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Abstract

Brownian motion is present in any kind of fluid at a finite temperature and thus plays
an important role in our daily life. Under normal circumstances, these stochastic forces
are independent in orthonormal directions. If specific flow profiles are present, though,
this situation may change. Three systems were examined in the scope of this thesis, in
which Brownian motion plays a central role.

A setup of optical tweezers was utilized to confine single colloids within a microfluidic
device while being subjected to a continuous shear flow. The shearing forces led to a
coupling of motion in the direction parallel and perpendicular to the flow direction, and
hence, gave rise to particular cross-correlation functions. Their specific features allowed
the characterization of the flow.

The second system of interest is the biological fluid mucus, which covers and shields
many organs in the human body. Respiratory mucus, found in the tracheal region of
the body, is crucial to the transport of medical drugs and was investigated using macro-
and microrheological methods. This confrontation of large and small structural scales
revealed insight into the unique transport properties of the material.

In the third part of this thesis, DNA molecules of the bacteriophage λ were utilized
to research the dynamic mechanical properties of these polymers in an oscillating, linear
shear flow. A basic bead-spring model was successfully applied to predict the displace-
ment of the center of mass of the molecules. However, phase shifts between driving and
response oscillation, which could not be explained by the model, leave room for debates.
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Kurzzusammenfassung

In Flüssigkeiten laufen bei Temperaturen oberhalb des Nullpunkts jederzeit dynamische
Prozesse ab, die durch die Brownsche Molekularbewegung verursacht werden. Normaler-
weise ist die Bewegung in orthogonalen Richtungen statistisch unabhängig, in bestimmten
Flüssen kann sich diese Situation jedoch ändern. Im Rahmen dieser Dissertation wur-
den drei Systeme untersucht, in denen der Brownschen Molekularbewegung eine zentrale
Bedeutung zukommt.

Eine optische Pinzette wurde verwendet um einzelne Kolloide in einer Mikrofluidik
zu lokalisieren, während sie gleichzeitig einem kontinuierlichen Scherfluss ausgesetzt wur-
den. Die Scherkräfte führten zu einer Kopplung der Auslenkungen in und senkrecht zur
Flussrichtung und verursachten dadurch charakteristische Kreuzkorrelationsfunktionen.
Ihr Verlauf konnte zur Analyse des Flusses eingesetzt werden.

Beim zweiten untersuchten System handelt es sich um Mukus, eine biologische Flüs-
sigkeit, die viele Organe im menschlichen Körper bedeckt und schützt. Respiratorischer
Mukus, der im Bereich der Atemwege vorkommt, hat eine große Bedeutung beim Trans-
port von Arzneiwirkstoffen in den Körper und wurde mittels makro- und mikrorheologis-
cher Methoden untersucht. Die Gegenüberstellung der verschiedenen Größenordnungen
der Strukturen erlaubten Einblick in die einzigartigen Transporteigenschaften des Mate-
rials.

Im dritten Teil der Arbeit wurden DNA der Bakteriophage λ verwendet, um ihre
dynamischen mechanischen Eigenschaften in einem oszillierenden, linearen Scherfluss zu
erforschen. Ein grundlegendes Kugel-Feder-Modell wurde erfolgreich angewandt, um
die Auslenkung des Masseschwerpunktes der Moleküle vorherzusagen. Allerdings lassen
Phasenverschiebungen zwischen antreibender Schwingung und Antwortschwingung, die
nicht vom Modell erfasst werden konnten, Raum für Diskussion.
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The dynamics of Brownian suspensions are determined by the fluctuations of their
microscopic constituents. Even at rest or at equilibrium, one may observe a rich phase
behavior depending on properties like concentration, temperature, pressure, and many
more. In this context, it hence poses a very interesting challenge to evolve an under-
standing of these phenomena. However, in most applications, fluids are typically not at
rest but they flow in order to allow material transport. Thus, the study of fluids and
the Brownian fluctuations therein is important both for applications and from a scien-
tific point of view. Here, one of the fundamental questions is: How will external fields
influence and hence change Brownian dynamics?

The kind of systems which will be in the focus of this work contain sols and gels.
In case of a sol, solid particles with sizes between 1 nm and approximately 10µm are
dispersed in a continuous liquid phase (e. g. water, glycerol, etc). A gel, on the other
hand, is rather the opposite: Liquid “particles” are dispersed within a solid-like cross-
linked network. In many cases, the network is built by polymers. Such materials, as they
contain both liquids and solids, thus also show both the elastic properties of a solid and
the viscous properties of a Newtonian fluid. This kind of a mixture of properties hence
reveals rich characteristics which, due to their viscous and elastic nature, motivated the
term viscoelastic or also complex fluid for such materials. This class of materials is very
common and often encountered in our everyday lives. We use them to bake a cake, i. e.
the dough, to brush our teeth, they are contained within our food and so forth. We are
currently just beginning to build an understanding of their material properties and, as
already mentioned, our grasp on Brownian dynamics within such materials is far from
being complete. This is especially true as soon as external fields are involved and when
we consider systems out of their thermodynamic equilibrium.

Within this thesis, the Brownian dynamic in oscillatory fields is studied for three
different experimental realizations. In part I, the motion of a colloid is examined in a
shear flow while it is subjected to external oscillations. This is implemented by utilizing
a setup of optical tweezers of which the main element is a strongly focused laser beam.
It allows to confine particles to a small volume around the focal region of the beam and
thus additionally enables the visualization of the particle’s motion over a long period of
time. A microfluidic device is used in combination with a gravitationally driven flow in
order to create the required shear flow. Such a shear flow provides a coupling of the
motion of the colloid in perpendicular directions which would not be present in a system
in thermodynamic equilibrium. Thus, we expect the cross-correlation functions of the
motion in these perpendicular directions to display characteristic properties which cannot
be found in the equilibrium system.
Part II gives details about how external oscillatory driving of colloids can be used to
study Brownian motion in complex environments like biological gels. In our case, the
study was performed in mucus. The analysis of colloidal motion allows the determination
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of the viscoelastic properties of the gel. In order to conduct this study, just as in case of
part I, a setup of optical tweezers is utilized to confine and visualize the particles. Mucus
is of specific interest in pharmaceutical research since it covers many cell surfaces within
the human body and could be exploited for a more efficient drug transport. However,
this is not possible without knowledge of the diffusion properties of colloids within this
material. Hence, in this study, we aim at the structural exploration of mucus by active
probing with oscillating colloidal particles.
In part III of this thesis, the simple case of a single particle in shear flow is extended
to long-chained polymers which are grafted to a surface while being subjected to an
oscillating shear flow. When considering not only a single colloid but a whole chain of
particles which are interlinked by springs, this represents a simple model for a polymer.
As our polymer of choice we pick deoxyribonucleic acid (DNA) for this part of the study.
The oscillating shear flow is created by aligning an optical lens, which is fixed to a
piezoelectric device, in a certain distance above the plain surface the DNA is attached to.
Oscillations are controlled through electric signals sent to the piezo device. By varying
the distance between oscillating lens and the surface at rest as well as the oscillation
amplitude and frequency we aim at gaining a deeper understanding of Brownian motion
of polymers in shear flow.
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Investigation of Oscillatory
Perturbations of a Colloid

in Linear Shear Flow
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I.1. Introduction

This first part of the thesis deals with small particles of sizes in the micrometer range that
are immersed in the bulk of a fluid. Since all experiments discussed later will take place
at room temperature, among the first questions one should ask about such a system is:
How exactly are the particles going to behave? What is going to happen if these particles
are driven out thermodynamic equilibrium by, say, an external flow?

To our current understanding, each fluid consists of molecules that move due to their
thermal energy. In doing so, since there is a great number of them, they cannot move far
before encountering another molecule. When they approach each other closely enough
they exchange momentum according to their angle of impact and their masses which
causes their velocity and direction of propagation to change. Assuming a colloidal probe
particle in the bulk of a fluid which is bigger than the fluid molecules, these impacts come
in from all directions, which means that in average the colloid just remains in its original
place (Fig. I.1.1). However, Einstein could show that the particle diffuses randomly in
such a way that its mean squared displacements increase linearly in time. This is of
course only valid if the fluid container possesses no walls.

So after long years of discussion, the riddle of Brown’s molecular motion, which was
discovered in 1784, was finally solved about 120 years later in 1905. But even now in
the year of its 230th birthday, there are still many open questions in context with Brow-
nian motion especially in non-equilibrium situations and it remains a much investigated
topic. Colloidal suspensions like inks and paints play an important role in industrial

Figure I.1.1.: Arbitrary path (green) of a colloidal particle (red) in the bulk of a fluid (blue).
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I.1. Introduction

applications. The equilibrium phase behavior of colloidal suspensions has been inten-
sively studied, but still there is qualitative disagreement between theoretical predictions
and experimental results, even for thermodynamic phase transitions [1]. Recently, it was
found that hydrodynamic interactions between colloids have to be considered even at
equilibrium [2]. However, still one does not need to consider complex systems to find
fascinating open questions. Even seemingly simple questions have not been answered yet:
How will two or more colloidal particles in a fluid bath behave when they approach each
other? How will a confined colloid react when brought into a shear flow? Especially the
experimental examination of such systems has proven a challenge. One method which
enables the investigation and also the active manipulation of colloidal systems is a setup
of optical tweezers. It was developed about 30 years ago by Arthur Ashkin [3] and im-
proved further in the following years, so today it can be used efficiently in order to study
colloidal systems.

Part I of the thesis will focus on single particles immersed in water, which are confined
to a certain region within a microfluidic channel by optical tweezers. By choice of an opti-
mal position close to the channel walls, the flow profile the particle interacts with is close
to a linear shear profile (Ch. I.4). Oscillatory motion of the trap position along the gradi-
ent direction are used to drive the system even further out of equilibrium and by analysis
of the auto- and cross-correlation functions the local shear rate can be determined. The
features of these functions will be compared to earlier results gained by Andreas Ziehl
[4, 5]. It is of great importance to understand how external forces like forced oscillations
influence confined colloids in a flow field. Especially, if and how these forces couple to the
Brownian forces intrinsic to such systems and hence cause additional contributions to the
auto- and cross-correlation functions of motion is an interesting question that was not
fully answered in the past. If such contributions are indeed present they might also play
a role for localized DNA molecules in shear flow as discussed in part III of this thesis.
Thus, they should be understood first before more complex systems can be studied. The
focus of this work will be threefold: In chapter I.4 a Langevin equation will be applied as
the constitutive differential equation of the system and solved analytically. Furthermore,
the correlation functions of motion will be determined. Chapter I.5 deals with numerical
simulations that enable the examination of the behavior of the colloids not only under
experimental conditions but also under conditions that cannot be realized directly due to
restrictions of the setup. The experimental study of the system is performed in chapter
I.6. The results from all methods will be compared and discussed in chapter I.7.
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I.2. Literature Survey

Brownian motion was in the scope of researchers since its discovery by Jan Ingenhousz
in 1784 [6], who reported about coal dust moving on the surface of an alcohol droplet.
These dust particles seemed to move back and forth in an irregular fashion without any
clear direction. The effect was forgotten for nearly half a century until Robert Brown,
a Scotch biologist, rediscovered it for pollen on a water surface [7]. He assumed the life
force of the pollen as being responsible for this effect. The topic was covered in many
a debate in the following years. As possible causes, heat, electricity, and light were the
main suspects [8, 9].

Joseph Delsaulx was the first to suggest that the reason might be linked to fluid
molecules impacting on the surface of the immersed objects, which in turn leads to the
irregular tumbling motion [10]. His suggestion was quite revolutionary since it contained
the idea that every fluid consists of smaller parts like molecules. It took until 1905 or
respectively 1906 when Albert Einstein [11] and Marian von Smoluchowski [12], indepen-
dently from each other, formulated a theory to explain and prove the atomistic nature of
fluids. A quantitative proof was delivered a few years later by Jean-Baptiste Perrin [13],
who managed to determine Avogadro’s or respectively Boltzmann’s constant experimen-
tally. For this groundbreaking achievement, Perrin was honored with the Nobel prize in
1926.

While Brownian motion was investigated during the 20th century using different meth-
ods like light scattering [14] or the intensity analysis during fluorescence microscopy [15],
experimental methods for the study of Brownian motion of colloids in active flows were
scarce. When Arthur Ashkin demonstrated in 1986 how a focused laser beam could
be used to confine and manipulate small particles [3], a very handy tool was developed
which could be used to examine Brownian motion directly. Details about the historical
evolution of this technique and its applications will be given in the following chapter
I.3. This chapter however will focus on the specific use of optical tweezers and similar
techniques in context with correlation functions of Brownian motion in colloidal systems
that was published until today.

The first study involving optical tweezers in the examination of cross-correlation-
functions of Brownian motion of more than one colloid is published in a paper by Jens-
Christian Meiners and Stephen Quake [16]. To achieve this, they used a dual-beam
optical tweezers setup to independently trap two particles. Each beam was visualized
on a separate quadrant photo diode after transiting through the sample cell to allow for

9



I.2. Literature Survey

Figure I.2.1.: Contributions of correlated and anti-correlated modes of motion of two beads along the
same coordinate axis. The decay time of correlated motion (black) is shorter than the
decay of the anti-correlated mode (red) and thus results in a minimum when adding both
contributions up (blue).

the separate tracking of each bead. In their experiments, they placed both traps in close
vicinity to each other on a line parallel to one of the main axes of their diodes, i. e. the
x- or the y-axis. They showed experimentally that the auto-correlation functions of the
position in each direction of each bead was represented by a double exponential decay
function. Much more remarkable however were their experimental results in respect
to the bead-to-bead cross-correlation functions. When correlating the motion in the x-
direction of the first bead (denoted by x1) with the motion of the second bead in the same
direction (denoted by x2), they found a dip in the cross-correlation function Cx1x2(τ)
close to τ = 0 (compare to Fig. I.2.1). The same is true for the cross-correlations along
the y-axis Cy1y2(τ)1. This dip originates from two superimposed exponential functions,
one of which is related to the decay of correlated modes of motion (shown in black), while
the second is related to the decay of anti-correlated modes of motion (shown in red).

A similar experiment was performed about 13 years later by Skryabina et al. [17]
using magnetic microparticles. In comparison to the setup used by Meiners and Quake,
this setup contained an electromagnet which allowed an additional magnetic manipula-
tion of the beads. This again resulted in a shift of all the correlation functions. However,
neither Meiners and Quake nor Skryabina et al. found any correlations for the motion
in perpendicular directions, i. e. Cx1y1 = Cx2y2 = Cx1y2 = Cx2y1 = 0. Since Brownian
fluctuations in isotropic systems at equilibrium occur due to collisions with surround-
ing molecules in an arbitrary way and hence the motion in perpendicular directions is

1For the sake of brevity, the time-dependence of the correlation functions is omitted in the rest of this
chapter although the fluctuations are still time-dependent.
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completely uncorrelated this result is not surprising. However, it is possible to observe
non-zero cross-correlations of Brownian motion as soon as a coupling mechanism for per-
pendicular directions is introduced into the system as for example a shear flow. This was
observed by Ziehl et al. in experiments [5] and by Bammert et al. [18] as well as Holzer
et al. [19] in theory. Instead of immersing the particles in a quiescent fluid without
any kind of flow, Ziehl placed the particles in the middle of a microfluidic counter-flow
device. While the particles experienced nearly no absolute flow velocity, they were at the
same time positioned in the region of the strongest shear gradient. The shear flow led to
the coupling of motion in perpendicular directions, so additional cross-correlations were
found.

Experiments and theory agree on the results for one single and two particles in shear
flow. While the auto-correlation functions remain unchanged for a single particle, the
shear flow causes the cross-correlation function Cxy to deviate from zero (this case will be
discussed in more detail in chapter I.4.3). The most interesting feature is the asymmetry
of the function in respect to time which results from the bead being driven out of its
thermodynamic equilibrium by the flow. In case of two beads in close vicinity to each
other, this effect adds up with the hydrodynamic interaction, so even the movement of
the first bead along the x-axis is coupled with the movement of the second bead along
the y-axis, i. e. Cx1y2 ≠ 0. This can be explained in the following way: Both beads
interact hydrodynamically causing an anti-correlation of Cx1x2 as discovered by Meiners
and Quake. Due to the shear flow, Cxiyi shows correlations for each of the beads as well.
This information is carried over to the other bead through hydrodynamic interaction
causing Cxiyj (i ≠ j) to be coupled. In addition to the case of both beads being placed on
the same streamline, Bammert also discusses the situation when both beads are placed
above and below the center streamline in the same distance from it. He furthermore
takes oblique cases into account.

Apart from these five publications there have been more publications in the field of
cross-correlations in context with the study of Brownian motion in flows. Many of them
are only related indirectly and deal with the application of particle image velocimetry in
microchannels [20, 21, 22]. There has also been a report on the usage of temperature-
related broadening of correlation peaks in temperature measurements within fluid cells
[23]. Correlation functions have also been used to detect the torque of particles that were
confined within an optical trap [24]. In this study, we apply an additional oscillation to
the base shear flow used by A. Ziehl [5]. In this manner, we introduce a further time
scale into the system which may give access to fascinating dynamics of colloids away from
thermodynamic equilibrium. The study of Brownian motion in an oscillatory shear flow
is of great importance since it is a common situation. Consider for example the pulsating
flow of blood which can be described by a continuous shear flow with an additional
oscillatory contribution. Also the results will help in understanding the influence of the
shear flow on DNA molecules which are grafted to one of the side walls of a flow chamber.

11



I.2. Literature Survey

Hence, the pre-requisites for the analysis of the dynamics of DNA molecules in oscillating
shear flows in part III of this work will be achieved in this first part.

The first part of this thesis is going to focus on a special implementation of the last of
these questions. Specifically, the position of the optical trap will oscillate harmonically
in the direction perpendicular to the flow direction in the microchannel while a bead is
confined in it. Similar to the state in the counter-flow device of Andreas Ziehl, the shear
flow will cause a non-equilibrium situation for the bead which is additionally perturbed
by the oscillatory motion of the trap.

12



I.3. Optical Tweezers

I.3.1. Historical Development

Light or electromagnetic radiation can be described as a wave and as a particle at the
same time. This principle, which is well-known as wave-particle dualism, was found by
Albert Einstein as the explanation for the photoelectric effect and published in one of
his famous papers from 1905 [25]. It was the first quantum-physical explanation that
considered light as a quasi-particle called photon that is able to interact with matter.
Thus, the effect that an electric current is caused by light shining on a surface can be
understood. But even hundreds of years before, when Johannes Kepler watched the
passage of comet Halley, he detected that the tail of the comet was directed away from
the sun. He explained this effect by the radiation pressure of the sun. Today, applications
for radiation pressure exist over a wide scale of sizes. Among the largest are solar sails
which are used for the propulsion of satellites, among the smallest are optical tweezers.

The first realization of a setup of optical tweezers was developed by Arthur Ashkin
in 1970 [26] and used two counter-propagating laser beams to confine particles. While
creating stable traps, this kind of a setup brought the disadvantage that either two lasers
had to be used or the beam of a single laser had to be split and carefully aligned. Still,
it presented the proof-of-principle that it is possible to confine particles by light. In the
following years, Ashkin continued his work on optimizing his setup which led among
others to a levitation trap [27] and finally, about 15 years later, to the typical setup as it
is still used today [3]. Only a single, tightly focused beam is used, which is thus able to
directly confine particles. Ashkin also worked on a theoretical model for the interaction
of the laser with the particles [28, 29, 30].

Since then, a wide range of applications has been found for optical tweezers in scien-
tific research. One of the most famous is the use for force measurements at molecular
motors [31, 32, 33] and DNA molecules [34, 35]. Also in recent years, microrheology
became more important, which was established by Mason in 1995 [36] and used for the
examination of numerous fluids like polymers [37, 38], gels [39, 40], and especially bi-
ological materials like the filamentous bacteriophage fd [41], B lymphocyte membrane
tethers [42], fibroblast cells [43], and more. The huge advantage of microrheology in this
context is two-fold. On the one hand, no mechanical contact with the sample is neces-
sary to perform measurements and manipulate particles, which reduces the probability
of contamination. On the other hand, measurements can be performed in the smallest
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I.3. Optical Tweezers

sample volumes, even smaller than 30µl.
The following chapter will give details on the interaction of laser light in a setup of

optical tweezers with small particles by scattering. It will conclude with the derivation of
a simple interaction force which will be used in the analytical examination of the system
later.

I.3.2. Scattering Regimes

A setup of optical tweezers will play a central role in this part and also part II about the
rheology of mucus. Thus, developing an understanding of its basic properties is important
for the discussions following later. While details about the construction of such a setup
will follow in chapter II.4, here, the electromagnetic interaction of the involved lasers
with colloids will be explained. They will play a crucial role in the analytic description of
the system and the equations of motion of the particles in the focal region of an optical
trap.

When considering scattering of photons by colloids in a setup of optical tweezers,
the interaction of light and colloid can be split into a force that stabilizes the trap, also
called gradient force, and a second one that decreases its stability, the so-called scattering
force. The models that qualify to describe their interaction depend on the relation of
the wavelength of the photon to the size of the colloid dc = 2rc , where rc is the radius
of the colloidal particle. The following sections deal with three size regimes that result
from this comparison.

I.3.2.1. Rayleigh Regime

The first case considered here deals with colloid sizes much smaller than the wavelength of
the laser beam (dc ≪ λ). Due to their small size, colloids can be described as punctiform
electric dipoles interacting with the electric field component of the light [44]. This idea
results in two formulas for the scattering and gradient force [3]

F⃗scat =
σsnm
c

⟨S⃗⟩ , (I.3.1)

F⃗grad =
αp

2
∇⃗ ⟨E⃗2⟩ . (I.3.2)

Here, the scattering cross-section is given as

σs =
128π5r6

c

3λ4
(m

2
r − 1

m2
r + 2

)
2

(I.3.3)
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and αp represents the polarizability of the colloid

αp = n2
mr

3
c (
m2
r − 1

m2
r + 2

) . (I.3.4)

In these formulas, the optical properties of the colloids and the surrounding medium
are contained in the shape of the respective refractive indices nc and nm as well as the
relative refractive index mr = nc/nm .

I.3.2.2. Ray Optics Regime

If the particle size is big in comparison to the wavelength of the laser (dc ≫ λ), the
interaction of light and matter can be described by classical ray optics. This means
that the laser is divided into infinitely small partial beams that move in straight paths
until they reach an interface to a material with different optical properties. Under the
assumption that there is no partial reflection of the incoming beam, the rays propagate
according to Snell’s law [44]

nm sin (θi) = nc sin (θe) . (I.3.5)

Here, nm and nc denote the refractive indices of medium and colloid, θi and θe represent
the angle of incidence and emergence of the beam relative to the surface normal vector.

Figure I.3.1.: The quality factors for scattering (Eq. I.3.6) and gradient force (Eq. I.3.7) are plotted
here for incidence angles between 0○ and 90○. A combination of water as the surrounding
medium (nm ≈ 1.33) and polymethylmethacrylate (PMMA) as the colloid material (nc ≈

1.49) was assumed for the calculation.
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I.3. Optical Tweezers

However, partial transmission and reflection of the beams must also be taken into
account. Here, every time a ray of power P encounters an interface, only a part of it is
able to transmit, while the rest is reflected at the interface. When integrating over the
whole width of the incoming laser beam, one can define the total scattering and gradient
forces as [30]

∣F⃗scat∣ =
nmP

c
[1 +RF cos (2θi) −

T 2
F (cos (2θi − 2θe) +RF cos (2θi))

1 +R2
F + 2RF cos (2θe)

]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Qscat

, (I.3.6)

∣F⃗grad∣ =
nmP

c
[RF sin (2θi) −

T 2
F (sin (2θi − 2θe) +RF sin (2θi))

1 +R2
F + 2RF cos (2θe)

]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Qgrad

, (I.3.7)

where RF and TF are Fresnel’s coefficients of reflection or, respectively, transmission.
The terms in brackets are denoted as the quality factors of scattering and gradient force
Qscat and Qgrad . These allow the determination of the ideal angle of incidence for a given
combination of medium and colloid materials (compare Fig. I.3.1). The graph displays
the quality factors for the combination of polymethylmethacrylate (PMMA) beads in
water, the most common materials used in this part of the thesis. The highest value of
the gradient quality factor is reached at about 72○, while the scattering is strongest around
82○. This leads to the conclusion that the optimal angle of incidence lies around 50○−70○

where a high absolute value of Qgrad is reached, while the relative value Qgrad/Qscat is as
big as possible. Such high angles of incidence can only be realized by an objective of high
numerical aperture. A stable confinement of a particle is possible only if the surrounding
medium is of less optical density than the sphere, i. e. nc > nm. If this was the case, the
sphere would always be pushed away from the focal point and stable trapping would be
impossible.

I.3.2.3. Mie Regime

In this intermediate regime in which the wavelength of the light is of roughly the same
order as the particle size (dc ≈ λ), additional corrections to the forces of the Rayleigh
regime have to be taken into account. This can either be attempted by using an approach
via the coupled-dipole method [45] or the generalized Lorenz-Mie theory (GLMT) [46, 47].
To achieve a more precise formulation of the acting forces, the plane of polarization of the
laser beam itself also has to be taken into account [48]. More details on the description of
scattering in the Mie regime can as well be found in a book by Bohren and Huffman on
the absorption and scattering of light by small particles [44]. Due to its large complexity,
this regime will not be discussed in the scope of this thesis. However, more details about
it can be found by the attentive reader in the referenced literature.
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I.3.3. Force Balance Considerations

As becomes apparent depending on the size of the scattering object as compared to
the wavelength of light different descriptions of the interaction of light and matter are
applicable. No matter which scattering regime is considered there are always two common
forces (Fig. I.3.2): A scattering force F⃗scat pushes the sphere in direction of the Poynting
vector of the incident beam and a gradient force F⃗grad pulls the sphere in direction of the
strongest electric field gradient. If a focused beam is assumed at this point as indicated in
figure I.3.2 the sphere moves towards the focal point of the laser. However, the scattering
force results in the sphere always being pushed slightly away from the focal point so that
it reaches a new equilibrium position. In total, close to the focal point of the laser beam,
all acting forces can be combined to a linear law independent of the size regime

F⃗trap = −ktrap∆r⃗ , (I.3.8)

where ∆r⃗ denotes the displacement of the trapped object away from the focal point. The
spring constant or trap stiffness ktrap can vary from one Cartesian direction to another,
in general, the components are identical. However, equation I.3.8 only holds true close
to the focal point of the laser. For bigger distances, higher order corrections have to be
taken into account.

Figure I.3.2.: Total force balance of scattering and gradient force for the interaction of a focused laser
beam with a sphere of refractive index nc in a medium of index nm. Two exemplary
incident beams Ai and Bi are partially reflected (Ar and Br) and partially transmitted
through the sphere (At and Bt). Multiple reflections within the sphere are not depicted
to keep the image clear. The colored bar on the left side of the sketch indicates the
Gaussian intensity distribution of the laser beam.
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I.3.4. Summary

In the past chapter, the principle of optical tweezers was discussed. The main feature is
a strongly focused laser beam that interacts with objects in its beam path. The exact
description of this interaction depends on the size of the object relative to the wavelength
of the beam. Small objects (dc ≪ λ) act as punctiform dipoles in the electromagnetic
field of the laser [3], while bigger objects (dc ≫ λ) lead to classical refraction of the beam
[30]. For all regimes, acting forces can be sub-divided into a scattering force F⃗scat and
a gradient force F⃗grad. While F⃗scat always leads to a weakening of the trap since it is
directed in the propagation direction of the laser beam, F⃗grad stabilizes the trap if the
setup of optical tweezers is constructed correctly. The total force acting on a sphere in an
optical trap is described by a linear law (Eq. I.3.8) which will be helpful in the following
chapters to derive a differential equation of motion for the confined particle. This force
balance in context with the scattering and gradient forces will have repercussions on the
actual construction of the setup utilized in this study. More details on this topic will
follow in a later chapter (Sect. I.6.1).
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In this thesis, microfluidic channels are used to create a shear flow. They are designated
microfluidic devices since at least one of their dimensions is in the micrometer range.
This is certainly the case here, since they have a width of 50µm and a height of about
40µm. While the flow is purely gravitationally driven, which results in a Poiseuille
velocity profile, these kinds of devices can be used to create quasi-linear shear flows,
nonetheless. This idea will be developed over the course of the next sections.

The second topic and one of the central keypoints of this thesis is the interaction
of a trapped colloid with the flowing fluid. The force balance for such a bead will be
discussed without (Sect. I.4.3) and with forced oscillations (Sect. I.4.4), and the solutions
of the differential equations will be employed to determine the auto- and cross-correlation
functions of their motion.

I.4.1. Solution of the Navier-Stokes Equation in Rectangular
Channels

When talking about microfluidic devices and flows through channels, among the first
questions asked should be how the velocity profile of the fluid will look like. Central
principles necessary for the solution are the conservation of mass, momentum, and energy
[49]. Then, the Navier-Stokes equation can be cast in the following form

ρ( ∂
∂t

+ v⃗∇⃗) v⃗ = η∆v⃗ − ∇⃗p + ρg⃗ , (I.4.1)

where p is the pressure, ρ the density, and η the dynamic viscosity of the fluid. This equa-
tion gives the full Navier-Stokes equation with which any kind of flow in any geometry
can be characterized. For steady unidirectional flows like present in a rectangular channel
driven by hydrostatic pressure, this problem can be strongly simplified. Then, the flow
can be considered stationary, eliminating the time-dependence, and also convection-free.
The description can be reduced to the Stokes equation

η∆v⃗ − ∇⃗p + ρg⃗ = 0 (I.4.2)
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Figure I.4.1.: Color-coded plot of the normalized flow velocity in the x-direction of a rectangular chan-
nel in the y-z-plane. The velocity increases from a complete stand-still at the channel
walls (dark blue) to the maximum velocity in the center of the channel (red). The white
horizontal line indicates the cutting line along which the flow profile in Fig. I.4.2 is
drawn.

or respectively when assuming a channel with a flow solely in the horizontal x-direction
of velocity vx ≙ v

η ( ∂

∂y2
+ ∂

∂z2
) v − ∂p

∂x
= 0 . (I.4.3)

A solution can be computed for no-slip boundary conditions1 by using Fourier-expansions
in the z-direction, giving [50]

v(y, z) = 3Q

8ab3F (a
b
)

⎡⎢⎢⎢⎣
b2 − z2 + 4b2

∞

∑
n=1

(−1)n

α3
n

cosh (αn yb )
cosh (αn ab )

cos(αn
z

b
)
⎤⎥⎥⎥⎦
, (I.4.4)

where Q is the flow rate, a is half the channel width, b is half of its height, αn =
(2n − 1)π/2, and

F (x) = 1 − 6

x

∞

∑
n=1

tanh (αnx)
α5
n

. (I.4.5)

1When assuming no-slip boundary conditions, the velocity of the fluid at the position of the container
walls equals the velocity of the walls themselves. Here, the walls do not move at all leading to the
conditions v(y = −b/2) = v(y = +b/2) = v(z = −a/2) = v(z = +a/2) = 0.
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(a) Full-width profile. (b) Zoom of the region close to the wall.

Figure I.4.2.: Plot of the normalized flow velocity v against the position y at a fixed height z = 0µm
in the middle of the channel as indicated by the white line in Fig. I.4.1. While the
computed profiles are shown in black, a linear fit to the data close to the wall is shown
in red.

In this case, the origin is placed in the middle of the channel. A color-coded plot in the
y-z-plane of a rectangular channel is drawn in Fig. I.4.1. Since all the experiments were
performed close to the center-line in respect to the height of the channel at z = 0µm,
a two-dimensional profile along that line is displayed in Fig. I.4.2. While the full pro-
file shows the characteristic parabolic shape (Fig. I.4.2a) typical for a Poiseuille-type
pressure-driven flow, in close proximity of the wall the velocity increases nearly linearly
with the distance y to the wall (Fig. I.4.2b). It appears reasonable to assume a linear
shear profile for the distances used in the experiments introduced later in chapter I.6,
which lie in a range of 2 to 4 times the particle radius corresponding to 4µm to 8µm.
Especially, one has to take into account that only a small region around the average
position of the oscillating optical trap will be visited by the confined beads; the typical
amplitude amounts to 1µm. At the same time however, the bead in the optical trap
should be as close as possible to the center of the channel in z-direction, because oth-
erwise there might exist an additional shear gradient in this direction which cannot be
monitored directly. An evaluation of the height of the bead is not established in the
current setup.

In context with flows through small channels, a further topic shall be discussed: the
laminarity of the flow. Usually, the Reynolds number is evaluated as a means to char-
acterize the flow in this respect. It weighs the inertial forces active in the flowing fluid
against the viscous ones. It is a dimensionless number and as such gives an indication
whether a flow tends to be laminar - this is the case when the viscous forces dominate
over the inertial ones - or turbulent depending on its magnitude. In general, it is defined
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as

Re = ρv̄dh
η

, (I.4.6)

where dh is the hydraulic diameter of the channel and v̄ the average flow velocity. Since
the Reynolds number was originally defined for pipes with a round cross-section, a cor-
rection has to be included, if channels with a different cross-section, i. e. rectangular
ones, are utilized. It can be determined as

dh = 4
A

P
= 2wh

w + h
, (I.4.7)

where A is the area of the cross-section of the channel and P is its wetted perimeter. The
right-hand side of the equation shows the corresponding result for the chosen channel,
where w is its width and h its height. This gives the adapted Reynolds number for a
rectangular channel

Rerectangular =
2ρv̄wh

η (w + h)
≈ 0.004 . (I.4.8)

The typical maximum velocity of the flows applied in this part of this doctoral research
study lies at 100µm/s and since all experiments were performed in water, the density
ρ = 1000kg/m3 and viscosity η = 10−3 Pas of water were used. For the estimation, cor-
responding to the experiments detailed later a channel width of 50µm and a height of
40µm were assumed. As far as critical Reynolds numbers are concerned, there is no gen-
eral number that is valid for all geometries and systems. If the Reynolds number is much
smaller than 1, the physical system can be considered as behaving purely laminar. With
Rerectangular in the order of magnitude between 10−3 to 10−2, any turbulence will decay
faster than the temporal resolution of the measurement and will only have a marginal
influence on the flows.

One important correction has to be taken into account when handling beads very close
to side walls of channels: These beads will behave as if moving in a fluid of higher viscosity
the closer they approach the wall. This effect is caused by hydrodynamic interaction of
the spheres with the walls. It only applies for motion along the surface normal of the
wall while motion perpendicular to it is not influenced at all. Assuming that a colloid
approaches a wall, the fluid in-between has to be pushed out before the colloid can move
any closer. This requires more force as compared to motion in the bulk of the fluid, thus,
the effective viscosity for motion towards the walls seems higher. Of course, the actual
viscosity of the fluid remains unchanged, the effect is just a pretended effect through the
interaction of colloid and wall. The viscosity increase can be computed by using Faxén’s
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law [51]

ηeff = η0 (1 − 9

16

rc
dcw

+ 1

8
( rc
dcw

)
3

− 45

256
( rc
dcw

)
4

− 1

16
( rc
dcw

)
5

)
−1

, (I.4.9)

where ηeff is the effective viscosity, η0 is the bulk viscosity of the fluid, rc is the radius of
the colloid, and dcw is the distance of the center of the colloid to the wall. When only the
first order correction is taken into account, this leads to a viscosity increase of roughly
25% for dcw = 3rc. Although a viscosity change of this order is quite significant, this
is the smallest distance chosen in the experiments presented in later chapters and can
thus be seen as an upper limit. Since the viscosity has to be known for the calibration
of the trap stiffness as well, it will be influenced implicitly (Sect. I.6.3). To avoid these
influences by the walls becoming too strong, only those measurements will be considered
where the trap stiffnesses parallel and perpendicular to the walls do not differ from each
other by more than 10%.

I.4.2. Design of the Microfluidic Device

The main goal of this first part of the dissertation is the visualization of the motion of
particles confined in an oscillating optical trap while exposed to a linear shear flow. A
means to create a flow which can be approximated locally as a shear flow is given by a
microfluidic device with channels of rectangular cross-section, as discussed in the past
section. If the bead is placed close to the center in z-direction and at the same time
close to one of the side walls of the channel in y-direction, the conditions are close to
ideal (compare Fig. I.4.2). However, the techniques necessary to build such a device
have to make dimensions in the order of 10µm possible. So-called soft lithography
techniques [52] are a very convenient way of fabrication. A particular one amongst these
methods is designated as replica molding. First, a mold is necessary which carries the
negative structures of the desirable geometry. It is then filled with a soft material like

Figure I.4.3.: Example of a mask used for lithographic processing of silicon wafers in manufacturing
the mold for soft lithography. The patterns shown here represent a channel width of
200µm and a length of 2 cm. For the experiments, only channels with a width of 50µm
were used.
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Figure I.4.4.: This photograph shows a fully prepared microfluidic device after bonding to a round
coverslide and tubes having been inserted as in- and outlets for a fluid.

polydimethylsiloxane (PDMS), which gives the positive counter-structure to the mold.
After curing, the PDMS hardens and can be used for example for the realization of
microchannels. To avoid the evaporation of sample fluid and also dust particles in the
system during an experiment, the channels should be closed off by using coverslides.
Details on the production of the microfluidic devices using this method can be found in
the “Methods” section of the appendix (Sect. A.2.1).

The production of the mold can also be achieved using a multitude of techniques.
If the size of the structures ranges in the order of magnitude of millimeters or bigger,
a mold can be manufactured using mechanical methods like the milling of metal. For
smaller molds on the micrometer scale, the manufacturing can be achieved by lithography
techniques on silicon. For that purpose, patterns on a mask are transferred by exposing
them to light into a photo resist, followed by the removal of either the exposed or the
non-exposed structures depending on the type of resist. The remainder of this procedure
can finally be used as a mold.

In the scope of this thesis, the only type of pattern used for the manufacturing of
microfluidic devices were straight rectangular channels (Fig. I.4.3). For a simpler hand-
ling when punching holes for the tubes leading to the channels in the PDMS, small
round-shaped reservoirs were added to the design. After a full preparation of a channel
according to the procedure detailed in section A.2.1, ready-for-use microfluidic devices
as shown in Fig. I.4.4 result that are perfectly suited for experiments within a flowing
fluid.
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I.4.3. Colloids in Linear Shear Flow without Forced
Oscillations

When a colloidal particle is immersed into a fluid bath, there will be many smaller
molecules in a snapshot of the particle’s surroundings that make up the fluid (Fig. I.1.1).
However, they will not be motionless due to the fact that the bath cannot be kept at
the temperature T = 0K. Instead, the molecules will move rapidly back and forth in
an arbitrary, undirected motion. If time would be slowed down to a crawl, we would
see each single molecule move in a straight line as long as there are no other molecules
in their path. As soon as two of them collide, they will exchange momentum and thus
their direction of propagation as well as their kinetic energy will change. However, the
visualization of this ballistic motion requires an extremely fast data acquisition system on
a timescale of nano- to picoseconds [53]. With slower recording, the single impacts cannot
be distinguished from one another anymore and the only possible way of a description
may happen on stochastic terms.

This Brownian force can be described using stochastic properties. On the one hand,
the temporal average of the force through the impacts on a non-ballistic timescale must
disappear [54]

⟨F⃗r(t)⟩t = 0 . (I.4.10)

On the other hand, one can find by application of the fluctuation-dissipation theorem
[55] that the auto-correlation function of this random force is expressed by

⟨F⃗r,i(t1)F⃗r,j(t2)⟩ = 2kBTζδ(t1 − t2)δij , (I.4.11)

where kB is Boltzmann’s constant, ζ = 6πηrc is the coefficient of friction of ideal spheres
of radius rc in a fluid of viscosity η, δ(t1 − t2) is Dirac’s delta distribution

δ(t1 − t2) =
1

2π

∞

∫
−∞

dωeiω(t1−t2) , (I.4.12)

and δij is Kronecker’s delta. i and j represent arbitrary Cartesian coordinates, i. e. x, y,
and z. The stochastic forces are only correlated if they act in the same direction and if
the events are simultaneous. Otherwise, no correlations are found. More details about
the definition of correlation functions will follow later (Eq. I.4.18).

Stochastic forces are not the only forces one needs to take into account when consid-
ering particles in a fluid. Additional forces are inertial forces F⃗inertia, the force of friction
F⃗fric, and, if present, the influence of an optical trap F⃗trap [56]. As already discussed
before in case of flows of low Reynolds number, friction forces will always dominate over
inertial forces (Sect. I.4.1), thus, inertial forces can be omitted. As far as friction is
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Figure I.4.5.: Sketch of a colloid in a microfluidic device with a rectangular cross-section as seen from
above.

concerned, since all experiments reported later are performed using spherical particles,
Stokes’ friction formula for ideal spheres can be applied

F⃗fric = ζv⃗ . (I.4.13)

In the case of simple Newtonian fluids, i. e. fluids that show no viscoelastic behavior,
ζ is given as a constant value. In part II of this thesis, in context with microrheology,
more details on viscoelastic properties of complex fluids will be given. Here, however,
only water was sent through the microfluidic devices, so no complex behavior of the fluid
needs to be taken into account.

In chapter I.3, the interaction of a focused laser beam with spherical objects was
reviewed. While the description of the electromagnetic interaction is a multifaceted
topic by itself, independent of the scattering regime or in other words the particle size
versus wavelength ratio, the effect of the laser can be reduced to equation I.3.8. For the
sake of brevity, the index “trap” will from now on be omitted from the trap stiffness ktrap.

