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„Thus, the task is, not so much to see what no one has yet 

seen; but to think what nobody has yet thought, 

about that which everybody sees.“ 
Erwin Schrödinger 
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Summary 

 

The treatment of bacterial infections is seriously hampered by the prevalence of 

resistance to clinically used antibiotics. Thus, there is an urgent need for the 

development of novel anti-infectives which are able to overcome existing resistances 

and do not provoke the quick emergence of new ones. 

In this work, an approach comprising a pharmacophore guided virtual screening is 

applied to identify novel scaffolds inhibiting the validated bacterial target RNA 

polymerase (RNAP). Structural modifications of the discovered hits result in potent 

RNAP inhibitors, which are active against Gram-positive pathogens and exhibit 

significantly lower resistance frequencies compared to clinically used rifampicin. 

Subsequent investigations concerning the molecular mechanism of RNAP inhibition 

reveal the compounds as inhibitors of protein-protein interaction between 70 and the 

RNAP core enzyme and suggest the inhibitors’ binding site. 

In the second part of this work, the discovered compounds are demonstrated to 

additionally inhibit PqsD, an attractive target to disrupt cell-to-cell communication of 

Pseudomonas aeruginosa. For this promising anti-virulence concept, which should 

avoid the occurrence of resistance, bacterial cell death caused by RNAP inhibition is 

not intended. Thus, the structural requirements needed for PqsD selectivity are 

elucidated, thereby highlighting the versatility and potential of the discovered 

benzamidobenzoic acids in the fight against bacterial resistances. 
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Zusammenfassung 

 

Die Behandlung von bakteriellen Infektionen wird durch Resistenzen gegen klinisch 

verwendete Antibiotika zunehmend gefährdet. Daher besteht großes Interesse an 

der Entwicklung neuer Antiinfektiva, die in der Lage sind bestehende Resistenzen zu 

überwinden und die schnelle Entstehung neuer zu vermeiden. 

In der vorliegenden Arbeit wird ein Pharmakophor-basiertes virtuelles Screening 

verwendet, um neue Inhibitoren des bakteriellen Targets RNA-Polymerase (RNAP) 

zu finden. Strukturelle Modifikationen der identifizierten Hits führen zu potenten 

RNAP-Hemmstoffen, die gegen grampositive Bakterien aktiv sind und weniger häufig 

zu Resistenzen führen als das klinisch eingesetzte Rifampicin. Nachfolgende 

Untersuchungen des molekularen Mechanismus der RNAP-Inhibition decken auf, 

dass die Verbindungen Hemmstoffe der Protein-Protein-Interaktion zwischen 70 und 

dem RNAP Core-Enzym sind, und lassen auf die Bindestelle der Inhibitoren 

schließen. 

Im zweiten Teil der Arbeit wird gezeigt, dass die entdeckten Verbindungen außerdem 

PqsD hemmen, ein attraktives Target, das für die Zell-Zell-Kommunikation in 

Pseudomonas aeruginosa verantwortlich ist. Da in diesem Antivirulenzkonzept, das 

das Auftreten von Resistenzen verhindern soll, der bakterielle Zelltod durch RNAP-

Hemmung unerwünscht ist, werden die strukturellen Voraussetzungen für PqsD-

Selektivität aufgeklärt. Dabei werden die Vielseitigkeit und das Potenzial der 

entdeckten Benzamidobenzoesäuren im Kampf gegen bakterielle Resistenzen 

beleuchtet. 
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1. Introduction 

 

The different strategies for the treatment of bacterial infections addressed in this work 

demand a closer look to the definition of “antibiotic”, the modes of action of existing 

antibiotics, and the problem of bacterial resistance to them. 

 

1.1 Definition of the term “antibiotic” 

Originally the term “antibiotic” was introduced by Nobel Prize laureate Selman A. 

Waksman. It was defined as a natural compound of microbial origin, which can inhibit 

the growth of or can even destroy other microorganisms [Waksman 1947, Waksman 

1952]. Consequently, this definition excluded synthetic molecules on the one hand, 

but included beside bacteria other microorganisms like for example viruses and fungi. 

However, this former definition has changed in the last few years due to scientific 

development and changes in linguistic usage. Nowadays, synthetic agents are 

included in the definition and “antibiotic” is almost exclusively used as a synonym for 

“antibacterial” used to treat bacterial infections. This is the way in which the World 

Health Organization (WHO) as well as the Heads of Medicines Agencies in Europe 

(HMA) use the term and it is the manner in which it is used in this work [HMA 2012, 

WHO 2014]. 

 

1.2 Antibiotic modes of action 

The characteristic of antibiotics is that they act against prokaryotic bacterial cells 

without seriously affecting eukaryotic organisms including humans. In the majority of 

cases they induce bacterial growth retardation (bacteriostatic) or cell death 

(bactericidal) by the inhibition of pivotal enzymes which are exclusively available in 

bacteria or whose bacterial type considerably differs from its human homolog 

[Clatworthy et al. 2007, Frearson et al. 2007]. 

The five main points of attack of traditional antibiotics are listed below [Greenwood et 

al. 1997] and depicted in Fig. 1: 
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- Inhibition of cell wall synthesis (e.g., penicillins) 

- Inhibition of protein synthesis (e.g., tetracyclins) 

- Disruption or alteration of cell membranes (e.g., polymyxins) 

- Interference with bacterial metabolism by antimetabolite activity 

(e.g., sulfonamides) 

- Inhibition of nucleic acid synthesis (e.g., quinolones) 

In addition to these established modes of action, several ideas for new antibacterial 

targets, such as the selective inhibition of bacterial cytochrome P450 enzymes, have 

been discussed in the last few years and will possibly lead to novel antibacterial 

drugs in the future [McLean et al. 2008]. 

Recently, the intervention with the bacterial cell-to-cell communication system has 

emerged as a promising alternative strategy. This approach neither kills the bacteria, 

nor does it inhibit bacterial growth, but it significantly diminishes their pathogenicity 

[Hentzer et al. 2003]. The advantage of this new concept compared to the classic 

antibiotics will be discussed at a later point (1.4.2.3).  

 

Figure 1. Schematic illustration of the five main points of attack of traditional antibiotics 
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1.3 Bacterial resistance to antibiotics 

Dr. William H. Stewart, US Surgeon General in the 1960s, is often quoted as follows: 

“It is time to close the book on infectious diseases, and declare the war against 

pestilence won.” Although there is no evidence that he actually made a statement like 

this, the content of it probably reflects the view of many people on infections and anti-

infectives at that time [Spellberg 2008]. In that so-called “golden era of antibacterial 

drug discovery” several different antibiotics with diverse modes of action were 

discovered, enabling a safe and effective treatment of bacterial infections and making 

people believe the battle against bacteria was won [Baldry 1976, Silver 2011, Chopra 

2013]. 

However, as already Alexander Fleming, the discoverer of penicillin, warned in his 

Nobel Lecture “it is not difficult to make microbes resistant” [Fleming 1945]. Fatal 

misuse in public health care and unconscionable abuse in animal feed have led to a 

situation where resistances progressively render the known antibiotics ineffective and 

seriously endanger this milestone in modern medical treatment [WHO 2002, Diaz 

Högberg et al. 2010, WHO 2013]. Additionally, in a globalized world with lots of 

travelers and a rapid exchange of goods newly developed resistances spread all over 

the globe within a very short time [Butaye et al. 2006, WHO 2007, Diaz Högberg et 

al. 2010]. 

As in the 1980s many pharmaceutical companies abandoned antibiotic research, 

thinking that no more antibiotics would be needed [Rice 2006], today’s antibiotic 

research is in the hands of only a few companies [Braine 2011]. Furthermore, even 

nowadays the financial incentives to readopt the search for new antibacterials are 

limited. The average duration of treatment is short (compared to indications like 

hypertension or diabetes), their use is quite restricted and early-rising resistances 

can make the product developed at great expense useless, not refunding the 

invested money [Payne et al. 2007, Braine 2011]. Due to these reasons, there is the 

paradoxal situation that resistances are emerging while the number of true antibiotic 

innovations is decreasing [Diaz Högberg et al. 2010]. This shortage of available 

effective antibiotic treatments is already responsible for many cases of death and 

dramatically increases the economic burden on the public health sector. For 

example, the Centers for Disease Control and Prevention (CDC), which are a 

component of the US Department of Health and Human Services, estimate that in the 
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US alone every year there are more than 2 million people falling ill due to an infection 

with antibiotic-resistant pathogens. At least 23,000 of these patients die from their 

infections. CDC’s estimate of additional costs in the US health care system caused 

by antibiotic resistance ranges as high as $20 billion, and even about $35 billion a 

year regarding the additional damage to society due to sickness absence and 

reduced manpower [CDC 2013]. 

Therefore, especially in these days, the development of new potent antibiotics is an 

essential field in drug discovery, because “without urgent, coordinated action, the 

world is heading towards a post-antibiotic era, in which common infections and minor 

injuries, which have been treatable for decades, can once again kill” [WHO 2014]. 
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1.4 Promising concepts for the treatment of bacterial infections 

1.4.1 Inhibition of RNA polymerase (RNAP) 

1.4.1.1 RNAP as a drug target 

RNAP is crucial for the transcription process, since it catalyzes the formation of RNA 

from a DNA template [Villain-Guillot et al. 2007]. As it is essential for bacterial growth 

and survival it represents a suitable point of attack for antibacterial drugs [Chopra 

2007]. Structural distinction of bacterial RNAP from its eukaryotic complement affords 

the necessary therapeutic selectivity. Additionally, as RNAP is highly conserved 

among various bacterial species, the development of broad-spectrum antibiotics is 

possible making it an ideal target for the treatment of bacterial infections [Ho et al. 

2009]. 

 

1.4.1.2 General RNA polymerase structure 

Bacterial RNAP is a large multi-subunit enzyme with an overall shape resembling a 

crab claw. Its approximately 400 kDa core enzyme consists of five subunits, namely 

I, II, ,  and  (Fig. 2). Whereas the two  chains and  are primarily required for 

the assembly of the enzyme, the  and  subunits build the two pincers of the claw 

and are responsible for the formation of the Mg2+ containing active center, which is 

located on the bottom of the cleft between the pincers (Fig. 2). The so-called clamp, 

which is the pincer formed by the  subunit, is very flexible and can adopt different 

positions. The “open” conformation allows unhampered entry and exit of template 

DNA to the active center while the “closed” conformation prevents this step. The 

whole transcription process can be divided into three sections: initiation, elongation 

and termination. It has been suggested that the “open” conformation allowing the 

DNA template to enter the active site is needed for transcription initiation and that the 

“closed” conformation is required later in the transcription process, especially during 

the elongation, to keep the DNA in the active center [Ebright 2000, Vassylyev et al. 

2002, Mukhopadhyay et al. 2008, Mariani et al. 2009, Murakami 2013]. 

Although the core enzyme is catalytically active on its own, it associates with one of 

different  factors (e.g., 70, which is the best-studied one, as it is the housekeeping 

 factor) to form the RNAP holo enzyme. The interaction with the  factor is needed 
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for a specific recognition of the promoter site and an effective transcription initiation 

[Burgess et al. 1969, Villain-Guillot et al. 2007]. 

 

 

Figure 2. Crystal structure of T. thermophilus RNAP (PDB 4MQ9) with highlighted subunits, 
“pincers”, and active center region containing Mg2+ 
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1.4.1.3 RNAP inhibitors and their binding sites 

There are several inhibitors of bacterial RNA polymerase described in literature, 

ranging from natural products [Margalith et al. 1960, Parenti et al. 1975, Irschik et al. 

1983, Irschik et al. 1985, Irschik et al. 1987, Salomon et al. 1992, Ciciliato et al. 2004, 

Kuznedelov et al. 2011] to small organic molecules [Artsimovitch et al. 2003, André et 

al. 2006, Arhin et al. 2006, McPhillie et al. 2011, Buurman et al. 2012, Yakushiji et al. 

2013]. The enzyme exhibits a couple of different sites to which known inhibitors bind 

(Fig. 3): 

 

 

Figure 3. Binding sites of described RNAP inhibitors 
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a) The most prominent one is the rifamycin binding site. Here, beside other 

rifamycins, rifampicin, which plays a key role in the first line therapy of tuberculosis, 

interacts with the enzyme. This pocket is located adjacent to the RNAP active center 

and binding to it prevents the enzyme from synthesizing RNA products of more than 

2–3 nucleotides in length by blocking the formation of the RNA second or third 

phosphodiester bond [McClure et al. 1978, Floss et al. 2005]. As rifamycins have 

been widely used for more than four decades, resistances against this class of 

antibiotics have arisen. For example the occurrence of single point mutations in the 

rpoB gene encoding for the  subunit of the enzyme makes many bacteria insensitive 

against rifamycins [Ezekiel et al., 1968, Wehrli et al. 1968, Ramaswamy et al. 1998], 

thereby reducing the attractiveness of targeting this binding site. 

b) A second RNAP binding site is the so-called “switch region”. It is located at the 

base of the “clamp” and serves as a hinge enabling the clamp to switch between the 

“open” and the “closed” conformation [Cramer 2002]. Several known RNAP inhibitors, 

e.g., the natural products myxopyronin, corallopyronin, ripostatin and fidaxomicin 

(also referred to as lipiarmycin), but also the squaramides and ureidothiophene 

carboxylic acids, which are classes of small synthetic molecules, bind to the “switch 

region” [Mukhopadhyay et al. 2008, Srivastava et al. 2011, Buurman et al. 2012, 

Sahner et al. 2013(A)]. They probably prevent the correct interaction of RNAP with 

the DNA by blocking the hinge and thus keeping the clamp in the “closed” 

conformation prohibiting the entry of the DNA template [Mukhopadhyay et al. 2008, 

Srivastava et al. 2011]. As the “switch region” is distant from the rifamycin binding 

site it represents a good drug target avoiding rifampicin cross-resistances [O'Neill et 

al. 2000, Mukhopadhyay et al. 2008]. 

c) A third binding site is targeted by the tetramic acid antibiotic streptolydigin. It binds 

to a region adjacent to the active center and stabilizes one conformational state by a 

“straight-bridge helix” [Tuske et al. 2005]. As the binding sites of streptolydigin and 

rifampicin are differing, the two antibiotics only exhibit a limited cross-resistance [Xu 

et al. 2005]. 

d) A further known binding site is the region where compounds of the CBR series 

bind. It is located at the surface of the core enzyme opposite the active center. The 

putative mechanism of action is the allosteric inhibition of nucleotide addition caused 
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by prevention of the active site movements through a bridge helix [Artsimovitch et al. 

2003]. 

e) As the interaction of the core enzyme with the  factor is required for a specific 

promoter recognition and effective transcription initiation, it is also a possibility to 

interfere with the function of the enzyme by disrupting this important interaction 

[Villain-Guillot et al. 2007]. A class of small molecules that is described to act in this 

way is the SB series discovered by André et al. [2006]. The inhibition of :core 

interaction is attractive since the inhibitor-induced occurrence of mutations in the 

interaction area would also lead to a weaker affinity of the core enzyme to  

[Bergendahl et al. 2004]. 

f) Another possible way of RNAP inhibition, in which the antibacterial peptide 

microcin J25 acts, is the obstruction of the so-called “secondary channel”, thus 

hindering NTPs from reaching the active center [Mukhopadhyay et al. 2004] 

g) Additionally, inhibitors with so far unknown exact modes of action or binding sites 

have been described, like for example the 2-ureidothiophene-3-carboxylates [Arhin et 

al. 2006] or the pyridyl-benzamides [McPhillie et al. 2011]. 

To date, however, the only clinically used RNAP inhibitors are the rifamycins, whose 

potency is considerably weakened by resistances [Nachega et al. 2003], and 

fidaxomicin (lipiarmycin), which is approved solely for the treatment of Clostridium 

difficile-associated diarrhea [Hardesty et al. 2011]. This shortage of clinically 

applicable inhibitors is due to the fact that, in spite of the large amount of described 

compounds, most of them suffer from a decisive drawback. Many of them are natural 

products, which are often not drug-like and hard to gain [Koehn et al. 2005, Haebich 

et al. 2009], others exhibit poor antibacterial activity [Artsimovitch et al. 2003] or 

inadequate physicochemical properties [O'Shea et al. 2008]. Hence, there is still an 

urgent need for novel inhibitors of the underexploited target RNAP [Chopra 2007, 

Mariner et al. 2010]. 
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1.4.2 Interference with the Pseudomonas Quorum Sensing (QS) system 

1.4.2.1 Pseudomonas aeruginosa 

P. aeruginosa is a ubiquitous, highly adaptable Gram-negative bacterium responsible 

for the majority of nosocomial infections in humans [van Delden et al. 1998, Khan et 

al. 2010]. Especially in immunocompromised individuals, e.g., patients enfeebled by 

chemotherapy, organ transplantation or HIV infection, it can cause life-threatening 

infections [Bodey et al. 1983, Asboe et al. 1998, Hakki et al. 2007]. Additionally, 

P. aeruginosa plays an important role in cystic fibrosis (CF) patients. In these 

persons a genetic disorder leads to highly viscous mucus in the respiratory tract and 

diminished mucociliary clearance abetting the colonization by bacteria [Rowe et al. 

2005]. In 90% of the cases P. aeruginosa is the originator of the chronic 

endobronchial infection in CF patients [Koch et al. 1993]. Due to the expression of a 

large number of virulence factors, which can cause tissue damage and a delayed 

wound healing, the bacterium is responsible for high rates of illness and death [van 

Delden et al. 1998]. 

The treatment of P. aeruginosa infections is challenging, as the pathogens possess a 

high level of intrinsic resistance to many antibiotic agents [Okamoto et al. 2001]. 

Beside the limited permeability of the outer membrane, the expression of multidrug 

efflux pumps and β-lactamases, the formation of biofilms hampers the therapy [Singh 

et al. 2000, Okamoto et al. 2001]. Biofilms are the result of a controlled clustering of 

bacteria, embedded within a matrix of a self-produced polymeric substance, generally 

composed of extracellular DNA, proteins and polysaccharides [Mann et al. 2012]. 

These components function as protective shield by representing an additional 

diffusion barrier against antibiotics and counterwork human immune response 

[Bjarnsholt et al. 2010]. Although the exact mechanism of resistance caused by 

biofilms is still not fully understood, a considerably increased mutation frequency of 

bacteria in the biofilm [Driffield et al. 2008] and an intensified horizontal gene 

transmission compared to planktonic bacteria [Molin et al. 2003] have been shown. 

Furthermore, gradients of nutrients and oxygen exist in the biofilm and are associated 

with decreased metabolic activity and increased doubling times of the bacteria. 

These “dormant” cells are also responsible for the tolerance to antibiotics, especially 

to the ones exclusively targeting dividing cells [Høiby et al. 2010]. 
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1.4.2.2 P. aeruginosa Quorum Sensing (QS) system 

In P. aeruginosa the production of virulence factors and formation of biofilms is 

regulated by a cell-to-cell communication system known as “quorum sensing” (QS) 

[Fuqua et al. 1994, de Kievit 2009]. The functional principle of this system comprises 

the production and release of hormone-like signal molecules by bacterial cells on the 

one hand and the detection of these molecules by other bacterial cells within a 

bacterial community on the other hand [Swift et al. 2001]. The extracellular level of 

signal molecules increases in concentration as a function of cell-density. Once a 

certain threshold has been reached several transcriptional regulators are activated or 

repressed resulting in an altered gene expression [McKnight et al. 2000, Miller et al. 

2001]. As this kind of gene activity modulation occurs without “external intervention” 

and is only induced by the bacteria’s own culture supernatants, the molecules are 

often referred to as autoinducers (AI) [Nealson et al. 1970, González et al. 2006]. 

Interestingly, the binding of AIs to their receptor also increases the expression of their 

own corresponding synthase resulting in a positive feedback mechanism [Engebrecht 

et al. 1983, Engebrecht et al. 1984]. This kind of communication system enables 

bacteria to act as multicellular organism, permitting beneficial behaviors for the entire 

bacterial population [de Kievit et al. 2000]. 

P. aeruginosa employs three different known QS systems. Two of them, namely the 

las and the rhl system, are based on N-acyl homoserine lactones (AHLs) [Gambello 

et al. 1991, Pearson et al. 1994, Ochsner et al. 1994, Pearson et al. 1995]. Whereas 

AHLs are prevalent in many different Gram-negative bacteria [Swift et al. 2001], the 

third QS system, the so-called pqs system, can exclusively be found in some 

Pseudomonas and Burkholderia spp. [Pesci et al. 1999, Diggle et al. 2006]. In this 

system, 4-hydroxy-2-alkylquinolines (HAQs), more precisely Pseudomonas quinolone 

signal (PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone) and its precursor 2-heptyl-4(1H)-

quinolone (HHQ), are used as signal molecules (Scheme 1). PQS as well as, to a 

lesser extent, HHQ are able to interact with PqsR, also known as multiple virulence 

factor regulator (MvfR) [Cao et al. 2001, Xiao et al. 2006]. The activation of PqsR 

drives the expression of numerous different genes, resulting in the production of 

virulence determinants such as pyocyanine, lectin A, elastase B, rhamnolipids, and 

hydrogen cyanide [Déziel et al. 2005]. Moreover, biofilm formation and maturation is 

also controlled by the pqs system [Diggle et al. 2003]. 
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1.4.2.3 Disruption of the pqs QS system as a novel chance for the treatment of 

P. aeruginosa infections 

A drawback of the clinically used classical antibiotics is the emergence of resistances 

in a rather short time [Palumbi 2001]. For the treatment of hazardous P. aeruginosa 

infections a novel strategy overcoming this problem could be the disruption of its QS 

system. In contrast to the mode of action of traditional antibiotics inducing bacterial 

growth retardation or cell death, the inhibition of the QS system can lead to reduced 

pathogenicity without affecting cell viability. This results in the advantage that the 

pathogen’s virulence and biofilm formation, which is a central protective shield 

against antibiotics [Prince 2002, Bjarnsholt et al. 2005], are attenuated without 

exposing the bacteria to an intense selective pressure, thereby diminishing the 

probability of the appearance of resistances [Hentzer et al. 2003, Rasmussen et al. 

2006]. 

Motivated by these benefits several experiments concerning the inhibition of AHL-

mediated QS systems were successfully performed in the last decade [Hentzer et al. 

2002, Hentzer et al. 2003, Christensen et al. 2012, Jakobsen et al. 2012]. Since AHL-

mediated QS systems, however, are widespread among Gram-negative bacteria 

[Swift et al. 2001], QS inhibition might not exclusively target the pathogen 

P. aeruginosa but also non-pathogenic bacteria. This shortcoming can be avoided by 

interfering with the pqs system instead of the las or the rhl systems, as it is solely 

present in Pseudomonas and Burkholderia strains [Pesci et al. 1999, Diggle et al. 

2006], thus enabling selective inhibition of the pathogens’ QS system. This is further 

advantageous as the non-pathogenic bacteria of the natural microbial flora, if not 

affected by the treatment, may repel the attacked Pseudomonas exploiting their 

debility. Moreover, it has been demonstrated that mutations in key enzymes of the 

pqs AI synthesis lead to attenuated virulence [Déziel et al. 2005] and altered biofilm 

formation making the pathogens more vulnerable [Allesen-Holm et al. 2006], as the 

pqs system is closely linked to biofilm formation [Yang et al. 2009]. Thus, the 

inhibition of the pqs system can be considered as a promising strategy to treat 

P. aeruginosa infections. 
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1.4.2.4 HAQ biosynthesis and blockade by PqsD inhibition 

To disrupt the pqs system of P. aeruginosa two obvious ways  either antagonizing 

PqsR or blocking the biosynthesis of pqs AIs  are possible. The drawback of a PqsR 

inhibition is the existence of two additional pathways for PQS-mediated effects 

independent of PqsR activation, namely PqsE activation and iron chelation [Diggle et 

al. 2007]. Interestingly, it has also been demonstrated that the production of the 

siderophore pyoverdine is directly linked to the presence of PQS, but is not regulated 

by PqsR [Diggle et al. 2007]. Hence, the interference with the biosynthesis of HAQs 

seems to be more attractive than a sole inhibition of PqsR, since this strategy results 

in the avoidance of all HHQ- and PQS-mediated effects. 

 

 

 

 

Scheme 1. Proposed biosynthesis cascade for HHQ and PQS (modified from [Dulcey et al. 
2013]) 
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The supposed biosynthesis cascade for HAQs (Scheme 1) begins with the activation 

of anthranilic acid (AA) as thioester by PqsA, a coenzyme A (CoA) ligase [Coleman 

et al. 2008]. The activated AA is able to covalently bind to PqsD [Bera et al. 2009], 

which is catalyzing the reaction with malonyl-CoA in a two-step reaction to 

2-aminobenzoylacetate (2-ABA) [Dulcey et al. 2013]. Subsequently, the 

decarboxylating coupling of 2-ABA to an octanoate molecule linked to PqsC results in 

HHQ formation. As it has been shown that the presence of PqsB is required for PqsC 

to be active and that the two enzymes are closely associated, it is supposed that 

PqsB is mainly involved in the proper folding of PqsC [Dulcey et al. 2013]. HHQ, 

which is already able to activate PqsR [Xiao et al. 2006], can be further converted to 

the more potent agonist PQS by PqsH [Schertzer et al. 2010], a NADH-dependent 

flavin monooxygenase controlled by the las system, thereby representing a link 

between the las and the pqs system [Gallagher et al. 2002]. In addition to HHQ and 

PQS, P. aeruginosa is able to produce at least 54 further HAQs with varying length 

and saturation level of the alkyl chain, different substituents in 3-position (hydrogen or 

hydroxy) or an N-oxide group in place of the quinolone nitrogen [Lépine et al. 2004]. 

While HHQ and PQS are described to participate in P. aeruginosa cell-to-cell 

communication [Pesci et al. 1999, Déziel et al. 2004], several further HAQs exhibit 

antimicrobial activities against other bacteria (e.g., S. aureus), thus accounting for an 

advantage in natural selection [Machan et al. 1992, Déziel et al. 2004]. 

In summary, this implies that PqsAD are key enzymes in the biosynthesis of HAQs, 

thereby representing appropriate targets for the treatment of P. aeruginosa infections. 

Whereas for PqsAC no structural information is available, the crystal structure of 

PqsD has been elucidated [Bera et al. 2009] (Fig. 4). P. aeruginosa PqsD is a 36 kDa 

enzyme comprising 337 amino acids. It is composed of two similar domains (residues 

1174 and 175337) and closely resembles -ketoacyl-ACP synthase III (FabH), 

which is involved in fatty acid synthesis (rmsd 1.4 Å for 315 equivalent -carbon 

atoms) [Bera et al. 2009]. The PqsD active site is located deep in the protein interior 

at the bottom of a ∼15 Å long channel and comprises Cys112, His257 and Asn287 

(Fig. 4). The nucleophilic Cys112 is required to capture the anthranilate from 

anthraniloyl-CoA, enabled by a proton shift from Cys112 to His257, whereas Asn287 

is suggested by modeling simulations to be essential for a subsequent reaction step 

[Hutter et al. 2014]. 
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Due to this detailed knowledge concerning protein structure and function of PqsD, we 

consider the development of drugs inhibiting PqsD as the most promising anti-

virulence strategy. Additionally, till this day only few PqsD inhibitors, exclusively 

developed by our group, have been described in literature [Pistorius et al. 2011, 

Storz et al. 2012, Sahner et al. 2013(B), Weidel et al. 2013, Storz et al. 2014]. 

 

 

 

Figure 4. Crystal structure of P. aeruginosa PqsD (PDB 3H77). (A) The two similar domains 
(blue and grey) and highlighted anthraniloyl-CoA channel (green); (B) Orientation of 
anthraniloyl-CoA (neon green) in the channel to the active site; (C) PqsD active site 
containing His257, Asn287 and Cys112 (turquois) with covalently bound anthraniloyl 
(orange) 
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2. Aim of the Thesis 

 

The alarming emergence of resistances against existing clinically used antibiotics 

and the deficient research for new antibacterial drugs of the last decades have 

provoked a situation in which mankind has to deal with inadequate treatment options 

for multi-drug-resistant bacterial infections. As this situation, coming along with 

numerous cases of death and a dramatic increase in economic burden, is 

unacceptable, new potent anti-infectives are urgently needed. Hence, our research 

group is focused on the development of new drugs for well-established, validated 

targets as well as novel, so far poorly explored, innovative targets. 

The aim of this thesis was the design of novel anti-infectives overcoming existent 

resistances and avoiding the fast emergence of new ones. RNAP is an attractive and 

validated target for antibiotics, but the clinical use of rifamycins, the most important 

RNAP inhibitors, is considerably hampered by resistance. Thus, the intention was the 

finding of new RNAP inhibiting scaffolds active against rifampicin resistant bacteria. 

For this purpose, a virtual screening (VS) approach using a pharmacophore model 

able to identify RNAP inhibitors was pursued. The identified hit compounds had to be 

biologically evaluated and chemically modified to result in a chemical library suitable 

for SAR studies in order to determine the best derivatives for further development 

and to gain intense structural knowledge concerning the novel class of compounds. 

These efforts were to be followed by mode of action (MOA) studies employing 

biological, biophysical and computational methods to elucidate the way the inhibitors 

act in detail and to ascertain their full potential (Publication I + II). 

Another promising strategy for innovative anti-infectives with the potential of avoiding 

the emergence of resistances is the inhibition of PqsD, a key enzyme in the QS 

system of P. aeruginosa. As the novel RNAP inhibitors identified in the VS mentioned 

above were additionally demonstrated to be potent inhibitors of P. aeruginosa PqsD, 

in the second part of this thesis a synthetic approach aiming at getting an advanced 

structural insight and resulting in optimized compounds for use as selective PqsD 

inhibitors is described (Publication III). 
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Altogether, this thesis dealing with two different approaches to develop novel anti-

infectives is intended to be a small contribution to the fight of mankind against 

bacterial resistance to antibiotics. 
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3. Results 

 

3.1 Discovery of novel bacterial RNA polymerase inhibitors: Pharmacophore-

based virtual screening and hit optimization 

 Stefan Hinsberger, Kristina Ḧsecken, Matthias Groh, Matthias Negri, J̈rg 

Haupenthal, and Rolf W. Hartmann 
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Publication I 

 

 

ABSTRACT 

The bacterial RNA polymerase (RNAP) is a 

validated target for broad spectrum antibiotics. 

However, the efficiency of drugs is reduced by 

resistance. To discover novel RNAP inhibitors, 

a pharmacophore based on the alignment of 

described inhibitors was used for virtual 

screening. In an optimization process of hit 

compounds, novel derivatives with improved in vitro potency were discovered. 

Investigations concerning the molecular mechanism of RNAP inhibition reveal that 

they prevent the proteinprotein interaction (PPI) between σ70 and the RNAP core 

enzyme. Besides of reducing RNA formation, the inhibitors were shown to interfere 

with bacterial lipid biosynthesis. The compounds were active against Gram-positive 

pathogens and revealed significantly lower resistance frequencies compared to 

clinically used rifampicin. 
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INTRODUCTION 

The increasing resistance of bacteria against antibiotics has become a major public 

health problem.1 Therefore, new potent antibacterial drugs are required.2 RNA 

polymerase (RNAP) catalyzes the formation of RNA from a DNA template3 and is 

essential for growth and survival of bacteria. It is highly conserved among various 

bacterial species but is different in eukaryotes.4 Hence, inhibiting RNAP is an 

attractive strategy for the treatment of bacterial infections.4 

In spite of the fact that several inhibitors of bacterial RNA polymerase are known, 

only rifamycins and fidaxomicin (lipiarmycin) are currently approved for clinical 

use.3,5−7 Because of an increasing amount of bacterial strains resistant to rifamycins, 

there is an urgent need to discover new RNAP inhibitors for clinical use which should 

not show cross-resistance to rifamycins, especially rifampicin (Rif). 

