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Abstract

Atom-based quantum memories and processors, interconnected through photonic quan-
tum channels, are a promising platform for quantum networks with the goal of secure
information transmission and calculational speed-up.

In my dissertation, I first cover the experimental methods and tools for the manipu-
lation of single 40Ca+ ions. This includes a narrow-band laser for addressing an optical
quantum bit (qubit) as well as a magnetic field for the manipulation of a radio-frequency
qubit.

Furthermore, I describe experiments toward the implementation of basic quantum
networks; by means of suitable laser excitation, we generate single photons, tailored both
temporally and spectrally, onto which we transfer the ion’s coherence properties.

Finally, I present a protocol in which the polarization state of a single photon is
transferred onto the spin state of a single ion through an absorption process. Successful
state transfer is heralded by the detection of a Raman-scattered photon. This property of
the protocol (heralded quantum-state transfer) allows for mapping the photonic onto the
atomic quantum state with high fidelity, even in the case of low absorption probabilities.
In addition, a slight modification of the experimental scheme allows for the generation of
an entangled atom-photon state.



Zusammenfassung

Eine vielversprechende Plattform für Quantennetzwerke zum Zwecke sicherer Informati-
onsübertragung und erhöhter Rechengeschwindigkeit sind auf einzelnen Atomen basieren-
de Quantenspeicher und -prozessoren, die untereinander Information durch Lichtquanten
(Photonen) austauschen.

In meiner Dissertation behandele ich zunächst die experimentellen Methoden und
Werkzeuge zur Manipulation einzelner 40Ca+-Ionen. Dazu zählen ein schmalbandiger Laser
zur Adressierung eines optischen Quantenbits (Qubit) sowie ein Magnetfeld zur Manipu-
lation eines Radiofrequenzqubits.

Im Weiteren beschreibe ich vorbereitende Experimente zur Implementierung einfacher
Quantennetzwerke; durch geeignete Laseranregung lassen sich zeitlich und spektral maß-
geschneiderte Einzelphotonen erzeugen, auf die sich die Kohärenzeigenschaften des Ions
übertragen lassen.

Schließlich stelle ich ein Protokoll vor, mit dem der Polarisationszustand eines einzel-
nen Photons durch Absorption auf den Spinzustand eines einzelnen Ions übertragen wird.
Erfolgreiche Zustandsübertragungen werden durch die Detektion eines Raman-gestreuten
Photons angekündigt. Diese Eigenschaft des Protokolls (heralded quantum-state transfer)
erlaubt das Übertragen des photonischen auf den atomaren Quantenzustand mit hoher
Güte (Fidelity), selbst im Fall geringer Absorptionswahrscheinlichkeiten. Eine leichte Mo-
difikation des experimentellen Schemas erlaubt zudem die Erzeugung eines verschränkten
Atom-Photon-Zustands.
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Introduction

In the course of the past decades, computer science has brought vast socio-economic and
ecological changes to society. The ability to process information in a rapid and automatized
way, accompanied by the advent of the internet, enabled the development of technical
applications that have revolutionized our everyday life. However, despite today’s enormous
computing capacities, certain types of mathematical problems have so far eluded efficient1

computation by current technology. While no efficient algorithms for these intractable
problems seem to exist on classical computers, quantum physics offers concepts that allow
one to tackle these issues through a qualitative computational speed-up [1].

Quantum computing

Classical computers operate on registers of binary digits (bits) [2] that can be in the
logical states 0 and 1. Following the input–process–output dogma [3], information is
written onto the register, processed through logic gates, and read out. Since a classical
bit can be in only one state at a time, only one input state can be processed at a time.
Quantum physics, however, provides us with quantum bits (qubits) [1], which can be
in both logical states simultaneously (quantum superposition). Furthermore, qubits can
exhibit non-classical correlations (quantum entanglement). These characteristics allow
processing many different input states by a single computational step, a feature sometimes
referred to as quantum parallelism [4]. However, it is not trivial to extract the desired
information from the quantum register after performing a quantum computation. This
has led to the conclusion that a quantum processor excels only at certain mathematical
problems for which suitable quantum algorithms exist. The probably best-known example
is Shor’s algorithm [5] which efficiently factorizes composite numbers into their primes and
computes discrete logarithms. It is based on the quantum Fourier transform [1], which
is also the groundwork for the Deutsch-Jozsa algorithm [6] which efficiently determines if
a given function is balanced or constant. Another class of quantum algorithms are those
based on amplitude amplification [7], the most prominent being Grover’s algorithm [8]
for the efficient search of unstructured databases. A third class of algorithms is based
on quantum walks [9] which enable exponential speed-ups for certain black-box (oracle)
problems.

In addition to the ambition of quantum computing, a more specialized approach is
1In this context, “efficient” means that the computing time scales only polynomially with the input

length, in contrast to e.g. exponential scaling.
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Introduction

found in the branch of quantum simulation [10]; many physical phenomena, in particular
quantum many-body systems [11] such as magnetism and superconductivity, cannot be
simulated efficiently on a classical computer. In 1982, Richard Feynman proposed using
a well-controlled quantum system that is engineered in order to behave like the physical
system under study [12]. While the latter might be hard to control experimentally, it
might be simulated efficiently on another, more easily controllable system.

However, beyond the special-purpose quantum simulator, great interest was raised
by the idea of a universal quantum computer, also referred to as quantum Turing ma-
chine. This concept, first proposed by David Deutsch in 1985 [4] and inspired by Richard
Feynman’s idea of a quantum simulator, allows one to harness all power of quantum com-
putation in that any quantum algorithm can be implemented through quantum logic gates
[1]. Similar to classical computation, a quantum gate performs quantum operations on
one or several qubits. A universal set of quantum gates is any finite set of gates that allows
one to approximate any conceivable quantum operation through a finite sequence of gates.
An example for such a set are the Hadamard gate, a phase rotation and a controlled-
NOT gate. Another universal set is that containing only the three-qubit Deutsch gate
[13]. It should be mentioned at this point that important alternative approaches, such as
measurement-based models [14, 15] or adiabatic quantum computation [16, 17], exist, but
the general trend in quantum computing seems to tend toward the gate-based concept.

On the experimental side, many physical systems have proven worth investigating for
the implementation of a quantum-information processor. They can be grouped in three
categories, of which the most representative systems shall be named:

• Quantum-optical systems: photons [14, 18], electrons [19], trapped atoms [20, 21]
and ions [22, 23]

• Solid-state systems: superconducting circuits [24, 25], quantum dots [26], color cen-
ters in diamond [27]

• Nuclear magnetic resonance (NMR) systems [28, 29]

As technology evolved and all these systems became more and more developed, it became
necessary to define precise requirements on a physical system. In 2000, David DiVincenzo
formulated the well-known criteria named after him that any physical system aspiring to
constitute a universal quantum-information processor ought to fulfill [30]:

1. The qubits are well-defined and well-characterized, and the system is scalable.

2. All qubits can be initialized to a well-defined state.

3. The qubit coherence time significantly exceeds the typical gate-operation time.

4. A universal set of quantum gates exists.

5. All qubits can be read out individually.

10
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The quantum system of choice: single trapped ions

Of all the physical systems listed above, single trapped atomic ions have come closest
to complying with the DiVincenzo criteria, proving to be among the most promising
candidates for future large-scale quantum-information processors [31, 32]. Atomic ions can
be confined by oscillating electric fields and well isolated from the laboratory environment
[33]. Hence they can easily be cooled to very low temperatures [34] and exhibit very
long coherence times [35]. Typically, the electronic (internal) state of a single ion is used
to encode a qubit, while the collective motion (external state) of a string of single ions
acts as a quantum bus between the qubits. Laser, radio-frequency and microwave sources
that are nowadays close to technical perfection are used to manipulate both the electronic
and motional state of an ion string at a very high degree of control. This facilitates
the quantum operations required to implement universal sets of quantum gates; the ions
can be addressed individually by laser beams [36], but also by microwave fields [37], to
perform single-qubit gates, while addressing the collective motion allows for executing
multi-qubit gates [38, 39]. That way, a number of quantum-gate operations have been
demonstrated experimentally, such as single-qubit rotations and phase shifts [40], the
geometric phase gate [38], the controlled-NOT gate [41, 42], the Toffoli gate [43], and the
highly versatile Mølmer-Sørensen gate [44, 45, 39]. Nowadays, many of these gates are
carried out with very high fidelity [46]. Prior to any gate operations, however, all qubits
must be initialized in a pure electronic state, which is usually achieved through optical-
pumping techniques [47]. Following a sequence of gates, the qubits can be individually
read out through state-dependent fluorescence measurements [48]. Furthermore, quantum
error-correction protocols, which will allow for fault-tolerant quantum computing, have
been devised [49, 50] and implemented [51, 52]. With these tools at hand, a number of
quantum algorithms have been realized in proof-of-principle experiments, e.g. the Deutsch-
Jozsa algorithm [53] and the quantum Fourier transform [54].

Also, the great advances of quantum simulations implemented in systems of single
trapped ions should be mentioned. To name only a few, models of interacting spins, such
as the Ising model [55], have been simulated, but also relativistic phenomena like Klein
tunneling [56] and the zitterbewegung [56] have been studied.

Quantum networks

The approach toward a quantum-information processor based on strings of single trapped
ions reaches its limit in the first DiVincenzo criterion, i.e. scalability; as the number of ions
increases, so does the number of motional modes, increasing the spectral mode density
(“mode crowding”). The smaller the mode spacing, the lower the speed at which many
types of quantum gates that make use of the ions’ collective motion can be executed.
At some point, quantum algorithms will become too slow to be carried out in a sensible
amount of time. In addition, it becomes increasingly hard to maintain qubit coherence
over the duration of a computational cycle.

Two widely recognized approaches have been proposed that might be able to overcome
the scalability issue. One is based on arrays of microtraps within the same quantum-

11



Introduction

information processor, where each microtrap holds only a manageable number of ions [22,
57, 58, 59]. Exchanging quantum information between the traps by shuttling single ions
creates a quantum-information processor which is much more powerful than the entity of
independently working microtraps. However, this approach is technically very challenging,
in particular due to anomalous heating [60]. This effect is very prominent in microtraps;
ions trapped in close proximity (typically 20 – 50 µm) to the trap surface experience much
higher heating rates when compared with ions held in traditional, macroscopic traps.
This effect is not yet fully understood and currently constitutes a major obstacle to the
microtrap approach.

Our group, however, pursues the approach of quantum networking [21, 61]. The funda-
mental idea is similar to that of the microtrap array; the quantum-information processor is
broken up into small processing units (network nodes, containing the “stationary qubits”)
that are connected through optical channels. Instead of shuttling the ions themselves,
quantum information is exchanged through photons (“flying qubits”) via the optical chan-
nels. In order to formulate requirements on any practical implementation of a quantum
network, the DiVincenzo criteria have been extended [30]:

6. Stationary and flying qubits can be interconverted.

7. Flying qubits can be transmitted faithfully between network nodes.

We focus on these two criteria in particular, as their implementation represents the back-
bone of quantum networking.

The essential resource in a quantum-network scenario is distant entanglement: in order
to have several network nodes form a larger-scale quantum-information processor, indi-
vidual stationary qubits from different nodes need to be entangled. Three experimental
schemes for establishing distant entanglement have emerged so far, one of which is based on
the projective measurement of photonic quantum states: in either a single-photon [62, 63]
or two-photon [64, 65, 66] configuration, photons emitted from two stationary qubits are
brought to interference on a beam splitter, and their subsequent detection projects the two
stationary qubits onto an entangled state. In another scheme, a stationary qubit from one
node is entangled with a photon, and the latter is sent to another network node where its
state is mapped onto another stationary qubit, thereby attaining entanglement between
the two qubits [67, 68]. Our group, however, also pursues a third approach: a photon
source, in our case a spontaneous parametric down-conversion (SPDC) source [69, 70],
emits pairs of entangled photons. The two photons of a pair are split up and sent to two
different network nodes. Mapping the quantum state of each photon onto a stationary
qubit at the respective node transfers the entanglement from the photon pair onto the two
nodes (hence the term entanglement transfer) [71, 72, 73].

Distant entanglement has brought forward many interesting applications in addition to
quantum computation. For example, the concept of quantum repeaters [74] plays an essen-
tial role in transmitting quantum information over large distances. Despite the availability
of low-cost optical fibers with very low absorption losses in the near-infrared region (tele-
com C and O band), photonic quantum states cannot be transmitted faithfully beyond a
typical distance of ∼ 10 km [75, 76]. Very much in analogy to classical repeaters, breaking a
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long quantum channel into smaller ones, connected through quantum repeaters, will allow
one to overcome the current limitation imposed by fiber attenuation. Another application
for distant entanglement has been found in quantum teleportation [77, 78, 79, 80]. Once
entanglement has been established between the qubits of two network nodes, a special
kind of projective measurement (coupled with the transmission of classical information)
allows for transferring the state of a qubit from one node to the other.

Quantum-network interfaces

At the heart of a quantum network lies the interface that facilitates the exchange of quan-
tum information between flying and stationary qubits. Such an interface must provide
efficient as well as faithful conversion of quantum states between the two kinds of qubits.
In the context of quantum networks based on single atoms or ions, a variety of techni-
cal approaches has been undertaken so far, a very popular one being optical resonators
(cavities) [81, 82]. Atoms trapped inside a cavity are strongly coupled to the cavity light
modes, enabling efficient quantum-state conversion between atoms and photons. Integrat-
ing such a cavity with ion traps for quantum-information processing has, however, proven
to be technically very challenging since efficient atom-light coupling requires small cavity
volumes and thus very small ion traps.

A very different approach is found in objectives and lenses of high numerical aperture
(NA) [83, 84, 85]. They impose less restrictive demands on the size of ion traps and are
significantly easier to handle than optical cavities, albeit they are not yet a match for
cavities in terms of coupling efficiency. We have chosen to employ high-NA objectives
which allow for large experimental flexibility and easily accommodate most types of ion
traps.

Also, the novel approach of mirrors for atom-photon interfaces should be mentioned.
Strong atom-light coupling has been demonstrated by placing a single ion in the focal
spot of a parabolic mirror [86, 87]. However, this method is once more experimentally
challenging; positioning the ion at the focal spot is a delicate task, and handling the
polarization pattern of light emitted by the ion is highly nontrivial.

This work

We operate two independent, spatially separated Paul traps for confining, cooling and
manipulating single 40Ca+ ions. Objectives of high numerical aperture (NA = 0.4) allow
for efficient coupling between the atomic state and the light field. The work presented in
this thesis comprises the realization of basic quantum-networking operations. This includes
both the experimental prerequisites and the demonstration of fundamental building blocks
for quantum networks.

After introducing the theoretical and experimental principles, I cover the experimen-
tal methods and tools required for the control and manipulation of quantum-mechanical
states. This includes a narrow-band laser resonant with an optical transition between two
long-lived atomic states, the latter forming an optical qubit. Another type of qubit is rep-
resented by two Zeeman substates whose transition frequency lies in the radio-frequency
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domain. This qubit is manipulated coherently and independently of the ion’s thermal mo-
tion by means of a magnetic field. Further experimental methods for state manipulation
include cooling of the thermal motion and optical pumping to specific Zeeman states.

Furthermore, I describe experiments toward the implementation of basic quantum
networks. We demonstrate the efficient generation of single photons from a single ion,
controlled through sequences of laser pulses [88]. The photons’ temporal and spectral
properties are governed by suitable choice of the laser parameters. In the following, we
modify this scheme to map atomic phase information onto the photonic quantum state
[89].

In the last chapter, I present the realization of two typical building blocks for quantum
networks; for the first, we implement a protocol in which the polarization state of a single
photon is mapped onto the quantum state of a single ion through an absorption process
[90]. Successful state transfer is heralded by the detection of a Raman-scattered photon.
This particular property of the protocol allows for a high state-transfer fidelity, even in the
case of low absorption probabilities. The scheme constitutes the pinnacle of my thesis; it is
currently the only one that enables high-fidelity heralded photon-to-atom quantum-state
transfer and, at the same time, local quantum-information processing. We achieve transfer
fidelities > 95 %, while work from competing groups [81, 91] has so far been limited to
fidelities < 10 % due to the lack of a suitable heralding signal2. In contrast, quantum
memories based on atomic ensembles [92] have been shown to be suitable for heralded
photon-to-atom quantum-state transfer; ensembles, however, do not offer the prospect of
local quantum-information processing.

Our second building block for quantum-networking is formed by an experiment en-
tangling a single photon with the ion. A spontaneous Raman photon is emitted as the
ion returns from an excited to the ground state via two atomic transitions that result in
distinct final states of the ion’s angular-momentum degree of freedom, hence the photonic
polarization becomes entangled with the atomic spin.

I conducted most of the experiments presented in this thesis with my colleagues Michael
Schug and Jan Huwer. Some of this work, such as setting up the narrow-band qubit laser
and atom-to-photon phase mapping, is described in more detail in their Ph.D. theses
[93, 94].

2Non-heralded schemes: even though the fidelity in the case of a successful state transfer may be very
high, the fidelity in a single experimental shot is limited by the photon-absorption probability (< 10 %).
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Chapter 1

Trapping ions

Singly ionized atoms from the alkaline earth group provide textbook examples for a quan-
tum mechanical system. With their single valence electron, they are well understood by
theory and the first choice for studying single atomic quantum systems. With the advent
of laser cooling [95, 96, 97], control over the quantum state of single ions in all degrees of
freedom by quantum-optical means came within reach [98, 99]. After being an interest-
ing subject of study of its own, improved experimental control led to first applications of
trapped ions as in the fields of time and frequency measurements [100, 101] and quantum
information processing [102, 103, 104, 32].

However, experiments with trapped ions require a large technical overhead. Apart
from the ion trap itself with the need for ultra-high vacuum conditions, complex laser
systems and experimental control units are required. This chapter will give an overview
of the theoretical part, including trapping of ions and light-matter interaction, as well as
the experimental section covering details of the actual setup in our laboratory.

1.1 Trapping theory

The following section is dedicated to giving a brief insight into the theory of trapping and
manipulating single ions. After illustrating the principle of the radio-frequency ion trap,
the basics of light-matter interaction for cooling and coherently controlling single trapped
ions will be presented.

1.1.1 The Paul trap

The centerpiece of quantum-optical experiments using single trapped ions is the radio-
frequency trap invented by Wolfgang Paul [105]. It is based on oscillating and static
electric fields (as opposed to the Penning trap, which employs static electric and magnetic
fields) and allows for confining ions over time scales of hours to days [106].

As the Paul trap facilitates control over all atomic degrees of freedom (electronic and
motional) [107], it has become of high importance in the field of high-precision measure-
ments, including atomic-mass spectrometry [108] and frequency measurements [100, 101].
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URF cos (Ωt)

Utip

Utip

Ground

z
y

x

Fig. 1.1: Linear Paul trap for confining charged particles. Shown are the blade electrodes for
radial and the end-tip electrodes for axial confinement.

Originally designed as an ion-mass filter [109], a linear version of the Paul trap became
popular in the field of quantum information as it allows for performing quantum-logic
operations in strings of trapped ions [41, 42].

In the following, I will illustrate the basic principle of the linear Paul trap, while more
detailed descriptions are found in [110, 111, 112].

Operating principle

As opposed to traps which make use of magnetic fields to confine charged particles, a
Paul trap uses purely electric fields. A desirable trapping potential would be of harmonic
shape,

Φ (~r) = Φ0
(
αx2 + β y2 + γ z2

)
, (1.1)

and attractive in all three dimensions, i.e. α, β, γ > 0 (for Φ0 > 0). However, in order to
satisfy Laplace’s equation ∆Φ = 0 (following from Maxwell’s equations in free space), the
condition

α+ β + γ = 0 (1.2)

is derived, which means it is not possible to spatially confine charged particles in all three
dimensions with purely static electric fields (Earnshaw’s theorem [113]). This is resolved
by using instead a temporally varying electric field in combination with a static field.
A schematic of the type of linear Paul trap we use is shown in fig. 1.1. It comprises
four diagonally arranged blade electrodes and two end-tip electrodes. Applying a radio-
frequency voltage U (t) = URF cos (Ωt) to a pair of opposing trap blades while grounding
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1.1. Trapping theory

the others generates the electric quadrupole potential

ΦRF (~r) = URF
2 r2

0

(
r2

0 + x2 − y2
)

cos (Ωt) . (1.3)

At the same time, a static potential

Φtip (~r) = αUtip
2 l20

(
2z2 − x2 − y2

)
, (1.4)

is superimposed by applying a static voltage Utip > 0 to the end-tip electrodes. Here r0 and
l0 denote half the distance between opposing trap blades and the end tips, respectively.
The geometry factor α accounts for the deviation of the end-tip shape from an ideal
hyperbolic surface. The net force from these potentials on an ion with a single positive
charge is

~F = −e~∇ (ΦRF + Φtip) . (1.5)

From Newton’s law ~F = m~̈r, we derive the equations of motions for an ion of mass m:

ẍ+
(
−αUtip

l20
+ URF

r2
0

cos (Ωt)
)
e

m
x = 0 (1.6)

ÿ +
(
−αUtip

l20
− URF

r2
0

cos (Ωt)
)
e

m
y = 0 (1.7)

z̈ + 2 αUtip
l20

e

m
z = 0 (1.8)

Introducing the stability parameters

ax = ay = −az2 = −4α eUtip
ml20 Ω2 (1.9)

and
qx = −qy = − 2 eURF

mr2
0 Ω2 , qz = 0 (1.10)

yields the Mathieu equations of motion

r̈i + (ai − 2qi cos (Ωt)) Ω2

4 ri = 0 (1.11)

with i = x, y, z. As ansatz we choose a solution of the form

ri (t) = r0,i cos (ωit)
(

1− qi
2 cos (Ωt)

)
, (1.12)

representing a harmonic oscillation with frequency ωi (the secular motion), amplitude-
modulated at the drive frequency Ω (the micromotion1). This ansatz solves the Mathieu
equation under the pseudopotential approximation [114]; we assume the secular motion to

1The term micromotion stems from its amplitude which is much smaller than that of the secular motion
for typical values of qi.
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Chapter 1. Trapping ions

be at a much lower frequency than the micromotion (ωi � Ω). The ion’s motion is thus
governed by a quasi-static potential, the pseudopotential. After inserting the ansatz 1.12
into the differential equation 1.11, we take the time average of all fast-oscillating terms,
i.e. cos (Ωt)→ 0 and cos2 (Ωt)→ 1

2 , and obtain the condition

ωi = Ω
2

√
ai + q2

i

2 (1.13)

for the secular frequency. Explicitly, the three frequencies are

ωz =
√

2α eUtip
ml20

(1.14)

ωx =
√
ω2
x,0 − 1

2ω
2
z (1.15)

ωy =
√
ω2
y,0 − 1

2ω
2
z , (1.16)

with the bare radial frequencies (Utip → 0)

ωx,0 = ωy,0 = eURF√
2mr2

0 Ω
. (1.17)

Note the defocusing effect that reduces the secular frequency of the radial motion when
the ion is more tightly confined along the axial direction.

We can now also more precisely quantify the validity of the pseudopotential approxima-
tion; the condition ωi � Ω is fulfilled when the stability parameters satisfy the condition√
|ai|, |qi| � 1 for i = x, y, z.

Excess micromotion

The above considerations are restricted to ideal trapping potentials generated purely by
the trap electrodes. In a real experimental apparatus, however, we can expect external
electric bias fields caused by electronic devices to couple to the ion’s charge. Static fields
are a major contribution and displace the ion from the trap center. For a field of magnitude
Ei along direction i, we can easily modify the differential equation 1.11 and the ansatz
1.12 for the ion’s motion to obtain the solution

ri (t) = r0,i cos (ωit)
(

1− qi
2 cos (Ωt)

)
+ rdis,i −

qi
2 rdis,i cos (Ωt) (1.18)

with the secular frequencies ωi defined as above and the ion displacement rdis,i = eEi

mω2
i

from the trap center. Apart from this static displacement, an additional oscillating part,
the excess micromotion, emerges. For sufficiently large bias fields it is no longer negligible
compared with the secular motion. This has a number of adverse effects, e.g. sidebands at
the micromotion frequency in absorption and emission spectra of the ion [115]. Besides,
being a driven motion, the micromotion cannot be reduced using laser cooling techniques.

The standard way to overcome excess micromotion is the use of compensation elec-
trodes placed between the trap blades [107, 112]. Carefully adjusting the static voltages
on these electrodes allows one to shift the ion back to the trap center, eliminating any
excess micromotion.
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1.1. Trapping theory

1.1.2 Basics of light-matter interaction

For most purposes of this work, it will be sufficient to treat all light fields interacting with
the single trapped ion classically, since we use laser pulses of macroscopic optical power to
manipulate the atomic state. On the other hand, we quantize the electronic and motional
atomic degree of freedom, which leads us to the semiclassical approach [33]. Here, I restrict
myself to the one-dimensional description.

The system Hamiltonian describing the atomic degrees of freedom is given by

Hsys = h̄ω0
2 (|e〉 〈e| − |g〉 〈g|) + h̄ωT a

†a. (1.19)

The first part of Hsys describes the electronic degree of freedom as a two-level system of
ground state |g〉 and excited state |e〉, split by h̄ω0, with the zero-point of energy centered
between the two levels. The second part treats the ion as confined in a harmonic potential
of trap frequency ωT (with the zero-point energy term omitted), making use of the ladder
operators a and a† in the Fock basis {|n〉}.

For many purposes, it is sufficient to consider the interaction of a light field with
an atomic electric-dipole transition. The light is described by a plane wave of the form
E = E0 cos (kx− ωLt) with amplitude E0, wave number k and frequency ωL, interacting
with the atomic electric dipole µ. The interaction Hamiltonian then reads

Hint = −µE0 cos (kx− ωLt) (1.20)
= −1

2 µE0
(
ei(kx−ωLt) + h.c.

)
(1.21)

= −E0
2 (|g〉 〈g|+ |e〉 〈e|)µ (|g〉 〈g|+ |e〉 〈e|)

(
ei(kx−ωLt) + h.c.

)
. (1.22)

Making use of the parity of atomic wave functions, i.e. 〈g|µ |g〉 = 〈e|µ |e〉 = 0, we find

Hint = −E0
2 (|e〉 〈e|µ |g〉 〈g|+ h.c.)

(
ei(kx−ωLt) + h.c.

)
. (1.23)

Assuming the matrix element 〈e|µ |g〉 to be real, we define Ω := − 1
h̄E0 〈e|µ |g〉 as the

coupling strength2,3, more commonly termed Rabi frequency. Furthermore we express the
position operator in terms of the ladder operators as x =

√
h̄

2mωT

(
a+ a†

)
(with ion mass

m) and define the dimensionless Lamb-Dicke parameter

η = k

√
h̄

2mωT
. (1.24)

This quantity is proportional to the ratio of the spread of the motional ground-state wave
function and the wavelength of the incident light. It thus describes how much the ion
“perceives” of the spatial phase variation of the light wave.

2For electric-quadrupole transitions, which are equally important in our context, the coupling strength
is found to be Ω = 1

h̄
〈e| 1

6 tr [Q · (gradE)] |g〉 with the electric-quadrupole operator Q.
3Taking into account the micromotion of the ion in the radio-frequency trap, the coupling strength

reduces to Ω
1+|qx|/2 with the stability parameter qx (see eqn. 1.10) [33].
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With these definitions, the interaction Hamiltonian becomes

Hint = h̄Ω
2 (|e〉 〈g|+ |g〉 〈e|)

(
eiη(a+a†)e−iωLt + e−iη(a+a†)eiωLt

)
. (1.25)

As a next step, we transform the problem from the Schrödinger to the interaction picture
through the unitary rotation U = eiHsyst/h̄. Evaluating UHint U

† is rather tedious, and it
is worth noting that this transformation is equivalent to moving to the Heisenberg picture
instead when no interaction Hamiltonian is present. Thus the temporal evolution of the
interaction Hamiltonian HI

int in the interaction picture is governed by the Heisenberg
equation:

d
dtH

I
int = i

h̄

[
Hsys, H

I
int

]
+ ∂HI

int
∂t

(1.26)

Using the relations
d
dt a = iωT

[
a†a, a

]
(1.27)

= −iωT a (1.28)

and
d
dt (|e〉 〈g|) = i

ω0
2 [|e〉 〈e| − |g〉 〈g| , |e〉 〈g|] (1.29)

= iω0 |e〉 〈g| (1.30)

(and correspondingly for their hermitian conjugates), we find the transformed interaction
Hamiltonian

HI
int = h̄Ω

2
(
eiω0t |e〉 〈g|+ h.c.

) (
e−iωLteiη(a(t)+a†(t)) + h.c.

)
(1.31)

with a (t) = a e−iωTt and a† (t) = a† eiωTt. Upon expanding the parentheses in the equation
above, we find terms oscillating at the sum and difference of the light frequency and the
atomic resonance frequency, respectively. When the light field is tuned close to the atomic
resonance, i.e. |ωL − ω0| � ω0, and assuming Ω � ω0, the sum-frequency terms oscillate
too fast to contribute significantly to the temporal evolution of the atomic state. The
rotating-wave approximation [116] neglects these terms, and we find the simplification

HI
int = h̄Ω

2
(
e−i∆teiη(a(t)+a†(t)) |e〉 〈g|+ h.c.

)
(1.32)

with the detuning parameter ∆ = ωL − ω0. When expanding the term eiη(a(t)+a†(t)) in
a Taylor series, powers of the ladder operators emerge, rotating at integer multiples of
the trap frequency. When excited resonantly, they couple the two electronic states and
different motional states simultaneously. The effective Rabi frequency at which transitions
of the form |g, n〉 ↔ |e, n+m〉 are driven amounts to [33]

Ωn,n+m = Ω
∣∣∣〈n+m| eiη(a+a†) |n〉

∣∣∣ (1.33)

= Ω e−η
2/2 η|m|

√
n<!
n>! L

|m|
n<

(
η2
)

(1.34)

20



1.1. Trapping theory

|n = 0〉
|n = 1〉

|n = 2〉
|g〉

|e〉

Ωrsb Ωcar Ωbsb

∆

ωT

Fig. 1.2: The three lowest motional states of the ion for the two electronic states |g〉 and |e〉.
Motional side-band as well as carrier transitions are resonantly excited through proper choice of
the light-field detuning.

with the associated Laguerre polynomials L and n< (n>) as the lesser (greater) of n+m

and n.
While the above expressions provide a very accurate treatment of the ion’s dynamics,

it is instructive to consider another simplification; if the spread of the ion’s wave function
is sufficiently small, i.e. η

√
〈(a+ a†)2〉 � 1, we enter the so-called Lamb-Dicke regime

[117]. We then expand the exponential terms in eqn. 1.32:

HLD
int = h̄Ω

2
[
e−i∆t

(
1 + iη a e−iωTt + iη a† eiωTt

)
|e〉 〈g|+ h.c.

]
(1.35)

For low light intensities (Ω � ωT), we identify three distinct types of transitions which
can be selected through the detuning parameter (see fig. 1.2): for ∆ = 0, the interaction
Hamiltonian reduces to

Hcar
int = h̄Ω

2 (|e〉 〈g|+ |g〉 〈e|) , (1.36)

describing the carrier transitions |g, n〉 ↔ |e, n〉 at Rabi frequency4 Ωcar = Ω. Exciting
these transitions does not change the motional state of the ion. On the other hand,
choosing ∆ = −ωT yields

Hrsb
int = iη

h̄Ω
2
(
|e〉 〈g| a− |g〉 〈e| a†

)
, (1.37)

and the red-sideband transitions |g, n〉 ↔ |e, n− 1〉 is driven. Exciting the electronic
degree of freedom from the ground to the excited state will thus remove one quantum of
motion from the ion (satisfying energy conservation). Compared with carrier transitions,
the Rabi frequency on |g, n〉 ↔ |e, n− 1〉 is reduced to Ωrsb = η

√
nΩ. Accordingly, for

the detuning ∆ = ωT, blue-sideband transitions |g, n〉 ↔ |e, n+ 1〉 are driven with Rabi
frequency Ωbsb = η

√
n+ 1 Ω.

