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"I meant," said Ipslore bitterly, "what is there in this world that 

makes living worthwhile?" Death thought about it. "CATS," he said 

eventually, "CATS ARE NICE." 
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Short summary 

In vitro cell culture models are an important alternative for animal testing, as they are less 

ethically questionable and avoid the problem of non-representative results due to species 

differences. A previously established 3D co-culture model of the inflamed intestinal 

mucosa consisting of human epithelial and primary immune cells was further developed 

by replacing primary cells by two human monocytic cell lines in order to have a stable and 

more reproducible system, which shows a well preserved ultrastructure and good barrier 

properties. 

With this model the safety of different nanoparticles (NPs) was investigated and it was 

shown that Ag NPs show a high cytotoxicity. Co-culture models incubated with Au NPs 

showed an inflammatory response although no toxic effects were measurable. 

Furthermore, differences between inflamed and non-inflamed co-cultures and Caco-2 

monocultures were shown with the result that Caco-2 cells are more sensitive to toxic 

Ag NPs than the co-culture models. 

For the treatment of inflammatory bowel disease (IBD) nano- and microparticulate drug 

delivery systems (DDS) were developed, containing anti-inflammatory compounds 

budesonide and cyclosporine A. The anti-inflammatory effect of the formulations on the 

inflamed co-culture was shown by TEER and IL-8 measurement.  

In summary, the further developed co-culture model is a useful tool for safety testing of 

nanomaterials and can be used to test anti-inflammatory effects of DDS for the treatment 

of IBD. 
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Kurzzusammenfassung 

In vitro Modelle sind eine wichtige Alternative zu Tierversuchen, da sie ethisch weniger 

fragwürdig sind und nicht-repräsentative Ergebnisse aufgrund von Spezies-Unterschieden 

vermeiden. Ein 3D Co-Kultur Modell der entzündeten Darmmukosa, bestehend aus 

menschlichen Epithel- und primären Immunzellen wurde entworfen, welches in der 

vorliegenden Arbeit weiterentwickelt wurde, indem die Primärzellen durch Zelllinien 

ersetzt wurden, um ein reproduzierbareres Modell zu erhalten.  

Mit diesem Modell wurde die Sicherheit verschiedener Nanomaterialen untersucht und es 

wurde gezeigt, dass Ag NP zytotoxisch wirken. Zell-Modelle, inkubiert mit Au NP, zeigten 

eine entzündliche Antwort, obwohl keine Toxizität gemessen werden konnte. Zusätzlich 

wurde gezeigt, dass Caco-2 Monokulturen empfindlicher gegenüber toxischen Ag NP sind 

als die Co-Kultur Modelle.  

Für die Behandlung entzündlicher Darmerkrankungen wurden nano- und mikropartikuläre 

Arzneistoffträgersysteme entwickelt, die die anti-entzündlichen Verbindungen Budesonide 

und Ciclosporin A enthalten. Der anti-entzündliche Effekt dieser Partikel wurde im 

entzündeten Co-Kultur Modell des Darms durch TEER und Zytokin Messungen gezeigt.  

Dies zeigt: Das weiterentwickelte Co-Kultur Modell ist ein nützliches Werkzeug für 

Sicherheitstests von Nanomaterialien. Darüber hinaus kann es genutzt werden, um anti-

entzündliche Effekte von Arzneistoffträgersystemen für die Behandlung entzündlicher 

Darmerkrankungen zu testen. 
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1 Introduction 

1.1 Intestinal mucosa and inflammatory bowel disease 

Approximately 1014 microorganisms from 1000 different species, corresponding to 10-fold 

the number of cells in the human body, are located in the human gastrointestinal (GI) 

tract. At birth the human intestine is a sterile area and bacterial colonization only begins 

during the delivery process [1]. The intestinal epithelium with its huge surface area 

(~ 100m2) forms a physiological barrier [2], and probiotic bacteria in the GI tract contribute 

to this barrier function through e.g. effects on epithelial tight junction proteins, prevention 

of epithelial apoptosis, increased production of intestinal mucus or increased stimulation 

of defensin production [1].  

Nowadays, inflammatory bowel diseases (IBD) such as Crohn´s disease (CD) and 

ulcerative colitis (UC) are serious and incurable diseases. In the US, about 1-2 million 

people are affected by such diseases [3]. Patients in particular with CD often need 

surgical intervention, and their mortality rate is greater than that of the general population. 

However, the prognosis of IBD patients in general is not so easy to determine [4], and in 

fact, differentiation between diseases may also prove difficult. Both CD and UC affect 

parts of the GI tract and the colonic mucosa. They both show similar symptoms (such as 

diarrhea, fever, muscle aches, abdominal pain, weight loss or bloody stool) and lead to an 

increased risk of colon cancer [5]. However, while CD can cause inflammation anywhere 

in the lining of the GI tract, UC is characterized by a long-lasting inflammation specifically 

in the large intestine [6] (Figure 1.1). So far the detailed pathogenic mechanisms of IBD 

remain to be fully elucidated, although worldwide a strong correlation between IBD and 

environmental factors has been detected [7]. Furthermore, genetics, immune dysfunction 

and changes in the microbiome could be reasons for the appearance of IBD [8]. 
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Figure 1.1: Disease areas and symptoms of CD and UC (based on Lautenschläger et 

al. [9]). 

 

The state of IBD highlights the important role of the microbiome in gut barrier function - in 

IBD patients an excessive, cell-mediated inflammation is induced in response to normal 

bacterial microflora antigens; as a result, an abnormal permeability and gut barrier 

function can be observed in affected and non-affected GI areas [10].  

In the light of the abnormal response to normal gut contents seen in IBD, diet control is 

quite important for IBD patients as a means to control their disease symptoms. The 

removal of specific foods, suspected to worsen patients conditions, is an important factor 

for dietary optimization [11]. The importance of diet is highlighted by the fact that IBD 

occur more frequently in western countries, where diet control is a problem, than in 

underdeveloped regions. Western food, with large amounts of animal fat and proteins and 

comparatively less fiber, may influence the gut microbiome and could increase the risk of 

IBD [12]. However, the other possibility is that people in more industrialized countries are 
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exposed to fewer microorganisms because of the higher hygienic standards in such 

areas, and as a result the immune system is not able to tolerate too many 

microorganisms. Smoking also influences the development of IBD. It was shown that 

smoking increases the risk of extra-intestinal manifestations in CD [13], [14]. Surprisingly, 

smoking seems to protect people from UC, which is largely a disease of non-smokers 

[15]. However, so far the reason for this unusual association remains unclear [16], and 

scientific studies have failed to confirm a beneficial effect of smoking for UC patients [17].  

With respect to the treatment of IBD, several changes in the GI tract must be considered. 

Firstly, the transit time through the intestine varies between healthy and diseased 

persons. In healthy persons the transit time through the small intestine is approximately 

4 hours, and varies in the colon between 6 and 70 hours [18]. Contrary to this, the transit 

time in IBD patients is twice as fast as in healthy persons due to the occurrence of 

diarrhea, which, as mentioned, is a common symptom of this disease [19]; this 

significantly faster transit time makes it very difficult to target drug formulations for IBD 

treatment to the affected regions of the GI tract. Another difference is the colonic pH 

value: in UC and CD patients this is significantly lower than in healthy persons. The 

intestinal pH is influenced by microbial fermentation, intestinal volume and transit times 

[20] – all these are factors which are disrupted during IBD. Furthermore, the mucosal 

integrity is altered by the IBD-associated inflammation as is the mucosal metabolism [21]. 

Additionally, mucus production is higher in diseased tissue [22], which also makes it 

difficult for drug treatment formulations to reach the inflamed area. Therefore, the 

evaluation of new strategies in the treatment of IBD is a point of extreme importance.  
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1.2 Treatment of IBD 

So far there is no medical cure for IBD, and a lifetime of drug therapy for the maintenance 

of life quality is often necessary. A group of anti-inflammatory drugs including 

5-aminosalicylic acid (5-ASA) is commonly used for the therapy of mild types of IBD [23]. 

When this therapy fails patients are often treated with other drugs such as infliximab, 

which is a chimeric monoclonal antibody directed against the inflammation-related 

cytokine tumor necrosis factor-α (TNF-α). Such antibodies increase the production of anti-

inflammatory cytokines including interleukin-4 (IL-4), IL-5 and IL-10, which in turn inhibit 

production of pro-inflammatory cytokines. Corticosteroids are also used as more effective 

drugs in severe forms of IBD. Biological drugs (such as antibodies), 5-ASA and 

immunosuppressants can each be effective in their own way. However, under some 

circumstances medication fails and patients require surgery. In many cases this may 

consist of a colectomy, in which parts of or the entire large intestine is removed. After 

removal cases of UC may be cured, however, CD can still recur after this type of 

surgery [6].  

With respect to medical treatments serious side effects can occur. Many drugs can induce 

side effects ranging from mild to severe in nature; this may even include mortality in some 

cases. Corticosteroids often induce hypertension, osteoporosis and glaucoma as well as 

many other effects. Treatment with immunosuppressants leads to an increased 

susceptibility to infections and malignoma. Therefore it is important to attempt to achieve 

and to maintain a balance between effective IBD treatment and the risk of occurrence of 

adverse drug reactions. The ability to treat IBD with anti-inflammatory agents at an 

effective dose, which does not induce any side effects, would be the ideal situation [9].  

Oral treatment of IBD with anti-inflammatory drugs or antibodies has shown success 

against inflammation [24]. The limitation of such treatments however is that drugs are 

transported non-specifically to cells of the human body, which can also lead to several 

side effects such as headache, vomiting or diarrhea, all of which have the potential to 
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worsen patient conditions [6]. Therefore it is important not only to be able to deliver drugs 

at an effective and safe dose, but also to develop drug delivery systems (DDS) for the 

transport of drugs to the specific target site. For this purpose nano- and microparticulate 

DDS are often used. These can accumulate in the inflamed tissue and release the drug 

specifically at the target site, as shown in Figure 1.2. As mentioned previously the GI tract 

in IBD patients shows disrupted barrier properties and increased mucus production, which 

makes it easier for the particles to accumulate in such affected areas. Furthermore, 

immune competent cells such as macrophages and dendritic cells are able to penetrate 

and migrate through the disrupted barrier, and take up the particles. 

 

 

Figure 1.2: Mechanism of particle accumulation in the inflamed intestinal mucosa. 

Particles may accumulate between epithelial cells, because tight junctions are disrupted, 

or be taken up by macrophages (based on Collnot et al. [25]). 

 

The use of nano- and microparticles is therefore an excellent strategy in the treatment of 

IBD, as an improvement of drug efficacy and colonic uptake can be seen to result from 

inflammation site-specific targeting. A better bioavailability in the diseased tissue and a 
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reduction of side effects resulting from non-specific delivery are also seen. Additionally, 

lower drug concentrations are needed in particulate systems as compared to conventional 

formulations, also reducing the risk of adverse drug effects [25].  

Before such DDS can be used for human IBD patients, it is important to test their efficacy 

and of course their safety in biological models. There are several animal models that can 

be used for investigations related to IBD. 

 

1.3 In vivo models for IBD 

The term “IBD animal model” is defined as a model which is characterized by chronic or 

relapsing inflammation of the GI tract with features resembling human IBD [26]. Two 

models are very often used for this purpose, because of their high reproducibility: the DSS 

model and the TNBS model. In the first case, dextran sodium sulfate (DSS) is given to 

mice orally in their drinking water for five days. Afterwards mice show typical symptoms of 

IBD such as weight loss, diarrhea or bloody stool. Inflammation can be analyzed e.g. by 

histological methods or measurement of inflammatory markers including IL-8 and TNF-α 

[27]. The DSS model is mostly used for investigations of UC, while the TNBS model is 

more often used for CD. In the case of the TNBS model, rodents are treated intra-rectally 

with 2,4,6-trinitrobenzene sulfonic acid (TNBS), which is dissolved in alcohol to induce gut 

inflammation and barrier disruption [28]. While DSS and TNBS are able to readily induce 

symptoms of IBD in model species, many animals die during the experimental time, which 

makes these chemically-induced models in fact rather variable and unpredictable. As an 

alternative, genetically-modified IL-10 knockout mice have been established. In this model 

animals develop a time-dependent IBD-like disorder in the colon [29]. Unfortunately this 

model is more expensive and shows a higher sensitivity than the chemically induced 

models. 

It can therefore be seen that serious problems and difficulties exist with respect to IBD in 

in vivo experiments. Additionally the interpretation of data from animal testing is often 
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further complicated by the species differences between rodents and humans. In vivo 

testing in animals in general is also more expensive and ethically questionable in 

comparison to in vitro studies. Furthermore, the new REACH (Registration, Evaluation, 

Authorization and Restriction of Chemical substances) regulations, which also cover 

nanomaterials, greatly increase the number of substances which must be tested thus 

overwhelming the capacities of in vivo animal testing.  

 

1.4 Epithelial in vitro models 

Cell culture-based in vitro models are a very important alternative to animal testing. They 

are often used for studying the processes of drug absorption, distribution, metabolism and 

excretion (ADME). The epithelial cell line Caco-2, a human colon adenocarcinoma cell 

line, which, having been used for the last 20 years as a means to mimic the GI epithelium, 

is an established cell culture model of the human intestinal barrier [30]. A study that 

compared 20 different intestinal cell lines found that Caco-2 cells show the highest 

correlation to the in vivo situation [31]. On permeable cell culture supports Caco-2 cells 

grow in a monolayer and show a cylindrical polarized morphology with microvilli on the 

apical side. They express small intestinal enzymes, transport proteins and functional tight 

junctions [32]. In such a system, the permeable supports on which cells are grown 

generally consist of 10 µm thick polyester or polycarbonate membranes, which are 

incorporated into culture plate insert systems. Such insert systems result in division of the 

cell culture plate well into an apical compartment, which mimics the intestinal lumen, and 

a basolateral compartment, which represents the blood side. To investigate the tightness 

of the Caco-2 monolayer representing the epithelial barrier, the transepithelial electrical 

resistance (TEER) can be measured in these systems, giving readings with the units of 

Ω*cm2. The tighter the epithelium, the higher is the measured TEER value.  

Epithelial cells constitute the major cell type in the intestinal mucosa and cover the 

majority of the intestinal surface (~ 250 m2). Thus they are the main interface for 
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interaction and absorption, and as such the Caco-2 monolayer system has consequently 

been accepted by regulatory authorities as an in vitro model to predict oral drug 

bioavailability. The Caco-2 in vitro model is a very useful means to investigate the 

absorption and permeation of small drug molecules because Caco-2 cells grow into 

monolayers with a differentiated phenotype with many functions of the small intestinal 

villus epithelium [33].  

However, one cell type alone cannot mimic the behavior of a whole tissue. Therefore, 

while Caco-2 monolayers are a very important tool for drug absorption and bioavailability 

studies, there are some limitations to this model with respect to its use in other 

applications. An important limiting factor in the case of safety testing for example is the 

lack of immune competent cells (e.g. macrophages and dendritic cells), which play a key 

role in the response to exposure to toxic materials (such as certain nanoparticles). 

Furthermore, the presence of immune cells is very important for studies concerning 

inflammation, as they are responsible for the production of pro-inflammatory cytokines 

such as IL-8, IL-6 or TNF-α. Therefore, the development of novel co-culture systems, 

consisting of two or more cell types, is very important for in vitro testing of nanomaterials 

or drug delivery systems. 

 

1.5 In vitro co-culture models of the intestine 

Several co-culture models have already been established and are well described in 

literature. A lot of these models are related to the lungs and respiratory tract, as for 

example the model from Rothen-Rutishauser et al., which consists of epithelial cells 

(A549), macrophages and dendritic cells, and is designed to study the interaction of lung 

tissue with nanoparticles (NPs) [34]. This model was even further developed by using 

primary alveolar type I cells to present a more realistic alveolar barrier [35].  

Regarding intestinal co-cultures, several models have been established in order to 

investigate the penetration of drugs or NPs, many of which include M-cells and goblet 
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cells. M-cells play a role in the uptake and delivery of NPs or other substances, whereas 

goblet cells produce mucus (in far greater quantities than Caco-2 cells alone), which also 

influences the permeability of the epithelial layer. In a typical example of such a co-culture 

des Rieux et al. developed a model of Caco-2 cells with M-cells. In order to produce such 

a model Caco-2 cells were seeded in the apical compartment of a transwell filter insert 

and Raji B cells were introduced into the basolateral compartment [36]. These cells 

release soluble mediators which are responsible for differentiation of Caco-2 to M-cells. 

Des Rieux et al. further improved this model by inverting the insert with the Caco-2 cells to 

get closer contact between the two cell types, making such a model physiologically more 

relevant for permeability studies with NPs because it leads to more efficient cell 

differentiation [37].  

A similar model was established by Antunes and colleagues, who combined Caco-2 and 

Raji B cells with the mucus-producing cell line HT29. They developed one model with 

Caco-2 and HT29 cells seeded in the apical and Raji B cells in the basolateral 

compartment and one model in which the converse was true. With both models they 

performed permeability studies which showed that such a triple culture model leads to 

more reliable results than in vitro models with one or even two cell types because it could 

be seen that insulin permeation was faster in the triple culture models [38].  

Araújo et al. established a similar model with Caco-2, HT29-MTX and Raji B cells with a 

seeding ratio of 90:10 between Caco-2 and HT29-MTX cells in order to closely mimic the 

physiological proportion of each cell [39]. Yet further studies have shown that the seeding 

day is important for such co-culture systems: when Caco-2 cells were grown for 21 days 

and HT29-MTX cells were seeded after different time points, it was found that after earlier 

seeding more goblet cells were present, which influenced the permeability of luciferase 

yellow and rhodamine123 [40]. The latest co-culture system with Caco-2, HT29-MTX and 

Raji B cells was established in 2014 by Schimpel et al., who also performed permeability 

studies with drugs and NPs and could show that goblet and M-cells have a huge influence 

in these studies [41]. 
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As already mentioned all these models were developed for the purpose of permeability 

testing: there are even more co-culture models of the intestine in existence for other 

purposes. A model with Caco-2 cells in the apical compartment and lymphoblastoid TK6 

cells in the basolateral compartment of transwell inserts was established for modelling the 

role of intestinal first-pass effects (such as absorption and metabolism) in the genotoxicity 

of orally-delivered drugs [42]. Other models with human submucosa and HT29-CI.16E as 

epithelial cells have been used to investigate the role of the human enteric nervous 

system in the control of the intestinal lumen organization and proliferation [43], while 

models with Caco-2 cells and peripheral blood mononuclear cells (PBMCs) in different 

compartments of a transwell system have been employed to determine reactivity to non-

toxic bacterial signals [44]. Holland-Gunz et al. seeded enteric glial and nerve cells from 

rats in a collagen layer with HT29 enterocytes on top to prepare a basic model suitable for 

placement on cover slips [45].  

Yet further models have been established for cytotoxicity testing, such as one model with 

Caco-2 cells in the apical compartment and PBMCs in the basolateral compartment of a 

transwell system. Toxicity studies performed with arsenic showed that the release of the 

pro-inflammatory marker TNF-α was increased, more in the basolateral compartment with 

PBMCs than in the apical compartment with the Caco-2 cells which proves how important 

immune competent cells are for pro-inflammatory reactions. This model was also inflamed 

with bacteria-derived lipopolysaccharides (LPS), which showed an even further increase 

in the amount of produced TNF-α [46].  