In this work, a flexible alignment of structurally similar selected synthetic molecules 

(I−VII) that are known to inhibit bacterial RNAP8−12 was performed (Figure 1). The 

resulting pharmacophore model was subsequently used to virtually screen an 

in-house database. Thus, three hit compounds, containing an anthranilic acid core, 

were identified and experimentally validated. In the following, the compounds were 

optimized to improve the inhibitory profile and their mode of action was determined. 

Additionally, the compounds revealed good antibacterial activities. 

 

PHARMACOPHORE-BASED VIRTUAL SCREENING AND HIT COMPOUND 

DISCOVERY 

Seven synthetic bacterial RNAP inhibitors (I−VII) that exhibit similar structural 

features, although belonging to different classes and acting via different binding 

modes, were retrieved from literature (Figure S1, Supporting Information (SI)).8−12 

Compound I inhibits Staphylococcus aureus RNAP, but its binding site is not known.8 

II and III are described as inhibitors of Escherichia coli RNAP binding to a surface 

exposed groove at the junction of the β′-bridge helix and the β-subunit.9 IV−VI are 

known to prevent the protein−protein interaction (PPI) between σ70 and the RNAP 

core enzyme.10,11 VII shows structural similarity to known RNAP inhibitors but has 

only been described as an inhibitor of transcription and translation (TT) without any 
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information about its mode of action.12 We resynthesized VII and were able to 

demonstrate its inhibition of E. coli RNAP in vitro (SI). 

I−VII were employed in a flexible alignment with the aim to identify the common 

features of these molecules. The alignment with the best similarity score was used to 

generate an initial pharmacophore model, which was then manually refined. The 

resulting model derived from these differently acting compounds is not restricted to 

the identification of hits binding to one special site. It should rather support the 

discovery of an increased number of RNAP inhibitors independent of their binding 

mode. 

 

 

Figure 1. (A) Selected synthetic inhibitors of bacterial RNAP (I−VII) were used to perform a 
flexible alignment. (B) A pharmacophore model with four core features (aromatic, orange; 
HBD/HBA/aromatic, violet; O2/anion, rose), one accessory feature (hydrophobic, green) and 
two aromatic projections (one hatched orange, one hidden behind a core feature) was 
created and used for virtual screening. For an overlay of IVII with the pharmacophore model 
see Figure S3 (SI). (C) Validated hit compounds 13 possessing an RNAP in vitro inhibition 
>20% at a concentration of 200 µM 

 

The final model consisted of four core features (two aromatic, one 

HBD/HBA/aromatic and one O2/anion). Besides, one accessory feature 

(hydrophobic) and two aromatic projections were identified (Figure 1, Figure S2, SI). 

The fit of each inhibitor I−VII into the pharmacophore model is depicted in Figure S3, 
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SI. The virtual screening of an in-house database comprising approximately 2000 

compounds using this pharmacophore model afforded 64 hits. A virtual hit had to 

match at least the core features and the aromatic projections, while the presence of 

the accessory feature was not mandatory. 

Eleven of these hit compounds originating from five different structural classes were 

experimentally confirmed to be active in our in vitro transcription assay13 (>20% 

inhibition at 200 µM) (Figure S4, SI). Out of these, three promising compounds (1−3), 

containing an anthranilic acid core, were chosen for further optimization. They 

displayed 31% (1), 23% (2), and 100% (3, IC50 20 µM) inhibition at 200 µM, 

respectively. 

 

CHEMISTRY 

The synthesis of the target compounds was carried out starting from the appropriate 

anthranilic acids. The methyl 2-benzamidobenzoate intermediates 1a−34a were 

synthesized via coupling reaction with the benzoyl chloride derivatives (Scheme 1). 

 

Scheme 1. Synthetic Route to Compounds 1−34 

 

 

 

Reagents and conditions: (a) SOCl2, MeOH, reflux; (b) pyridine, DMAP, rt or 
TEA, CH2Cl2, rt or toluene, reflux; (c) NaOH, THF/MeOH/H2O, rt; (d) 
PhB(OH)2, Pd(PPh3)4, Cs2CO3, DME/H2O, reflux. 
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The methyl esters were hydrolyzed to yield the target compounds. A Suzuki coupling 

with phenylboronic acid was performed with the appropriate brominated 

intermediates to obtain compounds 31 and 32. The hydroxy substituted compound 

24 was obtained from the methoxy intermediate 24a by ether cleavage using boron 

tribromide. 

 

RESULTS AND DISCUSSION 

Compounds 1−3 contain a 2-benzamidobenzoic acid partial structure which perfectly 

fits into the pharmacophore model. In addition, the structures contain a phenyl ring in 

para- and/ or a phenoxy substituent in meta-position, respectively, which does not 

correspond to any feature of the pharmacophore model. Hence, the hit compounds 

were reduced in size to investigate whether these lipophilic residues are necessary 

for activity. Although the unsubstituted 2-benzamidobenzoic acid (4) fits the 

pharmacophore model, no activity was observed for this compound. This resulted in 

the conclusion that the features included in the first pharmacophore model are 

insufficient to differentiate between active and inactive substances. To provide a 

remedy, two new accessory hydrophobic/ aromatic features were added on the 

eastern side of the pharmacophore model (representing the phenyl and the phenoxy 

substituents) (Figure S5, SI). Using this extended model, a compound will be defined 

as a hit if, beside the four core features, at least one of the new accessory features is 

present. As the extended model is more limiting, its use should improve efficacy and 

reduce the occurrence of false positives in future screenings. An overlay of inhibitors 

with the extended pharmacophore model can be found in Figure S6, SI. 

To explore the structure−activity relationship (SAR) around the anthranilic acid core, 

substituents were introduced in 4- and 5-position where the pharmacophore model 

contains a lipophilic accessory feature. As the most potent hit compound 3 has a 

relatively high molecular weight, optimization efforts were started modifying the two 

smaller hits 1 and 2. For each hit, a small series was synthesized introducing 4-Cl (6 

and 7), 5-F (11 and 12), 5-Br (16 and 17), and 4,5-dimethoxy (19 and 20) 

substituents. The introduction of these substituents resulted in an increased in vitro 

activity, especially for the compounds with 4-Cl (6 and 7) and 5-Br (16 and 17) 

substituents. Aside from that, most 4-phenyl and 3-phenoxy compounds displayed 
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very similar activities. To investigate whether the oxygen of the phenylether group 

has a beneficial effect as HBA, we synthesized compound 18 containing a 3-benzyl 

instead of the 3-phenoxy substituent. The removal of the oxygen did not affect the 

potency, indicating that a HBA is not necessary for in vitro activity. Therefore we 

regarded it as sufficient to continue the SAR studies introducing further substituents 

into the 4-phenyl series. 

To determine which kind of substituents could improve activity, substituents differing 

in electronic properties and lipophilicity were introduced in 5-position. The 

incorporation of the lipophilic, electron withdrawing chloro substituent resulted in the 

most potent compound 8 while a hydrophilic and electron donating hydroxy group 

(24) decreased activity in comparison to 1. Introduction of a lipophilic and electron 

donating substituent (30, CH3) or a hydrophilic electron withdrawing substituent (26, 

CN) was tolerated and led to moderately active compounds. 

In a next step, the best position for a substitution at the anthranilic acid moiety was 

determined. Considering the good activity of chloro compound 8, especially lipophilic, 

electron withdrawing substituents in different positions of the anthranilic acid moiety 

were introduced. A chloro substituent in 3-position (5) led to a total loss of activity. 

Similar results were found for the chloro, fluoro, and methoxy substituents in 6-

position (9, 13, 23) (Table 1). As expected, the introduction of an electron donating 

methoxy substituent in 4- and 5-position afforded only a moderate improvement of 

activity. In contrast all the compounds bearing a lipophilic, electron withdrawing 

substituent in 4- or 5-position (6, 8, 10, 11, 14, 16, 25, 27−29) possess a highly 

improved in vitro potency. Especially the introduction of a large lipophilic phenyl 

substituent in 4- or 5-position generated very potent inhibitors of RNAP (31, 14 µM; 

32, 13 µM). Interestingly, almost no difference in activity was observed between 

compounds with a substituent in 4-position and compounds with the same substituent 

in 5-position (6 and 8, 10 and 11, 14 and 16, 27, and 28). 

From these results, it is obvious that especially lipophilic electron withdrawing 

substituents attached to the anthranilic acid core in 4- or 5-position are favorable, 

whereas substituents in 3- or 6-position strongly reduce the in vitro activity. 
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Table 1. Inhibitory Activity against E. coli RNA Polymerase in Vitro and Antibacterial 

Activity 

 

 

Cpd R
1
 R

2
 

IC50 or % 
inhib. of 
E. coli 
RNAP

a
 

MIC 
E. coli 
TolC    

[µg/mL]
b
 

Cpd R
1
 R

2
 

IC50 or % 
inhib. of 
E. coli 
RNAP

a
 

MIC 
E. coli 
TolC    

[µg/mL]
b
 

1 H 4-Ph 31% 13 19 4-,5-OMe 4-Ph 35% 19 

2 H 3-OPh 23% 9 20 4-,5-OMe 3-OPh 154 µM 6 

3 H 3-OPh, 
4-Ph 20 µM 13 21 4-OMe 4-Ph 162 µM 9 

4 H H n.i. >100 22 5-OMe 4-Ph 52% 8 

5 3-Cl 4-Ph n.i. 55 23 6-OMe 4-Ph n.i. 58 

6 4-Cl 4-Ph 37 µM 3 24 5-OH 4-Ph 17% 31 

7 4-Cl 3-OPh 44 µM 3 25 4-NO2 4-Ph 36 µM >25 

8 5-Cl 4-Ph 46 µM 2 26 5-CN 4-Ph 23% 
@ 50 µM 7 

9 6-Cl 4-Ph n.i. 57 27 4-CF3 4-Ph 27 µM 5 

10 4-F 4-Ph 98 µM 4 28 5-CF3 4-Ph 28 µM 2 

11 5-F 4-Ph 138 µM 7 29 5-OCF3 4-Ph 31 µM 4 

12 5-F 3-OPh 98 µM 5 30 5-Me 4-Ph 139 µM 7 

13 6-F 4-Ph 14% 34 31 4-Ph 3-OPh 14 µM 8 

14 4-Br 4-Ph 28 µM 2 32 5-Ph 3-OPh 13 µM 2 

15 4-Br 3-OPh 34 µM 3 33 4-F 3-OPh, 
4-Ph 13 µM >25 

16 5-Br 4-Ph 31 µM 3 34 4-Cl 3-OPh, 
4-Ph 9 µM >25 

17 5-Br 3-OPh 34 µM 3 Rif - - 0.03 µM 10 

18 5-Br 3-CH2Ph 37 µM 2 Myxc - - 0.35 µM 1 
 

a IC50 value (SD <20%) or percentage inhibition at 200 µM (SD <40%); Data represent the mean values of at least 
  three experiments.         
b Minimum inhibitory concentration; data represent the mean values of at least two independent experiments 
  (three for MIC <10 µg/mL). 
c Myx: myxopyronin B. 
n.i.: no inhibition 
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After all, the acquired SAR information of the anthranilic acid core was used for the 

optimization of 3. As it was not eligible to make the compounds too large and 

lipophilic, only F and Cl were introduced (33 and 34). As expected, these 

modifications had a beneficial effect on the activity and afforded the best in vitro 

compound of this series (34, 9 µM). 

As the pharmacophore model is not restricted to one special binding site, it remains 

to be clarified where our compounds bind to RNAP. Comparing the structures of the 

optimized hit compounds and the inhibitors I−VII, used to create the pharmacophore 

model, it becomes apparent that the new compounds are very similar to VII. This 

suggests that VII and our compounds are likely to interact with the same RNAP site. 

However, the binding mechanism of VII is not known. 

 

Table 2. Results of the ELISA-Based Assembly Inhibition 

Assay and the Core/Holo Transcription Assay 

 

compd 
assembly inhibition 

70
/ RNAP core 

(ELISA) (IC50)
a
 

inhibition of 
RNAP holo 

(IC50)
a
 

inhibition of 
RNAP core 

(IC50)
a
 

ratio
b
 

Rif
c
 n.i. 27 nM 16 nM 1 

V
c 30 µM 38 µM 57 µM 2.6 

VII 97 µM 52 µM 81 µM 2.6 

3 41 µM 20 µM 36 µM 3.0 

9 n.i. n.d. n.d. - 

14 68 µM 27 µM 39 µM 3.0 

28 60 µM 28 µM 67 µM 4.0 

32 47 µM 16 µM 27 µM 2.8 

34 33 µM 7 µM 12 µM 2.9 
 

a IC50 value (SD <20%); Data represent the mean values of at least two 
  experiments. n.i.: no inhibition; for 9 inhibition <10% at 50 μM; for Rif 
  inhibition <5% at 10 μM. n.d.: not determined. 
b (IC50 core:holocompd/IC50 core:holoRif). The core:holo IC50 ratios were related 
  to the Rif core:holo ratio. 
c Inhibition values of core/holo transcription assay by Ḧsecken et al.14 

 

One possible mechanism of action could be the inhibition of the PPI between σ70 and 

the RNAP core enzyme because this has been demonstrated to be the way 

compounds IV−VI function.10,11 Hence, selected compounds (3, 9, 14, 28, 32, 34) as 
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well as TT inhibitor VII were tested in an ELISA-based RNAP assembly assay.14 Rif 

and V were used as negative and positive controls, respectively. In contrast to Rif 

and inactive compound 9, inhibitors 3, 14, 28, 32, 34, and VII, which had been active 

in the transcription assay, inhibit PPI between σ70 and the RNAP core enzyme to a 

similar extent as positive control V (Table 2). 

Inhibitors acting via such a mechanism would be expected to show a stronger effect 

in a σ70-dependent transcription assay using holo enzyme than in a σ70-independent 

transcription assay with core enzyme. To further confirm PPI interruption as RNAP 

inhibitory mechanism, we tested our compounds in both assays in parallel. Indeed, 3, 

14, 28, 32, 34, and VII were found to be more active in the assay using holo enzyme 

than in the core enzyme assay (Table 2). To normalize interassay conditions, ratios 

of IC50 values (core:holo) were calculated in relation to IC50 ratio (core:holo) of Rif, 

which was used as negative control not acting via PPI inhibition. The calculated IC50 

ratios (core:holo) of the tested compounds are within the range of 2−4, comparable 

or even higher than the ratio of described PPI inhibitor V (Table 2). These results 

confirm the assumption that the mechanism of action of our compounds and TT 

inhibitor VII is the interference with the interaction between σ70 and RNAP core 

enzyme. 

 

ANTIBACTERIAL ACTIVITY 

For investigation of antibacterial activity, minimum inhibitory concentration (MIC) 

values were determined for all compounds. Two described RNAP inhibitors were 

used as references: Rif, which reveals a good antibacterial activity against Gram-

positive and negative strains,15−18 and the natural product myxopyronin B, only active 

against Gram-positive bacteria.19 To evade effects associated with drug efflux, initial 

MIC tests were performed using E. coli TolC mutant, deficient in the AcrAB−TolC 

multidrug efflux system. There are several compounds possessing high antibacterial 

activity comparable to the reference compounds, especially 6−8, 14−18, 28, and 32, 

with MIC values in the range of 2−3 µg/mL. For most compounds, antibacterial 

activity roughly correlates with in vitro RNAP inhibition. However, for some highly 

potent inhibitors, compounds 25, 33, and 34, bacterial growth inhibition was less than 

expected, a finding which possibly was caused by permeability problems. 
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Table 3. Minimum Inhibitory Concentration (MIC) for Selected 

Compounds 

 

compd 
MIC [µg/mL]

a
 

E. coli K12 PA01
b
 B. subtilis S. aureus 

Rif
c
 7 13 5 0.02 

Myx
c
 >25 >25 0.9 0.5 

6 >50 >50 2 24 

7 >50 >50 3 14 

12 >100 >100 4 48 

15 >25 >25 3 8 

28 >50 >50 4 5 

32 >25 >25 3 6 

33 >25 >25 >25 17 
 

a Minimum inhibitory concentration; Data represent the mean values of at least 
  two independent experiments (three for MIC <10 μg/mL). 
b P. aeruginosa. 
c Rif, rifampicin; Myx, myxopyronin B. 

 

To further explore the antibacterial profile, MIC values for E. coli K12, Pseudomonas 

aeruginosa, Bacillus subtilis, and Staphylococcus aureus were determined for 

selected compounds (6, 7, 12, 15, 28, 32, 33; Table 3). None of the tested inhibitors 

reduced the growth of Gram-negative strains (E. coli K12 and P. aeruginosa). These 

results suggest that the compounds are either not able to penetrate the cell 

membranes of the Gram-negative bacteria or are discharged by efflux pumps. The 

latter mechanism is more probable considering the differences between the MIC 

values for E. coli K12 and E. coli TolC. On the other hand, the inhibitors were in 

general effective against Gram-positive bacteria; especially against Bacillus subtilis 

excellent MIC values were determined. 

It is striking that our compounds show very low MIC values comparable to the 

reference compounds although their RNAP inhibitory activities are less pronounced 

than those of the references. 

To confirm the mechanism of antibacterial activity, the impact on macromolecular 

biosynthesis in E. coli TolC was examined. While exerting no appreciable effect on 

DNA and protein synthesis at 4 x MIC, 32 displayed an inhibition of RNA formation 
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comparable to the clinically used RNAP inhibitor Rif (Figure 2). In addition, a strong 

decrease in lipid biosynthesis was observed (Figure 2). In this regard, it is also of 

interest that benzamidobenzoic acids, including compounds 2 and 3, have been 

described in the context of anti-infective research. While compound 3 was shown to 

inhibit PqsD, an enzyme associated with the Pseudomonas quorum sensing 

system,20 compounds 2 and 3 have been published as inhibitors of FabH, an enzyme 

involved in fatty acid synthesis.21 Therefore, it can be supposed that the good 

antibacterial activity is due to an additional FabH inhibition. 

 

 

Figure 2. Effects of 32 at 4 x MIC on macromolecular synthesis 
in E. coli TolC. Controls: cerulenin (Cer), chloramphenicol (Cam), 
ciprofloxacin (Cipro), and rifampicin (Rif) 

 

As it is our aim to develop compounds which are less susceptible to bacterial 

resistance development, the spontaneous resistance frequencies in E. coli TolC were 

determined in vitro for compounds 28 and 32 at 2 x MIC. Importantly, a lower 

resistance frequency (<4.5 x 10−11) of both novel compounds compared to Rif 

(8.3 x 10−8) was observed. One explanation for this remarkable observation could be 

the dual target effects of our compounds. 
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CONCLUSION 

RNAP is an attractive antibacterial target, but due to emerging resistance, new types 

of RNAP inhibitors are urgently needed. For the discovery of those, we performed a 

flexible alignment with a series of selected RNAP inhibitors8−12 and developed a 

pharmacophore model which is not focused on one particular binding site. Using this 

model, a virtual screening was performed, hit compounds were identified, and 11 of 

those subsequently experimentally validated. On the basis of three hits of one 

structural class, an optimization approach was performed, resulting in enhanced 

inhibitory potencies. Concerning the mechanism of RNAP inhibition, we could 

demonstrate that the new inhibitors prevent the PPI between σ70 and the RNAP core 

enzyme. 

Determination of MIC values revealed that the best compounds are highly active 

against E. coli TolC and the Gram-positive pathogens B. subtilis as well as the 

clinically relevant S. aureus. The wild-type Gram-negative strains P. aeruginosa and 

E. coli K12 were not affected, probably due to pharmacokinetic reasons. 

Regarding the effects of our compounds on macromolecule synthesis in E. coli TolC, 

an inhibition of bacterial lipid biosynthesis was observed beside the reduced RNA 

formation. This highly interesting dual target effect could explain the good MIC values 

and the significantly lower resistance rate compared to the clinically used inhibitor Rif. 

These findings are presently further elucidated. In conclusion, we consider the new 

compounds promising for further development. 

 

EXPERIMENTAL SECTION 

Chemistry. All tested compounds have >95% chemical purity as measured by HPLC. 

Spectroscopic data for all compounds are provided in the SI. 

Procedure for the Synthesis of the Acyl Chlorides Used for Amide Coupling Reaction. 

Benzoyl chlorides, if not commercially available, were obtained from the corresponding carboxylic acid 

via reaction with thionyl chloride (2.5 equiv) in CH2Cl2 in the presence of catalytic amounts of 

dimethylformamide (4 h reflux). 

General Procedure for the Synthesis of Methyl 2-Aminobenzoates 5b, 21b−23b, 25b, 

27b, 29b, and 30b. Method A. A solution of the appropriate 2-aminobenzoic acid (1 equiv) in 
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MeOH was cooled to 0 °C followed by a dropwise addition of thionyl chloride (2.5 equiv). The mixture 

was refluxed for 24 h. After evaporation of the solvent and neutralization by addition of a saturated 

aqueous NaHCO3 solution, the mixture was extracted with EtOAc and the combined organic layers 

were dried over MgSO4. Purification by CC (n-hexane/EtOAc) provided the title compounds (yields, 

physical, and spectral data are reported in SI). 

General Procedure for the Synthesis of Methyl 2-Benzamidobenzoate Derivatives 

1a−34a (Amide Coupling Reaction). Method B. Three different procedures were used to 

obtain the title compounds: 

BI. The appropriate methyl 2-aminobenzoate (1 equiv) was added to a solution of the acyl chloride 

(1.2 equiv) in CH2Cl2 under a N2 atmosphere. After the addition of TEA (2 equiv), the reaction mixture 

was stirred for 18 h at room temperature. 

BII. The appropriate methyl 2-aminobenzoate (1 equiv) and a catalytic amount of DMAP were added 

to a suspension of the acyl chloride (1.5 equiv) in pyridine under a N2 atmosphere. The reaction 

mixture was stirred for 18 h at room temperature, and 2 M HCl was added. The mixture was extracted 

with EtOAc, and the combined organic layers washed with saturated NaHCO3 and dried over MgSO4. 

BIII. The appropriate methyl 2-aminobenzoate (1 equiv) and the acyl chloride (1.2 equiv) were 

dissolved in toluene and refluxed for 4 h (except for 5a and 33a−34a, which were refluxed for 18 or 

72 h). 

For purification, the solvent was removed under reduced pressure and the remaining solid suspended 

in MeOH (except for 5a and 31a−32a). After filtration, the precipitate was washed with MeOH to yield 

the pure compound. 

For compounds 5a and 31a−32a, the purification step was performed by CC or preparative TLC. 

General Procedure for the Synthesis of 2-Benzamidobenzoate Derivatives 1−34. 

Method C. The methyl esters of the title compounds (1a−34a) were hydrolyzed with 5 M NaOH in 

THF/MeOH (2:1) at room temperature (18 h). The mixture was acidified by the addition of 1 M HCl and 

filtered, and the precipitate was washed with 1 M HCl to provide the title compounds. If the compound 

was not pure at this stage of the procedure, it was washed with MeOH and CH2Cl2 or was purified by 

CC or preparative TLC. 

General Procedure for Suzuki Coupling. Method D. A mixture of the appropriate methyl 

bromo-2-benzamidobenzoate (1 equiv), phenylboronic acid (1.5 equiv), Cs2CO3 (3 equiv), and 

tetrakis(triphenylphosphine)palladium (0.01 equiv) in a degassed DME/water (1:1) solution was 

refluxed under a nitrogen atmosphere for 4 h. The reaction mixture was cooled to room temperature. 

The mixture was extracted with EtOAc. The combined organic layers were washed with 1 M HCl and 

dried over MgSO4. The product was purified by CC or preparative TLC. 

General Procedure for Ether Cleavage Using Boron Tribromide. Method E. To a 

solution of the appropriate methoxy substituted methyl 2-benzamidobenzoate derivative (1 equiv) in 

anhydrous CH2Cl2 at −78 °C (dry ice/acetone bath), boron tribromide (1 M in CH2Cl2, 6 equiv) was 
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added dropwise. The reaction mixture was stirred for 18 h at room temperature under a nitrogen 

atmosphere. Water was added, and the aqueous layer was extracted with EtOAc. The combined 

organic layers were washed with brine and dried over MgSO4. The product was purified by CC 

followed by preparative TLC. 

 

Biology. 

Transcription Assay. Transcription assay was performed as described previously.13,22 During the 

transcription time of 10 min, the substrate concentration as well as the enzyme activity were not 

limiting the transcription reaction. Consequently, the reaction process in our assay was linear. 

Determination of IC50 Values. For the determination of IC50 values, three different concentrations 

of a compound were chosen (duplicate determination) in the linear range of the log dose response 

curve (20−80% inhibition) including concentrations above and below the IC50 value. The calculation of 

the IC50 value was performed by plotting the percent inhibition versus the concentration of inhibitor on 

a semilog plot. From this, the molar concentration causing 50% inhibition was calculated. At least 

three independent determinations were performed for each compound. Standard deviation was less 

than 20%. 

Minimal Inhibitory Concentration (MIC) Determinations. These experiments were performed 

as described recently.22 Given MIC values are means of two independent determinations (three if MIC 

<10 µg/mL) and are defined as the lowest concentration of compounds that reduced OD600 by ≥95%. 

Determination of Resistance Frequencies. Defined amounts of E. coli TolC cells were 

incubated in LB in presence of the 2 x MIC of compounds 28 and 32 in parallel (16 h, 37 °C, 50 rpm, 

0.5% DMSO). On each of the three following days, a fraction of each of the samples was 

supplemented with fresh compound containing LB followed by recultivation (conditions as before). The 

final cultures were plated on LB agar to select spontaneous resistant mutants. The bacterial start 

concentration which was needed to yield at least one colony on the plates was determined. The 

reciprocal value of this threshold was defined to be the resistance frequency. For 28 and 32, no 

colonies were detected at the highest possible bacterial start concentration, resulting in a resistance 

frequency <4.5 x 10−11. 

Macromolecular Biosynthesis Assay. E. coli TolC was cultured in lysogeny broth (LB) medium. 
3H labeled precursors (1−1.25 µCi/mL) were added during the logarithmic growth phase and several 

min (3 min for uridine and thymidine, 5 min for acetic acid, 12 min for glutamine) before the addition of 

compound 32 and the controls chloramphenicol (Cam), cerulenin (Cer), ciprofloxacin (Cipro), and 

rifampicin (Rif) at four times their MICs. For DNA, RNA, and protein synthesis, 300 µL of the cultured 

bacteria were harvested 0 and 30 min after addition of the inhibitors and supplemented with 2 volumes 

of 10% TCA. After 45 min at 4 °C, the precipitates were collected and washed using 96-well glass fiber 

filter plates (Multiscreen GFB) (Millipore, Billerica, MA). After adding Optiphase Supermix (Perkin-
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Elmer, Waltham, MA), the quantification of radioactivity was performed using a Wallac MicroBeta 

TriLux system (Perkin-Elmer). For determination of lipid synthesis, cells were treated with 

CHCl3/MeOH (1:1) and water, subsequently. The organic phase was collected, evaporated, 

redissolved in cyclohexane, and supplemented with Opti-Fluor O (Perkin-Elmer) before measuring the 

radioactivity in the MicroBeta TriLux. 

ELISA-Based RNAP Assembly Assay. The procedure was performed as described by 

Hüsecken et al.14 

Core/Holo Transcription Assay. The procedure was performed as described by Hüsecken et 

al.14 
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ABSTRACT 

Background: Antibiotic resistance has become a major health problem. The σ70:core 

interface of bacterial RNA polymerase is a promising drug target. Recently, the 

coiled-coil and lid-rudder-system of the βʹ subunit has been identified as an inhibition 

hot spot. Results/Methodology: By using surface plasmon resonance-based 

assays, inhibitors of the protein-protein interaction were identified and competition 

with σ70 was shown. Effective inhibition was verified in an in vitro transcription and a 

σ70:core assembly assay. For one hit series we found a correlation between activity 

and affinity. Mutant interaction studies suggest the inhibitors’ binding site. 

Conclusion: Surface plasmon resonance is a valuable technology in drug design, 

that has been used in this study to identify and evaluate σ70:core RNA polymerase 

inhibitors. 
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3.3 Benzamidobenzoic acids as potent PqsD inhibitors for the treatment of 

Pseudomonas aeruginosa infections 

 Stefan Hinsberger, Johannes C. de Jong, Matthias Groh, Jörg Haupenthal, and 

Rolf W. Hartmann 
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Publication III 

 

 

ABSTRACT 

Targeting PqsD is a promising novel approach to disrupt bacterial cell-to-cell-

communication in Pseudomonas aeruginosa. In search of selective PqsD inhibitors, 

two series of benzamidobenzoic acids  one published as RNAP inhibitors and the 

other as PqsD inhibitors  were investigated for inhibitory activity toward the 

respective other enzyme. Additionally, novel derivatives were synthesized and 

biologically evaluated. By this means, the structural features needed for 

benzamidobenzoic acids to be potent and, most notably, selective PqsD inhibitors 

were identified. The most interesting compound of this study was the 3-Cl substituted 

compound 5 which strongly inhibits PqsD (IC50 6.2 µM) while exhibiting no inhibition 

of RNAP. 
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1. INTRODUCTION 

Increasing resistance of bacteria against clinically used antibiotics provoke an urgent 

need for new antibacterial drugs and innovative therapeutic options [1, 2]. An 

established method is the induction of bacterial growth retardation or cell death by 

inhibiting pivotal enzymes [3]. A disadvantage of this therapy is selective pressure 

causing rapid emergence of resistance [3, 4]. This should be different in a more 

recent approach to combat bacterial infections [5]. By intervening with the bacterial 

cell-to-cell-communication system the production of virulence factors and the biofilm 

formation can be reduced [5]. A newly described strategy to interfere with the 

Pseudomonas Quinolone Signal (PQS) communication system in Pseudomonas 

aeruginosa, is the inhibition of PqsD, which is responsible for the biosynthesis of the 

important signal molecule 2-heptyl-4-quinolone (HHQ) [6]. 

Recently, we described a series of potent novel RNA polymerase (RNAP) inhibitors 

[7] derived from a known inhibitor of PqsD [6]. These compounds containing a 

benzamidobenzoic acid core were shown to inhibit RNAP in vitro in the low 

micromolar range (IC50 around 10 µM) [7]. Due to their origin and their structural 

similarity to the PqsD inhibitors recently published by Weidel et al. [8], we expected 

this new class of RNAP inhibitors also to inhibit PqsD and tested the compounds in 

our PqsD in vitro assay for inhibitory activity (Fig. 1). Indeed, we found most of them 

to be very potent. 

As bacterial cell death caused by potent RNAP inhibition provoking selective 

pressure is not intended for an anti-virulence concept [3], it is of special interest to 

look for structural modifications that lead to an increased selectivity of PqsD 

inhibitors. 

