
 
 



 
 

 

From in vitro to in vivo: 

Establishment of a Test System for the 

Biological Evaluation of Novel Quorum Sensing Inhibitors 

as Anti-infectives Against Pseudomonas aeruginosa 

 

 

 

Dissertation 

 
zur Erlangung des Grades 

des Doktors der Naturwissenschaften 

der Naturwissenschaftlich-Technischen Fakultät III 

Chemie, Pharmazie, Bio- und Werkstoffwissenschaften 

der Universität des Saarlandes 

 

 

 

 

von 

 

Dipl.-Pharm. Christine Katharina Maurer 
 

Saarbrücken 

2015



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tag des Kolloquiums: 03. 08. 2015 

Dekan: Prof. Dr.-Ing. Dirk Bähre 

Vorsitz:  Prof. Dr. Claus-Michael Lehr 

Berichterstatter:  Prof. Dr. Rolf W. Hartmann 

 Prof. Dr. Rolf Müller 

Akad. Mitarbeiter:  Dr. Matthias Engel 



 
 

Die vorliegende Arbeit wurde von Januar 2011 bis März 2015 unter Anleitung von Herrn 

Univ.-Prof. Dr. Rolf W. Hartmann in der Fachrichtung 8.2 Pharmazeutische und 

Medizinische Chemie der Naturwissenschaftlich-Technischen Fakultät III der Universität des 

Saarlandes sowie am Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS) 

angefertigt. 

  



 
 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

„Wer all seine Ziele erreicht, 

hat sie wahrscheinlich zu niedrig gewählt.“ 

 

Herbert von Karajan 

 

 

 

 

 

 

 

 

 

 

 



 
 

PAPERS INCLUDED IN THIS THESIS 
 

This thesis is divided into four publications, which are referred to in the text by their letter. 

 

A Validation of PqsD as an anti-biofilm target in Pseudomonas aeruginosa by 

development of small-molecule inhibitors 

Michael P. Storz, Christine K. Maurer, Christina Zimmer, Nathalie Wagner, Christian 

Brengel, Johannes C. de Jong, Simon Lucas, Mathias Müsken, Susanne Häussler, Anke 

Steinbach, and Rolf W. Hartmann 

J Am Chem Soc 2012, 134:16143-16146 

 

B Development and validation of a UHPLC–MS/MS procedure for quantification of 

the Pseudomonas Quinolone Signal in bacterial culture after acetylation for 

characterization of new quorum sensing inhibitors 

Christine K. Maurer, Anke Steinbach, and Rolf W. Hartmann 

J Pharm Biomed Anal 2013, 86:127-134 

 

C Overcoming the unexpected functional inversion of a PqsR antagonist in 

Pseudomonas aeruginosa: an in vivo potent antivirulence agent targeting pqs 

quorum sensing 

Cenbin Lu*, Christine K. Maurer*, Benjamin Kirsch, Anke Steinbach, and Rolf W. 

Hartmann 

Angew Chem Int Ed Engl 2014, 53:1109-1112 

* These authors contributed equally to this work. 

 

D Optimization of anti-virulence PqsR antagonists regarding aqueous solubility and 

biological properties resulting in new insights in structure-activity relationships 

Cenbin Lu, Benjamin Kirsch, Christine K. Maurer, Johannes C. de Jong, Andrea 

Braunshausen, Anke Steinbach, and Rolf W. Hartmann 

Eur J Med Chem 2014, 79:173-183 



 
 

CONTRIBUTION REPORT 

 

The author would like to declare her contributions to the papers A-D included in this thesis. 

 

A The author contributed to the in vitro assay development. She developed and 

performed the HHQ, PQS, and DHQ inhibition experiments. 

 

B The author designed the study and performed all biological and analytical 

experiments. She conceived and wrote the manuscript. 

 

C The author developed and performed assays to measure growth curves of P. 

aeruginosa, pyocyanin and HAQ levels. She developed and performed G. mellonella 

infection assay. She contributed to composition of manuscript. 

 

D The author developed and performed assays to determine pyocyanin and HAQ levels. 

 



 
 

TABLE OF CONTENTS 
 

1 Introduction ......................................................................................................................... 1 

1.1 Anti-pathogenicity Concept ..................................................................................................... 2 

1.2 Pseudomonas aeruginosa ........................................................................................................ 3 

1.3 Inhibition of Quorum Sensing (QS) as Anti-pathogenicity Approach ..................................... 4 

1.4 The QS Network of P. aeruginosa ........................................................................................... 5 

1.5 The pqs QS System .................................................................................................................. 7 

1.5.1 Biosynthesis of 2-Alkyl-4-(1H)-quinolones (AQs) ......................................................... 7 

1.5.2 AQ-dependent Regulation of Pathogenicity .................................................................... 8 

1.6 Interruption of pqs QS in P. aeruginosa ................................................................................ 10 

1.6.1 Blocking AQ Biosynthesis by Inhibition of PqsD ......................................................... 10 

1.6.2 Blocking AQ Reception by Antagonism of PqsR ......................................................... 12 

2 Aim of the Thesis ............................................................................................................... 15 

3 Results ................................................................................................................................. 17 

3.1 Publication A: Validation of PqsD as an anti-biofilm target in Pseudomonas aeruginosa by 
development of small-molecule inhibitors [153] ................................................................... 17 

3.2 Publication B: Development and validation of a UHPLC–MS/MS procedure for 
quantification of the Pseudomonas Quinolone Signal in bacterial culture after acetylation for 
characterization of new quorum sensing inhibitors [163] ...................................................... 19 

3.3 Publication C: Overcoming the unexpected functional inversion of a PqsR antagonist in 
Pseudomonas aeruginosa: an in vivo potent antivirulence agent targeting pqs quorum sensing 
[39] ......................................................................................................................................... 21 

3.4 Publication D: Optimization of anti-virulence PqsR antagonists regarding aqueous solubility 
and biological properties resulting in new insights in structure-activity relationships [40] .. 23 

4 Final Discussion ................................................................................................................. 25 

4.1 Biological Evaluation ............................................................................................................. 25 

4.1.1 In vitro Evaluation of QS inhibitors (QSIs) ................................................................... 25 

4.1.2 In cellulo Characterization of QSIs ............................................................................... 28 

4.1.2.1 P. aeruginosa Reporter Gene Assay ......................................................................... 28 

4.1.2.2 Effects on Signal Molecule Production ..................................................................... 29 

4.1.2.3 Effects on Virulence Factor Pyocyanin ..................................................................... 31 

4.1.2.4 Effects on Biofilm Formation .................................................................................... 32 

4.1.2.5 Effects on Bacterial Growth ...................................................................................... 33 

4.1.3 In vivo Validation of QSIs ............................................................................................. 33 

4.1.3.1 Caenorhabditis elegans Fast-Killing Assay .............................................................. 33 

4.1.3.2 Galleria mellonella Infection Model ......................................................................... 34 



 
 

4.2 PqsD and PqsR - Valid Targets for Anti-infective Therapy? ................................................ 35 

4.2.1 Acute Infections............................................................................................................. 35 

4.2.2 Chronic and Persistent Infections .................................................................................. 36 

4.2.3 Target Validation with Small Molecules vs. Mutants ................................................... 37 

4.3 (2-Nitrophenyl)methanols and 6-Nitro-HHQs as QSIs.......................................................... 38 

4.4 Outlook .................................................................................................................................. 40 

5 References ........................................................................................................................... 41 

6 Summary ............................................................................................................................ 51 

7 Zusammenfassung ............................................................................................................. 53 

8 List of Abbreviations ......................................................................................................... 55 

9 Appendix............................................................................................................................. 57 

9.1 List of Publications ................................................................................................................ 57 

9.2 Conference Contributions ...................................................................................................... 59 

10 Acknowledgments .............................................................................................................. 61 

 

 



 
 



1 
 

1 Introduction 

The discovery of penicillin by Alexander Fleming in the early twentieth century was a 

milestone in the treatment of bacterial infections [1]. It initiated the so-called golden era of 

antibacterial drug discovery that was characterized by an explosive development of several 

new classes of antibiotics [2, 3]. By its successful and global use, antibacterial chemotherapy 

became a significant contributor to health of modern society [3, 4]. This led to the widespread 

opinion that “it is time to close the book on infectious diseases”, which the US Surgeon 

General, Dr. William Stewart, is supposed to have stated in the 1960s [5]. However, 

Alexander Fleming should have been right after all with his warning that “it is not difficult to 

make microbes resistant” [1]. Owing to a misusage of antibiotics in public health care and 

animal feed, resistant bacterial strains readily developed and, in the more and more globalized 

world, rapidly spread leading to failure of formerly effective drug therapies [6-10]. 

Paradoxically, while resistances were increasingly emerging, the number of newly discovered 

antibiotic classes and of approved antibacterial drugs tremendously decreased [11]. Since the 

1980s, many pharmaceutical companies left the field of antibiotic research assuming that 

there was no need for further antibiotics [12]. Even today, the short duration of an antibiotic 

therapy, the restricted application, and the high probability of resistance evolution render the 

development of new antibiotics financially unattractive [12, 13]. This trend provoked a 

growing fear of the occurrence of non-treatable superbugs [14] and of the return to the pre-

antibiotic era [15, 16]. Indeed, ineffectiveness of antibiotic treatments has not only led to a 

dramatic increase in morbidity and mortality, but also posed an economic burden on the 

public health [17]. Therefore, an urgent need exists to develop novel anti-infectives that 

overcome existing resistances and, ideally, do not provoke new ones [18]. 

Several approaches to override emerged antibacterial resistance have been followed so far. 

For example, antibiotics susceptible to increased efflux, reduced uptake, or inactivation by 

modifying enzymes have been applied in combination with an ancillary drug acting as efflux 

pump inhibitor [19], penetration enhancer [20], or enzyme inhibitor [21, 22]. Furthermore, 

structural modification of an existing class of antibiotics has been an often followed strategy 

[21]. Apart from the possibility to interfere with resistance-related mechanisms, addressing 

new binding sites within an established antibacterial target has proven to be a promising way 

to develop novel and efficient antibiotics [23-26]. Moreover, the identification of novel 

antibiotic targets has been an option to develop effective treatments [13]. 
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However, these strategies attacking bacterial functions that are essential for growth or survival 

and thus exerting a selection pressure on the bacteria bear the risk to provoke, earlier or later, 

new resistances [27]. Furthermore, another form of resistance, namely the self-organization 

and -protection of bacteria within a biofilm is not necessarily overcome by these conventional 

treatments [28, 29]. Moreover, persistent infections as source for latent, chronic, or recurring 

infections may not be eradicated by common antibiotic therapy [30, 31]. Therefore, 

innovative anti-infective strategies able to override these disadvantages are urgently needed. 

