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“These nanotubes are so beautiful that they must be useful for something. . .” 

 

Richard E. Smalley  
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Abstract 
 

The present thesis is focused on the design of a processing route which would deliver a 

microstructurally tailored metal matrix composite. By controlling the final microstructure, the 

resulting physical properties can be predicted and therefore optimized for a certain application. 

Process parameters were optimized considering the CNT defect state after dispersion. 

Additionally, the microstructural evolution is analysed during sintering, considering the 

potential chemical interactions. It was observed that the CNTs act as microstructural controller 

due to boundary pinning, resulting in finer final microstructures for higher CNT concentrations 

up to 3.0 wt.% CNTs, concentration beyond which no further refinement is detected. This 

stagnation is a consequence of the CNT agglomeration due to the mass transport during 

sintering. The mechanical, thermomechanical, tribological and electrical characterization of the 

composites was performed with complementary techniques. The improvement of the 

mechanical properties is associated to a Hall-Petch effect. Thermomechanical behaviour shows 

a decrease in the coefficient of thermal expansion. The anchoring effect of the CNTs is the 

responsible for this reduction and three model mechanisms for the behaviour are proposed. 

Tribological behaviour showed reduced friction and wear loss in the composites. Finally, the 

influence of the CNT concentration and distribution are correlated to the improvement in the 

electrical conductivity.  
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Zusammenfassung 
 

Die vorliegende Arbeit beschäftigt sich mit der Entwicklung einer Herstellungsroute, welche 

die Synthese mikrostrukturell maßgeschneiderter Metallmatrixkomposite erlaubt. Dies 

ermöglicht eine Vorhersage und Optimierung der sich einstellenden physikalischen 

Eigenschaften für bestimmte Anwendungsfälle. So wurden die Prozessparameter hinsichtlich 

des Defektzustandes von CNTs optimiert und die während des Sintervorganges potentiell 

möglichen chemischen Wechselwirkungen analysiert. CNTs fungieren durch Behinderung der 

Korngrenzbewegung als Steuerungselement für die Mikrostruktur. Mit steigender CNT-

Konzentration (bis zu 3 Gew.-%) nimmt die Korngröße ab. Höhere CNT-Konzentrationen 

führen zu Agglomerationen aufgrund des Massentransportes während des Sintervorganges und 

tragen nicht mehr zum Kornfeinungseffekt bei. Eine mechanische, thermomechanische, 

tribologische und elektrische Charakterisierung der Komposite wurde mit komplementären 

Methoden durchgeführt. Die Verbesserung der mechanischen Eigenschaften kann mit dem 

Hall-Petch Effekt korreliert werden. Gleichzeitig wird eine Abnahme des 

Wärmeausdehnungskoeffizienten festgestellt, welche mit dem Verankerungseffekt der CNTs 

zusammenhängt und durch drei Modellansätze beschrieben wird. Die tribologischen 

Untersuchungen zeigen eine Verringerung des Reibkoeffizienten und des Verschleißes. 

Abschließend wird eine Verbesserung der elektrischen Leitfähigkeit auf den Einfluss von CNT-

Konzentration und -Verteilung zurückgeführt.   
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I. Introduction and objectives 
  

I.1.   Introduction 

Reliability and property tailoring of new materials in high performance and heavy duty tasks 

are constant goals to achieve in materials engineering. In the past years, composite materials 

have been introduced in diverse applications such as aerospace, ground transportation, 

electronics and home goods. Among the different advantages, the exploitation of the matrix-

reinforcement synergy is most notable. However, reinforcements can additionally bring along 

adverse effects depending on the application. Particularly in electrical contacts, duty life is 

established by resistance to strong degradation mechanisms such as inter-welding between 

electrodes and arcing erosion.  

This was first achieved by the use of Ag-based composites reinforced with metal oxide particles 

(CdO). In this case, the function of the reinforcement is to avoid electrode inter-welding and to 

absorb the energy input by sublimating.  

Several years ago, the European Commission restricted the utilisation of Cd in component 

manufacturing, due to its hazardous nature for human health. The search for a suitable 

replacement began, directing all efforts to find another metal oxide that would act similarly. 

The first generation of replacements was based mainly on the reinforcement of Ag matrices 

with SnO2 particles. The results were promising with regard to weldability and arc duration, yet 

the performance of the composites was compromised. It was observed that after a single break 

operation (circuit interruption under load), the oxide particles formed non-conductive 

(semiconductive, at best) layers in the immediate subsurface. These layers are strong barriers 

for the electrical current flow, generating significant energy losses and increasing the overall 

electrical resistance of the component. Moreover, the oxides have been hypothesised to release 

oxygen during arcing, which would increase the amount of porosity in the material.  

