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Zusammenfassung

Diese Dissertation befasst sich mit der elektronischen Struktur des Silizium-Fehlstellen
(SiV) Farbzentrums in Diamant. Neben detaillierten spektroskopischen Untersuchungen
werden erste Experimente zur Nutzung des Defekts als Quantenbit (Qubit) gezeigt. Aus-
gehend von der molekularen Struktur des Defekts leiten wir unter Verwendung von Grup-
pentheorie ein detailliertes Modell her, für das wir die irreduziblen Darstellungen der
elektronischen Zustände bestimmen. Wir berechnen Wechselwirkungsterme, welche die
bestehende energetische Entartung der Zustände aufheben, und zur Ausbildung einer
Feinstruktur im Emissionsspektrum des Defekts führen. Diese Feinstruktur wird experi-
mentell an einzelnen SiV-Zentren in Diamantproben hoher kristalliner Güte untersucht.
Hierzu verwenden wir konfokale Mikroskopie bei kryogenen Temperaturen. Zudem legen
wir magnetische Felder an, wodurch die Entartung magnetischer Unterniveaus aufgehoben
wird, und somit der Spin-Zustand des Defektzentrums eindeutig bestimmt wird. Unsere
Untersuchungen ermöglichen eine widerspruchsfreie Beschreibung der SiV Niveaustruk-
tur und zeigen, dass die Zustände eine hohe Spin-Polarisation aufweisen können. Darauf
aufbauend demonstrieren wir Spin-selektive Anregung und evaluieren die Ergebnisse im
Kontext des hergeleiteten Modells. Zusätzlich wird das theoretische Modell erweitert, um
den Einfluss von Kristallverspannung auf die Niveaustruktur zu beschreiben. Zur experi-
mentellen Überprüfung untersuchen wir einzelne SiV-Zentren in Nanodiamanten, welche
hohe Verspannungsfelder aufweisen. Auch hier zeigt sich eine hervorragende Übereinstim-
mung mit den Vorhersagen des theoretischen Modells.
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Abstract

This thesis investigates the electronic structure of the silicon vacancy (SiV) color center
in diamond. We show detailed spectroscopic investigations and demonstrate first steps
towards using the defect as quantum bit (qubit). Starting from the molecular structure of
the defect, we first derive a detailed theoretical model using the concept of group theory.
With this approach, we calculate the irreducible representation of the electronic states,
and determine the interaction terms which lift the energetic degeneracy of these states.
Owing to this level splitting, the optical emission spectrum of the defect shows a fine
structure, which is observed for individual SiV centers in high quality diamond samples,
using confocal microscopy at cryogenic temperatures. We apply magnetic fields in order
to lift the degeneracy of magnetic sublevels and to reveal the spin state of the defect.
From the excellent agreement with the proposed theoretical model, we obtain a consistent
picture of the level structure and reveal, that these states can exhibit near unity spin
polarization. As a first step towards spin initialization, we demonstrate spin selective
excitation and discuss the results in the context of the derived electronic structure. After
having determined the properties of the SiV center in an ideal environment, we extend
the theoretical model to include the effect of crystal strain on the level structure. As
an experimental test-bench for emitters in strained environments, we investigate nanodia-
monds with single SiV centers. Again, we find an excellent agreement with the theoretical
predictions.
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Introduction

In this thesis, we study the electronic structure of a defect center in diamond, and we
investigate its suitability for an application in quantum information sciences. To motivate
this study, we here briefly review how solid state defects can be utilized to implement
elements of quantum information processing (QIP). The key idea of QIP is to use the
laws of quantum mechanics to enhance the capabilities of transferring and manipulating
data [1]. In classical information technology, a conventional computer performs operations
on the binary units (bits), which can either have the value 1 or 0. In QIP, the basic units
are called quantum bits or qubits. In contrast to their classical counterparts, qubits can be
prepared in so-called superposition states, thus they represent 0 and 1 at the same time.
Qubits are implemented using isolated quantum systems, e.g. the electronic states of an
atom or the polarization states of a single photon, and many other physical systems [2].

Multiple qubits in a superposition state can be combined to form quantum registers,
which then represent larger numbers. The information content stored in a quantum regis-
ter of N qubits scales with 2N , resulting in a massive computational parallelism. However,
this information is fragile as the superposition state collapses upon a projective measure-
ment. To harness the power of such a quantum computer, one must assure that the
manipulation of the quantum register is performed in a coherent manner and that projec-
tive measurements are made only at well-defined stages of an algorithm. Such coherent
manipulations are called quantum logic gates, where it can be shown that all necessary
computation tasks can be performed using a set of universal gates (single qubit rotations
and the so-called conditional-not gate, see Ref. [3]). Algorithms using quantum logic gates
can reduce the complexity in a number of computational problems. A particular example
is the factorization of large numbers, as proposed in 1994 by Peter Shor [4]. In addition
to this quantum computation, QIP shows large prospects for secure data communication
(“quantum cryptography” [5]), quantum simulation [6] and metrology [7].

Qubit implementations as well as single and multi-qubit operations have been per-
formed on a number of systems, including trapped ions [8, 9], nuclear spins [10, 11],
superconducting circuits [12–15], semiconductor quantum dots [16–18], defects in di-
amond [19–21], and all optical-schemes using single photons [22–25]. To characterize
whether a physical system meets the requirements for an implementation of a quantum
computer, a number of criteria have been proposed by DiVincenzo [26]. These criteria con-
cern among others the scalability, the initialization and the coherence times of the qubits.
All the systems cited above have their pros and cons as far as it concerns DiVincenzo’s
criteria, and to date it is not evident which of the systems is the most promising [27].
Hence, an appealing idea is to combine different qubits and thus, to harness their specific
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advantages.
To connect two or more qubits, we require their quantum states to become entangled.

Entanglement means to prepare two qubits in an inseparable state, in which they show a
well-defined correlation. Moreover, if we move the qubits far away from each other and
perform a projective measurement on one of the qubits, we instantaneously project the
entangled partner in a corresponding state. This scheme is also called quantum telepor-
tation, and is a non-local phenomenon which has no classical counterpart. Entanglement
plays an important role when distributing information over a network of separate compu-
tation entities [28].

We consider a hybrid system consisting of stationary qubits (“nodes”) which are linked
to each other using flying qubits. For the flying qubits, single photons appear to be
a perfect match as they transfer the information rapidly over long distances with little
decoherence. The quantum information can be encoded using their polarization state, but
also their location and timing (time-bin entanglement [29, 30]). The distant stationary
qubits serve as long-term memories and have been implemented for different systems:
The entanglement of a trapped ion with the polarization state of an emitted photon
has been realized in 2004 by Blinov et al. [31], and was extended to a photon-mediated
entanglement of two distant atoms [32] and ions [33], recently . Two similar schemes were
realized for the nitrogen-vacancy color center in diamond [34, 35]. We will discuss these
two experimental realizations of quantum entanglement in more detail later on, because
they reveal the limitations for this particular defect center in diamond. Before we address
this subject, we first introduce the reader to color centers in diamond, and their prospects
for a qubit realization.

A color center is a defect on an atomic level of a solid-state material, which shows
electronic transitions in the band gap of an surrounding solid. As a consequence, color
centers absorb light for which the host material is transparent and give a characteristic
color to the host. They consist of lattice vacancies, impurity atoms or combinations of
the two. Owing to their atom-like, discrete energy terms, color centers can be considered
as “artificial atoms”. To provide an individual access to these artificial atoms by means of
optical excitation, the defects can be spatially isolated in the host material. Diamond is a
particularly interesting material for optically active defect centers, because it shows a wide
band-gap, and therefore, is transparent from the ultraviolet to the far infrared spectrum.
As consequence, more than 500 diamond color centers are cited in the literature [36].

Compared to other isolated quantum systems, diamond color centers stand out because
they offer a straight-forward access: For instance, trapped ions require a tremendous
technical overhead ranging from ultra high vacuum chambers to extensively stabilized
trap lasers. Other solid-state systems like semiconductor quantum dots only operate at
liquid helium temperature. On the other hand, individual defect centers in diamond
have been successfully investigated at room temperature with fairly simple experimental
setups (cf. Sec. 3). However, the disadvantage of a color center is the interaction with
the surrounding host lattice. The covalent bonds in diamond create a strong crystal field
which modifies the energy levels of the impurity atoms. Therefore, it is both a theoretical
and experimental challenge to reveal the electronic structure of a given defect center.
In addition, the coupling of the electronic wave function to vibrational modes (so-called
vibronic coupling) affects the optical emission spectrum: When a defect relaxes from its
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excited to the ground state without the influence of vibronic coupling, we call this purely
electronic transition a zero-phonon line. In contrast, when vibrational quanta are created
or annihilated during the transition, we speak of a phonon sideband. The interaction with
the rapidly decaying vibrational quanta can lead to a significant broadening of optical
transitions, hence it is desirable for a defect when its vibronic coupling is small.

Among the most prominent color center in diamond is the negatively charged nitrogen-
vacancy (NV) center, consisting of a substitutional nitrogen atom and a neighboring
lattice vacancy. At the same time, the NV center ranges among the defect centers in
diamond which are the most understood. The NV center was first observed by du Preez
in 1965 [37]. Subsequent studies on ensembles of NV centers showed that the NV center is
related to an emission band at 1.94 eV (corresponding to ∼ 640 nm), and revealed some
of the electronic propertiers of the defect [38]. The dawn of the NV center for quantum
applications was in 1997, when for the first time, single photon emission was measured
from an individual NV center using scanning confocal microscopy [39]. Since 1997, the
annual number of publications about the NV center has increased exponentially [40],
underlining the importance of this quantum system.

The key to its success lies in the electronic structure of the NV center. The defect was
identified to show a spin triplet (S = 1) ground state. Due to spin-spin interaction [41,42],
this ground state is split at zero magnetic field into two spin sublevels (mS = 0 and
mS = ±1). The splitting amounts to a frequency of about 2.9 GHz, thus the spin state
can be manipulated using convenient microwave techniques derived from nuclear magnetic
resonance experiments. When being optically excited, the spin state is preserved – even
for a non-resonant optical excitation. Following an optical excitation, there is a spin-
dependent probability to trap the NV center in a metastable (S = 0) shelving state: While
the ms = 0 states decays rapidly to the ground state under emission of a fluorescence
photon, the ms = ±1 state can be trapped in the shelving state from where it decays
non-radiatively to the ground state. Hence, the resulting NV fluorescence depends on
the spin state and enables an optical read-out of the spin state. This combination of
microwave spin manipulation and straight-forward optical read-out successfully promoted
the NV center to a promising spin qubit.

The figures of merit for a spin qubit are its coherence times. It has been shown that
the main sources of decoherence for the electron spin are nuclear magnetic momenta orig-
inating from single substitutional nitrogen impurities (NS) and 13C nuclei in the vicinity
of an NV center. By growing isotopically enriched 12C diamond at high purity levels
(NS concentration below 1 part per billion), spin coherence times of up to 2 ms were
achieved [43]. Even for diamonds with only a technical-grade purity, dynamic decoupling
mechanisms enabled spin coherence times of up to 60 µs [44]. All these properties are
preserved at room temperature rendering the NV center an extremely attractive qubit
implementation.

The disadvantage of the NV center is its optical emission spectrum. Due to a strong
coupling of the electronic wave function a local vibration mode, the emission spectrum of
NV center shows a width of about 100 nm. Only 3-5 % of the NV emission is found in the
zero phonon line (ZPL), whereas the overwhelming part of the fluorescence is contained
in the phonon sidebands. While this drawback has only little consequence for a simple
optical spin read-out, it is crucial when the optical detection is limited to the ZPL. We
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will illustrate the consequences of this limitation for the usage of the NV center in QIP.
To employ the NV center as a node in quantum network, two entanglement experiments
have been published recently, which we here discuss briefly.

In 2010, Togan et al. showed the entanglement between the spin state of a single
NV center and the polarization state of an emitted photon [34]. In this experiment, the
NV is prepared in a specific excited state which decays with equal probability into two
different spin states of the ground state. The entangled state is created because the photon
polarization is uniquely correlated to the final spin state. This scheme is fully equivalent
to the approach using atomic qubits [31,45]. Optical dipole transitions are spin preserving,
but the orbital angular momentum of an electronic state can be changed depending on
the photon polarization. In order to identify which optical transition is suitable for the
entanglement, a profound understanding of the NV level structure was necessary for this
approach. To provide this understanding, detailed studies of NV excited state preceded
the experiment - both experimentally [46–50] and theoretically [41,42].

In 2013, Bernien et al. reported on the entanglement of two NV centers, located
in separate cryostats [35]. For their approach, the authors used a measurement-based
entanglement protocol [51, 52]: First, each NV center is brought into a superposition of
spin up (mS = 0) and down states (mS = −1) using a sequence of microwave pulses.
Next, each NV center is excited using a pulsed laser, which is resonant only for the spin
up state. If one of the defects has been excited, it will decay back to its ground state under
the emission of a fluorescence photon. Hence, the photon number in the optical mode is
entangled with the spin state of each NV center. The two photon modes are superimposed
on an optical beamsplitter, such that the photons observed at the output port of the
beamsplitter could have originated from either NV center. If the photons emitted by the
two NV centers are indistinguishable, their interference at the beamsplitter erases the
which-path information and projects the two qubits onto a maximally entangled state.
Hence, the detection of the photon heralds the entanglement generation.

While these experiments mark milestones for the usage of the NV center in a quan-
tum network, they also reveal the limitations of the NV center for this purpose. In these
experiments, the detection is strictly limited to the ZPL, which contains only 3 - 5 % of
the NV emission. Hence, the probability to generate an entangled photon is on order of
10−6 [34]. As a consequence, the rate of entanglement events was very low in both exper-
iments, which imposes a clear limitation for the entanglement generation when using NV
centers. Furthermore, the NV center suffers from spectral diffusion in the experiments
discussed above, which is a time dependent change in the optical transition frequencies
due to charge fluctuations in the vicinity of the defect. In order to tune the two NV centers
into resonance and to compensate for spectral diffusion, Bernien et al. implement a sophis-
ticated feed-back mechanism, which shifts the electronic levels by applying electrostatic
potentials to the samples [49, 53].

There is a vivid activity in the quantum optics community to enhance the NV emis-
sion into the ZPL using coupling to resonant microcavities. In the so-called weak-coupling
regime, the radiative emission into the cavity mode can be increased by the Purcell effect,
which in turn depends on the spatial and temporal confinement of the resonator mode.
Consequently, if the cavity is in resonance with the ZPL of the NV center at cryogenic
temperatures, the ZPL can be enhanced while the phonon sideband can be suppressed.
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Coupling of NV centers to microcavities has been realized recently in a number of exper-
iments (see Refs. [54,55] for an overview).

In this thesis, we set out to investigate an alternative color center in diamond which
has more promising optical properties than the NV center. The silicon-vacancy (SiV)
color center consists of a substitutional silicon impurity and an adjacent lattice vacancy.
Compared to the NV center, the SiV center is a relatively “young” defect and there
are far less publications about it as compared to the NV center [36]. The defect is
presumed to exist in a negative and a neutral charge state. The spectrum of the negatively
charged SiV center is dominated by a ZPL at 1.68 eV (738 nm), whereas the neutral
charge state shows a considerably weaker emission at 1.31 eV (946 nm). We here focus
the discussion on the negative charge state. Its ZPL has a typical line width of only a
few nanometers, even for fairly large defect ensembles at room temperature. In contrast
to the NV center, approximately 80 % of the emission is concentrated in the ZPL [56].
The first demonstration of SiV single photon emission was published in 2006 [57], using
individual SiV centers in bulk diamond. However, these first investigations showed only
moderate photon count rates.

A breakthrough for the SiV center was achieved in 2011, when Neu et al. investigated
individual SiV centers in diamond nanocrystals grown on iridium substrates [56]. These
samples showed single photon emission with fluorescence count rates exceeding 1 million
photons per second. In addition, these single SiV centers exhibited room temperature line
widths below 1 nm. These results promoted the SiV center to the brightest diamond-based
single photon emitter, and enabled a detailed study of further optical properties of the
defect: The emission dynamics could be described using an effective three-level system,
which includes a metastable shelving state similar to the NV center. At room temperature,
the polarization of the emitted light was measured to be fully linear [58]. These excellent
optical properties proved the SiV center to be a practical room temperature single photon
source, and it would be tempting to employ the defect as a qubit similar to the NV center.
An additional advantage of the SiV defect is, that there are will-defined and reproducible
fabrication strategies for it, while other novel color centers in diamond (e.g. Cr-related
defects [59]) still face many open questions regarding their creation [60].

Very recently, the emission of indistinguishable photons from two distant SiV centers
was shown [61]. The authors of Ref. [61] emphasize, that the SiV centers in their samples
show vanishing spectral diffusion, resulting in small inhomogeneous line widths. Hence,
as far as it concerns the optical prerequisites, the SiV center is an ideal candidate for
the photon-heralded entanglement of two distant color centers, which we discussed above.
To be employed as a spin-photon interface, the the SiV defect is also required to show
similar spin properties as compared to the NV center. However, the molecular structure
and the electronic level scheme of the defect have been subject to debate up to the present
date, thus the spin properties of the defect are completely unknown. The “fingerprint”
of the electronic structure is the ZPL fine structure of the defect which is observed when
cooling the center to liquid helium temperature. The fine structure consists of four optical
transitions, which give rise to split ground and excited states [62]. There have been
competing theoretical models (cf. Sec. 1.2 for details) to explain the ZPL fine structure,
yet, these models lack a clear and detailed experimental verification. Moreover, the spin
state of the SiV center has not been identified unequivocally. Recently published electron
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paramagnetic resonance (EPR) measurements showed that the presumed neutral charge
state SiV0 is a spin triplet system (S = 1) [63]. This suggests that its negative counterpart
is a paramagnetic S = 1/2 system, although this has not been confirmed by independent
EPR measurements so far.

In summary, the SiV center faces opposite challenges compared to the NV center:
While the SiV center currently offers promising optical properties in comparison to other
color centers in diamond, the electronic structure of SiV center has so far remained elusive.
The open questions about its molecular structure and its electronic states so far obstructed
the way to employ the SiV center as a qubit. Hence, it is the main objective of this thesis
to provide a comprehensive theoretical model for the defect and to test this model in
different experimental geometries. Furthermore, the model needs to provide consistent
explanations for the existing experimental reports in the literature. Most importantly, we
set out to answer the question about the spin state of the defect and to demonstrate the
first steps towards employing its spin degree of freedom as a qubit in diamond.

To attain this goal at an experimental level, it appears straight-forward to use the
promising nanodiamond samples of Neu et al. [56]. However, crystal strain is present
inside these nanodiamonds. The strain is revealed in an inhomogeneous distribution of
the ZPL wavelengths, and a considerable variation in the emission dynamics parameters
for emitters in different nanodiamonds. Hence, we expect crystal strain to significantly
affect the electronic states of the defect, rendering a clear identification of the electronic
structure very challenging in these samples. Therefore, the crucial prerequisite for our
studies is the availability of SiV centers in low strain samples. To verify whether the SiV
center is suitable as a qubit in first place, a complementary condition is the ability to
investigate it on a single emitter level.

In this work, we first discuss the known properties of the SiV color center, and inves-
tigate the existing theoretical models for it (Chap. 1). A key element of this discussion is
the molecular structure of the defect, which in turn defines the symmetry of the defect. In
Chap. 2, we use the concept of group theory, in order to classify the symmetry properties
of the SiV center, and to deduce the electronic electronic ground and excited states of
the defect. These two states initially show a fourfold energetic degeneracy, i.e. a twofold
orbital and a twofold spin degeneracy. This degeneracy can be lifted by several interaction
terms, which we model in a perturbative approach. For all interaction terms, we calculate
explicit matrix representations and show theoretically their action on the eigenstates of
the SiV center.

In Chap. 3, we introduce the experimental setups and the diamond samples for the
spectroscopic investigation of the SiV electronic structure. To provide experimental ac-
cess to the optical properties of individual SiV centers, we employ confocal microscopy
at cryogenic temperatures. First, we introduce the concept of confocal microscopy and
discuss its advantages over conventional microscopy, then we present the two experimen-
tal realizations. Next, we describe the fabrication of the three samples which have been
employed in this thesis.

Chap. 4 summarizes the experimental results. In this chapter, we present spectro-
scopical measurements on the samples mentioned before. The chapter is loosely divided
in a part about SiV centers in low-strain diamond, and another part, where we discuss
the influence of crystal strain. The spectroscopic results are compared to the theoretical
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model established in Chap. 2. From this comparison, we deduce the leading molecular
interaction terms, and discuss the resulting electronic states as well as the expected spin
purity. In the course of this thesis, a spin selective optical excitation was achieved, which
can be considered as a first step towards using the SiV center as quantum bit. These ex-
periments were conducted together with Tina Müller from the Cavendish Laboratory in
Cambridge, UK [64,65]. We show that these experiments can be consistently interpreted
using the model developed in this thesis.

Finally, Chap. 5 gives an outlook on further verification of the theoretical model, and
discusses how the spin purity can be increased in an optimized measurement configuration.
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Chapter 1

The silicon vacancy color center in
diamond

This chapter provides an overview over the existing literature on silicon vacancy (SiV)
color centers in diamond. It also shows which open questions we address in this work and
where we add to current knowledge. However, before we treat the SiV defect in detail,
Sec. 1.1 introduces the host material: We briefly review the fabrication of diamond, and
we also present the relevant electronic and optical properties. Subsequently, we introduce
the “molecular” properties of the SiV centers (Sec. 1.2), i.e. its composition, its charge
state and its molecular configuration. Finally, as this experimental work mainly relies
on spectroscopy, we cover the known spectral properties of SiV centers (Sec. 1.3). First,
we distinguish between room temperature and low temperature spectra and second, we
dedicate Sec. 1.3.3 to the existing research on individual SiV centers.

1.1 Diamond as host material for defects

Diamond is – besides graphite – one of the two main crystalline forms of carbon. In
principle, diamond is a metastable phase as graphite is thermodynamically more stable
than diamond. However, the phase transition from diamond to graphite usually requires
temperatures above 1500◦C at normal pressure. Diamond consists of sp3 hybridized,
covalently bound carbon atoms which crystallize in a cubic structure. The so-called
diamond structure consists of a face-centered cubic (fcc) lattice with a basis at (0, 0, 0) and
(a4 ,

a
4 ,

a
4 ) and a lattice constant of a = 3.567 Å. Hence, this structure is often visualized

as two fcc lattices which are displaced by (a4 ,
a
4 ,

a
4 ) from each other (Fig. 1.1a on page 8).

Formation and synthesis of diamond While the geological formation history of dia-
mond is still subject to debate, one assumes that natural diamond is a conversion product
of other carbon modifications, such as graphite [66]. At depths of 150 km inside Earth’s
mantle, high pressures (> 4.5 GPa) and high temperatures (900− 1300◦C) lead to a
transformation of graphite into diamond, as the latter is the most stable carbon modifica-
tion at these conditions. One hundred million years ago, volcanic eruptions transported

1
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these diamonds rapidly to Earth’s surface. These “blowouts” happened so fast that no
back-conversion into graphite occurred.

Natural diamond can exhibit high purity, however their composition is strongly varying
and depends on the origin of the diamonds. This makes a deterministic study of defects
in natural diamond cumbersome and expensive. Hence, we exclusively employ synthetic
diamond throughout this work. Before we describe the creation of synthetic diamond, we
briefly review the classification of diamond in terms of purity as it will be important for
the fabrication strategies, too. In 1934, Robertson et al. suggested to classify diamond into
type I and II according to the presence of certain infrared absorption bands [67]. Later,
it has been shown that these bands in type I diamond are related to the abundance of
nitrogen impurities [68]. We further distinguish between type Ia which contains aggregated
nitrogen (so-called “platelets”), and type Ib with singly substitutional nitrogen. Type II
diamond lacks these absorption bands and is transparent up to the fundamental absorption
edge at 5.5 eV. Type II is sub-divided in type IIa and type IIb, where the latter shows
p-type conductivity and usually comprises boron impurities.

We now address the fabrication of synthetic diamond. The natural mining of diamond
(135 Mct worldwide in 2011) is largely outbalanced by the synthetic production of dia-
mond which exceeded 4 Gct = 800 t in 2011 [69]. There are two main synthetic methods:
High-pressure-high-temperature (HPHT) synthesis and chemical vapor deposition (CVD).
The HPHT method mimics the natural creation process and is the main industrial source
for diamond: In an hydraulic anvil cell, Gigapascal pressures are applied to graphitic car-
bon precursors while temperature is kept above 1400◦C [70]. Small diamond crystals serve
as “seeds” to start the growth, and the addition of metals (predominantly iron, cobalt and
nickel) as catalysts helps to accelerate the growth process. These catalysts however limit
the purity of HPHT diamonds of which most are graded as type Ib with large amounts of
nitrogen. The advantage of HPHT is a high crystalline quality, i.e. large domains of the
diamonds are free from imperfections and thus can be relatively free of crystal strain. In
order to achieve high purity HPHT diamonds of type IIa, attempts have been made to add
group IVa elements (Ti, Zr or Hf) to the solvent metal, which act as nitrogen getters [71].
However, when nitrogen getters are added to the growth process, carbide inclusions (e.g.
TiC or ZrC) can be trapped in the diamond crystal. In 1996, Sumiya and Satoh showed
that the addition of copper leads to a decrease in carbide inclusions while maintaining a
relatively high growth rate [72].

The second method, CVD, produces diamond in the metastable phase and relies on
reaction kinetics [73]: For this method, methane acts as carbon gas source which is dissoci-
ated by a highly reactive hydrogen plasma. The carbon fragments adsorb onto a substrate
where they form sp2- and sp3-bound carbon. The atomic hydrogen has the function of
etching the graphite phases selectively while keeping the diamond phases stable [74],
hence, this non-equilibrium etching favors a net production of diamond. While the un-
derlying chemistry remains the same, different methods have been proposed to dissociate
the precursor gas mixture: hot-filament CVD [75], microwave CVD [76] or combustion
flame CVD [77].

Growth in the CVD process starts at sp3-bound carbon phases, hence this process also
requires the presence of a seed material. For polycrystalline diamond films, diamond pow-
der with grain diameters down to ≈ 10 nm are employed. The growth of single crystalline
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diamond has so far only been possible on diamond substrates (so-called homoepitaxial
growth). In addition, there are promising approaches to use iridium as substrate for the
heteroepitaxial growth of single crystalline diamond [78]. In general, diamonds grown by
CVD can exhibit a high purity – most commercially available CVD diamonds are type
IIa. Throughout this work, we exclusively investigate defect centers in CVD diamond
samples, however we make use of a selected HPHT diamond as substrate for a CVD film
(details on samples are found in Sec. 3.2).

Band structure of diamond and color centers Diamond is a semiconductor. Its
band structure has been calculated using various methods [79] and exhibits a large indirect
band gap of Egap = 5.5 eV [80]. At the Brillouin zone center Γ, the direct gap energy
equals 7.3 eV [80]. This makes pure, single crystalline diamond transparent from about
230 nm in the ultraviolet spectral region to the far-infrared [36], hence a pure diamond is
colorless.

Local imperfections in the diamond lattice can lead to discrete, localized energy states
in the band gap. These imperfections can consist of impurity atoms, vacancies or com-
plexes of the two. Optically active impurities or impurity complexes can lead to absorption
of light in the visible spectrum. When a diamond is heavily doped with a certain imper-
fection, this absorption gives rise to its color. Hence, these impurities are commonly
termed color centers. Owing to the large band gap, there are many possible color centers
in diamond: Over 500 species have been reported [36].

The formation of color centers can happen on the one hand via unintentional con-
tamination during growth. For instance, nitrogen is a common impurity in both natural
and HPHT diamonds as it is usually present in these growth processes. On the other
hand, color centers can be created on purpose by introducing solid or gaseous additives
deterministically into the growth process. For instance, nickel related color centers were
created by exposing substrates for diamond growth to a nickel containing slurry [81] prior
to growth. In similar fashion, the lanthanide europium (Eu) was recently introduced into
nanodiamonds by applying a Eu-containing polymer to the substrates before subjecting
them to a microwave CVD process [82]. The tradeoff for these methods is, that additives
can modify the growth conditions leading to an increased presence of non-diamond-phases.
A further drawback is, that the doping concentration on a low levels is challenging.

An alternative method to incorporate defects into diamond is ion implantation, for
which the ionized impurity atoms are accelerated onto the diamond sample [83]. With
this technique, the incorporated dose can be controlled deterministically and any influence
of the growth process can be ruled out if the diamonds are investigated before and after
implantation. However, the ions penetrating the diamond introduce radiation damage to
the lattice, thus ion implantation usually requires a subsequent annealing step. We return
to the process of ion implantation in Sec. 3.3 when describing the samples employed for
this work.

Optical properties of diamond Connected to the electronic properties of diamond
are its optical properties. As optical properties of natural and synthetic diamonds vary
within wide ranges depending on morphology, growth and impurity content [36, 84], we
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here only review the aspects which are the most relevant for this work. Diamond has
a high index of refraction which amounts to n = 2.4 in the visible [85]. On the one
hand, this promotes diamond to an attractive material for photonic structures, such as
photonic crystal cavities [86–89], ring and microdisk resonators [90–92] and nanowires [93],
because these concepts are based on high refractive index-differences between a dielectric
and air. On the other hand, when investigating the faint light of individual defects in
diamond, the high index of refraction is disadvantageous: The critical angle for total
internal reflection at a diamond-air interface amounts only to 24.6◦. Thus, depending on
the radiation pattern, a large amount of the color center’s fluorescence is not extracted
from the diamond [73]. Even for light impinging perpendicularly to the surface, a fraction
of 17% is reflected back into the diamond material due to Fresnel reflection. To overcome
this low extraction efficiency, different groups suggested to fabricate solid immersion lenses
into the diamond surface [94, 95] in order to inhibit total internal reflection and increase
the collected light by factors of up to 10 [94]. We will pursue this approach in this work as
well and demonstrate the fabrication of solid immersion lenses in Sec. 3.4. An alternative
method to increase the extraction efficiency is to fabricate diamond nanowires, which
typically have diameters of ∼ 200 nm and heights of 1− 2 µm. The nanowire provides a
waveguide mode that an enclosed defect center can couple to and thus allows for efficient
photon exchange between the optical apparatus and the emitter [93].

An alternative approach would be the usage of isolated, microscopic diamonds crys-
tals. If these crystals are significantly smaller than the wavelength of light (then usually
termed nanodiamonds), the total internal reflection is inhibited and the extraction effi-
ciency is considerably increased [56, 96, 97]. However, nanodiamonds are known to exert
crystal strain on the included defect centers. This imposes an additional perturbation
for the electronic states of defects centers (cf. Sec. 2.2.5) and makes an unambiguous
determination of the electronic structure more challenging.

We have learned a few important electronic and optical properties of diamond in this
section. While pure diamond is a fascinating material on its own, its defects render it
even more interesting. In this work we focus on the silicon vacancy color center, and we
will take a closer look onto it in the next section.

1.2 Molecular structure of silicon vacancy centers

This section delivers insight into the molecular structure of the SiV center which is also
referred to as the 1.68 eV line, owing to the energy of its pronounced zero phonon line
(ZPL). Along with a short historic overview, we address the three main points about its
molecular structure: First, we review the identification of silicon as the impurity atom and
discuss the experimental evidences for a neighboring lattice vacancy. Second, we consider
measurements in the literature about the charge state of the defect, and third, we briefly
discuss theoretical approaches which estimated the most probable molecular arrangement
of the defect.
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1.2.1 Constituents of the defect: A silicon impurity and a lattice va-
cancy

Compared to the nitrogen vacancy (NV) center, which is the most prominent defect center
in diamond and has been studied for over 5 decades, the SiV center is a relatively “young”
defect and there are far less publications on it than on the NV center. The reason for
this fact is that the SiV center is mainly found in diamonds grown using CVD – which
itself is a rather young method [75, 98] – and is far less prominent in natural or HPHT
diamond as compared to the NV center. The first observation of the 1.68 eV luminescence
was reported in 1980 by Vavilov et al. who investigated the cathodoluminescence (CL) of
epitaxial CVD diamond films [99]. One year later, Zaitsev, Vavilov and Gippius attributed
this luminescence to a defect center with silicon involved [100]. In their studies, they
implanted 25 different ion species into natural diamonds (type Ia and IIa) and recorded CL
spectra. Only the regions irradiated with silicon ions exhibited the 1.68 eV luminescence.
Zaitsev et al. observed a quadratic dependence of the CL intensity on the implantation
dose which points either towards a defect with either two Si atoms involved or to a defect
comprising a lattice vacancy; the authors of Ref. [100] interpreted their results as a sign
for two Si atoms being involved in the defect. This is already a strong experimental
indication for silicon being the impurity atom involved in the 1.68 eV defect.

In 1989, Robins et al. investigated polycrystalline films grown using hot filament CVD
on silicon and observed luminescence at 1.675 eV in CL [101]. However, they attributed
the luminescence to the neutral vacancy defect (GR1, see below) which emits close to
the SiV wavelength at 1.673 eV [68]. Further observations of 1.68 eV luminescence in
diamond grown on silicon using CVD have been reported in Refs. [56,58,102–117] which
show impressively the correlation between the defect and silicon based CVD diamond.
In 1993, Bergman et al. formulated first the underlying incorporation mechanism which
is today widely accepted [112]: the Si substrate is etched due to the close contact to
the reactive hydrogen plasma, thus atomic Si is present in the plasma. These Si atoms
can then be incorporated into the diamond. SiV centers are also formed when placing a
piece of Si close to the substrate [113]. Clark and Dickerson proposed that also the CVD
reaction chambers themselves exhibit Si sources: For hot filament CVD, the filament alloy
can contain Si [103] and for microwave CVD, the vessel walls are made of fused silica. All
these are strong and consistent evidences for Si being part of the defect.

While the presence of Si in the defect is straightforward to show, the contribution of
lattice vacancies is more challenging to prove. The first experimental evidence is that
for ion implantation, an annealing process with temperatures above 800◦C is required
to create SiV centers [100, 108]. Clark and Dickerson investigated this effect in greater
detail [108]: They irradiated CVD diamond films which already exhibited SiV centers
with a 2 MeV electron beam. After the exposure to the electron beam, the sample showed
additional luminescence at 1.67 eV which was attributed to the GR1 defect [68]. The GR1
is a neutral vacancy created in diamond after irradiation with ions or electrons (GR stands
for “general radiation”). Clark and Dickerson subsequently annealed their centers above
800◦C where lattice vacancies become mobile. After annealing, the GR1 luminescence
was not observable anymore but the SiV luminescence was strongly increased. The widely
accepted mechanism is that vacancies migrate to the Si impurities to form SiV centers
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upon annealing. While this argument holds for SiV centers created via ion implantation,
the in situ formation via CVD growth requires a deeper investigation.

In principle it is possible that lattice vacancies, which are close to the diamond surface
[118], migrate during growth to the impurity inside the diamond to form defects complexes
[119]. However, recent results showed some evidences that the vacancy is directly formed
at the defect site: D’Haenens-Johansson et al. have investigated electron paramagnetic
resonance (EPR) and optical spectra on single crystalline diamond grown along the [110]
direction [63]. They identify an emission at 946 nm to be the neutral charge state of the
SiV center (see below). EPR spectra indicate a defect orientation along the four equivalent
〈111〉 directions. Two of these four orientations point out of the growth plane. From the
relative EPR intensities for the different defect orientations, D’Haenens-Johansson et al.
have deduced that the SiV orientations pointing out of the growth plane are created more
often than the ones with orientation in plane. The authors have proposed the following
model: First, a Si atom is incorporated on a substitutional site in the uppermost diamond
layer. When the next layer is grown, the Si atom below inhibits the adsorption of a carbon
atom, hence creating a lattice vacancy. Following layers “overcoat” the SiV complex and
stabilize it. This type of growth process has also been successfully verified for the NV
center [120,121].

1.2.2 Charge state

Before we address the geometrical structure and orientation of the SiV defect in the
diamond lattice, we briefly review the literature on the charge state of the defect. Color
centers in diamond can exhibit different charge states, e.g. for the NV center, it is widely
accepted that its negative charge state NV− is responsible for the ZPL at 637 nm, whereas
the neutral counterpart NV0 emits at 575 nm. The charge state of the SiV center is still
subject to debate: The theoretical considerations of Goss et al. attribute the 1.68 eV
emission to an SiV− defect [122]. In contrast, the calculations of Moliver [123] suggest,
that the 1.68 eV center is rather a neutral defect.

In the experimental work of Iakoubovskii et al. [124], a quenching of the 1.68 eV
emission under simultaneous VIS and UV excitation is interpreted as transfer from a
luminescent to a non-luminescent charge state. The UV light would in this picture excite
an electron from the SiV ground state to the diamond conduction band, from where the
electron can be trapped at another acceptor nearby. This process is called photoionization
or photochromism. The authors of Ref. [124] thus attribute the 1.68 eV emission to a more
negative charge state (SiV)x−1 which transforms under photochromism to (SiV)x. In their
first publication [124], they claim that x = 0 referring to the results from Goss et al. [122].
One year later, they revoke this statement, claiming that x = 1.

For a second experimental work about the charge state, we return to the report from
D’Haenens-Johansson et al. (see above): Using EPR spectroscopy, they relate an emission
at 1.31 eV (946 nm) to a spin triplet system S = 1. In their model, this is attributed to a
neutral charge state SiV0 of the silicon vacancy center. When applying an annealing step
to their sample, the authors observe an increase of the 1.68 eV luminescence which they
interpret as a charge transfer of the SiV center from SiV0 to SiV−. Applying UV-light
decreases the 1.68 eV emission and restores the 1.31 eV luminescence. This indicates a
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quenching mechanism similar to the works of Iakoubovskii et al. [124], and is a strong
argument for the 1.68 eV emission arising from SiV−.

In the present work, we assume that the 1.68 eV emission relates to a negatively
charged defect. This implies a single unpaired electron and thus a S = 1/2 spin doublet
system. The high agreement which we observe between our theory and the experiment is
an indication, that this assumption is justified.

1.2.3 Orientation and molecular structure of the defect

Finally, we review existing literature about the orientation of the SiV center in the di-
amond host lattice. We treat the defect in a molecular orbital approximation and its
molecular structure will be directly linked to the orientation in the surrounding lattice.

The questions about orientation and structure have so far mainly been addressed in
theoretical proposals, and can experimentally only be determined indirectly (see below).
We here first review the theoretical works. A particularity for the SiV center is the
presence of a spectral fine structure observed at low temperature which was known before
the first theoretical proposal on its structure appeared (Sec. 1.3.2). This fine structure is
usually assigned to a lifted orbital degeneracy. Hence, to explain the fine structure, the
theoretical proposals on the SiV structure have to predict degenerated electronic states
which are then separated by a small perturbation.

Theoretical approaches about the SiV structure The first theoretical work on the
structure of the SiV defect was published 1996 by Goss et al. [122]. The authors employ
density functional theory (DFT) in their work to calculate the most probable electron
density distribution for the defect. The DFT method reduces the complex calculation
of a many-body problem (including interactions between the particles) to the interaction
of a generalized electron density with an environment. Physical observables, such as the
total energy of a given electron density in a surrounding field, are approximated by a
functional. The most probable configuration of a molecular system is then obtained by
minimizing the functional for a given electron density distribution. The distribution is
iteratively varied to find a global energy minimum. The field describing the interactions
involved is usually chosen from a set of known functionals, and thus, the success of the
method depends largely on this choice of the functional. DFT is considered to be a
reliable technique for acquiring molecule structures. However, band structures calculated
using DFT often show systematic errors, leading to e.g. incorrect band gap energies for
semiconductors [125].

In the work of Goss et al., the authors simulated the SiV center using a substitutional
Si impurity and an adjacent vacancy, oriented along the 〈111〉 crystal axes. They obtained
from their calculations that the Si atom is not stable on its position but rather moves
along the [111] axis to an interstitial position, such that the Si atom is placed in the
middle between a divacancy (Fig. 1.1b. This structure is also called a split vacancy
configuration, and gives rise to a D3d defect symmetry (Sec. 2.1.1). In this symmetry,
a negatively charged defect has a double orbital degeneracy in both ground and excited
state. Goss et al. have assumed that this degeneracy might be lifted via a Jahn-Teller
interaction (Sec. 2.2.3) or spin-orbit coupling (Sec. 2.2.2), which give rise to four possible
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(a) (b)

Figure 1.1: The diamond lattice (panel a) and the molecular structure cof the SiV center
in it (panel b) according to Goss et al. [122]. The carbon atoms (grey) crystallize as a
face centered cubic lattice with a basis at (0, 0, 0) and (a4 ,

a
4 ,

a
4 ) with a lattice constant

of a = 3.567 Å. The Si impurity (yellow) is situated on an interstitial position along
the 〈111〉 bond axis and surrounded by a split vacancy (transparent). The next-neighbor
carbon atoms around the SiV defect (light blue) have unsaturated bond orbitals which
contribute to the electronic states (c.f. Sec. 2.1.4).

optical transitions between ground and excited state. This is consistent with the spectral
fine structure of the defect, observed at low temperature (Sec. 1.3.2).

The orientation of the SiV defect in this model is consistent with Ref. [63], but no other
experimental confirmation is known. Goss et al. revisited their work in 2007, confirming
the main results of their earlier publication [126]. Recently, ab initio calculations on the
SiV center have been revisited by Gali and Maze [127]. In their study, they confirm the
defect orientation of Goss et al. and additionally, their calculation gives indications about
the energetic position of the SiV defect in the diamond band gap (cf. Sec. 2.1.4 on page
45). The simulations of Goss, Gali and Maze build the foundations of the work presented
here, and we will return to other aspects of their publications in Chap. 2.

While the DFT calculations mentioned above attribute the 1.68 eV emission to the
negative charge state of the SiV center, Moliver assigns it to the neutral charge state [123].
He uses restricted open-shell Hartree-Fock (ROHF) calculation to obtain the defect struc-
ture. In contrast to DFT which calculates the interaction between an electronic distri-
bution and a functional, ROHF calculates exchange and Coulomb interactions between
different electrons [128]. Moliver’s calculations indicate that the SiV is not positioned
exactly in the middle of the split vacancy but rather moves slightly along the bond axis
towards one substitutional site. This reduces the symmetry from D3d to C3v since the
inversion center is missing. In C3v the orbital ground state of a negatively charged SiV
center is orbitally non-degenerate.
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Figure 1.2: In the theoretical model of Moliver [123] for the molecular structure of the
SiV center, the Si impurity is not positioned exactly in the middle of the split vacancy
but moves slightly along the bond axis towards one substitutional site giving rise to two
equivalent positions (panel a). Energetically, this resembles a double well potential and
Si atom is believed to tunnel between the positions (panel b). The two resulting wave
functions are then either a symmetric or an anti-symmetric superposition of the two
positions, which leads to a level splitting in ground and/or excited state.

To explain the spectral fine structure, consisting of four transition lines at low tem-
perature, Moliver suggests a so-called tunnel splitting. The repositioning of the Si atom
towards one of the two substitutional lattice sites gives rise to two equivalent positions
(Fig. 1.2a). Energetically, this resembles a double well potential (Fig. 1.2b). The Si atom
is believed to tunnel between these positions. This situation is similar to the ammonia
molecule NH3 where the nitrogen atom can tunnel through the potential well created by
the three in-plane hydrogen atoms [129]. The two resulting wave functions are then either
a symmetric or an anti-symmetric superposition of the two positions. The symmetric or
anti-symmetric wave functions have different energies which lead to a splitting in ground
and/or excited state. Hence, the tunnel splitting effect explains the fine structure splitting
also for orbitally non-degenerate states. However as stated above, the 1.68 eV emission
in Moliver’s model is assigned to the neutral charge state SiV0 which exhibits a total spin
S = 1. As we will see in Chap. 4, our spectroscopic measurements in magnetic fields
indicate, that the 1.68 eV emission has S = 1/2 which is in agreement with the models of
Goss, Gali and Maze. In this work, we therefore start from the latter theoretical model.

Experimental findings on the SiV structure We now review experimental works
about the structure of the SiV defect and its orientation in the diamond host lattice. The
orientation of a defect is usually not observed directly, although high resolution trans-
mission electron microscopes have been employed in single cases to visualize individual
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defects, e.g. for defects in graphite [130]. Instead, experimentalists often apply external
fields (electric, magnetic or crystal strain) to the defect [131]. The response of the defect
to the external perturbation is characteristic for a given symmetry. From the symmetry,
a number of respective orientations can be deduced [132].

Already in an early publication by Zaitsev et al. [100], uniaxial stress measurements are
mentioned although no conclusion was drawn from them as the center apparently showed
a weak response to the applied stress field. In 1995, Sternschulte et al. applied uniaxial
stress onto a diamond containing an ensemble of SiV defects and measured the response
of the spectral fine structure at low temperature [133]. To unambiguously identify a
defect symmetry, uniaxial stress needs to be applied along at least three crystallographic
directions. Due to technical restrictions, Sternschulte et al. could not apply the stress
other than in 〈100〉 direction and therefore they did not interpret the data in terms of an
orientation.

In addition, the authors applied magnetic field along 〈100〉, 〈110〉 and 〈111〉 direc-
tions. Unfortunately, the spectral lines of the fine structure were overlapping in their
measurements which makes a clear assignment to optical transition and hence an analysis
difficult. The authors observed a relatively weak response to the magnetic field when
applied in 〈111〉 direction leading them to the conclusion of a possible orientation along
〈100〉 direction.

To the best of our knowledge, these are the only measurements that apply external
fields to the defect while observing the 1.68 eV emission. D’Haenens-Johansson et al.
employ EPR spectroscopy on the presumed neutral charge state SiV0 emitting at 1.31 eV
(see above) and determine a 〈111〉 orientation of the defect [63]. However, the correlation
between the 1.31 eV and 1.68 eV luminescence has not been confirmed by independent
measurements, yet.

An alternative method to indirectly determine the defect orientation is the investiga-
tion of its fluorescence polarization. In 1995, Brown and Rand measured the emission
polarization of an SiV ensemble in oriented diamond films on silicon [134] – so-called
mosaic type diamond. Their experiments were conducted at room temperature, where
the spectral fine structure of the ZPL is not resolved. They measured the fluorescence
intensity with a fixed detection polarizer while rotating the excitation polarization. When
working with an ensemble of color centers, the evaluation of the polarization data takes
in account equivalent orientations of the defect in the lattice. Hence, the polarization
contrast of the fluorescence, i.e. the relative difference between maxima and minima, is
different for different defect orientations [135]. From the observed contrast, Brown and
Rand deduced a 〈110〉 orientation for the SiV center. According to Kaplyanskii [136],
defects aligned along 〈110〉 exhibit C2 or D2 symmetry. In these symmetries, no degener-
ate orbital states are present [132], hence there is no evident explanation for the SiV fine
structure for such an orientation. Brown and Rand did not focus in their work on the
SiV fine structure, neither did they indicate a possible mechanism to explain it with their
observed orientation. We will revisit the measurements of Brown and Rand in Sec. 4.1.3.

With the availability of individual SiV centers (Sec. 1.3.3), the polarization can be
measured without ensemble effects. Although Wang et al. already had access to single
SiV centers in bulk diamond in 2006 [57], no polarization measurements on single defects
have been reported before 2011: Neu et al. measured the absorption and emission po-
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larization for individual SiV defects in nanodiamond [56] and in heteroepitaxial diamond
“nanoislands” [58] on an iridium substrate. They measured the polarization of ≈ 20 indi-
vidual defects using a rotated polarizer in the detection path. Subsequently, the excitation
polarization was rotated using a half-wave plate without a polarizer in the detection arm.
As the nanoislands grow with defined crystal orientation on the (001) single crystalline
iridium, the polarization angles can be related to crystal axes of the diamond. Neu et al.
observe polarization maxima in the equivalent 〈110〉 directions and additionally along the
[100] and [010] axes.

While a polarization along 〈110〉 can also be the projection of 〈111〉 oriented dipoles
onto the (001) surface plane, the presence of defects with maxima [100] and [010] con-
tradicts this hypothesis. Neu et al. thus assume a 〈110〉 alignment of the defect which is
consistent with the abundance of the different polarization angles in their measurements.
Consequently, as already noted for the results of Brown and Rand, for centers in 〈110〉
orientation there is no orbital degeneracy. Neu et al. refer to the Moliver’s tunnel cou-
pling model (see above) or a stress-related effect to explain the four level fine structure,
although their measurements were carried out at room temperature, and no information
can be given whether the characteristic spectral fine structure would have been observed
for the investigated SiV centers.

We note, that the heteroepitaxial diamond used by Neu et al. is susceptible to crystal
strain, which is revealed by a shift of the ZPL wavelength for different emitters. It stands
to reason that strain also influences the polarization properties of individual color centers.
In the course of this thesis, we develop a model for the SiV which also takes into account
strain. Therefore, we will revisit the measurements of Neu et al. later (Sec. 5.1.2).

1.3 Spectral properties of silicon vacancy centers

We have already noted some of the spectral properties of the SiV center in the previous
section where it was necessary to mention them in the context of the molecular struc-
ture of the defect. In this section, we take a closer look at these spectral properties.
First, we discuss the emission and absorption properties of the defect at room temper-
ature (Sec. 1.3.1), then we review its spectral fine structure visible at low temperatures
(Sec. 1.3.2) and finally we give a brief overview on single photon creation using individual
SiV centers (Sec. 1.3.3).

1.3.1 Spectral properties at room temperature

The emission of a defect in a solid state material shows some differences from a purely
atomic transition because the defect can interact with vibrations of the host material.
This is generally referred to as electron-phonon coupling or vibronic coupling. The term
“phonon” here refers both to vibrations of the diamond (lattice vibrations) and local vibra-
tions of the defect, which are similar to the vibrations of a molecule. A purely electronic
transition is called a zero phonon line (ZPL), whereas any transitions involving vibrations
are called phonon sidebands (for a detailed description, see below). The sideband is red
(blue) shifted from the zero phonon line by the energy necessary to create (annihilate)
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the phonon and, in general, the zero phonon line shows a smaller line width compared to
the phonon sidebands.

The room temperature emission spectrum of the SiV center is dominated by a ZPL in
the near infrared spectral region. The wavelength of the ZPL is usually centered at 738 nm
or 1.68 eV. This value has been measured for the peak wavelength of SiV ensembles (see
for example Ref. [134]), whereas the ZPL wavelength for single emitters can deviate from
this [56, 58]. Similarly, the room temperature line width of the ZPL ranges from about
7− 8 nm for ensembles of SiV center in polycrystalline diamond [105] to below 1 nm for
individual SiV centers [56, 58]. In addition to the weak phonon sidebands, this narrow
emission makes the SiV center a very attractive candidate for room temperature single
photon emission, because essentially all fluorescence light is concentrated in a narrow ZPL.
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Figure 1.3: Electron phonon coupling approximated using harmonic oscillator potentials
for the vibrational modes n in the ground and n′ in the excited state. After an excitation
to a higher lying vibrational state (yellow arrow), the color center quickly relaxes to the
vibrational state n′ = 0, from where it decays to the ground state via the emission of
a photon (red arrow). The most probable transition is the one with the highest overlap
between vibrational eigenfunctions (n′ = 0 −→ n = 3).

We do not discuss the sideband energies here in detail (see Refs. [58, 137, 138] for a
detailed discussion). Still, electron phonon coupling allows to draw qualitative conclusions
for the strength of vibrational interactions which we include in the theoretical model
(Sec. 2.2.3). Therefore we briefly indicate the main mechanisms. When a defect is excited
from its ground state to a higher lying electronic state, the electron wave function and
therefore the charge distribution changes. Consequently, the atoms around the defect are
either attracted or repulsed from the now modified charge distribution and relax to a new
position. This relaxation induces the vibrations, hence there is a coupling between the
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electron cloud and the possible vibration modes of the defect. Following the arguments of
Davies [139], we assume a defect interacting with one dominant vibrational mode which
can be approximated using a harmonic oscillator potential, thus the total energy in the
electronic ground state is given by the potential:

Vg = 1
2mω

2Q2, (1.1)

where the mode has the frequency ω, the massm and the displacement Q (in a generalized
coordinate frame) from the equilibrium position. The potential for the excited state ist
then:

Ve = V0 + aQ+ 1
2mω

2Q2 + bQ2, (1.2)

where V0 is the purely electronic energy, aQ (bQ2) is called linear (quadratic) electron
phonon coupling. The term aQ expresses the displacement of the vibrational equilib-
rium position which is due to the difference in charge density for ground and excited
state. Hence, if we draw parabolas for the ground and excited state vibrational potentials
(Fig. 1.3), these parabolas will be displaced from each other.

The vibronic coupling potentials give rise to vibrational states which are eigenfunctions
of the harmonic oscillator (grey shaded functions in Fig. 1.3) and have quantum numbers
n, n′ = 0, 1, 2, . . .. For a ZPL transition the vibrational modes do not change (n = n′).
The Franck-Condon principle assumes that the absorption and emission of a photon and
the related change in the electronic distribution are much faster than the vibrations of
the surrounding nuclei. Hence optical transitions in Fig. 1.3 always occur vertically.

After an excitation to a higher lying vibrational state (n′ = 2 in Fig. 1.3), the color
center quickly relaxes to the vibrational state n′ = 0, from where it decays to the ground
state via the emission of a photon. The transition strength is proportional to transition
dipole matrix element. In the Condon approximation, this matrix element can again
be separated into a vibrational and an electronic overlap integral. Therefore, the most
probable transition is the one with the highest overlap between vibrational eigenfunctions
(n′ = 0 −→ n = 3). Such a transition is a phonon sideband which is red shifted to the
frequency of the ZPL.

Since we noted that optical transitions are always vertical in this scheme, the proba-
bility for a sideband to occur is given by the displacement of the parabola, which in turn
depends on the linear electron phonon coupling. As a result, the larger the difference
in charge distribution between ground and excited state is, the stronger are the phonon
sidebands. To quantify the electron phonon coupling, one introduces the Huang-Rhys
factor S which is defined by

e−S =
IZPL

IZPL + IPSB
, (1.3)

where IZPL is the intensity of the ZPL and IPSB the one of the phonon sideband. In
consequence to the discussion above, n = S denotes the most probable vibrational ground
state into which the defect decays from the excited state. Ê The Huang-Rhys factor for the
SiV center is found to lie between S = 0.08 and S = 0.24 for SiV ensembles [56,102,140].
This low value means, that the linear electron-phonon coupling is small and, in fact, the
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ZPL is the most probable transition. Therefore, we assume that the electron density and
hence the electron wave function does not change much between excited and ground state.
This will be an important statement when modeling the susceptibility of the electronic
states to the Jahn-Teller effect in Sec. 2.2.3.

Before we move on to the fine structure spectrum of the SiV center in the next section,
we briefly review its absorption properties: While the first spectroscopic measurements
were performed using cathodoluminescence [99, 100], we focus here on optical excitation
of the SiV center. It has been shown that SiV centers can be excited non-resonantly
in a broad spectral range. Iakoubovskii et al. present optical excitation between 1.7 eV
and 2.5 eV [141]. For non-resonant excitation, a population of higher vibronic states
takes place as we have indicated above. Wang et al. employ a 685 nm diode laser to
excite single SiV centers, and similarly, Neu et al. utilize wavelengths between 671 nm
and 700 nm [56, 115]. It appears reasonable for non-resonant excitation to employ a
wavelength relatively close to the resonance to prevent excitation of other defects in the
diamond which would overlap with the SiV fluorescence.

While non-resonant excitation of defects in solids with detection on their ZPL is rela-
tively straight-forward, resonant optical excitation can be challenging: In contrast to e.g.
atom vapor cells or trapped ions, where the optical detection can be placed at 90◦ to the
excitation, solid state spectroscopy is often performed in confocal reflection microscopes
(c.f. Sec. 3.1) where the excitation laser is reflected from the sample surface and over-
laps the fluorescence. When exciting the defects using a non-resonant laser, the reflected
excitation light can be conveniently suppressed using optical band pass filters, but this
technique cannot be applied when exciting resonantly. Resonant excitation of the SiV
ZPL has been performed in absorption geometry in Refs. [140, 142], but this requires a
high defect concentration.

However, owing to the presence of phonon sidebands – though they may be weak for
the SiV center – an alternative method is feasible: The phonon sidebands of the SiV center
are more than 20 nm red shifted from the ZPL wavelength [138]. When the excitation
laser is tuned to the ZPL wavelength and the spectral detection window is set to the
phonon sidebands, both wavelengths can be separated again using band pass filters. In
this case, one probes absorption on the ZPL while monitoring the sideband intensity
(PLE). In contrast, spectroscopic measurements utilizing non-resonant excitation with
detection on the ZPL are often termed photoluminescence (PL) measurements. As an
optical excitation on resonance with the ZPL is particularly interesting when the defect
shows narrow transition lines, we will review the results of this technique in the next
section.

While the preceeding discussion of the room temperature spectra provides a first in-
sight into the level structure of the SiV center, the next section covers the low temperature
spectroscopy on the defect, revealing the spectral fine structure.