In this work we want to elucidate which structural features in the former class of 

RNAP inhibitors are beneficial for potent PqsD inhibition and which are needed to 

afford selectivity over RNAP. To make the SAR complete the compounds published 

by Weidel et al. are tested for RNAP inhibition (Fig. 1). For getting an extended 

insight into this important class of benzamidobenzoic acids and for extension of their 

structure-activity and structure-selectivity profile regarding both enzymes several new 

benzamidobenzoic acid analogs were synthesized and biologically evaluated. 
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Figure 1. A recently described series of potent novel RNA polymerase (RNAP) inhibitors (II) 
[7] was derived from a known PqsD inhibitor (I) [6]. The compounds consisting of a 
benzamidobenzoic acid core are structurally very similar to the class of PqsD inhibitors (III) 
published by Weidel et al. [8]. This raised the question about selectivity: Do the compounds 
from class II also inhibit PqsD and are the molecules from class III inhibitors of RNAP? 

 

 

2. CHEMISTRY 

Compounds 134 and 5186 were prepared as described earlier [7, 8]. 

As outlined in Scheme 1 the synthesis of the 6-OH substituted anthranilic acid 

derivative 35 started from 2-amino-6-methoxybenzoic acid 35c, which was converted 

into the corresponding hydroxy substituted benzoic acid 35b by reaction with boron 

tribromide. Subsequently 35b was coupled with [1,1'-biphenyl]-4-carbonyl chloride 

refluxing in toluene to obtain 35a, which was hydrolyzed with a mixture of 5N LiOH 

(aq.) and THF, yielding the target compound 35. 

 

Scheme 1. Synthetic route to compound 35 

 

Reagents and conditions: (a) BBr3, CH2Cl2, 78°C  rt; (b) toluene, reflux; (c) LiOH, THF/H2O, rt. 
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Scheme 2. Synthetic route to compounds 36−37 

 

Reagents and conditions: (a) NH3, MeOH, rt; (b) pyridine, DMAP, rt or toluene, reflux. 

 

Reaction of bromo substituted methyl anthranilate 36b with ammonia in MeOH at 

room temperature afforded the benzamide 36a. The latter and 37a were coupled with 

[1,1'-biphenyl]-4-carbonyl chloride in pyridine and catalytic amounts of DMAP at room 

temperature to obtain products 36 and 37 (Scheme 2). 

 

Scheme 3. Synthetic route to compounds 38−50 

 

Reagents and conditions: (a) SOCl2, MeOH, reflux; (b) pyridine, DMAP, rt or TEA, CH2Cl2, rt or 
toluene, reflux; (c) NaOH, THF/MeOH/H2O, rt or KOH, THF/MeOH/H2O, rt or LiOH, THF/MeOH/H2O, 
reflux. 

 

Compounds 3850 were obtained as depicted in Scheme 3. For the synthesis of 

derivatives containing a carboxylic acid group in meta or para position to the amino 

group (3942), the methyl esters (39b42b) were gained by reaction of the starting 

compounds (39c42c) with thionyl chloride and MeOH under reflux conditions. The 

other methyl or ethyl esters used were commercially available or were synthesized as 
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described earlier [9]. A coupling reaction of 38b49b with [1,1'-biphenyl]-4-carbonyl 

chloride and 50b with [1,1'-biphenyl]-4-sulfonyl chloride was performed in pyridine 

with catalytic amounts of DMAP at room temperature, in CH2Cl2 with triethylamine at 

room temperature or in toluene under reflux conditions. The resulting intermediate 

esters 39a50a were cleaved with a mixture of MeOH/THF and 1N NaOH (aq.) or 1N 

KOH (aq.) or 1N LiOH (aq.) to get the free carboxylic acids 3950. 

 

 

3. BIOLOGICAL RESULTS 

The inhibitory activities of compounds 150 against RNAP and PqsD are displayed in 

Table 1 and 2. 

The unsubstituted anthranilic acid 1 has already been described as a potent inhibitor 

of PqsD [6] and RNAP [7]. Removal of the 3'-OPh or 4'-Ph part of the compound led 

to 2 and 3, which only moderately inhibited the two enzymes. Removal of both 

moieties resulted in the completely inactive compound 4. In the following, different 

substituents were introduced into the free positions of the anthranilic acid 

substructure of 2 or 3. A chloro substituent in 3-position (5) caused a nearly tenfold 

improvement of PqsD inhibitory activity and a total loss of RNAP inhibition. Lipophilic 

electron withdrawing substituents in 4-position (614) led to an increased inhibition of 

both enzymes. Compound 15 bearing a phenyl ring in 4-position is slightly more 

potent against RNAP, but not against PqsD. A 4-methoxy substituent (16) slightly 

increased activity for both enzymes compared to the unsubstituted compound 2, 

whereas a 4-,5-dimethoxy substitution (17, 18) even decreased PqsD inhibition. A 

shift of the lipophilic electron withdrawing substituents from 4- to 5-position (1926) 

resulted in no substantial changes. The same effect was observed for the phenyl 

substituent (27). The 5-methyl and the 5-cyano compounds 28 and 29 showed a 

slightly increased inhibition of RNAP. With respect to PqsD inhibition, this is only true 

for compound 29. A methoxy substituent in 5-position (30) did not relevantly change 

the activity compared to the unsubstituted compound 2 for both enzymes. 

Interestingly, 31, which contains a hydrophilic electron donating hydroxy group in 5-

position, that is unfavorable for RNAP inhibition, is a very potent PqsD inhibitor.  
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Table 1. Inhibitory activities of 1−35 against E. coli RNA polymerase and PqsD in vitro 

 

 

Cpd R
1
 R

2
 

RNAP 
inhib.

a,b
 

PqsD 
inhib.

c
  

Cpd R
1
 R

2
 

RNAP 
inhib.

a,b
 

PqsD 
inhib.

c
  

1 H 3'-OPh, 
4'-Ph 20 µM 6.6 µM 19 5-F 4'-Ph 138 µM 15.2 µM 

2 H 4'-Ph 31% 55% 20 5-F 3'-OPh 98 µM 57% 

3 H 3'-OPh 23% 37% 21 5-Cl 4'-Ph 46 µM 3.8 µM 

4 H H n.i. n.i. 22 5-Br 4'-Ph 31 µM 3.2 µM 

5 3-Cl 4'-Ph n.i. 6.2 µM 23 5-Br 3'-OPh 34 µM 4.4 µM 

6 4-F 4'-Ph 98 µM 18.2 µM 24 5-Br 3'-CH2Ph 37 µM 5.0 µM 

7 4-F 3'-OPh, 
4'-Ph 13 µM 6.0 µM 25 5-OCF3 4'-Ph 31 µM 4.0 µM 

8 4-Cl 4'-Ph 37 µM 8.7 µM 26 5-CF3 4'-Ph 28 µM 3.4 µM 

9 4-Cl 3'-OPh 44 µM 5.7 µM 27 5-Ph 3'-OPh 13 µM 7.7 µM 

10 4-Cl 
3'-OPh, 
4'-Ph 9 µM ~5 µMd 28 5-Me 4'-Ph 139 µM 42% 

11 4-Br 4'-Ph 28 µM 3.2 µM 29 5-CN 4'-Ph 23% 
@ 50 µM 8.6 µM 

12 4-Br 3'-OPh 34 µM 5.1 µM 30 5-OMe 4'-Ph 52% 46% 

13 4-NO2 4'-Ph 36 µM 3.3 µM 31 5-OH 4'-Ph 17% 4.2 µM 

14 4-CF3 4'-Ph 27 µM 4.9 µM 32 6-F 4'-Ph 14% 21% 

15 4-Ph 3'-OPh 14 µM 6.6 µM 33 6-Cl 4'-Ph n.i. 20% 

16 4-OMe 4'-Ph 162 µM 43% 
@ 25 µM 

34 6-OMe 4'-Ph n.i. n.i. 

17 4-,5-OMe 4'-Ph 35% 27% 35 6-OH 4'-Ph 74 µM 1.3 µM 

18 4-,5-OMe 3'-OPh 154 µM 27%      
 

a IC50 value (SD <20%) or percentage inhibition at 200 µM (SD <40%) for E. coli RNAP; Data represent the mean 
  values of at least three experiments. 
b RNAP inhibition values originally published by Hinsberger et al. [7] except for 35 
c IC50 value (SD <23%, except for 10) or percentage inhibition at 50 µM (SD <40%); Data represent the mean 
  values of at least two experiments. 
d could not be determined exactly due to high SD 
n.i.: no inhibition 

 

The introduction of electron withdrawing lipophilic substituents to the 6-position of the 

anthranilic acid core (32, 33) and also the introduction of a methoxy group in this 

position (34) led to a drop or even a complete loss of inhibitory activity for both 
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enzymes. By contrast, 6-hydroxy substitution (35) appreciably improved RNAP 

inhibition and simultaneously led to the most potent PqsD inhibitor of this series (IC50 

1.3 µM). 

Motivated by these initial interesting results several new analogs with further 

modifications were synthesized and evaluated. In a first step the carboxylic acid 

group of compound 22, which is a very potent inhibitor of both enzymes, was 

exchanged by CONH2 (36), CN (37) or COOMe (38). As these modifications led to 

severe solubility problems, no further COOH-replacements were performed. Shifting 

the carboxylic acid group of 2 to meta position (39) resulted in a slight increase of 

activity for RNAP inhibition. However, introduction of a bromo substituent in 4- or 5-

position of 39 leading to compounds 40 and 41 reduced inhibitory activity for both 

enzymes compared to the brominated compounds with the carboxylic acid group in 

ortho position (11, 12 and 2224). A shift of the carboxylic acid group of 2 to the para 

position (42) resulted in a hardly soluble compound with a weak RNAP inhibition. 

In the next step a bioisosteric replacement of the anthranilic acid phenyl ring by 

differently substituted thiophenes was performed. The unsubstituted thiophene 

compounds 4345 showed a considerably improved PqsD inhibitory potency, 

especially 43, whereas only for 45 a slightly improved RNAP inhibition was found. 

Interestingly, adding substituted and unsubstituted phenyl rings to the free positions 

of the thiophene (4649) strongly enhanced RNAP inhibition while PqsD inhibitory 

activity was concurrently diminished. 

Finally, we replaced the phenyl rings connecting amide function of highly potent 22 

by a sulfonamide linker. The resulting compound 50 exhibited a reasonable increase 

of PqsD inhibition while the RNAP inhibitory potency was retained. 

To make the SAR complete, the potent PqsD inhibitors published by Weidel et al. [8] 

(5186, SI) were tested for RNAP inhibition. Interestingly, most of the compounds 

were found not to inhibit RNAP at a concentration of 200 µM or at their highest 

soluble concentration (SI). Only some compounds containing a 5-NO2 substituent 

(64), a substituted phenyl ring in 5-position (7477), a 3’-SO2NEtBenzyl (86) or a 4'-

SO2NEt2 moiety (65) show a weak to moderate inhibition of RNAP (SI). 
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Table 2. Inhibitory activities of 36−50 against E. coli RNA polymerase and PqsD in vitro 

 

 

Cpd R
1
 RNAP inhibition

a
 PqsD inhibition

b
 

2  31% 55% 

22 COOH 31 µM 3.2 µM 

36 CONH2 n.i.c n.i. c 

37 CN n.i. c n.i. c 

38 COOMe n.i. c n.i. c 

39 H 31% @ 100 µM 25% @ 25 µM 

40 4-Br 25% n.i. 

41 5-Br 110 µM 32.6 µM 

42  15% @ 100 µM n.i. @ 10 µM 

43 H 28% 5.2 µM 

44  33% 19.5 µM 

45 H 161 µM 15.7 µM 

46 Ph 10 µM 9.8 µM 

47 p-Cl-Ph 13 µM 35% 

48 p-OMe-Ph 9 µM 45% 

49 Ph 33% @ 50 µM 28% 

50  35 µM 1.3 µM 

a IC50 value (SD <20%) or percentage inhibition at 200 µM (SD <40%) for E. coli RNAP; Data represent 
  the mean values of at least three experiments. 
b IC50 value (SD <20%) or percentage inhibition at 50 µM (SD <40%); Data represent the mean values of 
  at least two experiments. 
c low solubility: no inhibition in saturated solution 
n.i.: no inhibition 
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4. DISCUSSION 

In this paper we could demonstrate that it is possible to convert the unsubstituted 

benzamidobenzoic acid 4 into potent PqsD inhibitors by structural modifications. As 

already shown for RNAP [7] substituents in 3'- or 4'-position are also a minimum 

requirement for a moderate inhibition of PqsD (2, 3). The combination of substituents 

in both positions, however, results in very potent PqsD inhibitor 1 [6]. Another very 

effective way to increase potency of 2 and 3 is the introduction of lipophilic electron 

withdrawing substituents or phenyl rings in 4- or 5-position of the anthranilic acid core 

(615, 1927). The same phenomenon has already been described for the 

sulfamoylbenzamidobenzoic acids [8]. 

However, the disadvantage all described modifications have in common is that they 

do not selectively enhance the inhibitory potency for PqsD, but also for RNAP. This is 

an unwanted effect of the inhibitors, as antibacterial activity caused by potent RNAP 

inhibition would provoke selective pressure [3], which is in contradiction with the anti-

virulence concept by PqsD inhibition. Therefore it is of particular interest that the 

presented series of compounds also contain structural modifications which selectively 

enhance PqsD inhibitory potency and do not affect or even decrease RNAP inhibition 

(Fig. 2). 

For example the introduction of a 3-Cl substituent (5), which strongly increases PqsD 

inhibition, leads to a total loss of activity for RNAP. A similar observation is made for 

the introduction of a 5-OH group (31), which also results in a very potent and highly 

PqsD selective compound. The introduction of a OH group in 6-position (35) causes 

a slight increase in RNAP inhibition, however, improvement of PqsD inhibitory activity 

is much stronger leading to a compound which is about 50 times more potent on 

PqsD than on RNAP. Apart from introduction of substituents into the anthranilic acid 

core, selectivity can be gained by bioisosteric replacement. Via exchange of the 

anthranilic acid phenyl ring by a thiophene, potent and selective PqsD inhibitors can 

be obtained without affecting the moderate RNAP inhibitory activity (esp. 43). 

However, the introduction of a phenyl substituent into 43 should be avoided, as this 

modification results in a loss or even an inversion of selectivity. A further option to 

gain selectivity is the replacement of the amide function by a sulfonamide. This 

slightly increases PqsD inhibition without affecting RNAP activity. 
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Figure 2. Structural modifications generating selectivity in favor of PqsD inhibition over 
RNAP inhibition in the class of benzamidobenzoic acids 

 

Regarding the recently published PqsD inhibitors [8] (5186, SI) it is striking that 

most of these compounds do not contain any of the structural features that we 

identified in this study to be causing PqsD selectivity. Instead, many of them contain 

substituents that are also beneficial for RNAP inhibition in the class of 

benzamidobenzoic acids, as described earlier [7] (e.g., Br, Cl, CF3). This raised the 

question whether these sulfamoylbenzamidobenzoic acids are, beside their strong 

inhibition of PqsD, also selective. Interestingly, only few of them slightly or 

moderately inhibit RNAP. This reveals that in the class of benzamidobenzoic acids 

selectivity between PqsD and RNAP can also be gained by variation of  R2. Apart 

from a few exceptions, all aliphatically substituted sulfonamide substituents (e.g., 

SO2NEt2, SO2N(n-Pr)2) in 3' position are suitable to obtain selectivity over RNAP. 

As the compounds containing a further substituted 5-Ph or a 5-NO2 substituent 

moderately inhibit RNAP, despite of the aliphatically substituted sulfonamide 

substituent in 3'-position, these RNAP inhibition favoring moieties should be avoided. 

Compound 86, containing a 3'-SO2NEtBenzyl rest, inhibits RNAP to a similar extent 

as 2 and 3, indicating that in general aromatics in this part of the compound are 

crucial for RNAP inhibition and therefore should not be used as R2. Another PqsD 

inhibitor of the sulfamoylbenzamidobenzoic acid series which shows an RNAP 

inhibitory activity is compound 65 bearing the SO2NEt2 substituent not in 3'- but in 4'-

position. Actually, this was not an unexpected observation as earlier we have been 
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able to demonstrate that a very similar inhibitor of transcription/translation (TT) 

carrying a 4'-SO2N(n-Pr)2 substituent is a quite potent RNAP inhibitor [7]. This results 

in the conclusion that a 4'-sulfonamide substituent is not suitable for selective PqsD 

inhibition. 

 

 

5. CONCLUSION 

As emergence of bacterial resistance against clinically used antibiotics is becoming a 

major public health problem [1], the novel anti-virulence concept by PqsD inhibition is 

of special interest [10]. For following this strategy and avoiding selective pressure it is 

important that PqsD inhibitors do not cause bacterial cell death by inhibition of pivotal 

enzymes [3] like RNAP. In this work we presented a series of new potent PqsD 

inhibitors of the benzamidobenzoic acid class and identified the structural 

modifications that are necessary to convert potent RNAP inhibitors into selective 

PqsD inhibitors. It is striking that already simple bioisosteric replacements led to a 

notable gain of selectivity. For further optimization of potency and selectivity it is 

conceivable to combine some of these modifications into one structure. As the in vitro 

PqsD inhibitory activities of our compounds are promising, they will be further 

evaluated in vivo. 

 

 

6. EXPERIMENTAL SECTION 

6.1 General Directions 

Chemical names follow IUPAC nomenclature. Starting materials were purchased from Sigma-Aldrich, 

Acros, Maybridge, Combi Blocks, Fluka, ABCR, Alfa Aesar, Apollo and were used without purification. 

Column chromatography (CC) was performed on silica gel (63─200 μm), preparative thin layer 

chromatography (TLC) on 1 mm SIL G-100 UV254 glass plates (Macherey-Nagel), and reaction 

progress was monitored by TLC on Alugram SIL G UV254 (Macherey-Nagel). 

1H NMR and 13C NMR spectra were recorded on a Bruker AM500 spectrometer (500 MHz and 125 

MHz) at 300 K in CDCl3 or CD3SOCD3. Chemicals shifts are reported in  values (ppm), the 
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hydrogenated residues of deuterated solvent were used as internal standard (CDCl3:   = 7.27 ppm in 
1H NMR and  = 77.0 ppm in 13C NMR, CD3SOCD3:  = 2.50 ppm in 1H NMR and  = 39.5 ppm in 13C 

NMR). Signals are described as s, d, t, dd, ddd, dt and m for singlet, doublet, triplet, doublet of 

doublet, doublet of doublet of doublet, doublet of triplet and multiplet, respectively. Coupling constants 

(J) are given in Hertz (Hz).  

The reported yields are the isolated yields of purified material and are not optimized. 

Purity of compounds 3550 was determined using LC/MS as follows: 

The SpectraSystems®-LC-system consisted of a pump, an autosampler, and a UV detector. Mass 

spectrometry was performed on a MSQ® electro spray mass spectrometer (Thermo Fisher, Dreieich, 

Germany). The system was operated by the standard software Xcalibur®. A RP C18 NUCLEODUR® 

100-5 (125 x 3 mm) column (Macherey-Nagel GmbH, Duehren, Germany) was used as stationary 

phase. All solvents were HPLC grade. 

Solvent system: In a gradient run the percentage of acetonitrile (containing 0.1% triflouro-acetic acid) 

in 0.1% triflouro-acetic acid was increased from an initial concentration of 0% at 0 min to 100% at 15 

min and kept at 100% for 5 min. 

The injection volume was 10 µL and flow rate was set to 800 µL/min. MS analysis was carried out at a 

spray voltage of 3800 V, a capillary temperature of 350 °C and a source CID of 10 V. Spectra were 

acquired in positive mode from 100 to 1000 m/z and at 254 nm for the UV trace. 

All tested compounds have >95% chemical purity as measured by HPLC. 

Melting points were determined on a Stuart Scientific melting point apparatus SMP3 and are 

uncorrected. 

 

 

6.2 Chemistry 

6.2.1 General Procedure for the synthesis of methyl aminobenzoates 39b42b. 

A solution of the appropriate 2-aminobenzoic acid (1 equiv) in MeOH was cooled to 0 °C followed by a 

dropwise addition of thionyl chloride (2.5 equiv). The mixture was refluxed for 24 h. After evaporation 

of the solvent and neutralization by addition of a saturated aqueous NaHCO3 solution, the mixture was 

extracted with EtOAc and the combined organic layers were dried over MgSO4. Purification by CC (n-

hexane/EtOAc) provided the title compounds. 

 

Methyl 3-aminobenzoate (39b) 

yellow oil, yield: 100%. 1H NMR (500 MHz, CDCl3)  = 7.457.41 (m, 1 H) 7.387.33 (m, 1 H), 
7.247.19 (m, 1 H), 6.86 (ddd, J = 8.0, 2.4, 0.9 Hz, 1 H), 3.89 (s, 3 H, OCH3), 3.78 (br. s., 2 H, NH2) 
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ppm. 13C NMR (125 MHz, CDCl3)  = 167.3, 146.4, 131.1, 129.2, 119.7, 119.4, 115.7, 52.0 (OCH3) 
ppm. LC/MS: m/z = 193 [M + H+ + CH3CN]; tR = 3.44 min; > 99.9% pure (UV). 
 

Methyl 3-amino-4-bromobenzoate (40b) 

brown solid, yield: 83%. 1H NMR (500 MHz, CDCl3)  = 7.47 (d, J = 8.3 Hz, 1 H), 7.43 (d, J = 2.0 Hz, 1 
H), 7.26 (dd, J = 8.3, 2.0 Hz, 1 H), 4.23 (br. s., 2 H, NH2), 3.89 (s, 3 H, OCH3) ppm. 13C NMR (125 
MHz, CDCl3)  = 166.7, 144.1, 132.6, 130.3, 120.0, 116.3, 114.2, 52.2 (OCH3) ppm. LC/MS: m/z = 230 
and 232 [M + H+], 271 and 273 [M + H+ + CH3CN]; tR = 10.13 min; 98.8% pure (UV). 
 

Methyl 3-amino-5-bromobenzoate (41b) 
yellow solid, yield: 91%. 1H NMR (500 MHz, CDCl3)  = 7.547.52 (m, 1 H), 7.26 (dd, J = 2.2, 1.3 Hz, 1 
H), 6.99 (dd, J = 2.2, 1.6 Hz, 1 H), 3.89 (s, 3 H, OCH3), 3.86 (br. s., 2 H, NH2) ppm. 13C NMR (125 
MHz, CDCl3)  = 166.0, 147.7, 132.6, 122.9, 122.2, 121.6, 114.6, 52.3 (OCH3) ppm. LC/MS: m/z = 230 
and 232 [M + H+], 271 and 273 [M + H+ + CH3CN]; tR = 9.22 min; 97.0% pure (UV). 
 
Methyl 4-aminobenzoate (42b) 
yellow solid, yield: 99%. 1H NMR (500 MHz, CDCl3)  = 7.897.81 (m, 2 H), 6.666.60 (m, 2 H), 4.10 
(br. s., 2 H, NH2), 3.85 (s, 3 H, OCH3) ppm. 13C NMR (125 MHz, CDCl3)  = 167.1, 150.8, 131.5, 
119.6, 113.7, 51.6 (OCH3) ppm. LC/MS: m/z = 193 [M + H+ + CH3CN]; tR = 5.21 min; > 99.9% pure 
(UV). 
 

6.2.2 General Procedures for the synthesis of methyl benzamidobenzoate or 

methyl benzamidothiophenecarboxylate derivatives 3638, 39a49a (amide 

coupling reactions). Three different amide coupling procedures were used to obtain the title 

compounds: 

 

6.2.2.1 General Procedure for the synthesis of 38, 39a, 41a43a. The appropriate 

alkyl aminobenzoate or alkyl aminothiophenecarboxylate (1 equiv) was added to a solution of the acyl 

chloride (1.2 equiv) in CH2Cl2 under a N2 atmosphere. After the addition of TEA (2 equiv) the reaction 

mixture was stirred for 18 h at room temperature. For purification the solvent was evaporated and the 

remaining solid was suspended in MeOH. After filtration the precipitate was washed with MeOH to 

provide the pure compound. 

 

Methyl 2-([1,1'-biphenyl]-4-ylcarboxamido)-5-bromobenzoate (38) 
slightly yellow solid, yield: 26%. 1H NMR (500 MHz, CDCl3)  = 12.01 (br. s, 1 H, NH), 8.91 (d, J = 9.1 
Hz, 1 H), 8.22 (d, J = 2.5 Hz, 1 H), 8.158.08 (m, 2 H), 7.797.74 (m, 2 H), 7.71 (dd, J = 9.1, 2.5 Hz, 1 
H), 7.687.62 (m, 2 H), 7.547.46 (m, 2 H), 7.457.38 (m, 1 H), 4.00 (s, 3 H, OCH3) ppm. 13C NMR 
(125 MHz, CDCl3)  = 168.0, 165.4, 144.9, 141.0, 139.9, 137.5, 133.5, 133.1, 128.9, 128.1, 127.9, 
127.5, 127.2, 122.1, 116.6, 115.0, 52.8 (OCH3) ppm. LC/MS: m/z = 410 and 412 [M + H+], 821 and 
823 [2M + H+]; tR = 16.41 min; 98.4% pure (UV). 

 
Methyl 3-([1,1'-biphenyl]-4-ylcarboxamido)benzoate (39a) 
white solid, yield: 62%. 1H NMR (500 MHz, DMSO-d6)  = 10.51 (s, 1 H, NH), 8.50 (s, 1 H), 8.138.07 
(m, 3 H), 7.85 (d, J = 8.3 Hz, 2 H), 7.77 (d, J = 7.3 Hz, 2 H), 7.747.68 (m, 1 H), 7.557.48 (m, 3 H), 
7.477.41 (m, 1 H), 3.88 (s, 3 H, OCH3) ppm. 13C NMR (125 MHz, DMSO-d6)  = 166.1, 165.3, 143.3, 
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139.6, 139.0, 133.3, 130.0, 129.1, 129.1, 128.4, 128.2, 126.9, 126.6, 124.7, 124.2, 120.8, 52.2 (OCH3) 
ppm. LC/MS: m/z = 332 [M + H+], 373 [M + H+ + CH3CN], 663 [2M + H+]; tR = 12.50 min; 97.7% pure 
(UV). 
 

Methyl 3-([1,1'-biphenyl]-4-ylcarboxamido)-5-bromobenzoate (41a) 
beige solid, yield: 51%. 1H NMR (500 MHz, CDCl3)  = 8.378.33 (m, 1 H), 8.23 (s, 1 H, NH), 
8.128.07 (m, 1 H), 7.997.92 (m, 3 H), 7.727.69 (m, 2 H), 7.647.61 (m, 2 H), 7.507.45 (m, 2 H), 
7.457.38 (m, 1 H), 3.91 (s, 3 H, OCH3) ppm. 13C NMR (125 MHz, CDCl3)  = 165.5, 165.5, 145.1, 
139.6, 139.4, 132.6, 132.3, 129.0, 128.3, 128.2, 127.7, 127.5, 127.3, 127.2, 122.9, 119.7, 52.5 (OCH3) 
ppm. LC/MS: m/z = 410 and 412 [M + H+], 451 and 453 [M + H+ + CH3CN], 821 and 823 [2M + H+]; tR 
= 14.91 min; 97.5% pure (UV). 

 
Methyl 4-([1,1'-biphenyl]-4-ylcarboxamido)benzoate (42a) 
slightly yellow solid, yield: 43%. 1H NMR (500 MHz, DMSO-d6)  = 10.61 (s, 1 H, NH), 8.08 (d, J = 8.3 
Hz, 2 H), 7.98 (s, 4 H), 7.86 (d, J = 8.3 Hz, 2 H), 7.817.74 (m, 2 H), 7.557.48 (m, 2 H), 7.477.40 
(m, 1 H), 3.84 (s, 3 H, OCH3) ppm. 13C NMR (125 MHz, DMSO-d6)  = 165.8, 165.6, 143.7, 143.4, 
139.0, 133.3, 130.1, 129.1, 128.5, 128.2, 126.9, 126.6, 124.3, 119.6, 51.9 (OCH3) ppm. LC/MS: m/z = 
332 [M + H+], 373 [M + H+ + CH3CN], 663 [2M + H+]; tR = 12.59 min; > 99.9% pure (UV). 
 
Methyl 3-([1,1'-biphenyl]-4-ylcarboxamido)thiophene-2-carboxylate (43a) 
beige solid, yield: 19%. 1H NMR (500 MHz, CDCl3)  = 11.25 (s, 1 H, NH), 8.34 (d, J = 5.5 Hz, 1 H), 
8.138.08 (m, 2 H), 7.787.72 (m, 2 H), 7.677.64 (m, 2 H), 7.55 (d, J = 5.5 Hz, 1 H), 7.527.46 (m, 2 
H), 7.457.37 (m, 1 H), 3.95 (s, 3 H, OCH3) ppm. 13C NMR (125 MHz, CDCl3)  = 165.2, 163.9, 145.3, 
145.1, 139.9, 132.3, 131.9, 128.9, 128.1, 128.0, 127.5, 127.2, 122.4, 110.4, 52.1 (OCH3) ppm. LC/MS: 
m/z = 338 [M + H+], 379 [M + H+ + CH3CN], 675 [2M + H+]; tR = 14.87 min; 94.9% pure (UV). 
 

6.2.2.2 General Procedure for the synthesis of 37, 40a, 44a47a, 49a. The 

appropriate alkyl aminobenzoate or alkyl aminothiophenecarboxylate (1 equiv) and a catalytic amount 

of DMAP were added to a suspension of the acyl chloride (1.5 equiv) in pyridine under a N2 

atmosphere. The reaction mixture was stirred for 18 h at room temperature and 2 M HCl was added. 

The mixture was extracted with EtOAc, the combined organic layers washed with saturated NaHCO3 

and dried over MgSO4. For purification the solvent was evaporated and the remaining solid was 

suspended in MeOH. After filtration the precipitate was washed with MeOH (and EtOAc in case of 

45a) to provide the pure compound. 

 

N-(4-Bromo-2-cyanophenyl)-[1,1'-biphenyl]-4-carboxamide (37) 
white solid, yield: 35%. Mp: 232233 °C. 1H NMR (500 MHz, DMSO-d6)  = 10.72 (s, 1 H, NH), 8.19 
(d, J = 2.3 Hz, 1 H), 8.128.08 (m, 2 H), 7.95 (dd, J = 8.8, 2.3 Hz, 1 H), 7.917.86 (m, 2 H), 7.807.75 
(m, 2 H), 7.58 (d, J = 8.8 Hz, 1 H), 7.557.49 (m, 2 H), 7.477.40 (m, 1 H) ppm. 13C NMR (125 MHz, 
DMSO-d6)  = 165.2, 143.8, 139.9, 138.9, 136.8, 135.2, 132.0, 129.1, 128.6, 128.4, 128.3, 127.0, 
126.8, 117.9, 115.6, 111.0 ppm. LC/MS: m/z = 377 and 379 [M + H+]; tR = 13.63 min; 98.0% pure 
(UV). 

 
Methyl 3-([1,1'-biphenyl]-4-ylcarboxamido)-4-bromobenzoate (40a) 
white solid, yield: 71%. 1H NMR (500 MHz, CDCl3)  = 9.21 (d, J = 2.2 Hz, 1 H), 8.53 (s, 1 H, NH), 
8.058.02 (m, 2 H), 7.777.64 (m, 6 H), 7.527.47 (m, 2 H), 7.457.40 (m, 1 H), 3.95 (s, 3 H, OCH3) 
ppm. 13C NMR (125 MHz, CDCl3)  = 166.2, 164.9, 145.3, 139.7, 136.0, 132.8, 132.3, 130.7, 129.0, 
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128.2, 127.7, 127.6, 127.2, 126.2, 122.5, 118.7, 52.4 (OCH3) ppm. LC/MS: m/z = 410 and 412 [M + 
H+], 451 and 453 [M + H+ + CH3CN], 821 and 823 [2M + H+]; tR = 14.62 min; 99.0% pure (UV). 
 

