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I Summary 
___________________________________________________________________________ 

 

The soil bacterium Corynebacterium glutamicum is the major organism for the production of 

the amino acid L-lysine, an important nutrient in animal feedstock. This study investigated new 

strategies for bioprocess and genetic engineering of C. glutamicum towards production of 

L-lysine. 

In aerobic cultivations, routinely performed in shake-flasks, the dissolved oxygen concentra-

tion is a critical often neglected parameter. Here, oxygen mass transfer was determined in 

disposable shake-flasks under different conditions. Based on the results, a mathematical cor-

relation was developed allowing the prediction of the maximum possible cell concentration 

achievable without oxygen limitation. The developed tool is valuable for cultivations with costly 

carbon sources and nutrient additives. 

From a metabolic perspective, lysine production depends on a sufficient supply of precursors 

as well as an accurate regulation of metabolic fluxes. Thus, genetic tools were generated to 

modify selected genes. The strategies aimed to increase the availability of the essential cofac-

tor NADPH and to manipulate gene expression levels using cofactor-engineering and a pro-

moter library, respectively. In both cases modulation of individual target genes resulted in an 

increased lysine yield. The developed approaches seem valuable also for other fermentation 

processes. 
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II Zusammenfassung 
___________________________________________________________________________ 

 

Das Bakterium Corynebacterium glutamicum ist der Hauptproduzent für die Aminosäure 

L-Lysin, einem wichtigen Futtermittelzusatz in der Tiermast. In dieser Studie wurden neue 

Strategien für die bioprozesstechnische und die genetische Optimierung von C. glutamicum 

für die Produktion von L-Lysin untersucht. 

In aeroben Kultivierungen, die üblicherweise in Schüttelkolben durchgeführt werden, ist die 

Gelöstsauerstoffkonzentration ein kritischer und oft vernachlässigter Parameter. Hier wurde 

der Sauerstofftransport unter verschiedenen Bedingungen in Einweg-Schüttelkolben be-

stimmt. Anhand der Ergebnisse wurde ein mathematisches Modell entwickelt, dass die Vor-

hersage der maximal möglichen Zellkonzentration erlaubt, welche ohne O2-Limitierung er-

reicht werden kann. Das entwickelte Modell ist besonders nützlich bei Kultivierungen mit kost-

spieligen Kohlenstoffquellen und Additiven. 

Betrachtet man metabolische Gesichtspunkte, so hängt die Lysin-Produktion von einer ausrei-

chenden Versorgung mit Vorläuferstoffen sowie einer genauen Regulation der Stoffflüsse ab. 

Daher wurden genetische Tools entwickelt um ausgewählte Gene zu modifizieren. Ziel war es 

die Verfügbarkeit des Cofaktors NADPH durch Cofaktor-Engineering zu erhöhen sowie Ex-

pressionslevel durch eine Promoter-Bibliothek zu manipulieren. In beiden Fällen resultierte die 

Veränderung einzelner Zielgene in einer Erhöhung der Lysin-Ausbeute. Die entwickelten Ver-

fahren könnten auch für andere Fermentationsprozesse nützlich sein. 
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1 Introduction 
___________________________________________________________________________ 
 

The soil bacterium Corynebacterium glutamicum is the major organism for industrial produc-

tion of amino acids (Becker and Wittmann, 2012b; Ikeda, 2012). Almost 60 years ago, the wild 

type C. glutamicum ATCC 13032 was isolated for the ability to excrete small amounts of 

L-glutamate (Wittmann and Heinzle, 2002). Alternative designations are C. glutamicum DSM 

20300, IMET 10482 and NCIB 10025 (Kalinowski, 2005). It is a Gram-positive immobile bacte-

rium with a rod- to club-like morphology and a relatively high GC-content of 53.8 % 

(Kalinowski et al., 2003).  

Shortly after its discovery, first mutant strains of C. glutamicum for L-lysine production, an im-

portant nutrient in animal feedstock, were patented (Kinoshita et al., 1957; Kinoshita et al., 

1961). Back then, strain engineering comprised repeated classical mutagenesis using UV light 

or chemical mutagens followed by subsequent strain selection (Nakayama et al., 1978). Thus, 

the integration of random mutations not only resulted in remarkably improved production 

strains (Leuchtenberger et al., 2005), but also in an accumulation of a number of undesired 

modifications. As a consequence, traditionally generated production strains tend to nutrient 

auxotrophies, weak stress tolerance and retarded growth (Kelle et al., 2005; Ohnishi et al., 

2002). For example, even though some strains produced lysine with conversion yields of up to 

50 % and final lysine titers above 100 g L-1 (Ikeda, 2003; Leuchtenberger, 1996), production 

was typically accompanied by auxotrophies for L-homoserine, L-leucine, thiamin and panto-

thenic acid, respectively, (Sassi et al., 1998) or extended fermentation times of 5-7 days 

(Ikeda, 2003).  

In the 1970s, new strategies were developed to overcome these limitations. Strains were se-

lected that showed a decreased demand for additional supplements. In these strains, so 

called leaky strains, the affected pathways were still functional, but on a reduced level. Thus, 

the required supplement was produced in low intracellular concentrations avoiding feedback-

inhibition or repression of key-enzymes (Pfefferle et al., 2003).  

In 2003, the complete genome of C. glutamicum was sequenced (Ikeda and Nakagawa, 2003; 

Kalinowski et al., 2003). This and the development of modern techniques to introduce fast and 

stable genetic modifications facilitated the construction and optimization of more rational de-

signed strains using genetic engineering (Kelle et al., 2005; Kirchner and Tauch, 2003). Due 

to a better understanding of the regulatory network and the mechanisms involved in lysine 

production, classical strain construction was gradually rethought. As example “genome-based 

strain reconstruction” provided first genetically defined lysine production strains (Ohnishi et al., 

2002). Extensive analysis of C. glutamicum on the level of fluxome (Wittmann et al., 2004), 

metabolome (Bolten et al., 2007), transcriptome (Wendisch, 2003) and proteome (Schaffer et 
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al., 2001) then revealed that for an optimal lysine production a sufficient supply of cofactors 

(e.g. NADPH) and precursors (e.g. oxaloacetate) is essential to optimize production perfor-

mance (Ikeda and Takeno, 2013; Wittmann and Becker, 2007). More recently, design based 

systems metabolic engineering enabled strain construction on a global scale providing ration-

ally designed strains. For example, C. glutamicum Lys12 bears twelve distinct modifications 

and achieves a final lysine titer of 120 g L-1, a productivity of 4.0 g L-1 h-1 and a conversion 

yield of 0.55 g g-1 in fed-batch cultivation (Becker et al., 2011). For this reason, Lys12 was the 

first strain described that appeared competitive to classically generated strains due to its ex-

cellent production properties. 

Apart from the genetic background of the strain, process related parameters like pH, tempera-

ture and oxygen concentration are important for efficient lysine production. In industry, for ex-

ample, most fermentations are performed as fed-batch process in stirred-tank bioreactors, 

whereas in research, batch cultivations in shake-flasks are broadly used. However, the suffi-

cient supply of oxygen during aerobic bacterial growth is often neglected, even though oxygen 

can easily become limiting due to its low solubility in water (Zimmermann et al., 2006). Thus, a 

high oxygen transfer rate is essential for microbial growth and product formation in aerobic 

cultivations (Casas López et al., 2006; Hermann et al., 2001; Tunac, 1989). 

Taken together, fermentative production of lysine was improved drastically within the last dec-

ades. It is one of the most important biotechnological processes that is expected to reach a 

world market of 2.5 million tons by 2018 (Byrne, 2014) and a predicted annual growth of up to 

8 % (Becker and Wittmann, 2012b) making the identification of new targets for strain engi-

neering an ambitious challenge to remain competitive (Marx et al., 1999). Due to the enor-

mous success of rational strain engineering, further strains were created covering a broad 

spectrum of different products (Kind et al., 2014; Vogt et al., 2014; Xu et al., 2014b). Today, 

C. glutamicum is an important platform organism for biotechnological fermentation processes 

of diverse products like diamines (Schneider and Wendisch, 2010), dicarboxylic acids (Okino 

et al., 2008) and polymers (Liu et al., 2007; Matsumoto et al., 2011) using a broad spectrum of 

substrates like crude glycerol (Rittmann et al., 2008), hemicellulose (Buschke et al., 2011; 

Kawaguchi et al., 2006), silage (Neuner and Heinzle, 2011) and many more (Becker and 

Wittmann, 2012a). 
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2 Objectives 
___________________________________________________________________________ 
 

The aim of the present work was the generation of novel tools to improve lysine production in 

C. glutamicum.  

Since oxygen, which has a low solubility in water, is an important substrate in aerobic cultiva-

tions a high mass transfer rate is essential. In this regard, a systematic study should be per-

formed to determine the volumetric gas-liquid mass transfer coefficient (kLa), required to eval-

uate the efficiency of a gas transfer within the liquid phase. Determination should be per-

formed in disposable shake-flasks being important vessels for cultivation in research. Thereby, 

different parameters like vessel geometry and size as well as filling volume and shaking fre-

quency should be considered. Based on the results a mathematical correlation should be set 

up to allow a reliable prediction of oxygen transfer rate, oxygen saturation and the maximum 

cell concentration during aerobic growth. 

The second part of this work aimed at genetic engineering of C. glutamicum. A first strategy 

focused on the modulation of the cofactor specificity of NADP(H)-dependent enzymes to 

NAD(H) on DNA level, using engineering of cofactor specificity. This should be achieved by 

site-directed mutagenesis of the genes dapB, encoding dihydrodipicolinate reductase, and 

ddh, encoding diaminopimelate dehydrogenase, supported by bioinformatics analysis. As a 

proof of concept, two different gapDH genes, encoding glyceraldehyde-3-phosphate dehydro-

genase, should be analyzed on their ability to improve lysine production by increasing the 

availability of NADH and NADPH, respectively. New strains should be further analyzed by 

cofactor-specific kinetic studies and comparative batch cultivations. A second strategy aimed 

at controlled regulation of gene expression levels by fine-tuning. Here, a promoter library, 

based on the strong promoter of superoxide dismutase (Psod), should be constructed by ran-

dom mutagenesis and used for gene expression studies of the diaminopimelate dehydrogen-

ase, the transketolase operon and the lysine exporter LysE. In detail, characterization of the 

created mutants should include kinetic and transcriptome analyses as well as comparative 

cultivations. 
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3 Theoretical Background 
___________________________________________________________________________ 
 

3.1 Discovery of Corynebacterium glutamicum 

Regarding the historical background of biotechnological fermentation, an important milestone 

was set by Prof. Kikunae Ikeda in 1908. His original intention was to improve the life expec-

tancy of Japans population that suffered from malnutrition. During his studies, Prof. Ikeda 

gained different crystals by decomposition of the seaweed kombu. One was finally identified 

as the taste-enhancer monosodium glutamate (Ikeda, 2002). His discovery was a revolution to 

the Japanese food industry and within short time glutamate became an important additive for 

the food market. However, its isolation was difficult and harmful to health, since it included 

decomposition of wheat gluten with HCl.  

After World War II the Japanese population suffered from the famine due to food shortages. 

Consequently, the idea was set to implement an application for the commercial production of 

food protein by fermentation. It was this innovative idea that eventually led to the industrial 

production of amino acids and nucleotides and that still marks a breakthrough in biotechnolog-

ical fermentation (Kinoshita, 1987). 

Only a few years later, a large screening program was initiated in the 1950s aiming to discover 

new organisms that would excrete amino acids, namely glutamate (Kinoshita, 2005). Thus in 

1956, a soil bacterium was isolated that accumulated glutamic acid under biotin-limitation 

(Abe, 1967; Kinoshita et al., 1957). The new organism was initially named Micrococcus glu-

tamicus No. 534 (Udaka, 1960). Taxonomical studies revealed Micrococcus glutamicus 

No. 534 as a Gram-positive bacterium with a high GC-content (Abe, 1967). Furthermore, it 

was found that the bacterium possesses an extraordinary cell wall containing polysaccharides  

  

 

Figure 3-1: Raster electron micrograph of the natur al L-glutamate producer Corynebacterium glutamicum 
ATCC13032 cultivated on minimal salt medium with gl ucose as sole carbon source (Bolten, 2010). 
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like arabinose and galactose and short-chained mycolic acids of 26-36 carbon atoms. The 

murrain sacculus consisted of peptidoglycan cross-linked with meso-diaminopimelate 

(Goodfellow et al., 1976; Liebl et al., 1991), while its morphology was rod- to club-like and im-

mobile (Figure 3-1). Due to these facts and its cell wall chemistry regarding mycolic acid as a 

chemotaxonomic marker, the bacterium was renamed Corynebacterium glutamicum and was 

classified as Actinobacteria, order Actinomycetales, suborder Corynebacterineae and family 

Corynebacteriaceae (Liebl et al., 1991; Stackebrandt et al., 1997). The family of Corynebacte-

riaceae is very diverse and comprises both pathogenic species like Corynebacterium diphthe-

riae as well as saprophytic and non-pathogenic species (Liebl et al., 1991).  

From the scientific point of view, C. glutamicum offers many advantages. By nature, the or-

ganism exhibits a high growth rate, consumes a broad spectrum of different substrates and 

achieves high cell densities. In addition, its relatively small genome (3,000 kb) is fully se-

quenced (Haberhauer et al., 2004; Ikeda and Nakagawa, 2003; Kalinowski et al., 2003) and 

methods to introduce fast and stable genetic modifications have been set up (Kirchner and 

Tauch, 2003; Sahm et al., 1995). Furthermore, technological developments have enabled 

analysis of global changes in fluxomics (Wittmann et al., 2004), metabolomics (Bolten et al., 

2007) and transcriptomics (Wendisch, 2003) as well as in proteomics (Schaffer et al., 2001). 

The GRAS (generally recognized as save) status of C. glutamicum permits the fermentative 

production of food additives as well as pharmaceuticals, while the produced biomass can be 

directly used as animal feedstuff (Wittmann and Becker, 2007). 

Regarding economic aspects, the discovery of C. glutamicum and the implementation of fer-

mentation processes improved the industrial glutamate production drastically (Ikeda, 2003). 

Only a few years later, it was found that the bacterium can produce further amino acids (ly-

sine, arginine, ornithine, threonine, etc.) under certain conditions (Kinoshita, 1959). Today, 

almost all amino acids can be synthesized by fermentation making them the most important 

biotechnological product with a world market of over four million tons per year. Thereby, the 

major organisms for industrial production processes are C. glutamicum and Escherichia coli 

(Becker and Wittmann, 2012b; Ikeda, 2012). 

 

3.2 Industrial L-Lysine Production 

In the last decades, amino acids were utilized in many ways e.g. in the industries for chemi-

cals, pharmaceuticals and cosmetics as well as supplements in dietary and animal feed 

(Eggeling and Sahm, 1999; Leuchtenberger et al., 2005). Thus, the synthesis of amino acids 

became a central process in industrial biotechnology (Wittmann and Heinzle, 2002). In con-

trast to the past, decomposition of a feedstock plays only a subordinate role for the isolation of 

L-amino acids, today. Instead, fermentative and enzymatic processes are more convenient for 

large-scale production of pure L-enantiomers (Leuchtenberger et al., 2005).  
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From the chemical point of view, the basic amino acid lysine consists of six carbon atoms. The 

secondary amino group has a pKa-value of 10.8, resulting in a positive charge under physio-

logical conditions (Figure 3-2) (Buddrus and Schmidt, 2011). 

 

 
 

Figure 3-2: Chemical structure of the essential ami no acid L-lysine with the formal composition C 6H14N2O2. 
Reference: NEUROtiker (WikiCommons). 
 

 

Since lysine cannot be synthesized by vertebrates, it has to be ingested with food (Xu et al., 

2014a). However, the common feed based on wheat, barley and corn is poor in lysine. Thus, 

supplementation with lysine plays an important role in the fattening of pigs and poultry since 

1960 to provide optimal conditions for growth and development (Eggeling and Sahm, 1999). A 

further advantage of feed additives is the targeted use of the essential compound without the 

concomitant increase of other amino acids (Pfefferle et al., 2003). In addition, lysine finds ap-

plications in human medicine facilitating the absorption of agents or as ingredient of dietary 

supplement and infusion solutions (Anastassiadis, 2007; Haefner et al., 2007; Oh et al., 1993). 

More than half a century after the discovery of C. glutamicum, the demand for lysine still rises 

continuously due to the growing meat consumption in developing and emerging countries 

(Wittmann and Becker, 2007). Associated with the rising demand, the production volume rises 

steadily resulting in a spiral of increasing competition, reduced prices and even greater de-

mands (Eggeling and Sahm, 1999). To meet the vast needs, bacterial fermentation of carbo-

hydrates became ever more important especially since natural sources for the isolation of ly-

sine like casein-starch and soy are limited (Eggeling and Sahm, 1999). Furthermore, the pro-

duction efficiency has been drastically improved within the last decades due to systematical 

strain engineering (Wittmann and Becker, 2007; Becker et al., 2011). Today, C. glutamicum is 

the most popular organism for industrial biosynthesis of lysine (Wittmann and Becker, 2007). 

Even though the demand for lysine slumped lately in China as a consequence of diminished 

animal inventories and a new outbreak of bird flu, the global demand is still growing. Accord-

ing to latest information, the demand for lysine is expected to rise from 1.7 million tons in 2011 

to 2.5 million tons by 2018 correlating with an annual growth rate of 5.8 % (Byrne, 2014). In 

parallel, Becker and Wittmann (2012b) reported that in 2011 the world market for lysine was in 

fact 1.5 million tons while they even predicted an annual growth of 6-8 %. 
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In order to meet the high demand for lysine and to guarantee an economical production, now-

adays, fermentation is performed in large plants with closely monitored and regulated biopro-

cesses. Currently, the major suppliers are basically located in Japan (e.g. Ajinomoto), South 

Korea (e.g. Paik Kwang Industrial and CheilJedang), China (e.g. Global BioChem Technolo-

gy), India (e.g. Bajaj Healthcare), Germany (e.g. Evonik Degussa Corporation) and the United 

States (e.g. Archer Daniels Midland) (http://de.panjiva.com/Manufacturers-Of/lysine, 

05.08.2014).  

Most fermentations are performed as fed-batch process in stirred-tank bioreactors offering 

optimal yields as well as aeration and production conditions (Kelle et al., 2005). Thereby, the 

substrate is added in a controlled manner to avoid by-product formation (Kimura, 2005; 

Leuchtenberger et al., 2005). Within the last decades, fermenter sizes have increased from 

50 m³ to 750 m³ to benefit from the economy of scale (Ikeda, 2003; Kelle et al., 2005). Conse-

quently, the volume of the inoculum had to be adjusted in parallel to guarantee an optimal 

initial cell concentration. Thus, successive seed fermentations with increasing culture volumes 

of up to 50 m³ are performed (Kelle et al., 2005; Wittmann and Becker, 2007). To assure 

monoseptic cultivation conditions, it is also of importance that the inoculum preparation is per-

formed under sterile conditions regarding medium preparation, sterilization techniques and 

plant design as well as operating and maintenance procedures. Already a low level of contam-

inants might easily outgrow the production strain and the organism with the higher biomass 

formation yield prevails (Kelle et al., 2005; Marx et al., 2003a). This is also one reason, why 

continuous fermentation is usually avoided for biosynthesis of lysine. Particularly, the supply of 

both sterile media and air during the process goes with an increased risk for contamination. In 

addition, Corynebacteria tends to spontaneous mutations under substrate-limited conditions 

as was reported for a fermentation of L-arginine with Corynebacterium acetoacidophilum 

(Azuma et al., 1988; Azuma and Nakanishi, 1988).  

Another important parameter in production of low-cost bulk amino acids like lysine is the 

choice of the carbon source as this is a major cost factor (Kelle et al., 2005). As depicted in 

Figure 3-3, fluctuations of the sugar prices have a strong influence on the company’s profita-

bility and on global competition resulting in alliances between sugar suppliers and lysine pro-

ducers (Ikeda, 2003; Wittmann and Becker, 2007). The choice of the advantageous carbon 

source is also influenced by regional availability of the raw-material. For example, sucrose and 

dextrose are obtained by hydrolysis of starch from cassava and corn in Asia and the United 

States, respectively, while sucrose from cane and beet molasses is traditionally used in South 

America and Europe, respectively (Ikeda, 2003). There is a trend towards utilization of more 

defined media, avoiding or at least reducing the percentage of complex carbon sources and 

molasses, which are prone to variation. Thus, better process control and higher purity of the 

fermentation broth are provided facilitating downstream processing (Kelle et al., 2005). 
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Apart from carbon, sources for nitrogen, sulphur and phosphate are required as well as op-

tional supplements like amino acids, peptone and corn steep liquor (Ikeda, 2003). To assess 

the cost efficiency of a production process, it is further essential to regard the conversion yield 

(Wittmann and Becker, 2007). While during operation parameters like bulk density and a suffi-

cient aeration as well as pH and temperature control are of interest.  

Since C. glutamicum cannot metabolize lysine and is not inhibited by high extracellular lysine 

concentrations, fermentation in fed-batch mode is particularly advantageous (Kelle et al., 

2005). In addition, efficient purification and formulation of the product is important to reduce 

the costs of downstream processing (Hermann, 2003). Thereby, downstream processing not 

only includes cell separation and product isolation, but also the reduction of waste streams. 

Today, lysine can be purchased in different formulations and purities, depending on the re-

quired application. Crystal lysine can be obtained as sulfate salt or as lysine-HCl salt which is 

less hygroscopic (Kelle et al., 2005). Downstream processing further benefits from the GRAS-

status of C. glutamicum especially in animal feedstock. Thus, processes have been set up 

with reduced operating procedures and waste emission like the production of liquid lysine 

called Biolys® (50 % purity) provided by Evonik Degussa GmbH. In addition, lysine sulfate is 

available as granulate (40-50 % purity) or as liquid (20-30 % purity) (Kelle et al., 2005). These 

processes are more economical, provide lower chloride concentrations and offer additional 

nutrients from the biomass fraction. On the other hand, crystallization processes have fewer 

restrictions on the quality of the carbon source due to the more extensive purifications steps in 

downstream processing making them still attractive (Kelle et al., 2005). 

 

Figure 3-3: Fluctuation of the sugar price in € per  kg from January 2009 till June 2014  
(http://www.finanzen.net/rohstoffe/zuckerpreis, Jun e 2014). 
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To face competition, constant process optimization is required to reduce costs. As a result, 

repeated fermentation technologies (“semi-continuous”) were developed, retaining a certain 

amount of the fermentation broth as inoculum for the next production cycle (Nakamura et al., 

2000). By this, costs and time were saved based on seed and fermenter preparation. Unfortu-

nately, such processes are sensitive to spontaneous mutation by genetically unstable produc-

tion strains as mentioned before (Hermann, 2003). At present, they are not realized for large 

scale, yet (Ikeda, 2003). Another problem in present production processes is that traditionally 

generated production strains are still in use which suffer from auxotrophy and retarded growth, 

due to undesired mutations (Kelle et al., 2005; Ohnishi et al., 2002). However, it was already 

shown that modern techniques can overcome these limitations by introduction of only target-

oriented mutations (Ohnishi et al., 2002). The generation of sophisticated production strains 

offers new possibilities for process optimization in future (Becker et al., 2011; Xu et al., 2014b). 
 

 

3.3 Bioprocess Engineering for improved L-Lysine Production 

Besides strain development, the cultivation process itself holds a large potential for optimiza-

tion. Previous to fermentation, an appropriate cultivation procedure and media composition 

needs to be chosen, while during fermentation a suitable operational window regarding bulk 

density, aeration, pH and temperature has to be found. In industry, most fermentations are 

performed as fed-batch processes in stirred-tank bioreactors offering good performance as 

well as aeration and production conditions (Kelle et al., 2005), whereas in research batch cul-

tivations in shake-flasks are broadly used. They offer several advantages such as easy han-

dling, high flexibility, parallelization and a high-throughput of experiments (Veglio et al., 1998). 

Due to its low solubility in water and, thus, in fermentation media, the mass transfer of oxygen 

within the liquid phase is a major issue in aerobic cultivations. Especially during screening 

experiments when rapid bacterial growth requires a high oxygen consumption, a sufficient 

supply is often neglected (Zimmermann et al., 2006). As a consequence, oxygen can become 

limiting under unfavorable conditions of mixing and vessel geometry, even though it is crucial 

for microbial growth and product formation (Casas López et al., 2006; Hermann et al., 2001; 

Tunac, 1989). Since C. glutamicum is a facultative anaerobic to aerobic organism (Collins and 

Cummins, 1986; Liebl, 2005), oxygen limitation results in the formation of by-products like 

acetate, lactate and L-alanine derived from pyruvate (Kelle et al., 2005). To avoid this, a high 

oxygen mass transfer is required, which can be influenced by the shaking frequency and the 

stirring rate in shake-flasks and stirred-tank bioreactors, respectively. A high power input in-

creases the oxygen transfer rate (OTR) significantly due to a better turbulence and a higher 

specific area for mass transfer based on smaller gas bubbles. On the other side, the shear 

rate needs to be considered to avoid mechanical stress by shearing resulting in a decreased 

productivity (Chmiel and Walitza, 2011). The dissolved oxygen (DO) concentration further  
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depends on the temperature (Zieminski et al., 1976) and the electrolyte concentration 

(Schumpe and Deckwer, 1979) as well as the media composition (Rischbieter and Schumpe, 

1996) and its viscosity (Akita, 1981). 

The driving force of mass transfer is the concentration gradient (Dunn et al., 2003). But since 

the solubility of oxygen in water is low, this gradient is small as are the driving forces (Chmiel 

and Walitza, 2011). Figure 3-4 depicts a schematic diagram of the transfer of oxygen from a 

gas bubble to the reaction site in a biological system (Bailey and Ollis, 1986). The mass trans-

fer is realized by convection and molecular diffusion (Nielsen et al., 2003) and is characterized 

by different transport resistances:  

The first resistant is the transfer through the bulk gas phase to the gas liquid interface (step 

1.). From here, the oxygen passes the gas-liquid interface (step 2.) and is transported across 

the stagnant liquid region (step 3.) and through the well mixed bulk liquid phase (step 4.). For 

cell pellets and aggregates further barriers need to be considered like the surrounding stag-

nant liquid region (step 5.), the transport from the liquid to the aggregate (step 6.) and into the 

pellet (step 7.). Finally, the oxygen needs to pass the bacterial membrane (step 8.) and is 

transferred to the reaction site (step 9.) which is often neglected due to the small size of most 

bacterial cells (Nielsen et al., 2003). 

 

Gas bubble
Cell 

aggregate

Cell

Biochemical 

reaction

1.

2.

3.
4.
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gas-liquid 

interface
liquid-
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liquid

phase

stagnant 

regions

 

Figure 3-4: Schematic diagram of the resistances that occur during the mass transfer of oxygen from a gas 
bubble to the reaction site within a bacterial cell. Figure adapted from Bailey and Ollis (1986). 

 

For a sufficient oxygen supply within the medium, the transfer from the bulk gas phase to the 

bulk liquid phase (step 1.-4.) is of special importance. Since the stagnant region (step 3.) in 

between is relatively unmixed, oxygen transfer is slow and realized only by diffusion. Thus, it 

limits the mass transfer rate (Dutta, 2008). Different theories have been developed to describe 

the oxygen transfer and even though all of them are incomplete, they give an insight into the 

mechanism of mass transfer at the interface and offer a facilitated model for its calculation. 
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The first mass transfer theory was the film theory developed by Nernst (1904). Lewis and 

Whitman (1924) expanded the model, assuming that the stationary interface (step 2.) has a 

thin laminar film on either side. Here, flow is stagnant and mass transfer only occurs by mo-

lecular diffusion. While in the bulk phases turbulent flow guarantees uniform and constant 

concentrations (cG and cL), the interface is in local equilibrium. Thus, the only resistances to 

mass transfer are the relatively unmixed film layers with the interfacial concentrations cGi and 

cLi (Figure 3-5). Based on Fick’s law, which describes that the flux of compound A (JA) is pro-

portional to a constant concentration gradient through the film (Equation 3-1), the mass trans-

fer coefficient kL depends on the molecular diffusivity of compound A (DA) and the thickness of 

the film Z (Equation 3-2). 

J� = −D�
dC
dZ Equation 3-1 

k
 = D�Z  Equation 3-2 
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convection convection
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Figure 3-5: Schematic diagram of the concentration g radient of the gaseous compound A during mass 
transfer into a liquid phase according to the two-f ilm theory. Figure adapted from Christen (2004). 

 

As stated by Fick’s law, the mass transfer across the two films is described by Equation 3-3 

with ZG and ZL representing the thickness of the gas and the liquid films and DG and DL for the 

corresponding effective diffusivities. 

J� = D�
c� − c�Z� = D


c
 − c
Z
  Equation 3-3 
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Including Equation 3-2, the latter formula can be expressed in terms of the mass transfer coef-

ficients kG and kL for both films (Equation 3-4) (Dunn et al., 2003). 

J� = k��c� − c�� = k
�c
 − c
� Equation 3-4 

At the interface cGi and cLi are in a local equilibrium. For gases with a low solubility like oxygen 

and carbon dioxide both concentrations are related to each other by the Henry’s law (Nielsen 

et al., 2003; Taricska et al., 2009): 

c� = H ∙ c
 Equation 3-5 

The Henry constant is specific for each compound and depends on temperature as well as the 

chemical composition of the liquid phase (Storhas, 2003). Gases with a low solubility in water 

further reveal small concentrations gradients in the gaseous phase (cG - cGi), as compared to 

the liquid phase (cLi - cL) depicted in Figure 3-5. Thus, the main resistance is in the liquid 

phase (Dunn et al., 2003). In addition, the interfacial concentrations cannot be measured. So, 

the overall flux in the liquid phase is described by an overall mass transfer coefficient KL multi-

plied by the main concentration gradient (Equation 3-6) (Nielsen et al., 2003). 

J� = K
�c
∗ − c
� Equation 3-6 

The concentration cL* is the saturation concentration of the liquid bulk phase which is in equi-

librium with the gas bulk phase cG by the Henry’s law. 

c
∗ = c�H  Equation 3-7 

During steady state the mass transfer is constant. Taken together the mass transfer coeffi-

cients lead to Equation 3-8 (Chmiel and Walitza, 2011; Nielsen et al., 2003). 

1
K
 = 1

k
 	 + 	 1
H ∙ k� Equation 3-8 

As mentioned before, the main resistance is on the side of the liquid phase. This is also re-

flected by Equation 3-8. Since kG is usually considered larger than kL and the Henry constant 

for low soluble gases is large, the second term of Equation 3-8 can be neglected (Chmiel and 

Walitza, 2011; Nielsen et al., 2003). 

Finally the reactor volume needs to be included to achieve the volumetric mass transfer rate of 

compound A (qA’). As a consequence, the interfacial area (a) is introduced which is defined as 

the quotient of the bubble’s surface (A) to the related liquid volume (V) (Chmiel and Walitza, 

2011; Nielsen et al., 2003). 

q�� = k

�
� 	�c
∗ − c
� = 	 k
�	�c
∗ − c
� Equation 3-9 
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Since it is difficult to determine kL and a separately, their product, termed as volumetric gas-

liquid mass transfer coefficient (kLa), is usually calculated together and used to specify the 

mass transfer (Nielsen et al., 2003). The two-film theory presents a relatively simple relation-

ship between mass transfer coefficient and diffusivity. Since it is just an idealized concept, 

neither the existence of the films can be proven (Hagen, 2004; Taricska et al., 2009) nor their 

thicknesses be calculated (Nielsen et al., 2003). 

In 1935, Higbie suggested a model where mass transfer is realized by swirling fluid elements, 

termed as eddies, which travel from the turbulent bulk phase to the laminar film at the inter-

face. It is assumed that each eddy remains at the interface for mass transfer for the same but 

very short period of time. Thus, the compound is transferred to the surface element (or out) by 

instationary diffusion during a constant exposure time. Since all elements have the same age 

when they return to the bulk phase, the film and the interface are replaced frequently. The 

disadvantage of this model is the assumption that the exposure time for all elements would be 

identical. Thus, Danckwerts (1951) modified the penetration theory and proposed that the sur-

face elements exist for different periods of time and have different retention times at the inter-

face due to turbulent mixing. As a consequence, the film at the interface is constantly replaced 

and the time required for mass transfer can be described by a probability function. Unfortu-

nately, the fractional rate of surface renewal cannot be calculated (Dutta, 2008). 

DO concentrations and kLa values have been investigated in several studies. It had been 

shown that related to their material properties, plastic vessels show different wetting properties 

and consequently differ in their kLa values as compared to common shake-flasks made of 

glass (Büchs, 2001). Consequently, a sufficient oxygen supply is difficult to predict and, thus, 

the right choice for an optimal experimental set-up is challenging.  