Metal matrix composites are widely used in different applications. Due to their electric and 

magnetic properties, Ni composites are used in commercial rechargeable battery electrodes 

[1,2], reactor electromagnets [3] and as a constituent in electrical contact materials [4], among 

others. The latter usually contain either high amounts of costly noble metals or ceramic 

elements that are intrinsically electrically insulating or at best, semiconductive, thereby 

reducing the global thermal and electrical conductance. We propose an alternative that 
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circumvents both drawbacks by using conductive, high performance reinforcements: multiwall 

carbon nanotubes (MWCNT). Since their discovery [5–7], carbon nanotubes (CNTs) have 

shown outstanding physical properties and are the benchmark for thermally conductive 

materials to date [8,9], presenting tailored semiconductor behaviour [10] as well. Multiwall 

carbon nanotubes (MWCNT) have the particularity of always being metallic (zero band gap 

conductors) due to the fact that they possess at least one metallic layer [11].  

I.2.   Objective of this work  

The main objective of this work is to develop a Ni-based composite which would serve as a Ag 

replacement in electrical contacts. For that, the use of carbon nanotubes (CNTs) as 

reinforcement is proposed on the basis that they possess outstanding mechanical, thermal and 

electrical properties. These properties would improve several features of the Ni, approaching 

the optimal properties required for electrical contact performance. Among the requirements, 

contact materials are expected to present: 

 Good electrical conductivity: in order to reduce the energy loss from Joule heating. 

 Good thermal conductivity: in order to rapidly and efficiently dissipate the energy input 

provided by the electric arc.   

 Good mechanical properties: to avoid surface topography modification due to plastic 

deformation during closing operations. This would be detrimental to the arcing 

behaviour by reducing the effective contact area between electrodes. 

 Good tribological resistance: due to heating, electrical contacts suffer from fretting wear 

on the surface as a result of the thermal expansion mismatch with other components.  

 Thermal stability: for both, the reinforcement and the matrix microstructure due to large 

thermal stresses that components are usually subjected to.  

Moreover, a Ni matrix is a stepping stone towards other well established applications e.g. solid 

oxide fuel cells (SOFC) anodes, improving upon the current Ni/YSZ (Yttria Stabilised Zirconia) 

composites. This requires low thermal expansion and good mechanical, electrical and thermal 

properties. High-tech applications such as electronic packaging materials or static 

electromagnetic shielding (commonly known as MuMetals) are also in reach. 
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I.3.   Organization of the work 

The present work was organised in the following items: 

State of the art and theoretical background: the aim of this section is to introduce the reader to 

the concepts necessary to interpret further results and analyses made in the work. It contains a 

brief summary of the latest published work related to the topic of this study. 

Materials and methods: In this section, the starting materials as well as the selected processing 

and manufacturing methods are introduced. Furthermore, the characterisation methods are 

briefly described. 

Precursor processing and MWCNT degradation analysis: the structural stability and inter-

reaction between the MWCNTs and Ni are analysed by several complementary techniques. The 

thermodynamic feasibility of the chemical reactions between the components was simulated so 

as to predict the interaction.   

The role of MWCNT in the grain growth – Microstructural analysis: the influence of different 

partial amounts of MWCNTs in the grain growth and the final microstructure are studied. A 

correlation with two-phase material models is made so as to find the refinement mechanisms 

acting during grain growth.  

Thermomechanical behaviour: bulk dilatometry and lattice behaviour: the thermal expansion 

behaviour of bulk composites processed by different routes is investigated. In order to 

understand the improvement in the thermomechanical properties, response and interaction 

modes are proposed. 

Mechanical properties: grain boundary strengthening: in this chapter, the influence of the 

MWCNTs on the microstructure and thus on the mechanical properties is analysed and 

discussed.  

Tribological properties: friction and wear behaviour: the improvements in the friction and wear 

behaviour in low-concentration (1.0 wt %) MWCNT-reinforced composites are scrutinised. A 

correlation between the response, the microstructure and its oxidation kinetics is presented. 

Electrical properties: transport and coupling: the electrical resistivity of the composites is 

evaluated and discussed considering the partial amounts of MWCNTs in the sample. 

Theoretical modelling is performed to correlate and interpret the experimental results. 
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I.4.  Dissemination of the work 

The contents of this study were partially or fully published in peer-reviewed journals or 

presented in scientific conferences. The articles and contributions are listed below. 

Peer-reviewed journals 

S. Suárez, F. Soldera, C. González Oliver, D. Acevedo & F. Mücklich – Thermomechanical 

behaviour of bulk Ni/MWNT composites produced via powder metallurgy. Advanced 

Engineering Materials 14(7): 2012; 499-502. 

S. Suárez, E. Ramos-Moore & F. Mücklich – A high temperature X-ray diffraction study of the 

influence of MWCNTs on the thermal expansion of MWCNT/Ni composites. Carbon 51(1): 

2013; 404-409. 

