
 

 

Regulation of 

glucocorticoid-induced leucine zipper (GILZ) 

in vascular inflammation 

 

 

 

 

 

Dissertation 

zur Erlangung des Grades 

des Doktors der Naturwissenschaften 

der Naturwissenschaftlich-Technischen Fakultät III 

Chemie, Pharmazie, Bio- und Werkstoffwissenschaften 

der Universität des Saarlandes 

 

 

 

 

von 

Rebecca T. Hahn 

 

 

 

 

Saarbrücken 

2015



 

I 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tag des Kolloquiums:   06.08.2015 

Dekan:     Univ.-Professor Dr.-Ing. Dirk Bähre 

1. Berichterstatter:    Prof. Dr. Alexandra K.Kiemer 

2. Berichterstatter:    Prof. Dr. Claus-Michael Lehr 

Vorsitz:     Prof. Dr. Marc Schneider 

Akademischer Mitarbeiter:  Dr. Sascha Tierling 



 

 

 

II 

Contents 

ABBREVIATIONS...................................... ............................................................................................. 1 

ABSTRACT........................................... .................................................................................................. 5 

ZUSAMMENFASSUNG .................................... ...................................................................................... 6 
 

1 INTRODUCTION ............................................................................................................................ 7 

1.1 ATHEROSCLEROSIS .................................................................................................................. 8 

1.1.1 General .............................................................................................................................. 8 

1.1.2 Origin and progression ...................................................................................................... 8 

1.1.3 Therapeutic options ......................................................................................................... 10 

1.2 SHEAR STRESS....................................................................................................................... 12 

1.2.1 General ............................................................................................................................ 12 

1.2.2 Mechanotransduction ...................................................................................................... 14 

1.2.3 Options of gene expression modification......................................................................... 15 

1.2.4 Functions of Shear Stress ............................................................................................... 17 

1.3 GLUCOCORTICOID-INDUCED LEUCINE ZIPPER (GILZ) ................................................................ 19 

1.3.1 General ............................................................................................................................ 19 

1.3.2 Regulation of GILZ........................................................................................................... 20 

1.3.3 Functions of GILZ ............................................................................................................ 21 

1.4 FURTHER REGULATORS OF INFLAMMATION............................................................................... 23 

1.4.1 Heme oxygenase 1 (HO1) ............................................................................................... 23 

1.4.2 Dual specifity protein phosphatase 1 (DUSP1, MKP-1) .................................................. 24 

1.4.3 p38 mitogen-activated protein kinase (p38 MAPK) ......................................................... 25 

1.4.4 Tristetraprolin (ZFP36, TTP)............................................................................................ 26 

1.5 EPIGENETICS.......................................................................................................................... 27 

1.5.1 Imprinted genes H19 and IGF2 ....................................................................................... 28 

1.6 AIM OF THIS WORK.................................................................................................................. 30 
 

2 MATERIALS AND METHODS .............................. ....................................................................... 31 

2.1 MATERIALS ............................................................................................................................ 32 

2.2 HUMAN VESSELS .................................................................................................................... 33 

2.3 BACTERIAL CULTURE .............................................................................................................. 33 

2.3.1 Bacterial strains and cultivation ....................................................................................... 33 

2.3.2 Generation of competent bacteria using CaCl2 method .................................................. 34 

2.3.3 Transformation................................................................................................................. 34 

2.3.4 Isolation of plasmids ........................................................................................................ 34 

2.3.5 Determination of DNA concentration ............................................................................... 34 

2.4 CELL CULTURE ....................................................................................................................... 35 

2.4.1 THP-1............................................................................................................................... 35 



 

 

 

III 

2.4.2 Human umbilical vein endothelial cells (HUVEC)............................................................ 35 

2.4.3 Isolation of HUVEC.......................................................................................................... 35 

2.4.4 Cultivation of HUVEC ...................................................................................................... 36 

2.4.5 Freezing and thawing of HUVEC..................................................................................... 36 

2.4.6 Detection of mycoplasma ................................................................................................ 36 

2.5 TRANSFECTION ...................................................................................................................... 37 

2.6 LUCIFERASE ASSAY ................................................................................................................ 37 

2.7 SHEAR STRESS ...................................................................................................................... 38 

2.7.1 Coating of glass slides..................................................................................................... 38 

2.7.2 Flow experiments............................................................................................................. 38 

2.8 IMMUNOHISTOCHEMISTRY ....................................................................................................... 40 

2.9 RNA ANALYSIS....................................................................................................................... 40 

2.9.1 RNA isolation by phenol chloroform extraction................................................................ 40 

2.9.2 DNase digestion............................................................................................................... 41 

2.9.3 Determination of RNA concentration ............................................................................... 41 

2.9.4 Alu polymerase chain reaction (Alu PCR) ....................................................................... 41 

2.9.5 Agarose gel electrophoresis ............................................................................................ 42 

2.9.6 Reverse transcription (RT)............................................................................................... 43 

2.9.7 Real-time RT-PCR........................................................................................................... 43 

2.10 DNA ANALYSIS....................................................................................................................... 48 

2.10.1 DNA isolation............................................................................................................... 48 

2.10.2 Determination of DNA concentration........................................................................... 48 

2.10.3 Bisulfite treatment........................................................................................................ 48 

2.10.4 PCR of bisulfite DNA ................................................................................................... 49 

2.10.5 Exonuclease phosphatase treatment (ExoSAP) ......................................................... 50 

2.10.6 Restriction digestion .................................................................................................... 50 

2.10.7 Single nucleotide primer extension (SNuPE) .............................................................. 51 

2.11 PROTEIN ANALYSIS ................................................................................................................. 52 

2.11.1 Protein isolation ........................................................................................................... 52 

2.11.2 Determination of protein concentration ....................................................................... 53 

2.11.3 SDS-polyacrylamide gel electrophoresis (SDS-Page) ................................................ 53 

2.11.4 Western Blot ................................................................................................................ 54 

2.11.5 Immunodetection ......................................................................................................... 54 

2.12 STATISTICS ............................................................................................................................ 55 
 

3 RESULTS ..................................................................................................................................... 56 

3.1 DOWNREGULATION OF GLUCOCORTICOID-INDUCED LEUCINE ZIPPER (GILZ) PROMOTES VASCULAR 

INFLAMMATION..................................................................................................................................... 57 

3.1.1 GILZ expression in degenerated vein bypasses ............................................................. 57 

3.1.2 Localisation of GILZ in vessels ........................................................................................ 59 

3.1.3 Inflammatory response in EC .......................................................................................... 60 



 

 

 

IV 

3.1.4 Regulation of GILZ and ZFP36 by anti-inflammatory laminar shear stress..................... 63 

3.1.5 Mechanisms of GILZ downregulation in inflammation..................................................... 65 

3.1.6 Functional implications of GILZ downregulation.............................................................. 69 

3.2 LACK OF ENDOTHELIAL GLUCOCORTICOID-INDUCED LEUCINE ZIPPER (GILZ) INDUCTION UNDER 

ATHEROGENIC FLOW CONDITIONS ......................................................................................................... 70 

3.2.1 Inflammatory activation of HUVEC by low and oscillatory flow ....................................... 70 

3.2.2 GILZ downregulation under inflammatory conditions ...................................................... 71 

3.2.3 Mechanism of GILZ downregulation under oscillatory flow ............................................. 73 

3.2.4 Inflammatory activation in atherosclerotic clinical samples ............................................. 74 

3.3 EPIGENETIC REGULATION BY SHEAR STRESS ............................................................................ 75 

3.3.1 IGF2 and H19 under flow conditions ............................................................................... 75 

3.3.2 DNA Demethylation in HUVEC........................................................................................ 76 
 

4 DISCUSSION................................................................................................................................ 80 

4.1 VALIDATION OF THE CELL CULTURE MODEL FOR SHEAR STRESS................................................. 81 

4.1.1 Shear stress models ........................................................................................................ 81 

4.1.2 Effects of shear stress ..................................................................................................... 81 

4.2 GILZ DOWNREGULATION AT INFLAMMATORY CONDITIONS ......................................................... 83 

4.3 MECHANISM OF GILZ REGULATION UNDER LAMINAR FLOW ........................................................ 84 

4.3.1 ZFP36 dependent GILZ downregulation ......................................................................... 85 

4.3.2 DUSP1 in atherosclerosis................................................................................................ 87 

4.3.3 Regulation of DUSP1 by shear stress ............................................................................. 88 

4.4 MECHANISM OF GILZ REGULATION UNDER OSCILLATORY FLOW ................................................ 89 

4.5 FUNCTIONAL IMPLICATIONS OF GILZ DOWNREGULATION........................................................... 90 

4.6 REGULATION OF H19 AND IGF2 UNDER SHEAR STRESS............................................................ 91 
 

5 SUMMARY ................................................................................................................................... 93 

5.1 SUMMARY .............................................................................................................................. 94 
 

6 SUPPLEMENT ............................................................................................................................. 96 

6.1 PLANS OF PARALLEL PLATE FLOW CHAMBERS........................................................................... 96 
 

REFERENCES ...................................................................................................................................... 98 

PUBLICATIONS....................................... ........................................................................................... 122 

ACKNOWLEDGEMENTS................................... ................................................................................ 123 

 



Abbreviations 

1 

Abbreviations 

A absorption 
aa amino acid 
Amp ampicillin 
ANP atrial natriuretic peptide  
AP-1 activator protein-1 
ApoB apolipoprotein B 
APS ammonium persulfate 
ARE antioxidant responsive elements 
atto 10-18 

aza 5-azacytidine 
BAEC bovine aortic endothelial cells  
BHQ1 black hole quencher 1 
bp base pair 
c cellular 
°C degree Celsius 
CCL2 chemokine (C-C motif) ligand 2  

(monocyte chemoattractant protein 1, MCP1) 
CCR2 C-C chemokine receptor 2 
cDNA complementary DNA 
C/EBPb CCAAT/enhancer binding protein-b 
cm centimeter 
co control 
cox cyclooxygenase 
CpGs CG dinucleotides 
CREB cyclic adenosine monophosphate response element-binding pro-

tein 
CT treshold cycle 
CTCF CCCTC-binding factor 
d day 
DAC 5-aza-2-deoxycytidine 
dATP deoxyadenosine triphosphate 
dCTP deoxycytidine triphosphate 
dd bidistilled 
ddNTP dideoxynucleosine triphosphate 
DEPC diethyl dicarbonate 
dGTP deoxyguanosine triphosphate 
DMR differentially methylated region 
DMSO dimethyl sulfoxide 
dn dominant negative 
DNA deoxyribonucleic acid 
DNAse deoxyribonuclease 
DNMT DNA (cytosine-5-)-methyltransferase 
dNTP deoxynucleosine triphosphate 
dTTP deoxythymidine triphosphate 
DUSP1 dual specifity protein phosphatase 1  

(mitogen-activated protein kinase phosphatase-1, MKP-1) 
EC endothelial cells 
E.coli Escherichia coli  



Abbreviations 

 

 

2 

EDTA ethylene diamine tetraacetic acid 
Egr-1 early growth response-1 
eNOS endothelial nitric oxide synthase 
ERK extracellular signal-regulated kinase 
ESELE E selectin 
ExoSAP exonuclease phosphatase treatment 
f femto (10-15) 
FAK focal adhesion kinase 
6-FAM 6-carboxy-fluorescein 
FCS fetal calf serum 
FHREs forkhead responsive elements 
Fox forkhead box 
FRET fluorescence resonance energy transfer 
g gram 
GFP green fluorescent protein 
GILZ glucocorticoid-induced leucine zipper 
GILZ-P GILZ peptide 
GR glucocorticoid receptor 
GREs glucocorticoid responsive elements 
GTPase guanidine triphosphatase 
h hour 
HAEC human aortic endothelial cells 
HAT histone acetyltransferases 
HDAC histone deacetylase 
HE hematoxylin / eosin 
HMG-CoA 3-hydroxy-3-methylglutaryl-coenzyme A 
HO1  heme oxygenase 1 
Hox homeobox protein 
HPLC high performance liquid chromatography 
HRMEC human retinal microvascular endothelial cells 
HuR human antigen R 
HUVEC human umbilical vein endothelial cells 
Hz hertz  
ICAM intercellular adhesion molecule 
IGF insulin-like growth factor 
IHC immunhistochemistry 
IκB inhibitory protein kappa B 
IL interleukin 
INF-γ Interferon gamma 
IP/RP-HPLC ion pair reversed phase high performance liquid chromatography  
JNK c-Jun N-terminal kinase 
kb kilo bases = 1000 base pairs 
kDa kilodalton 
KLF Krüppel-like factor 
l liter 
LB Luria-Bertani 
LDL low density lipoprotein 
lncRNAs long non-coding RNAs 
log logarithm 
LPS lipopolysaccharide 
LZ leucine zipper  



Abbreviations 

 

 

3 

mA milliampere 
m milli (10-3) 
m meter 
M molar 
MAPK mitogen-activated protein kinase 
max. maximal 
MBD2 methyl CpG binding domain protein2 
MIF macrophage migration inhibitory factor 
min minute 
miRNA microRNA 
MK MAPK-activated protein kinase 
mRNA messenger RNA 
MSK mitogen- and stress activated protein kinase 
MyD88 myeloid differentiation primary response 88 
MΦ macrophages 
n nano (10-9) 
NAD(P)H reduced nicotinamide adenine dinucleotide phosphate 
NFAT nuclear factor of activated T-cells 
NF-κB nuclear factor kappa B 
NO nitric oxide 
NQO1 NAD(P)H dehydrogenase, quinone 1 
Nrf2 nuclear factor erythroid 2-related factor 2 
Nrf2-Keap1 nuclear factor erythroid 2-related factor 2 – Kelch-like erythroid 

cell-derived protein with CNC homology-associated protein 1  
nt nucleotides 
NTD N-terminal domain  
oxLDL oxidized LDL 
p pico (10-12) 
Pa pascal 
PAGE polyacrylamide gel electrophoresis 
PBS phosphate buffered saline 
PBS+  phosphate buffered saline+ 
PBST PBS with 0.1% [v/v] Tween 20 
PCR polymerase chain reaction 
PDGF platelet-derived growth factor 
PECAM platelet endothelial cell adhesion molecule 
PER proline and glutamic acid rich region  
piRNAs piwi-interacting RNAs 
PKC protein kinase C 
PPARγ peroxisome proliferator-activated receptor γ  
PVDF polyvinylidene fluoride 
Raf rapidly accelerated fibrosarcoma 
Ras rat sarcoma 
RBB rockland blocking buffer 
RNA ribonucleic acid 
RNAse ribonuclease 
ROS reactive oxygen species 
RT reverse transcription 
s second 
SDS sodium dodecyl sulfate 
SEM standard error of the mean 



Abbreviations 

 

 

4 

Shc Src homology 2 domain containing transforming protein 
shRNA small hairpin RNA 
siRNA small interfering RNA 
SNuPE single nucleotide primer extension 
SOC super optimal broth with glucose 
SP1 specificity protein 1 
SREBP-1 sterol regulatory element-binding protein-1 
SSREs shear stress responsive elements 
STAT signal transducer and activator of transcription 
TAT-GILZ transactivator of transcription–GILZ  
TBE  tris-borat-EDTA buffer 
TE tris-EDTA 
TEMED tetramethylethylenediamine 
TGF transforming growth factor beta 
TLR toll-like receptor 
TNF-α  tumor necrosis factor alpha 
TRE 12-O-tetradecanoylphorbol-13-acetate response element 
Tris tris(hydroxymethyl)aminomethane 
TSC-22 stimulated clone-22 
U unit 
3`UTR 3‘ untranslated region 
UV ultra violet 
V volt 
VCAM vascular cell adhesion molecule 
VEGFR2 vascular endothelial growth factor receptor 2 
VSMC vascular smooth muscle cells 
[v/v] volume per volume 
[w/v] weight per volume 
x g fold gravitational force 
Zeo zeocin 
ZFP36 zinc finger protein 36 ring finger protein,  

tristetraprolin (TTP) 
µ micro (10-6) 

 



Abstract 

 

 

5 

Abstract 

Atherosclerosis represents a chronic cardiovascular disease, which is characterized 

by an inflammatory activation of the endothelium, with high prevalence and a major 

cause of morbidity and mortality. Low and disturbed vascular shear stress are risk 

factors for the development of atherosclerotic plaques, while laminar flow is important 

for physiological functions of the endothelium. 

This work shows a downreglation of the glucocorticoid-induced leucine zipper 

(GILZ/TSC22D3) (I) in human inflamed vessels, (II) upon treatment of human endo-

thelial cells (EC) with the inflammatory cytokine tumor necrosis factor alpha (TNF-α), 

and (III) in EC upon oscillatory flow. In contrast, anti-inflammatory laminar flow in-

creased GILZ expression. Knockdown of GILZ in EC induced an inflammatory activa-

tion as indicated by enhanced nuclear factor kappa B (NF-κB) activation. 

The TNF-induced downregulation of GILZ is facilitated by induction of the mRNA 

binding protein tristetraprolin (TTP/ZFP36), which is also elevated in human inflamed 

vessels. Laminar flow antagonized GILZ downregulation by elevated mitogen kinase 

phosphatase (MKP-1/DUSP1) expression and subsequent ZFP36 downregulation. In 

human inflamed vessels, GILZ downregulation was also paralleled by diminished 

DUSP1 levels. 

Taken together, our data show that the downregulation of GILZ in human EC pro-

motes vascular inflammation. Upregulation of GILZ might therefore represent a 

therapeutic target for the treatment of the inflamed endothelium. 
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Zusammenfassung 

Arteriosklerose wird als chronische, kardiovaskuläre Erkrankung charakterisiert durch 

entzündliche Prozesse im Endothel und zeigt hohe Prävalenz, Morbidität und Mortali-

tät. Geringer und verwirbelter Shear Stress sind große Risikofaktoren für die Entste-

hung arteriosklerotischer Plaques, während laminarer Shear Stress die physiologi-

schen Funktionen des Endothels stärkt. 

Diese Arbeit zeigt eine Verringerung von glucocorticoid-induced leucine zipper (GILZ) 

(I) in humanen entzündeten Gefäßen, (II) in humanen Endothelzellen (EC) durch Be-

handlung mit dem inflammatorischen Zytokin tumor necrosis factor alpha (TNF-α) 

und (III) durch oszillatorischen Fluß. Im Gegensatz dazu war die GILZ Expression 

durch anti-inflammatorischen laminaren Fluß erhöht und nach GILZ Knockdown zeig-

te die Aktivierung von nuclear factor kappa B (NF-κB) eine inflammatorische Aktivie-

rung in EC an. 

Die TNF-induzierte Downregulation von GILZ erfolgte durch die Induktion des mRNA 

bindenden Protein Tristetraprolin (TTP/ZFP36) und der laminare Fluß wirkte der 

Downregulation von GILZ durch eine erhöhte mitogen kinase phosphatase 

(MKP-1/DUSP1) mit folgender verringerter ZFP36 Expression entgegen. In entzün-

deten Gefäßen liefen verringerte GILZ- und DUSP1-Level ebenfalls parallel mit er-

höhter ZFP36 Expression. 

Zusammenfassend wurde gezeigt, dass die Downregulation von GILZ in humanen 

EC die Gefäßentzündung steigert, wodurch die Hochregulation von GILZ ein neues 

Target für die Behandlung entzündeter Gefäße darstellen sollte. 
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1.1 Atherosclerosis 

1.1.1 General 

Atherosclerosis is a chronic inflammatory cardiovascular disease of the arterial sys-

tem. Leading to the end points of heart attack or stroke, it is the leading cause of 

death worldwide (Go et al., 2013). There are behavioural risk factors like wrong nutri-

tion, physical inactivity and smoking promoting the development of atherosclerosis. 

Also risk factors like chronic infections, autoimmune diseases, genetic predisposition 

and genetic materials damage are important aspects leading to obesity, high levels of 

cholesterol and other lipids, hypertension, diabetes mellitus and inflammatory activa-

tion (Frohlich & Al-Sarraf, 2013; Roy et al., 2009; Wang et al., 2013c; Patel & Blazing, 

2013). Additionally, high risk factors for the development and progression of athero-

sclerotic plaques are low and disturbed shear stress (Cunningham & Gotlieb, 2005). 

For some years, atherosclerosis seemed to be a disease of the western lifestyle, but 

new results show that it already existed thousands of years ago (Thompson et al., 

2013). 

Atherosclerosis is a chronic inflammatory disease characterized by an inflamed endo-

thelium and an enclosure of lipids in the vessel wall, leading to the formation of de-

posits in the vessel wall also known as atherosclerotic plaques (Roy et al., 2009). All 

variations of arteries show this pathology, whereas veins are not affected (Roy et al., 

2009). An exception is vein graft remodelling, where pieces of veins are localized at 

atherosusceptible regions after bypass surgeries, which is also characterized by in-

flammatory events, (Karper et al., 2011; McPhee et al., 2013). There are three areas 

in the body, which are mostly affected resulting in three clinical pictures: coronary 

artery disease, carotid artery disease, or peripheral arterial disease. 

