metabolic flux analysis. J Biosci 

Bioeng. 112, 616-23. 

Niklas, J., Schrader, E., Sandig, V., Noll, T., Heinzle, E., 2011c. Quantitative characterization of metabolism 

and metabolic shifts during growth of the new human cell line AGE1.HN using time resolved 

metabolic flux analysis. Bioprocess Biosyst Eng. 

Noack, S., Noh, K., Moch, M., Oldiges, M., Wiechert, W., 2010. Stationary versus non-stationary (13)C-MFA: 

A comparison using a consistent dataset. J Biotechnol. 



 

 

194 
 

References 

Noh, K., Droste, P., Wiechert, W., 2015. Visual workflows for 13C-metabolic flux analysis. Bioinformatics. 31, 

346-54. 

Noh, K., Gronke, K., Luo, B., Takors, R., Oldiges, M., Wiechert, W., 2007. Metabolic flux analysis at ultra 

short time scale: isotopically non-stationary 13C labeling experiments. J Biotechnol. 129, 249-67. 

Noh, K., Wahl, A., Wiechert, W., 2006. Computational tools for isotopically instationary 13C labeling 

experiments under metabolic steady state conditions. Metab Eng. 8, 554-77. 

Noh, K., Wiechert, W., 2006. Experimental design principles for isotopically instationary 13C labeling 

experiments. Biotechnol Bioeng. 94, 234-51. 

Noh, K., Wiechert, W., 2011. The benefits of being transient: isotope-based metabolic flux analysis at the 

short time scale. Appl Microbiol Biotechnol. 91, 1247-65. 

Nolan, R. P., Lee, K., 2010. Dynamic model of CHO cell metabolism. Metab Eng. 13, 108-24. 

Nyberg, G. B., Balcarcel, R. R., Follstad, B. D., Stephanopoulos, G., Wang, D. I., 1999. Metabolism of peptide 

amino acids by Chinese hamster ovary cells grown in a complex medium. Biotechnol Bioeng. 62, 

324-35. 

[O] 

O'Donnell-Tormey, J., Nathan, C. F., Lanks, K., DeBoer, C. J., de la Harpe, J., 1987. Secretion of pyruvate. An 

antioxidant defense of mammalian cells. J Exp Med. 165, 500-14. 

Orman, M. A., Arai, K., Yarmush, M. L., Androulakis, I. P., Berthiaume, F., Ierapetritou, M. G., 2010. 

Metabolic flux determination in perfused livers by mass balance analysis: effect of fasting. 

Biotechnol Bioeng. 107, 825-35. 

Orman, M. A., Berthiaume, F., Androulakis, I. P., Ierapetritou, M. G., 2011. Advanced stoichiometric analysis 

of metabolic networks of mammalian systems. Crit Rev Biomed Eng. 39, 511-34. 

[P] 

Pagliarini, D. J., Calvo, S. E., Chang, B., Sheth, S. A., Vafai, S. B., Ong, S. E., Walford, G. A., Sugiana, C., 

Boneh, A., Chen, W. K., Hill, D. E., Vidal, M., Evans, J. G., Thorburn, D. R., Carr, S. A., Mootha, V. 

K., 2008. A mitochondrial protein compendium elucidates complex I disease biology. Cell. 134, 112-

23. 

Palmieri, F., 2008. Diseases caused by defects of mitochondrial carriers: a review. Biochim Biophys Acta. 

1777, 564-78. 

Palmieri, F., 2013. The mitochondrial transporter family SLC25: identification, properties and 

physiopathology. Mol Aspects Med. 34, 465-84. 

Palmieri, L., Agrimi, G., Runswick, M. J., Fearnley, I. M., Palmieri, F., Walker, J. E., 2001. Identification in 

Saccharomyces cerevisiae of two isoforms of a novel mitochondrial transporter for 2-oxoadipate 

and 2-oxoglutarate. J Biol Chem. 276, 1916-22. 

Palmieri, L., Lasorsa, F. M., De Palma, A., Palmieri, F., Runswick, M. J., Walker, J. E., 1997. Identification of 

the yeast ACR1 gene product as a succinate-fumarate transporter essential for growth on ethanol or 

acetate. FEBS Lett. 417, 114-8. 

Palmieri, L., Lasorsa, F. M., Vozza, A., Agrimi, G., Fiermonte, G., Runswick, M. J., Walker, J. E., Palmieri, F., 

2000. Identification and functions of new transporters in yeast mitochondria. Biochim Biophys 

Acta. 1459, 363-9. 



