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Abstract

Nowadays, the actual industries require massive cost savings. Thus, it makes
sense to improve basic materials. Various properties may be changed to de-
sign consumption-friendly materials and to enhance e�ciency (e.g. improve
heating and abrasive resistance), friction, adhesion and lubrication of ma-
terials. Hence, patterning techniques are useful tools to tailor the material
properties according to a simple guideline: "have the right property at the
right place�. Numerous techniques are based on surface modi�cations and
involve light sources. Since the achievement of modern laser systems, fast
to ultrafast laser are used in labs and industrial groups. They have legion
advantages in comparison to embossing techniques such as material pattern-
ing without mechanical contact and allow a sub micro-precision. During this
thesis, two techniques were used in order to develop and enhance the sur-
face properties of the 100Cr6 steel: the femtosecond laser ablation and laser
interference metallurgy.

First, the bearing properties were enhanced by a smart and advanced
design of the surface. Secondly, the hydro- and oleophilic properties of ir-
radiated samples were studied and compared to non-irradiated. Finally, a
combination of both techniques was performed in order to unite the wetting
advantages of both patterning methods.

Various patterns were elaborated in order to determine an optimal struc-
ture design and the chemical and topographical properties were consistently
evaluated and compared.
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Zusammenfassung

Heutzutage müssen sowohl Forschung als auch moderne Industrie so
kostengünstig wie möglich arbeiten. Deshalb ist es sinnvoll, Standard-
Materialien bzw. deren Eigenschaften zu verbessern: Dies gelingt
durch geringeren Brennsto�-Verbrauch, Erhöhen der Materiale�zienz (z.B.
besserer Erwärmungs- und Verschleiÿ-Widerstand), Reibung und Adhäsion,
Schmierung, usw. Texturierungsmethoden sind imstande, die Materialeigen-
schaften gemäÿ eines einfachen Prinzips auszubilden: "die richtigen Eigen-
schaften an der richtigen Stelle". Techniken auf Basis von Lichtquellen
erlauben solches Design, weshalb kurze und ultra-kurze Laser-Systeme in
Entwicklungsabteilungen genutzt werden. Gegenüber Prägungsmethoden
ergeben sich zahlreiche Vorteile. Das Verfahren funktioniert ohne mecha-
nischen Kontakt und mit einer submikron-Präzision. Zwei Lasermethoden
wurden benutzt, um die 100Cr6 Stahl Eigenschaften zu verbessern: die Fem-
tosekunden Laser Ablation und Laser Interferenz Metallurgie.

Zuerst wurde die Tragfähigkeit durch ein sinnvolles Design verbessert.
Danach wurden das hydro- und oleophile Verhalten von texturierten Proben
untereinander und mit unstrukturierten Proben verglichen. Abschlieÿend
wurden die beiden Laser-Prozesse miteinander kombiniert, um so die Vorteile
der jeweiligen Methode zu erhalten.

Mehrere Muster wurden hergestellt, um ein optimiertes Design zu erzeu-
gen. Die chemischen und topographischen Eigenschaften der Strukturen wur-
den stets charakterisiert und miteinander verglichen.
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Symbols and acronyms

Symbols

Areal real area
Aapparent apparent area

Ca capillary number
ED net energy
η dynamic viscosity of the �uid
F applied force
g gravity acceleration
γ surface tension
γSL surface tension of the solid-liquid phase
γSV surface tension of the solid-vapor phase
γV L surface tension of the liquid-vapor phase
h height
i refractive index of the ambient atmosphere
I intensity
k propagation constant
κ−1 capillary length
L length
λ wavelength
λsp surface plasmon wavelength
µ dynamic viscosity
ν0 initial frequency
ν1 double frequency
ω angular frequency the wavelength
P period
p0 ambiant pressure
pd droplet pressure
φ total area of liquid-air interface
ψ wavefunction
R radius
Rf roughness factor
ρ density
S spreading parameter
t time
θ angle between two incident beams
V speed
z coordinate in the propagation direction
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Acronyms

AFM Atom Force Microscopy
AKD AlkylKetene Dimer
AOM Acousto-Optico Modulator
APT Atom Probe Tomography
CL Correlation Length
cw Continuous wave

ECAP Equal Channel Angular Pressing
EDS Energy Dispersive Spectroscopy
FIB Focused Ion Beam

FWHM Full Width at the Half Maximum
fs femtosecond

IFAM Institute for Manufacturing Engineering and Applied Materials
LASER Light Ampli�cation by Stimulated Emission of Radiation
LBO Lithium Triborate
LEAP Local-Electrode Atom-Probe
LIBS Laser-Induced Breakdown Spectroscopy
LIPSS Laser Induced Periodic Surface Structure
LIL Laser Interference Lithography

LIMET Laser Interference Metallurgy
LST Laser Surface Texturing
NA Numerical Aperture

Nd:YAG Neodymium-doped Yttrium Aluminium Garnet
Nd:YLF Neodynium-doped Lithium Yttrium Fluoride
Nd:YVO4 Neodymium-doped Vanadate

ns nanosecond
ps picosecond
RH Relative Humidity
ROI Region Of Interest
SAD Selected Area Di�raction
SEM Scanning Electron Microscopy
STEM Scanning Transmission Electron Microscopy
TEM Transmission Electron Microscopy
WLI White Light Interferometry
XPS X-ray Photoelectron Spectroscopy
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1 Introduction

1.1 Motivation

In the present economical context, the �nancial crisis showed that the mod-
ern and more speci�cally the European industry requires a permanent and
constant "forward motion" characterized by the research of e�ciency and
reduction of costs. Indeed, the steel suppliers such as Dillinger Hütte GTS c©
or automotive industries ZF Friedrichshafen c© have based their survey and
�nancial health despite the economical crisis on the elaboration of innovative
and high-quality products such as the 43,000 tonnes of DI-MC 460 structural
steel or the ZF 9-speed automatic transmission, respectively.
Multiple high-quality materials were elaborated by improving their prop-
erties. The nature mimicry is an in�nite source of inspiration for the im-
provement of properties such as hardness, torsion resistance, lubrication and
wetting. The industries involving tribology knowledges are probably one of
the domains employing the highest quantity of systems inspired by nature.
Indeed, it is known that wear and friction cost billions of dollars each year
due to the degradation of materials and devices and for these reasons the
reduction of friction is a major concern in many industry domains. Sharks
are probably feared as the most dangerous aquatic predators and if its inter-
esting dental anatomy [1] is still a topic of scienti�c researches, the study of
their skin properties is crucial to explain their high velocity. The design of
the shark skin is made of V-scale arrangements which signi�cantly reduce the
drag in water [2, 3]. Based on the knowledge of these unique pattern designs,
applications were elaborated and are successfully used nowadays in di�erent
industrial domains. The manufacturing of body swimsuits inspired by shark
skin became famous in 2008 for the Olympics in Beijing when Michael Phelps
won his eight Olympic titles by wearing the Speedo Fastskin3 c©, while their
e�ciency is nowadays still discussed and no proof was found showing that
they increase the velocity [4] as it could be a�rmed by the manufacturers.
Nevertheless, a consequent drag reduction is still observed in comparison
with a �at silicon structure.
The shark skin composition has also successfully inspired researchers of the
Fraunhofer Institute for Manufacturing Engineering and Applied Materials
Research (IFAM) in Bremen, who developed a paint with an unique structure
for airplanes [5]. Based on nature observations, Bechert et al. built shark skin
replica with di�erent surface patterns and studied the e�ects of their geomet-
rical dimensions (distance between them, height, two- or three-dimensional
structures) on the drag reduction [6]. The so called "riblet-paint" is elabo-
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rated with precise geometrical dimensions and trapezoidal-shaped grooves. A
reduction of 10 % of the turbulent skin friction is observed in comparison to
the �at surfaces in addition to the extremely high environmental conditions
related to the aircrafts (- 55 to +70 degrees Celsius) and no weight addi-
tion. Finally, IFAM estimates that 4.48 million tons of fuel could be saved
if this nature-inspired paint would be applied to every airplane each year.
Recently, numerous techniques for the functionalization of material surfaces
have been proposed. Some of these methods have been inspired by nature
such as gecko or shark skin which are, respectively, known for their adhesion
and friction properties. This kind of scienti�c mimicry has been reported to
produce bene�cial e�ects [7]. The tribological behaviour can be improved
using techniques based on mechanical (grinding, honing) [8, 9], lithographic
[10], coating [11] and also patterning procedures [12, 13]. High-power pulsed
laser beams interact with materials and provide a potent new process to
modify the surface microstructure, topography and chemistry [14�16]. Dur-
ing the last few years, di�erent patterning methods were developed in order
to functionalize materials [17].
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1.2 Tasks of this work

This work was originally motivated by the requests of an industrial partner
to tailor the oleophilic behaviour of the industrial bearing steel 100Cr6
by means of the femtosecond laser structuration. The main goals were
to improve the wettability i.e. to enhance the repartition of the oil on
the surface of the material in comparison with a �at surface. The �rst
contact angle measurements con�rmed that the roughness is a parameter
which drastically in�uences the wetting behaviour. Thus, the control of
the roughness appears as the key to control the oil wettability. Ordered
structures were then created using femtosecond laser irradiation and
the contact angle measurements con�rmed the former assumption. In
order to improve this method to control wetting, other patterns were cre-
ated using femto and nanosecond laser and a combination of both structures.

100Cr6 samples were prepared by metallographic procedure and then
they were irradiated using laser ablation and laser interference metallog-
raphy (LIMET). The LIMET and ablation procedures were performed
using a Ti:sapphire femtosecond laser and a Nd:YAG nanosecond laser,
respectively. Di�erent structures and patterns were created by changing the
geometrical parameters such as period, depth, etc. The pattern design was
made in consideration of the technical abilities o�ered by the femto- and
nanosecond laser at the Chair of Functional Materials. Moreover, the design
of the structures was elaborated regarding their simplicity, e�ciency and
potential life duration to be created at the surface of the samples. For these
reasons, the laser surface texturing (LST) was permanently related to the
topographical studies.

The e�ects of laser irradiations on the chemical compositions of 100Cr6
were studied using Raman and X-ray photoelectron spectroscopy (XPS)
and atom probe tomography (APT). Scanning transmission electron mi-
croscopy (STEM) and transmission electron microscopy (TEM) were also
performed in order to study the impact of the laser irradiation on the
microstructures. The topographies of the samples were analyzed using
white light interferometer (WLI) and scanning electron microscopy (SEM).
Their bearing properties and the homogeneity of the structures were then
compared. These studies of the laser irradiations and especially in the case
of the femtosecond laser o�ers a complete and multi-scalar cartography of
the irradiated zones, which is the novelty and main point of interest of the
present thesis.
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Dynamic contact angle measurements were performed at the surface of
laser structured samples using distilled water and an industrial oil under
room conditions. The e�ects of the geometrical parameters of the patterns
such as periodicity, depth, homogeneity, were studied and compared. These
analyses allowed to determine the main parameters involved in the wetting
with regards to the previous established models. This study brings forward
important and decisive arguments crucial for the engineers and scientists for
example in the lubrication community. In particular, this part of the thesis
reports evidences and explanations on the choice of the design for the control
of the lubrication regime i.e. the �uid �lm thickness for example. The limits
of the di�erent patterns have been reported and �nally a combination of
femto- and nanosecond laser structures was produced in order to create an
"optimized pattern". The aim of this combination was to design a structure
which allowed a fast and oriented wetting, fulling cavities which can act as
lubricant reservoir.

17



2 State of the art and theoretical considera-

tions: Laser and Wetting

2.1 Laser patterning: laser systems, modes, e�ects and

applications

In the last decades, numerous techniques for the treatment of material sur-
face have been proposed and multiple were inspired were inspired by nature
observations. It has been reported that this kind of scienti�c mimicry has
bene�cial e�ects [7]. Laser texturing is a typical successful example of this
mimicry and results in di�erent applications depending on the system to be
optimized. In the present chapter, di�erent kinds of laser texturing will be
presented taking into account the laser mode (ablation continuous wave and
interference), their e�ects on the materials (chemical and/or topographical)
and their potential applications. The attention of this chapter will be focused
on the laser-matter interactions of femtosecond and nanosecond laser systems
in order to help the readers of this thesis to understand the motivation and
goals of this work.

2.1.1 Laser systems: femtosecond versus nanosecond laser

The term "laser" is nowadays a common acronym for Light Ampli�cation
by Stimulated Emission of Radiation which found its origin with the study
of the stimulated emission of radiation by Albert Einstein in 1917. The
stimulated emission can be shortly de�ned when an inversion of population
of electrons occurs. An incident photon induces the jump of electrons in an
excited state to lower energetic levels. In oder to place the electrons in these
higher energetic levels, a prior energetic source is used to pump i.e. to excite
the atoms. This energetic source can be lamps or another laser as it will be
described further. The state of the atoms matter de�nes the type of laser
such as a gas (CO2) or a solid (Nd:YAG). The laser can be de�ned as a high-
intensity beam characterized by a highly-directional and a single frequency
i.e. a wavelength. The laser is also characterized by spatial and temporal
coherences. The spatial coherence is a property related to the propagation of
parallel waves in one single direction. The spatial coherence is a typical laser
property in opposition to common light sources such as �lament lamps. The
temporal coherence of the laser is related to its monochromaticity. Indeed,
since the laser wave is perfectly monochromatic, it is correlated at any time.

Since in this thesis, the two laser systems used for laser irradiation are a
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nanosecond Nd:YAG and a femtosecond Ti:sapphire laser, they are yet basi-
cally described and compared. The Nd:YAG laser or so-called solid state laser

Figure 1: Schematic representations of the (a) three-level and (b) four-level
transitions.

is made of three main components which are an active medium, a pumping
source and an optical resonator. YAG referred to Yttrium Aluminum Gar-
net and is doped with Neodymium. In the present case, the pumping is
made by �ash lamps which induce the stimulated emission described above.
The laser pumping results in populating higher energy levels by the emission
of photons. Thus, the stimulated emission is maintained and ampli�cated
in the optical resonator usually made of one totally-re�ecting mirror and a
semi-re�ecting mirror (output). The �ash lamps and the resonator can have
di�erent geometries. It has to be noticed that the inversion of population
required for the laser emission occurs at three or four-level transitions as it
is schematically represented in the �gure 1. In the present case of Nd:YAG
laser, the laser transition occurs at 1.06 µm.

The requirements for the emission of Ti:sapphire femtosecond laser pulses
are more complex and the set-up implies di�erent laser as it is yet presented.
First of all, a so called Empower laser head contains a laser pump chamber,
a lithium triborate (LBO) crystal and acousto-optico modulator (AOM also
called Q-switch). The laser pump chamber is an array of diode laser plus
Nd:YLF rod which means neodynium-doped lithium yttrium �uoride also
called "yilf". The diode laser excites the electrons of the neodymium atoms
in the YLF crystal, as described above and emits at the 1053 nm wavelength.
This infrared laser light is "frequency-doubled" to 527 nm and energetic Q-
switched pulses are emitted, which are ideal to pump the Ti:sapphire ultrafast
ampli�ers. The frequency-doubling is commonly used for generating laser
lights with shorter wavelengths and can be de�ned as the phenomenon which
transforms an incident wave with an initial frequency ν0 into a wave with a
double frequency ν1 with ν1 = 2ν0. This transformation from fundamental
infrared to harmonic green light is realized by passing through a nonlinear
crystal, which is in the present case a LBO crystal. The AOM is used to

19



amplify the high energetic gain from the Nd:YLF and to deliver a powerful
laser pulse. Basically, the role of the Empower is to energize the ampli�er.
A CW diode-pumped laser (Nd:YVO4 neodymium-doped vanadate crystal)
and a Ti:sapphire pulsed laser are combined in the Mai Tai laser system.
Since the Ti:sapphire absorption range is in the blue and green domain, the
output of the diode laser allows the stimulated emission of the crystal, which
is an monocrystal of alumina doped with titanium ions (Ti3+). The crystal
delivers wavelengths near the infrared domain from 750 to 850 nm and the
maximum laser e�ciency is generally obtained for 800 nm for pulses lower
than 100 fs. The CW pump chamber provides green (532 nm) laser light
with intensities higher than 5 W. The pulsed output chamber regroups the
Ti:sapphire cavity i.e. Ti:sapphire rod, focusing mirrors, control elements
and timing element.

Figure 2: Schematic representation of the femtosecond laser system showing
the Empower pump laser, Mai Tai seed laser and the Spit�re Pro system.

Finally, the Spit�re Pro system also described as "Ti:sapphire regenera-
tive ampli�er systems" ampli�es the femtosecond pulses emitted by the Mai
Tai. The typical output wavelength emitted by the Spit�re Pro is in the
range from 750 to 840 nm. The ampli�er can provide ampli�ed pulses from
2 ps to less than 35 fs. The mode used during this thesis was preset by the
manufacturer to deliver 1 kHz pulse repetition rate. The ampli�er system
contains an optical pulse stretcher and an optical compressor and a regenera-
tive ampli�er. According to the schematic representation (�gure 2) based on
the user's manuals delivered with the femtosecond laser, theMai Tai delivers
the input sub 100 fs pulses, which are stretched in duration using a combi-
nation of mirrors, then energetically ampli�ed in the regenerative ampli�er
(titanium sapphire crystal). The Empower provides the energy to pump the
ampli�er.

The temperatures of both former systems are permanently controlled and
maintained constant in order to provide optimum performances of the entire
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laser system.

2.1.2 Laser ablation mode

The laser ablation process is a common topic in the �eld of laser surface
engineering. In opposition to other methods - which will be presented later -
the laser ablation procedure can be easily operated and requires less optical
elements. The laser ablation can be applied to di�erent types of materials
and using di�erent laser types. In the present thesis, most of the ablation
studies which will be presented were performed using short or ultra short
laser as it is related to the present PhD. Detailed examples of this procedure
will be given at the end of this section.

De Lucia et al. studied the e�ects of femtosecond laser pulses in laser-
induced breakdown spectroscopy (LIBS) on aluminium foils in comparison
with nanosecond pulses, which are usually used for this technique [18]. They
studied the di�erences in the plasma emission for the two former laser con�g-
urations and observed �rst that femtosecond pulses allow the plasma genera-
tion at lower laser �uences (nano: 30 J·cm−2 and femto: 10 mJ·cm−2). Here,
this low �uence application o�ers advantages in comparison to conventional
nanosecond laser systems: the energetic costs are reduced, the low energetic
use allows to study non-stable materials such as explosives and less damage
of the sample is induced.

The work of Stuart et al. focuses onto the ablation of multilayer dielectrics
and gold-coated optics by using high-power short-pulse laser [19]. It compares
the morphology of damages induced by laser pulse duration from 140 fs to 1
ns. The maximum value of the damage threshold measured onto the surface
of gold �lms is found to increase from 0.5 to 1.5 J·cm−2, as the pulse duration
varies from 600 fs to 800 ps as shown in �gure 3.

Preuss et al. report the e�ects of laser ablation on di�erent materials such
as Nickel, Copper, Gold etc. by short laser pulses (0.5 ps) under di�erent
atmospheres (air and vacuum) [20]. As described previously, the femtosecond
ablation of Indium leads to the creation of well-de�ned hole in comparison
with nanosecond laser ablation, which induces rough and irregular spots. As
shown in �gure 4, the atmosphere used for the laser ablation is a real strong
aspect onto the aspect of the irradiated zone. Under ambient conditions, the
limits of the spots appear strongly irregular while under vacuum atmosphere,
the border of the craters are well-de�ned.

Momma et al. performed laser ablation on metallic materials (copper and
steel foils) using a commercial Ti:sapphire laser system at 780 nm wavelength
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Figure 3: Predicted and measured damage thresholds for gold �lms [19].By
long laser pulse durations, the damage threshold signi�cantly increases.

with a broad range of potential pulse duration (0.15 to 5000 ps) [21]. The
ablation process performed using short laser pulses allows a precise control of
the ablated geometry on the material in comparison with long laser pulses.
Using a laser system with a 3.3 ns pulse duration, Momma et al. obtained
chaotic and rough dot structures onto the surface of steel foils, while the
crater appears regular with very precise boundaries when using a 200 fs laser
pulse. Chichkov et al. studied and observed similar e�ects of irradiation
using femto-, pico- and nanosecond laser on various metals and solids [22].
In addition to the elaboration of holes with precise borders, they showed that
the pulse number has a strong in�uence onto the morphology of the crater
at the surface of copper and steel samples.

The femtosecond laser ablation process is based on the unique interaction
of short pulse laser radiation with metallic materials. Based on the works of
Hirayama et al. [23] and Brorson et al. [24], the electron-lattice relaxation
time of metallic materials varies from 1 to 10 ps. Then, if the pulse duration
of the laser is shorter than the previous-mentioned electron-lattice relaxation
time, no thermal ablation of the metal and no melted material will appear.