S. Suárez, F. Lasserre & F. Mücklich – Mechanical properties of MWNT/Ni bulk composites: 

Influence of the microstructural refinement on the hardness. Materials Science and Engineering 

A. 587: 2013; 381-386. 

S. Suárez, A. Rosenkranz, C. Gachot & F. Mücklich – Enhanced tribological properties of 

MWCNT/Ni bulk composites – Influence of processing on friction and wear behaviour. Carbon 

66: 2014; 164-171. 

S. Suárez, E. Ramos-Moore, B. Lechthaler & F. Mücklich – Grain growth analysis of 

multiwalled carbon nanotube-reinforced bulk Ni composites. Carbon 70:2014;173-178. 

S. Suárez, F. Lasserre, O. Prat & F. Mücklich – Processing and interfacial reaction evaluation 

in MWNT/Ni bulk composites. Physica Status Solidi A. 2014. Accepted.  

S. Suárez, N. Souza, F. Lasserre & F. Mücklich – Influence of the reinforcement distribution 

on the electronic transport properties of MWNT/Ni bulk composites. Carbon. 2014 Submitted. 

 

Conferences 

S. Suárez, F. Soldera, J. García & F. Mücklich – Comparative electrical studies of Ni/MWNT 

bulk composites. International conference on the science and application of nanotubes NT11. 

University of Cambridge, Cambridge (UK). 10-16 July 2011. 
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S. Suárez, F. Lasserre, F. Soldera, C. Gonzalez Oliver & F. Mücklich – Thermomechanical 

behaviour of Ni/MWNT composites produced via powder metallurgy. International meeting on 

the chemistry of nanotubes and graphene ChemOnTubes 2012. Arcachon (FR). 1-5 April 2012. 

F. Lasserre, F. Soldera, S. Suárez & F. Mücklich – Mechanical properties of Ni/MWNTAu 

composites. International meeting on the chemistry of nanotubes and graphene ChemOnTubes 

2012. Arcachon (FR). 1-5 April 2012. 

S. Suárez, F. Lasserre & F. Mücklich – Microstructural refinement and mechanical properties 

improvement in MWNT/Ni bulk composites. European congress and exhibition on advanced 

materials and processes EUROMAT 2013. Sevilla (ES). 8-13 September 2013. 

 

 

 

 



II. Theoretical background and state 

of the art 
 

II.1. Metal Matrix Composite (MMC) materials 

A composite material is defined as a combination of two or more materials, which differ from 

each other in form and/or composition. The constituents must retain their identities; that is, they 

do not dissolve or merge completely into one another although they act synergistically. 

Normally, the components can be physically identified and exhibit an interface. Composite 

materials are created to obtain properties that cannot be achieved by any of the components 

acting alone [12]. This result is frequently referred to as the composite effect.  

The matrix is the major constituent and is essentially, the material in which the reinforcing 

phase is embedded, providing ductility and formability to the composite. Matrix materials can 

include: aluminium (the most widespread), titanium, magnesium, copper, nickel, and ordered 

intermetallic compounds (NiAl and Ti3Al) among other materials [12]. The reinforcement is 

basically the load-bearing phase which may constitute from 10 to 60 vol.% of the composite. 

They are classified according to type and distribution, the most common being: continuous 

fibres, whiskers/short fibres, particulate and laminate reinforcements (Figure II-1). 

 

Figure II-1 - Different reinforcement types for composites: (a) particle reinforcement; (b) short fibre 

reinforcement; (c) continuous fibre reinforcement; (d) laminate reinforcement [13]. 
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Continuous fibre or filament reinforcements traditionally include graphite, silicon carbide, 

alumina, and refractory metals [12,14]. Short fibres, either organised or randomly distributed, 

are usually silicon carbide, alumina, and more recently carbon nanotubes and graphene [12].   

In the late years, major improvements have been achieved in the field of composites regarding 

the systematisation and reproducibility in the manufacturing as well as a reduction in the 

production costs by efficiently modifying the processes to fit them to industrial scales. These 

improvements have opened a wide span of applications for composites in several different fields 

such as: aerospace, automotive, domestic appliances and sporting goods among others. For 

example, in recent years, the aerospace industry has focused its efforts in reducing the total 

weight of aircrafts in order to reduce fuel consumption and gas emissions. The adopted solution 

was the use of high amounts of light metal composites such as Al and Ti matrices. Figure II-2 

shows the partial amounts of materials in a commercial aircraft.     

 

Figure II-2 - Materials usage in weight percent for a commercial aircraft (credit: Boeing.com [15]) 

Moreover, the introduction of MMCs for the airframe of commercial aircrafts is expected to 

reduce maintenance due to risk reduction in component corrosion and fatigue.  

Another example of application is in low-voltage electrical contact materials.  The main 

problem affecting the duty life of a contact material is the erosion produced by the sparking 

during circuit breaking. This is a result of contact welding, which generates a metallic bridge 

during the break operation. To overcome this obstacle, a first generation of Ag-based composite 
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contacts was developed. These composites were reinforced with metal oxide particles (mainly 

CdO) so as to reduce the weldability of the contacts. The CdO would evaporate during arcing 

diminishing the arc duration. After some years in use, the European Commission determined 

that certain hazardous metals were to be replaced in industrial applications, one of which is Cd. 

