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“I am eye. I am a mechanical eye. I, a machine, am showing you a world, the likes of

which only I can see.”

Dziga Vertov





Abstract

Characterization and Modeling of Nanoporous Carbon Structures

by Torben Prill

The aim of the work presented here is to optimize nanoporous carbon materials by means

of ’virtual material design’. On this length scale (≈ 10nm) Focused Ion Beam - Scan-

ning Electron Microscopy Nanotomography (FIB-SEM) is the only imaging technique

providing three-dimensional geometric information. Yet, for the optimization, the pore

space of the materials must be reconstructed from the resulting image data, which was

a generally unsolved problem so far.

To overcome this problem, a simulation method for FIB-SEM images was developed.

The resulting synthetic FIB-SEM images could then be used to test and validate seg-

mentation algorithms. Using simulated image data, a new algorithm for the morpholog-

ical segmentation of the highly porous structures from FIB-SEM data was developed,

enabling the reconstruction of the three-dimensional pore space from FIB-SEM images.

Two case studies with nanoporous carbons used for energy storage are presented, using

the new techniques for the characterization and optimization of electrodes of Li-ion

batteries and electric double layer capacitors (EDLC’s), respectively. The reconstructed

pore space is modeled geometrically by means of stochastic geometry. Finally, the

electrical properties of the materials were simulated using both imaged real and modeled

structures.

In the first part of the thesis, a novel simulation program for FIB-SEM nanotomography

is described. The program can, for the first time, generate completely artificial FIB-SEM

tomographic images of highly porous materials, described by Boolean models of spheres

or cylinders. The computation of which, using standard methods, would have taken

weeks, even on high-performance machines. To this end, new acceleration techniques

were developed and combined with existing techniques, reducing the simulation time

by several orders of magnitude, without loss of physical accuracy. Results of simulated

FIB-SEM nanotomograms of highly complex structures are presented, consisting of more

than one hundred 2D images.

In the second part, a new segmentation algorithm for FIB-SEM data is presented, en-

abling the reconstruction of the three-dimensional structure of highly porous materials,

imaged by FIB-SEM nanotomography. The new method uses mathematical morphol-

ogy, and is shown to be the best performing documented in literature so far. For the

first time, simulated FIB-SEM data has been used to verify the correctness of the new



method. In two case studies, the geometric structure of a nanoporous additive for Li-ion

battery electrodes and nanoporous carbon electrodes for electric double layer capacitors

(EDLC’s) are reconstructed.

The optimization of porous materials requires virtual representations of their pore space.

This is achieved by using models from stochastic geometry, as described in the third part

of the thesis. Virtual models are described, representing the nanoporous additive as well

as the EDLC electrodes. The additive is modeled by level sets of a Gaussian random

field, while for the EDLC electrodes a modified version of the Boolean model of spheres

has been used. The modified Boolean model has been fitted to the observed structure

by means of simulating realizations of the model and minimizing a similarity measure

using stochastic optimization. The models, fitted to the reconstructed pore spaces of

both materials, show good agreement.

In the final part of the thesis, electrical properties of the electrodes made from the

nanoporous carbons are predicted using physical simulations.

For Lithium-Ion batteries, the influence of the nanoporous carbon on the charging be-

havior is investigated using simulations. A multi-scale model is employed using the

segmented FIB-SEM and synchrotron radiation computed tomography data. This es-

tablishes for the first time a multi-scale process for simulations, combining both exper-

imental techniques. The additive is homogenized on the nanoscale and inserted as an

effective medium into the microscale electrode. It is found, that the additive has a non

negligible influence on the charging behavior.

Multi-scale simulations are also used to investigate the electrical behavior of nanoporous

carbon electrodes for EDLC’s. To this end, the effective resistivities and capacitances of

the electrodes are computed using the segmented FIB-SEM data sets. Then, a macro-

homogeneous model is fitted to a measured electric impedance spectrum of one of the

samples, using the computed effective properties. Finally, the microscale simulations

are performed on model realizations with a given parameter range. This enables us to

optimize the resistance and the capacitance of the electrode.



Résumé

Caractérisation et Modélisation de Structures Carbonées Nanoporeuses

par Torben Prill

L’objectif de la thèse présentée ici est l’optimisation de matériaux carbonés nanoporeux

au moyen de la ”conception de matériaux virtuels”. En ce qui concerne cette échelle

de travail (≈ 10nm) la Nanotomographie FIB-SEM est la seule technique d’imagerie

donnant accès à une information sur la géométrie tridimensionnelle. Cependant, pour

l’optimisation du comportement, l’espace des pores doit être reconstruit à partir des

données tirées des images obtenues. Jusqu’à présent ce problème n’était pas résolu.

Pour pouvoir le mâıtriser, on a developpé une simulation d’images FIB-SEM. Les im-

ages FIB-SEM simulées peuvent être utilisées pour la vérification et la validation des

algorithmes de segmentation. En utilisant les données d’image simulées, un nouvel al-

gorithme pour la reconstruction de l’espace des pores à partir des données FIB-SEM a

été developpé.

Deux études de cas avec des carbones nanoporeux utilisés pour le stockage d’énergie sont

présentées, en utilisant les nouvelles techniques pour la caractérisation et l’optimisation

des électrodes Li-ion de type EDLC’S (” electric double-layer capacitors ”, soit super-

condensateurs). L’espace des pores reconstruit est modélisé géométriquement à l’aide

de la géométrie stochastique. Enfin, on a simulé les propriétés électriques des matériaux

en utilisant des structures modélisées et simulées.

Dans la première partie de cette thèse un nouveau logiciel de simulation pour la nanoto-

mographie FIB-SEM est décrit. Ce logiciel donne pour la première fois la possibilité de

générer des images tomographiques FIB-SEM complètement artificielles de matériaux

fortement poreux décrits par des modèles booléens de sphères ou de cylindres. En

utilisant des méthodes standard, la simulation correspondante aurait pris des semaines,

même sur des machines très performantes. A cette fin, de nouveaux outils d’accélération

ont été developpés et combinés à des algorithmes existant, réduisant le temps de sim-

ulation par différentes méthodes de réduction de dimension - sans perte d’exactitude

physique. Des résultats de nanotomogrammes FIB-SEM simulés de structures haute-

ment complexes, qui se composent de plus de cent images, sont présentés.

Dans la deuxième partie, un nouvel algorithme de segmentation des données FIB-

SEM est présenté, rendant possible la reconstruction de la structure tridimensionnelle

de matériaux fortement poreux imagés par nanotomographie FIB-SEM. La nouvelle

méthode utilise la morphologie mathématique, et de toute évidence est la méthode la



plus performante de la littérature jusqu’à présent. Pour la première fois des données FIB-

SEM simulées ont été utilisées pour démontrer l’exactitude de cette nouvelle méthode.

Dans deux études de cas, la structure géométrique d’un liant nanoporeux pour des

électrodes de batteries lithium-ion et des électrodes de carbone nanoporeux pour des

EDLC’S sont reconstruits.

L’optimisation de matériaux poreux demande des représentations virtuelles de leur es-

pace poreux. On les obtient par l’usage de modèles de géomètrie stochastique, comme

décrit dans la troisième partie de cette thèse. Des modèles virtuels sont décrits, représentant

le liant nanoporeux ainsi que les électrodes EDLC. Le liant est modélisé par seuillage d’un

champ aléatoire gaussien tandis qu’une version modifiée du modèle booléen de sphères

a été utilisée pour les électrodes EDLC. Le modèle booléen modifié a été calé sur la

structure observée en simulant des réalisations du modèle et en minimisant les écarts

entre simulation et observations par optimisation stochastique. Les modèles ajustés de

l’espace poreux des deux matériaux montrent une bonne équivalence.

Dans la dernière partie de la thèse, des propriétés électriques des électrodes en carbone

nanoporeux sont prédites par des simulations physiques.

Pour les batteries lithium-ion, l’influence du carbone nanoporeux sur le comportement

en cours de chargement est examinée par des simulations. Un modèle multi-échelles est

employé en utilisant les données FIB-SEM segmentées et les données tomographiques

obtenues par rayonnement synchrotron. Pour cela, un processus de simulations multi-

échelles, combinant les deux techniques expérimentales, est mis en oeuvre. Le liant est

homogénéisé à l’échelle nanométrique et intégré comme milieu effectif dans la microstruc-

ture de l’électrode. On a constaté que le liant exerce une influence non négligeable sur

le comportement en cours de chargement.

On utilise des simulations multi-échelles également pour l’étude du comportement en

chargement électrique des électrodes de carbone nanoporeux pour des EDLC’s. A cette

fin, les résistivités effectives et les capacités électriques des électrodes sont calculées en

utilisant des jeux de données FIB-SEM segmentés. Ensuite, un modèle macro-homogène

est adapté au spectre d’impédance électrique mesuré sur un des échantillons en utilisant

les propriétés effectives calculées. Finalement, des simulations sont effectuées à l’échelle

micro sur des réalisations de modèles pour un domaine de variation des paramètres.

Ceci nous permet d’optimiser la résistance et de la capacité électrique de l’électrode.



Zusammenfassung

Charakterisierung und Modellierung nanoporöser Kohlenstoffstrukturen

von Torben Prill

Das Ziel dieser Arbeit ist die Optimierung von nanoporösen Kohlenstoffmaterialien durch

virtuelles Materialdesign. Auf dieser Längenskala (≈ 10 nm) kann nur die Focused Ion

Beam - Scanning Electron Microscopy Nanotomography (FIB-SEM) die Geometrie einer

Probe dreidimensional abbilden. Jedoch muss für eine Optimierung des Materials der

Porenraum aus den Bilddaten rekonstruiert werden. Dies war ein bisher im Allgemeinen

ungelöstes Problem.

Um das Rekonstruktionsproblem zu lösen, wurde eine Simulationsmethode für FIB-

SEM-Bilder entwickelt. Die sich daraus ergebenden synthetischen Bilder konnten dann

benutzt werden, um Segmentierungsalgorithmen zu testen und zu validieren. Mit den

simulierten Daten wurde ein neuer, auf mathematischer Morphologie basierender Seg-

mentierungsalgorithmus entwickelt, welcher es erlaubt den dreidimensionalen Porenraum

hochporöser Materialien zu rekonstruieren.

In dieser Arbeit werden zwei Fallstudien mit nanoporösen Kohlenstoffen für Energiespe-

icherung vorgestellt, in denen die neuen Techniken zur Charakterisierung und Op-

timierung von Elektrodenmaterialien für Li-Ionen-Akkus sowie Doppelschichtkonden-

satoren (EDLCs) eingesetzt werden. Dann wurde der rekonstruierte Porenraum mit

Hilfe der stochastischen Geometrie geometrisch modelliert. Letztendlich wurden die

elektrischen Eigenschaften der Materialien simuliert, sowohl auf echten abgebildeten

Strukturen, als auch auf modellierten Strukturen.

Im ersten Teil der Arbeit wird ein neues Simulationsprogramm für FIB-SEM-Nano-

tomographie vorgestellt. Das Programm erlaubt es erstmals vollständige künstliche FIB-

SEM-Tomographiebilder hochporöser Materialien zu erstellen, welche durch Boolesche

Modelle aus Kugeln oder Zylindern beschrieben werden. Eine Rechnung dieser Art

würde, durchgeführt mit Standardmethoden, selbst auf Hochleistungsrechnern Wochen

in Anspruch nehmen. Daher wurden neue Beschleunigungsverfahren entwickelt und mit

existierenden Verfahren kombiniert, was die Rechenzeit um mehrere Größenordnungen

reduziert, ohne die physikalische Korrektheit zu beeinträchtigen. Am Ende des ersten

Teils werden simulierte FIB-SEM-Daten hochkomplexer Strukturen vorgestellt, welche

jeweils aus über 100 Einzelbildern bestehen.

Im anschließenden zweiten Teil der Arbeit wird ein neuer Segmentierungsalgorithmus

für FIB-SEM-Daten vorgestellt, welcher es ermglicht, die dreidimensionale Struktur



hochporöser Materialien zu rekonstruieren, welche mit FIB-SEM abgebildet wurden.

Die neue Methode basiert auf mathematischer Morphologie und es konnte gezeigt wer-

den, dass sie bessere Ergebnisse liefert als die in der Literatur dokumentierten Seg-

mentierungsmethoden. Zum ersten Mal wurden auch synthetische FIB-SEM-Daten

benutzt, um die Korrektheit der neuen Segmentierungsmethode zu verifizieren. Für

die zwei Fallstudien wurden die nanoporöse Geometrie des Additivs und des EDLC-

Elektrodenmaterials rekonstruiert.

Die Optimierung poröser Materialien benötigt virtuelle Darstellungen ihrer Porenräume.

Dies wird erreicht durch Modellierung mittels stochastischer Geometrie, wie sie im drit-

ten Teil der Arbeit beschrieben wird. Stochastische Modelle werden beschrieben, welche

die Struktur des nanoporösen Additivs sowie der EDLC-Elektroden reproduzieren. Das

Additiv wird durch Level-Sets eines Gaussian-Random-Fields modelliert, während ein

modifiziertes Boolesches Modell für die Modellierung der EDLC-Elektroden benutzt

wurde. Das modifizierte Boolesche Modell wurde mittels der Minimierung eines Ähnlichkeits-

maßes, welche aus Realisierungen des Modells berechnet wurde, an die beobachtete

Struktur angepasst. Für die Minimierung wurde ein stochastischer Optimierungsalgo-

rithmus verwendet. Die beobachteten Strukturen zeigen jeweils gute Übereinstimmung

mit den Modellen.

Im letzten Teil der Arbeit werden die elektrischen Eigenschaften der Elektroden berech-

net, welche aus nanoporösen Kohlenstoffen hergestellt wurden.

In der ersten Simulationsstudie wird der Einfluss des nanoporösen Additivs auf das

Ladeverhalten der Li-Ionen-Batterie untersucht. Dazu wird eine Multiskalensimulation

auf den segmentierten Datensätzen des Additivs und eine Synchrotron-Tomographie-

aufnahme verwendet. Dies erlaubt zum ersten Mal in einem Multiskalenprozess, Daten

aus beiden experimentellen Techniken in einer Simulation zu kombinieren. Dazu wird

die Ionenleitfähigkeit des Additivs auf der Nanoskala homogenisiert und als effektive

Leitfähigkeit auf der Mikroskala in die Elektrode eingebracht. Die Simulationsstudie hat

ergab, dass das Additiv einen nicht vernachlässigbaren Einfluss auf das Ladeverhalten

der Batterie hat.

Ebenfalls mit einem Multiskalenmodell wurde das elektrische Verhalten der nanoporösen

EDLC Elektrode simuliert. Dazu wurden die effektiven Leitfähigkeiten für elektrischen

Strom in der festen Phase und fü Ionen im Porenraum berechnet. Dann wurde ein makro-

homogenes Modell an experimentelle Impedanzspektroskopiedaten angepasst, unter Ver-

wendung der berechneten Eigenschaften. Schlussendlich werden Simulationen auf der

Mikroskala verwendet, um die elektrische Leitfähigkeit und die Kapazität von Mod-

ellrealisierungen zu berechnen. Diese Daten können dann dazu verwendet werden,

Leitfähigkeit und Kapazität der Elektroden zu optimieren.
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1
Introduction

Energy storage plays an important role in modern industrialized societies. It is widely

assumed, that due to climate change and a foreseeable scarcity of fossil resources, the

production and storage of energy will be of increasing importance. To tackle these

challenges, new technologies are needed, which leads to a pressure for innovation and

development of energy storage technology. Thus, the materials science of energy mate-

rials is of vital importance.

Materials with pore spaces on the microscopic scale play a special role in energy mate-

rials, since they provide a high surface area and permit transport of mass and charge

through the pore space. Simultaneously, the ever increasing power of modern computers

has created a trend to design materials virtually, using modeling and physical simula-

tions, a process called virtual material design. An exemplary workflow for the virtual

design of a porous material is depicted in Figure 1.1. First, a structural analysis of the

material is made, reconstructing the pore space of the material. In order to optimize

the pore structure, a model is developed and fitted to the reconstruction. This allows

systematic modifications made to the virtual pore structure. Then, using physical sim-

ulations, the properties of the modeled structure are predicted. In an iterative loop,

the model is modified and simulations are made for the modified model in order to find

the optimal structure to a given requirement. Finally, the information gained on the

optimal structure is used as a goal for the production of the optimal material.

The motivation of the work for this thesis, was to improve materials for energy storage

by virtual material design. To this end, new techniques for the analysis, characterization

and modeling of a class of energy materials were developed. Also, two applications are

discussed, where the new techniques have been used to either optimize an existing class

of materials or to achieve a better understanding of a material.

1
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Figure 1.1: Virtual Material Design Workflow

1.1 Thesis Outline

The starting point of this work was the problem posed by the segmentation of Fo-

cused Ion Beam Scanning Electron Microscopy nanotomography (FIB-SEM) data of a

nanoporous additive in a Li-ion battery, which is the application case given in Section

1.2.1. At the time, the segmentation problem could not be solved, in particular due to the

’shine-through’-artifacts introduced by the FIB-SEM imaging process (see Figure 3.4 on

Page 60). For FIB-SEM datasets there is no ground truth available, yet it was needed for

the development and testing of the segmentation algorithms for FIB-SEM data. Hence,

a decision was made to develop a simulation program for FIB-SEM nanotomography.

This program could then be used to test segmentation algorithms on synthetic data,

which have a known result. With the simulation at hand, a new segmentation algorithm

was then developed using mathematical morphology. After work on the segmentation

algorithm was finished, application cases were found in the battery additive mentioned

before as well as in a class of nanoporous battery electrodes for electric double layer

capacitors. For both case studies, FIB-SEM data were segmented, reconstructing the

pore space. Then, for both materials, stochastic models were fitted to the reconstructed

structures. Finally, simulation studies were made for both applications.

Reflecting the course of the work, the thesis has four main parts, each laid out as one

chapter:

• Simulation of FIB-SEM Data Sets,

• Morphological Segmentation of FIB-SEM Data,

• Stochastic Modeling of Porous Microstructures,

• Simulation of Physical Properties,
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where each chapter builds upon the results of the preceding one.

The FIB-SEM simulation program is described in Chapter 2 and has also been published

in Prill and Schladitz [2013], Prill et al. [2012]. The segmentation algorithm is described

in Chapter 3 and has been published in Prill et al. [2013b]. Testing on synthetic data

revealed that it outperformed any segmentation documented in literature at the time.

Also, from Chapter 3 on, results for both case studies are presented in the results section

of each chapter.

In order to optimize the microstructure of both materials, the need for modeling of the

segmented structures arose. Models from stochastic geometry fitted to both electrode

materials are shown in Chapter 4. A version of a Gaussian Random Field Cut model was

fitted to the nanoporous additive for Li-ion batteries. In order to model the EDLC elec-

trodes a non-standard version of a Boolean model was used, which emulates the smooth

morphology of the electrode material by a Gaussian filter and subsequent thresholding.

In Chapter 5 simulations of the physical behavior of both systems are discussed. For

the lithium-ion battery electrode, a study was made to compute the influence of the

nanoporous additive on the charging of the battery. The resulting charging curves are

shown in Section 5.3. For the EDLC electrode, important electrical properties have been

computed, to investigate the influence of the mesopores on the electrical properties of

the electrodes. Also, properties of modeled structures were computed, which can be

used to optimize the pore space properties to given requirements.

But first of all, in this chapter, a more detailed description of the materials discussed in

this thesis is given. Then, important concepts of stochastic geometry and mathematical

morphology are discussed, which are necessary for understanding the image processing

and modeling in this thesis.

1.2 Materials

Two porous materials are discussed in this thesis, which have been studied experimen-

tally and theoretically. The analysis and modeling techniques developed for this thesis

have been applied to both systems, to achieve a better understanding of the materials

and to make suggestions for possible improvements.
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1.2.1 Li-Ion Batteries

In the first case study, the segmentation, modeling and simulations were used to assess

the influence of a nanoporous additive on the charging and discharging behavior. The

electrode material consists of a 70 µm thick layer of Timcal SLP30 graphite particles

applied to a copper foil. The particles have a diameter of about d = 30 µm and are

responsible for the ion storage in the electrode, hence they are called ’active particles’.

An SEM image of the active particles is shown in Figure 1.2. When the electrode charges,

lithium ions intercalate into the active particles, storing charge in the electrode. To

improve the conductivity between the particles and the mechanical stability, an additive

consisting of Timcal Super P Li particles and a binder is added to the material, which

can be seen as a third phase in the SEM image. The additive has a particle size of about

d = 40 nm, which cannot be resolved by µCT.

Figure 1.2: SEM image of active particles in the lithium ion battery electrode.

This additive is porous at the nanoscale. The porosity can be seen in Figure 1.3, where

a magnified view is shown of the additive taken with an SEM. The porosity allows

the lithium ions to penetrate through the additive, improving the lithium flow into the

electrode. Yet, the additive still represents a diffusion resistance for the lithium ions. To

investigate the influence of the active particles on the ion transport during the discharge

of the battery has been one application for the analysis and modeling methods developed

in this thesis.

For the study, the additive has been imaged using FIB-SEM nanotomography. Then

with the segmentation algorithm, the nanoporous structure has been reconstructed.

The segmentation of the nanoporous additive is shown in Section 3.5.1. The pore space

between the active particles has been imaged using micro computed tomography at a

beam line at ESRF (see Figure 1.4).
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Figure 1.3: Zoom into the additive improving the conductivity between the active
particles.

Figure 1.4: Volume rendering of the segmented porous electrode without additive.
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Then the diffusion resistance of the additive has been calculated by simulating the

diffusion on the segmented solid phase of the additive, as shown in Section 5.3. This

results in an effective diffusivity for the additive, which can be used in macroscopic

simulations. Finally, the discharging of the electrode has been simulated using the

CT dataset. Several simulations have been made at different loads, with and without

considering the additive in the simulation. The resulting discharge curves are shown in

Section 5.3.2, and an interpretation on the additives influence on the curves is given.

1.2.2 Electric Double Layer Capacitor

The second material investigated in this thesis is a nanoporous electrode for electrical

double layer capacitors (EDLC’s). The electrode material is a nanoporous carbon with a

two scale pore space. Measurements on the material have shown that the smaller pores

have a diameter below two nanometers, and thus cannot be resolved with the SEM.

These pores are referred to as micropores in the following. The bigger pores are called

mesopores and have diameters of tens of nanometers. These pores can be resolved with

SEM and were imaged three dimensionally with FIB-SEM nanotomography.

The bulk material consists of activated carbon nanoparticles, which form the micropores

during activation. Also, the nanoparticles are sintered during the activation process. To

prevent the particles form completely ’baking together’, a pore stabilizer is added, to

produce larger pores, called the mesopores. The size of the mesopores can be influenced

by the amount of pore stabilizer added (Bruno et al. [2010]). There have been two

samples of the material, produced in the same process, yet with different a amount of

stabilizer, yielding two different microstructures (see Figure 1.5). The two data sets are

referred to as S12 (Figure 1.5, left) and S14 (Figure 1.5, right).

Figure 1.5: SEM images of the two mirostructures of EDLC electrodes, S12 (left) and
S14 (right).
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The goal of the analysis of this material is to optimize the mesopore structure. Therefore,

the datasets have been segmented in Chapter 3. A stochastic model has been developed

to model the mesopore space, while mimicking the sintering of the particles. The model

has been fitted to the samples S12 and S14 in Chapter 4, yielding different parameters

each. Then, the dependence of the resistance and the capacitance of the mesopore

structure has been investigated using multi-scale simulations (see Chapter 5). Finally,

both properties are computed on realizations of the stochastic model. This information

can be used to optimize the pore structure to given requirements.

1.3 Mathematical Preliminaries

In this Section some mathematical concepts important throughout the thesis will be

introduced. Other mathematical models and theories, specific to the chapters, will be

introduced as they are needed.

1.3.1 Random Closed Sets

Later in the thesis microstructures will be modeled by random structures, which will

be represented by random sets. Since specific random models are used throughout the

thesis, the necessary theory will be introduced in this section. As we talk about random

sets, the theory of sets is revised based on the review given in Stoyan et al. [1995].

Extensive treatments of random sets can be found in Matheron [1975], Schneider and

Weil [2008], Serra [1988], Stoyan et al. [1995].

1.3.1.1 Basic Elements of Set Theory

A set is a collection of mathematical objects and is usually written with braces. For

examples the set S defined as

S = {1, 2, 3, 4}, (1.1)

is the set containing the numbers 1 through 4. All objects x in the set are called elements

of the set, in mathematical notation x ∈ S.
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Important mathematical operations on sets are the union, the intersection and the dif-

ference defined by

A ∪B = {x ∈ S : x ∈ A or x ∈ B}, (1.2)

A ∩B = {x ∈ S : x ∈ A and x ∈ B}, (1.3)

A \B = {x ∈ S : x ∈ A but not x ∈ B}. (1.4)

The latter definition is used to define the complementary set given by

Ac = {x ∈ S : x /∈ A}. (1.5)

Even though it is not explicitly given this definition depends on some superset S, where

A ⊂ S. In this thesis the superset will be either an image, where the complement

comprises the pixels/voxels of the image not in the set A, or Euclidean space, where the

complement will be all points in space not in the set A.

Also, implicit definitions of sets can be given, like the interval

(a, b) = {x ∈ R : a < x < b} (1.6)

which contains all real numbers greater than a and less than b. Thus (a,b) is a subset

of R, (a, b) ⊂ R.

For the models in this thesis, it is sufficient to consider subsets S of the n-dimensional

Euclidean space S ⊂ Rn. As all structures will be either linear S ⊂ R, planar S ⊂ R2 or

three dimensional S ⊂ R3. Since all elements of the sets are elements of a vector space,

they allow the operations of addition and multiplication. To define these operations

for the sets, the operations are computed on the elements of the set. Hence, the set

multiplication is defined by

cA = {cx : x ∈ A} (1.7)

for real c ∈ R and A ⊂ Rn. If c = −1 the multiplied set is called the reflected set Ǎ

Ǎ = −A = {−x : x ∈ A}. (1.8)

With the elementwise addition, sets can be translated. Thus the translated set by a

vector x is given by

Ax = A+ x = {y + x : y ∈ A}, (1.9)

for A ⊂ Rn. Both the reflected set and the translated set will be used to define mor-

phological operations.
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Other operations on sets needed later are the Minkowski addition and subtraction of

two sets A and B with A,B ⊂ Rn. The Minkowski addition is defined by

A⊕B = {x+ y : x ∈ A, y ∈ B}. (1.10)

The Minkowski subtraction is analogously defined by

A	B = {x− y : x ∈ A, y ∈ B}. (1.11)

The effect of these operations on subsets of Euclidean spaces can be seen when using

them in morphological operations as in Section 1.3.3.

1.3.1.2 Random Closed Sets

Many microstructures and all microstructures in this thesis are modeled as random

closed sets (RACS). RACS comprise a huge class of models and are thus a quite general

concept. Later, some prominent examples will be introduced, but before that, some

theory with some important definitions will be reiterated. The Theory of RACS has

been intensively studied by G. Matheron (Matheron [1975]).

A RACS is an extension of a random number to closed subsets of a general space. In

this thesis, we will restrict ourselves to closed subsets of Rd. Just like a random number

is a measurable mapping from some probability space Ω into the real numbers R with

a suitable σ-algebra, a random set is a mapping from a probability space Ω into the

subsets of Rd, again with a suitable σ-algebra. The technicalities are quite tricky and

are discussed in Stoyan et al. [1995] and Schneider and Weil [2008]. Intuitively, as

each realization of a real number is a number drawn from a distribution (e.g. normal,

Poisson), each realization of a RACS is a subset ofRd. The equivalent of the distribution

is determined by the model, i.e. the definition of the RACS. Thus the definition of the

RACS is a broad concept which leaves a lot of space for model building. Still, some

general results and properties are defined in the next section.

1.3.1.3 The Choquet Theorem

An important result from the theory of RACS is the Choquet Theorem. It states that

any RACS Ξ can be characterized by its Choquet Capacity

TΞ(K) = P (Ξ ∩K 6= ∅). (1.12)
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The argument of the Choquet capacity are all compact subsets of Rd, denoted K. For

each K, the Choquet capacity take values between 0 and 1. It can be shown, that

the Choquet capacity completely characterizes the random set. In practice the complete

capacity cannot be computed, so one resorts to a number of compact sets to characterize

the RACS. For example, the set consisting of the two points {x, x + h} separated by

a vector h will be used to measure the covariance of the set. Also, a ball of radius r

will be used to determine the spherical contact distribution function. In general, the

characterization becomes more descriptive the more sets are used. The exact choice of

sets yet remains intuitive and dependent on the model.

1.3.1.4 Stationarity and Isotropy

Stationarity of a RACS is the equivalent to homogeneity in physical theories. A RACS

is stationary if the distribution is invariant under translation, i.e. the set Ξ and the

translated set Ξx by a vector x have the same Choquet capacity. Thus ∀x ∈ R,K ∈ K,

TΞ(K) = TΞx(K). (1.13)

Similarly, the set is said to be isotropic iff. its distribution is invariant under rotation,

i.e.

TΞ(K) = TRΞ(K), (1.14)

where RΞ is the rotated set and R is some rotation matrix.

1.3.1.5 Ergodicity

Another important property of RACS, in the context of measurements, is ergodicity. A

random set Ξ is ergodic if:

lim
n→∞

1

Vol(Wn)

∫
[1− TΞ(K ∪K ′x)]dV = (1− TΞ(K))(1− TΞ(K

′
x)), (1.15)

where Wn is a convex observation window of size n, e.g. a ball of radius n, and K and

K
′

are convex sets.

This is important, since properties of RACS are often given by spatial averages of the

form
1

Vol(Wn)

∫
Wn

f(Ξ)dV. (1.16)

For ergodic sets it can be proven, that estimations on one realization of these spatial

averages converge to the ensemble average over all realizations in the limit of an infinitely
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large observation window, i.e.

lim
n→∞

1

Vol(Wn)

∫
Wn

f(Ξ)dV = E(f(Ξ)), (1.17)

where the expectation is taken over all realizations.

In particular, the ergodicity implies that estimations of properties of RACS like covari-

ance and granulometry (see Section 4.2 for definitions), taken on one realization, will

converge to a deterministic value for large observations windows. This enables to es-

timate these properties on single images of a structure. All RACS in this thesis, i.e.

Poisson point procsses, Boolean Models and Random Fields are ergodic random sets.

1.3.2 The Poisson Point process

For the acceleration of the SEM simulation, the SE generation will be modeled as a

Poisson point process. Also, the Poisson point process is the basis for the stochastic

modeling of microstructures in Chapter 4. Hence, the Poisson point process will be

described in this section in quite general form, starting with general point processes.

A general point process is a locally finite set of points

Φ = {x0, . . . , xn} (1.18)

randomly distributed in space Rn (see Figure 1.6). Typical n used in this thesis, will

be n = 1 where the Poisson point process is a collection of point on the real line, n = 2

which corresponds to a collection of point on a two-dimensional space, e.g. an image,

and n = 3 which corresponds to a distribution of points in space, what will be used

to model three-dimensional microstructures. Figure 1.6 shows a realization of a point

process in two dimensions. It can be shown that Φ is a random closed set as defines in

Section 1.3.1.

A simple example for a point process, is the stationary Poisson point process. The

Poisson point process can be defined in different ways, but the two following properties

suffice:

1. The number of points of Φ in a bounded set is Poisson distributed with some

density parameter λ > 0 of the process, thus

P (Φ(B) = m) = (λV (B))m
exp(−λV (B))

m!
. (1.19)
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Figure 1.6: Realization of a point process: Points are randomly placed in a two
dimensional space.

Where P (Φ(B) = m) is the probability of having m points in the set B and V (B)

is the volume of B.

