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Abstract – Zusammenfassung

Abstract

The foremost aim of this thesis is to introduce concepts targeting at improving both

phoneme classification and in line with this automatic speech recognition. The most

distinctive part of the herein presented, new approach is that the different stages of the

analysis, from feature vector creation to classification, are all developed upon the common

basis. This foundation becomes apparent by the interaction of correlation and the formal

structure of a tristate phoneme model that manifests itself in short time weak stationary

characteristic and transitions between such segments within phonemes. The tristate

layout is a topology that partitions a phoneme, or more generally an observed frame, into

three main sections, start, middle and end. In combination with the well known Hidden

Markov Model (HMM) it targets at modeling the above mentioned states of transitions

and stationarity.

On the base of weak stationarity and the tristate structure, our approach evolves as follows.

A stochastic process such as a speech signal that is short time weak stationary has first

and second order moments independent of time t, they are affected only by the timespan

between observations. This effect is reflected by the (auto)covariance of the process and

carries over to (auto)correlation and to some degree to cross correlation. In this light,

based on common MFCC feature vectors, we first analyze potential improvements when

using autocorrelation data and due to motivating results introduce both new MFCC

autocorrelation- and later specific cross correlation features. In this context we note that,

in contrast to different components (roughly representing the different frequency bands)

of a single MFCC vector, identical components across different MFCC vectors in general

are not decorrelated.

In a subsequent step, the cross correlation transform is integrated into support vector clas-

sifiers used for phoneme classification such that a specialized reproducing kernel utilized by

the classifiers is deduced directly from the transform. The theoretical prerequisites for the

new kernel to be established are derived and proven along with its necessary requirements.

Concerning the support vector machines, in line with the new reproducing kernel a family

of classifiers is introduced. The structure of the latter evolves around immanent aspects



inherited from concepts of phoneme representation and their acoustic progression: The

above mentioned tristate model. Based on the topology of the latter and the construction

of the features, a specifically structured collection of classes and associated support vector

classifiers is designed under additional integration of correlation. All this aims at devel-

oping a framework that represents and models both stationarity and transitions within

acoustical events to a degree not achieved by recognition and classification systems hitherto.

To prove the success of this approach, experiments are conducted to demonstrate the

improved recognition rates resulting from the new topology. Further on, the framework

is integrated into a common automatic speech recognition system and evaluated in this

context. Again, experiments that compare the new approach to a standard recognition

system reveal its potentials. Finally, prospects and suggestions for further potential

improvements seclude the thesis.

Zusammenfassung

Das Hauptziel dieser Arbeit ist, zur Verbesserung der Klassifikation von Phonemen und

als direkte Folge davon zur Verbesserung automatischer Spracherkennung beizutragen.

Die ausschlaggebende Innovation ist hierbei, dass unterschiedliche Phasen – von der

Erstellung der Klassifikations-Merkmale über die innere Struktur der Klassifizierer bis

hin zu deren Gesamttopologie – von ein und derselben Grundidee aus deduziert werden.

Diese manifestiert sich vor allem in der Interaktion von Korrelation und der verwendeten

Tristate-Modellierung von Phonemen. Basis ist dafür die Sprache eigene Charakteristik der

(schwachen) Kurzzeitstationarität, repräsentiert durch Segmente mit dieser Eigenschaft

und Übergänge zwischen solchen. Die Tristate-Topologie partitioniert dabei Phoneme,

oder allgemeiner Beobachtungen, in drei Bereiche, Starte, Mitte und Ende, und simuliert

in Verbindung mit den bekannten Hidden Markov Modellen eben jene Zustandsfolgen von

quasi statischen Momenten und Transitionen.

Auf Basis der Stationarität und der Tristate Struktur entfaltet sich unser Ansatz wie

folgt. Wir betrachten ein Sprachsignal als eine Realisierung eines Zufallsprozesses,

welcher innerhalb kurzer Segmente o.g. Eigenschaften annimmt. Durch diese wird

die Zeitunabhängigkeit der ersten beiden statistischen Momente determiniert, d.h. die

Momente werden allein durch zeitliche Differenzen von Beobachtungen charakterisiertt.



Mit wechselnden Segmenten und Transitionen zwischen diesen ändern sich daher Auto-

und Kreuzkorrelation und in infolgedessen die durch sie definierten, neu entwickelten

Merkmale. In diesem Sinne analysieren wir, basierend auf herkömmlichen MFCC-

Vektoren, in einem ersten Schritt mögliche Verbesserungen durch Verwendung von

Autokorrelationsdaten und entwickeln aufgrund motivierender Resultate im Weiteren

spezielle (Kreuz-) Korrelationsmerkmale. Dabei hilft die Tatsache, dass im Gegensatz zu

verschiedenen MFCC-Vektorkomponenten ein und desselben Merkmalvektors (innerhalb

dessen die unterschiedliche Komponenten verschiedene Frequenzbänder repräsentieren),

gleiche Einträge unterschiedlicher Vektoren im Allgemeinen nicht dekorreliert sind.

Im darauffolgenden Schritt geht die Operation der Korrelation direkt in die für die

Phonemklassifikation benutzten Support Vektor Klassifizierer insofern ein, als dass deren

(reproduzierender) Kern gewonnen wird aus besagter Transformation. Die dafür theoretis-

chen Voraussetzungen werden hergeleitet und die notwendigen Eigenschaften des neuen

reproduzierenden Kernes wird bewiesen. Einhergehend mit diesem speziellen Kern wird

eine Familie aus Klassifizierern eingeführt, deren Struktur, den Features folgend, direkt

an das Tristatemodel angelehnt und ebenfalls von der Korrelation beeinflusst ist. In ihrer

Gesamtheit zielen die Konzepte darauf ab, die stationaritären Phasen als auch Transitionen

zwischen verschiedenen Sprachsegmenten adäquater zu modellieren als bisherige Verfahren.

Die Verbesserung der Erkennungsrate im Vergleich zum Standardansatz wird anschließend

anhand von vergleichenden Experimenten gezeigt, und im weiteren Verlauf wird das

Verfahren eingebunden in ein allgemeines automatisches Spracherkennungssystem und auf

diesem ausgewertet. Vergleichende Experimente mit Standardverfahren demonstrieren

dabei das Potential des neuen Ansatzes, und Vorschläge zu Verbesserungen und Weiter-

entwicklungen schließen die Arbeit ab.
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II Challenges in machine learning methods

Introduction

Challenges in machine learning methods

(voice from transmitter) : Mayday, mayday. Hello. Can you hear us?

Can you hear us, can you ...*noise*... over!

We are sinking... WE ARE SINK...*noise*

trainee : Hello!? Zis is ze German coast guahd.

(voice from transmitter): WE ARE SINKING, WE’RE SINKING!

trainee : What are you zinking about?
– Berlitz TV ad

Phoneme classification and speech recognition are complex issues due to the vast amount

of varieties of many of their characteristics. First, there are influences from the physical

state of the speaker such as age, gender, size or health condition. Second, one has to deal

with local dialects and differences between native and – various kinds of – non native

speakers. Third, individual speech characteristics (speed, tendency to swallow vowels,

mumbling and many, many more) need to be considered. Fourth, impediments like noise,

reverberation, background music or voices, attenuation or diffusion directly affect and

impurify the timbre – and in addition, when performing automatic speech recognition

(ASR) or phoneme classification, different recording and recognition system alter the

original data in unequal ways.

Before initiating whatever kind of analysis, one needs to have a certain idea about

what exactly will be analyzed and where to start: How large is my vocabulary? Do I

want to recognize just words or complete sentences? Once this is determined, what are

adequate features and how are they effectively and suitably represented? Assuming we

have decided for a recognizer or classifier that builds on phonemes, further questions arise

during the process itself and cannot be answered in advance. At present, most recognition

systems subdivide phonemes to still smaller snippets, so called subphonemes. We will not

only adopt this approach in this work but also extend and combine it with other transforms.

The set of phonemes itself is clearly language dependent. Hence, recorded speech needs

to be labeled in some manner beforehand, either automatically/ (semi)supervised or
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manually. In a similar way, considering the next levels of larger building blocks such

as single words or utterances, speech recognition requires further steps, wherein both

sequences of phonemes and words are analyzed. Additional statistical information is

therefore used to compute acoustic and language models representative for the given set of

training and test data on which the system works. This information covers certain aspects

of the language in question such as frequently occurring word sequences or different ways

of speaking and pronouncing a known utterance.

To clarify this a little, consider the short remark That is bad. Potential variants are for

instance That’s bad!, Tha’s bad or even Tha’s baad with a very long and dark spoken last

vowel. The language model allows for at least the most common forms and deviations.

It thus becomes clear immediately that the training data must be representative: The

generated language model rarely reflects complex grammatical idioms but mostly statis-

tical data about word combinations instead. In the same manner, the acoustic model

has to cope with multiple above mentioned varieties of pronunciation, speed or other

characteristics on the word-phoneme level. Hence, the training data must be encompassing

enough to guarantee sound recognition even across different dialects and genders.

Each step in the overall process from collecting and labeling data to defining and

computing features, training classifiers, acoustic and language models to the final step of

automatic speech recognition has its own intrinsic kinds of challenges. In this thesis, one

of the most important ideas is that distinct parts share common foundations. Practically,

we hence focus strongly on developing a system that carries specific characteristics from

one step to another: from feature definition over mathematical transforms to classifier

topologies.

In the same manner as many real world applications, ASR has foundations in finding a

suitable (mathematic) model for tasks and subtasks. The well known MFCC features

in this context give a good impression of the extent to which accurate structures and

models have been and are successfully developed. On one hand, the vocal tract of a

speaker and the psycho-physiological aspects of speech reception were for instance used to

develop the mel frequency cepstral coefficients/ (MFCC) features. On the other hand, in

the early 1960s, Baum and his co-authors ([1], [2]) introduced the Hidden Markov Model

(HMM). In short time intervals, speech behaves quasi stationary and quasi periodic over

short periods of time. A HMMs is a probabilistic finite state machine that can capture

both the stationarity and the pronunciation differences to a certain degree. This is the
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foundation for the acoustic model described above. Shortly afterwards in ([3], [4]) it was

demonstrated that HMMs can be computed efficiently by dynamic programming methods

and thus quickly found their way into diverse areas of research.

This thesis is mainly concerned with improvements at the lower levels (or first steps) of

speech recognition with the distinct aim of improving phoneme classification and continuous

speech recognition. In the first place this work address the challenging topic of enhancing

the well known and commonly used MFCC-∆−∆∆ feature vectors. As mentioned above,

the main contribution is, to offer an improved framework where several operations are based

on the same base concepts. In this light, in addition to the introduction of new features,

a special topology based on those is educed. Both the new features and the new structure

shall reflect the nature of the given task and modify underlying methods in an effective

manner. To be more accurate, the MFCC feature vectors are replaced by correlation data

computed in a specific way from the MFCC data. The motivation for this stems from the

short-time quasi stationarity of speech.

In the subsequent step we stray from the standard path of current automatic speech

recognition systems insofar as that we replace the common set of HMMs by a family of

support vector classifiers and calculate posterior probabilities afterwards. The correlation

operation in the feature vector computation is a special case of a linear transform, and a

new reproducing kernel for the support vector classifiers, based on a given linear transform,

is deduced. Furthermore, the classifier family organized following a very specific structure,

which itself is derived from the typical three state (tristate) design of phonemes. This

topology partitions its objects into start, middle and end sections. Together with HMMs

it aims at emulating both the short time (quasi) stationarity of and transitions within

speech, including variances in the data. In our approach, the classifier family hence

replaces the HMM transition/state model.

Combining all this we are capable of creating a system of multiple classes per phoneme in

line with an associated, rather big set of classifiers that offers a more substantial and better

model of the above mentioned speech characteristics. To summarize, the contributions of

the thesis to current research are...

• ... the introduction of new correlation features for both phoneme classification and

continuous speech recognition.

• ... the deduction of a new reproducing kernel for a phoneme classifier network, based

on the correlation operation.
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• ... the development of a classifier family following a topology that integrates the

correlation operation into the standard tristate phoneme concept to model transition

aspects more adequately and replace the common HMM approach.

• ... the modification of a common ASR system to deal with the new data. This makes

it possible to compare the new approach to standard methods.

Structure of the thesis

Chapter one covers the mathematical backgrounds for the thesis. In the first sec-

tion, the minimal amount of measure theory necessary for subsequent sections is briefly

reviewed. The second sections introduces reproducing kernels (RK) and their associated

reproducing kernel Hilbert spaces (RHKS), or more general Hilbert function spaces

are explained. A RK is an operator (or function) that is directly related to the inner

products of a Hilbert function space. This relation is the most important character-

istic used in recognition and classification together with the fact that a reproducing

kernel spans the underlying Hilbert function space. Given those two properties it is

possible to transform features via RKs into the function space, in this context called RKHS.

Section three explains the so called Theorem of Mercer and its consequences, which are

the foundations for the success of reproducing kernel methods in pattern recognition

tasks. Subsequently, section four continues with examples ranging from basic reproducing

kernels over construction of new ones to proving characteristic properties and the detailed

derivation of some very common reproducing kernels and their associated Hilbert function

spaces. In the fifth section we derive the specific reproducing kernel motivated by the

correlation operation for computing the aforementioned new features.

Sections six and seven deal with basics of convex optimization and its application in the

context of support vector classifiers. Both the binary and the multi class case are depicted.

The combination of reproducing kernels in support vector machines, based on the theory

developed in the earlier sections, is the topic of section eight. The chapter closes with

section nine, which shows common methods of producing probability output given (multi

class) support vector classifier output. It is an indispensable step when progressing from

phoneme classification to continuous speech recognition, as current recognizers rely on

probabilistic output data such as generated for instance by HMMs or Gaussian Mixture

Models.
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Chapter two focuses on the more speech related aspects. Starting with a motivation for

the MFCC features by brief summary of a typical model for the human vocal tract in

section one, the chapter continues with a detailed explanation of the MFCC features and

filterbank in the subsequent, second section. Section three reviews the theory of Hidden

Markov Models followed by section four, which gives a short summary of simple acoustic

and language models used in current speech recognition systems. Section five is the main

section in this chapter. Evolving around the combination of the correlation operation and

the specific kernel it gives a detailed description both the construction and topology of

the classifier network and the individual steps necessary to train them. In this section,

all aspects of our new approach cumulate. The final section of this chapter offers a short

discussion of the impact of imbalanced training class sizes, that also affects our research.

Finally, chapter three illustrates and compares several experiments and their setups. One

focus lies on the comparison of our new approach with common features and speech

recognition setups. Detailed (confusion) tables and figures in appendices A to C give

deeper insight. Section six elucidates the results compared to standard ASR systems and

analyses potential reasons for disadvantageous influences. Finally, chapter three closes

with conclusions and prospects.

The following figure 1 depicts interactions and relations of the three main areas and helps

understanding the main path of the thesis when pursuing its path from top to bottom.

Let us remark that the partitioning, given in the figure, into the main areas is clearly not

reflecting the fact that several topics belong to more than one main area. For instance,

Kernel methods imply a mathematical background to a certain degree. However, the main

intention of the scheme is to clarify, how different ideas are related and how the main

course from top to bottom utilizes the relations and combines their (partial) results.
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Overview: Sequence diagram

Speech & ASR Features & Classification Mathematics & Theory

Modelling Speech

Hidden Markov Modells

Reproducing Kernel Methods

MFCC Features

MFCC Crosscorrelation Features

MFCC Correlation Features

Hilbert function spaces

Reproducing Kernels (RKs)

Support Vector Machines

Probability Output

Convex Optimization

Linear Operator RKs

Automatic Speech Recognition

>
>

>

<

>
>

<

<

>

>

>

Phoneme Classification <

<

Figure 1: Overview of the thesis and important relations between the diverse parts.
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Chapter 1 – Mathematical background

Speech & ASR Features & Classification Mathematics & Theory

Overview

In the first section of this chapter we give a very quick and condensed review of the most

important concepts of measure theory and Lebesgue integration to an extend necessary

to understand the subsequent theorems on Hilbert function spaces and to understand

the formulation of an important theorem of Mercer, which will be given in section 1.3.

The theorem is a bridge between mathematical theory and applied pattern recognition

as it states that reproducing kernels can easily be constructed using Eigenvalues of the

underlying integral operator.

Reproducing kernels (RKs) and reproducing kernel Hilbert spaces will be presented

afterwards. We start by giving basic definitions and results including their respective

mathematical backgrounds such as algebraic properties useful for the construction of

(new) kernels. The subsequent section portrays some examples of reproducing kernels

themselves, the reproducing property in specific and finally demonstrates their use by

applying the concepts to a well known axis transform and dimensionality reduction

method: principal component analysis (PCA).

Section 1.5 concentrates on the aspects of RKs necessary for the theoretical results of our

research. We present a way of integrating linear transforms and furtheron linear operators

into reproducing kernels. The greater goal of this will become clear later, in section

2.5.3, where the approach of section 1.5 is combined with a new kind of feature, the

latter being motivated by certain characteristics of short time speech intervals stemming

from assumed stationarity: correlation. As already mentioned in the introduction, de-

cent and meaningful results depend on the data as well as on an appropriate representation.
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Section 1.6 reviews the main ideas of convex optimization, which are necessary to

understand support vector (SV) classification, also called classification by support vector

machines. The latter, being the (training and) classification method of our choice, is

briefly portrayed in section 1.7. Support vector machines (SVMs) have become very

popular within the last decades, mostly due to the fact that reproducing kernels have

found their way into the SVMs’ dual form, allowing for addressing non-linear problems.

Whereas the first main goal of this work, as outlined above, is the development of speech

specific features and an associate mathematical space in the context of support vector

classification and reproducing kernel methods, the next greater goal is the fusion of the

aforementioned discriminative methods with and their integration into common speech

recognition tools. Such tools make decisions using methods as Hidden Markov Models (see

chapter 2, section 2.3) that rely on statistical data. Therefore it is indispensible to find

a way of transforming the discriminative support vector classification results into appro-

priate probability data. To that effect section 1.9 presents methods developed for exactly

this purpose: to generate probabilistic output based on support vector classification results.

Representing objects of one space in a different Hilbert function space comes along with a

change of basis. This change of representation can be compared to the well known Fourier

transform, where a function in time is transformed into a frequency based space1. The

new function space often offers different advantages such as for instance a new dimension

which allows either for a more compact data representation or guarantees linear separability

for data not linearly separable in the original space. In the latter case, the reproducing

kernel space is often of higher dimension than the original data space. In the case of

Fourier transforms, the quick computation of convolutions in the original space is a very

famous and frequently used characteristic. As many methods relying on metric relations

make use of inner products or can be rephrased/ transformed to doing so, reproducing

kernel methods can be applied to a huge collection of algorithms. Principal component

analysis, data centering, data clustering and linear discriminant analysis are just a few to

be mentioned.

1In fact, the Fourier transform is a special case of a reproducing kernel transform, which will be discussed
in example 1.39 of section 1.4.3
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1.1 Revisiting measure theory

Common one dimensional Riemannian integrals over bounded intervals [a, b], b > a are

defined via Riemannian sums: Given a partitioning a, a + ζ, a+ 2ζ, . . . , a + Lζ = b of the

interval, where ζ = (b − a)/L, the integral of a function f : [a, b] → R is defined as the

limit ∫ b

a

f(x)dx = lim
L→∞

L∑
z=0

f(xz)(a(z+1)ζ − azζ)

of a step function f evaluated at xz ∈ [azζ , a(z+1)ζ ] arbitrary. If the limit exists and does

not depend on the choice of the partition and the chosen xz, f is said to be Riemann

integrable over [a, b].

One major problem arises when dealing with limits of sequences of integrable functions,

when the latter themselves are integrable but this characteristic does not carry over to

the limit. Lebesgue integration addresses this problem to a great extend by defining the

integral over the image of a function rather than the domain: The image is, as before the

domain, partitioned into small intervals and the limit of their lengths towards zero defines

the integral. Given such a subinterval Iζ , the preimage Df{Iζ} is valued by a measure

µ (Df{Iζ}) meeting certain requirements which are given in the definitions below. The

Lebesgue-integral is then defined in an analogous manner, the ideas of which we will briefly

depict well enough to understand its application within the main theorem of this subsection.

While at a first glance this might look trivial, a convincing formalization is far more

complicated than it seems; a well known example showing one potential pitfall is the

Banach-Tarski paradox. For more details, we refer the reader to [5], pages 3 − 6. We

reduce the material in this section to the few definitions and examples necessary for our

purpose of formulating and comprehending the theorem of Mercer.

Definition 1.1

Let Ω be a set and A be a family of subsets of Ω. We call A a σ-Algebra if

(1) Ω ∈ A

(2) A ∈ A ⇒ Ac = Ω \ A ∈ A (complement)

(3) Ai ∈ A, i ∈ N ⇒
∪
iAi ∈ A. (finite union)

.
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Example 1.2 (Powerset)

To give a simple example consider any arbitrary Ω ⊆ N. Defining A as the set of all subsets

of Ω, it is easily verified that A is a σ-Algebra. The set of all subsets is called powerset.

–•

Definition 1.3

A tuple (Ω,A), where A is a σ-Algebra over Ω, is called measure space. Given two

measure spaces (Ω1,A1) and (Ω2,A2), a function f : Ω1 → Ω2 is called measurable (or

more specific A1 −A2−measurable), if f−1(A2) ⊂ A1.

Looking back at the introduction of this section, the definition of measurability is very

intuitive: if the pre-image f−1(A2) of the range in question (here the σ-Algebra A2) is a

subset of the domain (here the σ-Algebra A1), the mapping is called measurable. In other

words, each potential element of A2 can be measured w.r.t. the function’s domain. What

lacks is a way of measuring the function, of giving some amount of volume in the widest

sense. This is covered by

Definition 1.4

A function µ : A → R is called measure if

(1) ∀A ∈ A : µ(A) ≥ 0

(2) µ(0) = 0

(3) ∀j, k ∈ N, j ̸= k,Aj ∩ Ak = ∅ : µ
(∪

i∈NAi
)
=
∑

i∈N µ(Ai).

A measure µ on a family A of sets is called strictly positive, if for each A ∈ A we have

µ(A) > 0.

Let us look at the simple and detailed

Example 1.5

For a probability space we consider outcomes ω ∈ Ω of a random process. Take, for

instance, the trivial act of throwing a four sided pyramid-shaped dice, numbering the

sides from 1 to 4. Possible outcomes shall be the number of the side the dice lands on and

we devote the analysis to an experiment where we are interested in two specific unions of

outcomes, A = {1, 2} and Ac = {3, 4} respectively. We let Ω = {{1, 2}, {3, 4}} be the

union the two sets.

For the consideration of the σ-Algebra, we make the same choice as in example (1.2) and

define A as the power set over A – in this case the set of all possible outcomes of throwing



1.1 Revisiting measure theory 5

the dice. This choice guarantees that A is a σ-Algebra, as can easily be verified: As each

potential subset of A is en element of A, clearly all elements (the experiment’s possible

outcomes) of Ω are elements of A. Second, A ∋ A = {1, 2} implies A ∋ Ac = {3, 4} and

vice versa, proving (2). Clearly {{1, 2} ∪ {3, 4}} ∈ A.

Note also, that for any choice of the σ-Algebra two specific subsets are inevitably elements

in A due to definition (1.1): {1, 2, 3, 4}, which is called certain event and ∅, the impossible

event, which in this example might for instance be the dice vanishing, not landing or coming

to rest on one of its edges. Finally, demanding µ(Ω) = 1 is the last condition that enables

us to define the (discrete) probability space (Ω,A, µ) for this example.

–•

As promised above, we will now be able to define the Lebesgue-integral similar to the

Riemann-integral:

Definition 1.6 (Lebesgue Integral)

Given a measure space (Ω,A, µ) and a measurable real valued step function

f : Ω → R, f =
L∑
l=0

αlχAl
,

where Al ∈ A, αi ≥ 0 for 1 ≤ l ≤ L and χAl
is the characteristic function

χAl
: Al → {0, 1}, a 7→

1 a ∈ Al

0 a ̸∈ Al
.

Then ∫
Ω

fdµ =
L∑
l=0

αlµ(Al)

is the µ-integral or Lebesgue integral of f over Ω. The definition of the integral does

not depend on the representation of f .

Definition 1.7

A characteristic of a function f ∈ (Ω,A, µ) is set to hold µ-almost everywhere, if it

holds everywhere but on a set A ⊂ A such that µ(A) = 0, i.o.w if it holds everywhere

except on a µ-null set.

We have presented the idea of the Lebesgue integral and the underlying measure theory

to a degree sufficient for our purposes. For more details and a thorough presentation
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of material including for instance the remaining steps from the integral definition over

monotonic limits of nonnegative and finally all measurable functions, we refer the reader

to [5] or any other book on measure- and integration theory. The last definition of this

section briefly introduces Borel sets and Borel measures, needed as a further premise for

theorem (1.28).

Definition 1.8 (Borel σ-Algebra and Borel measure)

Given a metric or topological space X and a system O of open subsets of X, the σ-Algebra

σ(O) spanned by O is called Borel-σ-Algebra or σ-Algebra of Borel subsets of X

or, shorter, the σ-Algebra of Borel sets when X is clear from the context. A measure

λ defined on such a σ(O) is called Borel measure.

Example 1.9

For X = RN and the common product topology

λ ([a1, b1] × · · · × [aN , bN ]) = (bN − aN) · . . . · (b1 − a1),

where N ∈ N and w.l.o.g. an < bn for an, bn ∈ R and 1 ≤ n ≤ N , λ is a Borel measure.

–•

1.2 Reproducing Kernels and Hilbert Function spaces

Hilbert function spaces

Reproducing Kernels (RKs)

Linear Operator RKs

>

Reproducing kernels in their most general form are operators with specific characteristics

between inner product spaces. They can be defined in both vector- and operator-valued

spaces, but after a general definition we focus on the complex and later on the real valued

case. On the basis of Hilbert spaces (the definition will follow below) we demonstrate that

reproducing kernel Hilbert spaces (RKHS) are so called function spaces characterized by the

property, that the point evaluations of their functionals are continuous. The reproducing

property manifests itself in the fact that the reproducing kernel, uniquely determining an

associated RKHS and vice versa, reproduces the continuous evaluation in a certain manner.
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Kernels appear for instance in the special context of integral operators or, more general,

in that of integral equations. In this light, Mercer’s Theorem, in the form presented in

section 1.3, is a bridge connecting the theoretical, integral operator based form of a kernel

and a finite, discrete representation usable in applications .

Definition 1.10

A Hilbert space X is a normed vector space over a field K = R or K = C endowed

with an inner product ⟨·, ·⟩ : X × X → K that induces the norm ||x|| =
√

⟨x, x⟩ of X
given x ∈ X . Furthermore, X is complete w.r.t. to the same norm, that is every Cauchy

Sequence of elements of X has a unique limit which is also an element of X . Omitting

completeness, X is called pre-Hilbert space.

Example 1.11

Simple examples are the euclidean reel and Hermitean complex spaces K = Rn,Cn, n ∈ N.
A more complex example is the space of ℓ2(K) of square summable sequences (x1, x2, . . .).

Square summable means that
∑∞

m=0 |xm|
2 < ∞. For K = C the inner product for two

sequences x, y ∈ ℓ2(K) is given by

⟨x, y⟩ =
∞∑
m=0

xmym. (1.1)

We will omit the easy proofs that equation (1.1) is well-defined and meets the requirements

for an inner product as well as the proof that the space with the norm induced by the inner

product

||x|| = ⟨x, x⟩
1
2 ,

is complete. They are part of any book on introductory calculus or complex analysis.

–•

Definition 1.12

A functional is a mapping from a vector space V into its underlying scalar field K.

In other words, a function space is simply what its name states: a K-vector space the

elements of which are functions. The functions thus take the role of ordinary points in

spaces such as the common Rn.

Definition 1.13

Given a set X ̸= ∅ and a Hilbert Space X over X, the set of functionals on X with values

in X , H ⊂ {τ : X → X} =: XX , is called Hilbert function space if for all functionals
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f ∈ H and for all ν ∈ X the evaluation δν as follows is continuous:

δν : H → L(X )

f 7→ f(ν),

were L(X ) denotes the linear space (see remark (1.18) for details) of functionals in XX .

To countervail potential confusions of common spaces such as Rn and Cn, n ∈ N, function
spaces and Hilbert function spaces we will give some more examples and point out

differences. The basic concepts – vector spaces defined over a scalar field along with their

characteristics – remain the same for either. We have already seen examples of Hilbert

spaces and know that Hilbert function spaces are spaces of functions with images in the

scalar field the function vector space is defined over.

However, for function spaces we illuminate the situation in more detail by means of the

next example ( 1.14 ), introducing so called Lp-spaces. The key characteristic for function

spaces, as the name readily implies, is the fact that the elements of function spaces

are functions. Hilbert function spaces by definition fall into that category, given two

additional qualities: An inner product, being a typical structuring element of any Hilbert

spaces, and an evaluation functional according to definition 1.13.

Example 1.14 (Lp function spaces)

Given a measure space (Ω,A, µ), for 1 ≤ p ≤ ∞, p ∈ N the Lp := L(Ω,A, µ) function

space is comprised of all functions f such that the norm satisfies

||f ||p =
(∫

Ω

|f |p
) 1

p

<∞. (1.2)

As for any normed vector space, the set of such so called p-integrable functions needs to

meet several requirements in order to form a ||·||p-normed vector space of functions:

• Defining (f+g)(x) = f(x)+g(x) and (αf)(x) = α(f(x)) for f, g ∈ Lp, α ∈ K ensures

that addition and scalar multiplication are well-defined.