Industrial developers took on the replacement of CdO by other ceramic particles presenting 

lower health risks. SnO2, WO3 and In2O3 were proposed, among others, the main drawback of 

which is a strong oxide platelet formation after arcing. This significantly increases the electrical 

resistance of the composite, therefore increasing Joule energy losses [16,17]. 

II.2. Processing of MMC 

II.2.1. Liquid-state processing (LSP) 

LSP methods are mainly focused on low-melting point metals such as aluminium or 

magnesium. Because this process involves the melting of the matrix material, one must 

overcome the cumbersome obstacle of energy management. Moreover, the processing 

atmosphere is critical due to the increased chemical reactivity of the molten metal (enhanced 

oxidation and reaction with the reinforcement). The main advantage of this processing method, 

however, is the improvement of the interfacial contact compared to solid-state processing routes 

(section II.2.2).    

Casting 

Casting consists in manufacturing bulk components from molten metal. These are poured into 

moulds, solidified and ejected from the mould or the container is broken. It is a very useful 

technique when the required components present a complex shape. The main drawback is the 

non-uniformly distributed reinforcement, which can lead to undesired effects on the physical 

properties.   

Liquid metal infiltration 

This case is similar to the previous method. However, the main difference is the application of 

an external pressure so as to inject the molten metal into the mould. The same drawbacks as 

described before are observed in this technique such as: fibre reagglomeration, directionality in 

the fibre distribution, etc. 

 

Spray deposition 



Chapter II – Theoretical background and state of the art 

 

Sebastián Suárez Vallejo  9 

 

The spray deposition method is mainly used in composite coatings. The process consists in 

spraying a molten mixture onto a surface that is to be protected. By regulating the temperature 

and rheological parameters, it is possible to tailor the roughness and compactness of the coating. 

It is usually utilised with low-melting point metals, to reduce the energy input. 

II.2.2. Solid-state processing (SSP) - Powder metallurgy methods 

Powder metallurgy routes basically densify a porous body applying temperature (and eventually 

pressure) to achieve a desired final density. These packed metallic powders bond together 

(mainly by diffusion) when heated over temperatures approximately half of their melting point. 

This phenomenon is called Sintering. The main advantages of this processing route in 

comparison to liquid state processes are: lower processing temperatures, better control of the 

reinforcement distribution within the matrix, better microstructural control. The tailoring of the 

microstructure is referred to the final grain size, final density and reinforcement distribution 

and interface with the reinforcements. Solid state sintering is divided into three main stages, 

namely: initial, intermediate and final (see Figure II-3). The initial stage is characterised by the 

formation of so-called “sintering necks”, which form a material path for the different material 

transport mechanisms that will act during sintering. The second stage is where the most 

significant densification is achieved, and isolating the interconnected porosity and reaching 

final relative densities up to 93%. The last stage involves the densification from an isolated 

porosity state to the final densification. 

 

Figure II-3 - Densification curve of a powder compact, identifying the three sintering stages [18]. 

The driving force of sintering is the reduction of the total interfacial energy [18]. In a powder 

compact, the total interfacial energy can be expressed as follows: 
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∆(𝛾. 𝐴) = ∆𝛾. 𝐴 + 𝛾. ∆𝐴            (Equation II.1) 

where γ is the specific interfacial energy and A the total interfacial area of the compact. The 

change in interfacial energy (Δγ) is related to the replacement of solid/vapour interfaces by 

solid/solid interfaces; whereas the change in interfacial area (ΔA) is due to grain coarsening. 

These aspects are schematically represented in Figure II-4. 

As mentioned before, the sintering variables or parameters play a fundamental role in the 

process. They are usually divided into two main categories: material-related and process-related 

variables. The former includes the powder size, shape, size distribution and chemistry, whereas 

the latter includes all the variables inherent to the sintering process such as: temperature, time, 

pressure, atmosphere, heating and cooling rates among others. In accordance with these 

parameters, the sintering processes can be divided into pressureless and pressure-assisted 

sintering. The following briefly describes the most widespread techniques. 

 

Figure II-4 - Basic phenomena occurring during sintering [18]. 

Cold pressing plus sintering (CPS) 
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Also known as “pressureless sintering”, CPS is the most straightforward sintering technique. It 

consists of a pre-consolidation of a powder mixture into a porous body and its subsequent 

densification by the application of temperature without external pressure. Usually, the main 

densification mechanisms consist of lattice and grain boundary diffusion of the metals or 

ceramics [18].  

Hot uniaxial pressing (HUP) 

Another possibility in sintering is the application of an external pressure on the sample during 

the heating slope and the isothermal treatment. Since the densification driving force is directly 

influenced by the application of this external pressure, the densification kinetics are modified. 

