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Abstract

Quantum optimal control theory is the science of steering quantum systems.
In this thesis we show how to overcome the obstacles in implementing optimal
control for superconducting quantum bits, a promising candidate for the
creation of a quantum computer. Building such a device will require the tools
of optimal control. We develop pulse shapes to solve a frequency crowding
problem and create controlled-Z gates. A methodology is developed for the
optimisation towards a target non-unitary process. We show how to tune-up
control pulses for a generic quantum system in an automated way using a
combination of open- and closed-loop optimal control. This will help scaling
of quantum technologies since algorithms can calibrate control pulses far
more efficiently than humans. Additionally we show how circuit QED can be
brought to the novel regime of multi-mode ultrastrong coupling using a left-
handed transmission line coupled to a right-handed one. We then propose to
use this system as an analogue quantum simulator for the Spin-Boson model
to show how dissipation arises in quantum systems.
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Zusammenfassung

Quantenkontrolle ist die Wissenschaft von der Steuerung von Quantensyste-
men. In dieser Arbeit wird gezeigt wir wie die bisher bestehenden Hürden bei
der Umsetzung von optimalen Steuerimpulsen für supraleitende Quantenbits
überwinden können. Supraleitende Qubits sind aussichtsreiche Kandidaten
für den Bau eines Quantencomputers. Wir entwickeln Steuerimpulse für
Aufgabenstellungen mit dicht belegtem Frequenzspektrum am Beispiel des
kontrolliertem Z-Gatters. Eine Methodik zur Optimierung der Zeitentwick-
lung des Quantensystems auf ein nicht-unitäres Ziel wird entwickelt und auf
ein Modelle eines Detektors angewandt. Wir zeigen wie die Kalibrierung der
Steuerimpulse durch eine Kombination von offenen und geschlossenen Meth-
oden automatisiert werden kann. Das trägt zur Skalierung von Quanten-
technologien bei, weil Algorithmen Steureimpulse viel schneller und genauer
als Menschen einstellen können. Zusätzlich, mit Hilfe einer linkshändigen
Leitung gekoppelt an eine rechtshändige Leitung, zeigen wir wie Stromkreis-
QED den neuen Bereich der vielmodigen, ultrastarken Kopplung erreicht.
Wir schlagen vor, wie man dieses System als analogen Quantensimulator
für das Spin-Boson Modell benutzen kann, um zu zeigen wie Dissipation in
Quantensystemen zu einem Phasenübergang führt.
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Chapter 1

Quantum Technologies

Tes pensées s’évadent au coeur d’un royaume,

comment est-il?

Philippe Schneider

Most of the technologies that the modern human has adopted are either
based on classical physics or make use of naturally occurring quantum phe-
nomena. The laser is a perfect example, the quantum process by which the
light is generated is well understood. However the quantum systems partak-
ing in this process are not human made and one has to make due with the
quantum properties of the atoms found in nature. Furthermore, the coher-
ent laser light is a large collection of individual light quanta, i.e. photons
in a coherent state. This is in contrast with the newly emerging Quantum

Technologies. In these new technologies, information is processed quantumly
instead of classically. The systems are engineered to have specific quan-
tum properties and are manipulated on the level of individual quanta. Such
technologies have a wide range of applications in computing, cryptography,
simulations, measurements and potentially more.

This thesis explores two aspects of quantum technologies, the first focuses
on the coherent control of quantum devices within the frame work of building
a quantum computer. The second explores how a man engineered system
can be put to use to simulate quantum phenomena otherwise intractable on
a classical computer.

1.1 Quantum Computing

Up to date, all computers process information classically. Can anything else
be imagined? Can a computer that processes information using the laws of

3



4 CHAPTER 1. QUANTUM TECHNOLOGIES

quantum mechanics — a quantum computer — be built? If so, what purpose
would it serve and what makes building such a computer a difficult task?
Currently this is under intense research. The physical system implementing
the computer would have to be inherently quantum; many different systems
could serve this purpose. Regardless of the underlying physical implemen-
tation, a quantum computer would be composed of quantum bits — qubits

— as opposed to classical bits. Ideally these qubits are made of quantum
systems with only two levels |0〉 and |1〉 representing the logical states of
the bit. These qubits can be put into superposition states and be entangled.
That is, two systems are said entangled if their state cannot be written as
the product of states of each individual system [1]. A set of n classical bits
exists in only one of the 2n states at any given time. On the other hand, due
to the linearity of the Schrödinger equation, qubits can simultaneously be
in a superposition of any of the 2n states. Therefore, the logical operations
between qubits — gates — can be simultaneously applied on each state.
However, upon measuring the final state of the qubits, the wave function
will collapse onto one of the output states yielding one of the 2n qubit states
with a specific probability. This shows that the massive parallelism result-
ing from superposition can in general not be used directly. This does not
stop quantum algorithms, such as Grover’s search algorithm and the Shor
algorithm, respectively used for searching through databases and factoring
numbers, from outperforming any classical known equivalent. The prospect
of being able to factor large numbers as well as simulate quantum systems
has drawn much interest to the field of quantum computing. Indeed modern
cryptography relies on the technical impossibility of factoring large numbers
into two primes on classical computers. Quantum computers could overcome
this.

1.1.1 Qubits and Gates

A quantum algorithm is a sequence of quantum gates — generally called a
quantum circuit — acting on a set of qubits. The state of an individual qubit
can be represented by

|ψ〉 = cos

(
θ

2

)
|0〉+ sin

(
θ

2

)
eiϕ |1〉 ,

with 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π. Incidentally, the continuity of these
two angles also shows that perfectly encoding a qubit state would require
an infinite number of bits. Using the angles θ and ϕ, the state |ψ〉 can be
represented on a sphere called the Bloch sphere, sketched in Fig. 1.1. Any
quantum algorithm acting on n qubits can be implemented using only single
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|0〉

|1〉

|ψ〉

|0〉+ |1〉√
2

|0〉 − |1〉√
2

|0〉+ i |1〉√
2

|0〉 − i |1〉√
2

ϕ

θ

σ̂x

σ̂z

σ̂y

Figure 1.1: Bloch sphere. The state |ψ〉 of a two level system can be represented
in terms of two angle θ and ϕ. The state of the sphere crossing a given axis are
the eigenstates of the corresponding Pauli operator.

qubit operations and a two qubit operation. Such a set of gates is called
universal. The single qubit gates, move the state |ψ〉 from one point of the
Bloch sphere to another. Of notable interest in quantum computing are the
X , Y and Z gates respectively given by the Pauli matrices

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
and σ̂z =

(
1 0
0 −1

)
.

These gates serve as generators for a rotation of angle α, R̂k(α) = e−iασ̂k/2

around axis k ∈ {x, y, z} of the Bloch sphere. One gate often recurring in
quantum algorithms is the Hadamard defined by

H =
1√
2

(
1 1
1 −1

)
.

Classical computing would be ineffective without the ability to condition an
operation on a bit depending on the state of another one. This also applies
to quantum computing. The quantum extension of the classical XOR gate
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is the two qubit controlled not (CNOT ) gate

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 .

|0〉

|0〉

H

|Φ+〉

Figure 1.2: Quantum circuit capable of
generating the Bell state |Φ+〉 using a
Hadamard gate an a CNOT. The hori-
zontal lines indicate the qubits.

This gate conditionally flips the
state of the second qubit depend-
ing on the state of the first, much
like the classical XOR. However,
the reversibility of the CNOT, im-
posed by quantum mechanics, dis-
tinguishes it from its classical coun-
terpart. It is used to form a univer-
sal set of gates [2]. The CNOT is
often used to entangle two qubits
since it is capable of generating,
from a separable state, the non-
local Bell states defined by |Φ±〉 = (|00〉±|11〉)/

√
2 and |Ψ±〉 (|01〉±|10〉)/

√
2.

The CNOT is thus an entangling gate. As example, Fig. 1.2 shows the quan-
tum circuit used to generate |Φ+〉 from the separable |00〉 state. In some sys-
tems the interaction between qubits is not capable of directly implementing
a CNOT gate in which case a controlled phase gate can be made

CZ =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 .

In this gate the |11〉 state picks up a π phase. It should be noted that this
gate is symmetric; no qubit distinctively plays the role of target or control. A
CNOT gate can be recovered by applying a Hadamard gate before and after
the CZ gate. Other perfect entangling gates are the

√
SWAP and iSWAP

defined by

√
SWAP =




1 0 0 0
0 1√

2
− 1√

2
0

0 1√
2

1√
2

0

0 0 0 1


 and iSWAP =




1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1


 .

These are not the only perfect entangling gates. In fact, easily computable
criteria exist to tell if an arbitrary gate is a perfect entangler or not [3, 4].
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Pauli and Clifford Groups

Together with the identity matrix, labelled σ̂0, the Pauli matrices can be
used to construct the n-qubit Pauli group Pn. This is done by taking the
n-fold tensor product of all gates σ̂k multiplied by the factors ±1 and ±i
where k ∈ {0, x, y, z} [1]. The Clifford group Cn is then defined as the set of
gates that leave the Pauli group invariant [5]

Cn =
{
C ∈ U(2n)|CPC† ∈ Pn ∀P ∈ Pn

}
.

This group includes the CNOT, Hadamard and phase gate (defined by |j〉 7→
(−1)j |j〉 j = 0, 1). A Clifford gate circuit, i.e. a sequence of Clifford gates
can efficiently be simulated by classical means [6]. Therein lies the interest
of the Clifford group, this is used in randomised benchmarking, discussed in
section 2.2.1.

1.1.2 Physical Implementation

A qubit is implemented by a two state system. In this two level space the
logical states are labelled |0〉 and |1〉. These do not necessarily correspond
to ground and excited state and can be encoded by a linear combination of
both. A generic form for a qubit Hamiltonian is given by

Ĥ = Ωx(t)σ̂x + Ωy(t)σ̂y + Ωz(t)σ̂z .

Practically, some terms may miss and some may be time independent. Usu-
ally the two states are separated by an energy difference ~ωq (from now on
~ = 1) and in the basis B = {|0〉 , |1〉} the term Ωz is ωq/2. The time evolu-
tion of this part of the Hamiltonian alone will only produce phase gates, i.e.
a rotation around the z-axis of the Bloch sphere. The contributions Ωx and
Ωy allow to oscillate between the |0〉 and |1〉 states. If the functions Ωk are
controllable, i.e. we can shape their temporal profile, then any of the single
qubit rotations R̂k(α) can be made.

Many different physical systems such as electrons and photons can be
used to support a qubit. Some degrees of freedom such as spin make a
natural choice. However qubits can also be built from two distinct levels
in a larger Hilbert space. Here is a non-exhaustive description of various
physical qubit implementations: Photonic qubits are made out of the two
possible polarisations of a single mode [7]. Combining two photonic modes
with different wave numbers allows us to build a dual rail qubit where the
logical |0〉 state corresponds to one quanta in the first mode and none in the
second. The logical |1〉 is the opposite [8]. An alternative to photonic qubits
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are trapped ions. In such setups ions are trapped by electromagnetic fields
and a qubit is formed in each ion using a transition between two energy levels
[9]. This is a nice example where a qubit is formed out of two levels in a larger
Hilbert space. The qubits are coupled through motional degrees of freedom
resulting from Coulomb forces [10]. These qubits also hold the record1 of
the largest entangled quantum register [11]. Qubits can also be implemented
by neutral atoms. These are trapped by inducing a dipole moment with an
external electric field [12]. Qubits can then be formed using the internal
atomic levels of the atoms [13, 14]. In these systems it is possible to isolate
the quantum systems from the environment thus blessing the qubits with
a long life-time. However atoms and photons are not the only quantum
systems at our disposal. In solid state systems it is possible to single out
an electron forming a quantum dot. The qubit is then built out of the spin
states of the electron [15]. Another way to realise qubits is with impurities in
solid state systems. As example, 14N or 13C impurities couple to Nitrogen-
Vacancy centres in diamond. The NV centres are then used to address the
nuclear spin of the impurities and use them as qubits [16]. Colour centres
in diamond can also be used as single photon sources for use in quantum
information processing. This can be done with NV centres as well as with
Silicon-Vacancy centres [17, 18].

1.1.3 Superconducting Qubits

All of the qubits mentioned previously have a point in common. Their phys-
ical properties are set by nature and cannot be changed. For instance when
dealing with trapped ions the choice lies in which ion of the periodic table
to use. However the ions themselves cannot be engineered to have partic-
ular properties. Superconducting qubits are different in that their quantum
properties are designed and engineered by humans [19–23]. Furthermore,
their quantum degree of freedom is collective similar to a Bose Einstein Con-
densate [24]. These superconducting qubits consist of electrical circuits put
into quantum states. They are fabricated by conventional electron beam
lithography and sometimes even optical [25]. The resulting qubits are two
dimensional leaving the third dimension available for accessing the qubits
with the control and read-out electronics. This feature makes superconduct-
ing qubits very scalable in numbers. Scalability is the process of moving
from proof of principal experiments, involving a few qubits, to a quantum
computer coherently controlling millions of qubits.

It is well known that an inductor in parallel with a capacitor produces,

1at the time of writing
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in terms of charge and current, the equations of motion of a harmonic os-
cillator [26]. The mathematical procedure to quantise this oscillator is well
known. Practically to reach the ground state, the system must be made out
of superconductors to avoid dissipation and has to be cooled to temperatures
where thermal excitations become negligible. However such a qubit would
be impractical due to the linearity of the harmonic oscillator which makes
it uncontrollable. Therefore, non-linearity is introduced into the system by
replacing the inductor with a Josephson Junction (JJ). Historically Martinis
et al. [27, 28] first showed macroscopic quantum behaviour in a JJ in the
1980s. This lead to the creation of different types of superconducting qubits,
namely phase [25], flux [29] and charge [30, 31]. Theoretical developments on
how to engineer quantum states with Josephson Junctions were carried out
very early by Makhlin et al. [21, 32]. In all of these non-linear circuits it is
easy to isolate two levels to make a qubit. In the flux qubit two circulating
macroscopic currents of opposite sign form the quantum states. Whereas in
the charge qubit it is the number of Cooper pairs on a superconducting island
which is quantised. Later developments led to the Transmon qubit [33, 34]
and the Xmon [35].

Vg

Cg

C

Superconducting
Island

Figure 1.3: Charge Qubit

Here we briefly review a couple of super-
conducting qubits. We start with the charge
qubit [30, 31, 36]. A superconducting island
is made with JJ (with capacitance C) and an
external gate capacitor Cg. The system is con-
trolled with the gate voltage Vg, see Fig. 1.3.
The voltage and current across a JJ are related
to the phase difference ϕ between the two su-
perconducting wave functions on each side of
the junction. They are respectively given by

V = Φ0ϕ̇ and I = I0 sinϕ .

The flux quantum for Cooper pairs is Φ0 = ~/2e. The Lagrangian for this
system is

L =
1

2
(C + Cg)Φ

2
0ϕ̇

2 − CgVgΦ0ϕ̇+ EJ cosϕ

The Josephson coupling energy is EJ = I0Φ0. Applying the Euler-Lagrange
equations to the phase yields the equations of motion one would obtain from
Kirchoff’s laws. The conjugate momentum to the phase is the number of
Cooper pairs N = ϕ̇/2Ec + Ng. Here we defined the gate charge as Ng =
−Φ0CgVg and the charging energy Ec = (2e)2/2(C + Cg). This leads to the
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Hamiltonian

Ĥ = Ec(N̂ −Ng)
2 − EJ cos ϕ̂ (1.1)

The charge qubit operates in the limit Ec ≫ EJ [21, 37]. The charge term
Ec(N̂ − Ng)

2 is diagonalised by the states |N〉 representing the number of
Cooper pairs on the island. When Ng is half-integer two charge states are
degenerate, these points are known as the charge degeneracy points and
are indicated in Fig. 1.4 by the vertical dashed lines. The degeneracy is
lifted by the Josephson term EJ cos ϕ̂. Analogously to quantum mechanics
in one spatial dimension, we can write the wave-function as a plan wave
〈ϕ|N〉 = eiNϕ. This shows that the action of the Josephson term on a charge
state is EJ cos ϕ̂ |N〉 = EJ

2
(|N + 1〉 + |N − 1〉). Thus the Hamiltonian takes

the form

Ĥ =
∑

N

Ec(N −Ng)
2 |N〉〈N | − EJ

2

(
|N〉〈N + 1|+ |N + 1〉〈N |

)

The charging energy Ec is thus the energy associated to having one extra
Cooper pair, relative to the gate charge, on the island. The Josephson energy,
EJ is the amount of energy required for a Cooper pair to tunnel across the
junction. At the charge degeneracy point, the quantum state is a coherent
superposition of two charge states. It is thus the number of Cooper pairs,
i.e. the charge on the island, which is in a quantum state. This charge
can be controlled by the gate voltage Vg(t). The energy levels as function
of gate charge, shown in Fig. 1.4, can be found using Mathieu functions
[22, 33]; the spectrum is made from many avoided level crossings. When
the charge qubit is biased far from these anti-crossings it stays in a charge
eigenstate. Changing the bias Ng to an anti-crossing results in coherent
oscillations between two charge states of the superconducting island. This
implements single qubit rotations. However noise in Ng induces decoherence
in the charge qubit since ∂Ek/∂Ng 6= 0 [31].

The charge qubit illustrates well how an electrical circuit can be put into
a quantum state. The transmon qubit [33, 34], similar in design to the charge
qubit, overcomes the limitation due to charge noise. It is operated in the limit
EJ ≫ Ec by shunting the JJ with a large capacitance. The dependence of the
energy levels on gate charge Ng then becomes flat. This improves coherence
times but comes at the cost of reducing the qubit’s non-linearity. However
weakly non-linear qubits can be controlled with adequate pulse shapes [38].
Additional controllability of the qubit is introduced by putting two JJs in
parallel. This creates a superconducting ring interrupted by two JJs. Due
to flux quantization [39], threading an external flux Φext through this loop
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(c) EJ/Ec = 10

Figure 1.4: Energy levels, normalised
to Ec, of the Hamiltonian in Eq.
(1.1) for different ratios of EJ/Ec.
The more this ratio grows the more
the energy levels are insensitive to
charge noise. The reference energy
was chosen so that the minimum of
E0 coincides with zero. The dashed
lines indicate the charge degeneracy
points between the first two levels.

makes the Josephson coupling energy tunable

EJ(Φext) =
I0~

2e

∣∣∣∣cos
(
πΦext

Φ0

)∣∣∣∣ . (1.2)

In summary the charge qubit illustrates well how an engineered circuit
can be put into a quantum state. The transmon shows how improvements on
an existing design yields better qubits. This is well reflected in the coherence
times of superconducting qubits which went from a few ns [40] to around 100
µs in little over a decade [23, 31, 41–46]. The coherent control demonstrated
by Nakamura et al. [31] of the charge qubit leads to the issue of making
reliable gates for superconducting qubits. For a quantum computer to be
viable, the quantum operations performed on the qubits need to have a very
high fidelity, that is the measure of how close the realised gate is to the
intended gate.

Different error detection or correction codes encode a single logical state
into the physical states of many qubits [1, 47]. This redundancy introduces
robustness against infidelities in the quantum operations. For example, the
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error correcting Steane code requires gate fidelities above 99.999% [48]. In
general most error correcting codes have threshold fidelities between 1 −
10−6 and 1 − 10−3 [47]. However, the surface code [49, 50], based on error
detection requires a minimum gate fidelity of 99% [51]. This is much less
than bit error rates in classical computers but nevertheless very hard to
achieve. Below their respective threshold fidelity these codes degrade the
fidelity of the quantum gates on the logical qubits but above it they allow
more robustness against errors. In general, the higher the fidelity of single
and two qubit operations are, the less overhead is needed to reduce errors on
logical operations. Therefore attaining the threshold value in fidelity is not
good enough, the implemented gates should have a higher fidelity.

In the first part of this thesis, Optimal Control Theory (OCT) methods
[52–54] are applied to tackle the problem of making high fidelity gates in
superconducting qubits. Since superconducting qubits are human engineered
they can be designed to have more or less control. This reflects the trade-off
between controllability and coherence. Often bringing more control lines to
a qubit means creating additional noise sources. An example of this is shown
in the transmon. Tuning the energy levels with external flux bias lines,
Eq. (1.2), makes the qubit prone to flux noise. Some research groups have
therefore opted for qubits with fixed energy levels [45, 55] whilst others work
with tunable qubits [35]. In chapter 3 we show how spectral crowding issues
due to fixed energy levels can be addressed with optimal control methods.
Next, in chapter 4, is shown how optimal control can help improve a two qubit
gate in a design with flux tunable energy levels. The gate can be made faster
at the cost of a more complex pulse shape. Chapter 5 shows how to optimise
pulse shapes when the target time evolution cannot be described by a unitary
time evolution operator. The last chapter on optimal control, chapter 6,
shows how to deal with the main shortcoming of Optimal Control Theory,
that is the reliance of the theory on a model to design the control pulses. It
is shown how a closed loop optimisation performed on the experiment can
calibrate a pulse designed with OCT. The results in these last two chapters
generalise outside of the field of superconducting qubits.

1.2 Simulation of Quantum Systems

Classical physics lends itself well to computer simulations. Indeed, if a clas-
sical system is in a given state at a given time, then the next state, an
infinitesimal increment of time later, is given by a differential equation pro-
vided by the laws of nature. Upon discretisation of time and space, this
process can be well described by a Turing machine and thus simulated on
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a regular computer. Quantum physics, a more fundamental description of
the world we live in, is probabilistic. The laws of quantum mechanics yield
the probability amplitudes with which a system evolves from a given state
to the next. Thus for a given configuration of the system we need to store
the probabilities to every possible configuration a small time step later. This
leads to exponential growth of the computation power as the system size
is increased. Simulating quantum systems rapidly becomes intractable on a
classical computer [56]. A way out was suggested by R. Feynman

“Let the computer itself be built of quantum mechani-

cal elements which obey quantum mechanical laws.”

R. P. Feynman, Int. J. Thoer. Phys. 21, 467-488 (1982)

This led to the development of quantum computing introduced in the pre-
vious section, but also to quantum simulations [57]. The problem is simple:
we wish to know some properties, e.g. a state or an observable, of a quan-
tum system evolving under the action of a Hamiltonian Ĥsys. Due to the
exponential growth of system size, using a classical computer is impossible.
The solution is to simulate the dynamics of Ĥsys using another, usually more
controllable, quantum system. There is a huge wealth of physics that can
be simulated on different systems ranging from condensed matter physics to
cosmology. A detailed yet non exhaustive list can be found in [57]. Quan-
tum simulations are classified in two types digital and analogue. They are
described below.

1.2.1 Digital Quantum Simulations

The insight of digital quantum simulations is to use the formalism of quantum
circuits originating from quantum computing. Let the Hamiltonian Ĥsys of
the system we wish to simulate be written as

Ĥsys =
M∑

k=1

Ĥk .