4For an expansion of the exponential terms in eqn. 1.32 up to second order of η, we find the carrier
Rabi frequency reduced to Ωcar = Ω

(
1− η2 (n+ 1

2

))
.
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1.1.3 Laser cooling trapped ions

Motional-sideband transitions allow e.g. for entangling the motional and electronic degrees
of freedom of a single ion [118], engineering arbitrary states of motion [107] and using the
common motion of several ions as a bus between the ions’ electronic states [102, 44, 45,
42, 39]. However, this is in general only possible after cooling them to low-lying motional
states or even to the ground state.

Another motivation for cooling arises in the context of addressing the ion with high-NA
optics. In our setup, the diffraction-limited spot sizes easily come down to 1 µm [112], and
it becomes necessary to reduce the extent of the ion’s spatial wave function as far below
this value as possible.

For the interested reader, an extensive review of laser-cooling theory is found in [96].
Following this reference, I will present a simplified picture sufficient to describe the par-
ticular situation of our experiment.

General approach

Cooling an ion means removing both energy and entropy from its motional degree of
freedom, a process of dissipative nature. The basic model introduced in section 1.1.2,
however, takes only coherent processes into account. The dissipative part of laser cooling
arises from the interaction of the ion not only with the laser but with the vacuum field as
well, introducing the theory of spontaneous emission [119]. Its most important aspect for
our purposes is the finite lifetime of an electronic state when coupled, e.g. through electric-
dipole transitions, to lower-lying states. This means that a two-level system, initially
prepared in the excited state |e〉, will decay to the ground state |g〉 with a characteristic
rate Γ, scattering a single photon into the vacuum field. By time-energy uncertainty, the
finite lifetime of the excited state makes its energy less well-defined. In turn, this yields
the natural transition linewidth Γ.

As explained in section 1.1.2, the ion’s motional state is described in the Hilbert
space for which the Fock states {|n〉} form a basis. Initially, the ion may be in some
arbitrary (mixed) motional state. Considering a particular Fock state |n〉, we identify
loss processes, that remove population from it, and gain processes, that add population.
Fig. 1.3 illustrates these processes for the Lamb-Dicke regime, i.e. in first order of the
Lamb-Dicke parameter η.

In order to describe the dynamics of the cooling process, we need to find an expression
for the rate at which loss and gain processes of the population pn take place. For an
analytic approach, we make the assumption of not saturating the electronic transition by
the laser field, i.e. Ω� Γ. With this, we express the steady-state population of the excited
state |e〉 as [119]

ρ (∆) =
(Ω

Γ

)2
W (∆) (1.38)
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|n− 1〉
|n〉

|n+ 1〉

(a)

|n− 1〉
|n〉

|n+ 1〉

(b)

Fig. 1.3: Illustration of the (a) loss and (b) gain processes for the population pn of the motional
state |n〉 in lowest order of the Lamb-Dicke parameter η.

with the line-shape function5

W (∆) = 1

1 +
(

∆
Γ/2

)2 (1.39)

for a given detuning ∆ from the carrier transition. With these quantities, tab. 1.1 details
the individual processes changing the population pn of state |n〉. With the cooling rate
A− and heating rate A+, defined as

A− = η2 Γ
(Ω

Γ

)2
(W (∆) +W (∆ + ωT)) (1.40)

A+ = η2 Γ
(Ω

Γ

)2
(W (∆) +W (∆− ωT)) , (1.41)

we write down the system of differential equations for the populations pn:

ṗn = −nA− pn − (n+ 1)A+ pn + (n+ 1)A− pn+1 + nA+ pn−1 (1.42)

For the moment, we are not interested in the actual distribution pn of the populations,
but only the expectation value 〈n〉 = ∑

n n pn of the motional quantum number n. Using
eqn. 1.42, we readily obtain the differential equation

d
dt 〈n〉 = − (A− −A+) 〈n〉+A+. (1.43)

Integrating this equation yields the solution

〈n〉 (t) = 〈n〉 (0) e−R t + 〈n〉ss
(
1− e−R t

)
(1.44)

5For multilevel atoms, exhibiting more complex excitation spectra, the line-shape function must be
replaced accordingly.

23



Chapter 1. Trapping ions

Process Involved transitions ṗn (η2 Γ (Ω/Γ)2)

Loss through cooling
|g, n〉 → |e, n〉 → |g, n− 1〉 −nW (∆)
|g, n〉 → |e, n− 1〉 → |g, n− 1〉 −nW (∆ + ωT)

Loss through heating
|g, n〉 → |e, n〉 → |g, n+ 1〉 −(n+ 1)W (∆)
|g, n〉 → |e, n+ 1〉 → |g, n+ 1〉 −(n+ 1)W (∆− ωT)

Gain through cooling
|g, n+ 1〉 → |e, n+ 1〉 → |g, n〉 (n+ 1)W (∆)
|g, n+ 1〉 → |e, n〉 → |g, n〉 (n+ 1)W (∆ + ωT)

Gain through heating
|g, n− 1〉 → |e, n− 1〉 → |g, n〉 nW (∆)
|g, n− 1〉 → |e, n〉 → |g, n〉 nW (∆− ωT)

Tab. 1.1: Detailed loss and gain processes for the population pn of the motional state |n〉 in lowest
order of the Lamb-Dicke parameter. The relevant quantity is the time derivate ṗn, given in units
of the Lamb-Dicke parameter η, Rabi frequency Ω and linewidth Γ.

with the effective cooling rate R := A− −A+ and the steady-state value

〈n〉ss := 〈n〉 (t→∞) = A+
A− −A+

. (1.45)

Note that this is a meaningful solution only for A− > A+. This corresponds to the basic
idea of laser cooling, namely making transitions which lower the ion’s kinetic energy more
likely than those which raise it.

In the following, I will discuss two limiting cases, Doppler cooling (Γ � ωT) and
resolved-sideband cooling (Γ� ωT).

Doppler cooling

The term Doppler cooling is originally associated with laser cooling free or weakly bound
atoms. This means that the laser cannot resolve the motional sidebands of the electronic
transition as the atomic excitation spectrum covers many of the sideband transitions
(Γ� ωT).

We are now interested in the optimal choice for the laser detuning ∆ for the minimal
steady-state value 〈n〉ss of the mean motional quantum number. By the definition of the
rates A− and A+, we find

〈n〉ss = W (∆) +W (∆− ωT)
W (∆ + ωT)−W (∆− ωT) . (1.46)

Minimizing this expression yields the well-known result for the optimal detuning:

∆D = −Γ
2 (1.47)

This is the Doppler limit, and the steady-state value of 〈n〉 and the effective cooling rate6

6Note that the maximal value for the effective cooling rate R is not found at ∆ = −Γ
2 but at ∆ = − Γ

2
√

3 .
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become
〈n〉ss,D = 1

2

( Γ
ωT
− 1

)
≈ Γ

2ωT
(1.48)

and
RD = 2 η2 ωT

(Ω
Γ

)2
. (1.49)

From the relation 1
2kBT = 〈Ekin〉 = 1

2 〈E〉 between temperature T , kinetic energy Ekin
and total energy E, we derive the Doppler temperature

TD = h̄Γ
2 kB

. (1.50)

This is the minimal temperature that can be achieved for weakly bound atoms (Γ� ωT).

Resolved-sideband cooling

In the opposite limiting case, Γ� ωT, the laser resolves the individual motional sidebands
from the carrier transition. While the spontaneous-decay processes are left unchanged, the
manner of absorption is significantly altered.

For the case of Doppler cooling, the laser excites many sideband transitions, and tuning
its frequency brings about only a small imbalance in the absorption rates for the red and
blue sidebands. However, resolving the individual sidebands strongly favors excitations
on a particular sideband or the carrier transition.

Typically, the laser is tuned to the first motional sideband, i.e. ∆ = −ωT. This means
that for almost every excitation |g, n〉 → |e, n− 1〉 from the electronic ground state, one
quantum of motion is removed from the ion, since, in the Lamb-Dicke regime, spontaneous
emission occurs mainly on the carrier transition. The steady-state value 〈n〉ss then takes
the form

〈n〉ss = W (−ωT) +W (−2ωT)
W (0)−W (−2ωT) (1.51)

= 5
16

( Γ
ωT

)2
(1.52)

≈
(Γ/2
ωT

)2
� 1, (1.53)

with the effective cooling rate

R = η2 Γ
(Ω

Γ

)2
. (1.54)

This means that resolved-sideband cooling facilitates motional ground-state cooling, i.e. a
steady state with a population close to unity in the state |n = 0〉.

Thermal state

So far, we have been interested only in the mean value 〈n〉 of the motional quantum
number. However, it is instructive to examine also the distribution of the individual
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states |n〉. Once the steady state has been reached, the distribution no longer depends on
the initial quantum state.

We now make the assumption of detailed balance [120], i.e. we assume all loss and gain
processes for a given population pn to cancel out (ṗn = 0). It is sufficient to consider only
processes exchanging population of the state |n〉 with one of the neighboring states, e.g.
|n− 1〉. We then arrive at the equation

ṗn = −η2 ΓnA− pn + η2 ΓnA+ pn−1
!= 0, (1.55)

which directly yields

pn
pn−1

= A+
A−

(1.56)

= 〈n〉
〈n〉+ 1 . (1.57)

This gives us the explicit form

pn = 〈n〉n

(〈n〉+ 1)n+1 (1.58)

for the population of state |n〉, which is nothing but a Boltzmann (thermal) distribution.

1.1.4 Atomic level scheme

The atomic species which we use in our setup is singly ionized calcium-40 (40Ca+). It
possesses no nuclear spin and thus no hyperfine structure. The five fine-structure manifolds
relevant to our experiments are depicted in fig. 1.4. Details of the atomic states and
transitions are given in app. A.1.

Apart from a stable S1/2 ground state, two short-lived and two long-lived (metastable)
states are present. The P1/2 and P3/2 state each have a natural lifetime of ∼ 7 ns [121] and
allow scattering light at high rate, e.g. for Doppler cooling. At the same time, the D3/2
and D5/2 lifetimes amount to ∼ 1.2 s [122], making the latter state well suited to form an
optical qubit with the S1/2 state when manipulations occur on a µs or ms time scale.

397/866 nm transition

The transition at 397 nm wavelength is a strong electric-dipole transition with a natural
linewidth of 22.4 MHz (given by the P1/2-state lifetime). As the P1/2 branching fraction
amounts to 93.6 % on this transition [123], it is well suited for laser (Doppler) cooling and
making the ion visible.

Apart from cooling the ion’s motion, detecting light scattered on the 397 nm transition
allows for efficient discrimination between the S1/2 and D5/2 state (see section 2.1.3). This
provides a means of projecting the optical qubit onto the S1/2–D5/2 basis.

To prevent optical pumping to the long-lived D3/2 state, a repumping laser at 866 nm
wavelength is needed.
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42S1/2

42P1/2

42P3/2

32D3/2

32D5/2

397 nm

866 nm

850 nm

854 nm

729
nm

393 nm

Fig. 1.4: Energy-level scheme of 40Ca+ with the lowest-lying fine-structure manifolds and all
relevant optical transitions with their respective wavelengths.

729 nm transition

The electric-quadrupole transition at 729 nm wavelength couples the metastable D5/2 with
the S1/2 ground state, resulting in the very small natural linewidth of 136 mHz. This
makes it interesting for high-precision spectroscopic experiments [124] and optical clocks
[100, 125]. For our purposes it is the transition used to address the qubit formed by the
S1/2 and D5/2 state. Owing to the long lifetimes of the two states, long qubit coherence
times have been demonstrated [126].

1.2 Experimental setup

The centerpiece of our experimental system are two ultra-high-vacuum chambers, each
holding a linear Paul trap. The chambers are mounted on an optical table at ∼ 1 m
distance (see fig. 1.5). Single ions are trapped independently and simultaneously in the
two chambers. For historic reasons, the traps are called “Bright Trap” and “Dark Trap”.

For the major part, the laboratory was set up by Felix Rohde, Carsten Schuck, Marc Al-
mendros and Markus Hennrich at the Institute of Photonic Sciences (ICFO) in Barcelona,
Spain. Their Ph.D. theses [127, 112] document very well the details of the setup.

In 2010, the entire setup was moved to Saarland University in Saarbrücken. Regular
work in the laboratory was resumed in 2011.
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Fig. 1.5: Optical table with the vacuum chambers holding the linear Paul traps (picture taken at
Saarland University). Left chamber: Dark Trap, right chamber: Bright Trap.

1.2.1 Trap apparatus

We operate two linear Paul traps which were designed in the Quantum Optics and Spec-
troscopy Group of Rainer Blatt at the University of Innsbruck [128, 111]. They were
machined from nonmagnetic stainless steel and are compatible with ultra-high vacuum
conditions.

The values for half the distance between opposing trap blades and the end tips are
r0 = 0.8 mm and l0 = 2.5 mm, respectively, and the geometry factor (see eqn. 1.4) amounts
to α = 0.183.

Trap parameters

The experiments presented in this thesis were almost exclusively carried out with ions in
the Bright Trap. For an end-tip voltage Utip = 400 V, we obtain the axial secular frequency
ωz = 2π · 1.20 MHz. The trap is operated at the radio frequency Ω = 2π · 26.1 MHz
with an input power of 9.6 W. This corresponds to a radio-frequency voltage amplitude
URF = 1.48 kV applied to the blade electrodes and yields radial secular frequencies ωx =
ωy = 2π · 3.72 MHz.

From these quantities, we extract the stability parameters ax = ay = −0.00420, az =
0.00840 and |qx| = |qy| = 0.413 (qz = 0 by definition).
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1.2. Experimental setup

Magnetic-field control

For most experiments, in addition to fundamental prerequisites like laser cooling, a static
magnetic field at the position of the trapped ion is needed. To this end, three pairs of
coils with mutually orthogonal axes were attached to each vacuum chamber [127]. This
allows us to align the magnetic field along virtually any direction and to compensate for
stray magnetic fields.

The coil current is controlled through commercial power supplies7 with ∼ 100 µA long-
term stability. Typically, we operate the coils at 1 – 3 A current, yielding magnetic-field
strengths of 3 – 6 G (depending on which pair of coils is used).

1.2.2 Optical access

Almost all interactions with an ion are carried out optically. This includes excitation
through laser beams, which are typically focused onto the ion through standard lenses
with focal lengths of 250 – 500 mm (with collimated-beam diameters of 1 – 2 mm). In
addition, the ion is interfaced with light at the single-photon level with objectives of high
numerical aperture (NA), as discussed in the next paragraph.

HALOs

When interfacing single ions with light at the level of single photons, it is essential to use
optics which subtend a large solid angle around the ion. Our approach is to use a pair of
high-NA laser objectives (HALOs) in each vacuum chamber [84, 112]. Like the trap, they
are mounted to the top flange of the chamber (see fig. 1.6). Three-axis piezo actuators
integrated in the mounts allow moving the HALOs along all three axes in order to align
them with the ion.

The HALOs have a numerical aperture of 0.4, subtending ∼ 4.2 % of the total solid
angle, a focal length of 25 mm and are diffraction limited and anti-reflection coated over the
entire optical spectrum relevant for our atomic species (393 – 866 nm). Typical minimum
spot diameters are 1.2 µm at 397 nm and 2.6 µm at 866 nm.

Fluorescence detection

Light emitted by the ion is collected through one or both HALOs and then detected by
either single-photon detectors or a camera [112].

Blue light from the ion is coupled to multi-mode optical fibers with ∼ 85 % transmis-
sion and detected by photomultiplier tubes8 (PMTs) of 28(1) % quantum efficiency. For
isotropic emission, this yields a total detection efficiency of ∼ 1 %. On the other hand, red
light is coupled to single-mode fibers with ∼ 60 % transmission and detected by avalanche
photodiodes9 (APDs) of 24(5) % quantum efficiency, yielding a total detection efficiency
of ∼ 0.6 %.

7Aim-TTi, QL355
8Hamamatsu, H7422P-40SEL
9Laser Components, COUNT-10C-FC

29



Chapter 1. Trapping ions

Fig. 1.6: Linear Paul trap for confining single ions. The two high-NA objectives mounted next
to it can be moved along all three axes for alignment.

While loading ions into the trap, the fluorescence light is not fiber coupled but directly
imaged onto an EMCCD camera10.

1.2.3 Laser system

Even in the absence of hyperfine splitting, 40Ca+ provides a rich structure of energy
levels. Turning this into a useful feature requires control over almost all optical transitions.
Except for the dipole transition at 393 nm wavelength11, lasers to control all wavelengths
denoted in fig. 1.4 are available. All lasers in our laboratory are extended-cavity diode
lasers (ECDLs) with a grating in Littrow configuration for optical feedback [129]. Unless
specified otherwise, the spectral linewidths are 100 – 300 kHz. Details on the laser system
are found in [127, 130].

Laser at 397 nm

The laser12 to address the electric-dipole transition used for cooling and state discrimina-
tion runs at 794 nm wavelength. Its light is amplified in a tapered amplifier before being
frequency doubled through a nonlinear crystal in an optical cavity. The typical output
power amounts to 30 – 40 mW.

10Andor, iXon DV887DCS-BV
11A diode laser at 393 nm wavelength is currently being set up.
12Toptica, TA-SHG pro
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Lasers at 850/854/866 nm

The lasers13 mainly used for repumping population from the metastable atomic states
(D3/2, D5/2) are diode lasers with typical output powers of ∼ 40 mW. As these powers are
sufficient for our purposes, no additional amplification stages are needed.

Transfer lock

As with most lasers, diode lasers show spectral drifts which become too large for our
purposes on a time scale of seconds to minutes. In addition, it is favorable to reduce their
linewidth, which is typically 1 – 2 MHz when free-running. To this end, our group devised
an active stabilization scheme termed “transfer lock” [127, 131, 130]. The principle is to
stabilize the lengths of a number of optical resonators (“transfer cavities”) to a master laser
which itself is stabilized to an absolute atomic reference. Then all of the above-mentioned
lasers (397/850/854/866 nm) are stabilized each to one of the transfer cavities.

Both the transfer cavities and the lasers, including the master laser, are stabilized
to their respective reference through the Pound-Drever-Hall technique [132]. The master
laser runs at 852 nm wavelength and is referenced to a cesium atomic-vapor cell (D2
line) through Doppler-free absorption spectroscopy. This provides the necessary long-
term stability for the other lasers. However, barometric changes during the course of the
day result in a change of the effective lengths of the transfer cavities (which are not placed
in vacuum) and hence in a shift of their resonance frequencies. Therefore, spectroscopy in
order to calibrate the laser wavelengths must be performed on the ion every morning (see
section 2.4). On the other hand, the feedback on the lasers through the Pound-Drever-Hall
method allows to reduces their linewidths from 1 – 2 MHz to 100 – 300 kHz.

Laser at 729 nm

The laser used for coherent manipulation of the S1/2–D5/2 qubit transition is an amplified
ECDL14 providing up to 500 mW of optical power. In order to make use of the potentially
long coherence time of the atomic qubit, the laser itself is required to be very narrow-band
and have good long-term stability. As the transfer lock does not offer this to a sufficiently
high degree, the laser is stabilized to a high-finesse optical cavity with a linewidth of
4 kHz and a long-term drift of 80 mHz/s. The stabilization is accomplished by a very
fast feedback loop through the Pound-Drever-Hall technique and yields a laser linewidth
< 30 Hz.

The laser as well as the high-finesse cavity were mostly set up by Jan Huwer and are
accordingly described in his Ph.D. thesis [94]. I will give a brief overview of the laser
system in section 2.1.1.

13Toptica, DL pro
14Toptica, TA pro
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Chapter 1. Trapping ions

Laser for photoionization

For loading single ions into one of the Paul traps, we employ a photoionization scheme [112]
as an alternative to a thermionic emitter (“electron gun”). This allows us to efficiently
select the desired isotope 40Ca+ from calcium with natural isotope abundance.

A resistively heated oven filled with metallic calcium granules directs a beam of neutral
calcium atoms through the trap center. A free-running ECDL at 846 nm wavelength
with a high-power diode15 (∼ 130 mW output power) is frequency doubled to 423 nm
in a nonlinear crystal (single pass). The light is coupled to a multi-mode optical fiber,
sending it through the trap center where it excites the calcium atoms on the 41S0–1P1
transition. Light from a high-power LED16 (70 – 85 mW output power) with 380 nm
central wavelength is coupled to the same fiber and excites the atoms from the 1P1 state
to Rydberg states, from where they are ionized through the electric fields present in the
Paul trap (field ionization).

Wavelength monitoring

A small portion of the light from each laser is sent to a wavelength meter17. An optical
multi-channel switch multiplexes eight different sources of light into the wavelength meter
in order to continuously monitor the wavelength values. Although the accuracy of the
wavelength meter itself amounts to 60 MHz for our wavelength range, the effective accuracy
is reduced to 150 MHz since we need to use a multi-mode optical fiber connecting the switch
to the wavelength meter in order to accommodate all laser wavelengths.

Acousto-optic modulators

Even simple quantum-optical experiments require the ability to control frequency, phase
and power of the laser beams in a precise and fast manner. This is done through commer-
cial acousto-optic modulators18 (AOMs), set up in double-pass configuration. They are
used e.g. for scanning the laser frequency when performing spectroscopy, active stabiliza-
tion of the laser power at the position of the ion and fast switching of lasers during pulsed
experimental sequences.

1.2.4 Experimental control unit

As mentioned in the previous section, already simple quantum-optical experiments require
fast and precise control over frequency, phase and power of the laser beams interacting
with the ion. More complex experiments also require the ability to react to events like the
detection of photons or the atomic-state read-out of the ion.

For this purpose, Marc Almendros dedicated part of his Ph.D. [131] to develop a
versatile and modular backplane-based bus system, called Hydra. A digital signal processor

15Toptica, DL 100
16Nichia, NCCU001
17HighFinesse, WS/7 Super Precision
18Brimrose/IntraAction, various models
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(DSP) controls up to 13 radio-frequency (RF) synthesizers which, on their part, control
the laser beams through AOMs.

The core of each RF card is a direct digital synthesizer (DDS) which generates an
RF signal with frequencies of 4.5 – 300 MHz and controlled phase. This signal is then
passed through a digital-to-analog converter (DAC) which defines the signal amplitude.
If required, a switchable attenuator provides an additional suppression of the signal by
∼ 50 dB. A field-programmable gate array (FPGA) controls the RF module with 80 MHz
update rate (equivalent to 12.5 ns time base) and communicates with the DSP via the
backplane. All DDSs are phase locked to an atomic clock19 and facilitate phase-coherent
frequency switching. In addition, some of the modules are equipped with an analog input
channel which can read out photodiodes to measure the power of laser beams. Feedback
onto the corresponding AOM thus allows to stabilize the optical power.

Furthermore, the DSP features 8 general-purpose counters (GPCs), 16 digital input
(DI) and 16 digital output (DO) channels. The GPCs allow counting pulses from single-
photon detectors for atomic spectroscopy and atomic-state detection. The DI channels are
used to trigger an experimental sequence to an external event, e.g. the 50 Hz power-line
signal. The DO channels, on the other hand, provide trigger signals for other experimental
devices.

This version of Hydra lacks the ability to temporally resolve pulses from single-photon
detectors. We thus time-tag photon-detection events through a commercial time-correlated
single-photon counter20.

19Stanford Research Systems, FS725
20PicoQuant, PicoHarp 300
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Chapter 2

Experimental tools for
quantum-state manipulation

After an introduction to the theoretical and experimental principles in the first chapter,
I will now present the experimental methods and tools required for the control and ma-
nipulation of the atomic quantum state. This includes a narrow-band laser resonant with
the optical qubit transition, whose principle of operation will be explained briefly, fol-
lowed by a characterization of the qubit itself. Besides the optical qubit, I will present a
qubit formed by two Zeeman states coupled by a radio-frequency transition and addressed
through a magnetic field, which offers certain advantages over the optical qubit. Further-
more, optical-pumping methods are introduced that are indispensable for initializing the
atomic qubit in a pure quantum state. The chapter concludes with sections regarding
spectroscopic methods for the calibration of laser frequencies and a technique for precise
determination of the ion’s temperature in the trap.

2.1 Coherent manipulations – optical qubit

As explained in section 1.1.4, the S1/2 ground state and the metastable D5/2 state form an
optical qubit at 729 nm transition wavelength. The external static magnetic field lifts the
degeneracy of the Zeeman states of the two fine-structure manifolds (see fig. 2.1). By virtue
of different Landé factors of the two manifolds, the ten transitions allowed by electric-
quadrupole selection rules (∆mJ = 0,±1,±2) all have distinct resonance frequencies and
can thus be addressed individually.

Exploiting the potentially long coherence time of the qubit [126], however, requires a
very narrow-band and stable laser. After a brief overview of how to set up such a laser
system, basic experimental concepts like the experimental sequence, probability estimation
for atomic populations, spectroscopy and Rabi oscillations will be explained. As the qubit
coherence time is limited also by fluctuations of the ambient magnetic field, a method to
estimate these fluctuations will be introduced.
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Fig. 2.1: Electric-quadrupole transitions between the Zeeman states of the S1/2 and D5/2 manifold.
Denoted to the left are the Landé factors for each manifold, indicating the splitting of the Zeeman
energy level in an external magnetic field.

2.1.1 Qubit laser at 729 nm

Within the framework of this thesis, the laser for controlling the optical-qubit transition
was used for tasks such as unitary rotations on the Bloch sphere (see section 2.1.6), electron
shelving (section 2.1.5 and app. A.2) and ion-temperature measurements (section 2.5). For
the largest part, the laser was set up by Jan Huwer, who gives a detailed description in
his Ph.D. thesis [94].

Amplified diode laser

As mentioned in section 1.2.3, the laser itself is an extended-cavity diode laser1 with an
integrated tapered amplifier and runs at 729.1467 nm (wavelength in air). A diffraction
grating set up in Littrow configuration reflects the light in the first order of diffraction
back into the diode, forming a laser cavity in addition to the one given by the two facets
of the diode. Light from the zeroth diffraction order is then available as output. As with
all our diode lasers, the free-running laser shows a linewidth on the order of 1 MHz.

A piezo actuator allows for tilting the diffraction grating and thus for tuning the laser
frequency over the entire gain profile of the laser diode. As the bandwidth of the piezo
is limited by its own resonance frequencies, which are in the range of 1 – 10 kHz, we use
it to compensate slow drifts of the laser frequency. In order to achieve a narrow laser
bandwidth, however, a fast feedback loop is required. This is facilitated by controlling the
current through the laser diode itself.

1Toptica, TA pro
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2.1. Coherent manipulations – optical qubit

In order to achieve a sufficiently narrow bandwidth and good long-term stability, a
frequency reference with just these properties is needed. Progress in the field of optical
resonators nowadays provides cavities of very high finesse (105− 106) [133, 134] and thus,
depending on the free spectral range, very small linewidths.

High-finesse optical cavity

The optical cavity used to stabilize our qubit laser is a vertically and midplane mounted
model from Advanced Thin Films. Its spectral linewidth was determined from a ring-down
measurement to be 4.0 kHz. Together with 1.9 GHz free spectral range, this determines
the cavity finesse to 480 000.

For good long-term stability (minutes to hours), the cavity spacers are made from
ultra-low-expansion glass from Corning. This material has the property of a vanishing
linear thermal expansion coefficient at a certain temperature. For our cavity, we found
this to be at 22.3 ◦C. In addition, the cavity is placed inside an ultra-high-vacuum chamber
for passive thermal isolation. Together with an active temperature stabilization realized
with heater mats and Peltier elements, this provides a temperature stability on the order
of 1 mK. To protect the cavity from acoustic noise, the vacuum chamber is placed on a
passive vibration-damping platform2.

With all these measures taken, the only remaining effect degrading the long-term sta-
bility is aging of the cavity spacers, which cannot be circumvented by any means available
to us. As the cavity is mounted vertically, gravity continuously changes the cavity-spacer
length, shifting the resonance frequency by 80 mHz/s. However, this effect is usually neg-
ligible when it comes to addressing the ion with the qubit laser, as other effects, e.g.
magnetic-field fluctuations, play greater roles. Hence it is sufficient to calibrate the laser
frequency only once per day through atomic spectroscopy.

Laser stabilization

We employ the well-established technique developed by Robert Pound and refined by
Ronald Drever and John Hall [132] for stabilizing the qubit laser to the high-finesse cavity.

A small portion of the light from the laser is phase modulated by sending it through
an electro-optic modulator (EOM) running at 20 MHz frequency. It is then coupled into
the high-finesse cavity (TEM00 mode), and the reflected part is detected with a fast pho-
todiode. This signal is mixed with the local oscillator driving the EOM. Low-pass filtering
the mixed signal then provides the error signal for feedback onto the laser frequency. It is
fed into a high-speed analog controller3 with a fast circuit branch for reducing the laser
linewidth via the diode current and a slow branch for eliminating low-frequency drifts via
the grating piezo.

The Pound-Drever-Hall technique proved to be very well suited for our purposes, yield-
ing both a narrow laser linewidth (< 30 Hz) and good long-term operation.

2Minus K, 100BM-4
3Toptica, FALC 110
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Fig. 2.2: Experimental setup for coherent manipulations on the optical qubit transition. ~B:
magnetic-field direction, HWP: half-wave plate, QWP: quarter-wave plate, PBS: polarizing beam-
splitter cube, MM fiber: multi-mode optical fiber, PMT: photomultiplier tube. For clarity, the
trap blades are not shown.

2.1.2 Experimental sequence

For coherent manipulations of the optical qubit, we use the experimental setup sketched
in fig. 2.2. A single ion is addressed through a beam from the 729 nm qubit laser at 45◦
angle4 with respect to the quantization axis defined by a static magnetic field ~B (with
a typical magnitude of Bstat ≈ 3 G). Under this angle, all ten transitions between the
Zeeman states can be driven, their relative strengths defined by the light polarization
which is set through a half-wave plate. A circularly polarized pump beam at 397 nm along
the quantization axis prepares the ion in a pure quantum state prior to any coherent
manipulations. Doppler cooling and state detection based on observation of fluorescence
are performed through beams at 397 nm and 866 nm wavelength. A beam at 854 nm is used
for repumping population from the D5/2 back to the S1/2 manifold after state detection.
Fluorescence light at 397 nm from the ion is collected through one of the HALOs, coupled
into a multi-mode optical fiber and detected by a photomultiplier tube.

Sequence timing

The timing of a typical experimental sequence is shown in fig. 2.3. First, the qubit is
initialized by a pulse of light driving only the σ− transition at 397 nm. This pumps the
atomic population to the |S1/2,m = −1/2〉 state with ∼ 99.9 % probability (see section
2.3.1). Subsequently, the 729 nm laser carries out the coherent manipulations on the qubit
transition. This can include atomic spectroscopy, pulse-length scans, Ramsey experiments
or more complex pulse sequences. Afterwards, the PMTs are gated on and state detection
is performed by switching on the 397 nm and 866 nm laser. The detection of fluorescence
from the ion then projects its quantum state onto the S1/2 and the absence of fluorescence

4The corresponding Lamb-Dicke parameters for the three trap axes are thus calculated as ηx = ηy =
0.036 and ηz = 0.063.
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Fig. 2.3: Timing chart of a typical experimental sequence for coherently manipulating the optical
qubit at 729 nm. The single laser pulse at 729 nm may be replaced by more complex pulse sequences.

onto the D5/2 manifold. Finally, the 854 nm laser is turned on to repump any population
from D5/2 back to S1/2. This allows for Doppler cooling the ion and subsequent ground-
state pumping in the next sequence cycle.