As the atmosphere in�uences the irradiation by femtosecond laser, the
ablation mostly varies with the type of materials and can induce a topo-
graphical and/or a chemical modi�cation of the material.

The possibilities o�ered by femtosecond laser sytems are not limited to
metallic materials. As Delobelle et al. show in their study, the laser ablation
was successfully applied to borosilicate glass in order to create nano-craters
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Figure 4: Optical micrographs of ablation sites on Ni in vacuum(a) and in
air (b) after 50 ablation pulses [20].

[25]. The femtosecond laser irradiation induced patterns with single or dou-
ble drilled craters depending on the set-up parameters chosen such as the
polarization, the �uence and the numerical aperture (NA). The linearly- or
circularly-polarization strongly a�ects the morphology of the craters as it is
showed in the SEM micrographs in �gure 6.

The e�ects of polarization are studied in the case of a single-shot ablation.
The linear-polarized con�guration leads to anisotropic patterns at the surface
of the glass, while the circular-polarized con�guration induces symmetrical
nano-holes as shown in the �gure 6. Nielsen and Balling study the e�ects
of the s- and p-polarized ultrashort laser and observe that the polarized
orientation has an in�uence onto the �nal hole shape [26]. Indeed, assuming
that no multiple re�ection process occurs and for certain threshold �uence
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Figure 5: Femtosecond patterns onto steel surface with di�erent pulse num-
bers: (a) 10, (b) 100, (c) 1000 and (d) 5000 [22].

Figure 6: SEM views of nanocraters drilled by (a) linearly polarized femtosec-
ond pulses. The anisotropy of the crater is directed along the polarization
direction. (b) Circularly polarized pulses. These two pictures have been
obtained with the same �uence [25].

conditions (i.e. adapted to the material), the p-polarization allows a more
homogeneous ablation of the material, while under s-polarized irradiation no
ablation is possible at the external boundaries of the craters.

Ihlemann et al. studied the e�ects of nanosecond and femtosecond
excimer-laser on oxide ceramics (Al2O3, MgO and ZrO2) [27]. Two di�erent
behaviours were observed depending on the pulse-duration of the laser: the
nanosecond laser shows a behaviour including plasma heating and inducing
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thermal ablation while the femtosecond irradiation does not cause thermal
ablation. Using nanosecond laser, residual heated zones occur around the
irradiated zones, while with femtosecond, no thermally a�ected surrounding
zone is observed and the structuring can be achieved with a micrometer
resolution.

Kononenko et al. performed ablation tests on ceramics (Al2O3, AlN, SiC
and Si3N4) and on metals (steel and aluminum) under di�erent controlled
atmospheres (vacuum, air and argon) using nanosecond and picosecond laser
[28]. They demonstrate that the ambient atmosphere has a signi�cant role
regarding the e�ciency of the ablation process. Indeed, the ablation rate
which was de�ned as "a ratio of a sample thickness to a number of laser
pulses which was necessary to apply to produce a through hole" was found
to be maximum under vacuum. Nevertheless, this behaviour appeared to be
dependent on the �uence regime. For aluminum sample, the ablation rate
was found to be signi�cantly higher at low energy density regimes, while at
high �uence regimes, the ablation ratio gradients have lower values.

The ripples are periodical structures arising from the femtosecond laser
irradiation. Ripples are also described as laser induced periodic surface struc-
tures (LIPSS). LIPSS directly result from the femtosecond laser irradiation
but are not related to the strictly de�ned ablation phenomenon. The dif-
ferent phenomena occuring during femtosecond laser irradiation will be ex-
plained later. The morphology of the ripples is a common research topic
for the laser community since the achievement of the femtosecond laser sys-
tems. Their sizes and periods depend on the laser wavelength, the angle of
incidence and the surface Plasmon. Huang et al. study the origin of these
near-subwavelength structures onto the surface of dielectrics, semiconductors
and metals and �nally state that the surface-Plasmon-laser is the main pro-
cess leading to their formation [29]. Multiple parameters have an in�uence
on the period of ripples and is generally de�ned by the laser community as
close or smaller than the laser wavelength. Hou et al. explore the elaboration
of long-periodic and short-periodic ripples (with 530-600 nm and 260-300 nm
periods, respectively) on stainless steel samples using femtosecond laser [31].
They observe that the pulse number and �uence have a strong in�uence on
the aspect and period of the ripples as shown in the graph 8. These curves
obtained by Hou et al. con�rm �rst that the morphology of the ripples is
controlled by a combination of set-up parameters.

In the study of Chakravarty et al., the authors a�rm that, depending
on the experimental parameters, the period of the nano-ripples formed us-
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Figure 7: Nano-ripple formation using 800 nm pulses in narrow band gap
semiconductors: (a) GaAs and (b) InP; and in wide bandgap semiconductors:
(c) GaN and (d) SiC. The length of the horizontal bar is 1 µm in (a), (b),
(c) and d) [30].

Figure 8: Dependence of ripple period on the pulse number N [31].

ing a Ti-sapphire laser (45 fs pulse duration, 800 nm wavelength) varies in
the range: λ/9 − λ, where λ is the wavelength of the incident laser beam
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[30]. Their experiments were performed onto the surface of semiconductors
and authors attribute the formation of nano-ripples "considering the tran-
sient metallic nature of the semiconductor surface on irradiation with intense
femtosecond pulses" and the surface plasmon which interferes with the in-
cident laser light. The surface plasmon is de�ned by Jiri Homola [32] and
based on the work of Wood [33] and Fano [34] as "narrow dark bands in
the spectrum of the di�racted light [...] referred as anomalies [...] associated
with the excitation of electromagnetic waves on the surface of the di�raction
grating".
In the Handbook of Surface Plasmon Resonance, edited by Schasfoort and
Tudos, Kooymani gives the de�nition of surface plasmon as "propagating
electron density waves occurring at the interface between metal and dielec-
tric" [35].
As the surface plasmon interacts with "the incident laser light with the rough
target surface" [30], free electrons become excited by the multiphoton ion-
ization of the laser irradiation and as the irradiation begins, the roughness
is enhanced. When the surface properties are changed, it leads to a "more
e�cient excitation of surface plasmon". In consequence, the molten mate-
rial is ordered according to "the shape of a grating" related to the incident
beam and surface plasmon. Finally, during the cooling of the material (at the
end of the laser pulse), nano-ripples are formed. Based on this explanation,
Huang et al. [29], Han et al. [36] and Chakravarty et al. [30] proposed a
formulation to calculate the period of the laser ripples (p) depending on the
incident wavelength of the laser beam (λ), the surface plasmon wavelength
(λsp), the refractive index of the ambient atmosphere (i) and the incident
angle (θ).

p =
λ

λ
λsp
± i sin θ

(1)

Equation 1 clearly shows that the period of the ripples is in�uenced by the
laser set-up (depending on the incident angle and laser wavelength), the
atmosphere and �nally the material properties (surface plasmon wavelength).
However, the authors express special reasons resulting in the non-formation of
ripples. The main reason is the value of the �uence chosen for the irradiation.
Indeed, at low �uence, the surface of the material could not be molten or
the laser energy could not activate the surface plasmon and then no ripple is
formed.
Researches were also performed in order to determine the origin of the ripples-
orientation. According to the literature, their orientation is perpendicular to
the laser polarization and this is clearly observed by Huang et al. [29] and
Her et al. [37]. While the use of circular-polarized laser should prevent
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a preferential orientation for the formation of the structures, as Tran et al.
expected and experimented it [38]. The light is de�ned as an electromagnetic
wave meaning made of electric and magnetic waves. This electric wave (E)
is decomposed according to the Maxwell 's theory as:

E = E0e
−i(kz−ωt) (2)

with z as the coordinate in the propagation direction, t the time, ω is the
angular frequency and λ the wavelength. k (k = 2π/λ) is de�ned as the
propagation constant [39]. The polarization of the laser - which can be lin-
ear, circular or elliptical - corresponds to the oscillation of the electric �eld
de�ned previously in equation 2 in a certain plane. The plane of incidence
contains the incident beam and is perpendicular to the material surface. The
di�erent natures of the polarization are de�ned as long as the linear polariza-
tion is in a single plane, the circular polarization as the electric �eld regularly
rotates along the direction of propagation. Finally, the elliptical polarization
rotates with an elliptical shape along the propagation axis as E rotates with
a constant angular velocity and also its absolute value of the �eld vector [40].
The circular polarization is a "derived con�guration" of the elliptical polar-
ization, as the value of the �eld vector is constant. The linear polarization
can be di�erently described as E is perpendicular to the plane of incidence
and is then de�ned s-polarized (s for senkrecht in German language). The
p-polarized con�guration corresponds to the presence of E in the incident
plane (p for parallel) [40].
As most of the commercial laser systems are linear polarized [40], the atten-
tion is now focused onto s- and p-linear polarized laser. The formation of
LIPSS is then dependent on the polarization as the electric �eld orientation
varies and then in�uences the laser-matter interactions [40]. J. Reif a�rmed
that the laser polarization has a "dominant in�uence" onto the "ripples for-
mation" but the "e�ect is by far not yet understood" [41]. The orientation of
ripples is, typically, perpendicular to the electric �eld i.e. to the laser polar-
ization as it has been reported in multiple studies [29, 31, 41�44] and as it is
shown in �gure 9. Hou et al. clearly demonstrate that the ripples orientation
is orthogonal to the electric �eld vector represented in the left corner [31].
Moreover, Reif observes that change of the polarization orientation was not
a�ected by the crystalline structure of the material [41].
The LIPSS topography was studied by atomic force microscopy (AFM) and
SEM by di�erent research groups [45, 46]. As the period of ripples varies,
the height is also a�ected by certain laser parameters such as the �uence and
polarization. Tan and Venkatakrishnan show in their study that the laser
pulse energy applied onto the surface of crystalline silicon and varying from
70 to 100 nJ has a signi�cant in�uence onto the depth of ripples [45]. Indeed,
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Figure 9: SEM images of the surface patterns by the laser irradiation at
�uences of (a)�(d) 0.16 J·cm−2 and (e)�(h) 0.07 J·cm−2. The irradiation
pulse numbers are (a) 10, (b) 50, (c) 100, (d) 500, respectively. E direction
shows the laser polarization, and the scale bar is 2 µm [31].

the depth increases non-linearly with the �uence, from 42 to almost 95 nm
depth, for 70 and 100 nJ, respectively (�gure 10). Moreover, authors found
that the type of polarization (linear or circular) and its orientation (s or p)
in�uence the morphology of ripples as shown in the table 1. The depth was
found to vary signi�cantly as the laser was p- or s-polarized leading to an
increase of 40 % of the depth.

Figure 10: Ripple depth versus pulse energy (s-polarization) [45].

Laser polarization Ripples depth [nm]
linear p- 101
linear s- 145
circular 122

Table 1: Depth calculated from cross-section pro�le of ripples formed by laser
beam of 100 nJ pulse energy [45].

Momma and Chichkov et al. schematically detailled the long and ultra short
laser mechanisms involved into the nano- and femtosecond laser irradiation of
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solids [21, 22, 47]. As the ablation with femtosecond laser implies pulse dura-
tion shorter than the electron-lattice relaxation time, they consider a "direct
solid-vapor (or solid-plasma) transition" without melting of the metallic tar-
get. It induces the formation of "vapor and plasma phases" and the thermal
conduction can be neglected. On the opposite, in the case of long pulses
(nanosecond pulses) the metal is heated and molten. In the literature, the
plasma is de�ned as: "a wide variety of macroscopically neutral substances
containing many interacting free electrons and ionized atoms or molecules,
which exhibit collective behavior due to the long-range coulomb forces" by
J.A. Bittencourt in his book Fundamentals of Plasma Physics [48]. A more
simple de�nition of plasma is given by U. Schumacher, as "an ionised gas,
consisting of free electrons and atoms or molecules [...] characterized by its
collective behaviour" [49]. A plasma occurs when a material is heated and
atoms or molecules become su�cient thermal kinetic energy "to overcome
the binding potential energy". The plasma is often de�ned in the literature
as the fourth state of the matter, besides solid, liquid and gas. Bonse et al.

Figure 11: Physical processes during the modi�cation of silicon with fem-
tosecond laser pulses and their threshold �uences [50].

published the "cartography" schematically presented in �gure 11 [50]. The
previously mentioned ablation and ripples occur in the ablation and anneal-
ing regions. Then, a third zone appears at the border of the irradiated zone
i.e. at the extreme limit of the laser intensity distribution. In this region, the
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morphology of the sample is not signi�cantly a�ected but processes result-
ing from oxidation and amorphization occur. Finally, Bonse et al. propose
a schematic representation (�gure 12) summarizing the morphological and
microstructural in�uences of the increasing pulse number and laser �uence
on the silicon surfaces [50]. Indeed, it shows that the presence of ripples and
spikes (cones) only occurs at high pulse number and high �uence (above the
ablation threshold), respectively. Tran et al. published a similar schematic

Figure 12: Scheme of the di�erent morphological phenomena after irradia-
tion of the silicon surface with linearly polarized femtosecond laser pulses of
typically 100 fs duration [50].

illustration (�gure 13) to the Bonse's scheme (�gure 11) with additional zones
in�uenced by the laser irradiation [38, 51]. As shown in �gure 13, the �rst
zone at the border with the non-irradiated region results from the di�raction
of the beam and is described as "outer modi�cation" region with possible
phase transformations. The presence of di�raction has to be carefully con-
sidered as it is strongly dependent on the homogeneity of the beam. Thus,
an area (corresponding to the lowest laser intensity region) with "no phase
change" surrounds the area hit by the maximal laser intensity. This area
is then divided into three di�erent zones: in the middle the ablation zone,
where authors noticed the presence of linear ripples and no columnar struc-
ture or spike. Surrounding it, there is the modi�cation region resulting from
the resolidi�cation of materials (melting) leading to amorphous and polycrys-
talline silicon. Inside this zone, authors report the presence of a circular zone
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made of re-deposited materials, which results from the pure ablation process.
Authors assumed that the presence of columnar patterns is controlled by the
number of pulses used for the patterning. The previous section shows the

Figure 13: Schematic illustration of di�erent annulus regions of surface dam-
age morphologies and ablation observed on silicon by multiple sub-threshold
ultrashort laser pulses [38, 51].

multiple physical e�ects and phenomena related to the laser ablation and
involved in the surface texturing by means of femtosecond laser irradiation.
This former state-of-art demonstrated that all these parameters have to be
carefully considered regarding their complex and interconnected e�ects.
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2.1.3 Continuous wave laser

Laser in the continuous-wave (cw) mode are used worldwide for the treatment
of materials but are employed in di�erent ways. Cw-mode implies that the
operating laser is continuously pumped and the laser beam is continuously
emitted. Laser assisted machining (LAM) is an extension of the plasma
assisted machining, this method is used for the cutting of materials, which
can be ceramics, hard steels and alloys [52]. The continuous laser is used as
a heat source. By heating the material with the laser, the strength of the
material is reduced and the workpiece can be easily cut using a traditional
cutting tool, as it can be seen on the �gure 14.

Figure 14: Schematic representation of a LAM procedure during the cutting
operation.

Di�erent types of laser can be used for this method: the CO2-, diode- and
Nd-YAG- (neodymium yttrium-aluminium-garnet) laser. CO2-laser (carbon
dioxide) are gas laser and have been the �rst type of laser used for the LAM
process due to their high energy range. The average power varies between
few watts to many kilowatts. CO2-laser operate at a wavelength of 10.6 µm
and are commonly used in industry because of their low operating costs and
reliability. Taking into account these advantages, the CO2-laser is widely
used for cutting materials such as plastic, metallic and organic materials
(e.g. wood) , welding and laser writing [53].
In comparison with CO2-laser, the diode laser, with a wavelength between
800 nm and 920 nm, have a better absorption for metallic samples. They
have been developed in the eighties and were only able to deliver low laser
power. In the last few years, they have been improved and can reach power

33



of about 4 kW in the continuous mode. Diode laser have several application
domains as developed in the Fraunhofer IWS Dresden, where diode laser in
cw-mode are used for hardening and welding of metallic samples [54]. Diode
laser can also be used as pumping laser for solid-state laser such as Nd:YAG-
laser.
Nd:YAG-laser is actually the most common solid-state laser in industry used
in cw-mode. Nd:YAG laser is a solid-state laser using neodymium-doped
YAG for Nd3+:YAG. This type of crystal is favorable for high-power laser
and pulsed laser emitting at 1064 nm. In the beginning of the 21st century,
Nd:YAG laser could deliver power of 5 kW and now they can reach values
of 10 kW [55]. They have an important role in many industries for di�erent
applications such as welding, heating, cutting etc. This common presence in
the industrial �eld is obviously related to the qualities of the laser such as the
precision of the laser beam and the intensity that it can deliver and which
can be adapted depending onto the nature of the materials involved. Laser
in cw-mode are also used for the surface tailoring of materials. Zum Gahr
and Schreck used a Nd:YAG laser in the cw-mode in order to structure their
100Cr6 samples because they observed that the pulsed mode induced ragged
topographies in comparison to regular structures induced by the cw-mode
(�gure 15) [56].

Figure 15: SEM micrograph of a laser structured 100Cr6 sample performed
using the (a) Q-switch mode and (b) cw-mode by Schreck and Zum Gahr
[56]. These two modes clearly create structures with di�erent aspect.

They produced di�erent cross and line structures in order to study the
e�ect of laser pattern and structure density. It has been shown that increasing
the structure fraction led to a decrease of the friction coe�cient. Authors
demonstrated that for two di�erent con�gurations (pairing 100Cr6/100Cr6
and 100Cr6/Al2O3), the lowest coe�cient of friction was obtained for cross
patterns.
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2.1.4 Laser interference

As written in the PhD thesis of Andres Lasagni, optical patterning processes
are one of the major procedures for the texturing of materials [57]. These
techniques di�er from their respective energy sources, which can be light,
electrons or ions and are generally described as lithography. Lasagni reported
the four �indispensable steps� for the lithographic technique: a �pre-designed
set of pattern, a mean to transfer the pattern (e.g. laser light), a responsive
medium and tools which ensured appropriated metrology� and �nally the ap-
plication itself. In the following chapter, di�erent procedures based on the
laser interference principle are described considering the �nal application and
their ability to be produced for industrial goals.

The demonstration of the interference of light was �rst made by Thomas
Young (1773-1829), physicist, Egyptologist and doctor [58]. He started his
studies on this topic around the begin of the ninetieth century. He reported
his experiments in year 1800 in Experiments on Sound and Light, in On the
Theory of Light and Colors (1801) and in Experiments and Calculations
Relative to Physical Optics (1803). By �making experiments on the fringes
of colors accompanying shadows�, Young �found a simple and demonstrative
proof� of the interference of light. His experiments resulted in the creation
of interference fringes when two portions of light interfere.

Fayou Yu considered in his PhD thesis two laser sources: monochro-
matic and linearly polarised plane waves with the following wavefunctions
[59]:

ψ1 =
√
I1e

i(kr1+φ1) (3)

ψ2 =
√
I2e

i(kr1+φ2) (4)

Assuming that the two beams interfere coherently, the sum of these func-
tions are:

ψ = ψ1 + ψ2 =
√
I1e

i(kr1+φ1) +
√
I2e

i(kr1+φ2) (5)

ψ̄ =
√
I1e

−i(kr1+φ1) +
√
I2e

−i(kr1+φ2) (6)

Where ψ̄ is the complex conjugate of the sum of the wavefunctions and
the intensity I can be written as:
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I = |ψ|2 = ψψ̄ (7)

I = I1 + I2 +
√
I1I2e

i(k(r1−r2)+φ1−φ2) +
√
I1I2e

−i(k(r1−r2)+φ1−φ2) (8)

I = I1 + I2 + 2
√
I1I2 cos δ (9)

With δ:

δ = k(r1 − r2) + φ2 − φ1 (10)

Considering two similar laser sources, their intensities I1 and I2 are equal
to the intensity amplitude of the partial beams and the equation 9 becomes:

I = 2I0(1 + cos δ) = 4I0 cos2 δ/2 (11)

Then the maximum and minimum intensities are: Imax = 4I0 and
Imin = 0.