 

baffled non-baffled 

O2 sensor spot pH sensor spot
 

 
 

Figure 3-6: Disposable baffled and non-baffled shake-flasks for O2 and pH determination. The pictures 
exemplarily show 250 mL flasks. A view of the flasks bottom illustrates the position of baffles and online 
sensor spots. 
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Fortunately, conventional vessels equipped with sensor spots for online monitoring of DO are 

available by now (Ge and Rao, 2012; John et al., 2003; Wittmann et al., 2003). Lately, there is 

an increasing market for disposable shake-flasks (Figure 3-6) and bioreactors for real-time 

monitoring of DO as well as pH (Eibl et al., 2010; Schneider et al., 2010). Since the mass 

transfer can be increased easily by the introduction of baffles within shake-flasks, this finding 

was transferred to small-scale microbial cultivation systems (Funke et al., 2009). As a result, 

micro cultivation systems have been developed that possess an extraordinary geometry to 

guarantee an efficient mass transfer of oxygen even in small reaction volumes (Binder et al., 

2012; Huber et al., 2009). Thus, they offer a high-throughput of experiments in parallel re-

quired for screening approaches. 

 

3.4 Biosynthesis of L-Lysine by C. glutamicum and its Regulation 

In microorganisms, the biosynthesis of lysine differs widely. It can be synthesized by two inde-

pendent routes. One is mostly used by higher fungi, but also by some archaea. It is called the 

α-aminoadipate route using 2-oxoglutarate and acetyl-CoA as precursors for lysine synthesis 

(Velasco et al., 2002). Bacteria, on the other hand, use the diaminopimelate route based on 

the precursors aspartate and pyruvate (Wittmann and Becker, 2007). Consequently, the car-

bon backbone of lysine might have different origins. 

The diaminopimelate route can be further distinguished in four different pathways: the acety-

lase pathway, the aminotransferase pathway, the succinylase pathway and the dehydrogen-

ase pathway (Wittmann and Becker, 2007). The two latter pathways are both active in 

C. glutamicum acting side by side depending on the availability of ammonium ions in the envi-

ronment. This allows the organism to react flexibly on changing conditions. Since dia-

minopimelate dehydrogenase (DDH) has a low affinity to ammonium (Sahm et al., 2000), it is 

only active at high concentrations to catalyze the conversion of tetrahydrodipicolinate to meso-

diaminopimelate while the succinylase pathway is independent from inorganic ammonium 

thereby incorporating ammonium from a transaminase reaction. Here, an enzyme cascade is 

responsible for the formation of meso-diaminopimelate. The further decarboxylation of meso-

diaminopimelate results in the formation of lysine which is excreted by the lysine permease 

(LysE) (Vrljic et al., 1996). In addition to that, meso-diaminopimelate is also an important in-

termediate for the biosynthesis of the murein sacculus (Wehrmann et al., 1998). In total, one 

mol of lysine (C6) is synthesized from aspartate (C4) and pyruvate (C3) under the consumption 

of reducing power provided by four mol of NADPH and the depletion of one mol of CO2 

(Michal and Schomburg, 2012). As a consequence, synthesis of lysine is closely linked to the 

central carbon metabolism depending on a constant supply of building blocks and energy. For 

a better understanding of this complex network, the metabolic pathways of C. glutamicum are 

depicted in Figure 3-7. 
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Figure 3-7: Biochemical network for the biosynthesi s of lysine and the central carbon metabolism in 
C. glutamicum comprising the glycolysis, the pentose phosphate pa thway, the pyruvate node and the tri-
carboxylic acid cycle. The enzymes involved in the formation of lysine are aspartate kinase ( lysC), aspar-
tate-semialdehyde dehydrogenase ( asd), dihydrodipicolinate synthase ( dapA), dihydrodipicolinate reduc-
tase (dapB) and subsequent split into (i) the dehydrogenase p athway with diaminopimelate dehydrogenase 
(ddh) and (ii) the succinylase-pathway consisting of te trahydrodipicolinate succinylase ( dapD), succinyl-
amino-ketoimelate transaminase ( dapC), succinyl-diaminopimelate desuccinylase ( dapE), diaminopimelate 
epimerase ( dapF). The product meso-diaminopimelate is further converted to lysine via  the diamino-
pimelate decarboxylase ( lysA) and secreted via lysine permease ( lysE). 
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As mentioned before, C. glutamicum can consume a broad spectrum of different substrates. 

The major sugars used in industrial fermentation of lysine are glucose, fructose and sucrose 

derived from starch hydrolysates and molasses. In C. glutamicum sugar up-take is realized by 

a phosphoenolpyruvate (PEP) dependent system, called phosphotransferase system (PTS) 

(Ikeda, 2012; Moon et al., 2007). During its transport across the bacterial membrane a phos-

phate residue from PEP is transferred to the sugar molecule catalyzed by special enzyme 

complexes (Barabote and Saier, 2005; Simoni et al., 1967). Afterwards, the substrate is fur-

ther metabolized by the central carbon metabolism which comprises the glycolysis, the pen-

tose phosphate pathway (PPP), the pyruvate node and the tricarboxylic acid (TCA) cycle, 

while the Entner-Doudoroff pathway has not been detected (Eikmanns, 2005; Vallino and 

Stephanopoulos, 1993; Wittmann et al., 2004; Yokota and Lindley, 2005). Within the PPP 

2 mol of NADPH are generated per mol of glucose-6-phosphate via glucose 6-phosphate de-

hydrogenase (Ihnen and Demain, 1969; Moritz et al., 2000) and 6-phosphogluconate dehy-

drogenase (Moritz et al., 2000; Ohnishi et al., 2005). Thus, the PPP meets the need of the 

organism for sufficient supply of anabolic reducing power as well as important metabolites 

(ribose-5-phosphate and erythrose-4-phosphate), required for the biosynthesis of building 

blocks (Yokota and Lindley, 2005). Glycolysis involves a series of reactions that finally lead to 

the formation of pyruvate. It is the most important pathway of fueling reactions providing pre-

cursor metabolites required for the formation of anaplerotic building-blocks (Stephanopoulos, 

1998; Yokota and Lindley, 2005). Pyruvate is the central metabolite of a complex network, 

which is responsible for the equilibration of metabolites in the direction of the TCA cycle as 

well as glycolysis (Sauer and Eikmanns, 2005). The latter is realized by anaplerotic reactions 

like the conversion of oxaloacetate (C4) from the TCA cycle to PEP (C3) catalyzed by PEP-

carboxykinase (PEPCK) as well as the reaction of malic enzyme (ME) regenerating NADPH 

(Wittmann and De Graaf, 2005). The major role of the TCA cycle is the complete oxidation of 

acetyl-CoA to carbon dioxide providing reducing equivalents (NADH, FADH, GTP) required for 

the generation of ATP in the respiratory chain. Among the oxidative decarboxylation step of 

the TCA cycle, NADP is used as a cofactor by the isocitrate dehydrogenase and reduced to 

NADPH. Another important intermediate is oxaloacetate the precursor of aspartate and, 

hence, of lysine. Consequently, the TCA cycle serves not only for anabolism, but also for ca-

tabolism, offering a high flexibility for metabolic needs by its reversibility (Eikmanns, 2005; 

Wittmann and Heinzle, 2002). 

Natural lysine biosynthesis from aspartate is regulated by feedback-inhibition of aspartate ki-

nase (LysC). LysC is a heterotetramer, consisting of two α- and two β-units (Yoshida et al., 

2007). The genes of both subunits are encoded by the same locus, exhibiting an in-frame 

overlap (Kalinowski et al., 1991). The catalytic domain of LysC is located at the N-terminal 

region of the α-subunit while the regulatory domain is formed via the C-terminal region of the 
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α-subunit and the β-subunit (Yoshida et al., 2007). Inhibition is initiated by the concerted bind-

ing of the end products lysine and threonine to the regulatory domain at high intracellular con-

centrations (Kalinowski et al., 1991). As a result, the activity of LysC is nearly completely in-

hibited (Lee, 2005). 

 

3.5 Molecular Strategies for improved L-Lysine Production 

Today, the metabolism of C. glutamicum can be altered easily via introduction of genetic modi-

fications (Schrumpf et al., 1992). The knowledge of metabolic fluxes and their regulatory 

mechanisms offers the possibility to improve lysine production rationally by target-oriented 

genetic engineering. Therefore, the central carbon metabolisms, namely the PPP, the TCA 

cycle and the lysine biosynthesis pathway are of special interest for strain construction provid-

ing a sufficient supply of cofactors and precursors. In general, breeding for high-producing 

strains focused on an improved precursor supply, namely oxaloacetate, pyruvate and NADPH, 

combined with a reduction of the by-product formation. In order to realize these strategies, a 

broad spectrum of target-oriented approaches were developed including identification and 

isolation of the target genes followed by plasmid construction, transformation and implementa-

tion of the modification. As a result, the target gene can be amplified, deleted, deregulated or 

transferred within a desired production host (Jäger et al., 1992; Kirchner and Tauch, 2003; 

Tauch et al., 2003; Xie and Tsong, 1990). In the last years, several targets were identified 

focusing on different strategies to optimize lysine production. 

 

3.5.1  Removal of undesired feedback control 

The aspartate kinase, encoded by lysC, is the key enzyme of the lysine biosynthesis pathway. 

Feedback inhibition is mediated by the concerted binding of the end products lysine and threo-

nine derived from aspartate as described before. Today, it is known that deregulation of LysC 

is essential for the biosynthesis of lysine which can be achieved by different amino acid ex-

changes offering a large patent coverage (Kelle et al., 2005).  

 

3.5.2  Metabolic engineering of L-lysine biosynthesis and reduction of by-product fo r-

mation 

In addition, overexpression of lysC, for example via promoter exchange, turned out to affect 

lysine production positively due to redirection of the carbon fluxes towards this end product. 

Being organized in the same operon, the gene asd, encoding aspartate semialdehyde dehy-

drogenase, is overexpressed as well (Cremer et al., 1991). Its product aspartate semialde-

hyde marks an important branch point in the biosynthesis of amino acids derived from aspar-

tate. The first enzyme of the competitive pathway that leads to the formation of L-threonine is 
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the homoserine dehydrogenase (Hom). This enzyme also exhibits a stronger specific activity 

for aspartate semialdehyde, as compared to the dihydrodipicolinate synthase (Miyajima and 

Shiio, 1970). To assure an efficient lysine production, it is indispensable to reduce the for-

mation of by-products. So, it was found that the addition of 5 mM L-methionine inhibited the 

gene expression of Hom (Miyajima and Shiio, 1971; Morinaga et al., 1987; Vrljic et al., 1995) 

while another strategy focused on distinct point mutations to modify the allosteric control of 

Hom on a molecular basis (Archer et al., 1991; Reinscheid et al., 1991).  

The biosynthesis of meso-diaminopimelate, an important building-block for the biosynthesis of 

lysine and peptidoglycan (Wehrmann et al., 1998), is catalyzed by two competitive pathways 

either the diaminopimelate or the succinylase pathway. Since DDH has a low affinity towards 

NH3 by nature (Wehrmann et al., 1998), adaption of the medium by supplementation with 

ammonium is recommended for lysine production (Wittmann and Becker, 2007). 

 

3.5.3  Improvement of precursor supply and NADPH av ailability 

Besides these strategies, it is important to provide a sufficient supply of precursors and co-

factors that are directly involved in lysine production (Ikeda and Takeno, 2013; Wittmann and 

Becker, 2007). Labeling experiments revealed the supply of oxaloacetate as bottleneck in ly-

sine production. According to the results, carboxylic reactions around the pyruvate node are 

positively correlated with an optimized oxaloacetate production while decarboxylating en-

zymes rather support the consumption of oxaloacetate (Wittmann and Heinzle, 2001; 

Wittmann and Heinzle, 2002). Experiments confirmed that the pyruvate carboxylase is the 

major bottle neck in lysine production (Peters-Wendisch et al., 2001). The enzyme catalyzes 

the direct conversion of pyruvate to oxaloacetate by the incorporation of CO2. Overexpression 

of pyruvate carboxylase improved lysine production significantly as well as the deletion of PEP 

carboxykinase (Petersen et al., 2001; Peters-Wendisch et al., 2001; Riedel et al., 2001) and 

the deregulation of the feedback inhibition of PEP carboxylase, as reported recently (Chen et 

al., 2014). In addition to oxaloacetate, the availability of NADPH as electron carrier is essential 

for the biosynthesis of lysine. Flux analysis identified the PPP as major pathway for the regen-

eration of NADPH and predicted a positive correlation between an increased activity of the 

PPP and lysine formation. Thus, different strategies were developed to force a redirection of 

metabolic fluxes through the PPP including disruption of the pgi gene (Marx et al., 2003b), 

overexpression of the fbp gene (Becker et al., 2005) and the tkt-operon (Becker et al., 2011) 

as well as modification of the gnd gene to release the enzyme from feedback inhibition 

(Ohnishi et al., 2005). These modifications are even more important for cultivations using fruc-

tose as carbon source. Here, only 14.4 % of the carbon flux is directed through the PPP, as 

compared to 62.3 % on glucose (Kiefer et al., 2004). 
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3.6 Novel Approaches for optimized L-Lysine Production 

Strain breeding is an iterative process characterized by a strong competitive pressure due to 

its innovative strength always searching for new targets to patent. Especially rational strain 

designs gained more popularity in the last decade. Lately, new and efficient strategies for  

metabolic engineering have been developed focusing, for example, on engineering of cofactor 

use and the construction of promoter libraries to improve the cofactor’s availability and the 

gene expression level, respectively.  

 

3.6.1  Engineering of cofactor use in  enzymes of  C. glutamicum  

In general, engineering of cofactor specificity implies the manipulation of a cofactor’s concen-

tration in order to improve the production of a desired compound. While traditional attempts 

focused on a redirection of metabolic fluxes via overexpression (Becker et al., 2011) or dele-

tion (Chemler et al., 2010), new strategies aim to modify the cofactor binding site of a certain 

enzyme on DNA level (Wang et al., 2013). As a consequence, the type of cofactor and its 

amount can be manipulated specifically to optimize the metabolic network. Many studies fo-

cused on the alteration of the cofactor specificity for NAD(H) and NADP(H), which only differ 

by their residue at the 2’ position of the adenosine ribose (Bommareddy et al., 2014; Hoelsch 

et al., 2013; Katzberg et al., 2010). While the former cofactor has a hydroxyl group, NADPH is 

characterized by its phosphomonoester group, making it much less stable than NADH (Wu et 

al., 1986). Coenzyme specificity is mediated by interaction of these residues with the nucleo-

tide binding fold of the enzyme which, in general, shows a preference for a distinct cofactor 

(Lunzer et al., 2005). Interestingly, for many NADP(H)-dependent dehydrogenases a higher 

cofactor specificity was observed than for NAD(H)-dependent suggesting that the hydroxyl 

group allows fewer specific enzyme-cofactor interactions than does the 2’-phosphate group 

(Chen and Yang, 2000). 

The nucleotide binding fold is typically characterized by two symmetrical sets of Rossmann 

folds, a secondary sequence motive consisting of α and β helices (Rossmann et al., 1974). 

The two halves of the α/β-structure can vary in their consistence but are usually 

connected by an α-helix. A classical Rossmann fold is the β1α1β2α2β3-motif. Together with the 

second mononucleotide binding domain (β4α4β5α5β6), both motifs form a six-stranded topology 

consisting of parallel β-sheets flanked by α-helices (Figure 3-8) (Bottoms et al., 2002; 

Rossmann et al., 1974).  

Even though Rossmann folds are very common motifs that share certain structural similarities, 

the primary sequence shows large variations apart from some homologies (Dym and 

Eisenberg, 2001; Wierenga et al., 1985). Its most prominent characteristics are three con-

served glycine (Gly) molecules in a specific spacing preceded by hydrophobic amino acids. 

This Gly-rich motive is also used as “fingerprint” required for the identification of binding folds 
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(Wierenga et al., 1986). Thus, for different NAD(P)(H)-dependent dehydrogenases, for exam-

ple, very similar consensus sequences have been identified which are characterized by a con-

served (V/I)(A/G)(V/I)-XGX(X)GXXG motif (Cirilli et al., 2003; Pisabarro et al., 1993). 

 

β3      α2      β2      α1      β1 β4      α4      β5      α5      β6 

N

C

G

G
G

 

Figure 3-8: Schematic diagram of a classical Rossman n fold. Arrows indicate β-strands while α-helices are 
depicted by rectangles. Figure adapted from Bottoms  et al. (2002).  

 

Usually, the first glycine residue of the motif is located at the C-terminus of the first β-strand 

forming a tight loop of the protein backbone, while the latter glycine residues are located at or 

near the N-terminus of the adjacent α-helix. Being the smallest amino acid, the glycine motif 

facilitates a close interaction between the cofactor and the enzyme (Geertz-Hansen et al., 

2014). Approximately 20-30 amino acids downstream of this Gly-rich region, at the C-terminus 

of the second β-strand, another important residue is located that gives evidence of the en-

zyme’s specificity for a certain cofactor. Here, basic residues, in general, indicate a NADP(H) 

specificity while acidic residues rather interact with NAD(H) (Wierenga et al., 1985). In detail, 

the nucleotide binding fold interacts with the 2’- and 3’-hydroxyl group of the adenosyl ribose 

ring and with the negatively charged 2’-phosphate of NADP(H), respectively, via hydrogen 

bonds (Cirilli et al., 2003; Reddy et al., 1996). Thereby, acidic residues like aspartate (Asp) 

and glutamate (Glu) are typically found in NAD(H)-dependent enzymes but have also been 

identified in those with a dual specificity as well as NADP(H)-dependency, while basic resi-

dues, especially arginine (Arg), are supposed to be found in NADP(H)-dependent enzymes 

(Scrutton et al., 1990).  

Usually, rational protein design is accompanied by sequence alignments and computational 

simulations using three-dimensional structural models (Katzberg et al., 2010; Lunzer et al., 

2005). By site-directed mutagenesis, predicted amino acids can be manipulated according to 

the computational design (Chen et al., 2013; Chen et al., 2014). As a result, Katzberg et al. 

(2010) successfully modified the cofactor specificity of a NADP(H)-dependent dehydrogenase, 

designated as Gre2p (“genes de respuesta a estres” (stress-response gene)), from Saccha-

romyces cerevisiae by two different single amino acid exchanges from polar but uncharged 

(Asn) to charged (Asp or Glu) leading to a close-to-balance dual cofactor specificity. 
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Introduction of distinct point mutations is advantageous for industrial processes. They offer 

new possibilities to maximize production and a large patent coverage. In addition, genetic 

modifications provide a deeper insight in the functionality of enzymes and their architecture. 

These information are essential for rational protein engineering as they facilitate the future 

design of tailor made enzymes as well as save experimental time (Katzberg et al., 2010). 

 

3.6.2  Synthetic promoter libraries 

Optimal production conditions require an accurate adjustment of metabolic fluxes. Classical 

attempts focused either on the deletion of a target gene or its overexpression via strong pro-

moters followed by subsequent evaluation of the effects. This, however, does not allow an 

integrated approach since only discrete extremes were observed. Another strategy to improve 

production is the modulation of gene expression in a quasi-continuum of discrete expression 

levels by promoter libraries (Hammer et al., 2006).  

Promoters are important regulatory elements containing different sequence motifs that control 

and influence transcription as well as translation of the subsequent gene (Figure 3-9). It was 

found that the rate-limiting step in mRNA transcription is its initiation at the transcription start 

site (TSS) at position +1 rather than the elongation step (Jacques and Dreyfus, 1990; Petern 

and Pearson, 1975). Recognition of the promoter is facilitated by the -35 element, the -10 el-

ement and the spacer in between as well as the extended -10 element. In E. coli those ele-

ments have the consensus sequences -35TTGACA-30, -12TATAAT-7 and -15TG-14, respectively, 

while the spacer sequence is variable (Hook-Barnard and Hinton, 2007). Pátek et al. (2013) 

reported that the consensus sequence of the -35 and the extended -10 element of housekeep-

ing promoters in C. glutamicum would be -35TTGNCA-30 and -14GNTANANTNG-5, respectively. 

In E. coli the spacer length can vary from 15-19 bp with an optimum of 17 bp (Robison et al., 

1998) while in C. glutamicum most spacer comprise 17 ± 1 bp (Pátek and Nešvera, 2013).  

Previous to transcription initiation, double-stranded DNA (dsDNA) is partly melted due to 

thermal fluctuations allowing transcription factors, namely σ70 factors in both E. coli and 

C. glutamicum (Paget and Helmann, 2003; Pátek and Nešvera, 2011), to interact with the 

single-stranded DNA (ssDNA) at position -11 to -7 of the -10 element (Murakami and Darst, 

2003). In addition, further σ70 factors bind to dsDNA of the -35 element, the extended -10 ele-

ment and the -12 base of the -10 element (Murakami and Darst, 2003). This underlines the 

importance of these regulatory sequence elements for gene expression. Interestingly, bases 

of the -35 element are less conserved in C. glutamicum than those of the -10 element (Pátek, 

2005). Furthermore, it was found that the spacer influences the promoter’s strength signifi-

cantly (Jensen and Hammer, 1998b) making it an interesting target for the construction of 

promoter libraries (Rytter et al., 2014; Tornøe et al., 2002). 
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Figure 3-9: Schematic diagram of a classical promoter and its influence on transcription and translation. 
The promoter (yellow area) includes the -35 and -10 element, the spacer in between and the transcription 
start site (TSS) at position +1 as well as the Shine-Dalgarno (SD) sequence. Transcription is initiated by the 
binding of the RNA polymerase (blue) to the sigma factors (orange) (A). The gene (purple area) is tran-
scribed into mRNA from 3’5’ beginning at position +1 (B). For translation, the complementary 16S rRNA 
anchors the small ribosomal subunit (30S) to the mRNA (C). Protein biosynthesis (red) is initiated at the 
start codon (here: AUG) after binding of the 50S subunit to form a 70S complex (green) (D). The graphic 
depicts classical consensus sequences identified for the -35 and -10 element, the SD sequence and the 
16S rRNA. 

 

Transcription is initiated by binding of the core RNA polymerase to σ factors, forming a RNA 

polymerase holoenzyme complex. During elongation, RNA polymerase traverses the template 

DNA from 3’5’ synthesizing mRNA, required for protein translation. For that reason, the 

promoter sequence holds a further motive, i.e. the Shine-Dalgarno (SD) sequence, where the 

ribosome binds previous to translation (Shine and Dalgarno, 1974; Shine and Dalgarno, 

1975). It is located within the 5’ UTR (untranslated region), also termed as leader sequence, of 

the mRNA reaching from the TSS to the first base upstream of the start codon which is the 

start site of translation. This sequence typically contains a short purine-rich sequence (typical 

core motif GGAGG) which is complementary to the highly conserved 3’ end of the 16S rRNA  

(5’-ACCUCCUUA-3’) anchoring the small ribosomal subunit (30S) to the mRNA (Shine and 

Dalgarno, 1974; Shine and Dalgarno, 1975). Thus, a pre-initiation complex is formed 
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(Dontsova et al., 1991). Next, the 50S ribosomal subunit is joined mediated by different initia-

tion factors to form a 70S complex initializing translation of the open reading frame (ORF). 

Being an important recognition motif, modulation of the SD sequence strongly influences pro-

tein synthesis (Band and Henner, 1984; Jacob et al., 1987; Zhou and Petracca, 2000). Inter-

estingly, several genes in C. glutamicum have been found without a SD sequence resulting in 

leaderless transcripts (Pátek, 2005). Here, the 70S complex is directly bound to initiate trans-

lation (Moll et al., 2002; Udagawa et al., 2004), but until now their regulatory function is not 

completely understood (Pátek and Nešvera, 2013). 

Since the regulatory elements mentioned influence gene expression, they are favored targets 

for the construction of promoter libraries. One attempt to create promoters of varied strength is 

the construction of synthetic promoter libraries (SPL). Here, special primers are used including 

conserved sequences for the -35 and -10 elements with a randomized spacer sequence in 

between. These randomized promoters allow the conjunction with a target gene via a homo-

logue overhang using only one PCR step (Jensen and Hammer, 1998a; Solem and Jensen, 

2002). By doing so, this strategy permits the construction of inducible promoter libraries by 

introduction of operator- or activator-binding sites within the sequence of the oligonucleotide 

(Hammer et al., 2006). Another approach focused on the modulation of native promoters us-

ing mutagenic PCR. The randomized promoters are linked to a reporter gene for example lux, 

encoding luciferase, or gfp, encoding green fluorescent protein. Afterwards, the library is 

screened and certain promoters are selected for the linkage with a target gene requiring fur-

ther PCR steps (Alper et al., 2005). Hammer et al. (2006) reasoned that compared to the SPL 

technology the mutagenic PCR would be less efficient since less useful promoters were obtai-

ned resulting in extensive pre-screenings. On the other hand, the use of reporter genes per-

mits a pre-calculation of the promoter’s strength facilitating the selection procedure. 

Nevertheless, both strategies function in the same manner and show the same potential to 

tune gene expression in a broad range but also precisely (Hammer et al., 2006; Mijakovic et 

al., 2005). Promoter libraries have been tested successfully in many organisms including 

E. coli (Koebmann et al., 2002; Lutz and Bujard, 1997), Pichia pastoris (Hartner et al., 2008; 

Qin et al., 2011) and C. glutamicum. Thus, they have the potential to optimize already existing 

rationally designed production strains for desired traits by re-creating their metabolic networks 

to achieve a targeted modulation of protein expression. 
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4 Materials and Methods 
___________________________________________________________________________ 
 

4.1 Strains  

E. coli DH5α and NM522 were obtained from Invitrogen (Karlsruhe, Germany). Both strains 

were used as hosts for vector amplification, while NM522 bearing the plasmid pTc additionally 

allowed a C. glutamicum specific DNA-methylation. 

The wild-type C. glutamicum ATCC 13032 (American Type Strain and Culture Collection, Ma-

nassas, VA, USA) was used as background for strain construction by genetic engineering. 

Sequence information was derived from the KEGG database (www.genome.jp/kegg).  

Table 4-1 lists all strains, used in the present work. 

 

Table 4-1: Bacterial strains used in the present wo rk for metabolic and genetic engineering 

Strain Description and Application Reference 

E. coli DH5α Heat shock competent Escherichia coli used for amplification of the transfor-
mation vector 

Invitrogen 

E. coli NM522 Heat shock competent E. coli used for amplification of the transformation 
vector, cells further bear the plasmid pTc required for DNA-methylation  

Invitrogen 

C. glutamicum 
ATCC 13032 

Wild type of Corynebacterium glutamicum ATCC 

BS1 C. glutamicum ATCC 13032+ lysCT311I 
Feedback resistant aspartokinase by nucleotide exchange in lysC (cg0306) 
resulting in the amino acid exchange T311I  

(Becker et al., 
2005) 

BS27 BS1 + ∆ddh 
Deletion of ddh (cg2900), encoding diaminopimelate dehydrogenase 

BASF SE 

BS222 BS1 + 2xddh 
Overexpression of ddh (cg2900), encoding diaminopimelate dehydrogenase, 
by implementation of an additional gene copy 

(Becker et al., 
2011) 

BS242 BS222 + ∆pck, PsoddapB, 2xlysA, PsodlysC, homV59A, PsodpycP458S, icdATG�GTG, 
Peftufbp 
Deletion of pck (cg3169), encoding PEP-carboxykinase + overexpression of 
dapB (cg2163), encoding dihydrodipicolinate reductase, pyc (cg0791), en-
coding pyruvate carboxylase, and lysC (cg0306) by replacement of the native 
promoter by the sod promoter + overexpression of lysA (cg1334), encoding 
diaminopimelate decarboxylase, by implementation of an additional gene 
copy + nucleotide exchanges in hom (cg1337), encoding homoserine dehy-
drogenase, and pyc (cg0791) resulting in the amino acid exchanges V59A 
and P458S, respectively + replacement of the start codon of icd (cg0766), 
encoding isocitrate dehydrogenase, from ATG to GTG + overexpression of 
fbp (cg1157), encoding fructose 1,6-bisphosphatase, by replacement of the 
native promoter by the eftu promoter 

(Becker et al., 
2011) 

BS244 BS242 + Psodtkt 
Overexpression of the tkt-operon comprising the genes tkt (cg1774), encod-
ing transketolase, tal (cg1776), encoding transaldolase, zwf (cg1778), encod-
ing glucose-6-phosphate 1-dehydrogenase, opcA (cg1779), encoding a puta-
tive subunit of glucose 6-phosphate dehydrogenase and pgl (cg1780), en-
coding 6-phosphogluconolactonase, by replacement of the native promoter by 
the sod promoter 

(Becker et al., 
2011) 
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Strain Description and Application Reference 

BS290 BS244 + PsodlysE 
Overexpression of lysE (cg1224), encoding the lysine efflux permease, by 
replacement of the native promoter by the sod promoter 

IBVT, Braun-
schweig 

BS343 BS1 + pClik_5a_MCS 
Episomal expression of pClik_5a_MCS; used as reference 

This work 

BS344 BS244 + pClik_5a_MCS 
Episomal expression of pClik_5a_MCS; used as reference 

This work 

BS371 BS1 + pClik_5a_MCS_dapB_R 
Overexpression of dapB (cg2163), encoding dihydrodipicolinate reductase, 
with native cofactor binding site: AEIGVDDD (amino acid (aa) 32-39) by 
episomal gene expression; used as reference 

This work 

BS372 BS1 + pClik_5a_MCS_dapB_1 
Overexpression of dapB (cg2163) with modified cofactor binding site: 
AELDAGDP (aa 32-39) by episomal gene expression 

This work 

BS373 BS1 + pClik_5a_MCS_dapB_2 
Overexpression of dapB (cg2163) with modified cofactor binding site: 
AELDAGDD (aa 32-39) by episomal gene expression 

This work 

BS374 BS1 + pClik_5a_MCS_dapB_3 
Overexpression of dapB (cg2163) with modified cofactor binding site:  
AEIDADDD (aa 32-39) by episomal gene expression 

This work 

BS375 BS1 + pClik_5a_MCS_dapB_4 
Overexpression of dapB (cg2163) with modified cofactor binding site: 
AELEAGDD (aa 32-39) by episomal gene expression 

This work 

BS376 BS1 + pClik_5a_MCS_dapB_5 
Overexpression of dapB (cg2163) with modified cofactor binding site: 
AALEAGDD (aa 32-39) by episomal gene expression 

This work 

BS383 BS1 + pClik_5a_MCS_gapN 
Overexpression of gapN (SMU_676), encoding NADP-dependent glyceralde-
hyde-3-phosphate dehydrogenase, by episomal gene expression 

This work 

BS384 BS244 + pClik_5a_MCS_gapN 
Overexpression of gapN (SMU_676) by episomal gene expression 

This work 

BS388 BS181 + PsodGFPmut1 
Overexpression of the reporter gene GFPmut1 (Cormack et al., 1996), en-
coding green fluorescent protein of the jellyfish Aequorea victoria 

Previous work 

BS453 BS244 + pClik_5a_MCS_Peftuddh_R 
Overexpression of ddh (cg2900), encoding diaminopimelate dehydrogenase, 
with native cofactor binding site: IFSRR (aa 33-37) by episomal gene expres-
sion and replacement of the native promoter by the eftu promoter; used as 
reference 

This work 

BS454 BS244 + pClik_5a_MCS_Peftuddh_1 
Overexpression of ddh (cg2900) with modified cofactor binding site: IFERR 
(aa 33-37) by episomal gene expression and replacement of the native pro-
moter by the eftu promoter 

This work 

BS474 BS27 + pClik_5a_MCS_Peftuddh_R 
Overexpression of native ddh (cg2900), encoding diaminopimelate dehydro-
genase, native cofactor binding site: IFSRR (aa 33-37) by episomal gene 
expression and replacement of the native promoter by the eftu promoter; 
used as reference 

This work 

BS475 BS27 + pClik_5a_MCS_Peftuddh_1 
Overexpression of ddh (cg2900) with modified cofactor binding site: IFERR 
(aa 33-37) by episomal gene expression and replacement of the native pro-
moter by the eftu promoter 

This work 
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Strain Description and Application Reference 

BS476 BS27 + pClik_5a_MCS_Peftuddh_2 
Overexpression of ddh (cg2900) with modified cofactor binding site: IFQRR 
(aa 33-37) by episomal gene expression and replacement of the native pro-
moter by the eftu promoter 

This work 

BS477 BS27 + pClik_5a_MCS_Peftuddh_3 
Overexpression of ddh (cg2900) with modified cofactor binding site: IFSRL 
(aa 33-37) by episomal gene expression and replacement of the native pro-
moter by the eftu promoter 

This work 

BS478 BS27 + pClik_5a_MCS_Peftuddh_4 
Overexpression of ddh (cg2900) with modified cofactor binding site: IFSRE 
(aa 33-37) by episomal gene expression and replacement of the native pro-
moter by the eftu promoter 

This work 

BS479 BS27 + pClik_5a_MCS_Peftuddh_5 
Overexpression of ddh (cg2900) with modified cofactor binding site: IFSDD 
(aa 33-37) by episomal gene expression and replacement of the native pro-
moter by the eftu promoter 

This work 

BS487 BS27 + pClik_5a_MCS_Peftuddh_6 
Overexpression of ddh (cg2900) with modified cofactor binding site: IFERL 
(aa 33-37) by episomal gene expression and replacement of the native pro-
moter by the eftu promoter 

This work 

BS488 BS27 + pClik_5a_MCS_Peftuddh_7 
Overexpression of ddh (cg2900) with modified cofactor binding site: IFERE 
(aa 33-37) by episomal gene expression and replacement of the native pro-
moter by the eftu promoter 

This work 

BS489 BS27 + pClik_5a_MCS_Peftuddh_8 
Overexpression of ddh (cg2900) with modified cofactor binding site: IFEDD 
(aa 33-37) by episomal gene expression and replacement of the native pro-
moter by the eftu promoter 

This work 

BS490 BS27 + pClik_5a_MCS_Peftuddh_9 
Overexpression of ddh (cg2900) with modified cofactor binding site: 
IIDVQ (aa 33-37) by episomal gene expression and replacement of the native 
promoter by the eftu promoter 

This work 

BS506 BS242 + P5-19tkt 
Overexpression of the tkt-operon by replacement of the native promoter by 
the modified sod promoter P5-19 

This work 

BS507 BS242 + P1-08tkt 
Overexpression of the tkt-operon by replacement of the native promoter by 
the modified sod promoter P1-08 

This work 

BS508 BS242 + P6-43tkt 
Overexpression of the tkt-operon by replacement of the native promoter by 
the modified sod promoter P6-43 

This work 

BS509 BS242 + P7-29tkt 
Overexpression of the tkt-operon by replacement of the native promoter by 
the modified sod promoter P7-29 

This work 

BS526 BS242 + P9-42tkt 
Overexpression of the tkt-operon by replacement of the native promoter by 
the modified sod promoter P9-42 

This work 

BS527 BS242 + P10-18tkt 
Overexpression of the tkt-operon by replacement of the native promoter by 
the modified sod promoter P10-18 

This work 

BS529 BS1 + Psodddh 
Overexpression of ddh (cg2900), encoding diaminopimelate dehydrogenase, 
by replacement of the native promoter by the sod promoter 

This work 
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Strain Description and Application Reference 

BS530 BS1 + P7-19ddh 
Overexpression of ddh (cg2900) by replacement of the native promoter by 
the modified sod promoter P7-19 

This work 

BS531 BS1 + P6-43ddh 
Overexpression of ddh (cg2900) by replacement of the native promoter by 
the modified sod promoter P6-43 

This work 

BS532 BS1 + P7-29ddh 
Overexpression of ddh (cg2900) by replacement of the native promoter by 
the modified sod promoter P7-29 

This work 

BS533 BS1 + P5-19ddh 
Overexpression of ddh (cg2900) by replacement of the native promoter by 
the modified sod promoter P5-19 

This work 

BS534 BS1 + P1-08ddh 
Overexpression of ddh (cg2900) by replacement of the native promoter by 
the modified sod promoter P1-08 

This work 

BS535 BS1 + P5-02ddh 
Overexpression of ddh (cg2900) by replacement of the native promoter by 
the modified sod promoter P5-02 

This work 

BS536 BS1 + P9-42ddh 
Overexpression of ddh (cg2900) by replacement of the native promoter by 
the modified sod promoter P9-42 

This work 

BS542 BS244 + P7-29lysE 
Overexpression of lysE (cg1224) by replacement of the native promoter by 
the modified sod promoter P7-29 

This work 

BS550 BS244 + P7-19lysE 
Overexpression of lysE (cg1224) by replacement of the native promoter by 
the modified sod promoter P7-19 

This work 

BS551 BS244 + P6-43lysE 
Overexpression of lysE (cg1224) by replacement of the native promoter by 
the modified sod promoter P6-43 

This work 

BS553 BS1 + pClik_5a_MCS_gapA 
Overexpression of gapA (cg1791), encoding NAD-dependent glyceralde-
hyde-3-phosphate dehydrogenase, by episomal gene expression 

This work 

BS554 BS244 + pClik_5a_MCS_gapA 
Overexpression of gapA (cg1791) by episomal gene expression 

This work 

BS566 BS222 + ΔlysR 
Deletion of 431 bp within lysR (cg2899), encoding a transcriptional regulator 
of the LysR family 

This work 

BS567 BS529 + ΔlysR 
Deletion of 431 bp within lysR (cg2899) 

This work 
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4.2 Plasmids and Primers  

Genome-based transformation of C. glutamicum was conducted via the integrative plasmid 

pClik_int_sacB leading to stable genetic modifications (Figure 4-1). The basic vector has a 

size of 4.3 kb and possesses a multiple cloning site (MCS), an origin of replication (ORI) for 

E. coli as well as an ORF for kanamycin resistance (KanR) and sacB, encoding levansucrase 

of Bacillus subtilis. KanR and sacB serve as positive selection markers for the two recombina-

tion events during genetic recombination (Jäger et al., 1992; Jäger et al., 1995). 

