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Abstract

Metallic foams are an advanced material which becomes more and more at-
tractive due to the unique combination of the mechanical properties they
provide, such as high stiffness, low weight, good damping, and energy ab-
sorption properties. The microstructure defines significantly the mechanical

response of the foam material on the macroscopic level.

In the present work, the order parameter approach is used to model the
macroscopic behavior of open-cell foams. For this purpose an additional field
linked to the foam microstructure and governed by the general equilibrium

relationship is introduced.

The application of the order parameter model is examined as an alternative
to micropolar continuum model regarding the size effect modeling. Further-
more, a topologically motivated order parameter damage evolution model is

presented.

The comparison with the results of a field experiment proves the flexibility of
the proposed damage formulation. The capability of the model regarding the

prediction of the size effect is demonstrated using the standard benchmarks.






Zusammenfassung

Metallschaume sind ein Beispiel fiir ein modernes Material, dessen Bedeu-
tung als Werkstoff stetig zunimmt. Dies ist auf die einzigartige Kom-
bination mechanischer und physikalischer Eigenschaften, wie z. B. hohe
Steifigkeit, leichtes Gewicht, hohe Dampfungseigenschaft und Energieabsorp-
tion, zuriickzufithren. Die makroskopischen mechanischen Materialeigen-
schaften der Schaumstoffe sind mafigeblich durch ihre Mikrostruktur bes-

timmt.

In der vorliegenden Arbeit wird das makroskopische Materialverhalten der of-
fenporigen Schiume mithilfe eines Ordnungsparameter-Modells beschrieben.
Hierfiir wird auf der Basis der allgemeinen Bilanzgleichung ein zusétzliches
und mit der Mikrostruktur verkniipftes Feld eingefiihrt.

Die Anwendung des Ordnungsparameter-Modells wird als Alternative zum
mikropolaren Kontinuum unter dem Aspekt der Beschreibung von Maf3stabs-
effekten untersucht. Als eine weitere Anwendung des Ordnungsparameter-
Modells wird die Formulierung eines topologiebasierten Schiadigungsmodells

vorgestellt.

Die Flexibilitdt des Ordnungsparameter-Schidigungsmodells wird anhand
der Gegeniiberstellung der experimentellen Ergebnisse und der Ergebnisse der
numerischen Simulation gezeigt. Die Verwendung des Ordnungsparameter-
Modells fiir die Beschreibung der Mafistabseffekte wird anhand von Stan-

dardtests anschaulich demonstriert.






Contents

1 Introduction

2 Continuum Theories

2.1 Cauchy Continuum Theory . . . . . . . . ... ... ... ...

2.1.1 Kinematics . . .

2.1.2 Translational Momentum . . . . . . . . . . .. ... ..

2.1.3 Rotational Momentum . . . . . . .. . . . .. .. ...

2.1.4 Constitutive Relation . . . . . . . . . . . . . ... ...

2.2 Micropolar Continuum Theory . . . . . . . . ... . ... ...

2.2.1 Kinematics . . .

2.2.2  Translational Momentum . . . . . . . ... .. ... ..

2.2.3 Rotational Momentum . . . . . . . . . . .. ... ...

2.2.4 Constitutive Relations . . . . . . . . . . . . ... ...

2.3  Order Parameter Model

3 Application to Size Effect Modeling

10

11

13

13

17

17

18

20

25



Contents

3.1 Size Effect Modeling . . . . . ... .. ... L. 26
3.2  Micromechanical Model . . . . . .. ... ... ... ... .. 27
3.2.1 Simple Shear Test . . . . . . . ... ... ... ..... 31
3.2.2 Tensile Test . . . . . .. .. ... ... L. 34
3.3 Modeling by Micropolar Approach . . . . ... ... ... ... 36
3.3.1 Boundary Value Problem Formulation . ... ... .. 37
3.3.2 Weak Formulation . . .. ... ... ... ... .... 38
3.3.3 Numerical Examples . . . . .. ... ... ... .... 41
3.4 Modeling by Order Parameter Approach . . . . ... ... .. 44
3.4.1 Boundary Value Problem Formulation . . .. .. ... 45
3.4.2 Weak Formulation . . . . ... ... ... ....... 47
3.4.3 Numerical Examples . . . . ... ... .. ... .... 50
3.5 Identification of Model Parameters . . . . ... ... .. ... 54
3.5.1 Micropolar Model Parameters . . . . .. ... ... .. 57
3.5.2  Order Parameter Constants . . . . ... ... ... .. 60
Application to Damage Modeling 63
4.1 Continuum Damage Mechanics . . . . . ... ... ... ... 64
4.1.1 A Short Historical Overview . . . . . . ... ... ... 64
4.1.2 Damage Variable . . . . .. .. .. ... ... ... .. 66

4.1.3 Effective Stress Concept . . . . . . . .. ... ... .. 68



Contents

4.1.4 Strain Equivalence Hypothesis . . . . . . . ... .. ..

4.1.5

Damage Evolution . . .

4.2 Damage Modeling of Open-Cell Foams . . . . . ... ... ..

4.2.1
4.2.2
4.2.3
424
4.2.5
4.2.6
4.2.7

4.2.8

5 Conclusion

Bibliography

Topology-based Damage Variable . . . . .. .. .. ..

Damage Formulation . .

Weak Formulation of the Model Equations . . . . . . .

Numerical Simulation of Tensile Test . . . . . . . . ..

Mesh Sensitivity . . . .

Model Parameters . . .

Additional Microstructural Data. . . . . . . . . . ...

Experimental Validation

69

70

72

72

76

79

82

88

94

105

109

113

117






List of Figures

1.1

2.1

2.2

2.3

24

2.5

3.1

3.2

3.3

3.4

3.5

3.6

Examples of cellular materials: cancellous bone tissue [39]
(left) and metal open-cell foam (right). . ... ... .. ...

Kinematics of Cauchy continuum theory. . . .. .. ... ..
Tonti diagram of Cauchy continuum theory. . . . . ... ...
Kinematics of the micropolar continuum theory. . . . . . ..
Tonti diagram of the micropolar continuum theory. . . . . ..

Tonti diagram of the order parameter model. . . . . . . . . ..

Truncated octahedron. . . . . . . . . ... ...

Idcalized foam material: Weaire-Phelan structure (left) and
its discretization with beam elements (right). . . . . . . . . ..

Micromechanical model. Boundary conditions of tensile test.

Weaire-Phelan specimen: regular (left) and stochastically dis-
turbed (right) structure. . . . . . . ... ... ... ...

Geometrically similar specimens. Boundary conditions of the
shear problem. . . . . . .. ... oo

Open-cell foam specimen with glued load plates. . . . . . ..



vi

List of Figures

3.7 Micromechanical model. Size effect in simple shear experiments. 33

3.8 Micromechanical model. Distribution of average values of ro-
tations. . . . . . .

3.9 Geometrically similar specimens. Boundary conditions of the
tensile test. . . . . ...

3.10 Micromechanical model. Size effect in tensile loading.

3.11 Micropolar model. Distribution of rotations under shear load-
ING. . . e

3.12 Micropolar model. Boundary conditions of simple shear test.

3.13 Size effect modeled with micropolar approach. . . . . . . ..
3.14 Parameter study. Characteristic length I.. . . . . .. ... ..
3.15 Parameter study. Stiffness p.. . . . . ...
3.16 Distribution of the order parameter. . . . . . . . . ... .. ..

3.17 Order parameter model. Boundary conditions of tensile test
(left) and simple shear test (right). . . . ... ... ... ...

3.18 Order parameter approach. Size effect in tensile loading.
3.19 Paramecter study for model parameter . . . . . . ... L.
3.20 Parameter study for model parameter po. . . . . . . ... ..

3.21 Distribution of order parameter £ for specimens of different
SIZE. . . e

3.22 Order parameter approach. Size effect in shear loading. . . . .

3.23 Models reproducing the size effect: micromechanical (top), or-
der parameter (middle), and micropolar (bottom). . . . . . . .



List of Figures vii

3.24 Micropolar model. Simple shear test predicted with identified
model parameters. . . . ... .. ... L 58

3.25 Size effect in shear test. Relative error between micropolar
and reference models. . . . . . . ... ... 59

3.26 Order parameter model. Simple shear test predicted using
identified model parameters. . . . . . . ... .. ... ... 61

3.27 Size effect in shear test. Relative error between the order pa-

rameter and the reference models. . . . . . . .. ... ... .. 62
4.1 Geometrical quantification of damage. . . . . . . . ... . .. 67
4.2 Strain equivalence hypothesis. . . . . .. ... ... ... .. 70

4.3 Edge-connectivity of foam: virgin (left) and damaged (right)
states. . .. 73

4.4 Average edge-connectivity distribution: virgin (left) and dam-
aged (right) states. . . . . . . . ... .. 73

4.5 Three-dimensional foam specimen. . . . . . . ... ... ... 74
4.6 Distribution of the edge-connectivity Z, over specimen length. 75

4.7 Distribution of the average edge-connectivity (Z.) over speci-
men length. . . .. ... oo 76

4.8 Discretized specimen geometries: SEN (left) and SENP (right)

SPECIMENS. . . . . v v vt e e e e e e e e e 82
4.9 Boundary conditions of tensile test. . . . . .. ... ... .. 83
4.10 Damage propagation under tensile loading: Au = 13 mm

(left), Au = 15 mm (middle), Au = 16 mm (right). . . . . .. 84

4.11 Von Mises stress under tensile loading: Au = 13 mm (left),
Ay = 15 mm (middle), Au = 16 mm (right). . . . . . . .. .. 84



viii

List of Figures

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

Tensile test. Force-displacement curve. . . . . .. .. ... ..
Tensile test. Damage tip propagation along cutting line A-A.
Tensile test. Damage zone profiles along cutting line B-B. . . .
Boundary conditions of tensile test (SENP-specimen).

SENP-specimen. Damage propagation under tensile loading:
Au = 12 mm (left), Au = 13.5 mm (middle), Au = 14 mm

Plate with a circular hole under tensile loading. Boundary
conditions. . . . . . ... L

Discretizations of the plate with circular hole. . . . . . .. ..
Mesh sensitivity test. Damage distribution: Mesh A (top left),

Mesh B (top right), Mesh C (bottom left), Mesh D (bottom

right). . . ..
Mesh sensitivity test. Damage zone profiles. . . . . . . .. ..
Mesh sensitivity test. Force-displacement curves. . . . . . . . .
Parameters evaluation setup. . . . . . ... .. ... ... ..

Variation of time-scaling coefficient v. Damage propagation.

Variation of time-scaling coefficient v. Damage zone profiles

Variation of diffusion coefficient 3. Damage propagation. . . .

Variation of diffusion coefficient 3. Damage zone profiles along
B-B. .

Variation of absorption coefficient . Damage propagation.

85

86

87

87

88

89

90

91

92

92

94

95

95

96

96

97



List of Figures iX

4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

4.41

4.42

4.43

4.44

4.45

4.46

Variation of absorption coefficient . Damage zone profiles

along B-B. . . . ... 97
Spatial distribution of the damage zone. Absorption coefficient

a=0.1 (left) and o =10 (right). . ... ... ... ... ... 98
Variation of the parameter a. Reaction force. . . . ... . .. 99
Variation of the parameter 3. Reaction force. . . . . ... .. 99
Variation of the parameter . Reaction force. . . .. ... .. 100
Variation of the Young’s modulus E. Reaction force. . . . . . 100
Variation of the critical strain .. Reaction force. . . . . . .. 102
Force-displacement curve adjustment. . . . . . . . ... .. .. 102
Simple shear test. Boundary conditions. . . . .. .. ... .. 103
Shear loading. Parameter v = 100 (left) and v = 10 (right). . 104
Shear loading. Parameter ¢, = 0.1 (left) and e, = 0.2 (right). . 104
Microstructural SEN-specimen. . . . . . . .. ... ... ... 106
Artificial foam structure. Von Mises stress under tensile load-

ing: ¢t = 0.01 (left), ¢t = 0.5 (middle), t =1 (right). . ... .. 107
Order parameter damage model with directional data. Dam-

age propagation under tensile loading: Au = 8.2 mm (left),

Au = 9.3 mm (middle), Au =10 mm (right). . ... ... .. 107
Experimental validation. Geometry of the open-cell specimen

(left) and macroscopic specimen (right). . . . . .. ... ... 109
Field experiment and damage model. Force-displacement curves.110
Damage distribution in the macroscopic specimen. . . . . . . 111
Damage zone profile along cutting line A-A. . . . . . ... .. 112






Introduction

Foams are complex and challenging materials with a distinct microstructure.
The most prominent example of a foam material is perhaps the cancellous
bone (figure 1.1, left) provided by nature as a result of millions of years of
evolutionary design. Metallic foams (figure 1.1, right), in particular, arc an
advanced material which is becoming more and more attractive due to the
unique combination of the mechanical properties such as high stiffness, low
weight, good damping and energy absorption properties they offer. Today,
foam materials are used in the majority of industries such as automotive,
acoustics, filtration industry, electronics, and medicine. The diversity of ma-
terials used to produce foams is also very large: metal alloys and ceramics,

resin, polymers, and glass can be processed to foam structures.

The increasing acknowledgment of foams as an engineering material requires
appropriate and validated theoretical and numerical models, which describe
each aspect of the complex material behavior of this highly interesting ma-

terial.
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Figure 1.1: Examples of cellular materials: cancellous bone tissue [39] (left)
and metal open-cell foam (right).

However, the mechanical behavior of foams is still an unsolved problem re-
garding theoretical modeling. The classical continuum approach cannot de-
scribe the size effects usually observed in cellular materials such as the effec-
tive mechanical properties (e. g. stiffness, stress concentration factor) which

depend on the ratio between pore size and specimen size.

The mechanical properties of foam materials are mainly defined by the struc-
ture of the material on the microscopic level (cf. [33, 120]). The inclusion
of the effects caused by the microstructure allows for the prediction of the

specific behavior of the cellular materials in the macroscopic model.

