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Abstract   
This PhD work showed that GHB and neurosteroids efficiently protect neuroblastoma 
cells against nerve cell death caused by Alzheimer's disease etiological factors 
including amyloid precursor protein overexpression and oxidative stress. 
Interestingly, an additive action of GHB and allopregnanolone was identified that may 
result from the combination of partial stimulation of anti-apoptotic protein expression 
induced by both compounds. GHB protective effect was blocked by aromatase 
inhibitors, suggesting that GHB may also induce neuroprotection via the activation of 
neurosteroidogenesis. Finally, we have used a yeast-based MMP activity assay to 
check whether GHB and neurosteroids can regulate the activity of human MMP-2 
and MMP-9, which both control Aβ peptide degradation. Although we cannot yet 
conclude from our preliminary results, further improvement of the experimental setup 
in combination with RT-qPCR and western analyzes in human neuroblastoma cells 
will help to determine the modulatory action of GHB and neurosteroids on MMP 
activity and/or expression. Together, our data suggest that GHB and neurosteroids 
may be used to develop combined neuroprotective strategies against neuronal loss 
in Alzheimer disease.   

 

Zusammenfassung  

In der vorliegenden Doktorarbeit konnte gezeigt werden, dass Gamma-
Hydroxybutyrat (GHB) und Neurosteroide effektiv in der Lage sind, Neuroblastoma 
Zellen vor den ätiologischen Faktoren der Alzheimer-Krankheit, darunter 
insbesondere durch oxidativen Stress und Überexpression von Amyloid-Precursor-
Proteinen verursachten Zelltod, zu schützen. Interessanterweise wurde eine additive 
neuroprotektive Wirkung von GHB und Allopregnanolon gegen den durch oxidativen 
Stress induzierten Zelltod beobachtet. Diese additive Wirkung ist vermutlich auf eine 
spezifische Aktivierung von anti-apoptotischen Signalwegen durch GHB und 
Allopregnanolon zurückzuführen. Die Schutzwirkung von GHB wurde durch 
Aromatase-Inhibitoren blockiert, was darauf schließen lässt, dass GHB 
möglicherweise die Neurosteroidogenese aktiviert. Abschließend wurde mit Hilfe 
eines Hefe-basierten MMP-Aktivitätstests überprüft, ob GHB und/oder Neurosteroide 
die Aktivität von humanem MMP-2 bzw. MMP-9, welche den Abbau von Aβ-Peptiden 
kontrollieren, direkt beeinflussen. Auch wenn mit dem verwendeten Testsystem noch 
kein signifikanter Effekt von GHB und Neurosteroiden beobachtet wurde, sollte eine 
weitere Optimierung des Testsystems kombiniert mit RT-qPCR und Western-
Analysen an humanen Neuroblastoma Zellen dazu beitragen, mögliche 
regulatorische Effekte von GHB und Neurosteroiden auf die MMP-Aktivitat und -
Expression zu bestimmen. Zusammenfassend deuten die vorliegenden Daten darauf 
hin, dass GHB und Neurosteroide möglicherweise als kombinierte Neuroprotektiva in 
der Alzheimer-Therapie Anwendung finden könnten. 
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Abreviations 
 

AD Alzheimer’s disease 
[Ca2+]i Intracellular calcium 

17β-HSD 17β-Hydroxysteroid dehydrogenase 

3α,5α-THP 3α, 5α-Tetrahydroxyprogesterone or allopregnanolone 

3α-DIOL 3α-androstanediol 

3α-HSOR 3α-Hydroxysteroid oxidoreductase 

3β-HSD 3β-Hydroxysteroid dehydrogenase 

5α-R 5α-Reductase 

ABAD Aβ binding protein alcool dehydrogenase 

ACE Angiotensin converting enzyme 

acetyl-CoA Acetyl-Coenzyme A 

ADAM A-disintegrin and metalloprotease 

AF1 Activation function 1 domain 

AF2 Activation function 2 domain 

AICD APP intracellular domain 

AMPAR α-amino-3-hydroxy-5-methyl-4- isoxazoleproprionic acid receptor 

ANOVA Analysis of variance 

AOX1 Alcohol oxidase 1 

AOX2 Alcohol oxidase 2 

AP Allopregnanolone 

Apaf-1 Apoptotic protease activating factor 1 

APH1 Anterior pharynx defective 

APP Amyloid precursor protein 

APP-CTFβ APP carboxy-terminal fragment 

APPwt Wild-type APP 

APS Ammonium persulfate 

AR Androgens receptors 

ARG Arginine  

ATF4 Activating transcription factor 4 

ATF6 Activating transcription factor 6 

ATP Adenosine triphosphate 
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Aβ Beta-amyloid peptides 

BACE-1 β-site APP cleaving enzyme 1 

Bax Bcl-2 associated X protein 

BCA Bicinchoninic acid 

Bcl-2 B-cell Lymphoma 2 

BiP Binding immunoglobulin protein 

BIS N,N'-methylene-bis-acrylamide 

BMG Buffered Minimal Glycerol 

BMM Buffered Minimal Methanol 

BSA Bovine serum albumine 

cAMP Cyclic adenosine monophosphate 

caspases Cysteine-dependent, aspartate-specific proteases 

CAT Catalase 

CDK5 cyclin-dependent kinase 5 

cDNA Complementary DNA 

CHOP C/EBP-homologous protein 

CNS Central nervous system 

COX Cytochrome c oxidase 

CREB cAMP response element binding protein 

Cyt c Cytochrome c 

DBD DNA-binding domain 

DHEA Dehydroepiandrosterone 

DHP Dihydroprogesterone 

DHT Dihydrotestosterone 

DMEM Dubelcco’s modified eagle medium 

DMSO dimethylsulfoxide 

DNA Deoxyribonucleic acid 

dsDNA Double strand DNA 

E2 Estradiol 

EC50 Half maximal effective concentration  

EDTA Ethylenediaminetetraacetic acid 

EGTA Ethylene glycol tetraacetic acid 

EIF2α Eukaryotic translation initiation factor 2α 
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ER Endoplasmic reticulum 

E2R Estrogens receptor 

ERAD ER associated degradation 

ERE Estrogen response elements 

ERK2 Extracellular signal-related kinase 2 

ETC Electron transport chain 

FACS Fluorescence activated cell sorting 

FAD Familial Alzheimer’s disease 

FADH2 Flavin adenine nucleotide 

FITC Fluorescein 

FURA-2 AM FURA-2 acetoxymethyl ester 

GABA γ-aminobutyric acid 

GABAA-R γ-aminobutyric acid type A receptors 

GABAB-R γ-aminobutyric acid type B receptors 

GABA-T GABA-transminase 

GADD153 DNA damage inducible gene 153 

GHB Gamma-hydroxybutyrate 

GHBh1 GHB human receptor type 1 

GHB-R GHB-receptor 

GHB-T GHB-transporter 

GPCRs G protein-coupled receptors 

GPX Glutathione peroxidase 

GR Glucocorticoids receptor 

GRP78 Glucose-regulated protein 78kDa 

GSK3β Glycogen synthase kinase 3β 

HIS Histidine 

HMG-CoA 3-hydroxy-3-methylglutaryl-CoA 

HMGR HMG-CoA reductase 

HRP Horse raddish peroxidase 

IDE Insulin degrading enzyme 

IMM Inner membrane 

IMS Inter-membrane space 

IP3R Inositol triphosphate receptor 
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IRE1α Inositol-requiring enzyme 1α 

JNK JUN amino-terminal kinase 

LBDs Ligand binding regions 

LTD Long term depression 

LTP Long term potentiation 

MAMs Mitochondria-ER associated membranes 

MAPK Mitogen activated protein kinase 

MAPs Microtubule-associated proteins 

MCI Mild cognitive impairment 

MMP-2 Matrix Metalloproteinase 2 

MMP-9 Matrix Metalloproteinase 9 

MOMP Mitochondrial outer membrane permeabilization 

MR Mineralocorticoids receptor 

mRNA Messenger ribonucleic acid 

MTT 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide 

NADH Nicotine adenine dinucleotide 

NEP Neprylysin 

NFTs Neurofibrillary tangles 

NFκB Nuclear factor kappa-light-chain-enhancer of activated B cells 

NLS Nuclear localization signal 

NMDAR N-methyl-D-aspartate receptor 

NR2A NMDAR subunit 2A 

NR2B NMDAR subunit 2B 

NR Nuclear receptors 

OD Optical density 

OxPhos Oxidative phosphorylation 

P450c17 Cytochrome P450c17 or 17α-hydroxylase 

P450scc Cytochrome P450side chain-cleavage 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PDH Pyruvate dehydrogenase 

PERK Protein kinase RNA-like ER kinase 

PE Phycoerythrin 
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PI3K/Akt Phosphatidylinositol 3-kinase and protein kinase B 

PNS Peripheral nervous system 

PPP Pentose phosphate pathway 

PR Progestins receptors 

PSD95 Post-synaptic density protein 95 

PSEN1 Presenilin 1 

PSEN2 Presenilin 2 

PTPC Permeability transition pore complex 

PVDF Polyvinylidene 

PXR Pregnane xenobiotic receptor 

RFU Relative fluorescence intensity 

RIPA buffer Radio Immunoprecipitation assay buffer 

RNS Reactive nitrogen species 

ROS Reactive oxygen species 

RPM Revolutions per minute 

RT-qPCR Real time quantitative polymerase chain reaction 

RyR Ryanodine receptor 

SAD Sporadic Alzheimer’s disease 

SDS Sodium dodecyl sulfate 

SDS-PAGE Sodium dodecyl sulfate - Polyacrylamide Gel Electrophoresis 

SEM Standart error of the means 

SERCA pumps Sarcoplasmic or endoplasmic reticulum Ca2+-ATPases 

SOD Superoxide dismutase 

SRCs Steroid receptor coactivators 

SSA Succinic semialdehyd 

SSADH Succinic semialdehyde dehydrogenase 

SSR Succinic semialdehyde reductase 

StAR Steroidogenic acute regulatory protein 

STAT3 Signal transducer and activator of transcription 3 

SUC Succinate 

TBS Tris Buffered Saline 

TC Tunicamycin 

TCA Tricarboxilic acid 
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TEMED -N,N,N',N'-tetramethylethylene diamine 

THDOC Tetrahydrodeoxy-corticosterone 

THG Thapsigargin 

TIMPs Tissue inhibitors of metalloproteinases 

TNF-α Tumor necrosis factor α 

TRIzol Guanidinium thiocyanate-phenol-chloroform 

Trxr-1 Thioredoxin reductase 1 

TSPO Translocator protein (18-kDa) 

TUNEL Terminal deoxynucleotidyl transferase dUTP nick end labeling 

UPR Unfolded protein response 

UQ Ubiquinone 

VDAC Voltage-dependent anion channel 

VIAAT Vesicular inhibitory amino acid transporter 

XBP-1 X-box binding protein 1 

YNB Yeast nitrogen base 

α7-nAChR α7-nicotinic-acetylcholine receptor 

αKGD α-ketoglutarate dehydrogenase 
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1. Introduction 

1.1. Alzheimer’s disease 

1.1.1. Clinical definition and etiological factors 
 

Alzheimer’s disease (AD), which was first described by Alois Alzheimer in 1907 

(Alzheimer, 1907), is the most frequent cause of dementia in Western societies 

affecting more than 35 million people worldwide, including 860,000 in France and 1.2 

million in Germany (Sperling et al., 2011). Thus, AD represents a major health 

concern identified as a research priority in several countries. The clinical course of 

AD represents a continuum including three phases; the Preclinical phase, the mild 

cognitive impairment (MCI) phase and the dementia itself (see Fig. 1) (Sperling et al., 

2011). MCI is an intermediate state in which persons have more memory problems 

than subtle mnesic disturbances considered as normal for their age, but their 

symptoms are not severe as in AD patients. As the disease progresses (usually a 

period of 7 to 10 years), AD patients become vegetative and totally dependent for all 

bodily functions (Petersen et al., 1999). Since there are no curative treatments 

available yet, the final issue of the pathology is always the death of patients due to 

secondary complications. 
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Figure 1 : Clinical course of Alzheimer’s disease. The preclinical phase is 
asymptomatic. Thereafter, mild cognitive impairment is an intermediate state in which 
persons have more memory problems than normal cases, but the symptoms are not 
as severe as the symptoms of Alzheimer’s dementia. In dementia, symptoms 
intensify and people become vegetative and totally dependent for all bodily functions. 

 

1.1.2. Biological hallmarks and mechanisms  
 

Many molecular lesions have been detected in AD, but two major hallmarks are the 

accumulation of missfolded proteins such as extra-cellular hydrophobic beta-amyloid 

peptides (Aβ) and intra-cellular neurofibrillary tangles (NFTs) (Fig 2). Amyloid 

plaques and NFTs are common features of rare familial AD (FAD) forms (less than 

1% of all cases) as well as of sporadic AD (SAD) patients representing the majority of 

all cases (Querfurth and LaFerla, 2010, Ballard et al., 2011). 
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Figure 2 : Amyloid plaques and neurofibrillary tangles in human cerebral cortex 
of Alzheimer’s disease patient. (A) Beta-amyloid peptides deposits either in diffuse 
plaques and in plaques containing elements of degenerating cells, termed neuritic 
plaques. (B) Neurofibrillary tangles results of intracellular deposition of 
hyperphosphorylated tau protein. (Adapted from http:// http://library.med.utah.edu/). 

 

1.1.2.1. Amyloid peptides  
 

Beta-amyloid peptides result from the multistep proteolytic cleavage by secretases of 

amyloid precursor protein (APP), a membrane-bound precursor. APP can be 

processed in two different cleavage-pathways : (i) the amyloidogenic pathway leads 

to the formation of hydrophobic Aβ peptides (De Strooper et al., 2010) and (ii) the 

non-amyloidogenic pathway, generating hydrophilic fragments. These two pathways 

are physiologically balanced in non pathological conditions, but in case of AD, the 

amyloidogenic pathway is over-activated. Although several hypotheses are 

suggested in the literature, the mechanisms leading to this over-activation remain 
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unclear (De Strooper, 2010, De Strooper et al., 2010, Querfurth and LaFerla, 2010, 

Ballard et al., 2011). 

In the amyloidogenic pathway, APP is cleaved by β-secretase and γ-secretase (Fig. 

3). β-secretase releases the ectodomain APPsβ, and the remaining APP carboxy-

terminal fragment (APP-CTFβ) is subsequently cleaved by γ-secretase which 

generates extracellular Aβ peptides and APP intracellular domain (AICD). The 

biological functions of APPsβ, Aβ and AICD are poorly understood, although Aβ 

release is associated with decreased synaptic activity and abnormal 

neurotransmission (Kamenetz et al., 2003). AICD has been proposed to be a 

transcription factor (Cao and Sudhof, 2001) but this suggestion is controversial 

(Hebert et al., 2006, Waldron et al., 2008).  

The non-amyloidogenic pathway involves α-secretase activity which releases APPsα 

ectodomain and carboxy-terminal APP-CFTα is thereafter processed by γ-secretase 

generating a small p3 fragment and AICD (Fig. 3). It has been shown that APPsα 

ectodomain may exert neuroprotective effect and synapse-promoting action, but the 

mechanisms involved are most non elucidated (Bandyopadhyay et al., 2007).  

α-Secretase is a family of membrane-bound metalloproteases. Several members of 

the “A disintegrin and metalloprotease” or ADAM family have been implicated as  

α-secretases. ADAM-9, -10, and -17 appear to be the major members of the  

α-secretase family (De Strooper, 2010). In contrast to the α-Secretase family,  

β-Secretase activity is mainly due to one enzyme : the β-site APP cleaving enzyme 1 

(BACE-1). BACE-1 is a membrane-bound aspartyl protease, and its genetic 

inactivation results in a dose dependent decrease of Aβ generation and deposition in 

various APP-overexpressing mouse models (Laird et al., 2005, McConlogue et al., 

2007, Kobayashi et al., 2008). γ-Secretase is a multi-enzymatic complex composed 
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of four proteins that are present at equal stoechiometry : Presenilin 1 (PSEN1) or 

Presenilin 2 (PSEN2), nicastrin, anterior pharynx defective 1 (APH1) and presenilin 

enhancer 2. In total, there are four different γ-secretase complexes allowing therefore 

several cleavage possibilities of APP (De Strooper, 2010).  

 

 

Figure 3 : Proteolysis of Amyloid Precursor Protein. Full length APP can be 
cleaved by α-, β- and γ-secretases. Cleaving sites are indicated. Cleavage by α-
secretase yields a soluble ectodomain (APPsα) and a membrane-bound 
carboxyterminal fragment (APP-CTFα) which after cleavage by γ-secretase yields p3 
and the APP intracellular domain (AICD). β-secretase (also known as β-site APP 
cleaving enzyme 1, BACE-1) yields APPsβ and APP-CTFβ, which is then processed 
by γ-secretase into Aβ and AICD. Adapted from De Strooper, 2010. 

 

It is important to realize that Aβ peptides consist of a heterogenous mixture of 

peptides having different solubility, stability and biological/toxic properties. C-terminal 

heterogeneity is generated by the γ-secretase complex itself. This protease cleaves 
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APP at different positions (Fig. 4), generating a variety of peptides consisting of 38 to 

43 amino acids. Additional heterogeneity is due to further extracellular enzymes 

(Kumar et al., 2011) resulting in a mix of more than 20 Aβ peptides that all participate 

to different putative functions in the normal brain and also to oligomerization and 

fibrillization in the AD brain. Aβ40 is continuously produced in both healthy and AD 

brain, whereas other Aβ peptides such as Aβ42 are continuously produced at much 

higher levels in AD brains (Benilova et al., 2012).   

 

 

Figure 4 : Generation of Aβ peptides from APP. The sites of secretases-mediated 
cleavage are indicated with arrows, and the transmembrane domain of APP is 
highlighted in grey. γ-secretase-mediated cleavages produce a pool of Aβ peptides, 
varying in their lenght and hydrophobicity. Adapted from Benilova et al., 2012. 

 

The well known peptide is Aβ42 which was firstly described in FAD. C-terminal 

fragments of Aβ42 provided the conditions initiating polymerization mechanisms 

leading to the formation of amyloid plaques (Jarrett et al., 1993a, b).  

Aβ monomers (~4kDa) spontaneously self aggregates into multiple coexisting 

physical forms. One form consists of oligomers (2 to 6 peptides), which merge into 

intermediate assemblies (Kayed et al., 2003). Aβ can also grow into fibrils, which 
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assembly β-sheets to form the insoluble fibers of advanced amyloid plaques (Fig. 5). 

Soluble oligomers and intermediate amyloid are the most neurotoxic form of Aβ. 

 

Figure 5 : Aggregation of Aβ into oligomers, fibrils and plaques. 
Due to its hydrophobicity, Aβ monomers self aggregate into various oligomers or 
larger conformation until Amyloid Plaques. Most of toxicity is assumed by the 
oligomeric forms. Adapted from De Strooper, 2010. 

 

 

The fact that many research studies used solutions containing only a single type of 

Aβ in order to investigate aggregation and toxicity properties may not be appropriate 

to clarify AD pathogenesis. Indeed, Aβ accumulation and toxicity are likely to be 

strongly mediated by the concomitant presence of various Aβ species. In addition to 

Aβ42, Aβ43 is increased in some FAD, while shorter peptides are decreased 

(Portelius et al., 2010). Moreover, recent evidence show that Aβ polymerization 

represents a complex “melting pot“ of different Aβ species which occurs via 

metastable intermediaries in a process called “nucleated conformational conversion” 

(Benilova et al., 2012).  
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1.1.2.1.1. Biological clearance of amyloid peptides from the brain 
 

The physiological Aβ fractional clearance rate is estimated to be about 8% per hour 

(Bateman et al., 2006). Physiological parameters, like blood and cerebrospinal fluid in 

the brain together with various “clearance receptors” are implicated in the removal of 

Aβ, which can also be taken up by endothelial cells of the blood-brain-barrier (De 

Strooper, 2010). Defects in these clearance processes appear to be relevant for the 

accumulation of Aβ on the blood vessels walls, causing vascular abnormalities and 

angiopathy observed in AD brains. 

The proteolytic machinery in cerebral tissues also contribute to the clearance of Aβ 

peptides and fibrils. Knockout experiments of specific proteases demonstrated the 

increase of cerebral concentrations of Aβ peptides (Table 1).  

Table 1 : Most proteases involved in Aβ turnover. 

 
Protease 

 
Type 

protease 

Membrane 
bound (M) or 
secreted (S) 

Degrading Aβ 
monomers (M), 
Oligomers (O) 

or fibrils (F) 

 
References 

Neprylysin (NEP) Zn2+ M M, O (Iwata et al., 
2001) 

Matrix 
Metalloproteinase 2 
(MMP-2) 

 
Zn2+, Ca2+ 

 
S 

 
M, O, F 

(Yin et al., 2006) 

Matrix 
Metalloproteinase 9 
(MMP-9) 

 
Zn2+, Ca2+ 

 
S 

 
M, O, F 

(Yan et al., 2006) 

Insulin degrading 
enzyme (IDE) 

Zn2+ M and S M (Farris et al., 
2003) 

Angiotensin 
converting enzyme 
(ACE) 

 
Zn2+ 

 
M 

 
M 

(Zou et al., 2007) 

Plasmin  Serine 
protease 

S M, O, F (Jacobsen et al., 
2008) 
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Matrix-Metalloproteinases are secreted zinc- and calcium-dependent 

endopeptidases. MMP-2 and MMP-9, also known as gelatinases, are secreted and 

activated in the extra-cellular compartment. They modulate various physiological 

functions including neuritic outgrowth and matrix remodeling (Page-McCaw et al., 

2007, Ould-yahoui et al., 2009) but they are also involved neuroinflammation or 

tumor invasiveness (Curran and Murray, 1999, Yong, 2005). MMP-2 and MMP-9 are 

expressed at low levels in the brain, but their astrocytal expression can be stimulated 

by Aβ peptides. Knockout of MMP-2 results in increased concentration of Aβ 

peptides in the soluble fraction of hippocampus and cortex, while infusion of broad-

spectrum of MMPs inhibitor in the brain also induced an increase of Aβ levels (Yin et 

al., 2006). 

In both FAD and SAD, there is a clear unbalance between the production and the 

clearance of Aβ peptides. Therefore, one therapeutic strategy may be the up-

regulation of the brain expression/activity of amyloid degrading enzymes such as 

MMP-2 or MMP-9. 

1.1.2.2. Neurofibrillary tangles  
 

Neurofibrilary tangles (NFTs) are filamentous inclusions found in cell bodies and 

apical dendrites in AD and other neurodegenerative disorders generally termed 

tauopathies (Lee et al., 2001). Usually, the number of NFTs reflects the severity of 

the disease. NFTs are mainly composed of highly phosphorylated and aggregated 

forms of the tau protein which belongs to the family of microtubule-associated 

proteins (MAPs) abundant in axons (Grundke-Iqbal et al., 1986). Tau promotes the 

assembly and stability of microtubules and vesicle transport in axons. 

Hyperphosphorylation of Tau leads to an insoluble form which lacks affinity for 
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microtubules and self-associate into paired helical filaments and finally form the NFTs 

(Fig. 6). Both Aβ and Tau undergo nucleation-dependent fibril formation. 

 

Figure 6 : Formation of paired helical filaments and neurofibrillary tangles. 
Tau binding promotes microtubules assembly and stability. Excessive kinases and 
reduced phosphatases activities lead to an hyperphosphorylation of Tau and induces 
its detachment and self-aggregate. Adapted from Querfurth and LaFerla, 2010. 

 

Like Aβ oligomers, intermediate aggregates of hyperphosphorylated Tau are 

cytotoxic  and impair cognition (Santacruz et al., 2005, Khlistunova et al., 2006). Tau 

mutations do not occur in AD and increased levels of phosphorylated Tau and total 

Tau in the cerebrospinal fluid correlate with the reduction of cognitive performance 

(Wallin et al., 2006). Evidence show that Aβ peptides accumulation precedes and 

drives Tau-aggregation (Gotz et al., 2001). Moreover, Aβ toxicity requires the 

presence of endogenous Tau (Roberson et al., 2007, Ittner et al., 2010, Ittner and 

Gotz, 2011). Tau contains 80 serine and threonine residues and 5 tyrosines that can 
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be phosphorylated. In physiological conditions, there are 2-3 Mol of phosphate per 

Mol of Tau. But in AD brain, there are 7-8 Mol of phosphate per Mol of Tau. Many 

phosphokinases, including glycogen synthase kinase 3β (GSK3β), cyclin-dependent 

kinase 5 (CDK5), and extracellular signal-related kinase 2 (ERK2) and mitogen 

activated protein kinase (MAPK) have been investigated as potential targets to 

reduce Tau phosphorylation (Takashima, 2009). 

If Aβ peptides colonize synchronously predilection sites in the brain of AD patients (in 

hippocampus, amygdala and prefrontal cortex), NFTs develop an spread in a 

predictable manner. Braak and collaborators organized AD progression into six 

stages based on the distribution of NFTs (Braak and Braak, 1996). During the first 

stage, NFTs are observed in the transentorhinal and Cornu Ammonis (CA) regions of 

the hippocampus. The number of NFTs increases in Braak stage II. Stages I and II 

together are called the “transentorhinal stage”. Brains of normal non-demented aged 

subjects are often categorized as Braak stages I and II. In Braak stage III and IV, 

called the “limbic stage”, many NFTs appear in the entorhinal cortex, and tangles are 

found in the entire limbic system, including hippocampal regions CA1-4 and the 

amygdala. During the limbic stage, patients show various AD-specific symptoms, 

such as memory impairment, reduced spatial cognition and increased anhedonia, as 

a result of neuronal dysfunctions in the limbic system. In Braak stages V and VI, 

called the “isocortical stage”, NFTs are present in the cerebral cortex, where they 

impair neuronal functions, leading to dementia. The increasing spread of NFTs from 

the transentorhinal cortex to the limbic system, and finally to the cortex, correlates 

with the severity of cognitive impairment. Samuel et al. reported that the number of 

NFTs in the hippocampal formation correlates with the degree of dementia and that 

synapse loss is a key determinant of dementia in AD (Samuel et al., 1994). 
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1.1.3. Biological consequences of Amyloid peptides and neurofibrillary 
tangles 

1.1.3.1. Synaptic failure and axonal transport impairment 
 

Aging itself causes synaptic loss (Masliah et al., 2006), therefore, it is easy to 

understand that AD is primarily a disorder of synaptic transmission (Selkoe, 2002). 

As aforementioned, NFTs and synaptic loss are pivotally involed in AD 

physiopathology. In parallel to Braak spreading of the disease, hippocampal 

synapses begin to decline in MCI patients (Scheff et al., 2007). Some evidence 

reveal a 25% decrease of presynaptic vesicle synaptophysin in mild AD (Masliah, 

2001, Masliah et al., 2001). In the last Braak stages, dramatic synaptic loss is 

positively correlated with dementia (Terry et al., 1991).  

Aβ peptides are known to impair the “long term potentiation” (LTP), an experimental 

indicator of memory formation (Palop and Mucke, 2010). Subsequently, signaling 

molecules important to memory are also inhibited. Many studies investigated the 

effects of Aβ peptides on excitatory synaptic transmission, that is tightly regulated by 

the number of active N-methyl-D-aspartate receptor (NMDAR) and the α-amino-3-

hydroxy-5-methyl-4-isoxazoleproprionic acid receptor (AMPAR). NMDAR activation 

has a central role in memory, by inducing LTP or long term depression (LTD), 

depending on the extent of the resultant intracellular calcium ([Ca2+]i) rise in the 

dendritic spines and the downstream activation of intracellular cascades (Kullmann 

and Lamsa, 2007). Activation of post-synaptic NMDARs and large increases in 

([Ca2+]i) are necessary for LTP, whereas internalization of NMDARs, activation of 

perisynaptic NMDARs and lower increase in [Ca2+]i are necessary for LTD. LTP 

induction promotes recruitment of AMPARs and growth of dendritic spines, whereas 

LTD induces spine shrinkage and synaptic loss (Kullmann and Lamsa, 2007). 
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Pathologically elevated Aβ may indirectly cause a partial block of NMDARs and 

induce LTD and synaptic loss. Although the mechanisms underlying Aβ-induced LTD 

remain poorly understood, they may involve the internalization or desensitization of 

receptors. Aβ effects on synaptic function may be mediated by the activation of 

presynaptic α7-nicotinic-acetylcholine receptor (α7-nAChR) and perisynaptic 

activation of NMDARs, inducing excessive Ca2+ inwards and downstream effects on 

many intracellular cascades including the activation of GSK3β and MAPK signaling 

pathways. Aβ-induced synaptic depression may result from NMDAR activation  

followed by NMDAR desensitization, internalization and by the stimulation of 

perisynaptic NMDARs or metabotropic glutamate receptors. These processes lead to 

a chronic increase in excitotoxic  Ca2+ inwards, which can also lead to cell death. 