 

Figure 4-1: Basic transformation vector pClik_int_ sacB used for stable genetic recombination of 
C. glutamicum. The vector possesses a MCS, an ORI for E. coli and positive selection markers (Kan R and 
sacB). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2: Basic transformation vector pClik_5a_MCS used for plasmid -based gene ex pression in 
C. glutamicum. The vector possesses a MCS, an ORI for E. coli and C. glutamicum as well as ORFs for 
the Rep-protein required for replication and Kan R used as a positive selection marker. 
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Plasmid-based gene expression was realized via the episomal replicating vector 

pClik_5a_MCS (Figure 4-2). The basic vector has a size of 5.1 kb and possesses a MCS, an 

ORI for E. coli as well as an ORF for KanR. In contrast to pClik_int_sacB, the vector has an 

additional ORF for the Rep-protein that triggers replication of the vector. 

For plasmid construction, target DNA was amplified and fused by PCR using site specific pri-

mers. End primers additionally contained artificial restriction sites required for site-directed 

ligation within the MCS of the basic transformation vector. Plasmid and primer designs were 

performed using the software Vector NTI 9.0.0 (Invitrogen GmbH, Karlsruhe, Germany). All 

plasmids and primers used for strain construction are listed in Table 4-2 and in the appendix 

(Table 7-1), respectively. 

 

Table 4-2: Plasmids used in the present work for met abolic and genetic engineering of C. glutamicum 

Plasmid Description and Application Reference 

pTC Vector system used for the episomal expression of the DNA-
methyltransferase of C. glutamicum bearing an ORF for TetR as well 
as an ORI for E. coli 

BASF SE 

pClik_int_sacB Vector system used for integrative transformation of C. glutamicum 
bearing a MCS, an ORF for KanR and sacB and an ORI for E. coli 

BASF SE 

pClik_5a_MCS Vector system used for episomal transformation of C. glutamicum 
bearing a MCS, an ORF for KanR as well as an ORI for E. coli and 
C. glutamicum 

BASF SE 

pClik_5a_MCS_dapB_R Episomal vector system for the expression of dapB (cg2163) with 
native cofactor binding site: AEIGVDDD (aa 32-39); used as refer-
ence 

This work 

pClik_5a_MCS_dapB_1 Episomal vector system for the expression of dapB (cg2163) with 
modified cofactor binding site: AELDAGDP (aa 32-39) 

This work 

pClik_5a_MCS_dapB_2 Episomal vector system for the expression of dapB (cg2163) with 
modified cofactor binding site: AELDAGDD (aa 32-39) 

This work 

pClik_5a_MCS_dapB_3 Episomal vector system for the expression of dapB (cg2163) with 
modified cofactor binding site: AEIDADDD (aa 32-39) 

This work 

pClik_5a_MCS_dapB_4 Episomal vector system for the expression of dapB (cg2163) with 
modified cofactor binding site: AELEAGDD (aa 32-39) 

This work 

pClik_5a_MCS_dapB_5 Episomal vector system for the expression of dapB (cg2163) with 
modified cofactor binding site: AALEAGDD (aa 32-39) 

This work 

pClik_5a_MCS_ddh_R Episomal vector system for the expression of ddh (cg2900) with 
native cofactor binding site: IFSRR (aa 33-37); used as reference 

This work 

pClik_5a_MCS_ddh_1 Episomal vector system for the expression of ddh (cg2900) with 
modified cofactor binding site: IFERR (aa 33-37) 

This work 

pClik_5a_MCS_ddh_2 Episomal vector system for the expression of ddh (cg2900) with 
modified cofactor binding site: IFQRR (aa 33-37) 

This work 

pClik_5a_MCS_ddh_3 Episomal vector system for the expression of ddh (cg2900) with 
modified cofactor binding site: IFSRL (aa 33-37) 

This work 

pClik_5a_MCS_ddh_4 Episomal vector system for the expression of ddh (cg2900) with 
modified cofactor binding site: IFSRE (aa 33-37) 

This work 

pClik_5a_MCS_ddh_5 Episomal vector system for the expression of ddh (cg2900) with 
modified cofactor binding site: IFSDD (aa 33-37) 

This work 

pClik_5a_MCS_ddh_6 Episomal vector system for the expression of ddh (cg2900) with 
modified cofactor binding site: IFERL (aa 33-37) 

This work 
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Plasmid Description and Application Reference 

pClik_5a_MCS_ddh_7 Episomal vector system for the expression of ddh (cg2900) with 
modified cofactor binding site: IFERE (aa 33-37) 

This work 

pClik_5a_MCS_ddh_8 Episomal vector system for the expression of ddh (cg2900) with 
modified cofactor binding site: IFEDD (aa 33-37) 

This work 

pClik_5a_MCS_ddh_9 Episomal vector system for the expression of ddh (cg2900) with 
modified cofactor binding site: IIDVQ (aa 33-37) 

This work 

pClik_5a_MCS_ 
PsodGFPmut1 

Episomal vector system for the expression of the reporter gene 
GFPmut1 used for analysis of the Psod promoter library 

This work 

pClik_int_sacB_Psodddh Integrative vector system for the replacement of the native promoter 
of ddh (cg2900) by the native sod promoter 

This work 

pClik_int_sacB_P7-19ddh Integrative vector system for the replacement of the native promoter 
of ddh (cg2900) by the modified sod promoter P7-19 

This work 

pClik_int_sacB_P6-43ddh Integrative vector system for the replacement of the native promoter 
of ddh (cg2900) by the modified sod promoter P6-43 

This work 

pClik_int_sacB_P7-29ddh Integrative vector system for the replacement of the native promoter 
of ddh (cg2900) by the modified sod promoter P7-29 

This work 

pClik_int_sacB_P5-19ddh Integrative vector system for the replacement of the native promoter 
of ddh (cg2900) by the modified sod promoter P5-19 

This work 

pClik_int_sacB_P1-08ddh Integrative vector system for the replacement of the native promoter 
of ddh (cg2900) by the modified sod promoter P1-08 

This work 

pClik_int_sacB_P5-02ddh Integrative vector system for the replacement of the native promoter 
of ddh (cg2900) by the modified sod promoter P5-02 

This work 

pClik_int_sacB_P9-42ddh Integrative vector system for the replacement of the native promoter 
of ddh (cg2900) by the modified sod promoter P9-42 

This work 

pClik_int_sacB_ΔlysR Integrative vector system for deletion of 431 bp within lysR (cg2899) This work 

pClik_int_sacB_P5-19tkt Integrative vector system for the replacement of the native promoter 
of the tkt-operon by the modified sod promoter P5-19 

This work 

pClik_int_sacB_P1-08tkt Integrative vector system for the replacement of the native promoter 
of the tkt-operon by the modified sod promoter P1-08 

This work 

pClik_int_sacB_P6-43tkt Integrative vector system for the replacement of the native promoter 
of the tkt-operon by the modified sod promoter P6-43 

This work 

pClik_int_sacB_P7-29tkt Integrative vector system for the replacement of the native promoter 
of the tkt-operon by the modified sod promoter P7-29 

This work 

pClik_int_sacB_P9-42tkt Integrative vector system for the replacement of the native promoter 
of the tkt-operon by the modified sod promoter P9-42 

This work 

pClik_int_sacB_P10-18tkt Integrative vector system for the replacement of the native promoter 
of the tkt-operon by the modified sod promoter P10-18 

This work 

pClik_int_sacB_P7-29lysE Integrative vector system for the replacement of the native promoter 
of lysE (cg1224) by the modified sod promoter P7-29 

This work 

pClik_int_sacB_P7-19lysE Integrative vector system for the replacement of the native promoter 
of lysE (cg1224) by the modified sod promoter P7-19 

This work 

pClik_int_sacB_P6-43lysE Integrative vector system for the replacement of the native promoter 
of lysE (cg1224) by the modified sod promoter P6-43 

This work 

pClik_5a_MCS_gapN* Episomal vector system for overexpression of gapN (SMU_676) This work 

pClik_5a_MCS_gapA Episomal vector system for the overexpression of gapA (cg1791) This work 

* gapN (SMU_676) was amplified from genomic DNA of Streptococcus mutans UA159 provided by the Helm-
holtz Centre for Infection Research (Braunschweig, Germany) 
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4.3 Chemicals 

Tryptone, brain heart infusion (BHI) medium, agar, peptone, yeast extract and beef extract 

were purchased from Difco Laboratories (Detroit, Michigan, USA). All other chemicals were 

either of technical or HPLC grade for cultivations and analyses, respectively, and were ob-

tained from Sigma-Aldrich (Steinheim am Albuch, Germany), Merck (Darmstadt, Germany), 

Fluka (Buchs, Switzerland) or Becton and Dickinsons (Franklin Lakes, New Jersey, USA).  

 

4.4 Medium Composition 

All media and solutions were prepared in ultrapure water (Millipore water purification system, 

Merck KGaA, Darmstadt Germany). Sterilization was performed at 121 °C for 20 min or by 

filtration. Agar plates were prepared by adding 18 g L-1 agar. For selection and cultivation dur-

ing strain construction, kanamycin (Kan), tetracycline (Tet) and sucrose were added to the 

media. While sucrose (100 g L-1) was added before autoclaving, kanamycin (50 µg mL-1) and 

tetracycline (12.5 µg mL-1) were added to the sterilized and cooled solution (50-60 °C). Media 

that contained antibiotics were stored at 4 °C. 

 

4.4.1  Complex media 

For cultivation of E. coli a lysogeny broth (LB) complex medium was applied as listed in Table 4-3. 

 

Table 4-3: Composition of LB complex medium for cul tivation of E. coli 

Yeast extract 5 g 

Tryptone 10 g 

NaCl 5 g 

add up to 1 L with ultrapure water and sterilize at 121 °C for 20 min 
 

After heat shock transformation of E. coli, cells were cultivated with SOC (super optimal broth 

(SOB) with catabolite repression) medium for regeneration of the cells according to the given 

composition (Table 4-4). 

 

Table 4-4: Composition of SOC complex medium for cu ltivation of E. coli 

Yeast extract 5 g 

Tryptone 20 g 

NaCl 0.5 g 

250 mM KCl 10 mL 

add up to 975 mL with ultrapure water and sterilize at 121 °C for 20 min 

+ 1 M Glucose, sterilized by filtration 

+ 2 M MgCl2, sterilized by filtration 

20 mL 

5 mL 
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Complex medium for cultivation of C. glutamicum consisted of BHI medium (Table 4-5). If cells 

were treated by electroporation, the BHI medium additionally contained 500 mM sorbitol (BHIS 

medium). For this purpose, a 2 M stock solution of sorbitol was autoclaved separately and 

added to the sterilized BHI medium in an appropriate amount. After regeneration, the cells 

were plated on BHIS agar plates containing kanamycin. 

 

Table 4-5: Composition of BHI complex medium used f or cultivation of C. glutamicum 

BHI 37 g 

add up to 1 L with ultrapure water and sterilize at 121 °C for 20 min 
 

For stable genetic modification, the second recombination event was controlled using a com-

plex medium (CM), supplemented with sucrose or kanamycin. Resistant C. glutamicum cells 

were selected on sucrose, added to the medium before sterilization, while kanamycin was 

added afterwards for selection of kanamycin deficient cells. Finally, separately autoclaved 

solutions of glucose and urea were added to the sterilized medium as listed in Table 4-6. 

 

Table 4-6: Composition of CM complex medium for cul tivation of C. glutamicum 

Peptone 10 g 

Beef extract 5 g 

Yeast extract 5 g 

NaCl 2.5 g 

add up to 925 mL with ultrapure water and sterilize at 121 °C for 20 min 

+ Glucose (400 g L-1), sterilized at 121 °C for 20 min 

+ Urea (40 g L-1), sterilized at 121 °C for 20 min 

25 mL 

50 mL 
 

4.4.2  Minimal salt medium  

For cultivation of C. glutamicum in minimal salt medium, stock solutions were prepared and 

sterilized separately according to the given compositions (Table 4-7). The minimal salt medium 

included either glucose or fructose as sole carbon source with a final concentration of 10 g L-1. 

 

Table 4-7: Composition of the stock solutions of th e minimal medium for cultivation of C. glutamicum 

Solution A  

NaCl 1 g 

CaCl2 55 mg 

MgSO4 · 7 H2O 200 mg 

add up to 500 mL with ultrapure water and sterilize at 121 °C for 20 min 
 

Solution B  

(NH4)2SO4 15 g 

NaOH pH 7.0 

add up to 100 mL with ultrapure water and sterilize at 121 °C for 20 min 
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Solution C  

K2HPO4 31.6 g 

KH2PO4 7.7 g 

 pH 7.8 

add up to 100 mL with ultrapure water and sterilize at 121 °C for 20 min 
 

Solution D  

FeSO4 · 7 H2O 20 mg 

HCl pH 1.0 

add up to 10 mL with ultrapure water and sterilize by filtration 

store at 4 °C 
 

Substrate solution - Glucose  

Glucose 10 g 

add up to 100 mL with ultrapure water and sterilize at 121 °C for 20 min 
 

Substrate solution - Fructose  

Fructose 10 g 

add up to 100 mL with ultrapure water and sterilize at 121 °C for 20 min 
 

Vitamin solution  

Biotin 2.5 mg 

Thiamine · HCl 5.0 mg 

Pantothenic acid calcium salt 5.0 mg 

add up to 20 mL with ultrapure water and sterilize by filtration 

store at 4 °C 
 

Trace element solution  

FeCl3 · 6 H2O 200 mg 

MnSO4 · H2O 200 mg 

ZnSO4 · 7 H2O 50 mg 

CuCl2 · 2 H2O 20 mg 

Na2B4O7 · 10 H2O 20 mg 

(NH4)6Mo7O24 · 4 H2O 10 mg 

HCl pH 1.0 

add up to 1 L with ultrapure water and sterilize by filtration 

store at 4 °C 
 

DHB solution  

3,4-Dihydroxybenzoic acid  300 mg 

6 M NaOH 500 µL 

add up to 10 mL with ultrapure water and sterilize by filtration 

store at 4 °C 
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Based on the stock solutions, the final medium was freshly prepared as listed in Table 4-8. 

 

Table 4-8: Final composition of the minimal salt me dium for cultivation of C. glutamicum 

Solution A 500 mL 

Solution B 100 mL 

Solution C 100 mL 

Solution D 10 mL 

Substrate solution 100 mL 

Vitamin solution 20 mL 

Trace element solution 10 mL 

DHB solution 1 mL 

add up to 1 L with ultrapure water and sterilized at 121 °C for 20 min 
 

4.5 Strain Conservation as Stock Cultures  

Bacterial cultures of E. coli NM522 or C. glutamicum were cultivated in liquid complex media 

(LB for E. coli or BHI for C. glutamicum). During exponential growth, samples were taken and 

mixed with the same volume of 60 % (v/v) glycerol. Stock cultures were frozen in liquid nitro-

gen and stored at -80 °C. 

 

4.6 Strain Construction 

4.6.1  Isolation of chromosomal DNA from C. glutamicum  

For isolation of chromosomal DNA from C. glutamicum, phenolic extraction was performed. 

Shortly, a stock culture of C. glutamicum was plated on a BHI agar plate and incubated for 

48 h at 30 °C. Harvested cell material was transferred in a 2 mL Eppendorf tube and dissolved 

in 550 µL ultrapure water and one spatula tip of glass beads (0.15-0.25 mm Worf Glaskugeln 

GmbH, Mainz, Germany). After addition of 700 µL of a mixture of phenol-chlorophorm-

isoamylalcohol (Roth, Karlsruhe, Germany), cell disruption was conducted in a ribolyzer 

(MM301, Retsch, Haan, Germany) for 45 sec with a frequency of 30 sec-1. Cell debris was 

removed by centrifugation for 5 min at 16,000 × g at 4 °C and the supernatant was transferred 

to another 2 mL Eppendorf tube. Precipitation of DNA was achieved by addition of 65 µL 3 M 

sodium acetate (pH 5.5) and 1.3 mL 100 % (v/v) ethanol. After another centrifugation step, the 

DNA pellet was dried at room temperature for 10 min prior to resuspension in 100 µL ultrapure 

water and storage at -20 °C. 
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4.6.2  Preparation of DNA from cell extracts 

For strain verification, cell extracts were prepared by cell disruption. Cell material from an agar 

plate was diluted in 550 µL ultrapure water with one spatula tip of glass beads (0.15-0.25 mm, 

Worf Glaskugeln GmbH, Mainz, Germany) and disrupted in a ribolyzer (MM301, Retsch, 

Haan, Germany) for 30 sec at a frequency of 30 sec-1. Cell debris was removed by centrifuga-

tion for 5 min at 16,000 × g at 4 °C (Eppendorf centrifuge 5415R, Hamburg, Germany) to gain 

a cell extract used as template for amplification by PCR. 

 

4.6.3  Polymerase chain reaction  

Amplification of target DNA fragments and strain verification were performed by PCR using 

the mastercycler EP gradient (Eppendorf, Hamburg, Germany). Target DNA fragments used 

for strain construction or sequencing were amplified with the PWO mastermix (Roche Applied 

Science, Mannheim, Germany) containing a polymerase with proof-reading-function, while the 

PCR mastermix (Roche Applied Science, Mannheim, Germany) was used for amplification 

during strain verification. Introduction of point mutations and construction of target DNA frag-

ments used as inserts were performed by fusion PCR. For this purpose, self-complementary 

fusion primers were designed including a sequence overlap to connect different DNA frag-

ments by PCR. In addition, end primers included artificial recognition sites for restriction en-

zymes required for site-directed ligation events. All primers were purchased from Life Tech-

nologies (Glasgow, Paisley, United Kingdom) and are listed in the appendix (Table 7-1). The 

annealing temperature Ta was calculated by the amount of the nucleobases guanine (G) and 

cytosine (C) divided by the length of the primer (N) as depicted in Equation 4-1. 

T� = 64.9	°C + 	 41	°C	 ∙ �G + C − 16.4�
N 	 − 3	°C Equation 4-1 

The elongation time te of the PWO and PCR master was 1.0 kb and 1.5 kb per min, respec-

tively. DNA amplification included 30 PCR cycles using a temperature profile which was indi-

vidually determined depending on annealing temperature Ta and elongation time te (Table 4-9).  

 

Table 4-9: Temperature profile used for amplificati on of DNA 

Step Temperature [°C] Time [min] Number of Cycles 

Denaturation 95 2 1x 

Denaturation 95 0.5 

30 x Annealing of Primers Ta 0.5 

Elongation 72 te 

Final Elongation 72 5 1x 

Hold 15 ∞  
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Purified genomic DNA of C. glutamicum was used as template for amplification during strain 

construction (section 4.6.1), while DNA from cell extracts was used for strain verification (sec-

tion 4.6.13). Furthermore, 10 % (v/v) dimethyl sulfoxide (DMSO) was added to the reaction 

mixture to facilitate amplification (Table 4-10). 

 

Table 4-10: Composition of the reaction mixtures us ing PWO or PCR master 

 PWO master PCR master 

Components  Volume [µL] Final Concentration Volume [µL] Final Con centration 

Template DNA x 5-500 ng x 5-500 ng 

forward Primer 1 0.2 µM 0.5 0.2 µM 

reverse Primer 1 0.2 µM 0.5 0.2 µM 

DMSO 5 10 % (v/v) 2.5 10 % (v/v) 

Master mix 25 1x 12.5  1x 

 add up to 50 µL with ultrapure water add up to 25 µL with ultrapure water 
 

PCR products were purified directly using the GeneJetTM PCR Purification Kit (Thermo Scien-

tific, Waltham, USA) or from an agarose gel after gel electrophoresis (section 4.6.6) using the 

GeneJetTM Gel Extraction Kit (Thermo Scientific, Waltham, USA), according to the manufac-

ture’s protocol. The concentration of DNA was analyzed by a spectrophotometer (NanoDrop 

ND-1000, Thermo Scientific, Waltham, USA).  

 

4.6.4  Engineering of cofactor specificity 

The native cofactor binding sites of DapB (EC: 1.3.1.26) and DDH (EC: 1.4.1.16) were modi-

fied by fusion PCR using primers that lead to distinct point mutations according to the bioin-

formatics analysis performed by BASF SE (working group of Dr. Wolfgang Höffken). Conse-

quently, amino acid exchanges were introduced to achieve a change of specificity of the co-

factor binding site from NADP(H) to NAD(H).  

In order to change the cofactor specificity of DDH, its structure was taken from the protein 

database (PDB code 3DAP) and displayed with the program Quanta 98 (Molecular Simula-

tions Inc., San Diego, USA, 1998). By visual inspection Ser35 was chosen for mutation. Ser35 

forms a hydrogen bond to the phosphate of NADP. The mutations were selected to introduce 

a steric clash and an unfavorable electrostatic interaction with the phosphate of NADP.  

For C. glutamicum DapB no x-ray structure was deposited at the PDB. The closest homolog in 

the data base was dihyrodipicolinate reductase from M. tuberculosis (PDB code 1P9L) with a 

sequence identity of 65 %. Since this protein is NAD dependent the sequence at the NAD 

binding site was used as a guide for designing new mutants for DapB. 

As a result, the native sequences of the cofactor binding sites were annotated as AEIGVDDD 

(amino acid 32-39) and IFSRR (amino acid 33-37) for DapB and DDH, respectively. Primer 
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design was performed according to the bioinformatics analysis using the software Vector NTI 

9.0.0 (Invitrogen GmbH, Karlsruhe, Germany). All primers used for plasmid construction are 

listed in the appendix (Table 7-1).  

The gene variants were introduced into pClik_5a_MCS to achieve a plasmid-based gene ex-

pression. Transcription of dapB and ddh were initiated by the native promoter of dapB and the 

strong promoter Peftu (elongation factor thermo unstable), respectively. Plasmid construction 

and introduction of distinct modifications were validated by sequencing using the LIGHTrunTM 

sequencing service from GATC Biotech AG (Konstanz, Germany) according to the user’s 

guide. 

 

4.6.5  Random mutagenesis of the sod-promoter 

For mutagenesis of the sod promoter, the JBS dNTP-Mutagenesis Kit (Jena Bioscience, Jena, 

Germany) was used in order to introduce random point mutations based on mutagenic dNTP 

analogs by a two-step PCR process. GFPmut1 (Cormack et al., 1996) was used as reporter 

during plasmid-based expression. 

During the first PCR step, dNTP analogs incorporated into the amplified DNA which, subse-

quently, resulted in point mutations. Thereby, the number of PCR-cycles controls the rate of 

mutagenesis. Here, 25 cycles were performed which correlated with a rate of mutagenesis of 

15 % according to the manufacture’s protocol. For the second PCR step 30 cycles were per-

formed. The temperature profile for DNA amplification is listed in Table 4-11. 

 

Table 4-11: Temperature profile used for mutagenesi s and amplification of P sod 

Step Temperature [°C] Time [min] Number of Cycles 

Denaturation 92 2 1x 

Denaturation 92 1 
25 x (1st PCR) 

30 x (2nd PCR) 
Annealing of Primers 55 1 

Elongation 72 2 

Final Elongation 72 0.5 1x 

Hold 15 ∞  
 

Purified genomic DNA of C. glutamicum served as template for amplification of Psod during the 

first PCR step. The first PCR mixture, additionally, included the dNTP analogs 8-oxo-dGTP 

and dPTP. For the second PCR procedure the dNTP analogs were replaced by usual dNTPs 

leading to random point mutations. The primers P254 and P258 were used for the amplifica-

tion of GFPmut1 while Psod was amplified using the primers P257 and P259. The latter product 

consisted of a mixture of modified sod promoters which were directly connected to GFPmut1 

by fusion PCR. All primers used for plasmid construction are listed in the appendix (Table 7-1) 

while the composition of the mutagenic PCR mixture is depicted in Table 4-12. 
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Table 4-12: Composition of the reaction mixtures us ing the JBS dNTP-Mutagenesis Kit 

 1. PCR 2. PCR 

Components  Volume [µL] Final Concentra-
tion 

Volume [µL] Final Concentra-
tion 

Template DNA x 5-500 ng 1 5-500 ng 

forward Primer 1 0.2 µM 1 0.2 µM 

reverse Primer 1 0.2 µM 1 0.2 µM 

Mutagenesis Buffer 5 1x 5 1x 

dNTP-Mix 2.5 0.5 µM 2.5 0.5 µM 

dPTP-Mix 2.5 0.5 µM - - 

8-oxo-dGTP 2.5 0.5 µM - - 

Taq-Polymerase 1 0.1 U 1 0.1 U 

 add up to 50 µL with ultrapure water add up to 50 µL with ultrapure water 
 

The insert mixture was introduced into the episomal replicating plasmid pClik_5a_MCS by 

ligation and the ligation product was transferred into E. coli by heat shock transformation. Se-

quencing and sequence alignment of selected promoter sequences were performed by GATC 

Biotech AG (Konstanz, Germany) and the software Geneious® V. 6.1.6 (Biomatters Ltd., Auck-

land, New Zealand). In addition, the software BPROM (http:// www.softberry.com/berry.phtml) 

was used for the prediction of the TSS. 

 

4.6.6  Gel electrophoresis 

PCR products and linearized plasmid DNA were validated by gel electrophoresis. For that 

reason, an agarose gel (1 % (w/v) agarose in 1x TAE buffer) was prepared. 1x TAE buffer was 

diluted from a 50x TAE stock solution. The composition of the TAE stock solution is given in 

Table 4-13. 

 

Table 4-13: Composition of 50x TAE stock solution us ed for gel electrophoresis 

Tris  242 g 

0.5 M EDTA, pH 8.0 100 mL 

Acetic acid 52 mL 

add up to 1 L with ultrapure water 
 

Before loading, DNA samples were mixed with 10 % (v/v) OrangeG loading dye. The composi-

tion of 10x OrangeG is displayed in Table 4-14. 

 

Table 4-14: Composition of 10x OrangeG loading dye 

50 % (v/v) Glycerol solution 50 mL 

1 M EDTA, pH 8.0 100 mL 

OrangeG 75 mg 
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The agarose gel was loaded with at least 500 ng of DNA per slot. A DNA size standard 

(GeneRuler™ 1 kb DNA Ladder, Thermo Scientific, Waltham, USA) was loaded in parallel 

according to the manufacture’s protocol. Gel electrophoresis was performed at 110 V and 

300 mA for 65 min (B1A easy cast mini gel or D2 wide gel system, Owl Separation Systems, 

Inc., Portsmouth, New Hampshire, USA with Power Pack P25T, Biometra, Göttingen, Germa-

ny) in 1x TAE buffer. Afterwards, gels were stained in a 0.5 mg L-1 solution of ethidium bromid 

and analyzed under UV light by the Gel iX Imager (Intas Imaging Instruments GmbH, Göttin-

gen, Germany). 

 

4.6.7  Enzymatic digestion and ligation 

Enzymatic digestion was utilized during the construction of transformation vectors and for 

plasmid validation. It was performed at 37 °C for 20 min using two distinct FastDigest re-

striction enzymes (Thermo Scientific, Waltham, USA). The composition of the reaction mixture 

is listed in Table 4-15. 

 

Table 4-15: Composition of the reaction mixture use d for enzymatic digestion 

 purified PCR products plasmid DNA 

Components  Volume [µL] Final Concentration Volume [µL] Final Con centration 

Template DNA x 1000 ng x 500 ng 

FastDigest Buffer 3 1x 2 1x 

Enzyme I 1 1 U 0.8 0.8 U 

Enzyme II 1 1 U 0.8 0.8 U 

 add up to 30 µL with ultrapure water add up to 20 µL with ultrapure water 
 

For ligation, target DNA fragments were introduced into the MCS of the transformation vectors 

pClik_int_sacB or pClik_5a_MSC by site-directed ligation with the Rapid DNA Dephos and 

Ligation Kit (Roche Applied Science, Mannheim, Germany). Therefore, the insert and the 

transformation vector were treated separately with restriction enzymes. Afterwards, the insert 

was purified as described in section 4.6.3 and its concentration was determined. The linear-

ized vector was then treated with alkaline phosphatase from the kit, according to the manufac-

ture’s protocol, to remove the phosphate residues. For ligation 50 ng of the transformation 

vector were used at a vector:insert ratio of 1:3 according to Equation 4-2. 

Amount	of	Insert	1μL4 = 	 50	ng	 ∙ Size	of	Insert	1bp4	
Size	of	Vector	1bp4 ∙ 3 Equation 4-2 

The composition of the ligation mixture is displayed in Table 4-16. Ligation was performed at 

24 °C for 20 min. Subsequently, the mixture was used to transform E. coli DH5α by heat 

shock transformation. 
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Table 4-16: Composition of the ligation mixture usi ng T4 DNA Ligase and 50 ng vector DNA 

Components  Volume [µL] Final Concentration 

Vector DNA, dephosphorylated x 50 ng 

Insert DNA x x 

DNA Dilution Buffer 2 1x 

 add up to 10 µL with ultrapure water 

+ T4 DNA Ligation Buffer 10 1x 

+ T4 DNA Ligase 1 5 U 

 

4.6.8  Generation of heat shock competent E. coli cells 

For preparation of heat shock competent E. coli (DH5α and NM522), cells were cultivated in 

LB medium, enriched with 20 mM MgSO4 on a rotary shaker (shaking diameter 5 cm, Multi-

tron II, Infors AG, Bottmingen, Switzerland). For cultivation of E. coli NM522, carrying the pTC 

plasmid, the medium additionally contained 12.5 µg L-1 tetracycline. 