 

 

195 
 

References 

Palmieri, L., Vozza, A., Agrimi, G., De Marco, V., Runswick, M. J., Palmieri, F., Walker, J. E., 1999. 

Identification of the yeast mitochondrial transporter for oxaloacetate and sulfate. J Biol Chem. 274, 

22184-90. 

Pannone, E., Fiermonte, G., Dolce, V., Rocchi, M., Palmieri, F., 1998. Assignment of the human 

dicarboxylate carrier gene (DIC) to chromosome 17 band 17q25.3. Cytogenet Cell Genet. 83, 238-9. 

Papin, J. A., Stelling, J., Price, N. D., Klamt, S., Schuster, S., Palsson, B. O., 2004. Comparison of network-

based pathway analysis methods. Trends Biotechnol. 22, 400-5. 

Pecqueur, C., Bui, T., Gelly, C., Hauchard, J., Barbot, C., Bouillaud, F., Ricquier, D., Miroux, B., Thompson, 

C. B., 2008. Uncoupling protein-2 controls proliferation by promoting fatty acid oxidation and 

limiting glycolysis-derived pyruvate utilization. FASEB J. 22, 9-18. 

Perez-Bercoff, A., McLysaght, A., Conant, G. C., 2011. Patterns of indirect protein interactions suggest a 

spatial organization to metabolism. Mol Biosyst. 7, 3056-64. 

Peuhkurinen, K. J., Hiltunen, J. K., Hassinen, I. E., 1983. Metabolic compartmentation of pyruvate in the 

isolated perfused rat heart. Biochem J. 210, 193-8. 

Phelps, A., Schobert, C. T., Wohlrab, H., 1991. Cloning and characterization of the mitochondrial phosphate 

transport protein gene from the yeast Saccharomyces cerevisiae. Biochemistry. 30, 248-52. 

Philp, A., Macdonald, A. L., Watt, P. W., 2005. Lactate--a signal coordinating cell and systemic function. J 

Exp Biol. 208, 4561-75. 

Porcelli, V., Fiermonte, G., Longo, A., Palmieri, F., 2014. The Human Gene SLC25A29, of Solute Carrier 

Family 25, Encodes a Mitochondrial Transporter of Basic Amino Acids. J Biol Chem. 289, 13374-84. 

Prohl, C., Pelzer, W., Diekert, K., Kmita, H., Bedekovics, T., Kispal, G., Lill, R., 2001. The yeast mitochondrial 

carrier Leu5p and its human homologue Graves' disease protein are required for accumulation of 

coenzyme A in the matrix. Mol Cell Biol. 21, 1089-97. 

Provost, A., Bastin, G., Agathos, S. N., Schneider, Y. J., 2006. Metabolic design of macroscopic bioreaction 

models: application to Chinese hamster ovary cells. Bioprocess Biosyst Eng. 29, 349-66. 

Pruitt, K. D., Katz, K. S., Sicotte, H., Maglott, D. R., 2000. Introducing RefSeq and LocusLink: curated 

human genome resources at the NCBI. Trends Genet. 16, 44-7. 

Puck, T. T., 1985. Development of the chinese hamster ovary (CHO) cell for use in somatic cell genetics, ed. 

Gottesman MM, John Wiley & Sons,  37–64. In: Gottesman, M. M., (Ed.), Molecular Cell Genetics. 

John Wiley & Sons, New York, pp. 37–64. 

[Q] 

Quek, L. E., Dietmair, S., Kromer, J. O., Nielsen, L. K., 2009a. Metabolic flux analysis in mammalian cell 

culture. Metab Eng. 12, 161-71. 

Quek, L. E., Wittmann, C., Nielsen, L. K., Kromer, J. O., 2009b. OpenFLUX: efficient modelling software for 

13C-based metabolic flux analysis. Microb Cell Fact. 8, 25. 

[R] 

Raimundo, N., Baysal, B. E., Shadel, G. S., 2011. Revisiting the TCA cycle: signaling to tumor formation. 

Trends Mol Med. 17, 641-9. 

Ray, L. B., 2010. Metabolism Is Not Boring INTRODUCTION. Science. 330, 1337-1337. 

Ross, D. W., Mel, H. C., 1972. Growth dynamics of mitochondria in synchronized Chinese hamster cells. 

Biophys J. 12, 1562-72. 