2. The number of points in disjoint subsets of Rn are independent random variables.

Like any other RACS, the Poisson point process is completely characterized by its Cho-

quet capacity (see the Choquet theorem in 1.3.1.3). Even though the Choquet capacity

is defined for all compact sets, individual void probabilities of different measurable sets B

are important properties of the process. A common characteristic is the void probability,

which is given by

νB = P (Φ ∩B = ∅), (1.20)

where B is a compact subset ofRn. For a stationary Poisson process, the void probability

is given by

νB = e−λVol(B). (1.21)

Another common characteristic is the contact distribution function, which is closely

related to the void probability. The contact distribution function for the set B is given

by:

HB(r) = 1− νrB = 1− P (rB ∩ Φ = ∅). (1.22)

Important special cases of B are the unit ball which yields the spherical contact distri-

bution HS with

HS(r) = 1− exp(−λV d
B(r)), (1.23)
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where VB(r) is the volume of a ball of radius r in d dimensions. Thus

V 1
B(r) = 2r in 1D, (1.24)

V 2
B(r) = 4πr2 in 2D, (1.25)

V 3
B(r) = 4

3πr
3 in 3D. (1.26)

The spherical contact distribution function is the probability of hitting at least one point

of the process with a randomly placed sphere in space. Also for stationary processes it

is the distribution function of the distance from the origin to the closest point of the

process.

The stationary Poisson point process can be generalized to the definition of the general

Poisson point process, which also includes a variable intensity λ(x). Then property one

in the above definition has to be extended to

P (Φ(B) = m) = Λ(B)mexp(−Λ(B))
m! (1.27)

Λ(B) =
∫
B λ(x)dx, (1.28)

while property (2) remains unchanged.

Intuitively the variable intensity can be interpreted as λ(x) being the probability of hav-

ing a point at position x. The general process is not stationary, unless the intensity λ(x)

is invariant under translation. When using a variable intensity, the void probabilities

and contact distribution functions have to be modified accordingly.

1.3.3 Mathematical Morphology

Mathematical Morphology is a method used in image processing which contrary to most

other methods works with sets instead of functions. For an overview see Serra [1988].

Although the mathematical framework is defined for sets, these sets can be represented

by binary images. Also, mathematical morphology can be defined for gray level images.

The basis of morphology is made of two fundamental operations, erosion and dilation.

Even though more complex operations are possible (and widely used) all of them are

based on the two fundamental ones. Both dilation and erosion can be defined using the

Minkowski addition and subtraction respectively.
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Figure 1.7: Effects of the morphological dilation and erosion on a dummy set (b):
the dilation enlarges the set and closes small gaps as in (a), the erosion makes the set

smaller and erases small details as in (c). (The original set is indicated in gray)

1.3.3.1 Dilation and Erosion

The dilation of A with B is defined as

A→ A⊕ B̌, (1.29)

where B̌ is the reflected set of B and ⊕ is the Minkowski addition as in (1.10)

B̌ = {−x : x ∈ B}. (1.30)

Analogously to the dilation we can define the erosion by

A→ A	 B̌. (1.31)

with the Minkowski subtraction as in (1.11).

The effect of these operations is demonstrated in Figure 1.7. In a dilation, the reflected

set B̌ is translated over all space. Every point covered by the set B, if it still intersects A

is included in the dilated set. In an erosion all points which are covered by B̌ during the

translation while still hitting the complement are removed from the set. Thus the shape

of B determines the outcome of the dilation. In the terminology of morphology, the set

B is called the structuring element. Usual structuring elements are line segments, balls,

and squares of various sizes.

In the course of this thesis we adopt the notation in Soille [1999]. So the dilated set is

written as

δB(A) =
⋃
b∈B

A−b (1.32)
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and the eroded set is written as

εB(A) =
⋂
b∈B

A−b. (1.33)

1.3.3.2 Opening and Closing

In the course of the thesis more complex operations are used, either for image processing

in Chapter 3 or for image analysis in Chapter 4. These operations can be constructed

from combinations of erosions and dilations. The simplest ones are the morphological

closing and opening. The closing γB(A) is defined by a dilation with the SE and a

consecutive erosion with the reflected structuring element

φB(A) = εB̌[δB]. (1.34)

Analogously the opening is defined by

γB(A) = δB̌[εB]. (1.35)

1.3.3.3 Grayscale Morphology

Although originally defined for sets, morphological operations can be extended to grayscale

images. Since all morphological operations are defined with the fundamental dilation

and erosion, a definition of these operations for grayscale images is sufficient. Therefore,

the union and the intersection are replaced by the infimum and the supremum operation,

respectively. This leads to the definition of the dilation on an image f with structuring

element B as

δB(f) =
∨
b∈B

f−b (1.36)

with the supremum operation
∨

. The erosion on grayscale images is defined analogously

with the infimum operation
∧

as

εB(f) =
∧
b∈B

f−b. (1.37)

The opening and closing operations are defined as before, but with the new grayscale

dilation and erosion operation.
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1.3.3.4 Morphological Gradient

Another common operation on gray scale images as well as on sets is the morphological

gradient ρB with the structuring element B (see Beucher [1990]). The morphological

gradient is defined as the difference of between the dilation and erosion

ρB(f) = δB(f)− εB(f). (1.38)

For grayscale images, the morphological gradient has similar properties than the usual

gradient magnitude operator in standard image processing. If the structuring element

is a ball of radius λ, it can be shown that in the limit

ρB = lim
λ→0

δλB − ελB
2λ

(1.39)

on a differentiable function the morphological gradient is equivalent to the norm of the

gradient ρ(f) = ‖∇f‖. These and more complex operations will be used to solve the

segmentation problem in Chapter 3 and to characterize random sets in Chapter 4.



2
Simulation of FIB-SEM Data Sets

The work in this chapter has been published in:

T. Prill and K. Schladitz. Simulation of FIB-SEM images for analysis of porous

microstructures. Scanning, 35(3):189–195, 2013

and

T. Prill, K. Schladitz, and C. Wieser. Simulation of FIB-SEM images for segmentation of

porous microstructures. Proceedings of the 1st International Conference on 3D Materials

Science, pages 159–164, 2012

2.1 Scanning Electron Microscopy and FIB-SEM Nanoto-

mography

Scanning Electron Microscopy (SEM) (Reimer [1998]) is a high resolution imaging tech-

nique, designed to analyze materials down to the nanoscale. It is a 2D imaging technique

which can, depending on the signal used, resolve topological or chemical information (For

a picture of an SEM equipment see Figure 2.1). Its fields of application range from the

analysis of biological specimens to crystallography and material science. It is typically

used for the analysis on length scales from several micrometers to several nanometers.

Thus, its resolution lies between the microanalysis with micro-Computed Tomography

(micro CT) and sub-nanometer analysis with instruments such as the atomic force mi-

croscope and transmission electron microscope. In the course of this dissertation, it is

used to analyze the topology of nanoporous carbon structures.

17
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Figure 2.1: Photo of a FEI Helios Nanolab 600i Dual Beam FIB-SEM station (source:
FEI Helios NanoLab 600i Datasheet from www.fei.com)

For the imaging, an electron beam is generated by a cathode and focused by an array

of coils onto the specimen (Fig 2.2). When the beam hits the specimen, it interacts

with the specimen and generates signals, which can be detected by different detectors.

To form an image, the electron beam scans the specimen line by line and the signal

intensity is displayed as gray values on a screen. The result is a two-dimensional image

of the corresponding signal. The signals most commonly used consist of electrons that

are radiated from the focus point, such as the backscattered electron signal (BSE) and

the secondary electron signal (SE), but also X-rays which can be detected. Each signal

contains different information on the material and through the scanning, the signals

can be resolved spatially. The BSE and the X-ray signal can be used to resolve the

chemical composition of the specimen while the SE signal is mostly used to analyze the

topography of the specimen, i.e. the microstructure. Since the electron beam can be

focused to a very small area, SEM provides a very high resolution down to the nanometer

scale.

For the interpretation of the images, it is necessary to understand the generation of the

different signals. In general, at the interaction point the electrons enter the specimen

and diffuse through the material, forming a diffusion cloud also called the interaction

volume (see Figure 2.3). As can be seen in Figure 2.3, there is usually a non-zero electron

density at the surface, thus electrons from the beam can escape from the surface. When

detected, they form the backscattered electron signal (BSE). Throughout the diffusion

process the electrons lose energy through inelastic scattering with the atoms or molecules
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Figure 2.2: Schematic view of the Scanning Electron Microscope.

of the material. Since the intensity of the BSE signal is roughly proportional to the area

of intersection of the diffusion cloud with the surface, the intensity of the BSE signal

rises with the angle of incidence of the beam. This results in a shading effect from the

specimen surface.

As the electrons from the beam diffuse through the material, they scatter inelastically at

the atoms and molecules. In this process, they lose energy which is usually converted into

heat, but sometimes the energy liberates a bound electron from an atom or molecule in

the crystal structure which then in turn diffuses through the specimen. These electrons

are called secondary electrons (SE). The SE have a lower energy and a lower range than

the primary electrons (≈ 1 nm). This can be used to extract information with an even

higher resolution, since most SE are generated in a very small volume around the focus

point. The lower kinetic energy of the SE makes them distinguishable from the BSE.

It is conventional to define electrons with a kinetic energy of less than 50 eV as SE. As

can be seen in Figure 2.2, the SE and BSE are counted by different detectors.

Aside from the electron signals, the beam-specimen interaction also produces radiation,

mainly in the X-ray spectrum. This can be used mainly for chemical analysis, but this

topic is not persued in this thesis.

2.1.1 FIB-SEM Nanotomography

As indicated in the last section, the SEM is a two-dimensional imaging device by design.

Yet, it is often desirable to analyze the three-dimensional microstructure or the three-

dimensional distribution of different elements in a specimen. For that purpose, the

Focused Ion Beam nanotomography (FIB-SEM) has been developed. It uses a focused
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Incident Beam

Focus Point

Diffusion Cloud

Figure 2.3: Schematic view of beam-specimen interaction: The electrons enter the
specimen (incident beam in yellow) and diffuse through the specimen. The electrons
get the more dispersed the further they get from the focus point. (The electron density

is color-coded from yellow to pale-red)

ion beam to mill material off the surface of the specimen. This allows, in combination

with the SEM, to obtain a depth resolution of the specimen. Over the years, a standard

setup for FIB-SEM has been developed which is depicted in Figure 2.4. Here, a trench-

like structure is milled out of the surface laying bare a block of material to be analyzed.

Then, an SEM-image is taken, showing the front of the block (indicated by the electron

beam in Figure 2.4). To produce 3D-data, the FI-beam mills slices of the block of

material and after each slicing one SEM-image is taken. The result is a stack of SEM-

images, which contains 3D-information. Figure 2.5 shows a first slice of such a FIB-SEM

image stack. Due to the difference between the resolution of the SEM and the precision

of the FIB-milling, the voxel size in the 3D-data is mostly anisotropic, with the lowest

resolution usually in the slicing direction. Also, to perform the milling and the imaging

in one step, it is necessary to tilt the specimen with respect to the electron beam. The

most widely used tilt angles are α = 52◦ and α = 54◦. This again results in an anisotropy

in resolution, with the edge length of voxels in y-direction being given by sin( 1
α).

However, the spatial structure of the specimen cannot be reconstructed on a voxel by

voxel basis. This is due to the finite interaction volume of the electron beam. Also,

for porous microstructures, the pore space is transparent for the SEM. This leads to

’shine-through’ artifacts, where structures from lower-lying slices are visible in higher

slices (for details see Chapter 3).

The motivation for this thesis was to develop methods to analyze FIB-SEM data. The

work presented in this section, is the development of a program to simulate FIB-SEM

nanotomography. The simulation is needed to generate synthetic FIB-SEM dataset, on
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Figure 2.4: Schematic view of the FIB-SEM setup.

Figure 2.5: SEM image if the FIB-SEM setup: The porous material in the middle
was coated with a layer of platinum, to improve the accuracy of the milling.

which algorithms for analysis and segmentation of experimental FIB-SEM datasets can

be developed.

2.2 Simulation of SEM Images

To generate accurate SEM images, a model for the simulation has to be developed,

containing the setup within the SEM, in which the images were generated. In the
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Figure 2.6: Schematic view of the simulation setup: The diffusion is simulated at a
small scale (red square), with the boundary conditions determined by the surrounding

detector and beam setup.

simulation, the SEM is effectively modeled at two different scales. At the small scale,

the diffusion, i.e. the beam-specimen interaction is simulated. At the larger scale, a

model for the chamber and the positions of the detectors has to be found, where the

large-scale model effectively determines the boundary conditions of the small-scale model

(see Figure 2.6).

In the model, it is assumed that the specimen is much smaller than the chamber. The

beam always enters the diffusion simulation perpendicular to the x-y-plane, since it is

assumed that the electron gun is infinitely far from the specimen. This determines the

initial conditions for the diffusion simulation. In the coordinate system of the small-scale

simulation, the beam electrons will enter the geometry along the z-axis, coming from

z = −∞ (see Figure 2.7). The electron beam scans the geometry along the x-y-Plane,

with z = 0. Since the point of view of any SEM image is the beam source, this will

produce images looking at the geometry from the top. To account for the finite beam

width, the electron beam’s position in the x-y-plane is distributed following a normal

distribution centered around the focus point and with the spot size as its variance.

To generate an image, the signals have to be estimated for every pixel depending on

the underlying geometry. Therefore, the initial conditions are varied such that the beam

scans the three-dimensional geometry along the x-y-plane. Then the diffusion simulation
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Simulated Volume

Matrix Phase

Electron BeamScanning

Focus Point

z-Axis

Figure 2.7: Schematic view of the simulation setup: the electron beam scans the
geometry. For each pixel, the diffusion from the focus point is simulated and the

escaping electrons are tracked until they leave the simulated volume.

is run and the estimated intensities are converted to the graylevel in the image (see Figure

2.7 for a sketch).

At the small scale, due to constraints from the binning, the simulated volume is finite

and any electrons leaving this volume will not be simulated (see simulated volume in

Figure 2.7). After the diffusion of the electrons has been simulated, any electron leaving

the simulated volume will be counted as either detected or absorbed in the chamber.

Due to the small size of the simulated volume in comparison to the SEM chamber,

which houses the detectors, we assume that the detection rate of electrons depends

only on the electrons’ energy and direction, but not on the position. To determine

the detection rate, the electrons’ path from the specimen through the chamber to the

detector would have to be simulated. Therefore, the individual chamber design of the

microscope would have to be known and digitized, including the electric fields often used

to draw SE to the SE detector. Although this was done before, e.g. in Konvalina and

Müllerová [2006], it is very time consuming and would undermine the goal of creating a

general purpose simulation. Therefore, a threshold on the angle between the electron’s

momentum and the z-axis is used to discriminate electrons that are not detected. The

threshold angles are parameters of the simulation and can be chosen for the BSE and the

SE independently. This corresponds to a situation where the specimen is much smaller

than the detectors and the specimen is facing the detector towards the z-direction.

Also, it is assumed that no electric fields exist in the chamber. Although this is an
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Figure 2.8: Experimental image showing the region of interest to be simulated, arrows
indicate shine through artifacts and the matrix of the porous material to be character-

ized.

approximation, most features of the SEM images can be simulated accurately, since

they depend on the geometry and the diffusion simulation.

2.2.1 Simulation of Electron Diffusion

For the small-scale simulation, it is most important to reproduce the beam-specimen

interaction, i.e. the diffusion cloud. In a diffusion process, particles propagate through

a medium in a non-deterministic way, along random paths. In general, depending on

the application, different avenues of modeling the diffusion process have been followed.

One is the Monte-Carlo method, described in the next section. Other methods rely on

analytical methods. For instance, for energies above 5 keV the backscattering coefficient

of a planar surface can be approximated by

η(Z, φ) = (1 + cosφ)
−9√
Z , (2.1)

where φ is the angle of incidence of the beam- or primary electrons (PE) and Z is the

atomic number of the specimen element (Reimer [1998], p.142). This gives a reasonable

fit for the described scenario and can be used in a first attempt to model BSE-images.

But in a complex geometry, the model constraints are violated, for instance on edges.

There the diffusion cloud touches more surface area than in the bulk region and the edge

appears brighter. That effect cannot be modeled by this simple empirical formula.
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A more sophisticated technique to model the diffusion cloud effects is an analytical

method based on the modeling of the diffusion by a partial differential equation. The

equation describes the evolution of the electron density in time as the electrons propa-

gate. In this field, a number of methods have been proposed (see Reimer [1998] p.106).

Even though the models differ in the approximations made, all rely on solving a radiative

transport equation (RTE) of the form

∂f

∂s
+ v∇f = N

∫
[f(~x, ~v′, s)− f(~x,~v, s)]σ(‖~v − ~v′‖)d~v′, (2.2)

where f is the electron density, ~v the direction of propagation and s an ordering param-

eter, e.g. time, σ being the scattering cross section of the electrons with the medium

(see Section 2.2.2 for a definition). In its most general form the RTE is defined in an

8-dimensional configuration space (3 space dimensions + 3 directions + electron energy

+ time) and is only hardly solvable numerically. Therefore, to solve the equation a num-

ber of approximations have been proposed, e.g. the restriction to single scattering or

small angle scattering as in Lewis [1950] or Fernández-Varea et al. [1993]). Other models

are based on a point source beneath the surface plus single scattering as in (Archard

[1961]). Another problem is the simulation of the propagation of secondary electrons,

which have a much smaller range than the primary electrons. Thus, the discretization

has to be very fine, using exorbitantly much memory. So to avoid these problems and

to achieve the necessary physical accuracy while using a small amount of memory, the

Monte Carlo technique was chosen for the simulation.

2.2.1.1 The Monte Carlo Method

To simulate the electron diffusion process, the Monte Carlo method is the most widely

used. It was pioneered in SEM simulation among others by Myklebust et al. [1976]

and Joy [1995]. There are numerous implementations of the technique documented in

the literature. Examples are the MONSEL series developed by the NIST (Karabekov

et al. [2003], Lowney [1995a], Lowney and Marx [1994], Lowney [1995b, 1996]), which we

will use for the path generation. Other examples are MCSEM by Gnieser et al. [2008],

PENELOPE by Salvat et al. [2011] or the CASINO series (Demers et al. [2011], Drouin

et al. [2007]).

However, MONSEL is designed to simulate specific line width applications and cannot

deal with complex structures. Also, it is too slow to simulate complete FIB-SEM stacks

with hundreds of images. This holds for the other programs, too. In the course of

this work, it was decided to use MONSEL 2 for the physical simulation, which means
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BSE
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free path

focus point

scttering event

Figure 2.9: Illustration of the diffusion model: the primary electrons enter along the
yellow line, then a few random electron tracks are shown. The red lines represent a free

path, while the black dots represent scattering events.

the generation of the electron paths. The generated paths are used by the simulation

program for the simulation of FIB-SEM nanotomography of complex microstructures,

as described later in this section.

In the Monte Carlo method, the electrons are tracked individually through the material,

which means that the electrons propagate through the matrix along random paths which

consist of random steps. Each step consists of a free path where the electron propagates

along a straight line and a scattering event, where the electron changes its energy and/or

direction (see Figure 2.9 for a sketch and Figure 2.11 for a simulation).

The validity of the method rests on the important assumption, that the electrons do

not interact. This enables to simulate each electron individually. If this were not the

case, different paths of the process would influence each other, making the simulation

much more complicated. Also it is assumed, that the scattering centers are distributed

randomly inside the matrix at a constant density, which means, that the length of free

paths is homogeneous and isotropic within the matrix, i.e. it does not depend on the

position or direction of flight of the electron. Also, the scattering probabilities are the

same for every point in the specimen. Even though it would be possible to simulate

varying material properties, it is not incorporated into the simulation. An exception is

the case, where the electron propagates through the vacuum and no scattering occurs

at all.

Each path the electrons take through the specimen is characterized by a sequence of

random state vectors. The state at the end of each step is characterized by the state

vector xn which consists of the position, the direction of the momentum and kinetic

energy of the electron xn = (~rn, ~dn, en) ∈ R3 × S2 ×R+ (see Figure 2.9). All paths can
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be modeled by a sequence of random state vectors

(X) = (X0, X1, . . . , Xn). (2.3)

The vectors Xi are random vectors containing the random position vector ~R, the random

direction vector ~D and the random energy E. Each realization (x) of the random sequence

X represents a path taken by an electron,

(x) = (x0, x1, . . . , xn), (2.4)

where sequence (x) is the path and the xi = (~ri, ~di, ei) are the state vectors in it.

To model the process, the transition probabilities have to be known. The transition

probability to the new state depends on the current state only. That means, that the

electron path sequence is a realization of a Markov process. The transition probability

has the form

P (Xn+1 = xn+1|Xn = xn . . . X0 = x0) = P (Xn+1 = xn+1|Xn = xn). (2.5)

This has important implications for the simulation, since it means that each path taken

from the current state vector xn is valid in the sense that it is a realization of X. This

will be used later to accelerate the simulation. Also, the transition probability contains

all the physical information needed for the accurate modeling of the diffusion process.

It contains the change of the position, the direction, and energy after every step:

P (Xn+1 = xn+1|Xn = xn) =

P (Rn+1 = rn+1, Dn+1 = dn+1, En+1 = en+1|Rn = rn, Dn = dn, En = en).
(2.6)

In order to form a sensible path, the position vector has to perform incremental steps.

In the model, it is assumed that between each scattering event the electron travels along

a straight line of a random length, called the free path length S (see red lines in Figure

2.9). The free path length S is a random number that has a distribution which depends

on the kinetic energy of the electron. The position of the new state depends on the

kinetic energy and the direction of momentum in the current state through the relation

~Rn+1 = ~Rn + ~DnS. (2.7)

The expectation of S is called the mean free path length Λ = E[S]. After the electron has

passed through the free path along a straight line, it scatters and its momentum changes.

The new momentum vector ~δv is a random vector which depends on the azimuthal angle

φ and polar angle θ relative to the current momentum of the electron (see Figure 2.10).
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Figure 2.10: Parametrisation of the scattering angles: polar angle θ and the azimuthal
angle φ between the direction vector before ~dn and after scattering ~dn+1

~Dn+1 = ~Dn+1(θ(Dn), φ(Dn)) (2.8)

A similar relation holds for the kinetic energy of the electron. The energy of the new

state is given by the current energy minus some energy loss δE:

En+1 = En − δE(En). (2.9)

where δE is again a random number depending on the current state’s energy. The exact

form of the transition probability depends on the physical model used and is described

in more detail in Section 2.2.2. As an example, Figure 2.11 shows 100 simulated paths.

The initial condition x0 of every path corresponds to the electron from the beam entering

the specimen. In the simulation, all incident electrons have the beam energy E0 and

the direction ~d = (0, 0,−1). The initial position is the focus point where the beam hits

the specimen. The path ends either when the energy of the electron is so low that it

is absorbed in the material or when the electron exits the simulated volume. Then the

signal intensities are estimated from the statistics of the paths.

The simulated signal intensities are detection probabilities and are given by the back

scattering coefficient η and the secondary electron yield δ. They can be estimated by

expectations over all simulated paths. If the electron exits the specimen in a way that

it can be detected, the electron is counted as a BSE or a SE, respectively, depending on

its energy. In the simulation, the detected final states are given by all states where the

electron exits the simulated volume and has a minimal angle towards the surface. Details

are given in Section 2.2.3. In practice this can be changed easily. The signal intensities

of the BSE and SE signals can then be estimated by counting the electrons which have

a detected final state. The BSE signal is given by the back scattering coefficient η,

which is the probability of a primary electron to resurface from the specimen and being
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Figure 2.11: The illustration shows 100 simulated paths. The paths start at the focus
point and end after they either either left the material or were absorbed by it.

detected. By using the Monte Carlo method, η can be estimated by simulating a large

number of electron paths

X = {(x0), (x1), . . . , (xn)} (2.10)

and then counting the paths which have a state in the set of detected final state Xf ,

e.g. all states with a position in the upper half space Xf = {xi|rz ≥ 0}. The estimator

for the back scattering coefficient η is then given by the fraction of detected electrons

η =
1∣∣X∣∣ ∑

(xk)∈X

1(Xf ∩ (xk) 6= ∅), (2.11)

where X is a set of simulated paths and the xk are the realizations in it. Since a path

can either be detected or not, which is a binary event, the number of detected electrons

is binomially distributed. Thus, the number of paths which end in a detected state

follows a binomial distribution with the backscattering coefficient η and the number of

simulated paths N =
∣∣X∣∣ as parameters,

nBSE = ηN ∝ B(N, η). (2.12)
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For large N , the distribution can be approximated by the Poisson distribution with the

parameter λ = Nη. The mean and the variance of nBSE are

E(nBSE) = Nη, (2.13)

var(nBSE) = Nη(1− η) (2.14)

and the mean and variance of the estimator η = nBSE
N are

E(η) = η, (2.15)

var(η) = η(1−η)
N . (2.16)

A good measure for the image quality is the standard deviation of the estimator which

is given by

SdtDev(η) =

√
η(1− η)

N
. (2.17)

One has to keep in mind, though, that the parameter η is different for each pixel, so the

standard deviation also changes. But still the dependence on N is the same throughout

the image, which means that to half the standard deviation four times as many electrons

have to be simulated.

A similar relation holds for the secondary electron yield δ. But it has to be taken

into account, that one primary electron can produce more than one secondary electron.

Which means that if the normalization is done with respect to the primary electrons,

the SE yield can become greater than one. This leads to a deviation from the binomial

statistics and usually a greater variance, which means a poorer image quality for the

same number of PE paths (a detailed treatment can be found in Reimer [1998], p. 166).

2.2.2 Physical Model

In order to simulate the right paths for the diffusion simulation of electrons, the paths

have to have the proper physical properties. The physical modeling enters in the tran-

sition probability, i.e. the step length (free path length) and the change of momentum

and energy through the scattering events. To have a simple and yet accurate model,

MONSEL 2 presented in Lowney [1995a] is used. It incorporates the simulation of pri-

mary and secondary electrons through a wide range of energies. Especially the fact that

MONSEL 2 uses the Monte Carlo technique for the processes at low energies, which

in other programs are mostly simulated with a so called parametric model, and not

with the Monte Carlo technique, is important. This allows the use of the Monte Carlo

technique for all electrons.
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2.2.2.1 The Scattering Model

The physical modeling of the electron paths is done by the differential scattering cross

section (DCS). All scattering events are described by their DCS dσ
dΩdW . The DCS is

the probability of a particle being scattered by a target into the solid angle element dΩ

and in the process loosing the energy dW . Thus, the DCS is the combined probability

distribution of Dn+1 in Equation 2.8 and δE in (2.9). The solid angle element is taken in

the electrons system of reference (see Figure 2.10) and only depends on the polar angle

θ. This means, that the azimuthal angle is distributed uniformly in [0, 2π). Thus, it is

sufficient to know the distribution of θ and s to characterize the paths. Later, this will

be used for the acceleration of the SE simulation.

Even though they will be treated equally, one simulated scattering event subsumes sev-

eral distinct physical events. For details refer to Chapter 3 in Reimer [1998]. In general,

scattering events are classified as either inelastic scattering events, where the electron

loses energy to the material, or elastic scattering events, where it does not. The com-

bined DCS of different types of scattering is given by the sum of the individual events.

MONSEL 2 uses the quantum mechanical Mott-DCS for the elastic scattering cross sec-

tion, which is important for the wide angle scattering behavior (see Figure 2.12 for an

examples for two elements). For the inelastic processes, the model uses the Møller-DCS

(Møller [1932]) to simulate the ionization of valence electrons, combined with a model

for the density of the valence electrons in the medium. Of special importance is the

ability of MONSEL 2 to simulate the SE with the Monte Carlo method. Therefore, the

model of Kotera et al. [1990] has been implemented, which simulates the generation of

SE through the generation of plasmons by the PE and their subsequent decay into SE,

which is the dominant process of SE generation at low energies.

2.2.2.2 Energy Loss

Since in the diffusion process the electron loses energy through inelastic scattering, the

energy loss has to be modeled. Therefore, MONSEL 2 uses the continuously slow-

ing down approximation (CSDA) or Bethe-approximation (for details again see Reimer

[1998]). In the approximation, it is assumed that the electrons continuously transfer

energy to the material as they propagate. The energy loss is modeled by the stopping

power T. This is the energy loss per unit path length and can be approximated by

T (E) =

∣∣∣∣ dEρds
∣∣∣∣ = 7.8 ∗ 1010Z

A

1

E
ln

(
1.166

J

1 + k JE

)
, (2.18)
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Figure 2.12: The elastic scattering cross section of electrons and positrons on carbon
(left) and gold (right) atoms. The plots show the dependence on the scattering angle θ

in Figure 2.10 for different energies. (Images taken from Salvat et al. [2011]).

where ρ is the material density, Z is the atomic number, A is the atomic weight, E is

the electron’s energy and J and k are material parameters included in the MONSEL 2

simulation (see Joy and Luo [1989]). Since this models a continuous energy loss over

the path, the kinetic energy of the electron is a continuous function of the path length

followed by the electron. Also, the energy loss is much stronger at lower kinetic energies.

These two facts will be used later on, for the acceleration of the simulation.

2.2.2.3 The Free Path Length

The distribution of the free electron path length S can be calculated with the scattering

cross section σ. This is the probability of any interaction happening with a target and

can be calculated by integrating the DCS over the solid angle and all energies

σ =

∫ ∞
0

∫
S2

dσ

dΩdW
dΩdW. (2.19)

Since all scattering events are independent of each other, the number of scattering events

follows a binomial distribution, with the number of scattering centers (e.g. atoms or

molecules) passed by the electron N and the scattering probability σ as parameters.
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Thus, the number of interactions ns is given by

P (ns = k) = B(N, σ) =

(
N

k

)
σk(1− σ)(N−k). (2.20)

In the model, it is assumed that the scattering centers are distributed continuously along

the path of the electron, thus the binomial distribution goes to its continuous limit, the

Poisson distribution. In the limit, the number of scattering centers has to be replaced

by their density n. The number of scatterings along some path length s is thus given by

P (ns = k) = Pois(λs) =
(λs)k

k!
e−λs (2.21)

with the intensity parameter λ = nσL. When thinking of the scattering events as points

distributed on the path length, i.e. on the real line, the scattering events with the

property in Equation 2.21 constitute a Poisson point process with the intensity λ (see

Section 1.3.2 or the References Stoyan et al. [1995] and Schneider and Weil [2008]). This

can be used to derive the distribution of the free path length. The probability of at least

one scattering event in a free path length s is the probability of not having a scattering

in [0,s], and thus not having a point of the process in [0,s]. This probability is given by

the contact distribution function of an interval [0,s]

P (s ≤ S) = P ([0, s] ∩ Φ 6= ∅) = 1− exp(−λs), (2.22)

which is the cumulative distribution function of the free path length S. Thus the density

function is given by the derivative of the cumulative distribution function

P (S = s) =
d

dS
P (s ≤ S) = λexp(−λS). (2.23)

Also the mean free path length can be calculated. The mean free path length Λ is

defined as

Λ = 〈S〉 = E[S] =
1

nσ
, (2.24)

which depends on the total scattering cross section σ and the density of scattering centers

n.

2.2.3 Geometric Model

For the diffusion simulation in the simulated volume (see Figure 2.7), a description has

to be found, which points belong to the matrix phase and which - the complement -

are considered to be vacuum. The simulation is designed for porous materials with a
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random microstructure (see region of interest in Figure 2.8), thus the geometry must be

able to model very complex microstructures.

Some of the most prominent options for a description are either a voxel grid or an analytic

description by either a polygon mesh or a union or intersection of primitives. The first

option (voxel grid) is not suitable, since the small range of the SE compared to the

range of the SE would demand a very fine resolution and thus would be very demanding

memory-wise. Among the analytical descriptions, the most prominent examples are

either made for a specific application, such as line width metrology (Karabekov et al.