In general computing the resulting time evolution Ûsys is a complicated task

since the different Ĥk’s might not commute. However, for a small time step
∆t there exists various approximations for computing Ûsys(∆t) [1]. An ex-
ample is the Trotter formula

Ûsys(∆t) =

M∏

k=1

e−iĤk∆t +O(∆t2) .
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It suggest a circuit approach where each time step Ûsys(∆t) is simulated by

M quantum gates given by Ûk = exp{−iĤk∆t}. This allows for a complex
many-body Hamiltonian to be simulated using two body physics. This comes
as no surprise given that single qubit rotations and a well chosen two qubit
gate form a universal set of gates. The drawback of digital simulations is
that a high number of accurate gates are required to faithfully simulate Ûsys.
Furthermore, it requires good preparation of the input state and a procedure
to find out the quantity of interest from the output state. This makes dig-
ital quantum simulation almost as hard to perform as building a universal
quantum computer.

1.2.2 Analogue Quantum Simulations

Analogue quantum simulations rest upon the idea that a simulating system
Ĥsim mimics the dynamics of Ĥsys. The simulating system should be more
controllable than the simulated system and one should be able to create it
in a laboratory. An analogue quantum simulation would proceed as follows.
First one finds a controllable system with a Hamiltonian Ĥsim that maps to
Ĥsys. An initial state is prepared and evolved with Ĥsim. Measurements of

the evolved state give information on Ĥsys. Consider the following example:

It is suspected that Ĥsys possesses a quantum phase transition. However we
are unable to simulate it classically. Thus building a system that evolves
under Ĥsim, that maps to Ĥsys, creates a test lab where one can try and
observe the suspected quantum phase transition. One advantage of analogue
simulations over digital ones is its advantage to be more resilient against
errors. In a digital quantum simulation the gates need to be highly accurate.
However in an analogue simulation a quantum phase transition could still be
observed even in the presence of noise. For instance neutral atoms trapped
in an optical lattice can simulate the transition between a superfluid state
and a Mott insulator [12]. The former corresponds to the situation where
the atoms are delocalised over the entire optical lattice whilst in the latter
each atom is confined to a specific lattice site. Two dimensional Josephson
Junctions arrays also provide a versatile framework for analogue quantum
simulations [58].

Given their flexibility, circuit QED lattices of superconducting qubits and
strip-line resonators provide a flexible architecture for analogue quantum sim-
ulations [59]. An electrical network is designed and then quantised producing
a specific Hamiltonian whose time evolution we wish to study. In part III
of this thesis we show how to reach the regime of ultrastrong multi-mode
coupling within circuit QED. This is done with a hybrid transmission line.
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We then show how this system can be used as an analogue simulator for the
Spin-Boson model.
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Optimal Control Theory
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Chapter 2

Introduction to Optimal
Control for Quantum Systems

The woods are lovely, dark, and deep, ...

Robert Frost

The last decades have seen the transformation of quantum theory from a
mere description of nature to a tool in research and applications, prominently
in quantum information processing [1], spectroscopy, sensing, and metrology
[60]. Quantum control describes the science of shaping the time evolution
of quantum systems in a potentially useful way [53, 54]. The goal of op-
timal control is twofold. Firstly to guide the time evolution of the system
under consideration into a desired state or along a specific trajectory. This
supposes that the system can be influenced through some external control
field, labelled u(t), and that the performance of the time evolution with re-
spect to the objective can be measured using a fidelity function. Secondly,
optimality is measured with respect to some other quantity. E.g. a time
optimal pulse is a pulse performing the desired evolution in the minimum
amount of time possible. Control parameters typically are parameters of an
external field parametrised in a technologically appropriate way, e.g., into
a quantum logic gate [61], into a higher coherence in NMR [52, 62, 63], or
into states important for sensing [64]. While analytically accessible only in
highly specialised cases, these pulse shapes can in many cases be found using
the powerful mathematical technique of Optimal Control Theory (OCT); by
solving a Schrödinger or master equation iteratively, a pulse shape producing
the desired time evolution can be found [52]. This results in complex pulses
that are used in a wide variety of cases.

The following sections introduce how to perform optimal control for quan-
tum systems with an emphasis towards superconducting quantum bits. It

19
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discusses the time evolution of quantum systems and how to measure fidelity
functions. Finally the GRAPE algorithm performing the control optimisa-
tion based on a gradient search is presented.

2.1 Time Evolution of Quantum Systems

At a microscopic level the laws of nature obey the Schrödinger equation

i~∂t |ψ(t)〉 = Ĥ(t) |ψ(t)〉 . (2.1)

The system’s state is encoded in the wave function |ψ(t)〉 living in the Hilbert
space H. The Hamiltonian encodes the dynamics; it is a Hermitian matrix
whose eigenvalues are the allowed energies of the system. The time evolution
from time t = 0 to t = T is given by the time evolution operator

Û(T, 0) = T exp

{
− i

~

∫ T

0

Ĥ(τ) dτ

}
. (2.2)

T denotes time ordering. The quantum state at T , starting from |ψ(0)〉, is
then |ψ(T )〉 = Û(T, 0) |ψ(0)〉. Due to the Hermitian nature of the Hamilto-
nian the time evolution is unitary and thus reversible since Û−1 = Û †. Many
quantum systems cannot be separated from their environment. To include
the effect of the latter on the former, a master equation is used. Indeed,the
Hilbert space size of the system plus environment is too large for a direct
exponentiation of the Hamiltonian to be possible. In many cases a Markov
assumption is made so that the time evolution of the density matrix follows
ρ(t+dt) = ρ(t) + ρ̇dt. This means that the correlations between the system
and its environment lasting of the order of dt or longer are neglected. The
result is a Master Equation in Lindblad form

ρ̇(t) = − i

~

[
Ĥ(t), ρ(t)

]
+
∑

k

L̂kρ̂(t)L̂
†
k −

1

2

{
ρ̂(t), L̂†

kL̂k

}
. (2.3)

The first part is the Quantum Liouville equation leading to the usual unitary
dynamics. The second part describes how the environment acts on the sys-
tem through the Lindblad operators L̂k. The time evolution of the density
matrix can be found either by using solvers for differential equations or by
vectorisation of the Master equation to obtain a form ~̇ρ = S~ρ which can
then be solved by matrix exponentiation as the Schrödinger equation would
be. In this case, the time evolved density matrix is given by the Liouville
superoperator T (t) and reads ~ρ(t) = T (t)~ρ(0) where

T (t) = T exp

{∫ t

0

S(τ)dτ
}
. (2.4)
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The remainder of this work will be restricted to systems evolving either under
Schrödinger dynamics or following a Lindblad type Master equation.

Quantum Channels

A quantum channel E is any time evolution that maps a density operator
onto another density operator [1]

E : ρ̂in 7→ ρ̂out = E (ρ̂in)

E is a completely positive trace preserving map. The input state and output
states need not necessarily belong to the same Hilbert space, although in most
practical cases they do. A channel of particular interest is the completely
depolarising channel

Λdep (ρ̂) = pρ̂+
1− p

d
1 .

It depolarises the state ρ̂ with probability 1 − p. A useful representation of
quantum channels can be constructed using Choi matrices [65, 66]

CE =
∑

ij

|i〉〈j| ⊗ E (|i〉〈j|) . (2.5)

The Jamiolkowski isomorphism is the map E 7→ CE . This shows that a
quantum channel between a din dimensional Hilbert space and a dout one
can be seen as a density operator in dindout dimensions. The Choi matrix,
however, does not have unit trace like the density operator. In chapter 5, Choi
matrices will be used to construct fidelity measures of quantum channels.

2.2 Fidelity Measures

There are many different ways to measure the fidelity of a quantum pro-
cess. Under unitary time evolution, the fidelity can be measured by the gate
overlap between the target Ût and the gate implemented by the controls Û

ΦQPT =
1

d2

∣∣∣Tr
{
PQÛ

†
tPQÛ

}∣∣∣
2

. (2.6)

The projector PQ allows us to consider only the relevant parts of the Hilbert
space. For instance, when the individual qubits are built out of a Hilbert
space with more than two levels it is often desired to project the time evolu-
tion onto the computational subspace, i.e. the space formed by the qubit’s
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logical |0〉 and |1〉 states. All gates have to be unitary on this subspace oth-
erwise the quantum system being controlled no longer behaves as a qubit;
any population leakage out of the |0〉 or |1〉 states at the end of the gate
will degrade the fidelity [67]. ΦQPT is easily computed numerically given that
the time evolution operator has to be computed when doing OCT. Exper-
imentally retrieving ΦQPT is done through Quantum Process Tomography
(QPT). For n qubits it requires 22n input states each measured with 22n set-
tings [68, 69]. This makes QPT time consuming and unscalable as qubits
are added. Additionally the QPT fidelity will be sensitive to state prepara-
tion and measurement (SPAM) errors. Both of these issues are overcome by
randomised benchmarking (RB), discussed in section 2.2.1. RB provides an
alternative fidelity measure based on the average gate fidelity

FΛ,I =

∫
dV̂
〈
ψ0

∣∣∣V̂ †Λ
(
V̂ |ψ0〉〈ψ0| V̂ †)V̂

∣∣∣ψ0

〉
. (2.7)

It measures how close the error channel Λ on a realised Clifford gate is to
the identity. Λ’s dynamics can include non-unitary processes. The input
state |ψ0〉 can, without loss of generality, be chosen as the ground state. The
average gate fidelity measure relates to the concept of twirling. A twirl with
respect to a measure µ on a set of unitary operators U is a mapping between
linear superoperators Λ 7→ Eµ(Λ) [70] where the operator Eµ(Λ) is defined
by

Eµ(Λ) : ρ̂ 7→
∫

U
dµ(V̂ ) V̂ †Λ(V̂ ρ̂V̂ †)V̂ .

When evaluating the average gate fidelity FΛ,I the measure µ is chosen to be
the uniform probability measure. Thus when sampling the integral, different
matrices V̂ ∈ U are equally probable. Numerically this integral is computed
by building V̂ from a set of uniformly distributed real parameters [71, 72].

There are many more fidelity functions that can be built for quantum
gates. These will not be detailed in the work but some additional examples
can be found in [52, 73, 74]. The ones shown here will be used throughout
the reminder of this work and in some cases new fidelity measures will be
defined that are more suited to a given situation.

2.2.1 Randomised Benchmarking

In superconducting qubits, quantum process tomography is falling out of
favour since evaluating it experimentally is time consuming. However ran-
domised benchmarking is gaining in popularity [75, 76]. It is used to measure
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the fidelity of a realised Clifford gate [77, 78]. The essence is to use a random
sequence of Clifford gates that compose to unity. Measuring the survival of
some input state through many different sequences yields a measure of the
average gate fidelity. The fidelity of a specific Clifford gate can be found
with Interleaved Randomised Benchmarking [79]. A significant advantage of
randomised benchmarking over quantum process tomography is speed and
scalability. This section describes how RB works.

Sequence of Clifford Gates

In experiments a Clifford gate Ĉi comes with some error Λi. The realised
channel is Λi◦Ci : ρ̂ 7→ Λi(Ĉi ρ̂ Ĉ

†
i ) where ◦ denotes composition. Calligraphic

script indicates the channel Ci associated to the unitary Ĉi. Consider a
sequence im = (i1, ..., im) of m + 1 Clifford gates where the last gate inverts
the full sequence Ĉim+1 = (Ĉim · ... · Ĉi1)†. Restricting the sequence to Clifford
gates, defined in section 1.1.1, makes the protocol scalable since the last gate
can be chosen efficiently by the Gottesman-Knill theorem [6]. If each gate
were ideal, this sequence would be the identity, but in practice each gate
has some associated error. For now, to simplify the argumentation, the error
channel Λ is assumed to be time and gate independent. Thus the channel of
sequence im is

Sim =
m+1

©
j=1

Λ ◦ C
ij
= Λ ◦

(
m

©
j=1

C̃ †
ij
◦ Λ ◦ C̃

ij

)
.

By C̃ †
ij
it is understood that the corresponding gate is Ĉ†

ij
. The last step is

possible because {Cij} forms a group. The procedure to find C̃ij from Cij is
shown in [77]. The survival probability of an initial state ρ̂ψ through Sim is

Fi(m,ψ) = Tr {EψSim (ρ̂ψ)} . (2.8)

Êψ is a positive operator valued measurement. Both Êψ and ρ̂ψ are subject

to SPAM errors. In the ideal case Êψ = ρ̂ψ = |ψ〉〈ψ|.

Measuring the Average Error per Gate

To measure how much error Λ introduces, K sequences im of m randomly
chosen Clifford gates are apllied to a state ψ. Averaging over the survival
probability of ψ, defined in Eq. (2.8), yields the average sequence fidelity
Fseq(m,ψ) = Tr {EψSm (ρ̂ψ)}. From linearity of the trace, the average chan-
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nel Sm is

Sm =
1

K

K∑

i=1

Sim = Λ ◦ [W (Λ)]◦m .

In the last step, the number of sequences K should be large enough so that
the average superoperator Sm is a composition of m twirls of Λ [80]. The
Twirl of Λ over the Clifford group Cn is defined as [70]

WClif (Λ) =
1

|Cn|

|Cn|∑

i=1

Ĉ†
i ◦ Λ ◦ Ĉi .

This operation results in the depolarising channel Λdep. Thus Sm takes the
form Λ ◦ (Λdep)

◦m. For the one qubit case, some intuition on WClif(Λ) can
be gained by realising that twirling over the Clifford group corresponds to
averaging the error channel inserted between a rotation and its inverse. If the
error channel is the identity the initial state is recovered. If not, one expects
the coherences in the density matrix to vanish and that there should be no
probabilistic preference over ground or excited state. This suggests that the
output state should be the completely mixed state ρ̂ = 12/2. Generally, the
twirled channel is the depolarising channel Λdep with depolarising probability
1− p such that its average gate fidelity is the same as that of Λ [81]

p+
1− p

d
=

∫
dV̂
〈
ψ0

∣∣∣V̂ †Λ
(
V̂ |ψ0〉〈ψ0| V̂ †)V̂

∣∣∣ψ0

〉
= FΛ,I .

Knowing p gives the average fidelity of Λ and thus the average error per gate.
The average sequence acting on an input state is

Sm(ρ̂ψ) = (Λ ◦ (Λdep)
◦m) (ρ̂ψ) = Λ

(
pmρ̂+

1− pm

d
I

)
.

This gives an expression for the average sequence fidelity

Fseq(m,ψ) = pmTr

{
Eψ

(
Λ(ρ̂ψ)−

I

d

)}
+ Tr

{
Eψ

I

d

}
= Apm +B (2.9)

This is the zeroth order model of randomised benchmarking. The average
sequence fidelity depends on pm and the constants A and B absorb SPAM
errors. The data obtained by measuring Fseq(m,ψ) for different sequence
lengths can be fitted to Eq. (2.9). This yields and experimental measure for
p. Finally the average error per Clifford gate is

r = 1−FΛ,I = 1− p− 1− p

d
.
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This procedure made the assumption that the errors are gate and time in-
dependent. This can be overcome and is done in [77]. The crucial insight
is that twirling the channel Λ yields a depolarising channel with the same
average fidelity as Λ. The overall procedure is sketched in Fig. 2.1.

ρ̂ψ S1m (ρ̂ψ)
Λ11

Ĉ11

Λ1m

Ĉ1m

Λ1m+1

Ĉ1m+1

ρ̂ψ SKm
(ρ̂ψ)

Λ11

ĈK1

ΛKm

ĈKm

ΛKm+1

ĈKm+1

Fseq(m,ψ)

Fseq

m

Figure 2.1: Sketch of randomised benchmarking. Each block is a Clifford gate
with its associated error channel Λij .The survival of ρ̂ψ throughm random Clifford
gates is measured for K gate sequences. Averaging over these K sequences gives
the average survival probability Fseq(m,ψ). Plotting the latter as function of m
and fitting the data to a model yields the average error per Clifford gate.

Interleaved Randomised Benchmarking

The previous section shows how to extract the average gate fidelity of a series
of Clifford gates. Interleaved randomised benchmarking [79] can extract the
fidelity of a specific Clifford gate of interest. The protocol is the following

1. Perform randomised benchmarking with Clifford gates to get their av-
erage error per gate.

2. Repeat the previous step but interleave between each Clifford the gate
of interest U . This is sketched in Fig. 2.2. The complete sequence
should still compose to the identity.

The first step gives the average error per Clifford gate estimated by a de-
polarising channel with probability p. The second sequence is equivalent to
a depolarising channel with probability pU . The error channel ΛU on the
interleaved gate Û has an average gate fidelity estimated by

F (est)

ΛU ,I = 1− (d− 1)(1− pU/p)

d

with d the dimension of the Hilbert space.
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ρ̂ψ Sim
(ρ̂ψ)

Λi1

Ĉi1

ΛU

Û

Λim

Ĉim

ΛU

Û

ΛU

Û

Λim+1

Ĉim+1

Figure 2.2: Modified gate sequence for interleaved randomised benchmarking.

2.3 Pulse Optimisation Algorithms

The strength of OCT is to be able to optimise the fidelity Φ[u(t)] by com-
puting the functional derivative of Φ with respect to the controls. Among
the different algorithms there is the sequential Krotov algorithm [74] and
the concurrent update methods namely GRAPE and a variant based on a
quasi Newtonian method BFGS. In this work the GRAPE algorithm [52]
with BFGS [82–84] is used.

GRAPE

Here is described how the gradient ascent pulse shape engineering (GRAPE)
algorithm works. The systems considered evolve under unitary dynamics.
For superconducting qubits this is a good approximation given that gate
times are typically three orders of magnitude faster than the decoherence
mechanisms [75]. Such mechanisms could be included [83] in the optimisation
but lead to more involved numerics. Instead the effects of decoherence are
naturally accounted for when using model free methods, as suggested in
chapter 6. To optimise the control field, GRAPE pixelises it into N piecewise
constant controls of length ∆T , see Fig. 2.3. The control field uk(t) is
approximated by

uk(t) ≈ ck(t) =
N−1∑

j=0

ukj[Θ(t− j∆T )−Θ(t− (j + 1)∆T )]

where Θ is the Heaviside step function and ukj are the pixels whose values
we seek. The Hamiltonian of the system is then separated into a drift and
control part

Ĥ(t) = Ĥd +
∑

k

ck(t)Ĥk. (2.10)

Each time step j results in the time evolution operator Ûj = e−i∆TĤ(j∆T ) and
the total time evolution from 0 to T is

Û =

0∏

j=N−1

Ûj .
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GRAPE proceeds iteratively by updating the controls according to

u
(n)
k → u

(n+1)
k = u

(n)
k + ε(n) (∇kΦ)

(n) (2.11)

u
(n)
k

T
= (u

(n)
k 0 , ..., u

(n)
kN−1) is the vector of the pixels of control field uk at

iteration n. The gradient of the fidelity at iteration n is (∇kΦ)
(n). The step

size ε(n) is made variable to speed up convergence and allow the algorithm
to make smaller steps when the maximum is almost reached. There are
many different fidelity functions that can be used to optimise Û [52]. In the
subsequent chapters the most often used fidelity function is ΦQPT defined in
Eq. (2.6). For this fidelity the gradient with respect to pixel j of control field
k is

∇kjΦQPT =
2

d2
Re

[
Re

{
PQÛtPQ

∂Û

∂ukj

}
Tr
{
PQÛ

†
tPQÛ

}]
.

This requires the derivative of the time evolution operator

∂Û

∂ukj
=

(
j+1∏

l=N−1

Ûl

)
∂Ûj
∂ukj

(
0∏

l=j−1

Ûl

)
.

The derivative of Ûj can be expressed in the eigenbasis {|nj〉} of the full
Hamiltonian at time step j. The corresponding eigenvalues are {λn}. Here
we give a few intermediary steps on how to do this. The full detail of the
derivation is found in [85]. The starting point is to recognise that

∂Ûj
∂ukj

=
∂

∂u
exp

{
−i∆T

(
Ĥ(j∆T ) + uĤk

)}∣∣∣
u=0

.

The latter is then expressed in the eigenbasis of Ĥ(j∆T ). Using the definition
of the matrix exponential as a power series and setting u = 0 after computing
the derivative yields

〈nj|
∂Ûj
∂ukj

|mj〉 =
∞∑

l=0

(−i∆T )l
l!

l∑

q=1

λq−1
n 〈nj |Ĥk|mj〉λl−qm .

This steps makes explicit use of the orthogonality of the eigenvectors of a
Hermitian matrix. Rearranging the terms yields the final analytic expression
for the gradient

〈nj|
∂Ûj
∂ukj

|mj〉 = −i∆T 〈nj |Ĥk|mj〉
{
e−i∆Tλn nj = mj

e−i∆Tλn − e−i∆Tλm

−i∆T (λn − λm)
otherwise

.
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This last equation gives us the means of analytically performing the update
rule (2.11) without having to resort to time consuming numerical estimations
of the gradient.

t

uk

∆T

0 j N − 1

Figure 2.3: Illustration of the GRAPE algorithm update for a control field. Each
pixel ukj is updated at each iteration by an amount proportional to the derivative
of the fidelity with respect to that pixel. ∇kjΦ is indicated by the arrows whilst
the bars correspond to the values of the pixels ukj at iteration n.

2.3.1 BFGS

Newton’s method searches for the extrema of a function through a series of
quadratic approximations. The insight is that if a function f is quadratic then
from any point xn one can reach the extrema f ′(x) = 0 by performing a step
of size ∆x = xn−f ′(xn)/f

′′(xn). When extending to multi-variable functions
the second derivative is replaced with the inverse Hessian matrix. Quasi-
Newton methods, such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method, rely on the same principle but use an approximation of the Hessian
matrix. When searching for optimal controls, the convergence speed can be
increased by modifying the update rule of Eq. (2.11) so that the step size
is determined by the curvature of the control landscape. This results in the
quasi-Newtonian BFGS update rule

u
(n)
k → u

(n+1)
k = u

(n)
k +H−1

n (∇kΦ)
(n) . (2.12)

The inverse Hessian Hn is given by the update rule

H−1
n+1 = H−1

n − H−1
n yxT − xyTH−1

n

yTx
+
xyTH−1

n yxT

(yTx)2
+
xxT

yTx
(2.13)

where x = vec u
(n)
k −vec u

(n−1)
k is the vectorised difference in all control fields

between iteration n− 1 and n. Similarly y = vec (∇kΦ)
(n) − vec (∇kΦ)

(n−1).
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2.4 Summary

Closed quantum systems follow unitary dynamics according to the Schrö-
dinger equation (2.1). Open quantum systems are described by a density
operator whose dynamics, in the Markovian case, follows a Lindblad master
equation (2.3). The dynamics resulting from a control pulse can be compared
to a target time evolution using various fidelity functions. This fidelity func-
tion can be improved by means of the GRAPE algorithm. It’s main steps
are

1. Initial pulse guess uk(t)

2. Compute the time evolution Û and corresponding fidelity Φ

3. Compute the derivatives ∇kΦ

4. Perform the update rule corresponding either to GRAPE (2.11) or
BFGS (2.12) and (2.13).

5. Iterate starting from point 2.
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Chapter 3

Few Parameter Pulses

The work presented in this chapter shows how, in a selected important
situation, average Hamiltonian theory can be used to help find analytic pulse
shapes. Such pulse shapes are functions with a small number of parameters
and as a consequence are easier to implement since they can be calibrated
by manually tuning a or a few parameters. This will be illustrated within
the framework of 3D transmons where the gain in coherence time comes at
a cost in controllability. This is strongly felt when more than one qubit is
in the cavity. Spectral crowding refers to transitions coming too close to
address them individually. Now with the limited control, even if the logical
transitions are well-spaced, crowding can occur between logical and leakage
transitions, e.g., if the logical transition of the first qubit is close in frequency
to the leakage transition, the transition between a computational and a non-
computational state, of the second qubit. For example when performing an X̂
gate on the first qubit, leakage to second qubit’s |2〉 state will occur. Although
high fidelity gates have been demonstrated with single junction transmsons
in the 2D architecture [55] spectral crowding will limit the gate fidelity in 3D
architectures. In order to mitigate spectral overlap, the Derivative Removal
by Adiabatic Gate (DRAG) technique has been developed [38, 86]. We will
apply this technique to the problem at hand and show that on its own it is
of limited success. We will then combine DRAG with a sideband drive to
show how to do these single-qubit gates fast.