 

1.1.2 Origin and progression 

Atherosclerosis has a complex, not completely understood mechanism, which is 

characterized by two processes: the accumulation of lipids respectively a shift in lipid 

profile and inflammation as well as an immune response especially in endothelial 

cells (EC). Therefore, molecules of both areas are used as biomarkers for risk predic-

tion (e.g. low density lipoprotein (LDL) or C reactive protein) (Frohlich & Al-Sarraf, 

2013; van Diepen et al., 2013; Patel & Blazing, 2013). 
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After the “response to retention hypothesis”, the first step in the formation of athero-

sclerotic plaques (Figure 1), is the insudation of lipoproteins into the intima of the 

vessel wall (Williams & Tabas, 1998). LDL is modified to build an irreversible plaque 

because native LDL has no atherogenic properties and the insudation is reversible. 

The classical model is that reactive oxygen species are inducing the LDL modification 

(oxLDL), but there is also a new theory, which postulates that enzymatic modifica-

tions of LDL by proteases and cholesterylester hydrolases are nessecary for an acti-

vation of the immune system and atherosclerosis progression (Torzewski & Bhakdi, 

2013). Modified LDL is accumulated in the intima in hypercholesterolemic or dyslipi-

demic stages. On the one hand, it activates the endothelium resulting in an enhanced 

expression of adhesion molecules (e.g. intercellular adhesion molecule (ICAM), vas-

cular cell adhesion molecule (VCAM), E-selectin), chemokines (e.g. monocyte che-

moattractant protein1 (CCL2, MCP-1), interleukin-8 (IL-8)) and cytokines (e.g. TNF-α, 

IL-6), which attract inflammatory cells (e.g. monocytes, T cells) into the vessel wall 

and stimulate the differentiation of monocytes in macrophages (MΦ) (Figure 1 b). On 

the other hand, modified LDL is taken up by scavenger receptors into MΦ, which de-

velop to foam cells, the major components of a plaque and promoters of inflammation 

by attraction of vascular smooth muscle cells (VSMC) and immune cells into the 

plaque. Each mentioned cell type stimulates the inflammatory response in the plaque 

via activation of transcription factors (e.g. nuclear factor kappa B (NF-κB), c-Jun N-

terminal kinases (JNKs)) and expression of further inflammatory mediators (van 

Diepen et al., 2013). Proinflammatory cytokines also lead to an enhanced expression 

of TLR2 and TLR4 in atherosclerotic plaques (Edfeldt et al., 2002), which promote 

the development of the disease (Schoneveld et al., 2008). VSMC secrete collagen 

forming a fibrous cap between the lipid core and the intima to stabilize the plaque 

(Figure 1 c). The adaptive immune response is activated when T cells recognize pep-

tide fragments of oxLDL, which are presented by antigen presenting cells. Further-

more, T cells promote VSMC apotosis and stimulate the secretion of metallopro-

teinases by macropages to decrease the formation of the protective cap, which leads 

to a decrease of plaque stability. Inflammatory activation leads to plaque rupture 

(Figure 1 d) and a rapid formation of a thrombus, which promotes the closure of the 

artery (Patel & Blazing, 2013). 
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Figure 1: Development of an atherosclerotic plaque (Libby et al. , 2011). See text for explanation. 

 

1.1.3 Therapeutic options 

Prevention is the major concern for a successful containment of atherosclerosis. 

First, it is required to change and control the behaviour, e.g. the type of ingested 

food, to do some exercise and to quit smoking. People with risk factors get some 

medication to ameliorate the prognosis, e.g. 3-hydroxy-3-methylglutaryl-coenzyme A 

(HMG-CoA) reductase inhibitors, nicotinic 

acid, anti-hypertensive drugs, or antico-

agulants (Frohlich & Al-Sarraf, 2013). 

The last possibilities to prevent further cardi-

ovascular damage through occlusion of an 

artery are stenting or coronary artery bypass 

grafting (Figure 2) (Wang et al., 2013a, Kutty 

& Nair, 2008). There are already many 

possibilties to control atherosclerosis, but 

nothing with lasting effect. 

 

Figure 2: Bypass graft after surgery 
of a blockage in a coronary artery  
(http://www.kalpkrizi.gen.tr/bypass-b.gif) 
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Therefore, this disease is still in the focus of current research. Cyclooxygenase- 

(cox)-inhibitors, i.e. acetylsalicylic acid, are potent widely used drugs to protect 

against heart failure. Beside from their anticoagulant effect, their anti-inflammatory 

properties seem to be important for their beneficial effect. Furthermore, other selec-

tive anti-inflammatory drugs, like cytokines (IL-1β, C-C chemokine receptor 2 

(CCR2)), leukotrienes or selective phospholipase A2 inhibitors as well as glucocorti-

coids and the anti-proliferative drug methotrexate are studied in clinical trials for their 

potential antiatherosclerotic effects. Others, like TNF-α inhibitors, seem to be not ef-

fective (Patel & Blazing, 2013). 

The key role of the immune answer in this disease also implicates the possibility of a 

vaccination against immune players. Although, there are different approaches like 

passive immunization against such as oxidized phospholipids (Hansson & Nilsson, 

2009), active immunization using apolipoprotein B (ApoB)-100 peptides as antigen 

(Chyu & Shah, 2014), or anti-cytokine auto-vaccinations (Uyttenhove & Van, 2012). 

A new approach is the treatment by gene targeting including small interfering RNA 

(siRNA), microRNA (miRNA) or epigenetics, which are directed against hyperlipide-

mia or inflammation on the whole, in the liver, or in the plaque (Makinen & Yla-

Herttuala, 2013). There are different experimental substances, which inhibit several 

stages of atherosclerosis, like benzylidenethiazole analogs against monocyte migra-

tion, incretins against foam cell formation, or specific antioxidants targeting LDL oxi-

dation. Triglycerides, adhesion molecules or the neovascularisation, which is corre-

lated with plaque progression, may act as new targets. Additionally, the application of 

stem cells seems to be a possibility to antagonize this disease. Major technological 

advances lead to a lot of computational and nanotechnological approaches for diag-

nosis and treatment of atherosclerosis (Wang et al., 2013c). 
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1.2 Shear stress 

1.2.1 General 

Shear stress (τ ) is a general force produced by the flow of a fluid along a surface. 

Transmitted to the body, the biomechanical force is induced by the blood stream and 

acts on EC in the vessel wall. The unit of shear stress is dynes per square centimeter 

(dynes/cm2) (10 dynes/cm2 = 1 pascal (Pa)) (Cunningham & Gotlieb, 2005). The for-

mula describing shear stress results from a combination of Newton fluids and the law 

of Hagen Poisseuille, with some adaptations: Blood has no constant viscosity and 

therefore it is not a real Newton fluid. Furthermore, vessels are elastic, not a rigid 

pipe. Therefore, shear stress is calculated with the following formula in arteries: 

 

3

4

r

Q

π
µτ =  (Cunningham & Gotlieb, 2005) 

 

Q  = blood flow rate 

r = radius of the vessel wall 

µ  = viscosity of blood 

 

 

For experimental conditions the formula has to be adapted to the different geometry 

of the chamber (2.7.2) used as follows: 
 

2

6

bh

Qµτ =   (Frangos et al., 1988) 

 

τ = shear stress [dynes/cm2] 

Q = flow rate [cm3/s] 

µ = viscosity (0.01 dynes*s/cm2) (Frangos et al., 1988) 

b = channel width (1.9 cm) 

h = channel high  
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Shear stress in biological systems is classified into different types: 

• laminar, pulsatile 

• turbulent, disturbed, nonlaminar 

• low 

• oscillatory 

 

Normally, laminar shear stress is located in straight vessels and typically varies in 

arteries from 5 to 20 dynes/cm2. Still, pressure conditions alternate to a great extent 

depending on blood pressure and pulse, therefore, laminar shear stress alters also 

beyond the given values. In vivo, laminar flow has a pulsatile character resulting of 

pulsatile blood pressure. In contrast, in curvatures and bifurcations, turbulences are 

existent in fluid resulting in low (< 5 dynes/cm2) and disturbed shear stress 

(Cunningham & Gotlieb, 2005) (Figure 3). 

 

 
Figure 3: Flow simulation in a bifurcated artery (D avies, 2009) 

 

Turbulences also originate, when the fluid velocity is enhanced. The beginning of tur-

bulence is calculated by the Reynolds number, which characterizes the stability of 

flow. Oscillatory flow is no natural type of flow and does not exist in the body. In fact, 

it is an experimental cell culture model, which is employed to evaluate the disturbed 

type of flow. Oscillatory flow is generated by the change of flow direction, normally 
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with a frequency of 1 Hz (± 5 dynes/cm2) (Ali et al., 2009). In every type of flow, a 

force imposes directly on the endothelium and has effects on the EC (Davies, 2009). 

 

1.2.2 Mechanotransduction 

The mechanism resulting of imposed forces on the endothelium is called mecha-

notransduction (Davies, 1995; Davies, 2009). Mechanotransduction is dividable into 

four steps, but the temporal relation between the different steps is poorly understood 

so far: 

 
• Physical deformation 

• Intracellular transmission of stress 

• Conversion of mechanical force to chemical activity 

• Downstream biochemical signaling with feedback 

 

  
Figure 4: The decentralized model of endothelial me chanotransduction by shear stress 
(Davies, 2009). See text for explanation. PECAM-1 (platelet endothelial cell adhesion molecule-1), 
NF-κB (nuclear factor-κB), MAP kinases (mitogen–activated protein kinases) 
 

 

The flow effectuates a physical deformation of the luminal cell surface and activates 

local membrane structures, such as ion channels and G-proteins, changes in phos-

pholipid mechanism and membrane fluidity. Highly charged glycocalix and primary 
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cilia are located on the cell surface and are established as important factors of the 

mechanism (Hierck et al., 2008; Yao et al., 2007). The force is also transferred by 

transmembrane located integrins to the cytoskeleton, which plays a central role in 

mechanotransduction (Wang et al., 1993). The intracellular transmission is carried 

out by cytoskeletal deformation and leads to the conversion to chemical activity re-

sulting in modification of gene expression (see 1.2.3). Figure 4 shows a possible acti-

vation pathway of the small GTPase Ras (rat sarcoma), which influences different 

kinases or transcription factors, such as NF-κB to modulate gene expression (Davies 

et al., 1997). 

But not all of these steps are always required. An early ion response, such as a cal-

cium influx resulting in enhanced calcium concentration and changed cell activation is 

also possible (Cunningham & Gotlieb, 2005). Further, nuclear deformation by the cy-

toskeleton may immediately lead to a modified cell signaling via lamins (Figure 4). 

 

1.2.3 Options of gene expression modification 

Shear stress is known to have many possibilities to modulate the gene expression 

and function of EC. In several studies,10-20 signaling pathways were identified, 

which play a role, with MAPK-pathways, NF-κB and endothelial nitric oxide synthase 

(eNOS)- nitric oxide (NO) pathways being most often described (Frueh et al., 2013): 

 

• Activation of signaling molecules  

e.g. heterotrimeric G proteins, tyrosine phosphorylation of proteins such as Src 

homology 2 domain containing transforming protein (Shc), c (cellular) -src ty-

rosine kinase, and focal adhesion kinase (FAK), activation of MAPK, protein 

kinase C (PKC), and JNK, release of reactive oxygen species (ROS), produc-

tion of NO (Tzima, 2006) 

 

• Activation of transcription factors  

e.g. c-fos, c-jun, c-myc, NF-κB, Krüppel-like factor 2 (KLF2), nuclear factor 

erythroid 2-related factor 2 (Nrf2) (Tzima, 2006; Boon & Horrevoets, 2009), 10 

different transcription factors are acknowglegded as yet (Frueh et al., 2013) 
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• Regulation via binding to shear stress responsive elements (SSREs) in pro-

motersequence 

SSREs are regulatory elements or cis-elements in the promoter region of a 

gene to modulate its gene expression. There are sequences for positive regu-

lation as well as negative regulation identified (Malek & Izumo, 1995; Malek & 

Izumo, 1995; Miyakawa et al., 2004). GAGACC was first identified in 1993 and 

since then, it has been identified in many different genes (Resnick et al., 1993; 

Silberman et al., 2009). In most SSRE-regulated genes, more than one SSRE 

was identified, whichseems to be more powerful (Houston et al., 1999; Res-

nick et al., 2003). 

Positiv regulating SSREs are: GAGACC (Resnick et al., 1993), TGACTCC 

(12-O-tetradecanoylphorbol-13-acetate response element (TRE) (CCL2)) 

(Shyy et al., 1995), GAGACCCCC (platelet-derived growth factor (PDGF)-B), 

GGGGCGGGGCG-(PDGF-A, TF) (Resnick et al., 2003). 

Negative regulating SSREs are: CTTT (Barbie-Box), GAGAG / GGGAG 

(GAGA-Box) (Miyakawa et al., 2004), TGACTCAG, TGGGCGGGGC (Resnick 

et al., 2003). 

There are also several transcription factors identified, which are involved in 

shear stress gene regulation, such as NF-κB, activator protein-1 (AP-1), early 

growth response-1 (Egr-1), sterol regulatory element-binding protein-1 

(SREBP-1) or specificity protein 1 (SP1) (Malek & Izumo, 1995; Xing et al., 

2006; Resnick et al., 2003; Nagel et al., 1999). Additionally, the nuclear factor 

erythroid 2-related factor 2 – Kelch-like erythroid cell-derived protein with CNC 

homology-associated protein 1 (Nrf2-Keap1) system regulates cytoprotective 

gene expression via antioxidant responsive elements (ARE), with several 

ARE-regulated genes induced by laminar shear stress (Dai et al., 2007; Chen 

et al., 2003). 

 

• Epigenetic regulation (Zhou et al., 2011; Zhou et al., 2014)  

(general epigenetic informations see in chapter 1.5) 

Threre are three different possibilities for flow-induced epigenetic regulation: 

DNA-methylation, histone modification and binding of miRNA. 

Estrogen receptor-β is described to have a higher DNA methylation state in 

artherosclerotic lesions (Post et al., 1999). Recently, Homeobox protein A5 
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(HoxA5) and KLF3 were shown as novel mechanosensitive transcription fac-

tors regulated by DNA methylation in response to flow (Dunn et al., 2014). 

DNA methylation with DNA (cytosine-5-)-methyltransferase 1 (DNMT1) as key 

protein is postulated being a new important regulation mechanism for patho-

physiological stimuli due to disturbed flow (Zhou et al., 2014). 

Histone deacetylases 1-7 (HDAC1-7) are activated in EC by laminar or oscilla-

tory flow (Chen et al., 2013). 

There is a lot of data on miRNAs and flow-related gene expression. More than 

50 miRNAs are already described to be flow-responsive (Weber et al., 2010a; 

Weber et al., 2010b; Wu et al., 2011; Ni et al., 2011; Qin et al., 2010; Fang et 

al., 2010; Marin et al., 2013; Wei et al., 2013; Son et al., 2013; Hergenreider et 

al., 2012; Holliday et al., 2011). 

 

1.2.4 Functions of Shear Stress 

Shear stress has many different functions, and so far, there have been approximately 

1000-2000 mechanosensive genes identified (Frueh et al., 2013). Very much of them 

are involved in the pathogenesis of atherosclerosis (Dolan et al., 2013; Gimbrone, Jr. 

& Garcia-Cardena, 2013). Generally, atherosclerotic plaques are localized in curva-

tures or bifurcations of vessels where static conditions as well as low and oscillatory 

shear stress occur. These inflammatory conditions promote the formation of athero-

sclerotic lesions by modification of gene and protein expression. In straight vessels 

the laminar blood flow is known as a main atheroprotective factor, which is important 

for the physiological function of the endothelium and acts anti-inflammatory 

(Cunningham & Gotlieb, 2005) (Figure 5). Whereas long time (> 24 h) laminar flow is 

atheroprotective, while short time laminar flow activates the endothelium in an in-

flammatory manner (Boon & Horrevoets, 2009; Chlupac et al., 2014). Besides lami-

nar shear stress as a physical inhibitor of vascular inflammation, other regulators an-

tagonizing vascular inflammation are as yet poorly investigated. 
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Figure 5: The heterogeneous response of the endothe lium to various shear stress patterns 
(Resnick et al. , 2003). ECM (extra cellular matrix) 
 

 

Atheroprotective shear stress promotes anti-inflammatory, antithrombotic, anticoagu-

lative, and antioxidative properties of EC, and supports homeostasis, barrier function 

as well as wound healing of the endothelium (Cunningham & Gotlieb, 2005). On the 

other hand, atheroprone shear stress increases oxidation, leukocyte adhesion, per-

meability of the endothelium and inflammation in EC (Gimbrone, Jr. & Garcia-

Cardena, 2013; LaMack et al., 2005; Himburg et al., 2004). 

A central atheroprotective mediator is the vasodilator NO, which is induced by lami-

nar shear stress, as well as activation of eNOS (Rubanyi et al., 1986; Davis et al., 

2004; Dimmeler et al., 1999). Additionally, an important factor of atherosclerosis is 

the production of ROS performed in part by reduced nicotinamide adenine dinucleo-

tide phosphate (NAD(P)H), which is decreased by laminar and increased by oscilla-

tory flow (De Keulenaer et al., 1998). Heme oxygenase 1 (HO1), another enzyme 

exhibiting antioxidative and antiatherosclerotic action (Stocker & Perrella, 2006) is 

strongly activated by laminar shear stress (Zakkar et al., 2008). Thrombomodulin is 
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increased in response to laminar flow of 15 dynes/cm2 modulating the coagulation 

state (Takada et al., 1994). Furthermore, laminar flow leads to the inhibition of signal 

transducer and activator of transcription (STAT) 3, followed by an inflammatory re-

sponse as well as an activation of peroxisome proliferator-activated receptor γ 

(PPARγ) (Ni et al., 2003; Liu et al., 2005; Liu et al., 2004).  

Inducing monocyte adherence and transmigration in vivo, low shear stress was con-

sidered to be inflammatory (Walpola et al., 1993). Additionally, IL-6, an activator of B- 

and T-lymphocytes (Jirik et al., 1989), is upregulated under low flow (Shaik et al., 

2009). Leukocyte adhesion is determined by the expression of adhesion molecules 

and chemokines. The adhesion molecules ICAM, VCAM, and E-/P-selectin are in-

duced by low and non-uniform shear stress in combination or absence of TNF-α 

treatment (Cicha et al., 2009; Chiu et al., 2004; Walpola et al., 1995; Chappell et al., 

1998). CCL2 and IL-8 promote leucocyte adhesion under low flow (2 dynes/cm2) 

(Gerszten et al., 1999). For CCL2, an upregulation was shown under oscillatory flow, 

which was dependent on increased transglutaminase activity (Matlung et al., 2012; 

Cheng et al., 2007). IL-8 is induced by low flow and decreased under laminar shear 

stress (Hastings et al., 2007; Shaik et al., 2009). A further player of inflammation is 

TLR2, which is enhanced by disturbed shear (Mullick et al., 2008). Additionally, its 

TNF-α-induced activation is diminished by laminar, but not by disturbed flow 

(Dunzendorfer et al., 2004). 

Shear stress is not only a regulator of endothelial cell function, it also plays an 

important role in mechanical-transcriptional coupling and in regulation of the VSMC 

phenotype (Hastings et al., 2007). 

 

 

1.3 Glucocorticoid-induced leucine zipper (GILZ) 

1.3.1 General 

GILZ (TSC22D3) is an anti-inflammatory protein induced by glucocorticoids, which 

was identified in 1997 in murine T-lymphocytes (D'Adamio et al., 1997). Over the 

years, it was found out to be also expressed in various human cell types, e.g. MΦ, 

dendritic cells, B-lymphocytes, epithelial, and endothelial cells (Ayroldi & Riccardi, 

2009; Hahn et al., 2014; Hoppstädter et al., 2012; Cheng et al., 2013). 
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Murine and human GILZ have a high silmilarity (97% in the coding region) (Cannarile 

et al., 2001), with murine GILZ containing 137 aa (17 kDa) (D'Adamio et al., 1997), 

and the human GILZ protein consisting of 135 aa (15 kDa). GILZ belongs to the leu-

cine zipper (LZ) family because of its highly conserved LZ domain (abcdef) in the 

central position (76 - 97) of the molecule, which is characterized by a heptad repeat 

of leucine residues, which are found in position d (Figure 6). This domain, also known 

as transforming growth factor beta (TGF-β)-stimulated clone-22 (TSC-22), has a 

great homology compared to other members of this family. Furthermore, this region is 

responsible for homodimerization, while the other two domains of GILZ are 

responsible for protein-protein interactions between GILZ and transcriptional as well 

as signaling molecules (Fan & Morand, 2012). One of these domains, which is lo-

cated in front of the LZ domain is the N-terminal domain (NTD), and the C-terminal 

domain behind it is also known as proline and glutamic acid rich region (PER) (Di 

Marco et al., 2007; Kester et al., 1999). 