1.3.2 Fine structure at low temperature

The first spectroscopy experiments on SiV centers were carried out at liquid nitrogen
temperature [99,100]. However, the spectral resolution of the utilized detection apparatus
was not sufficient, no fine structure was observed in these experiments. Besides the
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spectral resolution of the experimental setup being a limitation, the ZPL wavelength
is susceptible to crystal strain and shows broadening effects which “wash out” the fine
structure. This is especially the case for inhomogeneous media, such as polycrystalline
diamond films [108,142]. In 1994, Collins et al. first identified the SiV fine structure center
to be a doublet when investigating polycrystalline films at temperatures down to 1.7 K.
One year later, Clark et al. [62] and Sternschulte et al. [137] independently observed, that
the fine structure splits into more lines, when studying homoepitaxial, single crystalline
diamond films grown by CVD (Fig. 1.4a). They observed that the doublet splits into
a quartet below approximately 50 K. In addition to the four main peaks, they observed
eight other peaks. The total number of 12 peaks can grouped into three subsets. From the
relative intensity of the three subsets, it was deduced that the three groups are due to the
three silicon isotopes 28Si, 29Si and 30Si. We focus our attention in this work exclusively
on the four lines attributed to 28Si which is the most common isotope. These four lines
with their characteristic splittings (see below) and relative intensities can be seen as the
spectral fingerprint of the SiV center and make an unambiguous attribution to the defect
straightforward.
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Figure 1.4: The spectral fine structure of the SiV center (panel a), observed at 6 K on
a homoepitaxial diamond film similar to the one employed in Refs. [62, 133] (see also
Sec. 4.1.1). Of the twelve visible peaks (black arrows below the spectrum), the strongest
four a, b, c, d refer to the 28Si isotope. The four peaks are interpreted to arise form a split
ground and excited state (panel b).

Both, Clark and Sternschulte have interpreted the four peak fine structure as optical
transitions between a doubly split ground and excited state (Fig. 1.4b). The spectral
splitting between peak a and peak c is equal to the excited state splitting ∆νe = 259 GHz
(the same is true for peaks b and d). Similarly, the splitting between a and b (c and
d) represents the ground state splitting ∆νe = 49 GHz. With increasing temperature, a
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change in the relative peak heights is observed, which can be explained by a thermalization
mechanism: The relative intensity of an optical transition is proportional to the occupation
ni of the initial electronic state. When an electronic system can freely exchange the
occupation from one excited (ground) state i (with energy Ei) to another, this results in
a Boltzmann distribution ni(T ) for a given temperature T :

ni(T ) = n0 exp

(
Ei − E0

kBT

)
. (1.4)

Here, n0 is the occupation of the lowest lying state with energy E0 and kB the Boltzmann
constant. When calculating the intensity ratio of two transitions, which end on the same
final state, e.g. Ia/Ic for peaks a and c, the variables n0 and E0 cancel out:

Ia
Ic
∝ ni
nj

= exp

(
Ei − Ej
kBT

)
, (1.5)

Hence, a logarithmic plot of the intensity ratio of the peaks versus the reciprocal tempera-
ture (a so-called Arrhenius plot) should reveal a straight line for a thermalizing electronic
system. The slope of the line is then equal to the spectral spacing, i.e. ∆ν =

Ei−Ej
h , with

h being Planck’s constant.
Clark et al. and Sternschulte et al. observed such a thermalization for both ground and

excited state: Absorption measurements (PLE, see above) proved that the two ground
states thermalize. For the excited states, investigation of the emission in PL revealed that
they thermalize as well. Sternschulte et al. reported in Ref. [137], that the SiV center has
a rather short excited state lifetime between 1 ns and 4 ns. This means, that the excited
state relaxation happens on a timescale much faster than the luminescent lifetime of the
defect. We will return in Sec. 4.2 to the relaxation mechanism in the excited state, and
discuss mechanisms which could be responsible for it.

Sternschulte et al. applied external fields to SiV ensembles: In their first publication in
1994, they discuss uniaxial stress measurements, which we already have briefly addressed
in Sec. 1.2.3. The application of uniaxial stress along the [100] crystal direction leads
to a shift of the outer fine structure peaks a and d while the inner b, c almost show no
response to the applied stress. The stress measurements were performed both in PL and
PLE. In PL, all peaks except b vanish with increasing stress, thus at high strain fields,
only one single peak is visible. In the course of the thesis, we will discuss an interaction
Hamiltonian for uniaxial stress, and we return to the SiV spectrum under the influence
of crystal strain in Chap. 5, where we show that we can qualitatively model the spectra
obtained by Sternschulte et al..

As a second experiment, Sternschulte et al. applied magnetic fields [133] to the same
sample which they exposed to uniaxial stress. In a magnetic field, the Zeeman effect splits
the magnetic sublevels and the spectral fine structure splits into a multitude of peaks. As
the SiV ensemble in Ref. [133] shows a significant inhomogeneous broadening, the peaks
in their measurement are not spectrally resolved. Hence, the authors did not analyze this
measurement in greater detail.

We repeat the exposure of SiV ensembles to magnetic fields in the course of this
work, and it is this measurement, which is central to the understanding of the electronic
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structure of the defect. To show a progress compared to Ref. [133], we fabricated SiV
ensemble samples with very low inhomogeneous broadening. Finally, we also observe
single SiV defects in magnetic fields which completely eliminates ensemble effects and
makes an unambiguous assignment of transitions possible. For the latter experiment, we
briefly review the literature on individual SiV centers in the next section.

1.3.3 Investigation of single silicon vacancy defects

The first access to single defect centers in diamond, which was reported in 1997 by Gruber
et al. [39], marked a milestone in the history of solid state quantum optics. Before,
research on individual quantum systems was available from atom beams [143], trapped
ions [144], semiconductor quantum dots [145] and fluorescent dye molecules [146]. All
these previous systems have their disadvantages [147]: Trapped ions require a considerable
technical effort, semiconductor quantum dots need to be cooled to low temperatures and
dye molecules exhibit photobleaching. In contrast, individual color centers in diamond
are accessible at room temperature with relatively low technical overhead. While the
first quantum optics experiments were carried out using nitrogen-vacancy centers, in the
mid-2000s new defects centers were investigated at the single defect level. In 2004, single
photon emission from single nickel-related (NE8) defects were studied by Gaebel et al.
[148]. The first experimental investigation of individual SiV defects was performed in 2006
by Wang et al. [57].
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Figure 1.5: Single photon generation and detection: The absorption (green arrow) and
emission (red arrow) cycle on a two-level quantum system gives rise to time separated,
single photons (panel a). These are analyzed in a Hanbury-Brown Twiss interferometer
(panel b), consisting of a 50 : 50 beamsplitter (BSP) and two single photon detectors
which are connect a fast correlation electronics.

Before we discuss the studies of Wang, we review how the optical emission of single
centers is different from defect ensembles. We approximate a single defect as a quantum
system consisting of an electronic ground and excited state coupled to vibrational states.
For simplicity, we only consider the vibrational states for the excited state (Fig. 1.5a).
Non-resonant optical excitation (green arrow) populates a higher lying vibrational state
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which quickly relaxes to the vibrational mode n′ = 0 (see also Sec. 1.3.1). After a certain
time, the defect relaxes to its electronic ground state again with the emission of a single
photon (red arrow). Then the absorption-emission cycle starts over. The finite lifetime
which the electron spends in the excited state, separates consecutively emitted photons.
This results in a stream of time separated (so-called antibunched) photons. In the wave-
particle dualism of light, antibunched light reveals the particle nature for light. Therefore,
it is a pure quantum phenomenon that has no classical counterpart, thus, we also speak of
non-classical light. When an ensemble of defects emits fluorescence light in an uncorrelated
way, then this non-classical character is lost.

The presence of a single defect is then revealed by measuring the intensity autocor-
relation function g(2)(τ), which is equal to the conditional probability of detecting two
individual photons with a time delay τ [1]. As we have just seen, it is not possible for an
ideal single photon emitter to emit two photons at a time. Hence, the intensity autocor-
relation for zero delay g(2)(τ = 0) equals 0 for a perfect single photon source. We here
only describe the measurement of the g(2)-function in this phenomenological manner, for
a detailed mathematical analysis we refer the reader to Refs. [1, 149].

The g(2)-function is measured using a Hanbury-Brown Twiss interferometer, which
is sketched schematically in Fig. 1.5b. The light emitted by the defect center under
investigation passes a 50:50 beamsplitter cube where it is either transmitted to detector 1
or reflected to detector 2. Each photon impinging on a detector triggers an electric pulse (a
“click”). The arrival times of the detector clicks are then correlated: In a simplified scheme,
a click from detector 1 starts a timer which is then stopped by a click from detector 2. From
this measurement, the g(2)-function is obtained by plotting the occurrence of consecutive
photons in a histogram versus the delay in between them. For long time delays, there
is usually no correlation between photons, thus the g(2)-function is constant for τ → ∞
and can be readily normalized to g(2)(τ) = 1 for these regions. For antibunched light, the
probability for two photons to arrive simultaneously at both detectors is small, hence, the
resulting g(2)-function is inferior to 1 for τ → 0. This characteristic antibunching dip for
zero delay is usually taken as the experimental proof for the non-classical light of a single
emitter.

In addition, the intensity autocorrelation reveals the dynamics of the electronic tran-
sitions of a quantum system. When g(2)(τ) > 1, we speak of correlated emission or
“bunched” light, which e.g. can be found for the thermal emission of classical light sources.
Bunched light for a single emitter indicates the presence of a metastable shelving state (see
below). For such an effective three-level system, the g(2)-function exhibits the functional
dependence

g(2)(τ) = 1− (1 + a) · e−|τ |/τ1 + a · e|τ |/τ2 , (1.6)

where the time constants τ1 and τ2 characterize the photon antibunching and bunching,
respectively. The strength of the bunching is quantified by the parameter a; for a simple
two-level system a = 0.

We now return to the experimental demonstration of SiV single photon emission from
Wang et al. [57]. Utilizing confocal microscopy (c.f. Sec. 3.1.1) with an optical excitation at
685 nm, they investigated natural IIa diamond which had been irradiated with 10 MeV
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Si2+ ions. In regions, where the implantation dose was estimated to be 109 ions/cm2,
they identified individual SiV centers with ZPL emission at 738 nm. The intensity au-
tocorrelation function showed a dip for zero time of g(2)(τ = 0) = 0.7 and featured
also a characteristic bunching which points towards a shelving state. In addition to the
g(2)-measurement, Wang et al. also presented fluorescence lifetime measurements indi-
cating a lifetime of about τr = 1 ns. In comparison with the nitrogen vacancy center
(τr ≈ 10 ns [150]), this is a relatively short lifetime, thus one would expect a fast absorp-
tion and emission cycle and therefore a bright single photon emission. In contrast, Wang
et al. only observed about 700 photons per second on saturation. They explained this
weak emission by the presence of a non-radiative transition path which also involves the
metastable shelving state.

In 2011, Neu et al. reported on single SiV defects in isolated nanodiamonds grown on
iridium [56]. In contrast to the bulk diamond samples from Wang et al., the defects in
nanodiamonds showed a very high brightness, exhibiting fluorescence count rates of several
million photons per second. Owing to this increased brightness, several spectroscopic
properties of single SiV centers, which had been inaccessible before, could be investigated.
Neu’s publication [56] entailed a series of other papers in which – together with the first
one – they analyzed the following properties:

• The authors analyzed the spectral position of the ZPL and the phonon sidebands
for different emitters [56, 58]. Both varied strongly from emitter to emitter, with
a spread in ZPL wavelength over 20 nm and strong deviations in the phonon side-
bands. In addition, they discovered further optical transitions between 820 nm and
840 nm which are attributed to the defect utilizing cross-correlation measurements
between these emission lines and the ZPL.

• For the first time, the polarization of an individual SiV center was measured. This
measurement was first performed on nanodiamonds [56], however, as nanodiamonds
grow from randomly oriented seed crystals, it was difficult to determine the crystal-
lographic orientation from the polarization graphs. In a follow-up paper [58], SiV
defects in oriented “nano-islands” were therefore investigated. We already discussed
the results of this study in Sec. 1.2.3.

• The measurement of the intensity autocorrelation g(2) yields information about the
population dynamics because the time constants τ1, τ2 in Eq. (1.6) relate to the
transition rates between the ground, the excited and the metastable state. To un-
derstand these dynamics for the SiV center, Neu et al. measured the g(2)-function
at room temperature for different excitation intensities and compared the resulting
data with the simulation of an effective three level system [56,117]. The high agree-
ment of the simulation with the experiment justifies the assumption of a three-level
system including a long living shelving state.

• With the resulting transition rates, the quantum efficiency of the SiV center, i.e. the
probability of emitting a photon after an optical excitation, can be determined. For
this, the measured photon count rate is compared to the radiative decay rate from
the excited to the ground state. This comparison needs to take into account the



20 CHAPTER 1. THE SILICON VACANCY COLOR CENTER IN DIAMOND

dipole emission, the collection efficiency, the transmission of all optical components
and the detection efficiency of the photon counting modules involved. While the
latter two properties are relatively straightforward to measure, the emission and
collection of the defect needed to be simulated. Neu et al. employ a numerical
algorithm which develops the emission of an individual dipole in a series of plane
waves and calculate the collection of the microscope objective with a given numerical
aperture [117].

The rather low quantum efficiency of about 5 %, which they find in their studies,
points towards an additional non-radiative decay, which reduces the observable pho-
ton emission. As a side result, they discover that the emission and collection for
SiV centers in nanodiamonds is at least one order of magnitude larger than for SiV
centers in bulk diamond. This partly explains the strong difference in count rates
compared to the measurements of Wang et al. [57].

• Neu et al. present low temperature spectra of individual SiV centers. Since the de-
fects show the characteristic fine structure, they can be unambiguously attributed
to SiV centers [56, 115]. Similarly to the spectral spread of room temperature ZPL
wavelength, the position, the splitting and the relative peak intensities of fine struc-
ture spectrum show large variations from one emitter to another.

At low temperatures, the line widths of the fine structure peaks vary between 25
and 160 GHz. These widths are found to be two orders of magnitude larger than
the estimated lifetime limited peak widths, hence Neu et al. assume an additional
broadening mechanism: Additional defects in the nanodiamonds, such as substitu-
tional nitrogen [NS], might be photoionized forming [NS]+ and free electrons in the
diamond conduction band. A similar mechanism has been discussed for fluctuating
surface charges [151]. It has been shown for the nitrogen-vacancy color center, that
these charge fluctuations can shift the color center energy levels via the Stark ef-
fect [152, 153], leading to spectral jumps and broadening of the optical transitions.
This effect is commonly referred to as spectral diffusion. Hence, Neu et al. attribute
spectral diffusion as the main additional broadening mechanism for single SiV cen-
ter in nanodiamonds. Spectral diffusion imposes an obstacle when we address the
electronic structure of the SiV center.

We begin this work, where the publications of Neu et al. ended. While their studies
revealed many properties of the room temperature emission and the intra-level dynamics
of the defect, there is only little access to the spectra fine structure in their measurements:
The strong strain fields in their samples imply that, essentially, every nanodiamond shows
a different fine structure splitting. This makes a clear assignment to a faithful model for
the SiV level structure very challenging.

We therefore use an alternative approach: Neu et al. succeeded in finding individual
SiV defects with unprecedented photon count rates at the cost of a possibly non-optimal
crystal environment. We here start from an optimal SiV defect, i.e. we fabricate single
defects in a mostly unperturbed environment using single crystalline diamond. For this
“ideal” defect we develop a theoretical model and compare the model to the results of
several spectroscopic measurements. The tradeoff for our approach is, that the single
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defects in single crystalline diamond exhibit low photon count rates due to total internal
reflection and necessitate therefore additional efforts to be detected with a sufficient signal-
to-noise ratio.

After establishing a theoretical description for these ideal defects, we extend our model
to cover the cases of crystal strain in terms of an additional perturbation and compare
the outcome of this extended model with the measurement on individual SiV centers in
strained nanodiamonds. As we repeat the magnetic field measurement of Sternschulte
et al. (Sec. 1.3.2), our model needs to readily explain the outcome of these and earlier
experiments (cf. Chap. 5).

Before we address the fabrication of the defect centers in an oriented, low strain
environment in Chap. 3, we first introduce the theoretical model in the following chapter.
We restrict ourselves to a model describing the ZPL fine structure. Hence, the phonon
sidebands and the additional infrared fluorescence peaks found by Neu et al. are not in the
focus of our research. Neither do we investigate the metastable state, because no optical
emission has been attributed to it so far.
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Chapter 2

Theoretical description

This chapter covers the theoretical model which we develop to describe the spectroscopic
results of Chap. 4. The model was developed in corporation with Victor Waselowski
and Jeronimo Maze from Pontificia Universidad Catolica de Chile. We have seen in the
previous chapter, that there are several molecular geometries which have been discussed
for the SiV center. Related to the molecular geometries are defect symmetries which
determine the orbital level structure of the defect. We restrict ourselves here to the
trigonal antiprismatic structure proposed by Goss et al. [122]. To deduce which level
scheme follows from this symmetry, we first give a general introduction to the concept of
group theory in Sec. 2.1. After this introduction, we apply the discussed concepts to the
particular case of the SiV center in D3d symmetry and derive the orbital basis states for
it (Sec. 2.1.4).

The basis states which we deduce will be energetically degenerated. However from the
spectral measurements discussed in the previous chapter, we know that the defect exhibits
a spectral fine structure which must be related to a level splitting. We model this level
splitting using perturbation terms for spin-orbit (SO) coupling (Sec. 2.2.2) and Jahn-Teller
interaction (Sec. 2.2.3). These two interactions lead to the orbital splitting responsible
for the spectral fine structure as it is seen for low temperature spectra. In addition, we
model the effect of crystal strain (Sec. 2.2.5) and of magnetic fields (Sec. 2.2.6). With all
these interaction terms, we form the total Hamiltonian of the electronic system, which is
numerically diagonalized to calculate its eigenvalues and eigenvectors.

With the eigenvectors at hand, we model optical dipole transitions (Sec. 2.3) to de-
scribe the emission intensity for each fine structure peak. This also enables us to predict
the polarization of a given optical transition. Finally, we model a general orbital operator
to account for a relaxation among the excited states (Sec. 2.3.3), which will be necessary
for the interpretation of resonance fluorescence spectra in Sec. 4.2.

2.1 Fundamentals of group theory for the description of or-
bital states

To derive the orbital states of the SiV center we make use of the defect symmetry in the
context of group theory. Group theory on the one hand provides a systematic calculus to

23
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classify symmetry elements and operations. On the other hand, it introduces a shorthand
notation to embrace all the symmetry inherent to a molecular system by the concept of
point groups, character tables and representations [154]. We here introduce these notions
on the example for the SiV defect, but also refer to a more generalized theory whenever
necessary [132,155].

Mathematically, a group is defined by a set of the elements A,B,C, . . . under the
operation of a binary group multiplication such that the following requirements are fulfilled
[132]:

i. The product of any two elements AB corresponds to a unique element of the group,
i.e. the set is closed under group multiplication.

ii. The associative law holds, e.g. A(BC) = (AB)C.

iii. There exists an element E such that for all elements A of the group EA = AE = A.
This element is called the identity element.

iv. Corresponding to each element A of the group, there is an element B such that
AB = BA = E. This element is called the inverse of the element A.

We restrict our attention to a finite group consisting of h group elements. If the group
multiplication is commutative, so that AB = BA for all A and B, then the group is said
to be Abelian.

For an illustrative example, we imagine an equilateral triangle which we rotate (clock-
wise) by 120◦ about an axis running through its midpoint. Unless we label the corners
of the triangle with numbers so we can follow their movement, the resulting triangle is
indistinguishable from the original.

1

23

3

12

120°

We define an operation which leaves an object unchanged, e.g. a rotation, as a symmetry
operation which is performed with respect to a given symmetry element. The symmetry
element here is the axis about which the rotation takes place. There are four principal
symmetry elements which we will review for the SiV center in the following section. All
symmetry elements of a given object (or molecule, point defect) together constitute the
elements of a group.

2.1.1 Point group and symmetry operations

We start our description by reviewing the molecular structure as deduced by Goss [122] as
well as by Gali and Maze [127]. Following their calculations (Sec. 1.2), the Si impurity re-
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sides on an interstitial position, positioned in the middle of two lattice vacancies (Fig. 1.1b
on page 8). The missing atoms at the vacancy sites create unsatisfied valences or dan-
gling bonds on each carbon site. We build the defect states as combinations between the
dangling bond orbitals and the orbitals of the Si-impurity. Therefore we consider the SiV
as an isolated “molecule” consisting of the Si impurity in the split vacancy, surrounded by
the next neighbor carbon atoms (Fig. 2.1).

(a) side view (b) top view

Figure 2.1: Molecular model of the SiV center, without the surrounding diamond lattice:
The Si impurity (yellow) is situated on an interstitial position along the 〈111〉 bond axis
and surrounded by a split vacancy (transparent). The next-neighbor carbon atoms around
the SiV defect (blue and light blue) have unsaturated bond orbitals which contribute to
the electronic states. This graph also defines the internal coordinate frame of the defect;
we set the origin of this coordinate system to the position of the Si impurity.

We now review the four principal symmetry elements which all occur for the SiV
defect. After having established these symmetry elements, we present a scheme how to
unambiguously assign an object with given symmetry elements to a so called point group.
In the course of the assignment we will make use of the Schoenflies notation for symmetry
elements.

The most trivial of all symmetry element is the identity, corresponding to the identity
element E of a group. It leaves all coordinates of an object untouched, and therefore
every molecule is invariant under the identity operation. Therefore, this operation is also
included in the set of group elements for the SiV center.

Rotation axes We have already encountered a rotation operation about 120◦ in the
illustrative example on the equilateral triangle above. We remember that a symmetry
operation is carried out with respect to a symmetry element. The element in the case
above was a three-fold rotation axis through the midpoint of the triangle and is called a
C3-axis. The symmetry operations corresponding to this axis are rotations about 120◦,
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240◦ and 360◦ and are given the abbreviations C1
3 , C2

3 , C3
3 , respectively.

In general, an n-fold Cn axis generates n rotations through multiples of (360/n)◦.
When more than one rotation axis is present in a molecule, the one of highest order n is
called the main axis. The SiV center exhibits one C3 axis along the “bond axis” of the
split vacancy and the Si atom, and three C2 axes, named C2, C ′2 and C ′′2 , perpendicular
to the main symmetry axis (Fig. 2.2a,b). As the highest order is n = 3, we also refer to
the SiV center as a trigonal defect.

C3

C2

C 0
2

C 00
2

(a) rotation axes side view

C2C 0
2

C 00
2

(b) rotation axes top view

�00
d

�0
d�d

(c) mirror planes side view

�00
d

�0
d

�d

(d) mirror planes top view

Figure 2.2: The SiV center exhibits one C3 axis along the “bond axis” of the split vacancy
and the Si atom, and three C2 axes perpendicular to this main symmetry axis (panels
a,b). We number the C2 axes using primes. There are three dihedral mirror planes (panel
c,d).
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Reflections and mirror planes The second important symmetry operation is the
reflection which takes place with respect to a mirror plane. Reflections are usually given
the symbol σ. While an n-fold rotation axis implies n possible symmetry operations,
mirror planes exhibit only one operation, as two consecutive reflections with respect to
the same mirror plane are always equivalent to the identity operation. We distinguish
between three types of mirror planes: A horizontal mirror plane is perpendicular to the
main rotation axis and it is denoted with the symbol σh. A vertical mirror plane contains
the main symmetry axis and is called σv. A vertical plane which bisects two σv planes or
two C2 axes, is called a dihedral plane σd. The SiV center exhibits three mirror planes
which each contain a next-neighbor carbon atom. As they lie in between the C2 axes,
they correspond to dihedral σd planes (Fig. 2.2c,d).

Inversion The inversion operation is carried out with respect to the center of inver-
sion. This operation negates the coordinates of every point of the molecule (x, y, z) →
(−x,−y,−z), and is denoted with the symbol i. A defect exhibiting a center of inversion
is called centrosymmetric. The center of inversion for the SiV center is located at the
position of the Si impurity.

The inversion is not a fundamental symmetry operation, because its action is equal
to a rotation about a C2 axis followed by a reflection on a σv plane perpendicular to
this axis. However, owing to the importance of the operation, it is usually listed among
the principal symmetry operations. When a molecule shows an inversion symmetry, the
resulting electronic wave functions (cf. Sec. 2.1.4) carry the parity labels even and odd,
which are abbreviated with the letters “g” (for the german gerade) and “u” (ungerade),
respectively. An odd wave function Ψu changes sign under the parity operation: Ψu(−r) =
−Ψu(r). When calculating matrix elements for the perturbative interactions (Sec. 2.2), the
parity of a state is a helpful property to determine which matrix elements are vanishing.

Improper Rotations The final symmetry element is called an improper rotation axis.
The corresponding operation can be broken down into a rotation about a Cn axis followed
by a reflection on a mirror plane σv perpendicular to this axis. An improper axis is
abbreviated with the symbol Sn, where n corresponds to a (360/n)◦ rotation axis.

The SiV center has an S6 improper axis, which coincides with the main C3 symmetry
axis (Fig. 2.3) and rotates the molecule first by 60◦. The following reflection is carried
out on a horizontal mirror plane σh. It is important to note that the improper rotation
is a unique operation although it is combined from two other operations. Hence for the
SiV defect, there is an S6 axis which involves a rotation of 60◦, but this does not imply
the presence of a C6 axis. We note, that some applications of the S6 rotation-reflection
leads to simpler symmetry operations which we have listed before, e.g. S2

6 = C1
3 , S3

6 = i,
S4

6 = C2
3 and S6

6 = E. Hence, the improper S6 axis leads to only two new symmetry
operations, which we denote S1

6 and S5
6 . Consequently, when we later list the characters

for the symmetry classes (Tab. 2.3), the class of improper rotations S6 only has two
elements.
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60° rotation
�h

reflection

(a) (b) (c)

Figure 2.3: The improper rotation first rotates the SiV defect by 60◦ about the main
symmetry axis (a), then reflects all coordinates on a mirror plane perpendicular to the
rotation axis (b). Hence, the two operations together leave the defect invariant (c).

Point groups One could in principle characterize the symmetry of a molecule or defect
by listing all the symmetry elements it possesses, but this is impractical – especially for
highly symmetric molecules which exhibit many symmetry elements. Moreover, some
symmetry elements automatically imply others, e.g. the presence of a C2 axis and a σh
mirror plane entails an inversion center i.

Hence, we define a point group as a collection of symmetry elements and operations
which unambiguously classifies a molecule. The term point group comes from the fact that
all symmetry elements of a molecule pass through at least one point which is unmoved by
these actions. Furthermore, the notion point group is opposed to the term space group
which classifies systems which include translational symmetry, e.g. for the description of
crystal lattices.

Point groups are often labeled by a symbol according to the main symmetry element.
We first name a few examples here: A molecule exhibiting only one Cn rotation axis
belongs to the Cn point group. Consequently, a linear molecule has an infinite number of
possible rotation angles, and therefore belongs to C∞. When a molecule possesses one Cn
axis in combination with a σv (σh) mirror plane, it belongs to the Cnv (Cnh) point group.
An important example in the context of diamond defects is the nitrogen vacancy color
center which belongs to the C3v group. If several rotation axes are present for a molecule,
then this molecule belongs to one of the dihedral point groups, which begin with the letter
D. Finally, there are the cubic point groups which feature the tetrahedral (T , Th, Td) and
octahedral (O, Oh) groups. The diamond unit cell exhibits cubic (Oh) symmetry. This
implies that all defects in diamond will be in a sub-group of Oh [136]. The group Oh has
a number of 48 symmetry elements and is only surpassed in size by the icosahedral group
Ih which however only occurs for special cases like the C60 molecule.

To clarify which group the SiV center belongs to, we employ the assignment scheme
depicted in Fig. 2.4. The scheme shows in a hierarchic manner which key decisions are
required to assign a molecule to a given point group. With one C3 axis, 3 C2 axes and 3
σd planes, we assign the SiV defect to the D3d point group.
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Figure 2.4: Flow diagram for the assignment of point groups. The path for the assignment
of the SiV center is highlighted in red.
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We have so far implicitly assumed that the symmetry operations of the D3d point
group really obey to the group axioms which we defined at the beginning of this chapter.
With the help of a group multiplication table (Tab. 2.1), this is straightforward to prove.
The D3d group contains 12 symmetry operations which are listed in the top row and left
column of Tab. 2.1. First, we see that the group is closed under group multiplication, i.e.
each multiplication results in a member of the group. Second, it can be shown that the
associative law holds, as we see in the following example(

C1
3 i
)
C2 =

(
S5

6

)
C2 = σ′d = C1

3 (i C2) = C1
3 (σd)

Third, the existence of the identity operation is given. Finally, there is an inverse operation
for each operation, such that their product equals the identity. This is verified by the
presence of the identity element in each column of the multiplication table. Hence, all
requirements for a group are fulfilled.

Table 2.1: Group multiplication table of the D3d group. The multiplication O1O2 is
performed such that the columns denote the first symmetry operation O1, and the rows
the second operation O2. All symmetry operations are corresponding to Figs. 2.2, 2.3.

D3d E C1
3 C2

3 C2 C ′2 C ′′2 i S1
6 S5

6 σd σ′d σ′′d

E E C1
3 C2

3 C2 C ′2 C ′′2 i S1
6 S5

6 σd σ′d σ′′d

C1
3 C1

3 C2
3 E C ′′2 C2 C ′2 S5

6 i S1
6 σ′′d σd σ′d

C2
3 C2

3 E C1
3 C ′2 C ′′2 C2 S1

6 S5
6 i σ′d σ′′d σd

C2 C2 C ′2 C ′′2 E C1
3 C2

3 σd σ′′d σ′d i S5
6 S1

6

C ′2 C ′2 C ′′2 C2 C2
3 E C1

3 σ′d σd σ′′d S1
6 i S5

6

C ′′2 C ′′2 C2 C ′2 C1
3 C2

3 E σ′′d σ′d σd S5
6 S1

6 i

i i S5
6 S1

6 σd σ′d σ′′d E C2
3 C1

3 C2 C ′2 C ′′2

S1
6 S1

6 i S5
6 σ′d σ′′d σd C2

3 C1
3 E C ′2 C ′′2 C2

S5
6 S5

6 S1
6 i σ′′d σd σ′d C1

3 E C2
3 C ′′2 C2 C ′2

σd σd σ′d σ′′d i S5
6 S1

5 C2 C ′′2 C ′2 E C1
3 C2

3

σ′d σ′d σ′′d σd S1
6 i S5

6 C ′2 C2 C ′′2 C2
3 E C1

3

σ′′d σ′′d σd σ′d S5
6 S1

6 i C ′′2 C ′2 C2 C1
3 C2

3 E

So far, we have seen how the point group classifies a molecule according to the sym-
metry elements the molecule possesses, and we have verified that these elements actually
form a group. To characterize which possible electronic states arise from a given point
group, we first need to introduce the concept of representations and characters.
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2.1.2 Representations and Character Tables

In the previous section, we have seen how to apply symmetry operations in an illustrative
manner, e.g. describing the result of C1

3 as a geometrical rotation. For a mathematical
treatment, we will replace these geometrical descriptors by numerical operators. These
numerical operators again form a group which is said to be homomorphic to the original
group. Such a homomorphic group is called a representation. By a representation of a
group, we here always associate a square matrix Γ(A) with each group element A, such
that Γ(A) Γ(B) = Γ(AB). It can be shown [132, page 18] that the group of transformation
matrices again satisfies the group axioms stated above.

One way to generate a point group representation is to look at the effect of the sym-
metry operations on a set of basis vectors {x̂, ŷ, ẑ}:

 1 0 0
0 1 0
0 0 1


Γ(E) 1

2
1
2

√
3 0

1
2

√
3 −1

2 0
0 0 −1


Γ(C2) −1 0 0

0 −1 0
0 0 −1


Γ(i) −1

2 −1
2

√
3 0

−1
2

√
3 1

2 0
0 0 1


Γ(σd)

 −1
2 −1

2

√
3 0

1
2

√
3 −1

2 0
0 0 1


Γ(C1

3 ) 1
2 −1

2

√
3 0

−1
2

√
3 −1

2 0
0 0 −1


Γ(C ′2) 1

2
1
2

√
3 0

−1
2

√
3 1

2 0
0 0 −1


Γ(S1

6) −1
2

1
2

√
3 0

1
2

√
3 1

2 0
0 0 1


Γ(σ′d)

 −1
2

1
2

√
3 0

−1
2

√
3 −1

2 0
0 0 1


Γ(C2

3 ) −1 0 0
0 1 0
0 0 −1


Γ(C ′′2 ) 1

2 −1
2

√
3 0

1
2

√
3 1

2 0
0 0 −1


Γ(S5

6) 1 0 0
0 −1 0
0 0 1


Γ(σ′′d)

(2.1)

The 3 × 3-matrices are applied the following way: Imagine, the coordinate of a next-
neighbor carbon atom is denoted by r = (x, y, z). Under a symmetry operation R =
E,C1

3 , C
2
3 , . . ., these coordinates will change according to Γ(R)r = r′. The transformation

matrices Γ(R) in (2.1) satisfy the multiplication table 2.1, and hence they form a rep-
resentation of the D3d point group. However, the representations Γ(R) are not unique,
and this is true in two respects: First, the choice of basis functions to generate Γ(R) was
arbitrary, and transforming Γ(R) using an unitary operation would result in an equally
valid representation [155]. To overcome this first problem, we will work with the trace
of the matrices, which stays invariant under unitary transformation (see below). As a
second ambiguity, we now show that the representation Γ(R) can be decomposed into
other, equally valid representations of smaller dimensionality.
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We see, that all matrices in (2.1) have a block diagonal form, i.e.

Γ(R) =

 Γ(1)(R) 0
0

0 0 Γ(2)(R)

 , R = E,C1
3 , C

2
3 , C

′
2, . . . (2.2)

where Γ(1)(R) acts on the pair of basis vectors (x̂, ŷ) and Γ(2)(R) acts on ẑ. This block
form means, that the representations Γ(R) in (2.1) contain two representations of smaller
dimension. Therefore, we call Γ a reducible representation. Clearly, Γ(2)(R) is one-
dimensional and cannot be reduced further, thus we call it an irreducible representation.

To check whether a representation is reducible in general, we need to check whether
we can bring all its transformation matrices into a block form similar to Eq. (2.2). If
there exists a transformation, which converts all the matrices in the representation of a
group into the same block form, then the representation is said to be reducible; otherwise
it is irreducible. Thus, an irreducible representation cannot be expressed in terms of
representations of lower dimensionality [155]. In contrast, a reducible representation Γ
can be written as a linear combination of irreducible representations ΓIR:

Γ =
∑
j

ajΓ
(j)
IR , (2.3)

where the coefficients aj determine, how often the irreducible representation Γ
(j)
IR appears

in Γ. In our example above, Γ = 1 · Γ(1) + 1 · Γ(2). We will see in Sec. 2.1.4, how we
decompose a reducible representation into its irreducible constituents.

If we take a closer look, the representation Γ(2) only specifies whether the unit vector
ẑ is unchanged under a symmetry operation or whether it is inverted. In Tab. 2.2, we
summarize the representation Γ(2) by simply copying the bottom right 1×1 block matrices
from the transformation matrices (2.1). We have merged the representations for similar
symmetry operations into symmetry classes, such as the two three-fold rotations C1

3 and
C2

3 , which we sum up as 2C3.

Table 2.2: The representation Γ(2) generated by the basis vector ẑ.

D3d E 2C3 3C2 i 2S6 3σ

Γ(2) 1 1 -1 -1 -1 1 ẑ

The representation Γ(2) still obeys the group axioms and is homomorphic to the D3d

group, which can be verified by inspection of the multiplication table 2.1. However, Γ(2) is
not the only irreducible representation of D3d. The two-dimensional representation Γ(1) is
also irreducible, and other irreducible representations can be generated using other basis
sets, e.g. abstract basis vectors {Rx, Ry, Rz} which describe rotations around the x, y, z
axes [154].

As we stated above, the two-dimensional representation Γ(1) is not unique: If we
imagine a two-dimensional unitary matrix U , e.g. a simple rotation, then the product
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U−1 Γ(1) U would still be a valid irreducible representation. To eliminate this ambiguity,
we define the character χ(j)(R) of a representation j under the symmetry operation R as
the trace, i.e. the sum of the diagonal elements, of the matrix Γ(j)(R) of the representation:

χ(j)(R) = Tr
[
Γ(j)(R)

]
=

lj∑
µ=1

[
Γ(j)(R)

]
µµ

(2.4)

It can be shown, that the trace of a matrix is invariant under unitary transformations,
therefore the character unambiguously identifies a given representation.

Character tables For all existing point groups, the characters χ(j)(R) have been tabu-
lated and these character tables can be found in many textbooks, e.g. Refs. [132,154,155].
We outline the character table of the D3d group in Tab. 2.3. The first row of the character
table lists the symmetry classes, corresponding to Tab. 2.2 above. The left-most column
lists the names for the representations according to the Mulliken notation. We identify
our former Γ(2) to be A2u and – after calculating the traces – Γ(1) to be Eu.

Table 2.3: The D3d character table [154].

D3d E 2C3 3C2 i 2S6 3σ linear, rotations quadratic
A1g 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 -1 1 1 -1 Rz
Eg 2 -1 0 2 -1 0 (Rx, Ry) (x2 − y2, xy), (xz, yz)
A1u 1 1 1 -1 -1 -1
A2u 1 1 -1 -1 -1 1 z
Eu 2 -1 0 -2 1 0 (x, y)

Mulliken symbols provide a shorthand notation for the description of the irreducible
representations. First, the capital letters A,B,E, T refer to the dimensionality of a irre-
ducible representation, i.e. the size of the corresponding transformation matrix: A and B
are one-dimensional (e.g. our example of Γ(2) = A2u above), E are two-dimensional (e.g.
Γ(1) = Eu), T are three-dimensional. The dimensionality is always equal to the character
χ(j)(E) of the identity operation, e.g. χ(A1g)(E) = 1 and χ(Eg)(E) = 2. Second, the sym-
bols indicate whether a representation is symmetric (χ = +1) or anti-symmetric (χ = −1)
under particular operations: Representations denoted by A are symmetric under the main
Cn operations, whereas the ones with B are anti-symmetric. We see Tab. 2.3 that all one-
dimensional representations have the character χ(C3) = +1 under the C3 rotations, thus
we call them all A. The subscripts g and u denote the parity of an irreducible representa-
tion (Sec. 2.1.1) and refer to the sign of the character χ(j)(i) under the inversion. Finally,
the subscripts 1 and 2 refer to the character under C2 rotations, and the primes ′ and ′′

to the character under a σh reflection (not shown here). The representation A1g plays a
special role, as all its characters are equal to 1. It is therefore called the totally symmetric
representation.
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On the right of Tab. 2.3, there are two columns which list the generating functions
of the representations. We have seen above, that A2u is generated by z and Eu by the
pair (x, y). In addition, there are representations generated by quadratic functions, such
as x2 + y2 for A1g. These functions are also called basis functions. Basis functions
play an important role for the interpretation of irreducible representations in a quantum
mechanical context.

The great orthogonality theorem for representations and characters Before we
concretize this rather phenomenological statement in the next section, we name here the
central property of irreducible representations. This property is expressed in the great
orthogonality theorem, which is the most important theorem of group theory. It states for
all inequivalent, irreducible, unitary representations Γ(i),Γ(j) of a group of the order h,
that ∑

R

[
Γ(i)(R)

]∗
µν

[
Γ(j)(R)

]
αβ

=
h

li
δijδµαδνβ , (2.5)

where the summation R runs over all group (symmetry) elements and li is the dimension-
ality of Γ(i) [132]. The great orthogonality theorem is interpreted as stating the orthogo-
nality of a set of vectors in a “group-element space”. This is a h-dimensional vector space
in which the axes or components are labeled by the various group elements R = E,C1

3 , . . .,
thus the representations Γ

(i)
µν(R) are the elements of the vectors V (i)

µν . The vectors V (i)
µν

are labeled by three indices – the representation index i and the subscripts µν, indicating
row and column within the representation matrix. All vectors which differ in one or more
of these indices are orthogonal.

As an example, we return to the representation Eu of D3d, which spans a vector:

V Eu
µν =

([
ΓEg(E)

]
µν
,
[
ΓEg(C1

3 )
]
µν
, . . . ,

[
ΓEg(σ′′d)

]
µν

)
, (2.6)

so, for µ = 1 and ν = 1 we take the element of the first row and of the first column from
the representation (2.1), which yields:

V Eu
1,1 =

(
1,−1

2 ,−1
2 ,

1
2 ,

1
2 ,−1,−1, 1

2 ,
1
2 ,−1

2 ,−1
2 , 1
)
. (2.7)

If we construct similarly for µ = 2 and ν = 1 the vector

V Eu
2,1 =

(
0,
√

3
2 ,−

√
3

2 ,
√

3
2 ,−

√
3

2 , 0, 0,−
√

3
2 ,
√

3
2 ,−

√
3

2 ,−
√

3
2 ,
)
, (2.8)

then we clearly see, that the scalar product between V Eu
1,1 and V Eu

2,1 (which is calculated
component-wise like for an ordinary three-dimensional vector) is equal to zero, as it is
postulated by the great orthogonality theorem. In the h-dimensional group-element space,
only h vectors can be mutually orthogonal. As a consequence, it can be shown that the
number of irreducible representations Γ(j) is equal to the number of symmetry classes of
a group.
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The great orthogonality theorem can be “translated” to characters: If we only use the
diagonal elements of the matrices Γ(i),Γ(j) in Eq. (2.5), we set ν = µ and β = α and
obtain ∑

R

[
Γ(i)(R)

]∗
µµ

[
Γ(j)(R)

]
αα

=
h

li
δijδµα. (2.9)

We remember, that the character is defined as the sum over the diagonal elements
Γ(i)(R)µµ, so we sum both sides over all µ and α to obtain∑

µ

∑
α

∑
R

[
Γ(i)(R)

]∗
µµ

[
Γ(j)(R)

]
αα

=
∑
µ

∑
α

h

li
δijδµα.

The sums over R,µ, α can be rearranged, such that we get:∑
R

∑
µ

[
Γ(i)(R)

]∗
µµ︸ ︷︷ ︸

=χ(i)(R)∗

∑
α

[
Γ(j)(R)

]
αα︸ ︷︷ ︸

=χ(j)(R)

=
h

li
δij
∑
µ

∑
α

δµα︸ ︷︷ ︸
=δµµ=1

The sum over µ on the right side of the equation yields the dimension li of the represen-
tation Γ(i) and we obtain∑

R

[
χ(i)(R)

]∗
χ(j)(R) =

h

li
δij
∑
µ

1 =
h

li
δijli = hδij (2.10)

Hence, the characters of an irreducible representation also form a set of orthogonal
vectors in group-element space, the space spanned by h vectors which we encountered
already for the great orthogonality theorem. As the characters for one class of symmetry
operations (e.g. all C2 rotations) are the same, the orthogonality relation (2.10) can be
generalized to the characters of symmetry classes Ck∑

k

Nk

[
χ(i)(Ck)

]∗
χ(j)(Ck) = hδij , (2.11)

where Nk denotes the number of elements in the class Ck. As an example, the characters
of representations A2u and Eu of the group D3d are orthogonal because∑

k

Nk

[
χA2u(Ck)

]∗
χEu(Ck) = [1 · 1 · 2] + [2 · 1 · (−1)] + [3 · (−1) · 0]

+ [1 · (−1) · (−2)] + [2 · (−1) · 1] + [3 · 1 · 0]

= 2− 2 + 0 + 2− 2 + 0

= 0.

We can check whether a given representation is irreducible by checking whether the
orthogonality relation holds for its characters. In addition, the orthogonality theorem for
characters is important as it enables a straight-forward algorithm to decompose reducible
representations into irreducible ones. Before we make use of this decomposition technique
in Sec. 2.1.4, we discuss the interpretation of irreducible representations and characters
in quantum mechanics.
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2.1.3 Irreducible representations in quantum mechanics

While we started the last section with a very graphic description of representation, the
notion of irreducible representations and characters is to this point rather abstract. We
therefore express in this section briefly how irreducible representations come into play
when solving quantum mechanics problems. First, we introduce transformation operators:
The transformation matrices Γ(R) in (2.1) for theD3d group established how coordinates r
are transformed upon the application of symmetry operations; we have shown exemplarily
that Γ(R) form a group. We now introduce another group isomorphic to (2.1) which acts
on functions f(r) instead of coordinates r. We define the operator PR for all R which
needs to satisfy

PRf(Γ(R)r) = f(r)

⇔ PRf(r) = f(Γ(R)−1r), (2.12)

or in other words, PR changes the functional form of f(r) in such a way as to compensate
the change of the variables under the action of Γ(R) [132]. The idea behind this con-
struction is to apply symmetry operations to quantum mechanical properties like wave
functions or interactions. Imagine, a property of a molecule (e.g. the electron density of a
dangling bond orbital) has a functional dependence f(x, y, z). Application of e.g. the C1

3

rotation changes the arguments of this function such that:

PC1
3
f(r) = f

(
Γ(C1

3 )−1 r
)

= f
(
Γ(C2

3 ) r
)

= f
(
−1

2x+
√

3
2 y,−

√
3

2 x− 1
2y, z

)
. (2.13)

Remember that according to Eq. (2.12), we need to employ the inverse Γ(R)−1, which in
the case of C1

3 is simply C2
3 .

We now consider a special group of operators PR which commute with the Hamilton
operator H for a given physical system. Hence, for an arbitrary eigenfunction ψ(n) of H
with eigenvalue En, we have Schrödinger’s equation

Hψ(n) = Enψ
(n)

We apply the transformation operator PR from the left:

PRHψ(n) = PREnψ
(n)

⇔ HPRψ(n) = EnPRψ
(n), (2.14)

because we have postulated that the operators PR and H commute and because PR com-
mutes of course with the eigenvalue En. From the action of PR on the eigenfunction ψ(n)

we obtain a new function φ(n) ≡ PRψ(n) which is according to Eq. (2.14) also an eigenfunc-
tion of H. Generally speaking, the consecutive application of a transformation operator
on an eigenfunction helps to find the other degenerate eigenfunctions. This tremendously
simplifies the search for eigenfunctions as soon as one eigenfunction is known. We denote
the set of operators PR commuting with H as the group of Schrödinger’s equation.

In the previous section, we have seen that the transformation matrices Γ(R) of the
symmetry operations R are considered as representations. We now combine the transfor-
mation operators from the group of Schrödinger’s equation with the concept of irreducible
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representations. We consider an ln-fold degenerated eigenvalue En with a corresponding
set of ln mutually orthogonal eigenfunctions ψ(n)

κ , κ = 1, . . . , ln. If we apply an operator
PR out of the group of Schrödinger’s equation onto one particular eigenfunction, called
ψ

(n)
ν , then we obtain another function which has the same energy and which can be ex-

pressed as a linear combination of the eigenfunctions ψ(n)
κ . We write this application of

the operator PR in terms of a multiplication with a matrix Γ(n)(R):

PRψ
(n)
ν =

ln∑
κ=1

ψ(n)
κ

[
Γ(n)(R)

]
κν
. (2.15)

There is an important analogy to the previous section: There, we wrote the transformation
matrices (2.1) such that they express the action of symmetry operations on the coordinates
(x, y) and z. Thus, these coordinates served as generating functions for the representation
(2.1). In the same spirit, we now constructed a representation Γ(n)(R) for the group of
Schrödinger’s equation using the eigenfunctions ψ(n)

κ as generators. It can be shown that
the representation Γ(n)(R) is irreducible. Hence, the set of ln degenerate eigenfunctions
ψ

(n)
κ of energy En forms a basis for an ln-dimensional irreducible representation Γ(n).
Conversely speaking, there is a direct correspondence between irreducible representa-

tions and the eigenfunctions of a given quantum mechanical problem: Irreducible repre-
sentations of the symmetry group of Schrödinger’s equation label the resulting states and
specify their degeneracies. This degeneracy is equal to the dimension of the irreducible
representation. We stress however, that group theory does not yield the absolute energy
of a state.

In addition, the new eigenfunction φ(n) acquired under the application of PR is not
automatically orthogonal to the generating function ψ(n). As Eq. (2.15) indicates, the
application of PR on a basis function yields a linear combination of all basis functions.
An example: We remember the application of a rotation C1

3 around a threefold axis on
the simple basis function ψ(x, y) = x, which yielded φ(x, y) = PC1

3
ψ(x, y) = −1

2x− 1
2

√
3y

(see Eq. (2.13)). The resulting function φ(x, y) is clearly a linear combination of x and
y, and – most importantly – it is not orthogonal to x. But, we can decompose φ(x, y)
into orthogonal basis functions by inspection into φ(x, y) = −1

2ψ(x, y)− 1
2

√
3ξ(x, y), with

ψ(x, y) = x as we stated initially and ξ(x, y) = y. Now, the functions ψ(x, y) and ξ(x, y)
are orthogonal and therefore truly basis functions. A special case can be, that PR leaves
ψ(n) unchanged – a trivial example would be the application of the identity PE .

We remember that the character tables (Tab. 2.3) list generating functions in the right
columns, which are linear or quadratic in x, y, z (in some extended tables even higher
orders are given). These functional dependences are by no means accidental: Often,
the properties of a molecular system, such as the electronic wave function of a given
state, depend on these spatial coordinates in this exact functional form, e.g. the electronic
wave function for an s-orbital depends on x2 + y2 + z2. We then say, this property
transforms as or belongs to the corresponding irreducible representation. For example, an
s-orbital of an atom transforms as A1g and has no degeneracy because the dimension of
its irreducible representation is equal to 1. Hence, if we know the functional dependence
of the eigenfunctions ψ(n)(x, y, z) of a Hamilton operator, we can identify unambiguously
to which representation they belong.
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However, very often, no explicit functional form of the eigenfunctions is known. In
the next section, we therefore go the opposite way: We show how eigenfunctions or basis
states are obtained with the help of group theory.

2.1.4 Calculation of the basis states of the SiV center

We have seen in the preceding section, that much of the relevant information for quantum
mechanical problem is given by the irreducible representations, as the irreducible repre-
sentations determine the degeneracy of the eigenfunctions for this problem. We use this
important property here to derive the eigenstates of the SiV defect. Although the result-
ing states will not show in detail the functional dependence on x, y, z, we denote them as
the basis states of the SiV center, because they will serve as basis for the perturbation
calculation that follows.

In the previous chapter and in Sec. 2.1.1, we have seen that the SiV defect comprises
six next-neighboring carbon atoms. Due to the two missing carbon atoms in the split-
vacancy configuration, these carbon atoms have unsaturated bonds, so-called dangling
bonds. We first construct a representation based on these dangling-bond orbitals. As this
representation is reducible, we will show a procedure how to decompose it into irreducible
representations. The resulting irreducible representation will outline the degeneracy of
the possible orbital states of the defect. Using the character table for the D3d group,
we then derive the symmetry adapted linear combinations of the dangling bond orbitals
which correspond to the irreducible representations and which form the basis states for
the following perturbation study.

Dangling bond representation We sketch the dangling bond orbitals centered on the
next-neighbor carbon atoms in Fig. 2.5. As the carbon atoms are sp3-hybridized, the bond
nature of these orbitals will most likely be of σ-type. Therefore, we denote the dangling
bond orbitals σi from σ1 to σ3 and σ′1 to σ′3. In an molecular orbital approach, the
electron wave functions of the σ-bond exhibit a phase which gives rise to either a bonding
(constructive) or an anti-bonding (destructive) character of the molecular orbital. We
indicate this phase using the color of the lobes in Fig. 2.5, where red means positive phase
and blue means negative phase for the part of the sp3-orbital which points towards the
center of the defect. Therefore, the case in Fig. 2.5 with all σi in phase is just one example.

In Sec. 2.1.2, we constructed the representation Γ from the generating functions x, y, z
as transformation matrices (2.1) which acted on (x, y, z). In completely analogous manner,
we construct here a representation in terms of transformation matrices Γ(σ)(R) which act
on the dangling-bonds σi. Like for Eq. (2.1), we apply the matrices Γ(σ)(R) to a vector
v = (σ1, σ2, . . . , σ

′
3) composed of the generating functions, and obtain v′ = Γ(σ)(R)v. As

we are mainly interested in the character of this representation, which is identical for all
operations of one symmetry class, we list one transformation matrix for each class, and



2.1. FUNDAMENTALS OF GROUP THEORY 39

�1

�2

�3

�0
3

�0
1

�0
2

(a) side view

�1

�2

�3

�0
3

�0
2

�0
1

(b) top view

Figure 2.5: The unsaturated bonds of the next-neighbor carbon atoms form so-called
dangling bond orbitals, which we sketch schematically as sp3-orbitals. The view from the
side (panel a) also shows a transparent picture of the Si-impurity surrounded by the split
vacancy and the next-neighbor carbon atoms.

write the corresponding characters below each matrix:

E

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


χ(σ)(E) = 6

i

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


χ(σ)(i) = 0

C1
3

0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0


χ(σ)(C3) = 0

S1
6

0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0


χ(σ)(S6) = 0

C2

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0


χ(σ)(C2) = 0

σd

0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0


χ(σ)(σd) = 2

(2.16)

Decomposition of the dangling bond representation Clearly, the representation
(2.16) is reducible, and we now show how to express it as a linear combination of irre-
ducible representations. In principle, we could try to “guess” a similarity transformation
which brings all Γ(σ)(R) into block form and then obtain the irreducible representations
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by inspection of the blocks, but this method is cumbersome. Therefore, we employ an
alternative approach: We have seen at the end of Sec. 2.1.2, that the characters of an
irreducible representation ΓIR form a set of orthogonal vectors. Owing to this orthogo-
nality, we can write the characters χ(σ)(R) of every (reducible) representation Γ(σ)(R) as
a linear combination of the characters χ(j)

IR (R) of irreducible representations Γ
(j)
IR (R):

χ(σ)(R) =
∑
j

aj χ
(j)
IR (R). (2.17)

The coefficients aj determine how often the irreducible representation χ(j)
IR (R) appears in

the reducible one. Again, instead of considering every symmetry operation R indepen-
dently, we group the operations in classes Ck, and obtain

χ(σ)(Ck) =
∑
j

aj χ
(j)
IR (Ck). (2.18)

It can be shown, that this decomposition is unique [155] and that the coefficients aj are
given by the relation

aj =
1

h

∑
k

Nk

[
χ

(j)
IR (Ck)

]∗
χ(σ)(Ck), (2.19)

where we now sum over the classes Ck. For the example of the dangling bond representa-
tion Γ(σ), this decomposition is particularly simple as all characters χ(σ) are zero except
those for the operations E and σd. The decomposition algorithm is shown in Tab. 2.4 and
yields that Γ(σ) = A1g + Eg +A2u + Eu.

The decomposition into irreducible representations tells us, that the representation
Γ(σ) contains two non-degenerate representations A1g and A2u and two two-fold degenerate
representations Eg and Eu. As a result, there will be four possible electronic states for
the SiV center, of which two are non-degenerate and two are two-fold degenerate.

Projecting out basis functions As a next step, we derive how the basis functions of
the four irreducible states are composed of the dangling bond orbitals. This can be done
using the so-called projection operator or projector P(j) for the irreducible representation
Γ

(j)
IR ; we stress, that this operator must not be confounded with the transformation opera-

tor PR which we encountered in the previous section, neither with the relaxation operator
PR of Sec. 4.2.2. The projection operator is defined by

P(j) =
1

N

∑
R

[
χ

(j)
IR (R)

]∗
PR, (2.20)

where χ(j)
IR (R) are the characters of the irreducible representation Γ(j), PR is the transfor-

mation operator of the previous section, and N is a normalization factor. In our case, the
projector P(j) is applied onto one dangling bond orbital σi, or onto a linear combination
of them, and the symmetry operations on the σi can be conveniently read from Figs. 2.2,
2.3 and the matrices (2.16).
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Table 2.4: The decomposition formula for the representation Γ(σ) in D3d symmetry. The
table is to be read in blocks of three rows, where the first row of each block lists repeatedly
the character χ(σ), the second row denotes the characters for the irreducible representa-
tion of D3d, and the third row shows the calculation of the coefficients aj according to
Eq. (2.19).