In this work we thus address the issue of spectral crowding with optimal
control theory methods. To better illustrate the problem and show the effec-

Chapter published in “R. Schutjens, F. Abu Dagga, D. J. Egger & F. K. Wilhelm,
Phys. Rev. A 88, 052330 (2013)”. The main discovery of the Wah-wah pulse was made
by F. Abu Dagga, R. Schutjens finalised the work. D. J. Egger provided research insight,
pulse robustness analysis and supervision.
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tiveness of the analytical pulses we introduce specific gate fidelity functions
in section 3.2. In section 3.3 we demonstrate the limitations of the DRAG
technique alone for this problem. We then present an analytical pulse, found
through the Magnus expansion [87], capable of minimising leakage out of the
computational subspace of both qubits in section 3.4.

3.1 Frequency Croweded Transmons

Optimised superconducting qubits such as 3D transmons are well described
by weakly anharmonic oscillators [38, 88]. A realistic model of the qubit
has to take at least one extra non-computational level (a leakage level) into
account [76, 89, 90]. This is reflected in the following Hamiltonian for two
superconducting transmon qubits in a common 3D cavity

Ĥ (t) =

2∑

k=1

[
ωkn̂k +∆kΠ̂

(k)
2

]
+ Ω(t)

2∑

j=1

[
λ
(1)
j σ̂

x(1)
j,j−1 + λ

(2)
j σ̂

x(2)
j,j−1

]
. (3.1)

The 0 ↔ 1 transition frequency and number operator of qubit k are, respec-
tively, ωk and n̂k =

∑
j j |j〉〈j|

(k). We call the transition from the excited state
|1〉 to the extra state |2〉 the leakage transition. It is detuned from ωk by the
anharmonicity ∆k. In the remainder of this work we assume ∆1 = ∆2 = ∆.
The projectors on the energy levels of transmon k are Π̂

(k)
j = |j〉〈j|(k). The

terms coupling adjacent energy levels of qubit k are

σ̂
x(k)
j,j−1 = |j〉〈j − 1|(k) + |j − 1〉〈j|(k)

and
σ̂
y(k)
j,j−1 = i |j〉〈j − 1|(k) − i |j − 1〉〈j|(k) .

Ω(t) is the drive field and is applied simultaneously to both qubits. The
strength at which Ω(t) drives the 1 ↔ 2 transition relative to the 0 ↔ 1

is given by λ
(k)
j . Table 3.1 show the variables and numerical values used in

simulations [91].
Qubits are usually addressed by frequency selection through pulses tuned

to the respective qubit level splitting. This is necessary whenever the control
field cannot be selectively focused on individual qubits as is the case for
multiple 3D transmons in the same cavity. An eventual implementation of a
quantum computer will consist of many such qubits, probably a whole register
in one cavity. The problem to distinguish different qubits can thus be seen
as a problem of spectral crowding. In transmon systems this can lead to the
0 ↔ 1 transition of the first qubit being very close to the 1 ↔ 2 transition of
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Table 3.1: System parameters as shown in Eq. (3.1).

Qubit 1 Qubit 2

ωk/2π 5.508 5.903 GHz
∆/2π −350 −350 MHz

λ
(k)
1 1 1

λ
(k)
2

√
2

√
2

Qubit 2

ω2

ω1 + δ

∆

Qubit 1

ωdω1

∆

Figure 3.1: Level diagram of the two
qubits. The driving field is set to
have the same frequency as the 0 ↔ 1
transition of first qubit which we wish
to drive. Requiring that the same
transition of the second qubit be far
detuned results in its leakage transi-
tion being only slightly detuned by δ
with 0 ↔ 1 of first qubit.

the second qubit. The frequency difference of these two transitions is named
δ. With δ/2π = 45 MHz, the leakage transition of qubit two is closer to the
driving fields frequency than the leakage transition of qubit one detuned by
∆/2π = −350 MHz. The situation is depicted in Fig. 3.1.

The second term in Eq. (3.1) is the control Hamiltonian, described as a
semiclassical dipolar interaction between the qubits and the classical cavity
field

Ω (t) = ΩX (t) cos (ωdt) + ΩY (t) sin (ωdt) .

Both quadrature envelopes can be modulated separately. In the reminder of
this work, we assume resonance between the drive and qubit 1, i.e. ωd = ω1.
Single quadrature pulses employ Gaussian shapes Ωg due to their limited
bandwidth [86]. To remove fast oscillating terms we move to another refer-
ence frame and invoke the rotating wave approximation (RWA). The trans-
formation into an appropriate frame is accomplished by the time-dependent
unitary R̂ that acts on the Hamiltonian as

ĤR = R̂ĤR̂† + i
˙̂
RR̂†. (3.2)

Here, R̂ (t) =
(∑

j e
−iω(1)

j tΠ̂
(1)
j

)
⊗
(∑

j e
−iω(2)

j tΠ̂
(2)
j

)
. Transformations into

this type of frame can lead to either the rotating frame with respect to the
drive ωd or the interaction frame by choosing ω

(l)
j = jωd, ω

(l)
j = jω(l) + ∆

(l)
j

respectively. Here, we choose the former. In the rotating frame, we use
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the RWA to neglect the fast oscillating terms such as ±2ωd. The system’s
original Hamiltonian, given by Eq. (3.1), is now

ĤR = ∆Π̂
(1)
2 + (δ −∆) Π̂

(2)
1 + δΠ̂

(2)
2 +

ΩX (t)

2

2∑

j=1

[
λ
(1)
j σ̂

x(1)
j,j−1 + λ

(2)
j σ̂

x(2)
j,j−1

]

+
ΩY (t)

2

2∑

j=1

[
λ
(1)
j σ̂

y(1)
j,j−1 + λ

(2)
j σ̂

y(2)
j,j−1

]
. (3.3)

3.2 Single Qubit Gates

We aim at applying, up to a global phase φ, a gate on the first qubit without
affecting the second one Ût. = eiφÛ (1) ⊗ 1. Unless otherwise specified Û (1)

is an X̂-gate. A specific control pulse of duration T results in a final gate
given by Û . The fidelity with which a control pulse meets the target gate
is measured by Eq. (2.6). We will also investigate single-qubit gates that
shift the phase of the second qubit. Such gates can be made more efficiently
and we later show how to correct the phase. They can be studied using the
reduced fidelity functions

Φ|∗,i〉 =
1

22

∣∣∣Tr{|0,i〉,|1,i〉}
{
Û †
t.Û (T )

}∣∣∣
2

. (3.4)

The trace is taken over states where the second qubit is exclusively in |0〉
or |1〉. A gate producing a good Φ|∗,i〉 has qubit 2 starting and ending in
state |i〉. The average of the Φ|∗,i〉’s gives a fidelity function insensitive to the
phase of the second qubit

Φavg =
1

2

(
Φ|∗,0〉 + Φ|∗,1〉

)
. (3.5)

In other words, Φavg is maximal if Û(T ) (in the computational subspace of
the two qubits) has the form

Û(T ) = eiα
[
0 1
1 0

]
⊗
[
1 0
0 ei(γ−α)

]
. (3.6)

For a given gate time the phase error can be calculated and subsequently
corrected as this gate is not entangling. In fact, an entangling gate would
be detected by deteriorating Φavg and given that the qubit controls are local
and the two qubits are uncoupled, no entanglement is generated.
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3.3 Applying DRAG

The DRAG method [38, 86, 92] strongly reduces leakage to the |2〉 state with
a two quadrature drive. Here we show that this method does not provide a
sizeable improvement over a single Gaussian envelope. We transform ĤR a
second time along the lines of Eq. (3.2) using the transformation matrix

V̂ (t) = exp

(
−iΩX

2β

2∑

j=1

[
λ
(1)
j σ̂

y(1)
j,j−1 + λ

(2)
j σ̂

y(2)
j,j−1

])
.

This is the two-qubit version of the DRAG transformation [86, 92]. The
parameter β selects which transition is suppressed. A first order expansion
in η = ΩX (t) /β ≪ 1 gives

ĤV = Ĥdiag + ĤY + Ĥ
(1)
X + Ĥ

(2)
X

The diagonal terms are of O(η2), hence Ĥdiag is neglected on our level of

approximation. ĤY contains a term generated by the time-derivative in Eq.
(3.2) as well as the Y drive

ĤY =

(
ΩY (t)

2
+

Ω̇X (t)

2β

)
2∑

j=1

[
λ
(1)
j σ̂

y(1)
j,j−1 + λ

(2)
j σ̂

y(2)
j,j−1

]
.

ĤY can be suppressed by choosing ΩY (t) = −Ω̇X (t) /β. This is the essence
of the DRAG method [38]. The last two terms respectively drive the first
and second qubit according to

Ĥ
(1)
X (t) = ΩX(t)σ̂

x(1)
10 + λ

β −∆

2β
ΩX(t)σ̂

x(1)
21 +

λ∆

8β2
ΩX(t)

2σ̂
x(1)
20 ,

Ĥ
(2)
X (t) = η

β − δ +∆

2β
ΩX(t)σ̂

x(2)
10 + ηλ

β − δ

2β
ΩX(t)σ̂

x(2)
21 +

η2λ∆

8β2
Ω2
X(t)σ̂

x(2)
20 .

Depending on the value of β a specific off resonant transition can be
suppressed. If β = δ the second qubit leakage transition is removed. However,
since δ < ∆ (by a factor > 7 for the numbers in table 3.1) the compensation
field ΩY becomes large and strongly drives the other leakage transitions, i.e.,
introduces errors of a size comparable to what it is suppressing. Note, that
for fast pulses with β = δ the perturbation expansion in [38, 86, 92] naturally
breaks down. Selecting β = ∆ suppresses the leakage transition of the first
qubit, but does not solve the leading spectral crowding issue based on the
smallness of δ. We are explicitly highlighting this in Fig. 3.2. It shows the
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fidelity, as a function of gate time, for the single quadrature Gaussian (thin
lines) and DRAG (thick lines) solutions with β = ∆.

The difference between the fidelity function ΦQPT, Eq. (2.6), and the
special fidelity functions Φ|∗,i〉 and Φavg, Eq. (3.4) and (3.5), show that while

it is difficult to perform an X̂ gate on qubit 1 without affecting qubit 2, we
can implement a high fidelity X̂ gate with an additional phase shift on the
other qubit for T > 42 ns. This marks a time limitation that for DRAG
alone to produce a high-fidelity gate the time needs to be at least on the
boundaries of the adiabatic regime.

|*,0>
|*,1>

Gate Time [ns]
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Figure 3.2: Error for a single control with a Gaussian pulse shape as a function
of gate time and a single quadrature (thin lines) and for the DRAG method with
β = ∆ (thick lines). The DRAG method gives only marginal improvements over
the single quadrature Gaussian pulse shape for Φavg which is slightly lower at the
dip around 42 ns. The DRAG solution shown here is the optimal from picking
β ǫ {∆, δ, δ −∆}.

3.4 Magnus Expansion

Here we show how to find an improved pulse capable of performing the desired
gate faster and with better fidelity. The full effect of system and Hamiltonian
is described by the time evolution operator defined in Eq. (2.2). This can
in general not be computed in closed form even for driven two-state systems
with notable exceptions [93]. Still being unitary, the solution of Eq. (2.2)
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can be written as the exponential of an Hermitian matrix [87]. An expansion
in this effective Hamiltonian gives the Magnus expansion

Û (T ) = e−i
∑

k Θ̂k(T ). (3.7)

The equation above still requires exponentiating a matrix. However the
absence of time ordering considerably simplifies the derivation of an explicit
expression for Û . The Magnus expansion is asymptotic. Here, it converges
quickly as nested integrals lead to cancellations of fast oscillating terms. The
constraints on the controls set by the zeroth order in the expansion will thus
be most important. The first terms in the expansion are given by [87]

Θ̂0 (T ) =

T∫

0

dt Ĥ(t),

Θ̂1 (T ) =− i

2

T∫

0

dt2

t2∫

0

dt1

[
Ĥ (t2) , Ĥ (t1)

]
.

[Ĥ (t2) , Ĥ (t1)] is the commutator of the Hamiltonian at different times.
Higher order terms in the expansion can be worked out as nested commuta-
tors similar as those shown above.

We start with the system in the interaction frame (the transformation is
given in section 3.1)

ĤI =
ΩC
2

2∑

j=1

[
λ
(1)
j e−iδ

(1)
j t |j − 1〉〈j|(1) + λ

(2)
j e−iδ

(2)
j t |j − 1〉〈j|(2)

]
+ h.c.

Here we have combined ΩC = ΩX + iΩY and set δ
(1)
1 = 0, δ

(1)
2 = ∆, δ

(2)
1 =

δ −∆, and δ
(2)
2 = δ. In the interaction frame, the Hamiltonian is purely off-

diagonal and the desired gate is changed by a phase on the |1〉 state of the
second qubit. This phase is known since any unitary transformation V̂ (t),
transforms the time evolution following ÛV (T ) = V̂ (T ) Û (T ) V̂ † (0). In Eq.
(3.8) UF transforms in this way. If the zeroth order term is to implement the
gate, the control problem becomes

ÛF = e−iΘ̂0 = e−i
∫ T

0
dt ĤI (t). (3.8)

As an aside, this highlights why Θ0/T is often called the average Hamiltonian
and

∑
k Θ̂k(T )/T the effective Hamiltonian in NMR [87]. This and the form
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ĤI imposes restrictions on the control ΩC

1

2

∫ T

0

dt ΩC = π (3.9)

1

2

∫ T

0

dt e−i∆tΩC = 0 (3.10)

1

2

∫ T

0

dt e−iδtΩC = 0 (3.11)

1

2

∫ T

0

dt e−i(δ−∆)tΩC = 0 (3.12)

These constraints are the Fourier transforms of the control evaluated at the
different detunings in the system as is familiar from spectroscopy at weak
driving [87, 94–96] but here derived under intermediate-to-strong drive con-
ditions. They state that the control should contain no power at the off-
resonant frequencies. If ΩC is palindromic the complex conjugated equations
are also satisfied. If equations (3.9-3.12) are met, the final unitary evolution
will be eiφσ̂x ⊗ 1.

So that the zeroth order implements the gate, higher order terms have to
be zero. Here is an example of the first order term Θ̂1. It only gives extra
terms on the diagonal and the 0 ↔ 2 transition. This calculation is quite
involved and here is an example of the term involving |01〉〈01| (neglecting
terms oscillating faster than δ)

〈01|Θ̂1 (T ) |01〉 =
1

4

∫ T

0

dt2

∫ t2

0

dt1Ω(t1, t2)

× [1 + cos (δ (t1 − t2))− sin (δ (t1 − t2))] ,

with Ω(t1, t2) = ΩX (t2) ΩY (t1)−ΩX (t1)ΩY (t2). In the spirit of the Magnus
expansion, all slow oscillating terms have the form above and are negligible
if their integral is small. This suggest a control pulse where ΩX is modulated
with a sinusoidal function

ΩX =Aπe
− 1

2σ2 (t−T
2 )

2
(
1−A cos

[
ωx

(
t− T

2

)])
,

ΩY =− 1

β
Ω̇X .

(3.13)

This is a Gaussian with added sideband modulation on the in-phase part
ΩX supplemented by DRAG on the quadrature ΩY . A frequency modulation
with cos(ωxt) for a bandwidth of Ωg < 2ωX can be seen as adding an effective
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drive at ωX proportional to Ωg. This added drive can be used to counteract
the population transfer of a specific transition. The absolute errors of Eqs.
(3.10-3.12) are minimised by varying A, ωx, β yielding a pulse with a sideband
modulation of δ/2

ΩX =Aπe
− 18

T2 (t−T
2 )

2
(
1− cos

(
δ

2

(
t− T

2

)))
,

ΩY =− 1

2∆
Ω̇X .

(3.14)

Here we chose σ = T/6. The factor of 2 in the denominator of ΩY comes
from the absence of control over the qubit frequency [86]. This is shown
experimentally in ref. [97, 98]. The pulse is shown in Fig. 3.3 for T = 17 ns
and other parameters given by the values in table 3.1. In order for the pulse
to produce the X gate Aπ should be chosen so that relation (3.9) is satisfied.
Given the shape of the pulse, we nickname this shape Weak AnHamonicity
With Average Hamiltonian, WAHWAH [99].

3.4.1 Sideband Modulation
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Figure 3.3: Example of the control func-
tions of Eq. (3.13) for T = 17 ns. The
amplitude of ΩX is somewhat smaller
than for a Gaussian only pulse used in
figure 3.2.

The solid black line in Fig. 3.4 shows
the error of pulse (3.14) as function
of gate time. Compared to the Gaus-
sian and DRAG results, the error
has a minimum ( 4%) at a shorter
gate time, around 20 ns. The re-
duced fidelity functions Φ|∗,i〉 (red
and blue lines) and Φavg (grey line)
give additional insight by allowing a
phase shift on qubit 2. Comparing
to Fig. 3.2, it is seen that the side-
band modulated pulse attains a high
fidelity (> 99.9%) in less than half
the time (17 ns compared to 42 ns)
of the Gaussian or DRAG solutions.
The 1 ↔ 2 transition of the second
qubit is still the limiting factor since
the reduced error 1−Φ|∗,1〉 is always
the biggest. Nonetheless for a specific gate time a high fidelity is possible.

The state populations during the pulse reveal the underlying mechanism.
Figure 3.5 shows the populations for gate times 17 and 20 ns. In the latter
there is still a net population in the |2〉 state of the qubit 2 after the gate.
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fidelity functions are defined in Eqs. (2.6), (3.4) and (3.5).

For the former, there is no net change to the second qubit at the end. This
suggest that the the drive on the second qubit makes it perform a closed
transition cycle in the (|1〉 , |2〉) subspace, thus acquiring a local phase.
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Figure 3.5: Populations of the states during the pulse sequence of Eq. (3.14) for
gate time of 17 ns (a), and 20 ns (b). At 20 ns the pulse sequence clearly leaves
part of the excitation in the {|1〉 , |2〉} subspace of qubit two, while at 17 ns the
trajectory is optimal in the sense that no net population transfer is present on
qubit two.

Finally we note in this section that the method worked out here is not the
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only way to determine new analytical results for pulse shapes. In general,
the different terms of Eq. (3.7) need to combine into the correct gate in
some manner, whereas we have enforced that this combination consists of
all terms beyond the lowest one to vanish. Our approach has the advantage
that it produces an intuitive result, providing frequency selectivity criteria
Eqs. (3.9,3.10,3.11,3.12) in the form of the Fourier transform of the driving
pulse.

3.4.2 Phase Correction
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Figure 3.6: Phases as defined in Eq.
(3.6) of the gate with the control se-
quence from Eq. (3.14). It is by these
phases that the qubits or the subsequent
gates need to be corrected.

The average reduced fidelity (3.5) is
insensitive to the phase of the sec-
ond qubit and leads to a gate of the
form of Eq. (3.6). This phase error
does not influence population mea-
surements after the gate; only the X
and Y component have different con-
tributions. The global phase α and
the phase error γ for specific gate
times are plotted in Fig. 3.6. One
can correct for this error in multiple
ways. If there is a Z control available
on the separate qubits [45] one can
simply compensate the phase follow-
ing

π

2
=

∫
Z1 (t) dt

α (T ) =

∫
Z2 (t) dt

Instead of compensating the qubit phase, one can adjust the phase of the
next gate in the XY -plane accordingly. This is possible because the phase
error is constant given a set gate time, as shown in Fig. 3.6. In essence this
is the same as changing the frame in the XY plane according to

X ′ = cos (α (T ))X + sin (α (T )) Y

Y ′ = − sin (α (T ))X + cos (α (T )) Y.

This technique is analogous to phase ramping as described in Refs. [38, 86]
The phases in the leakage states are irrelevant, it is thus sufficient to correct
the computational subspaces of the qubits individually.
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3.4.3 Experimental Protocol

The procedure to implement the pulse on an actual experiment is

• Use spectroscopy to determine the qubit frequencies, yielding δ and ∆.

• Equation (3.14) gives the shape of the pulses for all possible gate times
T . The normalisation parameter Aπ is chosen so that the area theorem,
Eq. (3.9), is satisfied, which in general requires numerical root finding.

• The gate time T is chosen so that the pulse sequence optimises the
reduced average fidelity defined by Eq. (3.5).

• With the gate time known, the phase offset α(T ) is computed, so that
it can be corrected according to the procedures given in section 3.4.2.

3.5 Conclusions

We have found numerical as well as analytical pulse shapes implementing
single qubit gates in a 3D cavity coupled to two single junction Transmons.
Such qubits are typically hindered by spectral crowding whereby leakage
transitions lie close in frequency to main qubit 0 ↔ 1 transitions. We com-
bine average Hamiltonian theory for arbitrary waveforms with the DRAG
methodology. This shows that it is possible to find better controls using a
sideband modulation.



Chapter 4

Multiparameter Pulses

The previous chapter showed a case where the target gate can be reached
using an analytical pulse derived based on frequency selection criteria. The
following chapter presents a case where their is significant gain in using a
numerical pulse where each pixel is an individual parameter. These numerical
pulses can be significantly faster. This is a big gain since gate speed helps
mitigate the effects of decoherence. Additionally if a full scale quantum
computer were to be built many quantum operations have to be performed
and thus gate speed is crucial to limit computation times [100]. Furthermore,
numerical pulses are designed with the full Hamiltonian; they don’t require
certain approximations to be made so that an analytical understanding of
the pulse can be reached. In some cases this allows the pulse to reach a
higher intrinsic fidelity.