 

 
Figure 6: GILZ protein sequence, domains, and activ ation by dimerisation (Di Marco et al. , 
2007). NTD = N-terminal domain, LZ leucine zipper, PER = proline and glutamic acid region 
 

1.3.2 Regulation of GILZ 

Important for the regulation of GILZ are transcription factor binding sites in its pro-

moter (Asselin-Labat et al., 2004), including six glucocorticoid responsive elements 

(GREs), putative binding sites for STAT6, for nuclear factor of activated T cells 

(NFAT), for Oct-1, for c-myc, for forkhead responsive elements (FHREs), for cyclic 

adenosine monophosphate response element-binding protein (CREB), and an estro-

gen-response sequence (Ayroldi & Riccardi, 2009). 
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Further inducers of GILZ are IL-10 in MΦ and mast cells, IL-4 and IL-13 in mono-

cytes, IL-15 in natural killer cells, TGF-β in dendritic cells, erythropoietin and stem 

factor in primary erythroid progenitors, as well as vasopressin and aldosterone in 

mammalian kidney epithelial cells (Berrebi et al., 2003; Godot et al., 2006; Cohen et 

al., 2006; Perez et al., 2005; Soundararajan et al., 2005; Kolbus et al., 2003). Addi-

tionally, GILZ was induced in T-lymphocytes upon IL-2 withdrawal, leading to the 

dephosphorylation of transcription factor forkhead box O3 (Fox O3) binding to the 

FHREs identified in the GILZ promoter (Asselin-Labat et al., 2004). Moreover, lami-

nar shear stress of 25 dynes/cm2 for 6 h and 24 h was also shown to induce GILZ 

(McCormick et al., 2001). 

A decreased GILZ expression was described for anti-CD3 activation in T-

lymphocytes, for B-cell receptor activation in B-cells, by estrogens in MCF-7 human 

breast cancer cells and by IL-1, TNF-α, and interferon-γ (INF-γ) in epithelial cells 

(Ayroldi et al., 2001; Glynne et al., 2000; Tynan et al., 2004; Eddleston et al., 2007). 

For MΦ, different TLR ligands i.e. lipopolysaccharide (LPS) for TLR4 or PAM3CSK4 

for TLR2, were identified as GILZ downregulators (Hoppstädter et al., 2012). TLRs 

diminished GILZ levels in a myeloid differentiation primary response 88 (MyD88) 

dependent fashion via a mRNA binding protein tristetraprolin (TTP / ZFP36) induced 

mRNA destabilization (Hoppstädter et al., 2012). 

 

1.3.3 Functions of GILZ 

GILZ protein is known to act via binding to other proteins. The building of GILZ 

homodimer is described to inhibit NF-κB by binding to its p65 subunit leading to a 

diminished cytokine transcription (Ayroldi & Riccardi, 2009; Cheng et al., 2013; Hahn 

et al., 2014; Di Marco et al., 2007; Berrebi et al., 2003). Some other transcription fac-

tors were also identified as targets of the GILZ monomer, e.g. AP-1, Raf-1 and Ras 

(extracellular signal-regulated kinase (ERK)) and AKT pathways (Ayroldi & Riccardi, 

2009). AP-1 is inhibited by interaction of the GILZ N-terminal 60-amino acid region 

with the AP-1 subunits c-Jun and c-Fos (Mittelstadt & Ashwell, 2001; Ayroldi et al., 

2002). Additionally, GILZ functions as a transcriptional repressor and binds to binding 

sites in the promoter of PPAR- γ2 (Shi et al., 2003). Effects of GILZ are summarized 

in Figure 7. 
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Figure 7: Effects of GILZ on immune signaling pathw ays (Fan & Morand, 2012).  See text for de-
tails.GILZ: glucocorticoid induced leucine zipper, TLRs: toll-like receptors, LPS: lipopolysaccharide, 
TNF-α: tumor necrosis factor α, IκB: inhibitory protein κB, IKK: IκB kinase, NF-κB: nuclear factor-κB, 
PI3K: phosphatidylinositol 3-kinase, PKB: protein kinase B, MEK: mitogen/extracellular signal-
regulated kinase, ERK: extracellular-signal-regulated kinase, FoxO3: forkhead box O3, GC: glucocor-
ticoids, GR glucocorticoid receptor, GRE: glucocorticoid responsive element 
 

 

Besides other important functions in cell proliferation and renal sodium transport, the 

anti-inflammatory effects of GILZ, mostly mediated via NF-κB inhibition, are of special 

interest (Ayroldi & Riccardi, 2009). GILZ induction is pivotal for the anti-inflammatory 

and immunosuppressive actions of glucocorticoids (Ayroldi et al., 2014; Berrebi et al., 

2003; Fan & Morand, 2012). As an example, GILZ modulates T-lymphocyte activa-

tion (Ayroldi & Riccardi, 2009; Cohen et al., 2006; Libert & Dejager, 2014). Reuma-

toid arthritis is a chronic inflammatory disease, which is treated with glucocorticoids 

suggesting GILZ as guarantor of efficacy (Beaulieu et al., 2010; Eades et al., 2014). 

Furthermore, GILZ downregulation is postulated in different inflammatory diseases, 

like chronic rhinosinusitis, tuberculosis or Crohn`s disease (Berrebi et al., 2003; 

Zhang et al., 2009). In mice, dinitrobenzene sulfonic acid-induced colitis was 

significantly inhibited by over-expression of GILZ in T-cells (Cannarile et al., 2009). 
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Recently, upregulation of GILZ was described to remedy the immune tolerance to 

allergens in respiratory allergies (Karaki et al., 2014). In EC, induction of GILZ ex-

pression inhibits inflammatory leukocyte recruitment (Cheng et al., 2013). 

Additionally, two different approaches has been described using GILZ as an anti-

inflammtory drug to mediate the anti-inflammatory effects of glucocorticoids without 

the detrimental effects (Ayroldi et al., 2014). The fusion protein transactivator of tran-

scription–GILZ (TAT-GILZ) regulated apoptosis of thymocytes in mice (Delfino et al., 

2004). Injection of TAT-GILZ inhibited Th1-induced colitis in mice (Cannarile et al., 

2009) and protected against LPS-induced endotoxemia (Pinheiro et al., 2013). Im-

munomodulatory GILZ peptide (GILZ-P), a proline-rich segment in the carboxyl ter-

minus of GILZ, improved experimental autoimmune encephalomyelitis in mice and 

activated p65 in THP-1(Srinivasan & Janardhanam, 2011; Srinivasan et al., 2014). 

 

 

1.4 Further regulators of inflammation 

The inflammatory activation of the endothelium plays a central role for the progres-

sion of atherosclerosis (see 1.1.2) (van Diepen et al., 2013). In the following, some 

inflammation related players, which are important for this work, are described. 

 

1.4.1 Heme oxygenase 1 (HO1) 

HO1 was first described as enzyme of the heme catabolism, which catalizes the deg-

radation of heme in biliverdin-IX, divalent iron, and carbon monoxide (Tenhunen et 

al., 1968). HO1 is induced by its substrate heme and by various stressors, such as 

UV light, heat shock, lipopolysaccharide, heavy metals, reactive oxygen species and 

hyperoxia, whereby it has cell protective properties (Immenschuh & Ramadori, 2000; 

Han et al., 2009). Furthermore, it is also activated by anti-inflammatory stimuli, such 

as atrial natriuretic peptide (ANP) in Kupffer- and endothelial cells (Kiemer et al., 

2003b; Kiemer et al., 2003a) and laminar shear stress in the endothelium (Zakkar et 

al., 2008). Especially the generated carbon monoxide is an anti-inflammatory, an-

tiapoptotic, and vasodilatory mediator with antiatherosclerotic potential (Siow et al., 

1999; Stocker & Perrella, 2006). 
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1.4.2 Dual specifity protein phosphatase 1 (DUSP1, MKP-1) 

DUSP1 is the first identified of at least 10 known MKPs of mammalian cells and also 

known as hVH1, CL100, 3CH134 or Erp (Keyse, 2000; Wancket et al., 2012). The 

40 kDa enzyme was first reported in 1992 and is known to be widely expressed 

(Charles et al., 1992; Wancket et al., 2012). It is a negative regulator of mitogen acti-

vated protein kinases (MAPKs), and inhibits all of them, p38, JNK as well as ERK, by 

dephosphorylation of their phosphotyrosine and phosphothreonine residues (Alessi 

et al., 1993; Liu et al., 1995; Raingeaud et al., 1995) leading to an anti-inflammatory 

response (Figure 8) (Wancket et al., 2012). A suppression of ZFP36 by an DUSP1 

inhibited p38 MAPK pathway was recently described for MΦ and epithelial cells 

(Huotari et al., 2012). 

Activation of DUSP1 is normally mediated by anti-inflammatory stimuli, such as glu-

cocorticoids (Fürst et al., 2007), ANP (Kiemer et al., 2002a) and laminar shear stress 

(Zakkar et al., 2008). Negative regulation is possible by cytokines like IFN-γ 

(Wancket et al., 2012; Lawan et al., 2013). 

 

 
Figure 8: Immunomodulatory regulation of inflammati on by modulating MKP-1 (DUSP1) ex-
pression (Wancket et al. , 2012). IFN-γ: interferon-γ, MIF: macrophage migration inhibitory factor, 
MSK: mitogen- and stress-activated protein kinase, JNK: c-Jun N-terminale kinase, IL-10: inter-
leukin-10  
 

 

Several translational and posttranslational mechanisms are possible for the regula-

tion of DUSP1 (Lawan et al., 2013; Lin et al., 2003; Wancket et al., 2012). MAPKs 
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themselves enhance DUSP1, resulting in a negative feedback loop (Lawan et al., 

2013). Binding of transcription factor CCAAT/enhancer binding protein-b (C/EBPb) 

was shown for DUSP1 induction in MΦ (Cho et al., 2008). Expression of DUSP1 is 

regulated via mRNA stability by the mRNA binding proteins human antigen R (HuR) 

and ZFP36 (Emmons et al., 2008; Kuwano et al., 2008). Posttranslational modifica-

tions were identified such as proteasome dependent degradation (Lin et al., 2003) or 

DUSP1 acetylation (Cao et al., 2008). Also, epigenetic expression regulation is pos-

sible via miRNAs (e.g. miRNA-101) (Zhu et al., 2010) or DNA methylation (Chen et 

al., 2012a). 

For DUSP1, many different functions are known. It plays a role in the immune sys-

tem, central nervous system, musculoskeletal system, infections, and different types 

of cancer (Lawan et al., 2013; Wancket et al., 2012). The role of DUSP1 in the 

pathophysiology of atherosclerotic plaques is controversially discussed, as both, anti-

inflammatory (Fürst et al., 2005; Kim et al., 2012; Zakkar et al., 2008e) as well as pro-

atherosclerotic actions have been suggested (Imaizumi et al., 2010; Shen et al., 

2010). 

 

1.4.3 p38 mitogen-activated protein kinase (p38 MAP K) 

p38 MAPK belongs to the group of highly conserved serine/threonine protein kinases 

(Su & Karin, 1996). p38 is almost ubiquitarily found, whereby 4 different isoforms are 

known (α, β, γ, δ), which are variably expressed in different cells (Hale et al., 1999). 

Activation occurs in response to several stimuli, such as inflammatory cytokines (e.g. 

TNF-α), UV radiation, osmotic stress or LPS (Kiemer et al., 2002a; Raingeaud et al., 

1995), leading to the activation of GTPases (e.g. Ras, Rac) and a phosphorylation 

cascade of MAPK kinase kinase and MAPK kinase. The cascade ends in the phos-

phorylation of threonine and tyrosine residues in the conserved Thr-Xaa-Tyr motif, 

which is located in a regulatory loop between the kinase subdomains VII and VIII 

(Whitmarsh & Davis, 1996). p38 itself regulates gene expression through different 

mechanisms, such as activation of transcription factors or other protein kinases, or 

modulating the stability and translation of mRNA by phosphorylation of mRNA bind-

ing proteins, e.g. ZFP36, by MAPK-activated protein kinase (MK)-2, a downstream 

target of p38 MAPK (Stoecklin et al., 2004; Clark et al., 2003; Herlaar & Brown, 1999; 

Chen et al., 2001). Furthermore, p38 has many important functions in tissue ho-
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moeostasis as well as in multiple pathologies from inflammation and the immune re-

sponse to heart, cancer, and neurodegenerative diseases (Cuadrado & Nebreda, 

2010). 

 

1.4.4 Tristetraprolin (ZFP36, TTP) 

Tristetraprolin belongs to the Cys-Cys-Cys-His-tandem-zincfinger-protein family. Its 

function is the destabilisation of mRNA by binding to adenosine-uridine-rich-elements 

(AUUUA) in the 3‘ untranslated region (3`UTR) leading to deadenylation and degra-

dation of the bound mRNA (Blackshear, 2002; Carballo et al., 1998). Normally, 

adenosine-uridine-rich-elements are located in mRNAs of inflammatory cytokines 

such as TNF-α, IL-8, and IL-6, resulting in an anti-inflammatory action of ZFP36 

(Aslam & Zaheer, 2011; Lai et al., 1999; Lai et al., 2006; Balakathiresan et al., 2009; 

Zhao et al., 2011). In the meantime, numerous targets are genome-wide identified 

(Mukherjee et al., 2014). Furthermore, cytokine production is inhibited by ZFP36 via 

binding of p65 (Schichl et al., 2009). An important regulator of ZFP36 is the p38 

MAPK, which inhibits the activation of ZFP36 and degradation of cytokine mRNA by 

phosphorylation of MK2 (Aslam & Zaheer, 2011; Lai et al., 1999; Stoecklin et al., 

2004). 

Recently, inflammatory actions of ZFP36 were also detected. In stimulated MΦ, GILZ 

was actively downregulated via GILZ mRNA destabilization mediated by the mRNA 

binding protein ZFP36 (Hoppstädter et al., 2012). Additionally, ZFP36 is expressed in 

EC and foam cells of atherosclerotic lesions (Zhang et al., 2013). Moreover, ZFP36 

expression is inhibited downstream of the anti-inflammatory DUSP1 (Huotari et al., 

2012), a potent inhibitor of p38 MAPK (Kiemer et al., 2002a). 



Introduction 

 

 

27 

1.5 Epigenetics 

Epigenetic modifications are covalent or noncovalent alterations of DNA resulting in a 

modified gene expression, which can be classified into the following three categories 

(Figure 9) (Chen et al., 2013). 

 

 

Figure 9: Three fundamental mechanisms of epigeneti c gene regulation (Yan et al. , 2010). See 
text for details. 
 

DNA methylation 

DNA methylation results by addition of a methyl group from S-adenyl methionine to 

the fifth carbon of a cytosine to form 5-methylcytosine in the context of CpG dinucleo-

tides (Moore et al., 2013). CpGs are normally unmethylated and thus hypermethyla-

tion of CpG islands leads to the stable silencing of gene expression. So-called CpG 

islands are clusters of more than 200 bp with high CG content in promoters of genes. 

Methylation and demethylation of DNA are both enzymatic processes. Demethylation 

of methylated DNA induces the gene expression as well as binding of proteins to the 

methylated CpG (Chen et al., 2013; Zhou et al., 2014). 

The importance of this modification in vascular functions has been reported for DNA 

methylation of eNOS and vascular endothelial growth factor receptor 2 (VEGFR2) 
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promoters, which are bound and suppressed by methyl CpG binding domain protein2 

(MBD2) (Rao et al., 2011). 

 

Histone modification 

Histones are enzymatically modified at their N-terminal regions. This process influ-

ences the accessibility of the DNA to the transcriptional machinery (Kouzarides, 

2007). Generally, acetylation, methylation, phosphorylation, or ubiquitylation are used 

to activate the transcription and methylation, ubiquitination, sumoylation, deimination, 

and proline isomerisation is used to reduce the transcription (Zhou et al., 2014). The 

best studied actors are histone acetyltransferases (HAT) and HDAC, which both are 

known to be dysregulated in cardiovascular diseases (Wang et al., 2014). 

 

RNA-based mechanisms 

Noncoding RNAs (NcRNAs) are divided into five classes dependent on its structure 

and length: microRNAs (miRNAs), small interfering RNAs (siRNAs), piwi-interacting 

RNAs (piRNAs), small nucleolar RNAs and long non-coding RNAs (lncRNAs) 

(Mattick, 2009; Stefani & Slack, 2008). lncRNAs and miRNA are well-known, whereat 

lncRNA consist of about 200 contrarily to the miRNA, which are single-stranded 

RNAs of 18–22 nucleotides and represent a novel class of gene regulators. As en-

dogenous mediators, miRNA are located in introns of genes and contemporaneously 

transcribed with the respective mRNA. Target RNAs are mostly bound within their 

3`UTR by miRNAs, which results in the degradation of the mRNA or translational re-

pression by a perfect or imperfect complement (Winter et al., 2009; Zhou et al., 

2014). As an example, miRNA-126 decreases VCAM expression, suggesting an im-

portance in vascular inflammation (Harris et al., 2008). 

 

1.5.1 Imprinted genes H19 and IGF2 

Genomic imprinting is an effect widely based on DNA methylation (Feil & Khosla, 

1999). The human genome contains a cluster of imprinted genes on chromosome 11 

(Lin et al., 1999) including important examples of imprinted genes: the non translated 

H19 RNA and the insulin-like growth factor (IGF2), which are reciprocally expressed. 

H19 is only expressed by the maternal allele (Rachmilewitz et al., 1992) and IGF2 is 

paternally expressed (Giannoukakis et al., 1993). Both promoters are regulated by 
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the same enhancers, but on different parental chromosomes (Leighton et al., 1995). 

On the maternal allele, H19 is expressed and IGF2 is imprinted by blocking the en-

hancer activity to the IGF2 promoter by the binding of insulator factor CTCF (CCCTC-

binding factor) to the unmethylated imprinting control region. On the paternal region, 

this region is methylated, whereby binding of CTCF is not possible, resulting in a si-

lencing of H19 (Figure 10) (Gabory et al., 2006). 

 

 

 

 

Figure 10: Imprinting mechanisms of H19 and IGF2 (Gabory et al. , 2006). See text for details. 
meso: mesodermal enhancers, endo: endodermal enhancers, Mat: maternal allele, Pat: paternal al-
lele, CTCF: CCCTC-binding factor, DMR: differentially methylated region 
 

Both genes are mainly prenatally expressed and strongly downregulated after birth in 

most tissues (Weber et al., 2001). Expression is also known for various tumors sug-

gesting a role in tumorigenesis and a few other diseases (Kessler et al., 2013; Tani-

guchi et al., 1995; Matouk et al., 2013; Bergman et al., 2013; Engstrom et al., 1998). 

While the growth factor IGF2 is widely accepted as tumorigenic protein, the non-

translated H19 is discussed to be either a tumor promoter or a tumor suppressor. 

Both genes are also connected to atherosclerosis by playing a role in proliferation of 

VSMCs (Han et al., 1996; Li et al., 2009; Zaina & Nilsson, 2003; Zaina et al., 2002). 

Additionally, H19 was reported to be upregulated in the inflammatory disease rheu-

matoid arthritis (Stuhlmuller et al., 2003), whereby in chondrocytes, TNF-α leads to a 

decrease of H19 (Steck et al., 2012). 



Introduction 

 

 

30 

1.6 Aim of this work 

Atherosclerosis is a widely spread, cardiovascular disease with a major cause of 

morbidity and mortality. The molecular mechanisms of this disease, especially in the 

context of different kinds of shear stress, are as yet not completely understood. In-

flammation is known to be one of the main factors in atherosclerosis development, 

which is especially characterized by the inflammatory activation of the endothelium. 

The anti-inflammatory protein GILZ, which mediate the anti-inflammatory actions of 

glucocorticoids, is known to be involved in different inflammatory processes. 

 

The aim of this work was to elucidate the role of GILZ in endothelial inflammation. 

 

Therefore, following aspects were clarified: 

 

(I) The downregulation of the GILZ expression in human degenerated veins and 

atherosclerotic arteries compared to healthy vessels 

(II) The differentially up- and downregulation of the GILZ expression at anti- and 

inflammatory conditions, especially at shear stress conditions, in endothelial 

cells 

(III) The mechanism of GILZ regulation 

(IV) Functional implications of GILZ downregulation 



Materials and methods 

 

 

31 

2 Materials and methods 



Materials and methods 

 

 

32 

2.1 Materials 

Endothelial cell growth medium was purchased from Promocell (Heidelberg, Ger-

many), RPMI-1640, Earle`s medium 199, fetal calf serum gold (FCS), trypsine and 

penicilline/streptomycine were obtained from PAA (Cölbe, Germany). Collagenase A 

from Clostridium histolyticum and collagen (sterile, lyophilizate, from rat tail tendon) 

were bought from Roche Deutschland Holding GmbH (Grenzach-Wyhlen, Germany), 

dissolved, and diluted after manufacturer`s instructions. 

RNA later and Qiazol were from Qiagen (Hilden, Germany). Kanamycin, tumor ne-

crosis factor alpha (TNF-α), dexamethasone, and ampicillin were purchased from 

Sigma-Aldrich Chemie GmbH (München, Germany), SB203580 from Jena Biosci-

ence (Jena, Germany) and LPS as well as Pam3CSK4 from Invivogen (San Diego, 

CA, USA). siGILZ (siGENOME SMARTpool) and siControl (siGenome) were from 

Dharmacon (Nidderau, Germany). pGL4.32[luc2P/NF-κB-RE/Hygro] containing 5 

repetitive elements of the NF-κB consensus sequence GGGAATTTCC was obtained 

from Promega (Heidelberg, Germany). pcDNA3-p38α-dn was a gift from Prof. Dr. 