Differential equations of this kind, which include stochastic forces, are labeled Langevin
equation. They were first used by Paul Langevin in 1908 for the description of Brownian
motion [57]. In this case however, it is expanded by the influence of the optical trap.
For the specific case of a colloid near one of the side walls of a rectangular channel (Fig.
I.4.5), one further modification of the equation is necessary. While the out-of-plane gra-
dient in flow velocity along the z-axis can be safely neglected since the colloid is placed
in the middle between top and bottom wall of the channel, this is certainly not true
for the gradient along the y-axis. This particular gradient was supposed to be used for
the creation of the shear flow in the first place. Thus, for motion in the perpendicular
direction to the flow propagation, i. e. the y-direction, the total force balance yields

ζ
∂y(t)
∂t

+ k (y(t) − ytrap(t)) − Fr,y(t) = 0 . (I.4.14)

Here, it is assumed that the position of the optical trap does not vary during the conduc-
tion of the experiment, but rather remains in a constant position r⃗trap = (xtrap, ytrap,0).
Without loss of generality, the origin of the coordinate system is chosen in such a way
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that it is identical to the center of the optical trap, i. e. r⃗trap = 0⃗. In x-direction, the
equation including the shear forces reads

ζ (∂x
∂t

− γ̇y(t)) + kx(t) − Fr,x(t) = 0 , (I.4.15)

where γ̇ is the shear rate. The force created by shearing has to carry a negative sign since
the colloid has to move against the flow direction to keep its position, hence resulting
in a negative force contribution. Both equations I.4.14 and I.4.15 are inhomogeneous
differential equations of first order and can be solved by at first tackling the homoge-
neous equation and then determining a special solution of the inhomogeneous problem
by variation of parameters. This yields for the equation in y-direction

y(t) = e−t/τr
⎧⎪⎪⎨⎪⎪⎩
y0 +

t

∫
0

dt′ [et
′/τr Fr,y(t

′)
ζ

]
⎫⎪⎪⎬⎪⎪⎭
, (I.4.16)

where the decay constant is given by τr = ζ/k and y0 is the starting position of the colloid
defined by the initial conditions. This concurs with the classical solution of the equation
of motion of a colloid in a quiescent fluid. By introducing equation I.4.16 into equation
I.4.15, a solution in flow direction can be found as well:

x(t) = e−t/τr
⎧⎪⎪⎪⎨⎪⎪⎪⎩
x0 + γ̇y0t +

t

∫
0

dt′
⎡⎢⎢⎢⎢⎢⎣
et
′/τr Fr,x(t

′)
ζ

+ γ̇
t′

∫
0

dt′′ (et
′′/τr Fr,y(t

′′)
ζ

)
⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (I.4.17)

where again x0 is defined through the initial conditions. The structure of this solution
becomes identical with the shear-free solution in y-direction if the shear rate is set to
zero. Due to the coupling of both equations through the shearing, the effects of Brownian
motion in y-direction will also play a role for the motion in x-direction. To get a clearer
insight into the type of coupling present, the auto- and cross-correlation functions of
motion will be computed.

Correlation Functions in Linear Shear Flow without Forced Oscillations

In general, cross-correlation functions are applied when the relation of two signals or
time-dependent mathematical functions f(t) and g(t) is in question. Such relations are
characterized on the one hand by their strength, in other words by the absolute value of
the correlation, but also by their direction as indicated by the sign of the function. They
are defined as

Cfg(τ) = ⟨f(t)g(t + τ)⟩ = lim
Tm→∞

1

Tm

Tm/2

∫
−Tm/2

dt f(t)g(t + τ) . (I.4.18)
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If a cross-correlation function carries a positive sign, one considers the functions f and
g to be correlated, in case of a negative sign they are denoted as anti-correlated. If the
functions f and g are identical, this special case is denoted as auto-correlation function.
The temporal limits of the integral in equation I.4.18 is given by the duration of the
measurement Tm or respectively the range of definition of the signal. A very important
feature of correlation functions is that they do not depend on an absolute time-frame
t, but only on events on a relative timescale τ . By definition, an additional symmetry
property is given by

Cfg(τ) = Cgf(−τ) . (I.4.19)

If the order of the functions to be correlated is interchanged, it leads to time-inversion
of the correlation function at the same time. Hence, due to symmetry reasons, auto-
correlation functions are always even functions in respect to time.

As the computation of the cross-correlation functions as well as the discussion of their
features is the central topic of this first part of the dissertation, their derivation will
be explained in detail. Very recently, a paper which focused on the same aspects was
published [58]; the argumentation will very much follow the train of thought in it. This
first case of colloidal Brownian motion in a shear flow was already discussed before in
literature by Ziehl and Bammert [5, 18]. However, it shall be analyzed here again because
it acts as a basic case to the situation of an added forced oscillation in the next section.
By inserting the solution of the equation of motion in y-direction (Eq. I.4.16) in equation
I.4.18, the corresponding auto-correlation function will read

Cyy(∆t) = ⟨
⎛
⎜
⎝
y0e

−t/τr + e−t/τr
t

∫
0

dt′ [et
′/τr Fr,y(t

′)
ζ

]
⎞
⎟
⎠

(I.4.20)

⎛
⎝
y0e

−τ/τr + e−τ/τr
τ

∫
0

dt′′ [et
′′/τr Fr,y(t

′′)
ζ

]
⎞
⎠
⟩ ,

where τ = t + ∆t. The execution of the multiplication in brackets leads to four terms,
one of which does not contain the Brownian random force at all, two of which contain
it to the first power, and one contains the second power of it. The first term converges
very fast towards zero and does not contribute to the correlation function, while the two
first-power terms are eliminated by the averaging property of the correlation function
(compare Eq. I.4.10). Only the term with the second power of the random force will
lead to a non-zero contribution due to the property of the auto-correlation function (Eq.
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Figure I.4.6.: Plot of the analytical auto-correlation functions Cxx and Cyy of a colloid with a size of
4µm confined in an optical trap with a stiffness of 1µN/m, according to the equations
I.4.23 and I.4.24. The shear rate was chosen as γ̇ = 10 1/s. The data set corresponds to
the one shown in figure I.4.7.

I.4.11)

Cyy(∆t) =
2kBT

ζ
e−(t+τ)/τr

t

∫
0

dt′
τ

∫
0

dt′′ {e(t
′+t′′)/τrδ(t′ − t′′)} . (I.4.21)

Assuming τ ≥ t, the integral can be computed in the written order, resulting in

Cyy(∆t) =
kBT

k
(e−(τ−t)/τr − e−(τ+t)/τr) , (I.4.22)

which for large times (t, τ ≫ τr) leaves only the first term

Cyy(∆t) =
kBT

k
²
ACyy

e−∆t/τr . (I.4.23)

As claimed before, this function does not depend on any absolute, but only the relative
timescale ∆t.

The computation of the auto-correlation function Cxx(∆t) and the cross-correlation
function Cxy(∆t) is of higher complexity and will therefore be discussed in detail in the
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Figure I.4.7.: Plot of the analytical cross-correlation function Cxy of a colloid with a size of 4µm
confined in an optical trap with a trap constant k = 1µN/m according to the equations
I.4.25 and I.4.26. Black and blue colors were chosen to distinguish the positive and
negative half-plane. The shear rate was set to γ̇ = 10 1/s. The data set corresponds to
the one shown in figure I.4.6.

appendix (Ch. B.1). They amount to

Cxx(∆t) =
kBT

k
²
ACxx

e−∆t/τr [1 + Wi2

2
(1 + ∆t

τr
)] , (I.4.24)

Cxy(∆t) =
kBT

k

Wi
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ACxy

e−∆t/τr , (I.4.25)

Cyx(∆t) =
kBT

k

Wi
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ACyx

e−∆t/τr (1 + 2
∆t

τr
) . (I.4.26)

In these expressions, Wi = γ̇τr is the Weissenberg number, a dimensionless parameter
commonly used in the analysis of viscoelastic flows. Since in the case of an optical trap
elastic properties are included by the purely elastic contribution of the trap itself, it is
justified to use it as a means of description of the system here. It is also important to note
that these formulas only represent the positive time axis. For Cxx and Cyy, the negative
axis is gained by replacing all instances of ∆t by −∆t. In case of the cross-correlation
functions, Cyx represents Cxy at negative times, it is just mapped to the positive time
axis as given by equation I.4.19.
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As opposed to the quiescent case where Cxx(∆t) = Cyy(∆t) and Cxy(∆t) = Cyx(∆t) =
0, the shear flow leads to a change in appearance of all correlation functions except
for Cyy. The amplitude of Cxx is increased, albeit in a small manner, in the order of
magnitude of Wi2 and a linear contribution is added. A comparison of Cyy and Cxx is
plotted in figure I.4.6. As mentioned before, Cyy represents the equilibrium case and only
Cxx shows a slight increase due to the shearing. In the cross-correlation function Cxy, or
Cyx respectively, as claimed by Bammert [18], a correlation peak appears close to τ = 0 s

(compare Fig. I.4.7), which is asymmetric since the system is constantly driven out of
equilibrium. This is indicated by the color change of the curve at τ = 0 s. The shear-free
equilibrium case is regained when setting the shear rate or respectively Wi to zero.
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I.4.4. Colloids in Linear Shear Flow Forced by an Oscillating
Optical Trap

In this section, the system as presented in the past section will be expanded by adding a
forced oscillation. Experimentally speaking, this will not be implemented by oscillating
the position of the optical trap along the y-axis as indicated in figure I.4.8, but instead
the whole microfluidic device will be moved in the opposite direction by applying an
oscillation to the piezoelectric stage it rests upon (Ch. I.6.1). Still, the mathematical
description of the system in equation I.4.14 will not change; the oscillation will be im-
plemented in the former differential equation by assuming a non-constant position of the
optical trap

ytrap(t) =B sin(ωt) , (I.4.27)

where the amplitude B of the oscillation and its frequency ω can be freely chosen. In
case of the experimental setup, the temporal resolution is of course limited, frequencies
above 10,000 rad/s or 1,500Hz cannot be sampled entirely. The structure of the solution
given for the oscillation-free case in the past section as well as the solution procedure
remain the same. Since the solution of the equation in oscillation direction changes, an

Figure I.4.8.: Sketch of a colloid which is driven to oscillations in y-direction in a microfluidic device
with a rectangular cross-section as seen from above.
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implicit change of the solution in x-direction will follow. They read

y(t) =(y0 +
Bα

1 + α2
) e−t/τr + B

1 + α2
(sin(ωt) − α cos(ωt)) (I.4.28)

+ e−t/τr
t

∫
0

dt′ [et
′/τr Fr,y(t

′)
ζ

] ,

x(t) =e−t/τr [x0 + γ̇y0t +
BαWi
1 + α2

( 2

1 + α2
+ t

τr
)] (I.4.29)

+ BWi
(1 + α2)2

[(1 − α2) sin(ωt) − 2α cos(ωt)]

+ e−t/τr
⎧⎪⎪⎪⎨⎪⎪⎪⎩

t

∫
0

dt′
⎡⎢⎢⎢⎢⎢⎣
et
′/τr Fr,x(t

′)
ζ

+ γ̇
t′

∫
0

dt′′ (et
′′/τr Fr,y(t

′′)
ζ

)
⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

A new parameter is introduced here, the dimensionless frequency α = ωτr, which will be
used later for the representation of the data sets.

Correlation Functions in Linear Shear Flow Forced by an Oscillating
Optical Trap

Similar to before, the focus of this section shall be set on the auto- and cross-correlation
functions of motion. Major parts of the earlier computations concerning terms with in-
tegrals of stochastic functions can be kept, since they reappear here. Additional terms
are caused by the oscillation functions. However, to ease the interpretation of the expe-
rimental results, which will be recorded in a reference frame centered at the position of
the optical trap, the correlation-functions should be determined for this particular frame,
too. While this causes no changes to the motion along the x-axis, in other words perpen-
dicular to the oscillations, the change to the y-direction reads ∆y(t) = y(t)−ytrap(t). By
following the same procedure leading to equation I.4.22, one reaches similar expressions
as before. However, additional sine and cosine terms appear.

By expressing τ on the absolute timescale t as τ = t +∆t, addition theorems [59] can
be applied to recast these equations

sin(ω(t +∆t)) = sin(ωt) cos(ω∆t) + cos(ωt) sin(ω∆t) , (I.4.30)

cos(ω(t +∆t)) = cos(ωt) cos(ω∆t) − sin(ωt) sin(ω∆t) .

In order to determine the average, the necessary integration is performed over exactly
one oscillation period from 0 to Tp = 2π/ω. In the definition of cross-correlation functions
(Eq. I.4.18), each of the computed integrals has to be normalized by the length of the
measurement. If only full oscillation periods are included in the integrations above,
this leads to Tp canceling out. The result becomes independent of the duration of the
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experiment. The result then reads

Cyy(∆t) =
B2α2

2(1 + α2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Cyy,osc

cos(ω∆t) + kBT
k

e−∆t/τr , (I.4.31)

Cxx(∆t) =
B2Wi2

2(1 + α2)2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Cxx,osc

cos(ω∆t) + kBT
k

e−∆t/τr [1 + Wi2

2
(1 + ∆t

τr
)] , (I.4.32)

Cxy(∆t) =
B2αWi

2(1 + α2)2
[α cos(ω∆t) + sin(ω∆t)] + kBT

k

Wi
2
e−∆t/τr , (I.4.33)

Cyx(∆t) =
B2αWi

2(1 + α2)2
[α cos(ω∆t) − sin(ω∆t)] + kBT

k

Wi
2
e−∆t/τr (1 + 2

∆t

τr
) . (I.4.34)

The cross-correlation functions still contain sine as well as cosine terms which can be
combined to one single trigonometric function including a phase shift [59]

a sin(ω∆t) + b cos(ω∆t) =
⎧⎪⎪⎨⎪⎪⎩

√
a2 + b2 sin (ω∆t + arctan ( b

a
)) , if a > 0 ,

√
a2 + b2 cos (ω∆t − arctan (a

b
)) , if b > 0 .

(I.4.35)

This yields the more compact expressions

Cxy(∆t) =
B2αWi

2(1 + α2)3/2
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2
e−∆t/τr , (I.4.36)

Cyx(∆t) =
B2αWi
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k
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2
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) . (I.4.37)

Plots are presented in figures I.4.9 and I.4.10. The same parameters as in the past
section were chosen (Fig. I.4.6 and I.4.7). While the characteristic features of all corre-
lation functions from the oscillation-free case are still present, now there is an additional
linear superposition of a continuous cosine function in each component. In case of the
cross-correlation functions, this renders the correlation peak that was present before close
to 0 s invisible. As far as the phase behavior is concerned, the oscillatory terms in both
auto-correlation functions are identical to cosine functions, showing no additional phase
shift. For the cross-correlation functions however, a frequency-dependent phase shift
appears (Fig. I.4.11). It leads to the oscillatory component of Cxy to behave as a sine
function at small frequencies, while it shifts continuously towards a cosine function with
increasing frequency. These properties are mirrored by Cyx, which starts as a -sine func-
tion and shifts towards a cosine function. This leaves both cross-correlation functions
continuous at all frequencies.
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(a) Overview over whole auto-correlation function. (b) Magnification of the auto-correlation function at
small times.

Figure I.4.9.: Sketch of the analytical auto-correlation functions Cxx and Cyy of a colloid with a size
of 4µm in an optical trap of stiffness 1µN/m according to equations I.4.31 and I.4.32.
The shear rate was set to 10 1/s, the driving amplitude and frequency amount to 1µm
and 1Hz respectively.

Figure I.4.10.: Sketch of the analytical cross-correlation functions Cxy (blue) and Cyx (black) of a
colloid with a size of 4µm in an optical trap of stiffness 1µN/m according to equations
I.4.36 and I.4.37. The shear rate was set to 10 1/s, the driving amplitude and frequency
amount to 1µm and 1Hz respectively. Colors are used to facilitate the distinction
between times smaller and bigger than 0 s.

Especially in regard to later experiments (Sect. I.6.4.2), the analytical expressions for
the correlation functions will be very helpful. Besides the determination of the relaxation
rate τr of the optical trap - hence information about the viscosity of the surrounding fluid
as well as the trap stiffness - the average local Weissenberg number during the course of
the experiment can be measured. This way, the local shear rate γ̇ can be recovered as
well. Since both Cxx and Cxy, or Cyx respectively, exhibit a dependence on Wi, both
can be used for fitting purposes. However, due to external influences and noise, which
can never be completely eliminated from the experimental data sets, and also due to the
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Figure I.4.11.: Dependence of the phase of the cross-correlation function Cxy on α. The phase
δ = −arctan (1/α) taken from equation I.4.36 is plotted.

strong dependence on α, determining Wi by evaluating the amplitude of the oscillatory
component of Cxy in equation I.4.36 will only give a very imprecise result. Instead,
the correlation amplitudes of the auto-correlation functions Cyy,osc and Cxx,osc can be
employed by computing their quotient

Cxx,osc

Cyy,osc
= γ̇2

ω2(1 + α2)
. (I.4.38)

Now, γ̇ can be determined in a very easy manner, assuming that the correlation ampli-
tudes were determined earlier and the oscillation frequency is known. Exact knowledge
of α is still an experimental challenge, since besides the frequency ω also the relaxation
rate τr has to be known. As soon as the optical trap is placed close to the walls of a
microchannel, the presence of the wall may lead to an asymmetrical trap because it may
deflect the laser beam on account of deviant refractive properties. This makes a reliable
prediction of the trap stiffness k, and thus of τr, a delicate task. Hence, as mentioned
earlier, only if the deviations of the experimentally determined trap stiffness kx and ky
are weak, the experiment will be evaluated as successful.
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I.4.5. Summary

In this chapter, the behavior of a fluid flowing through microchannels was discussed
(Sect. I.4.1). By simplifying the Navier-Stokes to the Stokes equation which suffices
for the description of the flow, an analytical expression for the flow profile could be
derived (Eq. I.4.4). As can be seen in the three- and two-dimensional plots in figures
I.4.1 and I.4.2, it can be described as a parabolic profile. Nonetheless, for a colloidal
particle placed close to one of the side-walls, it locally shows a strong resemblance to a
linear shear flow. This is of course only true if the bead size is much smaller than the
width of the channel. Although a similar shear profile is present when moving along the
z-axis through the channel, i. e. varying the height in the channel, its influence can be
minimized by placing the particle close to the middle between the bottom and top wall
of the channel. Due to the small cross-section of the microchannel, it could be shown
that the flow conditions present during later experiments will always remain laminar as
indicated by a Reynolds number of 0.004 (Eq. I.4.8). Additionally, techniques for the
production of such microchannels were detailed (Sect. I.4.2).

The main focus of this chapter was the behavior of a colloid placed in a fluid bath. At
first, the situation in the aforementioned shear flow without a forced oscillatory driving
motion of the optical trap was reckoned (Sect. I.4.3). Contributions to the equation
of motion were caused by friction forces, the restoring force of the optical trap, as well
as the Brownian random force. Inertial forces could be neglected as already shown
earlier by the means of the small Reynolds number. The Langevin equation of motion
was solved (Eq.s I.4.16 and I.4.17) and the auto- and cross-correlation functions were
determined (Eq.s I.4.23, I.4.24, I.4.25, and I.4.26). They were expanded in section I.4.4
by a forced oscillation applied to the position of the optical trap. We found that active
driven oscillations offer the benefit of bigger bead displacements and hence a better
signal-to-noise ratio. This entails an improvement of both the auto- and cross-correlation
signals which eases the determination of the local shear rate. At the same time, bigger
displacements of the confined bead result in the mapping of the shear gradient within
a broader area. The resulting modified correlation functions (Eq.s I.4.31, I.4.32, I.4.36,
and I.4.37) still contain the earlier case, but all of them additionally show the effects
of the oscillatory perturbations. The shear flow present in the microchannel causes the
motion in x- and y-direction to be coupled which is thus also true for their correlation
functions. As a reference to later experiments in chapter I.6, these properties can be
applied to determine the local shear rate γ̇ experimentally (Eq. I.4.38).
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Following the analytical examination of colloids in a shear flow (Ch. I.4), a numerical
inspection will complement it here. At first, the Langevin equations of motion will be
recast in a form suitable for numerical treatment. This will happen in such a way that
an iterative algorithm will result. A series of parameters will be utilized to determine the
general behavior of the system. These parameters are: the stiffness of the optical trap k,
the shear rate γ̇, and in the oscillatory perturbed case also the oscillation amplitude B
and frequency f . In section I.5.1, the analysis is started by considering the oscillation-
and shear-free case which is then expanded by a linear shear flow in section I.5.2. The
full system including the oscillating optical trap is treated in section I.5.3.

Before going into the discussion of the simulation results, the general ideas used to
realize them will be sketched here. The starting point is the Langevin equations already
introduced in the past chapter (Eq.s I.4.14 and I.4.15). These are the complete equations
which may also contain the shear flow and forced oscillations of the trap. Before they
can be used for numerical purposes, they have to be recast from their continuous form
to an iterative expression. This is achieved by replacing the temporal derivative by a
differential quotient ∂x/∂t → ∆x/∆t = (xi+1 − xi)/∆t and the respective formulation for
the y-direction. The simulation step is given by i. Each known position xi is separated
from the following one xi+1 by the time step ∆t, so the absolute time can be expressed
as ti = i ⋅ ∆t. Special care has to be taken when treating the Brownian random force.
Since it carries the properties of a Wiener-process, the following approximation can be
applied [60]

Fr,j(i ⋅∆t) ≈
Fn√
∆t

ni,j , (I.5.1)

where the normalization is given by Fn =
√

2kBTζ and ni,j is a Gaussian distributed
random number which again depends on the simulation step i and the direction j = x, y.
The full numerical equation then reads

xi+1 = xi (1 − ∆t

τr
) +

√
2kBT∆t

ζ
ni,x + γ̇yi+1∆t , (I.5.2)

yi+1 = yi (1 − ∆t

τr
) +

√
2kBT∆t

ζ
ni,y +

B∆t

τr
sin ([i + 1] ⋅ ω∆t) . (I.5.3)

Since the equation of motion in x-direction is coupled to the solution in y-direction but
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not vice versa, the calculation can be easily completed by first computing simulation step
i in the y-direction followed by the same step in the x-direction. The coupling of course
is only present if a shear flow is assumed, otherwise it does not exist. Some position has
to be assumed as a starting position which in all cases without loss of generality will
be set to (x0, y0) = (0,0). Further fixed parameters are the temperature T, which was
set to 293.2(5)K, and the dynamical viscosity, for which the value of water will be used
(η = 1mPas). The size of the colloid was chosen to match the experimental value of 4µm.
The simulation time step was set to coincide with the recording frequency of the high-
speed camera in the experiments ∆t = 1/frec ≈ 120ms. In general, the duration of the
simulated measurement was set to 32 s, which corresponds to roughly 250,000 position
values per direction. The simulation scripts as well as the fitting procedures were realized
in the software Matlab (version R2011b, The MathWorks, Inc., Aachen, Germany), while
the calculation of the auto- and cross-correlation functions was performed in a self-
developed virtual instrument (VI) in the programming environment LabVIEW (versions
2010 to 2013, National Instruments, Austin, TX, United States of America). Details
about this program are given in the appendix (Sect. C.1).

I.5.1. Colloids in a Quiescent Fluid

As a check of the algorithm, a quiescent fluid (γ̇ = 0) is simulated while no forced
oscillations of the trap are present (B = 0). As mentioned in the introduction of chapter
I.5, the trap remains fixed at (0,0) which is also assumed as the starting position of the
confined colloid. Since its velocity is described by a Maxwell-Boltzmann distribution,

Figure I.5.1.: Histogram of the displacements of a colloid out of the center of an optical trap with a
trap stiffness of 1µN/m. Data in x-/y-direction is displayed in orange/blue with the
fitting curve in red/black. The position of the center of the trap can be determined
as xtrap = −1,4(7)nm and ytrap = −1,1(2)nm by fitting the datasets with a Gaussian
distribution. Standard deviations amount to σx = 65,5(9)nm and σy = 59,2(3)nm.
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the displacements out of the center of the optical trap can be fitted with a Gaussian of
which the standard deviation is given by [61]

σ =
√

kBT

k
. (I.5.4)

This follows from the equipartition-theorem, which claims that the energy by each degree
of freedom amounts to Eth = kBT /2. Thus, this holds also true for the potential energy
Epot = k ⟨x2⟩ /2 = kσ2/2 of a colloid in an optical trap [62].

From the histogram of a simulation run with k = 1µN/m (Fig. I.5.1) can be seen that
the deviation of the mean position of the colloid is just minor. It is caused by stochastic
scattering, which can be proven by repeated simulation runs at the same parameter set.
Averaging of their results can be used to reduce the effect. According to equation I.5.4,
the trap stiffness can be determined as kx = 0,944(7)µN/m and ky = 1,154(3)µN/m
(Fig. I.5.1). For a second simulation run with a trap that is ten times stiffer, kx =
10,11(1)µN/m and ky = 9,86(1)N/m result. In total, simulation results agree with
theoretical predictions.

Concerning characteristic properties of the correlation functions, one would assume
that the auto-correlation functions Cxx and Cyy show relaxation processes which are
represented by a single-exponential decay function, while no cross-correlations are found,
i. e. Cxy = Cyx = 0. This is directly apparent in figure I.5.2). Deviations from zero in
the cross-correlation functions occur, but repeated simulation runs show that they are
caused by numerical noise. Since the viscosity - and with it the coefficient of friction of

Figure I.5.2.: Auto- and cross-correlation functions of a simulated displacement of a colloid out of the
center of an optical trap with a stiffness of 1µN/m. The used data sets correspond
to the ones shown in the histograms in Fig. I.5.1. The relaxation rates taken from
an exponential fit to the flanks (not shown) amount to τr,x = 45,9(2)ms and τr,y =

31,9(2)ms.
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the system - are known, the identity τr = ζ/k can be used to compute the trap stiffness.
With just minor deviations as compared to the histogram method before, the fits give
kx = 0,821(3)µN/m and ky = 1,180(6)µN/m in case of the first parameter set, and
kx = 10,16(5)µN/m and ky = 9,82(3)µN/m in case of the second one, which is in good
agreement with the chosen simulation parameters.

I.5.2. Colloids in Linear Shear Flow without Forced
Oscillations

As opposed to the numerical results in the past section, a shear flow will now be added
to the system. Depending on whether the colloid is placed in proximity to the upper or
the lower wall, the shear rate will either have a positive or a negative sign which, thus,
also has a respective effect on the correlation functions. This effect will only become
visible in those correlation components, though, which are linked to the motion parallel
to the flow direction. The shear flow leads to a small increase of the amplitude of
Cxx (Eq. I.4.24), which cannot be extracted by fits to numerical or experimental data.
Additionally, contributions by noise typically hide that effect.

The main point of interest in the context of shear flows is the arising non-zero cross-
correlation function of perpendicular motion, in other words the functions Cxy and Cyx.
This is shown for a numerical data set in figure I.5.3. As predicted by the analytical
calculations in section I.4.3, a peak appears in Cxy at a time ∆t < 0. Andreas Ziehl

Figure I.5.3.: Cross-correlation function of a numerical dataset of the displacement of a colloid out of
the center of an optical trap in a linear shear flow. The stiffness of the trap was chosen
as 1µN/m, the shear rate as 10 1/s. A fit with the analytical expression (Eq.s I.4.25 and
I.4.26) is drawn as black and red lines.
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reported this effect in 2009 [5], however in his case the peak could be found at positive
times while otherwise showing the exact same properties. This is due to the fact that
the general definition of cross-correlation functions he used reads Cxy,Ziehl = ⟨x(t)y(0)⟩,
while in the scope of this thesis both functions are switched by definition (Eq. I.4.18).
According to the symmetry properties of correlation functions, this is identical to a time-
reversal (Eq. I.4.19). Thus, the results found here can be considered in agreement with
the results of Ziehl et al.

If for the example in figure I.5.3 the fitted correlation amplitude is compared to the
analytical predictions (Eq.s I.4.25 and I.4.26), one finds a fitted value of 729(7)nm2

as opposed to an analytical one of 762nm2. Within the limits of numerical errors and
statistical noise due to the Brownian processes, such deviations are to be expected. Errors
from the fitting procedure have to be taken into account as well. The relaxation rate
from the fit of 4.5(3)ms matches the analytical prediction of 3.8ms well, too.

I.5.3. Colloids in Linear Shear Flow Forced by an Oscillating
Optical Trap

In this section, the full expressions for the influence of an oscillating optical trap derived
in section I.4.4 shall be probed in terms of their validity. The main focus will be cen-
tered around the oscillatory contributions since, according to the analytical calculations,
the terms from the stochastic integrals remain unchanged. Said oscillatory contribu-
tions depend on the driving amplitude B, the driving frequency ω or respectively the
dimensionless frequency α, and also the applied shear rate γ̇ or respectively the Weissen-
berg number Wi (Eq.s I.4.31, I.4.32, I.4.36, and I.4.37). A series of simulation runs was
performed to check the dependence of the numerical results on these parameters.

As an exemplary result, the correlation functions of one of the simulation runs are
displayed in figure I.5.4. As mentioned before, each of the auto- and cross-correlation
functions contains oscillatory contributions (Fig. I.5.4a). This is due to the shear cou-
pling. Still, the previously discussed exponential relaxation processes (Sect.s I.4.3 and
I.5.2) are present and can be detected in close proximity to ∆t = 0 (Fig. I.5.4b). The
same is true for the cross-correlation function, however, the asymmetric correlation peak
is so small as compared to the oscillations, that it becomes a difficult task to identify it.
By subtracting the oscillatory contributions, it can be made visible again as shown in
figure I.5.4c. An additional property of shear flows in rectangular channels is that a bead
placed close to the channel walls will experience a non-zero flow velocity which leads to
a shift of its equilibrium position away from the center of the optical trap. This becomes
apparent in figure I.5.4c as well, since the correlation peak does not relax back to zero
but towards a smaller value. One must also take into account that, due to the influence
of Brownian noise, the oscillations can never be eliminated completely by the subtraction
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(a) Overview of Cxx, Cyy , and Cxy . Fits with the analytical ex-
pressions are displayed as well.

(b) Zoom of the auto-correlation functions close to
∆t = 0. The contribution of the exponential terms
becomes apparent.

(c) Zoom of Cxy close to ∆t = 0 after subtraction of
the fitted oscillatory contribution. The subtraction
also enables an accurate fit of the remaining shear-
coupled terms in equation I.4.36. Symbol and line
colors were chosen to point out Cxy at negative
and positive times.

Figure I.5.4.: Correlation functions Cxx, Cyy, and Cxy for a colloid simulated in linear shear flow forced
by an oscillating optical trap. The functions are dominated by the contributions of the
oscillating terms. The trap stiffness amounts to 1µN/m while a shear rate of 10 1/s was
chosen. The trap oscillates at an amplitude of 1µm and a frequency of 1Hz.

since it is almost impossible to compute or fit their exact amplitudes. A good agreement
is found in comparing the analytically predicted values with the correlation functions
from simulations.

A whole series of simulations at different shear rates with an optical trap that is ten
times stiffer is drawn in figure I.5.5a to visualize the development of the cross-correlation
function Cxy after subtraction of the contributions through oscillations. The baseline of
the functions was shifted to 0nm2 to facilitate a comparison. As indicated by equation
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(a) Zoom of Cxy close to ∆t = 0 after the removal
of the oscillatory contribution. A continuous in-
crease of the height of the peak with increasing
shear rate becomes apparent, scaling linearly with
the Weissenberg number.

(b) Dependence of the oscillation amplitudes of the
auto- and cross-correlation functions on the shear
rate. The results from fits show that Cxx,osc ∝

γ̇2.03(1), Cyy,osc ∝ −0.02(1)γ̇, and Cxy,osc ∝

0.99(1)γ̇.

Figure I.5.5.: Dependence of the height of the correlation peak in Cxy and of the oscillation amplitudes
of the correlation functions on the shear rate. Simulation runs for shear rates between
1 1/s and 100 1/s were performed while all other parameters remained unmodified (B =

1µm, f = 1Hz, k = 10µN/m). The corresponding data sets can be found in table D.1.

I.4.36, the correlation peak increases in height linearly with the shear rate or respectively
the Weissenberg number, while its width does not change. This effect is clearly visible
at shear rates higher than 50 1/s, while at lower values the peak nearly disappears in
the background noise. Assuming that a similar effect might appear when evaluating
experimental results, it hints towards high shear rates, i. e. γ̇ ≥ 20 1/s, being necessary at
a trap stiffness of 10µN/m. The quality of the peaks at low shear rates can be improved
by choosing an increased number of simulated data points or in other words a longer
measurement length (i. e. 64 s) at the same recording frequency. In this context, the
convergence of the algorithm was checked as well by an increased measurement length
and an increased recording frequency. In both cases, the algorithm produced stable
results with a comparable functional form and height of the peaks in Cxy.

When looking at the oscillatory amplitudes of the auto- and cross-correlation functions
instead (Eq.s I.4.31, I.4.32, and I.4.36), one would assume that Cyy,osc is independent of
the shear rate, Cxx,osc is proportional to its squared value, and Cxy,osc increases linearly
with it. Fits to the oscillatory contributions to correlation functions from the same data
sets as above give parameter values as displayed in figure I.5.5b (compare also Tab. D.1),
and prove that the expected behavior occurs indeed.

As mentioned in the introduction to this section, not only the shear rate but also the
frequency as well as the amplitude of the driving oscillation shall be varied. A change
in frequency will automatically cause a change of α, which will have its repercussions on
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Figure I.5.6.: Dependence of the relative correlation amplitude Cxx,osc/Cyy,osc on the oscillation fre-
quency of the optical trap. A parameter set B = 1µm, k = 10µN/m, and γ̇ = 10 1/s
was chosen for all simulations. A fit of the values up to 60 rad/s to a power law
gives Cxx,osc/Cyy,osc ∝ ω2.00(1), for frequencies higher than 300 rad/s the fit gives
Cxx,osc/Cyy,osc ∝ ω3.53(8). The crossover of both fits happens at about 185 rad/s. The
corresponding data sets are provided in table D.2 in the appendix.

all of the correlation functions. These changes encompass not only the amplitude of the
oscillatory terms Cij,osc, but also the phase behavior of Cxy. To visualize this, a series
of simulations under variation of the driving frequency were performed. With regard to
later experiments, it must be remarked that the trap stiffness for frequencies higher than
60 rad/s is simply not high enough to successfully confine a particle in the experimental
setup in a shear flow with γ̇ ≥ 10 1/s. In that case, the stiffness needs to be further
increased, which will lead to a disappearing of all special features of the correlation func-
tions, since their amplitudes decrease under these conditions. Experimentally speaking,
only a frequency range up to ≈ 60 rad/s is accessible in this respect.

The dependence of the correlation amplitudes on the driving frequency is presented in
the form of the auto-correlation amplitude ratio Cxx,osc/Cyy,osc (Fig. I.5.6). According
to equation I.4.38, for small frequencies ω ≪ 1/τr, or in other words α≪ 1, the amplitude
ratio decreases proportionally to ω−2, while for the opposite case ω ≫ 1/τr it will decrease
proportionally to ω−4. If the results from simulations are compared to this prediction, the
behavior for small frequencies (up to 60 rad/s) is recovered with a very high precision
(Cxx,osc/Cyy,osc ∝ ω−2.00(1)), while at higher frequencies (above 300 rad/s), there are
deviations from the predicted power law (Cxx,osc/Cyy,osc ∝ ω−3.53(8)). The change in
power occurs at about 185 rad/s, which is given by the cross-over frequency of the red
and blue curve corresponding to the low and high frequency power law fits (Fig. I.5.6).
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The critical transition frequency can also be computed by

ωcrit =
1

τr
= 265

rad

s
. (I.5.5)

The deviation between the analytic value and the value from the crossover is due to the
imprecision when graphically determining the frequency value in the log-log-plot. The
value in equation I.5.5 can be considered as exact. The relaxation rate τr needs to be
determined by the quotient of the coefficient of friction and the trap stiffness present in
the system. In the experimental context, the assumption of moving in the low-frequency
range is justified, which enables the application of a simplified calculation of the shear
rate following from equation I.4.38

lim
α≪1

Cxx,osc

Cyy,osc
≈ γ̇

2

ω2
. (I.5.6)

A further reflection will concern the development of the phase of the oscillatory term
in Cxy in respect to the driving frequency. For the remainder of this part, only the phase
of Cxy will be discussed since the oscillatory part of Cyx is just given as the time-reversed
function and thus, the relationship of both phases can be expressed as (compare Eq.s
I.4.36 and I.4.37)

δ(Cxy,osc) = −δ(Cyx,osc) = −arctan( 1

α
) . (I.5.7)

The phase behavior is exclusively determined by the dimensionless frequency, composed
of the product of the driving frequency ω with the relaxation rate τr. Since for all
later experiments, water is always chosen as the fluid in which the colloids are immersed
and since the colloid size was always the same at 4µm, the relaxation rate is solely
determined by the strength of the optical trap. The phase is completely uninfluenced
by flow parameters like the shear rate. Figure I.5.7 shows that the phase behavior from
numerical simulations agrees indeed with theoretical predictions as displayed earlier in
figure I.4.11. For the relaxation rate determined by fits, the analytical curve can be
calculated. It is also displayed in figure I.5.7 as a red line. Analytical predictions and
fitting results from numerical data agree to a very high degree.
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Figure I.5.7.: Phase behavior of Cxy as a function of the dimensionless frequency. The relaxation rate
τr remains fixed by choosing a constant trap stiffness 10µN/m for all simulation runs.
The corresponding data sets are displayed in table D.2 in the appendix.
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I.5.4. Summary

In this chapter, the system of a colloid confined in the focal region of an optical trap
was exposed to a variety of flow situations in numerical simulations. For this purpose,
the analytical framework developed in chapter I.4 was recast into a form suitable for an
iterative numerical algorithm (Eq.s I.5.2 and I.5.3). In section I.5.1, as a trial run, a qui-
escent flow situation was assumed, meaning that there existed no shear flow and also no
driving force was applied. Out of this, symmetrical Gaussian-like position distributions
resulted. These could be used as a means to calibrate the strength of the optical trap or
in other words the trap stiffness k. An almost symmetric trap could be recovered by this
procedure, where deviations from the ideal case were caused by the noise-like nature of
Brownian motion. From the same data sets, the equilibrium auto- and cross-correlation
functions could be determined (Fig. I.5.2). A further check was performed in section
I.5.2 by applying a shear flow to the bead and comparing the arising situation with the
equilibrium case from before. While there was no directly apparent change as far as the
auto-correlation functions Cxx and Cyy are concerned, there was a very clear alteration
of the cross-correlation function (Fig. I.5.3). As already found by A. Ziehl [5] and J.
Bammert [18], a correlation peak appears in Cxy close to, but not exactly centered at,
time zero. It is caused by the short delay the fluctuating bead needs to adapt to the
faster or slower flow slightly above or below the position of the optical trap in y-direction
in the assumed shear flow. The algorithm seems well-suited for the task of simulating
colloids in shear flows.

In section I.5.3, a forced oscillatory motion of the center of the optical trap was added
to the system as already done before during the analytical calculations in section I.4.4.
All the properties of the sheared case without forced oscillations were still present, how-
ever, each correlation function showed an additive oscillatory term just as predicted by
the analytical framework. By analyzing the dependence of the oscillatory correlation
amplitudes Cxx,osc, Cyy,osc, and Cxy,osc on the shear rate as well as the amplitude ra-
tio Cxx,osc/Cyy,osc and the phase behavior δ(Cxy,osc) on the driving frequency, a good
agreement with the analytical predictions could be found.

The analytical expressions found in chapter I.4 and the numerical simulations dis-
cussed in this chapter will be of help in understanding and interpreting the experiments
conducted in a setup of optical tweezers (Ch. I.6). Not only a qualitative, but also a
quantitative agreement between the three will be checked in order to confirm certain
parameters system-internal like the local shear rate.
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The current chapter is related to all the information linked to the conduction of expe-
riments with the setup of optical tweezers present in the Wagner group in the physical
department of Saarland University in Saarbrücken, Germany. Before the performed expe-
riments will be discussed, in the first section of this chapter (Sect. I.6.1) the composition
of the setup is described. This includes an in-depth discussion of the changes the setup
underwent since its construction by Andreas Ziehl [4, 5]. In the second section (Sect.
I.6.3), a number of steps necessary for the calibration of the experimental setup are de-
tailed. A description of the types of measurements conducted in the scope of this part
of the thesis, as well as their results are presented in section I.6.4. Their discussion in
context with analytical and numerical results from earlier chapters (Ch.s I.4 and I.5) will
follow in chapter I.7.

I.6.1. Experimental Setup

The setup of optical tweezers that was utilized in this thesis to perform experiments with
colloids in a linear shear flow (pt. I) as well as microrheology on mucus (pt. II) will be
described in this section.

It can be roughly divided into three constituents: the guidance system of the laser
beam(s), the microscope including the visualization technology, and the flow control for
the microchannels. While the flow control only plays a role in the first part and not for
microrheology, the other two components of the setup are important for any experiment
performed in it. Respectively, this section will be divided into three subsections giving
details about each of these parts, and also pointing out differences as compared to the
setup used before by Andreas Ziehl.
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I.6.1.1. Guidance System of the Laser Beams

Hereinafter, the beam path of both available laser beams in the setup will be described
starting at the laser sources until the beams arrive in the sample cell of the microscope.
This path is also indicated in figure I.6.1 in the shape of a photograph as well as a sketch.