D3d E 2C3 3C2 i 2S6 3σd coefficients aj
Γ(σ) 6 0 0 0 0 2
A1g 1 1 1 1 1 1

Nk ·χA1g(Ck)χ(σ)(Ck) 1 · 1 · 6 0 0 0 0 3 · 2 · 1 aA1g = 1
12 (6 + 6) = 1

Γ(σ) 6 0 0 0 0 2
A2g 1 1 -1 1 1 -1

Nk ·χA2g(Ck)χ(σ)(Ck) 1 · 1 · 6 0 0 0 0 3 · 2 · (−1) aA2g = 1
12 (6− 6) = 0

Γ(σ) 6 0 0 0 0 2
Eg 2 -1 0 2 -1 0

Nk ·χEg(Ck)χ(σ)(Ck) 1 · 2 · 6 0 0 0 0 3 · 2 · 0 aEg = 1
12 (12 + 0) = 1

Γ(σ) 6 0 0 0 0 2
A1u 1 1 1 -1 -1 -1

Nk ·χA1u(Ck)χ(σ)(Ck) 1 · 1 · 6 0 0 0 0 3 · 2 · (−1) aA1u = 1
12 (6− 6) = 0

Γ(σ) 6 0 0 0 0 2
A2u 1 1 -1 -1 -1 1

Nk ·χA2u(Ck)χ(σ)(Ck) 1 · 1 · 6 0 0 0 0 3 · 2 · (−1) aA2u = 1
12 (6 + 6) = 1

Γ(σ) 6 0 0 0 0 2
Eu 2 -1 0 -2 1 0

Nk ·χEu(Ck)χ(σ)(Ck) 1 · 2 · 6 0 0 0 0 3 · 2 · 0 aEu = 1
12 (12 + 0) = 1
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The action of P(j) is to project out the basis states of the corresponding irreducible
representation Γ(j). This is shown most intuitively using an example: For the calculation
of the basis functions for A1g we apply PA1g to the dangling bond orbital σ1. We show
the steps of the calculation in Tab. 2.5, where the top row lists all symmetry operations
of the D3d point group. The second row shows the result of the symmetry operations PR
on σ1, which we multiply with the characters of A1g (third row). The bottom row then
denotes the product χA1g(R)PRσ1.

Table 2.5: Projecting out the basis states of the irreducible representation A1g.

PA1g E C1
3 C2

3 C2 C ′2 C ′′2 i S1
6 S5

6 σd σ′d σ′′d
PR σ1 σ1 σ3 σ2 σ′3 σ′2 σ′1 σ′1 σ′2 σ′3 σ3 σ2 σ1

χA1g 1 1 1 1 1 1 1 1 1 1 1 1
χA1g PR σ1 σ1 σ3 σ2 σ′3 σ′2 σ′1 σ′1 σ′2 σ′3 σ3 σ2 σ1

We sum up the cells of the bottom row of Tab. 2.5, and normalize the sum using the
ratio 1

2
√

6
. We obtain:

A1g =
1√
6

(
σ1 + σ2 + σ3 + σ′1 + σ′2 + σ′3

)
. (2.21)

This superposition of orbitals is termed a symmetry adapted linear combination (SALC).
We see in Tab. 2.5, that all dangling bond orbitals contribute equally and all have the
same phase, as we expect it from the totally symmetric representation A1g. Graphically,
this SALC corresponds to the combination shown in Fig. 2.5. The choice of the function
σ1, to which we applied the projector, was completely arbitrary and the application of
PA1g on any other dangling bond orbital would have lead to the same result.

As a following example, we calculate the SALC for representation A2g, again by ap-
plying the projection operator PA2g onto σ1. Now, the characters for the C2 rotations
and the σd rotation are equal to −1 and we obtain:

PA2gσ1 = σ1 + σ3 + σ2 − σ′3 − σ′2 − σ′1 + σ′1 + σ′2 + σ′3 − σ3 − σ2 − σ1

= 0. (2.22)

Hence, there is no combination of the dangling bonds which satisfies the symmetry con-
straints of the representation A2g in D3d symmetry. We could have anticipated this result
already from the decomposition of the representation Γ(σ), where A2g did not appear.

For the two-dimensional representation Eg, we will need two orthogonal basis func-
tions, which we denote without loss of generality Egx and Egy. By orthogonal we mean,
that the scalar product 〈Egx|Egy〉 needs to vanish, where we assume for the dangling
bond orbitals that 〈σi|σj〉 = δij . A first function is constructed as above by applying PEg
on σ1. We list the result in Tab. 2.6, where the symmetry operations PR on σ1 yield of
course the same results as in Tab. 2.5 above, and the calculation is further simplified by
the characters for the C2 rotations and σd reflections being zero.
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Table 2.6: Projecting out the first basis state of the two-dimensional irreducible represen-
tation Eg.

PA1g E C1
3 C2

3 C2 C ′2 C ′′2 i S1
6 S5

6 σd σ′d σ′′d
PR σ1 σ1 σ3 σ2 σ′3 σ′2 σ′1 σ′1 σ′2 σ′3 σ3 σ2 σ1

χA1g 2 -1 -1 0 0 0 2 -1 -1 0 0 0
χA1g PR σ1 2σ1 −σ3 −σ2 0 0 0 2σ′1 −σ′2 −σ′3 0 0 0

We obtain for the first basis vector of Eg, which we denote Egx,

Egx =
1√
12

(
2σ1 − σ2 − σ3 + 2σ′1 − σ′2 − σ′3.

)
(2.23)

In order to find a second basis function, called Egy, we use the following approach: In
Sec. 2.1.3, we learned that applying a suitable transformation operator PR to Egx yields a
linear combination of the basis functions Egx and Egy [Eq. (2.15)]. This linear combination
then needs to be decomposed into two orthogonal functions. As Egx is already known,
the procedure is straightforward: For PR, we choose the three-fold rotation C1

3 which
transforms Egx into (disregarding the normalization factor):

PC1
3
Egx = 2PC1

3
σ1 − PC1

3
σ2 − PC1

3
σ3 + 2PC1

3
σ′1 − PC1

3
σ′2 − PC1

3
σ′3

= 2σ3 − σ1 − σ2 + 2σ′3 − σ′1 − σ′2
!

= c1Egx + c2Egy, (2.24)

where c1 and c2 are the coefficients of the linear combination which we need to find by
inspection. Without loss of generality, we set c1 = −1

2 to simplify the following calculation
and rearrange Eq. (2.24) to obtain

PC1
3
Egx − c1Egx = c2Egy

⇔ PC1
3
Egx + 1

2Egx = 2σ3 − σ1 − σ2 + 2σ′3 − σ′1 − σ′2
+ σ1 − 1

2σ2 − 1
2σ3 + σ′1 − 1

2σ
′
2 − 1

2σ
′
3

= −3
2σ2 + 3

2σ3 − 3
2σ
′
2 + 3

2σ
′
3

= −3
2

(
σ2 − σ3 + σ′2 − σ′3

) !
= c2Egy. (2.25)

Hence, we see that c2 = −3
2 , and the second basis function

Egy = 1
2

(
σ2 − σ3 + σ′2 − σ′3

)
(2.26)

is indeed orthogonal to the first function Egx, where we introduced a factor 1/2 for
normalization. By repeating the procedures above, we also obtain the SALCs for the
irreducible representations exhibiting odd parity A1u, A2u and Eu, where A1u is again
found to be zero. We list all functions in Tab. 2.7 together with a molecular orbital sketch
of the electronic wave functions.
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Table 2.7: The symmetry adapted linear combinations a1g, a2u, eg and eu of the dangling
bond orbitals for their corresponding irreducible representations. We omit the scaling
factor 2 for the egx and eux orbitals in the illustrations.

a1g = 1√
6

(σ1 + σ2 + σ3 + σ′1 + σ′2 + σ′3) a2u = 1√
6

(σ1 + σ2 + σ3 − σ′1 − σ′2 − σ′3)

�1

�2

�3

�0
3

�0
1

�0
2

egx = 1√
12

(2σ1 − σ2 − σ3 + 2σ′1 − σ′2 − σ′3) egy = 1
2 (σ2 − σ3 + σ′2 − σ′3)

eux = 1√
12

(2σ1 − σ2 − σ3 − 2σ′1 + σ′2 + σ′3) euy = 1
2 (σ2 − σ3 − σ′2 + σ′3)
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So far, we have denoted the SALCs with capital letters, according to which irreducible
representation they belong. Building the SALCs for a given molecular geometry cor-
responds to defining new orbitals for the electrons of the molecule. Hence, instead of
populating e.g. σ1 only, the electron is delocalized over the orbitals which take part in a
particular SALC. It is common in group theory, to denote these new orbitals with small
letters, e.g. a1g, to distinguish the actual orbital from the abstract representation. We
deliberately follow this convention.

Admixture of Si atomic orbitals So far, we have completely neglected the atomic
orbitals of the Si impurity. There are four valence electrons of the Si atom which can
populate the 3s, 3px, 3py and 3pz orbitals. The 3s orbital is spherical symmetric, i.e.
it depends on the spatial coordinates x2 + y2 + z2. Using the D3d character table 2.3,
we can identify this functional dependence to form a basis function for the irreducible
representation A1g, hence the 3s orbital of the Si atom transforms as A1g. The orbitals
3px, 3py depend on the coordinates x, y which in turn form the basis for the representation
Eu, thus they transform as Eu, and finally, 3pz belongs to A2u.

The Si atomic orbitals mix with the SALCs involving the carbon-related dangling
bonds via the Coulomb interaction. We show in the next section, that such an interaction
can be expressed as a direct product of representations, and anticipate here already the
rule that this direct product under Coulomb interaction is only non-zero if the Si orbital
belongs to the same irreducible representation as the dangling bond SALC. For example,
a1g mixes with aSi1g, such that we obtain a superposition αa1g+βaSi1g, with α, β quantifying
the admixture. At the same time, we note that the states eg have no admixture at all
with the Si atom.

This admixture can also be explained graphically: For the a2u SALC of the dangling
bonds (Tab. 2.7), the phase of the upper orbitals σ1,2,3 is positive while it is negative for
σ′1,2,3. Hence, the wave functions of the upper and lower orbitals form an anti-bonding
configuration with vanishing electron probability distribution in the middle of the de-
fect.We then say that this orbital has a node along its z-axis. The only Si orbital which
also has a vertical node is the pz orbital, hence it is the only orbital which “fits into” the
dangling bond orbital. Similarly, a1g has no node at all, as does the Si s orbital. Finally,
the SALCs eux and euy have horizontal nodes along the x- and y-direction, respectively,
hence they couple to the px, py orbitals of the Si impurity.

The strength of the mixing between dangling bonds and Si orbitals cannot be calcu-
lated using group theory. The ab initio calculations of Gali and Maze [127] show that this
admixture is small for the occupied orbital states in the ground and first excited electronic
configuration, i.e. β � 1. Hence, we approximate the SiV states to be purely formed of
the carbon dangling bond combinations. However, we note that even a small admixture
with the orbitals involving the Si atom might results in a higher spin-orbit interaction as
it is commented below.

Ordering of the states and filling with electrons As we have stated above, group
theory predicts the degeneracy of electronic states, e.g. the eg and eu orbitals of the
SiV are predicted to be two-fold degenerate. However, group theory does not indicate
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the absolute energy and thus the ordering of these states, therefore, we require other
techniques to order the SiV levels energetically.

A first method is commonly utilized in molecular orbital approaches: We have intro-
duced the notion of “nodes” of the electron wave function for the dangling bond SALCs
in the previous paragraph. If there exists a node in an SALC then the charge density at
this node vanishes. Hence, the positively charged nuclei experience a stronger Coulomb
repulsion and the defect typically has a higher energy [154]. Thus, the more nodes are
present in an SALC, the higher its energy is. Although there are exceptions from this
rule of thump, it is usually a good approximation. The a1g orbital has no nodes, therefore
it will be the lowest energy state, then the a2u state has one (vertical) node. The eu
states both have horizontal nodes, and finally the eg states exhibit vertical and horizontal
modes, thus, they are expected to show the highest energy.

As a second method, density functional theory can predict the ordering of states. The
ab initio calculations of Gali and Maze [127] confirm the intuitive ordering a1g a2u eu eg
which we have deduced using orbital nodes above.

We now fill these levels with the electrons present for the negatively charged SiV
defect: The center hosts a total number of eleven electrons: Six electrons are contributed
by the dangling bonds σi, four electrons originate from the Si-atom and an one electron
is trapped from nearby donors to account for the negative charge [63]. In addition to
orbital degeneracy which we deduced from group theory, the levels are spin degenerate.
Taking into account this spin degeneracy, the a states host two electrons of opposite spin
projection, and the e states accommodate four electrons.

a2u

a1g

egx egy

eux euy

(a)

a2u

a1g

egx egy

eux euy

(b)

Figure 2.6: Ground (a) and excited (b) state configuration for the SiV center (red arrows
denote electrons and blue arrows denote electron holes). The optical transition occurs
when exciting one electron from the eu to the eg orbital.

The ground state configuration is a2
1ga

2
2ue

4
ue

3
g, i.e. there is one electron hole in the

egx or egy state (Fig. 2.6a). This hole can be treated in an analogous manner to a single
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electron [41]. Hence, the total spin of the defect in this ground state configuration is equal
to S = 1/2. We abbreviate this configuration in spectroscopic notation as the 2Eg ground
state. We assume, that the optical transition responsible for the 1.68 eV (or 738 nm)
absorption or emission occurs when one electron is excited to the egx or egy orbital. In
consequence, the excited state has the configuration a2

1g, a
2
2u, e

3
ux,y, e

4
gx,y (Fig. 2.6b), and

we denote this excited state as 2Eu.
Graphically, the hole in either ground or excited state can be on any of the four

positions of eg or eu as seen in Fig. 2.6, which expresses the four-fold degeneracy of the
system. Each of the “positions” corresponds to a basis vector, such that we obtain the
following basis sets for ground and excited state in Dirac notation:

2Eg ground state : {|egx ↑〉, |egx ↓〉, |egy ↑〉, |egy ↓〉} (2.27a)
2Eu excited state : {|eux ↑〉, |eux ↓〉, |euy ↑〉, |euy ↓〉}. (2.27b)

It can be verified by inspection that the state vectors (2.27) are mutually orthogonal, where
we remember that the dangling bond orbitals σi are orthogonal states, i.e. 〈σi|σj〉 = δij .
The degeneracy which we obtained for (2.27) appears to be well suited for the description
of the SiV center, because of the following reasons: We have learned in Chap. 1 that
the SiV center shows a spectral fine structure at low temperatures. The fine structure
consists of four optical transition peaks [62] and splits into further components when a
magnetic field is applied [133]. The two-fold orbital degeneracy of the e-states can be
lifted via internal perturbations, such as spin-orbit interaction or the Jahn-Teller effect
(cf. next section). With these perturbations present, the defect shows a level splitting
into two ground and two excited states with four optical transitions between them, thus
readily explaining the spectral fine structure. If the SiV defect exhibited a considerably
lower symmetry, then our group theoretical discussion would have resulted in basis states
without any orbital degeneracy and there would be no straight-forward model to explain
the spectral fine structure.

Absolute position of the SiV energy levels In Ref. [127], Gali and Maze discuss the
energetic position of the SiV ground and excited states in the band gap of the diamond
using a DFT calculation. In the ground state configuration, the eu orbital is filled with
four electrons. The DFT calculations predict, that the energy of the eu orbital lies in the
valence band (Fig. 2.7a). When one electron is promoted from the eu to the eg orbital,
i.e. the excited state configuration e3

u e
4
g, then the eu level rises slightly above the valence

band edge (Fig. 2.7b). The calculated transition energy between the excited and the
ground state is found to equal 1.72 eV (Fig. 2.7e), which is in good approximation with
the experimentally observed value of 1.68 eV (cf. Sec. 1.3).

The DFT calculations of Gali and Maze show, that the valence band states are strongly
perturbed by the presence of the SiV defect, giving rise to additional, localized a1g,VBM and
eg,VBM valence band states (Fig. 2.7a-d). These valence band orbital are filled with two
and four electrons, respectively. They are resonant to the SiV defect, i.e. one electron of
the valence band states can be excited to the eg orbital of the SiV center. When an electron
is excited from the a1g,VBM to the eg orbital, a hole is left in the a1g,VBM state, which
gives rise to a 2A1g,VBM configuration (Fig. 2.7c). Similarly, a hole drawn from the eg,VBM
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state yields a 2Eg,VBM configuration (Fig. 2.7d). Energetically, the 2Eg,VBM configuration
lies close to the 2Eu excited state of the SiV center (Fig. 2.7e). Since 2A1g,VBM, 2Eg,VBM
and 2Eg,SiV all have the same parity, a direct optical transition between them is parity
forbidden (for the parity selection rules, cf. Sec. 2.2.1). Hence, the two valence band
states can be considered as shelving states. The presence of a metastable shelving state
for the SiV center is supported by the experimental findings of Wang et al. [57] and Neu
et al. [56, 117].

1.
72

 e
V

1.
52

 e
V

valence band edge

eg

eu

eu

eg

eg,VBM

a1g,VBM

(a) (b)

a1g,VBM eg,VBM

eg eg

ground state excited state shelving state

(c)

2Eg,VBM

shelving state

(d) (e)

term scheme

2A1g,VBM

2Eg,VBM

2Eu,SiV

2Eg,SiV

2A1g,VBM
2Eu,SiV

2Eg,SiV

Figure 2.7: Ground (a), excited (b) and shelving state configurations (c,d) for the SiV
center as calculated by Gali and Maze [127]. Panel (e) shows the term scheme (black
lines indicating the degeneracy) and the transitions (red arrows), which connect these
configurations. The transitions indicated by thin red arrows are parity forbidden.

According to Gali and Maze, the parity selection rule, which forbids a direct transition
between 2A1g,VBM and 2Eg,VBM, is weakened when the SiV defect is subject to crystal
strain. In this case, a de-excitation via the shelving state becomes more pronounced,
giving rise to another optical transition at 1.59 eV. This theoretical value is in good
agreement with the energy of an additional optical transition at ∼ 1.52 eV, which was
discovered using spectroscopy on individual SiV centers in nanodiamonds [114]. As we
will show in Sec. 4.3, crystal strain can be present for the nanodiamonds employed in
Ref. [114]. It is remarkable, that this additional transition has not been observed in the
low strain samples, which we introduce in Sec. 3.2. It would be particularly interesting
to probe whether the 1.52 eV transition appears, when uniaxial stress is applied to the
sample. Unfortunately, this technique was not available during the present studies, hence,
we focus here on the zero phonon line transition between the 2Eu and 2Eg states of the
SiV center.
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Summary on the electronic states In summary, we have shown in this first part of
the chapter how group theory helps to unambiguously classify the symmetry properties
of a defect, and how it builds the mathematical foundations for the further analysis. As
an actual example, we have deduced the basis states for the SiV center. In the following
section, we introduce interaction terms which lift the degeneracy in ground and excited
state. For the calculation of the effect of these interactions, group theory will be helpful
in two respects: First, it simplifies the construction of the interaction matrices, as these
can be deduced from symmetry principles. Second, group theory predicts which matrix
elements in the interaction are zero from a symmetry point of view. We will start with
the discussion of this second point in the next section.

2.2 Interaction terms

We have seen in the previous chapter, that the electronic states of the SiV defect can be
constructed from group theoretical considerations, and that they transform under sym-
metry operations as the given irreducible representations. Connected to the irreducible
representations are basis functions, which show a corresponding functional dependence on
either the cartesian coordinates x, y, z or on the rotations Rx, Ry, Rz around the respec-
tive axes. In summary, we stated, that if the wave function of an electronic state has a
given functional dependence on these coordinates, then we can clearly identify to which
irreducible representation(s) it belongs.

The concept of irreducible representation and their basis functions is however not
exclusive to wave functions. Typically, interaction terms also show a functional depen-
dence on coordinates or rotations. Hence, we can assign a given interaction to irreducible
representations, too. We have encountered a particularly simple example at the end of
the previous section: The dangling bond orbitals, i.e. the SALCs, mix weakly with the
atomic orbitals of the Si impurity via the Coulomb interaction. The Coulomb interaction
is spherically symmetric – it is proportional to 1/r = 1/(x2+y2+z2) – hence it transforms
as the totally symmetric representation A1g.

We will be dealing primarily with matrix elements and selection rules for the interac-
tions in this section. The interactions are given by a perturbation Hamiltonian H that
couples two states |ψi〉 and |ψj〉 out of the basis set (2.27). The states |ψi〉 and |ψj〉 are
orthogonal eigenstates of a Hamilton operator H0, which describes the unperturbed SiV
center. We employ group theory to decide whether or not the states |ψi〉 and |ψj〉 are
coupled by the perturbative interaction H. This is done by investigating whether or not
the matrix element 〈ψj |H|ψi〉 vanishes by symmetry. We consider the perturbation H to
be invariant under all the symmetry operations of the group of the Schrödinger equation.
For such a perturbation, all symmetry operations commute with H. This commutation is
only possible if the matrix element 〈ψj |H|ψi〉 is a number, i.e. if it transforms as a scalar.
A constant scalar is invariant under all symmetry operations, as it does not depend on
any coordinates, and consequently, 〈ψj |H|ψi〉 must transform as the fully symmetric rep-
resentation A1 (or A1g in the D3d point group). Thus, if 〈ψj |H|ψi〉 does not transform as
A1g, it vanishes. As we stated above, the perturbation H is expressed as one irreducible
representation or as a linear combination of irreducible representations. Therefore, the
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matrix elements we calculate involve the direct product of two (or more) representations.
We will briefly outline the theory behind the direct product (Sec. 2.2.1) and list the al-
gebra on how to calculate direct products. In Secs. 2.2.2 - 2.3.3, we calculate actual
interactions present for the SiV defect in order to construct a complete model to analyze
the spectroscopic experiments in Chap. 4.

2.2.1 Direct products of groups and representations

We have already introduced the basis functions |ψi〉 and |ψj〉 which we assume to be
elements of the basis sets (2.27). It is important to stress that these states are orthonormal
to each other, i.e. their scalar product 〈ψi|ψj〉 = δij . In general, it can be shown that two
basis functions, which belong either to different irreducible representations or to different
columns (rows) of the same representation, are orthogonal [155].

We first define the direct product of two groups: Let GA = {A1, A2, A3, . . . AhA} and
GB = {B1, B2, B3, . . . BhB} be two groups such that that all operators Ai commute with
all operators Bj . Then, the direct product of GA and GB is defined as the set

GA ⊗ GB = {A1B1, . . . , AhAB1,

...
. . .

...
A1BhB , . . . , AhABhB}.

(2.28)

It can be shown that, if GA and GB form groups, then also the product GA⊗GB ≡ GC
forms a group. An example for the multiplication of two groups is the dihedral point
group D3d which results from a multiplication D3 ⊗ i, where i is the inversion group
which consists of the identity element and the inversion.

In addition to direct product groups, we define the direct product of two representa-
tions in terms of the direct product of two matrices Γ(A), Γ(B). For the direct product of
two matrices Γ(A) ⊗ Γ(B) = Γ(C) every element of Γ(A) is multiplied by every element of
Γ(B). Thus, the direct product matrix Γ(C) has a double set of indices

Γ
(A)
ij ⊗ Γ

(B)
kl = Γ

(C)
ik,jl, (2.29)

and if Γ(A) is a (2 × 2) matrix and Γ(B) a (3 × 3) matrix, then Γ(C) will have (6 × 6)
entries. The direct product of two representations taken from groups GA and GB forms
a representation of the direct group [155]. Furthermore, it can be shown that the direct
product of two irreducible representations of groups GA and GB yields an irreducible repre-
sentation of the direct product group. Hence, all irreducible representations of the direct
product group can be generated from the irreducible representations of the original groups
before they are joined. We can also take direct products between two representations of
the same group. The direct product of two representations of the same group is also a
representation of that group, though in general, it is a reducible representation [155].

Finally, we introduce the direct product of the characters of irreducible representations.
It is straightforward to prove that the characters χ(C) for the irreducible representations
Γ(C) in the direct product group GC are given by multiplication of the characters χ(A), χ(B)
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of the original groups GA,GB according to

χ(C)(AkBl) = χ(A)(Ak)χ
(B)(Bl). (2.30)

When we construct the direct product between two representations Γ(1),Γ(2) of the same
group, then the characters of the product group are obtained as

χΓ(1)⊗Γ(2)
(R) = χΓ(1)

(R)χΓ(2)
(R). (2.31)

In general, if we calculate the direct product between two irreducible representations
of a group, the resulting direct product representation will be reducible. If it is reducible,
the characters for the direct product χ(λ)χ(µ) can then be written as a linear combination
of the characters χ(ν) for irreducible representations of the group, and we can decompose
the reducible representation into a sum of irreducible ones:

χ(λ)(R)χ(ν)(R) =
∑
ν

aλµνχ
(ν)(R). (2.32)

The coefficients for this sum aλµν denote, how often the irreducible representation χ(ν)(R)
occurs in this sum, and they can be written in analogy to Eq. (2.19) as

aλµν =
1

h

∑
Ck

Nkχ
(ν)(Ck)

[
χ(λ)(Ck)χ(µ)(Ck)

]
, (2.33)

where Ck denotes the classes of symmetry operations with Nk elements in class Ck. From
this decomposition formula for direct products, we can deduce rules for the multiplication
of irreducible representations (Tab. 2.8).

Table 2.8: Computational rules for the decomposition of direct products relevant for the
D3d point group.

representations:
A⊗A = B ⊗B = A A⊗B = B
A⊗ E = B ⊗ E = E A⊗ T = B ⊗ T = T

subscripts, superscripts:
1⊗ 1 = 2⊗ 2 = 1 1⊗ 2 = 2
g ⊗ g = u⊗ u = g u⊗ g = u

twofold degenerate representations:
Eg ⊗ Eg = Eu ⊗ Eu = A1g +A2g + Eg
Eg ⊗ Eu = A1u +A2u + Eu

Having defined the computational rules for direct products, we return to the calcula-
tion of matrix elements for quantum mechanical problems. The matrix element 〈ψj |H|ψi〉
can be computed by integrating the scalar product over all space:

〈ψj |H|ψi〉 ∼=
∫
R3

ψ∗j (r)Hψi(r) d3r (2.34)
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This matrix element must transform as a constant (or a scalar) c if we apply one or
multiple symmetry operations PR of the group G of Schrödinger’s equation, and c must
be independent of PR:

PR〈ψj |H|ψi〉 = c · 〈ψj |H|ψi〉, ∀PR ∈ G (2.35)

For all groups, the only representation which satisfies Eq. (2.35) is the totally symmetric
representation A1, because it has the same character (χ(R) = 1) for all operations R.
Conversely, if the matrix element is not invariant under the symmetry operations which
form the group of Schrödinger’s equation, then the matrix element must vanish.

As we stated above, the actual calculation matrix element 〈ψj |H|ψi〉 is replaced by the
direct product of the three respective representations for ψi, ψj and H. We assume that
the wave functions ψi, ψj transform as partners α and α′ of irreducible representations
Γ(i) and Γ(j), and that the operator H transforms as a third representation Γ(k):

〈ψj |H|ψi〉 = Γ(j) ⊗ Γ(k) ⊗ Γ(i). (2.36)

If the direct product Γ(k) ⊗ Γ(i) is orthogonal to Γ(j), then the matrix matrix element
vanishes. It is equivalent to say: If Γ(j)⊗Γ(k)⊗Γ(i) does not contain the fully symmetric
representation A1, then the matrix element vanishes.

Before we address the actual, and slightly more complex, interactions present for SiV
defect, we show two simple examples. For the first example we return to the Coulomb
interaction HCoulomb which mixes the atomic orbitals of the Si impurity with the dangling
bond SALCs (cf. previous section). As we have stated above, the Coulomb interaction
transforms as the irreducible representation A1g. From Tab. 2.8, we recognize the rep-
resentation A1g to leave all representations invariant under a direct product. Thus, the
application of HCoulomb on the state ψi which transforms as the irreducible representation
Γ(i) is equivalent to the direct product A1g ⊗ Γ(i) = Γ(i), and we obtain

〈ψj |HCoulomb|ψi〉 ∼= Γ(j) ⊗A1g ⊗ Γ(i) = Γ(j) ⊗ Γ(i). (2.37)

If the basis functions ψ(i), ψ(j) belong to different irreducible representations, i.e. Γ(i) 6=
Γ(j), then they are orthogonal and the matrix element in Eq. (2.37) vanishes. It is equal
to say, if Γ(i) 6= Γ(j), then the direct product in Eq. (2.37) does not contain the totally
symmetric representation A1g. This result implies that the Coulomb interaction only
mixes orbitals which belong to the same irreducible representation, e.g. the pz orbital of
the Si impurity couples to the a2u orbital of the dangling bond representation.

The second example, which we consider, involves the optical dipole transition between
the eg and eu states of the SiV center. The perturbation to the defect in a dipole transition
is caused by the electric field amplitude E0 of the incident or radiated light and the electric
dipole p̂ = −er̂ of the defect [1]:

Hdipole = −p̂ · E0 = e (x̂Ex + ŷEy + ẑEz) . (2.38)

The electric field amplitude E0 is a constant external property which does not influence the
symmetry of the defect system. The electric dipole p̂ = (p̂x, p̂y, p̂z) acts like an operator
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with respect to the group of Schrödinger’s equation, thus we are interested in the matrix
elements 〈p̂〉 = e〈ψj |r̂|ψi〉. According to the basis functions for the D3d character table,
the dipole operator transforms as irreducible representations A2u+Eu, where A2u accounts
for the p̂z-component and Eu for the pair (p̂x, p̂y). We note that both representations have
odd parity, hence they only couple states of different parity. For example, according to
Tab. 2.8 for ψi = eu we obtain

p̂x|ψi〉 = p̂x|eu〉 ∼= Eu ⊗ Eu = A1g +A2g + Eg, (2.39)

and only if the final state transforms as either A1g, A2g or Eg, the matrix element
〈ψj |p̂x|ψi〉 can be different from zero. For the actual case of the SiV center, the ground
and excited state have different parity, so this selection rule is readily fulfilled. We de-
nominate the values µij = 〈ψj |p̂|ψi〉 the dipole moment for the transition ψi → ψj , thus
the Hamilton operator for the dipole transition has the expectation value

〈Hdipole〉ij = −〈ψj |p̂|ψi〉 · E0 = −µij · E0 (2.40)

We examine the selection rules for optical dipole transitions in greater detail in Sec. 2.3.
As the ground and excited states for the SiV center are two-fold degenerate (without
taking into account the spin degree), the dipole operators p̂x, p̂y, p̂z are expressed as 2×2-
matrices. The direct product rules which we employed above will also be useful for the
determination of these matrices, and the resulting dipole moments offer an important
insight in the polarization properties of the SiV fluorescence.

As a summary, we have learned in this section, that the correspondence between
electronic states, interactions and irreducible representation allows the simplification of
matrix element calculations. After this general introduction to direct products and their
calculation, we now determine the relevant interaction terms which account for the lifting
of the degenerate states and therefore cause the spectral fine structure of the SiV center.
The first step in this calculation will always be the question whether the corresponding
direct products contain the totally symmetric representation.

2.2.2 Spin-orbit coupling

As the first interaction which lifts the degeneracy among the ground and excited states, we
introduce the spin-orbit (SO) coupling. So far, we have focussed primarily on the orbital
part of the wave function. In the group theoretical analysis of Sec. 2.1.4, we showed
that the negative charge stated of the SiV center is a spin S = 1/2 system. Spin-orbit
interaction is a relativistic effect due to the interaction of a single electron with its orbital
motion in the potential φ of a nucleus. The interaction Hamiltonian is given by [156]

HSO =
~

4c2m

(
∇̂V × p̂

)
·
Ŝ

~
, (2.41)

where V = eφ is the potential energy of the electron in the magnetic field created by the
nucleus, m is the mass of the electron and p̂ is the momentum of the electron (not to be
confounded with the dipole operator above). The spin operator Ŝ is expressed in terms
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of Pauli matrices,

Ŝx = ~
[
0 1
1 0

]
, Ŝy = ~

[
0 −i
i 0

]
, Ŝz = ~

[
1 0
0 −1

]
. (2.42)

For a free atom, the SO interaction is usually completely invariant under any rotation, i.e.
it belongs to the full rotation group. In a lattice, the crystal field breaks this symmetry,
therefore, we now make use of group theory to describe HSO in a finite symmetry. We first
derive which irreducible representation HSO belongs to, then we deduce the non-vanishing
matrix elements from the direct product formalism (Sec. 2.2.1).

The nuclear potential φ has a spherical symmetry, hence it transforms as the totally
symmetric representation A1g. As a result, the gradient of the potential ∇̂φ transforms
as a vector with the components

∇̂V = e


∂
∂xφ

∂
∂yφ

∂
∂zφ

 ≡

∂x

∂y

∂z

 ∼=

x̂

ŷ

ẑ

 . (2.43)

The similarity relation in Eq. (2.43) results from the fact, that the gradient along the
x, y, z-directions transforms similar to the x, y, z-coordinates themselves. With this simi-
larity, we identify the x, y-components of the potential energy to transform as irreducible
representation Eu and the z-component as A2u. The quantum mechanical momentum
operator p̂ in position space takes the partial derivatives with respect to the spatial co-
ordinates x, y, z, thus, the momentum operator also transforms as a vector. Taking the
vector product between the nuclear potential gradient and the momentum, we obtain

∇̂V × p̂ =


∂x

∂y

∂z

×

p̂x

p̂y

p̂z

 ∼=

ŷp̂z − ẑpy
ẑpx − x̂p̂z
x̂py − ŷpx

 =


L̂x

L̂y

L̂z

 . (2.44)

This yields the SO interaction Hamiltonian1 HSO
g,e = −λg,e

2 L̂ · Ŝ as we known it from
atomic physics, where L̂ = (L̂x, L̂y, L̂z) is the orbital angular momentum operator and
λg,e is the SO coupling constant for ground and excited state, respectively. When the SO
interaction is included, the wave functions consist of a spatial part and a spin part. This
means that the irreducible representations that classify the states in a solid must depend
on the spin angular momentum. As spin has half-integer angular momentum, it can be
shown that it changes the sign under a 360◦ rotation. This is commonly accomplished
with the concept of double groups, in which a new group element (the 360◦ rotation) is
added to the existing symmetry elements. Double groups are extensively treated in group
theory textbooks (e.g. in Ref. [155, page 337]). For the present discussion, it is sufficient
to note that we can construct the matrix elements for L̂ and Ŝ separately in terms of

1Note, that we introduce a minus sign for HSOg,e ; this sign accounts for the fact that we are treating an
electron hole instead of an actual electron [157].
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2 × 2-matrices, which we then combine using a direct product (see below). The matrix
elements for the spin are given in the {ms = +1/2,ms = −1/2} = {↑, ↓} basis by the
Pauli matrices (2.42).

Therefore, we search the matrix elements of the orbital angular momentum opera-
tor which are of the form 〈eg|L̂|eg〉 and 〈eu|L̂|eu〉. The operator L̂ = (L̂x, L̂y, L̂z) gen-
erates rotations (Rx, Ry, Rz), therefore it transforms as the irreducible representations
(E

(x)
g , E

(y)
g , A2g). To identify the non-vanishing matrix elements of its components, we

check whether the corresponding direct products contain the totally symmetric repre-
sentation A1g. As a first rule, we state that L̂ only couples states of the same parity,
i.e. within the ground state or excited state manifold. For example, the matrix element
〈eux|L̂x|eux〉 transforms as the direct product (cf. Tab. 2.8

E(x)
u ⊗

(
E(Rx)
g ⊗ E(x)

u

)
= E(x)

u ⊗
(
A1u +A2u + E(x)

u

)
= Eg + Eg +A1g +A2g + Eg ⊃ A1g,

and the matrix element 〈eux|L̂x|eux〉 does not vanish for symmetry reasons. While group
theory identifies which elements are zero, it does not tell the value of those matrix elements
which are non-zero. For this task, we employ another strategy, which we present for the
eu excited states. The ground states only differ from the excited states by their response
to symmetry operations including the inversion, and those operations leave the matrix
elements invariant. The excited states eux, euy have similarities to the px, py orbitals of an
atom (cf. page 45); the pz orbital would belong to the A2u representation, which however
is far in energy. The p-orbitals of an atom are combined to form the spherical harmonics
Y ml
l , with l = 1 and ml = −1, 0, 1, thus

Y ml
l =


Y +1

1 = − 1√
2
(px + ipy)

Y 0
1 = pz

Y −1
1 = 1√

2
(px − ipy)

(2.45)

In analogy to the spherical harmonics, we introduce the states e+ = − 1√
2
(ex + iey)

and e− = 1√
2
(ex − iey), where we omit the subscript u, as we will talk exclusively about

the excited state. According to the similarity to the spherical harmonics, these states are
eigenstates of the L̂z-operator as L̂ze± = ±~ · e± and L̂za2u = 0 · a2u. Hence, we already
know the matrix elements of L̂z in the e± basis:

[L̂z |e+〉 |e−〉
〈e+| 1 0

〈e−| 0 −1

]
. (2.46)

The off-diagonal terms are zero because 〈e−|L̂z|e+〉 = ~ 〈e−|e+〉 = 0 as e+ and e− are
orthogonal. The bases {e+, e−} and {ex, ey} are connected by a simple transformation T ,(

e+

e−

)
=

[
−1 −i
1 −i

]
︸ ︷︷ ︸

T̂

(
ex
ey

)
, (2.47)
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hence, the operator L̂(ex,y)
z is transformed according to L̂(ex,y)

z = T̂−1L̂
(e±)
z T̂ . In addition

to L̂z, we define the ladder operators L̂± = L̂x ± iL̂y, where

L̂+Y
ml
l = ~

√
(l −ml)(l +ml + 1) Y ml+1

l

L̂−Y
ml
l = ~

√
(l +ml)(l −ml + 1) Y ml−1

l .

The operators L̂± couple the e± states to the a2u state, since L̂+e− = ~
√

2a2u = L̂−e+,
but they do not cause any direct coupling between e+ and e−. As a result, the matrix
elements of L̂± in the e± basis are all zero – although from group theory, they would be
allowed to be non-zero. Consequently, the operators L̂x and L̂y also vanish in the ex and
ey basis. Together, the orbital angular momentum operators are given by (with ~ set to
1)

[L̂x |egx〉 |egy〉
〈egx| 0 0

〈egy| 0 0

] [L̂y |egx〉 |egy〉
〈egx| 0 0

〈egy| 0 0

] [L̂z |egx〉 |egy〉
〈egx| 0 i

〈egy| −i 0

]
. (2.48)

It is an important result that both the operator L̂x and L̂y are identical to zero. With
it, the SO Hamiltonian simplifies to

HSO
g,e = −λg,e

2
L̂zŜz = −λg,e

2

[
0 i
−i 0

]
⊗
[
1 0
0 −1

]
, (2.49)

where the direct product between L̂z and ŜZ accounts for the spin double group. Apart
from the coupling constant λg,e, the SO interaction is the same for ground and excited
state, thus using the basis vectors (2.27), we obtain for the ground state



HSO
g |egx ↑〉 |egx ↓〉 |egy ↑〉 |egy ↓〉
〈egx ↑ | 0 0 −iλg 0

〈egx ↓ | 0 0 0 iλg

〈egy ↑ | iλg 0 0 0

〈egy ↓ | 0 −iλg 0 0

, (2.50)

and for the excited state, we simply replace the subscripts.
Once we know how the SO interaction acts on the basis states, we can determine

its effect on the SiV levels. In perturbation theory, we calculate the eigenvalues and -
vector of the perturbation Hamiltonian in the basis (2.27) of the unperturbed system.
Diagonalizing the SO Hamiltonian (2.50) yields two two-fold degenerate eigenvalues ±λ
with the eigenvectors

+ λ→
{
|e+ ↑〉 = − 1√

2
(|ex ↑〉+ i|ey ↑〉)

|e− ↓〉 = 1√
2

(|ex ↓〉 − i|ey ↓〉)
(2.51a)

− λ→
{
|e+ ↓〉 = − 1√

2
(|ex ↓〉+ i|ey ↓〉)

|e− ↑〉 = 1√
2

(|ex ↑〉 − i|ey ↑〉) ,
(2.51b)
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where we omitted again the subscripts for ground and excited state. Hence, the formerly
four-fold degenerate ground and excited state each splits into two states (Fig. 2.8). The
state splitting is proportional to the coupling constant λg,e.

excited 
state

ground 
state

|eg+ "i, |eg� #i

|eg+ #i, |eg� "i

|eu+ #i, |eu� "i

|eu+ "i, |eu� #i

�g

�e

H0 H0 + HSO

en
er

gy

Figure 2.8: Spin-orbit splitting of the ground and excited state. For both manifolds, the
formerly four-fold degenerate ground and excited state each splits into two states. The
resulting eigenvectors under the perturbation of HSO are defined in Eq. (2.51).

We expect a stronger coupling in the excited state for the following reason: The SO
interaction depends on the gradient of the Coulomb potential of the nucleus. In the case
of the SiV center, this potential is created by the Si nucleus. We have seen in Sec 2.1.4,
the eu excited state mixes with the atomic orbitals of the Si impurity, whereas the ground
state shows no such coupling. Due to this mixing, the probability of finding the electron
hole in proximity to the Si nucleus is higher for the excited state than for the ground
state. Therefore, the excited state is more susceptible to the nuclear potential gradient
and spin orbit mixing is expected to be larger (cf. Sec. 4.1.4).

It will be convenient to present the eigenvectors in a graphical way, especially when
we add multiple perturbations. Therefore, we introduce probability distribution graphs
for them. Each eigenvector |ψ(i)

g,e〉 can be expressed as a linear combination of the basis
vectors (2.27), i.e. for an eigenstate of the ground state manifold we have

|ψ(i)
g 〉 = α̃|egx ↑〉+ β̃|egx ↓〉+ γ̃|egy ↑〉+ δ̃|egy ↓〉, (2.52)

with α̃, . . . , δ̃ being complex coefficients for this superposition. For example, for the eigen-
state |e+ ↑〉, we have α̃ = −1/

√
2 and γ̃ = −i/

√
2. We graphically represent an eigenstate

by plotting the absolute squares |α̃|2, . . . , |δ̃|2, which corresponds to the probability of a
given state to be detected in the corresponding basis states. The states are normalized,
such that |α̃|2 + . . .+ |δ̃|2 = 1. We consistently label the four ground states of the SiV cen-
ter with |1〉, |2〉, |3〉, |4〉 and the excited states with |A〉, |B〉, |C〉, |D〉, where this labeling
is ascending in energy. Figure 2.9 shows the ground state eigenvectors |1〉, . . . , |4〉 under
the influence of spin orbit coupling.



58 CHAPTER 2. THEORETICAL DESCRIPTION

|α̃|2 |β̃|2 |γ̃|2 |δ̃|2

|ex ↑〉 |ex ↓〉 |ey ↑〉 |ey ↓〉
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|α̃|2 |β̃|2 |γ̃|2 |δ̃|2

|ex ↑〉 |ex ↓〉 |ey ↑〉 |ey ↓〉

|α̃|2 |β̃|2 |γ̃|2 |δ̃|2

|ex ↑〉 |ex ↓〉 |ey ↑〉 |ey ↓〉
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|ex ↑〉 |ex ↓〉 |ey ↑〉 |ey ↓〉

|1〉 |2〉 |3〉 |4〉

Figure 2.9: Eigenvectors |1〉, |2〉, |3〉, |4〉 of the SiV ground state under the perturbation
of SO coupling. For each eigenstate, we plot the absolute squares |α̃|2, . . . , |δ̃|2, which
corresponds to the probability of a given state to be detected in the basis states (2.27).

It is straightforward to express the eigenvectors in the “eigenbasis” |e± ↑, ↓〉 of the SO
Hamiltonian. The two bases are related by a 4× 4 transformation matrix, which is equal
to the direct product T̂ ⊗ I2 of the matrix T̂ of Eq. (2.47) and the 2× 2 identity matrix
I2. We obtain the eigenvector in a linear combination of the type

|ψ(i)
g 〉 = α|eg+ ↑〉+ β|eg+ ↓〉+ γ|eg− ↑〉+ δ|eg− ↓〉. (2.53)

Displaying the SO eigenvectors in their eigenbasis is trivial, as shown in Fig. 2.10. We
see in Chap. 4, that the SO coupling remains the strongest perturbation throughout all
experiments, therefore we always plot the eigenstates in the |e± ↑, ↓〉 basis of the SO
Hamiltonian.

0

0.5

1

Figure 2.10: Eigenvectors |1〉, |2〉, |3〉, |4〉 of the SiV ground state under the perturbation
SO coupling in the basis states |e± ↑, ↓〉. The presentation of the states is equal to Fig. 2.9.

From Figs. 2.9 and 2.10, we infer that there is no spin mixing due to the SO coupling.
This particularity is due to the absence of L̂xŜx and L̂yŜy in the SO operator (2.41)
which, in turn, results from the vanishing L̂x, L̂y terms for the orbital angular momentum
operator L̂. This important result explains the observation of spin-tagged fluorescence
in Sec. 4.2. We conclude that SO coupling is – in the special case of the SiV center – a
purely orbital interaction. In the following section, we investigate another purely orbital
interaction, the Jahn-Teller effect.
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2.2.3 The Jahn-Teller effect

We have seen in Sec. 2.1.4 that both the ground and excited states of the SiV center are
energetically degenerated. This degeneracy is lifted partly by the spin-orbit coupling. For
the following discussion, we however ignore the SO-interaction, and introduce another
effect which also lifts the orbital degeneracy.

In 1936, following a hypothesis of Lev Landau, Hermann Jahn and Edward Teller
proved that a molecule in an orbitally degenerate electronic state would be inherently
unstable with respect to distortions of its nuclear configuration which lower the orbital
symmetry [158]. The only two exceptions of this theorem are linear molecules, where no
orbital degeneracy can be lifted, and Kramer’s degeneracy for spins.

The Jahn-Teller effect follows from a coupling of the electronic states to vibration
modes of the nuclear configuration. Using group theory, we can assign the vibrational
modes to irreducible representations and employ the direct product computation rules
(Tab. 2.8) to verify which electronic states they couple to. To identify the modes, we
employ the following procedure: First, we define a trivial representation for the vibration
modes using the atomic displacements from the equilibrium positions of the atoms. This
trivial representation is then decomposed into a linear combination of irreducible repre-
sentation, as we have done for dangling bond representation in Sec. 2.1.4. Finally, we
write the modes in normal coordinates Qk, which are linear combinations of the atomic
displacements.

To construct the trivial representation, we denote the position of each atom using three
mutually orthogonal unit vectors, i.e. atom i has the coordinates xi, yi, zi (Fig. 2.11a). This
leaves us with 3N degrees of freedom, which is why we term this trivial representation
Γ(3N). For the SiV center, we take into account the six neighboring carbon atoms and the
Si impurity, thus N = 7. As the next step, we would track how each of the 3N = 21 coor-
dinates changes under each respective symmetry operation. This would require a 21× 21
matrix for each symmetry operation and is a very tedious procedure. However, as we have
seen for the decomposition of the dangling bond representations (2.16), it is sufficient to
know the characters χ(3N)(R) for the trivial representation under the symmetry operation
R.

To determine the characters for a given operation R, the following simple rules have
been shown. If an atom is moved to another position under R, and with it its unit vectors
xi

R−→ xj , with i 6= j, then the coordinates do not contribute to the character χ(R). Thus,
we only have to investigate the “χ per unshifted atom” [154]: If a coordinate of an atom i

is invariant under a symmetry operation R, i.e. xi
R−→ xi, then we add 1 to the character

χ(R). If the coordinate is reversed xi
R−→ −xi then, we subtract 1 from χ(3N)(R). A

special case are the C3 and S6 rotations, because they transform the unit vectors xSi, ySi
of the Si impurity into linear combinations of each other. The characters χ(3N)(C3) and
χ(3N)(S6) can be acquired from the cartesian transformation matrices (2.1). We note,
that the characters for all elements of a class are identical.

We apply this procedure to every one of the N atoms and count the contributions of
each unshifted atom to the characters. For example, the reflection σ′′d (Fig. 2.11b) leaves
the x and z coordinates of three atoms (two neighboring carbon atoms and the Si atom)
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Figure 2.11: The 3N degrees of freedom for the Si-impurity and all next-neighboring
carbon atom, denoted by unit vectors xi, yi, zi (panel a). When we apply the symmetry
operation σ′′d (panel b), only the Si atom, and the carbon atoms 1 and 1′ are unshifted
and contribute to the character. For these three atoms, the x and z unit vectors stay
invariant, whereas the y vector is reversed.

invariant, thus we add 6 to χ(σ′′d). The y coordinates of the three atoms are reversed,
hence we again subtract 3 from χ(σ′′d), and obtain χ(σ′′d) = 3. We list the characters
χ(3N)(R) in the second row of Tab. 2.9.

Clearly, the trivial representation is reducible, and we can apply the decomposition
formula (2.19) to find the coefficients ai, which denote how often irreducible representation
Γ(i) is included in Γ(3N) (Tab. 2.9). We obtain for the 3N degrees of freedom,

Γ(3N) = 2A1g +A2g + 3Eg +A1u + 3A2u + 4Eu. (2.54)

The non-linear molecule or defect has 3 translational and 3 rotation degrees of freedom.
These 6 contributions are included in the decomposition (2.54), and in order to find the
vibrations, we need to subtract them from (2.54). The translations in x, y, z direction
transform as A2u +Eu and the rotations as A2g +Eg, as we can infer from the generating
functions in the D3d character table 2.3. Hence, for the 3N − 6 = 15 vibrational degrees
of freedom, we obtain

Γ
(3N)
vib = 2A1g + 2Eg +A1u + 2A2u + 3Eu. (2.55)

Before we address the actual directions of these modes, we check which of them couples to
the eg and eu states of the SiV. We assume, that Jahn-Teller effect only couples states from
the same manifold, i.e. ground states do not couple to excited states. According to Jahn
and Teller, we verify whether the totally symmetric representation A1g is contained in the
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Table 2.9: The character table for the 3N representation. The decomposition into irre-
ducible representations is completely analogous to Tab. 2.4.

D3d E 2C3 3C2 i 2S6 3σd ai = 1
h

∑
iNk χ(i) χ

(3N)

χ(3N) 21 0 -1 -3 0 3

Nk 1 2 3 1 2 3 (h = 12)

Nk χ
A1g

χ(3N) 21 0 -3 -3 0 9 1
12(21− 3− 3 + 9) = 2

Nk χ
A2g

χ(3N) 21 0 3 -3 0 -9 1
12(21 + 3− 3− 9) = 1

Nk χ
Eg χ(3N) 42 0 0 -6 0 0 1

12(42− 6) = 3

Nk χ
A1u

χ(3N) 21 0 -3 3 0 -9 1
12(21− 3 + 3− 9) = 1

Nk χ
A2u

χ(3N) 21 0 3 3 0 9 1
12(21 + 3 + 3 + 9) = 3

Nk χ
Eu χ(3N) 42 0 0 6 0 0 1

12(42 + 6) = 4

direct product Eg ⊗ Γ
(3N)
vib ⊗ Eg = Γ

(3N)
vib ⊗ [Eg]

2 for the ground state, and Γ
(3N)
vib ⊗ [Eu]2

for the excited state. The square [Eu]2 of the irreducible representations of the electronic
states is according to Tab. 2.8 given by

[Eg]
2 = [Eu]2 = A1g +A2g + Eg. (2.56)

The only directs which contains the totally symmetric representation A1g are therefore

A1g ⊗ [Eg]
2 = A1g ⊗ [Eu]2 = A1g +A2g + Eg (2.57)

Eg ⊗ [Eg]
2 = Eg ⊗ [Eu]2 = A1g +A2g + 3Eg. (2.58)

Hence, the only relevant vibrational modes which couple to the electronic states of the
SiV center transform as A1g and Eg. The A1g mode is the so-called breathing mode, for
which all atoms vibrate along their bond axis. However, this mode does not lower the
symmetry of the electronic state, and therefore we do not consider it further.

The final step is now to write these modes symmetry adapted coordinates. These
coordinates are the normal coordinates Qx,y, which are linear combinations of the unit
vectors xi, yi, zi. Having expressed the vibrational modes in dependence of Qx,y, we call
them normal modes. The calculation of normal modes is performed using a projection
technique similar to Sec. 2.1.4 and is not explicitly shown here. Jäger derives the normal
modes in Ref. [159], and we display them in Fig. 2.12. To distinguish the modes from
electronic states, we denote their representations with the greek letter εg instead of Eg
from now on. For each of the two εg representations, there are two degenerate, normal
modes Qx,y.

To illustrate how the electronic states couple to the Qx,y-vibrations according to the
Jahn-Teller (JT) effect, we partly follow the argumentation of O’Brien and Chancey [160].
It is common for JT systems to employ the Born-Oppenheimer- or adiabatic approxima-
tion: The electron, which has considerable smaller mass than the nuclei, follows the motion



62 CHAPTER 2. THEORETICAL DESCRIPTION

Q(1)
x Q(1)

y Q(2)
yQ(2)

x✏(1)g ✏(2)g

Figure 2.12: Vibrational normal modes transforming as the Eg irreducible representation.
To distinguish the modes from electronic states, we denote the representations with the
greek letter εg instead of Eg.

of the nuclei adiabatically. As a result, the Born-Oppenheimer approximation assumes
that the state function may be written as the product of electronic and nuclear wave
function [161]. The nuclei create an effective potential (the so-called adiabatic potential
energy surface) in which the electrons move. First, we consider a simple case: If there
was only one mode with normal cordinate Q coupled to a two-fold degenerate electronic
state, then the potential energy due to JT interaction would be

HJT
Q =

1

2
Q2 + F

[
Q 0
0 −Q

]
, (2.59)

where neglected the kinetic energy contribution. The term 1
2Q

2 accounts for the vibronic
potential of the nuclear configuration (in an harmonic oscillator approximation) and F
denotes the strength of the JT coupling. If we had no JT-coupling (F = 0), then the
HJT

Q operator would be a simple harmonic oscillator potential, which we would draw as
a parabola with its minimum at Q = 0. Hence, there would be two degenerate wave
functions in a symmetric configuration with their energy minima Emin = 0 at Q = 0. For
F 6= 0, the Hamiltonian (2.59) can be separated into two equations:

HJT
1 mode =

1

2
Q2 ± FQ. (2.60)

These harmonic oscillator potentials describe two parabolas with their minimal energies
Emin = −F 1/2 situated at Q = ±k. Hence, the JT-interaction breaks the symmetry of
the electronic system, it results in a lower symmetry configuration with two displaced
minima, and it lowered the total energy. In this particular example, the wave functions
are still degenerate – both have the same minimum energy.

Now, we return to the E⊗ε coupling: The JT interaction with the normal modes Qx,y
is usually developed as a series of powers of Qx,y. Developing HJT to Q2

x,y, we obtain the
quadratic E ⊗ ε Hamiltonian [162]

HJT =
1

2
K(Q2

x +Q2
y) + F

[
Qx Qy
Qy −Qx

]
+G

[
(Q2

x −Q2
y) 2QxQy

2QxQy −(Q2
x −Q2

y)

]
, (2.61)
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where F denotes the linear vibronic coupling coefficient, G the quadratic coefficient and K
the elastic force constant. The solution of Eq. (2.61) in polar coordinates ρ =

√
Q2
x +Q2

y

and φ = arctan(Qy/Qx) is given by [162]

E(ρ, φ) =
1

2
Kρ2 ± ρ

[
F 2 +G2ρ2 + 2FGρ cos(3φ)

]1/2
. (2.62)

For G = 0, have a linear vibronic coupling similar to the example of one vibrational
mode (Eq. 2.59) and the resulting adiabatic potential energy surface is a “mexican-hat”
potential, depicted in Fig. 2.13a (with K = 14.5 and F = −0.74 as given in [162] for the
NV center). In this potential there is a continuous number of minima in the coordinate
space (Qx, Qy) and there is still some energetic degeneracy which can be lifted by another
interaction, e.g. spin-orbit coupling. In contrast to the interaction with a single vibrational
mode, there is now a coupling between the degenerate electronic states due to the off-axis
terms in the linear coupling matrix in Eq. (2.61).

Qx Qy

E

(a)

Qx Qy

E

(b)

Figure 2.13: Adiabatic potential energy surface which results from the Jahn-Teller Hamil-
tonian (2.61) for (a) linear Jahn-Teller coupling, a “mexican-hat” potential, and (b) for
quadratic coupling. We employ the parameters K = 14.5 and F = −0.74 as given in [162]
for the NV center.

The addition of a quadratic coupling (G 6= 0) results in three distinct minima in the
adiabatic potential surface (Fig 2.13b), situated at multiples of φ = 120◦. The three
wells are due to the three tetragonal distortions along the three cubic axes of a crystal
[160]. Energetically, these minima are separated by a barrier. If the kinetic energy of an
electronic system is too low to overcome this barrier, then the wave function is strongly
localized in one of the three minima. We then think of equally probable, non-interacting
ground states with vanishing overlap [160], and we speak of a static Jahn-Teller system.
When the temperature of the system is raised, the system jumps from well to well, and
an averaging over the different ground states is observed.
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If the barrier between the wells is small, then there is a significant tunnel probability
from one minimum to another. As a result, the wave functions will be delocalized over
the different wells. We call this situation a dynamic Jahn-Teller effect. If we only consider
the linear JT coupling (Fig. 2.13a), then the system is by itself dynamic as there are no
distinct minima and the wave function will spread over the coordinate space. We limit
the discussion in this work to the linear JT coupling, as it is usually stronger than the
quadratic case.