Jian-Dong Li, University of Rochester Medical Center, USA (Shuto et al., 2001). 

The parallel flow chamber was modified after (Frangos et al., 1988) and manufac-

tured by upag AG (Vollersode, Germany). The peristaltic pump (403U/VM4 purple/ 

white, 040.3K1V.M4E, 0.85-17 ml/min) was obtained from Watson Marlow (Rommer-

skirchen, Germany). Silicon tubes were purchased from VWR (Darmstadt, Germany) 

and silicon mats for gasket construction were from rfQ Medizintechnik (Tuttlingen, 

Germany). 

For Western blot analyses, anti-GILZ (sc-26518) and anti-MKP-1 (sc-1199) antibod-

ies were purchased from SantaCruz (Heidelberg, Germany), anti-TTP (T5327) and 

anti-tubulin (T9026) were obtained from Sigma (Taufkirchen, Germany), and anti-

TLR2 (Cat # 3268-1) from Epitomics (Burlingame, USA). The IRdye-labeled secon-

dary antibodies goat anti-mouse, goat anti-rabbit, and donkey anti-goat were from LI-

COR Biosciences (Bad Homburg, Germany), and anti-GILZ antibody for IHC 

(FL-134) was obtained from SantaCruz (Heidelberg, Germany).  

All primers and probes were purchased from Eurofins MWG Operon (Ebersfeld, 

Germany). 5 x HOT FIREPol® EvaGreen® qPCR Mix Plus was from Solis BioDyne 

(Tartu, Estonia). Taq-Polymerase (5 U/µl), 10x Taq buffer and the dNTP mix (dATP, 
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dCTP, dGTP and dTTP, 10 mM each) were obtained from Genscript (Piscataway, 

NJ, USA). 

Other materials were purchased from Merck (Darmstadt, Germany), Sigma 

(Taufkirchen, Germany), VWR (Darmstadt, Germany), or Roth (Karlsruhe, Germany) 

unless otherwise noted. 

 

 

2.2 Human vessels 

Human healthy saphenous veins and radial arteries as well as pieces of atheroscle-

rotic aortas and degenerated aortocoronary saphenous vein bypass grafts were ob-

tained from patients undergoing coronary bypass surgeries. During operation, ves-

sels were immediately transferred into RNA stabilization solution (RNA later, Qiagen, 

Hilden, Germany), stored at 4°C, and after some days transferred to -20°C. Samples 

were obtained from Prof. Dr. Hanno Huwer (SHG Klinik Völklingen, Germany) with 

the consent of patients and with permission of the local ethics committee (ref 

#102/09).  

 

 

2.3 Bacterial culture 

2.3.1 Bacterial strains and cultivation 

The following Escherichia coli strains were used as host organism for plasmids: 

 

Escherichia coli (E. coli) TOP10 (Invitrogen, Carlsbad, CA, USA), genotype F- mcrA 

∆(mrr-hsdRMS-mcrBC) φ80lacZ∆M15 ∆lacX74 nupG recA1 araD139 ∆(ara-leu)7697 

galE15 galK16 rpsL(StrR) endA1 λ- 

 

Escherichia coli (E. coli) GT116 (Invivogen, San Diego, CA, USA), genotype F- mcrA 

∆(mrr-hsdRMS-mcrBC) ϕ80lacZ∆M15 ∆lacX74 recA1 endA1 ∆dcm ∆sbcC-sbcD 

E. coli GT116 was used to produce the shTTP plasmid because of enhanced com-

patibility with hairpin structures and cultivated in low salt LBZeo-medium.  
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Bacteria were grown in LBAmp-medium (Luria Bertani, Version Miller with 10% [w/v] 

NaCl, pH 7.5) (bacto-tryptone 10% [w/v], yeast extract 5% [w/v], NaCl 10% [w/v], 

ampicillin 100 µg/ml) or low salt LBZeo-medium (Luria Bertani, pH 7.5) (bacto-tryptone 

10% [w/v], yeast extract 5% [w/v], NaCl 2.5% [w/v], zeocin 25 µg/ml) at 37°C and 5% 

CO2. For selection of single clones, LBAmp- and low salt LBZeo-agar (medium contain-

ing 30% [w/v] agar) were used. 

 

2.3.2 Generation of competent bacteria using CaCl 2 method 

5 ml of an overnight culture was transferred into 100 ml LB-medium and rotated at 

37°C until absorption of A650 nm= 0.4 was achieved. After 30 min incubation on ice, 

bacteria were centrifuged (2,000 x g, 4°C 5 min) and resuspended in 2.5 ml cold 

CaCl2 solution (75 mM CaCl2, 15% glycerol). 10 ml CaCl2 solution were added, mixed 

and 30 min incubated on ice. Bacteria were centrifuged again, resuspended in 2.5 ml 

cold CaCl2 solution, and frozen in 100 µl aliquots. 

 

2.3.3 Transformation 

10-150 ng of a plasmid were added to 100 µl competent bacteria, mixed, and incu-

bated on ice for 20 min. After heat shock for 80 s at 42°C, bacteria were incubated 

again on ice for 2 min. Afterwards, 900 µl prewarmed SOC medium (trypton 20 g/L, 

yeast extract 5 g/L, NaCl 0.5 g/L, KCl 0.2 g/L, MgCl2 10 mM, glucose 20 mM) was 

added and shaken 1.5 h at 37°C. After plating, bacteria were incubated overnight. 

 

2.3.4 Isolation of plasmids 

Isolation of plasmids from overnight culture was prepared using QIAprep Spin Mini-

prep or Midiprep kit (Qiagen, Hilden, Germany) according to the manufacturer`s in-

structions. 

 

2.3.5 Determination of DNA concentration 

Concentration of plasmids was measured by determining the extinction at 260 nm. 

The purity was checked by an additional measurement at 280 nm, which is an indica-

tor for protein contaminations. The ratio 260/280 should be 1.8 for DNA. Measure-
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ments were performed with a BioMate UV-Vis spectrophotometer (ThermoElectron, 

Oberhausen, Germany). 50 µg/ml DNA equates an extinction of 1 at 260 nm. 

 

 

2.4 Cell culture 

2.4.1 THP-1 

This human leukemic monocytic cell line was cultivated in RPMI-1640 with 10% [v/v].  

  

2.4.2 Human umbilical vein endothelial cells (HUVEC ) 

HUVEC are primary cells, which were obtained by isolation of human umbilical veins. 

The umbilical cords were transferred into PBS+ immediately after birth (phosphate 

buffered saline+) (NaCl 8.0 g/L, KCl 0.20 g/L, Na2HPO4 1.15 g/L, KH2PO4 0.20 g/L, 

MgCl2*6H2O 0.10 g/L, CaCl2*2H2O 0.10 g/L) containing 1% [v/v] penicilline (10,000 

U/ml)/streptomycine (10 mg/ml) and stored at 4°C (Klinikum Saarbrücken, Germany). 

The isolation of HUVEC was carried out up to 10 days after childbirth. 

 

2.4.3 Isolation of HUVEC 

Earle`s medium 199 and endothelial cell growth-medium were always used contain-

ing 10% [v/v] FCS Gold, 1% [v/v] penicilline (10,000 U/ml)/streptomycine (10 mg/ml), 

0.1% [v/v] kanamycin (50 mg/ml) unless otherwise noted. 

 

The isolation of HUVEC was performed under sterile conditions by digestion of um-

bilical veins with 0.1 g/L collagenase A at 37°C after Jaffe et al. (1973). To stop the 

digestion, veins were rinsed with Earle`s medium 199. After centrifugation (10 min, 

200 x g) cells were resuspended in 5 ml endothelial cell growth-medium, and culti-

vated at 37°C and 5% CO2 in a 25 cm2 cell culture flask. After one day cells were 

washed three times with PBS (phosphate buffered saline) (NaCl 7.20 g/L, KH2PO4 

0.43 g/L, Na2HPO4 1.48 g/L) and cultivated until confluence. 
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2.4.4 Cultivation of HUVEC 

After reaching confluence, cells were passaged to a new cell culture flask or plate: 

cells were washed three times with PBS and 1 ml or 2 ml trypsine-EDTA-solution was 

added (in a 25 cm2 or 75 cm2 flask). After 2 min incubation at 37°C, the trypsine was 

inactivated with 25 ml Earle`s medium 199. The suspension was centrifuged (10 min, 

175 x g) and the pellet completely resuspended in endothelial cell growth-medium. 

Subsequently, cells were splitted 1:3 or 1:4, and 1 part seeded into new 75 cm2 cell 

culture flasks, in 6-well plates, or 1.5 parts on glass slides in 4-well plates. Experi-

ments were performed in passage three. If necessary, determination of cell count 

was performed via a Neubauer improved hemocytometer. 

Cells were harvested after the experiments in 1 ml Qiazol to isolate RNA, DNA, and 

proteins simultaneously. 

 

2.4.5 Freezing and thawing of HUVEC 

freezing: 
Confluent cells in passage one were used for freezing. HUVEC were washed and 

trypsinized as outlined above. After centrifugation, cells of a 75 cm2 flask were resus-

pended in 3 ml ice cold freezing medium (50% [v/v] Earle`s medium 199, 20% [v/v]  

endothelial cell growth-medium, 20% [v/v] FCS Gold, 10% [v/v] DMSO). After filling 

into cryovials, cells were frozen at -20°C for one day. Afterwards, they were trans-

ferred into -80°C for one week and then into liquid nitrogen at -196°C. 

 

thawing:  
To reduce cytotoxic effects of DMSO, cryovials were thawed 2-3 min at 37°C and the 

suspension was rapidly transferred into 20 ml prewarmed Earle`s medium 199. After 

centrifugation (10 min, 200 x g), cells were resuspended in endothelial cell growth-

medium and converted into a new 75 cm2 cell culture flask. 

 

2.4.6 Detection of mycoplasma 

To exclude contaminations with mycoplasma, HUVEC were once tested with the Ve-

nor®GeM mycoplasma detection kit (Minerva Biolabs, Berlin) according to the manu-



Materials and methods 

 

 

37 

facturer`s instructions. It is based on the amplification of mycoplasma DNA with a 

detection limit of 1-5 fg. 

 

 

2.5 Transfection 

Before transfection with either siRNA or plasmids, HUVEC were grown until 80% 

confluence. Electroporation was performed using the Amaxa® NucleofectorTM Kit 

(Lonza, Basel, Switzerland) according to the manufacturer`s instructions.  

For GILZ knockdown, 100 pmol/L siGILZ or siControl were transfected for 20 h.  

The luciferase assay was carried out by transfection of 100 pmol/L siRNA and 1.5 µg 

pGL4.32[luc2P/NF-κB-RE/Hygro] for 20 h. Plasmid was obtained from Indou Awissi 

Kpebane (Pharmaceutical Biology, Saarland University). 

Overexpression of dominant negative (dn) p38α MAPK was performed by nucleofec-

tion of 2 µg of pcDNA3-p38α-dn or pcDNA3-empty for 24 h by Dr. Kerstin Hirsch-

felder (Pharmaceutical Biology Saarland University).  

For ZFP36 (TTP) knockdown, 1 µg shTTP plasmid (Fechir et al., 2005) or 1 µg 

psiRNA-LucGL3 plasmid (Invivogen) as control were transfected for 24 h. The shTTP 

plasmid was created by cloning of siRNA against ZFP36 5`-

ACCTCACAAGACTGAGCTATGTCGGATCAAGAGTCCGACATAGCTCAGTCTTG-

TTT-3 into the BbsI sites of psiRNA-h7SKGFPzeo by Dr. Jessica Hoppstädter 

(Pharmaceutical Biology, Saarland University) and produced with E. coli GT116.  

As transfection control, the pmaxGFPTM plasmid (Lonza, Basel, Switzerland) was 

used. The green color of cells based on the green fluorescent protein (GFP) was de-

tected via fluorescence microscopy. Except for the Luciferase assay (see below), 

cells were seeded into 6 well plates after transfection. 

 

 

2.6 Luciferase assay 

HUVEC were transfected as outlined above and seeded into white 96 well plates with 

white bottom (PerkinElmer, Rodgau-Juedesheim, Germany). Cells were harvested 

with 1x passive lysis buffer (Promega, Heidelberg, Germany) and stored at -80°C at 

least for 1 h. A Wallac Victor2 multilabel counter with the software Wallac 1420 (Wal-
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lac/PerkinElmer, Rodgau-Juedesheim, Germany) was used for the measurement of 

the luminescence after adding of 50 µl luciferase substrate buffer (tricine 20 mM, 

MgCO3 Mg(OH)2 x 5 H2O 2.67 mM, MgSO4 x 7 H2O 1.07 mM, EDTA 100 µM, DTT 

33.3 mM, ATP 530 µM, coenzym A 0.213 mg/ml, D-luciferin 470 mM) to 25 µl of cell 

lysate. 

 

 

2.7 Shear Stress 

2.7.1 Coating of glass slides 

Sterilized glass slides (76 x 26 x 1 mm, Roth) with exact identical thickness were in-

cubated for 40 min in 1 ml collagen solution (30 µg/ml in 0.2% acetic acid) in 4-well 

plates, whereas the reverse surface was coated. While washing twice with PBS, 

glass slides were turned in the wells. After drying for 30 min, cells were seeded onto 

the glass slides. 

 

2.7.2 Flow experiments 

The level of laminar shear stress is determined by the flow rate. Calculation of the 

flow rate was performed with the following formula: 
 

2

6

bh

Qµτ =   (Frangos et al., 1988) 

 

τ = shear stress [dynes/cm2] 

Q = flow rate [cm3/s] 

µ = viscosity (0.01 dynes*s/cm2) (Frangos et al., 1988) 

b = channel width (1.9 cm) 

h = channel height (= thickness of the middle part of the chamber (1.15 mm) – thick- 

    ness of the glass slide) 

 

The calculated flow rate was adjusted by controlling the pump drive and the tube di-

ameter in the pump before each experiment. Afterwards, glass slides with confluent 

HUVEC were integrated in the parallel plate flow chambers (Figure 11), which were 
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then connected to the peristaltic pump and were filled with endothelial cell growth-

medium (Figure 12). 

 

upper part

glass slide

middle part

lower part

upper part

glass slide

middle part

lower part
 

 

 

Figure 11:  Setup of one parallel plate flow chamber with glass  slide. Chamber was modified after 
(Frangos et al., 1988) and manufactured by Upag AG after plans shown in the supplement (Voller-
sode, Germany). Technical drawing and assistance were kindly performed by Christian and Alexander 
Hahn. 
 

 

 
Figure 12: Filling of the parallel plate flow chamb er 

 

HUVEC cultivated on collagen coated glass slides were exposed either to laminar 

shear stress of 20 dynes/cm2 (laminar), to low laminar shear stress of 2 dynes/cm2 
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(low), or to oscillatory shear stress (oscillatory) for 24 h in this parallel plate flow 

chamber. All types of flow were generated by a peristaltic pump (403U/VM purple/ 

white, Watson Marlow). Laminar flow rates were regulated to fit a shear stress of 20 

or 2 dynes/cm2 as outlined above and the flow was unidirectionally. For oscillatory 

shear stress the direction of flow was changed with a frequency of 1/s using an elec-

tronic control unit (timer-module Ne555 (obtained from Mathias Sander, Experimental 

Physics, Prof. Dr. Ott, Saarland University)). 

TNF-α (10 ng/ml) was added to the flow medium during a short stop in the flow. After 

5 min of laminar flow to distribute the TNF-α in the medium, laminar or oscillatory 

flow was continued for another 2 h or 3.5 h. Untreated cells were similarly flowed. 

Cells were harvested in 1 ml Qiazol. 

 

 

2.8 Immunohistochemistry 

Sections of murine femoral arteries, healthy radial arteries and healthy saphenous 

veins were fixed in 4% formalin. Paraffin-embedded slides with cut samples were 

stained for GILZ with the CSA II Kit (Dako, Hamburg, Germany) according to (Tybl et 

al., 2011). The GILZ antibody was used in a concentration of 1:10,000 overnight at 

4°C. 

 

 

2.9 RNA analysis 

To protect the RNA from degradation by RNAses, chloroform treated reaction tubes 

were used. Tips, H2O, and buffer were decontaminated with UV light. 

 

2.9.1 RNA isolation by phenol chloroform extraction  

To isolate RNA, a single step method after (Chomczynski & Sacchi, 1987) was used.  

 

HUVEC 

After washing with PBS, cells were harvested in 1 ml Qiazol and frozen at -80°C at 

least for 1 h. Lysates were defrosted at room temperature, 250 µl chloroform was 

added and vortexed for 15 s until turbidity. The mixture was incubated for 3 min at 
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room temperature, centrifuged (15 min, 4°C, 17,000 x g) and 400 µl supernant was 

transferred into a new reaction tube. RNA was precipitated by adding 100% isopro-

panol at -20°C over night. The lower- and the interphase were used for DNA and pro-

tein isolation (2.10 and 2.11). 

On the following day, the suspension was centrifuged (10 min, 4°C, 17,000 x g), 

washed with ice-cold 75% ethanol ([v/v] in 0.1% DEPC-H2O), dried at 55°C, and dis-

solved in 20 µl 0.1% DEPC-H2O. 

 

Human vessels 

Samples, stored in RNA later, provided at -20°C were defrosted and ends of pieces 

(max. 0.3 mm length) were cut off. After transferring into Qiazol, samples were disin-

tegrated for 2 min at 18,000 rpm using an Ultra-Turrax® (IKA, Staufen, Germany) and 

stored at -80°C. Isolation of RNA was performed as described above. 

 

2.9.2 DNase digestion 

To exclude any contamination with genomic DNA, RNA was digested with the Am-

bion DNA free kit (Ambion # 1906, Applied Biosystems, Darmstadt, Germany) ac-

cording to the manufacturer`s guidelines. 

 

2.9.3 Determination of RNA concentration 

The measurement was performed with a BioMate UV-Vis spectrophotometer (Ther-

moElectron, Ulm, Germany) at the absorption maximum of 260 nm. 40 µg/ml RNA 

equates an extinction of 1. 

 

2.9.4 Alu polymerase chain reaction (Alu PCR)  

To check the DNA digestion and detect any contaminations of DNA in the RNA, an 

Alu PCR was carried out, which amplifies repetitive Alu sequences in a PCR reaction 

(Mullis & Faloona, 1987). These sequences are found in a large number in the hu-

man genome (5% of DNA) and contain about 300 bp. The primer A1S 5`-TCA TGT 

CGA CGC GAG ACT CCA TCT CAA A-3` was used. The reaction mixture was pre-

pared on ice, added to 100 ng of RNA, and the reaction was performed in a Thermo-

cycler PX2 (ThermoElectron, Ulm, Germany). As a positive control, 500 ng of ge-
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nomic DNA of THP-1 cells (obtained by Dr. Kerstin Hirschfelder, Pharmaceutical Bi-

ology, Saarland University) were used. 

 

 

reaction mixture (one sample): 
 

 

reaction conditions: 
denaturation 94°C 5 min 

   denaturation 94°C 1 min 

   annealing 56°C 1 min 

   elongation 72°C 2 min 

final elongation 72°C 10 min 

 

The detection of amplified product was done using agarose electrophoresis on a 

1.5% agarose gel. If no product was detected, reverse transcription was carried out. 

If a product was detected, DNase digestion and Alu PCR were repeated. 

 

2.9.5 Agarose gel electrophoresis 

The basic principle of agarose gel electrophoresis is the migration of charged parti-

cles in an electric field. The gel contains 0.5 – 2% [w/v] agarose depending on the 

size of detectable DNA fragments supplemented with 0.04% [v/v] ethidium bromide. 

After mixing with 6x loading dye (18% [w/v] ficoll type 400, 0.5 M EDTA, 60 ml 10x 

TBE (tris-borat-EDTA buffer: tris base 10.8 g/L, boric acid 3.5 g/L, Na2EDTA 0.74 

g/L), 0.25 % [w/v] bromophenol blue, 0.25% [w/v] xylencyanol, H2Odd ad 100 ml) 

samples were loaded onto a gel in TBE buffer and separated at 100 V. For the de-

termination of DNA sizes, a 50 bp DNA ladder (Fermentas, St. Leon-Rot, Germany) 

or a 1 kb DNA ladder (Invitrogen, Karlsruhe, Germany) was additionally loaded onto 

Primer A1S (50 µM) 0.5 µl 

10xTaq buffer  2.5 µl 

dNTPs (10 mM each) 0.5 µl 

Taq polymerase (5 U/µl) 0.5 µl 

RNA 100 ng 

H2O ad 25 µl 

30 cycles 
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the gel. Fluorescence detection of intercalated ethidium bromide at 312 nm was per-

formed with an UV transilluminator (White Top Light Transilluminator) with the soft-

ware ArgusX1 (Biostep, Jahnsdorf, Germany). 