Several data involve oligomeric Aβ in synapse failure, but until recently, only little was 

was known about the role of Tau in these dysfunctions. Ittner and colleagues 

described a dendritic function of Tau, mediating Aβ toxicity via NMDAR conformation 

(Ittner et al., 2010). Tau is able to target the src kynase Fyn to the dendrite, where it 

phosphorylates the NMDAR subunit NR2B, thereby facilitating complex formation 

with the post-synaptic density protein 95 (PSD95) and allowing excitotoxic over-

activation of NMDAR by Aβ. 

Moreover, neurons are elongated cells, and in order to maintain neuronal functions 

and excitability, they need efficient delivery of cellular organelles (such as 

mitochondria, endoplasmic reticulum, lysosome..) from the soma to the axon, 

dendrite and synapse. The delivery of organelles is purely based on microtubules, 

which serves as “rail tracks”, motor protein (such as kynesin or dynein) that represent 

engines, and organelles as cargoes which are directed to the cell-periphery or back 

again to the soma. Tau is known to facilitate the anterograde axonal transport of 
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organelles such as mitochondria (Gotz et al., 2006). In AD neurons, the detachment 

of hyperphosphorylated tau from the microtubules leads to impaired axonal transport 

of organelles (such as mitochondria targeted to the synapses).  

1.1.3.2. Neuroinflammation  
 

Biochemical markers of activated microglia and reactive astrocytes are increased in 

the brain of AD patients (Wyss-Coray and Mucke, 2002). In physiological conditions, 

phagocytic microglia engulf and degrade Aβ. However, the large and constant 

production of Aβ in the pathological case chronically activate microglia, leading to the 

release of a myriad of damaging chemokines and cytokines such as interleukin-1, 

interleukin-6 and tumor necrosis factor α (TNF-α) (Akiyama et al., 2000). The binding 

of Aβ peptides to advanced glycosylation end products receptors (expressed by 

microglia) amplifies the generation of cytokines, glutamate and nitric oxide (Yan et 

al., 1996).  

1.1.3.3. Loss of calcium regulation 

 

Loss of calcium regulation is common to several neurodegenerative disorders. In AD, 

elevated concentrations of cytosolic calcium stimulate the amyloidogenic pathway 

(Isaacs et al., 2006). The chronic state of glutamatergic receptor activation is thought 

to aggravate neuronal damage in AD. NMDAR activation increases cytosolic calcium, 

which in turn stimulates calcium release channels in the endoplasmic reticulum. 

Evidence also show that Aβ could form voltage-independent cation channels in lipid 

membranes, resulting in calcium uptake and degeneration of neuritis (Lin et al., 

2001). Deregulation of cytosolic calcium concentration can lead to a “calcium 
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overload”, which is capable to induce mitochondrial dysfunctions, oxidative stress 

and also cell death. 

1.1.4. Oxidative stress in Alzheimer’s disease 
 

The brain requires 20% of total blood flow and 25% of the body’s glucose utilization. 

Due to their excitable properties and their important need in energy, neurons have a 

large number of mitochondria either in the soma or in synaptic ends. Since neurons 

have a limited glycolytic activity, mitochondria play an essential role in bioenergetics 

thanks to adenosine triphosphate (ATP) production. Also, mitochondria are key 

producers of reactive oxygen species (ROS). Unbalance between ROS formation 

and reduction may lead to the deleterious oxidation of lipids, proteins and DNA, also 

called “oxidative stress”.  

In neurons or glial cells, ATP is produced aerobically through the tricarboxilic acid 

(TCA) cycle and the oxidative phosphorylation (OxPhos), also called respiratory 

chain, in mitochondria. TCA cycle is composed of 8 enzymatic steps and converts 

carbohydrates and free fatty acids into ATP. It also yields electrons in form of 

reduced hydrogen carriers, nicotine adenine dinucleotide (NADH) and flavin adenine 

nucleotide (FADH2). These compounds enter subsequently as coenzymes into the 

OxPhos, which is composed of electron transport chain or ETC (enzymatic 

complexes I-IV) and an ATP-synthase (complex V). These five enzyme complex are 

functionally interconnected via mobile electron carriers ; cytochrome c and 

ubiquinone/coenzyme Q. Enzymatic complexes and electron carriers are localized at 

the inner mitochondrial membrane (Fig. 7). In addition to flavin and nicotinamides, 

ETC involves cytochromes and metal ions clusters (iron and copper) to transfer 

electrons in a sequence of oxido/reductions steps, leading to a proton gradient 
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across the inner membrane which finally drives ATP synthesis via the complex V. In 

parallel, the complexes transfer electrons to oxygen and produce water. OxPhos is 

not totally efficient and up to 2% of electrons are incompletely reduced to yield O2¯, 

instead of H2O (Eckert et al., 2013, Sutherland et al., 2013). 

 

Figure 7 : Schematic representation of the oxidative phosphorylation system.  
Complex I (NADH-ubiquinone oxidoreductase) and II (succinate dehydrogenase) also 
belong to the tricarboxilic acid cycle (TCA) and receive electrons from NADH and 
FADH2, respectively. Thereafter, electrons are driven from complexes by the mobile 
electron carrier ubiquinone (UQ) and cytochrome c (Cyt c) to the final acceptor, 
molecular oxygen. In parallel, a proton gradient is established across the inner 
membrane (IMM) in complexes I, III and IV. This gradient is utilized by complex V to 
generate ATP. IMS : inter-membrane space. Adapted from Eckert et al., 2013. 

 

Low molecular weight anti-oxidant as glutathione and metal-containing enzymes 

including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase 

(GPX), act to control the cellular redox environment. The first reducing barrier against 

ROS is SOD which converts O2¯ to H2O2. Then, CAT and GPX transfer H2O2 to 

oxygen and water. Iron and copper, which are also abundant in the brain, may 

facilitate H2O2 conversion into other ROS or may promote Aβ peptide formation (von 

Bernhardi and Eugenin, 2012, Greenough et al., 2013). 
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1.1.4.1. Amyloid peptides and oxidative stress  
 

In the ageing brain, OxPhos not only becomes less efficient, but there is a substantial 

decrease in anti-oxidant enzymes expression/activity (Kowald, 2001). Also, Aβ 

peptides are potent mitochondrial poisons, which especially affect the synaptic pool 

(Mungarro-Menchaca et al., 2002). Aβ and APP itself were reported to accumulate in 

mitochondria in the brain of AD patients (Pavlov et al., 2009). Aβ peptides alter key 

mitochondrial enzymes (Hauptmann et al., 2006) such as cytochrome c oxidase 

(COX/Complex IV), pyruvate dehydrogenase (PDH) and α-ketoglutarate 

dehydrogenase (αKGD), leading to bioenergetic disturbances as evidenced in AD 

patients (Mosconi et al., 2008). Exposure of human neuroblastoma SH-SY5Y cells to 

Aβ peptides revealed a significant decrease of Complex IV activity (Lim et al., 2010). 

Moreover, decreased brain levels of antioxidant enzymes such as SOD or CAT are 

also observed in AD (Aksenov et al., 1998). The combination of ROS elevation to 

antioxidant enzyme decrease evidenced in brain tissues from AD patients suggests 

that oxidative stress may be a central element of AD physiopathology. Cu2+ ions have 

also been shown to render Aβ more toxic. Indeed, dimeric conformation of Aβ42 

appear as potent inhibitor of COX, but only in the presence of Cu2+ (Crouch et al., 

2005). 

The mitochondrial Aβ binding protein alcool dehydrogenase (ABAD) can also bind to 

Aβ42 present in the cortical mitochondria of APP transgenic mice (Lustbader et al., 

2004, Yan et al., 2007). In mice double transgenic for ABAD and APP, toxic effects of 

Aβ was increased compared to APP single transgenic mice. This interaction 

promotes the leakage of ROS, mitochondrial dysfunction, cell death, as well as 

spatial learning and memory deficits (Lim et al., 2010, Lim et al., 2011, Grimm et al., 
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2012, Gotz et al., 2013a). It has also been shown that the specific inhibition of ABAD 

in human neuroblastoma SH-SY5Y cells was able to reduce Aβ-induced cell loss and 

to decrease ROS levels (Lim et al., 2011).  

Another process to induce oxidative stress is the binding of Aβ to NMDAR which 

evokes calcium inwards. As aforementioned, Aβ cause an overactivation of NMDAR, 

which in turn lead to a downstream excessive production of nitric oxide and the 

generation of reactive nitrogen species (RNS), that are also involved in oxidative 

stress and damageable for the cells (Gotz et al., 2010).  

1.1.4.2. Tau and oxidative stress  
 

Hyperphosphorylated Tau has been shown to block mitochondrial transport which 

leads to energy deprivation and oxidative stress at the synapse end (Reddy, 2011). It 

was also reported that the overexpression of Tau inhibited kinesin-dependent 

transport of many organelles, including peroxisomes, which are important actors for 

the buffering of oxidative stress (Stamer et al., 2002). In a drosophila model 

overexpressing a tauopathy-related mutant form of human tau (tau R406W), 

reduction of gene expression of mitochondrial SOD2 and thioredoxin reductase 1 

(Trxr-1) enhanced Tau-induced neurodegenerative histological abnormalities and 

neuronal apoptosis. In contrast, overexpression of antioxidant enzyme and 

treatments with vitamin E decreased Tau-induced neuronal cell death (Dias-

Santagata et al., 2007). Moreover, in cortical neurons derived from transgenic rats 

model expressing a human truncated form of Tau, ROS were increased and 

antioxidants significantly attenuated this elevation of ROS (Cente et al., 2006, Cente 

et al., 2009). Altogether, these observations confirm that oxidative stress is, at least 

in part, a mediator of Tau-induced neurodegeneration.  
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In transgenic R5 mice over-expressing human P301L mutant Tau, biochemical 

consequences of tauopathy have been investigated using proteomics followed by 

functional validation (David et al., 2005). These mutant mice showed mainly a 

deregulation of mitochondrial respiratory chain complex components and antioxidant 

enzymes. The functional analysis revealed an age-dependent mitochondrial 

dysfunction and increased ROS levels.  

To summarize, Aβ and hyperphosphorylated Tau mainly induce oxidative stress by 

disrupting the normal functioning of the electron transport chain. Aβ alter the complex 

IV while Tau preferentially modulates the complex I (Fig. 8).  

 

Figure 8 : Impairment of the electron transport chain in Alzheimer’s disease 
In AD, abnormalities in the functioning of electron transport have been observed, 
mostly in complex I and IV, leading to a decreased production of ATP and enhanced 
reactive oxygen species (ROS) levels. Tau impairs complex I and decreases the 
levels of antioxidant enzymes such as superoxide dismutase 2 (SOD2) or thioredoxin 
reductase 1 (Trxr-1). Aβ specifically alter complex IV. Both alterations of complex I 
and IV induce generation of ROS and, subsequently, oxidative stress. IMS, 
intermembrane space ; IMM inner mitochondrial membrane ; UQ, ubiquinone or 
coenzyme Q ; Cyt. c, cytochrome c ; Antiox. Enz., Antioxidant enzymes. Adapted 
from Eckert et al., 2011.  
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1.1.4.3. Oxidative stress-induced apoptosis  

 

Cell death occurs by necrosis or apoptosis. These two mechanisms have distinct 

histological and biochemical signatures. In necrosis, the stimulus of death (Ischemia 

for example) is itself the direct cause of the demise of the cell. By contrast, in 

apoptosis, the stimulus of death (e.g., ROS) activates a cascade of molecular events 

that orchestrate the “clean” destruction of the cell (Hotchkiss et al., 2009). Apoptotic 

cell death, also known as programmed cell death, is a feature of various 

neurodegenerative disorders, such as AD (Mattson, 2000). Apoptosis results from 

two biochemical cascades, known as the extrinsic and the intrinsic or mitochondrial 

pathway. Intrinsic apoptosis is caused by various intracellular stressors, such as 

oxidative stress or calcium overload. Interplay between pro-apoptotic and anti-

apoptotic members of the Bcl-2 (B-cell Lymphoma 2) proteins family control the 

mitochondrial apoptotic pathway. The major executioners in the apoptotic program 

are proteases known as caspases (cysteine-dependent, aspartate-specific 

proteases) (Hengartner, 2000). Caspase-9 regulates the beginning of this intrinsic 

pathway, which comes into play after intracellular sensors indicate overhelming cell 

damage (oxidative stress-induced damages and calcium overload in case of AD). 

ROS ultimately lead to increased mitochondrial permeability, thereby promoting the 

release of pro-apoptotic cytochrome c from the intermembrane space of mitochondria 

into the cytosol. Active caspase-9 in turn activates effectors caspases such as 

caspase-3, -6 and -7, that herald demolition of the cell by degrading numerous 

proteins and DNA.  

A balance between pro-apoptotic and anti-apoptotic Bcl-2 family members 

determines cell survival. The major pro-survival members, Bcl-2 and Bcl-xl are 
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localized on the mitochondrial outer membrane and on the endoplasmic reticulum 

perinuclear membrane. Bcl-2 and Bcl-xl act by inhibiting the pro-apoptotic members 

through heterodimerization. Bax (Bcl-2 associated X protein) is a pro-apoptotic 

member of the Bcl-2 family that is widely expressed in the nervous system (Mattson, 

2000). Bax has a pore-forming activity which triggers the permeability transition pore 

complex (PTPC) that activates the mitochondrial outer membrane permeabilization 

(MOMP) and the release of cytochrome c in the cytosol (Galluzzi et al., 2012a, 

Galluzzi et al., 2012b, Kole et al., 2013). Cytochrome c and the apoptotic protease 

activating factor 1 (Apaf-1) are involved in the formation of the apoptosome which 

triggers caspase-9/caspase-3 proteolytic cascade and subsequent DNA 

fragmentation and cell shrinkage (Fig. 9).  
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Figure 9 : Intrinsic mitochondrial pathway of apoptosis induced by oxidative 
stress or calcium overload. Mitochondrial pathway of apoptosis is initiated by 
intracellular stressors such as reactive oxygen species ROS or calcium overload. The 
inhibition of anti-apoptotic Bcl-2 leads to the pore-forming ability of Bax ( pro-
apoptotic factor) on mitochondrial outer membrane. Subsequently, mitochondrial 
outer membrane permeabilization (MOMP) is induced, that allows release of 
cytochrome c (Cyt. c). Together with the apoptotic protease activating factor 1 (Apaf-
1) and Procaspase-9, Cyt. c drives the formation of the apoptosome and activate 
procaspase-9 into the initiatory caspase-9 which in turn elicits the activation of the 
effector caspase-3, leading to apoptotic features like cell shrinkage and DNA 
fragmentation. Adapted from Kole et al., 2013. 
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1.1.4.4. Oxidative stress, amyloidogenesis and Tau : a vicious circle 
 

As aforementioned, it has been reported that Aβ-evoked toxicity generates cellular 

ROS such as H2O2 (Behl et al., 1994, Tabner et al., 2005) which may be suppressed 

by the activation of SOD or ROS scavengers (Miranda et al., 2000). Conversely, 

oxidative stress increases Aβ levels, a process which leads to the perpetuation of a 

vicious circle (Misonou et al., 2000, Oda et al., 2010). Indeed, Aβ partially target 

mitochondria to induce mitochondrial dysfunction and oxidative stress which in turn 

may lead proteins to adopt β-pleated sheet conformations.  

Tau induces oxidative stress by affecting the respiratory chain complex I (see Part. 

1.1.4.2., pages 32-33). But, growing evidence revealed that oxidative stress may 

have a role in the hyperphosphorylation and polymerization of Tau. In Tg2576 AD 

transgenic mice bearing the “Swedish mutation” of APP, deficiency in mitochondrial 

SOD2 or reduction of cytoplasmic SOD1 induced Tau hyperphosphorylation (Melov 

et al., 2007, Murakami et al., 2011), suggesting that ROS may play a critical role in 

Tau hyperphosphorylation.  

Altogether, these data strongly suggest that oxidative stress may play a major role in 

AD pathogenesis. However, it remains unclear whether oxidative stress precedes Aβ 

and Tau hyperphosphorylation or whether it is a sub-product of these two 

aggregates. Whatever is the answer to this question, the reduction of oxidative stress 

may constitute a promising strategy for the development of effective therapies 

against AD (Fig. 10).  
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Figure 10 : Central role of oxidative stress in Alzheimer’s disease. Both Aβ and 
hyperphosphorylated Tau are able to induce oxidative stress either directly or by 
disrupting mitochondrial respiratory chain. In turn oxidative stress can promote the 
formation/aggregation of Aβ and the hyperphosphorylation/accumulation of Tau, 
implicating the generation of a “vicious circle”. Oxidative stress can activate the 
mitochondrial/endogenous pathway of apoptosis, leading to the neuronal cell loss 
and patho-physiological features of AD. Finally, based upon the essential role of 
oxidative stress in AD pathogenesis, antioxidant compounds reducing significantly 
oxidative stress may offer the possibility to develop efficient therapeutical strategies 
against AD.  
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1.1.5. Endoplasmic reticulum stress in Alzheimer’s disease  

1.1.5.1. ER functions under normal and pathological conditions 

 

The endoplasmic reticulum (ER) is the main intracellular compartment which is a 

membrane–enclosed reticular network connecting the nuclear envelope to the golgi 

complex (Baumann and Walz, 2001). It has mainly three cellular functions : (i) protein 

folding, quality control, translational modification and transport to the golgi complex, 

(ii) storage and maintenance of cellular calcium homeostasis, and (iii) synthesis of 

lipids and cholesterol.  

Several ER-chaperones proteins such as glucose-regulated protein 78kDa (GRP78, 

also known as Binding Immunoglobulin Protein, BiP), calnexin and calreticulin bind to 

the hydrophobic domain of newly synthesized proteins, allowing correct folding and 

inhibition of protein aggregation. Disulfide bond formation and N-linked glycosylation 

also play important role in protein folding and are favored by the oxidative 

environment of the ER and by calcium. 

The ER is also the main intracellular Ca2+ storage site. As aforementioned, many ER 

chaperones are Ca2+ dependent. Under physiological conditions, the luminal Ca2+ 

concentration is as high as in the extracellular domain (~1-2 mM) while the 

concentrations in the cytosol are about ten thousand fold lower (~0.1 µM). depending 

on the cell type, maintenance of ER Ca2+ homeostasis may involve ryanodine 

receptor (RyR) or inositol triphosphate receptor (IP3R). Ca2+ influx are regulated by 

the sarcoplasmic or endoplasmic reticulum Ca2+-ATPases (SERCA pumps). Also, 

Ca2+ homeostasis is a critical component of cellular signaling and survival, especially 

in neurons which are excitable cells.  
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Besides fatty acids, cholesterol biosynthesis is also a determinant of ER. Cholesterol 

is a crucial component of mammalian membranes, and also a precursor for steroid 

hormones and neurosteroids. The first steps of cholesterol synthesis are the 

conversion of three molecules of acetyl-Coenzyme A (acetyl-CoA) into one 3-

hydroxy-3-methylglutaryl-CoA (HMG-CoA) in the cytoplasm. Then, HMG-CoA is 

converted to mevalonate by the HMG-CoA reductase (HMGR) exclusively in the ER. 

This is the rate limiting step which is subject to complex regulation. Thereafter, 

mevalonate is converted into cholesterol by a multistep processing in the ER 

(Canevari and Clark, 2007).  

Because ER is a sensor of cellular homeostasis, different types of insults such as 

protein misfolding, redox unbalance, lipid/cholesterol dyshomeostasis can induce ER 

stress. In particular, failure of protein folding quality control is harmful to cell survival 

and therefore ER can initiate the unfolded protein response (UPR) to counteract this 

detrimental situation (Hetz and Mollereau, 2014). The UPR consists of two central 

components, a group of stress sensors localized at the ER membrane, and 

downstream transcription factors that influence gene expression to ensure adaptation 

to stress or the induction of cell death by apoptosis. In mammalian cells, there are 

three classes of ER stress sensors : inositol-requiring enzyme 1α (IRE1α), protein 

kinase RNA-like ER kinase (PERK) and activating transcription factor 6 (ATF6) (Fig. 

11). UPR induces a rapid translational inhibition that is controlled by PERK through 

the phosphorylation and inhibition of the eukaryotic translation initiation factor 2α 

(eIF2α). This allows the buffering of misfolded protein aggregation in the ER by 

decreasing the entrance of newly synthesized proteins in the ER. Moreover, eIF2α 

phosphorylation stimulates the activating transcription factor 4 (ATF4) which controls 
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the expression of numerous genes involved in apoptosis, autophagy and antioxidant 

responses (Hetz et al., 2013).  

Activation of IRE1α implies its dimerization and autophosphorylation leading to the 

activation of its RNase domain. Then, it catalyses the splicing of mRNA encoding the 

transcription factor X-box binding protein 1 (XBP-1) which controls the expression of 

genes involved in protein folding, ER associated degradation (ERAD) or lipid 

synthesis (Hetz et al., 2011). Also, IRE1α activates the Jun amino-terminal kinase 

(JNK) and subsequently induces apoptosis. 

Upon ER stress, ATF6 is translocated to the Golgi where it is processed to a 

transcription factor that also regulates expression of genes involved in ERAD 

pathway. ATF6 can also form heterodimers whith XBP-1 in order to control 

expression of various genes (Hetz and Mollereau, 2014). 

Under conditions of chronic and irreversible ER stress, the UPR may also induce 

apoptosis through distinct overlapping cellular signaling mechanisms, including the 

upregulation of transcription factor C/EBP-homologous protein (CHOP, also known 

as DNA damage inducible gene 153, GADD153) which upregulates the pro-apoptotic 

members of the  Bcl-2 family. PERK activation and the downstream induction of 

ATF4 can lead to the upregulation of CHOP which in turn inhibits the anti-apoptotic 

factor Bcl-2. Subsequently, the pro-apoptotic factor Bax engages the mitochondrial 

pathway of apoptosis (see Part 1.1.4.3., pages 34-35). 
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Figure 11 : ER stress and its induction of apoptosis. ER stress leads to activation 
of the UPR sensors, PERK, IRE1α and ATF6. Activation of PERK leads to inhibition 
of translation by eIf2α phophorylation and the activation of the transcription factor 
ATF4. Activation of IRE1α is associated with non conventional splicing of XBP-1 
which translocates to the nucleus to modulate the expression of various genes 
involved in ER functioning. Upon its activation, ATF6 translocates to the Golgi 
apparatus where it is activated by proteolysis. Thereafter, in the nucleus, ATF6 
activate the transcription of XBP-1 in order to control the expression of various 
genes. Under chronic and irreversible ER stress, the UPR sensors activate the JNK 
pathway and CHOP, which alter the balance between pro-apoptotic and anti-
apoptotic Bcl-2 family members, leading to the activation of the intrinsic/mitochondrial 
apoptosis pathway. ER, Endoplasmic reticulum ; IRE1α, inositol-requiring enzyme 
1α ; PERK, protein kinase RNA-like ER kinase ; ATF6, activating transcription factor 
6 ; AFT6f, processed activating transcription factor 6 ; XBP-1, X-box binding protein 1 
; eIF2α, eukaryotic translation initiation factor 2α ; JNK, Jun amino-terminal kinase ; 
ATF4, activating transcription factor 4 ; CHOP, C/EBP-homologous protein. Adapted 
from Doyle et al., 2011. 
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1.1.5.2. Endoplasmic reticulum stress in Alzheimer’s disease 

 

Several studies have reported manifestations of ER stress in post mortem brain 

samples from AD patients. These observations demonstrate the splicing of XBP-1 

mRNA in AD temporal cortex and hippocampal tissues (Lee et al., 2010). In addition, 

the same study showed enhanced expression of ER chaperones such as GRP78 or 

the pro-apoptotic transcription factor CHOP in AD postmortem brain tissues, 

suggesting an important role of ER stress in AD etiology.  

Interconnections between ER stress, Aβ and NFTs have been shown in various 

experimental models. For example, reduction of Aβ is correlated with attenuated ER 

stress and vice versa (Prasanthi et al., 2011, Marwarha et al., 2013). Aged PSEN2 

mutant mice revealed inhibited BACE-1 activity in brain tissues upon treadmill 

exercise. This was accompanied by a down-regulation of PERK, eIF2α, XBP-1 as 

well as CHOP and caspase-3 (Kang et al., 2013). GRP78 and XBP-1 levels 

increased in neurons treated with Aβ (Costa et al., 2013). Also, exposure of SK-S-SH 

cells to Aβ induced activation of the PERK pathway and upregulation of CHOP 

expression (Lee et al., 2010). Tunicamycin-evoked ER stress generated Aβ 

production in RGC-5 cells via the stimulation of BACE-1 and PSEN1 (Liu et al., 

2014), suggesting that ER stress may be the cause or consequence of Aβ toxicity 

(Prasanthi et al., 2011, Cornejo and Hetz, 2013, Marwarha et al., 2013, Hetz and 

Mollereau, 2014, Liu et al., 2014). Moreover, AICD was shown to enhance CHOP 

expression in HEK 293 cells (Takahashi et al., 2009) and high levels of markers for 

UPR activation were detected in neurons with NFTs (Hoozemans and Scheper, 

2012, Nijholt et al., 2012).  
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Interestingly, In vitro studies showed that the induction of UPR by exposure of 

primary cortical neuronal culture of rats to Aβ oligomers correlated with the 

generation of tau phosphorylation (Resende et al., 2008). Altogether, these data 

reveal the existence of a close link between ER stress and the etiological 

mechanisms of AD or tauopathies (Fig. 12).  

 

 

Figure 12 : Endoplasmic reticulum stress-mediated cell death in Alzheimer’s 
disease. Aβ peptides aggregates and alter NMDAR functioning, inducing calcium 
overload into the cytoplasm. In addition, release of calcium from the ER can also 
trigger calcium overload, which initiates the mitochondrial pathway of apoptosis. Aβ 
may also induce chronic ER stress, which in turn promotes Aβ formation. The same 
vicious circle is observed with hyperphosphorylated Tau. The chronic induction of ER 
stress by Aβ or hyperphosphorylated tau leads to the activation of pro-apoptotic 
events controlled by the UPR-induced activation of CHOP. ER, Endoplasmic 
reticulum ; NMDAR, N-methyl-D-aspartate receptor ; UPR, unfolded protein response 
; CHOP, C/EBP-homologous protein. Adapted from Cornejo and Hetz, 2013. 
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1.1.5.3. Interplay between Endoplasmic Reticulum and Mitochondria 

in Alzheimer’s disease 

 

The ER and mitochondria are closely connected. They join together at multiple 

contact sites to form specific domains, termed mitochondria-ER associated 

membranes or MAMs (Marchi et al., 2014). MAMs promote interorganelles lipids 

transfer but are also involved in Ca2+ ions exchange that regulate several biological 

processes such as protein folding in ER, production of ATP in mitochondria (Denton 

et al., 1988, Rowland and Voeltz, 2012, Vannuvel et al., 2013) and activation of Ca2+ 

dependent enzymes that activate cell death pathways. Interactions between ER and 

mitochondria may shape intracellular calcium signals and modulate synaptic and 

integrative neuronal activity (Mironov and Symonchuk, 2006). Various ER or 

mitochondria bound proteins have play a key role in the maintenance of close 

network between ER and mitochondria and in the formation of calcium channels 

involved in the specific transfer of calcium from ER to mitochondria. These proteins 

include ER resident Ca2+ channel inositol triphosphate receptor (IP3R) and the 

mitochondrial voltage-dependent anion channel (VDAC) (Rowland and Voeltz, 2012, 

Vannuvel et al., 2013). Recent findings reveal that MAM-associated proteins 

expressions are increased in young AD transgenic mice and in the brain of AD 

patients, suggesting that in early stages of AD, the elevation of ER-mitochondria 

interface proteins may reflect a neuronal stress response (Hedskog et al., 2013). 

Because ER and mitochondria are tightly bound, ER stress may affect and modify 

mitochondrial bioenergetics and vice versa. Thus, interplaying mechanisms between 

ER stress and mitochondrial functions are pivotal for neurodegenerative processes 

occurring in AD. Indeed, Aβ exposure of primary hippocampal neurons affected the 
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MAM region by disturbing the Ca2+ regulatory system and this process led to ER 

stress, mitochondrial dysfunctions and apoptosis (Hedskog et al., 2013). 

It is noteworthy to recall that ER stress-evoked mitochondrial dysfunction is 

characterized by ROS formation increase and pro-apoptotic factors activation 

(Malhotra and Kaufman, 2007). Since hyperphosphorylated tau and Aβ induce ROS 

generation and ER stress, interconnection between ER and mitochondria make ER 

stress a partner of the vicious circle linking Aβ, NFTs and cellular stresses (Fig. 13). 