However, this external force would not affect the grain growth, since this is only affected by 

the temperature of the sample. Because the densification rate is increased by the application of 

external pressure, the temperature and time of sintering can be reduced, obtaining full density 

samples in shorter times. Also, the external pressure will help to close porosity during the final 

stage of sintering.    

Hot isostatic pressing (HIP) 

HIP is used for the densification of porous compacts, as well as in the correction of sintering 

flaws present in the aforementioned methods. The process consists in the encapsulation of the 

porous compact within a container and the application of heat and isostatic pressure in an inert 

gas medium with pressures of about 300 MPa. In this case, a two-stage sintering is usually 

applied: low-pressure for porosity isolation followed by high-pressure densification [18,19]. It 

has been demonstrated that before the second stage, all the porosity must be isolated (no 

porosity interconnectivity) in order to achieve high final densities. This is due to the increased 

probability of a pore/boundary separation [18].    

Spark plasma sintering (SPS) 

Spark plasma sintering is a newly developed technique which consists in the rapid powder 

sintering applying pressure and heat produced by a short electric pulse. It achieves very good 

final densities with minimal grain growth in very short times. The enhanced sinterability is 

mainly linked to a particle surface activation and increased diffusion rates on the contact zones 

caused by the applied current pulse [20]. It is mainly used for the consolidation and sintering 

of metals and ceramics, although polymer consolidation has been reported [21].  
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II.3. Carbon Nanotubes (CNTs) 

Carbon nanotubes have had a deep impact in the scientific community since their first 

identification by Iijima in 1991 [5]. From that point on, the amount of research has increased 

exponentially covering very diverse topics such as: development of fundamental knowledge on 

CNTs, theoretical and empirical studies on the physical properties of CNTs, and potential 

applications in very dissimilar fields such as micro and nano-electronics, structural composites, 

multifunctional composites, energy transfer and storage etc. Figure II-5 depicts the increment 

in the amount of published papers dealing with CNTs. 

Despite the huge amount of research reported in scientific publications and conferences, the 

CNTs show such a high versatility that still enable a growing research community to further 

develop innovations in this field.   

 

Figure II-5 - Amount of publications per year dealing with CNTs (source: Scopus) 

II.3.1. Carbon hybridisation  

Covalent sp3 and sp2 bonding of carbon [22] 

Carbon is a versatile element which can show different types of hybridisation. The ground state 

phase of carbon under ambient conditions is the sp2 graphite, whereas at higher temperatures 

and pressures, sp3 cubic diamond is stable [23]. The sp3 hybridisation presents a C-C bond 

energy of 370 KJ/mol, while sp2 has a C=C bonding energy of 680 KJ/mol. Moreover, the bond 
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length is 15% shorter in sp2. This translates into better mechanical strength in the basal plane 

direction for sp2 bonded carbons.  

 

Figure II-6 - Electron distribution in sp2-hybridised carbon atoms [22]. 

In graphene, each sp2 carbon atom is combined with three other sp2 carbon atoms, resulting in 

a series of hexagonal lattices resembling a honeycomb shape (Figure II-6). The fourth 

delocalised electron is located in an orbital perpendicular to this basal plane and forms π-bonds. 

Unlike the sigma bonds, they are weak due to significantly lower orbital overlapping between 

the component p-orbitals due to their parallel orientation. These electrons are the main 

responsible for the electronic and thermal conduction in graphitic structures.  

II.3.2. Definition of carbon nanotubes 

In a general manner, carbon nanotubes can be defined as hollow cylinders of sp2 carbon sheets 

with a thickness of one atom.  They can be studied as single molecules due to their small size 

(nanometric diameter and micrometric length), or even as quasi one-dimensional crystals with 

translational periodicity along the tube axis [24]. Since there are infinite ways of rolling this 

mono-atomic carbon sheet, a set of defining parameters must be utilised to characterise them. 

For that, we must base the definition on the chemical stereoisomerism [25], which provides a 

set of parameters under the term chirality. The atomic structure of a CNT is thus described by 

the chiral vector Ch and the chiral angle θ (Figure II-7), represented with the following 

equations:  

𝐶ℎ = 𝑛�⃗�1 +𝑚�⃗�2   (Equation II.2) 

tan 𝜃 =
√3𝑚

2𝑛+𝑚
    (Equation II.3) 
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Where n and m are integers and a1 and a2 are the unit vectors of the carbon lattice. Moreover, 

the diameter of a CNT can be determined from the previously described parameters by using 

the following equation: 

𝑑 =
𝑎√𝑚2+𝑛2+𝑛𝑚

𝜋
  (Equation II.4) 

According to their chiral index, they are classified in three different types, namely: armchair (n 

= m), zig-zag (n = 0) and chiral (n ≠ m). 

They can also be classified by the number of walls stacked on a tube. Nanotubes exist either as 

singlewall carbon nanotubes (SWCNT) or multiwall carbon nanotubes (MWCNT).  