2.1.3 Internal-state discrimination

As explained in the previous section, coherent manipulations of the atomic state are fol-
lowed by a projection onto the basis formed by the S1/2 and D5/2 manifold. For that
purpose, the cooling lasers are switched on and atomic fluorescence is collected through
one of the HALOs and detected by a PMT. Since the D5/2 manifold is not addressed by
the cooling lasers, a projection onto this state leaves the ion dark, and only detector dark
counts and laser stray light are detected by the PMT (at rate Rd). On the other hand, a
projection onto S1/2 puts the ion in a bright state, scattering fluorescence light which is
detected (at rate Rb).

We then perform state discrimination by integrating the detector counts for a certain
period (integration time) of length T . Receiving more counts than a given threshold nth
corresponds to the bright state, otherwise we assign the dark state to the ion. Our goal is
to minimize the integration time, so the sequence runs at the highest possible repetition
rate, while still being able to distinguish sufficiently well between the bright and dark
state. Our criterion is the error probability ε to either identify the ion as dark while in
the bright state or as bright while in the dark state. When not making any assumptions
on the probability for the bright/dark state, the error probability is given by

ε = 1
2 [F (nth, nb) + (1− F (nth, nd))] (2.1)

with the Poisson cumulative distribution function

F (n, λ) = e−λ
n∑
k=0

λk

k! (2.2)
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and expectation values nb = Rb T and nd = Rd T for the bright and dark state, respectively.
Assuming Poissonian statistics is justified for laser stray light and detector dark counts,
but also for fluorescence photons as we detect only a small portion (∼ 1 %, see section
1.2.2) of the light scattered by the ion.

The above treatment assumes the D5/2 state as stable, i.e. the possibility of spontaneous
decay to the S1/2 ground state, turning the ion bright, is neglected. This effect, however,
becomes relevant if the integration time T is no longer short compared with the D5/2-state
lifetime τ = 1.17 s [122]. If at any time t < T , the ion returns to the ground state during
the integration period, the expectation value for the number of detector counts for the
dark state is modified to

n′d (t) = Rd t+Rb (T − t) . (2.3)

As the probability dp for a spontaneous decay during the interval [t, t+ dt] is given by

dp = 1
τ
e−t/τ dt, (2.4)

we obtain the mean modified expectation value

n′d =
∫ T

0
[Rd t+Rb (T − t)] 1

τ
e−t/τ dt+

∫ ∞
T

Rd T
1
τ
e−t/τ dt (2.5)

= Rb T − (Rb −Rd) τ
(
1− e−T/τ

)
, (2.6)

which is simply to be substituted for nd in eqn. 2.1.
The threshold nth is now chosen such that the error probability ε is minimized. Typical

experimental values are detection rates Rb = 155 · 103 s−1 and Rd = 100 s−1 for the bright
and dark state, respectively, and integration time T = 100 µs. For these parameters, fig.
2.4 shows an experimental histogram of the numbers of detection events for an ion being
in the D5/2 state with 13.2(1) % probability. The distributions for the bright and dark
state, respectively, are clearly separated. The optimal threshold is found to be nth,opt = 2
(by minimizing expression 2.1), i.e. the ion is identified as bright for more than 2 detection
events and as dark otherwise, yielding the error probability ε = 1.3 · 10−5.

Bayesian probability estimation

The previous paragraph explained how to experimentally project the atomic state onto
the S1/2–D5/2 basis. For many experiments, however, one is interested in estimating the
underlying probability p for the ion to be in the D5/2 state after the coherent manipulations.
It is thus not sufficient to execute the experimental sequence once, but one has to repeat
the experiment multiple times in order to gather statistical information. Our goal is to
derive an estimate for the probability p after performing the experiment n times, k out of
which the ion was projected onto D5/2 (the dark state).

A common way to estimate p is the approach of frequentist inference [135], i.e. the
underlying probability is assigned the relative frequency p = k

n with the uncertainty ∆p =√
p (1−p)
n−1 . However, this approach fails when it comes to probabilities close to 0 or 1. In

particular, for k = 0 (k = n), we obtain p = 0 (p = 1) and ∆p = 0. For a finite number n of

40



2.1. Coherent manipulations – optical qubit

0 5 10 15 20 25 30
0

1

2

3
x 10

4

# Detection events

#
 O

cc
u
rr

en
ce

s

D
5/2

S
1/2

Optimal threshold

Fig. 2.4: Experimental histogram of the numbers of detection events for a D5/2-state population
of 13.2(1) % and a total of 199 000 trials. The underlying expectation values for the bright and
dark state are nb = 15.5 and nd = 0.01, respectively. The optimal threshold for discriminating
between the two states is found to be nth,opt = 2, which yields the error probability ε = 1.3 · 10−5.

trials, it is of course impossible to determine with certainty that the underlying probability
p be 0 or 1.

The approach used by our group is the one of Bayesian inference [136], which is based
on the notion of conditional probability. We ask for the probability distribution P (p) for
the underlying probability p of finding the ion in the dark state. Before performing the first
experimental cycle, we are completely ignorant of the probability p, which corresponds to
a uniform distribution P (p) ≡ 1 (the prior). With each experimental cycle, our knowledge
of p is updated, and for more and more cycles we gain more and more information on p,
i.e. the distribution P (p) becomes narrower.

The mathematical treatment starts off with the definition of conditional probability:
the probability for an event A given event B is

P (A|B) := P (A ∩B)
P (B) (2.7)

with the joint probability P (A ∩B) for events A and B and probability P (B) for event B.
By formulating the analogous statement for P (B|A), we eliminate P (A ∩B) and arrive
at

P (A|B) = P (B|A)P (A)
P (B) . (2.8)

Applied to our situation, the probability distribution P (p|k) for the underlying probability
p given k projections onto the dark state becomes

P (p|k) = B (k|p)P (p)
B (k) (2.9)

= B (k|p)P (p)∫ 1
0 B (k|p)P (p) dp

(2.10)
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with the prior P (p) ≡ 1. B (k|p) denotes the binomial distribution for finding k projections
onto the dark state for a given underlying probability p:

B (k|p) =
(
n

k

)
pk (1− p)n−k (2.11)

Hence, we arrive at the explicit expression

P (p|k) = pk (1− p)n−k∫ 1
0 p

k (1− p)n−k dp
(2.12)

= (n+ 1)!
k! (n− k)! p

k (1− p)n−k . (2.13)

This is a polynomial of order n and fully describes our knowledge of the probability p. We
can now define our estimate for p after performing n trials as its expectation value with
respect to P :

〈p〉 =
∫ 1

0
pP (p|k) dp (2.14)

= k + 1
n+ 2 (2.15)

Consequently, we define the uncertainty of our estimate as the standard deviation of P :

∆p =
√
〈p2〉 − 〈p〉2 (2.16)

with 〈
p2
〉

=
∫ 1

0
p2 P (p|k) dp (2.17)

= (k + 1) (k + 2)
(n+ 2) (n+ 3) (2.18)

From the equations above, it becomes apparent that even for k = 0 (k = n), we find
〈p〉 > 0 (〈p〉 < 1) with uncertainties ∆p > 0, as expected for a finite number of trials (in
contrast to frequentist inference).

Bayesian inference is the method chosen for estimating probabilities in all experiments
presented in this thesis. Also, in most cases, we haven chosen a default number of trials
of n = 500.

2.1.4 Spectroscopy

The most basic type of coherent manipulation on the 729 nm transition is pulsed spec-
troscopy. We perform this routinely in order to characterize the static magnetic field
applied to the ion as well as the frequency of the laser itself. For the work presented
in this thesis, it was sufficient to calibrate these values once every morning, as they are
sufficiently stable on a time scale of a few hours.
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Fig. 2.5: Pulsed spectroscopy on the 729 nm qubit transition (light polarization chosen perpendic-
ular to the quantization axis). (a) Overview spectrum of the |S1/2,m = −1/2〉 ↔ |D5/2,m = −5/2〉
transition for an excitation pulse of 15 µs length at ∼ 1 mW optical power. Apart from the carrier
transition, the first-order sidebands of the ion’s axial motion are visible (at 1.20 MHz from the car-
rier). (b) Precision spectroscopy on the carrier transition with an excitation pulse of 150 µs length
(corresponding to a Fourier-limited spectral width of 1.1 kHz) at an optical power of ∼ 1 µW.
From the theoretical model fitted to the data (χ2 = 2.4), we derive 3.74(3) kHz Rabi frequency
and 3.13(7) kHz of incoherent contribution to the linewidth from magnetic-field fluctuations. The
line center is determined to within 26 Hz accuracy.

Upon preparing the ion in the |S1/2,m = −1/2〉 ground state, we send a pulse of fixed
length and variable frequency at 729 nm onto the ion. As we detune the laser frequency
by means of an AOM and measure the D5/2 population, we obtain a spectrum of the
qubit transition. Fig. 2.5(a) shows part of a typical overview scan of a carrier transition
with its axial motional sidebands for a rather short and strong excitation pulse at 729 nm.
This kind of pulse provides low spectral resolution, but is well suited for performing quick
scans over a larger frequency span. For high-resolution spectroscopy, longer pulses of
low intensity are used, as displayed in fig. 2.5(b). An excitation pulse of 150 µs duration
allows for a spectral resolution of 1.1 kHz (its Fourier width). This is below the width of
the transition itself which is incoherently broadened by fluctuations of the static magnetic
field5. The origins and a quantification of these will be described in detail in section 2.1.6.
Nevertheless, the theoretical model fitted to the data allows us to determine the line center
of the resonance with an uncertainty < 30 Hz.

2.1.5 Rabi oscillations

Besides performing spectroscopy to determine the transition frequency between two par-
ticular Zeeman states of the S1/2 and D5/2 manifold, another essential type of coherent
manipulation is to drive Rabi oscillations. The 729 nm laser is set on resonance with a

5Magnetic-field fluctuations were found to be the only relevant source of incoherent line broadening
since the narrow linewidth of the qubit laser (see section 2.1.1) does not contribute significantly.
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Fig. 2.6: Pulse-length scan on the |S1/2,m = −1/2〉 ↔ |D5/2,m = −5/2〉 carrier transition for
63.3 mW optical power (light polarization chosen perpendicular to the quantization axis). From
the fit (χ2 = 2.5), we obtain a Rabi frequency of 228.6(2) kHz.

(carrier) transition, and the length of the excitation pulse is successively increased. This
pulse-length scan reveals the D5/2-state population as a function of pulse length and allows
us to determine the Rabi frequency on the transition with great accuracy. Fig. 2.6 shows
such a pulse-length scan for an optical power of 63.3 mW, yielding a Rabi frequency of
228.6(2) kHz. For an isolated two-level scheme, we would expect entirely undamped oscil-
lations (spontaneous decay from the D5/2 state is negligible on the relevant time scales).
However, as described in app. A.2, the ion’s finite temperature entangles its electronic
with its motional state, which leaves the electronic state in a statistically mixed state
after a sufficiently long period of excitation. On longer time scales, magnetic-field fluctu-
ations cause additional decoherence of the electronic state and thus damping of the Rabi
oscillations as well.

2.1.6 Characterization of magnetic-field noise

As noted in the two previous sections, the external magnetic field applied to the ion is not
exactly static. Instead there is a number of sources for fluctuations of the magnetic-field
strength on very different time scales, of which the three most relevant are:

• White magnetic-field noise: The electronics within many of our laboratory de-
vices, in particular those with switched-mode power supplies, create magnetic fields
in the 10 – 1000 kHz frequency range.

• Power line: The currents drawn by devices through cables create magnetic fields
sinusoidally oscillating at 50 Hz frequency. Besides white magnetic-field noise, this
is the major contribution of undesired field fluctuations.

• Long-term drifts: On the time scale of minutes to hours, changes in the amount
of current drawn by our laboratory devices, but also by machines in the mechanical
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2.1. Coherent manipulations – optical qubit

workshop located beneath our laboratory, cause the magnitude of the magnetic field
at the position of the ion to drift. Currently, this issue is resolved by performing
atomic spectroscopy about once in ten minutes in order to determine the magnetic-
field strength.

The magnetic-field fluctuations have a number of adverse effects, the most detrimental one
being a significantly shortened coherence time of our atomic qubit. This arises from the
magnetic field having slightly different magnitude from one experimental cycle to the next,
changing the atomic resonance frequencies. This means that the “reference oscillator”, the
729 nm laser, is detuned from its resonance by a different amount in each cycle, which is
equivalent to a loss in phase coherence between ion and laser – the qubit decoheres. It
turns out that for our setup, magnetic-field fluctuations are by far the limiting factor for
qubit coherence times.

One approach to strongly improve atomic coherence is the so-called line-triggered se-
quence mode; the experimental sequence is triggered by the slope of a 50 Hz signal derived
from the power line. The sequence is thus “phase locked” to the power-line signal and
the magnetic field from cables running close to the ion trap will cause a magnetic field
of identical magnitude at each experimental cycle. Hence, the frequency detuning be-
tween atomic resonance and qubit laser is the same in each cycle and phase coherence
between ion and laser is preserved. Although this technique has proven to enhance the
qubit coherence time by roughly one order of magnitude, it is not well suited for most of
the experiments described in this thesis; triggering the sequence by the power-line signal
naturally restricts the experimental repetition rate to 50 Hz. However, as will be shown
later, we require repetition rates of 1 – 10 kHz in order to gather sufficient statistics in a
reasonable amount of measuring time.

As an alternative approach, we are developing an active magnetic-field compensation
[137]. From a number of three-axis Hall sensors placed around the vacuum chambers, the
magnetic field at the position of the ion is inferred. Compensation coils are then used for
either feed-forward control to compensate fluctuations at 50 Hz (and higher harmonics) or
for a closed feedback loop which should be able to eliminate fluctuations of up to 1 kHz
frequency.

A third approach would be found in enclosing the vacuum chambers with mu-metal
shielding. Considering their size, however, such a solution would be very costly and close to
experimentally infeasible. Hence we are left only with the prospect of active magnetic-field
stabilization.

Ramsey experiment

A number of ways to determine qubit coherence times exist, one of the simplest being
the observation of Rabi oscillations over a sufficiently long time scale. As the qubit state
decoheres, the oscillations become damped, and the coherence time is determined as the
characteristic time of this damping process. This method, however, cannot distinguish
between damping caused by magnetic-field fluctuations and damping due to the finite ion
temperature in the trap potential. In most of our experimental scenarios, the latter type
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Chapter 2. Experimental tools for quantum-state manipulation

of damping occurs on a much shorter time scale than the former, hence this approach is
not suited for estimating coherence times limited by magnetic-field noise.

A second, less direct approach is an adaptation of a method devised by Norman Ramsey
[138]. A 729 nm laser pulse of pulse area6 π

2 creates a symmetric superposition of two
atomic energy eigenstates. After a certain waiting period, the Ramsey time T , another π

2
laser pulse with phase φ (the Ramsey phase) relative to the first pulse is applied before
projecting the atomic state onto the basis formed by the two energy eigenstates.

When starting off with the ion prepared in one of the S1/2 Zeeman states, the phase-
dependent probability p (φ) to project it onto the D5/2 Zeeman state during state detection
is in general described by fringes of the form

p (φ) = 1
2 (1 + V cos (φ)) . (2.19)

The fringe visibility V is a measure for the amount of coherence remaining between atomic
qubit and laser after the Ramsey time T . Measuring this value for a number of Ramsey
times then yields the time scale for decoherence caused by magnetic-field fluctuations. As
the total pulse area applied to the ion amounts only to π, decoherence from entanglement
of the electronic with the motional state is kept at a minimum. Even more importantly,
this contribution to the total decoherence process is independent of the Ramsey time
between the two laser pulses.

Fig. 2.7(a) shows Ramsey fringes for a Ramsey time T = 100 µs, from which we
extract the visibility V = 0.968(3). The slight phase shift of the fringes stems from a
small detuning of ∼ 0.1 kHz between atomic resonance and laser. In order to estimate the
qubit coherence time, the fringe visibility as a function of Ramsey time is measured (see
fig. 2.7(b)). Before being able to draw meaningful conclusions from this data, we need
to theoretically model the two major contributions to magnetic-field fluctuations, white
noise and power-line fields. Empirically, we found that the white magnetic-field noise is
well modeled by the Gaussian probability distribution

Pnoise (B) = 1
Bnoise

√
4 ln 2
π

e
−4 ln 2

(
B

Bnoise

)2

(2.20)

with the FWHM (full width at half maximum) value B0. As derived in app. A.3, the 50 Hz
field fluctuations from the power line are described by the modified arcsine distribution

Pline (B) = 1
πBline

1√
1−

(
B

Bline

)2
(2.21)

for a sinusoidally oscillating field7 B (t) = Bline sin (2π · 50 Hz · t). For both distributions,
any static offset field has been set to zero without loss of generality. The joint probability
distribution Pjoint (B) for the two sources of field fluctuations is then given by the convo-
lution of the individual distributions. As shown in app. A.4, the fringe visibility V (T ) as

6The area of a pulse of Rabi frequency Ω (t) is defined as A :=
∫

Ω (t) dt.
7Note that the 50 Hz oscillation frequency does not enter into the probability distribution Pline (B).
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Fig. 2.7: (a) Ramsey experiment on the |S1/2,m = −1/2〉 ↔ |D5/2,m = −1/2〉 transition. The
two π

2 laser pulses have a length of 0.885 µs each with a Ramsey time of 100 µs between them.
From the fit according to eqn. 2.19 (χ2 = 1.4), we obtain the fringe visibility V = 0.968(3).
(b) Fringe visibility as a function of Ramsey time. Fitting the theoretical model from eqn. 2.23
(χ2 = 7.4) yields the white-noise contributionBnoise = 0.183(8) mG and the power-line contribution
Bline = 0.440(4) mG. Due to the thermal motion of the ion, the π

2 pulses are not carried out with
unity fidelity, resulting in a visibility V < 1 even for very short Ramsey times. Error bars are
smaller than the size of symbols.

a function of the Ramsey time T is the cosine transform of the probability distribution for
the magnetic field,

V (T ) =
∫ ∞
−∞

Pjoint (B) cos
(2

5
µB
h̄
B · T

)
dB, (2.22)

which evaluates to

V (T ) = exp
[
−
( 1√

2
2
5
µB
h̄
Bnoise · T

)2
]
·
∣∣∣∣J0

(2
5
µB
h̄
Bline · T

)∣∣∣∣ (2.23)

with the zeroth-order Bessel function of the first kind J0. When applying this model to
the data from fig. 2.7(b), we find the white-noise contribution Bnoise = 0.183(8) mG and
the power-line contribution Bline = 0.440(4) mG. This shows that the 50 Hz power line is
the dominant source for magnetic-field fluctuations, but white noise from the laboratory
electronics is not at all negligible.

For both white noise and power-line fields, we define the individual qubit coherence
times T ∗2, noise and T ∗2, line as the points at which the visibilities drop to 1

e and find

T ∗2,noise = 2.19(10) ms (2.24)
T ∗2, line = 1.13(1) ms. (2.25)

These are the figures of merit for the time scale on which coherent manipulations of the
qubit state can be performed. It should be mentioned that these values for the coherence
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times are specific to the |S1/2,m = −1/2〉 ↔ |D5/2,m = −1/2〉 transition; transitions
between other Zeeman states show greater susceptibility to the magnetic field and thus
shorter coherence times.

Summary

In this section, I presented the implementation of an optical qubit in 40Ca+, formed by the
S1/2 ground state and D5/2 metastable state and controlled through a narrow-band laser at
729 nm. After establishing the basic tasks of spectroscopy and pulse-length scans necessary
for calibrating the laser excitation, we investigated the qubit’s coherence properties. It
turned out that fluctuations of the ambient magnetic field limit the coherence time to
values on the order of 1 ms.

2.2 Coherent manipulations – radio-frequency qubit

The optical transition at 729 nm, coupling the S1/2 and D5/2 state, forms a qubit suitable
for quantum-computational tasks. However, as detailed in the previous section, this partic-
ular choice for a qubit imposes a number of experimental challenges, such as the necessity
for a very narrow-band and stable laser, a well-cooled ion and little fluctuations of the
ambient magnetic field. When using Zeeman states in 40Ca+ for qubit states, an obvious al-
ternative to an optical qubit is one formed by two Zeeman states of the same fine-structure
manifold. A preferable choice is the S1/2 manifold, since it comprises only two Zeeman
states and does not undergo spontaneous decay. For a typical value Bstat ≈ 3 G for the
strength of the static magnetic field, the energetic splitting of the |±1/2〉 := |S1/2,m = ±1/2〉
states corresponds to a transition frequency of ω0 ≈ 2π · 8 MHz, which lies in the high-
frequency band of the radio spectrum. A qubit with a radio-frequency (RF) transition
offers two particular advantages over optical qubits:

• Reference oscillator: A qubit is only as stable as its reference oscillator, i.e. long
coherence times require a narrow-band and stable oscillator. For an optical qubit,
setting up a laser with these properties is a rather involved task, whereas an RF
qubit requires no more than a stable RF source. Such a source is provided by our
sequence-control unit Hydra, which features direct digital synthesizers (DDSs) that
are phase locked to our atomic clock. Each of these can be used as reference oscillator
of narrow linewidth and great stability.

• Thermal motion: As explained in app. A.2, dynamics of the optical qubit through
Rabi oscillations on the carrier transition are subject to decoherence as the ion’s
electronic state is coupled to its motion. This coupling stems from the finite Lamb-
Dicke parameter, i.e. the ion’s wave-packet size is not negligible compared with the
wavelength of the laser light. At transition frequencies in the RF regime, the wave-
lengths are much larger and the ion “perceives” an almost perfectly homogeneous
field. Hence the ion’s electronic state is no longer coupled to its motion, and even
for hot ions, the qubit coherence is not affected by the ion’s motion.
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2.2. Coherent manipulations – radio-frequency qubit

The second point, however, may also be considered a disadvantage; as the ion’s electronic
and motional state are not coupled, we cannot make use of the motion, e.g. as a quantum
bus between ions. Also, given the RF wavelength, we cannot address ions in a string
individually. However, there are research groups who make use of a gradient in their
static magnetic field in order to circumvent both issues [37].

This section will start off with a theoretical model for the coherent control of the S1/2
RF qubit, before introducing the experimental implementation and concluding with the
results characterizing our control over the RF qubit.

2.2.1 Magnetic-dipole transitions

In contrast to the electric dipole/quadrupole optical transitions introduced so far, the
transition |+1/2〉 ↔ |−1/2〉 in the S1/2 manifold is a pure spin flip (the quantum number of
orbital angular momentum is left unchanged), and hence a magnetic-dipole transition.

I will now show how magnetic-dipole transitions are driven through oscillating magnetic
fields. In analogy to section 1.1.2, the system Hamiltonian for a two-level system with
ground state |−1/2〉 and excited state |+1/2〉, split by the energy h̄ω0, is

Hsys = h̄ω0
2 (|+1/2〉 〈+1/2| − |−1/2〉 〈−1/2|) . (2.26)

The interaction Hamiltonian for a magnetic dipole ~µ in the presence of an external mag-
netic field ~B is

Hint = −~µ · ~B. (2.27)

The magnetic-dipole operator, expressed in terms of the spin operator ~S, is

~µ = γ ~S (2.28)

with the gyromagnetic ratio γ = g µ/h̄, whereby for a single electron in the S1/2 state, the
Landé factor8 is g ≈ 2, and the electron’s magneton is µ = −µB. The spin operator is
expressed through the vector ~σ of Pauli matrices via ~S = h̄

2~σ. Putting all this together,
we find the interaction Hamiltonian

Hint = µB ~σ · ~B. (2.29)

In order to efficiently couple the two energy eigenstates, the magnetic field needs to be po-
larized perpendicularly to the quantization axis. We hence choose ~B = BRF cos (ωRF t)~ex.
With the Pauli matrix σx = |+1/2〉 〈−1/2| + |−1/2〉 〈+1/2| and the coupling strength (Rabi
frequency) Ω := 1

h̄µBBRF, we arrive at

Hint = h̄Ω
2 (|+1/2〉 〈−1/2|+ |−1/2〉 〈+1/2|)

(
e−iωRF t + eiωRF t

)
. (2.30)

This form is identical to eqn. 1.25 with the Lamb-Dicke parameter η = 0. Analogously, one
can perform the transformation to the interaction picture, followed by the rotating-wave

8Precise value: g = 2.002 319 3 [139]
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approximation. When examined in closer detail, the latter is no longer exactly valid. As
will be shown in 2.2.4, we achieve Rabi frequencies up to 100 kHz, which is not negligible
compared with the transition frequency ω0 ≈ 2π · 8 MHz. However, the resulting effects
as e.g. the Bloch-Siegert shift [140] are still too small to play any significant role for our
purposes. With the detuning parameter ∆ = ωRF − ω0, we obtain the final interaction
Hamiltonian

HI
int = h̄Ω

2
(
e−i∆t |+1/2〉 〈−1/2|+ ei∆t |−1/2〉 〈+1/2|

)
. (2.31)

In conclusion, we can treat the S1/2 Zeeman qubit as a genuine two-level system with
no motional sideband or other carrier transitions present.

2.2.2 Experimental implementation

The generation of an oscillating magnetic field at the ion’s position can be achieved in
various ways, e.g. by sending an oscillating current through one of the many electrodes
present in an ion trap. For simplicity, however, we opted for ex-vacuo circuitry.

Both vacuum chambers are equipped with large viewports at the bottom sides. Below
the Bright Trap viewport, we installed a two-loop copper-wire coil of 16 cm diameter and at
8 cm distance from the ion’s position. Its inductance and an additional tunable capacitor
form a series LC circuit. The capacitance is chosen as to shift the circuit resonance to the
atomic transition frequency at ω0 ≈ 2π · 8 MHz. The advantage of a resonant circuit lies
in the enhancement of the current amplitude, which in turn enhances the strength of the
magnetic field. The field itself points upwards and thus perpendicularly to the quantization
axis. Hence we expect to efficiently couple the S1/2 Zeeman states and obtain the highest
possible Rabi frequency. One of Hydra’s DDSs provides the drive signal, which is sent
through a 2 W amplifier9 before entering the LC circuit.

Measurements characterizing the RF coil are presented in fig. 2.8. First, a network
analysis is performed, determining the spectral response of the LC circuit. A commercial
digital analyzer10 is used to generate an RF signal at varying frequency that is sent to the
LC circuit. The voltage induced in a small pick-up coil placed below the RF coil provides
a measure for the amplitude of the oscillating magnetic field. In order not to feed the
ion-trap drive at 26 MHz (which is picked up since the coils are close to the trap) into
the network analyzer, we use a low-pass filter of 11 MHz cutoff frequency. We observe a
steep resonance with a FWHM of 0.88 MHz at 8.35 MHz center frequency, indicating a
significant enhancement of the RF current in the coil. Another peak is visible at 11.5 MHz,
which is not yet fully understood, but can most likely be attributed to the massive steel
vacuum chamber above the coil, constituting a resonance circuit in itself. The parametric
excitation which is seen at twice the resonance frequency is already strongly suppressed
by the low-pass filter.

In a second step, we determine the settling time of the LC circuit by feeding the signal
from the pick-up coil into an oscilloscope. After switching on the DDS drive, the current in

9Mini-Circuit, ZHL-1-2W+
10Toptica, DigiLock 110
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Fig. 2.8: Characterization of the RF coil. (a) Network analysis. Shown is the amplitude of the
pick-up voltage as a function of the drive frequency, from which we estimate a resonance FWHM
of 0.88 MHz at 8.35 MHz center frequency. (b) Build-up response after switching on the RF drive
at 7.93 MHz. From the fit, we extract the settling time 0.24(1) µs.

the RF coil is built up with 0.24(1) µs settling time, which is compatible with the linewidth
observed in the network analysis.

Experimental sequence

Upon preparing the ion in the |−1/2〉 state through optical pumping, the S1/2 Zeeman
qubit is coherently manipulated through the RF coil. Afterwards, one usually wishes to
measure the qubit in the {|±1/2〉} basis. We do this by transferring (“shelving”) one of
the two states, typically |+1/2〉, to the D5/2 manifold through a resonant pulse at 729 nm.
State detection is performed in the usual way, as described in section 2.1.3, and hence
the ion in the dark (bright) state after switching on the cooling lasers corresponds to a
projection onto the |+1/2〉 (|−1/2〉) state.

2.2.3 Spectroscopy

The RF transition provides a direct means to determine the strength of the magnetic field
at the ion’s position. In contrast, when using the 729 nm transition, spectroscopy of two
individual lines is needed in order to account for the (initially) unknown frequency of the
reference laser. Once the resonance frequency has been determined, high-fidelity qubit
operations can be executed.

Spectroscopy on the RF transition is performed in analogy to the 729 nm transition;
after preparing the ion in the |−1/2〉 state, an RF pulse of fixed length and variable fre-
quency is sent to the coil. We then measure the probability to project the ion onto the
|+1/2〉 state as a function of the RF detuning. Fig. 2.9 shows a spectrum for a pulse of
150 µs duration, allowing for a Fourier-limited spectral resolution of 1.1 kHz. The line is
centered at ω0 = 2π · 7.927 95(2) MHz, and via the relation h̄ω0 = geff µBBstat, we find the
magnitude Bstat = 2.828 890(7) G of the static magnetic field during the measurement.

51



Chapter 2. Experimental tools for quantum-state manipulation

7.92 7.93 7.94
0.0

0.5

1.0

RF drive frequency (MHz)

D
5
/2

−
st

at
e 

p
o
p
u
la

ti
o
n

Fig. 2.9: Pulsed spectroscopy on the RF transition with an excitation pulse of 150 µs length
(corresponding to a Fourier-limited spectral width of 1.1 kHz) at an RF power of ∼ 20 mW sent
to the coil. From the theoretical model fitted to the data (χ2 = 1.2), we derive 3.58(2) kHz
Rabi frequency and 3.21(5) kHz of incoherent contribution to the linewidth from magnetic-field
fluctuations. The line center is determined to 7.927 95(2) MHz.

The incoherent contribution to the linewidth due to magnetic-field fluctuations is consis-
tent with the value obtained from spectroscopy on one of the 729 nm transitions with a
magnetic-field susceptibility similar to that for the RF transition (geff = 2.002 319 3).

2.2.4 Rabi oscillations

After performing spectroscopy on the RF qubit, a pulse-length scan is needed to determine
the Rabi frequency (for a given RF power) before any controlled coherent manipulations
are carried out. The transition is driven resonantly, and the length of the excitation pulse
is successively increased. Measuring the population of the |+1/2〉 state as a function of
the pulse length then allows us to determine the Rabi frequency on the RF transition
with great accuracy. As shown in fig. 2.10, the pulse-length scan yields 97.97(2) kHz
Rabi frequency at ∼ 900 mW drive power. From the Rabi frequency, we reconstruct the
amplitude BRF = 70.00(1) mG of the oscillating magnetic field at the position of the ion.
This, in turn, yields ∼ 1.3 A for the amplitude of the current in the RF coil, which is
roughly in accordance with what we expect from the coil’s properties.

In contrast to pulse-length scans on the 729 nm transition, the Rabi oscillations on
the RF qubit are nearly completely undamped, as shown in fig. 2.10 for the first 50 µs.
This proves that the ion’s thermal motion (〈n〉 ≈ 20) has no impact on the RF transition
owing to the very small Lamb-Dicke parameter. However, the transition is of course still
susceptible to fluctuations of the static magnetic field. As will be shown in the next section,
its coherence time is on the order of 200 µs, but the Rabi oscillations continue to much
longer times. Extrapolation indicates that the oscillation visibility is expected to drop to
1
e after 24(1) ms. This can be understood by noting that the qubit’s evolution in each
experimental cycle is governed by the generalized Rabi frequency Ω′ =

√
Ω2 + ∆2, where

∆ is the RF-drive detuning from resonance and depends on the particular magnetic field
during that cycle. Hence, the generalized Rabi frequency is slightly different in each cycle,
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Fig. 2.10: Pulse-length scan on the RF transition for an RF power of ∼ 900 mW sent to the coil.
From the fit (χ2 = 1.9), we obtain a Rabi frequency of 97.97(2) kHz and a damping-time constant
of 24(1) ms.

and for long excitation pulses, the Rabi oscillations lose their phase with respect to the
beginning of the pulse. Averaging over many cycles thus leads to a loss of the oscillation
visibility. For Rabi frequencies large compared with the average detuning, as in our case,
the generalized Rabi frequency expands to Ω′ ≈ Ω + ∆2

2Ω and depends only in second order
on the detuning. The shift in the generalized Rabi frequency by the detuning is therefore
suppressed by a factor ∆

2Ω � 1, which keeps the Rabi oscillations in phase for much longer
than the transition coherence time.