Recently, anti-pathogenicity approach has become a new paradigm for antimicrobial therapy 

[27]. 

 

1.1 Anti-pathogenicity Concept 
With the growing effort in understanding the way bacteria can cause disease, a new concept 

arose aiming at interference with bacterial pathogenesis rather than inhibiting cell viability 

[27, 32, 33]. Multiple pathogenic mechanisms are involved in bacterial pathogenesis that 

might be targeted with so-called anti-pathogenic drugs [32, 33]. An important contributor to 

pathogenesis of acute infections is the production of virulence factors, which enables a 

bacterium to invade a host and to survive within it [34, 35]. Accordingly, anti-virulence 

strategies have been proposed that aim at ‘disarming’ the pathogen instead of ‘killing’ it and, 

finally, rely on the host immune system to clear the infection. This might bear the advantage 

of reduced selective pressure and risk of resistance development [27, 36]. Pathogenesis of 

chronic infections is mainly governed by formation of biofilms that confer to the bacteria 

resistance against antibiotics and host defenses [28, 35]. Accordingly, anti-biofilm approaches 

might deprive the bacteria of their protective shield and increase their susceptibility to 

antimicrobial treatment [32, 37]. Although biofilms are sometimes categorized as cell-

associated virulence determinants [35, 38], the terms ‘biofilm’ and ‘virulence’ will be 

differentiated in the following with the latter referring to virulence in acute infections 

according to Lu et al. [39, 40]. 

Taken together, the anti-pathogenicity concept promises not only a reduced provocation of 

new resistances [27, 36] but also an overcoming of existing antibiotic resistances [37]. A 

further advantage of this concept over antibiotic therapy might be preservation of the 

beneficial bacterial consortia (e.g. the gut flora [41]) in the host avoiding adverse effects [27, 

42]. 
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1.2 Pseudomonas aeruginosa 
P. aeruginosa is a ubiquitous, highly adaptive Gram-negative bacterium [43] that is able to 

infect virtually every mammalian tissue [44-46]. It is a major originator of nosocomial 

infections, especially of such acquired in intensive care units [47, 48]. As an opportunistic 

pathogen, it infects individuals exhibiting a substantial break in first-line defenses such as 

burn victims and immunocompromised patients (e.g. patients suffering from cystic fibrosis 

(CF) or receiving chemotherapy) [35, 46]. According to the immune status of the patient, it 

can act as quiescent colonizer, as highly virulent invader during acute infections, or as 

originator of chronic/persistent infections [31, 35, 38, 46]. For instance, it can colonize 

individuals suffering from chronic obstructive pulmonary disease, cause fulminant acute 

ventilator-associated pneumonia, or initiate chronic infection in CF patients [38, 49]. Suchlike 

P. aeruginosa infections are commonly associated with high incidence, severity, 

recalcitrance, and mortality making P. aeruginosa the ‘superbug’ [33, 50]. 

The severity of acute infections is mainly governed by production of a large arsenal of 

extracellular virulence factors responsible for tissue invasion, toxicogenesis, and 

dissemination finally leading to multiple organ failure and death [35]. For example, the 

protease elastase contributes to tissue invasion and resistance to host immune defenses by 

degrading elastin and immune components, respectively [35]. The hemolytic rhamnolipids 

interfere with lung surfactant and contribute to host immune resistance by inhibiting 

mucociliary transport [35] and by lysing polymorphonuclear leukocytes [51]. The sugar-

binding lectins function as adhesins and cytotoxins for the respiratory epithelium and 

contribute to biofilm formation [35, 52, 53]. The phenazine pyocyanin is a redox-active 

cytotoxin that interferes with several cellular functions by production of reactive oxygen 

species [54]. It is required for full virulence in acute infection models and seems to play an 

important role in chronic infections too [54, 55]. 

The antibiotic treatment of P. aeruginosa infections is challenged by a variety of intrinsic and 

acquired resistances, which can be developed simultaneously (multi-drug resistance) and 

within short time intervals [56]. Notably, P. aeruginosa possesses a large network of multi-

drug efflux pumps that can actively export drugs from the cell [56]. Additionally, drug uptake 

is hampered by highly restricted outer membrane permeability combined with orthogonal 

sieving properties of the two (inner and outer) membranes [2]. These factors especially 

contribute to P. aeruginosa resistance against current drugs and impede the development of 

new ones [57]. 
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Besides such forms of resistance that are related to the single bacterial cell, the pathogen can 

activate protective functions that are associated with multicellular lifestyle. To be precise, P. 

aeruginosa can build biofilms, highly structured bacterial communities attached to a surface 

and encapsulated in an extracellular matrix [58]. Thereby, impaired diffusion, reduced 

metabolism and growth as well as increased efflux activity are important mechanisms 

believed to contribute to biofilm-specific antibiotic tolerance [28, 59]. Moreover, within 

biofilms, the bacteria are protected against the immune system of the host [60]. Biofilm 

formation and low production of virulence factors are characteristic of chronic P. aeruginosa 

infections [35]. In suchlike infections, progressive tissue damage is caused by a chronic 

inflammation process rather than by the direct action of virulence factors [35, 61]. 

Furthermore, full eradication of chronic infections with P. aeruginosa is often hampered by 

the survival of a small sub-population of cells exhibiting multi-drug tolerance to antibiotics 

without undergoing genetic change [31, 62]. Critically, these so-called dormant or persister 

cells can serve as source for latent, chronic or relapsing infections [30, 63, 64]. 

 

1.3 Inhibition of Quorum Sensing (QS) as Anti-pathogenicity 

Approach 
As introduced above, interference with bacterial pathogenicity is believed to be a forward-

looking concept for creating efficient anti-infectives. Recently, interruption of quorum 

sensing (QS) has been proposed as promising anti-pathogenicity strategy [32, 65-70]. The 

term ‘quorum’ originates from the Roman Empire, where it denoted the minimum number of 

votes necessary to come to a collective decision in the Roman Senate [71]. Translated to the 

bacterial world, ‘quorum sensing’ terms the bacterial strategy to coordinate collective 

behaviors in response to cell population density [72]. Thereby, bacteria communicate via 

signal molecules, small diffusible molecules that are produced, secreted, and sensed by the 

bacteria. The concentration of the signal molecules increases dependently on the cell density. 

When a minimal threshold concentration, the ‘quorum’, has been reached, the bacteria 

concertedly initiate changes in gene expression acting as quasi-multicellular organism [73, 

74]. QS enables the bacteria to coordinately regulate diverse physiological processes 

including virulence and biofilm formation [73]. Moreover, it increases the survival prospects 

of bacteria in a host since it allows the single bacterium to be undetected by the immune 

defense until a collective, success-promising attack is possible [68]. 

The pathogenicity of P. aeruginosa is strongly associated with its QS systems. These control 

the expression of genes involved e.g. in virulence factor production during acute infections or 
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in biofilm formation and persister cell accumulation during chronic infections [35, 75, 76]. 

Thus, inhibition of QS seems to be an attractive strategy to combat a variety of infections 

caused by P. aeruginosa [32, 64]. 

 

1.4 The QS Network of P. aeruginosa 

P. aeruginosa possesses an intricate QS network that comprises at least four interconnected 

QS circuits and is organized in a multi-layered hierarchy [77], as shown in Fig. 1. Two of 

these QS systems, the las and the rhl system, are based on N-acyl-homoserine lactones 

(AHLs), the major class of signal molecules employed by Gram-negative bacteria [78]. 

Thereby, the las system uses N-(3-oxododecanoyl)-L-homoserine lactones and the rhl system 

N-butyryl-L-homoserine lactones (BHLs) as signal molecules [79, 80]. Their biosynthesis is 

mediated by the AHL synthases LasI and RhlI, respectively [81-83]. The signals can activate 

the corresponding receptors LasR and RhlR inducing the expression of target genes including 

those encoding their own synthases [77, 84, 85]. This autoinduction process enables the 

bacteria to rapidly augment the amount of signal molecules thus called autoinducers [74]. The 

third QS system makes use of 2-alkyl-4-(1H)-quinolones (AQs) as signal molecules and 

hence is termed the Pseudomonas quinolone signal (PQS) system, in short the pqs system [77, 

86]. In contrast to the widespread AHL signaling, quinolone-based QS is restricted to 

particular Pseudomonas and Burkholderia species [87-89]. While 2-heptyl-4-(1H)-quinolone 

(HHQ) is produced by both, Pseudomonas and Burkholderia, 2-heptyl-3-hydroxy-4-(1H)-

quinolone, also known as PQS, is uniquely biosynthesized by Pseudomonas [86, 90]. The 

signal molecules PQS and its biosynthetic precursor HHQ serve as the natural agonists of the 

receptor PqsR, a transcriptional regulator often referred to as multiple virulence factor 

regulator (MvfR) [91-93]. Thereby, PQS binds to PqsR with 100-fold higher affinity than 

HHQ does [91, 94]. Comparably to the positive feedback loop of the AHL-based QS systems, 

HHQ and PQS can stimulate the expression of their own biosynthetic operon pqsABCDE by 

agonizing PqsR [95-98]. Balancing of pqs QS activity is achieved by negative feedback loops 

mediated via PqsE [99], HHQ, PQS [100], and 2-aminoacetophenone (2-AA) [101]. Whereas 

the gene products of pqsABCD are primarily involved in AQ biosynthesis [97], PqsE seems to 

act additionally as ‘PQS response protein’ regulating the expression of several pqs QS-

controlled virulence genes [99, 102-104]. Recently, a fourth QS system has been discovered 

using 2-(2-hydroxyphenyl)-thiazole-4-carbaldehyde as signal molecule [77, 105]. Its 

biosynthesis relies on the ambBCDE gene cluster. Due to its role in integrating environmental 

stress conditions with the QS network, the signal has been named IQS. 
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Figure 1. Schematic of the quorum sensing (QS) network in P. aeruginosa comprising the four 
QS circuits las, iqs, rhl, and pqs. Abbreviations: QS, quorum sensing; OdDHL, N-(3-oxo-
dodecanoyl)-homoserine lactone; IQS, integrating QS signal; BHL, N-butyryl-L-homoserine lactone; 
PQS, Pseudomonas quinolone signal; HHQ, 2-heptyl-4-(1H)-quinolone. Straight thin arrows represent 
positive regulation and straight thick lines negative regulation. Modified from ref. [77]. 
 

The four QS networks of P. aeruginosa are hierarchically interconnected [77]. The 

superordinate system in the QS hierarchy is the las system. It controls the activation of the rhl 

and pqs circuits by positively regulating RhlR, PqsR and PqsH (the enzyme converting HHQ 

into PQS) [90, 96, 106]. Moreover, IQS production is tightly controlled by the las system 

[105]. The rhl system negatively regulates the expression of the pqs QS biosynthetic operon 

[107], whereas PQS was found to cause an induction of rhlI transcription and RhlR 

production [108, 109]. Moreover, disruption of IQS biosynthesis led to a decrease in BHL and 

PQS levels suggesting a positive regulatory role of iqs QS on rhl and pqs QS [105]. Given the 

predominant role of rhl in virulence gene activation and its dependency on all other QS 

systems, it has been proposed to function as a ‘workhorse for the QS command’ [77]. 