 

Figure II-7 - (a) Schematic representation of an infinite graphene sheet, describing the rolling possibilities and 

their subsequent chiral identification. (b) Armchair configuration. (c) Zig-zag configuration [26]. 

MWCNTs were first identified by Iijima [5] and consist of a set of concentrically nested 

SWCNTs, separated by a distance analogue to that of consecutive graphene layers in graphite 

(3.35 Å) [27]. They can reach lengths similar to those of SWCNT and outer diameters ranging 

from 5 to 100 nm corresponding to approximately 30 walls. Due to the large curvature of the 

outer wall, confinement effects are significantly lower than in SWCNTs, making some 

properties quite close to those of graphite [24].     

II.3.3. Physical properties of carbon nanotubes 

Electrical and electronic properties 

SWCNTs are extraordinary since they can be either metallic or semiconducting in accordance 

with the following rules: n = m tubes behave like metals; (n, m) tubes with n−m = 3j, where j 

is a nonzero integer, are very small-gap semiconductors; and all SWCNTs with n−m = 3j±1 

are large-gap (~1.0 eV for tube diameters of approx. 0.7 nm) semiconductors. Strictly, the n − 
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m = 3j tubes would theoretically be all metallic, but because of tube curvature effects, a tiny 

band gap opens up when j ≠ 0 (Figure II-8). Thus, carbon nanotubes can be large, small, or 

zero-gap systems. The armchair tubes are always metallic within the single-electron 

representation due to their symmetry, independent of their curvature (Figure II-8).  

As the tube diameter (dt) increases, large and small band gap types decrease with a 1/dt and 

1/d2
t dependency, respectively. Thus, for most experimentally observed carbon nanotubes, the 

small-gap would be so narrow that it is practically assumed that all the n − m = 3j tubes can be 

considered metallic at room temperature because their thermal energy is sufficient to excite 

electrons from the valence to the conduction band [28]. Considering that the CNTs possess 2 

conduction channels, the resistance of a ballistic nanotube is expected to be 6.45 kΩ [29]. The 

electron (transport) interactions are believed to be governed by the Tomonaga-Luttinger-liquid 

model [30–32]. 

 

Figure II-8 - Electronic density of states for a zig-zag (8,0), chiral (7,1) and armchair (5,5) carbon nanotubes 

[28]. 

Because of statistical probability and restrictions on the relative diameters of the individual 

tubes, one of the shells, and thus the whole MWCNT, behaves as a zero-gap metal. Moreover, 

MWCNTs have also been theoretically predicted to show quantised conductance [33,34]. 

Experimentally, the quantum conductance of CNTs was demonstrated with a very creative test 



Chapter II – Theoretical background and state of the art 

 

Sebastián Suárez Vallejo  16 

 

[35]. The researchers attached arc-grown MWCNTs to a gold electrode and gradually lowered 

the probe towards a Hg-filled Cu crucible, consequently closing a highly sensitive electrical 

circuit. Interestingly, they found that after the first MWCNT contacted the Hg droplet and by 

continuing the movement towards the centre of the contact, the conductivity did not change 

until a second nanotube contacted the Hg droplet. By observing the conductance versus depth 

graphic (Figure II-9), the quantised steps of the electrical behaviour are clearly noticed. Each 

step is an integer multiple of the fundamental quantum conductance. 

 

Figure II-9 - Conductance change of a CNT-bundle submerged into an Hg droplet. The quantum nature of the 

electrical conductance in CNTs is depicted by the step-like increment [35]. 

This experimental demonstration, coupled with the outstanding current carrying capacity of 

CNTs (approximately 109 A/cm2) [36], opens a great amount of possibilities for the utilisation 

of CNTs in electricity management applications. From this result, realistic calculations and 

modelling can be carried out in order to study the feasibility of the manufacturing of CNT-

containing components. Additionally, for a proper design of components which consist of 

several CNTs, it is important to consider all the possible interactions between CNTs and 

matrices or even the inter-tube interactions. For example, in CNT-based electronic devices, the 

formation and control of a Schottky barrier is very important [37]. A Schottky barrier is formed 

by joining a conductive (e.g. metal) with a semi-conductive material (e.g. chiral CNT). In the 

metal-semiconductor junction a potential barrier is formed showing rectifying capabilities. It 

has been theoretically proven, that a potential barrier is formed by connecting a ring of Pt atoms 

to a (8,0) SWCNT [37]. The calculations showed that the Schottky barrier had a p-type nature 
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with an energy gap of approximately 0.4 eV. However, the barrier has only a width of a few 

nanometres, which can be tunnelled by electrons [38]. Regarding the inter-tube interactions, 

there is yet to be a unified definition of what happens between two crossed CNTs. A summary 

of the probable interactions will be thoroughly discussed in chapter IX.   

Mechanical properties of CNTs 

Due to their sp2 hybridisation, the CNTs possess outstanding mechanical properties. 

Particularly, when related to their density, the CNT rank among the best reinforcing phases 

available in the market (Figure II-10).   