In a larger context, this is a very simple realization of dynamical decoupling [141, 142],
a family of experimental techniques employed to prolong qubit coherence times through
rapid external control.

2.2.5 Ramsey experiment

Very much in analogy to section 2.1.6 that described a Ramsey experiment as a means
to estimate the coherence time of the optical qubit, we conduct a similar experiment on
the RF transition. Noise on the static magnetic field will change the energy of the S1/2
Zeeman states, causing the RF qubit to lose phase coherence with respect to its drive.

An RF pulse of pulse area π
2 creates a symmetric superposition of two Zeeman states.

After a certain waiting period, the Ramsey time, another π
2 pulse with variable phase

(the Ramsey phase) relative to the first pulse is applied before projecting the qubit onto
the {|±1/2〉} basis. The probability for a projection onto the |−1/2〉 state as a function
of the Ramsey phase is then expected to oscillate sinusoidally. From the decay of the
visibility of these fringes for ever longer Ramsey times, we extract the qubit coherence time.
Fig. 2.11 depicts one particular Ramsey fringe as well as the fringe visibility for different
Ramsey times. From the latter, we obtain the coherence times T ∗2, noise = 211(16) µs and
T ∗2, line = 196(11) µs for the white-noise and power-line contribution. This is in accordance
with the values for the |S1/2,m = −1/2〉 ↔ |D5/2,m = −1/2〉 transition from section 2.1.6,
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Fig. 2.11: (a) Ramsey experiment on the RF transition. The two π
2 pulses have a length of 2.811 µs

each with a Ramsey time of 10 µs between them. From the fit (χ2 = 0.95), we obtain the fringe
visibility V = 0.971(2). (b) Fringe visibility as a function of Ramsey time. Fitting the theoretical
model from eqn. 2.23 (χ2 = 36.7) yields the white-noise contribution Bnoise = 0.381(29) mG, the
power-line contribution Bline = 0.510(29) mG and the qubit coherence times T ∗

2, noise = 211(16) µs
and T ∗

2, line = 196(11) µs. Error bars are smaller than the size of symbols.

which are significantly longer as this transition is much less susceptible to magnetic-field
fluctuations.

Summary

In this section, I presented the implementation of a radio-frequency qubit, formed by
the two S1/2 Zeeman states, as an alternative to the optical qubit. An ex-vacuo copper-
wire coil facilitates simple and coherent control over this qubit, offering two particular
advantages: insensitivity of qubit manipulations to the ion’s thermal motion and the use
of an easy-to-handle direct digital synthesizer (DDS) as a reference oscillator in place of
the complex setup of a laser locked to a high-finesse optical cavity. Pulse-length scans
showed Rabi frequencies as high as 100 kHz, comparable to those from the optical qubit.

2.3 Optical ground-state pumping

In the first two sections of this chapter, methods to coherently control the atomic qubit
through optical and radio-frequency excitations were presented. A prerequisite for most
of these operations is the ability to initialize the qubit in a pure quantum state prior to
any coherent manipulations. In contrast, at the end of the experimental sequence (see fig.
2.3), the 397 nm cooling laser is switched off, leaving the ion in a statistical mixture of the
|S1/2,m = ±1/2〉 Zeeman ground states. I will now discuss two schemes of preparing the
ion in a particular one of the two states through optical pumping.

54



2.3. Optical ground-state pumping

S1/2

P1/2

−1/2
+1/2

σ−397 nm

(a)

0 2 4 6

0.6

0.8

1.0

Pump−pulse length (µs)
D

5
/2

−
st

at
e 

p
o
p
u
la

ti
o
n

(b)

Fig. 2.12: (a) Level scheme for ground-state pumping on the S1/2–P1/2 transition. A laser at
866 nm repumps population from the D3/2 manifold (not shown). (b) Population of the D5/2
manifold after shelving the state |S1/2,m = −1/2〉 for various durations of the pump pulse. The
exponential fit (χ2 = 9.3) yields 1.05(8) µs for the 1

e time constant. Error bars are smaller than
the size of symbols.

2.3.1 Pumping at 397 nm

For our purposes, we choose to initialize the atomic qubit in the |S1/2,m = −1/2〉 Zeeman
state. The simplest way to achieve this is to drive the σ− transition at 397 nm wavelength
(see fig. 2.12(a)). This excites any unwanted population in |S1/2,m = +1/2〉 to |P1/2,m =
−1/2〉 from where, in each excitation cycle, it decays with a fraction of 1

3 (given by the
Clebsch-Gordan coefficients specific to this transition) to the desired |S1/2,m = −1/2〉
state.

As shown in fig. 2.2, we implement this scheme through a 397 nm beam with right-
handed circular polarization11 propagating antiparallel to the quantization axis (defined
by the static magnetic field). A laser at 866 nm repumps any population decaying to the
D3/2 manifold. Since the pump polarization is never perfectly circular, the |S1/2,m = −1/2〉
state will always be residually excited and thus never contain the entire population. This
effect becomes more dramatic if the laser power is increased beyond saturation of the σ−
transition; since the σ+ transition is by far not saturated yet, more power will lead to a
higher depopulation rate of the desired |S1/2,m = −1/2〉 state, while the pumping rate from
|S1/2,m = +1/2〉 hardly increases any longer. As a compromise between pump efficiency
and pump rate, we choose 4 µW of optical power. At a spot diameter of ∼ 60 µm, this
corresponds roughly to the saturation power of the transition.

In order to determine the rate at which population is pumped to the |S1/2,m = −1/2〉
state, we measure its population as a function of pump duration (see fig. 2.12(b)). At the
end of the pumping process, the population is shelved to the D5/2 manifold via the 729 nm

11Within this thesis, circular polarization is defined as the sense of rotation of the electric field when
viewing the field along the quantization axis (defined by the static magnetic field).

55



Chapter 2. Experimental tools for quantum-state manipulation

transition. From an exponential fit, we derive the 1
e time constant as 1.05(8) µs. We thus

consider it sufficient to choose 5 µs pump duration. Note that the values for the population
in fig. 2.12(b) are lower than the actual population in |S1/2,m = −1/2〉 since the shelving
pulse is not perfect. The latter is accounted for by performing a second measurement
during which the |S1/2,m = +1/2〉 is shelved for reference. For 5 µs pump duration, we
thus infer 99.88(1) % pump efficiency (and 99.07(3) % shelving efficiency).

2.3.2 Pumping at 729 nm

Due to its speed and simplicity, pumping at 397 nm is the method of choice for optical
ground-state pumping for many experimental situations. As explained above, the circu-
larly polarized pump beam needs to propagate along the quantization axis. For some
experiments described in this thesis, the latter is oriented along the direction of fluores-
cence collection through one or both HALOs. This, however, means that the pump beam
needs to be overlapped with the spatial mode of the weak atomic photon emission. For
this arrangement, it has turned out that it is almost unavoidable to couple a significant
amount of stray light from the pump beam into the optical fibers leading to the PMTs,
yielding background rates as high as 100 · 103 s−1 (not to mention the danger of perma-
nently damaging the PMTs).

We have thus devised another scheme of optical ground-state pumping; the idea is to
depopulate the |S1/2,m = +1/2〉 state in a frequency-selective instead of a polarization-
selective way. As shown in fig. 2.13(a), we realize this by continuous excitation on the
|S1/2,m = +1/2〉 ↔ |D5/2,m = −3/2〉 transition at 729 nm. Repumping is attained through
a linearly polarized beam at 854 nm (and 866 nm, not shown), driving the transition
|D5/2,m = −3/2〉 ↔ |P3/2,m = −1/2〉. Population in the state |P3/2,m = −1/2〉 decays
to the desired ground-state |S1/2,m = −1/2〉 with a fraction of 2

3 . Similarly to pumping
at 397 nm, the final |S1/2,m = −1/2〉 population is limited by residual excitation, now
stemming from off-resonant excitation at 729 nm. However, it has proven advisable to
maximize the power of the 729 nm beam (63 mW at ∼ 80 µm spot diameter) in order to
obtain an acceptable pump rate. Repumping from the D5/2 state at 854 nm artificially
broadens the 729 nm transition, and the 854 nm power (4 µW at ∼ 130 µm) is chosen such
as to maximize the rate of photons scattered on the S1/2–P3/2 transition and hence the
pump rate. At the end of the pump sequence, the 729 nm beam is switched off and the
854 nm beam is set to saturate its transition for 2 µs in order to quench any population in
D5/2.

Just as we did for pumping at 397 nm, we determine the rate at which population is
transferred to the |S1/2,m = −1/2〉 state by measuring its population as a function of the
pump-sequence duration via shelving to the D5/2 manifold. From the data shown in fig.
2.13(b), we infer 4.2(4) µs for the 1

e time constant. In order to account for the non-perfect
shelving pulse, we perform a reference measurement during which the |S1/2,m = +1/2〉
state is shelved instead. For 20 µs pump duration, we obtain 99.58(2) % pump efficiency.
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Fig. 2.13: (a) Level scheme for ground-state pumping on the S1/2–D5/2 transition. (b) Population
of the D5/2 manifold after shelving the state |S1/2,m = −1/2〉 for various durations of the pump
sequence. The exponential fit (χ2 = 26.0) yields 4.2(4) µs for the 1

e time constant. Error bars are
smaller than the size of symbols.

2.4 Auxiliary spectroscopy

As explained in section 1.2.3, all lasers except the qubit laser at 729 nm are stabilized
to optical transfer cavities. Barometric changes, however, cause slow drifts of the cavity
resonances on a day-to-day basis. Hence, it is necessary to calibrate the laser frequencies
every morning by performing spectroscopy on the atomic transitions.

2.4.1 866 nm spectroscopy

The lasers at 866 nm and 397 nm are frequency-calibrated simultaneously by performing
spectroscopy on the D3/2–P1/2 transition [143, 127]. In contrast to the experimental
schemes presented so far in this thesis, this measurement is not conducted in pulsed mode
but in a steady-state situation; for a given set of 397 and 866 nm laser parameters (Rabi
frequencies, detunings from resonance, etc.), atomic fluorescence is detected and integrated
for a fixed amount of time (typically 200 ms). The number of detected fluorescence photons
is proportional to the steady-state population of the P1/2 state, and scanning either the
397 or 866 nm laser frequency yields an excitation spectrum from which we obtain all
relevant laser parameters. Since the S1/2–P1/2 transition is used for Doppler cooling, it is
advisable to choose the D3/2–P1/2 transition for spectroscopy.

A typical 866 nm spectrum is shown in fig. 2.14. Both the 397 and 866 nm laser are
polarized perpendicularly to the quantization axis. From comparing the data and the
theoretical model, we extract the two Rabi frequencies and calibrate the laser frequencies.
As an alternative to 729 nm spectroscopy, it also yields an estimate for the strength of the
static magnetic field.
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Fig. 2.14: Excitation spectroscopy on the D3/2–P1/2 transition at 866 nm for 200 ms integration of
atomic fluorescence. The fit (χ2 = 7.8), based on an 8-level Bloch-equation model [143, 127], allows
us to calibrate the frequency axis (resonance at +1.1 MHz) and determine the 397 nm detuning from
resonance (-15.8 MHz). Additionally, we find 6.1 MHz (13.5 MHz) Rabi frequency on the 866 nm
(397 nm) transition and 2.6 G for the strength of the static magnetic field. The four distinctive dips
are dark resonances, induced by coherent interaction of the two laser fields with the ion, forming
an atomic steady state which couples only weakly to the light fields.

2.4.2 854 nm spectroscopy

Finally, the only remaining laser that needs frequency calibration prior to any advanced
experiments is the one at 854 nm for addressing the D5/2–P3/2 transition. Like for all
spectroscopy experiments except at 866 nm, we use a pulsed excitation scheme. First,
the ion is prepared in the state |D5/2,m = −5/2〉 through a resonant pulse on the 729 nm
transition. Then, with all other lasers off, a long and weak pulse (such as not to saturate
and thus broaden the transition) at 854 nm, polarized perpendicularly to the quantization
axis, is sent onto the ion. This removes population from D5/2 by repumping it back to the
S1/2 ground state via the state |P3/2,m = −3/2〉 (see fig. 2.15(a)). Through the relation

p (∆) = p0 e
−R(∆)·T (2.32)

for the remaining D5/2 population p (with initial population p0 and pulse duration T ), we
obtain a spectrum of the detuning-dependent repumping rate R as shown in fig. 2.15(b).
This, in turn, allows us to determine the resonance frequency of the |D5/2,m = −5/2〉 ↔
|P3/2,m = −3/2〉 transition and hence to calibrate the laser frequency. Besides, this kind
of spectroscopy has turned out to yield the most accurate value for the Rabi frequency on
the 854 nm transition.

2.5 Ion-temperature measurement

For all our experimental purposes so far, Doppler cooling on the S1/2–P1/2 transition has
proven to cool the ion to a sufficiently low motional state, making advanced techniques like
resolved-sideband cooling unnecessary. The latter, in particular, is a comparatively slow
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Fig. 2.15: Spectroscopy on the |D5/2,m = −5/2〉 ↔ |P3/2,m = −3/2〉 transition at 854 nm
for a laser beam of 1 µW optical power, focused to a spot of diameter ∼ 250 µm, and polarized
perpendicularly to the quantization axis. (a) Population remaining in the state |D5/2,m = −5/2〉
after a 3 µs repumping pulse. (b) Repumping rate, from which we calibrate the frequency axis
(resonance at -10.78(7) MHz) and extract 1.469(4) MHz Rabi frequency (χ2 = 7.6). The shape of
the curve reflects the natural linewidth of ∼ 23 MHz of the 854 nm transition.

process, and is not suited for experimental schemes which require high sequence repetition
rates.

Optimization of the cooling-laser parameters for a low ion temperature is described
in detail in [94]. This section is meant to elaborate on our method of ion-temperature
measurement, which, like other schemes, is based on measuring the strength of motional
sidebands of the qubit transition at 729 nm. For a motional mode close to its ground
state, most schemes compare the strength of the red and blue motional sideband, as their
ratio directly yields the mean motional quantum number 〈n〉 [48]. For higher motional
states, however, those sidebands become more and more equal in strength, making it
hard to obtain the temperature of this mode with sufficient accuracy. A much more
robust method is to compare the strength of a sideband transition with that of the carrier
transition instead.

Carrier and sideband probing

As derived in section A.2 for a trapped particle in a one-dimensional harmonic poten-
tial, exciting (probing) one of the 729 nm carrier transitions with a pulse of length t will
populate the D5/2 state with probability

pcar (t) = 1
2

(
1−

∞∑
n=0

pn cos (Ωn,nt)
)

(2.33)
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with Rabi frequencies Ωn,n = Ω cn,n, coupling-strength coefficients

cn,n =
∣∣∣〈n| eiη(a+a†) |n〉

∣∣∣ (2.34)

= e−η
2/2 L0

n

(
η2
)
, (2.35)

associated Laguerre polynomials L and the thermal distribution pn = 〈n〉n

(〈n〉+1)n+1 . For
known electronic Rabi frequency Ω and Lamb-Dicke parameter η, one could derive the
mean motional quantum number 〈n〉 and hence the temperature directly from a fit to
the damped Rabi oscillations described by eqn. 2.33. However, two major complications
to this approach arise: first, the electronic Rabi frequency is typically not known with
sufficient accuracy. Second, in a realistic situation in which the ion possesses not one
but three motional modes (with in general different mean motional quantum numbers),
all three contribute to damping the Rabi oscillations, and the individual contributions
become hard to discern.

The solution to both issues lies in probing both a carrier and red-sideband transition
(the following calculations are straightforward to modify for the blue sideband). For the
red sideband, the D5/2 excitation probability becomes

prsb (t) = 1
2

(
1−

∞∑
n=1

pn cos (Ωn,n−1t)
)

(2.36)

with Rabi frequencies Ωn,n−1 = Ω cn,n−1 and coupling-strength coefficients

cn,n−1 =
∣∣∣〈n− 1| eiη(a+a†) |n〉

∣∣∣ (2.37)

= η
e−η

2/2
√
n

L1
n−1

(
η2
)
. (2.38)

We now expand the functions describing the Rabi oscillations on the carrier and red-
sideband transition, respectively, such that the ratio of the two becomes independent
of the electronic Rabi frequency and the motional modes that we are not interested in
(“spectator modes”). This expansion is justified for small pulse areas, i.e. Ωn,nt � 1 for
all n (since Rabi frequencies on sideband transitions are typically much weaker than on
carrier transitions, this conditions implies Ωn,n−1t � 1 as well). We then find for the
excitation probability on the carrier transition

pcar (t) ≈ 1
2

(
1−

∞∑
n=0

pn

(
1− 1

2 (Ωn,nt)2
))

(2.39)

=
(1

2 Ω t

)2 ∞∑
n=0

pn c
2
n,n (2.40)

and analogously for the red-sideband transition. It is important to note that the influence
of the spectator modes on the Rabi frequencies is the same for the carrier (Ωn,n) and
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sideband transition (Ωn,n−1). Hence the ratio prsb/pcar will not only be independent of
the electronic Rabi frequency but of the quantum state of the spectator modes as well:

prsb
pcar

=
∑∞
n=1 pn c

2
n,n−1∑∞

n=0 pn c
2
n,n

(2.41)

=

〈
c2
n,n−1

〉
〈
c2
n,n

〉 . (2.42)

For a given Lamb-Dicke parameter η, the coupling-strength coefficients are readily calcu-
lated. The value 〈n〉 of the mean motional quantum number is then found numerically
from the measured ratio prsb/pcar. From the relation 1

2kBT = 〈Ekin〉 = 1
2 〈E〉 between

temperature T , kinetic energy Ekin and total energy E, we find the temperature of the
motional mode in question:

T = h̄ωT
kB
〈n〉 (2.43)

Experimental results

For probing the 729 nm transition, we choose the particular transition |S1/2,m = −1/2〉 ↔
|D5/2,m = −5/2〉, since it lies at the very edge of the transitions between all the S1/2 and
D5/2 Zeeman states, minimizing off-resonant excitations of unwanted transitions. We set
the 729 nm laser power such that we attain a pulse area of Ωn,nt ≈ 0.2π on the carrier
transition for a 2 µs probe pulse12. In order to obtain sufficient statistical data, we probe
both the carrier and red-sideband transition 105 times and record the number of successful
excitations of the D5/2 state.

For the axial mode of motion under standard Doppler-cooling conditions, we obtain
9.83(9) % and 0.76(3) % excitation probability on the carrier and red-sideband transition,
respectively. From this, we derive the expectation value for the motional quantum number
〈n〉 = 19.9(8) and the temperature T = 1.15(4) mK.

Summary

In this chapter, I presented the experimental methods and tools required for controlling and
manipulating the quantum state of 40Ca+. In the first part, we established control over the
optical qubit formed by the S1/2 ground state and the D5/2 metastable state by means of
a narrow-band laser. We routinely perform spectroscopy and pulse-length scans in order
to calibrate laser frequency and power. As such, we attain spectral resolutions on the
order of 10 Hz and Rabi frequencies in the 100 kHz range. We also investigated the qubit’s
coherence time, which is on the order of 1 ms. As an alternative to this optical qubit,
we make use of the two S1/2 Zeeman states in order to realize a radio-frequency qubit,
which is not coupled to the ion’s motion. We control the qubit by means of a copper-wire
coil attached to the vacuum chamber and reach coupling strengths comparable to those

12For this pulse area, the approximation from eqn. 2.39 introduces a relative error < 1 %.
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on the optical qubit. In order to prepare the atomic state for coherent manipulations, we
implemented two complementary optical-pumping techniques. Among others, this task
requires well-calibrated lasers for addressing the ion’s electric-dipole transitions. To this
end, I introduced spectroscopic techniques used routinely for laser calibration. Finally,
I presented a robust method for determining the ion’s temperature in the trap potential
(∼ 1 mK).
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Chapter 3

Toward quantum networking

One of the essential ingredients to atom-based quantum networks [21, 61, 68, 144] is
the ability to generate on-demand single photons that can be transmitted over distance
[145, 146, 147, 148, 149, 88]. Acting as flying qubits, they allow distributing quantum
information among spatially separated network nodes, mapping quantum information [150]
or establishing entanglement between nodes [62, 64].

Various schemes and protocols exist that facilitate these purposes. One of them is based
on the interference of two single photons that have each been entangled with a single atom.
A projective measurement of the two-photon state then heralds entanglement between the
atoms [64, 65, 66]. Another approach to creating entanglement between network nodes
is to entangle an atom with a photon, then send the latter to another, remote atom by
which it is absorbed [68]. To make these schemes feasible, a high rate of generated and
collected photons in a well-defined quantum state is required.

In this chapter, I will first present both the theory and the experimental implemen-
tation of the controlled generation of single photons from a single ion. We are able to
tune the temporal and spectral properties of the light emitted by the ion and quantify its
single-photon character. As a prerequisite for the experiments presented in chapter 4, we
show that the atomic coherence properties are faithfully transferred from the ion onto a
photon.

3.1 Generation of single photons

Several methods for the generation of single photons from an atom or ion have proven
practical in the past; one relies on Rayleigh scattering in an (effective) atomic two-level
system, illustrated in fig. 3.1(a). Upon preparing such a system in the ground state |g〉,
a laser pulse resonantly excites the typically short-lived upper state |e〉 from which the
atom spontaneously returns to the ground state, thereby emitting, i.e. scattering, a single
photon [151, 152]. This scheme has two drawbacks: first, the exciting pulse is required to
be much shorter than the excited-state lifetime, otherwise a non-negligible probability to
scatter more than one photon arises. Second, the photon’s spectral and temporal shape
are determined solely by atomic properties, in particular the excited-state lifetime. We
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Fig. 3.1: Schemes for the generation of single photons from a single atom/ion. (a) Rayleigh
scattering in a two-level system. (b) Raman scattering in a three-level system.

employ a more favorable scheme, the one of spontaneous Raman scattering, which we
describe in the next section.

3.1.1 Spontaneous Raman scattering

In contrast to Rayleigh scattering, the process of Raman scattering refers to the effect
that the initial atomic state differs from that after the scattering process. The effect is
based on absorbing a photon from the light field on a certain transition and subsequently
emitting a photon on a different transition. Hence Raman scattering can only be observed
in multi-level systems. The Raman process is called vacuum-stimulated or spontaneous if,
as in our case, the scattered photon is emitted into free space (as opposed to emission into
another light field, which would be stimulated Raman scattering).

Fig. 3.1(b) shows the process of Raman scattering; after preparing the atom in the
(meta)stable state |r〉, a laser couples the state to the intermediate, short-lived state |i〉
which has, in general, decay channels to both |r〉 and the ground state |g〉. Continuously
exciting the transition |r〉 ↔ |i〉 will hence transfer all population to the ground state,
scattering a single Raman photon at a frequency different from that of the driving laser
field. The rate at which population is transferred from |r〉 to |g〉 is not only a function of
the atomic properties but of the laser parameters as well. For example, if the laser excites
the atom very weakly, i.e. the Rabi frequency is small compared with the natural transition
linewidth, the population is transferred to the ground state on a time scale much longer
than the natural lifetime of the intermediate state |i〉. Hence also the temporal shape
(wave packet) of the scattered Raman photon is much longer than the natural lifetime.
This is in contrast to the excitation of a two-level system by a short laser pulse, which
yields Rayleigh-scattered photons of exponential temporal shape with the 1

e time given by
the excited-state lifetime. This tunability of the Raman process will be treated in more
detail in the next paragraph.
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Raman-scattering tunability

In order to describe the properties of a Raman-scattered photon, we need to analyze the
atomic dynamics first. A simple rate-equation model was found sufficient for most of our
purposes. We assume that any population in the intermediate state |i〉 will decay to states
|g〉 and |r〉 at partial rates Γi,g and Γi,r, respectively. These rates are related to the total
decay rate Γi and lifetime τi of state |i〉 via

Γi = 1
τi

= Γi,g + Γi,r. (3.1)

The branching fraction for a transition to state |g〉 is defined as

fi,g := Γi,g
Γi

= Γi,g
Γi,g + Γi,r

, (3.2)

representing the probability for population in state |i〉 to decay to |g〉. The branching
fraction fi,r for a transition to state |r〉 is defined analogously.

For the generation of a Raman photon emitted on the transition from |i〉 to |g〉, we
initially prepare the atom in state |r〉. For most of our purposes, as we will see later, it is
favorable to generate photons of long temporal shape. Thus we enter the regime of weak
excitation, as mentioned above, implying Ω � Γi for the Rabi frequency Ω of the laser
coupling states |r〉 and |i〉. Similar to a two-level system, we can define a quasi-steady
state: since the atomic system relaxes at rate Γi, much faster than the Rabi frequency Ω,
no coherent atomic dynamics evolve. Instead, the subsystem of the two states |r〉 and |i〉
relaxes into a steady state at rate Γi with a low population in state |i〉. Thus population
loss from the subsystem through decay to the ground state |g〉 occurs on a much longer time
scale than the relaxation, and we may hence call the state of the subsystem quasi-steady.
At time t = 0, the quasi-steady population of state |i〉 is [119]

ρi = Ω2

(2∆)2 + Γ2
i

(3.3)

with the detuning ∆ of the laser from the atomic resonance. On longer time scales,
population loss to state |g〉 becomes noticeable; the rate at which population accumulates
in |g〉 is given by the quasi-steady population of state |i〉 and the decay rate to |g〉:

ρ̇g = Γi,g · ρi (3.4)

This population transfer makes the quasi-steady state population of state |i〉 time-depen-
dent, changing eqn. 3.3 accordingly:

ρi (t) = Ω2

(2∆)2 + Γ2
i

(1− ρg (t)) (3.5)

Taking the time derivative then yields a differential equation,

ρ̇i = − Ω2

(2∆)2 + Γ2
i
ρ̇g (3.6)

= −Γi,g
Ω2

(2∆)2 + Γ2
i
ρi, (3.7)
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from which we readily obtain the population of the intermediate state,

ρi (t) = ρi (0) e−R t, (3.8)

with transfer rate R := Γi,g
Ω2

(2∆)2+Γ2
i

and initial value ρi (0) = Ω2

(2∆)2+Γ2
i
.

The temporal behavior of ρi (t) is directly reflected in the temporal envelope (shape)
of the scattered Raman photon; since the probability for the emission of a photon at
any point t in time is proportional to the intermediate-state population, the probability
distribution for detecting the photon at a certain time t is

p (t) = 1
τph

e−t/τph Θ (t) (3.9)

with the photon duration τph := 1/R and the Heaviside step function Θ. Thus the Raman
process yields a single photon with exponential temporal shape of which we can tune the
duration through intensity and detuning of the driving laser field. In particular, we find
τph ∝ 1/Ω2.

We should mention at this point that we cannot assign an electromagnetic wave to the
photon as we would to a classical light field (e.g. a laser field). As described in detail in
[153], the expectation value for the electric-field operator in the case of a photon number
state (the quantum-mechanical description of a single photon) yields zero. In particular,
such a state does not possess a defined phase, making it differ greatly from classical
fields. The operator for the field intensity, however, yields non-zero values for such non-
classical states. Thus the single photon may very well be described by a temporal intensity
distribution, which is proportional to the detection probability distribution p (t).

Complementary to the photon’s temporal shape, we will discuss its spectral properties
in the next section.

Photonic spectrum

As mentioned earlier, the properties of a single photon scattered from a two-level atom
under pulsed excitation are solely determined by atomic properties. This includes the
photonic spectrum, its bandwidth given by the decay rate of the excited state. In the case
of Raman-scattered photons, however, this issue is very different.

We will first discuss the case Γi,r � Γi,g ≈ Γi, i.e. we assume spontaneous decay from
state |i〉 back to |r〉 to be negligible compared with decay to the ground state |g〉. Under
this condition, the atom is coherently transferred from |r〉 to |g〉 under emission of a single
photon. Coherently is this context means that during the emission process, no quantum
information leaks from the joint system of atom and photon to the environment. Loss of
quantum information from the joint system would be perceived as decoherence, instead the
system remains in a pure quantum state. Since the atom is in a pure state before as well as
after the scattering process, so must the photon. The interpretation of this pure photonic
state lies in a Fourier relation between its temporal and spectral shape, i.e. its spectrum is
directly determined by its temporal shape through Fourier transformation. Interestingly,
this means that for long wave packets (from weak laser excitation), the photonic spectrum
is much narrower than the natural transition linewidth Γi.

66



3.1. Generation of single photons

It is instructive to consider the problem from another point of view, namely in terms
of time-energy uncertainty. Population is transferred from the initial state |r〉 to the final
state |g〉, i.e. the lifetime of state |r〉 is artificially shortened to the value 1/R = τph by the
laser excitation. According to the principle of time-energy uncertainty, the state’s energy
is thus only defined within ∼ h̄R, and due to energy conservation, this uncertainty must
be reflected in the photonic spectrum. Again, the intermediate-state decay rate Γi is not
a limiting factor.

For our photonic wave packets, their temporal probability distribution p (t) being of
exponential shape with 1

e duration τph, the spectral probability distribution is given by
the Fourier transform and yields a Lorentzian shape,

S (ω) = 2
π τph

1
4 (ω − ω0)2 + 1/τ2

ph
, (3.10)

with angular frequency ω and carrier frequency ω0 (see app. A.5 for a derivation). Note
that the FWHM value of the distribution is directly given by the inverse photon duration
1/τph, thus long photons (created by weak excitation) will have a bandwidth much smaller
than the natural transition linewidth.

Like the photon’s bandwidth, we can tune its carrier frequency ω0 as well. Since the
scattering process starts and ends with the atom in a state of well-defined energy, a change
in the detuning ∆ of the driving laser is directly reflected in the photonic carrier frequency.
More precisely, with energies h̄ωi and h̄ωg of the states |i〉 and |g〉, respectively, the carrier
frequency is given by

ω0 = ∆ + (ωi − ωg) . (3.11)
Thus we can generate single photons whose spectrum is shifted from the atomic-transition
resonance by much more than the photonic bandwidth. Obviously, for ever larger detuning
values, the transfer rate becomes lower (for equal excitation power) and thus the photonic
wave packet longer, but this can in part be compensated for by an increase of the driving-
laser intensity. For detunings large compared with the natural transition linewidth Γi, the
condition of “weak excitation” relaxes from Ω� Γi to Ω� ∆.

At this point, we should mention the effect of a finite linewidth of the driving laser: if
the laser source contains incoherent frequency contributions, the detuning between exci-
tation and atomic transition becomes less well-defined. In detail, the photonic spectrum
is now given by the convolution of the photonic spectrum from eqn. 3.10 and the laser’s
spectral distribution. Thus a sufficiently incoherent excitation considerably broadens the
photonic spectrum. However, in the experimental realization shown in section 3.1.2, this
effect is negligible.

All the considerations so far concerning the photonic spectrum were made for the
special case of negligible spontaneous decay back to the initial state |r〉, and we will now
discuss the more general case.