In this chapter we show how OCT can improve on the analytical Wah-
Wah pulse of chapter 3. The resulting pulses can be of arbitrary speed and
don’t suffer the phase problem. However, the main focus of this chapter will
be to apply optimal control to find a fast and accurate pulse shape to speed
up a controlled-Z gate between two qubits connected by a resonator [101–
110]. The setting is motivated by superconducting qubits but has analogies
in atomic physics [111], quantum dot [112, 113], and other resonator-based
systems. We demonstrate the feasibility of these pulses by taking into account
bandwidth limitations imposed by the experiment and provide a methodology
for removing systematic errors that can practically affect the application of
the control pulse. In chapter 4.2 we describe the system setting as well as
conventional analytic methods [114] to create CZ gates. Here we show that
those constructions are strongly limited by low qubit anharmonicity. Sec.
4.3 describes the implementation of optimal control to this system and its
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results and Sec. 4.4 discusses potential error sources and their mitigation.

4.1 Numerical Optimised Wah-Wah Pulses

By using numerical methods one can go beyond the analytic methods dis-
cussed in the last chapter. Here is discussed how further improvements can
be made with the GRAPE algorithm. The system of Eq. (3.3) is numerically
optimised using the parameters in Tab. 3.1. Figure 4.1(a) is an example of a
short (4 ns) high fidelity (99.999%) GRAPE pulse. This pulse has T ≪ π/δ
and therefore the smallest spectral crowding frequency scale δ does not im-
pose a quantum speed limit. The limit rather seems to be set by the number
of control parameters available. E.g., we have verified that if the size of a
time step is 1 ns as in current experimental equipment, the shortest possible
time is 8 ns. From numerical results we have not observed a quantum speed
limit. By decreasing the gate time the pulse can be shortened at the expense
of higher amplitudes. The pulse in figure 4.1(a) has large amplitudes at t = 0
and t = T . These can be removed by adding penalties to the fidelity used by
GRAPE [67]. Only a small increase in gate time is usually needed to enforce
pulse sequences to start and end at zero amplitude. The numerical results
show that no speed limit is set by the overlap of the control field in the
frequency domain with different qubit transitions. Additionally, numerical
pulse sequences don’t leave a phase error on the second qubit, eliminating
the need for post-processing. The pulse sequence presented in fig. 4.1(a)
is an illustration of an extremely fast control. It highlights the theoretical
bounds of control speed in this system, however, its bandwidth is larger than
the capabilities of typical arbitrary waveform generators. Optimising pulses
with longer gate times in GRAPE results in controls with less spectral weight
at high frequencies. This can be seen in fig. 4.2(a) which is much slower but
has almost all it’s spectral power below 500 MHz.

Numerical pulses are designed by gradient ascent, thus optimal pulses
enjoy the property ∇kjΦQPT ≃ 0, i.e. the first derivative of the fidelity with
respect to control k and pixel j of the optimal solution is small, ideally zero
if the optimum is found [61, 115]. In practice, one still has to investigate the
sensitivity against timing and amplitude errors. To study this we dilate the
length of each pixel by an amount η, i.e. ∆t→ η∆t and add white Gaussian
noise to the amplitude of each pixel. The standard deviation of the noise
is σnoise. The fidelity, averaged over the different noise realisations is shown
in Fig. 4.1(b). The region of high fidelity (ΦQPT > 99.9%) indicates that
the pulse is somewhat robust against parameter uncertainty, in particular
against slight errors in the pulse amplitudes. This is in particular important
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Figure 4.1: (a) Example of a numerically optimised pulse for gate time T = 4 ns
and ∆t = 10ps. The pulses for shorter gate times are highly oscillating. The ΩY
control is usually not proportional to the derivative of ΩX highlighting at least a
higher order of DRAG[38, 86]. (b) Study of the effect of errors on the pulse. The
error amplitude ∆Ω is the standard deveation of the Gaussian distribution used to
add noise to the pixels. The pixel time dilation error η is the percentage by which
each pixel length is varied.

if the AWG implementing the pulse is digital.
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Figure 4.2: (a) Solution found by GRAPE for a long gate time, here ∆t = 0.01ns
and T = 130 ns. The dotted line shows a rescaled version of the derivative of the
ΩX control. (b) Fourier transform of the pulse shown in (a) found by GRAPE.

To get insight for the shape of the solutions we run the GRAPE al-
gorithm for short time steps and longer gate times to increase the resolu-
tion of the discrete time Fourier transform (DTFT). These solutions show
rapid oscillations, Fig. 4.2(a). The DTFT of the pulse sequence shows
that both quadrature components have contributions at the energy split-
tings δ, δ −∆, ∆, 2δ −∆. This shows that the numerical solution augments
the one based on the Magnus expansion by adding small further sideband
drives. When going to shorter gate times Fourier analysis shows that the con-
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tribution of the higher frequency components increases, making the Fourier
transform less useful due to the lower frequency resolution. For faster pulses
one could suggest that adding more sideband modulations could improve the
results further.
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4.2 Qubit-Resonator-Qubit Architecture

Bus Q2

|0〉

|1〉

|2〉

δ2(t)

∆2

Q1

δ1(t)

∆1

Frequency

Figure 4.3: Sketch of the system
where each element has three levels.
The bus is harmonic and the qubits
have anharmonicity ∆k.

In many potential architectures for a
quantum computer, the qubits are con-
nected by strip-line resonators [116].
The strong coupling between qubit and
resonator allows many Rabi oscillations
before the quantum states decohere. In
the following ~ = 1. The system of in-
terest is made of two qubits coupled to a
bus resonator, the qubits are sufficiently
far apart so that their direct coupling
can be neglected. They are modelled by
three level non-linear oscillators. The
third level accounts for leakage and in
the case of the CZ gate can be popu-
lated to perform the gate. The individual qubit Hamiltonians are

Ĥqk = ∆k |2〉k k〈2|+ ωk σ̂
+
k σ̂

−
k ,

σ̂+
k and σ̂−

k respectively create and destroy one excitation in qubit k, σ̂±
k =∑

n |n± 1〉k k〈n|. ωk is the 0 ↔ 1 transition frequency and ∆k is the an-
harmonicity. The bus, with transition frequency ωb, is harmonic and posses
three levels: Ĥb = ωbâ

†
bâb. The dipolar coupling strength between the bus

and qubit k satisfies gk ≪ ωk and therefore the rotating wave approximation
holds. The system’s total Hamiltonian in this approximation is

Ĥ = ωbâ
†
bâb +

2∑

k=1

[
∆k |2〉k k〈2|+ ωk σ̂

+
k σ̂

−
k +

gk
2

(
σ̂+
k âb + σ̂−

k â
†
b

) ]
.

By the transformation ĤR = R̂†ĤR̂− i
˙̂
R†R̂ where

R̂ =

(
2∑

j=0

exp{−ijωbt} |j〉〈j|
)⊗3

,

we move to the rotating frame in which energies are measured with respect
to the transition frequency of the bus. The Hamiltonian is

ĤR =

2∑

k=1

[
δk(t)n̂k +∆k |2〉k k〈2|+

gk
2

(
σ̂+
k âb + σ̂−

k â
†
b

)]
(4.1)
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where n̂k = σ̂+
k σ̂

−
k is the number operator for qubit k. The time dependence

of the qubit-resonator detuning δk(t) = ωk(t) − ωb is made explicit to indi-
cate the controls. The energy levels are sketched in Fig. 4.3. The Hilbert
space size is 27 dimensional and Hamiltonian (4.1) conserves the number of
excitations. We make use of this to reduce the size of the Hilbert space since
only computational states — states in which the qubits have at most one ex-
citation — are of interest as well as the states that can be reached from these
computational states. Therefore we only need to study the 10 states with at
most 2 quanta. The model is valid for transmons [33] and phase qubits [25].
When dealing with the latter, the anharmonicity is a function of the qubit
transition frequency and therefore a function of the controls ∆k = ∆k(δk(t)).
However for transmon qubits in the limit of large Josephson energy to charge
energy it can be kept constant [33] to sufficient precision.

4.2.1 Analytic CZ Gate

In the Qubit-Bus-Qubit system, the entangling gate needed to form a univer-
sal set of gates, is the CZ defined by |ij〉 7→ (−1)ij |ij〉. It is realised with 2
iSWAPs and a conditional rotation through a |2〉 state [114]. A sketch of the
pulse sequence is shown in Fig. 4.4. The 2π rotation through the |2〉 state
only takes place when both qubits are in the |1〉 state and leaves a phase of π
onto that state; this can entangle the qubits. This 2π rotation is referred to
as the Strauch gate [117]. This sequence is slow due to the shifting of states
in and out of the resonator. An improved analytic pulse sequence based on
few parameters has been found in Ref. et al. [110]. This work considers an
alternate approach based on numerical methods.

Frequency

Time

iSWAP Controlled-Z iSWAP

U

U

B

Q2

Q1

Figure 4.4: Sketch showing how the qubit’s frequency is changed as function of
time to create a CZ gate.
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4.2.2 Limitations from Weak Anharmonicity

The fidelity of a Strauch gate is degraded by the presence of other levels in
the system. To illustrate this we consider a simplified model compared to
Hamiltonian (4.1); a three level anharmonic qubit coupled to a resonator

ĤQB = ωb

(
â†â + σ̂+σ̂−)

︸ ︷︷ ︸
ĤI

+ δσ̂+σ̂− +∆ |2〉 〈2|+ g

2

(
σ̂+â + σ̂−â†

)

︸ ︷︷ ︸
ĤII

where δ = ωq − ωb. This Hamiltonian conserves excitation number and thus
is block diagonal with at most 3x3 blocks. For the block with n excitations
ĤI is diagonal with identical values of nωb. Focusing on n = 2 the bare states
are |2, 0〉, |1, 1〉 and |0, 2〉. The Hamiltonian is

Ĥ(2) =



2ωb + 2δ +∆

√
2g 0√

2g 2ωb + δ
√
2g

0
√
2g 2ωb


 . (4.2)

T
ra
n
si
ti
on

E
n
er
gy

[G
H
z]

11.9

12.0

12.1

12.2

12.3

12.4

|1, 1〉

|0, 2〉

|2, 0〉
-100 0 100 200

Detuning ωq − ωb [MHz]

∆ = −75 MHz

(a)

T
ra
n
si
ti
on

E
n
er
gy

[G
H
z]

12.0

12.1

12.2

12.3

12.4

12.5

12.6

|1, 1〉
|0, 2〉

|2, 0〉

-100 0 100 200 300

Detuning ωq − ωb [MHz]

∆ = −250 MHz

(b)

Figure 4.5: Energy of the dressed states in the three level Jaynes-Cummings
model with ωb = 6.1 GHz and Tswap = 12 ns, i.e. the time it takes to swap a single
excitation between the qubit and the bus. The three light black lines indicate the
bare states whilst the vertical black line is −∆/2. (a) Dressed states with −75
MHz anharmonicity and (b) dressed states with −250 MHz anharmonicity.

Figure 4.5 shows the eigenvalues of Ĥ(2) for two different anharmonicities.
The fine black lines represent energies of the uncoupled system, i.e. the bare
states. A CZ gate is made by a 2π rotation through the qubit’s second excited
state i.e. |1, 1〉 	 |2, 0〉. This is made possible by the anti-crossing indicated
by the vertical black line in Fig. 4.5. This is when the qubit’s |1〉 ↔ |2〉 tran-
sition is on resonance with the bus. The additional level |0, 2〉 is an unwanted
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state; any population entering it will decrease the gate’s fidelity. Hamilto-
nian (4.2) shows that, the larger the anharmonicity is, the further away the
|0, 2〉 state is detuned. To clearly see it’s influence, the time evolved popu-
lations, shown in Fig. 4.6, are computed with δ = −∆ and for two different
values of ∆; one small and one large. When ∆ is small, the Strauch gate
performs badly as shown by Fig. 4.7. With −250 MHz anharmonicity the
leakage to |0, 2〉 is at maximum 5%, this is still large. Figure 4.7 shows that
the phase difference at the end of the 2π rotation between the time evolved
state looping from and to |1, 1〉 and the reference exp{−i(2ωb −∆)t} has a
small deviation from π. The discrepancy is due to leakage to the |0, 2〉 state.
Such phenomena and multi-step swapping warrant a numerical approach to
the problem of CZ gate design in the Qubit-Bus-Qubit architecture where
the full Hamiltonian up to n = 2 quanta is considered. Algorithms that
maximise fidelity such as GRAPE and the quasi-Newton BFGS method [82]
naturally suppress leakage which decreases fidelity [67] as defined.
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Figure 4.6: Time evolution of the populations computed using the spectrum of
Fig. 4.5 at δ = −∆. Time is normalised to the duration of a 2π rotation through
the qubit’s |2〉 state. If the anharmonicity is too small the effect of the second
state of the bus will be large. This degrades the fidelity of the Strauch gate. (a)
Population against time with −75 MHz anharmonicity and (b) population against
time with −250 MHz anharmonicity.

4.3 Controlled-Z Gate Design by OCT

This section describes the GRAPE implementation to the problem at hand.
We show how to deal with the effect of the electronics and how to include the
non-linear behaviour of the anharmonicity arising when using phase qubits.
We then apply gradient ascent to systems with different parameter values
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∆)t}. The discrepancy at the end of the gate is due to the presence of the unwanted
|2〉 state of the bus.

to illustrate key features of the system. We also benchmark the numerical
pulses on a system corresponding to real qubits. Since only unitary evolution
will be considered, the overlap between the target Ût and achieved gate Û ,
defined in Eq. (2.6) serves as a fidelity function.

4.3.1 Including Electronic Transfer Functions

The arbitrary waveform generator (AWG) creating the control pulses has a
limited bandwidth. Additionally the lines and remaining electronics between
the AWG and qubits can distort the pulses. For this reason, the input control
sent to the AWG will differ from the control applied by the qubits. In good
approximation, this transfer is described by a linear causal transfer function
[118]. When optimising the pulse shapes it must be ensured that the result
is experimentally feasible. However the nature of the problem would require
including numerical derivatives of measured transfer function data in the
pulse optimisation. We avoid numerical derivatives by convoluting the pulses
with a Gaussian to suppress high frequencies

δqubit(t) =

∞∫

−∞

exp

{
−(t− τ)2

2σ2

}
δ(τ)dτ . (4.3)

δqubit is the pulse shape that the qubit should see. The gradient is found with
the chain rule [119]. The standard deviation σ should be chosen to reflect
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the capabilities of the AWG. In an experimental implementation, it would
be necessary to deconvolve the pulse in the qubit control software to take
into account the true transfer function, which typically must be measured.
If the bandwidth of the pulse given by the optimisation algorithm is small
as guaranteed by our filtering procedure, then this deconvolution is easy and
pulse shapes remain feasible.

4.3.2 Frequency Dependent Anharmonicity

When optimising pulses for a system where part of the Hamiltonian depends
non-linearly on the controls the gradient rules of [52] must take the non-
linearity into account. Such a situation can arise when optimising pulses
for phase qubits where the anharmonicity depends non-linearly on the qubit
frequency. Appendix A of [85] shows how to obtain the analytic formula of
the gradient where the Hamiltonian depends linearly on the controls Ĥ(t) =
Ĥd +

∑
k δk(t)Ĥk. Here is shown how to include non-linearities. We assume

that in the Hamiltonian there are some parameters ∆l that depend non-
linearly on the controls, i.e. ∆l = ∆l({δk(t)}). The total Hamiltonian at
time j∆T becomes

Ĥ(j∆T ) = Ĥd +
∑

k

δkjĤk +
∑

l

∆l({δkj})Ĥl,nl . (4.4)

The gradient of the time evolution operator Ûj of time-slice j, with respect
to pixel δkj of control k, is only sensitive to small variations around the
value assumed by that pixel. Therefore we linearise the Hamiltonian at each
iteration. If pixel kj assumes the value δ

(n)
kj at iteration n the Hamiltonian

can be approximated by Ĥ(j∆T ) ≃ Ĥ ′
d +

∑
k δkjĤ

′
k where the drift and

controls of this linearised Hamiltonian are

Ĥ ′
d = Ĥd +

∑

l

∆l

({
δ
(n)
kj

})
Ĥl,nl , (4.5)

Ĥ ′
k = Ĥk +

∑

l

∂∆({δkj})
∂δkj

∣∣∣∣
δ
(n)
kj

Ĥl,nl . (4.6)

This enables us to compute the gradient using the rules given in [52, 85]. At
each iteration the control fields change and so do the linearised Hamiltonians
Ĥ ′
d and Ĥ

′
k.

In the case of phase qubits, the dependency of the anharmonicity ∆k on
the qubit frequency δk can either be found numerically with a discrete variable
representation [120] of the qubit’s full potential or through measurement with
high-power spectroscopy [69].



4.3. CONTROLLED-Z GATE DESIGN BY OCT 53

Time [tg]

Q
u
b
it
-B

u
s
D
et
u
n
in
g
[g
]

δ1(t) δ2(t)

1098765432

2

1

1

0

0

-1

-2

(a)

 0.1

Frequency [ωb]

N
or
m
al
is
ed

P
ow

er δ1(ω)

δ2(ω)

g/2

1

1

0

0.4

0.6

0.8

1.2

1.4

0.1

0.010.001

(b)

Figure 4.8: (a) Control pulses for a gate time slightly above TQSL. (b) Discrete
Fourier Transform of (a) showing that most of the spectral power is at small
frequencies of order g.

4.3.3 Numerical Results

Here we assume that both qubits have the same anharmonicity ∆1 = ∆2 =
∆ = −0.1ωb and coupling g1 = g2 = g = 0.02ωb. Time will be indicated in
dimensionless units of tg with g in radians s−1. The desired gate fidelity is
1 − 10−4. At the start and end of the gate both qubits are far of resonance
at their parking frequencies. This is included in the code by adding several
buffer pixels, held at a constant detuning, before and after the gate.

The control pulses, found without Gaussian convolution, for a gate time
of 9 tg are shown in Fig. 4.8(a). Figure 4.8(b) shows the Discrete Fourier
Transform (DFT) of these pulses: most of the oscillations in δ1(t) and δ2(t)
have frequency components of the order of the qubit-bus coupling constant
g/

√
2. This is because the CZ gate is made using |2〉 states.
Figure 4.8 shows that the controls for qubit two oscillate at much larger

amplitude than those for qubit one. We will later demonstrate that qubit
2 and the resonator populate their |2〉 states similar to the Strauch gate
in the pulse sequence. As the CZ gate is symmetric under the exchange
of qubits, a control-target terminology to distinguish these qubits would be
inappropriate. Instead, the qubit with smaller oscillations will be referred to
as Ginger whereas the other will be called Fred. The next section explores
what motivates the symmetry breaking apparent in these pulses

Effect of Anharmonicity

As just stated, the CZ gate is symmetric under qubit exchange, however, the
underlying Hamiltonian need not be. The main aspect breaking the symme-
try is the anharmonicity of the qubit. This was studied with several different
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combinations of qubit anharmonicities: ∆1,∆2 ∈ {−0.1,−0.2,−0.3}. The
allowed gate time was 9 tg. Because the Strauch method uses the |2〉 state
of the bus, the more linear qubit takes on the role of Fred since it is easier
to drive the |1, 1〉 ↔ |0, 2〉 transition with the bus.The reason is: the greater
the anharmonicity, the greater the qubit has to move away from the δ = 0
qubit-bus resonance, which is also crucial for |0, 1〉 ↔ |1, 0〉 exchanges. Fig-
ures 4.9(a) and 4.9(b) show two pulses for which (∆1,∆2) = (−0.3,−0.1) and
(∆1,∆2) = (−0.1,−0.3) respectively. In both cases the search was nudged
by means of asymmetric initial conditions, to choose qubit two as Fred. In
the first case when the most linear qubit was chosen as Fred the target gate
error of 10−4 was reached. When the wrong qubit was assigned as Fred in
the initial conditions, the code was not able to reach the target gate fidelity
reaching only 1 − ΦQPT ≃ 5.5 · 10−3. The choice as to which qubit assumes
which role can either be enforced through asymmetric initial conditions or
left up to GRAPE/BFGS with symmetric initial conditions. In the latter
case the algorithm converges slower in the initial steps. The anharmonicity
of Ginger does not play such an important role as Fred’s. Figure 4.8 shows
a pulse with (∆1,∆2) = (−0.1,−0.1). The pulse of Fred is almost identi-
cal to the one in Fig. 4.9(a). However since Ginger is more linear than in
Fig. 4.9(a) its control pulse has picked up some additional modulation which
could be interpreted as to minimise leakage to the qubit |2〉 state.

The populations associated to the pulse shown in Fig. 4.9(a) are displayed
in Fig. 4.10; the |2〉 state of the bus is highly used. Some of the excitation is
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Figure 4.9: Comparison of the choice of Ginger and Fred. (a) (∆1,∆2) =
(−0.3,−0.1). Qubit 2, chosen as Fred, is the most linear. The optimisation was
successful reaching ΦQPT = 99.99%. (b) (∆1,∆2) = (−0.1,−0.3). Qubit 2, chosen
as Ginger, is the most linear. The optimisation was unsuccessful reaching only
99.95%. In both cases asymmetric initial conditions were used to force GRAPE
to chose qubit 2 as Fred. Only the case shown in figure (a) resulted in good
convergence.
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transferred to the |2〉 state of Fred but the |2〉 state of Ginger remains empty,
confirming our interpretation of the role of both qubits.

<00,2|U+ρU|00,2>

<01,1|U+ρU|01,1>
<02,0|U+ρU|02,0>

<10,1|U+ρU|10,1>
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<20,0|U+ρU|20,0>
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Figure 4.10: Populations assuming the input state is ρin = |11, 0〉 〈11, 0| for the
pulse of Fig. 4.9(a). It shows that the |2〉 state of the bus is highly solicited to
realise the CZ gate. However the |2〉 state of the most non-linear qubit is not used
at all.

However the pulses need not be asymmetric. If both qubits are identical
and the initial conditions are symmetric, the resulting pulse sequence will be
symmetric. Such a symmetric pulse is shown in Fig. 4.11.
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Figure 4.11: Control pulse with
perfect fidelity (up to machine pre-
cision) for identical qubits and sym-
metric initial conditions. The con-
trol pulses producing the CZ gate
are identical for both qubits show-
ing that the two pulses need not be
asymmetric. The qubit parameters
were g1/2π = g2/2π = 50 MHz and
∆1 = ∆2 = 60 MHz.