As has been discussed, the ability to mimic a state of inflammation is a very important 

factor for IBD models. There are some fundamental differences between healthy and 

inflamed tissue as for example epithelial barrier disruption. Bisping et al. established a co-

culture model with epithelial cells (Caco-2 or primary cells) together with PBMCs from 

healthy persons, or from IBD patients. The models containing cells from IBD patients 

released significantly more Interferon-γ (IFN-γ), a pro-inflammatory marker, than the 

models containing cells from healthy persons [47]. In addition to IFN-γ, other pro-
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inflammatory cytokines can also be up-regulated in a state of inflammation leading to 

several measurable inflammatory markers. As the epithelial barrier is disrupted in 

inflammatory states, TEER values of the epithelial barrier can also be monitored. A 

decreasing TEER value can be used as an indicator of inflammation, as was observed in 

the co-culture model of Tanoue et al. after inflammation with LPS [43]. Other co-culture 

models available for IBD include a model with T84 epithelial cells, CCD186 myofibroblasts 

and lamina propria mononuclear cells, designed for the investigation of the interaction 

between cell types and evaluation of their role in barrier integrity [48], and a model with 

Caco-2 and THP-1 cells, which showed a disrupted epithelial barrier, low TEER values 

and high TNF-α release from activated THP-1 cells [49]. 

However, despite the existence of these numerous models, so far only one model has 

demonstrated good barrier properties suitable for NP translocation studies. This model 

combines the Caco-2 intestinal epithelial cell line with primary blood-derived dendritic cells 

and macrophages embedded in a collagen type I gel [50] and was developed in our 

research group. In this setup also a reversible inflammation could be induced by addition 

of the pro-inflammatory cytokine IL-1β, and the model was successfully applied to the 

testing of anti-inflammatory formulations, such as NPs, for the treatment of IBD [51]. Due 

to the presence of immune cells, this model should also be a useful tool to test cytotoxicity 

of NPs, which is a very important point, because NPs are frequently used in food 

packages, sun creams and wound healing products. 

 

1.6 Nanoparticles 

NPs by definition have a size between 1 and 100 nanometers, and differ from other 

materials as a result of their large relative surface area. Because of this huge surface area 

they can show differences in properties such as reactivity, strength and electrical 

characteristics relative to other materials [53]. Furthermore, interaction of NPs with 



 Chapter 1: Introduction 

 

17 
 

biological media and cells is different to that of micro- and macrostructured materials as 

absorption pathways and cellular internalization differ.  

Currently, nanoparticles can be found in many consumer products. They serve for 

example as surface coatings in paints, in food packages or in sun cream. Research on 

NP-associated toxicity has been focused for a long time on airborne particles. However, a 

large fraction of these particles never reaches the deeper lung, as particles impact in the 

throat and upper airways and are removed from the bronchi by mucociliary clearance, to 

be swallowed afterwards. Thus, such NPs in fact gain access to the GI tract. More 

importantly, engineered nanomaterials are also employed in food packaging or as 

additives in various food products. As already mentioned, they are also used in innovative 

drug delivery systems as they can passively or actively target drugs to their site of action 

and can protect their cargo from degradation [52].  

There is still a huge concern about the safety of nanomaterials. Engineered nanomaterials 

can often be found in textiles and can end up in soils or wastewater [54]. Other 

nanomaterials are also used in construction and related infrastructure industries [55] and 

many NPs are used as food supply through novel applications, nutrient and bioactive 

absorption, improved colors and flavors or food packaging [56]. All these points make it 

very important to know more about the possible toxicity of nanomaterials, especially after 

reaching the GI tract. 

 

1.7 Aim  

The first step of this work was to further develop the co-culture model of the inflamed 

intestinal mucosa, as established by Leonard et al. [50], by replacing the utilized primary 

immune cells with cell lines. Primary cells show a high variability, as they are isolated from 

different patients` blood samples. Additionally the isolation of the cells for every 

experiment is time consuming and expensive. The use of cell lines in such a model would 

therefore make the model more reproducible and easier to use. For this purpose THP-1 
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cells were stimulated with phorbol-12-myristate-13-acetate (PMA) in order to facilitate 

differentiation to macrophage-like cells; MUTZ-3 cells were used as dendritic-like cells and 

both were co-cultivated in a collagen layer with Caco-2 cells on top in order to mimic the 

intestinal mucosa (Figure 1.3).  

 

 

 

Figure 1.3: Experimental setup of the co-culture of the inflamed intestinal mucosa. 

Dendritic cells and macrophages are embedded in the collagen layer. Epithelial cells are 

seeded on top of the collagen. The model can be inflamed by adding of IL-1ß into the 

apical compartment. 

 

Following replacement of the primary cells by cell lines, it was tested whether the model 

showed the same behavior as previously, in order to see if the replacement of the cells 

was successful. Therefore, IL-1ß was used as an inflammatory stimulus. Barrier 

properties (TEER) and release of the pro-inflammatory cytokine IL-8 were monitored and 

compared between the previously developed, primary cell containing model and the newly 

developed, cell line-based model.  

As a second task the newly-established co-culture model was used to test the cytotoxicity 

of different engineered NPs. Ag, TiO2 and two differently-sized Au NPs were tested in 

different concentrations with 24 hours incubation times. These particles are often used in 

food packages, tooth paste or in the medical field; they therefore have a high degree of 

exposure, which makes it very important to test the safety of these particular engineered 

nanomaterials. Cytotoxicity was measured by cell membrane damage (LDH assay), 
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mitochondrial activity (Alamar Blue assay), membrane integrity (TEER) and inflammation 

(IL-8 and TNF-α release). The results of inflamed and non-inflamed co-culture were 

compared to the results with a non-inflamed Caco-2 monoculture, to observe if they react 

differently due to the presence of immune cells and to determine whether the co-culture 

model showed a more realistic result than a model containing just one cell type. 

The last part of this thesis shows another investigated application of the further developed 

in vitro system: the efficacy of drug loaded nano- and microparticles was tested within this 

model, in the context of local anti-inflammatory drug therapy. Budesonide- and 

cyclosporine A- (two anti-inflammatory drugs) loaded nano- and microparticles prepared 

by spray-drying and nanoprecipitation (PhD thesis, Christina Draheim) were used to treat 

the inflamed co-culture. The anti-inflammatory effect was determined by TEER and IL-8 

measurements. Results were compared to culture treatment with free drug solution and 

blank nano- and microparticles. Confocal images showed the accumulation behavior of 

the particles in the cell culture model. 

Therefore, the overall aim of this thesis was to show the successful further establishment 

of the co-culture model of the inflamed intestinal mucosa, constituted of cell lines, to use it 

as a tool to test not only the cytotoxicity of nanomaterials, but also the efficacy of 

nanomedicines. 
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2 Replacement of primary cells by cell lines in a 3D co-culture 

model of the inflamed intestinal mucosa 
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2.1 Introduction 

In vitro cell culture models are very important tools for safety testing, permeability studies 

and efficacy studies of newly developed drugs. There are a lot of established in vitro 

models for many purposes. For the intestine the most frequently used and well-

established model is the Caco-2 cell model, which is commercially available. As already 

mentioned in the first chapter, this is a human colon adenocarcinoma cell line, which has 

been used for the last 20 years as model for the intestinal barrier [30]. The most frequently 

used Caco-2 clone is clone C2BBe1. The clone HTB37 is the parental Caco-2 clone, from 

which the cell line Caco-2 C2BBe1 was cloned in 1988 by limiting dilution. Caco-2 cells 

exhibit structural and functional differentiation patterns typical of enterocytes: the surface 

of the cell layer is covered by brush border microvilli, tight junctions are formed between 

the cells and a polarization of the cell monolayer can be seen [57]. The brush border of 

these cells is comparable to the human colon and contains microvillar proteins such as 

villin, fimbrin and sucrose-isomaltase [58]. In a comparison of different colon carcinoma 

cell lines, it was found that Caco-2 cells exhibit a better morphological and functional 

differentiation to enterocyte cells than the other tested cell lines [31]. Caco-2 cells can be 

grown on permeable filter supports in cell culture plates that form an apical and a 

basolateral compartment to better mimic the in vivo conditions of the intestinal lumen and 

blood side respectively. These supports also allow the free access of ions and nutrition to 

both sides of the epithelial monolayer, which leads to an even further improvement in 

morphological and functional differentiation. Furthermore, this enables the model to be 

used in transport and toxicity studies. The integrity of the cell monolayer can be measured 

via TEER with an EVOM (epithelial voltohmmeter) and ultrastructural morphological 

analysis can be performed via electron microscopy [30].  

A limitation of the Caco-2 cell model is that it is not a good tool for absorption or toxicity 

studies of small molecules or entities, such as nanoparticles. Furthermore, in vivo 

interactions of molecules with the intestinal mucosa are not limited to enterocytes. For this 
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reason, it is also important to look at other cell types. Specialized epithelial cells, the so-

called M-cells, and antigen presenting cells have shown a great ability to internalize nano- 

and microparticles. Many NPs are first taken up by phagocytes of the immune system 

(e.g. macrophages). These interactions between immune system and nanomaterials can 

lead to inflammatory reactions. Immune cells recognize NPs by their surface properties 

and mount an inflammatory response which includes the release of cytokines [59]. 

Although the immune system`s task is to protect the body from foreign substances, the 

immune response against the NPs can lead to toxicity [60]. Thus monocultures of 

epithelial cell lines are not sufficient to mimic this complex interplay of cells and particles. 

The predictive power of in vitro models could be enhanced in a co-culture setting of innate 

immune cells and epithelial cells.  

Another point that has to be considered for in vitro models of IBD is the inflammation 

status. In IBD patients several regions of the human intestine show inflamed areas. This 

should also be addressed in an appropriate in vitro model. Caco-2 cells alone cannot 

mimic this inflammation because other cell types, such as immune cells, play key roles in 

this process. Therefore, a 3D co-culture of the inflamed intestinal mucosa was developed 

by Leonard et al. [50] with Caco-2 cells together with primary blood mononuclear cells 

(PBMCs), which were isolated from blood samples and differentiated to macrophages and 

dendritic cells. The immune cells were seeded in a collagen layer with Caco-2 cells as 

epithelial barrier on top. It could be shown that this model exhibits good barrier properties 

after a growth time of 21 days. After inflammation with IL-1ß a decrease of TEER and an 

increase in production of IL-8, a pro-inflammatory cytokine, could be measured. 

Furthermore, the inflammation was reversible - it could be shown that after removal of 

IL-1ß a decrease of IL-8 release and increase of TEER back to the starting value before 

inflammation occurred [50]. However, there are some limitations of this model related to 

the use of primary cells. These cells have to be isolated from buffy coats, which is an 

expensive and time-consuming procedure. An even more important point is that the blood 

comes from different patients with different conditions of the cells, which is a problem for 
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the reproducibility of the model. Cell lines offer an advantage over primary cells in this 

respect, as they are a homogeneous population. Therefore our aim was to replace the 

primary cells in the previously developed triple culture model with cell lines. Two human 

monocytic cell lines were chosen for this purpose: THP-1 and MUTZ-3. 

MUTZ-3 is a CD34+ human myeloid leukemia-derived cell line that is commercially 

available. A comparison with other human cell lines such as KG1 (myeloblasts from bone 

marrow) and THP-1 (monocytes from blood), which are also able to form a dendritic cell-

like phenotype after stimulation, showed that this cell line shows the best DC-like 

phenotype [61] [62]. Other human (HL-60) or mouse (D1, J774, Raw264.7) cell lines are 

also able to acquire a dendritic cell-like phenotype [63], but their functional and 

transcriptional profiles are not known or not very similar to primary dendritic cells. For 

MUTZ-3 cells it was successfully shown that they can activate T-cells, which is attributable 

to the expression of co-stimulatory molecules as CD80 and CD86. Therefore, this cell line 

is a suitable model for deciphering the molecular mechanism of immune reactions [62].  

The THP-1 cell line, which is also commercially available, is a human monocytic leukemia-

derived cell line, which can be differentiated to macrophage-like cells after stimulation with 

phorbol-12-myristate-13-acetate. These cells mimic monocyte-derived macrophages and 

since their establishment 30 years ago they have become one of the most often used cell 

lines to replace primary macrophages in in vitro models [64]. THP-1 cells are suspension 

cells which adhere to the bottom of the cell culture flask after stimulation with PMA. During 

this process PMA induces a cell cycle arrest in the G1 phase via complex mechanisms 

and an upregulation of several proteins [65]. Furthermore, the cell volume increases, the 

nucleus becomes more irregular in shape and many phagocytic vacuoles appear in the 

cell cytoplasm [66]. It has also been shown that THP-1 cells exhibit surface markers 

typical of macrophages after stimulation with PMA, such as CD14 and TLR2 [67]. 

By replacing the primary cells in the intestinal in vitro model with the above cell lines, it is 

expected that the model should be more robust and lead to more reproducible results. 
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The aim of the work presented in the current chapter was therefore to show that both 

models (the previous model using primary immune cells and the model to be developed in 

which only cell lines are employed) show the same behavior after inflammation. In order to 

investigate this, the models were grown until Caco-2 cells formed a confluent monolayer. 

Afterwards IL-1ß was added to the apical compartment to inflame the models. TEER was 

measured to see if the inflammation was accompanied by opening of tight junctions, which 

would lead to a decrease of TEER values. It was also important to see if the inflammatory 

effect was reversible after removal of IL-1ß, as was observed in earlier studies with the 

primary cell-based model. Furthermore, IL-8 release was measured after inflammation 

and after removal of IL-1ß. The ultrastructure of the model was observed via transmission 

electron microscopy (TEM) and confocal laser scanning microscopy (CLSM) to see if both 

immune cell types continued to be viable after three weeks in the collagen layer and if the 

cells were able to move within and out of the collagen, as was shown for the previous 

model. 

Since the Caco-2 clone C2BBe1 needs 21 days to form a confluent monolayer, it was also 

tried to use the Caco-2 clone HTB37, which grows faster and shows higher TEER values 

after a shorter time. As this could lead to a higher experimental throughput, the second 

aim of the following work was to replace clone C2BBe1 by clone HTB37 without changing 

the inflammation behavior of the model [50].  

 

2.2  Materials and Methods 

2.2.1 Cell culture 

Caco-2: clone C2BBe1 (passages 60-80) and clone HTB37 (passages 25-45) of the 

adenocarcinoma cell line were both obtained from the American Type Culture Collection 

(ATCC) (Rockville, MD). Clone C2BBe1 was grown in Dulbecco`s Modified Eagle Medium 

(DMEM) (Gibco, Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS) and 
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1% non-essential amino acids (NEAA) (PAA, Pasching, Austria) (this medium will be 

further referred to as “Caco-2 medium”). Clone HTB37 was grown in Minimum Essential 

Medium (MEM) (Gibco, Carlsbad, CA) supplemented with 20% FBS, 1% NEAA and 

1% sodium pyruvate (PAA, Pasching, Austria). Both C2BBe1 and HBT37 clones were 

grown in T75 flasks at 37 °C and 5% CO2, and medium was changed every second day. 

Cells were sub-cultured every week with 0.1% trypsin (Sigma, Steinheim, Germany) and 

0.02% EDTA (Sigma, Steinheim, Germany). 5x105 cells (C2BBe1) or 2x105 cells (HTB37) 

were then seeded in a new T75 flask. 

THP-1: this human monocytic cell line was obtained from the Deutsche Sammlung von 

Mikroorganismen und Zellkulturen (DSMZ) (Braunschweig, Germany). Cells were grown 

in T75 flasks in Roswell Park Memorial Institute (RPMI) 1640 medium (Gibco, Carlsbad, 

CA) supplemented with 10% FBS (this medium will be further referred to as “THP-1 

medium”) and maintained in similar conditions of temperature and CO2 as Caco-2 cells. 

THP-1 cells were differentiated to macrophage like cells by adding 5 ng/ml PMA (Sigma, 

München, Germany) to the cell culture medium. After 48 h cells were harvested and 

collected for the co-culture. 

MUTZ-3: a human monocytic cell line, which was obtained from DSMZ. Cells were grown 

in 6 well plates in α-Minimum Essential Medium (α-MEM) (Gibco, Carlsbad, CA) 

supplemented with 20% FBS and 20% conditioned medium from 5637 cells (see below). 

Cells were maintained in similar conditions as Caco-2 cells, which allowed them to acquire 

dendritic cell-like characteristics.  

5637 cells: a human bladder carcinoma cell line, which was obtained from ATCC. Cells 

were grown in T75 flasks in RPMI 1640 supplemented with 10% FBS. Medium was 

collected every second day, filtered and used as conditioned medium to prepare the cell 

culture medium for MUTZ-3 cells. Before use the conditioned medium was stored 

at -20°C. 
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2.2.2 Isolation of primary macrophages and dendritic cells 

Blood monocytes were isolated from buffy coats (blood donation service, Saarbrücken, 

Germany) and differentiated to macrophages and dendritic cells. The peripheral blood 

mononuclear cells were obtained from buffy coats by Ficoll density gradient centrifugation. 

Cells were grown in RPMI1640 supplemented with 10% human AB serum (Invitrogen, 

Carlsbad, CA, USA). After seven days primary macrophages were obtained. Primary 

dendritic cells were obtained after seven days by cultivating monocytes in the same 

medium with the addition of 25 ng/ml IL-4 and 50 ng/ml Granulocyte macrophage Colony-

Stimulating Factor (GM-CSF).  

 

2.2.3 Three dimensional triple culture of epithelial cells, macrophages and 

dendritic cells 

Differentiated THP-1 cells and MUTZ-3 cells or primary macrophages and dendritic cells 

were harvested and embedded in an 80% (w/v) solution of type I bovine collagen 

(Advanced Biomatrix, Tucson, Arizona, USA) with human AB serum and RPMI1640. 

150 µl of this solution was pipetted into the apical compartment of a transwell filter insert 

(Corning Incorporated, Acton, MA, USA) with a pore size of 0.4 µm and a filter area of 

1.12 cm2. Cells were incubated at 37 °C and 5% CO2 until the collagen layer had 

solidified. Afterwards 6x104 Caco-2 cells in 500 µl Caco-2 medium with 1% Pen/Strep 

(PAA, Pasching, Austria) were seeded on top of this collagen layer. 1.5 ml of THP-1 

medium with 1% Pen/Strep was added to the basolateral compartment. Medium was 

changed every second day. Co-cultures with the Caco-2 clone C2BBe1 were grown for 

21 days; co-cultures with the Caco-2 clone HTB37 were grown for 11 days. For 

inflammation 10 ng/ml of IL-1ß was added into the apical compartment for 48 h. 
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2.2.4 Transepithelial electrical resistance (TEER) 

TEER was measured to monitor the confluence of the Caco-2 monolayer. Cells were 

placed on a heating plate at 37 °C to avoid temperature shock-related TEER fluctuation. 

TEER was measured with a Chopstick electrode and an epithelial voltohmmeter (EVOM) 

(World Precision Instruments, Sarasota, USA). Only cell cultures presenting TEER 

values > 400 Ω*cm2 were used for experiments. 

 

2.2.5 IL-8 measurement 

IL-8 was measured with a bead-based fluorescence activated cell sorter (FACS) array. At 

several time points after inflammation 50 µl of cell culture supernatant was taken from 

apical and basolateral compartments of transwells. For measurement, a CBA Flex Set for 

IL-8 (BD Biosciences, Heidelberg, Germany) was used and samples were prepared in 

accordance with the manufacturer´s protocol. Analysis was done with FCAP array v1.01 

cytometric bead array analysis software (BD Biosciences, Heidelberg, Germany). 