However, under certain circumstances, this hierarchy can be overridden. In the absence of 

functional LasR, PQS can be produced belatedly and stimulate rhl-dependent phenotypes 
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[109] probably mediated via RhlR [110]. Similarly, the dominance of the las over the iqs 

system can be reversed under phosphate depletion conditions, under which IQS was able to 

upregulate the rhl and pqs systems in a lasR mutant [105]. Similarly, several other 

environmental (e.g. iron, oxygen, nutrients) and host factors have been found to modulate the 

QS hierarchy [77, 111, 112]. These observations hint at a high flexibility of the QS network in 

adapting to external influences in favor of bacterial pathogenicity. Thus, they should be taken 

into consideration during development of QS inhibitors (QSIs) [77]. 

The QS network controls a large array of virulence factors. Whereas elastase and 

rhamnolipids are controlled by las and rhl, lectin A and pyocyanin are among the primarily 

rhl-dependent virulence factors [109]. All of these virulence factors are co-regulated by the 

pqs QS system (see section 1.5.2). The influence of iqs QS on the virulence factors pyocyanin 

and elastase seems to be mediated indirectly via pqs QS and rhl QS modulation [105]. 

 

1.5 The pqs QS System 

The pqs QS system of P. aeruginosa uses AQs to regulate a variety of genes including its own 

biosynthetic operon and genes involved in virulence and biofilm formation [86, 99].  

 

1.5.1 Biosynthesis of 2-Alkyl-4-(1H)-quinolones (AQs)  
The current model for biosynthesis of AQs is depicted in Fig. 2. The precursor anthranilate 

[90, 113] can be obtained either from tryptophan via the kynurenine pathway or from 

chorismic acid via an anthranilate synthase encoded by the PqsR-regulated phnAB operon 

[114]. This unique QS-related pathway serves as additional source of anthranilate supporting 

efficient signal molecule production [91, 114-116]. The biosynthetic gene cluster pqsABCDE, 

which is under the control of PqsR, encodes the enzymes involved in the synthesis of HHQ 

[97, 98]. In the first step, the ligase PqsA catalyzes the formation of anthraniloyl-coenzyme A 

(ACoA) from anthranilate, adenosine triphosphate, and CoA [117]. The activated anthranilate 

is then able to build a covalent adduct with the active site cysteine of PqsD, a β-ketoacyl-ACP 

synthase III (FabH)-type condensing enzyme [118-121]. In the presence of β-ketodecanoic 

acid as second substrate, the anthranilate-PqsD complex has been shown to release HHQ in 

vitro following a ping-pong kinetic mechanism [120-123]. However, recent investigations 

elucidated that, in the cellular context of P. aeruginosa, PqsD most likely uses malonyl-CoA 

as second substrate to give 2-aminobenzoylacetyl-CoA (2-ABA-CoA) [97, 98, 119]. A very 

recent study showed that PqsE can act in vitro as thioesterase hydrolyzing 2-ABA-CoA to 2-

aminobenzoylacetate (2-ABA) [98]. This function, however, can be partially taken over by 
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the broad-specificity thioesterase TesB in accordance with the AQ production found in a pqsE 

mutant [98, 102]. The condensation of 2-ABA with octanoic acid seems to be accomplished 

by PqsC in complex with PqsB yielding HHQ [97, 124]. Finally, the conversion of HHQ into 

PQS is performed by the NADH-dependent flavin mono-oxygenase PqsH, the expression of 

which is positively regulated by LasR, but not by PqsR [90, 125]. Notably, P. aeruginosa is 

able to synthesize besides HHQ and PQS over 55 distinct AQs classifiable into five different 

structural series [90, 126]. Two other bioactive secondary metabolites, 2,4-

dihydroxyquinoline (DHQ) and 2-AA, also derive from the AQ biosynthetic pathway [97, 

98]. Whereas DHQ is supposed to be the result of spontaneous intramolecular cyclization of 

the intermediates 2-ABA-CoA or 2-ABA, 2-AA is most likely formed by decarboxylation of 

2-ABA [97, 98, 119]. 

 

 
 
Figure 2. Current model for biosynthesis of 2-alkyl-4-(1H)-quinolones and related secondary 
metabolites by P. aeruginosa. Abbreviations: AA, anthranilic acid; CoA, coenzyme A; ATP, 
adenosine triphosphate; AMP, adenosine monophosphate; PPi, pyrophosphate; ACoA, anthraniloyl-
CoA; 2-ABA-CoA, 2-aminobenzoylacetyl-CoA; DHQ, 2,4-dihydroxyquinoline; 2-ABA, 
2-aminobenzoylacetate; 2-AA, 2-aminoacetophenone; HHQ, 2-heptyl-4-(1H)-quinolone; 
NADH/NAD+, reduced/oxidized form of nicotinamide adenine dinucleotide; PQS, Pseudomonas 
quinolone signal. Solid arrows represent enzyme-catalyzed and dashed arrows spontaneously 
occurring reactions. Adapted from refs. [97, 98, 122]. 
 

1.5.2 AQ-dependent Regulation of Pathogenicity 
As described above, pqs QS signaling works via the AQs HHQ and PQS that drive the 

expression of their biosynthetic operon pqsABCDE by activating their receptor PqsR [95, 96]. 

AQ signaling controls pathogenicity via both, PqsE-dependent and PqsE-independent 

mechanisms [99]. In contrast to its minor impact on in cellulo AQ biosynthesis, PqsE is 
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important for mediating the cellular PQS response [102]. Thereby, it regulates a major subset 

of the AQ-controlled genes acting in an AQ-independent manner [99, 100, 103]. Thus, the 

primary function of AQ signaling in regulating PqsE-dependent pathogenicity seems to be 

driving PqsE expression [100]. In addition, AQs act on pathogenicity via PqsE-independent 

mechanisms. Some pathogenicity traits, however, require the direct action of both, AQs and 

PqsE [99]. 

PqsE is fully required for production of the primarily rhl-dependent virulence factors 

pyocyanin and lectin A as well as partially required for production of the las- and rhl-

dependent virulence factors elastase and rhamnolipids [99, 100, 103, 109]. Notably, PqsE 

requires functional RhlR to regulate these virulence factors, but neither AQs nor PqsR [100, 

103]. Moreover, PqsE is in part involved in upregulation of siderophore (e.g. pyochelin) 

production [99, 100] and fully required for swarming motility [99]. Decisively, PqsE is able to 

fully restore pathogenicity in four different acute infection models even in the absence of AQs 

[99, 100]. In contrast, PqsE is only partially needed for biofilm development [99], a function 

that might be at least in part mediated by contribution of lectin A [52], pyocyanin [127, 128], 

and rhamnolipids [129]. 

Besides their role as autoinducers, multiple non-signaling functions have been ascribed to 

AQs [130]. First, PQS is involved in induction of iron acquisition systems by chelating iron 

(III) thereby complementing the respective action by PqsE [99, 100, 131, 132]. Accordingly, 

PQS elevated the production of the siderophores pyochelin and pyoverdine [131, 132]. 

Second, the pro- and anti-oxidant activities of PQS suggest a role in balancing life and death 

in P. aeruginosa populations to select the fittest, shape the population structure, and 

contribute to multi-cellular development processes in bacterial biofilms [133]. Third, PQS 

promotes biofilm formation [109] possibly via induction of bacteriolytic membrane vesicles 

[134] and subsequent DNA release [129, 135]. Fourth, PQS and HHQ can suppress innate 

immune responses facilitating bacterial adaptation to the host [136]. Moreover, HHQ is 

involved in swarming repression, a phenotype that is inversely related to biofilm formation 

[99, 137]. Many non-signaling AQs exhibit cytochrome inhibitory or antimicrobial activities 

conferring P. aeruginosa a growth advantage in competitive situations [90, 138, 139]. 

Although the physiological role of DHQ, one side-product of AQ biosynthesis, is not yet fully 

understood, it has been suggested to contribute to pathogenicity by reducing the viability of 

murine lung epithelial cells [119]. The other side-product, 2-AA, induces chronic and 

persistent infection phenotypes of P. aeruginosa. This is achieved by silencing the PqsR 

regulon and thus acute virulence [101] as well as by promoting persister cell accumulation 
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and host tolerance [75, 140]. Considering the respective described functions of PqsE and 

AQs, it seems as if PqsE is essential for acute infections, while AQs might play a more 

important role in chronic/persistent infections, as speculated by Rampioni et al. [99]. 

 

1.6 Interruption of pqs QS in P. aeruginosa 
Although pqs QS has been by far less investigated and exploited for anti-infective research 

than AHL-based signaling [141], it represents an attractive target that bears advantages over 

the AHL-related systems. Due to the widespread occurrence of AHLs in Gram-negative 

bacteria [73], inhibitors of the respective QS systems might affect multiple bacterial species 

including the beneficial microbiota. Targeting the pqs system, in contrast, provides an option 

for selective therapy of pathogenic Pseudomonas and Burkholderia sometimes coexisting in 

chronic lung infections [142]. This selective intervention might provide the microbiota an 

advantage in availability of nutrients and habitat and thus let them keep the pathogens in 

check [143]. Moreover, the las system can become ineffective due to mutations in the lasR 

gene and its functions can be taken over partially by other QS systems [77, 105, 109, 110, 

144]. The pqs system, however, can operate independently on las [109, 110] and suchlike 

mutations have not been discovered yet [64]. Furthermore, an rhlR mutant did not display 

reduced virulence in an acute infection model in contrast to the pqs QS mutants [92]. 

Therefore, disruption of pqs QS might be the more suitable anti-pathogenicity approach.  

The pqs system provides several potential drug targets involved either in signal biosynthesis 

(PhnAB, PqsA-E, PqsH), signal reception (PqsR), or signal response (PqsE) [102]. As already 

described in section 1.5.2, the ‘PQS response protein’ PqsE controls numerous downstream 

virulence genes [103]. However, the exact mechanism of action regarding this function has 

not yet been elucidated [98, 99], which might complicate drug discovery. Moreover, 

addressing terminal effectors within a regulatory cascade might miss effects mediated by a 

higher level of regulation [99]. In contrast, inhibition of AQ biosynthesis or reception might 

allow disruption of the full profile of pqs QS-controlled phenotypes [99] and thus represents a 

promising concept for development of novel anti-infectives. 