A starter culture (5 mL in a 50 mL baffled shake-flask) was inoculated and incubated overnight 

at 37 °C and 230 rpm. Subsequently, 2 mL of starter culture were used to inoculate the main 

culture (250 mL in 2 L baffled shake-flask), which was incubated at 23 °C and 250 rpm until an 

optical density OD600 of 0.4-0.6 was reached. Subsequently, cells were harvested by centrifu-

gation in 50 mL falcon tubes at 4 °C and 1,200 × g for 10 min (Biofuge Stratos, Herae-

us/Kendro, Osterode, Germany) and washed once with 80 mL TB buffer (Table 4-17). Previ-

ous to each centrifugation step, cells were incubated on ice for 10 min.  

 

Table 4-17: Composition of TB buffer 

0.5 M Pipes-NaOH, pH 6.7 2 mL 

0.5 M CaCl2 solution 3 mL 

2 M KCl solution 12.5 mL 

1 M MnCl2 solution 5.5 mL 

add up to 100 mL with ultrapure water 
 

The washed cells were resuspended in 20 mL TB buffer and 1.5 mL DMSO and incubated on 

ice for 10 min. Finally, aliquots of 220 µL were transferred into pre-cold and sterile 1.5 mL Ep-

pendorf tubes, frozen in liquid nitrogen and stored at -80 °C. 

 

4.6.9  Transformation of E. coli by heat shock 

Heat shock competent E. coli cells (DH5α and NM522) were used for transformation of vector 

DNA.  

After being thawed on ice, 50 µL of competent cells were transferred to a sterile 1.5 mL Ep-

pendorf tube and mixed with 5 µL of vector DNA. Subsequently, cells were incubated at 4 °C 
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for 30 min. The heat shock was then carried out in a thermo block (Thermomixer comfort, Ep-

pendorf, Hamburg, Germany) at 45 °C for 45 sec followed by addition of 900 µL SOC medium 

and incubation at 37 °C for 1 h. Finally, cells were harvested by centrifugation 16,000 × g for 

1 min (Eppendorf centrifuge 5415R, Hamburg, Germany), the supernatant was decanted and 

the cells resuspended in about 100 µL of residual medium. For selection, cells of E. coli DH5α 

and NM522 were plated on LBKan and LBKan+Tet agar plates, respectively, and incubated at 

37 °C for 24 h. 

 

4.6.10 Purification of plasmid DNA  

Plasmid DNA was isolated using the GeneJetTM Plasmid miniprep Kit (Thermo Scientific, Wal-

tham, USA) according to the manufacture’s protocol. All cultivations were carried out on a ro-

tary shaker (shaking diameter 5 cm, Multitron II, Infors AG, Bottmingen, Switzerland) at 37 °C 

and 230 rpm. 

Single colonies of DH5α and NM522 were used to inoculate 5 mL of LBKan and 50 mL of 

LBKan+Tet, respectively, and grown overnight. Since the plasmid DNA, obtained from E. coli 

DH5α was only required for strain verification, single mini preparations were performed with 

4 mL of main culture. In contrast, E. coli NM522 was used to obtain plasmid DNA for transfor-

mation of C. glutamicum, which requires high final concentrations. Consequently, 10 identi-

cal mini preparations were pooled after elution and concentrated by evaporation with a 

speedvac (Concentrator 5301, Eppendorf AG, Hamburg, Germany). 

Final concentrations of isolated plasmid DNA were determined by a spectrophotometer 

(NanoDrop ND-1000, Thermo Scientific, Waltham, USA). 

 

4.6.11 Generation of electro competent C. glutamicum cells 

All cultivations were carried out on a rotary shaker (shaking diameter 5 cm, Multitron II, Infors 

AG, Bottmingen, Switzerland) at 30 °C and 230 rpm using BHI medium. A stock culture of 

C. glutamicum was plated on a BHI agar plate and incubated at 30 °C for 48 h. A 10 mL start-

er culture was inoculated with a single cell from the same plate and incubated overnight. Sub-

sequently, the starter culture was harvested by centrifugation at 5,000 × g (Biofuge Stratos, 

Heraeus/Kendro, Osterode, Germany) for 10 min and resuspended in a 0.9 % (w/v) solution of 

NaCl. The cells were used to inoculate a 50 mL main culture to an optical density OD660 of 0.4. 

When an OD660 of 1.5-2.0 was reached, the main culture was harvested by centrifugation at 

5,000 × g for 10 min (Biofuge Stratos, Heraeus/Kendro, Osterode, Germany). The cell pellet 

was washed twice with a 10 % (v/v) solution of glycerol and resuspended in 8 mL of the same 

solution per gram cell wet weight. The electro competent cells were then stored on ice until 

electroporation. 



Materials and Methods 
 

42 
 

4.6.12 Transformation of C. glutamicum by electroporation 

For electroporation, 200 µL of competent C. glutamicum cells were transferred to an electro-

poration cuvette (BTX Cuvette PlusTM with 2 mm gap, Harvard Apparatus, Massachusetts, 

USA) and mixed with 2-5 ng and 0.2-0.5 ng of vector DNA based on pClik_int_sacB and 

pClik_MCS-5a, respectively. Subsequently, the preparation was incubated on ice for 5 min. 

Transformation of C. glutamicum was performed by electroporation using a GenePulser XCell 

(Bio-Rad, Hercules, California, USA) at 2.5 kV, 25 µF and 400 Ω. If the electroporation time 

was lower than 8 ms, competent cells were further diluted with 10 % (v/v) solution of glycerol. 

Immediately after electroporation, 900 µL BHIS medium was added to the cells and the mix-

ture was incubated at 30 °C for 1.5 h. Finally, cells were harvested by centrifugation (9,300 × g 

for 1 min, Eppendorf centrifuge 5415R, Hamburg, Germany), the supernatant was decanted 

and the cells were resuspended in about 100 µL of residual medium. For selection, 

C. glutamicum cells were plated on BHISKan agar plates and incubated at 30 °C for 48 h. 

 

4.6.13 Selection and verification of transformed mu tants  

Cells that had been transformed with vector DNA based on pClik_int_sacB had to pass 

through a second recombination event. For this purpose, 5 mL of BHI medium were inoculated 

with single colonies and incubated overnight on a rotary shaker (shaking diameter 5 cm, Multi-

tron II, Infors AG, Bottmingen, Switzerland) at 30 °C and 230 rpm. The bacterial culture was 

then diluted with a 0.9 % (w/v) solution of NaCl, plated on CMSac agar plates and incubated at 

30 °C for 48 h to gain single colonies. Colonies were picked and streaked on raster plates of 

CmSac and CMKan. Both were incubated at 30 °C for 24 h. Colonies that were grown on CMSac, 

but not on CMKan, were further evaluated for a positive transformation event by PCR using cell 

extracts.  

For analysis of a transformation event, based on pClik_MCS_5a, single colonies were 

streaked on BHIKan agar plates and incubated at 30 °C for 24 h. Cell material was used directly 

to prepare a cell extract required for verification by PCR as described before. 
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4.7 Determination of the volumetric Gas-Liquid Mass  Transfer Coefficient (k La) 

The volumetric gas-liquid mass transfer coefficient (kLa) was quantified in baffled and non-

baffled disposable shake-flasks (Figure 3-6) of different vessel sizes (125 mL, 250 mL and 

500 mL, PreSens Precision Sensing GmbH, Regensburg, Germany) with variation of the 

working volume (10-40 % of the total volume) and the shaking frequency (50 rpm, 150 rpm 

and 250 rpm). Measurement was performed in 100 mM phosphate buffer (pH 7.0) at 30 °C 

and 37 °C. Dissolved oxygen (DO) was monitored online with the PreSens shake-flask reader 

SFR (PreSens Precision Sensing GmbH, Regensburg, Germany). The sensor device was 

installed in an orbital shaker (shaking diameter 5 cm, Multitron II, Infors AG, Bottmingen, Swit-

zerland) as described by Schneider et al. (2010).  

For kLa determination, shake-flasks were equilibrated with buffer and 0.1 mM cobalt nitrate. 

Calibration of the sensors was carried out as described in the SFR user manual. Complete 

oxygen depletion was achieved by addition of a 200 g L-1 sodium sulfite stock solution 

(Hermann et al., 2001). Since comparative studies with 500 mL baffled shake-flasks with low-

est filling volume and highest shaking frequency (e.g. highest expected kLa) had shown that 

the use of the standard flask cap had no influence on kLa determination (kLa = 281 ± 37 h-1 

(without cap) and kLa = 292 ± 15 h-1 (with cap)) all experiments were performed in triplicate 

without the standard cap of the shake-flasks for better handling. 

dC
dt = OTR − OUR = k
a ∙ �c∗ − c� − qBC ∙ X Equation 4-3 

The volumetric gas-liquid mass transfer coefficient kLa was determined between 20 % and 

90 % oxygen saturation using Berkeley MADONNA (Version 8.0.1) for data fitting by a regres-

sion curve (Figure 4-3) according to Equation 4-3 (Garcia-Ochoa et al., 2010). If required, a 

baseline correction for 0 % oxygen saturation was performed. For kLa estimation, a stoichio-

metric correlation between flask size (Vmax), shaking frequency (n) and kLa was compiled on 

basis of the experimental data. Mathematical fitting was performed using either a Gaussian 

(Equation 4-4) or a parabolic function (Equation 4-5) for baffled and non-baffled shake-flasks, 

respectively.   

k
a = a ∙ EFG.H∙IJKFLMN OPQ	JRSTUFVMW OPX
 

Equation 4-4   

   k
a = 	 yG + a ∙ n + b ∙ VZ�L + c ∙ nC + d ∙ VZ�LC  Equation 4-5 
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Figure 4-3: Time profile of dissolved oxygen concentration used  for determination of k La. Complete ox y-
gen depletion was achieved by addition of sodium su lfite. The red line indicates a fitting curve calcu lated 
on basis of Equation 4-3. Data represent k La determination for 250 mL baffled shake-flask, 30 °C , 250 rpm 
and 30 % filling (A), 500 mL baffled shake-flask, 37 ° C, 150 rpm, 10 % filling (B), 500 mL baffled shake-
flask, 30 °C, 150 rpm, 30 % (C) and 500 mL non-baffle d shake-flask, 37 °C, 150 rpm, 40 % (D). 100 % DO 
corresponds to 0.232 mmol O 2 L

-1 at 30 °C and 0.212 mmol O 2 L
-1 at 37 °C, respectively. 

 

4.8 Cultivation of Corynebacterium glutamicum 

4.8.1  Cultivation of C. glutamicum in shake-flasks 

For routine batch cultivation experiments, cells were incubated in baffled shake flasks with a 

filling volume of 10 % at 30 °C and 230 rpm on a rotary incubator (shaking diameter 5 cm, 

Multitron II, Infors AG, Bottmingen, Switzerland).  

First, a stock culture of C. glutamicum was plated on a BHI agar plate and incubated at 30 °C 

for 48 h. For the first starter culture, 10 mL BHI complex medium was inoculated with a single 

colony and incubated for about 10 h. Bacterial cells were harvested during exponential growth 

by centrifugation (5,000 × g at 4 °C, Biofuge Stratos, Heraeus/Kendro, Osterode, Germany), 

resuspended in a sterile 0.9 % (w/v) solution of NaCl and used to inoculate a second starter 

culture of 25 mL minimal salt medium. After about 10 h of cultivation, the second starter cul-

ture was harvested as described before and used as inoculum for the main culture. Main cul-

tures were performed in 25 mL minimal saltmedium in triplicate with a constant pH at 7.0 ± 0.3 

(766 Calimatic, Knick GmbH and Co. KG, Berlin, Germany). 

For the verification of predicted cultivation processes, main cultures were grown in 250 mL 

baffled shake-flasks (PreSens, Regensburg, Germany) at 30 °C and 150 rpm using a filling 

volume of 10 % and 30 %, respectively. The latter was used for determination of the specific 

growth rate µ [h-1] and the specific oxygen uptake rate qO2 [mmol g-1 h-1] by Equation 4-6. 
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qBP = 	 k
a ∙ �c∗ − c� − dCdtX  Equation 4-6 

Subsequently, experimentally determined rates for growth and oxygen uptake were used to 

predict a time-dependent increase of biomass formation and decrease of DO concentration for 

aerobic growth under the given conditions with 10 % filling volume. 

 

4.8.2  Cultivation of C. glutamicum in a micro bioreactor system 

For small-scale fermentations, starter cultures of C. glutamicum were cultivated in deep well 

plates (riplate BV 10 mL, HJ-Bioanalytik GmbH, Mönchengladbach, Germany) at 30 °C and 

1,000 rpm on a plate shaker (Inkubator 1000, Heidolph Instruments GmbH and Co. KG, 

Schwabach, Germany). Main cultures were performed in MTP-48-FlowerPlates® (m2p-labs 

GmbH, Baesweiler, Germany) with DO optodes using a micro fermentation system BioLector® 

(shaking diameter 3 mm, m2p-labs GmbH, Baesweiler, Germany) at 30 °C with a cycle time of 

10 min, a shaking frequency of 700 rpm and a relative humidity of 95 %. 

During cultivation, plates were sealed with a gas permeable membrane (HJ Bioanalytik 

GmbH, Mönchengladbach, Germany) to avoid contamination and evaporation. Bacterial 

growth was analyzed by backscatter measurement at 620 nm with a gain of 5 while the emis-

sion intensity of GFP was measured at 520 nm with excitation at 488 nm and a gain of 100. 

The collected data were analyzed with the software BioLection version 2.3.1.3 (m2p-labs 

GmbH, Baesweiler, Germany). 

For expression studies of modified sod promoters derived from random mutagenesis, a MTP-

48-FlowerPlate® (m2p-labs GmbH, Baesweiler, Germany) containing 1 mL BHI medium 

(50 µg mL-1 kanamycin) per well was directly inoculated with single colonies of Psod mutants of 

C. glutamicum. The changes of the backscatter signals for bacterial growth and gfp expres-

sion were recorded by the micro cultivation system BioLector®. The biomass-specific GFP 

expression was taken as value for the relative promoter activity. 

For gene expression studies of C. glutamicum, both starter cultures were cultivated in 3 mL 

BHI and minimal salt medium, respectively, for about 10 h. The main cultures were performed 

in six identical biological replicates with 1 mL minimal salt medium per well and inoculated with 

60 µL of the second starter culture. Exclusively, expression studies of Psodtkt were performed 

in 1.5 mL minimal salt medium. While the changes of the backscatter signals for biomass for-

mation and oxygen consumption were recorded online by the BioLector®, samples from three 

biological replicates were taken regularly during exponential growth for analysis of product 

formation and glucose consumption. The remaining three replicates were harvested and 

pooled during exponential growth for the isolation of RNA required for quantification of gene 

expression. In some cases finale yields were determined after about 12 h of stationary growth. 
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4.9 Analytical Methods for Strain Characterization 

4.9.1  Determination of cell concentration  

Determination of the cell concentration was either performed manually by an optical meas-

urement using the spectrophotometer (Libra S11, Biochrome, Cambridge, UK) at 660 nm in 

1.5 mL polystyrene cuvettes (Plastibrand, Wertheim, Germany or Sarstedt AG and Co., 

Nümbrecht, Germany) or automatically during cultivation in a micro fermenter. 

For the manual procedure, 500 µL of cell suspension was taken under sterile conditions and 

transferred to a 1.5 mL reaction tube. Since water was used as a reference, samples were 

diluted with water to an OD660 of 0.05-0.3 on an analytical balance (CP225D, Sartorius, Göt-

tingen, Germany). All dilutions and measurements were performed in duplicate. Independent 

from the genetic background, the measured OD660 values correlate with the cell dry weight 

(CDW) of C. glutamicum by Equation 4-7 (Becker et al., 2009). 

CDW	1g	LF\4 = 0.255	 ∙ OD^^G Equation 4-7 

During cultivation in the micro fermenter, bacterial growth was monitored online with a 

backscatter measurement at 620 nm with a gain of 5 (BSG:5). For determination of the correla-

tion factor between OD660 and BSG:5, seven different strains based on BS1 and BS244 were 

cultivated in MTP-48-FlowerPlates as described before. In parallel, samples were taken during 

exponential growth and the optical density was determined photometrically at 660 nm. Again, 

a correlation factor was determined that was independent from the genetic background as 

depicted in Figure 4-4 and by Equation 4-3. 

OD^^G = 0.4298	 ∙ BS�:H − 1.2983 Equation 4-8 

As a result, Equation 4-9 was formulated to calculate the CDW from data gained by backscat-

ter measurement. 

CDW	1g	LF\4 = 0.1096 ∙ BS�:H − 0.3311 Equation 4-9 
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Figure 4-4: Correlation between optical density OD 660 and BS G:5 at 620 nm for C. glutamicum BS1, BS536, 
BS244, BS527, BS290, BS343 and BS344. 
 
 

4.9.2  Quantification of amino acids 

Amino acid concentrations were determined in 1:10-diluted (w/w) culture supernatants ob-

tained by centrifugation at 16,000 × g for 1 min (Eppendorf centrifuge 5415R, Hamburg, Ger-

many). Dilution was performed on an analytical balance (CP225D, Sartorius, Göttingen, Ger-

many) with a 235 µM solution of α-amino butyric acid (ABU) as internal standard. Quantifica-

tion was performed by HPLC (Agilent 1200 Series, Agilent Technology, Waldbronn, Germany) 

as described by Krömer et al. (2005). 

Samples were automatically derivatized with ortho-phthaldialdehyde (OPA) and injected to the 

system. Separation was achieved on a RP column (Gemini 5µ C18 110A, 150 x 4.6 mm, Phe-

nomenex, Aschaffenburg, Germany) equipped with a pre-column (Gemini C18, MAX-RP, 4 x 

3 mm, Phenomenex, Aschaffenburg, Germany) as stationary phase and by the mixing ratio of 

eluent A (40 mM NaH2PO4, pH 7.8) and B (45 % (v/v) acetonitrile, 45 % (v/v) methanol, 10 % 

(v/v) ultrapure water) used as mobile phase. Elution was performed by a gradient of 100-20 % 

and 0-80 % of eluent A and eluent B, respectively, within 26 min. The flow rate was adjusted 

to 1 mL min-1 at 40 °C. The gradient used for lysine determination is depicted in Table 4-18.  

 

Table 4-18: Gradient of eluent A and B used as mobi le phase with a flow rate of 1 mL min -1 at 40 °C 

Time [min] Eluent A [%] Eluent B [%]  

0.0 100 0 

26.0 20 80 
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4.9.3  Quantification of glucose 

Glucose concentrations were determined in dilutions of supernatants which were obtained as 

described before (section 4.9.2). Quantification was performed by a biochemical analyzer 

(2700 STAT PlusTM, Yellow Springs Instrument, Ohio, USA) with an upper detection limit of 

2.5 g L-1. 

 

4.10 Biochemical Methods  

4.10.1  Preparation of crude cell extract  

To gain crude cell extracts, cells were cultivated in deep well plates filled with 5 mL BHI medi-

um per well. For each preparation, 4 mL of exponential growing cells were harvested in the 

same 2 mL Eppendorf tube by repeated centrifugation (5 min, 5,000 × g, 4 °C, Biofuge Stratos, 

Heraeus/Kendro, Osterode, Germany), washed twice with an enzyme specific disruption buff-

er and then resuspended in 500 µL of the same buffer together with one spatula tip of glass 

beads (0.125-0.106 mm, Worf Glaskugeln GmbH, Mainz, Germany). Cell disruption was per-

formed twice in a FastPrep®-24 (M.P. Biomedicals, California, USA) at 6 m s-1 for 30 sec with 

a break for 5 min during which the tubes were incubated on ice. Finally, cellular debris was 

removed by centrifugation (2 x 5 min, 16,000 × g, 4 °C, Eppendorf centrifuge 5415R, Ham-

burg, Germany) and the crude cell extracts were transferred to a clean 1.5 mL Eppendorf 

tube. 

 

4.10.2 Quantification of total protein amount 

Total protein concentrations were determined with the Pierce® BCA Protein Assay Kit (Thermo 

Scientific, Rockford, USA) according to the manufacture’s protocol. A dilution series in a range 

of 50-700 mg L-1 was prepared from the provided solution of 2,000 mg L-1 bovine serum albu-

min (BSA) used as protein standard. Dilutions of BSA and crude cell extracts were prepared 

on an analytical balance (CP225D, Sartorius, Göttingen, Germany). Determination of the pro-

tein concentration was performed manually by an optical measurement using the spectropho-

tometer (Libra S11, Biochrome, Cambridge, UK) at 562 nm in 1.5 mL polystyrene cuvettes 

(Plastibrand, Wertheim, Germany or Sarstedt AG and Co., Nümbrecht, Germany). 

 

4.10.3  Determination of enzyme activity 

Crude cell extracts were used to determine the enzyme activities in triplicate in a total volume 

of 200 µL in 96-well-plates with flat-bottom (MTP-Plate, Kisker Biotech GmbH and Co. KG, 

Steinfurt, Germany) using a Tecan microplate reader system (Sunrise-basic, Tecan Austria 

GmbH, Grödig, Austria). Online monitoring was performed by the data analysis software Mag-

ellanTM V.6.4 (Tecan Austria GmbH, Grödig, Austria). Negative controls were carried out either 
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without substrate or cell extract, respectively. All reactions were initiated by addition of the  

pre-warmed reaction mixture at 30 °C. Enzyme activities were calculated from the  

change in absorbance [A min-1] at 340 nm and the extinction coefficient of NAD(P)H 

(ε340 = 6.22L mmol-1 cm-1). Afterwards, enzyme activities were correlated with the appropriate 

protein concentrations to obtained specific enzyme activities [U mg-1] with 1 U = 1 µmol min-1 

at 30 °C. 

Diaminopimelate Dehydrogenase (DDH, EC: 1.4.1.16) ( Cremer et al., 1988) 

The disruption buffer used for DDH analyses contained 10 mM MgCl2 and 100 mM Tris-HCl 

buffer (pH 7.5) while the reaction mixture consisted of 10 mM MgCl2, 2 mM NADP or NAD and 

200 mM glycine/NaOH (pH 10.5). Enzyme activity was measured in reverse-direction with 

10 µL cell extract and 8 mM meso-diaminopimelate as substrate. 

Transketolase (TKT, EC: 2.2.1.1) (Becker et al., 20 11) 

Preparation of crude cell extract was performed using 100 mM Tris-HCl (pH 7.8) as disruption 

buffer, while the reaction mixture consisted of master mix A and B as further described. De-

termination of TKT activity was achieved by coupled chemical reactions. In the first step ribu-

lose 5-phosphate and xylulose 5-phosphate, which were required as substrate by TKT, were 

synthesized from ribose 5-phosphate (R5P) by the coupling enzymes ribose 5-phosphate 

isomerase (RPI) and ribulose 5-phosphate epimerase (RPE). The TKT reaction led to the for-

mation of glyceraldehyde 3-phosphate which was further converted by an enzyme mixture of 

triosephosphate isomerase (TPI) and glycerophosphate dehydrogenase (GDH) using NADH 

as cofactor. Master mix A contained disruption buffer, RPI, RPE, TPI-GDH and NADH while 

master mix B contained disruption buffer, thiaminpyrophosphate (TPP) and MgCl2. Cofactors 

and coupling enzymes were added to the pre-warmed master mixtures and incubated at 30 °C 

for 5 min. Afterwards, both mixtures were combined and added to the 96-well plate in which 

crude cell extracts and R5P as substrate were provided. All reaction mixtures were started at 

once to avoid a loss of catalytic enzyme activity. The reaction mixture contained 50 mM dis-

ruption buffer, 1 U RPI, 1 U RPE, 1 U TPI-GDH, 0.5 mM NADH, 0.2 mM TPP, 10 mM MgCl2, 

20 mM R5P and 10 µL of crude cell extract. 

Glyceraldehyde-3-Phosphate Dehydrogenase (GapDH, EC : 1.2.1.9 and 1.2.1.12) (Crow 

and Wittenberger, 1979) 

Cell disruption was performed in 10 mM MgCl2 and 100 mM Tris-HCl buffer (pH 8.3). The 

same buffer was used as reaction buffer. The NAD-dependent GapDH activity of GapA  

(EC: 1.2.1.12) and the NADP-dependent GapDH activity of GapN (EC: 1.2.1.9) were analyzed 

with 10 µL cell extract at pH 9.3 with 1 mM NAD, using 4 mM D/L-glyceraldehyde 3-phosphate 

as substrate and at pH 8.3 with 1 mM NADP and 2 mM D/L-glyceraldehyde 3-phosphate, re-

spectively.  
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4.11 Gene Expression Analysis 

4.11.1 Isolation of RNA 

Previous to the extraction procedure, cell suspensions from cultivation experiments were 

mixed with a RNA stabilizing solution (RNALater®, Applied Biosystems, Austin, USA) at the 

ratio of 8:1. The solutions were mixed by inversion and split up into 2 mL aliquots. Cells were 

harvested by centrifugation for 20 sec at full speed (Eppendorf centrifuge 5415R, Hamburg, 

Germany). Subsequently, the supernatant was discarded and the cell material was shock fro-

zen in liquid nitrogen. Previous to extraction, the cell material had to be lyophilized for 24 h 

(Alpha 1-4 LD plus, Christ, Osterode, Germany). Meanwhile and afterwards, samples were 

stored at -80 °C. 

For RNA extraction, the RNeasy Plus Mini Kit (Qiagen, Hilden, Germany) was used. There-

fore, samples and all materials were transported, pre-cooled and stored in liquid nitrogen. At 

the beginning, the lyophilized cell material was transferred to a kryo-tube (Nalgene Cryoware, 

Nalgene Nunc, Rochester, New York, USA), a dismembrator ball with a diameter of 9 mm 

(Sartorius Stedim Biotech, Göttingen, Germany) was added and tubes were placed in a dis-

membrator box. Cell disruption was performed in a homogenizator (Mikro-Dismembrator S, 

Sartorius, Göttingen, Germany) at 2,000 min-1 for 10 sec. Subsequently, 600 µL lysis buffer 

(RTL plus with 1 % (v/v) β-mercaptoethanol) were added and mixed by shaking. The suspen-

sion was transferred to a new 1.5 mL Eppendorf tube and incubated in a thermo block (Ther-

momixer comfort, Eppendorf, Hamburg, Germany) at 56 °C for 2 min. Afterwards, the mixture 

was transferred to a QiaShredder column and centrifuged for 3 min at 16,000 × g (Eppendorf 

centrifuge 5415R, Hamburg, Germany). The flow trough was further transferred to a gDNA 

eliminator column followed by centrifugation for 30 sec at 3,300 × g (Eppendorf centrifuge 

5415R, Hamburg, Germany). The flow through was mixed by pipetting with 600 µL 70 % (v/v) 

ethanol and transferred in portions of 600 µL to an RNeasy mini column. After centrifugation 

for 15 sec at 3,300 × g and discarding of the flow through, the column was washed with 350 µL 

of RW1 buffer using the same conditions. Subsequently, the tube was transferred to a clean 

1.5 mL Eppendorf tube and 80 µL of a DNase mastermix (10 µL DNase I stock solution + 

70 µL RDD buffer) were added to the membrane and incubated for 30 min at 28 °C and 

600 min-1. Afterwards, the column was washed one more time with RW1 buffer as described 

before and transferred to a new receiver tube to perform two further washing procedures un-

der the same conditions using 500 µL of RPE buffer, each. Finally, the column was transferred 

to a clean 1.5 mL Eppendorf tube, air-dried for 10 min at room temperature and eluted step-

wise (2 x 20 µL and 2 x 10 µL) with RNase-free water. The purified RNA samples were stored 

at -80 °C until further processing. 
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4.11.2 Verification of RNA quality 

For determination of RNA concentrations, a spectrophotometer (NanoDrop ND-1000, Thermo 

Scientific, Waltham, USA) was used. Verification of RNA quality was performed using the Bio-

analyzer 2100 (Agilent Technology, Waldbronn, Germany) and the RNA 6000 Nano LabChip® 

Kit (Agilent Technology, Waldbronn, Germany), according to the manufacture’s protocol. 

 

4.11.3 Quantitative-real-time PCR 

Previous to quantitative-real-time PCR (qRT-PCR), mRNA was transcribed into cDNA (com-

plementary DNA) due to higher stability and conformation without secondary structures.  

First, purified RNA samples were diluted with RNase-free water to concentrations of about 

50 ng µL-1. For cDNA synthesis, reverse transcriptase Superscript III (Invitrogen, Carlsbad, 

California, USA) was used according to the manufacturer’s protocol. The reaction mixture had 

a total volume of 20 µL, including 550 ng of RNA used as template and 200 ng of random pri-

mers, respectively. After incubation of the RNA at 65 °C for 5 min in a thermo block (Thermo-

mixer comfort, Eppendorf, Hamburg, Germany), annealing of the primers was facilitated by 

incubation on ice for 55 sec. Finally, the remaining compounds were added and cDNA syn-

thesis was performed at 50 °C for 50 min. 

For qRT-PCR, cDNA samples were diluted at a ratio of 1:10 with ultra-pure water. The com-

position of the reaction mixture, including a Hot Taq polymerase (Peqlab Biotechnologie, Er-

langen, Germany) for DNA amplification, and the temperature profile used for qRT-PCR are 

depicted in Table 4-19 and Table 4-20, respectively.  

Amplification was performed in the Light Cycler® 480 II (Roche, Basel, Switzerland) with six 

biological replicates each, using water as negative control. All primers used for qRT-PCR are 

listed in Table 4-21. 

 

Table 4-19: Composition of the reaction mix used fo r amplification of DNA by qRT-PCR 

 qRT-PCR 

Components  Volume [µL] Final Concentration 

Template cDNA or water 2 x 

forward Primer 1.25 0.5 µM 

reverse Primer 1.25 0.5 µM 

dNTPs 0.5 0.2 mM 

PCR buffer 2.5 1 x 

MgCl2 2.5 2.5 mM 

Hot Taq polymerase 0.1 0.02 U 

SYBR® Green I 2.5 0.4 x 

 add up to 25 µL with ultrapure water 
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Table 4-20: Temperature profile used for amplificat ion of DNA by qRT-PCR 

Step Temperature [°C] Time [sec] Number of Cycles 

Denaturation 95 300 1x 

Denaturation 95 20 

45 x 
Annealing of Primers Ta 20 

Elongation 72 30 

Fluorescence detection 84 10 

Final Elongation 72 120 1x 

Hold 15 ∞  

 

Table 4-21: Sequence and annealing temperature T a of the site-specific primers used in the present w ork 
for the quantification of relative gene expression by qRT-PCR 

Primer Sequence (5’ � 3’) Ta [°C] Construction 

119_ddh_fw CTGAGCAGGCACCAAAGTTC 51 ddh 

120_ddh_rv GTCGCAAAGCATCGGAGTG 50 ddh 

122_tkt_fw TCCTCAACGGCATTTCCCTC 51 tkt 

123_tkt_rv GCAGCCAAGGTTTCAACAGG 51 tkt 

137_lysE_fw AACCAACCGTGCCCGATGAC  53 lysE 

138_ lysE_rv AACCAGATCAGGCTTGCCGC 53 lysE 

140_ lysR_fw GAGGGAAGCGGTAAGTTTGC 51 lysR 

141_ lysR_rv ACACAGACCCCGCAAACTCC 53 lysR 

 

For determination of relative gene expression levels, quantification was performed by anal-

yses of the melting curve. Since the fluorophore SYBER® green exclusively intercalates with 

double-stranded DNA, the fluorescence signal drops, when the temperatures increase during 

qRT-PCR causing single-stranded DNA. Thereby, the strength of the signal depends on the 

generation rate of the amplified qRT-PCR product, indicating the amount of the template and, 

thus, the gene expression level. 

The software of the Light Cycler® 480 II (Version 1.5, Roche, Basel, Switzerland) was used to 

get four-parametric sigmoid functions of each amplification curve. The second derivative  

maximum (SDM) of each melting curve was calculated to determine the crossing point (CP). 

Relative concentrations of the samples were calculated according to the CP values of a dilu-

tion series of known relative concentrations. Afterwards, the results were normalized to the 

native Psod construct (100 %). 
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5 Results and Discussion 
___________________________________________________________________________ 
 

5.1 Process Engineering – Oxygen Supply in disposab le Shake-Flasks 

For define cultivation of Corynebacterium glutamicum a robust and straightforward method for 

quantification and prediction of oxygen saturation was developed, since sufficient oxygen 

supply is crucial for microbial growth and product formation (Casas López et al., 2006; 

Hermann et al., 2001; Tunac, 1989). For this reason, systematic investigations of oxygen in 

disposable shake-flasks were performed considering vessel size, filling volume and the agita-

tion speed.  