The periodicity of the pattern in the two beam con�guration is given by
the equation 12 depending on the wavelength of the laser λ and the angle
between the two incident beams θ:

P = λ/2 sin θ (12)

and the intensity distribution for the two laser beam con�guration is then
given by:

I(x) = 2I0(1 + cos (2πx/P )) (13)

A schematic representation of the intensity distribution in an ideal case
is represented in the �gure 16

The maximum of intensity corresponds to a minimum of laser structure
pro�le due to the melting and ablation phenomena. As reported by Gachot
et al. for metallic samples, this intensity distribution leads to a temperature
di�erence varying from 1800 K to 3000 K between the minima and maxima
intensity positions [16]. Quenching rates during laser treatment can reach
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Figure 16: Schematic representation of the energy distribution on the in-
terference pattern and the induced microstructure [59]. Depending on the
nature of the material (polymer, bulk metal, thin �lm), the pattern distri-
bution can be di�erent.

values up to 1010 K·s−1. In the case of metallic samples, these high tempera-
ture gradients induce the formation of periodical structures according to the
Marangoni convection.
The Marangoni convection is a thermo-capillary �ow which is induced by
surface tension gradients. These gradients can be induced by irregular tem-
perature distribution or compositions of the system. Marangoni (1840-1925)
was an Italian scientist, who studied the wetting of one liquid on another.
Considering two liquids A and B composing a certain system, with the sur-
face tensions γA and γB (with γA > γB), the surface tension gradient induces
a �ow at the contact surface. The convection is directed from regions with
lower surface tension (γB) towards areas with higher surface tension (γA) as
described by the schematic representation �gure 17.

Depending on the sign of the surface tension gradient (dγLV /dT ), the
welding pool can have two di�erent forms (�gure 18). When the surface
tension decreases, with an increasing temperature dγLV /dT < 0, the welding
pool is broad and shallow.

On the contrary (dγLV /dT > 0), when the surface tension increases along
with the temperature, the welding pool is deep and narrow. The presence of
certain elements (for example oxygen and sulphur) can drastically change the
convection mode. When the concentration of these surface active elements
overpasses a certain threshold, the surface tension gradient sign is changed
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Figure 17: Schematic illustration of the forces acting when two �uids with
di�erent surface tensions are brought into contact. A convection is generated
(on the surface S = Ldx) by this di�erence from regions with lower surface
tension (γB) towards areas with higher surface tension (γA).

Figure 18: Schematic representation of the Marangoni convection in the case
of a welding pool. The temperature of the centre is higher than the temper-
ature at the edges (in the case of a laser e.g.). The surface tension of the
centre(γcentre) is the highest (a), which leads to a �ow of the molten material
towards the edges. Inversely, when the surface tension of the edges(γedge) is
the highest (b), the �ow direction changes.

and the Marangoni �ow is directly a�ected [60]. Lu et al. performed bead-
on-plate welding experiments on stainless steel samples. By changing the
concentrations of O2 and CO2 (up to 0.6 vol %) in the working atmosphere,
they show that the oxide layer (10 µm thickness) at the surface of the stain-
less steel samples acts as a barrier for oxygen absorption into the molten
material and partially prevents the Marangoni convection.
Lu et al. also used direct laser patterning methods in order to structure
silicon samples. The Marangoni convection has been reported as an e�ect
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controlling the structuring using laser sources [61]. They used a 248 nm ex-
cimer laser with a Gaussian distribution in order to irradiate samples. The
Gaussian pro�le of the intensity distribution induced a Marangoni e�ect in
the molten area. Two e�ects have been observed, a thermocapillary e�ect
which drives the matter from the hottest center to the border of the irradi-
ated zone and a chemicapillary e�ect moving the material inward towards
the center.
The Belgian department of metallurgy and materials engineering used selec-
tive laser melting for the fabrication of dense iron-based samples [62]. They
demonstrated with their experiments and the work of Keene [63] that the
surface tension of melted iron and thus the Marangoni convection were not
automatically a�ected by the oxygen content in atmosphere.

Depending on the nature of the material, the temperature and the surface
tension, the Marangoni convection can have di�erent behaviours but clearly
has an important role in the laser structuration of metallic samples.

Interference lithography is a patterning modus widely used for the struc-
turing of thin �lms and bulk materials. This method permits to create pe-
riodic patterns according to a simple process where a laser beam is divided
into two coherent beams which interfere in order to structure the sample.
Laser interference lithography (LIL) has been combined with metal-assisted
etching by a group in the Max Planck Institute of Microstructure Physics in
order to produce nanowires [64]. They used the two beam con�guration (the
incident beam and a re�ected beam) to create a sinusoidal pattern at the
surface of their photoresist �lm. After that, the whole sample (silicon and
photoresist �lm) was recovered by a 20 nm gold �lm and the photoresist and
the metal were removed. Finally, the nanowires were obtained by etching
process. Using this method, they experimentally developed nanostructures

Figure 19: Laser interference lithography (LIL) combined with O2 plasma
etching is employed to produce arrays of photoresist posts [64].

with a periodicity varying from 140 nm to 1500 nm. A similar procedure was
used by a group of American and Korean scientists to elaborate nanowires us-
ing laser interference lithography [65]. A polymer mask was created by using
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laser interference holography in the two- or multiple-interference beam con-
�guration. Using this periodic mask with a combination of physical vapour
deposition (PVD) and chemical removal process, nanowires of di�erent ma-
terials have been created such as Titanium, Copper etc. Authors developed
a simple method of high quality for the production of nanowires in industrial
quantities.

The LIL process o�ers numerous advantages for the surface treatment
of materials. Based on the principle of interference of laser beams, almost
all kinds of samples can be structured by this technique. Moreover, the
LIL can be combined with others techniques such as lift-o� [66] and etching
techniques. The LIL procedure leads to a multiple of structure geometries
(line [67], dot [68], etc.).

In the �rst years of this century, the laser interference metallography
has been developed as an extension of the laser interference lithography.
The goals of the LIMET was to reproduce patterns observed in nature
on metallic materials. The tasks of the LIMET patterns were to have
positive e�ects on the topography and micro-structure of samples [69]. It
was demonstrated that the LIMET could be applied to all other types of
materials: polymers [70], semiconductors [68], ceramics [71] and composites
[72]. The e�ects of the laser interference structuring can be classi�ed
into two di�erent categories: the topographical and the micro-structural
e�ects. These e�ects have di�erent in�uences: they depend on the material
properties (e.g. roughness, mechanical properties) and the laser set-up (e.g.
�uence, pulse number). In order to introduce the LIMET procedure and to
prove its importance in the material science �eld, all the previous-mentioned
e�ects are detailed in the following paragraphs.

By irradiating Ni-Al thin �lms using laser interference metallurgy, Liu et
al. asserted that the laser irradiation changed the hardness of the samples
[73]. Nano-indentations measurements were performed in the laser treated
and untreated zones. They revealed that, in the laser-intensity-maximum
area, the hardness is more than twice higher than in the untreated area.
These results, which are in agreement with experiments performed in a
vacuum furnace [74], con�rmed that a material with periodical hard and
soft properties was created.

As to micro-structural e�ects induced by the laser interference patterning,
it has been reported that the formation of intermetallics occurs [72]. Metal-
lic multilayer samples based on NiAl (Ni3Al and NiAl) and RuAl materials
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have been irradiated by the two beam con�guration. TEM cross sections
and FEM simulations showed that the melting zone of the materials was pe-
riodically distributed in the top layers according to the laser intensity pro�le.
Due to the laser irradiation, the residual stresses and the texture distribution
have been changed drastically [75]. After the laser structuring (20 pulses),
the texture of the samples presents a strong orientation which is tilted in
comparison with the unstructured samples. Furthermore, an evolution of
the residual compressive stress is found and is dependent on the number of
laser pulses as presented in �gure 20.

Figure 20: Calculated stress evolution in the Al and Ni phases as a function
of the number of structuring laser pulses [75].

Gachot et al. studied the grain size and orientation evolution in thin �lms
after LIMET process [16]. Two �uence regimes have been applied to the
samples. It has been observed that signi�cant di�erences appeared in the
crystallization process. Three �uence regimes are distinguished: for low laser
energy density, a partial melting of the sample occurs ; for high �uences, the
metallic layers were completely melted. Between these two regimes, a super
lateral growth phenomenon appeared: grains grew from the laser intensity
minimum to the intensity maximum. Inverse pole �gure maps and grain size
distributions have been performed using EBSD (�gure 21). They revealed
that in the super lateral growth zone, a preference orientation appeared.
Moreover, a signi�cant grain growth was induced in this zone in comparison
with the as-deposited state, where it was not possible to measure the grain
sizes. By FEM simulation, it was established that the temperature gradient
could be 3000 K broad due to the laser irradiation. This precise periodical
heat distribution permitted a control of the grain orientation and grain size
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distribution.

Figure 21: Inverse pole �gure maps of the 300 nm thick Au (a) and Pt thin
�lms (b) determined by electron backscatter di�raction (EBSD). The color
coding goes along with the inserted orientation triangle [16]. The periodic
control of the laser intensity allows a periodic grain orientation and grain size
distribution on Au and Pt thin �lms.

In addition to the bene�t of the microstructures tailoring, the LIMET pro-
cedure has been successfully used to pattern the chemical behaviour of alu-
minum foils by D'Alessandria [76]. Aluminum foils were textured using the
two beam con�guration in order to study the e�ect of laser irradiation de-
pending on the laser intensity and on the laser �uence. It appeared �rst that
by increasing the laser energy density, the oxide layer becomes thicker. Two
�uence regimes can be distinguished: for low laser �uences (< 500 mJ·cm−2),
the oxide layer thickness is unchanged for laser energy minima and maxima.
For high laser �uences (> 500 mJ·cm−2), oxide layer becomes thicker at the
location of laser intensity maxima. Thermal simulations reveal that oxide
layer grew is proportional to the maximal laser temperature reached.

Duarte et al. showed in 2008 that the LIMET has also relevant e�ects
on wear behaviour of bulk stainless steel [77]. They studied the evolution
of friction coe�cient under lubricated conditions for structured samples
depending on the laser-pattern (line, dot, grid-patterns) and the structure
depth. Compared with non-treated surfaces, the lifetime of the lubricant
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layer has consistently been improved in the case of the laser structuring.
Moreover, the deep structures improved more signi�cantly the frictional
behaviour than the shallow structures. Authors explained that the di�erence
between friction coe�cients for each pattern was due to the reservoir e�ect
that does not exist for line-like structures. Topographical calculations of
the reservoir density were performed using an interferometer and proved
that cross patterns presented a cavity three times higher than dot structures.

Experiments performed by Hans et al. have demonstrated the ability of
LIMET to tailor the wetting behaviour of titanium and polyimide samples
[15]. The laser interference structuring has permitted to increase the statisti-
cal values of contact angles drastically: the wetting behaviour changed from
hydrophilic for the initial state to hydrophobic for laser irradiated surfaces.
Assuming that there was no critical in�uence from the surface chemistry,
this behaviour can be explained by the Cassie's and Baxter's model, which
consider that there is a heterogeneous wetting due to the air trapped in the
pockets between the �uid and the material.

The pattern dependency for reducing friction was also demonstrated using
LIMET [78]. Bulk copper samples have been structured using LIMET in
order to compare the frictional behaviour of laser irradiated samples and
unstructured samples: line and grid structures were generated as shown in
�gure 22.

Figure 22: Grid patterns over bulk copper surfaces. The sample has been
irradiated with the two-beam interference plus a sample rotation [78].
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Figure 23: (a) Abbott-Firestone curves of laser structured and unstructured
copper samples. They show that line structured and unstructured copper
samples have a similar behaviour: line structures and asperities of the un-
structured samples bear the load in a similar way. Grid patterns have a higher
load-bearing capacity, which con�rms frictional tests and SEM observations.
(b) Pro�les of unstructured and laser patterned surfaces [78].

Abbott-Firestone curves (�gure 23) of structured and unstructured sam-
ples show that the grid pattern surface has a higher load-bearing capacity
than the line pattern and unstructured surfaces which have a similar be-
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haviour. Indeed, line patterns act as unstructured samples for bearing load
due to the geometry similar to asperities. This means that the grid structure
has a better load-bearing capacity and it implies that grid patterns should
be less exposed to wear and friction than the other two surfaces.

Figure 24: Autocorrelation functions of unstructured and laser structured
samples. The laser structure topography oscillates homogeneously and peri-
odically in comparison with untreated samples. The CL is shorter for grid
patterns than line structures due to the double laser irradiation, which induce
more irregularities in grid pro�les [78].

Figure 24 represents the autocorrelation functions of line and grid pat-
terns and unstructured samples. According to the autocovariance curves,
the unstructured surface presents an irregular topography compared to the
laser structured surfaces. The correlation curves of the line and grid pat-
terns present periodic oscillations (typical for long-range-ordered structures).
Hence, the laser patterns will be homogeneously deformed compared to un-
treated surfaces. It can be assumed that the topography of the second pass
will be highly dependent on the �rst pass topography, only for untreated
samples. The correlation length (CL) of the grid patterns is lower (2.02 mm)
than that of the line patterns (3.24 mm), meaning that this con�guration
is less homogeneous than the line structures. This can be explained by the
second irradiation necessary for grid patterns, which renders structures more
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irregular.

Figure 25: Friction coe�cients of Cu samples depending on the structure
geometry, measured in linear reciprocating mode (constant half-amplitude,
load (2 mN), acquisition rate, linear speed (0.5 mm/s), stop conditions and at
room temperature and humidity). Geometrical parameters (pattern and ori-
entation) have a severe in�uence on the friction coe�cient of copper samples
[78].

Figure 25 shows the friction coe�cients of non-structured and laser-
structured copper samples over the sliding time. It appears that laser struc-
tures strongly decrease the friction coe�cient of copper samples. Of course,
it was precisely observed (�gure 25) that geometrical parameters of the struc-
tures have a strong in�uence on the friction coe�cient.
Perpendicular and parallel patterns have an averaged friction coe�cient of
about µperpendicular ∼ 0.26 and µparallel ∼ 0.23, respectively, compared to
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unstructured samples µunstructured ∼ 0.91. Grid patterns induce an aver-
aged friction coe�cient of µgrid ∼ 0.18. It means that friction is reduced
up to 70 % for parallel and perpendicular patterns, and grid structures re-
duce dry friction of copper against alumina up to 80 % in comparison with
non-structured copper surfaces. Each laser structure stabilizes the friction
behaviour of copper samples and provides low and constant values of the
friction coe�cient compared to untextured surfaces.

Wear tracks have been studied using WLI and pro�les of laser structures
before and after the wear tests have been plotted in �gure 26. Obviously, laser
patterns are in part plastically deformed by friction. The plastic deformation
of the laser pattern leads to crushing and lateral expansion of laser tips. The
averaged pro�le area of laser tips before and after friction tests has been
calculated by integration in table 2. A slight di�erence between volumes
before and after the friction test exists but has no in�uence on the previous
observations considering the error. By multiplying this area and the constant
length of the wear track (0.2 mm), the volume of the laser structure does not
change due to friction. These results con�rm that there is no material loss
due to friction phenomena, and that the periodical structure induced by laser
interference bears the load.

Figure 26: Surface pro�le comparison of laser structured samples in line
con�guration before and after friction measurements. Crushing and lateral
expansion of the laser structure appear without material loss [78].

Figure 27 shows SEM images of worn grid structures. As reported before,
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Laser tip Error Volume of a
surface [µm2] [µm2] single laser tip [µm3]

Before friction test 3.6 1 720
After friction test 3.4 1.1 680

Table 2: Areas of laser pro�les before and after friction measurement. The
areas have been determined by integrating laser pro�les as presented in �g-
ure 26. The volume of a laser line has been calculated by multiplying the
areas by the length of the wear track. This means friction only induces plastic
deformation of laser structures [78].

no wear debris is visible on the wear track. The part of the laser structure
which has been plastically deformed appears in both directions: parallel and
perpendicular to the sliding direction. This means that the grid structure
carries the load isotropically.

Figure 27: SEM images of grid patterns after friction testing. There is no
wear debris on the surface after friction. Grid structures are in part plasti-
cally deformed parallel and perpendicular to the sliding direction. The grid
structure carries the load isotropically [78].

The previous descriptive paragraphs prove that the laser interference met-
allurgy is a patterning method which allows a multitude of application pos-
sibilities. In addition to these advantages, the LIMET shows its ability to
produce functionalized surfaces at a relative big scale in a short time and
under room conditions.
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2.2 Wetting phenomena and wettability: in�uences of

the surface and �uid properties

2.2.1 Wettability models: Young, Wenzel, Cassie Baxter, de
Gennes

Figure 28: Schematic representation of a soap water mixture. The mixture
is trapped but when the free side moves, it reduces the �lm area and a force
F is applied to keep the �lm surface constant. This experiment shows the
surface tension phenomenon.

Figure 28 shows a soap water mixture trapped inside a quadratic channel
with a free side to move. When the free side of the �lm moves, it tends to
reduce the �lm area. Then a certain force F, proportional to the channel
width L is necessary to keep the �lm surface S constant. In order to increase
this surface of dA = Ldl, an energy dW is necessary and corresponds to:

dW = Fdl = 2γLdl = 2γdA (14)

γ is the surface tension and is exprimed in N·m−1 or J·m−2 in SI.

Using the equation 14, the surface tension is expressed as:

γ =
F

2L
(15)

The surface tension of water at 20 ◦C is γ = 72 mN·m−1.

Most of the interfaces are naturally curved and the equilibrium of the
system can be achieved only if there is a pressure gradient which permits to
pass through the curve. In the middle of the 18th century, a German medical
scientist showed that when a water droplet gets in contact with a straw, the
water droplet raises up. He understood that a certain pressure permitted
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the movement of the droplet. Around �fty years later, Laplace could calcu-
late this pressure. Considering a spherical droplet at the equilibrium on a
surface, the droplet has a pressure pd higher than the ambiant pressure p0.
The droplet does not have a perfect round shape like it was schematically
represented on the �gure 29. The equilibrium of the pressure and the ten-

Figure 29: Schematic representation of a water droplet at the equilibrium
(radius R and pressure pd) on a solid surface. The equilibrium of the pressures
and forces allows the calculation of the Laplace pressure.

sion forces acting on the droplet have to be calculated. So the equilibrium
between external dW0 and internal dWd forces is given by the equation 16
as:

dWext = dWint (16)

With the pressure forces given by:

dWext = −F0dR + FddR = 4πR2dR(pd − p0) = 4πR2dR∆p (17)

and the increase of surface tension energy:

dWint = 8πγRdR (18)

Indeed if the radius R of the droplet increases of dR, the surface increases of
8πRdR.

So the equation 16 becomes:

4πR2dR∆p = 8πγRdR (19)

and the gradient of pressure between the droplet and the atmosphere is:

∆p =
2γ

R
(20)
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This equation 20 gives the Laplace equation. For a general case, it be-
comes:

∆p = γ(
1

Rd

+
1

Rsurf

) (21)

where γ is the surface tension and Rd and Rsurf are the curvature radii of
the droplet and the surface respectively. The Laplace equation is the gradient
of pressure in a point at the interface.

The wetting of a liquid on a surface can be described using the spreading
parameter S which compares the surface energies of a sytem. It permits to
de�ne if the wetting is total or partial. Marangoni was the �rst to compare
the surface energies. S is given by the following equation:

S = γSV − γSL − γLV (22)

γSV , γSL and γV L = γ are the surface tensions of the solid-vapor,
solid-liquid and liquid-vapor phases respectively.
Two cases can be distinguished:

- 0 < S, means that the spreading is total, γSL + γLV < γSV , the liquid
covers the maximum of the solid surface.

- S < 0, the spreading is described as partial: γSV < γSL + γLV . In this
case the solid has a low surface energy, which does not allow the liquid to
wet the surface.

In the case of a partial wetting (S < 0) of a small droplet on a surface,
it can be observed that the gravity force does not a�ect its shape pro�le.
Considering that a droplet does not completely wet the surface, its pressure
pd is given by the Laplace equation 23:

pd = p0 +
2γ

R
(23)

A certain contact angle exists at the triple line location as represented on
the picture 30. This contact angle is given by Young's law which uses the
projections of the three surface tensions γSV , γSL and γLV as represented on
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Figure 30: Representation of the surface tensions at the triple line location
related to the equation of Young.

the previous picture.
At this point, the equilibrium is:

γSL + γLV cos θ = γSV (24)

so the contact angle θ is related to the surface tensions by:

cos θ =
γSV − γSL

γLV
(25)

The contact angle can also be described using the spreading parameter as:

cos θ = 1 +
S

γLV
= 1 +

S

γ
(26)

In the case of a partial spreading, certain systems can be a�ected by
gravity. In this case, the pro�le of the droplet is not spherical anymore but
becomes �at and can be described as a puddle as schematically represented
in �gure 31. The droplet is �at except at the edges (location of the triple
line). This pro�le is due to the simultaneous action of the gravity forces to
spread the liquid and the surface tensions which prevent the wetting.
The equilibrium of these forces can be written as:

P = −S (27)

with P the pressure or gravity force tending to �atten the droplet

P =
1

2
ρgh2 (28)
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Figure 31: Representation of a droplet a�ected by the gravity. The droplet
has a puddle shape pro�le due to the gravity. h is the thickness of the puddle
and can be calculated at the equilibrium.

with ρ the density of the liquid expressed in [kg/m3], g the gravity
acceleration in [m/s2] and h the thickness of the puddle in [m].