 



 

 

196 
 

References 

[S] 

Sagrista, M. L., Bozal, J., 1987. Lactate and malate dehydrogenase binding to the microsomal fraction from 

chicken liver. Biochimie. 69, 1207-15. 

Sanchis, D., Fleury, C., Chomiki, N., Goubern, M., Huang, Q., Neverova, M., Gregoire, F., Easlick, J., 

Raimbault, S., Levi-Meyrueis, C., Miroux, B., Collins, S., Seldin, M., Richard, D., Warden, C., 

Bouillaud, F., Ricquier, D., 1998. BMCP1, a novel mitochondrial carrier with high expression in the 

central nervous system of humans and rodents, and respiration uncoupling activity in recombinant 

yeast. J Biol Chem. 273, 34611-5. 

Sauer, U., Heinemann, M., Zamboni, N., 2007. Genetics. Getting closer to the whole picture. Science. 316, 

550-1. 

Sazanov, L. A., Jackson, J. B., 1994. Proton-translocating transhydrogenase and NAD- and NADP-linked 

isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the 

tricarboxylic acid cycle activity in mitochondria. FEBS Lett. 344, 109-16. 

Schafer, Z. T., Grassian, A. R., Song, L., Jiang, Z., Gerhart-Hines, Z., Irie, H. Y., Gao, S., Puigserver, P., 

Brugge, J. S., 2009. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix 

attachment. Nature. 461, 109-13. 

Schell, J. C., Rutter, J., 2013. The long and winding road to the mitochondrial pyruvate carrier. Cancer 

Metab. 1, 6. 

Schellenberger, J., Que, R., Fleming, R. M., Thiele, I., Orth, J. D., Feist, A. M., Zielinski, D. C., Bordbar, A., 

Lewis, N. E., Rahmanian, S., Kang, J., Hyduke, D. R., Palsson, B. O., 2011. Quantitative prediction of 

cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc. 6, 1290-

307. 

Schiff, D., Purow, B. W., 2009. Neuro-oncology: Isocitrate dehydrogenase mutations in low-grade gliomas. 

Nat Rev Neurol. 5, 303-4. 

Schmidt, K., Carlsen, M., Nielsen, J., Villadsen, J., 1997. Modeling isotopomer distributions in biochemical 

networks using isotopomer mapping matrices. Biotechnol Bioeng. 55, 831-40. 

Schmidt, K., Nielsen, J., Villadsen, J., 1999. Quantitative analysis of metabolic fluxes in Escherichia coli, 

using two-dimensional NMR spectroscopy and complete isotopomer models. J Biotechnol. 71, 175-

89. 

Schuster, S., Fell, D. A., Dandekar, T., 2000. A general definition of metabolic pathways useful for 

systematic organization and analysis of complex metabolic networks. Nat Biotechnol. 18, 326-32. 

Schwartz, J. M., Kanehisa, M., 2006. Quantitative elementary mode analysis of metabolic pathways: the 

example of yeast glycolysis. BMC Bioinformatics. 7, 186. 

Sellick, C. A., Croxford, A. S., Maqsood, A. R., Stephens, G., Westerhoff, H. V., Goodacre, R., Dickson, A. J., 

2011a. Metabolite profiling of recombinant CHO cells: designing tailored feeding regimes that 

enhance recombinant antibody production. Biotechnol Bioeng. 108, 3025-31. 

Sellick, C. A., Hansen, R., Maqsood, A. R., Dunn, W. B., Stephens, G. M., Goodacre, R., Dickson, A. J., 2009. 

Effective quenching processes for physiologically valid metabolite profiling of suspension cultured 

Mammalian cells. Anal Chem. 81, 174-83. 

Sellick, C. A., Hansen, R., Stephens, G. M., Goodacre, R., Dickson, A. J., 2011b. Metabolite extraction from 

suspension-cultured mammalian cells for global metabolite profiling. Nat. Protocols. 6, 1241-1249. 

Sengupta, N., Rose, S. T., Morgan, J. A., 2010. Metabolic flux analysis of CHO cell metabolism in the late 

non-growth phase. Biotechnol Bioeng. 108, 82-92. 

Shampine, L. F., Reichelt, M. W., 1997. The MATLAB ODE suite. Siam J Sci Comput. 18, 1-22. 