 

2.2.6 Transmission electron microscopy (TEM) 

Samples were fixed by adding 2% glutaraldehyde at 37 °C in 200 mM 

2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES), pH 7.4, directly to the 

cell culture medium at a 1:1 ratio. After 5 min the fixative and medium mixture was 

replaced with 1% glutaraldehyde in HEPES buffer at room temperature (RT) and the 

samples were incubated overnight at 4 °C. Afterwards transwell inserts were put in a 

50 ml falcon tube filled with HEPES buffer, and sent to our collaborators Dr. Urska Repnik 

and Prof. Dr. Gareth Griffiths from Oslo University, Denmark, for further preparation. For 

epon embedding, the samples were postfixed with a 2% OsO4 (EMA, PA, USA) solution 

containing 1.5% potassium ferricyanide for 1 h on ice, and stained en bloc with 

1.5% aqueous uranyl acetate (EMS, PA, USA) for 30 min. Cells were then dehydrated at 
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RT using a graded ethanol series and embedded in epoxy resin (Sigma Aldrich; St. Louis, 

MO, USA). Ultrathin sections of 70-80 nm, perpendicular to the filter plane, were cut with a 

Leica ultramicrotome Ultracut EM UCT (Leica Microsystems, Austria) and examined with 

a CM100 transmission electron microscope (FEI, The Netherlands). The images were 

recorded digitally with a Quemesa TEM CCD camera (Olympus Soft Imaging Solutions, 

Germany) and iTEM software (Olympus Soft Imaging Solutions, Germany). In addition 

2 µm thick sections were cut, stained with toluidine blue and analyzed with a widefield 

Leica DMIRBE microscope and Leica application Suite (LAC) software v 3.8 (both from 

Leica Microsystems, Germany). 

 

2.2.7 Immunostaining for confocal laser scanning microscopy (CLSM) 

THP-1 macrophages or MUTZ-3 dendritic cells were pre-stained with 2 µg/ml of 

fluorescein diacetate (FDA, Sigma Aldrich, St. Louis, MO, USA,), a cell-permeant amine-

reactive probe, in accordance with the manufacturer´s protocol. Afterwards cells were 

collected and used to seed the co-culture. Triple cultures were fixed with 

3% paraformaldehyde (PFA) in phosphate buffered saline (PBS) for 30 min at RT in the 

apical compartment and quenched with 50 mM NH4Cl, followed by 30 min incubation with 

1% bovine serum albumin (BSA) and 0.05% saponin in PBS. Afterwards the membranes 

with the collagen layer were transferred into a 24 well cell culture plate for staining. Cells 

were washed with PBS and incubated with the primary antibody (monoclonal mouse anti-

occludin, Zymed, San Francisco, CA), which was diluted 1:200 in PBS, overnight at 4 °C. 

Afterwards cells were washed with PBS and incubated for 1 h at RT with the secondary 

antibody (Alexa633 anti-mouse, LifeTechnologies, Darmstadt, Germany), which was 

diluted 1:400 in PBS. Cells were then washed and incubated for 20 min at RT with DAPI 

(LifeTechnologies, Darmstadt, Germany) in a concentration of 100 ng/ml. After staining 

the samples were mounted on slides using fluorescence mounting medium (DAKO, 
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Glostrup, Denmark). Images were acquired using a confocal laser scanning microscope 

(Zeiss, Germany) and Zen Software (Zeiss, Germany). 

 

2.2.8 Statistical analysis 

Where appropriate, data are presented as mean + standard deviation (SD). One way 

ANOVA with Holm Sidak test was used to compare results from different treatments at 

different time points. The ANOVA analysis was done with SigmaPlot 12.5 (Systat 

Software GmbH, Erkrath, Germany). Significance was assumed at p < 0.05 (*) or 

p < 0.001 (**). Individual experiments were performed in triplicate and each experiment 

was performed twice.  

 

2.3 Results 

2.3.1 Replacement of primary cells by cell lines 

As stated above, the aim of the current work was to replace the primary immune cells in 

the already established triple culture model of the inflamed mucosa [50] with cell lines. As 

epithelial cells, Caco-2 cells, clone C2BBe1, were used, as in the original model. As 

macrophages, THP-1 cells were treated with PMA for 48 h in order to promote 

differentiation into macrophage-like cells. During the process of differentiation the cells 

became adherent (Figure 2.1), and could then be harvested to be used in the co-culture 

setup. As dendritic cells, MUTZ-3 cells were used in the newly-developed model. 
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A 

 

B 

 

Figure 2.1: THP-1 cells before (A) and after (B) treatment with PMA. PMA promoted 

differentiation to macrophage-like cells was accompanied by an adherence of cells to the 

bottom of the cell culture flask. Cells are shown in 20-fold magnification. 

 

Both co-culture models were seeded and grown in parallel for 21 days until Caco-2 cells 

formed a confluent monolayer, which was monitored by measurement of TEER. After 

21 days Caco-2 cells reached TEER values between 400 and 450 Ω*cm2. The co-cultures 

were then inflamed by adding 10 ng/ml of IL-1ß into the apical compartment for 48 h. 

TEER values decreased significantly after this treatment in both triple culture models 

compared to a non-inflamed control (Figure 2.2A), which is in agreement with earlier 

studies [50], [68]. To evaluate the reversible effect of inflammation on barrier properties, 

IL-1ß was removed from the co-culture on day 23. In the absence of IL-1ß, barrier 

properties recovered as observed in relation to TEER measurement (Figure 2.2A). 
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A 

 

B 

 

Figure 2.2: TEER (A) and IL-8 release (B) of co-culture setups after inflammation 

with IL-1ß. Co-cultures with primary cells and cell lines were grown for three weeks and 

inflamed at day 21 (+ IL-1ß). At day 23 IL-1ß was removed (- IL-1ß). Results of both 

inflamed co-cultures were compared to TEER values of a non-inflamed co-culture with cell 

lines (A). IL-8 release was measured in co-cultures with cell lines and primary cells 0, 4, 

24 and 48 hours after inflammation with IL-1ß. Results were compared to IL-8 release 

from an inflamed Caco-2 monoculture (B) (mean ± SD, n=6 from 2 independent 

experiments, * = p<0.05, ** = p<0.001). 
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As an indicator of inflammation in the triple culture models, the pro-inflammatory cytokine 

IL-8 was measured in the cell culture supernatant. For comparison, the IL-8 release from 

a Caco-2 monoculture treated with IL-1ß was also measured. Results show that in triple 

culture models, both with cell lines and primary cells, a progressive IL-8 release after 

inflammation, reaching approximately 200 pg/ml in 48 h, occurred. However, in the 

Caco-2 monoculture only a slight IL-8 release (50 pg/ml) could be detected even 48 h 

after stimulation (Figure 2.2B). 

To understand whether macrophages and/or dendritic cells are responsible for the 

production of IL-8 in this experiment, THP-1 and MUTZ-3 cells were seeded either 

separately or together in the collagen layer, and compared to the 3D co-culture with all 

three cell lines. Cells were grown for 21 days under the same conditions as the co-culture 

models (Figure 2.3). 
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Figure 2.3: IL-8 release from different combinations of Caco-2, THP-1 and MUTZ-3 

cells. Following 21 days of culture the production of IL-8 was measured, both before and 

after inflammation with IL-1ß (mean ± SD, n=3, * = p<0.05). 
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It was shown that, when seeded separately in the collagen layer, THP-1 and MUTZ-3 cells 

were both able to produce approximately 400 pg/ml IL-8 after inflammation with IL-1ß. 

When immune cells were seeded in combination, treatment with IL-1ß resulted in an even 

greater inflammatory response with a release of 600 pg/ml of IL-8. Caco-2 cells alone 

were also able to produce IL-8 after inflammation with IL-1ß (Figure 2.2B), in accordance 

with Leonard et al [50], while the release of IL-8 was seen to be highest (800 pg/ml) when 

all three cell types were combined in a co-culture (Figure 2.3). Together these results 

show that both THP-1 and MUTZ-3 cells contribute to the inflammatory response and that 

both cell types are viable after 21 days incubation in the collagen. 

 

2.3.2 Morphological analysis of the cell line-based triple culture model with 

TEM and CLSM 

The cell line-based triple culture was also evaluated by transmission electron microscopy 

(TEM) and confocal laser scanning microscopy (CLSM). TEM pictures (Figure 2.4) 

showed a well preserved ultrastructure of the triple culture. Macrophages and dendritic 

cells are distributed within the collagen layer with the Caco-2 monolayer on top. Epithelial 

cells showed typical microvilli, desmosomes and tight junctions. Furthermore, immune 

cells in the collagen layer were well preserved and made cell contacts. Macrophages and 

dendritic cells were located in the collagen layer, as well as on top of the Caco-2 cell 

monolayer, which provides evidence for the translocation of these immune cells through 

the epithelial barrier. Both immune cell types were also observed separately. Figure 2.5 

shows that these two cell types can be distinguished based on nucleus heterochromatin 

[69]. Dendritic cells show more condensed heterochromatin than macrophages, which can 

also be observed in Figure 2.4A.  
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Figure 2.4: A microscopic overview of the non-inflamed triple culture. Caco-2 cells 

seeded on collagen, which contains immune cells. Some immune cells are observed on 

top of the epithelium (A). Detailed information regarding epithelial cells (B) was also 

obtained, including visualization of tight junctions (slim arrow) and desmosomes (block 

arrow) (C,D). Discrete immune cells could also be visualized within the collagen layer 

(Mph = macrophages, DC = dendritic cells (E)). Interaction between immune cells in the 

collagen layer were also observed (F, inserts i, ii). (A): 2 μm thick epon section analyzed 

with a wide field light microscope; (B-F): 70 nm epon sections analyzed with a 

transmission electron microscope. 
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Figure 2.5: TEM pictures of THP-1 macrophages and MUTZ-3 dendritic cells 

demonstrating heterochromatin content. Both macrophages (A) and dendritic cells (B) 

were seeded separately in the collagen layer of the triple culture and grown for 21 days. 

Dendritic cells show more heterochromatin in the nucleus than macrophages. 70 nm epon 

sections analyzed with a transmission electron microscope.  

 

Using CLSM some macrophages and dendritic cells (green) could be detected in the 

collagen layer and between or on top of the Caco-2 cells within the triple culture setup 

(Figure 2.6), which is in accordance to the TEM results (Figure 2.4). Furthermore some 

differences between the inflamed and non-inflamed triple culture could be observed: while 

the tight junctions (red), which were stained with an anti-occludin antibody, were well 

preserved in the non-inflamed model (Figure 2.6A/B), a disruption of the tight junctions 

could be seen in the inflamed culture (Figure 2.6C/D). 
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Figure 2.6: CLSM of non-inflamed and inflamed triple culture. Z-Stacks of non-

inflamed (A,B) and inflamed (C,D) co-cultures; MUTZ-3 cells (A,C) or THP-1 cells (B,D) 

were pre-stained with FDA (green), while epithelial tight junctions were stained with an 

anti-occludin antibody (red), cell nuclei are stained with DAPI (blue). Tight junctions in the 

inflamed co-culture are disrupted (C,D) and not as well defined as in the non-inflamed 

culture (A,B). Macrophages and dendritic cells (green) can be seen in between or on top 

of the Caco-2 cells in both inflamed and non-inflamed conditions. Scale bar: 50 µm. 

 

2.3.3 Improvement of the triple culture model using the Caco-2 clone HTB37 

The co-culture with the Caco-2 clone C2BBe1 required 21 days for the cells to form a 

confluent monolayer and for TEER values to reach a plateau. It was therefore aimed to 

replace these cells by epithelial cells that grow faster and need less time to form a 

confluent monolayer. Caco-2 cells from clone HTB37 are known to reach confluence in a 

shorter period of time. Therefore it was tried to seed these cells on top of the collagen 

layer instead of the Caco-2 clone C2BBe1. To find the best conditions for the new cell 
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type, different cell culture media (DMEM with 10% FBS, 1% NEAA and 1% Pen/Strep or 

MEM with 20% FBS, 1% NEAA, 1% sodium pyruvate and 1% Pen/Strep) and different cell 

numbers (20000, 40000 and 60000 cells/cm2) were used in the co-culture setup and 

compared to results with Caco-2 C2BBe1. Cells were grown for 21 days and TEER was 

measured (Figure 2.7). 

Results of TEER measurement show that the Caco-2 clone HTB37 developed higher 

TEER values after a shorter period of time as compared to the Caco-2 clone C2BBe1. 

Already after 11 days a TEER peak of 1000 Ω*cm2 was reached with HTB37 cells, which 

was seen to remain at a constant level until day 15. In the light of these results it was 

decided to use the HTB37 Caco-2 clone for further experiments with the same cell 

number (60000 cells/cm2) and the same cell culture medium (DMEM with 10% FBS, 

1% NEAA and 1% Pen/Strep) as the clone used earlier, but with the introduction of IL-1ß 

to induce inflammation after only 11 days. To be sure that the HTB37 cells showed the 

same behavior after inflammation as the C2BBe1 clone, cells were inflamed after 11 days 

and TEER and IL-8 release were measured (Figure 2.8). 

The co-culture with Caco-2 HTB37 shows the same behavior as the co-culture with 

C2BBe1: after inflammation with IL-1ß TEER values decrease and IL-8 release increases 

as pro-inflammatory marker. When IL-1ß is removed TEER values are stable and IL-8 is 

decreasing again. So for further experiments it is also possible to use Caco-2 clone 

HTB37 for the co-culture under the same conditions as Caco-2 clone C2BBe1, but with a 

shorter growth time. 
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A 

 

B 

 

Figure 2.7: Comparison of co-cultures with Caco-2 clones HTB37 and C2BBe1, 

using different cell culture media and different cell numbers. DMEM with 10% FBS, 

1% NEAA, 1% Pen/Strep (A) or MEM with 20% FBS, 1% NEAA, 1% sodium pyruvate, 

1% Pen/Strep (B) were used as cell culture media. Cells were seeded at 20000, 40000 

and 60000 cells/cm2; a co-culture with Caco-2 C2BBe1 60000 cells/cm2 was used as 

control. All co-cultures were grown for 21 days. 
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A 

 

B 

 

Figure 2.8: TEER and IL-8 release after inflammation of HTB37 co-culture and 

comparison to non-inflamed co-culture. Co-cultures were seeded with the HTB37 

Caco-2 cell clone, and allowed to grow for 11 days prior to inflammation. 
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2.4 Discussion 

In vitro models based on single cell types provide key information regarding particular cell 

type responses, e.g. to an infectious microorganism. Furthermore, cell monocultures 

represent an economic and efficient tool for a wide range of experiments. However, all cell 

culture models consisting only of one cell type do not reflect the complexity of biological 

host systems with intercellular communication. For instance, all monocultures are unable 

to reproduce active biological events, such as immune responses to pathogens or 

particles. As an alternative, co-culture models of multiple cell types, including epithelial 

cells, have been used to bridge the gap between simplistic in vitro models based on single 

cell types and the complex biological system in vivo. 

Co-culture models of various biological tissues have been widely accepted [34], [67] for 

use in several contexts, e.g. to evaluate NP toxicity when exposed to the lungs via 

inhalation [70], [71]. Regarding the intestinal epithelium, i.e. after oral ingestion, most of 

the models currently in use focus on co-cultures to study absorption, particle-cell 

translocation or particle-mucus interactions [41].  

Many research groups are working with co-culture models to get more reliable results that 

can better mimic the in vivo situation. Rothen-Rutishauser et al. for example have 

established an alveolar co-culture model of A549 epithelial cells, human monocyte-

derived macrophages and human monocyte derived dendritic cells [34], [67]. In this model 

different NPs were tested with respect to their toxicity and the results were compared to 

the same studies in monocultures. Not surprisingly, different results were found for studies 

conducted co-culture and monoculture, as the lung consists of more than one cell-type. 

This makes the use of a co-culture model more realistic and representative [68]. A co-

culture model of epithelial-like transformed cells (HeLa) together with macrophage-like 

cells (U937) has also been established by another group to investigate inflammation after 

treatment with retinoic acid and 1α,25-Dihydroxyvitam D3, which induce differentiation of 

myeloid leukemia cells into granulocytes and macrophages respectively. Macrophages 

were cultured together with the epithelial cells because they play a very important role in 
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the innate immune system [70]. It is important to keep this in mind while doing any in vitro 

experiments.  

As explained in the introduction of this thesis and mentioned above, several co-culture 

models of the intestine have also been established. For example there are several models 

employing Caco-2 cells as epithelial cells, together with mucus-producing HT29 cells as 

goblet cells and Raji B-cells, which stimulate Caco-2 cells to differentiation into M-cells. In 

some cases Caco-2 and HT29 cells are seeded on transwell filters and Raji B cells were 

seeded into the basolateral compartment, whereas in others Caco-2 and HT29 cells are 

seeded in the basolateral chamber and Raji B cells are added to the apical compartment. 

It was found that models in the first orientation show a better physiological, functional and 

reproducible model of the intestinal barrier [38]. Another established co-culture model of 

the intestine also uses mucus-producing cells. Here Caco-2 cells are cultured together 

with HT29_5M21 cells. This model showed a lower permeability than Caco-2 cells in 

monoculture, which fits better with data from in vivo experiments [71]. Another study of an 

intestinal co-culture system consisting of H4-1 small intestinal epithelial cells co-cultured 

with TLT macrophages showed that models with macrophages are better protected 

against pathogens than monocultures [74]. The review by Bermudez-Brito et al. gives 

many examples for the importance of intestinal co-culture models, especially for models 

with macrophages and dendritic cells [75].  

In the current work we focused on the development and optimization of an intestinal 

model that could mimic either healthy or inflamed conditions, which makes it an important 

tool for research on IBD. A co-culture model consisting of Caco-2 cells, macrophages and 

dendritic cells has been previously developed at our institute by Leonard and colleagues 

[50]. Macrophages and dendritic cells are used in the model because these are two cell 

types which are important for antigen possessing and presentation and furthermore for the 

activation of an immune answer [75]. However due to the expensive and time-consuming 

procedure of PBMC isolation and, even more importantly, the patient-dependent variability 
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between the different primary cell samples, it was proposed to improve the established 

model by replacing the primary cells by cell lines. The cell lines might be an option to 

establish a more robust and reproducible system. For this purpose several human 

monocytic cell lines could be used as macrophage-like cells, for example HL-60 [72] or 

U937 [73]. However, the most commonly used cell line is the monocytic leukemia cell line 

THP-1 [64]. These cells can be stimulated with PMA to induce differentiation to 

macrophage-like cells which mimic monocyte-derived macrophages in several aspects 

and behave more like monocyte-derived macrophages than other cell lines such as 

HL-60, U937 or KG-1 [66]. The THP-1 cell line has become a common model for 

macrophages in cell culture systems [74] and was therefore also used in our model. It 

could be shown that after stimulation with PMA the suspension cells adhered to the 

bottom of the cell culture flask and showed a macrophage-like shape (Figure 2.1). As 

dendritic cells the monocytic leukemia cell line MUTZ-3 was used in the model due to its 

proven suitability for use as dendritic-like cells [79]. 

After seeding of the revised triple culture model with cell line-derived immune cells, 

Caco-2 cells formed a confluent monolayer and functional tight junctions after a growth 

time of three weeks (Figure 2.2). Despite being initially seeded in the underlying collagen 

layer, it could be seen that macrophages and dendritic cells could interact with Caco-2 

cells, being located between them or on top of the epithelium (Figure 2.4, Figure 2.6). 