As already mentioned in chapter I.3, the central element of such a setup is a strongly
focused laser beam. The force balance of the scattering and the gradient force exerted
on a small object, i. e. a colloid, determines if a stable optical trap can be formed or
not. Since the gradient force gains the most strength relative to the scattering force if
the laser beam has the smallest intensity at its center while having a high intensity near
its outer radius, a transverse electromagnetic TEM01∗ mode beam would be ideal. Its
profile reminds of the cross-section of a doughnut - hence its name doughnut mode - but
it also comes with a share of disadvantages. The biggest of these is the construction of
the laser necessary to emit it. This is the reason why in most setups of optical tweezers
Gaussian-shaped beams of the TEM00 mode are used. On the first glance, their beam
profile is disadvantageous for efficient trapping since the maximum intensity can be found
in the center of the beam. By overfilling the back aperture of the microscope objective in
the setup [63], the outer rays of the beam gain more intensity in comparison to the center
beams which makes strong traps possible without increasing price and complexity of the
setup. Thus, in case of the setup used in scope of this thesis, two lasers are available,
both of which are diode-pumped solid-state lasers. The first one operates at 532nm

(Ventus LP, Laser Quantum Ltd., Stockport, Cheshire, United Kingdom), the second one
at 473nm (Ciel, Laser Quantum Ltd., Stockport, Cheshire, United Kingdom). In both
cases, the emitted spatial mode is a transversal electromagnetic mode of the TEM00 type,
which shows a two-dimensional Gaussian intensity distribution in the plane perpendicular
to the propagation direction of the beam. Both lasers produce beams of high stability of
less than 2 % rms for the Ventus model and, respectively, less than 3 % rms for the Ciel
model. The beam divergences are small with values of 0.8mrad and 0.6mrad. These
properties ensure the generation of stable optical traps of high homogeneity. However,
since the diameters of both beams are not equal (Ventus: db = 1mm, Ciel: db = 1.4mm),
beam expanders with different expansion factors have to be used to ensure equally sized
traps. Additionally, they take care of the required overfilling of the back aperture of the
microscope objective.

Since the knowledge of the laser power is important when determining the strength
of an optical trap, the stability of the emission and also the dependence of the emitted
power on the applied current was measured using a power-meter (Fig. I.6.2). Within the
precision limits of the sensor, which were given by the manufacturer as ±100µW , none of
the lasers showed significant fluctuations. As the figure shows, the power against current
dependence is not a linear one, making a calibration of the trap stiffnesses necessary
before each experiment. Details about the calibration options and procedures are given
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(a) Photograph of the setup of optical tweezers as seen from above.

(b) Schematic sketch of the full beam path of the lasers as well as the
illumination source.

Figure I.6.1.: Illustration of the setup of optical tweezers.
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Figure I.6.2.: Power of each of the laser beams measured by a power meter. The sensor was placed
in the beam path just behind the source. The corresponding data sets are presented in
tables D.3 and D.4 in the appendix. Due to thermal noise in the surroundings of the
sensor, the data has a precision of ±100µW .

later in this chapter (Sect. I.6.3). Additionally, as a means to check the quality of the
beam profiles, they were visualized on the chip of a CCD camera after a reduction of
their intensities using both an OD2 and an OD4 filter1.

Due to the different beam diameters, as mentioned, two beam expanders with corre-
sponding optical properties had to be set up in the beam paths. As indicated in figure
I.6.1, they were placed about 10 cm behind the aperture of the laser. For the 532nm beam
a 10x-expander (art.-no. G038-670-000, Linos Photonics GmbH & Co. KG, Göttingen,
Germany) was used, while for the 473nm beam a 8x-expander (art.-no. G038-678-000,
Linos Photonics GmbH & Co. KG, Göttingen, Germany) was chosen.

Although this possibility was not used in the experiments presented here, the setup is
designed in a way that allows both optical traps to be used simultaneously. This leads to
the necessity of superimposing both beams into one. For this purpose, the 532nm beam
is first redirected by an angle of 90○ using a piezoelectric mirror and then combined with
the 473nm beam using a dichroic mirror. The piezoelectric mirror can be pitched and
yawed by two ultra-high resolution rotational actuators (PZA12, Newport Corporation,
Irvine, CA, United States of America), which when combined with a mirror mount (U200-
G, Newport Corporation, Irvine, CA, United States of America) allow angular steps in
the order of magnitude of µ-radians (sensitivity according to manufacturer: 30nm). This
enables a very exact control of the relative trap positioning. The dichroic mirror on the

1“OD” is an abbreviation for optical density and gives an indication of the intensity reduction expressed
on a logarithmic scale. An optical density of 2 represents an intensity reduction by a factor of 102, an
optical density of 4 represents a reduction by a factor of 104.
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(a) Beam profile of the laser operating at 532nm. (b) Beam profile of the laser operating at 473nm.

Figure I.6.3.: Beam profiles of the two lasers utilized in the setup of optical tweezers. The slight
asymmetry of both profiles originates from the surface normal of the camera chip being
tilted against the propagation direction of the beams. The intensities are expressed
relative to the highest occurring intensity in each profile.

other hand is chosen in such a way, that a near-perfect reflection of the 473nm beam is
possible while the 532nm beam transmits to a high degree (≈ 94 %). The characteristic
line of this filter (505DCXR, AHF analysentechnik AG, Tübingen, Germany) is drawn
in figure I.6.4 with black circle symbols.

In the earlier realization of the setup as built by Andreas Ziehl, the lasers passed a
beam lift at this point in order to allow for a coupling of the combined beam into the
back port of the microscope. In addition, a telescope is added to the beam path. Its
first lens is positioned in front of the beam lift, the second one is placed behind it. Both
lenses share identical optical properties (LA1832-A, Thorlabs GmbH, Dachau/Munich,
Germany) and are covered with an anti-reflection coating to prevent power loss of the
laser beams. The setup is augmented with the telescope in order to decrease divergence
effects of the beams and to fine-tune the positioning of the focal plane of the lasers after
passing the microscope objective or, in other words, the distance of the optical traps
themselves.

At this point, the laser beams enter the back port of the inverted microscope (Eclipse
TE2000-S, Nikon GmbH, Düsseldorf, Germany). Besides the lasers, this microscope is
the second central device of the setup. Here, an inverted microscope is chosen since it
allows the manipulation of confined objects in the traps while at the same time enabling
their visualization using light directed inversely to the lasers. More information about it
will follow in the next section. However, a few more elements involving the guidance of
the laser beams have not been mentioned so far and shall be discussed first. After entering
the microscope, the beams have to be redirected upwards in order to enter the objective
from below and finally reach the sample cell. A second dichroic filter (565DCXR, AHF
analysentechnik AG, Tübingen, Germany) is installed inside a filter block to fulfill that

55



I.6. Experimental Study

Figure I.6.4.: Characteristic transmission line for both of the dichroic mirrors utilized in the setup of
optical tweezers. In addition to the filter lines, the two characteristic wavelengths of the
utilized lasers are drawn as accordingly colored lines at 532nm and 473nm. The data
sets were provided by courtesy of the manufacturer AHF analysentechnik AG.

role. Its properties are chosen in such a way, that contrary to the properties of the
dichroite mentioned before, both laser wavelengths are reflected to a high degree (> 99 %,
compare the red open circles in Fig. I.6.4). This filter enables the beams to reach the
sample cell after passing the objective while, at the same time, allowing the illumination
light to reach the camera.

I.6.1.2. Microscope, Visualization, & Signal-Synchronization System

In this section, the focus will be laid on the microscope and its directly related systems.
As already mentioned before, an inverted microscope by Nikon is chosen for the setup of
optical tweezers in Saarbrücken (Eclipse TE2000-S, Nikon GmbH, Düsseldorf, Germany).
Especially in context with such a setup, inverted microscopes have huge advantages.
They allow to send laser beams associated with optical tweezers into a sample cell and
thus to confine and manipulate colloids. At the same time, the traps are not fixed
and can be moved within the sample, giving a high degree of mobility. This is realized
by realigning the positions of the optical traps, however, a much easier method is the
relative displacement through a mechanical translation of the microscope stage. Since
the visualization of the displacements of colloids is of crucial importance in this thesis,
this is a necessary prerequisite to the setup as well. Due to its alignment, it is possible
to orient the beam path of illumination light in reverse to the laser beam path, and thus
record the motion of colloids with a suitable recording device. Details will be mentioned
later in this section.

Vibrations, particularly the avoidance of external vibrations, play a very important
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role in any setup of optical tweezers. Since these setups aim at recording Brownian mo-
tion, which is a noise-based process, any additional external noise makes the interpreta-
tion of measurement hard or even close to impossible. Thus, a vibration dampening table
by Halcyonics named Active Workstation 1100 (Halcyonics GmbH, Göttingen, Germany)
is used. Only those devices and elements which are needed close by for the conduction
of experiments are placed on top of that table. All elements that cause additional vibra-
tions like the illumination source, which is actively cooled by a fan, are removed from the
table and situated below or next to the table on stands instead. Also, a laboratory in
the cellar of the building is chosen to prevent strong influences by low-frequency building
vibrations, which cannot be efficiently removed by the dampening table.

As noted above, displacements of the field of view and, linked to that, of the positions
of the traps can be performed by mechanically moving the microscope stage. However,
the resolution of such displacements is limited. An improvement can be administered by
mounting a piezoelectric stage on top of the mechanical one. For this purpose, a stage
by PI is chosen (P-517.2CD, Physik Instrumente (PI) GmbH & Co. KG, Karlsruhe, Ger-
many) in combination with two controllers (E-665.CR, Physik Instrumente (PI) GmbH
& Co. KG, Karlsruhe, Germany), one for each translation direction. With a travel path
of up to 200µm at a spatial resolution of 2nm, a very precise positioning of the traps
can be achieved. Since in this part of the dissertation, oscillatory motion will play an
important role, the linearity error of 0.03 % and the repeat accuracy of ±10nm are note-
worthy as well. According to the voltage calibration of the manufacturer, displacements
∆xi are linked to applied input voltages U by

∆xi ≈ 10.0012
µm

V
⋅U , (I.6.1)

where i represents the respective direction of the displacement, i. e. x or y. The voltage
amplification of the controller of 10x is already taken into account with this calibration.
The controllers also enable the coupling of an external electric signal into the stage.
The signals necessary to steer the piezoelectric stages are typically created by a signal
generator. Here, a device by Thurlby Thandar (TG230, Thurlby Thandar Instruments
Limited, Huntingdon, Cambridgeshire, United Kingdom) is used which allows output
amplitudes of sinewaves between 20mV and 20V and frequencies between 2mHz and
2MHz.

Some additional optical elements and filters are involved in the construction of the
microscope. One of them is the objective, which is an oil-immersion objective with a 60x
magnification and a numerical aperture of NA = 1.4 (mat.-no. MRD01602, Nikon GmbH,
Düsseldorf, Germany). As already discussed in context with the scattering regimes in
optical tweezers (Ch. I.3), a high numerical aperture is crucial for an efficient trapping
since it increases the gradient force as compared to the scattering force and hence sta-
bilizes the optical trap. The objective utilized in this study is designed for the use with
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Figure I.6.5.: Characteristic transmission line for the two rejection band filters utilized in the setup of
optical tweezers. Additionally to the filter lines, the two characteristic wavelengths of
the utilized lasers are drawn as accordingly colored lines at 532nm and 473nm. The
data sets were provided by courtesy of the manufacturer AHF analysentechnik AG.

coverslips and has a focal length of 170µm.
Below the filter block which carries the dichroic filter for redirecting the laser beams

through the objective, an additional filter is placed. It prevents any misguided laser radi-
ation to reach the eyes of the user or the chip of the high-speed camera (art.-no. F62-456,
AHF analysentechnik AG, Tübingen, Germany). A second filter of this type is inserted
into the ocular of the microscope to shelter the eyes even more. At the wavelengths of
the utilized lasers, each of the filters offers an optical density of more than 6 as indicated
by the characteristic line in figure I.6.5. While blocking the laser radiation, however,
the radiation of the illumination source still needs to pass these filters since otherwise
a visualization of the surroundings of the optical traps would be impossible. Thus, this
type of filter is ideally suited for this purpose.

This section is also intended for the description of the visualization system of the
setup. It consists mainly of an illumination source, a condenser, the microscope objective
described earlier in this section, and a high-speed camera. The dichroic filter 565DCXR
and the aforementioned rejection band filters are also part of it, but since they have
already been discussed, they will be omitted here. The illumination source used in the
setup in Saarbrücken is LED-based (light emitting diode) and consists of a single high-
power white-light LED source. Since there is no diode that emits at multiple wavelengths
at the same time, such LEDs are realized by mixing the contributions of different optical
transitions of multiple semi-conducting materials2. This is also the case for the model

2Typically, for this purpose a galliumnitride (GaN) or a indiumgalliumnitride (InGaN) transition com-
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used here, which is a Zett ZLED 9000 CLS by Zett Optics (art.-no. 799000, OptoSys
GmbH, Darmstadt, Germany). Since the light source has its own casing, it is set up below
the laboratory bench and only an optical fiber needs to be mounted to the microscope.
This contributes to reduce the amount of mechanical noise in the setup. The model
Eclipse TE2000-S offers an extension arm above the condenser, which is designed specially
for the purpose of aligning light sources. Before the integration of this light source,
Andreas Ziehl utilized a halogen lamp by Schott. However, in combination with the
high-speed camera model currently used in the setup at typical recording frequencies
of 8 kHz, strong intensity fluctuations due to the AC power supply of the lamp become
apparent and reduce the quality of the recorded pictures. This effect also reduces the
precision of particle tracking which will be explained later (Sect. I.6.2). Replacing the
lamp with an equally or even more powerful lamp on a non-alternating current basis is
preferable. The Zett ZLED 9000 CLS has exactly these properties and shows almost no
fluctuations, although still being supplied by an AC current. Supporting lenses, mounted
to the microscope arm, optimize the beam divergence further to couple as much light as
possible through the sample cell and into the camera.

Before reaching the sample cell, the light from the illumination source reaches a con-
denser (TI-C-CLWD 0.72, Nikon GmbH, Düsseldorf, Germany) with a numerical aperture
of NA = 0.72 which focuses the light into the cell. After passing through it, the light
crosses the objective as well as the dichroic and the rejection band filter and propagates
towards either the ocular or the camera, depending on the setting of the microscope. As
a camera, the model HighSpec 1 by the manufacturer Fastec Imaging3 (Fastec Imaging,
San Diego, CA, United States of America) is used. It offers a camera chip with 1,280
pixels in width and 1,024 pixels in height at an 8-bit greyscale resolution. The pixel
size is 14µm × 14µm and it enables a temporal resolution of 506 pictures per second at
full-frame resolution while allowing recording rates up to 20 kHz at a reduced resolution
of 128px × 64px. When taking the 60x magnification of the objective into account, this
gives a pixel size of 233.3nm×233.3nm. The camera also offers 2GB of internal memory,
making the recording of about 250,000 pictures at reduced resolution within about 16 s

possible.
In order to record oscillatory forced motion of colloids, it is necessary to couple these

oscillations into the system and at the same time synchronously record the confined col-
loids. The synchronization is realized by a custom-built trigger box. It was manufactured
by the electronics workshop of the experimental physics department in Saarbrücken. It
receives a 5V TTL-pulse as input and down-converts it to a 3.3V low-voltage TTL-pulse,
but only if a mechanical, debounced switch is activated. Now, this TTL-signal is used
to start the recording of the camera while at the same time the electrical driving signal

bined with a cerbium: yttrium-aluminium-garnet (Ce:YAG) transition is used.
3The model is identical to the camera MotionBLITZ EoSens mini1 by Mikrotron, Unterschleißheim,
Germany.
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stemming from the same frequency generator as the TTL-signal is sent to the piezoelec-
tric stage. If both the TTL-signal and the driving signal are recorded, the pictures taken
by the camera and the motion of the stage can be synchronized. The data acquisition
of these signals is performed by a National Instruments analog input module (NI 9215,
National Instruments, Austin, TX, United States of America) which is then recorded by a
custom program written in the graphical programming environment LabVIEW (versions
2010 to 2013, National Instruments, Austin, TX, United States of America).

I.6.1.3. Flow Control in the Microfluidic Device

In the scope of this thesis, flows through small channels of microfluidic devices are used to
create shearing close to their walls. There exists a variety of ways to produce such flows,
the most popular among which are probably syringe pumps. In these devices, a syringe
is fixed inside a mechanism which is set to empty or fill the syringe at a constant flow
velocity. Other velocity profiles can typically be chosen or programmed as well. However,
these systems only offer a limited accuracy when choosing slow emptying velocities and
are also sensitive to irregularities in the manufacturing of the syringes. This leads to
non-constant flow velocities and thus ill-defined shear gradients which vary over time.
Thus, in the setup instead of syringe pumps a passive systems was utilized that uses the
hydrostatic pressure difference of an inlet reservoir positioned at a greater height than
the outlet reservoir. The pressure difference in the system is caused exclusively by the
weight of the fluid column between inlet and outlet

∆p = ρg∆h , (I.6.2)

where ρ is the fluid density, g the gravitational acceleration, and ∆h the height difference
between in- and outlet. The flow velocity can thus be tuned by slightly changing the
height difference by moving the inlet reservoir up or down. Theoretically, the flow velocity
will decrease over time since the reservoir is not infinitely large. On the one hand,
it takes a very long time until the reservoir is emptied completely which means that
over the course of a single measurement, no variations in flow velocity need to be taken
into account. After each experiment, the height can be re-adapted to reach the desired
velocity. Thus, the flow velocity is assumed to remain stable.

Such a system is realized in the setup of optical tweezers in Saarbrücken. As reservoirs,
syringe bodies with their pistons removed (art.-no. 4606027V, B. Braun Melsungen
AG, Melsungen, Germany), equipped with needles of a diameter of 0.6mm (art.-no.
4657667, B. Braun Melsungen AG, Melsungen, Germany) are chosen. The syringe offers
an experimentation volume of more than 2ml. Leakage can be avoided since the size
of the needle tightly fits into the tubing connected to the microfluidic device. The
production of the microfluidic device has already been described earlier (Sect.s I.4.2 and
A.2.1). As in- and outlet tubing, polyethylene oxide (PEO) tubes with an inner diameter
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of 0.5mm and an outer diameter of 1mm are used (art.-no. 3550501, Laborshop24,
Gross-Zimmern, Germany).

For such a kind of gravitational driving of flows, a reproducible way of setting the
height of the reservoirs is necessary. In the utilized setup, two linear motors of type LTM
80F-300-HiDS (art.-no. 41.084.30GJ, Owis, Staufen, Germany) with one controller of
type PS10-32-DC each (art.-no. 55.11.2432, Owis, Staufen, Germany) are used. They
are mounted perpendicular to the surface of the laboratory bench. The mounting aids
are about 1m long aluminium boards with threaded holes for fixing the motor to it.
The boards were custom-built by the mechanical workshop of the experimental physics
department in Saarbrücken. The same is true for the fixtures that were used to attach
the syringe bodies to the moving slide of the device. By moving the motors back and
forth, the height of the reservoir can thus be set with very high precision. Both motors
offer a long travel path of 21 cm at a low positioning error of less than 25µm/100mm and
a bidirectional repeatability within ±15µm. The motors can be attached to a computer
which allows the steering of the devices. As an additional driving option for the flows,
a compressed air bottle can be attached to the tops of the open syringe bodies via
tubing. Since such a bottle provides a pressure of 2 ⋅107 Pa, it needs to be adapted using
pressure reducing regulators (pmax = 7,000Pa). This is particularly useful when colloids
or dust particles block the microchannels, since the higher pressure tends to unblock the
channels and pumping the contamination out of them. They should be avoided in the
first place, but even under cleanroom conditions this is not always possible; blockage
through sedimentation of particles within the channels is taking place during the whole
course of the experiments, independent of how clean and dust-free the channels are.

I.6.2. Utilized Software

There is a number of software applications that are used in this work to acquire datasets
during the course of experiments and also to process and evaluate them later. Some of
these are written in LabVIEW (versions 2010 to 2013, National Instruments, Austin,
TX, United States of America), others are realized in Matlab (version R2011b, The
MathWorks, Inc., Aachen, Germany). In this section, a listing of these applications with
information about the environment they were developed in will be given. In some of
these cases, more details will be added about the algorithms.

When performing experiments in a setup of optical tweezers, the motion of a single or
multiple confined colloids needs to be recorded and, at a later stage, tracked, so a list of
particle positions is created which allows further processing. In the setup in Saarbrücken,
a high-speed camera by Fastec Imaging is used (see also Sect. I.6.1.2) which offers a
proprietary software for recording images. A variety of image formats is offered as well.
When operating the camera in high-speed mode, a huge number of pictures is created
in a short amount of time. Since the operating system Microsoft Windows XP does not
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handle huge numbers of files with a particularly good performance, a picture container
with file extension “.raw” is chosen. The images are saved within this file as a string of
header-less “.tif” files. They can be transferred from the internal memory of the camera
to the hard disk drive of the computer within about 3 minutes, assuming that the internal
memory has been filled entirely.

During the course of the experiments, sometimes, an online realignment of the po-
sition of the optical traps is necessary. In general, this requires the realignment of the
whole setup. However, if only the trap generated by the 532nm laser beam needs to be
repositioned, this can also be achieved by carefully moving it through manipulation of the
orientation of the piezoelectric mirror in the beam path. It can either be controlled by us-
ing electrical switches or by a software written by Andreas Ziehl in LabVIEW [4]. When
working with a microfluidic device and a change of the flow velocity is desirable, this is
practicable by adapting the height of the syringe body attached to a linear motor. These
settings can be chosen in a proprietary application called OwiSoft that was distributed
alongside the motors. It allows not only to set a displacement, but also the driving of
the motor with a certain velocity profile. However, these options are not necessary for
the conduction of the experiments, so simply setting a height is already sufficient.

As mentioned before in section I.6.1.2, in order to determine the reaction of a confined
colloid to a shear flow, it is necessary to record the electric sinewave signal in synchronicity
with the images recorded by the camera. A custom virtual instrument in LabVIEW was
designed to acquire the input sinewave together with the TTL-signal triggering the start
of the recording by the camera.

After the successful transfer of pictures from the camera to the hard drive, an option is
needed to extract the particle positions. This is achieved by an application developed by
Achim Jung [64] in which each of the images is Fourier-transformed and then correlated
with a template image (typically the first image of a measurement). By applying a two-
dimensional Gaussian fit, the shift of the particle from the current image as compared
to the template can be determined with sub-pixel resolution. Since the characteristic
circumference of the colloid in each picture covers a multitude of pixels, the accuracy
of the fitting procedure is improved immensely. As a result, the software gives a list of
x- and y-displacements and the picture number, which can be used as a time axis. The
original program of A. Jung was slightly modified to directly accept the “.raw” format of
the high-speed camera, saving the time and effort necessary for a conversion.

Since in part I of this dissertation, auto- and cross-correlation functions play a central
role, a software is needed which is able to handle very large data sets created by each
measurement and to calculate these functions. It was custom-developed in LabVIEW.
The specific calculation sequence is described in section C.1 of the appendix. As input,
a formatted text document (“.txt” or “.dat”) with one time and two position columns in
this order is accepted, whereas the results are exported as a second text document with
one time and three correlation columns Cxx, Cyy, and Cxy.
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(a) Correlation functions for an aligned camera. (b) Correlation functions for the camera tilted by 10○.

Figure I.6.6.: Influence of the camera angle alignment on the correlation functions of the displacements
of a trapped bead. A data set from a numerical simulation was used, where an oscillation
with a frequency of 3Hz and an amplitude of 10µm was applied to the optical trap in
y-direction for demonstration purposes. The trap stiffness was set to 1µN/m, no shear
flow was present. The auto- and cross-correlation functions of the data set were at first
calculated for the unmanipulated data set, then, this step was repeated after virtually
rotating the data set by 10○.

As a general tool for handling and organizing data, Origin (version 9, OriginLab
Corp., Northampton, Massachusetts, United States of America) was utilized. It allows
the fitting of functions to data sets and also offers additional options like performing a
Fourier-analysis.

I.6.3. Calibration of the Setup

In this section, details about components of the setup of optical tweezers which need to
be calibrated regularly will be given. Typically, before the setup can be used, it needs to
be cleaned first using pressurized air and cleaning tissues. Afterwards, the alignment of
the laser beam path is performed.

There are two additional elements whose alignment needs to be taken care of. When
the high-speed camera is attached to the side-port of the microscope, it will record
the focal plane of the objective. However, since the camera has a rotational degree
of freedom, the tilting angle is not defined. This will play a crucial role, especially
in context with the measurement of the correlation functions of bead displacements.
To visualize the effect of a tilted camera on the correlation functions, a data set was
created by numerical simulations where an oscillation was applied to the optical trap
in y-direction while no shear flow was present. As such, due to the missing coupling
effect by the shear flow, the motion of the bead in perpendicular directions should be
uncorrelated. For the unmanipulated data set, this is definitely true (Fig. I.6.6a) since
oscillations can only be found in the auto-correlation function Cyy (not displayed due to
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Figure I.6.7.: Typical displacement curve recorded for the tilt calibration of the camera. An oscillation
was applied to the piezoelectric stage in x-direction while the camera recorded the motion
of a bead that was immobilized at the surface of a coverslide. From the deviation of
the trajectory from a horizontal line, the remaining tilting angle of the camera can be
deduced. In this graph, the angle amounts to 0.107(1)○.

the large extent of the ordinate) and to a much smaller degree in the cross-correlation
function Cxy. Cxx is still given by the pure exponential relaxation behavior from the
quiescent case and shows no influence whatsoever from the oscillations. If, however,
a tilt of the virtual recording device by 10○ is assumed, the situation changes (Fig.
I.6.6b). The tilt is performed by transforming the data set to spherical coordinates,
adding the value of 10○ to the angle, and transforming the data set back to the Cartesian
frame. Now, the oscillatory contribution to the cross-correlation function is increased by
roughly two orders of magnitude, while the auto-correlation function Cxx also shows an
oscillatory behavior. The original exponential relaxation disappears almost completely. It
is noteworthy that these spurious correlations always occur as unshifted cosine functions,
since they originate from auto-correlated contributions.

Under the assumption that such an error occurs, it is of central importance to assess
the consequences of it on the outcome of a measurement and shall be conducted as a
simplified calculation. Consider a tilt of the recording device, i. e. the camera, versus
the oscillation direction by an angle β = 5○. In case of an oscillation otherwise perfectly
aligned with the y-axis, this will cause it to be mixed into the motion in x-direction. The
percentaged change of the positions in x- and y-direction in respect to a reference position
cannot be calculated since it depends on the exact positions. Expressed in a spherical
coordinate system, the length ∣r⃗∣ of the position vector remains the same, while only the
angle increases by β. For the sake of presentability, let us assume nonetheless that the
error can be expressed as a percentage value p. This means that motion recorded in the
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frame of the camera C, from this moment on denoted by the Cartesian coordinates x′

and y′, can be recast to the frame of the piezoelectric stage S, expressed in the Cartesian
coordinates x and y

x′ = x ⋅ (1 − p) + y ⋅ p , (I.6.3)

y′ = x ⋅ p + y ⋅ (1 − p) . (I.6.4)

The consequence of this for the cross-correlation function can then be written as

Cx′y′(τ) = ⟨x′(t)y′(t + τ)⟩ (I.6.5)

= ⟨(x(t) ⋅ (1 − p) + y(t) ⋅ p)(x(t + τ) ⋅ p + y(t + τ) ⋅ (1 − p))⟩ (I.6.6)

= (1 − p)2Cxy(τ) + p(1 − p)(Cxx(τ) +Cyy(τ)) + p2Cyx(τ) . (I.6.7)

Hence, in the expression for the measured cross-correlation function Cx′y′ , there is not
only a contribution of Cxy, but also of all auto-correlation functions Cxx and Cyy, and
the time-inverted cross-correlation function Cyx as well. This calculation will be used
later to estimate the influence of mixing of the signals in x- and y-direction.

The aim of this thesis is a measurement of the correlation functions in a manner
as free from external noise as possible. Since the influence from a tilted camera can
hide the true correlation signals, it is essential to have a very exact camera alignment.
One of the easiest means to achieve this goal is to record the motion of a bead that is
immobilized at a coverslide. It is not necessary to take additional preparation steps as
compared to the standard recipe (see Sect. I.6.4) since, after a certain amount of time
after sedimentation onto the coverslide, the particles become immobile automatically.
When these particles are now oscillated by driving the piezoelectric stage and with it
the whole sample chamber, the main axis of the oscillation can be visualized using the
camera. If deviations of the main axis from a straight pixel line exist, the camera needs
to be rotated respectively. This procedure must be repeated until an alignment is reached
where the oscillation axis and pixel row or column are adjusted as parallel as possible.
The result of such an alignment process is displayed in figure I.6.7. After fixation of
the camera at the aligned rotation angle, an oscillation was applied to the coverslide
with an amplitude of 2µm. The recorded trajectory is shown as an x-y-displacement
plot. Over an oscillatory displacement of 4µm in total, the perpendicular displacement
of the immobilized bead is smaller than 20nm. The remaining tilting angle of the camera
amounts to 0.107(1)○ which is close to the limit of a manual mechanical alignment.

Additional information is gained from figure I.6.7 about the resolution limit of the
setup. When removing the effect of the camera tilt by subtracting the linear fit depicted
in the figure from the data set in y-direction, it seems as if the immobilized bead was
fluctuating around a center line very similar to the Brownian diffusion processes observed
in the following chapters. However, in this case, the fluctuations are due to the electric
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noise of the camera chip. Excursions on this scale can not be resolved during later ex-
periments since they could originate from electric noise as well as from actual Brownian
fluctuations of particles. They can hence not be distinguished from one-another. By
fitting a Gaussian to the histogram of particle positions in y-direction the standard de-
viation due to electric noise is determined to a value of approximately 3.3(2)nm. In a
turbid medium like mucus additional scattering of light occurs which leads to a weaker
illumination of the camera chip. Thus, the resolution limit can be estimated conserva-
tively at approximately 5 nm. This value also includes the effects of all external noise
and vibration sources that might negatively influence the conduction of an experiment.
Overall it should be noted that the visualization of motion on the nanometer scale well
below the typical optical resolution limit of λ/2 is only possible due to the utilization of
the cross-correlation algorithm mentioned in section I.6.2. It should also be noted that
during the conduction of the measurement depicted in figure I.6.7 no additional signif-
icant drift is observable. The calibration measurement was recorded within 16 s which
coincides with the typical length of all experiments performed with optical tweezers in
part I and II. Hence, the influence of drift effects can be excluded.

A second calibration is required before quantitative measurements with a setup of
optical tweezers are possible. For this purpose, however, the trap needs to be calibrated.
There is a multitude of methods to achieve this goal [65]. Three of them shall be discussed
here since they are the ones which are the most straight forward to apply. Two out of
these are so-called passive calibration methods since they rely on Brownian motion as
the driving force. They require no additional driving which would need to be applied
actively to the system. This is the case for the third method, which is therefore denoted
an active calibration method.

The first passive method can be found in literature under the name equipartition
method [61]. As already detailed in section I.5.1, due to the equipartition theorem, a
particle confined in a harmonic potential has a thermal energy of Eth = kBT /2 by each
degree of freedom. Thus, one can conclude for the kinetic energy that

kBT

2
= ki ⟨xi⟩

2

2
. (I.6.8)

In other words, the mean squared distance from the center of the optical trap is deter-
mined by the thermal energy of the bead if there is no other energy source. This gives
the formulation of equation I.5.4

⟨xi⟩2 = kBT
ki

. (I.6.9)

By plotting a histogram of positions for a confined bead and successive fitting of the
resulting curve to a Gaussian function (compare Fig. I.5.1), its standard deviation, which
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is identical to the mean distance ⟨xi⟩, can be determined. By insertion into equation
I.6.9 together with the temperature, the trap stiffness ki can be directly computed. This
method comes with the advantage that no knowledge about the surrounding fluid is
required since no fluid parameters are necessary for this computation. However, the
method relies on the knowledge of the temperature in the focal region. According to
Peterman et al. [66], the temperature increase due to laser-induced heating can be
determined to amount to less than 4 ○C for all bead materials utilized in this thesis. This
calibration method is applied to a number of measurements for a variation of laser powers
(Fig. I.6.9, Tab. D.5).

The second method is based on one of the features of the auto-correlation functions
of bead displacements. As already detailed in context with the derivation of the auto-
and cross-correlation functions in section I.4.3, if no shear flow is applied to the system
(γ̇ = 0), the cross-correlation function disappears at all times and the auto-correlation
functions are identical to the equilibrium case of a quiescent fluid. According to equation
I.4.23, Cxx and Cyy are given as

Cxx(∆t) = Cyy(∆t) =
kBT

ki
e−∆t/τr,i , (I.6.10)

where the relaxation rate is defined as τr,i = ζ/ki. The height of the correlation peak
as well as the relaxation of the peak depend on the trap stiffness, the most robust way
to determine ki is an exponential fit to the data to gain the relaxation rate. Only the
knowledge of ζ is required for a successful calibration. In the scope of this part of the
thesis, only water is used as a surrounding medium of which the viscosity and thus also
the coefficient of friction is known. This method is particularly useful here since it allows
an online calibration during each single measurement, so the actual trap stiffness for both
directions x and y comes as a bonus. In case of the experiments presented in part II, this
method is not applicable in a direct fashion since the surrounding material is a complex
fluid and ζ becomes a time-dependent function. Just as for the past calibration method,
this method was applied to a series of measurements at different laser powers. They are
also shown in figure I.6.9 and in table D.5.

The final calibration method discussed here is an active method, meaning that an
external driving force is applied to the system and its response is recorded. It uses the
equality of the restoring force of the optical trap to Stokes’ friction force and is thus de-
noted Stokes method or drag force method. Taking equation I.4.14 as the base equation,
for oscillation amplitudes much bigger than the mean displacements by stochastic forces,
one can assume that the stochastic force is negligible. Only the friction forces, due to the
relative velocity of the confined bead to the surrounding fluid, and the restoring force of
the optical trap remain, which results in

kx∆x(t) = ζ (vd,x(t) − ẋ(t)) . (I.6.11)
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As long as the friction forces do not exceed the restoring force of the trap, the latter can be
described as a linear law (Eq. I.3.8). From a technical point of view, driving is achieved
by applying an oscillation with a frequency f and an amplitude xd,0 to the piezoelectric
stage. This leads to a displacement of the stage xd(t) = xd,0 sin(2πft) and a velocity
vd,x(t) = xd,0ω cos(ωt) with ω = 2πf and vd,0 = xd,0ω. Such kind of oscillatory driving
also results in an oscillating trajectory of the bead ∆x(t) = x0 sin(ωt + δ). However, the
phase behavior is of no concern for the purpose of calibrating the stiffness of the optical
trap. Instead, the amplitudes of the driving and its response can be compared directly,
so that

kx = ζω
xd,0

x0
, (I.6.12)

where the amplitude of the bead measured from the trap center x0 can be determined
by sinusoidal fits to the measured displacement data. As becomes obvious from equation
I.6.12, a further requirement for this method is the knowledge of the coefficient of friction
ζ of the medium the calibration is performed in. It is required for the computation of the
trap stiffness. A calibration within a complex fluid (see Pt. II for more details on complex
fluids) using this method is possible [67], however, an exact knowledge of the medium
and its analytical description is required. Otherwise, elastic contributions of the medium
could be misjudged as to originate from the trap, thus leading to an overestimation of its
stiffness. This method is better suited for a separate calibration run inside a well-known
calibration fluid like water or a glycerol solution, both of which are Newtonian fluids.

In figure I.6.8, the displacement amplitudes from the trap center are plotted against
the velocity amplitudes of the piezoelectric stage. For each laser power and thus for
each trap stiffness, a linear dependence results when the driving force or respectively the
driving velocity is increased. By determining the slope of each line, the corresponding
trap stiffness can be determined according to equation I.6.12. The resulting stiffnesses are
plotted together with the results from the two passive methods in figure I.6.9. In case of
each of the methods, with increasing laser power a proportional increase in trap stiffness
concurs. Each of them is described well by a straight line. There is a bigger variation
in the offset than in the slope of the lines. Also the deviation between the stiffness in
x- and y-direction is small (typically less than 10 %) and in this case probably due to a
small alignment error. A very common reason for such deviations is the stochastic nature
of these measurements. To reduce this effect, multiple calibrations at the same power
setting should be performed.
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Figure I.6.8.: Results of multiple independent drag force calibrations with sinewave oscillations at
different settings of the laser emission power. The displacement amplitudes are plotted
against the velocity amplitude of the piezoelectric stage used for driving. Linear fits to
the data sets give a good agreement, the trap strengths can be determined by applying
equation I.6.12 to the slope values.

Figure I.6.9.: Trap stiffnesses resulting from different calibration methods. For the equipartition (index
“r”) and the cross-correlation method (index “c”), the exact same data sets were used.
The drag force calibration was performed on separate data sets where forced oscillations
were applied to the piezoelectric stage (compare Fig. I.6.8). The trap stiffness from the
drag force calibration is denoted with the index “d” and was only performed in x-direction
due to the much bigger effort and time consumption of this method.
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I.6.4. Results

In this section, experimental results will be presented and discussed. The equilibrium
situation of a bead confined in a stationary optical trap with no flow present was already
partially discussed in context with the calibration of the setup (Sect. I.6.3). Hence this
situation will only be mentioned briefly before going into the in-depth discussion of the
cases involving shear flows (Sect. I.6.4.1) and oscillations (Sect. I.6.4.2). Typically, be-
fore performing a measurement run with the setup, it was calibrated first. The gained
stiffness values for the optical trap could then be compared to the online calibration
results stemming from the exponential relaxation processes of the auto-correlation func-
tions as explained in the calibration section.

A few classical experiments shall be reproduced with the setup of optical tweezers
for verification purposes before moving on to the more complex experiments. They are
conducted in quiescent fluids with Newtonian properties, in other words, instead of a
microchannel, a closed-off air-tight sample cell is utilized and the PMMA beads (Tab.
A.1) are immersed in water. This leads to the auto- and cross-correlation functions in
figure I.6.10a, which show exponential relaxation processes, to appear. There is no clear
cross-correlation which can be shown by a repetition of the experiment. As expected,
the motion in orthogonal directions is uncorrelated as long as there is no flow or similar

(a) Oscillation-free equilibrium case at a stiff-
ness of 1.25µN/m.

(b) Effect of the application of a triangular oscillation (B =

8µm, f = 1Hz) in x-direction on the shape of the auto-
correlation functions while the trap stiffness was set to
6µN/m. The correlation amplitude in oscillation direction
Cxx is larger by more than three orders of magnitude than
the one perpendicular to it.

Figure I.6.10.: Auto- and Cross-correlation functions with no flow present in the pure quiescent case
as well as under application of a forced oscillation. As expected no clear correlation can
be found in Cxy in the oscillation-free case. Due to small tilts of the camera against the
ideal angle, the oscillations do not only appear in Cxx but also in all other correlation
functions (Cxy not shown). However, the amplitudes of Cyy are much smaller than these
of Cxx, which indicates a good pre-alignment. Additionally, all correlation functions
including Cxy are in phase, indicating that these are spurious correlations.
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effect which drives the system out of its equilibrium.
If an oscillation of the optical trap is forced in the x-direction, assuming a perfect tilt

alignment of the camera, no influence of the oscillation should show in the y-direction
and its auto-correlation. In this case, no correlation should exist in Cxy, either. In figure
I.6.10b, the auto-correlation functions Cxx and Cyy are shown for such an experiment
with a triangular oscillation in x-direction. Albeit a small spurious coupling appears in
the auto-correlation function Cyy, the oscillating contributions to this function are weak.
In the depicted case, the oscillation amplitudes of Cyy stay well-below 50nm2 while
those of Cxx reach values of approximately 46000nm2. Since the driving amplitude
contributes to the power of two to each correlation function, this means that less than
3 % of the motion in oscillation direction was mixed into the oscillation-free direction due
to a tilt of the recording device. While the exponential relaxation behavior disappears
almost completely in the x-direction as compared to the oscillatory contribution, this is
not true for the y-direction. Due to the mixing of the displacement signals, it is also not
surprising to find an oscillating non-zero cross-correlation function. Its frequency concurs
with those of the auto-correlation functions, while its amplitude shows an intermediate
height between those of Cxx and Cyy (curve not shown). It is very characteristic for this
case however, that the oscillations of the cross-correlation function happen in phase with
those of the auto-correlation functions, meaning that all of them can be described by an
unshifted cosine function. If not caused by spurious correlations, this case can only be
reached for very high driving frequencies f ≫ 1/2πτr ≈ 16Hz which were not applied for
the experiments presented in this thesis.

I.6.4.1. Colloids in Linear Shear Flow without Forced Oscillations

Now, the system of a colloid confined in an optical trap that is placed in a linear shear
flow shall be considered. At this point, no forced oscillatory driving shall be applied.
This case is identical to the one in the studies by Ziehl [5] and Bammert [18], except that
the experimental realization is not conducted by designing a microfluidic device with
a region of zero flow velocity and maximal gradient. Instead, by choosing a particular
placement of the optical trap close to the side walls of a straight microchannel, a similar
local flow profile is recovered as shown in section I.4.1. Hence, this analytical proof shall
be additionally conducted in an experimental way.

For this purpose, a trap position about 2rc away from the lower channel wall was cho-
sen (compare Fig. I.4.5). Since the flow is directed from the right-hand to the left-hand
side of the device, a negative shear gradient can be found in vicinity of the bead. If one
compares two independent experiments under these conditions as depicted in figure I.6.11,
one always finds the same features, albeit a certain measure of variation due to stochas-
tic reasons is possible. As predicted by theory, the main feature of the auto-correlation
functions are exponential relaxation processes (Fig. I.6.11a). The mean relaxation rate,
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(a) Auto-correlation functions for both measurements
in x- and y-direction.

(b) Cross-correlation function Cxy for both measure-
ments. The color code is used to distinguish be-
tween positive (blue and green circles and lines)
and negative correlation times (black and red cir-
cles and lines). Fits are displayed as solid lines.

Figure I.6.11.: Auto- and cross-correlation functions of two independent measurements M1 and M2 at
the same experimental settings (k = 1.25µN/m). In both cases, the trap was placed
about 2rc away from the lower channel wall, while the fluid flowed from the right to
the left, thus, creating a negative shear gradient.

which can be recovered by fitting, amounts to 50ms. The corresponding trap stiffness
of 0.75µN/m is clearly smaller than the value of 1.25µN/m, gained by calibration in a
separate sample cell as mentioned in the past section. This is unsurprising since a change
of the sample cell is also linked with a change in optical properties (i. e. a different cov-
erslide, etc.) and hence may lead to a different calibration. The best estimation of the
stiffness is given by the online calibration method via the auto-correlation functions.