• As ||f ||p can be zero for functions f = 0 almost everywhere, Lp is clearly not a

normed vector space. This “imperfection” is eluded by considering the quotient

space Lp = Lp/NLp , where2 NLp = {f ∈ Lp : f = 0 µ - almost everywhere}.
2We refer the interested reader to any standard book on measure theory such as ([5]) for the proof that
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The quotient space Lp is a space of equivalence classes [·]. Let us denote the equivalence

class of f by [f ]. Then, given any [f ] ∈ Lp and a representative element g of [f ], the

definition of a quotient space implies f ≡ g µ - almost everywhere, that is (f − g) ∈ NLp .

It is clear that ||f ||p = 0 ⇔ f ∈ NLp and thus we can consider the norm ”on” the

equivalence class instead of it’s representers. This shows that

|||·|||p : L
p → R+ ∪∞, [f ] 7→ ||f ||p

is well-defined and satisfies

|||[f ]|||p = ||f ||p = 0 ⇔ [f ] = 0 ⇔ f ≡ 0 µ - almost everywhere

for [f ] ∈ Lp.

The meaning of this is that functions that are identical µ−almost everywhere are inter-

preted as being basically the same and thus are elements of one and the same equivalence

class. Each of the equivalence classes elements is an equipollent representative. Experience

shows that the (topological) differences (i.e. the equalization of potentially different limits

in Lp by forming quotient spaces by sets of measure 0 and along with this the usage of

equivalence classes instead of functions) are small enough to be neglected w.r.t. the un-

derlying measure space.

–•

Example 1.15

Any norm ||·||p, 1 ≤ p <∞, defined on the respective Lp-spaces given above is a functional

Lp → R.
–•

Definition 1.16

Let H ⊂ XX be a Hilbert Space of bounded functionals endowed with an inner product

⟨·, ·⟩. A mapping k : X ×X → L(X ) is called reproducing kernel if for all ζ ∈ X and

ν ∈ X:

(i) k(·, ν)ζ ∈ H

(ii) ∀f ∈ H : ⟨f(ν), ζ⟩ = ⟨f, k(·, ν)ζ⟩

Keep in mind that, as k maps into L(X ), property 1.16 (i) implies k(·, ν) ∈ H. A closer

look at the second property of those two definitions clarifies its meaning: for a kernel

NLp is a sub vector space of Lp and the quotient space is thus a well-defined vector space over K.
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k(·, ν) given as the right term of the inner product, for fixed ν ∈ X, the inner product

⟨f, k(·, ν)⟩ equals the evaluation of the mapping given as a left term of the equation, here

f , at ν. The kernel reproduces the evaluation. For this reason this characteristic is often

called reproducing property.

As such a kernel function is itself an element of H, we note

k(µ, ν) = ⟨k(·, µ), k(·, ν)⟩ ∀µ, ν ∈ X. (1.3)

Example 1.17

The most simple example of a reproducing kernel is a constant map k(x, z) = c, c ∈ R+.

More elaborate examples will be given in section 1.4, after having dealt with the necessary

theoretical background.

Remark 1.18

Let us have a quick glance at the concept of linear spaces, which are the foun-

dation of function spaces. A linear space is basically a vector space V which is

homogeneous and linear. In other words, for any x, y ∈ V and any scalar α, β ∈ K
and operations +, ·, the following conditions hold:

• (α · β)x = α(β · x)

• α · (x+ y) = α · x+ α · y

Both requirements are valid for C, hence the vector space of complex numbers is

isomorphic to its linear space by identifying the arithmetic operations on C with

their counterparts on L(C).

Note that thereby it becomes clear that in the context of definition 1.13 a Hilbert

function spaces H inherits its linearity from XX !

Example: ℓ2(K), introduced in example (1.11), is a linear space. Homogeneity is

verified easily, as scaling is an invariant w.r.t. square summability. Applying the

triangle inequality can be used to proof the Minkowsky inequality, which leads to

additivity and finalizes the proof that ℓ2(K) is a linear space.
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For the remainder of this section, we will focus on X = C and make use of the fact that

L(C) ≃ C, see remark 1.18. In this case definition (1.16) reduces to

Definition 1.19

Let H be a Hilbert Space of complex valued bounded functionals endowed with an inner

product ⟨·, ·⟩. A mapping k : X ×X → C is called reproducing kernel if for all ν ∈ X:

(i) k(·, ν) ∈ H

(ii) ∀f ∈ H : f(ν) = ⟨f, k(·, ν)⟩

As a first result we show that Hilbert function spaces and reproducing Kernels in Hilbert

spaces are equivalent concepts:

Theorem 1.20

Let H be a Hilbert space on X. The following properties are equivalent:

(i) H is a Hilbert function space

(ii) H has a reproducing kernel

The reproducing kernel is unique.

Proof. ii ⇒ i) Given a reproducing kernel k, 1.19 (ii) guarantees the linearity of the

evaluation functional δν , see definition 1.13. Now,

|δν(f)| = |f(ν)| = |⟨f, k(·, ν)⟩| ≤ ||f || · ||k(·, ν)||

= ||f || ⟨k(·, ν), k(·, ν)⟩1/2 = ||f || k(ν, ν)1/2, (1.4)

hence f is continuous in all ν ∈ X and thereby H a Hilbert function space. The first equal-

ity makes use of the reproducing property, number two is the Cauchy-Schwarz inequality

and equality three holds as in a Hilbert space the norm is induced by the space’s in-

ner product. The very last equation again uses the reproducing property using identity 1.3.

i⇒ ii) Given λ′ ∈ H′, the Fréchet-Riesz Lemma proves the existence and uniqueness of a

function k(x, ν) ∈ H satisfying λ′(x) = (fν)(x) = ⟨f(x), k(x, ν)⟩ ∀x ∈ H. Here k(·, ν) is

the reproducing kernel.
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Finally, given two kernels k̃(·, ν) and k(·, ν), equations 1.3 and 1.7 yield

k(µ, ν) =
⟨
k(·, µ), k̃(·, ν)

⟩
=
⟨
k̃(·, ν), k(·, µ)

⟩
= k̃(ν, µ) = k̃(µ, ν),

which proves the uniqueness of the reproducing kernel.

The operator norm and equation 1.4 give an idea of what the norm of the evaluation

functional looks like:

||δν || = sup
||f ||̸=0

|δν(f)|
||f ||

=
||f || · ||k(·, ν)||

||f ||
= k(ν, ν)1/2 (1.5)

Equality holds as the operator norm implies ≤ and as the supremum itself is achieved

when the functional is the kernel itself, again with fixed ν.

Let us stop here for a moment to get insight into the mapping defined by such a kernel

by means of an example we will encounter frequently in this work, the Gaussian kernel (a

special case of an rbf-kernel, see below) krbf (y, x) : x 7→ exp
(
− ||x−y||2

2γ2

)
for x fix. Figure 1.1

illustrates the kernel mapping, which maps single points into a space of Gaussian functions.

We continue by looking at reproducing kernels from a different but equivalent viewpoint:

Definition 1.21

A function k : X ×X → C is called positive semi-definite, if for all α = (α1, . . . , αn) ∈
Cn and all ν = (ν1, . . . , νn) ∈ Xn the following inequality holds:

αkα =
n∑

i,j=1

αiαjk(νi, νj) ≥ 0 (1.6)

If the inequality is proper, k is called positive definite.

Every positive (semi)definite (psd) function basically is a RK and vice versa. This leads

further to the matrix form representation of psd functions, which in the finite dimensional

case is often called Gram matrix or Gramian. Details follow after some important

characteristics of reproducing kernels, such as

Theorem 1.22

Reproducing kernels are positive semi-definite and satisfy

k(µ, ν) = k(ν, µ) ∀µ, ν ∈ X. (1.7)
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Figure 1.1: The kernel maps single points to functionals. The figure illustrates the process

for two points x1 = −0.5, x2 = 1 and the Gaussian rbf-kernel krbf (y, xi) = exp
(
− ||xi−y||2

2γ2

)
,

i = 1, 2 with parameter γ = 0.75.

Proof.

n∑
i,j=1

αiαjk(νi, νj) =
n∑

i,j=1

αiαj ⟨k(·, νi), k(·, νj)⟩

=

⟨
n∑
j=1

αjk(·, νj),
n∑
i=1

αik(·, νi)

⟩

=

∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

αjk(·, νj)

∣∣∣∣∣
∣∣∣∣∣
2

≥ 0, (1.8)

which proves the first claim. The second property holds because of

⟨k(·, ν), k(·, µ)⟩ = k(µ, ν) and ⟨k(·, ν), k(·, µ)⟩ = ⟨k(·, µ), k(·, ν)⟩. (1.9)
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Vice versa, given a positive semi-definite mapping k : X × X → C, we can interpret

the latter as a reproducing kernel and construct a Hilbert function space upon it. The

following important theorem will elaborate this link and show that there is a bijective

relation between those objects:

Theorem 1.23

Given a positive semi-definite function k : X × X → C, there exists exactly one Hilbert

function space H ⊂ C with reproducing kernel k.

Proof. The proof will be sketched only; for details see [6] and [7]. We define H to be

the linear span of the kernel function on all elements of X, H = Span{k(·, ν) | ν ∈ X}.
Given that definition, consider two points of that space f, g ∈ H, f =

∑n
i=1 αik(·, νi) and

g =
∑n

j=1 βjk(·, µj). We endow H with an inner product defined by

⟨f, g⟩ =

⟨
n∑
i=1

αik(·, νi),
n∑
j=1

βjk(·, µj)

⟩
=

n∑
i=1

n∑
j=1

αiβjk(µj, νi). (1.10)

It can easily be verified that 1.10 represents a well-defined sesquilinear form (i.e. that

there are no unequal representations
∑n

i=1 αik(·, νi) and
∑n

j=1 βjk(·, νj) of one and the

same element of the constructed space) and is furthermore positive semi-definite given the

positive definiteness of k, see equation 1.8.

For ⟨f, f⟩ = 0, property 1.16 (ii) and the Cauchy-Schwarz inequality prove f ≡ 0. Hence

1.10 defines a positive definite inner product and induces a norm ||f || = ⟨f, f⟩
1
2 in H,

which altogether makes H a pre-Hilbert space. By definition,

⟨f, k(·, ν)⟩ =
n∑
i=1

αik(ν, µi) (1.11)

= f(ν) (1.12)

and using the Cauchy-Schwarz inequality to bound ||δνf || we see that the evaluation δν is

continuous. Finally, let (H, ⟨·, ·⟩) denote the completion of H. It can then be shown that

the elements of this complete Hilbert space can now be identified3 with functions given

as linear equations of k as above, where k is the reproducing kernel of H. Theorem 1.20

ergo implies that H is a Hilbert function space.

3Identified in this context means, that the space is closed w.r.t. the norm defined by the inner product.
There is thus no difference between functions and their potential representations through limits of elements
of the (not yet complete) space.
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Now, given that H is a Hilbert function space, let {ei(·)} be an orthonormal basis of

complex valued functions onH. As k(·, ν) ∈ H, ν ∈ X, it has a Fourier series representation∑∞
i=0 αIei(·) with coefficients αi = ⟨k(·, ν), ei(·)⟩. The sesquilinearity of the inner product

in C implies αi = ⟨k(·, ν), ei(·)⟩ = ⟨ei(·), k(·, ν)⟩ = αi, thereby proving:

k(·, ν) =
∑
i

⟨k(·, ν), ei(·)⟩ ei(·) =
∑
i

⟨ei(·), k(·ν)⟩ei(·) (1.13)

=
∑
i

ei(ν)ei(·) (1.14)

or

k(µ, ν) =
∑
i

ei(ν)ei(µ) (1.15)

Along with this, the opposite direction of the last property extends naturally from ordi-

nary Hilbert spaces to Hilbert function spaces. Given an orthonormal system (ei)i∈N, the

reproducing property and identity (1.15) in conjunction with each other prove

Φ(ν) = ⟨Φ, k(·, ν)⟩ =
∞∑
i=0

ei(ν) ⟨Φ, ei(·)⟩ . (1.16)

This holds for all Φ ∈ H and for all ν ∈ X and we can thus generalize the last equation to

Φ = ⟨Φ, k(·, ν)⟩ =
∞∑
i=0

⟨Φ, ei(·)⟩ ei(·), (1.17)

which shows that the system is complete.

Remark 1.24

The last derivation was made under the tacit assumption that – even in an infinite dimen-

sional Hilbert function space – a countable set of linear combinations of (kernel)functions

suffices and is capable of approximating any given functional in the considered space. The

motivation for this lies in the fact that in any separable metric space S, any subset dense

in H contains itself a countable subset, which again is dense in S. The proof for this can

be found in most books on functional analysis such as [8]. In the case of a Hilbert function

space space, any such countable set is comprised of linear combinations of kernels k(·, ν),
as the latter span the space.

Combining the result of theorem 1.23 with the reproducing property in the form of equation

(1.3), in the next theorem we define a mapping from an element in the domain of a
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reproducing kernel to a function x 7→ k(·, x) that relates the RK to another space, which

may for instance be a feature space in the context of a pattern recognition task:

Corollary 1.25 (factorization corollary)

Given a psd function k : X × X → C, there exist a Hilbert space Hk and a function

Φ : X → Hk such that

k(µ, ν) = ⟨k(·, µ), k(·, ν)⟩ = ⟨Φ(µ),Φ(ν)⟩ (1.18)

for allmost all ν, µ ∈ X. The index k denotes the relation between the matrix and the

underlying hermitian form and we will skip it in this work from now onwards when there

is no direct connection to a kernel.

As for any hermitean form we can define the matrix

Gk =
(
⟨Φ(νi),Φ(νj)⟩

)
i,j

=
(
k(νi, νj)

)
i,j

(1.19)

=


k(ν1, ν1) · · · k(ν1, νn)

...
. . .

...

k(νn, ν1) · · · k(νn, νn)

 (1.20)

for 1 ≤ i, j ≤ n, which by equation (1.8) is positive semi-definite in the sense that

∀x ∈ X : xHGkx ≥ 0.

Gk is called Gram matrix or Gramian and by definition completely characterizes the

kernel. As a matrix it can be used and implemented efficiently as a linear map into the

Hilbert function space associated with the kernel k.

Let us look at a generalization of example 1.11 in more details to further illuminate and

clarify definitions 1.13, 1.16 and 1.19.

Example 1.26

Consider a nonemtpy set M and define

l2(M) = {f :M → C, ||f ||2 =
∑
m∈M

|f(m)|2 <∞.}

First, by theorem 1.23 we conclude that the reproducing kernel for l2(M) isK(m,n) = δmn,

where δ is the Kronecker function. Being ordinary sums of products, the point evaluations

are clearly continuous. Together, this makes l2(M) a reproducing kernel Hilbert space.

–•
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Remark 1.27

Corollary 1.25 reflects one of the main concepts of the application of reproducing

kernels within the field of pattern recognition, which is discussed to some extend

necessary for our purposes in section 1.4.4: The Hilbert function space defined

by such a reproducing kernel k can be interpreted as a new feature space based

on a feature mapping Φ. Once again, the idea behind this approach is that all

required metric information – that is information about distances or, in a wider

sense, similarities – between features Φ(µ),Φ(ν) of given data µ, ν ∈ X can be

computed by evaluating the reproducing kernel functional at (µ, ν).

1.3 The theorem of Mercer

The theorem of Mercer, which will be stated here in a rather general form, had major

impact for machine learning and pattern recognition, offering a simple method for con-

structing reproducing kernels in practice. We will present it here without proof, but the

interested reader can find theorem plus proof in similar form for instance in [9]. We men-

tion, however, that the proof is in greater parts identical or similar to that of theorem

1.23.

Theorem 1.28 (Mercer)

Let V be a compact metric space endowed with a finite strictly positive Borel measure η,

k ∈ C(V × V ) and Tk : L
2
η(V ) → L2

η(V ) the integral operator

(Tkf)(·) =
∫
V

k(·, ν)f(ν)dη(ν).

If Tk is positive definit in the L2
η(V )-sense, that is∫

V

∫
V

k(µ, ν)f(ν)dη(µ)dη(ν) ≥ 0, f ∈ L2(V ), (1.21)

then equation (1.7) holds for all µ, ν ∈ V (thus rendering Tk selfadjoint) and k(µ, ν) can

be represented as an absolutely and uniformly convergent series

k(µ, ν) =
∞∑
i=1

λiιi(µ)ιi(ν) for almost all µ, ν ∈ V, (1.22)

where λi are the eigenvalues of Tk according to their geometric multiplicities and ιi their

respective orthogonal eigenfunctions.
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Filling the Gap – What is so special about theorem 1.28?
Under certain, but in practice frequent conditions, it opens ways for a relatively

easy construction of reproducing kernels:

• On the theoretical side, given rather non-strict preliminaries such as con-

tinuity of a kernel function k and the integrability in the L2
η-sense of the

associate transformation Tkf , the theorem guarantees the existence of a

uniformly convergent series and furthermore also gives information on how

it is constructed. Example 1.39 is, in this context, very interesting and

illuminating. Here f(·)e−iωt is such a kernel function k(·, t).

• Looking at equation (1.22) we realize that it equals the inner product in the

sequence space given the mapping

φ : V → ℓ2ι : x 7→
(√

λiιi(x)
)
1≤i≤∞

.

The subscript ι illustrates the fact that the ιi(·), 1 ≤ i ≤ ∞ compose the

basis of the sequence space ℓ2. We get the same result as in Corollary 1.25,

thus once again closing the gap between the theoretical, operator based

result and practical applications.

The next example illustrates the practicability of the Mercer theorem by interpreting the

decomposition of a symmetric matrix A in its context:

Example 1.29

Consider a symmetric matrix A ∈ RN×N , A = (am,n)1≤m,n≤N , nonnegative in the sense

that xTAy ≥ 0 ∀x,y ∈ RN . Let λi, 1 ≤ i ≤ N be the eigenvalues of A with associated

eigenvectors ϕi, then A can be decomposed into the matrix product A = ΦΛΦT . In

the matrix product on the right side of the last equation Λ is the diagonal matrix with

entries Λii = λi and Φ is the matrix composed of the corresponding eigenvectors. As A is

nonnegative, λi ≥ 0 and we can take the element wise square-root of the matrix.

–•

Example 1.30 (Finite dimensional Hilbert function spaces)

We will close this section with an example that illustrates the theory and clarifies its

application in the finite dimensional case. In a manner similar to the second part of the

proof of theorem 1.23, only finite dimensional this time, consider an N -dimensional Hilbert

function space H and a basis {ei(·)}Ni=1.
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This setup implies

∀f ∈ X ⊂ H : f(µ) =
N∑
i=1

αiei(µ) (1.23)

for all µ ∈ X with complex scalar coefficients αi.

Subsequent to corollary 1.25 we have introduced the Gram matrix, the elements of which

are the pairwise kernel evaluations. Hence given a reproducing kernel k ∈ H (we do not

yet know what k looks like!), we have

Gk =
(
k (ei(·), ej(·))

)
i,j
, 1 ≤ i, j ≤ N (1.24)

We recall equation 1.22 as well as the fact that the reproducing property must hold for the

kernel and look in detail at the coefficients αi: in the context of equation 1.22 it becomes

clear that we need to find elements ζi,j such that

N∑
j=1

αi,jζj,i = δi,j,

where

δi,j =

1 i = j

0 i ̸= j
.

ζi,j = α−1
i,j does the job. Finally, by definition {ei(·)}Ni=1 is an orthonormal basis and we

conclude that

k(µ, ν) =
N∑

i,j=1

ζi,jei(µ)ej(ν)

meets all requirements and is the – due to the uniqueness of the RK defining its associated

RKHS – sought reproducing kernel for the finite dimensional Hilbert function space H.

–•

Remark 1.31

Naturally, classification tasks for computer systems are finite dimensional. This, however,

is not necessarily the case any longer when working in the Hilbert function space

determined by a reproducing kernel. The most famous (or infamous, depending of the

point of view) examples for this are the exponential kernel ke and the RBF-kernel krbf

given in example 1.35, (3) and (4).
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Theoretically, working in infinite dimensional spaces would burden us with all its problems

and challenges compared to finite dimensional ones. The good news is that the functionals

of most of the function spaces can be approximated arbitrarily exact by a countable (see

remark 1.24) or even finite dimensional subsystem dense in the respective space. For the

examples mentioned above, the Taylor series with n terms is such a subsystem, letting

n → ∞, as already mentioned in remark 1.24. Whenever this is not the case, care has to

be taken.
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1.4 Applications and Examples

Knowing the basics of Hilbert function spaces and reproducing kernels, we shed light on

some of their properties. By showing that reproducing kernels are closed under a lot of

common algebraic operations and making use of those, we will be able to derive some well

known and frequently used reproducing kernels and common Hilbert function spaces. In

the third subsection, our aim is to deduce the reproducing property for two specific Hilbert

function spaces. The literature we studied did not include any such deduction, and in prov-

ing the reproducing property we were surprised and glad to realize that this process grants

deeper insight into the spaces’ structures and their functionals and operators. Clearly, if

one does not yet happen to know the kernel of a space in question it is indispensable to first

derive it. This subsection, subsequent to the examples of RKs, thus implicitly elucidates

the Hilbert function space associated with the polynomial kernel of degree two and shows

that the set of (bandlimited) Fourier transform is a reproducing Hilbert kernel space.

1.4.1 Kernel construction

We have seen that positive semi-definite matrices (or reproducing kernels) and reproducing

kernel Hilbert spaces are equivalent concepts. In this section we give some examples of

constructing reproducing kernels – and hence function spaces – by algebraic methods.

A simple example immediately unveils itself through the fact that positive semi-definite

matrices Mn×n, n ∈ N are closed under addition: Let k1(·, ·), k2(·, ·) ∈ X × X be two

reproducing kernels. Then k+(·, ·) = k1(·, ·) + k2(·, ·) is a reproducing kernel. The next

theorem gives further examples.

Theorem 1.32

Given a subset S ⊂ X ∈ Kn, n ∈ N, x, z ∈ Kn, 0 ̸= f : X → K, ψ : X → Kn, a ∈ K and

A ∈ Kn×n a symmetric psd matrix, let k, ki ∈ X × X, i ∈ N be reproducing Kernels and

kψ ∈ X ×X. Then

(1) k⊕(x, z) =
∑n

i=1 ki(x, z)

(2) k⊗(x, z) =
⊗n

i=1 ki(x, z)

(3) k|S(x, z) = k(x, z)|S, the restriction of the kernel to the subset S.

(4) k∗(x, z) = ak(x, z)

(5) kf (x, z) = f(x)k(x, z)f(z)
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(6) kA(x, z) = xHAz

(7) kψ(x, z) = k(ψ(x), ψ(z))

(8) ke = exp k(x, z)

are reproducing kernels, where
⊗n

i=1 denotes the product of kernels ki, i = 1, . . . n.

Proof. We will proof (4) and (7), the latter being important in section 1.5.1. For (1) and

(2) (restricted to two product terms), (3) and (5) the reader should consult [10]; (6) is

proven in [9] but is also easily deduced as a special case of (5). Finally, the proof for (8)

will be given in the next subsection, example 1.35 item (3).

(4) Referring to definition 1.21, the result of scaling α ∈ Kn by a constant scalar a is an

element of Kn as well. The Gramian corresponding to the kernel kψ thereby remains

psd.

(7) The proof is straight forward. As ψ is defined on X and maps to Kn we conclude

that kψ is well-defined and a reproducing kernel.

Remark 1.33

As we do not make any use of kernels more sophisticated than the ones defined in this

work, such as for instance RKs on graphs or trees, we refer the reader to [9] or [11] for both

definitions and detailed analysis. The motivation for such kernels is no different from ours:

Optimal RKs and their spaces’ structures and metrics should to a certain degree reflect

and represent structures and relations of both underlying data and methods used for its

analysis.

1.4.2 Reproducing kernel examples

Example 1.34

Obviously, any constant c ∈ R+ is a reproducing Kernel on Cc, the set of complex numbers

endowed with the inner product ⟨x, z⟩ = 1
c
xz. This is a special case of example 1.30: As

c ∈ R+, we have c−1 = c−1 = 1
c
.

–•

In the context of numerical classification tasks – that is problems living in real or complex

spaces Kn, n ∈ N – the following kernels are amongst the most frequently used ones:
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Example 1.35

Given a subset X ⊂ Kn, variables c, n and d ∈ N, a scalar σ ∈ R+, vectors x, z ∈ X and a

reproducing kernel k ∈ X ×X,

(1) the linear kernel kl(x, z) = ⟨x, z⟩ as a special case for d = 1 and c = 0 of

(2) the polynomial kernel kpd(x, z) = (⟨x, z⟩+ c)d

(3) the exponential kernel ke(x, z) = exp (k(x, z))

(4) the exponential rbf kernel krbf (x, z) = exp
(
− ||(x−z)||

2σ

)
are reproducing kernels.

–•

Proof. (see also [9], page 77) (1) and (2) are obviously reproducing kernels due to the posi-

tive definiteness of the inner product of Hilbert spaces and theorem (1.32). The exponential

function has a representation as a Taylor series – in other words, it can be approximated

arbitrarily accurate by polynomials and is thus a reproducing kernel by theorem 1.32, (1)

and (4). Finally, using the linear kernel scaled by 1
σ2

as the exponent in (3) and normalizing

the kernel by 1√
exp(||x||2/σ2) exp(||z||2/σ2)

results in expression (4):

exp
(

⟨x,z⟩
σ2

)
√

exp
(

||x||2
σ2

)
exp

(
||z||2
σ2

) = exp

(
−
(
⟨x,x⟩
2σ2

− ⟨x, z⟩
σ2

+
⟨z, z⟩
2σ2

))
= exp

(
−||(x− z)||

2σ

)
,

where normalization is a well-defined operation by theorem 1.32, part (4).

Remark 1.36

Both the polynomial and the exponential rbf kernel given above are special cases. The first

one can be generalized to

kp(x, z) = p(k(x, z)),

where p is a nonzero polynomial function with nonnegative coefficients. Further examples

for kernels based on the polynomial one are All-subset kernels and ANOVA kernels, a

detailed description and analysis of which is given in [9]. For the latter, the norm specializes

a more general metric function d ∈ Kn ×Kn, where the kernel takes the form

exp

(
−d(x, z)

2σ

)
.
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In the remainder of this work we will, if not mentioned otherwise, make of use the expo-

nential kernels with constant γ = 1
2σ
.

Example 1.37 (Hardy space)

H2(D1) =

{
f : D1 → C

∣∣ f analytic and sup
0≤r<1

∫ 2π

0

|f(reit)|2

2π
dt <∞

}
is the space of square-integrable holomorphic functions defined on the unit disc

D1 = {z ∈ C
∣∣ |z| < 1}

and is called Hardy space. For X ⊂ D1 and x, z ∈ X,

k(x, z) =
1

π(1− xz)2

is the reproducing kernel of H2(D1).

–•

1.4.3 The reproducing property

As mentioned in the introduction of this section, we want to give some examples of proving

the reproducing property of reproducing kernel. As a side effect, we will gain interest-

ing insight into the structure of the respective underlying reproducing kernel Hilbert spaces.

The first example builds on a reproducing kernel we already know, the polynomial kernel

of degree 2, kp2(x, z). By proving its reproducing property, we moreover will deduce a basis

for the reproducing kernel Hilbert space and thus know which elements it consists of.

Example 1.38

By equation (1.11), the evaluation of the RKHS determined by this kernel is spanned by

linear combinations of the latter. After expanding the kernel we have

kp2(x, z) = (x⊙z+c)2 = x22z
2
2+2cx11z

1
1+x

0
0z

0
0c

2 = x22z
2
2+2cx1z1+c

2, x, z ∈ R3, c ∈ R+,

where ⊙ is the element wise product. This is – as expected – a polynomial, and obviously

span{k(·, z)} ⊂ span{1,x,x2}. Hence, if we now can show that, by virtue of equation

(1.11), we can express linear combinations of kernels by those of polynomials,
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2∑
i=0

βik(x, zi) =
2∑
i=0

αix
i

with α = (α0, α1, α2) and β = (β0, β1, β2), for α,β ∈ R3 the reproducing property is

proven to be true. This, however, can easily be seen: We rewrite the equation as z0

z1

z2


 β0

β1

β2

 =


α0

c2

α1

cz

α2

 . (1.25)

which always has a solution for any such α – the vector we are looking for4. This implies,

that all polynomials in R[x] of degree 2 are elements of the RKHS Hkp2
, which in this

particular case is of dimension 3 and by the derivations above has the basis {1, x, x2}.
–•

For the second example we will consider the set of unbounded Fourier transforms and also

concretize on bandlimited transforms5.

Example 1.39

Fouriertransforms can be defined in L2(R) on usual Borel sets of intervals in R using the

common Lebesgue measure

M =

{
f : R → C |

∫ ∞

−∞
|f(t)|2 dt <∞

}
, f(t) 7→ f̂(ω) = lim

A→∞

∫ A

−A
f(t)e−iωtdt, (1.26)

where f ∈ L2(−A,A). The inner product in this space is defined as

⟨f, g⟩ =
∫ ∞

−∞
f(t)g(t)dt, f, g ∈M.

Assuming M to be a Hilbert function space with reproducing kernel k, let us look once

again at the reproducing property

f(t) = ⟨f, k(·, t)⟩ (1.27)

and its meaning in this situation. If such a kernel k exists, it must satisfy equation (1.27).

4Note that zi are (row) vectors: Each zi, i = 0..2 has 3 components z2, z1, z0 = 1. As (1.25) is a
system of equations with vectors, writing out the elements of the matrix would result in an awkward and
indecipherable amount of indices.