Before we address the dynamic, linear JT coupling in more detail, we already state
an important consequence: With the electronic wave function delocalized over the co-
ordinate space (Qx, Qy), the electronic properties are changed as well. One example is
the coupling of the orbital part of the wave function to an external magnetic field, which
we investigate in more detail in Sec. 2.2.6. The interaction strength is defined by the g-
factor (or g-tensor depending on the symmetry of the problem). The Zeeman interaction
is strictly electronic and does not depend directly on the normal modes (Qx, Qy) of the
nuclear configuration. However, the electronic wave functions show a different response
to the external field, depending on where they are localized in the nuclear configuration.
Hence, the delocalization of the wave functions due to the dynamic Jahn-Teller effect
influences indirectly the g-factor (and other properties). Ham introduces reduced matrix
elements (later called “Ham”-factors) to account for this indirect coupling [163]: In the
adiabatic approximation, we separated the total wave function Ψ = u(r,Q)ξ(Q) into a
purely electronic part u(r,Q), which depends directly on the electronic coordinates r and
parametrically on the vibrational coordinates Q, and into a vibrational part ξ(Q) with
depends only on the nuclear configuration. The reduced matrix element of an operator
V (r) is then given as [160]∫

ξ∗(Q) 〈u(r,Q)|V (r)|u(r,Q)〉 ξ(Q) dQ

〈u(r,Q0)|V (r)|u(r,Q0)〉 , (2.63)

where u(r,Q0) is the uncoupled electronic wave function. This reduced matrix element
can be seen as an averaging of the electronic operation V (r) over the vibrational config-
urations. When there is no vibronic coupling [ξ(Q) = δ(Q − Q0)], the reduced matrix
element simplifies to 1.

With the JT Hamiltonian (2.61) and the respective vibrational modes at hand, we are
able to study the effect of the JT coupling on the electronic states of the SiV center. As
we stated earlier, we restrict the discussion to linear JT coupling, and define new vari-
ables Υx,y as the products Υx,y = FQx,y. Furthermore, we drop the harmonic potential
1
2K(Q2

x+Q2
y) because it acts equally on all states and simply causes a global energy shift.

Hence, in the {ex, ey} basis of SiV states (where we omit the subscripts g, u), we obtain

HJT =

[
Υx Υy

Υy −Υx

]
. (2.64)

Similar to spin-orbit interaction Hamiltonian (2.50), we extend this operator in order to
include the spin degrees of freedom. The JT interaction is a purely orbital operator, hence
to include the spin states we take the direct product with the 2× 2 identity matrix, and
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obtain the Jahn-Teller Hamiltonian in the basis states (2.27)

HJT =

[
Υx Υy

Υy −Υx

]
⊗
[
1 0
0 1

]
=


Υx 0 Υy 0
0 Υx 0 Υy

Υy 0 −Υx 0
0 Υy 0 −Υx

 . (2.65)

Although the matrix form (2.65) is the same for ground and excited state, the values Υx,y

can be different for both states; for the sake of brevity we however omit the subscripts in
Eq. (2.65). Diagonalizing Eq. (2.65) results in the eigenvalues ±Υ = ±

√
Υ2
x + Υ2

x and in
the following eigenstates:

+ Υ→
{
| cos(φ2 )ex + sin(φ2 )ey〉| ↑〉
| cos(φ2 )ex + sin(φ2 )ey〉| ↓〉

(2.66)

−Υ→
{
| cos(φ2 )ex − sin(φ2 )ey〉| ↑〉
| cos(φ2 )ex − sin(φ2 )ey〉| ↓〉

(2.67)

where tan(φ) = Υy/Υx. It is important to note, that the eigenvalues ±Υ do not
depend on the x, y components of the JT splitting but only on their quadratic mean
value. We schematically display the level splitting caused by JT interaction in Fig. 2.14.
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Figure 2.14: Jahn-Teller splitting of the ground and excited state. Similar to spin-orbit
coupling, the formerly four-fold degenerate ground and excited state each splits into two
states.

Similar to the spin-orbit interaction, the linear JT effect reduces the four-fold degen-
eracy to a two-fold (spin) degeneracy and it yields superpositions of ex and ey. However,
the difference to the SO coupling is that in the resulting superpositions do not introduce
the phase term i = eiπ/2. Hence, if we visualize the JT eigenstates (2.67) in the basis
{|e± ↑, ↓〉} according to Eq. (2.53), we obtain a mixture of orbital states (Fig. 2.15 using
a value of φ = π/2).
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Figure 2.15: Eigenvectors |1〉, |2〉, |3〉, |4〉 of the SiV ground state under the perturbation
of the JT-effect in the basis states |e± ↑, ↓〉. The presentation of the states is equal to
Fig. 2.9.

As we have stated earlier, we do not consider a quadratic JT coupling, thus, from
the continuous minima in the potential surface, the electronic system is open to other
distortions. One of these other distortions is the SO coupling. We apply SO coupling
and JT interaction separately as two, a priori equally possible perturbation terms for the
four-fold degenerate energy levels of the SiV center. We consider the joint effect of SO
and JT interaction in the following section.

2.2.4 Joint effect of spin-orbit and Jahn-Teller interaction

As we have seen in the previous sections, both the spin-orbit (SO) coupling and the Jahn-
Teller (JT) effect lift the orbital degeneracy of the eg, eu states. Owing to the particular
constellation of the SiV symmetry and its electronic configuration, the SO coupling can
be considered as a purely orbital interaction, as it does not induce spin mixing. Hence,
it is reasonable to investigate the joint effect of the two interactions. Together, they split
the formerly four-fold degenerate states into two sets of two-fold degenerate levels, hence
we obtain two degenerate ground states and two excited states (Fig. 2.16a).

We define the parameter ∆Eg as the change in energy of the 2eg ground state due to a
combination of spin orbit coupling λg and Jahn-Teller interaction Υg. One of the former
degenerate orbitals is lowered by ∆Eg/2, the other one is raised by ∆Eg/2. The same
applies to the excited state, where one orbital is lowered by the energy ∆Ee/2, whereas
the energy of the second orbital is increased.

The two ground and two excited electronic states of the SiV center give rise to four
optical transitions – the typical spectral fine structure of the defect, which is observed at
low temperature. Figure 2.16b shows the spectral fine structure for an ensemble of SiV
defects in relative frequency units measured at 6.4 K (see also Sec.1.3.2). The parameters
∆Eg,e can be obtained from the fine structure spectrum by measuring the difference of
the peak frequencies. With ∆Eg,e known, we parameterize the joint contribution of SO
and JT interaction using the pseudo-polar coordinates θg,e and set the spin orbit coupling
term

λg,e = ∆Eg,e cos(θg,e). (2.68)
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Figure 2.16: The spin-orbit and Jahn-Teller interactions both lead to an orbital splitting
in ground and excited state (panel a). We sum the joint effect of the two interactions in
the parameters ∆Eg,e. Panel b shows the spectral fine structure for an ensemble of SiV
defects in relative frequency units measured at 6.4 K. The parameters ∆Eg,e are obtained
from the fine structure spectrum of SiV centers by measuring the difference of the peak
frequencies.

Additionally, the contributions Υx,g,e, Υy,g,e of the Jahn-Teller effects along the x and y
directions are also coupled using the parameters φg,e to keep their joint contribution to
the level splitting constant:

Υx,g,e =
∆Eg,e

2 sin(θg,e) cos(φg,e) (2.69)

Υy,g,e =
∆Eg,e

2 sin(θg,e) sin(φg,e). (2.70)

This yields the total Jahn-Teller contribution Υg,e, with Υ2
g = Υ2

x,g + Υ2
y,g =

∆Eg
4 sin2(θg)

(and analoguous for Υe) , and the overall ground and excited state splitting can be
expressed by

∆Eg,e =
√
λ2
g,e + 4Υ2

g,e. (2.71)

The complete orbital splitting, as it visible in low temperature spectra (Chap. 4), can
therefore be calculated using only two parameters (θg and θe). Hence, we avoid over-
parameterization of the simulation. To express the joint effect of SO and JT in more
convenient manner, we calculate the fraction

rg,e =
λg,e
Υg,e

. (2.72)
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As we have seen, SO and JT interaction imply the electronic level splitting of the SiV
defect and preserve the spin degeneracy. Hence, they readily describe the low temperature
fine structure at zero magnetic field. However, the zero field fine structure spectra of the
defect depend on

√
λ2
g,e + 4Υ2

g,e and they do not indicate of the ratios rg,e, so there would
be a large ambiguity in the choice of the parameters. Furthermore, other theoretical
models have been proposed to describe the fine structure, e.g. the tunnel-coupling model
by Moliver [123], which in principle provides an equally valid description for the spectral
fine structure (cf. Sec. 1.2.3). A key experiment in this work is the exposure of individual
SiV centers to magnetic fields. Therefore we describe the effect of magnetic fields in the
electronic states in Sec.2.2.6. The Zeeman effect splits magnetic sub-levels and it acts
directly on the spin degree of freedom. Indirectly, the Zeeman effect also depends on the
SO/JT-ratio rg,e as we will see later. Therefore, it helps to identify the ratio rg,e in good
approximation and to clarify the electronic structure of the defect

Before we discuss the Zeeman effect and its spin dependent interactions, we mention
a third, purely orbital interaction, which is crystal strain. There are large similarities
between the JT interaction Hamiltonian HJT and the Hamilton operator accounting for
crystal strain, hence we discuss crystal strain first.

2.2.5 The effect of crystal strain

The interaction terms for spin-orbit and Jahn-Teller coupling, which we encountered in the
previous sections, are assumed to be an “indigenous” part of the SiV electronic structure.
In contrast, we consider the effect of crystal strain only in particular situations: Strain
is defined as the deformation of a solid due to stress, where stress is given as a force
per area. First, other imperfections can be present in the diamond. These imperfections
distort the lattice, thus they create an internal stress which leads to a deformation (strain)
of the crystal. In this first case, the resulting strain can also be considered as an intrinsic
perturbation of the electronic states. It is one of the main objectives of the present work,
to observe individual SiV centers free of this intrinsic strain. In addition, we discuss
individual SiV centers subjected to strained environments in diamond nanocrystals in
Sec. 4.3.

Second, crystal strain can be present on purpose: The application of uniaxial stress –
which leads to crystal strain – is a very common technique to identify the symmetry of
a defect and thus, draw conclusions on the electronic structure. Therefore, there exists a
large number of both theoretical and experimental reports on defects in solids exposed to
uniaxial stress (see e.g. [38]). We need to distinguish between two effects, when stress is
applied: The individual centers of an ensemble are often oriented along different equiv-
alent directions in the host crystal lattice, say along [111], [1̄11], [11̄1] and [111̄]. All
these sub-ensembles a priori have the same electronic properties as their environments
are equivalent. We call this effect an orientational degeneracy. When crystal strain is
applied along certain directions, it modifies these sub-ensembles differently and lifts the
orientational degeneracy. This effect has been discussed e.g. by Kaplyanskii et al. [136].

In the present work, we restrict the discussion to one individual defect, hence, there
is no orientational degeneracy. In addition to the orientational degeneracy, crystal strain
can lift the orbital degeneracy, and it is this effect which we elucidate in more detail in this
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section. We assume in the discussion, that also intrinsic crystal strain can be explained in
the framework of uniaxial strain. The effect of uniaxial stress on the degeneracy of orbital
states has been discussed using group theory in many references (see the introduction of
Ref. [164] for further information).

The perturbation Hstrain of the electronic states of a defect under the influence of
stress is given by a sum of the stress tensor components {σij} and electronic operators
Aij [164], i.e.

Hstrain =
∑
ij

Aijσij . (2.73)

Alternatively, the perturbation Hstrain can also be written in terms of the strain tensor
{εkl},

Hstrain =
∑
kl

Bklεkl, (2.74)

where stress creates strain, and the respective electronic operators Aij are related by the
elastic constants cijkl of the crystal according to

Bkl =
∑
ij

Aijcijkl, (2.75)

with cijkl being a tensor of fourth rank, which is given in Ref. [165] for the diamond
lattice. Both the stress and strain tensors are symmetric, hence εkl = εlk, and there are
six Bkl (Aij) operators. We define the suffixes i, j and k, l to run over the “internal”
coordinates x, y, z of the defect (Fig. 2.1). These directions correspond to the unit vectors

x̂ =
1√
2

−1
1
0

 , ŷ =
1√
6

−1
−1
2

 , ẑ =
1√
3

1
1
1

 (2.76)

If uniaxial stress is applied externally, then we convert the components of the strain or
stress tensor accordingly (see below). In the internal coordinate frame, we write the strain
tensor as

ε =

εxx εxy εxz
εxy εyy εyz
εxz εyz εzz

 . (2.77)

To calculate the energy shifts of the SiV levels, we calculate the matrix elements of Hstrain

between the eg and eu states. We remember that eg,u belong to irreducible representations
of the D3d point group. The idea for the calculation of the matrix elements is to express
Hstrain in a symmetry adapted form by choosing linear combinations of the εij , such
that the resulting sets εr belongs to the rth row of the the irreducible representation
Γ

(r)
IR [164]. The components εij transform as the quadratic generating functions of the

representations. For example, the sum εxx + εyy transforms as x2 + y2 and therefore, as
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the totally symmetric representation A1g in D3d (cf. Tab. 2.3). Hence, we can rewrite
Eq. (2.74) as

Hstrain =
∑
r

Brεr, (2.78)

where the orbital operator Br now also transforms as the irreducible representation Γ(r).
The linear combinations are calculated by projecting the εij components onto the

irreducible representations, similar to the projection of basis vectors which we showed in
Sec. 2.1.4. As ε is a matrix in the basis of the spatial coordinates x, y, z, the projection
formula is slightly different from Eq. (2.20). If εij are the general components of the
strain tensor (2.77), then we obtain the symmetry adapted linear combinations of strain
components εr together with the operators Br according to [157] as:

Brεr =
lr
h

∑
R

χ(r)(R) R† εR, (2.79)

where R are the 3× 3 transformation matrices (2.1) for the symmetry operations E, C1
3 ,

C2
3 , . . . applied to the unit vectors x, y, z, lr is the dimension of the irreducible represen-

tation Γ
(r)
IR and h is the order of the group. The characters χ(r)(R) of these symmetry

operations for the D3d point group are listed in Tab. 2.3.
Application of Eq. (2.79) on ε with the operations R taken from matrices (2.1), yields

that only εA1g and εEg are different from zero. Hence, the strain tensor in D3d transforms
as the irreducible representations A1g +Eg. The symmetry adapted, electronic operators
Br are still 3× 3 matrices which are written in the basis {|ex〉, |ey〉, |a〉} [157]. Therefore,
we omit the third row and column because we only consider the coupling between e-
states [157], and we obtain the strain Hamiltonian:

Hstrain = εA1gA1g + εEgxEgx + εEgyEgy (2.80)

with

εA1g = 1
2(εxx + εyy) εEgx = 1

2(εxx − εyy) εEgy = εxy (2.81)

and the matrices for the operators Br

A1g = δ

[
1 0
0 1

]
Egx = α

[
1 0
0 −1

]
Egy = β

[
0 1
1 0

]
. (2.82)

The factors α, β, δ are scaling factors which describe the response of the SiV center to
a strain contribution belonging to the representations A1g, Egx, Egy, respectively. It is
important to note, that the scaling factors are empirical and can be different for ground
and excited state; for the sake of brevity, we omit the subscripts g, e for ground and
excited state. For the further analysis, we ignore the A1g term, as it leads to a global
shift of the energy levels. Under this condition, the strain Hamiltonian transforms as the
irreducible representation Eg alone.

The matrices in Eq. (2.82) are valid both for ground and excited state. Hence, to
couple it to the electronic ground and excited state of the SiV center, we calculate the
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matrix elements 〈eg,u|Hstrain|eg,u〉 which correspond to direct products Eg,u ⊗ Eg ⊗ Eg,u.
These direct products only contain the totally symmetric representation A1g if the states
exhibit the same parity. Consequently, the strain Hamiltonian couples the ground and
excited states among each other, but there is no coupling between ground and excited
state.

When strain is an intrinsic property of the diamond hosting a given SiV center, we
have no means to determine the strength of the strain components εij in Eq.(2.80). In
this case, it is reasonable to omit these components and to fit the parameters α, β to the
given data. We apply this procedure in Sec. 4.3 and obtain a high agreement between the
strain model presented here and the experimental spectra.

If strain is created in uniaxial stress measurements, where the pressure applied to
the sample is well calibrated, then the scaling parameters α and β can be deduced from
the response of the defect to the strain field. We have stated above, that the strain
components are given in the internal reference frame of the SiV center (Fig. 2.1). It is
worth to briefly outline how the Hstrain matrix elements are transformed, when we work
in the “external” coordinate frame defined by the primitive cubic directions êx = [1, 0, 0],
êy = [0, 1, 0], êz = [0, 0, 1]. In this case, we first perform a coordinate transformation, and
then we apply Eq. (2.79). In this external coordinate frame, the SiV symmetry axis is
rotated about 54.7◦ around the y-axis and about 45◦ around the z-axis. Hence for the
coordinate transformation, we apply the rotation matrices Ry(54.7◦) and Rz(45◦) to ε,
with

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 Rz(φ) =

cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

 . (2.83)

While the resulting operators A1g and Eg remain unchanged, the symmetry adapted linear
combinations of strain components are different. We refer to the SALCs in the external
coordinate frame as ε̃r and obtain:

ε̃A1g = A1(εxx + εyy + εzz)− 2A′1(εxy + εyz + εxz)

ε̃Egx = B(−εxx − εyy + 2εzz) + C(−2εxy + εyz + εxz) (2.84)

ε̃Egy =
√

3B(εxx − εyy) +
√

3C(εyz − εxz).

The pre-factors are chosen according to Hughes and Runciman [164], who obtain the same
linear combinations. The same result has been obtained for the E → E transitions of a
defect causing the 594 nm band in diamond [166]. We will make use of Eqs. (2.84) for the
interpretation of the uniaxial stress measurements of Sternschulte et al. [133] in Chap. 5.

The strain Hamiltonian does not act on the spin degree of freedom. To express the
matrix Hstrain in the basis set (2.27) which includes the spin subspace, we calculate the
direct product of the matrices in Eq. (2.82) with the 2× 2 identity matrix:

Hstrain =

[
α β
β −α

]
⊗
[
1 0
0 1

]
=


α 0 β 0
0 α 0 β
β 0 −α 0
0 β 0 −α

 . (2.85)
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To express Hstrain in the eigenbasis of the spin-orbit Hamiltonian HSO [Eq. (2.50)], we
apply the transformation (T̂ ⊗ I2)Hstrain(T̂ ⊗ I2)−1, where T̂ is the transformation matrix
of Eq. (2.47). In the {e± ↑↓} basis, we obtain

Hstrain
± =


0 0 −(α+ iβ) 0
0 0 0 −(α+ iβ)

−(α− iβ) 0 0 0
0 −(α− iβ) 0 0

 , (2.86)

which is identical to the strain Hamiltonian calculated for the E excited state of the 1.4 eV
nickel defect in diamond, given in Ref. [167].

We return to the matrix representation Hstrain in the {ex,y ↑↓} basis set (Eq. (2.85).
The eigenvalues and eigenvectors of Hstrain are

+ ζ →


1

ζ−α
[
β|ex ↓〉+ (ζ − α)|ey ↓〉

]
= |u+ ↓〉

1
ζ−α

[
β|ex ↑〉+ (ζ − α)|ey ↑〉

]
= |u+ ↑〉

(2.87a)

− ζ →


− 1
ζ+α

[
β|ex ↓〉 − (ζ + α)|ey ↓〉

]
= |u− ↓〉

− 1
ζ+α

[
β|ex ↑〉 − (ζ + α)|ey ↑〉

]
= |u− ↑〉,

(2.87b)

where ζ =
√
α2 + β2. The resulting level splitting is depicted in Fig. 2.17, where we

observe that the strain perturbation reduces the initial four-fold degeneracy to a two-
fold degeneracy. The splitting constant ζ depends on the empirical parameters α and β,
which can be different for ground and excited state. In consequence, the strain splitting
in ground and excited can be different as well. We emphasize this point by writing ζg and
ζe in Fig. 2.17. In case that ζg 6= ζe, we observe that the optical transitions do not only
split with increasing strain but they also shift in frequency. This shift is increased when
the factor δ for the A1g strain term [cf. Eq. (2.82)] is also different for ground and excited
state. Fig. 2.17 shows the effect of the strain splitting alone, a more detailed analysis,
which takes into account the SO, the JT and the strain interaction, can be found in
Sec. 5.1.1.

For the investigation of SiV center in strongly strained nanodiamonds, the strain
interaction will be the leading perturbation (instead of the SO coupling) and it will be
convenient to express the eigenvectors of the SiV electronic states in the basis vectors
{u± ↑, ↓} of the strain Hamiltonian Hstrain. Equations (2.87) provide the transformation
from the {ex,y ↑, ↓} to the {u± ↑, ↓} basis.

In this section we have covered the strain interaction as the third orbital perturbation.
A fourth orbital perturbation – which however is beyond the scope of this work – would
be the response to external electric fields, the Stark shift. It can be shown that the
Stark shift acts on the same matrix elements as crystal strain does. Therefore, the Stark
shift can compensate internal strain fields and re-establish optimum environments for
individual defects in diamond. Electric fields help to tune the transition frequency of
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Figure 2.17: Strain splitting of ground and excited state. Similar to the spin-orbit and
Jahn-Teller interaction, crystal strain splits the formerly four-fold degenerate levels into
two two-fold degenerate branches. The splitting can be different for ground and excited
state, thus we label the parameters α, β, ζ with the subscripts g, e. For the sake of brevity,
we omit the global factors 1

ζ±α from Eq. (2.87).

individual defects [157, 168–170]. This technique has also been applied to tune emitters
into resonance with either emitters to produce indistinguishable photons [49]. For the SiV
center however, the linear Stark shift only couples states of opposite parity, i.e. it couples
the excited states to the ground states in first order. Therefore, this coupling is expected
to be small [171]. Very recently, indistinguishable single photons very obtained using two
distant SiV centers [61], however, this experiment required a careful preselection of the
SiV centers and no Stark shift tuning was employed.

In the following section, we investigate the perturbation caused by magnetic fields as
a final interaction term present in the experiments of this work.

2.2.6 Magnetic Fields and the Zeeman effect

None of the interactions, which we discussed in the previous sections, introduced spin
mixing to electronic states. In this section we cover the Zeeman effect, which as the
only perturbation in this model causes superpositions of different spin projections. A
key experiment in this work is the spectroscopy of individual SiV defects in magnetic
fields. Exposed to a magnetic field, the Zeeman effect lifts the degeneracy of magnetic
sublevels. The SiV center exhibits two magnetic moments, one created by the orbital
angular momentum L̂, the other one the spin Ŝ. As we have seen in Sec. 2.2.2, the x- and
y-components of the orbital angular momentum are zero and HSO ∝ LzSz. We consider
the Zeeman interaction for spin HZ,S

g,e and orbit HZ,L
g,e separately.

Therefore, the perturbation term for the Zeeman interaction is given by

HZ
g,e = HZ,L

g,e + HZ,S
g,e = γLL̂ ·B + γSŜ ·B, (2.88)
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where γL = µB/~, γS = 2µB/~ are the orbital and electron gyromagnetic ratios, µB =
14.1 GHz/T is the Bohr magneton, and the magnetic field B = (Bx, By, Bz), expressed in
the internal reference frame of the SiV (Fig. 2.1). The spin operator Ŝ = ~

2(σx, σy, σz) is
expressed using Pauli spin matrices (2.42). As we have stated earlier, the orbital operator
is L̂ = (0, 0, L̂z), and we can again simplify the orbital contribution to HZ,L

g,e = γLL̂zBz.
In Sec. 2.2.2, we have derived that the orbital operator L̂z transforms as irreducible

representation A2g. From the computational rules for the direct product (Tab. 2.8), we
infer that the both direct products Eg⊗A2g⊗Eg (for the ground state) and Eu⊗A2g⊗Eu
(for the ground state) contain the fully symmetric representationA1g. Hence, group theory
allows for non-vanishing matrix elements in ground and excited state. For many Zeeman
measurement in the literature, the electron g-factor, which determines the gyromagnetic
ratio, is set as a tensorial scaling factor, which then includes also the effect of the spin-
orbit interaction [167]. In our case, we set the gyromagnetic ratios to 1 for the orbital
part and to 2 for the spin part, because we treat the spin-orbit interaction as a separate
perturbation. Therefore, the Zeeman perturbation HZ

g,e is identical for ground and excited
state.

We have seen in Sec. 2.2.3 that the linear, dynamic Jahn-Teller coupling leads to a
delocalization of the electronic wave function in the adiabatic potential surface. We have
introduced the Ham reduction factor to account for a quenching of electronic properties
such as the orbital momentum or the orbital g-factor [163,172]. To account for this effect,
we introduce a quenching factor q which however only acts on γL and not on the spin-
orbit coupling constant λg,e. It is possible that the present SO coupling constant λg,e
is already diminished because of a quenched orbital momentum, and λg,e would be even
larger without quenching present.

Taking into account all these issues, we write HZ
g,e in the basis {ex,y ↑, ↓} given in

Eqs. (2.27):

HZ
g,e = qγLL̂zBz + γSŜ ·B

= qγL


0 0 iBz 0
0 0 0 iBz
−iBz 0 0 0

0 −iBz 0 0



+ γS


Bz (Bx − iBy) 0 0

(Bx + iBy) −Bz 0 0
0 0 Bz (Bx − iBy)
0 0 (Bx + iBy) −Bz

 (2.89)

An important consequence of the Zeeman Hamiltonian (2.89) is the mixing of ↑, ↓ spin
projections due to the terms Bx ± iBy on the off-diagonal matrix elements. However, if
we align the magnetic field with the high symmetry axis of the SiV center, i.e. along the
〈111〉 crystal axis, then Bx = By = 0 and no spin mixing is expected. We verify these
predictions in Secs. 4.1.4 - 4.2.2.

The four eigenvalues of HZ are EZ = ±qγLBz ± γSB, where B =
√
B2
x +B2

y +B2
z

is the absolute value of the magnetic field. As we expect it, the Zeeman effect splits
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all magnetic sublevels and this splitting is linear in B. In the experimental geometry
in Chap. 4, the magnetic field is aligned along the [001] crystal axis and the SiV high
symmetry axis is oriented in [111] direction, hence Bx = By = Bz = B√

3
. In Fig. 2.18a,

we depict the HZ eigenstates in dependence of the magnetic field for ground and excited
state. The graph shows how we expect the energy levels of the SiV to split when exposed
to a magnetic field. With the perturbation HZ alone, we have not included any orbital
splitting, therefore all ground and excited states in Fig. 2.18a start to split from one point.
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Figure 2.18: The energy levels for ground and excited state as resulting from (a) the
Zeeman effect only, (b) the Zeeman effect in combination the JT interaction and (c) the
Zeeman effect with SO coupling. The zero-field splittings in (b),(c) correspond to the
typical fine structure splitting. In panel (a), we set the quenching factor of the orbital
magnetic moment to q = 1. In panels (b),(c), q is set to the value observed in the
experiment (q = 0.1) and the magnetic field has a relative angle of 54.7◦ to the SiV high
symmetry axis.

However, we know that the SiV center exhibits an orbital splitting which is caused by
a combination of the SO coupling and the JT effect. Thus, it is interesting to calculate
the eigenstates of the Zeeman Hamiltonian together with the SO and JT interaction. We
consider two border cases here: First, if the JT interaction is much stronger than the SO
coupling, then their ratio is r = λ

Υ � 1, and the orbital splittings are ∆Eg,e ≈ 2Υg,e (c.f.
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Sec. 2.2.4). The four eigenvalues of HZ + HJT (without the subscripts g, e) are given by

EZ,JT1 = γSB +
√

1
3 (qγLB)2 + Υ2

EZ,JT2 = γSB −
√

1
3 (qγLB)2 + Υ2

EZ,JT3 = −γSB +
√

1
3 (qγLB)2 + Υ2

EZ,JT4 = −γSB −
√

1
3 (qγLB)2 + Υ2

where we wrote the B-field as shown above, and neglected the SO coupling constant λ.
We illustrate the resulting level splitting for ground and excited state in dependence of
the magnetic in Fig. 2.18b. As we expect it, the JT coupling constant Υg,e in Fig. 2.18b
leads to a zero-field splitting proportional to Υg,e. In Fig. 2.18 we have employed the
actual experimental values for the zero-field fine structure splitting which are within our
experimental resolution ∆Eg = 2Υg ≈ 50 GHz and ∆Ee = 2Υe ≈ 260 GHz. For the
quenching of the orbital magnetic momentum, we employed the value q = 0.1 which we
determine from the experimental spectra in Chap. 4. We observe that the level splitting
in Fig. 2.18b is still linear in B and that the ground states cross at about B = 2 T in this
simulation.

Second, we investigate the other border case, with the SO coupling being much stronger
than the JT effect. Hence, we set r = λ

Υ � 1, and the orbital splittings are ∆Eg,e ≈ λg,e.
Now, we neglect the JT coupling constant Υ and obtain the eigenvalues of HZ + HSO,

EZ,SO1 = −1
3 qγLBz −

√
γ2
SB

2 + 2√
3
γSλB + λ2

EZ,SO2 = 1
3 qγLBz −

√
γ2
SB

2 − 2√
3
γSλB + λ2

EZ,SO3 = 1
3 qγLBz +

√
γ2
SB

2 − 2√
3
γSλB + λ2

EZ,SO4 = −1
3 qγLBz +

√
γ2
SB

2 + 2√
3
γSλB + λ2

The diagonalization of HZ + HSO shows some similarities to the Breit-Rabi formula for
the atomic Zeeman effect [173], however, the conclusions are less obvious than in atomic
physics. The square-root with the term ± 2√

3
γSλB also appears for spin-orbit coupled

atoms, and it corresponds to interactions between atomic states of the same total mo-
mentum projection number mJ . It is responsible for the so-called avoided crossings. We
depict the eigenstates EZ,SOi for ground and excited state in Fig. 2.18c, where we now set
the SO coupling constant λg,e to 50 GHz and 260 GHz, respectively. Again, the orbital
coupling (now λ instead of Υ) leads to a zero-field splitting. In contrast to the dominant
JT interaction, the “inner” levels |2〉, |3〉 and |B〉, |C〉 do not cross anymore, but show
avoided crossings. The two cases we illustrated above the indirect dependence of the
Zeeman spectra on the purely orbital interactions: From the slopes of the level splittings,
we can clearly distinguish the relative coupling strengths of SO and JT interaction. This
tremendously reduces the amount of ambiguity in the choice of the orbital constants λ
and Υ. Hence, comparing the response of the SiV energy levels to an actual magnetic
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field with the simulated eigenvalues allows for a clear assignment of the free parameters
in the simulation.

Summary of the interaction terms

The preceding sections have introduced all relevant interaction terms acting on the de-
generate eg and eu levels of the SiV center. The total Hamiltonian is written:

Hg,e = H0
g,e + HSO

g,e + HJT
g,e + HZ,L

g,e + HZ,S
g,e (+Hstrain), (2.90)

where H0
g,e is the non-perturbed Hamiltonian, the spin-orbit Hamiltonian HSO

g,e is given in
Eq. (2.50), the Jahn-Teller matrix HJT

g,e in Eq. (2.65) and the Zeeman terms HZ,L
g,e + HZ,S

g,e

in Eq. (2.89). The coefficients α, β in the strain Hamiltonian Hstrain [given in Eq. (2.85)]
are set to zero for SiV centers in low-strain environments, but will be non-vanishing for
emitters in strained nanodiamonds.

Hence, Eq. (2.90) defines the secular matrix for the SiV center. Calculating the eigen-
values of this matrix yields the energies of all SiV levels in the given perturbation. The
eigenvectors will be given in the {e± ↑, ↓} basis set of the SO eigenvectors, defined in
Eq. (2.51). The free parameters, which are relevant for the eigenvalues, are the ratios θg,e
between SO coupling and JT interaction (cf. Sec. 2.2.4) and the quenching factor q for
the orbital magneton (cf. Sec. 2.2.6). If we add the effect of crystal strain, then also the
parameters α and β are taken into account.

All the perturbation terms in Eq. (2.90) present interactions which act exclusively
among states of ground or excited state manifold. For the calculation of optical transitions
connecting the ground and excited state, we consider the dipole operator in the following
section. The dipole operator imposes selection rules on the optical transitions, which we
derive using the same group theoretical considerations as above.

2.3 Transition dipole moments and relaxation

The previous parts of this chapter, we have established the SiV energy levels in the
given perturbations. In order to probe these levels, we observe transitions between them.
Possible transitions are optical emission lines, which involve electric dipole transitions,
or electron paramagnetic resonances, which act on the magnetic moments and relate
to magnetic dipole transitions. We will exclusively focus on optical spectroscopy and
determine the dipole matrix elements relevant for optical transitions (Sec. 2.3.1). From the
selection rules of optical dipole transitions, the polarization of the emitted light is deduced.
In the course of this work, we succeed in polarization measurements of single SiV centers,
therefore, we introduce here the theoretical foundations to analyze this polarization data
(Sec. 2.3.2).

Finally, we briefly investigate the transitions between the four excited states of the
SiV centers. This relaxation can – from group theoretical considerations – not originate
from dipole transitions. Instead, we derive a general orbital matrix which describes the
relaxation process (Sec. 2.3.3).
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2.3.1 Dipole transitions and selection rules

We have already encountered optical dipole transitions as a brief example in Sec. 2.2.1,
and we here repeat the most important properties: The perturbation to the defect in a
dipole transition is caused by the electric field amplitude E0 of the incident or radiated
light and the electric dipole p̂ = −er̂ of the defect [1]:

Hdipole = −p̂ · E0 = e (x̂Ex + ŷEy + ẑEz) , (2.91)

with E0 being the electric field amplitude of the absorbed or emitted light. The electric
dipole p̂ = (p̂x, p̂y, p̂z) acts like an operator with respect to the group of Schrödinger’s
equation, thus we are interested in the matrix elements 〈p̂〉 = e〈ψj |r̂|ψi〉 (with ψi,j be-
longing to the basis states (2.27) for the SiV center in particular). We have already seen
in Sec. 2.2.1, that the dipole operator only couples states of different parity, and thus it
connects the eg ground and the eu excited state of the SiV center.

The dipole operator only acts on the orbital part of the wave function. As the ground
and excited states for the SiV center are two-fold orbitally degenerate, the dipole operators
p̂x, p̂y, p̂z are expressed as 2×2-matrices in the basis {egx, egy} and {eux, euy}, i.e. we search
matrix elements of the type [

〈egx|p̂x|eux〉 〈egx|p̂x|euy〉
〈egy|p̂x|eux〉 〈egx|p̂x|euy〉

]
, (2.92)

and similar for p̂y, p̂z. We employ group theory to determine which elements of this matrix
are vanishing by symmetry considerations. According to the character table 2.3, the first
row Egx of the Eg representation, is generated by the basis orbital egx ∼ x2 − y2 and the
second row by egy ∼ xy. The odd representation Eu is generated by eux ∼ x and by euy ∼
y. Application of the p̂x-component of the dipole operator on eux yields p̂x|eux〉 ∼ x2. A
property depending on x2 transforms as the first partner function egx of representation
2 Eg, hence the matrix element 〈egx|p̂x|eux〉 can be non-zero, while the matrix element
〈egy|p̂x|eux〉 involving the orthogonal basis function yields zero. Similarly, form the appli-
cation of p̂x on the second basis function of Eu, we obtain p̂x|euy〉 ∼ xy, which transforms
as the second basis function egy of Eg, and the matrix element 〈egx|p̂x|euy〉 must again
vanish. Hence, the p̂x-component of the dipole operator written in the form of matrix
(2.92) is

p̂x =

[
a 0
0 b

]
.

The exact values a, b depend on the precise choice of the coordinate frame and are given
in various references [50,174,175]. We obtain the dipole operator in the ex,y basis:

[p̂x |eux〉 |euy〉
〈egx| e 0

〈egy| 0 −e

] [p̂y |eux〉 |euy〉
〈egx| 0 −e
〈egy| −e 0

] [p̂z |eux〉 |euy〉
〈egx| e 0

〈egy| 0 e

]
. (2.93)

2Strictly speaking, x2 transforms as the representations Egx +A1g ∼ x2 − y2 + x2 + y2.



2.3. TRANSITION DIPOLE MOMENTS AND RELAXATION 79

In order to add the spin degree of freedom to Eq. (2.93), we take the direct product
of p̂x, p̂y, p̂z with the 2 × 2 identity matrix, as we have done it previously for the strain
Hamiltonian (Sec. 2.2.5). We consider the SiV defect to exhibit three separate, orthogonal
dipolesX,Y, Z, which in our model are chosen along the vectors (2.76) in the diamond unit
cell (cf. the red, green blue arrows in Fig. 2.19). The dipole strength of X,Y, Z is directly
proportional to the expectation values 〈p̂x〉 , 〈p̂y〉 , 〈p̂z〉 which are calculated independently
using Eq. (2.93) between the eigenstate |A〉, . . . , |D〉 and 〈1|, . . . , 〈4| of the SiV center.

The probability P for an optical transition between the initial state ϕi and the final
state ϕf is given by Fermi’s golden rule

P = 2πρ |〈ϕf |e · r̂|ϕi〉|2 , (2.94)

with ρ being the final density of states which we set to ρ = 1. With the dipole strength be-
ing directly proportional to the dipole matrix elements 〈p̂〉, the intensity for the respective
dipole transition is therefore proportional to the probability P .

Using Eq. (2.94), we model the intensity of an optical transition between the states ϕi
and ϕf . As we see later, the comparison of both the simulated polarization (Sec. 4.1.2)
and the Zeeman spectra (Sec. 4.1.4) with the experimental data shows that the Z dipole
strength 〈p̂z〉 is about an empirical factor of 2 larger than the dipole strength 〈p̂x〉, 〈p̂y〉 of
the X,Y dipoles, respectively. Since the detected intensity scales with |p̂z|2, this results in
a factor of 4 for the Z dipole contribution in the polarization measurements. This factor
of 4 was confirmed independently by measurements on a large number of SiV defects [176].

The empirical factor for the Z dipole strength can be explained as follows: The SiV
center hasD3d symmetry (cf. Fig. 2.19). Without the perturbation terms from Secs. 2.2.2 -
2.2.6, the absolute values of the electron densities in the x- and y-direction are expected to
be equal owing to the symmetry (cf. Sec. 2.1.4), and the XY dipoles have equal strength.
However, the molecular shape of the SiV defect allows that the electron density is different
along the z-direction, thus the Z dipole can have a priori a different strength. Group
theory does not take into account the actual electron density, hence, we require this
additional empirical factor for the Z dipole strength in the present case.

The preceding discussion yielded the relative intensity of an optical transition which
gives rise to an emission line in a photoluminescence spectrum. The emitted electromag-
netic wave is polarized, and this polarization is related to the dipole matrices (2.93). In
the following section, we show explicitly which polarization components are contained in
the emitted fluorescence of a given transition. For this discussion, we anticipate the results
of the electronic state simulation which we obtain from the Zeeman spectra in Sec. 4.1.4.

2.3.2 Polarization of fluorescence light

As we will see later throughout this work, the spin-orbit interaction is the dominant
perturbation for the SiV electronic structure at zero magnetic field. We have derived in
Sec. 2.2.2, that the eigenvectors of the SO Hamiltonian are e± = 1√

2
(ex±iey) (disregarding

the spin degree). These states are depicted – together with the spin projections – in
Fig. 2.8 on page 57. Hence, at zero magnetic field, we observe optical transitions between
eg± ground and eu± excited states, and it stands to reason to transform the dipole operator
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matrix elements (2.93), which given are in the ex,y basis, into the e± basis. For simplicity,
we omit the elementary charge e and obtain,

[p̂x |eu+〉 |eu−〉
〈eg+| 0 1

〈eg−| 1 0

] [p̂y |eu+〉 |eu−〉
〈eg+| 0 −i
〈eg−| +i 0

] [p̂z |eu+〉 |eu−〉
〈eg+| 2 0

〈eg−| 0 2

]
, (2.95)

where we scaled the matrix elements of p̂z with the empirical factor 2 (cf. previous section).
Hence, for an eu± → eg± optical transition, only the Z dipole is involved, and for this
optical transition, the SiV center emits linearly polarized light. In a simple Hertzian
dipole approximation, this linearly polarized light is emitted in directions perpendicular
to the z = 〈111〉 high symmetry axis. In contrast, for an eu± → eg∓ transition we obtain
a combined emission of X±iY dipoles, which corresponds to σ± circularly polarized light.
This circular polarization is emitted along the high symmetry axis.

As soon as we start to consider perturbation terms other than SO coupling, these
simple polarization rules are not valid anymore. However, calculating the dipole matrix
elements between the electronic states numerically is always possible. We note, that the
X,Y, Z dipoles are given in the internal coordinate system [cf. Fig. 2.1 and Eq. (2.76)]
of the SiV defect. In the experimental configuration employed in Chap. 4, the diamond
sample is cut along the primitive {100} planes, and the polarization is measured along
the [001] direction.

Therefore, it is necessary to transform the emitted field amplitudes Ax, Ay, Az of the
transition dipoles X,Y, Z into the laboratory coordinate frame, in which we observe the
sample from the (001) surface (Fig. 2.19b). We denote the projections of the dipoles in
the laboratory frame as Alx and Aly. This transformation it consists of three matrices:

(
Alx
Aly

)
=

[
1 0 0
0 1 0

] cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

AxAy
Az

 . (2.96)

First, we rotate the emitter reference frame into the lab coordinate system using a rota-
tion of φ about the (internal) y-axis and a rotation of θ about the (internal) z-axis [cf.
Eq. (2.83)]. Subsequently, we omit the third component of the field amplitude, as we only
detect the transverse components Alx, Aly.

The angle θ denotes the polar angle between the external z axis (the optical axis) in the
[001] direction and the internal z axis (the high symmetry axis of the emitter) along [111].
In cubic crystal symmetry, θ amounts to 54.7◦. The angle φ is the azimuth angle between
the main axis of the emitter and the external x axis. In our experiment we use diamond
substrates with [110] edges, and therefore φ amounts to 0◦ (since the [110] crystal direction
is the projection of the [111] direction onto the (001) plane). To calculate the signal
measured by the polarization analyzer, we use the Jones calculus [177]. In this formalism
the polarization of the light after traveling through a set of optical elements is calculated
by multiplying the initial field amplitudes Alx and Aly with a specific transformation matrix
for each optical element. The polarization analyzer used in this work consists of a rotating
half-wave-plate in front of a fixed linear polarizer with a horizontal axis of transmission.
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Figure 2.19: (a) The field amplitudes Ax, Ay, Az of the dipole components X,Y, Z need to
be projected from the internal reference frame to the external laboratory reference frame
(Alx, Aly). The axes x, y, z are chosen according to Fig. 2.1. (b) Dipole components as
seen in the laboratory frame.

The corresponding transformation is given in Eq. (2.97) in which the first matrix accounts
for the linear polarizer, whereas the second matrix corresponds to the half-wave-plate,
which is rotated about an angle ϕ.(

Afx
Afy

)
=

[
1 0
0 0

] [
cos(2ϕ) sin(2ϕ)
sin(2ϕ) − cos(2ϕ)

](
Alx
Aly

)
(2.97)

A plot of the sum of the absolute squares of the final field amplitudes Afx and Afy for a
varying angle ϕ (0◦ < ϕ < 360◦) yields the simulated polarization curve. We use this
technique to explain the experimentally observed polarization curves of each fine structure
line at zero magnetic field (Sec. 4.1.2).

The radiation of the X,Y, Z dipoles for an emitter close to the surface of a bulk dia-
mond sample is not isotropic. In addition, the collection efficiency of the employed optical
system is not uniform over all emitted wave vectors. Therefore, we employ a numerical
method, briefly explained in Sec. 4.1.2 and Ref. [117], which introduces weighting factors
for the different dipole contributions.

After having derived the selection rules for dipole transitions, we now have all ele-
ments available to simulate the spectroscopic experiments on the SiV fine structure. This
includes measurements with or without magnetic fields and low- and high-strain samples.
When we optically excite the SiV center, then the electron thermalizes among the excited
state. This thermalization has been observed in optical spectra at zero-magnetic field in



82 CHAPTER 2. THEORETICAL DESCRIPTION

Refs. [62, 137], and it is discussed briefly in Sec. 1.3.2. When we apply a magnetic field
and lift the degeneracy of the spin states (Sec. 4.1.4), we observe that the thermalization
shows a selectivity which we express in an relaxation operator in the following section.

2.3.3 Relaxation within the excited state

While we derived matrix representations for well-known perturbations in the previous
sections, we now propose an interaction which we observe in the experiment, but whose
origin in not yet determined. In Sec. 4.2, we show the systematic population of a given
excited state. We observe that – prior to the radiative decay – the population thermal-
izes to other excited states. This thermalization is highly spin-dependent, i.e. states of
opposite spin-projection do not thermalize among each other. A similar relaxation has
been predicted for the nitrogen vacancy center in diamond. Doherty and Manson refer to
this exchange of population among the 3E excited states of the NV center as an orbital
averaging [42]. They state, that this averaging is mediated by electron-phonon coupling
and the thermalization is purely of orbital nature. However, they do not indicate the
physical background of this coupling. Possible mechanisms are local vibration modes of
the defect, as we have discussed them in Sec. 2.2.3, or the coupling to optical or acoustic
phonons of the host lattice. Very recently, the population dynamics and the temperature
dependence of the NV orbital averaging have been determined experimentally [178]. The
authors of Ref. [178] state, that the observed temperature dependence agrees well with a
two-phonon process. We briefly discuss in Sec. 4.2.2 which of these mechanisms might be
likely to cause the thermalization for the SiV center. All the vibrational coupling terms
have in common that they are operators acting exclusively on the orbital part of the wave
function.

We have encountered two purely orbital interactions in this chapter – the Jahn-Teller
effect and crystal strain. The resulting representations HJT (2.65) and HSO(2.85) exhibit
similar matrix elements. This similarity is by no means accidental, but is an expression of
the Wigner Eckart theorem [132]: The matrix elements of a general tensor operator can
be expressed in terms of a set of reduced matrix elements. The expressions for the reduced
matrix elements are identical for all orbital tensor operators of the same symmetry [42],
hence any orbital operator will always be constituted of the same “basis” elements. For ex-
ample, the vibronic interaction HJT of the Jahn-Teller effect transforms as the irreducible
representation Eg, hence, we can express its matrix elements in the {egx, egy, eux, euy}
basis (2.27) of the SiV center as

〈eg,x|HJT |eg,x〉 = c[E||Eg||E], (2.98)

with [E||Eg||E] being the reduced matrix element and c = c(g, x, y) being a factor (the
Clebsch-Gordan coefficient). The Clebsch-Gordan coefficients have been tabulated in
many group theory textbooks (see e.g. [132]), which simplifies the calculation of matrix
elements to the trivial task of assigning the operators to irreducible representations. For
the JT effect and the strain interaction, we had introduced scaling factors which implicitly
contained the Clebsch-Gordan factors, therefore we did not mention them further. For a
more general operator, we need to take them into account.
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A general orbital operator Ô would – with the knowledge that we acquired in this
chapter – transform as the irreducible representations A1g + Eg, with the generating
functions z2 for A1g and (x2 − y2, xy) for Eg, respectively (cf. Tab. 2.3). The Clebsch-
Gordan coefficients c can be calculated (if they are not given in a table) by the action of
the operators x̂, ŷ, ẑ on the fundamental wave functions, i.e. the dangling bond orbitals σi
(Fig. 2.5). We think of x̂, ŷ, ẑ as projections on the respective axes, i.e. 〈σ1|x̂|σ1〉 = 1 =
−〈σ′1|x̂|σ′1〉 = −2〈σ2|x̂|σ2〉 and so on. The matrix elements depend on the choice of the
coordinate system for x, y, z. In Sec. 2.1.4, we have derived the dependence of the basis
functions a1g and egx,y on the σi (see Tab. 2.7), which determines the transformation
for the operators x̂, ŷ, ẑ into the {a1g, a2u, egx, egy, eux, euy} basis set. From this point,
we can calculate the matrix representations for ẑ2, x̂2 − ŷ2 and x̂ŷ explicitly by simply
multiplying the matrices for x̂, ŷ, ẑ. Due to the 6 × 6 space, in which we calculate the
representations ẑ2, . . ., this procedure is much more cumbersome than the determination
of matrix elements using group theory, and it testifies the big advantages which we have
drawn from group theory.

We obtain for the orbital operator in the subspace {|eux ↑〉, |eux ↓〉, |euy ↑〉, |euy ↓〉}:

Ô = ẑ2 + x̂2 − ŷ2 + x̂ŷ =


0.25 0 −0.25 0

0 0.25 0 −0.25
−0.25 0 0.75 0

0 −0.25 0 0.75

 . (2.99)

The numbers in Eq. (2.99) appear somewhat arbitrary but they result from the particular
choice of the x, y, z coordinate system (Fig. 2.1). Transformed into the spin-orbit coupled
basis {|eu+ ↑〉, |eu+ ↓〉, |eu− ↑〉, |eu− ↓〉}, we denote the resulting matrix as the relaxation
operator PR,

PR =


1 0 1

2(1 + i) 0
0 1 0 1

2(1 + i)
1
2(1 + i) 0 1 0

0 1
2(1 + i) 0 1

 . (2.100)

Clearly, PR does not couple any spin states, as we had constructed it. In Secs. 4.2.2 and
4.3.3, we calculate the matrix elements of PR for the simulated SiV electronic states and
compare them to the spin-selective relaxation mechanism. We stress that this comparison
is rather qualitative as the origin of the internal mechanisms causing the relaxation are
subject to debate. Still, we can draw important conclusion from it, as it also explains the
excited state relaxation for strained defects (Sec. 4.3.3).

Summary of the theoretical considerations

With the relaxation operator, we have identified the last interaction which we consider
relevant for the description of the SiV electronic structure as far as it concerns the ex-
perimental measurements in Chap. 4. We briefly summarize the most important results
derived from the theoretical considerations of this chapter:
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• The SiV center in the split vacancy configuration belongs to the D3d point group.
In this point group, the maximum orbital degeneracy of states is two (for the Eg
and Eu representations).

• The electronic orbitals of the SiV defect are formed by symmetry adapted super-
positions of the dangling bond orbitals. Group theory provides the mathematical
background to determine these superpositions and to verify whether they couple to
the atomic orbital of the central Si impurity.

• When filling the electronic states with electrons, we end up with even parity eg
ground states and odd parity eu excited states. Furthermore, we identify the SiV
center as a fermionic (S = 1/2) system. Both ground and excited state initially
show a four-fold energetic degeneracy.

• The orbital degeneracy is lifted by the spin-orbit and the Jahn-Teller interaction.
The spin degeneracy is lifted when we apply a magnetic field. We calculated explicit
matrix representations for these interactions, and in addition, for the influence of
crystal strain. The free parameters for these interactions are fitted to the experi-
mental results of Sec. 4.

• From the comparison of the simulation with the experimental data, we obtain the
eigenvalues and eigenvectors of the total Hamiltonian.

• The ground and excited states are connected via optical dipole transitions. From
the matrix elements of the dipole operator p̂ linking the eigenvectors of the states,
we can predict the polarization of a given optical line.

• When we excite the electron to the excited state, a thermalization takes place be-
tween the excited states. We introduced a phenomenological Hamiltonian to account
for this relaxation.

An important part in the description of the molecular interactions is the contribution
of crystal strain. We have seen, that strain acts on the orbital part of the wave function.
When interpreting experimental results of samples where crystal strain is present, it is
difficult to distinguish the strain contribution from the other orbital interactions. Thus, a
central task in the course of this work was the fabrication of individual SiV centers in low
strain diamond which showed sufficient brightness to be detected on a single emitter level.
We will therefore investigate the sample fabrication and design of the confocal microscope
in the following chapter.



Chapter 3

Experimental setup and sample
preparation

This chapter covers the experimental setups utilized for measuring the low temperature
optical spectra in Chap. 4. To locate and spectrally analyze individual SiV centers, we
employ confocal microscopy. Therefore, we briefly review the concept of this microscopy
technique in Sec. 3.1 and name the main figures of merit. Confocal microscopy has been
realized in two experimental setups, which we characterize in Sec. 3.1.3.

After introducing both setups, we describe the fabrication of the diamond samples
utilized in this work. Most of the research has been carried out using individual SiV
defects in bulk diamond created by ion implantation. Hence, we explain the concept of ion
implantation and specify the relevant figures of merit in Sec. 3.3. As defect centers in bulk
diamond are known to feature relatively modest fluorescence count rates due to refraction
effects and total internal reflection, we fabricated solid immersion lenses using focussed
ion beam milling. Again, we briefly outline the technique, and subsequently present the
fabricated structures as well as the resulting enhancement in collection efficiency.

3.1 Confocal microscopy

The basic idea, which distinguishes confocal microscopy from conventional microscopy, is
to focus the excitation light tightly onto the sample, instead of illuminating the whole
sample. As we will show in this section, this increases both the lateral and the axial
resolution of a microscope. Although the main concepts are valid for all the different
confocal techniques, we here consider confocal fluorescence microscopy, where we excite a
sample to subsequently collect fluorescence photons. This section only gives a very brief
summary over the technique. For a more comprehensive discussion, the reader is referred
to the works of Webb [179] and Novotny, Hecht [180].

3.1.1 Principles of confocal microscopy

Figure 3.1 illustrates the very basic difference of confocal microscopy from ordinary mi-
croscopy. In an ordinary microscope, we uniformly illuminate the sample. The light being
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emitted from a point-like emitter A, situated in the focal plane (the object plane) of a
lens, is imaged onto A′ in the image plane of the lens (Fig. 3.1a). Emitter B, which is
placed outside the focal point, is imaged to another point B′ behind the image plane.
Hence, in a conventional microscope, A′ is observed as a sharp point whereas B′ is blurry.
If one places an aperture or a pinhole at a position conjugate to the focal point, all the
light from A passes the pinhole, but the light of B is mostly rejected. This pinhole defines
the detection volume. If we illuminate the sample with the focused light of a point source
L such that only emitter A is excited and emits fluorescence, then the light of B is even
weaker. The focused illumination defines the excitation volume. Hence, the point-like
illumination L, the object A and the pinhole are said to be mutually confocal, and the
case of Fig. 3.1c corresponds to a confocal microscope. The light of objects outside of
the focal point is suppressed in two respects: First, these objects are less excited and
even if they are excited, they are not imaged onto the pinhole. As a consequence, only a
single point of the sample is detected behind the pinhole with a resolution superior to a
conventional microscope. As a trade-off, the measurement of a two- or three-dimensional
image requires the beam to be scanned over the sample (see below).

In an experimental realization, one often employs an infinity corrected objective lens
instead of a single lens (Fig. 3.2). The fluorescence light is collimated and then focused
onto the pinhole using a second lens. It is more convenient to focus the excitation light
through the objective lens from the detection side. The excitation light is coupled onto the
optical axis using a beamsplitter (either a glass plate or dichroic mirror). When exciting
the sample with non-resonant wavelengths, the reflected laser light can be conveniently
suppressed using optical bandpass filters. When employing laser excitation, the illumi-
nation point-source is often realized by sending the laser through an optical fiber. The
narrow fiber core represents a very good spatial filtering for the laser mode. Similarly, the
detection pinhole can also be implemented using an optical fiber.

3.1.2 Spatial resolution

In order to quantify the resolution of a confocal microscope, we introduce the notion of the
point-spread-function or short psf. It determines the image pattern of a point-like object in
the image plane of a microscope. For cylindrically symmetric optics and apertures, the psf
is rotationally symmetric around the optical axis. To describe the functional dependence
of the psf in cylindrical coordinates (z, r), we introduce the reduced (unit-less) variables
ζ(z) and ρ(r), which are defined by [179],

ζ(z) =
2π

nλ
NA2 z, and ρ(r) =

2π

λ
NA r, (3.1)

where ζ(z) describes the scaling along the optical axis and ρ(r) the scaling transverse to
it. The numerical aperture NA of the objective lens is defined as NA = n sinϑ, where n
is the refractive index of the medium (for us usually air, n = 1) and ϑ is the half angle of
the cone of light diverging from point A into the first lens of the microscope. The reduced
variables ζ(z) and ρ(r) are both scaled to the wavelength λ of the emitted light. In the
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Figure 3.1: Image of two point-like emitters A and B on the image plane of a single lens
resulting in the images A′ and B′. In panels (a) and (b), both emitters are excited using
a uniform illumination. In panel (b), we place a pinhole in the image plane, defining the
detection volume on A′. In panel (c), the illumination is focused by an additional lens,
defining the excitation volume. The insets on the right show the point-spread-functions
for conventional (panel b) and confocal microscopy (c).
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Figure 3.2: Schematic experimental realization of a confocal microscope in reflection ge-
ometry. The excitation light is reflected onto the optical axis of the microscope objective
using a semitransparent or a dichroic mirror.
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focal plane ζ = 0, the psf is given by

psf(ζ = 0, ρ) = 2

[
J1(ρ)

ρ

]2

, (3.2)

where J1(ρ) is a first order Bessel function [177]. The central maximum in Eq. (3.2)
describes the so-called Airy disc, which has a radius ρAiry of

ρAiry = 3.83 or rAiry = 0.61
λ

NA
. (3.3)

Strictly speaking, the psf in Eq. (3.2) is only valid in the paraxial approximation, which
usually is not satisfied when using high NA objective lenses. Yet, the overall form of
the psf also remains valid in the general case [179]. In addition, the discussion above
assumes that the pupil of the lens is fully filled with uniform irradiance. This criterion is
usually not satisfied when exciting the sample with laser beams which exhibit a Gaussian
transversal mode. Nevertheless, it can be shown, that for an excitation beam waist which
overfills the lens aperture, the loss in resolution is very small [179]. Therefore, we employ
the ideal shape of the psf [Eq. (3.2)] throughout the discussion.