[2003], Lowney [1995a], Lowney and Marx [1994], Lowney [1995b, 1996]) or surface

analytics (Demers et al. [2011], Drouin et al. [2007]). More general descriptions use for

example constructive quadric solid geometry or constructive solid geometry as in Gnieser

et al. [2008], or Ritchie [2005],Yan et al. [1998] and Ding and Li [2005]. A polygon mesh

is used in Zhang et al. [2011], but has the disadvantage that testing if a point is included

in the matrix is complicated and lengthy, which slows down the simulation. Also, meshes

of very complex structures become very memory-consuming. Thus, for the sake of speed

and our specific application, we have chosen a simple analytic description. Since the

simulation will be used to simulate geometries generated by random models, such as

realizations of a Boolean model (Stoyan et al. [1995]), and the simulation of FIB-SEM

needs to be highly optimized, we have chosen an analytic description as a union of

primitives. The primitives can be either spheres or cylinders, which are quick to test

for intersection. Examples are shown in Figure 2.13. Each point inside one of the

primitives is considered to be inside the matrix phase. Therefore, the microstructure is

modeled by the union of the primitives. This analytic description requires only a very

simple description of the geometry in the memory, namely a list of position vectors and

radii for the spheres and a list of vectors for position and orientation for the cylinders

together with their heights and radii. This lean description can easily cope with complex

geometries of thousands of primitives. The geometry is read into the simulation as a

text file containing the vectors and numbers describing the primitives.

Even though the primitives in the realization of a Boolean model are randomly placed in

space, the model also allows for the generation of more ordered geometries, such as fiber

systems (see Figure 2.14). To model the fiber systems, the fiber is approximated by a

chain of spheres as in Altendorf and Jeulin [2011]. Then cylinders are added, connecting

adjacent spheres (see Figure 2.14). This gives the appearance of a smooth fiber with a

fixed diameter.

Despite being fast, the description has one important drawback, namely that modeling

more than two phases (matrix and vacuum), is complicated. Since this thesis is mostly
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Figure 2.13: Examples of geometries from Boolean models with spheres and cylinders.

Sphere Centers

Intermediate Cylinder

Figure 2.14: Fibers are modeled using spheres centered in the fiber. Cylinders are
placed between the spheres to smoothen the model.

concerned with a microstructure and not with the chemical composition, multiphase

materials will be neglected, but could be added in a later stage.

2.2.4 Acceleration Techniques

To simulate the images with reasonable computational effort, several acceleration tech-

niques had to be developed. A naive simulation with packages such as MONSEL 2 would

be too slow, to accomplish this task. In an infinite medium, the MONSEL 2 simulator

can simulate approximately 500 electrons/sec on a notebook machine. For a typical

FIB-SEM dataset of a 3D volume with a 400 voxels edge length and 104 simulated elec-

trons per voxel, which are needed for a sufficient image quality, 4003 ∗ 104 = 6.4 ∗ 1011
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electrons have to be simulated. With the standard MONSEL2 simulator (even disre-

garding the complex geometry), this would take 41.6 years on a single core notebook

computer. Even with massive parallelization this is too much time for a common usage.

To tackle this problem, several acceleration techniques have been implemented, among

them some were already documented in literature and some were newly developed. The

techniques are based on precomputation, binning, and parallelization.

2.2.4.1 Precomputation

The precomputation principle was applied for the first time to this specific problem

by Seeger (Seeger et al. [2003]). The technique is based on the precomputation of a

library containing a large number (O(104)) of electron paths in an infinite matrix (see

Figure 2.15 a). Later, a sample with a smaller number of paths (O(103)) is drawn

from the precomputed paths for each individual pixel. These are used to estimate the

intensity of the BSE and SE signal. This leads to a speed-up, since the slow physical

simulation with MONSEL 2 does not have to be repeated for every pixel but only for

the precomputed paths. The electron paths are saved as a list of the difference vectors

between the individual steps. The current energy of the electron is saved as meta

information for each step. Since fast secondary electrons (FSE) are generated during

the precomputation, branching points would have to be included. Although this can

be added, as for the SE (see below), it was omitted for simplicity reasons. Also, the

contribution of FSE to the BSE signal is very small (≈ 1%), thus the image quality is

not affected.

For the image generation, the precomputed paths are tracked through the geometry by

simply adding the difference vectors. After each step, a test is performed whether the

electron is still inside the matrix. If so, the next step is added, else the intersection

point between the path and the surface of the matrix is computed. Then it is assumed

that in vacuum, since no scattering occurs, the electrons propagate along straight lines,

retaining their state of energy and momentum (see Figure 2.15). Electric fields within

the specimen are hereby implicitly neglected. Then, an intersection test is done. In the

intersection test, every other primitive is tested to find the nearest intersection point

of the matrix with the trajectory. If no intersection is found, the electron is assumed

to have left the simulation volume, either to be counted by the detectors or not. If an

intersection is found, the position of the electron is updated to the intersection point

and the remaining free path from the last step is added. By the Markovian nature of the

paths, the simulation can be continued with the next scattering event in the precomputed

track. Since the state of the electron, other than its position, did not change, all future



2.2. SIMULATION OF SEM IMAGES 37

(a) (b)

Figure 2.15: Schematic view of the precomputation algorithm: precomputed electron
path (a) and the adapted version with straight lines inserted (b)

(a) (b) (c)

d

d

s

Figure 2.16: Schematic view of the track compression algorithm: (a) simulated PE
in an infinite medium, (b) compressed PE path with step length s, (c) simulated path

in real geometry with SE depth d.

scattering events are sampled from the right distribution, depending on the energy and

direction. Thus, the path is a valid electron path.

To preserve randomness, the number of precomputed paths should exceed the number

of paths used for each pixel by a given factor (≈ 10). Thus, each two pixels share only

a small number of precomputed paths (≈ 1%).

2.2.4.2 Path Compression

To further improve the method beyond what was documented in literature, a compres-

sion algorithm for the precomputed paths was developed. As indicated earlier, BSE

paths are stored in a list of difference vectors, each representing one step after a scat-

tering process. Together with the meta information (energy, step length), each vector

represents one differential step of the track, where the original path can be restored by

successively adding up the segments. Since the complete path is known beforehand, the

position of the electron is known after any path length. This can be used to calculate

a coarser path with fewer segments, needing fewer tests to track through the geometry,

thus speeding up the simulation.
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The algorithm to calculate the coarse path uses the parameter d, which is an upper limit

for the step length of the coarser path. The length d should be chosen above the range

of the SE, but ideally much longer than the step length s of the original path, such that

d > SE range ∧ d� s. (2.25)

Starting at the beginning of the path, the step vectors of the original path are added

up until a further step would violate the limit. The sum vector represents one step in

the coarse path and is added to a list, representing the coarse path (see Figure 2.16(b)).

Then, the next vectors are added to compute the next coarse step. This coarser path

has fewer steps than the physically correct path, thus during the tracking fewer tests are

necessary to determine whether the electron has left the matrix. This leads to a speed-up

in the tracking through the geometry. The information on the direction of the individual

steps, which is important when the electron exits the geometry, is lost in the process.

Thus, if the electron is close to the surface, the tracking algorithm needs to resort to the

finer physical path. Here, the depth information of the individual primitives can be used.

Since d is an upper bound for the step length, the electron cannot escape in one step.

In the implementation of the algorithm, each step of the coarser path carries the step

number of the finer path as meta information. Such that, if the electron depth is below

the threshold, starting from the point where the coarser path ends, the corresponding

step of the finer path is added, and then the simulation resumes with a finer scale (see

Figure 2.16(c)).

Quantifying the speedup exactly is difficult, since it strongly depends on the geometry

and ratio between the SE and the BSE range. In the best case, the electron enters the

specimen vertically, the finer path is used until the depth threshold is reached, and only

the coarser path is simulated until the electron is absorbed by the material. Then a

physical path with O(103) is compressed to less than 100 steps. In this case, the speed-

up can be up to a factor of ≈ 100, since only a very small portion of the finer track is

used at the beginning. In the worst case, the SE range is of the order of the BSE range,

where only the finer track is used and no speed-up occurs at all.

2.2.4.3 Decoupling of Secondary Electrons

Yet further acceleration becomes possible, when simulating the SE. This is due to the

much smaller range of the SE compared to the BSE, which represents a separation of

scales in the problem. Since the SE can reach the detector only from a small layer below

the surface of the geometry, the simulation of all SEs is not required. Therefore, we

restrict the SE simulation only to SE generated close to the surface of the geometry. To
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Figure 2.17: Schematic view of the SE precomputation algorithm: (a) simulated PE
and SE cascade (b) PE and SE decouple, with SE tracks stored in bins (c) simulated

track in real geometry with SE depth d

achieve this, the SE simulation is decoupled from the PE simulation. When an electron

is generated in the precomputation with an energy of less than 50 eV, it is classified as an

SE. Then the track is stored separately from the PE track (see Figure 2.17(a)). Unlike

for the PE, only the path lengths and the scattering angles between the segments are

stored. The azimuthal angle (φ in Figure. 2.10) of the SE generation and scattering can

be disregarded and will later be drawn from a uniform distribution in (0; 2π]. Also, unlike

for the PE, cascading effects are not neglected. To achieve this, branching points are

stored as meta information with the SE tracks. The tracking than happens recursively.

Since, other than for the PE, the SE cascades only comprise several steps (O(10)) a track

compression is neither necessary nor advantageous. The probability of SE generation

only depends on the energy of the PE and the angle between the generated SE and

the PE momentum. So for each SE cascade, the angle between the first segment of the

cascade and the PE’s momentum is stored as meta information.

For the tracking of the SE through the geometry, a new algorithm has been developed

modeling the SE generation and diffusion from the information gained in the precom-

putation. The algorithm assumes that the generation of the SE can be modeled by a

Poisson process in the energy domain, where the intensity of the process depends only

on the energy of the PE

λ = λ(E). (2.26)

Due to the CSDA approximation implemented on MONSEL 2, i.e. the PE continuously

loses energy as it moves, the path length covered by an electron from the start is a

continuous function of its kinetic energy. Thus, the energy can be used to measure the

step length of the electron and the number of scattering centers passed by the electron.

This leads to the intensity of the process in the energy domain, given by

λ(E) =
dnSE
dE

=
dnSE
ds

ds

dE
= ρσSE

1

S
, (2.27)
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where dnSE
dE is the number of SE generated per unit energy loss. The intensity λ(E)

can be estimated from the precomputation. To achieve that, the SE cascades are sorted

after precomputation according to the PE energy and stored in bins (see Figure 2.17

b). Each of the bins covers an energy interval which is stored as meta information with

the bin. Through the binning, the energy dependent cross section is being estimated

from the energy interval, covered by each bin. Thus, a histogram of the SE generation

probability is generated, approximating the intensity by a piecewise constant function.

This leads to the approximated intensity

λi =
nSE,i
∆Ei

, (2.28)

where ∆Ei is the energy interval covered by the i-th bin and nSE,i is the number of

secondary electrons in the respective bin. For a better approximation of the peak in the

intensity at low energies, a non-uniform bin size has been chosen, where each bin contains

a given number of electrons. In practice, the number of SE cascades per bin should not

be chosen below 1000, since the SE drawn from the first bin contribute considerably to

the SE signal. As long as the energy of the PE remains within ∆Ei, the intensity of the

Poisson process is λi. The generation rate of SE in each step of the PE path follows a

Poisson distribution

nSE ∝ Pois(λiδEi). (2.29)

So the probability of k SE being generated during the step is

P (nSE = k) =
(λiδE)k

k!
e−(λiδE). (2.30)

During the PE tracking the number of SE generated is drawn from (2.30), where δE is

the energy lost during the last step of the PE. In the event of a SE generation, using the

Markov property of the track, a random SE cascade can be drawn from the correspond-

ing energy bin. The SE cascade is then attached to the PE track, where the azimuthal

angles are random numbers, drawn from (0; 2π] (see Figure 2.17 (c)). The SE is then

tracked until it is either absorbed, or it exits the geometry.

In some materials, the SE cross section is very low and only a small number of SE are

generated in the small volume below the surface. This leads to a poor image quality.

Therefore, a multiplicative constant m was introduced in the intensity, which is a pa-

rameter of the simulation. Through the parameter m, the SE cross section can be raised
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by a factor

λi → λi ∗m. (2.31)

A higher m can improve the SE statistic by raising the number of SE generated and

thus improving the SE image quality.

2.2.4.4 Binning

To further speed up the tracking, a binning technique, originally developed for ray-

tracing programs for computer graphics, was implemented (see Glassner [1984], Fuji-

moto et al. [1986] and Cleary and Wyvill [1988]). It is also based on a precomputation

principle, but here instead of precomputing the physics, the tracking of the precomputed

paths through the geometry is accelerated. As was mentioned before, the highest com-

putational cost is due to two testing routines, one testing whether a point is inside the

matrix phase and the other is to find the nearest point of intersection between a ray and

the matrix phase. For both times the test is required on all primitives, so in a geometry

with 10.000 primitives, the test has to be repeated 10.000 times. The binning technique

uses precomputed knowledge to reduce the number of tests. To this end, the volume

is subdivided into an orthogonal grid and each cell in the grid is intersected with each

primitive in the geometry. Then, for each cell the primitives intersecting the cell are

stored (see Figure 2.18).

If, in the first test, the cell in which a point lies is known (which can be easily com-

puted) only the primitives intersecting the corresponding cell have to be tested whether

the point is included (see test point in Figure 2.18).

To test the intersection of a ray with the geometry is more elaborate. The problem to

solve is to find the minimal s where the ray ~r = ~d ∗ s + ~p intersects with a primitive.

This requires a grid traversing algorithm which selects the bins intersected by the ray in

the right order, so the nearest intersection can be found. To solve the problem several

algorithms were proposed. For this simulation the algorithm proposed in Amanatides

and Woo [1987] is implemented. It is very efficient and finds the primitive intersecting

the ray for minimal s without any additional computations.

2.2.4.5 Parallelization

Even though the computation runs very fast on a desktop computer, the simulation

of a whole FIB-SEM dataset with hundreds of images and a good image quality can
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Figure 2.18: Schematic view of the track binning algorithm, the arrows indicate which
primitive is included in which cell, i.e. for the test point only primitive A has to be

checked

be very time consuming. Therefore, as a last step of acceleration, the simulation can

be run in parallel on multi core machines as well as on a cluster. Since all electron

tracks are independent, each image of the FIB-SEM data and each pixel of each image

can be computed independently. For single image generation on a desktop or a laptop

machine, the easiest way is to parallelize the calculation of all pixels. But to create a

thread for each pixel would produce much overhead and might eventually slow down the

calculation. Therefore, the calculation is parallelized along the columns of the image.

Meaning, the computation of the columns of the image is distributed on the available

threads. In the implementation, this is done by using OpenMP’s parallel directive in the

loop counting the columns of the image. By choosing the maximal number of threads

(ideally the number of CPU cores) OpenMP distributes the simulation of the columns

on the threads and thus the cores (For example, on a 4 core machine, each core computes

25 columns of a 100x100 pixel image).

2.3 Simulation of FIB-SEM Nanotomography

The simulation of FIB-SEM tomography differs from the usual SEM simulation mostly

in computational effort, since several hundreds of images have to be simulated. Also

the FIB-SEM setup must be simulated, which includes the milling of the FI-beam.

Therefore, in the geometric model, the x-y-plane is used as the milling plane. As the FI-

beam mills deeper slices, the geometry is shifted in the negative z-direction (see Figure

2.19). Again, we restrict ourselves to the simulation of the porous material, shown in
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Figure 2.19: Simulation of the FIB-SEM process: the matrix is shifted upwards after
every step, effectively cutting it at the x-y-plane.

Figure 2.8 as the region of interest. We omit the detailed setup, i.e. the trench and

eventual coatings, since it will probably differ from dataset to dataset. Also, the fact

that milled material might break away is omitted.

For the simulation of whole FIB-SEM datasets, a parallelization on a cluster is usually

necessary. Here, the easiest way of parallelization is by image, i.e. assigning one image to

each job. By that parallelization no shared memory and no communication between the

jobs is necessary. The implementation was done via a script, assigning one image to each

job and passing the initial conditions and the feed for the random number generator.

With the parallelization, the simulation of one FIB-SEM dataset can be achieved on a

cluster within an hour up to one day.

2.3.1 Implementation

In the course of this work, a new software package was developed which can simulate a

complete FIB-SEM nanotomography process. The software was implemented in C++,

with a Qt graphical interface (see Figure 2.20). The GUI shows a 2D projection of

the geometry with spheres represented by circles and cylinders represented by lines.

The user can choose the imaging parameters such as pixel size and physical scale of

the simulation, while the beam parameters such as energy and material are fixed by

the precomputation. For the precomputation, the MONSEL 2 model was modified to

write the computed paths into files which can be read by the simulation tool. Also, the

electron paths can be displayed for testing.



44 CHAPTER 2. SIMULATION OF FIB-SEM DATA SETS

Figure 2.20: Graphical User Interface of the SEM Simulation tool.

Figure 2.21: Realization of a Boolean model designed to resemble the nanoporous
additive shown in Figure 2.8.

2.4 Results

In this section, results of the simulations are presented. The resulting images depend

very much on the parameters and the underlying geometry. Therefore, a collection of

images is shown that were used in different case studies.

2.4.1 Simulations of Carbon Nanostructures

First, a simulated FIB-SEM dataset is presented that was used to validate the segmen-

tation algorithm presented in Chapter 3. The simulated structure is a realization of a
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Figure 2.22: Volume rendering of the underlying geometry of the simulations in Figure
2.23.

model designed to resemble the pore structure of a nanoporous carbon used as an addi-

tive to improve conduction and binding of electrodes in lithium-ion batteries, shown in

Figure 2.8. The matrix was modeled by a Boolean model of spheres filled with carbon

(a volume rendering is shown in Figure 2.21). The radii of the spheres, which are the

typical structure size of the model, are distributed around 50 nm. To make the simula-

tion suitable for validation, the imaging parameters of the simulation have been chosen

according to the experimental image.

Figure 2.22 shows the FIB-SEM dataset generated from the simulated SE images. For

the dataset 100 images were simulated each with 200x200 pixels. For each pixel 10.000

electrons have been simulated with an initial energy of 5 keV. The pixel and the spot

size were chosen to be 5 nm and the SE multiplier was m = 1. The simulation of one

image took about 2 hours on a cluster node.

The smooth appearance of the image stems from the small structure size, compared for

example to the images in Section 2.4.3. Also, a finite volume effect can be observed,

where the pixels at the boundaries appear brighter than in the bulk region. The effect

comes from the fact that close to the boundary of the structure, the electrons can escape

to the side of the simulated volume and thus more electrons are being counted, giving a

stronger signal. The same effect can be observed at the boundaries on Figure 2.5.

A comparison of the simulated images with the experimental ones is shown in Figure

2.23. The image shows a slice view of the ground truth and two simulations, with a gold

and a carbon matrix (Figures 2.23 (b) and (c)), to compare the effect of these materials

on the imaging. Figure 2.23 (d) shows a slice of an experimental dataset. As can be

seen, the image of the carbon matrix matches the experimental one much better. The
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Figure 2.23: A comparison of two simulated SEM images with an experimental one:
(a) slice view of the underlying geometry; (b) simulated SEM image with a gold matrix;
(c) simulated image with carbon matrix; (d)experimental image with carbon matrix.

Figure 2.24: Cross section views of the FIB-SEM dataset in Figure 2.22: (a) slice
view of geometry; (b) simulated carbon dataset; (c) experimental data.

contrast of the simulated gold structure is much higher than in Figures 2.23 (c) and

(d). Also the image appears much sharper. Both effects can be explained by the higher

scattering cross section σ of gold, which makes the diffusion cloud much smaller and the

interaction more local, resulting in a sharper image and stronger contrast. A difference

between the simulated and the experimental image is the noise level of the images, which

seems to be lower in the experimental image. This is due to the low contrast of carbon,

and can be remedied by simulating more electrons per pixel, which would reduce the

variance in Equation (2.15).

For the validation of segmentation algorithms, special attention has been given to the

reproduction of the ’shine through’ artifacts indicated by the arrows. These artifacts

stem from the fact that in FIB-SEM datasets, lower lying structures are visible through

the pore space. They present a major obstacle to segmentation (more in Chapter 3).

Figure 2.24 shows the comparison of the cross section view of the simulated dataset

above, with the carbon matrix (Figure 2.24 (b)) and the experimental image (Figure

2.24 (c)). In addition, the ground truth image is shown in Figure 2.24 (a). Again the

’shine through’ artifacts are indicated with arrows and match between the simulation

and experimental data. As in both images the matrix is visible through the pores in the

higher slices, creating the impression of columns in the cross section view. The milling

was simulated with a 10 nm slice thickness.
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Figure 2.25: A simulated FIB-SEM dataset showing the BSE signal (left) and SE
signal (right) of a Boolean model of randomly oriented cylinders with carbon as matrix.

2.4.2 Simulation of Fiber Systems

To demonstrate the ability to simulate SEM images of cylinder systems, Figure 2.25

shows the realization of a Boolean model of cylinders. The imaging parameters are the

same as in Figure 2.23 and in Figure 2.24. The BSE signal is shown on the left and the

SE signal on the right. The simulation of both images took about 1 hour on a lenovo

T60 notebook.

Also, fiber systems have been simulated, one of which is shown in Figure 2.26. For the

modeling of the fibers, the method described in Section 2.2.3 has been used. As can be

seen, even with a simple approximation with spheres and cylinders, the fibers appear

smooth. This is due to the fact, that the distance between the spheres is very small.

For each pixel 20.000 electrons have been simulated, yet the computation was made in

a matter of hours, emphasizing the fact that even very complex geometries with tens of

thousands of spheres and cylinders can be simulated on a regular basis.

2.4.3 Simulation of Carbon Microstructures

The following images show microstructures also made of carbon, but on a larger length

scale of micrometers rather than nanometers. Thus, in the following images, it can be

observed that the appearance of the images depends on the physical size of the structure.

To illustrate this, realizations of Boolean models of spheres and cylinders were generated.

A volume rendering of the geometry is shown in Figure 2.27. Each simulation shows a

view on the top of the volume on the left and a cross section view of the image stack on

the right. Figure 2.28 shows a simulated FIB-SEM dataset with a carbon matrix, 5 keV

beam energy and a pixel size of 5 nm. For each pixel 10.000 primary electrons have been

simulated. In both the slice and the cross section view the BSE signal was used. As



48 CHAPTER 2. SIMULATION OF FIB-SEM DATA SETS

Figure 2.26: BSE image of a system of curved fibers.

can be seen, the edge effects are finer and the milling plane has an almost uniform gray

value. This indicates that the interaction volume with the matrix is small compared to

the pixel and structure size.

Figure 2.29 show the corresponding SE image to Figure 2.28. In the SE images the

edge effects are more pronounced, due to the fact that the SE emission has a different

angular distribution than the BSE emission. This leads to an overall impression of a

higher contrast in the SE images. Also, the SE image seems to have a lower signal

to noise ratio, which is due to the different statistics of the SE signal, differing from

the usual binomial statistics. To improve the SE image quality in Figure 2.29, the SE

multiplier m was set to m = 3. This increases the number of SE generated and counted

which results in less noisy images. Also, in both cases the ’shine through’-artifacts are

clearly visible in the cross section view. Further results are shown in Figures 2.31 and

2.32 where both show a geometry of cylinders, also generated from a realization of a

Boolean model. The ’shine through’-artifacts are much stronger in the cylinder geometry

due to the lower volume fraction, which leads to a ’deeper’ view into the structure. Also,

the same differences between the BSE and SE images can be observed.
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Figure 2.27: Underlying geometry of Figures 2.28 and 2.29: a realization of a Boolean
model with spheres as grains.

Figure 2.28: Slice view and cross section on a simulated FIB-SEM BSE signal dataset
(parameters: carbon matrix, 5 keV beam energy, 5 x 5 x 10 nm voxel size, 10.000

electrons/voxel).
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Figure 2.29: Slice view and cross section on a simulated FIB-SEM SE signal dataset
(parameters: carbon matrix, 5 keV beam energy, 5 x 5 x 10 nm voxel size, 10.000

electrons/voxel).

Figure 2.30: Underlying geometry of Figures 2.31 and 2.32: a realization of a Boolean
model with cylinders as grains.
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Figure 2.31: Slice view and cross section on a simulated FIB-SEM BSE signal dataset
(parameters: carbon matrix, 5 keV beam energy, 5 x 5 x 10 nm voxel size, 10.000

electrons/voxel).

Figure 2.32: Slice view and cross section on a simulated FIB-SEM SE signal dataset
(parameters: carbon matrix, 5 keV beam energy, 5 x 5 x 10 nm voxel size, 10.000

electrons/voxel).
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2.5 Discussion and Outlook

2.5.1 Discussion

In the preceding sections it was shown that the simulation of FIB-SEM datasets is pos-

sible, and moreover feasible on a regular basis. Given the state of the field before, this

was by not necessarily clear. After a short introduction on the general principles of SEM

and the aims of the project, the Monte Carlo technique was motivated and explained in

the context of SEM simulation. Then a physical model was introduced, which after eval-

uation with the Monte Carlo technique gives accurate simulations of the beam-specimen

interaction on a small scale. Starting from the work in Seeger et al. [2003], the model

was used to simulate SEM images of simple structures. Then, the work was extended

to include more complex geometries, tailored to the application of imaging random mi-

crostructures. The model is capable of simulating packings of spheres, cylinders as well

as curved fibers. To further accelerate the SEM simulation, new acceleration algorithms

were developed exploiting computational aspects (path compression) and physical prop-

erties (SE decoupling) of the problem. Other existing techniques were implemented

(precomputation, binning). Also, a geometric model was developed to model the SEM

in general and the FIB-SEM setup especially.

In the last section, results were presented and the simulated images were compared

to experimental ones and similarities and differences were discussed. By and large,

the simulation can accurately reproduce properties of the images dependent on scale,

material properties, SEM imaging parameters, and geometry of the specimen.

In its current state, the simulation cannot reproduce surface roughness, as it is not

included in the geometric model. Also, the chamber setup cannot be reproduced, which

also has to be modeled. As of today, geometries of specimen composed of different

chemical phases cannot be simulated, although this point could be added.

2.5.2 Outlook

Starting form the state of the simulation as it is, two obvious avenues of research are

possible. One is to model more complex specimen, i.e. with more than one phase and

with a more complex geometry. More complex geometries can be modeled very easily, by

applying more complex geometric descriptions, such as constructive solid geometry. In

general, any description can be added very easily, provided the two tests of intersection

with a point and a ray can be provided with a sufficient speed. The addition of more than

one phase is more complicated, since the precomputation technique relies on the fact
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that complete paths, except the straight segments in vacuum, are known beforehand. If

the scattering cross section changes within the specimen, this can no longer be assumed.

But if the path library is enhanced with paths in different materials, the path tracking

algorithm can be extended to track electrons through multiple phases.

Also, the simulation can be amended by adding simulations of the detectors and the

electron trajectories in the chamber as in Konvalina and Müllerová [2006]. With their

high energy, the BSE propagate along straight lines in the chamber, which is accurately

represented in the simulation. For SE usually an electric field is used to attract the SE

towards the detector. To amend the simulation, the electric field in the chamber could

be calculated and then the electrons could be tracked through the field and if they hit

the detector, they would be counted for the signal.

Also, to check the accuracy of the simulation, a geometry of a real microstructure could

be reconstructed and then simulated. Then the simulated images could be compared

to the experimental ones. In a first step, a reconstruction algorithm was developed for

FIB-SEM data, which is described in the next chapter.





3
Morphological Segmentation of FIB-SEM Data

The work in this chapter has been published in:

T. Prill, K. Schladitz, D. Jeulin, M. Faessel, and C. Wieser. Morphological

segmentation of FIB-SEM data of highly porous media. Journal of Microscopy, 250(2):

77–87, 2013b

and further results will be published in

M. Salzer, T. Prill, A. Spettl, D. Jeulin, K. Schladitz, and V. Schmidt. Quantitative

comparison of segmentation algorithms for FIB-SEM images of porous media. accepted

by Jounal of Microscopy, 2014

3.1 The Segmentation Problem

In image processing, segmentation is the problem to partition an image into regions in a

meaningful way. A classical example is to segment a car in an image. In this PhD work,

the task to be solved is to segment the matrix phase of a highly porous material in a FIB-

SEM dataset, i.e. dividing the image into an area which corresponds to the pore space

and an area corresponding to the matrix. If completed successfully, the segmentation

allows to analyze the micro- or nanostructure of the porous medium. An illustration of

the problem is given in Figure 3.1, where the overlay indicates the segmented matrix

phase. The dataset shown in the image was simulated as described in Chapter 2, which

means that the ground truth, i.e. the correct result of the segmentation was known

55
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Figure 3.1: Illustration of the segmentation problem on simulated data (where the
ground truth is known and indicated by the red overlay).

beforehand, thus the segmentation was trivial. The challenge posed for this PhD thesis

is to develop a segmentation algorithm which finds the segmentation of the matrix in

an experimental FIB-SEM dataset.

3.1.1 The Sample Material

To test and validate the segmentation during development, a dataset of a nanoporous

material is needed. To this end, an experimental dataset of a nanoporous carbon struc-

ture was generated. The sample material used is a structured carbon coating, which has

been applied to a copper foil. In practice, the material is used as a negative Li-ion battery

electrode. The coating consists of three phases plus the pore space. A microstructure,

which is the main part of the coating is used as active material, responsible for the ion

storage. The microparticles have an average diameter of 32 µm and make up 90 % of

the weight. To enhance the conductivity, which is important for the electrochemical

behaviour, the active phase is complemented with a nanoporous phase, which will be

referred to as the additive. The nanoporous additive accounts for 6 % of the weight and

has a typical structure size of d ≈ 40 nm. The overall thickness of the coating is 70 µm.

The remaining 4 % of the mass is made up by a polymeric binder which stengthens the

structure. Since the microstructure is too big to be analyzed with FIB-SEM nanoto-

mography, we will be concerned with the nanoporous additive on which we will test and

verify our segmentation.

3.1.2 The FIB-SEM Dataset

As described in the previous chapter, FIB-SEM datasets are stacks of SEM images. The

data used in this chapter was generated using an FEI Helios Nano Lab 600 device. The

original data consisted of 370 SEM images with the dimension 1024 x 884 pixels. The
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Figure 3.2: The first slice of the FIB-SEM dataset used for the segmentation.

SEM was operated at 5 keV beam energy and the SE signal was used for the imaging.

The first slice of the dataset is shown in Figure 3.2.

The figure shows the typical FIB-SEM setup (see Section 2.1.1) with the block of porous

material to be segmented at the center. Surrounding the block is the trench-like structure

depicted in Figure 2.4. The background showing the trench and the surrounding area

of the structure will later be used for the alignment, since it represents a static frame

of reference. One of the microparticles hosting the nanoporous additive can be seen.

Also, a layer with a very high contrast on top of the block is visible. This layer consists

of platinum that was sputtered onto the specimen to enhance the accuracy of the FIB

sectioning.

In the FIB-SEM imaging process slices of 10 nm thickness were milled off the block of

porous material, to be seen in the middle of the image. This leads to a voxel size of 10

nm in the z-direction. Due to the tilting of the specimen for the FIB milling, the voxel

size is also not isotropic in the x-y-plane. The original voxel size in the image plane is 5

nm in the x- and y-direction, but the tilting of the specimen with an angle of 52◦ leads

to a voxel size in the y-direction of 6.27 nm. Thus, one voxel represents a volume of 5

nm x 6.27 nm x 10 nm. The SE signal is encoded in the gray values of the image which

is coded in 8 bit gray scales.

3.1.3 The Artifacts

By the FIB-SEM image acquisition process, several artifacts are created, some of them

due to SEM imaging, some due to the FIB milling process. Additional to the typical
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Figure 3.3: A cross section view of the raw FIB-SEM dataset. The red markers
indicate the misalignment from specimen drift and beam drift.