Methyl 4-([1,1'-biphenyl]-4-ylcarboxamido)thiophene-3-carboxylate (44a) 
beige solid, yield: 58%. 1H NMR (500 MHz, CDCl3)  = 11.06 (s, 1 H, NH), 8.24 (d, J = 3.5 Hz, 1 H), 
8.12 (d, J = 3.5 Hz, 1 H), 8.108.07 (m, 2 H), 7.767.74 (m, 2 H), 7.677.64 (m, 2 H), 7.517.47 (m, 2 
H), 7.447.38 (m, 1 H), 3.97 (s, 3 H, OCH3) ppm. 13C NMR (125 MHz, CDCl3)  = 164.9, 164.4, 144.7, 
140.0, 136.7, 132.6, 128.9, 128.0, 127.7, 127.5, 127.2, 121.6, 110.8, 52.1 (OCH3) ppm. LC/MS: m/z = 
338 [M + H+], 379 [M + H+ + CH3CN], 675 [2M + H+]; tR = 15.41 min; 94.2% pure (UV). 
 

Ethyl 2-([1,1'-biphenyl]-4-ylcarboxamido)thiophene-3-carboxylate (45a) 
brown solid, yield: 42%. 1H NMR (500 MHz, CDCl3)  = 12.09 (br. s., 1 H, NH), 8.158.09 (m, 2 H), 
7.797.74 (m, 2 H), 7.687.63 (m, 2 H), 7.537.47 (m, 2 H), 7.457.39 (m, 1 H), 7.29 (d, J = 5.7 Hz, 1 
H), 6.81 (d, J = 5.7 Hz, 1 H), 4.42 (q, J = 7.2 Hz, 2 H, OCH2), 1.44 (t, J = 7.2 Hz, 3 H, CH3) ppm. 13C 
NMR (125 MHz, CDCl3)  = 166.1, 163.3, 149.3, 145.4, 139.7, 130.7, 129.0, 128.2, 128.0, 127.6, 
127.2, 123.9, 116.2, 113.3, 60.8 (OCH2), 14.4 (CH3) ppm. LC/MS: m/z = 352 [M + H+], 393 [M + H+ + 
CH3CN], 703 [2M + H+]; tR = 16.46 min; 97.2% pure (UV). 
 

Methyl 3-([1,1'-biphenyl]-4-ylcarboxamido)-5-phenylthiophene-2-carboxylate (46a) 
beige solid, yield: 43%. 1H NMR (500 MHz, CDCl3)  = 11.28 (s, 1 H, NH), 8.60 (s, 1 H), 8.158.09 (m, 
2 H), 7.787.73 (m, 4 H), 7.687.64 (m, 2 H), 7.527.39 (m, 6 H), 3.97 (s, 3 H, OCH3) ppm. 13C NMR 
(125 MHz, CDCl3)  = 165.2, 164.0, 150.2, 145.7, 145.1, 139.9, 133.2, 132.3, 129.3, 129.1, 129.0, 
128.2, 128.0, 127.6, 127.2, 126.2, 118.1, 109.1, 52.1 (OCH3) ppm. LC/MS: m/z = 414 [M + H+], 827 
[2M + H+]; tR = 17.93 min; 97.1% pure (UV). 
 

Methyl 3-([1,1'-biphenyl]-4-ylcarboxamido)-5-(4-chlorophenyl)thiophene-2-

carboxylate (47a) 
beige solid, yield: 28%. 1H NMR (500 MHz, CDCl3)  = 11.26 (s, 1 H, NH), 8.58 (s, 1 H), 8.138.09 (m, 
J = 8.2 Hz, 2 H), 7.787.75 (m, J = 8.5 Hz, 2 H), 7.687.62 (m, 4 H), 7.527.48 (m, 2 H), 7.467.38 
(m, 3 H), 3.97 (s, 3 H, OCH3) ppm. 13C NMR (125 MHz, CDCl3)  = 165.1, 164.0, 148.6, 145.7, 145.2, 
139.8, 135.3, 132.1, 131.7, 129.3, 129.0, 128.2, 128.0, 127.6, 127.4, 127.2, 118.4, 109.3, 52.2 (OCH3) 
ppm. LC/MS: m/z = 448 and 450 [M + H+], 895 and 899 [2M + H+]; tR = 18.42 min; 99.1% pure (UV). 
 

Ethyl 2-([1,1'-biphenyl]-4-ylcarboxamido)-5-phenylthiophene-3-carboxylate (49a) 
yellow solid, yield: 40%. 1H NMR (500 MHz, CDCl3)  = 12.10 (s, 1 H, NH), 8.168.10 (m, 2 H), 
7.807.77 (m, 2 H), 7.687.62 (m, 4 H), 7.527.48 (m, 3 H), 7.467.38 (m, 3 H), 7.337.28 (m, 1 H), 
4.45 (q, J = 7.3 Hz, 2 H, OCH2), 1.47 (t, J = 7.3 Hz, 3 H, CH3) ppm. 13C NMR (125 MHz, CDCl3)  = 
166.0, 163.3, 148.6, 145.5, 139.7, 134.0, 133.8, 130.7, 129.0, 129.0, 128.3, 128.1, 127.6, 127.5, 
127.3, 125.5, 119.3, 114.1, 61.0 (OCH2), 14.4 (CH3) ppm. LC/MS: m/z = 428 [M + H+], 469 [M + H+ + 
CH3CN], 855 [2M + H+]; tR = 18.34 min; > 99.9% pure (UV). 
 

6.2.2.3 General Procedure for the synthesis of 36 and 48a. The appropriate alkyl 

aminobenzoate or alkyl aminothiophenecarboxylate (1 equiv) and the acyl chloride (1.2 equiv) were 

dissolved in toluene and refluxed for 4 h (36) or 18 h (48a). For purification the solvent was removed 

under reduced pressure and the remaining solid suspended in MeOH. After filtration the precipitate 

was washed with MeOH to yield the pure compound. 
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N-(4-Bromo-2-carbamoylphenyl)-[1,1'-biphenyl]-4-carboxamide (36) 
white solid, yield: 79%. Mp: 254256 °C. 1H NMR (500 MHz, DMSO-d6)  = 12.93 (s, 1 H, NH), 8.68 
(d, J = 9.1 Hz, 1 H), 8.54 (br. s., 1 H), 8.11 (d, J = 2.5 Hz, 1 H), 8.047.97 (m, 3 H), 7.907.86 (m, 2 
H), 7.797.74 (m, 3 H), 7.547.48 (m, 2 H), 7.467.41 (m, 1 H) ppm. 13C NMR (125 MHz, DMSO-d6)  
= 169.8, 164.2, 143.7, 139.4, 138.9, 135.2, 133.1, 131.2, 129.1, 128.3, 127.7, 127.2, 127.0, 122.1, 
121.1, 114.4 ppm. LC/MS: m/z = 395 and 397 [M + H+], 789 and 791 [2M + H+]; tR = 14.07 min; > 
99.9% pure (UV). 
 

Methyl 3-([1,1'-biphenyl]-4-ylcarboxamido)-5-(4-methoxyphenyl)thiophene-2-

carboxylate (48a) 
yellow solid, yield: 82%. 1H NMR (500 MHz, CDCl3)  = 11.29 (s, 1 H, NH), 8.49 (s, 1 H), 8.158.09 
(m, 2 H), 7.787.74 (m, 2 H), 7.707.63 (m, 4 H), 7.547.47 (m, 2 H), 7.467.39 (m, 1 H), 7.006.92 
(m, 2 H), 3.96 (s, 3 H, OCH3), 3.87 (s, 3 H, OCH3) ppm. 13C NMR (125 MHz, CDCl3)  = 165.3, 164.0, 
160.6, 150.4, 145.8, 145.1, 139.9, 132.3, 129.0, 128.1, 128.0, 127.6, 127.5, 127.2, 125.9, 117.0, 
114.5, 108.0, 55.4 (OCH3), 52.0 (OCH3) ppm. LC/MS: m/z = 444 [M + H+], 485 [M + H+ + CH3CN], 887 
[2M + H+]; tR = 17.96 min; 97.3% pure (UV). 
 

6.2.3 General Procedure for the synthesis of benzamidobenzoate or 

benzamidothiophenecarboxylate derivatives 3947, 50 (ester cleavage). The 

methyl or ethyl esters of the title compounds (39a47a, 50a) were hydrolyzed with 5 M NaOH in 

THF/MeOH (2:1) at room temperature (18 h). The mixture was acidified by the addition of 1 M HCl, 

filtered and the precipitate was washed with 1 M HCl to provide the title compounds (39, 50). If the 

compound was not pure at this stage of procedure it was washed with CH2Cl2 (4143) or CH2Cl2 and 

MeOH (40, 4447). 

 

3-([1,1'-Biphenyl]-4-ylcarboxamido)benzoic acid (39) 
white solid, yield: 42%. Mp: 288289 °C. 1H NMR (500 MHz, DMSO-d6)  = 10.49 (s, 1 H, NH), 8.47 
(s, 1 H), 8.158.05 (m, 3 H), 7.84 (d, J = 8.3 Hz, 2 H), 7.76 (d, J = 7.3 Hz, 2 H), 7.727.65 (m, 1 H), 
7.567.47 (m, 3 H), 7.477.36 (m, 1 H) ppm. 13C NMR (125 MHz, DMSO-d6)  = 167.2, 165.3, 143.3, 
139.5, 139.1, 133.4, 131.3, 129.1, 128.9, 128.4, 128.2, 126.9, 126.6, 124.5, 121.2, 116.9 ppm. LC/MS: 
m/z = 318 [M + H+], 359 [M + H+ + CH3CN]; tR = 11.17 min; 99.0% pure (UV). 
 
3-([1,1'-Biphenyl]-4-ylcarboxamido)-4-bromobenzoic acid (40) 
white solid, yield: 89%. Mp: 281282 °C. 1H NMR (500 MHz, DMSO-d6)  = 10.24 (s, 1 H, NH), 
8.158.12 (m, 2 H), 8.128.09 (m, 1 H), 7.907.85 (m, 3 H), 7.807.74 (m, 3 H), 7.557.49 (m, 2 H), 
7.467.40 (m, 1 H) ppm. 13C NMR (125 MHz, DMSO-d6)  = 166.3, 165.1, 143.5, 139.1, 136.9, 133.2, 
132.5, 130.8, 129.1, 129.0, 128.4, 128.2, 128.2, 127.0, 126.7, 125.5 ppm. LC/MS: m/z = 396 and 398 
[M + H+], 437 and 439 [M + H+ + CH3CN]; tR = 12.60 min; 97.3% pure (UV). 
 

3-([1,1'-Biphenyl]-4-ylcarboxamido)-5-bromobenzoic acid (41) 
beige solid, yield: 94%. Mp: 285286 °C. 1H NMR (500 MHz, DMSO-d6)  = 10.60 (s, 1 H, NH), 
8.468.37 (m, 2 H), 8.128.06 (m, 2 H), 7.897.84 (m, 2 H), 7.817.73 (m, 3 H), 7.547.48 (m, 2 H), 
7.487.39 (m, 1 H) ppm. 13C NMR (125 MHz, DMSO-d6)  = 165.9, 165.5, 143.5, 141.0, 139.0, 133.2, 
132.9, 129.1, 128.5, 128.2, 126.9, 126.7, 126.5, 126.2, 121.4, 119.9 ppm. LC/MS: m/z = 396 and 398 
[M + H+], 437 and 439 [M + H+ + CH3CN]; tR = 13.01 min; 99.4% pure (UV). 
 



74 

4-([1,1'-Biphenyl]-4-ylcarboxamido)benzoic acid (42) [12] 
beige solid, yield: 92%. Mp: 337 °C (decomposition). 1H NMR (500 MHz, DMSO-d6)  = 10.58 (s, 1 H, 
NH), 8.08 (d, J = 8.3 Hz, 2 H), 7.997.91 (m, 4 H), 7.85 (d, J = 8.3 Hz, 2 H), 7.807.74 (m, 2 H), 
7.547.48 (m, 2 H), 7.467.40 (m, 1 H) ppm. 13C NMR (125 MHz, DMSO-d6)  = 167.0, 165.6, 143.4, 
143.3, 139.1, 133.4, 130.3, 129.1, 128.5, 128.2, 127.0, 126.6, 125.5, 119.5 ppm. LC/MS: m/z = 318 [M 
+ H+], 359 [M + H+ + CH3CN]; tR = 11.29 min; 99.4% pure (UV). 
 
3-([1,1'-Biphenyl]-4-ylcarboxamido)thiophene-2-carboxylic acid (43) [13] 
yellow solid, yield: 87%. Mp: 242243 °C. 1H NMR (500 MHz, DMSO-d6)  = 11.27 (s, 1 H, NH), 8.13 
(d, J = 5.5 Hz, 1 H), 8.01 (d, J = 8.5 Hz, 2 H), 7.957.87 (m, 3 H), 7.807.73 (m, 2 H), 7.547.48 (m, 2 
H), 7.477.39 (m, 1 H) ppm. 13C NMR (125 MHz, DMSO-d6)  = 165.5, 163.0, 144.0, 143.8, 138.8, 
132.6, 132.1, 129.1, 128.4, 127.8, 127.3, 127.0, 121.8, 112.0 ppm. LC/MS: m/z = 324 [M + H+], 365 [M 
+ H+ + CH3CN], 647 [2M + H+]; tR = 12.80 min; 99.8% pure (UV). 
 
4-([1,1'-Biphenyl]-4-ylcarboxamido)thiophene-3-carboxylic acid (44) [13] 
yellow solid, yield: 90%. Mp: 265265 °C. 1H NMR (500 MHz, DMSO-d6)  = 11.23 (s, 1 H, NH), 8.39 
(d, J = 3.5 Hz, 1 H), 8.10 (d, J = 3.5 Hz, 1 H), 8.017.97 (m, 2 H), 7.937.87 (m, 2 H), 7.797.73 (m, 2 
H), 7.557.48 (m, 2 H), 7.467.41 (m, 1 H) ppm. 13C NMR (125 MHz, DMSO-d6)  = 165.7, 163.2, 
143.7, 138.9, 136.0, 133.9, 132.4, 129.1, 128.3, 127.4, 127.3, 126.9, 122.7, 110.6 ppm. LC/MS: m/z = 
324 [M + H+], 647 [2M + H+]; tR = 12.82 min; 99.5% pure (UV). 
 

2-([1,1'-Biphenyl]-4-ylcarboxamido)thiophene-3-carboxylic acid (45) 
brown solid, yield: 92%. Mp: 242244 °C. 1H NMR (500 MHz, DMSO-d6)  = 12.12 (s, 1 H, NH), 
8.038.00 (m, 2 H), 7.957.91 (m, 2 H), 7.797.75 (m, 2 H), 7.547.50 (m, 2 H), 7.487.41 (m, 1 H), 
7.24 (d, J = 5.7 Hz, 1 H), 7.08 (d, J = 5.7 Hz, 1 H) ppm. 13C NMR (125 MHz, DMSO-d6)  = 166.8, 
162.5, 147.9, 144.3, 138.7, 130.6, 129.1, 128.4, 127.8, 127.4, 127.0, 124.3, 116.9, 114.1 ppm. LC/MS: 
m/z = 324 [M + H+], 365 [M + H+ + CH3CN], 647 [2M + H+]; tR = 13.53 min; 96.2% pure (UV). 
 

3-([1,1'-Biphenyl]-4-ylcarboxamido)-5-phenylthiophene-2-carboxylic acid (46) 
beige solid, yield: 81%. Mp: 224225 °C. 1H NMR (500 MHz, DMSO-d6)  = 11.31 (s, 1 H, NH), 8.46 
(s, 1 H), 8.058.02 (m, 2 H), 7.937.90 (m, 2 H), 7.787.75 (m, 4 H), 7.537.49 (m, 4 H), 7.477.42 
(m, 2 H) ppm. 13C NMR (125 MHz, DMSO-d6)  = 165.3, 163.0, 148.0, 144.2, 144.0, 138.8, 132.5, 
132.0, 129.4, 129.1, 128.4, 127.8, 127.3, 127.0, 125.8, 117.8, 111.1, 92.8 ppm. LC/MS: m/z = 400 [M 
+ H+], 441 [M + H+ + CH3CN], 799 [2M + H+]; tR = 15.73 min; 98.2% pure (UV). 
 
3-([1,1'-Biphenyl]-4-ylcarboxamido)-5-(4-chlorophenyl)thiophene-2-carboxylic acid 
(47) 
grey-green solid, yield: 81%. Mp: 225226 °C. 1H NMR (500 MHz, DMSO-d6)  = 11.26 (s, 1 H, NH), 
8.46 (s, 1 H), 8.038.01 (m, 2 H), 7.927.89 (m, 2 H), 7.797.75 (m, 4 H), 7.557.50 (m, 4 H), 
7.467.41 (m, 1 H) ppm. 13C NMR (125 MHz, DMSO-d6)  = 165.2, 163.0, 146.5, 144.2, 144.1, 138.8, 
134.0, 131.9, 131.3, 129.4, 129.1, 128.4, 127.8, 127.6, 127.3, 127.0, 118.3, 111.4 ppm. LC/MS: m/z = 
434 and 436 [M + H+], 867 and 869 [2M + H+]; tR = 16.31 min; > 99.9% pure (UV). 
 
2-([1,1'-Biphenyl]-4-ylsulfonamido)-5-bromobenzoic acid (50) [14]. 
beige solid, yield: 96%. Mp: 218219 °C. 1H NMR (500 MHz, DMSO-d6)  = 11.12 (br. s., 1 H, NH), 
7.98 (d, J = 2.5 Hz, 1 H), 7.927.85 (m, 4 H), 7.75 (dd, J = 8.8, 2.5 Hz, 1 H), 7.727.67 (m, 2 H), 
7.547.47 (m, 3 H), 7.477.40 (m, 1 H) ppm. 13C NMR (125 MHz, DMSO-d6)  = 168.4, 145.0, 138.9, 
138.0, 137.2, 137.0, 133.6, 129.1, 128.8, 127.7, 127.6, 127.1, 120.7, 119.1, 115.1 ppm. LC/MS: m/z = 
430 and 432 [M + H+] (negative mode); tR = 13.70 min; > 99.9% pure (UV). 
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6.2.4. Compounds prepared by different procedures (35b, 35a, 35, 36a, 48, 49, 

50a). 

2-Amino-6-hydroxybenzoic acid (35b). To a solution of 2-amino-6-methoxybenzoic acid (1 

equiv) in anhydrous CH2Cl2 at 78 °C (dry ice/acetone bath), boron tribromide (1 M in CH2Cl2, 3 equiv) 
was added dropwise. The reaction mixture was stirred for 18 h at room temperature under a nitrogen 
atmosphere. After addition of EtOH and MeOH the solvents were evaporated to provide a brown solid 
which was used for the next reaction step without further purification; brown solid, yield: 75%. 
 
2-([1,1'-Biphenyl]-4-yl)-5-hydroxy-4H-benzo[d][1,3]oxazin-4-one (35a) was prepared 
according to 6.2.2.3. The solvent was evaporated and the remaining solid was suspended in MeOH. 
After filtration the precipitate was washed with MeOH to provide a mixture of the title compound (80%) 
and 2-([1,1'-biphenyl]-4-yl)-4-oxo-4H-benzo[d][1,3]oxazin-5-yl [1,1'-biphenyl]-4-carboxylate (20%). This 
beige solid was used for the next reaction step without further purification; beige solid, yield: 50%. 
 
2-([1,1'-Biphenyl]-4-ylcarboxamido)-6-hydroxybenzoic acid (35). 2-([1,1'-biphenyl]-4-yl)-5-
hydroxy-4H-benzo[d][1,3]oxazin-4-one (35a) was dissolved in THF and hydrolyzed by an aqueous 
solution containing 1 M LiOH at room temperature (18 h). The mixture was acidified by the addition of 
1 M HCl, filtered and the precipitate was successively washed with 1 M HCl and MeOH to provide the 
title compound. Sufficient purity was achieved without further purification; brown solid, yield: 61%. Mp: 
209210 °C. 1H NMR (500 MHz, DMSO-d6)  = 11.99 (s, 1 H, NH), 8.048.02 (m, 2 H), 7.99 (dd, J = 
8.2, 1.1 Hz, 1 H), 7.877.85 (m, 2 H), 7.777.75 (m, 2 H), 7.527.49 (m, 2 H), 7.447.39 (m, 2 H), 6.69 
(dd, J = 8.2, 1.1 Hz, 1 H) ppm. 13C NMR (125 MHz, DMSO-d6)  = 171.8, 164.4, 161.3, 143.5, 140.6, 
139.0, 133.7, 133.7, 129.2, 128.3, 127.9, 127.1, 127.0, 112.3, 111.5, 105.9 ppm. LC/MS: m/z = 334 [M 
+ H+], 667 [2M + H+]; tR = 11.00 min; 96.2% pure (UV). 
 
2-Amino-5-bromobenzamide (36a). Methyl 2-amino-5-bromobenzoate (1 equiv) was added to a 
solution of NH3 in MeOH (7 M, 10 equiv) under a N2 atmosphere. The reaction mixture was stirred for 
2 weeks at room temperature. After evaporation of the solvent the remaining solid was purified by CC 
(n-hexane/EtOAc 1:1) to provide the pure compound; white solid, yield: 11%. 1H NMR (500 MHz, 
DMSO-d6)  = 7.84 (br. s., 1 H), 7.70 (d, J = 2.3 Hz, 1 H), 7.25 (dd, J = 8.8, 2.3 Hz, 1 H), 7.227.09 (m, 
1 H), 6.70 (s, 2 H, NH2), 6.66 (d, J = 8.8 Hz, 1 H) ppm. 13C NMR (125 MHz, DMSO-d6)  = 169.9, 
149.4, 134.3, 130.8, 118.5, 115.2, 104.7 ppm. LC/MS: m/z = 215 and 217 [M + H+], 198 and 200 [M+  
NH2]; tR = 6.65 min; 97.0% pure (UV). 
 
3-([1,1'-Biphenyl]-4-ylcarboxamido)-5-(4-methoxyphenyl)thiophene-2-carboxylic acid 
(48). Methyl 3-([1,1'-biphenyl]-4-ylcarboxamido)-5-(4-methoxyphenyl)thiophene-2-carboxylate (48a) 
was dissolved in THF/MeOH (2:1). An aqueous solution containing 1 M NaOH and 5 M LiOH was 
added and the mixture was stirred at 80 °C for 8 h. After acidification by the addition of 1 M HCl the 
resulting suspension was filtered and the precipitate was washed with 1 M HCl to provide the title 
compound. Sufficient purity was achieved without further purification; yellow solid, yield: 37%. Mp: 
210212 °C. 1H NMR (500 MHz, DMSO-d6)  = 11.29 (s, 1 H, NH), 8.34 (s, 1 H), 8.048.01 (m, 2 H), 
7.937.90 (m, 2 H), 7.787.75 (m, 2 H), 7.727.67 (m, 2 H), 7.547.50 (m, 2 H), 7.467.41 (m, 1 H), 
7.087.02 (m, 2 H), 3.81 (s, 3 H, OCH3) ppm. 13C NMR (125 MHz, DMSO-d6)  = 165.5, 163.1, 160.4, 
148.5, 144.5, 144.1, 138.8, 132.1, 129.2, 128.5, 127.9, 127.4, 127.4, 127.0, 125.1, 116.6, 114.9, 
109.7, 55.4 (OCH3) ppm. LC/MS: m/z = 430 [M + H+], 859 [2M + H+]; tR = 15.43 min; 95.4% pure (UV). 
 
2-([1,1'-Biphenyl]-4-ylcarboxamido)-5-phenylthiophene-3-carboxylic acid (49). Ethyl 2-
([1,1'-biphenyl]-4-ylcarboxamido)-5-phenylthiophene-3-carboxylate (49a) was dissolved in THF/MeOH 
(2:1) and hydrolyzed at room temperature with an aqueous solution containing 5 M NaOH and 5 M 
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KOH (18 h). The mixture was acidified by the addition of 1 M HCl, filtered and the precipitate was 
washed with 1 M HCl to provide the title compounds. Sufficient purity was achieved without further 
purification; yellow solid, yield: 62%. Mp: 249250 °C. 1H NMR (500 MHz, DMSO-d6)  = 12.18 (s, 1 H, 
NH), 8.058.01 (m, 2 H,) 7.977.91 (m, 2 H), 7.807.75 (m, 2 H), 7.717.66 (m, 2 H), 7.60 (s, 1 H), 
7.557.51 (m, 2 H), 7.477.41 (m, 3 H), 7.357.29 (m, 1 H) ppm. 13C NMR (125 MHz, DMSO-d6)  = 
166.7, 162.5, 147.0, 144.4, 138.7, 133.2, 132.6, 130.4, 129.2, 129.1, 128.5, 127.9, 127.6, 127.4, 
127.0, 125.1, 120.2, 115.3 ppm. LC/MS: m/z = 400 [M + H+], 441 [M + H+ + CH3CN], 799 [2M + H+]; tR 
= 14.64 min; 98.2% pure (UV). 
 

Methyl 2-([1,1'-biphenyl]-4-ylsulfonamido)-5-bromobenzoate (50a). Methyl 2-amino-5-
bromobenzoate (1 equiv) and a catalytic amount of DMAP were added to a suspension of [1,1'-
biphenyl]-4-sulfonyl chloride (1.5 equiv) in pyridine under a N2 atmosphere. The reaction mixture was 
stirred for 6 days at room temperature and 2 M HCl was added. The mixture was extracted with 
EtOAc, the combined organic layers washed with saturated NaHCO3 and dried over MgSO4. For 
purification the solvent was evaporated and the remaining solid was suspended in MeOH. After 
filtration the precipitate was washed with MeOH to provide the pure compound; slightly yellow solid, 
yield: 78%. 1H NMR (500 MHz, CDCl3)  = 10.59 (s, 1 H, NH), 8.06 (d, J = 2.5 Hz, 1 H), 7.927.89 (m, 
2 H), 7.687.65 (m, 3 H), 7.597.55 (m, 3 H), 7.497.44 (m, 2 H), 7.437.38 (m, 1 H), 3.89 (s, 3 H, 
OCH3) ppm. 13C NMR (125 MHz, CDCl3)  = 167.1, 146.1, 139.5, 139.0, 137.6, 137.3, 133.8, 129.0, 
128.6, 127.7, 127.7, 127.2, 120.8, 117.4, 115.7, 52.8 (OCH3) ppm. LC/MS: m/z = 446 and 448 [M + 
H+], 487 and 489 [M + H+ + CH3CN]; tR = 15.61 min; 95.4% pure (UV). 
 

6.3 Biology 

RNAP transcription inhibition assay. RNAP transcription inhibition assay was performed as 

described previously [9, 11]. 

PqsD inhibition assay. PqsD inhibition assay was performed as described previously [8]. 
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_____________________________ 
 
*  For the sake of clarity, all compounds in chapter 4 are characterized by their Arabic compound number (or 

Roman compound number, in case of the compounds used for the flexbile alignment) in combination with a 
Roman numeral (IIII) to identify the paper in which they have been published (e.g., VII/I is compound VII from 
paper I, 7/I is compound 7 from paper I). 

4. Final Discussion 

 

4.1 Hit identification and RNAP in vitro activity 

The overall aim of the present study was the design of novel anti-infectives that are 

able to overcome bacterial tolerance to clinically used antibiotics and do not provoke 

the fast emergence of new resistances. As RNAP is an attractive and validated but 

underexploited drug target the first part of this work focuses on the development of 

new RNAP inhibitors active against rifampicin resistant bacteria. For this purpose, a 

pharmacophore model was created by flexible alignment of different selected RNAP 

inhibitors described in literature. The chosen inhibitors have similar structural features 

in common although partly binding to different sites of the enzyme. Even a compound 

(VII/I*) which had been published as an inhibitor of transcription/ translation (TT) 

without knowledge of the exact target [Larsen et al. 2006] was included into the 

model, as we were able to demonstrate that this TT inhibitor is also acting via RNAP 

inhibition. This practice of including molecules binding to different sites into one 

pharmacophore model is rather unusual as it has the disadvantage that the mode of 

action of the resulting hit compounds is unknown. On the other hand, since this kind 

of pharmacophore model is not restricted to a single binding domain, the approach 

supports the discovery of an increased number of RNAP inhibitors independent of 

their binding mode, and should result in a larger hit rate. Thus, a higher probability to 

identify novel RNAP inhibitors is achievable, although being much more purposive 

than a random screening approach. Additionally, using this model allows to identify 

compounds binding to more than one binding site of RNAP, rendering the emergence 

of resistance against the compound less probable. 
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Figure 5. Pharmacophore model containing four core features (F1: O2/anion, F2: aromatic, 
F3: HBD/HBA/aromatic, F4: aromatic), one accessory feature (F5: hydrophobic), and two 
aromatic projections (dashed orange, one in front of and one hidden behind F2) 

 

With this pharmacophore consisting of four core features (F1F4; Fig. 5), two 

aromatic projections (dashed orange in front and hidden behind F2; Fig. 5) and one 

accessory feature (F5; Fig. 5) we screened our in-house database comprising 

approximately 2000 compounds. Sixty-four hit compounds were identified of which 

eleven, originating from five different structural classes could be experimentally 

confirmed to be active in the in vitro transcription assay. Three of these compounds 

belonging to the class of benzamidobenzoic acids were chosen for chemical 

optimization, since they were the most promising congeners regarding their potency 

and chemical modifiability. With the objective to explore the structure-activity 

relationship (SAR) and to increase the RNAP in vitro activity several derivatives were 

synthesized varying in substituents and substitution pattern around the anthranilic 

acid core (Fig. 6). 

 

 

Figure 6. General structure of synthesized benzamidobenzoic acids 
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A first important finding revealed that the unsubstituted 2-benzamidobenzoic acid 

core alone (4/I; Table 1) is not able to inhibit RNAP. Either a phenoxy or benzyl 

substituent in 3-position or a phenyl substituent in 4-position was obligatory for 

acceptable activity. This structural information had not been comprised by the 

pharmacophore model. Although it has been demonstrated to be a suitable tool to 

identify novel inhibitors, the model was not able to reliably differentiate between 

active and inactive compounds, since 4/I would also have been recognized as active. 

Therefore, the original pharmacophore was extended at its eastern side by two 

additional features, of which at least one feature has to be present in a screened 

compound to designate it as a hit compound. The use of the resulting model should 

improve efficacy and reduce the occurrence of false positives in future screenings of 

larger databases. Thus, this extended pharmacophore is representing a promising 

tool for prospective attempts to discover novel classes of RNAP inhibitors. 

Further SAR exploration of the newfound class of benzamidobenzoic acid RNAP 

inhibitors revealed that lipophilic electron withdrawing substituents in 4- and 5-

position of the anthranilic acid core are advantageous for the inhibitory activity (e.g., 

6/I and 8/I compared to 1/I). In contrast, a hydrophilic electron donating group in one 

of these positions reduced the compound’s potency (e.g., 24/I compared to 1/I). 