 

Figure II-10 -Plot of specific strength (divided by the density) versus density for several reinforcing and 

structural materials. 

The exceptional in-axis mechanical properties are due to the strong sigma bonding between 

carbon atoms, which is the strongest chemical bond known in nature [39]. The Young modulus 

ranges from a few GPa up to 600 GPa for the strongest materials such as diamond and SiC. It 

has been reported that the Young modulus of CNTs can reach values in the TPa range [40–42], 

largely surpassing previously known materials. The tensile strength is another property that has 

been demonstrated to be noteworthy in these materials. Particularly, it reaches values ranging 

from 20-30 GPa (for SWCNTs [43,44]) to 150 GPa for MWCNTs [42]. Another distinctiveness 

of CNTs is their high resilience. It has been observed that when a load is axially applied to a 

CNT, it bends without breaking significantly changing their shape developing a rippled 
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structure. When this load is released, the CNTs are restored to their original shape without 

atomic rearrangement [23].  

Thermal properties of CNTs 

Prior to the discovery of CNTs, carbon-based materials were already known to be the best 

thermal conductors available (Table II-1). For example, diamond and in-plane graphite 

displayed the highest thermal conductivity of any known material. The first approaches to 

determine the axial thermal conductivity of CNTs were made by computer simulations for both, 

single and multiwall carbon nanotubes. Berber et al. [9] predicted an extremely high 

conductivity for SWCNT, largely surpassing that of diamond. Their calculations were based on 

the assumption of a defect-free state of the CNT, resulting in approximately 6600 W/m.K for a 

(10,10) armchair tube. In the case of MWCNTs [8], the thermal properties were measured 

experimentally, and found a linear dependence with the temperature and values as high as 3000 

W/m.K. As bundles, simulations for (10,10) SWCNT presented a very strong anisotropy, 

resulting in an axial conductivity of 950 W/m.K and 5.6 W/m.K transversally [45]. 

Experimentally, the measured thermal conductivities present a wide range of values. Hone and 

co-workers determined conductivities at room temperature between 1750-5800 W/m.K for 

SWCNT samples. Moreover, they determined the phonon mean free path to be 0.5-1.5 µm 

[8,46]. The most relevant conclusion of their work is that they could show that the thermal 

resistance is mainly due to boundary scattering within the CNT [46]. 

Table II-1 - Thermal conductivity of known materials in comparison to carbon nanotubes (adapted from [22]) 

Material Thermal conductivity @25°C [W/m.K] 

Pyrolytic graphite (ab direction) 390 

Pyrolytic graphite (c direction) 2 

Graphite fibre 1180 

Diamond 2000-2100 

Silver 420 

Copper 385 

Beryllium oxide 260 

Aluminium nitride 200 

Alumina 25 

MWCNT (experimental) 3000 

SWCNT (theoretical) 6600 

 

In both SWCNT and MWCNT, the heat transport is predominantly made by phonons.  Ballistic 

thermal conduction has been predicted for SWCNT at low temperatures, whereas for MWCNT, 
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due to interlayer interactions resulting in complex transport phenomena, the heat conduction 

mechanism cannot be analyzed as one-dimensional [6].  

Aliev found that the thermal conduction is limited by two main factors, namely: 

inhomogeneities in the sheet structure and the intrinsic defects of the individual nanotubes that 

generate a phonon boundary scattering [47]. Due to their morphology, CNTs show a strong 

anisotropy as is the case with their electrical properties. The transversal thermal conductivity 

showed a 25 fold difference in the parallel and perpendicular conduction in MWCNT sheets 

[47]. 

II.3.4. Processing of carbon nanotubes 

Functionalisation 

Functionalisation refers to the modification of the tube surface in order to tailor it to your needs, 

such as: stable dispersion, proper integration to a matrix, etc. Functionalisation can be either 

covalent (dissociation of a C=C bond into a C-C bond and the further attachment of a molecule, 

monomer or functional group), or non-covalent (preservation of the structural integrity of the 

tube by coating it with surfactants or polymers). The main drawback of the first is the structural 

modification of the tube’s surface, resulting in a detriment to its intrinsic physical properties 

(e.g. electrical and thermal properties). It is usually used for the improvement of already low 

conductive matrices such as polymers and ceramics, where the matrix properties still have much 

to gain from a proper integration. Regarding the non-covalent functionalisation, despite the fact 

that it retains the structure of the tube and subsequently its properties, it sometimes generates 

an undesired interface that may interfere in the transfer of thermal and electrical load.  

Dispersion 

Due to their great specific surface and high surface energy, CNTs tend to form agglomerates 

generated by van der Waals interactions. Commercially available CNTs (both SWCNT and 

MWCNT) are usually delivered as aggregates in powders, rendering their dispersion essential 

for a proper use. Moreover, because of the tube-tube interactions, CNT agglomerates show 

reduced physical properties compared to those in dispersed state [24].    