SEM related artifacts such as edge effects and transparency of thin structures, which

make a segmentation by thresholding difficult, the FIB-SEM process adds other specific

ones.

3.1.3.1 Beam Drift or Specimen Drift

For the FIB-SEM dataset to make sense as a three-dimensional representation on a three-

dimensional grid, a pixel in the first images has to refer to the same x- and y-coordinate

in space in every other image. This requires a perfect alignment of the images. Yet,

in practice, the specimen stage moves during the tilting process and also the specimen

itself deforms due to the mechanical forces applied. This phenomenon is usually referred

to as specimen drift. Also, the beam of the SEM can sometimes not be kept stable for

such a long time, which means that towards the end of the process the beam scans a
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slightly different area of the specimen than at the beginning. This is called beam drift

and like the specimen drift causes a misalignment of the images in the dataset. Figure

3.3 shows a cross section view of the FIB-SEM dataset before preprocessing. As can be

seen, the structure of the specimen drifts to the lower part of the image. After about

half of the images, the SEM was realigned and then the drift continues towards the end.

These artifacts are common and need to be corrected through computational alignment

during the preprocessing (see Section 3.3.1).

3.1.3.2 Brightness and Contrast Differences

Since each image of the stack is acquired independently of the others, the brightness

and contrast differ between each of the images. This leads to changes of gray values

between different pixels in different images, without a physical reason. Also, due to the

setup of the detector and the chamber, changes in brightness can occur on large scales

in the images. Typically, the lower part of the images is slightly darker. This is due to

the fact that electrons from the deeper part of the structure have a higher probability to

be absorbed by the surroundings. Thus, they are not detected and the images darken.

These effects also have to be corrected in a preprocessing step (see Section 3.3.1).

3.1.3.3 ’Shine-Through’ Artifacts

The most complicated artifacts in the data are the so called ’shine-through’ artifacts.

To correct for these artifacts is the main challenge in the segmentation of FIB-SEM

data and the development of a segmentation method is the main topic of this chapter.

The artifacts stem from the fact that lower lying structures are visible through the pore

space. Since the pore space is transparent in the SEM images, structures in the pore

space are visible through the pores (indicated by arrows in Figure 2.8). In the dataset,

the artifacts are three-dimensional. This becomes obvious in the cross section view, as

indicated in the slice view in Figure 2.8. These structures can have gray values similar to

those of structures outside the pore space, thus rendering segmentation by thresholding

not feasible. In the cross section view the artifacts appear as ramps in the gray value,

sometimes giving the impression of columns in the cross section slices. Figure 3.4 shows

a blow-up of Figure 3.6 with and without an overlay indicating the structure to be

segmented and the ’shine-through’ artifacts. It can be seen that the gray value rises

from the left to the right. This is due to the fact that as more and more slices are milled

off the structure, more electrons can escape to the detector, yielding a stronger signal.

When the milling plane reaches the structure, the gray value either reaches a peak from
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Figure 3.4: A blow-up of the cross section view of the aligned FIB-SEM dataset
(right), with overlays of the ’shine-through’-artifacts (blue) and the structure (red) on

the left.

edge effects or a plateau corresponding to the constant gray value of a planar surface.

These features will be used later to identify the ’shine-through’ artifacts in the data.

3.1.4 Previous Work

Several attempts to segment FIB-SEM data have been made. Nonetheless, the segmen-

tation of FIB-SEM data is still a problem awaiting a general solution. Simple methods,

such as gray level thresholding are applicable for low levels of porosity. This approach

uses the fact that when the electron beam scans through the pores, fewer electrons can

escape to the detector and the signal appears darker. Unfortunately, for high levels

of porosity larger regions of the image lie in the pore space. This makes it easier for

electrons to escape, raising the intensity in the pore space.

Improvements have been made through adaptive thresholding methods, as in Blayvas

et al. [2006], and also through taking derivatives and edges into account, e.g. in the level-

set based method in Jørgensen et al. [2010]. Further improvement could be made by

using a two-stage approach combining Jørgensen et al. [2010]’s method with a threshold

back propagation approach (see Salzer et al. [2012]). Even though these methods give

reasonable results judged by visual inspection (the authors of Jørgensen et al. [2010] give

a misclassification rate of 15% by comparison with manual segmentation), no quantita-

tive error estimates based on ground truth data have been made. In this thesis, we will

present a new segmentation method and, using the simulation described in the previous

chapter, we will give a quantitative error measure.

For the segmentation we will use morphological image processing. The morphological

methods provide a fast way to process large three-dimensional datasets. Also, morphol-

ogy can extract global features such as minima with a certain dynamic, which is not

possible with the usual linear-filter-based approach. Furthermore, with the geodesic re-

construction and watershed transformation, morphology provides natural segmentation
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methods. A short recapitulation of the more advanced morphological methods used for

the segmentation will be given in the next section.

3.2 Elements from Advanced Mathematical Morphology

To segment the type of data under concern, some more advanced morphological oper-

ations are needed, which will now be introduced. All of them can be constructed with

the basic operations defined in Section 1.3.3. Again we are following the notation in

Soille [1999]. Unfortunately, the structuring element and the secondary electron share

the same abbreviation (SE) in the literature of their respective fields. Also, both ab-

breviations are vital, widely used and appear frequently in this chapter. Hence, in this

chapter and in this chapter only, the structuring element is abbreviated by SE, while in

the other chapters SE stands for secondary electron.

3.2.1 Morphological Half-Gradient

Similar to the morphological gradient, the morphological half-gradient can be con-

structed by replacing one of the operations in the morphological gradient by the identity.

According to the remaining transformation, the morphological half-gradient by erosion

is defined by

ρ−B(f) = f − εB(f) (3.1)

and the morphological gradient by dilation is defined by

ρ+
B(f) = δB(f)− f. (3.2)

The morphological half-gradient behaves similar to the morphological gradient. But

in the context of the segmentation, it will be used to extract directional information.

Therefore, an anisotropic structuring element (SE) is used.

3.2.2 Hit-or-Miss Transformation

The hit-or-miss transformation is an advanced morphological transformation, which uses

a combined SE instead of a normal one. The combined SE consists of one SE acting on

the foreground of the image and one SE acting on the background, thus the combined

SE B is given by

B = {BFG, BBG}. (3.3)
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The hit-or-miss transformation can then be written as a union of erosions

HMTB(f) = εBFG(f) ∩ εBBG(fC). (3.4)

From the definition it is clear that the hit-or-miss transformation is true, if the foreground

SE is included in the foreground and the background SE is included in the background.

Since an SE cannot be included in the foreground and the background at the same time,

it is clear that BFG and BBG cannot intersect. Provided that the SE is much smaller

than the set itself, the hit-or-miss transformation can be used to detect boundaries of

the set.

3.2.3 Geodesic Reconstruction

A morphological reconstruction is the repeated application of a transformation until

idempotence, i.e. until the resulting image does not change any further under the trans-

formation. In the case of geodesic reconstruction, so-called geodesic transformations are

applied, i.e. geodesic erosion and geodesic dilation. Both transformations accept two

images and a SE as input, instead of just one image and one SE like the standard erosion

and dilation.

The geodesic erosion of size one is defined as

ε
(1)
B (f, g) = εB(f) ∨ g (3.5)

with the so-called marker image f and the mask image g as arguments, where the marker

image must be greater than the mask image, f ≥ g. As can be seen, the geodesic erosion

is the supremum of the eroded marker image and the mask image. Geodesic erosions

of larger size are then defined recursively as successive geodesic erosions of size one

according to

ε
(n)
B (f, g) = ε

(1)
B [ε

(n−1)
B (f, g), g], (3.6)

where the geodesic erosion of size zero is simply the input image

ε
(0)
B (f, g) = f. (3.7)

The geodesic dilation of size one is defined analogously as the infimum of the dilated

marker image and the mask image, i.e.

δ
(1)
B = δB(f) ∧ g. (3.8)
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Here the marker image must be less than the mask image, f ≤ g. Also, the geodesic

dilations of size 0 and size n are defined accordingly

δ
(0)
B (f, g) = f, (3.9)

δ
(n)
B (f, g) = δ

(1)
B [δ

(n−1)
B (f, g), g]. (3.10)

As stated, a reconstruction means that a transformation is applied until idempotence.

For the geodesic erosion, that is

ε
(i)
B (f, g) = ε

(i+1)
B (f, g). (3.11)

In mathematical notation, the geodesic reconstruction by erosion is written as

RεB(f, g) = ε
(i)
B (f, g), (3.12)

where i is the first step for which Equation 3.11 holds.

Analogously, the geodesic reconstruction by dilation is defined as

RεB(f, g) = δ
(i)
B (f, g), (3.13)

where δ
(i)
B (f, g) = δ

(i+1)
B (f, g).

The geodesic reconstruction can detect local gray value minima with a minimum depth

and it will be used in that role later on.

3.2.4 Watershed Transformation

The natural way of segmentation in morphological image processing is the watershed

transformation. The watershed is easily explained, yet a formal definition is more com-

plex. Intuitively, for the watershed transformation a gray value image is thought of as

a relief where the local height corresponds to the gray value of the voxels in the image.

Then a rainfall on the relief is considered, with the water flowing through the relief.

Intuitively the water will accumulate at the minima, with each basin growing as more

and more water flows into the basin. In the segmentation, each basin is considered to be

a segment of the image. If two segments meet, a watershed is installed dividing them.

Of course the analogy only goes so far, since the flow of water is not actually simulated.

In the algorithm, the regional minima of the image are determined, yielding a seed for

a region growing algorithm. Then each region is grown, depending on the gray value in

the image. For a formal definition see Beucher and Lantuéjoul [1979].
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Figure 3.5: A one-dimensional example of a watershed segmentation.

A one-dimensional example of a watershed segmentation is shown in Figure 3.5. In this

thesis the three-dimensional version of the watershed is used.

A special case of the watershed transformation is the constrained watershed transforma-

tion (Beucher and Lantuéjoul [1979], Beucher [1990]). Instead of using the minima as

initial basins, the initial basins are fed into the transformation as an argument. There-

fore, a labeled image is passed to the algorithm and each label is grown according to the

watershed algorithm.

3.3 Morphological Segmentation Method

With the advanced morphological transformations at hand, the new segmentation algo-

rithm developed in this thesis can be described.

An outline of the general workflow is depicted in Figure 3.11, at the end of this section.

First, a preprocessing of the dataset is made, enhancing the quality of the data. Then

feature images are generated to identify characteristic points or regions. The feature

images are subsequently used to generate a preliminary segmentation, which is in turn

used to generate markers for a constrained watershed transformation. This refines the

preliminary segmentation, yielding the final result.

In this section, a detailed description of the segmentation algorithm will be given incor-

porating the preprocessing, a discussion of the features used to segment that data and

the segmentation step itself. At the end, a summary of the algorithm will be given.



3.3. MORPHOLOGICAL SEGMENTATION METHOD 65

3.3.1 Preprocessing

Before the actual segmentation, the dataset undergoes some preprocessing steps, to

improve the quality of the data. This is mainly an alignment of the images and a

contrast and brightness correction of the images.

3.3.1.1 Alignment

The individual SEM images can be shifted against one another. As indicated in Section

3.1.3, this might be due to specimen- or beam-drift or perturbations in the mechanics of

the tilting stage. In order to get a representative voxel volume, this needs to be corrected

as the segmentation relies on the change in intensity of one pixel through the images of

the stack. As shown in Figure 3.3, this is not possible in the original dataset. For the

alignment of the data, several techniques can be used. For the data investigated here,

the ’Linear Stack Alignment with SIFT’ plug-in of the Fiji software (Schindelin et al.

[2012]) was used. Even though the dataset will eventually be cropped to the region of

interest as shown in Figure 2.8, the alignment was made without cropping. That way,

the surrounding of the ROI, which is not affected by the FIB slicing, can be used as

landmarks for the alignment, improving its quality. A cross section view of the resulting

aligned dataset can be seen in Figure 3.6.

3.3.1.2 Cropping and Brightness Correction

After the alignment, the dataset can be interpreted as a 3D-voxel grid, where one voxel

represents a cuboidal volume in space. Then, the dataset is cropped, such that it

covers the region of interest in Figure 2.8, which represents the porous structure to

be segmented. After the cropping, differences in the brightness in different regions and

between the images have to be corrected to improve the segmentation result.

To correct for large-scale differences in the brightness within the images, a mean-filter

with a filter mask with of a 100 voxels radius was applied to the images. Then, the

mean-filtered image was subtracted from the original image. This removes large-scale

variations in the gray value and leaves smaller-scale variations like the structure. Thus,

for every dataset the filter mask has to be much larger than the typical structure size.

The images have to be converted to a 32-bit floating point voxel type, since negative

numbers can occur in the subtraction, which cannot be encoded in 8-bit-unsigned gray

values. After the preprocessing, the data is converted back to 8-bit gray scale to save

memory.
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Figure 3.6: A cross section view of the aligned FIB-SEM dataset.

In a second preprocessing step, a histogram normalization and equalization, again with

Fiji, is done. The resulting dataset is depicted in Figure 3.7.

3.3.2 Feature Images

After the preprocessing step described in Section 3.3.1, a number of feature images are

generated extracting information from the data. These will then be used to mark or

delineate the regions to be segmented, may it be pore space or matrix. Ideally, the

features are exact and universal, meaning they perfectly identify the regions and work

on all datasets. Yet, the fact that features are never perfect and universal is self-evident,

so, to motivate some universality, a physical reasoning derived from the imaging process

of the structure will be given for each feature. The examples for the feature images

are taken from the segmentation in the validation in Section 3.4, where a simulated

FIB-SEM dataset was segmented.
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Figure 3.7: A slice view and a cross section view of the FIB-SEM dataset after
preprocessing.

3.3.2.1 Threshold Image

The simplest feature to use is a threshold on the gray values of the image. The threshold

is used to mark voxels belonging to the void phase of the image. When the electron beam

enters deep into the pores, the BSE and SE have a low probability of exiting from inside

the pores, since they are absorbed by the surrounding structure. Thus, a low intensity

indicates pore space in the image. In principle, the intensity feature can be exploited

with any thresholding algorithm, from the simple global thresholding to local approaches.

But in practical tests, a simple global threshold was sufficient. Unfortunately, due to the

’shine-through’-artifacts, which have a high intensity, the thresholding approach has a

high misclassification rate (see Table 3.1 on page 79), yet it contributes a first estimate

to the segmentation. And if the threshold is chosen correctly, an exclusion of a set of

voxels definitely belonging to the pore space can be made.

The corresponding feature image is given by

FGV = Th0,gmin(Fin). (3.14)

Here, FGV is the feature image and Thmin,max is the thresholding operation selecting all

voxels that have intensity in [min,max]. An example of the feature image can be seen

in Figure 3.10 (a). As can be seen, the feature detects dark areas within the pore space.
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Figure 3.8: A profile of a pixel as overlay on the cross section view of the dataset.

Figure 3.9: The corresponding gray value profile of the pixel marked in Figure 3.8.

3.3.2.2 Feature Images from Z-Profiles

For the more advanced features, the z-profiles of the image will be used. To this end,

the three-dimensional image Fin(x, y, z) is interpreted as a set of one-dimensional lines

F
(x,y)
in (z), each representing the change in gray value of one pixel in the slices of the

dataset. An illustration is given in Figures 3.8 and 3.9. The graph in Figure 3.9 depicts

the gray value of the pixel marked by the white line in Figure 3.8, which will be called

the z-profile of the pixel from here on. For the preliminary segmentation, morphological

operations will be applied to the z-profiles instead of the complete three-dimensional

image. Therefore, the SE of the morphology will be restricted to one dimension along

the z-axis. The exact form of the SE will be given for each transformation.

The first feature to be detected concerns the ’shine-through’-artifacts. In the profile,

these artifacts show a characteristic rise in gray value towards the positive z-axis. Since
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Figure 3.10: Feature images used for the segmentation: (a) gray value feature FGV ;

(b) artifact image FArt; (c) boundary detection FBound; (d) relevant minima F
(2)
min; (e)

preliminary segmentation; (f) label image FLabel; (g) final segmentation result FRes;
(h) and for comparison the ground truth.
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only a few electrons can escape from inside the pores, the structure visible inside the

pores appears darker. Then, as further slices are milled away, more and more electrons

can reach the detector leading to a characteristic rise in gray value in the profile. When

the milling plane has reached the deeper lying structure, the gray level reaches a plateau

or a maximum and then falls off again. The maximum is mostly due to edge effects,

which appear when the structure is cut. A subsequent plateau indicates that the milling

plane has reached a massive structure with the electron beam incident at a right angle,

yielding a constant intensity.

To detect the ’shine-through’-artifacts, the morphological half-gradient by dilation is

used with a suitable SE. The SE is made of a line segment which extends l voxels

from the origin in the positive z-direction, denoted zl+, where l is a parameter of the

algorithm. This half-gradient can be used to detect positive gradients in z-direction. If

the intensity in the profile rises, the half-gradient is positive, otherwise it is zero. To

generate a marker image, the half-gradient image is thresholded. The resulting image

marks regions where the intensity rose by a threshold value d within the SE. Since

the marker indicates artifacts, the complement has to be used to detect matrix. The

corresponding feature image has the form:

FArt = [Th0,d[δzl+(Fin)− Fin]]C . (3.15)

Figure 3.10(b) shows the corresponding image in the segmentation, where the marker

indicates mostly the beginning of the structure to be segmented.

The second feature to be extracted from the profile is a sharp drop in intensity with a

subsequent minimum. This feature appears when a structure in the foreground is milled

off and the underlying pore space is revealed. Then the intensity either drops to almost

zero, when dark pore space is revealed, or, when a (still darker) ’shine-through’-artifact

is revealed a sharp drop in the profile happens. In any case, the gray value either remains

almost zero and then rises with subsequent slices, or if an artifact is revealed, the gray

value starts rising again immediately. Either way, a minimum will occur.

The geodesic reconstruction by dilation is used to detect these minima. There, the

original data serves as the marker image and the mask image is given by the original

data subtracted by a constant dmin. The constant dmin will be the minimum dynamic,

i.e. the minimum depth of the minima to be detected. This is necessary to discriminate

minima arising from noise or edge effects, which are not descriptive and will from here on

be called the irrelevant minima opposed to the relevant ones needed for the segmentation.

A line segment z3 serves as the SE, only this time the segment is centered at the origin,

extending one voxel in the positive and the negative z-direction, yielding the connectivity

on the z-profile. In the reconstructed image, minima with a dynamic lower than dmin
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will be ’filled up’. Then the remaining minima in the profile are computed. Since the

minima can be intervals on the profile, a hit-or-miss transformation is used to select the

first voxel in the interval. This yields the voxel closest to the matrix. This results in the

following expression for the feature image:

Fmin = HMT(0,−1)[Minz3 [Rδz3(Fin, Fin − dmin)]]. (3.16)

To further suppress the irrelevant minima, the feature image is modified to include only

the minima lying close to edges. This should suppress minima inside the matrix, due to

edge effects. These minima arise when due to SEM imaging, the edges appear brighter

than the bulk of the matrix, thus forming a minimum in the bulk. Therefore, an edge

detection has to be made, for which a morphological gradient image is used. The same

gradient image will be used later for the constrained watershed transformation. For

the data in this thesis, the morphological gradient with a 26 neighborhood in three

dimensions (N26) as the SE was chosen, which gives the feature image

FGrad = ρN26(Fin). (3.17)

For the minima suppression, the gradient image is thresholded, yielding a feature image

which indicates the boundary of the structure (see Figure 3.10(c) for an example)

FBound = Thg,∞(FGrad). (3.18)

The intersection of the gradient image and the minima image give only the minima near

the edges F
(2)
min:

F
(2)
min = Fmin ∩ FBound, (3.19)

where g is a parameter used for the edge detection. As can be seen in Figure 3.10 (d),

the minima occur at the end of the structure in the profile, with some irrelevant minima

remaining inside the structure.

3.3.3 Preliminary Segmentation and Constrained Watershed

With the information from the feature images, a preliminary segmentation can be gen-

erated. For the preliminary segmentation, the information on the artifacts from the

half-gradient is combined with the minima indicating the end of the structure. To

achieve this, the complement of the artifact marker is extended to the minima. This will

generate a marker which starts at the end of the ’shine-through’-artifact and extends
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to the minima, i.e. to the end of the structure in the profile. The necessary transfor-

mation can be implemented as a reconstruction by dilation with a suitable SE, having

the advantage that only well known morphological transformations are used and with a

good implementation, a fast computation is possible. In the transformation, the artifact

image serves as the marker image and a mask image is used where the marker extension

will stop. The mask image is the union of the minima image and the gray value feature

image

FMask = [F
(2)
min ∪ FGV ]C . (3.20)

Then the reconstruction by dilation is used for the marker extension. The SE consists

of the voxel at the origin and the neighboring voxel in positive z-direction. Thereby, at

each iteration of the geodesic dilation, the markers are extended by one voxel in positive

z-direction until either a relevant minimum occurs or the gray value drops below the

threshold, indicating the pore space. The preliminary segmentation image thus becomes:

FSeg = Rδ0,+1(FArt, FMask). (3.21)

3.3.3.1 Refinement with Constrained Watershed

If the features were perfectly consistent and accurate, the segmentation would be finished

by now. Yet, unfortunately due to noise and other artifacts, the segmentation still

has a large rate of misclassified voxels (as shown in Figure 3.10 (e)). To improve the

segmentation, a constrained watershed transformation is used, which exploits the edge

information in the gradient image to fit the segmentation to the boundaries of the matrix

phase. The preliminary segmentation FSeg is used as an initial guess. For the constrained

watershed transformation, the labels of the preliminary segmentation are used as initial

basins for the region growing process. However, the image is already segmented. Hence,

each voxel is assigned to either void or matrix phase already. Thus, some of the labels

have to be removed to make room for the fitting.

In practice, both segments are to be separated along the boundaries. Therefore, the

labels in the preliminary segmentation are split to separate images, yielding one image

for the void phase markers and the matrix phase markers, each. Then both images are

eroded to separate the markers. The structuring element of the erosion can be chosen by

hand, depending on the quality of the preliminary segmentation. In practice, an erosion

of the matrix markers with an ellipsoidal structuring element E(2,2,1) with radius r = 2

in the xy-plane and radius r = 1 in z-direction, has given good results, i.e.

FMatrix = εE(2,2,1)(FSeg). (3.22)
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For the void markers, it has proven beneficial to differentiate between the preliminary

segmentation and the gray value feature image. By construction, the gray value feature

is included in the void marker. Yet, when the threshold of the gray value is chosen such

that no false-positives occur, i.e. no matrix voxels are marked as void, then a smaller

SE in the gray value image can be used. From testing it is known, that this gives a more

accurate result. The void markers are then given by the union of both erosions, i.e.

FVoid = εE(2,2,1)(F
C
Seg) ∪ εN26(FGV ) (3.23)

To generate a label image as input for the constrained watershed segmentation, the void

marker image is multiplied by two and added to a zero valued image I(0). Then the

matrix markers are added to the same image. That yields a label image FLabel (Figure

3.10 (f)) where the matrix markers are given by label 1, the void markers by label 2,

and the unmarked phase by label 0.

FLabel = I(0) + FMatrix + 2FVoid. (3.24)

The final result is then obtained by running the constrained watershed transform on the

gradient image FGrad from Equation 3.17, according to

FRes = CWS(FLabel, FGrad). (3.25)

As can be seen in Figure 3.10 (g) this considerably improves the segmentation. The

segmentation does, however, not exactly match the ground truth in Figure 3.10 (h), thus

a quantification of the errors in the segmentation is desirable. This will be discussed in

depth in the next section.

3.3.4 Summary of the Algorithm

A summary of the segmentation algorithm is depicted in Figure 3.11. First a prepro-

cessing step is performed, where the slices in the data are aligned to get meaningful

z-profiles and illumination differences are corrected to get meaningful thresholds and

gradients (Section 3.3.1).

Then, feature images are computed on the preprocessed data (Section 3.4.2.2, second

column in Figure 3.11). A morphological gradient is computed for the edge recognition

and as an input parameter for the constrained watershed transformation. On the mor-

phological gradient, a thresholding is made (Figure 3.10 (c)), to detect edges which are
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Figure 3.11: A flowchart of the segmentation algorithm: the input image goes through
a preprocessing stage, then feature images are created, which are combined to give a
preliminary segmentation. Subsequentially, the preliminary segmentation is used as

input for a constrained watershed transformation.

used to discriminate the relevant minima. Also, a half-gradient image is computed and

thresholded to compute the artifact marker image (Figure 3.10 (b)). A morphological

reconstruction is used to compute the minima in the profile which have a minimal dy-

namic. Then the edge recognition is used to get the relevant minima (Figure 3.10 (d)).

The remaining feature image is a threshold on the gray value in the data to attribute

dark areas in the image to the pore space (Figure 3.10 (a)).

To generate a segmentation from the features (third column in Figure 3.11), a prelim-

inary segmentation is generated by morphological reconstruction. The morphological

reconstruction selects the solid phase by extending the half-gradient marker to the rel-

evant minima or the thresholded pore space (Figure 3.10 (e). To remove the artifacts

from the preliminary segmentation, the image is split into a marker image for the solid

and the pore phase. In the next step, both images are eroded to separate the phase

markers from each other. Then, the images are added to give a label image as input for

the constrained watershed transformation (3.10 (f)). The constrained watershed trans-

formation extends the marker to the edges in the image, yielding the final segmentation

result (Figure 3.10 (g)).

3.4 Verification and Error Analysis on Simulated Data

After the segmentation algorithm has been developed, it is important to study the accu-

racy of the segmentation. This gives confidence in the method and allows comparisons
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Figure 3.12: The simulated FIB-SEM dataset used for the verification of the segmen-
tation algorithm.

with other methods. To this end, the algorithm was tested on synthetic data, which also

enables studies on the stability of the result with respect to parameter changes.

3.4.1 The Simulated Data

Since the ground truth cannot be obtained for real FIB-SEM data, a synthetic dataset

with known ground truth is needed for the verification of the segmentation. For this

purpose, we use simulated data as described in Section 2.4.1. Even though the exact

structure of the experimental data is unknown, the simulated geometry should resemble

the structure of the porous material in Figure 3.7. As stated in Section 2.4.1, the

simulated geometry is a realization of a Boolean model with spheres as primitives. The

dataset consists of 100 simulated slices with each slice having the dimension 200 x 200

pixels. The porosity of the model is 44 %, resembling the porous carbon structure in

Figure 2.8.

3.4.2 Segmentation and Choice of Parameters

3.4.2.1 Preprocessing

As described in the previous section, the segmentation begins with a preprocessing of the

data. Since neither specimen drift nor beam drift occur in the simulation, the slices are

already perfectly aligned. Hence, the alignment step is superfluous. The illumination
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Figure 3.13: Misclassification rate with respect to variation of the segmentation pa-
rameters from the chosen values.

was corrected by an average filter as described. Due to the small image size, a radius of

the filter mask of 50 voxels was sufficient. A front and cross section view of the dataset

after preprocessing is depicted in Figure 3.12.

After the preprocessing step, the foreground structure was morphologically segmented.

In the following section, the segmentation for the verification will be discussed and the

choice of parameters will be motivated.

3.4.2.2 Feature Images

In a first step, the gray value feature image is generated. To this end, a global thresh-

olding is used, selecting all voxels with a gray value lower than 60 as void space. The

corresponding feature image is shown in Figure 3.10 (a). The threshold value can be

motivated physically by the histogram. In the data, the solid structure has an ap-

proximately constant gray value throughout the image, which generates a characteristic

peak in the gray value histogram. Depending on the dataset, this peak is more or less

pronounced, but can almost always be identified. The other two regions either have a

peak at a gray value that is much darker (void phase) or have no peak at all (artifacts).

Since the artifacts show a ramp like structure in the z-direction, the neighboring voxels

should have an either lower or higher gray value for each voxel, leading to a plateau-like

structure in the histogram. Having that information, the gray value threshold can be

estimated as lying just below the highest peak in the histogram (in this case at around

60). As can be seen in Figure 3.13, a small variation of the threshold value does not

have a big effect on the segmentation. The largest effect can be seen when increasing

the threshold, and thus cutting into the peak.
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In a second step, the half-gradient feature image shown in Figure 3.10 (b) was computed.

The half-gradient feature in Equation 3.15 has two free parameters, the threshold d and

the length of the SE zl+, l. The choice of both parameters depends strongly on the data

and happens basically by trial and error. For the data at hand, the threshold value was

d = 4 and the length was l = 2. As shown in Figure 3.13, the threshold d has almost

no effect on the segmentation result, while the segmentation is most sensitive to the SE

length l.

Next, the minima are detected by a morphological reconstruction. The parameter of

the reconstruction dmin gives the minimal dynamic of the minima detected. In general,

the parameters should be chosen as the minimal value, which successfully suppresses

minima arising from noise and other artifacts. Yet, as can be seen from the dark-blue

curve in Figure 3.13, the parameter is almost universal in the neighborhood of 20, i.e.

a change in the parameters does not alter the misclassification rate. From experience,

this is true even for other vastly different datasets. The feature image of the data is

shown in Figure 3.10(d). For further suppression, the gradient image is thresholded at

a gray value of 75. Again, the parameters should be chosen as the minimal value which

can successfully detect the edges in the data. Of special importance here are the edges

in the z-direction in the image, which the preliminary segmentation relies on. As can be

seen in Figure 3.13, also the gradient threshold is almost universal. The resulting edges

are shown in Figure 3.10(c).

After the feature detection, the preliminary segmentation was generated, with the trans-

formation in Equation 3.21. The resulting image is shown in Figure 3.10 (e). Then the

label image for the constrained watershed transformation was generated according to

Equation 3.24 and the segmentation was refined. The corresponding images are shown

together with the ground truth in Figure 3.10 (h). The segmentation will be compared

quantitatively with the ground truth in the next section.

3.4.3 Error Analysis

After a reference segmentation is achieved, the quality of the segmentation is measured

using a variety of methods. For comparison, a ground truth image was generated using

the geometry file. Knowing the positions and radii of the spheres, the volume was

rastered, meaning for the center of each voxel, a test was performed if the point is inside

one of the spheres. This method is more accurate than simply drawing spheres of voxels,

since it is less prone to errors from rounding the positions of the spheres and their radii.

The rastered volume image is then used as ground truth to assess the segmentation of
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Figure 3.14: The segmentation result (a) and the ground truth (b) as overlays on the
simulated FIB-SEM dataset.

the image. Figure 3.14 shows the segmentation and the ground truth as overlays on the

simulated data.

One main source of errors can be identified visually. Through the watershed transform

small features in the ground truth are eliminated. This is partly due to the erosion

of the markers, during which small isolated regions in the ground truth are removed.

Then the watershed transform is unable to reach these areas through region growing,

thus classifying the corresponding voxels as void. On the other hand, small structures,

especially at the boundaries, have a high gray value and a high gradient value. This

makes it harder for the watershed transform to identify the boundary of the matrix

phase, which in turn leads to a blurring of the boundary. The resulting effect is that

small void structures along the boundaries are classified as matrix. Empirically, the

latter effect seems to have a bigger impact, leading to a slight systematic overestimation

of the volume fraction of the matrix phase (see Table 3.1).

With the ground truth available, the quality of the segmentation can be measured.

Figure 3.14 (a) shows the misclassified voxels as a red overlay. Apparently, a large

proportion of the error appears at the boundaries of the image. This mainly stems from

less information being available at the boundaries of the image. Since the segmentation

relies heavily on minima in the image to detect the ending of the matrix phase, the

algorithm is unable to classify voxels lying between the first and last minimum and

the image boundary. Furthermore, the constrained watershed transformation produces

errors, since there are no markers of the opposing phase beyond the boundary. This leads

the watershed transform to grow the phase having markers closest to the boundary

until they are stopped by it. In the case of the present data, this leads to a large

misclassification as false positives, which are shown in Figure 3.15 as the red overlay.
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Also shown in Figure 3.15 are the false negatives in blue. They mainly appear at the

boundary and are due to simple inaccuracy in detecting the boundary. In general, due

to the specific effects described above, the false positives slightly outweigh the false

negatives, leading to an overestimation of the volume fraction. Yet, that effect can

be mitigated by restricting to a smaller subwindow, masking out voxels with a given

distance to the boundary. Therefore, a subwindow has been selected, leaving out all

voxels having a distance of up to 20 voxels to the boundaries in x- and y-direction and

10 voxels in the z-direction.