These findings were consistent with our expectations since the pharmacophore 

model (Fig. 5) possesses a lipophilic accessory feature in this position. In addition it 

can be concluded that the aromatic moiety of the anthranilic acid should be electron-

poor for an ideal interaction with its receptor and is probably involved in some kind of 

aromatic interaction with an electron-rich opponent. Interestingly, the lipophilic 

electron withdrawing substituents were not tolerated in 3- and 6-position (e.g., 5/I and 

9/I compared to 1/I), presumably due to an “out of the plane”-torsion by some parts of 

the anthranilic acid, caused by a steric clash. A hydroxy group in 6-position (35/III), 

however, led to an increased activity and can be explained either by an additional 

hydrogen bond interaction with the enzyme or by a favorable adjustment of the 

carboxylic acid by the OH group. The most potent in vitro RNAP inhibitor was 34/I 

representing a combination of several beneficial features by carrying a chlorine 

substituent at the anthranilic acid core in 4-position and 3-OPh, 4-Ph substituents at 

the benzamide part. 
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Table 1. Inhibitory activities of selected compounds against E. coli RNAP 

 

Cpd R1 R2 
RNAP 

inhibitiona 
Cpd R1 R2 

RNAP 
inhibitiona 

1/I H 4-Ph 31% 8/I 5-Cl 4-Ph 46 µM 

2/I H 3-OPh 23% 9/I 6-Cl 4-Ph n.i. 

3/I H 3-OPh, 4-Ph 20 µM 24/I 5-OH 4-Ph 17% 

4/I H H n.i. 34/I 4-Cl 3-OPh, 4-Ph 9 µM 

5/I 3-Cl 4-Ph n.i. 35/III 6-OH 4-Ph 74 µM 

6/I 4-Cl 4-Ph 37 µM     
 

 a IC50 value (SD <20%) or percentage inhibition at 200 µM (SD <40%) for E. coli RNAP; Data represent the mean 
   values of at least three experiments. 
n.i.: no inhibition 
 

Further structural modifications altering the core of the benzamidobenzoic acids were 

performed and provided an advanced insight into this class of compounds. The 

replacement of the carboxylic acid (36/III38/III; Table 2) was accompanied by 

severe solubility problems highlighting the importance of this group. Even if it is not 

needed for the inhibitors’ binding to the enzyme, it is essential for a reasonable 

aqueous solubility. Shifting the carboxylic acid from ortho to meta or para position 

(39/III and 42/III compared to 2/III; 40/III and 41/III compared to 22/III) resulted in just 

one case (39/III compared to 2/III) in a slightly increased activity. Nevertheless, these 

modifications were a valuable tool to demonstrate that the carboxylic acid might even 

have a more meaningful role than only being responsible for the solubility. 

Bioisosteric replacement of the anthranilic acid phenyl ring by differently substituted 

thiophenes (43/III49/III) merely caused moderate changes in activity, but afforded 

three new compounds possessing IC50 values as low as ~10 µM (46/III48/III). In 

addition, by dint of 50/III it was demonstrated that the amide function of the 

benzamide substructure is exchangeable for sulfonamide without a loss of in vitro 

potency. Altogether, altering the benzamidobenzoic acid core did not generate 

compounds more potent than 34/I but a valuable gain of additional SAR knowledge. 

Moreover, the fact that several modifications without a loss of activity were obtained 

exhibits the variability and potential for further changes of this class of 
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benzamidobenzoic acids and encourages that the design of more potent derivatives 

is possible. 

 

Table 2. Inhibitory activities of selected compounds against E. coli RNAP 

 

 

Cpd R1 
RNAP 

inhibitiona 
Cpd R1 

RNAP 
inhibitiona 

2/III  31% @ 200 µM 43/III H 28% @ 200 µM 

22/III COOH 31 µM 44/III  33% @ 200 µM 

36/III CONH2 n.i.b 45/III H 161 µM 

37/III CN n.i.b 46/III Ph 10 µM 

38/III COOMe n.i.b 47/III p-Cl-Ph 13 µM 

39/III H 31% @ 100 µM 48/III p-OMe-Ph 9 µM 

40/III 4-Br 25% @ 200 µM 49/III Ph 33% @ 50 µM 

41/III 5-Br 110 µM 50/III  35 µM 

42/III  15% @ 100 µM    
 

a IC50 value (SD <20%) or percentage inhibition (SD <40%) for E. coli RNAP; Data represent the mean values of 
  at least three experiments. 
b low solubility: no inhibition in saturated solution 
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4.2 Mechanistic investigations on RNAP inhibition and revelation of the binding 

site 

In order to understand the mechanism behind the RNAP inhibition by 

benzamidobenzoic acids, several binding experiments and functional assays were 

performed. As, amongst others, inhibitors of the :core protein-protein interaction 

(PPI) were employed to build the pharmacophore model used to identify the hits, PPI 

inhibition could also be the possible mechanism of action of our compounds. 

Therefore, an enzyme-linked immunosorbent assay (ELISA)-based RNAP assembly 

test (Fig. 7) was established to ascertain whether the benzamidobenzoic acids are 

indeed able to prevent the interaction between the RNAP core enzyme and 70. 

Here, all tested compounds of the new series that were potent in the in vitro 

transcription assay exhibited comparable activity to the positive control. However, 

comparing the IC50 values obtained in the ELISA with the ones from the functional 

assay, it is also noticeable, that the compounds are slightly less active in the ELISA, 

except for reference PPI inhibitor V/I, thereby meaning that other accessory 

mechanisms of inhibition cannot be fully excluded. 

Since inhibitors of the :core interaction would be expected to have a more intense 

effect on a 70-dependent transcription reaction than on a transcription independent 

of 70, this kind of experimental comparison was also performed for the 

benzamidobenzoic acids. As a matter of fact they inhibited the holo enzyme more 

strongly than the core enzyme, thereby providing a further proof of being :core 

interaction inhibitors. 

 

Figure 7. Schematic procedure of the ELISA based RNAP assembly assay 
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Beside the knowledge about the mechanism of action, having more detailed 

information about the binding site would be desirable to enable structure-based 

inhibitor design. An inhibition of the :core interaction can be caused by the 

compound binding either to the  factor or to the  subunit or is induced by an 

allosteric mechanism. Although displaying a reduced activity in the 70-independent 

assay, where only core enzyme is present, the benzamidobenzoic acids are not 

entirely inactive indicating the presence of a binding site for the compounds at the 

core enzyme. 

To further specify the binding site of the inhibitors, surface plasmon resonance (SPR) 

was employed. SPR is a biophysical technology to measure the binding affinity 

between an injected analyte and an immobilized biomolecule in real-time [Cooper 

2002]. It is particularly suitable for demonstrating the binding of a molecule to a 

defined part of the enzyme, since the different subunits or parts of them can be 

separately immobilized to the SPR chip and labeling of compounds or proteins is not 

required. Immobilization of a truncated RNAP  subunit containing the so-called 

coiled-coil and lid-rudder-system (CC-LRS), which had been identified as 70:core 

interaction hot spot [Arthur et al. 1998, Hüsecken et al. 2013], ensures that the event 

of binding is only observed if a compound directly binds to this key region of the 

enzyme. Additionally, in the competition experiments with 70 the likelihood of an 

allosteric mechanism is reduced to a minimum due to the small size of the protein. 

The positive results of the benzamidobenzoic acids in the SPR assays, comprising 

the dose-dependent binding to CC-LRS, the linear correlation between dissociation 

rate constant, and the in vitro transcription inhibitory activity, as well as the effective 

inhibition of 70:CC-LRS interaction in the competition experiment, revealed this 

class of compounds as true inhibitors of :core PPI. 

Subsequent molecular modeling guided by the results of SPR-based mutant studies 

provided a detailed insight into the suggested binding pose of the benzamidobenzoic 

acids (Fig. 8). Here, the carboxyl function seems to be firmly complexed by the 

guanidine moieties of the arginines R271, R275 and R278, stressing its considerable 

role for the compounds’ activity. Furthermore, the outer phenyl ring of the 

compounds’ extended benzamide part appears to interact with threonine T317.  

 



85 

 

Figure 8. Suggested binding pose of 6/I (in yellow) to the βʹ CC-LRS of T. thermophilus (PDB 
3EQL). Amino acids important for the SPR mutant studies are shown in turquois and with E. 

coli numbering. 

 

It has to be mentioned that, although computational docking experiments are an 

appropriate tool to calculate and illustrate reasonable binding poses of molecules to a 

certain protein, of course they are not infallible and the calculated poses have to be 

experimentally proven (e.g., by X-ray structure or NMR experiments). Furthermore, 

the truncated  used in the SPR experiments is a well-suited, but artificial model and 

the explanatory power of the results should not be overestimated. Nevertheless, all 

the results are in good accordance with the in vitro RNAP inhibition SAR studies 

presented above, where it has already been demonstrated that the carboxylic acid 

group has a larger impact than only being responsible for the compounds’ solubility 

and that the outer phenyl ring is a crucial feature for potent inhibitors. 

Binding to the :core interface turns the benzamidobenzoic acids into a highly 

attractive option to avoid and to overcome bacterial resistance. On the one hand, the 

:core interface is a highly conserved region [Burgess et al. 2001] and mutations 

occur rarely, since many different  factors must be able to bind to this site. On the 

other hand no cross-resistance to clinically used rifamycins, which are binding to a 

distinct binding site, has to be expected. 
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4.3 Antibacterial activity 

A good in vitro activity against a validated antibacterial target is not sufficient to 

designate a compound as antibiotic. As the newly developed inhibitors are intended 

to act against living bacteria, they must also have the ability to unfold their activity in 

cellulo. This could for example be hampered by an unsatisfactory permeation into the 

bacterial cell or rapid inactivation of the compound by the bacterium. Therefore, the 

antibacterial profile of the class of benzamidobenzoic acids was investigated. In a 

first approach the minimum inhibitory concentration (MIC) values of the inhibitors 

were determined in E. coli TolC. This organism defective in the AcrABTolC 

multidrug efflux system, was chosen to reduce effects associated with drug efflux, as 

these effects would have impeded first structure-antibacterial activity relationship 

studies. Subsequently, the most interesting inhibitors were further tested for 

antibacterial activity against wild-type Gram-negative and Gram-positive bacteria. 

Beside a few exceptions (e.g., 33/I and 34/I), which are probably due to 

pharmacokinetic reasons, the benzamidobenzoic acids are strongly active against 

the TolC deficient E. coli. Importantly, this also applies for rifampicin-resistant strains 

[Fruth, unpublished results]. However, the inhibitors do not show any effect against 

the tested wild-type Gram-negative bacteria. This leads to the assumption that the 

compounds in principle are active against Gram-negatives, but are quickly expelled 

by efflux pumps. To make the compounds active against this type of bacteria 

elaborate chemical modifications would probably be necessary to get them out of the 

efflux pumps’ substrate spectrum. With respect to the Gram-positive bacteria, 

however, the benzamidobenzoic acids are highly potent, even against a set of 

clinically relevant methicillin-resistant Staphylococcus aureus (MRSA) strains they 

were shown to be effective [Fruth, unpublished results]. 
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Table 3. Inhibitory E. coli RNAP in vitro activities and Minimum Inhibitory 

Concentrations (MIC) for selected compounds 

 

 

Cpd R1 R2 
IC50 

(RNAP) 
[µM]a 

MIC [µg/mL]b 

E. coli 
TolC 

E. coli 
K12 

PAO1c 
B. 

subtilis 
S. 

aureus 

rifampicin 0.03 10 7 13 5 0.02 

myxopyronin B 0.35 1 >25 >25 0.9 0.5 

6/I 4-Cl 4-Ph 37 3 >50 >50 2 24 

7/I 4-Cl 3-OPh 44 3 >50 >50 3 14 

12/I 5-F 3-OPh 98 5 >100 >100 4 48 

15/I 4-Br 3-OPh 34 3 >25 >25 3 8 

28/I 5-CF3 4-Ph 28 2 >50 >50 4 5 

32/I 5-Ph 3-OPh 13 2 >25 >25 3 6 

33/I 4-F 3-OPh, 4-Ph 13 >25 >25 >25 >25 17 

34/I 4-Cl 3-OPh, 4-Ph 9 >25 - - - - 
 

a IC50 value (SD <20%) for E. coli RNAP; Data represent the mean values of at least three experiments. 
b Minimum inhibitory concentration; Data represent the mean values of at least two independent experiments 
  (three for MIC <10 µg/mL). 
c P. aeruginosa 

 

Comparison of SAR derived from the MIC values for E. coli TolC and from in vitro 

RNAP inhibition IC50 values exhibited a rough correlation. This indicates that indeed 

the inhibition of RNAP induces bacterial cell death. Nevertheless, it is conspicuous 

that the benzamidobenzoic acids possess very low MIC values comparable to the 

reference compounds (rifampicin, myxopyronin), although they display distinctly less 

pronounced RNAP inhibitory activities in vitro (Table 3). Investigation of the impact of 

benzamidobenzoic acids on macromolecule biosynthesis in E. coli TolC revealed, 

beside the expected inhibition of RNA formation comparable to rifampicin, a strong 

decrease in lipid biosynthesis. In literature, benzamidobenzoic acids have been 

described as inhibitors of FabH [Nie et al. 2005], an enzyme involved in fatty acid 

synthesis. This could explain the observed reduction of lipid production. Thus, it can 

be supposed that the good antibacterial activity is the result of a dual target 

mechanism comprising RNAP and FabH inhibition. This is of special interest 
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regarding our goal to develop new anti-infectives which are less prone to provoke 

bacterial resistances, as mutations occurring in two different enzymes in parallel will 

definitely be less likely than the occurrence of a mutation in one single enzyme. 

Indeed, it has also been reflected in experiments in which a significantly reduced 

resistance frequency for benzamidobenzoic acids compared to reference rifampicin 

has been demonstrated. These results highlight the great potential of this promising 

class of compounds and motivate to further develop them for use as anti-infective 

drugs. 

 

4.4 Benzamidobenzoic acids as selective PqsD inhibitors 

PqsD is an appropriate and attractive target for an anti-virulence strategy to fight 

infections caused by P. aeruginosa. As hit compound 3/I, which had been discovered 

in the VS for RNAP inhibitors, was described in 2011 to inhibit PqsD in vitro [Pistorius 

et al. 2011], it has been assumed that the synthesized derivatives of the 

benzamidobenzoic acid class could also be inhibitors of PqsD. Additionally, at least 

some of them have been shown to be inhibitors of FabH, which closely resembles 

PqsD, and they possess a structural similarity to PqsD inhibitors published in 2013 

also containing a benzamidobenzoic acid core [Weidel et al. 2013]. Testing of the 

derivatives in an in vitro PqsD assay identified several new potent PqsD inhibitors, 

some of them even more active than 3/I. However, bacterial cell death caused by 

potent RNAP inhibition is not intended for an anti-virulence concept by PqsD 

inhibition, since it could provoke selective pressure. Therefore it is of particular 

interest to disclose not only the SAR of benzamidobenzoic acids for PqsD inhibition, 

but also the relationship between structure and selectivity for PqsD over RNAP.  

In general, many similarities between the structural elements beneficial for PqsD and 

RNAP inhibition, respectively, can be discovered. For example, a substituent in 3- or 

4-position of the benzamide moiety is a minimum requirement for the inhibition of 

both enzymes (4/III compared to 3/I, 2/III, and 3/III) and a compound with a 

substituent in both positions is even more potent (3/I compared to 2/III and 3/III). 

Furthermore, the introduction of lipophilic electron withdrawing substituents or phenyl 

rings in 4- and 5-position of the anthranilic acid moiety is also considerably 

advantageous for PqsD inhibition (e.g., 11/III15/III, 22/III, 23/III and 25/III27/III 
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compared to 2/III and 3/III). The drawback of this kind of substituents is that they do 

not afford the required selectivity over RNAP. However, structural modifications that 

predominantly or selectively increase PqsD activity can also be determined. 

Especially the introduction of a 3-Cl substituent to the anthranilic acid core strongly 

increases PqsD inhibition while in parallel leading to a total loss of RNAP inhibitory 

activity (5/III). A further interesting compound is the one containing a hydroxy 

substituent in 5-position also exhibiting highly selective PqsD inhibition (31/III). If 

instead the hydroxy substituent is introduced in 6-position, RNAP as well as PqsD 

activity are increased, but to a varying extent, resulting in a compound which is about 

50 times more active on PqsD than on RNAP (35/III). In addition, several bioisosteric 

replacements like the exchange of the anthranilic acid phenyl ring for a thiophene 

(e.g., 43/III) or of the amide for a sulfonamide function (50/III) can afford potent and 

selective PqsD inhibitors. Selectivity can also be gained by the introduction of 

aliphatically substituted sulfonamides in 3-position of the benzamide moiety (e.g., 

SO2NEt2, SO2N(n-Pr)2) like in the series of published benzamidobenzoic acid PqsD 

inhibitors [Weidel et al. 2013] (e.g., 51/III, 56/III63/III, 69/III and 80/III). Interestingly, 

86/III, containing an aromatic 3-SO2NEtBn substituent, represents a similarly potent 

RNAP inhibitor as 2/III and 3/III. Therefore, it can be concluded that in general in this 

position aromatics should be avoided to yield a selective PqsD inhibitor, as aromatics 

seem to be an essential feature for RNAP inhibition. 

The presented structure-activity and structure-selectivity studies reveal that 

compounds from the same structural class can be used for two totally different 

approaches to treat bacterial infections, one effectively killing bacteria, the other 

intended to reduce bacterial virulence and to hamper biofilm formation. By simple 

bioisosteric replacements or the introduction of small substituents the biological 

profile can be shifted in favor of the different targets, respectively, accentuating the 

enormous versatility and potential of benzamidobenzoic acids to act as anti-infectives 

in the fight against bacterial resistances. 
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Table 4. Inhibitory activities of selected compounds against PqsD and RNAP 

 

Cpd R1 R2 RNAP inhibitiona PqsD inhibitionb 

3/I H 3-OPh, 4-Ph 20 µM 6.6 µM 

2/III H 4-Ph 31% 55% 

3/III H 3-OPh 23% 37% 

4/III H H n.i. n.i. 

5/III 3-Cl 4-Ph n.i. 6.2 µM 

12/III 4-Br 3-OPh 34 µM 5.1 µM 

14/III 4-CF3 4-Ph 27 µM 4.9 µM 

15/III 4-Ph 3-OPh 14 µM 6.6 µM 

22/III 5-Br 4-Ph 31 µM 3.2 µM 

23/III 5-Br 3-OPh 34 µM 4.4 µM 

26/III 5-CF3 4-Ph 28 µM 3.4 µM 

27/III 5-Ph 3-OPh 13 µM 7.7 µM 

31/III 5-OH 4-Ph 17% 4.2 µM 

35/III 6-OH 4-Ph 74 µM 1.3 µM 

43/III - - 28% 5.2 µM 

50/III - - 35 µM 1.3 µM 

51/III H 3-SO2NEt2 n.i. 19.8 µM 

60/III 5-CF3 3-SO2NEt2 n.i. @ 50 µM 12.4 µM 

62/III 5-Br 3-SO2NEt2 n.i. @ 50 µM 9.9 µM 

69/III 5-Ph 3-SO2NEt2 n.i. @ 100 µM 3.0 µM 

80/III H 3-SO2N(n-Pr)2 n.i. 5.4 µM 

86/III H 3-SO2NEtBn 29% 16.5 µM 
 

 

a IC50 value (SD <20%) or percentage inhibition at 200 µM (SD <40%) for E. coli RNAP; Data represent the mean 
   values of at least three experiments. 
b IC50 value (SD <23%) or percentage inhibition at 50 µM (SD <40%); Data represent the mean values of at least 
   two experiments. 
n.i.: no inhibition 
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4.5 Outlook 

Despite their promising results in the in vitro enzyme inhibition assays and their 

excellent activity against several bacteria, the benzamidobenzoic acids still possess 

several drawbacks that should be abolished in future development before the 

compounds are appropriate to be used as anti-infective drugs. Especially the 

comparatively high lipophilicity (logP > 3; determined by SiriusT3, Sirius Analytical 

Instruments Ltd., East Sussex, UK) and the resulting rather poor aqueous solubility 

should be improved in a subsequent optimization program. Several possibilities for 

structural modifications which should enhance solubility are conceivable, e.g., the 

replacement of phenyl rings by different (nitrogen containing) heterocycles. As in 

general the eastern part of the compounds has not been fully explored until now, 

different hydrophilic substituents and substitution patterns can also be tested. 

Furthermore, the introduction of a substituent at the biphenyl moiety of the 

compounds creating an ortho-effect, thereby reducing the planarity of the compound, 

could improve solubility.  

A more complex drawback is posed by the fact that the benzamidobenzoic acids do 

not seem to reach their target in Gram-negative bacteria so far. Possibly chemical 

modifications could enhance permeability or get the compounds off the substrate 

spectrum of the efflux pumps, which are presumably responsible for the inactivity 

against the wild-type Gram-negative bacteria. Another possibility to increase 

compound concentration in the Gram-negative cell could be a coupling of the 

benzamidobenzoic acids to carrier systems like siderophores and thereby provoking 

an active uptake of the anti-infective [Fardeau et al. 2011, Ji et al. 2012, Starr et al. 

2014]. 

Since it is crucial to know about the exact modes of action of the benzamidobenzoic 

acids for further improvements, the probable binding pose to RNAP, proposed in this 

work, should be experimentally proven by X-ray structure or NMR experiments in a 

next step. Concerning the binding site on PqsD there are first hints that the 

compounds act as channel blockers [Weidel, unpublished results] in analogy to the 

series of published benzamidobenzoic acid inhibitors [Weidel et al. 2013], thus 

preventing anthraniloyl-CoA from accessing the PqsD active site. Nevertheless, this 

should also be further evaluated by X-ray or NMR. These continuative experiments 
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will enable a rational structural improvement of the compounds with the aim to turn 

them into clinically usable anti-infective drugs. 
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6. Supporting Information 

This section contains the supporting information of the publications presented in 

section 3. It provides further experimental results and detailed experimental methods 

as well as additional figures. 

 

6.1 Supporting Information for Publication I 

Full supporting information is available online:  

http://pubs.acs.org/doi/suppl/10.1021/jm400485e/suppl_file/jm400485e_si_001.pdf 

 

6.1.1 General directions 

 
Chemical names follow IUPAC nomenclature. Starting materials were purchased from 
Sigma-Aldrich, Acros, Maybridge, Combi Blocks, Fluka, ABCR, Alfa Aesar, Apollo and were 
used without purification. 
 
Column chromatography (CC) was performed on silica gel (63200 µm), preparative thin 
layer chromatography (TLC) on 1 mm SIL G-100 UV254 glass plates (Macherey-Nagel), and 
reaction progress was monitored by TLC on Alugram SIL G UV254 (Macherey-Nagel). 
 
1H NMR and 13C NMR spectra were recorded on a Bruker AM500 spectrometer (500 MHz 
and 125 MHz) at 300 K in CDCl3 or CD3SOCD3. Chemicals shifts are reported in  values 
(ppm), the hydrogenated residues of deuterated solvent were used as internal standard 
(CDCl3:   = 7.27 ppm in 1H NMR and  = 77.0 ppm in 13C NMR, DMSO-d6:  = 2.50 ppm in 
1H NMR and  = 39.5 ppm in 13C NMR). Signals are described as s, d, t, dd, ddd, dt and m 
for singlet, doublet, triplet, doublet of doublet, doublet of doublet of doublet, doublet of triplet 
and multiplet, respectively. Coupling constants (J) are given in Hertz (Hz).  
 
The reported yields are the isolated yields of purified material and are not optimized. 
 
Purity of compounds 1 to 34 was determined using LC/MS as follows: 
The SpectraSystems®-LC-system consisted of a pump, an autosampler, and a UV detector. 
Mass spectrometry was performed on a MSQ® electro spray mass spectrometer (Thermo 
Fisher, Dreieich, Germany). The system was operated by the standard software Xcalibur®. 
A RP C18 NUCLEODUR® 100-5 (125 x 3 mm) column (Macherey-Nagel GmbH, Duehren, 
Germany) was used as stationary phase. All solvents were HPLC grade. 
Solvent system: 
In a gradient run the percentage of acetonitrile (containing 0,1 % triflouro-acetic acid) in 0,1 
% triflouro-acetic acid was increased from an initial concentration of 0 % at 0 min to 100 % at 
15 min and kept at 100 % for 5 min. 
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The injection volume was 10 µL and flow rate was set to 800 µL/min. MS analysis was 
carried out at a spray voltage of 3800 V, a capillary temperature of 350 °C and a source CID 
of 10 V. Spectra were acquired in positive mode from 100 to 1000 m/z and at 254 nm for the 
UV trace. 
 
Melting points were determined on a Stuart Scientific melting point apparatus SMP3 and are 
uncorrected.  
 

6.1.2 Experimental and spectroscopic data of all compounds 
 

4-(N,N-dipropylsulfamoyl)benzoic acid (VIIb). To a solution of 4-(chlorosulfonyl)benzoic acid 
(1 equiv) in anhydrous CH2Cl2 at 0° C dipropylamine (3 equiv) was added slowly by means of a 
syringe. The reaction mixture was stirred at room temperature for 18 h followed by extraction with 1N 
HCl. The organic layer was washed with H2O and dried over MgSO4. Evaporation of the solvent 
provided the title compound; yield: 99 %. 1H NMR (500 MHz, CD3COCD3)  = 8.248.19 (m, 2 H), 
7.997.94 (m, 2 H), 3.173.12 (m, 4 H), 1.611.51 (m, 4 H), 0.86 (t, J = 7.4 Hz, 6 H) ppm. 
13C NMR (125 MHz, CD3COCD3)  = 166.6, 145.3, 134.9, 131.3, 128.1, 50.9, 22.8, 11.4 ppm. 
LC/MS: m/z = 286 [M + H+]; tR = 11.58 min; 94.8 % pure (UV). 
 

4-(4-oxo-4H-naphtho[2,3-d][1,3]oxazin-2-yl)-N,N-dipropylbenzenesulfonamide (VIIa). 4-(N,N-
dipropylsulfamoyl)benzoic acid (VIIb, 1.5 equiv) was converted to the corresponding benzoyl chloride 
via reaction with thionyl chloride (3.75 equiv) in CH2Cl2 in the presence of catalytic amounts of 
dimethylformamide (4 h reflux). After evaporation of the solvent the resulting benzoyl chloride and 3-
amino-2-naphthoic acid (1 equiv) were suspended in toluene and the mixture was refluxed for 18 h. 
The product was purified by CC (n-hexane/EtOAc 8:2); yield: 28 %. 1H NMR (500 MHz, CDCl3)  = 
8.89 (s, 1 H), 8.498.44 (m, 2 H), 8.19 (s, 1 H), 8.098.00 (m, 2 H), 7.997.94 (m, 2 H), 7.747.69 (m, 
1 H), 7.667.60 (m, 1 H), 3.193.12 (m, 4 H), 1.611.55 (m, 4 H), 0.90 (t, J = 7.4 Hz, 6 H, CH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 159.4, 153.8, 143.6, 140.8, 137.6, 133.9, 132.4, 131.4, 129.9, 129.7, 
128.7, 128.3, 127.5, 127.3, 125.8, 115.4, 49.9, 21.9, 11.2 ppm. 
LC/MS: m/z = 437 [M + H+], 478 [M+ + CH3CN]; tR = 17.57 min; 98.0 % pure (UV). 
 

3-(4-(N,N-dipropylsulfamoyl)benzamido)-2-naphthoic acid
1
 (VII). 4-(4-oxo-4H-naphtho[2,3-

d][1,3]oxazin-2-yl)-N,N-dipropylbenzenesulfonamide (VIIa) was dissolved in a mixture of THF/MeOH 
(2:1) and hydrolyzed by an aqueous solution containing 1 mol/L LiOH at room temperature (18 h). The 
mixture was acidified by the addition of 1 M HCl, filtered and the precipitate was successively washed 
with 1 M HCl. The product was purified by preparative TLC (CH2Cl2/MeOH 9:1); yield: 24 %.   1H NMR 
(500 MHz, CD3SOCD3)  = 12.63 (br. s., 1 H, NH), 9.09 (s, 1 H), 8.76 (s, 1 H), 8.218.14 (m, 2 H), 
8.06 (d, J = 8.2 Hz, 1 H), 8.047.99 (m, 2 H), 7.94 (d, J = 8.2 Hz, 1 H), 7.687.59 (m, 1 H), 7.567.47 
(m, 1 H), 3.07 (t, J = 7.6 Hz, 4 H), 1.551.43 (m, 4 H), 0.82 (t, J = 7.4 Hz, 6 H, CH3) ppm. 
13C NMR (125 MHz, CD3SOCD3)  = 169.9, 163.5, 142.4, 138.2, 136.1, 135.4, 133.2, 129.2, 129.1, 
128.6, 128.1, 127.5, 127.3, 125.8, 118.7, 117.0, 49.7, 21.7, 11.0 ppm. 
LC/MS: m/z = 455 [M + H+]; tR = 15.80 min; 99.0 % pure (UV). 
 

methyl 2-([1,1'-biphenyl]-4-ylcarboxamido)benzoate (1a) was prepared according to method BIII. 
For purification the solvent was evaporated and the remaining solid was suspended in MeOH. After 
filtration the precipitate was washed with MeOH to provide the pure compound; yield: 58 %. 1H NMR 
(500 MHz, CDCl3)  = 12.11 (br. s, 1 H, NH), 8.98 (dd, J = 8.5, 0.9 Hz, 1 H), 8.168.13 (m, 2 H), 8.11 
(dd, J = 8.2, 1.6 Hz, 1 H), 7.787.75 (m, 2 H), 7.687.61 (m, 3 H), 7.517.47 (m, 2 H), 7.457.39 (m, 1 
H), 7.187.12 (m, 1 H), 3.99 (s, 3 H, OCH3) ppm. 
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13C NMR (125 MHz, CDCl3)  = 169.1, 165.4, 144.7, 141.9, 140.0, 134.9, 133.6, 131.0, 128.9, 128.0, 
127.9, 127.5, 127.2, 122.6, 120.5, 115.1, 52.5 (OCH3) ppm. 
LC/MS: m/z = 332 [M + H+], 373 [M + H+ CH3CN], 663 [2M + H+]; tR = 14.92 min; 100.0 % pure (UV). 
 
2-([1,1'-biphenyl]-4-ylcarboxamido)benzoic acid

2
 (1) was prepared according to method C. 

Sufficient purity was achieved without further purification; yield: 74 %. Mp: 190 °C (decomposition). 1H 
NMR (500 MHz, DMSO-d6)  = 12.26 (br. s, 1 H, NH), 8.74 (dd, J = 8.5, 0.9 Hz, 1 H), 8.07 (dd, J = 7.9, 
1.5 Hz, 1 H), 8.068.02 (m, 2 H), 7.907.86 (m, 2 H), 7.777.74 (m, 2 H), 7.707.63 (m, 1 H), 
7.537.49 (m, 2 H), 7.467.40 (m, 1 H), 7.277.17 (m, 1 H) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 163.8, 163.7, 143.0, 143.0, 140.9, 140.7, 138.9, 133.9, 133.8, 
131.5, 131.4, 130.9, 128.9, 128.0, 127.8, 126.8, 121.8, 121.7, 118.5, 118.4 ppm. 
LC/MS: m/z = 318 [M + H+], 635 [2M + H+]; tR = 12.38 min; 99.4 % pure (UV). 
 
methyl 2-(3-phenoxybenzamido)benzoate (2a) was prepared according to method BI. For 
purification the solvent was evaporated and the remaining solid was suspended in MeOH. After 
filtration the precipitate was washed with MeOH to provide the pure compound; yield: 45 %. 1H NMR 
(500 MHz, CDCl3)  = 12.02 (br. s, 1 H, NH), 8.91 (dd, J = 8.5, 1.3 Hz, 1 H), 8.09 (dd, J = 8.0, 1.7 Hz, 
1 H), 7.777.74 (m, 1 H), 7.717.69 (m, 1 H), 7.61 (ddd, J = 8.6, 7.2, 1.9 Hz, 1 H), 7.49 (dd, J = 7.9, 
7.9 Hz, 1 H), 7.427.36 (m, 2 H), 7.21 (ddd, J = 8.2, 2.5, 0.9 Hz, 1 H), 7.187.11 (m, 2 H), 7.117.07 
(m, 2 H), 3.96 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 169.0, 165.1, 158.1, 156.5, 141.7, 136.9, 134.8, 130.9, 130.2, 129.9, 
123.8, 122.7, 122.0, 121.5, 120.5, 119.5, 117.6, 115.2, 52.5 (OCH3) ppm. 
LC/MS: m/z = 348 [M + H+], 389 [M + H+ CH3CN], 695 [2M + H+]; tR = 15.88 min; 96.9 % pure (UV). 
 