Lateral and axial resolution for conventional microscopes Two luminescent point-
like objects imaged from the object plane of a microscope give rise to two psfs in the image
plane. We can resolve the two points, if their psfs are spatially separated. The minimum
separation is given by the Rayleigh criterion, which states that the psf maximum of the
second object needs to be at least in the minimum of the psf of the first object, i.e. the
two psfs need to be displaced more than ∆rtrans = rAiry from each other. It is equivalent
to say, that the two psfs require to have a dip of 26 % of the maximum intensity between
them. This defines the lateral resolution of a conventional microscope.

In a similar way, we can define the axial resolution of a conventional microscope. Along
the optical axis, i.e. in ζ-direction, the psf depends of the sinc2 of ζ,

psf(ζ, ρ = 0) =

[
sin(ζ/4)

ζ/4

]2

, (3.4)

which corresponds to the diffraction pattern of a slit. When an aperture with a diameter
of the (lateral) psf is placed in the image plane of a microscope (Fig. 3.1b), then two
objects on different positions of the optical axis can also be distinguished, if their axial
spacing amounts to

∆ζaxial = 4π or ∆zaxial = 2
nλ

NA2 . (3.5)

However, this is called a “depth of focus criterion”, as the light of the second object
will always contribute to the overall signal although it might be defocused [179]. Hence,
this spurious light adds to the noise in the measurement and reduces the contrast in a
microscope image. Confocal microscopy picks up at this point. We now analyze the
resolution criteria as they result in a confocal geometry and state the actual differences
to conventional microscopy.
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Resolution for confocal microscopes In confocal microscopy (Figs. 3.1c, 3.2) , the
excitation light is focused into a small volume of the sample. Only objects positioned
in this excitation volume contribute to the fluorescence of the sample. The fluorescence
is imaged by the microscope optics onto a pinhole in the image plane, which defines the
detection volume. Hence, the excitation and detection volume are mutually confocal, thus
they are summed up in the term confocal volume.

Analogous to the imaging of a point-like object onto the observation plane, the image
of the excitation source onto the sample is also determined by a psf. When we consider the
resolution of a confocal microscope, the psf for the excitation and the detection volume
are convoluted [180]. If the excitation path uses the same optics as the detection path,
then the psf for the confocal volume is simple the excitation or detection psf squared,

psfconf(ζ, ρ) = [psf(ζ, ρ)]2. (3.6)

Equation (3.6) can be seen as the product of the independent probabilities to focus light
onto the excitation volume and to image this light out of the excitation volume onto the
pinhole. As a result, the lateral resolution of a confocal microscope is given by,

∆ρconf = 2.76 or ∆rconf = 0.44
λ

NA
, (3.7)

where we assume that the excitation wavelength λexc and the wavelength of the emitted
fluorescence λfluor are approximately equal. The increased resolution is only part of the
advantage of confocal microscopy. We display the confocal psf in the inset on the right
of Fig. 3.1c. In the direct comparison to the simple psf created by the diffraction of a
conventional microscope (Fig 3.1b), we observe that the higher order fringes are strongly
suppressed in the confocal geometry. As a consequence, a dim object inside the confocal
volume is better distinguishable from a brighter object just outside the confocal volume,
because the bright one is less excited. Hence, while the resolution is only slightly increased,
the contrast of the image tremendously improves when using confocal microscopy.

In addition, there is a “true” axial resolution for confocal microscopy. With the
Rayleigh criterion above, we obtain the axial resolution, i.e. the distance ∆ζaxial between
two emitters to be separated,

∆ζaxial,conf = 0.2π ∼= 0.6 or ∆zaxial,conf = 1.5
nλ

NA
. (3.8)

In contrast to the depth of focus for a conventional microscope, Eq. (3.8) is an actual
resolution criterion. This means, an object e.g. 3∆ζaxial away from the confocal volume
is not just blurry (see above) but it is really suppressed, and thus does not spoil the
signal-to-noise ratio. Hence, confocal microscopy can also be used to optically isolate
objects inside a transparent sample. When scanning the beam over the sample, “slices” of
the sample at different depths can be visualized this way. We will show in the following
section, how confocal microscopy is realized in the experiments of this work.

3.1.3 Experimental setups

In this work, we employed two home-built confocal microscopes, one situated at the Saar-
land University in Saarbrücken, and the second one situated in the Cavendish Laboratory
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at the University of Cambridge. The former setup employs a liquid helium flow cryostat,
whereas the setup in Cambridge employs a bath cryostat combined with a superconduct-
ing magnet. Hence, the apparatus in Saarbrücken is also denoted as the “flow cryostat
setup”.

The flow cryostat setup

First, we describe the setup in Saarbrücken, which is depicted in Fig. 3.3.

Excitation light source The diamond samples are excited using a continuous-wave
(cw) titanium-sapphire laser (ti:sapph, Sirah Matisse TX) which is tunable between 690
and 1000 nm. Throughout the experiments, the laser was tuned to 690 nm. The ti:sapph
laser can be frequency stabilized using a Pound-Drever-Hall scheme [181], and achieves a
line width of ≈ 50 kHz. The laser is pumped utilizing a cw, diode-pumped Nd:YVO4 solid
state laser (DPSS) emitting at 1064 nm. The DPSS is internally frequency-doubled to
532 nm using a beta-barium borate (BBO) non-linear crystal, and operates at a maximum
output power of 15 W at λ = 532 nm. With 10 W pump power, the ti:sapph laser at
λ = 690 nm exhibits an output power of 500 mW. Using a combination of half-wave
plates and polarizing beamsplitters (PBS), the DPSS pump laser can also be sent to
another ti:sapph-laser (Spectra Physics Tsunami), which emits femtosecond pulses using
an active mode-locking scheme. This laser can be employed to measure the fluorescence
lifetime of SiV centers [182] which, however, is beyond the scope of this work.

Behind its Pound-Drever-Hall stabilization, the cw ti:sapph laser passes a neutral
density filter wheel for the coarse adjustment of the laser intensity. Subsequently, a com-
bination of a half-wave plate and a PBS allows the fine adjustment of the laser intensity.
The laser is coupled into a single-mode optical fiber (SMF, core diameter ≈ 5 µm, Thor-
labs SM600), using an aspheric lens of focal length f = 11 mm. As we stated above, the
SMF acts as a spatial filter to suppress higher transverse laser modes, and we approxi-
mate the laser excitation to form a point-like illumination source, which we image onto
the confocal volume.

Confocal microscope The light is guided to the confocal microscope part of the setup
using the SMF mentioned above. The laser light emerging from the SMF is collimated
to a beam waist of about 2.8 mm, using an aspheric lens of f = 13.86 mm focal length.
This beam waist matches the entrance aperture of the microscope objective employed (see
below). The excitation light first passes a PBS which transmits linearly polarized light (s-
polarized, cf. Fig. 3.3), and a spectral bandpass filter (transmitting wavelengths between
685 and 695 nm). The bandpass acts as a clean-up filter to remove light which is shifted
in frequency due to Raman scattering while traveling through the excitation SMF [183].
Behind the bandpass filter, the excitation light is sent to a glass plate inserted under
45◦ into the beam. The glass plate is a 90 : 10 beamsplitter which reflects 10 % of the
excitation light onto the optical axis of the objective lens. It might appear disadvantageous
to loose the vast majority of the excitation light, however, this loss can be compensated
by simply increasing the laser power. Conversely, when sending the fluorescence light
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Figure 3.3: Schematic sketch of the flow cryostat setup located in Saarbrücken (taken
from Ref. [169]). The beam path is described in the main text.
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through the glass plate, the high transmission is an asset to maintain a high overall
detection efficiency.

The objective lens (Olympus LMPLFLN100x) exhibits a magnification of a factor
100, a numerical aperture of NA = 0.8, and a working distance of 3.4 mm. The lens is
mounted behind a sapphire window inside a flexible bellow in the isolation vacuum of a
liquid helium flow cryostat. It is advantageous to place the lens inside the vacuum, as
we avoid a loss in resolution, which typically occurs when focussing through the cryostat
window. The objective lens sits on a linear translation stage (driven by stepper motors
of 50 nm minimum step size) to change the distance between the objective lens and the
sample, and thus, to vary the axial focus position in the sample. The sample is mounted
on the cold finger of a liquid helium flow cryostat (Janis Research, ST-500LN). We move
the whole cryostat in xy-direction using two linear translation stages. In this manner, the
sample is scanned under the excitation laser beam to provide two-dimensional fluorescence
images of the sample.

The emitted fluorescence of the sample is collected using again the objective lens, and
is sent through the glass plate to the detection path of the confocal microscope. Using a
second aspheric lens of f = 13.86 mm focal length, the fluorescence light is coupled into
another SMF (SM600), in which it is guided to the grating spectrometer or the Hanbury-
Brown & Twiss interferometer. To suppress laser light, which is reflected or scattered on
the sample surface, we employ two dielectric longpass filters, which transmit wavelengths
above λ = 720 nm. Optionally, a polarization analyzer can be placed before these longpass
filters in the detection arm. The polarization analyzer consists of a half-wave plate in a
motorized rotation mount, combined with a fixed polarization filter (Thorlabs LPVIS).
The polarization analyzer is described in more detail in Ref. [184].

Grating spectrometer The fluorescence light emitted by the defects in the diamond
sample is spectrally analyzed using a grating spectrometer (Horiba Jobin Yvon, iHR 550).
The optical fiber which guides the fluorescence light to the spectrometer, is attached to
a “fiber-port” which features two concave metal mirrors to focus the fluorescence onto
the entrance slit of the fiber. The spectrometer is an imaging spectrometer, i.e. it im-
ages the entrance slit onto its detector. The focal length of this imaging corresponds to
550 mm. The detector is a charge-coupled device (CCD) with 1024 × 256 pixels (pixel
width 50 µm). To decrease the noise-level of the recorded spectra, the CCD is cooled
using liquid-nitrogen. The CCD camera is specified by the manufacturer to provide a
detection efficiency of 90 % at a wavelength of 740 nm.

The spectrometer comprises three interchangeable diffraction gratings with 600, 1200
and 1800 grooves/mm, respectively. The resulting maximum resolution for the three
gratings are approximately 0.22 nm for 600 grooves/mm, 0.1 nm for 1200 grooves/mm and
0.04 nm for 1800 grooves/mm. For details on the optical alignment of the spectrometer
and the determination of its response function, we refer the reader to Ref. [73].

Hanbury-Brown Twiss interferometer Instead of sending the fluorescence light to
the grating spectrometer, it can also be guided to the Hanbury-Brown Twiss (HBT)
interferometer. The fluorescence is coupled into the HBT setup using an aspheric lens.
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Subsequently, it is split into two beams by a non-polarizing 50 : 50 beamsplitter. The
two beams are focused onto the active areas of two avalanche photon diodes (APDs,
Perkin Elmer, SPCM-AQRH-14), using plano-convex lenses with f = 50 mm. A photon
impinging on an APD creates an electron-hole pair in a semiconductor material, which in
turn is multiplied in an avalanche process [185]. This electric signal (“click”) is amplified
to a TTL pulse which is registered using a fast time-correlated single photon counting
system (PicoQuant PicoHarp). These electronics save the arrival times of the TTL pulses
in a “click-list”, which subsequently can be evaluated in order to calculate the photon
count rate or the correlation between the two detector channels. The timing resolution of
the photon arrival time is limited by the timing jitter of the APDs, which was measured
to show a mean value of 354 ps per APD [73].

The APDs work similar to a Geiger-counter, i.e. they exhibit a dead time after an
avalanche (typically 50 ns) in which no further photons can be detected. Furthermore,
they cannot distinguish between one and several photons arriving at the same time. The
APDs typically feature a quantum efficiency1 of 65 % at 740 nm according to manufacturer
specifications [73]. The detection efficiency is wavelength dependent, but besides this
spectral dependence, the APDs do not discriminate different wavelengths. Hence, the
detection window can be limited to a spectral interval by placing bandpass filters in front
of each APD.

The HBT has two functions: On the one hand, it is used to record the intensity
autocorrelation g(2)(τ). For the principle of the g(2) function, we refer the reader to
Sec. 1.3.3. On the other hand, the two APDs are utilized to record two-dimensional
fluorescence images or “maps” of the sample. For this purpose, the sample is scanned in
x- and y-direction while recording the photon count rates for each point of the scan. By
putting two different bandpass filters in front of the APDs, two different spectral images
of the same sample region can be acquired simultaneously (multispectral imaging, cf.
Sec. 4.1.2).

The optical resolution of the flow cryostat setup At the beginning of this chap-
ter, we have discussed the resolution of a confocal microscope, expressed in lateral and
axial psfs. We now investigate the optical resolution of the flow cryostat setup and com-
pare the experimental value to the theoretical limit. To obtain the lateral, experimental
psf, we measure the fluorescence image of a fluorescent nanodiamond in x, y-direction
(Fig. 3.4a). The nanodiamonds have a mean diameter of 130 nm, thus they are smaller
than the wavelength of the emitted light (∼ 740 nm). Hence, the nanodiamonds can be
considered as point-like emitters, and their image produced by the optics corresponds to
the experimental psf.

The fluorescence map in Fig. 3.4a shows two nanodiamonds positioned in proximity
to each other. We draw cuts along the white dashed lines in x- and y-direction (blue
dots in Fig. 3.4b,c). We add the theoretical psfs for the two emitters to the cross section
graphs (red solid lines), where the confocal psf is given by the square of Eq. (3.2) using
λ = 0.73 µm and NA = 0.8. Instead of using the Rayleigh criterion (Eq. (3.7)) for the

1Quantum efficiency is defined as the probability that an impinging photon is converted into an electric
pulse by the APD.
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Figure 3.4: Fluorescence scans of a nanodiamond sample in order to specify the exper-
imental psf (step size 200 nm). Two closely positioned nanodiamonds are imaged in
x, y-direction (a) with a cross section cut along the white dashed lines through the x- (b)
and the y-direction (c) as light blue dots. In panels (b,c), the red solid lines denote the
theoretical psf for the two emitters in the confocal case [Eq. (3.2) squared]. The grey
dashed line is the sum of the psfs for the two emitters. Panel (d) shows a scan of the laser
focus of the top left nanodiamond, along the z-direction (step size 400 nm); the red solid
line denotes the axial psf [Eq. (3.4) squared].

lateral resolution, it is more convenient to employ the FWHM of the theoretical psf,
which is given approximately by FWHM(psftheo) = 340 nm. For the y-direction, the
theoretical psf agrees well with the measured data points, whereas in x-direction, the
experimental psf is slightly larger than the theoretical limit. This deviation can arise
from a slight misalignment along the x-direction. From Fig. 3.4a-c, we infer a lateral,
experimental resolution of ∼ 470 nm in x- and ∼ 400 nm in y-direction, respectively. The
values correspond to the FWHM of the data peaks in the cross section graphs.

For the resolution along the z-direction, the excitation laser was focussed onto the
top left nanodiamond in Fig. 3.4a and scanned along the z-direction (Fig. 3.4d). The
theoretical psf in z-direction is given by Eq. (3.4) squared (red solid line), and amounts to a
FWHM of 1.48 µm. There is a high agreement between the theoretical and experimental
psf. Figure 3.4 reflects the typical situation of two closely positioned objects, which
however can be resolved to a high degree using confocal microscopy.

The bath cryostat setup

The second setup, situated at the Cavendish Laboratory in Cambridge, employs the very
same principles as the first one. The main difference is the sample being placed in a helium
bath cryostat, which also features a superconducting magnet. While the all principles of
confocal microscopy, which we have introduced above, remain valid, this configuration has
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some technical consequences. A schematic view of the bath cryostat setup is depicted in
Fig. 3.5.

Excitation light source Two different excitation lasers are employed: For non-resonant
excitation and similar to the flow cryostat setup, a tunable titanium-sapphire laser (Co-
herent Mira), pumped again by a 532 nm DPSS laser (Coherent Verdi, set to 5 W) is
utilized. The ti:sapph laser can either be operated in cw- or pulsed-mode (3 ps pulses at a
repetition rate of 76 MHz). For the measurements presented here, operation at 700 nm in
cw-mode was employed. For resonant excitation of the SiV zero phonon line, an external
cavity diode laser (ECDL, Toptica, DL pro) at 737 nm is used. The diode laser employs
a grating in Littrow configuration to select a single mode. It is tuned in wavelength using
two mechanisms: For coarse tuning, the grating is rotated manually using a fine-threaded
screw. For fine tuning, the grating is rotated by a piezo while simultaneously modulating
the laser current (“feed forward”). The diode laser is frequency-stabilized to a wavelength
meter (Highfinesse WSU10, 10 GHz absolute frequency resolution). Depending on the
experiment, one of the two excitation lasers is coupled into a SMF and guided to the
confocal microscopes.

Confocal microscope Similar to the flow cryostat setup, the excitation light passes
a linear polarizer followed by a clean-up filter [(700± 5) nm bandpass] and is reflected
towards the sample using a glass plate which is mounted at an angle of 45◦. The excitation
light which is transmitted through the glass plate is sent to a calibrated photodiode, which
allows to measure the excitation power.

The sample is placed inside a tube, which is first evacuated to pressures below 10−5 mbar,
then filled with approximately 50 mbar of dry helium for thermal contact. Subsequently,
this exchange gas tube is lowered into a isolated vessel filled with liquid helium. This
requires the first lens to be placed inside the exchange gas, which imposes high durability
requirements on the lens. Therefore, no microscope objective is utilized, as the optical
components inside the objective would deteriorate when being cooled to liquid helium
temperatures. Instead, a single aspheric lens with a numerical aperture NA = 0.6 is
employed. Due to the lower NA, we expect the fluorescence count rates from individual
defects to be inferior as compared to the flow cryostat setup. Furthermore, an aspheric
lens is susceptible to chromatic aberrations which necessitates a careful realignment when
changing laser wavelengths. To accurately position the sample in the focus of the exci-
tation laser, a set of XYZ translation stages (Attocube ANP) is used. The piezo-driven
positioners employ the inertial sliding principle [186].

In addition, the cryostat features a superconducting magnet, capable of magnetic flux
densities up to 7 T. The magnet coils are mounted such, that the magnetic field is aligned
with the direction of the incoming excitation laser, the so-called Faraday configuration.

The fluorescence light is collected using the aspheric lens and transmitted through
the glass plate. The glass plate under 45◦ induces a slight beam displacement, which
is compensated using a second glass plate which is mounted perpendicular to the first
on, i.e. under −45◦. At this second glass plate, a fraction of the excitation laser is
reflected towards a CCD camera. The CCD image of the reflected beam allows for a
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3.2. DIAMOND SAMPLES 97

coarse positioning of the laser spot on the sample. When using non-resonant excitation
of the SiV center at a wavelength of 700 nm, the remaining reflected laser is suppressed
using a longpass filter, which transmits wavelengths λ > 720 nm. For resonant excitation,
a second linear polarizer is placed in the beam path, which is set perpendicular to the
incoming excitation beam and thus rejects the reflected laser light. For details on the
crossed polarizer laser suppression see Ref. [64].

The fluorescence light is coupled into a single fiber and guided to either a grating
spectrometer (PI Acton SpectraPro 2750 with Spec10 LN-cooled CCD camera) or to a
Hanbury-Brown & Twiss interferometer. The two detection devices are analogous to the
one in the flow cryostat setup, except that the spectrograph exhibits a focal length of
750 mm and thus features a higher spectral resolution (5 GHz measured using a grating
with 1800 grooves/mm).

As we stated above, the two microscopy setups only differ in technical aspects. How-
ever, these technical differences suggest to dedicate the setups for complementary tasks:
The flow cryostat shows a relatively high collection and detection efficiency and, in addi-
tion, can be extended to automated polarization measurements. Hence, we employ it for
zero magnetic field spectroscopy and fluorescence polarization analysis. Furthermore, the
measurement of the intensity autocorrelation g(2)(τ) of individual SiV defects is performed
using this setup. The bath cryostat setup provides magnetic fields to split magnetic sub-
levels and thus, is used to measure Zeeman spectra of SiV centers (Sec. 4.1.4). In addition,
the bath cryostat setup is utilized to perform resonance fluorescence measurements.

3.2 Diamond samples

This section covers the diamond samples which host the SiV centers analyzed throughout
this work. Afterwards, we review the creation of individual SiV centers in bulk diamond
using ion implantation (Sec. 3.3) and the fabrication of solid immersion lenses to enhance
the collection efficiency (Sec. 3.4).

All diamond samples in this work were fabricated using chemical vapor deposition
(CVD). For the CVD process, a more detailed discussion can be found in Ref. [74]. In
short, methane is dissociated using a reactive hydrogen plasma, and adsorbs covalently
bound to existing carbon atoms. Due to the reaction kinetics, the process leads to a
preferential creation of diamond, because other carbon modifications, such as graphite or
diamond-like-carbon, are selectively etched. The degree of this selectivity is determined
by the process parameters, which are the gas pressure, the substrate-temperature and the
relative methane content. In addition, the choice of the substrate plays an important role:
To date, single crystalline diamond can only be grown homoepitaxially, i.e. on existing
single crystalline diamond substrates. Defects in the diamond lattice of the substrate,
such as dislocations, stacking faults, point or line defects, are translated into the adsorbed
diamond, and create crystal strain in the growth layer.

3.2.1 SIL sample

Impurities in CVD-grown diamonds emerge from contaminations of the process gases
utilized, as well as from the contact of the reactive CVD plasma with parts inside the CVD
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Figure 3.6: First-order Raman spectrum of the SIL sample. The light blue dots denote
the experimental data, measured with the flow cryostat setup and the blue solid line is a
fit using a Lorentzian peak function with a full width at half maximum of 1.55 cm−1.

reactor. Using purified gas sources and minimizing the contact to the growth chamber,
CVD diamonds can achieve high purity levels. One of the three diamonds which we present
here was grown commercially (Element Six “electronic grade”), and is specified to contain
substitutional nitrogen levels below 5 parts per billion (ppm) and a boron concentration
of below 1 ppb according to the manufacturer. No other specifications on impurity levels
of the diamond, such as Si contents, are given by the manufacturer and no information
is provided on the growth process. However, preliminary experiments on the as-grown
diamond using the flow cryostat setup showed no presence of SiV centers in the material.
Hence, this sample is well suited for a controlled creation of individual SiV centers using
ion implantation (cf. next section). An enhancement of the collection efficiency using solid
immersion lenses (SILs) on this sample is presented in Sec. 3.4, thus, we term this sample
the “SIL sample”.

To reveal the electronic structure of the SiV center without the influence of crystal
strain in the host diamond, we require diamond samples of high crystalline quality. One
figure of merit for the crystalline quality of diamond is the width of the first order Raman
peak. The Raman effect occurs as a consequence of inelastic scattering of the excitation
laser in the diamond. For first-order Raman scattering, the excitation laser creates a vi-
brational quantum (a phonon) in the diamond, thus a part of the laser energy is absorpted
by the phonon creation and the scattered light is shifted to longer wavelengths. Perfect
diamond shows one optically active vibration mode, which is located at the center of the
first Brillouin zone. Hence, for high crystalline quality diamond, the first order Raman
spectrum consists of a single line shifted by a wavenumber of 1332.5 cm−1 with respect to
the excitation laser [36]. This line can be broadened by the presence of defects in the lat-
tice, resulting in an asymmetric peak shape [187]. Natural and synthetic HPHT diamonds
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show line widths between 1.7 cm−1 and 2.2 cm−1, and high quality CVD diamonds were
reported to lie in the range of 2.3 cm−1 [187]. The Raman spectrum of the SIL sample,
given in the intensity of the scattered line versus the wavenumber, is depicted in Fig. 3.6.
The spectrum was measured at T = 30 K using the flow cryostat setup (1800 grooves/mm
grating in the spectrometer). The first-order Raman peak is fitted using a Lorentzian
function with a full width at half maximum equal to FWHM = 1.55 cm−1, which even
surpasses the results in Ref. [187].

3.2.2 Ensemble sample

For the SIL sample, we imposed the condition that no defects are present in the as-grown
diamond to provide a “pure” host material for implantation. For the two other samples
presented in this work, we use the contamination inside the growth chamber on purpose to
create SiV centers. The second sample is a thin CVD film, grown on a (001) high-pressure-
high-temperature (HPHT) substrate of type Ib (Sec. 1.1). The HPHT substrate was
preselected for low crystal strain and high surface quality to provide an ideal, unstrained
environment for defects. The CVD layer was grown in a hot-filament CVD chamber, using
a H2:CH4-ratio of 0.26 % and a slow growth rate (approximately 10 nm/h). It has been
shown in Ref. [188], that a low methane concentration is advantageous for homoepitaxial
growth, resulting in smooth sample surfaces and high crystalline quality. The sample
showed a first order Raman peak width of 2.6 cm−1 [73], proving the high crystalline
quality of the diamond.

The CVD growth chamber for the fabrication of the sample showed a contamination
with silicon, as diamond growth on silicon was frequently performed in this chamber.
The silicon atoms are etched by the reactive hydrogen plasma, and incorporated into the
diamond layer. Hence, we observe an in situ doping of the thin film, resulting in an
ensemble of SiV defects. For the sake of brevity, we simply call this sample the “ensemble
sample”. As neither the degree of the contamination, nor the efficiency of the doping
process are unknown, a quantization of the Si concentration remains challenging for this
sample. More details on the ensemble sample can be found in Ref. [189], [73] and [115].

3.2.3 Nanodiamonds

Nanodiamonds are a promising system for several applications of color centers. Their main
advantage over bulk diamond is the enhanced extraction of fluorescence from the defects
inside them. In bulk diamond, a large fraction of the emitted light is not irradiated towards
the objective. This has two reasons (see also Sec. 3.3.4): First, the dipole emission pattern
of a defect close to the interface of two dielectrics is not isotropic, but shows a preferential
emission towards the higher index material [190]. Hence, most of the fluorescence is
emitted away from the diamond surface. Second, total internal reflection at the surface
limits the collection angle of the emission (cf. Sec 3.4).

Typically, nanodiamonds are smaller than the wavelength of the emitted light and
can be considered as point-like emitters. As a result, they do not exhibit total internal
reflection, which greatly improves the collection efficiency. However, placed on a high
refractive index substrate, much of the radiation is still directed towards the substrate.
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Nevertheless, placing the nanodiamonds on a reflective substrate, this light can partly be
recovered.

Owing to the resulting brightness and the relatively modest complexity in their fabri-
cation, nanodiamonds show a high potential for applications as room-temperature single
photon sources. In addition, luminescent defects – in particular the SiV center – have
been reported to show stable emission in nanodiamonds of sizes down to 2 nm [191]. In
combination with their non-toxicity, the are promising candidates for fluorescence labeling
of biological samples. The SiV center placed in nanodiamonds appears to be particularly
promising because its emission at about 740 nm lies in the “biological window” where
many biological tissues are transparent.

Nanodiamonds often originate from detonation diamond or from milled polycrystalline
films [66]. Using centrifugation, different nanodiamond sizes can be separated. We here
employ an advanced nanodiamond fabrication [56]: Synthetic detonation nanodiamonds
are utilized as seeds to start the diamond growth in a CVD process. During the growth,
an in situ doping with silicon creates individual SiV centers.

The nanodiamonds are grown on a stratified substrate, consisting of a 150 nm thin
iridium layer, which was deposited on a 40 nm buffer layer of yttrium-stabilized zirconia
(YSZ) on a silicon wafer [192]. Prior to the growth, the seed-diamonds, which are diluted
in water, are spin-coated onto the substrate. We employ seed diamonds with a mean
diameter of 17 nm (Microdiamant Liquid Diamond MSY). The seed density amounts to
approximately 2.5 seed crystals per µm2. The seeded substrates were subjected to a
microwave-plasma-assisted CVD process for 25 min. The relative methane concentration
is chosen to be 1% at a gas pressure of 30 mbar, and a microwave power of 2000 W was
employed. Size characterization of the isolated nanodiamonds using scanning electron
microscopy (SEM) showed a median of 130± 30 nm.

The silicon source for the in situ creation of SiV centers, is the silicon substrate
employed for the growth of the nanodiamonds. As the surface of the substrate is covered
with iridium and consequently, is not exposed to the CVD plasma, we assume the substrate
edges as the main source of silicon. Nanodiamonds grown directly on silicon without a
cover layer typically showed ensembles of SiV defects, whereas the nanodiamonds created
in this process exhibited single SiV centers or none at all. The SiV centers created using
this method showed the highest single photon count rates for color centers centers in
diamond. A series of reports on individual SiV centers has been published by Neu et al.
using these samples [56,58,73,114–117].

Fluorescence properties of the nanodiamond sample We verified that the nanodi-
amond sample, employed in this work, shows fluorescence properties similar to the samples
in the reports of Neu et al.. A typical fluorescence map of the sample, acquired at room
temperature using the confocal microscope in Saarbrücken (cf. Sec. 3.1.3), is shown in
Fig. 3.7. The sample was excited using 690 nm laser light, and the emitted fluorescence
light was detected utilizing the HBT-setup with a 730− 750 nm band pass filter in front
of every APD. Nanodiamonds containing SiV centers are observed as bright, point like
objects on the fluorescence map. The sample has been structured in order to provide posi-
tion markers to relocate individual nanodiamonds. Circular Ag-markers (10 µm diameter,
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100 nm height, 30× 30 µm spacing) have been fabricated in a conventional lift-off process
using photolithography.
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Figure 3.7: Fluorescence image of the nanodiamond sample, excited with 0.1 mW, 690 nm
laser light and detection at 730− 750 nm using the flow cryostat setup. The measure-
ment was performed at room temperature. The sample has been structured with circular
position markers.

The typical count rates observed in Fig. 3.7 are on the order of 104 − 105 photons per
second. Several emitters were investigated in more detail, revealing narrow zero phonon
lines at ∼ 740 nm and saturation count rates in the range of 106 photons per second (not
shown). Hence, the nanodiamond sample, employed in the present work shows properties
comparable to earlier studies [56].

We employ the nanodiamonds in this work as a “test bench” for strained SiV centers.
The crystalline quality of fabricated nanodiamonds depends – as for bulk diamond – on the
choice of the growth parameters. The process parameters mentioned above were optimized
to produce well-faceted crystallites. However, inherent defects in the seed diamond give
rise to twinning and other faults of the grown crystal. These defects originating from the
seed diamond lead to residual strain in the nanodiamond. As we will see later, strain
results in a shift of the SiV zero phonon line (ZPL). For nanodiamonds similar to the ones
used in this work, a statistical variation of the ZPL for different emitters was observed [56].
We make use of this strain to probe the SiV electronic structure in the presence of crystal
strain to verify the theoretical model presented in the preceding chapter.

For individual defects without crystal strain, we create SiV centers using ion implan-
tation in the SIL sample mentioned above. The method of ion implantation is described
in the following section.
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3.3 Ion implantation

We speak of ion implantation, when charged impurity atoms are accelerated onto a sample
(a target) with a sufficiently high energy such that the ions enter the target and are incor-
porated at a given depth. On their trajectory through the material, the impurities collide
with the target atoms and create lattice vacancies. Using thermal annealing after the im-
plantation, the mobility of these lattice vacancies can be sufficiently increased to migrate
to the impurities where defect complexes are formed. The most important parameters
for ion implantation are the fluence which defines the resulting density of the impurities
incorporated in the material, and the ion energy which mainly defines the stopping range
and which is directly proportional to the acceleration voltage.

In the previous section, we discussed the in situ doping of samples during their growth.
For this doping method, the incorporation mechanism, i.e. the addition of doping mate-
rials during growth, can also influence the growth mechanism and lead to e.g. different
morphologies of the diamond sample. In contrast, ion implantation offers the possibility
to characterize a given sample before and after incorporation of defects and therefore
provides a highly deterministic way to incorporate defects. In addition, the resulting
density of impurities is challenging to control for in situ doping and often requires to
repeat the growth procedure with widely varying parameters. As the fluence of an ion
beam can be measured from the charge deposited on the sample, the number of impu-
rities is a well controllable parameter. Hence, ion implantation is a useful technique to
deterministically place impurities in a well controlled environment. We briefly review
a few theoretical concepts for implantation in diamond in the following paragraph and
subsequently summarize the actual implantation experiment conducted in the RUBION
institute in Bochum, Germany.

The downside of ion implantation is the occurrence of radiation damage in the sample.
For diamond samples, this can lead to a graphitization of the irradiated surface. Hence,
ion implantation requires a post-treatment of the sample in order to remove this residual
damage. We discuss radiation damage and suitable annealing strategies in Sec. 3.3.3.

3.3.1 Calculation of the stopping range

When an charged particle penetrates a solid material, the ion gradually loses its energy
due to scattering events in the target. We follow the argumentation outlined in Ref. [83].
The deceleration of the ion results from Coulomb interaction and can be divided into two
contributions: The first one is the electronic energy loss which involves an interaction
between the ion and the electrons of the target. The second interaction is between the
ion and the nuclei of the target material.

In general, the effect of slowing down the ion is quantified using the stopping power
(dE/dx), which is defined as the loss in energy dE per distance dx, and which is given by

dE

dx
= N

∫
Tdσ. (3.9)

In Eq. (3.9), dσ denotes the collision cross section, T the loss of energy per collision event
and N the density of scattering centers in the target [83]. Equation (3.9) relates to a
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stopping cross section E given by E = N−1(dE/dx). As the total stopping of the ion
depends on an electronic and a nuclear contribution, we write the total stopping power as

dE

dx
=

(
dE

dx

)
e

+

(
dE

dx

)
n

= N(Ee + En), (3.10)

with Ee, En being the electronic and nuclear stopping cross sections, respectively. For
the electronic contribution Ee, the electrons are considered as a free electron gas which
experiences a perturbation by the charge of the penetrating ion and in turn, exhibits a
stopping force on the ion. This approach was published by Lindhard, Scharf and Schiøtt
in 1963 [193] and hence is referred to as the LSS theory. The electronic stopping power
is directly proportional to the velocity of the ion, or in other words, proportional to the
square-root

√
E of the kinetic energy E of the ion. The electronic stopping is dominant

for higher ion energies, and has its maximum for the implantation of carbon in diamond
at E ≈ 2 MeV [83]. The LSS theory does not predict a deviation of the ion on its way
through the crystal.

The nuclear contribution on the stopping power is dominant for lower energies (on
the order of 10 keV). This interaction is provoked by the Coulomb interaction of the
(positively charged) ion with the positive nuclei, where the ion and the scatter center are
both approximated as point-like objects. As a result, the stopping cross section relates
to a Rutherford scattering process. In contrast to the electronic contribution, the nuclear
stopping leads to a change of the ion direction when scattered. In addition, it gives rise
to the target atoms leaving their lattice site, thus creating vacancies.

The loss rate in Eq. 3.9 enables the calculation of the ion range R which can be
considered as the mean track length of the ion before being completely stopped,

R =

0∫
E0

dE

(dE/dx)
, (3.11)

where the integral limits range from the initial ion energy E0 to zero. The ion range R is
closely related to projected range Rp, i.e. the predicted depth below the surface of an ion.
This range is not a sharp peak, but shows a statistical distribution owing to the statistical
nature of the scattering events. The implantation density n(z) along the direction of the
beam is a Gaussian distribution centered at Rp and showing a width of σd:

n(z) =
φ

σp
√

2π
exp

[
−(z −Rp)2

2σ2
p

]
. (3.12)

The implantation density n(z) is directly proportional to the fluence φ, given in the
number of ions per cm2. Hence, we deduce that the main parameters, the fluence φ
and the ion energy E, determine the density and the mean depth of the implantation,
respectively.

Equation (3.12) provides an intuitive model of the underlying physics to understand
the implantation profile, but it neglects e.g. channeling [83]. Therefore, the calculation
of the integral in Eq. (3.11) and the resulting density is usually replaced by more sophis-
ticated, numerical simulations. We employ the TRIM software (TRansport of Ions in
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Figure 3.8: Ion implantation density profile n(z) along the path of the ion in a diamond
sample (blue histogramm), simulated with the SRIM algorithm [194], using 5000 28Si ions
at an energy of 900 keV and an angle of incidence of 8◦ to prevent channeling. The red
solid line shows a fit according to Eq. (3.12) with parameters Rp = 518 nm, σd = 35 nm.
Both curves are normalized to 1.

Matter), which was developed by Ziegler et al. [194]. TRIM is a Monte-Carlo simulation,
which numerically follows the path of an ion through the target. The target is approxi-
mated as a homogeneous material of a given density and the scattering events thus occur
probabilistically. In addition, the program infers the mean number of vacancies created
per ion. This is a figure of merit for both the creation yield of vacancy-related defects, such
as the SiV center, and for the damage induced by the ion (see below). Figure 3.8 shows a
TRIM simulation for the implantation profile of Si atoms into diamond using Si ions at an
energy of 900 keV. The density profile is fitted using a Gaussian peak function according
to Eq. (3.12). The mean depth of the Si ions amounts to 500 nm with an uncertainty
(“straggle”) of σ = 54 nm. The simulation predicts that each ion creates a mean number
of about 1344 vacancies. We note that the density profile is slightly asymmetric, hence
a fit with a Gaussian peak function according to our simplified model above [Eq. (3.12)]
does not perfectly reproduce the simulation.

We employed these parameters for the implantation of the SILs sample at the RUBION
institute. In the following section, we briefly give an overview, how an ion implanter as
present at the RUBION is technically realized.

3.3.2 Technical realization of the ion implantation

The implantation on the SIL sample (cf. Sec. 3.2) was carried out at the RUBION
located at the Ruhr-Universität in Bochum. The institute disposes over a 4 MeV Tandem
Dynamitron accelerator (Radiation Dynamics Inc., see Ref. [195] ) which provides ion
currents up to several 100 µA at energies from 300 keV to 50 MeV (depending on the
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charge state of the ion). Figure 3.9 shows a schematic overview over the facility.
First, the ions – in our case silicon – are extracted from a Cs sputter source [196] and

preaccelerated at 20 keV. Using a 90◦ analyzer magnet, ions of the desired mass and charge
are preselected and enter the main acceleration beam line. The Tandem Dynamitron is a
linear accelerator and follows a principle which is described e.g. by Van der Graaf [197]:
The injected ions, which are negatively charged, enter the accelerator at a ground potential
and are accelerated towards a positive high-voltage terminal. In this terminal, the ions
pass a stripper gas which strips the electrons off the ions. Being positively charged, the
ions are repulsed by the positive terminal and are further accelerated to a second ground
terminal where they leave the accelerator. Hence the high-voltage is utilized twice for the
acceleration. The ions are steered towards the sample, using additional sector magnets.
In front of the sample, a quadrupole lens focusses the ion beam. Subsequently, the beam is
scanned over the sample using two pairs of plate capacitors driven by a function generator,
resulting in a homogeneous density of ions over the sample.

For the SIL sample, we employed an acceleration voltage of 900 keV on singly negative
Si ions. The stopping range is predicted to be 500± 50 nm (cf. Fig. 3.8). During the
implantation, the sample was masked with a circular metal aperture. Different fluences
(108 − 1011 ions per cm2) where applied to different positions on the sample (cf. Fig. 3.10).
Before a series of implantations, the ion current is measured using a picoampere meter.
The fluence φ is then given by the ratio of the current times the exposure time over the
area of the sample holder. The area is defined by an aperture inserted before the sample
and the irradiation is assumed to be homogeneous over the target holder. In addition to
the Si implantation, nitrogen has been implanted on a central region of the sample for test
purposes which are beyond the scope of this work (fluence: 1013 ions per cm−1, energy:
600 keV).

3.3.3 Radiation damage and post-treatment

While the ion penetrates the target atom and is gradually slowed down, the nuclear
collisions of the ion lead to a displacement of the atoms in the material. This results in the
formation of lattice vacancies and interstitials. One ion on its way through the crystal can
create several vacancies, and additionally, the displaced atoms can create other vacancies,
resulting in a damage cascade. We stated above, that the nuclear interaction is related
to a Rutherford scattering process which in turn depends on 1/E2 of the ion energy E.
Hence, the slower the ion moves through the crystal, the more vacancies are created, until
the energy of the ion is not sufficient anymore to displace the atoms of the target. The
overall number of vacancies created per ion depends on the energy and on the mass of the
ion.

For the removal of these lattice defects, the crystal is usually heated in vacuum or
stabilizing gas atmospheres (e.g. forming gas) to prevent oxidation of the diamond surface.
Lattice vacancies in diamond become mobile at temperatures of approximately 800◦C
and start to mutually annihilate with the interstitials. During the thermal annealing, the
radiation damage can lead to graphitization of the material [198], as broken sp3 bond
orbitals can be replaced by sp2 orbitals which are thermodynamically more stable. The
threshold fluence for an irreversible graphitization was found to be 1015 ions per cm2 [199].
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Figure 3.9: Overview over the RUBION accelerator facility. The negatively charged ions
are extracted from the ion sources (1) in the lower part of the picture and enter the
Tandem Dynamitron accelerator beam line (2) in which they are stripped of electrons
and subsequently carry a positive charge. The accelerated ions are then guided to a an
analyzer magnet (3). There, the ion beam is split up towards bending magnets (4) from
where it is distributed to various beam lines. An additional heavy ion beam line (5) is
directly attached to the analyzer magnet and was used for silicon implantation during
this work (after Ref. [169] and www.rubion.rub.de).

http://www.rubion.rub.de
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The SiV center constitutes of an Si impurity and a vacancy, thus the creation of
vacancies during the implantation is necessary for creating the defect complexes. To
promote a coalescence of impurity and vacancy, and to anneal the radiation damage, the
SIL sample is heated to 1000◦C for two hours in vacuum to assure a sufficiently high
vacancy mobility. After the annealing process, the sample surface shows a graphitization,
which is observed in a grey-shaded surface. To remove the graphite layer, the sample is
cleaned in peroxymonosulphuric acid (H2SO4 : H2O2, 1 : 1) for 30 minutes and afterwards
heated to approximately 460◦C in air for two hours. This process has been employed
to remove residual damage from diamond which has been structured using focussed ion
beam milling [86].

3.3.4 Preliminary results of the ion implantation

Figure 3.10 shows a fluorescence image of the whole SIL sample, measured at room tem-
perature with a setup similar to the flow cryostat setup. The sample was excited using
1 mW of 660 nm laser light, and the detection was in the spectral interval of 730 - 750 nm.
Out of the four implantation sites in the corners of the sample (marked by blue circles), the
region with 1011 ions per cm−2 is clearly observable and the area with 1010 ions per cm−2

shows a slightly elevated count rate. The regions with 108 and 109 ions per cm−2 are not
discernible form the background fluorescence of the diamond. The spectrum in the region
with 1011 ions per cm−2 shows emission of an ensemble of SiV centers, and no individual
defects could be isolated in this region.

Single SiV centers were found in the area with 1010 ions per cm−2 (cf. Sec. 4.1.2),
with an average density of approximately 3 SiV centers per 10× 10 µm2. One defines the
creation efficiency or yield of an implantation as the probability to convert one implanted
Si atom into an SiV center. At a dose of 1010 ions per cm−2 and with a creation efficiency
equal to unity, we would expect ∼ 100 SiV defects per µm2. With the result above, we
estimate our creation efficiency to be slightly below 1‰.

We compare these results with the ion implantation experiments carried out by Wang
et al. [57,198]. They implanted 28Si ions at an energy of 10 MeV and a fluence of 109 ions
per cm−2. Confocal microscopy revealed single SiV defects at these conditions. It is
noticeable that the dose of Si ions to create individual centers was an order of magnitude
smaller than in our studies. A simulation of the SRIM software reveals that at 10 MeV
implantation energy, one ion creates about 2000 vacancies, thus 50 % more vacancies
than at the 900 keV in our experiment. Thus, we assume that, in our case, the creation
efficiency is limited by the number of vacancies available to pair up with the Si impurities.
As a result, providing more vacancies in the diamond would result in a higher creation
efficiency. When the diamond is structured using a focused gallium beam, additional
vacancies are produced, which can form further SiV centers with unpaired Si impurities
present in the material. In Sec. 4.1.2, we show that structured regions exhibit a higher
number of SiV defects, which is consistent with the hypothesis above.

Similar to the results of Wang et al., the individual SiV centers in the implanted di-
amond showed modest count rates in the range of a few 1000 cps. These low count rates
render the follow-up experiments of Chap. 4 challenging. At this point it is interesting
to discuss the reason why SiV centers in nanodiamonds (cf. Sec. 3.2.3) show fluorescence
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Figure 3.10: Fluorescence image of the SIL sample after implantation, excited with 1 mW,
660 nm laser light and detection at 730− 750 nm (setup similar to flow cryostat setup,
cf. [200]). The four blue dashed circles mark 28Si implantation sites with fluences of
108 − 1011 ions per cm−2 at an energy of 900 keV. The blue rectangle marks the sample
edges. The red dashed circle in the middle of the sample was implanted with nitrogen for
test purposes and shows fluorescence of the NV center.

count rates, which are more than two orders higher than individual defects in bulk dia-
mond. The collection of the emission light for defects in bulk diamond is limited due to
three reasons: First, the orientation of the defects in the (001) oriented bulk diamond is
disadvantages, because the main dipole emission comes from the Z dipole, which however
has a fairly large angle of 54.7◦ to the diamond surface (cf. Sec. 2.3.1). In Ref. [201], it
is shown that the collection efficiency for emitters oriented perpendicular to the surface
is about ten times lower than for emitters parallel to it. Nanodiamonds grow from ran-
domly oriented seed diamonds, thus the angle of the SiV Z dipole to the substrate can
be arbitrary. Hence, in the optimal case, the Z dipole of an individual defect is oriented
parallel to the surface, leading to collection efficiencies of up to 80 %. Second, the radi-
ation pattern of a dipole, i.e. the angular distribution of the irradiated light intensity, is
modified by the photon density of states in the surrounding material. As a consequence,
an electric dipole placed at the diamond-air interface shows a dominant emission towards
the higher index material [190]. On the other hand, the metallic Ir-surface of the nanodi-
amond sample has proved to be advantageous, since it can channel the emission towards
smaller angles, thus enhancing the collection efficiency. As a drawback, the collection effi-
ciency depends strongly on the distance of the SiV dipole to the metallic surface, ranging
from below 20 % to approximately 80 %. Third and finally, the refraction and the total
internal reflection at the diamond-air interface limits the angle at which fluorescence light
can leave the material. An improvement of the collection efficiency can be obtained by
using photonic structures, such as solid immersion lenses, which we discuss in the follow-
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ing section. In contrast, nanodiamonds are smaller than the wavelength of the emitted
light and can be considered as point-like emitters. As a result, they do not exhibit total
internal reflection, improving the collection efficiency.

3.4 Solid immersion lenses

To enhance the collection efficiency on the implanted SiV center, we fabricate solid im-
mersion lenses (SILs) into the diamond surface. First, we discuss the limitations of the
collection angle for emitters placed below a flat diamond surface, and then we show how
SILs inhibit these refraction effects. Subsequently, we outline the fabrication process of
the SILs and briefly discuss the enhancement of the collection.

3.4.1 Collection efficiency for emitters in bulk diamond

We consider a single SiV defect placed in proximity to the diamond air interface (Fig. 3.11a).
In a preliminary approximation, we assume the emission of the defect to be isotropic. The
emitted light is refracted at the surface according to Snellius’ law,

n1 sin(θ1) = n2 sin(θ2), (3.13)

where for the diamond-air interface n1 = 2.4 and n2 = 1. The maximum collection angle
θ2,max is limited in two aspects: First, light reaching the surface at an angle θ1 > 24.6◦ is
reflected back into the diamond due to total internal reflection (dashed lines in Fig. 3.11a).
This imposes one limitation on the maximum angle under which light can be collected.

The second limitation is the numerical aperture NA of the objective lens, which defines
the maximum collection angle θ2,max in the upper hemisphere of Fig. 3.11a via the relation
NA = n2 sin(θ2,max). For the flow cryostat setup, the numerical aperture has a value of
NA = 0.8 . Due to refraction at the diamond surface [Eq. (3.13)], the maximum emission
angle inside the diamond θ1,max is then given by [202]

θ1,max = arcsin

[
n2 sin (θ2,max)

n1

]
= arcsin

[
NA

n1

]
= 19.5◦. (3.14)

Hence, light emitted at an angle of more than 19.5◦ inside the diamond is not collected by
the finite NA lens. We define the collection efficiency ηbulk for the emitter as the ratio of
the collected light over the total emission. This fraction is equal to the ratio of the solid
angle Ω defined by the opening angle θ1,max over the emission into the whole space (4π),
where we remember that the emission was assumed to be isotropic,

ηbulk =
Ω

4π
=

2π[1− cos(θ1,max)]

4π
≈ 0.029. (3.15)

Thus, the collection efficiency is on the order of 3 %, which imposes a serial limitation on
the brightness of an individual defect in bulk diamond. Strictly speaking, this efficiency
is only valid for emitters with their dipole oriented parallel to the sample surface. For
emitters perpendicular to the surface, the collection efficiency is about an order of magni-
tude lower [201]. We have already discussed, that these effects do not account when the
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Figure 3.11: Collection angles for an individual defect in diamond placed (a) under a flat
diamond surface and (b) at the center of a hemispherical SIL. The maximum collection
angle (a) without the SIL is limited to 19.5◦ (red solid lines). With the SIL (b), no
refraction occurs at the surface and the possible collection angle increases to 53.1◦ (angles
not to scale). The red shaded areas denote the light collected by the objective lens.

diamond itself is smaller than the wavelength of the emitted light, i.e. when we employ
nanodiamonds (cf. Sec. 3.2.3). However, nanodiamonds show other limitations, such as
crystal strain or spectral diffusion [58].

3.4.2 Improvement of the collection efficiency using SILs

An alternative method to enhance the collection efficiency is to use solid immersion lenses
(SILs) which partly inhibit the refraction at the surface. A SIL is a truncated sphere,
made of a dielectric material with a high refractive index, such as zirconia (n = 2.17).
We distinguish between the hemispherical and the Weierstrass geometry for SILs [203].
Often, SILs are macroscopic optics placed onto the surface of a solid sample. However,
when placing such a macroscopic SIL onto the sample, one faces three problems: First,
there is typically a remaining index mismatch between e.g. a zirconia SIL and the diamond.
Second, the possible air-gap between SIL and diamond surface can again lead to refraction
and spoil the positive effects of the SIL. Third, the SIL decreases the excitation focus size
inside the material. While this can be beneficial for some applications [204], it limits the
usable field of view for a microscope objective which is disadvantageous in our case.

Hence for us, it is preferential to fabricate the SILs directly into the material, where
we restrict ourselves to hemispherical SILs as these are easier to manufacture. Before
we outline their fabrication in the next section, we derive the improvement in collection
efficiency when using SILs. We consider an emitter placed at the center of a hemispherical
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SIL, and again we simplify the problem by assuming that the emitter radiates isotropically
(Fig. 3.11b). As every ray exits the surface at a normal angle, we obtain θ1 = θ2 = 0
and no total internal reflection occurs. Since the angle of the beam does not change at
the diamond-air interface, the collection angle determined by the NA of the objective lens
becomes

θ1,max = θ2,max = arcsin

(
NA

n2

)
= arcsin (0.8) = 53.1◦. (3.16)

As a consequence, the collection angle has considerably improved when using a SIL. The
collection efficiency is calculated similarly to Eq. (3.15), which yields

ηSIL =
Ω

4π
=

2π[1− cos(θ1,max)]

4π
≈ 0.2. (3.17)

Thus, the SIL would improve the collection efficiency by a factor of approximately 7. This
is only valid for an isotropic emission of the emitter, which is hardly the case. First, the
emission is proportional on the photonic density of states ρphot which is larger inside the
diamond [190], thus a large fraction of the light is emitted inside the material. Second,
the emission of an electric dipole exhibits an angular dependence and is usually polarized.
For the directional emission of a dipole, one typically employs numerical simulations
[94, 202]. Hadden et al. employ a finite-difference time-domain method to compare an
emitter centered under a 5 µm hemispherical SIL with the same emitter in bulk diamond,
assuming a numerical aperture of NA = 0.9. The simulation predicts an enhancement
by a factor of 5, which is even outperformed in their experimental realization – factors
between 8 and 10 were achieved [94,205].

The SILs which we consider are smaller than the SILs produced by Hadden et al..
Their size is predetermined by the implantation depth of the SiV centers. As the defects
require to be positioned in the center of the SIL, the radius of the SIL must be equal to the
implantation depth, which we deduced to 500 nm below the diamond surface (Sec. 3.3.1).
For small SILs, the improvement of the collection efficiency is more sensitive to fabrication
tolerances and to the defect position with respect to the SIL focal point, thus we expect a
slightly lower enhancement. The following section outlines the fabrication procedure and
provides the parameters for the SIL fabrication.

3.4.3 Fabrication of the SILs using focussed ion beam milling

To fabricate the SILs in the diamond material, we employ focussed ion beam milling (FIB),
similar to the approaches of Hadden et al. [94, 205]. First, we give a brief introduction
on the function principle of a FIB before we name the parameters. A FIB bases on the
same principles as a scanning electron microscope (SEM). A beam of charged particles,
i.e. ions for the FIB and electrons for the SEM, is extracted from a source, accelerated,
and focused onto the sample. When the beam hits the sample surface, secondary electrons
are emitted and are guided to a detection device. To form an image of the sample surface,
the ion or electron beam is scanned over the surface. In contrast to the electrons, the ions
sputter the surface of the specimen which – in combination with a sophisticated beam
steering – enables a high resolution structuring of the sample.
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Figure 3.12: Illustration of the dual beam focussed ion beam setup. The ion/electron
optical elements and their function principles can be found e.g. in Ref. [206].

We employ a so-called dual beam FIB (FEI Helios Nanolab 600), which comprises
both an ion and an electron beam, situated in different columns of the setup (Fig. 3.12).
Utilizing the electron microscope, we monitor the fabrication process and pre-align the
sample.

In the ion column, Ga3+ ions are extracted from a liquid metal ion source (LMIS).
Among other convenient properties [207], Ga exhibits a low melting point (29.8◦C) and
therefore is kept liquid via heating slightly above room temperature. The resolution of
the ion beam, i.e. the diameter one can focus the beam to, depends on the size of the ion
source. Hence, the smaller the LMIS, the better the resolution. A reservoir of liquid Ga
is positioned in close contact with a tungsten needle with a tip of 2− 3 µm [206]. Due
to capillary forces, the tip is wetted with liquid Ga. When applying an electric field (on
the order of 1010 V/m) between the tungsten tip and the extraction electrode, the electric
field imposes a force against the surface tension of the Ga. At equilibrium, the liquid Ga
forms a Taylor cone, which shows a cusp of down to 5 nm, hence we satisfy the criterion
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of a small ion source. This results in structuring resolutions down to 10 nm [207].
The ion beam is shaped using apertures and at least two lens systems, a condensor and

objective lens (referred to as first and second lens in Fig. 3.12). The focussing strength of
an electromagnetic lens depends on the charge-to-mass ratio for a particle beam, hence
electromagnetic lenses for ions would be very large. Instead, it is more convenient to
employ electrostatic lenses. Further beam shaping is accomplished using a number of
apertures. In addition, the beam defining aperture controls the beam current, ranging
typically between a few pA and ∼ 1 µA. Further components, such as cylindric octopole
lenses, beam blankers and stigmators, provide additional control for scanning and blanking
the beam and correct possible aberrations. The sample is typically mounted on 5-axis
stage (x, y, z, rotation and tilt) in the focal point of both the ion and the electron beam. A
number of imaging detectors are placed inside the sample chamber. To manipulate parts of
the sample, e.g. to lift out transmission electron microscope samples, a nano-manipulator
is placed inside the vacuum chamber.

We have discussed the radiation damage from ion implantation in Sec. 3.3.3, and the
same effects are utilized for the FIB milling of the sample surface. Due to nuclear energy
loss, the impinging Ga ions displace the atoms of the target. In turn, the primary recoil
atoms successively displace secondary atoms, giving rise to a damage cascade. Atoms
displaced at the surface can leave the crystal and are sputtered. The typical energies of
the Ga ions are on the order of 30 keV, which corresponds to a stopping range of 10 to
100 nm depending on the target material. In the course of the sputtering, Ga ions are
implanted into the sample, which necessitates a post-treatment procedure, similar to ion
implantation experiments (Sec. 3.3.3).

3.4.4 Lens fabrication on the SIL sample

To enhance the emission of individual color centers, different strategies have been used.
Marseglia et al. fabricated SILs over nitrogen vacancy centers, which were created 4 µm
below the diamond surface using ion implantation [205]. Prior to SIL fabrication, they
etched position marks into the sample to correlate fluorescence microscopy images with
the SEM images in the FIB. Consequently, they could produce a single SIL positioned
accurately over an individual emitter. The larger the SIL is, the less sensitive it is to the
emitter being positioned in its center [94]. Hence, the approach of Marseglia et al. works
especially well when using emitters buried deep in the diamond.