Apart from the homogenization techniques described in [2, 57, 60|, the ma-
terial microstructure can be taken into account by an additional quantity
characterizing the microstructure. This quantity can be a scalar, vector or
some higher-order tensor complementing a classical macroscopic continuum

model.

One of the established extended continuum theories was proposed by Cosserat
brothers (cf. [25]). Here, the material point is considered as a rigid body with
three translational and additional three rotational degrees of freedom. The
framework they provided was further developed by Eringen and renamed to

micropolar theory (cf. [43, 41, 67]). The micromorphic theory with the ma-



terial point being a continuum with an infinite number of degrees of freedom
(cf. [42, 43]) includes the micropolar theory as the special case. The second
gradient theory provides another generalization of the classical Cauchy con-
tinuum. Here, the constitutive equations are formulated involving the strain
gradient (cf. [31, 36, 92, 94]).

The multifield theories introduce a supplementary field to describe the in-
fluence of the substructure. This class of models covers the mechanical be-
havior of materials with substructure in the sense of multiscale approaches
(cf. [1, 46, 89]). The order parameter approach is a general framework for
the formulation of continua with any number of additional degrees of freedom
(cf. [18, 19]). An order parameter is a characteristic value representing the
material substructure which is associated with a material point. The choice
of the order parameter depends on the physical nature of the phenomenon
to be predicted by the additional field (cf. [122]).

The scalar valued order parameter is used in phase-field formulations to char-
acterize the evolution of the interface position by the continuous variable,
which takes two different values depending on the phase domain. In the
area of the interface, the value of the variable changes gradually and forms
a diffuse interface. The phase-field method allows for the description of the
microstructure evolution in a wide range of applications such as solidifica-
tion (cf. [5, 14, 107, 112]), fracture (cf. [73, 91, 88]), and damage mechanics
(cf. [13, 126]). The contributions by [22, 96, 104, 114] provide a comprehen-

sive overview of the developments and applications of the phase-field method.

Apart from the mechanical properties, the modeling of damage evolution is
another challenge related to foam materials. The consequence of the damage
process is an alteration of several material properties on multiple scales in
combination with changes in microstructure. The modeling of the damage
effects is carried out using an auxiliary continuous variable representing the
damage state (cf. [65, 72, 85]).

The goal of the present contribution is the exploration of applications of
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the order parameter approach with a scalar valued field variable. Following
aspects related to the description of open-cell foam materials are investigated

using the order parameter approach:

prediction of the size effect

damage evolution

The thesis is organized as follows. The motivation and goals of the work are

presented in the first chapter.

The second chapter gives an overview of continuum theories utilized in the
present work. First the basic concepts of the standard Cauchy continuum
theory are presented. This theory is a basis continuum model, whereas the
micropolar theory and order parameter approach presented in the subsequent

sections are considered as the extensions of the standard theory.

The third chapter deals with the description of the size effect. This is ac-
complished using three distinct approaches: high-resolution micromechanical
model, micropolar theory and order parameter approach. The order param-
eter model is applied as an alternative providing additional advantages com-
pared to the micropolar theory. The problem of the identification of model

parameters is also treated in this chapter.

The fourth chapter considers the application of the order parameter approach
in the framework of damage mechanics. Therefore, a short survey of the con-
tinuum damage mechanics is given. Next, a model of the damage evolution
in an open-cell foam material is proposed. The influence of the model param-
eters is studied in order to provide a detailed insight into the model behavior.
Last but not least the experimental validation is another topic discussed in

this chapter.

Finally, the fifth chapter sums up the achieved results and draws the conclu-

sions from this work.



Continuum Theories

Continuum mechanics is a phenomenological theory. It describes the phe-
nomena and results observed in experiments based on idealized mathemati-
cal models on macroscopic level. Continuum mechanics can be organized in

three main categories:

kinematics, considering the motion, geometry and deformation state

regardless the cause
balance laws, which apply to all bodies disregarding their constitution

constitutive equations describing the relation between deformation

state and stress

In the following the isothermal case is considered. Hence, only the bal-
ance equations of linear and rotational momentum are discussed. The order
parameter approach discussed in this work is an extension to the classical
continuum theory, i. e. so-called Cauchy continuum. Therefore, an overview

of the continuum theories is presented in this chapter.

—-5—
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2.1 Cauchy Continuum Theory

2.1.1 Kinematics

In the context of the Cauchy continuum theory (cf. [10, 56, 58, 61]) a material
body B defined as a set of elements X, called material points, is considered.
The material body is bounded by the surface 0B. The material point X can
be set into a one-to-one relation with a point in a physical space. This way the
physical properties of the material point can be expressed by a mathematical

point.
The configuration of the material body B is a mapping
x = x(X,1). (2.1)

The vector function x denotes the position x of all of the material points of
the body B (figure 2.1) in the actual configuration at time t > ¢, with respect
to some fixed position X called reference configuration at a time t = ¢y. This
mapping is assumed to be continuous and uniquely invertible, so that the

inverse is given by
X =x"x,t). (2.2)

The partial differentiation of equation (2.1) with respect to position vector X

of the reference configuration provides the deformation gradient

_ ox (X, 1)

i oX

= Grad x . (2.3)

The inverse deformation gradient is

-1 — aX_I(X7 t)

K ox

(2.4)

The displacement field u associated with the deformation map x is defined as
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reference configuration actual configuration

€3

Figure 2.1: Kinematics of Cauchy continuum theory.

the difference of the position vectors of the actual and reference configuration
u=x-X. (2.5)

The deformation gradient can be formulated using the gradient of the dis-

placement field from equation (2.5)
F =1+ Gradu, (2.6)
where I is the identity tensor.

With the deformation gradient F the relation between a line element dX
of the reference and a line element dx of the actual configuration can be
established

dx =F - dX. (2.7)
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As the measure of deformation between the actual and reference configura-
tion, the squared differential line element in the respective configuration is

used
ds?* =dx-dx, dS*=dX-dX. (2.8)

Using the equation (2.7) the product dx-dx can be expressed in terms of the

line elements of the reference configuration
dx-dx =dX - C-dX, (2.9)

where C is the right Cauchy-Green deformation tensor, expressed in terms

of the deformation gradient as
C=F".F. (2.10)

The initial product dX - dX is obtained using the line elements of the actual

configuration
dX - dX =dx-B™!'.dx (2.11)

with B as the left Cauchy-Green tensor, expressed using the deformation

gradient
B=F. -F". (2.12)

The change in scalar product can be expressed using the differential line

elements of the reference configuration
dx-dx —dX -dX =dX-2E-dX, (2.13)

where E is the Lagrangian or Green strain tensor defined as

E— ;(C—I). (2.14)
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The equivalent change in scalar product can also be obtained by means of

line elements from the actual configuration
dx-dx —dX-dX =dx-2A -dx, (2.15)

with A as the Almansi strain tensor

A= ;(1 _BY). (2.16)

In the framework of the geometric linear theory, where the reference and ac-
tual configurations coincide, the linearized Green strain tensor can be reduced

to
1
lin(E) =¢ = Q(Gradu + Grad Tu), (2.17)

which is a symmetric part of the displacement gradient Grad u.

2.1.2 Translational Momentum

The conservation law for translational momentum states that the change in
total linear momentum of a body is affected by external forces. In the static
case, with the inertia forces ignored, this means that the sum of forces acting

on the body vanishes

/pbdv—l—/ tda=0. (2.18)
B oB

With the Cauchy theorem, stating the existence of the second-order tensor

T, relating the normal vector n to the traction vector t,

t=Tn, (2.19)
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the equation (2.18) can be written in terms of the Cauchy stress T

/pbdv+/ T -nda=0. (2.20)
B oB

Transforming the second term of the equation above using the divergence the-
orem the local form of the equation (2.20) expressed in terms of a differential

equation is obtained

divT + pb=0. (2.21)

2.1.3 Rotational Momentum

The conservation law of rotational momentum declares that the external
torque acting on a body changes its rotational momentum. Neglecting the
rotational inertia in the quasi-static case it implies that the total moment of

the body and traction forces with respect to any point must vanish

/xprdv—l—/ x X tda=0. (2.22)
B oB

Substituting the result from equation (2.19) into the law of rotational mo-
mentum and since the cross product of a second rank tensor and a vector
delivers another second rank tensor, the rotational momentum equation be-

comes

/xprdv—l—/ (xxT) -nda=0. (2.23)
B

0B

Applying the divergence theorem gives

/XXpde—l—/diV(XXT)dUzO. (2.24)
B

B
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Using the property of the divergence of cross product (cf. [26]) the rotational

momentum becomes
/(Xx,ob+x><diVT+I><T)dU:0. (2.25)
B

Taking into account the translational momentum and remembering that the
balance of rotational momentum is valid for any region of the body the re-

sulting equation becomes
IxT =0, (2.26)

which indicates the symmetry of the Cauchy stress tensor T = T7.

2.1.4 Constitutive Relation

In the case of linear elastic material behavior the relationship between stress
and strain components is considered to be a linear function. This relationship

is expressed by the generalized Hooke’s law

4
T=C:e, (2.27)

4
where C is a material tensor of fourth rank containing elastic coefficients.
For material with isotropic behavior this equation can be rewritten as
T =2ue+ Atre)I, (2.28)

with the two independent material parameters p and A, also known as Lamé
constants. These constants completely define the material behavior in linear
elastic isotropic case. FEach elastic constant can also be expressed in terms of
two other constant pairs (i. e. such as Young’s modulus and Poisson’s ratio
or shear and bulk modulus). The relationships of the Cauchy continuum

theory are displayed in figure (2.2).
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@ divT = —pb

e = Grad *™u —@ T :(4]; £ —CT)
()

Figure 2.2: Tonti diagram of Cauchy continuum theory.

In general, a constitutive relation links the kinetic quantities such as stresses
to the kinematic quantities such as strains. The constitutive relations have
to fulfill certain conditions imposed by physical laws. A detailed discussion

on constitutive modeling can be found in [56, 58, 61].
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2.2 Micropolar Continuum Theory

2.2.1 Kinematics

The description of the kinematics in the framework of the micropolar con-
tinuum can be seen as the generalization of the Cauchy continuum theory.
The micropolar continuum represents a kinematically extended continuum
where every material point has three rotational degrees of freedom in addi-
tion to three translational degrees of freedom. The additional independent
variable { is, therefore, defined. This variable describes the rigid body rota-
tion of the material point.

In addition to the line elements of the Cauchy continuum theory three vectors,
the so-called directors describing the orientation, are associated with the
material point. Each director has a constant length and remains always

perpendicular to the other directors.

reference configuration actual configuration

2
B / = \)
X ‘

A

A

—

X

€1

€3

Figure 2.3: Kinematics of the micropolar continuum theory.
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The directors denoted by Z; describe the orientation of the material point in
the reference configuration, and the directors denoted by §; refer to the actual
orientation (figure 2.3). The relation between the directors of the actual and
reference configuration is described with the proper orthogonal tensor R, the

so-called micromotion tensor (cf. [43])

E=R(X,t)-E. (2.29)

An orthogonal tensor maps a vector onto another vector with the identical
length and has the properties R - R = I (orthogonal) and detR = +1
(proper orthogonal).

The micromotion tensor R can be written using the Euler-Rodrigues formula
(cf. [123])

R=e®e+cosp(I—e®e)+sinp(exI), (2.30)
where e is the rotation axis and ¢ is the rotation angle.

The relation between the line elements dx of the actual and line elements
dX of the reference configuration is identical to the relation in the case of

the classical Cauchy continuum
dx =F-dX, (2.31)
with the deformation gradient F defined in equation (2.3).

The micropolar strain tensors (cf. [43, 44]) arc defined by building a scalar

product of directors and line clements of actual
¢ dx=R-E.-F.dX, (2.32)

and reference configurations

E.-dX=R" - ¢ F'. dx, (2.33)
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followed by the difference of scalar products

‘E-dX=¢-A-dx, (2.34)

[1]

(- dx—E.-dX =
with the strain tensor E of the reference configuration defined as
E=R"-F-1, (2.35)
and strain tensor A of the actual configuration defined as
A=I-R-F . (2.36)

Apart from the strain tensors defined in equations (2.34-2.36) the curvature
3

tensor K related to the reference configuration is defined

3 _ 3
K= (R"-GradR)". (2.37)

3
Since the curvature tensor K is skew symmetric with respect to the first and

second basis systems

12

3 3
K= —(K)7, (2.38)

it can be reduced to a curvature tensor of second rank (cf. [32])

e

_ 1 3

K:—2( K, (2.39)
3

where E is a permutation tensor defined as

3
E=c¢cjre;®e;Qey, (2.40)

1: even permutation
gijk = § —1: odd permutation . (2.41)

0: else
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In the case of small deformations and small rotations following linearized ver-

sions of the micromotion, curvature and strain tensors are defined (cf. [123])

3
lin(R)=1-E -, (2.42)
Kk = Grad @, (2.43)
3
g = Gradu+E . (2.44)

The linear strain measures € and Kk are interrelated with each other by the

compatibility condition (cf. [123])

1 3 12 23
k=, (E: (Grad& + Grad Te — Grad Tg)) . (2.45)

The compatibility condition ensures that for given linear strain tensor € and
curvature tensor K the macroscopic translational field u and rotational field

( exist.

The micropolar strain tensor can be split into a symmetric and skew sym-

metric part
€ = Egym + Eskw » (2.46)

where the symmetric part is the linear strain tensor from the classical con-

tinuum theory
_ 1 T
Esym = (Gradu + Grad " u) (2.47)

and the skew symmetric part consists of the continuum rotation and the free

3
rotation E - ¢

1 3
Eshw = 2(Grradu —Grad™u) + E -, (2.48)

which describes the connection between the rotational degrees of freedom



2.2. Micropolar Continuum Theory 17

and the displacement u.