 

2.9.6 Reverse transcription (RT) 

0.25 - 1 µg of RNA in 10 µl H2O were denaturated at 65°C for 5 min, put on ice, and 

transcribed into complementary DNA (cDNA) using the High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, Darmstadt, Germany) with the oligo dT Primer 

5`-TTT TTT TTT TTT TTT TTT-3` and RNAseOUTTM ribonuclease inhibitor (Invitro-

gen, Karlsruhe, Germany). RNA was incubated with the mixture for 10 min at 25°C 

and then 2 h at 37°C. After inactivation of the reverse transcriptase for 5 s at 85°C, 

samples were diluted with 80 µl H2O on ice. A reaction without enzyme served as 

negative control for real-time RT-PCR. 

 

reaction mixture (one sample): 
10x RT buffer 2 µl 

25x dNTP-mix (100 mM, 25 mM each) 0.8 µl 

Oligo dT(10 µM) 2 µl 

RNAseOUTTM Ribonuclease Inhibitor (40 U/µl) 0.25 µl 

MultiScribe reverse transcriptase (4 U/µl) 1 µl 

H2O 3.95 µl 

 

2.9.7 Real-time RT-PCR 

Real-time RT-PCR is a special form of the PCR reaction, whereas DNA quantification 

is performed during the amplification (Kubista et al., 2006; Mullis et al., 1986). Quanti-

fication is carried out by two different principles, both of them measuring the emerg-

ing fluorescence. The first method is the determination by fluorescence resonance 

energy transfer (FRET), where the target specific probe is dually labelled (5´-end: 

6-carboxy-fluorescein (6-FAM), 3´-end: black hole quencher 1 (BHQ1)). The second 

method is the fluorescent dye EvaGreen® (SolisBioDyne, Tartu, Estonia), which in-

tercalates into the emerging DNA amplificates. 
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2.9.7.1  Real-time RT-PCR with dual labelled probe 

The conditions for PCR reactions and mixtures are listened in Table 3. The reaction 

mixture was assembled on ice and filled in 96 well plates. 5 µl sample, standard, 

negative control from reverse transcription or H2O was added, each in triplicate. Used 

primers and probes are given in Table 1 and  

Table 2. Reaction and quantification were performed with an iCycler iQ5 and the iQ5 

package software (Biorad, München, Germany). Quantification occurred by analysis 

of the CT (treshold cycle) value. The concentration of probes was then calculated by 

the software related to the standard curve. Values were normalized to the house 

keeping gene ACTB (β-actin). The standard deviation of triplicates was less than 0.5 

and the efficiency of the reactions was between 95% and 105%. 

 

standard dilution series 

For quantification of cDNA and determination of the PCR efficiency, a dilution series 

with 7 dilutions (starting point: 20 attomol/µl, in TE buffer) of the plasmid pGEM®-T 

Easy (Promega, Heidelberg, Germany) with the appropriate insert. Glycerol stocks of 

bacteria with the appropriate plasmids were provided by Prof. Dr. Alexandra K. Kie-

mer (Pharmaceutical Biology, Saarland University) or cloned during my diploma the-

sis. Calculation of required amount of plasmid: 

 

c (target DNA)[attomol/µl] = c(plasmid)[µg/ml]*1.515[pmol/µl] / N[bp] 

N = number of base pairs of vector and insert 

 

primers and probes 

Sequences for primers and probes (Table 1 and  

Table 2) were obtained from Prof. Dr. Alexandra K. Kiemer (Pharmaceutical Biology, 

Saarland University) or designed with the program Primer3 

(http://frodo.wi.mit.edu/primer3/). 
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Table 1: primer sequences for real-time RT-PCR 

mRNA primer sense (5´ ���� 3´) primer antisense (5´ ���� 3´) 

ACTB TGC GTG ACA TTA AGG AGA AG GTC AGG CAG CTC GTA GCT CT 

IL-8 TGC CAG TGA AAC TTC AAG CA ATT GCA TCT GGC AAC CCT AC 

IL-6 AAT AAT AAT GGA AAG TGG CTA TGC AAT GCC ATT TAT TGG TAT AAA AAC 

TLR2 GCA AGC TGC GGA AGA TAA TG CGC AGC TCT CAG ATT TAC CC 

CCL2 
TTG ATG TTT TAA GTT TAT CTT TCA 

TGG 
CAG GGG TAG AAC TGT GGT TCA 

GILZ TCT GCT TGG AGG GGA TGT GG ACT TGT GGG GAT TCG GGA GC 

ICAM GAA GTG GCC CTC CAT AGA CA TCA AGG GTT GGG GTC AGT AG 

VCAM CGA GAC CAC CCC AGA ATC TA CTG TGG TGC TGC AAG TCA AT 

E-selectin AGC CCA GAG CCT TCA GTG TA CCC TGC ATG TCA CAG CTT TA 

 

Table 2: probe sequences for real-time RT-PCR 

mRNA probe (5` ���� 3`) 

ACTB 6-FAM-(CAC GGC TGC TTC CAG CTC CTC)BHQ-1 

IL-8 6-FAM-(CAGACCCACACAATACATGAAGTGTTGA)BHQ-1 

IL-6 6-FAM-(TCC TTT GTT TCA GAG CCA GAT CAT TTC T)BHQ-1 

TLR2 6-FAM-(ATG GAC GAG GCT CAG CGG GAA G)BHQ-1 

CCL2 6-FAM-(AGA TAC AGA GAC TTG GGG AAA TTG CTT TTC)BHQ-1 

GILZ 6-FAM-(CAG GAT GCT CAC ATT TAA GTT TTA CAT GCC C)BHQ-1 

ICAM 6-FAM-(AAC ACA AAG GCC CAC ACT TC)BHQ-1 

VCAM 6-FAM-(GCT CAG ATT GGT GAC TCC GT)BHQ-1 

E-selectin 6-FAM-(CAT CTG GGA ATT GGG ACA AC)BHQ-1 

 

Table 3: PCR conditions for real-time RT-PCR 

mRNA probe dNTPs MgCl 2 annealing 

ACTB 1.5 pmol 200 µM 5 mM 60°C 

IL-8 2.5 pmol 200 µM 4 mM 60°C 

IL-6 2.5 pmol 200 µM 3 mM 57°C 

GILZ 1.5 pmol 200 µM 4 mM 60°C 

CCL2 1.5 pmol 200 µM 4 mM 59°C 

TLR2 2.5 pmol 800 µM 6 mM 60°C 

ICAM 2.5 pmol 200 µM 3 mM 58°C 

VCAM 2.5 pmol 200 µM 4 mM 58°C 

E-selectin 1.5 pmol 200 µM 4 mM 58°C 
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reaction mixture (one sample): 
primer sense (50 µM) 0.25 µl 

primer anti-sense (50 µM) 0.25 µl 

10x Taq buffer  2.5 µl 

MgCl2 x 

dNTPs(10 mM, each) x 

probe (1 pmol/µl) x 

Taq polymerase (5 U/µl) 0.5 µl 

H2O ad 25 µl 

 

reaction conditions: 
denaturation 95°C 08:00 min 

   denaturation 95°C 00:15 min 

   annealing x 00:15 min 

   elongation 72°C 00:15 min 

final elongationf 25°C 00:30 min 

 

2.9.7.2  Real-time RT-PCR with EvaGreen ® 

cDNA was diluted 1:5 and used as standard dilution series. EvaGreen® Mix (Solis-

BioDyne, Tartu, Estonia) was used according to the manufacturer`s guidelines with a 

mixture as given in Table 4. Also primer sequences are given in Table 4. The reac-

tion mixture was assembled on ice and filled in 96 well plates. 5 µl sample, standard, 

negative control from reverse transcription or H2O was added, each in triplicate. Re-

action and quantification was performed with an iCycler iQ5 and the iQ5 package 

software (Biorad, München, Germany). Quantification was done by analysis of the CT 

values after the Livak method (∆CT method) (Livak & Schmittgen, 2001) (Applications 

Guide of iCycler iQ5): 

),(),(

),(),(

2

2
cogeneCcoactinC

treatedgeneCtreatedactinC

TT

TT

−

−

 

 

Values were normalized to the house keeping gene ACTB (β-actin). The standard 

deviation of triplicates was less than 0.5 and the efficiency of the reactions was be-

tween 95% and 105%. 

 

45 cycles 
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Table 4: primer sequences for real-time RT-PCR with  EvaGreen ® 

mRNA primer sense (5´ ���� 3´) primer antisense (5´ ���� 3´) 

DUSP1 CAG CTG CTG CAG TTT GAG TC AGG TAG CTC AGC GCA CTG TT 

HO1 CGA GAC GGC TTC AAG CTG GT AAG ACT GGG CTC TCC TTG TT 

H19 TTC AAA GCC TCC ACG ACT CT CTG AGA CTC AAG GCC GTC TC 

IGF2 GGA CTT GAG TCC CTG AAC CA TGA AAA TTC CCG TGA GAA GG 

CTCF GAA CCC ATT CAG GGG AAA AGC TCG CAA GTG GAC ACC CAA ATC 

TLR2 GGG GTC CTG TGC CAC CGT TTC CCC AGT AGG CAT CCC GCT CAC 

ZFP36 TCG CCA CCC CAA ATA CAA G  TCG GCT AGG GTT GTG GAT G 

ACTB TGC GTG ACA TTA AGG AGA AG GTC AGG CAG CTC GTA GCT CT 

DUSP1 and HO1 primer sequences are published in (Zakkar et al., 2008). 

 

Table 5: PCR conditions for real-time RT-PCR with E vaGreen ® 

mRNA primers annealing 

DUSP1 0.6 µl 56°C 

HO1 0.3 µl 56°C 

H19 0.4 µl 60°C 

IGF2 0.5 µl 56°C 

CTCF 0.4 µl 58°C 

TLR2 0.3 µl 65°C 

ZFP36 0.5 µl 60°C 

ACTB 0.4 µl 60°C 

 

reaction mixture (one sample): 
primer sense (10 µM) x 

primer antisense (10 µM) x 

EvaGreen® mix  4 µl 

H2O ad 20 µl 

 

reaction conditions: 
denaturation 95°C 30:00 min 

   denaturation 94°C 00:30 min 

   annealing x 00:30 min 

   elongation 72°C 00:30 min 

melting curve 55°C 00:07 min 

 

40 cycles 

81 cycles 40 cycles 
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2.10   DNA analysis 

2.10.1 DNA isolation 

DNA was isolated from the Qiazol lysates (2.9.1) after the supernatant with RNA was 

completely removed. DNA was precipitated by addition of 300 µl 100% [v/v] ethanol, 

washed with ice cold 70% [v/v] ethanol, and solved in 50 µl H2O. 

 

After isolation, DNA analysis was carried out in cooperation with Dr. Sascha Tierling 

in the Institute of Genetics/Epigenetics (Prof. Dr. Walter, Saarland University). 

 

2.10.2 Determination of DNA concentration 

In addition to the method described in 2.3.5, DNA was determined using a Nanodrop 

instrument at 260 nm (Thermo Fisher Scientific, Waltham, MA, USA). 

 

2.10.3 Bisulfite treatment 

Bisulfite treatment is a method to convert unmethylated cytosines of DNA into uracils.  

500 ng DNA were mixed with 187 µl sodium-bisulfite solution (1.9 g NaHSO3, 750 µl 

2 M NaOH, 2.5 ml H2O) and 73 µl scavenger solution (98.7 mg (+ -)- 6 hydroxy-2, 5, 

7, 8-tetramethylchromane-2-carboxylicacid C14H18O4, 2.5 ml Dioxan). The reaction 

was performed with a master cycler (Eppendorf AG, Hamburg, Germany). 

 

reaction conditions: 
denaturation 99°C 15 min 

   sulfonation and desamination 50°C 30 min 

denaturation 99°C 5 min 

   sulfonation and desamination 50°C 1.5 h 

denaturation 99°C 5 min 

   sulfonation and desamination 50°C 1.5 h 

 

After addition of 150 µl H2O, samples were centrifuged (15,500 x g, 24 min) through 

a filter unit (Centrifugal Filters Ultracel, MilliporeTM, Darmstadt, Germany), which was 

desulfonated with 500 µl 0.3 M NaOH (incubation 10 min, centrifugation 15,500 x g, 

17 min) and washed with 500 µl TE buffer (15,500 x g, 17 min). Elution of DNA was 
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carried out with 50 µl prewarmed (50°C) TE buffer on the turned filter unit using cen-

trifugation (4,000 x g, 25 min). Samples were stored at 4°C. 

 

2.10.4 PCR of bisulfite DNA 

2 µl of bisufite DNA was merged with the reaction mixture (Table 6 and Table 7) and 

the reaction was carried out in a Thermal Cycler (Applied Biosystems, Darmstadt, 

Germany). During PCR, methylated CG sequences were amplified as CG and un-

methylated CG, which were converted into UG by bisulfite treatment, were amplified 

as TG. 

 

Table 6: primers of bisulfite DNA 

gene primer sense (5´ ���� 3´) primer antisense (5´ ���� 3´) 

DUSP1p GAA AAG GGG TAT AAG AGT ATG T CTA CCA ACT AAA ACT AAC CTC C  

DUSP1ed GTT TTG GTT TTG AGT AAG TTT GAT 

G 

TAA CCC TCA AAA TAA TTA AAA CAA 

TTA A 

DUSP1eu GTT ATT GGG ATT TAG GGT A CTA AAC TAA AAA CCT CCA AC 

H19 GGG TTT GGG AGA GTT TGT GAG GT AAC ACA AAA AAC CCC TTC CTA CCA 

 

Table 7: conditions for the PCR of bisulfite DNA 

gene cycles annealing 

DUSP1p 36 54°C 

DUSP1ed 42 52”C 

DUSP1eu 40 56°C 

H19 45 57.6°C 

 

 

reaction mixture (one sample) (DUSP1)  
primer sense (10 µM) 0.5 µl 

primer anti-sense (10 µM) 0.5 µl 

10x buffer B (Solis BioDyne)  3 µl 

MgCl2 (25 mM, Qiagen) 3 µl 

dNTPs (10 mM, 2.5 µM each, Sigma) 2.4 µl 

Hot fire pol (50 U/µl, Solis BioDyne) 0.5 µl 

H2O 18.1 µl 
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reaction mixture (one sample) (H19)  
primer sense (10 µM) 0.5 µl 

primer anti-sense (10 µM) 0.5 µl 

10x reaction buffer (Qiagen)  3 µl 

MgCl2 (25 mM, Qiagen) 3 µl 

dNTPs(10 mM, 2.5 µM each, Sigma) 2.4 µl 

Hot Star Taq (5 U/µl, Solis BioDyne) 0.3 µl 

H2O 21.3 µl 

 

reaction conditions: 
denaturation 95°C 30 min 

   denaturation 95°C 1 min 

   annealing x 1 min 

   elongation 72°C 45 s 

final elongation 55°C 10 min 

 

A possible contamination in the bisulfite treatment was controlled using agarose gel 

electrophoresis with an 1.2% [w/v] agarose gel in 0.5% TBE (2.9.5). 

 

2.10.5 Exonuclease phosphatase treatment (ExoSAP) 

Degradation of remaining primers and dNTPs, which were used in the PCR of bisul-

fite DNA, was done by addition of 1 µl Exonuclease I/SAP shrimp alkaline phos-

phatase (1 U / 9 U, USB Corporation, Cleveland, Ohio, USA) to 5 µl PCR product 

and incubation at 37°C for 30 min. For enzyme inactivation, samples were incubated 

at 80°C for 15 min. 

 

2.10.6 Restriction digestion 

A restriction digestion was performed in order to enhance the SNuPE signal during 

the H19 promoter analysis. 

10 µl of the product were digested with 0.5 µl Tsp5091 (New England Biolabs GmbH, 

Frankfurt, Germany) at 37°C for 30 min. Restriction enzyme inactivation was per-

formed at 80°C for 20 min. The products (182 bp and 146 bp) were controlled on a 

1.2% [w/v] agarose gel in 0.5% TBE (2.9.5). 

x cycles 
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2.10.7 Single nucleotide primer extension (SNuPE) 

The reaction mixture was added to the ExoSAP product (see below) and the reaction 

was performed with SNuPE primers as indicated below (Table 8). For DUSP1ed 

primers, it was necessary to have two different preparations, because of a poor 

HPLC signal separation. Additionally, primer 2 of DUSP1eu needs ddGTP and 

ddATP instead of ddCTP and ddTTP, because the primer lies on the reverse strand.  

The primers are located in front of a possibly methylated CpG region (Table 9). 

Whithin the reaction, primers are elongated with the corresponding base (methylated 

CpG � cytosine, unmethylated CpG � thymine). 

 

Table 8: SNuPE primers 

gene primer 1 (5´ ���� 3´) primer 2 (5´ ���� 3´) 

DUSP1p AGA GGG AGG AG TAA GGT AGG TGG TA 

DUSP1ed TTG TAT TTG GGT AGT G CAA CAT ATC CTT AC  (reverse) 

DUSP1eu TTG GAT TTT GTT TT AGG GTT GTG GT 

H19 TGT TAG TAG AGT G GTG ATT AGT ATA AGT T 

 

Table 9: positions of analyzed cytosins in GRCh37/h g19 

gene localisation position (primer 1) position (pri mer 2) 

DUSP1, chromosome 5, reverse strand 

DUSP1p promoter C at position nt 
172,198,585 

C at position nt 
172,198,562 

DUSP1ed enhancer region 
downstream 

C at position nt 
172,196,754 

C at position nt 
172,196,740 

DUSP1eu enhancer region 
upstream 

C at position nt 
172,199,333 

C at position nt 
172,199,291 

 

H19, chromosome 11, reverse strand 

H19 promoter C at position nt 
1,998,506 

C at position nt 
1,998,376 
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reaction mixture (one sample): 
primer 1 (30 µM) 2.4 µl 

primer 2 (30 µM) 2.4 µl 

10x buffer C (Solis BioDyne)  2 µl 

MgCl2 (25 mM, Qiagen) 1.6 µl 

ddCTP (1 mM, Larova) 1 µl 

ddTTP (1 mM, Larova) 1 µl 

Termi Pol (50 U/µl, Solis BioDyne) 1 µl 

H2O 2.6 µl 

 

reaction conditions: 
denaturation 96°C 2 min 

   denaturation 96°C 30 s 

   annealing 50°C 30 s 

   elongation 60°C 1 min 

 

SNuPE products were analyzed using ion pair reversed phase high performance liq-

uid chromatography (IP/RP-HPLC) with an HPLC WAVE 3000TM (Transgenomic), a 

DNASep-Column at 50°C, and a flow rate of 0.9 ml/min. The principle of the analysis 

is the separation of elongated primers (first: cytosine – guanine – adenine – thymine) 

based on size, charge, and hydrophobicity. 

 

 

2.11   Protein analysis 

2.11.1 Protein isolation 

Two methods for protein isolation were used. 

 

- Proteins were isolated from Qiazol lysates (2.9.1, 2.10.1) from the supernant after 

DNA precipitation. Precipitation of proteins was done with 600 µl of supernant, mixed 

with 1.4 ml acetone. After incubation of 10 min and centrifugation (10 min, top speed, 

4°C), the pellet was washed for three times with 1 ml guanidine solution (0.3 M gua-

nidine hydrochloride in 95% [v/v] ethanol and 2.5% [v/v] glycerol (1:1)). During every 

washing step, samples were mixed, incubated for 10 min at room temperature, and 

50 cycles 
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centrifuged (5 min, 8,000 x g, 4°C). Another washing step with ethanol containing 

2.5% glycerol [v/v] was performed, centrifuged, dried at room temperature, and dis-

solved in 1% SDS solution. All steps were carried out on ice unless otherwise noted. 

 

- Cells were lysed with SB lysis buffer (50 mM tris-HCl, 1% [m/v] SDS, 10% [v/v] 

glycerol, 5% [v/v] β-mercaptoethanol, 0.004% [m/v] bromophenol blue), supple-

mented with a protease inhibitor mixture (Complete®, Roche, Mannheim, Germany) 

according to the manufacturer`s guidelines and frozen at -80°C. After thawing, sam-

ples were treated with ultrasound and centrifuged (10 min, 17,000 x g, 4°C). 

 

2.11.2 Determination of protein concentration 

The protein concentration was measured using the Pierce™ BCA Protein Assay Kit 

(Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer`s in-

structions. 

 

2.11.3 SDS-polyacrylamide gel electrophoresis (SDS- Page) 

After thawing, equal amounts of samples were mixed 3:1 with loading dye (Roti® 

Load), denaturated at 95°C for 5 min, and loaded onto the gel (Table 10). Proteins 

were separated in electrophoresis buffer (24.8 mM tris base, 1.92 mM glycine, 0.1% 

[w/v] SDS) at 80 V for 45 min, followed by 2 h at 120 V. To identify the proteins based 

on their molecular mass, a prestained protein marker was included. 

 

Table 10: composition of the SDS gel 

 resolving gel (12%) stacking gel 

H2O 3.3 ml 3.4 ml 

30% acrylamide / 0.8% bis-

acrylamide solution  

4 ml 0.83 ml 

tris base (1.5 M pH 8.8) 2.5 ml  

tris base (1 M pH 6.8)  0.63 ml 

SDS (10% [w/v]) 100 µl 50 µl 

APS (10% [w/v]) 100 µl 50 µl 

TEMED 10 µl 5 µl 
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2.11.4 Western Blot 

After the separation of proteins with the gel, they were blotted onto a PVDF mem-

brane (Immobilion-FL, Millipore, Schwalbach am Taunus, Germany) using the Mini-

Transblot cell (Biorad, München, Germany). The membrane was activated by incuba-

tion with methanol for 30 s. Afterwards, the membrane, sponges, and blotting papers 

were preincubated in transfer buffer (24.8 mM tris base, 1.92 mM glycine, 20% [v/v] 

methanol, 0.05% [w/v] SDS), followed by a sandwich preparation with the gel. The 

blot was performed in transfer buffer overnight at 80 mA. On the following day, the 

membrane was incubated for 1 h at room temperature in rockland blocking buffer 

(RBB) (Rockland, Gilbertsville, PA, USA) in order to block unspecific binding sites. 