 

1.6.1 Blocking AQ Biosynthesis by Inhibition of PqsD 
As described in section 1.5, the AQ biosynthesis machinery is responsible for a large panel of 

effector molecules fulfilling diverse functions related to P. aeruginosa pathogenicity. Hence, 

blocking this cascade with small molecule inhibitors should result in an efficient reduction of 

pathogenicity. However, not all biosynthetic enzymes are equally suited as drug targets. 
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Blocking pqs QS-specific anthranilate synthesis might be inefficient due to redundancy of 

anthranilate-supplying machineries [102, 115]. Although PqsB and PqsC are essential for AQ 

biosynthesis, they are not required for DHQ and 2-AA production [97]. Notably, their 

inhibition could even lead to accumulation of these metabolites [64, 119]. Although the 

thioesterase activity of PqsE contributes to AQ synthesis in vitro, its role might be taken over 

in part by ‘housekeeping’ thioesterases in cellulo [98]. Moreover, inhibition of thioesterase 

function should lead to accumulation of DHQ [97, 98]. Finally, PqsH is not a valid target, as a 

pqsH mutant overproduces HHQ and displays wild-type virulence in a murine infection 

model [91]. On the contrary, PqsA and PqsD seem to be essential and efficient enzymes in 

AQ biosynthesis [97].  

Indeed, genetic mutation of pqsA or pqsD led to reduced pathogenicity in acute and chronic 

infection scenarios. On the one side, a mutation in the pqsA or pqsD gene resulted in reduced 

pyoverdine levels [132] and abolished pyocyanin production [102]. Accordingly, a pqsD and 

a pqsA mutant exhibited attenuated acute virulence in C. elegans nematodes and murine burn 

injury models, respectively [91, 92, 99, 102]. On the other side, a pqsA mutant was classified 

as poor biofilm producer forming flat biofilms and lacking the typical mushroom-shaped 

structure associated with antibiotic tolerance [112, 129, 135, 145]. The mutant biofilm 

exhibited enhanced sensitivity towards detergent treatment [135]. This might be at least in 

part due to the reduced production of extracellular DNA (eDNA), an intercellular connector 

and stabilizer in biofilms [112, 135]. Due to its role in biofilm tolerance by trapping e.g. 

aminoglycosides and antimicrobial peptides, a reduction of its formation should render 

biofilms more susceptible to antibiotics and host defenses [146]. Notably, a pqsA mutant also 

formed less biofilm and exhibited enhanced susceptibility to ciprofloxacin in a murine in vivo 

biofilm model [147]. Similarly, increased susceptibility towards ciprofloxacin could be 

demonstrated in wild-type biofilms, in which pqs QS was repressed by addition of an excess 

of iron [112]. Although pqs QS seems to be important for establishment of biofilms [112, 135, 

148], the pqsABCDE operon was found to be downregulated in mature in vivo biofilms [149] 

suggesting a role of pqs QS in biofilm formation rather than maintenance [112, 149]. 

However, evidence suggests that pqs QS might also be involved in biofilm dispersal, which 

was delayed in a pqsA mutant [150]. 

A few small-molecule inhibitors of PQS production with unknown molecular target or 

mechanism and low in cellulo potency have been described, but not further optimized [117, 

141, 151]. Nevertheless, interruption of pqs QS with high doses of PqsA substrates led to 

restricted systemic dissemination of P. aeruginosa and reduced mortality in an acute murine 
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infection model [152]. This supported that AQ biosynthesis might be a useful 

pharmacological target for therapy of acute infections. However, these PqsA substrates 

seemed to additionally affect tryptophan biosynthesis and interference with downstream 

targets by the formed CoA thioesters could not be excluded [117, 152]. 

Given that the described beneficial effects of AQ biosynthesis disruption by PqsA knockout 

or inhibition should also be achievable through blockade of PqsD activity, both, PqsA and 

PqsD, seem to be promising anti-pathogenicity targets. However, as no structural information 

about PqsA is available, while the X-ray structure of PqsD is known, we considered PqsD as 

the most promising biosynthetic enzyme to be addressed for drug discovery. The first reported 

in vitro PqsD inhibitors were only moderately affine and were not tested in cellular assays due 

to potential antibiotic activity [122]. This motivated us to start a drug discovery program 

aiming at novel potent and non-bactericidal PqsD inhibitors (Publication A in 3.1 [153]). 

Meanwhile, numerous drug discovery approaches addressing PqsD have been undertaken 

yielding highly potent, selective, and non-bactericidal PqsD inhibitors [141, 154-157].  

 

1.6.2 Blocking AQ Reception by Antagonism of PqsR 
As stated in chapter 1.6, blockade of signal reception should affect the full panel of pqs QS-

controlled pathogenicity phenotypes. Indeed, transcriptome analysis of a pqsR mutant 

revealed downregulation of multiple virulence genes [92]. Accordingly, a pqsR mutant did not 

form any pyocyanin or lectin A and produced substantially reduced levels of elastase and 

rhamnolipids [102, 109]. Decisively, in C. elegans nematodes and different acute infection 

models including murine burn injury models, reduced virulence was attributed to a pqsR 

mutant [91-93, 102]. Furthermore, PqsR might play a role in biofilm formation, as a pqsR 

mutant showed reduced lectin A and eDNA levels, both important biofilm matrix 

components, and lacked PQS, a stimulator of biofilm formation [109, 112]. Moreover, it is 

required for production of the pro-persistent molecule 2-AA, which was absent in a pqsR 

mutant [101]. 

Thus, we considered PqsR as highly attractive target for the development of novel anti-

infectives. Previous studies by us and others had discovered fragments [158, 159] and HHQ-

derived compounds [160, 161] as first PqsR antagonists. However, they all shared low 

potency in reducing P. aeruginosa virulence. This prompted us to reveal the reasons for the 

low in cellulo efficacy of our highly potent HHQ-based antagonists [160] in order to develop 

effective anti-infectives (Publication C in 3.3 [39]). Meanwhile, PqsR has been addressed as 

drug target [162] with great success even in advanced acute infection models [64]. This 
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confirms the suitability of PqsR as therapeutic target and highlights the importance of 

publication C [39]. 
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2 Aim of the Thesis 

Infections with P. aeruginosa are especially difficult to eradicate with current antibiotics due 

to intrinsic, acquired, and biofilm-mediated resistance and persistence. Thus, novel anti-

infectives are urgently needed that can overcome existing resistances and do not provoke new 

ones. Interference with bacterial pathogenicity by inhibition of QS promises these advantages. 

This intercellular communication system operates via signal molecules that control virulence 

and biofilm formation. Thereby, the signal-synthesizing enzyme PqsD and the signal-

receiving receptor PqsR are considered as promising targets due to their key role in P. 

aeruginosa QS. Target validation, however, relied primarily on mutant analyses. Moreover, 

first inhibitors suffered from low potency in vitro and in cellulo. Therefore, the general 

objective of this thesis was to biologically evaluate novel QSIs targeting PqsD or PqsR in 

order to contribute to their development to potent anti-infectives and to the validation of their 

drug targets. 

The first part of this thesis aimed at the development of PqsD inhibitors. For discovery of first 

hits and guidance of their optimization, an in vitro assay based on the isolated target had to be 

developed. The most promising inhibitors should then be characterized in cellulo for their 

ability to inhibit production of signal molecules such as PQS without inhibiting bacterial 

growth. Evaluation in a biofilm formation assay should assess the suitability of PqsD as anti-

biofilm target. In the second part of this thesis, irreproducible results occurring during routine 

quantification of PQS should be overcome by development and validation of a novel LC-

MS/MS method for quantification of PQS after derivatization. The third part of this thesis 

aimed at circumventing the ineffectiveness of the first PqsR antagonist in cellulo. The 

optimized compound should be characterized in cellulo and in appropriate in vivo models to 

judge its potential as anti-virulence agent. Based on these studies, the proof-of-concept (POC) 

for anti-infective therapy targeting PqsR should be provided. In the fourth part of this thesis, 

biological evaluation should guide the optimization of PqsR antagonists regarding aqueous 

solubility. 
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3 Results 

3.1 Publication A: Validation of PqsD as an anti-biofilm target in 

Pseudomonas aeruginosa by development of small-molecule 

inhibitors [153] 

 (DOI: 10.1021/ja3072397) 
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3.2 Publication B: Development and validation of a UHPLC–MS/MS 

procedure for quantification of the Pseudomonas Quinolone Signal in 

bacterial culture after acetylation for characterization of new quorum 

sensing inhibitors [163] 

(DOI: 10.1016/j.jpba.2013.07.047) 
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3.3 Publication C: Overcoming the unexpected functional inversion of a 

PqsR antagonist in Pseudomonas aeruginosa: an in vivo potent 

antivirulence agent targeting pqs quorum sensing [39] 

 (DOI: 10.1002/anie.201307547) 
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3.4 Publication D: Optimization of anti-virulence PqsR antagonists 

regarding aqueous solubility and biological properties resulting in 

new insights in structure-activity relationships [40] 

(DOI: 10.1016/j.ejmech.2014.04.016) 
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4 Final Discussion 

The general objective of this thesis was to biologically evaluate QSIs blocking biosynthesis or 

reception of pqs QS signal molecules in order to contribute to the validation of their drug 

targets and to their development as anti-infectives. Biological evaluation was based on a test 

system comprising in vitro, in cellulo, and in vivo assays. Therefore, in the following, the 

composition of the test system, the biological results, the target validation, and the potential of 

the novel QSIs will be discussed. 

For the sake of lucidity, the denomination of the compounds mentioned in chapter 4 is 

composed of a letter indicating the corresponding manuscript and the Arabic compound 

number used in the latter (e.g. A1 denotes compound 1 from publication A). 

4.1 Biological Evaluation 

4.1.1 In vitro Evaluation of QS inhibitors (QSIs) 
The discovery of initial hits, their optimization, and the derivation of structure-activity 

relationships rely on the availability of a suitable bioassay. In case of the PqsD inhibitors, we 

decided to start the drug discovery process with an in vitro assay based on the isolated target 

for several reasons. First, such an assay unambiguously reflects the inhibitory potency of 

compounds towards the target irrespectively of pharmacokinetic (PK) issues or aspects of 

system biology encountered in P. aeruginosa whole cell assays [122, 164]. Second, 

compounds with intrinsic antibacterial activity can also be evaluated [122, 165]. The 

successful development of potent and selective PqsD inhibitors derived from known inhibitors 

of the antibacterial target RNA polymerase underlines the importance of this aspect [157, 166, 

167]. Third, performing an in vitro assay is less time-consuming and hazardous than 

cultivating opportunistically pathogenic bacteria. The observation that purified PqsD 

catalyzes in vitro the production of HHQ from the substrates ACoA and β-ketodecanoic acid 

[122] provided the basis for establishment of a 96-well format-based PqsD inhibition assay 

[121, 123]. Recently, malonyl-CoA has been proposed to serve as the second substrate of 

PqsD in P. aeruginosa cells [97]. However, the identity of the second substrate is not of 

relevance for the PqsD inhibitors developed in publication A [153] since they have been 

designed and confirmed to interfere with the first substrate ACoA [168]. Overall, the 

developed in vitro assay provided the basis for discovery and optimization of the PqsD 

inhibitors developed in publication A [153]. 
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The first described PqsD inhibitors only weakly inhibited PqsD with IC50 values of 35 or 65 

µM (IC50 is the inhibitor concentration to achieve half-maximal degree of inhibition) and 

were likely to be antimicrobially active [122]. Therefore, we decided to follow a ligand-

guided strategy (for a comprehensive discussion regarding inhibitor design and optimization 

see section 4.1 of the thesis of my colleague Dr. Michael Storz [143]). Thereby, an ACoA-

derived nitro-substituted transition state mimic, A3, proved to be the first PqsD inhibitor 

identified in this study that was more potent (IC50 of 7.9 µM) than the first reported inhibitors. 