Interestingly this interaction did not disrupt the intercellular barrier of the tight junctions as 

shown by uncompromised TEER value measurements, which could also been observed 

in the primary cell-based model of Leonard et al. [50]. A possible explanation for this could 

be that the immune cells are trafficking into or through the Caco-2 cell layer before these 

start forming a tight barrier. Other studies have shown that THP-1 cells co-cultivated with 

Caco-2 cells induce epithelial cell death mainly due to TNF-α secretion by THP-1 cells 

[49]. However, this was not observed in our system. Furthermore, confocal images and 

TEM studies showed intact tight junctions, especially in the non-inflamed status. Real-time 

PCR studies, shown in the next chapter of this thesis, also showed that the amount of 
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TNF-α released from the triple co-culture is quite low, even after inflammation with IL-1ß 

(Figure 3.7E/F); this could be a reason why THP-1 cells do not disturb the epithelial cells 

in our model.  

After IL-1ß-induced inflammation, the 3D co-culture model showed a decrease in TEER 

values (Figure 2.2A). This effect was reversible when IL-1ß was removed, which is in 

agreement with observations of the previous model based on primary cells [50]. 

Inflammation leads to a loss of the epithelial barrier function due to the opening of tight 

junctions [76]. Changes in the expression pattern of different tight junction proteins as for 

example claudin 4, 5 or 8 could be responsible for this effect [77], [78]. Other groups have 

also reported significantly decreasing TEER values after treatment of Caco-2 cells with 

the inflammation-inducing agent LPS [79], corroborating our data.  

Inflammation of the co-culture resulted in a greater increase of IL-8 release in comparison 

to the epithelial monoculture (Figure 2.2B), probably as a result of the presence of 

immune-competent cells in the co-culture. The level of cytokine production was also 

comparable between models containing cell lines or primary immune cells. MUTZ-3 and 

THP-1 cells seeded separately already release IL-8 after an inflammable stimulus 

(Figure 2.3). When they are seeded together the release is even higher although it does 

not reach the additive level, which shows that the two cell types influence each other in 

that way that they do not have to produce as much IL-8 as when they are seeded 

separately.  

Many experiments with nanomaterials in co-culture models have shown a clear difference 

to the results of monocultures [68], [69], [70]. Immune-competent cells may influence 

epithelial barrier properties during inflammation as shown in studies using endothelial cells 

[80]; however in our model this was not observed. Nevertheless, immune cells are a very 

important factor in inflammation models because of the release of pro-inflammatory 

cytokines to measure the inflammation status. 

Following indications that the replacement of primary cells with cell lines did not result in 

significant changes in the behavior or characteristics of the triple culture model, the next 
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step was to attempt to further optimize the model by reducing the growth time of the cells 

prior to model inflammation and/or further use. As mentioned, the Caco-2 clone C2BBe1 

cells need 21 days to form a confluent monolayer. Within such a span of time the immune 

cells within the co-culture could die and in addition, the danger of contamination with 

bacteria is considerable. Therefore, an alternative Caco-2 clone (HTB37) was used. 

Previous comparisons of different Caco-2 clones (TC7, PD7, PF11) have shown that 

some differences may occur, although all the clones are of the same cell line. Several 

metabolic capabilities such as cell viability or fatty acid and cholesterol uptake were 

investigated, and it was found that the clones TC7, PD7 and PF11 show different results 

[81]. As well as different metabolic behavior between clones, it was also shown that 

different batches from the same clone showed different morphologies [82] necessitating 

consistent use of the same passage numbers for experiments.  

The clone C2BBe1 is always used as Caco-2 cell line in our laboratories - and was also 

used in the first co-culture model with primary immune cells - which was the reason why it 

was our first choice. Experiments with the clone HTB37 however showed that these cells 

need a shorter growth time under the same conditions with the same cell culture medium 

as previously (containing 10% FBS), and that they build higher TEER values in a shorter 

time period (Figure 2.7). By using an even higher amount of FBS (20%) in the culture 

medium, HTB37 cells were seen to grow even faster, however TEER values were seen to 

decrease at an earlier time point. As higher TEER values in general were seen with 

HTB37 cells, a greater decrease in TEER values could be observed following 

inflammation with IL-1ß; as for the previous model utilizing C2BBe1 cells however TEER 

values were seen to recover after removal of IL-1ß. This is seen as a considerable 

advantage of using HTB37 cells, as the effects of inflammation may be even better 

monitored. Furthermore, IL-8 release when using HTB37 cells was comparable to that 

observed in the model using the Caco-2 clone C2BBe1. With the HTB37 Caco-2 clone it is 

therefore considered that the model is even more useful for high throughput studies 

because more experiments can be done in less time.  
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2.5 Conclusion 

The previously established co-culture model of the inflamed mucosa is a useful in vitro 

model for IBD research because both inflammation of this model with IL-1ß and healing of 

the model following IL-1ß removal are possible. The replacement of primary immune cells 

by the cell lines THP-1 and MUTZ-3, as shown in the current chapter, resulted in a more 

robust system useful for higher throughput assays, without any effect on the model 

immunocompetence or epithelial cell differentiation. Furthermore, this cell line-based 

model has the advantage of being less time consuming to prepare and less variable with 

respect to model behavior and experimental results than models based on primary cells 

obtained from blood samples of different patients. By using the Caco-2 clone HTB37 

instead of C2BBe1 the growth time of the cells could be reduced from 21 to 11 days, even 

further increasing the experimental throughput and output capacity. Another improvement 

is that these Caco-2 cells build higher TEER values, which makes it easier to monitor the 

inflammation of the model.  
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3 Cytotoxicity measurements of nanoparticles in the cell line-

based co-culture model 
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3.1 Introduction 

Engineered nanomaterials (ENs) are commonly employed in food packaging or as 

additives in various food products, meaning that the chance of unintended human 

exposure is relatively high. Increased exposure to particulate matter has previously been 

identified as one of the main environmental factors associated with autoimmune and 

inflammatory diseases, especially those involving the intestine [83], [84]. For instance, 

studies show that exposure to microparticles has been linked to the occurrence of IBD, in 

particular Crohn´s disease [85]. Food often contains many non-nutrient microparticles like 

soil and dust or food additives, which can be taken up by mucosal cells, resulting in 

inflammatory reactions [86]. NPs can be inhaled, e.g. carbon NPs from laser printers [87], 

but also swallowed, the latter case being reported to cause diarrhea and histological 

alterations typical of Crohn´s disease [88]. Thus there is an urgent need to understand 

better the interaction between nanomaterials and the intestinal mucosa, especially in the 

context of local inflammatory events and diseases.  

ENs are also used in innovative drug delivery systems as they can target drugs to their 

site of action and can protect the cargo from degradation [89]. Therefore, it is essential to 

thoroughly characterize the safety of ENs. However, the complexity of biological systems 

makes it difficult to precisely assess the impact of nanomaterials. This holds true in 

particular for animal models of biological systems, which due to their complexity are 

essentially “black boxes”, difficult to handle and also posing ethical challenges. Therefore, 

there is a need for advanced cell- and tissue-based in vitro models that allow for studying 

the effects of NPs under well-controlled conditions by monitoring endpoints of clinical 

relevance. Currently, the enterocyte cell line Caco-2 is a well-established model for the 

human intestinal barrier. A number of in vitro studies have used the Caco-2 cell line to 

assess cytotoxicity in the GI as well as systemic uptake after oral exposure [90], [91]. 

However, the complex physiology of the intestinal mucosa is insufficiently modeled with 

only one cell type, which might explain the limited correlation between in vivo and in vitro 

studies achieved to date [92]–[94].  
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As already mentioned in the previous chapters, one obvious shortcoming of the Caco-2 

monoculture model is the lack of immune-competent cells, which are clearly important in 

the context of inflammatory disorders such as IBD. Interactions between nanomaterials 

and immune cells can lead to inflammatory reactions with pro-inflammatory cytokine 

release and cytotoxic effects [47]. NP uptake by immune cells is an important issue 

related to nanotoxicity. Several NP properties, including the physicochemical properties of 

size and surface charge, might influence cellular particle uptake. Studies show that 

particles with cationic or anionic surface charges are more attractive to phagocytes than 

neutral particles [95], and it is known that particles below 200 nm in diameter show poor 

uptake by macrophages in comparison to particles between 0.5 and 3 µm in size [96].  

Several groups have used in vitro cell models to evaluate NP toxicity either in 

monocultures [90], [91], [97] or in co-cultures [67], [68]. Indeed, in vitro models containing 

two or more types of cells, able to interact with each other and with nanomaterials, seem 

to be more able to capture the complexity of the in vivo situation. As mentioned, our 

research group has previously established a 3D in vitro model of the intestinal mucosa 

consisting of the Caco-2 intestinal epithelial cell line with primary blood derived dendritic 

cells and macrophages embedded in a collagen type I gel [50]. This model has been 

shown to exhibit relevant barrier properties for studying NP translocation. It also appears 

to reflect typical pathophysiological changes that are observed in the state of inflammation 

in vivo, such as decreased epithelial barrier function, increased production of pro-

inflammatory cytokines and an alleviation of such symptoms when anti-inflammatory 

formulations for the treatment of IBD were applied [51]. However, this model suffered from 

a relatively high variability and low throughput potential as well as difficulties in 

standardization, due to its use of primary-derived immune cells. Therefore, the model was 

modified, as described in the previous chapter, to rather include cell line-derived 

macrophages and dendritic cells. Such a substitution was not seen to compromise the 

ability of the model to build an intact permeation-relevant barrier or respond to 

inflammatory stimuli [103].  
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Figure 3.1: Pathways for NP-induced toxicity (Manke et al. [104]). 

 

The aim of the work in the current chapter was to use this improved, cell line-based in 

vitro model consisting of Caco-2, THP-1 and MUTZ-3 cells to assess the cytotoxicity of 

engineered NPs. It is known that NPs from various materials induce oxidative stress in the 

form of reactive oxygen species (ROS) [105], [106]. ROS generation can lead to e.g. 

inflammation, cell death or mitochondrial dysfunction as shown in Figure 3.1 [104]. 

Several of these effects are investigated in our experiments. For this purpose silver (Ag), 

titanium dioxide (TiO2) and gold (Au) NPs were used. These particles were chosen based 

on their relevance for oral exposure as well as for their use in other toxicological studies: 

Ag NPs are frequently used in commercial products because of their antimicrobial 

properties. Such products include cosmetics, textiles and wound dressings, but also food 

packaging, in which their function is to enhance the shelf life of products. As such they 

may be released into food and swallowed by humans. A number of studies have 

described Ag NPs as being able to induce toxicity in a number of different species, and 

uptake by the intestine has been reported in animal models [98], [99]. As for other 
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nanomaterials, the toxicity of Ag NPs depends on their concentration and size as uptake 

of the particles is influenced by both parameters. Furthermore, smaller Ag NPs release 

more Ag+ ions, which have been controversially discussed as being the main effectors in 

Ag NP associated toxicity [100]. 

TiO2 NPs are present in many kinds of food, especially sweets such as candies and 

marshmallows. Children consume more of these kinds of food than adults, therefore 

having higher exposure rates to such particles [101]. Additionally, TiO2 NPs serve as 

whitening agents in toothpastes.  

Au NPs may also be included in toothpastes and packaging [102], but 

nanomedicines/diagnostics and nanoelectronics are more likely sources of application and 

so exposure. Due to their bright near-infrared fluorescence alone or in combination with 

e.g. chemotherapeutics in complex theranostic systems, they are used as imaging agents. 

The toxic potential and uptake pathway of Au NPs remains unclear [103] 

 

3.2 Materials and Methods 

3.2.1 Nanoparticles (NPs) 

NM300 Ag NPs with a size of < 20 nm, PVP capped, and NM101 TiO2 NPs with a size of 

7-10 nm were purchased from JRC (Joint Research Centre, Ispra, Italy). Au NPs in two 

different sizes, 15 and 80 nm, were kindly provided by Dr. Wolfgang W. Kreyling, Institute 

of Lung Biology and Disease, Helmholtz Zentrum, Munich. 

 

3.2.2 NP preparation and characterization 

For TiO2 and Au NPs, stock solutions were prepared by suspending 76 mg of the 

respective NPs in MilliQ water with 2% FBS to a final concentration of 2.56 mg/ml. Ag NPs 

were provided at 10% (w/w) dispersed in a viscous mixture of water (75%) with 

7% ammonium nitrate as stabilizing agent and 4% Tween20 and polyoxyethylene glycerol 
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trioleate as emulsifiers. A protocol from the ENPRA project (www.enpra.eu) was used to 

prepare a stock solution of Ag NPs. In accordance with this protocol 100 mg of Ag NP 

solution were dispersed in 38 ml water containing 2% FBS to achieve a final concentration 

of 2.56 mg/ml. All the stock solutions were sonicated for 15 min in an ultrasonic bath 

(Bandelin electronic, Berlin, Germany) at 200 W. NPs were then further diluted in Caco-2 

medium (described in chapter 2) to achieve concentrations between 0.0001 and 1 mg/ml. 

Following the dilution in medium, the NPs were sonicated again for 15 min before use in 

the experiments. For every experiment NPs were freshly dispersed, and the same 

dispersion protocol was used. 

For TiO2 and Au NPs, the hydrodynamic particle diameter was determined via dynamic 

light scattering with the Malvern Zetasizer® nano (Malvern Instruments, Herrenberg, 

Germany). Particle size and polydispersity index (PDI) were determined 0, 1, 2, 4, 6, 8 

and 24 h after preparation of the respective dilution. The dilutions were kept at RT 

protected from light and were sonicated for 15 min before the measurement. Two 

independent samples were measured three times at each time point to calculate mean 

and SD. 

For Ag NPs size distribution and stability were investigated with a NanoSight® LM10 

instrument (Malvern Instruments, Herrenberg, Germany). This measurement is also based 

on dynamic light scattering, but uses single particle tracking analysis. Two particle 

concentrations were tested and mean particle diameter and width of the distribution were 

measured three times. 

For TiO2 and Ag NPs concentrations between 1.25 and 625 µ/cm2 were tested, for Au 

NPs concentrations between 0.156 and 80 µg/cm2 (Table 3.1). These concentrations were 

used for the following cytotoxicity studies with the different cell culture models.  

 

 

 

http://www.enpra.eu/
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Table 3.1: Nanoparticle concentrations employed in cytotoxicity studies with the 

different cell culture models. 

Ag, TiO2 Au 

 

[µg/cm2] [µg/ml] [µg/cm2] [µg/ml] 

625 1000 80 128 

312.5 500 40 64 

156.25 250 20 32 

78.125 125 10 16 

39.065 62.5 5 8 

19.53 31.25 2.5 4 

9.77 15.625 1.25 2 

5 8 0.625 1 

2.5 4 0.3125 0.5 

1.25 2 0.15625 0.25 

 

3.2.3 Cell culture 

Cells were cultured as described in section 2.2.1. The Caco-2 clone C2BBe1 was used for 

the following experiments. 

 

3.2.4 Triple culture of the intestinal mucosa 

The triple culture was set up as described in section 2.2.3. NPs were added to the apical 

compartment after removal of IL-1ß. Cells were incubated with the particles for 24 h as 

shown in Figure 3.2 until the endpoints were measured. 
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Figure 3.2: Experimental setup for NP toxicity studies using the triple culture 

model. 

 

3.2.5 Cell viability measurement via lactate dehydrogenase (LDH) and Alamar 

Blue assay 

To test NP toxicity, Caco-2 cells were seeded at 2x104 cells/well in 96 well plates and 

grown for 7 days. Cells were incubated with various concentrations (Table 3.1) of the 

different NPs for 24 h at 37 °C and 5% CO2. Following this incubation period, 100 µl of the 

supernatant was collected and LDH release was measured via an LDH detection kit 

(Roche, Mannheim, Germany), in accordance with the manufacturer´s protocol. Briefly, 

this involved incubation of supernatant samples with the LDH reagent in the dark for 3 min 

at RT, followed by measurement of excitation at 492 nm with a plate reader (TECAN, 

Männedorf, Switzerland). For the Alamar Blue assay (which indicated cell metabolic 

activity), the adherent cells were washed with PBS, and fresh cell culture medium and 

10% of Cell Titer Blue Reagent (Promega, Mannheim, Germany) were added. Cells were 

incubated at 37 °C and 5% CO2 and the formation of violet Resofurin salt was measured 

at 590 nm using a plate reader after 30 and 150 min. The specific metabolic activity was 

calculated as: (Abs 2h30’- Abs 30’)/120’. Sample data was normalized to the non-treated 

medium control. 
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The viability of the inflamed and non-inflamed triple culture incubated with different 

concentrations of NPs was also evaluated with LDH and Alamar Blue assays, as 

described above. 

 

3.2.6 Influence of Ag ions on cell viability 

The impact of Ag ions on cell viability was assessed using the LDH assay, as described in 

section 3.2.5. Caco-2 cells were incubated with AgNO3, Ag NPs and supernatant from 

which intact Ag NPs were removed. Ag NPs with a concentration of 156.25 µg/cm2 were 

dispersed in cell culture medium, incubated for 24 h at 37 °C and ultracentrifuged 

(450,000 g). Supernatant was collected and Caco-2 cells were incubated with this for 

24 h. As controls cells were also incubated with Ag NPs and AgNO3 in equivalent 

concentrations under similar conditions.  

 

3.2.7 Transmission electron microscopy (TEM) 

Inflamed and non-inflamed co-cultures were incubated with Ag NPs in a concentration of 

156,25 µg/cm2 and 15 nm Au NPs in a concentration of 20 µg/cm2 for 24 h. Afterwards 

samples were prepared for TEM investigations as described in section 2.2.6. 

 

3.2.8 TEER 

TEER measurement as an indicator of cell culture barrier function was performed before 

and 24 h after the incubation with NPs as described in section 2.2.4. 

 

3.2.9 Cytokine measurement (IL-8) on the protein level via FACS 

The production of IL-8 as an indicator of inflammation was measured before and 24 h 

after the incubation with NPs as described in section 2.2.5. 
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3.2.10 Cytokine measurement (IL-8 and TNF-α) on the mRNA level via Real-time 

PCR 

Relative changes in mRNA transcription of the pro-inflammatory marker IL-8 after 

incubation with different NPs were determined using a quantitative real-time polymerase 

chain reaction (qRT-PCR). Cells were incubated with NPs for 24 h, collected and lysed. 

Total RNA was then extracted from the cells with a QIAshredder (Qiagen, Hilden, 

Germany) and RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the 

manufacturer’s protocol. RNA amount was measured using a photometer (Eppendorf, 

Hamburg, Germany). A 500 µg amount of RNA was then transcribed into cDNA with a 

QuantiTect Transcription Kit (Qiagen, Hilden, Germany). 

Quantitative PCR was conducted using a QuantiTect Probe PCR Kit (Qiagen, Hilden, 

Germany) according to the manufacturer’s instructions. Three replicates were measured 

for every sample. 35 cycles were measured (10 seconds: 94 °C, 30 seconds: 60 °C); 

β-actin was used as a housekeeping gene. Sequences of primers and probes employed 

are shown in Table 3.2.  
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Table 3.2: Sequences of primers and probes for quantitative Real-Time PCR 

 Sense Antisense Probe 

Human β-actin TGC GTG ACA TTA 

AGG AGA AG 

GTC AGG CAG CTC 

GTA GCT CT 

FAM-CAC GGC TGC 

TTC CAG CTC CTC-

BHQ1 

Human IL-8 TGC CAG TGA AAC 

TTC AAG CA 

ATT GCA TCT GGC 

AAC CCT AC 

FAM-TCA ACA CTT 

CAT GTA TTG TGT 

GGG TCT G-BHQ1 

Human TNFα CTC CAC CCA TGT 

GCT CCT CA 

CTC TGG CAG GGG 

CTC TTG AT 

FAM-CAC CAT CAG 

CCG CAT CGC CGT 

CTC-BHQ1 

 

 

3.2.11 Statistical analysis 

Where appropriate, data are presented as mean + standard deviation (SD). One way 

ANOVA with Holm Sidak test was used to compare results from different treatments at 

different time points. The ANOVA analysis was done with SigmaPlot 12.5 (Systat 

Software GmbH, Erkrath, Germany). Significance was assumed at p < 0.05 (*) or 

p < 0.001 (**). Individual experiments were performed in triplicate and each experiment 

was performed twice. EC50 values were calculated with Sigma Plot 12.5. 
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3.3 Results 

3.3.1 NP characterization 

Engineered NPs were evaluated according to their dispersion behavior. The two Au NP 

batches could be easily dispersed in the culture medium at the tested concentrations. The 

measured hydrodynamic diameter was slightly larger than the nominal diameter supplied 

by the manufacturer (Table 3.3) with a PDI < 0.1, indicating a narrow size distribution even 

at high concentrations of 0.1 mg/ml. The particles did not agglomerate in the cell culture 

medium, but a thin particle corona was likely formed by adsorption of proteins or other 

components from the Caco-2 medium.  