2-(3-phenoxybenzamido)benzoic acid

3
 (2) was prepared according to method C. Sufficient purity 

was achieved without further purification; yield: 85 %. Mp: 204206 °C. 1H NMR (500 MHz, DMSO-d6) 
 = 14.64 (br. s, 1H, NH), 8.70 (dd, J = 8.2 Hz, 0.9 Hz, 1H), 8.18 (dd, J = 7.9 Hz, 1.6 Hz, 1H), 
7.847.82 (m, 1H), 7.63 (t, J = 1.9 Hz, 1H), 7.49 (t, J = 7.9 Hz, 1H), 7.437.39 (m, 3H), 7.197.15 (m, 
2H), 7.077.03 (m, 3H) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 171.7, 163.4, 157.2, 156.2, 140.8, 137.2, 131.6, 131.2, 130.4, 
130.2, 123.9, 123.1, 122.0, 121.7, 121.5, 118.6, 119.0, 117.2 ppm. 
LC/MS: m/z = 334 [M + H+]; tR = 13.73 min; 96.9 % pure (UV). 
 
2-(2-phenoxy-[1,1'-biphenyl]-4-ylcarboxamido)benzoic acid

3
 (3) was prepared using the procedure 

described by Nie et al.
3 1H NMR (500 MHz, Acetone-d6)  = 12.32 (br. s, 1 H, NH), 7.89 (dd, J = 8.5, 

1.9 Hz, 1 H), 8.18 (dd, J = 7.9, 1.6 Hz, 1 H), 7.89 (dd, J = 8.2, 1.9 Hz, 1 H), 7.71 (d, J = 7.9 Hz, 1 H),  
7.657.63 (m, 4 H), 7.447.41 (m, 2 H), 7.377.34 (m, 3 H), 7.237.20 (m, 1 H), 7.117.08 (m, 1 H), 
7.037.00 (m, 2 H) ppm. 
13C NMR (125 MHz, CDCl3)  = 171.0, 164.9, 158.3, 155.0, 143.2, 138.1, 127.9, 136.7, 135.6, 132.8, 
132.5, 131.0, 130.1, 129.2, 128.8, 124.3, 123.7, 123.3, 120.9, 120.8, 120.1, 119.2 ppm. 
LC/MS: m/z = 410 [M + H+]; tR = 14.40 min; 95.2 % pure (UV). 
 
methyl 2-benzamidobenzoate (4a) was prepared according to method BIII. For purification the 
solvent was evaporated and the remaining solid was resolved in a small amount of CH2Cl2. After 
addition of MeOH the CH2Cl2 was evaporated. Crystals formed overnight in the remaining MeOH 
provided the pure compound; yield: 69 %. 1H NMR (500 MHz, CDCl3)  = 12.05 (br. s, 1 H, NH), 8.95 
(dd, J = 8.5, 1.3 Hz, 1 H), 8.10 (dd, J = 7.9, 1.6 Hz, 1 H), 8.088.04 (m, 2 H), 7.647.60 (m, 1 H), 
7.607.50 (m, 3 H), 7.177.09 (m, 1 H), 3.98 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 169.1, 165.7, 141.9, 134.9, 134.8, 131.9, 130.9, 128.8, 127.4, 122.6, 
120.5, 115.2, 52.5 (OCH3) ppm. 
LC/MS: m/z = 256 [M + H+], 511 [2M + H+]; tR = 12.32 min; 100.0 % pure (UV). 
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2-benzamidobenzoic acid
4
 (4) was prepared according to method C. Sufficient purity was achieved 

without further purification; yield: 94 %. Mp: 179181 °C. 1H NMR (500 MHz, DMSO-d6)  = 12.18 (br. 
s, 1 H, NH), 8.72 (dd, J = 8.2, 0.9 Hz, 1 H), 8.06 (dd, J = 7.9, 1.6 Hz, 1 H), 7.987.94 (m, 2 H), 
7.697.63 (m, 2 H), 7.627.57 (m, 2 H), 7.237.19 (m, 1 H) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 170.0, 164.7, 141.1, 134.5, 134.3, 132.2, 131.3, 129.0, 127.0, 
122.9, 119.9, 116.5 ppm. 
LC/MS: m/z = 242 [M + H+], 483 [2M + H+]; tR = 9.88 min; 100.0 % pure (UV). 
 
methyl 2-amino-3-chlorobenzoate (5b) was prepared according to method A. The product was 
purified by CC (n-hexane/EtOAc 1:1); yield: 60 %. 1H NMR (500 MHz, CDCl3)  = 7.82 (dd, J = 7.9, 1.6 
Hz, 1 H), 7.41 (dd, J = 7.9, 1.6 Hz, 1 H), 6.59 (dd, J = 7.9, 7.9 Hz, 1 H), 6.28 (br. s, 2 H, NH2), 3.89 (s, 
3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 168.1, 146.6, 133.78, 129.9, 120.2, 115.7, 111.8, 51.8 (OCH3) ppm. 
LC/MS: m/z = 186 [M + H+], 227 [M + H+ CH3CN]; tR = 11.68 min; 98.4 % pure (UV). 
 
methyl 2-([1,1'-biphenyl]-4-ylcarboxamido)-3-chlorobenzoate (5a) was prepared according to 
method BIII. For purification the solvent was evaporated and the remaining solid was resolved in a 
small amount of CH2Cl2. After addition of MeOH the CH2Cl2 was evaporated. Crystals formed 
overnight in the remaining MeOH provided the pure compound; yield: 40 %. 1H NMR (500 MHz, 
CDCl3)  = 9.51 (br. s, 1 H, NH), 8.128.06 (m, 2 H), 7.90 (dd, J = 7.9, 1.6 Hz, 1 H), 7.777.72 (m, 2 
H), 7.68 (dd, J = 7.9, 1.6 Hz, 1 H), 7.677.63 (m, 2 H), 7.527.46 (m, 2 H), 7.447.39 (m, 1 H), 7.27 
(dd, J = 7.9, 7.9 Hz, 1 H), 3.90 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 167.1, 165.0, 145.1, 140.0, 135.7, 134.3, 132.5, 131.2, 129.1, 128.9, 
128.2, 128.1, 127.5, 127.3, 126.0, 126.0, 52.7 (OCH3) ppm. 
LC/MS: m/z = 365 and 367 [M + H+], 731 and 733 [2M + H+]; tR = 13.00 min; 93.8 % pure (UV). 
 
2-([1,1'-biphenyl]-4-ylcarboxamido)-3-chlorobenzoic acid (5) was prepared according to method C. 
The product was purified by preparative TLC (n-hexane/EtOAc 1:1); yield: 93 %. Mp: 203205 °C. 1H 
NMR (500 MHz, DMSO-d6)  = 10.33 (br. s, 1 H, NH), 8.118.07 (m, 2 H), 7.867.75 (m, 6 H), 
7.547.49 (m, 2 H), 7.477.40 (m, 2 H) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 166.8, 165.1, 143.3, 139.2, 134.7, 132.8, 132.7, 131.9, 129.9, 
129.0, 128.5, 128.2, 127.6, 127.0, 126.7 ppm. 
LC/MS: m/z = 352 [2 + H+], 703 [2M + H+]; tR = 11.55 min; 99.2 % pure (UV). 
 
methyl 2-([1,1'-biphenyl]-4-ylcarboxamido)-4-chlorobenzoate (6a) was prepared according to 
method BI. For purification the solvent was evaporated and the remaining solid was suspended in 
MeOH. After filtration the precipitate was washed with MeOH to provide the pure compound; yield: 59 
%. 1H NMR (500 MHz, CDCl3)  = 12.13 (br. s, 1 H, NH), 9.08 (d, J = 2.1 Hz, 1 H), 8.148.09 (m, 2 H), 
8.01 (d, J = 8.8 Hz, 1 H), 7.787.74 (m, 2 H), 7.697.61 (m, 2 H), 7.537.45 (m, 2 H), 7.447.38 (m, 1 
H), 7.10 (dd, J = 8.8, 2.1 Hz, 1 H), 3.98 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 168.5, 165.4, 144.9, 142.7, 141.2, 139.9, 133.0, 132.0, 128.9, 128.1, 
127.9, 127.5, 127.2, 122.8, 120.3, 113.3, 52.6 (OCH3) ppm. 
LC/MS: m/z = 367 [M + H+], 733 [2M + H+]; tR = 16.36 min; 98.2 % pure (UV). 
 
2-([1,1'-biphenyl]-4-ylcarboxamido)-4-chlorobenzoic acid (6) was prepared according to method C. 
Sufficient purity was achieved without further purification; yield: 55 %. Mp: 323324 °C. 1H NMR (500 
MHz, DMSO-d6)  = 15.29 (br. s, 1 H, NH), 8.81 (d, J = 2.2 Hz, 1 H), 8.158.08 (m, 3 H), 7.847.78 
(m, 2 H), 7.747.68 (m, 2 H), 7.527.45 (m, 2 H), 7.447.38 (m, 1 H), 7.09 (dd, J = 8.2, 2.2 Hz, 1 H) 
ppm. 
13C NMR (125 MHz, DMSO-d6)  = 169.6, 164.2, 143.3, 142.0, 139.0, 134.8, 133.6, 133.1, 129.0, 
128.2, 127.9, 126.9, 126.9, 122.8, 121.5, 117.9 ppm. 
LC/MS: m/z = 351 and 353 [M + H+]; tR = 14.11 min; 99.1 % pure (UV). 
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methyl 4-chloro-2-(3-phenoxybenzamido)benzoate (7a) was prepared according to method BI. For 
purification the solvent was evaporated and the remaining solid was suspended in MeOH. After 
filtration the precipitate was washed with MeOH to provide the pure compound; yield: 71 %. 1H NMR 
(500 MHz, CDCl3)  = 12.07 (br. s, 1 H, NH), 9.02 (d, J = 2.2 Hz, 1 H), 8.00 (d, J = 8.8 Hz, 1 H), 
7.757.71 (m, 1 H), 7.707.65 (m, 1 H), 7.49 (dd, J = 8.2, 8.2 Hz, 1 H), 7.417.37 (m, 2 H), 7.22 (ddd, 
J = 8.2, 2.2, 0.9 Hz, 1 H), 7.197.15 (m, 1 H), 7.147.07 (m, 3 H), 3.96 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 168.4, 165.1, 158.2, 156.4, 142.5, 141.2, 136.3, 133.0, 130.2, 130.0, 
124.0, 123.0, 122.2, 121.4, 120.4, 119.5, 117.5, 113.4, 52.6 (OCH3) ppm. 
LC/MS: m/z = 382 [M + H+]; tR = 15.99 min; 95.5 % pure (UV). 
 
4-chloro-2-(3-phenoxybenzamido)benzoic acid (7) was prepared according to method C. Sufficient 
purity was achieved without further purification; yield: 61 %. Mp: 205206 °C. 1H NMR (500 MHz, 
DMSO-d6)  = 12.26 (br. s, 1 H, NH), 8.75 (d, J = 1.9 Hz, 1 H), 8.03 (d, J = 8.5 Hz, 1 H), 7.727.66 (m, 
1 H), 7.61 (dd, J = 7.9, 7.9 Hz, 1 H), 7.52 (s, 1 H), 7.477.41 (m, 2 H), 7.337.25 (m, 2 H), 7.237.17 
(m, 1 H), 7.167.02 (m, 2 H) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 169.3, 164.2, 157.4, 155.9, 141.9, 138.7, 136.0, 132.9, 130.9, 
130.3, 124.1, 123.0, 122.3, 121.6, 119.2, 119.1, 116.9, 115.4 ppm. 
LC/MS: m/z = 368 [M + H+], 409 [M + H+ CH3CN]; tR = 13.98 min; 100.0 % pure (UV). 
 
methyl 2-([1,1'-biphenyl]-4-ylcarboxamido)-5-chlorobenzoate (8a) was prepared according to 
method BII. For purification the solvent was evaporated and the remaining solid was suspended in 
MeOH. After filtration the precipitate was washed with MeOH to provide the pure compound; yield: 86 
%. 1H NMR (500 MHz, CDCl3)  = 12.02 (br. s, 1 H, NH), 8.97 (d, J = 9.1 Hz, 1 H), 8.138.10 (m, 2 H), 
8.07 (d, J = 2.5 Hz, 1 H), 7.787.75 (m, 2 H), 7.677.64 (m, 2 H), 7.57 (dd, J = 9.1, 2.5 Hz, 1 H), 
7.527.47 (m, 2 H), 7.457.37 (m, 1 H), 4.00 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 168.1, 165.3, 144.9, 140.5, 139.9, 134.7, 133.2, 130.5, 128.9, 128.1, 
127.9, 127.6, 127.5, 127.2, 121.9, 116.3, 52.8 (OCH3) ppm. 
LC/MS: m/z = 366 [M + H+], 731 [2M + H+]; tR = 16.76 min; 97.0 % pure (UV). 
 
2-([1,1'-biphenyl]-4-ylcarboxamido)-5-chlorobenzoic acid (8)   was prepared according to method 
C. For purification the remaining solid was washed with MeOH and CH2Cl2 to provide the pure 
compound; yield: 96 %. Mp: 274276 °C. 1H NMR (500 MHz, DMSO-d6)  = 12.14 (br. s, 1 H, NH), 
8.74 (d, J = 9.1 Hz, 1 H), 8.058.02 (m, 2 H), 8.00 (d, J = 2.5 Hz, 1 H), 7.917.86 (m, 2 H), 7.797.75 
(m, 2 H), 7.73 (dd, J = 9.1, 2.5 Hz, 1 H), 7.547.48 (m, 2 H), 7.477.41 (m, 1 H) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 168.8, 164.4, 143.8, 139.9, 138.8, 133.9, 132.9, 130.4, 129.1, 
128.3, 127.8, 127.2, 127.0, 126.5, 121.8, 118.6 ppm. 
LC/MS: m/z = 352 and 354 [M + H+]; tR = 14.32 min; 99.3 % pure (UV). 
 
methyl 2-([1,1'-biphenyl]-4-ylcarboxamido)-6-chlorobenzoate (9a) was prepared according to 
method BII. The product was purified by CC (n-hexane/EtOAc 8:2); yield: 76 %. 1H NMR (500 MHz, 
CDCl3)  = 10.27 (br. s, 1 H, NH), 8.56 (dd, J = 8.2, 0.9 Hz, 1 H), 8.048.01 (m, 2 H), 7.777.74 (m, 2 
H), 7.677.64 (m, 2 H), 7.527.41 (m, 4 H), 7.24 (dd, J = 8.2, 0.9 Hz, 1 H), 4.03 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 167.9, 165.0, 145.1, 139.8, 139.7, 133.6, 132.9, 132.6, 129.0, 128.2, 
127.8, 127.6, 127.2, 125.9, 120.2, 119.9, 52.8 (OCH3) ppm. 
LC/MS: m/z = 366 [M + H+], 731 [2M + H+]; tR = 13.90 min; 98.2 % pure (UV). 
 
2-([1,1'-biphenyl]-4-ylcarboxamido)-6-chlorobenzoic acid (9) was prepared according to method C. 
For purification the remaining solid was washed with CH2Cl2 to provide the pure compound; yield: 79 
%. Mp: 218219 °C. 1H NMR (500 MHz, DMSO-d6)  = 10.36 (br. s, 1 H, NH), 8.048.01 (m, 2 H), 
7.867.83 (m, 2 H), 7.787.75 (m, 2 H), 7.617.58 (m, 1 H), 7.537.49 (m, 3 H), 7.467.40 (m, 2 H) 
ppm. 
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13C NMR (125 MHz, DMSO-d6)  = 166.2, 165.2, 143.4, 139.0, 136.9, 132.7, 130.8, 130.5, 129.6, 
129.1, 128.3, 128.2, 126.9, 126.8, 126.7, 125.1 ppm. 
LC/MS: m/z = 352 [M + H+], 705, 707 [2M + H+]; tR = 12.25 min; 100.0 % pure (UV). 
 
methyl 2-([1,1'-biphenyl]-4-ylcarboxamido)-4-fluorobenzoate (10a) was prepared according to 
method BI. For purification the solvent was evaporated and the remaining solid was suspended in 
MeOH. After filtration the precipitate was washed with MeOH to provide the pure compound; yield: 42 
%. 1H NMR (500 MHz, CDCl3)  = 12.25 (br. s, 1 H, NH), 8.80 (dd, J = 11.8, 2.4 Hz, 1 H), 8.218.03 
(m, 3 H), 7.827.72 (m, 2 H), 7.727.61 (m, 2 H), 7.577.48 (m, 2 H), 7.487.39 (m, 1 H), 6.966.79 
(m, 1 H), 3.99 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 168.5, 166.1 (d, J = 253.9 Hz), 165.6, 145.0, 144.1 (d, JCF = 12.8 Hz), 
139.9, 133.3 (d, JCF = 11.0 Hz), 133.1, 128.9, 128.1, 127.9, 127.5, 127.2, 111.3 (d, JCF = 2.7 Hz), 
109.9 (d, JCF = 22.9 Hz), 107.6 (d, JCF = 28.4 Hz), 52.5 ppm (OCH3). 
LC/MS: m/z = 350 [M + H+], 391 [M + H+ CH3CN], 699 [2M + H+]; tR = 15.69 min; 96.4 % pure (UV). 
 
2-([1,1'-biphenyl]-4-ylcarboxamido)-4-fluorobenzoic acid (10) was prepared according to method 
C. For purification the compound was recrystallized from MeOH; yield: 24 %. Mp: 258260 °C. 1H 
NMR (500 MHz, DMSO-d6)  = 12.47 (br. s, 1 H, NH), 8.59 (dd, J = 12.3, 2.5 Hz, 1 H), 8.14 (dd, J = 
9.0, 6.8 Hz, 1 H), 8.078.00 (m, 2 H), 7.937.87 (m, 2 H), 7.817.72 (m, 2 H), 7.577.49 (m, 2 H), 
7.497.41 (m, 1 H), 7.107.01 (m, 1 H) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 169.4, 165.1 (d, JCF = 248.0 Hz), 164.6, 143.9, 143.3 (d, JCF = 12.8 
Hz), 138.8, 134.0 (d, JCF = 11.0 Hz), 132.7, 129.1, 128.3, 127.7, 127.2, 127.0, 112.8 (d, JCF = 2.7 Hz), 
109.9 (d, JCF = 22.0 Hz), 106.3 (d, JCF = 28.4 Hz) ppm. 
LC/MS: m/z = 336 [M + H+], 377 [M + H+ CH3CN], 671 [2M + H+]; tR = 13.94 min; 100.0 % pure (UV). 
 
methyl 2-([1,1'-biphenyl]-4-ylcarboxamido)-5-fluorobenzoate (11a) was prepared according to 
method BI. For purification the solvent was evaporated and the remaining solid was suspended in 
MeOH. After filtration the precipitate was washed with MeOH to provide the pure compound; yield: 64 
%. 1H NMR (500 MHz, CDCl3)  = 11.94 (br. s, 1 H, NH), 8.99 (dd, J = 9.1, 4.7 Hz, 1 H), 8.168.05 (m, 
2 H), 7.817.71 (m, 3 H), 7.707.60 (m, 2 H), 7.547.45 (m, 2 H), 7.457.38 (m, 1 H), 7.387.30 (m, 1 
H), 4.00 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 168.1, 165.3, 157.4 (d, JCF = 244.0 Hz), 144.8, 140.0, 138.3 (d, JCF = 
2.7 Hz), 133.3, 128.9, 128.1, 127.9, 127.5, 127.2, 122.3 (d, JCF = 6.4 Hz), 121.9 (d, JCF = 22.0 Hz), 
117.0, (d, JCF = 23.8 Hz), 116.4 (d, JCF = 7.3 Hz), 52.8 ppm (OCH3). 
LC/MS: m/z = 350 [M + H+], 391 [M + H+ CH3CN], 699 [2M + H+]; tR = 15.11 min; 96.7 % pure (UV). 
 
2-([1,1'-biphenyl]-4-ylcarboxamido)-5-fluorobenzoic acid (11) was prepared according to method 
C. Sufficient purity was achieved without further purification; yield: 61 %. Mp: 259263 °C. 1H NMR 
(500 MHz, DMSO-d6)  = 14.97 (br. s, 1 H, NH), 8.75 (dd, J = 9.1, 5.4 Hz, 1 H), 8.158.07 (m, 2 H), 
7.85 (dd, J = 9.9, 3.3 Hz, 1 H), 7.837.79 (m, 2 H), 7.757.70 (m, 2 H), 7.537.45 (m, 2 H), 7.447.37 
(m, 1 H), 7.287.19 (m, 1 H) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 168.9 (d, JCF = 1.8 Hz), 163.7, 156.9 (d, JCF = 239.2 Hz), 143.1, 
139.1, 137.4 (d, JCF = 1.8 Hz), 134.0, 129.1, 128.1, 127.8, 126.9, 126.6 (d, JCF = 7.3 Hz), 120.1 (d, JCF 
= 7.3 Hz), 117.3 (d, JCF = 22.9 Hz), 117.2 (d, JCF = 22.9 Hz), 117.0 ppm. 
LC/MS: m/z = 334 [M - H+]; tR = 12.89 min; 96.8 % pure (UV). 
 
methyl 5-fluoro-2-(3-phenoxybenzamido)benzoate (12a) was prepared according to method BI. For 
purification the solvent was evaporated and the remaining solid was suspended in MeOH. After 
filtration the precipitate was washed with MeOH to provide the pure compound; yield: 20 %. 1H NMR 
(500 MHz, CDCl3)  = 11.86 (br. s, 1 H, NH), 8.92 (dd, J = 9.4, 5.0 Hz, 1 H), 7.777.71 (m, 2 H), 
7.717.65 (m, 1 H), 7.49 (dd, J = 7.9, 7.9 Hz, 1 H), 7.427.35 (m, 2 H), 7.32 (ddd, J = 9.4, 7.5, 3.0 Hz, 
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1 H), 7.21 (ddd, J = 8.1, 2.4, 0.8 Hz, 1 H), 7.197.12 (m, 1 H), 7.127.07 (m, 2 H), 3.97 (s, 3 H, OCH3) 
ppm. 
13C NMR (125 MHz, CDCl3)  = 167.9 (d, JCF = 2.7 Hz), 164.9, 158.1, 157.6 (d, JCF = 242.9 Hz), 138.1 
(d, JCF = 1.8 Hz), 136.5, 130.2, 129.9, 123.9, 122.2 (d, J = 7.3 Hz), 122.0, 121.8 (d, J = 22.0 Hz), 
121.4, 120.8, 119.4, 117.5, 117.0 (d, JCF = 23.8 Hz), 116.4 (d, JCF = 7.3 Hz), 52.8 (OCH3) ppm. 
LC/MS: m/z = 366 [M + H+]; tR = 14.93 min; 93.7 % pure (UV). 
 
5-fluoro-2-(3-phenoxybenzamido)benzoic acid (12) was prepared according to method C. Sufficient 
purity was achieved without further purification; yield: 87 %. Mp: 186187 °C. 1H NMR (500 MHz, 
DMSO-d6)  = 12.02 (br. s, 1 H, NH), 8.62 (dd, J = 9.4, 5.2 Hz, 1 H), 7.74 (dd, J = 9.4, 3.2 Hz, 1 H), 
7.727.68 (m, 1 H), 7.59 (dd, J = 7.9, 7.9 Hz, 1 H), 7.567.50 (m, 2 H), 7.497.39 (m, 2 H), 7.27 (ddd, 
J = 7.9, 2.6, 0.9 Hz, 1 H), 7.237.16 (m, 1 H), 7.147.04 (m, 2 H) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 168.7 (d, JCF = 1.8 Hz), 163.8, 157.3, 157.0 (d, JCF = 242.0 Hz), 
156.0, 137.2 (d, JCF = 1.8 Hz), 136.3, 130.8, 130.2, 124.1, 122.3 (d, JCF = 7.3 Hz), 122.0, 121.6, 120.9 
(d, JCF = 22.0 Hz), 119.4 (d, JCF = 7.3 Hz),119.1, 117.0 (d, JCF = 22.0 Hz), 116.9 ppm. 
 LC/MS: m/z = 351 [M + H+], 392 [M + H+ CH3CN]; tR = 12.87 min; 96.2 % pure (UV). 
 
methyl 2-([1,1'-biphenyl]-4-ylcarboxamido)-6-fluorobenzoate (13a) was prepared according to 
method BII. For purification the solvent was evaporated and the remaining solid was suspended in 
MeOH. After filtration the precipitate was washed with MeOH to provide the pure compound; yield: 90 
%. 1H NMR (500 MHz, CDCl3)  = 11.68 (br. s, 1 H, NH), 8.70 (d, J = 8.8 Hz, 1 H), 8.128.07 (m, 2 H), 
7.787.73 (m, 2 H), 7.687.64 (m, 2 H), 7.577.52 (m, 1 H), 7.517.47 (m, 2 H), 7.457.39 (m, 1 H), 
6.89 (ddd, J = 11.0, 8.8, 0.9 Hz, 1 H), 4.03 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 167.9 (d, JCF = 3.7 Hz), 165.3, 162.4 (d, JCF = 258.4 Hz), 144.9, 142.1 
(d, JCF = 2.7 Hz), 139.9, 134.8 (d, JCF = 11.0 Hz), 133.2, 128.9, 128.1, 127.9, 127.5, 127.2, 116.5 (d, 
JCF = 3.7 Hz), 111.1 (d, JCF = 23.8 Hz), 106.2 (d, JCF = 12.8 Hz), 52.9 (OCH3) ppm. 
LC/MS: m/z = 350 [M + H+], 699 [2M + H+]; tR = 15.22 min; 97.5 % pure (UV). 
 
2-([1,1'-biphenyl]-4-ylcarboxamido)-6-fluorobenzoic acid (13) was prepared according to method 
C. Sufficient purity was achieved without further purification; yield: 87 %. Mp: 232233 °C. 1H NMR 
(500 MHz, DMSO-d6)  = 11.23 (br. s, 1 H, NH), 8.058.00 (m, 3 H), 7.907.84 (m, 2 H), 7.797.73 
(m, 2 H), 7.61 (td, J = 8.3, 6.1 Hz, 1 H), 7.537.49 (m, 2 H), 7.467.41 (m, 1 H), 7.11 (ddd, J = 10.6, 
8.4, 0.9 Hz, 1 H) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 166.5 (d, JCF = 1.8 Hz), 164.7, 160.8 (d, JCF = 254.0 Hz), 143.6, 
139.7 (d, JCF = 4.6 Hz), 138.9, 133.2 (d, JCF = 11.0 Hz), 132.9, 129.1, 128.3, 128.0, 126.9, 118.3 (d, 
JCF = 3.7 Hz), 112.0 (d, JCF = 14.7 Hz), 111.8 (d, JCF = 22.9 Hz) ppm. 
LC/MS: m/z = 336 [M + H+], 671 [2M + H+]; tR = 12.85 min; 100.0 % pure (UV). 
 
methyl 2-([1,1'-biphenyl]-4-ylcarboxamido)-4-bromobenzoate (14a) was prepared according to 
method BII. For purification the solvent was evaporated and the remaining solid was suspended in 
MeOH. After filtration the precipitate was washed with MeOH to provide the pure compound; yield: 69 
%. 1H NMR (500 MHz, CDCl3)  = 12.12 (br. s, 1 H, NH), 9.25 (d, J = 1.9 Hz, 1 H), 8.148.09 (m, 2 H), 
7.94 (d, J = 8.5 Hz, 1 H), 7.797.74 (m, 2 H), 7.687.63 (m, 2 H), 7.527.47 (m, 2 H), 7.457.39 (m, 1 
H), 7.27 (dd, J = 8.5, 1.9 Hz, 1 H), 3.99 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 168.7, 165.4, 145.0, 142.7, 139.9, 133.0, 132.0, 129.9, 128.9, 128.1, 
127.9, 127.5, 127.2, 125.8, 123.3, 113.7, 52.7 (OCH3) ppm. 
LC/MS: m/z = 409 and 411 [M + H+]; tR = 17.07 min; 100.0 % pure (UV). 
 
2-([1,1'-biphenyl]-4-ylcarboxamido)-4-bromobenzoic acid (14) was prepared according to method 
C. For purification the remaining solid was washed with MeOH and CH2Cl2 to provide the pure 
compound; yield: 81 %. Mp: 246250 °C. 1H NMR (500 MHz, DMSO-d6)  = 12.30 (br. s, 1 H, NH), 
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8.99 (d, J = 1.9 Hz, 1 H), 8.058.00  (m, 2 H), 7.97 (d, J = 8.5 Hz, 1 H), 7.937.87 (m, 2 H), 7.807.73 
(m, 2 H), 7.557.48 (m, 2 H), 7.477.41 (m, 1 H), 7.41 (dd, J = 8.5, 1.9 Hz, 1 H) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 169.5, 164.6, 143.9, 142.1, 138.8, 133.0, 132.7, 129.1, 128.3, 
127.8, 127.8, 127.2, 127.0, 125.8, 122.1, 115.5 ppm. 
LC/MS: m/z = 793 [2M + H+]; tR = 14.71 min; 96.4 % pure (UV). 
 
methyl 4-bromo-2-(3-phenoxybenzamido)benzoate (15a) was prepared according to method BII. 
For purification the solvent was evaporated and the remaining solid was suspended in MeOH. After 
filtration the precipitate was washed with MeOH to provide the pure compound; yield: 61 %. 1H NMR 
(500 MHz, CDCl3)  = 12.04 (br. s, 1 H, NH), 9.18 (d, J = 2.2 Hz, 1 H), 7.92 (d, J = 8.5 Hz, 1 H), 7.73 
(dd, J = 1.6, 0.9 Hz, 1 H), 7.697.65 (m, 1 H), 7.49 (dd, J = 7.9, 7.9 Hz, 1 H), 7.427.35 (m, 2 H), 7.26 
(dd, J = 8.5, 2.2 Hz, 1 H), 7.22 (ddd, J = 8.2, 2.5, 0.9 Hz, 1 H), 7.197.14 (m, 1 H), 7.127.07 (m, 2 H), 
3.96 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 168.5, 165.0, 158.2, 156.3, 142.5, 136.3, 132.0, 130.2, 130.0, 129.9, 
126.0, 124.0, 123.3, 122.2, 121.4, 119.5, 117.4, 113.8, 52.7 (OCH3) ppm. 
LC/MS: m/z = no ionization; tR = 16.93 min; 99.8 % pure (UV). 
 