The results are summarized in Table 3.1. For the full dataset, the misclassification

rate is 17.7 %. Among these are 13.6 % false-positives and 4.1 % false-negatives. The

volume fraction is estimated at 66 %, confirming the trend discussed above. Inside

the subwindow, the error rate drops considerably to 12.3 %, among these 7.1 % false-

positives and 5.2 % false-negatives. The estimated volume fraction is 63.4 %, which is

only 1.9 % off the true value, again confirming the trend, that most errors occur at the

boundaries.

error morphol. seg. in window Sauvola (window) Otsu (window)

total 17.7 % 12.3 % 17.5 % 29.2 %

false pos. 13.6 % 7.1 % 14.4 % 6.0 %

false neg. 4.1 % 5.2 % 3.0 % 23.2 %

vol. frac. 66.0 % 63.4 % 72.9 % 44.3 %

Table 3.1: Error analysis of the simulated dataset, the volume fraction of the ground
truth image is 57% (in the window 61.5%).

Together with the newly developed method, segmentations with standard methods were

performed for comparison. As can be seen in Table 3.1, the morphological segmentation

performs best on most measurements. In comparison with Otsu’s global thresholding

method (Otsu [1979]), the morphological segmentation has about the third of the error

rate. Also, most of the misclassifications in the Otsu thresholding come from the false

negatives which leads to a vast underestimation of the volume fraction. The other

standard technique used is the local thresholding method in Sauvola and Pietikäinen

[2000]. Although the overall misclassification rate is better than with Otsu’s method,

almost all errors are false positives, which leads to a vast overestimation of the volume

fraction. And again, the morphological segmentation outperforms the standard method.

To verify the accuracy of the error estimate, a study has been made on whether the

volume is representative, i.e. whether enough data is available to estimate the misclas-

sification rate. Hence, the subwindow has been divided into four subwindows, each with

the dimension 80 x 80 x 80 voxels. Then the misclassification rates were measured on

each subwindow. The resulting error rates are 12.7 %, 11.6 %, 12.1 %, and 12.8 %, thus

the standard deviation being 0.6 %. Thus, it can be concluded that the estimate of
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Figure 3.15: (a): Total misclassified voxels as overlay on the dataset; (b) errors as
false positives (red) and false negatives (blue).

the misclassification rate for the window in Table 3.1 is representative with a standard

deviation of less than 0.6 %.

Apart from the misclassification rates, two morphological measures are frequently used

to characterize materials. These are the covariance and the granulometry as defined in

Section 4.2. The covariance is used to characterize the spatial composition and charac-

teristic length scales of a structure. The granulometry on the other hand, can be used to

measure particle sizes or the size of connected components in general. To test the seg-

mentation, both measurements were made on the ground truth data and the segmented

structure.

The resulting curves for the covariance are shown in Figure 3.16. In the plot, the curves

were normalized, such that the covariance Cov(d = 0) = 1. In the x- and y-directions,

the curves for the ground truth and the segmentation are in good agreement. Still, the

covariance is slightly underestimated. In z-direction, the covariance is underestimated

by a large margin, meaning that the characteristic length scale is much smaller. The

discrepancy in this direction can be explained by the anisotropic voxel size of 5 nm x 5

nm x 10 nm and the specific errors coming from the fact that the segmentation works on

profiles in z-direction. Both effects lead to specific errors. Nonetheless, in all cases the

range of the covariance, i.e. the characteristic length scale in the data is reconstructed

very accurately.

As a second morphological characteristic, a granulometry by opening was estimated on

the segmentation and on the ground truth. The openings were made with a rhom-

bocubocahedron as the SE, which gives a good approximation for a ball. The resulting

curve is shown in Figure 3.17. The curve of the ground truth shows a distribution

peaking at about 5 voxels, while the distribution of the segmentation peaks at about

7 voxels. Thus, the grain sizes are overestimated by about 2 voxels. This is mainly
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data, with d given in voxels.
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Figure 3.17: Comparison of the granulometry of the segmentation and the ground
truth.

due to the watershed transform as discussed above. Still the connected components are

reconstructed very accurately, meaning there are no outliers in both phases hampering

the size measurement. Also, the width of both distributions is identical, allowing an

estimation of the range of particle sizes based on the segmentation.

3.5 Results

Aside from synthetic data, the segmentation has been used on real FIB-SEM images for

testing and also for characterizing porous materials.
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Figure 3.18: The segmentation of the dataset in Figure 3.7 as a red overlay on the
original image.

3.5.1 Nanoporous Additive

The main application for the segmentation is the dataset depicted in Figure 3.2. For the

segmentation a subwindow of the dataset was selected using the first 137 slices. Then a

region of interest was cropped with the dimensions 662 x 387 x 137 voxels. The dataset

after preprocessing is shown in Figure 3.7. Then the image was segmented with the

parameters chosen according to the guidelines given in Section 3.4.2. The global gray

value threshold was 80. The threshold on the morphological gradient image was 60 and

the half-gradient markers were calculated with an SE length of 5 and a threshold value

of 1. The minimal dynamic of the minima was 20. Then the preliminary segmentation

was generated and refined with the watershed transformation. The result is depicted in

Figure 3.18 as a red overlay on Figure 3.7. By visual inspection, it can be concluded

that the main sources of error are the same as for the synthetic data. It can be seen in

the cross section view, that the quality of the segmentation drops in the first 10 or so

images and the last. Nevertheless, the boundary image in Figure 3.19 shows that the

segmentation fits very well along the boundaries of the solid phase.

For the analysis, it is required to calculate the relevant quantities on a subset excluding

the boundaries. Also, if information on the nanoporous phase is required, the bulk

material at the lower left corner of the image should be cropped. Therefore, a subset

with the dimensions 557 x 201 x 119 was selected for the analysis. The porosity of the

segmentation was calculated to be 59% even though an error estimate of around 5%

shoud be added as the segmentation depends on the parameters. The exact dependence

of the porosity is shown in Figure 3.20. As can be seen, the porosity varies around

5% for the selected intervals for most parameters. For the synthetic data the strongest
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Figure 3.19: The segmentation boundaries of the dataset in Figure 3.7 as a red overlay
on the original image.
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Figure 3.20: Volume fraction of the segmented solid phase with respect to variation
of the segmentation parameters from the chosen values.

variation is caused by the length of the SE for the half-gradient markers. Thus, this

parameter has to be carefully adjusted by hand.

With the segmentation, the spatial structure of the porous material is reconstructed.

Figure 3.21 shows a volume rendering of the three-dimensional structure. This three-

dimensional structure can be used to predict the macroscopic properties of the material,

such as mechanical properties, an effective diffusion coefficient or the electric conductiv-

ity.

Also, statistical characteristics of the structure can be measured. For the modeling,
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Figure 3.21: Segmented structure of solid phase of the porous additive.
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Figure 3.22: Covariance of the solid phase of the nanoporous additive.

presented in the next chapter, two characteristics have been measured, namely the co-

variance and the granulometry, as described above. The covariance was calculated on a

dataset where the voxel size was corrected to be isotropic, i.e. the image was scaled in

the z-direction (see Figure 3.22). The covariance shows to be almost isotropic with only

the z-direction differing from the other two, but not as strong as in the data used for

verification. Yet, for the modeling in Chapter 4 we will use the covariance measured in

the x-direction, since it has proven to be the most reliable in the verification.

The resulting curve for the granulometry is shown in Figure 3.23. The size distribution
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Figure 3.23: Granulometry by openings of the solid phase of the nanoporous additive.

shows a peak at about 7 to 8 voxels, which, considering the voxel size of 5 nm, corre-

sponds to a particle size of approximately 35 nm to 40 nm. These values fit very well to

the material description. Thus, the particle sizes can be accurately reconstructed. As

can be seen, the curve finds a continuum of sizes, which comes from the sintering of the

structure, where particles ’melt’ together and structures are eroded. The ragged shape

of the curve stems most probably from the discretization of the rhombocubocahedron,

with which the openings were computed.

3.5.2 Nanoporous EDLC Electrodes

The other application for the segmentation algorithm are the nanoporous EDLC elec-

trodes described in Section 1.2.2. Since pores with a diameter smaller than the SEM

resolution cannot be observed, the carbon phase looks solid in the SEM images, and

only the mesopores are visible. Since the physical behavior also depends on the meso-

pores, the segmentation of the pore space yields valuable information. To investigate

the influence of the mesopore system, two different datasets, with different mesopore

systems have been segmented. The specimens are called S12 and S14.

3.5.2.1 Segmentation of the Sample S12

The dataset S12 consists of 378 images of dimension 1024 x 1024 pixels. The dimension of

the voxels in the three-dimensional data is 3.57 nm x 3.62 nm x 10 nm. A subwindow with

the dimension 411 x 331 x 181 voxels was cropped from the image for the segmentation.

Since the dataset contains many small structures and the morphological operations work

better on larger structures, an upscaling was done on the image by a factor of 1.5. This
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leads to a dataset with dimensions 616 x 496 x 271 voxel, with a voxel size of 2.38 nm

x 2.41 nm x 6.67 nm. After the upscaling, the preprocessing was done according to

Section 3.3.1, with an average filter with a filter mask of radius 100 voxels. A slice view

of the preprocessed dataset is shown in Figure 3.24.

Figure 3.24: Preprocessed dataset of S12

For the segmentation a global threshold of 60 was chosen for the first step. The mor-

phological gradient was thresholded at a gray value of 40. The half-gradient makers

were generated using a SE of length 3 and a threshold value of 1 and for the minima

detection a minimal dynamic of 20 was chosen. Then the preliminary segmentation was

generated and the refinement was done with the watershed transform. A slice view of

the resulting segmentation is shown in Figure 3.25, with the segmented solid phase as

red overlay. It can be seen that the segmentation can separate the pore space from the

solid phase very accurately, despite some small discrepancies.

Figure 3.25: Segmentation of the dataset S12 as red overlay.

For the morphological analysis, the segmentation was cropped again to reduce the known

artifacts at the boundary, which results in a dataset of dimension 469 x 444 x 216 voxels.

Further, the dataset was scaled such in both the y- and z- axis, such that the voxels
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become isotropic. The resulting binary data is a faithful representation of the three-

dimensional structure of the solid phase of the mesopores in the EDLC electrode.

After the segmentation, statistical characteristics of the structure were measured. The

covariance was measured and the resulting curve is shown in Figure. 3.26. The intercept

of the covariance curve with the y-axis indicates a volume fraction of around Cov(0) =

0.68. Then the covariance declines until it reaches a sill at around 0.47 . The sill is

reached at around 20 voxels, indicating a structure size of about h = 20 ∗ 2.38 nm =

47.6 nm.
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Figure 3.26: Covariance measured on dataset S12.

Also the opening curve was measured, which is shown in Figure 3.27. It confirms the

estimate of the typical structure size from the covariance, as a steep decline can be

observed at a radius of 10 voxels or r = 10∗2.38 nm = 23.8 nm. Yet, as the curve is not

a step function, it cannot be assumed that a monodisperse Boolean model of spheres

would represent the segmentation well.

Finally, the closing curve of the dataset S12 was measured (see Figure 3.28). The

closing curve shows a strong increase at around 6 voxels, indicating that a pore sizes of

r = 6∗2. nm = 14.28 nm, which is much smaller than the typical solid phase sizes. This

is not surprising considering the morphology and the high volume fraction of the solid

phase.

3.5.2.2 Segmentation of the Sample S14

The specimen S14 has a much coarser microstructure. The dataset consists of 400 images

with the same dimension as S12, 1024 x 1024 pixels. Yet, due to the coarser structure, an

SEM resolution of 5 nm x 5 nm was selected to image the structure. The slice thickness
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Figure 3.27: Opening curve measured on S12.
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Figure 3.28: Closing curve measured at S12.

was 10 nm as for the S12 sample, leading to a voxel size of 5 nm x 6.35 nm x 10 nm.

A slice view of the image data is shown in Figure 3.29. Since the structure size is much

bigger in the sample, no upscaling was necessary. Also, due to the strong contrast and

the overall image quality, no preprocessing was done except for the alignment of the

images.

For the segmentation, the thresholds for the global gray value and the morphological

gradient were chosen to be 30. The half-gradient markers were generated using a SE

of size 5 and a threshold of 1. The minimal dynamic for the minima detection was 20.

A slice view of the resulting segmentation is shown in Figure 3.30 as the red overlay.

By visual inspection, the solid phase is well represented by the segmentation except for

some small inaccuracies at the boundary.

For the analysis of the segmentation, a subwindow was selected with the dimension 611
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Figure 3.29: Cropped FIB-SEM dataset of S14.

Figure 3.30: Segmentation of the S14 dataset as red overlay.

x 293 x 123 voxels. As for the other specimen, the characteristics measured were the

covariance and the opening- and closing-curves. The covariance is shown in Figure 3.31.

It shows a larger range than the covariance of S12, of around 30 voxel. This means a

typical structure size of around 30 ∗ 5 nm = 150 nm and reflects the coarser structure

that can be seen in the SEM images. Also the volume fraction is lower with around

54 %.

The opening curve measured on dataset S14 is shown in Figure 3.32. The opening

curve shows a strong decline at around 10 voxels. This corresponds to a radius of

r = 10 ∗ 5 nm = 50 nm compared to the 23.8 nm in S12, speaking again for a coarser

structure.
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Figure 3.31: Covariance of dataset S14.
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Figure 3.32: Opening curve of dataset S14.

Also, the closing curve was measured on dataset S14. The curve in shown in Figure 3.33.

Other than for the opening curve, the closing curve shows a different behavior then for

S12. The curve shows a slower increase and the starkest climb at around 12 voxels. This

indicated a typical pore radius of r = 12 ∗ 5 nm = 60 nm , compared to the 14.28 nm of

S12. This again reflects the much larger pores, which can be seen in the SEM images in

Figure 3.29.
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Figure 3.33: Closing curve measured on dataset S14.

3.6 Discussion and Outlook

3.6.1 Discussion

As explained in Section 3.1.4 on previous work, the segmentation of FIB-SEM data is

an active field of research, still awaiting a general standard solution. In this section, a

newly developed segmentation algorithm based on mathematical morphology was pre-

sented, which can segment a variety of structures and does not need any prior knowledge

or assumptions on the structure. For the development, specific features were identified

which are characteristic for FIB-SEM data. Also, a physical motivation for the choice

of features was given. Some features such as the minima were not recorded in litera-

ture so far and represent a new development. The segmentation algorithm works with

morphological operations, which are widely available and can be used by non-experts.

In the second part of the Chapter, a verification of the algorithm with synthetic data

was presented. The synthetic data was generated with the FIB-SEM simulation tool

described in Chapter 2. With the synthetic data, the quality of the segmentation was

assessed using a variety of measures. And it was found that the misclassification rate is

the lowest reported in literature so far, even though the quality of the data is low due to

the fine structure. Moreover, the characteristic length scales are reliably detected as well

as the sizes of the connected components. In Section 3.5, applications of the algorithm

on datasets of different structures on different length scales were presented, confirming

the variety of datasets to which the algorithm can be applied.
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3.6.2 Outlook

The approach pursued in this work provides numerous possibilities, for further research

to improve the segmentation. The workflow outlined in Figure 3.11 can be improved at

any point.

At the preprocessing level, the alignment procedure works well, yet improvements could

be made. For now, the alignment used the region of interest as well as the surrounding

structure as points of reference. When restricting only to the surrounding structures,

an even more precise alignment could be made. More advanced methods for the feature

detection could be used, such as scale-invariant or histogram-based features. A machine

learning algorithm could then be used to learn the artifacts and the relevant minima,

maybe in a supervised manner. This could improve the feature detection considerably.

In the refinement step, also more advanced methods could be used for the edge detection.

Power watersheds or graph-based algorithms could be applied, which are more robust

in their edge detection on noisy data. Also, an application of the approach in Jørgensen

et al. [2010] for the refinement could be used incorporating the sensitivity to rising

gray values in the artifacts to improve the segmentation on the refinement level. It is

conceivable to incorporate this also in graph-based methods.

Another avenue of research is to reduce the number of parameters. In Section 3.4.2.2,

guidelines for the choice of parameters were given based on experience (minimal dy-

namic) and from histogram analysis (gray value threshold). The histogram analysis

could well be automated using a fitting procedure. For the determination of other pa-

rameters either prior knowledge (i.e. isotropy) or an optimization of a quality measure

of the segmentation could be used. Also, the segmentation algorithm could be amended

to a partly supervised segmentation, where the user assesses the quality of the segmen-

tation.



4
Stochastic Modeling of Porous Microstructures

Even though the segmented data from the last chapter can be used to simulate the

macroscopic properties of the material, it is sometimes desirable to have a stochastic

model to represent the structure. A stochastic model is a prescription to generate

random structures which have the similar properties with respect to some statistical

measure as the original data. The models have parameters which describe the structure

under consideration, reducing the complexity of the problem. The similarity of the model

to the original data is assessed by suitable statistical measures. These measures can be

used to fit the model parameters to the data. Then, realizations of the random structure

can be generated at will and used for measurements and computations. Also, by varying

the parameters of the model, the structure can be optimized to given requirements.

4.1 Models for Random Structures (Previous Work)

Previously numerous models have been investigated. The two most prominent model

classes are random closed sets (for a formal definition see Section 1.3.1) and random field

cut models. Apart from point processes, random closed sets include the Boolean model

and variations of it, as well as mosaics which are used for the modeling of crystals or

foams. Also in higher dimensions, random ensembles of planes and surfaces have been

considered. For an overview see Serra [1982], Serra [1988] or Stoyan et al. [1995].

The other most prominent class are the random field cut models, where the model

realization is a level set of a random field. The most prominent example is the Gaussian

Random Field (GRF) cut model. Also, variations of the model have been considered,

mostly level sets of convolutions of GRF’s where a convolution introduces a spatial

covariance in the random field. Here too, field of non-Gaussian random variables have

93
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been considered, such as fields following a Poisson distribution or binary random field

where the random variable can be either 1 or 0.

The model is mostly chosen manually by selecting a model based on the overall visual

appearance of the segmented data. Ideally, all models should be easy to compute.

Also, the model should ideally depend on only a few parameters while still completely

representing the class of structures that are modeled, which makes fitting the model

easier. Furthermore, the parameters should be chosen in such a way, that altering

the parameters changes the structure in a meaningful way. This enables the model to

represent a whole class of materials, e.g. granular media with different grain sizes.

To use the model, its parameters must be chosen, such that the model represents ob-

served data. Some model parameters can be chosen directly from the data using an-

alytical expressions calculated for the model, i.e. the observed volume fraction. Yet,

mostly a fitting procedure must be employed using simulated realizations of the model

and then finding the optimal set of parameters. The optimal parameters are determined

by comparison of statistical characteristics of the model realization and the observed

structure.

4.2 Statistical Characteristics of Random Closed Sets

To compare the different random structures and to quantify the difference between them,

a number of statistical measures have been developed. In this thesis, two measures are

widely used. First is the set covariance or covariance of the random set, second the

granulometry of the set with a given structuring element.

4.2.1 Covariance

The probably most widely used characteristic is the covariance, defined for stationary

random sets (see Serra [1982], Stoyan et al. [1995] and Matheron [1975]). It is, broadly

speaking, a measure for the typical length scales in the data. If the structure contains

several distinct length scales, an analysis with the covariance can detect them. Also

if no typical length scale can be identified and, as in amorphous structures, rather a

continuum is present, a maximum range of the structure can be identified using the

covariance.

There are several definitions for the covariance around, but the one used in this thesis is

the non-centered set covariance, which will simply be referred to as the covariance. The
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definition of the covariance of a random closed set (RACS) Ξ is the probability that two

points (e.g. x,y), are included in Ξ

Cov(x; y) = P (x ∈ Ξ ∧ y ∈ Ξ). (4.1)

If the RACS is stationary, this can be simplified, since the covariance only depends on

the difference vector ~h = x− y by translating the set such that the point x becomes the

origin, thus

Cov(0,~h) = P (0 ∈ Ξ ∧ ~h ∈ Ξ), (4.2)

where h is the distance vector y − x. More simplification can be made if the RACS is

isotropic, where the covariance only depends on the norm of the vector ‖h‖. Then the

covariance becomes a function with a scalar argument

Cov(h) = P (0 ∈ Ξ ∧ ~h ∈ Ξ) (4.3)

for a vector ~h with ‖~h‖ = h.

For ergodic sets, the covariance can be measured directly on one realization. As the size

of the observation window approaches infinity, the estimator of the covariance converges

to the covariance of the RACS. The estimation of the covariance of the RACS can be

done using mathematical morphology. The morphological expression corresponding to

Equation 4.2 for the covariance is given by

Cov(0;~h) = Vol(ε{0,~h}(Ξ)), (4.4)

where ε is the erosion with the structuring element {0, h}, which consists of the two

points {0, h} of Ξ and Vol is the volume fraction of the eroded RACS. The covariance

will be used in Chapters 3 and 4 for the characterization of random structures.

4.2.1.1 Properties

Even though the exact form of the covariance varies depending on the set, several general

properties can be given. First, the value of the covariance at the origin 0 corresponds

to the volume fraction of the random set Ξ:

Cov(0; 0) = P (0 ∈ Ξ) = p. (4.5)
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Furthermore, the maximum of the covariance is located at the origin, even though the

covariance is not in general monotonically decreasing, thus

Cov(h) ≥ |Cov(h)|∀h ∈ R3. (4.6)

Also, as h tends to infinity, the two events telling that the two points are in the RACS will

be completely uncorrelated. Hence, the covariance will approach a sill, i.e. a constant

value of p2. The distance where the sill is reached, will be called the range of the

covariance in the following. The range of the covariance indicates the largest length

scale in the random set,

lim
h→∞

Cov(h) = P (0 ∈ Ξ)P (0 ∈ Ξ) = p2. (4.7)

For some random set, analytical expressions are known for the covariance, e.g. for

the Boolean model (see Section 4.3.1.1). Yet, for most models there are no analytical

expressions known for the covariance, and thus the covariance has to be measured based

on realizations of the model.

4.2.2 Granulometry

Other frequently used characteristics of RACS are granulometries. A granulometry

is also a measure of size, obtained by measuring the volume fraction of openings by

structuring elements with increasing sizes. They can be used to measure the extent or

sizes of connected components in the set. An intuitive interpretation can be given for a

set made of distinct objects, simple examples of which can be thought of are granular sets

modeling things such as gravel or inclusions in a composite material. A granulometry,

computed on the set, will then recover the size distribution of the objects in the set.

Other than the set covariance, a granulometry of a set is not uniquely defined, since a

structuring element is needed for the computation. Yet, when a structuring element is

chosen, e.g. a unit sphere, the granulometry is unambiguously defined and can be used

to characterize random sets.

The axiomatics of granulometries were developed by Georges Matheron in Matheron

[1967]. They are also given in Matheron [1975], Serra [1982], and Soille [1999].

Morphological measurements of granulometries are closely linked to opening and closing

curves. A closing or opening curve is defined for a series of structuring elements of

increasing size, for example for the balls of radius l

B(l) = {x : ||x|| ≤ l}, (4.8)
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Figure 4.1: Effects of the morphological openings with a Ball of increasing radius,
from left to right: Original image (a), after opening with size radius 20(b), after opening
with radius 50(c), after opening with radius 70(d). After an opening with radius 80,

the image is empty (not shown).

which can be written as a homothetic transformation of the unit ball with the scaling

factor l

B(l) = lB(1). (4.9)

The opening curve for the ball of radius l is the volume fraction of a set after an opening

with a ball of radius l

Γ(l) = Vol(γB(l)(f)). (4.10)

By the anti-extensive property of the opening, the curve is always decreasing, i.e. struc-

tures are always removed from the image. Also the opening curve always tends to zero,

as an opening with a large enough structuring element will erode all structures and leave

an empty set.

Analogously to the opening curve, the closing curve is defined as the volume fraction

after a closing of the image with a structuring element of increasing size

Φ(l) = Vol(φB(l)(f)). (4.11)

In contrast to the opening curve, the closing curve is increasing and tends to one. Here

structures are added to the image and after a closing with a big enough structuring

element, the image is filled with foreground. Both curves can be used to characterize

microstructures and as distance measures for model fitting.

As can be seen in Figure 4.1, the opening with an increasing size removes structures

smaller than the structuring element. After removing small structures from the original

image in Figures 4.1 (a) and (b) increasingly big structures are removed (Figures 4.1 (c)

and (d)) until after an opening with size 80 the whole image is empty (not shown). By

measuring the volume fraction of the foreground in the series of images, the fraction of

voxels belonging to a structure smaller than the structuring element can be measured

by differentiation
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GranB(l)(l) =
d

dl
ΓB(l)(f). (4.12)

So the granulometry is the fraction of voxels belonging to a structure of size B(l). Since

the discretization of a ball of size l might be tricky, the ball is approximated by a

rhombocubocahedron of size l (see Figure 4.2), without altering the result too much.

Figure 4.2: Rendering of a rhombocubocahedron (source: en.wikipedia.com).

4.3 A Coarsened Boolean Random Function Model

To model the segmentations S12 and S14 presented in Section 3.5.2, the Boolean model

of spheres is clearly not sufficient, since it cannot reproduce the smooth surface of the

segmented structure. It is known from the production process, that the solid phase

consists of sintered spherical particles, meaning that an ensemble of spherical particles

has been produced, which has been heated to sinter the particles. During the sintering

process the atoms move along the boundary (surface diffusion) and through the solid

phase (bulk diffusion), leading to a form of ’molten’ structure, where the boundaries are

smoothed and the particles are ’baked’ together. To model such a structure, the Boolean

model of spheres has been modified using a convolution of its indicator function with

a kernel. This modification of the Boolean model imitates the sintering process to a

certain degree by coarsening the model’s morphology, leading to a morphology, similar

to the one observed in the segmentations.
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4.3.1 The Boolean Model

The Boolean model, also called the Poisson germ-grain model, is a RACS which is

frequently used for the modeling of porous materials. The model has been used for

various applications for a long time. Early applications include Armitage [1949] and

Kolmogorov [1937]. Since then, it has been intensively studied by George Matheron

in Matheron [1967, 1975] and Jean Serra in Serra [1982]. The Boolean model can be

defined by a union of compact sets, which are placed randomly in space. The compact

set can be the same for each point or be drawn from a family of sets. Thus the definition

of a general Boolean model must include the definition of a family of compact sets, the

grains

ξ = {ξ1, . . . , ξn}. (4.13)

Here ξ is the family of the compact sets ξn. To place the compact set randomly in space

they are translated by the points xi of a point process Φ, i.e.

xi ∈ Φ. (4.14)

For a stationary Boolean model, it is necessary to have a stationary Poisson point

process for the translations. Then the Boolean model Ξ can be defined by the union of

the translated compact sets (see Figure 4.3 for an illustration).

Ξ =
∞⋃
n=1

(ξn + xn) = (ξ1 + x1) ∪ (ξ2 + x2) ∪ . . . , (4.15)

with

ξn ∈ ξ, (4.16)

xn ∈ Φ. (4.17)

The intensity of the underlying Poisson point process λ is a free parameter of the model.

Other parameters might be added to parametrize the family of grains ξ, e.g. the radii

of a family of spheres.

As for any RACS, the Boolean model is uniquely determined by its Choquet capacity

TΞ(K). When the underlying point process is a stationary Poisson point process, the

capacity can be given in a closed and relatively short form as

TΞ(K) = 1− exp(−λE(Vol(ξ̌ ⊕K))), (4.18)
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Figure 4.3: Realization of a Boolean Model: The underlying point process (from
Figure 1.6) is indicated with white dots. The grains are drawn from the family of

grains on the right.

where ξ is the family of primary grains and E(Vol(.)) is the expectation of the Volume,

taken over all grains. Yet to evaluate the expectation, the exact family of grains needs

to be known. In this thesis, the grains will mostly be spheres or cylinders with either

fixed radii or the radii distributed following some distribution. The same holds for the

height and orientation of the cylinders.

4.3.1.1 The Boolean Model of Spheres

The approaches used to model the segmented datasets S12 and S14 in this thesis are

based on a Boolean model of spheres, where the grains are a family of spheres. If the

radii follow some distribution, the model is referred to as the poly-disperse Boolean

model of spheres. For a fixed radius and equal radius for every sphere, the model is

referred to as mono-disperse Boolean model of spheres. In that case, the family of sets

consists of one element, the ball of radius r,

ξr = B(r). (4.19)

The mono-disperse Boolean model of spheres of radius r with the intensity λ will be

denoted as

Ξrλ. (4.20)

A volume rendering of a mono-disperse Boolean model of spheres is shown in Figure 4.4.

The Boolean model of spheres is an example where several statistical characteristics are

known analytically. Emanating from Expression 4.18 the volume fraction of a Boolean
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Figure 4.4: Volume rendering of a Boolean model of mono-disperse spheres.

model can be calculated. To this end, the set containing the origin is chosen as a test

set K = {0}. Then the expectation in the exponential simplifies to

E(Vol3B(r)) =
4

3
πr3, (4.21)

the volume of a ball with radius r. This means, that the volume fraction is

p = 1− exp(−λ4

3
πr3). (4.22)

Also, the covariance can be computed by choosing a set containing two points as a test

set, K = {o, h}. Then the expectation in the exponential reads

E(νd(ξr ∩ (ξr − ~h))). (4.23)

This expression is the area of intersection of two balls separated by a vector ~h. The

expression for the covariance simplifies to

Cov(h) = (1− p)2−r(h) with (4.24)

r(h) =

1− 3h
2r + h3

2r3
if h ≤ r

0 if h ≥ r
(4.25)

These measures can be used to compute the parameters for the Boolean model of spheres,

since the volume fraction immediately yields the intensity of the underlying point pro-

cess. Also the covariance can be measured on the data, then Expression 4.25 can be

fitted, yielding the radius.
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Unfortunately, there is no analytical expression known for the granulometry. But intu-

itively it is clear, that for low intensities, when overlap between the spheres it not too

frequent, the granulometry with a ball will yield a peak at the radius of the spheres.

For higher intensities, the peak may widen. Thus for the fitting of model parameters, a

fitting using simulations and a distance measure is needed as explained in Section 4.4.

4.3.2 Description of the Coarsened Boolean Model

In this section, details on the modified Boolean model will be given. The basis of the

modified model is a mono-disperse Boolean model of spheres with radius r, and an

underlying stationary Poisson point process with intensity λ. The model is denoted Ξrλ

and has two free parameters r and λ, where the parameter λ can be substituted by the

volume fraction of the Boolean model p using equation 4.22. The indicator function is

needed in the following and is defined as

1Ξrλ
(x) =

1 if x ∈ Ξrλ

0 if x /∈ Ξrλ

. (4.26)

A slice view of the indicator function of a realization of a Boolean model of spheres is

shown in Figure 4.5. The realization has the same volume fraction as the segmentation.

Yet, the boundary of the model has sharp edges, which are not visible in the segmentation

in the Figures 3.25 and 3.30. This makes it impossible to model the segmented structure

with a Boolean model of spheres irrespective of the chosen parameters.