When comparing not only the shape of the auto-correlation functions but also their
offset, one finds that Cxx for both measurements reaches a higher absolute value at
t = 0 s than Cyy. Whether this effect is due to an offset or a different amplitude cannot
be distinguished. Theory predicts (Eq. I.4.24) that the amplitudes in flow direction
are enhanced through the shear flow by the colloidal motion perpendicular to the flow
direction, in other words the y-direction. A similar effect would be caused if there was a
slight tilt of the camera axis versus the oscillation direction of the piezoelectric stage; a
mixing of the displacement signals would occur.

Theory also predicts an asymmetric minimum in respect to t = 0 s that can be found
at small negative times in Cxy (Eq. I.4.25). Indeed, this minimum is apparent for
both measurements in figure I.6.11b, their asymmetry is indicated by the color code.
The minimum is in both cases located at roughly −20ms. The shape of the curves is
distinct, which becomes quite clear for t > 0 s. At −150ms, the correlation function of
the measurement M1 reaches a functional value of approximately −150nm2, which is
identical to its value at 75ms. While at −150ms, the functional value of M2 agrees, this
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(a) Cross-correlation in shear flow at a trap stiffness
of 4µN/m.

(b) Cross-correlation in shear flow at a trap stiffness
of 5.5µN/m.

Figure I.6.12.: Influence of the sign of the shear gradient in a linear shear flow. Four independent
measurements M1-M4 are shown exemplarily. While in case of M1 and M3 the colloid
was placed about 4rc away from the lower wall in a negative shear gradient, for M2
and M4 an equally distanced placement near the upper wall in a positive gradient was
chosen.

is not true at 75ms where it is much bigger (≈ 50nm2). This leads to an askew looking
shape of M2 which can be recovered in many experiments. The reason is a not perfectly
stationary flow. Slight variations in flow velocity lead to a shift of the equilibrium position
of the optical trap and thus a shifting baseline of the cross-correlation function. Still, it
is possible to apply a fit with the analytical function to the data sets and to find at least
a qualitative (black and blue curve in Fig. I.6.11b) and in some cases even a quantitative
agreement (red and green curve).

Additional features predicted by theory can be checked, like the dependence of the
depth and position of the cross-correlation peak on the sign of the shear gradient and also
on a varying stiffness of the optical trap. The first experiment can be conducted by plac-
ing the trap in proximity of the lower wall (measurements M2 and M4 in Fig. I.6.12) to
get a negative shear rate and afterwards performing the same type of measurement close
to the upper wall with a positive shear rate (measurements M1 and M3 in Fig. I.6.12).
All other settings should remain identical, i. e. the trap stiffness and the distance to the
side wall. Two independent experiments of this kind are shown in figure I.6.12. In both
cases, a distance between colloid and wall of 4rc was chosen. The pre-calibrated stiffness
values are well recovered by the online calibration, which estimates them at 4.4µN/m
and respectively at 6µN/m. The height of the correlation peak changes from 8nm2 for
the lower stiffness to 15nm2 for the higher one. This is counterintuitive since, accord-
ing to theory, the amplitude of the peak should behave reciprocally to the stiffness (Eq.
I.4.25), while it seems to depend linearly on it here, instead. However, this amplitude
additionally depends linearly on the Weissenberg number, which thus might compensate
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Figure I.6.13.: Dependence of the depth and position of the cross-correlation peak near t = 0 s on the
trap stiffness. It was varied between 4µN/m and 7µN/m while in all cases a similar
placement 4rc away from the lower wall was chosen. By fitting the peaks with the
corresponding analytical expression (eq. I.4.25), the relaxation rate can be determined
as 6.32(2)ms, 3.0(1)ms, and 2.6(1)ms, sorted by increasing trap stiffness. The arrow
indicates the shift of the correlation peak in relation to time.

the effect of the varying stiffness. The shear rate and thus Wi could not be measured
directly, they may differ here.

Apart from these features, the main property that catches the eye is the switch in sign
of the cross-correlation function, while the auto-correlation functions remain completely
unaffected (curves not shown). This effect is predicted by theory as well, since the
correlation amplitudes, as mentioned before, depend on the Weissenberg number (Eq.
I.4.25) and are computed by the product of the shear rate and the relaxation rate. The
curve progression is in all cases fitted well by theory.

A final comparison shall be drawn before moving on to oscillating traps. Assuming a
very stable stationary flow, there should be a characteristic dependence of the amplitude
ACxy of the cross-correlation function on the stiffness. To be more exact, the height
should decrease reciprocally proportional to the stiffness, i. e. ACxy ∝ 1/k. Additionally,
a shift of the peak position towards t = 0 s should occur. In figure I.6.13, the results of
such a measurement series are presented. In all cases, the bead was placed at the same
distance of 4rc away from the lower wall while the stiffness was varied from 4µN/m to
7µN/m. Indeed, one finds that the peak becomes shallower with increasing stiffness and
the shift of the peak position also becomes evident as indicated by the arrow. Since no
movement of the bead from the lower to the upper wall is involved here, a similar shear
rate could be kept during all three experiments.

The shape of the auto- as well as the cross-correlation functions can be matched
well with the analytical expressions computed earlier (Sect. I.4.3). In some cases, the
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agreement is good enough to allow fitting with the analytical functions from equations
I.4.24, I.4.23, and I.4.25. These results concur with those reported by Ziehl and Bammert,
although the experimental realization of the shear flow is not a flawless and ideal one -
keep in mind that the microchannel used here creates a parabolically shaped Poiseuille
velocity profile which only comes close to a linear gradient in proximity to the side walls.
This however hints that, when taking an elaborate placement of the colloid into account,
the flow can reasonably be assumed as a linear shear flow and is thus well suited for later
experiments including forced oscillations.
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I.6.4.2. Colloids in Linear Shear Flow Forced by an Oscillating Optical
Trap

This section will deal with the core of the experimental study of the first part of this thesis.
An optical trap will be utilized to confine colloids, keeping them stable even though a
shear flow will be present. Still, Brownian motion will occur and cause characteristic auto-
and cross-correlation functions, which are the main interest here. The special feature
added as compared to earlier studies will be an oscillatory driving of the piezoelectric
stage of the microscope, which aims at constantly bringing the colloid out of its force
equilibrium. This kind of driving can be depicted more easily as an oscillatory motion of
the position of the optical trap. The oscillations will be directed perpendicularly to the
flow direction in the microfluidic device and thus have a shearing effect on the colloid.
Since the high-speed camera utilized for image acquisition always records the co-moving
frame of the optical trap, only relative displacements in respect to the center of the trap
will be shown, unless otherwise indicated.

When brought into such a situation, the colloid will constantly feel changing flow
velocities and thus react to the varying forces of friction by being displaced further or
less far from the center of the trap. This case is depicted in figure I.6.14, where the
absolute motion of the trap is drawn in blue circles, while the relative displacement in
x- and y-direction - or respectively motion in flow direction and perpendicular to it - is
shown as black and red circles. However, in subfigure I.6.14a, a placement in a shear
gradient of positive sign close to the upper wall was chosen, while in subfigure I.6.14b

(a) Average position of the bead about 3rc away from
the upper wall in a positive shear gradient.

(b) Average position of the bead about 3rc away from
the lower wall in a negative shear gradient.

Figure I.6.14.: Effect of the sign of the shear gradient on the confinement of a colloid. The trap stiffness
was set to 5.5µN/m, an oscillation amplitude of 2µm and a frequency of 0.25Hz were
chosen. While in both cases the oscillatory displacements in y-direction run roughly by
π/2 ahead of the driving, the phase behavior of the displacements in x-direction depend
on the sign of the shear gradient. In a positive gradient, they are approximately in
phase with the driving, while being out of phase (shifted by π) with the driving in a
negative gradient.
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the gradient carries a negative sign at a similar absolute value. The y-displacement out
of the trap center is described by a sinusoidal oscillation with identical frequency to the
excitation, which follows the excitation with a phase shift of roughly π/2. Since a certain
reaction time on the order of the relaxation rate is necessary for the bead to adapt to
the changed flow situation, there is no exact shift by π/2.

There is a distinct difference between both shown cases regarding the displacement
in x-direction. In case of the positive gradient, the bead is displaced further to the left
the farther down it is dragged, and vice versa for an upwards displacement. This is just
a logical reaction to the stronger friction closer to the center of the microchannel, which
due to its flow direction pushes the particle to the left. This pattern changes to the
contrary when switching from the upper to the lower wall, thus, the additional phase
shift is precisely π. A feature that is very hard to spot is a slight additional phase shift
as compared to the oscillations of the trap motion and the relative bead displacement
in y-direction. It is again of the same order of magnitude as the relaxation rate. These
properties will become very important in context with the correlation functions later on,
which at the same time are much better tools for a visualization of this shift.

A different way of presenting the x- and y-displacements is an x-y-plot. These are
shown in figure I.6.15 for the same measurements as discussed before. Here, however, not
the relative displacements out of the trap center are shown but the absolute positions.
This is trivial for the data set in x-direction, since relative and absolute displacements
are identical. In case of the y-displacements, the plotted quantity is the sum of the red
and blue symbols in figure I.6.14 in order to give yabs(t) = ytrap(t) + yrel(t) (compare

(a) Average position of the bead about 3rc away from
the upper wall in a positive shear gradient.

(b) Average position of the bead about 3rc away from
the lower wall in a negative shear gradient.

Figure I.6.15.: Effect of the sign of the shear gradient on the spatial distribution of a colloid. The
trap stiffness was set to 5.5µN/m, an oscillation amplitude of 2µm and a frequency of
0.25Hz were chosen. The data sets correspond to the ones in figure I.6.14. The tilt of
the distribution curve and especially the sign of the tilting angle relative to a vertical
line hint at the strength of the shearing.
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Sect. I.4.4 dealing with the corresponding analytical expressions). The reaction of the
bead to the changed flow conditions and friction forces becomes directly apparent in
these sketches. A quite nice feature of the curves is their shape. Both plots indicate that
there is practically no curvature in the data sets which would indicate a deviation from
an ideal shear flow. This shows once more that the assumption of a linear flow profile
close to the channel walls is justified.

To gain some additional information about the system, the auto- and cross-correlation
functions can be determined in the same way that was already applied earlier in context
with the numerical data sets. A program was written in LabVIEW to take care of this.
A description of its functionality is included in the appendix (Sect. C.1). As already
discussed in earlier chapters, when calculating the correlation of oscillating functions,
one would expect correlation functions that oscillate in a similar fashion. This is indeed
the result for the functions in this chapter, as can be seen in figures I.6.16 and I.6.17.
However, more interesting details can be found.

Let us consider figure I.6.16 first which shows two independent experiments at the
same setting of the trap stiffness, oscillation amplitude and frequency, and distance to
the wall. The difference between subfigures I.6.16a and I.6.16b or between I.6.16c and
I.6.16d, respectively, however, is that in the first case the trap was positioned next to the
lower wall (=̂negative sign of the shear gradient) while in the second case a placement
close to the upper wall (=̂positive sign of the shear gradient) was chosen instead. The
same is true for the cross-correlation function Cxy presented for the same data sets in
figure I.6.17.

At first glance at subfigures I.6.16a and I.6.16b, for both auto-correlation functions
strong oscillatory contributions become obvious. Due to the choice of parameters, these
contributions are of approximately the same order of magnitude as for the exponential
relaxations shown earlier in context with colloids in quiescent fluids or in a linear shear
flow without any forced driving (Fig.s I.6.10a and I.6.11a). However, it should be kept in
mind that the height of these peaks scales reciprocally proportional to the trap stiffness,
which is much higher here than it was before. This choice originates in the stronger
shear flow. The oscillatory contributions to the auto-correlation functions can indeed be
described analytically by equations I.4.31 and I.4.32 as shown by fits to the data sets
(solid black and red lines). When magnifying the region around t = 0 s as executed in
figures I.6.16c and I.6.16d, the exponential correlation peaks already well known from
oscillation-free correlations can be found. As long as fitting is restricted to rather short
timescales like 20ms in the presented case, it is still possible to capture the relaxation
process well. Since all of the curves shown in figure I.6.16 look similar and show no
particular distinction besides different oscillatory and exponential relaxation amplitudes,
the choice of the sign of the shear gradient seemed to have no impact at all on the
auto-correlation functions.
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(a) Overview of the auto-correlation functions. The
bead was placed close to the lower wall in a nega-
tive shear gradient.

(b) Overview of the auto-correlation functions. The
bead was placed close to the upper wall in a posi-
tive shear gradient.

(c) Zoom of the auto-correlation functions in figure
I.6.16a to the region of small correlation times.

(d) Zoom of the auto-correlation functions in figure
I.6.16b to the region of small correlation times.

Figure I.6.16.: Auto-correlation functions Cxx and Cyy for a colloid confined in an oscillating trap
(k = 5.5µN/m) in a linear shear flow about 3rc away from the channel walls. The
position of the trap was oscillated at an amplitude of 2µm and a frequency of 0.25Hz.
Fits to the data sets with the corresponding analytical functions are shown as solid
lines. The data sets shown in subfigures I.6.16a and I.6.16c were taken during the same
measurement. The same is true for the data sets in I.6.16b and I.6.16d. They also
correspond to the data sets shown in Fig. I.6.17. By comparison of the amplitudes of
the oscillating contributions Cxx,osc and Cyy,osc according to equation I.4.38 the shear
rates can be determined as γ̇ = 2.9 1/s for subfigures I.6.16a and I.6.16c and respectively
as γ̇ = 4.2 1/s for subfigures I.6.16b and I.6.16d.

A similar assessment can be performed with the cross-correlation functions of the
same data set (Fig. I.6.17). Again, the first obvious and seemingly single property of
these functions are oscillations of a frequency identical to the auto-correlations. Their
amplitude can be best described as an intermediate amplitude between the ones of Cxx,osc
and Cyy,osc, however, there is an important difference: the phase behavior deviates from
a cosine function. In the data sets shown, it appears more like a sine function with a
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(a) Overview of the cross-correlation function Cxy .
The bead was placed close to the lower wall in
a negative shear gradient.

(b) Overview of the cross-correlation function Cxy .
The bead was placed close to the upper wall in
a positive shear gradient.

(c) Zoom of the cross-correlation function Cxy in fig-
ure I.6.17a to the region of small correlation times
after subtraction of the oscillatory contribution.

(d) Zoom of the cross-correlation function Cxy in fig-
ure I.6.17b to the region of small correlation times
after subtraction of the oscillatory contribution.

Figure I.6.17.: Cross-correlation functions Cxy for a colloid confined in an oscillating trap (k =

5.5µN/m) in a linear shear flow about 3rc away from the channel walls. The posi-
tion of the trap was oscillated at an amplitude of 2µm and a frequency of 0.25Hz. Fits
to the data sets with the corresponding analytical functions are shown as solid lines.
Color code is used to distinguish correlation times smaller (black) and bigger than 0 s
(red). The data sets shown in subfigures I.6.17a and I.6.17c were taken during the
same measurement. The same is true for the data sets in I.6.17b and I.6.17d. They
also correspond to the data sets shown in Fig. I.6.16.

positive or respectively a negative sign depending on the figure. In this property, two
pieces of information about the cross-correlation functions are included. On the one hand,
the phase behavior of Cxy is variable and on the other hand, it depends on which wall the
bead was placed next to or, in other words, which sign the shear gradient has. The − sin

case appears in the vicinity of the lower wall (the negative gradient), the + sin case is found
near the upper wall (the positive gradient). Thus, the phase shift depends on γ̇ or on Wi,
respectively. When comparing these findings to the analytical expression (Eq. I.4.36), it
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becomes clear that this is only partially correct. When placing the bead in the negative
shear gradient, the fit captures the change in sign of Wi as an additional phase shift
by π instead. The fact that the phase is variable within certain boundaries apart from
this is also captured in the analytical expression. It claims that δ(Cxy) = −arctan(1/α)
(compare Eq.I.5.7) and thus should only be dependent on the dimensionless frequency
α. This frequency is by no means constant since it varies with the relaxation rate, which
may change with the position of the optical trap in the microchannel. This is also the
reason for the non-identical phase in figures I.6.17a and I.6.17b even when taking the
phase shift of π due to the sign of Wi into account.

It is possible to detect a hidden feature in the cross-correlation function by remov-
ing the oscillatory contribution to the data sets. This can, for instance, be performed
by fitting the correlation function with only the oscillatory contribution and afterwards
extracting the fitted curve from the original data set. If done correctly, the features
already known from the oscillation-free case appear as becomes obvious in figures I.6.17c
and I.6.17d. Also, their properties as compared to the oscillation-free case remain un-
changed. For typical settings of the trap stiffness and realizable shear rates, the height
of the peaks is on the order of 10nm2 to about 100nm2, while the amplitude of the
oscillatory contributions ranges around a few thousand square nanometers. This means
that the Brownian-type correlations contribute to less than 10 %, in some cases even to
less than 1 %, to the total correlation signal, which is the reason why it is very challenging
to detect and evaluate them.

Now, that the shape and the contributions to all auto- and cross-correlation functions
were recovered from experimental results as well as from analytical calculations and
numerical simulations, it becomes possible to apply that knowledge to test the functional
dependencies of certain properties of the correlation functions. Under the assumption of
an exact alignment of the laser guidance system and of the sample cell relative to the
piezoelectric stage, as well as a perfectly stationary flow without fluctuations, this could
be achieved. It is not possible to do a parametric analysis as done for the numerical
study in chapter I.5 except for one single quantity.

When one considers the amplitude of the oscillatory contribution to Cyy, one finds
the relation given in equation I.4.31, claiming for small dimensionless frequencies that
Cyy,osc ∝ B2α2. Thus, when dividing Cyy,osc by B2, one should gain a quantity which
only depends on the frequency and increases proportional to its second power. This
calculation was performed for a number of experiments (fitting results available in Tab.
D.6) and plotted against the dimensionless frequency in a log-log plot (Fig. I.6.18). When
compared to the theoretical prediction as indicated by the solid red line, the correlation
amplitude scales solely depending on the frequency. Since the red line is no fit but a plot
of the analytical function, the concurrence of both data sets is very good. However, due to
stochastic processes a significant amount of scattering has to be dealt with, nonetheless.
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Figure I.6.18.: Dependence of the oscillatory contribution to the auto-correlation function Cyy on the
dimensionless frequency α. For small frequencies α≪ 1, Cyy increases proportional to
α2 as predicted by theory (eq. I.4.31, red line). The dependence on B2 was removed
beforehand since the shown data sets were recorded at a variety of different oscillation
amplitudes. The data sets displayed are also included in table D.6.

(a) Phase behavior as recovered from sinusoidal fits
to Cxy . The regions indicated in black and red
correspond to the valid phase range for positive
and negative shear gradients according to the
analytical expression (eq. I.4.36). The data sets
are also displayed in table D.6.

(b) Phase behavior of Cxy after extraction of the ad-
ditional phase shift due to the shear gradient and
averaging within intervals of the dimensionless fre-
quency with a width of ∆α = 0.01. All data points
collapse into the region between −π/2 rad and 0 rad
as suspected, however the agreement with the ana-
lytical behavior (black line) is laden with significant
errors. Values with missing error bars (α = 0.032
and α = 0.157) represent intervals containing only
one single data point. The utilized data sets are
also represented in table D.7 of the appendix.

Figure I.6.19.: Phase behavior of the oscillatory contribution to Cxy. The data sets were recorded
at varying trap stiffnesses, average trap-wall distances, and amplitude and frequency
settings of the piezo.
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An additional check on the phase behavior of the oscillatory contribution to Cxy can
be performed. In figure I.6.19, the phase δ(Cxy) was plotted against the dimensionless
frequency, which is supposedly the only parameter it depends on. However, no clear
functional behavior can be found when plotting all data sets as done in subfigure I.6.19a.
As mentioned earlier in this section, the sign of the Weissenberg number plays an impor-
tant role in the phase behavior since if it is negative, this is equivalent to an additional
phase shift by π. This is the reason why some of the data points are shown in black
color (close to upper wall in positive shear gradient) and some are shown in red (close to
lower wall in negative shear gradient). The two regions shaded in black and red are the
“allowed” phase ranges according to theory. This criterion is met by most of the data
points, however, some of them are still in the “invalid” regions between 0 rad and π/2 rad
or between π rad and 3π/2 rad, respectively. When taking the sign of the shear gradient
into account, the red data points can be shifted into the black region I.6.19b. Before plot-
ting, average values were computed within intervals of the dimensionless frequency with
a width of ∆α = 0.01. Except for a few outliers, most values seem to orient themselves
close to the analytical prediction (solid black line), however, the errors remain rather
significant.
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I.6.5. Summary

Over the course of this chapter, all the matters involving the experimental setup of optical
tweezers were discussed. It was started off by a detailed look at the setup in section
I.6.1. At first, all elements involved in the guidance system of the laser beams defining
the optical tweezers were presented (Sect. I.6.1.1), followed by a look at the microscope,
the visualization system of the colloidal motion as well as the signal-synchronization-
system (Sect. I.6.1.2), which are necessary for the active forcing of such a system with
oscillations. Finally, the involvement of microfluidic devices and the control system for
the flow velocities inside such a device was detailed (Sect. I.6.1.3). The kind of setup
that is used as a basis for this system was already presented a few years ago by Andreas
Ziehl [4, 5]. However, a few delicate changes were made to increase the sensitivity, the
sample acquisition rate, and the precision of particle tracking.

For the successful conduction of an experiment in this setup, certain computer appli-
cations are required. Linear motors need to be controlled for setting the flow velocities,
the synchronized acquisition of images by the high-speed camera and of electrical oscil-
lation signals by a National Instruments acquisition card needs to be triggered. Details
about the software can be found in section I.6.2.

An immensely important preparation step, the calibration of the setup, was discussed
in section I.6.3. At this point, it is assumed that the whole setup is assembled and
also aligned. The required calibrations were two-fold: On the one hand, the tilting of
the reference frame of the camera against the axes of the piezoelectric stage needed to
be reduced, and on the other hand, the experimenter had to be enabled to assess the
stiffness of the trap. The tilting calibration reduces errors that would otherwise occur in
the calculation of correlation functions due to mixing of the x- and y-displacements of a
confined colloid out of the center of the optical trap. The calibration of the stiffness can
be performed using a multitude of methods, three of which (the equipartition method,
the auto-correlation method, and the drag force method) are presented, since they were
applied regularly in the scope of this thesis. Especially the auto-correlation method
should be mentioned here since it allows the online calibration of the stiffness during the
conduction of the correlation experiments.

The central section of this chapter is section I.6.4, which gives details about the
performed experiments as well as their results. After a short introduction to the case of
a confined colloid in a quiescent fluid and the resulting correlation functions of motion,
the trap was brought into a quasi-linear shear flow close to the side walls of a microfluidic
channel (Sect. I.6.4.1). The arising auto- and cross-correlation functions were compared
to earlier results by Andreas Ziehl and a qualitative agreement was found. It should be
noted that a certain level of skewness of the cross-correlation function Cxy may occur,
affected by an unideal stability of the flow and an equilibrium position of the bead that
is displaced relative to the trap center. A good agreement was also found with the
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I.6.5. Summary

analytical description from section I.4.3.
It was followed by section I.6.4.2, which included an in-depth discussion about auto-

and cross-correlation functions involving a shear flow and forced oscillatory driving of the
position of the optical trap. The causality of displacement-time curves was analyzed and
spatial particle distributions were depicted. They prove the presence of a shear flow that
very closely resembles a linear flow profile as assumed earlier. Afterwards, the shape of
the arising correlation functions was discussed and described by fits with the analytical
model. A good qualitative agreement could be found, however, especially in context
with the cross-correlation functions, a close-to-perfect tilt alignment of the camera and
the importance of a very stable flow cannot be underrated. Thus, measuring the true
cross-correlation function as depicted by the model is an enormous challenge. For some
of the conducted measurements, this agreement could be found nonetheless (Fig. I.6.17).
Although a parametric examination is prevented as shown for the phase behavior of
Cxy (Fig. I.6.19), the evaluation of certain systematic properties, like the shear rate for
example, is possible.
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I.7. Discussion

Considering the results from the past chapters about the analytical and numerical de-
scription of a confined colloid in a linear shear flow, a qualitative match to the results
from experiments could be found. However, the analytical framework only considered
the ideal case of a perfect spherical object in a perfect shear flow. In our experimental
setup, though, the precise control of the flow rate was difficult since slight variations in
channel diameter - e. g. due to particles sticking to the channel walls or due to the surface
roughness of the channels which occurs during their production process - always led to
flow rate fluctuations. Therefore, we assume that this should be the most significant
source of error in our system.

In order to assess additional possible error sources in the experimental setup, the
analytical assumptions shall be compared with experimental reality. These assumptions
include a setup completely free from unwanted external vibrations, a fully stationary
sample cell as well as a stationary flow through the microchannel, a perfect placement
of the colloid in the channel, non-rotating beads, a perfect alignment of the whole setup,
as well as many more. Although much care was taken to reach the desirable state of the
system, certain deviations from it were always present.

The first mentioned assumption, a system free from external vibrations, is, in general,
not easy to realize. Vibrations are always present, be it from cars passing the building
that contains the setup, a construction site on the other side of the street, or simply the
oscillations of the building itself. Even choosing a room in the basement of the building
and mounting the setup on top of a vibration-dampened workbench were only able to
remove the most significant part of these disturbances. However, this error source can
indeed be considered minor as compared to other sources.

Additional error contributions stem from a non-stationary sample cell as well as a non-
stationary flow. When positioning a sample cell on top of the piezoelectric microscope
stage, the cell itself never stays perfectly at rest. An experiment performed with a bead
fixed at the lower coverslide of such a cell showed that over the course of two minutes, the
position of the bead changed by approximately 60nm. Partially, this is due to the heating
of the sample cell and bead by the illumination source, the mechanical positioning system
of the microscope is accountable for the effect as well. Especially the mechanical influence
is worsened when the microfluidic device is used instead of the calibration cell since tubes,
which tend to touch the condenser and thus contribute to the drift as well, protrude from
the top of the device. A worst-case estimation of the total drift velocity gives a value of
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approximately 10nm/s. Compared to the flow velocities in the microchannels, however,
which typically reach up to 100µm/s, the drift velocity only has a minor impact. Much
more significant is the non-stationary flow, which occurs frequently in the experiments.
In many cases, these irregularities are impossible to spot with the naked eye during the
course of the measurements, as only an evaluation of the particle displacements is able to
make them visible. They are also nearly impossible to avoid since the root of the problem
are colloids piling within the tubing and the channels. When a certain area of the channel
is blocked, the pressure in front of the blockage increases until it is partially removed,
which allows the pressure to instantly decrease again. This leads to short pressure spikes
which hence destabilize the flow significantly. Even when working with perfectly cleaned
materials in a clean room, this effect cannot be avoided completely, since the colloids
are a necessary element for the conduction of such an experiment. As mentioned, the
appearance of such a pressure spike can be considered a huge error, thus, it may take a
large number of experiments until some of those during which no spike occurs are found.
Much care was taken to filter measurements containing such events and excluding them
from evaluation.

When choosing a position of the optical trap and thus of the colloid within the channel,
as discussed in section I.4.1 the ideal region can be found in direct vicinity of the side
walls of the microchannel. Also, the particle should be placed as close as possible to
the center of the channel in respect to its height, in other words in z-direction. Since
the microscope in the setup allows the placement of particles with a sub-micrometer
resolution in the lateral x-y-plane, this can be performed very precisely. However, the
height placement cannot be resolved optically, which may cause significant deviations
from the center of the channel. Also when a confined particle is subjected to a flow,
this may entail a rotation of the bead in the trap and also a significant displacement
from the focal plane of the trap in z-direction. Such excursions lead to a change in local
flow velocity since there is a parabolic profile in z-direction as well, and thus cause an
additional displacement of the bead in flow-direction, i. e. the x-direction of the channel.
Since z-displacements were taken into account neither when simulating the system nor
for the analytical calculations, these additional degrees of freedom result in significant
deviations from the assumed state of the system.

Further important influences to the accuracy of the positioning system of particles
in the x-y-plane need to be considered. Although the placement in this plane can be
performed with high precision, a quite significant challenge arises in context with the
visualization system of the setup: The particles need to be placed in a certain distance
away from the walls. The wall itself, as well as the particles, are visible due to differences
in refractive index as compared to the surrounding fluid. The contact line with the
other medium shows in the pictures as a fuzzy black line. Since the channel walls were
produced using a mold which again was manufactured utilizing lithography techniques,
small deviations from the ideal case are natural. Thus, the walls are never flat but
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slightly rough and they are also not exactly perpendicular in respect to the microscope
slide. Typically, the angle shows slight deviations of up to a few degrees, which leads to
the contact line showing up as a broad band with a width of multiple pixels. An exact
determination of the position of the walls, and thus also of the distance of a colloid to it,
becomes a highly non-trivial problem. All distance estimations need to be considered as
erroneous with error bars of about 2µm which equals the radius and thus half the size
of the colloids used in all experiments. The error should not lead to a strong deviation
from the assumed linear velocity profile as figure I.6.15 shows, but it might lead to a
misinterpretation of the influence of the wall on the bead and the effective viscosity it
experiences, as given by Faxén’s law (Eq. I.4.9).

The final contribution to the total possible error is the most important one on the
whole list besides the aforementioned temporal fluctuations of the flow velocity. It
was already mentioned beforehand in the section detailing the calibration of the setup
(Fig. I.6.6) and is probably the main reason for the strong discrepancy between ana-
lytical/numerical results for Cxy (Fig. I.5.7) and their experimental counterparts (for
instance in Fig. I.6.17). It can be encompassed by the name “frame of reference mis-
alignment” and is caused by a relative tilt of the main axis of the microchannel versus the
oscillation direction of the piezoelectric stage or the frame of the camera, respectively.
As soon as one of these three coordinate systems are not properly aligned in respect to
each other, this leads to a misinterpretation of, for instance, an oscillation in y-direction
as an oscillation partially in the y-direction but also partially in the x-direction. In the
equations I.6.3 and I.6.4 as well as the following modified correlation functions, the tilting
angle of the camera in respect to the oscillation direction of the piezoelectric stage was
related to the mixing percentage p of the displacement signals in x- and y-direction. For
small percentages p, the deviation from the result that one would measure in the refer-
ence frame S, are minor. However, it is never possible to achieve a perfect alignment and
additionally the tilting angle changes over time ( i. e. over the course of a whole session
of measurements) due to small vibrations. Thus, the tilting angle is never exactly known
and it is hence not possible to correct it in the data sets by hindsight. As mentioned in
section I.6.3, in advance to the conduction of every measurement session, the tilting angle
was calibrated to lie below 0.1○ which indicates a mixing percentage p≪ 1 %. However,
due to the continuous misalignment over time the exact estimation of p is in consequence
not possible. Since the cross-correlation signal Cxy is strongly dependent on the exact
alignment of the recording device in order to determine the local shear rate the much
more robust auto-correlation quotient Cxx,osc/Cyy,osc should be used instead.
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I.7. Discussion

Up until now, there have not been many studies of Brownian motion in shear flows
and its correlation functions. Only three publications allow the direct comparison and
classification of results: In two of them, Brownian motion is studied on an analytical basis
[18, 19] while the third one [5] uses a setup of optical tweezers for the examination of one
single as well as two neighboring colloids in a linear shear flow. The comparison of the
cross-correlation functions in shear flow with the results reported by Bammert, Holzer,
and Ziehl in these earlier studies reveals the same characteristics - i. e. the asymmetry
in respect to time of the correlation peak in Cxy - and thus proves the robustness of the
setup as well as the experimental results. However, in all of these studies only passive
Brownian motion without any additional external forces was studied. The addition of
oscillatory motion of the optical traps is a novelty that has not been attempted before
yet. Still, we have to admit that, due to the large error in the phase shift, our data does
not allow a conclusive interpretation. The precise control of the flow rate remains an
open issue.

Although there is quite a number of quantifiable and non-quantifiable error sources, it
is still feasible to identify experimental correlation functions with their analytical counter-
parts and find the predicted behavior as proven in section I.6.4. Also, an estimation of
the shear rate using equation I.4.38 can be performed, which at the very least gives a
guess of γ̇ (assuming a calibrated setup and a lot of care handling the error sources of
course).
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I.8. Summary

In part I of this thesis, a setup of optical tweezers was utilized to examine single col-
loidal particles in a stationary shear flow. This system was then driven further out of
equilibrium by applying forced oscillations perpendicular to the flow direction through
a microchannel. The auto- and cross-correlation functions of the colloid were used to
visualize its reaction to the perturbations.

For this purpose, in chapter I.3 the theoretical description of the interaction of a colloid
with a strongly focused laser beam, the central element of a setup of optical tweezers,
was explained. Since it depends on the relative size of the particles as compared to the
wavelength of the electromagnetic radiation, the corresponding formulations in all size
regimes, the Rayleigh regime, the Mie regime, and the ray optics regime, were included.
However, for small displacements from the center of the optical trap the interactions can
be simplified to a harmonic potential or a linear restoring force, respectively, which then
was applied in the following chapters.

In chapter I.4, a close look was taken at a pressure-driven fluid flowing through a mi-
crochannel with a rectangular cross-section. The complete Navier-Stokes equation was
simplified to a Stokes equation which contains all the necessary components to character-
ize such a flow, assuming that it will always stay laminar, in other words no turbulence
will evolve. An analytical solution to this problem was already found earlier by Pozrikidis
[50] and led to the conclusion that the evolving parabolic Poiseuille profile in the vicinity
of the side walls of the channel by a local linear velocity profile can be described. This
profile was afterwards included in the differential equation of motion for a colloid confined
in an optical trap. These differential equations are so-called Langevin equations since
they include stochastic forces, and they were solved for the cases of a fixed position of the
optical trap (Sect. I.4.3) as well as for harmonic oscillations perpendicular to the flow
direction (Sect. I.4.4). The corresponding correlation functions were also determined.
They showed that, for an oscillating trap in a linear shear flow, all correlation functions
can be described by a linear superposition of the case of a colloid in a shear flow without
forced oscillations and the correlation functions of pure shear-coupled oscillations without
Brownian motion.

The following chapter I.5 featured a detailed numerical analysis of the system in all
aforementioned configurations. The basis was given by the Langevin equations from the
analytical chapter, which were then solved numerically. The resulting displacements and
especially their correlation functions were analyzed and compared to the analytical re-
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sults. A good agreement between both of them was found, which even made a parametric
study of the system feasible.

The central chapter of this study is the experimental realization of the system pre-
sented in chapter I.6. A setup of optical tweezers was chosen for this purpose, the
construction of which was explained in detail in section I.6.1. The same goes for all soft-
ware necessary for data acquisition and evaluation (Sect. I.6.2). Special care was taken
in the introduction of the calibration methods (Sect. I.6.3) that were applied to the
setup on a very regular basis in order to ensure a correct estimation of forces in section
I.6.4. There, a number of experiments were presented, including measurements in a qui-
escent fluid, in a linear shear flow, and the same measurements with an oscillating optical
trap. Their auto- and cross-correlation functions could be compared to the correspond-
ing analytical description of the system and to the numerical results. In the quiescent
and the shear flow case without forcing, a good qualitative and quantitative agreement
to theory could be found. When adding the forced oscillations to the system, though,
it became increasingly difficult to match both, however, a qualitative agreement in all
important features could be shown. Also, a methodology was introduced that allowed the
determination of the shear rate in the system from the relation of the amplitudes of the
oscillatory contributions to the auto-correlation functions. These results were critically
discussed in the following chapter I.7 and possible error sources were identified. The most
important among these is the tilt of the high-speed camera in the experimental setup
against the frame of reference of the piezoelectric stage, which leads to a mixing of the
x- and y-displacement signals. Thus, all correlation functions are given as mixtures of
all other auto- and cross-correlation functions, which makes a precise evaluation of the
data sets a big challenge and also requires a very exact alignment of the setup beforehand.

This work contributes to the general understanding of colloids under Brownian mo-
tion and, according to the knowledge of the author, it shows for the first time how forced
oscillations perturb their behavior in a linear shear flow. A setup of optical tweezers is
currently one of the few, if not even the only setup that allows measurements of Brow-
nian fluctuations in a shear flow or other similar profiles. Thus, it is not surprising that
only few studies have been published so far about this topic. Still, the presence of an
active flow and the additional oscillatory forcing of particles increase the necessity of
a daintily calibrated setup which does not ease its handling. Its strong susceptibility
to perturbations and vibrations of any kind add immensely to the challenge of gaining
clear measurements. However, when not working with active displacements of the opti-
cal trap but with a trap in rest instead, the high sensitivity of particle detection helps
in making even the smallest displacement visible and thus reveals the most interesting
cross-correlation behavior. In the opinion of the author, the system is best suited for
measurements not involving any active displacement of the sample cell.
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There is still a multitude of open questions which do not involve any active motion of
the sample cell, for example experiments in different flow profiles like elongational flows.
A study was already attempted by Matthias Werth [68] before, but he encountered many
problems with flow stability and the detection of the stagnation point of the profile. Also,
questions concerning complex fluids as well as their flow and correlation functions would
be an enthralling topic. Will the cross-correlation function of a polymer in a shear flow
look like the one in water or similar Newtonian fluids? Since polymers show interesting
dynamics in un- and refolding and due to their length also orient in the flow, the answer
is: probably not! But before actually attempting a study of these materials, nobody will
know for sure.

As far as further improvements of the setup are concerned, three properties in context
with the correlation studies which are so far not controlled in their entirety yet come to
mind. If a control of them was possible, it would be a huge benefit to any experiment.
Until now, the local temperature in direct vicinity of the bead in the optical trap has
been unknown. Assumptions about it can be made due to the knowledge of the bead
material and the surrounding fluid [66], however, a direct measurement of this quantity
or, even better, a means to control the temperature within the sample cell would be
favorable. Due to the small channel size of the typical microfluidic device, no easy way
of implementing it is obvious.

Another feature that would represent a huge benefit in handling the setup is a means
to do a live online measurement of the flow profile and the velocity. This would help in
determining whether, during an experiment, temporal or spatial fluctuations, which may
originate from a blockage in the microchannel occur. It would also help in a different
context: As shown in the past chapters, the correlation measurements allow the determi-
nation of the local shear rate. However, since there is currently no other method included
in the setup that would give a comparative measurement, it is so far not possible to per-
form tests with the method introduced here and to check on its accuracy or precision.
Such comparisons should be performed before the method can be applied safely.

It would also be very handy to have a better means to determine the exact position
of the trapped beads relative to the confines of the microchannel than just the visualiza-
tion by the high-speed camera. As discussed in chapter I.7, one of the most influential
error sources is the positioning of the beads, hence an improvement to it would be very
desirable. The same goes for the technique utilized for the production of the microchan-
nels. The manufacturing of the channels is performed by micromolding in PDMS and
this technique always causes a certain surface roughness, which is not very helpful in
determining the exact lateral distance.

To draw a final conclusion, one can say that a setup of optical tweezers is one of the
few and best tools if one wants to evaluate correlation functions of Brownian motion.
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However, the realization of these measurements becomes somewhat fiddly when active
forcing of the system is involved, as presented in this part of the thesis. It is possible
to find agreement between the theoretical model and experimental results, even if the
agreement is not quantitative in all regards. Thus, the results from this part build a solid
basis for the examination of DNA molecules in part III of the thesis. They will help to
understand the shear coupling, which in that case will happen out of the optical plane,
and to draw conclusions on the reaction of the DNA to it.
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Part II.

Macro- & Microrheology
of Mucus
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II.1. Introduction

This part focuses on mucus, a biological fluid of great importance in humans and most
animals. It can be found as covering layer on top of most organs that are in physical con-
tact with the external environment. Among others, this is the case in the gastrointestinal,
respiratory, and urogenital tract, as well as the eye tissue. It is mainly composed of water
(90 − 98wt%) and mucin-type glycoproteins, also known as short mucins (2 − 5wt%),
but also contains salts, fatty acids, phospholipids, cholesterol, DNA, and other proteins
[69, 70]. In healthy humans, a total daily amount of about 1L−1.5L of mucus is synthe-
sized by specialized goblet cells in the columnar epithelium. Its main function is that of
a selective barrier. On the one hand, it protects cellular surfaces from mechanical influ-
ences like friction [71] and prevents the penetration of foreign molecules like pathogens,
toxins, and other small particles [70]. On the other hand, it allows the passage of nu-
trients, antibodies, and cells of the mucosal immune system [72]. Additionally, it also
maintains the water balance in the cell [73].

For pharmaceutical purposes, especially the respiratory mucus occurring in the tra-
chea is a major concern. Many drugs that are applied through the windpipe, for example

Figure II.1.1.: Scanning-electron-micrograph of the cilia found in the rabbit trachea (adapted from
[74]). In our study, the cilia are not considered. We only investigate the rheological
properties of mucus, the fluid the cilia are in contact with.
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a spray, have to reach the cell membrane by diffusing through this particular mucus
layer. In the trachea, the epithelium is covered by the periciliary layer (PCL) followed
by a mucus layer. The PCL again contains hair-like structures, the so-called cilia, which
are surrounded by a low viscosity fluid containing tethered mucins. These cilia move to
a particular beating pattern [74], leading to an acceleration of the upper mucus layer,
which in turn causes the removal of entangled waste (Fig. II.1.1). This process is also
known as clearance. The PCL is kept stable during this process in order to always keep
the epithelium covered by a hydrated film. Depending on the organism (human or an-
imal) and the body site, mucus turnover times may vary between less than an hour up
to more than 24 hours [75]. In the pharmaceutical context this poses a huge challenge
since drugs only have this rather limited amount of time to diffuse through the mucus
layer. Optimization of drugs and their carriers is necessary to effectively transport them
to their site of operation and, at the same time, allow them to dissolve and find their
way through the mucus mesh.