2.2.2 Translational Momentum

The local form of the translational momentum equation in the case of the
micropolar continuum theory is identical with the balance equation of the
pure translational formulation from the Cauchy continuum theory with the

inertia forces neglected

divT +pb=0. (2.49)

2.2.3 Rotational Momentum

The conservation law for the rotational momentum with rotational inertia
neglected features the following entities linked to the rotational degrees of

freedom

/(XXpb+pc)dv+/ (xxt+m)da=0, (2.50)
B OB

where pb is the vector of the body forces and pc the vector of the body

couples acting on the material point.

The relation between the so-called couple stress tensor M associated with
the rotational degrees of freedom and the couple stress vector m is identical
with the relation between the Cauchy stress tensor T and the traction vector
t represented by the Cauchy theorem (2.19)

m=M-n. (2.51)

Using the relation above in the conservation law (2.50) and applying the
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divergence theorem results in
/(xpr+pc+xxdivT+I><T+divM)dv=0. (2.52)
B

Since the rotational momentum balance is valid for any region of the body and
with the translational momentum, the conservation of rotational momentum

can be rewritten in the following form
IXT+divM+pc=0. (2.53)

In the case of micropolar continuum theory the tensor T represents a Cauchy
type stress tensor which lacks the symmetry property. The skew symmetric

part is described by the axial vector
1
t:21><T, (2.54)

and is balanced by the divergence of the couple stresses and the body couple.

2.2.4 Constitutive Relations

In the case of linear isotropic material behavior the assumption is made that
the couple stress tensor M is a function of the curvature tensor £ and the
stress tensor T is dependent only on the micropolar strain tensor € as in
equation (2.44). Therefore, the material behavior can be described by the
modified generalized Hooke’s law (cf. [27, 28])

4

T=C:é¢ (2.55)
= 2UEsym + 21cEskw + A(E  I)I. (2.56)
The material parameters p and A are the Lamé parameters as found in the

classical continuum theory. The additional material constants is the stiffness

parameter p. and the so-called internal length parameter [.. The relationships
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divT = —pb

3
e = Gradu+ E - 4@* T

I
ol
™

(5

k= Gradp —@— M = 2u.(l.)%R divM+1Ix T = —pc
O

Figure 2.4: Tonti diagram of the micropolar continuum theory.

of the micropolar continuum model are visualized in figure (2.4).

In the case of the missing skew symmetric part of the micropolar strain the
stress tensor is identical to the Cauchy stress from the classical continuum

approach.

The relation between the couple stress tensor and curvature tensor can be

written using the directly proportional relationship (cf. [27, 28])
M =2pu.(l.)°&. (2.57)

An in-depth discussion of the micropolar theory can be found e. g.
in [25, 40, 44].
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2.3 Order Parameter Model

One of the assumptions made in the Cauchy continuum theory is that entities
on the microscopic level smaller than a material point do not provide any con-
siderable properties or structure. Therefore, the underlying microstructure
is not covered on the macro level. One possibility to include microstruc-
tural effects is given by the micropolar continuum. In this approach, the
effects originating from the microstructure are introduced in a kinematical

interpretation due to the existence of the micromotion.

The so-called order parameter is some characteristic value & representing
the microstructure which is associated with a material point X. This ad-
ditional parameter allows for the incorporation of the effects caused by the
microstructure into the macroscopic model. The work of Capriz [19] provides
in a very general way a framework for the formulation of continua with any
number of additional degrees of freedom including the case of micropolar and

micromorphic continua as a subset.

In contrast to the micropolar continuum theory the additional degree of free-
dom represented by the order parameter is not necessary an additional kine-
matic entity. It can represent a scalar-valued field as in the modeling of phase
transitions (cf. [96, 104, 114]) or in the isotropic casc of damage mechanics
(cf. [65, 85, 125]). In the presented work this additional field is coupled to
a linear clastic boundary value problem in terms of an extended constitutive

relationship.

The starting point of the order parameter formulation used in this work is

the translational momentum equation of the classical Cauchy continuum
divT +pb=0, (2.58)

with inertia forces neglected.
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The equilibrium equation is here complemented by the additional balance
equation (cf. [55, 113])

divS+ 4 =0, (2.59)
for the scalar valued order parameter £(x, ).

To obtain the relationships for the quantities S, T and # in equations (2.58 -
2.59) the second law of thermodynamics is evaluated in the sense of Coleman
and Noll (cf. [23]). This derivation procedure is consistent with the argu-

mentation pattern as proposed in [19, 64, 113, 116].

The second law of thermodynamics is stated in the form of an extended

Clausius-Duhem inequality

q

—p\i/—i—T : grad}'c—kS-gradf—/%é—pné— 0

-gradf > 0, (2.60)

with U as the time rate change of the Helmholtz free energy ¥, n as the

entropy, ¢ as the absolute temperature, and q as the heat flux vector.

With the assumption of the isothermal case the statement (2.60) is reduced

to an extended Clausius-Planck inequality
—pU + T : gradx+S-gradé — 4> 0. (2.61)

The Clausius-Planck inequality is evaluated with the Helmholtz free energy

function chosen as
U=V (E,Z¢( gradf). (2.62)

The arguments of the function above are the process variables with the set

of response functions

R=R(V,T,S, k). (2.63)
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With the concept of equipresence it is assumed that every response function
is dependent on each process variable. The rate of change of the Helmholtz
free energy reads

ov .. 0U . ov

U= cE+ €+8grad§

IE o - (grad ). (2.64)

Inserting the rate of change expression into inequality (2.61) and rearranging
the terms provides

ov 7\ ov ) N\ AN
(T—pF-aE-F).D—F(S—pagradf)-(gradf)—I—(—/@—paf){ZO.
(2.65)

The standard Coleman and Noll evaluation procedure (cf. [23]) implies that
the inequality (2.61) should be fulfilled for any D, € or (grad &) and leads to

the following constitutive relationships

T:pF-g;EIj) -F7, (2.66)
ow

S=p daradé’ (2.67)

.oV

kR=—p o€ (2.68)

With the Helmholtz free energy chosen as a quadratic function of its argu-

ments

= ;)\(E D2+ u(©E : E+ ;a§2 + ;ﬁ(gradﬁ)Q, (2.69)
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the following set of constitutive equations is obtained:

T:pF-gg FT = )F. (Q,u(f)E-i—)\(f)(E : I)I) FT,  (2.70)
Ov

S = p@gradf = fgrad &, (2.71)
) )

i = —pa\? — —af— ’g(;)E . E. (2.72)

In the context of small deformations the Green strain tensor E can be re-

placed by the linear strain tensor &
1 T
Exe= 2(Gradu + Grad “u) . (2.73)

With the linear strain tensor the corresponding form of the constitutive equa-
tion (2.70) reads

T=2u)e+ \(tre)I. (2.74)

The material parameters p(€) and A(€) represent the local Lamé parameters
of the linear elasticity, while the parameters a and [ are linked to the order
parameter field. The material function p(§) controls the distribution of the
shear modulus and couples the order parameter field to the displacement
field, hence, providing an extended form of equation (2.28). For simplicity A

will be assumed constant.

Depending on the applied modeling approach the order parameter and dis-
placement fields can be coupled through constitutive, kinematic or balance
relationships. The formulation of the order parameter boundary value prob-

lem is shown in figure (2.5).

In equation (2.72), the quadratic term (E : E) is neglected due to the
assumption of small strains. With the relationships obtained in equa-

tions (2.71-2.72) the balance equation of the order parameter field can be
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>0 P

e = Grad*¥"u @ T:é's G‘/ divT = —pb
O-©®©
S — Bgradé () divs = —&

o

Figure 2.5: Tonti diagram of the order parameter model.
rewritten in the following form
div (fgrad§) —al =0. (2.75)

The obtained balance equation (2.75) can be classified as an elliptic partial

differential equation of Helmholtz type.



Application to Size Effect Modeling

In the present chapter the application of the order parameter model is dis-
cussed with regard to prediction of size effect phenomena characteristic for
the materials with distinctive microstructure such as cellular materials. The
order parameter approach is compared to the micropolar theory with regard

to macroscopic modeling of size effects.

Furthermore, the subject of the identification of respective model parame-
ters is discussed. The reference for both macroscopic models treated in this
chapter is provided by a high-resolution micromechanical foam model based

on the Weaire-Phelan structure.

—25—
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3.1 Size Effect Modeling

The dependency of the mechanical properties on the ratio of the specimen
size to the cell size is a property specific to the cellular materials such as
cancellous bone, cork, polymer and metal foams. This so-called size effect is
most notably observable, when the cell size and specimen size are of the same
order of magnitude (cf. [51]). This microstructure initiated effect cannot be
captured within the framework of the scale invariant approach such as Cauchy
continuum, where the mechanical behavior in the case of small deformations
is controlled by only two material constants (i. e. extended continuum models
feature additional material parameters such as length scale parameter and

additional stiffness as in the micropolar approach).

The size effect modeling techniques can be classified into three main groups:

micromechanical
macroscopic

mixed /multiscale

In the micromechanical approach the microscale structure is resolved in
detail using standard structural finite elements (e. g. beam elements,
cf. [34, 50, 100, 120]).

In contrast to the micromechanical approach, the macroscopic approach
treats foam material as a continuous medium, either in the context of classical
continuum mechanics or, taking size effects into account, in the framework of
extended continuum mechanics, hence, introducing the additional field equa-
tions. However, the formulation of the extended continuum is not necessarily
related to additional field variables as in the case of strain-gradient theories
(cf. [93, 94]).
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The multiscale models describe the material behavior on the macroscale
based on homogenization strategies which explicitly use the information from
underlying scales. Hence, additional boundary value problems for the mi-
crostructure are solved. This procedure leads for example to the so-called
FE? models (cf. [38, 45, 63, 90]).

In the present work, two types of size effect are investigated: the stiffening

effect under shear loading and the weakening effect under tensile loading.

3.2 Micromechanical Model

In the micromechanical model presented here, the microstructure of an open-
cell foam is resolved by means of finite elements to provide a detailed reference
model. The reference data is obtained in virtual experiments carried out on

an idealized and explicitly resolved foam structure.

The reference microstructure is based on the unit cell resulting from the
solution of the Kelvin’s Problem, which deals with the question of space
partitioning with the cells of equal volume and with minimal surface between
the cells.

Figure 3.1: Truncated octahedron.
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The Kelvin’s conjecture states that the structure based on bitruncated cubic
honeycomb, which in turn consists of four truncated octahedra (figure 3.1)
around each vertex, is the most efficient solution of the space partitioning
problem (cf. [121]).

The Weaire-Phelan structure (cf. [127]) is a periodic cell consisting of eight
subcells (six tetradecahedra and two irregular pentagonal dodecahedra, figure
3.2) and provides a more efficient solution of the Kelvin problem. It allows

for the implementation of closed-cell and open-cell foams as well.

The Weaire-Phelan structure will be used as a basis for the creation of arti-

ficial cellular structures in the present work.

Figure 3.2: Idealized foam material: Weaire-Phelan structure (left) and its
discretization with beam elements (right).

Due to the periodic nature of the Weaire-Phelan cell it is possible to efficiently
generate large samples of idealized foams. The edges of polyhedra in the
Weaire-Phelan cell represent the struts of an open-cell foam (figure 3.2). This
idealized geometry is, therefore, discretized with linear Timoshenko beam
elements with a constant square cross-section of 0.16 mm?2. The length of the
struts of the Weaire-Phelan cell varies between 2.772 mm and 6.3 mm. With

these values the average strut length amounts to 4.536 mm.

The degrees of freedom comprise translations u and rotations of the beam
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T2
<L—».Z'1
T3

Figure 3.3: Micromechanical model. Boundary conditions of tensile test.

cross-section . By using beam elements a detailed description of the mi-
crostructural geometry is provided. Depending on the specimen’s dimensions
this approach involves the solution of a system with a large number of un-
knowns. Due to this disadvantage the micromechanical model is only used

as a source of reference data.

The advantage of the micromechanical model is that the individual param-
cters of the foam microstructure can be changed independently and the
boundary conditions of the virtual experiments can be exactly controlled.
Furthermore, all required information can be extracted from the virtual mi-

cromechanical model while this is not possible in the real experiment.

The simulations were performed using the finite element analysis solver
RADIOSS® [106]. The standard shear and tensile tests were carried out
on Weaire-Phelan based structures to determine the effective material pa-

rameters such as Lamé constants.

Since the order parameter and micropolar approaches used in this work are
covering the isotropic material behavior, the isotropy of the reference mi-

cromechanical models is examined in the following.
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direction E [MPa] 21 Vo
x1 112.83 0.44 0.41
T 82.63 0.40 0.39
T3 82.91 0.37 0.39
SD 17.35 0.03 0.1

Table 3.1: Regular structure. Results of tension tests in 3 directions and
corresponding standard deviations (SD).

Figure (3.3) shows the boundary conditions used in the simulation of the ten-
sile test. The tensile tests performed in 3 orthogonal directions indicate the
slightly anisotropic behavior of the regular Weaire-Phelan structures (figure
3.4, left). The obtained values of the effective elastic moduli and Poisson’s
ratios are listed in table (3.1).

The anisotropic behavior of the regular structure can be attributed to the
composition of the single Weaire-Phelan cell and the alignment of its par-
ticular edges. Although both polyhedron types of the unit cell have nearly
the same volume there are great differences in edge lengths: the length of

the shortest edge is only about a half of the longest edge length. These dif-

Figure 3.4: Weaire-Phelan specimen: regular (left) and stochastically dis-
turbed (right) structure.
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direction E [MPa] 1 Vo
1 56.43 0.18 0.17
To 56.25 0.17 0.17
T3 53.72 0.16 0.17
SD 1.51 0.01 0.0

Table 3.2: Stochastically disturbed structure. Results of tension tests in 3
directions and corresponding standard deviations.

ferences are reflected in variations of the stiffness values of the polyhedron

structures.