As this is not the case for the SIL sample presented in this work, we employed an
alternative method: Arrays of SILs have been produced on the sample using the FIB
apparatus described in the previous section. Each of the arrays features 10 × 10 SILs,
closely packed in a hexagonal pattern (Fig. 3.13c). In total, we fabricated 9 of these
SIL arrays on the sample (Fig. 3.13d). Statistically, some of these SILs should exhibit
individual SiV defects at their center. The arrays were placed in the region of the sample
where Si atoms where implanted at a fluence of 1010 ion per cm2 and where individual
SiV center were located before.

We employed 30 keV Ga ions at a beam current of approximately 300 pA. The sample
was covered with a approximately 60 nm Cr layer to provide sample conductivity and
inhibit charging of the sample during the fabrication. The ion optics were used to create a
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Figure 3.13: A single SIL fabricated in diamond using focused ion beam milling in (a) top
and (b) cross sectional view. The sample surface in (a) still shows a Cr cover layer which
was applied to prevent charging up the sample. In panel (b) the upper part of the image
shows platinum which was sputtered over the SIL to prevent uncontrolled damage during
the cross section cut. The SILs were fabricated in 9 arrays of 10× 10 lenses (c,d)
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donut shaped beam which was intentionally “blurred”, i.e. slightly defocused. As result, we
milled trenches into the diamond with an inner diameter of 0.9 µm and an outer diameter
of 1.4 µm. Owing to the blurred ion beam, the edges of these trenches are rounded off
giving the central feature a hemispherical shape (Fig. 3.13a) which corresponds to a SIL.
Deviations from the ideal spherical shape are investigated from the cross section of the
SIL. To obtain a cross sectional view, a large rectangular trench is cut from one side.
Before this cut, a line of platinum is sputtered in situ over the SIL to prevent ion damage
and spurious sputtering [206]. Subsequently, the sample can be tilted to view the cross
section (Fig. 3.13b). Besides a slight truncated top, the SIL appears in a well-defined
spherical shape.
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Figure 3.14: Fluorescence image of four test SILs, produced over homogeneously dis-
tributed SiV ensembles, and measured with 660 nm laser excitation at 1.7 mW and de-
tection in the spectral interval from 730 - 750 nm. For the two rows, we varied the
intentional blur of the ion beam. For top (bottom) row, the blur was chosen to be 100 nm
(75 nm).

The SILs are fabricated sequentially in a total writing time of approximately 5 hours
was needed. Following the FIB milling, the Cr coating was removed using a mixture
of acetic acid, water and ceric ammonium nitrate (in a mass concentration of 8.75mg :
240mg : 50g). Subsequently, the sample is subjected to the same annealing steps as the
ones following the ion implantation.

To quantify the improvement of the collection efficiency when using SILs, we fabricated
a SIL test array of lenses in the region of the sample where 1011 Si ion per cm2 were
implanted and consequently, ensembles of SiV centers have been observed. We assume
that the SiV centers in this region are homogeneously distributed such that each test
SIL has the same number of SiV centers in its focal point. Figure 3.14 shows a confocal
fluorescence image of the region. The fluorescence of SiV ensemble appears as a constant
fluorescence exhibiting a mean count rate of 4200 cps. Four of the SILs are observed as
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point-like objects in the fluorescence scan. The two rows of SILs visible in 3.14 were
fabricated using different blur parameters for the ion beam, given roughly in the FWHM
of a Gaussian beam broadening. The top row SILs with a FWHM of 100 nm showed
the highest increase in fluorescence count rates of a factor between 4 and 6. Hence,
we employed this blur parameter throughout the fabrication of the SIL arrays described
above.

After this preliminary quantification, it is more interesting to investigate the enhance-
ment of the collection efficiency for SILs over single emitters. This is discussed in the
following chapter on experimental results. We stress, that the SILs have been a key el-
ement to achieve sufficient fluorescence count rates from individual SiV centers for the
spectral investigations in this work.

This concludes the experimental preparations to investigate the electronic structure of
the SiV center. Combined with the advantages from the SILs, the elaborate microscopy
technique discussed in this chapter enables the measurement of the spectral properties
of individual SiV centers. With the diamond samples presented in this chapter, we have
access to low and high strain SiV centers to probe the influence of crystal strain on the
electronic structure.



Chapter 4

Experimental Results

In this chapter, we summarize the experimental results of low temperature spectroscopic
experiments on ensembles and single SiV defects. In the first part, we discuss the “ideal”
SiV electronic structure based on Zeeman spectra of low strain SiV defects found in single
crystalline diamond (Sec. 4.1). This discussion is founded on the theoretical considerations
of Chap. 2. Having established a faithful description of the electronic structure of the
defect, Sec. 4.2 relates these results to recent resonant excitation experiments on SiVs in
low strain defects where spin selective population of electronic states is observed. The
third and last part of this chapter (Sec. 4.3) focusses on the effect of crystal strain on the
electronic structure. In particular, we will return to spin resolved measurements again,
and compare the predictions of a strain perturbed electronic system with the experiments.

4.1 Unstrained defects in single crystalline diamond

In order to identify the unperturbed electronic nature of the SiV center, we investigate
the defect in low strain environments found in single crystalline diamond. As we will see
throughout this chapter, the figure of merit for crystal strain is the spectral position and
splitting of the zero phonon line fine structure of the SiV center. These two parameters
are given in the literature for reference samples (Chap. 1). In addition, we investigate an
ensemble of SiV centers in a homoepitaxial diamond film (fabrication, cf. Sec. 3.2). The
fine structure splitting of this sample is in perfect agreement with the one reported in
Refs. [62, 133, 137]), hence the sample will be considered as a reference sample. In order
to prevent ensemble effects such as inhomogeneous broadening and the contribution of
equivalent orientations, the analysis is extended to single SiV centers (Sec. 4.1.2). It has
so far been challenging to have optical access to single SiV centers with low environmental
strain, not obscuring the center’s true electronic nature. This goal has been attained using
solid immersion lenses, fabricated directly into the single crystalline diamond (Sec. 3.4 and
Ref. [61]). The creation of these sample types enables polarization measurements of all
fine structure lines, yielding first hints towards the electronic structure of the SiV.

A more distinct understanding of the SiV electronic structure is obtained by measuring
the fine structure splitting in magnetic fields (referred to as “Zeeman spectra”, Sec. 4.1.4).
The analysis of the Zeeman spectra with the theoretical framework developed in Chap. 2

117
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enables the calculation of internal parameters, such as spin-orbit coupling strength and
leads to conclusions about spin state purity (Sec. 4.1.5).

4.1.1 Low temperature spectroscopy on silicon vacancy ensembles

In the first part of this section, we investigate the low temperature spectrum of the SiV
center. A crucial prerequisite to observe the SiV fine structure is a low strain crystal envi-
ronment. Clark et al. [62] and Sternschulte et al. [133,137] showed that in homoepitaxial
CVD films of high crystalline quality, the zero phonon line of the SiV splits into four fine
structure peaks at liquid helium temperatures. This spectral fine structure is seen as the
“fingerprint” of the SiV center and provides an unambiguous way to identify this defect.
To introduce the main properties of the spectral fine structure, we investigate it in an
approximately 100nm thick homoepitaxial CVD diamond film, containing an ensemble
of SiV defects (the sample is denominated “ensemble sample” throughout this work and
details are found in Chap. 3.2).
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Figure 4.1: The fine structure of the SiV center. When cooling down SiV defects, the zero
phonon line splits into four fine structure lines (a). Panel (b) displays the fine structure
splitting at T = 4.7K (green dots). We denominate the four strongest peaks of the fine
structure line from a to d in accordance with Ref. [133]. These peaks have been simulated
using the SiV model described in the text (blue lines).

Figure 4.1a displays how the zero phonon line of the SiV ensemble narrows down with
decreasing temperature. Below 70 K, a splitting into four components is observed. The
temperature dependent broadening of the fine structure, which is observed together with a
shift of the zero phonon line, is treated in detail in Ref. [115]. We focus here on the spectral
properties at liquid helium temperature. Figure 4.1b shows a spectrum of the ensemble
sample at 4.7 K. We note that the spectrum in 4.1a and 4.1b are displaced in wavelength
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by 0.2 nm. We have used different experimental setups for the measurements in Figs. 4.1a
and 4.1b and this absolute shift is due to a difference in spectral calibration for the two
setups. Throughout the discussion of this section, this displacement is however irrelevant
as the figure of merit is exclusively the relative fine structure splitting. We therefore add
an upper axis to all spectra indicating the relative frequency of the fine structure peaks
making all the spectra comparable.

The low temperature spectrum of SiV centers usually show a total number of 12
peaks [62] of which we fitted the main four peaks in Figure 4.1b . These 12 peaks can
be grouped in three sets. The relative intensities of the three groups are proportional
to the natural abundance of the 28Si, 29Si and 30Si isotope, respectively [62]. The four
most intense lines are therefore attributed to the 28Si isotope, and labeled from a to d
according to Ref. [133]. Former investigations (cf. Chap. 1 and Refs. [62,133]) deduced a
phenomenological level scheme from the fine structure. The level scheme exhibits both a
split ground and excited state, with the ground state splitting ∆νg = νd − νc = νb − νa
and excited state splitting ∆νe = νd − νb = νc − νa, with νi being the frequency of the
i-th peak. From Fig. 4.1b, we obtain ∆νg = 50± 5 GHz and ∆νe = 260± 5 GHz. Clark
et al. determine the ground state splitting to be 0.2± 0.01 meV (48± 2 GHz) and the
excited state splitting to 1.07± 0.01 meV (259± 2 GHz) which is in agreement within
our measurement resolution. For a further comparison to single emitters, Tab. 4.2 at the
end of the section sums up the fine structure splittings.

We use these splittings as starting values for the simulation of optical transitions for an
“ideal” SiV defect. The simulation is described in detail when we analyze Zeeman spectra
(Sec. 4.1.4), but since it also yields the center frequencies νj of optical transitions j for
zero magnetic field, we use it already here to fit the fine structure splitting. We therefore
mention here already the most important points: Each optical transition is modeled
individually using a Lorentzian line shape centered at the simulated transition frequency
νj . Consequently, the Lorentzian peak functions are superimposed to form the spectrum
in Fig. 4.1b (blue solid line). To account for the width of each peak, the Lorentzian line
width has been set to 10 GHz (see below). The intensity of each peak is calculated from
dipole transition moments and weighted with the collection efficiency ηx, ηy, ηz for the
respective dipole emission. The expectation values of the dipole matrix elements can be
directly calculated using group theory (cf. Sec. 2.3.1). The collection efficiencies ηx, ηy, ηz
for X-, Y - and Z-dipoles are numerically calculated using the algorithm of Ref. [117],
assuming the Z dipole oriented along the equivalent 〈111〉 directions and the XY -dipole
perpendicular to these axes (cf. Sec. 2.1.4). From the numerical analysis, we obtain a
ratio of ηx : ηy : ηz = 1 : 0.64 : 0.82 for X,Y, Z-dipoles, respectively. Finally, we simulate
a thermalization among the excited states, which follows a Boltzmann distribution (cf.
2.3.3 and Ref. [62]). For this Boltzmann distribution, we assume a temperature of 5 K.

The line widths of peaks a - d in Fig. 4.1b are close to the resolution limit of the spec-
trometer employed. To investigate the line widths in further detail, a scanning Fabry-Perot
interferometer (FPI) was used (the FPI is described in closer detail in Ref. [208]). Figure
4.2 shows the resulting high resolution spectrum. Each peak a, . . . , d has been preselected
separately using a 50 GHz etalon band pass filter and has been subsequently plotted over
a spectrum acquired with a grating spectrometer to illustrate the correspondence to each
peak [115]. The peaks are fitted using Gaussian line shapes. The resulting line widths
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Figure 4.2: High resolution spectrum of SiV ensemble using a scanning Fabry-Perot inter-
ferometer (green dots). The four peaks have been measured individually and are placed in
correspondence to the spectrum acquired with a grating spectrometer (grey shaded area).
Each peak has been fitted using Gaussian peak functions (blue lines).

range from 9 to 19 GHz. Related measurements on the line width of the ensemble sample
using photoluminescence excitation (PLE) and resonance fluorescence [65] confirm these
values. This width is about an order of magnitude larger than the expected lifetime limited
line width [61], assuming a lifetime of ∼ 4 ns [137]. This deviation can be explained by an
inhomogeneous broadening which is present due to slightly varying crystal environments
for individual SiVs. We consider this small inhomogeneous broadening as a proof of the
relatively high crystalline quality of the ensemble sample. Moreover, the absolute wave-
length of the fine structure peaks as well as their relative splitting are in good agreement
with the literature values, which confirms this assumption. Consequently, the ensemble
sample will be treated as a reference sample throughout the discussion which we compare
single SiV center to. Single SiV centers in a similar quality diamond are covered in the
following section.

4.1.2 Single defect spectroscopy

The following part of the section covers spectroscopy on single SiV centers. While general
spectral properties can in principle also be deduced using ensembles of color centers, single
defect spectroscopy shows certain advantages over ensemble measurements: As we have
seen in the preceding section, an ensemble of color centers in diamond is susceptible to
ensemble related broadening effects. Together with presence of other Si-isotopes, this
broadening limits the resolution of the fine structure lines and makes a clear assignment
of transitions difficult. The investigation of single emitters does not suffer from these
inhomogeneous broadening effects.

Furthermore, single emitters are used to measure the polarization of each fine structure
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transition. In an ensemble there are equivalent orientations of SiV defects along the
crystal axes, such that polarization measurements show superimposed contributions of
each orientation. A polarization analysis on ensemble samples is in principle still feasible
[131,209]. However, as these techniques rely on polarization contrast (cf. Sec. 4.1.3), they
require a carefully defined polarization detection as well as high spatial homogeneity of the
investigated ensemble. All these limitations do not apply when studying single defects.
We will show later (in Sec. 4.1.3) that the polarization of single emitters are employed as
a further verification of our theoretical model of the SiV.

To have access to single defects in a low strain environment, we investigate a high
purity single crystalline diamond which has been implanted with 29Si in order to deter-
ministically create single SiV defects. To enhance the collection efficiency, solid immersion
lenses (SILs) with a diameter of 1 µm have been fabricated directly into the diamond (de-
tails on the sample, see Sec. 3.2). Later throughout this chapter we also study single SiV
defects in nanodiamonds, however, these defects usually reside in strongly strained crys-
tals. As outlined in Sec. 2.2.5, crystal strain leads to shifts of the electronic levels, thus it
affects the spectral fine structure. Hence, we focus in this first part on single emitters in
bulk diamond, where crystal strain is observed to be less prominent.
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Figure 4.3: Confocal microscopy scan over 3× 3 arrays of solid immersion lenses on high
purity diamond exhibiting single SiV defects, perceivable as brighter spots. Excitation
laser tuned to 690 nm at 8 mW (cw), detection in spectral interval 730− 750 nm. The
step size of the confocal scan was chosen to 0.3 µm. The sample temperature was kept
constant at 15 K.
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To locate single defects, we perform confocal fluorescence scans over the diamond
sample, utilizing the avalanche photodiodes (APDs) of the photon correlation setup as
fluorescence detectors. All measurements shown in this subsection are performed using
the flow cryostat setup (details on the setup are given in Sec. 3.1.3); the sample is excited
with 690 nm laser light and kept at a temperature of 15 K. To preselect emitters in a
defined spectral interval, band pass filters are mounted in front of each APD, such that
two detection channels are possible. In a first step, both channels detect the same spectral
interval 730− 750 nm. Fig. 4.3 shows a fluorescence scan of the nine solid immersion lens
arrays. The fields of solid immersion lenses are clearly visible as squares showing the
single SILs arranged in hexagonal patterns. The presence of the SILs in the fluorescence
maps show a first advantage of this approach, as they provide “markers” to reproducibly
locate individual defects. These individual SiV defects are observed as bright spots in the
fluorescence scan. Their density is on the order of 3 - 5 isolated defects per 10× 10 µm2.

We note that centers on the SIL arrays appear brighter than outside the arrays: On
average, the emitters in the SIL array exhibit a factor of ≈ 3 higher photon count rate com-
pared to defects outside the SIL arrays. The maximum enhancement observed amounts to
a factor of 6. For comparison, Hadden et al. show an enhancement of up to 10 for single
nitrogen vacancy defects under SILs with a diameter of 5 µm [94]. Numerical simulations
reveal that SILs of this size are insensitive to the positioning of the emitter with respect
to the focal point of the SIL. In our case, the diameter of the SILs is considerably smaller
compared to those in Ref. [94]. Hence, both positioning and fabrication tolerances limit
the performance of the SILs employed, explaining the moderate enhancement.
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Figure 4.4: Detailed fluorescence scan of the top left area in the central SIL array, using
(a) a 737± 1 nm bandpass filter and (b) a 738± 1 nm filter. All other parameters are
identical to Fig. 4.3.

In a second step, the fluorescence mapping of Fig. 4.3 is repeated using multispectral
imaging, i.e. we place two spectrally disjoint filters (transmission intervals 737± 1 nm
and 738± 1 nm, resp.) in front of the two APDs (Fig. 4.4). A similar strategy has been
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employed earlier [73] to distinguish the narrow emission of nanodiamonds containing in-
dividual SiV defects from other nanodiamonds with broad background fluorescence. The
narrow transmission intervals of the filters used here facilitate the identification of un-
strained SiV centers: Crystal strain shifts the absolute position and changes the splitting
∆νe,g of the SiV fine structure (see also Sec. 4.3). From the reference ensemble sample in
Sec. 4.1.1, we know that the zero phonon line of unstrained SiV defects at low temperature
is centered around 737 nm. We therefore investigate primarily sites in the sample, that
feature high count rates in the corresponding detection window and low count rates in
the disjoint interval (green circle in Fig. 4.4a and Fig. 4.4b). We utilize this strategy to
also discard emitters with broad emission as they show comparable count rates in both
detection windows (red circle in Fig. 4.4a,b).
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Figure 4.5: Low temperature spectra of single emitters “SIL1” (a) and “SIL2” (b), excited
using the parameters given in Fig. 4.3. Green dots are measurements and the blue solid
lines are the result of the simulation for the two emitters.

Figure 4.5a shows the spectrum of emitter “SIL1” encircled in green in Figs. 4.4. A
second emitter “SIL2” is depicted in Fig. 4.5b. Using the same procedure as described for
Fig. 4.1b, the spectra (green dots) have been simulated using the theoretical model given
in Chap. 2.3 (blue solid lines). The relative intensity of the peaks is different from the
SiV ensemble which is due to a different temperature and resulting different thermaliza-
tion [62]. As outlined earlier, the figures of merit to classify single SiV defects are the fine
structure splittings ∆νg,e for ground and excited state, respectively. Within our measure-
ment resolution, these values are identical for emitters “SIL1”, “SIL2” and the ensemble
sample (cf. Tab. 4.2). This measurement marks the first experimental observation of the
low temperature spectrum of single SiV defects in bulk diamond. The high similarity
between the two spectra and the fine structure spectrum of the reference SiV ensemble
(Fig. 4.1b) proves our ability to deterministically fabricate single SiV defects in an “ideal”,
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low strain environment.
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Figure 4.6: Intensity autocorrelation g(2)(τ) measurement of emitter “SIL1”. The data
(green dots) is fitted using a g(2)-function for a three-level system, described in the main
text. The autocorrelation for zero delay equals g(2)(τ = 0) = 0.39 without and g(2)(τ =
0) = 0.26 with correction for the timing jitter of avalanche photodiodes.

To verify that the emitters are single defects, we measure the intensity autocorrelation
g(2)(τ) of their emitted light using a Hanbury-Brown Twiss interferometer (see Sec.3.1.3).
A typical autocorrelation measurement is shown exemplarily for emitter “SIL1” in Fig. 4.6.
The data (green dots) has been fitted using the following g(2)-function (blue solid line)

g(2)(τ) = 1− (1 + a) · e−|τ |/τ1 + a · e|τ |/τ2 . (4.1)

This function describes the underlying dynamics of a three-level system [56], where the
antibunching time constant τ1 is equal to the temporal separation between two consecutive
photons. The bunching time constant τ2 relates to a metastable shelving state which gives
rise to values of g(2) > 1, i.e. correlated emission for certain time delays [198]; the strength
of the bunching is quantified by the parameter a. In the course of the fit, we calculate
the coefficients to be a = 0.5, τ1 = 1.3 ns and τ2 = 14.8 ns. To account for the finite time
response of the counting electronics used, the g(2)-function in Eq. (4.1) has been convoluted
with an instrument response function featuring a timing jitter of 354 ps [200,210].

Deriving the intensity autocorrelation in the framework of quantum optics yields for
zero delay τ = 0 the value g(2)(0) = 1 − 1

n , where n is the expectation value of the
photon number operator [149]. In an intuitive picture, this equals the number of emitters
contributing to the emission [211]. Consequently, a threshold value of g(2)(τ = 0) < 0.5
indicates the presence of a single emitter. The obtained experimental value for g(2)(τ =
0) = 0.26 after subtraction of the influence of the timing jitter thus clearly identifies
emitter “SIL1” as a single SiV center. The deviation from zero can be explained with the
presence of an uncorrelated background emission, most likely due to a residual damage
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in the diamond film either from the focussed ion beam milling or from the implantation
of Si atoms. We correct for the background luminescence by renormalizing the measured
autocorrelation using a constant ρ = S/(S+P ), where S is the fluorescence of the emitter
and P the background [117, 212]. The ratio ρ describes the probability that a detected
photon originates from the SiV center and not from uncorrelated background source. It
is a free parameter in the fit of the g(2)-function and was estimated to be ρ ≈ 0.9.

The measurement of the intensity autocorrelation for different excitation intensities
can be used as a valuable tool to provide insight into the dynamics of electronic transitions.
Neu et al. deduced transition rates for the phenomenological three-level system of single
SiV centers in nanodiamonds, investigated both at room temperature and as function of
temperature [56, 115, 117]. This requires to excite the emitter under investigation with
laser intensities ranging from far below to above saturation power. While SiV defects in
nanodiamonds show typical saturation powers between 10− 100 µW [56], Sipahigil et al.
recently showed that single SiV centers in bulk exhibit saturation powers of 20− 30 mW
[61]. Due to technical limitations in the current measurement configuration, these powers
are challenging to achieve. Hence, we deliberately focus on the “stationary” description of
the electronic states here, leaving the dynamics between these electronic states for future
research.

Having reliably fabricated single SiV defects in an unstrained environment, we will
explore the properties of these emitters in the following paragraphs. To begin with, we
investigate the polarization of the four fine structure peaks of emitters “SIL1” and “SIL2”.
Although we will anticipate some results from the following studies in magnetic fields
(Sec. 4.1.4), the polarization can be used as an independent verification for the electronic
structure deduced in Chap. 2.

4.1.3 Emission polarization of single emitters

This paragraph analyses the polarization of single SiV defects “SIL1” and “SIL2” intro-
duced in the previous section. The polarization analysis of single emitter fluorescence
gives a first hint towards the orientation and thus the symmetry of the defects. Fur-
thermore, it can reveal the nature of dipole transitions. While former investigations on
SiV polarizations exclusively studied the zero phonon line polarization at room temper-
ature [58, 134], we here study for the first time the polarization of all fine structure lines
individually. We already use some implications taken from the next section on Zeeman
spectra (Sec. 4.1.4). However, a simplified level scheme for zero magnetic field will be suf-
ficient for the discussion of the results. To measure the polarization, we use a combination
of a rotating half-wave-plate and a fixed linear polarizer placed in the detection arm of
the confocal microscope described in Sec. 3.1.3. For each angular setting of the half-wave
plate, we acquire a photoluminescence spectrum using a grating spectrometer and inte-
grate over the area of each fine structure peak. The integrated intensity is plotted in a
polar diagram versus twice the angle of the half-wave-plate. Figures 4.7 and 4.8 show the
polarization graphs for emitters “SIL1” and “SIL2”, respectively. The diamond sample has
been mounted such that the crystallographic [110] axis coincides with the 0◦-setting of the
polarization detection. We therefore relate the angular axis of the polar diagrams directly
to the crystallographic directions. The excitation laser (690 nm, 8 mW) was polarized



126 CHAPTER 4. EXPERIMENTAL RESULTS

[110]

[110]

peak a

[110]

[110]

peak b

[110]

[110]

peak c

[110]

[110]

peak d

Figure 4.7: Emission polarization of emitter “SIL1”, individually measured for all four fine
structure peaks at a temperature of T = 15 K and at zero magnetic field. The excitation
laser (690 nm, 8 mW) was polarized along the [110] axis throughout all measurements.
The data is depicted as cyan blue dots, the solid blue line is a simulation of the polarization
described in the main text.

along the [110] axis throughout all measurements.
First, we focus on emitter “SIL1” (Fig. 4.7): The polarization of the fine structure

lines can be grouped in two subsets. The inner transitions are polarized parallel to each
other and perpendicular to the outer ones, where all polarization axes are parallel to the
equivalent 〈110〉 directions. To further characterize the polarization graphs, we calculate
the visibility

V =
Imax − Imin
Imax + Imin

(4.2)

from the maximum (minimum) intensities Imax (Imin) of each polar diagram. The results
for both emitters are given in Tab. 4.1. As it is evident from Tab. 4.1, the visibilities of
the outer peaks a, d are inferior to those of the inner peaks b, c. Furthermore, we observe
that peaks a and b are tilted by 8± 4◦ away from the 〈110〉 direction. For emitter “SIL2”,
we note that all peaks are turned by approximately 90◦. The outer peaks a and d have a
lower visibility, and they are tilted by 8± 4◦ away from the 〈110〉 direction.

To compare the experimental data to the theoretical model of the SiV defect, developed
in Chap. 2, we simulate optical dipole transitions and their resulting polarizations. While
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Figure 4.8: Emission polarization of emitter “SIL2”, individually measured for all four fine
structure peaks. Excitation cf. Fig. 4.7. The data is depicted as cyan blue dots, the solid
blue line is a simulation of the polarization described in the main text.

details on the calculation can be found in Sec. 2.3.1 and 2.3.2, we here outline briefly
the major steps of the simulation. First, we calculate the eigenvectors for unstrained
SiV defects at zero magnetic field. From the comparison of Zeeman spectra with the
simulation in the following section, the leading electronic interaction on the orbital part of
the SiV wave function is spin-orbit (SO) coupling (see Sec. 2.2.2). In a first approximation,
we therefore only apply SO interaction as perturbation on the eg,u basis states of the
unperturbed SiV center (see Sec. 2.1.4). This leads to the new eigenstates1 depicted in
Fig. 4.9a, where the orbital part can be expressed |e±〉 = |ex ± iey〉.

To characterize the dipole transitions, we calculate the expectation values 〈p〉 of the
dipole operator p = er for all optical transitions, where e is the elementary charge and
r = (x, y, z) is the position operator. The resulting expectation values 〈px〉 , 〈py〉 , 〈pz〉 are
directly proportional to the respective field amplitudes Ax, Ay, Az of the emitted light,
and therefore relate to the polarization of the SiV fluorescence. The matrix elements of p
and the calculation of expectation values are given explicitly in Sec. 2.3.1. It is important
to note, that the expectation values are calculated always between an excited state eu
and a ground state eg of the same spin projection, because the dipole operator only links

1We omit here the subscripts “g” and “u” designating the parity for ground and excited state, respec-
tively, as their assignment in the graph is unambiguous.



128 CHAPTER 4. EXPERIMENTAL RESULTS

Table 4.1: Visibilities for the polarization measurements of emitters “SIL1” and “SIL2”,
given by Eq. (4.2).

emitter Peak a Peak b Peak c Peak d
SIL1 (exp.) 0.83 0.97 0.98 0.80
SIL1 (theor.) 0.75 1.00 1.00 0.78
SIL2 (exp.) 0.42 0.88 0.96 0.68
SIL2 (theor.) 0.35 1.00 1.00 0.70

eg

eu

|e+ "i, |e� #i

|e+ "i, |e� #i

|e+ #i, |e� "i

|e+ #i, |e� "i

XY XY

b c da

ZZ

(a) (b)

Figure 4.9: (a) Simplified level scheme for zero magnetic field, taking into account only
spin-orbit interaction. The orbital part of the wave function is expressed as |e±〉 =
|ex ± iey〉. (b) Internal x, y, z axes of the SiV center as assumed in our model.

states of different parity and equal spin state (∆ms = 0). The calculation shows that
either 〈px〉 and 〈py〉, or 〈pz〉 is non-zero. Hence in the approximation of pure SO coupling,
a transition originates either from a Z-dipole and is linearly polarized, or it stems from
an XY -dipole and is circularly polarized (when looking along the z-axis). The vertical
arrows in Fig. 4.9a sum up the resulting dipole characters for the four transitions visible
at zero magnetic field in this simplified picture.

The labels X,Y, Z for the dipole transitions refer to the internal coordinate axes x, y, z
of the SiV center (cf. Fig. 4.9b). We project the electric field amplitudes onto orthogonal
components in the (001) plane (Sec. 2.3.2). We then use a Jones calculus [177] to calculate
the electronic field amplitudes measured by the combination of half-wave-plate and linear
polarizer (all transformations matrices are given in Sec. 2.3.2). Finally, we calculate a
normalized intensity for each transition by taking the absolute square of the respective
field amplitudes.

With this procedure we simulate the polarization curves, depicted as blue solid lines
in Figs. 4.7 and 4.8. We note the following remarks and results:

• The linear emission of the Z-dipole along the [111] z-axis of the SiV center appears
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- due to the projection in the (001) plane - in 〈110〉 direction. The projection
does not reduce the visibility of this emission. Furthermore, it gives rise to our
observation of two orientations separated by 90◦ (Figs. 4.7, 4.8). The XY -dipoles
emit circularly polarized light in z-direction; in this direction one would observe a
vanishing visibility V = 0 for a linear polarization analysis. Perpendicular to the
z-axes, the circular components appear linearly polarized. As we observe the XY -
dipoles from a finite angle, we see a superposition of linear and circular components,
yielding a visibility V ranging from 0.35 to 0.78. The calculated directions and
visibilities (cf. Tab. 4.1) are in good agreement with the experimental polarization
measurements.

• While the discussion above serves as an intuitive explanation, it neglects the effects
from the JT interaction. For a realistic description of the experimental data, we
therefore calculate the eigenvectors taking into account the full interaction Hamil-
tonian, including Jahn-Teller (JT), interaction (Sec. 2.2.3). JT interaction lifts the
orbital degeneracy by energetically favoring an alignment of the wave function in
x- or y-direction. For a pure SO interaction, the resulting eigenstates consist of a
symmetric superposition of ex and ey orbitals (e.g. |e+〉 = |ex〉+ i|ey〉). Adding JT
to the perturbation leads to a stronger contribution of either ex or ey in the eigen-
states. This lowered orbital symmetry leads to deviations from a perfect XY -dipole
emission.

• The main free parameters in this simulation are the coupling energies ΥJT
g,e and λg,e

of JT and SO interactions and the spatial coefficients Υx,Υy of the JT interaction.
The starting parameters for this simulation are obtained from Zeeman spectra for
SiV ensemble and single emitter “SIL3” (cf. Sec. 4.1.4). The analysis of the Zeeman
spectra shows that the SO coupling is about an order of magnitude stronger then
the JT interaction, which justifies our simplified model above. The variation of Υx

and Υy leads to a tilt of the peaks and a change in the polarization visibility for the
outer peaks a and d. This is observed in particular for emitter “SIL2” which shows
a relatively low visibility for peak a (Fig. 4.8).

• As we simulate the collection of XY - and Z-dipoles, we need to take into account
their emission and collection through the microscope objective. We therefore weight
the relative contributions from the three dipoles according to their orientation in
the diamond lattice. The weighting factors ηx, ηy, ηz are directly proportional to
the collection efficiency which we numerically calculate using the algorithm outlined
in Ref. [117] (cf. Sec. 2.3.2). The weighting factors influence the relative peak
height in the simulated spectra (Figs. 4.1b, 4.5a, 4.5b) and the visibility in the
simulated polarization curves (Figs. 4.7, 4.8). Our analysis shows that, for a X-,
Y - and Z-dipole under a flat diamond surface, the relative collection efficiencies
scale as 1 : 0.6 : 0.8. The numerical procedure employed does not allow to simulate
the collection efficiency for emitters under solid immersion lenses. Yet, we observe
similar relative peak heights for single emitters under SILs (Figs. 4.5a, 4.5b) and
for the SiV ensemble under a flat surface. As a consequence, we assume that the
influence of the SILs on the relative collection of the three dipole components is
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small.

The results of the polarization analysis have been published in Ref. [213], together with
the results of the following section. Shortly after this publication, Rogers et al. published
a similar study on the polarization of single SiV centers in (111) oriented single crystalline
diamond [176]. We here summarize briefly their results and analyze them in the framework
of the discussion above.

Rogers et al. also show room temperature measurements: First, they observe one pos-
sible alignment of the defect parallel to the (111) surface normal. Integrating over all fine
structure lines, the polarization graph for this orientation shows almost zero visibility,
which is consistent with our model: In this direction, only the XY dipoles contribute
theoretically to the emission (the Z dipole does not emit in the direction of its axis).
Looking in the z-direction, they therefore observe exclusively a circular polarization. Sec-
ond, Rogers et al. observe two out of three orientations2 at the tetrahedral angle 109.5◦

to the surface normal, separated from each other by 120◦.
At low temperature and analyzing each fine structure peak separately, they also ob-

serve an almost unity visibility for the inner peaks b, c, and a slightly reduced visibility
for the outer peaks a and d (Va = 85% and Vd = 71%). This is again consistent with our
model as the authors of Ref. [176] observe the XY -, Z-dipoles also under a finite angle.
Compared to our measurements, this angle is closer to 90◦, therefore the outer peaks show
a higher visibility than our measurements.

As a second reference, Brown and Rand investigated the polarization of SiV ensem-
bles in mosaic type diamond on silicon at room temperature [134]. The technique employs
a rotation of the incident polarization while keeping the sample and detection polarizer
fixed, and in a second step, turning the sample while fixing incident and detected polariza-
tion. The measured polarization graphs are then compared with a theoretical model [136].
From the orientation and the contrast of their data in polarization graphs, they derived
a orientation of SiV centers along 〈110〉 crystal axes. The theoretical polarization curves
for 〈110〉 and 〈111〉 oriented defects however only differ in the polarization contrast. The
diamond film employed by Brown and Rand was grown on a silicon, which shows a consid-
erable lattice mismatch. Hence, it stands to reason, that the SiV centers in their films are
subject to crystal strain. We assume, that this strain field follows a statistical distribution.
In Sec. 5.1.2, we show that crystal strain significantly modifies the polarization properties
of the SiV center, and we tentatively suggest this to be an alternative explanation for the
results of Brown and Rand.

In this section, we have shown that the polarization of unstrained, single SiV defects
in bulk diamond can be successfully modeled using the theoretical description of the
SiV in Chap.2. The polarization of single SiV centers has formerly been investigated by
Neu et al. [117]. These studies have been carried out on isolated nanodiamonds at room
temperature. A second publication by Riedrich-Möller et al. reports on the polarization of
single SiV defects in heteroepitaxial diamond films on iridium [214]. Both investigations
treat SiV centers in strained environments. As we have shown in Sec. 2.2.5, the theoretical

2The authors of Ref. [176] explain the absence of the third orientation, by a preferential creation of
SiV centers along the other three orientations during growth. Preferential alignment of SiV defects during
diamond growth has been reported earlier [63].



4.1. UNSTRAINED SILICON VACANCY CENTERS 131

model of the SiV present in this work can be extended to strained SiV defects. These
strained defects will be discussed in the next chapter (Sec. 5.1.2). In the following section,
we investigate the effect of magnetic fields on SiV ensembles and single defects. We show
that these measurements can be utilized as a further verification of the theoretical model.

4.1.4 Zeeman spectra of ensemble and single defects

In the preceding sections, we introduced the spectroscopic results on single SiV centers
and on an SiV ensemble in low strain diamonds - the “workhorse” of this first part of the
chapter. The results, we have already presented, give a first hint about the orbital part
of the SiV electronic structure. In particular, polarization measurements on single defects
are well consistent with an orbital splitting dominated by spin-orbit interaction.

In this section, we investigate the application of magnetic fields onto ensembles and
single centers. These experiments represent the “heart” of the analysis of the electronic
structure. As we will see, the Zeeman interaction lifts the spin degeneracy of the electronic
states, providing a powerful tool to verify the theoretical assumptions of Chap. 2. While
this section covers the Zeeman spectra and - for direct comparison - their simulation, the
implications for the electronic levels will be discussed in the following section.

The experiments involving magnetic fields have all been carried out in the bath cryostat
setup described in Sec. 3.1.3. They took place at the Cavendish Laboratory (group of
Prof. Atatüre) at the University of Cambridge, United Kingdom, and were published
in collaboration with the members of the Atatüre group [213]. With the sample being
cooled to 4.7 K, we measure photoluminescence (PL) spectra for the ensemble sample (cf.
Sec. 4.1.1) and single SiV defects in the sample with solid immersion lenses (cf. Sec. 4.1.2)
in dependence of the applied magnetic field. The magnetic field is generated using a
superconducting magnet and it is oriented in a Faraday configuration. The samples are
mounted such that the magnetic field is collinear with the crystallographic [001] direction.
The excitation laser for PL measurements is tuned to 700 nm, at an average excitation
power of 2 mW (measured before the objective lens consisting of a single aspheric lens
with NA = 0.66). We display the PL spectra in dependence of the magnetic field as a
two-dimensional color plot (called a “Zeeman spectrum”), where the intensity of the peaks
is always plotted in logarithmic scaling.

Figure 4.10a displays the Zeeman spectrum for the SiV ensemble. We focus our at-
tention solely to the four fine structure peaks of the 28Si isotope, which are visible as the
four strongest peaks at zero magnetic field. Each of the four peaks splits into several com-
ponents. To facilitate the counting of the lines, we display the Zeeman spectrum together
with the theoretical prediction of optical transitions as a guide to the eye (white lines
in Fig. 4.10b). We count a total number of 16 peaks (numbered from A1 to D4) which
points towards a spin 1/2 system: If each doubly degenerate level is split into two by the
magnetic field, then there are 16 possible transitions at finite field. Furthermore, there
are several lines “bending away” from each other, predominantly between 2 and 3 Tesla.
These avoided crossings are a sign of spin-orbit interaction (cf. Sec. 2.2.2). Finally, we ob-
serve that the relative intensity of the split peaks are different and change with increasing
magnetic fields. This points towards towards a change in the dipole transition moments
for the optical transitions.
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Figure 4.10: Measured Zeeman spectrum of an SiV ensemble (a,b), shown as photolumi-
nescence spectra (in relative frequency units) in dependence to the applied magnetic field.
The color (from blue to red) indicates the peak intensity in logarithmic scaling. Optical
transitions calculated from the theoretical model described in the text are shown as solid
white lines in panel (b) over the experimental data. For comparison, panel (c) shows the
simulated intensity in the same color scale as panels (a,b).
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Figure 4.11: Measured Zeeman spectrum of single SiV defect “SIL3”. The presentation of
the data and simulation is equal to the one in Fig. 4.10.
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Before we describe the measured Zeeman spectra with our theoretical model of the SiV
center, we compare the ensemble spectra of Fig. 4.10 with the Zeeman spectrum of another
single emitter “SIL3”, depicted in Fig. 4.11. The splitting pattern of single center “SIL3”
shows a high similarity to the splitting of the ensemble sample. Consistent with the other
single centers “SIL1” and “SIL2”, the spectrum of “SIL3” shows a smaller line width than
the SiV ensemble and therefore makes the assignment of optical transitions easier. We note
that the “branch” starting from the lowest frequency peak (at ≈ −150 GHz, corresponding
to peak d at 0 T) has relatively high intensity. This can be successfully modeled by
adjusting the relative collection efficiencies from the X,Y, Z dipole contributions (see
below).

In the following part, we briefly describe the main points of the theoretical approach
used in order to simulate the Zeeman spectra of both single emitter and ensemble. We
recall the SiV center’s molecular structure belonging to the D3d symmetry group in our
model. In this approach, the high symmetry axis of the defect is along the 〈111〉 crystal
directions. Therefore, all equivalent orientations of the defect have same relative angle
54.7◦ between the magnetic field and their symmetry (z) axis. This explains why ensemble
and single SiVs split into the same number of peaks under exposure of magnetic fields,
and in turn proves thes assumption of the 〈111〉 orientation of the defect.

To take into account the effect of the magnetic field, we add a Zeeman perturbation
term HZ

g,e to the interaction Hamiltonian (cf. Sec. 2.2.6)

HZ
g,e = HZ,L

g,e + HZ,S
g,e = γLL ·B + γSS ·B, (4.3)

with the orbital and electron gyromagnetic ratios γL = µB/~, γS = 2µB/~ (µB Bohr
magneton) and the magnetic field B = (Bx, By, Bz), expressed in the internal reference
frame of the SiV (Fig. 4.9b). We note, that due to the off-axis alignment of the magnetic
field, all three components Bx, By, Bz are non-zero. The spin operator S = ~

2(σx, σy, σz)
is expressed using Pauli spin matrices. The perturbation HZ

g,e is identical for ground and
excited state (subscripts g, e).

As shown in Sec. 2.2.6, the orbital Zeeman interaction can be simplified to HZ,L
g,e =

γLLzBz, as the transverse terms Lx, Ly of the orbital momentum operator L only couple
to a1g and a2u states which are far in energy. In the presence of dynamic Jahn-Teller
coupling, defect centers in solids often show a quenching of the orbital momentum which
results also in a quenching of the orbital gyromatic ratio [163, 172]. To account for this
effect, we introduce a quenching factor q which however only acts on γL.

Adding the Zeeman effect to the perturbation terms, the overall interaction Hamilto-
nian is given by

Hg,e = H0
g,e + HSO

g,e + HJT
g,e + HZ,L

g,e + HZ,S
g,e (4.4)

= H0
g,e + λg,eLzSz + ΥJT

g,e + qγLLzBz + γSS ·B.

H0
g,e is the non-perturbed Hamiltonian, HSO

g,e = λg,eLzSz models SO interaction with the
coupling constant λg,e (cf. Sec. 2.2.2), and ΥJT

g,e accounts for Jahn-Teller interaction (cf.
Sec. 2.2.3). All operators are expressed in the basis states

{|egx ↑〉, |egx ↓〉, |egy ↑〉, |egy ↓〉} for the ground state and (4.5a)
{|eux ↑〉, |eux ↓〉, |euy ↑〉, |euy ↓〉} for the excited state. (4.5b)



134 CHAPTER 4. EXPERIMENTAL RESULTS

Solving the secular equation defined by the Hamiltonian in Eq. (4.4) yields the energies
Ei of each state i at a given magnetic field value. We note, that the fine structure at zero
magnetic field is given by the SO and JT interactions only and is equal to

(
λ2
g,e + 4Υ2

g,e
)1/2.

This quantity is set equal to the experimentally observed ground and excited state split-
tings ∆νg,e and we use the ratios between SO and JT rg,e = λg,e/Υg,e as free parameters.
These ratios dictate the slopes of split fine structure lines and the presence or absence of
avoided crossings.

We calculate the optical transition frequencies νj = 1
~(Ei−Ef ), j = A1 . . . D4, between

the electronic levels Ef , Ei in ground and excited state, and compare them with the peak
positions in the Zeeman spectra. In this procedure, we vary only rg,e and the quenching
factor q, such that we iteratively fit transition frequencies νj to the experimental data.
It is important to note that the outer lines A4 and D1 are not affected by rg, re and
thus provide an independent control for the quenching factor q which minimizes potential
mutual dependences of the parameters. We observe that A4 and D1 can only be fit using
a strong quenching (q ∈ [0.1; 0.2]) of the orbital magnetic moment. Subsequently, rg and
re are adjusted to fit all inner lines. In a first step, this fit is obtained without taking
into account transition probabilities and peak shapes. The resulting optical transition are
shown as solid white lines in Figs. 4.10b and 4.11b, and we list parameters involved in
Tab. 4.2.

Table 4.2: Resulting parameters for SiV ensemble and single SiV defects “SIL1” - “SIL3”
depicted above.

emitter ∆νg ∆νe λg Υg,x Υg,y λe Υe,x Υe,y f
name (GHz) (-)

ensemble 50 260 45 11 257 20 0.1
SIL1 50 260 40 14 5 210 75 12 0.1
SIL2 50 260 48 7 2 257 20 0 0.1
SIL3 60 260 53 14 257 20 0.1

As a second step, we calculate intensity of the optical transitions. Similar to the
proceeding for the polarization analysis, we calculate the dipole transition moments
px, py, pz for all optical transitions j. The probability of each transition is proportional
to the absolute square of the respective expectation value of the dipole matrix elements
|〈p〉|2 = |〈ϕf |p|ϕi〉|2, with ϕi (ϕf ) being an eigenvector for the excited (ground) state
(Sec. 4.1.5). In the course of acquiring the Zeeman spectra, no polarization optics are
placed in the detection path, therefore all polarization components are detected. Hence,
we sum up the X,Y, Z dipole contributions for each transition.

In this process, we again take into account the collection and emission efficiencies
ηx, ηy, ηz of each dipole component (X,Y, Z). For the SiV ensemble in bulk diamond
(Fig. 4.10), the collection efficiencies can be calculated numerically with high accuracy
[117]. For single emitter “SIL3”, the parameters ηx, ηy, ηz are fitted to the Zeeman spectra.

Furthermore, the relative intensity of an optical transition starting from excited state
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i is proportional to the occupation ni of state i. For acquiring the Zeeman spectra in
Figs. 4.10 and 4.11, we excite the SiV centers using a non-resonant laser (tuned to 700 nm).
We assume that this non-resonant excitation populates a higher lying level which decays
via a non-radiative transition into the excited states (with equal branching ratio) [176].
For zero magnetic field, Clark et al. showed that the excited states thermalize among each
other [62]. Due to this thermalization, the probability of occupation ni of state i is given
by a Boltzmann distribution

ni(T ) = nA exp

(
−Ei − EA

kBT

)
. (4.6)

Here, T is the sample temperature, nA the population of the lowest energy excited state
with energy EA, Ei the energy of state i and kB the Boltzmann constant. When applying
magnetic fields, the excited states thermalize following spin-preserving selection rules
(Sec. 4.2). We will show later that the Boltzmann distribution in Eq. (4.6) however
yields an approximative agreement for non-resonant excitation.

In summary, each optical transition j is expressed by a Lorentzian peak function

Lj(ν) =
2

π

IjΓ

2(ν − νj)2 + Γ2
, (4.7)

centered at frequency νj which we calculated above. The intensities Ij are proportional
to the dipole transition moments weighted with the respective collection efficiency, i.e.

Ij = ni

(
ηx |〈ϕf |px|ϕi〉|2 + ηy |〈ϕf |py|ϕi〉|2 + ηz |〈ϕf |pz|ϕi〉|2

)
. (4.8)

The full width at half maximum Γ for the Lorentz peaks is set equal to the line widths
observed for single center “SIL3” (Γ = 5 GHz) and SiV ensemble (Γ = 10 GHz), respec-
tively. We note, that the resolution of the line width for “SIL3” is limited by the spectral
resolution of the grating spectrometer used.

The resulting simulations for the overall intensity of the optical transitions are depicted
in Figs. 4.10c and 4.11c. We describe correctly all crossings and avoided crossings, and
reproduce all line intensities to a high degree of accuracy. A particular example is transi-
tion D1, which has a low transition dipole moment as it is spin forbidden. This selection
rule is weakened by transverse spin components Sx, Sy in the Zeeman term HZ,S

g,e . The
resulting low intensity of D1 is clearly visible both in the experimental data (Fig. 4.10)
and the simulation. At high magnetic fields, the dipole moments for optical transitions
are changed by the increasing influence of the Zeeman interaction. This effect is also
correctly predicted by our theoretical simulation.

The impressive agreement between simulation and experimental data is an important
validity check for the theoretical model that forms the basis of this simulation. It is worth
repeating, that – although the simulation process outlined above has a certain complexity
– we restrict the number of free parameters to a minimum in this simulation and assure
that the resulting parameter set (Tab. 4.2) is unambiguous. In the following section we
now discuss the level scheme resulting from the simulations above.
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4.1.5 Discussion of the electronic structure of unstrained silicon va-
cancy centers

For all SiV emitters investigated in the previous sections, we have shown a high consistence
between the experimental data and the theoretical model which we introduced in Chap. 2.
In this paragraph, we study the implications that arise from the actual set of parameters
which was presented in the Tab. 4.2. Hereby, we again treat the SiV ensemble as the
reference case.

For all emitters, the quotient of the spin-orbit (SO) coupling constant λg,e over the
Jahn-Teller (JT) interaction strength Υg,e is considerably larger than one, both for ground
and excited state. The Zeeman interaction scales linear with the magnetic field strength
B; the proportionality factor is given by the gyromagnetic ratios γL and γS of orbit and
spin. As the orbital magnetic moment is observed to be strongly quenched, the spin
splitting is the leading term, scaling at ≈ 14 GHz/T. This implies, that the SO coupling
is the leading perturbation for the measurements presented here.
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Figure 4.12: Calculated splitting of SiV electronic levels for increasing magnetic field.
Ground and excited state labeled according to the letters and numbers at the right of the
panel. Optical transitions between all levels indicated by black arrows and correspond to
white solid lines in Fig. 4.10b. The curves represent the simulation parameters for the
SiV ensemble.

When analyzing Zeeman spectra and polarization graphs, we diagonalize the full in-
teraction Hamiltonian (Eq. (4.4)) and calculate its eigenvalues and eigenvectors of each
electronic state. The eigenvalues are equal to the energies of the electronic ground and
excited states (Fig. 4.12). The numerical calculation of eigenvalues makes an explicit
assignment of optical transition frequency possible. We display the optical transitions as
vertical arrows linking the electronic states in Fig. 4.12.

We observe that all energy levels split in two components as the magnetic field is
applied. While this appears to be consistent with a spin S = 1/2-system as predicted by
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the theoretical model, we need to keep in mind that we deal with a strongly SO coupled
system. The manifestation of SO coupling is the strong avoided level crossings visible in
the ground state at B ≈ 2 T and in the excited state at B ≈ 5 T.

In addition to the eigenvalues, diagonalizing Hamiltonian (4.4) allows to calculate the
eigenvectors of the system. We label the eigenvectors in the ground state with |1〉, . . . , |4〉
and in the excited state with |A〉, . . . , |D〉; this also explains the labels of the optical
transitions, e.g. A1 denotes a transition from states |A〉 to |1〉. As the Hamiltonian
(4.4) is expressed in the basis of the many-electron SALCs of type |ex,y〉| ↑, ↓〉 (basis
states in (4.5)), the diagonalization of Hamiltonian (4.4) yields eigenvectors in linear
combinations of these basis vectors. Since the leading perturbation of the electronic
states is SO coupling, it would stand to reason to transform the eigenvectors to the basis
e± = ex ± iey which are the eigenfunctions of the SO coupled system. The spin part of
the eigenstates is not affected by this transformation.
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Figure 4.13: Ground state eigenvectors |1〉, . . . , |4〉 of the SiV center at a magnetic field of
B = 4 T, resulting from the numerical analysis of the SiV ensemble. We plot the absolute
squares of the coefficients α, β, γ, δ for the linear combination of basis vectors (depicted
over each bar graph). This corresponds to the probability of finding the electronic states
in the respective orbital state |e±〉 = |ex〉 ± i|ey〉 and spin state | ↑, ↓〉.

The eigenvectors are then written as linear combinations of type (cf. Sec. 2.2.2)

|ϕ〉 = α|e+ ↑〉+ β|e+ ↓〉+ γ|e− ↑〉+ δ|e− ↓〉, (4.9)
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where ϕ = A, . . . ,D, 1 . . . , 4, and α, β, γ, δ are in general complex coefficients of the linear
combinations. In Fig. 4.13 and 4.14, we display the absolute squares |α|2 , . . . , |δ|2 for
all ground and excited states at B = 4 T, respectively. The absolute squares of the
coefficients are equal to the probability of finding the electronic states in a given orbital
and spin state. We observe, that the excited states are dominated each by one particular
basis state, and therefore also by one particular spin state. We now quantify this spin
“purity” in an explicit manner.
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Figure 4.14: Excited state eigenvectors |A〉, . . . , |D〉 of the SiV center at a magnetic field
of B = 4 T, resulting from the numerical analysis of the SiV ensemble. We use the same
plotting scheme as in Fig. 4.13.

Having obtained the eigenvectors of each state, we build the density matrix for a
particular state, e.g. ρA = |A〉〈A|. The diagonal elements of this density matrix then
correspond to the absolute squares plotted in Figs. 4.13 and 4.14. As a second definition,
we set the term spin polarization P equal to the expectation value of the spin projection3

σz along the z-axis PA ≡ 〈σz〉 = Tr(ρAσz). The phrase spin polarization originally
stems from the description of an ensemble of particles where “polarization” refers to the
fraction of particles having their spin aligned to a certain axis (e.g. Stern-Gerlach-type
experiments). This notion has been generalized to describe single particles where spin
polarization is the degree to which the spin of the single particle is aligned with a reference

3The spin projection σz is expanded in our case to a 4× 4-matrix (to fit the dimensions of the Hilbert
space) by the direct product of the known Pauli σz-matrix with a 2× 2-identity matrix.



4.1. UNSTRAINED SILICON VACANCY CENTERS 139

axis [215]. We note that |P | ≤ 1 and that for P = ±1, the eigenvalue of the spin z-
projection σz is ±1. For P = 0, we observe a spin mixture that has no defined projection
whatsoever.

Table 4.3: Spin polarizations P for ground and excited states.

gnd. states |1〉 |2〉 |3〉 |4〉
P -0.73 -0.23 0.28 0.68

exc. states |A〉 |B〉 |C〉 |D〉
P -0.95 0.89 -0.89 0.94

The calculation of the spin polarization P for all four ground and excited states
(Tab. 4.3) confirms the spin properties of the states already apparent from Figs. 4.13,
4.14: While all excited states exhibit a high spin polarization |P | ≥ 0.89, the ground
states show a non-uniform result: The outer levels |1〉 and |4〉 still evidence a moderate
spin polarization |P | ≈ 0.7, but the levels |2〉, |3〉 are strongly mixed with |P | ≤ 0.28.

The reason for the difference on spin mixing for ground and excited state lies in the
complex interplay of the different perturbation terms: Coming from an atomic physics
background with the picture of a simple hydrogen atom in mind, it is already counter-
intuitive that the strong SO coupling does not mix spin states. The reason for this
particularity is the (finite) D3d symmetry of the SiV defect – in contrast to the full
rotation symmetry of an atomic system. Owing to this symmetry, HSO only acts on the
Sz-component and neither on Sx nor Sy. The only interaction acting on Sx and Sy is in fact
the spin part of the Zeeman interaction HZ,S = γS(BxSx +BySy +BzSz). Against them,
SO coupling even acts as a “shielding” mechanism: A strong SO coupling separates states
in energy which would be mixed via transverse Zeeman terms BxSx, BySy. Therefore the
overlap of these states is small and there is no spin mixing.

Hence, in the excited state, the SO coupling strength λe ≈ 260 GHz (Tab. 4.2) is
considerably larger than the transverse Zeeman contributions γS(SxBx+SyBy) ≤ 55 GHz
(for a maximum field strength of B = 7 T). In contrast, the transverse Zeeman terms are
comparable to the ground state SO coupling λg ≈ 45 GHz, which explains the stronger
mixing in ground state. A further experimental evidence of spin mixing in the ground state
is the observation of all 16 possible transitions in the Zeeman spectra: If the ground state
had a spin polarization similar to the excited state, then the selection rule ∆mS = 0 for
optical dipole transitions would suppress spin forbidden transitions and we would observe
less lines in the Zeeman spectra. As the ground states |1〉 and |4〉 exhibit a moderate spin
polarization, these selection rules are visible in the spectra (Figs. 4.10, 4.11): Transitions
A1 and B4 are spin allowed and show a high intensity; transitions A4 and B1 are forbidden
and show a low intensity as we have discussed earlier.

All the arguments presented in this section yield a consistent picture of the SiV elec-
tronic structure. Unfortunately, there is little literature on the SiV defect to compare our
results to: As discussed in Sec. 4.1.3, the results on polarization of single SiV centers are
confirmed by a very recent publication from Rogers et al. [176]. For the Zeeman spectra,
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to the best of our knowledge, there is only one measurement conducted by Sternschulte et
al. [133]: Their investigations comprise Zeeman spectra on a homoepitaxial CVD diamond
containing an ensemble of SiV centers, similar to the reference ensemble we present here.
The magnetic field was aligned parallel to the crystallographic axes [001], [110], [111] (de-
tails of this paper are discussed in Chap. 1). The characteristics of the Zeeman spectrum
in [001]-direction are comparable to the spectrum shown in Fig. 4.10, however the line
width of the ensemble is larger than in our measurement. This obviously make a clear
assignment of optical transitions challenging for the authors. In conclusion, Sternschulte
et al. do not establish a theoretical model to describe the Zeeman spectra, but infer from
the appearance of the splitting pattern and the number of split components an SiV orien-
tation along the 〈100〉 axis. This orientation would give rise to a monoclinic symmetry of
the SiV center, in which no orbital degeneracy [132] exists. Hence, the explanation of the
four level fine structure at zero magnetic field would require different mechanisms, such
as tunnel-coupling [62]. The authors of Ref. [133] however state that other models are
feasible to explain their findings. We will analyze the experimental results of Sternschulte
et al. in Sec. 5.1.1 in the framework of the theoretical model presented here.