The thickness of the puddle can be calculated as:

h =

√
−2S

ρg
(29)

and using the equation 26, h becomes:

h = 2κ−1 sin
θ

2
(30)

with κ−1 the capillary length given by the following equation:

κ−1 =

√
γ

ρg
(31)

The capillary length permits to determine which force is dominant in a
system submitted to the capillary and gravity forces.

The extreme case opposed to the total wetting is the so-called non-
wetting. This case corresponds to the surfaces described as superhydrophobic.
Figure 32 shows an example of a superhydrophobic surface achieved by
Onda et al. [79]. They produced fractal surfaces made of alkylketene
dimer (AKD), which present a super-water-repellent behaviour leading to
a 174◦ contact angle. The non-wetting of surfaces can be interesting for
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Figure 32: Water droplet on fractal AKD surface (θf = 174◦), the fractal
AKD surface achieved by Onda et al. has a superhydrophobic behaviour
[79].

certain sytems such as a win droplet on a tissue surface. In order to trigger
this behaviour, the substrate has to be hydrophobic �rst (θ < 90 ◦). The
roughness of the surface is also a crucial point, which permits to trap air
and create a composite surface as it has been described by Cassie-Baxter in
1944 [80]. The Cassie-Baxter model will be developed in a further paragraph.

In 1936, Wenzel proposed a model to explain and understand the in�u-
ence of a rough surface on the spreading of liquid [81]. He a�rmed that "the
wetting properties of a solid substance should be directly proportional to the
roughness of the surface wetted". He explained that a solid with asperities
o�ers more surface than a �at sample and "therefore a greater intensity of
surface energy".
Considering a liquid deposited on a chemical-homogeneous and rough sur-
face, the apparent contact angle is given by Young's law (calculated in the
equation 25). The dimensions of the asperities have to be considered as very
small in comparison to the droplet dimensions. The roughness-factor Rf is
introduced as the ratio of the real area Areal on the apparent area Aapparent

and is related to the interface solid-liquid.

Rf =
Areal

Aapparent
(32)

When Rf equals 1 (Rf = 1), the solid can be considered as perfectly
smooth and the apparent contact angle (θapp) is equal to the real contact
angle (θreal). In this case, Young's law is correct:

γSL − γSV = γLV cos θreal (33)
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When Rf becomes higher than 1 (Rf > 1), the real area is higher than
the apparent area and the roughness-factor has to be introduced as:

Rf(γSL − γSV ) = γLV cos θapp (34)

The Wenzel equation is then given by the combination of the equations 33
and 34:

cos θapp = Rf cos θreal (35)

This theory is not available for all systems: a rough surface with a superhy-
drophobic behaviour cannot be explained by the Wenzel model. The Cassie-
Baxter model developped in the next paragraph proposes a better approach.

In 1944, Cassie and Baxter published their study Wettability of porous
surfaces which extends the work of Wenzel [80]. Their model described the
wetting behaviour of chemical or topographical heterogeneous surfaces. In
the equation of energy, they introduced the roughness-factor and a similar
factor (φ) for the liquid-vapor interface de�ned as the "total area of liquid-air
interface in a plane geometrical area of unit parallel to the rough surface".
This factor can also be described as the surface fraction of solid under the
liquid. By adding these two factors, "the net energy, ED, expended in forming
unit geometrical area of the interface" is given by the equation 36:

ED = Rf(γSL − γSV ) + φγSV (36)

The Cassie-Baxter model introduces in the calculation of the apparent
contact angle of Wenzel, the surface fraction of solid under the liquid as:

cos θapp = Rf cos θreal − φ (37)

The parameters Rf and φ presented in the Cassie-Baxter model can be
changed in order to control the wetting behaviour. The design of certain
geometrical parameters such as, structure pattern, depth, periode etc. and
the distribution of chemical species such as oxides (e.g. aluminum, iron,
chromium oxides) can in�uence these Rf and φ parameters.

When a liquid wets a surface, the wetting behaviour can be static or
dynamic. This section will focus on dynamic wetting. The dynamic wetting
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can be easily described as the triple line which is moving at a certain speed
on the surface and leads to a non-equilibrium state.
In 1975, Ho�man found an empirical relation between the dynamic contact
angle and the spreading speed of the �uid [82]. He studied the advancing
liquid-air interface in a glass capillary for various oils. He expressed the
contact angle θ in function of the capillary number Ca given by the following
equation:

Ca =
ηV

γ
(38)

with η the dynamic viscosity of the �uid, γ the surface tension and V
the speed.

This equation reveals that the contact angle increases according to a
logarithmic function and depends on the speed of the triple line.

In 1985, Pierre Gilles de Gennes published a review called Wetting:
statics and dynamics describing the hysteresis of the contact angle and
the spreading of liquids due to physical and chemical e�ects such as the
orientation of the surface roughness and the presence of impurities [83].
Given a rough surface with periodic line patterns, the lines are considered

Figure 33: Overlapping process proposed by Pierre Gilles de Gennes [83].
When the triple line is parallel to the periodic grooves, the triple line gets
over the peak in a single point only. Then, the liquid spreads inside the
groove (valley) as represented.

to be in�nite in a direction as schematically presented in �gure 33.
First of all, the liquid is spreading in the direction perpendicular to the
periodic lines (i.e. the triple line is parallel to the periodic grooves). In
this case, the triple line is partially trapped in the parallel grooves and "it
is pinned" as exposed by de Gennes. The overlapping of the structures
is shown in the schematic representation in �gure 33. As described by de
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Gennes, "the optimal method [...] is not an overall jump" along the in�nite
length of the grooves because this would imply a "huge barrier energy" to
overtake. The triple line gets over the groove only in a single point, where it
costs the less energy (this point can be a default in the structure such as a
lack in a physical pattern or in a chemical barrier), this is the cost-e�cient
energy solution. Once the groove is passed, the liquid spreads in orthogonal
direction inside the groove without any pinning.

This case is the other extreme con�guration which takes place when the
triple line forms a 0 ◦ angle with the line patterns. It has been studied and
shown by Mason in 1978 [84].

It has to be noticed that for certain geometrical con�gurations such as
deep grooves and a short pattern period, a composite interface can appear
being in agreement with the Cassie-Baxter model described previously.
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2.2.2 Wetting on chemical surfaces

The chemical species presented on a surface can have a strong in�uence
on the spreading behaviour of the �uid. In the case of a homogeneous �at
surface (i.e. without any in�uence of the roughness), the space distribution
of chemical species is the key parameter to understand the wetting phenom-
ena. The presence of chemical elements has di�erent origins: they can be
generated, for example, due to the elaboration of the material, due to the
ambient atmosphere, due to a reaction between the �uid and the substrate
etc. The impact of chemical active surfaces on the surface tension is proven
fact. It has to be a�rmed that, as pointed out by Berg "only the uppermost
surface [...] governs wetting behaviour" [85]. In this case, the study of
the �rst surface layer is essential. In the present paragraph, the previous
mentioned origins and their potential applications will be described in detail.

In 1999, Abbott et al. published a work based on the wettability of
pyrimine-coated surfaces [86]. Gold substrates (99.99 %) were coated with
photoresponsive pyrimidine-terminated molecules and they were irradiated
by UV light at 280 and 240 nm resulting in a reversible photodimerization.
Contact angles were determined using the sessile drop method and these
measurements revealed a �uctuating behaviour of the contact angle depend-
ing on the irradiation state.

In a similar way, Lahann et al. reported the elaboration of gold surfaces
(Au(111)) covered with (16-Mercapto)hexadecanoic acid (MHA) molecules
[87]. They observed a change in the wetting behaviour of their samples when
applying an electrical potential. Indeed, the electrical potential induces the
attraction of negatively charged carboxylate groups to the gold substrate
leading to a transition from the hydrophobic to a hydrophilic behaviour of
the chains.

As described previously, the chemical elements that exert in�uence on the
spreading of �uids have di�erent origins, Landry and Eustathopoulos studied
the wetting behaviour of a drop of molten aluminum (99.99%) on vitreous
carbon substrates [88]. The experiments consisted of measuring contact an-
gles by the sessile drop method in a controlled atmosphere (high vacuum
metallic furnace). Results showed that the basis-size of the droplet was vary-
ing in time according to di�erent regimes. Authors found that these kinetics
of spreading were due to the growth of aluminum carbide (Al4C3) at the
triple line. Indeed, the formation of aluminum carbide induced an increase
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of the roughness compared to the initial state, which was also responsible for
the variation in spreading kinetics.
The pore �lling of carbon samples was studied by László et al. using a small-
angle X-ray scattering [89]. Activated carbons samples were �lled using po-
lar (water) and non-polar (n-hexane) molecules. While the hexane molecules
uniformly �ll the pores, water �lling is partial. The authors established that
the presence of adsorbed molecules changes the pore �lling depending on the
nature of the �uid and is logically in�uenced by the relative humidity. While
Kietzig et al. focused on structuring the surface of metallic samples, they de-
tected an increase of carbon after the laser irradiation procedure using XPS.
Indeed, carbon appears at the surface by the femtosecond laser treatment of
metallic alloys. Authors suggested that the carbon presence is due to the
fast decomposition reaction. Because of the transition from hydrophilic to
superhydrophobic behavior, it is assumed that the amount of carbon plays
a signi�cant role in this time-dependent behaviour. Finally, it is important
to notice that the presence of carbon and the dual scale roughness leads to
a combined e�ect on the wetting behavior.
The e�ects of roughness and topographical textures are described in detail
in the next section.
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2.2.3 Wetting on textured surfaces

As previously described, the spreading mechanisms and kinetics of �uids can
be controlled by the presence of chemical-active elements at the surface of
samples. In the present section, di�erent e�ects of topographical patterns on
the surface of samples will be presented. In 1980, Oliver and Mason studied
the in�uence of roughness on the wetting of liquids on aluminum and stain-
less steel samples [90]. They used ethylene glycol and silicone oil as lubricant
in order to study the spreading behaviour on naturally rough and structured
metallic surfaces and were prepared using lathe-machining, universal-grinder,
polishing- and etching-procedures. Assuming that the contact angle hystere-
sis was attributed to surface roughness, authors proved that the "orientation
and texture of roughness" induced by the common practical procedure have
a strong in�uence on the spreading and wetting behaviour acting as capillary
channels. Moreover, they also supposed that microscopic roughness asperi-
ties play a determinant role in the extensive wetting hysteresis during drop
retractation.
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2.2.4 E�ects of �uid properties

In this section, a short state-of-the-art will describe the e�ects of �uid prop-
erties having an in�uence on the wetting behaviour.

Fluid properties such as viscosity and chemical composition have a strong
in�uence on tribological behaviour. As a simple example, the dynamic vis-
cosity of a �uid used for tribological experiments has to be taken into account
for the calculation of the so called Stribeck curve [91]. The chemical compo-
sition of lubricant also plays a very important role in the case of lubricated
friction. Indeed, the additives present in engineering oils (most of them are
motor oils) have strong e�ects on the behaviour of the system, such as in-
crease of the bearing performance, decrease of the friction coe�cient, cleaning
engine internals, reduction of heat phenomena and of the fuel consumption
[92].

The in�uence of liquid viscosity was studied by Yang et al. [93]. They per-
formed static contact angle measurements on three di�erent substrates with
di�erent surface roughness: silicon wafer (0.047 µm), aluminum (0.326 µm)
and wax (1.284 µm). Five di�erent liquid mixtures composed of water and
glycerol were used. Final images of contact angles performed with deion-
ized water (dynamic viscosity: µ = 0.89 mNs·m−2) show that contact angle
increases with the roughness. Experiments performed with pure glycerol,
which has a higher viscosity (µ = 916.2 mNs·m−2) and a lower surface ten-
sion (γ = 63.5 mN·m−1) showed that the droplets present "almost the same
contact angles on all three substrates". This static behaviour is mainly due
to the viscous dissipation and was described as proportional to the liquid vis-
cosity by de Gennes [83]. As the viscosity increases, more energy is required
for the spreading of the �uid.

Recently, Keller et al. studied the dynamic contact angle of petroleum
hydrocarbons and silicon oils [94]. Viscosities of the �uids (T = 25 ◦C)
varied from 14 mNs·m−2 to 487 mNs·m−2 for the hydrocarbons and were
50 mNs·m−2 and 975 mNs·m−2 for the oils. With their experiments authors
found that at low velocity (below 150 µm·s−1), the variation of the advancing
contact angle is proportional to the oil viscosity, while at higher advancing
velocities (175 and 275 µm·s−1), the contact angles are stable for almost all
the �uids. The spreading behaviour of HydroCal 300 oil presented stable
contact angles values (up to 80 µm·s−1) at the temperature T = 25 ◦C when
the velocity was increasing. Authors attributed this wetting stabilization
to the chemical composition of the oil. Indeed, as the HydroCal 300 oil is
a commercial product, its lubrication properties were improved by adding
some additives.
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3 Experimental

The 100Cr6 bulk metallic samples studied in this thesis were delivered by
the factory-service of the faculty of Materials Sciences. The �uids and their
properties used in this study for the contact angle measurements were also
brie�y described. The metallographic preparation and the laser structuring
procedures are reported in the present chapter. For reliability reasons, details
on the optics and parameters used for the laser patterning of the sample are
given below. The topographical and microstructural e�ects produced by the
laser irradiation were characterized using White Light Interferometer (WLI),
Scanning Electron Micrsocopy (SEM), X-Ray Photoelectron Spectrometer
(XPS), Raman spectrometer and Atom Probe Tomography (APT). Finally,
the wetting behaviours of the specimens were characterized by measuring the
corresponding surface tension and the contact angles.

3.1 Materials

3.1.1 100Cr6 steel, metallographic preparation

The 100Cr6 bearing steel provided by the factory service has the following
chemical composition reported in table 3. This composition was checked and
con�rmed by means of Electron Dispersive X-ray Spectroscopy (EDX/EDS)
at the chair of Functional Materials.

Elements Measured concentrations Saarstahl concentrations
[wt.%] [wt.%]

C 0.93 - 1.05 1.00
Cr 1.35 - 1.60 1.50
Mn 0.25 - 0.45 0.35
Si 0.15 - 0.35 0.25

Table 3: Chemical composition of the 100Cr6 steel estimated by a stan-
dard energy dispersive spectroscopy (EDS) and given by the steel producer
Saarstahl AG.

Due to the as-delivered-state of the samples, which presented an impor-
tant and randomly distributed roughness, the surfaces have to be prepared
by metallographic methods. The samples were grinded and polished using
diamond suspensions. The surfaces have to be as �at as possible regarding
the laser structuring and the wetting analyses which are described in detail
in the following chapters.
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3.1.2 Fluids

The wetting measurements were performed using two di�erent �uids:
distilled water and FVA 2 oil.
The distilled water used was a standard water delivered by the faculty
service for chemical experiments.

The FVA 2 oil is provided by BP and is described as a reference-oil for
friction measurements. The FVA 2 is a mineral, solvent-re�ned oil and its
PAC (polycyclic aromatic compounds) content is lower than 3% according to
the IP 346 method developed by the Institute of Petroleum. The properties
of these two �uids are given in the table 4. The cinematic viscosity and
density values are given by the literature, while the surface tensions were
measured with a standard drop shape analyzer (Krüss DSA 100) [95]. The
measurements were performed in air under room conditions (T ∼ 20 ◦C,
RH ∼ 25 %).

Distilled water FVA 2 oil
Cinematic viscosity (@ 40 ◦C), [mm2/s] 0.661 32

Density (@ 15 ◦C), [kg/L] 0.999099 0.870
Surface tension (@ 20 ◦C), [mN/m] 71 30

Table 4: Properties of the water and FVA 2 �uids. The properties of the
FVA 2 are given according to the BP data. The surface tension of the liquids
was measured before each measurement under room conditions at a constant
temperature.

3.2 Laser

In the present section, the structuration principles and set-up used with the
nanosecond and femtosecond laser are described.

3.2.1 Nanosecond Nd:YAG laser

LIMET is based on the interference principle of laser beams from a high-
power pulsed laser. The period (P) of the line pattern structure is a function
of the angle between the laser beams (2α) and the wavelength (λ) as described
by the �gure 35 and written in the equation 39.
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P = λ/2 sinα (39)

Laser interference experiments were conducted using a high-power pulsed
Nd:YAG laser (Quanta- Ray PRO 290, Spectra Physics). Four di�erent
wavelengths can be generated, the fundamental 1064 nm and three harmonic
wavelengths: 532, 355 and 266 nm. The samples were irradiated with the
355 nm wavelength (�gure 34) in order to reach the absorption range of our
materials and to prevent excessive re�ection. The pulse duration is 10 ns and

Figure 34: Curves of the absorption coe�cients for di�erent materials de-
pending on the wavelength [96]. The 355 nm wavelength was set-up for the
laser irradiation of all the samples.

the repetition rate is 10 Hz. The typical spot area is between 2 and 4 mm2

with a beam diameter of 10 mm at the source. Each sample was treated
under room temperature and atmosphere. In �gure 35, the laser interference
experimental procedure is shown. The emitted laser beam �rst goes through
a tunable attenuator in order to control the power of the laser beam. A
lens permits to focus the beams at a desired focal length. The mask allows
to modify the size and the form of the irradiated area. The beam splitter
divides and directs the main laser beam into two similar sub-beams. The two
former beams are �nally focused at the surface of the sample using mirrors.
The two beam con�guration provides line patterns.

The laser experiments were conduced at di�erent laser �uences (energy
per unit area), which were varying from about 1500 to 2500 mJ·cm−2. For
all the produced structures, a single pulse was used.
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Figure 35: Schematic representation of the LIMET set-up in a two-beam
interference con�guration. The primary laser beam is focused by a lens, and
then split into two di�erent sub-beams and re�ected on a mirror forming
an 2α angle. Finally, both of them interfere on the sample surface and in
the two beam con�guration it leads to the formation of the line patterns as
shown in the light microscope micrograph.

3.2.2 Femtosecond Ti:sapphire laser

Femtosecond laser ablation has been performed in air using a linear p-
polarized Ti-sapphire laser (Spit�re Pro, Spectra Physics). The pulse du-
ration of the laser was estimated using an optical autocorrelator and was
approximately 470 fs. The laser wavelength was 800 nm and the repetition
rate 1 kHz. The femtosecond laser was used in order to create precise and
periodic hole patterns.The set-up for the laser irradiation is presented in the
�gure 36. The laser beam passes through a standard shutter (Uniblitz) and
an aperture with de�nable diameter. It is then focused with a planoconvex
lens with focal length (FL) of 74.3 mm and a diameter of 25.4 mm. The
power of the laser beam was measured using a power meter and the sample
was moved using a 2-axis stage (Newport). The �uence was kept constant at
about 27.4 J·cm−2 for each structure con�guration, and the number of pulses
was varied in order to achieve di�erent hole-depths. The diameter was �xed
by adjusting the aperture and the period was set with the 2-axis stage.
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Figure 36: Femtosecond laser set-up for the ablation process. The laser
power is controlled by a power meter. The main laser beam goes through
a standard shutter, the diameter of the irradiated zone is controlled by a
tunable aperture. The laser beam is focused by a lens with a focal length
(FL) of 74.3 mm. The number of pulses is changed depending on the desired
depth of the structure [78].

3.3 Characterization techniques

3.3.1 White light interferometer

The topography of the samples was �rst performed using a white light inter-
ferometer provided by Zygo (NewView 200) and mounted with a 3D Imaging
Surface Structure Analyzer. The WLI is equipped with di�erent objectives
(5, 10, 20, 40) and several magni�cation values are available (0.5, 0.75, 1,
1.5, 2). The WLI is a pro�lometer (three-dimensional optical surface pro�ler)
based on the Michelson's interferometer. The geometrical parameters such as
depth, period etc., the roughness parameters and the bearing properties (Ab-
bott Firestone curves, core roughness depth e.g.) were characterized using
the WLI. Root-mean-square roughness (Rq/rms) was used to characterize
the roughness of the sample. Rq is de�ned as:

Rq =

√
1

L

∫ L

0
z2(x)dx (40)

with L the sampling length, z the variable height and x the variable position
on L.
Bearing ratio parameters and Abbott-Firestone curves characterize bearing
properties of surfaces and successfully simulate the e�ects of wear [97]. Fig-
ure 37 shows an ideal representation of the Abbott-Firestone curve and the
main parameters for the characterization of the bearing behaviour. The
load-bearing capacity and the oil retention ability of the structures can be
compared for each con�guration. Zygo de�nes the bearing ratio as "the ratio
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of the length of the bearing surface at any speci�ed depth in the evalua-
tion area. It simulates the e�ect of wear on a bearing surface". Rk is the
core roughness depth and as its value increases, its load-bearing capacity de-
creases. Rpk and Rvk are the reduced peak height and reduced valley depth,
respectively. Rpk gives information on the erosion of peaks and Rvk on the
ability of the surface to retain lubricants. The WLI allows clear and precise
characterizations of the sample surfaces due to a sub-nanometer vertical res-
olution. Two-dimensional pro�les of the laser patterns were also performed
using the WLI.