The volumetric gas-liquid mass transfer coefficient (kLa) of oxygen was quantified in buffer-

filled baffled and non-baffled disposable shake-flasks of different size (125, 250 and 500 mL), 

filling volume (10-40 % of the total volume) and shaking frequency (50, 150 and 250 rpm) as 

well as at different temperatures (30 °C and 37 °C), respectively. As illustrated in Figure 4-3, 

dissolved oxygen (DO) was completely removed from the liquid bulk by the addition of sodium 

sulfite. As soon as the redox-reaction catalyzed by cobalt ions was completed, the DO level 

increased due to mass transfer from the gas phase till the sensor signal converged to 100 % 

saturation. The experimental data were used to determine the kLa value for the given condi-

tions (Equation 4-3) applying fitting by a regression curve. The good fit of the experimental 

data (solid red line in Figure 4-3) and the small standard deviations between replicates indi-

cate high precision. The observed effects of filling volume, shaking frequency and temperature 

on the kLa value are summarized for different flask sizes in Figure 5-1. 

Overall, remarkably high kLa values of up to 350 h-1 resulted. These significantly exceed that 

of glass vessels under similar conditions (Wittmann et al., 2003). For non-baffled shake-flasks 

the kLa was, generally, lower as compared to baffled flasks and reached maximal values of 

100 h-1. Among the investigated parameters, the shaking frequency had the most significant 

impact on the oxygen transfer (Figure 5-1and Figure 5-2). The filling volume, however, hardly 

influenced oxygen transfer and became only relevant for filling ratios higher than 30 %. Inter-

estingly, the vessel size had no relevant influence on the mass transfer coefficient of non-

baffled flasks (Figure 5-1and Figure 5-2, D, E), whereas it showed some slight effect on kLa in 

baffled flasks (Figure 5-1and Figure 5-2, A-C). This is probably linked to the chosen vessel 

geometry (Büchs, 2001). Whereas non-baffled flasks exhibit a plane inner surface, the baffles 

introduce a structure within the vessel. The resulting changes depend on baffle height and 

depth as well as vessel height and diameter and, thus, obviously influence the oxygen 

transport. Despite its impact on O2 solubility (Ries et al., 2010), the temperature increase from 

30 °C to 37 °C had no impact on the kLa (Figure 5-1and Figure 5-2). 
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Figure 5-1: Comparison of experimental (plain-color ed) and predicted (dashed) k La values of baffled (A-C) 
and non-baffled (D-F) shake-flasks at 30 °C. For di fferent flask sizes (125, 250 and 500 mL) the effec ts of 
filling volume (10-40 % of the total volume) and sh aking frequency (50, 150 and 250 rpm) are shown. 
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Figure 5-2: Comparison of experimental (plain-color ed) and predicted (dashed) k La values of baffled (A-C) 
and non-baffled (D-F) shake-flasks at 37 °C. For di fferent flask sizes (125, 250 and 500 mL) the effec ts of 
filling volume (10-40 % of the total volume) and sh aking frequency (50, 150 and 250 rpm) are shown. 
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Based on the experimental data, mathematical correlations for the determination of the volu-

metric gas-liquid mass transfer coefficients were established (Table 5-1).  

 

Table 5-1: Empirically determined parameters for k La estimation in baffled and in non-baffled disposab le 
shake-flasks using a Gaussian fitting (Equation 4-4)  and a parabolic fitting (Equation 4-5), respectivel y. 

 Filling volume 

Parameter 10 % 20 % 30 % 40 % 

30 °C     

x0 225.96 235.32 238.56 271.60 

y0 294.78 276.87 324.56 257.66 

a 376.10 333.95 336.85 256.42 

b 65.47 59.23 55.96 67.41 

c 289.68 347.81 245.81 221.02 

 R2 = 0.99 R2 = 0.99 R2 = 0.99 R2 = 0.99 

37 °C     

x0 223.56 237.20 247.80 272.48 

y0 259.62 264.77 309.06 282.91 

a 386.72 358.91 338.99 304.90 

b 63.13 59.50 60.95 67.17 

c 247.92 280.30 227.68 185.67 

 R2 = 0.99 R2 = 0.99 R2 = 0.99 R2 = 0.99 

 Filling volume  

Parameter 10 % 20 % 30 % 40 % 

30 °C     

y0 -39.53 28.27 2.85 -5.43 

a 0.78 0.27 9.67·10-2 0.15 

b 7.97·10-2 -0.26 -2.16·10-2 1.04·10-2 

c -8.00·10-4 3.00·10-4 4.00·10-4 1.85·10-5 

d -2.00·10-4 3.00·10-4 8.95·10-6 -3.34·10-5 

 R2 = 0.99 R2 = 0.93 R2 = 0.98 R2 = 0.99 

37 °C     

y0 -4.80 26.65  15.81  7.26  

a 0.46  0.20 0.16  0.17  

b -0.07 -0.24  -0,14  -0.10 

c 2·10-4 6·10-4 4·10-4 2·10-4 

d 5.52·10-5 3·10-4 2·10-4 1·10-4 

 R2 = 0.99 R2 = 0.97 R2 = 0.94 R2 = 0.97 

The values were obtained by correlating flask size [mL], shaking frequency [rpm] and kLa [h-1] for different filling 
volumes and temperatures. Baffled flasks were best described by a Gaussian fitting (Equation 4-4), while for 
non-baffled flasks a parabolic fitting (Equation 4-5) of the data gave satisfying fitting. The fitted parameters refer 
to the corresponding equations. 
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For each filling volume analyzed, an individual correlation was established for 30 °C and for 

37 °C, respectively. This is illustrated in Figure 5-3 for baffled shake-flasks, investigated at 

30 °C with 10 % filling (R2 = 0.99). Optimal parameter estimation was hereby obtained for 

Gaussian fitting (Equation 4-4) of kLa values from baffled flasks and for parabolic fitting 

(Equation 4-5) of kLa values from non-baffled flasks. The parameter estimates are given in 

Table 5-1. Obviously, a robust and precise prediction of the kLa value was achieved, which is 

reflected by the excellent agreement between experimental and calculated data (Figure 

5-1and Figure 5-2). At low experimental kLa values (<5 h-1), corresponding calculations yield-

ed slight negative values, which were then set to zero. Beyond previously established empiri-

cal correlations for standard non-baffled glass vessels (Seletzky et al., 2007), the novel corre-

lations now enable kLa estimation for a broader experimental set-up.  

 

 
Figure 5-3: Correlation of k La [h

-1], flask size [mL] and shaking frequency [rpm] for baffled shake-flasks with 
10 % filling volume at 30 °C. Parameters for Gaussia n fitting (Equation 4-4) were estimated with an exce l-
lent regression coefficient of R 2 = 0.99 (Table 5-1). 

 

In a next step, the deduced mathematical correlations for prediction of the volumetric gas-

liquid mass transfer coefficient were validated by predicting the non-oxygen limited growth of 

C. glutamicum ATCC 13032.  

First, specific rates of growth (µ) and oxygen consumption (qO2) of C. glutamicum were deter-

mined from cultivations in minimal salt medium with glucose as sole carbon source. Cultivation 

experiments were performed in 250 mL baffled shake-flasks at 30 % filling and 150 rpm. As 

depicted in Figure 5-4, the dissolved oxygen dropped immediately after inoculation and be-
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came limiting (<20 %) after 4 h of cultivation and a cell concentration of only 1 g L-1. As a con-

sequence, growth of C. glutamicum was disturbed and switched from non-limited exponential 

growth to a rather linear growth behavior until a final cell concentration of 4.5 g L-1 was 

reached. Oxygen thereby constantly remained at 0 % saturation. From the first hours of non-

limited growth, the specific rates for growth (µ) and oxygen uptake (qO2) were determined to 

0.38 h-1 and 14.2 mmol g-1 h-1, respectively. These values were considered as basic physio-

logical properties of the strain in the given medium at sufficient oxygen supply. They served as 

basis to predict the time course of cell growth and DO level for a C. glutamicum cultivation at 

other experimental conditions. 

 
 

Figure 5-4: Growth and oxygen consumption of C. glutamicum ATCC 13032 in minimal salt medium with 
glucose as sole carbon source. Cultivation was perf ormed in 250 mL baffled shake-flasks with 30 % fill ing 
at 150 rpm. The non-oxygen limited phase (gray area ) was used to determine the specific growth rate µ a nd 
the specific oxygen uptake rate q O2 of C. glutamicum. For oxygen saturation, a DO level of 100 % corre-
sponding to 0.232 (mmol O 2) L

-1 was assumed. 

 

Based on the established mathematical correlation, the time course of DO and cell concentra-

tion of C. glutamicum was predicted for another, so far untested scenario. The chosen exper-

imental set-up comprised a 250 mL baffled shake-flask with 10 % filling and a shaking fre-

quency of 150 rpm. The deduced kLa value of 190 h-1 exceeded that of the prior cultivation 

with 30 % filling (92 h-1). Considering exponential growth and an inoculum concentration of  

0.2 g CDW L-1, the time-dependent increase of biomass concentration was calculated and 

depicted in Figure 5-5 (solid red line).  
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Figure 5-5: Verification of the predicted growth and  oxygen consumption of C. glutamicum ATCC 13032 
in minimal salt medium with glucose as sole carbon source. The control cultivation was performed in 
250 mL baffled shake-flasks with 10 % filling at 15 0 rpm. Predicted values (red) and experimental data 
(black) have an excellent agreement. For oxygen sat uration, a DO level of 100 % corresponding to 0.232  
(mmol O 2) L

-1 was assumed. 
 

The mathematical correlation between qO2, kLa, biomass and oxygen concentration (Equation 

4-6) further enabled determination of the dissolved oxygen concentration in the simulated 

batch experiment (Figure 5-5, dashed red line). Finally, the maximal reachable cell concentra-

tion at sufficient oxygen supply was estimated. Previous cultivation (Figure 5-4) revealed a 

limiting oxygen concentration of 20 %. Accordingly, a maximum cell dry weight of 4.3 g L-1 was 

predicted. To see if the culture performance can be reliably predicted, C. glutamicum was then 

cultivated under these conditions. As illustrated in Figure 5-5, growth and oxygen consumption 

– reflected by the dissolved oxygen concentration – were indeed rather well predicted. Experi-

mental (black) and simulated (red) values were almost identical. This also holds true for the 

predicted cell concentration at limiting oxygen supply (4.3 g L-1). This value well matched with 

the experimentally achieved cell concentration of 4.6 ± 0.3 g L-1 at a DO level of 20 %. The 

results underline the value of the demonstrated approach for a priori characterization of aero-

bic batch cultivation processes. Furthermore, the findings revealed that the established corre-

lation for kLa calculation can be transferred from the buffer-based abiotic system to standard 

shake-flask cultivations. The ability to predict the oxygen availability for specific experimental 

set-ups can improve the design of experiments by decreasing the risk of failures related to 

oxygen deprivation, typically associated with reduced cell viability and the occurrence of fer-

mentation products such as acetate, lactate or ethanol. Beyond this, the described approach 

can facilitate and improve working schedules and cost-efficient medium design, as knowledge 

on kLa and oxygen consumption is essential for experimental design and operation (Casas 

López et al., 2006). In this regard, the described method can be used to optimize inoculum 
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preparation and to adjust the medium composition for a desired cell concentration. This seems 

especially valuable for cultivations with costly carbon sources and nutrient additives. Related 

to the broad coverage of different experimental conditions and relevant cultivation parameters 

the present work is highly interesting for scientists from diverse fields working with most prom-

inent model organisms such as C. glutamicum (Becker and Wittmann, 2012b), E. coli 

(Thongchuang et al., 2012) or Bacillus subtilis (Nicolas et al., 2012). 

 

5.2 Genetic Engineering – Engineering of Cofactor S pecificity 

Among the effective metabolic engineering strategies to improve lysine production in 

C. glutamicum are optimization of (i) precursor supply, (ii) enhancement of the biosynthetic 

pathways and (iii) attenuation of undesired side reactions. Particularly, an enhanced supply of 

NADPH results in increased product yields (Becker et al., 2005; Becker et al., 2011; Ohnishi et 

al., 2005). Consequently, attenuation of NADPH-consuming reactions as well as an increased 

regeneration of NADPH are expected to improve lysine production (Yokota and Lindley, 

2005). 

 

5.2.1  Proof of concept – Impact of the redox suppl y by glyceraldehyde-3-phosphate 

dehydrogenase 

First, the influence of gapDH, encoding glyceraldehyde-3-phosphate dehydrogenase, on ly-

sine production was analyzed. In nature, different types of GapDH exist, which differ by their 

cofactor specificity. C. glutamicum ATCC 13032, for example, possesses two kinds of phos-

phorylating GapDH. GapA (EC: 1.2.1.12) is a NAD-dependent enzyme, while GapB 

(EC: 1.2.1.13) has a dual-coenzyme specificity with a preference for NADP. Since GapB is 

only active in the gluconeogenetic direction, it is inapplicable for growth on glucose after dele-

tion of gapA (Fillinger et al., 2000; Omumasaba et al., 2004; Takeno et al., 2010). Additionally, 

non-phosphorylating NADP-dependent GapDH, referred to as GapN (EC: 1.2.1.9), are found 

in many other microorganisms (Iddar et al., 2002). As example, Streptococcus mutans UA159 

possesses not only the NAD-dependent GapA, but also uses the NADP-dependent enzyme 

GapN (Crow and Wittenberger, 1979). Since synthesis of one mol lysine requires four mol of 

NADPH (Michal and Schomburg, 2012), expression of GapN is considered to enhance lysine 

production as the enzyme might increase the availability of this cofactor actively by an addi-

tional NADPH-generating glycolytic pathway. 

Here, the two different enzymes (GapA and GapN) should be expressed separately in the 

basic and the hyper production host of C. glutamicum BS1 and BS244, respectively, by an 

episomally replicating vector system. First, the target genes were amplified from genomic DNA 

and ligated into the MCS of pClik_5a_MCS. After transformation into C. glutamicum BS1 and 
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BS244, the genes were episomally expressed under control of their native promoters. In addi-

tion, the basic plasmid was transformed into both host strains to generate suitable KanR refer-

ence strains. Strain verification was performed by PCR, while the functionality of the enzyme 

was confirmed via enzymatic measurements (Figure 5-6).  

  

 
Figure 5-6: Analysis of the specific enzyme activit y [U g -1] of episomally expressed glyceraldehyde-3-
phosphate dehydrogenases gapA and gapN depending on the cofactors NAD + and NADP +, respectively. 
Cultivation of different C. glutamicum strains was performed in minimal salt medium with g lucose as sole 
carbon source, supplemented with 50 µg mL -1 kanamycin to maintain plasmid-based expression at 30 °C. 
The basic plasmid served as reference. BS343, BS383 a nd BS553 originate from the basic lysine producer 
BS1, while the other strains are based on the lysine  hyper producer BS244. 
 

 

The enzymatic assay revealed that the vector systems including gapDH were successfully 

expressed (Figure 5-6). The enzyme activities detected in the reference strains BS343 

(642 U g-1) and BS344 (397 U g-1) reflected the basic GapDH activity of BS1 and BS244, re-

spectively, since both host strains only possess the native gene copy of gapA within their ge-

nome. Apart from that, no NADP-dependent activity was detected for both strains. The results 

agree with that of Takeno et al. (2010) and Xu et al. (2014b), who observed comparable activi-

ties in C. glutamicum for the NAD-dependent GAPDH of 440 U g-1 and 318 U g-1, respectively. 

For the modified strains, BS383 and BS384 nearly the same GapA activities were determined. 

The estimated additional NADP-dependent activity could be assigned to the plasmid-based 

gapN expression. Even though gapN was expressed episomally which generally results in a 

strong overexpression of the target gene, the resulting enzyme activities of GapN were still 

rather low (34-48 %), as compared to the genome-based expression of gapA. The same was 

also observed by Takeno et al. (2010), who replaced the native gene of gapA by gapN from 

S. mutans and detected a reduced GapDH activity of only 32 % for GapN, as compared to the 

native GapA expression. In contrast to that, the episomal-based gapA expression in BS553 

and BS554 revealed significantly increased enzyme activities (4798 U g-1 and 2252 U g-1, re-

spectively). Regarding GapDH activity linked to episomal gene expression, the cofactor-

depending ratios of NAD:NADP were 19:1 and 7:1, respectively, in the genetic background of 

BS343 (reference) 

BS383 (gapN) 

BS553 (gapA) 

BS344 (reference) 

BS384 (gapN) 

BS554 (gapA) 
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BS1 and BS244. Thus, NAD-dependent GapA activity seemed to be considerably higher as 

NADP-dependent GapN activity. Crow and Wittenberger (1979) came to the same conclusion, 

analyzing S. mutans’ native GapA and GapN activities. They even found that in S. mutans the 

activity of GapA was about 40 times higher, as compared to that of GapN. Obviously, the na-

tive GapN activity is rather low by nature. Hereby, it cannot be excluded that the activity of 

GapN might be limited by the weak strength of the promoter of S. mutans used in 

C. glutamicum. 

The different strains were further compared, concerning growth and production (Table 5-2). 

 

Table 5-2: Growth and production characteristics of  different C. glutamicum strains, bearing the plasmid 
pClik_5a_MCS for episomal expression of gapDH. The basic plasmid served as reference. BS343, BS383  
and BS553 originate from the basic lysine producer B S1, while the other strains are based on the lysine 
hyper producer BS244. The data given are yields for biomass production (Y X/S), lysine formation (Y Lys/S ) and 
glycine formation (Y Gly/S) as well as growth rates (µ), specific glucose upt ake rates (q Glc) and specific lysine 
production rates (q Lys ). All experiments were performed in triplicate in MTP-48-FlowerPlates in 
1 mL minimal salt medium with glucose as sole carbo n source, supplemented with 50 µg mL -1 kanamycin 
to maintain plasmid-based expression. 

Strain Construct 
Yields 

YX/S [g mol -1] YLys/S  [mmol mol -1] YGly/S [mmol mol -1] 

BS343 reference 91.4 ± 3.4 99.8 ± 7.5 4.9 ± 0.7 

BS383 gapN 91.8 ± 4.3 134.6 ± 7.3 7.8 ± 0.5 

BS553 gapA 89.7 ± 1.2 114.4 ± 1.1 2.5 ± 0.1 

BS344 reference 73.0 ± 1.2 267.5 ± 7.2 7.4 ± 0.3 

BS384 gapN 68.2 ± 1.1 301.3 ± 4.4 7.1 ± 0.3 

BS554 gapA 44.6 ± 1.1 423.7 ± 4.7 3.9 ± 0.1 

Strain Construct 
Rates 

µ [h -1] qGlc [mmol g -1 h-1] q Lys  [mmol g -1 h-1] 

BS343 reference 0.28 ± 0.2 3.10 ± 0.11 0.31 ± 0.02 

BS383 gapN 0.31 ± 0.00 3.40 ± 0.17 0.46 ± 0.00 

BS553 gapA 0.23 ± 0.01 2.61 ± 0.06 0.30 ± 0.01 

BS344 reference 0.25 ± 0.01 3.38 ± 0.13 0.91 ± 0.06 

BS384 gapN 0.23 ± 0.00 3.33 ± 0.05 1.00 ± 0.02 

BS554 gapA 0.10 ± 0.01 2.25 ± 0.17 0.95 ± 0.06 
 

 

The cultivation experiment revealed that expression of gapDH influenced lysine production 

positively. Both gapA and gapN expression resulted in an improved lysine formation yield. 

Regarding strains based on BS1, expression of gapN had the strongest impact on lysine pro-

duction, even though it was shown that its enzyme activity was rather low. Here, the lysine 

production yield of BS383 was increased by 35 %. Additionally, the specific glucose uptake 

rate and the specific lysine production rate were increased by about 10 % and 50 %, respec-

tively. Takeno et al. (2010) also analyzed the impact of gapN expression on lysine production 

using C. glutamicum ATCC 13032 with a deficient lysC gene. After replacing the native gapA 

gene against gapN of S. mutans, they found that the lysine production yield was increased by 
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38 % from 169 mmol mol-1 to 234 mmol mol-1. Consequently, exclusive expression of gapN in 

a gapA deletion strain might have the potential of further enhancing lysine production. This 

seems to be due to the increased availability of NADPH in the genetic background of BS1. 

Apart from this, expression of gapA in BS553 also resulted in a final lysine production yield 

improved by 6 %. Because this improvement was less strong and coincided with a slightly 

retarded growth rate, rates for glucose uptake and lysine production were decreased accord-

ingly. In summary it can be ascertained that expression of NADPH-regenerating gapN seemed 

to have the strongest effect on lysine production on BS1 indicating that the strain might be 

limited by the scarcity of this cofactor. This holds true, as described for the wild type of 

C. glutamicum as well as BS1 (Becker et al., 2005; Kiefer et al., 2004; Yokota and Lindley, 

2005). Thus, overexpression of gapN might be particularly advantageous for strains without 

metabolic pathways optimized for NADPH-metabolism. 

In the genetic background of BS244, however, the highest improvement was provided by epi-

somal-based expression of gapA (strain BS554). Here, overexpression of gapA increased the 

lysine yield considerably by 58 %, which has not been described so far. Though Neuner et al. 

(2013) overexpressed gapA by promoter exchange in order to enhance lysine production, no 

significant improvement was observed. Nevertheless, there is evidence that expression of 

gapA might be a bottleneck in lysine production. Particularly during growth on fructose high 

amounts of dihydroxyacetone and glycerol have been observed as well as an increased 

NADH/NAD ratio (Dominguez et al., 1998; Kiefer et al., 2004). Since NADH is known to re-

press GapA activity (Kiefer et al., 2004), this might explain GapA limitations. Taken together, 

GapA seems to be a bottleneck during lysine production in BS244, which seems to be com-

pensated by its overexpression. As for gapN, expression only resulted in a slightly improved 

lysine yield by 13 %. In addition, GapN exhibits a rather low activity by nature, as compared to 

GapA, and S. mutans has no GRAS-status. Thus, transgene expression of gapN is not rec-

ommended for industrial lysine production.  

Overall, lysine production in BS244 could be improved by increased availabilities of GapDH as 

well as of NADPH. Consequently, modulation of the cofactor binding site of the native gapA 

gene from C. glutamicum might be a suitable strategy in future. Overexpression of GapA 

might further enhance lysine production. By doing so, heterologous gene expression would 

also be avoided. With regard to engineering of the cofactor binding site, first attempts have 

been published already. Lately, the cofactor binding site of GapA was manipulated systemati-

cally by rational protein design. Based on the modulation of distinct key residues, the cofactor 

specificity was changed from NAD to NADP and lysine production was successfully increased 

in a basic production strain of C. glutamicum (lysCQ298G, ppcN917G) (Bommareddy et al., 2014). 

In future, additional targets might be identified using computational designs, for example by 

the software OptSwap (King and Feist, 2013), while a simultaneous overexpression of NAD 
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kinase (EC: 2.7.1.23) might further enhance the positive effect of NADP-dependent GapDHs 

on lysine formation, as was indicated experimentally (Lindner et al., 2010; Wang et al., 2013). 

Moreover, optimization of the gene expression level of gapA seems to be a suitable strategy 

especially in the genetic background of C. glutamicum BS244. In this case, it is interesting to 

note that expression of gapA retarded the glucose uptake rate in strains based on BS244, 

while this effect was less strong in BS1 even though the enzyme activity detected for this ge-

netic background was even higher. The results indicate that the metabolic network of BS244 

reacts more sensitive to alterations, as compared to BS1. Since C. glutamicum BS244 is a 

highly specialized organism for lysine production, this illustrates the complexity of a metabolite 

equilibrium optimized for production processes and request for a genetic “fine-tuning” using 

promoter libraries (section 5.3 and 5.4). 

 

5.2.2  Analysis of cofactor binding sites 

As was shown before, increased availability of NADPH results in an improved lysine produc-

tion performance in C. glutamicum, particularly in basic production strains. In order to reduce 

the amount of NADPH-consuming reactions, the nucleotide binding sites of DapB  

(EC: 1.3.1.26) and DDH (EC: 1.4.1.16) were modified by rational designs on the level of the 

native gene sequence. By introduction of distinct point mutations, amino acid exchanges were 

generated to manipulate the cofactor specificity of the native enzyme. 

Nucleotide binding folds, so called the βαβ-folds, of different NAD(P)(H)-dependent dehydro-

genases generally contain conserved consensus sequences. They are characterized by a 

conserved (V/I)(A/G)(V/I)-XGX(X)GXXG motif at the C-terminal end of the first β-strand B1, 

followed by an acidic or basic residue at the C-terminus of the second β-strand B2 approxi-

mately 20-30 amino acids further downstream (Cirilli et al., 2003; Scapin et al., 1995). This 

residue interacts with the 2’- and 3’-hydroxyl group of the adenosyl ribose ring and with the 

negatively charged 2’-phosphate of NADPH, respectively, via hydrogen bonds (Cirilli et al., 

2003; Reddy et al., 1996). Thereby, acidic residues (Asp and Glu) are most prominent in en-

zymes with a cofactor specificity for NAD(H), while basic residues, particularly Arg, are typical-

ly present in NADP(H)-dependent enzymes (Reddy et al., 1996; Scrutton et al., 1990). 

Functional analyses were performed using bioinformatics tools to identify the nucleotide bind-

ing site required for modification. In C. glutamicum, the dapB and ddh genes encode for 248 

and 320 amino acids, respectively. A comparison of the N-terminal amino acid sequence re-

vealed that the Gly-rich motif was present in both DapB and DDH (Table 5-3). 
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Table 5-3: Comparison of the N-terminal amino acid sequence of DapB (EC: 1.3.1.26) and DDH  
(EC: 1.4.1.16) revealing the (V/I)(A/G)(V/I)-XGX(X)GXXG mo tif (bold letters). This conserved motif indicates 
the cofactor binding site and was used to identify suitable modification targets (underlined letters).  A list of 
all proteinogenic amino acids with their correspond ing 3-letter and 1-letter code is depicted in secti on 8.2. 

Protein Amino Acid Sequence 

DapB 1
MGIKVGVLGA KGRVGQTIVA AVNESDDLEL VAEIGVDDDL SLLVDNGAEV

50 

DDH 1
MTNIRVAIVG YGNLGRSVEK LIAKQPDMDL VGIFSRRATL DTKTPVFDVA

50 

 

Approximately 20 amino acids downstream of the N-terminal motif, the second pattern was 

identified. The native amino acid sequences were AEIGVDDD (amino acid 32-39) and IFSRR 

(amino acid 33-37) for DapB and DDH, respectively. Both sequences appear as promising 

targets for modification by bioinformatics analysis. This is strengthened by the fact that both 

sequences are located at the C-terminus of the second β-strand B2 and the loop that con-

nects B2 with the next α-strand (Scapin et al., 1995; Scapin et al., 1996). While the amino acid 

residues of the former sequence (AEIGVDDD) do not allow any conclusions about the cofac-

tor specificity of DapB, the IFSRR motif includes two basic arginine residues characteristically 

for NADP(H)-dependent enzymes. Geertz-Hansen et al. (2014) recently published a tool, 

called “Cofactory”, to identify potential Rossmann folds and to predict their specificity for a 

certain cofactor. Applied to this case study, the algorithm predicted the Rossmann fold of 

DapB and DDH to expand over amino acid 1-44 and 2-44, respectively. Interestingly, the soft-

ware also forecasted a NAD(H)-dependency for DapB, while DDH seemed to be specific for 

NADP(H). 

As for DapB from E. coli, there is also evidence that the enzyme has a dual cofactor specificity 

due to an acidic and a basic residue (Glu38 and Arg39) (Reddy et al., 1996; Scapin et al., 

1995). Based on a sequence alignment, the corresponding positions in C. glutamicum were 

identified as Gly35 and Val36. Therefore, the modifications within the AEIGVDDD sequence of 

DapB were targeted to these key amino acids. Relating to the IFSRR motif of DDH, Scapin et 

al. (1996) confirmed that these amino acids are involved in binding of the cofactor NADPH. In 

particular, Ser35 and the basic amino acids Arg36 and Arg37 interact with the negatively 

charged 2’-phosphate residue of NADP+ by shaping a pocket with Gly10 and Tyr11 from the 

N-terminal motif. In doing so, the binding is stabilized including two molecules of water to form 

eight hydrogen bonds with the 2’-phosphate, which might be the reason for the high specificity 

of DDH for NADPH as Misono et al. (1986) concluded. Consequently, an alteration of the an-

notated IFSRR sequence might result in a change of the cofactor specificity.  

 

5.2.3  Episomal expression of modified dihydrodipic olinate reductase (DapB) 

As mentioned above, the sequence motif AEIGVDDD of DapB was modulated in order to 

change its cofactor specificity to NAD+. The native sequence of the cofactor binding site as 

well as the engineered sequence motives are depicted in Table 5-4.  
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The major difference between NAD+ and NADP+ is obviously the 2’-phosphate. This residue 

has a negative charge that interacts with basic residues via hydrogen bonds and possesses a 

relatively large atomic diameter. To prevent interactions with the 2’-phosphate of NADP+, the 

binding pocket of DapB was modified in charge and size. The focus was set on the exchange 

of Gly35 as it is supposed to form hydrogen bonds with the 2’- and 3’-hydroxyl group of the 

adenosyl ribose ring. In addition, all modifications include the amino acid exchange of Val36 to 

alanine to reduce the binding pockets dimension. Further modifications were introduced in 

adjacent amino acids within the sequence motif AEIGVDDD that are supposed to tighten the 

size of the binding pocket (Table 5-4). 

 

Table 5-4: Comparison of different cofactor binding  sites of dapB. Deviations to the native sequence 
(dapB_R) are depicted in bold letters ( dapB_1-5). 

Construct DNA Sequence (5’ � 3’) Protein sequence 

dapB_R GCAGAGATCGGCGTCGACGATGAT 
32
AEIGVDDD

39
 

dapB_1 GCAGAGCTCGACGCCGGCGATCCT 
32
AELDAGDP

39
 

dapB_2 GCAGAGCTCGACGCCGGCGATGAT 
32
AELDAGDD

39
 

dapB_3 GCAGAGATCGACGCCGACGATGAT 
32
AEIDADDD

39
 

dapB_4 GCAGAGCTCGAAGCCGGCGATGAT 
32
AELEAGDD

39
 

dapB_5 GCAGCGCTCGAAGCCGGCGATGAT 
32
AALEAGDD

39
 

 

All constructs were introduced in the episomally replicating vector pClik_5a_MCS under con-

trol of the native dapB promoter and expressed in the basic lysine producer C. glutamicum 

BS1. The strains were characterized on their productivity by cultivation in glucose minimal salt 

medium (Figure 5-7 and Table 5-5). 

As depicted in Figure 5-7, all strains showed exponential growth without oxygen limitation. 

Only the production yield of the side product glycine varied slightly. Regarding Table 5-4, the 

constructed strains could be classified in two groups: The first group included BS372-BS374 

(dapB_1-3) bearing the modifications G35D and V36A to change the binding pocket’s charge 

and dimension while the other consisted of BS375 (dapB_4) and BS376 (dapB_5) bearing the 

modification G35E instead of G35D with a higher molecular weight and a slightly lower acidity. 

This pattern was also reflected by the results depicted in Table 5-5. In contrast to the refer-

ence strain BS371 (dapB_R) the modifications dapB_1-3 led to an increased lysine yield while 

dapB_4-5 resulted in a reduction. The best result was achieved with BS373 (dapB_2) showing 

an improved lysine yield of about 4 %. This was also confirmed by the relatively low biomass 

production yield. Furthermore, the growth rate of BS373 was only slightly increased, which 

resulted in a strong increase of the lysine production rate as well as an increased glucose up-

take rate. The strains BS372 (dapB_1) and BS374 (dapB_3) exposed very similar values as 

BS373. In contrast to that, BS375 (dapB_4) and BS376 (dapB_5) had considerably lower pro-

duction values, which might indicate an inactivation of the modulated enzyme. 



Results and Discussion 
 

67 
 

  

 

 

 

 

 

 
 

Figure 5-7: Growth and production characteristics o f strains based on BS1 bearing different plasmids of  
pClik_5a_MCS_ dapB with engineered cofactor binding sites. The data co mprise cultivation profiles of 
BS371-BS376 (A-F) as well as the corresponding yields  for lysine, glycine and biomass formation (G-L). 
All experiments were performed as single cultivatio n in 250 mL baffled disposable shake-flasks 
equipped with online sensor spots for O 2 and pH determination in minimal salt medium with g lucose as 
sole carbon source, supplemented with 50 µg mL -1 kanamycin to maintain plasmid-based expression. 
The linear correlations between growth as well as p roduct formation and glucose consumption, respec-
tively, indicate metabolic steady-state during the cultivation. 
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Table 5-5: Growth and production characteristics on  minimal salt medium with glucose as sole carbon 
source. All strains based on BS1 bearing the plasmid  pClik_5a_MCS_ dapB with engineered cofactor bind-
ing sites. The data given are yields for biomass pr oduction (Y X/S), lysine formation (Y Lys/S ) and glycine for-
mation (Y Gly/S) as well as growth rates (µ), specific glucose upt ake rates (q Glc) and specific lysine produc-
tion rates (q Lys ). All experiments were performed as single cultiva tion in 250 mL baffled disposable shake-
flasks equipped with online sensor spots for O 2 and pH determination. The medium was additionally sup-
plemented with 50 µg mL -1 kanamycin to maintain plasmid-based expression. 