However, given a nanomolar median affinity for marketed small molecule drugs [169], this is 

only a moderate activity. Suspecting inter alia the high conformational flexibility of the alkyl 

chain as reason for both, weak affinity [170] and insufficient drug-likeness [171], the 

molecule was systematically simplified and rigidized. The resulting inhibitor, A19, was 

slightly more active (IC50 of 3.2 µM) than the initial hit A3 and the most potent in vitro PqsD 

inhibitor reported at that time. Noteworthy, A19 provided the starting point for follow-up 

publications dealing with the elucidation of its binding mode [168], its use as tool compound 

to study the binding mode of other PqsD inhibitors [167], and its further optimization [155]. 

 

Despite the above-mentioned benefits, an in vitro assay based on the purified target was not 

considered as the most suitable option for the discovery of PqsR antagonists. One reason is 

the insolubility and thus the unavailability of the purified full length PqsR receptor [91, 94, 

161]. Using a truncated version of PqsR including only the co-inducer binding domain might 

miss potential inhibitors [94], e.g. such targeting the DNA binding domain or preventing 

receptor oligomerization [161, 172]. Moreover, a standard in vitro binding assay could not 

provide any information about the functionality of PqsR ligands. To circumvent these 

drawbacks, we decided to use a ß-galactosidase reporter gene assay in E. coli monitoring 

PqsR-mediated transcription of the lacZ reporter gene being under the control of the pqsA 

promoter [160, 164, 173]. Although in this assay, PqsR activity is a function of both, target 

affinity and PK properties, the E. coli system represents a more sensitive way to monitor PqsR 

activity than the P. aeruginosa-based counterpart [164] for reasons already discussed above. 

Overall, the reporter gene assay represented the fundament for evaluation of PqsR 

antagonists. 

Based on this assay, we recently identified the first PqsR antagonists using a ligand-based 

approach. By introducing electron-withdrawing groups into the 6-position of HHQ, potent 

antagonists were obtained with nanomolar IC50 values [160]. The most potent antagonist, C1 

(IC50 of 51 nM), was the starting point for the investigations undertaken in publication C [39], 
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as discussed in section 4.1.2.1. Interestingly, compound C2 was a strong agonist (effector 

concentration to achieve half-maximal degree of effect (EC50) of 2.8 nM) in the E. coli 

reporter gene assay that was even more potent than the natural agonist PQS (EC50 of 6.3 nM). 

Thus, it can be classified as superagonist [68]. This explains why even low concentrations of 

C2, as produced during the time frame of reporter gene experiments, efficiently restored PqsR 

stimulation suppressed by C1. The resulting antagonist C3 showed improved antagonistic 

activity (IC50 of 35 nM) compared to C1 and is the most potent HHQ-derived PqsR antagonist 

reported to date [39, 40, 160, 161]. 

The promising results prompted us to further optimize this compound class regarding aqueous 

solubility in publication D [40]. The synthesized compounds were evaluated in the E. coli 

reporter gene assay to monitor maintenance of activity and functionality while improving 

solubility. This is important since introduction of a single functional group, e.g. a polar 

substituent to improve solubility, concomitantly changes also the electronic and steric 

properties of a molecule with possible impact on affinity and functionality [174]. 

Unfortunately, most structural changes towards enhanced solubility resulted in moderate to 

weak antagonists or agonists. Notably, a significant negative correlation between solubility 

and activity was observed for the nine precisely characterized antagonists from Table 2 in 

publication D (see Fig. 3A). Accordingly, their lipophilicity as judged by the calculated 

octanol-water partition coefficient positively correlated with activity with exception of 

compound D26 (i.e. C3) that was more active than expected (see Fig. 3B). Suchlike property-

activity relationships are not unexpected given the hydrophobic ligand binding pocket of 

PqsR and the fact that a natural HHQ analog is stabilized therein entirely by hydrophobic 

interactions [161]. Nevertheless, the activity measured in this assay is also a function of 

pharmacokinetics, as mentioned above. Thus, these observations could also be the result of 

e.g. restricted cell permeability for hydrophilic compounds in case of passive diffusion [2]. 

Overall, both factors might have impaired the compound optimization. Moreover, the rather 

sharp structure-functionality relationships, especially for substituents in 3-position also 

observed for quinazoline-based PqsR antagonists [161] might have limited the scope of 

structural modifications. Nevertheless, one promising antagonist, D16, resulted from this 

publication exhibiting similar potency (IC50 value of 72 nM) and slightly improved solubility 

as compared to C1 and C3. In addition, structure-activity/functionality relationships could be 

derived (see section 2.3 of publication D [40]). These gave new insights into ligand-receptor 

interactions complementing the information provided by the co-crystal structure [161]. 
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Figure 3. Property-activity relationships of novel PqsR antagonists. For the nine fully 
characterized PqsR antagonists from Table 2 of publication D [40], significant correlations were found 
between their micromolar aqueous solubility (A) or their calculated octanol-water coefficients (clogPs) 
obtained with ACD Percepta logP Classic software (B) and their PqsR antagonistic activity as 
expressed by the negative common logarithm of the half-maximum nanomolar inhibitory 
concentration (pIC50) determined in the E. coli reporter gene assay. Compound D26 (i.e. C3) was 
excluded from correlation B (empty circle). Statistics of the correlations: solubility versus pIC50, 
p < 0.001, Pearson coefficient r = 0.94; clogP versus pIC50, p < 0.001, Pearson coefficient r = -0.95. 
 

4.1.2 In cellulo Characterization of QSIs 
One strength of target-based drug discovery is the applicability of rationality-guided drug 

development programs [175]. Nevertheless, the pharmacological relevance of the investigated 

drug-target interaction remains to be proven [175, 176]. One reason might be the potential 

artificiality of the used screening assays resulting from e.g. heterologous protein expression or 

irrelevance of the used substrates. Moreover, initial target validation mainly relies on studies 

with knockout mutants. As discussed in detail in section 4.2.3, a genetic knockout might 

affect the system biology in a different way from a temporally and quantitatively tunable 

pharmacological intervention [177] and thus might not necessarily reflect the pharmacological 

relevance of a target [175]. Moreover, microbe-specific PK issues might restrict the 

availability of a drug at the target site and thus the expected pharmacological effect (see 

section 1.2 and ref. [2]). Consequently, it is advisable to check the in cellulo activity of the 

developed QSIs in the target pathogen P. aeruginosa as early as possible. 

4.1.2.1 P. aeruginosa Reporter Gene Assay 
For evaluation whether low efficacy of a drug in the target pathogen is due to 

pharmacodynamic or PK issues, it is desirable to have an assay system that can distinguish 

between both factors. Therefore, for evaluation of the PqsR antagonists, we used a P. 

aeruginosa-based ß-galactosidase reporter gene assay that functioned analogously to the E. 

coli-based counterpart. This assay was based on a P. aeruginosa pqsA mutant devoid of the 
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intrinsic pqs QS network [119] and was comparably sensitive to stimulation by PQS. 

Consequently, the bioactivity monitored in this assay should be a function of P. aeruginosa-

specific pharmacokinetics. This provided the basis for the investigations undertaken in 

publication C [39]. 

Recently, the highly potent PqsR antagonist C1 (IC50 of 51 nM in the E. coli assay) had 

shown an unexpectedly low activity in a P. aeruginosa virulence assay (44% inhibition of 

pyocyanin formation at 15 µM) [160]. To explain the result, we tested the compound in the P. 

aeruginosa-based reporter gene assay for the above-mentioned reasons. Therein, the 

compound displayed about 200-fold reduced PqsR antagonistic activity (60% inhibition at 10 

µM) revealing Pseudomonas-specific PK issues as reason for the low anti-virulence activity. 

Moreover, C1 showed dose-dependent agonism in the P. aeruginosa reporter gene assay in 

the absence of PQS. Since C1 exhibited pure antagonism in E. coli, partial agonism could be 

excluded. This let us suspect a biotransformation as the responsible PK issue in the target 

pathogen. This hypothesis was confirmed by rationality-guided systematic investigations as 

discussed in detail in publication C [39]. The biotransformation was accompanied by a 

functional inversion catalyzed by PqsH. This was the reason for the low anti-virulence 

efficacy of C1 in P. aeruginosa. Based on this knowledge, C1 could be rescued by blocking 

its metabolic hotspot. Decisively, the resulting highly potent PqsR antagonist C3 (IC50 of 35 

nM) maintained its antagonistic functionality and nanomolar activity (IC50 of 404 nM) in P. 

aeruginosa. 

Taken together, the synergistic interplay between the two reporter gene assays had provided 

the incentive for the metabolism studies for C1 and thus contributed to the rescue of the 

HHQ-derived class of PqsR antagonists. 

4.1.2.2 Effects on Signal Molecule Production 
According to the current model of pqs QS, the targets PqsD and PqsR are essential for the 

biosynthesis of the pqs QS signal molecules HHQ and PQS [102]. Therefore, we investigated 

the effects of the PqsD inhibitors and PqsR antagonists on signal production in cellulo. 

Although HHQ can be produced by PqsD in vitro, the current model of biosynthesis suggests 

2-ABA-CoA as its direct product [97, 98]. Since this is unstable and readily degrades to 

DHQ, we also included DHQ in the analysis as the most direct read-out for PqsD activity in 

cellulo. For this purpose, assays were developed to directly quantify HHQ, PQS, and DHQ 

levels in the supernatant of P. aeruginosa PA14 cultures. The PA14 strain was chosen since it 

is a well-studied [178], highly virulent, and clinically relevant isolate [179]. Its broad host 

promiscuity promises the use of a large variety of in vivo infection models to study the effects 
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of QSIs [179]. As reliable analytical method, liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) was chosen enabling selective detection and quantification of the 

metabolites [163]. The use of deuterated internal standards promised a ready adaptation of 

HHQ and PQS analysis to other relevant matrices [180] such as biofilms [109] or sputum of 

CF patients [181]. Applicability in routine inhibitor testing was facilitated by 24-well format 

of the bioassay, simple sample work-up, and time-efficient analytical method. However, 

during routine application of LC-MS/MS, similar problems regarding PQS quantification 

arose as described by Ortori et al. [182]: poor peak shapes resulting in unquantifiable peaks 

and irreproducible results. Thus, the aim of publication B [163] was to develop a reliable 

analytical procedure for accurate and precise quantification of PQS in P. aeruginosa cultures. 