5Keep im mind that at this point we do not yet know whether or not this is a reproducing Hilbert space
at all!
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We can utilize the facts that Fourier transforms are isometric isomorphisms and that any

function f ∈ L2(R) for which the Fourier transform exists can also be expressed via its

inverse Fourier transform. By replacing f̂(ω) by its integral transform and using s as the

variable of integration, we get

f(t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(s)e−iωsds eiωtdω,

In the sense of the limit as given by equation (1.26), both transforms are well-defined and

finite6. The theorem of Fubini allows us to change the order of integration:

f(t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(s)e−iωseiωtdsdω =

1

2π

∫ ∞

−∞

∫ ∞

−∞
f(s)e−iω(t−s)dsdω (1.28)

=

∫ ∞

−∞

1

2π

[∫ ∞

−∞
eiω(t−s)dω

]
f(s)ds (1.29)

=
1

2π

∫ ∞

−∞
δ(t− s)f(s)ds = f(t). (1.30)

Hence, switching back to our former form of notation, for kF(µ, ν) =
∫∞
−∞ eiω(ν−µ)tdt, the

reproducing property f(ν) = ⟨f, k(·, ν)⟩ is satisfied. Furthermore kF is clearly positive

semidefinite and thereby proven to be the reproducing kernel of the set of unbounded

fourier transforms.

By definition, bandlimited functions vanish almost everywhere outside ]− π, π[:

f(t) =
1

2π

∫ π

−π
f̂(ω)eiωtdω, f̂ ∈ L2(−π, π).

The reproducing kernel hence takes the form

k(µ, ν) =

∫ π

−π
e−iω(ν−µ)tdt =

sin[π(ν − µ)]

π(ν − µ)
=

1 µ = ν

sinc[π(ν − µ)] otherwise
.

–•

This result is especially nice, given the fact that we can deduce the convergent series

stated by Mercer’s theorem (1.28) directly from the hitherto result:

6Note that the integral transform does not converge pointwise, but in the L2-sense.
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As sin(x) =
∑∞

n=1
x2n−1

(2n−1)!
we conclude

k(µ, ν) =

1 µ = ν

1−
∑∞

n=1
x2n

(2n+1)!
otherwise

1.4.4 Reproducing kernels and pattern recognition

Reproducing kernels have been considered within the context of many common algorithmic

procedures, the fundamental step always being the substitution of inner products by

reproducing kernels. Numerous algorithms make use of inner products or can be rewritten

in such a way, ranging from smaller tasks like data centering, clustering and projection

to more complex algorithms such as canonical correlation analysis, linear regression and

calculation of smallest enclosing hyperspheres for a collection of data points. [9] is a very

good reference for algorithms based on kernel methods. The motivation is, as explained

before, the interpretation of a RKHS as a feature space represented by metric relations

(or, if available, the functionals forming the functional space).

As an example for an algorithm we present the basic steps of reproducing kernel

principal component analysis (RKPCA), PCA7 being one of the most widely used

eigen-decompoisition methods. For more detailed derivations, analysis and comparison to

other methods the reader is referred to [11], [9] or [12].

Example 1.40 (Kernel PCA)

Given N centered8 data points xn ∈ Rp, 1 ≤ n ≤ N and their approximated, positive

definite covariance matrix C = 1
N

∑N
n=1 xnx

T
n , the principal components are found by

diagonalization of C. This boils down to solving the eigenvalue problem Cz = λz where

λ ∈ R and z ∈ Rp. Substituting the eigenequation into the sum for computing C delivers

λz = 1
N

∑N
n=1 ⟨xn, z⟩xn, or

λ ⟨xn, z⟩ = ⟨xn, Cz⟩ , 1 ≤ n ≤ N. (1.31)

Given a feature mapping T : Rp → F into a finite dimensional feature space F , the problem

translates canonically:

7PCA is also known as the Karhunen-Loève transform.
8
∑N

n=1 xn = 0
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Assuming the data is centered in the feature space, we need to compute

λ ⟨Txn, z⟩ = ⟨Txn, Cz⟩ , 1 ≤ n ≤ N. (1.32)

As F = span {Tx1, . . . , TxN} is finite dimensional, each vector z ∈ F can be written as a

linear combination z =
∑N

n=1 αnTxn, αn ∈ R. Substitution of the last equation into 1.32

delivers N equations

λ
N∑
n=1

αn ⟨Txn, Txi⟩ =
1

N

N∑
n=1

⟨
Txn,

N∑
l=1

Txl ⟨Txl, Txn⟩︸ ︷︷ ︸
kn,l

⟩
. (1.33)

One point of substitution of the reproducing kernel for the inner product is indicated in

the last equation. Substituting all occurrences and using the Gramian (oder kernel matrix)

representation, the notation simplifies and the following eigenvalue problem remains to be

solved:

λGkα =
1

N
Gkα, (1.34)

where α = (α1, α2, . . . , αN)
T . For details, we refer the reader to chapter 6.2 in [9].

–•
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1.5 Reproducing kernels and linear operators

Hilbert function spaces

Reproducing Kernels (RKs)

Linear Operator RKs

>

In this section we derive the theoretical results necessary for section 2.5.3, where we in-

troduce correlation features and integrate them directly into the reproducing kernel. We

first present the theory in the context of linear mappings in scalar-valued Hilbert spaces

(section 1.5.1) and afterwards generalize to operator-valued situations (section 1.5.3).

1.5.1 Embedding linear mappings into reproducing kernels

Consider a continuous, linear mapping T : X → Y between two Banach9 spaces

X, Y . Let X ⊕ Y denote the product space of elements in X and Y , that is

X ⊕ Y = {(x, y) | x ∈ X, y ∈ Y }. A basic result from functional analysis is that

the space X ⊕ Y with its norm given by ||(x, y)|| =
√
||x||2 + ||y||2, x ∈ X, y ∈ Y is again

a Banach space.

As an application of this, the closed graph theorem ([13], pages 156 and 157) implies that

the graph of T ,

G(T ) = {(x, Tx) |x ∈ X},

is a closed subspace of X ⊕ Y with norm

||x||T =

√
||x||2 + ||Tx||2 ≥ ||x|| . (1.35)

In the context of Hilbert spaces, G(T ) as a closed subspace is itself a Hilbert space, where

the inner product is defined on the concatenation of the components. Let H,HT be Hilbert

spaces, p, q ∈ H and T : H → HT with respective inner products ⟨·, ·⟩H and ⟨·, ·⟩HT
.

9A Banach space B is a normed vector space over a field R or C that is complete w.r.t its norm. It is a
more general space than a Hilbert space, the latter being a Banach space with an inner product induced
by the norm.
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Then G(T ) ⊂ H⊕HT and

⟨(p, Tp), (q, T q)⟩G(T ) = ⟨p, q⟩H + ⟨Tp, Tq⟩HT
. (1.36)

Given the above mentioned situation, the well-known representation lemma named after

Riesz (see for instance [13], pages 109–112 and 235 –239) can be applied. It ensures

that for every bounded, linear and continuous operator (mapping) T : H → HT between

a finite dimensional Hilbert space H and a Hilbert space HT there exists exactly one

adjoint operator (mapping) T ∗ : HT → H such that for all p ∈ H, q′ ∈ HT the equation

⟨Tp, q′⟩HT
= ⟨p, T ∗q′⟩H holds.

In our work we build on this theorem and, using the bilinearity of inner products in R
(the complex case behaves analogous using the inner product’s sesquilinearity instead) and

recasting equation (1.36) as follows:

⟨(p, Tp), (q, T q)⟩G(T ) = ⟨p, q⟩H + ⟨Tp, Tq⟩HT

= ⟨p, q⟩H + ⟨p, T ∗Tq⟩H
= ⟨p, q + T ∗Tq⟩H
= ⟨p, (IH + T ∗T )q⟩H , (1.37)

where IH is the neutral element (that is, the identity matrix) of the endomorphisms of H
and the last inner product is defined on H × H. T ∗T is positive semi-definite (p.s.d), as

for any z ∈ C we have z(T ∗T )z = (zT ∗)(Tz) = (Tz)∗(Tz) ≥ 0, and whenever the trace of

T ∗T does not equal zero it is even positive definite (p.d.). In the latter case, (IH + T ∗T )

will thus be p.d., too, and a new reproducing kernel stemming upon T is given by

kT ∗T (p, q) = p(IH + T ∗T )q. (1.38)

The effect of T on the kernel can be controlled further by scaling the inner products ⟨·, ·⟩H
and ⟨·, ·⟩HT

by positive weights wH and wHT
satisfying wH +wHT

= 1 . Using basic linear

algebra, we compute

wH ⟨p, q⟩+ wHT
⟨Tp, Tq⟩ = ⟨p, wHq⟩+ ⟨p, wHT

T ∗Tq⟩

= ⟨p, wHq + wHT
T ∗Tq⟩

= ⟨p, (wHIH + wHT
T ∗T )q⟩H (1.39)
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and thus

kwT ∗T (p, q) = p(wHIH + wHT
T ∗T )q. (1.40)

Note that wH, wHT
> 0 will ensure positive definiteness.

Finally, for T unitary, the weighting in equation (1.37) reduces to scaling q, as

⟨(p, Tp), (q, T q)⟩G(T ) = ⟨p, ((wH + wHT
)IH) q⟩H . (1.41)

Remark 1.41

A crucial characteristic of the derived kernel kwT ∗T (p, q) is that it is defined on the original

set X×X. We thus can, as depicted in section 2.5.3 , make use of theorem 1.32, for which

this characteristic is a necessary requirement.

1.5.2 Correctness of the linear operator RK

It is still not clear that the integration of the a linear mapping T into the inner product

delivers a bounded operator. To prove this, note that T : H → HT is defined on a subset of

a space that is itself a reproducing kernel space. Now, considering the first line of equation

1.36, we have

⟨(p, Tp), (q, T q)⟩G(T ) = ⟨p, q⟩H + ⟨Tp, Tq⟩HT
, (1.42)

which offers a good point for our estimations.

Theorem 1.42

The reproducing kernel defined by equation (1.38) is bounded.

Proof. We prove this by showing that both inner products on H and HT are finite. Given

finite p, q ∈ H it is clear that ⟨p, q⟩ and ||⟨p, q⟩|| are finite as well. The operator norm for

bounded linear operators is, as already noted in equation (1.5), given by

sup
||h||̸=0

||Th||
||h||

= sup
||h||=1

||Th|| .

It satisfies

||Th|| ≤ ||T || ||h|| ,

and for a proof the reader can consult for instance [14], pages 91 to 93.
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Now, as T is bounded and the inner product homogeneous in both terms, we conclude

||⟨Tp, Tq⟩|| ≤ ||T ||2 ||⟨p, q⟩|| ≤ ∞, (1.43)

which proves finiteness of the inner products.

1.5.3 Generalization to linear operators

Let T : Hk → H be a bounded linear operator from a RKHS Hk on a set E with kernel k

and let H be an ordinary Hilbert space. In such a function space, the graph is, in the same

manner as before, defined as G(T ) = {(f, Tf) | f ∈ Hk} and again – as a closed subspace

– a Hilbert space itself, its inner product being

⟨(f, Tf), (g, Tg)⟩G(T ) = ⟨f, g⟩Hk
+ ⟨Tf, Tg⟩H . (1.44)

In the same way as before with additionally making use of the reproducing property in

step (1.45) we deduce

⟨(f, Tf), (g, Tg)⟩G(T ) = ⟨f, k(·, g)⟩+ ⟨Tf, Tk(·, g)⟩

= ⟨f + T ∗Tf, k(·, g)⟩

= ⟨(I + T ∗T )f, k(·, g)⟩

= ⟨f, (I + T ∗T )k(·, g)⟩ (1.45)

A new reproducing kernel kT ∗T in G(T ) can now be defined in terms of the known kernel

k as follows:

kT ∗T (f, g) = f ∗(I + T ∗T )−1k(·, g). (1.46)

Note that (I + T ∗T ) is psd and symmetric and thus an invertible operator.

Saitoh ([10], pp. 80 – 81) implicitly uses results similar to (1.46) in an example where

T : Cn → C is the evaluation functional, which is necessarily an element of any RKHS.

For this special case of (T ∗T )(·) he elaborates an analytic equation for the new kernel and

states that the associate RKHS is a strict subspace of Hk.

This is not entirely correct, especially in our particular setting. Instead we prove the

following
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Theorem 1.43

T : Hk → G(T ) as defined above is a topological vector space isomorphism of Hilbert

spaces.

Proof. We have to show that there exists a mapping G(T ) → Hk that is both one-to-one

and onto as well as continuous and linear and has an continuous inverse mapping. Let

||·||T denote the norm for T as given in equation (1.35). Then the identity mapping (or

alternatively we may call it projection onto the first component)

G(T ) → Hk : (f, Tf) 7→ f

(p, ||·||T ) 7→ (p, ||·||)

clearly meets the claimed conditions, thereby proving the theorem.

Remark 1.44

Cave! For both operators and maps, care must be taken that ⟨Tf, Tg⟩ and ⟨Tp, Tq⟩
remain inner products. Differentiation for instance renders the latter indefinite! Finally,

the structure of Hilbert spaces is not even necessary.

Theorem 1.43 has important implications: Being a topological isomorphism, open sets

remain open due to the continuity of the inverse mapping. As both domain and range are

Banach oder Hilbert spaces, limits are carried over. For instance, Cauchy sequences in the

domain map to Cauchy sequences in the range.

We close this chapter by giving another simple example of a topological vector space

isomorphism, which is well known from linear algebra.

Example 1.45

Given a finite dimensional Banach space E over a field K with base {e1, . . . , en}, the

mapping

T : E → Kn, x =
n∑
i=1

xiei 7→ (a1, . . . , an) ,

a1, . . . , an ∈ K is a topological vector space isomorphism. Linearity, well-definiteness and

bijectivity are clear. The fact that the inverse mapping is an element of L(Kn, E) can



34 1.5 Reproducing kernels and linear operators

easily be seen using the Cauchy Schwarz inequality:

∣∣∣∣T−1x
∣∣∣∣ ≤ n∑

i=1

|xi| ||ei|| ≤

(
n∑
i=1

|xi|2
) 1

2
(

n∑
i=1

||ei||2
) 1

2

≤ c |x| ,

where x = (x1, . . . , xn) and c =
(∑n

i=1 ||ei||
2) 1

2 .

–•
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1.6 Optimization theory

Convex Optimization

This section offers a short introduction to the theory of (convex) optimization, covering

enough material to understand the basics necessary for support vector classification, which

as an important utility for our research is presented in section 1.7. Most of this section

as well as of section 1.6.1 is based on [15] and hence we recommend this (downloadable

for free) book of Stephen Boid for further details and proofs. Note however, that the

notation given here is quite different as the chapter includes some results of our own, and

we preferred our deviating variant.

An optimization problem in a very general form is a mathematical problem for which,

in most cases under certain constraints, an optimal solution in the form of a minimum or

maximum10 is sought:

minimize
x∈D⊂Rn f(x) (1.47)

s.t.

{
g(x) = 0

h(x) ≤ 0

Here, f is called objective function and g : Rn → Rk, h : Rn → Rl are called equality

and inequality constraints, respectively. The subscript – in this case x ∈ D – indicates,

with respect to which variable(s) f is to be optimized. The set of x∗ ∈ D leading to

an optimal solution amongst all vectors in D is called the set of objective values or

solutions of the optimization problem, where D = domf
∩k
i=1 domgi

∩l
j=1 domhj, the

intersection of the domains of objective function and all constraints, is the problem’s

domain. If the problem does not include any constraints at all, it is called unconstrained.

For the sake of clearness we will often write gi(·) and hj(·) with i = 1, . . . , k j = 1, . . . , l,

where gi, hj : Rn → R. A point y ∈ D is said to be feasible, if it satisfies all constrains of

a problem, and the problem itself is feasible if its set of feasible points is nonempty. It is

clear by definition that an objective value is necessarily feasible.

10Problem 1.47 is a given as a minimization problem. In the same way, a maximization problem can be
defined by essentially just replacing the ’minimize’ instruction by a ’maximize’ instruction and evidently
seeking a maximum instead of a minimum.
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Problem 1.47 is the standard form representation. In this form, the righthand side of

both kinds of constraints are zero and the inequality constraints are of ≤ - kind. Note that

the first characteristic can always be achieved by subtracting the nonzero righthand side

values, the second one by switching the signature of any ≥ - kind of inequality constraint.

Boxed constraints of the form ci ≤ hi(x) ≤ bi, bi, ci ∈ R, i = 1, . . . , l can be split into

two sets of inequality constraints ci − hi(x) ≤ 0 and hi(x)− bi ≤ 0.

Example 1.46

Given c,x, ai ∈ Rn, and bi ∈ R for i = 1, . . . ,m, m ∈ N, the optimization problem

minimize
x∈Rn cTx (1.48)

s.t. aTi x ≤ bi

is an example of a linear program, where the objective function as well as all constraints

are linear in the optimization variable(s).

–•

Convex optimization problems play an important part especially in the context of support

vector machines and dualization of optimization problems (see later this section). Reasons

for this are, that even on a standard desktop computer, problems of relatively large

size (hundreds of optimization variables and thousands of constraints) can be solved in

a minute’s or two time. In addition, many nonconvex problems can be approximated

well enough by convex ones. Another application is the computation of lower bounds by

constraint relaxation, that is converting nonconvex constraints into weaker but convex

ones. The term relaxation will be introduced later in this section.

We define (the class of) convex optimization problems as follows:

Definition 1.47

An optimization problem

minimize
x∈D⊂Rn f(x) (1.49)

s.t. hi(x) ≤ bi,

with convex objective function f , x ∈ Rn, convex inequality constraints hi : Rn → R (i.o.w.

hi(αx + βy) ≤ αhi(x) + βhi(y) for y ∈ Rn and α, β ∈ R) and affine equality constraints

aTi x ≤ bi, bi ∈ R, is called convex optimization problem.
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Note that linear programs such as given in example (1.46) are a special case of convex

optimization problems. Due to the convex nature of support vector classification and the

fact that dualization leads to convex optimization problems, we will restrict ourselves to

the convex case in the mathematical review of this thesis.

1.6.1 Theoretical background

Definition 1.48

A set D ⊂ Rn is set to be affine, if for any x1,x2 ∈ D and α ∈ R we have αx1 + (1 −
α)x2 ∈ D. Given any (not necessarily affine) set C ⊂ Rn,

∑k
i=1 αixi is called a affine

combination of the points xi ∈ C if
∑k

i=1 αi = 1, αi ∈ R.

Definition 1.49

A set D ⊂ Rn is set to be convex, if for any x1,x2 ∈ D and α ∈ R, 0 ≤ α ≤ 1, we have

αx1 + (1− α)x2 ∈ D. Given any (not necessarily convex) set C ⊂ Rn,
∑k

i=1 αixi is called

a convex combination of the points xi ∈ C if
∑k

i=1 αi = 1, αi ∈ R+.

Both affine and convex combinations are a special case of linear combinations.

Definition 1.50

A convex set D with α1x1+α2x2 ∈ C for any x1,x2 ∈ C and α1, α2 ∈ R+ is called convex

cone. Given any set C ⊂ Rn,
∑k

i=1 αixi is called a conic combination of the points

xi ∈ C if αi ∈ R+. If xi ∈ D, i = 1, . . . , k, then so will be the conic combination.

The idea of convex cones is important insofar, as the constraints of a convex optimization

problem form a convex cone. In addition, convexity is closed under a lot of common

algebraic operations. Together, this opens ways of formulating a number of problems in

such a way that both the problem itself as well as its complete computations preserve

convexity, or it allows for recasting nonconvex problems into convex ones.

Operations preserving convexity of a set are for instance infinite intersections, mappings

through affine functions and Möbius transforms. Proofs for these statements can be found

in [15], pages 35 to 42.

Example 1.51 (from [15], page 35)

In the set of symmetric matrices Sn = {X ∈ Rn×n|X = XT}, which is a vector space of

dimension n(n−1)
2

, we consider the two subsets of positive semidefinite and positive denifite

matrices Snpsd = {X ∈ Sn|X ≥ 0} and Snpd = {X ∈ Sn|X > 0}. Both are convex cones.
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For a proof, consider the definition of a positive semidefinite matrix. Given α, β ∈ R+ and

X, Y ∈ Snpsd, we have for any x ∈ Rn

xT (αX + βY )x = αxTXx+ βxTY x ≥ 0.

The proof for Snpd is identical. –•

Remark 1.52

Example 1.51 and the fact that each p.d. matrix represents a (unique) reproducing kernel

inducing its associated Hilbert function space imply that reproducing kernels over the same

set form a convex cone. This is an important fact for our approach, as we will formulate

our discriminative classifier given a kernel combination over a set. As a consequence, the

resulting optimization problem is guaranteed to remain within a convex cone and will

thereby be uniquely solvable.

By definition, convex optimization problems have convex inequality constraints and we

quickly revisit the definition of convex functions:

Definition 1.53

A function f : D → R defined on a convex set D ⊂ Rn is convex, if for all α ∈ R,
0 ≤ α ≤ 1 and x,y ∈ D we have

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y). (1.50)

If −f is convex, we say that f is concave.

The geometric interpretation of a function f being convex is, that the line segment from

(x, f(x)) to (y, f(y) lies completely above the graph of f . If the inequality in equation

(1.50) is strict, f is called strictly convex (or strictly concave). An aspect of utter

importance is, that for convex functions one can conclude from local information to a

global characteristic:

Theorem 1.54

Given a convex, differentiable function f : D → R, D ⊂ Rn convex, the following inequality

holds for all x,y ∈ D:

f(y) ≥ f(x) +∇f(x)T (y − x). (1.51)

Vice versa, if inequality (1.51) holds for a function f defined on a convex set D ⊂ Rn, f is

a convex function.

Proof. See [15], page 70.
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The term on the righthand side is immediately recognized as the first order Taylor approx-

imation of f . The local information in this context are the values of the function and its

derivative at a given point, the global characteristic is, that the first order Taylor approx-

imation is a lower bound of f . Inequality (1.51) is known as the first order condition

for a convex function. As one might expect, there is a similar second order condition,

which we also present without proof.

Theorem 1.55

Assuming that f is twice differentiable, f : D ⊂ Rn → R is

(i) convex if and only if D is convex and its Hessian matrix is positive semidefinite,

(ii) concave, if it is negative semidefinite.

Example 1.56

Any norm ||·|| on Rn is a convex function. Its positive homogeneity and the triangle

inequality immediately prove the statement.

–•

Example 1.57 (Important for optimization problems such as support vector classification)

Given xn ∈ R, 1 ≤ n ≤ N ∈ N, f : RN → R, the mapping x 7→ max{x1, . . . , xN} is convex.

The proof is straightforward. For x,y ∈ RN , 0 ≤ α ≤ 1, α ∈ R, we have

f(αx+ (1− α)y) = max
n

(αxn + (1− α)yn)

= max
n

(αxn) + max((1− α)yn)

= αmax
n

(xn) + (1− α)max(yn)

= αf(x) + (1− α)f(y).

The same proof shows that the min function is convex, and in a similar manner it can

easily be seen that pointwise maximum and minimum of (a set or family of) pairwise real

valued convex functions are convex:

For g, h : RN → R and f(x) = max{g(x), h(x)} the convexity of g and h and the pointwise

convexity of the maximum itself prove

f(αx+ (1− α)x) = αmax{g(x), h(x)}+ (1− α)max{g(y), h(y)}

= αf(x) + (1− α)f(y).

–•
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Definition 1.58

In an n-dimensional spaceH equipped with an inner product ⟨·, ·, ⟩, writing x = (x1 · · · xn),
w = (w1 · · · wn) and letting x1, . . . ,xm ∈ H, w ∈ H and b ∈ R, a hyperplane is a

subspace {⟨w,x⟩+ b = 0 |x ∈ H}, determined by a vector w orthogonal to the hyperplane

and an offset b.

From linear algebra we know that a dot product in a Hilbert space represents the length of

the projection of either component onto the direction of the remaining one. Thus ⟨w,x⟩
is the length of the projection of x along the direction of w scaled by ||w|| – and vice

versa. Geometrically, the definition shows that a hyperplane is the (sub)set of points with

a constant inner product, analytically being determined by the solution set of a linear

equation of an affine set over x.

1.6.2 Lagrangian- and Kuhn Tucker multipliers

When we introduced optimization problems at the beginning of this section, we distin-

guished between equality and inequality constraints gi(·) and hi(·). Now we will examine

how such constraints can be handled given the task of finding solutions to the problem.

In this context we will introduce Lagrangian multipliers, which come into play when

dealing with equality constraints, and Kuhn Tucker multipliers – an equivalent to the

Lagrangian multipliers for inequality constraints.

Naturally, both kinds of multipliers comprise the foundation for solving problems with

mixed constraints and for so called dualization, which will be introduced in section

1.6.3. We will also give an interpretation of the Lagrangian multipliers in subsection 1.6.4.

The theorems of this sections are presented without proofs, which can either be found in

any book on analysis and advanced calculus or in works covering the topics of (convex)

optimization or numerical analysis, such as [15].

Theorem 1.59 (Lagrangian multipliers)

Let f : Rn → R and gi : Rn → R (thus g : Rn → Rk, g = (g1, . . . , gk), 1 ≤ i ≤ k),

n ∈ N+, be continuously differentiable functions and f(x∗), x∗ ∈ D, an optimal solution of

f defined on an open subset of the problem’s domain D. If the Jacobi matrix J g has full

image space rank k, there exists a vector λ = (λ1, . . . , λk) ∈ Rk such that

∇f(x∗) +
k∑
i=1

λi∇gi(x∗) = 0, (1.52)
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where ∇f =
(
∂f
∂x1
, · · · , ∂f

∂xn

)
and ∇gi =

(
∂gi
∂x1
, · · · , ∂gi

∂xn

)
, 1 ≤ i ≤ n, are the gradient

vectors of f and gi respectively. λ is called (the vector of) Lagrangian multiplier(s) or

Lagrangian multiplier(s) for equality constraints.

Remark 1.60

As will become clear immediately, the additional term – the linear sum of the Lagrangian

multipliers – which is added to the necessary condition for an optimal solution is itself zero

and thus does not modify the condition itself.

The theorem formulates a condition based on the first derivative of the objective function

with respect to the equality constraints. For this reason, the conditions are also known as

first-order necessary conditions. Comparing the results to that of finding extremal values

in standard real analysis, the situation might suggest the existence of (sufficient) second-

order conditions. And indeed, there are – again, as there were for the first and second

order conditions, see theorem 1.55 – equivalent requirements.

Looking at the formulation of the next theorem, where Lx,λ is used as a short form for the

linear term f(x)+
∑k

i=1 λigi(x), one will immediately recognize the similarity to necessary

and sufficient conditions for extremal values of unconstrained problems.

Theorem 1.61

Consider an optimal solution x∗ ∈ D of an at least two times continuously differentiable

function C2 ∋ f : Rn → R and a vector λ ∈ Rk of Lagrangian multipliers such that

the Jacobi matrix Dg, g ∈ C2, has full image space rank k and satisfies the first order

condition ∇f(x∗) +
∑k

i=1 λi∇gi(x∗) = 0. Then for any such f, g and ∀zx∗ ∈ K(x∗) = {z̃ ∈
Rn| (∇gi(x∗)) z̃ = 0}, the following implications hold

(1a) f(x∗) is a local minimum on D ⇒ zTx∗∇2Lx,λzx∗ ≤ 0. For zx∗ ̸= 0, the minimum is

strict, if the inequality is strict.

(1b) f(x∗) is a local maximum on D ⇒ zTx∗∇2Lx,λzx∗ ≥ 0. For zx∗ ̸= 0, the maximum is

strict, if the inequality is strict.

Here ∇2Lx,λ denotes the Hessian Matrix of L at x given the multiplier vector λ.

As indicated above, there is a formulation for optimization problems with inequality con-

straints resembling the first order conditions of the Lagrangian multipliers.

Theorem 1.62 (Kuhn Tucker multipliers)

Let f : Rn → R and hj : Rn → R, 1 ≤ j ≤ l (thus h : Rn → Rl, h = (h1, . . . , hl)), n ∈ N+,

be continuously differentiable functions.
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Suppose that f(x∗), x∗ ∈ D, is an optimal solution of f defined on an open subset of the

problem’s domain D. If the Jacobi matrix Dh has full rank l there exists a vector ζ ∈ Rl

such that

(1) ζ ≥ 0, (This inequality is to be understood elementwise.)

(2) ζjhj(x
∗) = 0, j = 1, . . . , l

(3a) ∇f(x∗) +
∑l

j=1 ζj∇hj(x∗) = 0 for a maximum.

(3b) ∇f(x∗)−
∑l

j=1 ζj∇hj(x∗) = 0 for a minimum.

ζ ∈ Rl is called (the vector of) Kuhn Tucker multiplier(s) or Kuhn Tucker multi-

plier(s) for inequality constraints.

Remark 1.63

It should be clear that we only consider points that meet the required conditions of the

respective (in)equality constraints such as for instance gi(·) = 0. Furthermore, if any of

the conditions for the theorem is not met, the implications will in general not hold – we

will give an example where the rank of the Jacobian is not full and, as a consequence, the

theorem in question fails.

1.6.3 Dualization

The concepts introduced above directly lead (or are directly connected) to dualization. As

the following considerations hold for both equality constrained and inquality constrained

optimization problems as well as those including both constraint types, we will jump right

in an consider the all encompassing, latter case. Thus, given an optimization problem

minimize
x∈D⊂Rn f(x) (1.53)

s.t.

{
g(x) = 0

h(x) ≤ 0
,

g : Rn → Rk, h : Rn → Rl, let us look back at equation (1.52) and its counterpart (3) in

theorem 1.62. Ignoring the differentiation operation for a moment, what basically is done

in the subsequent considerations is that the constraints are integrated into the objective

function in form of weighted linear sums.
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Definition 1.64

Lx,λ,ζ = f(x) +
k∑
i=1

λigi(x) +
l∑

j=1

ζjhj(x) (1.54)

is called the Lagrangian associated with the optimization problem (1.53). The vectors λ

and ζ are, in this context, also called the dual variables associated with the optimization

problem. The minimum of Lx,λ,ζ over x ∈ D is called the dual function.