Figure 4.5: Indicator function of a realization of a Boolean model of spheres with
radius 20 voxel and a volume fraction of 50 % .
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To smoothen the boundaries of the model, the indicator function is convolved with a

Gaussian kernel of the form

N(0, σ)(x) =
1√

2πσ2
e−

x2

2σ2 . (4.27)

This adds another free parameter σ to the model, which parameterizes the width of the

convolution kernel. The convolution of the indicator function with the Gaussian kernel,

yields a random function Z(x):

Z(x) = 1Ξrλ
∗N(0, σ) =

∫
1Ξrλ

(h)N(0, σ)(h− x)dh3. (4.28)

A slice view of Z(x) generated from the realization of the Boolean model in Figure 4.5

is shown in Figure 4.6. The parameter σ of the Gaussian kernel was four. As can be

seen, the image has been smoothened, blurring the sharp edges visible in Figure 4.5.

The parameter σ can be used to adjust the extent of the smoothing of the image, where

a larger σ will result in a smoother image and later a coarser microstructure.

Figure 4.6: Random function Z(x) generated from the realization in Figure 4.5.

Yet, the image cannot be used to model a two-phase random structure. Therefore, the

random function Z(x) is thresholded yielding a binary function, again

B(x) = 1Z(x)>C . (4.29)

The indicator function in 4.29 yields the two-phase microstructure model. A slice view

of the resulting microstructure model is shown in Figure 4.7. It is apparent, that the

original Boolean model has been coarsened, having a much smoother boundary.
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Figure 4.7: Slice view of the modified two-phase model.

The thresholding is done with a constant value C between zero and one, where larger C

value will result in a lower volume fraction. For the modeling of the microstructure at

hand, C was chosen such that the resulting microstructure will have the same volume

fraction as the original Boolean model. The exact value can be determined by using

the gray value histogram of the image of Z(x). This makes the transformation of the

structure volume conserving, imitating the conservation of mass during the sintering

process.

Finally, the model has three free parameters: the volume fraction of the Boolean model

p, the sphere radius r and the convolution kernel width σ.

4.3.2.1 Model Fitting

Unfortunately, no analytical forms for the covariance or the opening or closing curve are

known. This means that the fitting needs to be based on simulations. Yet, intuitively

it is clear that, depending on the choice of parameters, the characteristics of the model

should vary between the original mono-disperse Boolean model of spheres and a Gaussian

random function model, since both are limits of the model. Obviously the Boolean model

is the limit for vanishing kernel width, i.e. σ → 0, since it does not smooth the indicator

function and thus reproduces the original model. On the other hand, in the limit of a

vanishing sphere radius, while keeping the volume fraction constant, the RACS converges

towards a random field, with a binomial distribution with mean p at every point in space

(for a formal definition of a random field see Section 4.5.0.1). The thresholding will then

yield a random structure similar to Gaussian random field cut model, with a very smooth

boundary.
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Since no analytical expressions for the statistical characteristics are known, they have

to be estimated on realizations of the model. To this end, model realizations with a

sufficient size to be representative are generated and the covariance, opening and closing

curves are measured on the generated images. Then, to fit the model, a distance measure

is defined between the characteristics of the model realizations and the characteristics

of the dataset. It is customary to use the squared difference between the curves as a

distance measure. Thus the distance measure reads

χ2 =

∫
(Covd(h)−Covm(h))2dh+

∫
(Γd(l)−Γm(l))2dl+

∫
(Φd(l)−Φm(l))2dl, (4.30)

where Covd(h) is the covariance of the segmentation and Covm(h) is the covariance of

the model realization and likewise for the opening curves Γd/m(l) and the closing curves

Φd/m(l), as defined in Section 4.2.

In practice, the curves are discretized using a number of samples, i.e. distances hi and

sizes li. This leads to the distance function

χ2 =
∑
hi

(Covd(hi)−Covm(hi))
2 +
∑
li

(Γd(li)−Γm(li))
2 +
∑
li

(Φd(li)−Φm(li))
2. (4.31)

In order to fit the model parameters to the segmentation, the distance function has to

be minimized, yielding the optimal set of parameters to represent the segmentation with

the model. Since the model characteristics are random functions themselves, special care

has to be taken when minimizing the distance function χ2. The algorithm used in the

thesis is described in the next section.

4.4 Fitting by Stochastic Optimization

To fit the curves to the data, a distance or objective function has to be minimized with

respect to the parameters of the model. Numerous algorithms exist for the optimization

of loss functions. Most of them rely on the computation of a gradient. The most common

and simplest gradient based method is the gradient descent method. Others are the

Levenberg-Marquart-Algorithm (Levenberg [1944], Marquardt [1963]) and the BGFS

method (Broyen [1970], Fletcher [1970], Goldfarb [1970], Shanno [1970]). A prominent

example for a non-gradient based method is the Nelder-Mead-simplex-algorithm (Nelder

and Mead [1965]). For the parameter fitting to random sets, we will use a modified

gradient descent method taking into account the stochastic nature of the loss function.

In the gradient descent scheme, an initial guess for the optimal parameters is given.

Then, the gradient of the loss function with respect to the parameters is computed,
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*

*

Figure 4.8: Gradient-descent algorithm

either analytically or by finite differences. Then the parameter vector is shifted in the

opposite direction of the gradient. By iterating the procedure, the parameter vector

moves ’downhill’ until it approaches a local minimum (see Figure 4.8).

4.4.1 Simultaneous Perturbation Stochastic Approximation

In the setting of random sets, the situation is complicated by the facts that the loss

function is itself a random number, depending on the random realizations for which it is

computed. The distribution of the random number is centered around its expectation,

scatters around it due to the noise. That means, that the computation of a gradient

is only possible if the noise term is much smaller than the finite difference used for the

computation of the gradient. Since that is only true for very large realizations, the use

of a different algorithm is necessary for the fitting using smaller realizations.

One such algorithm is the simultaneous perturbation stochastic approximation (SPSA)-

algorithm (Spall [1987, 1992]). The method approximates the gradient by perturbations

of the parameter vector. The SPSA-algorithm in pseudo code is given in Algorithm 1.

As for the standard gradient descent algorithm, an initial parameter vector θ is given.

Then for a fixed number of iterations n, the gradient is estimated by a finite difference

and the parameter vector is updated accordingly. Yet, instead of estimating the gradient

in every parameter direction separately, a simultaneous perturbation is used, meaning

that every parameter is varied in the same iteration. It was shown in Spall [1992] that

the simultaneous perturbation estimates the gradient and the algorithm converges to

the global optimum. Two additional constants a and c control the step lengths for the
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update and the gradient computation, respectively. As the loop progresses, the step

length is reduced such that θ will stabilize at a minimum. The step length is reduced

exponentially and the reduction rate is given by two additional constants α and γ.

Data: θ ∈ Rd, L(θ) : Rd → R, a ∈ R, c ∈ R, α ∈ R, γ ∈ R, n ∈ N
Result: locally minimal parameter vector θ
k ← 0;
while k < n− 1 do

adjust step size:;
ak ← a

(k+1)α ;

ck ← c
(k+1)γ ;

calculate random perturbation:;
∆ ∝ Ber(−1,+1);
∆← (2p)− 1;
θ+ ← θ + ck ∗∆;
θ− ← θ − ck ∗∆;
calculate random gradient:;
y+ ← L(θ+);
y− ← L(θ−);
g = (y+ − y−) 1

2∗ck∗∆ ;

update θ:;
θ = θ − ak ∗ g;

end
Algorithm 1: Simultaneous perturbation stochastic approximation (SPSA).

4.4.2 Choice of Parameters

In general, the efficiency of the method depends on the loss function L(θ). Yet, some

requirements for a and α can be derived from the convergence of the algorithm. So, the

sequence ak should be positive and go to zero as k approaches infinity. Also, the series

in Equation 4.34 must diverge, to ensure that the algorithm converges to the global

maximum

ak > 0, (4.32)

lim
k→∞

ak → 0, (4.33)

∞∑
k=0

ak = ∞. (4.34)
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For the choice of c and γ similar conditions must hold, so the ck must be positive and

vanish for k →∞. Also, the series 4.37 which depends on the ak must converge.

ck > 0, (4.35)

lim
k→∞

ck → 0, (4.36)

∞∑
k=0

ak
ck

< ∞. (4.37)

In practice, the parameters α = 0.1, γ = 0.6 have shown good results for a number of

loss functions. The constants a and c must be must be chosen for every optimization,

depending on the shape of the loss function.

4.5 The Gaussian Random Field Cut Model

Besides the models derived directly from random sets, there is a second class of popular

models based on random fields. This model will be used to model the random structure

of the nanoporous additive segmented in Section 3.5.1.

4.5.0.1 Gaussian Random Fields

A random field is defined as a random variable at every point in a domain. In depth,

treatments can be found in Adler and Taylor [2009], Lantuéjoul [2002] According to the

definition following Bron and Jeulin [2004], for each point r in a domain Ω we define a

random variable U(r) by

∀r ∈ Ω, U(r) ∝ D(a). (4.38)

Here D(a) is a distribution depending on a set of parameters a. Depending on the

distribution, random fields have distinct statistical properties, which can be used for

modeling. Common distributions are the binomial distribution or Poisson distribution.

Yet, the most popular distribution used is the normal or Gaussian distribution, in which

case the random field is called a Gaussian random field (GRF). Thus the GRF is defined

by

∀r ∈ Ω, U(r) ∝ N(0; 1). (4.39)

Figure 4.9 shows a realization of a GRF with dimension 300 x 300 pixels. Since all

random variables in the field are drawn independently, there is no correlation between

the random variables at each two points

∀r1, r2 ∈ Ω,with r1 6= r2 : Cov(U(r1);U(r2)) = 0. (4.40)
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Figure 4.9: Realization of a Gaussian random field.

To introduce a correlation and thereby to give the random field a spatial structure, the

random field is usually convolved with a convolution kernel w(r)

∀r ∈ Ω, Z(r) = (w ∗ U)(r) =

∫
Ω
w(h)U(r − h)dh. (4.41)

Additionally, we will impose two constraints on the convolution kernel, namely that they

should be symmetric and normalized to 1, i.e.∫
Ω
w2(h)dh = 1. (4.42)

∀r ∈ Ω, w(r) = w(−r). (4.43)

A realization of the GRF convolved with a kernel w is shown in Figure 4.10, demonstrat-

ing the smoothing effect of the convolution. The normalization condition is important

for the modeling of the random field, since it preserves its expectation. The correlation

of the convolved random field can be computed directly from the convolution kernel,

Cov(Z(r);Z(r + k)) = (w ∗ w)(h) = ρ(h). (4.44)

Usually, the convolution kernel is chosen from a family of functions, e.g. Gaussian

kernels w(h) = e−
h2

a2 or the Laplacian-Gaussian kernel w(h) = (− 6
a2

+ 4h2

a4
)exp(−h2

a2
),

depending on a width parameter a. The parameters of the family are determined by

fitting a similarity measure to the data (see Section 4.4). Yet, if the convolution kernel

is left unconstrained, it can be directly reconstructed from an image of a microstructure

by inverting Equations 4.44 and 4.46 (see Section 4.5.2).
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Figure 4.10: Random function Z(x) generated from the random field in Figure 4.9.

4.5.1 Field-Cut

To model two-phase microstructures with a random field, a binary structure has to be

computed. This happens by thresholding the random field, thus assigning every point

with a value above some constant z as belonging to the solid phase and assigning the

rest to the pore phase or vice versa. Thus, to get the microstructure model B, we have

to compute

B(r) = 1Z(r)≥z, (4.45)

where 1 is the indicator function. A microstructure generated by thresholding the

correlated random field in Figure 4.10 is shown in Figure 4.11.

Figure 4.11: A microstructure generated from the correlated random field in Figure
4.10
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If the random field is a GRF, the set covariance of the random set representing the

microstructure can be computed according to Lantuéjoul [2002], Stoyan [2003] via

Cov(B(r);B(r + h)) =
1

2π

∫ ρ(h)

0
e
−z2
1+t

dt√
1− t2

. (4.46)

This will give the non-centered set covariance as discussed for random sets in 4.2.1.

4.5.2 Fitting the Model to Data

The model fitting can be done for arbitrary kernels with a kernel reconstruction according

to Bron and Jeulin [2004]. First, the threshold z for the generation in Equation 4.45

can be determined for any GRF with the cumulative distribution function (CDF) of the

standard normal distribution N(0, 1). If F is the CDF of N(0, 1), then

F (z) = P (N(0, 1) < z). (4.47)

Hence, if the volume fraction p is known

p = P (N(0, 1) ≥ z) = 1− F (z), (4.48)

⇒ z = F−1(1− p). (4.49)

Thus, if volume fraction p is known, the threshold z can be computed directly. Also,

the complete kernel w(h) can be reconstructed from the segmentation. Therefore the

covariance of the segmented image has to be measured. Then by inversion of Equation

4.46, the covariance of the correlated random field Z(r) can be computed. Since no

analytic expression is known for the inversion of Equation 4.46, this has to be done

numerically. To invert Equation 4.46 points are sampled in Cov(B(r);B(r+h)), and then

the corresponding values for ρ(h) are computed by searching the interval [0; 1]. If the

sampling of Cov(B(r);B(r+h)) is sufficiently dense simply selecting the closest point to

the measured value for Cov(B(r);B(r+h)) and then looking up the corresponding value

for ρ(h) will invert Equation 4.46. By increasing the number of sampling points, it was

determined, that using 20000 sampling points, the numerical inversion gives reasonable

results.

In a second step, the convolution kernel is reconstructed from ρ(h). Since the inversion

of Equation 4.44 is a deconvolution problem any standard method will achieve the goal.

However, a convenient choice for the deconvolution is the deconvolution by Fourier

transform, or in the discrete case by fast fourier transform (FFT). In Fourier-space, the
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convolution in Equation 4.44 is transformed to a simple multiplication

ρ(h) = (w ∗ w)(h)⇒ F (ρ) = F(w) ∗ F(w). (4.50)

Since F (w) is purely real, due to the symmetry of w the inversion of Equation 4.50 can

be done by simply taking the square root of the right hand side

w = F−1(
√
F(ρ)). (4.51)

On discretized images the Fourier-transform simply translates to the FFT, thus

w = FFT−1(
√
FFT (ρ)). (4.52)

With the convolution kernel known, model realizations can be computed by Equations

4.41 and 4.45.

4.5.2.1 The Corson Model for the Covariance

The application of the method in Bron and Jeulin [2004] showed, that the reconstruction

of the convolution kernel is possible, but suffers from noise. The noise in the convolution

kernel is due to noise in the measurement of the covariance, which in turn is due to noise

in the data. To suppress the noise in the covariance measurements, it was proposed to

fit a general covariance model to the measured covariance. Such a model has been

proposed in Corson [1974]. The model consists of a family of covariance functions,

which are constrained by general considerations about the covariance of random sets.

The model is given by

CovC(h) = f2 + f(1− f)e−ch
n
, (4.53)

with the three parameters f , c and n. It can be easily derived that f is the volume

fraction of the random structure. The parameters c and n parametrize the scales in the

random set. Yet, it can be shown that n must be less or equal to one n ≤ 1 for CovC(h)

to be the covariance of a random set, which places additional constraints on n.

For the suppression of the noise in the measured covariance, the model in Equation 4.53

is fitted to the measured covariance and the model function is used to reconstruct the

convolution kernel, i.e. ρ(h) = CovC(h) in Equation 4.51.
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4.6 Results

4.6.1 Nanoporous Additive in Li-Ion Battery Electrodes

The first application of stochastic modeling is the dataset segmented in Section 3.5.1. A

volume rendering of the reconstructed structure is shown in Figure 3.20, also a slice view

is shown in Figure 4.12. From the apparent morphology of the structure, a version of the

Gaussian random field model was fitted, to reproduce the data. The model published in

Bron and Jeulin [2004] was chosen to keep the convolution kernel as general as possible.

As described in Section 4.5.0.1, the convolution kernel of the Gaussian random function

cut model can be reconstructed directly from the data by inverting Equations 4.44 and

4.46.

Figure 4.12: Slice view of the observed structure obtained from the segmentation of
FIB-SEM images of the nanoporous additive.

First, the Corson model was fitted to the covariance of measured on the segmentation.

The parameters in Table 4.1 were found to be the best fit. Although, a value for the

parameter n greater than unity does not generate a random set (see Bron and Jeulin

[2004]), fixing the parameter to n = 1 would yield a microstructure much different from

the observed one. Hence, in order to be able to create artificial microstructures n ≥ 1

was permitted.

parameter optimal value

f 0.40

c 0.077

n 1.058

Table 4.1: Optimal parameters obtained by fitting to the observed structure of S12.

The fitted covariance was used to recover the covariance of the correlated random field

by the procedure described in Section 4.5.2. Then, model realizations were computed

and statistical characteristics were measured, to assess the quality of the model fit. A
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realization of the model is shown on the right-hand side of Figure 4.12. For comparison,

a slice view of the observed structure obtained from the segmented images in Section

3.5.1 is shown on the left.

Figure 4.13: (left) Slice view of the observed structure in Figure 4.12; (right) realiza-
tion of the GRF model fitted to the structure in Figure 4.12.

Visually, the model produces a structure, resembling the segmented one. Also, the

volume fraction is the same as in the segmentation. The length scales in the two images

seem to be the same, as well. This is confirmed in the covariance plot in Figure 4.14.

Both covariances have about the same range of 45 voxels and show a similar slope at

the origin, which is important to estimate the surface area of the modeled solid phase.

Also, the decay seems similar although a little bit slower in the measured covariance.

The difference at the origin stems from a difference in volume fraction. This is due to

statistical uncertainties, and will converge to the measured value for large datasets.
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Figure 4.14: Measured covariance of the observed structure and the model realization
in Figure 4.13.

A difference between the data and the realization can be observed when considering

the connected components. In the segmentations, a large connected component domi-

nating the image can be observed, where as in the realization, several larger connected
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components appear. Although the slice view gives only limited information on the three-

dimensional structure and the model realizations might differ, a similar effect can be seen

in the granulometry, shown in Figure 4.15.
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Figure 4.15: Granulometry by openings with a rhombocubocahedron, measured on
the observed structure on Figure 4.12.

The plot shows a slight difference in the size distribution in the granulometry, where

the model granulometry shows a longer ’tail’ in the distribution. More precisely the size

distribution is overestimated by the model below 13 voxels, where for larger sizes, the

distribution of the model is lower than the segmentation. The effect can be seen in Figure

4.13. In the segmentation, the pore space is largely empty, while in the model realization,

several small connected components are distributed in the pore space, leading to a higher

granulometry for small sizes. In opposite, the missing of the single connected component

in the model realization probably leads to a lower granulometry for large sizes.

Additionally, the opening and closing curves have been measured, shown in Figures

4.16 and 4.17. Since the granulometry is the derivative of the opening curve it basically

contains the same information than the granulometry. The closing curve, however, shows

a significant difference around 15 voxels, asserting the statement made about the pore

space. The smaller connected components in the pore space block the extension of large

empty areas, which leads to a large difference in the closing curve.

After modeling the solid component, simulations of the effective behavior of the medium

were made to assess the quality of the modeling. Since the study of the nanoporous

additive was done to compute its influence on the ion diffusion in the battery electrode,

diffusion simulations were made. Whether the statistical differences between the model

realizations and the segmentation lead to a significant difference in macroscopic behavior

will be shown in Chapter 2.
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Figure 4.16: Opening curve measured on the observed structure in Figure 4.12.
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Figure 4.17: Closing curve measured on the observed structure in Figure 4.12.

4.6.2 Nanoporous EDLC Electrode

The model described in Section 4.3 was fitted to the segmentations of EDLC electrodes

in Section 3.5.2. A special challenge is that the model has to fit to two independent

segmentations. Thus it is assumed that the model will fit to both segmentations, each

with a different set of model parameters. In contrast to the previous model, which was

uniquely defined using the covariance, the current model was fitted using the covariance,

the opening and the closing curve as distance measure. Since no analytical forms for

each of the measures are known, the model fitting was done by generating realizations

of the model and then measuring the covariance, opening- and closing curves. Then, the

distance function in Equation 4.31 was minimized using the SPSA algorithm (Algorithm

1 in Section 4.4). Since to evaluate the objective function one model realization has to

be computed, optimizing can be a computational intensive and lengthy task.

To evaluate the distance function, the covariance was measured on the realizations at

37 equidistant distances h with δh = 2 voxels, thus covering the interval [0, 76]. The

opening and closing curves were measured using a rhombocubocahedron with up to
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a radius of 30 voxels, with δr = 2 voxel, thus using 15 data points. This gives the

covariance double the weight than each of the other curves.

The model realizations were generated with periodic boundary conditions on a cubic

image with an edge length of 256 voxels. Since the optimization algorithm can minimize

random objective functions, a smaller image size was chosen at the expense of using a

larger number of realizations. In total 72 realizations were generated in 34 iterations for

the fitting of S12 and 188 realizations were used to fit the model to S14 in 89 iterations.

Yet, the fitting could be done on a standard notebook.

4.6.2.1 Fitting the Observed Structure of S12

As a first result, the model was fitted to the observed structure of S12, reconstructed by

segmentation as described in Section 3.5.2.1. To fit the model, the volume fraction was

fixed be the same as for the segmentation. Then the remaining parameters were fitted

using the minimization of the objective function.

For comparison, slice views of the segmentation and the model are shown in Figure 4.18.

As can be seen, the volume fraction is above 50% and the measured value is 68%. Also

the pore space has an irregular shape, making a modeling with a pure Boolean model

impossible. To improve the modeling, the image has been scaled to 1.5 times its original

size, making it easier to discretize the structuring element for the measurement of the

opening and closing curves. With the fitting procedure, the parameters in Table 4.2

were found to be optimal.

parameter optimal value [voxel] optimal value [nm]

volume fraction 0.67 0.67

ball radius r 7 16.7

width of filter mask s 10 23.8

Table 4.2: Optimal parameters obtained by fitting to the observed structure of S12

.

As can be seen, the model realization reproduces the morphology of the segmentation

quite well. Also, the pore sizes and shapes are reproduced and, as in the segmentation,

both phases percolate. A slight difference can be observed considering the surface area.

In the model, the surface appears smoother than in the segmentation. The reduced

surface area comes from the smoothing, which is made by the convolution with the

Gaussian kernel. In principle, the surface area can be made rougher, but this would

involve introducing another length scale in the model, further complicating the modeling

by adding another parameter.
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Figure 4.18: Comparison between the observed structure (left) and the fitted model
(right) of dataset S14.

A statistical comparison has been done by measuring the covariance, opening- and clos-

ing curves on both the segmentation and the model realization. A comparison of the

covariance is shown in Figure 4.19. As can be seen, the two curves are virtually identical.

The exact agreement at the origin and the sill is coming from the exact match of the

volume fraction. At ten to twelve voxel distance, a slight difference can be observed, yet

this is within the statistically expected errors.
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Figure 4.19: Comparison between the covariance of the fitted model (red) and the
observed structure (green) of dataset S12.

A similar picture can be observed for the opening curve, shown in Figure 4.20. Especially

at the lower end of the curve, between ten and 15 voxel, the slight difference is visible.

Yet, in total both curves are in good agreement, indicating that the size distribution of

the solid phase can be modeled accurately by the stochastic model.
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Figure 4.20: Comparison between the opening curve of the fitted model (red) and
the observed structure (green) of dataset S12.

The closing curve, shown in Figure 4.21 again shows no significant deviation between

segmentation and model realization. This indicates that the size distribution of the

pores can be accurately reproduced, as well.
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Figure 4.21: Comparison between the closing curve of the fitted model (red) and the
observed structure (green) of dataset S12.

Overall the fit of the model to the segmentation S12 is very accurate with respect to the

selected statistical measures.

4.6.2.2 Fitting the Observed Structure of S14

The same fitting procedure was done with the segmentation S14 (Section 3.5.2.2). Due

to the larger length scales in the dataset, no scaling of the segmentation was necessary.
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A comparison between a model realization and the segmentation is shown in Figure 4.22.

Visually, the model looks slightly coarser again, with a smoother boundary. Yet, the

larger-scale structures are reproduced very accurately.

Figure 4.22: Comparison between the observed structure (left) and the fitted model
(right) of dataset S14.

The fitted set of parameters is given in Table 4.3.

parameter optimal value [voxel] optimal value [nm]

volume fraction 0.52 0.52

ball radius r 10 50

width of filter mask s 14 70

Table 4.3: Optimal parameters obtained by fitting to the observed structure of S14

.

For a quantitative comparison, the plot of the covariances is shown in Figure 4.23. The

two curves are in almost perfect agreement, showing no significant differences. This

indicates a very good fit.

A comparison of opening curves of the model and the observed structure are shown in

Figure 4.24. Also, the opening curve shows no significant deviation and fits even better

than for the S12 fit. This indicates that the size distribution of the solid phase is almost

exactly reproduced by the model.

At last, the Cosing curve was measured for the observed structure and the model, shown

in Figure 4.25. Again, the curves coincide very well, despite some derivation at around

15 voxels.

In essence, the fit to S14 has an even better agreement than for S12, showing that the

model is able to reproduce both datasets very well, with different parameters. This can
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Figure 4.23: Comparison between the covariance of the fitted model (red) and the
observed structure (green) of dataset S14.
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Figure 4.24: Comparison between the opening curve of the fitted model (red) and
the observed structure (green) of dataset S14.

now be used to generate artificial structures, which when combined with simulations can

be used to optimize the structure.

4.7 Discussion and Outlook

4.7.1 Discussion

In this chapter, stochastic models for three materials have been presented. The modeling

was based on three reconstructions of the pore space of the respective materials presented

in Section 3.5, in the previous chapter. The nanoporous additive has been modeled using
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Figure 4.25: Comparison between the closing curve of the fitted model (red) and the
observed structure (green) of dataset S14.

a Gaussian random field. The GRF has been convolved with a filter mask, introducing

a spatial correlation. The filter mask has been reconstructed from the covariance of

the observed structure. In the results section, the fitted model has been compared to

the observed structure, showing good agreement. For the comparison, the covariance

as well as the opening and closing curves have been measured. A comparison of the

granulometries of both the observation and the model realization has shown a slight

excess of small particle sizes in the model and a lack in larger particles. Whether this

has a major influence on the transport properties, is investigated in Chapter 5.

Further, a modification of the Boolean model of spheres is discussed, which was devel-

oped to model two materials, used as electrodes for EDLCs. The model is based on

the mono-disperse Boolean model of spheres, but the indicator function is convolved

with a Gaussian kernel, to introduce a smoothing of the structure. A binary model is

recovered, by thresholding the resulting random function. The structure is smoothed

to mimic the sintering of the particles during the production process. The model was

fitted to the observed structures using stochastic optimization of a similarity function.

Again, the statistical similarity has been assessed by the covariance and the opening and

closing curves. It is shown, that the model shows good agreement with both samples,

for different parameter values.

4.7.2 Outlook

To outline continued research, the two models for both carbon structures need to be

considered separately. The modeling of the additive could be enhanced by dropping the

Corson model used to fit the covariance. This could be achieved by allowing a more



4.7. DISCUSSION AND OUTLOOK 123

general form of the covariance function. Also, a spectral analysis of the reconstructed

covariance of the random function Z(x) could enhance the model. Both would allow

additional length scales in the model, which could be used to remedy the lack of larger

structures in the model, compared to the observed structure. Since the modified Boolean

model fits very well to the observed structures, the further investigations of model prop-

erties could be perused. To simplify the fitting procedure, analytical expressions of the

volume fraction depending on the model parameters could be derived. Also, the covari-

ance of the model could be computed analytically. To generalize the model to further

structures, the underlying Boolean model could be amended replaced by a germ-grain-

model allowing repulsive forces between the spheres. Thereby, different pore structures

could be realized with the same volume fraction.





5
Simulation of Physical Properties

Parts of the work in this chapter will be published in:

C. Wieser, T. Prill, and K. Schladitz. Multiscale process for simulation of composite

battery electrodes. submitted to Journal of Power Sources, 2014

Characterization and modeling of their microstructures give important insight into the

materials at hand. Yet, the characteristics of the observed microstructures have to be

related to measurable, i.e. macroscopic quantities. These properties can be the electrical

conductivity, diffusivity or mechanical properties such as the elastic moduli. For this

thesis, the electric conductivities of the nanoporous carbon additive as well as the dif-

fusion resistance in the pore space is of importance. Fortunately, both problems adhere

to the same partial differential equation (PDE). Thus, the problem of computing the

electrical conductivity/diffusion resistance will simply be referred to as the conduction

problem and the diffusion resistance and the electrical conductivity will be referred to

as conductivity.

The macroscopic conductivity can be calculated by simulating the corresponding pro-

cess at the microscale. The structural data observed by imaging or from modeling the

heterogeneous material is used to solve the corresponding problem, usually a PDE. Then

the resulting field is used to estimate the effective conductivity.

Combined with modeling, the calculation of macroscopic properties using the microstruc-

tural information, can be used to improve the materials by optimizing the microstruc-

ture. If a suitable model is found, realizations can be computed and, with the simu-

lations, macroscopic properties of the realizations can be computed. By varying the

125
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parameters of the model, a better or even optimal hypothetical microstructure can be

found, when using, for instance, the optimization algorithms mentioned in Section 4.4

(see Virtual Material Design in Chapter 1 ).

Also, effective properties can be used for multi scale simulations, if a system contains

two distinct scales, such as micro- and nanometer size structures. Then simulating the

behavior of the system can be split into two separate calculations, by averaging the

dynamics at the smaller scale. This is done by computing effective properties for the

nano-scale structures and then using the effective property in the micro-scale simulation.

In this chapter, the problem of calculating the conductivity of a heterogeneous medium

will be discussed. Then methods for the calculation will be presented. Subsequently,

results for the segmented data in Chapter 3 will be given and for the corresponding model

in Chapter 4. At the end of the chapter, a multi-scale simulation will be presented for

the charging of a Li-Ion battery and the electrical impedance spectroscopy of electric

double layer capacitors (EDLC’s).

5.1 The Conduction Problem

Many different physical phenomena can be reduced to the conduction problem in a

heterogeneous medium. In general, the conduction problem describes the transport of

a conserved species through the material. These species can be electric charge (electric

conduction), diffusing particles (diffusion) or even an electric field (energy). All these

phenomena are governed by the same linear partial differential equations and can be

described as a conduction problem.

The derivation of the governing equations starts with considering a conserved species in

space. For any conserved species a continuity equation can be given of the form

∂ρ(x)

∂t
+∇ · ~J(x) = 0. (5.1)

In the equation, ρ is the density of the conserved species, like charge or particles per

volume, and ~J is the current of the species in particles per time and area. In component

notation the relation is given by

∂ρ(x)

∂t
+

∂

∂xi
Ji(x) =

∂ρ(x)

∂t
+ ∂iJi(x) = 0, (5.2)

where according to the Einstein sum convention, repeated indices are summed. In this

case, the sum runs over the spatial coordinates x, y, z. When a steady state is assumed,
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the differential with respect to time vanishes and the second term remains

∂iJi(x) = 0. (5.3)

This equation states that in a volume element, the species is neither created nor anni-

hilated, thus the currents Ji into and out of the volume element, adds to zero. In the

infinitesimal form this yields a vanishing divergence.

Furthermore, it is assumed that the current is proportional to some force field Ei, which

may be an electric field as in electric conductivity or a concentration gradient as in the

diffusion problem

Ji(x) = σijEj(x). (5.4)

The constant of proportionality σij is called the conductivity tensor. The relation is

called the constituting relation and in this thesis is always assumed to be linear.

Also, the force field is assumed to be irrotational,

∇× E(x) = εijkEi(x)Ej(x) = 0. (5.5)

The irrotationality implies the existence of a potential field, may that be the electric

potential or the concentration of a diffusing species. The forcefield depends on the

potential through

Ei(x) = −∂iφ(x). (5.6)

Now, the conduction problem consists of, computing the flow field Ji, the force field Ei

and the potential φ for suitable boundary conditions. In homogeneous materials, the

conductivity tensor does not depend on the position in space, thus it is a global property.