Influence of Impulse Response

As can be seen from Fig. 4.8(b) the DFT of the unfiltered pulse has almost
all its power at low frequencies. This suggests that introducing a filter func-
tion in GRAPE should not significantly deteriorate the gate’s performance.
Therefore, in the control landscape, the optimal solutions with and without
filter function should lie close together. The procedure is first to search for
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a pulse without the filter function and then to rerun the optimisation with
the filter function using the previously found pulse as the initial condition.
The Gaussian impulse response has standard deviation of σ ∼= 4 ω−1

b , chosen
so that the 3 dB attenuation lies slightly above g = 0.02ωb. This function
was then used to find a pulse sequence with the pulses shown in Fig. 4.8
as starting point. The output is shown in Fig. 4.12. As seen from the fig-
ures, the pulse found with the filter function is almost identical to the one
found with a perfect impulse response. However the sharp corners have been
smoothed out due to the high frequency filtering. This is encouraging since
typical AWGs have a bandwidth of 500 MHz and most coupling strengths are
in the range 20−70 MHz. Given the small effect of the impulse response, the
subsequent optimisation will be done in one step using Gaussian convolution.
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Figure 4.12: Effect of the filter function on the pulse sequence. The pulse from
Fig. 4.8 was used as a starting point for the gradient ascent. Given that most
of the spectral weight was initially at low frequencies, the Gaussian convolution
has hardly any effect and the target fidelity of 99.99% is retrieved after only a few
iterations.

4.3.4 Benchmarking

To benchmark the performance of the numerical pulses against existing ones,
the GRAPE method is applied to phase qubits in the RezQu architecture.
The values1 for the parameters in the Hamiltonian are shown in Tab. 4.1.

1The values for the parameters in the Hamiltonian correspond to a sample of the John
Martinis group.
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The non-linear behaviour of the qubit’s anharmonicity was determined by
high power spectroscopy [69]. The anharmonicities for this chip are very
low and as indicated from section 4.2.2, would produce Strauch gates with
extremely low fidelities.

Table 4.1: Parameters of the phase qubits. These values were used in the
pulses presented in this document. The swap bus time Tswap is the time
required to swap a quanta between the qubit and bus, i.e. |1, 0〉 → |0, 1〉. It
is related to coupling strength by gk = (2Tswap,k)

−1.

Element Parameter Value unit
Bus ωb Frequency 6.1 GHz
Qubit 1 ω1 parking frequency 6.778 GHz

∆1 Anharmonicity -71 MHz
swap bus time 12.6 ns

g1 coupling strength 40 MHz
Qubit 2 ω2 parking frequency 6.607 GHz

∆2 Anharmonicity -59 MHz
swap bus time 9.2 ns

g2 coupling strength 54 MHz

In some situations the time it takes for a given state to evolve into an
orthogonal state is bounded from below. This lower bound is the quantum
speed limit (QSL) [121, 122]. This sets a minimum time TQSL in which a gate
can be done. When the gate time is above this speed limit, numerical pulses
have perfect fidelity up to machine precision. This is shown in Fig. 4.13
where the gate time is progressively decreased. As long as TGate > TQSL the
pulse error is zero down to machine precision. For the system with values
given by 4.1, the QSL is less than half of the time it takes the analytic
pulse sequence of Fig. 4.4. We find TQSL = 34 ns. Below the quantum
speed limit the fidelity degrades very rapidly. An error-free (up to machine
precision) pulse is shown in Fig. 4.14(a). As seen in Fig. 4.14(b), a DFT
shows that there is hardly any spectral power above 500 MHz thus making
the pulse experimentally realistic. Fig. 4.15 shows the populations in the 2nd

excitation subspace illustrating the increased complexity of these fast gates,
defying, for now, a simple physical picture.

Note that in some cases, in particular for transmons that are operated
through the resonator requiring a somewhat open resonator, one may desire
an idle frequency that is more detuned from the resonator than assumed
here. This would lead to slightly steeper initial and final slopes but does not
change our conclusions.
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Figure 4.13: Scan of the gate du-
ration to find the quantum speed
limit for phase qubits with the val-
ues of Tab. 4.1. The found quan-
tum speed limit TQSL = 34 ns
is twice as fast as the sequential
pulse using the Strauch gate which
takes TStrauch = 76 ns. Above the
quantum speed limit, the numeri-
cal pulses are perfect up to machine
precision. Gate Duration [ns]
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Figure 4.14: Summary of a numerical CZ gate design. Despite the low anhar-
monicities the pulses are able to reach very high fidelities. (a) Control pulse with
1 − 10−14 intrinsic fidelity. The gate time is slightly above the quantum speed
limit, i.e. TGate = 35 ns. (b) Normalised spectrum of the ZPA corresponding to
the GRAPE pulse shown in (a). Almost all the spectral power is within a few
hundred MHz, thus the pulse is experimentally feasible.

4.4 CZ Error Sources and Mitigation Strate-

gies

The previous section showed that CZ gates with arbitrary intrinsic fidelities
can be generated even for low anharmonicity qubits. However, in experi-
mental conditions these high quality pulses are rapidly degraded by various
errors. The following section reviews them and discusses how to overcome
them.
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Figure 4.15: Populations of the two excitation sub-space associated to the GRAPE
pulse shown in Fig. 4.14(a). As can be seen, an analytical picture similar to that
shown in section 4.2.1 is no longer possible.

4.4.1 Intrinsic Pulse Robustness

Gradient ascent engineered pulses enjoy an almost null first derivative with
respect to the individual control pixels. Thus to first order, random fluctu-
ations of the pulse amplitude do not severely impact the fidelity. This was
checked by perturbing the controls with white Gaussian noise with a stan-
dard deviation given by σE = ∆δkj/δkj . Figure 4.16 shows that a 1% relative
variation of the control field amplitude decreases a 99.99% intrinsic fidelity
pulse to 99.95%. Therefore random fluctuations in pulse amplitude are of
little consequence on these pulses [61, 115].

4.4.2 Systematic Errors

Some systematic errors will effect the pulses in a more significant way than
the random fluctuations of pulse amplitude. There are three main errors that
have been identified: calibration errors, timing errors and parameter errors.
All are described below.

Calibration Errors: Control Pulse Amplitude to Qubit Frequency

Although we optimise the qubit frequency in our numerics, the true control
is the amplitude of the Z pulse (ZPA), a voltage pulse applied to the qubit.
The ZPA is related to the frequency of the qubit through a calibration curve.
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Figure 4.16: Error introduced by randomly changing the amplitude of the con-
trols. The relative error is expressed in ∆δkj/δkj . The system considered was the
Qubit-Bus-Qubit with constant anharmonicity.

This curve must be measured using spectroscopy and errors in it will cause
errors in qubit frequency, see Fig. 4.17(a) for a sketch. The bus frequency
does not enter the Hamiltonian (4.1). However it must be known so as to give
the qubits the right ZPA to put them on resonance with the bus. A constant
and systematic shift of the pulse with respect to the resonance point produces
phase and leakage errors. The situation is sketched in Fig. 4.17(b) where
qubit 1 undershoots the bus by an amount ∆ωb,1 and qubit 2 overshoots the
bus by ∆ωb,2.

Off resonance from the bus, calibration errors have little effect since qubit
and resonator cannot exchange quanta. Therefore this error is modelled by
a systematic shift in the qubit frequency changing the resonance point with
the bus

δk(t) 7→ δk(t) + ∆ωb,k.

This shift also displaces the qubit parking frequency, which, in experiment,
is typically held constant at all times [123]. This discrepancy between exper-
iment and model is acceptable due to the lack of exchange of quanta far of
resonance. The Hamiltonian with error terms is

ĤR =

2∑

k=1

δk(t)n̂k

︸ ︷︷ ︸
Controls

+

2∑

k=1

[
∆ωb,kn̂k +∆kΠ̂2,k +

gk
2

(
σ̂+
k âb + σ̂−

k â
†
b

)]

︸ ︷︷ ︸
Drift with errors

.
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Figure 4.17: Calibration errors result in a DC offset of the pulse. The “true”
calibration curve – dashed line – is approximated by the solid line which is the
measured calibration curve. This discrepancy causes the qubit-bus resonance to
be missed by ∆ωb,k. (b) DC offset in the pulse amplitudes. The qubit parking
frequency ωQk

is left unchanged. However, the resonance point is missed; the
pulses perform their oscillations around ωb +∆ωb,k instead of ωb.

The effect of the calibration error on the Fidelity (2.6) is shown in Fig.
4.18(a). A pulse was first optimised with (∆ωb,1,∆ωb,2) = (0, 0) and then
the fidelity is recomputed for different values of the error. The central high
fidelity region is very small; although the first derivative ∂Φ/∂∆ωb,k is close
to zero near the optimum the second derivative is very strong. This shows
how small errors ruin the pulse.

If a single control amplitude at a given time is viewed as a degree of
freedom, pulse optimisation is a highly under-constrained non-linear prob-
lem given the limited number of independent parameters in the target gate.
Robust control exploits the surplus of degrees of freedom to make a pulse
sequence robust over a larger parameter range [124]. However in this case
such methods fail since the error is on the control Hamiltonians and not the
drift. To remove the calibration error a different approach must be used.

We propose to manually introduce a controllable DC offset in the pulse.
The effect of this offset on various quantities can be determined both in sim-
ulations and experiment. Comparing the two gives the optimal DC offset
needed to compensate the error. In simulation, we compute the time evolu-
tion operator which lets us know how big leakage and phase errors are. In
an experiment, leakage can be measured by qubit population and phases are
accessible with Ramsey measurements.

We illustrate this first with qubit population by scanning (∆ωb,1,∆ωb,2)
and computing the population of qubit one after the gate. Figure 4.18(b)
shows the magnitude of [Û ]10,10. It is the entry of the time evolution operator
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Figure 4.18: (a) Loss of fidelity due to over and undershoot of the bus-qubit
resonance frequency arising from systematic calibration errors. As can be seen
errors on the bus frequency of less than 0.1% ruin the pulses. (b) Scan of |U10,10|2 as
function of the calibration error. Away from the resonance point (∆ωb,1,∆ωb,2) =
(0, 0) leakage starts to manifest itself as a decrease in |U10,10|2. The many features
in the plot allow for a good correction of the error.
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quantifying population transfer from state |10, 0〉 to itself. For an ideal CZ
|[Û ]10,10|2 = 1, however when changing the DC offset this value decreases.
The strong effect of the error is thus used to our advantage since the many
features in the (∆ωb,1,∆ωb,2) error landscape allow an easy comparison be-
tween experiment and simulation. Similar data could be obtained with an
experiment, comparing it to the simulation would give the DC offset needed
to correct the errors.

Timing Errors

Another error source is the relative timing between the two pulses. This
arises if the wires taking pulse one from the AWG to qubit one differ in
length from those to qubit two. Pulses offset in time by ∆τ , as sketched in
Fig. 4.19(a), lose their fidelity as shown by Fig. 4.19(b). This error can
be removed by introducing a time shift between the pulses and scanning the
time shift until leakage/fidelity is minimised/optimised. As seen from Fig.
4.19(b) the relative timing between the pulses should be accurate to within
≈ 100 ps.
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Figure 4.19: Relative timing errors. (a) Sketch of pulse relative timing errors.
Both pulses have the intended shape but are offset in time by an amount ∆τ . (b)
Degradation of the fidelity as function of the timing error.

Hamiltonian Parameter Errors

Gradient ascent engineered pulses rely on knowing the Hamiltonian to op-
timise the pulse. However the parameters entering the model need to be
measured and thus come with some amount of uncertainty and error. The
pulses designed with these parameters will perform sub-optimally. In the
Qubit-Bus-Qubit system, there are four parameters that are susceptible to
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these error: {∆1,∆2, g1, g2}. For instance, Fig. 4.20 shows fidelity degra-
dation as function of errors on the coupling strength and anharmonicity of
qubit 1. The pulse was optimised to have a target error of 10−5. If a pulse
fidelity of 99.9% is sufficient, the intrinsic pulse robustness, i.e. ∂Φ/∂gk ≈ 0
and ∂Φ/∂∆k ≈ 0 allows us to tolerate an error of up to 1.5% in coupling
strength and 1.2% in anharmonicity.
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Figure 4.20: Degradation in fidelity due to errors in the parameters of the Hamil-
tonian. The anharmonicity error is ∆(∆1)/∆i. The pulse was optimised with a
target error of 10−5. If a fidelity of 99.9% is sufficient, the intrinsic robustness
of the pulse can support errors of up to 1.5% in coupling strength and 1.2% in
anharmonicity.

4.5 Conclusions

Numerically optimised Wah-Wah pulses show that qubits can still be ad-
dressed individually with short gate times. Faster control pulses require
more bandwidth and amplitude, therefore the limiting factor is the capabil-
ities of the arbitrary waveform generator. No speed limit has been observed
in numerically optimised pulses for two 3D transmons, which is contrary
to the believe that spectral crowding limits the scalability of the 3D cavity
architecture in cQED.

We develop fast pulses implementing an entangling gate, the CZ, between
two qutrits through a bus. These demonstrate a factor 2 speed up in CZ gates
as well as the possibility to reach arbitrary intrinsic gate fidelity as long as
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the gate time is above the quantum speed limit. It turns out that the optimal
pulses break the symmetry of the target gate and make active use of non-
computational excited states. We have also shown how errors arising form
realistic experimental conditions can be negated.

The controls we found typically lead to occupation of the resonator during
gate operation. This may be a disadvantage if there is strong Purcell decay
from the cavity as necessitated in architectures where control and/or readout
are done through the cavity [20, 23, 116]. However it is not a limitation in
situations when control and readout are done directly on the qubits and the
main decoherence sources are connected to the qubits themselves [114, 123].
In the former case, one would like to keep the qubits far detuned from the
cavity and use a dispersive gate [103]. The precise crossover between these
regimes and optimality under decay are topics for future research. Further
work in cavity-mediated gates [103, 110] discusses a variety of strategies found
by hand, smooth few-parameter pulses that all take longer time and are less
adapted to imperfections of the system and thus may be a stepping stone
towards optimised gates.
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Chapter 5

Non-Unitary Targets

The previous chapters focused on creating high fidelity gates for quantum
computing. This is only one of the ingredients needed to make a quantum
computer. Another is measurement, the qubit states need to be determined
with high fidelity. The read out mechanism depends on the type of super-
conducting qubits being used. For instance transmon qubits are typically
read out through a resonator [33, 125] whilst phase qubit readout is based
on tunnelling out of a metastable well [126, 127]. This tunnelling mechanism
can also be used to create a microwave photon counter named the Josephson
photomultiplier (JPM) [128]. These phase qubit detectors rely on a mea-
surement pulse that causes a state dependent tunnelling event. Here will
be shown how to optimise this pulse with optimal control. The target time
evolution cannot be described by a unitary matrix since it is irreversible and
relies on incoherent processes. However, In most optimal control experiments
the target time evolution is a unitary operator. A few examples of this in-
clude quantum gates for quantum computing, the evolution of many electron
systems under Hamiltonian dynamics [129] as well as evolution under a non-
linear Schrödinger equation [130]. Optimisation towards a unitary gate can
also be done in the presence of non-unitary dynamics [83, 131]. Thus, in
this chapter we expand the GRAPE algorithm to the case where the target
is a non-unitary quantum channel. This allows us to optimise measurement
pulses for phase qubits and JPMs.

5.1 Optimal Control Algorithm

An open quantum system with Markovian dynamics follows the time evolu-
tion given by a Lindblad master equation, see Eq. (2.3). The time evolved

In preparation D. J. Egger & F. K. Wilhelm
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density matrix can be found by vectorising the master equation. Vectori-
sation is done by applying the identity col(ABC) = (CT ⊗ A)col(B) to Eq.

(2.3). Here col(X) = ~X denotes column stacking of the matrix X . The result
is a first order differential equation for the vectorised density matrix ~ρ

~̇ρ = S ~ρ .

This equation is similar to the Schrödinger equation and can be solved by
exponentiating the generator S. The time evolution is thus given by the Li-
ouville superoperator T defined in Eq. (2.4). For a column stacked vectorised
master equation the generator is

S(t) = i
(
ĤT ⊗ 1− 1⊗ Ĥ

)
+
∑

l

γl

(
L̂∗
l ⊗ L̂l −

1

2
L̂Tl L̂

∗
l ⊗ 1− 1

2
1⊗ L̂†

l L̂l

)

(5.1)

where Ĥ is the Hamiltonian and L̂l is the Lindblad operator associated to
the incoherent process with rate γl. Within this generator are hidden the
control fields u(t). They can be located in the Hamiltonian Ĥ which, as
in the GRAPE algorithm [52], is separated into drift Ĥd and controls Ĥk.
However they can also control some of the rates such that the set of rates
can be split into controllable rates and drift rates {γl} = {γl,d, γl,c(u(t))}.
This suggests a drift-control decomposition for the generator

S(t) = Sd +
∑

k

fk(u(t))Sk .

The drift term Sd is the part of Eq. (5.1) containing the drift Hamiltonian
Ĥd and the Lindblad operators corresponding to the drift rates γl,d. The
control part is the remaining part of Eq. (5.1). It contains terms dependent
on u(t). The functions fk account for possible non linear behaviours with
respect to u(t). However, these functions fk are known and assumed to be
differentiable allowing us to use the chain rule when computing gradients
with respect to the controls.

Similarly to the GRAPE algorithm described in section 2.3 the controls
are pixelised and the Liouville superoperator T (T ) is approximated by

T (T ) =
0∏

j=N−1

eS(j∆T )∆T

where S(j∆T ) is the generator evaluated at pixels u(j∆T ). This time evo-
lution corresponds to a quantum channel which we wish to optimise. To



5.1. OPTIMAL CONTROL ALGORITHM 69

do so a fidelity measure based on Choi matrices is constructed. The Choi
matrix, defined in section 2.1, is related to the Liouville supermatrix T by
reorganising the elements according to

Cdα+β,dα′+β′ = Tdβ′+β,dα′+α , (5.2)

where d is the dimension of the Hilbert space and α, α′, β, β ′ ∈ {1, ..., d}.
This is shown by noticing that the vectorised matrix |i〉〈j| is the unit vector
êdj+i with 1 on entry dj+i and zero elsewhere. Therefore with [E(|i〉〈j|)]β,β′ =
Tdβ′+β,dj+i and Eq. (2.5) which defines the Choi matrix, the above identity
ensues. A natural way to measure how close the realised quantum channel is
to a target channel, described by a Choi matrix Ct, is through the channel
fidelity [132]

Φch =
1

d2

(
Tr

{√√
CtC[u]

√
Ct

})2

.

This fidelity is very similar to the fidelity between two states ρ and σ given
by F = Tr

√√
ρσ

√
ρ [1]. This comes as no surprise since the Choi matrices

are, up to their trace, equivalent to density operators. The channel fidelity
Φch has the pleasing property that, when both channels are unitary, it equals
the gate overlap fidelity ΦQPT defined in Eq. (2.6). However it is not suitable
for a pulse optimisation algorithm due to the square root which prevents an
analytical expression for the gradient. Instead we define a fidelity starting
from the square of the Frobenius norm

‖Ct − C[u]‖2 = Tr
{
C2

t

}
+ Tr

{
C[u]2

}
− 2ReTr

{
C†

tC[u]
}
.

The equality follows from the definition of the Frobenius norm. As the re-
alised channel approaches the target one, the error ‖Ct −C[u]‖2 is reduced.
This prompts the following definition for the fidelity

Φ′
ch = ReTr

{
C†

tC[u]
}
. (5.3)

Its gradient with respect to the control pixels is

∇kjΦ
′
ch = ReTr

{
C†

t

∂C[u]

∂ukj

}
. (5.4)

The gradient of the Choi matrix is found by computing the gradient of the
Liouville superoperator and rearranging the terms according to Eq. (5.2).
The procedure to compute the gradient of T follows the same idea as for the
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unitary case presented in section 2.3. However, since in a generic open system
S is not necessarily normal [85], the procedure of computing the gradient of
a single pixel using eigenvalues does not work. Instead the identity

d

dx
eA+xB

∣∣∣∣
x=0

= eA
∫ 1

0

e−AτBeAτdτ (5.5)

is used. The latter can be evaluated exactly using augmented matrix expo-
nentials [83]

exp

(
A B
0 A

)
=

(
eA

∫ 1

0
eA(1−τ)BeAτdτ

0 eA

)
. (5.6)

Thus for computing ∂T /∂ukj one sets A = S(j∆T )∆T and B = Sk∆T .
Given that the augmented matrix can be defective, its exponential is com-
puted with Ward’s Padé approximation [133, 134]. Finally all elements are
in place to successfully optimise the pulse of a non-unitary process towards
a target non-unitary channel using the GRAPE and BFGS algorithms de-
scribed in section 2.4. The fidelity is given by Eq. (5.3) whilst its gradient
is found from Eqs. (5.4) through (5.6).

5.2 Optimisation of a Phase Qubit Measure-

ment Pulse

The flux biased phase qubit is a superconducting circuit made of a large
area Josephson junction shunted by an inductor. Threading an external flux
through this loop makes the energy levels tunable and also allows for easy
readout [126, 127]. Josephson photomultipliers allow single photon detection
in the microwave regime and are also based on a phase qubit like architecture
[128, 135]. Here we will show how to optimise a measurement pulse for a
phase qubit using the methods described in the previous section. The phase
qubit [136, 137], flux biased by ϕb but without current bias, is described by
the Hamiltonian

Ĥ = EcN̂
2 + EJ

(
1

2β
(ϕ̂− ϕb)

2 − cos ϕ̂

)
. (5.7)

The charging energy is Ec = 2e2/C and the Josephson coupling energy is
EJ = I0~/2e. The qubit is coupled to the external bias flux Φ0ϕb by the
constant β = 2eLI0/~. The critical current of the JJ is I0 and its associated
capacitance is C whilst the shunt inductance is L. When biased a little below
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ϕb = 2π the potential is an asymmetric double well with a shallow and a deep
well. The qubit states |0〉 and |1〉 are formed out of the two lowest states of
the shallow well. By raising the bias closer to 2π, the shallow well becomes
shallower allowing the |1〉 and |0〉 state to tunnel into the deeper well. The
tunnelling rate γ1 of |1〉 is typically much higher than that of |0〉 i.e. γ0. This
rate difference allows the measurement to discriminate between |0〉 and |1〉.
The flux change resulting from a tunnelling event is picked up by a SQUID
and is interpreted as the qubit being in the |1〉 state [136]. This prompts a
three state description of the qubit formed by the basis {|0〉 , |1〉 , |m〉}. |m〉
is a combination of all the states that |0〉 and |1〉 can incoherently tunnel
into. These incoherent rates depend on ϕb and will be described later.

The control problem is to optimise a measurement pulse ϕb(t) of duration
Tmeas that maximises the contrast

ξ = 〈m|ρ̂1(Tmeas)|m〉 − 〈m|ρ̂0(Tmeas)|m〉 .

ρ̂i is the time evolved density matrix corresponding to the initial state |i〉〈i|.
This target can be shaped into a Choi matrix given by

Ct = |1〉〈1| ⊗ |m〉〈m|+
∑

i,j∈{0,m}
|i〉〈j| ⊗ |i〉〈j| .

Since the tunnelling is incoherent the coherences between |1〉 and |m〉 are not
preserved as the ideal quantum channel maps |1〉〈1| to |m〉〈m|. This gives the
first part of Ct. The second states that the elements |0〉〈0|, |m〉〈0|, |0〉〈m| and
|m〉〈m| should be left untouched.