Consequently, development of efficient therapies should take into account this 

vicious circle by reducing oxidative stress, ER stress and/or Aβ accumulation. 
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Figure 13 : Interplay between endoplasmic reticulum and mitochondria in 
Alzheimer’s disease. Aβ peptides and hyperphosphorylated tau can either induce 
ER stress or mitochondrial impairment, leading to reactive oxygen species formation 
and oxidative stress. Both ER stress and oxidative stress are able to promote Aβ 
formation and tau hyperphosphorylation. Due to their close communication via 
mitochondria-ER-associated membranes (MAMs), ER stress and oxidative stress 
accentuate each other in a positive feed forward loop. Impaired calcium flux between 
ER and mitochondria also play a key role in this vicious circle leading to cell death by 
intrinsic apoptosis pathway. MAM, mitochondria-ER-associated membranes ; Cyt.c, 
cytochrome c ; ROS, reactive oxygen species ; ER, Endoplasmic reticulum ; NMDAR, 
N-methyl-D-aspartate receptor ; UPR, unfolded protein response ; CHOP, C/EBP-
homologous protein. Adapted from Cornejo and Hetz, 2013. 

 

 

 

 

 



  Introduction 

48 
 

1.2. Neurosteroids  

1.2.1. Definition and mode of actions  

 

The nervous system activity is modulated by steroids compounds which regulate the 

development, growth and maturation of nerve cells (McEwen, 1994). The term 

neuroactive steroid is generally used to designate any steroid exhibiting a 

neuroactive effect, whether this steroid is a synthetic molecule (exogenously 

synthesized) or an endogenous compound produced in the body by steroidogenic 

tissues. Therefore, the neuroactive steroid family includes synthetic exogenous 

steroids, hormonal steroids produced by peripheral or classical endocrine glands 

(adrenals, gonads) and steroids synthesized by neuronal or glial cells that are 

designated “neurosteroids” (Baulieu, 1998, Mensah-Nyagan et al., 1999). The 

biosynthesis of neurosteroids occurs directly in the CNS or peripheral nervous 

system, either de novo from cholesterol, or by in situ metabolism of circulating steroid 

precursors (Fig. 14) (McEwen, 1994, Baulieu, 1998, Mensah-Nyagan et al., 1999, 

Schumacher et al., 1999). The main criterion required to consider a steroid as a 

neurosteroid is its production in neurons and/or glial cells of the CNS or PNS 

independently from the activity of endocrine steroidogenic glands including the 

adrenals and the gonads. The process of neurosteroid biosynthesis 

(neurosteroidogenesis) is a well-conserved mechanism evidenced in non mammalian 

vertebrates and in all mammals including humans (Mensah-Nyagan et al., 1998, 

Mensah-Nyagan et al., 1999, Tsutsui et al., 1999, Mellon and Vaudry, 2001, Tsutsui 

et al., 2013). These data suggest that neurosteroids may control several key 

physiological functions.  



  Introduction 

49 
 

 

Figure 14 : Biochemical pathways leading to neurosteroids biosynthesis. The 
initial transport of cholesterol into the mitochondria is mediated by the complex StAR 
and TSPO. Steps of neurosteroidogenesis are shown. StAR, Steroidogenic acute 
regulatory protein ; TSPO, translocator protein (18-kDa) ; P450scc, Cytochrome 
P450side chain-cleavage ; P450c17, Cytochrome P450c17 or 17α-hydroxylase ; 3β-
HSD, 3β-Hydroxysteroid dehydrogenase ; 5α-R, 5α-Reductase ; 17β-HSD, 17β-
Hydroxysteroid dehydrogenase ; 3α-HSOR, 3α-Hydroxysteroid oxidoreductase ; 
DHEA, Dehydroepiandrosterone ; DHP, Dihydroprogesterone ; DHT, 
Dihydrotestosterone ; 3α-DIOL, 3α-androstanediol ; 3α,5α-THP, 3α,5α-
Tetrahydroxyprogesterone also known as allopregnanolone. Adapted from Schaeffer 
et al., 2010. 

 

1.2.1.1. Genomic actions of neurosteroids 

  
Neuroactive steroids including neurosteroids exert classically their physiological 

effects through nuclear receptors (NR)-mediated gene transcription. These NR 

include the glucocorticoids receptors (GR), mineralocorticoids receptors (MR), 

estrogens receptors (E2R), androgens receptors (AR) and progestins receptors (PR) 

(Beato and Klug, 2000). Recently, a focus has been on characterizing the role of the 

pregnane xenobiotic receptor (PXR), a NR involved in allopregnanolone signaling 
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(Frye et al., 2014b, a, c), which acts as a transcriptions factor for neurosteroidogenic 

enzymes. Steroid hormones receptors are functionally composed of three critical 

modular domains : a hormone-independent activation function 1 (AF1) domain, a 

DNA-binding domain (DBD) and a hormone dependent activation function 2 (AF2) 

domain that is activated allosterically upon ligand binding (Stanisic et al., 2010). The 

general outline of functional and structural domains of steroids nuclear receptors are 

described in Fig. 15.   

 

Figure 15 : General outline of functional and structural domains of steroid 
hormones nuclear receptors. Structural domains (A-F) and corresponding 
functional modalities are depicted. From Stanisic et al., 2010.  

 

The A and B domains are contained within the receptor’s AF1 and are implicated in 

the hormone-independent transcriptional activation of the receptor. The C domain 

represents the DBD and is composed of two zinc-finger motifs that are responsible 

for DNA sequence-specific binding to hormone response elements (e.g. Estrogen 

response elements, ERE). The D domain or hinge region is a linker between the DNA 

and ligand binding regions (LBDs) of steroid hormones NR. Functionally, it contains a 

nuclear localization signal (NLS) and is implicated in interaction with coregulator 



  Introduction 

51 
 

molecules. The E domain is responsible for ligand binding and doubles as the ligand-

activated AF2 domain. In case of E2R, the LBD is composed of 12 alpha helixes, five 

of these form a hydrophobic ligand-binding cleft in Estrogens receptors (Bourguet et 

al., 2000, Srinivasan et al., 2013). In the example of E2R, upon binding to Estradiol, 

this region undergoes a conformational change involving helix 12 displacement over 

the opening of the ligand binding pocket. This change allows specific interactions 

with LXXLL helical motifs available in coactivator structures such as steroid receptor 

coactivators which remodel chromatine and facilitate the access of the transcriptional 

machinery to DNA (Han et al., 2009).  

 

1.2.1.2. Non genomic actions of neurosteroids 
 

Genomic actions of steroids develop relatively slowly (over minutes to hours) and 

may persist after the metabolism of steroidal ligands in the brain. However, it is well-

known that various steroids may also induce immediate changes (within seconds) on 

neuronal excitability within a timescale that excludes genomic mechanisms of action. 

In the 1940s, Seyle showed that certain pregnane steroids can induce rapid sedation 

and anesthesia. Since this pioneer study, numerous investigations showed that 

neuroactive steroids and neurosteroids are able to control neuronal excitability and 

activity via membrane bound receptors such as γ-aminobutyric acid type A (GABAA) 

receptors, NMDA receptors and sigma receptors (Losel and Wehling, 2003, Belelli 

and Lambert, 2005, Maurice et al., 2006, Mellon, 2007). Because neurosteroids are 

directly synthesized in the nervous system, they could act in a paracrine, or autocrine 

manner on these receptors to modulate nerve cell activities (Patte-Mensah and 

Mensah-Nyagan, 2008).  
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1.2.2. Evidence for neuroprotective effects of neurosteroids in 
neurodegenerative disorders 

 

Several evidence revealed that neurosteroids exert neurotrophic and neuroprotective 

effects in various experimental models of neurodegenerative disorders (Belelli and 

Lambert, 2005, Patte-Mensah et al., 2005, Borowicz et al., 2011, Gravanis et al., 

2012, Panzica et al., 2012, Brinton, 2013). Previous publications from our laboratory 

have highlighted the neuroprotective effects of neurosteroids such as 

allopregnanolone, 3α-androstenediol or DHEA against neuropathic pain in animal 

models (Kibaly et al., 2008, Mensah-Nyagan et al., 2008, Meyer et al., 2008, 

Mensah-Nyagan et al., 2009, Patte-Mensah et al., 2010, Meyer et al., 2011, 2013, 

Patte-Mensah et al., 2014). Progesterone and its metabolites were also shown to 

attenuate neuronal loss after motor neuron axotomy and to promote remylenisation in 

the CNS and the PNS (Garay et al., 2007, Garay et al., 2009, Kipp and Beyer, 2009). 

Furthermore, in rat middle cerebral artery occlusion model, both progesterone and 

allopregnanolone significantly improved behavioral and cognitive performances 

(Sayeed et al., 2007). The administration of allopregnanolone or progesterone after 

traumatic brain injury decreased apoptotic DNA fragmentation, caspase-3 and Bax 

proapoprotic protein expression and ameliorated cognitive performances (Djebaili et 

al., 2004, Djebaili et al., 2005). Growing evidence also suggested the potential of 

neurosteroids including allopregnanolone as regenerative agents in the brain 

(Brinton, 2013).  

Several investigations were particularly focused on the assessment of neurosteroid 

involvement in AD pathophysiological mechanisms in order to develop neurosteroid-

based neuroprotective strategies against AD-related symptoms. Reduced blood 

levels of steroids hormones have been associated with aging and increased risk of 
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AD. In particular, cholesterol concentration decreased and dehydroepiandrosterone 

(DHEA) level increased in AD patients brain were correlated with Braak 

neuropathological stages (Naylor et al., 2008). Evidence showing that DHEA 

mediates neuroprotection against Aβ-evoked toxicity (Cardounel et al., 1999) 

suggests that the increased level of DHEA in AD patient brain may represent an 

adaptative process to cope with undergoing neurodegenerative process as AD.  

A consistent body of evidence from animal studies indicate that estrogens may also 

exert a neuroprotective action in AD. Estradiol synthesis from testosterone was 

induced in astrocytes by aromatase enzymatic activity in response to injury and 

estradiol exerted a preventive role on AD-like neuropathology (Garcia-Ovejero et al., 

2005, Carroll et al., 2007, Garcia-Segura, 2008). Immunocytochemistry also showed 

that aromatase expression was upregulated only in brain areas which are strongly 

affected in AD (Ishunina et al., 2005). This selective upregulation in brain regions 

undergoing neurodegeneration suggests a possible compensatory mechanism to 

increase neuroprotection. In agreement with this hypothesis, in vitro analysis 

performed in our laboratory revealed that the overexpression of wild-type APP 

(APPwt) or mutant P301L tau in SH-SY5Y cells induced an up-regulation of estradiol 

formation (Schaeffer et al., 2006a). Also, estradiol protects rat cerebellar granule 

cells against Aβ-induced toxicity by decreasing pro-apoptotic Bax protein expression 

and by reducing cytochrome c release and caspase-3 activation via the inhibition of 

JNK pathway (Napolitano et al., 2014). Moreover, estradiol was shown to promote Aβ 

clearance through Insulin-degrading enzyme activation in rats neurons or via MMP-2 

and MMP-9 up-regulation in human SH-SY5Y neuroblastoma cells (Jayaraman et al., 

2012, Merlo and Sortino, 2012). These data are perfectly consistent with the results 
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showing that brain estrogen deficiency accelerates Aβ plaque formation in AD animal 

models (Yue et al., 2005). 

Accumulating evidence in humans points towards a high potential of 

allopregnanolone to counteract AD-related symptoms. Indeed, reduced plasma and 

brain levels of allopregnanolone were found AD patients in several studies (Marx et 

al., 2006, Naylor et al., 2010). Treatments of triple transgenic AD mice with 

allopregnanolone was able to reverse neurogenic and cognitive deficits by promoting 

neurogenesis in the subventricular zone of hippocampus (Wang et al., 2010). Also, 

allopregnanolone reduced Aβ-oligomers accumulation in triple transgenic AD mice 

hippocampus by decreasing ABAD expression and restoring cholesterol homeostasis 

through the increase of the key enzyme HMG-CoA-Reductase (Chen et al., 2011a). 

Furthermore, allopregnanolone improved memory both in triple transgenic AD mice 

and wild-type mice (Singh et al., 2012). Altogether, these data strongly support the 

idea that neurosteroids, particularly allopregnanolone may offer interesting 

perspectives for the development of effective therapies against AD and other 

neurodegenerative disorders.  

1.3. Gamma-hydroxybutyrate (GHB) 

1.3.1. GHB : an endogenous neuromodulator 
 

γ-hydroxybutyric acid (GHB) is a molecule which was first synthesized in 1960 by the 

French anesthesiologist H. Laborit, who attempted to generate an easily brain-

permeable form of the principal inhibitory neurotransmitter GABA (Laborit et al., 

1960). Three years later, GHB was reported to be an endogenous constituent of the 

mammalian brain and a GABA metabolite (Bessman and Fishbein, 1963). GABA is 

translocated into the mitochondria and transformed to succinic semialdehyde (SSA) 
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by a GABA-transminase (GABA-T). Thus, GABA can also be metabolized through 

the citric acid cycle via conversion into succinate by the enzyme succinic 

semialdehyde dehydrogenase (SSADH) (Maitre, 1997). Deficiency in SSADH is 

associated with elevated levels of GHB and GABA (Gibson et al., 1998). SSA is then 

transported from the mitochondria to the cytoplasm and is transformed into GHB by 

succinic semialdehyde reductase (SSR) which uses NADPH as co-substrate. 

Inhibition of SSR also diminishes the levels of GHB (Rumigny et al., 1981). Via a 

Ca2+-dependent exocytose, GHB is released into the synaptic cleft where it may act 

on multiple targets. The elimination of GHB after intraventricular administration 

occurs in less than five minutes (Maitre, 1997). GHB is reported to be loaded into 

synaptic vesicles via the vesicular inhibitory amino acid transporter (VIAAT), which 

also transports GABA and glycine (Bay et al., 2014). Besides this classical removal, 

GHB is also transported out of the synaptic cleft by a Na+-dependent plasma 

membrane transporter and is then reconverted into SSA by a GHB dehydrogenase 

(Benavides et al., 1982, Maitre, 1997, Maitre et al., 2000) (Fig. 16).   

The majority of reported pharmacological and behavioral effects of exogenous GHB 

are mediated by GABAB receptors. This receptor is a member of the G protein-

coupled receptors (GPCRs) which leads to the hyperpolarization of neurons by 

opening of post-synaptic G protein-coupled inwardly rectifying potassium channels 

and decreases in adenylate cyclase activity and calcium conductance (Bay et al., 

2014). Indirect effects may also occur if GHB is converted to GABA, which in turn 

activates GABA transmission. Nevertheless, binding to GABAB receptors in 

synaptosomes persisted in the presence of GHB dehydrogenase inhibitors (Maitre, 

1997). In addition to GABAB receptors, recent data suggest that GHB may bind on 

specific σ4βδ GABAA receptors subtypes (Absalom et al., 2012), but this observation 
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remain controversial (Connelly et al., 2013). Nevertheless, because of the structural 

similarity between GHB and GABA and the sedative properties of GHB, it seems 

reasonable to suggest GHB interactions with GABAA receptors (Fig. 16). 

Besides the GABA receptors, GHB was reported to have its own receptors. In 2003, 

our laboratory reported the cloning of a GHB receptor in rat brain (Andriamampandry 

et al., 2003b). Using the analogue NCS-400, a protein from solubilized rat brain 

membranes was isolated by affinity purification. The presence of a consensus G-

protein binding in the amino acid sequence suggest that the expressed GHB receptor 

is a member of GPCRs. Later, in 2007, a human GHB receptor was also isolated 

from a human frontal cortex by our institute (Andriamampandry et al., 2007). This 

receptor (GHBh1) may also be a GPCR, more precisely a Gi/Go coupled GPRC. 

More recently, GHB was reported to induce calcium and cAMP signaling in 

differencied NCB-20 neurohybrydoma cells confirming the existence of specific 

GPCRs for GHB (Coune et al., 2010) (Fig. 16). 
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Figure 16 : Overview of a GABA/GHB synapse. GHB is a GABA metabolite which 
is converted into succinic semialdehyde (SSA) by a GABA-transaminase in the 
mitochondria. SSA is then converted into GHB in the cytosol by a succinic 
semialdehyde reductase (SSR). After loading into synaptic vesicles by the vesicular 
inhibitory amino acid transporter (VIAAT) and exocytosis, GHB can act on 
metabotropic GABAB-receptors (GABAB-R) or on the ion channel GABAA-receptor 
(GABAA-R). Besides the GABAergic system, GHB binds on its own G-protein-
coupled receptor (GHB-R) which positively modulates cAMP. GHB is reuptaken by a 
GHB transporter and is then reconverted into SSA by a GHB-T, GHB-transporter ; 
GHB-D, GHB-dehydrogenase ; SSADH, succinic semialdehyde dehydrogenase ; 
SUC, succinate ; cAMP, cyclic adenosine monophosphate. Adapted from Bay et al., 
2014. 
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1.3.2. Gamma-hydroxybutyrate as potential neuroprotective agent 
 

GHB was first used as an anesthetic agent because of its ability to easily cross the 

blood brain barrier. Moreover, this molecule, which induces slow waves sleep 

(Lapierre et al., 1990, Van Cauter et al., 1997) appears crucial for neuronal 

recuperation from wakefulness (Tononi and Cirelli, 2003). Therefore, GHB was 

clinically used to treat sleep disorders such as catalepsy/narcolepsy and 

demonstrated efficiency in this context (Mamelak et al., 2004, Thorpy, 2005). 

Because of the reparative aspects of sleep, GHB was also observed to attenuate 

pain, fatigue and sleep disturbance in fibromyalgia patients (Russell, 1999, Russell et 

al., 2009, Russell et al., 2011, Spaeth et al., 2013).  

A protective effect of GHB has been shown in animal models of brain 

ischemia/hypoxia as well as in head injury-induced coma in humans (Escuret et al., 

1977, Wolfson et al., 1977a, Lavyne et al., 1983, Vergoni et al., 2000, Ottani et al., 

2003, Ottani et al., 2004). More precisely, GHB was observed to limit histological and 

functional consequences of a focal ischemic or excitotoxic insult of the brain 

confirming the potential of GHB as a neuroprotective agent (Vergoni et al., 2000, 

Ottani et al., 2003, Ottani et al., 2004). However, no mechanism underlying this 

protection was demonstrated. 

In vivo studies in rodent revealed that GHB is able to diminish cerebral metabolism, 

particularly to shift glucose metabolism towards the pentose phosphate pathway 

(PPP) via the activation of glucose-6-phosphate dehydrogenase which induces the 

formation of NADPH, an essential cofactor of numerous antioxidant enzymes 

including gluthatione reductase/catalase (Taberner et al., 1972, Taberner, 1973, 

Russell et al., 1999, Mamelak, 2007). Consequently, GHB also appears as an 
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interesting agent for the reduction of oxidative stress. Furthermore, ischemic 

reperfusion injury has been attributed in large part to ROS formation, lipid 

peroxidation and the increase of intracellular calcium (Alvarez et al., 2014). 

Therefore, the protection exerted by GHB in brain ischemia models could be 

attributed to the reduction of oxidative stress and calcium overload, which are also 

major characteristics of AD physiopathology, but in vitro data supporting this 

hypothesis are completely missing. However, recent data of our laboratory showed 

that a single pharmacological dose of GHB modulates the brain expression of 

multiple genes including various genes encoding for amyloid degrading enzymes 

(Neprilysin) or for programmed cell death factors (Kemmel et al., 2010). These 

results strongly suggest GHB involvement in neuroprotection. 

1.4. GHB and neurosteroids : a potential link 
 

GHB and neurosteroids share similarities in their molecular targets. As 

aforementioned, GHB and neurosteroids may modulate GABAA receptors. Therefore, 

these two classes of molecules may act together in GABAergic synapses. GABAA-

receptor activation was repeatedly shown to induce neuroprotective effects in various 

brain injuries models (Farber et al., 2003, Elsersy et al., 2006, Mensah-Nyagan et al., 

2009). Also, the enhancement of GABAergic transmission is known to be 

neuroprotective against neuroinflammation- or oxidative stress-evoked damages 

(Farber et al., 2003, Elsersy et al., 2006, Querfurth and LaFerla, 2010, Dias et al., 

2014).  

Interestingly, it has clearly been demonstrated that GHB increased allopregnanolone 

and tetrahydrodeoxy-corticosterone (THDOC) production in the rat brain (Barbaccia 

et al., 2002). The selective GABAB receptor antagonist SCH50911 prevented the 
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stimulatory action of GHB on neurosteroids formation, while the GABAB receptor 

agonist baclofen mimicked it. These results suggest that GHB, via GABAB receptor-

mediated mechanisms, increases the brain concentrations of neurosteroids such as 

allopregnanolone and THDOC that positively modulate the GABAA receptor 

(Barbaccia et al., 2005). Because Ca2+ and cAMP signaling which are activated by 

GHB proper receptor (GHB-R) are also well known to stimulate various neurosteroid-

synthesizing enzymes, it is reasonable to hypothesize that GHB may upregulate 

neurosteroidogenesis via the activation of GHB-R (Beaudoin et al., 1997, Maitre et 

al., 2000, Kimoto et al., 2001, Morita et al., 2004, Trbovich et al., 2004, Coune et al., 

2010, Udhane et al., 2013). 

Altogether, these data suggest that GHB and neurosteroids may act synergistically or 

additively to protect nerve cells against degenerative mechanisms or neurotoxicity-

induced neuronal cell loss. 

 

1.5. PhD project 

1.5.1. Objectives  
 

As aforementioned, direct interactions occur between GHB and neurosteroidogenesis 

but also between the mechanisms of actions of GHB and neurosteroids in the 

nervous system. Therefore, we hypothesized that GHB may exert neuroprotective 

effects through the modulation of neurosteroidogenesis. It is also possible that GHB 

and neurosteroids act additively or synergistically to protect nerve cells against 

deleterious mechanisms leading to neurodegenerative disorders, including AD. 
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The purpose of the thesis was therefore to :  

(1) Investigate the ability of separated or concomitant GHB and neurosteroid 

treatments to protect human neuroblastoma cells against death mechanisms evoked 

by AD etiological factors such as (i) oxidative stress-induced apoptosis, (ii) abnormal 

expression of wild-type APP (APPwt) or (iii) ER stress. 

(2) Verify if GHB-evoked neuroprotection is mediated by the modulation of 

neurosteroidogenesis.  

(3) Check whether GHB and/or neurosteroids may be able to stimulate the activity 

and/or expression of two amyloid peptide regulatory enzymes : MMP-2 and MMP-9. 

1.5.2. Experimental models 
 

To reach our objectives, we have used the human neuroblastoma SH-SY5Y cells 

which possess all of the neuronal features and have been well demonstrated as a 

relevant cellular model for the investigation of molecular and biochemical 

mechanisms involved in AD (Biedler et al., 1978, Tanaka et al., 1995, Li et al., 1996b, 

Misonou et al., 2000, Rhein et al., 2009). In particular, the transfection of SH-SY5Y 

cells with AD brain hallmarks reproduced accurately cellular abnormalities involved in 

AD physiopathology such as toxic Aβ accumulation, mitochondrial dysfunctions, ROS 

generation, oxidative stress, apoptosis and decreased cell viability (Tanaka et al., 

1995, Li et al., 1996a, Misonou et al., 2000, Hoerndli et al., 2007, Qin and Jia, 2008, 

Rhein et al., 2009, Zampese et al., 2011, Wan et al., 2012, Gotz et al., 2013b, 

Monroy-Ramirez et al., 2013). Most importantly, SH-SY5Y cells have also been 

characterized as neurosteroid-producing cells expressing several key steroidogenic 

enzymes (Melcangi et al., 1993, Schaeffer et al., 2006b, Schaeffer et al., 2008a, 
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Schaeffer et al., 2008c). Interestingly, previous results from our laboratory have 

shown that the overexpression of APPwt or the transfection of mutant tau P301L or 

normal hTau40 proteins significantly affected the process of neurosteroid production 

in SH-SY5Y cells (Schaeffer et al., 2006a, Patte-Mensah et al., 2012). 

For the induction of oxidative stress-evoked cell death mechanisms, we have treated 

SH-SY5Y cells with hydrogen peroxide (H2O2) which is well established in the 

literature as the best pharmacological substance to generate relevant experimental 

models to investigate the cellular effects of oxidative stress (Finkel and Holbrook, 

2000, Chen et al., 2011b, Mouton-Liger et al., 2012).  

Regarding the assessment of ER stress-induced cell damages, SH-SY5Y were 

treated either with tunicamycin, an inhibitor of protein N-glycosylation, or 

thapsigargin, a calcium SERCA-pump specific blocker (King and Tabiowo, 1981, 

Thastrup et al., 1990, Li et al., 1993, Yoshida et al., 2006, Ghosh et al., 2012, Hetz et 

al., 2013). 

In order to determine the effects of GHB and neurosteroids on the activity of MMP-2 

and MMP-9, we optimized a yeast based high throughput MMP activity assay based 

on Pichia pastoris cell surface expression of human MMP-2 and MMP-9 (Diehl et al., 

2011). 
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2. Materials and methods  

2.1. Neuroblastoma cell line SH-SY5Y  
 

SH-SY5Y is a thrice cloned subline of the neuroblastoma cell line SK-N-SH which 

has been established in 1970. A neuroblast like subclone of SK-N-SH, named SH-

SY, was subcloned as SH-SY5, which was subcloned a third time to produce the SH-

SY5Y line, first described in 1978 (Biedler et al., 1978). The cloning process involved 

expansion of individual cells or a small group of cells that expressed neuron-like 

characteristics. SH-SY5Y cells possess numerous neuronal characteristics and are 

well recognized as a relevant cell model for the study of molecular and biochemical 

mechanisms involved in AD (Tanaka et al., 1995, Li et al., 1996a, Misonou et al., 

2000, Rhein et al., 2009). 

In order to develop a cell model which can mimick Aβ accumulation evoked by the 

overexpression of APP, the wild-type (wt) or non mutated APP was stably transfected 

into SH-SY5Y cells (Scheuermann et al., 2001). Briefly, APPwt was cloned into the 

pCEP4 vector (Invitrogen/ITC Biotechnology, Heidelberg, Germany). Stably 

expression of APPwt was obtained by transfection of SH-SY5Y cells using Lipofect 

AMINE plus (ITC Biotechnology, Heidelberg, Germany) and selection with 

hygromycin. Empty pCEP4 vector was also transfected in SH-SY5Y cells that 

constitute the control cells. Native SH-SY5Y were purchased from Sigma-Aldrich 

(Saint-Quentin, France). The morphological aspects of these three cell lines are 

represented in Fig. 17. 



  Materials and methods 
  

64 
 

 

Figure 17 : Morphology of native and transfected SH-SY5Y cells. Native SH-
SY5Y cells exhibit a neuroblast-like morphology with differentiated perykaria and 
occasional short neurites (arrowheads). Cells transfected with pCEP4 vector alone or 
harboring APPwt cDNA exhibit a similar morphology to that of native cells. Scale bars 
= 50 µm. Adapted from Schaeffer et al., 2006.  

 

2.2. Yeast : Pichia pastoris  
 

Pichia pastoris is a methylotrophic yeast which is widely used in biotechnology for 

recombinant protein production because of its high growth rate and its ability to grow 

on simple and inexpensive culture media. As unicellular eukaryote, P. pastoris 

combines the advantage of being a eukaryotic expression host bearing the capability 

to perform complex processing and posttranslational modifications of higher 

eukaryotic proteins. In many cases, foreign protein expression is driven from 

promoters derived from the P. pastoris alcohol oxidase genes AOX1 or AOX2 which 

both allow efficient methanol induced protein expression (Daly and Hearn, 2005).  

For the analysis of human MMP-2/-9 activity in a yeast-based bioassay, a 

recombinant P. pastoris strain (KM71) was used having the genotype arg4 his4 

aox1::ARG4. Transformation of this histidine auxotrophic yeast strain was performed 

with an expression plasmid carrying the HIS4 gene such that transformants could be 

selected by growth on media lacking histidine. 
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2.3. Material 

2.3.1. Antibodies  
 

The antibodies used in this PhD thesis are listed in table 2. 