Strain Construct 
Yields 

YX/S [g mol -1] YLys/S  [mmol mol -1] YGly/S [mmol mol -1] 

BS371 dapB_R 95.4 121.6 3.6 

BS372 dapB_1 90.7 125.2 4.3 

BS373 dapB_2 90.0 127.0 4.5 

BS374 dapB_3 82.3 122.1 4.0 

BS375 dapB_4 85.0 107.6 4.8 

BS376 dapB_5 86.4 103.5 3.8 

Strain Construct 
Rates 

µ [h -1] qGlc [mmol g -1 h-1] q Lys  [mmol g -1 h-1] 

BS371 dapB_R 0.45 4.68 0.57 

BS372 dapB_1 0.45 4.91 0.62 

BS373 dapB_2 0.46 5.06 0.64 

BS374 dapB_3 0.44 5.30 0.65 

BS375 dapB_4 0.44 5.12 0.55 

BS376 dapB_5 0.43 4.93 0.51 

 

However, it must be considered that all strains held the native dapB within their genome re-

ducing the effect of the modified dapB gene gained by episomal expression. For a better elu-

cidation of the role of dapB, another cultivation set up was used. It is known that during culti-

vation on fructose only 14.4 % of the carbon flux is directed through the PPP compared to 

62.3 % on glucose resulting in a lack of NADPH (Becker et al., 2005; Kiefer et al., 2004). It 

seemed reasonable that the effect caused by a change of the cofactor specificity of DapB 

would become more pronounced if this sugar was used. Since high lysine production yields 

were observed for BS372 and BS373, both strains were then additionally cultivated in minimal 

salt medium with fructose as sole carbon source. BS371 served as a reference (Table 5-6).  

The results revealed just marginal differences between the tested strains. In contrast to the 

results on glucose, the lysine production yields of BS372 and BS373 no longer exceeded that 

of BS371. The reference strain even seemed to be superior as it had a slightly higher lysine 

production yield and rate. But since the intermediates required for an enzymatic assay were 

not available, it was not possible to verify the cofactor specificity of DapB. Thus, it cannot be 

ruled out that the positive effects of the modifications G35D and V36A on the lysine production 

yield observed for BS372-BS374 on glucose were based on another reason besides a change 

in cofactor specificity. Otherwise, decreased consumption of NADPH should have influenced 

lysine production positively, especially under limiting conditions like growth on fructose. 
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Table 5-6: Growth and production characteristics in  minimal salt medium with fructose as sole carbon 
source. All strains based on BS1 bearing the plasmid  pClik_5a_MCS_ dapB with engineered cofactor bind-
ing sites. The data given are yields for biomass pr oduction (Y X/S), lysine formation (Y Lys/S ) and glycine for-
mation (Y Gly/S) as well as growth rates (µ), specific fructose up take rates (q Frc) and specific lysine produc-
tion rates (q Lys ). All experiments were performed as single cultiva tion in 250 mL baffled disposable shake-
flasks equipped with online sensor spots for O 2 and pH determination. The medium was additionally sup-
plemented with 50 µg mL -1 kanamycin to maintain plasmid-based expression. 

Strain Construct 
Yields 

YX/S [g mol -1] YLys/S  [mmol mol -1] YGly/S [mmol mol -1] 

BS371 dapB_R 61.5 91.0 1.4 

BS372 dapB_1 62.3 89.1 2.0 

BS373 dapB_2 63.0 85.5 1.8 

Strain Construct 
Rates 

µ [h -1] qFrc [mmol g -1 h-1] qLys  [mmol g -1 h-1] 

BS371 dapB_R 0.34 5.50 0.50 

BS372 dapB_1 0.34 5.47 0.49 

BS373 dapB_2 0.36 5.73 0.49 

 

Cirilli et al. (2003) also investigated the cofactor dependency of DapB. They analyzed the 

Gram-positive bacterium Mycobacterium tuberculosis and made an alignment of the cofactor 

binding site of DapB with different bacteria including C. glutamicum. According to Cirilli et al. 

(2003), the identity and similarity of the alignment between M. tuberculosis and C. glutamicum 

was 65 % and 76 %, respectively, presenting the highest homology detected in this study. 

Interestingly, the homologue sequence to the AEIGVDDD motif of C. glutamicum was found to 

be AELDAGDP (amino acid 30-37) in M. tuberculosis. Thus, it not only reflects the main modi-

fications G35D and V36A of dapB_1-3, but also further similarities that were introduced (Table 

5-7). In the same study, Cirilli et al. (2003) tried to change the cofactor specificity of dapB in 

favor of NADH. Thereby, they focused on the (V/I)(A/G)(V/I)-XGX(X)GXXG motif and intro-

duced the modifications K9A and K11A. According to the study, these modifications led to an 

increased selectivity for NADH over NADPH of about 6-fold and 31-fold, respectively, as com-

pared to the wild type. 

 

Table 5-7: Sequence alignment of the N-terminal amin o acid sequence of DapB (EC: 1.3.1.26) from 
M. tuberculosis and C. glutamicum revealing the (V/I)(A/G)(V/I)-XGX(X)GXXG motif (bold lette rs) as well as 
the second motif at the C-terminus of the second β-strand B2 (underlined letters) (Cirilli et al., 20 03). 

Organism Construct Amino Acid Sequence 

M. tuberculosis native 1
MRVGVLGAKG KVGATMVRAV AAADDLTLSA ELDAGDPLSL

40 

C. glutamicum native 3
IKVGVLGAKG RVGQTIVAAV NESDDLELVA EIGVDDDLSL

42 

BS371 dapB_1 3
IKVGVLGAKG RVGQTIVAAV NESDDLELVA ELDAGDPLSL

42 

BS372 dapB_2 3
IKVGVLGAKG RVGQTIVAAV NESDDLELVA ELDAGDDLSL

42 

BS373 dapB_3 3
IKVGVLGAKG RVGQTIVAAV NESDDLELVA EIDADDDLSL

42 
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Furthermore, the modification K11A resulted in an increased enzyme activity of 276 % for 

NADH. Cirilli et al. (2003) pointed out that even though K9 and K11 would not directly interact 

with NADPH, both residues would promote its binding due to their highly positively charged 

environment in the region adjacent to the 2’-phosphate of NADPH. Consequently, the same 

strategy would be an attractive attempt for further analyses in C. glutamicum bearing the basic 

residues Lys11 and Arg13 at the corresponding positions. 

 

5.2.4  Modification of diaminopimelate dehydrogenas e (DDH) 

Bioinformatics analysis revealed that the IFSRR motif (amino acid 33-37) of DDH might be a 

promising target for modification due to its interaction with the 2’-phosphate residue of NADP+. 

The native sequence of the cofactor binding site as well as the engineered sequence motives 

are depicted in Table 5-8.  

 

Table 5-8: Comparison of different cofactor binding  sites of ddh. Deviations to the native sequence ( ddh_R) 
are depicted in bold letters ( ddh_1-9). 

Construct DNA Sequence (5’ � 3’) Protein sequence 

ddh_R ATCTTCTCGCGCCGG 
33
IFSRR

37
 

ddh_1 ATCTTCGAGCGCCGG 33
IFERR

37
 

ddh_2 ATCTTCCAGCGCCGG 33
IFQRR

37
 

ddh_3 ATCTTCTCGCGCTTG 33
IFSRL

37
 

ddh_4 ATCTTCTCGCGCGAG 33
IFSRE

37
 

ddh_5 ATCTTCTCGGACGAT 33
IFSDD

37
 

ddh_6 ATCTTCGAGCGCTTG 33
IFERL

37
 

ddh_7 ATCTTCGAGCGCGAG 33
IFERE

37
 

ddh_8 ATCTTCGAGGACGAT 33
IFEDD

37
 

ddh_9 ATCATCGATGTCCAG 33
IIDVQ

37
 

 

Being directly involved in the binding and stabilization of NADP+ the main interest was focused 

on Ser35, Arg36 and Arg37. Since serine is a small amino acid and arginine has a basic resi-

due, modifications were introduced to weaken the bond with the 2’-phosphate, which is char-

acterized by a comparatively large atomic diameter and a negative charge. For this reason, 

both the binding pocket’s dimension as well as the number of hydrogen bonds formed had to 

be reduced. This should be achieved by replacement of serine on the one hand (ddh_1-2) and 

by introduction of amino acids with acidic residues like glutamate and aspartate, on the other 

hand (ddh_3-5). Furthermore, combinations of both were constructed (ddh_6-9).  

All constructs were ligated into the episomally replicating vector pClik_5a_MCS under control 

of the strong promoter Peftu to enhance ddh expression. Afterwards, the plasmids were intro-

duced into C. glutamicum BS27, which carried a deletion within the ddh gene resulting in its 
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inactivation. Thus, interference by genome based ddh expression was eliminated. Further-

more, the plasmids holding the constructs Peftuddh_R and Peftuddh_1, were introduced into the 

lysine hyper producer C. glutamicum BS244.  

The mutants were analyzed by an enzymatic assay using either NADP+ or NAD+ as a cofactor 

(Table 5-9 and Figure 5-8).  

Determination of the specific enzyme activities confirmed that native ddh is specific for 

NADP+. For the basic strain C. glutamicum BS244 (2xddh), a strong NADP+-dependent activi-

ty (508 U g-1) was detected matching with previous findings (Becker et al., 2011). As ex-

pected, the ddh deletion strain BS27 (∆ddh) exposed no activity. Interestingly, the strains 

BS453 and BS474, each bearing the reference plasmid, showed very high activities for 

NADP+ (64 U mg-1). These activities can probably be ascribed to the episomal expression of 

ddh as well as its overexpression under control of the strong promoter Peftu. Typical ddh activi-

ties are about 200 U g-1 in the wild type of C. glutamicum (Becker et al., 2011; Cremer et al., 

1988) and 2.5 U mg-1 under episomal ddh expression (Cremer et al., 1991).  

 

Table 5-9: Analysis of the specific enzyme activity  [U g -1] of diaminopimelate dehydrogenase depending on 
the cofactor NADP + and NAD + of different C. glutamicum strains cultivated in deep well plates on BHI, sup-
plemented with 50 µg mL -1 kanamycin to maintain plasmid-based expression at 30 °C. BS453 and BS454 
originate from the lysine hyper producer BS244 while  the other strains are based on BS27 ( ∆ddh). All 
Peftuddh constructs were expressed by the episomal replicat ing plasmid pClik_5a_MCS. Enzyme activities 
were determined in triplicate. Mean values (± stand ard deviation) of NADP +/NAD+-dependent and total en-
zyme activities are depicted as well as the relativ e NAD+ and total enzyme activity. 

Strain Construct 

Specific Enzyme Activities [U g -1] Relative Specific Enzyme Activities [%]  

NADP+- 
dependent 

NAD+- 
dependent 

Total NADP +- 
dependent 

NAD+- 
dependent 

Total 

BS244 basic strain 508 ± 19 20 ± 1 528 ± 19 96.2 3.8 0.8 

BS453 Peftuddh_R 64211 ± 983  2044 ± 70 66255 ± 985 96.9 3.1 100.0 

BS454 Peftuddh_1 661 ± 33 1140 ± 84 1801 ± 90 36.7 63.3 2.7 

BS27 basic strain 0 > 0.01 > 0.01 - - > 0.1 

BS474 Peftuddh_R 64259 ± 1817 2096 ± 81 66356 ± 1819 96.8 3.2 100.0 

BS475 Peftuddh_1 81 ± 6 879 ± 77 960 ± 77 8.5 91.5 1.4 

BS476 Peftuddh_2 2378 ± 182 191 ± 6 2569 ± 183 92.6 7.4 3.9 

BS477 Peftuddh_3 1301 ± 58 170 ± 26 1471 ± 64 88.4 11.6 2.2 

BS478 Peftuddh_4 400 ± 34 168 ± 4 568 ± 34 70.5 29.5 0.9 

BS479 Peftuddh_5 > 1 34 ± 1 35 ± 1 1.0 99.0 > 0.1 

BS487 Peftuddh_6 5 ± 1 205 ± 13 210 ± 13 2.2 97.8 0.3 

BS488 Peftuddh_7 0 5 ± 3 5 ± 3 0 100.0 > 0.1 

BS489 Peftuddh_8 > 1 16 ± 2 17 ± 2 1.8 98.2 > 0.1 

BS490 Peftuddh_9 8 ± 0 104 ± 3 112 ± 3 6.8 93.2 0.2 
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Figure 5-8: Analysis of the specific enzyme activit y [U g -1] of the diaminopimelate dehydrogenase depend-
ing on the cofactors NADP + and NAD + of different C. glutamicum strains cultivated in BHI which was sup-
plemented with 50 µg mL -1 kanamycin to maintain plasmid-based expression at 30 °C. BS453 and BS454 
originate from the lysine hyper producer BS244 while  the other strains are based on BS27.  

 

Regarding the constructs Peftuddh_1-9, it had to be noticed that total enzyme activities were 

considerably reduced, as compared to their corresponding reference strains BS453 and 

BS454. The highest activity was detected for BS476 (Peftuddh_2) of 2.4 U mg-1 (4 % of the 

total enzyme activity, as compared to BS474), while the constructs Peftuddh_5-9 seemed to 

result in inactive enzymes. Here, total specific DDH activity was below 1 % of the reference 

level (BS474). This might be due to the higher number of modifications within the IFSRR motif 

as well as their positions. While the sequence motif Peftuddh_2 possesses only one amino acid 

exchange (S35Q), Peftuddh_5-9 had at least two modifications at position 36+37 (Peftuddh_5), 

35+37 (Peftuddh_6-8) and 34-37 (Peftuddh_9). The comparison of the total enzyme activities of 

Peftuddh_1 (S35E) with Peftuddh_4 (R37E) on the one hand and Peftuddh_2 (S35Q) with 

Peftuddh_3 (R37L) on the other hand, revealed that a conversion of the amino acid Arg37 re-

sulted in a stronger reduction of the enzyme activity than an exchange of Ser35 (Table 5-9 

and Figure 5-8) since both groups possess comparable modifications against an acidic and a 

small amino acid, respectively. Consequently, the amino acids Arg36 and Arg37 seemed to 

fulfill an important role in the enzyme’s functionality as they are strongly conserved. This might 

be explained by the number of hydrogen bonds being formed with the 2’-phosphate residue of 

NADP+. While Ser35 forms only one hydrogen bond, Arg36 and Arg37 interact by four bonds 

giving much more stability (Scapin et al., 1996). 
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In addition, the reference strains BS244, BS453 and BS454 further revealed a low activity of 

about 3-4 % with NAD+ as a cofactor. These results matched perfectly with those of Misono et 

al. (1986) who found that DDH not only uses NADP+ as a cofactor, but also NAD+ naturally, 

although with a lower specificity of 3 %. The constructs Peftuddh_5-9 showed a high depend-

ency for NAD+ according to the relative NAD+-dependent enzyme activities, however, this can 

be neglected due to the low total enzyme activities indicating an inactivation of DDH. Regard-

ing BS476-478 (Peftuddh_2-4) the relative NAD+-dependent enzyme activities shifted just 

slightly in favor of this cofactor. Interestingly, expression of Peftuddh_1 resulted in a strong re-

duction of NADP+-dependent DDH activity while the NAD+-dependent activity was conserved. 

As a consequence, only the strains BS454 and BS475, both bearing the construct Peftuddh_1, 

showed a reliable preference for NAD+ over NADP+ of 63 % and 92 %, respectively, as com-

pared to the reference constructs BS453 and BS474 (3 %). Thereby, the lower specificity of 

BS454 for NAD+ can probably be ascribed to the gene duplication of native ddh within its ge-

nome increasing its specificity for NADP+. Compared to the reference strains BS453 

(2045 U g-1) and BS474 (2097 U g-1), the specific enzyme activities using NAD+ as a cofactor 

were reduced by about 50 % in BS454 (1141 U g-1) and BS475 (880 U g-1) indicating that not 

only the enzymes preference for a cofactor was changed, but also its activity. Since 

NAD+-dependent DDH activity did not compensate the loss of NADP+-dependent activity, the 

reduction of total enzyme activity for the constructs Peftuddh_1 was even stronger. It was found 

that modification of the cofactor binding site often goes hand in hand with improved specific 

enzyme activities, but also with reduced overall enzyme activities. Thus, it is a general chal-

lenge in rational protein design to guarantee sufficient catalytic enzyme activities (Chen et al., 

1995; Katzberg et al., 2010). Here, a total enzyme activity of 2-3 % for Peftuddh_1 remained, 

when compared to the reference (Peftuddh_R). 

Nevertheless, the cofactor specificity of Peftuddh_1 was changed successfully by only one 

amino acid exchange (S�E) reducing the specificity of the new enzyme for NADP+ by about 

90 %. Future attempts should focus on the enhanced binding and stabilization of NAD+. This 

might be achieved by advanced variation of the IFSRR motif, in particular of Ser35. Another 

strategy to increase the specific enzyme activity using NADH might be the modulation of the 

N-terminal motif. For DDH, the residues Gly10 and Tyr11 seem to be attractive targets for 

modification, since they are involved in the binding of the negatively charged 2’-phosphate 

residue of NADP+ (Scapin et al., 1996). 

All strains were then characterized on the level of lysine production by cultivation on glu-

cose minimal salt medium involving an end point determination of the lysine concentration to 

derive the product yield (Table 5-10). 
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Table 5-10: Characterization of the productivity by  end point determination of the lysine concentratio n of 
different C. glutamicum strains. BS453 and BS454 originate from the lysine hy per producer BS244, while 
the other strains are based on BS27 ( ∆ddh). The Peftuddh constructs were expressed by the episomal repli-
cating plasmid pClik_5a_MCS. The data given are fina l yields for biomass production (Y X/S), lysine for-
mation (Y Lys/S ) and glycine formation (Y Gly/S) as well as growth rates (µ), specific glucose upt ake rates (q Glc) 
and specific lysine production rates (q Lys ). All experiments were performed in triplicate in MTP-48-
FlowerPlates in 1 mL minimal salt medium with glucos e as sole carbon source, supplemented with 50 µg 
mL -1 kanamycin to maintain plasmid-based expression. 

Strain Construct 
Final Yields 

YX/S [g mol -1] YLys/S  [mmol mol -1] YGly/S [mmol mol -1] 

BS244 basic strain 59.8 ± 1.2 342.4 ± 1.5 8.2 ± 0.3 

BS453 Peftuddh_R 51.8 ± 1.1 352.0 ± 4.4 6.6 ± 0.1 

BS454 Peftuddh_1 68.7 ± 0.2 235.4 ± 5.3 9.0 ± 0.3 

BS27 basic strain 81.0 ± 2.7 122.8 ± 0.5 14.0 ± 0.2 

BS474 Peftuddh_R 48.5 ± 1.3 177.6 ± 0.4 3.4 ± 0.0 

BS475 Peftuddh_1 64.7 ± 1.1 94.7 ± 1.8 6.4 ± 0.0 

BS476 Peftuddh_2 71.8 ± 0.3 129.1 ± 0.2 10.7 ± 0.0 

BS477 Peftuddh_3 65.2 ± 0.7 138.5 ± 4.3 6.5 ± 0.2 

BS478 Peftuddh_4 64.4 ± 0.9 120.1 ± 0.1 6.5 ± 0.1 

BS479 Peftuddh_5 68.3 ± 0.3 115.3 ± 3.2 7.0 ± 0.1 

BS487 Peftuddh_6 76.7 ± 0.9 77.3 ± 0.5 10.7 ± 0.1 

BS488 Peftuddh_7 75.6 ± 0.7 84.7 ± 0.8 11.9 ± 0.1 

BS489 Peftuddh_8 78.4 ± 0.3 77.9 ± 0.0 9.1 ± 0.1 

BS490 Peftuddh_9 68.1 ± 1.3 104.1 ± 2.0 7.8 ± 0.2 

Strain Construct 
Rates 

µ [h -1] qGlc [mmol g -1 h-1] q Lys  [mmol g -1 h-1] 

BS244 basic strain 0.15 ± 0.01 2.49 ± 0.05 0.85 ± 0.01 

BS453 Peftuddh_R 0.08 ± 0.00 1.63 ± 0.03 0.58 ± 0.01 

BS454 Peftuddh_1 0.15 ± 0.01 2.12 ± 0.01 0.50 ± 0.01 

BS27 basic strain 0.20 ± 0.00 2.48 ± 0.08 0.30 ± 0.01 

BS474 Peftuddh_R 0.05 ± 0.00 1.13 ± 0.03 0.20 ± 0.01 

BS475 Peftuddh_1 0.11 ± 0.01 1.77 ± 0.03 0.17 ± 0.01 

BS476 Peftuddh_2 0.14 ± 0.02 1.92 ± 0.01 0.25 ± 0.00 

BS477 Peftuddh_3 0.13 ± 0.00 1.94 ± 0.02 0.27 ± 0.01 

BS478 Peftuddh_4 0.11 ± 0.00 1.74 ± 0.03 0.21 ± 0.00 

BS479 Peftuddh_5 0.10 ± 0.00 1.50 ± 0.01 0.17 ± 0.01 

BS487 Peftuddh_6 0.17 ± 0.01 2.28 ± 0.03 0.18 ± 0.00 

BS488 Peftuddh_7 0.15 ± 0.01 1.99 ± 0.02 0.17 ± 0.00 

BS489 Peftuddh_8 0.17 ± 0.00 2.16 ± 0.01 0.17 ± 0.00 

BS490 Peftuddh_9 0.14 ± 0.01 2.04 ± 0.04 0.21 ± 0.01 
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Except for BS454, all generated strains exhibited reduced values for biomass formation and 

growth (Table 5-10). Obviously, C. glutamicum was stressed by the high ddh expression due 

to the plasmid-based expression in combination with overexpression via Peftu. The same also 

applies for the strains exhibiting low ddh activities (BS479-BS490). Though, introduced modifi-

cations resulted in inactive DDH, the expression level of the inactive protein was expected to 

be high. Such strains possessed the lowest lysine production yield. Obviously, they had suf-

fered from the metabolic burden by the high ddh expression, without a benefit through in-

creased enzyme activity. The strain BS478 on the other hand showed a DDH activity of about 

570 U g-1. Here, the positive effect of the additional ddh expression on the lysine production 

compensated the extra costs associated with the high expression level. As a consequence, 

BS478 showed a similar lysine production yield as BS27. 

As already mentioned, high levels of active DDH do influence lysine production positively. This 

was even more obvious in the genetic background of BS27 (∆ddh) confirming previous results 

(Becker et al., 2011) in which a duplication of the ddh gene resulted in an increased lysine 

production yield by 25 % in the basic lysine producer C. glutamicum BS1. In the study pre-

sented here, the lysine production yield of the reference strain BS474 expressing the native 

ddh gene was increased by 45 %. In contrast to the results of Becker et al. (2011) the growth 

was retarded, here. Thus, the lysine production yield was not only promoted by a high DDH 

activity, but could also have resulted from a decreased growth. Regarding by-product for-

mation, the strain BS474 further exhibited the lowest glycine production yield (Table 5-5).  

In the genetic background of BS244 the effect of ddh overexpression was less clear. Here, the 

lysine production yield was only slightly increased (3 %) in BS453.  

The impact of increased ddh expression should further be analyzed to improve the lysine pro-

duction performance of C. glutamicum (section 5.4.1). 
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5.3 Generation of a synthetic Promoter Library for rational Strain Engineering 

Since it is interesting to know how gene expression can be controlled by fine adjustment, an-

other strategy to optimize lysine production in C. glutamicum focused on generation of a pro-

moter library required for identification of the optimal gene expression level.  

This promoter library based on the strong promoter of the superoxide dismutase Psod and was 

constructed by random mutagenesis using GFPmut1 (Cormack et al., 1996) as a reporter 

gene. Mutagenesis of Psod was performed as described in section 4.6.5. To ensure a broad 

spectrum of different sod promoters, all ligation products, gained after transformation of 

E. coli, were isolated. The plasmid DNA mix was further used to transform the wild-type of 

C. glutamicum ATCC 13032 by electroporation and the plasmid-based gfp expression was 

analyzed using black light (Figure 5-9) and the micro bioreactor system BioLector®. The strain 

C. glutamicum BS388 (PsodGFPmut1) bearing the native sod promoter served as reference. 

 

 
 

Figure 5-9: Example of gfp expression in C. glutamicum ATCC 13032 under black light. Different strains of 
C. glutamicum bearing the plasmid pClik_5a_MCS_P sodGFPmut1 were cultivated in BHI at 30 °C and har-
vested by centrifugation resulting in varying fluor escent signals. 
 

Based on the results, preselected mutant plasmids were chosen for sequencing and distinct 

promoters were passed through another round of random mutagenesis. In the end, a total of 

four mutation rounds were performed, 400 colonies were analyzed for their gfp activity and 

thereof about 50 were further analyzed by sequencing. By doing so, 23 different mutated Psod 

sequences were determined. From the same promoters, the relative promoter activities were 

calculated (Table 5-11) and specific constructs were selected for gene expression studies 

(Figure 5-10).  

Regarding Table 5-11 and Figure 5-10, the increase of relative promoter activity with every 

new mutation round can be nicely observed. While the native Psod promoter showed the same 

activity of about 3.6 ± 0.6 [BSG:100:BSG:5] (100 %) in all measurements, this activity was already 

exceeded by 5-fold after the first mutation round. Further rounds of mutagenesis finally result-

ed in the strongest promoter analyzed. The promoter P9-42 had the highest relative promoter 

activity of 73.2 [BSG:100:BSG:5], which is equivalent to the activity of the native construct by 

more than the 20-fold.  
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Table 5-11: Analysis of the relative P sod promoter activity of selected P sod mutants. The promoter activity 
was calculated from the GFP activity plotted against  the increase of biomass at a gain of 100 and 5, re spec-
tively. Data were derived from cultivation experime nts on BHI supplemented with 50 µg mL -1 kanamycin to 
maintain plasmid-based expression at 30 °C using th e micro bioreactor system BioLector ®. Standard devia-
tions were derived from duplicates identified by DN A sequencing. 

Construct 
Mutation 
Round 

Relative Promoter Activity 
[BSG:100 : BSG:5] Construct 

Mutation 
Round 

Relative Promoter Activity 
[BSG:100 : BSG:5] 

Psod* 0 3.63 ± 0.57 P5-25 2 14.60 

P1-37 1 4.99 P5-28 2 16.02 

P1-11 1 5.09 ± 0.24 P5-13 2 18.28 

P1-08 1 11.59 ± 1.09 P6-43 2 20.69 ± 1.83 

P1-33 1 16.27 ± 0.92 P6-26 2 22.11 

P2-21 1 18.63 P5-16 2 27.04 ± 1.39 

P1-49* 1 18.91 ± 0.89 P6-49 2 33.10 

P5-15 2 6.36 ± 0.46 P5-02* 2 34.33 ± 1.71 

P5-19 2 7.90 ± 1.01 P7-29 3 53.79 ± 5.09 

P6-47 2 10.29 P7-19* 3 58.28 ± 2.05 

P5-20 2 11.11 ± 0.94 P10-18 4 58.41 

P5-22 2 12.93 P9-42 4 73.19 
* Psod constructs that were used as template for the next  mutation round 

 
 

 
Figure 5-10: Relative promoter activities  (in %) of different promoter mutants , as compared to the refe r-
ence Psod. Bold letters indicate mutants used for further stud ies while P sod mutants derived from the 
same mutation round are depicted in the same shades  of grey. 
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In addition, a sequence alignment was performed and the TSS of the native Psod construct 

predicted using the software BPROM (http:// www.softberry.com/berry.phtml). Accordingly, the 

TSS was located at position +1 and seemed to be highly conserved, as no promoter sequence 

showed a modification at this position. Referred to the native promoter sequence, the regula-

tory -35 and -10 elements of the RNA polymerase binding site were predicted to be at position 

-35 to -30 (CTGACG) and -15 to -7 (GTATATGCT), respectively (Figure 5-11). Both sequence 

elements showed a good agreement with the results published by Pátek et al. (2013). They 

reported consensus sequences for C. glutamicum of TTGNCA and GNTANANTNG for the -35 

and the extended -10 element of housekeeping promoters, respectively (homologies are de-

picted in bold letters, core hexamers are underlined).  

As shown in Figure 5-11, the -35-motif, proposed by Pátek et al. (2013), was identified in the 

mutated Psod sequences of P7-19, P10-18 and P9-42, all bearing the transitions C35T and G30A. 

Interestingly, these sequences also showed the highest relative promoter activity confirming 

the importance of this functional consensus sequence. Especially the modification C35T 

seemed to be highly conserved since nearly 80 % of the analyzed promoter sequences con-

tained this transition. Moreover, further sequence motifs were identified that were only present 

in P7-19, P10-18 and P9-42 namely CATGGCNC (-100 to -93), ACGTTG (-62 to -57) and ACA (-4 

to -2). Though the latter promoters were derived from P7-19 by random mutagenesis, these 

motives might be responsible for their strong promoter activities as they were conserved. The 

extended -10-motif (GNTANANTNG) was also identified for P1-33, P2-21, P5-15, P5-28 and P5-13 at 

position -13 to -5. 

Almost all promoter studies only focus on the -35 and -10 regions as they mediate the binding 

of the RNA polymerase, while the sequence upstream of -35 is mostly regarded as unim-

portant. Nevertheless, it had to be noticed that all mutated promoter sequences had an in-

creased GC-content in common of up to 63.5 % in P10-18, as compared to 45.3 % in the native 

Psod sequence. Particularly, at the positions -144 to -141, -127 to -123, -111 to -106, -93 to -84, 

-66 to -48, -28 to -16 and +3 to +9 transitions lead to GC-rich regions. This might be attributed 

to the use of the JBS dNTP-Mutagenesis Kit (Jena Bioscience, Jena, Germany). During muta-

genesis, the dNTP analogs 8-oxo-dGTP and dPTP were used leading to random mutations of 

A�C:T�G in a ratio of 1:1.5 and A�G:T�C:G�A:C�T in a ratio of 5:4:1:1, respectively. 