Figure 37: Schematic representation of an Abbott-Firestone curve. The bear-
ing ratio varies as a function of the depth from the highest peak.

3.3.2 FIB/SEM Dual beam workstation

Two FIB/SEM (focused ion beam/scanning electron microscope) dual beam
workstations which are a combination of a FIB and a SEM were used for the
site-speci�c milling and imaging of the samples. Imaging, electron backscat-
ter di�raction (EBSD) and the preparation of atom probe specimens (per-
pendicular to the surface) using FIB were carried out in a FEI Strata DB 235
system and a FEI Helios 600.

3.3.3 X-ray photoelectron spectrometer

X-ray photoelectron spectrometer (XPS) measurements were performed at
the chair of Soft Condensed Matter Physics of the Saarland University. Due
to its high-surface sensitivity (1-2 nm), XPS was used to study the elemental
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composition of the samples and combined with surface ion etching it was
possible to get depth pro�les of the elemental composition (stoichiometry)
and the valences of the elements [98, 99]. The XPS data was recorded with
an ESCA Lab Mk II photoelectron spectrometer (by Vacuum Generators,
Hastings, England) using Al-Kα radiation (hν = 1486.6 eV) in normal emis-
sion mode (take-o� angle along the surface normal) in ultra high vacuum
(∼ 10−10 mbar).

3.3.4 Raman spectrometer

Confocal Raman spectroscopy was performed with a LabRAM ARAMIS in-
strument from HORIBA using a 532 nm laser beam without a �lter. The
Raman microscope uses a backscattering geometry, where the incident beam
is linearly polarized and the spectral detection unpolarized. The slit and
hole sizes were 100 and 1000 µm, respectively. The Olympus Mplan objec-
tive lenses were used. The information depth depends on the optical lens
used in the microscope, thus, by using confocal geometry it is possible to
obtain information from only the �rst few micrometers.

3.3.5 Atom probe tomography

The samples structured with femtosecond laser were analyzed using atom
probe tomography (APT). The APT is de�ned by Larson and Kelly as
"the highest spatial resolution analytical technique in existence" [100]. The
APT allows three-dimensional reconstruction of samples at the atomic scale.
For the APT measurements, the ions were detected using a CAMECATM

LEAP(local-electrode atom-probe) 3000X HR system in laser pulsing mode
with 250 kHz pulse frequency and a specimen base temperature of about
50 K. It was critical to have the specimens stable during �eld evaporation
along the transition zone (Ni-to-steel), therefore thermal pulsing was used
to reduce induced mechanical stresses inside the specimen [101]. Laser pulse
energies of 0.8 - 1 nJ were applied with a 532 nm wavelength laser.

3.3.6 Transmission electron microscopy

Transmission electron microscopy analyses were performed using a CM 200
electron microscope (Philips, Netherlands) operating at 200 keV at the de-
partment CP2S of the Institute Jean Lamour, Nancy, France. This study was
performed on non-irradiated samples and femtosecond laser treated samples
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in order to study the cristallinity of the di�erent zones. The TEM lamellae
were prepared by FIB in situ lift-out technique. The matter was milled at
di�erent speeds (i.e. di�erent currents) in the sample zone of interest until
getting a thin and �ne lamella. This lamella was then extracted and set on
the sample holder.

3.3.7 Contact angle

The contact angle (CA) and interfacial tension (IFT) measurements were
performed with a standard drop shape analyzer (Krüss DSA 100). CA ex-
periments were performed in static and dynamic modes for distilled water and
FVA 2 oil, respectively. Room temperature (∼ 20 ◦C) and relative humidity
(∼ 50 %) were stable and constant. The experimental parameters used for
the two �uids were di�erent due to their surface tensions. The drop volume
was 7 and 6 µL and the deposition rate used was 100 and 200 µL·min−1

for water and oil, respectively. The samples were all ultrasonically cleaned
in cyclohexane, acetone and ethanol before assessing their hydrophobic and
oleophilic wettability. Once the droplet was deposited on the sample, videos
were recorded. In both cases (distilled water and oil), the contact angle was
calculated each second during 6 s. The measurement duration was chosen
after experimental considerations: the water droplets were in a steady state
after 6 s and it was almost impossible to determine the pro�le of the oil after
6 s. The interfacial tension of FVA 2 oil was estimated: IFT = 30.01 mN·m−1.
Each measurement (CA and IFT) was performed at least six times in the sim-
ilar conditions in order to obtain statistical results. It is important to note
that the water and oil measurements were performed on the same samples
(i.e. exactly the same topography) after complete cleaning of the samples. In
order to study the e�ects of the structure orientation, the contact angles were
measured parallel and perpendicular to the line patterns as it is represented
on the �gure 38.
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Figure 38: Schematic representation of the contact angle measurement in the
case of the perpendicular (a) and parallel (b) structure orientation [102].
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4 Femtosecond laser structures

4.1 Results

4.1.1 Topographical analyses

The topography of all the structures created using femtosecond laser surface
texturing are reported in the present section and were analyzed by white
light interferometry and scanning electron microscopy.

A cavity-pro�le comparison of the di�erent structures are represented in
�gure 39. By increasing the number of pulses, the depth and the pro�le
of the hole drastically change. Depending on the number of pulses, two
types of laser pro�les could be identi�ed. For holes with 9 and 20 pulses the
pro�le is homogeneous, while for a higher number of pulses, the topographical
pro�le is divided into two distinct zones. The center consists of very steep
peaks and valleys, with a very strong gradient in the transition to the �atter
surrounding ring. The maximum depth is reached in the center, but only
a weak percentage of the initial diameter is located at this depth: 28.4 %
and 30.8 % for 5 µm and 10 µm depth, respectively. From the WLI data,

Figure 39: Pro�les of the di�erent laser cavities. For 9 and 20 pulses, the
averaged maximal depths are respectively 0.4 and 1 µm. For higher pulse
counts (66 and 100 pulses), the pro�les are more irregular and two distinct
zones can be recognized [103].

Abbott-Firestone curves (AFC) were acquired [104]. Bearing ratios simulate
the e�ects of wear and the ability of a structure to carry a load assuming that
a surface with irregular asperities in height will be more exposed to wear and
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friction. The AFC plotted in �gure 40 show that the ability of the structure
to resist wear, decreased when increasing the number of pulses. The �atness
of the AFC indicates that the surface area (1410 µm x 1060µm) used for
the estimation is regular for all the number of pulses. This simulation takes
into account the air to material ratio by considering the highest peak and the
lowest valley heights of the topography. For this reason, the estimated depths
of the AFC are higher than the values of the maximal depths calculated from
the depth pro�le shown in �gure 39. As demonstrated in table 5, the cavity
depth and the potential volume of retained lubricant (V2) estimated by WLI
increase with the number of pulses. Moreover, the core roughness depth (Rk)
varied with the number of pulses and showed a minimum value of 53.3 ±
1.8 nm for 20 pulses. Laser cavities of the four di�erent con�gurations have

Pulse count/ Rq Rq-err Rk Rk-err V2 V2-err
Max. depth [nm] [nm] [nm] [nm] [104 µm3] [104 µm3]
Unstructured 23.5 0.4 53.9 1.4 1.9 0.1

9/0.4 99.8 1.0 72.2 5.2 13.7 0.5
20/1 179.3 5.6 53.3 1.8 24.5 11.1
66/5 886.4 6.9 73 4.2 114 0.8
100/10 1289.7 12.1 241.5 12.2 283 3.4

Table 5: Core roughness depths (Rk) and potential volumes of retained lu-
bricant (V2) determined using WLI. V2 values increase with the number of
pulse. The minimum of Rk is found for samples structured with 20 pulses
(1 µm depth) [103].

been characterized using SEM (�gure 41). As the number of pulses increases,
the surface morphology evolves as it is clearly visible on the work of Chichkov
et al. [22]. In �gure 41 (a) (9 pulses) and (b) (20 pulses), two di�erent
zones can be identi�ed: the ablated zone in the middle of the laser cavity
and the ring of ripples situated all around the ablated area. These zones
were observed in all of the irradiated samples, independent of the number of
pulses. Di�erent distributions and sizes of the ripples were observed as shown
in �gure 41. According to the literature, their orientation is perpendicular to
the laser polarization (�gure 41) which in the present case is p [29, 37]. The
transition between the ablated area and the ripples cannot be clearly de�ned.
A third zone outside of the laser spot becomes visible at 20 pulses (�gure 41
(b)) and can be clearly observed at 100 pulses (�gure 41 (d)). At this point,
a forth ring appears between the ablated zone and the ripples which presents
no orientation. The ablated area is very rough and the material in this zone
does not show any preferential orientation. The ablated zones (�gure 42)
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Figure 40: Abbott-Firestone curves of femtosecond laser structured 100cr6
samples. The samples irradiated with low number of pulses (9, 20 pulses)
have a bearing behavior similar to the unstructured samples. For high num-
ber of pulses (66, 100 pulses), the bearing properties decrease [103].

of these samples correspond to the maximum depth presented in the WLI
pro�les (�gure 39). Figure 43 shows the ripples corresponding to the samples
irradiated with the previously mentioned pulses. The period of the ripples
was estimated for these samples. The calculation of the periodicity was
di�cult for the low pulse count (9 pulses) due to the irregularities of the
ripples (�gure 43 a). For the highest pulse number, the formation of ripples
was more regular but zones with di�erent ripple morphologies were recognized
as it is visible on the �gure 41 (d). In the SEM picture 43 (d), two di�erent
morphologies can be clearly identi�ed: the �ne ripples at the border region
(between irradiated and unstructured zones) have a period of about 355 nm
while more in the center of the spot, the period increases until 555 nm. For all
structured samples, the period varies approximately from 360 nm to 690 nm
depending on the number of pulses used for the laser irradiation. In �gure 44,
the volume of each single laser cavity and the root mean square (Rq) values
are plotted in function of the number of laser pulses. In the top left corner
of �gure 44, a 3D surface view (calculated with WLI) is represented. This
square mask was used for the calculation of the previous values. In order to
observe a clear evolution of these volumes, other spots were structured with
pulse counts of 29, 40, 50, 80 and 90 leading to cavity depths of 3, 3.2, 4,
7 und 8.5 µm respectively. As the number of pulses increases, the ablated
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Figure 41: SEM images of the four di�erent laser cavities depending on the
number of pulses: (a) 9, (b) 20, (c) 66 and (d) 100 pulses. In each image, two
zones can be clearly identi�ed: the ripples and the ablated zone. In (c) and
(d), four zones are visible: transition zones between the ablated zone and the
ripples zone and between the ripples and the unstructured area [103].

volume (below the unstructured surface) increases parabolically (R2 = 0.963)
while Rq increases linearly (R2 = 0.975).
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Figure 42: SEM images of the four ablated areas in the laser cavities de-
pending on the number of pulses: (a) 9, (b) 20, (c) 66 and (d) 100 pulses.
For a low number of pulses (9, 20 pulses) the ablated zone is almost �at,
while for higher pulse counts (66, 100 pulses) it becomes rough and irregu-
lar. The ablated area is very rough and the material in this zone does not
show any preferential orientation. The ablated areas of these samples show
zones corresponding to the maximum depth represented in the WLI pro�les
(�gure 39) [103].
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Figure 43: SEM images of the four ripple zones in the laser cavities depending
on the number of pulses: (a) 9, (b) 20, (c) 66 and (d) 100 pulses. The period
of the ripples was estimated and is in the sub-wavelength range, varying
approximately from 360 nm to 690 nm [103].

Figure 44: Ablated volume and root mean square values of the laser cavities
(Rq) plotted as function of the laser pulse counts. A 3D representation of
a WLI mask is shown in the left corner. Both ablated volume and rough-
ness increase according to a parabolic (R2 = 0.963) and linear (R2 = 0.975)
relationship, respectively [103].
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4.1.2 Chemical analyses

In the present section, the attention is focused on the chemical composition
of the surface of the metallic samples before and after femtosecond laser
irradiation. The chemical composition of materials was studied using x-ray
photoelectron (XPS) and Raman spectroscopy and atom probe tomography.
In the following paragraphs, only the samples structured using femtosecond
laser were studied. XPS analyses were performed on the irradiated and non-
irradiated samples in order to study the chemical e�ects of the ultrafast laser
ablation on the surface of 100Cr6. The density of irradiated spots (irradiated
surface per total area) was increased to 50 % in order to collect su�cient
information. Ion (Ar+) etching was used to perform depth pro�le analyses
in the sub-nm range and in order to get a reliable depth scale. The calibration
of the etching rate was performed similar to the procedure described in the
work of Müller et al. [98]. The information for oxygen, carbon and iron was
determined by recording the signals of the O-1s, C-1s and Fe-2p core levels,
respectively.
Figure 45 shows the evolution of these signals as a function of the etched
depth, starting with the adventitious layer (surface), which typically contains
O-H, C-H and C-O groups.

Figure 45: XPS signals of oxygen (O1-S), iron (Fe-2p) and carbon (C1-S)
of the (left) non-irradiated and (right) femtosecond laser-irradiated samples.
The thickness of the surface layer containing iron oxide is de�ned by the
depth at which the oxide satellite contribution vanishes (red line) [103].

Since the presence of iron in oxide or metallic states is not necessar-
ily correlated to the amount of detected oxygen, the characteristic satellite
structure in the Fe-2p spectra (∼ 710 eV) was used as an experimental �nger-
print for oxide formation [105]. The thickness of the surface layer containing
iron oxide is de�ned by the depth at which the oxide satellite contribution
vanishes. Thus, the iron-oxide layer was estimated to disappear at 4.1 nm
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and 6.9 nm depths in the non-irradiated and laser-irradiated samples, re-
spectively (red line in �gure 45). Moreover, while at 6.5 nm the oxygen 1s
peak (∼ 530 eV) almost disappears in the non-irradiated sample, it is still
present in the irradiated sample at 15 nm [106]. This suggests two possibili-
ties between 6.9 nm and 15 nm: traces of oxide that cannot be separated as
Fe-2p satellites or that may result from chromium may be present or oxygen
species (e.g. from adsorbates) were created on the surface of the 100Cr6
due to the ablation process. Moreover, since the C-1s peak starts to shift to
lower binding energies around 283 eV [107] it is evident that carbon forms
a metal carbide in the bulk of the steel matrix. This evidence indicates a
chemical modi�cation of the carbon bonds in function of the depth due to
the ablation process. The carbon atoms experience an average charge dis-
tribution from the surrounding atoms, which produces chemical shifts in the
binding energies [108]. Confocal Raman spectroscopy was performed in order
to obtain information of the elemental composition on the modi�ed surfaces.
The vibrational spectra from treated and non-treated zones were acquired
for samples irradiated with 9, 20 and 66 pulses. Figure 46 shows raw Raman
spectra of the unstructured and ablated zones, and the ripples measured on
the sample with 20 pulses using a magni�cation of 50 x. Iron oxide and
chromium oxide bands were observed irrespective of the location due to the
composition of the 100Cr6 steel, in the 200 - 700 cm−1 range and around
1320 cm−1 [109], and in the 900 - 1100 cm−1 range [110�115], respectively.
The Raman intensities of these bands are more than one order of magnitude
higher in the structured than in the unstructured zones, indicating an abun-
dance of these compounds after the ablation process. Moreover, the carbon
D (disorder), sp2 and G (graphite) bands were only observed in the ripple
and ablated zones at around 1350, 1500 and 1600 cm−1, respectively. Similar
values of the D and G bands have been observed [116�118] in amorphous
carbon spectra. Normalized Raman spectra of the ripple and ablated zones
are compared for the di�erent samples in �gure 47. In the ripple zone, similar
spectra within the 9, 20 and 66 pulse samples are observed, whereas in the
ablated zone of the latter the �uorescence signal increases as well as the size
of conical spikes. In order to study the crystallinity of the carbon observed
in the structured zones, Raman mapping was performed using an optical
magni�cation of 100 x from the center to the border of the circle. For each
spectrum, a non-linear background substraction and a Gaussian �t of all the
observed peaks (�gure 46) were performed. Figure 48 shows the amplitude
of the D and G bands of the carbon in the Raman signals as a function of
the radial distance measured on the sample with 20 pulses. The ratio of the
amplitude of these two bands (ID/IG) is usually used to state the degree of
order of the detected carbon [112, 119�122]. Thus, if ID > IG then the car-
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Figure 46: Raw confocal Raman spectra of the unstructured (1), ripples (2)
and ablated (3) zone measured on the 20 pulses sample, using an optical
magni�cation of 50 (spot size shown in green). Iron and chromium oxides
were observed in all the zones, whereas the carbon D, G and sp2 bands were
observed in the modi�ed zones [103].

bon is predominantly in the amorphous state, which is otherwise crystalline
(ID < IG). As shown in the plot of �gure 48, ID is always higher than IG,
which indicates the presence of amorphous carbon in all the structured areas.
Nevertheless, the global tendency shows an increase of the crystallinity of the
carbon towards the center of the structured zone.

79



Figure 47: Normalized Raman spectra measured on the (top) ripples and
(bottom) ablated zones of the samples structured with 9, 20 and 66 pulses,
using an optical magni�cation of 50. The ripples zones showed similar spec-
trum, while the ablated zone showed higher �uorescence signal for higher
number of pulses [103].

Figure 48: Fitted amplitude of the Raman peaks corresponding to the carbon
D and G bands measured on the 20 pulses sample using an optical magni-
�cation of 100 which corresponds to about 1 µm information depth. The
global tendency shows an increase of the crystallinity of the carbon towards
the center of the structured zone [103].
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Atom probe tomography (APT) was performed on the three zones: non-
irradiated, ripple and ablation areas. APT data are shown in the present
section as 3D reconstructions created from the recorded sequence of �eld-
evaporated ions hitting a position-sensitive delay-line detector [123]. The
reconstructions shown here represent the evaporated volume of the ions below
the Ni cap. In this study, the attention was focused on the iron oxides (FeO
and Fe2O) and the decomposed carbon.

The APT analyses of the data were carried out exactly after the Ni layer.
The Ni ions from the capping layer were evaporated �rst in each specimen.
Figures 49 and 50 show the applied DC standing voltage as a function of
the number of ions (depth) collected from a ripple zone specimen, and the
mass spectrum obtained from the ablation zone, respectively. No signi�cant
di�erence from the curves presented in these �gures was observed within the
analyzed zones.

Figure 49: Applied DC standing voltage vs number of ions (depth) collected
from a ripple zone specimen. The oxide region is marked between the black
dotted lines. The low and high density regions of the oxide are indicated and
separated by the grey dashed line.

Several iron molecular species were detected on the mass spectrum from
the oxide layer (FeO, Fe2O, Fe2O3, FeO2). For decomposition of concentra-
tions the background level was removed using the built-in routine in IVAS
software. The most oxide species were detected from the ablation zone (see
�gure 50) due to the large oxide layer. Oxygen concentration values in ox-
ides are generally di�cult to analyse, which is a common issue in the APT
community [124, 125]. The possibility of the peak at 16 amu to be an O2

++
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Figure 50: Laser assisted mass spectra of 100Cr6 sample extracted from the
ablation zone.

or O+ is a matter of debate for example [124�128], which would strongly af-
fect the calculated stochiometry. Moreover, oxygen has a high probability to
evaporate as a multiple event which leads to lower concentrations of oxygen
detected than actual value [129, 130].

The investigations on multiple events have shown relatively higher peaks
of oxygen compared to other elements in the mass spectrum. Oxygen at
16 amu was assumed here to be O+ and at 32 amu as O2

+. The value
from these two peaks was added to the proper weightage from all iron ox-
ide molecular constituents. This lead to a decomposed concentration value of
72.22 ± 0.3 % Fe - 27.78 ± 0.8 % O, which slightly shows less oxygen enriched
than Fe2O3. Oxygen forming complex ions with other elements during evap-
oration was not included in this calculation (such as: CO, CO2, HO, H2O,
and CrO). Moreover, the natural isotopic ratio of oxygen 18 (0.2 %) was not
taken into account since it is less than the background noise due to hydrox-
ide ion evaporation. For these reasons, it could be understood that oxygen
would have a slightly lower measured value in the oxides.