 

 

197 
 

References 

Sheikholeslami, Z., Jolicoeur, M., Henry, O., 2013. Probing the metabolism of an inducible mammalian 

expression system using extracellular isotopomer analysis. J Biotechnol. 164, 469-78. 

Sheikholeslami, Z., Jolicoeur, M., Henry, O., 2014. Elucidating the effects of postinduction glutamine 

feeding on the growth and productivity of CHO cells. Biotechnol Prog. 30, 535-46. 

Sidorenko, Y., Wahl, A., Dauner, M., Genzel, Y., Reichl, U., 2008. Comparison of metabolic flux 

distributions for MDCK cell growth in glutamine- and pyruvate-containing media. Biotechnol Prog. 

24, 311-20. 

Sigurdsson, M. I., Jamshidi, N., Steingrimsson, E., Thiele, I., Palsson, B. O., 2010. A detailed genome-wide 

reconstruction of mouse metabolism based on human Recon 1. BMC Syst Biol. 4, 140. 

Slade, P. G., Hajivandi, M., Bartel, C. M., Gorfien, S. F., 2012. Identifying the CHO secretome using mucin-

type O-linked glycosylation and click-chemistry. J Proteome Res. 11, 6175-86. 

Srour, O., Young, J. D., Eldar, Y. C., 2011. Fluxomers: a new approach for 13C metabolic flux analysis. BMC 

Syst Biol. 5, 129. 

Strigun, A., Wahrheit, J., Beckers, S., Heinzle, E., Noor, F., 2011. Metabolic profiling using HPLC allows 

classification of drugs according to their mechanisms of action in HL-1 cardiomyocytes. Toxicol 

Appl Pharmacol. 252, 183-91. 

Strigun, A., Wahrheit, J., Niklas, J., Heinzle, E., Noor, F., 2012. Doxorubicin increases oxidative metabolism 

in HL-1 cardiomyocytes as shown by 13C metabolic flux analysis. Toxicol Sci. 125, 595-606. 

Strumilo, S., 2005. Short-term regulation of the alpha-ketoglutarate dehydrogenase complex by energy-

linked and some other effectors. Biochemistry (Mosc). 70, 726-9. 

[T] 

Templeton, N., Dean, J., Reddy, P., Young, J. D., 2013. Peak antibody production is associated with increased 

oxidative metabolism in an industrially relevant fed-batch CHO cell culture. Biotechnol Bioeng. 110, 

2013-24. 

Terzer, M., Stelling, J., 2008. Large-scale computation of elementary flux modes with bit pattern trees. 

Bioinformatics. 24, 2229-35. 

Thiele, I., Price, N. D., Vo, T. D., Palsson, B. O., 2005. Candidate metabolic network states in human 

mitochondria. Impact of diabetes, ischemia, and diet. J Biol Chem. 280, 11683-95. 

Thiele, I., Swainston, N., Fleming, R. M., Hoppe, A., Sahoo, S., Aurich, M. K., Haraldsdottir, H., Mo, M. L., 

Rolfsson, O., Stobbe, M. D., Thorleifsson, S. G., Agren, R., Bolling, C., Bordel, S., Chavali, A. K., 

Dobson, P., Dunn, W. B., Endler, L., Hala, D., Hucka, M., Hull, D., Jameson, D., Jamshidi, N., 

Jonsson, J. J., Juty, N., Keating, S., Nookaew, I., Le Novere, N., Malys, N., Mazein, A., Papin, J. A., 

Price, N. D., Selkov, E., Sr., Sigurdsson, M. I., Simeonidis, E., Sonnenschein, N., Smallbone, K., 

Sorokin, A., van Beek, J. H., Weichart, D., Goryanin, I., Nielsen, J., Westerhoff, H. V., Kell, D. B., 

Mendes, P., Palsson, B. O., 2013. A community-driven global reconstruction of human metabolism. 

Nat Biotechnol. 31, 419-25. 

Timon-Gomez, A., Proft, M., Pascual-Ahuir, A., 2013. Differential regulation of mitochondrial pyruvate 

carrier genes modulates respiratory capacity and stress tolerance in yeast. PLoS One. 8, e79405. 

Titus, S. A., Moran, R. G., 2000. Retrovirally mediated complementation of the glyB phenotype. Cloning of a 

human gene encoding the carrier for entry of folates into mitochondria. J Biol Chem. 275, 36811-7. 

Todisco, S., Agrimi, G., Castegna, A., Palmieri, F., 2006. Identification of the mitochondrial NAD+ 

transporter in Saccharomyces cerevisiae. J Biol Chem. 281, 1524-31. 