To resolve the anisotropy issue of the structures based on regular Weaire-
Phelan cell the vertex coordinates have been stochastically disturbed (figure
3.4, right). As a result, the edge lengths and edge orientations were changed
and the new disturbed structure reveals mechanical properties nearly inde-
pendent from the direction. The values of the effective elastic moduli and

Poisson’s ratios of the disturbed structure are listed in table (3.2).

The comparison of the standard deviation (SD) values listed in table (3.1)
and (3.2) indicates that the mechanical properties of the disturbed structure
can be considered as nearly isotropic. In the following, the results obtained

in tests on disturbed structure will be used as a reference.

The size cffect is investigated using a sct of simple shear and tensile tests

performed on the micromechanical samples.

3.2.1 Simple Shear Test

The boundary conditions of the micromechanical simple shear problem are
displayed in figure (3.5). The clamping boundary conditions applied at the
top and the bottom of the specimen simulate glued load plates as used in

field experiments (figure 3.6).
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hs

T3

L, i)
Figure 3.5: Geometrically similar specimens. Boundary conditions of the
shear problem.

The length of each specimen is 10 times the height value, i. e. [;/h; = 10.
The shear deformation in all cases amounts to 0.01. The simple shear tests
carried out on geometrically similar specimens of different size but constant

microstructure (figure 3.5) exhibit the dependency of the effective mechanical

Figure 3.6: Open-cell foam specimen with glued load plates.
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Figure 3.7: Micromechanical model. Size effect in simple shear experiments.

properties on the specimen size, which is a characteristic feature of cellular
materials (cf. [33, 100, 108]). Figure (3.7) shows the effective shear modulus
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Figure 3.8: Micromechanical model. Distribution of average values of rota-
tions.
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as a function of the specimen height. The obtained result reveals the presence

of a size effect in the form such as ”smaller is stiffer”.

The averaged distribution of the rotational degrees of freedom ¢, obtained in
the shear test is presented in figure (3.8). The inspection of the solution for
the rotational degrees of freedom indicates the presence of the boundary layer.
The clamping boundary conditions, which restrict the rotational degrees of
freedom, lead to the appearance of a boundary layer resulting in turn in

size-dependent macroscopic properties of the model (cf. [33]).

3.2.2 Tensile Test

The boundary conditions of the micromechanical tensile test problem used

to investigate scale effects in tension are displayed in figure (3.9).

The performed tensile tests show the dependency of the effective elastic mod-
ulus from specimen size, which is, however, different from the effect observed
under shear loading. Here, the larger specimens have increasing values of
elastic moduli. The opposite effect of decreasing compressive strength is

documented in [3, 6]. The results of tensile tests are depicted in figure (3.10).

T 0.01 }L3

T 0.01 hy
hs T T 0.01 hy
S - g lhz D Lo
S

I3

hL

Figure 3.9: Geometrically similar specimens. Boundary conditions of the
tensile test.
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Figure 3.10: Micromechanical model. Size effect in tensile loading.

To motivate the weakening effect observed in tensile tests the constraints of
foam cells within the specimen and on its unloaded boundaries have to be
considered. The cells on the boundary have less neighbors than the cells
in the bulk of the sample. Therefore, these cells are less restricted in their

movements (cf. [119]).
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3.3 Modeling by Micropolar Approach

In order to model the size effects observed in virtual experiments an extended
continuum model is chosen on the macroscale. The extended continuum theo-
ries introduce additional degrees of freedom for each material point (cf. [43]).
This additional information can be linked to the underlying microstructure
of a statistically inhomogeneous body, so that it can be replaced with a
macroscopic homogeneous one. In case of the extended continuum theory
as proposed by brothers Cosserat [25], the material point is considered as a
rigid body on the microscale. Thus, the translational degrees of freedom u

are complemented by rotational degrees of freedom ¢.

The rotational degrees of freedom are independent from the translational
ones and do not scale with the displacement field. Hence, the influence of
rotations increases with decreasing size of the specimen. This characteristic

property provides the means to reproduce the size effect observed in shear

0.006 T T T T

0.005

0.004

0.003

©1

0.002
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0 0.2 0.4 0.6 0.8 1
x3 (normalized)

Figure 3.11: Micropolar model. Distribution of rotations under shear loading.
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tests performed on micromechanical models (cf. section 3.2).

The solution of the rotational degrees of freedom obtained in the simple shear
test (figure 3.11) shows the presence of the boundary layer and corresponds to

constraints resulting from the boundary conditions applied in tests (cf. [119]).

3.3.1 Boundary Value Problem Formulation

The formulation of the boundary value problem of the quasi-static micropolar
model contains apart from the kinematic relationships, constitutive relation-
ships, and balance equations, also the boundary conditions applied to the

boundary I' of the material body.

On the boundaries I'Y and I'Z the Dirichlet boundary conditions for the

translational

u=1u on I'Y (3.1)
and rotational degrees of freedom

@=¢ on I'Z, (3.2)
are prescribed.

On the boundaries T'Y and Fg the Neumann boundary conditions for the

stress

T-n=t on IV, (3.3)
and couple stress

M-n=m on I}, (3.4)

with n as an outward pointing normal to the boundary I' are applied.
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Furthermore, following conditions are imposed on the boundaries

r’>urf=r A nri¥=9, (3.5)

D, PN _ D~TN _
rpury =r A r;nry=90. (3.6)
The equilibrium equations

divT =0, (3.7)

divM+IxT=0, (3.8)

together with the boundary conditions, and the kinematic and constitutive

relationships form the strong form of the micropolar boundary value problem.

3.3.2 Weak Formulation

The weak form of the micropolar boundary value problem is obtained by
multiplication of the translational momentum (equation 2.49) as well as
rotational momentum (equation 2.50) equations with the test functions
v € {du, dp}, followed by integration over the domain 2 with the boundary
r

/5u.dideQ:o, Vouel, (3.9)
Q
/54,5-[divM+I><T] A0 =0, Vipe d, (3.10)
Q
U= {511 € H'(Q), bulpp = o} : (3.11)

b = {5¢) e HY(Q), 0@y = 0} . (3.12)



3.3. Modeling by Micropolar Approach 39

Applying integration by parts and using the divergence theorem we obtain

L/gm@du-TWﬂ2=§/6u-EdF, (3.13)
Q ry
L/[gﬁdé@-hl—é@-lxﬁq(ﬂ2=u/5¢-ﬁ1dF. (3.14)
Q F(I’}’

The solution w € {u, ¢} for the translational as well as rotational degrees of

freedom lies in the function space U x @ with
U:{uGH%m,lm?:ﬁ}, (3.15)
o= {pen'(Q), lp=0¢}. (3.16)

The Sobolev space H! is the space of square integrable functions v with finite

integrals for v? and |Vv| over domain Q.

The variational formulation of the micropolar problem reads as follows:
Find v € U x & such that

a(u,v)=1v), Yoveldx . (3.17)

In the present problem we have

a(u, v) ::/ [gradéu T+ graddp-M —dp - I x T] dQ, (3.18)
Q
[(v) :z/éu-fdf‘+/5¢>‘fndf‘. (3.19)
TN ry

The numerical solution uj, of the micropolar model is obtained by casting
the continuous variational problem (3.17) into a discrete variational problem

with functions lying in the finite-dimensional function spaces based on the
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geometric triangulation 7 of the domain 2

vy € Z/?h X Qgh C Z/N{ X g’~§, vy, € {(5uh,6¢h}, (320)

u, €U, X O, CUX D, wuy € {uh,<,5h}. (321)

The discrete variational problem can now be stated as:
Find wu; such that

a(uh,'vh) = l(’Uh). (3.22)

The approximations u;, and ¢y, are formulated using shape functions N* and

M’ with corresponding unknown expansion coefficients u’ and @’
w, =Y N(x)u', (3.23)
n=>) M(x)¢. (3.24)

In the present work the translational and rotational degrees of freedom utilize
the same finite element shape functions. However, a mixed formulation,
where the different physical degrees of freedom make use of different shape
functions, is also possible (cf. [4, 118, 128]).

The test functions v, are approximated with the same set of functions as
used for the solution approximation uj,. This procedure corresponds to the
standard Galerkin method (cf. [7, 109])

vy, = Z N (x). (3.25)
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3.3.3 Numerical Examples

The size effect is investigated by performing the simple shear test on a set
of geometrically similar specimens. Figure (3.12) shows the boundary condi-

tions used in simulations.

€3

I

€y

=0

A
\
I
I
|
|
|
I
I
I
|
|
NN

A

Figure 3.12: Micropolar model. Boundary conditions of simple shear test.

Figure (3.13) shows the values of the effective shear modulus obtained using
linear micropolar model. The characteristic length parameter /. controls
the thickness of the boundary layer. Small values of the length paramecter

decrease the size of the boundary layer.

The variation of the internal length parameter /. has a direct effect on the
macroscopic stiffness pi.sy (figure 3.13). These results confirm the capability
of the micropolar approach to describe the size effect under shear loading
on macroscopic level. Figure (3.14) displays the solutions for the rotational

degrees of freedom obtained with different values of I..

The parameter p,. controls the stiffness of the boundary layer. Higher values
of this parameter have an effect of lower magnitudes of rotations. Figure
(3.15) depicts the solutions for the rotational degrees of freedom obtained

with different values of the parameter p..
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Figure 3.13: Size effect modeled with micropolar approach.

Contrary to the results obtained in tests using micromechanical models, the

micropolar approach fails to predict the size effect under tensile loading. This

is motivated by the fact that the rotational degrees of freedom are not being
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Figure 3.15: Parameter study. Stiffness p..

activated in tension. In this case the solution delivered by the micropolar
theory is identical to the solution obtained using the classical continuum
theory (cf. [119]).

To quantitatively reproduce the mechanical behavior of the micromechani-
cal model with the micropolar model on macroscopic level a set of suitable
model parameters (Lamé parameters g and A plus the additional micropolar
parameters [, and p.) has to be determined. The identification of these pa-
rameters involves a solution of an inverse problem and will be discussed in

the subsequent section.
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3.4 Modeling by Order Parameter Approach

The order parameter formulation is investigated as an alternative to the
micropolar approach with regard to modeling of the size effects. The distri-
bution of the order parameter variable (figure 3.16) shows the presence of
a boundary layer similar to the distribution of rotations from the microme-
chanical (figure 3.8) and the micropolar (figure 3.11) problems.

The order parameter field complements the linear elasticity problem as an
additional field controlling the spatial distribution of stiffness and, therefore,

used to reproduce a boundary layer observed in experiments.

The thickness of the boundary layer independent from the specimen size can

be reproduced by incorporating the linear mixture rule

(€)= (1= +&pe (3.26)

into the order parameter formulation. The parameter u; represents the local
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Figure 3.16: Distribution of the order parameter.
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stiffness in the bulk material of the sample and the material parameter uo

describes the stiffness in the region close to the boundary of the sample.

In contrast to the micropolar approach with translational and rotational
degrees of freedom, the order parameter model is a formulation based on
the classical Cauchy continuum with translational degrees of freedom only.
Hence, the equilibrium equation and kinematics are identical with the corre-
sponding relations in the theory of linear elasticity. This way the symmetry of
the strain tensor E used in the order parameter model is preserved, contrary

to the unsymmetrical micropolar strain measure €.

Both micropolar and order parameter approaches represent an extended con-
tinuum model. However, while the micropolar theory is an example of kine-
matically extended continuum, the order parameter setting extends the clas-
sical continuum model at the level of the constitutive relations and acts as a

non-kinematic quantity.

The main advantage of the order parameter approach compared to the mi-
cropolar model setting is the capability to reproduce the size effect under
tensile and compressive loadings, while the micropolar approach is able to

describe the size-dependent behavior in shear test only.

Another advantage of the order parameter model refers to the computational
efficiency. Compared to the micropolar model with six degrees of freedom
(three translational plus three rotational) the order parameter model exhibits
a lower numerical complexity since a total number of four degrees of freedom
(three classical translational plus one additional degree of freedom of order

parameter ficld) is used.

3.4.1 Boundary Value Problem Formulation

The boundary value problem of the order parameter approach is composed

of the relationships of linear elasticity and an additional order parameter
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equilibrium equation. The boundary value problem is completed by the set

of boundary conditions imposed on the material body.

The Dirichlet boundary conditions are prescribed for the kinematic degrees

of freedom

u=1u on I?

(T

(3.27)
and for the degrees of freedom associated with the order parameter field
¢=¢ on IP. (3.28)

The Neumann boundary conditions are prescribed on the boundaries I'’Y and
Fév for the kinematic degrees of freedom

T -n=t on IV (3.29)
and for the order parameter

S‘n=§ on I/ (3.30)
with n as an outward pointing normal to the boundary I'.
Following conditions have to be fulfilled on the boundaries

reur¥=1r A 12nri¥=9, (3.31)

rPury=r A TZNry=0. (3.32)

The balance equations

divT =0, (3.33)

divS+i=0, (3.34)
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together with the constitutive relationships

T = 2u(€)e + Atre) 1, (3.35)
p(§) =1 =8 m+E&ps, (3.36)
S = grad ¢, (3.37)
k=—-ag, (3.38)

and with the kinematic relationship
1 T
e=, (gradu + grad” u), (3.39)

govern the strong form of the order parameter boundary value problem in
the quasi-static case. The equation (3.35) describes the relationship between

deformation and stress as a function of the order parameter field &.

3.4.2 Weak Formulation

In order to solve the boundary value problem formulated in the previous
section using the finite element method the weak formulation of the problem

is required.