Decoherence through parasitic spontaneous decay

In the case where spontaneous decay from state |i〉 to state |r〉during the scattering process
is no longer negligible, photons scattered on the transition between states |i〉 and |r〉 must
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be taken into account. We call these photons parasitic as they break up the Fourier
limitation of the Raman photons emitted on the transition from |i〉 to |g〉. Intuitively, this
can be understood as decoherence, caused by the leakage of quantum information from the
joint system of atom and Raman photon. We will now discuss this issue in more detail.

Populating the intermediate state |i〉 yields a certain probability for the emission of
a Raman and a parasitic photon, respectively, the ratio of the two given by the ratio of
the decay rates Γi,g and Γi,r. The expectation value for the number of parasitic photons
scattered before the Raman photon is emitted thus amounts to

n = Γi,r
Γi,g

= fi,r
fi,g

, (3.12)

and the individual numbers n of parasitic photons follow the exponential distribution

P (n) = nn

(n+ 1)n+1 . (3.13)

We will now first consider the individual cases of n = 0, 1, 2, . . . parasitic photons, the
probabilities of which are given by P (n). Conditioned on the event of no parasitic photons,
n = 0, the spontaneous decay from state |i〉 to |g〉 occurs at the full decay rate Γi, not the
partial rate Γi,g. This is because the process is conditioned on not scattering any parasitic
photons, thus the decay of state |i〉 is exclusively directed toward state |g〉. The duration
of the Raman wave packet described by

p(0) (t) = p (t) = 1
τph

e−t/τph Θ (t) (3.14)

is hence

τph =
(

Γi
Ω2

(2∆)2 + Γ2
i

)−1

. (3.15)

Conditioned on the emission of exactly one parasitic photon, n = 1, the Raman photon
is “delayed” by however long it takes to scatter the parasitic photon. The latter is given
by the probability distribution of the parasitic photon, which is identical to that for the
Raman photon. This may be understood by noting that, although the probabilities for a
Raman and parasitic photon are different, their temporal structure is not. The temporal
shape of the Raman photon is then calculated by convolving the probability distributions
of the Raman and parasitic photon:

p(1) (t) = (p ∗ p) (t) (3.16)

We now make use of the convolution power, the k-fold convolution of a function p with
itself:

p∗k = p ∗ p∗(k−1) (3.17)

with p∗0 = δ, the Dirac delta function. Then we express the probability distribution of
the Raman photon conditioned on n parasitic photons as

p(n) (t) = p∗(n+1) (t) , (3.18)
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which is evaluated analytically to yield

p(n) (t) = 1
n!

(
t

τph

)n 1
τph

e−t/τph Θ (t) (3.19)

= 1
n!

(
t

τph

)n
p (t) . (3.20)

Since all the probability distributions p(n) (t) are realized with probabilities P (n), we take
the weighted average

p (t) =
∞∑
n=0

P (n) p(n) (t) . (3.21)

This describes an incoherent mixture of photonic wave packets, which pertains to our
situation since the emission of parasitic photons is a stochastic process. Analytic evaluation
finally yields the prolonged temporal probability distribution for the Raman photon

p (t) = 1
τph

e−t/τph Θ (t) (3.22)

with the modified photon duration

τph = τph (n+ 1) . (3.23)

Hence the Raman photon is still of exponential shape, as in the case of negligible decay
back to state |r〉, but is longer by a factor of n+ 1. Expressing both n and τph in term of
the decay rates (eqns. 3.12 and 3.15) yields

τph =
(

Γi
Ω2

(2∆)2 + Γ2
i

)−1(Γi,r
Γi,g

+ 1
)

(3.24)

=
(

Γi,g
Ω2

(2∆)2 + Γ2
i

)−1

. (3.25)

Now we have come full circle; this expression for τph corresponds to what we found earlier
for the transfer rate from state |r〉 to |g〉, not taking into account parasitic photons but
using the partial decay rates instead. The interesting part, however, lies in the spectrum
corresponding to the temporal shape p (t). Since p (t) describes an incoherent mixture of
photonic wave packets, its spectrum is given by the corresponding mixture of the individual
photonic spectra.

Let us examine these spectra a little more closely; in the event of no parasitic photons,
n = 0, the temporal shape is p(0) (t) = p (t), and its spectral probability distribution
S (ω) is given by the Fourier transform from eqn. 3.10. For exactly one parasitic photon,
n = 1, we need to make yet another assumption: in principle, it is possible to detect the
point in time at which the parasitic photon was emitted. This detection process projects
the atom back onto state |r〉, from which it is re-excited, this time scattering the Raman
photon. Using the detection event as the zero point in time, the Raman photon’s temporal
shape is once more given by p (t), and hence its spectral shape is described by the Fourier
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transform S (ω) as well. However, since we are not concerned with detecting parasitic
photons, the zero point in time is uncertain by the probability distribution of the parasitic
photon, as described above. This results in the modified temporal shape p(1) (t), which is
a stochastic effect, leaving the spectrum unaffected. Thus all contributions p(n) (t) possess
the same spectral properties (and so does the total distribution p (t)), namely those of the
distribution S (ω); the FWHM value of this Lorentzian spectrum is 1/τph and not 1/τph.

Although both the temporal and spectral properties of the resulting Raman photon are
functions of the driving-laser properties, the time-bandwidth product depends on atomic
properties only:

τph ·
1
τph

=
(

Γi,g
Ω2

(2∆)2 + Γ2
i

)−1

Γi
Ω2

(2∆)2 + Γ2
i

(3.26)

= Γi,r
Γi,g

+ 1 (3.27)

= n+ 1 (3.28)

The time-bandwidth product is a measure for the purity of a photonic state and, for many
application, should be close to 1. Values much greater than 1, however, indicate significant
decoherence of the photonic state through the emission of parasitic photons. Such states
are usually unsuited for the faithful representation and transfer of quantum information.

Summary

In conclusion, spontaneous Raman transitions in a suitably chosen three-level system
allow for the generation of single photons tunable both temporally and spectrally through
intensity and detuning of the driving laser. In principle, the photon duration as well as
the center of the photonic spectrum can be tuned over an arbitrarily wide range.

However, these photons are in general not Fourier-limited and hence not in a pure
quantum state, owing to the emission of parasitic photons on the transition excited by
the driving laser. In the case of an unfavorable ratio of the partial decay rates, the time-
bandwidth product exceeds the desired value of 1 significantly.

3.1.2 Experimental realization

After discussing the theoretical background on single photons generated from spontaneous
Raman processes, I now present the experimental implementation. After introducing the
experimental sequence, I will present the configuration of our setup for the generation
and collection of single photons, followed by the results benchmarking the quality of our
single-photon source.

Experimental sequence

We implement the three-level system used in the theoretical description above through
three of the five fine-structure manifolds of 40Ca+. While the intermediate state |i〉 is
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(a)

854 nm

(b)

393 nm

(c)

S1/2

P1/2

P3/2

D3/2

D5/2

Fig. 3.2: Experimental sequence for the alternating generation of single Raman photons at two
different wavelengths. (a) Doppler cooling of the atomic motion. (b) Generation of a single photon
at 854 nm scattered on the D5/2–P3/2 transition. (c) Generation of a single photon at 393 nm
scattered on the S1/2–P3/2 transition.

realized through the P3/2 manifold, the S1/2 and D5/2 states are used interchangeably for
implementing the initial state |r〉 and the final state |g〉.

The experimental cycle, sketched in fig. 3.2, starts with Doppler cooling the ion’s mo-
tion on the S1/2–P1/2 transition at 397 nm, typically for 0.6 – 1 µs. This is facilitated by
repumping population from the metastable D3/2 state through a laser at 866 nm. Next,
the generation of a single photon at 854 nm wavelength is initiated by switching on an
additional laser at 850 nm, resonant with the D3/2–P3/2 transition. The Rabi frequencies
and detunings of the three lasers with respect to their transitions are optimized as to
realize a three-photon resonance that effectively couples the S1/2 and P3/2 state. Ideally,
this excitation will not populate the P1/2 or D3/2 state, but instead will transfer all pop-
ulation from S1/2 to D5/2 through the emission of a spontaneous Raman photon on the
854 nm transition. The duration of this process depends on the transfer rate, given by the
parameters of the three lasers, and is in the range of 5 – 30 µs.

In the final step of the sequence, the three lasers are turned off, and a laser at 854 nm
is switched on instead. This repumps all population from the D5/2 back to the ground
state, scattering a single Raman photon on the S1/2–P3/2 transition at 393 nm. Typical
values for the duration of this step are 2 – 7 µs. This completes the experimental cycle
before Doppler cooling is resumed.

For more technical details, see Michael Schug’s Ph.D. thesis [93].

Experimental configuration

A well-established method to enhance the collection of light scattered from an atom is
found in cavity QED [145, 146, 147, 154]. Placing a single atom (or ion) inside an optical
cavity of sufficient finesse and solid angle subtended greatly increases the light-collection
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mirror

Fig. 3.3: Experimental setup for the generation of single Raman photons at 854 nm and 393 nm
wavelength. ~B: magnetic-field direction, SM fiber: single-mode optical fiber, MM fiber: multi-
mode optical fiber, PMT: photomultiplier tube.

efficiency. However, combining this technique with ion traps for local multi-qubit infor-
mation processing is technically challenging, since the size of a cavity around an ion trap
is not easily reduced below the mm-scale.

Instead of a cavity, we make use of our two high-NA laser objectives (HALOs). As
described in section 1.2.2, they each collect ∼ 4.2 % of the light scattered by the ion (in the
case of isotropic emission). The use of both HALOs simultaneously enables us to collect
light at two different wavelengths and hence to generate and collect photons from both
the transition at 854 nm and at 393 nm. Since the lenses that compose the HALOs exhibit
significant dispersion, each HALO must be aligned individually with respect to the ion in
order to efficiently collect light at the respective wavelength. With the aid of additional
optics, we even use one of the HALOs for both wavelengths at the same time.

The experimental setup is depicted in fig. 3.3; HALO #1 is positioned via its piezo
actuators such that its focal spot for light at 854 nm coincides with the ion’s position. By
means of a confocal telescope, the beam diameter is reduced such as to couple the light
efficiently to a single-mode optical fiber (∼ 60 % coupling efficiency). At the same time,
the HALO is used for the collection of light at 397 nm (not 393 nm) for the purpose of
detecting atomic fluorescence from the S1/2–P1/2 cooling transition. This is facilitated
by a dichroic mirror which separates blue from red light. Since the HALO shows normal
dispersion, blue light exits the vacuum chamber in a slightly convergent beam. A non-
confocal telescope collimates the beam before it is coupled to a multi-mode optical fiber
with ∼ 55 % efficiency. The coupling efficiency is significantly lower as compared with
the case of the HALO being aligned with the ion for blue light (see below), as only the
latter makes full use of the HALO’s numerical aperture. When collecting light at 393 nm
instead, we must once more compensate for the optics’ dispersion by the combination of a
convex and concave lens behind the telescope. Placed on a magnetic mount, this enables
flexible switching between efficient collection at 397 nm and 393 nm, respectively. HALO
#2, on the other hand, is aligned for light at 397 nm, again optimized for the collection
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of atomic fluorescence. By means of another composite compensation lens placed on a
magnetic mount, 393 nm light collected by HALO #2 is coupled to a second multi-mode
fiber with ∼ 85 % efficiency.

The light coupled to the optical fibers is detected by single-photon detectors; for the
light at 854 nm, we employ an avalanche photodiode (APD) of 24(5) % quantum efficiency,
while at 393 nm, we use photomultiplier tubes of 28(1) % quantum efficiency. The detector
output pulses are then fed into our time-correlated single-photon counter (PicoHarp),
time-tagging the individual photon-detection events and saving them on a computer for
analysis.

All laser beams are focused onto the ion from collimated beams of 2.15 mm diameter
through simple plano-convex lenses. The focal-spot diameters are ∼ 120 µm (397 nm),
250 µm (866 nm) and 125 µm (850 nm and 854 nm).

Single photons at 854 nm

For the detection and evaluation of single Raman photons at 854 nm wavelength, the APD
is connected to one of PicoHarp’s inputs. The APD is gated on during photon generation
only, discarding detection events outside this time window. PicoHarp’s second input is
used to record the time base by receiving a trigger signal from the sequence-control unit
(Hydra) each time the laser at 850 nm is switched on, signaling the beginning of the photon
generation. The recorded data is analyzed by time-correlating the photon-detection events
with the trigger and sorting them into an arrival-time histogram. Such a histogram directly
reflects the temporal shape of the photonic wave packet. Fig. 3.4(a) displays arrival-time
histograms for different values of the 850 nm laser power. The higher the power, the higher
the rate at which population is transferred to the D5/2 state and hence the shorter the
photonic wave packet. In this particular experiment, we tuned the photon’s duration1 from
∼ 0.8 µs to ∼ 3.3 µs by appropriately choosing the 850 nm laser power. This time scale is
much longer than the P3/2-state lifetime (∼ 7 ns [121]), which defines the rate at which
the ion relaxes to the quasi-steady state. This means that the requirements for describing
the photonic wave packets by the theoretical model from section 3.1.1 are fulfilled.

From the shortest photons generated in this experiment, we obtain a detection effi-
ciency of 0.481(3) %. This value differs from the one stated in section 1.2.2 (∼ 0.6 %) since
at this point, the fiber coupling was not yet fully optimized. At a sequence repetition
rate of 55.5 kHz and accounting for the APD quantum efficiency, we obtain single-mode
coupled photons at a rate of 1.1(2) · 103 s−1. However, after further optimizing both the
experimental sequence and the fiber coupling, we could increase the repetition rate to
125 kHz and achieve 3.0(6) · 103 s−1 fiber-coupled photons [155].

Single photons at 393 nm

For the generation of single Raman photons at 393 nm, the output pulses from the two
PMTs are combined and fed into PicoHarp, gated on while repumping the atomic popula-

1We define the photon’s duration as the 1
e

time of an exponential function fitted to the falling slope of
the wave packet.
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Fig. 3.4: Arrival-time histograms for the generation and detection of single Raman photons. (a)
Raman photons at 854 nm, emitted on the D5/2–P3/2 transition. The bin size is 10 ns and the
measurement time per histogram is 15 min. The photon duration is 0.83(3) µs (blue curve, 316 µW
of 850 nm laser power), 1.186(7) µs (red, 158 µW), 1.95(1) µs (green, 79 µW) and 3.42(5) µs (black,
40 µW). (b) Raman photons at 393 nm, emitted on the S1/2–P3/2 transition. The bin size is 2 ns
and the measurement time per histogram is 6 min. The photon duration is 157.0(6) ns (blue curve,
14 µW of 854 nm laser power), 292(1) ns (red, 7 µW), 547(4) ns (green, 3.5 µW) and 770(20) ns
(black, 1.75 µW).

tion from the D5/2 to the ground state. The trigger from Hydra used for the time base now
marks the onset of the 854 nm laser light which generates the 393 nm photon. Arrival-time
histograms for various values of 854 nm laser power are shown in fig. 3.4(b), exhibiting
wave-packet durations between ∼ 160 ns and ∼ 770 ns. Although, as for our 854 nm
photons, the wave-packet duration is appreciably longer than the P3/2-state lifetime, the
rising slope becomes noticeable. This is an artifact of the acousto-optic modulator used
for controlling the 854 nm beam, its switching time being in the range of 20 – 30 ns.

In order to maximize the rate of fiber-coupled photons, calculations showed that it is
optimal to pump 73 % of the atomic population into the D5/2 manifold before generating
the photon. This yields a lower probability for a photon in a single cycle but increases the
repetition rate accordingly. For the shortest photons shown in fig. 3.4(b), we measured
0.905(2) % combined detection efficiency, once more lower than the optimized values that
we achieved at a later stage of the experiment. At 171 kHz repetition rate, we thus obtain
5.5(2) · 103 s−1 multi-mode coupled photons. Similar values are found in our publication
[88].

Single photons in comparison

The most prominent difference between our single photons at 854 nm and at 393 nm are
their durations and the laser power/intensity at which these are attained. While for
photons at 854 nm, several hundred µW of light at 850 nm are required to bring the wave-
packet duration below 1 µs, the same is achieved at 393 nm with merely ∼ 1 µW of 854 nm
light. The reason for this is twofold: (i) The three-photon coupling between states S1/2
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and P3/2 is far less efficient than the direct excitation of an electronic transition, i.e. the
effective Rabi frequency is much lower on the S1/2–P3/2 than on the D5/2–P3/2 transition.
(ii) The branching fractions of the two transitions are f393 = 0.935 and f854 = 0.0587 [156],
thus population in the P3/2 state will predominantly decay to the ground state. Hence
even for similar Rabi frequencies on the two transitions, scattering a photon at 854 nm
takes much longer than at 393 nm.

The second point leads us directly to the question of the photonic spectrum; as elab-
orated on in the theoretical section 3.1.1, the ratio of branching fractions is decisive in
whether a single-photon state is Fourier-limited. For the remainder of the discussion, we
will neglect spontaneous decay on the D3/2–P3/2 transition at 850 nm as its branching
fraction amounts to 6.6 · 10−3 only [156]. When generating single photons at 854 nm,
the mean number of parasitic photons at 393 nm is n393 = f393/f854 = 15.9, resulting
in a time-bandwidth product of photons at 854 nm of ∼ 17. Hence these photons are far
from Fourier-limited. However, temporal selection allows for reducing the time-bandwidth
product; as explained in detail in app. A.6, the later the Raman photon is detected, the
greater the number of parasitic photons that may have been emitted before. Hence select-
ing Raman photons from only a small time window at the beginning of the wave packet
significantly reduces the time-bandwidth product. Of course, this method reduces the rate
of usable photons accordingly.

Matters are different for single photons at 393 nm; with a mean number of parasitic
photons at 854 nm of n854 = f854/f393 = 0.0628, Raman photons at 393 nm would be
very close to the Fourier limit if it were not for the Zeeman substates of the three fine-
structure manifolds. Since a static magnetic field is needed for efficient Doppler cooling,
the Zeeman levels are no longer degenerate. By the simple sequence employed here, the ion
is not prepared in a specific Zeeman state but rather a statistical mixture. The subsequent
Raman photon will thus be in a mixture of polarization and frequency states, once more
increasing the time-bandwidth product. However, as demonstrated in [88, 93], we have
developed a technique based on optical pumping in order to prepare the ion in a specific
D5/2 state. By virtue of the favorable branching fractions, we were able to generate single
Fourier-limited Raman photons at 393 nm in a quantum state of pure polarization and
frequency.

I should mention at this point that we are planning on experimentally determining
the photonic spectra both at 854 nm and 393 nm; Fabry-Pérot cavities, acting as spectral
filters, with resolutions of ∼ 1 MHz are currently being set up. Measuring the rate of
single photons behind such a cavity while scanning its resonance frequency will give us
knowledge of the photons’ spectral probability distributions.

Characterization of multi-photon contribution

In the above sections, we have discussed the temporal and spectral properties of our
single photons both at 854 nm and 393 nm wavelength as well as the rate and efficiency
at which they can be generated. The only relevant aspect not yet mentioned is the multi-
photon contribution, i.e. the likelihood that a photonic wave packet contains more than
one photon. In theory, our scheme allows for no more than exactly one Raman photon
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Fig. 3.5: Intensity autocorrelation function for single Raman photons at 393 nm wavelength. The
bin size is 40 ns and the measurement time is 6 min. The repetition rate is 206 kHz, corresponding
to 4.9 µs spacing between neighboring peaks.

emitted by the ion; once a photon has been scattered, the ion is projected onto the
final state |g〉, from which it cannot be re-excited by the driving laser. Under realistic
conditions, however, there is a chance that the ion is excited from the final state by the
laser(s) that had prepared the ion in the initial state |r〉. Typically, this effect stems from
the acousto-optic modulators used to switch the state-preparation lasers. Since both their
switching times and attenuations are different from zero, light that excites the ion from
the final state might be present during photon generation. However, as we will see, the
multi-photon contribution is very low, and we will hence restrict ourselves to the case of
single-photon and two-photon events. We define the two-photon contribution p2 as the
probability for the ion to emit a second Raman photon after the detection of the first
projected the ion onto the final state |g〉.

For the experimental determination of the two-photon contribution, one could for ex-
ample make use of photon-number-resolving detectors. Since, however, we employ “con-
ventional” single-photon detectors in our setup, we resort instead to a Hanbury-Brown-
Twiss (HBT) interferometer [157]. It is based on a non-polarizing beam splitter which has
a chance of separating photons that impinge simultaneously on the beam splitter. The
coincidental detection of photons in both beam-splitter outputs then signals the presence
of at least two photons. The histogram of coincidences between detection events in the
two outputs then represents the intensity autocorrelation function (g(2) function) of the
photonic light field, as shown in fig. 3.5 for the case of single photons at 393 nm. Here,
the ion itself plays the role of the beam splitter, as we use both HALOs simultaneously
to collect and detect light at 393 nm. The autocorrelation function is reconstructed by
temporally correlating the detection events of the two PMTs. As is seen from fig. 3.5, the
central correlation peak at zero time delay is very small compared with the neighboring
peaks, the latter representing coincidences from photon detections at different experimen-
tal cycles. As shown in app. A.7, the ratio of number of events from the central peak and
one of the others is sufficient to derive the two-photon probability p2. From 12 detection
events in the central peak, 785 events in the one at 5 µs delay and accounting for detector
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dark counts (see app. A.7), we deduce p2 = 0.33(15) %. Thus the light field scattered by
the ion at 393 nm exhibits an excellent single-photon character.

Unfortunately, we were unable to characterize the quality of single photons at 854 nm
wavelength. Since only one of the HALOs is aligned for the collection of light at 854 nm,
we tried using a fiber beam splitter for light coupled to the single-mode optical fiber. This
beam splitter, however, showed significant losses up to the point where true two-photon
events were no longer discernible from the background induced by detector dark counts.

Summary

In conclusion, we have experimentally demonstrated the generation of single Raman pho-
tons at two different wavelengths (854 nm and 393 nm), tunable both temporally and
spectrally and using one and the same experimental sequence. For photons at 393 nm,
the Fourier limit may be attained through additional optical-pumping techniques. At this
wavelength, we also assessed the single-photon character of the light field by means of the
intensity autocorrelation function, yielding a very low multi-photon probability.

3.2 Atom-to-photon phase mapping

In the first part of this chapter, I presented both the theoretical background and the
experimental implementation for the generation of single Raman photons from a single ion.
Although we could tune the photons’ temporal and spectral properties through the power
of the driving laser, we did not use the photons as carriers of quantum information. In
this section, I briefly describe two schemes that allow us to map atomic phase information
onto the quantum state of a single photon. This is a summary of a part of Michael Schug’s
Ph.D. thesis [93]; details are found therein, as well as in our publication [89].

3.2.1 Quantum beats

In the first of two experimental schemes (“Λ scheme”), we realize atom-to-photon phase
transfer through the interference of two absorption paths, as illustrated in fig. 3.6(a).
After preparing a superposition of two atomic energy eigenstates (|D5/2,m = −3/2〉 and
|D5/2,m = +1/2〉), a driving laser couples the two states simultaneously to one and the
same excited state (|P3/2,m = −1/2〉). Population from the excited state decays predom-
inantly to the S1/2 ground-state, releasing a single Raman photon. For an appropriate
phase between the two absorption paths, their interference is constructive, i.e. population
is transferred from the D5/2 to the S1/2 state at an increased rate as compared with non-
interfering absorption paths. The interference may become destructive as well, resulting in
suppression of population transfer. The phase between the absorption paths, given by the
superposition phase, hence determines the rate at which the Raman photon is generated
and thus its temporal shape.

In the second scheme (“V scheme”), we make use of interference of two emission paths,
as shown in fig. 3.6(b). The ion is prepared in a superposition of two energy eigenstates
(|D5/2,m = −5/2〉 and |D5/2,m = +3/2〉) which are coupled to distinct excited states,
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Fig. 3.6: Schemes for atom-to-photon phase mapping through interference. (a) Λ scheme: inter-
ference in the absorption paths of a photon on the D5/2–P3/2 transition. (b) V scheme: interference
in the emission paths of a photon on the S1/2–P3/2 transition.

hence the absorption paths do not interfere. Interference takes place instead between
the emission paths from the excited states to the ground state (|S1/2,m = −1/2〉). One
emission path yields a Raman photon in the quantum state

∣∣σ+〉, the other a photon
in state |σ−〉. The relative phase between the two emission paths, given by that of the
initial superposition, in turn determines the phase between the photon’s

∣∣σ+〉 and |σ−〉
component. In contrast to the Λ scheme, the temporal shape of the photonic wave packet
remains unaffected by this type of interference. Instead, as will be shown below, the
photonic phase becomes visible by an appropriate projective measurement.

In our setup, the phase of the initially prepared D5/2 superposition is not constant in
time; since we apply a static magnetic field at the ion’s position, the two D5/2 Zeeman
states are non-degenerate, and the phase of their superposition evolves at the correspond-
ing Larmor frequency. Hence the phase of interference evolves at the Larmor frequency
as well. For the Λ scheme, this results in a temporal modulation of the population of the
P3/2 state, and hence of the photon-scattering rate (quantum beat). For the V scheme, it
is the phase between the photon’s

∣∣σ+〉 and |σ−〉 component that evolves at the Larmor
frequency.

3.2.2 Experimental realization

Our experimental setup for atom-to-photon phase mapping is shown in fig. 3.7; following
optical ground-state pumping into one of the S1/2 Zeeman states, the D5/2 superposition
is created through two consecutive pulses at 729 nm. Then a linearly polarized pulse at
854 nm generates the single Raman photon on the S1/2–P3/2 transition. The photons are
collected through one of the HALOs, oriented perpendicularly to the quantization axis.
A polarizer allows us to project the light onto a specific polarization. For the Λ scheme,
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Fig. 3.7: Experimental setup for atom-to-photon phase mapping. ~B: magnetic-field direction,
HWP: half-wave plate, QWP: quarter-wave plate, PBS: polarizing beam-splitter cube, MM fiber:
multi-mode optical fiber, PMT: photomultiplier tube. For clarity, the cooling beams at 397 nm
and 866 nm are not shown.

the transmitted polarization is chosen parallel to the quantization axis in order to select
photons scattered on the π transition only. For the V scheme, on the other hand, we
rotate the polarizer by 90◦ in order to select photons scattered on the two σ transitions.
At the same time, this projects the two |σ〉 components onto the same linear polarization,
which is a prerequisite for their interference.

3.2.3 Results

The results for the realization of the Λ scheme are presented in fig. 3.8(a) in the form of
arrival-time histograms. The photonic wave packets exhibit quantum beats, as expected
from the theoretical considerations above. The beat period T is related to the energetic
splitting of the |D5/2,m = −3/2〉 and |D5/2,m = +1/2〉 state and hence the magnetic-field
strength (B = 2.79 G) through

T = h

2.4µBB
= 106 ns. (3.29)

The blue and red data points in fig. 3.8(a) reflect the temporal shape of the photonic wave
packet for two D5/2 superposition states whose phases2 are set to differ by π. In order to
interpret the experimental data, we use a fit based on a numerical 18-level Bloch-equation
model which fully describes the dynamics of the ion’s electronic degree of freedom [158].
One of the fit parameters is the relative phase between the two quantum beats, which is
found to be φ = 1.006(3)π. As expected, this value is very close to the preset value of π.

Just as for the Λ scheme, the implementation of the V scheme shows quantum beats
in the photon arrival-time histograms (see fig. 3.8(b)). As touched on in the theoretical

2The phase of the D5/2 superposition is set through the direct digital synthesizer that drives the acousto-
optic modulator of the 729 nm beam.
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Fig. 3.8: Arrival-time histograms of single Raman photons at 393 nm wavelength in atom-to-
photon phase mapping. Shown are quantum beats for two D5/2 superposition states with their
phases differing by π. (a) Λ scheme (b) V scheme. For both schemes, the bin size is 2 ns and the
measurement time per histogram is 6 min.

section, the photonic wave packet itself shows no temporal modulation since the quantum
interference takes place between the σ+ and σ− emission channel. The relative phase
of the photon’s two σ components has no influence on the rate at which the photon is
generated but on its spatial emission pattern. In contrast to the Λ scheme, the emission
pattern rotates about the quantization axis at the Larmor frequency of the initial D5/2
superposition state. Since we collect light from the ion along an axis perpendicular to the
quantization axis, the spatial rotation is converted into a temporal modulation. Since the
energetic splitting of the D5/2 superposition is twice as much as for the Λ scheme, the beat
period is halved to T = 53 ns. Again, the blue and red data points in fig. 3.8(b) represent
Raman photons for D5/2 superposition states with phases differing by π. The fit of the
theoretical model yields the relative phase φ = 1.008(6)π, well in accordance with the
expected value of π.

Summary

In conclusion, I have presented a first step toward mapping the quantum state of a single
ion onto a single Raman photon. Making use of two distinct quantum-interference schemes,
we succeeded in transferring the phase information of an atomic superposition state onto
the photonic state, visible as a quantum beat in the photon’s temporal shape. The first
scheme relies on the interference of absorption paths of the driving laser, resulting in a
temporal modulation of the photonic wave packet. The second scheme, on the other hand,
is based on the interference of emission paths of the single photon and yields a temporal
modulation of the photon’s spatial pattern. Both approaches, however, allowed us to
faithfully map the phase encoded in the superposition state onto the photon.
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Quantum-networking experiments

A basic prerequisite for atom-based quantum networks [21, 61, 68, 144] are atom-photon
interconnects that serve as bidirectional interfaces between flying qubits (photons) and
network nodes (atoms) [159, 160]. They allow mapping quantum information between
atoms and photons in a reversible manner [150] and establishing entanglement across the
network [62, 64].

Chapters 2 and 3 discussed experimental methods and techniques that facilitate atom-
photon interfaces by means of coherent control over the ion’s quantum state (optical
and radio-frequency qubits) and efficient light-matter coupling by virtue of our high-NA
laser objectives (HALOs, see section 1.2.2). With these tools at hand, we are ready for
proof-of-principle experiments that realize basic quantum-networking functionalities like
photon-to-atom quantum-state transfer and atom-photon entanglement. In the first part
of this chapter, I will present an experimental protocol for mapping the polarization state
of a single photon onto the spin state of a single ion. A modification of this protocol then
allows for the realization of atom-photon entanglement, presented in the second part of
the chapter.

4.1 Protocol for photon-to-atom quantum-state transfer

A quantum-network scenario that employs single atoms (or ions) as network nodes requires
the atoms to function as both senders and receivers of quantum information. However, the
efficiencies associated with mapping quantum information from a photon onto an atom are
limited by the inability to fulfill time-reversal symmetry [67, 161, 162, 163]; in principle,
a photon emitted by a sender atom is absorbed with unity probability by a receiver atom
if the absorption process is made the time reversal of the emission process. This includes
both the spatial and temporal behavior of the emission. While the single photon can be
temporally shaped through appropriate excitation in order to account for the temporal
aspect [68], the spatial aspect is experimentally much more challenging. In free space,
the photonic wave packet emitted by the sender atom possesses a certain spatial pattern
(typically a dipole emission pattern), which would have to be reproduced at the position of
the receiver atom. In other words, a large spatial overlap between the photonic mode and
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the atomic absorption profile is desired. Promising approaches are found in high-aperture
objective [83, 84] or deep parabolic mirrors [86, 87] that subtend a very large fraction of the
atom’s solid angle. An alternative lies in optical cavities [81, 91, 68] that strongly modify
the mode structure of the electromagnetic field and thus allow for enhanced atom-light
coupling. However, none of these schemes come close to unity absorption probability.