 

 

198 
 

References 

Tuttle, S., Stamato, T., Perez, M. L., Biaglow, J., 2000. Glucose-6-phosphate dehydrogenase and the 

oxidative pentose phosphate cycle protect cells against apoptosis induced by low doses of ionizing 

radiation. Radiat Res. 153, 781-7. 

Tyo, K. E., Liu, Z., Petranovic, D., Nielsen, J., 2012. Imbalance of heterologous protein folding and disulfide 

bond formation rates yields runaway oxidative stress. BMC Biol. 10, 16. 

[V] 

van Meer, G., Voelker, D. R., Feigenson, G. W., 2008. Membrane lipids: where they are and how they 

behave. Nat Rev Mol Cell Biol. 9, 112-24. 

van Roermund, C. W., Hettema, E. H., van den Berg, M., Tabak, H. F., Wanders, R. J., 1999. Molecular 

characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria 

in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p. 

Embo J. 18, 5843-52. 

Vander Heiden, M. G., Locasale, J. W., Swanson, K. D., Sharfi, H., Heffron, G. J., Amador-Noguez, D., 

Christofk, H. R., Wagner, G., Rabinowitz, J. D., Asara, J. M., Cantley, L. C., 2010. Evidence for an 

alternative glycolytic pathway in rapidly proliferating cells. Science. 329, 1492-9. 

Varma, A., Palsson, B. O., 1994. Metabolic Flux Balancing - Basic Concepts, Scientific and Practical Use. Bio-

Technol. 12, 994-998. 

Vizan, P., Alcarraz-Vizan, G., Diaz-Moralli, S., Solovjeva, O. N., Frederiks, W. M., Cascante, M., 2009. 

Modulation of pentose phosphate pathway during cell cycle progression in human colon 

adenocarcinoma cell line HT29. Int J Cancer. 124, 2789-96. 

Vozza, A., Blanco, E., Palmieri, L., Palmieri, F., 2004. Identification of the mitochondrial GTP/GDP 

transporter in Saccharomyces cerevisiae. J Biol Chem. 279, 20850-7. 

[W] 

Wahrheit, J., Heinzle, E., 2013. Sampling and quenching of CHO suspension cells for the analysis of 

intracellular metabolites. BMC Proc. 7, 42. 

Wahrheit, J., Heinzle, E., 2014a. Quenching methods for the analysis of intracellular metabolites. Methods 

Mol Biol. 1104, 211-21. 

Wahrheit, J., Heinzle, E., 2014b. Quenching Methods for the Analysis of Intracellular Metabolites. In: 

Pörtner, R., (Ed.), Animal Cell Biotechnology. vol. 1104. Humana Press, pp. 211-221. 

Wahrheit, J., Nicolae, A., Heinzle, E., 2011a. Eukaryotic metabolism: measuring compartment fluxes. 

Biotechnol J. 6, 1071-85. 

Wahrheit, J., Nicolae, A., Heinzle, E., 2014a. Dynamics of growth and metabolism controlled by glutamine 

availability in Chinese hamster ovary cells. Appl Microbiol Biotechnol. 98, 1771-83. 

Wahrheit, J., Niklas, J., Heinzle, E., 2011b. Evaluation of sampling and quenching procedures for the analysis 

of intracellular metabolites in CHO suspension cells. BMC Proc. 5 Suppl 8, P82. 

Wahrheit, J., Niklas, J., Heinzle, E., 2014b. Metabolic control at the cytosol-mitochondria interface in 

different growth phases of CHO cells. Metab Eng. 23C, 9-21. 

Wahrheit, J., Nonnenmacher, Y., Sperber, S., Heinzle, E., 2015. High-throughput respiration screening of 

single mitochondrial substrates using permeabilized CHO cells highlights control of mitochondria 

metabolism. Engineering in Life Sciences. n/a-n/a. 

Wallace, D. C., 2012. Mitochondria and cancer. Nat Rev Cancer. 12, 685-98. 

Walsh, G., 2010. Biopharmaceutical benchmarks 2010. Nat Biotechnol. 28, 917-24. 



 

 

199 
 

References 

Walter, P., Stucki, J. W., 1970. Regulation of pyruvate carboxylase in rat liver mitochondria by adenine 

nucleotides and short chain fatty acids. European Journal of Biochemistry. 12, 508-19. 