The weak form of the order parameter boundary value problem is obtained
by multiplication of the translational momentum (2.58) and order parame-
ter field equation (2.59) with the test functions v € {du, ¢}, followed by

integration over the domain €2 with the boundary I'

/5u-dideQ=o, Véuel, (3.40)
Q
/55-[divs+fa} dQ =0, VogeP, (3.41)

Q
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U= {511 e H'(Q), dulpp = 0} : (3.42)
P o= {5§ eH'(S), 6l = 0} . (3.43)

Applying integration by parts and using the divergence theorem we obtain

/grad5u CTdQ = /5u-£dr, (3.44)
Q ry

/ [grad 5€-S + o€ /-@] a0 — / 5esdr. (3.45)
Q Ny

3

The solution w € {u, £} for the translational and order parameter degrees of

freedom lies in the function space U x P with

U = {u cHY(Q), u

rp = u} : (3.46)

Pi=f{een@, dp-¢. (3.47)

The variational formulation of the order parameter problem reads as follows:
Find w € U x P such that

a(u,v)=1(v), YoveldxP. (3.48)

In the current problem we have

alu,v) ;:/ [gradéu T + orad 66 - S + 6¢ /@] dQ (3.49)
Q
I(v) ;:/5u-£dr+/55§dr. (3.50)
ry ry

The approximated solution u, of the order parameter model is formulated
by transforming the continuous variational problem (3.48) into a discrete

variational problem with test functions and shape functions lying in the finite-
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dimensional function spaces based on the geometric triangulation 7 of the

domain 2

vy € Z]h X 75h C Z/Nl X 75, vy € {(SH}L,(S@L}, (351)

up EU, X P, CUXP, uy€ {uh,ﬁh}. (352)

The discrete variational problem is stated as:
Find w; such that

a(uh,'vh) = l(’l)h). (353)

The next step is the formulation of the approximations u, and &, with shape
functions N* and P’ and corresponding unknown expansion coefficients u’
and &'

uy, = Z N'(x) u’, (3.54)
& = Z Pi(x) & (3.55)

The test functions v, are approximated with the same set of functions as

used for the solution approximation wy,

vy = Z Ni(x). (3.56)
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3.4.3 Numerical Examples

In the following examples the macroscopic behavior of the micromechanical
reference specimens is modeled by the order parameter approach. Further-

more the influence of the model parameters is demonstrated.

A set of simple shear and tensile test experiments is carried out using ge-
ometrically similar specimens. The corresponding boundary conditions and

specimen geometries can be found in figure (3.17).
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Figure 3.17: Order parameter model. Boundary conditions of tensile test
(left) and simple shear test (right).

The results of virtual tensile test experiments are shown in figure (3.18).
With the appropriate boundary conditions, the weakening effect is observed

for results computed using the order parameter approach.

The additional parameter o controls the distribution of the order parameter
variable £. In figure (3.19), the field variable ¢ is plotted over the height of
specimen. For higher values of the parameter o the boundary layer effect

dominates the distribution of the order parameter.

The stiffness p(€) is defined as the function of the variable £, which depends
on the parameter . Thus, the latter also controls the distribution of the local

stiffness of the specimen bulk. While p; represents the local stiffness in the
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Figure 3.18: Order parameter approach. Size effect in tensile loading.
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Figure 3.19: Parameter study for model parameter a.

bulk of the specimen which is unaffected by the boundary, us stands for the
stiffness close to the specimen boundary. Using the variation Ap = (pug — 1)

the material stiffness on the boundaries can be modified.
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Figure 3.20: Parameter study for model parameter .
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Figure 3.21: Distribution of order parameter £ for specimens of different size.

The effect of the parameter uy, on the displacement field u in z;-direction is

shown in figure (3.20). The effective stiffness values on the boundaries are
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Figure 3.22: Order parameter approach. Size effect in shear loading.

rising directly proportional to the value of ps.

Figure (3.21) shows the distribution of the field ¢ over the specimen height
for specimens of different size. It reveals a constant value of the boundary

layer thickness in all of the considered specimens.

The results of the variation of the model parameter o are displayed in figure
(3.22). The values of the effective Young’s modulus show size-dependent
behavior under shear loading conditions. Thereby, the magnitude of the
size dependency is controlled by the parameter a. Smaller values of this
model parameter are reflected in significantly present size effects whereas

large values of a lead to barely observable size effects.

The simulations of standard experiments such as simple shear and tensile
test using the order parameter model with the appropriate set of model pa-
rameters prove the capability of the order parameter model to describe size

effects.
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3.5 Identification of Model Parameters

The problem of identification of model parameters is a so-called inverse prob-
lem. This kind of problem setting consists of deducing the values of the pa-
rameters characterizing the system using results obtained from the system
investigation. The solution of inverse problem turns out to be a non-trivial
task for multiple reasons. The main problems are the size of the parameter

space needed to be examined and the parameter uniqueness.

The problem of parameter identification considered in this work can be set

as an optimization problem written as
Q = min[f(w)], (3.57)

where f(w) is the objective function to be minimized and w the vector con-
taining the function parameters. In general, the objective function is chosen
as the error between a data set obtained in experiments and the model re-

sponse for a given set of parameters.

The solution of an optimization problem can be achieved using two basic
classes of optimization methods: gradient-based and stochastic methods. The
gradient-based methods are employing the gradient of the function at the
current point in the parameter space to define the search direction of the
minimum. One of the drawbacks of the gradient-based methods is the sus-
ceptibility of running into one of the local minima before finding the global
one. The other disadvantage of these methods is the problem of stability.
In the case of significant sensitivity of the solution with respect to model

parameters (cf. [33]) the arising gradient may become extremely high.

The stochastic optimization methods include an element of randomness in
the optimization process. One of the advantages of the stochastic algorithms
is the possibility to replace the analytic solution of the investigated problem

with a numerical approximation. Furthermore, the stochastic algorithms are
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suitable for problems with nonlinear and discontinuous objective functions.
Another advantage of the stochastic optimization algorithm is its capability

of solving global optimization problems.

A large class of stochastic optimization methods is represented by the ge-
netic algorithms, which solve an optimization problem using the principles
of biological evolution such as mutation, selection, and recombination (cf.
[11, 95, 110]). The goal of the algorithm is to minimize the so-called fit-
ness function also known as the objective function in the context of regular
optimization algorithms. The algorithm starts with an initial population
consisting of a random set of solutions. In each iteration the population of
solutions is evaluated with regard to the fitness of each individual. Based
on computed scores the parents of the individuals of the next generation are
selected. Following the principle of natural selection only the parents with
the best scores are selected for the replication. The children are created by
performing random modifications to the single parent or by combining the
entities of a parents pair. Over multiple generations the initial population
undergoes the process of evolutionary development and delivers a population

containing individuals with the optimal fitness values.

Another example of a stochastic optimization algorithm is the particle swarm
optimization (cf. [37, 103, 111]). Here, similar to the genetic algorithms, a
random population of solutions is considered as particles, which are moving
around in the search space. The movement of the population is controlled

by the best found positions of single particles.

With the mentioned advantages the application of the genetic algorithm ap-
pears to be a reasonable choice to determine the macroscopic model param-

eters of the micropolar and order parameter approaches.
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Figure 3.23: Models reproducing the size effect: micromechanical (top), order
parameter (middle), and micropolar (bottom).
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3.5.1 Micropolar Model Parameters

The vector of model parameters to be determined using the optimization

routine for the micropolar problem reads

Wy = ()\7 oy e, lr’) ) (358)

with A and p as the Lamé parameters and u. and [. as the additional mi-

cropolar parameters.

Figure (3.23) shows an example of the macroscopic micropolar specimen used
to determine the micropolar model parameters. The fitness function used for
the parameter identification compares the average shear stress 7 obtained
from the micromechanical and macroscopic computations performed on a set

of the geometrically similar specimens and takes the following form (cf. [21])

macro micro

fw):i(” i )2, (3.59)

=1 t

with n as the number of different size specimens used.

The following strategy is applied splitting the problem of parameter identifi-

cation into multiple sub-problems:

1. The shear modulus p is determined in a single shear test on a sample
with large size, where the effect governed by the boundary layer is

negligible compared to the macroscopic stiffness.

2. The Lamé parameter A is determined in a single uniform compression

test performed on a large specimen.

3. The additional micropolar parameters [. and p. are identified using
the genetic algorithm. For this purpose the simple shear experiment
is carried out on specimens with different sizes in each iteration of the

genetic algorithm.
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All specimens are scaled in size with the constant height-to-length ratio.

Z = 0.01 (with

h; as specimen height and w; as displacement) is applied.

For all specimens the same effective shear angle v =

The micropolar parameters acquired as the result of the parameter iden-
tification procedure are listed in table (3.3). The effective stiffness values
computed with the identified set of model parameters are compared with the

stiffness values from the micromechanical reference model in figure (3.24).

A [MPa] u [MPal e [MPa] l. [mm]
28.71 16.53 12.257 4.323

Table 3.3: Identified parameters of micropolar model.

In the presented example the determined model parameters of the macro-
scopic micropolar model predict the size-dependent mechanical behavior in

a simple shear test with the maximum relative error of 1.05% (figure 3.25).
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Figure 3.24: Micropolar model. Simple shear test predicted with identified
model parameters.
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Figure 3.25: Size effect in shear test. Relative error between micropolar and
reference models.

The determined value of the internal length parameter (I, = 4.323 mm) is
of the same magnitude as the average strut length of the microstructure
(4.536 mm). Therefore, the internal length parameter [. can be linked to
the microstructure, providing the average strut length of the cells in the
microstructure as a reasonable initial value for the parameter identification

procedure.
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3.5.2 Order Parameter Constants

The size of the vector of model parameters for the order parameter approach
is identical with the vector size in the micropolar case. It contains, however,

a different parameter set

we = (>\7 M1, 2, Oé) s (360)

with A as Lamé parameter, p; and py as stiffness parameters and a as the

parameter controlling the boundary layer thickness.

The fitness function used here is identical to the function in the micropolar
case, hence, minimizing the difference in the mechanical response computed
using geometrically similar specimens of micromechanical and macroscopic

order parameter models

n macro micro\ 2
] — 7]
f((,L)£> = Z ( _mz‘cro ) (361)

T
i=1 v

with n as the number of different size specimens used.

The identification of parameters is divided into following steps:

1. The initial value of the shear stiffness p; is determined in a single shear

test performed on a large specimen.

The reasonable initial values are obtained by interpretation of the pa-
rameter py as the effective stiffness of larger specimens, where the size

effect is barely observable.

2. The Lamé parameter X is determined in the compression test performed

on a single specimen of a large size.

3. The remaining parameters ps and « are identified by means of the

genetic algorithm. For this purpose the shear tests on geometrically
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similar specimens with different sizes are carried out in every iteration

of the genetic algorithm.

The initial value of the parameter u, can be approximated by the eval-
uation of the effective stiffness values obtained from a test on smaller

size specimens, where the size effect has a strong influence.

The constants of the order parameter model determined using the parameter

identification routine are listed in table (3.4). The effective stiffness values

A [MPa] w1 [MPa] 2 [MPal a [MPa]
28.71 16.455 31.061 0.34891

Table 3.4: Identified parameters of order parameter model.

computed with the identified parameters are compared with the values from
the micromechanical model (figure 3.26). With the identified set of model
parameters the order parameter approach predicts the size effect in simple

shear test with the maximum relative error of 0.39% , which is comparable to
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Figure 3.26: Order parameter model. Simple shear test predicted using iden-
tified model parameters.
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Figure 3.27: Size effect in shear test. Relative error between the order pa-
rameter and the reference models.

the precision achieved using the micropolar model. Figure (3.27) shows the
relative error between the order parameter simulation and micromechanical

model as the function of the specimen’s size.

Compared to the size effect observed in tensile tests performed on microme-
chanical models (figure 3.10), the order parameter constants identified in
simple shear tests (table 3.4) provide only a qualitative prediction of the size

effect in tensile loading (figure 3.18).



Application to Damage Modeling

This chapter deals with the application of the order parameter approach
in the context of damage mechanics. The order parameter acts here as a
field variable associated with the microstructural property of an open-cell
foam. Furthermore, the conceptual background of the continuum damage

mechanics is presented.

The numerical properties of the presented damage formulation are demon-
strated in standard benchmark tests. In addition, the influence of the model
parameters on the damage evolution is discussed. An extended formulation
based on the additional microstructural data such as strut orientation is pre-

sented.

Another crucial aspect discussed in the present chapter is the comparison of

the results obtained with the numerical model and in a real world experiment.

—-063-
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4.1 Continuum Damage Mechanics

The subject of the continuum damage mechanics is dedicated to the descrip-
tion of the processes related to structural changes of the material resulting
from nucleation of new and growth of the existing defects. The final stage
of the damage process results in a total breakup of all bounds and as a

consequence in alteration of the effective material properties.

The deterioration process is modeled using an internal damage state with a
scalar or tensor valued variable related to it. The description of change of the
damage state requires the evolution equation of the damage variable. The
domain of analysis of continuum damage mechanics can be classified by scale

ranging between the micro-level and meso-level.

4.1.1 A Short Historical Overview

The development of the field of continuum damage mechanics begins in 1958
with the pioneering work of L. M. Kachanov [66] in which a first concept
of a field variable called continuity associated with the loss of strength of
metals undergoing creep was introduced. In 1968 Rabotnov [105] proposed
the concept of effective stress, representing the effect of stress increased due

to the reduction of undamaged arca.

Lemaitre [79] generalized the concept of the effective stress stating that the
constitutive equation of a damaged material can be derived from the consti-
tutive relation of an undamaged material by substitution of the stress tensor
with the corresponding effective stress tensor. This generalization is called
strain equivalence principle and describes the coupling between damage and

strain.

In the middle of 1970s, first applications of damage mechanics to creep of
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structures (cf. [78]) and creep-fatigue interaction (cf. [82]) were made. In
the work of Gurson [54] a rupture model with approximate yield criteria and
flow rules for porous ductile materials were proposed. This work also exhibits

the role of the hydrostatic stress in plastic yield and void growth processes.