In this part of the thesis, samples of respiratory mucus from horses are analyzed using
bulk (Ch. II.4.2.1) and microrheology techniques (Ch. II.4.2.2). For objects much larger
than the mean pore radius, the mucus mesh is found to behave as a viscoelastic solid
with high resistance to penetration. Smaller objects in the order of magnitude below
the pore radius may move through the material with only slight hindrance with mucus
showing properties similar to those of water. On intermediate length scales, though, a
mixture of passive and active microrheology reveals fascinating properties: While passive
measurements hint at a fluid of low viscosity, displacements bigger than hundreds of
nanometers in the active measurements are typically immediately hindered. Besides
information about the shear modulus, a spatial mapping of pore sizes which shows that
microrheological studies depend strongly on the position within a sample where they
are conducted is performed. By gaining more insight into the interaction of particles
with the mucus mesh, a further step can be taken towards understanding the selective
filtering mechanism of mucus. This might lead to a possible way of drug optimization to
make their transport through the mucus layer more efficient. This study was conducted in
cooperation with several groups of the pharmaceutical department of Saarland University.
Partially, the results have already been published and discussed [76]. There, mucus
properties were analyzed with the combined effort of atomic force spectroscopy, capillary
penetration, and microrheologic experiments, which, together with cryogenic scanning
electron micrographs, were considered to draw conclusions on the diffusion behavior
of colloids within the material. The study presented here expands on the rheologic
considerations.
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For centuries, mucus has been a much studied topic. This is not much of a surprise since
its role as a selective barrier in the human body is a very important one. However, the
means to characterize the material using rheological methods have only become available
in the late half of the 20th century. The first reported rheological study of mucus was
published in 1963 by Robert Denton [77], who experimented with a rotational viscometer
on human lung mucus. Many more studies followed in the following decades giving a
deeper insight into the material properties [78, 79, 80, 81]. However, all results concen-
trated on the macrorheology of mucus since techniques that allowed a close examination
of the microstructure and microscopic behavior of the material were not available yet.

As we know today, mucus is a viscoelastic gel mostly consisting of water and mucin-
type glycoproteins. These mucins form the walls of porous material, while an aqueous
solution fills the gaps in between. The average thickness of respiratory mucus in humans
averages to 15µm [75]. The pore spacing ranges, according to recent studies, from 40nm

up to several micrometers [76, 82]. This indicates that a material characterization on
the micro- and nanometer scale might be the key to understand the barrier properties of
mucus. Technology and techniques for this purpose became available in 1997 in the form
of high-speed cameras and the theoretical framework for particle tracking [83]. A particle
immersed in a fluid experiences impacts by the surrounding fluid molecules coming in
from all directions and leading to an arbitrary, tumbling motion, the so-called Brownian
motion [11] (compare also Pt. I). The particle trajectories can be related to the intrinsic
rheological properties of the fluid, in other words its shear modulus. Due to the size of
the used particles, this technique counts as a microrheology technique.

In the past decade, many studies which focused on the behavior of small particles
or molecules in different kinds of mucus were published. The typical mesh spacing of
cervical mucus was reported to range between 20nm and 200nm with an average value of
100nm [72]. More recent studies show, that depending on the particle types or molecules
used in the studies, it is still possible for them to diffuse through the pores when their
size is bigger (∼ 500nm) [84]. Studies for horse respiratory mucus show that pore sizes
in the periciliary layer (PCL) are typically smaller than 40nm [82], while in the floating
top layer pore sizes between 100nm up to several micrometers are common [76] (Fig.
II.2.1). This indicates that, in the biological system, the most interesting length scale in
the rheological sense lies below the micrometer range.
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Figure II.2.1.: Cryo-scanning-electron micrograph of respiratory horse mucus (adapted from [76]).
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II.3. Rheology of Fluids

Fluids and their flow have always been an important topic. When our planet was formed
billions of years ago, the flow of matter crucially determined the shape it has today.
But also now, in everyday examples, it remains a topic of open questions and many
challenges. When opening a water tap, how will the water flow out? What will happen
when it impinges on the surface of the sink?

A first, albeit simple, description of the flow of fluids was achieved by Sir Isaac Newton
in 1687 [85]. He defined the viscosity η as a measure of resistance the fluid will put up
against flowing. Assuming two parallel plates of area A in a distance d where one plate
is fixed, while the other one is moved at a constant velocity v, the shear stress τ acting
on the fluid is described by

τ = F
A
. (II.3.1)

The force F is given by

F = ηvA
d
, (II.3.2)

which through division by the area A leads to

τ = ηγ̇ . (II.3.3)

The shear rate γ̇ is defined by the decrease in velocity when moving from the surface of
the moving plate to the resting one. With this formula, Newton succeeded in finding the
easiest way to describe a flowing fluid. It only applies to a small class of fluids, which
were later denoted Newtonian fluids in his honor. Among these count water, glycerol
solutions, air, and many more. There is a broad range of fluids, however, whose flow
behavior is not grasped by this constitutive equation. Instead, it is necessary to take
elastic properties into account.

One way of doing so was found by James Clerk Maxwell in 1867 [86] who considered the
dynamical behavior of gases. Elastic properties of pure solids are given by the equation
of the Hookean spring

σ = Eε , (II.3.4)

where the tensile stress σ is linked to the elongation ε of the spring by the means of
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Figure II.3.1.: Equivalent circuit diagram of the Maxwell model. It is composed of a spring daisy-
chained with a dashpot. A characteristic viscosity η and a relaxation rate λ suffice to
describe the dynamic behavior of the system.

Young’s modulus E as a constant of proportionality. Maxwell then combined both models
by daisy-chaining an elastic Hookean spring with a viscous dashpot as depicted in figure
II.3.1. The stress τ (or respectively σ) has an effect on both elements, so that the total
strain γ (or respectively ε) is given as the sum of the elastic and viscous strain

γ = γe + γv . (II.3.5)

By calculating the derivative of this equation in respect to time and inserting the repre-
sentations of the Newtonian fluid (Eq. II.3.3) and Hookean spring model (Eq. II.3.4),
one arrives at the constitutive equation of Maxwell’s fluid model, which reads

γ̇ = τ̇

E
+ τ
η
. (II.3.6)

Multiplication of this equation with η finally leads to the well-known notation of this
model

τ + λτ̇ = ηγ̇ , (II.3.7)

where the relaxation rate λ is defined as the quotient of the viscosity and the elastic
modulus. In terms of complexity, this model is the easiest way to include elastic as well
as viscous properties into a material description. In terms of gaining a solution of this
differential equation, performing a Fourier-transform is the simplest way. This gives

τ̃(ω) + iλωτ̃(ω) = iηωγ̃(ω) (II.3.8)

which by recasting leads to the complex shear modulus [49]

G̃(ω) ∶= τ̃(ω)
γ̃(ω)

= i ηω

1 + iλω
. (II.3.9)

This expression can be expanded and subdivided into a real - or elastic - part G′ and an
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Figure II.3.2.: Typical curve progression of the shear modulus according to Maxwell’s model. The
elastic contribution increases proportionally with ω2 before reaching a constant value
at the characteristic frequency 1/λ. The viscous contribution increases proportionally
with ω at first before beginning to decrease proportional to ω−1 upon exceeding 1/λ.

imaginary - or viscous - part G′′

G′(ω) ∶=Re{G̃(ω)} = ηλω2

1 + λ2ω2
, (II.3.10)

G′′(ω) ∶= Im{G̃(ω)} = ηω

1 + λ2ω2
, (II.3.11)

so that the complex shear modulus1 is defined as G(ω) = G′(ω) + iG′′(ω). More in-
formation on the significance of G′ and G′′ will follow in the next chapter. Their typ-
ical curve progression of a Maxwell fluid is depicted in figure II.3.2. Besides the com-
plex shear modulus, a complex viscosity can be defined as η∗(ω) = −iG(ω)/ω, where
η∗(ω) = η′(ω) − iη′′(ω).

While a basic handling of complex, viscoelastic fluids is now possible using this frame-
work, it is still not sufficient for most polymers. Many of them do not only show a single
relaxation rate but a whole relaxation spectrum. Fortunately, the versatility of this model
can be expanded tremendously by shunting multiple spring-dashpot-elements, which from
now on will be denoted as Maxwellian elements. Then, the total shear modulus is given
as a sum over all partial Maxwell contributions

G(ω) =∑
i

Gi(ω) , (II.3.12)

1From now on, the tilde-symbol will be omitted from quantities expressed in frequency-space.
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which leads to

G′(ω) = ω2∑
i

ηiλi
1 + λ2

iω
2
, (II.3.13)

G′′(ω) = ω∑
i

ηi
1 + λ2

iω
2
. (II.3.14)

Although, under normal circumstances, it is not necessary to take a huge number of
Maxwellian contributions into account, at least two of these should definitely be uti-
lized. When considering the behavior of the viscous modulus in figure II.3.2, it becomes
apparent that for large frequencies, G′′ approaches a value of 0Pa. This, however, is
equivalent to a continuously decreasing dissipation of energy. If a real fluid is examined,
such a behavior cannot be found at all; rather, the dissipation increases more and more.
If one Maxwellian element is shunted with a purely Newtonian one, i. e. a dashpot is
added in parallel to the model presented in figure II.3.1, this leads to the desirable effect
of a steadily increasing G′′. Furthermore, this has no effect on the elastic modulus. Such
a two-component model is denoted Jeffrey’s model [49], which will play an important
role later on in context with microrheology.

II.3.1. Macrorheology

There is a number of means which allow the determination of the shear modulus of fluids.
One of them, the conicylindrical viscometer, was proposed by Mooney and Ewart in 1934
[87]. First applications of the concept followed about 10 years later by Russell [88], who
used it for normal stress measurements. This led to a huge increase in popularity of
the instrument. Many more studies followed, for instance about the flow behavior of
industry oils [89] and molten polyethylene [90]. It also caused an increased interest in
the development of devices that enable rheometric experiments. Among other concepts,
the cone-plate viscometer was invented in 1950 by Higginbotham [91], who intended
to use it to “determine the flow curves of anomalous fluids over a wide range of rates
of shear”. A few years later, McKennell established the instrument for the use with
Newtonian fluids under lower shear rates as well [92]. Since then, the popularity of the
cone-plate rheometer has risen tremendously to a point where it is used as a standard
tool for such experiments.

A cone-plate rheometer consists of a fixed bottom plate over which a rotor is aligned.
It has a conic shape - however, in order to avoid damage to the bottom plate, in case of
most commercially available instruments the tip of the cone is flattened. The distance
between cone and plate can be controlled by a motor. The same is true for the rotation
angle and velocity which can be set by a second motor. More details about the instrument
utilized in this study will be presented later (Sect. II.4.1.1).

The typical experiment performed in a cone-plate rheometer is a continuous shear
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experiment. For this purpose, a constant shear stress is set and the evolving shear
rate can be measured after a certain amount of equilibration time. Based on their
principle, these experiments are also denoted controlled stress (CS) experiments. The
opposite is possible, too, by setting a shear rate and measuring the stress (controlled
rate experiment, CR). Complex fluids differ from Newtonian fluids by showing shear-
thickening or -thinning effects which become obvious in non-linear flow curves, i. e. the
viscosity versus shear rate behavior. The extraction of elastic and viscous properties from
the fluid under examination, however, is not possible. This can be achieved by performing
a small amplitude oscillatory shear (SAOS) experiment [93]. In a controlled deformation
(CD) experiment, the shear strain γ is oscillated by applying a forced sinusoidal rotation
to the rotor. This leads to

γ(ω, t) = γ0 sin(ωt) (II.3.15)

with a certain strain amplitude γ0 and frequency ω. The fluid will respond with an
equally oscillating shear stress

τ(ω, t) = τ0 sin(ωt + δ) (II.3.16)

with a certain amplitude τ0. Although the stress oscillations will happen at the same
frequency, usually a phase shift δ becomes apparent since the fluid needs a certain amount
of time to adapt to the shearing. For Newtonian fluids, this shift equals π/2 because the
fluid reacts to changes in shear rate and not in shear strain. Purely elastic solids, however,
react to shear deformations and thus show no phase shift. If a viscoelastic material is
considered, a phase shift in between these two extrema will result.

Equation II.3.16 can be simplified using addition theorems [59] to give

τ(ω, t) = τ0 cos(δ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

τ ′

sin(ωt) + τ0 sin(δ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

τ ′′

cos(ωt) , (II.3.17)

which also leads to the relation

tan(δ) = τ
′′

τ ′
. (II.3.18)

If now the shear stress amplitude is divided by the shear deformation amplitude, as
defined by equation II.3.9, one gains the real and imaginary part of the shear modulus

G′(ω) = τ ′

γ0
, (II.3.19)

G′′(ω) = τ
′′

γ0
. (II.3.20)

According to its definition, the real part of the shear modulus contains all information
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about the elastic properties of the fluid. This can now be easily understood since τ ′(ω)
only gives the in-phase response of the fluid. Equivalently, the imaginary part of G
describes the viscous properties since it depends only on the out-of-phase response. This
theoretical framework for SAOS experiments using a rheometer will be applied in section
II.4.2.1 to gain insight on the flow properties of mucus.

II.3.2. Microrheology

In 1995, Mason and Weitz published an article about how the shear modulus can be
extracted from particle trajectories that are confined in an optical trap [36]. They were
able to relate the Laplace-transformed trajectories to the shear modulus G̃(s). However,
before being able to make meaningful conclusions about the material, a fit of these data
sets and an extrapolation was necessary. It was only then, that it became possible to de-
termine the shear modulus G(ω) which is equivalent to the macrorheological data gained
by SAOS experiments in a rheometer (see past section). Due to the small size of the
spheres on the micro- to nanometer scale, this technique was labeled microrheology. It
was used during the past 15 years to examine a broad range of fluids like polyethylene
oxide [83, 94], but also biological fluids like actin solutions [95] and biomaterial hydro-
gelators [96], of which typically only small amounts are available. Since microrheology
techniques only have small volume requirements, they are perfectly suited for this task.

Two years later, in 1997, Schnurr et al. published a method which allows to deter-
mine the frequency-dependent shear modulus by calculating the power spectral density
of colloidal motion [97]. This method comes with the advantage that no fitting or extrap-
olating is necessary in order to identify G(ω). Like the other method, this one was also
applied to a wide variety of fluids. Among the researched materials count polyacrylamide
gels [98], the fd virus [99], actin networks [42], aging colloidal glasses [100], and many
more. Since it is also the method of choice in this thesis, a few more details about the
theoretical background of microrheology shall be added here. An in-depth calculation
including a detailed discussion about the feasibility of this method can be found here
[101].

As a starting point, the same Langevin equation of motion that was already intro-
duced in part I (Eq. I.4.14) can also be used here. A generalization has to be applied to
the coefficient of friction ζ since the fluids under examination will not be non-elastic New-
tonian fluids but rather complex, viscoelastic ones. Thus, ζ becomes a time-dependent
function instead of a constant and Stokes’ friction force can be written as

F⃗fric(t) =
t

∫
0

dt′ζ(t − t′)v⃗(t′) . (II.3.21)

Since it takes all past deformations of the fluid into account, this type of function is also
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called memory function. Inserting it into equation I.4.14 gives the modified Langevin
equation for complex fluids. Since the position of the trap will not change during the con-
duction of a measurement, xtrap(t) can be set to zero. Also, this equation will be valid for
all directions of motion because there is no additional flow or any other effect that would
have an impact on the corresponding differential equation. By Fourier-transforming and
recasting the equation, the following formulation is reached:

x̃(ω) = 1

k − iωζ̃(ω)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

α̃(ω)

F̃r,x(ω) . (II.3.22)

The susceptibility α̃ can be considered as the response function of the fluid that links
displacements to the stochastic force. It contains all relevant information to characterize
the fluid rheology. It is related to the shear modulus by

G(ω) = 1

6πrc

1

α̃(ω)
, (II.3.23)

hence

G′(ω) = 1

6πrc

α̃′(ω)
∣α̃(ω)∣2

, (II.3.24)

G′′(ω) = 1

6πrc

α̃′′(ω)
∣α̃(ω)∣2

. (II.3.25)

Still, the challenge remains to relate measured displacement data of the beads to α̃. This
can be achieved by calculating the power spectral density, which is in turn related to the
imaginary part of the susceptibility by [97]

α̃′′(ω) = ω

2kBT
⟨∣x̃(ω)∣2⟩ . (II.3.26)

A Kramers-Kronig relation helps to determine the real part by solving [102]

α̃′(ω) = 2

π
P

∞

∫
0

ωα̃′′(ω) − εα̃′′(ε)
ε2 − ω2

dε . (II.3.27)

The integral given here is a so-called principal value integral, indicated by the “P” in the
integral symbol. This means that the two occurring singularities at ω = ±ε are omitted
from the integration, while the remaining interval is solved as usual. In case of the
experiments presented later, the integration is performed numerically and only the poles
are left out.

The framework introduced here allows to determine the complex susceptibility and
thus the shear modulus of a fluid straight away. The only thing required is the dis-
placement data of a passive tracking experiment of a particle in an optical trap, or,
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respectively, the power spectral density of that quantity. Care has to be taken when
interpreting the real part of the shear modulus since it does not only contain the elastic
properties of the fluid but also those of the optical trap itself. However, the contribution
of the trap can be quantified as being frequency-independent and defined by [41]

G′
trap =

k

6πrc
. (II.3.28)

Hence, the true elastic modulus of the fluid can be gained by subtracting equation II.3.28
from II.3.24.
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II.3.3. Summary

Part II of this thesis deals with measuring and interpreting the rheological properties of
mucus which is a complex biological fluid. Hence, a framework which allows its exam-
ination needs to be established. Two different devices, the cone-plate rheometer and a
setup of optical tweezers, were introduced in this chapter. While both of them enable the
measurement of the shear modulus G, there is an important qualitative distinction: The
rheometer determines bulk properties of a comparatively large volume of fluid, while a
setup of optical tweezers accesses the local material properties in the direct vicinity of a
probe particle. Hence, both methods are respectively denoted as macro- and microrhe-
ology.

At first, the model of a Maxwell fluid was introduced. Besides the properties of a
purely viscous, Newtonian fluid, it also shows elastic behavior similar to that of a solid.
Thus, a constitutive equation which encompasses both features can be derived. By
solving the arising differential equation in frequency-space, the shear modulus is given
by the quotient of shear stress and strain. In general, it is a complex quantity whose real
part describes the elastic features of the fluid under examination, while its imaginary
part encompasses the viscous ones. However, in order to gain a realistic model of a fluid,
a second Newtonian dashpot has to be shunted with the Maxwell model, thus leading
to Jeffrey’s model of a fluid. Otherwise, when increasing the driving frequency ω, the
imaginary part of the shear modulus will decrease towards zero, indicating a decrease in
energy dissipation at the same time.

In section II.3.1, the principle of small amplitude oscillatory shear (SAOS) experiments
was introduced. For this macrorheological technique, a classical shear rheometer like the
cone-plate rheometer is required. The rotor is then oscillated at very small amplitudes
over a wide range of frequencies to record the material response. Equivalently to the
driving shear strain γ, the responding shear stress τ is also given by a sine function.
However, the response may be phase-shifted to a certain degree depending on the fluid
under examination. For viscoelastic fluids, the phase shift is found in between the extrema
of a Newtonian fluid and an ideal solid, however, it may vary with the driving frequency.

In section II.3.2, a setup of optical tweezers with the goal to examine the microrheo-
logical properties of a fluid was considered. By immersing small spherical particles into
a fluid, they will collide with a multitude of fluid molecules and thus start to tumble
arbitrarily. It is possible to compose a stochastic Langevin equation which contains all
forces influencing the particle motion and which can be solved in frequency-space. This
finally allows to determine the local shear modulus of the fluid by analyzing the shiver-
ing of a confined bead. While for Newtonian fluids the microrheological shear modulus
equals the macrorheological one, significant differences may be found when considering
complex fluids with a local microstructure. This will be discussed in chapter II.5.
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In this chapter, details will be given about the experimental study. At first, the cone-
plate rheometer and the setup of optical tweezers will be explained which were utilized
for the conduction of all experiments in part II. Then, information about the performed
experiments as well as their results will follow in section II.4.2. A part of their discussion
will happen there, too. Most of it is contained in chapter II.5.

II.4.1. Experimental Setups

II.4.1.1. Rheometer

For the macrorheological examination of fluids, a rheometer can be used. This is a
device that allows very precise shearing of fluids and synchronous normal force/stress
measurements in a wide variety of geometries like cone-plate, plate-plate, Taylor-Couette-
cylinder geometries, and many more [103]. For this study, the rotational rheometer

(a) Photograph of the HAAKE MARS II rheometer. All important
components have been marked in the picture.

(b) Photograph of the cone-plate geo-
metry C60/0.5○. It consists of a ro-
tor (upper left part) and a cup (up-
per right part) as well as a plastic
top cover with sponges (lower part).

Figure II.4.1.: Photograph of the utilized rheometer HAAKE MARS II as well as all of its crucial
components.
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HAAKEMARS II (Fisher Scientific GmbH, Schwerte, Germany) was used in combination
with a cone-plate geometry (C60/0.5○-Ti, Fisher Scientific GmbH, Schwerte, Germany).
The geometry has a diameter of 6 cm and an angle of 0.5○ of the cone mantle in respect
to the bottom plate. Then, the sample volume amounts to 500µL. In order to avoid
undesirable evaporation of the sample fluid, the rotor can be additionally covered by a
plastic top cover. Sponges attached to its interior can be soaked with water in advance of
an experiment, so an atmosphere saturated with water around the geometry is maintained
during the measurements. The rheometer and the geometry are depicted in figure II.4.1.

The rheometer itself consists of a fixture for the cup of the geometry and a rotational
motor which can be adjusted in height above it. The rotor of the geometry is attached
to the motor by a screw. A height adjustment motor built into the side poles of the
device allows precise control of the distance between bottom plate and rotor, which due
to the specifications of the C60/0.5○ needs to be set to 26µm. During the conduction
of an experiment, the temperature of the fluid can be controlled by water-tempering the
cup. This is achieved by a thermostat (HAAKE Phoenix II, Fisher Scientific GmbH,
Schwerte, Germany) which is attached to the bottom fixture by tubes.

The HAAKEMARS II offers a wide range of measurement types with adaptable proto-
cols. Thus, continuous shear experiments, small and large oscillatory shear experiments,
creep-recovery tests, and many more are possible. However, since the viscoelastic pro-
perties of mucus are of interest, only amplitude- and frequency-sweeps were performed,
which both count as small amplitude oscillatory shear experiments (SAOS). The details
of the measurement protocol will follow in section II.4.2.1.

II.4.1.2. Optical Tweezers

The setup of optical tweezers utilized for the microrheological characterization of mucus
is identical to the setup in the first part of this thesis (Sect. I.6.1). Since no flow control
is necessary for the experiments with mucus, the corresponding part of the setup was not
used here.

However, another prerequisite needed to be fulfilled to make successful measurements
possible. Since the sample volumes of biological fluids are usually very small, i. e. mi-
croliters of material are available, a special sample container must be used to efficiently
examine them. One such sample cell is offered by Thermo Scientific and goes by the
name Gene Frame (art.-no. AB-0576, Fisher Scientific GmbH, Schwerte, Germany). It
consists of a standard microscope slip on top of which an adhesive of square cross-section
with a 1 cm×1 cm hole in the middle is attached. The preparation steps are described in
the appendix (Sect. A.2.2). This type of sample cell strongly facilitates the handling of
biological fluids and at the same time prevents any evaporation, so any loss of material
during the conduction of an experiment can be safely neglected.
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II.4.2. Measurements

This study was conducted as an expansion of the study reported in [76]. It will revisit
and discuss earlier results and thus present similar findings. For this study, only na-
tive respiratory mucus obtained from the distal region of the bronchia that was gained
during bronchoscopy of healthy horses was utilized. It was stored at −80 ○C until the ex-
periments were conducted. The samples used for the macrorheological characterization
originate from two horses, while the material for microrheology was taken from a third
animal one year earlier. Although in no case the same batch of material was used to
perform both experiments in parallel, studies show that the differences in macroscopic
material properties do not vary in a strong manner when comparing two different healthy
individuals [76]. On the contrary, the local microrheological properties within the same
batch vary in a much more significant manner than the properties when comparing one
sample to another. Thus, all samples utilized in this study can be assumed to be similar
in respect to their shear modulus.

II.4.2.1. Macrorheology

As already mentioned in section II.4.1.1, small amplitude oscillatory shear (SAOS) expe-
riments will be used for the macrorheologic characterization of mucus. Due to the high
viscosity of mucus, it was not possible to fill the material into the measurement geometry
using a pipette. Instead, the correct amount had to be estimated in advance and directly
put out of an Eppendorf sample tube on top of the cup. This led to a slight underfilling
of the geometry, which could not be avoided due to the lack of sufficient volumes of ma-
terial. All experiments introduced here were performed on the mucus samples of each of
the horses at least twice to ensure the validity of the data. The temperature was kept at
20.0(1) ○C at all times by tempering. To avoid evaporation of fluid, the optional plastic
top cover was placed around the rotor to keep a water-saturated atmosphere inside.

Two classes of SAOS experiments were performed. The first one, an amplitude sweep,
served as a preparation step for the second one, a frequency sweep. In both cases, oscil-
lations are applied to the rotor and both the rotation angle as well as the normal stress,
acting on the rotor, are recorded. Afterwards, the response is fitted automatically by
the proprietary software HAAKE RheoWin (version 4.30.0017, Fisher Scientific GmbH,
Schwerte, Germany) to determine the stress amplitude and its phase shift in respect to
the driving oscillations. In this way, information is gained on the elastic and viscous part
of the shear modulus as already detailed in section II.3.1.

Amplitude and frequency sweeps only differ in their way of parameter variation: Dur-
ing amplitude sweeps, the strain amplitude is varied with the frequency being constant.
During frequency sweeps, the role of both parameters is reversed. As a rule of SAOS
experiments, the response of the fluid should always be linear, in other words, no higher
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Figure II.4.2.: Evaluation of the linear response range via an amplitude sweep with a mucus sample
at an oscillation frequency of 0.1Hz.

harmonics should play a significant role. Hence, amplitude sweeps are used in advance to
gauge the range of linear deformation of the fluid at fixed frequency values. For mucus, a
frequency of 0.1Hz was chosen for this purpose while the amplitudes were varied between
γ = 10−3−101 or, respectively, between 0.1 % and 1,000 %. In shear modulus versus strain
plots (Fig. II.4.2), the elastic and viscous part of G starts to show decreasing values upon
exceeding γ = 20 %, hence this value marks the upper limit of the linear range. Since the
signal to noise ratio during SAOS measurements is optimal when the driving signal is as
strong as possible, this value will be used as strain amplitude during all later frequency
sweeps.

A visualization of this transition from linear to non-linear deformations is achieved
by plotting the torque wave measured by the rheometer as a response to the rotation
angle of the rotor. Such a plot is equivalent to a stress versus strain plot and results in
so-called Lissajous-figures (Fig. II.4.3). As can be seen in the graph, for deformations
smaller than 70 % the curves are qualitatively described as ellipses. At bigger values,
they transform more and more into parallelograms which additionally show wavy edges.
Theory predicts that for linear responses of viscoelastic materials, ellipses can be ex-
pected. Any deviation from this shape is a strong indication for non-linear effects. In
other words, these Lissajous-plots state that a linear response can only be expected well
below a strain of 100 %. This result matches the choice of γ = 20 % for the amplitude
sweeps. As a comparison to the Lissajous plots of mucus, a similar plot is drawn in
figure II.4.4 for a sample of 1200ppm polyacrylamide (PAAm) with a molecular weight
of 5 million u in an 80% glycerol solution. PAAm is often used as a model polymer since
it is a material that does not show significant degradation effects even over long periods
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Figure II.4.3.: Lissajous-figures gained by an amplitude sweep with a mucus sample at a frequency of
0.1Hz. The figures are drawn by plotting the measured torque wave against the shear
deformation given by the rotation angle.

Figure II.4.4.: Lissajous-figures gained by an amplitude sweep with a sample of 1200ppm polyacry-
lamide (PAAm) with a molecular weight of 5 million u in an 80% glycerol solution at
a frequency of 0.1Hz. The figures are drawn by plotting the measured torque wave
against the shear deformation given by the rotation angle.

of time. Even with much higher values of the rotation angle as well as a higher torque
amplitude, the Lissajous plots keep their elliptic shape. Higher harmonics do not play
a significant role until much higher shear deformations are reached. For this particular
material, the region of linear response ended at 50% strain which lies slightly above the
value in mucus. In this respect, the Lissajous plot for mucus shown in figure II.4.3 can be
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Figure II.4.5.: Results from small amplitude oscillatory shear experiments performed at two mucus
samples stemming from two different horses. The elastic modulus is shown as black
upwards-pointing triangles and blue plus symbols, the viscous modulus is displayed in
red downwards-pointing triangles and yellow crosses. The depicted data sets can also
be found in table D.8 of the appendix.

considered as a special property of the material which is not shared by many commercial
polymers like PAAm.

Based on this conclusion about the linear region of native respiratory horse mucus, a
series of frequency sweeps with the samples of both horses were performed. Only one of
each will be discussed here (Fig. II.4.5) since there were no significant differences between
successive measurements. The most notable one was that the longer the samples were
exposed to the rheometer, the more both the elastic and the viscous modulus shifted
towards higher values. Probably, this is due to a decrease in water saturation around the
measurement geometry and thus an increased water-loss from the samples. This effect
also became apparent after the conclusion of the experiments, when the geometry was
cleaned. Hence, only the first measurement of each series is presented here since they
reflect the physiological conditions to the highest degree.

The SAOS frequency sweep itself was set to be performed at a constant strain γ = 20 %

as discussed before. The frequency was varied between 0.01Hz and 5Hz. Each recorded
point at each of these frequency values represents ten successive oscillations whose average
oscillation was computed by RheoWin before fitting the data. Thus, the overall error
could be minimized. In respect to errors, no exact value can be given since the rheometer
and its software do not give an estimate. However, it appears reasonable to assume an
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error margin of 10 %.
A property of the examined horse mucus which can be extracted at first glance from

figure II.4.5 is that it is a viscoelastic material, indeed. Both the elastic and the viscous
modulus exhibit significant absolute values which are clearly above any noise level or
error margin. Furthermore, in the examined frequency range, the elastic modulus always
exceeds the viscous one, thus, the material behaves more like a solid than like a fluid.
However, let us focus on the elastic modulus measured on the material from horse 1. If
one leaves small variations out of account, the curve always increases monotonically. At
low frequencies, it does so with the steepest slope which then decreases with increasing
frequency until nearly reaching a slope of 0 at 5Hz and hence a plateau value. Overall,
the frequency dependence of the elastic modulus is a weak one.

The data set of the viscous modulus is significantly noisier, however, after an increase
of the modulus up to 4 ⋅ 10−2 Hz a decrease follows. Upon exceeding a frequency of 6Hz,
G′′ starts to increase again. In total, the variation in absolute value are just minor,
thus, the viscous modulus can be considered to remain constant in the probed frequency
interval. For both the elastic and the viscous modulus, the frequency dependence is a
weak one. Over more than two orders of magnitude in frequency, both of them roughly
double. Compared to other polymer solutions like polyacrylamide where changes of the
shear modulus over multiple orders of magnitude are typical, the shear modulus of mucus
can be considered to be almost independent from the frequency. Thus, no matter how
long or short the timescale of the excitation is chosen, the bulk response of mucus will
remain almost identical.

Overall, the change in slopes of G′ and G′′ concur with those of a Jeffrey fluid. Since
the specific power-dependencies in respect to the frequency deviate from the predictions
by the model, fitting the data with it does not seem feasible. Of course, assuming more
than just one Maxwellian fluid element, in other words more than just one relaxation rate,
might help to gain a better agreement. However, the shear number of fitting parameters
makes a clear understanding of the mechanical properties of the fluid a very challenging
task and is thus not very reasonable.

As already mentioned in the introduction to this section, additional mucus samples
from other horses were examined as well. The result of a SAOS experiment on one
further sample is displayed in figure II.4.5. As compared to the first sample, the real
and the imaginary part of G are situated at slightly lower absolute values, however,
the functional frequency dependence is duplicated in a very exact manner, indicating
an identical function of the material. In other words, both curves in- and decrease at
identical characteristic frequencies. Although different horses were considered and hence
a certain biological variation in mucus production and composition have to be assumed,
the general function of mucus is still the same. This feature is captured well in the figure
since the curves do not match in their absolute value.

To the knowledge of the author, not many macrorheological studies on respiratory
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horse mucus were published until now. Lai and others published a study on human
cystic fibrosis sputum [71], which also included SAOS experiments on the material. Al-
though the mucus was taken from humans and, additionally, a disease condition (cystic
fibrosis) was present, the function of the fluid is the same. Thus, it is not very surpris-
ing that both the elastic as well as the viscous modulus range from 100 Pa to 101 Pa

for frequencies between 10−2 Hz and 5Hz. This means that horse mucus has a shear
modulus which is higher by a factor of 103. Much more interesting is that the qualita-
tive functional behavior is similar. In case of human mucus, at frequencies smaller than
2 ⋅ 10−1 Hz, G′ increases proportionally to f0.5, while at higher frequencies G′ ∝ f0.3. At
the same time, the viscous modulus G′′ remains constant. Also, the elastic modulus at
all examined frequencies is bigger than the viscous one.

At this point, it is possible to draw a partial conclusion: If mucus from the same region
in the body is considered, the qualitative rheologic properties may remain comparable
even if it is taken from different species of mammals. This seems to hold true since the
examined mucus samples had the same function in the body, and even the fact that
a disease state was present in one of the subjects did not cause significant changes to
the rheology of the material. However, the goal of this study consists of a comparative
examination that compares macrorheologic SAOS experiments to microrheologic particle
tracking experiments. Hence, in the following section, tracking experiments using optical
tweezers will be introduced.
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II.4.2.2. Microrheology

As mentioned in earlier chapters, the principle of determining the microrheology of a fluid
is based on the Brownian motion of small particles in its bulk. It can be achieved in two
ways: There is a first option to visualize a free random walk. In that case, no focused laser
beam is necessary. However, in most fluids, this will lead to the sedimentation of these
particles and, thus, they will move out of the focal plane. Recording their motion after
they reach the cover slide is possible, but one always has to take into account that they
might get immobilized by attraction to the glass. Overall, this method is not the most
reliable one. Alternatively, one can trap the particles using a setup of optical tweezers.
In this case, the beads will always remain in the focal plane, where they can be visualized
over long periods of time without any difficulties. The influence of the confinement has
been modeled earlier and is well-known (compare Ch. I.4). This technique will be applied
in this section.

Each of the mucus samples is prepared as follows: Frozen samples of respiratory
horse mucus in test tubes are defrosted, mixed with a small amount of melamin resin
microparticles (Tab. A.1), and filled into a Gene Frame which has been made ready
for use according to the manual of the appendix (Sect. A.2.2). After closure of the
sample cell, it is brought into the setup and examined within the next 4 hours. Melamin
resin beads were chosen for this purpose since their refractive index of 1.68 proved to be
ideal to be visualized with a good contrast within mucus samples. The concentration
of beads typically amounts to between 200ppm and 2,000ppm, which is a value that
enables the experimenter to find a reasonable number of beads with which to perform
all experiments, while at the same time the rheology of the fluid is not influenced in a
significant manner. They also do not come in the vicinity of one another, which might
otherwise cause correlations through hydrodynamic interactions. As already mentioned
earlier, none of the samples which were examined in the rheometer have also been used for
measurements in the setup of optical tweezers and vice versa. When the microrheologic
experiments were performed only small amounts of material were available which would
not have been sufficient for macrorheologic measurements. Although the samples differ,
it is assumed that the material behavior will remain comparable since it was in all cases
taken from healthy animals and from the same region in their bodies.

After trapping a bead, a series of four experiments is performed, two passive and
two active tracking experiments. A passive tracking experiment consists of recording
the motion of the bead for a certain amount of time while keeping it confined in the
optical trap. No active forcing is performed. The opposite is true for the active tracking
experiments, where an oscillation with a triangular oscillation profile is applied to the
piezoelectric stage. While the conduction of each passive experiment is entirely identical
- they are only repeated to have some measure of redundancy - during the first active
experiment, the oscillation is applied in one of the two translation directions of the stage,
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i. e. the x-direction, while during the second one the y-direction is chosen. This is aimed
at possible anisotropic material properties. All measurements are recorded at a rate of
16 kHz and a trap strength of 1.5µN/m. The typical oscillation amplitude amounts to
1µm, while the frequency 0.2Hz is chosen to give even a strongly confined bead much
time to adapt. Afterwards, the stored picture series are evaluated using the particle
tracking algorithm by Achim Jung [64], which was mentioned earlier in section I.6.2.

Passive Microrheology

As a first part of the analysis, the mean squared displacements (MSD) of a series of eight
independent measurements shall be examined. In general, the MSD is a measure very
often used in statistics to describe stochastic processes like Brownian motion. It gives
information about how far in average a particle can move after a certain amount of time
τ . It is defined as

⟨∆r2(τ)⟩ = ⟨(r(t + τ) − r(t))2⟩
t

(II.4.1)

In case of purely viscous Newtonian fluids, the MSD is proportional to τ

⟨∆r2(τ)⟩ = 2Dτ , (II.4.2)

where D = kBT /6πηrc is Einstein’s diffusion coefficient. While it is a constant in case of
Newtonian fluids, for complex fluids η becomes time-dependent and differing functional
dependencies of the MSD in respect to time may appear. All experiments are performed
at different positions within the sample and repeated once as explained in the past
paragraph. However, the repetition runs are not depicted here since the reproducibility
of the measurements will be discussed later on. Each particle is tracked in two lateral
dimensions, the MSD of both is displayed individually in figure II.4.6a. As opposed
to mean squared displacements of homogeneous fluids like hydroxyethylcellulose (Fig.
II.4.7) where curves measured at different positions within the fluid overlap neatly, mucus
displays a strong degree of heterogeneity. The curves show a huge spread over nearly two
orders of magnitude, i. e. from 4nm2 to 100nm2 at 10−4 s, and depending on the region
where they were recorded, the slope and curvature of each MSD may vary significantly.
As indicated by equation II.4.2, the mean squared displacement gives an indication about
the diffusion behavior of beads through a particular medium. The steeper the slope in
a log-log-plot of the MSD versus time is, the faster the diffusive process will occur. A
logarithmic slope of 1 correlates with the Newtonian case (Eq. II.4.2), which can also be
called normal-diffusive behavior, while a slope bigger than 1 means a faster diffusive or
super-diffusive motion and a value smaller than 1 corresponds to a slow or sub-diffusive
process. If the results for mucus in figure II.4.6a are observed, the steepest slope one
can find corresponds to ⟨∆r2(τ)⟩ ∝ t2/3, thus, all diffusive processes in mucus can be
considered sub-diffusive. The weakest slope, on the other hand, is corresponding to
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(a) Overview of the distribution of mean squared displacements within a mucus
sample. The x- and y-component at each position is plotted independently
(marked by different symbols of the same color) since huge variations may
occur.

(b) The mobility of beads in mucus can vary drasti-
cally when considering different locations within
the mucus mesh. While the first bead (black cir-
cles) shows Newtonian diffusion behavior, the sec-
ond bead (red crosses) is strongly confined and can
barely move at all.

(c) To check on the reproducibility of an MSD mea-
surement, the same experiment was repeated with
the same bead after about 5 minutes. While both
curves are slightly shifted against each other, the
curve progression does not change. Both measure-
ments were performed in the x-direction.

Figure II.4.6.: Mean squared displacements from passive tracking experiments at different positions
within the same mucus sample.

⟨∆r2(τ)⟩ ∝ t1/7. This represents such a strong confinement of the bead that nearly no
motion is possible at all. These two curves are displayed separately in figure II.4.6b. A
very interesting feature of some of the MSD curves is nicely visible for the blue and violet
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Figure II.4.7.: Overview of the distribution of mean squared displacements within a 1 % hydroethoxy-
cellulose (HEC) sample. The x- and y-component at each position is plotted indepen-
dently (marked by different symbols of the same color). This graph was adapted from
figure 4B in [76].

curves in the figure: Strong variations in curvature that sometimes even seem to cause
local oscillations of the MSD and thus indicate a very complex diffusion behavior at this
particular position within the sample occur.

To make sure that the displacement data and the calculated mean squared displace-
ments are reliable, all passive tracking experiments were repeated once with the same
bead at the same position within the sample. As becomes obvious in figure II.4.6c, a
small shift between the curves may occur. However, the qualitative shape of the curves
or, in other words, their slope and curvature remains unvaried even after waiting for
about 5 minutes. Hence, the data sets shown here can be considered credible. In order
to quantify the influence of the optical trap on the Brownian motion in both materials the
turquoise + and × symbols in figure II.4.6a as well as all measurements shown in figure
II.4.7 can be taken into account. The MSD value these curves reach after a time step
of 1 s represents the physical extent of the optical trap. In case of mucus, the value lies
at approximately 1000 nm2 while in case of HEC due to a lower trap strength a slightly
increased value of 3000 nm2 is observed. Even although a colloid would diffuse further
away from its starting position if it was given more time and no optical trap was present
this will not happen in the presence of an optical trap. Hence, in case of all measure-
ments presented here, for longer time steps one only observes fluctuations around this
maximum value of the mean squared displacement.

In chapter II.3.2, an analytical framework that allows to determine the shear modulus
of a fluid from displacement data sets of confined beads was developed. An algorithm
which can be used to accomplish this task was presented in the author’s diploma thesis
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(a) Elastic contribution G′ to the shear modulus. (b) Viscous contribution G′′ to the shear modulus.

Figure II.4.8.: Results from passive particle tracking experiments at different positions within the
same mucus sample. The complex shear modulus is divided into its elastic and viscous
components G′ and G′′ and plotted in the respective subfigure. A fit of the data set
M4 above 3Hz with Jeffrey’s model is included in both graphs (solid yellow line). The
curves correspond to the first five data sets in x-direction displayed in figure II.4.6a.