For TiO2 particles, the dispersibility was very poor in MilliQ water, but could be improved in 

cell culture medium due to the high FBS/protein concentration and resulting steric 

stabilization of the particle dispersion. Nevertheless, agglomerates between 700 and 

1200 nm were still formed, and measured particle samples showed a high PDI (> 0.4). 

Ag NPs could not be evaluated in the Zetasizer via dynamic light scattering due to 

interference with the laser. Instead the size distribution and stability of the particle 

dispersion were determined using single particle tracking analysis (NanoSight, Malvern 

Instruments, Herrenberg, Germany), which employs a different laser wavelength. The 

mean hydrodynamic diameter of the particles was found to be 120 nm; this value was 

considerably higher than manufacturer-supplied value < 20 nm, hinting at particle cluster 

formation together with serum proteins. Particle size distribution was however 

monomodal, and no agglomeration was observed within 24 h of storage in cell culture 

medium at 4 °C (Table 3.3).  
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Table 3.3: Dispersion behavior of ENs in DMEM cell culture medium at 0.1 mg/ml 

after 1 h of incubation 

NPs Mean hydrodynamic 

diameter [nm] 

PDI 

Au 15 51 ± 6 0.04 ± 0.01 

Au 80 116 ± 5 0.04 ± 0.02 

TiO2 896 ± 133 0.42 ± 0.14 

Ag 120 ± 4 NA 

 

 

3.3.2 Cell viability measurement – LDH and Alamar Blue assay 

After incubating Caco-2 monocultures and inflamed and non-inflamed co-cultures with the 

various NP concentrations, cell culture supernatant samples were collected to measure 

LDH release as an indication of cell damage. Furthermore, NP-treated cells were 

incubated with fresh medium and Cell Titer Blue reagent was added to measure the 

metabolic activity of the cells via the Alamar Blue assay. Figure 3.3 shows the results for 

both assays after incubation of Caco-2 monoculture, inflamed and non-inflamed co-culture 

for 24 h with 625 µg/cm2 of Ag and TiO2 NPs and 80 µg/cm2 of both 15 nm and 80 nm 

Au NPs. 
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A 

 

B 

 

Figure 3.3: Results of LDH (A) and Alamar Blue (B) assay after incubation of Caco-2 

monoculture, inflamed and non-inflamed co-culture with the highest tested NP 

concentrations (mean ± SD, n=6 from 2 independent experiments, * = p<0.05, 

** = p<0.001). 

 

Incubation with the highest employed concentration of both types of Au NPs did not affect 

cell viability and there was no difference between the results of the Caco-2 mono- and co-

culture setups, regardless of the state of inflammation. In contrast, the highest employed 

concentration of Ag NPs induced significant toxicity after 24 h. The Caco-2 monoculture 

was more sensitive to Ag NPs than the co-culture model. Looking at Figure 3.3A, it looks 
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like there is a significant influence of the state of co-culture inflammation on Ag NP-

induced cytotoxicity, but not in Figure 3.3B. For TiO2 NPs the LDH assay does not show 

any toxic effects. However, the results of the Alamar Blue assay show that viability of the 

cells decreases in the case of the inflamed co-culture.   

To further investigate the toxic effects of the Ag NPs, these were studied at various 

concentrations which are shown in Table 3.1. Based on the results both from the LDH and 

Alamar Blue assay (Figure 3.4) the Caco-2 monoculture was significantly more 

susceptible than the co-culture to cytotoxic damage by Ag NPs, while there was at least a 

slightly increased susceptibility of the inflamed compared to the non-inflamed co-culture. 

LDH EC50 values from Caco-2 monoculture (85 µg/cm2) and inflamed (216 µg/cm2) or 

non-inflamed (364 µg/cm2) co-culture also confirm this result. 

The LDH assay was also used to investigate whether the presence of Ag ions was 

responsible for the toxic effect of Ag NPs (Figure 3.5). Incubation of cells with AgNO3 

containing liberated Ag+ was confirmed to be equally toxic to Caco-2 cells as Ag NPs. In 

contrast, no LDH release was measurable in cell cultures treated with the Ag NP-free 

supernatant, indicating that Ag NP toxicity is not caused by released Ag+ ions present in 

cell culture supernatants. 
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A 

 

B 

 

Figure 3.4: LDH assay and Alamar Blue assay after incubation of Caco-2 

monoculture, inflamed and non-inflamed co-culture with different concentrations of 

Ag NPs. LDH release (A) and mitochondrial activity (B) were measured for all Ag NP 

concentrations in all cell culture setups (mean ± SD, n=6 from 2 independent 

experiments). 
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Figure 3.5: Influence of Ag ions on cell viability. LDH assay was performed in Caco-2 

monoculture incubated with AgNO3, Ag NPs and supernatant from which intact Ag NPs 

were removed (mean ± SD, n=3, * = p<0.05, ** = p<0.001 relative to cells incubated with 

NP-free supernatant). 

 

3.3.3 Assessment of Caco-2 cell integrity via TEER measurement  

TEER of cell cultures was measured before and 24 h after NP incubation in order to 

assess the effect of NPs on barrier properties (Figure 3.6). Barrier function was seen to 

remain intact after incubation with TiO2 (Figure 3.6B) or Au (Figure 3.6C/D) NPs, even 

following incubation of cells with high concentrations of NPs. However, in the case of both 

mono- and co-cultures, treatment of cells with Ag NPs at concentrations greater than or 

equal to 156.25 µg/cm2 resulted in disruption of the epithelial barrier, as indicated by a 

steep drop of the TEER (Figure 3.6A). The monoculture was seen to be the most sensitive 

to Ag NPs followed by the inflamed and the non-inflamed co-culture, with a decrease in 

TEER already observable at the even lower concentration of 78.125 µg/cm2. 

With the highest Ag NP concentration (625 µg/cm2), TEER values showed an abrupt 

decrease in both mono-and co-cultures, to extremely low levels similar to those exhibited 

by cells incubated with 1% TritonX, which served as a positive control (data not shown).  
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A 

 

B 

 

C 

 

D 

 

Figure 3.6: TEER values of Caco-2 monoculture, inflamed and non-inflamed co-

culture after incubation with different concentrations of the NPs. Cells were 

incubated for 24 h with Ag (A), TiO2 (B), 15 nm Au (C) and 80 nm Au (D) NPs. TEER was 

measured before and after incubation. Values are shown as percentage of TEER values 

after incubation relative to TEER values before incubation with NPs (mean ± SD, n=6 from 

2 independent experiments, ** = p<0.001 relative to TEER values of non-treated controls 

(not shown)). 

 

3.3.4 Impact of NPs on inflammatory response 

In order to identify possible sub-lethal but nevertheless potentially damaging effects on the 

epithelial cells, inflammatory responses were monitored during cellular exposure to NPs 

by measuring the secretion of pro-inflammatory cytokines. For this purpose the apparently 
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non-toxic 15 nm Au NPs were chosen for investigation and compared with the evidently 

more toxic Ag NPs.  

Co-cultures as well as Caco-2 monocultures were exposed to Ag and 15 nm Au NPs for 

24 h. TiO2 and 80 nm Au NPs were also initially tested, but production of neither IL-8 nor 

TNF-α could be detected (data not shown). The inflammatory response to Ag und 15 nm 

Au NPs was therefore evaluated by monitoring the stimulation of IL-8 on a protein level 

(Figure 3.7A/B), as well IL-8 (Figure 3.7C/D) and TNF-α (Figure 3.7E/F) on a 

transcriptional level. In Caco-2 monoculture a slight increase in IL-8 release was only 

observed with the highest Ag NP concentration employed. However in both the inflamed 

and non-inflamed co-cultures, IL-8 release was observed already after incubation with the 

lowest tested concentration of Ag NPs (Figure 3.7A). This indicates that Ag NPs induce 

inflammatory reactions even at concentrations which are not toxic to the cells. With 

respect to the relative induction of inflammation with Ag NPs, again, significant differences 

between the inflamed and non-inflamed co-culture state were observed. Surprisingly the 

non-inflamed co-culture released more IL-8 than the inflamed one when exposed to Ag 

NPs. The results with Ag NPs from real-time PCR experiments agreed well with protein 

expression data (Figure 3.7C). TNF-α measurement showed similar results as seen with 

IL-8, although a relatively lower expression of TNF-α was oberved (Figure 3.7E). 

Incubation of Caco-2 cells in monoculture with low concentrations of Au NPs did not 

induce a significant increase of IL-8 production at any tested concentration. In the co-

cultures a considerable release of IL-8 was observed, however the levels were 

approximately ten times lower than those observed with Ag NPs. Again the stimulation 

was concentration-dependent, but in this case the inflamed co-cultures released more IL-8 

than the healthy ones (Figure 3.7B). In the co-culture models a release of TNF-α was also 

observed, however this only reached appreciable levels at the highest employed 

concentration of Au NPs (Figure 3.7F). 
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Figure 3.7: IL-8 release on protein (A,B) and transcriptional level (C,D) and TNF-α 

release on transcriptional level (E,F) after 24 h incubation of Caco-2 monocultures, 

inflamed and non-inflamed co-cultures with different concentrations of Ag and Au 

NPs. Cells were incubated for 24 h with Ag (A/C/E) or 15 nm Au (B/D/F) NPs (mean ± SD, 

n=6 from 2 independent experiments, * = p<0.05, ** = p<0.001). 



 Chapter 3: Cytotoxicity measurements of nanoparticles 

66 
 

3.3.5 Uptake of NPs 

To evaluate the internalization of NPs, TEM analysis were performed with co-cultures 

after 24 h incubation with NPs. TiO2 NPs could not be included in this experimental setup 

as samples for the TEM have to be cut with a diamond knife, which was not able to cut 

these particles. TEM images of cells incubated with Ag NPs could not be analyzed with 

respect to particle uptake, as the used concentration of 156.25 µg/cm2 of Ag NPs was 

seen to be toxic (as confirmed by cytotoxicity studies) and resulted in the death of cells in 

the co-culture set-up. The 15 nm Au NPs were however found to be taken up by the cells. 

No particles could be found in macrophages or dendritic cells, but it could be shown that 

the NPs were taken up by Caco-2 cells in the co-culture independent of the state of 

inflammation (Figure 3.8). 

 

Figure 3.8: TEM images of Au NPs (15 nm) uptake by Caco-2 cells in non-inflamed 

(A,B) and inflamed (C,D) co-culture following 24 h incubation. 
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3.4 Discussion 

Assessment of toxicity of nanomaterials is of huge concern, as a significant fraction of the 

population comes into daily contact with NPs. Furthermore, the field of nanotechnology is 

advancing at an increase rate, yet still not enough is known about the danger of 

nanomaterials. Many examples shown in the review by Arora et al. [104] illustrate how 

important thorough nanotoxicological characterization is, in order to avoid potential 

adverse effects of nanomaterials. By using appropriate in vitro models the toxicity of 

nanoparticles can be tested and thereby the safety of nanomaterials can be increased.  

In the light of the importance of toxicity testing and the use of appropriate, representative 

models to do this, the aim of the study in this chapter was to investigate the toxicity of 

different ENs in different cell culture setups. The results from a Caco-2 monoculture and 

inflamed and non-inflamed co-cultures of the intestinal mucosa were compared to 

determine if the used co-cultures showed different behavior in presence of the NPs in 

comparison to the monoculture, and thus potentially provide data more relevant to the in 

vivo situation than the standard Caco-2 monoculture. 

Cytotoxicity testing in cell cultures is a very important tool in toxicology [105]. Caco-2 cells 

are considered to be the most often used model for the human intestine, in the light of 

their previously mentioned morphological and biochemical similarities to small intestinal 

enterocytes: they grow in a monolayer, show a cylindrical polarized morphology with 

microvilli on the apical side and tight junctions between cells, and express small intestinal 

hydrolase enzymes [106]. As such, Caco-2 cells have been used as a model of the 

intestinal mucosa in several toxicity studies, not just with NPs, but also with numerous 

other compounds. However, the in vitro-in vivo correlation in these experiments is often 

not satisfactory [92]–[94]. The limitation of the Caco-2 monoculture is that the interaction 

between different cell types, as occurs in vivo, is missing; for example immune competent 

cells, which play a very important role in the reaction after exposure to NPs or other toxic 

compounds, are absent. Therefore, the currently employed co-culture model with Caco-2 
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cells, macrophages and dendritic cells was established. In this model the influence of 

immune-competent cells (e.g. possible protection of epithelial cells) on the results of 

cytotoxicity measurements could be assessed. Another advantage of such a model is that 

it is possible to induce an inflammation, creating possibilities for testing in relevant disease 

models as for example IBD.  

To assess the toxicity of different ENs, Caco-2 monocultures as well as inflamed and non-

inflamed co-cultures were incubated with the NPs for 24 h. Cytotoxicity was measured via 

membrane damage (LDH release), mitochondrial activity (Alamar Blue assay) and 

integrity of the cell monolayer (TEER); inflammation was also assessed via measurement 

of release of pro-inflammatory markers (IL-8 and TNF-α) on both transcriptional (real-time 

PCR) and protein (FACS) levels. Some similarities could be seen in Caco-2 monoculture 

testing in comparison to the inflamed and non-inflamed co-cultures. However, some 

interesting differences between the cell culture setups were also found.  

To explore the possible differences in toxicity triggered by various ENs, we studied the 

interactions of Au, TiO2 and Ag NPs with the 3D co-culture and with Caco-2 monolayers. 

For Au NPs some studies have shown that they are not toxic; however, in contrast, other 

studies have found a low toxicity of Au NPs [107]–[109]. It is possible that the toxicity 

depends on the size of the particles [110]. Here two differently-sized Au NPs were used, 

15 and 80 nm, but no toxic effect in response to incubation with these NPs was detected 

in any cell culture model (Figure 3.3). However IL-8 gene expression was slightly 

increased after exposure to the 15 nm Au NPs in the triple culture models (Figure 3.7). 

This is in agreement with literature, where it has been shown that Au NPs induce an 

inflammatory response also in a co-culture model of the human airways [60]. In vivo 

assays have also shown a significant expression of pro-inflammatory markers such as 

IL-6, IL-1ß [111] or, as in our case, TNF-α [60] after treatment with different Au NPs.  

Our observations that Au NPs were able to induce inflammatory responses that were 

evident only in the co-culture models is in agreement with other studies, supporting the 
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use of more complex in vitro systems to investigate in-depth interactions between NPs 

and biological systems. Differences in responses of co-cultures and monocultures of 

epithelial cells (H441) and endothelial cells (ISO-HAS-1) [105] have been documented in 

literature, while further studies have highlighted clear differences between the interaction 

of nanomaterials with co-culture and monoculture models [71], [84]. It has also been 

shown previously that a co-culture system with epithelial and immune cells, such as 

macrophages, dendritic cells or mast cells, can exhibit an amplified inflammatory 

response following contact with particles in comparison to monoculture models [112]. In 

our model this amplified effect can be explained by the presence of the macrophages and 

dendritic cells, which are both responsible for the cytokine release, which was shown in 

Figure 2.3. The measurement of interleukins as readouts of inflammatory NP interactions 

with cells allows for the investigation of other cellular responses besides membrane 

permeability and metabolic activity changes. Indeed, interleukins are important biomarkers 

for inflammation also in the in vivo situation as shown for example in the high release of 

IL-8 in the GI tract of IBD patients [113]. Therefore the inflammatory response, and 

cytokine measurement as a reliable endpoint for this, is an important parameter to be 

addressed in the interaction between NPs and living systems. As such it should be 

included in safety testing of NPs and nanoparticulate pharmaceuticals, as, as seen in the 

current work in relation to experiments with Au NPs, potentially harmful inflammatory 

effects can occur even at subtoxic concentrations.  

When the uptake of Au NPs by the cells in the 3D co-culture was evaluated, it was found 

that these particles were mostly internalized by Caco-2 cells rather than by macrophages 

(Figure 3.8). This effect could possibly be due to the 24 h incubation time used for the 

experiment – while the immune cells could have in fact taken up the particles, particle 

digestion could have already taken place by the time of TEM investigations. Another 

reason could be that the collagen layer is a limiting factor in the co-culture system. It was 

shown in the previous chapter that the immune cells are able to move through the 

collagen to get between or on top of the Caco-2 cells. However, it is not proven if the NPs 
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are able to similarly get through the collagen layer, meaning that perhaps not many 

immune cells are able to get in contact with the nanomaterials.  

NM101 TiO2 NPs did not induce any notable toxic effects or inflammation in either 

monoculture or triple culture models in the current work (Figure 3.3, Figure 3.6, 

Figure 3.7), which is a good sign since TiO2 NPs are often found in food or tooth-paste 

[114] and can easily reach the human intestine. Other studies have shown a low toxicity of 

differently-sized TiO2 NPs to mouse macrophages [115] and epithelial lung cells [116] in 

monoculture models; a study utilizing a co-culture model of the human airway wall with 

macrophages, dendritic cells and epithelial cells however corroborates our results, as no 

toxicity or pro-inflammatory reactions after treatment with TiO2 NPs were observed [60].  

NM300 Ag NPs clearly demonstrated toxicity in all cell culture models used in the current 

work. LDH and Alamar Blue results showed that these particles induced a dose 

dependent toxicity in Caco-2 cell monocultures and in co-cultures in both healthy and 

inflamed conditions. However, EC50 values from LDH assays show that the Caco-2 

monoculture was more sensitive to the Ag NPs than the co-culture models (Figure 3.4). 

As a clear interaction between immune-competent cells and Caco-2 cells was observed in 

the 3D co-culture as evidenced by TEM (Figure 2.4) and CLSM (Figure 2.6) images, it is 

believed that this interaction might help to reduce the sensitivity to the toxic NPs, 

compared to the Caco-2 monocultures. It must also be mentioned however that, in spite of 

a clear toxic effect following treatment with Ag NPs, the sensitivity of the Caco-2 cell 

monocultures and 3D models to the Ag NP was overall quite low, displaying LC50 values 

more than 20-100 fold higher than for other cell lines. A research group in Scotland tested 

the same Ag NPs on C3A cells, a human hepatoblastoma cell line; cytotoxicity 

measurements showed LC50 values from 2.5 µg/cm2 (WST-1 assay; LDH assay) to 

5 µg/cm2 (Alamar Blue assay) [117], [118]. This is in contrast to the EC50 value of 

85 µg/cm2 calculated using the LDH assay for the Caco-2 cell monocultures in the current 

work, and even higher values for the co-culture models. As a point of commonality with 
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the C3A toxicity investigations however, it was observed in the current work that the 

Alamar Blue assay was not as sensitive as the LDH assay, and so a lower EC50 value 

was calculated for the particles with the LDH assay as compared to the Alamar Blue 

assay (data not shown).  