Weibel, E. R., Staubli, W., Gnagi, H. R., Hess, F. A., 1969. Correlated morphometric and biochemical studies 

on the liver cell. I. Morphometric model, stereologic methods, and normal morphometric data for 

rat liver. J Cell Biol. 42, 68-91. 

Wellen, K. E., Thompson, C. B., 2010. Cellular metabolic stress: considering how cells respond to nutrient 

excess. Mol Cell. 40, 323-32. 

Wiback, S. J., Famili, I., Greenberg, H. J., Palsson, B. O., 2004. Monte Carlo sampling can be used to 

determine the size and shape of the steady-state flux space. J Theor Biol. 228, 437-47. 

Wiback, S. J., Mahadevan, R., Palsson, B. O., 2003. Reconstructing metabolic flux vectors from extreme 

pathways: defining the alpha-spectrum. J Theor Biol. 224, 313-24. 

Wiback, S. J., Palsson, B. O., 2002. Extreme pathway analysis of human red blood cell metabolism. Biophys 

J. 83, 808-18. 

Wiechert, W., de Graaf, A. A., 1997. Bidirectional reaction steps in metabolic networks: I. Modeling and 

simulation of carbon isotope labeling experiments. Biotechnol Bioeng. 55, 101-17. 

Wiechert, W., Noh, K., 2005. From stationary to instationary metabolic flux analysis. Adv Biochem Eng 

Biotechnol. 92, 145-72. 

Willemsen, A. M., Hendrickx, D. M., Hoefsloot, H. C., Hendriks, M. M., Wahl, S. A., Teusink, B., Smilde, A. 

K., van Kampen, A. H., 2015. MetDFBA: incorporating time-resolved metabolomics measurements 

into dynamic flux balance analysis. Mol Biosyst. 11, 137-45. 

Williamson, J. R., Cooper, R. H., 1980. Regulation of the citric acid cycle in mammalian systems. FEBS Lett. 

117 Suppl, K73-85. 

Wittmann, C., Heinzle, E., 1999. Mass spectrometry for metabolic flux analysis. Biotechnology and 

Bioengineering. 62, 739-750. 

Wittmann, C., Heinzle, E., 2002. Genealogy profiling through strain improvement by using metabolic 

network analysis: metabolic flux genealogy of several generations of lysine-producing 

corynebacteria. Appl Environ Microbiol. 68, 5843-59. 

Wu, F., Yang, F., Vinnakota, K. C., Beard, D. A., 2007. Computer modeling of mitochondrial tricarboxylic 

acid cycle, oxidative phosphorylation, metabolite transport, and electrophysiology. J Biol Chem. 

282, 24525-37. 

[X] 

Xie, L., Wang, D. I., 1996. Material balance studies on animal cell metabolism using a stoichiometrically 

based reaction network. Biotechnol Bioeng. 52, 579-90. 

Xu, X., Nagarajan, H., Lewis, N. E., Pan, S., Cai, Z., Liu, X., Chen, W., Xie, M., Wang, W., Hammond, S., 

Andersen, M. R., Neff, N., Passarelli, B., Koh, W., Fan, H. C., Wang, J., Gui, Y., Lee, K. H., 

Betenbaugh, M. J., Quake, S. R., Famili, I., Palsson, B. O., 2011. The genomic sequence of the 

Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol. 29, 735-41. 

[Y] 

Yang, H., Mandy, D. E., Libourel, I. G., 2014. Optimal design of isotope labeling experiments. Methods Mol 

Biol. 1083, 133-47. 

Yang, T. H., Bolten, C. J., Coppi, M. V., Sun, J., Heinzle, E., 2009. Numerical bias estimation for mass 

spectrometric mass isotopomer analysis. Anal Biochem. 388, 192-203. 



 

 

200 
 

References 

Yang, T. H., Frick, O., Heinzle, E., 2008. Hybrid optimization for 13C metabolic flux analysis using systems 

parametrized by compactification. BMC Syst Biol. 2, 29. 

Young, J. D., 2014. INCA: a computational platform for isotopically non-stationary metabolic flux analysis. 

Bioinformatics. 30, 1333-5. 

[Z] 

Zamboni, N., 2011. (13)C metabolic flux analysis in complex systems. Curr Opin Biotechnol. 22, 103-8. 

Zamboni, N., Fendt, S. M., Ruhl, M., Sauer, U., 2009. (13)C-based metabolic flux analysis. Nat Protoc. 4, 878-

92. 