Since the hydroxy group in 3-position of PQS was discussed to be the reason for its poor 

chromatographic properties [131, 182], we applied chemical derivatization to overcome this 

problem [183, 184]. The developed microwave-assisted acetylation procedure was fast, 

reproducible, and allowed full removal of the reagents avoiding contamination of the LC-

MS/MS system in contrast to the use of non-volatile EDTA or citric acid described by others 

[182, 185]. Decisively, the chromatographic behavior of acetylated PQS was greatly 

improved and led to reproducible quantification results. Fulfillment of the criteria of a 

validated method according to international guidelines [186] finally demonstrated the 

reliability of the developed bioanalytical procedure. Based on the full calibration results, time- 

and cost-efficient two-point calibration was shown to be sufficient. In summary, publication B 

[163] provided the basis for in cellulo characterization of the developed QSIs regarding 

inhibition of PQS biosynthesis. 

PqsD inhibitor A16 as well as PqsR antagonist C3 significantly inhibited HHQ and PQS 

production in cellulo in accordance with the current model of pqs QS biosynthesis. This 

supported the physiological relevance of the drug-target interplay monitored in the initial 

assays [175]. Moreover, since PqsD and PqsR are intracellular targets, the results also 

demonstrated that A16 and C3 were able to cross the Gram-negative cell barrier, which could 

not be taken for granted, as already discussed [2]. The fact that relatively high QSI 

concentrations were needed to provoke an effect in P. aeruginosa was not surprising 

considering the complexity of the in cellulo system. Besides PK challenges, higher substrate 

(ACoA) and ligand (PQS) concentrations are encountered in cellulo due to the autoinductive 

loop that might compete with the QSIs for their binding site on PqsD and PqsR, respectively 

[159]. For PqsR antagonists, the sensitivity of the wild-type system is about 100-fold reduced 

compared to the reporter system in the pqsA mutant (IC50 of ~ 40 µM versus ~ 400 nM). The 
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discrepancy corresponds to differences in ligand concentrations (5-50 µM versus 50 nM PQS) 

[126, 163, 187]. This implies that PqsR antagonists require at least a single-digit nanomolar 

target affinity to exert a satisfying effect on signal synthesis. Similarly, higher ACoA 

concentrations [152, 163] might explain the decreased sensitivity of the cellular system to 

PqsD inhibitors (IC50 of ~ 300 µM versus ~ 3 µM). The PqsA substrate 2-amino-6-

fluorobenzoate exhibited a similarly high IC50 (109 µM) towards PQS production [117, 163]. 

In accordance with the findings from publication C [39], the PqsR antagonists un-substituted 

in 3-position did not significantly inhibit PQS production irrespectively of their antagonistic 

potency. 

In contrast, the production of DHQ was strongly enhanced in the presence of the PqsD 

inhibitor A16. This finding was in accordance with the former hypothesis that PqsA was 

sufficient for DHQ production [89]. However, according to the revised model of pqs QS 

biosynthesis [97], inhibition of PqsD should lead to decreased DHQ production. The same 

scenario of increased DHQ levels was observed for PqsR antagonist C3 and a structurally 

distinct PqsR antagonist (unpublished data). Possible explanations for this phenomenon and 

its implications on target validity will be discussed in detail in section 4.2. 

4.1.2.3 Effects on Virulence Factor Pyocyanin 
According to the current model of the pqs QS system, reduction of signal molecule production 

should lead to attenuated acute virulence, i.e. reduced formation of virulence factors [92, 

102]. Consequently, the next step was to prove this link by pharmacological intervention to 

evaluate pqs QS as target for anti-virulence therapy. Although P. aeruginosa produces a large 

arsenal of virulence determinants, we decided to focus on one relevant, representative 

virulence factor to facilitate straightforward compound evaluation. This should be under the 

control of the major pqs QS response pathway [99, 100], efficiently influenced by pqs QS 

[109], and easily quantifiable for future routine testing [115]. Therefore, we developed an 

assay assessing the effect of QSIs on virulence factor pyocyanin [54, 55, 100]. The reliability 

of the developed assay was confirmed by comparable IC50 values (unpublished data) with 

those published for the PqsR antagonists 3-NH2-7-Cl-C9-QZN and M64 [64, 161]. 

As expected, the PqsR antagonists inhibiting HHQ/PQS production also reduced pyocyanin 

formation. As observed for HHQ/PQS inhibition, micromolar inhibitor concentrations as well 

as substitution in 3-position were needed for efficient inhibition. The most potent PqsR 

antagonists C3 and D16 were also most efficient in inhibiting pyocyanin formation with IC50 

values of 2 µM and 4 µM, respectively. Importantly, as pyocyanin is representative of PqsE-

dependent virulence, these results implied that PqsR antagonists might also repress the 
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production of further virulence factors such as lectin A, elastase, or rhamnolipids [100, 103, 

109]. In contrast, PqsD inhibitor A16 did not change pyocyanin levels at a concentration 

sufficient to inhibit HHQ and PQS levels by around 50%. The reasons and impact on target 

suitability will be discussed comprehensively in section 4.2. 

4.1.2.4 Effects on Biofilm Formation 
According to the actual concept, the pqs QS system is involved in biofilm formation [147]. 

Since AQs, especially PQS, have been shown to promote biofilm formation (see section 1.5.2 

and refs. [99, 109]), we analyzed the effect of PqsD inhibitor A16 on this phenotype. In the 

corresponding biofilm formation assay, A16 was added to a 24 h-grown biofilm and the 

biovolume was quantified after further 24 h using live-dead (DNA) staining and confocal 

laser scanning microscopy [188]. 

The PqsD inhibitor A16 reduced the biovolume of a P. aeruginosa PA14 biofilm. This is in 

accordance with the current model of pqs QS and with the results obtained with a pqsA 

mutant in the same biofilm assay [145]. The fact, that a rather high concentration (~ twofold 

IC50 towards HHQ/PQS inhibition) was needed to observe an effect is not surprising, given 

the higher complexity and resistance of a biofilm system as compared to planktonic cultures 

[28]. However, a final assessment of the effect (38% inhibition at 500 µM) was difficult since 

no quantitative information was available for a pqsD mutant, other AQ biosynthesis mutants, 

or any pqs QSI [161]. Moreover, comparison to any biofilm inhibitors is complicated due to 

low comparability of biofilm assay results obtained in different laboratories. One the one side, 

different assay protocols are used, which is especially critical given the high sensitivity of 

biofilm formation towards assay parameters [189, 190]. For example, the conditions applied 

in the present assay produce biofilms lacking the typical mushroom-shaped structures [112, 

145] making an assessment of the PqsD inhibitor regarding this feature impossible. On the 

other side, varying read-outs (e.g. biovolume, biofilm thickness) or staining dyes might 

impact the outcome and impede a comparison of the results. For example, using DNA stains 

allows detection of eDNA [188], but not of other pqs QS-controlled biofilm components such 

as lectins [52]. This high adaptability of in vitro biofilm results generally questions the in vivo 

relevance of results obtained in suchlike in vitro biofilm assays [190]. Thus, the PqsD 

inhibitor should be further evaluated in appropriate in vivo biofilm models [147] to confirm 

the relevance of the observed effect. 
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4.1.2.5 Effects on Bacterial Growth 
For exclusion of antimicrobial activity as reason for the observed in cellulo effects not desired 

for anti-virulence compounds [27], their toxicity against P. aeruginosa had to be analyzed. 

This was especially important for the QSIs developed during this thesis. First, the PqsD 

inhibitors might also inhibit the structurally related antimicrobial target FabH [191]. Second, 

the PqsR antagonists were derived from AQs, some of which showed antibiotic activity [138, 

192, 193]. Therefore, an end point measurement of the optical density at 600 nm as a function 

of bacterial growth was regularly performed within each assay. However, one should not 

solely rely on end point measurements since they cannot detect growth delay [194]. 

Assessment of growth kinetics is one of the most sensitive methods to characterize a 

compound’s toxicity against bacteria [194]. Therefore, P. aeruginosa PA14 growth curves 

were measured in the presence of the highest compound concentrations used in P. aeruginosa 

bioassays. 

According to the anti-pathogenicity concept, neither the PqsD inhibitor A16 nor the PqsR 

antagonists C3 and D16 affected the growth of P. aeruginosa under standard assay 

conditions. These results gave a hint on the selectivity of the PqsD inhibitor towards FabH. 

Moreover, the same results were obtained for PqsR antagonist C3 intended to be used in vivo, 

when tested in minimal medium mimicking the nutrient-limited conditions encountered in 

vivo [194]. 

4.1.3 In vivo Validation of QSIs 
The encouraging in cellulo results obtained with the PqsR antagonist C3 prompted us to 

expand the test system from in cellulo to in vivo to provide the POC for PqsR-targeting anti-

infective therapy. Due to the favorable anti-virulence properties of C3, we decided on models 

for acute infection as test systems. For provision of the POC at this stage of drug 

development, it was reasonable to choose models with reduced risk of PK issues, easy 

handling, facile read-out, rapid result generation, and independency of ethical considerations. 

Thus, we opted for invertebrate models [195]. 

4.1.3.1 Caenorhabditis elegans Fast-Killing Assay 
The nematode Caenorhabditis elegans is susceptible to killing by P. aeruginosa, which is 

mediated via different mechanisms dependent on the assay conditions [196, 197]. The C. 

elegans fast-killing assay was chosen for several reasons. First, it has been associated with 

phenazine-mediated virulence by P. aeruginosa PA14 [196]. Second, host-related PK issues 

are irrelevant since killing is mediated by diffusible toxins rather than by infectious processes 
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[196]. Third, different pqs QS mutants of another strain, PAO1, including a pqsR mutant 

displayed reduced pathogenicity in this assay [102]. 

Strikingly, 94% of C. elegans worms survived in the presence of P. aeruginosa PA14 on agar 

plates containing 15 µM of C3, whereas 53% of the worms died in the absence of C3 within 

6 h. The results showed that a PqsR antagonist is able to protect C. elegans from P. 

aeruginosa-mediated killing, which was in accordance with the reduced pyocyanin production 

by C3 and the reduced pathogenicity of a pqsR mutant in this assay [102]. Given a relative 

survival rate of 88% in presence of a pqsR mutant [102], this was an impressive effect. 