 

2.11.5 Immunodetection 

After blocking, membranes were incubated with diluted primary antibodies (see Table 

11 for specific conditions). After primary antibody incubation, membranes were 

washed, each with the indicated buffer of the used primary antibody (see in Table 11) 

(2 x 5 min), and further washing steps were performed with PBST (2 x 5 min). Mem-

branes were incubated with diluted secondary antibody as denoted and washed 

again with PBST (2 x 5 min) and PBS (2 x 5 min). The detection was carried out with 

the Odyssey Infrared Imaging System (LI-COR Biosciences, Lincoln, NE, USA). 

Relative signal intensities were determined by the Odyssey software or the ImageJ 

software. 
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Table 11: antibodies, dilution, and incubation cond itions for immunodetection 

primary antibody dilution incubation 

Anti human tubulin, mouse IgG 1:1,000 in PBST + 5% [m/v] dried milk 3 h room temperature 

Anti human GILZ, goat IgG 1:200 in gelatine buffer 3 h, 37 °C 

Anti human GILZ, rabbit IgG 1:1,000 in RBB over night, 4°C 

Anti human DUSP1, rabbit gG 1:200 in PBST + 5% [m/v] dried milk over night, 4°C 

Anti human TLR2, rabbit IgG vessels: 1:1,000, HUVEC: 1:500 in 

PBST + 5% [m/v] dried milk  

3 h room temperature 

Anti human ZFP36, rabbit IgG 1:1,000 in RBB 3 h room temperature 

   

secondary antibody   

IRDye©800CW conjugated 

goat anti-mouse IgG 

1 :5,000 in RBB 2 h, room temperature 

IRDye©680 conjugated goat 

anti-mouse IgG 

1 :10,000 in RBB 1.5 h, room tempera-

ture 

IRDye©680 conjugated goat 

anti-rabbit IgG 

1 :5,000 in RBB 2 h, room temperature 

IRDye©800 conjugated don-

key anti-goat IgG 

1 :10,000 in RBB 2 h, room temperature 

PBST: (0.1% [v/v] tween 20 in PBS (see 2.4.3)) 

RBB: rockland blocking buffer  

gelatine buffer, pH 7.5: (gelatine A 0.75% [w/v], tween 20 0.1% [v/v], tris base 20 mM, NaCl 137 mM) 

 

2.12   Statistics 

Data are shown as mean +/- SEM using OriginPro9.1G (OriginLab Corporation, 

Northhampton, MA, USA). Statistical significance was determined by student’s t-test 

(two samples) for cell culture experiments using Excel (Microsoft) and by Wilcoxon 

rank sum test for human samples using OriginPro9.1G unless otherwise noted. 

* p<0.05; ** p<0.01; *** p<0.001 
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3 Results 
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3.1 Downregulation of glucocorticoid-induced leucin e zipper (GILZ) 

promotes vascular inflammation 

3.1.1 GILZ expression in degenerated vein bypasses 

To identify degenerated vein bypasses as inflamed tissue, mRNA expression of the 

inflammatory markers CCL2 (MCP1) and TLR2 were measured and the expression 

levels were compared to healthy veins (Diesel et al., 2012; Weber et al., 2003). Both 

inflammatory markers were significantly increased (Figure 13 A, B). Additionally, in-

flamed veins revealed a significantly decreased GILZ mRNA expression (Figure 

13 C). Similar results were observed analyzing GILZ and TLR2 on protein level 

(Figure 14 A, B). 

 

       A           B 

           

        C 
 

                                        
Figure 13: mRNA expression in human veins - CCL2 (A), TLR2 (B), and GILZ (C) mRNA expres-
sion in saphenous veins (n=23) and degenerated aortocoronary saphenous vein bypass grafts (n=15) 
were measured by real-time RT-PCR using ACTB (β-actin) for normalization. Data are presented as 
individual values (black squares) as well as 25th and 75th percentiles as boxes within geometric me-
dians (line), arithmetic medians (square), 10th and 90th percentiles as whiskers, and ends of values 
(cross). 
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Figure 14:  GILZ (A) and TLR2 (B) protein expression in human v eins  - Equal protein amounts 
were assessed by Western blot analysis using tubulin as loading control. One representative blot out 
of 4 independent experiments with 11 healthy and 12 degenerated samples is shown. Signal intensi-
ties are shown relative to the tubulin values, and values for healthy samples were set as one.  
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3.1.2 Localisation of GILZ in vessels 

An antibody staining was performed in order to identify GILZ expressing cells. First, 

the specifity of the GILZ antibody was evaluated in THP-1 cells using a protocol for 

histological samples (Figure 15). As expected for GILZ expression, the treatment with 

the glucocorticoid receptor (GR) activator dexamethasone (Dex) resulted in a slightly 

stronger staining, while treatment with the TLR1/2 ligand Pam3CSK4 (Pam), which 

enhanced the inflammation via activation of TLR1/2, reduced the GILZ staining com-

pared to control (Co). 

 

                

Dex

Co

Pam

 
Figure 15: Specifity of the GILZ antibody  - THP-1 cells were treated with 1 µM dexamethasone, 1 
µg/ml Pam3CSK4 or left untreated for 8 h. Paraffin-embedding and cutting was kindly performed by Dr. 
Yvette Simon and staining by Dr. Sonja M. Kessler (Pharmaceutical Biology, Saarland University). The 
pictures were taken with a Zeiss Axiovert 40CFL phase contrast microscope (magnification 400x). 
 

For the detection of GILZ localisation in vessels, murine and human histological 

samples were used (Figure 16). GILZ was clearly shown in the endothelial layer of 

both types of vessels and both species. 
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Figure 16:  GILZ detection in histological samples of vessels  - Localisation of GILZ expression 
(brown) is shown by GILZ immunostaining in a murine femoral artery (A) a human saphenous vein (C) 
and a human radial artery (D). Additionally, hematoxylin / eosin (HE) staining of a murine femoral ar-
tery (B) is shown. Paraffin-embedding and cutting was kindly performed by Dr. Yvette Simon and 
staining by Dr. Sonja M. Kessler (Pharmaceutical Biology, Saarland University). The pictures were 
taken with a Zeiss Axiovert 40CFL phase contrast microscope (magnification 50x (A, B) and 100x (C, 
D)) 
 

3.1.3 Inflammatory response in EC  

Both, immunohistochemistry as well as data previously presented by ourselves and 

others suggested a distinct expression of GILZ in EC (Cheng et al., 2013; Hahn et al., 

2014; Hoppstädter et al., 2012). As shown in Figure 17 A, GILZ protein was down-

regulated under inflammatory conditions, i.e. after TNF-α treatment. 

Interestingly, the mRNA binding protein ZFP36, known to destabilize GILZ mRNA in 

MΦ (Hoppstädter et al., 2012), was strongly induced by TNF-α (Figure 17 B). 
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Early after TNF-α treatment (1 h), ZFP36 was present in its low-phosphorylated, low 

molecular weight form, which is known to be the active, but instable variant. At later 

time points, the phosphorylated high-molecular weight isoform of ZFP36, which is 

inactive but stable (Brook et al., 2006), predominated (Figure 17 B). 
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Figure 17: Time-dependent GILZ and ZFP36 protein ex pression after TNF treatment -  HUVEC 
were treated with 10 ng/ml TNF-α for the indicated time points. Protein levels were measured by 
Western blot analysis using tubulin as loading control. For GILZ (A) one blot of two, for ZFP36 (B) one 
blot of three independent experiments is shown with the respective quantification (duplicates). 
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In order to examine the functional link between GILZ and ZFP36 expression in HU-

VEC, a small hairpin RNA (shRNA)-mediated knockdown of ZFP36 was performed, 

which resulted in a diminished ZFP36 expression in contrast to the control lacZ plas-

mid transfected cells (co) (Figure 18 A). Simultaneously, this knockdown led to an 

enhanced GILZ protein expression (Figure 18 B). This suggested a key role for 

ZFP36 in the regulation of GILZ expression.  

 

A                                                            B 

                             

 
Figure 18: ZFP36 knockdown -  HUVEC were transfected with 1 µg lacZ (co) or shZFP36 plasmid 
and cultivated for 24 h. Protein levels of ZFP36 (A) and GILZ (B) were measured by Western blot 
analysis using tubulin as loading control and quantified by ImageJ. 
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3.1.4 Regulation of GILZ and ZFP36 by anti-inflamma tory laminar shear 

stress 

Laminar shear stress is a physical force, which affects the mRNA and protein ex-

pression as well as the surface of EC in the vessel. Depending on this force, cells 

changed their shape and aligned in the direction of flow (Figure 19). 

 

      static, 24 h                                              laminar flow, 24 h 

 
Figure 19: Alignment of HUVEC - Light microscopy showed HUVEC, either cultured statically or 
exposed to 24 h laminar flow (20 dynes/cm2). The pictures were taken with a Zeiss LSM 510 confocal 
microscope (magnification 50x). 
 

Laminar shear stress, generally seen as an anti-inflammatory and antiatherosclerotic 

stimulus, elevated GILZ mRNA levels in HUVEC (Figure 20 A), while inflammatory 

conditions, i.e. TNF-α treatment, downregulated GILZ. The same effect was ob-

served on protein level (Figure 20 B). The anti-inflammatory activation state of HU-

VEC upon laminar shear stress was confirmed by elevated HO1 mRNA expression 

(Figure 20 C). 

While ZFP36 was induced by TNF-α on the transcriptional level, its gene expression 

tended to decrease during laminar flow (Figure 20 D). A combination of laminar flow 

and TNF-α completely abrogated GILZ downregulation, which was typically observed 

upon TNF-α treatment in statically cultured HUVEC (Figure 20 E). Concordantly, 

ZFP36 induction by TNF-α was abrogated in cells exposed to laminar flow (Figure 

20 F), suggesting that the lack of ZFP36 induction contributes to the elevated GILZ 

expression in TNF-α-treated shear stressed cells. 
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Figure 20: GILZ, HO1, and ZFP36 expression under un der inflammatory and anti-inflammatory 
conditions  - HUVEC were treated with 10 ng/ml TNF-α under static conditions or exposed to 24 h 
laminar flow (20 dynes/cm2) as indicated. GILZ (A), HO1 (C), and ZFP36 (D) mRNA levels were de-
termined by real-time RT-PCR using ACTB for normalization. Values for untreated cells were set as 
one, **p<0.01, ***p<0.001 compared to untreated cells under static conditions. Data were obtained 
from four independent experiments performed in duplicate. GILZ (B, E) and ZFP36 (F) protein levels 
were measured by Western blot analysis using tubulin as loading control and quantified by ImageJ ((B, 
F) n=6; (E) n=8 derived from 4 independent experiments). Values for untreated cells were set as one 
as indicated, **p<0.01, ***p<0.001, +(B) p=0.051, n.s.(E) p=0.092, n.s.(F) p=0.187 compared to untreated 
cells. 
 

 

These results were also confirmed analyzing human tissues. ZFP36 protein levels 

were elevated in degenerated, inflamed venous bypasses compared to healthy veins 

(Figure 21). 
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Figure 21: ZFP36 expression in human veins  - Equal protein amounts were assessed by Western 
blot analysis using tubulin as loading control. One representative blot out of three independent ex-
periments with 8 healthy veins and 10 degenerated, inflamed venous bypasses is shown. Signal in-
tensities were measured relative to tubulin values, and values for healthy samples were set as one. 
 

3.1.5 Mechanisms of GILZ downregulation in inflamma tion 

Our data suggest an inverse regulation of ZFP36 and GILZ in inflammation and un-

der anti-inflammatory conditions in HUVEC. In fact, ZFP36 has been reported to be a 

destabilizer of GILZ mRNA in MΦ (Hoppstädter et al., 2012) and to be regulated by 

DUSP1 (Huotari et al., 2012), which inhibits MAPKs, most importantly p38 MAPK 

(Kiemer et al., 2002a). 

To assess the influence of p38 MAPK activation on ZFP36 and GILZ expression, 

HUVEC were transfected with a dominant negative mutant of p38 resulting in a sig-

nificantly reduced ZFP36 mRNA expression, which was diminished in a greater ex-

tent by TNF-α treatment (Figure 22). 

 

                                     
Figure 22: ZFP36 expression after overexpression of dominant negati ve (dn) p38 α MAPK -  HU-
VEC were transfected with empty control vector (empty) or dn p38α (p38dn) for 24 h and treated with 
10 ng/ml TNF-α for another 4 h. Transfection was kindly performed by Dr. Kerstin Hirschfelder (Phar-
maceutical Biology, Saarland University). mRNA levels were determined by real-time RT-PCR using 
ACTB for normalization. Values for cells transfected with control vector, untreated as well as TNF-α 
treated, were set as one hundred percent. Data show means +SEM of four independent experiments 
performed in duplicates, *p<0.05, **p<0.01 compared to cells transfected with control vector. 
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As an additional approach, p38 phosphorylation in HUVEC was inhibited by pre-

treatment with the p38 MAPK inhibitor SB203580 prior to TNF-α challenge. p38 inhi-

bition antagonized TNF-α-mediated ZFP38 induction both on mRNA and protein level 

(Figure 23 A, B and E). Reduced ZFP36 expression was accompanied by an abroga-

tion of GILZ downregulation (Figure 23 C, D and F). These results suggest that p38 

inhibition enhances GILZ expression by reducing ZFP36 levels. 
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Figure 23:  ZFP36 and GILZ expression after inhibition of p38 M APK activity - HUVEC were pre-
treated with solvent control DMSO or SB203580 (10 µM), followed by treatment with 10 ng/ml TNF-α 
for 2 h (A-B, E-F) or 4 h (C-D). Protein levels were measured by Western blot analysis using tubulin as 
loading control (A-D). mRNA levels were determined by real-time RT-PCR using ACTB for normaliza-
tion (E-F). Values for cells pretreated with the solvent control DMSO, either in the presence (B, E) or 
absence (D, F) of TNF-α, were set as one hundred percent. Data show means of three (A-D) or two 
(E-F) independent experiments performed in triplicates, *p<0.05, **p<0.01, ***p<0.001, n.s: not statis-
tically significant. Experiments were kindly performed by Nina Hachenthal and Dr. Jessica Hoppstädter 
(Pharmaceutical Biology, Saarland University). 
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Interestingly, a significant downregulation of DUSP1 protein expression in degener-

ated vein bypasses was detected (Figure 24 A, B). In cultivated HUVEC, an upregu-

lation of DUSP1 mRNA levels by laminar shear stress and downregulation by TNF-α 

was observed (Figure 24 C). 
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Figure 24: DUSP1 expression under inflammatory and anti-inflammatory conditions - (A) 
DUSP1 protein expression in human veins. Equal protein amounts were assessed by Western blot 
analysis using tubulin as loading control. One representative blot out of four independent experiments 
with 11 healthy and 12 degenerated samples is shown. Signal intensities were measured relative to 
tubulin values, and values for samples from healthy tissues were set as one. (B) DUSP1 mRNA ex-
pression under pro- and anti-inflammatory conditions. HUVEC were treated with 10 ng/ml TNF-α un-
der static conditions or exposed to 24 h laminar flow (20 dynes/cm2) as indicated. mRNA levels were 
determined by real-time RT-PCR using ACTB for normalization. Values for untreated cells under static 
conditions were set as one, **p<0.01, ***p<0.001 compared to untreated cells. Data represent means 
of four independent experiments performed in duplicate. 
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3.1.6 Functional implications of GILZ downregulatio n 

We aimed to determine whether GILZ downregulation has functional implications in 

inflammatory activation of HUVEC. We knocked down GILZ in HUVEC by siRNA re-

sulting in reduced GILZ protein levels (Figure 25 A). Using a luciferase reporter gene 

under an NF-κB promoter, we showed that GILZ knockdown significantly increased 

NF-κB activity compared to control transfected cells (Figure 25 B); functionality of the 

luciferase assay was verified measuring TNF-α-induced NF-κB activity (Figure 25 C).  

 

                  A                                      B 
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Figure 25: NF- κκκκB activation after GILZ knockdown  - (A) HUVEC were transfected with GILZ siRNA 
(siGILZ) or control siRNA (siCo). Cells were harvested after 20 h. GILZ protein expression was ana-
lyzed by Western blot using tubulin as loading control. One representative blot out of four independent 
experiments is shown. (B) HUVEC were transfected with either siCo or siGILZ and an NF-κB driven 
luciferase reporter construct. Cells were harvested 20 h post transfection. NF-κB activity was deter-
mined by measuring luciferase activity. Data represent means of four independent experiments per-
formed in quinticate. (Three of these experiments were performed by Dr. Kerstin Hirschfelder (Phar-
maceutical Biology, Saarland University). Values for siCo were set as one, ***p<0.001, compared to 
siCo transfected cells. (C) HUVEC were transfected with luciferase plasmid for 15 h and treated with 
10 ng/ml TNF-α for 5 h or left untreated (co). NF-κB activity was measured by luciferase assay. Data 
show one experiment each with 9 samples and data for co were set as one, ***p<0.001.  
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3.2 Lack of endothelial glucocorticoid-induced leuc ine zipper 

(GILZ) induction under atherogenic flow conditions 

3.2.1 Inflammatory activation of HUVEC by low and o scillatory flow 

Both, laminar shear stress at low flow rates as well as oscillatory shear stress, were 

previously reported to promote inflammatory activation of the endothelium (Hastings 

et al., 2007). When we applied laminar flow of 2 dynes/cm2 or oscillatory flow to pri-

mary HUVEC we in fact observed an elevated expression of a set of inflammatory 

mediators under both conditions (Figure 26). Oscillatory shear stress led to a signifi-

cant upregulation of all inflammatory mediators with the exception of VCAM. Concor-

dantly, VCAM is the only inflammatory marker, which was diminished by low shear 

stress. The other adhesion molecules and the cytokines CCL2 and IL-6 were slightly 

enhanced in response to low flow, while IL-8 and TLR2 were significantly upregu-

lated. 

 

 

Figure 26: Expression of inflammatory mediators und er inflammatory flow conditions  - HUVEC 
were exposed to 24 h low (2 dynes/cm2) or oscillatory flow. mRNA levels were determined by real-time 
RT-PCR using ACTB for normalization. Values for untreated cells were set as one hundred percent. 
For low flow, data were obtained from three independent experiments, for oscillatory flow, from 8 inde-
pendent experiments. All experiments were performed in duplicates. 
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Laminar shear stress of 20 dynes/cm2 strongly induced the anti-inflammatory media-

tor HO1 (Blumenthal et al., 2005; Hahn et al., 2014; Kiemer et al., 2003a), while oscil-

latory flow exhibited this effect to a much lower extent and low flow conditions even 

reduced HO1 mRNA levels compared to static cultivation (Figure 27). 

 

 

Figure 27:  HO1 mRNA expression under different flow conditions -  HUVEC were exposed to 24 h 
laminar (20 dynes/cm2), low (2 dynes/cm2) or oscillatory flow. mRNA levels derived from four or three 
(low flow) independent experiments performed in duplicates were measured by real-time RT-PCR 
using ACTB for normalization. Values for untreated cells were set as one. Statistical differences were 
determined with Kruskal-Wallis-ANOVA followed by post-hoc-analysis with Mann-Whitney-U-test. 
 

 

3.2.2 GILZ downregulation under inflammatory condit ions 

The results shown in chapter 3.1 demonstrate that the anti-inflammatory mediator 

GILZ is induced by laminar flow and downregulated under inflammatory conditions. 

We therefore hypothesized a lack of GILZ induction under atherogenic flow condi-

tions. Low flow had in fact no effect on GILZ expression compared to static cultiva-

tion, while oscillatory flow even reduced GILZ mRNA levels (Figure 28 A). We there-

fore focussed the further work on oscillatory shear stress conditions. 