In heterogeneous materials however, the conductivity is a local property leading to a

space dependent conductivity tensor σij(x) and a local constitutive relation

Ji(x) = σij(x)Ej(x). (5.7)

In a two-phase material, the conductivity tensor can be expressed with the indicator

functions of the phases 1(i) as

σij(x) = σ1
ij1

(1)(x) + σ2
ij1

(2)(x). (5.8)

Figure 5.1 shows an example of a two-phase medium. The medium is represented by a

domain on which the conductivity problem is computed. The two phases have different

conductivities σ1 and σ2 and do not intersect. They are separated by boundary Γ12.
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Figure 5.1: A sample domain on which the conductivity is computed.

In a porous material, either the solid or void phase might have a zero conductivity, thus

one of the terms vanishes

σij(x) = σij1
(s)(x). (5.9)

Also, in general the tensor σij must be symmetric and positive definite, additional sym-

metries, such as isotropy, can be imposed

σij =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 . (5.10)

Yet, in many cases a simplification can be made, when the material property is isotropic.

In that case, the conductivity tensor is a diagonal matrix with the scalar isotropic

conductivity σ on the diagonal

σij = σ1ij =


σ 0 0

0 σ 0

0 0 σ

 . (5.11)

5.1.1 Boundary Conditions

To solve the conduction problem, the boundary conditions of the phases have to be

specified. This includes the interfacial boundary separating the two phases as well as

external boundaries enclosing the domain of computation. Since the problem involves

solving for the two fields Ji(x) and Ei(x), the boundary conditions have to be specified for
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both fields. Depending on the purpose of the simulation, different boundary conditions

can be imposed on the computational domain. In this thesis however, periodic boundary

conditions will be used. This means, that the domain is treated as a periodic structure,

where the boundaries at the top and at the bottom are identified as the same. The

same holds for the boundaries on either side. In Figure 5.2 this means, that all fields

are continuous across the cell boundary ∂Ω.

Figure 5.2: Computational setup with periodic boundary conditions.

For the interfaces, different boundary conditions can be imposed, too. Usually, the

boundary across the interface is treated as a perfect interface, meaning that the poten-

tial across the interface is continuous and the normal component of the force field is

continuous as well. Thus, for the derivatives normal to the interface Γ12 in Figure 5.1

we have

Φ|Γ12+ = Φ|Γ12−, (5.12)

(niJi)|Γ12+ = (niJi)|Γ12−, (5.13)

where ~n is a vector normal to the interface. This type of boundary conditions is called

’perfect’ boundary conditions. Yet, sometimes it is desirable to have imperfect boundary

conditions. For instance when a thin impenetrable layer separates the two phases, which

is too small to be resolved with the voxel grid (see Figure 5.3). This situation corresponds

to the limit limt→0 in Figure 5.3. In that case, the boundary conditions can be relaxed
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depending on the interfacial conductivity σΓ12 . If the conductivity is much smaller than

the conductivity of each of the phases σΓ12 � σ1, σ2, the infinitely thin interface can be

modeled by a jump of the potential across the interface according to

Φ|Γ12+ − Φ|Γ12− = σΓ12 , (5.14)

(niJi)|Γ12+ = (niJi)|Γ12−. (5.15)

Figure 5.3: Interface between two phases.

On the other hand, a jump in the normal component can occur when the interface is

perfectly conducting, i.e. the conductivity of the interface is much higher than of the

two phases, σΓ12 � σ1, σ2

Φ|Γ12+ = Φ|Γ12−, (5.16)

(niJi)|Γ12+ − (niJi)|Γ12− = σΓ12 . (5.17)

Since these interface conditions generalize the perfect interface conditions in Equation

5.12, they are called ’imperfect’ interface conditions. A detailed treatment can be found

in Lipton and Vernescu [1996] and a complete theory can be found in Hashin [2001].

These boundary conditions will be used later to model the electrical double layer in

EDLC electrodes. Since the double layer has a thickness of less than one nanometer, it

cannot be resolved with the SEM. Thus, it is assumed that the double layer is very thin

and has a fixed surface capacitance per unit area.
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5.2 Multi-Scale Modeling

In this thesis, the largest scale is the extent of the electrode, typically of the order of

millimeters (length scale of L in Figure 5.4). The smallest scale is a typical length scale of

the pores lp � L, usually of the order of micrometers or nanometers (see inset of Figure

5.4). As simulations of physical phenomena on the micro- or nanoscale are not feasible

for macroscopic specimen, multi-scale models using an effective homogeneous medium

representing the behavior of the material on the microscale are used. Therefore, the

calculation is split into two separate problems. The microscopic conduction problem at

the length scale lp is solved, to compute an effective conductivity for the medium on the

macroscale. Then, the macroscopic conductivity is used to compute physical quantities

on the experimental scale L.
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Figure 5.4: Two-scale modeling of a porous electrode.

Figure 5.4 also shows the typical experimental setup used for testing porous electrode

materials. A highly conducting current collector is used to host the electrode. Both

are immersed into electrolyte, filling the pores. On the other side of the cell, a counter

electrode (not shown) closes the circuit. In that setup, measurements are made such as

charge and discharge of the electrode and electric impedance spectroscopy. In the course

of this thesis, the electrode material is modeled as an effective medium, with effective

properties computed on the microscale (inset in Figure 5.4).
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5.2.1 Effective Conductivity

The effective conductivity describes the average response in the heterogeneous medium

when a force field is applied, having a length scale much larger than the typical length

scale of the microstructure. That means, an effective conductivity σeffij has to be found

such that the Equations 5.3-5.5 hold for a macroscopic force field 〈Ei〉 and a macroscopic

flow field 〈Ji〉, which are given by the average behavior of the microscopic fields, i.e.

∂i〈Ji〉 = 0, (5.18)

εijk〈Ei(x)〉〈Ej(x)〉 = 0. (5.19)

Then, the effective behavior is described by a macroscopic constitutive relation as in

5.7, relating the macroscopic flow to the macroscopic force field, by the macroscopic or

effective conductivity σeffij , with

〈Ji〉 = σeffij 〈Ej〉. (5.20)

The effective conductivity is computed by homogenization. A detailed theoretical treat-

ment is given in Papanicolau et al. [1978] and Sánchez-Palencia [1980]. Also, an overview

can be found in Torquato [2002] and Milton [2002].

To homogenize Equations 5.3-5.5, an infinite periodic medium is considered, as the one

shown in Figure 5.2 in the limit
lp
L → 0. To separate the scales, a new variable y is

introduced through

y =
x

ε
, (5.21)

where ε ≥ 0 parametrizes the period in the medium. The variable y is called the fast

variable and in this context, x denoted the slow variable. The governing equation, in

terms of the now periodic functions φ(x, y) and σ(x, y), of the conductivity problem now

reads

− ∂

∂xi

[
σij(x, y)

∂φ(x, y)

∂xj

]
= 0. (5.22)

The equation is considered with periodic boundary conditions at the cell boundary ∂Ω

and the appropriate macroscopic boundary conditions at the boundary of the macro-

scopic domain.

Then, equation 5.22 is expanded asymptotically around the limit ε = x
y → 0, where the

differentials are expanded according to

∂Ψ(x, y)

∂(x, y)i
=

∂

∂xi
Ψ +

1

ε

∂

∂yi
Ψ. (5.23)
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This leads to the equation

[ε−2A0 + ε−1A1 +A2 + . . .][φ0 + εφ1 + ε2φ2 + . . .], (5.24)

with the operators

A0 = − ∂
∂yi

[
σij(y) ∂

∂yi

]
, (5.25)

A1 = − ∂
∂yi

[
σij(y) ∂

∂xi

]
− σij(y) ∂2

∂xi∂yj
, (5.26)

A2 = −σij(y) ∂2

∂xi∂yj
. (5.27)

Separation of the powers of ε in Equation 5.24 yields the set of equations

A0φ0 = 0, (5.28)

A0φ1 +A1φ0 = 0, (5.29)

A0φ2 +A1φ1 +A2φ0 = 0. (5.30)

In the analysis given in the references above, one finds that φ0(x, y) depends only on x,

hence φ0(x, y) = φ0(x). Further φ0 satisfies

− σeffij

∂2φ0

∂xi∂xj
= 0. (5.31)

Hence, an effective conductivity of a homogeneous medium can be defined obeying Equa-

tion 5.20, with the effective conductivity σeffij . The effective conductivity can be com-

puted by solving the microscopic problem on a domain Ω and then averaging over the

fields, i.e.

〈Ji〉 =
∫

Ω Ji(x)dx3, (5.32)

〈Ei〉 =
∫

ΩEi(x)dx3. (5.33)

A precise mathematical treatment with the proofs of the given relations can be found

in Papanicolau et al. [1978] and Sánchez-Palencia [1980].

Then the effective conductivity can be computed from the average fields, using Equation

5.20

〈Ji〉 = σeffij 〈Ei〉. (5.34)
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Yet, the media considered in this thesis are modeled by random closed sets, which are

not periodic. In that case is was shown in Papanicolaou and Varadan [1979] that taking

the averages in Equation 5.34 not over a cell domain but over a large enough realization,

the effective conductivity can be estimated. To get accurate information on the effective

conductivity, the domain must be representative for the whole medium.

5.2.2 Representative Volume Element

In order to compute the effective conductivity of the macroscopic medium, the com-

putational domain Ω must be a faithful representation of the microstructure of the

microscopic medium. That means, the domain must be large enough to have all impor-

tant features of the microscopic material and to show the same physical behavior as the

macroscopic material.

In general, the margin of error decreases with the volume of the domain Ω. In this

section, a procedure is described to estimate the size of a representative volume element,

for a given margin of error in the estimated effective conductivity. For details on the

representative volume element of random closed sets, see Kanit et al. [2003] and Jeulin

[2012].

To test whether the domain Ω is representative, i.e. large enough, the following pro-

cedure can be employed. First, the conduction problem is solved on the whole domain

Ω, resulting in the effective conductivity σeff . Then, the domain Ω is subdivided into

m disjoint subdomains Ωi. For each subdomain, the conduction problem is solved inde-

pendently resulting in the effective conductivities σeff,i. As the effective conductivities

are random variables it is possible to estimate their variance by

D2
σeff

(Ω) =
1

m

∑
i

(σeff − σeff,i)2. (5.35)

This can be used to estimate the accuracy of the predicted conductivity.

Also, it can be shown theoretically (see Jeulin [2012]), that the variance of the effective

conductivity of random sets scales asymptotically with

D2
σeff

(V ) = D2
σeff

(1)
Aα3
V α

, (5.36)

where A3 is a positive constant. The exponent α can be estimated by logarithmic

regression via

logD2
σeff

(V ) = logD2
σeff

(1) + α log(A3)− log(V ). (5.37)
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Furthermore, it can be shown that the relative error εrel of n independent samples of

volume V is given by the equation

εrel =
εtot
σeff

=
2Dσeff (V )

σeff
√
n

. (5.38)

Thus, the size of a representative volume element for a given statistical margin of relative

error εrel (e.g. 1%) is given by

VRV E =

(
4D2

σeff
(V )Aα3

ε2rel(σ
eff )2

) 1
α

. (5.39)

5.2.3 Bounds on Effective Properties

Even when the cell problem is not solved exactly, bounds on the effective properties can

be derived from general considerations on the microstructure, for an overview see Milton

[2002]. The bounds in this thesis are derived from variational considerations.

5.2.3.1 Wiener Bounds

The Wiener bounds for the conductivity of a multi-phase material can be derived from

variational considerations. It can be shown that the solution to the conductivity problem

minimizes an energy functional of the material, given by

W [E, J ] =

∫
Ω

1

2
Ei(x)Ji(x)dx. (5.40)

Using the constitutive relation in Equation 5.7, this can equivalently be expressed by

the electric field and the flux field only

W [E] =
∫

Ω
1
2Ei(x)σij(x)Ej(x)dx, (5.41)

W [J ] =
∫

Ω
1
2Ji(x)σ−1

ij (x)Jj(x)dx. (5.42)

These energies are called the macroscopic energy of the material, depending on Ei, and

the macroscopic complementary energy of the material, depending on Ji.

From these expressions it can be shown that any trial field Êi or Ĵi will have a greater

respective energy than the solution to the conduction problem. Using a constant trial

field, the following upper and lower bounds on the effective conductivity can be derived,
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for a multi-phase material (see Wiener [1912]):

σuW =
∑

i piσi, (5.43)

σlW = 1∑
i
pi
σi

. (5.44)

For a two-phase medium this simplifies to

σuW = p1σ1 + p2σ2, (5.45)

σlW = 1
p1
σ1

+
p2
σ2

. (5.46)

These bounds give first estimates of the effective conductivity of a multi-phase medium.

5.2.3.2 Hashin-Shtrikman Bounds

Using similar variational principles, stricter limits to the effective conductivity of isotropic

heterogeneous materials have been derived in Hashin and Shtrikman [1963]. To this end

Hashin and Shtrikman used a trial field which incorporated the isotropy of the medium.

The Hashin-Shtrikman bounds are given by

σuHS = σ2 + p1
1

σ1−σ2
+

p1
3σ2

, (5.47)

σlHS = σ1 + p2
1

σ2−σ1
+

p2
3σ1

, (5.48)

where it is assumed that σ1 > σ2. As before, pi is the volume fraction of phase i and σi

its conductivity.

5.2.4 Simulation of the Effective Conductivity with the FFT Method

To calculate the cell problem, a new class of solvers has recently been developed using

a Green’s function in Fourier Space. The approach has first been published in Moulinec

and Suquet [1998] and since then numerous refinements and improvements have been

made, e.g. in Eyre and Milton [1999]. The calculations in this thesis were made using

morphHom (Willot and Jeulin [2011],Willot and Jeulin [2009]). The algorithm solves

the cell problem in Section 5.1 with periodic boundary conditions. Therefore, the flow

field is decomposed into a constant reference field J0(x) = σ0E(x) and a polarization

field P (x)
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Ji(x) = σ0
ijEj(x) + Pi(x). (5.49)

The reference material is assumed to have a constant conductivity σ0. Then the flow

field is related to the force field by the linear relation

J0
i = σ0

ijE
0
j . (5.50)

The reference force field E0
i is also necessary as a boundary condition for the computa-

tion. If the polarization field was known, the problem could be solved using the periodic

Green’s function Γij(x) by

Ei(x) = −
∫
R3

Γij(x
′)Pj(x− x′)dx3 + E0

i = −(Γij ∗ Pj)(x) + E0
i . (5.51)

Yet as the material is heterogeneous, the spatial variation of the conductivity σij(x) has

to be incorporated, i.e. the polarization field has to be computed. The solution of this

auxiliary problem is the main computational challenge in the computation. By using

the constitutive equations we find

Pi(x) = (σij(x)− σ0
ij)Ej(x). (5.52)

Thus, the following equations hold for the electric field

Ei(x)− [Γij ∗ ((σ0
jk − σjk)Ek)](x) = Ei(x)− [Γij ∗ (δσjkEk)](x) = E0. (5.53)

This equation can be inverted using a von Neumann series of the form

E(x) = E0+(Γij ∗[δσjkE0
k ])(x)+[Γij ∗(δσjk[Γkl∗(δσlmE0

m)])](x)+. . . =
∞∑
j=0

(Γδσ)jE0(x).

(5.54)

This series can be shown to converge under quite general conditions. To approximate

this infinite expansion, it is truncated after a sufficient number of terms

Em(x) =
m∑
j=0

(Γδσ)jE0(x). (5.55)

The terms of the expansion can be computed by an iterative relation

Emi (x) = Em−1
i (x)− [Γij ∗ (σjkE

m−1
k )](x). (5.56)
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Also, since the recursive relation is a serial convolution, the convolutions are computed

in Fourier-space to speed up the computation. The Green’s function is given in Fourier-

space, by

Γij(k) =
kikj

knσ0
nmkm

. (5.57)

Here ki is the wave number of the corresponding component and σ0 is the homogeneous

reference field. Then, the resulting algorithm for the computation of the polarization

field is given in pseudo-code in Algorithm 2.

Data: E0(x) = E0,J0(x) = σ(x)E0(x)
Result: Approximate flow field ~Jm

m← 1;

Ĵm−1(k)← FFT[J0](k);
while ‖k · Jm−1‖ ≤ ε do

set average field: ;

Ê(0) = E0;
compute convolution: ;

∀k 6= 0 : Êm(k)← Êm−1(k)− Γ̂(k)Ĵm−1(k);

Em(x)← FFT−1[Êm](x);
Jm(x) = σ(x)Em(x);
m← m+ 1 ;

end
Algorithm 2: FFT-algorithm to solve the conduction problem by iterated convolutions.

The algorithm terminates when the flow field is divergence free up to a certain numerical

error ε, i.e.

∂iJi ≤ ε. (5.58)

5.3 Simulation of the Li-Ion Battery Electrode

To simulate the influence of the nanoporous additive on the charging behavior, a half-

cell setup with the electrode opposite to a lithium foil, as shown in Figure 5.5 has been

simulated. The lithium foil and the electrode are separated by electrolyte, where the

lithium ions diffuse to the electrode when the battery is charged. During charging, the

lithium ions enter the solid carbon phase adding to the total charge of the electrode.

This induces a current into the electrode, collected by the charge collector.

The electrode itself was modeled at two different scales. On the macro-scale, the active

particles are given by the segmented CT image taken at ESRF (see Figure 5.6 for a

volume rendering). The transparent phase in the image is filled with electrolyte, while

the solid phase is formed by the active particles. Furthermore, the model assumes a

distribution of the additive (yellow phase in Figure 5.5) in the electrode (see Section
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Figure 5.5: Macroscopic model of the Lithium-Ion battery electrode.

5.3.2.1), which enters as a third phase in the computational domain. For the simulation

it is assumed that the additive has an effective diffusivity, which is computed on the

microscale. To this end, the nanoporous additive segmented in Section 3.5.1 has been

modeled as an effective medium. Since the nanoporous additive cannot be detected with

micro-Computed Tomography, its distribution was modeled using morphology. For the

validation of the stochastic model discussed in Section 4.6.1, the transport properties of

the modeled structure have been computed as well.

5.3.1 Microscopic Modeling

First, the effective diffusion resistance of the additive was computed on the microscale.

To this end, the effective diffusivity of the pore space was computed using the structural

information from the segmented FIB-SEM images, described in Section 3.5.1. A slice

view of the segmentation is shown in Figure 5.7.

It is assumed that the conductivity of the solid phase vanishes and the conductivity of the

pore space is one. In this setup, an effective dimensionless resistance
Deff
D is computed.

Since the problem is linear, the effective conductivity can be multiplied by the bulk

conductivity of the electrolyte to get the physical conductivity of the nanostructure.

To estimate the diffusion resistance, some bounds have been computed first. As the

structure in the dataset is not isotropic, the Hashin-Shtrikman bounds cannot be applied.
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Figure 5.6: Volume rendering of the segmented porous electrode without additive.

Figure 5.7: Segmented FIB-SEM image of the nanoporous additive.

Yet, the Wiener bounds derived from variational considerations are still valid. Since the

volume fractions for the model and the segmentation are the same, also their Wiener

bounds are identical. Since the diffusivity for the solid phase is zero, the lower bound

vanishes. Also, since the Wiener bounds are blind to any anisotropy of the structure

and there is only one phase, the upper Wiener bound is simply the volume fraction,

Deff

D
= 0.41, (5.59)

To get a better estimate, the effective diffusivity has been computed with the FFT

method. To estimate the effective diffusivity tensor, the flow field has been computed
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for an average force with a magnitude of unity in x-,y-, and z-direction. A slice view of

the computed flow field in x-direction is shown in Figure 5.8.

Figure 5.8: Slice view of the x-component of the flow field computed on the recon-
structed nanostructure of the additive.

The resulting effective conductivity factors are shown in Table 5.1. The effective dif-

fusivity tensor is anisotropic, since the value in x-direction is significantly smaller than

the values in the other directions. All values are significantly smaller than the upper

Wiener bound.

direction
Deff
D

x 0.25

y 0.31

z 0.35

average 0.3

Table 5.1: Effective diffusivity factors computed for the nanoporous additive based
on the segmentation.

To test the modeling of the nanoporous additive, the effective diffusivity has been com-

puted on a model realization as well. The same boundary and material properties have

been assumed, as in the previous computation. Since the volume fraction of the model is

the same as for the segmentation, the Wiener bound is the same as well. The values for

the effective diffusivity in Table 5.2 have been computed, with the FFT-method. As can

be seen, the diffusivity tensor is isotropic, within statistical fluctuations. This comes of

course from the model being isotropic by construction. Also the diffusivities are higher

than for the segmentation. It is assumed that this is due to the lack of larger particle

sizes in the model (see Figure 4.16), which represent significant obstacles to diffusive

flow.

Using the effective diffusivities, the influence of the nanoporous additive on the charging

behavior can be computed on the macro-scale.
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direction
Deff
D

x 0.38

y 0.37

z 0.37

average 0.37

Table 5.2: Effective diffusivity factors computed for the nanoporous additive based
on the segmentation.

5.3.2 Macroscopic Modeling and Simulation

5.3.2.1 Modeling of the Additive

To simulate the influence of the additive on the charging behavior, the distribution of the

additive at the macro-scale must be incorporated in the computational domain on the

macro-scale. Since the additive is invisible in the micro-CT data, the distribution has to

be modeled. To this end, some assumptions were made based on the production process.

Besides the overall approximate volume fraction of the additive in the electrode, it is

known that the additive preferably accumulates at narrow gaps in the pore structure.

Consequently, as a first approximation narrow gaps have been selected in the pore space

by a morphological closing. The closing has been applied to the segmented micro-CT

image and then volume added by the closing has been selected as additive. The size

of the structuring element of the closing has been chosen, such that the added volume

fraction is equal to the volume fraction expected through the production process (about

6 %). Thus, the expression for the distribution of the additive amounts to a set

Fadd = Φ(l)(Fsolid)− Fsolid, (5.60)

where Fsolid is the set representing the solid phase (active particles) on the macro-scale.

Since the additive is modeled in the pore space, the volume fraction of the pore space

decreases, while the volume fraction of the solid phase remains constant. Thus, the set

representing the solid phase does not change and the pore space is modeled by

Fpore = FCsolid − Fadd. (5.61)

The final distribution of the additive is shown in Figure 5.9 in light blue, while the solid

carbon phase is shown in the darker shade.
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Figure 5.9: Distribution of the additive in the micro-CT data (from Wieser et al.
[2014]).

5.3.2.2 Charging Simulation

After modeling the distribution of the additive, the discharging of the half-cell has been

simulated with and without the additive in the domain. The result of this simulation

has been taken from Wieser et al. [2014]. Three phases are considered in the simulation,

the solid electrode, the pore space filled with electrolyte and the additive. In each of the

phases, the electric potential and the Lithium-Ion concentration are modeled by partial

differential equations. The full set of equations is given in Latz and Zausch [2011].

To compare the influence at different loads, two different discharge rates have been

simulated. Two simulations were made for a 1 C load, which means that the cell would

be completely discharged in one hour. Two further simulations were made at higher

load of 5 C, i.e. five discharges per hour. For each discharge rate, one simulation was

made with and one without additive. This results in four discharge curves, showing the

cell voltage against the discharge current. The results are shown in Figure 5.10.

As can be seen the 1 C curves are almost completely identical, meaning that the additive

has little or no influence on the discharge at 1 C load. The 5 C curves, however, show

a deviation between the simulation with and without additive. As can be seen, the cell

voltage is lower with the additive as would be expected since the additive represents a
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Figure 5.10: Simulated discharges of the half-cell, for four setups: 1 C, without
additive; 1 C with additive; 5 C without additive; 5 C with additive (from Wieser et al.

[2014])

diffusion resistance to the Lithium-Ions. This becomes clearer in Figure 5.11, where the

Li-ion flux at the 5 C discharge is shown for the geometry with and without additive. It

can be seen, that even though the overall current is the same the lithium-ion flow has a

different distribution with the additive considered in the simulation.

Figure 5.11: Lithium Ion flow simulated at 5 C load without (a) and with additive
(b) (from Wieser et al. [2014]).

5.4 Simulation of Nanoporous EDLC Electrodes

The second application case in this thesis is the modeling of the nanoporous electrodes for

electric double layer capacitors (EDLCs). In this section, the electrochemical behavior of
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the electrode is simulated. As stated in the introduction, the electrodes have a two-scale

pore space, consisting of micropores with a diameter d < 2 nm and mesopores with

a diameter of d ≈ 100 nm, which were resolved with the FIB-SEM nanotomography

and reconstructed in Section 3.5.2. As for the Li-ion battery electrode, a multi-scale

model is employed for the computations, where the mesopores represent the micro-scale

model. The computational domain on the micro-scale are the segmentations, which have

been introduced in Section 3.5.2 and the stochastic models of the structure, presented

in Section 4.6.2.

On the macro-scale, the electrochemical behavior is modeled, using phenomenological

models, such as equivalent circuits and macrohomogeneous models. Beside the equiva-

lent circuit, a macrohomogeneous model proposed in Paasch et al. [1993] has been chosen

to model the macroscopic behavior. Also, the derivation of macroscopic properties us-

ing the reconstructed microstructure is investigated by computing effective capacitances

and resistivities, using the FFT-method. Remaining parameters are fixed by fitting to

experimental data.

The materials used in this thesis, have been investigated in Balach et al. [2012] and

Balach et al. [2013]. The experimental data has kindly been provided by Juan Balach

(Balach [2013]). For the experimental characterization, electric impedance spectroscopy

measurements have been made on monolithic S12 (see Figure 5.12). Furthermore, the

capacitances have been measured for the inks containing S12 and S14. The measured

capacitance values are given in Equations 5.62

CV,S12 = 2.75
F

cm3
, (5.62)

CV,S14 = 1.98
F

cm3
. (5.63)

5.4.1 Electric Impedance Spectroscopy

In order to characterize the electrodes physically, electric impedance spectroscopy (EIS)

measurements have been performed on a monolithic sample of S12. EIS is used to char-

acterize electrochemical materials by applying a sinusoidal voltage to a cell containing

the electrode and measuring the impedance of the material. A detailed treatment of the

method can be found in Barsoukov and Macdonald [2005]. For the EIS measurements of

the materials considered in this thesis, a small sinusoidal voltage is applied to the half-cell

depicted in Figure 5.18, i.e. V (t) = V0 sin(ωt). In complex notation the signal is written

as V (t) = V0 exp(i2πωt). Then, the material response was measured as the current

going through the cell. The current is also assumed to be sinusoidal, yet with a different
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amplitude and a phase shift relative to the voltage. Thus I(t) = I0 exp(i2πω(t + φ)).

The impedance at a given frequency is then given by

I(t) = Z(ω)V (t) (5.64)

where Z is a complex number. It is assumed that the material response is linear due to

the small amplitude of the signal. To measure the impedance spectrum, the frequency ω

is varied and for each frequency the impedance is measured. This leads to the impedance

spectrum Z(ω).

A Nyquist-plot of the impedance spectrum measured on the monolithic S12 is shown in

Figure 5.12.
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Figure 5.12: Impedance spectrum of monolithic S12.

The plot shows the real and imaginary part of the impedances for a given frequency

range. In this measurement, the frequency has been varied between 10 kHz down to 2.8

mHz. The Nyquist-plot shows typical features for this class of materials. At the very

high-frequency range, the curve has a slope of 45◦. Then, at high frequencies, a kind of

semicircle is observed ending on the real line. The semicircle might be depressed as in

this plot. At low frequencies, again a straight line arises, again with a slope of around

45◦ ending in a capacitive behavior with a straight vertical line.

5.4.2 The Modeling by Equivalent Circuits

A lot of work has been done on modeling the impedance spectra of porous electrodes.

Mostly, authors work with simple equivalent circuits, which are able to capture the

behavior quite well, but do not include any information on the microstructure. To this
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end, circuit elements are combined to resemble the chemical processes and electrical

fields on the electrode. For an overview see e.g. Barsoukov and Macdonald [2005]. A

possible circuit for the modeling of a porous electrode is depicted in Figure 5.13.

W

CDL

CC

RC

RS

ZW

Figure 5.13: Randles circuit to model a porous electrode.

The circuit is a variation of a Randles circuit, where the electrochemical cell is modeled

as a parallel circuit, including a branch with a capacitance CC , representing the electro-

chemical double layer, and a branch with a charge transfer resistance RC and a Warburg

impedance ZW , modeling the diffusion of the charge through the porous electrode. A

resistance RS represents the bulk electrolyte between the separator and the electrode

as seen in Figure 5.18. For the data at hand, a modification has been made, where the

Randles circuit is put in series with an additional capacitance CDL. It is assumed that a

double layer forms on the surface of the mesopores, represented by CC as well as in the

micropore surface represented by CDL. The capacitance CDL represents the capacitance

of the double layer forming in the micropores. The impedance of the circuit is given by

Z(ω) = RS +
1

iωCC + 1
RC+ZW

+
1

iωCDL
, (5.65)

where ZW is the Warburg impedance

ZW (ω) =
W√
iω
. (5.66)

For the characterization of the monolithic S12, the impedance in Equation 5.65 has

been fitted to the spectrum in Figure 5.12. An optimal fit has been reached for the set

of parameters in Table 5.3. The fitted spectrum together with the data is depicted in

Figure 5.14.

As can be seen, the simulated impedance spectrum of the equivalent circuit has the same

structural features as the measured spectrum. For high frequencies, the Nyquist-plot

shows a semicircle. Then, an almost linear rise in the imaginary part follows with a

slope of 45◦ which then evolves into a capacitive behavior, where the imaginary part

rises proportional to 1
ω . Yet, it can also be seen that the semicircle in the measurement
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parameter best fit

RS 2.8146 Ω

RC 1.5398 Ω

CC 7.1766 ∗ 10−6 F

σW 0.25202 Ωs−
1
2

CDl 41.532 F

Table 5.3: Best fit parameters for the circuit in Figure 5.13.
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Figure 5.14: Fitted impedance spectrum of the model in Equation 5.65, to the data
in Figure 5.12.

is depressed, while the semicircle in the model is round. Also, the linear part of the

spectrum is much more pronounced in the measurement. To remedy these inaccuracies,

a more advanced model is needed. Also, neither the electrode geometry, nor the porous

structure has a representation in the circuit. Hence, a model of the electrode, which

takes its structure into account is needed.

5.4.3 Microscopic Modeling

To remedy the shortcoming of equivalent circuits and to relate the microsctructure to

the electrical behavior of the nanoporous electrode, a multi-scale simulation approach

is used with two different length scales. First, the effective conductivities and permit-

tivities are computed on the two mirostructures S12 and S14. These are then used for

macrohomogeneous models in Section 5.4.4 to model impedance spectra of the electrode

materials.
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5.4.3.1 Effective Conductivities of EDLC Electrodes

First, the conductivities of both the electrolyte in the pore space and the carbon electrode

have been computed, using the FFT-method. Therefore, the bulk conductivities have

been set for the corresponding phase in the segmentations and the other phase has been

set non-conducting, respectively. This yields an effective conductivity for each of the

phases.

The computed conductivities for the electrolyte phase of specimen S12 are shown in Table

5.4. For the bulk conductivity a value of σel = 0.8 S
cm has been assumed, as reported

in Darling [1964]. Obviously the Wiener upper bound σuW strongly overestimates the

effective conductivity, computed with the FFT-method. Also, the strong anisotropy

is not reflected in the bound. It is assumed, that the anisotropy is mainly due to

the anisotropic voxel size and errors induced by it. For the macroscopic simulation,

the conductivity has been averaged over all directions, giving a mean conductivity of

σeffel = 0.081 S
cm .

direction σuW [ Scm ]
σeff
σel

σeff [ Scm ]

x - 0.073 0.058

y - 0.071 0.056

z - 0.160 0.128

average 0.25 0.101 0.081

Table 5.4: Effective conductivities for the electrode S12 computed for the pore space
filled with electrolyte.