The toxic effect of Ag NPs was also observed as a disruption of barrier function, as 

indicated by recorded TEER values (Figure 3.6). TEER values decreased after incubation 

with higher Ag NP concentrations; this considerable decrease correlated well with an 

increased cell death, as inferred from a high LDH release. Furthermore, TEER profiles 

indicated that the non-inflamed triple culture was less sensitive to the Ag NPs than the 

inflamed one, in agreement with the data from LDH and Alamar Blue assays. This 

suggests that the inflamed triple culture is already in a state of stress resulting from the 

IL-1ß treatment.  

The current experiments also showed that IL-8 release was higher in the non-inflamed co-

culture than in the already inflamed one after incubation with Ag NPs. This might again be 

explained by the fact that the inflamed co-culture is already stressed by the inflammation 

and is not able to release even more IL-8. It may therefore be suggested that the non-

inflamed tissue is better protected against effects of toxic materials than the inflamed one 

as it is capable of releasing more cytokines, and perhaps is therefore better able to initiate 

activation of the immune system in order to provide protection against the toxic material. A 

high level of release of IL-8 was also observed in other studies that addressed the toxic 

potential of Ag NPs in human renal proximal tubule epithelial cells (HK-2) [118], C3A cells 

[117], and also in vivo in mice [119]. Further research groups studying cytotoxicity of Ag 

NPs in vivo found that these particles are mutagenic in mouse lymphoma cells and 

increase oxidative stress [120]. In vivo experiments of other groups showed that after oral 

uptake, Ag NPs reach the blood circulation and can be found in various other tissues not 

limited to the intestine [121]. After oral uptake it is possible that most of the NPs are 

directed to the liver because of its role in drug metabolism [122]. Therefore besides 
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experiments with intestinal models it would also be useful to test the toxicity of NPs on 

hepatocytes in vivo and in vitro. Studies have also been conducted to compare in vivo-in 

vitro correlations utilizing Ag NP toxicity data. The toxicity in human lymphocytes, plants 

and mice was tested and a very good correlation was found between the different results 

from in vitro and in vivo experiments [123]. Gaiser et al. also compared the cytotoxicity of 

Ag NPs in a hepatocyte cell line (C3A) and in mice. Similar results were found in these 

experiments with Ag NPs exhibiting cytotoxicity in the cell line and also in vivo [118].  

So far a proven explanation for Ag NPs showing such a high toxicity is not available. 

Several studies suggest that released Ag ions are responsible for cytotoxic effects [124], 

[125]. Hence in the current work, experiments were conducted with particle-free 

supernatants from Ag NPs following ultracentrifugation (Figure 3.5). No toxic effects could 

be detected, which shows that released Ag ions are in fact not the reason for the 

observed cytotoxicity, at least in the current case. This is in line with findings from C3A 

cell studies which were also not seen to be affected following treatment with particle-free 

supernatant; cells however demonstrated low viability, inflammation and oxidative stress 

upon exposure to NM300 Ag NPs [117]. Other studies with the same NM300 Ag NPs 

showed that less than 1% of the particles were dissolved in the cell culture medium used 

for experiments, which makes it very unlikely that the toxicity observed was due to the 

release of Ag ions [118].  

While it can be seen from the presented work that the current co-culture model is a very 

good setup in which to assess toxicity effects, its ability to simulate conditions in either a 

healthy or inflamed intestine also makes it a potentially very useful tool for IBD studies. A 

next step in the exploration of the possible applications of the model could therefore focus 

on efficacy rather than safety testing, and could involve observation of the deposition or 

healing effect of drug-loaded particles or other formulations. For the treatment of IBD 

patients it is important to know the deposition behavior of particles or drugs in the tissue. 

With the current co-culture model this could be determined, and a comparison made 
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between results in the healthy and inflamed state. It is also possible that the immune cells 

show an influence on the epithelial barrier properties especially during an inflammation. 

This was already shown in other studies with inflamed co-culture models for the alveolar 

region of the lung [80]. 

 

3.5 Conclusion 

The Caco-2 cell line is widely accepted as an accurate model of the normal, healthy 

intestinal mucosa, but this model cannot mimic the complex interactions between different 

cell types of the immune system and their influence on overall epithelial layer function. 

Therefore the co-culture model consisting of Caco-2 cells, THP-1 macrophages and 

MUTZ-3 dendritic cells was used to better mimic the in vivo response. 

The cytotoxicity of the various types of NPs was measured in a Caco-2 monoculture and 

in the developed co-culture model of the intestinal mucosa consisting of macrophages, 

dendritic cells and epithelial cells, in either an inflamed or non-inflamed state. The 

differences between healthy and inflamed tissue in terms of barrier permeability further 

support the importance of a model capable of mimicking diseased conditions, which 

results in different outcomes during the testing of new formulations. The presence of 

immune-competent cells as in the current co-culture model is therefore very important in 

the assessment of NP-cell interactions. Indeed, a release of pro-inflammatory cytokines 

was noted in current toxicity testing employing the co-culture, but not monoculture models, 

providing valuable information relating to inflammatory effects - an important endpoint to 

be considered in safety testing of nanomaterials. Thus, this study provides a new 3D co-

culture model of the intestinal mucosa, which can be utilized in either a healthy or 

inflamed state, suitable for assessment of toxic and inflammatory effects of engineered 

nanomaterials as well as nanoparticulate pharmaceuticals in the intestine. 
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4 Application of the cell line-based co-culture model for 

efficacy testing of anti-inflammatory formulations 
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4.1 Introduction 

The therapy of IBD, including the chronic and severe forms of Crohn´s disease (CD) and 

ulcerative colitis (UC), is currently limited to the reduction of symptoms rather than being 

curative [126]. Therapies for IBD symptom reduction also have limits in term of their 

possible route of application; administration via pellets or tablets for example is often not 

efficient, as the frequent occurrence of diarrhea in IBD results in an enhanced elimination 

of orally-administered drug carriers and a limited drug release time [10]. Furthermore, the 

drug candidates themselves are often immunosuppressive or anti-inflammatory drugs that 

are required to be taken in daily doses, often leading to severe adverse effects [127]. Drug 

delivery systems (DDS) that carry the used drugs directly to the inflamed areas of the 

intestine would therefore be of considerable benefit for patients suffering from IBD – this 

could provide for an optimized therapy with respect to the limited drug release window, 

and, compared to a systemic application, such local treatment would allow for a dose 

reduction which could in term minimize undesired side effects.  

Depending on the severity level of CD and UC with particular respect to the degree of 

inflammation, a reorganization of the intestinal epithelium occurs and ulcerated areas also 

develop in the intestine [10], [128], [129]. It was shown that the altered intercellular 

spaces, which occur specifically in the ulcerated areas, are an accessible target for 

particulate DDS of a suitable size range. Accumulation and prolonged localization of such 

particles was seen to occur at areas of inflammation, allowing for the release of particle-

incorporated active pharmaceutical ingredient (API) specifically in ulcerated regions over 

an extended time period. Further to this study, Lamprecht et al. reported a size dependent 

accumulation of non-biodegradable polystyrene NPs in a TNBS colitis mouse model [130]. 

In contrast to this however, a recent study showed that microparticulate formulations 

seem to be favorable in terms of accumulation in ulcerated intestinal regions in human 

patients [131]. More investigations are needed to explain this apparent difference in 

optimal DDS size for accumulation in murine and human studies. Therefore, in the current 
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chapter, DDS of the biodegradable and biocompatible polymer polylactic-co-glycolic acid 

(PLGA) in both nano- and microparticle-size were developed. Two processes were 

chosen for this purpose: a nanoprecipitation method in order to produce nanoparticles of 

150 ± 10 nm, and a nano spray drying technique to fabricate microparticles (MPs) of 

~ 4 µm in a single step. Both methods were recently established at the Helmholtz Institute 

for Pharmaceutical Research Saarland (HIPS) and can be scaled-up in one set-up with 

regards to a development production scale [135].  

PLGA is a co-polymer approved by the Food and Drug Administration (FDA) for use in a 

number of in vivo devices and applications, such as in implants and as the major 

component of surgical sutures. Through hydrolysis of the ester bonds PLGA is degraded 

in the human body to its two non-toxic components, lactic acid and glycolic acid, which 

can then be further metabolized in the citric acid cycle [132], [133]. In a 50/50 (wt/wt) ratio 

of lactic acid to glycolic acid, PLGA exists in an amorphous state; this is optimal for use in 

DDS, because amorphous PLGA shows the fastest degradation rate and decomposes in 

the body within two months [95], [96]. 

As APIs for encapsulation in PLGA-based DDS the drugs budesonide (Bu) and 

cyclosporine A (CyA) were chosen. They both show anti-inflammatory effects and can be 

used for IBD therapy. Bu is generally used in a dose of 9 mg per day [136] for oral and 

rectal treatment of ileal and right colonic CD [137]. In contrast, CyA is often used in 

fulminant UC intravenously, followed by oral maintenance therapy [138], [137]. Although 

both APIs are often used for IBD treatment and show a real success in terms of alleviating 

symptoms, they also lead to several serious side effects [139]. The use of a suitable DDS 

as described above in order to reduce such side effects is therefore highly desirable. 

Several studies have already reported on loading of PLGA particles with CyA [142]–[144] 

as well as with Bu [145], [146] and some promising improvements of IBD therapy could 

already be shown as a result of the administration of these systems. Nevertheless, to our 

knowledge, a comprehensive study comparing anti-inflammatory drug-loaded nano- and 
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microparticles with regards not only to their release kinetics, but also the suitability for 

inflammation targeting and functional effects, has not yet been performed. 

To evaluate the anti-inflammatory efficacy of the developed DDS the use of an in vitro cell 

culture model was preferred, due to the numerous advantages of such models. Firstly as 

the size-dependent accumulation behavior of DDS is known to show species variability, 

an advantage of in vitro models is that human cell lines can be used to avoid this problem. 

The analysis in in vitro systems is also often easier and faster than in in vivo experiments; 

cell culture models are also less ethically questionable than animal-based testing, and, 

importantly, provide for a much easier performance of screening studies due to a reduced 

variation in readout data [51]. Furthermore, in vitro models are a first step before such 

formulations can be tested in animal models. Several cell-based in vitro models of the 

intestine [40], [41], [145] have already been developed, as shown in earlier chapters of 

this thesis. However, as also discussed, the majority of these models have a focus on 

application in transport or uptake studies. In contrast, the cell line-based three-

dimensional co-culture model developed in this thesis has the advantage over other such 

models that it does not only show good barrier properties, but can also be inflamed by 

adding IL-1ß to the apical culture compartment. Furthermore, this model contains 

macrophages and dendritic cells, which are some of the key players in inflammatory 

reactions. Important markers of inflammation such as increased IL-8 release and 

decreased TEER values can be detected and measured in this model, as demonstrated in 

previous chapters of this thesis. This triple culture model therefore has considerable 

potential as a means to accurately assess the anti-inflammatory efficacy of CyA and Bu 

PLGA particulate systems. Moreover, the model allows for physiologically-relevant 

application - DDS can be introduced to the apical compartment of the co-culture model, 

which mimics the intestinal lumen and therefore is relevant for oral/rectal application; 

likewise, addition of DDS to the basolateral compartment of the co-culture system allows 

for stimulation of treatment from the blood side (i.e. parenteral administration). The 
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relative efficacy of DDS following different routes of application can therefore be 

compared in this co-culture setup. 

In the light of the above, the aim of the study in this chapter was to test developed and 

optimized PLGA-based DDS for IBD therapy in the co-culture model of the inflamed 

intestinal mucosa. Both APIs, CyA and Bu, were encapsulated in the PLGA NPs and MPs. 

The effects of loaded PLGA NPs and MPs were then directly compared in order to 

improve the understanding of the importance of inflammation targeting and specific 

release profiles on a successful treatment of IBD. As the two drugs have different physico-

chemical properties, it was anticipated that differences in DDS encapsulation efficiencies 

and release kinetics could be seen. The known difference in pharmacological effects of 

CyA and Bu was also expected to influence the relative action of API-loaded NPs and 

MPs during DDS testing. The investigation of the size-dependent DDS accumulation at 

the site of inflammation, the anti-inflammatory effect of CyA and Bu DDS and the 

possibility to analyze these factors in vitro in the co-culture model were addressed.  

 

4.2 Materials and Methods 

4.2.1 NP preparation by nanoprecipitation 

NPs were produced by nanoprecipitation as described by Draheim et al. [135] using a 

HARVARD® Ultra PHD pump (Hugo Sachs Elektronik, Germany). PLGA (Resomer RG 

503 H; inherent viscosity 0.41 dl/g; Evonik, Darmstadt, Germany) (1.3%, w/v) and Bu 

(Caesar & Loretz GmbH, Hilden, Germany) or CyA (Fluka) were dissolved in a mixture of 

acetone/ethanol (16:3, v/v, organic phase). The solution was injected into purified water 

containing 1% poloxamer 407 (Evonik, Darmstadt, Germany) (w/v) as stabilizer. To 

determine the maximal loading capacity of NPs, increasing amounts of CyA and Bu were 

added to the organic phase during particle preparation, while keeping the amount of 

PLGA used constant. Investigated ratios of API:PLGA (wt/wt) were: 0.5:10, 1:10, 2:10, 
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3:10, 4:10 in the case of Bu, and additionally 5:10 in the case of CyA. Formed particles 

were purified and freeze dried using 0.3% (w/v) PVA and trehalose as cryoprotectant.  

For imaging the particles following application to the triple culture model, the lipophilic, far-

red fluorescent carbocyanine DiD (Invitrogen, Life Technologies GmbH, Darmstadt, 

Germany) was encapsulated in the NPs following the same protocol. A DiD stock solution 

(25 mg/ml in ethanol) was directly added at an amount of 10 µl per 10 mg of PLGA 

mixture in acetone:ethanol (16:3, v/v).  

 

4.2.2 PLGA MP preparation by nano spray drying 

A Büchi Nano Spray Dryer B-90 (Büchi Labortechnik GmbH, Essen, Germany) was used 

for the nano spray drying technique as described by Draheim et al. [135]. For the feeding 

solution 1.1% PLGA (w/v), sorbitan monostearate (Span 60, 1.6% w/v) as stabilizer and 

APIs were dissolved in acetone. To determine the optimal loading of MPs, increasing 

amounts of APIs were employed in the feeding solution, with the same amount of PLGA 

(110 mg, equal to 1.1% in 10 ml organic phase). Used ratios API:PLGA (w/w) were 0.5:10, 

1:10, 1:15, 2:10, 3:10 and 4:10 in the case of Bu, with an additional ratio of 5:10 

investigated in the case of CyA. The volume of acetone used for all experiments was 

10 ml. Feeding solution was sprayed using a 4 µm mesh under ice cooling of the supplied 

dispersion to prevent heating of the circulating solution.  

Particles containing DiD were prepared by directly adding DiD stock solution (25 mg/ml in 

ethanol) at an amount of 10 µl per 10 mg of PLGA to the feeding solution.  
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4.2.3 Determination of particle size and size distribution 

Nanoparticles 

Hydrodynamic diameter and PDI were measured by dynamic light scattering (Zetasizer® 

Nano ZS, Malvern Instruments, UK) in purified water at 25 °C and a fixed angle of 173° in 

the case of CyA- and Bu-containing NPs; as the fluorescence of DiD loaded particles 

interferes with the Zetasizer laser, the size distribution of these NPs was characterized by 

NP tracking analysis (NTA, NanoSight® LM10 HS system, NanoSight Limited, UK) 

following re-dispersion in purified water. Mean diameter (d 0.5) and percentile values d 0.1 

and d 0.9 were calculated for NP samples by the NanoSight® software.  

The zeta potential was measured for all NPs in purified water using a Zetasizer® Nano ZS 

(Malvern Instruments, UK) 

Microparticles 

Spray dried MPs were characterized by laser diffraction using a Mastersizer® 2000 

equipped with a Mastersizer® 2000 µP dispersion module (Malvern Instruments, 

Herrenberg, Germany). Particles were re-dispersed in purified water containing 

0.01% PVA under manual shaking for 10 s prior to measurement. Volume mean diameter 

(d 0.5), percentile values d 0.1 and d 0.9 and SD were calculated by the Mastersizer® 

software. Size distribution (width) is defined in Eq. 1. 

 𝑤𝑖𝑑𝑡ℎ =
𝑑 0.9−𝑑 0.1

𝑑 0.5
                       (1) 

 

4.2.4 Determination of encapsulation efficiency and optimal loading 

HPLC quantification with a Dionex system (Thermo Fisher GmbH, Idstein, Germany) was 

used for the quantification of both APIs. The system ran on Chromeleon software version 

6.80 SP2. A reversed phase column, LiChrosphere® RP18 column 

(5 µm x 125 mm x 4 mm; Merck KGaA, Germany), and an isocratic elution were used. All 
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standards were dissolved in a mixture of acetonitrile/phosphate buffer pH 3.0 (1:1, v/v). In 

case of Bu the mobile phase consisted of a mixture of acetonitrile/phosphate buffer pH 3.0 

(2:3, v/v). Oven temperature was set to 30 °C. The retention time was 4.0 ± 0.1 min 

detecting Bu with UV at 242 nm. The method was linear (r2 > 0.999) between 

2.0 µg/ml - 100.0 µg/ml with a lower limit of quantification (LOQ) of 2.0 µg/ml.  

In case of CyA, a mixture of phosphate buffer pH 3.0/methanol (1:9, v/v) was used as 

mobile phase. The retention time was 2.1 ± 0.1 min detecting CyA with UV at 205 nm. The 

method was linear (r2 > 0.999) between 10.0 µg/ml - 100.0 µg/ml with a LOQ of 6.0 µg/ml.  

To determine the amount of encapsulated API, the encapsulation efficiency (EE), an 

aliquot of API loaded NPs or MPs was dissolved in a mixture of acetonitrile/phosphate 

buffer pH 3.0 (1:1, v/v) and treated in an ultrasonic bath to disintegrate the PLGA 

particles. The solution was filtered through a syringe filter with 0.45 µm pore size 

(CHROMAFIL GF/PET 45/25); the filtrate was collected and analyzed by HPLC to 

determine the API content. 

𝐸𝐸 =
𝑚 (𝐴𝑃𝐼 𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑒𝑑)

𝑚 (𝐴𝑃𝐼𝑖𝑛𝑖𝑡𝑖𝑎𝑙)
∗ 100        (2) 

The EE describes the percentage of encapsulated API referring to the initial mass of API 

(Eq. 2): m (APIinitial) refers to the weight of API put into the formulation and 

m (APIencapsulated) refers to the API measured after the particle dissolution. The optimal 

loading was determined by encapsulating increasing amounts of both APIs, while keeping 

the PLGA amount constant. After washing and freeze drying, the EE was determined for 

NPs and MPs. To determine the actual loading, the mass of encapsulated API was used 

as seen in Eq. 3, which describes the actual loading as ratio of weight encapsulated API 

in mg to 100 mg of PLGA as indication for carrier capacity. Eq. 4 describes the theoretical 

loading which can be calculated from the initial amount of API referring to 100 mg of 

PLGA. 
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𝑎𝑐𝑡𝑢𝑎𝑙 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 =
𝑚 (𝐴𝑃𝐼𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑒𝑑)

𝑚 (𝑃𝐿𝐺𝐴𝑖𝑛𝑖𝑡𝑎𝑙)
∗ 100       (3) 

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 =
𝑚 (𝐴𝑃𝐼𝑖𝑛𝑖𝑡𝑎𝑙)

𝑚 (𝑃𝐿𝐺𝐴𝑖𝑛𝑖𝑡𝑎𝑙)
∗ 100       (4) 

Both actual and theoretical loading were correlated in one graph for NPs or MPs. This 

representation can be used to determine the optimal theoretical loading that is reached if 

by increasing the initial API mass the actual loading is not increasing proportionally.  