[101] and is applied to the data sets here. The resulting shear modulus is displayed in
figure II.4.8, subdivided into two separate diagrams for the elastic and the viscous part.
For the sake of clarity, only the first five data sets in x-direction of those data sets in
figure II.4.6a are drawn here. In general, one can say about the real part of G that, for
low frequencies, an increase in modulus which reaches a plateau at high frequencies is
apparent. Just as for the MSD data, a significant amount of variation from one position
within the sample to the next occurs, indicating a big spectrum of relaxation rates. Still,
an analysis of the functional behavior of G′ yields a good agreement with Jeffrey’s model
although in some cases, more than just one Maxwellian fluid element (Eq. II.3.9 and Fig.
II.3.1) might be necessary to capture the full curve progression. A similar conclusion can
be reached for the imaginary part. An exemplary fit of data set M4 with Jeffrey’s model
is included in both subfigures as well to emphasize the qualitative agreement of the results
with this model.

Active Microrheology

At the beginning of section II.4.2.2, an alternate kind of experiment using active displace-
ments of the confined colloid through mucus was mentioned. Oscillations are performed
with the same particle at the same position, however, the oscillation direction is switched
from the x- to the y-direction in two successive measurements. The resulting displace-
ments are depicted in figure II.4.9. Here, subfigures II.4.9a and II.4.9b were recorded at
identical positions. The same is true for subfigures II.4.9c and II.4.9d. The motion of
the optical trap is shown as black circles, the resulting absolute positions of the confined
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beads are drawn as red circles. Judging from the displacements, one can say that for
the upper two figures a strong confinement by the mucus was present in both directions,
while for the lower two the confinement was significantly weaker in y-direction. Thus,
the motion of the bead in the first three figures was reduced to very weak quivering
well below 100nm. The motion in subfigure II.4.9d seems to have taken place along
the orientation of a pore within the sample and was hence less hindered. While such
anisotropies are only found in a very low percentage of cases, they still indicate a very
inhomogeneous material.

Even more information is gained from these active experiments when the mean squared
displacement from a passive experiment is considered at the same position where an ac-
tive experiment took place. In figure II.4.9e, the MSD in x- and y-direction is shown
which corresponds to the position where the oscillations depicted in figure II.4.9a and
II.4.9b were recorded. In this region, corresponding to the results from the active ex-
periments, the mean squared displacement reveals a similar diffusion behavior of the
particles when comparing the x- and y-direction between 10−2 s and 3 s. Both mean
squared displacements vary slightly due to the different confinement by the mucus mesh.
Additionally, for MSD values below 25 nm2 the resolution limit of the setup is reached
(compare Sect. I.6.3) which causes the spreading of the x- and y-curve. However, the
diffusion shows similar properties in these two perpendicular directions so the influence
of drift can be neglected for such a short durations of the experiments. Overall, just by
considering the absolute value of the MSD the same conclusion can be drawn about the
confinement situation of the colloid as in case of the oscillation measurements depicted
in figures II.4.9a and II.4.9b: In both directions the confinement by the mucus mesh is
quite strong and hence hinders nearly any motion of the particle.

If, on the other hand, the mean squared displacement in the region of high mobility
is considered (Fig. II.4.9f) one observes quite a different picture. Again, the data points
with MSD values below 25 nm2 should be omitted since the resolution limit prevents a
clear interpretation of the recorded particle displacements. Above this limit though a
very specific behavior is apparent: Over all accessible time scales between 10−3 s and
101 s, there is a clear gap between the MSD in x- and the one in y-direction. As the
oscillation experiment in this particular location showed earlier, the confinement in y-
direction at this position is much weaker than the one in x-direction. This property is
mirrored by the MSD results which show a higher mobility and thus a farther diffusion
of colloids in y-direction than in x-direction.

A combination of both passive fluctuation measurements and active displacements
allows an in-detail mapping of the whole mucus sample. If these experiments are in turn
applied to mucus samples with varying particle sizes, additionally, a very precise mapping
of pore-diameters can be performed. To a certain extent, this was performed by Lai [104],
however, no active measurements were attempted in this study since no setup of optical
tweezers was available. Due to optical limitations of the trapping process, confining
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particles smaller than 500nm is a very challenging task. Tracking them is, until today,
only possible using fluorescence visualization techniques. Also, confining just a single
one of such small particles in an optical trap is a very complicated task, indeed.
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(a) Displacements in x-direction of a bead that is
strongly confined by the mucus mesh.

(b) Displacements in y-direction of a bead that is
strongly confined by the mucus mesh.

(c) Displacements in x-direction of a bead that is in
a strong confinement in x-direction by the mucus
mesh while being very mobile in the y-direction.

(d) Displacements in y-direction of a bead that is in
a strong confinement in x-direction by the mucus
mesh while being very mobile in the y-direction.

(e) Mean squared displacements from a passive expe-
riment recorded at the same position as the curves
depicted in Fig. II.4.9a and II.4.9b.

(f) Mean squared displacements from a passive expe-
riment recorded at the same position as the curves
depicted in Fig. II.4.9c and II.4.9d.

Figure II.4.9.: Oscillatory displacement experiments at two different positions within the same mucus
sample. In graphs II.4.9a to II.4.9d, the motion of the optical trap is shown in black
while the absolute displacement of the confined bead is drawn in red. Oscillations were
performed with a triangular oscillation profile at an amplitude of 1µm and a frequency
of 0.2Hz.
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II.4.3. Summary

In the past chapter, the rheologic behavior of native respiratory horse mucus was sur-
veyed. Two general methodologies were utilized to achieve this goal: The macrorheo-
logical properties were gained by conducting small amplitude oscillatory shear (SAOS)
experiments using a rotational rheometer, microrheological information was obtained by
recording the motion of colloidal particles which were confined in an optical trap.

In section II.4.1, details about both setups were given. The focus lay on the rheometer,
of which all important components were described. Since all details about the setup of
optical tweezers were already included in section I.6.1 in the first part of this thesis, only
a few necessary specifics about the sample preparation were added here.

The main study of mucus followed in section II.4.2. It was opened by the macrorhe-
ologic SAOS experiments in section II.4.2.1. Initially, amplitude sweeps were utilized
to determine the linear deformation region of native mucus, which could be visualized
in Lissajous-figures of torque versus rotation angle graphs (Fig. II.4.3). With this kind
of information, it was possible to move on to frequency sweeps of the material. They
delivered an only weakly varying elastic and viscous modulus (Fig. II.4.5). However, the
elastic material properties at all frequencies always exceeded the viscous ones.

Section II.4.2.2 was devoted to the microrheologic analysis of the material. Mean
squared displacement (MSD) curves were utilized to gain an insight into the diffusion
properties of colloids through the bulk of the material (Fig. II.4.6). These indicated a
very inhomogeneous material with strongly varying diffusion properties. In some cases,
these differences even occurred when considering perpendicular displacement directions
at identical positions within a sample. Overall, respiratory horse mucus can be consid-
ered as a material with sub-diffusive properties for 5µm-sized beads. Additionally, the
displacement data was used to calculate a microscopic, local shear modulus which gives a
redundant picture to the macrorheologic information. By analysis of the curves in figure
II.4.8, general agreement with Jeffrey’s model was found. Furthermore, besides these
passive tracking experiments also experiments involving forced active displacements of
beads through mucus were performed (Fig. II.4.9). These confirmed the impression of
mucus as an inhomogeneous material. Depending on the local surroundings of each bead,
in most cases an almost complete confinement within mucus was found. In a small num-
ber of cases, however, the colloids were much more mobile and could follow the motion
of the optical trap rather quickly (Fig. II.4.9d).

In the following chapter, these macro- and microrheologic findings will be discussed
in the context of each other in order to reach a more complete understanding of mucus
and its filtering function. Also, further open questions that future studies might tackle
will be posed.
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In the recent past, the rheology of mucus has been a much discussed topic. Since it is a
biological fluid, it poses a big challenge to gain sufficient amounts of material with which
to perform experiments. This is particularly true when macrorheology in a rheometer is
involved since typically volumes of multiple milliliters of fluid are required. Thus, it is not
surprising that only a small number of macrorheological studies on mucus are available
in literature. Two of the most recent and influential are the ones by Lai et al. [71]
and Macierzanka et al. [105] which examined human respiratory mucus or respectively
pig intestine mucus under the influence of bile salts. In some cases, the macrorheologic
characterization of mucus components like sigma mucins were attempted as well [106].
More common are studies involving microparticles, usually focusing on passive tracking
of beads within the bulk of the material. Most of these are quite recent as well since
the required technology and tracking methods have become available during the past
10 to 20 years only. Among these studies count a number of papers by Lai and others
[84, 104] and also Macierzanka et al. [105]. These mostly focus on passively tracking
diffusion particles and hence gaining insight on diffusion properties of these particles.
One big hope is that such studies might bring clarity to the discussion of how the barrier
properties of mucus can be explained and which mechanisms they underlie [107].

So far, it seems that two possible players are involved: On the one hand, the barrier
might be a purely size-based barrier which blocks the passage of particles that exceed a
certain size. This, on the other hand, would mean that all particles, as soon as they are
smaller than a certain critical size, could pass the mucus barrier unhindered. Of course,
this critical size may vary from one mucus type to another and from one species to the
next. Also, diseases may influence the material properties. A second possible mechanism
is interaction filtering. If the particles have a certain composition like specific chemical
surface groups or a certain charge, their passage through the mucus mesh is blocked, while
others are allowed to proceed. So far, no clear winner has been found and the question
about the main mechanism is still open. The results from this study may, however, help
to link earlier conclusions.

In the past chapters, the results of a macro- and microrheologic study of native res-
piratory horse mucus were presented. This delivered a series of properties which can
be concluded from the study itself. However, when put in context with earlier results
reported in various studies, a bigger picture of the material is gained. But let us limit
the view on the study itself, first. As reported in section II.4.2, two different kinds of
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(a) The material properties of the 1 % HEC gel show
a continuous transition from microrheology to
macrorheology.

(b) The material properties of mucus change drasti-
cally when comparing the size scales which are
probed by both methods.

Figure II.5.1.: Comparison of the shear modulus recovered from macrorheologic SAOS experiments
with the results from passive microrheology.

experiments were performed: Macrorheological small amplitude oscillatory shear (SAOS)
experiments deliver insight into the bulk rheological properties of mucus in shape of the
frequency-dependent complex shear modulus, while a respective description of the system
was gained on a microscopic level using colloidal particles confined in an optical trap.
Due to the local microscopic nature of this second set of experiments, they count to the
field of microrheology.

When considering both in context with each other, there is a number of common
conclusions. Both methods tell us that mucus is a viscoelastic material since the real
or elastic part as well as the imaginary or viscous part of the shear modulus make
a significant contribution to the material behavior. Additionally, both methods agree
that at all considered frequencies, 10−2 Hz < f < 5Hz in case of the SAOS experiments,
1Hz < f < 4 kHz in case of microrheology, the elastic modulus dominates over the viscous
one. In other words, the material behaves more like a solid than it resembles a fluid. In
terms of phase shifts, as explained in section II.3.1, mucus reacts nearly in phase with any
excitation and only shows weak phase shifts. This is however the point where agreements
seems to end.

When directly comparing the macro- and microrheologically gained shear modulus in
the HEC gel (Fig. II.5.1a), one observes a very smooth transition between both. The
elastic modulus in the frequency range between 1Hz and 10Hz gained by both methods
matches in value, the viscous modulus in that range only differs by a factor of up to
3. When mucus is considered (Fig. II.5.1b) what at once catches the eye is a huge gap
between the curves that spans roughly three orders of magnitude. This is best seen in
the overlap region between 1Hz and 10Hz where the macrorheologic modulus is bigger
than 103 Pa while the microrheologic one can be found around 1Pa. This seems highly
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Figure II.5.2.: Sketch of the microscopic structure of mucus (adapted from [76]). Mucus is represented
by black lines, small objects like beads (blue spheres) can only move within pores,
indicated by red and green shaded regions (compare also the cryogenic scanning electron
micrograph in Fig. II.2.1).

counterintuitive at first, however, it appears reasonable when taking the microstructure
of mucus into account. In literature mucus is described as a gel with pores that con-
sist mainly of water but also of cell components like DNA and proteins [75]. During
an SAOS experiment, the whole bulk of mucus or, in other words, the pore walls as
well as their contents are forced to oscillate and their total net response is measured. A
continuum response which is characteristic for the material is gained. However, what a
single micrometer-sized particle immersed in the bulk will experience, are very stiff and
rigid walls in some directions, while others might be more easily permeable due to the
presence of a pore (Fig. II.5.2). Thus, one gains a very inhomogeneous response by the
material and also a much higher mobility of particles than bulk rheology would indicate.
Sometimes, the particles move within larger pockets inside the material and seem to be
able to move almost without hindrance over distances larger than 5µm or more. Mostly,
a strong confinement of the beads is present nonetheless and they mostly fluctuate in
unison with the pore walls. How strong the confinement actually is can only be found
out by actively displacing the particles.

Now, let us put these results in context with earlier reports. One of the big questions
is still how mucus performs filtering operations. Which particles are deemed harmful and
are blocked from passing the mucus barrier and which ones may pass? So far, indications
that seem to prove both size and interaction filtering were found. If the particles are
too big in general to fit through the mucus mesh, they will get stuck. However, it seems
that particles show a better penetration into the material when their surface carries a
different functionalization [84]. Most surprisingly, smaller sizes (dc = 100nm) of PEG-
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or COOH-modified particles showed an even slower diffusion through mucus than larger
ones (dc = 200nm − 500nm), which might be due to blocking of mucus pores by big
aggregates of beads.

In terms of the material rheology, two scales have to be considered: On the one hand,
the microscopic rheology is determined by the viscoelastic properties of the pore walls
as well as the properties of the fluid filling those pores. On the other hand, if the whole
bulk is probed, for example by a rheometer, a continuum response of pore walls and
filling material is gained. A very superficial link between both scales can be derived by
considering the whole material as a king of rigid foam. While the pore walls show solid-
like properties the filling material behaves essentially as a fluid of comparably negligible
viscosity. A number of models have been suggested in the past which are able to at least
roughly grasp such material properties. Among those models, the Mori-Tanaka model
[108] is probably suitable the most in order to describe mucus although it is still by far
not complex enough to give a realistic description. According to this model, a foam is
composed of two phases, the rigid one of the walls and the fluid one of the filling material.
Each of these two has its own shear modulus. Since the largest contribution to the total
shear modulus is caused by the wall material the shear modulus of the fluid is negligible
and the total shear modulus is given by

Gtotal(ω) = Gwalls(ω)(1 −
cp

1 − β (1 − cp)
) , (II.5.1)

where cp is the volume fraction of the pores and β is a dimensionless number. It can
be simplified under the assumption that the wall material itself without considering the
pores is isotropic and homogeneous. In this case, it is given by

β = 2 (4 − 5ν)
15 (1 − ν)

, (II.5.2)

where ν is Poisson’s ratio. If now a volume fraction of cp = 60 % (compare Fig. II.2.1)
and also the incompressibility of the pore material and thus ν = 0.5 are assumed, a value
of β = 0.4 results. After inserting these values into equation II.5.1, the shear modulus
of only the walls is gained by multiplying the macrorheologic results by a factor of 3.5.
This means that the gap between macro- and microrheologic measurements would be
even bigger if only the material of the walls would be considered. Hence, the micro- and
macrorheologic characteristics of mucus gained in this work should not be understood as
a mean-field description of the material but rather the rheology on completely different
and for the most part independent scales.

The study presented here showed that, when not taking the surface functionalization
of the beads into account, they can in some cases diffuse further through the material.
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This effect mainly depends on their exact position within the sample and on whether
there are any larger pores present at this particular spot. It becomes apparent that
even if the particles are about as large as the average pore size, it may be possible for
them to cross the mucus blanket if they try to do so in the right position. Combined with
reports in literature, this hints towards both size and interaction filtering being present in
mucus. Beads with certain surface groups in general show different diffusion coefficients
in mucus, but their size is also important. The question about “the” critical size is not
easy to answer since it depends on the type of mucus (respiratory, cervicovaginal, etc.)
and the health status of the donor. Even more influences which are so far unknown might
be present. However, this is a question that must be answered individually.
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This second part of the thesis is focused on the study of mucus, a biological fluid that is
present in the organism of most mammals. It covers the surface of most organs otherwise
exposed to the physical contact with their environment and thus fulfills the purpose of
sheltering them. This function is not only realized by reducing mechanical influences,
but also by keeping harmful substances like pathogens away while letting nutrients pass.
The study attempts to fill in a few of the blanks that still remain in our understanding
of the filtering functions of the material.

To achieve a deeper understanding, macro- and microrheologic experiments were con-
ducted. In chapter II.3, Maxwell’s fluid model with a basic description of complex fluids
was introduced for this purpose. Its constitutive equation contains both a purely viscous
dashpot which is shunted with an elastic element, typically represented by a Hookean
spring. Albeit simple, this model allows the characterization of viscoelastic fluid and is
very often utilized to analyze much more complex materials. However, due to an issue
with energy dissipation, the model had to be expanded to contain one additional dashpot,
representing a viscous solvent. In this composition, this model, also known as Jeffrey’s
model, could be applied in the interpretation of the experiments following later.

The following two sections were devoted to the theory of macrorheologic small am-
plitude oscillatory shear experiments (Sect. II.3.1) and microrheologic passive tracking
experiments (Sect. II.3.2). In the first case, the shear modulus is concluded from the
quotient of shear stress and strain, in the second case, a similar conclusion can be drawn
by solving a Langevin equation and gaining the response function of the fluid.

Chapter II.4 was solely dedicated to the conduction of experiments. The introduc-
tory section mostly contained information about the experimental setups of the utilized
rheometer and the setup of optical tweezers. However, a more detailed explanation about
the second setup can be found in the first part of this thesis (Ch. I.6) and, thus, was
kept rather short, here. The central part of the experimental study followed in section
II.4.2, which included an in-detail analysis of native respiratory horse mucus. In chapter
II.5, the results were interpreted in context with earlier mucus studies and their findings,
and the overall filtering functions of the material were reflected upon.
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Although a little more clarity was brought into the interpretation of diffusion proper-
ties of mucus, there is still much room for improvement. Those concerning the setup of
optical tweezers were already discussed in the past part (Ch. I.8), however, additional
changes involving the rheometer are desirable as well. Direct access to the waveform
data sets when performing SAOS experiments would help immensely in interpreting the
measurements. So far, the rheometer records a set number of oscillation periods, calcu-
lates an average oscillation that is fitted and evaluated in terms of amplitude, frequency,
and phase. If deviations by disturbances or other sources of noise occur in one of these
oscillations, it is not possible for the user to exclude that particular oscillation period
from evaluation. Also, the built-in force sensor, which is used for measuring the shear
stress, is not the most sensitive exemplar. The precision of all measurements would be-
nefit greatly from a more powerful replacement, especially, when measurements at very
low shear rates or, respectively, strain amplitudes are concerned.

This study managed to answer a few of the open questions, but still many of them
remain. There is a number of issues in direct context with this project that need to be
studied. It would be very desirable to perform a sample-wide mapping of one or multiple
mucus samples using a setup of optical tweezers in order to gain a more complete picture
of these samples. The pore size distribution would become accessible and one would gain
insight into particle mobilities in that volume. This might help in finding the perfect size
for drugs that are intended to penetrate the mucus layer. Furthermore, the study could
be expanded by varying the particle coating to additionally find the ideal surface groups
to enable efficient and fast diffusion processes. Also, the field of observed mucus types
could be expanded as there is no reason to restrict it to respiratory mucus.

With the analysis of macro- and microrheological data, this study could show that the
material properties are accessible using currently available techniques. As compared to
macrorheology, the use of optical tweezers comes with the huge advantage of very small
sample volumes below 30µl. It also allows material characterization at a very high spatial
and temporal resolution on scales of hundreds of nanometers and tens of microseconds.
The combination of passive tracking and active forced oscillations give insight into the
actual size of rifts and pores within the material. Nonetheless, macrorheologic properties
should not be cast aside since they define what larger objects passing the mucus layer will
experience. The rather elastic and viscous pore walls help in protecting the underlying
cell walls from mechanical harm or even destruction without which the body of a mammal
could not survive.
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III.1. Introduction

Evolution of life and the build-up of diversity as it can be seen today would not have
been possible without deoxyribonucleic acid or short DNA. Since it plays such a crucial
role, it is unsurprising that so many studies over the past 100 years were published on the
topic. The specific fields the studies concentrate on could not be broader. For example
with the discovery of gene splicing in the 1970s, ideas were developed that included the
active manipulation of plants to create more vermin and disease resistant crops [109]. If
functional, the application of these techniques in the field of organ growth might be able
to replace failing hearts or damaged lungs and thus save many lives.

But also in other fields like nano-engineering [110] DNA has become famous, since it
exists in nature as macromolecules of a variety of lengths but otherwise very reproducible
properties. It may help in developing new materials or patterning very fine structures on
scales of length which can otherwise only be reached using other means like lithography
under very unfavorable circumstances. In forensics, gene profiles of criminals have been
adminstered in huge data bases for about 25 years, allowing rapid identification and
tracking [111, 112]. Besides the very active communities in biology and chemistry which
have published thousands of papers on the topic over the past century, this famous
molecule plays an important role in physical research as well.

Among others, it is very popular as a model polymer. The duplication mechanisms
of DNA are very robust and although errors happen during the transcription process,
still, the copy has very close to identical properties like for example the same length,
charge, etc. Thus, many different models were already applied to it in its equilibrium
state and under plenty of flow conditions with the goal to find an accurate description
of it. Among these count the Rouse and Zimm models [113], which model them as a
long series of beads linked by elastic springs. Another representation, the Porod-Kratky
model, considers them as worm-like chains with a small range of binding lengths and
fixed binding angles [114]. Specialized models try to capture the loop formation behavior
of DNA under melting conditions [115] or their bending stiffness [116]. But still until
today, it is not completely clear which model qualifies as the best description of the
physical behavior of DNA molecules.

139



III.1. Introduction

This third part of the thesis aims at a deeper understanding of the dynamic mechanical
properties of tethered DNA molecules when subjected to an oscillating, linear shear flow.
A crude model for the motion of the center of mass (COM ) is developed based on the
elastic dumbbell model. This system is observed experimentally by attaching one end of
the DNA molecules to the surface of a cover slip and exposing them to said oscillating
shear flow. The motion is created by harmonic motion of a piezoelectric single axis
motor to which an optic lens is attached. The distance between lens and cover slip can
be precisely controlled using a micrometer caliper, thus also allowing a tight manipulation
of the velocity profile below it.

Not only does this kind of system give access to the properties of a model polymer,
but it also becomes possible to check on the maximum loads a DNA molecule can take
and to define limits in this respect for other research projects. For example in medicine,
the usage of so-called microarrays has become very common in the meantime. These
are small sample plates with hundreds of cavities which can be filled with a variety of
chemicals. A huge advantage of this technique is that massive parallel processing of DNA
with different reactants is available. They can also be filled and emptied dynamically
when combined with microchannels, so even reaction dynamics can be surveyed. When
the DNA molecules are attached within the cavities and an influx of fluid passes them
by, they may be subjected to large forces which can detach them or rip them into pieces.
Also, oscillating dynamics may occur at the moment when the flux is stopped since a
certain amount of reaction time is necessary before the flow actually comes to rest. Thus,
a study of tethered DNA molecules in an oscillating shear flow is helpful in understanding
these basic properties. The results of the analysis of auto- and cross-correlation functions
of colloids in part I are serviceable as well since the system in consideration here shares
many properties like the shear flow and Brownian dynamics.
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The existence of DNA molecules has been known since 1869, when Friedrich Miescher,
a Swiss medical scientist and physiologist, first detected and isolated it [117]. However,
it took about 30 years until Albrecht Kossel discovered that it was a polymer which also
contained four different nucleobases (among others in [118]). He was awarded the Nobel
Prize for Physiology or Medicine for this achievement in 1910. The further components,
deoxyribose and phosphate, were identified by Phoebus Levene in 1919 [119] who per-
formed his analysis on yeast DNA. 30 years later, Erwin Chargaff contributed to the
progress in deciphering the structure of DNA by detecting the presence of fixed ratios of
the base molecules in different species [120]. A critical step was taken a few years later
by Watson and Crick [121] who suggested the double-helix structure which is associated
with DNA molecules today. They based their proposal on a single X-ray diffraction im-
age which was recorded and published by Maurice Wilkins [122]. This groundbreaking
discovery was also awarded with a Nobel Prize in 1962.

However, this just marks the beginning of a large number of studies involving DNA.
Since it is not possible to give a complete overview of DNA research since the mid-
1950s in the scope of this literature survey, the focus will be laid on the most relevant
studies involving single DNA molecules and shear flows. As a side note, setups of optical
tweezers were utilized in their passive and active examination as well. Wang used them
to stretch attached molecules [35] and Mason determined their microrheologic properties
[83]. When concentrating on single molecule studies, among the first breakthroughs are
the following two: Steven Smith and Carlos Bustamante grafted a DNA molecule to the
surface of a cover slip with one extremity, while the other was attached to a magnetic
particle [123]. While an exact measurement of the acting forces was tedious, he could
manipulate their stretching and thus nicely examine their mechanical properties. A study
of Thomas Perkins and Steven Chu [34] can be counted as a follow-up experiment. They
attached a bead to one end of a DNA molecule while the other end was floating freely. By
trapping the bead using a setup of optical tweezers, they could observe the stretching of
the molecule when subjected to varying velocities of the surrounding fluid. As opposed to
the earlier study by Smith, they used YOYO-1 as an intercalating dye, which made the
extension analysis of the molecule much easier. They were able to quantify the scaling
of the relaxation rate depending on the pre-stretching defined by the flow velocity before
stopping the flow. Additionally, they found much faster recoiling dynamics as soon as
the extension of the molecule amounted more than 70 % of the contour length.
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In 2000, Patrick Doyle and Jean-Louis Viovy published a noteworthy study in which
they attached a double-stranded DNA molecule to a cover slip and exposed it to a linear
shear flow [124]. Similar to the experiment in part I of this thesis, they created the shear
flow by pushing the fluid using a syringe pump. Although these kinds of pressure-driven
flows have a parabolic velocity profile, they do not deviate significantly from a linear shear
flow when considering regions in close proximity to one of the side walls. Oscillating shear
flows were not taken into account by them, though. By analyzing the auto-correlation
functions of the grafted molecules, they found the average of the longest relaxation rate
at approximately 400ms. Compared to the value found by Smith [123], which amounts
to about 74ms, they argued that the effective length of the DNA can be considered as
doubled when it is attached to a surface and that additionally, hydrodynamic interaction
with the walls needed to be included as well. Overall, this meant an increase of the
relaxation rate by roughly a factor of 4 to 5. They also found different relaxation regimes
as well as cyclic dynamics: When the Weissenberg number was lower than 0.88, the DNA
seemed to relax more slowly than in its equilibrium state. Faster relaxations could be
found for Weissenberg numbers that exceeded that value. Cyclic dynamics showed for
a different reason. When the fluid surrounding the DNA flowed, sometimes fluctuations
away from the cover slip occurred due to Brownian motion. This led to the molecule
moving into a region with higher flow velocity, thus resulting in a stronger stretching. It
then took a certain relaxation time for the DNA to come back to its earlier state. This
process afterwards reappeared in a very irregular fashion.

A study by Christopher Lueth and Eric Shaqfeh goes in a similar direction. They took
the same approach grafting one end of a DNA molecule to a surface and creating a shear
flow in the bulk of the surrounding fluid. Complementary to their experiments, they
applied simulations based on a bead-spring model including hydrodynamic interactions.
They saw cyclic dynamics as reported by Doyle and could also identify the chain exten-
sions from their experiments with simulation results by optical comparison. However,
they found that extensional fluctuations are overpredicted by their model and especially
at low Weissenberg numbers, the average distance of the chains to the wall differs.

Oscillatory flows are often not taken into account in context with DNA molecules. One
of the few examples is a numerical study by Chen [125]. Brownian dynamics simulations
in an oscillatory pressure-driven flow through a microchannel were performed to observe
chain extension and migration. However, no grafting of the molecules was conducted,
thus, leading to a different system. Comparable to this paper, in a publication by Lo
[126] an AC electric field was applied to DNA samples experimentally to create such a
flow situation. Again, however, no grafting of the molecules was conducted.

There is one study, though, that combines both oscillating and linear shear flows with
grafted DNA molecules in an experimental fashion. It was performed by Maryam Khak-
sar in her PhD thesis [127]. By driving DNA molecules attached to a cover slip using
a piezoelectric device, she could visualize their harmonic dynamics and examine their
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center of mass (COM ) motion and, from that, determine their response amplitude and
phase. A model of the system consisted of a Hookean spring fixed at a defined distance
away from the cover slip to which the center of mass of the DNA molecule was attached.
Polymer dynamics were not assumed, instead the molecule was assumed to behave as a
bead of a constant radius attached to the aforementioned spring. She found that under
the assumption of a constant height of the COM, the relative amplitude of the DNA
molecule versus the driving amplitude of the piezo device first increases linearly with the
driving frequency. Upon exceeding ωc = 1/τr,max, where τr,max is the longest relaxation
rate of the DNA molecule, according to her model the maximum extension of the spring
should be reached, thus, leading to a constant relative amplitude. In her experiments, she
found a more resonant-like behavior indicated by a maximum in the relative amplitude
at ωc, which then quickly decreased towards zero. No clear conclusion could be drawn
from this behavior, especially, no modified model was created to describe it.

Hence, the goal of the third part of this thesis is two-fold: On the one hand, the
experiments of Maryam Khaksar will be repeated over a broader range of frequencies.
A study at higher driving frequencies will be attempted, testing the limits of currently
available fluorescence microscopy techniques. These results will then be compared to
Maryam Khaksar’s bead-spring model in order to check on its feasibility. Comparisons
will be drawn to the conclusions by Maryam and differing results will be pointed out.
In chapter III.3, interesting background information about DNA will be given. This
will be combined with a revision of the flow profile in the experimental setup as well
as an introduction to the utilized bead-spring model. In chapter III.4, the experimental
setup used in this study will be presented, followed by a description of the performed
experiments and their results. These will be discussed afterwards in chapter III.5 and
considered controversely in context with earlier results by Maryam Khaksar.
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Deoxyribonucleic acid or short DNA is one of the most important biological molecules
as already mentioned in the introduction. As presented in figure III.3.1, it is a polymer,
consisting of three building blocks: a sugar called deoxyribose (marked orange in sketch),
a phosphate group (yellow), and four different nucleobases (remaining colors). The sugar
bound to the phosphate group is denoted as a nucleotide. When several of these are
bound to each other such that a linear polymer is formed, one considers them as the
backbone of the DNA molecule. The nucleobases are adenine (A, indicated in green),

Figure III.3.1.: Planar structural binding model of a double-stranded DNA molecule (adapted from
[128]). The backbone, consisting of deoxyribose and phosphate groups, is displayed
together with the bases adenine, thymine, guanine, and cytosine linking both strands.
At the extremities of both strands, the index of the final carbon atom of the last sugar
molecule is indicated by 3’ or, respectively, 5’.
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cytosine (C, indicated in red), guanine (G, indicated in violet), and thymine (T, indicated
in blue). These are bound to the innermost carbon atom of the sugar group and thus
appear in regular intervals along the backbone. The combination of single base molecules
bound to the backbone is also denoted a single-stranded DNA molecule (ssDNA). If two
DNA strands are aligned to each other in such a way that the bases of one strand are able
to bind to those of the other strand, then a double-stranded DNA molecule (dsDNA)
is formed. However, the bases can only appear pair-wise1 and bind to each other in
the combinations A = T and C = G, thus, a special requirement for two stably bound
DNA molecules is a very specific sequence of bases. This is realized in nature by two
complementary DNA strands which are aligned anti-parallel to each other for binding.
The actual biological information is encoded in the sequence of bases. When talking
about binding sites in context with DNA, typically, one considers the different carbon
atoms of the sugar groups for this task. They carry indices of 1’ (“one prime”) through to
5’ (“five prime”), which are counted from the innermost C-atom, bound to the nucleobase,
towards the outermost one. Along the whole strand, the 3’ as well as the 5’ binding site
are bound to phosphate groups neighboring the sugar molecules. If one considers one of
the extremities of a single strand, either the 3’ or the 5’ C-atom is available for binding,
thus, the extremities are named according to the index of the “final” C-atom. This fact
is also indicated in the sketch in figure III.3.1. As displayed by the “-” sign next to each
phosphate group, every single one of them carries one total negative charge, leading to
a negative net charge of the DNA molecule. This enables manipulation through electric
fields, as used in gel electrophoresis for example [129].

The spatial orientation of the dsDNA is another particularly interesting topic since it
does not happen in a planar fashion as indicated in the sketch. Instead, the molecule is
wound up to an asymmetric, helical conformation. The asymmetry causes the appearance
of two spaces of different sizes, the so-called groves. The smaller one, which is 12 Å wide,
is denoted minor grove, the bigger one with 22 Å is denoted major grove. Since this
helical structure is not stiff in respect to its main axis, the helix is not straight and
typically experiences a stochastic quaternary structure which strongly fluctuates and
shows frequent conformational changes depending on the thermal energy of the system.

Depending on which life form or species is considered, the length of DNA molecules
can vary strongly. In context with the study presented in this thesis, DNA of enterobac-
teria phage λ, or short λ-DNA, is used. Enterobacteria phage λ is a virus that infects
Escherichia coli for reproduction purposes. It consists of 48,502 base pairs and is thus
one of the longest DNA molecules utilized for research purposes. From a physical point
of view, there are a few more important properties. These include the contour length,
which is the length of a polymer at maximum extension, and the radius of gyration, which
represents the average effective radius of the polymer in its coiled state. For λ-DNA, a

1This binding rule is also called Chargaff’s rule, named after its discoverer.
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contour length of 16.3µm is referenced in literature [124]. This value increases to 21µm,
however, when YOYO-1 is utilized as the intercalating dye (see Sect. III.4.1). The radius
of gyration amounts to 690nm and, according to earlier studies, remains uninfluenced
by the dye molecules [130].

In the following, two important aspects of the system in consideration will be analyzed.
On the one hand, an oscillating piezoelectric device will be used to create a linear shear
flow to which DNA molecules will be subjected. The visualization of the molecules will
be facilitated by attaching - also denoted as grafting - them to the surface of a cover slip
after they have been functionalized with fluorescing dye molecules. So far, the question if
the created flow is indeed linear has not been tackled, yet. This will happen in the next
section. Afterwards, in section III.3.2, a simplified model for grafted polymers based on
a dumbbell model will be developed.

III.3.1. Flow Profile between Two Parallel Oscillating
Surfaces

In this section, the flow profile between an oscillating and a resting flat surface shall be
analyzed. Both plates are aligned parallel to each other as indicated in figure III.3.2. The
upper surface is displaced according to the time-dependent function yup(t) = ylens,0 sin(ωt)
with the oscillation frequency ω and the amplitude2 ylens,0, while the lower surface stays
in rest all the time. This can also be recast in terms of shear amplitudes in the following
form

γ(t) = γ0 sin(ωt) , (III.3.1)

where the shear strain amplitude is defined by γ0 = ylens,0/hlens and hlens is the distance
between the upper and lower plate. Starting again from the full Navier-Stokes equation
introduced in part I (Eq. I.4.1), now, a different set of boundary conditions needs to be
taken into account. Since the whole flow-cell is closed off, there is no pressure gradient in
the system. Instead, the fact that no stationary flow can be assumed has to be considered.
All other simplifications can be applied in this case as well. The adapted equation then
reads

ρ
∂vy(z, t)

∂t
= η

∂2vy(z, t)
∂z2

. (III.3.2)

As boundary conditions, it can be assumed that the velocity of the fluid at the interface
to the upper (z = hlens) and lower plates (z = 0) is identical to the one of the plates

2Although two plates are considered here, the index “lens” is utilized, instead. The reason for this choice
will become obvious when the experimental setup will be presented in chapter III.4 since as the upper
surface an optical lens will be used.
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Figure III.3.2.: Sketch of the oscillating, linear flow profile between a fixed lower plate (lp) and an
oscillating upper plate (up). In the experimental setup, the upper plate is replaced by
an optical plano-convex lens.

themselves (no-slip boundary condition). Thus,

vy(z = 0, t) = 0 , (III.3.3)

vy(z = hlens, t) = ylens,0ω cos(ωt) . (III.3.4)

To solve this differential equation, it is possible to use an ansatz via the separation of
variables. One assumes that vy(z, t) = f(z)g(t) and that the equation can be recast as

ρ

η
g−1(t)∂g(t)

∂t
= f−1(z)∂

2f(z)
∂z2

!= k2 . (III.3.5)

By solving of the time-dependent partial equation, k is determined as

k = ±(1 + i)
√

ρω

2η
. (III.3.6)

Under consideration of the boundary conditions, the spatial equation is solvable as well,
so the complete solution reads

vy(z, t) = ylens,0ω cos(ωt)
sinh [(1 + i)

√
ρω
2η z]

sinh [(1 + i)
√

ρω
2η hlens]

. (III.3.7)

In context with the description of a DNA molecule within this flow profile, it is more
handy to re-express the hyperbolic sine functions as an exponential expression [59]. This
finally leads to

vy(z, t) = Θ(z) cos(ωt + φ(z)) (III.3.8)
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(a) Plot of the velocity amplitude Θ(z) at all positions
between the two plates.

(b) Plot of the phase shift φ(z) at all positions be-
tween the two plates.

Figure III.3.3.: Dependence of the velocity amplitude and the phase shift of the moving fluid on the
position in z-direction between the plates. The position in z-direction is drawn on the
ordinate to facilitate a comparison with the sketch in figure III.3.2. The distance of the
plates was fixed at 40µm for all calculations. The amplitude of the plate amounted
to 30µm, while the frequency was set to three different values, indicated by different
colors in the graphs.

with the amplitude

Θ(z) = ylens,0ω
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cosh (
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(III.3.9)

and the phase

φ(z) = arctan

⎡⎢⎢⎢⎢⎢⎣

tan (
√

ρω
2η z) tanh (

√
ρω
2η hlens) − tan (
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√
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√
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√
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⎤⎥⎥⎥⎥⎥⎦
.

(III.3.10)

Thus, not only the amplitude of the flow profile depends on the position z between the
plates, but also the phase shift φ. Since the phase shift of the DNA molecule relative to
the driving oscillation will play a crucial role later, a check should be performed whether
the flow profile itself can cause a significant phase shift all by itself.

In figure III.3.3, the equations III.3.9 and III.3.10 are plotted for a fixed height of
the lens as well as a given amplitude of the upper surface. The driving frequency was
varied between 1Hz and 10Hz. When considering the amplitude, it becomes apparent
that the profile is completely linear if the phase is not considered. For the given distance
between the plates and the given frequency range, the phase shift between the fluid
motion and the driving oscillation of the upper plate does also not play a significant role.

149



III.3. Theory

The biggest occurring phase shift always stays below 20mrad. Thus, for the parameter
range relevant for this work, no additional phase shifts need to be taken into account.
This result facilitates the description of a DNA molecule attached to the fixed plate by
a dumbbell model, which will be discussed in the following section.

III.3.2. Model for a Single-End-Grafted DNA-Molecule

As already explained in the introduction, one of the goals of this study is to find a simple
model to describe the dynamic behavior of grafted DNA molecules. Quite a wide variety
of models has been used earlier to characterize them in certain flow situations. The Rouse
and Zimmmodels are very popular when the extension behavior of the polymer is in focus,
the Porod-Kratky model or worm-like chain model is preferred when the properties in
the freely floating or flowing state are an issue. However, since these options already
show quite a high level of complexity, a much simpler model will be applied here.

The basic idea is sketched in figure III.3.4. When a DNA molecule is attached by some
kind of bond to a cover slip, it typically shows a “mushroom”-like shape: A rather thin
stem links the polymer to the cover slip. Above it, however, a big cloud containing most
of its mass floats. This has the particular consequence that the center of mass (COM ) of
the molecule in average is situated at a certain distance z0 away from the cover slip. As a
result, instead of describing the DNA as a base-pair-wise bead-spring model, a reduction
down to two springs and a bead can be performed. A first spring attaches the COM at
its average height z0 above the cover slip (not drawn in figure III.3.4b), a second one
links it to the lateral center position directly above the grafting point. The polymer
itself can be reduced to a bead with the same mass as the whole molecule. Its radius can
be modeled using the radius of gyration. In later experiments, the focal plane will be
aligned parallel to the x-y-plane, thus, motion towards or away from the cover-slide will
not be visualizable. Since only the motion in this plane can be evaluated, hence, just
one spring is depicted in the figure. During this modeling phase, the second spring will

(a) Single-end-grafted DNA molecules
on the surface of a cover slip.

(b) Simplified bead-spring model for the center of
mass motion of a DNA molecule in an oscil-
lating linear shear flow.

Figure III.3.4.: Model system for single-end-grafted DNA molecules on a cover slip.
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be taken into account, because it determines how far away from the lower cover slip the
COM is able to move and it will also determine how the occurring Brownian fluctuations
will be dampened.