Before and after the measurement pulse, the qubit is at a reference bias
ϕref chosen such that tunnelling out of |1〉 is suppressed. Indeed it is expected
that coherent operations are done between |0〉 and |1〉 before the measure-
ment pulse. Therefore the states should not tunnel out of the shallow well.
However the shape of the wavefunctions ψi(ϕ, ϕb) = 〈ϕ|i〉 for i = 0, 1 change
with bias flux. Thus changing ϕb can induce |0〉 ↔ |1〉 transitions through
Landau-Zener type physics. This creates dark counts. To avoid such effects
an adiabatic pulse should be used since slow changes in the potential will
keep the system in |0〉 if it started in |0〉. However, |1〉 → |0〉 relaxation,
graphically illustrated in Fig. 5.1, causes missed counts. This degradation
in contrast can be mitigated by using a fast pulse. This interplay between
Landau-Zener like behaviour and energy relaxation prompts the use of op-
timal control theory to shape the measurement pulse. The optimal pulse
should reduce dark and missed counts. The former are reduced by the op-
timal shape whilst that latter are mitigated by forcing |1〉 to tunnel before
relaxation happens.
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Figure 5.1: Sketch of the phase
qubit’s potential focusing on the
shallow well. The wavy line in-
dicates the 0 ↔ 1 transition fre-
quency which is a coherent pro-
cess and enters in the Hamiltonian.
Controllable incoherent processes
are indicated by solid straight lines
whereas the uncontrollable T1 re-
laxation process is constant.

Vmax
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5.2.1 Phase Qubit Model

For an arbitrary bias flux the three level model Hamiltonian is expressed
with respect to a reference bias ϕref by

Ĥ = PĤrefP
−1 with P =




η
√

1− η2 0√
1− η2 −η 0
0 0 1


 . (5.8)

Ĥref = ωref |1〉〈1| is the Hamiltonian at the reference bias where ωref is the
corresponding 0 ↔ 1 transition frequency. The unitary matrix P results
from the Landau-Zener physics arising between |0〉 and |1〉 when changing
the bias flux. Its single parameter η is the overlap between the logical zero
state and itself at different bias values

η(ϕb) =

∫
ψ∗
0(ϕ, ϕb)ψ0(ϕ, ϕref) dϕ .

The wave functions are found with a discrete variable representation (DVR)
[120]. This consists of diagonalising the phase qubit Hamiltonian (5.7) in a
discretised eigenbasis of ϕ̂ for different flux biases. The resulting eigenvalues
are the energy levels and the associated eigenvectors are the wavefunctions
as function of phase ϕ. This yields η which is then fitted to a third order
polynomial, see Fig. 5.2. The fit to a polynomial preserves the analytical
aspect of the gradient computation.

The incoherent processes are described by the Lindblad operators

L̂0→m =
√
γ0 |m〉〈0|

L̂1→m =
√
γ1 |m〉〈1|

L̂1→0 =
√
γ1→0 |0〉〈1|
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Whilst the relaxation rate γ1→0 = T−1
1 is constant, the tunnelling rates γ0 and

γ1 depend on the bias flux. They are found by approximating the potential
well by a third order polynomial [126] and using the WKB approximation.
This is described in Weiss [138], the result is

γ0(α) ≃ 6ω

√
α

π
e−

6
5
α , (5.9)

γ1(α) ≃ 432ω

√
α3

π
e−

6
5
α . (5.10)

ω is the 0 ↔ 1 transition frequency in the harmonic approximation. We
make this approximation more exact by using the DVR of the potential and
then finding the eigeinenergies for |0〉 and |1〉 in the shallow well at different
bias values. The data for the 0 ↔ 1 transition frequency is fitted to the
five parameter function a(b + cϕb)

d + e so that analytical gradients can be
computed. The dimensionless parameter α also depends on the bias flux, it
is given by

α(ϕb) = 6
Vmax − Vmin√

2EJEc(β−1 + cosϕmin)
. (5.11)

The potential extrema Vmax/min are defined in Fig. 5.1. The phase value
corresponding to the minimum is ϕmin. These quantities all depend on the
bias flux. The derivation of this formula is based on the expression of α
found from the WKB approximation and the parameters entering the third
order approximation of the qubit’s potential. Some additional details are
given in appendix A. Although not explicitly indicated, the potential extrema
Vmin/max and the location of the minimum ϕmin depend on the bias flux. α is
found numerically by solving for the different terms in Eq. (5.11) for different
values of ϕb. The result is shown in Fig. 5.2 the numerical data is then
fitted to a second order polynomial to preserve analyticity when computing
gradients for the pulse optimisation. In summary, the drift generator of the
Liouville superoperator is

Sd = γ1→0

(
|0〉〈1| ⊗ |0〉〈1| − 1

2
(|1〉〈1| ⊗ 1+ 1⊗ |1〉〈1|)

)
.

The control generator is

Sc = i
(
(PĤrefP

−1)T ⊗ 1− 1⊗ PĤrefP
−1
)

+
1∑

j=0

γj(ϕb)

(
|m〉〈j| ⊗ |m〉〈j| − 1

2
(|j〉〈j| ⊗ 1+ 1⊗ |j〉〈j|)

)
.
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Figure 5.2: Parameters of the phase qubit model. Note that all polynomial
fits are carried out over the small range of bias phase necessary to perform the
measurement pulse optimisation. (a) parameter controlling the tunnelling rates.
The solid line shows the value of α as computed by Eq. (5.11) whilst the dashed
line shows a second order fit. (b) |0〉 ↔ |1〉 state mixing parameter η as function
of the bias phase. The solid line indicates DVR data whilst the dashed line is a
third order polynomial fit to the DVR data.

In the first term, the dependence on the bias flux is located in the η parameter
in the unitary matrix P . The non-linearity of this expression in the control
ϕb can easily be taken into account in the optimisation using the chain rule.

5.2.2 Optimisation Results

The parameters used in the optimisation correspond to typical phase qubit
values [126]. These are shown in Tab. 5.1. Sharp jumps in the bias flux can be
viewed as Stückelberg oscillations. To prevent this, the pulses are convoluted
with a Gaussian. This also results in pulses that are feasible with modern
electronics. The optimisation of several pulses of variable time is shown in
Fig. 5.3. The first and last two ns are held constant and only change due
to variations in the optimisation pixels through the effect of the convolution.
The initial solution is a smoothened square pulse. The optimisation adds a
bump on the initial rise of the pulse to kick out the |1〉 state. It also changes
the initial flank of the pulse to avoid population transfer from |0〉 to |1〉. This
is best seen in Fig. 5.4 where the time evolution resulting from a 10 ns pulse
is shown. The pulse fails to let the |1〉 state tunnel out. The pulses defects
are corrected by the optimisation. Although the rate of change of the flux
bias is high during the rising edge, the optimised pulse hardly transfers any
population from |0〉 to |1〉. The hight increase of the optimised pulse makes
|1〉 tunnel faster as indicated by the |1〉 and |m〉 populations of Fig. 5.4.
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Table 5.1: Values used in the phase qubit model.

Name Symbol Value unit
Critical Current I0 2 µA
Junction Capacitance C 1 pF
Flux coupling β 4.375 -
Energy Relaxation T1 500 ns

Φ
 =

 98.85 %

Φ
 =

 98.34 %

Φ
 =

 98.25 %

Φ
 =

 97.87 %

Φ
 =

 97.42 %
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Figure 5.3: Optimal pulses for different gate durations with their corresponding
fidelities. The dashed lines show the initial guess. As can be seen the fidelity of
the optimal pulses is high even for the fast pulses.
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Figure 5.4: Time evolution of the populations for the 10 ns pulse of Fig. 5.3
starting from the |1〉〈1| state. As can be seen the initial pulse (corresponding to
the thin lines) has a non optimal pulse that fails to transfer population to |m〉 this
would result in missed counts. The optimal pulse (thick lines) corrects for this as
well as preventing population transfers between |0〉 and |1〉.

Faster pulses than those in Fig. 5.3 were optimised. A 1.4 ns pulse is
shown in Fig. 5.5. However, faster pulses can not be made in this model since
it relies upon having at least to states in the meta stable well. This imposes
a restriction on the maximum bias flux. Approximating the potential with a
third order polynomial and asking for at least two levels in the well leads to
the approximate condition α > 9, details are in appendix A. This threshold
value is shown by the horizontal line in Fig. 5.2 and corresponds to a flux
bias of 0.9454 · 2π. In the pulse optimisation, the flux bias is constrained to
be below this value. Thus, upon examining the optimal pulse in Fig. 5.5 it
can be seen that the pulse has reached this limit. Therefore the tunnelling
rate out of |1〉 has reached its maximum within the validity of the three level
model.
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Figure 5.5: Optimisation of a fast readout pulse. (a) initial pulse sequence.
(b) Optimised pulse shape. (c) Initial time evolution of populations. Again, the
unoptimised pulse fails to let |1〉 tunnel into |m〉. (d) Time evolution of populations
after pulse optimisation resulting in a high contrast of 98.2%.
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5.3 Outlook and Conclusions

We have extended the optimal control GRAPE algorithm so that quantum
channels with non-unitary time evolutions as target can be optimised. The
algorithm was illustrated within the framework of optimising a measurement
pulse for a phase qubit where the measurement process relies on incoher-
ent tunnelling processes. The simple model shows a rich interplay between
Landau-Zener type physics and the incoherent dynamics. The three level
model discussed here is a good starting point for creating a measurement
pulse. Going beyond this model could be done in the experiments themselves
by using the methodology developed in the next chapter. Measurement is
important for superconducting qubits. Optimising pulses for different setups
will require additional developments in OCT and could be the topic of future
research.



Chapter 6

Adaptation by Hybrid Optimal
Control

The previous chapters discussed analytical and numerical pulses within the
context of superconducting qubits. The engineering of these pulses is open-
loop in that a model is assumed and from this model a pulse shape is created.
This pulse shape is then meant to be used in experiments. However when
the quantum system is improperly characterised, this will fail and the pulse
will need to be tuned to the real system. For analytical pulse shapes, with
few parameters, this tuning can, to some extent, be carried out manually.
Due to the lack of analytical understanding and the large search space, this
approach fails for numerical pulses with many parameters. This chapter
presents a method to automate the pulse tune-up based on Adaptation by
Hybrid Optimal Control (AdHOC). This method is not restricted to super-
conducting qubits but applies to all fields of quantum optimal control such as
controlling the cooperative effects of driving and dissipation [139], to control
non-integrable quantum many-body [140] and many electron [129] systems,
generating matter-wave entanglement [141, 142] and quantum information
devices [38, 115, 143].

6.1 OCT and Improperly Characterised Sys-

tems

Optimal control theory pulses are designed based on the best available knowl-
edge of the system. This can be insufficient for two reasons i) In many cases,
the underlying model cannot be solved with sufficient precision as in the case
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of many-body systems [129] ii) in quantum systems that are engineered or
when a human-made apparatus is a key part of the setup, parameters need to
be measured with precision compatible with the control task at hand [144],
which is often not possible. This necessity to precisely know the underlying
model strongly limits harvesting the benefits of optimal control in complex
quantum systems.

Here we solve this problem with a hybrid open/closed-loop optimal con-
trol method called Adaptation by hybrid optimal control (Ad-HOC). It is de-
signed to overcome shortcomings of the assumed physical model [145], errors
on the controls themselves and inaccurate knowledge of the parameters. It
starts with a gradient search on a model with the best reasonably achievable
accuracy. Ad-HOC then uses the physical system itself as a feed-back to cali-
brate the control pulses. The gradient search approaches a favourable control
over a large distance based on theory and simulation whilst the closed-loop
design, done directly on the experiment, takes into account all experimen-
tal details [146]. Additionally, the performance index in gradient search can
impose extra conditions such as limitations to the fields or robustness. We
demonstrate this approach along three tasks: We first show in section 6.2 that
pulses can be optimised using only feedback from the experiment. Then, in
section 6.2.2, we give an additional example on tuning-up a few parameter
analytic pulse. Finally we demonstrate in section 6.3 the efficiency of the hy-
brid method for a many parameter numerical pulse within the architecture
of two superconducting qubits[19]. The latter are particularly sensitive to
calibration errors, see section 4.4, making them ideal for testing Ad-HOC.

6.1.1 Problem Setting

Delicate engineering of controlled quantum systems, in particular the need
to isolate quantum systems from their environment, makes quantum control
setups very complex. Such an experiment, sketched in Fig. 6.1 is made of
the system to be controlled and the unit (the AWG) producing the control
pulses. The pulses are brought from the latter to the former by a chain of
electronic or optical components referred to as control transfer chain, mod-
elled in section 6.1.2. In this setup, four different mechanisms will degrade
the fidelity of an OCT designed pulse. i) Parameter measurement: The quan-
tum system to be controlled is modelled by a drift and control Hamiltonians
Ĥ = Ĥd +

∑
i ui(t)Ĥc,i with u(t) the control fields to be shaped. Imprecise

characterisation of parameters entering the drift Ĥd and controls Ĥc,i will
degrade fidelity. ii) Improper characterisation of the control transfer chain’s
distortion of the pulses [119, 142]. iii) Signal calibration: in practice the
control unit generates an electrical signal or laser impulse which is related
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Figure 6.1: a) Sketch of quantum control experiment. The unit generating the
control pulses, typically an arbitrary waveform generator (AWG), at room tem-
perature generates the control pulses that are sent through the control transfer
chain (sketched as the chain of cylinders) to finally reach the quantum system,
often cooled to less than a Kelvin. Error sources are in the parameters modelling
the “chip”, the electronics and the calibration of the control signals. Figures b)
and c) relate to a CZ gate within the framework of two qubits coupled through
a bus resonator. b) Degradation of a 99.99% fidelity CZ gate assuming only an
error on the coupling between qubit 1 and the bus. As can be seen the gate fidelity
degrades quickly. c) Degradation of CZ gate, optimised to machine precision, due
to calibration errors in the qubit controls causing the resonance point with the bus
to be missed by an amount ∆ωb,i. The two circles indicate the 99% and 99.9%
fidelity limits. Such errors heavily degrade the gate performance.
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to u(t). Imprecisions in this relation, e.g. a constant offset, generate errors
on the controls themselves which are notoriously hard to correct. iv) Effects
that are not taken into account in Ĥ. Among many examples are other idling
components of a complex quantum system such as a quantum processor,
spurious two level fluctuators in Josephson Junctions, as well as slow non-
Markovian noise. Errors in parameters can be addressed using broadband
control [124, 147] which often leads to cumbersome pulses. Furthermore, no
such approach is known for uncertain transfer functions. Practically, these
functions as well as the linearity of the signal transfer are extremely hard to
verify with the needed precision.

6.1.2 Modelling of the Control Transfer Chain

The transfer chain between the quantum system and the AWG can be taken
into account in the optimisation [119, 142]. The difficulty is to know its effects
(even non-linearities may play a role) to high enough accuracy so as not to
degrade OCT designed pulses. This in practice cannot be achieved. Here we
describe how control transfer chains can be modelled and how output signals
from the AWG relate to the control fields u(t) used in the Hamiltonian.
The voltages V (t) produced by the AWG are not identical to the functions
u(t). Instead they are related through a calibration curve C. Furthermore
the impulse response of the transfer chain h between the AWG and the
experiment can distort the pulses. Thus whilst the AWG produces V (t) the
quantum system actually receives

u(t) =

t∫

0

dτ (C ◦ V )(t− τ) h(τ). (6.1)

This can be taken into account using the methodology of Ref. [119] if C and
h are precisely known. Practically, these functions as well as the linearity
of the signal transfer stipulated in Eq. (6.1) are extremely hard to verify
with the needed precision. Whereas errors in parameters of the system can
be addressed using broadband control [124, 147, 148], no such approach is
known for uncertain transfer functions.

6.1.3 Proposed Method

In order to address imperfections of the model, the control loop can be closed
by using the experiment itself as feed-back to calibrate the control pulses.
An initial gradient search [52, 83] of the optimal pulse is performed with the
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best model of the system. This gives control pulses that yield high fidelity
on the model but perform sub-optimally in the real system. They still lie
close to the optimal point in the control landscape of the actual system given
that it is approximated by the model, typically in the basin of attraction
of the desired minimum. A set of similar pulses (with model parameters
drawn from the error bars of the initial characterisation of the system) are
sent to the experiment and their performance measured. The pulses are then
updated and the procedure is iterated until either a target performance is
reached or convergence halts. Given that it is time consuming to measure
the performance of pulses we chose the Nelder-Mead algorithm [149]. It
is robust and typically only evaluates 1-2 pulses per iteration. Once the
calibration is done, the pulses can be used. At a latter time a few pulse
calibration iterations correct for drifts in parameter values and experiments
can resume. The Ad-HOC protocol is illustrated in Fig. 6.2. Note that the
precise experimental parameters are never identified. Also, this procedure
hinges on an efficient method to experimentally measure the performance
index. Here, the performance index is the process fidelity which can be
measured using Randomised Benchmarking [76, 78, 79], discussed in section
2.2.1. Other than more standard process tomography, it is significantly faster
to measure and minimises the impact of state preparation and measurement
errors. As shown in [150], randomised benchmarking is well-adapted to fast
experimentation and catches a variety of practical errors of different scales.

6.2 Closed Loop Demonstration

To show that a pulse can be optimised based only on its performance index
we consider random gate synthesis. Then we further demonstrate the closed
loop optimisation on a few parameter analytical pulse.

6.2.1 Random Gate Synthesis

Inside a black box is a two level system in which the drift and control Hamil-
tonians are both random Hermitian matrices

Ĥ(t) =

(
Hd

1 Hd
2 + iHd

3

Hd
2 − iHd

3 Hd
4

)
+ u(t)

(
Hc

1 Hc
2 + iHc

3

Hc
2 − iHc

3 Hc
4

)
.

The random variables Hx
i ∈ R are uniformly distributed in [−0.5, 0.5]. The

black box input is a pulse and the output its fidelity with respect to a target
random unitary matrix. For each realisation we seek a different control u(t)
to optimise the fidelity ΦQPT = |Tr{Û †

randÛ}|2/4. Figure 6.3 shows the mean
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Figure 6.2: Sketch of the Ad-HOC protocol. The physical system and surrounding
control and measurement apparatus are designed taking control problems into
consideration. The system is then characterised with the best possible precision.
Using the parameters from this characterisation the control pulses are created.
These are then fine tuned to the system using closed-loop OCT. The pulses are
then ready to be used in the experiment and can be recalibrated at a later time
to account for drift.

and median error as function of iteration for 100 different realisations of the
two level system and target. A histogram of the number of runs required to
reach 1− 10−5 fidelity is shown in Fig. 6.4. Instances that converged poorly
can be attributed to realisations that are hard to control in the given time, as
the commutator between Ĥd and Ĥc turns out to be too small. To confirm
this statement we plot the number of times ΦQPT was evaluated as function
of the smallest relevant matrix norm, defined as

η = max
{∥∥∥
[
Ĥd, Ĥc

]∥∥∥ ,
∥∥∥
[
Ĥd, [Ĥd, Ĥc]

]∥∥∥ ,
∥∥∥
[
Ĥc, [Ĥd, Ĥc]

]∥∥∥
}
. (6.2)

‖ · ‖ is the max norm. The smaller η is, the harder the system is to control.
This is reflected in Fig. 6.4. Overall for controllable systems the number of
evaluations of Φ is low especially since the starting point for the optimisation
was the null control u(t) = 0 ∀ t. At very small values of η the system tends
to be uncontrollable and some target gates cannot be reached. Two bad
instances were removed from the data. These had very small commutator
norms and failed to converge.

It is important to recognise in Fig. 6.3 that while demonstrating the power
of the closed-loop part of Ad-HOC it also highlights that closed loop control
alone needs a large number of steps necessary for a rather elementary control
task. Going down this convergence curve with gradient search drastically



6.2. CLOSED LOOP DEMONSTRATION 85

Iteration Number

G
at
e
E
rr
or

1
−
Φ

Q
P
T

Median

Mean

200150100500
10−5

10−4

10−3

10−2

10−1

100

Figure 6.3: Convergence plot showing the optimisation of random gates. 100
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Figure 6.4: Number of evaluations of the fidelity as function of the biggest relevant
norm η defined in Eq. (6.2). In this data two points with particularly small η failed
to converge and were excluded from the data.
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reduces the number of steps to about 50 iterations per order of magnitude
error reduction.

6.2.2 Few Parameter Pulse Closed-Loop Optimisation

Example: Finding DRAG

In a two level system an X̂ gate can be implemented by applying a pulse of
area π on the Ωx component of the driving field. However, when a third level
is present this is no longer sufficient and DRAG pulses are needed [38, 86].
Generally, full characterisation of the third level - its anharmonicity and
coupling ratio, is an extra characterisation step that can be avoided using
Ad-HOC. The Hamiltonian for an anharmonic three level system, driven on
resonance and in the frame rotating at the frequency of the drive field is

Ĥ =



0 0 0
0 0 0
0 0 ∆


+

Ωx(t)

2



0 1 0

1 0
√
2

0
√
2 0


 + i

Ωy(t)

2



0 −1 0

1 0 −
√
2

0
√
2 0


 .

∆ is the anharmonicity also called qubit non-linearity. To drive the 0 ↔ 1
transition without driving 1 ↔ 2 the Ωy quadrature has to be set to the
derivative of Ωx(t) scaled by −1/2∆. To show that few parameter pulses can
be quickly calibrated, we assume that the anharmonicity is not known and
that the initial pulse is a Gaussian with the wrong area

Ωx,initial(t) = A exp

{
− t2

2σ2

}
Ωy,initial(t) = 0.

Here A and σ are chosen at random. The calibration protocol has to find the
correct values for A, σ and ∆ such that the time evolution is

Ûtarget =



0 1 0
1 0 0
0 0 eiϕ




An example of the pulses are shown in Fig. 6.5. Figures 6.5(a) and 6.5(c)
respectively show the pulses before and after the optimisation which took
only 76 evaluations of the fidelity function Φ = |Tr{X̂†Û}|2/9. As can be
seen by Fig. 6.5(b) the initial pulse is unable to drive any transitions since
the amplitude of the pulse is too weak. The fidelity as function of iteration
number for these pulses is shown in Fig. 6.6. Closed-loop optimisation
quickly finds the optimal pulse.
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(d) Evolution of |1〉〈1| after optimisation

Figure 6.5: Control pulse of a weakly non-linear three level system. The target
time evolution is an X̂ gate. A bad initial pulse fails to produce the desired time
evolution. (a) and (b) show the initial pulse and the corresponding population
evolution when starting with |1〉〈1|. The final pulse, found after few iterations,
produces an X̂ gate while minimising leakage, see (c) and (d) respectively for
pulse and population as function of time.
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Figure 6.6: Improvement of the fidelity as function of iteration number for the
pulses of Fig. 6.5.