 

4.2.5 Stability of NPs and MPs in cell culture media 

2 mg of blank, CyA- and Bu-loaded NPs and MPs were redispersed in 2 ml of Caco-2 or 

THP-1 medium (described in section 2.2.1). Particles were incubated for 24 h at 37 °C, 

with constant shaking at 100 rpm. At various time points (0, 2, 4, 8 and 24 h), 100 µl of the 

Caco-2 or THP-1 medium-particle suspension was diluted with purified water to 2 ml, in 

order to avoid light scattering of medium components e.g. proteins during subsequent size 

analysis. The size and PDI of NPs or MPs was measured as described in section 4.2.3.  

 

4.2.6 In vitro drug release 

Release profiles of APIs from loaded NPs and MPs were investigated in PBS, pH 6.8 at 

RT in triplicate. To increase the solubility of CyA, 0.05% Tween 80 (w/v) was added to the 

PBS release medium. Release studies were performed under sink conditions, which are 

defined by the United States Pharmacopeia (USP) as being in place when a value no 

greater than 30% of the API saturation concentration is present in the release medium. 

Saturation concentrations were determined to be 42.3 µg/ml for CyA and 21.7 µg/ml for 

Bu; therefore the required mass of NPs or MPs were suspended in 30 ml of the release 

medium. Release experiments were performed in stock bottles closed with Parafilm®M 

(BRAND GmbH + CO KG, Germany) to avoid evaporation. The particle suspensions were 

stirred at 400 rpm at RT for the duration of the experiments. At pre-determined time points 

1.5 ml suspension was removed and centrifuged (Hettich Rotina 420 R, Hettich Holding 
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GmbH & Co. oHG, Germany) at 24400 g at 20 °C for 15 min. 1 ml of the resulting 

supernatant was removed for analysis by HPLC as described previously. A 1 ml volume of 

fresh medium was then added to the rest of the supernatant to re-disperse the pellet, 

which was before replaced in the bulk release medium. Release was cumulatively 

calculated and normalized to the determined encapsulation efficiency of PLGA particles. 

The following values were defined for classifying the release of the different formulations: 

Fast release: >80% API released after 4 h 

Intermediate release: 50-60% API released after 48 h 

Slow release: <10% API released after 4 h and <30% after 48 h. 

 

4.2.7 Cell culture 

Cells were maintained as described in section 2.2.1. The Caco-2 clone HTB37 was used 

for the following experiments. 

 

4.2.8 Triple culture of the inflamed intestinal mucosa 

The triple culture model was seeded as described in section 2.2.3. 

Briefly, the co-culture of Caco-2, THP-1 and MUTZ-3 cells was grown until the Caco-2 

cells formed a confluent monolayer and TEER values were higher than 400 Ω*cm2. On 

day 11 cells were inflamed by adding 10 ng/ml IL-1ß into the apical compartment of the 

triple culture. Following two days of incubation, IL-1ß was removed and cells were treated 

with the different particulate formulations or APIs in solution. After 4 (Bu) or 8 (CyA) h the 

formulations were removed, cells were washed with PBS and fresh cell culture medium 

was added. TEER values and IL-8 release were measured before and as well as 1, 2 and 

3 days after formulation treatment as shown in Figure 4.1.  
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Figure 4.1: Experimental setup for NP and MP efficacy studies using the triple 

culture model. 

 

4.2.9 LDH assay 

Assessment of the cytotoxicity of NPs and MPs via LDH measurement was performed as 

described in section 3.2.5. Caco-2, THP-1 and MUTZ-3 cells were incubated with different 

concentrations of blank NPs and MPs for 8 h. Afterwards supernatant was collected to 

measure LDH release. 

 

4.2.10 TEER 

TEER measurement was performed as described in section 2.2.4.  

 

4.2.11 IL-8 measurement 

IL-8 measurement via FACS was performed as described in section 2.2.5. Analysis was 

done with FCAP array v3.0 cytometric bead array analysis software (BD Biosciences, 

Heidelberg, Germany). 

 

4.2.12 Immunostaining of the triple culture for CLSM 

Immunostaining was performed as described in section 2.2.7. As secondary antibody 

Alexa 488 anti-mouse antibody was used, diluted 1:400 in PBS. 
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4.2.13 Statistical analysis 

Where appropriate, data are presented as mean + standard deviation (SD). One way 

ANOVA with Holm Sidak test was used to compare results from different treatments at 

different time points. The ANOVA analysis was done with SigmaPlot 12.5 (Systat 

Software GmbH, Erkrath, Germany). Significance was assumed at p < 0.05 (*) or 

p < 0.001 (**). Individual experiments were performed in triplicate and each experiment 

was performed twice.  

 

4.3 Results 

4.3.1 Encapsulation efficiency and optimal loading 

Particulate DDS should be loaded with the highest possible API content as the DDS itself 

should only act as a transporter or reservoir for the respective API. In general the loading 

of API into DDS is a function of lipophilicity of the API, and the polymer used to prepare 

the DDS [144]. As the PLGA-based DDS were established before [135], their ability to 

encapsulate the two APIs was now tested. The optimal loading was determined; the 

values are presented in Figure 4.2A for CyA and in Figure 4.2B for Bu; the line of identity 

shows an EE of 100% which means that the actual loading would be equal to the 

theoretical loading. 
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Figure 4.2: Actual and theoretical loading of CyA-loaded (A) and Bu-loaded (B) NPs 

and MPs (mean ± SD, n≥3).                               

 

Table 4.1: Encapsulation efficiency of CyA-loaded NPs and MPs (mean ± SD, n > 3). 

Ratio Formulation 

NP [%] MP [%] 

0.5/10 53.3 ± 3.8 87.9 ± 3.3 

1/10 11.6 ± 3.6 92.0 ± 0.8 

2/10 11.0 ± 0.6 90.9 ± 3.2 

3/10 46.2 ± 9.2 90.1 ± 1.5 

4/10 67.2 ± 7.5 89.2 ± 3.8 

5/10 65.4 ± 8.7 89.0 ± 0.8 

 

 

Table 4.2: Encapsulation efficiency of Bu-loaded NPs and MPs (mean ± SD, n > 3). 

Ratio Formulation 

NP [%] MP [%] 

0.5/10 26.5 ± 2.5 91.6 ± 0.2 

1/10 36.5 ± 4.3 91.4 ± 6.3 

2/10 29.7 ± 9.9 98.3 ± 5.4 

3/10 39.1 ± 10.3 92.9 ± 6.6 

4/10 34.1 ± 7.6 94.8 ± 2.6 

 

 

For encapsulated CyA in NPs EEs between 11% and 67% were determined (Table 4.1). 

An optimal loading was fixed at a ratio of 4:10 (CyA:PLGA, w/w), which means an actual 

loading of 26.8 mg CyA/100 mg PLGA and an EE of 67.2 ± 7.5%. Nearly 100% of the 

encapsulated CyA was detected for all ratios in the MPs (Table 4.1). The optimal loading 

 NPs 
      MPs 

 line of identity 
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was fixed at the ratio 4:10 keeping the same ratio for NPs and MPs. For the CyA-loaded 

MPs the optimal loading results in 35.7 mg CyA/ 100 mg PLGA and an EE of 

89.2% ± 3.8%. 

In the case of Bu encapsulation in NPs, EE values < 40% (Table 4.2) were determined for 

all tested ratios. The optimal loading was fixed at 1:10 resulting in 3.7 mg Bu/100 mg 

PLGA with an EE of 36.5% ± 4.3% as in higher ratios the variations between different 

batches were very high. For Bu-loaded MPs SEM images show aggregates at ratios 

> 2:10 (data not shown) and the optimal loading was fixed at 2:10 resulting in 19.3 mg 

Bu/100 mg PLGA with an EE of 98.3% ± 5.4%. 

 

4.3.2 Size and size distribution of NPs and MPs 

The size and size distribution of CyA- and Bu-loaded NPs and MPs is summarized in 

Figure 4.3 and compared to unloaded particles. With respect to NPs, a slight increase in 

PDI following loading was only observed for CyA-loaded NPs (Figure 4.3A). Nevertheless 

all loaded particles had a size of 150 ± 10 nm with a narrow size distribution 

(PDI < 0.150). DiD-loaded NPs also showed a size of 144.7 ± 7.8 nm, but with a higher 

PDI of 0.81 ± 0.14. The size for blank and loaded NPs increases after freeze drying due to 

the cryoprotective agent PVA. A negative zeta potential was also determined for all PLGA 

NPs, as was expected: -27.8 ± 0.61 mV for blank, -18.9 ± 0.51 mV for CyA loaded 

and -25.0 ± 3.91 mV for Bu-loaded NPs.  

The size of all MP formulations was in the low micron size range (Figure 4.3B). Bu-loaded 

MPs showed a slight increase in size compared to blank and CyA-loaded ones, although 

these differences are not significant. No appreciable difference in size distribution was 

determined. DiD-loaded MPs showed a size of 3.95 ± 0.13 µm and a width of 2.78 ± 0.10. 
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Figure 4.3: Size and size distribution of NPs (A) and MPs (B). Blank and API-loaded 

NPs were measured by dynamic light scattering and blank and loaded MPs were 

measured by laser light diffraction (mean ± SD; n=3). 

 

Batches of both NPs and MPs were visualized by SEM (Figure 4.4) using the optimal 

loaded particles (section 4.2.4). The images confirm the small size and narrow size 

distribution of the NPs as seen in dynamic light scattering results, and show that all 

particles are smooth and spherical in shape. The surface of the MPs however appears 

rougher possibly caused by Span 60 in the composition. 
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Figure 4.4: Representative SEM images of blank, CyA- and Bu-loaded NPs and MPs, 

dispersed in water. 

A blank NPs B blank MPs 
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4.3.3 Stability of NPs and MPs in cell culture media 

Unloaded, Bu-loaded and CyA-loaded particles were incubated in the cell culture media 

used in the co-culture setup (Caco-2 and THP-1 medium) for periods up to 24 h, in order 

to test their physical stability under such conditions. Physical stability was assessed 

according to size and size distribution. Results are summarized in Figure 4.5 (NPs) and 

Figure 4.6 (MPs).  
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Figure 4.5: Stability study of NPs in cell culture media over 24 h. Size and size 

distribution of NPs incubated in Caco-2 medium (A,B) and in THP-1 medium (C,D) at 

37 °C for 4, 8, and 24 h are shown, relative to NPs freshly dispersed in medium 

(mean ± SD; n=3). 
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Figure 4.6: Stability study of MPs in cell culture media over 24 h. Size and size 

distribution of MPs incubated in Caco-2 medium (A,B) and in THP-1 medium (C,D) at 

37 °C for 4, 8 and 24 h are shown, relative to MPs freshly dispersed in medium 

(mean ± SD; n=3). 

All NPs were seen to be stable over 24 h, with no significant changes in size or size 

distribution observed following incubation in either type of cell culture medium. In the case 

of MPs, no aggregates of MPs were formed in Caco-2 medium. However, in THP-1 

medium size and size distribution increased after 24 h of incubation for all MPs. In the first 

four hours the size of the MPs decreased due to the Span 60 in the composition which is 

dispersible in aqueous phases [146]. 

Incubation times for cell culture experiments are set to 4 h for Bu- and 8 h for CyA-loaded 

particles. These time points were chosen due to the physiological relevance and the 

different modes of action of the two APIs. Thus all formulations are stable enough to be 

tested in the co-culture model. 
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4.3.4 In vitro drug release studies 

Drug release from the prepared NPs and MPs was investigated for both APIs. 

Interestingly, CyA-loaded NPs and MPs showed a different release behavior to Bu-loaded 

NPs and MPs. CyA-loaded NPs showed a low burst release after 1 h with 14.03 ± 2.4% 

followed by a very slow sustained release, typical of PLGA particles [134]. For CyA-loaded 

MPs a reduced burst release was shown with 15.9 ± 4.3% being released after 1 h 

followed by a sustained release. After 24 h nearly 100% of the initially entrapped CyA was 

shown to be released from the MPs (Figure 4.7A).  

In case of Bu, the NPs release 80% of the API in 30 min and, therefore, show a strong 

burst release. Although the particles were washed, Bu could be attached to the surface of 

the particles or located at the outer edge of the polymeric particles. Contrary to this, the 

MPs show an intermediate release with a slow and sustained release after 10 h releasing 

48% of the encapsulated Bu in 1 h. The release is promising for the investigated approach 

although 40% retain in the MPs after 24 h (Figure 4.7B). 
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Figure 4.7: Cumulative in vitro release profiles of CyA-loaded MPs and NPs (A) in 

comparison to Bu-loaded MPs and NPs (B). Release was monitored in PBS for 48 h 

(mean ± SD, n = 3).  

 

4.3.5 NP and MP cytotoxicity measurements  

Before treatment of the inflamed triple culture with the drug loaded NPs and MPs, a 

cytotoxicity assay was performed to evaluate acceptable particle concentration ranges for 

the different cell types. All cell types used in the triple culture model (Caco-2, THP-1, 

MUTZ-3) were seeded separately and incubated for 8 h with different concentrations of 

blank NPs and MPs to reflect the difference in particle concentration with corresponding 
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drug dose (Figure 4.8). MPs did not show any toxic effects on the three cell types in the 

tested concentrations (Figure 4.8B). In contrast, NPs showed 40% toxicity for THP-1 and 

MUTZ-3 cells at a concentration of 6 mg/ml (Figure 4.8A). The acceptable concentration 

range for all experiments was therefore set for Bu- and CyA-loaded NPs as 

0.006 - 2 mg/ml, and for MPs as 0.0014 - 1.4 mg/ml. 

A 

 

B 

 

 

Figure 4.8: Cytotoxicity assessment of NPs (A) and MPs (B). Particles were incubated 

with Caco-2, THP-1 and MUTZ-3 cells in monoculture for 8 h, followed by measurement of 

LDH release (mean ± SD, n = 3). 



Chapter 4: Efficacy testing of anti-inflammatory formulations 

 

95 
 

4.3.6 Dose finding experiments with Bu and CyA 

Prior to further cell experiments, the optimal Bu- and CyA-concentrations, which showed a 

meaningful anti-inflammatory effect on the inflamed triple culture model, needed to be 

established. Therefore, experiments with different concentrations of free CyA and Bu in 

solution were performed on the inflamed triple culture model, as shown in Figure 4.1, to 

find the lowest effective anti-inflammatory dose. 

All CyA-concentrations showed an anti-inflammatory effect, but no statistical difference 

between the effects of the different tested concentrations could be observed (Figure 4.9B). 

After 48 h the release of IL-8 was seen to increase again, because CyA is just effective 

over a short time period. The rebound increase in IL-8 release was seen to be higher in 

the co-culture treated with the lowest CyA-concentration of 0.12026 µg/ml; for the other 

two concentrations tested, the results were comparable. Therefore it was decided to use a 

concentration of 1.2026 µg/ml CyA for all further experiments. With this concentration the 

anti-inflammatory effect was seen to be acceptable; this dose also correlated to a particle 

concentration of 0.014 mg/ml for NPs and 0.008 mg/ml for MPs, which was seen from 

Figure 4.8 to be low enough to show no toxic effect. 

For Bu, all tested concentrations showed similar results: IL-8 release decreased after the 

treatment (Figure 4.9A). For this API it was therefore decided to take the lowest tested 

concentration of 0.4 µg Bu/ml which corresponds to 0.024 mg NP/ml and 

0.0056 mg MP/ml, for all further experiments. 
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Figure 4.9: Dose finding studies: IL-8 release from the triple culture model after 

treatment with free Bu (A) and CyA (B). The inflamed triple culture was treated with 

various concentrations of Bu for 4 h and CyA for 8 h. IL-8 production was then measured 

for a total of 72 h following removal of APIs (mean ± SD, n = 3). 
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4.3.7 Efficacy studies with Bu-loaded NPs and MPs 

The impact of Bu-loaded NPs and MPs was tested following application to either the 

apical or basolateral compartment of the triple culture model, simulating oral or 

intravenous administration respectively. Experiments were performed as can be seen in 

Figure 4.1. As controls non-inflamed and inflamed triple cultures that were not treated with 

any particles were used. Furthermore, for comparison free Bu solution with the same 

concentration that was contained in the particles (0.4 µg/ml), was tested, as were blank 

NPs and MPs. Figure 4.10 shows the results of TEER measurement following apical and 

basolateral treatment with Bu formulations. 

After both apical and basolateral treatment of inflamed co-cultures with Bu in solution and 

Bu-loaded NP and MP formulations, TEER values were seen to increase back to the initial 

values observed before the induction of inflammation. This phenomenon indicates a 

closing of the tight junctions between Caco-2 cells, which were opened because of the 

inflammation. In comparison, the inflamed non-treated control also showed an increase in 

TEER following removal of IL-1ß, however this occurred more slowly than in the treated 

cultures. It takes more than three days until TEER values are fully recovered when they 

are not treated with anti-inflammatory compounds. TEER values were also seen to 

increase faster after treatment with the blank formulations as in the inflamed untreated 

culture. No difference could be observed between anti-inflammatory effects of Bu-loaded 

particles and free Bu solution.  
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Figure 4.10: TEER measurement after Bu treatment of the triple culture in the apical 

(A-C) and basolateral (D-F) compartment. A,D) untreated inflamed and uninflamed 

triple cultures; B,E) treatment with Bu-loaded and blank NPs; C,F) treatment with Bu-

loaded and blank MPs. As a control result a TEER profile from inflamed triple cultures 

treated with free Bu solution is added in every graph. Bu concentration = 0.4 µg/ml for 

solution as well as loaded NP and MP samples. TEER values are expressed as a 

percentage of values recorded on day 11, prior to inflammation (mean ± SD, n = 6 from 

2 independent experiments). 
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Figure 4.11 shows the results of IL-8 release measurements following Bu treatment of the 

inflamed triple culture. IL-8 release was seen to decrease after the inflamed co-cultures 

were treated with the drug-loaded NPs and MPs. As already observed from TEER 

measurements in Figure 4.10, blank particles also showed an effect on the triple culture 

model, with cells releasing less IL-8 after treatment with unloaded particles. In the case of 

both drug-loaded and unloaded particle treatment, the decrease in IL-8 release was 

observed to occur faster in the non-treated inflamed control, confirming an additional anti-

inflammatory effect. The greatest anti-inflammatory effect was observed 24 h following 

treatment in the apical compartment, where significant differences were seen in the IL-8 

production of co-cultures treated with blank and drug-loaded particles. No significant 

difference could be observed in IL-8 production after treatment with Bu-loaded particles or 

with free Bu solution. 
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Figure 4.11: IL-8 release after apical (A) or basolateral (B) treatment of the inflamed 

triple culture with different blank and Bu-loaded NPs and MPs. Bu concentration = 

0.4 µg/ml for solution as well as loaded NP and MP samples (mean ± SD, n = 6 from 

2 independent experiments, * = p<0.05, ** = p<0.001).  
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4.3.8 Efficacy studies with CyA-loaded NPs and MPs 

Due to the different pharmacological mechanism of CyA in comparison to Bu, cells were 

incubated with the CyA-loaded particles for the longer time period of 8 h. Figure 4.12 

shows the results of TEER measurement following apical or basolateral treatment with 

CyA formulations. 