Theorem 1.65

The dual function associated with an optimization problem as above is concave even if the

optimization problem itself is not convex.

Proof. The dual function is the pointwise minimum of a set of affine functions in the dual

variables. Example (1.57) can be carried over to concavity with a nearly identical proof.

This is all we need.

Remark 1.66

Let us summarize: Solving the dual problems requires maximization of a concave function

(pointwise min/max) given convex constraints, which makes the optimization problem

convex.

Example 1.67

We will derive the dual form for the inequality constrained optimization problem

maximize
x∈D⊂Rn cTx (1.55)

s.t. Ax ≤ b.

We reformulate this as a minimization problem,

minimize
x∈D⊂Rn −cTx (1.56)

s.t. Ax ≤ b,

and minimize the problem’s Lagrangian to get

inf
x∈D⊂Rn

{−cTx+ ζT (Ax− b)} = inf
x∈D⊂Rn

{−c+ (AT ζ)Tx− ζT b}.

–•
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Before exploring some examples of constrained optimization problems, let us derive a mean-

ingful interpretation of the multipliers.

1.6.4 Interpretation of the multipliers

An important question immediately arising is the sensitivity of the solution to the multi-

pliers itself. How much will the latter deviate for (small) changes? The following consid-

erations will give an idea of the ’meaning’ of the Lagrangian multipliers and will directly

answer the question.

Without loss of generality, let us fix all but one constraints of an optimization problem with

equality constraints gi = ci, i = 1, . . . , k, while substituting the single remaining constraint

gι for some ι ∈ [1, . . . , k] by an ”unknown” parameter u. Now the optimal solution x∗

depends on u, which we make clear by writing x∗(u). Furthermore, following theorem

1.59, the objective function f and the constraints gi are evaluated with respect to the

(new) optimal solution, hence we have to consider f(x∗(u)), gi(x
∗(u)). As the constraints

must be met for any optimal solution, we get

gi(x
∗(u)) = ci, i = 1, . . . , k, i ̸= ι

and

gι(x
∗(u)) = u.

The chainrule is used to compute the derivatives of the objective function and the con-

straints with respect to u:

∂f(x∗(u))

∂u
= ∇f(x∗(u)) · ∂x

∗(u)

∂u
(1.57)

and

∂gi(x
∗(u))

∂u
= ∇gi(x∗(u)) · ∂x

∗(u)

∂u
=

1 i = ι

0 i ̸= ι
(1.58)

for i = 1, . . . , k. The first order condition yields

∇f(x∗) +
k∑
i=1

λi∇gi(x∗) = 0 ⇔ ∇f(x∗) = −
k∑
i=1

λi∇gi(x∗), (1.59)
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and substituting this into equation (1.57) and applying the results of (1.58) delivers

∂f(x∗)

∂u
= −∂x

∗(u)

∂u

k∑
i=1

λigi(x
∗(u)) = −∂x

∗(u)

∂u
λιgι(x

∗(u))

= −λι
(
gι(x

∗(u)) · ∂x
∗(u)

∂u

)
= −λι

The essence of this is that the value of the objective function (in the neighbourhood of an

optimal solution) is directly related to changes of the ith constraint, and the degree of this

sensitivity is measured by the associated Lagrangian multiplier λi.

1.6.5 Constrained optimization examples

Example 1.68 (Equality constraints)

Consider the problem of maximizing the function f : R2 → R, (x1, x2) 7→ (x1x2)
2 given the

equality constraint g : R2 → R, x21 + x22 − 1 = 0. Rewriting the latter to x21 + x22 = 1 we

can interpret this as finding optimal maximal solution on the boundary of the unit circle

S2. As this is the first example, we will describe all steps taken in details. First, note that

we are given one equality constraint and, following definition 1.59, thus have k = 1. By

definition of f , the dimension of the domain of f is n = 2. We thereby know that

(a) If Lagrangian multipliers satisfying equation (1.52) exist11, it must be exactly one

multiplier λ ∈ R for the single given constraint.

(b) It is clear that f, g ∈ C2, guaranteeing the differentiability conditions of both theorems

1.59 and 1.61.

(c) Given n, k we have to solve a system of n+k = 2+1 = 3 equations in three unknowns

(x1, x2, λ), once again assuming that λ exists.

Before solving the above mentioned optimization problem, we can draw further helpful

conclusions: As f is a continuous function defined on a compact subset S2 ⊂ R2 (the

overall domain D of the given optimization problem), f takes its maximum (and minimum)

in D. We can also exclude the cases xi = 0, i = 1, 2, as those are clearly not candidates

for maximal extremal points.

11As noted before, conclusions of the theorems may not hold when any of the preliminaries is not met. It
will become clear in example 1.70, that for instance rank(g) < k may imply that the (vector of) Lagrangian
multipliers satisfying equation (1.52) may not even exist.
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To start with, we determine the set of critical points of Lx,λ by solving ∇Lx,λ = 0. For

this task we compute

∇f =

(
2x1x

2
2

2x21x2

)
, ∇g =

(
−2x1

−2x2

)
.

As x1 = 0 ⇒ x2 ̸= 0 and x2 = 0 ⇒ x1 ̸= 0 (otherwise x21 + x22 = 0 ̸= 1 in contradiction

to the constraint!) we have rank(g) = 1. This ensures the existence of the Lagrangian

multiplier λ and our system of equations is hence given by

2x1x
2
2 − 2λx1 = 0 (1.60)

2x21x2 − 2λx2 = 0 (1.61)

1− x21 − x22 = 0. (1.62)

The first line can be simplified to x22 = λ, the second one to x21 = λ, which implies

λ = x21 = x22, or x1 = x2 = λ2. Due to the constraint we get x1 = x2 = 1
2
and along with

this λ =
√

1
2
= 1√

2
. Thus

(
1√
2
, 1√

2

)
is the only critical point being a potential candidate

for a maximal point. Now

f

(
1√
2
,
1√
2

)
=

1

4
> 0 = f(0, ·) = f(·, 0)

and D compact prove the critical point to be a maximum without even the necessity of

checking the second order conditions.

–•

The next example has more than one inequality constraint. However, we will not present

a solution, but set the main focus here on showing how the system of equations will look

like for the given problem. As the domain of the objective function is R3, we switch to

x− y − z – notation instead of using indices as in the previous sample.

Example 1.69 (Inequality constraints)

maximize
x,y,z∈R≥0

f : R3 → R, (x, y, z) 7→ xyz (1.63)

s.t. x+ y + z ≤ a ∈ R+.

In this formulation, the constraints x ≥ 0, y ≥ 0, z ≥ 0 and the (bounding) parameter
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a > 0 are implicitly given. We first rewrite the problem into standard form:

maximize
x,y,z∈R f : R3 → R, (x, y, z) 7→ xyz (1.64)

s.t.


x+ y + z − a ≤ 0

−x ≤ 0

−y ≤ 0

−z ≤ 0.

Having four constraints we are given the four one dimensional Kuhn-Tucker multipliers by

Lx,y,z,λi = xyz − λ1(x+ y + z − a) + λ2x+ λ3y + λ4z,

i = 1, 2, 3, 4 those are with partial derivatives

∂Lx,y,z,λi
∂x

= yz − λ1 + λ2,
∂Lx,y,z,λi

∂y
= xz − λ1 + λ3,

∂Lx,y,z,λi
∂z

= xy − λ1 + λ4.

Condition (2) of theorem 1.62 gives

λ1(x+ y + z − a) = 0, λ2x = 0, λ3y = 0, λ4z = 0. (1.65)

Finally, from (1) of the Kuhn-Tucker theorem that λi ≥ 0, i = 1, . . . , 4.

–•

As mentioned in the introduction to the example, we stop here for emphasizing something

of more importance than the solution. Equations (1.65) illustrate an interesting fact stem-

ming from condition (2) for the Kuhn-Tucker multipliers in theorem 1.62: The product of

any multiplier and its associated inequality constraint needs to be zero. If either of the two

multiplicants is not zero, the other one has to be. This is often refered to as complemen-

tary slackness, where slackness can be seen as a kind of relaxation of constraints. We

therefore can also say that, if either the constraint or its associated objective variable is

slack, the other cannot be. We close this susbection with an example showing that, under

violated conditions, the existence of multipliers is not even guaranteed:

Example 1.70 (Equality constraints: Violated rank condition)

Let f : R2 → R, f(x, y) = −y be the projection onto the second component and the

g(x, y) : y = x2 ⇔ g(x, y) = y − x2. We analyze the optimization problem
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maximize
(x,y)∈D f(x, y) (1.66)

s.t. y = x2.

First, x2 ≥ 0 implies y ≥ 0 and y = 0 ⇔ x = 0, thus (0, 0) is immediately recog-

nized as a (global and local) maximum. However, ∇g = (0, 0)T at (0, 0) and henceforth

rank(∇g(0, 0)) = 0 < 1. Moreover, ∀(x, y) ∈ R2 : ∇f = (0,−1)T , and we conclude

that there cannot exist any vector λ of Lagrangian multipliers satisfying the condition

∇f(x∗) +
∑k

i=1 λi∇gi(x∗) = (0, 0).

–•
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1.7 Support vector classification

Reproducing Kernel Methods

Support Vector Machines

Probability Output

Convex Optimization<

>
>

We give a brief summarization of the principle of using so-called support vectors. Starting

with two class problems, we proceed to multi class situations and introduce the idea of using

kernels as means of both a way of dealing with the case of not linearly separable classes

and using combinations of several kernels to handle data comprised of (inhomogeneous)

features of diverse possibly sources. This section is mostly based on [11] and [16].

1.7.1 The binary case

1.7.1.1 Hard-Margin classification

Support vector classification is a method to separate data by a decision function which is

optimal in the sense of generalization for unseen data: the margin – the distance of the

decision function to the closest point of both datasets – should be maximized to allow for

optimal classification especially in adjacent regions. As this formulation already suggests,

we are for now considering the case of (linearly) separable data.

Following definition (1.58) and the geometric interpretation of a hyperplane, it makes

sense to use, for any xi ∈ H, the orientation of ⟨w,xi⟩+ b as a decision criterion, which we

will denote by d(xi|w) = sgn (⟨w,xi⟩+ b). The result is a value yi (sgn (⟨w,xi⟩+ b)) = 1

for class labels yi ∈ {±1}, i = 1, . . . ,m. In other words, for ||w|| = 1, yid(xi|w) is the

distance of xi to the hyperplane and d(xi|w) classifies samples xi into either class 1 or −1.

The basic idea behind support vector classification is to maximize the margin from samples

to the hyperplane separating the classes, where the margin is the smallest distance of w to

any (training) sample. One can show that this is equivalent to minimizing ||w|| and leads
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to the constrained optimization problem

minimize
w∈H, b∈R

1

2
||w||2 (1.67)

s.t. yi (sgn (⟨w,xi⟩+ b)) ≥ 1, i = 1, . . . ,m ,

where – in this case – f0 =
1
2
||w||2 is the objective function to be minimized subject to the

given constraints12 and m the number of training samples. Forming the Lagrangian Dual

and its derivations w.r.t. b and w (with the aim of canceling them out) and substituting

those results back into the Lagrangian dual, setting y = (y1 · · · ym) we get the dual form

of the optimization problem

maximize
α∈Rm

m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαj ⟨xi,xj⟩ (1.68)

s.t.

{
α ≥ 0

⟨α,y⟩ = 0.

The vector inequalities α ≥ 0 and ζ ≥ 0 are to be understood elementwise – αi ≥ 0 and

ζi ≥ 0 for i = 1, . . . ,m – and the decision criterion given a (new) pattern x for the dual

form in this context becomes

d(x|w) = sgn

(
m∑
i=1

yiαi ⟨x,xi⟩+ b

)
. (1.69)

1.7.1.2 Soft-Margin classification

Hard-Margin classification lacks the ability of generalization especially for samples

near the separating hyperplane; the most widely used and as a standard accepted

improvement was suggested by [17]. They introduced slack variables ζi ≥ 1, i = 1, . . . ,m

– one for each sample – which relax the constraints and thus allow for a better gen-

eralization of the optimization problem. The decision criteria changes accordingly to

yid(xi|w) ≥ 1 − ζi, i = 1, . . . ,m. In this setting, training samples xi with slacks

0 < ζi < 1 are classified correctly even though not satisfying the maximum mar-

gin property. Data with ζi ≥ 1 is classified incorrectly by the (optimal) hyperplane.

Clearly, if the slack variables tend to zero, this converges towards the hard margin classifier.

12The reader might ask why 1 is used as the right side of the inequality in 1.7.1.1, whereas the hyperplane
is defined as {⟨w,x⟩+ b = 0 |x ∈ H}. In fact, any positive number would work, and this is simply a kind
of normalization.
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On the other hand they can always be chosen large enough to make the inequalities feasible,

and to prevent this from happening, the slack variables – together with a weight factor c

which serves as a trade-off between the generalization capability or number of misclassified

samples and the deviation of samples from the maximum margin – are used as a penalty

term in the objective function. The primal form is then given as

minimize
w∈H,ζ∈Rm,b∈R

1

2
||w||2 + c

m
⟨1, ζ⟩ (1.70)

s.t.

{
yi(⟨w,xi⟩+ b) ≥ 1− ζi, i = 1, . . . ,m

ζ ≥ 0
,

and dualization leads to the form

maximize
α∈Rm

m∑
i=1

αi −
1

2

m∑
i,j=1

yiyjαiαj ⟨xi,xj⟩ (1.71)

s.t.

{
⟨y,α⟩ = 0

0 ≤ α ≤ C
. ,

where C ∈ Rm is a (vector valued) boundary parameter. The αi are the Lagrangian

multipliers introduced for solving the optimization problem under the given constraints

and eliminating w, b and ζ via differentiation and substitution. In this form of the SVMs

we can substitute the inner product of the objective function by a reproducing kernel k,

and the new decision function becomes

d(x|w) =
m∑
i=1

αiyik(w,xi) + b = 0. (1.72)

Again, the sign of d(x|w) equals the label of the classification of x, which is unclassifiable

for d(x|w) = 0. The main reason for using kernels stems from the fact that the RKHS

determined by the reproducing kernel in general has a dimension different from that of the

original space. In the context of support vector classification this is of utmost importance,

as data which is not linearly separable in the original space can potentially be linearly

separable in the (new) RKHS. Figure 1.2 illustrates this effect.

1.7.2 Learning SV classifiers for large datasets

In addition to this standard method, that it solving the above described optimization

problem, further training methods have been developed, most of them focusing on the

problem of large training datasets. Though we deal with large training datasets in the
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Figure 1.2: The figure shows two classes that are interwoven and thus not linearly separable
in the two dimensional plane. Using an appropriate transform such as a reproducing kernel
k(·, ·), linear separability of the data, here by a two dimensional hyperplane which for the
sake of illustration appears three dimensional, can be achieved. In general the shapes of
such clusters in the image space changes with k, but for reasons of clarity we present them
basically unaltered.

herein addressed topics of phoneme classification and speech recognition, those methods

have not been part of our research so far. Nevertheless we wanted mention this issue here

and refer the interested reader to [16] for a detailed and great presentation of the topic.

1.7.3 Interpreting results and performing classification

Let us substantiate and state a little more precisely the aspect of what, after optimization,

the support vectors really are and how they serve for classifying samples. We remember

the constraints of optimization problem 1.7.1.1,

yi (sgn (⟨w,xi⟩+ b)) ≥ 1, i = 1, . . . ,m . (1.73)

Support Vectors are exactly those vectors xi satisfying the constraints. Being orthogonal

to the optimal separating hyperplane, they support it in a figurative sense. To see this, for
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euclidean metrics the distance from any training data x to the hyperplane is

|⟨w,x⟩+ b|
||w||

,

which remains unaltered when leaving out those training vectors in equation 1.73 that meet

the inequality only. For details, see [16], chapter 2.1.

1.7.4 Implementational aspects

Optimizing a support vector classifier as described above delivers a quadratic programming

optimization problem. Solving this näıve the way is in general infeasible due to the size of

most classification situations. Currently, most common SVM implementations are based

on Sequential Minimal Optimization (SMO), which was introduced by Platt in [18]. The

author relates his solution to both, a publication by Osuna ([19]) and the algorithmic

ideas of Bregman- and row-action methods ([20], [21]).

The first cited work splits the original optimization problem into smaller subproblems, the

other solve convex programs with linear constraints, reducing the number of constraints

to one per iteration step. Improvements to Platt’s algorithm are for instance suggested

by [22], overcoming the problems resulting from the use of a single adaptive threshold

β throughout the iterations, where the main problems lie in Platt’s ways of computing

and using β. For details, the reader is suggested to consult the mentioned works. As an

important consequence we note that, thanks to those concepts, large SVM problems can

now be addressed and managed computationally.

1.7.5 The multiclass case

When progressing to classification problems covering more then two classes, the question

of how to extend from binary to n-ary support vector classifiers arises naturally. Following

our intuition, one might approach the problem by simply extending the binary class to a

multiclass decision problem, modifying the optimization problem itself accordingly. The

result for K classes would thus be the quadratic program

minimize
wk∈H,ζk∈Rm,bk∈R,1≤k≤K

1

2

K∑
k=1

||wk||2 +
c

m

m∑
i=1

∑
k ̸=i

ζki (1.74)

s.t.

{
⟨wi,xi⟩+ bi ≥ ⟨wk,xi⟩+ bk + 2− ζki

ζk ≥ 0
.
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The drawback of this concept is, that the optimization has to consider all support vectors

simultaneously throughout its process. Not only does computation time needed for

problems with larger amounts of samples and classes grow considerably, but also does

the final set of support vectors in general tend to be very large. Thus, given the amount

of time and space necessary for the direct way, most situations require a different approach.

Well known methods for discriminative decisions are one-vs-all (often also called one

versus the rest) and one-vs-one (sometimes also referred to as a pairwise approach),

both of which can be applied within the support vector context. In the first case, K

hyperplanes are build that separate the individual classes – one at a time – from the

remaining, pooled ones. The vote will be for that decision function (or class) which returns

the highest value: given dk(·|wk), k = 1, . . . , K a (new) sample x will be classified into

class

argmaxKk=1dk(x|wk). (1.75)

When applying the latter rule, one set of support vectors for each of the possible unordered

tuples of classes is computed, resulting in K(K−1)
2

decision functions. The overall decision

is that of the maximum of the sum of positive decisions for one class.

Both methods have certain advantages and disadvantages and in general yield areas, where

a decision is not possible without further assumptions. While the number of decision func-

tions in the one-vs-one strategy grows large quickly (quadratic in K), the sets of training

samples is small compared to the one-vs-all setting. As a consequence, the number of

support vectors defining the final decision hyperplane of each binary problem is smaller

as well. In addition to that, collating the samples often leads to considerably imbalanced

decision systems. For detailed discussion of multiclass support vector classification, draw-

backs and possible solutions or workarounds of those approaches, the reader is referred to

the literature mentioned at the start of section 1.7, [11] and [16].
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1.8 Combining kernels for SVM-classification

In section 1.4.1 we illustrated how reproducing kernels can be constructed for instance

by mathematical operations to create new function spaces, and section 1.4.4 introduced

concepts for using reproducing kernel Hilbert spaces to address problems in areas of

classification such as of pattern recognition and data discrimination. In the context of

support vector classification, the diverse ways of construction (summation, composition,

using positive definit matrices, . . .) for different types of data have been successfully

implemented for and applied to various tasks. Learning with such kernels is frequently

referred to as mutiple kernel learning (MKL), and its motivation derives from the fact that

similarity of different kinds of data is often best represented by specific reproducing kernels

and their induced metrics. Reproducing kernel methods for feature vectors comprised of

heterogeneous information have to take the kernel aggregation into account and eventually

need to be modified. In this section we briefly review some MKL-concepts and their

alterations to the SVM-optimization problem.

A basic prerequisite is that the reproducing kernels live in the same function space. In other

words, they need to be defined on the same set – a necessary condition that we already

were confronted with when pointing out the application of the linear transform reproducing

kernel in section 1.5.1. Considering M reproducing kernels (or their respective Gramians)

kj ∈ Kn×n, j = 1, ...,M , we state the MKL problem as finding a (linear or convex)

combination
∑M

j=1 κjkj(·, ·), κj ≥ 0 optimal in the sense of data separation. To get a visual

impression of the impact of convex kernel combination on decision boundaries, we examine

the effect for a simple binary support vector classification task upon the two most frequent

phonemes in the TIMIT database, ae and ix. We trained a separating hyperplane on the

first two components of the feature vectors, chosen due to results of a principal component

analysis of the data. The images in table 1.8 illustrate the alterations of the decision

boundary for convex combinations of an exponential rbf kernel and a linear one:

k(x, z) = αkrbf (x, z) + (1− α)kl(x, z), α ∈ [0, 1].

The larger the parameter γ of the rbf kernel, the more the decision boundary fits the

training set (see [11] or [9]), resulting in absolute overfitting by learning each single sample

for high values. This is due to the basic nature of exponential kernels: As the dimension

of the corresponding reproducing Hilbert space is infinite, the hyperplane can adapt to

the training set, leading to bad generalization for unseen samples.
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The figure also points out the main qualities of the relation between the weight α and the

rbf-parameter γ:

1) It can clearly be seen that the linear kernel ”linearizes” the decision boundary when

its weight is increased, thereby lessening the overfitting effect of the exponential

kernel.

2) The figure reflects a ”global” versus ”local” characteristic. It depicts the synergy of

the combinatorial approach in general and unveils the reasons why it is attractive for

research on a larger scale.

For a good choice of the parameters, the balance between global accuracy and local

generalization capability needs to guarantee good characteristics not only considering

separation but also in the sense of classifying unseen samples.

Section 3 shows results of experiments that compare single kernel to two convex combined

reproducing kernels, performed on a subset of the TIMIT phoneme dataset. Its main

purpose is to evaluate the quality of both the single/multiple kernel learning and the

MFCC (auto)correlation (see section 2.5.2) versus the common MFCC features and to

conclude which setup to use for approaching continuous speech recognition.

1.8.1 Multiple kernel learning

The most common concept for optimizing kernel combinations within the SVM context

follows the strategy of optimizing coefficients of a weighted, convex or linear sums of the

kernels in question such, that the margin of the resulting kernel is optimal in the common

SVM-sense.

In [23], the authors derive a solution for learning such an optimal linear combination.

Given I data samples (xi, yi), 1 ≤ i ≤ I, where xi are elements of some feature space and

yi ∈ {+1,−1} class labels, we seek to optimize the linear combination

kM =
M∑
j=1

κjkj, kj ∈ Rn×n (1.76)

of M reproducing kernels kj and weighting coefficients κj ∈ R+ constraint to

trace{
∑M

j=1 κjkj} = c, c ∈ R+ constant. For this problem, the authors formulate the

following quadratic programming optimization problem:
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α = 0.95 α = 0.975 α = 1
γ
=

0
.0
1

γ
=

1
γ
=

11

Table 1.1: Visualization of the decision boundaries for the training data of two phonemes
from TIMIT database, ae (red) and ix (blue). The table of figures depicts the combined
effects of the kernel parameter γ of the exponential rbf kernel and the weight parameter α
of the convex kernel combination.

minimize
α∈Rn,θ∈R θ − 2αT1n (1.77)

s.t.

{
0 ≤ α ≤ C,αTy = 0,

αTdiag(y)kjdiag(y)α ≤ trace{kj}
c

θ, j ∈ {1, . . . ,M}.

Here y is the collocate label vector and diag(y) the diagonal matrix formed by y. The

coefficients κj from equation 1.76 are computed as the Lagrangian multipliers given the M

constraints

αTdiag(y)kjdiag(y)α ≤ trace{kj}
c

θ.
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It should be pointed out that this approach actually learns a compound kernel matrix by

parametrization of given subkernels and can be cast into a convex semidefinite optimization

problem (SDP) by dualization. By further constraining the kernel weights κj to be non-

negative, normalizing the kernel matrices kj to 1 and considering conic kernel combination,

the SDP reduces to a quadratically constrained quadratic program (QCDP), which is

subject of research in [24]. The final formulation derived in their work is

minimize
α∈Rn,t∈R 2αT1n − ct (1.78)

s.t.

{
1
I
αTdiag(y)kjdiag(y)α ≤ t,

αTy = 0, 0 ≤ α ≤ C,

where I is again the number of samples and t ∈ R+ bounds the terms

αTdiag(y)kjdiag(y)α.

The authors of [25] extend those concepts and propose a slightly modified problem

formulation, the dual of which is equivalent to (1.77). Casting this into a convex form

and using a special kind of regularization (as the problem itself is not differentiable), the

work furthermore provides an SMO-like approach for solving the optimization problem.

Nonetheless, the MKL-problem in all those approaches boils down to a grid parameter

search and has cubic complexity with respect to the amount of samples. Due to this fact

as well as both, the size of the final combined kernel matrix km and the complexity of the

optimization problem, those techniques are intractable when dealing with large number of

kernels and especially for large training sets.

Diego et al. ([26]) suggested a kind of averaging function taking into account distance

information of different kernels on given datasets. For two kernels, they proposed to define

a new kernel

k1,2 =
1

2
(k1 + k2) + f(k1 − k2). (1.79)

As before, y is the compound vector of all labels. One specialization for f is

f(k1, k2) = τdiag(y) |k1 − k2| diag(y),

which is tantamount to common minimum and maximum functions

min,max(x, y) =
1

2
(x+ y)∓ 1

2
|x− z| .
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For samples i, j of different classes we have yiyj = −1, and the new kernel equals the

minimum min (k1(i, j), k2(i, j)). For identical classes the function delivers yiyj = 1 and

henceforth produces a maximum-like choice. τ is an additional weighting factor and

influences the final decision boundary; further choices of f are discussed in the article as

well as the extension to three or more kernels. This approach however does not address

the problem of really optimizing the margin with respect to the kernel combination,

and especially for several kernels and heterogeneous data it has to be assumed that the

approach will not adequately represent the data metrics and separate/ classify well. The

results presented in the publication give reason to this judgment.

In [27], the authors propose two ideas. The first one optimizes an MKL-problem using

an interclass score which is the ratio of the total within-class standard deviation in the

direction between the class means to the distance between the class means,

FSM(k) =
σ+ + σ−∣∣∣∣ϕk+ − ϕk−

∣∣∣∣ .
σ+ and σ− are the standard deviations of the positive and negative class, ϕk+ and ϕk− the

centers in the feature space. The new problem unveils itself as

minimize
κj

FSM(
M∑
j=1

κjkj) (1.80)

s.t.
M∑
j=1

κj = 1, κj ∈ R+

It has quadratic runtime complexity and the FSM-ratio is easily and quickly computed.

The second approach builds on choosing a subset of ”important” kernels from the set of all

kernels in use. The weights are used in a convex combination and chosen proportionally

to a quality estimation from a 10 fold cross validation, applying the kernels one by one to

the given task.

Based on the comparison to a threshold13 δ, the authors decide whether to keep or to reject

the kernel in question. Setting

13The authors do not give any information about how they achieved the value of the threshold δ.
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κi =
FSM(ki)−δ∑M

j=1 FSM(kj)−Mδ
FSM(ki) > δ

κi = 0 otherwise,
(1.81)

the new proportionally weighted multiple kernel is defined as

kpwmk =
M∑
j=1

κjkj. (1.82)
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1.9 Probabilistic output for support vector classifiers

Reproducing Kernel Methods

Support Vector Machines

Probability Output

>
>

Evaluating samples by support vector classifiers produces vectors or scalars according to

the target space of the underlying decision function d(x|w) such as given for instance in

equations (1.72), (1.69) and (1.75). The signature of the decision function’s result for a

given input vector x serves as a final classification criteria, see section 1.7 and subsequent

subsections.

Many structures and algorithms however are based on probabilistic data rather than on

deterministic values computed by a decision function. We will see that this is also true for

Hidden Markov Models (HMMs), which play an important role in speech recognition as

well as in other areas of research and will be revisited in section 2.3. SVMs on the other

hand neither deliver any kind of probabilistic output, nor do they in general distinguish

any kind of states within nonstatic or (non)stationary processes14.

In this chapter we present concepts of generating probabilistic output given the result of

such d(x|w) with the aim of using those as probabilities within HMM classification. Fo-

cussing on the binary case, section 1.9.1 introduces an algorithm developed by Platt ([28]),

making use of a sigmoidal function in the neighbourhood of the SVM’s (linear) hyperplane

to serve as a probability estimator. The authors of [29] improve this approach by both

changing the optimization method to guarantee convergence and eliminating certain nu-

merical cancellation problems leading to instabilities within Platt’s algorithm. Following

this, the chapter closes with section 1.9.2, which reviews the methods presented in [30],

14As mentioned before, there are certain kernel types like HMM-kernels developed to address this prob-
lem. Standard numeric kernels such as those used in this work do however not include any information
about nonstatic, nonstationary or state-transitional aspects of the data. This is the main reason and mo-
tivation for introducing the correlation features in section 2.5. Due to their way of creation, they include
a certain amount of inter-timeframe and phoneme-length related information.
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which take the mentioned approach one step further to estimation of SVM-based proba-

bilistic output in multiclass classification environments.

1.9.1 Probabilistic output for SVMs using a sigmoid function

Again, let xi, i = 1, . . . , N enumerate the trainingset, x be an arbitrary vector in the classi-

fication input space (including training-, validation- and testset), y, yi ∈ {+1,−1} be class

labels and N+, N− denote the number of training samples of the respective classes. Platt’s

idea is to approximate posterior probabilities based on a sigmoid probability function

Pa,b(d(x|w)) =
1

1 + exp(a · d(x|w) + b)
≈ p(y = +1|x), (1.83)

using the results of the SVM’s decision function d(·|w). Writing pi = Pa,b(d(xi|w)), the

parameters a, b are computed by minimizing the negative log-likelihood via a gradient

descent method in order to solve the minimization problem

minimize
a,b∈R −

N∑
i=1

[ti log(pi) + (1− ti) log(1− pi)] , (1.84)

where

ti =


N++1
N++2

yi = +1

1
N−+2

yi = −1
, i = 1, . . . , N.