The true problem of non-unity efficiencies, however, lies not in a lower net rate at
which quantum information is transmitted across the network but in seriously degrading
the fidelity of the transferred quantum state. Since one cannot simply measure the quan-
tum state of the receiver atom in order to determine if the state transfer has succeeded,
the atomic state cannot be used reliably for further quantum information processing. We
plan to overcome this issue by a scheme that makes the fidelity of the atomic quantum
state independent of the transfer efficiency through an appropriate heralding signal. Very
much in analogy to remote atom-atom entanglement [62, 164, 64, 65, 66], where the de-
tection of two photons heralds entanglement between the atoms, schemes for the heralded
transfer of a photonic polarization qubit onto the spin state of a single atom have been
proposed [71, 72, 73]. The detection of a Raman-scattered photon heralds a successful ab-
sorption event and makes the transfer fidelity independent of its efficiency. In our previous
works, the absorption of a single photon by the ion was signaled through a fluorescence
signal [165, 166, 155], which, however, did not preserve the stored quantum state. In this
section, I present a proof-of-principle experiment in order to demonstrate our protocol
for heralded photon-to-atom quantum-state transfer. The results of this experiment have
been published in [90].

4.1.1 Quantum-state transfer scheme

Our protocol for heralded photon-to-atom quantum-state transfer allows us to map the
polarization state of a photon absorbed on the D5/2–P3/2 transition onto the S1/2 Zeeman
qubit. The experimental scheme, illustrated in fig. 4.1, starts with preparing the ion for
absorption: optical pumping initializes the ion in the state |S1/2,m = −1/2〉. Then a radio-
frequency (RF) pulse resonant with the Zeeman-qubit transition prepares a symmetric
superposition of the qubit states |+1/2〉 and |−1/2〉. The RF source is thus the oscillator to
which any superposition state must be referenced. State preparation is completed through
two phase-coherent pulses at 729 nm that transfer the state to a symmetric superposition
of the states |D5/2,m = +3/2〉 and |D5/2,m = −3/2〉.

Next, we send a resonant laser pulse at 854 nm wavelength onto the ion. For the
demonstration of our protocol, this pulse contains much more than one photon in order to
increase the probability for an absorption event. However, there is no fundamental issue in
implementing the protocol with true single photons. The laser pulse co-propagates along
the quantization axis and thus drives only σ+ and σ− transitions in the atomic reference
frame. Light of right-handed circular polarization1 exclusively excites σ+ transitions,
while left-handed circularly polarized light excites σ− transitions only. Accordingly, any

1Within this thesis, circular polarization is defined as the sense of rotation of the electric field when
viewing the field along the quantization axis (defined by the static magnetic field).
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Fig. 4.1: Experimental scheme for photon-polarization storage. (a) Preparation of a superposition
of the |D5/2,m = ±3/2〉 states by a sequence of a radio-frequency (RF) and two optical pulses. (b)
Storage of the polarization state of a photon absorbed on the D5/2–P3/2 transition at 854 nm,
heralded by a π-polarized photon at 393 nm. (c) Read-out of the atomic state through electron
shelving. Depending on the desired measurement basis, another RF pulse is applied before.

superposition of the two circular polarizations (e.g. linearly polarized light) will drive
the respective superposition of the two σ transitions. As given by the P3/2 branching
fractions [156], the absorption of a photon transfers the ion back to the S1/2 state with
93.5 % probability and releases a single Raman photon (heralding photon) at 393 nm. If
we select for detection only photons emitted on the π transitions, then the superposition of
σ+ and σ− is mapped directly onto a corresponding superposition of the states |+1/2〉 and
|−1/2〉 of the S1/2 ground state. In essence, the polarization state of the absorbed 854 nm
photon has been mapped onto the ion’s S1/2 Zeeman qubit, heralded by the detection of
a single photon.

In the final step of the scheme, the atomic state is analyzed, conditioned on the detec-
tion of a heralding photon in state |π〉, in order to characterize the fidelity of our mapping
protocol (state-mapping verification). This requires the atomic qubit to be projected onto
different measurement bases. For a projection onto the σz basis2, formed by the energy
eigenstates |+1/2〉 and |−1/2〉, we apply another pulse at 729 nm that transfers (shelves)
any population in state |+1/2〉 to one of the D5/2 states. Subsequent atomic-state detec-
tion (switching on the cooling lasers and collecting atomic fluorescence) then allows us to
discriminate between the two states with very high fidelity. However, in order to project
the atomic state onto the superposition basis σφ = cos (φ)σx − sin (φ)σy, another RF
pulse prior to the shelving pulse effects a basis rotation. As we will see later, the phase φ
is determined by the detection time of the heralding photon.

2The operators σx, σy and σz denote the Pauli matrices.
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Fig. 4.2: Experimental setup for photon-to-atom quantum-state transfer. ~B: magnetic-field
direction, Wave plates: one half-wave and one quarter-wave plate, PBS: polarizing beam-splitter
cube, MM fiber: multi-mode optical fiber, PMT: photomultiplier tube. For clarity, the cooling
beams at 397 nm and 866 nm are not shown.

4.1.2 Experimental realization

For this protocol, we make use of almost all tools and techniques presented in chapters 2
and 3. Our experimental setup is shown in fig. 4.2.

Light collection

We use both HALOs for the collection of blue light from the ion. One of them collects single
photons at 393 nm, which are polarization-filtered by means of a polarizer. Transmitting
only light polarized parallel to the quantization axis (given by the magnetic-field direction)
selects only photons emitted on π transitions. The light is then coupled to a multi-mode
optical fiber and detected by a photomultiplier tube (PMT). The detector output pulses
are fed into the sequence-control unit (Hydra) and in addition time-tagged and stored for
later analysis. At the same time, fluorescence light at 397 nm is collected by the second
HALO, coupled to a multi-mode optical fiber and detected by another PMT. Its output
pulses are fed into the sequence-control unit for atomic-state detection.

Input polarization state

The laser beam at 854 nm whose polarization is to be mapped onto the atomic quantum
state is sent onto the ion along the quantization axis. Following a polarizing beam-splitter
cube used to clean the light’s polarization, a combination of a half-wave and a quarter-
wave plate sets the polarization to any desired value. Using different input polarizations
and analyzing the resulting atomic state will allow us to characterize the fidelity of the
mapping process. Performing independent spectroscopy on the D5/2–P3/2 transition (see
section 2.4.2) allows for setting the laser frequency to the line center of the transition.
This yields equal detunings from the two σ transitions that are to be excited, which is
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Fig. 4.3: Timing chart of the experimental sequence for photon-to-atom quantum-state transfer.
Atomic-state read-out is performed only if the Raman photon has been detected. The RF pulse
during state read-out is applied only if a rotation of the measurement basis is desired. Not shown:
Doppler cooling at the end of the sequence.

crucial for avoiding any imbalance in the absorption probabilities on the two transitions
that does not stem from the laser polarization.

Quantum-state manipulation

A circularly polarized beam at 397 nm, propagating antiparallel to the quantization axis,
facilitates ground-state pumping (see section 2.3.1). For coherent manipulations on the
S1/2–D5/2 transition, we make use of our narrow-band laser at 729 nm wavelength (see
section 2.1.1). We also coherently control the S1/2 Zeeman qubit by means of our RF coil,
placed below the vacuum chamber (see section 2.2.2). For a magnetic field of strength
B = 2.8 G, the atomic transition frequency is found at 7.8 MHz. An additional beam at
854 nm serves for repumping from D5/2 to the ground state. All laser beams are focused
onto the ion from collimated beams through simple plano-convex lenses. The focal-spot
diameters are∼ 60 µm (397 nm pump beam), 80 µm (729 nm), 250 µm (854 nm) and 125 µm
(854 nm repump beam).

Experimental sequence

The experimental sequence, depicted in fig. 4.3, starts with a 5 µs long pump pulse at
397 nm that initializes the atomic qubit in the state |S1/2,m = −1/2〉 with 99.82(1) %
probability, followed by a resonant RF pulse of 2.8 µs, corresponding to a π

2 pulse area3,
that creates the S1/2 qubit in the symmetric superposition state. The subsequent pulses
at 729 nm of pulse area π transfer the |S1/2,m = ±1/2〉 state to |D5/2,m = ±3/2〉. The
duration of these pulses is chosen rather long, 9.6 µs each, in order to avoid off-resonant
excitations of transitions to other D5/2 Zeeman states. After completing state preparation,

3The area of a pulse of Rabi frequency Ω (t) is defined as A :=
∫

Ω (t) dt.
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the 854 nm beam whose polarization is to be stored in the atomic qubit is switched on
for 3 µs. An optical power of 12 µW yields ∼ 9 MHz Rabi frequency. Returning to the
S1/2 state, the ion emits a single Raman photon at 393 nm wavelength. If the photon is
detected, we perform atomic-state analysis; for a projection onto the superposition basis
σφ, another π

2 RF pulse which effects the basis rotation is applied first. Then a pulse at
729 nm, again of 9.6 µs duration, shelves any population in the state |S1/2,m = +1/2〉 to
|D5/2,m = +3/2〉, before we switch on the cooling lasers. A projection onto S1/2 causes the
ion to emit fluorescence light which we detect at a rate of 107 ·103 s−1. On the other hand,
a projection onto D5/2 leaves the ion dark and we detect PMT events from detector dark
counts and laser stray light at 60 s−1. For 100 µs integration period, we can discriminate
between the states S1/2 and D5/2 with 99.986 % fidelity (see section 2.1.3). If the heralding
photon is not detected, as in most cases, the ion is Doppler cooled for 10 µs. Including
delays in the sequence-control unit, we attain 18 kHz repetition rate.

4.1.3 State transfer in circular polarization basis

In a first experiment, we would like to investigate how the state of circularly polarized
light is mapped onto the atomic qubit. To this end, we choose the 854 nm light to be
right-handed circularly polarized. In the atomic reference frame, this excites only the state
|D5/2,m = −3/2〉 on the σ+ transition, but ideally leaves the population in |D5/2,m = +3/2〉
untouched. The detection of a Raman photon in state |π〉 then heralds the projection of the
ion onto the |−1/2〉 ground state. Upon the detection of the heralding photon, we analyze
the atomic state in the σz basis4. According to the measurement outcome (projection
onto |+1/2〉 or |−1/2〉), the photon is sorted into one of two arrival-time histograms, shown
in fig. 4.4(a). As expected, almost all photon-detection events are followed by projecting
the atomic state onto |−1/2〉. In order to quantify the fidelity of the atomic state with
respect to the ideally expected state, we need to compare the number of events in the
two histograms. For this, however, we need to define a time window from which detection
events are selected. If we choose this window too long, the number of dark-count events
increases faster than the number of true photon detections. This degrades the fidelity of
the atomic state since the ion is projected onto the desired state by the detection of a
heralding photon only. On the other hand, if we choose the time window too short, the
effective detection efficiency decreases and the mapping protocol becomes inefficient. As a
reasonable trade-off between the two effects, we choose a window of 450 ns length, which
corresponds to ∼ 90 % of the photonic distribution. The ratio of the numbers of events in
the conditional arrival-time histograms then yields 97.8(1) % probability to find the ion in
state |−1/2〉, which represents also the fidelity of the measured atomic state with respect
to |−1/2〉. Analogously, we repeat the measurement with left-handed circularly polarized
light at 854 nm, arriving at 96.4(3) % fidelity with respect to state |+1/2〉. We explain the
difference between the two fidelity values by the difficulty in adjusting the two circular
polarizations sufficiently well.

4The measured probability for a projection onto the state |+1/2〉 is corrected for the shelving efficiency
pshelving = 99.1(3) %.
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Fig. 4.4: Conditional arrival-time histograms of single 393 nm photons. Blue curve: ion in state
|+1/2〉, green curve: ion in state |−1/2〉, red curve: unconditional arrival-time distribution (sum of
the conditional histograms). (a) Projection onto the σz basis for right-handed circularly polarized
854 nm light. (b) Projection onto the σφ basis for linearly (vertically) polarized 854 nm light. The
shaded areas represent the time window used for data analysis. For each graph, the bin size is 2 ns
and the measurement time is 20 min.

4.1.4 State transfer of linear polarization

In a second step, we investigate our mapping protocol for the case of linearly polarized
light at 854 nm. As explained above, this should drive the two σ transitions with equal
amplitude and a relative phase that is given by the angle of the linear polarization. The
latter is defined with respect to the plane spanned by the axis of fluorescence collection and
the quantization axis, which coincides with the plane of the optical table. Exemplarily, we
choose the light to be vertically polarized, i.e. polarized perpendicularly to aforementioned
plane. The detection of a Raman photon in state |π〉 then heralds the projection of
the atomic qubit onto a symmetric superposition of |+1/2〉 and |−1/2〉. Conditioned on
the photon detection, we analyze the qubit in the superposition basis σφ in order to
characterize the amplitudes and phase of the superposition state. As explained in section
4.1.1, this is done through a basis rotation, realized by another RF pulse prior to electron
shelving. As we did for circularly polarized 854 nm light, we sort the photon-detection
events into histograms for a projection onto state |+1/2〉 and |−1/2〉, respectively, after
the basis rotation. From fig. 4.4(b), we observe oscillations in the conditional arrival-time
distributions that resemble very much the quantum beats described in section 3.2. In fact,
they stem from the same physical origin; the phase of the initially prepared superposition
of |D5/2,m = ±3/2〉 evolves at the Larmor frequency given by the energetic splitting of
the two Zeeman states. Detecting the heralding photon projects the initial superposition
onto the final superposition of |S1/2,m = ±1/2〉, whose phase now evolves at the Larmor
frequency given by the S1/2 Zeeman splitting. The D5/2 splitting is larger than the S1/2
splitting; therefore, the longer the ion remains in the D5/2 superposition, the larger the
phase it accumulates before being projected onto the S1/2 superposition. More precisely,
the rate at which the phase accumulates is given by the difference of the two Larmor
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frequencies. The probability to project the final atomic state onto a given superposition
state hence oscillates at the difference frequency. Taking into account the Landé factors,
the oscillation period (the effective Larmor period) which is seen in fig. 4.4(b) is found to
be

T = h

1.6µBB
= 160 ns (4.1)

for our static magnetic field B = 2.8 G. Another way of viewing the accumulated phase
is to consider the measurement basis time-dependent; the time t of a photon detection
determines the phase φ of the observable σφ = cos (φ)σx − sin (φ)σy through

φ = 2π tmodT
T

. (4.2)

Future implementations of our mapping protocol that employ true single photons for
absorption will need to take the detection time of the heralding photon into account in
order to compensate for the additional atomic phase. If this phase information is discarded,
the S1/2 superposition must be considered decohered. For the characterization of our
protocol, however, the effect is advantageous; since the phase of the measurement basis
is chosen randomly by the photon detection, we do not need three sets of measurements
(σx, σy, σz) but only two (σφ, σz) in order to perform full quantum-state tomography of
the atomic state.

Indistinguishability of 393 nm photons

As seen in fig. 4.4, the photon wave packet is approximately twice as long when the ion is
excited with linearly polarized light as when excited with circular polarization since the
relative overlap of linearly polarized light with σ transitions is only 1√

2 . This results in
lower excitation rates and thus longer wave packets (cf. section 3.1.1). At this point, one
might think that the detection time of a heralding photon yields information about the
polarization state mapped onto the ion (which would be perceived as decoherence). For
example, the later the photon is detected, the more likely the polarization was linear, not
circular. This is true, however, only for an excitation with a laser pulse that provides a
large number of photons in a single mapping attempt. For future implementations of the
protocol that use single photons, the relevant quantity is the height of the initial peak in
the arrival-time distributions, which is the same for the two polarizations; the subsequent
shape of the distributions only reflects the temporal evolution of the D5/2 state due to the
laser excitation.

On a different matter, it is interesting to note that the two π channels of the S1/2–
P3/2 transition yield photons that are distinguishable in frequency due to the Zeeman
splitting. In principle, this implies leakage of quantum information from the ion regarding
its S1/2 qubit state, causing the qubit to decohere. However, we resolve the photons
not spectrally, but temporally; with a timing uncertainty of ∼ 300 ps (given by the PMT
transit-time spread), which is small compared with the effective Larmor period T = 160 ns,
the frequency information is erased and coherence is preserved. This quantum-eraser
[167, 168, 169] point of view is simply another way of accounting for the atomic phase
acquired through Larmor precession.
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Fig. 4.5: Atomic-phase histograms. Shown is the probability to project the ion onto state |+1/2〉
after the basis rotation as a function of the atomic phase φ for the 854 nm light polarizations
vertical (V), horizontal (H), diagonal (D) and antidiagonal (A). The solid lines are sinusoidal fits
(χ2 ≈ 2).

Atomic-phase histograms

In order to properly characterize the quality of the atomic superposition created by exci-
tation with linearly polarized light, we need to quantify visibility and phase of the oscil-
lations in the photon arrival-time distributions. We do this by means of an atomic-phase
histogram; each detected heralding photon is assigned the value of the phase φ left on
the atomic superposition. These phase values are then sorted into two intermediate his-
tograms, according to the outcome of the measurement in the superposition basis. From
these two histograms, the probability to project the ion onto the state |+1/2〉 after the
basis rotation as a function of the atomic phase φ is derived. Fig. 4.5 displays such
atomic-phase histograms for four distinct linear polarizations of the 854 nm light. As ex-
pected, the fringes exhibit consecutive relative phase shifts of π

2 going from V to D, H and
A polarized light. We attribute deviations from π

2 to the difficulty in adjusting the angle
of the linear polarization sufficiently well. From sinusoidal fits, we infer visibility V and
phase φ of the atomic-phase histograms. Since we consider deviations between the mea-
sured and expected phase values not to result from the mapping process itself, only the
fringe visibility enters into the fidelity of the atomic state5. For the polarizations V, H, D
and A, we obtain the fidelities 96.7(1) %, 96.4(1) %, 97.0(2) % and 96.9(2) %, respectively.

Including the fidelities measured for circularly polarized 854 nm light, we arrive at
96.9(1) % fidelity averaged over the six input polarization states.

5The visibility V of the fringes amounts to the length of the projection of the ion’s Bloch vector onto
the plane of superposition states. If the ion is in an ideal superposition state (fidelity F = 1), we thus find
V = 1. In contrast, the states |+1/2〉, |−1/2〉 and any statistical mixture of the two possess fidelity F = 0.5
and yield V = 0. In general, fidelity and visibility are related through F = 1

2 (1 + V ).
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4.1.5 Quantum-process tomography

In addition to the average quantum-state fidelity quoted above, another way of assessing
the quality of our mapping protocol is to perform quantum-process tomography [1]. This
procedure describes the mapping protocol as a quantum process and allows us to fully
characterize how an arbitrary polarization state (input state) is mapped onto the atomic
qubit (output state). This section briefly summarizes the notion of quantum-process
tomography; a more detailed treatment is found, for example, in [170].

A quantum process is described by a completely positive map ε that maps an input
state ρ onto an output state ε (ρ). In the case of a single qubit, this superoperator can be
written in the operator-sum representation [171],

ε (ρ) =
4∑
i=1

Ai ρA
†
i , (4.3)

in which the so-called Kraus operators Ai fully characterize the quantum process. Knowl-
edge of the Kraus operators, however, usually does not provide much physical insight into
the quantum process. Instead, the map ε can also be expressed in terms of an orthonor-
mal basis for the vector space of operators acting on the single-qubit Hilbert space. In
particular, the Pauli operators {σi=1,..,4} = {1, σx, σy, σz} (extended by the identity oper-
ator) form such a basis and are directly associated with physical processes such as unitary
operations, projective measurements and decoherence. The quantum process then takes
the form

ε (ρ) =
4∑

m,n=1
χmn σm ρ σn, (4.4)

and the coefficient matrix χ is called the process matrix. Its identity part, χ11, is termed
the process fidelity and is our figure of merit besides the average quantum-state fidelity.
It is computed using four input states which are mutually linearly independent and the
respective output states. As input states, we choose the polarizations R, L, V and D. For
each input state, we perform full tomography of the atomic quantum state by projections
onto both the σφ and σz basis. From this and by the method described in [170], we
reconstruct the process matrix, depicted in fig. 4.6(a), and obtain the process fidelity
|χ11| = 95.0(2) %.

4.1.6 State-transfer fidelity vs. heralding probability

Besides quantum-state and quantum-process fidelity, a crucial point in our mapping pro-
tocol is the heralding probability, i.e. the probability to detect the Raman photon that
heralds a successful photon-to-atom quantum-state transfer. For a detection time window
of 450 ns, we achieve 0.438(1) % average heralding probability for the six input polarization
states discussed above. It is instructive, however, to analyze this efficiency value as well as
the transfer fidelities for different choices of the detection time window. Fig. 4.6(b) illus-
trates the interplay of efficiency and fidelity of our protocol; for short time windows and
thus small heralding probabilities, both the quantum-process and average quantum-state
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Fig. 4.6: (a) Quantum-process matrix characterizing the mapping protocol. Shown are the moduli
of the matrix entries; the colors represent the entries’ complex arguments. (b) Process fidelity
(blue dots) and average quantum-state fidelity (green dots) for different heralding probabilities,
determined by the length of the detection time window.

fidelity reach values close to unity. On the other hand, if we cut back on fidelity, we can
reach heralding probabilities above 0.5 %.

4.1.7 Error sources

The fidelity of our mapping protocol is mainly limited by two effects: first, detector dark
counts mimic the detection of true photons at 393 nm (1.7 % within 450 ns). If the ion
emits a Raman photon and is transferred to the ground state but a dark-count event
is detected instead, the atomic-phase information is lost and the qubit state decoheres
entirely. For linearly polarized light at 854 nm, this corresponds to a statistical mixture
of |+1/2〉 and |−1/2〉 (fidelity F = 0.5). For circularly polarized light, however, the ion is
transferred to the corresponding Zeeman state (for which no relative phase exists) and we
still obtain a high fidelity.

A second source of error lies in spontaneous decay from the P3/2 state back to D5/2.
The emission of an undetected (parasitic) photon at 854 nm leaves the ion in a statistical
mixture from which it is once more excited by the driving laser. Obviously, this will cause
the S1/2 qubit to end up in a mixed state as well, thus degrading the transfer fidelity.
The observed effect (1.4 %) is on the order of what is expected from the P3/2 branching
fractions [156]. This limitation will not be relevant for mapping the polarization state of
single photons at 854 nm since there will be no second photon available for a re-excitation
from D5/2. The emission of a parasitic photon will hence only reduce the efficiency of the
protocol.

4.1.8 Alternative schemes

Finally, I would like to mention that modified versions of our mapping protocol exist; ref.
[73] discusses these in terms of efficiency and experimental complexity. We implemented
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Fig. 4.7: Alternative scheme for heralded photon-to-atom quantum-state transfer (“σ scheme”).
A successful mapping event is heralded by the detection of a Raman photon in a |σ〉 state.

one of these alternative schemes, sketched in fig. 4.7; the initial atomic superposition is now
created between the Zeeman states |D5/2,m = +5/2〉 and |D5/2,m = −5/2〉. In contrast to
the scheme presented above in which the absorption process is heralded by the detection of
a Raman photon in state |π〉 (“π scheme”), this scheme relies on the detection of a photon
emitted on a |σ〉 transition (“σ scheme”). The excitation of the state |D5/2,m = +5/2〉
yields a Raman photon in state

∣∣σ+〉, while exciting state |D5/2,m = −5/2〉 produces
a |σ−〉 photon. This implies, however, that the polarization of the heralding photon
reveals the final state of the atomic qubit. We circumvent this by another quantum-eraser
technique; by projecting the state of the heralding photon onto a superposition of

∣∣σ+〉
and |σ−〉, the information about the photon’s polarization state is erased. We achieve this
projective measurement by simply removing the polarizer that was used in the π scheme
in order to select photons from π transitions only. Since we now observe light from the ion
perpendicularly to the quantization axis, the two σ transitions become indistinguishable
and are perceived as vertically polarized light.

Apart from the differing state preparation and the removed polarizer, the experimental
implementation of the σ scheme follows exactly that of the π scheme. Using a set of input
polarizations at 854 nm and performing quantum-state tomography allows us to determine
the figures of merit: for a 450 ns detection time window, we find 91.7(5) % process fidelity,
94.8(2) % average state fidelity and 0.318(1) % heralding probability. The reduced fidelities
as compared with the π scheme result, to the best of our knowledge, from the nonlinearly
[172] higher susceptibility of the |D5/2,m = ±5/2〉 states to magnetic-field noise. While less
relevant for the π scheme, this becomes important for the σ scheme already within the time
it takes for state preparation (∼ 20 µs). The reduced heralding probability is explained
by the spatial emission pattern of σ which, in contrast to π transitions, is preferentially
directed along the quantization axis. Both drawbacks of this scheme, however, will be
mitigated in the future; the polarization-state transfer of single photons at 854 nm can only
be realized by sending the photons onto the ion through one of the HALOs (otherwise,
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the absorption probability will be too small). This means that the quantization axis
(and hence the magnetic field) must be set along the HALO optical axis. Consequently,
heralding photons at 393 nm would be collected along the quantization axis only, almost
completely suppressing the detection of photons from |π〉 transitions. In summary, the π
scheme will not be feasible with single 854 nm photons with our experimental setup, but
in terms of efficiency, the σ scheme provides an even better solution [73] once the active
compensation of magnetic-field noise [137] is ready. The implications of magnetic-field
noise on the feasibility of our protocol for single-photon absorptions will be discussed in
the next section.

4.1.9 Coherence-time considerations for single-photon realizations

In the demonstration of our mapping protocol, using laser pulses at 854 nm instead of single
photons, most heralding photons at 393 nm were detected within 1 µs after switching on the
laser. In realizations employing single photons whose polarization state is to be mapped
onto the ion, the average time for which the ion remains in the D5/2 superposition until
it absorbs a single photon will be greater by many orders of magnitude. However, since
magnetic-field fluctuations limit the coherence time of any atomic superposition state,
we re-prepare the ion for absorption after a certain time even if no absorption has taken
place. Otherwise, the atomic state decoheres and the mapping fidelity decreases. In order
to achieve an appreciable duty cycle of the experimental sequence, it is hence imperative
that the superposition remain coherent (with respect to the RF reference oscillator) for
as long as possible [94].

From the Ramsey experiments presented in chapter 2 on both the 729 nm and the RF
transition, we could in principle derive the expected coherence time of the D5/2 super-
position in the case of the σ scheme. However, in the course of preparing the measure-
ments presented in this chapter, we could significantly lower magnetic-field influences by
repositioning some of our laboratory devices and their power cables. Consequently, it is
advisable to examine the D5/2 superposition in terms of coherence time in an independent
measurement: in analogy to the Ramsey experiments described before, we first prepare
the |D5/2,m = ±5/2〉 superposition state through one RF pulse and two optical pulses at
729 nm. After a certain waiting time (Ramsey time), we map the D5/2 back to an S1/2
superposition through another two optical pulses. Ideally, this superposition equals that
created by the initial π

2 RF pulse (up to a fixed phase shift given by the relative phase
of the optical pulses). Scanning the phase of a final π

2 RF pulse, followed by electron
shelving, allows us to infer the coherence properties and hence, by varying the Ramsey
time, to determine the coherence time of the D5/2 superposition.

The results of the Ramsey measurement are displayed in fig. 4.8. Although the am-
plitudes of the fluctuating magnetic fields are significantly lower as compared with those
from chapter 2, the much larger effective Landé factor geff = 6 leads us to a coherence
time in the range 200 – 400 µs. Ideally, this value should be at least two orders of magni-
tude larger than the state-preparation time (∼ 20 µs) in order to attain a reasonable duty
cycle. We are confident, however, that the active magnetic-field stabilization [137] that is
currently being set up sufficiently prolongs the coherence time for duty cycles above 50 %.
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Fig. 4.8: (a) Ramsey experiment for the |D5/2,m = ±5/2〉 superposition state and 10 µs Ramsey
time. From the fit (χ2 = 1.3), we obtain the fringe visibility V = 0.923(3). (b) Fringe visibility
as a function of Ramsey time. Fitting the theoretical model from eqn. 2.23 (χ2 = 36.5) yields the
white-noise contribution Bnoise = 0.067(4) mG, the power-line contribution Bline = 0.195(4) mG
and the qubit coherence times T ∗

2, noise = 401(22) µs and T ∗
2, line = 170(3) µs. Error bars are smaller

than the size of symbols.

Summary

We have experimentally demonstrated a protocol for heralded photon-to-atom quantum-
state transfer. In future applications, it will allow mapping the polarization state of a single
photon absorbed on the D5/2–P3/2 transition of 40Ca+ onto its S1/2 Zeeman qubit. An
absorption event is heralded by a single Raman photon with ∼ 0.4 % heralding probability,
the detection time of the photon being crucial in keeping track of the atomic phase. The
achievable fidelities of the mapping protocol were found to be > 95 %.

These results compare favorably with work from competing groups; in an experiment
with single Cs atoms coupled to an optical cavity, ∼ 73 % average quantum-state fidelity
was achieved [81], while ∼ 93 % fidelity was reached with a single Rb atom in a cav-
ity [91]. In both cases, however, no signal for heralding a successful state transfer was
available. Hence the transfer fidelity in a single experimental shot was limited by the
photon-absorption probability, which was < 10 %. In contrast, a quantum memory based
on single magnons in an atomic ensemble provided a herald in the shape of a Raman-
scattered photon with ∼ 10 % heralding probability (at ∼ 90 % fidelity) [92]. Atomic
ensembles, however, do not offer the prospect of local quantum-information processing.

4.2 Atom-photon entanglement

The creation of entanglement between flying and stationary qubits is an important resource
in realizing a quantum network. In combination with mapping quantum states between
the two kinds of qubits, it allows for establishing entanglement between spatially separated
network nodes [62, 64, 65, 68, 66].
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Fig. 4.9: Experimental scheme for atom-photon entanglement. (a) Preparation of a symmetric
superposition of the |D5/2,m = ±5/2〉 states by a sequence of a radio-frequency (RF) and two
optical pulses. (b) Generation of a single Raman photon, spin-entangled with the atomic S1/2
Zeeman qubit. (c) Read-out of the atomic state, after detection of the photonic state in a given
polarization basis, through electron shelving. If desired, another RF pulse before shelving effects
a basis rotation.

In the context of atom-based quantum networks, seminal work includes the entangle-
ment of the polarization of a spontaneously scattered single photon with the spin state
of a single ion [173] or neutral atom [151]. In both experiments, the generation of entan-
glement was based on Rayleigh scattering through pulsed laser excitation. More recently,
tunable ion-photon entanglement by means of a cavity-mediated Raman transition was
demonstrated [174].

In this part of the chapter, I present the generation and characterization of entangle-
ment between the polarization state of a single spontaneous Raman photon and the spin
state of a single ion.

4.2.1 Scheme for atom-photon entanglement

Our experimental scheme for the creation of atom-photon entanglement is based on a mod-
ification of our “σ scheme” for heralded photon-to-atom quantum-state transfer, presented
in the previous section. As shown in fig. 4.9, the scheme begins with state preparation:
following optical ground-state pumping, a sequence of a radio-frequency (RF) and two
optical pulses prepares a symmetric superposition of the Zeeman states |D5/2,m = +5/2〉
and |D5/2,m = −5/2〉. Then a laser pulse excites the two Zeeman states on the D5/2–P3/2
transition at equal rates; the ion is transferred back to the S1/2 ground state, accompa-
nied by the emission of a single Raman photon from the S1/2–P3/2 transition (at 393 nm
wavelength). A photon in state

∣∣σ+〉 leaves the ion in the qubit state |+1/2〉, while a |σ−〉
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photon results in the state |−1/2〉. Since the scattering process is mostly coherent6, the
two decay channels interfere and yield the maximally entangled state

|Ψion–photon〉 = 1√
2

(
|+1/2〉 |σ+〉+ eiθ |−1/2〉 |σ−〉

)
. (4.5)

As described in more detail later, we observe the Raman photons parallel to the quan-
tization axis; photons scattered on the

∣∣σ+〉 (|σ−〉) transition appear right-handed (left-
handed) circularly polarized. Hence, changing from the atomic to the laboratory reference
frame yields the state

|Ψion–photon〉 = 1√
2

(
|+1/2〉 |R〉+ eiθ |−1/2〉 |L〉

)
. (4.6)

In order to characterize this two-qubit state experimentally, we perform quantum-state
tomography by analyzing the photon’s polarization in a set of conjugate measurement
bases. Upon detecting a photon, i.e. projecting it onto a specific polarization state, we
analyze the atomic state as well. Like the photon, the ion’s spin state is projected onto
different measurement bases, using the same procedure as for our photon-to-atom state-
transfer protocol (see section 4.1.1); in order to project the ion onto the σz basis, formed
by the energy eigenstates |+1/2〉 and |−1/2〉, we apply a pulse at 729 nm that transfers any
population in state |+1/2〉 to one of the D5/2 states. Subsequent atomic-state detection
(switching on the cooling lasers and collecting atomic fluorescence) then discriminates
between the two states with very high fidelity. On the other hand, in order to project the
atomic state onto the superposition basis σφ = cos (φ)σx − sin (φ)σy (with the phase φ
determined by the detection time of the Raman photon), another RF pulse prior to the
shelving pulse effects a basis rotation.