Several complex ion evaporations were detected in the measurements,
most likely due to the high laser intensities used [131]. C has showed several
molecular ions, such as, C2

+, C3
++, C3

+, and C4
+. Similar to O evapora-

tion, adjacent C atoms also have a high tendency to �eld-evaporate during
the same pulse leading to higher multiple events. Multiple events for all the
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Figure 51: APT reconstructions performed in the (a) non-irradiated, (b)
ripple and (c) ablation zones. The three slices are 50 nm thick. The concen-
trations of O and C increase from the non-irradiated to the ablation zone.

Concentration [at.%] Non-irradiated Ripple Ablation
C (decomposed) 0.044 0.091 1.67
O (decomposed) 0.179 1.264 3.137

Total number of ions 26.6 106 21.5 106 25.1 106

Table 6: Concentrations of decomposed C and O species and total number
of ions in the three di�erent zones. The atomic error is 0.001 at.% for all the
values.

C molecular ions were almost twice as much as single events. It is also be-
lieved that the occurrence of molecular ions is dependent on the temperature
increase in the sample (thermal pulsing) [132]. Therefore, the decomposed C
values calculated represent a rough estimation of the actual C value in the
specimen (C values from complex ions were decomposed based on the natural
abundance of isotopes [133]). Table 6 shows the decomposed O and C values
for each of the three sample conditions measured. A signi�cant increase for
O and C concentrations is shown for the ablation zone, probably due to the
higher laser irradiation.

For each of the three zones, an iron oxide layer was found on the bulk steel.
As observed in the former work [103], the oxide layer thicknesses varied for
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Figure 52: Region of interest (ROI) taken from the (a) non-irradiated, (b)
ripple and (c) ablation zones. The concentrations of O and C atoms clearly
increase with the laser intensity.

Figure 53: Grain size distribution and inverse pole �gure map obtained
through EBSD at the surface of the non-irradiated sample. No preferential
orientation is observed, and the average grain diameter is around 19 µm.

each zone (�gures 51 and 52). For the non-irradiated specimens, a very thin
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Figure 54: TEM micrographs and corresponding selecting area di�raction
(SAD) patterns of BCC iron in the 100Cr6 steel bulk of the three zones
presented in the �gure 41. Only in the ablation zone, near the surface, the
shape of di�raction spots are lengthened.

layer of oxides was detected (∼ 3 nm), while the ripple and ablation zones
have shown thicker layers (22 - 34 nm). In the ripple zone, the oxide layer was
asymmetrically distributed in the specimen. This asymmetry is probably due
to the roughness of the ripple zone (as observed in the �gure 41) which reaches
a depth of about 100 nm depending on the working conditions [134]. However,
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the oxide layer density in the reconstructions was inhomogeneous. They have
showed low to high-density regions from top to bottom, respectively. This
most likely has happened due to slight retention of the oxides (low density
part) on the surface of the tip during evaporation, leading to a reconstruction
artefact. The data was reconstructed using the standard algorithm developed
by Bas et al. [135] which assumes a constant �eld evaporation sequence from
the tips. In the case of high evaporation-�eld species, low density zones
appear in the reconstructions as an introduced artefact. Metallic oxides
require slightly higher electric �eld to evaporate as compared to bulk metal
atoms [136], which in the present case is observed for iron oxide as compared
to Ni (�gure 49). As the standing voltage increases and approaches the
required �eld for evaporation the oxides start evaporating at a slightly higher
rate (higher density part).

A region of interest (ROI) was extracted from each 3D reconstruction
(�gure 51) to show the distribution of C, O, and Fe atoms. It can be seen that
the concentrations of O and C atoms increase with the laser intensity, which is
consistent with the former observations [103]. The 1D concentration pro�les
of C (decomposed) and O were calculated from the ROI shown in the �gure 52
and plotted in �gure 55. Fixed counts (4000 ions) per sampling step were used
in calculating the pro�les in order to reduce statistical errors due to the ion
density variation. For the non-irradiated zone, the O concentrations are very
low (< 0.05 at.%) and most of the C species detected were concentrated near
the surface with almost 0.5 at.%. The ripple zone shows a slight variation
in the C content, whereas the O value in the oxide was almost 3.5 at. %.
Apart from the oxide region, the bulk has the same solute concentrations
as for the non-irradiated zone. The oxide layer in the ablation zone was
thicker than in the ripple zone but had almost the same O content. However,
the C concentration in the ablation zone was uniquely di�erent. High C
content was estimated to reach values of almost 4.2 at.%. in the oxide layers
and in the steel bulk. The distribution of C is inhomogeneous, which likely
re�ects the in�uence of the high laser irradiation in these regions. The total
concentrations of the species were calculated in each APT specimen and
are summarized in table 6. The microstructure of the non-irradiated zone
was analyzed using EBSD. The ripple and ablation zones presented rough
surfaces that were not suitable for EBSD analysis. The measurements are
presented in �gure 53 and were performed with the normal to the sample
surface pointing towards the CCD camera. The analysis did not reveal any
preferential crystallographic orientation and the grain size distribution was
Gaussian, with an average diameter of approximately 19 µm (�gure 53).
The TEM micrographs presented in the �gure 54 show the microstructure
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of the bulk of 100Cr6 steel in the non-irradiated, ripple and ablation zones.
Di�raction measurements were performed below the surface in each area and
the corresponding selected area di�raction (SAD) patterns are shown. In
order to obtain a reference di�raction pattern, the measurement in the non-
irradiated zone was performed deep in the bulk of the 100Cr6 matrix. The
indexing analysis showed a α-Fe pattern with a [012] zone axis and 0.286 nm
of lattice parameter. The SAD patterns allowed to recognize the bcc pattern
of the α-Fe as the non-irradiated state. In the ripple zone, the measurements
were performed closer to the surface of the lamella, which showed a α-Fe
pattern with a [311] zone axis. In the ablation zone, di�raction measurements
were performed at the surface as the former case and below the surface at
around 500 nm depth. Contrary to the patterns observed in the former
zones, the measurements on the ablation zone show a di�raction pattern
with lengthened spots (�gure 54) because in this area, a high density of
dislocations was observed, which means that the plans are strongly deformed.
The indexing analysis showed the α-Fe phase with a [131] zone axis, and no
grain re�nement could be observed.
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Figure 55: O and C 1D concentration pro�les in the ROI in (a) non-
irradiated, (b) ripple and (c) ablation zones shown in �gures 51 and 52.
The amounts of C and O signi�cantly increase after the laser irradiation.
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4.1.3 Wetting properties

In this section, the wetting behaviour of surfaces irradiated by means of
femtosecond laser is studied in order to determine how the pattern design
can in�uence the wettability of the metallic surface. CA measurements
were performed on the surface of the femtosecond laser irradiated samples.
The e�ects of two di�erent geometrical parameters (maximal depth of the
cavity and period between the holes) were studied using the FVA 2 oil as
�uid. The e�ects of the diameter were not studied and it was kept constant
(∼ 110 µm) for all the results presented in this section. In order to observe
the in�uence of the laser structures, the CA of a non-irradiated surface
was measured about 13.6◦ ± 0.4, 6 seconds after the drop deposition.
In �gures 56 and 57, the entire contact angle evolution is shown from the
starting point of the measurement (0 s: droplet deposition onto the surface)
until the most stabilized CA value measured (6 s after droplet deposition).
In the �gure 56, the e�ect of the maximal depth of the laser cavity is studied
with three di�erent con�gurations 1, 3 and 5 µm. First of all, the �nal
CA values of all the patterned surfaces have an average value lower than
the unstructured con�guration proving the e�ects of the laser patterning to
increase the wetting of a metallic surface. The curves show that the 5 µm
con�guration has provided the highest contact angles during the complete
measurement. At the deposition time (t = 0 s), it is clear that as the
structure becomes deeper, the CA increases during the initial phase until
the stabilization (starting at t = 2 s). The 3 µm con�guration induces the
smallest CA after 6 s by 10.8 ◦. Finally, the 1 µm depth con�guration
provides a medium CA of 11.7 ◦ and the most stabilized wetting behaviour
as it shows the smallest error bar in comparison with the two other structures.

The period of the femtosecond laser patterns was changed in order
to obtain three di�erent con�gurations and their in�uences on the wetting
behaviour are shown on �gure 57. It was decided to keep the diameter and
the depth of the cavities constant regarding the previous results (�gure 56)
and for reasons, which will be further detailed in the Discussion part. Then,
the depth was chosen to be 1 µm for these patterns. The distance between
the laser cavities is de�ned as "period" of the structure. Then, since the
period varies, the structure density (ratio of the laser irradiated area on a
global area) changes as well. Three distances were chosen to study their
in�uence: 250, 500 and 1000 µm leading to structure densities of 7.3, 2.5
and 0.8 %, respectively. The choice of these distances i.e. these densities
is related to the previous geometrical parameters (diameter and depth)
and thus to the laser texturing process itself and the cost and use of the

89



Figure 56: Time evolution of the contact angle using FVA 2 oil as a function
of the depth of the femtosecond patterns. The inset clearly shows the e�ects
of the depth. The diameter and period of the cavities were kept constant
(110 and 500 µm, respectively).

Figure 57: Time evolution of the contact angle using FVA 2 oil as a function
of the period between the femtosecond patterns. The inset clearly shows that
as the distance between the cavities increases, the contact angle increases too.
The diameter and depth of the structures were kept constant (110 and 1 µm,
respectively.)

femtosecond laser. These considerations will be discussed in the Discussion
part. In the present curves, the CA provided after the wetting of the laser
patterned surfaces are, as previously, lower than for the non-irradiated
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surface. Nevertheless, the CA evolution varies until 4 s after the drop
deposition, and then a tendency appears showing that the CA decreases
with the shrinking distance between cavities. The lowest error bar after 6
s appears, as in the case of the depth study, for the 500 µm distance and
1 µm depth.
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4.2 Discussion

4.2.1 Topographical analyses

In the present work, it was observed that the femtosecond-laser cavity pro-
�les drastically change by increasing the number of pulses. The depth pro�les
observed with low pulse counts are less steep compared to the ones with high
pulse counts. This fact suggests that a lubricant might homogeneously and
more e�ciently wet the surface of the shallow laser structures because it
would require less energy to spread and would not be trapped in the deep
cavities of the ablated zone. Thus, the estimated volume of retained lubri-
cant would be lower than the volume of the laser cavity due to the sharp
cone-like structures, which strongly grow with the pulse count. Each suc-
cessive pulse enhances the roughness of the irradiated area and modi�es the
absorption of the laser energy. This agrees with the evidence reported by
Stern [137], since the increase of the roughness leads to an increase of the
laser absorption due to multiple re�exions of the light in the surface micro-
cavities [138]. Further studies should be performed in order to explore the
di�erent distributions and sizes of the ripples observed in the irradiated sam-
ples. According to the measured Abbott-Firestone curves and Rk values,
the sample irradiated with 20 pulses (1 µm depth) is considered as the best
con�guration for load bearing due to the formation of regular cavities and
the absence of sharp holes and disoriented asperities, as shown by the WLI
analysis and SEM pictures. Homogeneous cavities are better for load bearing
than heterogeneous because the load will be more homogeneously distributed
on the surface. This claim is in agreement with similar studies performed on
metallic [139] and silicon substrates [37, 140]. For a low number of pulses,
the morphology only presented nanoscale roughness, while for a high number
of pulses, a higher roughness was observed. The last two works stated that
the formation of spikes is due to the ablation phenomenon, and Her et al.
correlated the formation of cones with the random presence of protective ele-
ments (sputtering-resistant impurities), which prevent a uniform ablation of
the material. In the present work it is suggested that the combination of the
random distribution of impurities [37] and the change in laser absorption [38]
might lead to the observed non-linear relation between the ablated volume
and the number of pulses.

In the previous section, the oleophilic behaviour of the femtosecond laser
irradiated surfaces was studied using the �uid FVA 2. The attention was
focused on only two distinct geometrical parameters: the maximum depth
and the period between the laser cavities. This study could be performed be-
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cause it was chosen to keep the diameter of the laser holes constant (110 µm).
Nevertheless, this choice can be discussed, since smaller and bigger diameters
could be created. Indeed, tests were performed to create 60 et 250 µm diam-
eter patterns, but it was almost impossible to obtain regular round-shaped
structures. Seemingly the set-up limited the creation of small diameters be-
cause of a complex aperture and lens arrangement, which did not allow to
create repeatable patterns. The 250 µm diameter con�guration was easier
to set up but it �nally lead to anisotropic patterns i.e. elongated circles. In-
deed, the tunable-aperture allows the elaboration of such large patterns, but
precision decreased due to the light dispersion. The choice of such diameters
(60, 110 and 250 µm) was previously established since it was important to
obtain patterns with dimensions, which enable the period to have a signif-
icant in�uence on the wetting. Indeed, close diameters would not allow an
interesting study of the period. Finally, it was chosen that the periodicity
had to be almost twice greater than the lowest diameter in order to see an ef-
fect of both diameter and periodicity. The comparison of di�erent maximum
depths (1, 3 and 5 µm) showed that the 5 µm con�guration provided the
highest contact angle after 6 s measurement. As shown before, this pattern
con�guration provides a very steep and sharp pro�le due to the cones' struc-
tures. For this reason, it is obviously more di�cult to wet the entire cavity
(from top surface to the bottom of the structure) in comparison to the 1 and
3 µm depth pro�les. Indeed, the droplet requires more time to overpass all
these obstacles. The 3 µm depth con�guration provides the fastest spreading
behaviour because its pro�le is less steep than the former 5 µm but mostly
because the pro�le does not show cone structure at all. The pro�le appears to
be very regular and homogeneous. Finally, the intermediate behaviour of the
1 µm con�guration can be attributed to its tendency to be similar to a �at
surface in comparison to the other con�gurations. The 1 µm depth cavities
act as reservoir in comparison to the �at and polished surfaces. Since the
potential volume of lubricant is the smallest in this present case, the reservoir
e�ect is limited in comparison to the 3 µm con�guration. Nevertheless, it is
an advantage since it provides the smallest error-bar i.e. the most constant
wetting behaviour. Deeper structures could be created in order to observe
when the oleophilic behaviour could turn into an oleophobic behaviour and
at which depth a Cassie-Baxter regime (i.e. composite interface) could be
observe. This study has not been performed due to the motivation of this
work which was to design structures which could be available for industrial
applications. Then, since the time and costs requested and involved to create
the 10 µm depth patterns were already considerable to irradiate the samples,
it was not worth trying it with higher pulse numbers. It might be better to
use a di�erent method such as embossing or milling techniques to design the
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surface of the material while huge heating e�ects have to be considered in
this case, since this kind of process a�ects the whole microstructure of the
samples inducing residual stresses and preferential orientations etc.

By tuning the structure period and then the structure density, CA mea-
surements showed an interesting e�ect which con�rms partially the former
statements. Indeed, as the period increases, the CA increases too con�rming
that a dense patterned surface with well designed cavities provides a faster
spreading of the �uid on the surface. The reservoir role of the structures hav-
ing a positive e�ect on the wetting behaviour is obvious yet. It proves that
a dense structure (with optimized geometrical parameters) is not a succes-
sion of obstacles preventing a fast spreading of the liquid. This experiments
showed that the �uid is trapped and its wetting is slowed down by the irreg-
ularities (cones and corresponding sharp asperities) present at the surface of
the samples and the reservoir cavities are bene�cial to spread the liquid.

4.2.2 Chemical analyses

The chemical analyses performed on the 100Cr6 samples showed that the
femtosecond laser irradiation modi�ed the composition of the surface. The
XPS analysis revealed a growth of the iron-oxide layer thickness up to 6.9
nm, whereas other metal oxides might also be present even at 15 nm in
depth. Moreover, a pronounced chemical gradient of carbide compounds
was observed as a function of the ablation depth. The oxidation is based
on thermal and non-thermal excitations of molecules at the surface [141].
In the present case, no thermal excitation is induced due to the ultrafast
pulse time of the laser and the ablation process extracts the native oxide
layer as well as the atoms below [142]. According to the works of Mott
[143] and Cabrera [144], it is assumed that the O2 molecules present under
room conditions dissociate upon contact with the reactive surface, and the
adsorbed oxygen ions lead to metallic oxidation. More detailed elemental
analysis of the samples irradiated with femtosecond laser will be carried out
using atom probe microscopy in further work.

The Raman analyses have con�rmed the presence of iron and chromium
oxides in the irradiated zones. Also, the main carbon-carbon bands (D and G)
have been observed in the modi�ed samples. The current research-interests
focus on the di�erent forms of carbon induced by the laser irradiation, mainly
in view of the wetting properties of the surface that might be tailored by
producing speci�c carbon species [145]. In this work, the presence of both
amorphous and crystalline carbon was proved. Moreover, the degree of crys-
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tallinity of the ablated carbon increases from the unstructured region towards
the center of the irradiated zone. It is claimed that this fact, as well as the
disordered carbon distributions are related to the Gaussian intensity pro�le of
the laser beam. Thus, Fe atoms are removed and C atoms can easily recom-
bine in the middle of the irradiated zones, while the formation of crystalline
C at the edges is less probable due to the lower laser �uence. Considering
that the binding energy of Fe-C is higher than that of Fe-Fe [146], a dissoci-
ation of the latter requires lower energy. Thus, increased ablation of Fe and
agglomeration of C in its most stable con�guration are expected. Moreover,
the presence of cementite clusters in the steel matrix released from ferrite
grains might also contribute to increase the proportion of carbon after the
laser irradiation. For the samples irradiated with 66 pulses, the �uorescence
of the signal highly increases, indicating the abundance of more amorphous
(less crystalline) compounds in the ablation zone. This evidence agrees with
the XRD results reported by Hirayama and Obara [23], which show that the
sample is amorphized after the laser treatment. Moreover, it was assumed
that this transformation is due to the melt-quenching phenomenon present
in the ablation process.

By using the APT to analyze the e�ects of the femtosecond laser irra-
diation, the understanding of the wetting phenomena involved in the wet-
tability of the samples is complete. The atomic resolution gives a detailed
and complete chemical reconstruction of the atom arrangement at the sur-
face of the samples. The presence of Fe2O3 in the non-irradiated zone can
be due to the metallographic preparation, while for the irradiated zones it is
most likely due to a recombination process generated by the ablation of Fe
in the presence of O2 [143, 144]. Indeed, the laser ablation creates reactive
zones and the dioxide molecules recombine with atoms in these areas. Due
to the Gaussian intensity pro�le of the laser beam, the ablation and recom-
bination phenomena are concentrated in the full width at the half maximum
(FWHM) region, leading to the most signi�cant changes in topography and
chemistry. Moreover, the 1D concentration pro�les revealed that the C con-
tent at the surface of the irradiated samples signi�cantly increases according
to the laser intensity distribution. This also correlates with the crystallinity
of the C found in these zones revealed by Raman spectroscopy [103]. These
results con�rm that the ablation of Fe atoms generates the recombination of
C atoms in their most stabilized form and thus, the laser irradiation trans-
forms the metal surface into a reactive area [147]. After the laser radiation,
the roughness of the surface does not allow to obtain clear Kikuchi patterns
in order to create the data. Thus, no relevant information was obtained in the
irradiated zones. This deformation shows that the laser irradiation induces a
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small lattice deformation in the steel bulk after fs laser ablation. Therefore,
irradiation does not induce a grain re�nement but rather deformations in the
lattice. The dislocations introduce internal strains that locally deform the
planes. As the quantity of dislocations is very important in each deformed
grain, internal �sub-grains� appear in this region and thus change the shape
of the di�raction spots. Similar SAD observations were realized by Shin et
al. a low C steel after equal channel angular pressing (ECAP) [148]. While
the mechanical process was di�erent from laser irradiation, the microstruc-
ture analysis of their samples showed mechanical deformation of the steel
and induced low-angled boundaries. Indeed, Hirayama and Obara observed
that the fs laser irradiation on metallic samples (Au, Ag, Cu, Fe) partially
changes the crystalline structure into amorphous in the ablated region avoid-
ing recrystallization [23].

Figure 58: Results of the local chemical analysis in minimum zone positions
obtained by Atom Probe Tomography [149]. The sandwich arrangement is
clearly recognizable in the low energy zone allowing chemical composition
measurements and a trustable statistical study.