Furthermore, it would be interesting to measure the polarization properties of the
split fine structure components in a magnetic field for emitter “SIL3”, similar to the
measurements shown in Sec. 4.1.2. However, due to the limited collection efficiency of
the experimental setup employed for the Zeeman spectra, most of the split fine structure
components show an insufficient signal-to-noise ratio for a detailed polarization analysis.

Coming back to the results presented here, we conclude for the first part of this chapter
that we achieved the fabrication of SiV centers both on ensemble and single emitter level.
All SiV centers created respond with the same spectral properties to all experiments we
conducted on them. In particular, we have seen that the four excited state eigenvectors
show a distinct spin polarization. In the following part of this chapter, we investigate
the spin polarization in greater detail and show that we can distinguish the different spin
states via a selective optical excitation of the excited state levels.

4.2 Spin tagged fluorescence using resonant excitation

This second part of the experimental chapter covers follow-up experiments that base
upon the experimental confirmation of the theoretical model of Chap. 2. We present a
direct readout scheme for the spin projection in the SiV excited state. This scheme uses
spectroscopy of the SiV zero phonon line while performing resonant optical excitation
(so-called resonance fluorescence). We briefly explain the experimental procedure and the
main results on the SiV ensemble in Sec. 4.2.1.

The experiments of this section have again been achieved together with Tina Müller
and Benjamin Pingault at the Cavendish Laboratory of the University of Cambridge,
United Kingdom, and have been published in Refs. [65] and [64]. We stress however, that
the discussion in these references employs another, slightly more phenomenological level
scheme for the SiV center. We present here a rigorous analysis of the experiments, and
prove that the level scheme of the SiV center obtained from Zeeman spectra correctly
predicts the results of spin readout (Sec. 4.2.2).
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4.2.1 Experimental results for resonant excitation of single fine struc-
ture lines

In the previous section, we discussed measurements using non-resonant optical excitation.
For color centers in diamond, such a non-resonant excitation is common practice because
the electronic excited states couple to vibrational states forming higher lying vibronic
states. These states can be populated when exciting non-resonantly and relax quickly to
their vibrational ground state [216]. For SiV centers, it has been shown that an excitation
with laser light in a broad spectral range (down to 480 nm [141]) is possible. As we have
seen in Sec. 4.1.4, non-resonant excitation populates all excited states of the SiV center,
and they all contribute to the optical emission. If we want to populate a particular excited
state, we therefore need to perform resonant optical excitation. At the same time, we probe
the fluorescence from optical zero-phonon transitions. When using a confocal reflection
microscope, this fluorescence is overlain by the excitation laser with up to 7 orders of
magnitude higher intensity. Hence, we here suppress the excitation laser by placing a
linear polarizer in the microscope collection arm that is perpendicular to the incoming
linearly polarized laser field, providing an extinction of the laser greater than 2 · 106 [64].
This technique has been demonstrated successfully on single quantum dots [217] and is
called resonance fluorescence.
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Figure 4.15: Resonant excitation of an ensemble of SiV defects at zero magnetic field. The
excitation laser is brought into resonance with transition c (panel (b), thick double-headed
arrow), and is suppressed in the detection arm using crossed polarizers. The fluorescence
spectrum (a) shows residual laser light overshadowing luminescence from transition c, and
emission from the SiV centers for transitions a, b, d [64].

To show the potential of this technique, we display exemplarily a resonance fluores-
cence spectrum of the SiV ensemble in Fig. 4.15a. For this measurement, we operate a
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zero magnetic field giving rise to the simple four line SiV fine structure. The excitation
laser is brought into resonance with transition c of the fine structure. The residual laser
light after suppression with crossed polarizers is weak enough to be separated in wave-
length from the SiV emission on the spectrometer and no additional spectral filters are
needed. Although this suppression is highly dependent on the laser wavelength and needs
to be re-aligned for the excitation of each transition, we stress that it is feasible to drive
the SiV on all four fine structure lines.

When comparing the resonance fluorescence spectrum in Fig. 4.15a with the non-
resonant spectra at 0 T (Fig. 4.1b), we observe that all four optical transitions of the 28Si
isotope are visible. Resonant excitation does not lead to fluorescence from the 29Si and
30Si isotopes. The absence of the two isotopes proofs that we excite the subset of SiV
defects which is resonant to the excitation laser. We have shown in Ref. [65] that resonance
fluorescence can probe the optical line width of a transition, yielding line widths between
4 and 11 GHz which is comparable to the spectral line widths obtained for non-resonant
excitation (Sec. 4.1.1).

It is important to note, that an excitation resonant to transition c gives rise to all
other fine structure lines in Fig. 4.15a. At zero magnetic field, the ground states (|1〉, |2〉),
(|3〉, |4〉) and excited states (|A〉, |B〉), (|C〉, |D〉) are pairwise degenerate (Fig. 4.15b). In
our complete level scheme, transition c passes from ground states (|3〉, |4〉) to the excited
states (|C〉, |D〉), thus comprising transitions C3, C4, D3, D4. As we shall see in the
following discussion, there is spin preserving relaxation among the excited states. An
absorption at zero magnetic field on transition c populates excited states |C〉 and |D〉,
which contain spin up and down components. Therefore, it is plausible that a relaxation
to states |A〉, |B〉 (giving rise to transitions a, b) is possible.

In Ref. [64], it is observed that when exciting transition d, the relative intensities of
transitions a and b match the intensity ratio of a non-resonant excitation. In contrast,
when exciting transition c, the relative intensity of line a becomes larger then line b. This
change in relative intensities has been interpreted as a first sign of “selectivity”. While
our theoretical model does not account for such a selectivity, we cannot exclude it. Still,
we tentatively suggest that in this case an alternative effect can be responsible for the
apparent selectivity: Transition c is excited using resonant, linearly polarized light. It is
plausible to assume, that this laser light only excites a subset of SiV centers having the
z dipole of transition c parallel to the excitation polarization. The emitted polarization
of transition b will be parallel to this excitation will be suppressed by the polarizer in the
detection arm together with the laser. In contrast, transition a is polarized perpendicular
to b and will be transmitted through the polarizer. When exciting transition d, the effect
would be reversed.

As a consecutive step, the resonance fluorescence experiment is repeated with mag-
netic field applied in [001] crystallographic direction in order to lift the two-fold spin
degeneracy. At magnetic field B = 4 T, we infer from the simulation of the level scheme
(Fig. 4.12) that all electronic levels are split by at least 15 GHz and all optical transitions
are clearly discernible (Fig. 4.10). The analysis of the eigenvectors in the previous section
revealed that all four excited states show a dominant contribution of a distinct spin state,
i.e. states |A〉, |C〉 ∝ | ↓〉 and |B〉, |D〉 ∝ | ↑〉. We now selectively populate a given state
|C〉 via transition C1 and measure the resonance fluorescence spectrum (Fig. 4.16a,b).
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The spectrum shows the residual excitation laser and 7 further peaks. Using the number-
ing of Fig. 4.10, we identify exclusively transitions from excited states |C〉 and |A〉; the
fluorescence of transition C1 is covered by the laser line. If we populate the opposite spin
state by exciting state |D〉 (Fig. 4.16d), only peaks related to excited states |D〉 and |B〉
are visible in the spectrum (Fig. 4.16e). Hence, we observe that the two excitations give
rise to complementary spectra and, together, they form the complete spectrum obtained
for non-resonant excitation at B = 4 T (Fig. 4.16c).
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Figure 4.16: Resonance fluorescence on SiV ensemble for magnetic field B = 4 T. We
selectively populate the excited state |C〉 via resonant laser excitation of transition C1 (a)
and observe the fluorescence spectrum (b), which consists of optical transitions from states
|C〉 and |A〉. In contrast, an excitation of state |D〉 (panel (d)) gives rise to transitions
(e) starting at levels |D〉, |B〉. In comparison, we observe that the spectra (b) and (d) are
complementary and add up to the complete non-resonant spectrum (c).

The resonant spectra thus show that there is a relaxation among the excited states
which is selective between |A〉 ↔ |C〉 and |B〉 ↔ |D〉. This relaxation is according to the
spin polarization of the excites states, i.e. it preserves the spin state. We deliberately use
here the notion “relaxation” to distinguish this transition from optical transitions which
happen between ground and excited states; the “relaxation” is purely between the excited
state levels. Furthermore, it is important to stress again that the optical transition to
the ground state is in principle also spin-preserving. If the ground states had a spin-
polarization similar to the excited states, we would observe a selectivity for the optical
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transitions, too. Due to the spin-mixing in the ground states which we infer from the
state tomography in Fig. 4.13, this selectivity is weak however (cf. discussion at the end
of the previous section).

Müller investigated in Ref. [64] almost all resonant optical excitations and unequivo-
cally observed a spin-preserving relaxation. For excitations of the lower excited states |A〉
and |B〉, we only observe weak relaxation to higher states |C〉, |D〉. This points towards a
thermal activation of the relaxation mechanism, in which a downward relaxation is always
feasible whereas an upward relaxation would require thermal energy. We have seen for
non-resonant excitation that the population ni of an excited state i can be described in
good approximation by a Boltzmann distribution (4.6). For a more realistic model, we
need to extend this simple thermal distribution with additional “selection rules” account-
ing for the conservation of spin. We suggest such a relaxation mechanism in the following
section.

In conclusion, we first note that the selective excitation of two subsets in the excited
state is in perfect agreement with the theoretical model which we assumed so far and can
be seen as a further verification of this model. The selective excitation can be considered as
an optical way to initialize the excited state spin: A selective excitation populates a well-
determined spin projection among states |A〉, . . . , |D〉, which is preserved by any relaxation
in the excited state. We discuss the prospects for a subsequent spin manipulation in
Chap. 5.

After a possible spin manipulation, spin state read-out is feasible by observing the flu-
orescence spectrum. As a figure of merit to quantify the spin state, Müller e.g. calculated
the intensity ratio between spin-preserving and spin-flipping transitions [64]. While an
explicit formula for this measurement will depend on which excitation transition is used,
we expect a clear distinction from the high complementarity of resonance fluorescence
spectra (Figs. 4.16b,d). For this purpose, it is also helpful that the excited state shows
already a relatively high zero magnetic field splitting. This enables us to excite the higher
lying states |C〉, |D〉 while detecting conveniently far off resonance on transitions from
levels |A〉, |B〉. Hence, instead of using the technique of resonance fluorescence, a sharp
spectral filtering provided by e.g. a tunable etalon [218] or a highly dispersive grating
would be an alternative. Disregarding the technique behind measuring the spin state,
this overall insight marks an important step towards using the spin degree of the SiV
center. A central point in this analysis is the spin conserving relaxation in the excited
state, which we analyze in detail in the following section.

4.2.2 Application of selection rules for relaxation within the excited
state

We now focus our attention to the relaxation process among the excited states |A〉, . . . , |D〉,
for which we have seen that it preserves the spin projection. On the other hand, the orbital
part of the wave function, which can in approximation be seen as |e±〉, is changed in the
relaxation process. In this section, we construct a matrix representation, i.e. a tensorial
operator, obeying these “selection rules” and compare it to physical mechanisms which
are likely to provoke the excited state relaxation.

To construct a matrix representation describing the relaxation process in the excited
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state, we refer to a similar process for nitrogen vacancy (NV) color centers in diamond:
Rogers et al. have investigated an NV ensemble by means of magnetic circular dichro-
ism [219] - a method using differential absorption of circularly polarized light with the
sample exposed to magnetic fields. This method directly relates to the spin-orbit coupled
electronic states |e±〉, each having an orbital angular momentum of ±1 and giving rise to
the absorption of left-hand or right-hand polarized light. Hence, the authors measure the
ratio (or variation) of the two circular polarization components which yields the effective
orbital magnetic momentum gorb of these states (equivalent to the γL in Eq. (4.4)). For
the NV center, the orbital magnetic momentum gorb decreases with increasing tempera-
ture [219]. Rogers et al. interpret this decrease by a time-averaging of the orbital states
taking place in the excited state. This time-averaging is explained by vibronic coupling of
electronic states to vibrational modes, inducing a rapid transfer between electronic states
of positive (|e+〉) and negative (|e−〉) orbital angular momentum. As vibrational modes
of higher energy are excited with rising temperature, this time-averaging is stronger for
room temperature than for cryogenic temperatures. While changing the orbital state, the
vibronic coupling leaves the spin untouched.

Hence, this averaging process on the NV center has the same effect as the relaxation
observed in case of the SiV center, i.e. it connects states of different orbital angular
momentum projection and equal spin projection. Doherty et al. derive that the matrix
representation of the NV time-averaging is the same as a general orbital operatorO [42]. In
fact, the Wigner-Eckart theorem predicts that the matrix elements of all orbital operators
are directly proportional to each other for a given symmetry. In Sec. 2.3.3, we have
deduced a matrix representation PRSO (or short the relaxation operator,) for a coupling of
electronic states to vibrational modes.

The matrix representation PRSO is valid for a coupling to both lattice phonons and local
vibrations of the defect. We here briefly discuss, which of these processes are possible to
cause vibronic coupling: In order to couple two Eu states, i.e. states with equal parity, the
vibration mode requires to have even parity. In addition, it needs to show a non-vanishing
density of states for energies which roughly match the gap between the excited SiV levels
(≈ 100 GHz). It can be shown, that all lattice vibrations in diamond which have even
parity, are also Raman-active [220]. If we search for suitable lattice modes, we therefore
can restrict our search to Raman-active modes or bands:

• The acoustic branch of the diamond dispersion relation has odd symmetry for
phonons at the center of the Brillouin zone [155], therefore (single) acoustic phonons
do not couple states of equal parity.

• The only optical phonon with even parity is the dominant diamond Raman peak at
1332 cm−1 [36,221], which does not fit to the coupling energies we are interested in.

• Two phonon processes for acoustic and optical modes transform as A1g, Eg and T2g

in a Oh symmetry [221] and there is a considerable number of possible two-phonon
Raman transitions in diamond [220]. One possible two phonon process leads to
so-called difference modes [156], where one phonon can be created and a second
phonon of different energy can be destroyed. Since the coupling energy relevant
for the SiV vibronic coupling would be rather small, a two-phonon coupling arising



146 CHAPTER 4. EXPERIMENTAL RESULTS

from difference acoustic modes (so called acoustic overtones [220]) might be in a
suitable energy range [222], and therefore possibly mediates the relaxation among
excited SiV states.

• Little is known about local vibrational modes of the SiV center: Sternschulte et
al. [137] as well as Feng and Schwartz [138] investigate the vibronic sideband of
the SiV center, however, their analysis is restricted to modes of energy shifts larger
42 meV (10 THz), which is out of the range we are interested in. Nevertheless, local
vibrational modes of the SiV center cannot be excluded.

Determining, which vibration is responsible for the excited state relaxation, requires a
deeper investigation of the vibronic spectrum of the SiV center, which is not in the focus
of this work. Notwithstanding, group theory assures that the orbital operator describing
any kind of vibration will always transform similarly to PRSO and hence, we employ matrix
representation PRSO throughout this chapter.

In Sec. 2.3.3, we have seen that the relaxation operator PRSO transforms as irreducible
representation Eg and thus similar to the strain Hamiltonian HS which we will discuss
in the next section. As the vibronic coupling so far only involves orbital states, it is
expressed as a (reduced) 2 × 2 matrix in the SO coupled basis {|e+〉, |e−〉}. In order to
express the spin conservation, we expand PRSO to the spin space calculating the direct
product PRSO ⊗ I2 ≡ PR, where I2 denotes a 2× 2 identity matrix.
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Figure 4.17: The probability for a relaxation between the excited states |A〉, . . . , |D〉,
expressed as matrix elements

∣∣∣ΓRif ∣∣∣2 without (a) and with (b) a weighting for thermal
effects.

To show the effect of PR, we calculate matrix elements ΓRif = 〈ϕf |PR|ϕi〉, with initial
state ϕi and final state ϕf belonging to the excited state manifold |A〉, . . . , |D〉. The

absolute squares
∣∣∣ΓRif ∣∣∣2 (Fig. 4.17a) denote the transition probability from one excited

state to another. In agreement with the experimental findings, the relaxation operator
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PR predicts a transition between states of equal spin projection, i.e. |D〉 ↔ |B〉 and |C〉 ↔
|A〉. In addition, from the large main diagonal elements, we expect a large probability
to undergo an optical transition from a given excited state directly to the ground state
without relaxing to another excited state.

We have discussed in the preceding paragraph (Sec. 4.2.1), that the relaxation mech-
anism is strongly “unidirectional” in terms of the energy of the excited states, i.e. we
observe a strong downwards relaxation but a weak upwards transfer, which is consistent
with a thermal distribution. To model this thermal distribution, we weight the rows of
matrix

∣∣ΓR∣∣2 with the Boltzmann coefficients ni(T ) (Eq. (4.6) with T ≈ 5 K). This has
the effect, that a transfer from lower to higher lying states has smaller probability than
vice versa (Fig. 4.17b).

It is important to note, that the relaxation operator PR has been constructed to be spin
conserving in agreement with our experimental results. At vanishing magnetic field, we
can drop this prerequisite. Hence, the two spin-degenerate excited states will thermalize
according to PR where we again need to include the Boltzmann distribution. This means
that the relaxation changes to the simple thermalization for zero magnetic field as it has
been described in Refs. [62,137]. This also explains why all fine structure peaks are visible
in Fig. 4.15.

For non-resonant Zeeman spectra (Figs. 4.10, 4.18b) we stated before, that we neglect
the spin-selective relaxation. We here briefly explain how we justify this approximation:
When exciting non-resonantly, we first populate a higher lying electronic or vibronic level,
which rapidly decays to the four excited states |A〉, . . . , |D〉. All the experimental evidence
and literature ( [62, 137]) suggests that this rapid decay does not favor a particular spin
orientation, hence we assume that all states |A〉, . . . , |D〉 are equally populated after an
excitation. From this point on, it is plausible that a spin-selective relaxation is happening
which connects |D〉 with |B〉 and |C〉 with |A〉. Hence, the population will pairwise follow
a thermal distribution which we approximate by a full thermalization for all states.

We have seen in this section that the population transfer among excited states is
consistent with an orbital relaxation operator PR. This relaxation operator yields quali-
tatively correct predictions for the relaxation in the excited state and is taken as another
verification of our theoretical model of the SiV center. So far, the spin selective excitation
has only been shown on the SiV ensemble sample. We will extend the technique to single
SiV emitters in the following part. To date, single SiV centers under solid immersion
lenses such as SIL1 - SIL3 have been impractical for resonance fluorescence experiments,
because the surface of the microscopic solid immersion lenses deteriorates the beam profile
of the reflected excitation laser; this makes an effective laser suppression very challenging.
We therefore present here experiments on single SiV centers in nanodiamonds. As nan-
odiamonds usually exhibit crystal strain, we employ these measurements also to describe
the effect of strain on the level structure of the SiV defect.

4.3 Strained defects in nanodiamonds

Individual SiV centers in nanodiamonds offer a large potential for room-temperature single
photon sources [56,58,117,182], but also for fluorescence-labeling of biological specimens
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[73,191,223]: They show bright and stable single photon emission with narrow zero phonon
lines already at room temperature. A statistic distribution of the zero phonon line position
[58] and variations in the low temperature fine structure [73,115] have however indicated,
that SiV defects are prone to crystal strain effects in nanodiamonds. Therefore, we use
strained nanodiamonds on purpose as a “test bench” for the influence of crystal strain on
individual SiV centers. We will see, that the addition of a strain Hamiltonian consistently
describes the measurements while retaining all other parameters introduced in the theory.
A disadvantage of nanodiamonds is however that they grow from randomly oriented seed
diamonds which introduces some uncertainty when determining the orientation of the
defects.

There have been a few publications on the electronic properties of SiV defects which
were placed in strained environments: Neu et al. measure emission polarization of single
SiV centers at room temperature in (001) oriented heteroepitaxial diamond on iridium [58].
In addition to polarization along the 〈110〉 axis (which would be consistent with 〈111〉
oriented centers projected onto the (001) surface) they measure polarization graphs along
directions which coincide with 〈100〉 orientation. This experimental finding is consistent
with an alignment of the center along 〈110〉 and hence, the authors deduce a rhombic
or monoclinic orientation of SiV defects. The diamond which hosted the SiV centers in
Neu’s report is however susceptible to crystal strain, as the iridium substrate shows a
lattice constant mismatch in relation to the diamond. Neu et al. investigate the effect of
crystal strain in this sample by measuring the distribution of zero phonon line wavelength
of different individual SiV centers: A statistic distribution of the spectral position on the
order of 20 nm indicates the presence of strong strain fields in the diamond.

This illustrates the difficulty of working with strained SiV defects: As the influence
of crystal strain on the electronic structure is unknown, the resulting conclusion (in this
case the orientation) needs to be subjected to discussion. Therefore, we here started with
a model for “ideal”, unstrained SiV centers and discussed their properties on the basis of
the experimental findings in Sec. 4.1. Consequently, we extend this model to also cover
strained samples, while keeping the previous parameters and assumptions unchanged.
In order to characterize strained samples and compare the extended model, we again
measure the fine structure splittings in magnetic fields (Sec. 4.3.1), and investigate the
strain effects on spin selective resonance fluorescence (Sec. 4.3.3). In the outlook of this
thesis (Sec. 5.1.2), we return to the polarization measurements of Neu et al. [58] and show
how crystal strain influences the polarization properties of individual SiV centers.

4.3.1 Zeeman spectra for silicon vacancy defects in strained nanodia-
monds

The figures of merit for SiV centers in strained nanodiamonds are on the one hand the
spectral fine structure splittings ∆νg,e and on the other hand the magnetic field splittings
of the fine structure. Before we characterize the effect of strain on the level structure
quantitatively using an additional energy term, we qualitatively discuss the effect of strain
neglecting the exact values and directions of the strain field. Figure 4.18 show Zeeman
spectra for three single SiV centers ND1, ND2, ND3 in nanodiamonds. We will see later
that from ND1 to ND3 the crystal strain parameters are increasing. The measurements
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have been performed on the nanodiamond sample described in Sec. 3.2.3, using non-
resonant excitation of the emitters exposed to a magnetic field (cf. Sec. 4.1.4).

First we direct our attention to the spectra at B = 0 T (left side of the graphs
4.18(i),(iv),(vii)): With increasing crystal strain the inner fine structure peaks b, c move
closer together while the outer peaks a, d move further apart. These typical spectra show
a characteristic property of strained defects (cf. simulations in Sec. 2.2.5). We summarize
the fine structure splittings ∆νg,e in Tab. 4.4 taking into account the effect of crystal
strain. From the color scale we also infer, that the relative intensity of the peaks is
different from the reference SiV ensemble of Sec. 4.1.4.

Second, we qualitatively examine the fine structure splitting with increasing mag-
netic fields: For emitters ND1 and ND2, each fine structure peak clearly splits into four
components. For emitter ND3, the middle peaks b, c show a splitting with strongly vary-
ing intensity: The lines A1, B2, C3, D4 exhibit a high relative intensity while the lines
A2, B1, C4, D3 show an almost imperceptible intensity. The slopes of the Zeeman split-
ting indicate avoided crossings for ND1 and ND2, while for ND3 all lines appear to shift
linearly.

Now, we analyze quantitatively the effect of strain by again applying a theoretical
model to describe the data. Similar to the preceding section, we briefly outline the theo-
retical assumptions and specify the procedure for fitting parameters of the model to the
data. The latter is again important to minimize mutual dependencies of parameters.

To simulate the effect of crystal strain, we add a strain term HS
g,e to the perturbation

Hamiltonian in Eq. (4.4). The strain termHS
g,e is derived in Sec. 2.2.5 and can be expressed

in the basis functions (4.5) as a 4× 4-matrix:

HS
g,e =


δ − α 0 −β 0

0 δ − α 0 −β
−β 0 δ + α 0
0 −β 0 δ + α

 (4.10)

where parameters α, δ quantify the energy shift of the basis states |ex,y〉 and parameter
β marks the mixing between |ex〉 and |ey〉4. Matrix HS

g,e is deduced for uniaxial stress
measurements using group theory (Sec. 2.2.5) and agrees with former theoretical studies
on trigonal defects [38,164,166,167]. For uniaxial stress, parameters α, β, δ directly relate
to the stress tensor components σij (i, j = x, y, z), which are given usually by the direc-
tion and strength of the external pressure applied to the sample. In the measurements
presented here, strain is an intrinsic property, arising most probably from other faults
(such as dislocations, stacking faults or grain boundaries) in the vicinity of the SiV center
under test. Hence, we use α and β as free parameters; δ can be neglected and is set to zero
as it acts equally on the main diagonal for ground and excited state, therefore no spectral
shift is expected from it. As we consider strain to be a static perturbation, HS

g,e acts
uniformly on ground and excited state, hence the same α and β are taken for both cases.
While it is arguable that intrinsic strain follows solely from uniaxial stress contributions,

4The choice of using α and β for the strain matrix is perhaps unfortunate as we have used them before
for the spin polarization, but we deliberately employ the same notation as Ref. [167] and no confusion
should arise from this usage.



150 CHAPTER 4. EXPERIMENTAL RESULTS

tr
an

si
ti

o
n
 f

re
q
u
en

cy
 (

G
H

z)

 

 

−300

−200

−100

0

100

200

300

in
te

n
si

ty
 (

a.
u
.)

100

1000

10000

A1

B1

C1

D1

A2

B2

C2

D2

A3

B3

C3

D3

A4

B4

C4

D4

A1

B1

C1

D1

A2

B2

C2

D2

A3

B3

C3

D3

A4

B4

C4

D4

 (i)  (ii)  (iii)

(a) Single emitter ND1

tr
an

si
ti

o
n

 f
re

q
u

en
cy

 (
G

H
z)

0 1 2 3 4 5 6

−300

−200

−100

0

100

200

300

A1

B1

C1

D1

A2

B2

C2

D2

A3

B3

C3

D3

A4

B4

C4

D4

A1

B1

C1

D1

A2

B2

C2

D2

A3

B3

C3

D3

A4

B4

C4

D4

0 1 2 3 4 5 6
 

 

0 1 2 3 4 5 6 7

in
te

n
si

ty
 (

a.
u

.)

100

1000

 (iv)  (v)  (vi)

(b) Single emitter ND2

magnetic field (T)

tra
ns

iti
on

 fr
eq

ue
nc

y 
(G

H
z)

 

 

0 1 2 3 4 5 6

400

300

200

100

0

100

200

300

400
in

te
ns

ity
 (a

.u
.)

10

100

1000

A1

B1

C1

D1

A2

B2

C2

D2

A3

B3

C3

D3

A4

B4

C4

D4

A1

B1

C1

D1

A2

B2

C2

D2

A3

B3

C3

D3

A4

B4

C4

D4

magnetic field (T)
0 1 2 3 4 5 6

magnetic field (T)
0 1 2 3 4 5 6 7

 (vii)  (viii)  (ix)

(c) Single emitter ND3

Figure 4.18: Zeeman spectra for three individual SiV centers ND1 (a), ND2 (b) and ND3
(c) in nanodiamonds. The representation of left, middle and right panels is equal to
Fig. 4.10 with color scaling in logarithmic, arbitrary units (uniform for each emitter).
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the comparison to the data in this section still shows a reasonable agreement, thus we
assume this approximation to be justified for our analysis.

When adding the strain HamiltonianHS to the other perturbationsHSO
g,e ,HJT

g,e,H
Z,L
g,e ,HZ,S

g,e
(cf. Eq. (4.4)), we set the parameters for SO coupling, JT interaction and Zeeman effect
to their values of the SiV ensemble sample (Tab. 4.2) and keep them constant. The only
exception is the relative angle θB between magnetic field and the z-axis of the SiV defect,
which used to be fixed to 54.7◦ for defects in (001) oriented bulk diamond, but now is
variable due to the random orientation of the nanodiamonds on the substrate. The com-
parison of theory and model is fully identical to the proceeding in Sec. 4.3.1: Diagonalizing
the total Hamiltonian, we determine eigenvalues and eigenstates, calculate the 16 optical
transitions and compare them to experimental data (middle panels in Fig. 4.18). The
proceeding for fitting the free parameters α, β, θB is as follows: First, we fit the strain
parameters α, β to match the fine structure splitting ∆νg,e at B = 0 T; inspecting the
spectra at 0 T introduces a cross-check as we can completely neglect the Zeeman terms for
this situation. After having determined α and β, we use the slope of optical transitions
A4 and D1 in the Zeeman spectra (Fig. 4.18) to fit the relative angle θB between magnetic
field and SiV z-axis. These two transitions are mainly dependent on the Zeeman terms,
and the only free parameters in the Zeeman terms are the quenching factor q and rela-
tive angle θB of the magnetic field. As the quenching q is known from the SiV ensemble
(Tab. 4.2), the angle θB can be identified unambiguously within an error of approximately
5◦.

Table 4.4: Resulting parameters for single SiV defects “ND1” - “ND3” and reference SiV
ensemble for comparison. α, β indicate the strength of crystal strain, ∆νg,e denote the
splitting of ground and excited state (including the energy shift from strain). The remain-
ing parameters λg, Υg,x, Υg,y, λe, Υe,x, Υe,y, f are identical to the ensemble sample.

emitter α β ∆νg ∆νe θB
name (GHz) (◦)

ensemble 0 0 50 260 55
ND1 44 29 127 293 70
ND2 11 66 162 289 70
ND3 51 121 259 396 45

The modeling of optical transitions (white solid lines in Fig. 4.18, parameters in
Tab. 4.4) shows an excellent agreement with the measured Zeeman spectra, suggesting
that the simple strain term we add is sufficient to describe the changes for strained SiV
centers in nanodiamonds. From the resulting splitting of energy levels, i.e. the eigenvalues
of the system (Fig. 4.19), we see the orbital splitting for B = 0 T for both ground and
excited state increases as α, β become larger. This is consistent with the simulations on
the energy dependence of strain coefficients in Sec. 2.2.5. It is noticeable that –although
the SO-coupling strengths λg,e are the same for all emitters “ND1” - “ND3” – there are
no avoided crossings visible for ND3. The reason lies in the simple fact that ground state
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Figure 4.19: Level splitting for three individual SiV centers ND1 (a), ND2 (b) and ND3
(c) in nanodiamonds for increasing magnetic field. The scaling of all frequency (y-)axes
is the same.

levels are taken far apart such that even for strong magnetic field, no levels approach each
other. As a consequence for emitters “ND1” - “ND3”, the ordering of transitions is differ-
ent from the ensemble sample and emitter “SIL3”, e.g. lines A3 and B4 swap positions
(Figs. 4.18, 4.10).

We simulate the peak width and intensity of each optical transition in the Zeeman
spectra 4.18 using the very same proceeding as in Sec. 4.1.4: We calculate eigenvectors
|1〉, . . . , |4〉 for ground and |A〉, . . . , |D〉 for excited state (shown exemplarily for “ND2” in
Figs. 4.20a, 4.20b in the following section). With these eigenvectors, we determine the
X,Y, Z dipole strength of optical transitions from the expectation values 〈p〉 of the dipole
matrix elements. The resulting intensities of the dipole transitions are again weighted us-
ing the collection efficiencies ηx, ηy, ηz for X,Y, Z-dipoles, taking into account the relative
orientation of the defect to the observation plane.5 Optical transitions are expressed as
a sum of Lorentzian peaks (Eq. (4.7)) with the intensity of each peak calculated using
Eq. (4.8), taking into account also the population probability ni of each excited state i.
The full width at half maximum of the Lorentzian peaks is set equal to the experimen-
tally observed peak width (5 GHz for “ND2”, “ND3” and 10 GHz for “ND1”, resp.). The
simulated Zeeman spectra (right panels in Fig. 4.18) match the experimental spectra with
excellent agreement, indicating that a faithful simulation of the strained SiV centers is
indeed feasible. As next step, we investigate how crystal strain influences the spin polar-

5While we can determine the polar angle θB of the emitter from the slopes of optical transitions in the
Zeeman spectra, the azimuth φB cannot be determined from the Zeeman spectra because the magnetic
field acts rotational invariant on the emitter. Hence, the relative collection efficiencies ηx, ηy of the X,Y
dipoles are free parameters and we adjust them to fit the data.
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ization in the SiV excited states and discuss the consequences in the context of resonance
fluorescence spectra.

4.3.2 Electronic state tomography of strained silicon vacancy defects

We discussed for the SiV ensemble sample in Sec. 4.2.2 that a relaxation among excited
states preserves the spin state and hence offers an optical read-out of the excited state
spin. In this section, we investigate whether crystal strain alters the spin polarization of
excited states and verify if these changes can be observed in the relaxation mechanism
using again resonance fluorescence in the next section.

The strain term (4.10) in the perturbation Hamiltonian has no direct effect on spin
states, as the secondary diagonal elements in matrix (4.10) are equal to zero. Hence, it
introduces no coupling between states of different spin projection. However, we observe
an indirect effect: We have seen before, that spin mixing occurs as a consequence from off-
axis magnetic field terms Bx,y. SO coupling (acting only on the Sz component of the spin
operator) “shields” the excited states from spin mixing by shifting energy states which are
susceptible to spin-mixing far away from each other. The additional strain Hamiltonian
HS acts on the same matrix elements as SO coupling and thus we expect it to counteract
SO coupling and to weaken the “shielding” effect.
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Figure 4.20: Eigenvectors |1〉, . . . , |4〉 for the ground (a) and |A〉, . . . , |D〉 for the excited
state (b) of SiV center “ND2” under the influence of crystal strain. We employ the same
plotting scheme as in Fig. 4.13. The calculation is performed for B = 2 T.

Figures 4.20a and 4.20b depict the eigenvectors of emitter “ND2” exemplarily for a
strained emitter, making use of coefficients α, β, γ, δ from Eq. (4.9) to express states
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in a the linear superposition of basis vectors |e± ↑, ↓〉. We notice that for all ground
states |1〉, . . . , |4〉, spin mixing has considerably increased as almost all basis vectors are
contributing to the eigenvectors. For each excited state, besides a dominant basis vector
in the linear superposition there is a second contribution. A closer inspection reveals
that this second basis vector is opposite to the predominant one both in spin and orbital
degree of freedom: For excited state |A〉 for example, the largest coefficient is |e+ ↓〉
with |β|2 ≈ 0.75 and the second largest contribution comes from basis vector |e− ↑〉 with
|γ|2 ≈ 0.2.

It is straightforward to quantify this spin mixing in terms of spin polarization P
as we have done earlier on unstrained SiV centers (cf. page 138). Table 4.5 lists spin
polarizations of emitter “ND1” - “ND3” for ground and excited states, respectively.

Table 4.5: Spin polarizations P for ground states |1〉, . . . , |4〉 and excited states
|A〉, . . . , |D〉 of emitters “ND1” - “ND3” in nanodiamonds.

states |1〉 |2〉 |3〉 |4〉 |A〉 |B〉 |C〉 |D〉
P (ND1) -0.37 0.36 -0.34 0.35 -0.63 0.63 -0.56 0.56
P (ND2) -0.36 0.36 -0.34 0.34 -0.65 0.64 -0.58 0.58
P (ND3) -0.71 0.71 -0.71 0.71 -0.81 0.81 -0.77 0.77

We note, that “ND3” shows a surprisingly high spin polarization for ground and excited
states. In fact, the graphical representations for the ground state eigenvectors (Fig. 4.21a)
reveal that there is large orbital but small spin mixing. Here, the strain term is the leading
perturbation (instead of SO coupling) and it leads to a large orbital splitting. This
provides a similar “shielding” for transverse magnetic field components as SO coupling,
and hence spin remains a good quantum number in ground state for “ND3”. With strain
being the leading term in the Hamiltonian, the orbital part of the eigenvectors |1〉, . . . , |4〉
are similar to the eigenvectors |u1〉, . . . , |u4〉 of the strain Hamiltonian HS (calculated for
a general case in Sec. 2.2.5), hence it is straightforward to apply a basis transformation
in order to present the ground state of “ND3” in this basis (Fig. 4.21b).

We observe that this new basis representation is to a good approximation also an
eigenbasis for the strained SiV electronic states. We stress, that this is the first observation
of large spin polarization in both excited and ground state. The consequences of this spin
polarization are visible in the Zeeman spectrum (Fig. 4.18c): We stated before, that
the intensities for optical dipole transitions of emitter “ND3” are strongly non-uniform,
eg. peak A2 has vanishing intensity whereas A1 is very strong. These different relative
intensities arise from the fact, that optical dipole transitions are spin-preserving. Hence,
all transitions which would flip the spin projection, eg. A2, B1, C4, D3, have a low relative
intensity whereas spin-preservation transition, eg. A1, B2, C3, D4 have a high intensity.
Still, the spin polarization of “ND3” is non-unity (Tab. 4.5, Fig. 4.21b) and thus, these
selection rules are weakened for “ND3”.

We note this important result, that even in the presence of a strong strain field, the
spin polarization of the SiV center can be preserved to a high degree. The spectroscopy
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Figure 4.21: Eigenvectors |1〉, . . . , |4〉 for the ground state of SiV center “ND3” under the
influence of crystal strain. In panel (a), we express the eigenvectors in the SO coupled
basis and employ the same plotting scheme as in Fig. 4.13. In panel (b) we apply a
basis transformation to the eigenbasis of the strain Hamiltonian HS . The calculation is
performed for B = 2 T.

in magnetic fields which we presented in this section combined with a faithful description
of our theoretical model represents a valuable tool to evaluate these spin properties. We
show in the following section, that a selective readout in these sample is possible as well.

4.3.3 Strain effects on spin-resolved fluorescence

The promising results on spin polarization of the previous section suggest to apply the
resonance fluorescence technique described in Sec. 4.2.1 to individual SiV defects in nan-
odiamonds. Owing to their high brightness [56,58], SiV centers in nanodiamonds promise
a competitive signal to noise ratio for this sample system. Furthermore, it is helpful, that
the nanodiamonds which contain the SiV centers are smaller than the wavelength of the
excitation laser. Hence, we expect only a little distortion of the reflected laser beam which
should result in an sufficient laser suppression.

Figure 4.22 displays exemplarily the resonance fluorescence measurements of “ND2”
at B = 2 T. In a first step, we populate the spin up manifold (| ↑〉) by exciting resonantly
on transition D1 (Fig. 4.22a). The resulting spectrum (Fig. 4.22b) shows a multitude
of peaks: In reference to Fig. 4.18b we identify fluorescence of excited states |D〉, i.e. a
direct optical transition to the ground state, and of states |A〉, |B〉, i.e. transition which
occur after a relaxation among the excited states. We do not observe any emission arising
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Figure 4.22: Resonance fluorescence on single emitter “ND2” for magnetic field B = 2 T.
We selectively populate the excited state |D〉 via resonant laser excitation of transition
D1 (a) and observe the fluorescence spectrum (b), which consists of optical transitions
from states |D〉, |B〉 and |A〉. Optical excitation of state |C〉 (panel (d)) gives rise to
transitions (e) starting at levels |C〉, |B〉 and |A〉. In comparison to the non-resonant
spectrum (c) we observe a partial selectivity of transitions: States |D〉 and |C〉 do not
show a thermalization into each other, but both decay into states |A〉 and |B〉. The
large peaks on the left of spectra (b) and (e), respectively, are the residual peaks of the
excitation laser, tuned to transition D1 (b) and C1 (e).

from excited state |C〉. While the presence of fluorescence from level |B〉 and the absence
of |C〉 are well expected and consistent with the results presented for the reference SiV
ensemble (Fig. 4.16), transitions starting at level |A〉 are surprising at first glance. As
a second step, we populate the spin down manifold (| ↓〉) via transition C1 (Fig. 4.22).
Now, the resonance fluorescence spectrum reveals transitions starting from |C〉 but no
transitions from |D〉, and again fluorescence arising from both |A〉 and |B〉. In contrast
to the resonant fluorescence for the SiV ensemble (Fig. 4.16) where we observe fully
complemental spectra, we here encounter a partial complementarity: While the upper
excited state branch (states |D〉 and |C〉) do not thermalize among each other, it appears
at first glance that the lower states |B〉, |A〉 show a thermalization.

To check this partial selectivity, we repeat the resonance fluorescence experiment with
an excitation of the lower excited state branch (Fig. 4.23): First, we excite resonantly to
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Figure 4.23: Resonance fluorescence on single emitter “ND2” for magnetic field B =
2 T. Resonant excitation of state |B〉 (a) does not lead to relaxation into state |A〉, as
the resonance fluorescence spectrum (b) shows exclusively optical transitions from |B〉.
Similarly, excitation of |A〉 (d) leads only to fluorescence from |A〉 itself (e). The large
peaks in the middle of spectra (b) and (e), respectively, are the residual peaks of the
excitation laser, tuned to transition D1 (b) and C1 (e).

state |B〉 (∝ | ↑〉, Fig. 4.23a). The resonance fluorescence spectrum (Fig. 4.23b) shows no
optical transitions from state |A〉, but only direct transitions from |B〉 itself. Similarly,
exciting state |A〉 resonantly (Fig. 4.23d) leads to no peaks connected to |B〉 (Fig. 4.23e).
This indicated that surprisingly, there is no thermalization between |B〉 and |A〉 when
they are directly excited. Hence, a direct population of the lower excited state branch
restores the selectivity for these states.

In the following section, we take a closer look at the relaxation among excited states
for “ND2”. For this purpose, we make use of the state tomography outlined in the previous
section and we review the relaxation operator PR which we introduced in Sec. 4.2.2. The
representation of operator PR in basis states (4.5) reveals that PR only connects states of
the same spin projection but different orbital degree of freedom, e.g. it links |e+ ↑〉 with
|e− ↑〉. The eigenvector |D〉 of “ND2” is composed mainly of two basis states, viz. |e+ ↑〉
and |e− ↓〉. When we apply the relaxation operator PR to |D〉, we project state |D〉 into
a superposition of |e− ↑〉 and |e+ ↓〉. Hence, there is a vanishing overlap with state |C〉
(which is also composed of |e+ ↑〉 and |e− ↓〉) and we do not expect a relaxation from
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|D〉 to |C〉. The same argument holds for state |C〉 the other way around, although the
magnitudes of the coefficients α and δ are swapped.

In contrast, the application of PR to |D〉 leads to a large overlap both with states |A〉
and |B〉, because both states are composed mainly of |e− ↑〉 and |e+ ↓〉. Therefore, the
relaxation from |D〉 into both |A〉 and |B〉, which we observe in the resonance fluorescence
experiments, is well described by the operator PR. The same argument holds again for
state |C〉. The direct relaxation between |B〉 and |A〉 is again forbidden, because of the
same argument as for the forbidden decay between |D〉 to |C〉 above.
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Figure 4.24: The probability for a relaxation between the excited states |A〉, . . . , |D〉 (cf.
Fig. 4.20b) of strained SiV center “ND2”, expressed as matrix elements

∣∣∣ΓRif ∣∣∣2.

We strengthen these intuitive arguments by calculating the matrix elements ΓRif =

〈ϕf |PR|ϕi〉 of the relaxation operator between initial state ϕi and final state ϕf , both
belonging to the excited state manifold |A〉, . . . , |D〉 (cf. Sec. 4.2.2). We display the

absolute squares
∣∣∣ΓRif ∣∣∣2 which corresponds to the relaxation probability in Fig. 4.24 and

again weight the values with a thermal (Boltzmann) distribution as we have done it in
Sec. 4.2.2. A comparison between Fig. 4.24 with the selection rules observed in Figs. 4.22
and 4.23 shows an excellent agreement: The upper states |C〉 and |D〉 decay both in the
lower states |A〉 and |B〉, but a direct relaxation between states of the same “branch”
(|D〉 ↔ |C〉, |B〉 ↔ |A〉) is forbidden. It is very important to stress here, that we employ
the same relaxation operator, thus the physical mechanism behind the relaxation remains
the same for strained SiV defects. Hence, the application of resonance fluorescence on
strained SiV centers is feasible although its results might require a more careful discussion.
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Conclusion of the experimental results

This closes the chapter on experimental results. We have shown in this chapter that
spectroscopy on SiV centers at low temperatures in combination with magnetic fields
provides a powerful tool to investigate the electronic structure of the defect. In conclusion,
we have been able to explain every experimental evidence using the theoretical model of
the SiV center developed in Chap. 2. This includes “ideal” SiV defects which we studied
in bulk diamond as well as strained defects in nanodiamonds. Unstrained centers are
predominantly governed by spin orbit coupling which “shields” the excited state spin from
transverse Zeeman interaction and thus provides access to pure spin states in the excited
states. This spin purity has been experimentally verified using the technique of resonance
fluorescence. Strained SiV centers have – depending on the strength of crystal strain – a
tendency for lower spin polarization but still provide a feasible selectivity when resonantly
excited.

We have seen in this chapter that the only terms which theoretically lead to spin
mixing are off-axis magnetic field components which give rise to transverse Zeeman terms
on the spin operators Sx and Sy. While it was technically not possible in the current
experimental setup to apply magnetic fields in directions other than presented here, we
can still simulate the state tomography if we apply the magnetic field such that the off-
axis terms vanish. We will study the implications of this “Gedankenexperiment” in the
following chapter and use it as a starting point for a further outlook on the electronic
structure of the SiV center.
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Chapter 5

Summary and Outlook

This chapter summarizes both the experimental and theoretical results obtained in this
work. In addition, we employ the model of the SiV electronic structure to predict the
outcome for two types of experiments: First, we return to the influence of crystal strain
on the electronic structure (Sec. 5.1). In a previous report by Sternschulte et al., uniaxial
stress measurements have been performed on ensembles of SiV centers, but no detailed
interpretation has been given. We review these uniaxial measurements using the simu-
lation established before (Sec. 5.1.1). Moreover, we have assumed earlier in this work
that crystal strain induces significant changes in the polarization properties of individ-
ual SiV centers. In Sec. 5.1.2, we discuss the polarization of an individual SiV center in
dependence of a theoretical strain field and relate the results to recent publications.

In a second section, we discuss the application of magnetic fields along the 〈111〉 high
symmetry axis of the SiV center. We have seen in Sec. 4.1.5, that transverse magnetic
field terms give rise to spin-mixing in the ground and excited states of the SiV center.
Consequently, this spin-mixing is not present when aligning the magnetic field with the
defect. While this was not possible experimentally during this work, we can still discuss
the theoretical predictions for an optimized field geometry, which is covered in Sec. 5.2.
Finally, we summarize the results of this thesis in Sec. 5.3.

5.1 Predictions for strain-related measurements

We have already investigated the influence of crystal strain on the electronic structure
of the SiV center, both theoretically (Sec. 2.2.5) and experimentally (Sec. 4.3). In the
experimental part, strain presented a constant perturbation on the emitter which was
predetermined by the local environment in a nanodiamond. While we could describe the
effective perturbation by fitting the relevant parameters to the experimental data, the
explicit form of the strain tensor was unknown in these measurements.

In this section we simulate a variable strain perturbation using the theory established
in Sec. 2.2.5. We assume, that crystal strain is created by external pressure. This corre-
sponds to the situation arising in uniaxial stress measurements. In contrast to Sec. 2.2.5,
where we referred to the strain tensor εij [Eq. (2.77)], we here employ the stress tensor
σij because it is defined by the external pressure. For the stress Hamiltonian (2.80), we
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simply exchange the components εij by σij . Strictly speaking, the numerical pre-factors
of the interaction terms in Eq. (2.80) change, and we will relate them in the following
section to the experimental parameters utilized by Sternschulte et al. [133].

In principle, the stress tensor components can have arbitrary values. However, in
unaxial stress measurements, stress is usually applied along the cubic vectors 〈100〉, 〈110〉
and 〈111〉. We will consider the most simple case of a stress applied in [100] direction,
hence the stress tensor components σij are only non-zero for σxx. The stress is applied
in an external reference frame corresponding to the primitive cubic axes, whereas the
internal reference frame corresponds to the x, y, z-axes of the SiV defect (cf. Fig. 2.1).
Therefore, we employ Eq. (2.84) on page 71 with ε replaced by σ, which simplifies to

σ̃A1g = A1 σxx σ̃Egx = −B σxx σ̃Egy =
√

3B σxx. (5.1)

Again, we neglect the contribution of σ̃A1g , as it only leads to global energy shift. As a
result, the strain interaction Hamiltonian for external stress applied in [100] direction in
the {ex,y} basis set (2.27) is given by:

Hstrain = Bσxx

[
−1

√
3√

3 1

]
(5.2)

where we restrict ourselves to the matrix for the orbital part of the wavefunction, and
neglect the spin degree of freedom since it is not affected by stress in our model. The only
free parameter in the operator (5.2) is B, which defines the energy shift of an E state in
dependence of the applied pressure σxx. Hence, B is given in the unit [meV GPa−1] or
[GHz GPa−1]. In the general case, we expect the parameter to be different for ground
and excited state, thus we introduce B(g) and B(e) for the ground and excited states,
respectively. The parameters B(g,e) are not listed in the literature for the SiV center. For
the NV center, Davies and Hamer showed that B(NV) is on the order of 1 meV GPa−1 or
242 GHz GPa−1 [38].

The eigenvalues of the strain Hamiltonian in Eq. (5.2) are given by [cf. Eq. (2.87)]

E
(g,e)
1,2 = ±ζ = ±2B(g,e)σxx. (5.3)

If no other perturbation than stress was present for the SiV center, then the Eg, Ee ground
and excited states would be orbitally degenerate. In this case, the stress perturbation
would lift the orbital degeneracy and it would lead to a linear splitting with a slope of
±2B(g,e). This situation is shown in Fig. 5.1a for ground and excited state, respectively.

We know from the previous chapter that the orbital degeneracy of the Eg, Ee states
is lifted by the spin-orbit (SO) and Jahn-Teller (JT) interactions, with SO coupling being
the leading perturbation. Hence, the stress Hamiltonian adds to these two effects as a
third perturbation. For a small value of the applied stress, we encounter a situation where
the SO and stress have comparable energies. In this regime, the resulting level splitting
is not linear anymore (Fig. 5.1b). For higher values of σxx, stress becomes the dominant
perturbation, thus the level splitting is directly proportional to σxx. In the high stress
regime, the eigenvectors of the ground and excited states are given by Eq. (2.87).

The energy diagrams in Fig. 5.1 have been calculated utilizing the same algorithm
which we used for the simulation of the Zeeman spectra in Sec. 4.1.4. In contrast to
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Figure 5.1: Eigenvalues of the stress Hamiltonian (5.2) for the SiV ground and excited
states (a) without and (b) with spin-orbit and Jahn-Teller interaction. Panel (b) also
shows the possible optical transitions. The parameters for the simulation are given in the
caption of Fig. 5.2.

the previous chapter, we here set the magnetic field equal to zero and vary the stress
component σxx. As a first application, we employ this approach to interpret the uniaxial
stress measurements on SiV centers performed by Sternschulte et al.

5.1.1 Interpretation of earlier uniaxial strain measurements

In 1995, Sternschulte et al. performed uniaxial stress measurements on a (001) oriented
CVD diamond film, grown on an HPHT substrate [133]. The sample is comparable with
the ensemble sample introduced in the present work. In their measurements, the pressure
was applied along the crystallographic [100] axis, and the SiV fluorescence was recorded
at 4 K both in PL and PLE (cf. Sec. 1.3.2).

The results of this measurement are shown in Fig. 5.2a, where the photon energies of
the fine structure peaks are shown for increasing stress. The peaks are denoted from a to d
in ascending energy. The two inner peaks, b and c, are mostly invariant to the increasing
stress while the outer peaks a and d split apart with a slope of ∼ 8 meV GPa−1. The
authors state the following observations: In PL, the highest energy peak d “disappears
even at moderate stress values of 0.26 GHz. In PLE (. . . ), component d remains fully
visible but here the lowest energy component a disappears quickly.” Sternschulte et al.
assume an internal overpressure as the reason for the SiV fine structure, because in their
graph, all peaks intersect at a negative stress of −0.06 GPa.

We now employ the theoretical model introduced above to simulate the experiments by
Sternschulte et al.. We plot the fine structure spectrum (Fig. 5.2b) resulting from optical
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luminescence under external uniaxial stress fields and 
homogenous magnetic fields to determine the site 
symmetry of the center. 

In the present paper we study by uniaxial stress and 
Zeeman spectroscopy the 1.681 eV optical defect in a 
homoepitaxial diamond film. Here, the defect exhibits a 
drastically reduced linewidth of 0.2 meV as there is 
substantially no strain in the film. Owing to the narrow 
linewidth, our spectra reveal a complex fine structure of 
the NP transition at zero external fields and allow us to 
study the line splitting under external uniaxial stress and 
magnetic fields up to 14 T. 

2. Experimental 

The present homoepitaxial diamond film was depos- 
ited on a (lOO)-oriented Sumitomo type Ib diamond 
single crystal in a microwave plasma-assisted CVD 
apparatus. Details of the growth are given in Ref. [Z]. 
Si and N were unintentionally introduced, probably as 
contaminations from the fused silica chamber of the 
CVD apparatus and from the CH4-H2 gases in the 
plasma respectively. PL with an argon laser (488 nm 
excitation wavelength) and photoluminescence excita- 
tion (PLE) with a tunable titanium-sapphire laser were 
performed at controlled temperatures from 2 K to about 
80 K. The spectra were dispersed by a grating monochro- 
mator of 1 m focal length and recorded with a photomul- 
tiplier. Stress parallel to a (100) direction was applied 
by pistons pressing on opposite side faces of the substrate 
crystal cut parallel to { lOO}-type crystal planes. Zeeman 
measurements with magnetic fields B along all three 
main crystal directions were performed with two different 
cryomagnets, up to 6 T with detection by a charge- 
coupled device (CCD) camera, up to 14 T using a 
photomultiplier tube. This results in the different signal- 
to-noise ratios in the spectra shown later in Fig. 4. All 
Zeeman spectra were taken in 
Therefore all observed Zeeman 
g- -polarized, and rr-polarized 
detected. 

3. Results and discussion 

3.1. Uniaxial stress measurements 

Faraday configuration. 
components are (r + or 
components were not 

The data are discussed in some detail, together with 
a discussion of the vibronic sideband spectrum and PL 
decay times, elsewhere [23. We summarize here essential 
observations. 

The fine structure of the NP transition without exter- 
nal fields consists of four major components a, b, c and 
d plus at least three further weak components a, /I and 
y (Fig. 1). The components c and d both thermalize with 
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Fig. 1. Fine structure of the NP transition of the 1.681 eV optical 
center in the homoepitaxial film investigated without external fields. 

a and b. The stress p I[( lOO> splits these four main 
components apart (Fig. 2). Therefore, in PL, compo- 
nent d at the highest energy disappears even at moderate 
stress values of 0.26 GPa. In PLE (with light detection 
on a local vibrational mode 64.6 meV below the NP 
transition), component d remains fully visible but here 
the lowest energy component a disappears quickly. The 
PL splitting pattern can be combined with thermaliza- 
tion measurements (i.e. measurements probing the rela- 
tive intensities of the components vs. stress p or 
temperature T) to yield the level scheme in Fig. 3. Two 
conclusions can be drawn from such data: the optical 
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Fig. 2. Splitting of the NP transition under uniaxial (001) stress. The 
figure combines PL data (open triangles and lower spectrum) and 
PLE data (full circles and upper spectrum). The guidelines for the 
transitions a, b and c, d intersect at the negative stress value of 
p x - 0.06 GPa. 
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Figure 5.2: (a) SiV fine structure peak positions in uniaxial stress measurements per-
formed by Sternschulte et al. (re-printed from Ref. [133] with permission from Elsevier).
In panel (b) we simulate these measurements using the parameters B(g) = 484 GHz GPa−1

and B(e) = 630 GHz GPa−1. Shown are the fine structure spectra for stress increasing
from 0 GPa to 0.4 GPa.

transitions between the ground and excited states shown in Fig. 5.1b. The spectrum
is simulated in the same way as the theoretical spectra in the previous chapter (e.g.
Fig. 1.4a). All parameters for this simulation are equal to those obtained for the ensemble
sample (cf. Tab. 4.2); no Zeeman interaction is assumed. The simulated peak energies are
compared to the positions in Sternschulte’s measurements, where we keep this comparison
at a qualitative level. In the simulation, we have the two free parameters B(g) and B(e),
which we adjust successively to describe the splitting observed in Fig. 5.2a. Utilizing
B(g) = 484 GHz GPa−1 and B(e) = 630 GHz GPa−1, we match the splitting of the outer
peaks a, d with the experimentally observed slope while keeping the inner peaks b, c at a
constant spacing.

In agreement with the experimental findings, we observe in the simulation that the
intensity of peak d vanishes with increasing stress. The intensity of peaks a and c is
also reduced, but not as strongly as for peak d. The peak intensities in Fig. 5.2 are
determined by three factors: the dipole transition matrix elements, the radiation and
collection efficiency for a given dipole contribution and the population of a given state.
The calculation shows that the reason for the decrease in intensity for peaks a, c, d is due
to the change in population. We have seen in the previous chapter that a thermalization
occurs among the electronic states. When no magnetic field is applied, the population
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in the two ground and the two excited states follows a Boltzmann distribution [Eq. (4.6)
on page 135]. With increasing stress the levels in ground and excited state split further
apart, and the population of the upper states (|3〉, |4〉 and |C〉, |D〉, cf. Fig. 5.1) decreases
exponentially.