GILZ has previously been shown to decrease during inflammatory cell activation, 

such as TLR activation of MΦ (Hoppstädter et al., 2012) or TNF-α treatment of EC 

(chapter 3.1.3). We confirmed a respective downregulation of GILZ protein levels in 

HUVEC upon inflammatory oscillatory stress (Figure 28 B). Interestingly, TNF-α did 

not further reduce GILZ levels during oscillatory stress (Figure 28 B). These findings 

were confirmed on mRNA level (Figure 28 C). 
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Figure 28: GILZ expression under inflammatory flow conditions  - (A, C) GILZ mRNA expression 
under flow conditions. HUVEC were kept under static conditions or were exposed to 24 h laminar (20 
dynes/cm2), low (2 dynes/cm2), or oscillatory flow. TNF-α treatment (10 ng/ml) was done for 2 h before 
the end of the experiment. mRNA levels were measured by real-time RT-PCR using ACTB for nor-
malization and values for untreated cells were set as one. Data represent means of four or three (low 
flow) independent experiments performed in duplicate. (B) GILZ protein expression under oscillatory 
flow. HUVEC were set under oscillatory flow (osc) for 24 h without or with TNF-α treatment (10 ng/ml) 
for the last 3.5 h. Signal intensities of three independent experiments (duplicates) were measured 
relative to tubulin values. Values for statically cultivated cells were set as one. Statistical differences 
were determined with Kruskal-Wallis-ANOVA followed by post-hoc-analysis with Mann-Whitney-U-test. 
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3.2.3 Mechanism of GILZ downregulation under oscill atory flow 

We previously showed that the mRNA binding protein ZFP36/TTP destabilizes GILZ 

mRNA and therefore is responsible for TNF-induced GILZ downregulation under in-

flammatory conditions (Hoppstädter et al., 2012). Accordingly, we suggested that 

ZFP36 induction might be responsible for oscillatory flow-induced GILZ downregula-

tion. In fact, oscillatory flow slightly induced ZFP36 mRNA, although data did not 

reach statistical significance (Figure 29 A). 

The results of chapter 3.1 demonstrate that laminar shear stress induced the phos-

phatase DUSP1, which counteracted ZFP36 induction. We hypothesized that oscilla-

tory shear stress lacks this effect on DUSP1. However, we surprisingly observed that 

oscillatory shear stress had the same effect on DUSP1 mRNA levels as laminar 

shear stress: both induced DUSP1 mRNA expression (Figure 29 B). TNF downregu-

lated the flow-induced DUSP1 expression under both flow conditions, while laminar 

flow was only slightly decreased and oscillatory flow led to a significant reduction 

(Figure 29 B). These data suggest that lack of DUSP1 induction is not the critical sig-

nalling factor distinguishing laminar and oscillatory flow-induced actions on GILZ ex-

pression in EC. 

 

A                                                               B 

   

Figure 29: Mechanism of GILZ downregulation  - ZFP36 (A) and DUSP1 (B) mRNA expression. 
HUVEC were exposed to laminar or oscillatory flow for 24 h without or with TNF treatment (10 ng/ml) 
for the last 2 h (A) or 3.5 h (B). mRNA levels derived from four independent experiments (duplicates) 
were determined by real-time RT-PCR using ACTB for normalization. Values for untreated cells were 
set as one.  
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3.2.4 Inflammatory activation in atherosclerotic cl inical samples 

We aimed to investigate the clinical relevance of our in vitro analyses in atheroscle-

rotic vessels and observed that GILZ mRNA is downregulated in in-

flamed/atherosclerotic arteries compared to healthy arteries (Figure 30 A). Although 

mean and most samples were lower in atherosclerotic vessels, the data did not reach 

statistic significance. Concordantly, ZFP36, the regulator of GILZ, was significantly 

induced in atherosclerotic arteries (Figure 30 B). The mRNA of indicators for inflamed 

vessels, TLR2 and CCL2, were significantly increased in atherosclerotic samples 

(Figure 30 C, D). 

 

     A                                                            B 

    C D  

          
Figure 30: Inflammatory status in clinical samples  - GILZ (A), ZFP36 (B), TLR2 (C), and CCL2 (D) 
expression in human arteries. mRNA expression (A, C, D) in radial arteries (n=17) and atherosclerotic 
aorta (n=12) was quantified by real-time RT-PCR using ACTB for normalization. Equal protein 
amounts (B) were calculated by Western blot analysis compared to tubulin as loading control. Data 
show values of 12 healthy and 11 atherosclerotic samples. Signal intensities were determined relative 
to tubulin values. Data (A,B,C,D) are shown as individual values (black squares) as well as 25th and 
75th percentiles as boxes within geometric medians (line), arithmetic medians (square), 10th and 90th 
percentiles as whiskers, and ends of values (cross). Values for healthy samples were set as one. 
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3.3 Epigenetic regulation by shear stress 

3.3.1 IGF2 and H19 under flow conditions 

Shear stress has been described to be a regulator of epigenetic events (Hastings et 

al., 2007; Zhou et al., 2011). IGF2 and H19 are well known epigenetically regulated 

genes and their products are known to play a role in atherosclerosis. In fact, they are 

important regulators of VSMC cell proliferation in atherosclerosis (Han et al., 1996; Li 

et al., 2009; Zaina & Nilsson, 2003; Zaina et al., 2002). In this work, a significant 

regulation of both, IGF2 and H19, was detected by different kinds of flow: while IGF2 

was upregulated by laminar and oscillatory flow (Figure 31 A), H19 mRNA was sig-

nificantly increased by laminar flow and decreased by oscillatory flow (Figure 31 B). 

Downregulation of IGF2 by TNF-α after 3.5 h was abrogated with both kinds of flow 

(Figure 31 A). The downregulation of H19 after TNF-α is abrogated by laminar flow 

and significantly increased by oscillatory flow after 2 h (Figure 31B). 
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Figure 31: IGF2 (A) and H19 (B) expression under oscillatory flow - HUVEC were exposed to 
laminar or oscillatory flow for 24 h without or with TNF-α treatment (10 ng/ml) for the last 2 h or 3.5 h 
as indicated. mRNA levels derived from four independent experiments (duplicates) were determined 
by real-time RT-PCR using ACTB (β-actin) for normalization and values for untreated cells were set as 
one. Significance is calculated between untreated and TNF-α treated cells of the same flow state ex-
cept otherwise noted. Statistical differences were determined with Kruskal-Wallis-ANOVA followed by 
post-hoc-analysis with Mann-Whitney-U-test. 
 

3.3.2 DNA Demethylation in HUVEC  

To analyze if a demethylation of DNA methylation can alter the gene expression in 

HUVEC, we used 5-azacytidine (aza) as DNA demethylation reagent. IGF2 (Figure 

32 A), H19 (Figure 32B) (Diesel et al., 2012) as well as CTCF (Figure 32 C) were 
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differently expressed after azacytidine treatment suggesting that DNA methylation is 

involved in the altered gene expression upon shear stress. Also DUSP1 was signifi-

cantly upregulated after azacytidine treatment (Figure 32 D). In contrast, azacytidine 

treatment did not lead to any significant alteration of TLR2 (Diesel et al., 2012) as 

well as GILZ mRNA expression in HUVEC (Figure 32 E, F). 

 

A                                                                B 

C  D     
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Figure 32: DNA demethylation  - HUVEC were treated with with 2 µM 5-azacytidine (aza) for 48 h, 
whereby 5-azacytidine-containing medium was renewed after 24 h. mRNA levels derived from three 
(A, C, E, F), 5 (B) or 7 (D) experiments (duplicates) were determined by real-time RT-PCR using 
ACTB (β-actin) for normalization and values for untreated cells (co) were set as one. Experiments 
were performed in part by Nadège Ripoche and Dr. Britta Diesel (Pharmaceutical Biology, Saarland 
University). 
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3.3.2.1 DNA Demethylation under flow conditions 

The results after azacytidine treatment suggest a possible regulation of mRNA ex-

pression under shear stress via DNA demethylation. Therefore, we analyzed the 

promoter methylation of different genes of interest under flow conditions with SNuPE. 

The mechanism of DUSP1 regulation under flow conditions was a matter of particular 

interest of this work. DUSP1 promoter was hypothesized to be demethylated by lami-

nar and oscillatory flow as mechanism of its mRNA upregulation. For the SNuPE 

analysis, 6 CpG positions (Table 9) of bisulfite-DNA in three different regions were 

selected by Dr. Sascha Tierling (Genetics/Epigenetics, Prof. Dr. Walter, Saarland 

University) using UCSC Genome Browser, EMBOSS transeq, CBS.dtu, and VISTA 

Enhancer Browser. These regions had good expectations because of supposable 

enriched DNA methylations, enriched H3K4 methylations or binding sites of STAT. 

Two different positions in the promoter region were analyzed in the 5-aza-2-

deoxycytidine (DAC) treatment sample set (one experiment, duplicates), whereby 

neither a methylation in the controls nor a demethylation by DAC was detected. Four 

further positions in two different predicted enhancer regions were investigated both in 

the DAC experiment and in one flow experiment (static, laminar and oscillatory flow, 

with and without TNF-α, duplicates). Still, none of these positions showed methyla-

tion of controls, nor demethylation in both experiments although the mRNA expres-

sion was enhanced by flow as well as by DAC (flow results are included in 3.2.3, 

DAC experiment in Figure 33 A). Upregulation of H19 mRNA expression by demethy-

lation was determined to validate the DAC experiment (Figure 33 B). 
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A                  B 

 
Figure 33:  DNA demethylation  - HUVEC were treated with with 1 µM 5-aza-2-deoxycytidine (DAC) 
for 2 d and 4 d, whereby 5-aza-2-deoxycytidine-containing medium was renewed each 24 h. mRNA 
levels derived from one experiment (duplicates) were determined by real-time RT-PCR using ACTB 
(β-actin) for normalization and values for untreated cells (co) of 2 d were set as one. Experiments 
were performed in part by Dr. Sonja M. Kessler (Pharmaceutical Biology, Saarland University). Signifi-
cance is calculated between the respective untreated and treated cells of the same time point. 
 

H19, which is well known as a demethylation-regulated gene, was also analyzed by 

SNuPE. We hypothesized DNA demethylation to occur during flow, because H19 

mRNA was strongly upregulated by laminar as well as oscillatory flow. Two CpG po-

sitions (Table 9) in the H19 promoter region were used in the examination, which is 

known for the regulation of H19 independent of IGF2 (Diesel et al., 2012; Gao et al., 

2002), because the the expression of the two genes was not inversely regulated by 

flow. The SNuPE analysis showed a methylation of the promoter position in untreated 

cells, which was neither affected by flow nor by TNF-α.  

 

Experimental procedures of bisulfite treatment and SNuPE analysis were in part 

kindly performed by Viktoria Weinhold, Beate Schmitt, Christina LO Porto and Dr. 

Sascha Tierling (Genetics/Epigenetics, Prof. Dr. Walter, Saarland University). 
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4 Discussion 
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4.1 Validation of the cell culture model for shear stress 

4.1.1 Shear stress models 

Two different methods to apply shear stress on cells are commonly accepted. One 

method is the production of flow with a cone and plate viscometer, which is turning 

above the cells (Dewey, Jr. et al., 1981), another method is the use of a parallel plate 

flow chamber, wherein the cells are sitting and where the flow is produced by a pump 

(Frangos et al., 1988). Both methods have been widely used for a long time and nei-

ther can be favoured, except perhaps because of planned downstream applications 

(i.e. direct microscopic visualization in a cone and plate viscometer vs. great amount 

of cells of the same flow for RNA analysis in a parallel plate flow chamber) (Brown, 

2000). This work was generated with the second method and chambers were newly 

designed and constructed after Frangos et al. (1988). 

 

4.1.2 Effects of shear stress 

Shear stress is shown to be a regulator of gene expression via mechanotransduction 

(Davies, 2009). Furthermore, it is widely accepted that laminar flow is anti-

inflammatory in contrast to disturbed as well as low flow, which are atheroprone 

(Cunningham & Gotlieb, 2005). The results of this work support these findings. 

 

HO1 is known to have cell protective properties in various tissues and an anti-

atherosclerotic potential as shown in different experimental settings (Immenschuh & 

Ramadori, 2000; Han et al., 2009; Stocker & Perrella, 2006). Anti-inflammatory ef-

fects are achieved especially by the production of carbon monoxide and by the sup-

pression of TLR4 signalling (Wang et al., 2009; Chen et al., 2014). Importantly, HO1 

is induced by many stressors and counteracts their effects (Stocker & Perrella, 2006; 

Ryter et al., 2006). An induction of HO1 by anti-inflammatory stimuli was also de-

tected (e.g. ANP, IL-10) (Kiemer et al., 2003a; Lee & Chau, 2002) as well as a sig-

nificant induction by laminar flow in different systems: in HUVEC after 24 h and 12 

dynes/cm2 (Ali et al., 2009; Zakkar et al., 2008) or 25 dynes/cm2 (McCormick et al., 

2001), in human aortic endothelial cells (HAEC) after 48 h at 20 dynes/cm2 (Chen et 

al., 2003), and in VSMC after 24 h at 20 dynes/cm2 (Wagner et al., 1997). Oscillatory 

flow led only to a slight HO1 induction compared to laminar flow of 12 dynes/cm2 (Ali 
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et al., 2009; Zakkar et al., 2008). These results, the increased expression by laminar 

flow and the lowered, slight induction by oscillatory flow, were confirmed by our data 

employing 20 dynes/cm2 for 24 h. In the literature, HO1 upregulation was already 

seen after 4 h (15 dynes/cm2), whereby after this time no difference was detected 

compared to low flow (2 dynes/cm2) (Warabi et al., 2007). Contrarily to these results, 

a significant decrease of HO1 expression under low flow compared to static condi-

tions was detected by us after 24 h, indicating an inflammatory state of low flow after 

a longer time. The flow induced regulation of HO1 can be mediated by ARE in the 

HO1 promoter (Chen et al., 2003). 

 

For further confirmation of the inflammatory effect of low and oscillatory flow, 7 in-

flammatory mediators were analyzed and almost all of the analyzed genes were at 

least slightly enhanced, while IL-8 and TLR2 were significantly induced indicating an 

inflammatory activation of EC by low flow. For TLR2, no data under low shear stress 

are as yet available in literature. IL-8 is often analyzed as target under low flow and 

has been shown to be significantly enhanced by low flow (Hastings et al., 2007; Yang 

et al., 2005). In the endothelial cell line EA.Hy926, induction of IL-8 was shown to be 

triggered via NF-κB and AP-1 (Zhang et al., 2012), whereas in HUVEC a MAPK de-

pendent signalling was published (Cheng et al., 2005; Cheng et al., 2008). The slight 

induction of CCL2 under low flow in HUVEC and VSMC was previously shown by 

Hastings et al. (2007). CCL2 and IL-8 were also described to promote leukocyte ad-

hesion under low flow inducing vascular inflammation (2 dynes/cm2) (Gerszten et al., 

1999). IL-6 has been described to be already upregulated after 8 h under low flow (4 

dynes/cm2) (Shaik et al., 2009). Whereas our data support a significant downregula-

tion of VCAM under 24 h low shear stress compared to static cultivation, a significant 

upregulation has been described by several authors for HUVEC after 6 h (Zeng et al., 

2009), for HAEC (Zhu et al., 2004), and for human retinal microvascular endothelial 

cells (HRMEC) (Ishibazawa et al., 2013). This discrepancy may be explainable with 

an induction at an early time point with a subsequent counterregulation. The low 

upregulation of the adhesion molecule ICAM as observed in our hands has been de-

scribed to be significantly increased in the literature in HUVEC (Yin et al., 2011) 

(Zeng et al., 2009), whereas for E-selectin, data exist only in HRMEC (Ishibazawa et 

al., 2013). 
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Oscillatory flow has been identified as inducer of an inflammatory state in the litera-

ture (Davies, 2009; White & Frangos, 2007), and it seemed to have more inflamma-

tory potential than low shear stress in our results. In fact, the inflammatory mediators 

mentioned above were all, except for VCAM, significantly upregulated at oscillatory 

conditions. An increased expression of VCAM as well as an upregulation of the other 

adhesion molecules ICAM and E-selectin at similar conditions has already been de-

scribed for HUVEC (Chappell et al., 1998) (Cicha et al., 2008), in porcine aortic valve 

(Sucosky et al., 2009), and in HAEC (Estrada et al., 2011). The discrepancy of VCAM 

results in HUVEC might be explained with an induction of mRNA expression at an 

earlier time point (max. after 4 h), which is reduced after 24 h (Chappell et al., 1998). 

TLR2 expression has been described to be enhanced by disturbed shear stress 

(Mullick et al., 2008) and its induction by TNF-α treatment could be diminished by 

laminar, but not by disturbed flow (Dunzendorfer et al., 2004). On the one hand, 

CCL2 was shown to be increased under oscillatory flow mediated by an increase in 

transglutaminase activity (Matlung et al., 2012; Cheng et al., 2007), while also no ef-

fect of oscillatory flow on CCL2 and IL-6 has been described (Urschel et al., 2012). 

 

 

4.2 GILZ downregulation at inflammatory conditions 

GILZ is an anti-inflammatory mediator, which is inducible by anti-inflammatory stimuli 

such as glucocorticoids or IL-10 in different cell types (Berrebi et al., 2003; Ayroldi & 

Riccardi, 2009; Godot et al., 2006; Ayroldi et al., 2014; Thiagarajah et al., 2014). Its 

anti-inflammatory activity is mainly mediated via inhibition of NF-κB and AP-1 by di-

rect binding and preventing their nuclear translocation (Fan & Morand, 2012) or addi-

tional by inhibition of ERK (Hoppstädter et al., 2015). 

Stimulation with the inflammatory cytokines IL-1, TNF-α, and INF-γ leads to a GILZ 

decrease in epithelial cells (Eddleston et al., 2007). These results are here confirmed 

by downregulation of GILZ protein expression after TNF-α treatment in HUVEC. In-

flammatory stimuli, such as TLR ligands and TNF--α, αlso downregulate GILZ in MΦ 

(Hahn et al., 2014; Hoppstädter et al., 2012). Furthermore, we present evidence for a 

diminished GILZ expression in both degenerated vein bypasses and atherosclerotic 

arteries. Inflammation in the diseased vessels was confirmed by enhanced TLR2 and 

CCL2 expression. TLR2 upregulation was already shown in atherosclerotic plaques 
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of carotid arteries compared to internal mammary arteries (Edfeldt et al., 2002) and 

CCL2 is a general marker for cardiovascular disease and inflammatory activation in 

EC (Niu & Kolattukudy, 2009; Szmitko et al., 2003; Tucci et al., 2006). 

A GILZ downregulation or even absence in other inflammatory diseases, such as 

chronic rhinosinusitis, Crohn’s disease, or tuberculosis has been reported in the lit-

erature, indicating that the absence of GILZ is a general phenomenon in inflamma-

tion (Berrebi et al., 2003; Zhang et al., 2009). 

 

Generally, atherosclerosis is known as a disease of arteries, while veins are not af-

fected (Roy et al., 2009). Still, vein graft remodelling, where pieces of veins after by-

pass surgeries are localized at atherosusceptible regions, is also characterized by 

inflammatory events, (Karper et al., 2011; McPhee et al., 2013) with only minor dif-

ferences to the processes in arteries (Yazdani et al., 2012). These differences are not 

based on the differences in the constitution of veins and arteries, but rather on the 

peripherals e.g. systemic hypertension, high plasma lipids, and altered local hemo-

dynamics (Cox et al., 1991; Hamby et al., 1977; Hamby et al., 1979). Interestingly, a 

significant GILZ downregulation was detected in degenerated veins contrarily to ar-

teries. This fact may be explained by a basal inflammatory activation of healthy arter-

ies of surgery patients in contrast to healthy veins, because atherosclerosis is char-

acterized by a systemic infestation and various arteries of atherosclerotic patients 

might show signs of inflammation (Jashari et al., 2013). 

 

 

4.3 Mechanism of GILZ regulation under laminar flow  

Blood flow influences atherosclerosis and the formation of atherosclerotic plaques by 

exerting shear stress on the vascular endothelium, which differs in magnitude and 

characteristics depending on the vascular anatomy and blood pressure (Frueh et al., 

2013). Shear stress alters the phenotype of EC, which respond to it via mechanosen-

sory mediators that translate mechanical distortions into various molecular signals 

(Tzima et al., 2005). A microarray study performed on 6 h and 24 h of laminar shear 

stress of 25 dynes/cm2 on HUVEC already suggested an upregulation of GILZ by 

laminar flow (McCormick et al., 2001). Still, the results were neither confirmed by 

realtime RT-PCR or on protein level, nor further mechanistic studies existed. 
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GILZ induction by laminar shear stress may be a result of GR activation, as de-

scribed for bovine aortic endothelial cells (BAEC) (Ji et al., 2003). Correspondingly, 

multiple GREs are present in the GILZ promoter (Ayroldi & Riccardi, 2009). Addition-

ally, a regulation via SSREs in the promoter is possible. Two known SSREs, GA-

GACC (Resnick et al., 1993) (16x) and the more potent TGACTCC (Shyy et al., 

1995) (3x), can be found upstream of the GILZ transcription start site. Another possi-

bility is the involvement of KLF2, which is known to cooperate with GRs resulting in 

anti-inflammatory answers (Chinenov et al., 2014) and reduced by laminar flow 

(Wang et al., 2006). 

Furthermore, an epigenetic regulation is also conceivable, although as yet only little 

is known about epigenetic mechanisms in GILZ regulation. An indirect regulation was 

described, whereupon GR-dependent GILZ activation was inhibited by miR-124a and 

-18 overexpression by their binding to GR (Vreugdenhil et al., 2009). So far, a direct 

regulation of GILZ by miRNA is not described. Recently, some first findings were kept 

in our laboratory (Hachenthal et al., 2013): miRNA-21 has been shown to enhance 

GILZ expression. miRNA-21 is also known to be induced by 15 dynes/cm2 laminar 

flow for 24 h (Weber et al., 2010b), so it might be an appropriate candidate for further 

investigations. An additional candidate could be miRNA-18a, because it was kept as 

hit from in silico studies about miRNA dependent GILZ regulation 

(http://ophid.utoronto.ca/mirDIP/) and is induced by oscillatory flow compared to pul-

satile flow at 12 dynes/cm2 for 24 h (Wu et al., 2011). 