4-bromo-2-(3-phenoxybenzamido)benzoic acid (15) was prepared according to method C. For 
purification the remaining solid was washed with MeOH and CH2Cl2 to provide the pure compound; 
yield: 74 %. Mp: 194195 °C. 1H NMR (500 MHz, DMSO-d6)  = 12.22 (br. s, 1 H, NH), 8.90 (d, J = 2.2 
Hz, 1 H), 7.95 (d, J = 8.5 Hz, 1 H), 7.707.68 (m, 1 H), 7.61 (dd, J = 7.9, 7.9 Hz, 1 H), 7.537.51 (m, 1 
H), 7.467.40 (m, 3 H), 7.29 (ddd, J = 8.2, 2.5, 0.9 Hz, 1 H), 7.21 (tt, J = 7.4, 1.1 Hz, 1 H), 7.117.08 
(m, 2 H) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 169.4, 164.1, 157.4, 155.9, 141.8, 136.0, 132.9, 130.9, 130.3, 
127.7, 125.9, 124.1, 122.3, 122.2, 121.6, 119.1, 116.8, 115.8 ppm. 
LC/MS: m/z = 823 and 825 and 827 [2M + H+]; tR = 14.65 min; 100.0 % pure (UV). 
 
methyl 2-([1,1'-biphenyl]-4-ylcarboxamido)-5-bromobenzoate (16a) was prepared according to 
method BI. For purification the solvent was evaporated and the remaining solid was suspended in 
MeOH. After filtration the precipitate was washed with MeOH to provide the pure compound; yield: 26 
%. 1H NMR (500 MHz, CDCl3)  = 12.01 (br. s, 1 H, NH), 8.91 (d, J = 9.1 Hz, 1 H), 8.22 (d, J = 2.5 Hz, 
1 H), 8.158.08 (m, 2 H), 7.797.74 (m, 2 H), 7.71 (dd, J = 9.1, 2.5 Hz, 1 H), 7.687.62 (m, 2 H), 
7.547.46 (m, 2 H), 7.457.38 (m, 1 H), 4.00 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 168.0, 165.4, 144.9, 141.0, 139.9, 137.5, 133.5, 133.1, 128.9, 128.1, 
127.9, 127.5, 127.2, 122.1, 116.6, 115.0, 52.8 (OCH3) ppm. 
LC/MS: m/z = 409 and 411 [M + H+], 820 and 822 [2M + H+]; tR = 16.41 min; 98.4 % pure (UV). 
 
2-([1,1'-biphenyl]-4-ylcarboxamido)-5-bromobenzoic acid

5
 (16) was prepared according to method 

C. Sufficient purity was achieved without further purification; yield: 31 %. Mp: 289293 °C. 1H NMR 
(500 MHz, DMSO-d6)  = 15.22 (br. s, 1 H, NH), 8.68 (d, J = 8.8 Hz, 1 H), 8.23 (d, J = 2.5 Hz, 1 H), 
8.158.06 (m, 2 H), 7.877.82 (m, 2 H), 7.797.70 (m, 2 H), 7.54 (dd, J = 8.8, 2.5 Hz, 1 H), 7.537.47 
(m, 2 H), 7.457.39 (m, 1 H) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 168.3, 163.9, 143.2, 140.2, 139.0, 133.8, 133.8, 132.9, 129.0, 
128.2, 127.9, 126.9, 120.6, 117.4, 115.8, 113.5 ppm. 
LC/MS: m/z = 395 [2M - H+]; tR = 13.90 min; 98.3 % pure (UV). 
 
methyl 5-bromo-2-(3-phenoxybenzamido)benzoate (17a) was prepared according to method BI. 
For purification the solvent was evaporated and the remaining solid was suspended in MeOH. After 
filtration the precipitate was washed with MeOH to provide the pure compound; yield: 78 %. 1H NMR 
(500 MHz, CDCl3)  = 11.94 (br. s, 1 H, NH), 8.83 (d, J = 9.1 Hz, 1 H), 8.19 (d, J = 2.5 Hz, 1 H), 
7.747.71 (m, 1 H), 7.707.66 (m, 2 H), 7.48 (dd, J = 7.9 7.9 Hz, 1 H), 7.427.36 (m, 2 H), 7.21 (ddd, 
J = 7.9, 2.5, 0.9 Hz, 1 H), 7.197.14 (m, 1 H), 7.117.07 (m, 2 H), 3.96 (s, 3 H, OCH3) ppm. 
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13C NMR (125 MHz, CDCl3)  = 167.8, 165.0, 158.1, 156.4, 140.7, 137.5, 136.4, 133.4, 130.2, 129.9, 
123.9, 122.1, 122.1, 121.4, 119.5, 117.5, 116.7, 115.1, 52.8 (OCH3) ppm. 
LC/MS: m/z = no ionization; tR = 16.15 min; 95.1 % pure (UV). 
 

5-bromo-2-(3-phenoxybenzamido)benzoic acid
5
 (17) was prepared according to method C. For 

purification the remaining solid was washed with hot MeOH to provide the pure compound; yield: 52 
%. Mp: 240242 °C. 1H NMR (500 MHz, DMSO-d6)  = 12.05 (br. s, 1 H, NH), 8.59 (d, J = 9.1 Hz, 1 
H), 8.10 (d, J = 2.5 Hz, 1 H), 7.83 (dd, J = 9.1, 2.5 Hz, 1 H), 7.727.67 (m, 1 H), 7.637.57 (m, 1 H), 
7.537.50 (m, 1 H), 7.477.40 (m, 2 H), 7.307.26 (m, 1 H), 7.247.17 (m, 1 H), 7.147.06 (m, 2 H) 
ppm. 
13C NMR (125 MHz, DMSO-d6)  = 168.6, 163.9, 157.3, 156.0, 140.0, 136.7, 136.2, 133.2, 130.8, 
130.2, 130.1, 124.1, 122.2, 122.1, 121.6, 119.0, 116.9, 114.5 ppm. 
LC/MS: m/z = 409 and 411  [M - H+]; tR = 13.90 min; 95.2 % pure (UV). 
 
3-benzylbenzoic acid (18d). A mixture of methyl 3-(bromomethyl)benzoate (1 equiv), phenylboronic 
acid (1.5 equiv), CsCO3 (3 equiv) and tetrakis(triphenylphosphine)-palladium (0.01 equiv) in a degased 
DME/water (1:1) solution was refluxed under a nitrogen atmosphere for 18 h. The reaction mixture 
was cooled to room temperature. The mixture was extracted with EtOAc. The combined organic layers 
were washed with 1 M HCl and dried over MgSO4. The product was purified by CC (CH2Cl2); yield: 81 
%. 1H NMR (500 MHz, Acetone-d6)  =  7.937.92 (m, 1H), 7.897.87 (m, 1H), 7.527.50 (m, 1H), 
7.447.41 (m, 1H), 7.317.26 (m, 4H), 7.227.17 (m, 1H), 4.07 (s, 2H, CH2) ppm. 
13C NMR (125 MHz, Acetone-d6)  = 167.7, 143.0, 141.9, 134.3, 131.7, 130.9, 129.8, 129.5, 129.5, 
128.3, 127.1, 42.1 (CH2) ppm. 
LC/MS: m/z = no ionization; tR = 11.15 min; 98.4 % pure (UV). 
 
methyl 2-(3-benzylbenzamido)-5-bromobenzoate (18a)   was prepared according to method BII. For 
purification the solvent was evaporated and the remaining solid was suspended in MeOH. After 
filtration the precipitate was washed with MeOH to provide the pure compound; yield: 23 %. 1H NMR 
(500 MHz, CDCl3)  = 11.94 (s, 1H), 8.87 (d, J = 9.0 Hz, 1H), 8.21 (d, J = 2.4 Hz, 1H), 7.937.89 (m, 
1H), 7.897.82 (m, 1H), 7.69 (dd, J = 2.4, 9.0 Hz, 1H), 7.467.43 (m, 1H), 7.427.37 (m, 1H), 
7.357.29 (m, 2H), 7.267.20 (m, 3H), 4.09 (s, 2H, CH2), 3.98 (s, 3H, CH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 167.8, 165.8, 142.1, 140.9, 140.4, 137.5, 134.7, 133.4, 132.7, 129.0, 
129.0, 128.6, 128.2, 126.3, 124.9, 122.1, 116.7, 114.9, 52.8 (CH3), 41.8 (CH2) ppm. 
LC/MS: m/z = 424 and 426 [M + H+]; tR = 16.82 min; 99.5 % pure (UV). 
 
2-(3-benzylbenzamido)-5-bromobenzoic acid (18)   was prepared according to method C. Sufficient 
purity was achieved without further purification; yield: 98 %. Mp: 225227 °C. 1H NMR (500 MHz, 
DMSO-d6)  = 12.06 (s, 1H), 8.62 (d, J = 9.1 Hz, 1H), 8.10 (d, J = 2.2 Hz, 1H), 7.857.80 (m, 2H), 
7.777.72 (m, 1H), 7.527.47 (m, 2H), 7.327.24 (m, 4H), 7.227.16 (m, 1H), 4.04 (s, 2H, CH2) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 168.8, 164.9, 142.4, 140.8, 140.3, 136.8, 134.5, 133.3, 132.8, 
129.2, 128.8, 128.7, 127.6, 126.3, 124.7, 122.1, 118.9, 114.4, 41.0 (CH2) ppm. 
LC/MS: m/z = 410 and 412 [M + H+]; tR = 14.62 min; 100.0 % pure (UV). 
 

methyl 2-([1,1'-biphenyl]-4-ylcarboxamido)-4,5-dimethoxybenzoate (19a) was prepared according 
to method BI. For purification the solvent was evaporated and the remaining solid was suspended in 
MeOH. After filtration the precipitate was washed with MeOH to provide the pure compound; yield: 40 
%. 1H NMR (500 MHz, CDCl3)  = 12.21 (br. s, 1 H, NH), 8.75 (s, 1 H), 8.158.12 (m, 2 H), 7.787.75 
(m, 2 H), 7.687.65 (m, 2 H), 7.52 (s, 1 H), 7.517.47 (m, 2 H), 7.447.39 (m, 1 H), 4.05 (s, 3 H, 
OCH3), 3.97 (s, 3 H, OCH3), 3.93 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 168.8, 165.4, 154.1, 144.6, 144.0, 140.0, 138.1, 133.5, 128.9, 128.0, 
127.8, 127.5, 127.2, 112.1, 106.8, 103.4, 56.2 (OCH3), 56.1 (OCH3), 52.3 (OCH3) ppm. 
LC/MS: m/z = 392 [M + H+]; tR = 14.81 min; 98.4 % pure (UV). 
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2-([1,1'-biphenyl]-4-ylcarboxamido)-4,5-dimethoxybenzoic acid (19) was prepared according to 
method C. Sufficient purity was achieved without further purification; yield: 29 %. Mp: 185 °C 
(decomposition). 1H NMR (500 MHz, DMSO-d6)  = 14.78 (br. s, 1 H, NH), 8.54 (s, 1 H), 8.148.08 (m, 
2 H), 7.787.73 (m, 2 H), 7.727.61 (m, 3 H), 7.567.33 (m, 3 H), 3.81 (s, 3 H, OCH3), 3.74 (s, 3 H, 
OCH3) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 163.4, 150.5, 143.2, 142.9, 139.0, 135.7, 134.1, 129.0, 128.1, 
127.8, 126.8, 126.8, 117.6, 117.4, 114.3, 102.6, 55.5 (OCH3), 55.4 (OCH3) ppm. 
LC/MS: m/z = 378 [M + H+]; tR = 12.37 min; 95.6 % pure (UV). 
 
methyl 4,5-dimethoxy-2-(3-phenoxybenzamido)benzoate (20a) was prepared according to method 
BI. For purification the solvent was evaporated and the remaining solid was suspended in MeOH. After 
filtration the precipitate was washed with MeOH to provide the pure compound; yield: 57 %. 1H NMR 
(500 MHz, CDCl3)  = 12.12 (br. s, 1 H, NH), 8.67 (s, 1 H), 7.767.73 (m, 1 H), 7.69 (dd, J = 2.0, 2.0 
Hz, 1 H), 7.517.47 (m, 2 H), 7.407.34 (m, 2 H), 7.21 (ddd, J = 8.2, 2.5, 0.9 Hz, 1 H), 7.177.12 (m, 1 
H), 7.127.06 (m, 2 H), 4.01 (s, 3 H, OCH3), 3.93 (s, 3 H, OCH3), 3.91 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 168.6, 165.0, 158.1, 156.5, 154.0, 144.0, 137.9, 136.8, 130.1, 129.9, 
123.8, 122.0, 121.3, 119.4, 117.4, 112.1, 106.8, 103.3, 56.1 (OCH3), 56.1 (OCH3), 52.2 (OCH3) ppm. 
LC/MS: m/z = 408 [M + H+], 815 [2M + H+]; tR = 14.56 min; 95.5 % pure (UV). 
 
4,5-dimethoxy-2-(3-phenoxybenzamido)benzoic acid (20) was prepared according to method C. 
Sufficient purity was achieved without further purification; yield: 98 %. Mp: 218219 °C. 1H NMR (500 
MHz, DMSO-d6)  = 12.29 (br. s, 1 H, NH), 8.45 (s, 1 H), 7.707.66 (m, 1 H), 7.59 (dd, J = 7.9, 7.9 Hz, 
1 H), 7.527.49 (m, 1 H), 7.497.41 (m, 3 H), 7.27 (ddd, J = 8.2, 2.5, 0.9 Hz, 1 H), 7.21 (tt, J = 7.5, 1.0 
Hz, 1 H), 7.147.06 (m, 2 H), 3.84 (s, 3 H, OCH3), 3.78 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 169.8, 163.6, 157.4, 155.9, 153.3, 143.8, 136.7, 136.5, 130.8, 
130.3, 124.1, 121.9, 121.3, 119.2, 116.7, 112.8, 107.8, 103.1, 55.6 (OCH3), 55.6 (OCH3) ppm. 
LC/MS: m/z = 394 [M + H+], 435 [M + H+ CH3CN]; tR = 12.32 min; 96.9 % pure (UV). 
 
methyl 2-amino-4-methoxybenzoate (21b) was prepared according to method A. The product was 
purified by CC (n-hexane/EtOAc 6:4); yield: 12 %. 1H NMR (500 MHz, CDCl3)  = 7.79 (d, J = 8.8 Hz, 
1 H), 6.24 (dd, J = 8.8, 2.2 Hz, 1 H), 6.11 (d, J = 2.2 Hz, 1 H), 5.80 (br. s, 2 H, NH2), 3.84 (s, 3 H, 
OCH3), 3.79 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 168.3, 164.2, 152.4, 133.0, 104.5, 104.4, 99.4, 55.1 (OCH3), 51.2 
(OCH3) ppm. 
LC/MS: m/z = 182 [M + H+]; tR = 8.73 min; 100.0 % pure (UV). 
 
methyl 2-([1,1'-biphenyl]-4-ylcarboxamido)-4-methoxybenzoate (21a) was prepared according to 
method BI. For purification the solvent was evaporated and the remaining solid was suspended in 
MeOH. After filtration the precipitate was washed with MeOH to provide the pure compound; yield: 26 
%. 1H NMR (500 MHz, CDCl3)  = 12.32 (br. s, 1 H, NH), 8.66 (d, J = 2.5 Hz, 1 H), 8.178.13 (m, 2 H), 
8.02 (d, J = 8.8 Hz, 1 H), 7.787.75 (m, 2 H), 7.687.64 (m, 2 H), 7.517.47 (m, 2 H), 7.447.39 (m, 1 
H), 6.67 (dd, J = 8.8, 2.5 Hz, 1 H), 3.96 (s, 3 H, OCH3), 3.95 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 169.0, 165.7, 164.7, 144.7, 144.1, 140.0, 133.5, 132.5, 128.9, 128.0, 
127.9, 127.5, 127.2, 110.2, 107.7, 103.9, 55.6 (OCH3), 52.2 (OCH3) ppm. 
LC/MS: m/z = 362 [M + H+], 403 [M + H+ CH3CN], 723 [2M + H+]; tR = 15.61 min; 99.6 % pure (UV). 
 
2-([1,1'-biphenyl]-4-ylcarboxamido)-4-methoxybenzoic acid (21) was prepared according to 
method C. Sufficient purity was achieved without further purification; yield: 98 %. Mp: 248249 °C. 1H 
NMR (500 MHz, DMSO-d6)  = 12.51 (br. s, 1 H, NH), 8.44 (d, J = 2.5 Hz, 1 H), 8.067.99 (m, 3 H), 
7.927.85 (m, 2 H), 7.787.73 (m, 2 H), 7.557.48 (m, 2 H), 7.477.39 (m, 1 H), 6.77 (dd, J = 8.8, 2.5 
Hz, 1 H), 3.86 (s, 3 H, OCH3) ppm. 
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13C NMR (125 MHz, DMSO-d6)  = 170.1, 164.5, 163.8, 143.8, 143.3, 138.9, 133.2, 133.2, 129.1, 
128.3, 127.7, 127.2, 127.0, 108.8, 108.5, 104.5, 55.6 (OCH3) ppm. 
LC/MS: m/z = 348 [M + H+], 389 [M + H+ CH3CN], 695 [2M + H+]; tR = 13.50 min; 100.0 % pure (UV). 
 
methyl 2-amino-5-methoxybenzoate (22b) was prepared according to method A. Sufficient purity 
was achieved without further purification; yield: 62 %. 1H NMR (500 MHz, CDCl3)  = 7.36 (d, J = 3.2 
Hz, 1 H), 6.96 (dd, J = 8.8, 3.2 Hz, 1 H), 6.64 (d, J = 8.8 Hz, 1 H), 5.43 (br. s, 2 H, NH2), 3.88 (s, 3 H, 
OCH3), 3.77 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 168.3, 150.5, 145.1, 123.3, 118.2, 113.1, 110.7, 55.8 (OCH3), 51.6 
(OCH3) ppm. 
LC/MS: m/z = 182 [M + H+], 223 [M + H+ CH3CN]; tR = 5.88 min; 95.2 % pure (UV). 
 
methyl 2-([1,1'-biphenyl]-4-ylcarboxamido)-5-methoxybenzoate (22a) was prepared according to 
method BII. For purification the solvent was evaporated and the remaining solid was suspended in 
MeOH. After filtration the precipitate was washed with MeOH to provide the pure compound; yield: 82 
%. 1H NMR (500 MHz, CDCl3)  = 11.85 (br. s, 1 H, NH), 8.91 (d, J = 9.1 Hz, 1 H), 8.138.11 (m, 2 H), 
7.777.74 (m, 2 H), 7.677.64 (m, 2 H), 7.59 (d, J = 3.2 Hz, 1 H), 7.507.47 (m, 2 H), 7.447.38 (m, 1 
H), 7.21 (dd, J = 9.1, 3.2 Hz, 1 H), 3.99 (s, 3 H, OCH3), 3.86 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 168.8, 165.0, 154.5, 144.5, 140.1, 135.6, 133.7, 128.9, 128.0, 127.8, 
127.4, 127.2, 122.0, 121.2, 116.1, 114.7, 55.6 (OCH3), 52.6 (OCH3) ppm. 
LC/MS: m/z = 362 [M + H+], 403 [M + H+ CH3CN], 723 [2M + H+]; tR = 15.45 min; 98.1 % pure (UV). 
 
2-([1,1'-biphenyl]-4-ylcarboxamido)-5-methoxybenzoic acid (22) was prepared according to 
method C. For purification the remaining solid was washed with MeOH and CH2Cl2 to provide the pure 
compound; yield: 92 %. Mp: 236239 °C. 1H NMR (500 MHz, DMSO-d6)  = 11.90 (br. s, 1 H, NH), 
8.61 (d, J = 9.1 Hz, 1 H), 8.048.00 (m, 2 H), 7.897.86 (m, 2 H), 7.777.73 (m, 2 H), 7.54 (d, J = 2.8 
Hz, 1 H), 7.537.48 (m, 2 H), 7.457.39 (m, 1 H), 7.28 (dd, J = 9.1, 2.8 Hz, 1 H), 3.80 (s, 3 H, OCH3) 
ppm. 
13C NMR (125 MHz, DMSO-d6)  = 169.6, 163.9, 154.4, 143.5, 138.9, 134.5, 133.4, 129.1, 128.2, 
127.6, 127.1, 126.9, 121.9, 120.3, 118.2, 115.0, 55.4 (OCH3) ppm. 
LC/MS: m/z = 348 [M + H+], 695 [2M + H+]; tR = 13.07 min; 96.8 % pure (UV). 
 
methyl 2-([1,1'-biphenyl]-4-ylcarboxamido)-6-methoxybenzoate (23a) was prepared according to 
method BIII. For purification the solvent was evaporated and the remaining solid was suspended in 
MeOH. After filtration the precipitate was washed with MeOH to provide the pure compound; yield: 46 
%. 1H NMR (500 MHz, CDCl3)  = 10.78 (br. s, 1 H, NH), 8.31 (dd, J = 8.5, 0.9 Hz, 1 H), 8.078.04 (m, 
2 H), 7.767.73 (m, 2 H), 7.677.64 (m, 2 H), 7.517.47 (m, 3 H), 7.447.39 (m, 1 H), 6.76 (dd, J = 
8.5, 0.9 Hz, 1 H), 3.99 (s, 3 H, OCH3), 3.90 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 169.2, 165.1, 159.4, 144.7, 140.2, 140.0, 133.4, 133.4, 128.9, 128.0, 
127.8, 127.4, 127.2, 113.8, 109.4, 107.2, 56.3 (OCH3), 52.6 (OCH3) ppm. 
LC/MS: m/z = 362 [M + H+], 723 [2M + H+]; tR = 13.57 min; 96.5 % pure (UV). 
 
2-([1,1'-biphenyl]-4-ylcarboxamido)-6-methoxybenzoic acid (23) was prepared according to 
method C. Sufficient purity was achieved without further purification; yield: 90 %. Mp: 158162 °C. 1H 
NMR (500 MHz, DMSO-d6)  = 10.44 (br. s, 1 H, NH), 8.027.99 (m, 2 H), 7.867.83 (m, 2 H), 
7.777.75 (m, 2 H), 7.537.46 (m, 4 H), 7.457.41 (m, 1 H), 6.98 (dd, J = 7.9, 1.6 Hz, 1 H), 3.83 (s, 3 
H, OCH3) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 167.7, 164.7, 157.5, 143.4, 139.0, 137.2, 133.1, 131.3, 129.1, 
128.2, 128.1, 126.9, 126.8, 116.8, 116.6, 108.6, 56.1 (OCH3) ppm. 
LC/MS: m/z = 348 [M + H+], 695 [2M + H+]; tR = 13.30 min; 99.2 % pure (UV). 
 
2-([1,1'-biphenyl]-4-ylcarboxamido)-5-hydroxybenzoic acid (24) was prepared according to 
method E. The product was purified by CC (starting with n-hexane/EtOAc 1:1 to EtOAc + 3 ‰ formic 
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acid) followed by preparative TLC (CH2Cl2 + 7 drops formic acid per 10 mL solvent); yield: 34 %. Mp: 
193196 °C. 1H NMR (500 MHz, DMSO-d6)  = 11.88 (br. s, 1 H, NH), 9.64 (br. s, 1 H, ArOH), 8.51 (d, 
J = 8.8 Hz, 1 H), 8.038.00 (m, 2 H), 7.897.85 (m, 2 H), 7.787.74 (m, 2 H), 7.537.49 (m, 2 H), 7.46 
(d, J = 2.8 Hz, 1 H), 7.457.38 (m, 1 H), 7.08 (dd, J = 8.8, 2.8 Hz, 1 H) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 169.8, 163.7, 152.7, 143.3, 139.0, 133.6, 133.1, 129.1, 128.2, 
127.6, 127.1, 126.9, 121.9, 121.1, 118.4, 116.8 ppm. 
LC/MS: m/z = 334 [M + H+], 667 [2M + H+]; tR = 11.31 min; 96.6 % pure (UV). 
 
methyl 2-amino-4-nitrobenzoate (25b) was prepared according to method A. The product was 
purified by CC (n-hexane/EtOAc 6:4); yield: 37 %. 1H NMR (500 MHz, CDCl3)  = 8.01 (d, J = 8.8 Hz, 
1 H), 7.51 (d, J = 2.2 Hz, 1 H), 7.41 (dd, J = 8.8, 2.2 Hz, 1 H), 6.06 (br. s, 2 H, NH2), 3.93 (s, 3 H, 
OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 167.3, 151.3, 150.7, 132.8, 114.9, 111.1, 110.1, 52.2 (OCH3) ppm. 
LC/MS: m/z = no ionization; tR = 10.08 min; 100.0 % pure (UV). 
 
methyl 2-([1,1'-biphenyl]-4-ylcarboxamido)-4-nitrobenzoate (25a) was prepared according to 
method BI. For purification the solvent was evaporated and the remaining solid was suspended in 
MeOH. After filtration the precipitate was exhaustively washed with MeOH and CH2Cl2 to provide the 
pure compound; yield: 15 %. 1H NMR (500 MHz, CDCl3)  = 12.17 (br. s, 1 H, NH), 9.89 (d, J = 2.2 Hz, 
1 H), 8.28 (d, J = 8.8 Hz, 1 H), 8.218.10 (m, 2 H), 7.94 (dd, J = 8.8, 2.2 Hz, 1 H), 7.847.73 (m, 2 H), 
7.727.61 (m, 2 H), 7.547.47 (m, 2 H), 7.477.39 (m, 1 H), 4.07 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 167.8, 165.6, 151.4, 145.3, 142.9, 139.8, 132.5, 132.1, 129.0, 128.2, 
128.0, 127.6, 127.3, 119.3, 116.6, 115.5, 53.3 (OCH3) ppm. 
LC/MS: m/z = 377 [M + H+], 418 [M + H+ CH3CN]; tR = 15.03 min; 97.6 % pure (UV). 
 
2-([1,1'-biphenyl]-4-ylcarboxamido)-4-nitrobenzoic acid (25) was prepared according to method C. 
For purification the remaining solid was washed with MeOH and CH2Cl2 to provide the pure 
compound; yield: 94 %. Mp: 280283 °C. 1H NMR (500 MHz, DMSO-d6)  = 12.48 (br. s, 1 H, NH), 
9.55 (d, J = 2.2 Hz, 1 H), 8.28 (d, J = 8.8 Hz, 1 H), 8.098.04 (m, 2 H), 8.01 (dd, J = 8.8, 2.2 Hz, 1 H), 
7.957.90 (m, 2 H), 7.817.74 (m, 2 H), 7.567.49 (m, 2 H), 7.477.41 (m, 1 H) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 168.6, 164.9, 150.2, 144.1, 141.5, 138.8, 132.8, 132.6, 129.1, 
128.4, 127.9, 127.3, 127.0, 122.6, 117.2, 114.3 ppm. 
LC/MS: m/z = 363 [M + H+], 404 [M + H+ CH3CN], 725 [2M + H+]; tR = 13.25 min; 100.0 % pure (UV). 
 
methyl 2-([1,1'-biphenyl]-4-ylcarboxamido)-5-cyanobenzoate (26a) was prepared according to 
method BII. For purification the solvent was evaporated and the remaining solid was suspended in 
MeOH. After filtration the precipitate was washed with MeOH to provide the pure compound; yield: 43 
%. 1H NMR (500 MHz, CDCl3)  = 12.29 (br. s, 1 H, NH), 9.13 (d, J = 8.8 Hz, 1 H), 8.42 (d, J = 2.0 Hz, 
1 H), 8.138.11 (m, 2 H), 7.84 (dd, J = 8.8, 2.0 Hz, 1 H), 7.797.76 (m, 2 H), 7.677.64 (m, 2 H), 
7.517.48 (m, 2 H), 7.457.40 (m, 1 H), 4.04 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 167.6, 165.6, 145.4, 145.3, 139.7, 137.6, 135.4, 132.5, 129.0, 128.2, 
128.0, 127.6, 127.2, 120.9, 118.0, 115.3, 105.9, 53.1 (OCH3) ppm. 
LC/MS: m/z = 357 [M + H+], 713 [2M + H+]; tR = 15.32 min; 97.2 % pure (UV). 
 
2-([1,1'-biphenyl]-4-ylcarboxamido)-5-cyanobenzoic acid

5
 (26) was prepared according to method 

C. Sufficient purity was achieved without further purification; yield: 80 %. Mp: 246247 °C. 1H NMR 
(500 MHz, DMSO-d6)  = 12.46 (br. s, 1 H, NH), 8.87 (d, J = 8.8 Hz, 1 H), 8.38 (d, J = 2.0 Hz, 1 H), 
8.07 (dd, J = 8.8, 2.0 Hz, 1 H), 8.048.01 (m, 2 H), 7.907.87 (m, 2 H), 7.777.73 (m, 2 H), 7.537.48 
(m, 2 H), 7.467.41 (m, 1 H) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 168.6, 164.7, 144.6, 144.1, 138.7, 137.5, 135.4, 132.5, 129.1, 
128.4, 127.9, 127.2, 127.0, 120.2, 118.1, 117.2, 105.0 ppm. 
LC/MS: m/z = 343 [M + H+], 685 [2M + H+]; tR = 13.30 min; 97.5 % pure (UV). 
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methyl 2-amino-4-(trifluoromethyl)benzoate (27b) was prepared according to method A. The 
product was purified by CC (n-hexane/EtOAc 1:1); yield: 61 %. 1H NMR (500 MHz, CDCl3)  = 7.96 (d, 
J = 8.2 Hz, 1 H), 6.936.89 (m, 1 H), 6.886.82 (m, 1 H), 5.92 (br. s, 2 H, NH2), 3.91 (s, 3 H, OCH3) 
ppm. 
13C NMR (125 MHz, CDCl3)  = 167.7, 150.2, 135.7 (q, JCF = 32.1 Hz), 132.2, 120.3 (q, JCF = 272.0 
Hz), 113.4 (q, JCF = 3.7 Hz), 113.0 (q, JCF = 1.8 Hz), 112.3 (q, JCF = 3.7 Hz), 51.9 (OCH3) ppm. 
LC/MS: m/z = 261 [M + H+ CH3CN]; tR = 12.01 min; 85.2 % pure (UV). 
 
methyl 2-([1,1'-biphenyl]-4-ylcarboxamido)-4-(trifluoromethyl)benzoate (27a) was prepared 
according to method BII. For purification the solvent was evaporated and the remaining solid was 
suspended in MeOH. After filtration the precipitate was washed with MeOH to provide the pure 
compound; yield: 22 %. 1H NMR (500 MHz, CDCl3)  = 12.16 (br. s, 1 H, NH), 9.36 (dd, J = 1.3, 0.6 
Hz, 1 H), 8.22 (d, J = 8.2 Hz, 1 H), 8.158.12 (m, 2 H), 7.797.76 (m, 2 H), 7.687.64 (m, 2 H), 
7.517.47 (m, 2 H), 7.467.40 (m, 1 H), 7.38 (ddd, J = 8.2, 1.3, 0.6 Hz, 1 H), 4.04 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 168.2, 165.6, 145.1, 142.3, 139.9, 136.1 (q, JCF = 32.0 Hz), 132.9, 
131.6, 129.0, 128.2, 127.9, 127.6, 127.2, 123.4 (q, JCF = 273.1 Hz), 118.9 (q, JCF = 3.7 Hz), 117.5 (q, 
JCF = 4.2 Hz), 53.0 (OCH3) ppm. 
LC/MS: m/z = 400 [M + H+], 441 [M + H+ CH3CN], 799 [2M + H+]; tR = 16.51 min; 100.0 % pure (UV). 
 