He furthermore suggests two methods to prevent (or to keep as small as possible)

the distribution bias of the decision functions evaluated on the training set parameter

estimation in the context of his algorithm. The first one splits the training data 70%

to 30% into two sets of vectors. The larger set is used for SVM-training whereas the

smaller one serves for estimation of the probability function’s parameters a, b or even

for further kernel parameter optimization and a follow-up retraining of the SVM afterwards.

Platt favors a three-fold crossvalidation method. Splitting the training data into three

sets, the classifiers are trained on all possible tuples of permutation, the evaluation being

performed on the remaining respective third set. The union of those evaluations serve

for parameter estimation of the sigmoid function. While this method is about 1.5 times

slower ([28], page 6) than the first one, the amount of data used for parameter estimation

is greater and thus the overall variance estimate smaller. As described in the experiments

section 3.3, we follow both bias suggestion in our work, splitting the training set 70%
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to 30% for SVM training and parameter estimation and performing training applying

leave-one-out cross validation strategy. However, we do not use the smaller dataset for

any additional kernel or SVM-parameter optimization.

In [29] it is pointed out that Platt’s implementation basically equals an unconstrained

optimization problem where the stepsize of the gradient descent in each iterative step is

deduced and used directly. The authors elude that this can lead to convergence problems

and modify the optimization method to implicitly control the stepsize. The fact that the

Hessian matrix representing the optimization process and used in the gradient direction

computation is positive semidefinite motivates their decision for a Newton method

with backtracking line search. At the cost of some additional complexity, this method

guarantees convergence.

Another problem in Platt’s formulation is the numerical problem invoked by the cancel-

lation when calculating 1 − 1
1+exp(a·d(xi|w)+b)

= 1 − pi. The authors suggest to rewrite the

summand of the objective function in problem (1.84) as

[ti log(pi) + (1− ti) log(1− pi)] (1.85)

= (ti − 1)(a · d(xi|w) + b) + log (1 + exp(a · d(xi|w) + b)) (1.86)

= ti(a · d(xiw) + b) + log (1 + exp(−a · d(xi|w)− b)) , (1.87)

where the problematic term 1 − pi does not occur any longer. Furthermore, pi can be

replaced by the equivalent and numerically more accurate expression

exp(a · d(xi|w) + b)

1 + exp(a · d(xi|w) + b)
.

1.9.2 Probabilistic output for SVM based multiclass systems

The goal of the algorithm presented in [30] is the estimation of probabilities

pi = P (y = i|x)

for an (unseen) given sample x belonging to class i, i = 1, . . . ,M . Given (estimates of)

pairwise class probabilities

ri,j = P (y = i|x, y = i or j),
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the authors discuss various existing and introduce modifications leading to two new

methods, the second of which we use in this work. The pairwise class probabilities

suggested are those presented in the work of [29], which also is implemented for the

experiments conducted for this thesis.

The proposed algorithm is based on the idea of minimizing the Kullback-Leibler distance

M∑
i=1

M∑
j ̸=i,j=1

(Mi +Mj)ri,j log
ri,j
µi,j

between the approximations ri,j and the real class probabilities µi,j =
pi

pi+pj
. Mi andMj are

the numbers of training samples of classes i, j respectively. This approach was introduced

in [31], and after partial derivation with respect to the class probabilities pi, i = 1, . . . ,M ,

the problem can be reformulated as finding a point such that

M∑
i=1

M∑
j ̸=i,j=1

(Mi +Mj)ri,j =
M∑
i=1

M∑
j ̸=i,j=1

(Mi +Mj)µi,j, (1.88)

constrained to
∑M

i=1 pi = 1 and pi > 0. An iterative gradient algorithm is proposed, where

in each iteration step only a single component i is updated while others remain unchanged.

The sequence of points generated in this algorithm has strictly decreasing Kullback-Leibler

distance but does not guarantee the convergence to a point satisfying equation (1.88), see

also [32]. Under the premise of rather balanced class sizes15, Mi +Mj = 2/M , denoting

the solution as a vector p of multi-class probability estimates, Wu et al prove that solving

the optimization problem

minimize
p

M∑
i=1

M∑
j ̸=i,j=1

(rj,ipi − ri,jpj)
2 (1.89)

s.t.
M∑
i=1

pi = 1

guarantees a unique solution in the sense of equation (1.88). The classifier’s decision

function in this case is as simple as

argmaxi(pi). (1.90)

15See section 2.6 for a short comment concerning this problem.
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The proposed new algorithm boils down to solving a system of linear equations using

Gaussian elimination or, with small modifications to meet the preliminarity of positive

definiteness, Cholesky factorization – for further details, the reader is referred to the above

mentioned publications.
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Chapter 2 – Speech Features and Phoneme
Classification

Speech & ASR Features & Classification Mathematics & Theory

When performing speech synthesis, speech recognition or phoneme classification it is

indispensable to have knowledge about the basics of the nature of speech production.

The reason for this is simply that being aware of certain characteristics offers both a

starting point and paths to follow when analyzing speech. This knowledge stems from

both mathematical models of the glottal system or the human auditory system and from

research in psycho-acoustic aspects of the reception of sound, pitch and volume.

This chapter begins by offering a brief overview over the concepts in the field of speech

such as acoustic data modeling and extraction of characteristic features. The presented

material is detailed enough to include all material necessary to understand the foundations

of the ideas of our work without going to deep. The first section revisits facts and

characteristics of speech resulting from mathematical models simulating the physical

aspects of the glottal and vocal systems of human beings. The results had an immediate

impact on the way today’s features for speech recognition and phoneme classification were

developed and are used.

The first section briefly illustrates certain base aspects when modeling natural, human

speech and illuminates certain aspects of its production. Characteristics, such as short

time stationarity, that determine or influence concepts described in subsequent sections,

thereby building their foundations, are deduced.

Section 2.2 is dedicated to the description of one of those features, Mel-Frequency

Cepstrum Coefficients (MFCCs). They also serve as a base for the new kind of

features developed in this work and above that are widely used in areas of research

not related to speech recognition and alike. Based on a filter bank addressing both

characteristics of the human vocal tract as described in section 2.1 and psycho-acoustic
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aspects of human sound perception, they aim at catching the nature of speech produc-

tion and recognition, or – within contexts different from speech recognition or similar

topics – more general that of short time quasi stationary processes and their interpretation.

Following this, Hidden Markov Models are introduced in section 2.3. They offer a

reasonable way of representing many of the characteristics derived in section 2.1 and

are common and widely used in the field of speech processing as well as in other areas

that involve modeling state-like behaviour of some kind. The subsequent section shortly

reviews some fundamental basics of acoustical and language models utilized in automatic

speech recognition systems. This is only done to an extent sufficient for our research,

which aims at the integration of specifically computed probability values from the SME

setup into such a system, allowing to compare the results to the common MFCC variant.

We proceed with section 2.5, which details the main concepts and train of thoughts. Re-

vealing the main motivation for the path this thesis pursues, the first subsection prepares

the reader for the succeeding section by clarifying the pivotal keynote and its applica-

tion leading to correlation data. Consequently, the chapter concludes with its final and

main part. Starting with the substitution of the ∆ and ∆∆ parts of MFCC vectors with

autocorrelation features and linearization of the latter by correlation with specific fix, rep-

resentative vectors, the section unifies the distinct layers of the correlation feature itself, a

classifier topology built (both topics covered in section 2.5.3) in the light of a tristate topol-

ogy and a specific reproducing kernel (section 1.5) deduced from the correlation operation

as well into one, thereby putting together the individual pieces.
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2.1 The nature of speech

This subsection is basically a short description of the derivations given in [33] describing

the modeling of the vocal tract and the consequences for speech representation under

certain simplifying assumptions on the model.

The book’s model follows concepts given by Sondhi [34] and Portnoff [35]. Here, the

vocal tract is roughly separated into the glottal source, the oral cavity and the acoustic

impedance resulting from the lips of the speaker. The oral cavity is assumed to be a

lossless acoustic tube, the cross-sectional areas of which vary slowly both in time and

space, referenced by t, x respectively. Further restricting the model to wave propagation in

one direction, pressure p(x, t) and velocity u(x, t) of the speech produced can be described

by two differential equations,

− δp
δx

=
δu

δt

ϱ

A(x, t)
− δu

δx
=
δp

δt

A(x, t)

ϱc2
, (2.1)

where ϱ reflects the equilibrium density1 of air in the tube and c is the corresponding sound

velocity. Differentiation of the equations 2.1 leads to the Webster equation

δ2p

δx2
+
δp

δx

δA

δx

1

A(x, t)
. (2.2)

Based on this, Levinson (cf. [33]) shows that a (discrete) sinusoidal steady-state transfer

function can be derived for the speech signal in the acoustic tube, which even includes

the effects of thermal, viscous and wall losses under certain constraints such as boundary

conditions for the mouth model.

As a function of time, the speech p(t) signal stemming from the pressure function is a solu-

tion of the Webster equation. A detailed analysis, given in the above mentioned resource,

reveals, that p(t) in general is non-stationary due to the fact that A(x, t) is a continuously

time-varying function including random influences and change. However, according to the

model, the variation of A(x, t) is slow with respect to p(t) – that is,
∣∣ δA
δt

∣∣≪ ∣∣ δp
δt

∣∣. As a result
of this, p(t) is approximately piecewise stationary and allows for speech to be regarded and

treated as a sequence of short-time stationary chunks.

1The (air)pressure inside the tube is the ratio of the surface force acting onto the air and the tube area.
In this simplified model it decomposes into two components: the equilibrium density component, ϱ, which
is a constant, and a pressure disturbance varying in time and space, implicitly given by p(x, t).
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2.2 MFCC features

In the 1980s, Mel-Frequency Cepstrum Coefficient features have been developed

akin to both psycho-acoustic and physiologic reception characteristics of the human ear.

The filterbank used for their computation partitions the frequency band into several

subbands. Let k = 1, . . . , K denote the filters forming the filter bank, the distances of

the subbands’ centers, ck, are decreasing at a logarithmic scale with decreasing frequency;

accordingly, the same holds for the bandwidths. The motivation for this is, that the

human ear perceives sound, frequencies and dynamic due to a logarithmic scaling.

Figure 2.1 depicts the filter bank, which is defined as

Melk[f ] =



0 f < ck−1

f−ck−1

ck−ck−1
ck−1 ≤ f ≤ ck

ck+1−f
ck+1−ck

ck ≤ f ≤ ck+1

0 k > ck+1

. (2.3)

The filters have a triangular structure, where the concept of overlapping segments adheres

to relations and correlations of adjacent frequency subbands.

Figure 2.1: The unnormalized MEL filterbank with lower and upper filter frequencies
of 1331

3
and 6855.4976 Hz, respectively, showing frequency (Hz, horizontal axis) versus

amplitude (vertical axis). Further parameters are the number of filters (40), the FFT-
size (256) and the sampling rate of 16kHz. The (overlapping) triangles cover the different
frequency subbands.

Given the N -point discrete Fourier transform X[f ] =
∑N−1

n=0 x[n] of a discrete (for instance

sampled) time signal x[n]e
−2πiωnf

N , the MFC coefficients are computed by first calculating
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the log-energy

E[k] = ln
N−1∑
n=0

Melk[f ] |X[k]|2

and afterwards applying a K-point discrete cosine transform (DCT)

C[n] = pK

K∑
k=0

S[k] cos

(
πn(2k + 1)

2K

)
,

that decorrelates the resulting coefficients among the frequency subbands of each vector.

pK is a normalization factor and frequently either set to 1 or, more often, chosen to be√
2
K
. In the latter case, the coefficient C[0] is additionally scaled by 1√

2
to guarantee the

orthogonality of the transform.

Both the definition of the DCT and its various equivalent forms of representation and

the analysis of some of its characteristics are given in more details for instance in [36].

MFCCs, similar features or such based on them are used in different areas of research

but have been proven to be successful especially for speech recognition and phoneme

classification tasks. The interested reader is also referred to [37], [33] or [12].

2.3 Markov Models

Hidden Markov Models (HMMs) basically are stochastic finite state machines used for

modeling certain aspects of stochastic sequences. They are especially suitable when non

stationary processes are comprised of piecewise (quasi) stationary signals, as HMMs rep-

resent both the stationary situation and transforms or transitions between the latter by

probabilities. The meaning of the word hidden will become clear after a short review of

the theory behind HMMs and their definition. We restrict introduction of Hidden Markov

Models in this section (and work) to the discrete value case, as this suffices for our purposes.

HMMs can be considered as a special case of both so called Observable Operator Mod-

els (OOM) and Markov chains. OOMs were introduced by Jäger (cf. [38]). In contrast

to HMMs, they do not present a model based on hidden and emission states where output

probabilities are generated, but describe processes as a sequence of (linear) operators. The

most distinctive difference is that OOMs consider the observed variable directly, see also

remark 2.1 for clarification. The training algorithm shows some advantages over that of

HMMs and the class of OOMs is more encompassing. For more details, the interested

reader should consider [38] or [39].
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We restrain from explaining the training and estimation process of computing the models

from data, as it is not essential for our research; the interested can consult [37] or [33].

2.3.1 Markov chains

Markov chains are special cases of stochastic processes, a family of random sequences where

the sequences are pairwise stochastically independent and their states depend on past states

only. In a Markov chain, the probability of a state depends solely on the preceding state2.

For a sequence Q1, · · · , QT of random variables over a finite and discrete output alphabet

Ω = {o1, . . . , oM}, the joint probability can be computed using Bayes’ Rule,

P (Q1, . . . , QT ) = P (Q1)
T∏
t=2

P (Qt|Q1, . . . , Qt−1). (2.4)

Applying the Markov assumption and restricting the dependency to the preceding point

of time only provides the first the first oder Markov chain, which simplifies 2.4 to

P (Q1, . . . , QT ) = P (Q1)
T∏
t=2

P (Qt|Qt−1). (2.5)

Statistical properties of the process modeled by a Markov chain can be visualized and

formalized in a graphical way as well as in a state machine like notation. Given a (finite)

number of possible states, at each point of time the Markov chain has to be in a well defined

state where transition probabilities (including auto-transitions) define the statistical

behaviour. Figure 2.2 is an example of a graphical representation, where ellipses depict

the states and arrows the transition probabilities. This graph shows a specific left to

right situation without skips and backwards transitions. As can be seen from the figure,

probabilities aii reflect chances for loops and hence serve as representers for moments where

the sound is (quasi) static. More elaborate models also include transitions |j − i| > 1

and j < i and even combinations, which constitute skips of states and backward jumps,

respectively.

2.3.2 Hidden Markov Models

HMMs are a special, extended kind of Markov chains and include a variety of variables.

In the context of speech recognition we can, as already done without being mentioned for

2In some literature you will instead find the equivalent definition, that in Markov chains the probability
of all future states depend on none but the current state, i.e. that they are memoryless.
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s1 s2 s3

a11 a22 a33

a12 a23

Figure 2.2: Graphical representation of a Markov chain. The ellipses s1, s2, s3 represent
the (three) states the process modeled by this graph can take and aij are transition prob-
abilities.

Markov chains above, restrict the models to finite and discrete sets as well as discrete prob-

ability distributions. Let us start by looking at the Finite State Machine based definition

of Hidden Markov Models. A HMM is a tuple λ = {S,O,Π, A,B} where

• A set S = {s1, s2, . . . , sN} of states (n = 1, . . . , N).

• A set O = {o1, o2, . . . , oM}, the output alphabet.

• A vector Π = (π1, π2, . . . , πn) of initial probabilities.

• A matrix A =


a11 · · · aN1

...
. . .

...

a1N · · · aNN

 of transition probabilities.

• A matrix B =


b11 · · · bN1

...
. . .

...

b1M · · · bNM

 of emission probabilities.

For each output om ∈ O,m ∈ [1, . . . ,M ] the respective entry in the matrix equals the

probability that, given state sn, om is emitted. For the matrix B, the probabilities

are therefore given by bnm = P (w = om|v = sn), 1 ≤ n ≤ N , 1 ≤ t ≤ T .

This model is defined for a state sequence v1, . . . , vT and an associated sequence w1, . . . , wT

of outputs. Figure 2.3 gives a graphical impression of the formal definition. The notation

equals that of the theoretical section 1.5 or section 3.4, which describes initial experiments.

The 1 × M vector bl, l ∈ {s,m, e} is itself time dependent, which becomes clear when

looking at the definition of the matrix B and the probabilities its entries represent.

We note that in general transition probabilities correspond naturally to the adjacency

matrices of the directly (connected) acyclic graphs (DAG) of the automaton / Markov
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ss sm se

ass amm aee

asm ame

v v v
bebmbs

Figure 2.3: Graphical representation of a typical HMM modeling a spoken phoneme, illus-
trating the specific situation in our work. The depicted HMM realizes a standard tristate
model, where the (empty) start and end state are omitted for reasons fo clarity. The foun-
dation are three states denoted by indices s,m, e. Roughly spoken, they represent start,
middle and end positions in a phoneme. The figure elucidates furthermore that the state
of a variable only depends on the most recent predecessor. The indices of the transitions
emphasize the change of states from s to m and m to e.

model given. Further probabilities related to actions such as state skips or backward

jumps (not part of the model shown in figure 2.3) have zero probability.

For phoneme classification tasks, each phoneme is partitioned into subphonemes. Usually,

the partition consists of three states, which is the reason why this is known as a tristate

scheme. The states are often called begin, middle and end – or start instead of begin.

In the same manner, words are segmented into phonemes when processing continuous

speech. Here, sequences of three phonemes have been established as well, and this kind of

modeling is commonly known as the triphone scheme. Observations which is analyzed

segmentwise and for recognition/ classification the HMM for which the probability of

generating this observation is highest is chosen.

Remark 2.1

To close this section, let us clarify what the hidden part is. The name stems upon

the underlying process: By definition, each state can emit each of the output

symbols and each such output has a certain probability given by the matrix B.

What we can observe are the results, the emissions. What we can not observe

is the process itself, that is the sequence of states that generated the output

sequence. Hence the word hidden.
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2.4 modeling speech and language

This section very briefly describes the two kinds of models used in common speech rec-

ognizers, the acoustic and the language model. The acoustic model is also shortly viewed

in the general context of pattern analysis to clarify important concepts and denote the

respective, relevant aspects in the specific task of speech recognition.

2.4.1 Acoustic modeling

The Hidden Markov Model described in the previous section is a very effective way of

modeling substantial basic building blocks of multistage patterns. Figure 2.3 illustrates

this for speech, where the components to be trained are phonemes. The latter are rather

short and can very adequately be represented and modeled3 by three to five states.

Depending on the task given and especially on the amount of different words (or in general

the amount of patterns build from the basic blocks) to be recognized, the objects trained

can also be subphonemes. The SME structure and feature partitioning in this context

can be seen as a transition from modeling phonemes to classification on exactly this level

of detail. Alternatively, one can train recognizers on words themselves, which is useful

and delivers high recognition rates for small vocabularies. The very good book on speech

recognition by Huang ([37]) covers this topic on pages 427 to 429. Also the references

cited within this book are worth to be studied.

In order to guarantee an effective and stable classification or recognition, a chosen model

needs to meet certain criteria, and the design and topology of the model greatly contribute

to the overall quality. In general, for pattern analysis those requirements4 are

• Computational efficiency: For both training and classification the amount of used

resources such as processing time and space should be reasonable and scalable w.r.t.

a potentially increasing amount of data such as new training classes.

• Accuracy and robustness: The model must guarantee accurate classification, i.e.

pattern variation within and between classes must be taken into account and should

disturb classification to the lowest possible degree.

3This statement holds for languages where the total amount of phonemes is in the range of 30 to 50,
such as German, English or French, see [37], section 9.4.1, pp. 427 to 429 and therein cited references.

4See [9], pages 12 and 13. Our short summary given here deviates in some aspects from his elucidation,
however.



2.4 modeling speech and language 75

• Generalizability and stability: New, unseen patterns with potential deviations

must be recognized as expected.

For speech recognition and phoneme classification, the flexibility of an acoustic model needs

to encompass for instance the deviations originating from the manifold differences in the

ways of pronunciation, from varying lengths, spectral development or other characteristics.

In practice, for either of the approaches (word, phoneme or subphoneme based recognizer)

the acoustic contextual information of the observed object is extremely relevant. For

phonemes, this is even more sensitive than for words, as single (sub)phonemes are for

instance frequently completely swallowed or merge into each other. HMMs are very often

the model of choice, as they can handle both the temporary stationarity as well as stochastic

influences by uncertainties such as those mentioned above. Common modifications and

alterations are for instance the possibility of skipping states, and the reader can get detailed

information on variations of HMMs in the above mentioned book of Huang ([37]).

2.4.2 The N-gram language model

Similar to the acoustic topology, language specific information can help decoding utter-

ances. Most common are so called N-gram models, where the probability of a word given

N − 1 predecessors is crucial for the decoder when deciding for a word within an utter-

ance. Looking at the previous section, an N -gram design is a kind of a simple version of

a context sensitive model representing potential word combinations at a very basic level.

The probabilities are computed easily by counting occurrence frequencies: Considering a

Trigram model (N = 3), let o = (wt−2, wt−1, wt) be an observation at time t comprised of

the sequence w = wt−2wt−1wt of the word in question and its two predecessors. Denoting

by w :t−1 the subsequence restricted to wt−2, wt−1 and by |w| the number of occurrences

of a sequence, the probability of a word wt given two predecessors wt−2, wt−1 is time inde-

pendent and computed by

p(wt|wt−2, wt−1) =
|w|

|w :t−1|
. (2.6)

While an N -gram language model therefore does not need any further grammatical in-

formation it becomes clear that a sufficiently large amount of training utterances with

representative word sequences is necessary. Also, the choice of N clearly influences the

degree of freedom a grammar allows for. A detailed discussion of this topic can be found

for instance in [37], chapter 11, and is not part of this work.
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2.4.3 Perplexity

The quality of a language model can be evaluated by performing a complete recognition

run for a given testset. There is however also some intrinsic quality measure depending

on the complexity of a language model (given a testset) that can be deduced without the

necessity of a complete recognition run. It is based on the entropy given the language

model and is called perplexity. Informally, it tells us how many choices in average the

recognizer will have to take into account for each word.

More formally, consider a dictionary W of words w, v ∈ W and an associated probability

distribution p such that p(w|v) denotes the probability that the word w is a direct successor

of word v and where p(w, v) is the overall probability that, given any position in a text,

word v is followed by word w. The latter can be computed by simply counting the number

of pairs v, w and dividing by all different word pairings. The (conditional) entropy of the

word distribution given the context v as the previous word is then defined as

Hp(w, v) = −
∑
w,v∈W

p(w, v) log2 p(w|v). (2.7)

Then the perplexity is defined as

Π(Hp) = 2Hp(w,v). (2.8)

The exponent can be interpreted as the averaged state entropy and equations (2.7) and

(2.8) furthermore show that the entropy is the (base 2) logarithm of the perplexity. The

definition can be extended naturally to sequences of word, see for instance [40], chapter 7.

Depending on the size of the dictionary, the complexity and representativity of a learning

set and the similarity of test and training data, the perplexity may vary from small values

such as ten or even less, to large ones up to 1000. In addition to [40], the interested reader

may want to review [37], chapter 3.4, pp. 121 to 123 and chapter 11.3, pp. 554 to 556 or

[41], pp. 317 to 318 for more details.

As a final note we remark that the distribution p and probabilities p(w, v) and p(w|v) are
clearly determined by the set of training sentences and along with it heavily depend the

on the choice of the language mode – hence so does the perplexity.
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2.5 MFCC correlation features

In this section we introduce new features based on usual MFCC-vectors. Subsection 2.5.2

deals with auto correlation features and motivates their usage, whereas the subsequent

subsection 2.5.3 modifies the approach and proposes cross-correlation features instead as

well as a new family of SVM classifiers, where the structure of the latter reflects both the

partitioning of phonemes into subphoneme and the (HMM)-states, see section 2.3. The

motivation for the latter section is manifold:

After depicting the links between speech, stationarity and (auto)correlation, as a first

application classifications using auto-correlation features show improvements over common

MFCC-∆−∆∆ setups. Section 3.1 illustrates the results, contributing to further research

interest with correlation features in general. Second, cross-correlation with a fixed vector

y is a linear operation in y and allows integration of the operation itself into the SVM’s

reproducing kernel by applying the theory of section 1.5. Third, being developed in direct

connection to the way the cross-correlation is realized, the SVM-based classification method

in the spirit of subphoneme state representation as modeled for example by HMMs is a first

step from pure phoneme classification towards speech recognition, using hitherto unknown,

new features and methods.

2.5.1 Stationarity and correlation

From a statistical standpoint, each spoken utterance can be seen as a realization of an

underlying stochastic process generating each utterance. Over short periods of time, say 5

to 12 ms, such frames of speech are approximately wide sense or weakly stationary or

covariance stationary, see for instance [37] and [42]. The base idea of regarding speech

signals as sections of successive weak stationarity blending into each other as potential

non-stationary segments is a keystone of this thesis: The autocorrelation (ac) and later on

cross correlation (cc) features developed originate from this concept.

Concerning the latter, different stationary segments are assumed to represent different

phonemes and different time states within them. (Potentially non stationary) transitions

between them signal phonetic changes and should thus drive features into a different

direction, as new speech frames and changing states differ in the lag dependencies

determined by the degree of stationarity. Combined, this should help us telling different

phonemes and changes between them apart. Let us summarize these milestones:
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The conceptual and theoretic foundations and main assumptions for the develop-

ment and research of correlation features for phoneme classification and speech

recognition are...

• ... that the time independency and lag dependency of first and second order

moments of a quasi short time weak stationarity signal ...

• ... that the variation of the lag dependencies ...

• ... that different speech frames and transitions between them vary in the

degree of stationarity, and that this differences...

are reflected to a certain, sound degree by (auto)correlation. The aim of this

section is to clarify, why correlation features are justified by the assumption of

weak short time stationarity of speech, see section 2.1.

Using ac for autocorrelation and cc for cross correlation, concerning the development of

the new features we depict the sequence of milestones in our research process thus evolves as

degree of stationarity linearization

MFCC features −→ MFCC ac features −→ cc features

Following [43], let us briefly review weak stationarity. Given a realization of a stochastic

process in form of a random variable Yt, weak stationarity means that the first (mean)

and second (auto covariance) statistical moments are independent of the point of time and

influenced only by the interval separating any observations, that is

E[Yt] = µ (2.9)

E[(Yt − µ)(Yt−j − µ)] = γj = CovY (t, t− j) (2.10)

∀t, k, where µ and γj are the mean and autocovariance – both independent of t – and E[·]
is the expectation. As we can see, the second moment – that is the autocovariance – is

basically the covariance of Yt with its dilated (or lagged) value Yt−j.
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By definition, the autocorrelation

γ(t1, t2) =
CovY (t1, t2)

σYt1 · σYt2
(2.11)

inherits certain characteristics from the autocovariance, amongst them most importantly

that it depends only on the lag j = t2 − t1. The first stage of experiments elaborated in

the next section (2.5.2) gives details of the computation of features using autocorrelation

of neighboured speech frames and MFCC features computed from those.

For the subsequent linearization it is important to ensure that statistically this method is

well defined and meaningful. With E[·] and Cov{}(·, ·) not depending on t, the same holds

for the correlation of two random variables Xt, Yt:

Corr(Xt, Yt) =
CovX,Y (t, t)

σXt · σYt
. (2.12)

2.5.2 Autocorrelation features

While different components of MFCC feature vectors (and thus the different frequency

subbands they represented) are decorrelated via a discrete cosine transform in the process

of their computation, correlation remains within sequences of the same component. In our

auto-correlation approach, correlation between the same components of adjacent standard

MFCC-vectors of length L replace the widely used ∆ and ∆∆, resulting in features of

total length L + 3L = 4L (details are given below). For SVM training and classification,

both parts – the standard MFCC-vectors and the correlation vectors – of the compound

features are convex combined via reproducing kernels. As the experiments are intended

to be comparable to standard speech recognition experiments, we keep the number of

features in a similar range by correlating only three directly adjacent MFCC features

of appropriate length L – concerning this, the reader is also suggested to consult the

conclusions in section 3.7.

Formalizing all this, let ml
n−1,m

l
n,m

l
n+1,m

l
n+2, n ∈ N be a sequence of adjacent MFCC

vectors, where l = 1, . . . , L references a component of the vectors and the subindex n the

speech frame the MFCC features were computed from. Using× to indicate cross correlation

and forming two vectors, each of length three, of the same components of adjacent vectors,

we get L cross correlation vectors m̃l by letting
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m̃l =
(
ml
n−1,m

l
n,m

l
n+1

)
×
(
ml
n,m

l
n+1,m

l
n+2

)
.

Normalizing and stacking the m̃l finalizes the computation of the autocorrelation feature

vector
(
m̃1, . . . , m̃L

)
. Figure 2.4 illustrates the computation graphically.

Figure 2.4: Computing autocorrelation features from MFCC feature vectors of a phoneme
at frame n. To keep things clear, the values of the MFCC vector components are represented
directly by their indices n− 1, . . . , n+ 2.

2.5.3 Linearization and a phoneme state like approach

In analogy to the concept of partitioning phonemes into smaller subsections, so called

subphonemes, we propose new features in the spirit of both a split of the features akin to

subphonemes and correlation information in MFCC vectors of the same frequency band

but adjacent frames. A new approach is also taken by not only using the proposed new

features but also applying the concept of the subphoneme like structure to a family of

support vector classifiers. In contrast to the autocorrelation operation described above,

given a fixed vector x of finite length, correlation with any finite vector y is a transform

linear in y. Hence, as a further implication, we can apply the theory presented in section

1.5, which allows us to integrate the feature computation into that of the kernel.