4.2.2 Experimental realization

The experimental setup, shown in fig. 4.10, is only a slight modification of the one used
for our protocol for heralded photon-to-atom quantum-state mapping (see section 4.1.2).

Light collection

We make use of both HALOs for the collection of blue light emitted by the ion. One
of them collects single photons at 393 nm, whose polarization is analyzed by means of a
half-wave and a quarter-wave plate and a polarizer. The quantization axis, defined by
the static magnetic field, is chosen along the HALO optical axis, hence Raman photons
from σ transitions appear as circularly polarized light. After being coupled to a multi-
mode optical fiber, the light is detected by a photomultiplier tube (PMT). Its output
pulses are fed into the sequence-control unit (Hydra) and furthermore time-tagged and
stored for later analysis. At the same time, fluorescence light at 397 nm is collected by
the second HALO and detected by another PMT, whose output pulses are fed into the
sequence-control unit for atomic-state detection.

6Thanks to favorable branching fractions, population from the P3/2 state decays predominantly (with
93.5 % probability [156]) to the ground state, making decoherence through decay back to D5/2 and subse-
quent re-excitation a comparably small effect.
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Fig. 4.10: Experimental setup for atom-photon entanglement. ~B: magnetic-field direction, Wave
plates: one half-wave and one quarter-wave plate, HWP: half-wave plate, PBS: polarizing beam-
splitter cube, MM fiber: multi-mode optical fiber, PMT: photomultiplier tube. For clarity, the
cooling beams at 397 nm and 866 nm are not shown.

Photon generation

For the generation of single Raman photons (following state preparation), we send a laser
beam at 854 nm, polarized perpendicularly to the quantization axis, onto the ion. We
perform independent spectroscopy on the D5/2–P3/2 transition (see section 2.4.2) in order
to set the laser frequency to the line center of the transition. This results in equal detunings
from the two σ transitions that are to be excited, which, in combination with the linear
polarization, results in equal excitation rates for the two D5/2 Zeeman states. This is
essential in generating a maximally entangled atom-photon state; if the excitation rates
were different, the

∣∣σ+〉 and |σ−〉 contribution would become distinguishable in the shape
of their temporal wave packets. Entanglement between atom and photon would then no
longer be restricted to the spin but extended to the temporal degree of freedom. As we
analyze only the former, we would perceive the atom-photon state as partly statistically
mixed rather than as a pure quantum state.

Quantum-state manipulation

We initialize the atomic qubit through ground-state pumping on the 729 nm transition (see
section 2.3.2). Besides the optical S1/2–D5/2 transition, addressed through our narrow-
band laser (see section 2.1.1), we manipulate the S1/2 Zeeman qubit through the RF
coil below the vacuum chamber (see section 2.2.2). For our magnetic field B = 2.8 G,
the atomic transition frequency is found at 7.8 MHz. A second beam at 854 nm serves
for repumping from D5/2 to the ground state. All laser beams are focused onto the ion
through plano-convex lenses with focal-spot diameters ∼ 80 µm (729 nm beam), 250 µm
(854 nm) and 125 µm (854 nm repump beam).
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Experimental sequence

The experimental sequence starts with 60 µs of optical pumping that initializes the ion in
the state |S1/2,m = −1/2〉 with 99.83(1) % probability, followed by a resonant RF pulse of
2.6 µs that creates the S1/2 qubit in the symmetric superposition state. The subsequent
pulses at 729 nm of pulse area π, each 1.8 µs long, transfer the |S1/2,m = ±1/2〉 state
to |D5/2,m = ±5/2〉. Following state preparation, the 854 nm photon-generation beam is
switched on for 3 µs. An optical power of 7 µW yields ∼ 7 MHz Rabi frequency. As the
ion returns to the S1/2 state, it emits a single Raman photon at 393 nm wavelength. In
case the photon is detected, we perform atomic-state analysis; in order to project the ion
onto the superposition basis σφ, another π

2 RF pulse effects a basis rotation. Then another
pulse at 729 nm transfers any population in the state |S1/2,m = +1/2〉 to |D5/2,m = +5/2〉,
before we switch on the cooling lasers. Projecting it onto S1/2 causes the ion to emit
fluorescence light which we detect at a rate of 156 · 103 s−1. On the other hand, projecting
it onto D5/2 leaves the ion dark and we detect PMT events from detector dark counts
and laser stray light at 60 s−1. With 100 µs integration period, we discriminate the states
S1/2 and D5/2 with 99.9988 % fidelity (see section 2.1.3). If the heralding photon is not
detected, as in most cases, the ion is Doppler cooled for 10 µs. Including delays in our
sequence-control unit, we attain 11 kHz repetition rate.

4.2.3 Interlude: Quantum-state tomography

Before we can proceed with experimentally determining the joint atom-photon quantum
state, we need to adapt the methods of quantum-state tomography [175, 176] to our prob-
lem. For a full reconstruction of the two-qubit state, we rely on the classic approach based
on performing tomographically complete measurements [177] on the two-qubit Hilbert
space. A common choice is the canonical set E of observables formed by tensor products
of conjugate single-qubit measurement bases. Explicitly, this set contains all 16 tensor
products of the Pauli operators {σi=1,..,4} = {1, σx, σy, σz} acting on the individual qubits:

E = {σi ⊗ σj |i, j = 1, .., 4} (4.7)

For a given two-qubit density operator ρ, the expectation value for a particular measure-
ment is

wi,j := 〈σi ⊗ σj〉 = tr (σi ⊗ σj ρ) . (4.8)

Since the set E of observables is tomographically complete, the set {wi,j} of the 16 expec-
tation values fully characterizes the quantum state ρ. E represents conjugate measurement
bases, and hence ρ may be expressed directly as a linear combination of the tensor oper-
ators [175]:

ρ = 1
4

4∑
i,j=1

wi,j σi ⊗ σj (4.9)

The expectation values wi,j are determined experimentally from joint measurements on
the two qubits, and from eqn. 4.9, the underlying quantum state ρ is reconstructed.
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In our experimental situation, the photonic qubit is measured in one of the standard
polarization bases: X = {|H〉 , |V 〉} (horizontal, vertical), Y = {|D〉 , |A〉} (diagonal,
antidiagonal), Z = {|R〉 , |L〉} (right-, left-handed circular). In the circular basis, the
linear polarizations are defined as

|H〉 = 1√
2

(|R〉+ |L〉) (4.10)

|V 〉 = 1√
2

(|R〉 − |L〉) (4.11)

|D〉 = 1√
2

(|R〉 − i |L〉) (4.12)

|A〉 = 1√
2

(|R〉+ i |L〉) . (4.13)

Upon detecting a photon, i.e. projecting it onto one particular of the six polarization
states, we measure the ion in terms of the observables σx, σy and σz (the relation of these
to the more directly accessible observables σφ and σz will be given in section 4.2.4).

I will now explain exemplarily how a particular expectation value wi,j is determined
experimentally. For example, the expectation value of the atomic σx observable is approx-
imated through〈

σ(ion)
x ⊗ 1(ph)

〉
= p

(
|0〉(ph)

i

)
w(ion)
x

∣∣∣
|0〉(ph)

i

+ p
(
|1〉(ph)

i

)
w(ion)
x

∣∣∣
|1〉(ph)

i

. (4.14)

Here, p(|0〉(ph)
i ) denotes the probability to find the photon in state |0〉 in some arbitrary

measurement basis i, and w(ion)
x ||0〉(ph)

i

is the expectation value of the atomic σx observable
conditioned on the detection of a photon in state |0〉 (and analogously for the photonic state
|1〉). If instead we are interested in the expectation value of the photonic σx observable,
we find the simpler expression〈

1
(ion) ⊗ σ(ph)

x

〉
= p

(
|0〉(ph)

x

)
− p

(
|1〉(ph)

x

)
. (4.15)

Finally, for a joint measurement in the atomic σx and the photonic σy basis, the expectation
value is approximated via〈

σ(ion)
x ⊗ σ(ph)

y

〉
= p

(
|0〉(ph)

y

)
w(ion)
x

∣∣∣
|0〉(ph)

y

− p
(
|1〉(ph)

y

)
w(ion)
x

∣∣∣
|1〉(ph)

y

. (4.16)

With this “recipe”, we are equipped for reconstructing the joint atom-photon state through
independent, but simultaneous measurements on ion and photon.

Maximum-likelihood estimation

The procedure for two-qubit quantum-state tomography described above has the advan-
tage of being “analytic”, which means only elementary mathematical operations are re-
quired to reconstruct the atom-photon density matrix from the experimentally determined
probabilities. It has, however, one considerable drawback: the linear combination 4.9 is
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not guaranteed to result in a physical density matrix ρ when the measured values for wi,j
are used as approximations. A physical density matrix needs to fulfill the requirements on
a valid density operator: (i) Positive semi-definite (and thus Hermitian): all eigenvalues
are nonnegative. (ii) Normalized: tr (ρ) = 1. This implies that the expectation values wi,j
must fulfill the boundary condition

4∑
i,j=1

w2
i,j − w2

1,1 ≤ 1. (4.17)

This condition, however, may not be satisfied by experimentally determined values due to
measurement errors and statistical uncertainties. A solution to this problem lies in asking
instead for the particular physical quantum state which is most likely to have produced
the experimental data, hence the term “maximum-likelihood estimation” [178, 175]. This
requires a numerical search over all physical states, details of which are found in app.
A.8. Maximum-likelihood estimation is a standard method for reconstructing density
operators from experimental data [175]. The thus found density matrices then allow
deriving secondary quantities, such as entanglement measures, that further characterize
the quantum state.

It should be mentioned that maximum-likelihood estimation does not at all render the
analytic reconstruction (eqn. 4.9) obsolete, since the analytic density operator is usually
needed as initial guess for the numerical search.

4.2.4 Experimental results

For the actual measurement, the set of wave plates for analyzing the polarization of the
Raman photons are set such that one particular of the six polarization basis states7 |H〉,
|V 〉, |D〉, |A〉, |R〉, |L〉 is transmitted through the polarizer and detected by the PMT.
Once a photon has been projected onto this basis state, the atomic qubit is measured in
either the energy eigenbasis σz (shelving the |+1/2〉 qubit state to the D5/2 manifold8) or
the superposition basis σφ (basis rotation through a π

2 RF pulse prior to electron shelving).
For each of these 12 combinations of single-qubit measurement bases, both the detection
time of the Raman photon and the outcome of the atomic measurement are recorded. Just
as we did in the context of our state-transfer protocol, the experimental data is evaluated
by sorting each photon-detection time into one of two arrival-time histograms according
to the atomic-measurement outcome. Fig. 4.11(a) exemplarily shows such histograms for
projecting the ion onto the σz basis conditioned on the detection of a Raman photon in
state |R〉. As expected from eqn. 4.6, almost all photon detections are followed by a pro-
jection of the atomic state onto |+1/2〉. For the reconstruction of the atom-photon density
matrix, we define a time window from which photon-detection events are selected. As a
reasonable trade-off between detection efficiency and quantum-state fidelity, we choose a

7The linear polarizations are defined with respect to the plane spanned by the photon-generation beam
and the quantization axis, which coincides with the plane of the optical table.

8The measured probability for a projection onto the state |+1/2〉 is corrected for the shelving efficiency
pshelving = 97.0(8) %.
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Fig. 4.11: Conditional arrival-time histograms of single 393 nm photons. Blue curve: ion in state
|+1/2〉, green curve: ion in state |−1/2〉, red curve: unconditional arrival-time distribution (sum
of the conditional histograms). (a) Projection onto the atomic σz basis after detecting a photon
in state |R〉. (b) Projection onto the atomic σφ basis after detecting a photon in state |H〉. The
shaded areas represent the time window used for data analysis. For each graph, the bin size is 2 ns
and the measurement time is 20 min.

window of 450 ns length. Averaged over all six polarization states, this yields 0.353(1) %
detection efficiency. From the ratio of the number of events in the conditional arrival-time
histograms, we find the approximation w

(ion)
z ||0〉(ph)

z
= 0.944(16) for the expectation value

of the atomic σz operator conditioned on the detection of a photon in state |0〉(ph)
z = |R〉.

Repeating this measurement with the detection of photons in state |L〉 then allows us to
approximate the expectation values 〈σ(ion)

z ⊗ 1(ph)〉, 〈1(ion) ⊗ σ(ph)
z 〉 and 〈σ(ion)

z ⊗ σ(ph)
z 〉.

Besides measurements in the σz bases, fig. 4.11(b) displays the conditional arrival-time
histograms for projecting the ion onto the superposition basis σφ conditioned on the detec-
tion of a Raman photon in state |H〉. We observe oscillations in the conditional arrival-time
distributions that have the same physical origin as the quantum beats described in section
3.2 (and the oscillations visible when characterizing our state-transfer protocol in section
4.1); the phase of the initially prepared superposition of |D5/2,m = ±5/2〉 evolves at the
Larmor frequency of the two Zeeman states. Detecting a linearly polarized Raman pho-
ton projects this superposition onto that of |S1/2,m = ±1/2〉, whose phase now evolves
at the Larmor frequency given by the S1/2 Zeeman splitting. Hence, until the photon is
detected, the ion accumulates a phase at the rate given by the difference of the two Larmor
frequencies. The probability to project the final atomic state onto a given superposition
state hence oscillates at that difference frequency. Including the Landé factors of the two
fine-structure manifolds, the oscillation period (the effective Larmor period) which is seen
in fig. 4.11(b) is

T = h

4µBB
= 63 ns (4.18)

for our static magnetic field B = 2.8 G. Another interpretation of the accumulated phase
is considering the measurement basis time-dependent; the time t of a photon detection
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determines the phase φ of the observable σφ = cos (φ)σx − sin (φ)σy through

φ = 2π tmodT
T

. (4.19)

Temporally resolving the Raman photons is thus crucial in keeping track of the phase
of the atomic superposition state. Discarding it would cause the S1/2 superposition to
decohere. Furthermore, this resolves yet another issue: the two σ channels of the S1/2–
P3/2 transition yield photons that are distinguishable in frequency due to the Zeeman
splitting. In principle, this implies entanglement of ion and photon not only in the spin
but also the frequency degree of freedom. Since we analyze only the latter, the atom-
photon quantum state would appear as statistically mixed. As we resolve the photons
temporally, not spectrally, the frequency information is erased and the state remains pure
(quantum eraser [167, 168, 169]).

Reconstructing the two-qubit quantum state

In order to draw meaningful conclusions from the photonic wave packets in the case of
projecting the ion onto the σφ basis, we analyze visibility and phase offset of the oscillations
in the arrival-time histograms. By the definition of the superposition observable, σφ =
cos (φ)σx − sin (φ)σy, it becomes apparent that visibility V and phase offset φ0 relate to
the expectation values w(ion)

x and w
(ion)
y of the atomic observables σx and σy through

w(ion)
x = V cos (φ0) (4.20)

w(ion)
y = V sin (φ0) . (4.21)

Hence, analyzing the atomic state in the superposition basis allows us to determine the
values w(ion)

x and w
(ion)
y simultaneously with just one experimental setting.

Now, after explaining how the experimental data acquired for the 12 settings of
joint measurement bases translates into approximations for the expectation values wi,j =
〈σi ⊗ σj〉 of the 16 two-qubit observables, we can reconstruct the atom-photon quantum
state. The density matrix, reconstructed analytically from eqn. 4.9, turned out to be
non-physical, exhibiting negative eigenvalues. Hence it was used as initial guess for a
maximum-likelihood estimation, with the resulting density matrix shown in fig. 4.12. Im-
portantly, most of the population is confined to the states |+1/2〉 |R〉 and |−1/2〉 |L〉. The
presence of the coherence terms shows that the atom-photon system is close to the maxi-
mally entangled state |Ψ〉 = 1√

2 (|+1/2〉 |R〉+ |−1/2〉 |L〉).

Entanglement measures

It is illustrative to quantify the amount of entanglement contained in the reconstructed
two-qubit quantum state ρ through measures of entanglement [179]. One of them is the
fidelity with respect to the maximally entangled state |Ψ〉 = 1√

2 (|+1/2〉 |R〉+ |−1/2〉 |L〉):

F = 〈Ψ| ρ |Ψ〉 = 84.6(2) % (4.22)
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Fig. 4.12: Density matrix of the joint atom-photon state, represented in the Z(ion)–Z(ph) product
basis. Shown are the moduli of the matrix entries; the colors represent the entries’ complex
arguments.

It clearly exceeds the value of 1
2 for a classical correlation and thus indicates the presence

of entanglement.
Another measure of entanglement is found in Bell’s inequality in the CHSH formulation

[180]: for non-entangled (separable) quantum states, the Bell parameter

S := |〈σα ⊗ σβ〉+ 〈σα′ ⊗ σβ〉|+
∣∣〈σα ⊗ σβ′

〉
−
〈
σα′ ⊗ σβ′

〉∣∣ (4.23)

must fulfill the inequality S ≤ 2 for any choice of the measurement bases parameterized by
the angles α, α′, β, β′. In the case of maximally entangled states, however, an appropriate
choice of these angles allows for values of S up to 2

√
2. By numerically optimizing this

choice of measurement bases, we find the maximized Bell parameter S = 2.305(9), exceed-
ing the value of 2 by more than 30 standard deviations and thus once more indicating the
presence of entanglement in the atom-photon state.

4.2.5 Error sources

While the main sources of error in the realization of our protocol for heralded photon-
to-atom quantum-state transfer were found in detector dark counts and decay from the
P3/2 back to the D5/2 state, the main reasons for the non-perfectly entangled atom-photon
state are different: first, magnetic-field noise was not nearly as well compensated as it had
been for the realization of the state-transfer protocol. Since the magnetic-field direction
had to be rotated by 90◦ for the generation of atom-photon entanglement, the influence of
the laboratory devices on the magnetic field at the position of the ion changed completely.
Repositioning the devices and their cables, however, did not stabilize the field as much as
hoped for.
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Second, the half-wave and quarter-wave plate used for choosing the polarization state
that a detected photon was projected on did not show retardances sufficiently close to
λ
2 and λ

4 , respectively. Since characterizing them turned out hard, they introduced a
systematic error into the polarization analysis and hence into the reconstructed density
matrix.

Summary

We have experimentally realized the generation of an entangled atom-photon quantum
state. The photon is Raman scattered on the S1/2–P3/2 transition of 40Ca+, its polarization
state entangled with the ion’s S1/2 Zeeman qubit. At ∼ 0.35 % photon-detection efficiency
and 11 kHz repetition rate, we obtain the fidelity 84.6(2) % with respect to an ideal,
maximally entangled quantum state.

These results allow us to keep up with work from competing groups; experiments
employing high-NA objectives for photon collection from single atoms/ions showed photon-
detection probabilities up to ∼ 0.4 %, however at repetition rates up to ∼ 500 kHz and
with quantum-state fidelities in the range 92 – 95 % [66, 144]. Cavity-based ion-photon
entanglement was attained at ∼ 6 % detection efficiency and 97 % fidelity, but at < 1 kHz
repetition rate [174].
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Conclusion

5.1 Related work: Photonic interaction between distant ions

In parallel to the work presented in this thesis, another experiment was conducted that
is described in detail in Michael Schug’s Ph.D. thesis [93] and our publication [155]; we
successfully demonstrated heralded photonic interaction between single ions in our two
traps, spatially separated by ∼ 1 m.

In chapters 3 and 4, I presented building blocks for interfacing single 40Ca+ ions with
single photons, namely the high-rate generation of single photons, atom-to-photon phase
mapping, photon-to-atom quantum-state transfer and atom-photon entanglement. All
these operations focus on implementing a single node in a quantum network; we have
now realized a proof-of-principle experiment which makes use of both our ion traps and a
photonic quantum channel for the direct interaction between single ions in the two traps.
In the sender trap (the Bright Trap), we use a single ion to emit photons at 854 nm
wavelength, the photon generation being either triggered or continuous. Single-photon
absorptions by a single ion in the receiver trap (the Dark Trap) are heralded by the onset
of fluorescence light, scattered from the cooling lasers. This quantum-jump scheme allows
for near-unity detection efficiency of single-photon absorptions.

Experimental implementation

Our experimental setup is depicted in fig. 5.1. In the sender trap, a single ion is made to
emit photons at 854 nm. For continuous photon generation, lasers at various wavelengths
drive the ion to a steady state with high population in the P3/2 manifold, causing it to
scatter photons on the D5/2–P3/2 transition (at 854 nm) at a high rate. For triggered
photon generation, the ion is optically pumped from the S1/2 to the D5/2 state, scattering
a single photon at 854 nm (see section 3.1.2). The photons are collected through one of
our high-NA laser objectives (HALOs) and coupled to a single-mode optical fiber.

In the receiver trap, the cooling lasers are switched on at all times, and the ion is
prepared for absorption in the D5/2 state (which is a dark state to the cooling beams)
through optical pumping. Light from the sender ion exits the single-mode fiber and is
focused onto the receiver ion through another HALO. The absorption of a photon excites
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Fig. 5.1: Experimental setup for heralded photonic interaction. ~B: magnetic-field direction, SM
fiber: single-mode optical fiber, MM fiber: multi-mode optical fiber, PMT: photomultiplier tube.

the receiver ion to the P3/2 state, from which it predominantly decays to the ground
state, entering the cooling cycle and emitting fluorescence light (quantum jump). The
detection of a fluorescence photon from the receiver ion then signals (heralds) the successful
absorption1 of a photon from the sender ion.

Results

In the case of continuous photon transmission, we obtain single-mode coupled photons at a
rate of Rph = 12.2(2.5) ·103 s−1. The successful absorption of a photon by the receiver ion
is heralded by the onset of fluorescence; we detect the latter at the rate Rfl ≈ 300 ·103 s−1.
The first detection of a fluorescence photon marks the point in time of the absorption
event, hence the temporal resolution is given by 1/Rfl ≈ 3.3 µs. For each quantum jump,
the time that the ion spent in the D5/2 state (the dark-period duration) before returning
into the cooling cycle is recorded and sorted into a histogram, see fig. 5.2(a). The mean
dark-period duration is found to be τon = 247(6) ms and must be compared with the
reference value τoff = 1022(34) ms obtained when the sender ion is “off”, i.e. when the
laser beams in the sender trap are switched off. Evidently, the transmission of photons
from the sender ion significantly reduces the effective lifetime of the D5/2 state (from the
natural lifetime of ∼ 1 s by a factor of ∼ 4). From these two values for the mean dark-
period duration, we derive the photon-absorption rate Rabs = 1/τon−1/τoff = 3.07(10) s−1.
Normalizing this to the rate of photons sent onto the receiver ion, we arrive at the value
pabs = Rabs/Rph = 2.5(5) · 10−4 for the absorption probability for a single photon.

In most quantum-networking scenarios, however, the more interesting mode of op-
eration is triggered photon transmission. With 1.89(39) % fiber-coupling efficiency and
31.2 kHz sequence repetition rate, we obtain single photons at the receiver ion at a rate
of 590(120) s−1. Like in the case of continuous photon transmission, absorption events at

1In this context, “successful absorption” refers to the absorption of a photon, followed by the ion entering
the cooling cycle (in contrast to decaying back to the D5/2 state, which occurs with 5.9 % probability [156]).
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Fig. 5.2: Heralded single-photon absorption. (a) Continuous photon transmission; shown is a
histogram of dark-period durations, following the preparation of the receiver ion in the D5/2 state.
The bin size is 100 ms and the measurement time is 15 min. (b) Triggered photon transmission;
shown is a time-delay histogram of coincidences between single-photon-emission triggers at the
sender ion and absorption events (quantum jumps) at the receiver ion. The bin size is 800 ns and
the measurement time is 74 min. The signal repeats at the sequence repetition rate (gray areas).

the receiver ion are heralded by the onset of fluorescence and time-stamped by the first
detected fluorescence photon. The result is shown in fig. 5.2(b), the temporal correlation
function between single-photon-emission triggers at the sender ion and absorption events
at the receiver ion. The prominent peak at zero time delay evidences the strong correlation
between triggered photon emission and single-photon absorption. The shape of the peak is
composed of the photon’s temporal shape (exponential, the 1

e time of 1.09(1) µs determined
from an independent measurement) and the quantum-jump timing resolution (∼ 3.3 µs).
Subtracting events of spontaneous decay from the D5/2 state, we find 640(100) success-
ful absorption events after 74 min of measurement time. This corresponds to a success
rate (rate of photon emissions followed by absorption events) of 0.14(2) s−1. Normalizing
this value to the repetition rate yields 4.6(7) · 10−6 success probability and 2.4(6) · 10−4

photon-absorption probability for a single experimental cycle. The value for the absorption
probability is compatible with that determined from continuous photon transmission.

Summary

We have successfully demonstrated heralded interaction between spatially separated single
ions through a photonic quantum channel, where photon-absorption events are detected
through a quantum-jump scheme. In continuous photon-transmission mode, the sender
ion continuously emits photons at 854 nm wavelength that shorten the lifetime of the
metastable D5/2 state of the receiver ion at a rate of 3.07(10) s−1. In triggered photon-
transmission mode, the sender ion emits single photons that are temporally strongly
correlated with absorption events at the receiver ion, yielding a success probability of
4.6(7) · 10−6 and a success rate of 0.14(2) s−1.
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5.2 Summary

In this dissertation, I presented the experimental implementation of basic quantum-net-
working operations, realized with single ions and single photons. Ions and photons were
interfaced in free space by means of objectives of high numerical aperture (NA = 0.4).

Prior to any quantum-networking operation, we needed to gain control over the atomic
qubit. The S1/2 ground state and D5/2 metastable state in 40Ca+, coupled by a narrow-
band laser at 729 nm, were used as an optical qubit. First, we established the basic
tasks of spectroscopy (with spectral resolutions on the order of 10 Hz) and pulse-length
scans (exhibiting Rabi frequencies in the 100 kHz range) necessary for calibrating the
laser excitation. Afterwards, we investigated the qubit’s coherence properties. It turned
out that fluctuations of the ambient magnetic field limit the coherence time to values
on the order of 1 ms. Besides this optical qubit, we made use of the two S1/2 Zeeman
states to form a radio-frequency qubit. An RF field generated through a copper-wire coil
facilitates simple and coherent control over this qubit, offering two particular advantages:
insensitivity of qubit manipulations to the ion’s thermal motion and the use of an easy-
to-handle direct digital synthesizer (DDS) as a reference oscillator in place of the complex
setup of a laser locked to a high-finesse optical cavity. Pulse-length scans showed Rabi
frequencies as high as 100 kHz, comparable to those from the optical qubit. For the
initialization of both kinds of qubits prior to coherent manipulations, we implemented
two complementary optical-pumping techniques which prepare the ion in one specific S1/2
Zeeman state with > 99.5 % fidelity. Also, I presented a robust method for measuring the
ion’s temperature in the trap potential (∼ 1 mK).

Once control over the atomic qubit was achieved, we started toward basic quantum-
networking experiments; our first step was the generation of single Raman photons at two
different wavelengths which we tuned both temporally and spectrally. Single photons at
854 nm were single-mode fiber-coupled at a rate of 3.0(6) · 103 s−1 [155], while photons at
393 nm were multi-mode coupled at 5.5(2) · 103 s−1 [88]. In the next step, we coherently
transferred the phase of an atomic superposition state onto the photonic quantum state
through two distinct quantum-interference schemes [89]. This marks an important step
toward mapping the ion’s quantum state onto a single photon.

After these preliminary experiments, I presented the realization of two typical building
blocks for quantum networks; we implemented a protocol in which the polarization state
of a single photon is mapped onto the quantum state of a single ion through an absorption
process [90]. The ion is projected onto the state of the absorbed photon by the detection of
a Raman-scattered photon. This particular property of the protocol (heralded quantum-
state transfer) allows for mapping the photonic onto the atomic quantum state with high
fidelity, even in the case of low absorption probabilities. At ∼ 0.4 % heralding probability
for a successful photon absorption on the D5/2–P3/2 transition, we achieved state-mapping
fidelities exceeding 95 %. The second building block is formed by an experiment entangling
a single photon with the ion. To this end, a spontaneous Raman photon is emitted as the
ion transitions from an excited to the ground state. This process takes place via two dif-
ferent atomic transitions, resulting in distinct final states of the ion’s angular-momentum
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degree of freedom. We thus achieved quantum-mechanical entanglement between the pho-
tonic polarization and the atomic spin. At ∼ 0.35 % photon-detection efficiency, we ob-
tained ∼ 85 % fidelity with respect to an ideal, maximally entangled ion-photon state. The
fidelity was mainly limited by magnetic-field fluctuations and difficulties in characterizing
the wave plates used for photonic polarization analysis.

5.3 Outlook

Magnetic-field stabilization

As explained and quantified in section 2.1.6, magnetic-field noise poses a serious problem
regarding atomic-qubit coherence. In particular, it affects the realization of our protocol
for mapping the quantum state of single photons onto the ion’s spin state. More precisely,
it severely limits the duty cycle of the experimental sequence as the ion must be repeatedly
re-prepared even if no absorption has taken place (see section 4.1.9).

The only promising approach to stabilizing the magnetic field at the position of the
ion is an active field compensation, which is currently being developed by Matthias Kreis
[137]. A number of three-axis Hall sensors in the vicinity of the vacuum chamber allow
inferring the magnetic field at the position of the ion, with ∼ 1 kHz significantly exceeding
the bandwidth of single-ion spectroscopy. Compensation coils will then facilitate a closed
feedback loop, with which we hope to significantly extend the atomic-qubit coherence
time.

Quantum-state transfer of heralded single photons

In the framework of this thesis, we demonstrated our protocol for photon-to-atom quan-
tum-state transfer by mapping the polarization of weak coherent light pulses onto the
ion’s spin state. We will now proceed to the single-photon level; as mentioned earlier, we
operate a photon-pair source, based on spontaneous parametric down-conversion (SPDC),
that can be used as a heralded single-photon source. In the past, our group carried out
proof-of-principle experiments demonstrating heralded absorption of single photons by a
single ion [181, 182, 165, 166]. Single photons from the SPDC source were heralded by
their partner photons and their absorption by the ion heralded by the onset of atomic
fluorescence (quantum jumps).

In the next step, we will attempt to map the polarization state of an SPDC photon,
heralded by its partner photon, onto the ion’s spin state through our state-transfer protocol
(see section 4.1). The presence of a single SPDC photon is heralded by its partner photon,
and its absorption by the ion is heralded by the detection of a Raman-scattered photon. In
a first experiment, we already showed the temporal correlation between the partner photon
(for one particular polarization) and the Raman photon [183]. As the SPDC source can
be operated such that it produces pairs of polarization-entangled photons, this scheme
will facilitate entanglement between the partner photon and the ion. As explained above,
however, we will require a significantly increased coherence time of the atomic qubit before
being able to implement this scheme with an appreciable duty cycle.
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Frequency-converted single photons

We collaborate with the research group of Christoph Becher in the field of hybrid quantum
networks [184, 185]. One of our goals of the near future is the frequency conversion of
single photons from the near-visible range to the telecom O band. To this end, we will send
photons at 854 nm emitted by the ion (see section 3.1.2) to a nonlinear waveguide which
frequency-converts them to 1310 nm wavelength. This quantum frequency conversion [186,
187] is a very appealing concept as it bridges the gap between the (near-)visible transitions
in most atomic species and the low-loss spectral windows of optical fibers in the near-
infrared region.