6.3 Numerical Demonstration for a Realistic

Setting

To demonstrate hybrid optimal control in a more complicated yet realistic
and genuine system, we choose to create a CZ gate between two supercon-
ducting qubits in the qubit-bus-qubit system [114]. In quantum information
it is paramount to have extremely high fidelity gates [51] and the systems
are well described by the typical setup of Fig. 6.1 with the addition that the
quantum system is at the coldest stage in a dilution cryostat. The qubit-
bus-qubit Hamiltonian, described in section 4.2, is particularly vulnerable to
errors on the controls and parameters as shown in section 4.4. For instance
Fig. 6.1b shows the degradation of fidelity due to an error on a single param-
eter. Fig. 6.1c shows the impact of a DC offset ∆ωb,i on the controls caused
by a miscalibration between the AWG’s output voltage and the correspond-
ing qubit frequency. This makes the qubit miss the resonance point with the
bus. These examples illustrate how severely single errors can impact gate
fidelities. In fact, albeit the initial numerical optimisation leading to a pulse
that is first-order insensitive to errors, the second derivative is large, making
this an example that is specifically unforgiving to model uncertainty and the
ideal case for showing Ad-HOC’s performance.

First, a gradient search optimises down to machine precision the error of
a CZ gate using the quantum process fidelity ΦQPT = |Tr{Û †

cz Û [δ1, δ2]}|2/d2.
ΦQPT measures the overlap between the ideal CZ gate Ûcz and the gate imple-
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Figure 6.7: Debugging procedure for parameter errors, control transfer chain er-
rors and control DC offset errors. The error of the initial pulse was minimised
using a gradient search down to machine precision. The pulses are then calibrated
to a specific realisation of the system. (a) Histograms for 300 system realisations.
The red histograms show the fidelity of the initial uncalibrated numerical pulse.
The blue histograms show the improvement in average gate fidelity after running
Ad-HOC. (b) Gate errors as function of the calibration algorithms iteration num-
ber. (c) Histograms of the number of times the average gate fidelity had to be
evaluated in order to calibrate the pulse to the different system realisations, i.e.
to take the red histograms to the blue ones.
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Figure 6.8: Average error for the CZ gate as function of the DC offset error ∆ωb,i

introduced by miscalibrating the AWG’s output to the qubit frequency. Ad-HOC
greatly improves the fidelity of the pulse as can be seen by comparing to Fig. 6.1(c)
where the pulses found by OCT were not calibrated to the system. The central
region of high fidelity does not change since the target fidelity for the calibration
protocol was 99.9%.
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mented by the controls δi. d is the dimension of the Hilbert space. Next, the
parameters in the model gi and ∆i, as well as the DC offsets ∆ωb,i and the
standard deviation of the transfer chain’s impulse response are promoted to
random variables following Gaussian statistics with variances reflecting the
precision of actual measurements [151]. The parameters used are given in
Tab. 6.1. We then compute the average gate fidelity F for many different
realisations of the system. This is shown in Fig. 6.7(a) by the red histograms.
As expected the fidelities are nowhere close to optimal ranging between 99%
and 68%, clearly insufficient for quantum computing. Finally each instance
is reoptimised using the closed loop part of Ad-HOC resulting in the blue
histograms in Fig. 6.7(a). Ad-HOC increased the fidelity by more than an
order of magnitude. Fig. 6.7(b) shows a typical decrease in error during the
closed loop optimisation. As F is being maximised, ΦQPT, computed for com-
parison, also increases. The corresponding number of required evaluations of
F for each realisation is shown in Fig. 6.7(c). A further illustration of the
protocol’s performance is shown in Fig. 6.8. In this case only the control
DC offset error ∆ωb,i was present. As can be seen by comparing to Fig.
6.1(c) the fidelity has been increased over a wide range of possible ∆ωb,i’s.
This shows how successful Ad-HOC is in dealing with errors on the controls
themselves.

Table 6.1: Parameters used in the qubit-bus-qubit model. The coupling strength
g is given as function of the Qubit-Bus swap time by (2Tswap)

−1. The imprecision
is given relative to the parameter it refers to. When promoting the parameters to
random variables this imprecision serves as standard deviation. When perform-
ing the closed loop optimisation, the AWG voltage calibration ∆ωb,i is chosen
randomly with mean zero and standard deviation of 0.1% of the bus frequency.
System realisations with unphysical parameters are discarded, e.g. σfilt cannot be
smaller than zero.

Name Symbol Q. 1 Q. 2 unit Imprecision
Q.-Bus Swap Time Tswap,i 12.6 9.2 ns -
Q.-Bus Coupling Strength gi 40 54 MHz 4.0%
Q. non-linearity ∆i -59 -71 MHz 4.0%
Bus Frequency ωb 6.1 GHz 0.1%
Convolution function error σfilt 1 ns 40.0%
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Figure 6.9: Model free cali-
bration with a gate tailored fi-
delity. At each iteration the
gate overlap fidelity is also com-
puted and, as can be seen, op-
timising Φcz also optimises Φ.
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6.3.1 Gate-Taylored Quality Parameters Optimisation

The previous sections emphasize randomised benchmarking as the fidelity
measure. This fidelity is applicable when the desired gate is a Clifford gate.
Here is shown that a gate specific fidelity can also be used to calibrate the
pulse. We illustrate this with the optimisation of a CZ gate. We define the
following fidelity measure

Φcz =
∑

ij∈{01,10,11}

|Uij,ij|2
6

[
1 + (−1)ij cos (arg (Uij,ij))

]
.

Here Uij,ij is the element of the time evolution operator mapping the state
|ij〉 onto itself. The terms |Uij,ij|2 are the qubit populations after the pulse
sequence for a specific input state. The argument of these terms can be found
using Ramesy measurements. A gate that is unitary and optimises Φcz has
to be a good CZ gate. An example of this fidelity as function of the iteration
number is shown in Fig. 6.9. The initial pulse was optimised by GRAPE
up to 80% fidelity using Φ = |Tr{Û †

czÛ}|2/d2. The remaining calibration was
done with the model free part of Ad-HOC. The target fidelity was set to be
Φcz = 99.9%. It can be seen that the intrinsic gate fidelity follows closely.

6.4 Robustness

In the previous examples the sampling of the integral in Eq. (2.7) introduces
noise into the fidelity measure. Noise would also be present in an experiment
but for different reasons. Here is further investigated the effect of noise on
convergence. We consider the fidelity Φ which can be computed without
introducing noise. A noiseless run of closed-loop optimisation is compared
to a noisy run. Noise is artificially added to Φ by a depolarising channel [1]
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acting n times out of m with uniform probability p. The smaller m is, the
more sampling noise is added to Φ. The noisy fidelity used was

Φnoisy =
n

md
+
m− n

m
Φ

where d is the dimension of the Hilbert space. The noisy and noiseless opti-
misations are shown in Fig. 6.10, they converge at the same speed until the
noisy case halts. This termination results from the increase in fidelity, av-
eraged over several iterations, being smaller than the noise threshold ∆Φth..
For this case, the threshold is

∆Φth. =
dΦdep. − p̄− σp
d(1− p̄− σp)

− dΦdep. − p̄+ σp
d(1− p̄+ σp)

.

The estimation of p is p̄±σp = n/m±1/12
√
m, the factor 12 comes from the

uniform distribution. When, on average, an operation on the Nelder-Mead
simplex improves Φ of the worst pulse by less than a threshold difference
∆Φth. the optimisation will not be able to improve the fidelity any longer
because the experiment cannot distinguish fidelities sufficiently well. This is
illustrated in Fig. 6.10(b) showing the difference between successive itera-
tions of fidelity of the worst pulse Φw. in the pulse simplex.
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Figure 6.10: (a) Convergence speed of a single optimisation comparing the cases
when a depolarising channel adds noise and when the optimisation is noiseless.
(b) Difference in fidelity of the worst point in the simplex between subsequent
iterations in a noisy optimisation. As long as, on average, this difference is greater
than the noise level, the optimisation continues.
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6.5 Conclusions

Model-free calibration was pioneered in [146] using genetic algorithms, which
we typically found 1.5 orders of magnitude slower in convergence. The
Nelder-Mead algorithm has been used in tuning dynamical decoupling se-
quences in [152] and is part of the CRAB optimal control scheme [140]
without initial gradient search. The closed-loop part of Ad-HOC has been
experimentally implemented for a CZ gate done between two coupled super-
conducting qubits [150] and enabled the high gate fidelities in [75].

In conclusion we have demonstrated Adaptive Hybrid Optimal Control
(Ad-HOC), a protocol for overcoming model imperfection and incomplete-
ness afflicting the design of control pulses for quantum systems. The protocol
is efficient and can be applied to almost arbitrary quantum control experi-
ments as it can be used with any fidelity measure that captures the essence
of the desired time evolution. We showed that noise does not affect conver-
gence speed but rather the terminal fidelity. Therefore higher fidelity can be
gained by increasing the measurement precision. Ad-HOC, overcomes model
inaccuracies and errors on the controls themselves.
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Chapter 7

Left-Handed Transmission
Lines

Chantre

Et l’unique cordeau des trompettes marines

Apollinaire

Quantum optics addresses the interaction of quanta of matter — atoms
— with quanta of electromagnetic fields — photons. This is beautifully re-
alised in cavity quantum electrodynamics (QED) [153], where the interaction
between those units is made strong by confining the field into a small mode
volume [116]. Circuit QED takes this further by confining microwave photons
in a quasi 1D strip-line cavity and using superconducting qubits as artificial
atoms with a large dipole moment [20, 116]. Next to being a promising archi-
tecture for quantum computing, a multitude of basic quantum optical effects
has been demonstrated [154]. Going beyond what can be reached in atomic
systems, an ultrastrong coupling regime — where the coupling strength be-
comes comparable to the atomic energy scales — has been proposed [155]
and achieved [156, 157]. Furthermore in the circuit QED approach, elements
are entirely human-made and can hence be flexibly engineered. This can
lead to coupling to multiple modes [158–162] either in the same or distinct
cavities. There is a wealth of proposals exploiting these features to create
complex photonic states [163–165] involving a large number of cavities. Par-
allel to these developments are those of left-handed meta-materials. They
have a wide variety of applications in photonics from the microwave to the
visible range such as invisibility cloaks and perfect flat lenses [166, 167]. For
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classical guided microwaves, left-handed transmission lines have been pro-
posed [168] and studied [169] on the macroscopic scale. In the following we
show how a hybrid transmission line, made of left and right-handed media,
coupled to a flux qubit gives rise to ultrastrong multi-mode coupling. We
then show how this system can be used as an analogue quantum simulator
for the Spin-Boson model [170].

Qubit

RHTLLHTL
Cr

Lr

Ll

Cl

∆x

Figure 7.1: Discrete LHTL coupled to a continuous RHTL . The regular right-
handed part of the transmission line is on the right, connected to a left-handed line
shown on the left. The terminating capacitors allow to externally access the modes.
The qubit couples to the right-handed component. Additional stray inductances
and capacitances in the left handed line can be taken into account as shown by
Eleftheriades, et al. [168]. They do not change the physics. The light blue areas
indicate strip-lines and ground planes.

7.1 The System

In one-dimension, left-handedness is defined as the wave vector kl and the
Poynting vector having opposite orientation; the phase and group-velocity
are opposite corresponding to a falling dispersion relation ∂ω(k)/∂k < 0.
This can be achieved [168] by a discrete array of series capacitors and paral-
lel inductors to ground, see Fig. 7.1. A low loss left-handed transmission line
(LHTL) can be realised with superconductors [169, 171]. This is the dual
(inductors and capacitors interchanged) of the usual [172] discrete represen-
tation of the right-handed transmission line (RHTL). In practice, the LHTL
remains a metamaterial composed of discrete elements, whereas the RHTL
is a metal strip represented as the continuum limit of a ladder network [172].

7.1.1 Equations of Motion

The right and left-handed parts of the transmission line are respectively
shown in the right and left side of Figure 7.1. In terms of magnetic flux Φ
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their uncoupled Lagrangians [116, 173] are

Lr =
∑

n<0

[
1

2
CrΦ̇

2
n −

1

2Lr
(Φn − Φn−1)

2

]

Ll =
∑

n>0

[
1

2
Cl

(
Φ̇n − Φ̇n+1

)2
− 1

2Ll
Φ2
n

]

Cr and Lr are the capacitance and inductance of the discrete model of the
RHTL which will then be taken to the continuum limit. Cl and Ll are the
capacitance and inductance of a unit cell of the LHTL. Through the Euler-
Lagrange equation, these Lagrangians produce the following equations of
motion

1

CrLr
(Φn−1 − 2Φn + Φn+1) = Φ̈n (7.1)

ClLl

(
Φ̈n−1 − 2Φ̈n + Φ̈n+1

)
= Φn (7.2)

The latter are none other than Kirchoff’s current law for each cell of the
transmission line. This is seen by noting that, for the case of the RHTL,
the voltage on capacitor n is Vn = −Φ̇n and the current flowing through this
capacitor is ICn

= CrV̇n. The flux difference between two nodes relates to
current through Φn − Φn−1 = LrIn−1. Thus Eq. (7.1) is none other than
In − In−1 = ICn

. Similar reasoning applies to the LHTL.
We can understand the physics of this line as follows: For any ladder

network with discrete time-translation symmetry, the eigenmodes are (prop-
agating or decaying) plane waves with a dispersion relation derived from the
solutions of [172]

sin

(
k∆x

2

)
= ±1

2
i

√
Zs
Zp

(7.3)

For a RHTL, substituting impedances of the series elements Zs = iωLr and
parallel elements Zp = (iωCr)

−1 gives the usual dispersion

ωr (kr) =
2√
CrLr

sin

(
kr∆x

2

)
−−−−−−→
continuum

kr√
crlr

For the LHTL, we interchange the roles of inductors and capacitors and
obtain from Eq. (7.3) propagating modes (real-valued k for real ω) with the
opposite dispersion relation

ωl (kl) =
1

2
√
ClLl sin

(
kl∆x
2

) (7.4)
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Here, Cl/r and Ll/r are capacitances and inductances as defined in Fig. 7.1
and cr and lr are the capacitance and inductance per unit length in the
RHTL. ∆x is the size of a unit cell. In the LHTL the frequency cut-off due
to Bragg reflection is a low frequency cut-off and is given by ωIR = 1/2

√
ClLl.

7.1.2 Density of Modes of the Coupled Left and Right-
Handed Transmission Lines

Unusual physics arises when right- and left-handed media are interfaced [166].
We realise this with a coupled transmission line (CTL) shown in Fig. 7.1,
a discrete LHTL coupled to a RHTL to be taken into the continuum limit.
Here we show that close to the infra-red cut-off, introduced by the LHTL,
the modes in the RHTL are very similar in frequency and spatial profile. The
density of modes is obtained by solving a boundary value problem for the
voltage along the CTL.

Voltage and Current

The voltage can be decomposed into two plane waves V + (V −), originating
in the RHTL (LHTL), and propagating towards the boundary. The waves
propagating along the CTL must have the same energy therefore we set
ωl = ωr = ω. These two dimensionless voltages with unit amplitude are

V +
n (t) = e−iωt

{
e−ikrn∆x + Γ+eikrn∆x n ≥ 0

T+eikln∆x n ≤ 0
and (7.5)

V −
n (t) = e−iωt

{
T−eikrn∆x n ≥ 0

e−ikln∆x + Γ−eikln∆x n ≤ 0
. (7.6)

When the waves encounter the interface at cell n = 0 they are partially
transmitted and reflected; Γ± and T± are the reflection and transmission
coefficients for V ±; they will be determined later by continuity of the voltage
and current at the boundary. It is important to note that in the left-handed
line the group velocity is negative: the sign of the wave vector is opposite to
the Poynting vector. The voltages given by (7.5) and (7.6) are associated with
currents found through Kirchoff’s laws in the appropriate part of the line.
These are In−1−In = iωCrVn−1 in the RHTL and In−In+1 = iVn/ωLl in the
LHTL. It is more common to express currents using impedances. Following
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[172] the impedances of the RHTL and LHTL, Zr and Zl respectively, are

Zr = − V −
n

I−n
= −e

−ikr∆x − 1

iωCr

∆x→0−−−→
√
Lr
Cr
. (7.7)

Zl =
V +
n

I+n
= −iωLl

(
1− e−ikl∆x

)
=

√
Ll
Cl

(
1− ω2

IR

ω2

)
− i

2ωCl
(7.8)

When taking the continuum limit, the dispersion relation was used and the
usual form for the impedance of a continuous strip line is recovered. Since
ω ≥ ωIR the quantity under the square root is always positive. Furthermore
the impedances enjoy the property that |Zr| =

√
Lr/Cr and |Zl| =

√
Ll/Cl.

The terms featuring a frequency dependency are the result of the discreteness
of the model. This can further be confirmed by taking the long wavelength
limit; when λ≫ ∆x it is expected that the discrete transmission lines behave
like continuous ones. For the LHTL the long wavelengths are achieved by
the limit ω → ∞ for which Zl →

√
Ll/Cl. Making use of the impedance the

currents are given by

I+n (t) = e−iωt





1

Zr
e−ikrn∆x − Γ+

Zr
eikrn∆x n ≤ 0

T+

Zl
eikln∆x n ≥ 0

and (7.9)

I−n (t) = e−iωt






−T
−

Zr
eikrn∆x n ≤ 0

− 1

Z∗
l

e−ikln∆x +
Γ−

Zl
eikln∆x n ≥ 0

. (7.10)

To fully determine the voltage and currents along the CTL the reflection and
transmission coefficients need to be found. Imposing voltage and current
continuity across the interface results in the equations





T± = Γ± + 1
T+

Zl
=

1

Z∗
r

− Γ+

Zr
T−

Zr
=

1

Z∗
l

− Γ−

Zl
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Which are solved by

Γ+ =
Zl − Z∗

r

Zl + Zr

Zr
Z∗
r

,

Γ− =
Zr − Z∗

l

Zl + Zr

Zl
Z∗
l

.

These coefficients enjoy the property |Γ+|2 = |Γ−|2.

Power Flow in the CTL

Given that the CTL is a passive system energy flowing in the RHTL must be
equal to energy flowing in the LHTL. This consistency check is shown here.
The time averaged power along a transmission line is P±

av = Re[V ±
n I

±∗
n ]/2. It

is important to note that we expect the outcome to be independent of the
position along the CTL since their are no power sinks or sources. Thus, in
terms of time averaged power, the following must hold

1

2
Re [Vn<0I

∗
n<0] =

1

2
Re [Vn>0I

∗
n>0]

If the + solution is considered, i.e. voltage given by (7.5) and current by
(7.9), then the energy flows in the RHTL and LHTL are respectively

P r+
av =

1

2
Re

[
1

Zr
− |Γ+|2

Zr
− Γ+∗

Z∗
r

eikrn∆x +
Γ+

Zr
e−ikrn∆x

]
=

2Re (Zl)

|Zr + Zl|2

P l+
av =

1

2
Re

[
|T+|2
Z∗
l

]
=

2Re (Zl)

|Zr + Zl|2

This result was reached by using the expression of the reflection and trans-
mission coefficients in terms of impedance. The two terms with Γ+e−ikr/Zr
arise from the interference between incoming wave and reflected wave, how-
ever they do not contribute to the power since A−A∗ ∈ iR. By comparing
these two equations it is immediately seen that P r+

av = P l+
av , i.e. energy is con-

served. The same reasoning applies if the − solutions of voltage and current
are considered.

Impedance Matching

For the two parts of the line to be able to communicate, the energy flow
across the boundary must be greater than zero. Using Z2

r = Lr/Cr and
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writing P+
av as function of frequency yields

P+
av (ω) =

2

√
Ll

Cl

(
1− ω2

IR

ω2

)

Lr

Cr
+ Ll

Cl
+ 2

√
LrLl

CrCl

(
1− ω2

IR

ω2

)

The flow of power across the boundary is thus maximum when the impedances
are matched in magnitude i.e. Lr/Cr = Ll/Cl. In this case and since the
voltage is taken to have unit amplitude, the maximum power is (2Zr)

−1.
This corresponds to the limit ω → ∞ for which the two lines are perfectly
matched. Additionally and regardless of impedance, the following properties
hold when going closer in frequency to the IR cut-off

lim
ω→ωIR

Pav = 0

lim
ω→ωIR

∂Pav

∂ω
= ∞

The power flow as function of frequency increases monotonically. The infinite
slope of Pav(ω) at ωIR guarantees that the first mode will have non-zero power
flowing across the boundary. An example of the power across the boundary of
a 50 Ω CTL is shown in Fig. 7.2. The black dots represent the normal modes
of Fig. 7.3. The lowest mode obtained in a real geometry, with frequency
ω1/2π = 4.149 GHz has a power flow of 42.1% of the maximum despite the
fact that Pav(ωIR) = 0.

Normal Modes of the Coupled Transmission Line

The voltage along the line, for mode k, at node n and time t is given by a
superposition of V + and V −

Vn,k (t) = V +
n,k (t) + V

(k)
0 ei∆φkV −

n,k (t) .

It has a frequency ωk and wave vectors kr,l(ωk). The mode dependent, real

coefficients V
(k)
0 and ∆φk are used to match phases and amplitudes. The

discussions in the last sections were restricted to the interface and along
the lines but did not include effects linked to the finite length of the CTL.
The boundary conditions for an open-circuited CTL are given by charge
neutrality: the spatial integral of the voltage must vanish at the extremities
of the TL [116]. The voltage integrals θ− and θ+ are respectively found from
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Figure 7.2: Power flow across the boundary as function of mode frequency. The
black dots indicate the frequency of the numerically found modes discussed in Fig.
7.3.

equations (7.5) and (7.6)

θ+n (t) = e−iωt

{
− 1
ikr∆x

e−ikrn∆x + Γ+

ikr
eikrn∆x n ≤ 0

T+

ikl
eikln∆x n ≥ 0

θ−n (t) = e−iωt

{
T−

ikr
eikrn∆x n ≤ 0

− 1
ikl
e−ikln∆x + Γ−

ikl
eikln∆x n ≥ 0

The node in the right-handed line furthest away from the interface is labelled
Nr and the one for the left-handed line is −Nl. The boundary conditions are
|θNr ,k|2 = |θ−Nl,k|2 = 0; implying that a solution for the following non-linear
system of equations has to be found






0 =
∣∣∣e−2ikrNr∆x − Γ+ − V

(k)
0 T−ei∆φk

∣∣∣
2

0 =
∣∣∣V (k)

0 ei2klNl∆x − V
(k)
0 Γ− − T+e−i∆φk

∣∣∣
2
.