Before explaining the details of the individual steps, let us look at figure 2.5, which

summarizes the interactions of the diverse elements in a less detailed way than figure 1

from the introduction. Instead, it addresses main foci and illustrates influences and flow

paths in a less abstract manner, making the subsequent explanations clearer.

To start with, we again consider MFCC-vectors without ∆ and ∆∆. The simulation of a

subphoneme kind of representation includes several steps:
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Figure 2.5: Overview of the thesis and important relations between the diverse parts.

(1) – SME-Partitioning of observations/ samples

Each phoneme sample, from now on called observation and denoted by o, is parti-

tioned into three subsections. The overall length s, that is the number s of MFCC-

vectors (or frames) the sample is comprised of, determines the split: Processing the

feature vectors in their original order, we divide the data into start- and end section

(S and E respectively) of length s ÷ 3 and each and a middle section (M) of length

(s÷ 3)+ (s mod 3). The choice for this split into parts of nearly equal length is not

based on any kind of optimization or made due to results of comparisons to other

partitioning schemes; it is used because this approach is new, and we are aiming at

getting initial results by following a baseline that is constructed, where possible, in a

simple manner. We assume that a more sophisticated strategy will provide substan-

tial improvements, see the prospects given in section 3.7. As an example, consider

a phoneme sample comprised of 13 MFCC vectors. Then the start section covers

the first four vectors, the next five determine the middle section and the final four

vectors comprise the end section.

(2) – Computing subphoneme center vectors

For each phoneme class p in the set of phonemes we create three corresponding subsets

by partitioning all members (observations) of the class and grouping the respective

vectors of their S, M and E-sections determined by the scheme described above.

Next, for each class the component wise averages of the feature vectors of each of

the three subsets are computed and called center vectors. For the sake of clarity,

the following notation does not include the class information p. Thus, we denote

the three centers of a phoneme class c by cs, cm and ce, respectively and will also
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later restrict mathematical formalization to one class. This, however, does not pose

a problem, as the computations themselves do not vary amongst different classes.

Figure 2.6 illustrates both partitioning and computation of the center vectors.

Figure 2.6: Partitioning and clustering of N samples of class ae.

(3) – Structuring observations based on the SME-partition

Using the partitioning scheme of (1), we introduce another time alignment, by group-

ing directly neighboured vectors based on their position within the sequence repre-

senting a phoneme. For a more detailed explication, let us focus on a single obser-

vation o. We consider a sequence of three adjacent MFCC-frames at each time step

and a frame shift of one feature vector between two consecutive steps. Processing the

complete sample, an observation comprised of for instance M = 13 MFCC-vectors

results inM−2 = 11 sequences ω1, . . . , ωM−2 of three vectors each, as for instance ω1

includes vectors one to three, ω2 vectors two to four and so forth. Again for reasons

of clarity, for now we discard the index and just write ω. From steps (1) and (2),

each of the three vectors of any ω is an element of either (class specific) partition S,

M or E, depending on its position within the observation.

For every sequence of three vectors generated as described above, this ”windowing”

leads to one of the following possible combinations: SME, SSS, SSM, SMM, MMM,

MME, MEE, EEE – for each phoneme, these sets will form our new classes! Fig-

ure 2.8 illustrates the process graphically. Note that in this work we only consider

observations o of length ≥ 4. Thus, the case of an SME group, which occurs for

observations o of length 3 (thus o = ω), will not be of further interest for us.

The seven groups constructed can be interpreted as sets of vectors representing a

rather specific time- (or position-) based subphoneme state of the phoneme being

observed.
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(4) – Creating subclasses from the original phoneme classes

The process described in step (3) determines which three-vector subsequence ω of an

observation o contributes to which of the new classes. We want to point out that,

depending on the length of the classes’ observations, o will potentially not contribute

to all of the seven classes. The alignment and class setup described so far results in

a structure which from now on will be called SME-structure.

(5) – Linearization utilizing the SME-structure

The center vectors ( see step (2) ) serve as representative anchors and foundations for

the individual classes. In addition, we remember from section 2.5 that, for computing

the auto-correlation features from an observation o, two adjacent sequences ωn, ωn+1

of three MFCC-frames each were convoluted. This operation is now replaced by

cross correlation of two vectors, one of which is a three vector sequence as constructed

above. The second vector is a fix vector determined by the (class specific) group SME,

SSS, . . ., EEE the sequence belongs to, and each of the groups itself contributes to a

time/position specific combination Cω of center vectors. The details will be explained

right away, but we want to emphasize the key idea before:

The important steps in this process are the coupling of the concept of the center vec-

tors with the idea of the SME-structure and along with that the how to of combining

the center vectors to get Cω: If we simply used a stacked vector
(
cs, cm, ce

)T
and

computed its correlation with a given ω, the within-phoneme position information –

intrinsic within the SME partition now – would remain disregarded. Our notation

Cω already points out that the correlation vector is indeed not only related to the

class by being formed utilizing the fixed center vector. It also ought to depend on –

and thus should include information on – the current observation’s sequence of three

vectors ω. It thus is a twofold context dependent feature.

The next step therefore also involves within-phoneme position information from the

new class structure for the construction of Cω: Given a phoneme p, let ω be an

observation and assume we have formed its associated partitions {SSS, SSM, SMM,

MMM, MME, MEE, EEE}p . With l denoting the size of the MFCC vectors of

p and ωs, ωm, ωe ∈ {S,M,E} denoting position5 specific states, we define Cω =(
clωs, c

l
ωm, c

l
ωe

)
o
, given the current observation o.

The following example illustrates and clarifies the construction of the center vector

combination Cω:

5The position in this context is referring to the complete sequence described in (3), from which the
subsequences of three vectors each are formed
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Let ω ∈ SSM (remember this is a partition and class!) and let clωs and clωm have

values from component l of the cluster center vector cs representing the two S-state

phases, whereas clωe is set to the respective component of cm standing for the M -

state phase. Now the cross correlation of the combined center vectors with the three

MFCC vectors at positions n, . . . , n+ 2 is performed, graphically depicted by figure

2.7.

Figure 2.7: Component wise computation of the cross correlation features by three class
and state dependent center vectors and three frames. The ×-symbol denotes the correlation
operation.

It is clear that this cross correlation is indeed performed using data in a way similar to

the that of the computation of the autocorrelation described in section 2.5.2, where the

combined center vectors now replace one of the two adjacent sequences of three MFCC

features vectors. Summing all this up, given the sequence ω = ωl1, ω
l
2, ω

l
3, the linear cross-

correlation mapping equals

S
(
clωs, c

l
ωm, c

l
ωe

)
×
(
ωl1, ω

l
2, ω

l
3

)
. (2.13)

Rewriting cross correlation with Cω (equation 2.13) in matrix form omitting the component

index l for the sake of clarity, we have

T =


0 0 cωs

0 cωs cωm

cωs cωm cωe

cωm cωe 0

cωe 0 0

 .
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Figure 2.8: Example of a phoneme sample comprised of 13 MFCC-vectors/ frames and its
split into SME-based parts. Two vector sequences are used for the classes SSS and EEE,
three for MMM and one each for SSM, SMM, MME and MEE. In a consistent manner,
the cumulative center vectors Cω for the linear transforms necessary to compute the new
cross-correlation features from the sequences are formed based on the same classes the
respective sequences are categorized into.

In the light of the derivation given in section 1.5.1, we substitute T into equation (1.40)

and finally get

T ∗T =

 c2ωs + c2ωm + c2ωe cωscωm + cωmcωe cωscωe

cωscωm + cωmcωe c2ωs + c2ωm + c2ωe cωscωm + cωmcωe

cωscωe cωscωm + cωmcωe c2ωs + c2ωm + c2ωe

 ,

where T ∗T is positive definite and hence kT ∗T a reproducing kernel if

trace(T ∗T ) = (clωs)
2
+ (clωm)

2
+ (clωe)

2 ̸= 0

is satisfied for all cωs, cωm and cωe.

2.5.4 The bigger picture

Let us briefly get back to section 2.5.1. First and without proof we note some important

facts esp. about non stationary signals and correlation. For details, the interested reader

can consult for instance [44] or [45] and [46], where some special cases of non stationary

signals (random walks) are considered. The key in their elucidations, which are combined

here, lies in the application of both the continuous mapping theorem and the (functional)

central limit theorem to the closed integral form of the statistical moments. Both theorems

guarantee that certain characteristics of continuous functions are preserved when taking the

limit even if their arguments are random processes. In the light of such random processes,

the main point of interest is, how ensemble correlation compares to sample correlation, as

we need to be able to analyze and characterize realizations of such a process.
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For reasons of clarity we focus on the simple case of time series or signals in R or C,
which is without much effort generalized to multidimensional or function spaces. In the

case of (weak) stationary series or signals, all or at least some moments such as variance,

expectation etc. converge to constant values, which implies their time invariance and

carries over to (sample) cross correlation. For non stationary signals, the situation is a

little more complicated. Here, statistical moments and along with them covariance and

correlation are varying with time. Under the above mentioned restrictions, it can be

shown that correlation for random processes is still mathematically well defined. The

sample correlation, the measure we are interested in, is approximated by taking the limit

of the distribution that is the foundation of the random walk, and it turns out to basically

converge towards a random variable in contrast to the stationary process.

This at least is mathematically meaningful, as random variables take values (from their

domain) with a certain probability determined by the underlying probability distribution.

In practice this translates to getting values from correlation that are based on this

distribution (i.e. on the product space given by the product of the underlying probability

space with itself). Hence for both stationary and non stationary signals, (sample)

correlation is – in the sense of limits – well defined. However, in the latter case it is clear

that the result does not measure linear dependency and is thereby not interpretable in the

way it is for stationary signals.

What does this difference between stationary and non stationary cross correlation imply

for features based on them? Basically, the impact of the non stationarity is, as we have

seen above, that no matter how much (training) data we have, the outcome of cross

correlation is different each and every time. Clearly, if we had to deal with non stationary

data, cross correlation would be of no use for our classification system, as we do not match

data to distributions or distribution parameters, which are the foundations of the random

variables. As mentioned in previous chapters, we therefore rely on the short time weak

stationarity of speech. This guarantees the time invariance of the statistical moments and

keeps features comparable and classifiable, as the moments vary to different degrees for

distinct phonemes and speech frames.

One of the main reasons for the elaboration given in section 2.5.1 is hence that it

makes clear why we use short speech frames in the first place, whereas here we try to

underline why stationary and non stationary cases need to be interpreted differently. Non

stationarity within speech originates for instance from the flexibility of the vocal tract,
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which accounts for continuous changes of parameters such as timbre, air pressure and

volume, but also from the different sounds that influence those parameters in particular.

The stationarity is strongest when there are fewest changes, and our partitioning approach

helps separating unequal speech sections: sections, where statistical moments change.

Altogether, this emphasizes the importance of our choice to structure data further by

partitioning phonemes already on feature level. In other words, it is supposed to reflect

the mentioned difference between stationary and non stationary segments and transitions.

2.6 The problem of imbalanced training class sizes

We want to close this chapter with a very quick discussion addressing the problem of

training SVMs on classes varying strongly in size. Our multi class SVM training is –

following the theory given in section 1.9.2 – performed under the assumption of rather

balanced class sizes. Previous sections in this chapter have made clear that this premise

is clearly violated considering for instance the phoneme sets aa ao,. . .,z and their SME

subclasses. As mentioned before, in the latter case in particular longer phonemes produce

for instance far more members for the MMM class than for SSS or EEE classes.

Even though the class imbalance problem has direct consequences for the experiments

conducted and described in chapter 3, where a reduction to fewer SME classes is carried

out for the sake of comparability to common speech recognition systems, we do not deal

with this issue here any further. Nevertheless, we want to mention a few publications

tackling the problem.

Whereas the authors of [47] focus on the SVM case, most articles are more encompassing.

In [48] the authors include concepts for methods such as random forests or other ensemble

classifiers in their research and reviews. A profound, detailed study is given in [49]. In

[50] the authors review still more publications showing research results. They give a quick

overview and compare differences and common issues in the reviewed approaches.

We close this chapter with a short remark on one potential effect of imbalanced training

class sizes for SVMs: The optimal parameter(s) for the kernel of choice are clearly data

dependent. As will be described in chapter 3, our parameter for the exponential kernel

was chosen due to a rough grid search6 on a small subset of all phonemes on which multi

6As an alternative one can also numerically solve the problem of minimizing for instance the leave-one-
out error. In practice this anyway needs further fine tuning; optimizing does, however, give the general



88 2.6 The problem of imbalanced training class sizes

class SVMs were trained. In an optimal evaluation, each binary classifier would have its

own parameter. For slightly imbalanced class sizes one could for instance use (fix) size

ratios for the different binary classifiers and try optimizing the (average) penalty over a

separate testset. For greater imbalances, this becomes increasingly problematic: For the

optimization it is necessary to compute the derivative of a loss function, for instance when

determining the penalty. This derivative however is in general no longer continuous and the

optimal kernel parameter(s) tend to be very small. As a result of that, some SV classifiers

might converge towards ridge regression models thus posing a new burden.

direction.
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In the first two sections we present results from two sets of multiclass classification results

representing the initial correlation feature and SME-struct experiments. Section 3.1 refers

to the auto-correlation features introduced in section 2.5.2, whereas part 3.2 illustrates the

results of the first cross-correlation experiments described in section 2.5.3. The features

were extracted via HTK3.3 with a framesize of 25ms and an overlap of 10ms. Training and

test for both experiments were performed on the eleven most frequent phonemes aa, ae,

ay, eh, ey, ih, ix, iy, n, s, z of the TIMIT training dataset. For this, we modified svmlight

6.10 ([51]) to allow weighted multiple kernel training and classification. If not mentioned

otherwise, svmlight-parameters remained unchanged. Also, parameters for SVMs trained

on the new vectors were not optimized but chosen due to results from partially rough grid

tests. Evaluating on finer grids and, in the case of kernel combination, solving the convex

kernel combination SVM optimization problem will very likely improve results further.
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Kernel combinations for SVM phoneme classification
We conducted experiments aiming at the observation of the effect of kernel combinations,

using specific pairs of reproducing kernels k1, k2 on a fraction of the subset comprised

of eleven phonemes shown in the introduction to this chapter. The reason for restricting

the experiments to a fraction of this subset – to be exact half of the amount of training

samples of each class – lies in the fact that in addition to a grid search on the parameters of

the individual kernel each such search needs to be performed within another search for an

optimization of the convex combination parameter α where kΣ = αk1+(1−α)k2, α ∈]0, 1[.
Due to this complexity, we decided for this computationally feasible setup.

3.1 Autocorrelation Features

The first stage consisted of comparing several single- and two kernel classification results

using both common MFCC−∆−∆∆ and MFCC- auto correlation features ( cf. to section

2.5.2 and figure 2.4 on pages 79 and 80 ). The comparison includes

(1) no kernel combination, one single rbf kernel krbf for the complete vector comprised

of MFCC and autocorrelation data .

(2) one rbf kernel krbf and one linear kernel kl for MFCC−∆−∆∆ features,

(3) one rbf kernel krbf and one polynomial kernel kp of degree 2 for MFCC−∆ − ∆∆

features,

(4) two rbf kernels krbf1, krbf2 used for the 13 MFCC and the ∆ − ∆∆ components,

respectively,

(5) two rbf kernels krbf1, krbf2 used for the 13 MFCC and the autocorrelation components,

respectively,

(6) MFCC−∆−∆∆ features using one rbf kernel krbf .

Given the rbf parameters γ1,2 and the polynomial coefficients c0, . . . , c3 for

kp(x) =
∑3

i=0 cix
i we let α = 0.05, 0.10, . . . , 0.85, 0.90, 0.91, 0.92, ..., 0.99; the out-

come is summarized by Table 3.1.

The table shows the common MFCC−∆−∆∆ features (item (6)) followed by classification

using one rbf kernel for the MFCC values plus a linear kernel (item (2)), a polynomial

kernel (item (3)) and a second rbf kernel (item (4)). The second best result was achieved

by rbf kernel combinations of MFCC plus autocorrelation features (item (5)) and the best
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phoneme aa ae ay eh ey ih ix iy n s z avg.

mfcc39 38.7 73.4 63.9 64.2 65.8 94.1 25.2 22.9 44.8 12.4 88.4 53.98

mfcc13, kl 38.4 73.2 64.0 63.9 65.4 94.0 25.2 22.7 44.6 12.1 88.3 53.80
mfcc13, kp 38.1 72.8 64.2 63.7 65.0 93.7 25.0 22.4 44.2 10.7 88.1 53.45
mfcc13, krbf 37.1 71.7 66.2 63.4 64.7 92.9 24.7 22.4 43.9 9.9 84.4 52.85

mfcc13,ac Σ 32.6 66.8 70.1 61.2 64.2 89.9 26.1 22.7 42.3 5.8 77.9 50.87
mfcc13,ac 32.4 67.7 66.2 61.4 64.7 88.0 24.4 25.3 41.3 7.0 76.7 50.46

Table 3.1: Results of classification error rates for two setups, from top (worse overall
recognition rate) to bottom (best overall recognition rate).

by a single kernel for the same vector (item (1)). The relative improvement gain of this

compared to the top table entry is 6.98%.

For class ix, classification abates a little when switching from ordinary MFCC vectors

to the autocorrelation features. However, when using kernel combination, the error

rate decreases noticeably again! The ay phoneme is recognized less accurately, whereas

confusions between s and z improve remarkably when using MFCC-autocorrelation instead

of MFCC−∆ − ∆∆ features. Overall recognition gain illustrated by the decreasing

recognition rates for MFCC autocorrelation features is evident.

To mention some parameters: The best result following the grid search for the autocorrela-

tion kernel combination setup was achieved for α = 0.92 and γ1 = 0.001 and γ2 = 0.015. In

all cases, the best α weight was between 0.96 and 0.99 with an average of 0.9625. This gives

reasons for interpretation as follows: The second kernel most times seems to prevent a cer-

tain amount of overfitting, thus leading to a better generalization. Markable improvements

seem to call for kernels designed for the specific task given, such as the autocorrelation

features. In that case the weight becomes significantly smaller. All in all due to these

results, the remaining experiments of this thesis were conducted with a single kernel only.

3.2 Crosscorrelation Features and SME-structure

The MFCC-correlation features extend over three frames, thereby rendering comparison to

single-frame MFCC-features improper due to the difference in the amount of information.

For this reason we consider 3-vector sequences of standard 13-dimensional MFCC-features

(sMfcc) without ∆ and ∆∆, resulting in comparable feature vectors of the same dimension

as standard MFCC vectors with 13 coefficients plus ∆ and ∆∆ . The initial experiments,

performed on the reduced set of 11 specific phonemes1 (see table below), target at getting

1The subset was chosen due to several criteria: It should include phonemes similar to each other as well
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an impression of the quality of the new features and the new structural approach. For the

SVM we use a single exponential kernel, where the γ-parameter is again selected due to

a rough grid search and set to 0.0001 for the sMfcc-SVMs and to 0.00001 for those based

on SME-SVMs, setting SME weights to wHT
= wH = 0.5.

Table 3.2 shows the pooled results of the detailed, individual confusion tables given in

appendix A.1. It illustrates the strong increase in the recognition rates and points out in

particular, that different phases of phonemes are subject to partially large classification

result differences. For phoneme z for instance, the confusion in the last four states drops

remarkably compared to states SSS, SSM and SMM . The final state, EEE, is worst.

This makes sense when considering that this is mostly noise or is ’swallowed’ or shadowed

by the subsequent phoneme/ sound already.

sMfcc SSS SSM SMM MMM MME MEE EEE avg.
aa 69.26 73.68 87.72 91.58 94.41 96.01 96.05 91.54 90.14
ae 59.79 92.27 82.38 81.30 92.61 78.67 77.13 85.69 84.29
ay 52.22 80.83 83.48 91.08 96.35 90.05 75.56 79.22 85.22
eh 44.22 59.34 86.23 89.54 89.27 89.64 86.74 55.95 79.53
ey 56.39 74.42 78.52 78.40 88.70 81.21 82.22 87.56 81.58
ih 37.82 70.90 73.73 68.64 69.53 69.91 79.87 87.48 74.29
ix 47.63 41.58 80.14 92.15 82.63 94.99 87.80 7.37 69.52
iy 77.44 95.04 95.97 95.49 95.89 94.84 94.10 86.89 94.03
n 88.63 95.71 97.72 98.29 97.38 98.16 97.12 88.10 96.07
s 88.43 97.82 96.71 95.08 96.11 91.95 91.94 99.35 95.57
z 42.50 74.81 82.19 73.04 42.62 60.33 55.69 12.91 57.37
avg . 60.39 82.50

Table 3.2: Average recognition rates of SME-based classification compared to sMfcc fea-
tures. Even phonemes like ih and ix that are hard to tell apart and often merged in
experimental setups ([52], e.g.) are separated relatively well. While the state columns
as well as the avg. column give an impression of the within class wise recognition gains,
the clean column shows the real improvements after having tested all samples against all
SME classes and applied majority voting. Following the latter, the overall relative recog-
nition gain is approximately 36.61%, where each phoneme of the testset was classified by
all pairwise SVMs of all states and the majority of votes was taken as the final result.

as completely different ones, vocals and consonants. Furthermore, both large and rather small amounts of
training data must be in the subset, so that it as well as possible represents the complete set it was taken
from.
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3.3 SME probability classification

The feature extraction, svmlight and HTK setups equal those given in the previous

section. For computing the probabilities, the training set is split into two distinct sets,

where 70% are used for training of the SVMs while the remaining 30% serve as data for

the estimation of the parameters a, b of the sigmoid function. Again, the SME weights are

set to wH = wHT
= 0.5. Training of the pairwise support vector classifiers within svmlight

is done using leave-one-out cross validation to additionally reduce any biases originating

from the training data as much as possible.

We trained 55 models in a one-vs-one setup and illustrate the recognition rates in table 3.3.

Comparing the results to GMM-classification on standard MFCC-vectors using diagonal

covariance matrices and 16 Gaussian mixtures, one can already see the recognition boost

when sequence features are considered. When using correlation features and applying the

SME-concept, it can clearly be seen that the probability estimates are reasonable and even

offer a noticeable recognition improvement.

SVM Prob SVM SVM GMM 16
70 70 100 sMFCC 100 MFCC

aa 90.03 88.80 90.40 69.26 65.89
ae 84.17 85.17 86.08 59.79 49.81
ay 85.11 87.46 87.60 52.22 49.94
eh 79.43 77.59 82.69 44.22 37.46
ey 81.47 83.02 85.37 56.39 48.61
ih 74.19 74.85 78.38 37.82 30.00
ix 69.31 70.55 73.38 47.63 37.59
iy 93.92 94.79 95.68 77.44 71.50
n 95.87 96.31 96.28 88.63 82.42
s 95.52 94.11 95.66 88.43 70.35
z 52.97 63.44 63.35 42.50 59.93
avg . 82.00 83.28 84.95 60.39 54.94

Table 3.3: The first two columns show the rates of SME-feature based SVM-classification
and that of the second multiclass classification method described in [30], using the decision
function 1.90. For reasons of easier comparison, columns three and four summarize the
results form the experiments of the previous sections. sMFCC represents results for the
sequence-MFCC vectors used for reasons of a fair evaluation as described in section 3.2.
The last column shows the results of a GMM-training and -classification using 16 Gaussian
mixtures and ordinary 39-dimensional MFCC-vectors including ∆ and ∆∆. All entries are
recognition rates averaged over the seven states.

The detailed SME-confusion tables for this experiment are given in appendix A.2.
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3.4 From SME features to continuous speech

Advancing from phoneme classification to speech recognition, we first of all have to consider

the complete set of phonemes. Following [53], we reduced the amount of classes by merging

similar phonemes of the complete TIMIT data set. Figure 3.4 shows the final set of

classes. As one can see, in contrast to the cited work we did not include any stops in our

experiments.

aa ao ae ah ax aw ay b
ch d dh dx eh el l

em m en n eng ng er ey f
g hv ih ix iy jh k
ow oy p r s sh zh t
th uh uw ux v w y z

Table 3.4: Final set of phonemes used for the SVM-probability experiment. Stops are not
considered.

Dealing with continuous speech, several decisions have to be made about both the

process of training and the setup of the final recognizer. While focusing on important

characteristics of the SME-concept, we also want to keep things comparable to standard

methods. This is done by adopting a certain level of common consensus: For our inaugural

experiments this amounts to being as close as possible to a standard tristate setup for

individual monophones.

Let us recall that one starting point for progressing from results derived from deterministic

classifications to posterior probabilities was, to use multiclass SVM probability estimates

as direct values for a standard Viterby decoder. The individual steps based on this premise,

given the SME setup, are now explained in detail.

(i) In a first step, the up to seven (or even eight, including the in this work left out

case of the three-frame state SME, which occurs for short training or test samples)

states are reduced to three. They are to serve as the usual tristate representations of

phonemes within HMMs. The primal decision in this context is how to combine or

reduce the SME states appropriately in a manner such that the emerging topology

resembles the common and frequently used tristate acoustic model using a three

state start, middle and end partitioning. Let us have a quick look at the origin of

this major problem.
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Within imbalanced phoneme class sizes across the SME states:

As already mentioned in section 2.5.3, statement (4), not all of the states are nec-

essarily represented to an adequate degree by each class. Consider, for instance,

a phoneme sample comprised of five speechframes. The partitioning presented in

section 2.5.3 and figure 2.8 in this case has one S and E-subframe each and three

M-subframes. It therefore only contributes to state classes SMM, MMM and MME.

Phonemes b, dx and g are examples of such classes, where many states are underrep-

resented, see table 3.5. In general, from statements (1) and (4) in section 2.5.3 we

deduce that due to the broad variance in the distribution of phoneme lengths across

the classes, the amount of data for different states – for instance the overall amount

of data for states SSS, MMM, EEE compared to that of states SSM, SMM, MME,

MEE – varies severely by construction of the SME-partitioning described in section

2.5.3.

No matter how it is done, any approach reducing or merging partitions cancels out

one of the most substantial foundations of the SME-concept and characteristics the

underlying features to a certain degree: Both are motivated by the transitions within

a phoneme and the correlation along with this, and some amount of information

stemming upon this concept, most prominent especially in the associated mixture- or

transition-states SSM, ..., MEE and computed by correlation with the center vector

combination ( see again section 2.5.3 ), is lost.

Summarized,

(a) the number of samples of different states within the classes themselves...

(b) the number of samples of the same state for different phonemes...

...are subject to strong variance.

(ii) The 3 · M ·(M−1)
2

pairwise classifiers for the new groups of states as well as their SVM-

probabilities have to be computed for all phonemes.

(iii) As we are aiming at multiclass SVM probability estimations, the cross-correlation

of an observation with all cumulative, observation specific class center vectors Cm
ω

(section 2.5.3) have to computed via the linear transform matrices Tms , Tmm and

Tme comprised of the respective center vectors next. This delivers the sought cross-

correlation features. Afterwards, we compute all 3 · M(M−1)
2

decision values of the

latter, that is evaluate the feature for all SVMs of all classes and their three states

chosen by step (i).
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With continuous speech recognition being the final step of our experiments, at each

step of its analysis the decoder needs probability information about all states and all

phonemes. Given an observation ω and classes m = 1, . . . ,M , this information is the

probability for each class and state given the sample, where we have to keep in mind

that the states representing the start-, middle and end period within the decoder are

class dependent according to step (i).

(iv) Denoting the class dependent states with sim, i = 1, . . . , 3, we use the results of

steps (ii) and (iii) to compute the prior probabilities p̃ = p(ω|m, sim) for each of the

3 ·M decision values and, using Bayes’ Rule, to get the sought posterior probabilities

p = p(m, sim|ω), where p is a vector of size M itself. However, it contains far

more components than necessary: The posteriors were computed from the correlation

features. Being determined themselves by the transform using the cumulative class

center vectors, they already intrinsically include information on prior class decision

emerging from the SVM classifiers.

As a consequence, the probability vector p is composed of M − 1 redundant

probabilities derived from unsuitable class centers. Those are the Cm̃
ω where

m ̸= m̃. Omitting the above mentioned components and keeping only those where

m = m̃ equates to using the specific components where the cumulative center

vector coincides with the prior class. The latter comprise the final vector used for

the decoding, which is composed of 3·M posterior probability values and is of the form

p(m = 1, s1m=1|ω)
...

p(m =M, s1m=M |ω)
p(m = 1, s2m=1|ω)

...

p(m =M, s2m=M |ω)
p(m = 1, s3m=1|ω)

...

p(m =M, s3m=M |ω)



.

In the light of (i), table 3.5 shows the numbers of samples of each of the phonemes’ original

SME states.
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Remark 3.1

Taking into account the effects of (i), for the experiments on continuous speech

recognition utilizing the SME structures, we decided on pooling SSS, SSM, SMM,

MMM, MME and MEE, EEE and thereby trading better size balance for feature

similarity across states. It is clear that the way of partitioning the original data

and the way of merging or reducing states are directly connected and that the

recognition rates will depend strongly on that choice. For this reason, section 3.6

evaluates the effect of one of these aspects, the pooling of the states and further

degradation resulting from that specific information reduction.