Addressing the irreversible nature of the damage process the treatment of
the damage variable within the framework of thermodynamics was presented
by Lemaitre and Chaboche [83], Krajcinovic [71], and Kachanov [65].

Since the late 1980s, an increasing number of damage models correspond-
ing to different failure mechanisms has been proposed. These include the
formulation of damage concepts for composites (cf. [117]), low cycle fatigue

(cf. [35]), and treatment of the damage localization problem (cf. [12]).

A so-called non-local damage approach was proposed in [8, 9], with the evo-
lution equation of the damage at a point governed by the local state variable
and neighboring fields. The non-local damage theory provides an efficient
method to deal with the issue of strain localization. The description of
the isotropic damage was extended to the general state of three-dimensional

anisotropic damage in the work of Murakami [97].

A number of formulations addressing the multiscale nature of the damage
mechanisms have been introduced since the 1990s. To describe the damage
in quasi-brittle materials where no dissipation occurs before crack initiation
a two-scale damage model was presented by Lemaitre [81]. The two-scale
damage approach was also applied to describe the damage effects such as
nonlinear accumulation of damage and initial strain hardening related to high
cycle fatigue processes (cf. [86]). Later on, the gradient-enhanced damage

model for quasi-brittle materials was proposed by Peerlings et al. [102].

The framework of micropolar continuum theory was used by Steinmann [115]
to formulate the elastoplastic damage concept for ductile materials. In the
work of Forest [48] the micromorphic approach is applied to damage ther-

momechanics together with an overview of the available damage gradient
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models.

A number of works dealing with the problems of damage and fracture of
composite materials has come out since the end of 1990s (cf. [49, 77]). The
complex failure mechanisms of composite materials led to increased develop-

ment and application of multiscale approaches (cf. [47, 75, 76]).

A comprehensive review of the available damage mechanics models related
to various material behavior and degradation phenomena can be found in
(65, 72, 84, 98, 124].

4.1.2 Damage Variable

In the scope of the continuum damage mechanics the damage state of the
material is represented in terms of the damage variable. This variable is used
to characterize the mechanical behavior of the damaged material and the

evolution of the damage.

The damage process is reflected in changes of many different material prop-
erties (i. e. alteration of effective stiffness, hardness, density, electrical resis-
tance, yield stress etc.) taking effect on a multitude of scales. The changes
in material which are observable and measurable in experiments can be used

to define a damage variable.

The geometrical quantification is a straightforward possibility to describe the
damage state. This concept was proposed by Kachanov to predict the brittle

creep rupture time of metals under tension (cf. [66]).

Consider a damaged body displayed in figure (4.1) with an isolated represen-
tative volume element (RVE). The damage variable is defined by the surface

density of the damaged area dAp on a plane cutting through the RVE with
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Figure 4.1: Geometrical quantification of damage.

a cross section dA with the normal vector n

dAp
w(n) = , 0<whn)<1. 4.1
m)="77, 0<wm < (1)
The value w = 0 corresponds to the undamaged material and the value w = 1
implies the totally damaged material with macroscopic crack initiation taking
place. However, the values of damage determined in experiments can be

lower, resulting in total failure of the material with a critical value w. < 1.

In the equation (4.1), the respective intrinsic variable w is a second order
tensor (cf. [99]) providing the definition of the damage in the orthotropic
case. This tensor maps the surface dA with the corresponding normal vector
n to the surface dA = dA — dAp with the normal vector i indicating the

change of surface orientation due to the anisotropy of damage
(I-w)-ndA=ndA. (4.2)

Assuming that the damage is equally distributed in all directions, the damage
variable becomes independent from the normal vector n. Thus, the definition
of the damage variable for the case of isotropy can be written in the following

form

_ dAp
o dA”’

w

(4.3)
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with the damage tensor from the equation (4.1) reduced to a scalar.

In particular cases it may be advantageous to utilize the so-called continuity

function as proposed by Kachanov (cf .[65, 66])
v=1-w. (4.4)

Apart from the area-based variable definitions a number of concepts of the
damage variable exist. The definition of the damage variable can be extended

4
to a fourth order tensor D

4 4 4

4 4
D=I- C (D) : (Co) ", (4.5)
acting as an operator changing the elasticity tensor

C(D)=(1-D):Cy, (4.6)

4
with Cy as the elasticity tensor of an undamaged material (cf. [20]). As an
example for another alternative definition, the void volume fraction can be
adopted to describe the damage state in the material (cf. [54])
dVp
w = , 4.7
qv (4.7)
where dV' is the volume of RVE and dVp, is the volume of voids. Depending
on the considered scale of the damage phenomenon further damage vari-
able definitions incorporating the microstructural features such as gecometri-
cal configuration of micro-voids (cf. [99]) or directional distribution of defect

density (cf. [68]) can be found in the literature.

4.1.3 Effective Stress Concept

The mechanical behavior of damaged material is described using the concept

of effective stress, introducing a stress vector t acting on the surface dA
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effectively resisting the load (cf. [85])

~ dA t
t=t .= . 4.8
dA l1-w (48)
The effective stress tensor in the general case of damage is given by
T=(I-w)'T. (4.9)

The lack of symmetry of the effective stress in the equation above makes it in
general rather unsuitable for the formulation of constitutive equations. This

issue can be solved by various symmetrization techniques as summarized in
[98].

In the case of isotropic damage the effective stress tensor can be simplified

to

T = . (4.10)

4.1.4 Strain Equivalence Hypothesis

With the assumption that the deformation is only affected by the effective
stress, the strain equivalence hypothesis proposed by Lemaitre [80] states
that strains in the damaged material are equivalent to the strains in the
undamaged material with the stress tensor T replaced by the effective stress

tensor T

e=¢(T,w)=¢(T). (4.11)

As a consequence, the constitutive equations of the undamaged material with
the effective stress substitution can be employed to describe the material
behavior of the damaged material. The hypothesis of strain equivalence is

visualized in figure (4.2).
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T,e,w>0 T ew=0

Figure 4.2: Strain equivalence hypothesis.

According to the hypothesis of strain equivalence the values of Young’s and
shear moduli of the damaged material are decreased by the factor (1 — w),
therefore, the damage state in the isotropic case in uniaxial tension can be

identified by the measurement of the effective Young’s modulus E

E=(1—-w)E, (4.12)
E
=1- 4.1

with Fy as the Young’s modulus of the virgin material.

4.1.5 Damage Evolution

The process of the damage development is described by the evolution equa-

tion in the form

Ow

o = f(T,w, a), (4.14)

where a is the vector consisting of further model-dependent parameters hav-
ing effect on damage evolution (e. g. temperature, plastic strain rate, porosity

etc.) and A > 0 a monotonically increasing parameter (e. g. time, entropy,
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etc.) describing the loading of the volume element.

The consequence of the damage evolution is the loss of material stiffness as-
sociated with the release of energy. The release rate of elastic strain energy Y
is introduced as a conjugate variable associated with the damage and derived

from the state potential in the form of Helmholtz free energy ¥

ov

Y=—paw.

(4.15)

For the case of isotropic elastic damage, the Helmholtz free energy is written

as a function of the linear strain and the damage variable
pUe,w)=(1—-w)P°, (4.16)
with the elastic strain energy density given by
e 1 2
v :2)\(5:1) +pe:e. (4.17)

Combining the equations (4.16) and (4.17) the elastic energy release rate is

written as
e 1 2
Y=V :2)\(5:1) +ue:e. (4.18)

The actual damage evolution can be represented using phenomenological,
thermodynamical or micromechanical approaches. In the framework of ther-
modynamics the evolution equation of dissipative damage variables can be
derived from the potential of dissipation F' (cf. [80, 85])

b=— . (4.19)

The choice of the potential function F'is not obvious and depends in the first
place on the observations and insights gained in experiments. The essential
requirement for the potential of dissipation is that it must be a scalar convex

function of flux variables or of their dual variables (cf. [85]).
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4.2 Damage Modeling of Open-Cell Foams

4.2.1 Topology-based Damage Variable

The mechanical properties of foam materials are mainly defined by the ma-
terial structure on the microscopic level. The characterization of the cellu-
lar material microstructure can be made based on the following properties
(cf. [50]):

porosity

mean cell diameter
dispersion of cell size
symmetry

edge-connectivity

Several material properties are affected as a consequence of the damage pro-
cess. In the present contribution, the topological information such as edge-
connectivity obtained from the microstructure is used to define a damage

evolution approach for an open-cell foam structure.

For the sake of convenience we consider a two-dimensional open-cell lattice
structure shown in figure (4.3). Each cell is connected with the neighboring
cells through struts. The number of the neighboring cells depends on the foam
morphology. The edge-connectivity Z. is one of the properties characterizing
cellular materials and is defined as the average number of edges linked to a
vertex (cf. [50]).

In the structure depicted in figure (4.3) the edge-connectivity values within

the bulk material are always higher than the connectivity values on the spec-
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Figure 4.3: Edge-connectivity of foam: virgin (left) and damaged (right)
states.

imen boundary (cf. weak boundary layer, section 3.2.2), resulting in magni-

tudes of edge-connectivities in the following range
1<7Z,<4. (4.20)

Since the mechanical stability of an open-cell foam is directly linked to the
number of connections between cells and the edge-connectivity deteriorates
with the ongoing damage process (figure 4.3, right), a measure based on the

edge-connectivity can be used to represent the damage state of the foam.

1

0.8
‘ 25
0.6 al
2
0.4
1.5
0.2
0 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 4.4: Average edge-connectivity distribution: virgin (left) and damaged
(right) states.
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Figure 4.5: Three-dimensional foam specimen.

The edge-connectivity distributions corresponding to specimen in the ini-
tial virgin state and in the damaged state is shown in figure (4.4). The
edge-connectivity distribution present in the two-dimensional case is also ob-
served in three-dimensional foam specimens (figure 4.5). An example of the
distribution of edge-connectivity along the x;-direction is displayed in figure
(4.6). Due to the random spatial distribution of the cell vertexes the raw
distribution data is unsuitable for the visualization of the edge-connectivity
field. For this purpose, the utilization of the moving average appears to be

an appropriate technique (figure 4.7).

The starting point of the order parameter-based damage formulation is the
definition of the damage variable. With the continuity function (not to be
confused with the free Helmholtz energy introduced in equation (2.60)) de-

fined as
v=1-¢, (4.21)

we formulate the continuity relationship as a function of edge-connectivity
Z,

U= (4.22)
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Figure 4.6: Distribution of the edge-connectivity Z, over specimen length.

with Z, as the current number of connections to neighboring cells and Z, the

number of connections in the initial undamaged state.

With the equation (4.21) the topology-based damage variable reads as follows
0<eE<T. (4.23)

The damage variable takes the values & = 0 for the material without damage
(i. e. the cell has full number of connections) and £ = 1 for the completely
damaged material (i. e. all of the connections to neighboring cells are lost,

the cell is cut off from the remaining structure).

Due to the boundary layer in the edge-connectivity distribution the order
parameter approach is a natural choice for the description of the damage field.
Hereby, the material is considered containing two distinct phases: the phase
containing undamaged material and the phase with the material in damaged
state. Hence, the damage variable is used to describe the separation of two
phases together with the interface development. This approach is similar to

the procedure used in phase filed models as proposed in [17].
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Figure 4.7: Distribution of the average edge-connectivity (Z,) over specimen
length.

4.2.2 Damage Formulation

In the following we consider a space-time domain 2x7T with a boundary I'xT'.
The order parameter damage formulation is governed by the translational
momentum equation, kinematic and constitutive relations in the isotropic
linear elastic case, together with the balance equation of the damage field
modeled by the order parameter. The boundary value problem is completed
by the set of initial boundary conditions at the time ¢ = Tj prescribed on the

material body boundary.

On the boundaries T'? and F? the Dirichlet boundary conditions for the

kinematic degrees of freedom

u=u on I'YxTy, (4.24)
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and the degrees of freedom associated with the order parameter damage field
£=¢ on I xTy, (4.25)

are prescribed.

On the boundaries T}/ and I'Y a set of Neumann boundary conditions for

the kinematic degrees of freedom

T-n=t on I'YxT,, (4.26)
and for the order parameter

S-n=8§ on I xTy, (4.27)
with n as an outward pointing normal to the boundary I', are required.
Furthermore, following conditions have to be fulfilled on the boundaries

r’ury =1 A 12nri=9, (4.28)

reury =r A TZnry=40. (4.29)

The set of balance equations with neglected body forces reads as follows

divT =0, (4.30)

: . 0¢
= . 4.31
divS + & Py (4.31)

The constitutive relationships are derived starting from the Helmholtz free

energy chosen as
U = W, (B, &) + V(€ grad ). (4.32)

where W, (E, £) is the elastic part of the Helmholtz free energy depending
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linearly on damage &
PULE, €)= (1 -, (E), (4.33)
with
PV, (E) = ;A(E 1?4 uE : E. (4.34)
The order parameter contribution W¢(&, grad§) is defined as
pU(E, mrad€) = 0+ Hlamad €)7. (4.35)

With the derivation procedure outlined in section (2.3) following constitutive

relationships are obtained

T=pF o Fr=(1-9T, (4.36)
oW

S = p@gradf = [ grad &, (4.37)

N, S

,‘-i——pa5 =V, —af. (4.38)

Using the kinematic relation for the geometrically linear case obtained by

replacement of the Green strain tensor E with the linear strain tensor
1 T
Erxe= 2(G‘rmdu + Grad " u), (4.39)
the cffective stress is written in the following form

- T
T:1_€:2,u€+/\(trs)l. (4.40)

Substitution of the relationships (4.37) and (4.38) in the balance equation

(4.31) provides the evolution equation of the order parameter formulation of



4.2. Damage Modeling of Open-Cell Foams 79

the damage field

div (Bgradé) —aé + U, = v gf; . (4.41)

Here, the term U,, corresponds to the elastic energy release rate from equation

(4.18).