TEER value profiles in response to CyA treatment were seen to show a similar effect to 

that observed in the Bu particle study: free CyA and CyA in both NPs and MPs induced an 

increase in TEER values, corresponding to a recovery of barrier properties within the triple 

culture model. A blank carrier effect was also found here; the TEER values recovered 

faster after treatment with the blank particles as in case of the inflamed untreated control. 
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Figure 4.12: TEER measurement after CyA treatment of the triple culture model in 

the apical (A-C) and basolateral (D-F) compartment. A,D) untreated inflamed and 

uninflamed triple cultures; B,E) treatment with CyA-loaded and blank NPs; C,F) treatment 

CyA-loaded and blank MPs. As a control result, a TEER profile from inflamed triple 

cultures treated with free CyA solution is added in every graph. CyA 

concentration = 1.2026 µg/ml for solution and loaded NP and MP samples. TEER values 

are expressed as a percentage of values recorded on day 11, prior to inflammation 

(mean ± SD, n = 6 from 2 independent experiments). 
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Figure 4.13: IL-8 release after apical (A) or basolateral (B) treatment of the triple 

culture with different blank and CyA-loaded NPs and MPs. 

CyA concentration = 1.2026 µg/ml for solution and loaded NP and MP samples 

(mean ± SD, n = 6 from 2 independent experiments). 

 

Investigation of IL-8 secretion following CyA treatment (Figure 4.13) showed a 

comparable effect to that observed with Bu treatment. IL-8 release was seen to decrease 

after treatment with the different CyA formulations; additionally the effect after treatment in 

the apical compartment was higher than after treatment in the basolateral compartment. 
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As in the experiments with Bu, an anti-inflammatory effect of the blank formulations was 

also observed. However, a significant difference in IL-8 production 24 h after apical 

treatment with blank as compared to CyA-loaded formulations was determined as it was 

the same case after treatment with Bu-loaded formulations. Furthermore, after 24 h a 

significantly higher anti-inflammatory effect of the CyA-loaded NPs in comparison to the 

free drug solution could be observed. 

 

4.3.9 Deposition of NPs and MPs in the triple culture model 

The inflamed triple culture model was incubated with NPs and MPs loaded with the far-red 

fluorescent dye DiD, applied to either the apical (Figure 4.14) or the basolateral 

(Figure 4.15) compartment. The particle concentrations and incubation times were 

equivalent to those used in the efficacy studies: 0.024 mg/ml NPs and 0.0056 mg/ml MPs 

with 4 h of incubation in the case of Bu, and 0.014 mg/ml NPs and 0.008 mg/ml MPs with 

8 h of incubation for CyA particles.  

Confocal images (Figure 4.14) show that NPs as well as MPs were located on top of the 

Caco-2 cells of the cell culture model when they were incubated in the apical 

compartment, despite the fact that the cells were washed several times after incubation 

with the particles. MPs may stick on top of the cells due to their bigger size and as such 

were seen distributed over the cell borders (Figure 4.14A/C). NPs were in fact taken up by 

Caco-2 cells. Figure 4.14 B and D show that the NPs were located inside the cells, rather 

than being located on the cell borders. After basolateral treatment no particles could be 

found in the co-culture model (Figure 4.15). 
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Figure 4.14: CLSM pictures of the inflamed triple culture incubated with DiD-loaded 

NPs and MPs in the apical compartment. A) DiD MPs CyA concentration; B) DiD NPs 

CyA concentration; C) DiD MPs Bu concentration; D) DiD NPs Bu concentration; 

scale bar = 50 µm; blue: DAPI stained nuclei, green: tight junctions stained with anti-

occludin antibody, red: DiD loaded particles 
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Figure 4.15: CLSM pictures of the inflamed triple culture incubated with DiD-loaded 

NPs and MPs in the basolateral compartment A: DiD MPs CyA concentration; B: DiD 

NPs CyA concentration; C: DiD MPs Bu concentration; D: DiD NPs Bu concentration; 

scale bar = 50 µm; blue: DAPI stained nuclei, green: tight junctions stained with anti-

occludin antibody, red: DiD loaded particles 
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4.4 Discussion 

DDS can improve the therapy options for IBD patients as they can passively accumulate 

in inflamed areas of the intestine [130]. By forming a depot at the site of inflammation 

where treatment is needed, the incidence of systemic adverse effects can be reduced. 

Studies showed that NPs seem to be favorable for accumulation in inflamed areas in 

mouse models [130], [147], whereas MPs show a better deposition efficacy in human 

patients [131]. Such studies showed an enhanced accumulation of MPs in the ulcerated 

lesions, whereas NPs were only found in traces in the mucosa of patients with CD and 

UC [131].  

Nanoprecipitation is one of the most frequently used methods for the preparation of 

polymer-based DDS [149], [150], [151]. In comparison to emulsion-diffusion-evaporation 

methods it shows reduced production times, increased reproducibility and controllability 

and less production steps [151]. The produced NPs were in suspension and had to be 

converted into a more stable, storable form by freeze drying. For this process, a suitable 

cryoprotectant with regards to the prevention of particle aggregation and to the 

achievement of a maximum stabilization of NPs during freeze drying must be evaluated. 

In the current work, trehalose was revealed to be the optimal cryoprotectant when used in 

combination with PVA, which can attach to PLGA NP surfaces [155]. This can result in a 

slight increase in particle size after freeze drying, as was noted in Figure 4.3. Furthermore 

we propose that free PVA that is not attached to the surface of the NPs can act as a 

stabilizer. PVA prevents aggregation during freeze drying as it forms a glassy state at low 

temperatures [155]. Moreover it forms hydrogen bonds between the polymer and water 

molecules, contributing to a better particle redispersion [156].  

The spray drying technique was used to formulate DDS in a single step process, without 

the need for extra washing or drying steps [157]. The used novel nano spray drying 

system was especially developed to produce spray dried products in the sub- or low-

micron size range, achieved by a vibrating mesh which transports the feeding solution into 
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the drying gas flow [158]. Studies performed with this relatively new system have 

investigated the spray drying of nano-emulsions [157] and of pharmaceutical excipients 

and proteins [159]. Further studies have focused on the preparation of particles using 

polymeric wall material and proteins [160] [161] and encapsulation of model drugs in 

biodegradable polymers [159], [163].  

In this study the APIs Bu and CyA were encapsulated in MPs and NPs for the treatment of 

IBD. The calcineurin inhibitor CyA is commonly administered to UC patients suffering from 

fulminant colitis that does not respond to intravenous corticosteroids [163]. The therapy is 

started intravenously for three to five days, and is then typically continued in oral form 

often in co-medication with corticosteroids and thiopurines for maintenance therapy [137]. 

CyA therapy is associated with adverse effects for example neurological toxicity, 

infections, renal dysfunction and hypertension [137]. Bu, a corticosteroid, is a first-line 

agent for ileal and/or right colonic CD [136], [127]. It is utilized both as oral and local 

formulation (as foam or enema) [137]. Bu has an extensive first-pass metabolism, 

reducing the systemic bioavailability to 10 – 15% after oral administration [144], which 

maximizes its locally available concentration in the distal ileum and proximal colon [128].  

In vitro release studies are a useful research tool to estimate release kinetics and show 

comparisons between various DDS samples and batches. PLGA-based DDS show in 

general a biphasic release profile, starting with a burst release followed by a sustained 

one [134]. Release of APIs from DDS is driven by three basic mechanisms: 

a) swelling/erosion, b) diffusion and c) degradation [164]. The produced DDS in this study 

show an improvement in the release compared to recent studies of CyA-loaded PLGA 

MPs [143], [166], which revealed a sustained and incomplete drug release over a number 

of weeks, up to a maximal value of 60% after 50 days [142]. Also for CyA loaded NPs a 

drug release over three weeks or more was reported, with the use of PLGA 50:50 

(lactide:glycolide ratios) showing in general the faster release rates [143], [166]. The in 

vitro release profiles of Bu-loaded DDS in the current work revealed a dramatic burst of 
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80% for NPs in comparison to 40% for MPs. This shows that Bu is probably more 

adsorbed at the surface or encapsulated at the outer edge of the particles. It is interesting 

that the release profiles are so different for NPs as compared to MPs. MPs release might 

be supported by the stabilizer, which is dispersible in aqueous solutions [146], and by the 

crystallization processes during MP formation. The spray drying process may produce 

micro voids in the MPs, supporting water penetration [166], which could explain the faster 

release of CyA from MPs in comparison to NPs. 

A fast release from MPs as seen in the case of CyA could be a benefit for administration 

as they are supposed to be cleared faster, because the accumulation of particles is size-

dependent and NPs are supposed to accumulate at a higher content, building a depot in 

the inflamed regions [29]. Moreover DDS will not stay in the inflamed areas for an endless 

time due to for example the regeneration of the epithelium. Lamprecht et al. determined 

an accumulation of 100 nm polystyrene NPs at 9.1 ± 2.8% after four days, which 

decreased after six and eight days to 3.4 ± 2.2% and 1.9 ± 1.1%, respectively [130].  

The most important point for this study was the investigation of whether the produced 

particles showed the desired anti-inflammatory effect. Therefore the formulations loaded 

with CyA and Bu were tested in the cell line-based co-culture model of the inflamed 

intestinal mucosa by measurement of TEER values and IL-8 release, and it was seen to 

be persistent enough to allow for the functional evaluation of the anti-inflammatory 

formulations.  

As expected, DDS containing both CyA and Bu showed anti-inflammatory effects in the 

triple culture model. After treating the inflamed cells with the drug-loaded NPs and MPs in 

the apical compartment, TEER values increased again in comparison to values seen 

before inflammation. The self-healing process of the triple culture also leads to a recovery 

of TEER, which was monitored in the non-treated inflamed control; however this self-

healing was seen to take more time than when cells were treated with the formulations. 

TEER values indicated a strong anti-inflammatory effect of the produced formulations; 
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however this effect was not precise enough to detect any differences between CyA-loaded 

particles, Bu-loaded particles or blank NPs and MPs. The pro-inflammatory marker IL-8 

was therefore also measured as this is expressed in high amounts in the intestine of IBD 

patients [113]. IL-8 production proved to be a very important marker for our experiments, 

with release from the inflamed triple culture models seen to decrease already 24 h after 

treatment with the different formulations. A rebound release was seen following this initial 

increase however, because both drugs show an effect just over a short time period.  

Results after treatment with Bu NPs and MPs were similar to results following treatment 

with Bu as free drug. In case of the NPs this is very much expected in consideration of the 

release profile, which shows that the drug is released very fast from the formulation 

(Figure 4.7B). In the case of the MPs however, the release profile (Figure 4.7B) shows 

that after 24 h only approximately 60% of Bu is released and available in free form, which 

means that the effect of the Bu-loaded MPs could be seen as being better than the effect 

of the Bu solution, because less API is available. This could be explained by MP 

accumulation in the model (Figure 4.14), meaning that the encapsulated API is not 

washed away and can be released over the whole experimental time.  

In the case of CyA a significant difference between the effect in terms of IL-8 production of 

CyA NPs and free drug solution was observed. The release profile (Figure 4.7A) shows 

that CyA is released more slowly than Bu from the NPs, which means that the released 

drug can reach the cells over a longer time period. Due to their small size, NPs can be 

taken up by Caco-2 cells, which could be observed in chapter 2 of this thesis (Figure 3.8). 

TEM pictures have shown that Caco-2 cells can take up 15 nm Au NPs in vesicles [103]. 

Although the difference in IL-8 production observed between free drug and drug-loaded 

MPs was not significant, there is a similar trend as compared to the results from the NPs. 

Figure 4.14 shows that NPs were found inside the cells, whereas MPs were deposited on 

top of the cells and are distributed over the cell borders. MPs (~4 µm) are probably too big 

to be taken up by the Caco-2 cells; however, they still appear to stick on top of the Caco-2 
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cells, and so remain at the site of action releasing drug. Furthermore, as indicated from 

the low TEER values, the tight junctions of the inflamed triple culture are likely to be open 

(due to lower expression of tight junction proteins ZO-1 and occludin) [76]; the pores 

created by open tight junctions have been reported to have a size of 58 – 104 nm [167] 

meaning that, while the MPs are unlikely to be able to pass through they may become 

trapped and accumulate in these enlarged intercellular spaces. This phenomenon has 

also been reported by Leonard et al. [68]. 

Blank formulations also showed an anti-inflammatory effect, which has already been 

observed in other studies [51], [89]. One reason for this could be the adsorption of soluble 

signaling parameters involved in the inflammatory cascade of IL-8, to particle surfaces. 

Another possibility is that blank particles interact with the immune cells within the triple 

culture, and lead to a response of the immune system with this new stimulus [68]. Further 

studies have to be performed to show why this effect occurs. However in vivo studies 

have also shown that the released lactate from PLGA leads to wound healing in mice 

[169], [170], which also shows that PLGA can have a healing and pharmacological effect. 

The particles were not only tested in the apical compartment, but also in the basolateral 

one, which mimics the blood side in the model. Although no significant differences 

between blank and Bu- and CyA-loaded particles were observed after treatment in the 

basolateral compartment, the results show the same trend as after apical treatment: drug-

loaded particles led to a better effect than blank ones. Confocal images showed that NPs 

and MPs could however not reach the cells when they were added basolaterally 

(Figure 4.15). MPs are expected to sediment directly to the bottom of the plate, meaning 

that their lack of interaction with the cells is not surprising, but NPs also could not reach 

the apical compartment – this could be due to the barrier of the filter membrane and the 

collagen layer. Furthermore they were removed by changing the medium during the 

experiment, which shows that only the released drug was capable of reaching the 

inflamed cells.  
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In this study it was shown that the anti-inflammatory effect of drugs can be tested on the 

developed triple culture model consisting of three cell lines. However, the system also 

shows certain limitations – while it could be determined whether a tested compound 

demonstrated an anti-inflammatory effect or not, relative differences in anti-inflammatory 

function were difficult to distinguish. A further limitation is testing of DDS in the basolateral 

compartment, which mimics administration via the blood side. It was observed here that 

DDS cannot reach the cells, either because of sedimentation or due to the barrier action 

of the transwell filter and collagen layer. Both factors are of course unlikely to occur in the 

in vivo situation. A further deviation from the in vivo situation in the current model is the 

lack of flow behavior. In order to attempt to mimic the flow through the intestine the cells 

were washed to be sure any non-adherent DDS were removed; however, the model would 

be even more realistic if there would be a fluid rather than a static system. Nevertheless, 

in vitro testing in this model is closer to the in vivo situation than testing with cell 

monocultures, and the ability to simulate and monitor inflammation in the model through 

IL-8 measurement offers a comparison to IL-8 production in in vivo experiments. Oral 

DDS could also be tested in the apical compartment and showed realistic results, which 

gives a promising perspective to the use of produced particles for oral IBD treatment as 

well as to the model, following further development, for in vitro testing for such 

formulations. 
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4.5 Conclusion 

Optimized PLGA-based pharmaceuticals for IBD therapy according to the demands of a 

scalable and quality controlled production and storage could be successfully loaded with 

cyclosporine A and budesonide.  

The anti-inflammatory effect of these model drugs could be successfully tested on the 

triple culture model consisting of three cell lines (epithelial cells, macrophages and 

dendritic cells) using TEER and IL-8 measurement as meaningful markers for 

inflammation. The investigation of the size-dependent accumulation at the site of 

inflammation and the anti-inflammatory efficacy was possible following application of DDS 

from the apical side. Furthermore it could be shown that the co-culture model is a useful 

tool for this testing because of the reversibility of the inflammable status. 

Therefore this model can be considered as a first step for the testing of oral anti-

inflammatory drugs before they are tested in animal models, giving a perspective for a 

reduction in the number of time-consuming and expensive animal tests. 
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Summary and outlook 

The current study has shown the successful replacement of primary immune cells by the 

cell lines THP-1 and MUTZ-3 in a 3D co-culture model of the intestinal mucosa. After 

inflammation the model showed the same behavior as the previous, primary immune cell-

based setup. The using of cell lines makes this model much easier to seed in a more rapid 

manner; it also makes the model more reproducible because primary cells were isolated 

from different persons and showed a higher variability than cell lines. 

The model has been proven in the current work to be a useful tool for safety testing of 

nanomaterials. It could be seen that toxic Ag NPs exerted different effects on the co-

culture model in comparison to a Caco-2 monoculture: Caco-2 cells alone were more 

sensitive to the toxic NPs than the co-culture systems, reinforcing the important role of 

immune cells in these measurements by virtue of their production of pro-inflammatory 

cytokines and also their apparent protection of the tissue. It was further shown that 

cytokine measurement is quite important in order to assess and monitor inflammation, as 

differences in IL-8 release from the cell cultures after treatment with NPs could be seen 

that did not correspond to any measurable toxic effects. Additionally cytokine 

measurements can also be performed in in vivo models to be compared to in vitro results. 

Furthermore the optimized model can also be used to test anti-inflammatory effects of 

newly developed nano- and microparticulate DDS. By measuring TEER and IL-8 release 

the anti-inflammatory action of such DDS can be measured within this system. 

Additionally, the deposition of particles in the model could be investigated by CLSM. 

There are still some limitations in the co-culture system which need to be assessed in 

further work however. The first point for further investigation should be the collagen layer 

underlying the Caco-2 cells in which the immune cells are embedded. It is still not clear if 

NPs are able to cross this layer and therefore if all the immune cells can get in contact 

with the particles. The collagen could also be a hindrance to the testing of anti-
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inflammatory compounds applied to the basolateral compartment, as, along with the filter 

membrane, it forms a physical barrier to compound interaction with the cells. A next step 

in the model development could therefore be to replace this collagen by another matrix. 

Furthermore, the system is not so sensitive that differences in the effect of different 

concentrations of anti-inflammatory compounds can be observed. Regarding these points, 

the model could still be improved by carrying out further studies. 

Nevertheless, though there are points for further consideration, the model has still shown 

a lot of promise for toxicological testing and also for anti-inflammatory drug efficacy 

assessment. 
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ADME   Absorption, distribution, metabolism and excretion 

ATCC   American Type Culture Collection 

API   Active pharmaceutical ingredient 

Ag   Silver 

Au   Gold 

Bu   Budesonide 

CD   Crohn´s disease 

CLSM   Confocal laser scanning microscopy 

CyA   Cyclosporine A 

DAPI   4′,6-Diamidin-2-phenylindol 

DDS   Drug delivery system 

DMEM   Dulbecco´s Modified Eagle Medium 

DSMZ   Deutsche Sammlung von Mikroorganismen und Zellkulturen 

DSS   Dextran sodium sulfate 

EC50   Half maximal effective concentration 

EE   Encapsulation efficiency 

EN   Engineered nanomaterials 

EVOM   Epithelial voltohmmeter 

FACS   Fluorescence activated cell sorter 

FBS   Fetal bovine serum 

FDA   Fluorescein diacetate 

GI   Gastrointestinal 

GM-CFS  Granulocyte macrophage colony stimulating factor 

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

IBD   Inflammatory bowel disease 

IL   Interleukin 
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LPS   Lipopolysaccharide 

MEM   Minimum Essential Medium 

MP   Microparticles 

NEAA   Non-essential amino acids 

NP   Nanoparticles 

PBMCs  Peripheral blood mononuclear cells 

PBS   Phosphate buffered saline 

PDI   Poly dispersity index 

PFA   Paraformaldehyde 

PLGA   poly (lactic-co-glycolic acid) 

PVA   Poly vinyl alcohol 

ROS   Reactive oxygen species 

RPMI   Roswell Park Memorial Institute 

RT   Room temperature 

SD   Standard deviation 

SEM   Scanning electron microscopy 

TEER   Transepithelial electrical resistance 

TEM   Transmission electron microscopy 

TiO2   Titanium dioxide 

TNBS   2, 4, 6-Trinitrobenzene sulfonic acid 

TNF   Tumor necrosis factor 

UC   Ulcerative colitis 
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