Zamboni, N., Fischer, E., Sauer, U., 2005. FiatFlux--a software for metabolic flux analysis from 13C-glucose 

experiments. BMC Bioinformatics. 6, 209. 

Zamorano, F., Vande Wouwer, A., Jungers, R. M., Bastin, G., 2012. Dynamic metabolic models of CHO cell 

cultures through minimal sets of elementary flux modes. J Biotechnol. 

Zamorano, F., Wouwer, A. V., Bastin, G., 2010. A detailed metabolic flux analysis of an underdetermined 

network of CHO cells. J Biotechnol. 150, 497-508. 

Zara, V., Ferramosca, A., Papatheodorou, P., Palmieri, F., Rassow, J., 2005. Import of rat mitochondrial 

citrate carrier (CIC) at increasing salt concentrations promotes presequence binding to import 

receptor Tom20 and inhibits membrane translocation. J Cell Sci. 118, 3985-95. 

Zarrilli, R., Oates, E. L., McBride, O. W., Lerman, M. I., Chan, J. Y., Santisteban, P., Ursini, M. V., Notkins, A. 

L., Kohn, L. D., 1989. Sequence and chromosomal assignment of a novel cDNA identified by 

immunoscreening of a thyroid expression library: similarity to a family of mitochondrial solute 

carrier proteins. Mol Endocrinol. 3, 1498-505. 

Zhang, F., Sun, X., Yi, X., Zhang, Y., 2006. Metabolic characteristics of recombinant Chinese hamster ovary 

cells expressing glutamine synthetase in presence and absence of glutamine. Cytotechnology. 51, 21-

8. 

Zhang, Y. H., 2011. Substrate channeling and enzyme complexes for biotechnological applications. 

Biotechnol Adv. 29, 715-25. 

Zhao, Q., Kurata, H., 2009. Maximum entropy decomposition of flux distribution at steady state to 

elementary modes. Journal of Bioscience and Bioengineering. 107, 84-89. 

Zhu, Y., King, B. L., Parvizi, B., Brunk, B. P., Stoeckert, C. J., Jr., Quackenbush, J., Richardson, J., Bult, C. J., 

2003. Integrating computationally assembled mouse transcript sequences with the Mouse Genome 

Informatics (MGI) database. Genome Biol. 4, R16. 

Zupke, C., Stephanopoulos, G., 1994. Modeling of Isotope Distributions and Intracellular Fluxes in 

Metabolic Networks Using Atom Mapping Matrices. Biotechnol Progr. 10, 489-498. 

Zupke, C., Stephanopoulos, G., 1995. Intracellular flux analysis in hybridomas using mass balances and in 

vitro (13)C nmr. Biotechnol Bioeng. 45, 292-303. 

Zurbriggen, M. D., Moor, A., Weber, W., 2012. Plant and bacterial systems biology as platform for plant 

synthetic bio(techno)logy. J Biotechnol. 160, 80-90. 

Zwingmann, C., Richter-Landsberg, C., Leibfritz, D., 2001. 13C isotopomer analysis of glucose and alanine 

metabolism reveals cytosolic pyruvate compartmentation as part of energy metabolism in 

astrocytes. Glia. 34, 200-12. 

 

  



 

 

 
 

 
 
 
 

Curriculum 
Vitae 

 

Work experience  

 March  2015 - present 

Position Research Associate 

Employer University of Luxembourg, 
Luxembourg Center for Systems Biomedicine 

  November  2008 – September  2014 

Position  Scientific Research Assistant 

Employer Universität des Saarlandes, Technische Biochemie 

 March 2007 – October 2008 

Position Scientific Research Assistant 

Employer Institutul National pentru Cercetare – Dezvoltare in Stiinte 
Biologice 
(National Institute for Research and Development in 
Biological Sciences) 

Education   

 November 2008 → 2015  

Title Doctoral course for PhD in Biochemical Engineering 
(Doktor-Ingenieur in Biowissenschaften) 

 Universität des Saarlandes 

 2006 → 2008 

Title Master in Biotechnology 

 University Politehnica of Bucharest 

 2001 → 2006 

Title Diploma Engineer of Chemical Engineering (with honors) 

 University Politehnica of Bucharest 

 1997 →  2001 

Title Baccalaureate (Secondary School Diploma) 

 “Mircea cel Batran” National College, Constanta 
 



 

 

 
 

 

 