4.2.3 Weak Formulation of the Model Equations

The weak form of the boundary value problem of the order parameter damage
approach is obtained by multiplication of the balance equations at a time

teT, T =10,I] with the test functions and integration over the domain 2

/5u-dideQ=0, Voueld, (4.42)
Q
/55-[div8+/%—gﬂ a0 =0, VoceP, (4.43)
Q
U= {511 e H'\(Q), Sulpp = 0} , (4.44)
P o= {55 e HN(Q),  0€|p = o} . (4.45)

We consider test functions v € {du, 0¢} which depend on spatial coordinates

only. The time derivative is approximated by the finite difference method.

Performing the integration by parts and using the divergence theorem we

obtain

/gradéu T dQ = /(5u-de, (4.46)

Q ry

/ [gradéf S OEh - 6E gﬂ 40 = /55@ ar. (4.47)
FN

Q
€
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The solution w € {u,{} for the translational and order parameter degrees of

freedom lies in the function space U x P with

U = {u €H'(Q)., ulpp = u} , (4.48)

P={cen (@), gw=E}. (4.49)

The variational formulation of the order parameter damage model reads as

follows:
Find w € U x P such that

(gf,v>+a(u,v)=l(v), VoeUxP, YteT. (4.50)

In the current problem we have

a(u, v) :2/ [gradéu : T+ grad o6& - S + 6¢ /%] dQ, (4.51)
Q
I(v) ::/5u-£dr+/5§é dr, (4.52)
ry ry
9\ 9¢
((%,v) ._/55 a0, (4.53)
Q

with (-, -) as an inner product of the function space L? of square integrable

functions.

The numerical solution of the order parameter damage model is obtained
by the transformation of the continuous variational problem (4.50) into a
discrete variational problem with functions lying in the finite-dimensional

function spaces based on the geometric triangulation 7 of the domain 2

vy € Z/?h X 75h C Z;[ X 75, vy € {5uh,6§h}, (454)

u, €U, X P, C U X 'P, up € {uh,fh}. (455)
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The semi-discrete variational problem can be stated as:
Find wu, such that

<g§7 'Uh) + Cl(’ll/h, 'Uh) = l('vh) , VteT. (456)

The next step is the formulation of the approximations u, and &, with shape
functions N’ and P*

u, = Z N (x) u'(t), (4.57)
=2 P, (4.58)

with corresponding unknown expansion coefficients u’ and &' depending on

time t.

The test functions v, are approximated with the same set of functions as

used for the solution approximation wy,

v, = Z Ni(x). (4.59)

With the degrees of freedom of the semi-discretized problem for cach node

of triangulation 7 merged in a vector

w = (o, &), (&) (1.60)

the variational problem (4.56) can be written as a system of differential-

algebraic equations
F (¢, up(t), u)(t)) =0, (4.61)
with the initial condition

wp(to) = ug . (4.62)
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With the time derivative approximated by the backward Fuler method the

time discretized system (4.61) reads

un—i—l

F (t"—i_l, 'U/n+1, —u ) — O, (463)

At

with the index n noting the current and index (n + 1) noting the next time

steps.

The problem (4.63) is in general a nonlinear system of equations solved for

u""! using Newton’s method.

4.2.4 Numerical Simulation of Tensile Test

The examples presented in the following are implemented using the finite
element analysis software package COMSOL Multiphysics [24] which allows
for the modeling of systems of partial differential equations based on the

weak formulation.

Figure 4.8: Discretized specimen geometries: SEN (left) and SENP (right)
specimens.

The discretized specimen geometries used in the benchmarks described in
the next sections are depicted in figure (4.8). The single edge notched speci-
men(SEN) and single edge notched perforated specimen (SENP) geometries



4.2. Damage Modeling of Open-Cell Foams 83

are discretized with quadrilateral elements. Table (4.1) presents an overview

of the model parameters used in the current example.

E [MPa] v [ fN] a[MPa] vy [
200 0.33 334 0.16 0.016

Table 4.1: Numerical tensile test. Model parameters.

SEN-specimen

In the present example, a tensile test is performed using the SEN-specimen.
The boundary conditions are depicted in figure (4.9). The computation
is performed with monotonic driven displacements with an increment of

Au =1 mm.

Au
B
% |
on le=1]
- |
§=1 |
A 1 A
— = — — — = - ==
§=1 I
|
|
o5
T
'B

Figure 4.9: Boundary conditions of tensile test.

The Dirichlet boundary condition & = 1 is chosen to describe the influence
of free boundaries on the connectivity, i. e. to take into account the reduced
connectivity close to free boundaries. In contrast, the Neumann boundary
condition gfl = ( is chosen in the sense of a symmetry condition. In this case

5 = 0 preserves the connectivity close to these boundaries.
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—
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Figure 4.10: Damage propagation under tensile loading: Au = 13 mm (left),
Ay = 15 mm (middle), Au = 16 mm (right).

The evolution of the damage zone during the tensile test is displayed in
figure (4.10). The red color corresponds to the state of the total damage
where the connections to the neighboring cells are lost and the blue color
displays the undamaged state of the structure where all of the connections

to the neighbors are present.

The damage is initiated at the notch tip and grows in horizontal direction
towards the right boundary of the specimen. The distribution of von Mises
stress values during the tensile test is shown in figure (4.11). The compari-

son of the results of stress and damage zone calculations indicates that the

[ - [ - -_— -
0 5.372 0 5.372 0 5.372

[MPa] [MPa] [MPa]
Figure 4.11: Von Mises stress under tensile loading: Au = 13 mm (left),
Ay =15 mm (middle), Au = 16 mm (right).
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Figure 4.12: Tensile test. Force-displacement curve.

maximum stress values are at all times located around the damage zone tip

while the structure is unloaded in the regions of growing damage. The force-

displacement curve obtained in the tensile test is shown in diagram (4.12).

The displacement value at which the maximum reaction force value is reached

Au =10 mm —*—
Au =13 mm
==
1.0 o o o Au =15 mm —e
0.8
0.6 -
0.4 -
0.2 +
500 600 700 800 900 1000

rp [mm]

Figure 4.13: Tensile test. Damage tip propagation along cutting line A-A.
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corresponds to the initialization of the damage growth around the notch area
(figure 4.10). After this point the specimen’s overall stiffness is decreasing as

the damage zone grows and the connections between cells are deteriorating.

The diagram (4.13) visualizes the profiles of the damage zone tip propagation
extracted at the different time points during the tensile test. The red curve
represents the position of the damage zone tip at the beginning of the test,
so only the area around the notch is affected by damage. The blue curve
stands for the damage end state where the damage zone has reached the
right boundary. The remaining curves show the positions of the damage
zone tip at intermediate stages. The development of the damage zone profile

1 T T

IAu =13 II;HI —%—
09 Au = 15 mm i
0.8 - Ay =16 mm —e— -
0.7
0.6
w, 05
0.4
0.3
0.2

0.1

© 200 400 600 80 1000
Ty [mm]

Figure 4.14: Tensile test. Damage zone profiles along cutting line B-B.

is shown in figure (4.14). The comparison of the damage profiles proves that

the damage growth rate increases proportional to the amount of damage.

SENP-specimen

In this example, the tensile test is performed using the SENP-specimen. The
setup of the test is shown in figure (4.15). Compared to the previous test
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) -0
L.xl on

Figure 4.15: Boundary conditions of tensile test (SENP-specimen).

the SENP-specimen leads to a more complex boundary value problem and a

non-trivial damage pattern.

Figure (4.16) shows the damage development during the tensile test. The
depicted results present a different damage pattern, with the damage zone
trajectory first heading towards the perforated area and then in the direction

of the boundary on the right-hand side.

—

[ . [ . [ .
0 1 0 1 0 1
§ £ §
Figure 4.16: SENP-specimen. Damage propagation under tensile loading:

Ay =12 mm (left), Au = 13.5 mm (middle), Au = 14 mm (right).
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Figure 4.17: SENP-specimen. Force-displacement curve.

The force-displacement curve obtained in the tensile test on SENP-specimen
is depicted in figure (4.17). The second knee in the force-displacement curve

corresponds to the damage zone reaching the circular hole in the specimen.

4.2.5 Mesh Sensitivity

In the following, we discuss the issue of the damage localization and mesh
dependency of the solution. The mesh sensitivity occurring at a certain dam-
age level is a problem emerging from incorporation of the damage evolution

in the framework of continuum models (cf. [29]).

With the evolving damage process, the material softening originating from
damage may occur. The consequence is the loss of the uniqueness and nu-
merical stability. The problems related to softening and mesh sensitivity are
investigated in [9, 30, 98].

The numerical tensile test setup is displayed in figure (4.18). The mesh
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Figure 4.18: Plate with a circular hole under tensile loading. Boundary

conditions.

dependency of the order parameter damage model is examined by means of

the damage analysis of tensile test performed on a plate with a circular hole

using four distinct discretizations displayed in figure (4.19).

The discretizations shown in figures (4.19(a)-4.19(c)) contain only quadri-

lateral elements and differ with regard to the element density. The discretiza-

tion displayed in figure (4.19(d)) is an example of an unstructured grid and

consists of triangular clements. The model parameters as well as the basic

numerical data are listed in table (4.2).

Parameter

Young’s Modulus [Pa]
Poisson’s Ratio
Diffusion coefficient
Absorption coefficient
Time-scaling coefficient

Number of Elements

Number of Degrees of Freedom

Mesh A | Mesh B | Mesh C | Mesh D

200
0.33
0.0033
0.00166
0.00166

3000 ‘ 12000

1000
9600 38400

3360

Table 4.2: Sensitivity test. Model parameters.

3776
5964
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Figure 4.19: Discretizations of the plate with circular hole.

The damage distributions obtained using different discretizations are shown
in figure (4.20). The damage zone in the tensile test propagates in horizontal
direction from the hole in the center of the specimen towards the left and

right boundaries.

The examination of solutions displayed in figure (4.20) indicates high simi-
larities between the obtained results. A detailed comparison is provided by

the damage zone profiles shown in figure (4.21).

These results confirm the mesh independence of the solution. The solution

resulting from the coarse mesh "A” appears to be a case where the solution
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Figure 4.20: Mesh sensitivity test. Damage distribution: Mesh A (top left),
Mesh B (top right), Mesh C (bottom left), Mesh D (bottom right).

has not yet converged. The difference between damage zone profiles calcu-
lated with mesh "B” and extremely fine mesh "C” is negligibly small. This
implies that the solution from the coarser mesh "B” is accurate enough to
be considered as a converged solution. The solution corresponding to the

unstructured mesh "D” features similar precision as the coarsest structured
mesh "A”.

Next, we examine the force-displacement relationship. The force-
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Figure 4.21: Mesh sensitivity test. Damage zone profiles.

displacement curves resulting from performed analysis are presented in figure
(4.22). Here, the same situation as with the damage zone profiles is observed.
The peak levels of the reaction force curves from mesh "A” and "D” are slightly

lower than the peak levels calculated from finer discretizations "B” and "C”.

T | | Mesh A —%— |
Mesh B
o8¢ /L\ Mesh C —e— -
Z, : Mesh D
: A
§ 0.6 ) / B
o
[
5 oo // -
‘_g 7
g e
= 02l ]
0 0 5 1|o 1|5 20

Displacement Au [mm]

Figure 4.22: Mesh sensitivity test. Force-displacement curves.
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The difference between finer meshes "B” and "C” as displayed in figure (4.22)

becomes even more insignificant.

The relation between reaction force and displacement also clearly shows the
mesh independent character of the order parameter damage model with re-

gard to element density as well as the element type.
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4.2.6 Model Parameters

The influence of the model parameters on the damage evolution is evaluated
in a standard tensile test performed on a SEN-specimen. The values of the
damage variable £ are computed in a point close to the notch tip, the damage
zone profiles are evaluated along the cutting line B-B marked with the dashed
line (figure 4.23).

Au
B
% |
on | §:1
£=1 :
A _‘P A
— e —__— ) - — — — —
§=1
|
|
- e
L.[El |
'B

Figure 4.23: Parameters evaluation setup.

Spatial and temporal propagation

We begin with the evaluation of the model parameters such as absorption co-
efficient «, diffusion coefficient 3 and time-scaling coefficient v with regard to
damage propagation. In computations corresponding to the results depicted
in figures (4.24-4.30) the value of the investigated parameter is varied, while

the remaining parameters are being held at fixed values.

The time-scaling coefficient + has an effect primarily on the overall damage

propagation rate (figure 4.24). The inspection of the damage zone profiles
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Figure 4.24: Variation of time-scaling coefficient v. Damage propagation.

shown in figure (4.25) confirms that the damage zone width is barely influ-
enced by the values of parameter . The shape of the red curve corresponding

to the value of v = 1 results from the fact that this value is associated with

o = L)
0 200 400 600 800 1000
x1 [mm]

Figure 4.25: Variation of time-scaling coefficient v. Damage zone profiles
along B-B.
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Figure 4.26: Variation of diffusion coefficient 5. Damage propagation.

the slow damage propagation rate and at the final time point of ¢t = 1.0
the damage has not yet developed. The increasing values of the diffusion

parameter 3 have an effect of speeding up the damage progression (figure

3 =200 —s—
5 =2000 = |
3 = 20000 —o—

0 200 400 600 800 1000
Displacement Au [mm]|

Figure 4.27: Variation of diffusion coefficient 3. Damage zone profiles along
B-B.
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Figure 4.28: Variation of absorption coefficient . Damage propagation.

4.26). Performing the same with the values of the absorption parameter «
as shown in figure (4.28) has an opposite effect on the damage and forces the

propagation of the damage zone to slow down.

0 200 400 600 800 1000
Displacement Au [mm]|

Figure 4.29: Variation of absorption coefficient . Damage zone profiles along
B-B.
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Figure 4.30: Spatial distribution of the damage zone. Absorption coefficient
a = 0.1 (left) and a = 10 (right).