The conductivity of the solid phase has been computed using a bulk conductivity of

σpbulk = 0.12 S
cm as reported in Bruno et al. [2010]. The computed values are given in

Table 5.5. As can be seen, the anisotropy is not as strong as in the electrolyte phase. This

comes mainly from the higher volume fraction, giving the anisotropy of the pores less

weight. Also, the higher volume fraction compensates for the lower bulk conductivity,

yielding similar values as for S12. Yet again, the Wiener bounds vastly overestimate the

calculated conductivity.

direction σuW [ Scm ]
σeff
σp

σeff [ Scm ]

x - 0.412 0.049

y - 0.423 0.051

z - 0.541 0.065

average 0.082 0.459 0.055

Table 5.5: Effective conductivities for the electrode S12 computed for the solid phase.

Furthermore, the conductivities for the microstructure of S14 have been computed. In

the computations, the same bulk parameters have been used as for the microstructure
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S12. The resulting effective conductivities computed for the electrolyte phase of speci-

men S14 are shown in Table 5.6.

direction σuW [ Scm ]
σeff
σel

σeff [ Scm ]

x - 0.234 0.187

y - 0.192 0.154

z - 0.201 0.160

average 0.352 0.209 0.167

Table 5.6: Effective conductivities for the electrode S14 computed for the pore space
filled with electrolyte.

Again, the Wiener bound overestimates the conductivity. Yet, due to the larger structure

size, the anisotropy of the effective conductivity is much smaller than for S12. This is

due to the fact that the larger structure can be better resolved in z-direction, reducing

the error. The corresponding values for the solid phase are shown in Table 5.7. Again

the anisotropy is much smaller than for the corresponding values for S12. Also, the

difference between the relative conductivity factors of the pore and the solid phase is

much smaller than for S12, as can be expected from the volume fraction of 56% rather

than 68% for S12.

direction σuW [ Scm ]
σeff
σp

σeff [ Scm ]

x - 0.350 0.042

y - 0.310 0.037

z - 0.319 0.038

average 0.067 0.326 0.039

Table 5.7: Effective conductivities for the electrode S14 computed for the solid phase.

5.4.3.2 Effective Permittivities of EDLC Electrodes

The permittivity is directly related to the capacitance of the electrode. Since the linear

dependence of the permittivity is the same as for the conductivity of the solid phase,

the effective permittivity factors are the same as for the conductivity computed in the

last section, i.e.
εeff
ε

=
σeff
σ

. (5.67)

The effective permittivity of the bulk material is not known, hence it must be computed

from the measurements of the two samples. Using the average effective permittivity

factors in Tables 5.5 and Table 5.7, the effective permittivities are
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CV,S12 = CV,S12,bulk ∗ 0.459, (5.68)

CV,S14 = CV,S14,bulk ∗ 0.32. (5.69)

The effective capacitances have been measured experimentally by electric impedance

spectroscopy. The capacitance values are given by

CV,S12 = 2.75
F

cm3
, (5.70)

CV,S14 = 1.98
F

cm3
. (5.71)

This yields bulk capacitances of

CV,S12,bulk = 5.99
F

g
, (5.72)

CV,S14,bulk = 6.19
F

g
. (5.73)

The fact that the bulk capacitances are very close, indicates that the double layer form-

ing at the mesopores does not contribute strongly to the overall capacitance of the

EDLC electrode. To further explore this point, the effective permittivities have been

computed including a double layer forming on the mesopores. The double layer has

been approximated as a non-conducting imperfect boundary between the pore and the

solid phase, as described in Section 5.1.1. In the computation, the imperfect interface

has been approximated by a third phase, forming a layer between the pore and the solid

phase, having a small thickness d. Then, the limit of a vanishingly thin interface has

been approximated, by reducing the thickness and computing the capacitance for each

thickness (taking the limit d→ 0 in Figure 5.3 on Page 130). Then the capacitance was

determined by linear regression. The layered phase has been modeled by using a Eu-

clidean distance transform and a thresholding on the segmentations. Thus, the layered

phase is given by

FDL = Th0,d(FSeg)− FSeg. (5.74)

The solid phase FSeg remains as it is and the pore space is reduced by the double layer,

FPore = FCSeg − FDL. (5.75)
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Figure 5.15: Three different double layer thicknesses d = 1 Pixel (left), d = 2 Pixel
(middle) and d = 3 Pixel (right).

For both samples, the capacitances have been computed including the double layer mod-

eled by imperfect boundary conditions. Figure 5.16 shows the computed capacitances

given for different values of the double layer areal capacitance CA in µF
cm2 . The bulk

capacitance is assumed to be 6.1 F
cm3 , thus the effective capacitance is sightly underesti-

mated for S12 and overestimated for S14. As can be seen, the volumetric capacitance

rises much faster for the material S12, due to it’s higher surface area.
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Figure 5.16: Effective volumetric capacitance of S12 and S14 for different double layer
areal capacitances CA.

To check which double layer capacitance is consistent with the data, the ratio of the

effective volumetric capacitance of both samples was computed for different areal ca-

pacitances. The resulting curve is shown in Figure 5.17. As can be seen, the measured

values are only consistent with the computations for very low double layer capacitances,

indicating that the bulk of the total capacitance is given by the micropores.
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Figure 5.17: Ratio of effective capacitances of S12 and S14 for different double layer
areal capacitances.

5.4.4 The Macrohomogeneous Model

After the effective conductivities and permeabilities have been computed in the previous

section, a macrohomogeneous model is used to model the electrode setup. Here, the

electrode is modeled by effective media, which have the conductivities and permittivities

computed on the microstructure. Hence, the macroscopic electrode behavior can be

related to the microstructure.

Among the first attempts to model the electrode directly is the classical model by Robert

de Levie, published in de Levie [1963]. The model falls into the class of transmission

line models, where the porous electrode is represented by an equivalent circuit with dis-

tributed elements or equivalently a one-dimensional partial differential equation (PDE).

The model is a macrohomogeneous model, meaning that it relates macroscopic quan-

tities in the electrode. The model used in this work is an extension of the model in

de Levie [1963] developed by Paasch et al. and presented in Paasch et al. [1993] and

Roßberg et al. [1998].

The macroscopic setup is shown in Figure 5.18. It is shown that the electrode is immersed

into the electrolyte with the current collector at x = 0 and the bulk electrolyte at x = d.

The model assumptions are that there are two electric fields in the electrode, one in

the electrolyte and one in the solid phase of the electrode. Both fields are governed

by Poisson equations, which are coupled by a capacitance representing the double layer

forming at the surface of the electrode and a resistance representing charge transfer

reactions, where charge can pass through the double layer. This leads to the following

one-dimensional PDEs:
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Figure 5.18: Macroscopic model of the porous EDLC electrode.

A

ρe

dΦe(x, t)

dx2
= −(iωCDLASV + 1

ρCT
)(Φe(x, t)− Φp(x, t)), (5.76)

A

ρp

dΦp(x, t)

dx2
= (iωCDLASV + 1

ρCT
)(Φe(x, t)− Φp(x, t)). (5.77)

Here A is the electrode area and d is the electrode thickness, CDL is the areal capacitance

of the double layer and SV is the surface area per volume of the pore space. The

resistance ρCT is the charge transfer resistance per unit length of the electrode. ρe and

ρp are the ohmic resistances of the electrode solid phase and the electrolyte, respectively.

A representation of the model by an electric circuit is shown in Figure 5.19, where the

resistances and the capacitances are distributed elements, representing a differential

resistance or capacitance along the x-axis.

Figure 5.19: Equivalent circuit of the Paasch model
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To solve the model, the appropriate boundary conditions for the two fields at the elec-

trode surfaces towards the current collector and the separator have to be fixed. These

boundary conditions are given by the currents and voltages at the separator and the

current collector. For the electrical impedance spectroscopy, the potential is fixed at

the separator or by a counter electrode. On the current collector side, the potential

may vary, but no current can flow. Thus, the boundary conditions for the electrolyte

potential are given by

Φp(x = d, t) = 0, (5.78)

∂Φp

∂x
(x = 0, t) = 0. (5.79)

Analogously, for the electrode potential, the current vanishes at the separator and the

potential at the current collector is given by an external signal. For EIS measurements

that is a sinusoidal wave V (t) = sin(ωt+ φ)

Φe(x = 0, t) = V (t), (5.80)

∂Φe

∂x
(x = d, t) = 0. (5.81)

The initial conditions are given by the mean potential, set to zero, and the periodic

boundary conditions in time

〈Φp〉 = 0, (5.82)

〈Φe〉 = 0, (5.83)

Φp(x, t) = Φp(x, t+ ω ∗ 2π), (5.84)

Φe(x, t) = Φe(x, t+ ω ∗ 2π), (5.85)

where the averages 〈Φi〉 are taken with respect to time. To calculate the impedance of

the element, the model can be solved analytically. Paasch et al. [1993] give an expression

for the impedance depending on the frequency of the sinusoidal signal ω

Z(ω) =
1

A

[
ρ2
e + ρ2

p

ρe + ρp

coth(dβ)

β
+ 2

ρeρp
ρe + ρp

1

β sinh(dβ)
+ d

ρeρp
ρe + ρp

]
(5.86)

with

β =
1

d

( ω0√
3

+ iω

ω1

) 1
2

, ω0 =
1

ρCTASV CDL
, ω1 =

1

d2CSV (ρe + ρp)
. (5.87)
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This model can be fitted to the impedance spectra measured by EIS. Yet, to make

predictions based on microstructures, some parameters of the model have to be computed

on the microscale. This includes the resistances ρe and ρp, and the specific capacitance

C = SV CDl, which have been computed in Section 5.4.3.

The described model is designated ”Paasch0” and has been fitted to the impedance

spectrum of the monolithic S12. For the fitting, some parameters have been chosen in

advance. The electrode area is known from the experimental setup. Also, the resistances

ρe and ρp can be computed using the observed microstructures from FIB-SEM nanoto-

mography. For the modeling, we have taken the resistance values computed in Section

5.4.3. The best fit for the remaining parameters, d, ω0 and C, are given in Table 5.8.

For comparison, the simulated spectrum and the measured data are shown in Figure

5.20.

parameter best fit

ω0 1.028 ∗ 105 rad
s

C 4.91 ∗ 10−5 F
cm3

A 0.96 cm2

d 0.314 cm

ρe 18.0 Ωcm

ρp 12.5 Ωcm

Table 5.8: Best fit parameters for the transmission line model ”Paasch0”.
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Figure 5.20: Measured impedance spectrum of monolithic S12 and best fit to model
”Paasch0”.

The spectrum of the model shows that the high-frequency part is reproduced very well,

yet for the low-frequency part, the model tends to the real line while the measured data

shows the low-frequency features already discussed. This is due to the charge transfer

resistance, which is in parallel with the double layer capacitance. As the charge transfer
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resistance is ohmic and independent of frequency, while the double layer capacitance is

blocking in the limit ω → 0, the current flows through the Ohmic resistance in this limit,

leading to a real impedance.

The capacitance of C = 4.91∗10−5 F
cm3 is a volumetric capacitance appearing in the high-

frequency part of the spectrum and is much lower than the overall measured capacitance

for S12 of CS12
V = 2.75 F

cm3 . This can be explained by the double layer forming at the

surface having a very low capacitance, while the micropores provide the bulk of the total

resistance of the material, as indicated in Section 5.4.3.

The charge transfer resistance ρCT can be calculated with the parameter ω0, which is

reasonable, since no a priori information is available

ρCT =
√

3
1

ω0C
= 0.34 Ω cm. (5.88)

The charge transfer resistance seems realistic, while the double layer capacitance is much

lower than expected in the experiment. In Paasch et al. [1993] possible amendments are

given to improve modeling of the low-frequency part of the spectrum.

These amendments are given by replacing the charge transfer resistance and the double

layer capacitance by a more complex impedance. Therefore, the term iωCDLASV + 1
ρCT

in Equation 5.77 is interpreted as a dielectric function

iωCdlASV +
1

ρCT
= iωCdlASV ε(ω) (5.89)

with

ε(ω) = 1 +
k

iω
. (5.90)

Now, the model can be amended to incorporate more complex surface structures than a

simple capacitance and a resistance, by introducing a charge transfer hindrance admit-

tance y(ω)

ε(ω) = 1 +
k

iω
y(ω). (5.91)

This charge transfer hindrance can model processes taking place at the double layer sur-

face, such as diffusion or polarization. These processes can be modeled by an impedance

z(ω) = 1
y(ω) . The first impedance model tested shall be denoted ”Paasch1” and the

corresponding impedance zP1(ω) is given by

zP1(ω) = 1 +

√
ω2

iω
coth(

iω

ω3
)
α
2 . (5.92)
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The impedance models the finite diffusion taking place from the pore space into the

double layer. The parameters ω2, a and ω3 depend on the diffusivity of the ions in the

electrolyte and the average pore radius. The model has been fitted to the measured

impedance spectrum and an optimal fit has been reached for the parameters in Table

5.9. The remaining parameters from Table 5.8 stay the same, as they are modeling the

high-frequency part of the spectrum. The fitted spectrum is shown in Figure 5.21.

parameter best fit

ω2 0.0125 rad
s

ω3 0.00348 rad
s

a 0.79

Table 5.9: Best fit parameters for the transmission line model ”Paasch1”.
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Figure 5.21: Measured spectrum and best fit of model ”Paasch1”.

By visual inspection, the model fits very well to the experimental data. The high-

frequency part is the same as in Figure 5.20, while the low-frequency part is modeled by

a linear part combined with a capacitive rise. The frequency ω2 is related to a diffusion

resistance k2 by

k2 =
ω2

D
= 939cm2, (5.93)

with a bulk diffusivity of D = 1.33 ∗ 10−5. This is essentially a free parameter, hence a

discussion is omitted. The frequency ω3 is related to a characteristic pore size lp in the

sample by

lp =
√
Dω3 = 0.0618 cm = 618µm. (5.94)
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The value for lp is too small to originate from the sample size d = 0.31 cm, yet too large

to originate from the mesopores. It could be speculated that the frequency originates

from the diffusion of the ions into the micropores, leading to a smaller effective diffusivity

Deff < D, which would result in a smaller lp.

The second model fitted incorporates a characteristic frequency ωCS , modeling a charge

storage process taking place at the surface. This model shall be denoted ”Paasch2”.

The corresponding impedance is given by

zP2(ω) = 1 +

√
ω2

iω
coth

(
iω

ω3

)α
2

+
ωCS
iω

. (5.95)

An additional parameter ωCS is introduced, to model a polarizable medium around

the double layer, which sometimes happens, when the material has a microporosity, at

a smaller scale than the pore scale of the double layer. This is also the case for the

material S12, having micropores below the surface of the mesopores. The model fit for

the ”Paasch2” is shown in Figure 5.22, while the best fitting parameters are given in

Table 5.10.
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Figure 5.22: Fitted spectrum of model ”Paasch2”

parameter best fit

ω2 0.0125 rad
s

ω3 0.00348 rad
s

a 0.79

ωCS 0.79

Table 5.10: Best fit parameters for the transmission line model ”Paasch2”.

Fitting the model ”Paasch2” does not improve the correspondence a lot, yet the straight

part of the spectrum is more pronounced. Both frequencies ω2 and ω3 are about the
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same as before, so a discussion is omitted. The new characteristic frequency ωCS is

related to a capacitance of the medium CCS through

CCS =
1

ρCTωCS
= 1730

F

cm3
. (5.96)

Yet, the capacitance value of CCS = 1730 F
cm3 is much higher than the measured values.

This indicates that the parameter is unphysical and should be discarded. This leaves

the capacitance C as the only capacitance in the system. This is clearly not true for

the two-scale material S12. This means, that the low-frequency part of the impedance

spectrum is not modeled sufficiently accurately. Even though reasonable fits can be

found, the capacitance of the micropores is not sufficiently accounted for.

Combined with the evidence from the microscale modeling in Section 5.4.3, it is con-

cluded, that the double layer forming at the surface of the mesopores might have a very

low capacitance, manifesting itself at very high frequencies. Hence, the double layer

forming in the micropores provides most of the capacitance, which is measured on the

material, i.e. the double layer capacitance of the mesopores can be neglected for low fre-

quencies. Furthermore, this means that is should be possible to model the capacitance of

the micropores as a volumetric capacitance in the solid phase of the segmented images,

as in Section 5.4.3. Also, the low-frequency capacitance and resistance can be modeled

using the stochastic model fitted in Section 4.6.2, in order to optimize the electrode.

5.4.5 Optimizing the Physical Properties

In order to optimize the pore structure with respect to conductivity and permittivity,

i.e. capacitance, both quantities were computed on model realizations with different

volume fractions. Since the resistance and capacitance are computed from linear PDEs,

a scaling with an isotropic factor will not alter the result. This means, that the ratio r
s

and the volume fraction p are the only parameters influencing the effective conductivity

and permittivity, where r is the radius of the spheres and s is the width of the filter mask

s as described in the model definition in Section 4.3. To investigate the influence of the

model parameters on the physical properties, they have been computed on realizations

of the model. In the study, the volume fraction has been varied between 0.1 and 0.9,

while the ratio r/s has been varied between 0.1 and 10. The conductivity and resistivity

have been computed on realization of the model of size 2563 pixels, where the sum of

the radius of the spheres and the filter mask have been held constant at 30, r + s = 30.

The computed conductivities are shown in Figure 5.23.



5.5. DISCUSSION AND OUTLOOK 161

10.0
0.8

0.6
0.4

0.2
0

0.1
0.37

0.51

1.2
2.68

10
0

0.2

0.4

0.6

0.8

1

volume fraction

Dimensionless Effective Conductivity

r/s
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5.23: Effective conductivity of the modified Boolean model of spheres for
different volume fractions and ratios r/s.

As can be seen, the conductivity depends mostly on the volume fraction, the ratio r/s

having only a minute influence on the result. Also, the permittivity has been computed,

with results shown in Figure 5.24. Again, the volume fraction has a dominant influence

on the result. Both results indicate, that the effective conductivity as well as the permit-

tivity could be modeled by a Boolean model of spheres quite well, where the radius of the

spheres is the sum rn = r + s. Furthermore, these calculations can be used to optimize

the pore space of the mesopores, which would correspond to selecting a volume fraction

that provides the maximum capacitance, while retaining a minimal conductivity.

5.5 Discussion and Outlook

5.5.1 Discussion

In this chapter, two simulation studies were presented, involving the segmented and

modeled porous carbon structures in the preceding chapters. A multi-scale simulation

was made to asses the impact of the nanoporous additive segmented in Chapter 3. To this

end, an effective diffusion resistance of the additive was computed, using an FFT-based

method. Then, the additive was included in the computational domain of a charging

simulation on the macro-scale, consisting of the active particles of the electrode material,

which were segmented from an SR-CT image. Then the distribution of the additive was

modeled with a morphological closing and the effective diffusion resistance was inserted
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Figure 5.24: Effective permittivity of the modified Boolean model of spheres for
different volume fractions and ratios r/s.

as a property of the additive phase. Finally, a charging of the electrode was simulated at

two different rates, with and without the additive included in the computational domain.

The simulation revealed that the additive has a considerable influence in the charging

behavior.

The nanoporous EDLC electrodes were simulated using a two-scale model, with a macro-

homogeneous model at the macro-scale. The microstructure enters by effective proper-

ties, computed on the segmentations of the pore space of S12 and S14. The resistance

and capacitance were computed for both materials on the micro-scale, with and without

a double layer on the boundary of the mesopores. It was concluded, that the measured

values were only consistent with a very low capacitance of the double layer. Also, several

macrohomogeneous models were fitted to the measured impedance spectrum of S12. It

was found, that a very low capacitance exists in the material, manifesting itself in the

high-frequency part of the spectrum. Two different approaches were tested to model

the low-frequency part of the spectrum, yet it was found that the fitted values are not

consistent with experimental observations. Overall, it was concluded, that the double

layer capacitance has a negligible contribution to the capacitance of the materials S12

and S14. Based on this assumption, the capacitance and resistance of the fitted model

were computed, depending on the model parameters, which can be used to optimize the

mesopore space.
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5.5.2 Outlook

Further research concerning the battery additive could be carried out, by optimizing

the effective properties to given requirements, using the Gaussian random field model.

To this end, the resistance would not only be computed on the pore space, but also on

the solid phase, carrying the electric current. Then an optimal value could be defined

for both properties and the model would be optimized accordingly. Also, the stochastic

modeling could be extended to the active particles, for instance by considering a packing

of particles of a certain shape. Thereby, the battery electrode could be optimized with

respect to the geometrical properties of the active particles, e.g. grain sizes.

The most promising improvements for the EDLC modeling could be achieved by con-

sidering modifications of the macrohomogeneous model, as it is clear, that such a model

should involve two capacitances. This could be achieved by considering a better dielec-

tric function for the distributed elements connecting the pore and the solid phase. This

could be combined with the resistance and capacitance data from the micromodeling

to optimize the electrode material to given requirements like power density and capaci-

tance. Also, a better modeling could be achieved, by formulating the equivalent of the

macromodel for the microscale. Then, the macrohomogeneous model could be derived

from the micromodel by homogenization. This would put the multi-scale modeling on a

more sound basis.





6
Conclusion

The motivation of this thesis was to improve the characterization and modeling of

nanoporous carbon materials using FIB-SEM nanotomography. The work has been

done in the context of virtual material design, where virtual representations of the ma-

terial are generated and improved using simulations. The characterization includes the

imaging of the material’s geometrical structure, the image processing and reconstruc-

tion of the pore space. The reconstructed pore space can be analyzed geometrically,

using mathematical morphology, and the gained information can be used to model the

material. Modeling in this thesis comprises the modeling of the geometric structure

by stochastic models, as well as simulating the physical properties of the observed or

modeled materials.

In the course of this thesis, new methods have been developed to characterize the

nanoporous carbons using FIB-SEM nanotomography. First, a tool for the simulation of

FIB-SEM nanotomographies of nanoporous materials was developed. Secondly, a new

segmentation algorithm for the reconstruction of the pore structure of highly porous

materials from FIB-SEM nanotomography was developed. Thirdly, stochastic models

for two materials used for energy storage were implemented and fitted to the materials

in two case studies. Finally, simulation studies were performed, to make predictions

about the relevant physical properties of both materials.

The new techniques have been employed in two case studies. One being to analyze

the physical impact of the pore structure of a nanoporous additive to electrodes of

Li-ion batteries on the charging behavior of the Li-ion cell. The study included the

reconstruction of the pore space, the stochastic modeling of the structure and a multi-

scale simulation of the charging of the Li-ion battery. Two electrode materials for electric

double layer capacitors were studied in a second case study. Again, the pore space was

reconstructed from FIB-SEM data and a stochastic model was fitted to the data. Then

simulations were made to assess the main physical processes of the capacitance of the

165
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electrode. Then, a simulation study was made to asses the impact of the pore structure

on resistance and capacitance.

6.1 Contributions

6.1.1 Simulation of FIB-SEM Nanotomography

A major contribution of this work is, to enable the simulation of complete FIB-SEM

datasets. Prior to this work, the simulation of a FIB-SEM image was a matter of days

even on high-performance computers. As the need arose, to test segmentation algorithms

for FIB-SEM datasets, it was clear that the simulation of entire FIB-SEM datasets

comprising hundreds of images, would require a speed-up of several orders of magnitude.

Previous work on the acceleration of SEM simulation algorithms was done by Seeger in

2004. In this thesis, the work was extended, amending Seegers precomputation technique

with a path compression algorithm, yielding again a speed-up of between one and two

orders of magnitude. Also, a new technique was developed to separate the simulation

of secondary electrons from the simulation of the primary electrons. This again reduces

the computational effort substantially, by avoiding the simulation of secondary electrons,

which do not escape from the material, and hence do not contribute to the signal.

In total, the new acceleration techniques, reduce the time to compute FIB-SEM datasets

to hours on a single core machine, instead of years before, or even to minutes on a high-

performance computer.

6.1.2 Segmentation of FIB-SEM Data of Highly Porous Media

Another, major contribution of the thesis is the development of a segmentation algorithm

for FIB-SEM datasets. The reconstruction of highly porous materials from FIB-SEM

nanotomography data remains a problem without a general solution. Yet, in this thesis,

a new method was developed using mathematical morphology, which can segment FIB-

SEM datasets taken with a wide range of material and imaging parameters. Also for

the first time, using the FIB-SEM simulation, the segmentation algorithm could be

evaluated using synthetic data with a known ground truth. The evaluation revealed

that the method works better than any documented so far in literature.
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6.1.3 Stochastic Modeling of Highly Porous Carbon Materials

Further, stochastic models representing the pore space of sintered nanoporous materials

have been developed. For both case studies, suitable models have been found, shown

to represent the materials under consideration. A model using a Gaussian random field

has been shown to represent the pore structure of a nanoporous additive for Li-ion bat-

teries. A modified version of the Boolean model has been shown to represent sintered

granular materials very well. It could be shown, that the sintering can be well approx-

imated using a convolution with a Gaussian kernel function. Also, a fitting procedure

using morphological characteristics and stochastic optimization has been demonstrated

to work for nanoporous EDLC electrode materials.

6.1.4 Simulation of Physical Properties of Porous Carbon Electrodes

Finally, simulation studies were made for the two material applications. The diffusion

resistance of the additive for Li-ion batteries was computed on the reconstructed struc-

ture. Then, the charging of a battery half-cell was simulated using the effective diffusion

resistance computed for the additive. It was concluded, that the additive has a con-

siderable impact on the charging behavior of the battery. This established for the first

time, a multi-scale simulation process combining FIB-SEM and micro-CT-data to char-

acterize multi-scale battery electrode materials. For the EDLC electrodes, simulations

were made to establish the main charge storage mechanism of this particular class of

materials. To this end, a multi-scale modeling of the nanoporous electrode materials

was made. Also, studies were made to simulate the capacitance and the conductivity of

model realizations, for the first time taking a systematic approach to the optimization

of this class of materials by means of virtual material design.

6.2 Perspectives

6.2.1 Simulation of FIB-SEM Nanotomography

Concerning the FIB-SEM simulation, the obvious areas of research are to extend the

simulation to multiphase materials. This could be done by generating a database of

electron paths for each phase and than sampling from the tracks, depending on the

phase the electron is in. The connection of two paths can be done by matching the

energy of the electron at their intersection. Due to the Markov property of the paths,

a random sampling of a path starting at the right energy is sufficient. Also, the model

descriptions could be extended to include constructive solid geometry or meshes. This
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would require an efficient testing routine to evaluate whether the electron is inside the

solid phase and whether a ray intersects with the solid phase. If such a routine was

available, it could be easily incorporated into the program.

6.2.2 Segmentation of FIB-SEM Data of Highly Porous Media

As the segmentation is a process involving many steps, the optimization of each step

would probably improve the final result. The feature detection could be improved by

using more advanced methods, such as scale invariant or histogram based features, com-

bined with classification algorithms, such as support vector machines. Also the water-

shed segmentation could be substituted by a more advanced algorithm, such as graph-cut

or power watershed-based segmentations. Furthermore, the method could be further

automated by reducing the number of free parameters or by estimating the parame-

ters from the data. Threshold parameters could be estimated by analyzing histograms.

Other parameters could be optimized to match the outcomes of the segmentation to

prior knowledge, e.g. to get an isotropic segmentation.

6.2.3 Stochastic Modeling of Highly Porous Carbons

Possible improvements for the stochastic modeling have to be considered for each case

study separately. For the modeling of the additive using Gaussian random functions,

the lack of large grain sizes could be remedied by using morphological operations on the

model realization. Other than that, it might be useful to look for means of including a

second length scale into the modeling. A lot of work can be done on the modified Boolean

model. Even though it models the EDLC electrodes very faithfully, the fitting using

stochastic optimization is a lengthy procedure. This could be sped up by computing

analytical expressions for the volume fraction and the covariance.

6.2.4 Simulation of Physical Properties of Porous Carbon Electrodes

The simulation of the battery electrode could be improved by adding more properties

to the additive phase, such as electrical conductivity. Then, the additive could be

optimized to meet the best compromise between two competing properties, i.e. diffusion

and electrical resistance. Also, the stochastic modeling could be extended to the active

particles by considering packings of particles of different shapes. Further research on the

modeling of EDLC electrodes should be directed at formulating a macrohomogeneous

model for the considered materials. This must involve the volumetric capacitance of

the micropores as well as the double layer capacitance forming at the surface of the
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mesopores. When this is achieved, the multi-scale model could be used to optimize the

amount of pore stabilizer to given requirements, such as power density and capacitance.

Also, the modeling could be amended to include a micromodel involving more physical

phenomena, such as diffusion. Then a macrohomogeneous model could be derived from

the micromodel using homogenization, putting the multi-scale modeling approach on

more solid ground.
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Charakterisierung und Modellierung nanoporöser Kohlenstoffstrukturen 

Zusammenfassung : Das Ziel dieser Arbeit ist die Optimierung von nanoporösen 

Kohlenstoffmaterialien durch virtuelles Materialdesign. Auf dieser Längenskala (~ 10 nm) kann nur 

die Focused Ion Beam - Scanning Electron Microscopy Nanotomography (FIB-SEM) die Geometrie 

einer Probe dreidimensional abbilden. Jedoch muss für eine Optimierung des Materials der 

Porenraum aus den Bilddaten rekonstruiert werden. Dies war ein bisher im Allgemeinen  ungelöstes 

Problem. 

Um das Rekonstruktionsproblem zu lösen, wurde eine Simulationsmethode für FIB-SEM-Bilder 

entwickelt. Die sich daraus ergebenden synthetischen Bilder konnten dann benutzt werden, um 

Segmentierungsalgorithmen zu testen und zu validieren. Mit den simulierten Daten wurde ein neuer, 

auf mathematischer Morphologie basierender Segmentierungsalgorithmus entwickelt, welcher es 

erlaubt den dreidimensionalen Porenraum hochporöser Materialien zu rekonstruieren. 

In dieser Arbeit werden zwei Fallstudien mit nanoporösen Kohlenstoffen für Energiespeicherung 

vorgestellt, in denen die neuen Techniken zur Charakterisierung und Optimierung von 

Elektrodenmaterialien für Li-Ionen-Akkus sowie Doppelschichtkondensatoren (EDLCs) eingesetzt 

werden. Dann wurde der rekonstruierte Porenraum mit Hilfe der stochastischen Geometrie 

geometrisch modelliert. Letztendlich wurden die elektrischen Eigenschaften der Materialien 

simuliert, sowohl auf echten abgebildeten Strukturen, als auch auf modellierten Strukturen. 

Schlüsselwörter : nanoporöse Kohlenstoffe, FIB-SEM Nanotomographie, Monte-Carlo, Simulation, 

Segmentierung, stochastische Modellierung, Multiskalensimulation 

 

Characterization and Modeling of Nanoporous Carbon Structures 

Abstract : The aim of the work presented here is to optimize nanoporous carbon materials by means 

of 'virtual material design'. On this length scale (~ 10nm) Focused Ion Beam – Scanning Electron 

Microscopy Nanotomography (FIB-SEM) is the only imaging technique providing three dimensional 

geometric information. Yet, for the optimization, the pore space of the materials must be 

reconstructed from the resulting image data, which was a generally unsolved problem so far. 

To overcome this problem, a simulation method for FIB-SEM images was developed. The resulting 

synthetic FIB-SEM images could then be used to test and validate segmentation algorithms. Using 

simulated image data, a new algorithm for the morphological segmentation of the highly porous 

structures from FIB-SEM data was developed, enabling the reconstruction of the three dimensional 

pore space from FIB-SEM images. 

Two case studies with nanoporous carbons used for energy storage are presented, using the new 

techniques for the characterization and optimization of electrodes of Li-ion batteries and electric 

double layer capacitors (EDLC's), respectively. The reconstructed pore space is modeled 

geometrically by means of stochastic geometry. Finally, the electrical properties of the materials 

were simulated using both imaged real and modeled structures. 

Keywords : Nanoporous Carbons, FIB-SEM Nanotomography, Monte-Carlo, Simulation, 

Segmentation, Stochastic Modeling, Multi-Scale Simulation 
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