Greater vision

In a larger context, the experimental tools and methods presented in my thesis will facil-
itate the vision explained in the introduction; a network of small-scale processing units,
interconnected through photonic quantum channels, will form quantum-information pro-
cessors that will be able to tackle mathematical problems intractable on classical comput-
ers. Our tools, such as the coherent manipulation of optical and radio-frequency qubits,
will enable local processing of quantum information, while networking functionalities like
photon-to-atom quantum-state transfer and atom-photon entanglement are essential in
connecting the individual processing units. In particular, our scheme for the heralded
transfer of a photonic quantum state onto a trapped ion plays a key role; only with the
high transfer fidelities provided by a heralded protocol will a truly useful quantum network
become feasible.
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Appendix

A.1 Properties of atomic states and transitions

Tab. A.1 lists the properties of the atomic states and the optical transitions of 40Ca+

which are relevant to our experimental situation.

State Lifetime Transition Wavelength Linewidth Branching fraction
P3/2 6.924(19) ns P3/2 – S1/2 393.3660 nm 22.986(63) MHz 0.934 7(3)

P3/2 – D3/2 849.8015 nm 22.986(63) MHz 0.006 61(4)
P3/2 – D5/2 854.2087 nm 22.986(63) MHz 0.058 7(2)

P1/2 7.098(20) ns P1/2 – S1/2 396.8466 nm 22.423(63) MHz 0.935 65(7)
P1/2 – D3/2 866.2137 nm 22.423(63) MHz 0.064 35(7)

D5/2 1.168(9) s D5/2– S1/2 729.1464 nm 136.3(1.1) mHz 1
D3/2 1.176(11) s D3/2– S1/2 732.3886 nm 135.3(1.3) mHz 1
S1/2 stable

Tab. A.1: Relevant atomic states and optical transitions of 40Ca+. The P3/2 and P1/2 natural
lifetimes were taken from [121], while those of the D5/2 and D3/2 state are from [122]. The P3/2 and
P1/2 branching fractions were taken from [156] and [123], respectively. The natural linewidth of
each transition is calculated from the natural lifetime of the upper and lower state. The transition
wavelengths (in standard air) were measured with a wavelength meter (HighFinesse, WS/7 Super
Precision), the uncertainties being on the order of 10−4 nm.

A.2 Adiabatic passage

Many tasks in quantum-information processing with trapped ions require the ability to
efficiently transfer population between atomic energy eigenstates. A typical goal is to
transfer all population from a particular S1/2 Zeeman state to a (non-populated) D5/2
state. This is usually done through a laser pulse of rectangular temporal shape which is
resonant with the atomic carrier transition. Ideally, for the pulse area A = Ω ·T = π with
Rabi frequency Ω and duration T , the laser will transfer the entire atomic population
from the S1/2 to the D5/2 Zeeman state. Besides decoherence through magnetic-field
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fluctuations, as touched on in section 2.1.5, a more severe complication arises from the
ion’s motional state.

Decoherence through spin-motion entanglement

As described in section 1.1.3, the motion of a laser-cooled ion is well approximated by a
thermal state, i.e. a Boltzmann distribution in Fock space, characterized entirely by the
expectation value 〈n〉 of the motional quantum number. Since the ion is brought into this
state through spontaneous scattering of photons from the field of the cooling laser, the
motion is described in the Fock basis by a completely mixed quantum state:

ρmot =
∞∑
n=0

pn |n〉 〈n| (A.1)

with the thermal distribution pn = 〈n〉n

(〈n〉+1)n+1 . Assuming the electronic state to be initially
in the ground state ρel = |g〉 〈g|, the joint density operator for the two degrees of freedom
reads

ρ (t = 0) = ρel ⊗ ρmot (A.2)

= |g〉 〈g| ⊗
∞∑
n=0

pn |n〉 〈n| (A.3)

=
∞∑
n=0

pn |g〉 〈g| ⊗ |n〉 〈n| . (A.4)

From eqn. 1.32 and for a laser pulse resonant with the carrier transition (∆ = 0) and of
not too high intensity (Ω� ωT), the interaction Hamiltonian describing the dynamics of
the electronic quantum state for a specific motional state |n〉 simplifies to

Hint,n = h̄Ωn

2 (|e〉 〈g|+ |g〉 〈e|) (A.5)

with the motion-dependent Rabi frequency

Ωn = Ω
∣∣∣〈n| eiη(a+a†) |n〉

∣∣∣ (A.6)

= Ω e−η
2/2 L0

n

(
η2
)
. (A.7)

Since this Hamiltonian is time-independent and does not couple the different motional
states, we can apply the time-evolution operator Un (t) = e−iHint,nt/h̄ individually to each
of the summands in eqn. A.4. After tracing over the motional part, we find the electronic
state

ρel (t) =
∞∑
n=0

pn Un (t) |g〉 〈g|U †n (t) , (A.8)

from which we readily obtain the probability for a projection onto the excited state:

p|e〉 (t) = 〈e| ρel (t) |e〉 (A.9)

= 1
2

(
1−

∞∑
n=0

pn cos (Ωnt)
)

(A.10)
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We see now that for a thermal state which comprises many individual Fock states |n〉, Rabi
oscillations between states |g〉 and |e〉 no longer occur at a well-defined frequency Ω but
at a multitude of frequencies Ωn. As these frequencies are in general incommensurable,
the sum in eqn. A.10 will not reach the value −1 at any time t, and thus the population
cannot be efficiently transferred to the excited state. This effect becomes more dramatic
the higher the mean motional quantum number 〈n〉 is.

This damping of Rabi oscillations can be viewed as a process of decoherence; as the
Rabi frequency depends on the motional quantum number n, the electronic state after a
given time will be different for each of the Fock states involved – the ion’s electronic state
(its spin) has become entangled with its motion. The joint electronic and motional state is
still a pure one, but as we observe only the electronic state, i.e. we trace over the motion,
we obtain a statistical mixture, a decohered state.

The adiabatic-passage technique

As explained above, the transfer efficiency between two energy eigenstates when using
resonant laser pulses suffers (greatly) from the ion’s motion when the latter is not cooled
to the ground state of the trap potential. As shown above, the reason for this lies in the
motion-dependent Rabi frequency. A different approach for which the transfer efficiency
is less affected by a variation of the Rabi frequency would thus be favorable.

The idea of adiabatic passage relies on the adiabatic theorem: a quantum-mechanical
system initially prepared in an eigenstate of its Hamiltonian will remain in the correspond-
ing eigenstate when the Hamiltonian varies in time, as long as the variation occurs on a
time scale much longer than the internal dynamics of the system [188]. Applied to our
two-level system, this leads to the condition

Ė

E
� E

h̄
(A.11)

for the time-dependent transition energy E. For an adiabatic process, this condition must
be fulfilled at all times. We would now like to engineer a Hamiltonian for which the initial
lowest-energy state corresponds to the ground state |g〉, while the final lowest-energy state
corresponds to the excited state |e〉. When the Hamiltonian is changed slowly in time,
the system will always be in the lower energy eigenstate of the current Hamiltonian and
is thus adiabatically driven from state |g〉 to |e〉.

For our system, the free Hamiltonian parameters are the Rabi frequency Ω and the de-
tuning ∆ from the atomic resonance. The interaction Hamiltonian 1.32 is time-dependent
already by itself and thus not well suited for the description of this process since Rabi
frequency and detuning are now a function of time as well. Instead, we will transform it
to the reference frame of the laser field, in which it is time-independent for given values
of Ω and ∆. This is known as the dressed-state picture [116].

As in the previous paragraph, we will consider only the electronic degree of freedom
and absorb the motional state in the magnitude of the Rabi frequency. In the Schrödinger
picture, we thus find the system Hamiltonian

Hsys = h̄ω0
2 (|e〉 〈e| − |g〉 〈g|) (A.12)
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and the interaction Hamiltonian

Hint = h̄Ω
2 (|e〉 〈g|+ |g〉 〈e|)

(
e−iωLt + eiωLt

)
. (A.13)

With the definition
H0 := h̄ωL

2 (|e〉 〈e| − |g〉 〈g|) (A.14)

and U = eiH0t/h̄, we then transform the Hamiltonian describing the entire system to the
reference frame of the laser (including the transition energy):

HL
int = U (Hsys +Hint −H0)U † (A.15)

= − h̄∆
2 (|e〉 〈e| − |g〉 〈g|) + h̄Ω

2 (|e〉 〈g|+ |g〉 〈e|) (A.16)

In the second step, we performed once more the rotating-wave approximation. Diagonal-
ization finally yields the energy eigenstates

|+〉 = cos θ |g〉+ sin θ |e〉 (A.17)
|−〉 = sin θ |g〉 − cos θ |e〉 (A.18)

with the mixing angle θ defined by tan θ =
√

Ω2+∆2−∆
Ω and the energy eigenvalues

E± = ± h̄2
√

Ω2 + ∆2. (A.19)

Fig. A.1(a) shows the energy eigenstates and eigenvalues as a function of the detuning
parameter ∆. For large negative detunings, the lower (higher) energy eigenstate is given
by the ground state |g〉 (excited state |e〉). At resonance, the eigenstates are symmetric
superpositions |±〉 = (|g〉 ± |e〉) /

√
2 of ground and excited state with energy splitting

h̄Ω. This situation corresponds to resonant Rabi oscillations, where |g〉 and |e〉 are no
longer stable solutions. Far above resonance, |g〉 and |e〉 are eigenstates once more, but
their energies are exchanged compared with large negative detunings. This picture nicely
illustrates how a system initially in state |g〉 is adiabatically driven into the excited state
|e〉 by sweeping the laser frequency across the atomic resonance.

The adiabaticity condition A.11 with E = E+ − E− = h̄
√

Ω2 + ∆2 dictates

d
dt
√

Ω2 + ∆2 � Ω2 + ∆2 (A.20)

at any point in time. The adiabatic passage is then typically performed through a chirped
laser pulse with a smooth temporal envelope. The chirp provides the sweep across res-
onance, while the smooth envelope makes sure adiabaticity is attained. For our experi-
ment, we choose a pulse of Gaussian shape with an intensity FWHM of T = 100 µs, peak
Rabi frequency Ωpeak = 2π · 25 kHz and a linear chirp1, sweeping the laser detuning as
∆ (t) = ωchirp · t/T with ωchirp = 2π · 25 kHz and t = 0 at peak intensity. The trans-
fer efficiency from state |g〉 to |e〉 as a function of the mean motional quantum number

1The chirp is chosen small enough as not to excite motional sidebands or other atomic transition.
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Fig. A.1: (a) Energies of the eigenstates of a two-level system under the effect of a laser field of
Rabi frequency Ω and detuning ∆. (b) Numerical simulation of the ground-to-excited-state transfer
efficiency as a function of the mean motional quantum number, for both adiabatic passage and a
resonant pulse. For adiabatic passage, we choose the peak Rabi frequency of the Gaussian pulse
Ωpeak = 2π ·25 kHz, the FWHM value T = 100 µs and the frequency chirp ωchirp = 2π ·25 kHz. The
resonant excitation is carried out with the pulse duration optimized for highest transfer efficiency.

〈n〉 is numerically calculated in fig. A.1(b), comparing it to resonant excitation through
a rectangularly shaped pulse with optimized pulse duration. As is seen, the adiabatic
passage technique is expected to be superior to the resonant excitation already for very
small values of 〈n〉 and should remain above 99 % transfer efficiency for values as large as
〈n〉 = 60.

For the experimental implementation, we choose one of the atomic transitions least
susceptible to magnetic-field fluctuations, i.e. |S1/2,m = −1/2〉 ↔ |D5/2,m = −1/2〉, since
the pulse length T = 100 µs is already on the order of our typical qubit coherence times.
As our sequence-control unit (Hydra) cannot change amplitude or frequency of the AOM
RF drive in a continuous manner, both the Gaussian amplitude and the linear frequency
chirp are approximated over a time of 400 µs by 100 segments of constant value. In order to
assess the adiabatic-passage performance, we cool the ion to two distinct motional states
by appropriately choosing the power of the 397 nm cooling beam. For the standard cooling
situation, we reach the mean motional quantum number 〈n〉 = 20(1) for the ion’s axial
motion in the trap (the “cool” state). See section 2.5 on our technique for ion-temperature
measurement. For a higher cooling-beam power, however, the ion reaches a motional state
of 〈n〉 = 99(3) (the “warm” state).

The evolution of the population in the D5/2 state during the chirped laser pulse is
shown in fig. A.2. For the cool state and the frequency chirp ωchirp = 2π · 25 kHz, we
reach 98.06(4) % transfer efficiency at the end of the pulse. This is still comparable to
the resonant excitation, which reaches 97.39(5) %. When bringing the ion into the warm
state, the transfer efficiency is significantly reduced for both techniques. Still, the adia-
batic passage performs much better (83.3(1) %) than the resonant excitation (68.4(1) %).
However, all four values lie below what we expect from the numerical simulation. For the
adiabatic passage, we attribute this to the magnetic-field fluctuations present during the
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Fig. A.2: Adiabatic passage on the |S1/2,m = −1/2〉 ↔ |D5/2,m = −1/2〉 transition. Shown is the
evolution of the D5/2-state population during the chirped laser pulse for mean quantum numbers
(a) 〈n〉 = 20(1) and (b) 〈n〉 = 99(3) for the ion’s axial motion in the trap. The pulse envelope
is indicated in green. All measurements were performed with Rabi frequency Ωpeak = 2π · 25 kHz
and FWHM value T = 100 µs. For the red curves, the frequency chirp ωchirp = 2π · 25 kHz had
been chosen, while for the blue curves it had been reduced to ωchirp = 2π · 10 kHz. The dashed
lines show the transfer efficiency for a resonant rectangularly shaped pulse with optimized pulse
duration.

chirped pulse. For the resonant excitation, the Rabi frequency may have been too high
such that sideband and other carrier transitions were driven as well, removing population
from what is otherwise a two-level system.

We also investigate how the adiabatic passage reacts to a change in the frequency chirp
ωchirp. While a value of ωchirp = 2π · 25 kHz over the pulse duration T appears sufficient
to fulfill the adiabaticity condition A.20, the process is no longer adiabatic for a reduction
to ωchirp = 2π · 10 kHz, as is seen from the Rabi oscillations around the pulse center.

It should be mentioned at this point that similar work has already been conducted in
other groups; adiabatic passage has been shown to be insensitive to variations in the laser
parameters [189] as well as to laser frequency noise [190].

In conclusion, I have shown that the technique of adiabatic passage is a tool superior to
simple resonant excitations when confronted with the task of efficient population transfer
in the electronic degree of freedom of an ion in a high-lying motional state. Loss in transfer
efficiency through magnetic-field fluctuations can in principle be avoided by making the
process faster, i.e. making the pulse shorter and increasing frequency chirp and Rabi
frequency. At some point, however, the pulse will become spectrally broad enough to
excite other atomic transitions, once more degrading the transfer efficiency.

A.3 Probability distribution of an oscillating magnetic field

The power-line magnetic field is approximated by B (t) = B0 sin (ωt) with ω = 2π · 50 Hz
(omitting higher harmonics). This represents a monochromatic oscillator, which has a
well-defined phase relation to itself between any two points in time. However, when the
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experimental sequence is not triggered to the power line, there is no phase relation between
the atomic qubit and the power-line magnetic field. Instead, each cycle occurs at a random
phase of the power-line oscillation. As the coherent manipulations are carried out on a
time scale much shorter than the 50 Hz period, the magnetic field may be considered
static during one experimental cycle. Averaged over many cycles, however, the field is a
stochastic variable of which we are going to derive the probability distribution.

The probability P (B) to find a certain magnetic-field value B at a random point in
time is proportional to the time that the field “spends” at a certain value, which is again
inversely proportional to the time derivative

|Ḃ (t)| = ωB0 |cos (ωt)| (A.21)

= ωB0 cos
(

arcsin
(
B

B0

))
(A.22)

= ωB0

√
1−

(
B

B0

)2
. (A.23)

From P ∝ 1/|Ḃ| and the normalization condition∫ B0

−B0
P (B) dB = 1, (A.24)

we find
P (B) = 1

πB0

1√
1−

(
B
B0

)2
(A.25)

(which is independent of the oscillation frequency ω).

A.4 Ramsey-fringe visibility

Fluctuations of the magnetic field at the position of the ion lead to a loss of coherence
between the atomic qubit state and the reference laser. Inferring the spectral properties
of these fluctuations through an atomic ion has been studied and described in [191, 192].
Here, we restrict ourselves to assuming a given probability distribution (e.g. a Gaussian
distribution for white field noise) with the magnetic-field amplitude as a free parameter
which we would like to infer from the measured Ramsey-fringe visibility V (T ) as a function
of the Ramsey time T .

In an ideal environment without magnetic-field fluctuations, one expects Ramsey
fringes (of the D5/2 population) of the form

p (φ) = 1
2 (1 + cos (φ)) (A.26)

with the Ramsey phase φ between the two π
2 pulses. But as the magnetic field does change

from one experimental cycle to the next, the ion acquires a stochastic phase ϕ relative to
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the laser which is described by a probability distribution Pϕ (ϕ). The Ramsey phase is
hence shifted by this stochastic phase, and we find the modified Ramsey fringes

p (φ) =
∫ ∞
−∞

1
2 (1 + cos (φ− ϕ))Pϕ (ϕ) dϕ (A.27)

=
∫ ∞
−∞

1
2 (1 + cos (φ) cos (ϕ) + sin (φ) sin (ϕ))Pϕ (ϕ) dϕ. (A.28)

At the same time, the fringes are described as a cosine function with reduced visibility:

p (φ) = 1
2 (1 + V cos (φ)) (A.29)

If we assume the probability distribution Pϕ (ϕ) to be an even function (which is true for
white and power-line noise), the term sin (φ) sin (ϕ) in eqn. A.28 vanishes when performing
the integration, and we identify the visibility as

V =
∫ ∞
−∞

Pϕ (ϕ) cos (ϕ) dϕ. (A.30)

The next step is to express the probability distribution Pϕ (ϕ) for the stochastic phase in
terms of the probability distribution PB (B) for the magnetic-field fluctuations. Here the
Ramsey time T comes into play, as longer time spans between the two π

2 pulses will cause
larger phase uncertainties. For an experimental cycle in which a certain magnetic field B

is present, the phase acquired by the atomic state is

ϕ = geff
µB
h̄
B · T. (A.31)

Here, geff is the effective Landé factor of the transition in question2. For the particular
transition |S1/2,m = −1/2〉 ↔ |D5/2,m = −1/2〉, it amounts to geff = 2

5 . With this relation,
we transform from the probability distribution for the stochastic phase to that for the
magnetic field:

Pϕ (ϕ) = PB (B) dB
dϕ (A.32)

= 1
T

h̄

geff µB
PB (B) (A.33)

Inserting this expression into eqn. A.30 then finally yields the Ramsey-fringe visibility
V (T ) as the cosine transform of the probability distribution for the magnetic-field fluctu-
ations:

V (T ) =
∫ ∞
−∞

PB (B) cos
(
geff

µB
h̄
B · T

)
dB (A.34)

If several, independent sources for magnetic-field noise are present, the probability distri-
bution PB (B) is given by the convolution of the individual distributions. By virtue of the
convolution theorem, the visibility V (T ) is then simply the product of the visibilities for
the individual noise sources.

2For an arbitrary transition |S1/2,mS〉 ↔ |D5/2,mD〉, the effective Landé factor is defined as geff :=
|gDmD − gSmS| with gD = 6

5 and gS = 2.
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A.5 Spectrum of a single-photon wave packet

Experimentally determining the temporal and spectral properties of single-photon states
usually yields only the probability distributions p (t) of the temporal and S (ω) of the
spectral shape. It is thus vital to understand the underlying connections between the two
and the electromagnetic field itself. Here I treat the field classically, which is sufficient to
explain the notion of Fourier-limited single photons.

Omitting normalization constants, the temporal probability distribution p (t) is related
to the electric field E (t) through

p (t) = |E (t)|2 . (A.35)

Analogously,
S (ω) =

∣∣∣Ẽ (ω)
∣∣∣2 (A.36)

with the spectral probability distribution S (ω) and the spectral representation Ẽ (ω) of
the electric field. The latter is defined through the Fourier transform of the electric field:

Ẽ (ω) = F {E (t)} (A.37)

=
∫ ∞
−∞

E (t) e−iωtdt (A.38)

It is practical to express the electric field through an amplitude function g (t) and a time-
dependent phase φ (t):

E (t) = g (t) eiφ(t) (A.39)

This is a general form that does not put any restrictions on the electric-field function.
Using the convolution theorem, we obtain the expression

Ẽ (ω) = F {g (t)} ∗ F
{
eiφ(t)

}
(A.40)

for the spectral field representation. At this point, we need another definition: a wave
packet is called “Fourier limited” if its temporal and spectral probability distribution are
related through the Fourier transform in the following way:

S (ω − ω0) =
∣∣∣∣F {√p (t)

}∣∣∣∣2 (A.41)

with carrier frequency ω0, which implies

S (ω − ω0) = |F {g (t)}|2 . (A.42)

From expression A.40, we can see that a wave packet is Fourier limited if and only if the
phase function φ (t) is of the form

φ (t) = ω0t+ φ0. (A.43)

Other behaviors of the phase, such as e.g. a quadratic time-dependence due to a fre-
quency chirp, will cause the photon not to fulfill the Fourier limit A.41. Hence there is no
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way of transforming between the temporal and spectral probability distribution without
knowledge of the phase function.

It is important to also mention the meaning of the phase offset φ0. As touched on
in section 3.1.1, a single-photon state does not possess a well-defined phase, which means
the phase offset φ0 must be understood as a stochastic phase that is random from one
experimental realization to the next. Thus the photonic phase is undefined in the sense of
a measurable observable, although the individual wave packet has a specific, but unknown,
phase offset. Practically, this means that a Fourier-limited photon is fully coherent with
respect to itself, but not with respect to a photon emitted in a different experimental
realization.

A.6 Probability distribution of parasitic photons

In section 3.1.1, we elaborated on the effect of parasitic photons on the generation of single
Raman photons; the emission of photons on the transition excited by the driving laser
introduces decoherence and increases the time-bandwidth product of the Raman photon.
Now we are interested in inferring the number of parasitic photons that were scattered
before the Raman photon was detected. The unconditional probability distribution for
the number of parasitic photons (the prior), i.e. when not detecting the Raman photon,
is of the exponential form

P (n) = nn

(n+ 1)n+1 (A.44)

for which the expectation value is given by the branching fractions of the two transitions:
n = fi,r/fi,g.

As we have shown, the probability distribution of the Raman photon, conditioned on
the emission of n parasitic photons, is given by

p (t|n) = 1
n!

(
t

τph

)n 1
τph

e−t/τph Θ (t) (A.45)

with

τph =
(

Γi
Ω2

(2∆)2 + Γ2
i

)−1

. (A.46)

From this, we showed that the unconditional probability distribution of the Raman photon
is

p (t) = 1
τph

e−t/τph Θ (t) (A.47)
with the prolonged photon duration

τph = τph (n+ 1) . (A.48)

We are now asking for the distribution P (n|t) of the number of parasitic photons condi-
tioned on the detection of a Raman photon at time t. Following Bayesian inference (see
section 2.1.3), we can express this distribution as

P (n|t) = p (t|n) · P (n)
p (t) , (A.49)
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which is readily evaluated to yield the Poisson distribution

P (n|t) = nn (t)
n! e−n(t), (A.50)

for which the expectation value
n (t) = n

t

τ
(A.51)

now depends on the detection time t of the Raman photon. It implies in particular that
the later the Raman photon was detected, the larger the number of scattered parasitic
photons (as expected intuitively). Hence temporally resolving the Raman photon provides
information about the actual number of scattered parasitic photons.

A.7 Estimating the multi-photon probability

In the context of the generation of single Raman photons, it is essential to estimate the
multi-photon contribution. In our experimental situation, the emission of more than
two photons is entirely negligible, and we will thus consider only single- and two-photon
probabilities.

We define the two-photon probability p2 as the probability for the ion to emit a second
photon conditioned on the detection of a first photon. The unconditional probability for
a two-photon event is thus

p′2 = p1 · p2 (A.52)

with the single-photon probability p1. The latter is simply given by the population of the
initial state |r〉 after state preparation.

As described in section 3.1.2, we make use of a Hanbury-Brown-Twiss (HBT) interfer-
ometer [157] in order to estimate the two-photon probability; after splitting up the light
emitted by the ion, it is detected by two single-photon detectors. Coincidental detection
events thus signal the presence of two photons. The probability for this kind of coincidence
is given by

Pcoinc = 2 η1η2 p
′
2 (A.53)

with the total detection efficiencies η1 and η2 for the two detectors. The factor 2 stems
from the fact that the two photons are not temporally resolved, i.e. we cannot determine
which detector was triggered by which photon. On the other hand, the probability for
detection events in a given order from two successive experimental cycles amounts to

Psucc = η1η2 p
2
1. (A.54)

A coincidence between the two detectors can also be mimicked by a dark-count event of
one detector in conjunction with a real photon detection by the other. The probability
for such a coincidence is

P
(dc)
coinc = (d1∆T ) (η2 p1) + (d2∆T ) (η1 p1) (A.55)

121



Appendix

with dark-count rates d1 and d2 of the two detectors and length ∆T of the detection time
window. Coincidences caused by dark-count events of both detectors, on the other hand,
can be safely neglected.

The two-photon probability p2 can now be determined by comparing the number Ncoinc
of coincidental detection events to the number Nsucc of detection events from successive
experimental cycles:

Ncoinc
Nsucc

= Pcoinc + P
(dc)
coinc

Psucc
(A.56)

= 1
p1

(
2 p2 + (η1d2 + η2d1) ∆T

η1η2

)
(A.57)

We solve this expression for p2, yielding

p2 = 1
2

(
p1
Ncoinc
Nsucc

− (η1d2 + η2d1) ∆T
η1η2

)
. (A.58)

The experimental data from the HBT measurement in section 3.1.2 is as follows: Ncoinc =
12, Nsucc = 785, p1 = 0.69, η1 = 0.78 %, η2 = 0.51 %, d1 = 18 s−1, d2 = 13 s−1, ∆T =
0.8 µs. Assuming Poissonian errors on the numbers of detection events, we arrive at the
two-photon probability p2 = 0.33(15) %.

A.8 Maximum-likelihood estimation for a two-qubit system

In section 4.2.3, we introduced the analytic reconstruction of an unknown two-qubit quan-
tum state ρ. Joint single-qubit measurements in conjugate bases allow to determine the
16 expectation values

wi,j := 〈σi ⊗ σj〉 = tr (σi ⊗ σj ρ) , (A.59)

with the Pauli operators {σi=1,..,4} = {1, σx, σy, σz} acting on the individual qubits. From
the expectation values, we can directly infer the underlying quantum state:

ρ = 1
4

4∑
i,j=1

wi,j σi ⊗ σj (A.60)

As explained, the reconstruction from a set of experimentally approximated expectation
values {wi,j} is not guaranteed to yield a physical density matrix ρ, in that the matrix
may contain eigenvalues (which represent probabilities) that do not lie in the unit interval
[0, 1].

Besides more recent approaches based on Quantum Bayesianism [193], the technique
of maximum-likelihood estimation [175] has proven suitable for quantum-state reconstruc-
tion. In order to overcome the above problem, we ask for the particular physical quantum
state which is most likely to have produced the experimentally determined data (the ex-
pectation values). This requires a numerical search over all physical states, which can be
broken down into three steps:
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A.8. Maximum-likelihood estimation for a two-qubit system

1. Construct a likelihood function L (ρcand) which is a measure for how likely a physical
candidate state ρcand will reproduce the measured expectation values {wi,j}.

2. Parametrize the candidate state ρcand by a suitable set of parameters {ti=1,..,16}.

3. Numerically maximize the likelihood function L by varying the parameter set {ti}.
The final result is thus the quantum state corresponding to the optimized set of
parameters.

Constructing the likelihood function

The experimentally approximated expectation values {wi,j} possess uncertainties {∆wi,j}
(standard deviations). If we assume these uncertainties to have Gaussian probability
distributions, the probability that a candidate state ρcand produces the measured set of
data is

P (ρcand) = 1
N

4∏
i,j=1

exp

−1
2

(
tr (σi ⊗ σj ρcand)− wi,j

∆wi,j

)2
 (A.61)

with some normalization constant N . This is the quantity that we would like to maximize
among all physical states ρcand. It is equivalent and at the same time numerically favorable
to maximize not the value P (ρcand) but its logarithm (omitting all unnecessary constants):

L (ρcand) = −
4∑

i,j=1

(
tr (σi ⊗ σj ρcand)− wi,j

∆wi,j

)2

(A.62)

Parametrizing the candidate state

The important requirement on a physical density matrix ρ, besides normalization, is pos-
itive semi-definiteness, which ensures nonnegative eigenvalues. Such a matrix can always
be expressed in terms of its Cholesky decomposition,

ρ = T T †, (A.63)

where T is a lower triangular matrix with a real-valued diagonal. This matrix T can be
parametrized through a set of 16 real numbers {ti=1,..,16}:

T ({ti}) =


t1 0 0 0

t5 + it6 t2 0 0
t7 + it8 t9 + it10 t3 0
t11 + it12 t13 + it14 t15 + it16 t4

 (A.64)

Followed by normalization, any set of real numbers {ti} (except all zeros) yields a physical
density matrix

ρ ({ti}) = T T †

tr (T T †) . (A.65)
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Appendix

Maximizing the likelihood function

After parametrizing the candidate state ρcand, we can numerically maximize the likeli-
hood function L ({ti}). A possible choice for achieving this is the MATLAB function
fminsearch. However, a search with 16 independent parameters requires an initial guess
which is sufficiently close to the global maximum lest the algorithm converge to some
local maximum. Such is provided by the analytically reconstructed density matrix from
eqn. A.60. However, should this state happen to have negative eigenvalues, it cannot be
decomposed into a lower triangular matrix from which the initial set of parameters {ti}
can be extracted. We circumvent this issue by first expressing the density matrix in its
eigenbasis. Setting any negative eigenvalue to zero and transforming back to the compu-
tational basis thus yields a positive semi-definite matrix (although not necessarily of trace
1). This modified matrix is usually still sufficiently close to the original one such that
decomposing it into the set {ti} provides a good initial guess for the numerical search.

Following eqn. A.65, the optimized set {ti} yields the particular quantum state among
all physical states which is most likely to reproduce the experimental data.
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Journal publications

The work presented in this thesis gave rise to the following journal publications:

Experimental protocol for high-fidelity heralded photon-to-atom quantum state
transfer
C. Kurz, M. Schug, P. Eich, J. Huwer, P. Müller, J. Eschner
Nat. Commun. 5, 5527 (2014)

Quantum interference in the absorption and emission of single photons by a
single ion
M. Schug, C. Kurz, P. Eich, J. Huwer, P. Müller, J. Eschner
Phys. Rev. A 90, 023829 (2014)

Heralded photonic interaction between distant single ions
M. Schug, J. Huwer, C. Kurz, P. Müller, J. Eschner
Phys. Rev. Lett. 110, 213603 (2013)

A high-rate source for single photons in a pure quantum state
C. Kurz, J. Huwer, M. Schug, P. Müller, J. Eschner
New J. Phys. 15, 055005 (2013)

Manuscripts in preparation:

Programmable ion–photon quantum interface
C. Kurz, P. Eich, M. Schug, J. Eschner
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