Apart from changes in the damage propagation rate the diffusion parameter
[ and the absorption parameter o have also a large impact on the spatial
properties such as the damage zone width (figures 4.27 and 4.29). The effect
related to the propagation rate is also present for the width of the damage
zone such that the large values of the diffusion coefficient result in wider
damage zones while the large values of the absorption coefficient have an
opposite effect. Figure (4.30) demonstrates the influence of the parameter o

on the spatial distribution of the damage zone.

Reaction force

Next, we consider the relationship between the model parameters and the
reaction force. This issue is of significant importance, since the reaction

force is one of the quantities which can be measured in a field experiment.

The inspection of the force-displacement curves shown in figures (4.31-4.34)
indicates the dependency of the reaction force magnitude on each model
parameter. Thus, to adjust the force-displacement curve modeled using the

order parameter damage approach to the results of a field experiment each
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Figure 4.31: Variation of the parameter a. Reaction force.

of the model parameters might be modified. However, since the diffusion
and absorption coefficients have an effect on the spatial distribution of the

damage the adjustment should be carried out by means of the remaining
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Figure 4.32: Variation of the parameter 3. Reaction force.
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Figure 4.33: Variation of the parameter v. Reaction force.

model parameters such as time-scaling coefficient v or Young’s modulus F.
Since the time-scaling coefficient has an effect on the overall damage rate
extreme values of v would have an effect of total retardation of the damage

evolution process. In an extreme case the result would be a failing damage
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Figure 4.34: Variation of the Young’s modulus F. Reaction force.
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initiation. With the mentioned considerations the remaining possibility to
adjust a force-displacement curve is the Young’s modulus E. As the change
of the Young’s modulus value modifies not only the maximum value of the
reaction force but also the point at which this value is achieved, the curve

adjustment using single model parameter appears to be a tedious task.

We introduce an additional criterion which drives the damage evolution pro-
cess by imposing a set of restrictions in the manner of Kuhn-Tucker conditions

(cf. [15, 74, 101]) on the elastic energy ¥, from the evolution equation (4.41)

qju Z 0 ) H(gl) EC) 2 O 7 H(Ela 6(?) \I/U > 0 Y (464)
with H(e1,¢.) as the Heaviside step function defined as follows

]-7 51_5020

(4.65)
0, e1—e.<0

H(El, EC) = {

The first condition in (4.64) requires the elastic strain energy to be non-
negative. The second requirement demands a certain level of deformation.
The last equation in (4.64) implies that the damage evolves only when the
elastic energy is non-negative and at the same time some minimum value €.

of the first principal strain is reached.

Therefore, the parameter e, is the strain value at which the coupling between
deformation and damage is triggered. As long as the critical strain value is
not reached the damage initiation will not occur. Figure (4.35) shows the
force-displacement curve and the effect of the critical strain value on the

reaction force.

With the increasing values of critical strain the peak value of the reaction
force is shifted to the higher strain levels. This scales also the magnitude of
the maximum reaction force and moves the damage initiation to larger strain

values. Changes in critical strain values do not affect the slope of the curve.
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Figure 4.35: Variation of the critical strain .. Reaction force.

Combining the effect of the Young’s modulus and critical strain value men-

tioned above we can adjust the slope and the peak value of the force-

displacement curve. Figure (4.36) shows an example where the slope of the

Reaction force F,.[N]
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Figure 4.36: Force-displacement curve adjustment.
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force-displacement curve is adjusted to a fixed value of the maximum reac-
tion force. This is accomplished by modification of the critical strain value
e. together with the Young’s modulus F.

Behavior under shear loading

In the following, we will discuss the effects of model parameters such as
critical strain e, and time-scaling coefficient v on the damage evolution under

shear loading.

The geometry of the specimen and the applied boundary conditions can be
found in figure (4.37). The computation is performed with monotonic driven

displacements with an increment of Au = 1 mm.

Au
P,
i on =1
e=1]

:':
: E=1

T2 %20
Lxl ; on .

Figure 4.37: Simple shear test. Boundary conditions.

Figure (4.38, left) features simultancous propagation of the damage zone
into two different directions. This damage distribution is obtained using a
relatively high value of the time-scaling coefficient v = 100. A repeated
calculation with a lower time-scaling coefficient value of v = 10 leads to a

single damage zone path as shown in figure (4.38, right).

The observed effect is similar to the splitting of a single crack into multiple

branches, an effect covered in problems regarding dynamic brittle fracture
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Figure 4.38: Shear loading. Parameter v = 100 (left) and v = 10 (right).

(cf. [16, 59, 69, 70]) where the branching stability depends on the crack
growth speed. Since the time-scaling coefficient v of the order parameter
damage approach controls the overall damage propagation rate it confirms

the mentioned analogy.

The damage zone patterns obtained with different values of the critical strain

parameter ¢, are displayed in figure (4.39). Under shear loading, this param-

~J

- -
0 1 0 1
3 £
Figure 4.39: Shear loading. Parameter ¢, = 0.1 (left) and e, = 0.2 (right).
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eter controls the trajectory of the damage zone. The increasing values of the
critical strain induce a higher deviation of the damage zone trajectory from
the horizontal propagation path (figure 4.39, right).

4.2.7 Additional Microstructural Data

The actual propagation path of the damage zone can be further adjusted
using the additional information originating from the microstructure. This
is achieved by including directional data such as the local strut orientation
of the foam cell. We consider the orientation distribution function (ODF)
as a generalization of the directional data representing the fraction of single

elements with a particular direction (cf. [68]).
The orientation distribution function p(n)
p = p(m) = Fiynin, (4.66)

corresponding to the microstructure of an open-cell foam is approximated
using the fabric tensor of the second kind F and the fabric tensor of the first
kind N (cf. [68, 125])

15 1
1 N
k k
Ny = N§ nni (4.68)
k=1

with n as a unit vector indicating the strut orientation.

The distribution function obtained using the fabric tensor from the equation

(4.67) is then incorporated into the evolution equation

¢

o = —div(Feradd) + af =0, (1-p). (4.69)
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-specimen con-

As an example we consider a tensile test performed on a SEN

structed as an artificial foam structure displayed in figure (4.40). The struts

of the specimen are discretized using standard Timoshenko beam elements

(cf. [87, 100, 120]).
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The computations of the reference model are performed using the finite cle-

ment analysis solver RADIOSS [106].

For the tensile test computation an element deletion scheme was used where

the beam elements with the highest values of the von Mises stress consid-

ered as a failed foam struts and being consequently deleted. Figure (4.41)

shows the damage propagation in SEN-specimen made with the artificial

tructure.

micros
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Order Parameter Model with Directional Data

In the present example the directional data of the beams from the reference

tructural model displayed in figure (4.40) is transferred into the order

micros

parameter damage model using the orientation distribution function p(n)

from the equation (4.66).

Here, the tensile test is performed using the modified order parameter damage

formulation presented in equation (4.69).
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The obtained damage zone distribution is shown in figure (4.42). The com-
parison of the damage zone distribution computed using the directional data
and the data from the reference model shows a qualitative similarity between

the propagation paths.

The incorporation of the microstructural directional data into the order pa-
rameter approach in the context of damage mechanics provides higher level
of detail to the order parameter damage model for an open-cell foam without

full discretization of the microstructure.
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4.2.8 Experimental Validation

The order parameter damage model is validated by means of the tensile
experiment performed on an open-cell foam SEN-specimen. The specimen
geometry is shown in figure (4.43, left). The foam material is an aluminum
alloy AlSi7Mg0.3 with the pore size of 10 ppi (pores per inch). The specimen
has the dimensions of 40 mm x 40 mm x 60 mm with the notch width of 8 mm
and the notch tip radius of 4 mm. The upper and lower specimen boundaries
were molded into a polyurethane polymer. The molding was necessary in
order to mount the specimen in the testing machine. The effective specimen
height amounts to 50 mm. The experiment was performed using the Instron
E10000 Linear-Torsion Floor Instrument [62]. The tensile test was carried
out with the strain rate ¢ = 0.0003 s~

The force-displacement curve obtained in the field experiment is depicted in
figure (4.44). This curve serves as reference for the parameters adjustment

of the order parameter damage model.

The order parameter damage analysis was performed using the specimen

Au
. A
B |
afl_o :
E=1
§=11 ¢=1 :
»
|
I
Ty 35_0:
La:l On |
A

Figure 4.43: Fxperimental validation. Geometry of the open-cell specimen
(left) and macroscopic specimen (right).



110 Chapter 4. Application to Damage Modeling

700 T T T T T

Experiment

600 | Simulation —©—
500 |
400 | ]
300 i

200 .

Reaction force F, [N]

100 .

0 b 1 1 1
0 0.5 1 1.5 2 25 3 3.5 4

Displacement Au [mm|

Figure 4.44: Field experiment and damage model. Force-displacement
curves.

with dimensions matching a specimen from the field experiment (figure 4.43,
right). Due to the extremely low Poisson’s ratio values of open cell foams
(cf. [53]) the computations were performed based on the assumption of the

plane stress deformation state with 733 = 0.

The model parameters of the macroscopic order parameter damage ap-
proach were manually determined to match the general shape of the force-
displacement curve and the peak value of the reaction force. The model pa-
rameters corresponding to mentioned criteria and basic numerical data are
presented in table (4.3). The reaction force curve obtained in the numerical

experiment is shown in figure (4.44).
The ascending part of the curve has only a minor significance, since this

E [MPa] v [ f [N] a[MPa] v [] e[
44.9 0.03 100 0.1 1 0.046

Table 4.3: Identified parameters of order parameter damage model.
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Figure 4.45: Damage distribution in the macroscopic specimen.

part describes the undamaged material. Hence, a higher level of mismatch
in this part of the curve is tolerable. The primary importance belongs to
the descending part of the force-displacement curve. This curve segment is
associated with the damage process where the material loses its strength and

the effective material properties get altered.

The damage computation result obtained using the determined parameter
set is displayed in figure (4.45). The damage arca propagates from the tip
of the notch towards the opposite boundary on the right-hand side of the

specimen. The profile of the damage region is shown in figure (4.46).

In general, the critical values of the damage variable corresponding to ma-
terial rupture measured in experiments differ from the theoretical ones. For
example, metals can begin to rupture already with the value of the damage
variable of 0.2 (cf. [80]). In an open-cell foam material the failure takes place
on the level of a single pore or cell strut. The average pore size of the tested
open-cell foam specimen is about 4 mm (cf. [52]). Using this characteristic

value of the foam we can identify the critical value of the damage specific to
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Figure 4.46: Damage zone profile along cutting line A-A.

the tested foam material. In the present case depicted in figure (4.46) the

critical damage value can be identified to the value of ¢ ~ 0.98.

The numerically obtained curve shows qualitative agreement with the re-
sults of the field experiment and demonstrates the capability of the order
parameter damage model. To attain a higher level of agreement between the
presented approach and a real experiment further constitutive models can be

included into the order parameter model.



Conclusion

The order parameter approach and its applications were explored in the pre-
sented work. The order parameter is a characteristic value representing the
microstructure. With this additional parameter the macroscopic model is ex-
tended to include effects attributed to the underlying microscopic level. This
versatile and flexible approach overcomes the shortcomings of the classical

continuum theory.

The order parameter formulation was utilized to describe the scale effect
where the effective material properties show the dependency on the specimen
size. The open-cell foam materials are a class of materials with notable
presence of the mentioned scale effect. This effect was investigated using
a computational micromechanical model of high resolution as a reference.
The finite element representation of the foam material based on standard
beam elements was created and a set of tensile and simple shear virtual tests
was carried out in order to characterize the effective macroscopic mechanical

properties and to extract the key material data.

-113-



114 Chapter 5. Conclusion

The proposed approach was investigated as an alternative to the extended
continuum theory such as the micropolar continuum which is known for the
ability to cover scale effects under particular loading mechanisms. The micro-
polar model fails, however, to reproduce the scale effect under tensile loading.
In this context, the advantage of the order parameter approach becomes
obvious, since this approach actually describes the size-dependent behavior

in tensile as well as in shear loading modes.

Although the modeling of the size-dependent material behavior can be per-
formed by both micropolar and order parameter approaches, it is only pos-
sible with the set of appropriate model parameters. Yet, another problem
emerges, namely, the problem of parameters identification. The respective
model parameters were identified by formulating the inverse problem, which
in turn was stated as an optimization problem. This problem was solved
using the stochastic method such as genetic algorithm, since the gradient-
based methods may reach the local minimum before finding the global one
and suffer stability problems due to a high sensitivity of the solution of the

micropolar problem with respect to the model parameters.

The flexibility of the order parameter approach was further demonstrated
by formulating the continuum damage mechanics model based on the order
parameter approach. For this purpose, a damage variable based on the mi-
crostructural property of an open-cell foam such as connectivity number was

associated with the order parameter.

The developed damage formulation was enhanced with an additional struc-
tural property derived from the foam strut orientation. This way the quali-

tative precision of the spatial distribution of the damage zone was increased.

The examination of the proposed damage formulation with regard to mesh
sensitivity has shown that the results are fairly independent from the chosen
discretization. The influence of the model parameters was investigated, thus,

providing a detailed insight into the model behavior.
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The straightforward procedure of the parameters adjustment of the macro-
scopic damage model to the results obtained in a tensile test field experiment
performed on an open-cell aluminum foam specimen served as a bridge be-
tween the numerical simulation and a real world experiment. The comparison
with the field experiment results proves the capability and flexibility of the
proposed damage approach and demonstrates again the versatility of the
order parameter modeling. Further investigation and a detailed parameter

identification with respect to the experiments will be provided in future work.

Although only linear elastic material behavior was considered, the proposed
model can be further extended with regard to more complex constitutive
models (e. g. hyperelastic behavior of elastomers) as well as finite strain
theory. Apart from the coupling of the order parameter damage field with
the deformation state additional damage mechanisms such as chemical (e. g.
acid) or physical (e. g. humidity) can be incorporated into the model formu-

lation.
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