Table 2 : Antibodies  

Primary antibody Developed in Provider Reference 

Anti β-actin Mouse  Abcam, Cambridge, UK ab8226 

Anti Bax Rabbit  Abcam, Cambridge, UK ab7977 

Anti Bcl-2 Mouse  Santa-Cruz, Dallas, USA sc-509 

Anti CHOP Rabbit  Santa Cruz, Dallas, USA Sc-793 

Anti GRP78 Rabbit Abcam, Cambridge, UK ab32618 

Anti XBP-1 Rabbit  Santa Cruz, Dallas, USA sc-7160 

Anti α-Tubulin Mouse Sigma-Aldrich,  
Saint-Quentin, France 

T8203 

Secondary 
antibody Developed in Provider Reference 

Anti Mouse IgG-
HRP 

Goat  PARIS anticorps 
(Compiègne, France) 

BI2413C 

Anti Rabbit IgG-
HRP 

Goat  PARIS anticorps 
(Compiègne, France) 

BI2407 

 

2.3.2. RNA oligonucleotides 
 

The oligonucleotides used for RT-qPCR were purchased from Eurogentec (Angers, 

France). The related sequences are represented in table 3. 
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Table 3 : Oligonucleotide sequences  

Gene  Sens  5'-3' sequence   References 
3α-HSOR forward GGTGAGACGCCACTACCAAA (Stoffel-Wagner 

et al., 2000) reverse TCTAGCTAGCTGAAGTTGCCA 
5α-Reductase forward ATACCAAGGGGAGGCTTATTTGAA (Luchetti et al., 

2006) reverse CTCCATTTCAGCGTATTTAGGTAC 
TSPO forward AGGCTTCACAGAGAAGGTTGTGGT (Luchetti et al., 

2006) reverse AGTTGAGTGTGGTCGTGAAGGCCA 
MMP-2 forward AGATCTTCTTCTTCAAGGACCGGTT (Munaut et al., 

2003) reverse GGCTGGTCAGTGGCTTGGGGTA 
MMP-9 forward GCGGAGATTGGGAACCAGCTGTA (Munaut et al., 

2003) reverse GACGCGCCTGTGTACACCCACA 
XBP-1 

unspliced 
forward ACTCAGACTACGTGCACCTCTGCA (Jiang et al., 

2012) reverse GAGAAAGGGAGGCTGGTAAGGAAC 
XBP-1 spliced forward GGCTCGAATGAGTGAGCTGGAACA (Jiang et al., 

2012) reverse CAACTGGGCCTGCACCTGCT 
GRP78 - BiP forward CATCACGCCGTCCTATGTCG (Jiang et al., 

2012) reverse CGTCAAAGACCGTGTTCTCG 
CHOP forward TTCTCTGGCTTGGCTGACTGA (Jiang et al., 

2012) reverse TGGTCTTCCTCCTCTTCCTCCT 
β-Actin forward TGGCACCCAGCACAATGAA (Jiang et al., 

2012) reverse CTAAGTCATAGTCCGCCTAGAAGCA 
Aromatase  forward TGCAGGAAAGTACATCGCCAT (Schaeffer et 

al., 2008c) reverse TCCTTGCAATGTCTTCACGTG 
Vimentine  forward TGGCACGTCTTGACCTTGAA (Sharma et al., 

2009) reverse GGTCATCGTGATGCTGAGAA 
Bax forward  TTTGCTTCAGGGTTTCATCC (Qin et al., 

2009) reverse GCCACTCGGAAAAAGACCTC 
Bcl-2 forward ACGACTTCTCCCGCCGCTAC (An et al., 

2010) reverse CCCAGCCTCCGTTATCCTG 
 

 

2.3.3. Chemicals, reagents and material  
 

The most important chemicals, reagents and devices are represented in table 4. 
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Table 4 : Reagents, kits and devices  

Reagents  Provider 

Dubelcco’s modified eagle medium 
(DMEM) 

Sigma-Aldrich (Saint-Quentin, France) 

Penicillin/streptomycin Sigma-Aldrich (Saint-Quentin, France) 
Hygromycin Sigma-Aldrich (Saint-Quentin, France) 
Hydrogen peroxyde Sigma-Aldrich (Saint-Quentin, France) 
Thapsigargin  Sigma-Aldrich (Saint-Quentin, France) 
Tunicamycin Sigma-Aldrich (Saint-Quentin, France) 
TRIzol reagent Sigma-Aldrich (Saint-Quentin, France) 
Trypan blue Sigma-Aldrich (Saint-Quentin, France) 
MTT (Thiazolyl Blue Tetrazolium Blue) Sigma-Aldrich (Saint-Quentin, France) 
GHB Sigma-Aldrich (Saint-Quentin, France) 
Allopregnanolone  Steraloids (Newport, USA) 
Estradiol Sigma-Aldrich (Saint-Quentin, France) 
FURA-2 / AM Invitrogen (Heidelberg, Germany) 

Kits Provider 

iQ SYBR Green super mix Biorad (Hercules, USA) 
iScript cDNA synthesis kit Biorad (Hercules, USA) 
In Situ cell death detection kit, 
fluorescein (TUNEL reagent) 

Roche Diagnostics (Mannheim, Germany) 

Phycoerythrin (PE) conjugated rabbit 
anti-active caspase-3 Antibody / detection 
kit 

BD Pharmingen (Heidelberg, Germany) 

BCA kit  Sigma-Aldrich (Saint-Quentin, France) 
Clarity Electro Chemolumineschence 
substrate Kit 

Biorad (Hercules, USA) 

cOmplete® Protease inhibitor cocktail 
tablets 

Roche Diagnostics (Mannheim, Germany) 

Enzcheck Gelatinase/collagenase assay 
Kit 

Invitrogen (Heidelberg, Germany) 

Device  Provider 

Spectrophotometer Multiscan GO 1510 Thermo Scientific (Villebon s. Yvette, 
France) 

Microplate fluorescence reader- 
Fluoroskan ascent CF 

Thermo Scientific (Villebon s. Yvette, 
France) 

Automatic cell counter TC20 Biorad (Hercules, USA) 
Flow cytometer Navios Beckman Coulter (Indianapolis, USA) 
Confocal LEICA TCS-SP microscop Leica (Nanterre, France) 
Olympus IX70 microscope (Calcium 
imaging) 

Olympus ( Tokyo, Japan) 

Thermocycler - iCycler Biorad (Hercules, USA) 
Chemidoc MP - Imager Biorad (Hercules, USA) 
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2.4. Cell culture  

2.4.1. SH-SY5Y cells  

2.4.1.1. Routine culture  
 

Human neuroblastoma SH-SY5Y cells were grown at 37°C under an atmosphere of 

5% CO2 in DMEM supplemented with 10% (v/v) heat-inactivated fetal calf serum, 2 

mm Glutamax and 1% (v/v) Penicillin/Streptomycin. SH-SY5Y cells were stably 

transfected with DNA constructs harboring human wild-type APP695 (APPwt) or the 

expression vector pCEP4 (Invitrogen, Europe) alone (control vector) using lipofect 

AMINEplus (Invitrogen, Europe). Transfected APPwt cells were grown in DMEM 

standard medium supplemented with 300 µg/ml hygromycin. 

For the split, cells were washed in Phosphate Buffered Saline (PBS) (see recipe in 

Part. 2.7.1), resuspended in DMEM medium and scraped. Then cells were diluted in 

new dishes preloaded with DMEM medium (generally a dilution of 1:3 / 1:4).  

2.4.1.2. Freezing and unfreezing of SH-SY5Y cells  
 

Cell lines in continuous culture are prone to genetic drift. Therefore, it is crucial that 

they are frozen down as a seed stock and preserved for long term storage. 

Cryopreserving of cultured cells is accomplished by storing them in liquid nitrogen or 

at -80°C in the presence of a cryoprotective agent such as dimethylsulfoxide 

(DMSO). DMSO decreases the freezing point of the medium and also allows a slower 

cooling rate, reducing the risk of ice crystal formation which may cause cell damages 

or death. The freezing medium recipe is described as follows. 
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Freezing Medium :  

- 30 % Fetal calf serum 

- 10 % DMSO 

- 60 % DMEM (supplemented with 0.5 % Penicillin/streptomycin) 

Before the freezing, a confluent dish is selected and washed twice with PBS. Then, 

the cells are resuspended in normal DMEM, scraped and harvested in a 50 ml falcon. 

Cells are counted with the TC20 automatic counter. Centrifugation was performed at 

room temperature at 300g for 10 min. The supernatant was removed, and the cells 

resuspended in the freezing medium. For each cryovial, 2 millions cells are deposed 

in 1.8 ml. Then, the cryovials are stored in a “freezing container” which is placed in 

liquid nitrogen or at -80°C freezer. 

To unfreeze a seed stock, the medium described below was used. 

Unfreezing medium : 

- 80 % DMEM (supplemented with 0.5 % Penicillin/streptomycin) 

- 20 % fetal calf serum  

A seed stock cryovial is removed from liquid nitrogen or -80°C and warmed in a 

double boiler at 37°C. In parallel, unfreezing medium was also warmed in a double 

boiler at 37°C. When the cells are solubilized, they are resuspended in 10 ml of 

unfreezing medium. Then, the cells are centrifugated at 300g for 10 min at room 

temperature. The supernatant was removed, the cells were successively 

resuspended in 6 ml of unfreezing medium, seeded in a 25 cm² flask and placed at 

37°C under 5% CO2 atmosphere.  
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2.4.2. Pichia Pastoris  

2.4.2.1. Culture media 
The following media were used for the culture of Pichia pastoris.  

Histidine drop out (d/o) medium (20 mM, pH 7.0) :  

Glucose 2 % 

Sodium-Dihydrogen phosphate dihydrate 3.12 g/l 

DiSodium-hydrogen phosphate dihydrate 3.56 g/l 

Ammonium sulfate  0.5 % 

Histidine Drop out mix 0.85 g/l 

YNB (yeast nitrogen base) 1.7 g/l 

(Agar  1.2 %) 

Glucose and YNB were separately autoclaved and combined after sterilization.  

Yeast Nitrogen Base (YNB) :  

YNB w/o amino acids and ammonium sulfate 34 g/l 

YNB was diluted in dH2O. The solution was sterile filtered before use. 

Histidine drop out mix :  

Adenine  0.4 g Phenylalanine  1.0 g 

Arginine 0.4 g Threonine  4.0 g 

Histidine  0 g Tryptophane  0.4 g  

Isoleucine 0.6 g Tyrosine  0.6 g 

Leucine 2.0 g Uracile  0.4 g  

Lysine 0.6 g Valine  3.0 g 

Methionine  0.4 g   

The powder mix was stored at 4°C. 

BMG (Buffered Minimal Glycerol) medium :  

Glycerol 2 % 

Ammonium sulfate 1 % 

YNB 3.4 % 

Biotin  4 x 10-5 % 

1 M Potassium phosphate buffer pH 6.0 10 % 
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Glycerol and ammonium sulfate were dissolved in dH2O and autoclaved. Thereafter, 

the biotin solution and YNB were added. Addition of potassium phosphate buffer was 

done immediately before use. The medium was stored at room temperature (RT).  

BMM (Buffered Minimal Methanol) medium :  

Methanol 1 % 

Ammonium sulfate 1 % 

YNB 3.4 % 

Biotin  4 x 10-5 % 

1 M Potassium phosphate buffer pH 6.0 10 % 

Ammonium sulfate was dissolved in dH2O and autoclaved. Thereafter, biotin and 

YNB were added. Addition of methanol and potassium phosphate buffer was done 

immediately before use. The medium was stored at 4°C. 

1 M potassium phosphate buffer, pH 6.0 :  

Potassium Dihydrogen phosphate 106.1 g/l 

DiPotassium hydrogen phosphate  212.3 g/l 

 
500 x Biotin solution :  

Biotin 20 % 

Biotin was dissolved in dH2O, sterile filtered and stored at 4°C.  

2.4.2.2. Pichia pastoris culture  
 

Pre-precultures of P. pastoris were seeded on Histidine d/o agar plates and 

incubated at 30°C. After growth of selected colonies, a single colony of each strain 

was inoculated into liquid His d/o medium and cultivated in shaking flasks over night 

at 220 revolutions per minute (RPM) and 30°C (the conditions of incubation of the 

yeast strains are similar after this step). Then, precultures were grown in BMG until 

they reached an optical density at 600 nm (OD600) of at least 50. Induction of MMP-

2/-9 expression was achieved by shifting the cells into BMM at a feeding rate of 1% 
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(vol/vol) methanol twice a day. After 96 h of methanol induction, cells were harvested 

by centrifugation, washed with sterile H2O and lyophilized before being used in the 

MMP bioassay (see Part 2.8., pages 88-89). Each vial contained 2 ml of yeast diluted 

in H2O with an OD600 of 5 before lyophilization. 

2.4.3. Cell counting  
 

For all experiments, SH-SY5Y cells were counted before seeding, so that the same 

number of cells was seeded in each conditions. The cells were counted thrice in the 

automatic TC20 cell counter (BioRad, Hercules, USA) and the average of these 

counts were used for the next step of seeding. Briefly, after scraping and 

resuspension of cells in DMEM, the cells were homogenized by gentle vortex. Then, 

3 x 10 µl were deposed into the three counting slides which were inserted into the 

TC20 cell counter. The cell diameter range selected for the counting was from 5 to 25 

µm. Since the optimal cell concentration range of the counter is between 1 x 105 and 

5 x 106 cells, the cell suspension was either diluted or concentrated (by centrifugation 

at 300g for 8 min, and resuspension in smaller volume) after two counts (if the result 

was out of this range). Real cell number was also deduced with the 

dilution/concentration factor used before the counting. 

For crude estimations of yeast cell numbers, optical density was measured at 600 nm 

(OD600) in a Ultraspec 2100 pro, UV/visible spectrophotometer (Amersham 

Bioscience). Cultures were diluted such as the observed OD600 was <1.0. In this 

range, an OD600=1.0 is approximately equal to 3 x 107 cells/ml. The resulting OD600 

was corrected by the dilution factor used for the measurement.  
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2.5. Cell viability assays  

2.5.1. Trypan blue exclusion method  
 

The trypan blue exclusion method is used to determine the number of viable cells 

present in a cell suspension. It is based on the principle that live cells possess intact 

cell membranes that exclude certain dyes including trypan blue, whereas dead cells 

do not. In this test, a cell suspension is simply mixed with dye and then visually 

examined to determine whether cells take up or exclude dye.  

In our study, SH-SY5Y cells were seeded into a 24-well plate (105 cells per well) and 

incubated for 48 h at 37°C under an atmosphere of 5% CO2 in DMEM supplemented 

with 10% (v/v) heat-inactivated fetal calf serum. Native, control vector-pCEP4- and 

APPwt-transfected SH-SY5Y cells were treated with various concentrations of H2O2 

ranging from 0 to 1 mM. After 24 h, cells were detached from the plate using a 0.05% 

trypsin-EDTA solution and immediately after DMEM supplemented with serum was 

added. Equal volumes of the cell suspension and 0.4% (v/v) trypan blue in PBS were 

mixed. Ten microliters of each mixture was transferred to a non-gridded disposable 

Countess® chamber Slide and the cells were scored using a Countess® automated 

cell counter (Invitrogen, Heidelberg, Germany). Each probe was counted twice. The 

percent of cell survival was calculated by the Countess® software (Invitrogen, 

Heidelberg, Germany) as the number of living cells divided by total cell number 

(including dead and living cells). 

2.5.2. MTT viability assay  
 

The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay is a 

colorimetric assay to assess cell viability. Mitochondrial NADPH-dependent 

oxidoreductase reflects the number of viable cells by reducing MTT into a purple 
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insoluble formazan crystal (Fig. 18). After solubilization of this crystal with DMSO, the 

absorbance at 550 nm is spectrophotometrically quantified.  

 

Figure 18 : MTT assay principle. MTT, a yellow tetrazole, is reduced to insoluble 
purple formazan in living cell mitochondria. After solubilization in DMSO, absorbance 
at 550 nm is measured in order to determine the percentage of viable cells.  

 

Native and genetically modified SH-SY5Y cells were seeded at 5x104 cells per well 

into 96-well plates and allowed to attach in DMEM medium w/o phenol red. After  

48 h, neuroblastoma cells were incubated under the following conditions : 

• Effects of GHB and neurosteroids on cell survival under normal/physiological 

conditions :  

Normal culture medium completely devoid of stressor but containing graded doses of 

GHB (0, 50, 200, 500 and 1000 µM), allopregnanolone (0, 250, 500 and 1000 nM) or 

estradiol (0, 250, 500 and 1000 nM) was administrated for 24 h or 48 h. 
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• Effects of GHB and neurosteroids on cell survival under oxidative stress 

conditions 

In a first step, the cells were exposed to culture medium containing H2O2 at various 

concentrations (0, 0.05, 0.1, 0.2, 0.5, 0.7, 1, 1.5, 2, 4 and 10 mM) for 24 h or 48 h in 

order to determine effective H2O2 doses and adequate incubation time inducing a 

significant percentage of cell loss. This step was also usefull to establish the 

sensitivity profile of each category of cells (native, APPwt-transfected and control 

vector-pCEP4-transfected SH-SY5Y cells) to oxidative stress-evoked toxicity. 

In a second step, the cells were incubated with a dose of H2O2 capable of killing 

about 60-90% of native or genetically modified SH-SY5Y cells in the absence or 

presence of increasing concentrations of GHB, allopregnanolone or estradiol 

administered alone for 24 h or 48 h in order to determine eventual neuroprotective 

effect.  

Additional experiments were performed by exposing the cells for 24 h or 48 h to H2O2 

dose capable of killing 60-90% SH-SY5Y cells in the concomitant presence of GHB 

and allopregnanolone or GHB and estradiol in order to determine eventual 

additive/synergistic neuroprotective effects of these compounds. 

• Effects of GHB and neurosteroids against ER stress-induced cell loss 

The cells were first exposed for 24 h to the culture medium containing tunicamycin (0, 

1, 5, 10 or 20 µg/ml) or thapsigargin (0, 0,25, 0,5, or 1 µg/ml) in order to determine 

effective tunicamycin, or thapsigargin doses inducing a significant percentage of cell 

loss as well as the sensitivity profile of each category of cells (native, APPwt-

transfected and control vector-pCEP4-transfected SH-SY5Y cells) to ER stress-

evoked toxicity. 
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Afterwards, the cells were incubated for 24 h with tunicamycin or thapsigargin 

(concentration killing about 50% of SH-SY5Y cells) in the presence or absence of 

GHB, allopregnanolone or estradiol administered alone or concomitantly (GHB+ 

Allopregnanolone or GHB+Estradiol). 

In all of the conditions aforementioned, MTT (diluted in DMEM w/o phenol red) was 

added to each well at the end of the incubation period (24 h or 48 h). The final 

concentration of MTT in each well was of 0.4 g/l. Thus, the cells were incubated for 3 

h at 37°C under 5% CO2 atmosphere. Thereafter, the medium was removed from the 

96-well plates and formazan crystals were diluted in 200 µl DMSO per well. Finally, 

the absorbance at 550 nm was measured and the background noise (absorbance at 

650 nm) subtracted for each probe. Moreover, the absorbance of the medium alone 

was also subtracted. MTT signal detected for each cell type in basal condition (in 

absence of stressor) was arbitrary set at 100 %. This basal signal reflecting the total 

number of living cells in each cell type was the reference that served for the accurate 

determination of dose-dependent effects of H2O2 at 24 h or 48 h. The cell survival 

percentage is obtained by using the following calculation.    

x 100 

 

2.6. RT-qPCR 

2.6.1. RNA extraction 
 

RNA extraction with TRIzol, or Guanidinium thiocyanate-phenol-chloroform allows the 

maintenance of RNA integrity during cell lysis. Addition of chloroform and 

centrifugation separates the solution into organic and aqueous phases. RNA which 
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remains only in the aqueous phase can be recovered after precipitation with isopropyl 

alcohol (Fig. 19). 

 

Figure 19 : Principle of TRIzol RNA extraction. 

 

SH-SY5Y cells were seeded at 50 x 104 cells/ml in 10 cm dishes and allowed to 

attach in DMEM medium for 48 h. After 24 h of treatments, the cells were washed 

twice with cold PBS and centrifuged at 300 g for 8 min. The supernatant was 

removed and 400 µl TRIzol reagent was added in each vial which was gently 

homogenized and incubated at RT for 10 minutes. Then, 200 µl chloroform was 

added per ml of TRIzol used (80 µl chloroform for 400 µl of Trizol in this case). The 

samples were gently homogenized without vortexing and were incubated at RT for 10 

min. Thereafter, the samples were centrifuged at 12.000g for 15 min at 4°C. Aqueous 

phase was transferred into RNAse free eppendorfs and 500 µl isopropyl alcohol was 

added per ml of TRIzol used (200 µl in our experiments) and samples were 

homogenized and incubated for 15 min at RT. The samples were centrifuged at 
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12,000 g for 15 min at 4°C and the supernatant was removed. RNA pellets were 

washed with a 80% ethanol solution and were centrifuged again at 12,000 g for 15 

min at 4°C. Finally, each RNA pellets were resuspended in 50 µl ultrapure water and 

were stored at -80°C before use.  

 

2.6.2. RNA concentration and quality determination 
 

Nucleic acids were quantified using UV absorption detected by a spectrophotometer 

(Thermo Scientific, Villebon sur Yvette, France). The absorbance was measured at 

260 and 280 nm. The concentration of nucleic acid was determined using the Beer-

Lambert law. An OD260 of 1.0 is equivalent to about 40 µg/ml of RNA. RNA has its 

absorption maximum at 260 nm whereas aromatic amino acids have an absorption 

maximum at 280 nm. Consequently, the quality of RNA was determined by optical 

density absorption ratio OD260nm / OD280nm >1.7. In this work, a 1:50 dilution of RNA in 

ultrapure water was used for measurements of the optical densities. Each sample 

was measured thrice.  

2.6.3. Reverse transcription  
 

In this step, RNA is reverse transcribed into complementary DNA (cDNA) in a 

reaction using a reverse transcriptase. This cDNA is used as the template for the 

next quantitative polymerase chain reaction (qPCR). In order to achieve this, we used 

the iScript cDNA synthesis kit (BioRad, Hercules, USA), which contains a modified 

Moloney Murine Leukemia Virus (MMLV)-reverse transcriptase characterized by its 

lower RNase H activity.  
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Reverse transcription was performed with 2 µg RNA. For each sample, the reaction 

mix was the following :  

5x iScript reaction mix 8 µl 

iScript reverse transcriptase 2 µl 

Nuclease-free water  x µl 

RNA template (2 µg) x µl 

Total volume 40 µl 
 

The reaction mix were incubated in a thermal iCycler (BioRad, Hercules, USA) with 

the following reaction protocol :  

5 minutes at 25 °C 

30 minutes at 42 °C 

5 minutes at 85 °C  

Hold at 4°C 

 

If not directly used, cDNA samples were stored at -80°C.  

2.6.4. Real Time quantitative PCR (RT-qPCR) 
 

In conventional PCR, the amplified product, or amplicon, is detected with an end-

point analysis, by running DNA on an agarose gel at the end of the reaction. In 

contrast, real-time PCR allows the accumulation of amplified product to be detected 

and measured as the reaction progresses, that is, in “real time”. 

Real time PCR is made possible by including in the reaction a fluorescent molecule 

that reports an increase in the amount of DNA with a proportional increase of 

fluorescent signal. The fluorescent chemistries employed for this purpose include 

DNA-binding dyes and fluorescently labeled primers or probes. In this thesis, we 

used the SYBR green label (BioRad, Hercules, USA) which is a DNA-binding dye. 
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SYBR green binds nonspecifically to double strand DNA (dsDNA) and exhibits 

fluorescence only when bound to dsDNA. Therefore, the overall fluorescent signal 

from the reaction is proportional to the amount of dsDNA present. Specific forward 

and reverse primers (described in Part. 2.2.2) were designed to amplify a 75-200 bp 

product. Thus, only specific genes expression are quantified.  

For each sample, the reaction mix was the following :  

Step Volume per reaction Final concentration 
Forward primer Variable 320 nM 

Reverse primer Variable 320 nM 

iQ SYBR Green supermix 2x 12.5 µl 1x 

cDNA template  5 µl of 1:10 solution 1/50 of 2µg RNA used in RT 

Nuclease free water Variable  - 

Total reaction volume 25 µl   
 

To validate the RT-qPCR data, a standard curve was constructed with successive 

dilutions of cDNA so that the range of template concentrations used for the standard 

curve encompassed the entire range of template concentrations in the samples 

analyzed. Moreover, the specificity of the amplification was controlled by a melting 

curve ranging from 55 to 95°C allowing the identification of a single peak 

corresponding to each amplicon.  

The thermal cycling protocol was performed with an iCycler (BioRad, Hercules, USA) 

and is described as followed :  
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Cycling step Temperature  
Hold time 

(min:sec) 
Number of cycles  

Initial denaturation and 

polymerase activation 

95°C 3:00 1 

Denaturing  95°C 0:15 40 

Annealing (primer-designed) 55-64°C 0:30 

Extension  72°C 0:30 

Melt curve  55-95°C (in 0.5°C 

increments) 

0:30 1 

 

Starting quantities of interest genes were analyzed by using the iCycler iQ optical 

system software (BioRad 3.1 Version). All samples were analyzed in triplicate and 

reported to the vimentine or actine genes (housekeeping genes) in the same plate in 

order to ensure an accurate calculation. Gene expression levels were obtained by 

relative quantification normalized to the housekeeping genes.  

 

2.7. Protein based analysis  
 

Besides RNA levels, protein levels were also analyzed. In order to achieve this, SDS-

Page and western analysis were performed.  

2.7.1. Samples preparation – Protein Extraction  
 

After 24 h or 48 h treatments in 10 cm dishes, SH-SY5Y cells were rinsed twice in 

cold PBS, harvested and transferred into 50 ml falcon. Then, the cells were 

centrifuged at 300 g for 8 minutes, the supernatant was removed, and each sample 

was resuspended in 200 µl lysis buffer (Radio Immunoprecipitation assay buffer, 

RIPA buffer). Samples were kept on ice for 1 h and vortexed every 10 minutes and 
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were then clarified by centrifugation at 4°C for 30 min at 12,000 g. The supernatant 

was saved for protein analysis and western blotting. Total protein concentration was 

determined by the bicinchoninic acid (BCA) assay (see Part 2.7.2., page 83). Then, 

protein samples were diluted in Laemmli buffer and denatured by warming for 5 

minutes at 95°C (see Part 2.7.3., page 83). 

1x PBS :   

Sodium chloride  137 mM 

Potassium Chloride  2.7 mM 

DiSodium-hydrogen phosphate dihydrate 10 mM 

Potassium Dihydrogen phosphate  2 mM 

 

These reagents were dissolved in ultrapure water, pH was adjusted to 7.4 with 

hydrogen chloride. Then, the PBS was autoclaved and stored at 4°C.  

RIPA buffer : 

Tris-HCl  50 mM 

NaCl 150 mM 

EDTA 1 mM 

IGEPAL (NP-40) 1 % 

Na-Deoxycholate 1 % 

SDS 0.1 % 

 

This solution was steril filtered and stored at 4°C. Before use, 1 tablet of cOmplete® 

Protease inhibitor (Roche, Mannheim, Germany) was added per 10 ml of RIPA 

buffer.  
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2.7.2. Assessment of protein level with BCA assay 
 

The BCA assay is based on bicinchoninic acid (BCA) for the colorimetric detection 

and quantification of total proteins which is a modified form of the Lowry method 

(Hartree, 1972). This method combines the reduction of Cu2+ to Cu+ by protein in 

alkaline medium (the biuret reaction) with the sensitive and selective detection of the 

cuprous cation (Cu+) using a reagent containing bicinchoninic acid (Smith et al., 

1985, Redinbaugh and Turley, 1986). The purple-colored reaction product of this 

assay is formed by the chelation of two molecules of BCA with one of cuprous ion. 

This water-soluble complex exhibit a strong absorbance at 562 nm that is nearly 

linear with increasing protein concentration over a broad working range (20-2,000 

µg/ml). Protein concentration is calculated with a reference curve obtained for a 

standard protein (Bovine Serum Albumin in this thesis) ranging from 0 to 2,000 µg/ml.  

Each standard probe and protein sample was measured thrice. Before the 

measurement, samples were prepared in two distinct dilutions (1:10 and 1:20) with 

ultrapure water. In parallel, the BCA working reagents (Sigma-Aldrich, Saint-Quentin, 

France) was prepared by adding 1 part of reagent B to 50 parts of reagents A. 25 µl 

of standard or sample were deposed in 96-well plates and 200 µl of BCA working 

reagent was added per sample. Then, the 96-well plate was incubated for 30 minutes 

at 37°C and the absorbance at 562 nm was measured with the multiscan Go 1510 

spectrophotometer (Thermo Scientific, Villebon s. Yvette, France). 