Moreover, even if the concentrations of the species involved in the chemi-
cal wetting strongly varies with the laser intensity distribution, the �rst layer
of each APT sample, which will be then in contact with the �uid, is made of
oxygen, iron and carbon without depending on the laser distribution. This
observation allows to a�rm that the wetting of the 100Cr6 steel is not con-
trolled by the surface chemistry but only by the topography. The APT gave
crucial and novel informations regarding the e�ects of laser irradiation at
an atomic scale but the present studies show its limitations, which are well
known in the community. First of all, the time and cost requirements are
huge in comparison to other methods of surface analysis such as Raman or
XPS techniques. For this reason, a statistical study cannot be achieved as
it would be the case by using Raman spectroscopy or topograhical methods
such as SEM or AFM. Furthermore, the 3D reconstructions shown in the
results cannot be considered as representative results. As it was observed in
the ripples zone, the geometrical distribution of the oxide and carbon clus-
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ters is strongly asymmetric in comparison to the non-irradiated and ablation
samples. The results were statistically veri�ed by repeating the measurement
three times per area, but the roughness has to be taken into account in this
present case as this asymmetric repartition proves it. Secondly, the analy-
sis of the 100Cr6 samples revealed that the initial composition of the steel
could not be found in any of the three zones investigated and also not in
the non-irradiated samples. The presences of oxygen and carbon enhanced
by the metallographic preparation and the laser irradiation have also clearly
in�uenced the chemical composition. Thus, it makes sense to remark that
the APT technique might be more adapted to samples with predictable be-
haviours and simple composition ratio such as the titanium and aluminium
multilayer thin �lms studied in the work of Detemple et al. [149]. In this
case, the e�ects of the laser, or more generally the thermal treatment, are
more easily evaluated and discussed. The samples were treated by means of
the LIMET procedure, which lead to regular line patterns. APT and TEM
micrographs showed that the chemical "sandwich" composition of the thin
�lms was clearly measurable and found in the minimum energy zone. As it
is obviously represented in �gure 58, the sandwich composition of the Ti-Al
samples allows more valuable and statistically relevant APT analyses.
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4.3 Conclusions

The previous studies showed that the surface chemistry and the morphology
of the samples drastically changed after the femtosecond laser irradiation.
First, it was observed that the ablation process induces a signi�cant change
of the topography, if the experience was performed using low or high pulse
numbers. Indeed, as the number of pulses increases, the maximal depth in-
creases too but the shape and pro�le of the laser cavities signi�cantly evolute.
Most of all, the walls of the cavity become clearly steeper by high pulse num-
bers. Moreover, the ablation process induces randomly distributed spikes in
the centre of the irradiated zone. Finally, the chemical composition of the
�rst atomic layer at the surface of each zone is always made of C, O and Fe
atoms independently of the laser intensity distribution. The contact angle
measurements have �rst con�rmed that the femtosecond laser irradiation has
a bene�cial e�ect to increase the spreading of the FVA 2 oil on the surface
of the 100Cr6 steel. The choice of geometrical parameters such as depth and
distance between cavities is of prior importance since it determines how fast
the liquid will wet the surface. The cones resulting from the laser ablation
play an important role in the wetting of the surface by the �uid, since they
trap the liquid and then in�uence the wetting behaviour. Nevertheless, the
diameter and period studies proved that the laser structures act obviously as
�uid-reservoir which are bene�cial to induce a fast and homogeneous wetting
of the metallic surface.
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5 Nanosecond laser structures

5.1 Results

The present chapter resumes the analyses performed on the samples irradi-
ated using the nanosecond laser. Topographical and chemical studies were
performed in order to investigate the in�uence of the LIMET process. Finally,
the hydrophobic and oleophilic behaviours of the surfaces were investigated.

5.1.1 Topographical analyses

The topography of each sample was characterized using WLI and SEM. They
were compared and can be divided into three groups: short (3.5 and 5 µm)
averaged (7.5, 10 and 13 µm) and long periods (15.5 and 22 µm). A three-
dimensional WLI picture presented in �gure 59 shows the sample surface
before the laser-patterning. It is worth to note that the metallographic prepa-
ration resulted in a �at surface with no preferential orientation, no signi�cant
topographic artefacts and around 50 nm root-mean-square roughness (Rq).

Figure 59: WLI picture of the grinded and polished steel surfaces prior to
LIMET modi�cation. The metallographic preparation resulted in a �at sur-
face with a roughness of 50 nm (Rq) [102].

In order to study the e�ects of the pattern periodicity on the wetting
behaviour, several patterns with seven di�erent periodicities were fabricated
with �uence about 2 J·cm−2 . The irradiated area of each sample was ap-
proximately 1 cm2 and composed of several adjacent spots of 3 mm2. The
laser structured surfaces presented an averaged Rq value of around 580 nm.
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Figures 60 and 61 show SEM images and depth pro�les of the patterns pro-
duced on the �at surfaces after LIMET modi�cation using 3.5, 13 and 22 µm
of period, respectively.

The tallest topographic structures (peaks) of each sample were found to
have similar height (∼ 1 µm) related to the lowest topographical regions
(valleys) independant of the periodicity. The slope of the structures was
calculated and corresponds to the distance from the highest point of the
peak to the valleys divided by the corresponding horizontal distance. The
periodicity and slopes of the di�erent patterns are resumed in table 7. As
shown in the SEM pictures and WLI depth pro�les (�gures 60 and 61), the
pattern with 3.5 period is very regular in height and width. The peak pattern
is rough and presents the highest slope. The 13 µm periodicity pattern shows
irregular structures that present two distinct parts: a small and a big peak
(�gure [? ] b). Their height and width vary along the line-patterns, and
also present topographical �rami�cations� or �bridges� between them. The
22 µm sample is homogeneous, with only one height peak induced by the
laser irradiation, and the line structure provides the lowest slope of all the
patterns (table 7).

Period [µm] 3.5 5 7.5 10 13 15.5 22
Slope 0.83 0.81 0.36 0.35 0.36 0.3 0.11

Table 7: Geometrical parameters of the LIMET structures used for the CA
measurements. The height was kept constant around 1 µm for all the struc-
tured samples [102].
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Figure 60: SEM pictures of the laser line patterns with 3.5 (a), 13 (b) and 22
µm (c) periods. The 3.5 and 22 µm structures are homogeneous compared
to the 13 µm con�guration which clearly shows irregularities due to the laser
irradiation [102].

5.1.2 Chemical analyses

The surface of the samples irradiated by nanosecond laser was analyzed us-
ing x-ray photoelectron spectroscopy. In comparison to the femtosecond
laser structuration, the LIMET method leads to a complete irradiation of
the metallic surface. For this reason, the surfaces of the irradiated samples
are considered to be chemically homogeneous because the whole surface was
a�ected by laser, which is not the case in the femtosecond laser con�guration.

In the present case, the XPS data in �gure 62 reveal that similar species
(metallic oxides and carbides) as the ones found for femtosecond laser abla-
tion appear at the surface of laser structured samples. The thermal process
induced by nanosecond laser results in an increase of the thickness of the
oxide layer from 4.1 to 6.9 nm.
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Figure 61: WLI depth pro�les of the laser line patterns with 3.5 (a), 13
(b) and 22 µm (c) periods. The 3.5 µm pro�le is very regular; the 13 µm
presents numerous irregularities and �shallow� peaks. They both have rough
patterns. The 22 µm structure is more regular and provides the lowest slope
of all patterns [102].

5.1.3 Wetting properties

In the present section, the wetting behavior of nanosecond laser structured
samples was studied using the drop shape analysis method. The oleophilic
and hydrophobic behaviours of the laser textured surfaces were characterized
using the FVA 2 oil and distilled water as �uids. All the experiments were
performed under room conditions. As previously reported, the choice of
the laser pattern can drastically in�uence certain surface properties such as
the reduction of friction [78]. Indeed, the contact angle was measured on
the surfaces of line patterns; the samples were oriented perpendicular and
parallel to the triple line as described before.
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Figure 62: XPS signals of oxygen (O1-S), iron (Fe-2p) and carbon (C1-S) of
the (left) unstructured and (right) nanosecond laser-irradiated samples. The
thickness of the surface layer containing iron oxide is de�ned by the depth
at which the oxide satellite contribution vanishes (red line).

Figure 63 compares the evolution of the CA of a distilled water droplet for
the non-irradiated and laser-irradiated samples. This comparison was per-
formed with a certain structure orientation and period. The non-irradiated
surface has a hydrophilic behaviour because the contact angle of the water
droplet at the deposition time is ∼ 99.2 ◦ while after 6 s it becomes ∼ 87.8 ◦

(�gure 63). Compared to the unstructured surface, the laser patterns (per-
pendicular and parallel) have mostly a hydrophobic behaviour excepted for
large periods (�gure 64). The laser structure orientation does not have a
signi�cant in�uence on the CA. Both curves have a similar evolution as the
period of the laser pattern increases. Regarding to the wetting behaviour, a
certain tendency appears, showing that the parallel con�guration provides a
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smaller CA than the perpendicular orientation except for the 22 µm period-
icity (�gure 64). Compared to the non-irradiated surface, the laser structure
with the 22 µm periodicity always provides a hydrophilic behaviour for both
orientations. The perpendicular line patterns induce the smallest contact
angle after 6 s (CA ∼ 59.2 ◦). The perpendicular orientation also provides
the most stabilized wetting con�guration because of the weak contact angle
transition (∼ 61.4 ◦ to ∼ 59.2 ◦ from 0 to 6 s) observed in �gure 63.

Figure 63: Water droplet evolutions on non-irradiated (a, b) and laser struc-
tured surfaces (c, d). On the unstructured surfaces, a transition from hy-
drophobic (a) to hydrophilic (b) regime is observed in 6 s. The perpendic-
ular structure (P = 22 µm) has a hydrophilic behaviour and also tends to
minimize the contact angle (CA) [102].

Considering both perpendicular and parallel orientations, the contact an-
gle decreases while the structure period increases as shown in �gure 64. Three
distinct zones can be distinguished in the CA curves: the small periods: 3.5
and 5 µm; the �middle� periods: 7.5, 10 and 13.5 µm and the largest periods:
15.5 and 22 µm. The highest CA of a water droplet on a structured sample
was found to be after 6 s ∼ 106.3 ◦ for the 5 µm period, while the 3.5 µm
structure provides a similar CA around 106.2 ◦. The 13.5 µm period also
appears to be strongly hydrophobic with contact angles of about ∼ 101.8 ◦

and ∼ 95.1 ◦ for perpendicular and parallel orientations, respectively. Fi-
nally, the largest structures provide the smallest contact angles after 6 s and
especially the 22 µm patterns.

The previous analyses have shown the strong di�erences between a �at
surface and a precisely controlled topography. It highlights the fact that
creating a topography is not su�cient to induce a signi�cant change in the
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Figure 64: E�ect of the laser structure on the contact angle of a water droplet
after 6 s. The structure orientation does not have a signi�cant e�ect on the
hydrophobic behaviour while the CA decreases as the period increases [102].

wetting behaviour. Indeed, the hydrophilic tests prove that all the geometri-
cal parameters involved in the patterning process have to be clearly identi�ed
and precisely designed. Therefore, it was intended to minimize the roughness
at the surface of the non-irradiated/reference samples. In the present study,
a one-direction orientation pattern with only one degree of freedom (period)
has led to a complicated and unexpected wetting behaviour evolution. A
random roughness, characterized by the presence of asperities with various
dimensions (pattern, period, high, sharpness), structure densities and ori-
entations (isotropic, circular, concentric, crossed) can then not be used as
reference to compare the in�uence of a controlled topography.
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Figure 65 shows FVA 2 droplets on the surface of non-irradiated and
laser structured samples. The laser structure is parallel to the surface and
was designed with a 22 µm period. The parallel orientation leads to the
smallest contact angles compared to the perpendicular orientation and non-
irradiated state (�gure 66). Three con�gurations (P = 10; 13; 15.5 µm)
have a contact angle higher than the unstructured state and all of them are
perpendicular oriented. Independently of the structure period (�gure 66),
the parallel structure always provides the smallest contact angle (compared
to the unstructured con�guration) except for the 13 µm period, which is in
the same order as the unstructured surface.

Figure 65: FVA 2 droplet evolutions on non-irradiated (a, b) and laser struc-
tured surfaces (c, d). Both surface states have an oleophilic behaviour. The
wetting of the non-irradiated surface leads to a 82 % reduction of the CA.
The parallel line patterns (P = 22 µm) lead to the smallest contact angle
after 6 s [102].

In �gure 66, the contact angles of an oil droplet after 6 s are represented
depending on the structure period. For the perpendicular con�guration, the
CA increases as P increases and they reach a maximum value for P = 13
µm. Then, the contact angle decreases. For the periods between 8 and 16
µm, the contact angles are greater than in the non-irradiated con�guration.
In the parallel con�guration, it seems that the period of the structure does
not have a signi�cant e�ect on the contact angle. Only the periods 13 and
15.5 µm led to angles higher than 10.5 ◦. The maximum value was found
for P = 13 µm as for the perpendicular pattern and is in the same range as
the unstructured samples.
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Figure 66: E�ect of the laser structure on the contact angle of an oil droplet
after 6 s. The structure orientation has a signi�cant e�ect on wetting be-
haviour. The parallel line pattern always provides a lower contact angle
compared to the perpendicular orientation [102].

In this paragraph, the contact angle measurements showed that the peri-
odicity and the orientation of the line patterns are geometrical parameters,
which have major in�uences on the wetting behaviour of metallic samples.
Indeed, it was observed �rst that when the drop spreads in a direction par-
allel to the line patterns (i.e. the triple line is perpendicular to the grooves),
the CA value tends to be lower than in the perpendicular orientation case.
Secondly, the former studies showed that the largest groove provides the
smallest contact angles for water and oil.
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5.2 Discussion

5.2.1 Chemical analyses

Raman spectroscopy analyses performed on the 22 µm samples revealed that
the same species were detected in the non-irradiated, structured-maxima
(laser-minima) and structured-minima (laser-maxima) regions. Thus, the
chemical compositions of the peak/liquid and valley/liquid interfaces are sim-
ilar. The high concentration of oxides and carbides in the peak regions can
be explained by the formation of the laser line structures. This phenomenon
is governed by the Marangoni convection, which is explained as follows: by
interacting with the metallic surface, the laser beam induces molten material,
which is transferred to the �hottest� region and then solidi�es in the �coldest�
region. Lu et al. used direct laser patterning method in order to structure
silicon samples [61]. The Gaussian pro�le of the laser intensity distribution
induced a Marangoni e�ect in the molten area. Two e�ects were observed,
a thermocapillary e�ect, which drives the matter from the hot center to the
border of the irradiated zone, and a chemicapillary e�ect that moves the
material towards the center. In this work, the laser irradiation was not per-
formed under controlled gas atmosphere but under atmospheric conditions
(about 25◦ C ± 2◦ C and 50 % ± 5 % relative humidity). The molten metal is
highly reactive and the oxygen is strongly adsorbed at the surface [143, 144].

5.2.2 Topographical analyses

For this reason, the structured samples are considered as chemically homo-
geneous. Thus, the control of the topography is the key parameter to study
the wetting phenomena. Considering that the behaviour of a perfectly �at
surface is hydrophilic (�gure 63 b), the generation of roughness by laser tex-
turing (Rqnon−irradiated ∼ 50 nm, Rqlaser−irradiated ∼ 580 nm) should lead to a
more hydrophilic behaviour, according to the model of Wenzel [81]. However,
this assumption is not completely valid for all the structures and the wetting
behaviour shows to be dependent on the laser periodicity. The Cassie-Baxter
model explains the wetting behaviour of rough surfaces [80] by assuming that
the droplet deposited on a rough surface cannot completely wet the surface
and leads to the formation of composite surfaces. The composite air-solid
surfaces are the results of a non-complete wetting, which leads to the superhy-
drophobic behaviour of micro- [150] and nano-pillars [151]. The hydrophobic
behaviour observed for almost all the laser-irradiated samples may be ex-
plained by this hypothesis. Nevertheless, Di�erential Interference Contrast
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(DIC) experiments were performed on the wet surfaces as it is shown in the
�gure 67. No di�erence in contrast between the peaks and valleys could be
observed. Thus, it can be concluded that there is no composite surface and
that the Cassie-Baxter model does not explain the results. In contrast to

Figure 67: DIC micrographs performed at the surface of nanosecond laser
structures using distilled water. The measurements were performed using the
3.5 µm periodic samples which have a hydrophobic behaviour. No contrast
can be observed between the peak and valley regions, which proves that the
Cassie-Baxter model is not valid in the present case.

water, the wetting behaviour of the FVA 2 oil presents a signi�cant depen-
dence of the pattern-orientation. De Gennes, based on the work of Mason
[84] and Cox [152], proposed to explain the anisotropy showed by the peri-
odical line-patterns in Wetting: statics and dynamics [83]. He a�rmed that
in the case of parallel orientation (triple-line perpendicular to the grooves),
the �uid would be free to �ow inside the groove acting as a capillary chan-
nel. This e�ect was previously observed by Shuttleworth [153] and Oliver
[154]. In the case of perpendicular orientation (triple line parallel to the
grooves), the droplet is pinned by the grooves, acting as a physical barrier.
De Gennes proposed that the overlapping of these energy barriers [155] is
not an �overall jump� of the line but a jump in a single point. After having
passed these barriers, the liquid �ows inside the grooves. These phenomena
justify the observations that the parallel orientation provides a better wetting
of the surface because the laser line pattern acts as capillary �ow channel,
while the perpendicular orientation requests more energy to cover the same
distance. The CA of the water droplet on the structured surfaces shows a
strong dependency on the pattern periodicity (�gure 64). This phenomenon
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is correlated with the �e�ect of the edge� [156] as found by Oliver and Mason
after measuring the wetting behaviour of a droplet on triangle and sinusoidal
pro�les [154]. The con�gurations of 13 and 15.5 µm of period showed higher
CA for both perpendicular and parallel orientations. In �gures 60 and 61, it
is clearly observed that the 13 µm patterns present irregularities compared to
the other structures. Even if these topographical faults are smaller than the
regular peaks (around 0.5 µm), they increase the number of energy barriers
and prevent wetting. Moreover, the heterogeneities in the 13 µm patterns act
as a reservoir by retaining oil in all the topographical �cavities and rami�ca-
tions� leading to the CA maxima observed in both parallel and perpendicular
con�gurations.

5.2.3 Simulation analyses

Simulation studies were performed and revealed the di�culties and limits
of three-dimensional simulation yet. The wetting behaviour of nanosecond
laser structures was studied using Comsol MultiPhysics c©. The design of the
laser patterns was made using HyperMesh c©, a �nite element pre-processor,
since a three-dimensional resolution was necessary to simulate the e�ects of
the pattern orientation (perpendicular and parallel) and of the geometrical
parameters (depth and period). As shown in �gure 68, the e�ect of the struc-

Figure 68: Simulated �uid velocity gradients as a function of the �uid thick-
ness and depending on the period of the laser groove in a parallel pattern
orientation. As the period of the structure increases, the velocity decreases,
which con�rms the Jurin's law. The speeds were calculated using the Comsol
Multiphysics c© software.

ture period was demonstrated for a parallel con�guration. Indeed, simulation

110



curves proove that as the period increases, the �uid velocity decreases. This
observation con�rms that the spreading of �uid in laser grooves is related to
the capillarity e�ect represented in the Jurin's law. Finally, the simulation

Figure 69: Simulated �uid velocity gradients as a function of the �uid thick-
ness and depending on the laser pattern orientation. The parallel orientation
shows a higher speed gradient than the perpendicular orientation. This ob-
servation con�rms that the perpendicular patterns are energetic barriers to
the �uid spreading and slow down its velocity.

revealed that the orientation of the pattern is a key parameter to understand
and control the wetting phenomena, since it is shown in �gure 69 that the
�uid velocity is slowed down by the presence of obstacles (i.e. the perpendic-
ular orientation). The simulation con�rmed that these phenomena might be
related to the capillarity e�ects and the obstacles induced by topographical
grooves oriented parallel to the triple line.
First, errors occurred due to the three-dimensional modelization. Limitations
appeared to design precisely the grooves due to the complicated geometrical
dimensions and irregularities such as the radius of curvature that were taken
into account. Moreover, the simulation was performed assuming that a lim-
ited volume would be representative of the e�ects occurring at the surface of
the irradiated samples while the �uid was spreading on it. The limited volume
dimensions are an important issue since they did not allow �ner meshing and
simulations. Secondly, the boundary conditions applied such as the free wall
and more precisely the �uid velocity are a reason of the incomplete achieve-
ment of this algorithm. Indeed, the �uid velocity applied was extrapolated
from the videos taken during the contact angle measurements. The speed
was calculated using the original diameter of the deposited drop subtracted
from the drop size at a certain time divided by the corresponding time period.
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Since the contact angle measurement itself requires the identi�cation of the
syringe diameter, the diameter calculated at each time could be converted
from a pixel scale to a meter scale as it is represented in the �gure 70. The
�uid velocity was then calculated at the basis of the droplet and precisely
represents the speed evolution of the triple point. Nevertheless, is has to be
considered that, since in the algorithm the speed was applied inside the �uid
and even if the height of �uid volume simulated was not consequently high,
this di�erence might induce a probable "scale" problem.