To this effect, the SVMs are trained and the probabilities computed on the

combined training data with three center vector equaling the component wise

average of the former individual classes of each merged state, respectively.
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SME SSS SSM SMM MMM MME MEE EEE
aa,ao 14 6801 3564 3664 10313 3664 3564 6801

ae 1 4502 1981 1995 6501 1995 1981 4502
ah,ax 537 1669 2701 4409 4705 4409 2701 1669

aw 0 2135 697 697 2851 697 697 2135
ay 0 4902 1740 1750 6656 1750 1740 4902
b 223 1 4 47 13 47 4 1
ch 4 472 668 734 1135 734 668 472
d 383 12 98 358 133 358 98 12

dh 496 51 338 989 512 989 338 51
dx 768 0 12 335 65 335 12 0
eh 18 2432 2638 2850 5073 2850 2638 2432
el,l 298 1339 2923 4289 4450 4289 2923 1339

em,m 200 735 2051 2859 2935 2859 2051 735
en,n 678 966 2840 5093 4235 5093 2840 966

eng,ng 103 192 600 950 838 950 600 192
er 1 2594 1520 1544 4111 1544 1520 2594
ey 0 3849 1975 1987 5784 1987 1975 3849
f 30 2386 1815 1950 4253 1950 1815 2386
g 312 1 14 210 60 210 14 1

hv 35 200 493 634 725 634 493 200
ih,ix 1017 2224 5388 8786 8105 8786 5388 2224

iy 36 3883 3681 4084 7592 4084 3681 3883
jh 76 193 463 793 717 793 463 193
k 476 394 1432 2332 1890 2332 1432 394

ow 0 2893 1481 1489 4342 1489 1481 2893
oy 0 994 304 304 1302 304 304 994
p 368 95 686 1318 876 1318 686 95
r 486 580 1870 3326 2720 3326 1870 580
s 9 8091 5171 5343 13264 5343 5171 8091

sh,zh 1 1971 1238 1255 3170 1255 1238 1971
t 581 315 1341 2304 1824 2304 1341 315

th 29 598 567 640 1146 640 567 598
uh 18 221 348 446 577 446 348 221

uw,ux 37 2186 1528 1756 3749 1756 1528 2186
v 147 264 995 1639 1393 1639 995 264
w 292 571 998 1530 1619 1530 998 571
y 132 130 370 640 543 640 370 130
z 35 1956 2792 3186 4806 3186 2792 1956

Table 3.5: The phoneme classes and the classes’ numbers of training samples for each
state. The vertical lines between the SMM, SMM and the MME, MEE states illustrate the
grouping of the states for the reduction from seven to three states.
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3.5 Speech recognition experiments

The quality of the new approach is determined by comparing continuous speech recognition

performance on the TIMIT testset using the HTK toolset. The standard MFCC-∆-∆∆

setup follows the tutorial, where we merge phonemes in the same manner as in the SME

case, see table 3.4 and recognition was performed using monophonic HMMs in order to

get a useful comparison.

For the SME based data, the first steps equal those of the phoneme classification procedure:

Center vectors for each class serve as a foundation to compute correlation features, build

SVMs for training and classify samples. Each utterance is handled piecewise, a new frame

starting every 25 ms with 10 ms overlap. The SVM classified frames are transformed into

posterior probabilities using the precomputed pairwise sigmoidal functions, see section

1.9, the results are written to a file afterwards. HTK was extended such that in the case

of SME based recognition (selectable via a new command line parameter) the output

probabilities are directly read from the above mentioned file, substituting the computation

of HMMs in the ordinary MFCC-∆-∆∆ setup.

For both variants, the recognizer parameters for HVite were set to no word insertion

penalty ( -p 0 ) applying a grammar scale factor of 5.0 ( -s 5.0 ). Our new approach did

not include any training data for silence, as extraction of (quasi) silence did not work

reliably with tools such as HCopy. Silence was thus cut from the utterances as accurate

as possible when computing the framewise SME features and their probabilities. As a

consequence, in contrast to the standard setup, where an HMM is also created for silence,

the SME recognition procedure had to perform evaluations without this improvement.

The training dictionary contains 4877 different words. Taking into account the pronuncia-

tion variations of words, the total number of words is 17913 including 59 out of vocabulary

words (0.3%). The language model uses a trigram configuration with a perplexity of

234.844. The testset consisted of 1303 sentences and an overall amount of 10713 words.

Tables 3.6 and 3.7 compare the sentence and word recognition results of both experiments.

Sentences Correct
MFCC-∆-∆∆ 1303 1136 (87.18%)

SME 1303 1104 (84.73%)

Table 3.6: MFCC-∆-∆∆ vs. SME results for sentence recognition.
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Words Correct Substitutions Deletions Insertions
MFCC-∆-∆∆ 10713 9856 (92.00%) 497 (4.64%) 201 (1.88%) 159 (1.48%)

SME 10713 9760 (91.11%) 462 (4.31%) 209 (1.95%) 282 (2.63%)

Table 3.7: MFCC-∆-∆∆ vs. SME results for word recognition.

3.6 Impact of the reduction

The previous section 3.5 revealed slightly worse results for the SVM-SME based speech

recognition compared to the common MFCC-∆-∆∆ feature vector setup: a drop of the

recognition rate of about 2.81% for sentences and of 0.97% for words. Whereas a certain

amount of the degradation clearly originates from the missing silence class/model in the

SME setup, in this section we want to examine the additional impact of the two most severe

steps accounting for this decline within the process of reducing the original seven state SME

features to the three state variant used to compare the SME based recognition to a common

MFCC-∆-∆∆ based automatic speech recognition system. It becomes obvious that the

information loss is rather strong and that we can expect far better speech recognition

results when using the unmodified, original SME-structure and features. To keep things

clear, we again conduct the experiments on the subset of eleven phonemes used for our

initial classification evaluations.

3.6.1 Reduction of the number of states

The first of the two major cuts occurs when reducing the seven states to three. We

repeat some details for reasons of clarity: The reduction includes several steps, the first

of which is to choose three instead of seven representative states and classes ( SSS, SSM,

· · · , MEE, EEE ) along with their representative, accumulated center vectors. For the

following comparison the states were combined in the same way as described in remark

(3.1). All SVMs were retrained accordingly. It becomes clear immediately that the larger

amount of training data is not capable of absorbing the effects of the smaller amount of

center vectors and the less accurate and rougher correlation resolution. Table 3.8 and its

graphical pendant depict the results. Test samples were classified over all 55 binary SVMs

of all states (three or seven for reduced and original SME data) and a simple histogram

(= majority vote) served as the final classification decision. The detailed confusion tables

are given in appendix B. Let us mention that we used a different parameter value for the

SVMs than in section 3.2, setting γ = 0.001 for both cases. The parameters may differ

from the experiments conducted for section 3.1 and appendix A, as we re-estimated them

due to larger training sets.
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Multiple kernel classifications are considered this time, as the effects readily become clear

enough.

states aa ae ay eh ey ih ix iy n s z
7 85.46 85.56 75.68 84.82 86.79 83.37 73.82 96.68 89.78 96.39 69.27
3 79.35 79.36 70.55 66.52 74.11 66.07 64.81 87.14 85.25 97.46 59.14

Table 3.8: Overall recognition rates for the eleven phonemes encompassing subset, com-
paring original and reduced SME structured classification.
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3.6.2 Merging state probability vectors

During the process of preparing the reduced, three states encompassing SME posterior

probability vectors necessary for the recognizer there are a total of three probability

vectors for any observation, either of them associated with one of the three reduced

states. The cumulative number of components of these three sums up to 3M components,

where M is the number of classes. As this is a quite large pooled vector, the three state

probability vectors are transformed into one single vector of size M by componentwise

arithmetic averaging. Revisiting the detailed description of the computation of the

SME features in section 2.5, where we used MFCC vectors of length 13 as a starting

point, we deduce that for the full set of phonemes by construction the MFCC-∆-∆∆

setup has probability vectors of length 39, the SME setup of length 38 after taking averages.
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The averaging however results in unwanted and unfavourable deviations of the probability

vectors which can lead to swaps of the largest components. The results in this section unveil

these negative effects on the subset of 11 phonemes using the result vectors computed as

described in the previous section. We start by illustrating the origin of the classification

degradation by a simple but real example. Below, following the phonemes, the vectors to

the left of the arrow show the three individual probability vectors for the states S, M, E,

respectively, the one to the right the remaining one after component wise averaging.

...

ay
...

ih
...



...

0.77
...

0.20
...





...

0.52
...

0.30
...





...

0.08
...

0.91
...


=⇒



...

0.46
...

0.47
...


(3.1)

The observation in question is a phoneme from class ay, state S. The highest probabilities

are in the corresponding correct components for two of the states, S and M, whereas

for the E-state the probability in the component representing ih exceeds all others.

Averaging in such a case leads to inadequate probabilities and henceforth incorrect

recognitions. Instead, using a majority vote over the highest number of components for

instance removes these misclassifications without any negative effect (that is misclassifying

otherwise correctly classified phonemes). Tables and figures C.1 to C.11 in appendix C

reveal the exact recognition rate differences between both variants.

It is also clear that not for all states and all phonemes the difference is statistically signif-

icant. The best examples for this is phoneme s. Table B.19 on page 123 already shows,

that the recognition rates for this phoneme already are at a high level throughout the

states. The impact of the averaging operation is clearly less than for other phonemes,

especially when the performance on different states is not as homogeneous. To this effect,

the improvements without averaging are in general in line with the results and texture of

the reduced states confusion tables given in appendix C.
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3.7 Conclusions and prospects

In this thesis we have introduced new MFCC correlation features for phoneme classi-

fication and automatic speech recognition. In their light we proposed a new family of

support vector classifiers associated directly with the specific structure of the underlying

features. Both the classifier topology and the reproducing kernel utilized for training and

evaluation within those were deduced directly from the correlation operation, which itself

was motivated by two main characteristics of speech: quasi stationarity and transitions

between phonemes. The new approach yielded promising recognition improvements

especially for phoneme classification tasks. Reasons for deficits in the case of continuous

speech recognition were traced back to potential causes. In this final chapter we want to

analyze the results further and show additional directions.

The foundations for the partitioning of phonemes into the SME-subclasses SME, SSS,

. . ., EEE are on one hand the partitioning theme itself, on the other hand the center

vectors clσ, 1 ≤ l ≤ L, σ ∈ {s,m, e}. Both are illustrated in details in section 2.5.3.

The first one, the partitioning scheme, was chosen to be rather simple and leads to

certain imbalances across the sizes of the SME-subclasses. For longer training samples,

the outmost subclasses will include a comparatively small numbers of samples, and the

class sizes strongly increase symmetrically towards the middle class MMM. For short

phonemes such as b or g, this partitioning scheme leads to an even more severe situation

The margin classes are extremely underrepresented or are even empty. The problem of

class imbalances already smoldering in the original dataset is carried over and potentially

amplified in the process of partitioning both within the same and across the different

subclasses. Table 3.5 gives an overview of the strongly varying SME-class sizes resulting

from the initial dataset.

Second, the center vectors are supposed to be representative for their classes with respect

to their states s, m, e. For classes with low within-class variance, they surely are good

representatives. In general however, considering several such centers for instance by

pre-clustering each class and state into two ore more clusters and using the multiple

achieved centers of the different clusters will presumably reward us with a more suitable

and accurate representation. Another potentially big gain can be achieved by taking the

cross correlation of more than just three adjacent vectors – see section 2.5.2 – as a root

for computing our features. For both approaches, to keep the resulting, (pooled subclass)

feature vectors reasonably small when using several center vectors and correlation features,
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data reduction methods such as (kernel) PCA or LDA can be considered as a subsequent

step, while this is non trivial when dealing with multiple classes – see for instance [54].

Table 3.9 illustrates this idea.

All in all, the importance and efficiency of the partitioning and thus of using time

position specific data becomes obvious when looking at the results of section 3.6.1. As a

consequence, finding an appropriate balance between this and the above mentioned design

aspects – comparable to the weighting of acoustic and language model of a recognizer –

will probably improve recognition further to quite some extend.

Using several centers also emphasizes the main idea of using correlation, or better

autocorrelation, the information of which depends on time lags separating features and

observations. Offering one averaged vector only for this information surely blurs and

reduces such data to quite some degree, especially for data deviating heavily from this

representative, the strategy of using several center is recommendable. The problem of

imbalanced classes becomes especially crucial in the context of learning the classifiers.

While strong underrepresentation such as mentioned before will affect any learner,

alternate methods instead of SVMs for large but manageable differences are worth to be

considered. In this context and under the premise of sufficient amounts of training data,

ensemble classifier such as random forests are reasonable candidates.

A Random Forests(tm) classification system is an ensemble classifier comprised of a set

of individual and (as well as possible) decorrelated decision tree classifiers, where each

such tree is generated during training by randomized sample choices iid but with one

underlying distribution for all trees, see [55] for details. Fan ([56]) introduced a method

utilizing reproducing kernels and aims at combining the advantages of modeling non linear

(local) decisions and tree based classification systems. After recursively creating a data

partitioning, the kernels are applied as decision makers for splitting the data for each tree

in the forest. This is especially appealing, as the specific kernel deduced in our work can

be integrated into the kernel random forest in the same manner as done within the SVMs.

Being able to address multiclass problems by nature in contrast to the binary SVMs,

training will probably be faster and classification more reliable. For instance, unclassifiable

regions as common for multiclass SVMs (see for instance [16], chapters one and two)

will not exist due to the decision tree based concept. More important, classification

for large datasets and a large number of classes (in the light of the SME topology)
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is far more efficient. Last, random forests offer a better understanding of relations

between different classes, which in the context of similar phonemes can be exploited.

The interested reader is referred to the above mentioned references as well as [57] for

a detailed description of ordinary random forests and those utilizing kernel based strategies.

Pre-Clustering

training samples −→ correlation correlation

↓ P C A, L D A, . . . ↓

features(cs1) features(cs1, c
s
2)

Table 3.9: Replacing single center vectors by multiple. Class indices are omitted and state
s is assumed in this example comparing the single center vector approach to one with two
center vectors. Given incoming training samples, the left part of the figure illustrates the
current single center based path, the right one an alternative two center approach. For the
first, correlation of samples with the center vector is performed as usual. For the latter, two
centers are determined for instance by a preceding clustering method. After correlation is
computed with both center vectors, methods such as for instance (Kernel) PCA or LDA
can be applied subsequently to reduce dimensionality. The vectors are pooled afterwards
to get the final, cumulative feature vector which depends on either one or several – here
two – representative centers.
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Appendix A – Confusion tables

Due to precision restriction and rounding, columns might not add up to 100%.

A.1 SME-structured SVMs

SSS SSM SMM MMM MME MEE EEE avg.
aa 73.68 87.72 91.58 94.41 96.01 96.05 91.54 90.141
ae 0.50 0.44 0.14 0.19 0.29 0.58 2.70 0.691
ay 24.61 9.21 6.42 4.47 2.71 1.61 1.64 7.239
eh 0.85 1.90 1.14 0.42 0.43 1.32 2.84 1.271
ey 0.14 0.00 0.00 0.05 0.00 0.00 0.57 0.109
ih 0.14 0.15 0.00 0.14 0.14 0.00 0.21 0.111
ix 0.07 0.29 0.14 0.19 0.29 0.15 0.00 0.161
iy 0.00 0.00 0.14 0.09 0.00 0.00 0.07 0.043
n 0.00 0.00 0.14 0.00 0.00 0.15 0.00 0.041
s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
z 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000

uncl. 0.000 0.292 0.285 0.047 0.143 0.146 0.427 0.191

Table A.1: Confusion table of phoneme aa, using SME-SVM classification.

SSS SSM SMM MMM MME MEE EEE avg.
aa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
ae 92.27 82.38 81.30 92.61 78.67 77.13 85.69 84.293
ay 0.51 0.46 1.24 1.49 6.34 8.19 9.10 3.904
eh 4.55 16.23 15.92 5.56 13.29 13.60 4.91 10.580
ey 2.60 0.15 0.00 0.00 0.00 0.00 0.00 0.393
ih 0.00 0.15 0.31 0.15 0.31 0.46 0.14 0.217
ix 0.00 0.46 1.08 0.15 0.93 0.31 0.00 0.419
iy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
n 0.07 0.15 0.15 0.05 0.46 0.31 0.07 0.180
s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
z 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000

uncl. 0.000 0.000 0.000 0.000 0.000 0.000 0.072 0.010

Table A.2: Confusion table of phoneme ae, using SME-SVM classification.
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SSS SSM SMM MMM MME MEE EEE avg.
aa 17.45 14.46 5.83 1.97 1.54 0.00 0.00 5.893
ae 1.38 1.03 0.69 1.12 4.46 12.22 15.79 5.241
ay 80.83 83.48 91.08 96.35 90.05 75.56 79.22 85.224
eh 0.17 0.69 1.72 0.56 2.92 10.84 3.85 2.964
ey 0.11 0.17 0.00 0.00 0.00 0.00 0.00 0.040
ih 0.00 0.00 0.00 0.00 0.00 0.52 1.03 0.221
ix 0.00 0.17 0.51 0.00 0.69 0.69 0.00 0.294
iy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
n 0.00 0.00 0.17 0.00 0.34 0.17 0.11 0.113
s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
z 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000

uncl. 0.057 0.000 0.000 0.000 0.000 0.000 0.000 0.008

Table A.3: Confusion table of phoneme ay, using SME-SVM classification.

SSS SSM SMM MMM MME MEE EEE avg.
aa 0.12 0.10 0.09 0.05 0.00 0.00 0.00 0.051
ae 20.51 6.07 4.11 5.50 3.36 5.47 19.78 9.257
ay 0.49 0.10 0.37 1.46 1.96 3.24 21.84 4.209
eh 59.34 86.23 89.54 89.27 89.64 86.74 55.95 79.530
ey 18.08 1.52 0.28 0.38 0.00 0.00 0.12 2.911
ih 0.97 2.73 1.68 1.40 1.87 2.73 2.31 1.956
ix 0.36 3.04 3.55 1.83 2.80 1.62 0.00 1.886
iy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
n 0.12 0.20 0.37 0.11 0.37 0.20 0.00 0.196
s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
z 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000

uncl. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A.4: Confusion table of phoneme eh, using SME-SVM classification.

SSS SSM SMM MMM MME MEE EEE avg.
aa 0.00 0.00 0.00 0.00 0.00 0.14 0.14 0.040
ae 12.65 1.42 0.56 0.23 0.00 0.00 0.00 2.123
ay 0.28 0.85 0.98 1.19 0.14 0.00 1.82 0.751
eh 10.55 11.24 7.99 3.39 1.12 0.57 0.00 4.980
ey 74.42 78.52 78.40 88.70 81.21 82.22 87.56 81.576
ih 1.54 4.98 8.13 4.03 11.78 9.10 2.73 6.041
ix 0.35 2.13 2.38 1.56 1.26 1.14 0.07 1.270
iy 0.14 0.85 1.40 0.87 4.49 6.83 7.62 3.171
n 0.07 0.00 0.14 0.05 0.00 0.00 0.00 0.037
s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
z 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.010

uncl. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A.5: Confusion table of phoneme ey, using SME-SVM classification.
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SSS SSM SMM MMM MME MEE EEE avg.
aa 0.00 0.00 0.08 0.00 0.00 0.10 0.34 0.074
ae 3.21 0.67 0.64 1.15 0.16 0.19 1.35 1.053
ay 0.00 0.10 0.08 0.36 0.16 0.10 3.72 0.646
eh 2.54 2.49 2.63 2.60 2.23 1.92 1.52 2.276
ey 12.18 4.41 3.99 10.54 3.43 2.59 5.08 6.031
ih 70.90 73.73 68.64 69.53 69.91 79.87 87.48 74.294
ix 4.23 16.59 22.43 14.54 23.70 14.96 0.17 13.803
iy 6.77 2.01 1.52 1.27 0.40 0.29 0.34 1.800
n 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.024
s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
z 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000

uncl. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A.6: Confusion table of phoneme ih, using SME-SVM classification.

SSS SSM SMM MMM MME MEE EEE avg.
aa 0.53 0.00 0.06 0.17 0.06 0.00 0.53 0.193
ae 2.11 0.36 0.06 0.76 0.00 0.00 0.53 0.546
ay 0.00 0.00 0.00 0.17 0.00 0.00 1.05 0.174
eh 3.68 1.20 0.22 0.25 0.06 0.24 1.05 0.957
ey 5.26 0.60 0.22 0.93 0.06 0.24 1.05 1.194
ih 45.26 17.58 7.18 14.75 4.79 11.72 88.42 27.100
ix 41.58 80.14 92.15 82.63 94.99 87.80 7.37 69.523
iy 1.05 0.00 0.11 0.34 0.06 0.00 0.00 0.223
n 0.53 0.12 0.00 0.00 0.00 0.00 0.00 0.093
s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
z 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000

uncl. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A.7: Confusion table of phoneme ix, using SME-SVM classification.

SSS SSM SMM MMM MME MEE EEE avg.
aa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
ae 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.021
ay 0.00 0.00 0.00 0.04 0.06 0.07 0.44 0.087
eh 0.22 0.00 0.00 0.00 0.06 0.14 0.37 0.113
ey 0.67 0.65 1.10 2.48 2.97 4.25 11.48 3.371
ih 3.85 2.30 2.00 1.02 1.29 1.08 0.67 1.744
ix 0.07 1.08 1.29 0.55 0.71 0.29 0.07 0.580
iy 95.04 95.97 95.49 95.89 94.84 94.10 86.89 94.031
n 0.00 0.00 0.13 0.04 0.06 0.07 0.07 0.053
s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
z 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000

uncl. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A.8: Confusion table of phoneme iy, using SME-SVM classification.
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SSS SSM SMM MMM MME MEE EEE avg.
aa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
ae 1.90 0.12 0.00 0.08 0.06 0.24 7.14 1.363
ay 0.00 0.00 0.00 0.25 0.06 0.00 0.48 0.113
eh 1.90 1.08 0.70 1.06 0.70 1.56 2.38 1.340
ey 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
ih 0.48 0.00 0.06 0.25 0.06 0.36 0.00 0.173
ix 0.00 0.72 0.95 0.98 0.95 0.72 0.48 0.686
iy 0.00 0.36 0.00 0.00 0.00 0.00 0.48 0.120
n 95.71 97.72 98.29 97.38 98.16 97.12 88.10 96.069
s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
z 0.00 0.00 0.00 0.00 0.00 0.00 0.95 0.136

uncl. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A.9: Confusion table of phoneme n, using SME-SVM classification.

SSS SSM SMM MMM MME MEE EEE avg.
aa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
ae 0.00 0.00 0.00 0.00 0.05 0.05 0.00 0.014
ay 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.010
eh 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.004
ey 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
ih 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.007
ix 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
iy 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.007
n 0.14 0.00 0.00 0.00 0.00 0.05 0.00 0.027
s 97.82 96.71 95.08 96.11 91.95 91.94 99.35 95.566
z 2.05 3.29 4.92 3.89 7.94 7.90 0.55 4.363

uncl. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A.10: Confusion table of phoneme s, using SME-SVM classification.

SSS SSM SMM MMM MME MEE EEE avg.
aa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
ae 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.044
ay 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.089
eh 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.023
ey 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
ih 0.00 0.00 0.00 0.00 0.00 0.21 0.00 0.030
ix 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
iy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
n 0.16 0.00 0.10 0.00 0.00 0.00 0.00 0.037
s 25.04 17.81 26.86 57.38 39.67 44.10 86.00 42.409
z 74.81 82.19 73.04 42.62 60.33 55.69 12.91 57.370

uncl. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A.11: Confusion table of phoneme z, using SME-SVM classification.
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A.2 SME-structure based Probabilities

SSS SSM SMM MMM MME MEE EEE avg.
aa 70.84 85.23 90.01 93.18 95.01 95.32 92.03 88.803
ae 0.50 0.29 0.14 0.19 0.29 0.58 2.28 0.610
ay 27.45 12.87 8.27 5.74 3.71 2.63 2.63 9.043
eh 0.78 1.17 1.14 0.38 0.57 1.17 2.06 1.039
ey 0.28 0.00 0.00 0.05 0.00 0.00 0.64 0.139
ih 0.07 0.15 0.00 0.05 0.14 0.00 0.00 0.059
ix 0.07 0.15 0.14 0.19 0.14 0.00 0.21 0.129
iy 0.00 0.00 0.14 0.24 0.00 0.00 0.07 0.064
n 0.00 0.15 0.14 0.00 0.14 0.29 0.07 0.113
s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
z 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000

uncl. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A.12: Confusion table of phoneme aa, using SME-SVM probability classification.

SSS SSM SMM MMM MME MEE EEE avg.
aa 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.031
ae 89.60 85.32 84.23 94.24 82.38 76.82 83.60 85.170
ay 0.87 0.46 1.08 1.24 5.72 10.66 11.27 4.471
eh 4.84 12.67 13.29 3.97 10.36 11.44 4.48 8.721
ey 4.62 0.62 0.00 0.25 0.00 0.00 0.00 0.784
ih 0.00 0.31 0.46 0.10 0.31 0.62 0.14 0.277
ix 0.00 0.15 0.77 0.15 0.77 0.00 0.00 0.263
iy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
n 0.07 0.46 0.15 0.05 0.46 0.46 0.22 0.267
s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
z 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.010

uncl. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A.13: Confusion table of phoneme ae, using SME-SVM probability classification.
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SSS SSM SMM MMM MME MEE EEE avg.
aa 14.70 11.19 4.80 1.37 0.86 0.00 0.00 4.703
ae 0.57 1.20 1.20 1.63 5.66 10.84 13.49 4.941
ay 84.16 86.92 91.94 96.48 90.74 80.21 81.80 87.464
eh 0.11 0.52 1.03 0.52 1.89 7.92 3.21 2.171
ey 0.46 0.17 0.34 0.00 0.00 0.00 0.23 0.171
ih 0.00 0.00 0.00 0.00 0.00 0.52 0.63 0.164
ix 0.00 0.00 0.34 0.00 0.34 0.52 0.46 0.237
iy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
n 0.00 0.00 0.34 0.00 0.51 0.00 0.17 0.146
s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
z 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000

uncl. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A.14: Confusion table of phoneme ay, using SME-SVM probability classification.

SSS SSM SMM MMM MME MEE EEE avg.
aa 0.24 0.10 0.19 0.11 0.00 0.00 0.00 0.091
ae 16.02 8.20 6.16 8.90 5.32 6.68 18.33 9.944
ay 0.36 0.20 0.56 1.46 2.33 4.76 24.88 4.936
eh 58.98 82.59 86.93 86.19 87.77 85.02 55.10 77.511
ey 21.97 3.64 1.03 0.76 0.09 0.00 0.24 3.961
ih 1.58 2.73 2.05 1.46 1.96 2.13 1.46 1.910
ix 0.73 2.33 2.52 1.02 1.96 1.11 0.00 1.381
iy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
n 0.12 0.20 0.56 0.11 0.56 0.30 0.00 0.264
s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
z 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000

uncl. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A.15: Confusion table of phoneme eh, using SME-SVM probability classification.

SSS SSM SMM MMM MME MEE EEE avg.
aa 0.00 0.00 0.00 0.00 0.00 0.14 0.07 0.030
ae 8.74 1.56 0.42 0.18 0.00 0.00 0.00 1.557
ay 0.21 0.28 0.28 0.87 0.14 0.00 1.12 0.414
eh 10.90 9.10 6.73 2.65 0.98 0.43 0.00 4.399
ey 76.94 79.80 80.08 89.06 83.59 84.35 87.35 83.024
ih 2.38 6.12 8.56 4.53 9.26 6.97 2.17 5.713
ix 0.63 2.13 2.24 1.42 1.12 1.00 0.35 1.270
iy 0.14 1.00 1.54 1.24 4.91 7.11 8.81 3.536
n 0.07 0.00 0.14 0.05 0.00 0.00 0.00 0.037
s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
z 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.020

uncl. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A.16: Confusion table of phoneme ey, using SME-SVM probability classification.
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SSS SSM SMM MMM MME MEE EEE avg.
aa 0.00 0.10 0.16 0.00 0.00 0.10 0.68 0.149
ae 2.37 0.67 0.40 0.85 0.24 0.19 1.86 0.940
ay 0.00 0.10 0.08 0.24 0.16 0.19 3.55 0.617
eh 2.88 1.82 2.31 2.54 2.55 2.21 2.88 2.456
ey 9.31 4.03 3.83 10.36 4.71 3.55 5.08 5.839
ih 74.28 76.03 70.71 70.93 70.79 79.96 81.22 74.846
ix 4.23 15.05 20.51 13.63 20.91 13.42 4.23 13.140
iy 6.77 2.21 2.00 1.45 0.64 0.38 0.51 1.994
n 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.024
s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
z 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000

uncl. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A.17: Confusion table of phoneme ih, using SME-SVM probability classification.

SSS SSM SMM MMM MME MEE EEE avg.
aa 0.53 0.00 0.06 0.17 0.06 0.00 0.53 0.193
ae 1.58 0.36 0.06 0.85 0.06 0.00 0.53 0.491
ay 0.00 0.00 0.00 0.17 0.00 0.00 0.53 0.100
eh 3.68 1.20 0.39 0.59 0.22 0.36 2.11 1.221
ey 3.16 0.36 0.22 0.76 0.11 0.24 1.05 0.843
ih 47.37 20.69 8.46 16.69 6.35 14.11 69.47 26.163
ix 41.58 77.03 90.53 80.34 93.04 85.29 25.79 70.514
iy 1.58 0.12 0.17 0.42 0.11 0.00 0.00 0.343
n 0.53 0.24 0.06 0.00 0.00 0.00 0.00 0.119
s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
z 0.00 0.00 0.06 0.00 0.06 0.00 0.00 0.017

uncl. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A.18: Confusion table of phoneme ix, using SME-SVM probability classification.