2.7.3. SDS-PAGE 
 

Sodium dodecyl sulfate - Polyacrylamide Gel Electrophoresis (SDS-PAGE) was first 

described in the end of the sixties (Shapiro et al., 1967) and is a method used to 

separate components of a protein mixture based on their size. The technique is 
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based upon the principle that a charged molecule will migrate in an electric field 

toward an electrode with opposite sign. In PAGE, proteins charged negatively by the 

binding of the anionic detergent SDS separate within a matrix of polyacrylamide gel 

in an electric field according to their molecular weight. Polyacrylamide is formed by 

the polymerization of the monomer molecule-acrylamide crosslinked by N,N'-

methylene-bis-acrylamide (BIS). Free radicals generated by ammonium persulfate 

(APS) and a catalyst acting as an oxygen scavenger (-N,N,N',N'-tetramethylethylene 

diamine [TEMED]) are required to start the polymerization since acrylamide and BIS 

are nonreactive by themselves or when mixed together. The distinct advantage of 

acrylamide gel systems is that the initial concentrations of acrylamide and BIS control 

the hardness and degree of cool, crosslinking of the gel. The hardness of a gel in 

turn controls the friction that macromolecules experience as they move through the 

gel in an electric field, and therefore affects the resolution of the components to be 

separated. Hard gels (12-20% acrylamide) retard the migration of large molecules 

more than they do with small ones. In certain cases, high concentration acrylamide 

gels are so tight that they exclude large molecules from entering the gel but allow the 

migration and resolution of low molecular weight components of a complex mixture. 

Alternatively, in a loose gel (4-8% acrylamide), high molecular weight molecules 

migrate much farther down the gel and, in some instances, can move right out of the 

matrix.  

In this thesis, 45 µg of proteins per sample were fractionated by 4-20% TGX SDS 

pre-casted polyacrylamide gels (BioRad, Hercules, USA). Proteins were diluted in 

reducing Laemmli buffer (added with β-mercaptoethanol) and heated for 5 min at 

95°C. Precision Plus Protein Dual color standards (BioRad, Hercules, USA) was 
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used as protein ladder. The electrophoresis was performed with an electric field of 

180 V (constant voltage) in Tris/glycine/SDS running buffer. 

Laemmli buffer 1x :  

Tris-HCl 62.5 mM 

Glycerol 25 % 

SDS 2 % 

Bromophenol Blue 0.01 % 

β-mercaptoethanol 5 % 

pH was adjusted to 6.8 with hydrogen chloride. β-mercaptoethanol was added 

directly before the use. This buffer was stored at room temperature. 

Tris/glycine/SDS running buffer 1 x : 

Tris, pH 8.3 25 mM 

Glycine 192 mM 

SDS 0.1 % 

pH was adjusted to 8.3 with hydrogen chloride. This buffer was stored at 4°C. 

 

2.7.4. Western analysis 
 

Western blotting identifies, thanks to specific antibodies proteins that have been 

separated from another according to their size by SDS-PAGE (see Part 2.7.3., pages 

83-85). The blot is a membrane of polyvinylidene (PVDF). The gel from SDS-PAGE 

is placed next to the membrane and application of an electrical current allows the 

protein in the gel to transfer towards the membrane where they adhere. The 

membrane is then a replica of the gel’s protein pattern, and is subsequently stained 

with a primary antibody which are recognized by a secondary antibody. In this thesis, 

secondary antibody were conjugated with horse radish peroxidase and detected by 
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chemoluminescence. Before the transfer (blotting), PVDF membranes (BioRad, 

Hercules, USA) were activated with 100 % ethanol. 

2.7.4.1. “Semi dry” blotting 
 

In a semi dry transfer, the gel and the membrane are sandwiched between two 

stacks of filter paper that are in direct contact with plate electrodes. The membrane is 

closed to the positive electrode and the gel closest to the negative electrode. The 

term “semi dry” refers to the limited amount of transfer buffer, which is confined to the 

two stacks of filter paper. In semi dry system, the distance between the electrodes is 

limited only by the thickness of the gel and membrane sandwich. As a result, high 

electric field strengths and high-intensity blotting conditions are achieved. In this 

thesis, semi dry transfers were performed with a Transblot Turbo transfer system 

(BioRad, Hercules, USA) at 1 A constant and up to 25 V for 30 minutes.  

Transfer buffer 1x : 

Tris-HCl 25 mM 

Glycine 192 mM 

SDS 0.1 % 

Ethanol 20 % 

Ethanol was added directly before the use. The buffer was stored at 4°C. 

 

2.7.4.2. Immunodetection 
 

After the protein transfer to the membrane, this membrane is blocked thanks its 

incubation with a blocking buffer for 1 h at room temperature. Then, the membrane is 

incubated overnight at 4°C with primary antibodies (listed in part 2.2.1) diluted in 

blocking buffer (see Table 5).  
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Table 5 : Antibodies and dilutions used in western analyses  

Primary antibody Developed in Provider/Product n° Dilution 

Anti β-actin Mouse  Abcam, Cambridge, UK/ 
ab8226 

1 : 1000 

Anti Bax Rabbit  Abcam, Cambridge, UK/ 
ab7977 

1 : 800 

Anti Bcl-2 Mouse  Santa-Cruz, Dallas, USA/ 
sc-509 

1 : 200 

Anti CHOP Rabbit  Santa Cruz, Dallas, USA/ 
Sc-793 

1 : 1000 

Anti GRP78 Rabbit Abcam, Cambridge, UK/ 
ab32618 

1 : 500 

Anti XBP-1 Rabbit  Santa Cruz, Dallas, USA/ 
sc-7160 

1 : 500 

Anti α-Tubulin Mouse Sigma-Aldrich,  
Saint-Quentin, France/ 
T8203 

1 : 2000 

Secondary 
antibody 

Developed in Provider/Product n° Dilution 

Anti mouse IgG-
HRP 

Goat  PARIS anticorps 
(compiègne, France)/ 
BI2413C 

1 : 2000 

Anti Rabbit IgG-
HRP 

Goat  PARIS anticorps 
(compiègne, France)/ 
BI2407 

1 : 2000 

 

At the end of the incubation with primary antibodies, the membranes were washed 3 

x 10 minutes (washing buffer) and were incubated with secondary antibodies (diluted 

in blocking buffer) for 1 h at room temperature. Then, the membranes were washed 

again 3 x 10 minutes. Finally, the membranes were incubated for 5 minutes with 

Clarity Western electrochemoluminescence substrate (BioRad, Hercules, USA). 

Specific chemoluminescence signals were detected with a ChemiDoc MP imaging 

System (BioRad, Hercules, USA). The relative intensity of bands was 

densitometrically determined by using the Image Lab software (BioRad, Hercules, 
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USA). All data from three independent experiments were expressed as the ratio to 

densitometric values of the corresponding β-actin or α-tubulin control.  

Washing buffer 1x: 

Tween 20 0.05 % 

10 x TBS 10 % 

This buffer was stored at 4°C 

 

10 x TBS (Tris Buffered Saline) :  

Tris-HCl 1 M 

NaCl 1 M 

pH was adjusted to 7.4 with hydrogen chloride. This buffer was stored at 4°C. 

 

Blocking Buffer :  

Non fat dry milk 5 % 

The dry milk was diluted in washing buffer. This buffer was stored at 4°C.  

 

2.8. MMP-2/-9 activity assay with recombinant yeast 
 

Gelatinase activity of human MMP-2 and -9 recombinantly expressed on the outer 

cell wall of P. pastoris was measured as previously described (Diehl et al., 2011) by 

using a modified and specifically adapted version of a commercial EnzChek 

Gelatinase/collagenase assay (Invitrogen, Heidelberg, Germany). A schematic 

outline of this yeast bioassay is shown in Fig. 20. 
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Figure 20 : Schematic outline of the MMP-2/-9 bioassay used in this thesis on 
the basis of recombinant P. pastoris cells. Yeast cells expressing human MMP-2 
or MMP-9 on the outer cell surface are resuspended in reaction buffer at the same 
optical density in a 96-well plate. Cells are exposed to potential modulator (GHB 
and/or neurosteroids) and incubated with a DQTM gelatine substrate which becomes 
fluorescent when cleaved by MMPs. Green fluorescence is continuously recorded 
over 20 hours in an automated microtiter plate reader (RFU, relative fluorescence 
intensity; MMP, matrix metalloproteinase; adapted from Diehl et al, 2011). 

 

To perform the assay, lyophilized cells were resuspended in reaction buffer at an 

optical density (OD600) of 5. GHB and neurosteroids were diluted in reaction buffer at 

4-fold the concentration that was supposed to be tested. 100 µg/ml of fluorescein-

conjugated DQ® (MMP substrate) was also diluted in reaction buffer. 100 µl of cells, 

50 µl of modulator and 50 µl of MMP substrate were deposed in each well of a black 

96-well plate. Fluorescence detection was recorded at 37°C for 20 hours with 20 

minutes intervals between each measurement and with 19 min 30 s of shaking in 
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between (700 rpm, 1 mm diameter) by a Labsystems Fluororoskan Ascent CF 

microtiter plate reader (excitation at 485 nm and emission measured at 527 nm). The 

effect of each tested modulator was measured in 4 wells per MMP and all 

experiments were repeated three times. Relative intensity of fluorescence was 

collected and analyzed with Microsoft Excel.   

Reaction buffer :  

Tris 50 mM 

NaCl 150 mM 

CaCl2 5 mM 

This solution was stored at 4°C. 

  

2.9. Flow cytometry- and microscopy-based methods  

2.9.1. Flow cytometry (FACS) assessment of activated Caspase-3 and 
TUNEL labeling 

 

The occurrence of apoptosis in SH-SY5Y cells was investigated using (i) the TUNEL 

technique coupled with fluorescein (FITC) and (ii) the activated caspase-3 approach 

combined with phycoerythrin (PE). The apoptotic fluorescent signal was therefore 

assessed by flow cytometry (FACS) using the Roche Diagnostics TUNEL kit or the 

BD Pharmingen™ PE Active Caspase-3 Apoptosis kit.  

Briefly, SH-SY5Y cells were seeded in 100 mm² Petri dishes and treated for 24 h as 

previously described. Following the treatment, the cells were detached, centrifuged 

for 10 min at 1,000 g (room temperature) and re-suspended with PBS supplemented 

with 0.5% BSA before being gently fixed in buffer (4% paraformaldehyde in PBS) for 

1h. Thereafter, the cells were submitted to 2 centrifugation steps (10 min at 1,000 g) 

separated by a washing step using PBS supplemented with 0.5% BSA. The cells 
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were then incubated in permeabilization buffer (0.1% Triton X-100 in 0.1 % sodium 

citrate) for 2 min on ice. An additional round of washing and centrifugation was 

performed before incubating the cells with PE-rabbit anti-activated caspase-3 

antibody (BD Pharmingen cat: 550821) for 1h at 37°C. At the end of the incubation, 

the cells were washed and centrifuged again for 10 min at 1,000 g. Supernatants 

were removed and the TUNEL-FITC reaction mixture (50 µl) was added to each 

pellet. After incubation in darkness for 1 h at 37°C, the cells were washed and 

suspended in PBS before being analyzed by a flow cytometer (Navios, Beckman 

Coulter, Indianapolis IN USA). A concentration of 104 cells of each sample were 

assessed and the fluorescence was quantified using CXP® software (Beckman-

Coulter, Indianapolis IN, USA). The data were analyze with Kaluza® software 

(Beckman-Coulter, Indianapolis IN, USA). 

Negative controls were performed by omitting Phycoerythrin rabbit anti active 

Caspase-3 antibody and/or dUTP coupled to fluorescein. Untreated cells obtained 

after suspension in standard growth medium were used to verify the absence of 

autofluorescence. TUNEL-FITC and activated caspase-3-PE positive signals were 

selectively and specifically assessed by flow cytometry. However, additional control 

experiments were performed by merging the two types of fluorescent signals 

(TUNEL-FITC and caspase-3-PE) in order to rule out eventual overlapping and use 

only either the specific TUNEL-FITC or the specific activated caspase-3-PE positive 

signal for data analysis. 

2.9.2. Confocal microscope analysis of apoptotic signals  
 

Oxidative stress- or APPwt-overexpression-evoked apoptotic signal in SH-SY5Y cells 

was also visualized with a confocal laser scanning microspcope. Briefly, 
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neuroblastoma cells were seeded onto slides at a density of 1x105 cells and then 

treated with GHB (500 µM) alone, H2O2 alone (0.1 mM for APPwt-transfected cells or 

0.7 mM for control vector-pCEP4-transfected and native cells) or with GHB (500 µM) 

and H2O2 (0.1 mM or 0.7 mM) for 1 h, 6 h, 24 h or 48 h. After treatments, the cells 

were fixed in 4% paraformaldehyde for 1h, washed with PBS and permeabilized with 

0.1% sodium citrate and 0.1% Triton X-100. The slides were then incubated with the 

TUNEL-FITC reaction mixture for 1 h at 37°C. Negative controls were performed by 

omitting TdT. Also, positive controls were made by incubating the cells with DNAse (3 

UI/ml in Tris-HCl, pH 7.5 in 1 mg/ml BSA solution) during 10 min. Images were 

captured using a LEICA TCS-SP confocal inverted microscope. All analyses were 

carried out in comparable areas under the same optical and light conditions. Black-

and-white images were digitized and viewed on a computer with LAS software 

(Leica). 

2.9.3. Calcium [Ca2+]i imaging 
 

Intracellular calcium was measured by using FURA-2 acetoxymethyl ester (FURA-2 

AM), a membrane permeable derivative of the ratiometric calcium FURA-2 which is 

rapidly metabolized by cytoplasmic esterases, leading to the active dye FURA-2. The 

Ca2+ unbound form of FURA-2 gets excited at 380 nm and the Ca2+ bound form of 

FURA-2 at 340 nm. The emitted light is measured at 510 nm. In the presence of 

augments concentrations of free calcium, the fluorescence intensity at 340 nm 

increases, wheras the fluorescence intensity at 380 nm decreases. Therefore, the 

340 nm/380 nm ratio increases. To assess this ratio in SH-SY5Y cells, we incubated 

them with 1 µM FURA-2 AM (Invitrogen, Karlsruhe, Germany) at 37°C under 5% CO2 

atmosphere for 30 min. Afterwards, the cells were washed with PBS and placed at 
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RT for 10 min before use. The coverslip was assembled into a sandwich chamber 

allowing a complete solution exchange in less than 1 s. Stock solutions of 

thapsigargin (THG) were prepared in DMSO. Two external solutions were prepared :  

External solution A (with calcium) : 

NaCl 155 mM 

CaCl2 0.5 mM 

MgCl2 2 mM 

Glucose 10 mM 

HEPES 5 mM 

The pH was adjusted to 7.4 with NaOH and the solution was steril-filetered before 

storage at 4°C. 

External Solution B (without Calcium) :  

NaCl 155 mM 

MgCl2 2 mM 

Glucose 10 mM 

HEPES 5 mM 

The pH was adjusted to 7,4 with NaOH and the solution was steril-filtered before 

storage at 4°C. 

Thapsigargin, and GHB were diluted either in solution A and B (with or without Ca2+ 

respectively). Before incubation with thapsigargin, the cells were incubated first with 

solution with solution A then with solution B. Then, the cells were successively 

exposed to solution B containing 1 µg/ml thapsigargin and then followed with solution 

A containing 1 µg/ml thapsigargin. 500 µM GHB was either added simultaneously 

with thapsigargin or pre-incubated 2 h before the measurement. The cells were also 

incubated for 2 h with 500 nM Allopregnalolone prior to measurement. Fluorescent 

signals were measured with an Olympus IX 70 microscope (Olympus, Tokyo, Japan) 

equipped with a 20x objective and were alternatively excited at 340 and 380 nm. 
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Fluorescence emission (510 nm) were captured each 5 s and the data were analyzed 

with the TILL® Vision software. 

 

2.10. Statistical analysis 
 

Statistical significance of differences between means was determined using one way 

ANOVA followed by Student’s t-test for repeated measurements. Dose-effect 

parameters (EC50 values) were determined by non-linear regression of the 

experimental data using the GraphPad-Prism program (GraphPad-Prism, San Diego, 

CA, USA). The goodness of fits was estimated by the R squared value (>0.7). 
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3. Results 

3.1. Effects of GHB and/or neurosteroids against oxidative stress- 
and APPwt-overexpression-induced cell death 

3.1.1. Effect of H2O2-induced oxidative stress on native and genetically 
modified SH-SY5Y cell viability 

 

A time and dose-dependent study was performed to investigate H2O2 effect on 

native, APPwt- and control vector-pCEP4-transfected SH-SY5Y cell viability. The 

doses of H2O2 ranged from 0 to 10 mM and the incubation times were 24 h and 48 h 

(Fig. 21). MTT signal detected for each cell type in basal condition (absence H2O2) 

was arbitrary set at 100 %. H2O2 significantly decreased the viability of each category 

of neuroblastoma cells in a dose and time dependent manner but it appeared that 

native, APPwt- and control vector-pCEP4-transfected SH-SY5Y cells are differently 

sensitive to oxidative stress. Indeed, different concentrations of H2O2 killing 50% of 

cells (EC50 values) were observed for the 3 categories of cells after 24 h or 48 h 

exposure to H2O2. At 24 h, EC50 values were 0.55 ± 0.09 mM, 0.50 ± 0.08 mM and 

0.044 ± 0.002 mM for native, control vector-pCEP4-transfected and APPwt-

transfected SH-SY5Y cells, respectively. At 48h, the EC50 was 0.51 ± 0.21 mM 

(native), 0.55 ± 0.11 mM (control vector-pCEP4-transfected) or 0.053 ± 0.01 mM 

(APPwt-transfected). More importantly, it appeared that 0.7 mM of H2O2 was capable 

of killing about 70% of native or control vector-pCEP4-transfected SH-SY5Y cells 

while only 0.1 mM of H2O2 was sufficient to induce the same percentage (70%) of 

death in APPwt-transfected SH-SY5Y cells, indicating that APP overexpression 

significantly enhances cellular susceptibility to oxidative stress. 
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Figure 21 : Dose-response and time-course studies of the effect of H2O2 on 
native ( ), control vector-CEP4-transfected ( ) and APPwt-transfected ( ) SH-
SY5Y cells viability. MTT reduction assays were used to determine the cell viability 
which was expressed as percent of control (untreated cells). MTT signal assessed for 
each cell type in basal condition (absence of H2O2) is arbitrary set at 100 %. H2O2 
concentration evoking 50 % of cell survival corresponds to the EC50 (mM) for each 
cell type (line with thick and bold dotted). The dose of H2O2 (mM) causing 70% of cell 
death is indicated for each cell type by the slight dotted line. Each value on the graph 
represents the mean ± S.E.M. of cell survival of eight independent experiments. 
***p<0.001.  
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3.1.2. Trypan blue exclusion and MTT assessments of control and 
APPwt-overexpressing SH-SY5Y cell viability and survival  

 

MTT reduction assay is known as a sensitive assay for the measurement of cell 

viability and proliferation based upon the mitochondrial reduction of tetrazolium salt 

into insoluble formazan product. However, MTT method only measures living cell 

percentage while trypan blue exclusion assays allow the determination of both living 

and dead cell percentages. Therefore, we compared the profiles of the dose-

dependent effects exerted by graded concentrations of H2O2 on cell survival 

percentages assessed by both MTT and trypan blue methods. We observed that the 

profiles obtained with MTT and trypan blue assays fit very well as the R square was 

higher than 0.98 for each cell type investigated. These observations were also 

confirmed by Bland-Altman statistical analysis which revealed no significant 

difference between the data obtained with the two methods. Because the trypan blue 

exclusion method also allowed the determination of cell death percentages, we 

observed that in basal condition (absence of H2O2), overexpression of APP induced 

30 % of death in APPwt-transfected SH-SY5Y cells while the dead cell percentage 

was non-significant in native (4.4 ± 6.4 %) and control vector-pCEP4-transfected (3.4 

± 4.5 %) cells (Fig. 22).  
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Figure 22 : Basal percentages of dead in control and APPwt-overexpressing-
cells. Basal cell death percentages were determined by trypan blue exclusion 
assays. Each value on the graph represents the mean ± S.E.M. of cell survival of 
eight independent experiments. ***p<0.001. 

 

3.1.3. Assessment of basal level of apoptotic signal in native, control 
vector-pCEP4- and APPwt-transfected cells 

 

Because our trypan blue exclusion and MTT investigations revealed that native and 

genetically modified SH-SY5Y cells, which did not have the same viability in normal 

conditions, are also differently sensitive to oxidative stress, we decided to determine 

the basal level of apoptotic signal in each cell type. Flow cytometry assessment 

showed that the basal levels of both TUNEL-FITC- (Fig. 23A) and activated caspase-

3-PE- (Fig. 23B) positive signals were significantly elevated in APPwt-transfected 

cells compared to native and control-vector-transfected cells. Furthermore, reverse 

transcription, quantitative real-time PCR and western blot experiments demonstrated 

that mRNA and protein basal ratios of key apoptotic modulators Bax (pro-apoptotic) / 

Bcl-2 (anti-apoptotic) were also higher in APPwt-transfected cells than in the controls 
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(Fig. 23C, D). Altogether, these results show that, in the absence of H2O2, 

overexpression of APPwt induced a per se substantial amount of apoptosis leading 

to a reduced viability of APPwt-transfected cells compared to native and control-

vector transfected SH-SY5Y cells.  

 

Figure 23 : Characterization of basal levels of apoptotic signal in native, control 
vector-pCEP4- and APPwt-transfected cells. (A, B) Flow cytometry quantitative 
assessment of TUNEL-FITC (A) and activated caspase-3-PE positive signals (B) in 
native and genetically modified SH-SY5Y cells. Both TUNEL-FITC and activated 
caspase-3-PE methods showed a basally elevated apoptotic signal in APPwt-
transfected but not in control-vector-transfected and native SH-SY5Y cells. (C) 
Reverse transcription and qPCR assessment of Bax/Bcl-2 mRNA ratio in native, 
control vector-pCEP4- and APPwt-transfected SH-SY5Y cells. (D) Western blot semi-
quantification of Bax/Bcl-2 protein ratio in native, control vector-pCEP4- and APPwt-
transfected SH-SY5Y cells; β-actin was used as loading control. Each value 
represents the mean ± S.E.M. of three independent experiments (*p<0.05 ; 
***p<0.001). 
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3.1.4. Protective effect of GHB against APPwt-overexpression-induced 
decreased cell viability 

In basal conditions (absence of H2O2), while the percentage of cell death was non-

significant in native and control-vector-transfected cells, about 30 % of cell loss was 

measured in the population of APPwt-transfected SH-SY5Y cells. Application of 

graded concentrations of GHB (0 to 1,000 µM) revealed that GHB at 500 µM induced 

about 30 % increase of APPwt-transfected SH-SY5Y cell viability without affecting 

the viability of control cells (Fig. 24). Therefore, it appears that, in normal conditions 

(absence of H2O2), GHB which did not promote the proliferation of native and control-

vector transfected cells, prevented APPwt-transfected cell loss through a mechanism 

different from a simple activation of cell proliferation to compensate the loss.  

3.1.5. Protective effect of GHB against H2O2-induced cell death 
 

In H2O2-evoked oxidative stress conditions, we observed that H2O2 significantly 

decreased the viability of native and genetically modified cells in a dose dependent 

manner but it appeared that APPwt-transfected SH-SY5Y cells are the most sensitive 

(Fig. 21). Therefore, we decided to test the ability of GHB to protect against H2O2-

evoked cell death in the drastic condition where more than 70% of cells are killed by 

H2O2-induced toxicity (Fig. 21 and 25). Consequently, we have treated native and 

control vector-pCEP4-transfected SH-SY5Y cells with 0.7 mM H2O2 and APPwt-

transfected cells with 0.1 mM H2O2 in the absence or presence of graded doses of 

GHB ranging from 0 to 1,000 µM. The results showed that GHB protected efficiently 

all of the 3 categories of cells against H2O2-evoked death (Fig. 25). In particular, GHB 

at 500 µM appeared as the optimal concentration that reduced about fifty percent the 

number of native or genetically modified neuroblastoma cells killed by H2O2-toxicity 

(Fig. 25). 
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Figure 24 : Dose-response and time-course studies of the effect of GHB on 
native (A, B), control vector-pCEP4-transfected (C, D) and APPwt-transfected 
(E, F) SH-SY5Y cell viability. MTT reduction assays were used to determine the cell 
viability which was expressed as percent of control (untreated cells). A stimulatory 
effect of GHB (200 and 500µM) is detected only on APPwt-transfected SH-SY5Y cell 
viability and no proliferative effect is identified on the native or control vector-pCEP4-
transfected SH-SY5Y cells viability. MTT signal assessed for each cell type in basal 
condition (absence of H2O2) is arbitrary set at 100 %. Each value represents the 
mean ± S.E.M. of five independent experiments. **p<0.01 and ***p<0.001. 
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Figure 25 : Protective effect of GHB against H2O2-induced native (A, B), control 
vector-pCEP4-transfected (C, D) and APPwt-transfected (E, F) SH-SY5Y cell 
death. Native and genetically modified SH-SY5Y cells were exposed to H2O2 dose 
inducing more than 70% of cell loss and treated with graded concentrations of GHB 
for 24 h (A, C, E) or 48 h (B, D, F). MTT reduction assays were used to determine the 
cell viability which was expressed as percent of control (untreated cells). A maximum 
of stimulatory effect of GHB is detected at 500 µM for all type of SH-SY5Y cells. MTT 
signal assessed for each cell type in basal condition (absence of H2O2) is arbitrary 
set at 100 %. Each value is the mean ± S.E.M. of five independent experiments. 
*p<0.05, **p<0.01 and ***p<0.001. 
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3.1.6. Protective effect of GHB against APPwt-overexpression and H2O2-
evoked apoptosis 

 

It is well documented that H2O2 induces cell death via the activation of apoptosis in 

several cell types including neurons. Moreover, our aforementioned flow cytometry 

and molecular anlayzes showed that, in the absence of H2O2, overexpression of 

APPwt caused apoptosis leading to decreased viability of APPwt-transfected cells 

compared to control cells (Fig. 24). Therefore, to provide valuable insights into the 

elucidation of cellular mechanisms activated by GHB to counteract SH-SY5Y cells 

death, we investigated the effects of GHB on the levels of TUNEL-FITC-positive and 

activated caspase-3-PE-positive signals evoked by APPwt-overexpression or H2O2 in 

native and genetically modified cells (Fig. 26 and 28). 

Quantitative flow cytometry (FACS) analyzes showed that GHB (500 µM) significantly 

reduced the levels of TUNEL-FITC-positive signal evoked by APPwt-overexpression 

in basal condition (-7 %) or by H2O2 treatment in native (-12 %), control vector-

pCEP4 (-10 %)- and APPwt-transfected (-9%) SH-SY5Y cells (Fig. 26B). This effect 

was also qualitatively characterized by the left shift of the fluorescent signal caused 

by GHB (Fig. 26A).  

 



  Results 
  

104 
 

 

Figure 26 : Flow cytometry qualitative (A) and quantitative (B) assessment of 
GHB (500 µM for 24 h) effects on the levels of TUNEL-FITC staining in native, 
control-vector- and APPwt-transfected SH-SY5Ycells in the absence (basal) or 
presence of H2O2. Each value represents the mean ± S.E.M. of four independent 
experiments. *p<0.05, **p<0.01 and ***p<0.001. 
 

 

The effect of GHB on the level of TUNEL-FITC-positive apoptotic signal was also 

investigated using a confocal scanning microscope (Fig. 27). Prior to the treatment of 

neuroblastoma cells with H2O2, we performed a series of control experiments to 

evaluate the kinetic and the basal apoptotic signal in each cell type. As shown in the 

Fig. 27, H2O2 treatment rapidly induced an apoptotic signal that was efficiently 

revealed by the TUNEL-FITC labeling. Indeed, after 1 h treatment, H2O2–evoked 

TUNEL-FITC staining was diffusely distributed in SH-SY5Y cell nucleus in a similar 
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manner as DNAse-induced apoptotic signal (positive control). From 6 to 24 h after 

H2O2 treatment, the TUNEL-FITC signal became heterogeneously distributed in the 

nucleus giving to the labeling an appearance of dispersed fluorescent dots (Fig. 

27A). Interestingly, we observed that, in normal (absence of H2O2), the intensity of 

TUNEL-FITC-immunoreactivity was basally high in APPwt-transfected cells 

compared to the control cells which were devoid of TUNEL-FITC staining (Fig 27B). 