However, since drug action occurs only in vitro and simply the in vivo consequences for the 

host (host-virulence factor interactions) are monitored, this assay is to be regarded as a 

predictive pre-test rather than a real in vivo model. 

4.1.3.2 Galleria mellonella Infection Model 
For the reasons discussed above, we went on with the more advanced in vivo infection model 

based on Galleria mellonella allowing the administration of defined doses of bacteria and 

drug [195]. Importantly, a significant positive correlation has been found between the 

virulence of P. aeruginosa PA14 mutants in G. mellonella and mice. This attributed to this 

model an excellent predictive power for pathogenicity in mammalian infections [198]. 

Moreover, a phenazine mutant displayed reduced pathogenicity in G. mellonella [198]. 

Interestingly, 93% of the G. mellonella larvae survived an infection with P. aeruginosa PA14 

when treated with the PqsR antagonist C3, while 64% of the non-treated larvae died within 

the first 24 h. This was in accordance with the results obtained with the C. elegans assay. 

Administration of half of the dose yielded a survival rate of 67% demonstrating dose-

dependency of the observed effect. Assuming a distribution volume of 450 µL in the 

hemolymph of a larva, the final concentration of C3 in a larva was only 22 nM. This is 

equivalent to a dose of 7 ng/g body weight classifying C3 as unusually potent drug (≤ 100 

ng/g) according to Lipinski et al. [199]. This is also an unexpectedly low concentration given 

an IC50 towards pyocyanin of 2 µM and the complexity of the host system. Several reasons 

might account for that. First, additional relevant virulence factors might be hit by the PqsR 

antagonist. Second, fewer colony-forming units (CFUs) were injected into Galleria (2-10 

CFUs per larva) than encountered in the pyocyanin assay (~ 105 CFUs), which was necessary 

due to the high sensitivity of the larvae towards P. aeruginosa PA14 (one bacterium is the 

estimated 50% lethal dose) [198]. Third, bacteria and drug were co-administered to avoid 

double injections implicating a short pre-incubation period. Overall, these results proved for 

the first time the concept of anti-virulence therapy targeting PqsR. Meanwhile, these findings 
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have been confirmed in mammalian models of acute infection using a different PqsR-

targeting QSI [64]. 

Noteworthy, the survival rate of P. aeruginosa PA14-infected larvae treated with C3 was 

higher than that of larvae infected with the pqs QS-deficient mutants pqsA and pqsR. A 

growth inhibitory effect of the compound was excluded before (see section 4.1.2.5). 

Furthermore, the QS mutants and the wild-type exhibited comparable in vitro growth rates 

[99, 200]. Therefore, we discussed the following possible explanation: ‘deletion’ of a QS 

function on the genetic level might irreversibly paralyze the respective QS system disposing 

the bacterium to bypass the lost QS function [175], as encountered in lasR mutants [144]. In 

contrast, ‘disruption’ with a small molecule might modulate QS activity reversibly avoiding 

an induction of a bypassing mechanism [177], which seemed to be advantageous. 

4.2 PqsD and PqsR - Valid Targets for Anti-infective Therapy? 
One goal of this thesis was to evaluate the potential of PqsD and PqsR as targets for anti-

infective therapy of P. aeruginosa infections, i.e. acute, chronic and persistent infections (see 

section 1.4). 

4.2.1 Acute Infections 
Using the PqsR antagonist C3, we proved for the first time that pharmacological interference 

with PqsR led to reduced mortality in acute in vivo infection models by selective attenuation 

of P. aeruginosa virulence without influence on growth. This validated PqsR as anti-virulence 

target for combating acute infections. Successful therapy of such infections with a different 

PqsR antagonist in mammalian in vivo models meanwhile confirmed these results [64]. 

During evaluation of PqsD as anti-virulence target, several problems occurred. Against 

expectation, the PqsD inhibitor A16 provoked a strong increase in levels of DHQ [97], a 

potential pathogenicity factor [119]. One the one side, a bypass mechanism to rescue PqsD 

activity is a thinkable reason, as it is not unusual for P. aeruginosa to compensate lost 

virulence functions [109, 144, 201]. On the other side, the rather low in vitro-in cellulo 

correlation of the A16-derived compound class [155] and the increased DHQ levels observed 

for a putative PqsB/C inhibitor [64] or a pqsE mutant [98] might suggest that A16 affected 

additional targets in cellulo. However, PqsR antagonist C3 fully attenuated P. aeruginosa 

virulence in acute infection despite increased DHQ levels. This argued against a relevant 

contribution of DHQ to pathogenesis of such infections. Accordingly, a DHQ-deficient pqsA 

mutant [119] and a DHQ-overproducing pqsE mutant [98] exhibited comparable virulence 

attenuation in acute infection models [92, 100]. 
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Unexpectedly, the PqsD inhibitor A16 did not influence pyocyanin levels at a concentration 

sufficient to significantly inhibit HHQ and PQS production. This was surprising regarding the 

lack of pyocyanin production in a pqsD mutant and mutants of other AQ biosynthetic 

enzymes [102]. However, poor effects on pyocyanin levels have also been observed for other 

AQ biosynthesis inhibitors including PqsA substrates [152], a putative PqsB/C inhibitor [64], 

and inhibitors of unknown target [64]. Thereby, over 90% inhibition of PQS production was 

required to affect and complete inhibition to abolish pyocyanin formation [152]. This showed 

that traces of signal molecules are sufficient to activate transcription of the pqsE gene, i.e. to 

enable pyocyanin production. Overall, these findings do not basically preclude PqsD or other 

AQ biosynthetic enzymes as anti-virulence targets, but make high demands on their 

inhibitors, i.e. to quasi knock-out the target chemically. 

In contrast, PqsR antagonist C3 inhibited pyocyanin production even at concentrations, at 

which HHQ/PQS production was only moderately reduced. The same was observed for 

structurally different PqsR antagonists developed by us [158, 159] and others [64]. This 

implies that PqsR, in contrast to PqsD, might act on pyocyanin via an additional mechanism 

besides driving pqsE transcription [99].  

Overall, the findings from this thesis suggest PqsR as more suitable anti-virulence target than 

PqsD. This might be supported by the observation that the most efficient pqs QSIs identified 

in a phenotypic screening were such targeting PqsR rather than such interfering with AQ 

biosynthetic enzymes [64]. 

4.2.2 Chronic and Persistent Infections 
Chronic P. aeruginosa infections are associated with biofilm formation. The PqsD inhibitor 

A16 was able to reduce the biovolume of a P. aeruginosa biofilm by 38% at approximately 

twice its IC50 for HHQ/PQS production. Although at this concentration, the PqsE pathway as 

represented by pyocyanin was not affected (unpublished data), this result corresponded to the 

observation that biofilm formation required also primarily AQ-dependent processes [99], as 

described in section 1.5.2. Due to its low aqueous solubility, efficacy of PqsR antagonist C3 

could not be demonstrated in the same biofilm assay (unpublished data). However, another 

more soluble member of the same structural class was able to reduce biofilm formation [162]. 

So did another quinazoline-derived PqsR antagonist reported by Ilangovan et al. [161]. 

Overall, these finding show, that both, PqsD and PqsR, are suitable anti-biofilm targets 

independently on the strict requirements for anti-virulence efficacy. However, their validity 

for therapy of chronic P. aeruginosa infections remains to be finally proven using suitable in 
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vivo models for reasons discussed in section 4.1.2.4. Such investigations are currently on-

going. 

Recently, PqsR antagonists have been shown to reduce persister cell formation in a murine 

persistence model validating PqsR as anti-persistence target [64]. Since the pro-persistent 

properties of PqsR have been related to a side-product of AQ biosynthesis, namely 2-AA, the 

biosynthetic enzyme PqsD should be a suitable anti-persistence target as well. The final POC 

in cellulo and in vivo, however, remains to be provided. 

 

Taken together, the findings from this thesis and recent literature discussed above argue for 

PqsR as more favorable drug target than PqsD due to efficacy in a broader spectrum of 

clinically relevant infections. Nevertheless, PqsD has chances as drug target for 

chronic/persistent infections. Moreover, combination therapy with PqsR antagonists and PqsD 

inhibitors might bear great potential for efficient therapy due to synergistic interruption of the 

auto-inductive loop and due to reduced risk of resistance development [202]. Perfection of 

this concept might be achieved with dual target (PqsD-PqsR) inhibitors promising reduced 

probability of drug-drug interactions and improved compliance during long-term therapy of 

chronic infections [203]. 

4.2.3 Target Validation with Small Molecules vs. Mutants 
Mostly, initial target validation relies on bacterial mutant studies. However, a suchlike target 

validation might not necessarily reflect the suitability of a target for pharmacological 

intervention and therapy [175]. The results from this thesis confirm this. First, mutant 

analyses might not judge the sensitivity of a certain phenotype towards target inhibition, 

which is possible with small molecules whose effect is quantitatively tunable [177]. 

Accordingly, pqsD mutant analyses did not reveal the issues associated with the low 

sensitivity of the PqsE pathway to AQ biosynthesis inhibition. Second, irreversible knock-out 

of the target might induce compensatory mechanisms [144], which does not necessarily 

happen upon reversible target modulation with small molecules [175]. Accordingly, PqsR 

might not have been identified as anti-virulence target in the G. mellonella infection model. 

Third, complete inactivation of a complex regulatory circuit might fail to dissect individual 

functions of targets [98]. Accordingly, mutant analyses might have never suggested a role for 

PqsR in direct control of pyocyanin production. Similarly, pqsE mutant studies might have 

never dissected PqsE regulatory and biosynthetic functions [98]. Fourth, in the future, small 

molecule inhibitors can be used to study time-dependent scenarios such as prophylactic versus 

therapeutic drug application, which might not be possible with mutants [177]. Taken together, 
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these results warn of solely relying on mutant analysis to judge the therapeutic suitability of a 

target. 

4.3 (2-Nitrophenyl)methanols and 6-Nitro-HHQs as QSIs 
One aim of this thesis was to contribute to the development of novel potent pqs QSIs by their 

biological evaluation. During this thesis, two classes of pqs QSIs were developed: the (2-

nitrophenyl)methanols (NPMs) represented by PqsD inhibitor A16 and the 6-nitro-HHQs with 

substitution in 3-position (SNHHQs) represented by PqsR antagonist C3. In the following 

section, their potential and drawbacks will be discussed. 