SSS SSM SMM MMM MME MEE EEE avg.
aa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
ae 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.010
ay 0.00 0.00 0.00 0.00 0.06 0.07 0.30 0.061
eh 0.30 0.00 0.00 0.00 0.06 0.14 0.37 0.124
ey 0.44 0.36 0.77 2.04 3.03 4.32 10.00 2.994
ih 3.78 2.09 1.68 0.95 1.16 0.65 0.52 1.547
ix 0.07 0.72 0.97 0.44 0.39 0.29 0.00 0.411
iy 95.33 96.83 96.39 96.54 95.23 94.46 88.74 94.789
n 0.00 0.00 0.19 0.04 0.06 0.07 0.07 0.061
s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
z 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000

uncl. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A.19: Confusion table of phoneme iy, using SME-SVM probability classification.
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SSS SSM SMM MMM MME MEE EEE avg.
aa 0.00 0.00 0.06 0.08 0.00 0.00 0.00 0.020
ae 1.43 0.12 0.06 0.33 0.06 0.24 6.67 1.273
ay 0.00 0.00 0.00 0.25 0.06 0.00 0.00 0.044
eh 1.90 0.84 0.44 0.74 0.51 1.32 1.90 1.093
ey 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
ih 0.48 0.00 0.06 0.25 0.06 0.36 0.00 0.173
ix 0.00 0.36 0.89 0.82 0.76 0.24 1.43 0.643
iy 0.00 0.48 0.25 0.00 0.00 0.00 0.95 0.240
n 96.19 98.20 98.23 97.55 98.54 97.84 87.62 96.310
s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
z 0.00 0.00 0.00 0.00 0.00 0.00 1.43 0.204

uncl. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A.20: Confusion table of phoneme n, using SME-SVM probability classification.

SSS SSM SMM MMM MME MEE EEE avg.
aa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
ae 0.00 0.00 0.00 0.00 0.05 0.05 0.00 0.014
ay 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.010
eh 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.004
ey 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
ih 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
ix 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
iy 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.007
n 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.020
s 97.34 95.86 94.05 94.11 89.49 90.72 97.17 94.106
z 2.52 4.14 5.95 5.89 10.40 9.23 2.73 5.837

uncl. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A.21: Confusion table of phoneme s, using SME-SVM probability classification.

SSS SSM SMM MMM MME MEE EEE avg.
aa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
ae 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.044
ay 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.089
eh 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.023
ey 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
ih 0.00 0.00 0.00 0.00 0.00 0.21 0.00 0.030
ix 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
iy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000
n 0.16 0.00 0.10 0.00 0.00 0.00 0.00 0.037
s 20.22 15.13 22.18 48.73 35.85 41.20 71.07 36.340
z 79.63 84.87 77.72 51.27 64.15 58.58 27.84 63.437

uncl. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A.22: Confusion table of phoneme z, using SME-SVM probability classification.
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Appendix B – SME recognition rates, unaltered vs. reduced

Phoneme aa

aa ae ay eh ey ih ix iy n s z
SSS 56.56 0.85 40.76 0.71 0.00 0.14 0.00 0.99 0.00 0.00 0.00
SSM 84.80 0.15 7.60 1.32 0.00 0.00 0.00 6.14 0.00 0.00 0.00
SMM 83.02 0.00 5.42 1.00 0.00 0.00 0.00 10.13 0.43 0.00 0.00
MMM 95.08 0.32 2.57 0.64 0.00 0.00 0.00 1.39 0.00 0.00 0.00
MME 97.00 0.43 1.00 0.57 0.00 0.00 0.14 0.86 0.00 0.00 0.00
MEE 95.47 1.02 1.90 1.17 0.00 0.15 0.15 0.00 0.15 0.00 0.00
EEE 86.32 3.38 2.54 4.23 0.56 1.55 1.13 0.14 0.00 0.14 0.00
avg. 85.46 0.88 8.83 1.38 0.08 0.26 0.20 2.81 0.08 0.02 0.00

Table B.1: Recognition rates for phones aa, using 7-state SME-classification.

aa ae ay eh ey ih ix iy n s z
SSS-3 59.30 0.73 39.16 0.00 0.14 0.03 0.02 0.61 0.01 0.00 0.00
MMM-3 92.81 0.32 2.39 0.93 0.00 0.00 0.02 3.19 0.34 0.00 0.00
EEE-3 85.93 3.41 3.32 4.83 0.47 0.84 0.74 0.14 0.18 0.14 0.00
avg. 79.35 1.49 14.96 1.92 0.20 0.29 0.26 1.31 0.18 0.05 0.00
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Phoneme ae

aa ae ay eh ey ih ix iy n s z
SSS 0.00 93.12 0.77 4.19 1.23 0.00 0.00 0.64 0.05 0.00 0.00
SSM 0.00 89.05 0.45 8.88 0.00 0.15 0.15 1.16 0.15 0.00 0.00
SMM 0.00 87.82 0.55 8.87 0.00 0.20 0.25 1.20 1.10 0.00 0.00
MMM 0.00 92.60 0.89 5.55 0.00 0.14 0.11 0.68 0.04 0.00 0.00
MME 0.05 84.06 6.42 8.22 0.00 0.40 0.50 0.15 0.20 0.00 0.00
MEE 0.20 77.44 8.28 12.62 0.00 0.40 1.01 0.00 0.05 0.00 0.00
EEE 0.87 74.86 17.94 4.51 0.32 0.50 0.32 0.46 0.23 0.00 0.00
avg. 0.16 85.56 5.04 7.55 0.22 0.26 0.33 0.61 0.26 0.00 0.00

Table B.2: Recognition rates for phones ae, using 7-state SME-classification.

aa ae ay eh ey ih ix iy n s z
SSS-3 0.00 85.40 0.51 8.63 4.32 0.00 0.00 1.13 0.01 0.00 0.00
MMM-3 0.02 86.02 3.88 6.53 1.39 0.65 1.11 0.34 0.05 0.01 0.00
EEE-3 2.26 66.65 6.83 16.77 4.12 1.61 1.19 0.57 0.00 0.00 0.00
avg. 0.43 79.36 3.73 10.64 3.28 0.75 0.77 0.68 0.02 0.00 0.00

Table B.3: Recognition rates for phones ae, using reduced 3-state like SME-classification.
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Phoneme ay

aa ae ay eh ey ih ix iy n s z
SSS 12.29 1.02 86.04 0.38 0.00 0.00 0.00 0.26 0.00 0.00 0.00
SSM 21.52 0.17 70.40 0.52 0.00 0.00 0.00 7.40 0.00 0.00 0.00
SMM 17.32 0.34 74.61 1.20 0.00 0.00 0.00 5.66 0.86 0.00 0.00
MMM 6.50 1.34 90.51 0.52 0.00 0.00 0.00 0.93 0.21 0.00 0.00
MME 1.37 14.41 80.79 2.74 0.00 0.00 0.34 0.17 0.17 0.00 0.00
MEE 0.00 22.89 61.62 13.43 0.00 0.17 1.89 0.00 0.00 0.00 0.00
EEE 1.66 19.46 65.81 6.53 0.26 4.61 1.02 0.51 0.00 0.13 0.00
avg. 8.67 8.52 75.68 3.62 0.04 0.68 0.47 2.13 0.18 0.02 0.00

Table B.4: Recognition rates for phones ay, using 7-state SME-classification.

aa ae ay eh ey ih ix iy n s z
SSS-3 19.76 3.84 71.81 1.02 0.00 0.00 1.16 2.23 0.18 0.00 0.00
MMM-3 11.63 4.21 78.97 0.84 2.07 1.45 0.00 0.65 0.18 0.00 0.00
EEE-3 6.62 17.88 60.87 8.65 3.30 0.99 1.17 0.52 0.00 0.00 0.00
avg. 12.67 8.64 70.55 3.50 1.79 0.84 0.78 1.13 0.12 0.00 0.00

Table B.5: Recognition rates for phones ay, using reduced 3-state like SME-classification.
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Phoneme eh

aa ae ay eh ey ih ix iy n s z
SSS 0.12 10.25 0.43 73.05 14.30 0.68 0.06 1.11 0.00 0.00 0.00
SSM 0.04 2.84 0.08 92.53 1.29 0.83 1.52 0.64 0.23 0.00 0.00
SMM 0.00 2.04 0.14 93.75 0.21 0.95 1.23 0.53 1.16 0.00 0.00
MMM 0.22 1.95 0.50 94.96 0.29 0.72 0.47 0.50 0.40 0.00 0.00
MME 0.00 1.75 1.19 93.51 0.00 1.44 1.65 0.04 0.42 0.00 0.00
MEE 0.00 3.87 4.89 86.28 0.00 2.08 2.88 0.00 0.00 0.00 0.00
EEE 2.58 7.98 19.71 59.67 1.60 5.71 0.80 1.53 0.12 0.25 0.06
avg. 0.42 4.38 3.85 84.82 2.53 1.77 1.23 0.62 0.33 0.04 0.01

Table B.6: Recognition rates for phones eh, using 7-state SME-classification.

aa ae ay eh ey ih ix iy n s z
SSS-3 0.14 9.43 1.63 70.71 15.64 0.84 0.97 0.62 0.02 0.00 0.00
MMM-3 3.92 11.68 0.94 74.23 4.71 1.93 0.89 1.61 0.09 0.00 0.00
EEE-3 3.68 9.99 19.64 54.63 2.13 5.66 2.82 0.64 0.59 0.22 0.00
avg. 2.58 10.37 7.40 66.52 7.49 2.81 1.56 0.96 0.23 0.07 0.00

Table B.7: Recognition rates for phones eh, using reduced 3-state like SME-classification.
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Phoneme ey

aa ae ay eh ey ih ix iy n s z
SSS 0.15 6.30 0.89 7.48 83.22 0.98 0.10 0.89 0.00 0.00 0.00
SSM 0.10 0.41 0.15 7.49 83.54 4.51 1.62 2.18 0.00 0.00 0.00
SMM 0.05 0.05 0.15 5.13 84.30 5.74 1.41 2.72 0.45 0.00 0.00
MMM 0.12 0.08 0.19 1.78 90.85 3.76 0.81 2.40 0.00 0.00 0.00
MME 0.05 0.00 0.00 0.70 85.41 6.14 0.86 6.79 0.05 0.00 0.00
MEE 0.10 0.05 0.10 0.10 85.82 3.24 0.46 10.03 0.10 0.00 0.00
EEE 0.10 0.00 0.00 0.00 94.39 1.72 0.15 3.59 0.00 0.05 0.00
avg. 0.10 0.98 0.21 3.24 86.79 3.73 0.77 4.09 0.09 0.01 0.00

Table B.8: Recognition rates for phones ey, using 7-state SME-classification.

aa ae ay eh ey ih ix iy n s z
SSS-3 0.10 8.80 0.12 9.11 76.22 1.26 1.22 3.17 0.00 0.00 0.00
MMM-3 0.05 5.96 0.40 3.57 79.33 7.52 0.68 1.86 0.63 0.00 0.00
EEE-3 0.52 0.87 1.16 1.82 66.78 17.04 4.45 7.09 0.23 0.04 0.00
avg. 0.22 5.21 0.56 4.83 74.11 8.61 2.12 4.04 0.29 0.01 0.00

Table B.9: Recognition rates for phones ey, using reduced 3-state like SME-classification.
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Phoneme ih

aa ae ay eh ey ih ix iy n s z
SSS 0.00 0.32 0.48 1.19 6.53 80.97 0.96 9.55 0.00 0.00 0.00
SSM 0.03 0.16 0.07 0.82 2.57 84.30 9.53 2.47 0.03 0.00 0.00
SMM 0.03 0.14 0.00 0.94 1.76 83.46 11.78 1.62 0.28 0.00 0.00
MMM 0.07 0.24 0.03 1.29 4.44 82.89 9.39 1.59 0.07 0.00 0.00
MME 0.03 0.06 0.08 1.76 1.18 80.63 16.07 0.17 0.03 0.00 0.00
MEE 0.03 0.00 0.20 1.42 0.43 83.14 14.65 0.10 0.03 0.00 0.00
EEE 1.11 0.00 1.11 0.80 5.57 88.22 1.35 1.59 0.00 0.16 0.08
avg. 0.19 0.13 0.28 1.17 3.21 83.37 9.10 2.44 0.06 0.02 0.01

Table B.10: Recognition rates for phones ih, using 7-state SME-classification.

aa ae ay eh ey ih ix iy n s z
SSS-3 0.05 0.96 0.20 3.43 7.47 70.03 12.66 5.11 0.09 0.00 0.00
MMM-3 0.02 1.03 0.06 2.02 6.46 65.14 21.21 3.60 0.44 0.00 0.02
EEE-3 0.98 0.04 1.17 3.35 6.52 63.03 18.38 6.40 0.12 0.00 0.01
avg. 0.35 0.68 0.48 2.93 6.82 66.07 17.42 5.04 0.22 0.00 0.01

Table B.11: Recognition rates for phones ih, using reduced 3-state like SME-classification.
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Phoneme ix

aa ae ay eh ey ih ix iy n s z
SSS 0.25 1.77 1.26 6.06 6.06 38.38 38.13 7.83 0.25 0.00 0.00
SSM 0.00 0.13 0.00 0.72 0.17 16.21 81.33 1.40 0.04 0.00 0.00
SMM 0.00 0.06 0.00 0.00 0.04 3.47 95.77 0.50 0.16 0.00 0.00
MMM 0.15 0.04 0.07 0.19 0.22 8.49 89.36 1.37 0.11 0.00 0.00
MME 0.00 0.00 0.00 0.04 0.00 2.93 96.88 0.12 0.02 0.00 0.02
MEE 0.13 0.25 0.30 2.16 0.00 22.70 74.33 0.08 0.00 0.00 0.04
EEE 3.28 0.76 3.28 0.76 13.64 34.09 40.91 1.01 0.25 1.52 0.51
avg. 0.54 0.43 0.70 1.42 2.88 18.04 73.82 1.76 0.12 0.22 0.08

Table B.12: Recognition rates for phones ix, using 7-state SME-classification.

aa ae ay eh ey ih ix iy n s z
SSS-3 0.40 0.86 1.94 1.01 2.01 10.74 78.75 4.14 0.15 0.00 0.00
MMM-3 2.30 2.26 0.05 2.89 3.69 7.90 66.20 7.81 6.36 0.50 0.04
EEE-3 1.11 3.22 2.38 2.27 10.70 25.20 49.47 3.37 1.01 0.86 0.41
avg. 1.27 2.11 1.46 1.72 5.47 14.61 64.81 5.11 2.51 0.45 0.15

Table B.13: Recognition rates for phones ix, using reduced 3-state like SME-classification.
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Phoneme iy

aa ae ay eh ey ih ix iy n s z
SSS 0.00 0.00 0.13 0.00 0.33 1.75 0.04 97.75 0.00 0.00 0.00
SSM 0.00 0.00 0.00 0.00 0.03 0.98 0.30 98.64 0.05 0.00 0.00
SMM 0.00 0.00 0.00 0.00 0.00 0.64 0.64 98.68 0.05 0.00 0.00
MMM 0.00 0.00 0.00 0.00 0.40 0.25 0.20 99.08 0.07 0.00 0.00
MME 0.00 0.00 0.00 0.02 1.62 0.44 0.34 97.58 0.00 0.00 0.00
MEE 0.03 0.00 0.00 0.00 2.83 0.68 0.24 96.17 0.05 0.00 0.00
EEE 0.08 0.00 0.58 0.63 6.68 2.76 0.04 88.85 0.21 0.13 0.04
avg. 0.02 0.00 0.10 0.09 1.70 1.07 0.26 96.68 0.06 0.02 0.01

Table B.14: Recognition rates for phones iy, using 7-state SME-classification.

aa ae ay eh ey ih ix iy n s z
SSS-3 0.00 0.06 0.11 3.72 0.98 1.21 2.82 90.95 0.15 0.00 0.00
MMM-3 0.05 0.00 0.15 0.42 6.89 2.70 3.02 86.48 0.27 0.00 0.02
EEE-3 0.04 0.06 1.13 0.87 7.32 4.09 1.18 84.00 1.20 0.11 0.00
avg. 0.03 0.04 0.46 1.67 5.06 2.67 2.34 87.14 0.54 0.04 0.01

Table B.15: Recognition rates for phones iy, using reduced 3-state like SME-classification.
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Phoneme n

aa ae ay eh ey ih ix iy n s z
SSS 0.00 0.58 0.00 2.34 0.00 0.00 0.00 26.32 70.76 0.00 0.00
SSM 0.00 0.00 0.00 0.48 0.00 0.00 0.36 6.96 92.20 0.00 0.00
SMM 0.00 0.00 0.00 0.25 0.00 0.06 0.44 0.00 99.24 0.00 0.00
MMM 0.11 0.00 0.00 0.32 0.00 0.11 0.54 4.09 94.84 0.00 0.00
MME 0.00 0.00 0.06 0.38 0.00 0.00 0.89 0.32 98.35 0.00 0.00
MEE 0.00 0.12 0.36 0.36 0.24 0.00 0.60 0.12 98.20 0.00 0.00
EEE 0.00 5.26 1.17 1.17 0.58 0.00 0.58 16.37 74.85 0.00 0.00
avg. 0.02 0.85 0.23 0.76 0.12 0.02 0.49 7.74 89.78 0.00 0.00

Table B.16: Recognition rates for phones n, using 7-state SME-classification.

aa ae ay eh ey ih ix iy n s z
SSS-3 0.26 0.76 0.64 1.98 0.00 0.05 0.34 9.12 86.85 0.00 0.00
MMM-3 0.48 0.54 0.02 1.14 0.00 3.30 3.12 1.27 90.02 0.00 0.11
EEE-3 0.12 4.46 1.11 2.22 0.96 0.58 3.15 8.52 78.88 0.00 0.00
avg. 0.29 1.92 0.59 1.78 0.32 1.31 2.20 6.30 85.25 0.00 0.04

Table B.17: Recognition rates for phones n, using reduced 3-state like SME-classification.
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Phoneme s

aa ae ay eh ey ih ix iy n s z
SSS 0.00 0.04 0.02 0.00 0.00 0.00 0.00 0.07 0.00 98.84 1.03
SSM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.00 98.34 1.18
SMM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00 96.52 2.56
MMM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 96.95 2.64
MME 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 92.85 7.02
MEE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 91.32 8.64
EEE 0.00 0.00 0.00 0.02 0.00 0.07 0.00 0.02 0.00 99.89 0.00
avg. 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.29 0.00 96.39 3.30

Table B.18: Recognition rates for phones s, using 7-state SME-classification.

aa ae ay eh ey ih ix iy n s z
SSS-3 0.00 0.02 0.02 0.00 0.00 0.00 0.03 0.14 0.00 97.72 2.07
MMM-3 0.00 0.01 0.00 0.00 0.00 0.00 0.04 0.04 0.00 98.61 1.30
EEE-3 0.00 0.00 0.00 0.04 0.00 0.04 0.00 0.03 0.01 96.04 3.84
avg. 0.00 0.01 0.01 0.01 0.00 0.01 0.02 0.07 0.00 97.46 2.40

Table B.19: Recognition rates for phones s, using reduced 3-state like SME-classification.
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Phoneme z

aa ae ay eh ey ih ix iy n s z
SSS 0.00 0.00 0.08 0.00 0.00 0.00 0.00 1.43 0.00 28.38 70.11
SSM 0.00 0.00 0.00 0.04 0.00 0.00 0.00 1.00 0.07 8.13 90.76
SMM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.85 0.25 12.49 85.40
MMM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.32 0.00 35.84 62.84
MME 0.00 0.03 0.00 0.00 0.00 0.00 0.03 0.35 0.03 23.73 75.83
MEE 0.00 0.07 0.00 0.04 0.00 0.04 0.04 0.00 0.11 0.07 99.64
EEE 0.08 0.08 0.00 0.00 0.15 0.30 0.00 0.30 0.00 98.79 0.30
avg. 0.01 0.03 0.01 0.01 0.02 0.05 0.01 0.89 0.07 29.63 69.27

Table B.20: Recognition rates for phones z, using 7-state SME-classification.

aa ae ay eh ey ih ix iy n s z
SSS-3 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.11 0.00 23.67 76.20
MMM-3 0.00 0.04 0.03 0.02 0.00 0.07 0.43 1.23 0.00 29.84 68.34
EEE-3 0.04 0.00 0.07 0.00 0.00 0.00 0.15 0.64 0.24 65.97 32.89
avg. 0.01 0.01 0.03 0.01 0.00 0.04 0.19 0.66 0.08 39.82 59.14

Table B.21: Recognition rates for phones z, using reduced 3-state like SME-classification.
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Appendix C – Averaged probability vectors vs. individual

The following tables show the improvements when classifying the, in the previous step,

reduced states SSS, MMM, EEE individually versus the averaged, component wise vectors,

where the latter where the ones used during the continuous speech recognition. For more

details the reader can review section 3.6.2.

The first row of each table shows the number of samples of the averaged vectors classified

correctly, the second one that numbers of all samples classified. The last row holds the

number of samples classified correctly in addition when considering the three states without

summing and averaging the components. The figures to the right of the table display the

relative improvements of the respective phoneme.

Phonemes aa, ae

aa SSS MMM EEE
merged 826 2168 1197
all 1393 2336 1393

additional +47 +46 +29

..

%

.
1

.

2

.
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.

4

.

5

.

aa

.
SSS

.

5.69

.
MMM

.

2.12

.
EEE

.

2.46

Table C.1: Confusion table of phoneme aa, using SME-SVM classification.

ae SSS MMM EEE
merged 3567 5850 2784
all 4177 6801 4177

additional +39 +77 +53
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1.90

Table C.2: Confusion table of phoneme ae, using SME-SVM classification.
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Phonemes ay, eh, ey

ay SSS MMM EEE
merged 978 1686 829
all 1362 2135 1362

additional +23 +30 +27
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ay

.
SSS

.

2.35

.
MMM

.

1.78

.
EEE

.

3.26

Table C.3: Confusion table of phoneme ay, using SME-SVM classification.

eh SSS MMM EEE
merged 3017 6292 2331
all 4267 8476 4267

additional +71 +119 +84
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eh
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SSS
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2.35

.
MMM

.

1.89

.
EEE

.

3.60

Table C.4: Confusion table of phoneme eh, using SME-SVM classification.

ey SSS MMM EEE
merged 3054 5199 2676
all 4007 6554 4007

additional +94 +143 +120
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Table C.5: Confusion table of phoneme ey, using SME-SVM classification.
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Phonemes ih, ix, iy

ih SSS MMM EEE
merged 3002 6657 2702
all 4287 10219 4287

additional +49 +141 +84
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ih
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1.63

.
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.
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.
EEE

.

3.11

Table C.6: Confusion table of phoneme ih, using SME-SVM classification.

ix SSS MMM EEE
merged 2168 8607 1362
all 2753 13002 2753

additional +57 +102 +69

..

%

.
1

.

2

.

3

.

4

.

5

.

ix

.
SSS

.

2.63

.
MMM

.

1.19

.
EEE

.

5.07

Table C.7: Confusion table of phoneme ix, using SME-SVM classification.

iy SSS MMM EEE
merged 5526 10524 5104
all 6076 12169 6076

additional +59 +131 +72
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Table C.8: Confusion table of phoneme iy, using SME-SVM classification.
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Phonemes n, s, z

n SSS MMM EEE
merged 872 3680 792
all 1004 4088 1004

additional +5 +9 +29
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n
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.
EEE
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3.66

Table C.9: Confusion table of phoneme n, using SME-SVM classification.

s SSS MMM EEE
merged 9509 16657 9346
all 9731 16892 9731

additional +11 +4 +7
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Table C.10: Confusion table of phoneme s, using SME-SVM classification.

z SSS MMM EEE
merged 3137 6273 1354
all 4117 9179 4117

additional +11 +40 +60
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.
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Table C.11: Confusion table of phoneme z, using SME-SVM classification.



Bibliography

[1] Baum, L.E. and Petrie, T., “Statistical Inference for Probabilistic Functions of Finite

State Markov Chains,” The Annals of Mathematical Statistics, vol. 37, pp. 1554–1563,

1966.

[2] Baum, L. E. and Eagon, J.A., “An Inequality with Applications to Statistical Esti-

mation for Probabilistic Functions of a Markov Process and to a Model for Ecology,”

Bulletin of the American Mathematical Society, vol. 73, pp. 360–363, 1967.

[3] Baum, L.E. and Petrie, T. and Soules, G. and Weiss, N., “A maximization technique

occurring in the statistical analysis of probabilistic functions of Markov chains,” Ann.

Math. Statist., vol. 41, pp. 164–171, 1970.

[4] Baum, L.E., “An inequality and associated maximization technique in statistical

estimation for probabilistic functions of Markov processes,” Oved SHISHA, ed. In-

equalities III: Proceedings of the Third Symposium on Inequalities, pp. 1–8, 1972.

[5] Ellstrodt, Jürgen, Maß- und Integrationstheorie, Springer, 3., erweiterte Auflage

edition, 2002.

[6] Aronszajn, N., “Theory of reproducing kernels,” Transactions of the American Math-

ematical Society, vol. 68, pp. 337–404, 1950.

[7] Agler, J. and McCarthy, K., Pick Interpolation and Hilbert Function Spaces, vol. 44

of Graduate Studies in Mathematics, American Mathematical Society, 2002.

[8] Alt, Hans Wilhelm, Lineare Funktionalanalysis, Springer, 5 edition, 2006.

[9] Shawe-Taylor, J. and Chrstianini, N., Kernel Methods for Pattern Analysis, Cam-

bridge University Press, 2004.

[10] Saitoh, S., Integral transforms, reproducing kernels and their applications, vol. 369 of

Pitman Research Notes in Mathematics Series, Addison Wesley Longman Ltd., 1997.

129



130 BIBLIOGRAPHY

[11] Schölkopf, B. and Smola, A., Learning with Kernels, MIT Press, Cambridge, 2002.

[12] Bishop, Christopher M., Pattern Recognition and Machine Learning (Information

Science and Statistics), Springer, 1 edition, 2007.

[13] Werner, D., Funktionalanalysis, Springer Berlin, 6., korrigierte Auflage edition, 2007.

[14] Kreyszig, Erwin, Introductory Functional Analysis with Application, Wiley Classics

Library. Wiley and Sons, 1978.

[15] Boid, S. and Vandenberghe, L., Convex Optimization, Cambridge University Press,

2008.

[16] Shigeo, A., Support Vector Machines for Pattern Classification, Advances in Pattern

Recognition. Springer, 2005.

[17] Cortes, C. and Vapnik, V., “Support vector networks,” Machine Learning, vol. 20,

pp. 273–297, 1995.

[18] John C. Platt, “Sequential Minimal Optimization: A Fast Algorithm for Training

Support Vector Machines,” 1998.

[19] Edgar Osuna and Robert Freund and Federico Girosi, “An Improved Training Algo-

rithm for Support Vector Machines,” pp. 276–285, 1997.

[20] Bregman, L. M., “The Relaxation Method of Finding the Common Point of Convex

Sets and Its Application to the Solution of Problems in Convex Programming,” USSR

Computational Mathematics and Mathematical Physics, vol. 7, pp. 200–217, 1967.

[21] Yair Censor, “Row-Action Methods for Huge and Sparse Systems and Their Applica-

tions,” SIAM Review, vol. 23, no. 4, pp. 444–466, 1981.

[22] S.S. Keerthi and S. K. Shevade and C. Bhattacharyya and K. R. K. Murthy, “Im-

provements to Platt’s SMO Algorithm for SVM Classifier Design,” 1999.

[23] Lanckriet, Gert R. G. and others, “Learning the Kernel Matrix with Semidefinite

Programming,” Journal of Machine Learning, vol. 5, pp. 27 – 72, 2004.

[24] Lanckriet, Gert R. G. and others, “A statistical framework for genomic data fusion,”

Bioinformatics, vol. 20, pp. 2626 – 2635, 2004.



BIBLIOGRAPHY 131

[25] Bach, Friedrich R. and Lanckriet, Gert R. G. and Jordan, Michael I., “Multiple

Kernel Learning, Conic Duality, and the SVM Algortihm,” Preprint, Proccedings of

21st International Conference on Machine Learning, 2004.

[26] Diego, Isaac Martin de, “Combining Kernel Information for Support Vector Classifi-

cation,” LNCS, 2004.

[27] Hirokai, T. and others, “Simple but effective methods for combining kernels in com-

putational biology,” RIVF, pp. 71 – 78, 2008.

[28] Platt, John C., “Probabilistic Outputs for Support Vector Machines and Comparisons

to Regularized Likelihood Methods,” Advances in Large Margin Classifiers, 1999.

[29] Lin, Hsuan-Tien and Lin, Chih-Jen and Weng, Ruby C., “A Note Platt’s paper on

Probabilistic Outputs for Support Vector Machines,” Technical Report, Department

of Computer Science, 2003.

[30] Wu, Ting-Fan and Lin, Chih-Jen and Weng, Ruby C., “Probability Estimates for

Multiclass Classification by Pairwise Coding,” Journal of Machine Learning Research,

vol. Vol. 5, 2004.

[31] Hastie, L. and Tibshirani, R., “Classification by pairwise coupling,” The Annals of

Statistics, vol. 26(1), pp. 451–471, 1998.

[32] Hunter, David R., “MM algorithms for generalized Bradley-Terry models,” The

Annals of Statistics, vol. 32, pp. 386–408, 2004.

[33] Levinson, Stephen E., Mathematical models for Speech Technology, John Wiley and

Sons Ltd, 2005.

[34] Sondhi, M. M. Sondhi, “A Model for wave propagation in a lossy vocal tract,” J.

Acoust., vol. 55, pp. 1070–1075, 1974.

[35] Portnoff, M. R., A quasi-one-dimensional digital simulation for the time varying vocal

tract, Masters thesis. MIT, 1973.

[36] Ahmed, N. and Natarajan T. and Rao, K.R., “Discrete Cosine Transform,” IEEE

Transactions on Computers, vol. C-23, pp. 90–93, January 1974.

[37] Huang, Xuedong and Acero, Alex and Hon, Hsiao-Wuen, Spoken Language Processing,

Prentice Hall, 2001.



132 BIBLIOGRAPHY
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