When the 3 cell types were exposed to H2O2, it became possible to detect TUNEL-

FITC-positive labeling in these cells with an ascending intensity ranging from native 

SH-SY5Y cells (low), vector control-transfected (low) to APPwt-transfected (high) 

neuroblastoma cells (Fig. 27B). Treatment with GHB (500 µM) significantly 

decreased/suppressed TUNEL-FITC-positive signal evoked by APPwt-

overexpression or H2O2 in neuroblastoma cells (Fig. 27B). Quantitative image 

analyses (Fig. 27C) were therefore combined with confocal microscope scanning to 

study the effect of GHB on H2O2-induced TUNEL-positive signal or apoptosis in 

native and genetically modified neuroblastoma cells. The results showed that GHB 

(500 µM) strongly decreased or suppressed H2O2-induced apoptotic signal in native, 

control vector-transfected and APPwt-transfected SH-SY5Y cells.  
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Figure 27 : Confocal laser scanning microscope analysis of GHB effects on the 
level of TUNEL-FITC-immunoreactive signal in native and genetically modified 
cells in the absence or presence of H2O2. (A) Qualitative time-course studies of 
H2O2-evoked TUNEL labeling in control vector-pCEP4-transfected SH-SY5Y cells. 
The photomicrographs show DNAse-induced apoptotic signal and the time-
dependent distribution (1, 6 and 24 h) of H2O2-evoked TUNEL-positive labeling 
(green, first line of images) in SH-SY5Y cell cultures (gray, second line of images). 
(B) Effects of GHB on TUNEL labeling of control and APP overexpressing cells in 
presence or absence of H2O2. Scale bar=25 μm. (C) Quantitative analysis of TUNEL 
labelling in control and APPwt overexpressing cells. Each value represents the mean 
± S.E.M. of four independent experiments. *p<0.05, **p<0.01 and ***p<0.001. 
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Figure 28 : Flow cytometry qualitative (A) and quantitative (B) assessment of 
GHB (500 µM for 24 h) effects on the levels of activated caspase-3-PE staining 
in native, control-vector- and APPwt-transfected SH-SY5Ycells in the absence 
(basal) or presence of H2O2. Each value represents the mean ± S.E.M. of four 
independent experiments. *p<0.05, **p<0.01 and ***p<0.001. 

Qualitative FACS analysis (Fig. 28A) and quantitative assessment (Fig. 28B) of 

activated caspase-3-PE staining by flow cytometry (FACS) demonstrated that GHB 

(500 µM) decreased also the levels of caspase-3-apoptotic signal induced by APPwt-

overexpression in basal condition (-5.5 %) or by H2O2 in native (-10 %), control 

vector-pCEP4- (-7%) and APPwt-transfected (-9%) SH-SY5Y cells (Fig. 28).  

In accordance with our flow cytometry results, reverse transcription combined with 

qPCR and western blot analysis also showed that, GHB (500 µM) treatment 

efficiently decreased the basally elevated Bax/Bcl-2 mRNA and protein ratios 
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detected in APPwt-transfected cells in the absence of H2O2 (Fig. 29). More 

importantly, we observed that GHB (500 µM) also reduced remarkably H2O2-evoked 

increase of Bax/Bcl-2 mRNA (Fig. 29A) and protein (Fig. 29B) ratios in native, control 

vector-pCEP4- and APPwt-transfected SH-SY5Y cells. 

 

Figure 29 : Effects of GHB on the Bax/Bcl-2 ratio in absence or presence of 
H2O2 on control and APPwt overexpressing SH-SY5Y cells. (A) Effect of GHB 
(500 µM for 24h) on Bax/Bcl-2 mRNA ratio in native, control vector-pCEP4- and 
APPwt-transfected SH-SY5Y cells in the absence (basal) or presence of H2O2. (B) 
Western blot analysis of Bax, Bcl-2 and β-actin protein levels in native, control vector- 
pCEP4- and APPwt-transfected SH-SY5Y cells exposed or not to H2O2 (dose 
evoking 70 % of cell death) in the absence or presence of GHB at 500 µM for 24h. 
Each value represents the mean ± S.E.M. of three independent experiments. 
*p<0.05, **p<0.01 and ***p<0.001. 
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3.1.7. Protective effects of neurosteroids against H2O2-induced cell loss  

3.1.7.1. Effects of Allopregnanolone  
 

Based upon the bibliographic knowledge of the potential of neurosteroids to exert 

neuroprotective effects (see Part 1.2.2., pages 52-53), we decided to test the ability 

of neurosteroids such as allopregnanolone to protect against H2O2-evoked cell death 

in the drastic condition where more than 70% of cells are killed by H2O2-induced 

toxicity (Fig. 30). Consequently, we have treated native, control vector-pCEP4- and 

APPwt-overexpressing SH-SY5Y cells with the same concentrations of H2O2 as 

aforementioned (0.7 mM H2O2 for native and pCEP4 cells and 0.1 mM H2O2 for 

APPwt-overexpressing cells) in the absence or presence of graded doses of 

allopregnanolone ranging from 0 to 1,000 nM. We observed that H2O2 treatments 

significantly reduced cell viability in all three cell lines (-70.2 ± 1.1 %, -80.1 ± 2.5 % 

and -85.7 ± 2 %, respectively in native, control vector and APPwt-overexpressing 

cells) (Fig. 30). The results also showed that allopregnanolone (250, 500 or 750 nM) 

efficiently protected all of the 3 categories of cells against H2O2-evoked death (Fig. 

30). Indeed, allopregnanolone significantly decreased oxidative stress-induced cell 

loss. Particularly, the most effective concentration of allopregnanolone was 500 nM 

which respectively prevented about 14, 16 or 15 % of native, pCEP4- and APPwt-

overexpressing cells against H2O2-evoked death (Fig. 29, p<0.001).  
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Figure 30 : Protective effect of allopregnanolone against H2O2-induced native 
(A), control vector-pCEP4-transfected (B) or APPwt-transfected (C) SH-SY5Y 
cell death. Native and genetically modified SH-SY5Y cells were exposed to H2O2 
dose inducing more than 70% of cell loss and treated with graded concentrations of 
allopregnanolone for 24 h. MTT reduction assays were used to determine the cell 
viability which was expressed as percent of control (untreated cells). A maximum of 
protective effect of allopregnanolone is observed at 500 nM for all SH-SY5Y cell 
types. MTT signal assessed for each cell type in basal condition (absence of H2O2) is 
arbitrary set at 100 %. Each value is the mean ± S.E.M. of five independent 
experiments. *p<0.05, **p<0.01 and ***p<0.001. 

 

3.1.7.2. Effects of Estradiol 
 

In addition to allopregnanolone, we have also tested the ability of another 

neurosteroid, estradiol, to prevent H2O2-evoked cell death. The three types of SH-

SY5Y cells were also treated with the same concentrations of H2O2 (0.7 mM for 

native and control vector cells, and 0.1 mM for APPwt-overexpressing cells) in the 

presence or absence of graded concentrations of estradiol ranging from 0 to 1000 
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nM. Here again, H2O2 drastically reduced the cell viability in SH-SY5Y cells (-65.5 ± 

1.4 %, -69.9 ± 2.7 % or -72.38 ± 2.7 %, respectively in native, control vector or 

APPwt-overexpressing cells) (Fig. 31). The neurosteroid estradiol was also able to 

reduce the H2O2-induced cell loss. The most efficient concentration of estradiol was 

also 500 nM and that prevented respectively 13%, 19% or 21 % respectively in 

native, control vector or APPwt-overexpressing cells against H2O2-induced cell death 

(p<0.001). 

 
Figure 31 : Protective effect of Estradiol against H2O2-induced native (A), 
control vector-pCEP4-transfected (B) or APPwt-transfected (C) SH-SY5Y cell 
death. Native and genetically modified SH-SY5Y cells were exposed to H2O2 dose 
inducing more than 70% of cell loss and treated with graded concentrations of 
estradiol for 24 h. MTT reduction assays were used to determine the cell viability 
which was expressed as percent of control (untreated cells). A maximum of 
protective effect of estradiol is observed at 500 nM for all SH-SY5Y cell types. MTT 
signal assessed for each cell type in basal condition (absence of H2O2) is arbitrary 
set at 100 %. Each value is the mean ± S.E.M. of five independent experiments. 
*p<0.05, **p<0.01 and ***p<0.001. 
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3.1.7.3. Basal effects of neurosteroids on cell viability 
 

To determine whether the process of steroid-induced cell proliferation may contribute 

to the protective actions of allopregnanolone and estradiol against oxidative stress-

evoked SH-SY5Y cell death, we investigated the effects of these two neurosteroids 

on SH-SY5Y cell viability in basal conditions. Therefore, in the absence of H2O2, the 

three SH-SY5Y cell types were treated for 24 h with allopregnanolone or estradiol 

(ranging from 0 to 1,000nM).  

Allopregnanolone significantly stimulated the viability of all cell types (Fig. 32). The 

most stimulatory concentration 500 nM which induced respectively, +12.5%, +12.2% 

and +12.7% respectively in native, control vector- or APPwt transfected cell viability 

(p<0.01).  

The neurosteroid estradiol also significantly increased SH-SY5Y cell viability (Fig. 

33). The most effective concentration was 750 nM what evoked, respectively, 

+16.7%, +12.2% or +6% increase of native, pCEP4- (p<0.001) or APPwt-transfected 

cells (p<0.005).  
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Figure 32: Dose-response study of the effect of allopregnanolone on native (A), 
control vector-pCEP4-transfected (B) or APPwt-transfected (C) SH-SY5Y cell 
viability. MTT reduction assays were used to determine the cell viability which was 
expressed as percent of control (untreated cells). A stimulatory effect of 
allopregnanolone (250 and 500 nM) is detected on all SH-SY5Y cell lines. MTT signal 
assessed for each cell type in basal condition (absence of H2O2) is arbitrary set at 
100 %. Each value represents the mean ± S.E.M. of five independent experiments. 
*p<0.05, **p<0.01 and ***p<0.001. 
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Figure 33 : Dose-response study of the effect of estradiol on native (A), control 
vector-pCEP4-transfected (B) or APPwt-transfected (C) SH-SY5Y cell viability. 
MTT reduction assays were used to determine the cell viability which was expressed 
as percent of control (untreated cells). A stimulatory effect of Allopregnanolone (750 
and 1,000 nM) is detected on all SH-SY5Y cell lines. MTT signal assessed for each 
cell type in basal condition (absence of H2O2) is arbitrary set at 100 %. Each value 
represents the mean ± S.E.M. of five independent experiments. *p<0.05, **p<0.01 
and ***p<0.001. 

 

 

 

 

 



  Results 
  

115 
 

3.2. Effects of GHB and/or neurosteroids against ER stress-
induced cell death 

3.2.1. Effects of GHB or neurosteroids against tunicamycin-induced cell 
death 

3.2.1.1. Effects of tunicamycin on native SH-SY5Y cell viability 
 

Native SH-SY5Y cells were treated with graded concentrations of tunicamycin 

ranging from 0 to 20 µg/ml (Fig. 34). Tunicamycin decreased in a dose-dependent 

manner SH-SY5Y cell viability. A maximum of toxicity is reached with 10 µg/ml  

(-48%, p<0.001). This concentration was therefore used to assess the ability of GHB 

and neurosteroid allopregnanolone to protect against tunicamycin-evoked ER-stress.  

 

Figure 34 : Dose-response effect of tunicamycin on native SH-SY5Y cell 
viability. Cells were treated for 24h with graded concentrations of tunicamycin. MTT 
reduction assays was used to determine the cell viability which was expressed as 
percent of control (untreated cells). MTT signal assessed for each cell type in basal 
condition (absence of tunicamycin) is arbitrary set at 100 %. Tuncicamycin 
concentration evoking 50 % of cell survival corresponds to 10 µg/ml. Each value on 
the graph represents the mean ± S.E.M. of cell survival of five independent 
experiments. ###p<0.001, ***p<0.001.  
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3.2.1.2. Effects of GHB or allopregnanolone against tunicamycin-
induced cell death 

 

The ability of GHB and allopregnanolone to protect against tunicamycin-evoked cell 

death was investigated in the drastic condition where about 50% of cells are killed by 

tunicamycin (10 µg/ml). In a first strategy, SH-SY5Y cells were treated 

simultaneously with tunicamycin (10 µg/ml) and graded doses of GHB (0 to 1,000 

µM) or Allopregnanolone (0 to 1,000 nM) and were incubated for 24 h at 37°C in the 

incubator before the MTT viability assay (Fig. 35A, B). A second strategy consisted of 

pre-treating the cells for 2 h with either GHB or allopregnanolone before adding 

tunicamycin and incubating the cells for 24 h at 37°C before the viability assay (Fig. 

35C, D).  

In both conditions of treatment, neither GHB nor allopregnanolone prevented or 

decreased tunicamycin-induced SH-SY5Y cell death. 
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Figure 35 : Effects of GHB (A, C) and allopregnanolone (B, D) against 
tunicamycin-induced native SH-SY5Y cell death. (A, B) Native SH-SY5Y cells 
were exposed to tunicamycin dose inducing about 50% of cell loss with graded 
concentrations of GHB (A) or allopregnanolone (B). (C, D)The cells were pre-treated 
with GHB (C) or allopregnanolone (D) for 2 h before their exposure to tunicamycin. 
MTT reduction assays were used to determine the cell viability which was expressed 
as percent of control (untreated cells). MTT signal assessed for each cell type in 
basal condition (absence of tunicamycin) is arbitrary set at 100 %. Each value is the 
mean ± S.E.M. of five independent experiments.  

 

3.2.2. Effects of GHB or neurosteroids against thapsigargin-induced cell 
death 

3.2.2.1. Effects of thapsigargin on native and genetically modified 
SH-SY5Y cell viability 

 

The cells were treated with graded concentrations of the calcium SERCA-pumps 

inhibitor thapsigargin (0 to 1 µg/ml) and incubated for 24 h at 37°C before MTT 
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viability assays. As shown in Fig. 36, thapsigargin significantly decreased the cell 

viability of native and genetically modified SH-SY5Y cell viability and no difference of 

sensitivity to thapsigargin was detected between the three cell lines. The most toxic 

concentration which killed more than 60% of cells was 1µg/ml (p<0.001). This dose 

was therefore used to assess the effects of GHB and neurosteroids against 

thapsigargin-induced cell death.  

 

Figure 36 : Dose-response effect of thapsigargin on native (A), control vector 
(B) or APPwt transfected SH-SY5Y cells viability. The cells were treated for 24 h 
with graded concentrations of thapsigargin. Each value on the graph represents the 
mean ± S.E.M. of cell survival of five independent experiments. ***p<0.001.  
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3.2.2.2. Effects of GHB against thapsigargin-induced cell death 
 

Native, pCEP4- and APPwt overexpressing cells were treated for 24 h with graded 

concentrations of GHB (0 to 1,000 µM) in the presence of 1µg/ml thapsigargin before 

MTT viability assay. Thapsigargin significantly decreased the viability of all SH-SY5Y 

cell types (-70%, - 69% or -73% in native, pCPE4 or APPwt-overexpressing cells, 

respectively, p<0.001) (Fig. 37). Any of the tested doses of GHB was able to prevent 

or reduce thapsigargin-evoked cell death (Fig. 36). 

 

Figure 37 : Effects of GHB against thapsigargin-induced native (A), pCEP4- (B) 
or APPwt-transfected (C) SH-SY5Y cell death. SH-SY5Y cells were exposed to 
thapsigargin dose inducing more than 60% of cell loss and treated with graded 
concentrations of GHB. MTT signal assessed for each cell type in basal condition 
(absence of thapsigargin) is arbitrary set at 100 %. Each value is the mean ± S.E.M. 
of three independent experiments. 
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3.2.2.3. Effects of allopregnanolone against thapsigargin-induced 
cell death 

 

Native, pCEP4- and APPwt overexpressing cells were also for 24 h treated with 

graded concentrations of allopregnanolone (0 to 1,000nM) in the presence of 1 µg/ml 

thapsigargin before MTT viability assay. Thapsigargin significantly decreased the 

viability of all SH-SY5Y cell types (-64%, -69% or -68% in native, pCPE4 and APPwt-

overexpressing cells, respectively, p<0.001) (Fig. 38). The tested doses of 

allopregnanolone also failed to prevent or reduce thapsigargin-induced cell death. 

 

Figure 38 : Effects of alloregnanolone against thapsigargin-induced native (A), 
pCEP4- (B) or APPwt-transfected (C) SH-SY5Y cell death. SH-SY5Y cells were 
exposed to thapsigargin dose inducing more than 60% of cell loss and treated with 
graded concentrations of allopregnanolone. MTT signal assessed for each cell type 
in basal condition (absence of thapsigargin) is arbitrary set at 100 %. Each value is 
the mean ± S.E.M. of three independent experiments. 
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3.2.2.4. Assessment of concomitant actions of GHB and 
allopregnanolone against thapsigargin-induced cell death 

 

Because separated treatments of GHB or allopregnanolone administrated alone did 

not prevent thapsigargin-evoked cell death, we investigated whether the co-

application of these two drugs may be effective to counteract the cell loss caused by 

thapsigargin. Therefore, native and genetically modified SH-SY5Y cells were 

concomitantly treated for 24 h with GHB (500 µM) and allopregnanolone (500 nM) in 

the presence of thapsigargin (1 µg/ml) before MTT viability assays. The results 

showed that the co-application of GHB and allopregnanolone was also unable to 

prevent or decrease thapsigargin-induced cell death like the separated treatments 

(Fig. 39). 
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Figure 39 : Effects of separate and concomitant treatments of GHB and 
allopregnanolone against thapsigargin-induced native (A), control vector (B) 
and APPwt-transfected (C) SH-SY5Y cell death. SH-SY5Y cells were exposed to 
thapsigargin (1 µg/ml) and treated either separately or concomitantly with GHB  
(500 µM) and allopregnanolone (500 nM) for 24 h. MTT signal assessed for each cell 
type in basal condition (absence of thapsigargin) is arbitrary set at 100 %. Each value 
is the mean ± S.E.M. of three independent experiments. 

 

3.2.2.5. Effects of estradiol against thapsigargin-induced cell death  
 

Preliminary experiments were performed in order to assess the effects of estradiol 

against thapsigargin-induced cell loss. In this case, only native SH-SY5Y cells were 

treated for 24 h with graded doses of estradiol in the presence of thapsigargin  

(1 µg/ml) before MTT viability assays. The preliminary results showed that estradiol, 

at the doses of 250 nM and 500 nM, significantly reduced thapsigargin-evoked cell 

death (Fig. 40).  
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Figure 40 : Effects of estradiol against thapsigargin-induced SH-SY5Y cell 
death. Native SH-SY5Y cells were exposed to thapsigargin dose inducing more than 
60% of cell loss and treated with graded concentrations of estradiol for 24 h. MTT 
reduction assays were used to determine the cell viability which was expressed as 
percent of control (untreated cells). MTT signal assessed for each cell type in basal 
condition (absence of thapsigargin) is arbitrary set at 100 %. Each value is the mean 
± S.E.M. of three independent experiments. * p<0.05, ** p<0.01. 

 

 

3.2.3. Effects of GHB and neurosteroids on thapsigargin-induced 
cytosolic calcium changes 

3.2.3.1. Effects of allopregnanolone 
 

Native SH-SY5Y cells were pre-treated for two hours with allopregnanolone (500 nM) 

and incubated with external solutions containing 0.5 mM Ca2+ for 100 s. Then, the 

cells were transferred into a medium without calcium which contained ethylene glycol 

tetraacetic acid (EGTA), a calcium chelator in external solution in order to observe 

the basal cytosolic calcium level. At t=400s, thapsigargin (1 µg/µl) was added to in 

the same external solution in order to assess allopregnanolone action on cytosolic 

Ca2+ elevation evoked by the blockade of SERCA-pumps and progressive emptying 

of ER Ca2+ stores. Finally, at t=1,400s, the cells were again incubated with 

thapsigargin in the presence of extracellular calcium (0.5 mM). This experiment 
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aimed at investigating allopregnanolone eventual action on store operated calcium 

entry (SOCE) via the plasma membrane.  

As shown in Fig. 41, thapsigargin induced a large cytosolic Ca2+ increase in absence 

and presence of external calcium as expected. Allopregnanolone at 500 nM did not 

modify calcium stores depletion or the SOCE. These data are consistent with the 

absence of allopregnanolone effect on thapsigargin-evoked cell viability decrease 

(see Part. 3.2.3.1., page 123).   

 

Figure 41 : Effects of allopregnanolone on thapsigargin-induced cytosolic 
calcium elevations. [Ca2+]I responses before and after calcium store depletion by 
thapsirgargin (1 µg/ml, without external calcium) and after addition of thapsigargin in 
the presence of extracellular calcium (store operated calcium entry, SOCE). Cells 
were pre-incubated for 2 h with 500 nM allopregnanolone before the measurement. 
Each value is the mean of three independent experiments (50 cells/experiment were 
measured). EGTA, Ethylene glycol tetraacetic acid.  
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3.2.3.2. Effects of GHB 
 

The same approach aforementioned was used to assess GHB action on 

thapsigargin-induced cytosolic calcium elevations. The results showed that GHB at 

500 µM (administrated as pre-treatment or maintained permanently in the incubation 

medium) did not affect Ca2+ store depletion or SOCE (Fig. 42). These data are also 

consistent with the absence of GHB effect on thapsigargin-evoked cell loss (see Part. 

3.2.3.2., page 125). 

 

Figure 42 : Effects of GHB on thapsigargin-induced cytosolic calcium 
elevations. [Ca2+]I responses before and following calcium store depletion by 
thapsirgargin (1 µg/ml, without external calcium) and after addition of thapsigargin in 
the presence of extracellular calcium ([Ca2+]I response in case of store operated 
calcium entry, SOCE). Cells were either pre-incubated (for 2 h) with 500 µM GHB or 
permanently exposed to GHB (500 µM) during the entire measurement. Each value 
is the mean of three independent experiments (50 cells/experiment were measured). 
EGTA, Ethylene glycol tetraacetic acid.   
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3.2.4. Assessment of ER stress signaling proteins evoked by 
thapsigargin 

 

Preliminary experiments were performed to assess the ability of thapsigargin to 

induce ER stress signaling proteins such as CHOP or XBP-1 (see Part 1.5.1., pages 

39-42). Control vector and APPwt-transfected cells were treated for 24 h with 

thapsigargin (1 µg/ml) or the vehicle the total fraction of proteins was extracted. 

Western analysis reveal no difference of CHOP and XBP-1 expression levels in 

control vector and APPwt-transfected cells treated with the vehicle (Fig. 43 and 44). 

In contrast, thapsigargin treatment increased CHOP protein levels in both cell lines 

(Fig. 43) but did not affect XBP-1 cellular concentrations (Fig. 44). 

 

Figure 43 : Western blot analysis of CHOP protein levels in control vector- (A) 
and APPwt-transfected SH-SY5Y cells (B). Cells were exposed or not (vehicle) to 
Thapsigargin (dose evoking 60% of cell death) for 24 h. CHOP optical density was 
normalized to β-actin expression. Each value represents the mean ± S.E.M. of two 
independent experiments. Ctrl, control ; Thg, Thapsigargin. CHOP, C/EBP-
homologous protein. 
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Figure 44 : Western blot analysis of XBP-1 protein levels in control vector- (A) 
and APPwt-transfected SH-SY5Y cells (B). Cells were exposed or not (vehicle) to 
Thapsigargin (dose evoking 60% of cell death) for 24 h. XBP-1 optical density was 
normalized to β-actin expression. Each value represents the mean ± S.E.M. of two 
independent experiments. Ctrl, control ; Thg, Thapsigargin ; XBP-1, X-box binding 
protein 1. 

3.3. Neuroprotection by GHB and neurosteroids : additive or 
synergistic action ? 

 

During this PhD program, the neuroprotective effects of GHB and neurosteroids were 

assessed in 3 different conditions that induce cell death : overexpression of APPwt, 

H2O2-induced stress and ER stress. It was interesting to observe that GHB and 

neurosteroids were mainly effective against APPwt-overexpression and H2O2-evoked 

cell death and did not exhibit a potent protective action against ER stress-induced 

cell loss except the promising preliminary effect observed for estradiol. Therefore, for 

the moment, to gain insight into the possible cooperation that may exist between 

GHB and neurosteroids for a potent neuroprotective action, we decided to use H2O2 
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experimental model to investigate the effects of concomitant administration of GHB 

and allopregnanolone or estradiol against oxidative stress-induced cell death. 

3.3.1. Assessment of the neuroprotective action of GHB and 
neurosteroid co-treatments  

 

Native SH-SY5Y cells were treated with different combinations of GHB + Estradiol or 

GHB + allopregnanolone. In the presence of 0.7 mM H2O2 (Fig. 45). Many 

combinations were tested but the Fig. 45 only shows the best representative 

neuroprotective concentrations of GHB and estradiol or allopregnanolone. The data 

revealed that, while the co-application of GHB (500 µM) and estradiol (500 nM) did 

not improve the level of neuroprotection exerted by GHB (500 µM) or estradiol  

(500 nM) administrated separately (Fig. 45A). The concomitant treatment of GHB 

(500 µM) and allopregnanolone (500 nM) exhibited a significant additive 

neuroprotective effect compared to GHB or allopregnanolone alone (Fig. 45B).  

 

Figure 45 : Effects of separate and concomitant treatments of GHB and 
estradiol (A) or GHB and allopregnanolone (B) against H2O2-induced SH-SY5Y 
cell death. Native SH-SY5Y cells were exposed to H2O2 (0.7 mM) and treated either 
separately or concomitantly with GHB (500 µM) and allopregnanolone/estradiol  
(500 nM) for 24 h. MTT signal assessed for each cell type in basal condition 
(absence of H2O2) is arbitrary set at 100 %. Each value is the mean ± S.E.M. of four 
independent experiments. ***p<0.001, ###p<0.001. 
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3.3.2. Evaluation of GHB capacity to induce neuroprotection via the 
modulation of neurosteroid production 

 

To test the hypothesis that GHB may exert neuroprotective action through the control 

of neurosteroidogenesis, we performed a series of preliminary experiments to assess 

the effect of GHB (500 µM) against H2O2-evoked cell death in the presence of 

fadrozole (10 µM), a specific inhibitor of aromatase, the key estradiol synthesizing 

enzyme (Falkson et al., 1992, Raats et al., 1992). The results show that fadrozole  

(10 µM) significantly decreased the effectiveness of neuroprotective effect exerted by 

GHB (500 µM) against H2O2-induced cell death (Fig 46). 

 

Figure 46 : Effects of GHB against H2O2-evoked cell death in the presence of 
fadrozole, a specific inhibitor of aromatase. SH-SY5Y cells were treated with GHB 
(500 µM) and H2O2 (0.7 mM) in presence or absence of Fadrozole (10 µM) for 24 h. 
MTT signal assessed for each cell type in basal condition (absence of H2O2) is 
arbitrary set at 100 %. Each value is the mean ± S.E.M. of two independent 
experiments. *p<0.05, **p<0.01, ###p<0.001 compared to control. 
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3.3.3. Effect of GHB on aromatase expression in SH-SY5Y cells  
 

Our preliminary results revealing that fadrozole decreases GHB neuroprotective 

efficacy suggest that GHB may exert neuroprotection through the stimulation of 

aromatase expression or activity. To test this idea, we investigated the effects of 

GHB on aromatase mRNA levels in SH-SY5Y cells in the absence or presence of 

H2O2 (Fig. 46). The levels of transcripts encoding aromatase were examined by  

RT-qPCR in native SH-SY5Y cells treated with GHB (500 µM) in the absence or 

presence of H2O2 (0.7 mM). the preliminary results showed that, after normalization 

of RT-qPCR aromatase products to β-actin, GHB (500 µM), which increased 

aromatase expression in normal condition (+70%) also counteracted the decreased 

aromatase mRNA levels (-49%) evoked by H2O2 (Fig. 47).  

 

Figure 47 : Preliminary assessment of GHB effects on aromatase mRNA levels 
in native SH-SY5Y cells in the absence or presence of H2O2. Cells were treated 
for 24 h with GHB (500 µM) in the absence or presence of H2O2 (0.7 mM). 
Aromatase mRNA levels are expressed as a ratio of β-actin in SH-SY5Y cells. mRNA 
levels in control condition (absence of H2O2) is arbitrarily set at 100%. Each value is 
the mean ± S.E.M. of two independent experiments. *p<0.05. 
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3.4. Effects of GHB and/or neurosteroids on the activity and 
expression of beta amyloid degrading enzymes (MMP-2 and  
MMP-9) 

3.4.1. Effects of GHB and/or neurosteroids on human MMP-2 and MMP-9 
activity in yeast 

3.4.1.1. Validation of the yeast-based assay 
 

Since MMPs are members of the metalloproteinase family, we first intended to 

evaluate the suitability and accuracy of the yeast-based MMP-2/-9 activity assay by 

testing serial dilutions of phenanthroline which is a broad spectrum metalloproteinase 

inhibitor (Feder et al., 1971). Thus we incubated yeast expressing biologically active 

MMP-2 and MMP-9 with increasing concentrations of phenanthroline ranging from 0 

to 500 µM in the presence of fluorescein-labeled gelatine as MMP substrate. 