This explains why Sternschulte et al. observe peak d in PLE but not in PL, and
conversely for peak a: The optical transition for the emission of peak d connects the excited
state |C〉 (|D〉) with the ground state |1〉 (|2〉). The excited states |C〉 and |D〉 show a
vanishing population probability in the high stress regime, thus no PL signal is expected.
However, the two ground states |1〉 and |2〉 are populated at thermal equilibrium. Hence,
for an absorption measurement corresponding to the PLE measurement, we expect non-
vanishing absorption. In contrast, the ground states |3〉, |4〉 are not populated when high
stress is applied. Therefore, the absorption on transition a, which starts on |3〉, |4〉 is
expected to be weak. This is in agreement with the observation of Sternschulte et al.

The stress parameters B(g) and B(e), which we assumed for the calculation of Fig. 5.2b,
are a factor 2 to 2.6 larger than the parameter B(NV ) for the NV-center (B(NV ) =
242 GHz GPa−1 according to Ref. [38]). Hence, we tend to assume that the SiV cen-
ter is slightly more susceptible to crystal strain than the NV center. However, given the
qualitative comparison above, a deeper investigation is required to clarify this statement.

Next, we investigate the eigenvectors in the high stress regime. Figure 5.3 displays the
ground state eigenvectors |1〉, . . . |4〉 in the scheme which we introduced in Sec. 2.2.2. We
note that the states |1〉 and |2〉 as well as the states |3〉 and |4〉 are pairwise degenerate
(cf. Fig. 5.1). For the visualization, we employ the {ex,y ↑, ↓} basis. The plot in Fig. 5.3 is
calculated using the SO and JT parameter for the SiV ensemble sample (cf. Tab. 4.2), B(g),
B(e) as given above, and an applied pressure of 0.5 GPa in [100] direction. We note, that
for higher stress values, the relative contributions of the basis vectors in Fig. 5.3 remain
invariant, since the ratio of the matrix elements in the Hamiltonian (5.2) is constant.

|α|2 |β |2 |γ |2 |δ |2

|ex ↑〉 |ex ↓〉 |ey ↑〉 |ey ↓〉

0

0.5

1

|α|2 |β |2 |γ |2 |δ |2

|ex ↑〉 |ex ↓〉 |ey ↑〉 |ey ↓〉

|α|2 |β |2 |γ |2 |δ |2

|ex ↑〉 |ex ↓〉 |ey ↑〉 |ey ↓〉

|α|2 |β |2 |γ |2 |δ |2

|ex ↑〉 |ex ↓〉 |ey ↑〉 |ey ↓〉

|1〉 |2〉 |3〉 |4〉

Figure 5.3: Eigenvectors |1〉, |2〉, |3〉, |4〉 of the SiV ground state under the perturbation
of the stress Hamiltonian (5.2) in the basis states |ex,y ↑, ↓〉. We employ the SO and
JT parameters for the SiV ensemble sample (cf. Tab. 4.2), B(g) = 484 GHz GPa−1 and
B(e) = 630 GHz GPa−1, and an applied pressure of 0.5 GPa in [100] direction. The
representation of the states is equal to Fig. 2.9.

The off-diagonal terms in the Hamilton operator (5.2) lead to an orbital mixing. If
the stress was applied along the internal x axis of the SiV defect, i.e. along the [1̄10]
direction, no off-diagonal terms would be present in matrix (5.2) and the stress would
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not introduce any mixing at all. In the following section, we utilize the eigenvectors in
Fig. 5.3 to calculate the dipole matrix elements for optical transitions in order to describe
the polarization of a strongly strained emitter.

5.1.2 Strain-induced changes of polarization properties

In this section, we discuss the polarization of strained SiV centers. Using the eigenvectors
for ground (Fig. 5.3) and excited state, we calculate the dipole matrix elements for optical
transitions using the dipole operator p̂ = (p̂x, p̂y, p̂z). For the calculation of the polar-
ization graphs, we employ the algorithm outlined in Sec. 2.3.2. We consider a single SiV
center, located in an (001) diamond sample, thus in the same experimental configuration
as in the SIL sample in Sec. 4.1.2. For this configuration, we saw that the polarization
graphs showed maxima along the equivalent 〈110〉 directions, which resulted from the
projection of a 〈111〉 oriented defect into the (001) sample surface. The simulated polar-

[100]

[100] [100]

[100]

[010]

[010]

[010]

[010]

peak a peak b

peak c peak d

[110] [110]

[110][110]

Figure 5.4: Simulated polarization plots for the four fine structure peaks a - d (cf.
Fig. 5.2b), for a SiV defect in a low-strain environment (red dashed lines) and with the
defect exposed to uniaxial stress of 0.5 GPa along the [100] crystal axis (blue solid lines).
The axes labels refer to the primitive crystallographic axes [100] and [010]. The curves
are normalized to the maximum of each peak.

ization curves for this low-strain case are depicted as red dashed lines in Fig. 5.4, where we
reprinted the simulated curve for emitter “SIL1” from Fig. 4.7. As we have stated before
(cf. Tab. 4.1), the fine structure peaks b and c show high polarization visibilities (close to
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unity) whereas the visibilities of peaks a and d are slightly smaller (∼ 0.75). This reflects
the situation of an SiV defect in an ideal environment, which we now compare to the case
of an emitter with uniaxial stress applied.

For the application of uniaxial stress in [100] direction, we assume a measurement
geometry according to the experiment of Sternschulte et al. [133] discussed in the previous
section. The blue solid line in Fig. 5.4 shows the resulting polarization graph for an emitter
at an applied pressure of 0.5 GPa. When stress is applied to the sample, the polarization
maxima are oriented along approximately 0◦ and 90◦. These directions correspond to
the crystallographic axes [100] and [010] direction, thus in comparison to the low-strain
case (red dashed line) they are rotated by ∼ 45◦. We observe, that this rotation follows
the direction of the applied stress: Stress in the [100] direction leads to a rotation of
the polarization lobes, such that their maxima are oriented along the equivalent 〈100〉
directions. Additionally, we observe that the fine structure peaks a and d now also show
visibilities close to unity, thus they appear linearly polarized in the simulation. For a single
SiV center with strain along these directions, only the fine structure peak b is observed in
photoluminescence spectroscopy, because b is the only peak which does not vanish with
increasing strain (cf. Fig. 5.2). Hence a strongly strained SiV center can appear in an
actual experiment as a single peak, which is linearly polarized along one of the equivalent
〈100〉 direction.

We relate these results to two experimental reports: First, in Ref. [58], the polar-
ization of individual SiV centers in heteroepitaxial “nano-islands” on Ir substrates has
been measured (cf. Secs. 1.2.3 and 1.3.3). Owing to the epitaxial growth on an ori-
ented substrate, these measurements allowed to investigate the polarization of individual
emitters with respect to the crystal axis of the diamond. Due to the lattice mismatch
between the substrate and the diamond nano-islands, the SiV centers in these samples are
subject to crystal strain. As a second experimental reference, Riedrich-Möller et al. re-
cently published the polarization of individual SiV centers in thin, freestanding diamond
films [214]. The films are again grown heteroepitaxially on an Ir substrate, thus, they
experience similar strain fields as the nano-islands in Ref. [58]. Both publications report
on measurements at room temperature. In the first report, Ref. [58], emitters with lin-
early polarization fluorescence along [100], [010], [110] and [1̄10] are found. In the second
report by Riedrich-Möller et al., two individual SiV defects are discussed which both show
polarization graphs along the [100] crystal axis. The room temperature zero phonon lines
of the two emitters are shifted in wavelength from the typical value (738 nm) by more
than 10 nm, revealing that the diamond film shows considerable crystal strain.

This internal strain field can be present in the samples of Refs. [58, 214] due to the
heteroepitaxial growth, which leads to a lattice mismatch for the grown diamond-films.
It stands to reason, that certain crystallographic directions are more susceptible to strain
than others. Hence, we tentatively suggest that these measurements are performed using
samples, which show predominantly stress along the equivalent 〈100〉 crystallographic di-
rections. To date, it is not certain whether the growth conditions favor such an in-plane
strain, and more profound investigations are required. Nevertheless, the the theoreti-
cal model proposed above provides a consistent explanation for polarization properties
observed by Neu et al. and Riedrich-Möller et al.

In the experimental reports of Neu et al. [56, 58] and Riedrich-Möller et al. [214],
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strongly strained SiV defects were investigated which showed spectral shifts of several
nanometers, e.g. ∼ 20 nm (104 GHz) in Ref. [214]. In the current theoretical model, a
shift of the optical transitions is caused by the different strain response for ground and
excited state, i.e. the difference B(e)−B(g) from the previous section and, in addition, the
contribution of a totally symmetric stress term A

(e)
1 −A

(g)
1 [cf. Eq. (2.84) on page 71]. In the

previous section, we showed that these differences are on the order of ∼ 100 GHz GPa−1.
Hence, the observed line shifts in Refs. [56, 58, 214] would require intrinsic pressures far
beyond 50 GPa. It is debatable whether the effect of crystal strain on this order can still
be described in terms of a perturbative interaction. When the crystal is subjected to such
high strain fields, we expect a lowering of the SiV symmetry, thus, the theoretical model,
which we derived in Chap. 2, needs to be re-established starting from a lower symmetry.
Nevertheless, the group theoretical concepts outlined in Chap. 2 allow to construct such
a model in a similar manner as we have proceeded in the present work.

In summary, we interpreted two experimental findings for the SiV center in this section,
using the stress simulation algorithm introduced in the previous sections. Although these
predictions reside on a rather qualitative level, they demonstrate the versatility of the
theoretical model derived in this work. In the next section, we employ our theoretical
model to predict Zeeman spectra for a magnetic field aligned with high symmetry axis of
the SiV center, and we discuss the implications for the ground and excited states.

5.2 Optimized magnetic field orientation

In Sec. 4.1.4, we experimentally investigated the response of the SiV center to magnetic
fields. Due to the experimental restrictions, the magnetic field was not aligned with the
high symmetry axis of the SiV defect. This resulted in transverse magnetic field terms in
the Zeeman interaction. These off-axis terms were identified as the reason of spin-mixing.
It is interesting to study theoretically, how the properties of the defect are changed when
the magnetic field is aligned with the high symmetry axis. We first present the resulting
level splitting as well as the resulting Zeeman spectrum for this case. In a second step,
we discuss the eigenvectors and the spin polarization in this optimized magnetic field
geometry.

We consider a single SiV center in a bulk diamond with a (111) surface, which is
placed in the experimental setup, described in Sec. 3.1.3. We simulate the sample to be
mounted in Faraday configuration, with the magnetic field being aligned with the z-axis
of the SiV defect. To perform this simulation, we take into account the SO coupling
(HSO, cf. Sec. 2.2.2), the JT effect (HJT, cf. Sec. 2.2.3) and the Zeeman interaction (HZ,
cf. Sec. 2.2.6). We set the relative B-field angle to 0◦, hence the transverse magnetic field
components Bx = By = 0. In these simulations, no crystal strain is taken into account.

In the discussion of the ensemble sample (Sec. 4.1.4), we have seen that the SO coupling
is the leading orbital interaction. To obtain an intuitive picture for the situation of a [111]
aligned magnetic field, we first neglect the JT interaction and only consider the action
of HZ + HSO. With B = (0, 0, Bz), the Zeeman Hamilton operator (2.89) on page 74
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Figure 5.5: (a) Level splitting in the ground and excited states for a [111] oriented SiV
center in dependence of an increasing magnetic field, which is aligned parallel to the
high symmetry axis of the emitter. (b) Resulting optical transitions (white lines) and a
simulated Zeeman spectrum (color-plot) versus the magnetic field.

becomes diagonal, and the eigenvalues of HZ + HSO are given by

EZ,SO1 = −(qγL + γS)Bz − λ (5.4a)

EZ,SO2 = (qγL + γS)Bz − λ (5.4b)

EZ,SO3 = (qγL − γS)Bz + λ (5.4c)

EZ,SO4 = −(qγL − γS)Bz + λ (5.4d)

Hence, the level splitting scales linearly with the magnetic field Bz when the field is par-
allel to the [111] direction. This dependence is preserved when adding the JT interaction
and the result is the same for ground and excited state. For the relevant interaction terms,
we employ the parameters λg,e, Qg,e and q of the ensemble sample, indicated in Tab. 4.2
on page 134. The resulting level splitting – including the JT interaction – is shown in
Fig. 5.5a for ground and excited. We observe, that the ground states cross at a magnetic
field of ∼ 2 T.

With the eigenvalues for ground and excited states we simulate the corresponding Zee-
man spectrum (Fig. 5.5b). From the energy distance we calculate the resulting frequencies
for optical transition between ground and excited states. These transitions are shown as
white solid lines in Fig. 5.5b, irrespective of the transition probability. To simulate a real-
istic spectrum, we use the same approach as for the single emitters presented in Sec. 4.1.4:
We calculate the matrix elements 〈p̂x〉 , 〈p̂y〉 , 〈p̂z〉 of the dipole operator p̂ between the
eigenvectors of ground and excited state (cf. following section), and take into account the
collection efficiencies for the X,Y, Z dipoles. The Z dipole, which is parallel to the [111]
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crystal direction, is assumed to be perpendicular to the sample surface in the present
simulation. Hence, approximately an order of magnitude less of the light is collected in
comparison to the X,Y dipoles [73, 201] and we adjusted the collection efficiency coeffi-
cients ηx, ηy, ηz accordingly. Furthermore, the intensity of an optical transition depends
on the population of the initial state, which we again assume to follow a Boltzmann dis-
tribution (Eq. (4.6)). In accordance with Sec. 4.1.4, we model the transition peaks using
Lorentzian peak functions (cf. Eq. (4.7), with a full width at half maximum Γ = 10 GHz).
The resulting Zeeman spectrum is shown as a color-plot in Fig. 5.5b.

The Zeeman spectrum for magnetic fields in [111] direction is considerably simpler
than for fields aligned with the [001] direction (cf. Fig. 4.10). In the level splitting scheme
(Fig. 5.5a), several ground states shift with the same slope as corresponding excited state,
e.g. state |A〉 and state |1〉. Hence, their energetic difference remains constant and the
corresponding optical transitions (e.g. A1, B2, . . . ) do not shift when increasing the
magnetic field. We further observe, that several transitions indicated by white lines are
not visible in the color-plot, e.g. A4, A2 and others. As we will see in the next section,
these transitions would flip the spin of the electron, hence they are forbidden because of
the dipole selection rules.

In Ref. [133], Zeeman spectra for ensembles of SiV centers have been measured with
the field applied along the [111] axis. In comparison with field applied parallel to the [100]
and [110] direction, the Zeeman spectrum in [111] also appears relatively simple. However,
for an ensemble of defects, the equivalent orientations of the centers all contribute to the
Zeeman spectrum. In contrast, Fig. 5.5b simulates an individual SiV center, hence a
quantitative comparison of our simulation with Ref. [133] remains challenging.

For the application of magnetic fields parallel to [111] in an actual experiment, two
approaches are feasible which both impose technical challenges. One method would be to
cut or cleave a diamond containing SiV centers along a (111) plane and then mount the
sample in Faraday configuration. For such a sample, the experimental setup employed
in this work could be utilized. However, one faces the problem that (111) diamond
surfaces are difficult to polish to an adequate surface smoothness. To date, no high purity
diamond with (111) surface is commercially available. Nevertheless, different research
groups recently achieved the fabrication of (111) oriented diamond samples for single
defect center spectroscopy [121, 224]. Additionally, the light of the Z dipole would be
collected with lower efficiency. Hence, the resulting photon count rates are expected to
be small. Nevertheless, photonic structures, such as nano-wires, could re-enhance the
collection efficiency [93].

An alternative approach would be to mount the sample in a so-called vector magnet,
where the magnetic field direction can be aligned in arbitrary directions. For this mea-
surement geometry, any diamond orientation can be employed, thus also the SIL sample
presented in this work. Preliminary Zeeman spectra of individual SiV centers in the SIL
sample, performed in a vector magnet at the University of Sheffield show a high agreement
with the predicted spectrum in Fig. 5.5b [225].

The main reason of aligning the magnetic field with the high symmetry axis of the
SiV center is the suppression of the spin mixing, which is caused by the off-axis Zeeman
terms. Therefore, we investigate the eigenvectors and the corresponding spin polarization
in [111] oriented magnetic fields in the following section.
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5.2.1 Spin polarization in [111] aligned magnetic fields

In the previous section, we simulated how the Zeeman spectra change when the magnetic
field is aligned with the z axis of the SiV defect. We now discuss the implications for the
eigenvectors and the spin purity of the resulting states. We have seen in Sec. 4.1.5, that
the transverse magnetic field terms Bx, By give rise to spin-mixing ∝ BxSx+BySy, which
was particularly dominant in the ground state. When the transverse terms are absent, we
expect the spin-mixing to vanish.
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Figure 5.6: Eigenvectors (a) |1〉, . . . |4〉 and (b) |A〉, . . . |D〉 of the SiV ground and excited
states, respectively. The states are simulated assuming a magnetic field of 5 T aligned
parallel to the high symmetry axis of the SiV defect. The states are expressed using the
SO coupled basis vectors |e± ↑, ↓〉. We employ the parameters for SO, JT and Zeeman
interaction of the SiV ensemble sample (cf. Tab. 4.2). The representation of the states is
equal to Fig. 2.9.

Figure 5.6a shows the eigenvectors for the ground states |1〉, |2〉, |3〉, |4〉 at a magnetic
field strength of 5 T. The representation of the states is equal to Fig. 2.9, i.e. we plot the
absolute squares of the basis vector coefficients α, . . . , β. The states are given in the SO
coupled basis {e± ↑, ↓}. We observe that the state-mixing is dramatically reduced both
for the ground and excited states. The residual mixing is purely of orbital nature, e.g.
we observe a mixture of the |e+ ↓〉 and |e− ↓〉 for ground state |1〉. This orbital mixing
is a consequence of the weak, but non-negligible, JT effect. As we have predicted it, no
spin-mixing is observed in either ground or excited state. As a trivial consequence, the
spin polarization P , defined in Sec. 4.1.5, equals P = ±1 for all states.

In this optimized B-field configuration, both the ground and excited states offer pure
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spin states which enable the initialization and manipulation of spin states. In Sec. 4.2,
we have selectively populated the mS = ±1

2 spin manifolds in the excited state and
verified this selective excitation using resonance fluorescence. The resonance fluorescence
is also feasible in the optimized B-field geometry. For instance, the transitions B4 and
A3 originate from excited states of different spin projection. Hence, we can determine the
excited state spin by discriminating which line is visible in the spectrum.

Additionally, a distinguished spin projection in the ground state can now be selectively
populated. We assume that, initially, the ground state spin is in a statistical mixture of
up and down projections. When shining in a resonant laser, e.g. tuned to the transition
C1, we populate the |e− ↓〉 excited state. After the radiative lifetime, the SiV center
decays back into the ground states |e+ ↓〉 or |e− ↓〉, because the optical dipole transition
preserves the spin. Hence, we optically pump the system to a given spin projection, and
thus, initialize the spin for further manipulation.

For spin manipulation, it is advantageous that the states |2〉 and |3〉 cross at a magnetic
field strength of about 2 T. States |2〉 and |3〉 have opposite spin projection, but the same
orbital wave function. Thus in this regime, the spin could be flipped theoretically using
similar microwave techniques as applied for the NV center in diamond [226]. To read out
the spin state, resonance fluorescence measurements can then be applied.

Clearly, this has been a very compact proposal on how to perform spin manipulation for
the SiV defect. Furthermore, the current theoretical model needs to include higher order
effects which govern properties like spin coherence times. However, spin manipulation
is beyond the scope of this work, as our primary aim was to understand the electronic
structure of the defect. With the results we have obtained, we provide a stable basis
for further investigations and a gradual refinement of this model. We have seen in this
section, that a tremendous improvement of the spin purity both for ground and excited
state should be attainable when optimizing the magnetic field orientation. This closes
the section on predictions from the theoretical model. In the upcoming final section, we
summarize the results, which we have obtained in this thesis.

5.3 Summary of the results presented in this work

The objective of this thesis was to determine the electronic structure of the SiV defect in
diamond. Connected to the electronic structure is the molecular geometry of the defect.
We start from the configuration which was predicted theoretically in Refs. [122, 127]. In
this configuration, the defect consists of a Si impurity which replaces one carbon atom
and a neighboring lattice vacancy. The theoretical considerations showed that the Si
atom then moves along the [111] axis towards the vacancy, resulting in a split-vacancy
configuration.

As we have seen in the first part of the theoretical chapter, the geometry of the
defect defines the orbital symmetries, which in turn, can be conveniently classified using
group theory. Hence, as a first definition, we have introduced point groups and their
corresponding symmetry elements. The SiV center belongs to the dihedral D3d group,
which includes the identity, two three-fold rotations, three two-fold rotations, an inversion
center, two improper rotations and three mirror planes.
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To derive the electronic states, we have first introduced the notion of irreducible rep-
resentations. The irreducible representations of a defect belonging to a given point group
label the resulting states and specify their degeneracies. This degeneracy is equal to the
dimension of the irreducible representation, which is indicated in the character table for
a given point group. For the D3d group of the SiV center, there are four one-dimensional
representations A1g, A2g, A1u, A2u, and two two-dimensional representations Eg, Eu.
Hence, the SiV center has a maximum orbital degeneracy equal to two.

As a consecutive step, we calculated the single electron orbitals in a molecular orbital
approach. The electrons can populate orbitals provided by the unsaturated carbon bonds
and by the 2s, 2p orbitals of the central Si impurity. These orbitals are superimposed to
form symmetry adapted linear combinations (SALCs), applying again group theoretical
principles. As a result, we obtain bonding and antibonding superpositions of the orbitals
for the A1g, A2u, Eg, Eu representations. Density functional theory calculations yield
the energies of the dangling bond SALCs. The center hosts a total number of eleven
electrons: six electrons contributed by dangling bonds, four electrons from the Si-atom
and one electron trapped from nearby donors to account for the negative charge [63].
Taking into account spin degeneracy, the a (e) orbitals accommodate 2 (4) electrons, i.e.
one unpaired electron remains in the eg orbital. We therefore consider the SiV ground
state as 2Eg and the excited state as 2Eu where a single hole formalism is equivalent to a
single electron state [41].

These two states initially show a fourfold energetic degeneracy, i.e. a twofold orbital
and a twofold spin degeneracy. This degeneracy can be lifted by several interaction terms.
We model these interactions in a perturbative approach: An unperturbed Hamiltonian H0

gives rise to fourfold degenerate levels in the ground and in the excited state, respectively.
Ground and excited state are separated by 1.68 eV corresponding to the 740 nm zero
phonon line transition of the SiV center. The fourfold degeneracy is reflected in four
orthonormal basis vectors {ex,y ↑, ↓} for ground and excited state, respectively. Small
perturbations result in linear combinations of these basis vectors.

We model four interaction terms: The orbital degeneracy is lifted by the spin-orbit and
the Jahn-Teller interaction. Owing to the particular level structure of the SiV center, the
spin-orbit interaction only couples the z components of spin and orbit, and consequently
does not lead to spin mixing. The Jahn-Teller interaction is caused by vibrations of the
nuclear configuration. We identified vibrations of E-type symmetry to couple to the elec-
trons of the SiV center. A third perturbation, which we discussed, was the interaction for
crystal strain. Starting from a general strain tensor, we deduced which tensor components
couple to the orbital parts of the wave function. The spin degeneracy is lifted when we
apply a magnetic field, thus as a fourth interaction, we investigated the Zeeman effect on
both spin and orbital part of the wave function. We showed that this interaction depends
indirectly on the spin-orbit and Jahn-Teller ratio, which motivated the measurements of
Zeeman spectra in the experimental part of the work (see below). For all interaction
terms, we calculated the explicit matrix representations and showed theoretically their
action on the eigenstates of the SiV center.

While the four perturbations above act on ground and excited state separately, we
introduce the dipole operator as a fifth interaction which connects ground and excited
states. By calculating explicitly the matrix elements of the dipole operator for all com-
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binations of ground and excited states, we model optical dipole transitions. Hence, the
frequency, intensity and polarization of the emitted light depends on the eigenvalues and
-vectors of the perturbed electronic system. Consequently, these optical transitions can be
compared to ones which we observe in a spectroscopy experiment, and the free parameters
in the electronic interaction terms can be fitted to the experimental results (see below).

To provide experimental access to the optical properties of individual SiV centers,
we employed confocal microscopy at cryogenic temperatures. In Sec. 3.1, we introduced
the concept of confocal microscopy and discussed its advantages over conventional mi-
croscopy. Confocal microscopy has been realized in two experimental setups which were
characterized in Sec. 3.1.3. Subsequently, we discussed the sample fabrication. The results
presented in this work have been obtained using three different CVD diamond samples:
One sample – called the ensemble sample – contained an ensemble of SiV centers for pre-
liminary measurements. Single defects have been created in a second and third sample.
On the second sample, single SiV are found in isolated nanodiamonds grown on an Ir
substrate. These centers are subject to crystal strain and are used as a test-bench for
individual centers in strained environments.

Finally, the third sample is a high purity single crystalline diamond which has been
implanted with Si ions. We discussed the implantation procedure and defined the stopping
range. As a side effect, the ion implantation creates lattices vacancies. Using appropriate
thermal annealing we can promote the vacancies to pair with implanted Si atoms and
form SiV complexes. After the ion implantation, the sample showed luminescence from
individual SiV centers, however at very modest count rates. As the primary cause for
the low count rates, we identified the refraction and total internal reflection of the SiV
fluorescence at the diamond-air interface. This problem is mostly solved by placing solid
immersion lenses (SILs) over the emitter. We fabricate these lenses directly into the
diamond surface using focused ion beam milling (FIB). Employing a donut shaped ion
beam with an intentional blur, we developed a fast and reliable technique to produce
arrays of SILs. The fabricated SILs showed an improvement of the fluorescence count
rate by a factor of approximately 5. With this approach, a sufficiently high collection
efficiency was obtained with typical single photon count rates of ∼ 2 · 104 photons per
second.

This improvement of the collection efficiency enabled a detailed investigation of the
spectral fine structure for individual SiV centers, first without a magnetic field applied.
The spectral fine structure at 0 T consists of four characteristic peaks spread by 48 GHz
and 249 GHz, respectively [62]. As an initial experiment, we compared the spectral fine
structure of the ensemble and the SIL sample with reference measurements in the lit-
erature, yielding an unprecedented agreement on both the absolute wavelength and the
splitting of the fine structure peaks. To the best of our knowledge, it is the first time
that the SiV fine structure has been observed for single defects in bulk diamond. This
provides access to individual defects in a low strain material, and thus enables the inves-
tigation of the SiV electronic structure in an ideal, unperturbed environment. The line
width of the fine structure peaks ranges from approximately 1 GHz for individual SiV
centers in the SIL sample to 10 GHz for the SiV ensemble. As a first verification of the
proposed theoretical model, we measured the polarization of each individual fine structure
line. The polarization of the lines can be grouped in two subsets. The inner transitions
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are polarized parallel to each other and perpendicular to the outer ones. All polarization
maxima are parallel to the equivalent 〈110〉 directions. The measurements correspond to a
projection into the (001) plane, thus the observed polarization direction is consistent with
the predicted 〈111〉 alignment of the defect. In addition, the visibility for the polarization
graphs is predicted correctly using our theory. This result is confirmed by independent
measurements on a larger number of SiV defects [176].

The key experiment in this thesis is the application of a magnetic field, which splits
the magnetic sublevels of the defect. The measurement has been carried out on both
the ensemble sample and single defects under SILs. For both samples, we observe a
splitting of each fine structure line into four lines. The splitting is not symmetrical and
shows several avoided crossings. The splitting into four components points towards a spin
1/2 system, and the avoided crossings indicate a dominant spin-orbit coupling. As the
ensemble spectrum shows a splitting pattern, which is identical to the single defect, we
infer that all possible equivalent orientations of the center in the ensemble have the same
relative angle to the magnetic field. The only orientation which allows for this fact is
along the 〈111〉-axes. In combination with the polarization measurements, this shows for
the first time experimental evidence of a 〈111〉-alignment for SiV centers and establishes
a link to theories published so far [122,126].

Fitting the free parameters of the interaction terms to the experimental data, we obtain
an excellent agreement between the theoretical and experimental Zeeman spectra. The fit
shows that the spin-orbit interaction is the leading orbital perturbation. In addition, we
observe a strong quenching of the orbital gyromagnetic moment, which we attribute to the
influence of the Jahn-Teller interaction. The comparison between theory and experiment
yields both eigenvalues, i.e. the energy levels, and eigenvectors of the total Hamiltonian,
and allows a comprehensive study of the SiV electronic structure. As we expect it for
a spin 1/2 system, all energy levels split in two components as the magnetic field is
applied. The discussion of the eigenvectors shows, that the each of the four excited states
is composed mainly of one of the {ex,y ↑, ↓} basis states, thus the excited state shows a
high spin polarization. In contrast, spin mixing is observed for the ground states.

This spin purity motivates the spin selective population of the excited states. We per-
form this experiment using the technique of resonance fluorescence. While the experiment
is described in detail elsewhere [64,65], our theoretical model provides a straight-forward
explanation of the underlying mechanisms. Using resonant optical excitation, we popu-
lated a particular spin manifold in the excited state. A thermalization takes place, which
however leaves the spin projection invariant while changing the orbital part of the wave
function. We discussed physical origins for this relaxation among the excited states and
deduced a phenomenological relaxation operator which is in agreement with the observed,
spin-dependent relaxation. This experiment can be seen as a first step towards deter-
ministic spin preparation and read-out for individual SiV centers. Our model provides a
profound theoretical basis to promote these types of experiments.

To this point, the experiments were all carried out using SiV centers in optimized,
low strain samples. In many cases, one faces defect centers which are subject to crystal
strain. To compare the influence of crystal strain with the theoretical considerations
which we took in Chap. 2, we investigated strained SiV centers in nanodiamonds. In a
first step, we discussed again Zeeman spectra of single SiV centers in these nanodiamonds
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and showed, how the magnetic field splitting is influenced when crystal strain is present.
Subsequently, we repeated the spin selective excitation for a strained defect. At first
glance, the relaxation mechanism appears to be modified in strained samples, because
the spin selectivity is partly lost in the experiment. However, a detailed investigation
revealed that this apparent change can be fully explained in the framework of the existing
theoretical model.

Hence, in conclusion we could explain every experimental aspect we presented using
the theoretical model of the electronic structure, which we established for the SiV center.
Furthermore, as an outlook at the beginning of this chapter, we showed that the model also
explains uniaxial strain measurements carried out in an earlier publication. As a further
outlook, we discussed the consequences of aligning the magnet field parallel to the high
symmetry axis of the SiV center. In this Gedankenexperiment, the absence of transverse
field components prevents a spin mixing. Theoretically, we expect a spin polarization
equal to unity which would reveal higher order interaction terms. Performing resonant
optical excitation for such an optimized magnetic field geometry is highly interesting for
future experiments on spin manipulation on the SiV center.

The main goal of this thesis was to understand the electronic structure of the SiV
center, in a sense that we understand the internal physical mechanisms which determine
the spectral fine structure of the defect. While the key role of this work was the explanation
of the Zeeman spectra, the theory was – without further modifications – extendable to
polarization measurements and the effect of crystal strain. At the same time, all the
experiments are feasible at a single emitter level, which proves the suitability of the defect
for quantum optics experiments. We started this thesis with a discussion of color centers
in diamond as spin-photon interfaces, and we raised the question, whether the SiV center
provides – besides its excellent optical properties – electronic properties that allow its
usage as a qubit. The profound knowledge of the electronic states and of the relaxation
mechanism in the excited state, which we acquired in the course of this thesis, have
established the foundations, on which future experiments on spin manipulation with the
SiV center can be built.

Concluding remark

I hope that the knowledge, which I acquired in the course of studying this fascinating
defect, will further increase its prospects for solid-state quantum applications. At the same
time, some of the open questions and apparent contradictions from earlier publications
could be resolved using the theoretical model shown. We established a link between some
theoretical proposals on the SiV center and showed many experimental verifications for
them. The upcoming research on the SiV center will reveal whether the model, which we
proposed, requires to be refined.

I would like to finish with a few words about the integrity of a physical model, as
spoken by Richard Feynman [227]:

“When you have put a lot of ideas together to make an elaborate theory, you want to
make sure, when explaining what it fits, that those things it fits are not just the things
that gave you the idea for the theory; but that the finished theory makes something else
come out right, in addition.”
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I tried to elucidate the SiV electronic structure from many possible angles. This way,
I hope that I could satisfy Feynman’s idea of scientific integrity by proposing a theory
which goes beyond its initial purpose. I think that some of these criteria are met when
I recollect a few of the consistent phenomena which we observed. For all the problems,
which remain to be solved and which might further elucidate the exciting SiV center, I
am eagerly looking forward to the experiments to come.
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Matlab scripts

The theoretical model developed in Chap. 2 and employed in Chap. 4 has been imple-
mented using Matlab. We here list the core functions for the simulation of the total
Hamiltonian (including spin-orbit-, Jahn-Teller-, Zeeman- and stress interaction), of the
transition dipole strengths and of the polarization curves. Not shown are the plotting
subroutines.

1 function [ Eg , Ee , T, Ef , Exp ] = SiVModel (G1,G2, tg , pg , te , pe , tB , f , eps )
2 % G1 and G2 are the s p e c t r a l s p l i t t i n g s in GHz, G1 betw/ peak a and d ,
3 % G2 betw/ peak b and c .
4 % tg , pg and te , pe are f r e e parameters .
5 % tg = 0 means , a l l t he s p l i t t i n g corresponds to spin−o r b i t s p l i t t i n g
6 % te = pi /2 means , a l l t he s p l i t t i n g i s due to the Jahn t e l l e r e f f e c t .
7 % tB i s theta_B , the r e l a t i v e ang l e betw/ SiV high symmetry ax i s and the
8 % ex t e rna l b− f i e l d . f i s the f a c t o r t ha t d imin i shes the o r b i t a l g−f a c t o r
9 % g_L ( c . f . f unc t i on "Hamiltonian" at the end o f t h i s f i l e ) .
10 % eps i s the va lue o f un i a x i a l s t r e s s in GPa, we employ a s c a l i n g f a c t o r
11 % of the NV cente r as a r e f e r ence . For a r b i t r a r y s t r e s s expre s sed in
12 % parameters alpha , be ta ( c f . Sec . 2 . 2 . 5 ) , s e t eps = alpha + i ∗ be ta .

14 % B− f i e l d vec tor , same dimension as the exper imenta l data vec t o r to p l o t
15 % the two in the same graph
16 B = 0 : 0 . 1 : 7 ;

18 % Constants and convers ions :
19 t = tB∗pi /180 ;
20 p = 45∗pi /180 ;
21 GHz = 1e9 ;
22 c = 3E8 ;
23 G1 = G1∗GHz;
24 G2 = G2∗GHz;
25 k = 2 ;
26 eps = eps .∗242 .∗ k .∗GHz;
27 % The va lue 242 GHz/GPa i s the corresponding s t r e s s
28 % response o f the NV center , c f . Davies1976 . The f a c t o r
29 % k i s the f r e e parameter f o r the SiV cen ter .

31 % Leve l s p l i t t i n g in e x c i t e d (EEe) and ground s t a t e (EEg)
32 EEe = (G1+G2)/4 ;
33 EEg = (G1−G2)/4 ;

35 % Ca l cu l a t i on o f the r e l a t i v e c on t r i b u t i on o f SO− and JT−i n t e r a c t i o n f o r
36 % ground . . .

179
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37 Dg = 2∗EEg∗cos ( tg ) ;
38 Qgx = EEg∗ sin ( tg )∗ cos ( pg ) ;
39 Qgy = EEg∗ sin ( tg )∗ sin ( pg ) ;
40 Qg = sqrt (Qgx.^2 + Qgy . ^ 2 ) ;
41 DeltaEg = 2∗ sqrt (Qg.^2 + (Dg . ^ 2 ) . / 4 ) . /GHz;

43 % . . . and e x c i t e d s t a t e
44 De = 2∗EEe∗cos ( te ) ;
45 Qex = EEe∗ sin ( te )∗ cos ( pe ) ;
46 Qey = EEe∗ sin ( te )∗ sin ( pe ) ;
47 Qe = sqrt (Qex.^2 + Qey . ^ 2 ) ;
48 DeltaEe = 2∗ sqrt (Qe.^2 + (De . ^ 2 ) . / 4 ) . /GHz;

50 %Print the c on t r i b u t i o n s from spin−or b i t−coup l ing and Jahn−Te l l e r , resp .
51 fpr intf ( ’ \n Dg = %6.2 f Qgx = %6.2 f Qgy = %6.2 f ’ ,Dg/GHz,Qgx/GHz,Qgy/GHz) ;
52 fpr intf ( ’ \n De = %6.2 f Qex = %6.2 f Qey = %6.2 f ’ ,De/GHz,Qex/GHz,Qey/GHz) ;
53 fpr intf ( ’ \n Delta_Eg = %6.2 f , Delta_Ee = %6.2 f ’ , DeltaEg , DeltaEe ) ;
54 fpr intf ( ’ \n ’ ) ; %CH: added l i n e break

57 %For p r i n t i n g the e i g en f unc t i on s l a t e r on
58 Base1Array = { ’ | egx>|up>’ ’ | egx>|dn>’ ’ | egy>|up>’ ’ | egy>|dn>’ } ;
59 Base2Array = { ’ |+>|up>’ ’ |+>|dn>’ ’ |−>|up>’ ’ |−>|dn>’ } ;
60 LabelArray = { ’+\uparrow ’ ’+\downarrow ’ ’−\uparrow ’ ’−\downarrow ’ } ;
61 l a b l = { ’A ’ , ’B ’ , ’C ’ , ’D ’ } ;

63 %% Ca l cu l a t e e i g enva l u e s and e i g en v e c t o r s
64 for b=1: length (B)
65 % B−Fie l d as a vec t o r
66 Bv = B(b ) ∗ [ sin ( t )∗ cos (p ) , sin ( t )∗ sin (p ) , cos ( t ) ] ;
67 % Ca l cu l a t e the Hamiltonian matrices , f o r the un i a x i a l s t r e s s
68 % measurements o f S ternschu l t e1995 , the r e s u l t s f i t b e s t wi th the
69 % ex c i t e d s t a t e s t r e s s parameter s ca l e d by 1.3
70 Hg = Hamiltonian (Dg ,Bv ,Qgx ,Qgy , f , eps ) ;
71 He = Hamiltonian (De ,Bv ,Qex ,Qey , f , 1 . 3 . ∗ eps ) ;

73 % Ca l cu l a t e the e i g e n s t a t e s and −va l u e s f o r ground s t a t e . . .
74 [Vg , Ega ] = eig (Hg ) ;
75 Eg ( : , b ) = diag (Ega ) ;
76 % . . . and e x c i t e d s t a t e
77 [Ve , Eea ] = eig (He ) ;
78 Ee ( : , b ) = diag (Eea ) ;

80 % Ca l cu l a t e the t r a n s i t i o n f r e qu en c i e s ( the PEAKS in the spectrum )
81 % and the peak i n t e n s i t i e s , ILHWP i s f o r the p o l a r i z a t i o n ana l y s i s
82 [Ta Tlbla Ia Axa Aya Aza ILHWP] = Trans i t i on s (Eg ( : , b ) , Ee ( : , b ) ,Vg ,Ve ) ;
83 T( : , b ) = Ta ;
84 I ( : , b ) = Ia ;
85 Ax ( : , b ) = Axa ;
86 Ay ( : , b ) = Aya ;
87 Az ( : , b ) = Aza ;
88 ILHWP = ILHWP’ ;

90 % Transformation matrix f o r e i g e n s t a t e s
91 % transform to e+/e− s t a t e s ( e i g e n b a s i s f o r L_z opera tor )
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92 Tv = (1/ sqrt ( 2 ) ) ∗ [−1 0 − i 0 ; 0 −1 0 − i ; 1 0 − i 0 ; 0 1 0 − i ] ;
93 Vg = inv (Tv . ’ ) ∗Vg ;
94 Ve = inv (Tv . ’ ) ∗Ve ;

96 % p l o t the ground and e x c i t e d s t a t e e i g en v e c t o r s f o r B = 4.0T
97 i f (b==40)
98 % EVsExcStateB001 ;
99 % EVsGndStateB001 ;

100 end
101 end

103 %% This par t o f the s c r i p t s imu la ted the experiment

105 % Constants
106 dw = 10 e9 ; . . . Linewidth o f the t r a n s i t i o n (FWHM = 10 GHz in the exp . )
107 NE = 1500 ; . . . number o f po in t s
108 minE = −1500∗GHz;
109 maxE= 1500∗GHz;

111 % The frequency ax i s
112 Ef = minE : (maxE−minE)/(NE−1):maxE ;
113 % The magnetic f i e l d a x i s
114 Bf = ones ( s ize ( Ef ) ) ’∗B;

116 E = Ef ’∗ ones ( s ize (B) ) ;
117 dimension = ones ( s ize ( Ef ) ) ’ ;
118 Exp = dimension ∗ ones ( s ize (B) ) ;

120 % Ca l cu l a t e the maximum of matrix I ( norma l i sa t ion to 1)
121 I=I /max(max( I ) ) ;

123 for t = 1 : s ize (T, 1 )
124 % Plot the l i n e s wi th a l o r e n t z i a n l i n e s hape
125 % E − dimension∗T( t , : ) g i v e s the "peak p o s i t i o n " o f the Lorentz ian
126 % dw i s the width . Mu l t i p l i e d by 3.7E3 to compare i t
127 % with bu l k ensemble data
128 ExpT = dimension ∗3 .7 e+03∗ I ( t , : ) . / ( 1+ (E − dimension ∗T( t , : ) ) . ^ 2 /dw^2) ;
129 % above , ExpT was the c on t r i b u t i on o f one peak to the B− f i e l d t r ace
130 % we ’ re adding the peaks up , one a f t e r the o ther
131 % to the Zeeman spectrum given in "Exp"
132 Exp = Exp + ExpT ;
133 end

135 %% P l o t t i n g par t
136 % sub func t i on s f o r data v i s u a l i z a t i o n

138 ImportData ;
139 % imports exper imenta l data (Zeeman s p l i t t i n g )

142 EnsembleSp l i t t ing ;
143 % p l o t s t h r e e pane l p l o t :
144 % 1. exper imenta l Zeeman s p l i t t i n g ,
145 % 2. exper imenta l Zeeman s p l i t t i n g + t r a n s i t i o n f r e qu en c i e s as s o l i d
146 % l i n e s ( p l o t T vs . B)
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147 % 3. s imu la ted Zeeman s p l i t t i n g
148 % ( v a r i a b l e "Exp" vs . a meshgrid made o f (Ef , Bf ) , and the p r ed i c t e d

151 L ev e l S p l i t t i n g ;
152 % p l o t s the l e v e l s p l i t t i n g (Ee and Eg vs . B)

155 Polar izat ionGraph (ILHWP( 1 , : ) , ILHWP(2 :end , : ) , T( : , 1 ) ) ;
156 % p l o t s the p o l a r i z a t i o n graphs f o r B = 0T ( corresp . to T( : , 1 )
157 end
158 %% end o f f unc t i on SiVModel
159 %% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

162 %% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
163 %% Trans i t i ons :
164 function [T, Tlbl , I , Ax , Ay, Az , ILHWP] = Trans i t i on s (Eg , Ee ,Vg ,Ve)
165 kB = 1.38065E−23/6.6261E−34; % Boltzman cons tant f o r t h e rma l i z a t i on
166 etaX = 1 ; etaY = 0 . 6 4 2 ; etaZ = 0 . 8 2 3 ; % d ipo l e c o l l e c t i o n e f f i c i e n c i e s

168 % Dipole opera tor matr ices
169 px = [1 0 ; 0 −1];
170 py = [0 −1; −1 0 ] ;
171 pz = 2 . ∗ [ 1 0 ; 0 1 ] ;

173 % expand to sp in space
174 I2 = [1 0 ; 0 1 ] ;
175 Px = kron (px , I2 ) ;
176 Py = kron (py , I2 ) ;
177 Pz = kron ( pz , I2 ) ;

179 l a b l = { ’A ’ , ’B ’ , ’C ’ , ’D ’ } ;

181 % ca l c u l a t e t r a n s i t i o n d i p o l e s t r en g t h
182 for g=1: length (Eg)
183 for e=1: length (Ee)
184 t = length (Ee )∗ ( g−1) + e ;
185 T( t , 1 ) = Ee( e ) − Eg( g ) ;
186 Tlbl ( t , : ) = sprintf ( ’%s%u ’ , l a b l {e } , g ) ;
187 vg = Vg ( : , g )/norm(Vg ( : , g ) ) ;
188 ve = Ve ( : , e )/norm(Ve ( : , e ) ) ;
189 Ax( t , 1 ) = vg ’∗Px∗ve ;
190 Ay( t , 1 ) = vg ’∗Py∗ve ;
191 Az( t , 1 ) = vg ’∗Pz∗ve ;
192 Ix ( t , 1 ) = abs (Ax( t , 1 ) ) ^ 2 ;
193 Iy ( t , 1 ) = abs (Ay( t , 1 ) ) ^ 2 ;
194 I z ( t , 1 ) = abs (Az( t , 1 ) ) ^ 2 ;
195 % The f a c t o r ( exp ( . . . ) ) i s due to the Boltzmann popu la t i on
196 % of the exc . s t a t e s
197 I ( t , 1 ) = ( etaX∗ Ix ( t , 1 ) + etaY∗ Iy ( t , 1 ) + etaZ∗ I z ( t , 1 ) ) . . .
198 .∗ exp(−(Ee( e ) − Ee ( 1 ) ) . / ( kB . ∗ 1 2 ) ) ;

200 ILHWPa = Po l a r i z a t i on ( sqrt ( etaX ) . ∗Ax( t , 1 ) , . . .
201 sqrt ( etaY ) . ∗Ay( t , 1 ) , . . .
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202 sqrt ( etaZ ) . ∗Az( t , 1 ) ) ;
203 ILHWP( : , 1 ) = ILHWPa( : , 1 ) ;
204 ILHWP( : , t+1) = ILHWPa( : , 2 ) ;
205 end
206 end
207 end
208 %% end o f f unc t i on Trans i t i ons
209 %% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

212 %% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
213 function H = Hamiltonian (D,B, a , b , f , eps )
214 % Ca l cu l a t e the t o t a l Hamiltonian

216 % e l e c t r on and sp in g−f a c t o r s in Hz
217 ge = 28 e9 ;
218 gL = 1∗ ge /2 ;

220 Lx = [0 1 ; 1 0 ] ;
221 Ly = [0 1 i ; −1 i 0 ] ;
222 Lz = diag ( [ 1 −1]) ;

224 Sx = [0 1 ; 1 0 ] / 2 ;
225 Sy = 1 i ∗ [ 0 −1; 1 0 ] / 2 ;
226 Sz = [1 0 ; 0 −1]/2;

228 I2 = diag ( [ 1 1 ] ) ;

230 Bx = B( 1 ) ;
231 By = B( 2 ) ;
232 Bz = B( 3 ) ;

234 H = − D∗kron (Ly , Sz ) . . . spin−o rb i t coup l ing
235 + f ∗gL∗kron (Bz .∗Ly , I2 ) . . . o r b i t a l Zeeman e f f e c t
236 + ge∗kron ( I2 , Bz∗Sz ) . . . sp in Zeeman e f f e c t , x−component
237 + ge∗kron ( I2 ,Bx∗Sx ) . . . sp in Zeeman e f f e c t , y−component
238 + ge∗kron ( I2 ,By∗Sy ) . . . sp in Zeeman e f f e c t , z−component
239 + a∗kron (Lz , I2 ) . . . Jahn−Te l l e r in x−d i r e c t i o n
240 + b∗kron (Lx , I2 ) ; . . . Jahn−Te l l e r in y−d i r e c t i o n

243 % i f we add the un i a x i a l s t r e s s , uncomment the f o l l ow i n g l i n e
244 Hst r e s s = S t r e s sUn i ax i a l (eps ) ;
245 H = H + Hstre s s ;

247 end
248 %% end o f f unc t i on Hamiltonian
249 %% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

252 %% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
253 %% St r e s s Hamiltonian f o r s t r e s s a long the [ 100 ] c r y s t a l d i r e c t i o n
254 function [ HStressU ] = St r e s sUn i ax i a l (eps )
255 I2 = diag ( [ 1 1 ] ) ;
256 % for s t r e s s a long the [ 100 ] d i r e c t i o n



184 MATLAB SCRIPTS

257 Hstress2dim = eps .∗ [−1 sqrt ( 3 ) ; sqrt (3 ) 1 ] ;
258 % uncomment f o r s t r e s s a long a r b i t r a r y d i r e c t i o n s
259 % alpha = r ea l ( eps ) ;
260 % beta = imag ( eps ) ;
261 % Hstress2dim = [ a lpha be ta ; be ta −a lpha ] ;
262 HStressU = kron ( Hstress2dim , I2 ) ;
263 end
264 %% end o f f unc t i on S t r e s sUn i a x i a l
265 %% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

268 %% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
269 function ILHWP = Po l a r i z a t i on (Ax,Ay,Az)
270 %po l a r i z a t i o n f o r SiV
271 % lab frame : o r i e n t a t i o n o f diamond sample
272 % along 100 growth d i r e c t i o n
273 % de f e c t frame : ( z d e f e c t a x i s ) one o f
274 % the four p o s s i b l e 111 o r i e n t a t i o n s

276 % po lar ang l e ( td ) , az imuta l ang l e ( pd )
277 % of the z d e f e c t a x i s in the l a b frame
278 td = acos (1/ sqrt ( 3 ) ) ;
279 % pd = 0 because sample edges are (110)
280 pd = 0 ;
281 % po lar ang l e o f i n t e g r a t i o n between 0 and t0
282 t = 0 ;
283 % azimuta l ang l e f o r i n t e g r a t i o n between 0 and 2 p i
284 p = 0 ;
285 %number o f p o l a r i z a t i o n ang l e data po in t s
286 Npp = 72 ;
287 ILHWP=zeros (Npp , 2 ) ;

289 %pro j e c t i on o f d e f e c t frame onto l a b frame
290 C1 = [ cos (p) −sin (p ) ; sin (p) cos (p ) ] ;
291 C2 = [ cos ( t )∗ cos (p ) , cos ( t )∗ sin (p ) , −sin ( t ) ; −sin (p ) , cos (p ) , 0 ] ;
292 Rd = [ cos ( td )∗ cos (pd ) , −sin (pd ) , sin ( td )∗ cos (pd ) ;
293 cos ( td )∗ sin (pd ) , cos (pd ) , sin ( td )∗ sin (pd ) ;
294 −sin ( td ) , 0 , cos ( td ) ] ;

296 % 2x1 vec t o r con ta in ing e f i e l d components wi thou t o p t i c a l e lements
297 E = C1 ∗ C2 ∗ (Rd) ∗ [Ax ; Ay ; Az ] ;

300 % jones matrix : l i n e a r p o l a r i z e r wi th h o r i z on t a l t ransmis s ion
301 Pol=[1 0 ; 0 0 ] ;

303 % the f o l l ow i n g loop c a l c u l a t e s , f o r a l l ang l e s n=ILHWP( j , 1 ) ,
304 % the i n t e n s i t i e s ILHWP( j , 2 ) behind the HWP and p o l a r i z e r
305 j =1;
306 for n=0:(2∗pi )/ (Npp−1):2∗pi
307 % jones matrix : hwp wi th ang l e n
308 HWP=[cos(−2∗n) sin (−2∗n ) ; sin (−2∗n) −cos(−2∗n ) ] ;
309 % e f i e l d components a f t e r hwp and p o l a r i z e r
310 M = Pol ∗ HWP ∗ E;
311 ILHWP( j ,1)=n ; % ang le hwp
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312 ILHWP( j ,2)=M’∗M; % i n t e n s i t i e s a f t e r hwp/ p o l a r i z e r
313 j=j +1;
314 end
315 clear j ;
316 clear n ;

318 end
319 % end o f f unc t i on Po l a r i z a t i on
320 %% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

323 %% Pot t ing the Po l a r i z a t i on
324 %% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
325 function [ pp , I ] = Polar izat ionGraph (pp , IIb , T)
326 % Plo t s the p o l a r i z a t i o n graphs f o r the four SiV f i n e s t r u c t u r e peaks
327 % at B = 0T.
328 % input paramters : pp − ang l e s o f the HWP
329 % II b − i n t e n s i t y behind the HWP and l i n . po l .
330 % T − d i p o l e s t r e n g t h s f o r each p o s s i b l e t r a n s i t i o n
331 % output parameters : pp − ang l e s HWP
332 % I − p o l a r i z a t i o n curves o f the po la r diagrams

334 % Constants
335 GHz = 10 e9 ;
336 dw = 1e9 ;
337 NE = 400 ;
338 minE = −400∗GHz;
339 maxE= 400∗GHz;

341 % simu la t e again the spectrum using Lorentzian , s im i l a r to
342 % the s imu la t i on o f the Zeeman spec tra , but t h i s time , ExpT
343 % sca l e s wi th I I b (= i n t e n s i t y behind the p o l a r i z e r )
344 Ef = minE : (maxE−minE)/(NE−1):maxE ;
345 E = Ef ’∗ ones ( s ize (pp ) ) ;
346 dimension = ones ( s ize ( Ef ) ) ’ ;
347 Exp = dimension ∗ ones ( s ize (pp ) ) ∗ 0 ;

349 for t = 1 : s ize (T, 1 )
350 TT = T( t , 1 )∗ ones ( s ize (pp ) ) ;
351 ExpT = dimension ∗ I Ib ( t , : ) . / ( 1+ (E − dimension ∗TT).^2/dw^2) ;
352 Exp = Exp + ExpT ;
353 end

355 % import data f i l e and convers ions
356 f i l e = ’EmUdS5Pol . txt ’ ;
357 data=importdata ( f i l e , ’ \ t ’ , 0 ) ;
358 theta = data ( : , 1 ) ;
359 data ( : , 1 ) = [ ] ;
360 [ dimY , dimX ] = s ize ( data ) ;
361 helpdata = data ;
362 for n = 1 :4
363 data ( : , n ) = helpdata (: ,5−n ) ;
364 end

366 % Normal izat ion o f the data
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367 for k=1:dimX
368 MaxInt (k , : )=max( data ( : , k ) ) ;
369 end
370 for n=1:dimX
371 NormInt ( : , n)=data ( : , n )/MaxInt (n , : ) ;
372 end

374 % f ind the four maxima in the s imu la ted spectrum , corresponding to
375 % the four f i n e s t r u c t u r e peaks and check t ha t s p l i t t i n g s
376 % G1, G2 correspond to exp . va l u e s
377 [~ , Ind ] = f indpeaks (Exp ( : , 1 ) , ’NPEAKS’ , 4 ) ;
378 G1 = Ef (1 , Ind ( 4 ) ) . /GHz − Ef (1 , Ind ( 1 ) ) . /GHz;
379 G2 = Ef (1 , Ind ( 3 ) ) . /GHz − Ef (1 , Ind ( 2 ) ) . /GHz;

381 % take the peak va l u e s at the four maxima , and as s i gn them to " I "
382 for n = 1 :4
383 I ( : , n ) = Exp( Ind (n ) , : ) ;
384 end

386 % p l o t the data in four subp l o t s ,
387 % take on ly h a l f o f the HWP ro t a t i on ang l e
388 f igure ( 6 ) ;
389 for n = 1 :4
390 subplot (2 ,4 ,4+n ) ;
391 a c tp l o t = polar ( 2 .∗ pp ( 1 : 3 7 ) ’ , I ( 1 : 3 7 , n ) . /max( I ( 1 : 3 7 , n ) ) ) ;
392 set ( ac tp lo t , ’ LineWidth ’ ,2 , ’ Color ’ , ’ r ’ ) ;
393 Po lp lo t (n) = gca ;
394 hold on ;
395 a c tp l o t = polar ( 2 .∗ pi .∗ theta ( 1 : 3 7 ) . / 1 80 , NormInt ( 1 : 3 7 , n ) , ’ o ’ ) ;
396 set ( ac tp lo t , ’ MarkerSize ’ ,10 , ’ LineWidth ’ , 2 )
397 t i t l e ( sprintf ( ’ Peak at %3.0 f GHz ’ , Ef (1 , Ind (n ) ) . /GHz) ) ;
398 hold o f f ;
399 end

401 % cosmet ics . . .
402 for n = 1 :4
403 set ( Po lp lo t (n ) , ’ Po s i t i on ’ , [ 0 . 02+(n−1) .∗0 .25 , 0 . 05 , 0 .23 , 0 . 4 ] ) ;
404 end

406 end
407 % end o f f unc t i on Po lar i za t ionGraph
408 %% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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