Each mutation round comprised 25 mutation cycles corresponding to a rate of mutagenesis of 

about 15 %. According to the manufacture’s protocol, the mutagenesis rate is the sum of the 

individual rates of the mutagenic substances. For 8-oxo-dGTP and dPTP this is in accordance 

with 2.2 % and 12.8 %, respectively. Thus, random mutagenesis promotes the formation of 

GC-rich sequences by transitions. The repetitive modification process might have enhanced 

this phenomenon, additionally. Consequently, any further mutation round resulted not only in 
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 -165                   -155                   -145                   -135                   -125                   -115                   -105 
Psod TAGCTGCCAA TTATTCCGGG CTTGTGACCC GCTACCCGAT AAATAGGTCG GCTGAAAAAT TTCGTTGCAA  

P1-37 
P1-11 
P1-08 
P1-33 
P2-21 
P1-49 
P5-15 
P5-19 
P6-47 
P5-20 
P5-22 
P5-25 
P5-28 
P5-13 
P6-43  
P6-26 
P5-16 
P6-49 
P5-02 
P7-29 
P7-19 
P10-18 
P9-42 

TAGCTGCCAA TTATTCCGGG CCTGTGACCC GCCGCCTAAT AAGCAAGTCG GCTGAAAGGT CCCACTGCAA 
TAGCTGCCAA TTATTCCGGG CTTGTAATCC GCTACCCGAT AAATAGGTCG GCTGAAAGAT TTCACTGCAA 
TAGCTGCCAA TTATTCCGGG CCTGTGACCC GCCACCCGGT AAGTAGGTCG GCTGGAGAAC CCCGTCGCAA 
TAGCTGCCAA TTATTCCGGG CTTATGACCC GCTACCCGGT AGATAGGTCG GCTGGAGAAT CTTGTTGCAG 
TAGCTGCCAA TTATTCCGGG CTTGTGACCC GCTACCCGGT AAGTAGGTCG GCTGGAGAAT CTCGTTGCAA 
TAGCTGCCAA TTATTCCGGG CTTGTGACCC GCCGCCCGAT AAATAGGTCG GCTGAGAAAT TTCGTTGTAA 
TAGCTGCCAA TTATTCCGGG TTCGCGACCC GCCACCCGAT GAATAGGTCG GCTGGGAGGC TCCGCTGTAA 
TAGCTGCCAA TTATTCCGGG CTTGTGATCC GCCGCCCACT AAACAGGTCG GCTGGGGGGC TTCGTCGTAA 
TAGCTGCCAA TTATTCCGGA TTCGTGACCC GCCGCCCAGT AGATGGGCTG GCTGGGAAAC TCTGTTGTAA 
TAGCTGCCAA TTATTCCGGG CTTGTGGCCC GCCGCCCGAT AGGTAGGTCG GCTGAGGAAT TTCGCTGTAA 
                             CCC GCCGCCCAAT GGATAGGCCG GCTGAGGAAC TCCGTTGTAA 
TAGCTGCCAA TTATTCCGGG CTCGTAACCT GTCACCCGAT AAACAGGCCG GCTGAGAGGT TTCGCTGTAG 
TAGCTGCCAA TTATTCCGGG CTTGTGACCC GCCGCCCGAT AAATAGGTCG GCTGAGGAAC TCCGCTGTGA 
TAGCTGCCAA TTATTCCGGG CCTATGACCC GCCGCCCGGT AAGTAGGTCG GCTGGGGAAC TCCGTTGTAG 
TAGCTGCCAA TTATTCCGGG TCCGCGACCC GCCGCCCGGT AAGTAGGTTG GCTGGGAGGT CCCGCTGTAG 
TAGCTGCCAA TTATTCCGGA CTTGCGACCC GCCGCCCGGT AAATAGGCCG GCTGAGAAGT TCCGTTATAG 
TAGCTGCCAA TTATTCCGGG CTTGTGACCC GCCACCCGAT AAACGGGTCG GCTGAGGAAC TTCGTCGTAA 
TAGCTGCCAA TTATTCCGGG CTCGCGACCC GCCGCCCAAT AAGCAGGTCG GCTGAGAAAT CTCGCTGTAA 
TAGCTGCCAA TTATTCCGGA CTTGCGACCC GCCGCCCGAT AAATAGGTCG GCTGAGAGAT TTCGCTGCAA 
TAGCTGCCAA TTATTCCGGA CCTGCGACCC GCCGCCCGGT AAGTAGGTTG GCTGGGAGGT TTCGCTGCAA 
TAGCTGCCAA TTATTCCGGG CTCGCGGCCC GCTGCCCGGT AAGCAGGCCG GCTGAGAGGT TTCGTCATGG 
TAGCTGCCAA TTATTCCGGG CTCGCGGCCC GCTGCCCGGT AAGCAGGCCG GCTGAGAGGT TTCGTCATGG 
TAGCTGCCAA TTATTCCGGG CTCGCGGCCC ACTGCCCGGT AAGTAGGCCG GTTGAGAGGC TCCGCCATGG 

 -95                   -85                     -75                     -65                    -55                     -45                    -35  -35 
Psod TATCAACAAA AAGGCCTATC ATTGGGAGGT GTCGCACCAA GTACTTTTGC GAAGCGCCAT CTGACGGATT  

P1-37 
P1-11 
P1-08 
P1-33 
P2-21 
P1-49 
P5-15 
P5-19 
P6-47 
P5-20 
P5-22 
P5-25 
P5-28 
P5-13 
P6-43  
P6-26 
P5-16 
P6-49 
P5-02 
P7-29 
P7-19 
P10-18 
P9-42 

TACCGGCAGG AGGATCTATC ATTGGAGGGT GTCGTACCAA GTACTTTCGC AAAGTGCCAC TTGACGGGTT 
TACCAACAGG GAGGCCCATC ATTGGGAGGT GTCGCACCAA GTACTTTTGC GAAGCGCCAT CTGATGGATT 
TACCGACAGA GAGGCCCACT ATTGGGAGGT GCCGCACCAA GTACTTTTGC AGAGCGCCAT CTGGTAGGCT 
CGCCAACGAA GAGGCCTATC GCTGGGGGGT GCCGCACCAA GTACCTTTGC GGAGCGCTAT CTGGCGGGTT 
TATCAACAAA AAGGCCTACC ACTGGGAGGT GTCGCACCAA GTACCTTTGC GAAACGCCAC CTGACGGATT 
TACCAACAAA GAGGCCTATC ATTGGGAGGC GTCGCACCAA GTACTCTTGC GAGGCGCCAT TTGACGGGCT 
CATCAGCAAA GGGGCCTATC ATTGGGAGGC GTCGCACCAC GTACTCGTGT GCGACGCCAC TTGGCGGGCT 
TGCCAACGAG GAGGCCTGTC ACTGGGGGGC GCCGCGCCAG GTACTCTTGC GAGGCACCGC TTGACGGGCT 
TACCAACAAA GAGGCCTATC ACTGGGAGGC GTCGCACCAA GTACTCCTGC GAGGCGCCAT TTGACGGACT 
TACCAACAAA GGGGCCTATC ATTGGGAGGC GCCGCGCCAA GCACCCTTAC GAGACGCCAT TTGACGGGCT 
TATCAACCAC GGGGTCCACC ATTGGGGGGC GCCACACCAA GTACCCCTGC GAGGCGCCAT TTGACGGGCT 
TGCCGACAGA GAGGCCTGTC GTTGGGGGGC GCCGCGCCGA GTACTCTTGC GGGGCGCCGT TTGACGGGCC 
TACCAACAGA GGGGCCTATC ATTGGGAGGC GTCGCGCCAG GTACTCTTGC GAGGCGCCAT TTGGCGGGCT 
CACCAGCGAA GAGGCCTATC ATTGGGAGGT GTCGCACCAA GTACCCTCGC GAGGCGCCAT TTGACGGGTT 
TGCCAACAAG GAGGCCTACC ATCGGGAGGC GCCGCGCCAA GTGCCCCTGC GGGGCGCCGT TTGACGGGCT 
TACCAACAAA GAGGCCTACC ATTGGGAGGC GCCGCACCAG GTACCCTTGC GGGGTGCCAT TTGGCGGGCT 
TACCAACAAA GGGGCCCATC ATTGGGGGGC GTTGCACCAG GTACTCTTGC GAGGCGCCAT TTGACGGGTT  
CGCCGACAAG GAGGCCCACC ATTGGGAGGT GCCGCACCAA GTACTCCTGC AAGGCGCCAT CTGACGGGCC 
TACCAACAAA GAGGCCTATC ATTGGGGGGC GCCGCGCTAA GCACCCTTGC GAGGCGCCAT TTGACGGGCT 
TACCAACAGA GAGGCCTATC ATTGGGGGGC GCCGCACTAG GTACCCTTGC GAGGCGCCAC TTGACGGGCC 
CACCAACAGG GGGGCCTATC GTTGGGGGGC GCCACGTTGA GTGCCCTTGC GGGGCGCCAT TTGACAGGCC 
CGCCAACAGG GGGGCCTGTC GTTGGGGGGC GCCACGTTGA GTGCCCTTGC GGGGCGCCAT TTGACAGGCC 
CACCAACAGG GGGACCTATC GTTGGGGGGC GCCACGTTGA GTGCCCTTGC GGGGCGTCAT TTGACAGGCC 

 -25                   -15     -10            -5        +1            
Psod TTCAAAAGAT GTATATGCTC GGTGCGGAAA CCTACGAAAG GATTTTTTAC CC 

P1-37 
P1-11 
P1-08 
P1-33 
P2-21 
P1-49 
P5-15 
P5-19 
P6-47 
P5-20 
P5-22 
P5-25 
P5-28 
P5-13 
P6-43  
P6-26 
P5-16 
P6-49 
P5-02 
P7-29 
P7-19 
P10-18 
P9-42 

TTCAGAAGGT GTATATGCTC GGTGCGAGGG CCTACGAAAG GATTTTTTAC CC 
TTCAGAAGGT GTGTATGCTT GGCGCGGAAA CCTACGAAAG GATTTTTTAC CC 
CTCAAAAGGC GTATACGCCC GGTGCGGGAA CCTACGAAAG GATTTTTTAC CC 
CCCAAGAGAT GTGTATACTC GGTGCGGAAA CCTACGAAAG GATTTTTTAC CC 
TCCAAAGGAT GTGTATACTC GGTGCGGAAA CCTACGAAAG GATTTTTTAC CC 
TTCAAAAGAT GTATATGCTC GGTGCGGAAA CCCACGAAAG GATTTTTTAC CC 
CTCAAAAGAT GCGTATACTC GATGCGGAGA CCCACGAAAG GATTTTTTAC CC 
TCCAAGGGGT GTATATGCTC GGTGCGGAAG CCCACGAAAG GATTTTTTAC CC 
TCCGAGAGAT GTATATGCTC GGCGTGGAGA CCCACGAAAG GATTTTTTAC CC 
TCCAAGAGCT GTATATGCTC GGTGCGGAAA CCCACGAAAG GATTTTTTAC CC 
TCCAGAAGAC GTATATGCTC GGCGTGGAAA CCCACGAAAG GATTTTTTAC CC 
TTCGAAAGAT GTATATGCTC GGTGCGGAAA CCCACGAAAG GATTTTTTAC CC 
TTCAGAAGAT GTGTATACTC GGTGCGGAAA CCCACGAAAG GATTTTTTAC CC 
CTCAAGGGAT GTGTATACTC GGTGCGGAAG CCCACGAAAG GATTTTTTAC CC 
CTCAAAAGAT GTGTATGCTC GGTGCGGAAA CCCACGAAAG GATTTTTTAC CC 
TCCGGAGGAT GTGTGCGCCC GGCGCGGAAA CCCGCGAAAG GATTTTTTAC CC 
CTCAAGAGGT GTATATGCTC AGTGCGGAAG CCTACGAAAG GATTTTTTAC CC 
CCCAGGAGGC GTATATGCTC GGTGCGGAGG CCCGCGAAAG GATTTTTTAC CC 
TCCAAGAGGT GTATATGCTC GATGCGGAAA CCTACGAAAG GATTTTTTAC CC 
TCCCAGAGGT GTATATGCTC AGTGCGGAAA CCGACGAAAG GATTTTTTAC CC 
CCCAAGGGGC GTATATGCTC GACACGGAAG CCTACGAAAG GATTTTTTAC CC 
CCCAAGGGGC GTGTATGCTC GACATGGAAG CCTACGAAAG GATTTTTTAC CC 
CCCAAGGGGC GTGTATGCTC GACACGGAAA CCTACGAAAG GATTTTTTAC CC 

 
Figure 5-11: Sequence alignment of selected P sod mutants derived from the random promoter library.  The 

alignment was performed with Geneious ® V. 6.1.6. Aberrations from the native P sod sequence are high-
lighted in color, while the TSS and the regulatory - 35 and -10 element are marked in grey.    
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stronger promoter activities, but also correlated with increased GC-contents in all subsequent 

promoter sequences within this study. The same was observed for the spacer region between 

the -35 and -10 element located at position -29 to -16. In the past, it was assumed that only its 

length would be important facilitating the interaction of the -35 and -10 element with the RNA 

polymerase holoenzyme (Dombroski et al., 1996; Young et al., 2002). Recently, studies also 

focused on the spacer’s sequence. It was found that AT-rich sequences resulted in a higher 

flexibility of the helix which is required in the downstream area during transcription. As a result, 

the activity of the promoter would be significantly increased (Hook-Barnard and Hinton, 2007; 

Liu et al., 2004). In this study, the sequence alignment depicted in Figure 5-11 demonstrated 

that the promoter activities were increased steadily with the GC-content as described before. 

While the native spacer element had a GC-content of 21.4 %, the strongest promoters (P7-19, 

P10-18 and P9-42) bearing the motif CCCCAAGGGG (-27 to -17) showed a content of 85.7 % 

after up to four rounds of random mutagenesis. This clearly indicates that the AT-content of 

the spacer region plays a rather minor role for the promoter activity, here. 

Summarized, these results demonstrate that a broad spectrum of different promoter activities 

based on the native sod promoter Psod was achieved creating a promoter library with only four 

rounds of random mutagenesis PCR. In a next step, this promoter library was used for gene 

expression studies aiming on strain engineering to improve lysine production (section 5.4). 

The calculated relative promoter activities depicted in Figure 5-10 were used to give an orien-

tation about the promoter’s strength, which can also be transferred to stable modification at-

tempts. Furthermore, the applied mutagenesis strategy might not only be interesting for the 

construction of promoter libraries, but also for site-directed mutagenesis of cofactor binding 

sites in future (section 5.2). 
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5.4 Gene Expressions Studies based on the P sod random Promoter Library 

Selected promoters, derived from the Psod library (section 5.3), were further used for gene ex-

pression studies of diaminopimelate dehydrogenase, the transketolase operon and the lysine 

exporter LysE. The modulations aimed at optimization of lysine production by fine adjustment 

of the optimal gene expression level using different Psod promoters. 
 

5.4.1  Diaminopimelate dehydrogenase as bottleneck 

In C. glutamicum, lysine is produced by the multi-stage succinylase or the single-stage dehy-

drogenase pathway, respectively. The latter branch was predicted to be the most promising 

route for lysine production via an in silico elementary mode analysis (Melzer et al., 2009). In 

addition, Becker et al. (2011) observed that overexpression of ddh improved the lysine pro-

duction yield by about 25 % in the feedback-deregulated lysine overproducer C. glutamicum 

BS1 (Lys-1). Accordingly, ddh appears a promising target for gene expression studies using 

the Psod promoter library.  

For ddh expression studies, strain construction was performed, using C. glutamicum BS1 as a 

host and BS222 (Lys-2) (Becker et al., 2011) as an additional reference bearing the duplicated 

ddh gene. A total of eight different Psod promoters including the native Psod construct were in-

serted adjacent to the start codon of ddh. Successful strain construction was verified by PCR 

while enzymatic assays were conducted as proof for gene expression and for quantification of 

the promoter activity (Figure 5-12). 
 

 
Figure 5-12: Analysis of the specific enzyme activi ty [U g -1] of the diaminopimelate dehydrogenase of dif-
ferent P sod mutants based on BS1. Cultivation was performed in deep well plates in BHI at 30 °C. Enzyme 
activities were determined in triplicate.  
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The resulting specific enzyme activities for DDH indicated a broad spectrum of different gene 

expression levels as desired (Figure 5-12). For the basic strain, C. glutamicum BS1 and the 

reference strain BS222, enzyme activities were 206 U g-1 and 476 U g-1, respectively. These 

values confirm previous results (Becker et al., 2011). Interestingly, the strain C. glutamicum 

BS529 bearing the native Psod promoter obtained about the same activity as BS222 with 

467 U g-1 indicating a duplication of ddh expression. Only in individual cases (P1-08 and P7-19), 

the promoters induced lower enzyme activities than expected (Figure 5-10). It is known that 

gene expression depends on the genomic context. Thus, related secondary structures influ-

ence transcription as well as translation (Eyre-Walker and Bulmer, 1993; Kudla et al., 2009). 

In the view of this, the other promoter activities coincided very well with the former results 

(Figure 5-10). Promoters P7-29 and P5-02, for example, were expected to increase the enzyme 

activities by the 15- and 9-fold, respectively. Here, increased ddh activities by the 12- and 

7-fold, respectively, were determined. A good agreement was also observed for P9-42. Again, 

the promoter enabled the highest enzyme activity (6543 U g-1). As a consequence, it exceed-

ed the reference strain BS529 by 14-fold compared to 20-fold as determined above (Figure 

5-10). The results demonstrate that the measured DDH enzyme activities, when referred to 

Psod, have a good and reliable agreement to the determined relative promoter activities pre-

sented in section 5.3. 

In a next step, cultivations were performed on minimal salt medium with glucose as sole car-

bon source to analyze growth and production characteristics of the novel library strains. The 

cultivations were conducted in the micro fermenter system BioLector® using a working volume 

of 1 mL. Six replicates of each strain were performed. From these, three were used to gain a 

cultivation profile (Table 5-12) while the others were harvested and pooled during exponential 

growth for RNA isolation and subsequent qRT-PCR analysis (Figure 5-13). 

Surprisingly, the overexpression of ddh via promoter exchange had no significant effect on 

lysine production. Even though BS529 showed the same ddh expression level as BS222, only 

the latter strain had an increased lysine yield. Apart from some variations in the by-product 

formation of glycine, no significant differences in the cultivation profile were observed for the 

strains BS529-BS536. Former publications testified that the plasmid-based overexpression of 

ddh had no influence on the production performance of lysine (Cremer et al., 1991; Shaw-

Reid et al., 1999). Shaw-Reid et al. (1999) explained this observation by calculating the de-

sired ddh enzyme activity needed for lysine production assuming that the estimated enzyme 

activity would have the same efficiency in both directions and a protein content of 50 % of cell 

dry weight. They declared that already the native DDH activity would exceed the cellular de-

mand to achieve the maximum production rate by four times in the basic lysine production 

strain used. Caused by episomal gene expression it would even rise to the 50-fold. Conse-

quently, lysine production would not be limited via the ddh expression level.  
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Table 5-12: Growth and production characteristics o f different P sod mutants based on BS1 for gene expres-
sion studies of the diaminopimelate dehydrogenase. The data given are yields for biomass production 
(YX/S), lysine formation (Y Lys/S ) and glycine formation (Y Gly/S) as well as growth rates (µ), specific glucose 
uptake rates (q Glc) and specific lysine production rates (q Lys ). All experiments were performed in triplicate 
in MTP-48-FlowerPlates in 1 mL minimal salt medium w ith glucose as sole carbon source. 

Strain Construct 
Yields 

YX/S [g mol -1] YLys/S  [mmol mol -1] YGly/S [mmol mol -1] 

BS1 ddh 97.1 ± 0.1 88.4 ± 0.9 8.2 ± 0.8 

BS222 2xddh 82.2 ± 1.3 118.9 ± 3.1 8.9 ± 1.2 

BS529 Psodddh 93.4 ± 3.0 83.0 ± 3.2 7.1 ± 0.6 

BS530 P7-19ddh 101.9 ± 1.9 78.6 ± 2.2 8.4 ± 0.5 

BS531 P6-43ddh 96.8 ± 4.6 83.5 ± 2.2 6.3 ± 1.4 

BS532 P7-29ddh 94.0 ± 3.4 82.0 ± 5.0 5.5 ± 1.2 

BS533 P5-19ddh 96.7 ± 3.0 80.4 ± 1.8 6.8 ± 0.2 

BS534 P1-08ddh 93.1 ± 3.1 87.0 ± 3.4 3.0 ± 1.2 

BS535 P5-02ddh 98.1 ± 1.8 78.5 ± 2.1 8.7 ± 0.8 

BS536 P9-42ddh 95.5 ± 2.2 83.9 ± 1.3 6.3 ± 0.6 

Strain Construct 
Rates 

µ [h -1] qGlc [mmol g -1 h-1] q Lys  [mmol g -1 h-1] 

BS1 ddh 0.29 ± 0.00 3.02 ± 0.02 0.27 ± 0.00 

BS222 2xddh 0.27 ± 0.01 3.28 ± 0.03 0.39 ± 0.01 

BS529 Psodddh 0.30 ± 0.01 3.17 ± 0.04 0.26 ± 0.01 

BS530 P7-19ddh 0.32 ± 0.00 3.11 ± 0.05 0.24 ± 0.01 

BS531 P6-43ddh 0.30 ± 0.00 3.06 ± 0.14 0.26 ± 0.01 

BS532 P7-29ddh 0.29 ± 0.01 3.05 ± 0.01 0.25 ± 0.02 

BS533 P5-19ddh 0.30 ± 0.01 3.08 ± 0.15 0.25 ± 0.01 

BS534 P1-08ddh 0.31 ± 0.01 3.32 ± 0.09 0.29 ± 0.00 

BS535 P5-02ddh 0.31 ± 0.00 3.11 ± 0.06 0.24 ± 0.01 

BS536 P9-42ddh 0.29 ± 0.00 3.03 ± 0.10 0.25 ± 0.00 

 

Taking the same assumptions, the basic strain BS1 could reach a maximum lysine production 

rate of 6.2 mmol g-1 h-1 according to its enzyme activity of 206.5 mU mg-1. This value exceeds 

the lysine production rate calculated for the cultivation process by 23 times. Though, this value 

is a theoretical production rate based on values derived from an in vitro experiment, the in vivo 

DDH activity might be different depending on the availability of reaction intermediates. How-

ever, the highest maximum production rates of nearly 200 mmol g-1 h-1 were observed for 

strains C. glutamicum BS532 and BS536, both exceeding the calculated lysine production 

rates by nearly the 700- and 800-fold, respectively. The lowest maximum rate was calculated 

for BS534 with 1.7 mmol g-1 h-1 which is still six times higher as required. Thus, it seems likely 

that the native DDH activity is already sufficient for lysine production. Minor deviations of the 

final production rates might be caused by variations of the growth behavior as well as meas-

urement inaccuracies. Interestingly, BS222 revealed a remarkable increased lysine production 
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performance based on the overproduction of ddh via gene duplication even though calculation 

of the maximum production rate (14.3 mmol g-1 h-1) exceeded the observed value by the 

37-fold. Regarding the gene locus of ddh, the autoregulatory transcriptional regulator lysR 

(cg2899) was identified about 400 bp downstream of ddh. In contrast to overexpression of ddh 

by gene duplication, overexpression via promoter exchange might influence the gene expres-

sion level of lysR additionally. Though the family of LysR-type transcriptional regulators 

(LTTRs) is known to function as positive regulator in prokaryotes (Schell, 1993), this does not 

exclude that induction of its target gene might influence lysine production negatively. Expres-

sion of lysR was analyzed in parallel to ddh to provide evidence if the promoter exchange, 

resulting in an overexpression of ddh, does also influence gene expression of lysR. In this 

case, only the duplication of ddh in BS222 should have no effect on the expression of lysR 

and would be identical to those of BS1 while in the strains BS529-BS536 the expression lev-

els would vary. Gene expression studies were performed via qRT-PCR. For this reason, RNA 

was isolated from exponential grown cells and analyzed with distinct primer pairs for ddh 

(Figure 5-13) and lysR (Figure 5-14). 

 
 

 

 
Figure 5-13: Quantification of the ddh-expression in different P sod mutants based on BS1 by qRT-PCR. RNA 
samples were derived from the cultivation experimen t depicted in Table 5-12. Three replicates were har -
vested and pooled during exponential growth. The da ta represent mean values with standard deviations 
from six technical replicates referred to the nativ e Psod promoter (BS529). 
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Figure 5-14: Quantification of the lysR-expression in different P sod mutants based on BS1 by qRT-PCR. 
RNA samples were derived from the cultivation exper iment depicted in Table 5-12. Three replicates were  
harvested and pooled during exponential growth. The  data represent mean values with standard deviation s 
from six technical replicates referred to the nativ e Psod promoter (BS529).  

 

The experiment revealed that ddh expression was indeed significantly increased. The relative 

concentrations of ddh transcripts gained by qRT-PCR matched very well with the enzyme ac-

tivity analyzed via enzymatic analysis. Again, BS222 and BS529 showed similar transcription 

levels while the highest was observed for BS532. Here, BS532 exceeded BS529 by the 

11-fold instead of the 14-fold as observed by the enzymatic assay. The good agreement indi-

cated a high precision of both quantification methods.  

Regarding Figure 5-14, the quantification of the lysR expression level revealed only minor  

variations around a relative concentration of 100 % referred to the native Psod construct for all 

strains. This indicates that expression of lysR was not influenced by the overexpression of 

ddh.  

In parallel to expression analysis of lysR, the strains BS222 (2xddh) and BS529 (Psodddh) 

were further analyzed in detail, since both strains showed the same ddh expression level while  

varying significantly in lysine production. For that reason, deletion strains of C. glutamicum 

BS222 and BS529 were constructed bearing a 430 bp deletion within the lysR gene. After-

wards, both deletion strains as well as the corresponding host strains were cultivated in MTP-

48-FlowerPlates on minimal salt medium with glucose as sole carbon source. The lysine pro-

duction was characterized via end point determination of the concentration. The basic lysine 

producer C. glutamicum BS1 served as additional reference (Table 5-13).  
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Table 5-13: Characterization of the productivity vi a end point determination of the lysine concentrati on of 
lysR-deletion strains based on C. glutamicum BS1. The data given are yields for biomass producti on (YX/S), 
lysine formation (Y Lys/S ) and glycine formation (Y Gly/S) as well as growth rates (µ), specific glucose upt ake 
rates (q Glc) and specific lysine production rates (q Lys ). All experiments were performed in triplicate in MTP-
48-FlowerPlates in 1 mL minimal salt medium with glu cose as sole carbon source. 

Strain Construct 
Final Yields 

YX/S [g mol -1] YLys/S  [mmol mol -1] YGly/S [mmol mol -1] 

BS1 ddh 106.6 ± 0.8 117.0 ± 4.4 6.4 ± 0.1 

BS222 2xddh 81.8 ± 0.9 140.6 ± 7.1 8.4 ± 0.2 

BS566 2xddhΔlysR 104.0 ± 1.0 87.0 ± 1.3 7.4 ± 0.2 

BS529 Psodddh 106.6 ± 0.5 105.5 ± 3.2 6.5 ± 0.3 

BS567 PsodddhΔlysR 105.1 ± 0.6 107.9 ± 5.0 6.4 ± 0.2 

Strain Construct 
Rates 

µ [h -1] qGlc [mmol g -1 h-1] q Lys  [mmol g -1 h-1] 

BS1 ddh 0.26 ± 0.01 2.48 ± 0.02 0.28 ± 0.01 

BS222 2xddh 0.28 ± 0.00 3.45 ± 0.04 0.50 ± 0.02 

BS566 2xddhΔlysR 0.27 ± 0.01 2.57 ± 0.03 0.22 ± 0.00 

BS529 Psodddh 0.26 ± 0.00 2.41 ± 0.01 0.25 ± 0.01 

BS567 PsodddhΔlysR 0.27 ± 0.00 2.61 ± 0.01 0.29 ± 0.01 

 

Again only BS222 showed an increased lysine production yield by 20 %. Interestingly, inacti-

vation of lysR in the genetic background of BS222 influences lysine production negatively 

while for the strains based on BS529 no effect was observed. Thus, the lysine production yield 

of BS566 (2xddh_ΔlysR) dropped by 25 % compared to BS1. 

Subsequent sequence analyses of BS222 and BS529 as well as their corresponding lysR de-

letion strains exposed no inadvertent modifications in the sequences of ddh or lysR that would 

explain the improved lysine production performance of BS222. Since a duplication of ddh in 

BS222 showed a significant influence on the production profile, the same would have been 

expected for a promoter-based overproduction of ddh. But for reasons not yet understood, this 

was not observed.  

 

5.4.2  Analysis of the transketolase operon 

The rationally designed strain C. glutamicum BS244 (Lys-12) by Becker et al. (2011) is well-

known for its high lysine production yield and titer as well as for its productivity. In contrast to 

traditionally derived production strains, it just comprises 12 distinct modifications. The final 

modification was the overexpression of the tkt-operon through integration of the native pro-

moter of sod. Consequently, this operon appeared to be a highly suitable target for gene ex-

pression studies using variations of Psod promoters derived from a promoter library (sec-

tion 5.3). 

For the determination of an optimal expression level, the native promoter of the tkt gene was 

replaced by the modulated Psod promoters P5-19, P1-08, P6-43, P7-29, P9-42 and P10-18 in the genetic 
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background of C. glutamicum BS242 (Lys-11) (Becker et al., 2011). C. glutamicum BS244, 

bearing the native Psod promoter for overexpression of tkt, served as reference. Strain verifica-

tion was performed by PCR, while enzymatic assays were applied to quantify gene expression 

and promoter activity (Figure 5-15). 

   

 

 
Figure 5-15: Analysis of the specific enzyme activi ty [U g -1] of the transketolase of different P sod mutants 
based on BS242. Cultivation was performed in deep we ll plates in minimal salt medium with glucose as 
sole carbon source at 30 °C. Enzyme activities were determined in triplicate.  
 

Measurement of the specific enzyme activities indicated that the tkt expression level and, thus, 

the tkt-operon was indeed modified successfully. Regarding Figure 5-15, the activities deter-

mined for the references BS242 (136 ± 3 U g-1) and BS244 (171 ± 5 U g-1) fitted perfectly with 

those published by Becker et al. (2011) presenting 140 ± 10 U g-1 and 180 ± 10 U g-1, respec-

tively. Interestingly, the specific enzyme activities were either under 200 U g-1 or above 

600 U g-1 even though the chosen Psod promoters were expected to induce a broad range of 

enzyme activities (Figure 5-10). Though enzyme activities were in total lower as expected 

(section 5.3), there was still an obvious rise of TKT activity of up to 867 ± 27 U g-1 (P9-42). 

Compared to the native Psod construct, the tkt expression was increased by about four times 

using P6-43, P7-29 and P10-18 and even five times with P9-42.  

To analyze the effect of different tkt expression levels on the lysine production performance, 

cultivations were performed in a micro fermenter system using a working volume of 1.5 mL  

minimal salt medium with glucose as sole carbon source. Six replicates of each strain were 

performed. Thereof, three were used for growth and production characteristics (Table 4-14) 

while the others were harvested and pooled during exponential growth for RNA isolation and 

subsequent qRT-PCR analysis (Figure 5-16). 
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Table 5-14: Growth and production characteristics o f different P sod mutants based on BS242 for gene ex-
pression studies of the transketolase operon. The d ata given are yields for biomass production (Y X/S), ly-
sine formation (Y Lys/S ) and glycine formation (Y Gly/S) as well as growth rates (µ), specific glucose upt ake 
rates (q Glc) and specific lysine production rates (q Lys ). All experiments were performed in triplicate in MTP-
48-FlowerPlates in 1.5 mL minimal salt medium with g lucose as sole carbon source. 

Strain Construct 
Yields 

YX/S [g mol -1] YLys/S  [mmol mol -1] YGly/S [mmol mol -1] 

BS242 tkt 54.1 ± 0.9 301.6 ± 21.4 2.8 ± 0.5 

BS244 Psodtkt 50.2 ± 1.6 358.2 ± 8.4 3.5 ± 0.4 

BS506 P5-19tkt 57.4 ± 0.8 330.5 ± 17.3 3.4 ± 0.2 

BS507 P1-08tkt 56.9 ± 0.8 356.0 ± 25.5 3.6 ± 0.1 

BS508 P6-43tkt 51.9 ± 0.8 359.7 ± 9.2 5.2 ± 0.3 

BS509 P7-29tkt 56.6 ± 1.2 319.7 ± 12.2 5.7 ± 0.2 

BS526 P9-42tkt 56.7 ± 2.2 315.9 ± 3.7 5.4 ± 0.2 

BS527 P10-18tkt 59.4 ± 0.5 298.4 ± 2.6 6.2 ± 0.2 

Strain Construct 
Rates 

µ [h -1] qGlc [mmol g -1 h-1] q Lys  [mmol g -1 h-1] 

BS242 tkt 0.15 ± 0.00 3.28 ± 0.21 0.99 ± 0.06 

BS244 Psodtkt 0.16 ± 0.01 3.55 ± 0.20 1.27 ± 0.10 

BS506 P5-19tkt 0.15 ± 0.01 3.08 ± 0.15 1.02 ± 0.02 

BS507 P1-08tkt 0.16 ± 0.00 3.30 ± 0.11 1.17 ± 0.05 

BS508 P6-43tkt 0.14 ± 0.00 3.16 ± 0.01 1.14 ± 0.03 

BS509 P7-29tkt 0.17 ± 0.00 3.54 ± 0.10 1.13 ± 0.02 

BS526 P9-42tkt 0.16 ± 0.01 3.16 ± 0.25 1.00 ± 0.09 

BS527 P10-18tkt 0.15 ± 0.00 2.98 ± 0.10 0.89 ± 0.04 
 

 

The cultivation experiments revealed significantly improved lysine production yields for BS244, 

BS507 and BS508, as compared to BS242. Again the results correlated with those of Becker 

et al. (2011) neglecting differences in the growth rate and the lysine concentration that might 

be caused due to the different cultivation systems. The reported that an overexpression of tkt 

enhanced lysine production by about 18 % in BS244 using the native Psod promoter. In this 

study, the lysine production yield of BS244 was increased by 19 % referred to BS242. Nearly 

the same was observed for BS507 and BS508. Since in some cases variations of the inocu-

lum’s vitality and cell concentration might cause aberrations from the actual cultivation profile, 

a replication of the cultivation experiment with subsequent determination of the final lysine 

concentrations was performed. The determined values are depicted in the appendix (Table 

7-2) and revealed that only BS244 and BS507 showed a reliable improved lysine production 

performance. 

Subsequently, RNA of exponentially grown cells was isolated and qRT-PCR with a distinct 

primer pair was performed to analyze the transcription level of tkt (Figure 5-16). 
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Figure 5-16: Quantification of the tkt-expression in different P sod mutants based on BS242 by qRT-PCR. 
RNA samples were derived from the cultivation exper iment depicted in Table 5-14. Three replicates were  
harvested and pooled during exponential growth. The  data represent mean values with standard deviation s 
from six technical replicates referred to the nativ e Psod promoter (BS244).  
 

 

Quantification of the relative tkt expression level by qRT-PCR verified the results gained via 

the enzymatic assay. Again, the strongest tkt activity was observed for P9-42 followed by P6-43, 

P7-29 and P10-18. Comparing the cultivation profile with Figure 5-15 and Figure 5-16, the data 

revealed that significantly increased TKT activities caused increased biomass and glycine 

production yields as well as growth rates, but did not further improve lysine production. In con-

trast to that, the highest lysine production yields were found for TKT activities that varied 

around the activity of the native Psod construct. This indicates that for further optimization at-

tempts, a more restricted selection of promoter activities needs to be chosen that does not 

exceed P6-43 but rather varies around the activity of the native sod promoter and P1-08. 

Nevertheless, it is interesting to note that the final lysine production yield of BS244 and BS507 

was enhanced by about 20 % compared to BS242 even though very similar TKT activities and 

expression levels were observed (125-200 % in BS244 and 89-137 % in BS507). This obser-

vation underlines the importance of promoter libraries for transcriptional “fine-tuning” to modu-

late metabolic fluxes and, thus, to improve lysine production. Other authors also emphasized 

that it is important to regulate gene expression accurately (Ravasi et al., 2012; Rytter et al., 

2014). Jensen et al. (1993) for example were able to regulate gene expression in a small 

range and in both directions by a promoter exchange against inducible promoters using IPTG. 