2-([1,1'-biphenyl]-4-ylcarboxamido)-4-(trifluoromethyl)benzoic acid (27) was prepared according 
to method C. Sufficient purity was achieved without further purification; yield: 84 %. Mp: 245246 °C. 
1H NMR (500 MHz, DMSO-d6)  = 12.35 (br. s, 1 H, NH), 9.10 (d, J = 1.6 Hz, 1 H), 8.26 (d, J = 8.2 Hz, 
1 H), 8.088.04 (m, 2 H), 7.957.89 (m, 2 H), 7.817.75 (m, 2 H), 7.57 (dd, J = 8.2, 1.6 Hz, 1 H), 
7.557.49 (m, 2 H), 7.477.41 (m, 1 H) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 169.0, 164.8, 144.0, 141.4, 138.8, 133.4 (q, JCF = 32.0 Hz), 132.7, 
132.5, 129.1, 128.4, 127.8, 127.2, 127.0, 122.9 (q, JCF = 273.1 Hz), 119.2 (q, JCF = 3.7 Hz), 116.3 (q, 
JCF = 3.7 Hz) ppm. 
LC/MS: m/z = 386 [M + H+], 427 [M + H+ CH3CN], 771 [2M + H+]; tR = 14.11 min; 100.0 % pure (UV). 
 
methyl 2-([1,1'-biphenyl]-4-ylcarboxamido)-5-(trifluoromethyl)benzoate (28a) was prepared 
according to method BII. For purification the solvent was evaporated and the remaining solid was 
suspended in MeOH. After filtration the precipitate was washed with MeOH followed by CC (n-
hexane/EtOAc 9:1) to provide the pure compound; yield: 42 %. 1H NMR (500 MHz, CDCl3)  = 12.24 
(br. s, 1 H, NH), 9.13 (d, J = 8.8 Hz, 1 H), 8.38 (d, J = 2.0 Hz, 1 H), 8.158.12 (m, 2 H), 7.85 (dd, J = 
8.8, 2.0 Hz, 1 H), 7.797.76 (m, 2 H), 7.687.65 (m, 2 H), 7.527.48 (m, 2 H), 7.457.40 (m, 1 H), 4.04 
(s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 168.2, 165.6, 145.2, 144.6, 139.8, 132.9, 131.4 (q, JCF = 3.6 Hz), 
129.0, 128.3 (q, JCF = 3.6 Hz), 128.2, 128.0, 127.6, 127.2, 124.5 (q, JCF = 33.9 Hz), 120.6, 122.6 (q, 
JCF = 271.3 Hz), 114.9, 52.9 (OCH3) ppm. 
LC/MS: m/z = 400 [M + H+], 441 [M + H+ CH3CN], 799 [2M + H+]; tR = 16.70 min; 95.1 % pure (UV). 
 
2-([1,1'-biphenyl]-4-ylcarboxamido)-5-(trifluoromethyl)benzoic acid (28) was prepared according 
to method C. For purification the remaining solid was washed with MeOH and CH2Cl2 to provide the 
pure compound; yield: 49 %. Mp: 265266 °C. 1H NMR (500 MHz, DMSO-d6)  = 12.41 (br. s, 1 H, 
NH), 8.93 (d, J = 8.8 Hz, 1 H), 8.28 (d, J = 2.0 Hz, 1 H), 8.068.03 (m, 2 H), 8.01 (dd, J = 8.8, 2.0 Hz, 
1 H), 7.927.87 (m, 2 H), 7.787.73 (m, 2 H), 7.547.47 (m, 2 H), 7.467.40 (m, 1 H) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 168.9, 164.7, 144.3, 144.0, 138.8, 132.7, 130.9 (q, JCF = 3.7 Hz) 
129.1, 128.4, 127.9 (q, JCF = 3.7 Hz), 127.8, 127.2, 127.0, 123.8 (q, JCF = 271.3 Hz), 122.8 (q, JCF = 
33.0 Hz) 120.4, 116.8 ppm. 
LC/MS: m/z = 386 [M + H+], 771 [2M + H+]; tR = 14.60 min; 99.8 % pure (UV). 
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methyl 2-amino-5-(trifluoromethoxy)benzoate (29b) was prepared according to method A. The 
product was purified by CC (n-hexane/EtOAc 1:1); yield: 26 %. 1H NMR (500 MHz, CDCl3)  = 
7.777.68 (m, 1 H), 7.207.11 (m, 1 H), 6.65 (d, J = 9.5 Hz, 1 H), 5.80 (br. s, 2 H, NH2), 3.89 (s, 3 H, 
OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 167.6, 149.2, 138.8 (q, JCF = 1.8 Hz), 127.9, 123.8, 120.7 (q, JCF = 
256.0 Hz), 117.5, 110.5, 51.8 (OCH3) ppm. 
LC/MS: m/z = 236 [M + H+], 277 [M + H+ CH3CN]; tR = 12.13 min; 96.0 % pure (UV). 
 
methyl 2-([1,1'-biphenyl]-4-ylcarboxamido)-5-(trifluoromethoxy)benzoate (29a) was prepared 
according to method BIII. For purification the solvent was evaporated and the remaining solid was 
suspended in MeOH. After filtration the precipitate was washed with MeOH to provide the pure 
compound; yield: 86 %. 1H NMR (500 MHz, CDCl3)  = 12.06 (br. s, 1 H, NH), 9.05 (d, J = 9.1 Hz, 1 
H), 8.168.09 (m, 2 H), 7.96 (d, J = 2.5 Hz, 1 H), 7.817.74 (m, 2 H), 7.687.64 (m, 2 H), 7.517.48 
(m, 3 H), 7.447.40 (m, 1 H), 4.02 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 168.0, 165.5, 145.0, 143.4 (q, JCF = 1.8 Hz), 140.7, 139.9, 133.1, 
130.7, 129.0, 128.1, 127.9, 127.5, 127.2, 123.4, 122.0, 120.5 (q, JCF = 257.5 Hz), 116.1, 52.9 (OCH3) 
ppm. 
LC/MS: m/z = 416 [M + H+], 457 [M + H+ CH3CN], 831 [2M + H+]; tR = 16.64 min; 100.0 % pure (UV). 
 
2-([1,1'-biphenyl]-4-ylcarboxamido)-5-(trifluoromethoxy)benzoic acid (29) was prepared 
according to method C. Sufficient purity was achieved without further purification; yield: 98 %. Mp: 
245246 °C. 1H NMR (500 MHz, DMSO-d6)  = 12.17 (br. s, 1 H, NH), 8.81 (d, J = 9.1 Hz, 1 H), 
8.068.03 (m, 2 H), 7.92 (dd, J = 3.0, 0.8 Hz, 1 H), 7.917.88 (m, 2 H), 7.787.74 (m, 2 H), 7.747.68 
(m, 1 H), 7.537.49 (m, 2 H), 7.467.41 (m, 1 H) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 168.6, 164.5, 143.9, 142.7 (q, JCF = 1.8 Hz), 140.1, 138.8, 132.9, 
129.1, 128.3, 127.8, 127.2, 127.0, 127.0, 123.3, 121.9, 118.6, 120.0 (q, JCF = 256.0 Hz) ppm. 
LC/MS: m/z = 402 [M + H+], 803 [2M + H+]; tR = 14.58 min; 100.0 % pure (UV). 
 
methyl 2-amino-5-methylbenzoate (30b) was prepared according to method A. Sufficient purity was 
achieved without further purification; yield: 82 %. 1H NMR (500 MHz, CDCl3)  = 7.67 (d, J = 2.2 Hz, 1 
H), 7.10 (dd, J = 8.2, 2.2 Hz, 1 H), 6.60 (d, J = 8.2 Hz, 1 H), 5.55 (br. s, 2 H, NH2), 3.88 (s, 3 H, OCH3), 
2.24 (s, 3 H, CH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 168.6, 148.3, 135.2, 130.8, 125.4, 116.8, 110.7, 51.4 (OCH3), 20.2 
(CH3) ppm. 
LC/MS: m/z = no ionization; tR = 8.48 min; 98.0 % pure (UV). 
 
methyl 2-([1,1'-biphenyl]-4-ylcarboxamido)-5-methylbenzoate (30a) was prepared according to 
method BII. For purification the solvent was evaporated and the remaining solid was suspended in 
MeOH. After filtration the precipitate was washed with MeOH to provide the pure compound; yield: 85 
%. 1H NMR (500 MHz, CDCl3)  = 12.00 (br. s, 1 H, NH), 8.86 (d, J = 8.8 Hz, 1 H), 8.158.12 (m, 2 H), 
7.91 (d, J = 2.2 Hz, 1 H), 7.777.75 (m, 2 H), 7.687.65 (m, 2 H), 7.517.47 (m, 2 H), 7.44 (dd, J = 
8.8, 2.2 Hz, 1 H), 7.437.39 (m, 1 H), 3.98 (s, 3 H, OCH3), 2.38 (s, 3 H, CH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 169.1, 165.2, 144.5, 140.1, 139.5, 135.6, 133.7, 132.1, 131.0, 128.9, 
128.0, 127.9, 127.4, 127.2, 120.4, 115.0, 52.4 (OCH3), 20.7 (CH3) ppm. 
LC/MS: m/z = 346 [M + H+], 691 [2M + H+]; tR = 16.44 min; 99.1 % pure (UV). 
 
2-([1,1'-biphenyl]-4-ylcarboxamido)-5-methylbenzoic acid (30) was prepared according to method 
C. Sufficient purity was achieved without further purification; yield: 95 %. Mp: 246248 °C. 1H NMR 
(500 MHz, DMSO-d6)  = 12.13 (br. s, 1 H, NH), 8.63 (d, J = 8.8 Hz, 1 H), 8.058.01 (m, 2 H), 
7.907.86 (m, 3 H), 7.797.74 (m, 2 H), 7.537.47 (m, 3 H), 7.467.40 (m, 1 H), 2.33 (s, 3 H, CH3) 
ppm. 
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13C NMR (125 MHz, DMSO-d6)  = 170.1, 164.1, 143.6, 138.9, 138.8, 134.8, 133.3, 132.1, 131.3, 
129.1, 128.3, 127.6, 127.1, 126.9, 119.9, 116.4, 20.2 (CH3) ppm. 
LC/MS: m/z = 332 [M + H+], 663 [2M + H+]; tR = 13.78 min; 100.0 % pure (UV). 
 
3-(3-phenoxybenzamido)-[1,1'-biphenyl]-4-carboxylic acid (31) was prepared according to method 
D. The product was purified by CC (n-hexane/EtOAc 8:2); yield: 91 %. Mp: 189190 °C. 1H NMR (500 
MHz, DMSO-d6)  = 12.26 (br. s, 1 H, NH), 9.02 (d, J = 1.9 Hz, 1 H), 8.12 (d, J = 8.2 Hz, 1 H), 
7.747.71 (m, 3 H), 7.62 (d, J = 7.9, 7.9 Hz, 1 H), 7.557.50 (m, 4 H), 7.477.42 (m, 3 H), 7.29 (ddd, J 
= 8.2, 2.5, 0.9 Hz, 1 H), 7.21 (tt, J = 7.4, 1.1 Hz, 1 H), 7.147.08 (m, 2 H) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 169.9, 164.1, 157.4, 155.9, 145.7, 141.4, 138.9, 136.4, 131.9, 
130.8, 130.3, 129.2, 128.6, 126.9, 124.1, 122.1, 121.5, 121.3, 119.2, 117.9, 116.8, 115.4 ppm. 
LC/MS: m/z = 410 [M + H+], 819 [2M + H+]; tR = 15.23 min; 99.1 % pure (UV). 
 
4-(3-phenoxybenzamido)-[1,1'-biphenyl]-3-carboxylic acid (32) was prepared according to method 
D. The product was purified by preparative TLC (n-hexane/EtOAc 1:1 + 7 drops formic acid per 10 mL 
solvent) and washed with CH2Cl2; yield: 42 %. Mp: 207208 °C. 1H NMR (500 MHz, DMSO-d6)  = 
12.20 (br. s, 1 H, NH), 8.75 (d, J = 8.8 Hz, 1 H), 8.29 (d, J = 2.5 Hz, 1 H), 7.98 (dd, J = 8.8, 2.5 Hz, 1 
H), 7.787.72 (m, 1 H), 7.717.66 (m, 2 H), 7.61 (dd, J = 7.9, 7.9 Hz, 1 H), 7.577.53 (m, 1 H), 
7.537.42 (m, 4 H), 7.417.34 (m, 1 H), 7.327.25 (m, 1 H), 7.247.17 (m, 1 H), 7.167.04 (m, 2 H) 
ppm. 
13C NMR (125 MHz, CDCl3)  = 169.9, 163.9, 157.3, 156.0, 140.1, 138.7, 136.4, 134.7, 132.3, 130.8, 
130.3, 129.1, 128.9, 127.6, 126.4, 124.1, 122.1, 121.6, 120.6, 119.1, 117.3, 116.9 ppm. 
LC/MS: m/z = 410 [M + H+], 451 [M + H+ CH3CN], 819 [2M + H+]; tR = 14.61 min; 100.0 % pure (UV). 
 
methyl 4-bromo-3-hydroxybenzoate (33f). To 3-hydroxybenzoate (1 equiv) in acetic acid was added 
bromine (1 equiv) dropwise. The reaction mixture was stirred at room temperature for 18 h, water was 
added and the mixture was extracted with EtOAc. The combined organic layers were washed with 
brine and dried over MgSO4. The product was purified by CC (n-hexane/EtOAc 92.5:7.5) followed by 
crystallization from EtOAc/n-hexane (in fridge overnight); yield: 48 %. 1H NMR (500 MHz, 
METHANOL-d4)  = 11.51 (br. s, 1 H, OH), 8.43 (d, J = 8.2 Hz, 1 H), 8.33 (d, J = 2.0 Hz, 1 H), 8.11 
(dd, J = 8.2, 2.0 Hz, 1 H), 4.64 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, METHANOL-d4)  = 175.3, 163.9, 142.9, 139.7, 130.5, 126.0, 124.7, 61.9 (OCH3) 
ppm. 
LC/MS: m/z = no ionization; tR = 9.28 min; 97.8 % pure (UV). 
 
methyl 4-bromo-3-phenoxybenzoate (33e). A mixture of methyl 4-bromo-3-hydroxybenzoate (33f, 1 
equiv), phenylboronic acid (2 equiv), copper acetate (1 equiv), triethylamine (5 equiv) and 3 Å 
molecular sieves in CH2Cl2 was stirred at room temperature for 72 h under a N2 atmosphere. After 
filtration over celite the solvent was evaporated. Purification by CC (n-hexane/EtOAc 8:2) provided the 
pure compound; yield: 37 %. 1H NMR (500 MHz, CDCl3)  = 7.72 (d, J = 8.2 Hz, 1 H), 7.68 (dd, J = 
8.2, 1.9 Hz, 1 H), 7.59 (d, J = 1.9 Hz, 1 H), 7.397.36 (m, 2 H), 7.16 (tt, J = 7.4, 1.1 Hz, 1 H), 
7.026.97 (m, 2 H), 3.87 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, Acetone-d6)  = 148.0, 138.6, 136.5, 116.2, 113.2, 112.1, 107.5, 106.2, 102.2, 
102.0, 100.5, 33.8 (OCH3) ppm. 
LC/MS: m/z = no ionization; tR = 13.54 min; 97.5 % pure (UV). 
 
2-phenoxy-[1,1'-biphenyl]-4-carboxylic acid (33d) was prepared according to method D. The 
product was purified by CC (n-hexane/EtOAc 7:3); yield: 66 %. 1H NMR (500 MHz, CDCl3)  = 7.94 
(dd, J = 7.9, 1.6 Hz, 1 H), 7.72 (d, J = 1.6 Hz, 1 H), 7.637.56 (m, 3 H), 7.437.39 (m, 2 H), 7.387.35 
(m, 1 H), 7.347.29 (m, 2 H), 7.09 (tt, J = 7.4, 1.1 Hz, 1 H), 7.006.94 (m, 2 H) ppm. 
13C NMR (125 MHz, CDCl3)  = 171.1, 157.1, 153.9, 139.0, 136.7, 131.4, 129.8, 129.6, 129.2, 128.3, 
128.0, 125.5, 123.3, 121.2, 118.5 ppm. 
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LC/MS: m/z = no ionization; tR = 12.33 min; 97.6 % pure (UV). 
 
methyl 4-fluoro-2-(2-phenoxy-[1,1'-biphenyl]-4-ylcarboxamido)benzoate (33a) was prepared 
according to method BIII. The product was purified by CC (n-hexane/EtOAc 9:1); yield: 65 %. 1H NMR 
(500 MHz, CDCl3)  = 12.19 (br. s, 1 H, NH), 8.72 (dd, J = 12.1, 2.6 Hz, 1 H), 8.09 (dd, J = 9.0, 6.5 Hz, 
1 H), 7.84 (dd, J = 8.0, 1.9 Hz, 1 H), 7.70 (d, J = 1.9 Hz, 1 H), 7.677.60 (m, 3 H), 7.447.32 (m, 5 H), 
7.117.08 (m, 1 H), 7.067.01 (m, 2 H), 6.81 (ddd, J = 9.0, 7.5, 2.6 Hz, 1 H), 3.94 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 168.3, 166.4 (d, JCF = 253.0 Hz), 164.9, 156.9, 154.5, 143.9 (d, JCF = 
13.7 Hz), 137.0, 136.8, 134.9, 133.2 (d, JCF = 10.1 Hz), 131.7, 129.8, 129.2, 128.3, 127.9, 123.4, 
122.0, 118.8, 118.8, 111.3 (d, JCF = 2.7 Hz), 110.0 (d, JCF = 22.0 Hz), 107.5 (d, JCF = 28.4 Hz), 52.5 
(OCH3) ppm. 
LC/MS: m/z = 442 [M + H+], 483 [M + H+ CH3CN], 883 [2M + H+]; tR = 17.02 min; 89.0 % pure (UV). 
 
4-fluoro-2-(2-phenoxy-[1,1'-biphenyl]-4-ylcarboxamido)benzoic acid (33) was prepared according 
to method C. For purification the remaining solid was washed with MeOH to provide the pure 
compound; yield: 77 %. Mp: 223227 °C. 1H NMR (500 MHz, DMSO-d6)  = 12.45 (br. s, 1 H, NH), 
8.50 (dd, J = 12.1, 2.6 Hz, 1 H), 8.148.09 (m, 1 H), 7.847.80 (m, 1 H), 7.73 (d, J = 8.2 Hz, 1 H), 
7.627.59 (m, 2 H), 7.52 (d, J = 1.9 Hz, 1 H), 7.467.42 (m, 2 H), 7.417.34 (m, 3 H), 7.12 (tt, J = 7.3, 
1.2 Hz, 1 H), 7.077.03 (m, 1 H), 7.036.99 (m, 2 H) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 169.4, 165.0 (d, J = 249.0 Hz), 163.9, 156.5, 153.5, 143.1 (d, J = 
12.8 Hz), 136.7, 136.1, 134.7, 134.0 (d, JCF = 11.0 Hz), 131.9, 130.2, 129.0, 128.4, 128.0, 123.5, 
122.3, 118.5, 118.2, 113.0 (d, JCF = 2.8 Hz), 110.1 (d, JCF = 22.0 Hz), 106.4 (d, JCF = 27.0 Hz) ppm. 
LC/MS: m/z = 428 [M + H+], 469 [M + H+ CH3CN], 855 [2M + H+]; tR = 15.13 min; 97.2 % pure (UV). 
 
methyl 4-chloro-2-(2-phenoxy-[1,1'-biphenyl]-4-ylcarboxamido)benzoate (34a)   was prepared 
according to method BIII. The product was purified by CC (n-hexane/EtOAc 9:1); yield: 22 %. 1H NMR 
(500 MHz, CDCl3)  = 12.08 (br. s, 1 H, NH), 9.01 (d, J = 2.2 Hz, 1 H), 8.00 (d, J = 8.5 Hz, 1 H), 7.83 
(dd, J = 7.9, 1.9 Hz, 1 H), 7.68 (d, J = 1.9 Hz, 1 H), 7.647.60 (m, 3 H), 7.447.40 (m, 2 H), 7.387.31 
(m, 3 H), 7.117.07 (m, 2 H), 7.057.01 (m, 2 H), 3.95 (s, 3 H, OCH3) ppm. 
13C NMR (125 MHz, CDCl3)  = 168.4, 164.9, 156.9, 154.6, 142.6, 141.2, 137.0, 136.8, 134.9, 132.0, 
131.7, 129.9, 129.2, 128.3, 127.9, 123.4, 123.0, 121.9, 120.3, 118.9, 118.7, 113.3, 52.6 (OCH3) ppm. 
LC/MS: m/z = 458 and 460 [M + H+], 915 and 917 [2M + H+]; tR = 17.56 min; 97.5 % pure (UV). 
 
4-chloro-2-(2-phenoxy-[1,1'-biphenyl]-4-ylcarboxamido)benzoic acid (34)   was prepared 
according to method C. For purification the remaining solid was washed with MeOH to provide the 
pure compound; yield: 92 %. Mp: 230234 °C. 1H NMR (500 MHz, DMSO-d6)  = 12.31 (br. s, 1 H, 
OCH3), 8.75 (d, J = 2.2 Hz, 1 H), 8.04 (d, J = 8.5 Hz, 1 H), 7.82 (dd, J = 7.9, 1.9 Hz, 1 H), 7.73 (d, J = 
7.9 Hz, 1 H), 7.637.59 (m, 2 H), 7.52 (d, J = 1.9 Hz, 1 H), 7.467.42 (m, 2 H), 7.407.34 (m, 3 H), 
7.27 (dd, J = 8.5, 2.2 Hz, 1 H), 7.167.09 (m, 1 H), 7.036.99 (m, 2 H) ppm. 
13C NMR (125 MHz, DMSO-d6)  = 169.3, 163.8, 156.5, 153.5, 141.9, 138.6, 136.7, 136.1, 134.7, 
132.9, 131.9, 130.2, 129.0, 128.4, 128.0, 123.5, 123.0, 122.4, 119.3, 118.5, 118.2, 115.4 ppm. 
LC/MS: m/z = 444 [M + H+], 485 [M + H+ CH3CN], 887 [2M + H+]; tR = 15.37 min; 97.3 % pure (UV). 
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6.1.3 Computational Chemistry 

 

Pharmacophore modelling and virtual screening. The following compounds IVII were 
retrieved from literature1,6─9: 

 

Figure S1. Compounds used for the flexible alignment 

 

I: Published by Arhin et al.6 (“compound 1”) as inhibitor of S. aureus RNAP. It was shown that 
these compounds do not bind to the Rifamycin binding site, but the exact mode of action is 
not known. 
II and III: Published by Artsimovitch et al.7 (“CBR703 and CBR9379”) as inhibitors of E. coli 
RNAP. They bind to a surface exposed groove at the junction of the ’-bridge helix and the 
-subunit. 
IV, V and VI: Published by André et al.8 (“SB8 and SB2”) and Villain-Guillot9 (“compound 
11b”) as inhibitors of E. coli RNAP. The mode of action of these compounds is the prevention 
of the protein-protein interaction between 70 and the RNAP core enzyme. 
VII: Published by Larsen et al.1 (“compound 1”) as inhibitor of transcription/ translation in 
S. aureus. Resynthesis and testing in our E. coli RNAP in vitro inhibition assay revealed VII 
as a potent inhibitor of E. coli RNAP (IC50 42 µM). 
 
Compounds IVII (Fig. S1) were aligned using the flexible alignment module of MOE 
(Molecular Operating Environment)10 with the stochastic search option turned on. We 
modified the default flexible alignment settings; the Aromaticity and CO2-type centroid 
weights were set at 2 – strikingly these two chemical moieties are present in most of the 
initial seven template compounds. Weights on volume and acceptor/donor projection 
features were switched on. Further, we set the configuration limit to 100 and conjugate 
gradient minimization steps to 1000. The alignment with the best similarity score was 
retained and refined within MOE. 
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Figure S2. Final pharmacophore model used for virtual screening 

 

This alignment was used to identify common features within the seven superimposed ligands 
via the Pharmacophore Consensus utility (tolerance of 1.2 and threshold value of 50% 
(ligands that match one feature)). The resulting pharmacophore model (consisting of 9 
features) was manually refined and reduced to 7 features with 6 needed partial matches. The 
final pharmacophore model (Fig. S2) consisted of following features (F1-F4 - feature radius 
of 1.5 Å, F5-F7 - feature radius of 1 Å): 

Feature F1 (rose): O2|Ani|N[O,o]|(O(C=O)C (this includes CO2-like centroids (both acids and 
ester), anionic atoms as well as N.sp2-O moieties (i.e. oximes, nitro) 

Feature F2 (orange): Aro (all aromatic systems) 

Feature F3 (violet): HBD/HBA/Aro (this feature can be matched by either a hydrogen-bond 
donor or acceptor or by an aromatic system) 

Feature F4: Aro/Hyd/pi (in this position aromatic, hydrophobic or planar-conjugated pi 
systems are requested) 

Feature F5 (green): Hydrophobic 

Features F6+F7 (hatched orange): Aromatic ring projections 
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Figure S3. Overlay of the resulting pharmacophore model with inhibitors IVII and 3 

 

A virtual library was built including approximately 2000 synthetic in-house compounds that 
had been developed as aromatase, CYP17, CYP11B1, CYP11B2, thromboxane A2, 5 
reductase, 17 HSD1, 17 HSD2, FabH and PqsD inhibitors. For each compound a 
conformational search was performed using the default parameters of the conformational 
search module of MOE2010. Conformers were energy minimized using MMFF94xs forcefield 
and the Generalized Born implicit solvent model. The obtained multiple-conformer database 
was now used in the pharmacophore search. 
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Figure S4. Experimentally validated virtual hit compounds 

 

In total 64 hits were found matching at least the four core features and the two aromatic 
projections, while the presence of the accessory feature was not mandatory. All hit 
compounds were tested on inhibitory potency, for eleven of them (comprising five different 
structural classes) an inhibition >20% was measured at 200 µM (Fig. S4). 

Based on the activities of 1‒4, the seven-feature pharmacophore model (Fig. S2) was 
extended by two additional features (F8 and F9): 
 
Features F8+F9 (hatched yellow): Aro/Hyd (feature radius of 1.5 Å) 
 
Using this model (Fig. S5) in further screenings, a compound will be defined as a hit if, 
beside the 4 core features, at least one of the new accessory features is present. 
 
 

 

Figure S5. Extended pharmacophore model 
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Figure S6. Overlay of the extended pharmacophore model with 
        A) most potent hit compound 3 
        B) described inhibitor V 
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6.2 Supporting Information for Publication II 

Full supporting information is available online:  

http://www.future-science.com/doi/suppl/10.4155/fmc.14.105 
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6.3 Supporting Information for Publication III 

Full supporting information is available online:  

http://www.sciencedirect.com/science/MiamiMultiMediaURL/1-s2.0-S0223523414001342/1-

s2.0-S0223523414001342-mmc1.docx/271932/FULL/S0223523414001342/ 

c59ab0eabb97965487b6b7f58683ce1b/mmc1.docx 

 

 

Table S1. RNAP and PqsD inhibition values for 5186 

 

 

Cmpd 

(Cmpd no. 

of Weidel et 

al.
a
) 

R
1
 R

2
 R

3
 

PqsD 

inhibition
b,c

 

RNAP 

inhibition
d
 

51 (2) H 3'-SO2NEt2  19.8 µM n.i. 

52 (9) H 4'-SO2NEt2  44% n.i. 

53 (34) H 
4'-Br, 

3'-SO2NEt2 
 6.9 µM n.i. 

54 (35) H 
4'-Me, 

3'-SO2NEt2 
 27.3 µM n.i. 

55 (36) H 
4'-Et, 

3'-SO2NEt2 
 39% n.i. 

56 (37) 4-Cl 3'-SO2NEt2  9.4 µM 
n.i. 

@ 100 µM 

57 (38) 4-F 3'-SO2NEt2  8.0 µM n.i. 

58 (39) 4-NO2 3'-SO2NEt2  6.3 µM n.i. 

59 (40) 5-Me 3'-SO2NEt2  18.4 µM n.i. 

60 (41) 5-CF3 3'-SO2NEt2  12.4 µM 
n.i. 

@ 50 µM 

61 (42) 5-F 3'-SO2NEt2  11.4 µM 
n.i. 

@ 100 µM 

62 (43) 5-Br 3'-SO2NEt2  9.9 µM n.i. @ 50 µM 

63 (44) 5-CN 3'-SO2NEt2  26.2 µM n.i. 

64 (45) 5-NO2 3'-SO2NEt2  8.9 µM 
30% 

@ 100 µM 

65 (10) 5-Br 4'-SO2NEt2  13.0 µM 28 % 
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Cmpd 

(Cmpd no. 

of Weidel et 

al.
a
) 

R
1
 R

2
 R

3
 

PqsD 

inhibition
b,c

 

RNAP 

inhibition
d
 

66 (14) 5-Br 3'-C(O)NEt2  25.5 µM n.i. 

67 (46) 5-F 
4'-Br, 

3'-SO2NEt2 
 6.6 µM 

n.i. 
@ 100 µM 

68 (47) 5-Br 
4'-Br, 

3'-SO2NEt2 
 3.8 µM 

n.i. 
@ 50 µM 

69 (48) 5-Ph 3'-SO2NEt2  3.0 µM 
n.i. 

@ 100 µM 

70 (49) 6-OMe 3'-SO2NEt2  44% n.i. 

71 (50) 6-Cl 3'-SO2NEt2  39.0 µM n.i. 

72 (51) 6-F 3'-SO2NEt2  24.9 µM n.i. 

73 (52) 6-OH 3'-SO2NEt2  1.2 µM n.i. 

74 (53)  3'-SO2NEt2 3''-C(O)NH2 3.8 µM 45% 

75 (54)  3'-SO2NEt2 4''-C(O)NH2 1.9 µM 78 µM 

76 (55)  3'-SO2NEt2 3''-CO2H 1.5 µM 24% 

77 (56)  3'-SO2NEt2 4''-CO2H 2.7 µM 
23% 

@ 50 µM 

78 (57) H 3'-SO2NH2  43.6 µM n.i. 

79 (58) H 3'-SO2NMe2  35% n.i. 

80 (59) H 3'-SO2N(n-Pr)2  5.4 µM n.i. 

81 (13) H 3'-CONEt2  n.i. n.i. 

82 (60) H 
 

 47% n.i. 

83 (61) H 
 

 14.4 µM n.i. 

84 (62) H 
 

 14.8 µM n.i. 

85 (63) H 
 

 16% n.i. 

86 (64) H 

 

 16.5 µM 29% 

 

a Weidel, E.; de Jong, J.C.; Brengel, C.; Storz, M.P.; Braunshausen, A.; Negri, M.; Plaza, A.; Steinbach, A.; Müller, R.; 
  Hartmann, R.W. Structure optimization of 2-benzamidobenzoic acids as PqsD inhibitors for Pseudomonas aeruginosa  
  infections and elucidation of binding mode by SPR, STD NMR, and molecular docking. J. Med. Chem. 2013, 56, 6146–6155. 
b IC50 value (SD <25%, except for 63 (40%)) or percentage inhibition at 50 µM (SD <40%); Data represent the mean values of at 
  least three experiments. 
c PqsD inhibition values originally published by Weidel et al.[1] 
d IC50 value (SD <20%) or percentage inhibition at 200 µM (SD <40%) for E. coli RNAP; Data represent the mean values of at 
  least two experiments. 
n.i.: no inhibition 
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