DNA methylation as a regulatory mechanism of gene expression was recently inves-

tigated and described to play a role in shear stress (Dunn et al., 2014). We hypothe-

sized it binding to regulate GILZ expression. Still, the treatment with the demethyla-

tion reagent 5-azacytidine did not result in a significant expression difference. 

 

4.3.1 ZFP36 dependent GILZ downregulation 

While TNF-α strongly downregulated GILZ in static HUVEC, a TNF-α challenge failed 

to diminish GILZ levels in HUVEC exposed to laminar shear stress. Accordingly, 

ZFP36 upregulation is missing in response to TNF-α treatment under laminar flow, 

whereas TNF-α strongly enhanced ZFP36 without flow in EC as well as in different 

other cell types i.e. in THP-1 (Tsai et al., 2009) or in mouse fibroblasts (Chen et al., 

2012c). In a previous study, TLR activation was shown to induce GILZ downregula-
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tion in primary human MΦ via the mRNA-binding protein ZFP36 (Hoppstädter et al., 

2012). Also in HUVEC, the TNF-α dependent GILZ downregulation was paralleled by 

an earlier, extensive induction of ZFP36, indicating a possible role of ZFP36 as a rep-

ressor of GILZ. This hypothesis was confirmed by knockdown of ZFP36, where TNF-

α mediated GILZ downregulation was abrogated, as well as overexpression of 

ZFP36 in HUVEC resulting in reduced GILZ levels (Hahn et al., 2014). We also 

showed an induction of ZFP36 in atherosclerotic arteries as well as in degenerated 

veins. This Similar findings were reported for human and murine EC overlying 

atherosclerotic plaques (Zhang et al., 2013). Interestingly, though, the autors sug-

gested that ZFP36 upregulation was an atheroprotective process, since ZFP36 inhib-

its activation of NF-κB and binds to cytokine mRNAs to reduce their transcript stabil-

ity (Zhang et al., 2013). These findings are conform with the general opinion of 

ZFP36 having anti-inflammatory properties, as a destabilizer of cytokine mRNAs, i.e. 

TNF-α, IL-8 and IL-6 (Aslam & Zaheer, 2011; Lai et al., 1999; Lai et al., 2006; 

Balakathiresan et al., 2009; Zhao et al., 2011; Sanduja et al., 2011). Additionally, 

ZFP36 is a target of glucocorticoids, which are able to reduce mRNA stability of 

inflammatory mediators through elevation of ZFP36 protein expression (Smoak & 

Cidlowski, 2006; Anderson et al., 2004). 

In contrast, another group published a reduced ZFP36 expression by glucocorticoids 

in activated MΦ (Jalonen et al., 2005), suggesting inflammatory properties for ZFP36. 

In addition, the anti-inflammatory mediator IL-10 was identified as a target of ZFP36, 

being elevated because of diminished decay in primary MΦ from ZFP36(-/-) mice 

(Stoecklin et al., 2008). These facts rather point to inflammatory actions of ZFP36. 

Taken together, ZFP36 might act either as an inflammatory or an anti-inflammatory 

mediator. Therefore, additional factors might be needed to orchestrate ZFP36 actions 

or a difference in the activation mechanism of ZFP36 may be responsible for inflam-

matory or anti-inflammatory transmission (Hammaker et al., 2014). In this context, 

other mRNA-binding proteins might be involved, whose binding might be further 

modulated by miRNAs (George & Tenenbaum, 2006; Ciafre & Galardi, 2013). Fur-

thermore, a direct regulation of ZFP36 by miRNA is supposable (Lu et al., 2014; 

Rosenberger et al., 2012; Zawada et al., 2014). 



Discussion 

 

 

87 

4.3.2 DUSP1 in atherosclerosis 

The p38 MAPK pathway is known to induce ZFP36 expression in MΦ and human 

pulmonary microvascular endothelial cells (Ronkina et al., 2010; Stoecklin et al., 

2004; Shi et al., 2012). In accordance with these results, a p38 inhibition via 

SB203580 also markedly reduced ZFP36 levels in HUVEC, whereas GILZ downregu-

lation upon TNF-α-treatment was abrogated, indicating that p38 regulates GILZ ex-

pression via a mechanism involving ZFP36. SB203580 acts as a competitive inhibitor 

at the ATP binding site of p38 MAPK α and β (Kumar et al., 1997; Young et al., 

1997). These two isoforms are mainly expressed in HUVEC compared to the other 

isoforms (Hale et al., 1999). Additionally, ZFP36 downregulation was activated via 

isoform specific inhibition of p38α by overexpression of dominant negative p38α 

MAPK suggesting isoform p38α to be responsible for this effect. 

 

DUSP1 is a well known inhibitor of p38 MAPK (Kiemer et al., 2002a) and therefore is 

considered to be an anti-inflammatory factor (Wancket et al., 2012), which is also 

induced by glucocorticoids (Toh et al., 2004). DUSP1 was also shown to be elevated 

by anti-inflammatory laminar flow, protecting arteries from inflammation. Dephos-

phorylation of p38 leads to decreased VCAM levels diminishing leukocyte adhesion 

(Zakkar et al., 2008). Correspondingly, DUSP1 suppressed ZFP36 expression by 

abrogating p38 activity in different MΦ and epithelial cells (Huotari et al., 2012). Our 

data suggest a similar mechanism, because DUSP1 induction by laminar shear 

stress was paralleled by moderatly reduced ZFP36 levels and an enhanced GILZ 

expression. Additionally, DUSP1 was expressed in healthy, but not in degerated 

veins. 

Our results suggest an anti-atherosclerotic effect of DUSP1, a topic, which was dis-

cussed controversially in the literature. The results of Kim et al. (2012) and Zakkar et 

al. (2008) are in line with our findings, whereas Imaizumi et al. (2010) and Shen et al. 

(2010) showed the opposite, i. e. DUSP1 deficiency decreased atherosclerotic lesion 

development in mice as shown in apoE(-/-) mice. The data supporting anti-

atherosclerotic actions of DUSP1 were not only generated in DUSP1 deficient mice 

but also in human cells. These findings, that the use of apoE(-/-) mice might have an 

impact on the DUSP1 effects. Therefore, the pro-atherosclerotic action of DUSP1 

should be verified in another experimental setup. Importantly, atherosclerosis in mice 

is not absolutely comparable to the disease in humans (Libby et al., 2011). 
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4.3.3 Regulation of DUSP1 by shear stress 

Recently published results postulated a positive regulation of DUSP1 by GILZ in 

rheumatoid arthritis (Fan et al., 2014), leading to a possible loop with self reinforcing 

anti-inflammatory effects, additionally to the GILZ regulation mechanisms discussed 

in chapter 4.3. Different mechanisms might be arguable for the induction of DUSP1 

by laminar shear stress (Wancket et al., 2012). These include regulation via SSREs 

or AREs, whereby as yet no SSREs or AREs have been identified in the DUSP1 

promoter.  

A further possibility is a regulation of DUSP1 expression via epigenetic mechanisms. 

Two miRNAs, which are known to be influenced by shear stress, regulate DUSP1 

expression: miRNA-210 (Jin et al., 2014), which was downregulated under laminar 

flow (Hergenreider et al., 2012), and miRNA-101 (Gao et al., 2014; Yang et al., 

2013), which was upregulated under laminar flow (Chen et al., 2012b). 

DNA methylation is also a possibility to modulate DUSP1 expression (Chen et al., 

2012a). In fact, treatment of HUVEC under static conditions with the demethylating 

reagent 5-azacytidine resulted in a significant DUSP1 upregulation. In this work, an 

epigenetic regulatory mechanism of DUSP1 expression by shear stress was not de-

tected, although DNA methylations of six different positions (Table 9) in the DUSP1 

promoter and two enhancer regions were investigated via SNuPE. In this process, 

the necessary negative controls of PCR and bisulfite treatment were always per-

formed and examined with agarose gel electrophoresis. All steps were exactly per-

formed and a demethylation mechanism by flow on the analyzed, well selected posi-

tions can be largely excluded, although normally, at least three experiments have to 

confirm a result. Still, DNA methylation processes can not be completely excluded, 

because the methylation might be located in different position. 

Other epigenetic regulation, i.e. histone modification, remains to investigate. Fur-

thermore, DUSP1 is acetylated and therefore deacetylated and regulated by HDAC-

1, -2, and -3 by deacetylation (Jeong et al., 2014), which all are shear stress respon-

sive enzymes (Chen et al., 2013). This post-translational modification do not change 

the DUSP1 expression itself, except via a self reinforcing loop, but it directly in-

creased MAPK signaling downstream (Jeong et al., 2014). 
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4.4 Mechanism of GILZ regulation under oscillatory flow 

In contrast to atheroprotected regions under laminar flow in straight vessels, athero-

sclerotic plaques are localized in bifurcations or curvatures of vessels where dis-

turbed and low shear stress develop, which exhibit inflammatory potential 

(Cunningham & Gotlieb, 2005; Wang et al., 2013a). Inflammatory properties of low 

and oscillatory shear stress were confirmed via increased mRNA expression of dif-

ferent inflammatory mediators (see 4.1.2). It is known that oscillatory shear stress is 

able to alter gene expression into both, the same direction as laminar shear stress, 

but to a different extent, and the opposite direction (Rhee et al., 2010). Even though 

in general the enhancement of inflammatory genes and proteins are detected under 

atheroprone flow conditions, the expression of anti-inflammatory mediators is rarely 

shown. Additionally, only few studies show the expression under all possible shear 

conditions. The gene expression of antioxidant NAD(P)H dehydrogenase, quinone 

1provided (NQO1) is generally enhanced under flow compared to static conditions, 

but the increase is higher under laminar flow compared to low as well as oscillatory 

flow (Chen et al., 2003). Others revealed a decreased eNOS expression under oscil-

latory flow, while it is upregulated under laminar flow (Rhee et al., 2010). Flow-

mediated differences in HO1 expression were discussed in 4.1.2. 

 

We showed that the expression of the anti-inflammatory mediator GILZ is not 

changed at low flow and diminished at oscillatory flow, in contrast to the increased 

levels under laminar flow. Suggesting a similar mechanism decreasing GILZ by oscil-

latory flow in contrast to laminar flow, we analyzed ZFP36 and DUSP1 levels. The 

enhancement of ZFP36 expression confirmed this hypothesis. However, DUSP1 was 

upregulated to the same extent as in laminar flow. Therefore, the mechanism of GILZ 

regulation by oscillatory flow has to be distinguished from general inflammatory cell 

activation and the activation under laminar flow. Other mechanisms of GILZ regula-

tion are discussed in chapter 4.3. 

 

Interestingly, TNF-α did not further reduce GILZ and enhance ZFP36 levels during 

oscillatory stress, which might suggest a slight protection against further inflammatory 

activation. This conclusion was recently drawn by Gauci et al. because disturbed flow 

enhances anti-inflammatory homeobox genes (Gauci et al., 2014). Simultaneously, 

DUSP1 expression was reduced by TNF-α under oscillatory flow, which emphazises 
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the existence of a different regulation. Mechanisms of DUSP1 regulation are dis-

cussed in chapter 4.3.3. 

 

The upregulation of anti-inflammatory DUSP1 (Wancket et al., 2012) by oscillatory 

shear stress is contrary to the concept of inflammatory oscillatory flow (Wang et al., 

2013a) as well as DUSP1 as anti-inflammatory mediator. Furthermore, it is in con-

trast to the other results of this work, i.e. its increase under laminar flow and its down-

regulation in degenerated veins. This effect of DUSP1 may be the reason for the 

downregulation of VCAM, because VCAM is a well known target downregulated by 

DUSP1 (Zakkar et al., 2008).  

 

 

4.5 Functional implications of GILZ downregulation 

The anti-inflammatory properties of GILZ are postulated to play an important role in 

various inflammatory diseases (Berrebi et al., 2003; Zhang et al., 2009; Cannarile et 

al., 2009). Furthermore, in EC overexpressing GILZ, it was recently shown to play a 

key role in vascular inflammation by inhibiting inflammatory leukocyte recruitment 

(Cheng et al., 2013). So far, the functional activity of endogenous GILZ was not in-

vestigated in EC. The main anti-inflammatory properties of GILZ are mostly mediated 

via NF-κB inhibition (Ayroldi & Riccardi, 2009) but also by inhibition of ERK (Hopp-

städter et al., 2015). 

NF-κB is an important pro-inflammatory transcription factor, which consists of five 

subunits (p65, RelB, c-Rel, p50, p52), forming homo- or heterodimers, predominantly 

the p65:p50 heterodimer (Hoffmann et al., 2002). Activation is achieved by degrada-

tion of inhibitory protein kappa B (IκB), which binds NF-κB in the cytosol, followed by 

translocation into the nucleus and binding to NF-κB sensitive gene sequences 

(Hayden & Ghosh, 2004). Nuclear translocation of NF-κB results in the expression of 

mainly inflammatory modulators, such as cytokines, growth factors, and adhesion 

molecules (Kiemer et al., 2002b; Hayden & Ghosh, 2008). GILZ has been shown to 

inhibit NF-κB by binding to the p65 subunit, leading to diminished cytokine transcrip-

tion in various cell types, including EC (Ayroldi & Riccardi, 2009; Berrebi et al., 2003; 

Cheng et al., 2013; Di Marco et al., 2007). Furthermore, GILZ knockdown was shown 

to activate cytokine expression in airway epithelial cells and to enhance NF-κB acti-
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vation in LPS-treated MΦ (Eddleston et al., 2007; Hoppstädter et al., 2012). In accor-

dance with these findings, the absence of GILZ resulted in an enhanced NF-κB activ-

ity in HUVEC, paralleled by nuclear translocation of p65 and p50 and NF-κB-

dependent transcription of the inflammatory mediators TLR2, E-selectin and ICAM1 

(Hahn et al., 2014). Endothelial cell-specific NF-κB inhibition has been shown to pro-

tect mice from atherosclerosis and vascular remodelling. Therefore NF-κB might link 

reduced GILZ to the pathogenesis of atherosclerosis (Gareus et al., 2008; Saito et 

al., 2013). These findings show that the disappearance of GILZ liberates NF-κB and 

induces its activation suggesting that the absence of GILZ drives a proinflammatory 

response. 

 

 

4.6 Regulation of H19 and IGF2 under shear stress 

The imprinted genes H19 and IGF2 are mainly prenatally expressed and strongly 

downregulated after birth in most tissues (Weber et al., 2001). Their expression is 

mainly described for various tumors suggesting a role in tumorigenesis (Kessler et 

al., 2013; Taniguchi et al., 1995; Matouk et al., 2013). Additionally, IGF2 is known to 

be an important regulator in atherosclerosis and has been identified as atherogenic 

factor in human VSMC and in a mouse model (Zaina & Nilsson, 2003; Zaina et al., 

2002). H19 has also been described to be expressed in VSMC of atherosclerotic le-

sions (Han et al., 1996). Other investigations showed a function in cell proliferation of 

VSMC, with an increase in H19 expression and a decrease of IGF2 expression, 

which is mediated by enhanced CTCF expression and hypomethylation of an un-

methylated imprinting control region (Li et al., 2009). These findings are in contrast to 

our results, where H19 is upregulated in EC by anti-inflammatory laminar flow and 

downregulated by oscillatory shear stress. Additionally, the regulatory mechanisms 

have to be different under laminar flow, because of an enhanced IGF2 expression. 

Under oscillatory flow, regulation via an imprinting control region is possible, because 

H19 is decreased while IGF2 is increased. According to this, two different mecha-

nisms have to exist, probably including differently methylated sites in DNA. Gene ex-

pression data after treatment with 5-azacytidine indicate the relevance of this mecha-

nism regulating the expression of these imprinted genes in HUVEC. Still, via SNuPE, 
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a differential DNA demethylation under flow was not detected, although atherosclero-

sis is known to be strongly regulated by DNA methylation (Zaina et al., 2014). 

In the SNuPE experiment, the necessary negative controls of PCR and bisulfite 

treatment were always performed and examined with agarose gel electrophoresis. All 

steps were exactly performed and demethylation mechanism by flow on the ana-

lyzed, well selected positions in the promoter of H19 (Table 9) (Diesel et al., 2012; 

Gao et al., 2002) can be largely excluded, although normally, at least three experi-

ments have to confirm a result. Furthermore, a demethylation mechanism is not to-

tally impossible for the regulation of H19, the methylation can also be at another posi-

tion. Other epigenetic regulation, i.e. histone modification, remains to investigate. 

Due to their strong regulation in EC by different types of flow, IGF2 and H19 might 

still play a role in the formation of atherosclerosis. Whereas H19 is differently regu-

lated at different flow types, IGF2 is generally upregulated. Furthermore, they are 

regulators of obesity and overweight (Perkins et al., 2012; Morita et al., 2014), which 

are risk factors for the development of atherosclerosis. Upregulation of H19 was also 

reported for the inflammatory disease rheumatoid arthritis (Stuhlmuller et al., 2003). 

In contrast, in EC, H19 expression is diminished at inflammatory conditions such as 

oscillatory flow or TNF-α treatment. In chondrocytes, TNF-α also leads to a decrease 

of H19 (Steck et al., 2012). Interestingly, the downregulation of both, IGF2 and H19, 

upon TNF-α is abrogated under laminar and oscillatory flow. 

Data in the literature on the role of H19 and IGF2 in the development of atherosclero-

sis were obtained from VSMC, where they are potent regulators of cell proliferation, a 

key event in the development of atherosclerosis (Han et al., 1996; Li et al., 2009; Za-

ina et al., 2002; Zaina & Nilsson, 2003). Similar to EC, the gene expression of VSMC 

is also modulated by shear forces of blood flow, therefore this effect might be flow-

induced. 

 

The functions and regulatory mechanisms of H19 and IGF2 in EC have to be eluci-

dated in further experiments. 
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5 Summary 
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5.1 Summary 

Atherosclerosis is a chronic inflammatory cardiovascular disease with high preva-

lence and a major cause of morbidity and mortality. High risk factors for development 

and progression of atherosclerotic plaques are low and disturbed shear stress, while 

laminar flow is important for physiological functions of the endothelium. Endothelial 

dysfunction is involved in the pathological processes of atherosclerosis, which is 

characterized by an inflammatory activation of the endothelium. 

The anti-inflammatory factor glucocorticoid-induced leucine zipper (GILZ), which me-

diates the anti-inflammatory actions of glucocorticoids, was a matter of particular in-

terest of this work. A downregulation and following NF-κB activation under inflamma-

tory conditions was indicated for several cells and diseases. As regulation mecha-

nism, ZFP36 was already shown to be a destabilizer of GILZ in macrophages and to 

be regulated by DUSP1 in lung epithelial cells. However in EC, GILZ was only known 

to be constitutively expressed as well as upregulated under laminar flow without any 

further mechanistic studies. 

Enhanced NF-κB activation, caused by GILZ knockdown, was also confirmed for EC, 

suggesting the promotion of vascular inflammation by GILZ absence. Further, a 

downregulation of GILZ was shown in EC under inflammatory conditions: (I) upon 

treatment with the inflammatory cytokine TNF-α, (II) upon oscillatory flow and (III) in 

human inflamed vessels. In contrast, anti-inflammatory laminar flow inreased GILZ 

expression. The TNF-induced downregulation of GILZ was facilitated by induction of 

the mRNA binding protein ZFP36, which was also elevated in human inflamed ves-

sels. In contrast, the downregulation of GILZ by inflammatory oscillatory flow had to 

be independent of ZFP36 (Figure 34). 

As an anti-inflammatory stimulus, laminar flow was used, whereby the GILZ expres-

sion was upregulated, while a diminished ZFP36 and an enhanced DUSP1 expres-

sion was detected. Mechanistic examinations showed a dependency of GILZ upregu-

lation by ZFP36, which itself was downregulated via inhibition of p38 MAPK (Figure 

35 A). Additionally, laminar flow is able to enhance the TNF-α mediated GILZ down-

regulation by suppressing ZFP36 induction (Figure 35 B). 

Although DUSP1 expression was independently upregulated under oscillatory flow, 

GILZ downregulation was also paralleled by diminished DUSP1 levels in human in-

flamed vessels. 
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Figure 34: Inflammatory activation of GILZ 

 

      A                                                          B 
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Figure 35: Mechanism of GILZ upregulation by lamina r flow (A) and abrogation of TNF- αααα-
induced     inflammatory activation by laminar shear stress (B)  
 

Taken together, our data show that the downregulation of GILZ in human EC pro-

motes vascular inflammation by suppressing NF-κB activation. This assumption is 

supported by decreased GILZ levels found in atherosclerotic vessels and by oscilla-

tory flow, while laminar flow leads to GILZ enhancement, suggesting GILZ as a key 

factor in the pathogenesis of atherosclerosis and the upregulation of GILZ as a po-

tential target for the treatment of the inflamed endothelium. 
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6 Supplement 

6.1 Plans of parallel plate flow chambers 
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