Although they do not belong to the first reported class of PqsD inhibitors [122, 165], the 

NPMs are the first reported cell-active PqsD inhibitors. They constitute the only class of PqsD 

inhibitors that shows significant inhibition of signal molecules in the P. aeruginosa wild-type 

in contrast to the meanwhile developed more potent in vitro PqsD inhibitors [157]. The NPMs 

might owe this unique feature their low molecular weight and rather low lipophilicity in line 

with proposed rules for intracellular activity in Gram-negative bacteria [204]. Moreover, as 

ACoA mimics they can inhibit PqsD in cellulo irrespectively of the nature of the second 

substrate used in vitro [97], which might be critical for compounds not interacting with the 

ACoA binding site [165]. Moreover, the NPMs are the only class of AQ biosynthesis 

inhibitors, for which an anti-biofilm activity has been described. The biofilm-surrounding 

matrix is mainly negatively charged [51] e.g. due to eDNA that might capture cationic 

compounds [146] or repulse negatively charged ones. Thus, the neutral NPMs might have an 

advantage over charged compounds in penetrating biofilms. Furthermore, the NPMs did not 

inhibit bacterial growth indicating selectivity over FabH as discussed in section 4.1.2.5. 

However, increase of DHQ levels might argue for additional targets such as other biosynthetic 

enzymes (see section 4.2.1). 

A major drawback of the NPM inhibitors so far is that none of them has ever reached an 

inhibition of signal molecule production sufficient to considerably affect pyocyanin 

production (unpublished data). Given that an approximately tenfold IC50 regarding PQS 

inhibition was necessary for other AQ biosynthesis inhibitors to affect pyocyanin production 

[152, 163] and that macrophage proliferation was impaired at a twofold IC50 of PqsD inhibitor 

A16, its target activity needs to be further improved. Notably, the low sensitivity of the PqsE 

response pathway towards signal molecule inhibition might be a common hurdle for all AQ 

biosynthesis inhibitors [152] requiring a knock-out-like inhibition of the target enzymes (see 

section 4.2.1). However, although the NPMs have turned out to be tight-binding inhibitors 

characterized by long residence time on the target, this aim could not yet be reached [155]. 
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Nevertheless, the NMPs obey the restrictive ‘rule of three’ established for hit selection in 

fragment-based discovery and hence bear great potential for activity improvement without 

losing drug-likeness [205]. This potential is also reflected by high ligand efficiencies [206]. 

The SNHHQs developed in this thesis belong to the first reported class of PqsR antagonists 

that exhibited nanomolar target affinity [160]. However, they suffered from low cellular 

activity due to a functional inversion by an enzyme involved in signal synthesis [39]. This 

shows that natural ligand-based drug design can be disadvantageous given the high structural 

similarity to the natural product evolved by nature to fit into the binding pockets of target 

proteins [125, 207]. Accordingly, AHL-derived QSIs have been found to be substrates of an 

efflux pump responsible for secretion of AHL signals [57]. Nevertheless, rational 

biochemistry and medicinal chemistry strategies, as applied in this thesis, can help to 

overcome such problems and reduce attrition rates. Consequently, this class of PqsR 

antagonists could be rescued. They even represent the most potent ligand-derived [161] and 

second-most potent published class of PqsR antagonists regarding antagonistic and anti-

pyocyanin activities [64]. Accordingly, the PqsR antagonist C3 was an excellent anti-

virulence agent in an acute infection model. Moreover, it is worth mentioning that the 

SNHHQs do not interfere with bacterial growth as discussed in section 4.1.2.5. The idea to 

exploit the immunosuppressive functions of HHQ and PQS therapeutically [208], might also 

be applicable to the SNHHQs as their derivatives. This might be especially useful in chronic 

infections associated with destructive chronic inflammation [209]. Notably, during antagonist 

optimization, agonists were discovered, some of which were even more potent than the 

natural agonist PQS. Such superagonists might bear some therapeutic potential too [68]. For 

example, premature activation of QS might enable the immune system to detect the presence 

of single bacteria before they collectively attack the host [68]. Furthermore, overactivation of 

the pqs QS system has been associated with biofilm dispersal [150] suggesting the 

superagonists as potential biofilm-dispersing agents. 

A major disadvantage of this class of PqsR antagonists was their poor aqueous solubility, 

which prompted us to optimize this physicochemical property. However, the high lipophilicity 

of the ligand binding pocket and the sharp structure-functionality relationships might have 

impeded a suchlike optimization, as discussed in section 4.1.1. Thus, the poor 

physicochemical properties of this compound class still remain to be optimized. Alternatively, 

prodrug strategies{Baker, 2004 301 /id} or appropriate formulations, as developed meanwhile 

[211], might enable a biomedical use of these compounds. Being less demanding regarding 

aqueous solubility, topical administration might be a possibility to readily use the compounds 
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for biomedical applications (e.g. in acute lung infections) or provision of the POC in an 

appropriate murine model [147]. 

 

4.4 Outlook 
 

In the following the already discussed perspectives will be summarized: 

 

• Given the strict requirements for anti-virulence efficacy and the better suitability of PqsD 

as anti-biofilm target, the primary in cellulo read-out for PqsD inhibitors should be signal 

molecule rather than pyocyanin production. In addition, primarily AQ-dependent 

phenotypes might be investigated such as siderophore production. 

• In general, the in cellulo effects of the QSIs should be analyzed in relevant (e.g. nutrient- 

or phosphate-limited) media and in presence of relevant host factors (e.g. antimicrobial 

peptides) to mimic environmental stress conditions encountered in the host, which might 

influence QS hierarchy and relevance. 

• Time-dependent scenarios such as biofilm formation inhibition (prophylaxis) versus 

biofilm dispersion (therapy) should be studied in appropriate assay settings, the latter 

especially with superagonists. 

• To validate PqsD as anti-persistence target, the PqsD inhibitors should be evaluated 

regarding their influence on 2-AA production and persister cell formation. 

• Given the comparable effort in performing C. elegans and G. mellonella assays, the latter 

should be favored involving infectious process and host-pathogen interactions. 

• The POC for anti-biofilm therapy targeting PqsR or PqsD should be provided in 

appropriate in vivo models instead of solely relying on in vitro assays. 

• The promising PqsR antagonists should be evaluated in more advanced animal models 

such as murine models for acute lung infection. 

• For biomedical application, the novel PqsR antagonists should be further optimized 

regarding water solubility by medicinal chemistry strategies (e.g. prodrug approaches) or 

by appropriate formulation (e.g. ultra-small nanoparticles) or, alternatively, used for 

topical applications (e.g. as an aerosol in lung infections). 

• The PqsD inhibitors should be optimized regarding their activity by e.g. fragment growing 

in order to achieve full inhibition of AQ biosynthesis and thus anti-virulence effects. 
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6 Summary 

Innovative, efficient anti-infectives are needed because of increasing antibiotic resistance. 

Thus, strategies have been proposed interfering with bacterial pathogenicity instead of 

viability such as inhibition of quorum sensing. This intercellular communication system uses 

signal molecules to coordinate virulence and biofilm formation. Pseudomonas aeruginosa 

uses unique signal molecules such as 2-heptyl-3-hydroxy-4-(1H)-quinolone (PQS). Therefore, 

compounds should be developed blocking their biosynthesis and reception by inhibiting PqsD 

and antagonizing PqsR, respectively. In this thesis, novel PqsD inhibitors were studied. The 

best compound strongly inhibited the production of signal molecules and biofilm without 

affecting growth. Irreproducibility of routine quantification of PQS in P. aeruginosa cultures 

was overcome by development and validation of a novel LC-MS/MS approach. A functional 

inversion was identified as reason for ineffectiveness of the first PqsR antagonist in P. 

aeruginosa. Blocking the metabolic hot spot led to a very potent anti-infective fully protecting 

Galleria mellonella larvae from lethal P. aeruginosa infection. This was the first proof-of-

concept for an anti-infective therapy targeting PqsR. Optimization of the physicochemical 

properties of the respective compound class resulted in a new compound with improved water 

solubility and efficient reduction of signal molecules and virulence factor formation. 
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7 Zusammenfassung 

Aufgrund von Antibiotikaresistenzen werden dringend neue Antiinfektiva benötigt, welche 

idealerweise die Pathogenität der Bakterien reduzieren ohne diese abzutöten, z.B. durch 

Hemmung von Quorum Sensing. P. aeruginosa nutzt dieses Kommunikationssystem zur 

Koordination von Virulenz und Biofilmbildung unter Verwendung von Signalmolekülen wie 

2-Heptyl-3-hydroxy-4-(1H)-Chinolon (PQS). Neue Wirkstoffe sollten daher deren 

Biosynthese oder Wirkung durch Hemmung von PqsD oder PqsR unterbinden. In dieser 

Arbeit sollten neue PqsD Inhibitoren charakterisiert werden. Der potenteste Inhibitor konnte 

die Bildung von Signalmolekülen und Biofilm stark reduzieren ohne das Bakterienwachstum 

zu beeinträchtigen. Die Entwicklung und Validierung eines neuen LC-MS/MS-Verfahrens 

erlaubte reproduzierbare Routinequantifizierung von PQS. Die schwache Wirksamkeit des 

ersten PqsR-Antagonisten in P. aeruginosa war auf eine Funktionalitätsumkehr 

zurückzuführen. Diese konnte durch chemische Modifikation vermieden und so schließlich 

ein potentes Antiinfektivum entwickelt werden, das Galleria mellonella-Larven vor tödlichen 

P. aeruginosa-Infektionen schützte. So wurde erstmals gezeigt, dass eine Hemmung von 

PqsR zur Therapie von Infektionen genutzt werden kann. Optimierung der 

physikochemischen Eigenschaften der entsprechenden Verbindung lieferte schließlich einen 

neuen Wirkstoff mit verbesserter Wasserlöslichkeit, der die Bildung von Signalmolekülen und 

Virulenzfaktoren effizient reduzierte.  
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8 List of Abbreviations 

2-AA 2-aminoacetophenone 

2-ABA 2-aminobenzoylacetate 

2-ABA-CoA 2-aminobenzoylacetyl-coenzyme A 

ACoA anthraniloyl-coenzyme A 

AHL N-acyl-homoserine lactone 

AQ 2-alkyl-4-(1H)-quinolone 

BHL N-butyryl-L-homoserine lactone 

CF cystic fibrosis 

CFU colony-forming unit 

CoA coenzyme A 

DHQ 2,4-dihydroxyquinoline 

EC50 effector concentration to achieve half-maximal degree of effect 

eDNA extracellular DNA 

HHQ 2-heptyl-4-(1H)-quinolone 

IC50 inhibitor concentration to achieve half-maximal degree of inhibition 

LC-MS/MS liquid chromatography-tandem mass spectrometry 

NPM (2-nitrophenyl)methanol 

PK pharmacokinetic 

POC proof-of-concept 

PQS Pseudomonas quinolone signal 

QS quorum sensing 

QSI quorum sensing inhibitor 

SNHHQ 6-nitro-HHQ with substitution in 3-position 
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