Figure 70: Snapshot used for the determination of the �uid velocity at the
deposition time. The diameter of the syringe (d) is known and recognized
before each measurement. D, the diameter of droplet is converted, from a
pixel to a mm scale using d as a reference for the conversion. At various
times, D varies and then the velocity can be extrapolated.
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5.3 Conclusions

In this section it was shown that the nanosecond laser and steel interactions
have an in�uence on the concentrations of oxides and carbides at the surface
of the laser irradiated. Since the LIMET process involves the melting of
the irradiated matter and its transfer (from high intensity to low-intensity
regions) under ambient atmospheric conditions, oxidation phenomena occur
leading to a chemically homogeneous surface. The wetting analyses showed
an anisotropy in the spreading of the �uid according to the theory developed
by de Gennes. The geometrical parameters such as period, height i.e. slope
of the grooves and of course the regularity of the patterns control the wetting
of the surface by acting as barriers or capillary channels. Finally, �uid �ow
simulations were performed in order to con�rm the phenomena involved in
the wetting of surfaces irradiated using LIMET. While boundary conditions
can still be discussed and the algorithm can also be improved, the velocity
curves con�rm theoretical and experimental phenomena. First, the increase
of the period shows a decrease of the �uid velocity in the parallel con�g-
uration, which proves that the wetting of parallel oriented laser grooves is
linked with the capillarity behaviour of the Jurin's law. Then, the e�ects of
the groove orientation were highlighted since the �uid spreading velocity was
slowed down by the perpendicular laser lines. It also con�rms that they act
as energetic barriers and obstacles in comparison to parallel oriented grooves.
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6 Optimized structures: femto- and nanosec-

ond structure combination

6.1 Results

The goal of this section is to report the e�ects and bene�ts of a structure
elaborated with femtosecond and nanosecond laser. The principle of this
combination is to irradiate the surface of a sample previously structured
using femtosecond laser by means of LIMET.

6.1.1 Topographical analyses

Figure 71: Tridimensional overview of the surface of the combined patterns
taken using the WLI. The superposition of the two structures can be easily
recognized.

Regarding to the former studies, it was decided that the so-called "fem-
tostructure" chosen for these experiences will have the following dimensions
resumed in the table 8. It has then been irradiated with a line pattern with
22 µm periodicity. Theses dimensions were chosen in order to create a struc-
ture combining the advantages of the preferential oriented wetting due to the
LIMET patterns and the role of reservoir allowed by the femtostructure.

The topography of the combined structures was investigated using the
WLI and a tridimensional overview and a pro�le snapshots are represented
in �gures 71 and 72. The observation of the 3D picture shows that the crater,
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[µm]
Depth 1

Diameter 110
Periode 500

Table 8: Dimensions of the femtosecond laser patterns used for the combined
structure.

even with a depth in the order of magnitude of the grooves hight can still be
easily distinguished from the other patterns. Furthermore, as visible in the
3D overview and more clearly in the two-dimensional pro�le, the line patterns
are precisely structured on the surface of the sample and even partially at
the bottom of the "femto" craters. The whole patterns are not completely
structured on the walls and at the basis of the cavities but there is a certain
continuity of the grooves inside, which can be recognized in picture 73. This
observation has to be carefully considered regarding the potential in�uence
it might have on the wetting behaviour.

Figure 72: Pro�le of the combined patterns taken using the WLI. The two
"superposed" patterns (line and crater) of the two structures can be easily
recognized.
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Figure 73: 3D magni�cation of a crater using WLI after femto and nanosec-
ond irradiations. The 3D picture shows the partial continuity between the
line patterns outside and inside of the cavity.

6.1.2 Wetting properties

The wetting behaviour of the combined structures was studied using the
FVA 2 oil. The curves plotted in �gure 74 con�rm that the line patterns
governed the wetting of the oil droplet. Indeed, the anisotropy shown by
the LIMET structures is also clearly demonstrated according to the time
evolutions. The CA measured in the parallel con�guration are permanently
lower than in the perpendicular con�guration. A di�erence of 1 ◦ is observed
between the two �nal values of the CA and the error bars are in the same
order of magnitude. Besides, they show a similar tendency as for the LIMET
behaviour, due to the superposition of the values observed in the �gure 66
for both 22 µm periodicity con�gurations. In the �gure 75, the wetting
behaviour of the combined structure is compared to the behaviour of line and
dot patterns created by nano- and femtosecond laser irradiation, respectively.
The curves show, �rst, that the combined patterns provide the highest CA
values during the initial phase of the wetting (from the deposition and during
almost 1 s). Then, the optimized surface seems to have a wetting behaviour
similar to the dot patterns. The �nal measurement magni�ed in the inset (6 s
after deposition) shows that the CA of the optimized structure is not more
stable than the dot patterns. Finally, the inset highlights the fact that the
optimized structure has a wetting behaviour for oil, which is a compromise
between the femto- and nanostructure behaviours.
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Figure 74: Contact angle measurements using FVA 2 oil performed on the
surface of the combined patterns depending on their orientation. The curves
and the inset clearly show that the line pattern orientation has a crucial e�ect
on the value of the contact angle.

Figure 75: Contact angle measurements using FVA 2 oil performed on the
surface of the combined, line and dot patterns. The combined patterns have
a wetting behaviour combining the e�ects of both dot and line structures.
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6.2 Discussion

The topographical analyses performed previously have revealed that the over-
lapping of both femto- and nanosecond laser structures induces very precise
patterns. The choice of the geometrical dimensions of the two laser structures
is of crucial importance, obviously for the wetting properties but also for the
topographical analysis. The grooves must be easily distinguished in compar-
ison to the former created structures in order to understand the e�ects of
the laser patterns. Indeed, the nanosecond laser irradiated surface is made
of the juxtaposition of square areas between 2 and 4 mm2 each. As it has
been detailed in the Experimental part of this thesis and in a previous work
[78], a consequent area is then treated. Each laser spot of this area entirely
recovers a single femtosecond laser cavity, since the femtosecond laser irra-
diated area is of about 1× 10−2 µm2 with a theoretical diameter of 110 µm.
Moreover, since the LIMET is based on the principle of interference of light,
the minimum and maximum of laser light intensity a�ect the whole fem-
tosecond irradiated zones. Consequently, no area is kept non-irradiated but
the nanosecond laser do not destroy any femtosecond laser hole. The form-
ing process related to the LIMET has the advantage to be easily controlled
and to preserve the created cavities in comparison to other techniques such
as microcoining or embossing processes. Kim et al. reported experimental
and numerical studies performed on stainless steel using microcoining [157].
This study details the main e�ects observed after various coining procedures.
The experimental procedure for the elaboration of samples consists of using
a "compression testing system" and a "die/punch" as shown in the �gure 76
at normal loads of about 650, 1000 and 2800 kN. Authors created various
patterns by changing the geometrical parameters (height and width) of the
embossed grooves. They �nally observed that the material behaviour was
in�uenced by two e�ects: the weakening of the material was changed due to
the "Hall-Petch relationship related to the e�ect of grain size" and due to
the small scale elaboration of the structures or so-called "miniaturization of
the features". Authors summarized their work by concluding that the mi-
crocoining procedure allows the elaboration of well-de�ned geometries but
the material behaviour is clearly changed in comparison to the original or
as-received state of the samples. It has to be noticed that even if the laser
patterning does not change the material behaviour, similar micro geometries
cannot be easily created by LIMET actually. Indeed, the LIMET allows the
creation of patterns with a maximal periodicity of about 30 µm while Kim
et al. created patterns about ten times larger [157]. This quality is of prior
interest for hard and soft bulk materials because the original topography is
still intact after the procedure. Secondly, the microstructure of the material
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Figure 76: Experimental setup and fabricated punch/die set: (a) compression
testing system and (b) die/punch set [157]. The embossing process involves
normal forces higher than 650 kN and changes the average grain size from
64 originally to 51 and 135 µm.

is still intact after the laser irradiation, no internal stress is induced as it
could be the case for materials which have been plastically deformed. In-
deed, in addition to the lack of destruction due to the contact of two bulk
materials, there is also no plastic deformation and no strong recrystallization
phenomenon could be detected after using both femto- and nanosecond laser.
Both laser irradiation procedures involved in this thesis were performed at
low laser �uences, which were clearly not su�cient to induce recrystallization
phenomena. Moreover, since the 100Cr6 steel has a large averaged grain size
of about 19 µm, the energy brought by the laser could only locally change
the microstructure, where the femtosecond laser �uence was the highest as
in the ablation zone investigated using TEM. In the case of the nanosecond
laser irradiation, the microstructural study of laser patterned bulk copper
showed that a misorientation zone appeared randomly inside the laser irra-
diated area and directly below the surface [78]. It proves the presence of
plastic strain �elds as it is showed in �gure 77. The maximum misorienta-
tion detected in the laser irradiated zone is about 9.8 ◦, which corresponds
to a small proportion of orientation according to Badji et al. [158]. These
small misorientation zones are generated due to the typical quenching rates
of laser treatment which can reach 1010 K/s [16]. Despite the lack of statisti-
cal studies, these observations reveal that the laser irradiation cannot tailor
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Figure 77: Inverse pole �gure map of laser structured samples perpendicular
to the surface and corresponding crystal orientation map with a grain delimi-
tation higher than 5 ◦. The LIMET procedure did not induce any preferential
orientation. The maximum misorientation is detected below the surface [78].

the texture and grain orientation of bulk metallic samples. However, it can
be considered as an important advantage since these previously-mentioned
properties stay unchanged and in their original states. Nevertheless, since
one of the motivations of this thesis was to create an "optimized structure"
for wetting applications, the attention was focused on microscopic aspects of
the laser patterning. Indeed, the nanosecond laser irradiation has certainly
deleted certain femtosecond structures such as the ripples. The ripples prob-
ably do not a�ect the spreading properties of the combined structures in
comparison to the nanosecond laser grooves since their height and period
are around 0.1/1 and 1/22 µm for ripples and nanosecond lines, respectively.
Meanwhile, prior to the LIMET irradiation, the samples treated by femtosec-
ond laser were oriented in order to have the same preferential orientation for
the both previously mentioned structures.
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6.3 Conclusions

These prior experiments were performed in order to combine the wetting
behaviours of both patterning methods, the femtosecond laser ablation and
the nanosecond laser interference metallurgy. Topographical analyses showed
that a smart choice of the geometrical parameters (period, depth, diameter,
and orientation) allows a superposition of both structures leading to a hi-
erarchical pattern at a micro-scale and based only on light sources. Such
combination allows the development of an optimized structure with the ad-
vantages of both patterning techniques: a reservoir e�ect and an increased
spreading velocity. Indeed, the CA measurements showed that the optimized
surfaces have a CA evolution between the femtosecond and nanosecond laser
structures with similar geometrical parameters. It con�rms that this su-
perposition of both laser patterns was successfully employed, leading to an
optimized structure which combines the best of both laser techniques
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7 Conclusions and outlook

7.1 Conclusions

In the present thesis, two distinct methods based on di�erent laser-material
interactions were set-up in order to tailor the wetting properties of bulk
100Cr6 steel samples.

First of all, a Ti:sapphire femtosecond laser was used to design the
chemical and topographical surfaces of the steel samples with a very high
precision. This patterning method is based on the ablation phenomena
of metallic materials interacting with ultrashort laser pulses. Various
patterns were obtained by changing the geometrical parameters of the
structures such as depth, periodicity i.e. structure density. Moreover,
a signi�cant tailoring of the wetting and bearing behaviours was ob-
served which are both directly related to the topographic modi�cations.
Despite signi�cant changes of the chemical concentrations were detected, too.

Laser interference metallurgy experiments were also performed using
a nanosecond Nd:YAG laser. While this patterning technique is known
and was well developed at the chair of Functional Materials for more
than a decade, the anisotropic properties of the line structures were used
as an innovative step to design and control the wetting behaviour of the
samples. The wetting of a droplet on a line-patterned surface is dependent
on the angle between the triple-line and the material grooves according to
the theoretical considerations of de Gennes. Indeed, the LIMET patterns
have a fundamental in�uence on the wettability. The periodicity and the
orientation of the structures were both studied and showed a signi�cant
in�uence on the contact angle measurements.

Both femtosecond and nanosecond laser irradiation processes allow to
create chemical gradients. Since the laser intensity varies according to a
Gaussian distribution, the laser-matter interactions change according to a
similar repartition. The ablation phenomena using the femtosecond laser
system induced laser-matter interactions which are directly related to this
spatial distribution in comparison to the nanosecond laser and the LIMET
process. The analyses performed showed a higher quantity of metallic ox-
ides and carbides in the irradiated zones in comparison to the non-irradiated
state. Moreover, the presence of amorphous carbon was found to decrease

122



from the outer region of the irradiated samples (unstructured) to the centre of
the laser-irradiated zone (ablation zone). It was also demonstrated that the
formation of amorphous and crystalline carbon depends on the distribution
of the laser intensity and that the use of a high number of pulses lead to the
amorphization of the irradiated zones according to the melt-quenching phe-
nomena. APT analyses also demonstrate that the fs laser irradiation induces
chemical modi�cations in the �rst few nanometres of steel surfaces. More-
over, it con�rms that the chemical changes are highly dependent on the laser
intensity distribution. The irradiation induces oxidation of Fe into Fe2O3

and generates depletion regions. The ablation process modi�es the spatial
distribution of C in the steel matrix. Finally, microstructural modi�cations
were revealed by the TEM analyses performed in the laser ablation zones.
TEM showed that the laser irradiation induced a crystallographic deforma-
tion of the steel bulk in the high laser-intensity region (ablation zone). The
e�ects of the nanosecond laser irradiation were also investigated using XPS
and Raman spectroscopy. It was concluded that the surfaces irradiated using
LIMET are favorable to the oxidation, since the oxide layer became thicker
after the laser process. The Raman spectroscopy showed that the chemi-
cal species detected in the laser irradiated and non-irradiated surfaces are
similar. A comparison between the high and low intensity regions was also
performed and the Raman spectra showed similar species in both regions.
Nevertheless, a di�erence in iron oxide concentrations was found depending
on the laser intensity distribution and was due to the Marangoni convection
phenomenon.

The chemical analyses of the di�erent irradiated surfaces have shown
that the femto and nanosecond laser induced a signi�cant increase in the
oxide and metallic species concentrations. Nevertheless, no concentration
change can be de�ned as signi�cant for the control of the wetting behaviour
since all chemical species detected in the laser irradiated zones were already
present at the surface of the material before laser treatment.

It has been successfully demonstrated in this thesis that the wetting
behavior of 100Cr6 industrial steel surfaces can be tailored by designing
precise interference patterns using nanosecond-laser radiation. Indeed, since
the laser irradiation procedures under normal atmosphere conditions did not
induce new chemical species at the surface of the samples, the wettability of
the material is controlled by geometrical e�ects. The experiments performed
have showed two distinct paths to create di�erent patterns involving laser
matter interactions. First, it was demonstrated that the laser ablation is an
interesting way to tune the wettability of metallic materials. By changing
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the periodicity i.e. the density and the pattern (e.g. depth, diameter,
pro�le), the spreading of the �uid can be accelerated or slowed down.
Indeed, the �uid requires more energy to overpass the di�erent obstacles
(energetic barriers) if the cavity pro�le is too abrupt. Experiments proved
that increasing the structure density (i.e. reduce the periodicity) decreases
the contact angle. It shows that the laser cavities (with optimal diameter
and depth) are preferential sites which did not reduce the spreading velocity
of the �uid in comparison to extended �at surfaces. The contact angle
measurements have clearly showed that the laser cavity had a reservoir
role, which is an interesting property to create regular �uid pockets at the
surface of the material. Secondly, LIMET patterns also showed their ability
to tune the spreading speed of a �uid. Depending on the pattern orientation
and periodicity, the surface modi�cation can lead to hydrophobic and/or
hydrophilic behavior. The parallel orientation provides a better wetting of
the surface because the laser line-patterns act as capillary �ow channels,
while the perpendicular orientation imposes energy barriers that prevent
wetting. The wetting coverage is more e�ective for large than for small
period structures. This e�ect leads to tailor the hydrophobic (small periods)
or hydrophilic (large periods) behavior, depending on the kind of liquid to
be used. Similar wetting e�ects occur for oil after laser structuring, but
no transition from oleophilic to oleophobic was observed. The change of
structure periodicity has also induced modi�cations of the pattern slope
and regularity. Indeed, non-desired defaults of the patterns have a negative
e�ect on the �uid spreading since they act as "micro" energetic barriers
which prevent a regular and constant wetting of the droplet. Finally, the
orientation of the line patterns is obviously the most determinant parameter
for line patterns. Indeed, the results showed that it determines if the triple
line will be blocked or free to move according to the theory of de Gennes.

To conclude, the combination of two laser methods which are fundamen-
tally di�erent regarding their interactions and their usual applications is a
success to provide new laser patterns at the surface of metallic materials. The
interlocking of both patterns lead to a perfect mix of the properties observed
separately. Indeed, instead of annihilating the e�ects of each other, the ab-
lation cavities have a reservoir role with a preferential spreading orientation.
This combination technique clearly o�ers new patterning opportunities to
correct the disadvantage of each method.
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7.2 Outlook

In this thesis, new approaches were successfully developed to characterize
the e�ects of laser irradiation and to design new wetting properties of
metallic materials. Nevertheless, some points could probably be improved
in the future in order to take signi�cant advantages of this work.

First of all, since the LIMET and mostly the femtosecond laser ablation
have an e�ect on the chemical composition of the material surface, it could
be very promising to use samples with a precise, regular and periodic repar-
tition of chemical species. Indeed, the choice of the material is of crucial
importance for further studies. The random distribution of the chemical
species (oxides, carbides) was a negative point in order to tailor the material
surface chemically. Secondly, the choice of a material with a regular chemi-
cal surface could be a solution to prevent the formations of cone structures.
Indeed, their formation is related to the random presence of impurities at
the surface of the irradiated area. The choice of thin "sandwich" �lms to
be irradiated could be a very interesting alternative since the ablation and
LIMET processes may precisely remove or create compounds. Since the fem-
tosecond laser ablation allows to remove material at a very precise depth,
it may be promising to remove a certain quantity of matter in a thin �lm
sample. For example, in the case of a Ni/Al con�guration, the top layer of Ni
could be periodically removed creating a surface with precisely distributed
Al areas. This combination of laser ablation and chemical texturing might be
very interesting in the future, since the femtosecond laser ablation can create
shallow cavities (0.4 µm depth in 100Cr6 bulk samples) without changing
the microstructure of the material.

The laser treatment under ambiant atmospheric conditions is also
an obvious �eld of discussions. Indeed, since metallic materials are exposed
to dioxide molecules under non-controlled atmosphere, oxidation may irreg-
ularly occur depending on the ambient temperature and relative humidity.
Then, the laser treatment under vacuum or gas atmosphere is of prior
interest since it might be a solution to combine reactive sites (i.e. irradiated
material surfaces) with gas molecules, which could thus become sites with
new and di�erent compounds from the non-irradiated areas. In this case,
the procedure might be the solution to add at the surface of the material
compounds which could further have an in�uence on the wetting properties.

All along this thesis, two distinct techniques involving di�erent laser tech-
nologies were used to design the topography of the material. In both cases
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defaults appeared at the surface after laser irradiation. Since they directly
in�uence the wetting phenomena, the homogeneity of the structures has to
be improved. It is mainly possible to do this by improving the irradiation
processes. Meticulous calculations have to be performed in order to deter-
mine the most adapted set-up parameters chosen for the laser irradiation. In
this conditions, for example the bridges of molten matter observed between
the LIMET lines, could be avoided.

Using these considerations, it might be helpful to �nd the physical limits

of each laser system. For example, the extreme period and height for the
grooves should be calculated and then applied to a chosen metallic surface
in order to study and compare the e�ects and interactions observed in this
thesis.

Finally, it was showed that all the geometrical parameters (shape, pe-
riod and depth) of the patterns determining the design of the structure are
the key parameters to understand and tune the wettability. In the future,
the elaboration of complex patterns based on the design of the optimized
structures might be a solution to improve self-cleaning applications or lubri-
cation phenomena for example. Hierarchical structures involving laser and
embossing techniques have already been used for tribological applications
and the success of the optimized patterns to combine di�erent e�ects has to
be scienti�cally and industrially considered.
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