Overall, if the model in the x-y-plane is considered, it consists of a spherical bead
which is attached to a spring of a stiffness κ. The other end of the spring is grafted at a
distance z0 away from the cover-slide. Although such a system cannot be realized in an
experiment without any complications, it will be very helpful in developing an analytical
description and a simulation of it. A flow oscillating in time created by a moving upper
plate will be assumed. Due to advantages in analytic processing, the shear rate will be
shifted by π/2 as compared to the past section and read γ̇(t) = γ̇0 sin(ωt). Since no
noteworthy additional phase contribution will occur because of the flow profile itself, this
shift will not play any further role at all. In context with optical tweezers, in section I.4.3
a Langevin equation for a confined colloid was solved. Equation I.4.14 can be adapted
to be suitable for the motion of the grafted DNA molecule as well. It then reads

ζ
∂z(t)
∂t

+ κ(z(t) − z0) = Fr,z(t) , (III.3.11)

ζ (∂y(t)
∂t

− γ̇(t)z(t)) + κy(t) = Fr,y(t) . (III.3.12)

Unlike the case involving optical tweezers, now, there is a shear-coupling between the z-
and the y-direction, while no coupling is found to the x-direction. Just as before, this
system of equations is solved by first tackling the z-direction via variation of variables
and then inserting the solution into the equation of motion in y-direction. That equation
is solved by the same process. The solutions are given by

z(t) = z0 + e−t/τr
⎧⎪⎪⎨⎪⎪⎩
zs − z0 +

t

∫
0

dt′
Fr,z(t′)

ζ
et
′/τr

⎫⎪⎪⎬⎪⎪⎭
, (III.3.13)

y(t) = z0Wi
1 + α2

{sin(ωt) − α cos(ωt)} (III.3.14)
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dt′′ (et
′′/τr Fr,z(t

′′)
ζ

)
⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

where α = ωτr is the dimensionless frequency and r⃗s = (xs, ys, zs) is the initial starting
position of the bead. Similarly to before when a bead was confined in an optical trap, a
relaxation rate is given by τr = ζ/κ. Since the solution for the y-direction depends on the
Weissenberg number, the relative height z0/hlens is also included implicitly. This leads to
a linear downscaling of the maximum displacement the bead can experience, depending
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on the distance of the bead to the cover slip as well as the lens distance.
In later experiments, the system will be observed using a very light-sensitive CCD

camera. The downside to this technique is that the recording rate is limited to 32Hz.
In context with Brownian motion and stochastic molecular processes, this means that
all analytical considerations should be performed in the limit of long timescales. Hence,
all terms included in the solution which depend on functions of the type exp(−t/τr) will
decay too quickly for visualization. Only those terms containing the Brownian force Fr,i
will be kept. The solution can be simplified to

z(t) t≫τrÐÐ→z0 + e−t/τr
t

∫
0

dt′
Fr,z(t′)

ζ
et
′/τr , (III.3.15)

y(t) t≫τrÐÐ→ z0Wi
1 + α2

{sin(ωt) − α cos(ωt)} (III.3.16)
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Let us now leave the Brownian terms out of consideration as well. In this case, for the
y-direction only the first term remains. Just like in part I, equation I.4.35 can be applied
to it to obtain one single trigonometric function including a certain phase shift. It then
reads

y(t) = z0Wi√
1 + α2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ADNA(α)

sin(ωt−arctan(α)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δDNA(α)

) . (III.3.17)

When this displacement is compared to the driving by the oscillating lens, which is given
by ylens(t) = γ̇0

ω
®

ylens,0

sin(ωt −π/2
²
δlens

), the phase shift between both of them can be defined as

∆δ(α) = δDNA(α) − δlens = −arctan(α) + π/2 . (III.3.18)

Based on the solution in equation III.3.17, two derived quantities can be defined. The
first one, also denoted as the relative amplitude, is gained by dividing the amplitude
ADNA of the bead by the amplitude of the lens

Arel(α) =
z0

hlens

α√
1 + α2

. (III.3.19)

The second quantity is derived from the amplitude as well. By dividing equation III.3.19
additionally by the relative height of the bead z0/hlens, the rescaled amplitude is gained

Aresc(α) =
α√

1 + α2
, (III.3.20)
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(a) Dependence of the rescaled amplitude on the di-
mensionless frequency.

(b) Dependence of the phase shift on the dimension-
less frequency.

Figure III.3.5.: Results of the bead-spring model for DNA molecules. Analytical curves are shown
in these semi-logarithmic plots as solid red lines, numerical data is presented in open
black circles.

which removes any dependencies of the amplitude on other parameters than the dimen-
sionless frequency α. Both quantities will be a great benefit when analyzing experimental
data later on.

In order to grasp the functional dependency of the rescaled amplitude within equation
III.3.20 as well as the phase shift within equation III.3.17 on the dimensionless frequency,
both of them are plotted in figure III.3.5. Besides the analytic functions, also numerical
data is included which was gained by adapting the algorithm from chapter I.5 in the first
part. According to both, the expected behavior of the rescaled amplitude will increase
proportionally to α for low frequencies α ≪ 1, i. e. ω ≪ τ−1

r . Upon exceeding α = 1, the
maximum amplitude, which cannot be surpassed, is reached. To facilitate the explanation
of this effect, let us go back to the sketch in figure III.3.4b. The maxmimum extension
of the spring, which is indicated in the figure and which leads to a perfect alignment
of the bead to the velocity front of the fluid, can only be reached at high frequencies.
Otherwise, the spring succeeds in partially relaxing back to its equilibrium position and
thus does not experience the full stretching.

The explanation for the behavior of the phase shift is a similar one. The driving
motion is coupled to the motion of the bead via the flow velocity of the surrounding
fluid. Hence, when comparing the phase of the displacement of the lens with the phase
of the bead displacement, at low frequencies α ≪ 1, both are shifted by π/2. This shift
then decreases until α≫ 1. Then, it becomes zero and thus the bead directly follows the
motion of the displaced fluid.
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III.3.3. Summary

In the past chapter, a short introduction to the chemical as well as physical structure
of DNA molecules was given. In total, it can be considered as a very long-chained
polymer with a negative net-charge. In the scope of this thesis, λ-DNA, which consists
of roughly 50,000 base pairs and has a contour length of approximately 20µm when the
dye-molecule YOYO-1 is intercalated, is utilized.

Since these molecules will later be attached to the surface of a cover slip and then
subjected to forced driving by oscillating a second surface, the resulting velocity profile
needed to be analyzed. This was performed in section III.3.1, where the corresponding
Navier-Stokes equation was solved. The result, as figure III.3.3 shows, is a near-linear
profile that only deviates from the ideal case by a slight phase shift which depends on
the exact position between the oscillating upper and the resting lower plate. Since all
occurring phase shifts are quite small (δflow < 20mrad), it is not necessary to take them
into account during further analysis.

Afterwards, the DNA molecule was modeled as a bead which was linked by a spring to
the lateral position of the grafting point. The bead was identified with the center of mass
(COM ) of the DNA, the stiffness of the spring represents the mechanical properties of the
molecule. A second spring attached it to the height z0 within the channel. This height
coincided with the typical distance of the COM of a grafted λ-DNA molecule. It was
described analytically using a two-dimensional Langevin-equation, which also included
the height-dependent shear coupling. Equation III.3.17 gives the simplified solution in
the limit of long times under negligence of the stochastic effects of Brownian motion.
Basically, it consists of a sinusoidal response oscillation whose amplitude depends on the
dimensionless frequency α, the average height of the COM z0, as well as the distance
of the lens hlens causing the driving. Moreover, a characteristic phase shift between
driving and response oscillation which solely depends on the dimensionless frequency
according to the model is included. In the following chapter, this result will be compared
to experimental data sets and its validity will be checked.

154



III.4. Experimental Study

This chapter will focus on all elements that are required to perform experiments with
single-end-grafted DNA molecules in an oscillating shear flow. On the one hand, a cover
slip as well as the DNA need to be prepared. This process will be explained in the follow-
ing. On the other hand, a specific setup using fluorescence microscopy is required, which
will be described in section III.4.1. After acquiring picture series of bright, fluctuating
molecules, their positions and especially their center of mass need to be determined. A
software built by André Schröder (Institut Charles-Sadron, Strasbourg, France) denoted
“NEW Magneto” was utilized for this task (see Sect. III.4.2 for details). The performed
experiments as well as their results will follow in section III.4.3.

Before any experiments can be conducted, the DNA and a cover slip have to be
prepared first. The general idea of this process is to use a streptavidin-biotin bond to
attach the DNA to the cover slip. This kind of bond is one of the strongest non-covalent,
biological bonds. Streptavidin is a protein produced by the bacterial species Streptomyces
avidinii, biotin is better known as vitamin B7 or vitamin H. However, streptavidin comes
with the disadvantage of an isoelectric point between pH 6.8−7.5 which may vary within
these bounds. Instead, for this study NeutrAvidin (ref.-no. A2666, Life Technologies
GmbH, Darmstadt, Germany), which has its isoelectric point at pH 6.3 with no variation,
was used. This helped to reduce non-specific binding.

To utilize this bond, the surface of the cover slip is treated with NeutrAvidin, while
each DNA molecule is functionalized with a biotin molecule, which will be attached to
each other later on by bringing them in contact. This technique was introduced by Koota
et al. in 2007 [132] and has found a wide application since then [127, 131, 133]. However,
both processes are not straight forward. λ-DNA are typically available in their circular
state as shown in figure III.4.1a. By a heat treatment, the ring has to be opened at two
nicks, which leaves unbound overhangs with the sequences 5’-AGGTCGCCGCCC-3’ and
5’-GGGCGGCGACCT-3’, one at each extremity of the molecule. Oligonucleotides with
the desirable functional group appended to them can now be bound to the DNA at these
positions (Fig. III.4.1b). Quite a variety of functional groups like biotin, thiol, and many
others are available. For the experiments presented here, a biotin- and a thiol-group were
chosen. The biotin-group, as explained earlier, will be used for the grafting of DNA, while
the thiol-group shows no interaction or binding to NeutrAvidin at all and is thus ideal
as a second functional group. In a final step, the backbone between DNA and oligomers
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(a) Circular λ-DNA. (b) DNA after tempering with biotinylated and thiolated
oligonucleotides marked with “B” and respectively “T”.

(c) DNA with both oligonucleotides bound to its extremities.

Figure III.4.1.: Ligation process of λ-DNA in preparation for single-end-grafting (drawing adapted
from [131]).

has to be repaired using a ligation reaction (Fig. III.4.1c). A more detailed description
of this process can be found in the appendix (Sect. A.2.3).

The second part of the preparation involves the cover slip. A NeutrAvidin layer as
thin and homogeneous as possible needs to be brought on top. Again, a number of steps
is necessary to successfully reach this goal. They were adapted from the procedure by
Yuting Sun [131]. An step-by-step guide for the preparation is given in the appendix
(Sect. A.2.4).

At this point, it is possible to attach the DNA molecules to the cover slip without
risking a collapse of the molecule or multiple attachment positions of a single DNA
(comparable to the comic in Fig. III.3.4). However, in their current state, it is not
possible to visualize them. After all, the average radius of gyration is smaller than
1µm with the single monomers on size scales of a few nanometers. Thus, before adding
the DNA molecules on the prepared cover slips, fluorescent dye molecules need to be
bound to the DNA first. Quite a wide range of dyes has become available in the past
decades. By now, they are widely accepted with their photophysical properties [134], their
function [135], and their mechanical properties [136] being well-researched. In this thesis,
the intercalating dye YOYO-1 (ref.-no. Y3601, Life Technologies GmbH, Darmstadt,
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Germany) is utilized for this purpose since it shows a strong increase in emitted intensity
only if it is bound to a DNA molecule. This reduces the background noise and contributes
to a clearer visualization with an improved contrast. Intercalation means that the dye is
positioned in between the base pairs. The maximum amount of this particular dye, which
can be inserted in each DNA, is one dye molecule for every four base pairs. Following
the preparation steps in the appendix (Sect. A.2.4), the maximum amount of YOYO-1
molecules per DNA is reached, thus, ensuring the strongest fluorescence intensity.

III.4.1. Experimental Setup

In the scope of this third part of the thesis, grafted DNAmolecules are recorded while they
are subjected to a shear flow. Two particular techniques are required to conduct these
experiments: On the one hand, the fluorescence emitted by intercalated dye molecules
has to be recorded. This technique is well-known as fluorescence microscopy. Since its
invention, it has been utilized in a wide variety of studies [137, 138] and is especially
popular in researching biological matter. On the other hand, a well-defined shear flow
whose gradient is strongly dependent on the distance between the oscillating lens and
the resting surface to which the DNA molecules are attached has to be created (see
Fig. III.4.2). Thus, it is essential to determine the lens distance as exactly as possible.
For this purpose, a technique called reflection interference contrast microscopy (RICM)
is used. It was invented by Zilker, Engelhardt, and Sackmann in 1987 [139] and has
ever since been applied to many systems in order to enable the examination of dynamic
processes on surfaces, high precision distance measurements, and much more. In this
section, at first a short introduction to both microscopy techniques will be given, which
will afterwards be followed by a description of the setup.

The general idea in fluorescence microscopy is that an object is supposed to be
recorded although it is too small to become visible using standard objectives and optics.
Since one would usually risk different kinds of optical aberrations if one tried to image
the object under an even larger magnification, another approach uses active emission of
light by the object itself to visualize it. Of course, most objects cannot be forced to emit
light directly, thus, methods which allow fluorescent dyes to be attached to the object
of interest have been developed. These methods are most frequently applied in biology.
Among others DNA [140], bacteria [141], and viruses [142] were prepared with a series of
dyes. In context with DNA in specific, a long list of possible dyes which all show different
qualities but also disadvantages exists. For this study, a dye called YOYO-1 is used. It
absorbs light with a wavelength of 489nm and re-emits light with a wavelength of 509nm.

The second technique that was mentioned in the introduction to this chapter, reflec-
tion interference contrast microscopy (RICM), is a handy tool to measure small distances

157



III.4. Experimental Study

between microscopic objects. The principle of this technique is, as its name suggests,
interference-based [143]. Light is sent through the microscope objective and then reaches
the sample cell. There it transmits through the cover slip and reaches the interface to a
fluid, typically water or a buffer solution. Due to a change in refractive index, this causes
a partial reflection back towards the objective. If a second object lies in the path of the
transmitting beam, again, a certain amount of light is reflected. Since both reflected
beams are optically retarded by a small amount in respect to each other, an interference
which depends on the distance of the object and the cover slip is caused. For point-like
or round objects, the interference appear in form of Newton rings, which periodically
modify the intensity of the recorded light. However, for these rings to appear, the object
and the cover slip have to be in very close proximity. In other words, when measuring
the distance between the lens which will be used for driving the shear flow later and the
cover slip carrying the DNA molecules, the appearance of these Newton rings signal the
contact between both of them. A micrometer screw can now be used to tune the distance
between them as required.

For the application of both techniques, the same setup is used (Fig. III.4.2), which also
allows the rapid switching between them. This has the advantage of allowing a quick
determination of the distance of the lens, followed by the recording of a fluorescence
picture series without much loss of time. As a base, the inverted microscope Nikon

(a) Sketch of the key elements of the experimental
setup.

(b) Photograph of the shear device above the micro-
scope.

Figure III.4.2.: Representation of the experimental setup for shearing and visualizing the DNA
molecules.
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Eclipse TE200 (Nikon GmbH, Düsseldorf, Germany) is used in combination with an
oil immersion objective HCX PL Fluotar 100x RC by Leica (ref.-no. 11506199, Leica,
Wetzlar, Germany). The objective has a numerical aperture of 1.3 and thus allows
to visualize a very broad field of view at a 100x magnification. As an illumination
source, a mercury torch (HB-10104AF, Nikon GmbH, Düsseldorf, Germany) is attached
to the back port of the microscope. The visualization for the fluorescence as well as
for the RICM technique is realized using a very light sensitive 16 bit greyscale CCD
camera (ImagEM C9100-13, Hamamatsu Photonics Deutschland GmbH, Herrsching am
Ammersee, Germany).

The most important part for the conduction of the experiments is a system which
allows to generate the necessary shear flows. This is realized by attaching an optical lens
via a spacer to a piezoelectric device (ref.-no. PX400 with amplifier ENV300, piezosystem
Jena GmbH, Jena, Germany). The lens (ref.-no. LA1576-A, Thorlabs GmbH, Dachau,
Germany) has a low curvature radius rcurv = 6.2mm and is covered by an antireflex
coating for visible wavelengths. It allows to move the lens along one axis parallel to
the surface of the cover slip with the DNA molecules. Although an exactly parallel
alignment of the piezo axis to the cover slip is a big challenge, any tilt over the very
small displacement amplitudes used later is compensated by the curved surface of the
lens and thus does not need to be taken into account. The assumption of flat parallel
surfaces in chapter III.3.1 is thus perfectly reasonable. The control over the displacements
of the piezo is conducted by a signal generator which is linked to the voltage input of
the amplifier. This voltage signal is recorded synchronously to the picture series during
fluorescence microscopy via a National Instruments USB signal card (ref.-no. NI USB-
6008, National Instruments, Austin, TX, United States of America). In order to be
able to identify the measured voltage signals with displacements, a calibration of the
piezo device is performed by attaching fluorescing beads to the surface of the lens and
visualizing them using the fluorescence camera (Fig. III.4.3). A linear law becomes
apparent, which is described by

Alens = 31.0(2) µm
V

⋅Avolt − 0.4(1)µm, (III.4.1)

where Alens is the traveled distance in micrometers and Avolt is the applied voltage in
Volts.

Especially in context with the analysis of oscillating signals and their relative phase,
a precise timing of the recorded images is of the essence. In order to make sure that no
additional temporal delays need to be taken into account, we calibrated the recording
timestamps of the camera with a known signal. This was performed by attaching a
colloidal sphere to the surface of the lens which is coupled to the piezoelectric device as
described above. A sine signal of known amplitude and frequency was then applied to the
piezo device and recorded at the same time. This signal and its timestamp was compared
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Figure III.4.3.: Calibration curve of lens amplitude versus piezo voltage. The lens amplitude was
estimated by tracking attached fluorescing beads.

to the oscillations of the colloid. Overall, we found a signal delay of approximately
30 ms between driving and response signal. This delay will be considered in all following
measurements by a corresponding shift of the timestamp of every image by −30 ms.

Depending on whether fluorescence excitation is used or whether an RICM measure-
ment is of interest, a series of filters can be inserted. In RICM mode, the light is sent
through a polarizer before it passes the objective, which is additionally equipped with
a quarter-wave plate. An analyzer helps in enhancing the contrast before the light re-
flected by the sample reaches the camera. In fluorescence mode, a combination of exciter
filter, dichroic mirror, and barrier filter is used (Nikon B-2A, Nikon GmbH, Düsseldorf,
Germany). The exciter only allows a small band of visible light in the blue range be-
tween 450nm and 490nm from the mercury torch to pass, which is then reflected by the
dichroic mirror towards the sample. The fluorescent light from the YOYO-1 molecules
at 510nm then moves backwards through the objective and can also transmit through
the dichroic mirror due to its design. The subsequent barrier filter blocks all excitation
wavelengths from passing towards the camera and only allows the fluorescence light to
transmit.

Since the camera is extremely sensitive to light, the “correct” amount of light depends
mainly on the recording frequency. If too much light arrives at the chip, all pixels display
the brightest greyscale value and all details are lost. If, on the other hand, not enough
light arrives, it is hard to make out any details since the contrast of the recorded images is
too weak. An ideal compromise would be a setting that shows the brightest pixels close to
maximum value while at the same time the background is as close to the darkest gray level
as possible. Neutral density filters (ref.-no. ND4 and ND8, Nikon GmbH, Düsseldorf,
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Germany) help in reducing the incoming amount of light from the illumination source to
levels that can be visualized by the camera in a manner as optimal as possible. Another
property that has to be taken into account is the fact that the fluorescence of YOYO-1
bleaches after a certain amount of time. This means that, over the course of time, less
and less light is emitted, thus, there is a tight time limit to the measurements. If the
recording should be performed over a longer amount of time, the intensity of the incident
light can be reduced, which at the same time will reduce bleaching.

III.4.2. Utilized Programs

Nearly all necessary software for data evaluation was already mentioned in part I of this
thesis. Data handling and fitting was mostly conducted using Matlab and Origin. Before
these tasks could be performed, the data sets had to be extracted from extensive picture
series first. In general, they consisted of 512px × 512px wide areas containing bright
spots, where the DNAs were attached to the cover slip. The COM of each molecule
was gained from each picture using the batch processing function of the software “NEW
Magneto”. It had been written by André Schröder (Institut Charles-Sadron, Strasbourg,
France) and provided all required options.

Typically, at first a region of interest (ROI) containing exactly one single DNA
molecule was selected. Additionally, a second ROI showing just the intensity background
recorded by the camera was chosen. It was also possible to perform nearest-neighbor-
filtering to reduce local intensity fluctuations and thus smoothen the evaluation of the

Figure III.4.4.: Comparison of originally recorded picture of grafted DNA molecules (Fig. A) and
post-processed picture after filtering (Fig. B). Oscillatory driving was applied to the
sample cell (hlens = 40µm, Alens = 93µm, f = 1Hz) whose resulting effect is presented
in figures C to J. They contain snapshots of the following pictures with the filtering
applied to them. The region of interest (red circle) and a scale bar, both valid for all
pictures, are marked in the first picture.
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picture. For all following data evaluations, the first neighboring pixels were taken into
account. As the next step, the software subtracted the average background intensity
from all pixels and used a threshold value to determine which pixels actually contributed
to the DNA molecule and which ones did not. The remaining pixels of interest were then
used to determine the COM of the DNA by weighting their position by the intensity

ri,COM =
∑
j
ri,jIj

∑
j
Ij

, (III.4.2)

where i denotes the direction, i. e. x or y, and j is the index of a pixel. The result of this
image processing is depicted in figure III.4.4. For each picture, the COM coordinates
were saved together with the time at which the picture had been recorded in a “*.txt”
file.

In other situations, the analysis of the average image of a picture series was of interest.
In this case, the software allowed to add all intensities over the whole series and to save
the resulting average image. This, for example, allowed the analysis of the density
distribution of the polymer.
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III.4.3. Measurements

After the preparation of the samples has been finished, they are brought into the micro-
scope. Typically, at first the desirable distance between lens and cover slip is set. This is
achieved by bringing them into contact, which in RICM shows as Newton rings, and then
increasing the distance via a micrometer screw. Then, the actual oscillation experiments
are performed, however, the lens distance is checked every few experiments in order to
avoid too strong variations. The y-direction is always chosen as the oscillation direction.
Three parameters have to be taken into account: the height of the lens, as well as the
amplitude and frequency of the driving oscillation. The phase space of the experiments
is given by lens distances in the range between 40µm and 80µm, amplitudes between
15µm and 140µm, and frequencies between 0.1Hz and 5Hz. However, not all combina-
tions of parameters can be used since for smaller lens distances the amplitudes have to
be reduced to avoid damage to the DNA molecules like, for example, ripping.

After the evaluation of the COM of individual DNA as explained in the past section,
displacement-time-curves as in figure III.4.5 result. There, the motion of the lens is
depicted as black symbols and the reaction of the COM is shown as blue symbols. In
this case, it seems as if the DNA runs ahead of the lens motion. This is due to the
coupling of the COM motion to the velocity of the lens, which causes the additional
shift by π/2 (compare Sect. III.3.2). Both data sets can be approximated by a sinusoidal
function with variable amplitude and phase shift, which then allows a comparison of both

Figure III.4.5.: Displacement-time-diagram of the lens (black circles) and the center-of-mass of a DNA
molecule (blue circles), as well as sinusoidal fits to both data sets (respectively col-
ored, solid lines). The left axis corresponds to the data set of the lens, the right axis
corresponds to the DNA data. Driving at a lens distance of 60µm, an amplitude of
107.7µm, and a frequency of 0.25Hz was applied to the system. The DNA COM is
running ahead of the driving oscillation with a phase shift of approximately π/2 as
expected according to theory.
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(a) Auto-correlation function in x-direction. (b) Auto-correlation function in y-direction.

Figure III.4.6.: Auto-correlation functions of the motion of a DNA molecule under sinusoidal driving
at an amplitude of 30.9µm and a frequency of 5Hz. The lens distance is set to 60µm.

Figure III.4.7.: Histogram of the longest relaxation rates of the DNA molecules with a class width
of 56.5ms. Data was obtained by exponential fits to the auto-correlation function
perpendicular to the oscillation direction, i. e. the x-direction. The maximum of the
distribution is found at 442(8)ms, its average lies at 540 ms ± 350 ms.

oscillations.
One further quantity in context with the analytical model in section III.3.2 is gained

by analyzing the auto-correlation functions of the COM motion: it is the longest relax-
ation rate τr. Just as in part I, the LabVIEW VI presented in the appendix (Sect. C.1)
is used for this purpose. As an example, in figure III.4.6 the auto-correlation functions
in x- and y-direction are shown. In the x-direction, after a quick relaxation process,
which is well-described using a single exponential function, no characteristic correlation
signal is found besides noise and a weak oscillatory contribution due to an imperfect
alignment. Since there is no shear- or similar coupling to the x-direction present in the
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system, this corresponds to the theoretical prediction. In oscillation direction, however,
the exponential relaxation is superimposed by a strong oscillatory signal, which again
corresponds well to the theoretical assumptions. The desirable relaxation rate can now
be determined by fitting an exponential function to the auto-correlation function Cxx.
Due to the stochastic properties of the system, in this fashion not only one single rate
but a whole relaxation spectrum is determined by analyzing a series of DNA molecules
(Fig. III.4.7). The histogram is described well by a Gaussian distribution whose left
flank is cut-off towards negative relaxation rates. The most frequently appearing rate
can be identified with the peak value at 442(8)ms. The average relaxation rate, though,
constitutes 540 ms±350 ms. This average value will be used from now on throughout this
chapter to determine the dimensionless frequency α. The relaxation rate determined in
this study exceeds the value of 400ms which was reported earlier by Doyle and others
[124] by 35 %.

In the following, the experimental results from sinusoidal fits to the displacement data
will be compared to analytic results to check on the validity of the bead-spring model.
According to equation III.3.17, the amplitude ADNA of the COM of the DNA depends
on the dimensionless frequency α, the average height z0 of the COM, as well as the lens
distance hlens and driving amplitude Alens. If all parameters are kept constant except
for the lens amplitude, as illustrated in figure III.4.8 for four different frequencies, the
COM amplitude is supposed to depend linearly on Alens. This is indeed proven by the
experimental data since linear fits describe the curve progression well in all cases. Existing

Figure III.4.8.: Graph of the DNA COM versus the lens amplitude. The lens distance was set to
40µm for all experiments, the frequency was varied from 0.1Hz to 0.5Hz as indicated
by color code. The dependence can be fitted using linear functions as illustrated by
solid lines.
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deviations are mostly due to Brownian fluctuations, additional background noise in the
picture series, and the misinterpretation of the contributions of certain pixels which do
or do not belong to the examined DNA molecule. No dependence of the phase shift on
the driving amplitude can be found, which is why no corresponding graph is shown in
this chapter.

Furthermore, the functional behavior of both the relative amplitude (Eq. III.3.19) and
the phase shift (Eq. III.3.18) can be checked in context with the lens distance. The model
assumes that the average COM height z0 does not change under any circumstances when
shear is applied to the system. When solving the differential equation (Eq. III.3.12) this
has the side effect, that the phase shift between driving and response oscillations does
not depend on z0 at all, while the response amplitude ADNA shows such a dependence.
When considering the relative amplitude in figure III.4.9a, a general decrease at each fre-
quency is found for increasing distances. All of the curves can be fit with the analytically
predicted behavior ADNA ∝ 1/hlens. To get a more robust estimation of the average
height of the COM, one should consider the highest driving frequencies. In this case,
according to the model, the COM completely follows the motion of the fluid and ADNA
reaches a plateau value which is not influenced by an increase of the frequency. This was
done in figure III.4.9a by adding the upper limiting envelope. It predicts the average
COM height z0 to amount to 630nm. In case of the phase shift (Fig. III.4.9b), no clear
dependence on the lens distance becomes apparent, although for frequencies higher than
2Hz or respectively dimensionless frequencies higher than α = 6.8 there might be a weak
effect. It seems that for these higher frequencies, the phase shift decreases additionally in

(a) Plot of the relative amplitude Arel against the lens
distance. The black solid line marks the upper en-
velope of all curves, defined by an average height of
the COM of 630nm.

(b) Plot of the phase shift between driving and re-
sponse oscillation as a function of the lens dis-
tance.

Figure III.4.9.: Dependencies of the relative amplitude and the phase shift on the distance between
oscillation lens and cover slip. The relations are shown in different colors for each
examined driving frequency.

166



III.4.3. Measurements

a weak fashion when the lens distance is increased. However, the sinusoidal fits at higher
frequencies are more prone to errors and the effect might be due to a misinterpretation
of DNA motion.

The most interesting functional dependencies are those of the relative amplitude and
phase shift on the dimensionless frequency. The experimentally gained values for the
relative amplitude are illustrated in figure III.4.10a. At each available distance, indicated
by different colors, Arel increases proportionally to α for α < 1. Upon exceeding α ≈ 1, a
constant plateau value is reached. This is equivalent to the maximum extension of the
DNA molecule away from its equilibrium position which the linear velocity profile allows
(compare Fig. III.3.4b). However, as fits with the analytical function (Eq. III.3.19) to
the data sets show, a good agreement with the experimental data sets is only found if a
modification is applied to the fitting function. This modification allows small changes to
the critical frequency which marks the transition from the linear increase to the constant
plateau. The fitting function reads

Arel(α) =
z0

hlens

mα√
1 + (mα)2

, (III.4.3)

where the lens distance is always fixed at the value in the corresponding experiment and
m is the fudge factor for the frequency. For the fits in figure III.4.10a, this factor varies
between 1.4 and 1.8 and thus indicates a small variation of the critical frequency. This

(a) Dependency of the relative amplitude Arel on the
dimensionless frequency. Solid colored lines are
fits to the open circle symbols colored respectively
according to the model in equation III.4.3.

(b) Dependency of the rescaled amplitude Aresc on
the dimensionless frequency. The black solid line
represents the analytical function where the di-
mensionless frequency is multiplied by the factor
m = 1.64.

Figure III.4.10.: Amplitude dependency on the dimensionless frequency. Relative amplitudes in subfig-
ure III.4.10a are shown in subfigure III.4.10b after rescaling by the quotient z0/hlens.
Both are drawn as log-log-plots.
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might be due to an underestimation of the average longest relaxation rate and would
lead to a correction of the rate to a range between 620ms and 800ms. Overall, a good
total agreement of the amplitude behavior of the COM of the DNA molecules with the
model description is found. The average of all modifiers is found at the value m = 1.64

which will be used from this point on for rescaling the dimensionless frequency.
If the relative amplitude in all curves is now rescaled by the corresponding relative

height of the center of mass z0/hlens, all curves shift on top of each other and can be
described by one master curve as given in equation III.3.20. It solely depends on the
dimensionless frequency, which is mirrored by the results in figure III.4.10b. Again, a
very good agreement to the analytical predictions (compare Fig. III.3.5a) is found.

The phase shift between the DNA COM and the displacement of the lens is plotted
in figure III.4.11 as a function of the dimensionless frequency. According to theory, at
low frequencies a phase shift of π/2 which decreases with increasing frequency towards
0 rad is to be expected. When this theoretical model (Eq. III.3.18) is compared to the
results from the measurements the predicted behavior is indeed found. However, just as
in case for the amplitude behavior, the dimensionless frequency needs to be rescaled by
the factor m = 1.64 in order to give a more precise description of the functional behavior

∆δexp(α) = −arctan(1.64α) + π/2 . (III.4.4)

In case of the values at a lens distance of 80µm a slight overshoot towards negative

Figure III.4.11.: Dependency of the phase shift between driving and response oscillation on the di-
mensionless frequency. The black solid line represents a fit with the theoretical model
(Eq. III.3.18) where the dimensionless frequency was rescaled by the factor m = 1.64.
A semi-logarithmic scale was chosen.
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phase shifts is observable. In this case the large error bars should be considered as well,
though, which still indicate agreement with the model. Over the whole observable fre-
quency spectrum, the assumed bead-spring model seems to capture the amplitude as well
as the phase behavior of the center of mass in a perfect manner under the assumption
of an effective dimensionless frequency αeff = 1.64α. It is, hence, suited very well as a
description of single-end-grafted molecules in a linear, oscillating shear flow.

There is an alternate way to evaluate the displacement of the DNA molecule. However,
dynamic changes to the system cannot be captured by it. Instead of tracking the COM
of each molecule, it is possible to measure the length of each DNA in an average image
over a whole picture series. The calculation of these averages is also a feature of “NEW
Magneto” and can be performed with ease. By choosing a region of interest parallel to
the oscillation axis along the molecule, for small amplitudes, the intensity profile will be
identical with a Gaussian distribution. For bigger amplitudes, this curve will broaden and
finally form two separate maxima at the reversal points of the oscillation. Since the overall
amplitudes are quite small, a Gaussian fit to the intensity distributions is reasonable in
all cases. The standard deviation of the curves can be used as a comparative value to
the amplitudes of the oscillations of the center of mass. The result for a lens distance
of 40µm is displayed in figure III.4.12. There, the amplitudes deduced from the sine
fits are shown (black circles) together with the results from the length evaluation of the
intensity profiles (red circles). Additionally, three data points at even higher frequencies
(f = 10/20/32Hz), which were recorded at a picture acquisition rate identical to the
oscillation frequency at a lens distance of 60µm, are displayed. Thus, it is not possible,
in case of these measurements, to make out any details about their amplitude or phase
behavior. In other words, the sine fit evaluation is not possible. However, the length
evaluation can be conducted and the respective oscillation amplitudes can be estimated.

A property that can be deduced from figure III.4.12 straight away is that, for low
dimensionless frequencies below α = 10, the sine fit and length evaluations both give
the same qualitative behavior, although there is a deviation in absolute value. This is
probably due to the fact that the standard deviation of the Gaussian curves cannot be
directly identified with the amplitude of the COM. However, this only causes an offset of
both curves relative to each other and can be corrected by a calibration. The qualitative
agreement between both methods is lost, though, when the frequencies are increased
above α = 10. There, the length evaluation shows much bigger relative amplitudes than
the sine fits do. The fact that the high frequency oscillations were performed at a bigger
lens distance should in fact not cause an increase in relative amplitude, but rather the
opposite. This is of course only true if the bead-spring model is trusted as a suitable
description. This will also be open for discussion in the following chapter.

Much care has to be taken when considering the robustness of those data sets. To
illustrate this, the absolute length of the intensity profiles from the averages is compared
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Figure III.4.12.: Plot of the results of the length evaluation of the DNA intensity profile (black sym-
bols) versus the evaluation using sine fits to the COM motion (red symbols). Values
below α = 17 were recorded at a lens distance of 40µm, higher frequencies were
recorded at a distance of 60µm. The plot is drawn in log-log-scaling.

Figure III.4.13.: Plot of the results of the length evaluation of the DNA intensity profile (black sym-
bols) as compared to the width of the equilibrium intensity distribution of such a
molecule which amounts to approximately 1050nm (red line). Driving was performed
at an amplitude Alens = 31µm. Values below α = 17 were recorded at a lens distance
of 40µm, higher frequencies were recorded at a distance of 60µm.

in figure III.4.13 to the width of the equilibrium intensity distribution of the molecules.
The equilibrium value was determined by measuring the width of the intensity profiles of
grafted DNA molecules which were not subjected to shear and amounts approximately
1050nm. All data points depicted in figure III.4.13 were recorded at a driving amplitude
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of 31µm in order to allow a quantitative comparison among them. At α = 10, the width
of only one of the sheared DNA molecules lies below the equilibrium value. All other
values for α < 17 are situated above this threshold. The same is true for all values that
were recorded at α = 109. However, a significant amount of values at α = 34 and α = 68

show a smaller width of the intensity profile under shear compared to the equilibrium
threshold. Thus, the significance of these data sets must be questioned in terms of their
validity. Overall, the presented data sets in figures III.4.12 and III.4.13 can be considered
to be robust up to α = 17 or respectively f = 5Hz.
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III.4.4. Summary

The past chapter contained a detailed description of all elements that are related to ex-
periments with single-end-grafted DNA molecules. At first, the general idea of attaching
one extremity of DNA molecules in a reproducible manner to a cover slip was explained.
A detailed preparation recipe is given in the appendix (Sect. A.2.3 and A.2.4).

Although λ-DNA is a fairly long-chained molecule with a total length of about 20µm

in its fully stretched state, its structures are still much too small to visualize them by stan-
dard optical microscopy. Instead, a setup using fluorescent excitation of dye molecules
was necessary. During the shear experiments, a means was also required to determine
the distance between the moving and the resting surface. This could be achieved using
reflection interference contrast microscopy (RICM). Both techniques were explained in
section III.4.1, as well as the experimental setup necessary to conduct them. There, the
realization of the shear device was explained as well.

After the conduction of a shear experiment, picture sequences which showed many
fluctuating bright spots resulted. The position of the center of mass (COM ) of each of
the molecules had to be extracted from the pictures before a further analysis was possible.
A custom-built piece of software which was very helpful in that regard was described in
section III.4.2.

In section III.4.3, the performed shear experiments on grafted DNA molecules were
presented and partially discussed. A comparative analysis with the analytical bead-spring
model showed very good agreement for both the relative amplitude (Fig. III.4.10) and
the phase shift between driving lens oscillation and COM response oscillation becomes
apparent (Fig. III.4.11). However, in both cases, the dimensionless frequency α needed
to be replaced by an effective dimensionless frequency which was shifted in respect to
α by a factor of 1.64. By performing an alternate evaluation of the amplitude behavior
which took the length of the average intensity profiles into account instead of the dy-
namics of the COM, at low frequencies, the same qualitative development was found. At
higher frequencies, strong deviations began to occur, though. A discussion of the possible
reasons for these discrepancies will follow in the next chapter.
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The third part of this thesis deals with single-end-grafted DNA molecules that are sub-
jected to an oscillating shear flow. In chapter III.3, a strongly simplified model which
described each DNA via its center of mass was developed. It was then modeled as a
bead with the same total mass as the molecule and with a radius that is identical to the
radius of gyration of the polymer. In order to take the attachment point at the cover slip
into account, the motion of the center of mass (COM ) was restricted by linking it to an
equilibrium position placed above the grafting point with a spring. In chapter III.4, the
analytical predictions by the model were compared to results from experiments which
were gained by fluorescence microscopy. Two central features were analyzed: On the one
hand, the frequency dependence of the amplitude of the COM is an interesting topic, on
the other hand, the phase shift between driving and response oscillations is important
as well. Thus, in this chapter, the amplitude and phase behavior of the model shall be
discussed.

Let us begin by considering the relative or, respectively, the rescaled amplitude. Figure
III.4.10b shows that for all lens distances, the dependency of the relative amplitude on
the dimensionless frequency is described well by the bead-spring model. However, it
was mentioned before that, in order to achieve this agreement, the frequency needs to
be rescaled by a pre-factor as presented in equation III.4.3. Before the addition of this
pre-factor, the position of the transition value of the frequency at α = 1 seemed to have
slightly too small a value. The pre-factor m, which in all experiments amounted between
1.4 to 1.8, allows the shift of this transition frequency, such that a better agreement
becomes possible. In average, it amounts to the value m = 1.64. A probable reason
for the false estimation of the transition frequency lies in the misinterpretation of pixel
values. Either pixels which do not belong to the DNA molecule were included in the
calculation of the COM or pixels which should have been included were left out. This is
a general problem of the evaluation of a picture series relying on a threshold value, be it a
dynamically adapted threshold or a static one. Under any circumstance, the bead-spring
model and the experimental values agree to a very high degree as far as the relative
amplitude is concerned, thus, the model can be trusted to reflect the actual behavior of
the DNA.

An alternate evaluation method was applied to the data sets, in which the length of a
DNA molecule was considered by analyzing the average image over all pictures recorded

173



III.5. Discussion

in a measurement and thus over multiple oscillation periods of the DNA. For dimension-
less frequencies α < 10 a reasonable agreement to the relative amplitude values from the
sine fits is found (Fig. III.4.12). For higher frequencies, a clear overshoot results from the
length evaluation. The reasons for this effect are so far unclear, especially since the three
highest frequencies at α = 34/68/109 were recorded at lens distances of 60µm and not at
40µm like all other data points shown. Bigger lens distances result in smaller relative
amplitudes at the same frequency value as figure III.4.10a depicts, which is exactly the
contrary of what is the case for the alternate evaluation. One additional aspect that
has not been discussed yet needs to be considered. For many picture series among these
high frequency measurements, it seems that the DNA molecules are not only attached
at their functionalized extremity, but they also temporarily adsorb to the cover slip at
some point along their backbone. This can be seen as a kind of unspecific interaction,
which in total leads to a shorter segment of the DNA molecule following the oscillatory
driving, while the rest of it remains stuck to the cover slip in a stretched state. This
again leads to what looks like a more elongated molecule and thus to an overestimation
of its length. These adsorption processes, however, only start to play a role if the driving
happens at dimensionless frequencies larger than α = 17.

If the phase shift is considered, the bead-spring model predicts a decrease starting
at π/2 for low frequencies, which then drops towards 0 rad at high frequencies. This
specific behavior is indeed found over the whole accessible frequency spectrum for 0.1 Hz ≤
f ≤ 5 Hz or respectively 0.3 ≤ α ≤ 17 (Fig. III.4.11). However, as mentioned above,
the functional behavior is captured in a more precise manner when using the effective
dimensionless frequency αeff = 1.64α instead of α for the description of the phase behavior.

When examining the phase shifts at different lens distances, it seems as if ∆δ gets
smaller the bigger the lens distance is. In other words, the smallest value of approxi-
mately −0.34 rad is reached for a lens distance of 80µm, while it amounts to 0.07 rad

at the same frequency in case of a lens distance of 40µm. Since all oscillation processes
happen very fast and due to the small amount of light depicted by each image in each
picture series, it is a very challenging task to grasp the oscillatory behavior. However,
as already mentioned, it is not an easy task to distinguish between those bright pixels
belonging and those not belonging to a certain DNA molecule. Additionally, the small
number of pictures and thus also COM displacement values in each oscillation period
at high driving frequencies makes the exact determination of the correct amplitude and
phase values of the DNA oscillations a challenge as well. This is also a possible reason for
the phase shift overshoot in the data set for h = 80µm. This is also the reason why the
size of the error bars in the fits increases with increasing frequency. Overall, there might
be a hidden dependency of the phase shift on the lens distance which only seems to play a
role at high driving frequencies. At the current state of technology, an in-detail mapping
of the high frequency range above α = 17 is hindered by a wide number of experimental
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(a) Behavior of the relative amplitude of the DNA
COM (Fig. 2.44 in [127]).