Fluorescence detection was recorded at 37°C for 20 hours with 20 minutes intervals 

between each measurement. As shown in Fig. 48, fluorescence increased with time 

and phenanthroline efficiently inhibited MMP-2 and MMP-9 activities. Interestingly, 

MMP-2 and MMP-9 were differentially inhibited by phenanthroline: 62.5 µM 

phenanthroline was sufficient to abolish MMP-2 activity whereas 125 µM was 

necessary to obtain the same inhibition of MMP-9. Therefore, we chose inhibitor 

concentrations of 70 µM and 150 µM phenanthroline for MMP-2 and MMP-9 

respectively as negative control in all experiments in which the potential effect of 

GHB and/or neurosteroids on MMP activity was analyzed.  
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Figure 48 : Validation of the yeast-based MMP-2 (A) and MMP-9 (B) activity 
assay in the presence of increasing concentrations of the metalloproteinase 
inhibitor phenanthroline. Yeast expressing human MMP-2 or MMP-9 at the cell 
surface were deposed at the same optical density in a 96-well plate in reaction buffer. 
Cells were exposed to the indicated concentrations of phenanthroline in the presence 
of fluorescein-labeled gelatine as MMP substrate. Green fluorescence is recorded 
each 20 min for 20 h. Each value represents the mean of three independent 
experiments (RFU, relative fluorescence intensity. MMP, matrix metalloproteinase). 
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3.4.1.2. Effects of GHB and/or neurosteroids on MMP-2 and MMP-9 
activity 

 

In order to evaluate the effects of GHB, allopregnanolone and estradiol on MMP-2 

and MMP-9 activity, we tested serial dilutions of both compounds using the 

parameters mentioned previously. Concentrations of phenanthroline determined in 

Part 3.4.1.1 were used as negative control of MMP-2 and MMP-9 activity in all 

experiments described in this Part.  

We first assessed the effect of increasing concentrations of GHB ranging from 0 to 

2,000 µM on MMP-2 and MMP-9 activity. However, no significant modulatory effect 

of GHB on MMP-2/-9 activity could be detected under the experimental conditions 

used in this bioassay (Fig. 49A, B). We likewise investigated the effect of increasing 

concentrations of allopregnanolone ranging from 0 to 1,000 nM on MMP-2 and  

MMP-9 activity, but again no significant effect was observed (Fig. 50A, B).  

The same experiment was performed in the presence of increasing concentrations of 

estradiol which likewise did not show any modulatory effect on MMP activity in the 

range of up to 1,000 nM (Fig. 51A, B).  

Finally, any possible effect of the simultaneous application of GHB and neurosteroids 

(500 µM GHB + 500 nM allopregnanolone or 500 µM GHB + 500 nM estradiol) on 

MMP-2 and MMP-9 activity could also be ruled out (Fig. 52A, B). 
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Figure 49 : Effects of GHB on MMP-2 (A) and MMP-9 (B) activity in yeast. Yeast 
expressing human MMP-2 or MMP-9 at the cell surface were deposed at the same 
optical density in a 96-well plate in reaction buffer. Cells were exposed to the 
indicated concentrations of GHB in the presence of fluorescein-labeled gelatin as 
MMP substrate. Phenanthroline was used as negative control and MMP inhibitor 
(Inhib.). Green fluorescence is recorded each 20 min for 20 h. Each value represents 
the mean of three independent experiments (RFU, relative fluorescence intensity. 
MMP, matrix metalloproteinase). 
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Figure 50 : Effects of allopregnanolone on MMP-2 (A) and MMP-9 (B) activity in 
yeast. Yeast expressing human MMP-2 or MMP-9 at the cell surface were deposed 
at the same optical density in a 96-well plate in reaction buffer. Cells were exposed to 
increasing concentrations of allopregnanolone in the presence of fluorescein-labeled 
gelatin as MMP substrate. Phenanthroline was used as negative control and MMP 
inhibitor (Inhib.). Green fluorescence is recorded each 20 min for 20 h. Each value 
represents the mean of three independent experiments (RFU, relative fluorescence 
intensity. MMP, matrix metalloproteinase). 



  Results 
  

136 
 

 

Figure 51 : Effects of estradiol on MMP-2 (A) and MMP-9 (B) activity in yeast. 
Yeast expressing human MMP-2 or MMP-9 at the cell surface were deposed at the 
same optical density in a 96-well plate in reaction buffer. Cells were exposed to 
increasing concentrations of estradiol in the presence of fluorescein-labeled gelatin 
as MMP substrate. Phenanthroline was used as negative control and MMP inhibitor 
(Inhib.). Green fluorescence is recorded each 20 min for 20 h. Each value represents 
the mean of three independent experiments (RFU, relative fluorescence intensity. 
MMP, matrix metalloproteinase). 
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Figure 52 : Effects of GHB and neurosteroids on MMP-2 (A) and MMP-9 (B) 
activity in yeast. Cells were exposed to the indicated concentration of 
allopregnanolone, GHB or estradiol in the presence of fluorescein-labeled gelatin as 
MMP substrate. Phenanthroline was used as negative control and MMP inhibitor 
(Inhib.). Green fluorescence is recorded each 20 min for 20 h. Each value represents 
the mean of three independent experiments (RFU, relative fluorescence intensity. 
MMP, matrix metalloproteinase). 
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3.4.2. Effects of GHB on human MMP-2 and MMP-9 mRNA expression in 
SH-SY5Y cells  

 

Preliminary assessments of the effects of GHB on MMP-2 and MMP-9 mRNA 

expression were performed in SH-SY5Y cells. The levels of transcripts encoding 

MMP-2 and MMP-9 were examined by RT-qPCR in native SH-SY5Y cells treated 

with GHB (500 µM) for 24 h. After normalization of the obtained MMP mRNA ratio to 

β-actin, it appeared that GHB (500 µM) did not change MMP-2 mRNA levels in SH-

SY5Y cells (Fig. 53A). However, GHB (500 µM) significantly decreased the level of 

MMP-9 in SH-SY5Y cells (-72,7%, p<0.05), suggesting a differential effect of GHB on 

MMPs expression.   

 

 

Figure 53 : Preliminary assessment of GHB effects on MMP-2 (A) and MMP-9 
(B) mRNA expression in native SH-SY5Y cells. Cells were treated with 500 µM 
GHB for 24 h before RT-qPCR. MMP-2/-9 mRNA levels are expressed as ratio to  
β-actin in SH-SY5Y cells. mRNA levels under control condition (untreated) is 
arbitrarily set at 100%. Each value represents the mean ± S.E.M. of two independent 
experiments (MMP, matrix metalloproteinase; *p<0.05). 
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4. Discussion 
 

In agreement with the objectives of this PhD thesis (See Part. 1.5.1., page 60), we 

investigated the ability of separated or combined treatments of GHB and 

neurosteroids such as allopregnanolone and estradiol to protect against cell death 

induced by key factors involved in AD physiopathology. Our studies, which provided 

some data about GHB action on neurosteroidogenesis, also determined wether GHB 

and/or neurosteroids modulate the activity and/or expression of MMP-2 and MMP-9 

that regulate amyloid beta peptides in the brain.  

4.1. Protective effects of GHB against oxidative stress-induced 
cell death 

 

Numerous studies suggested the existence of neuroprotective effects of GHB but in 

vitro experimental proofs showing a direct protective action of GHB against cell death 

were until now unavailable (Wolfson et al., 1977b, Vergoni et al., 2000, Ottani et al., 

2003, Ottani et al., 2004, Yosunkaya et al., 2004). As mentioned above (Part. 1.1.4), 

oxidative stress is a key element involved in neurodegenerative diseases (Beal, 

1995, Giasson et al., 2002, Andersen, 2004). Thus, in a first step, we performed a 

dose and time-dependent study which revealed that H2O2, a potent oxidative stressor 

involved in pathogenic mechanisms of several neurodegenerative disorders, severely 

evoked death of native and genetically modified human neuroblastoma SH-SY5Y 

cells. This study also showed different EC50 values for H2O2 toxicity in each category 

of cells. More importantly, we observed that 70% of native and control vector-pCEP4-

transfected cells were killed after exposure to 0.7 mM H2O2 while a dose seven times 

less (0.1 mM) was enough to kill the same percentage of APPwt-transfected cells. 

These results indicate that the over-expression of APPwt in SH-SY5Y cells enhanced 
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their vulnerability to oxidative stress. Our results, which were obtained thanks to the 

combination of two complementary methods such as trypan blue exclusion and MTT 

reduction assays, strongly consolidate previous observations suggesting that APP 

expression may be related to neuroblastoma cell susceptibility to oxidative stress 

(Matsumoto et al., 2006). This “hypersensitivity” to H2O2 could be, in part, explained 

by an abnormal production of Aβ peptides due to the overexpression of APP itself. 

Moreover, Aβ peptide cytotoxicity is known to be mediated by the endogenous 

production of H2O2 (Behl et al., 1994). Therefore, the exogenous exposition of H2O2 

may exacerbate the endogenous oxidative stress existing occurring in APPwt-

overexpressing cells.   

In the drastic condition of survival when neuroblastoma cells were exposed to H2O2 

dose killing more than 70% of cells, GHB was effective to rescue a significant number 

of SH-SY5Y cells in a dose-dependent manner. In particular, GHB at 500 µM 

protected about 50% of SH-SY5Y cells against H2O2-induced death. Clearly, these 

results demonstrate that GHB exerts a protective action in vitro which is consistent 

with in vivo data suggesting that GHB may control neuroprotection (Wolfson et al., 

1977a, Vergoni et al., 2000, Ottani et al., 2003, Ottani et al., 2004, Yosunkaya et al., 

2004, Kemmel et al., 2010). Interestingly, we observed that, 24 h after GHB single 

application, the doses of 200 and 500 µM efficiently rescued APPwt-transfected SH-

SY5Y cells that were extremely vulnerable under oxidative stress condition. 48 h after 

GHB single administration, the protective efficacy of GHB at 200 µM disappeared 

while the dose of 500 µM remained effective in protecting against APPwt-

overexpression-induced cell death. These results suggest the occurrence of a time-

dependent catabolism of GHB in the incubation medium. Thus, GHB concentration of 

200 µM, which was effective 24 h after administration, may completely be degraded 
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at 48 h justifying the disappearance of the protective effect. At the dose of 500 µM, 

which is 2.5 times higher than 200 µM, a substantial amount of GHB may remain 

present in the medium after 48 h (in spite of the time-dependent catabolism of GHB) 

and therefore continue to protect APPwt-transfected cells against APP-

overexpression- and/or oxidative stress-evoked death. Several studies demonstrated 

that APPwt-transfected SH-SY5Y cells represent a relevant cellular model for the 

investigation of biochemical mechanisms involved in AD pathogenesis (Li et al., 

1996b, Misonou et al., 2000, Scheuermann et al., 2001, Olivieri et al., 2002, 

Schaeffer et al., 2006a, Schaeffer et al., 2008b, Schaeffer et al., 2008c, Rhein et al., 

2009, Rhein et al., 2010). Indeed, it is well documented that the production of Aβ 

from APP is a major event in AD pathogenic mechanisms. In normal conditions, APP 

is processed by a non-amyloidogenic pathway but under pathological situations, APP 

generates toxic Aβ accumulation which induces neuronal death (see Part. 1.1.2.1., 

pages 17-21). It has been suggested that oxidative stress evokes a shift of APP 

processing from the non-amyloidogenic to the amyloidogenic pathway, a mechanism 

which may explain the high vulnerability of APPwt-overexpressing SH-SY5Y cells to 

H2O2-induced death (Misonou et al., 2000, Oda et al., 2010, Ballard et al., 2011). 

Therefore, the strong protective effect exerted by GHB against H2O2-evoked APPwt-

transfected cell death suggests that GHB may significantly inhibit the ability of H2O2 

to shift APP normal processing towards the amyloidogenic pathway. 

Oxidative stress, particularly H2O2, is well known for its capacity to trigger 

mitochondrial apoptosis pathway in several cell types including neurons (Dare et al., 

2001, Chen et al., 2011b, Hayashi et al., 2012, Perez-Pinzon et al., 2012). In 

agreement with these data, our flow cytometry (FACS) analyzes of TUNEL-FITC and 

activated caspase-3-PE staining revealed apoptosis occurrence in native and 
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genetically modified human neuroblastoma cells after exposure to H2O2. 

Interestingly, a substantial basal amount (~30%) of activated caspase-3-PE- and 

TUNEL-FITC-positive labeling was detected in APPwt-transfected SH-SY5Y cells in 

the absence of H2O2, indicating that the over-expression of APP may facilitate Aβ 

accumulation and apoptosis in neuroblastoma cells. Consistently, it has been 

reported that APPwt-overexpression induced apoptosis in HEK 293 cells (Takahashi 

et al., 2009). Furthermore, we observed that H2O2 strongly enhanced the basal 

apoptotic signal in APPwt-transfected cells, a result which may also confirm the idea 

that H2O2-induced death may up-regulate the amyloidogenic pathway leading to 

increased apoptosis in neuroblastoma cells. In all categories of SH-SY5Y cells used 

(native or genetically modified), GHB was capable of reducing efficiently H2O2-

induced apoptotic signal. In addition, the basally elevated activated caspase-3-PE- 

and TUNEL-FITC-positive labeling detected in APPwt-transfected cells in the 

absence of H2O2 was also significantly decreased by GHB treatment. Altogether, 

these results indicate that GHB protective action against cell death involves anti-

apoptotic mechanisms.  

Apoptosis is a complex cellular process characterized by multi-factorial pathways 

(Kerr et al., 1972, Chang et al., 1998, Hengartner, 2000, Kroemer and Reed, 2000, 

Mattson, 2000, Wu et al., 2001, Acehan et al., 2002, Adams and Shapiro, 2003). 

However, it is clearly established that proteins of Bcl-2 family crucially control 

apoptotic mechanisms (see Part 1.1.4.3., pages 34-35) (Gross et al., 1999, Mattson, 

2000, Kuwana and Newmeyer, 2003, Petros et al., 2004, Garcia-Saez, 2012). 

Indeed, as aforementioned, some members of the Bcl-2 family such as Bcl-2 and Bcl-

xl are anti-apoptotic factors while other members as Bax, Bid and Bcl-xs are pro-

apoptotic proteins (Reed, 1998, Reed et al., 1998, Mattson, 2000, Newmeyer and 
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Ferguson-Miller, 2003). Consequently, the Bax/Bcl-2 ratio is conventionally used as a 

key index to evaluate the apoptotic status of cells (Jung et al., 2009, Zhang et al., 

2009, Zarate et al., 2010). Interestingly, previous investigations revealed that the 

level of Bcl-2 protein significantly decreased in APPwt-transfected cells, suggesting a 

higher susceptibility to apoptosis (Matsumoto et al., 2006). Therefore, to get valuable 

insights into the mechanisms of action of GHB against neuroblastoma cell death, we 

combined reverse transcription, quantitative real-time PCR experiments and western 

blot analysis to determine the effects of GHB on Bax/Bcl-2 mRNA and protein ratios 

in native and genetically modified SH-SY5Y cells in the absence or presence of 

H2O2. Our investigations revealed that, in the absence of oxidative stress, Bax/Bcl-2 

mRNA and protein ratios were elevated only in APPwt-transfected cells and this 

observation is perfectly consistent with our results obtained with flow cytometry 

analyzes of TUNEL-FITC- and activated caspase-3-PE labeling. In the absence of 

H2O2 (normal condition), application of GHB at 500 µM efficiently decreased the 

elevated basal Bax/Bcl-2 (mRNA and protein) ratios in APPwt-transfected SH-SY5Y 

cells, indicating that a possible mechanism activated by GHB to protect against cell 

death may be the promotion and/or the repression of Bcl-2 and Bax gene and protein 

expression, respectively. In support of this hypothesis, our results also show that, 

under oxidative stress condition, GHB was also capable of reducing significantly the 

increased Bax/Bcl-2 ratios evoked by H2O2 in native or genetically modified SH-SY5Y 

cells.  

Since our MTT reduction assays revealed that GHB is devoid of proliferative action 

on neuroblastoma cells, anti-apoptotic effect through the down-regulation of  

Bax/Bcl-2 (mRNA and protein) ratios and/or caspase-3 activity appears as a pivotal 

mechanism activated by GHB to protect cell against death. Various data from our 
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laboratory and other groups demonstrated that GHB modulates G-protein coupled 

receptors and trigger intracellular signaling that may interact with the expression of 

Bcl-2 family proteins (Maitre, 1997, Maitre et al., 2000, Andriamampandry et al., 

2003a, Crunelli et al., 2006, Andriamampandry et al., 2007, Coune et al., 2010, 

Kemmel et al., 2010). Further investigations will certainly help to specify or detail the 

interactions between GHB-evoked intracellular signaling and Bax/Bcl-2 expression 

and activities. It will also be interesting to check whether GHB-evoked 

neuroprotection of SH-SY5Y cells involves GABAA-receptors. Indeed, it has recently 

been shown that GHB binds to GABAA-receptors (Absalom et al., 2012) those 

activation reduces amyloid cytotoxicity and endogenous ROS (Lee et al., 2005, Brar 

et al., 2014).  

Although our results strongly indicate that GHB protects SH-SY5Y cells via the 

activation of an anti-apoptotic mechanism, we cannot rule out the possibility that GHB 

may also be neuroprotective by exerting a direct anti-oxidative action against H2O2. 

Indeed, the acidic character of GHB molecular structure allows it to decrease H2O2 

toxicity via an oxido-reductive reaction. Furthermore, it has been shown that GHB, 

which activated glucose-6-deshydrogenase and the pentose phosphate pathway, 

also increased the formation rate of NADPH which is the key cofactor of several anti-

oxidative or reductive enzymes (Lopatin et al., 1984, Martins et al., 1986, Russell et 

al., 1999, Mamelak, 2007). Therefore, GHB may inhibit H2O2 toxicity thanks to its 

ability to facilitate the activity of various anti-oxidative enzymes. However, the fact 

that, in the absence of H2O2, GHB induced a protective effect and significantly 

reduced the basally elevated apoptotic signal in APPwt-transfected SH-SY5Y cells, 

strongly supports the idea that GHB may also protect nerve cells against death via an 

anti-apoptotic mechanism. In support of this hypothesis, we have recently observed 
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that a single acute pharmacological dose of GHB modulates the brain expression of 

multiple genes including various genes encoding for programmed cell death factors 

(Kemmel et al., 2010). In support of our data, another microarray study has also 

revealed that GHB efficiently down-regulated the expression of the apoptotic 

protease activating factor 1 (Apaf-1) which is pivotally involved in apoptosome 

formation (Schnackenberg et al., 2010). 

4.2. Protective effects of allopregnanolone and estradiol against 
oxidative stress-induced cell death 

 

Based upon the high neuroprotective potential of neurosteroids evidenced in various 

experimental models (Belelli and Lambert, 2005, Patte-Mensah et al., 2005, Borowicz 

et al., 2011, Gravanis et al., 2012, Panzica et al., 2012, Brinton, 2013), we assessed 

the ability of allopregnanolone (AP) and estradiol (E2) to prevent or counteract H2O2-

induced cell death. Although various nerve cell models have been used to test the 

neuroprotective action of neurosteroids, the present PhD works provide the first 

assessment of AP and E2 protective effect against control vector and APPwt-

transfected SH-SY5Y cells in oxidative stress conditions. A previous study of our 

laboratory has shown that E2 protected against H2O2-induced SH-SY5Y cell death 

but the genetically modified pCEP4- and APPwt-transfected cells were not used in 

that study (Schaeffer et al., 2008c). Therefore, it is interesting to observe that, 

beyond the confirmation of the capacity of E2 to protect against H2O2-induced native 

SH-SY5Y cell death, the present PhD study also reveals that E2 and AP effectively 

prevent pCEP4- and APPwt-transfected cells against oxidative stress-evoked death. 

More importantly, our results showed that, while micromolar doses of GHB (500 µM) 

were necessary to prevent H2O2-induced cell death, nanomolar concentrations (250 

– 750 nM) of neurosteroids AP and E2 were enough to exert efficient neuroprotective 
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effects. Furthermore, our studies revealed that, in the absence of H2O2, GHB  

(500 µM) restored normal percentage of cell viability in APPwt-transfected cells but 

did not stimulate or increase the viability of control cells. In contrast, we observed that 

in basal conditions, E2 and AP increased native, pCEP4- and APPwt-transfected cell 

viability. Taken together, these data suggest that GHB and neurosteroids may not 

activate the same mechanisms to exert neuroprotective actions against H2O2-

induced cell death even through common intracellular factors such as the proteins of 

the Bcl-2 family may be modulated via the signaling pathways evoked by GHB or 

neurosteroids. Indeed, it has been demonstrated that E2 may reduce oxidative 

stress-induced apoptosis through the up-regulation of Bcl-2 and Bcl-Xl proteins, a 

process that may also be activated by GHB (see Part 3.1.6., pages 103-108). 

However, E2 may induce anti-apoptotic effect through other mechanisms (probably 

not shared with GHB) such as the down-regulation of the JNK signaling pathway and 

the stimulation of the expression of mitochondrial respiratory complex (I and IV) or 

ATP synthase (Garcia-Segura et al., 1998, Nilsen and Diaz Brinton, 2003, Irwin et al., 

2008, Nilsen, 2008, Simpkins and Dykens, 2008, Simpkins et al., 2010, Grimm et al., 

2012, Napolitano et al., 2014). Moreover, various studies demonstrated that, acting 

through E2Rα or E2Rβ, E2 may induce neuroprotection via the activation of MAPK 

(mitogen activated protein kinase), PI3K/Akt (phosphatidylinositol 3-kinase and 

protein kinase B), STAT3 (signal transducer and activator of transcription 3) and 

CREB (cAMP response element binding protein) (Cimarosti et al., 2005, Jover-

Mengual et al., 2007, Zhao and Brinton, 2007). 

Regarding the neurosteroid AP, which also exhibited a potent neuroprotective effect 

against H2O2-induced cell death, several mechanisms may be discussed including 

those that can partially be common to AP and GHB or E2 and other processes that 
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can be specific to AP. Indeed, recent investigations showing that AP efficiently 

decreased glucose-induced oxidative stress and apoptosis, suggested that AP down-

regulated Bax/Bcl-2 ratio and caspase-3 activation (Afrazi and Esmaeili-Mahani, 

2014, Afrazi et al., 2014). It has also been shown that AP protected against H2O2-

evoked oxidative stress in a cellular model of Niemann-Pick disease by decreasing 

ROS levels, lipid peroxidation and NFκB pathway-related apoptosis (Zampieri et al., 

2009). Moreover, AP is a potent activator of GABAA-receptor which the stimulation of, 

by specific agonists, has been shown to decrease ROS levels, caspase-3 activation 

and apoptosis (Lee et al., 2005).  

To summarize, our results revealed that neurosteroids and GHB may activate 

common and/or specific factors to protect SH-SY5Y cells against H2O2-induced 

death. Also, our data suggest that a cooperation may exist between GHB- and 

neurosteroid-evoked signaling pathways for an optimal neuroprotective action not 

only under oxidative stress conditions but also in other experimental models such as 

ER stress-induced cell death which is also involved in AD physiopathology (Prasanthi 

et al., 2011, Cornejo and Hetz, 2013, Marwarha et al., 2013, Hetz and Mollereau, 

2014, Liu et al., 2014). 

4.3. Effects of GHB and neurosteroids against ER stress-induced 
cell loss 

 

Our results showed that tunicamycin- (TC) or thapsigargin- (THG) induced ER stress 

caused a significant decrease of SH-SY5Y cell survival. These observations 

confirmed that TC and THG are effective ER stressors in our cellular experimental 

model. We did not have additional time to explore whether TC or THG induce also 

apoptosis in our model. However, other studies demonstrated that specific caspases 
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including caspase-4, -7 and -12 are activated during ER stress conditions and these 

data suggest that TC- or THG-evoked ER stress may cause apoptosis in SH-SY5Y 

cells (Nakagawa and Yuan, 2000, Nakagawa et al., 2000, Momoi, 2004, Liu et al., 

2013, Hetz and Mollereau, 2014). Further experiments will however be necessary to 

confirm this hypothesis. Although they still preliminary, our data indicate that the 

tested doses of GHB (0-1,000 µM) and AP (0-1,000 nM) were unable to counteract 

TC- or THG-evoked SH-SY5Y cell loss. Because we did not have enough time, E2 

was only tested against THG-evoked cell death and the results revealed that E2 (250 

or 500 nM) efficiently counteracted THG-induced ER stress and cell loss. Additional 

experiments scheduled for the future will help to clarify whether or not TC- and THG-

induced ER stress may differentially be sensitive to the action of E2, AP and GHB 

used separately or concomitantly. In particular, it will be useful to complete our 

current results on cytosolic calcium changes and ER stress signaling proteins (See 

Part. 3.2.3. and 3.2.4., pages 123-126) with additional experiments testing other 

doses of AP, E2 and GHB in the presence of lower concentration of TC and THG. 

 

4.4. Interactions between GHB and neurosteroids for 
neuroprotective strategy 

 

We investigated the effects of co-applications of GHB and AP or E2 against H2O2-

induced cell death, an experimental model in which separated treatments of 

neurosteroids or GHB administrated alone were all effective (see Part 3.1., pages 95-

114). We found that the co-application of GHB and E2 did not increase the efficacy of 

each drug used separately. In contrast, the co-treatment with GHB and AP 

significantly improved the level of neuroprotection via an additive action. These 
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results suggest the existence of positive interactions between GHB and AP. These 

interactions seem to not be synergistic since GHB and AP doses that were ineffective 

separately did not become neuroprotective when applied concomitantly. The positive 

interactions were reflected by the fact that the doses of GHB (500 µM) and AP (500 

nM) that were neuroprotective separately exhibited a more potent protective action 

when they were co-administrated to SH-SY5Y cells under oxidative stress conditions. 

The mechanisms of actions underlying this additive effect of GHB and AP require 

further investigation before being elucidated. However, as aforementioned, various 

studies demonstrated that GHB and AP can activate similar intracellular signaling 

pathways (see Part. 1.4., page 59). Indeed, it has been shown that GHB acts via the 

GABAA-receptor which is also a major receptor allosterically stimulated by AP (Lovick 

et al., 2005, Absalom et al., 2012, Bay et al., 2014). The additive effect may also 

result from the combination or complementary actions of specific pathways evoked 

by GHB and AP. For instance, while GHB activates its own G-protein coupled 

receptor to increase cAMP signaling that may trigger neuroprotective mechanisms 

(Andriamampandry et al., 2003a, Andriamampandry et al., 2007, Coune et al., 2010), 

this process may be added to the neuroprotective effect induced by AP via the 

activation of pregnane-xenobiotic-receptor (Frye et al., 2011, Jayaraman et al., 2012, 

Irwin and Brinton, 2014) or through the modulation of calcium channels (Brinton, 

2013, Irwin and Brinton, 2014). Finally, another possibility may also be an addition of 

the stimulatory effect exerted by GHB and AP on anti-apoptotic proteins of the  Bcl-2 

family leading to a more potent decrease of Bax/Bcl-2 ratio when GHB and AP are 

administrated concomitantly. This hypothesis is supported by various results 

including our data which demonstrated the regulatory effects of GHB and AP on 
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Bax/Bcl-2 ratio (Afrazi and Esmaeili-Mahani, 2014, Afrazi et al., 2014, Wendt et al., 

2014). 

Interactions between GHB and neurosteroids cannot be restricted only to the 

conditions of co-administration of these compounds. Indeed, previous investigations, 

which demonstrated that GHB stimulated AP and THDOC production in the rat brain 

(Barbaccia et al., 2002, Barbaccia et al., 2005), strongly suggested that GHB may 

exert neuroprotective effects through the modulation of neurosteroid biosynthesis. In 

line with these results, our laboratory has shown that the inhibition of AP production 

in rat spinal cord in vivo, thanks to intrathecal injections of provera (pharmacological 

blocker of 3α-HSOR, the key AP synthesizing enzyme), exacerbated neuropathic 

symptoms (Meyer et al., 2008). Thus, it appears that the compounds such as GHB 

which increase AP production may exert beneficial or protective actions against 

neuropathological symptoms while the drugs, such as provera which decrease AP 

synthesis may facilitate neurodegenerative or deleterious action on nerve cells. 

Further investigations to assess the protective effect of GHB against H2O2-induced 

SH-SY5Y cell death in the presence of provera will help us to confirm this idea.  

Another important study previously published by our laboratory revealed that the 

inhibition of endogenous E2 synthesis by letrozole (inhibitor of aromatase, the key 

E2-producing enzyme) significantly decreased SH-SY5Y cell viability and the addition 

of exogenous E2 counteracted the cell loss (Schaeffer et al., 2008c). This paper 

suggested that the compounds modulating endogenous E2 production in SH-SY5Y 

cells may control their survival in normal or stress conditions. Therefore, we checked 

whether GHB-evoked neuroprotective effect against H2O2-induced cell death may be 

mediated via the modulation of endogenous E2 biosynthesis or aromatase 

expression and/or activity in SH-SY5Y cells. We found that GHB-evoked 
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neuroprotective action was significantly reduced by fadrozole, a specific inhibitor of 

aromatase activity (Falkson et al., 1992, Raats et al., 1992). In addition, our 

preliminary RT-qPCR experiments revealed that GHB completely reverse the 

decreased aromatase mRNA level induced in SH-SY5Y cells by H2O2 treatment. 