They suggested that gene expression should be controlled around its native level. As depicted 

in Figure 5-10, the promoter library constructed in this study also provides a broad range of 

different expression intensities as well as the opportunity to modulate gene expression in 

small doses. A further plus of this study is that the generated production hosts are genetically 

stable and the production processes are independently from further additives (e.g. inducer).  
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5.4.3  Variation of the lysine export rate by LysE 

It was reported that lysine export was realized via the translocator LysE which is particularly 

important in the case of high intracellular lysine concentrations to ensure the cellular function-

ality. It was also found that overexpression of lysE in C. glutamicum ATCC13032 increased 

the lysine excretion rate significantly (Vrljic et al., 1996). By elementary mode analyses, it was 

further predicted that overexpression of lysE would enhance lysine production (Melzer et al., 

2009). Consequently, expression of lysE and its influence on lysine production should be ana-

lyzed in more detail. For this reason, the strain BS244 (Lys-12) (Becker et al., 2011) was re-

garded as a suitable host for gene expression studies of lysE using the Psod promoter library 

described in section 5.3. 

Strain construction was performed by fusion PCR, electroporation and homologue recombina-

tion. A total of three strains were designed with stable genomic modifications bearing the pro-

moters P7-29, P7-19 and P9-42. Besides the host strain BS244, the strain BS290 served as refer-

ence controlling lysE expression by the native Psod promoter. As for LysR, analysis of the pro-

tein’s functionality via enzymatic assay was inapplicable for LysE. Consequently, verification 

of gene modulation and its impact on transcription were verified via PCR and qRT-PCR, re-

spectively. Therefore, all strains were cultivated in a micro fermentation system and analyzed 

for their growth and production characteristics in minimal salt medium using glucose as sole 

carbon source (Table 5-15). RNA was isolated from cells harvested during exponential growth 

and expression studies of lysE were performed via qRT-PCR (Figure 5-17). 

 

 
Figure 5-17: Quantification of the lysE-expression in different P sod mutants based on BS244 by qRT-PCR. 
RNA samples were derived from the cultivation exper iment depicted in Table 5-15. Three replicates were  
harvested and pooled during exponential growth. The  data represent mean values with standard deviation s 
from six technical replicates referred to the nativ e Psod promoter (BS290).  
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According to the results gained by qRT-PCR, lysE expression was successfully altered. It was 

found that already the native Psod promoter increased the native lysE expression level by four 

times while the promoters P7-29, P7-19 and P9-42 exceeded those level considerably. Compared 

to the native Psod promoter, the strongest expression was quantified for P7-29 correlating to an 

overexpression by up to the 11-fold. Interestingly, nearly the same expression level was ob-

served for P7-19 while it provoked a rather low gene expression of ddh (section 5.4.1). Again, 

this demonstrates that the genomic context is significantly involved in gene regulation (Eyre-

Walker and Bulmer, 1993; Kudla et al., 2009). 

The functionality of the export protein was analyzed by its impact on the cultivation profile. It is 

obvious that an excessive overexpression of a target gene would influence lysine production 

and bacterial growth negatively. In this case, a shift of metabolic fluxes might result in an im-

balance of metabolites or cause new bottle necks. In addition, production of the target protein 

is not only metabolically cost-intensive, but high amounts of the same protein might also dis-

turb the cellular functionality as observed before (section 5.2.4). Besides, it is evident that es-

pecially overexpression of an exporter like lysE needs to be regulated with caution to avoid 

destruction of the cell wall. This was also confirmed by the results of Bellmann et al. (2001), 

who found that by nature lysE expression is strongly controlled through the positive regulator 

LysG and an additional inducer (lysine or arginine). They further described that the system 

seemed to be able to react highly flexible indicated by an overexpression of lysE by up to the 

20-fold using LysG. 

 
 

Table 5-15: Growth and production characteristics o f different P sod mutants based on BS244 for gene ex-
pression studies of the lysine exporter. The data g iven are yields for biomass production (Y X/S) and lysine 
formation (Y Lys/S ) as well as growth rates (µ), specific glucose upt ake rates (q Glc) and specific lysine pro-
duction rates (q Lys ). All experiments were performed in triplicate in MTP-48-FlowerPlates in 1 mL minimal 
salt medium with glucose as sole carbon source. The  data of BS244 were derived from Table 5-14. 

Strain Construct 
Yields 

YX/S [g mol -1] YLys/S  [mmol mol -1] 

BS244 lysE 50.2 ± 1.6 358.2 ± 8.4 

BS290 PsodlysE 59.4 ± 2.7 318.3 ± 5.5 

BS542 P7-29lysE 43.7 ± 3.0 391.9 ± 5.9 

BS550 P7-19lysE 36.4 ± 1.2 369.0 ± 13.8 

BS551 P6-43lysE 54.4 ± 0.8 330.9 ± 2.5 

Strain Construct 
Rates 

µ [h -1] qGlc [mmol g -1 h-1] q Lys  [mmol g -1 h-1] 

BS244 lysE 0.16 ± 0.01 3.55 ± 0.20 1.27 ± 0.10 

BS290 PsodlysE 0.23 ± 0.01 3.81 ± 0.38 1.21 ± 0.12 

BS542 P7-29lysE 0.08 ± 0.01 1.78 ± 0.29 0.70 ± 0.11 

BS550 P7-19lysE 0.11 ± 0.01 3.10 ± 0.24 1.11 ± 0.04 

BS551 P6-43lysE 0.15 ± 0.01 2.77 ± 0.18 0.92 ± 0.06 
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Regarding the results gained by cultivation (Table 5-15), it can be seen that the highest lysine 

production yields were determined for C. glutamicum BS542 and BS550. Thus, lysine produc-

tion was improved by 9 % and 3 %, respectively, as compared to the reference strain BS244. 

This can probably be ascribed to their increased lysE expression levels. Quantification via 

qRT-PCR indicated that both strains revealed similar high expression rates. As observed be-

fore, improved lysine production yields partly correlate with slightly retarded glucose uptake 

rates. According to the cultivation profile, this also holds for BS542 and BS550 as compared 

to BS244. In contrast to that, increased biomass production yields were determined for BS290 

and BS551 while their lysine production performances were reduced. Especially the 4-fold 

overexpression of lysE induced by Psod in BS290 had a positive impact on the cell viability as 

indicated by the increased values for growth, biomass formation and glucose uptake. Never-

theless, the best results were achieved using BS244. The host strain revealed not only a good 

production performance, but also good values related to bacterial growth resulting in the high-

est specific lysine production rate.  

As mentioned before, overexpression of lysE needs to be regulated carefully to maintain the 

cellular functionality. This can not only be characterized by the cultivation profile, but also by 

analysis of the by-product formation (Table 5-16).  

 

Table 5-16: Characteristic of by-product formation of different P sod mutants based on BS244 for gene ex-
pression studies of the lysine exporter. The data g iven are yields for glycine (Y Gly/S), glutamate (Y Glu/S), ar-
ginine (Y Arg/S ) and alanine (Y Ala/S) formation. All experiments were performed in trip licate in MTP-48-
FlowerPlates in 1 mL minimal salt medium with glucos e as sole carbon source. The data of BS244 were 
derived from Table 5-14. 

Strain Construct 
Yields 

YGly/S [mmol mol -1] YGlu/S [mmol mol -1] YArg/S  [mmol mol -1] YAla/S [mmol mol -1] 

BS244 lysE 4.5 ± 0.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

BS290 PsodlysE 6.2 ± 0.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

BS542 P7-29lysE 3.6 ± 0.3 0.0 ± 0.0 48.9 ± 2.2 20.9 ± 0.8 

BS550 P7-19lysE 1.5 ± 0.0 0.0 ± 0.0 41.6 ± 1.9 0.5 ± 0.5 

BS551 P6-43lysE 3.9 ± 0.4 5.1 ± 0.2 29.1 ± 1.0 8.0 ± 1.0 
 

 

Regarding Table 5-16, the production yields of glycine varied only slightly in all strains. Inter-

estingly, the yields for arginine and alanine production were increased for BS542, BS550 and 

BS551 correlating with slightly decreased glycine production yields. BS551 even secreted 

small amounts of glutamate, a pre-curser in arginine production. According to qRT-PCR anal-

ysis, those strains revealed the highest lysE expression levels analyzed indicating high en-

zyme activities. It was found that LysE not only transports lysine, but also arginine (Bellmann 

et al., 2001). Consequently, the presence of extracellular arginine can probably be ascribed to 

the increased export activity of LysE resulting in a correlation of boosted lysine as well as ar-

ginine export. 
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Taken together, it was shown that the transcription level of lysE was successfully modulated. 

All strains constructed indicated a functional lysE expression as was revealed by the differ-

ences in their cultivation profiles. Furthermore, two strains (BS542 and BS550) were identified 

with improved lysine production yields by about 9 % and 3 %, respectively. Quantification via 

qRT-PCR confirmed that both strains had very similar lysE transcription levels. Though this 

seemed to be just a marginal improvement, even small changes of the final titer have a big 

impact on the profitability of a production process regarding the high production capacity of 

industrial fermentation processes. Considering the loss of carbon that coincided with the by-

product formation of arginine (C6-molecule) and alanine (C3-molecule) a redirection of the 

fluxes towards lysine production might have the potential to further improve the lysine produc-

tion profile by up to 17 %. 
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6 Conclusion and Outlook 
___________________________________________________________________________ 
 

In the present work, novel tools were generated to improve lysine production in 

C. glutamicum, on the level of bioprocess and genetic engineering. 

In the first part of this work, a method was developed that allows robust prediction of the dis-

solved oxygen concentration during aerobic growth. This method based on a mathematical 

correlation and predicted the volumetric gas-liquid mass transfer coefficient (kLa) in disposable 

shake-flasks from filling volume, vessel size and agitation speed. Exemplified for cultivation of 

C. glutamicum, it was demonstrated that the application enables a reliable design of culture 

conditions and allows the prediction of the maximum possible cell concentration achievable 

without oxygen limitation. The new approach is of particular value for cultivations with costly 

carbon sources and nutrient additives to minimize costs. It can further be used to avoid anaer-

obic growth which is related to by-product formation like acetate.  

The second part of this work focused on rational genetic engineering of C. glutamicum. To 

begin with, the influence of two isozymes of glyceraldehyde-3-phosphate dehydrogenase 

(GapA and GapN) on lysine production was analyzed. In the background of the lysine hyper 

producer of C. glutamicum, it was found that episomal-based overexpression of gapA resulted 

in a considerably increased lysine yield by 58 %. The different cofactor specificity of GapA and 

GapN further revealed that both the basic and the lysine hyper producer of C. glutamicum 

were limited by the availability of NADPH. As a consequence, strategies were developed to 

overcome this limitation. One strategy was the modulation of the nucleotide binding fold of 

NADP(H)-dependent enzymes, in order to change their cofactor specificity to NAD(H) on DNA 

level. Based on bioinformatics analysis, site-directed modifications were successfully intro-

duced within the nucleotide binding sites of diaminopimelate dehydrogenase (DDH) and dihy-

drodipicolinate reductase (DapB). Cultivation experiments revealed an improved final lysine 

yield of 9 % by episomal expression of DapB. In the case of DDH, enzymatic assays showed 

that the cofactor specificity was modified by only one amino acid exchange resulting in an al-

most complete deregulation of DDH for the cofactor NADP(H), while its native 

NAD(H)-dependency was conserved. However, lysine production was not increased which 

might be due to the reduced overall enzyme activity of 2-3 %. This, however, is a general chal-

lenge in protein design often described (Chen et al., 1995; Katzberg et al., 2010). The results 

illustrated that engineering of cofactor specificity is an effective instrument to modify the cofac-

tor dependency and availability in a metabolic network. The implementation of further modifi-

cations within the nucleotide binding fold might enhance the cofactor specificity as well as the 

enzyme activity, in future. 

Besides, a promoter library based on the strong promoter of sod, encoding superoxide dis- 
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mutase, was constructed by random mutagenesis using gfp as a reporter gene. The generat-

ed library showed an extraordinary broad range of different relative promoter activities. For 

metabolic engineering of C. glutamicum, selected promoters were used to modulate the gene 

expression of DDH, the transketolase operon and the lysine exporter LysE as was successful-

ly demonstrated by enzymatic assays and qRT-PCRs. Modulation of ddh expression by pro-

moter exchange, however, had no effect on lysine production, even though for reasons not yet 

understood, a duplication of ddh in the same host strain resulted in an increased lysine pro-

duction yield. Calculation of the theoretical maximum lysine production rate indicated that ly-

sine production might not be limited by ddh expression, since its native activity exceeded the 

cellular demand at least in vitro. In contrast to that, overexpression of the tkt-operon and lysE 

improved the lysine yield significantly by 19 % and 9 %, respectively. Only in a few cases, 

much higher lysine yields were partly linked to slightly decreased glucose uptake rates which 

might be overcome by further rounds of engineering. In summary, it was successfully demon-

strated that the promoter library has a high potential to improve lysine production by modula-

tion of distinct gene expression levels. The success of this engineering strategy was proven at 

different gene loci. Particularly, the tkt-operon and lysE seem to be attractive targets for tran-

scriptional “fine-tuning” in future. By doing so, one should focus on a more restricted selection 

of promoter activities to achieve accurate gene regulation. Besides, gapA might be an inter-

esting target for metabolic engineering of cofactor specificity as well as of gene expression 

levels. There is also evidence that lysine production might be further enhanced by a simulta-

neous overexpression of gapA and NAD kinase (Lindner et al., 2010; Wang et al., 2013). 

Henceforth, validated targets (Becker et al., 2011; Wittmann and Becker, 2007; Xu et al., 

2014b) can be re-investigated for fine-tuned expression to identify optimal gene expression 

levels using the promoter library. In addition, the identification of new bottle necks is indispen-

sable to ensure a progressive strain optimization. Implementation of a plasmid library including 

all genes that are involved in substrate consumption and lysine production might be a chance 

to overcome this issue. Introduction of target genes into an episomal replicating vector sys-

tem, e.g. pClik_5a_MCS, would not only offer easy vector and strain construction, but also 

high flexibility and adaptability to current host strains. By integration of the Psod promoter li-

brary, a more specific genome-based fine-tuning might be achieved.  

Beyond, strategies presented in this work can be integrated with other production processes 

using C. glutamicum that are limited by an insufficient cofactor supply like the biosynthesis of 

L-methionine (Park et al., 2007) and the production of lysine from lactic acid derived from 

grass silage juice (Neuner et al., 2013). In future, sustainable production processes will gain 

increasingly in importance to avoid a competition with food industry and human nutrition 

(Buschke et al., 2013) as well as for economic aspects (Banat et al., 1998). The approaches 

presented here might contribute this development.  
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7 Appendix 
___________________________________________________________________________ 
 

7.1 Primers  

All primers used for strain construction and verification were purchased from Life Technolo-

gies (Glasgow, Paisley, United Kingdom) and are listed in Table 7-1. 

 

Table 7-1: Sequence and annealing temperature T a of the site-specific primers used in the present w ork for 
plasmid construction and strain validation 

Primer DNA Sequence (5’ � 3’) Ta [°C] Construction 

212 _BamHI_rv GATCGGATCCAATTTAACTTGTTCGGCC 57 dapB end primer with 
restriction site BamHI 

213_XhoI_ fw GATCCTCGAGAACTACCTGCGGAACGGG 63 dapB end primer with 
restriction site XhoI 

214_dapB_1_rv CAAAGGATCGCCGGCGTCGAGCTCTGCAAC 65 AELDAGDP 

236_dapB_1_fw GCAGAGCTCGACGCCGGCGATCCTTTGAGCCTT 68 AELDAGDP 

216_dapB_2_rv CAAATCATCGCCGGCGTCGAGCTCTGCAAC 64 AELDAGDD 

217_dapB_2_fw GTTGCAGAGCTCGACGCCGGCGATGATTTG 64 AELDAGDD 

218_dapB_3_rv CAAATCATCGTCGGCGTCGATCTCTGCAAC 61 AEIDADDD 

219_dapB_3_fw GTTGCAGAGATCGACGCCGACGATGATTTG 61 AEIDADDD 

220_dapB_4_rv CAAATCATCGCCGGCTTCGAGCTCTGCAAC 63 AELEAGDD 

221_dapB_4_fw GTTGCAGAGCTCGAAGCCGGCGATGATTTG 63 AELEAGDD 

222_dapB_5_rv CAAATCATCGCCGGCTTCGAGCGCTGCAAC 64 AALEAGDD 

223_dapB_5_fw GTTGCAGCGCTCGAAGCCGGCGATGATTTG 64 AALEAGDD 

224 _SmaI_rv GATCCCCGGGGGTCCAGCGAAGACACCC 67 ddh end primer with 
restriction site SmaI 

385_MluI_ fw GCATACGCGTCATCCCAGGTATCGATC 60 ddh end primer with 
restriction site MluI 

378_fusion_fw TGGAGGATTACAAGAACTGGCCGTTACCCTGCGA 64 Fusion primer Peftuddh 

379_fusion_rv TCGCAGGGTAACGGCCAGTTCTTGTAATCCTCCA 64 Fusion primer Peftuddh 

380_fusion_fw TCCAGGAGGACATACAATGACCAACATCCGCG 63 Fusion primer Peftuddh 

381_fusion_rv CGCGGATGTTGGTCATTGTATGTCCTCCTGGA 63 Fusion primer Peftuddh 

226_ddh_1_rv GGTGGCCCGGCGCTCGAAGATTCC 63 IFERR 

227_ddh_1_fw GGAATCTTCGAGCGCCGGGCCACC 63 IFERR 

228_ddh_2_rv GGTGGCCCGGCGCTGGAAGATTCC 63 IFQRR 

229_ ddh_2_fw GGAATCTTCCAGCGCCGGGCCACC 63 IFQRR 

230_ ddh_3_rv GGTGGCCAAGCGCGAGAAGATTCC 61 IFSRL 

231_ ddh_3_fw GGAATCTTCTCGCGCTTGGCCACC 61 IFSRL 

232_ ddh_4_rv GGTGGCCTCGCGCGAGAAGATTCC 61 IFSRE 

233_ ddh_4_fw GGAATCTTCTCGCGCGAGGCCACC 61 IFSRE 

234_ ddh_5_rv GGTGGCATCGTCCGAGAAGATTCC 58 IFSDD 

235_ ddh_5_fw GGAATCTTCTCGGACGATGCCACC 58 IFSDD 

270_ddh_6_rv GGTGGCCAAGCGCTCGAAGATTCC 60 IFERL 

271_ddh_6_fw GGAATCTTCGAGCGCTTGGCCACC 60 IFERL 
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Primer DNA Sequence (5’ � 3’) Ta [°C] Construction 

272_ddh_7_rv GGTGGCCTCGCGCTCGAAGATTCC 61 IFERE 

273_ddh_7_fw GGAATCTTCGAGCGCGAGGCCACC 61 IFERE 

274_ddh_8_rv GGTGGCATCGTCCTCGAAGATTCC 58 IFEDD 

275_ddh_8_fw GGAATCTTCGAGGACGATGCCACC 58 IFEDD 

291_ ddh_9_rv GGTGGCCTGGACATCGATGATTCC 58 IIDVQ 

292_ ddh_9_fw GGAATCATCGATGTCCAGGCCACC 58 IIDVQ 

254_GFPmut1_rv GATCTCTAGATTATTTGTAGAGCTC 60 GFPmut1 end primer 
with restriction site ApaI 

257_ApaI_fw CGTCGGGCCCTAGCTGCCAATTATTCCGG 64 Psod end primer with 
restriction site ApaI 

258_fusion_fw CGAAAGGATTTTTTACCCATGGTCCAAACTAGTTC 59 Fusion primer  
PsodGFPmut1 

259_fusion_rv GAACTAGTTTGGACCATGGGTAAAAAATCCTTTCG 59 Fusion primer  
PsodGFPmut1 

418_BamHI_fw TTCAGGATCCGCCACGGGATTAGCTTCAC 61 Psod end primer with 
restriction site BamHI 

423_XbaI_rv CGTCTCTAGACGCATTCGGGTTCAACCAG 61 lysE end primer with 
restriction site XbaI 

419_fusion_rv TTGGCAGCTACGTGACCTATGGAAGTACT 59 Fusion primer  
PsodlysE 

420_fusion_fw ATAGGTCACGTAGCTGCCAATTATTCCGG 59 Fusion primer  
PsodlysE 

421_fusion_rv TGATCACCATGGGTAAAAAATCCTTTCG 

 

54 Fusion primer  
PsodlysE 

422_fusion_fw GATTTTTTACCCATGGTGATCATGGAAATCTTCATT 
ACAGG 

61 Fusion primer  
PsodlysE 

428_XhoI_fw AAGGCTCGAGATGTGTCTTGAAGGTTTTCA 57 Psod end primer with 
restriction site XhoI 

433_XbaI_rv AGGTTCTAGAGGACTGCCTTTTGAACGCCA 60 ddh end primer with 
restriction site XbaI 

429_fusion_rv TTGGCAGCTAGTTCTTGTAATCCTCCAAA 56 Fusion primer  
Psodddh 

430_fusion_fw TTACAAGAACTAGCTGCCAATTATTCCGG 56 Fusion primer  
Psodddh 

431_fusion_rv TGTTGGTCATGGGTAAAAAATCCTTTCG 54 Fusion primer  
Psodddh 

432_fusion_fw TTTTTTACCCATGACCAACATCCGCGTAG 57 Fusion primer  
Psodddh 

442_BamHI_fw AAGGCTCGAGATGTGTCTTGAAGGTTTTCA 59 Psod end primer with 
restriction site BamHI 

447_XbaI_rv AGGTTCTAGAGGACTGCCTTTTGAACGCCA 59 tkt end primer with re-
striction site XbaI 

443_fusion_rv TTGGCAGCTAGTTCTTGTAATCCTCCAAA 61 Fusion primer Psodtkt 

444_fusion_fw TTACAAGAACTAGCTGCCAATTATTCCGG 55 Fusion primer Psodtkt 

445_fusion_rv TGTTGGTCATGGGTAAAAAATCCTTTCG 55 Fusion primer Psodtkt 

446_fusion_fw TTTTTTACCCATGACCAACATCCGCGTAG 59 Fusion primer Psodtkt 

489_ΔlysR_fw CGTGCTCGAGATCTGGATTTCCGCCAGGTT 63 Deletion of lysR 

490_ΔlysR_rv GTGGAATTCCGCGGCAGTTAACTCCACCGA 63 Deletion of lysR 
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Primer DNA Sequence (5’ � 3’) Ta [°C] Construction 

491_ΔlysR_fw TAACTGCCGCGGAATTCCACCTTTCAGTTG 60 Deletion of lysR 

492_ΔlysR_rv TCAATCTAGAGCCAGGCTGAAACAGTCGGG 61 Deletion of lysR 

239_gapN_fw GATCCTCGAGCTATTATTTGCTGTTTGACA 56 gapN end primer with 
restriction site XhoI 

240_gapN_rv GATCGGATCCCAATCAACCACTGTGTTAAA 57 gapN end primer with 
restriction site BamHI 

476_gapA_fw AGATGGATCCGCCGAAGATCTGAAGATTCC 60 gapA end primer with 
restriction site BamHI 

477_gapA_rv ATTGTCTAGAATTGTGTGGCGCTGGCACCG 61 gapA end primer with 
restriction site XbaI 

 

 

7.2 Analyses of  tkt Mutants 

The strains were analyzed by end point determination of the lysine concentration. 

 

Table 7-2: Growth and production characteristics of  different P sod mutants based on BS242 for gene ex-
pression studies of the transketolase operon. The d ata given are yields for lysine formation (Y Lys/S ) gained 
by end point determination of the final lysine and substrate concentration. Cultivation was performed in 
triplicate in deep well plates using 1.5 mL minimal  salt medium with glucose as sole carbon source at 
30 °C. 

Strain Construct 
Final Lysine Concentration [mM] Final Yields 

1. 2. 3. YLys/S  [mmol mol -1] 

BS242 tkt 18.8 18.6 17.9 331.9 ± 9.2 

BS244 Psodtkt 20.7 21.3 21.4 380.8 ± 6.7 

BS506 P5-19tkt 20.0 18.5 18.5 342.4 ± 16.0 

BS507 P1-08tkt 22.4 21.9 21.8 397.2 ± 6.3 

BS508 P6-43tkt 20.4 20.3 20.2 365.4 ± 2.0 

BS509 P7-29tkt 21.3 21.2 20.6 379.2 ± 6.7 

BS526 P9-42tkt 19.9 18.9 19.2 348.1 ± 9.3 

BS527 P10-18tkt 20.5 19.6 19.7 358.9 ± 9.3 
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8 Abbreviations and Symbols 
___________________________________________________________________________ 
 

8.1 Abbreviations 

aa  amino acid 

ABU  α-amino butyric acid  

acnA  gene, encoding aconitrate hydratase 

asd   gene, encoding aspartate-semialdehyde dehydrogenase  

aspC  gene, encoding aspartate aminotransferase 

ATCC  American Type Culture Collection 

ATG   adenine-thymidine-guanine, start codon  

ATP   adenosine triphosphate  

ADP   adenosine diphosphate 

BHI   brain heart infusion  

BHIS   brain heart infusion with sorbitol  

bp   base pair(s) 

BLAST  Basic Local Alignment Search Tool 

BSA  bovine serum albumin  

cDNA  complementary DNA 

CM   complex medium  

CO2  carbon dioxide 

CP  crossing point 

dapA   gene, encoding dihydrodipicolinate synthetase  

dapB   gene, encoding dihydrodipicolinate reductase 

DapB  dihydrodipicolinate reductase 

dapC   gene, encoding succinyldiaminopimelate aminotransferase  

dapD   gene, encoding tetrahydrodipicolinate succinylase  

dapE   gene, encoding succinyl-L-diaminopimelate desuccinylase  

dapF   gene, encoding diaminopimelate epimerase  

DHB   dihydroxybenzoic acid  

ddh   gene, encoding diaminopimelate dehydrogenase  

DDH  diaminopimelate dehydrogenase 

DMSO  dimethyl sulfoxide 

DNA   deoxyribonucleic acid  

FADH  flavin adenine dinucleotide, reduced 

fbaA  gene, encoding fructose bisphosphate aldolase 

fbp   gene, encoding fructose 1,6-bisphosphatase 
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fumC  gene, encoding fumarase 

gapA   gene, encoding NAD-dependent glyceraldehyde-3-phosphate dehydrogenase  

GapA  NAD-dependent glyceraldehyde-3-phosphate dehydrogenase 

gapDH  gene, encoding glyceraldehyde-3-phosphate dehydrogenase 

GapDH glyceraldehyde-3-phosphate dehydrogenase 

gapN   gene, encoding NADP-dependent glyceraldehyde-3-phosphate dehydrogenase 

GapN   NADP-dependent glyceraldehyde-3-phosphate dehydrogenase 

GDH  glycerophosphate dehydrogenase 

gltA   gene, encoding citrate synthase  

gnd  gene, encoding 6-phosphogluconate dehydrogenase 

gpmA  gene, encoding phosphoglycerate mutase 

GRAS  generally recognized as safe 

Gre2p   genes de respuesta a estres (protein, encoded by a stress-response gene) 

GTG   guanine-thymine-guanine, start codon  

GTP  guanosine triphosphate 

GTP  guanosine diphosphate 

hom   gene, encoding homoserine dehydrogenase  

Hom  homoserine dehydrogenase 

HPLC  high-performance liquid chromatography  

icd   gene, encoding isocitrate dehydrogenase  

ICD   isocitrate dehydrogenase  

int   integrative  

Kan   kanamycine  

KEGG  Kyoto Encyclopedia of Genes and Genomes  

kgd  gene, encoding α-ketoglutarate dehydrogenase 

LB   lysogeny broth 

kb  kilo base pairs 

LTTR  LysR-type transcriptional regulators 

lysA   gene, encoding diaminopimelate decarboxylase  

lysC   gene, encoding aspartokinase  

LysC   aspartokinase 

lysE   gene, encoding lysine exporter  

LysE   lysine exporter  

lysR  gene, encoding autoregulatory transcriptional regulator 

LysR  autoregulatory transcriptional regulator 

malE   gene, encoding malic enzyme  

MCS   multiple cloning site  
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mdh   gene, encoding malate dehydrogenase  

ME  malic enzyme 

min  minute 

NAD(P)  nicotinamide adenine dinucleotide (phosphate), oxidized  

NAD(P)H  nicotinamide adenine dinucleotide (phosphate), reduced  

O2  oxygen 

odc   gene, encoding oxaloacetate decarboxylase  

OD   optical density 

OPA   ortho-phthaldialdehyde  

opcA   gene, encoding a putative subunit of glucose 6-phosphate dehydrogenase  

ORI   origin of replication 

ORF  open reading frame 

P  promoter 

PCR   polymerase chain reaction  

pdh  gene, encoding pyruvate dehydrogenase 

PEP   phosphoenolpyruvate  

pepc   gene, encoding phosphoenolpyruvate carboxylase  

pepck   gene, encoding PEP-carboxykinase 

PEPCK PEP-carboxykinase 

pfk   gene, encoding phosphofructokinase  

pgi  gene, encoding glucose-6-phosphate isomerase 

pgl  gene, encoding 6-phosphogluconolactonase 

pgk   gene, encoding phosphoglycerate kinase 

PPP   pentose phosphate pathway  

PTS  phosphotransferase system 

PWO   DNA polymerase from Pyroccocus woesei  

pyc   gene, encoding pyruvate carboxylase  

pyk   gene, encoding pyruvate kinase  

qRT-PCR quantitative-real-time PCR 

R5P  ribose 5-phosphate 

RNA   ribonucleic acid  

rpe  gene, encoding ribulose-phosphate 3-epimerase 

RPE  ribulose-phosphate 3-epimerase 

rpi  gene, encoding ribose-5-phosphate isomerase 

RPI  ribose-5-phosphate isomerase 

rpm   rounds per minute  

sacB   gene, encoding levansucrase in Bacillus subtilis  
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sdh  gene, encoding succinate dehydrogenase 

SDM  second derivative maximum 

SOB   super optimal broth  

SOC   super optimal broth with catabolite repression  

SPL  synthetic promoter libraries 

sucCD  gene, encoding succinyl-CoA-synthetase 

TAE   buffer consisting of Tris, EDTA and acetic acid  

tal   gene, encoding transaldolase  

TCA   tricarboxylic acid  

Tet   tetracycline  

tkt   gene, encoding transketolase  

TKT   transketolase 

tkt-operon  genes, encoding transketolase operon  

TPI  triosephosphate isomerase 

tpiA  gene, encoding triosephosphate isomerase 

TPP  thiaminpyrophosphate 

zwf   gene, encoding glucose 6-phosphate dehydrogenase 

 

8.2 Proteinogenic Amino Acids 

 

  

A 

C 

D 

E 

F 

G 

H 

I 

K 

L 

Ala 

Cys 

Asp 

Glu 

Phe 

Gly 

His 

Ile 

Lys 

Leu 

alanine 

cysteine 

aspartic acid 

glutamic acid 

phenylalanine 

glycine 

histidine 

isoleucine 

lysine 

leucine 

 M 

N 

P 

Q 

R 

S 

T 

V 

W 

Y 

Met 

Asn 

Pro 

Gln 

Arg 

Ser 

Thr 

Val 

Trp 

Tyr 

methionine 

asparagine 

proline 

glutamine 

arginine 

serine 

threonine 

valine 

tryptophan 

tyrosine 
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8.3 Symbols 

µ   specific growth rate      [h-1] 

a  specific area      [m2 m-3] 

A  area       [m2] 

BS  backscatter      [-] 

c  concentration      [mol m-3] or [mmol L-1] or [%] 

CDW  cell dry weight      [g L-1] 

D  molecular diffusivity     [m2 s-1] 

DO  dissolved oxygen     [%] 

g  acceleration      [m s-2] 

H  Henry’s law constant     [bar m3 kg-1] 

J  mass flux      [mol m-2 s-1] 

k  mass transfer coefficient    [m s-1] 

K  overall mass transfer coefficient   [m s-1] 

kLa  volumetric gas-liquid mass transfer coefficient [h-1] 

n  shaking frequency     [rpm] 

OTR  oxygen transfer rate     [molO2 m
-3 s-1] 

OUR   oxygen uptake rate     [molO2 m
-3 s-1] 

pK  dissociation constant     [-] 

q'  volumetric mass transfer rate    [mol m-3 s-1] 

q   specific uptake/production rate    [mmol g-1 h-1] 

T   temperature       [°C] 

t   time        [min] or [h] 

U   unit        [µmol min-1]  

V  volume      [m3] or [mL] 

X  biomass concentration    [g L-1] 

Y   production yield      [mmol mol-1] or [g mol-1] 

Z  film thickness      [m] 

 

8.4 Empirical Parameters 

a, b, c, x0, y0  Gaussian fitting 

a, b, c, d, x0, y0   Parabolic fitting 
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8.5 Indices 

*   refers to equilibrium concentration 

660  refers to 600 nm 

A  refers to compound A 

a   refers to acid 

a   refers to annealing 

Ala  refers to alanine 

Arg  refers to arginine 

e   refers to elongation 

eftu  refers to gene, encoding elongation factor thermo unstable 

Frc  refers to fructose 

G   refers to gas 

G:5  refers to gain of 5 

G:100   refers to gain of 100 

Glc   refers to glucose 

Glu  refers to glutamate 

Gly  refers to glycine 

i  refers to interface 

L   refers to liquid 

Lys  refers to lysine 

max  refers to maximum 

O2  refers to oxygen 

R  refers to resistance 

S   refers to substrate 

sod  refers to gene, encoding superoxide dismutase 

X   refers to biomass  
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