It is understood that Γ±, T±, kr, kl, V
(k)
0 and ∆φk all depend on the mode

frequency ωk. This system has four parameters Cr,l and Lr,l and three un-
knowns. It is solved numerically by selecting the desired line capacitance and
inductance and searching for (V

(k)
0 ,∆φk, ωk) triplets. As example, three con-

secutive modes close to ωIR, supported by a 50 Ω CTL with cr = 1667 fF/µm,
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lr = 4167 pH/µm, Cl = 398 fF and Ll = 995 pH are shown in Fig. 7.3(a).
The voltage at the unit cells is indicated by black dots and the coloured lines
are to help visualise the modes. The LHTL is made of 200 cells and the
RHTL is 3 cm long. The values for the capacitance and inductance were
chosen so that the IR cut-off is at 4 GHz. Due to the hybrid nature of
this new CTL, the closely spaced frequencies at this lower band-edge have
nearly-identical spatial structures in the RHTL. The fast oscillation in the
LHTL ensures orthogonality between modes. The density of modes is ob-
tained by numerically finding all the normal modes. A key unusual feature of
the LHTL, as compared to a regular RHTL, is the divergence of the density
of modes (DoM) at a low-frequency bound ωIR = 1/2

√
ClLl, seen in Fig.

7.3(b), implying the existence of a quasi-continuous band even in a cavity.
In the LHTL, low frequencies correspond to short wavelengths due to the
falling dispersion relation ω(k). Thus, by only a small change in frequency,
a new orthogonal mode can be found that is different by one node in the
left-handed component. As the wavelength approaches the lattice constant,
the dispersion relation in Eq. (7.4) becomes flat due to Bragg reflection [174]
— the DoM develops a van-Hove-type singularity setting the aforementioned
divergence at ωIR. Close to ωIR the RHTL provides a mere constant contri-
bution thus the DoM is dominated by the divergence due to the LHTL and
vice versa. In consequence, the DoM can be approximated by the sum of the
densities in the uncoupled lines

D (ω) =
4Nl

√
ClLl
π

tanφL sin φL, φL =
kl(ω)∆x

2
. (7.11)

Nl is the number of cells in the LHTL. The agreement between this prediction
and the numerically obtained modes of the full model is excellent up to small
oscillations, see Fig. 7.3. To engineer the DoM, one can control ωIR by the
mesh size and independently Nl by the length of the LHTL.

To provide good coupling between both components one would like to
have an impedance Z0 (typically 50 Ω) requiring Cl = (2ωIRZ0)

−1 and
Ll = Z0/2ωIR. Furthermore for coupling to qubits, ωIR should be chosen
to lie around qubit frequencies (e.g. 4 GHz). The capacitances could be re-
alised with interdigitated as well as with overlap capacitors and the parallel
inductors could be realised with Josephson Junctions in the linear regime
since they provide sufficient inductance in a small footprint.

Disorder

Disorder in the LHTL has little effect on the DoM. This is shown as follows.
The capacitance and inductance of unit cell n in the LHTL are assumed to
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Figure 7.3: (a) Example of the first three consecutive normal modes, the voltage
profiles in the RHTL are almost identical. The LHTL has 200 unit cells measuring
100 µm each. In the LHTL the voltages at the discrete unit cells, for the first
mode only, are shown by the black dots; the continuous lines serve as a guide
to the eye to see the mode structure. Requiring a 50 Ω impedance and an IR
cut-off at ωIR/2π = 4 GHz sets Cl = 398 fF and Ll = 995 pH. The parameters
for the RHTL were chosen so that it supports a full wavelength at ωIR. This sets
the values for its total inductance and capacitance. Therefore a 3 cm long RHTL
requires a capacitance and inductance per unit length of cr = 1667 fF/µm and
lr = 4167 pH/µm. (b) Example of density of modes, showing a lower band-edge at
ωIR. Dots indicate actual modes, the green curve the approximate formula which
is in excellent agreement. The red curve shows the coupling strength between a
0.5 mm long flux qubit placed at a current anti-node of the transmission line, as
in Fig. 7.1. Designing the qubit to couple to the 4.579 GHz mode with strength
460 MHz, results in ultrastrong-coupling to 50 modes within a ±460 MHz range.
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be Cl+δCl,n and Ll+δLl,n respectively. In the LHTL the plane wave Ansatz
is no longer valid but serves as a starting point for perturbation theory. The
frequency of mode k is perturbed by δωk and its flux at each cell in the LHTL
is Φ

(k)
n + δΦ

(k)
n . The equation of motion (7.2) has to be modified so that Cl

and Ll depend on n. This results in a set of Nl equations, one for each unit
cell in the LHTL. We simplify it by neglecting all second order terms of the
form δCl,nδΦ

(k)
n , etc... This yields the matrix equation

MδΦ(k) = BΦ(k) + 4

√
Cl
Ll

sin

(
kl(ωk)

2

)
δωkΦ

(k) , (7.12)

where Φ(k) = (Φ
(k)
0 , ... ,Φ

(k)
−Nl

)T is the vector of unperturbed fluxes in the

LHTL and δΦ(k) = (δΦ
(k)
0 , ... , δΦ

(k)
−Nl

)T is the perturbation resulting from the

disorder. The matrix M is tridiagonal with L−1
l − 2Clω

2
k on the diagonal

and ω2
kCl on the lower and upper diagonal. The matrix B contains the

disorder terms and is also tridiagonal with δLl,n/L
2
l + ω2

k(δCl,n + δCl,n−1) on
the diagonal, −ω2

kδCl,n−1 on the lower diagonal and −ω2
kδCl,n on the upper

diagonal. The flux at the interface, i.e. Φ
(k)
0 + δΦ0, is matched for both lines.

This condition yields δω since in the RHTL the plane wave with frequency
ωk + δωk should have charge neutral boundary conditions, i.e. |θNr ,k| = 0.
With the flux at the interface known, Eq. (7.12) can be solved for the

remaining δΦ
(k)
n by computing the inverse of M. An example of a DoM with

disorder is shown in Fig. 7.4, the sharp rise in the DoM close to the IR
cut-off remains but with fluctuations. This guarantees that disorder does
not affect the mode pile-up at low frequencies. Furthermore since qubits are
to be coupled to the RHTL, where small frequency shifts have little effect
on the mode profile, the system is robust against disorder. An example of a
perturbed mode close to ωIR is shown in Fig. 7.5.
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Figure 7.4: Perturbed density
of modes. The random vari-
ables δCl,n and δLl,n are cho-
sen to be Gaussian with a zero
mean and standard deviation of
0.05Cl and 0.1Ll. As can be
seen, the perturbed DoM fol-
lows the unperturbed one but
with some fluctuations. The
black dots are the numerically
found modes of Fig. 7.3 with-
out disorder.
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Figure 7.5: Voltage profile of a mode close to ωIR. The blue line is the unperturbed
plane wave ansatz. Although the LHTL is not continuous, the line serves as a guide
to the eye. The red line is the voltage profile in the RHTL when taking disorder in
the LHTL into account. The black dots show the voltage in the disordered LHTL.
As can be seen the black dots no longer align perfectly with the unperturbed mode.
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7.2 Applications

The quantum behaviour of the CTL is obtained through canonical quantisa-
tion of the circuit in Fig. 7.1. This leads to a system of uncoupled quantum
harmonic oscillators, each described by operators â†n,ân acting on modes with
frequencies ωn. A qubit described in its energy eigenbasis by Pauli matrices
σ̂x/z placed close to the CTL will couple to mode n with strength gn

Ĥ/~ =
∆0

2
σ̂z +

∑

n

gnσ̂x
(
ân + â†n

)
+
∑

n

ωnâ
†
nân . (7.13)

If the qubit is coupled to the RHTL, gn ≃ gn+1 for low frequency modes since
they have similar spatial profiles in the RHTL. For a flux qubit [19, 29], the
mode dependent part of the coupling strength is given by taking into account
the finite size of the qubit and the spacial profile of the mode. It is given
by D(ωn)〈In(x)〉/maxn{〈In(x)〉}. The current In is averaged over the spatial
extent of the qubit. Figure 7.3 shows that the qubit can be coupled to a
wide range of modes. For frequencies sufficiently above ωIR the wavelength
in the RHTL also starts to change away from the antinode towards a node,
creating a deep minimum in coupling strength. This mode structure allows
the qubit to simultaneously couple to multiple modes when N > 1 modes
fall within a frequency interval of 2gn. We refer to this regime as multi-

mode strong-coupling. It can be reached with other superconducting qubits,
notably transmons [33], which should be placed at a charge antinode. Flux
qubits on the other hand allow us to reach multi-mode ultrastrong coupling

[155, 156] — gn/ωn > 0.1. This regime offers many new possibilities for
circuit QED.

7.2.1 Multi-Mode Entanglement

The multi-mode Rabi Hamiltonian, Eq. (7.13), allows us to prepare multi-
mode entangled states. Within the rotating wave approximation it conserves
the number of excitations. Exciting the qubit and placing its 0 ↔ 1 reso-
nance frequency slightly above ωIR allows the qubit excitation to distribute
itself over many modes, i.e., produce arbitrary superpositions of the form
c0|1; 0〉+

∑
n cn|0;n〉. |0;n〉 indicates the qubit in the ground state, a single

photon in mode n and none in the other modes. For |1; 0〉 only the qubit is
excited. These states are in general entangled as seen from their Von Neu-
mann entropy [175]. The qubit is put in the bath at a frequency ωq > ωIR

and the system left to evolve for a dimensionless time tg. The Von Neumann
entropy is computed for the system after having traced out the qubit and
mode n, see Fig. 7.6. It indicates complex multi-partite entanglement.
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Figure 7.6: Von Neumann entropy as function of the traced out mode n. We then
vary n to see how much the entropy increases from Eq, the entropy when only the
qubit is traced out. Eq > 0 indicates that their is at least bi-partite entanglement.
When additionally tracing out mode n the entropy En increase above Eq and this
for all modes indicating complex multi-partite entanglement.

7.2.2 Spin-Boson Simulator

The Spin-Boson model [170] is a fundamental model of quantum dissipation
which allows to understand the transition between coherent and incoherent
behaviour as well as a quantum phase transition suppressing quantum tun-
nelling. It is described by the Hamiltonian in Eq. (7.13) in the limit where
the modes form a continuum. The dense modes at the low-frequency end
provide a generic and realisable quantum simulator for this model. Our un-
usual density of modes provides a novel regime of sub-subhomic models with
a low-frequency cut-off, i.e., a spectral density of the form

J(ω) =
∑

n

g2nδ(ω − ωn) ≃
Nl

π
√
2ωIR

Θ(ω − ωIR)√
ω − ωIR

.

The ground and lowest excited states are well approximated by a multimode
Schrödinger cat state of the qubit dressed by coherent photonic states [170]

|±〉 = 1√
2

(
|L〉
⊗

n

|λn〉 ± |R〉
⊗

n

| − λn〉
)
. (7.14)

|L,R〉 are the eigenstates of σ̂x. The renormalised energy splitting is

∆eff =
〈
+
∣∣∣Ĥ
∣∣∣−
〉
= ∆0 exp

(
− 2

∑

n

λ2n

)
. (7.15)
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The multimode cat state in Eq. (7.14) involves, according to the principle
of adiabatic renormalisation, all fast modes , those with ωn > ∆eff , as they
can adiabatically follow the qubit. Slow modes remain unaffected. Thus
λn = gn

ωn
Θ(ωn −∆eff) which leads to a self-consistency relation for ∆eff . The

ratio ∆eff/∆0 measures the accumulated phase space distance of the dressing
clouds, i.e. the total cat size [153], by taking the logarithm of equation (7.15).
Thus, the low-energy states of the system are strongly renormalised as are
their effective energies.

A true dissipative quantum phase transition [138, 170] has ∆eff = 0 in
the localised phase. This limit would be reached if the modes were infinitely
close (hence arbitrarily close to ωIR) as would result from an infinitely long
LHTL or if ωIR → 0 as in the case of infinitely dense LHTL unit cells. Note
that in the usual sub-Ohmic spin-boson model, the latter is assumed. We
thus conclude that our system approaches a quantum phase transition in the
infinite sample limit.

To corroborate the finite size-behaviour, we have studied the ground and
first excited state of the qubit-CTL model using its actual modes in the adi-
abatic renormalisation approach. We identify multiple regimes: for weak
coupling or large ∆0/ωIR, there is only weak dressing manifest by a small
shift of ∆0. At stronger coupling, we observe the quasi-localised phase, with
∆eff ≪ ∆0. Remarkably, even at finite length, the two regimes are separated
by a discontinuous transition as indicated by Figure 7.7. Figure 7.8 shows the
corresponding finite-size phase diagram highlighting the need for ultrastrong
coupling. We see that by tuning the bare qubit frequency slightly above the
cut-off, ∆0 > ωIR [176] we can tune the system through the phase transition
in situ, or by employing a tunable coupler. The phase transition is mani-
fest by a discontinuous drop in the energy splitting (as measured through
spectroscopy) of the qubit that is inconsistent with the tuning of the circuit
alone, see Fig. 7.7. Engineering the transmission line to have dense enough
modes and an appropriate ωIR can be accomplished using Eq. (7.11) and
ωIR = 1/2

√
ClLl.

Approaching a quantum phase transition

On the level of partition functions, this model is equivalent to a one-dimen-
sional Ising chain [138, 177]. A true quantum phase transition i.e. ∆eff = 0
is reached only in an infinitely dense LHTL. Showing that the qubit-CTL
system approaches a quantum phase transition up to finite size effects, is
done by making use of the map between the Spin-Boson model and the 1D
Ising chain [177]. This makes use of the Feynman-Vernon influence functional
[178]. Following the reasoning in Weiss [138] the partition functions of these
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splitting.
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Figure 7.8: Finite-size phase diagram of the qubit-CTL system. The density of
states for the case at hand is the same is in Fig. 7.3 with the dip in coupling taken
into account.
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models are expressed as sums over the number m of kinks

Zsb =
∑

±q0

∞∑

m=0

(
∆0

2

)2m
∞∫

0

ds2m

s2m∫

0

ds2m−1...

s2∫

0

ds1

× exp

{
2m∑

j=2

j−1∑

i=1

(−1)i+jW (sj − si)

}

Zising =

∞∑

m=0

e−4mβU(0)

~β−xc∫

0

ds2m
xc

s2m−xc∫

0

ds2m−1

xc
...

s2−xc∫

0

ds1
xc

× exp

{
4

2m∑

j=2

j−1∑

i=1

(−1)j+i U [(sj − si) /xc]

}

In the flux qubit-CTL system a kink corresponds to the system tunnelling
from one side of the potential well to the other. These tunnelling events take
place a times sj . In the 1D Ising chain a kink corresponds to a spin domain
wall at location sj. By comparing the two partition functions, it is seen that
the second integral of the Ising interaction potential U plays that same role
as the kink-kink interaction of the Spin-Boson model W (r). Therefore the
quantity ∂2τW (τ) is equivalent to the interaction potential of the Ising model.
Using the definition of W found in Weiss [138] gives

V (τ) = ∂2τW (τ) = α∂2τ

∞∫

0

dω
D(ω)

ω2

(
1− e−ωτ

)

=
αNl√
2ωIRπ

∂2τ

∞∫

ωIR

dω
1− e−ωτ

ω2
√
ω − ωIR

= − αNl√
2ωIRπ

√
π

τ
e−ωIRτ .

The constant α includes all the dependencies of qubit-CTL coupling. An
example of which can be found in [155]. Here the density of states was
approximated by the ω−1/2 law valid close to the IR cut-off. In the present
case, this would be an Ising chain with an interaction that decays as ∝
|i−j|−1/2, where i and j are site indices, up to a range r ∝ ω−1

IR , after which it
decays exponentially. Thus, when cooled from high-temperatures the system
is well described by mean-field theory, which predicts a ferromagnetic phase
transition, until the correlation length reaches r. At that point, the system
follows short-range physics and remains paramagnetic between magnetised
blocks of size r — in analogy to the tunnel coupling in the spin-boson model
falling deeply, but not to zero.
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7.3 Conclusions

We have proposed an engineered hybrid transmission line that allows to reach
a new multimode strong coupling regime of circuit QED by combining a
regular line with a metamaterial. This will open the way for novel applica-
tions in microwave photonics and strongly correlated photon states, out of
which we have outlined the generation of multimode entanglement, multi-
mode Schrödinger cat states and quantum phase transitions. This system
serves as an analogue quantum simulator for the Spin-Boson model up to
finite size effects due to the mode discreteness.



Conclusion

At the time of writing, coherent quantum control has been demonstrated with
up to five superconducting qubits. These experiments have shown impres-
sive single and multi-qubit control with gate fidelities reaching the threshold
where surface codes become useful. However, whether a quantum computer
will be built remains an open question. The scaling up towards a useful
quantum computer will be an immense challenge. Many engineering issues
need to be addressed. Dedicated control and readout electronics need to
be further developed so as to miniaturise the classical hardware supporting
the quantum chips. The gate and measurement fidelities need to increase.
Indeed the higher these are the less overhead is needed to perform error cor-
rection/detection. Up to date, the control pulses for superconducting qubits
are developed analytically using simple models. This makes calibrating such
pulses easy. However they are not optimal; they can lose fidelity through
leakage or by being too slow, thus making the effect of decoherence larger
than should be. A substantial improvement in control software is to be ex-
pected by using methods from optimal control theory. This work has been
carried out with the intention to make optimal control viable for supercon-
ducting qubits as well as illustrating its many benefits.

We have shown in chapter 3 how spectral crowding, a scaling issue arising
when trying to pack more qubits in the same spectral range, can be mitigated
through careful analytical considerations. This is done using average Hamil-
tonian theory, i.e. the zeroth order term of the Magnus expansion. The re-
sulting pulses are the common DRAG solution with an extra modulation. We
named these pulses Wah-Wah for weak anharmonicity with average Hamil-
tonian. Then in chapter 4 we show the full power of optimal control. The
control pulse of the previous chapter is made faster and more accurate. Then
we considered a more complex system, namely two qubits coupled through
a bus resonator. The studied time evolution was the entangling controlled-Z
gate. We showed that optimal control is capable of yielding a substantial
improvement over analytically derived pulses. Optimal control can create
pulses with perfect fidelity whilst reaching the shortest gate time allowed by
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the system’s quantum speed limit. This is paramount to a quantum com-
puter since error detection/correction codes perform many entangling gates.
Making these gates as fast as the quantum speed limit allows is crucial to
the timely execution of a quantum algorithm. However, having perfect gates
is meaningless if the state of the qubits cannot be measured with meaningful
accuracy. There are many different ways to measure qubits. In chapter 5
we considered the phase qubit and the Josephson photomultiplier. The mea-
surement contrast was optimised by shaping the bias pulse with a gradient
search. This required a modification of the GRAPE algorithm since this type
of measurement is a non-unitary process. We showed that a fast measure-
ment pulse, slightly above 1 ns, can produce high contrasts. Chapter 6 on
optimal control theory shows how to overcome the last obstacle in the prac-
tical implementation of numerical pulses. Despite their obvious advantages
they have not been implemented in superconducting qubits. Their complex
shape is the main reason. This prevents a manual tune-up of the pulses to
the qubit chip. Indeed the models used to design the pulses are only an ap-
proximation of the physical system. It is thus not surprising that open-loop
pulse design fails. We showed that the Ad-HOC protocol overcomes these
pulse tune-up issues using open and closed-loop pulse design. This allows for
a necessary automated pulse tune-up. Indeed even for few parameter pulses,
where manual tune-up is still possible with a few qubits, it will no longer be
the case as the number of qubits grows. Furthermore this protocol is appli-
cable to any quantum control experiment, thus extending its usefulness far
beyond the realm of superconducting qubits.

Numerical pulses will no doubt be implemented in superconducting qubit
architectures. Future work should include and experimental demonstration
of their feasibility. Furthermore boundary effects in arrays of coupled qubits
need to be studied. For example, how does one make a quantum gate between
two qubits without affecting the others in a surface code architecture? How
many qubits should such a simulation include? One could also envisage
making a quantum compiler based on optimal control whereby a full quantum
circuit is compiled into a time and fidelity optimal numerical pulse sequence.

Lastly chapter 7 of this thesis proposes a system to bring circuit QED to
the novel regime of multi-mode ultra-strong coupling. This is done by com-
bining left- and right-handed transmission lines. This system has a mode pile-
up at an infra-red cut-off creating almost identical modes in the right-handed
transmission line. A superconducting qubit is then coupled to these modes.
We showed how this system generates highly non-classical states. Further-
more it can be used as an analogue simulator for the Spin-Boson model in
a regime where a quantum phase transition between a quasi-localised and a
delocalised state occurs. This is an important effect showing how an envi-
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ronment, the transmission line, causes the quantum analogue of friction on
the two level system, the qubit.

Quantum technologies are still a long way from exploiting their full po-
tential. At the time of writing, the much anticipated quantum computer is
still a technology of the future. It is unclear if all the technological challenges
to build such a computer will be overcome. Furthermore there is a big gap
between the current proof of principle experiments involving a few qubits and
the complete quantum computer involving millions of qubits. Indeed a few
hundreds of qubits would not suffice for an error correction/detection code
to factor a useful number. However it is in this system size gap where quan-
tum simulations might provide an intellectually stimulating framework for
research to continue in academia whilst engineering challenges are addressed
by research laboratories, universities and industry.
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Appendix A

Phase Qubit Potential

The Hamiltonian of the flux biased phase qubit is

Ĥ = EcN̂
2 + EJ

(
1

2β
(ϕ̂− ϕb)

2 − cos ϕ̂

)

︸ ︷︷ ︸
VJ qubit potential

.

This Hamiltonian can be approximated by a third order potential V̂3 with
three parameters m, ω and ϕ̃. The approximate Hamiltonian is given by

Ĥ ′ =
~
2

2m
N̂2 +

1

2
mω2∆ϕ2

(
1− 2

3

∆ϕ

ϕ̃

)
.

The phase variable is ∆ϕ = ϕ−ϕmin where ϕmin is the local minimum of the
shallow well. By comparing Ĥ and Ĥ ′ it is straight forward to identify the
effective mass as m = ~

2/2Ec. Note that this parameter has units of energy
instead of mass. In this approximation the constant term in the potential
has been dropped so that V3(∆ϕ = 0) = 0. The frequency ω in the third
order potential is chosen such that the harmonic term matches the second
derivative of the actual phase qubit potential

1

2
V ′′
J (ϕmin) =

1

2
mω2 =⇒ ~ω =

√
2EcEJ(β−1 + cosϕmin) . (A.1)

Lastly, ϕ̃ is determined so that the potential barrier has the right hight.
This imposes V3(∆ϕ = ϕ̃) = Vmax − Vmin where Vmin/max are the local min-
ima/maxima close to the shallow well, see Fig. 5.1. This leads to the follow-
ing expression

mω2ϕ̃ = 6(Vmax − Vmin) . (A.2)
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The tunnelling rates given in chapter 12 of Weiss [138] for the potential V3
involve the term mω2ϕ̃2/~ω which, for brevity, was labelled α in chapter 5.
Therefore, combining Eqs. (A.1) and (A.2) yields

α = 6
Vmax − Vmin√

2EJEc(β−1 + cosϕmin)
.
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