These results, which need additional conformation, strongly suggest that GHB may 

protect SH-SY5Y cells against H2O2-evoked death through the increase of 

endogenous E2 production. Assessment of the effect of GHB on the level of 

endogenous E2 produced in SH-SY5Y cells in the presence or absence of H2O2 will 

also help to consolidate our data.   

 

4.5. Effects of GHB and neurosteroids on MMP-2 and MMP-9 
activity/expression 

 

Besides the strategy to characterize compounds that may efficiently counteract 

oxidative or ER stress-induced neuronal death that are crucially involved in AD 

physiopathological mechanisms (Mattson, 2000, Lee et al., 2010, Querfurth and 

LaFerla, 2010, Reddy, 2011, Grimm et al., 2012, Cornejo and Hetz, 2013, Hetz and 

Mollereau, 2014), we also sought for molecules that may degrade or eliminate toxic 

Aβ peptides which pivotally induce neurodegeneration (Gotz et al., 2010, Querfurth 

and LaFerla, 2010, Ballard et al., 2011). Since various studies demonstrated that 

MMP-2 and MMP-9 are key regulators of Aβ peptide degradation, we have used the 

yeast based MMP activity assay to determine whether GHB, AP and E2 may directly 

modulate MMP-2 and MMP-9 activities. Probably because the basal level of MMP-2 

and MMP-9 activities in this yeast model seems to be already elevated, it was not 

possible to evidence additional stimulation of these activities induced by separated or 
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concomitant administration of GHB, AP or E2. The yeast biological system expresses 

active human MMP-2 and MMP-9 on the surface of Pichia pastoris (Diehl et al., 

2011). 

Since MMPs physiologically have the potential to massively degrade various 

components of the extracellular matrix and surrounding tissue, MMPs are in vivo 

tightly regulated and controlled at three main levels : Firstly, many MMPs are only 

transcribed after cellular stimulation. Secondly, MMPs are initially expressed as 

inactive proenzymes, requiring additional processing to become biologically active. 

Thirdly, physiological inhibitors expressed and secreted by various cell types in tissue 

permit a fine tuning of MMP activity. These inhibitors include the tissue inhibitors of 

metalloproteinases (TIMPs) (Yong, 2005, Clark et al., 2008). Thus, it might be 

possible that GHB, allopregnanolone and/or estradiol modulate MMPs by acting at 

one or more of these three levels. MMP-2 and MMP-9 are zinc- and calcium-

dependent proteases belonging to the gelatinase subfamily (Nagase and Woessner, 

1999). Therefore, their activity can be detected by gelatine zymography. This 

technique resembles an electrophoretic method, using gelatine containing gels which 

permit the direct measurement of MMP activity in gels. Therefore, it would be 

interesting to study the basal expression of active MMP-2 and MMP-9 in native or 

APPwt-overexpressing SH-SY5Y cells. Moreover, further experiments investigating 

the effect of separate or concomitant treatment with GHB and neurosteroids such as 

allopregnanolone and estradiol on the levels of MMP mRNA, protein level and activity 

would open the possibility to eventually identify novel and specific inducers of these 

amyloid degrading enzymes. Estradiol was recently described to increase the 

activation and activity of both, MMP-2 and MMP-9 in SH-SY5Y cells, leading to the 

efficient degradation of Aβ peptides (Merlo and Sortino, 2012). In this study, 
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treatment with 10 nM estradiol for 15 hours caused an increase in MMP-2 and -9 

mRNA and protein levels and also resulted in the conversion of pro-MMP-2 and -9 

into their active forms. The authors also treated SH-SY5Y cells carrying the Swedish 

familial mutation of APP (which results in an overproduction of Aβ peptides) with 

estradiol and observed a significant reduction in the endogenous concentration of Aβ 

parallel to an increase in MMP-2 and MMP-9 activity, suggesting a prominent role of 

estradiol in MMP activation. Moreover, exogenous Aβ42-induced cell death was 

efficiently counteracted by estradiol, suggesting the role of MMP-2 and MMP-9 in 

neuroprotection against Aβ peptides.  

MMP expression status in human AD brain is still controversially discussed. Reports 

show either unchanged, decreased or increased levels of both MMP-2 and MMP-9 in 

human brain tissue and plasma (Asahina et al., 2001, Baig et al., 2008, Horstmann et 

al., 2010). A most recent study demonstrated that MMP-9 concentration in the 

cerebrospinal fluid of AD and MCI patients is significantly decreased compared to 

control groups, while levels of MMP-2 and TIMPs were unchanged (Mroczko et al., 

2014).  

In our preliminary RT-qPCR experiments, we observed that 500 µM GHB did not 

change the mRNA expression level of MMP-2 in SH-SY5Y cells, while it significantly 

decreased MMP-9 mRNA expression. Although this observation is per se interesting, 

the obtained data needs to be further confirmed at mRNA and protein levels. In fact 

enhanced MMP activity in the CNS could have both, beneficial and detrimental 

effects. For example, MMP-9 is detrimental in acute insults to the nervous system 

such as stroke and spinal cord injury (Yong, 2005). Elevated expression of MMP-9 

and MMP-2 following stroke-induced ischemia yields to an increased infarct size and 

disruption of the blood brain barrier (Cunningham et al., 2005, Machado et al., 2006, 
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Kook et al., 2013). However, MMPs including MMP-9 display beneficial effects on 

axonal regeneration, synaptic plasticity, remyelination and Aβ-induced toxicity (Yong, 

2005, Agrawal et al., 2008, Fragkouli et al., 2014). 

In case of stroke-induced ischemia, inhibition of MMP-9 is associated with 

attenuation of infarct size, better tissue recovery and a reduced risk of cerebral 

hemorrhages (Sumii and Lo, 2002, Agrawal et al., 2008). Therefore, if the results 

concerning the effects of GHB on MMP-9 are confirmed at mRNA, protein level and 

activity in SH-SY5Y cells, it would explain (at least in part) the protective effects of 

GHB observed in animal models of focal ischemic insults (Vergoni et al., 2000, Ottani 

et al., 2003, Ottani et al., 2004). A recent study implying allopregnanolone and 

progesterone also emphasizes this hypothesis. Indeed, the authors investigated the 

effects of these neurosteroids on blood brain barrier integrity and MMP-2 and -9 

expression after middle cerebral artery occlusion in rats. They observed that both, 

progesterone and allopregnanolone attenuated blood brain barrier disruption and 

infarct size by down-regulating the expression of MMP-2 and -9 (Ishrat et al., 2010). 

Thus, additional experiments investigating the effects of GHB, estradiol and 

allopregnanolone on MMP-2 and -9 expression, activation and activities in native and 

genetically modified SH-SY5Y cells are necessary to better understand their 

neuroprotective effects observed in AD or other CNS injury models.  
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5. Conclusions  
 

Thanks to the combination of various pharmacological, cellular, molecular and 

biochemical methods, the present PhD report provides different series of results 

showing that GHB and neurosteroids, including AP and E2, efficiently protect against 

nerve cell death induced by key factors involved in AD physiopathological 

mechanisms. Indeed, the data described in this PhD manuscript, constitute the first 

experimental proofs demonstrating in vitro, a direct neuroprotective effect of GHB 

against neural cell death caused by major etiological determinants of AD such as the 

overexpression of APPwt (that generates toxic Aβ peptides accumulation) and 

oxidative stress which evokes apoptosis, neuronal loss and subsequent 

cognitive/memory deficits. Also, even though the neuroprotective potential of 

neurosteroids was previously in various experimental models, the present PhD study 

provides an original contribution to the literature by showing, for the first time that, 

neurosteroids AP and E2 are able to exert effective neuroprotective effects against 

pCEP4- and APPwt-transfected SH-SY5Y cells under oxidative stress conditions. 

Moreover, we obtained also a series of preliminary results related to the effects of 

GHB and neurosteroids AP and E2 against TC- and THG-induced ER stress that is 

also involved in cellular mechanisms of AD physiopathology. Except an effective 

action of E2 against THG-evoked ER stress and decreased viability of SH-SY5Y 

cells, the tested doses of GHB (micromolar) and AP (nanomolar) were unable to 

prevent ER stress-induced cell loss. Future experiments will help us to clarify whether 

GHB and neurosteroids are differentially effective against APPwt overexpression-, 

H2O2- and ER stress-induced cell death according to the dose regimens or whether 

GHB, AP and E2 may only counteract specifically some of the key physiopathological 

components of AD without having the ability to protect against the others. 
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Another important finding provided by the present work is the identification of an 

additive action of GHB and AP that significantly improves the neuroprotective 

effectiveness of these compounds when they are administrated concomitantly. 

Intracellular mechanisms underlying this additive effect will further be characterized. 

However, our current results strongly suggest that the potent neuroprotective action 

exerted by the co-administration of GHB and AP against H2O2-induced cell death 

may result (at least in part) from the addition in the intracellular compartment of the 

partial stimulatory effects induced by each one of these compounds on the 

expression of anti-apoptotic proteins of Bcl-2 family. Also, other interesting 

possibilities to be explored are : (1) the concomitant activation of GABAergic system 

by GHB (which can interact with GABAA or GABAB receptors depending on the 

concentration used) and AP (a positive allosteric modulator of GABAA receptor) that 

may enhance the neuroprotective efficacy of GHB and AP or (2) the combination of 

specific cellular pathways evoked by GHB and AP via GHB-GPCR and pregnane-X-

receptor, respectively. 

In perfect line of previous investigations of our laboratory suggesting that the 

substances modulating neurosteroid production in neural cells may control their 

viability (Schaeffer et al., 2006b, 2008c), the present PhD study provides additional 

results demonstrating that GHB-evoked neuroprotection is partially mediated through 

aromatase (the key E2-synthezising enzyme) activity. Therefore, it appears that, over 

the additive effects exerted by the co-application of GHB and AP to improve their 

neuroprotective efficacy, GHB can also induce neuroprotection through the 

stimulation of neurosteroidogenesis in the nerve cells. 

Finally, we have also used a yeast-based MMP activity assay to check whether GHB 

and neurosteroids (AP and E2) may regulate MMP-2 and MMP-9 activities which 
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crucially control Aβ peptide degradation. At this stage, it is difficult to conclude from 

our preliminary data about the effects of GHB, AP and E2 on MMP-2 and MMP-9 

activities in the yeast model since the basally elevated MMP activity level in this 

model did not facilitate the characterization of the specific actions of GHB and 

neurosteroids. Investigations scheduled for the future using RT-qPCR method to 

assess MMPs expressions in SH-SY5Y cells will certainly help to elucidate the 

situation. 

Taken together, our results, which demonstrate the existence of positive interactions 

between GHB and neurosteroids AP or E2 in the protection of SH-SY5Y cells against 

APPwt-overexpression- or H2O2-evoked cell death, suggest that GHB and 

neurosteroids may be used to develop combined neuroprotective strategies to 

prevent or to counteract physiopathological processes leading to neuronal loss in AD.  
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6. Perspectives  
 

As indicated in our discussion and conclusions, some of our results are preliminary 

and require additional works to be consolidated. In particular, one of the first 

perspectives is to clarify whether GHB and neurosteroids act differentially on APPwt-

overexpression-, H2O2- and ER stress-induced cell death. Therefore, we will continue 

the experiments initiated with TC- and THG-evoked ER stress and assess in these 

conditions different dose ranges of GHB, AP and E2 but various other neurosteroids 

will also be tested separately or concomitantly with GHB. Furthermore, the effects of 

GHB and neurosteroids on the expression of proteins (XBP-1, CHOP…) involved in 

the signaling pathways evoked by TC and THG will be completely characterized 

thanks to the combination of molecular and pharmacological methods. In addition, 

interaction existing between these proteins and some of the factors determining 

apoptosis will be identified in order to establish whether the anti-apoptotic pathways 

activated by GHB and/or neurosteroids are similar, different or complementary to 

protect nerve cells against death. 

One of the major finding of our study was the additive action of GHB and AP. Thus, a 

subsequent perspective will be the characterization of the mechanisms underlying 

this additive actions of GHB and AP. Pharmacological tools will be combined to 

biochemical investigations to determine the contribution of GABAA-R, GABAB-R and  

GHB-GPCR to the additive effect of GHB and AP. Furthermore, molecular methods 

will be developed to characterize intracellular signaling proteins as well as the 

interactions between these proteins in the development of GHB and AP additive 

effects.  
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Regarding the mediation of GHB-evoked neuroprotective effect via 

neurosteroidogenesis, we shall perform additional experiments (ELISA, GC-MS or 

LC-MS measurements) to assess the effect of GHB on endogenous E2 level newly-

synthesized in SH-SY5Y cells in the absence or the presence of H2O2. These 

experiments will be correlated to MTT and flow cytometry assessments of cell 

viability and apoptotic signals, respectively. Also, as suggested in our discussion, it is 

possible that GHB controls neural cell viability via the modulation of AP biosynthesis. 

Therefore, one major perspective will also be to combine pharmacological and 

biochemical approaches to investigate the neuroprotective action of GHB in the 

presence of finasteride and provera, which respectively inhibit 5α-reductase and 3α-

HSOR two key enzymes involved in AP production. 

To further characterize and elucidate the effects of GHB and neurosteroids on  

MMP-2 and MMP-9 activity and/or expression, we will combine RT-qPCR, western 

blotting, gelatin zymography electrophoresis and enzymatic activity assays to 

determine the ability of these compounds to modulate MMPs activities/expression in 

SH-SY5Y cells. 

Finally, after the characterization and confirmation of all of the effective compounds 

to be used separately or concomitantly, it will be interesting to test these compounds 

in vivo in animals models of AD such as the triple transgenic mice (carrying the 

PSEN1KI-, TAUP301L and APPswe- mutations) or the tg2576 mice to confirming the 

ability of these molecules to decrease neuronal loss and to improve cognitive or 

memory functions.  
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La maladie d’Alzheimer (MA) est la cause la plus fréquente de démence dans les 

sociétés occidentales, affectant plus de 35 millions de personnes dans le monde, 

dont 860 000 en France et 1.2 millions en Allemagne (Querfurth and LaFerla, 2010, 

Sperling et al., 2011). Plusieurs types de lésions ont été décrits chez les patients 

Alzheimer mais l’hypothèse la mieux établie est l’accumulation excessive de 

protéines telles que les plaques amyloïdes extracellulaires ou la dégénérescence 

neurofibrillaire intracellulaire (DNF) observées dans les cerveaux de patients 

autopsiés (De Strooper, 2010, Querfurth and LaFerla, 2010, Ballard et al., 2011, 

Sperling et al., 2011). Les plaques amyloïdes sont dues à une accumulation de 

peptides beta-amyloïdes (Aβ), générés par protéolyse de l’amyloid precursor protein 

(APP) effectuée par des secrétases (Strooper and Annaert, 2001, De Strooper, 2010, 

De Strooper et al., 2010). La DNF est le résultat de l’agrégation de formes 

hyperphosphorylées de la protéine Tau (protéine associée aux microtubules). Les 

oligomères Aβ sont cytotoxiques et induisent l’hyperphosphorylation de Tau (Gotz et 

al., 2001, Lee et al., 2001, Santacruz et al., 2005, Reddy, 2011, Gotz et al., 2013). 

Les peptides Aβ et la DNF induisent un stress oxydant en perturbant la chaine 

respiratoire mitochondriale et l’homéostasie du calcium. Cependant, le stress 

oxydant est aussi décrit comme un élément précurseur de la formation de DNF et de 

peptides Aβ, établissant ainsi un cercle vicieux reliant Aβ, DNF et stress oxydant 

(Behl et al., 1994, Miranda et al., 2000, Misonou et al., 2000, Melov et al., 2007, Oda 

et al., 2010). Du fait de l’accumulation excessive de protéines dans la maladie, le 

stress du réticulum endoplasmique (RE) suscite également un intérêt scientifique 

(Ottani et al., 2004, Lee et al., 2010, Hetz et al., 2011, Cornejo and Hetz, 2013, Hetz 
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et al., 2013, Kang et al., 2013, Hetz and Mollereau, 2014). Les mécanismes 

associant RE et MA sont divers, complexes et impliquent des altérations de la quasi-

totalité des acteurs de la voie de sécrétion de protéines et de la régulation du calcium 

intracellulaire (Prasanthi et al., 2011, Costa et al., 2012, Marwarha et al., 2013). Le 

RE et les mitochondries étant étroitement connectées, le stress du RE peut induire 

un stress oxydant et vice versa, faisant du stress du RE un membre à part entière du 

cercle vicieux reliant Aβ, DNF et stress cellulaires (Malhotra and Kaufman, 2007, 

Hedskog et al., 2013, Marchi et al., 2014). Un autre aspect physiopathologique est le 

déséquilibre entre la production et la clairance des peptides Aß. Les concentrations 

des protéases impliquées dans la dégradation des peptides Aß, comme la 

Neprilysine (NEP), les matrix métalloprotéinases - 2 et 9 (MMP-2/-9), sont diminuées 

dans les cerveaux de patients MA, conduisant à une accumulation accrue des 

peptides Aß et à la cytotoxicité (Yong, 2005, Yin et al., 2006, De Strooper, 2010, 

Merlo and Sortino, 2012). A ce jour, aucune thérapie efficace n’est disponible contre 

la MA. Il est donc crucial de trouver des molécules capables de réduire la perte 

cellulaire provoquée par le stress oxydant, le stress du RE ou par l’accumulation des 

peptides Aß résultant d’une baisse de l’expression et/ou de l’activité des protéases 

NEP, MMP- 2 et MMP- 9 . 

Diverses données de la littérature suggèrent que les neurostéroïdes, qui exercent 

des effets neurotrophiques et neuroprotecteurs, pourraient constituer une piste 

intéressante à explorer pour le traitement des maladies neurodégénératives (Belelli 

and Lambert, 2005, Patte-Mensah et al., 2005, Borowicz et al., 2011, Gravanis et al., 

2012, Panzica et al., 2012, Brinton, 2013). Par ailleurs, d'autres éléments 

bibliographiques indiquent que le gamma-hydroxybutyrate (GHB), un anesthésique 

utilisé en clinique humaine contre la narcolepsie et la cataplexie, pourrait avoir des 
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effets neuroprotecteurs (Escuret et al., 1977, Lavyne et al., 1983, Russell, 1999, 

Vergoni et al., 2000, Ottani et al., 2003, Ottani et al., 2004, Russell et al., 2009, 

Russell et al., 2011, Spaeth et al., 2013). Dans une récente étude, notre laboratoire a 

démontré qu’une dose thérapeutique du GHB modifie l’expression d’une série de 

gènes situés dans des régions cérébrales contrôlant les processus cognitifs et 

mnésiques (Kemmel et al., 2010). Parmi ces gènes, certains codent des protéases 

participant à l’élimination des peptides Aβ et d’autres sont impliqués dans les 

mécanismes de vie et de mort cellulaire. Ces données révèlent également que le 

GHB, par l’intermédiaire de récepteurs couplés aux protéines G, induit une 

signalisation calcique impliquant l’AMPc, second messager crucial pour le 

fonctionnement des enzymes de synthèse des neurostéroïdes (Andriamampandry et 

al., 2003, Andriamampandry et al., 2007, Coune et al., 2010). Par conséquent, nous 

avons émis l’hypothèse que le GHB pourrait exercer des effets neuroprotecteurs via 

la modulation de la neurostéroïdogénèse. Il est également possible que GHB et 

neurostéroïdes agissent de manière synergique ou additive pour protéger les cellules 

nerveuses contre les mécanismes cellulaires délétères conduisant aux maladies 

neurodégénératives comme la MA.  

Nous nous sommes fixés trois objectifs dans le cadre de ce travail de thèse:   

- (1) Etudier la capacité du GHB et des neurostéroïdes (administrés séparément ou 

de façon concomittante) à protéger les neuroblastomes humains SH-SY5Y contre la 

mort cellulaire induite par les facteurs étiologiques de la MA comme (i) le stress 

oxydant provoqué par le peroxyde d’hydrogène (H2O2), (ii) la sur-expression de la 

protéine APP non mutée (APPwt) ou (iii) le stress du RE.  
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- (2) Vérifier si les effets neuroprotecteurs du GHB sont médiés par la modulation de 

la neurostéroïdogénèse. 

- (3) Evaluer la capacité du GHB et des neurostéroïdes à stimuler l’activité et/ou 

l’expression des protéases MMP-2 et MMP-9. 

Pour modéliser expérimentalement le stress oxydant, les cellules SH-SY5Y ont été 

traitées avec de l’H2O2 pendant 24 et 48 h. Les tests de survie cellulaire MTT ont 

d’abord révélé que les cellules sur-exprimant l’APPwt sont plus vulnérables au stress 

oxydant que les cellules témoins (natives, ou vecteur vide). Nos résultats montrent 

aussi que le GHB exerce un effet neuroprotecteur contre la mort cellulaire induite par 

le stress oxydant ou par la sur-expression de l’APPwt. Pour déterminer les 

mécanismes de protection du GHB contre la mort cellulaire, il était important de 

savoir si le GHB exerçait simplement une action proliférative compensant la perte 

cellulaire liée à l’H2O2, ou si le GHB avait une action anti-apoptotique. Nous avons 

donc utilisé la technique de double marquage TUNEL et Caspase-3 activée en 

microscopie confocale et cytométrie de flux pour répondre à cette question. Les 

résultats ont d'abord révélé qu'en absence d'un traitement à l’H2O2, il existe un 

niveau basal d'apoptose significatif dans les cellules sur-exprimant l'APPwt 

contrairement aux cellules témoins (natives ou transfectées avec le vecteur vide) qui 

présentent un pourcentage d'apoptose négligeable. Ensuite, nous avons constaté 

que le traitement à l’H2O2 provoque l'apparition d'une apoptose significative dans les 

cellules témoins et augmente fortement le niveau d'apoptose existant déjà dans les 

cellules sur-exprimant l'APPwt. L'administration de GHB diminue significativement 

l’apoptose induite par la sur-expression de l'APPwt et par l’H2O2. En combinant les 

techniques de RT-qPCR et western blot, nous avons démontré que cette protection 

passe par la modulation du ratio Bax/Bcl-2, élevé en conditions de stress et réduit 
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par les traitements au GHB. Parallèlement, des tests MTT ont également prouvé que 

les neurostéroïdes comme l’oestradiol et l’allopregnanolone exercent aussi des effets 

neuroprotecteurs contre la cytotoxicité induite par l’H2O2. De plus, des applications 

concomitantes de GHB et d’allopregnanolone ont révélé l’existence d’un effet 

neuroprotecteur additif de ces deux composés contre la mort cellulaire induite par le 

stress oxydant. Bien que cela nécessitera des expériences complémentaires pour 

être confirmé, nos travaux suggèrent que l'effet additif neuroprotecteur du GHB et de 

l'alloprégnanolone pourrait résulter de la combinaison des stimulations partielles de 

l'expression des protéines anti-apoptotiques de la famille Bcl-2.  

 

Un autre aspect important de la thèse était de vérifier si l’action neuroprotectrice du 

GHB et des neurostéroïdes est spécifique aux situations de stress évoquées par 

l’H2O2 ou si cet effet neuroprotecteur peut également s’exercer dans le cas de la 

mort cellulaire induite par le stress du RE. Nous avons alors provoqué le stress du 

RE en traitant les cellules SH-SY5Y avec la tunicamycine et la thapsigargine. Nos 

résultats ont d'abord permis de confirmer le traitement des cellules SH-SY5Y avec la 

tunicamycine ou la thapsigargine induit effectivement une nette diminution de la 

viabilité cellulaire. Nous avons ensuite constaté que les gammes de concentrations 

de GHB (de l'ordre de la micromolaire) et de neurostéroïdes (allopregnanolone, en 

concentrations nanomolaires) utilisées n’exercent pas d’effet neuroprotecteur contre 

la perte cellulaire évoquée par la tunicamycine. En revanche, nous avons observé 

que le neurostéroïde oestradiol (à 250 ou 500 nM) réduit significativement l'effet 

délétère exercé par la thapsigargine sur la survie cellulaire. Faute de temps, nous 

n'avons pas encore évalué la capacité de l'oestradiol à protéger également contre la 

mort cellulaire induite par la tunicamicyne. Des expériences complémentaires 
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permettront de s'assurer si l'expression de l'activité neuroprotectrice de l'oestradiol 

dépend de la nature du composé utilisé (tunicamycine ou thapsigargine) pour induire 

expérimentalement le stress du RE. Nous réaliserons également des études de 

biologie moléculaire axées sur les facteurs de transcription C/EBP-homologous 

protein (CHOP) et X-box-protein type 1 (XBP-1) impliqués dans l’apoptose liée au 

stress du RE (Cornejo and Hetz, 2013, Hetz et al., 2013, Hetz and Mollereau, 2014), 

pour déterminer si l'oestradiol et d'autres neurostéroïdes sont capables de moduler 

l'expression de ces facteurs CHOP et XBP-1. L'ensemble de ces données permettra 

de vérifier si le GHB et les neurostéroïdes exercent préférentiellement ou 

sélectivement leurs effets neuroprotecteurs contre l'apoptose ou la mort cellulaire 

induite par le stress oxydant, la sur-expression de l'APPwt ou par le stress du RE. 

Les interactions entre le GHB et les neurostéroïdes ne se limitent pas uniquement 

aux actions pharmacologiques concomitantes telles que l'effet additif observé avec la 

co-administration du GHB et de l'alloprégnanolone. Compte tenu des résultats 

antérieurs de notre laboratoire qui suggèrent que les composés modulateurs de la 

neurostéroïdogenèse contrôlent les processus neurodégénératifs et/ou les 

symptômes neuropathiques (Patte-Mensah et al., 2003, Patte-Mensah et al., 2006, 

Schaeffer et al., 2006, Meyer et al., 2008, Patte-Mensah and Mensah-Nyagan, 2008, 

Schaeffer et al., 2008, Schaeffer et al., 2010), nous avons vérifié si les effets 

neuroprotecteurs du GHB contre le stress oxydant pourraient être relayés par une 

modulation de la synthèse locale de neurostéroïdes. La co-application de GHB et de 

Fadrozole (inhibiteur spécifique de l’aromatase, enzyme clé de synthèse d’oestradiol) 

diminue significativement la neuroprotection induite par le GHB. Des analyses de RT-

qPCR ont démontré que le GHB stimule l’expression des ARNm codant l’aromatase 

dans les cellules SH-SY5Y. Ces résultats démontrent donc que le GHB induit la 
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neuroprotection via la stimulation de la néosynthèse d'oestradiol dans les cellules 

nerveuses. 

Afin d’étudier in vitro les effets du GHB et des neurostéroïdes sur l’activité des  

MMP-2 et MMP-9, nous avons optimisé un test d’activité enzymatique sur la base de 

l’expression membranaire de ces protéases par la levure Pichia pastoris (Diehl et al., 

2011). Les niveaux d'activité enzymatique de type protéase détectés dans notre 

modèle de levure sont fortement élevés. Ainsi, nos résultats préliminaires n'ont pas 

permis de révéler facilement d'éventuels effets stimulateurs supplémentaires induits 

par le GHB et les neurostéroïdes. En conséquence, nous avons prévu des travaux 

complémentaires avec la technique de zymographie couplée à la détection de 

l'activité des gélatinases pour approfondir nos connaissances sur les effets exercés 

par le GHB et les neurostéroïdes sur les activités des MMPs dans les cellules SH-

SY5Y. Les résultats attendus seront importants pour compléter nos données issues 

des analyses RT-qPCR en cours de réalisation pour évaluer les effets du GHB et des 

neurostéroïdes sur l'expression des ARNm codant la MMP-2 et la MMP-9. En effet, 

nos travaux préliminaires de RT-qPCR suggèrent fortement que le GHB modulerait 

l'expression des ARNm codant la MMP-9 dans les cellules SH-SY5Y.  

En conclusion, notre travail de thèse démontre l’efficacité neuroprotectrice du GHB et 

des neurostéroïdes contre l’apoptose et la mort cellulaire induites par le stress 

oxydant ou par la sur-expression de l’APPwt dans les neuroblastomes humains. Nos 

travaux révèlent aussi que l’effet neuroprotecteur du GHB et des neurostéroïdes 

s’exerce préférentiellement contre certains types de stress cellulaires, ce qui suggère 

une sélectivité d’action de ces composés dans la neuroprotection. Enfin, nous avons 

mis en évidence un effet neuroprotecteur additif du GHB et des neurostéroïdes ainsi 
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qu’une régulation positive par le GHB des voies de la neurostéroïdogenèse 

permettant la biosynthèse d’oestradiol. 

L’ensemble de ces données ouvre des perspectives intéressantes pour le 

développement de stratégies neuroprotectrices innovantes basées sur l’utilisation 

concomitante ou alternée du GHB et des neurostéroïdes dans le traitement des 

maladies neurodégénératives comme la MA. 
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