(b) Behavior of the phase shift (Fig. 2.46 in [127]).

Figure III.5.1.: Results of the experimental study of M. Khaksar with single-end-grafted DNA [127].
Blue crosses indicate measured data points, while the solid red line represents the
corresponding prediction by the analytical model.

issues. In the following chapter, a series of improvements and other changes which might
help in enabling high frequency measurements will be mentioned.

As a final topic of discussion, the results which were gained in scope of this thesis
shall be compared to those results reported earlier by Maryam Khaksar [127]. Two of her
central graphs, which show the dependency of the rescaled amplitude and the phase shift
on the dimensionless frequency, are depicted in figure III.5.1. In case of the amplitude, a
distinct peak at α = 2 is apparent. She identified this feature as the strongest deviation
from the assumed bead-spring model, which is identical to the model used in this thesis.
Furthermore, she assumed that it was either related to the internal energy landscape of
the DNA or a specific dynamic response function. If, indeed, a peak is present at this
position, even a resonant response of the DNA molecule would be a possible explanation.
When compared to the rescaled amplitude from this study depicted in figure III.4.10b,
no such peak appears, though. The rescaled amplitude follows the analytical model
over the whole examined part of the frequency spectrum. Even multiple repetitions of
her measurements did not show any similar feature. Thus, one might argue that the
peak in her results originated from a different source like for example external noise or a
misinterpretation of the picture series.

Let us consider her results of the phase shift between the driving and response oscilla-
tion of the DNA COM in figure III.5.1b. Here, it becomes apparent that for frequencies
α < 1 she found a good agreement between her measurements and the predictions by
the model of the dampened harmonic oscillator. However, for higher frequencies, she
reported significant deviations from the model which are characterized by an overshoot
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towards negative phase shifts and large error bars. In other words, her phase analysis
results in a nearly identical curve progression of the phase shift that was also found in
this study (Fig. III.4.11). It has to be kept in mind that her analysis of the frequency
spectrum above α = 1 only consists of four values, the last of which shows a significant
error (> ±0.5 rad). If the negative phase overshoot is considered as significant it may
mean that in case of both experiments similar difficulties in performing the measure-
ments were met and that improvements are required in order to be able to realiably
resolve the motion of DNA at higher frequencies. Both setups contain the identical shear
device, both of them are mounted on top of an inverted microscope. Also, the major
part of the sample preparation and the lab environment were similar, hence, a similar
effect on the conduction of the experiments can be assumed.

Since the plot of the phase shift in Maryam Khaksar’s thesis does not allow a dis-
tinction of the phase shifts at different lens distances, a more detailed comparison of the
results is not possible. However, the partial agreement of both studies casts an interesting
light on the mechanical properties of single-end-grafted DNA molecules.
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In this part of the thesis, the mechanical properties of single-end-grafted DNA molecules
were under examination. More specifically, by attaching single DNA molecules to the
surface of a cover slip, their motion could be restricted to a small region of interest.
At the same time, their mechanical properties were mostly uninfluenced and even their
dynamical behavior could be visualized.

The challenge was two-fold: From an experimental point of view, the DNA molecules
needed to be grafted to the cover slips and a series of shear experiments were to be
performed with them. From a theoretical point of view, a model which allowed the
interpretation of the behavior of the molecules and enabled predicting the response to
certain excitations had to be developed. The results of the analytical considerations were
presented in chapter III.3, where at first the flow profile between an upper oscillating and
a lower resting plate was calculated by solving the corresponding Navier-Stokes equation
of motion. The results predicted that for typical oscillation frequencies and amplitudes
of the shear device, a linear velocity profile which only showed a very weak phase shift
of fluid motion when comparing the fluid motion at the surface of both plates could be
expected. Thus, the phase shift can safely be ignored and a perfectly linear velocity
profile can be assumed in all cases. This result then led to the development of a bead-
spring model for grafted DNA molecules (Sect. III.3.2), which could be described by a
two-dimensional Langevin equation. After a series of simplifications, the motion of the
center of mass of a grafted polymer driven by an oscillating top plate was given by a
phase-shifted sine-function (Eq. III.3.17). Both the phase shift and the amplitude of the
response were dependent on the driving frequency, however, the amplitude additionally
depended on the average distance between the center of mass and the lower plate, the
distance to the upper plate, as well as the amplitude of the driving oscillation. This
analytical result could also be verified by numerical simulations (Fig. III.3.5).

For the experimental observation of λ-DNA (Ch. III.4), an existing preparation pro-
tocol by Yuting Sun [131] which enabled the functionalization of the cover slip with
NeutrAvidin, a streptavidin derivate with a different isoelectric point, and of the DNA
molecules with biotin was adapted. When brought into contact, the DNA tended to at-
tach itself with its biotinylated extremity to the cover slip, while the rest of the molecule
remained unconfined and could react to changed flow conditions. A whole series of expe-
riments was performed with the polymers in section III.4.3 involving different distances
between oscillating and resting surface, as well as a variation of driving amplitudes and
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frequencies. When taking the behavior of the response amplitude of the DNA into account
(Fig. III.4.10), the predicted curve progression was recovered to a very exact degree. The
same is true for the phase shift between driving and response oscillation (Fig. III.4.11).
In some cases though, at frequencies above α = 6, an overshoot towards negative phase
shifts became apparent. Probably, this is due to imprecision during the image analysis
and insufficient lengths of the recorded data sets which hence cause significant fitting
errors. A similar behavior was already recovered two years ago by Maryam Khaksar
[127], a detailed comparison and discussion of the results was conducted in chapter III.5.

There are a few changes and improvements which are desirable for future studies in
this field. If possible, the setup should be modified in such a way that noise can be
reduced further and image series can be recorded with an improved contrast. This would
help immensely in evaluating the contribution of certain more or less bright pixels to
the center of mass calculation and thus give a clearer result especially at high driving
frequencies. This directly leads to another improvement: A camera which supports an
even higher recording frequency at a similar or even better sensitivity would help in
expanding the experimentally accessible frequency spectrum. This would give insight
into the behavior of DNA molecules at even higher driving frequencies and thus maybe
contribute to answering the question whether the currently utilized bead-spring model
is sufficient in describing the dynamic properties of the system. If, afterwards, it should
still be necessary, a more complex model for the system could be developed. So far,
it is largely unsettled what such a model might look like since no clear picture of the
reaction of the DNA molecules to a faster driving can be drawn yet. A first step might
be the expansion of the model of the dampened harmonic oscillator to include additional
relaxation rates of the polymer.

In total, although still many open questions exist in context with single-end-grafted
DNA molecules, insight was gained into their mechanical behavior. So far, most studies
focused on properties of non-attached molecules [125] or they examined the static elonga-
tion under a steady instead of an oscillating shear flow [124]. Experimental observation
of DNA molecules in flows is a very challenging task since many preparation steps are
required before such studies become feasible in the first place. Although much more
sophisticated models for DNA molecules already exist and were applied successfully in
the past, their modeling as beads linked to a spring was attempted. And even though
the model is as simple as it can be, for the most part, the response of the molecule can be
described fairly well. However, some open questions remain like for example the question
of the significance of negative phase shifts at high frequencies. Finding the solution to
these will be the quest for future studies.
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In this study, Brownian motion of colloids or colloid-like systems in oscillatory fields
was examined. Three different systems were investigated: In part I, a colloid was con-
fined by an optical trap within a shear flow and then subjected to oscillations by moving
the optical trap. In part II, the identical setup of optical tweezers was utilized in order
to probe respiratory mucus of horses with colloidal particles. This was conducted by
analyzing both passive Brownian motion as well as active oscillations of the colloid in
the mesh of the material. Part III gave details about the study of DNA molecules which
were attached to the surface of a coverslip while being subjected to an oscillating shear
flow.

The idea behind the study in part I was to find out how the shear-induced coupling of
Brownian motion in a shear flow would be influenced if external oscillations were added to
the system. This was achieved experimentally by combining the use of a setup of optical
tweezers with a gravitationally driven microfluidic device. In case of stochastic systems
involving Brownian motion, such coupling effects are accessible well by considering auto-
and cross-correlation functions of the motion in flow direction and perpendicular to it,
i. e. in direction of the shear gradient. Thus, we decided to approach the analysis of our
system by the help of correlation functions as well. This approach included the analytic
solution of the Langevin equation of motion for the colloid and the determination of the
analytic auto- and cross-correlation functions. These were afterwards compared with the
results of a numerical study basing on the same differential equation as well as experi-
mental results gained in our setup of optical tweezers.
Overall, we found an analytic solution to the Langevin equation including the respective
correlation functions. These solutions were reproduced by the numeric study and also
displayed the characteristics found in the experimental study. However, we experienced
significant perturbations which hinder the successful conduction of such experiments.
There were two perturbations which were considered the most important ones: The
frame of reference misalignment of the recording device, i. e. the high-speed camera,
used to visualize the motion of the confined colloids led to an undesirable coupling of
the motion in flow- and gradient-direction and hence caused spurious correlations. Even
more important were temporal fluctuations of the flow velocity which contradict the as-
sumption of a stationary flow in the theoretical part of this study. Thus, although the
examined system was built as simple as possible the results can be considered inconclu-
sive. However, suggestions were made which may help in improving the setup for further
studies and hence lead to more conclusive results.

In part II, the setup of optical tweezers and a cone-and-plate rheometer were utilized
to study the rheological behavior of mucus. This did not only lead to the discovery of
rich viscoelastic response properties of this material but also revealed a clear gap between
the microscopic and the macroscopic response. As a comparison the Mori-Tanaka model
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was applied which is typically used to describe rigid foams. These are characterized by
two separate phases, a solid-like phase which forms the walls of the foam and a viscous
phase which fills the pores between these walls. While in microrheologic experiments
with optical tweezers the colloid for the most part only “feels” the viscous phase, in case
of the macrorheologic experiments with the rheometer the whole continuum including
both phases is probed. Thus, in that case, the elastic material properties play a much
more significant role. Partially, the results of this study were already published earlier
[76].

In part III of this study, DNA molecules were studied in a similar flow situation as the
colloids in part I. One extremity of these molecules was attached to a surface while the
remainder of them stayed afloat in a buffer medium. By driving the surrounding medium
with external oscillations originating from a second surface attached to a piezoelectric
device, the response behavior of the DNA was examined. As free parameters, the distance
between both surfaces, the amplitude of the driving oscillations and their frequency were
varied. We analyzed the displacements of the DNA center of mass and observed the
dependence of its amplitude and phase behavior on the driving frequency. A surprisingly
good agreement with the model of a dampened harmonic oscillator was found. However,
we observed a shift of the characteristic relaxation rate intrinsic to the model as compared
to the one determined during our experiments. We assume that this effect might be
caused by the complexity of a DNA molecule and hence the fact that one single relaxation
rate probably does not suffice in order to describe the full dynamic behavior of such a
molecule.
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A. Materials & Methods

A.1. Materials

name manufacturer vendor art.-no.
3-aminopropyltriethoxysilane The Dow Chemical Sigma-Aldrich 440140(APTES) Company

Gene Frame 25µl ABgene Ltd. Fisher Scientific AB-0576GmbH
glutaraldehyde, EM Grade, 8 % Polysciences, Inc. 00216

λ-DNA Fermentas Fisher Scientific SD0011GmbH
melamin resin beads Fluka Sigma-Aldrich 90641size: 5µm

Microcon DNA Fast Flow Merck Millipore MRCF0
Centrifugal Filter Unit R100

NeutrAvidin Molecular Probes Life Technologies A2666GmbH
oligonucleotides MWG Biotech n/a
phosphate buffered saline (PBS) Sigma-Aldrich P4417

polyacrylamide (PAAm) Sigma-Aldrich 92560
polydimethylsiloxane The Dow Chemical Sigma-Aldrich 761036(PDMS) Sylgard 184 Company
polymethylmethacrylate Fluka Sigma-Aldrich 73371(PMMA) beads, size: 4µm

T4 DNA ligase New England Biolabs M0202S

YOYO-1 iodide (491/509) Molecular Probes Life Technologies Y3601GmbH

Table A.1.: Chemical products and microparticles utilized to conduct the experiments in all parts of
this thesis.
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A.2. Methods

A.2.1. Production of Microfluidic Devices

In chapter I.4.2, the design aspects of a microfluidic device with channels of rectangular
cross-section were described. Before the conduction of each experiment, one of these
devices had to be produced. The protocol is as follows:

1. As polydimethylsiloxane (PDMS) material Sylgard 184 (ref.-no. 761036, Sigma-
Aldrich, Germany) containing elastomer base and a curing agent is used. Both of
them are mixed in a 10:1 base to curing agent volume ratio inside a small mixing
glass bottle. The total volume may vary depending on the surface area of the
microfluidic device. It should be chosen so that the height of the poured PDMS-
layer will be about 5mm high. The mixture is stirred by hand for half a minute
using a disposable plastic stirrer.

2. The bottle is brought into a vacuum reactor and degassed until no air bubbles are
left.

3. The mixture is poured onto the silicon wafer with the negative structures of the
microfluidic device which rests inside a plastic dish. Afterwards, the dish is closed
with a lid in order to avoid the inclusion of dust.

4. The dish is brought into a pre-heated oven at a temperature of 65○C and left
inside for one hour. It is taken out afterwards and passively cooled down to room-
temperature.

5. The device is generously cut out of the mold using a scalpel and carefully pealed
out of the plastic dish. Special care has to be taken not to bring the device in
contact with dust. This is best performed inside a flow-box.

6. Holes for the in- and outlet tubes are punched into the PDMS using a syringe
with a blunted tip and the device is put upside-down with the channel structures
pointing upwards in an O2-plasma-cleaner together with a microscope coverslip big
enough to cover the whole area of the PDMS device. It is exposed to the plasma
for about one minute.

7. The side of the PDMS with the structures of the microfluidic channels and the
activated side of the coverslip are oriented pointing towards each other and then
carefully brought into contact.

8. The in- and outlet tubes are inserted into the holes of the device.
At this point, the microfluidic device is ready for use. Tubes made from polyethylene
(LDPE) with an inner diameter of 0.5mm and an outer diameter of 1mm were used
(art.-no. 3550501, Laborshop24, Gross-Zimmern, Germany).

186



A.2. Methods

A.2.2. Preparation of Gene Frames for Microrheology Experiments

In context with the microrheological examination of mucus or biological fluids in general,
in section II.4.1.2 a special low-volume sample cell denoted Gene Frame was mentioned.
Here, the specific preparation steps of the cell will be detailed. A package of Gene Frames
contains two items: the adhesive frame and a plastic cover slip. The adhesive has the
shape of a square with a 1 cm×1 cm hole in the middle, its thickness amounts to 250µm,
thus defining a volume of 25µl. The preparation steps are as follows:

1. A standard cover slip is cleaned using two rinsing steps with acetone and ethanol.
The ethanol is afterwards removed using compressed air.

2. The adhesive frame is aligned over the surface and attached to it by pressing it
down gently. To improve the adhesion, the cover slip is heated for about 5 minutes
to 94 ○C.

3. The back cover of the adhesive frame is now removed to expose the inner volume.
The respective amount of sample fluid is pipetted into it.

4. The plastic cover slip from the Gene Frame package is now carefully aligned over
the adhesive. It should be attached at one side of the frame first, then bent and
slowly rolled over the whole adhesive surface. In this way, air inclusions in the
sample volume can be avoided. Also, excess fluid is pushed out of the frame.

The sample cell is now ready for use.

A.2.3. DNA preparation

λ-DNA molecules have to be prepared before they can be attached to cover slips. In their
delivery state, they are available in circular form. This form needs to be linearized and
functionalized using oligonucleotides with certain molecules like biotin, thiol, or other
groups appended to them. To achieve this, the following recipe originally suggested by
Yuting Sun [131] was used:

1. 66µL λ-DNA at 0.5µg/µL is pipetted into an Eppendorf tube and heated to 75○C
for 10 to 15 minutes to open the circular DNA. This step is followed by a quick
cooling process down to room temperature for about 5 minutes using ice.

2. 10µL ligase buffer, 3.4µL oligomer 1, 3.4µL oligomer 2, and 17.2µL Milli-Q water
are added to the tube to give a total volume of 100µL. Oligomer 1 and 2 can be
chosen as necessary for the experiments, they have to be complementary to each of
the two base sequences finalizing the DNA molecules. For the experiments in part
III, a biotin and a thiol group were chosen as the corresponding functional groups.

3. The hybridization of the DNA is performed by heating the sample to 50 ○C and
keeping the temperature constant for about 1 hour.

4. A slow tempering process down to room temperature is performed over night by
switching off the heating unit.
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5. 3.4µL T4 ligase are added to the sample to close the gap in the backbone between
the DNA molecule and the oligonucleotides. For this purpose, the sample is heated
to 25 ○C for approximately 30 minutes.

6. The sample is then purified by filtering it five times through special filters (ref.-no.
MRCF0R100, Microcon DNA Fast Flow Centrifugal Filter Unit, Merck Milipore,
Darmstadt, Germany) using a centrifuge at very low rotation velocities (150 rcf).

All materials are listed in table A.1. After these preparation steps, the DNA solution is
split into multiple aliquots of ≈ 20µL within Eppendorf tubes and afterwards frozen at
−80 ○C until they are needed.

A.2.4. Preparation of a cover slip and DNA for shear experiments

The preparation of a cover slip and the λ-DNA for their use in the shear device in part
III consists of a separate preparation process for both of them. The cover slip is prepared
by the following steps:

1. 3-aminopropyltriethoxysilane (ref.-no. 440140, Sigma-Aldrich, Germany) is puri-
fied by a distillation process.

2. Up to 10 cover slips can be stored in a ceramic slip holder. It is then immersed
into a piranha solution (50 % H2SO4, 50 % H2O2) for 30 minutes.

3. The slip holder with the slips is rinsed multiple times using Milli-Q water to remove
the acid.

4. The slips are rinsed once using ethanol and directly afterwards immersed into a
silane mixture for 5 to 10 minutes. It contains 2 % silane in ethanol as the solvent.

5. The slip holder is dipped into ethanol to remove any excess silane and afterwards
into Milli-Q water to remove the ethanol. Since the presence of water can cause
the formation of agglomerates, the slips are dried at 110 ○C for 5 to 10 minutes.

In this state, the slips can be stored for about 10 days in a closed box without risking
any major contamination. When needed for usage, the following additional steps need
to be taken:

1. The cover slip is immersed into a 4 % glutaraldehyde solution (ref.-no. 00216,
Polysciences, Inc., Warrington, Pennsylvania, United States of America) for one
hour.

2. The slip is rinsed in Milli-Q water, excess fluid is afterwards removed by blowing
the slip dry with nitrogen.

3. The slip is built into a custom sample holder which leaves a circular area with
a diameter of approximately 1.5 cm accessible for experimentation. To prevent
leakage, the outer area of the slip is covered with a small amount of vacuum grease
using a syringe before a teflon ring is placed on top of it. The accessible circular
region is then covered with NeutrAvidin (ref.-no. A2666, Life Technologies GmbH,
Darmstadt, Germany) at a concentration of 0.02mg/mL. The amount should be
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chosen in such a way that the complete surface is fully covered with fluid.
4. The slip is rinsed multiple times by adding phosphate buffered saline (PBS) and

removing fluid from the slip with a pipette in successive steps. A certain layer of
fluid should be kept at all times!

Now, the cover slip is ready for usage. However, there is a series of preparation steps for
the DNA molecules that need to be taken as well. This preparation can be performed at
the same time as the preparation of the cover slip.

1. YOYO-1 iodide (Y3601, Life Technologies GmbH, Darmstadt, Germany) is diluted
from the stock concentration of 1mM to 0.02mM using PBS.

2. 100ng DNA is mixed with 1.5µL of the diluted YOYO solution and incubated at
room temperature for about 1 hour. Since YOYO bleaches under irradiation of
light at a wavelength of 491nm, it must be kept in a dark environment at all times!

3. The solution is diluted using PBS to a concentration of 1ng/µL.
If it is stored in a dark environment, the diluted YOYO solution can be kept in a frozen
state (T = −20 ○C) for a few months without a significant loss of fluorescence intensity.
However, care has to be taken to avoid contamination. At this point, both the cover slip
as well as the DNA solution are ready for usage. By pipetting about 100µL of the DNA
solution onto the cover slip and waiting for a few minutes, a DNA brush can be attached
to the slip and be used for experiments afterwards. The density of the brush can be
controlled, on the one hand, by tuning the concentration of the DNA solution. On the
other hand, the incubation time on the surface can be changed as well. Typically, at the
given concentration in the recipe above, the incubation time necessary ranged at about
10 minutes to receive a large amount of single DNA molecules, which were attached
far enough from each other to prevent them from making contact and from entangling.
After this waiting time, the DNA remaining unattached within the solution on the slip
is removed by rinsing with PBS.
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B. Calculations

B.1. Auto- and Cross-Correlation Functions of Brownian
Motion in a Shear Flow

In chapter I.4.3, the differential equation for the motion of a colloid undergoing Brownian
motion in an optical trap while at the same time being exposed to a shear flow was
discussed. However, the auto-correlation function Cxx(∆t) (eq. I.4.24) and the cross-
correlation functions Cxy(∆t) (eq. I.4.25) and Cyx(∆t) (eq. I.4.26) were just given and
not derived. Details will follow here.

The calculation of the auto-correlation in x-direction is performed in the same way as
for the y-direction by inserting the solution of the Langevin equation (Eq. I.4.17) into
the definition of the correlation function (Eq. I.4.18)

Cxx(∆t) = ⟨x(t)x(τ)⟩ (B.1)

= ⟨
⎛
⎜
⎝
x0e

−t/τr + e−t/τr
t

∫
0

dt′ [et
′/τr (γ̇y(t′) +

Fr,x(t′)
ζ

)]
⎞
⎟
⎠

(B.2)

⎛
⎝
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−τ/τr + e−τ/τr
τ

∫
0

dt′′ [et
′′/τr (γ̇y(t′′) +

Fr,x(t′′)
ζ

)]
⎞
⎠
⟩ .

With a similar reasoning as for the calculation of Cyy(∆t), none of these terms but the
double integral contribute to the correlation function due to the specific properties of
the Brownian random force (eq. I.4.10 and I.4.11). Somehow, in this case, there is an
additional contribution due to y(t)

Cxx(∆t) = ⟨e−(t+τ)/τr
t

∫
0

dt′
τ

∫
0

dt′′ [e(t
′+t′′)/τr (γ̇y(t′) +

Fr,x(t′)
ζ

) (B.3)
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+ 1

ζ2
⟨Fr,x(t′)Fr,x(t′′)⟩)] .
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This representation can be used since the random force in orthogonal directions is uncor-
related. The integration of the second term containing the second power of the random
force in x-direction leads to a result identical with equation I.4.22. By directly inserting
Cyy(∆t) = ⟨y(t′)y(t′′)⟩, the contribution of the first term in equation B.3 can also be
determined. However, care has to be taken since Cyy(∆t) is not only defined for ∆t ≥ 0,
but is also an even function. The negative half-plane can be included by

Cxx(∆t) =
kBT

k
γ̇2e−(t+τ)/τr

t

∫
0

dt′
τ

∫
0

dt′′ [e(t
′+t′′)/τr (e−∣t

′−t′′∣/τr − e−(t
′+t′′)/τr)] (B.4)

+ kBT
k

(e−(τ−t)/τr − e−(τ+t)/τr) ,

which after tackling the integrals leads to the complete solution

Cxx(∆t) =
kBT

k

Wi2

2
[e−(τ−t)/τr (1 + τ − t

τr
) − e−(τ+t)/τr (1 + τ + t

τr
+ 2τt

τ2
r

)] (B.5)

+ kBT
k

(e−(τ−t)/τr − e−(τ+t)/τr) .

For large times t, τ ≫ τr, this gives

Cxx(∆t) =
kBT

k
e−∆t/τr [1 + Wi2

2
(1 + ∆t

τr
)] (B.6)

which is identical with the result in section I.4.3 (eq. I.4.24).
The cross-correlation function

Cxy(∆t) = γ̇e−t/τR
t

∫
0

dt′ [et
′/τR ⟨y(t′)y(τ)⟩] (B.7)

can be computed in the same fashion by first inserting equation I.4.22 and again taking
the symmetry properties into account, leading to

Cxy(∆t) =
kBT

k
γ̇e−t/τr

t

∫
0

dt′ [et
′/τr (e−∣τ−t

′∣/τr − e−(τ+t
′)/τr)] . (B.8)

The integral then gives

Cxy(∆t) =
kBT

k

Wi
2

[e−(τ−t)/τr − e−(τ+t)/τr (1 + 2
t

τr
)] (B.9)

or for large times t, τ ≫ τR

Cxy(∆t) =
kBT

k

Wi
2
e−∆t/τr (B.10)
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which corresponds to equation I.4.25. Analogously, Cyx(∆t) can be determined

Cyx(∆t) = γ̇e−τ/τr
τ

∫
0

dt′ [et
′/τr ⟨y(t′)y(t)⟩] (B.11)

= kBT
k

Wi
2

[e−(τ−t)/τr (1 + 2
τ − t
τr

) − e−(τ+t)/τr (1 + 2
τ

τr
)]

or, respectively, for large times t, τ ≫ τR (eq. I.4.26)

Cyx(∆t) =
kBT

k
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2
e−∆t/τr (1 + 2

∆t

τr
) . (B.12)
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C. Custom written Software

C.1. Calculation of Auto- and Cross-Correlation Functions

The program used to calculate the auto- and cross-correlation functions of the experimen-
tal as well as the numerical datasets was developed as a LabVIEW virtual instrument.
Since LabVIEW is a graphical programming language and there is no feasible way to
export the program code, in the following the program flow will be described.

1. Import of a text file with three columns containing one time and two position
columns for x- and y-displacements respectively.

2. Subtraction of the average position of each position dataset to remove offsets of the
correlation functions.

3. Computation of all auto- and cross-correlations of the input signals using an FFT-
based algorithm offered by LabVIEW. It is performed based on the definition given
in equation I.4.18 and reads

Cfg((i −N + 1)∆t) = 1

Zi

N−1

∑
k=0

fk ⋅ gi+k−N+1 , (C.1)

where j = −(N − 1),−(N − 2), ..., (M − 2), (M − 1), i = 0,1, ...,N +M − 2, N is the
dimension of dataset f , and M is the dimension of dataset g. The normalization
Zi of the dataset is performed by dividing each element Cfg(i∆t) by the number
of terms contributing to this element

Zi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i + 1, for i ≤ min(M,N) − 1 ,

min(M,N), for min(M,N) − 1 < i < max(M,N) − 1 ,

min(M,N) +max(M,N) − i − 1, for i ≥ max(M,N) − 1 .

(C.2)

Since the dimension of both datasets is always the same in the context of this thesis,
N =M can be assumed here.

4. Export of the datasets as a formatted text file.
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γ̇ [1/s] Cxx,osc [nm2] Cyy,osc [nm2] Cxy,osc [nm2] γ̇fit [1/s]
1 6.74(7) 268.22(7) 40.23(4) 1.00(1)
5 171.62(7) 273.4(7) 216.21(4) 4.980(3)
10 689.70(7) 263.88(7) 426.13(4) 10.161(4)
20 2,887.35(8) 272.42(7) 885.78(4) 20.461(6)
30 6,441.17(7) 257.23(7) 1,286.56(6) 31.450(9)
50 17,830.23(7) 257.02(6) 2,138.51(6) 52.35(1)
75 39,960.68(7) 252.06(6) 3,176.9(2) 79.13(2)
100 71,018.8(1) 255.24(6) 4,254.10(7) 104.84(2)

Table D.1.: Data sets shown in figures I.5.5b.

ω [rad/s] Cxx,osc [nm2] Cyy,osc [nm2] Cxx,osc/Cyy,osc τr(Cxx) [ms] δ(Cxy) [rad]
0.63 628(3) 0.54(7) 1.16(16) ⋅ 103 3.2(2) −1.43(1)
1.57 724.87(8) 17.6(1) 4.12(2) ⋅ 101 3.58(3) −1.57(1)
3.14 715.65(7) 67.8(1) 1.06(1) ⋅ 101 3.78(3) −1.59(1)
6.28 691.58(7) 264.7(1) 2.61(1) ⋅ 100 3.53(3) −1.53(1)
15.71 689.07(7) 1,620(1) 4.25(1) ⋅ 10−1 3.70(3) −1.51(1)
31.42 678.15(7) 6,505(1) 1.04(1) ⋅ 10−1 3.74(3) −1.47(1)
47.12 651.94(7) 14,344(1) 4.55(1) ⋅ 10−2 3.90(3) −1.40(1)
62.83 626.00(6) 24,816(1) 2.52(1) ⋅ 10−2 3.77(3) −1.34(1)
188.50 301.30(9) 158,896(1) 1.90(1) ⋅ 10−3 3.0(1) −0.98(1)
314.16 128.3(1) 278,265(1) 4.61(1) ⋅ 10−4 3.85(3) −0.72(1)
439.82 41.50(9) 364,205(1) 1.14(1) ⋅ 10−4 3.50(3) −0.58(1)
628.32 17.0(1) 408,591(1) 4.16(3) ⋅ 10−5 3.50(3) −0.44(1)
1,570.80 0.7(1) 470,034(3) 1.4(2) ⋅ 10−6 3.82(3) −0.37(1)
3,141.59 0.04(14) 480,232(9) 9(29) ⋅ 10−8 3.65(3) −1.31(1)
6,283.19 0.01(14) 482,838(190) 1(29) ⋅ 10−8 3.53(3) −0.68(1)

Table D.2.: Data sets shown in figures I.5.6 and I.5.7.
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current [%] power Ventus current [%] power Ventus
532nm [mW ] 532nm [mW ]

70 248 35 35

68 226 34 33

66 211.5 33 29

64 199 32 25.8

62 187 31 23

60 165 30 20.8

58 145 29 17.9

56 139 28 14.8

54 127.5 27 12.75

52 114 26 11.2

50 101 25 9.25

49 97 24 7.47

48 90 23 6.25

47 85 22 5.1

46 80 21 4.09

45 73 20 3.15

44 69 19 2

43 65.8 18 1.8

42 60.5 17.8 1.75

41 56 17.6 1.7

40 53.5 17.4 1.7

39 49.5 17 1.6

38 45.3 16 1.5

37 42 15 0

36 39

Table D.3.: Data set of the emitted laser power of the Ventus laser utilized in the setup of optical
tweezers in Saarbrücken. It is shown as a graph in figure I.6.2. Due to thermal noise in
the surroundings of the sensor, the data has a precision of ±100µW .
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current [%] power Ciel current [%] power Ciel
473nm [mW ] 473nm [mW ]

90 300 56 22

88 295 55 20.2

86 285 54 19

84 260 53 17

82 240 52 13.9

80 217 51 13

78 125 50 12.2

76 96.5 49 10.1

74 101 48 8.1

72 91 47 6.7

70 76 46 5.7

68 67 45 4.2

66 59 44 3.9

64 51 43 2.7

62 43 42 2.3

60 36 41 1.9

58 29 40 1.3

Table D.4.: Data set of the emitted laser power of the Ciel laser utilized in the setup of optical tweezers
in Saarbrücken. It is shown as a graph in figure I.6.2. Due to thermal noise in the
surroundings of the sensor, the data has a precision of ±100µW .

power [mW ] kx,r [µN/m] ky,r [µN/m] kx,c [µN/m] ky,c [µN/m] kx,d [µN/m]
12.8 0.87(1) 0.86(1) 0.96(1) 1.08(1) 0.89(2)
17.9 0.96(1) 1.13(1) 1.11(2) 1.26(1) 1.24(3)
23.0 1.42(1) 1.88(1) 1.47(1) 1.83(1) 1.47(5)
29.0 1.79(1) 2.07(1) 1.80(1) 1.77(1) 1.95(7)

Table D.5.: Results of all calibration methods detailed in section I.6.3. The trap stiffness according to
the equipartition method is denoted with the index “r”, the correlation method with the
index “c”, and the drag force method with “d”. The direction of the calibration is denoted
with the indices “x” and “y”. The drag force calibration method was only performed in
x-direction.
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α Cxx,osc [nm2] Cyy,osc [nm2] δ(Cxy) [rad] Cyy,osc

B2 [10−4]

0.012 1,925.1(1) 560.6(3) 2.388(1) 1.40

0.014 1,919.1(6) 511(1) −1.357(1) 1.28

0.016 3,044.6(7) 711.7(2) −1.697(1) 1.78

0.016 4,134.8(9) 568.7(1) −1.708(1) 1.42

0.016 5,196(1) 748.7(3) −1.521(1) 1.87

0.017 2,676.2(6) 121.9(2) 1.583(1) 1.22

0.020 4,586.8(7) 435.5(3) 2.390(1) 4.36

0.020 2,356.4(8) 398.7(9) −0.499(1) 3.99

0.020 7,766(3) 737.5(2) −1.759(1) 1.84

0.021 4,296(1) 1,487.1(3) −0.645(1) 2.79

0.021 3,884(1) 1,080(1) 2.018(1) 3.79

0.021 6,268(3) 1,116.4(8) −1.110(1) 2.7

0.021 5,628(1) 1,516(1) 1.485(1) 3.72

0.022 359(3) 558(1) −1.380(1) 1.78

0.022 10,980(2) 713.3(2) 1.574(1) 5.58

0.023 5,804(1) 990.4(4) 1.912(1) 3.57

0.023 3,931.2(4) 1,429(1) −0.653(1) 2.48

0.025 5,959(2) 1,629(1) −0.830(1) 4.07

0.026 2,163.9(8) 828.4(2) 1.692(1) 5.88

0.026 606(1) 587.8(2) 1.088(1) 8.28

0.028 9,838.7(6) 1,205.7(3) 2.035(1) 3.01

0.029 5,286.9(6) 1,106.8(7) −1.214(1) 1.38

0.029 7,138(1) 1,239.2(3) −1.467(1) 1.71

0.029 12,557(5) 682.4(5) 2.158(1) 3.10

0.029 16,359(3) 551.8(3) 1.471(1) 2.77

0.032 484.8(2) 231.4(3) 1.649(1) 2.31

0.051 908.3(9) 5,772.4(5) −0.598(1) 57.72

0.052 813.6(7) 4,727.9(5) 0.515(1) 47.28

0.058 8,721(6) 5,602(4) 2.360(1) 56.02

0.060 1,887(2) 2,711.6(8) −1.376(1) 27.12

0.068 2,337(5) 2,805(2) −1.329(1) 28.05

0.070 155(1) 4,182.8(5) 0.094(1) 41.83

0.078 5,807(1) 5,649.8(6) 1.147(1) 56.50

0.083 2,926.2(9) 3,515.4(5) 1.964(1) 35.15

0.085 3,586(4) 3,464(2) −1.194(1) 34.64

0.091 6,956(3) 6,915(2) 1.673(1) 17.29

This table continues on the following page.
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α Cxx,osc [nm2] Cyy,osc [nm2] δ(Cxy) [rad] Cyy,osc

B2 [10−4]

0.095 5,704(2) 2,602(2) 1.600(1) 26.02

0.096 2,846.6(7) 4,046(1) 1.884(1) 40.46

0.097 3,333(3) 4,597(3) −0.968(1) 45.97

0.098 6,486(8) 5,614(4) −1.957(1) 56.14

0.098 4,568(3) 7,564(3) 1.944(1) 18.91

0.099 2,835(1) 4,714(1) 1.880(1) 47.14

0.100 2,407(1) 3,707(2) 2.541(1) 73.12

0.100 6,534(11) 7,312(7) −2.070(1) 37.07

0.107 2,949(2) 10,982(5) 2.761(1) 109.82

0.114 2,983(3) 3,462(2) −1.864(1) 34.62

0.114 1,994(1) 5,228(2) 1.835(1) 52.28

0.157 5,019(6) 6,745(2) 2.067(1) 67.45

Table D.6.: Fitting results to the experimental data sets as utilized in figures I.6.18 and I.6.19a.
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α δ(Cxy) [rad]
0.015 −1.4(4)
0.024 −1.2(4)
0.032 −1.5(−)
0.054 −0.3(7)
0.064 −1.35(3)
0.074 −1(1)
0.084 −1.19(1)
0.096 −1.4(3)
0.103 −1.0(9)
0.114 −1.6(4)
0.157 −1.1(−)

Table D.7.: Phase shifts of the cross-correlation function Cxy after removal of the influence of the sign
of the shear gradient and after averaging of the data within frequency intervals of a width
∆α = 0.01. These data sets were also plotted in figure I.6.19. No errors are given for
α = 0.032 and α = 0.157 since only one single value was contained in the corresponding
averaging interval.
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f [Hz] G′
1 [Pa] G′′

1 [Pa] δ1 [rad] G′
2 [Pa] G′′

2 [Pa] δ2 [rad]
1 ⋅ 10−2 3,921 692 10.01 2,863 602 11.88

2 ⋅ 10−2 4,715 917 11.01 3,414 757 12.50

3 ⋅ 10−2 5,337 1028 10.91 3,812 788 11.69

4 ⋅ 10−2 5,513 1015 10.44 4,152 718 9.81

5 ⋅ 10−2 5,874 887 8.59 4,343 663 8.68

6 ⋅ 10−2 6,309 802 7.25 4,420 667 8.59

7 ⋅ 10−2 6,052 965 9.06 4,557 784 9.76

8 ⋅ 10−2 5,986 915 8.69 4,684 723 8.77

9 ⋅ 10−2 5,946 845 8.09 4,753 691 8.27

1 ⋅ 10−1 6,186 774 7.14 4,873 627 7.33

2 ⋅ 10−1 6,777 763 6.42 5,169 627 6.92

3 ⋅ 10−1 6,865 862 7.16 5,433 714 7.48

4 ⋅ 10−1 6,770 826 6.96 5,457 669 6.99

5 ⋅ 10−1 7,219 692 5.47 5,628 586 5.94

6 ⋅ 10−1 6,900 832 6.87 5,676 679 6.82

7 ⋅ 10−1 7,118 789 6.32 5,593 661 6.74

8 ⋅ 10−1 7,062 844 6.82 5,536 660 6.80

9 ⋅ 10−1 7,688 781 5.80 5,820 581 5.70

1 ⋅ 100 8,076 926 6.54 5,987 705 6.72

2 ⋅ 100 8,716 1,094 7.15 6,271 793 7.20

3 ⋅ 100 8,704 1,208 7.90 6,310 878 7.93

4 ⋅ 100 9,076 1,390 8.71 6,497 978 8.56

5 ⋅ 100 9,237 1,520 9.35 6,542 1056 9.17

6 ⋅ 100 9,053 1,121 7.06 6,322 751 6.77

7 ⋅ 100 9,207 1,161 7.19 6,374 781 6.99

8 ⋅ 100 9,340 1,205 7.35 6,473 805 7.09

9 ⋅ 100 9,425 1,225 7.40 6,457 826 7.29

1 ⋅ 101 9,502 1,270 7.61 6,422 866 7.68

Table D.8.: Results from macrorheological SAOS results as plotted in figure II.4.5. Data recorded at
the mucus sample from the first horse carries the index 1, data from the second horse is
indicated by the index 2.
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List of Variables

symbol unit meaning

ACij m2 amplitude of non-oscillating contribution to cross-correlation func-
tion Cij

ADNA m amplitude of DNA center of mass
Arel m relative amplitude of DNA center of mass in respect to driving lens
Aresc m rescaled amplitude of DNA center of mass in respect to driving

lens amplitude and relative height
B m amplitude of driving oscillation
c m

s speed of light in vacuum
Cii m2 auto-correlation function of direction i
Cij m2 cross-correlation function of direction i and direction j
Cij,osc m2 amplitude of oscillating contribution to cross-correlation function
dc m diameter of colloid
dcw m distance of wall and center of a colloid
D m2

s diffusion coefficient
E⃗ A2 s4

kgm3 electric field
f 1

s frequency
F⃗grad

kgm
s2

gradient force
F⃗r

kgm
s2

Brownian random force
F⃗scat

kgm
s2

scattering force
F⃗trap

kgm
s2

restoring force of the optical trap
g⃗ m

s2
gravitational acceleration

G, G̃ kg
ms2

shear modulus
G′ kg

ms2
elastic contribution to shear modulus

G′′ kg
ms2

viscous contribution to shear modulus
hlens m distance between coverslide and lens
kB

kgm2

s2K
Boltzmann’s constant

k, ktrap kg
s2

trap stiffness
m kg mass
mr − relative refractive index

This table continues on the following page.
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D. Supplementary Tables

symbol unit meaning

nc − refractive index of colloid material
nm − refractive index of surrounding medium
p kg

ms2
pressure

P kgm2

s3
power of a laser beam

Q m3

s flow rate
Qgrad − quality factor of gradient force
Qscat − quality factor of scattering force
rc m radius of colloid
Re − Reynolds number
RF − Fresnel’s coefficient of reflection
r⃗trap m position vector of trap
S⃗ kg

s3
Poynting vector

T K temperature
TF − Fresnel’s coefficient of transmission
Wi − Weissenberg number
z0 m average distance of grafted DNA center of mass from coverslide
α − dimensionless frequency
α̃ s2

kg fluid susceptibility
αp

A2s4

kg electromagnetic polarizability
γ − shear strain
γ̇ 1

s shear rate
δ rad phase
δDNA rad phase of DNA center of mass
δlens rad phase of lens
ζ kg

s coefficient of friction
η kg

ms dynamic viscosity
θi rad angle of incidence
θe rad angle of emergence
κ kg

s2
spring constant

λ m wavelength
ρ kg

m3 density
σs m2 scattering cross-section
τ kg

ms2
shear stress

τr
1
s relaxation rate

ω rad
s angular frequency
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