In order to profit from the outstanding physical properties of CNTs, several strategies for the 

dispersion of agglomerates have been studied. The most widespread is the ultrasound-assisted 

colloidal dispersion in several different media. The dispersion media may include: surfactants, 
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solvents and/or macromolecules. This approach, however, becomes non trivial due to the 

hydrophobic nature of the carbon nanotubes.  

The idea behind this method is to use the strong mechanical interaction with ultrasound waves 

and the steric effect of certain compounds (i.e. surfactants) to achieve a stable colloidal solution. 

Once the nanotubes interact with the mechanical stimulus, two simultaneous consequences are 

observed. The first is the exposure of the free surface of the tube, and the second is the 

shortening of its length. The former is useful for either covalent or non-covalent 

functionalisation, whereas the latter improves the dispersability [48,49].   

Another approach exists named of solvent-assisted dispersion. Bergin et al. published a seminal 

investigation on this regard, where a thermodynamic analysis is applied in order to determine 

the maximal solubility of CNTs in different organic solvents [50]. Additionally, they estimated 

the Hansen solubility parameters of CNTs, which represents a significant contribution in the 

pursuit of new tailor-made solvents that achieve stable dispersions. 

In contrast to the large amount of research performed on the dispersability of CNTs in different 

media, only one work has dealt with the characterisation of the dispersion within a composite 

[51]. The study presents a mathematical approach to the characterisation and quantification of 

the dispersion in matrices, with the drawback that it only works for agglomerates. Since the 

available analysis equipment fails to resolve individual CNTs in a representative way, the only 

feature that could be identified and classified is the clustering. Hence, complementary 

techniques and methodologies are still needed in this field for a proper characterisation of the 

CNTs distribution in composites. 

Coating/Decoration (Exohedral functionalization) 

Coating must not be confused with decoration. The first one is related to the full coverage of 

the CNT surface and can be achieved by several different methods (electrochemical deposition, 

physical vapour deposition, chemical reduction, etc), whereas the latter is defined as the partial 

coverage of the surface by in-situ reduction or nanoparticle deposition.   

The two techniques have been studied as tools to improve the interfacial bonding between the 

CNTs and the matrix.   

It has been reported that the melting point of metals drops with is related to their net size, in the 

nanometre scale [52]. This reduction plays a significant role in the interfacial improvement, 

since a proper integration can be achieved with lower applied energies. This reduction in 
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thermal energy also reduces the risk of chemical reaction of dangling bonds of the tubes with 

the atmosphere. 

II.4. Metal matrix composites reinforced with carbon 

nanotubes 

The use of CNTs as the reinforcing phase in composite materials has been studied by several 

different approaches in the recent years. The main focus was made on polymer matrices, since 

an improvement in some areas (i.e. electrical and thermal conductivity) can be still achieved 

even after covalently functionalizing the CNTs. This trend can be observed in Figure II-11. 

 

Figure II-11 - Number of journal articles published on CNT-reinforced composites, differentiated by the matrix 

material. (source: Scopus). 

However, when the matrix is a metal, difficulties arise. The deteriorated intrinsic tube 

properties, as a consequence of covalent functionalization, would reduce the probability of a 

proper synergetic effect between the matrix and the reinforcement. 

An important amount of research can be found in the literature regarding CNT-MMC. Cu-

matrices are the most studied with Ni in second place, followed by Al, Mg and Ti, among others 

[53].  
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II.4.1. Fabrication techniques of Me-CNT composites 

Several techniques have been tested for the production of Me-CNT composites. These 

techniques comprise both, liquid and solid state processing (related to the state of the matrix 

material) and the main focus is made on the proper dispersion and distribution of the CNTs 

throughout the matrices with the lowest possible amount of induced defects.  

Particularly, liquid state processing routes provide the possibility of in-situ dispersion and 

blending of the precursors, prior to the final conformation. However, these processes increase 

the reactivity of the molten metal with the carbon nanotubes, rendering them prone to 

degradation.  

In the case of solid state processing, the most widespread preparation is mechanical powder 

mixing by energetic processes such as ball milling [54–58]. This technique is efficient in the 

CNT dispersion and their subsequent embedding into the metallic particles. It is used for several 

different metals with dissimilar properties. The main disadvantage of this process is that it 

unavoidably affects the CNT structure and dimensions, reducing their properties. Furthermore, 

it has been reported that it could modify some of the metal original characteristics [59].   

Another possibility to pre-process Me-CNT composites is wet routes. There are several 

approaches in this direction, and can present either covalent or non-covalent functionalisation 

of the CNT surface. The most widespread is the so-called molecular level mixing (MLM) [60]. 

MLM consists in attaching functional groups to the CNT surface where Cu ions are reduced. 

As a continuous process, these Cu seeds are grown further on the CNT surface until the 

nanotube is embedded into a Cu matrix. With this, an optimal integration in the metallic powder 

is achieved, which afterwards will be consolidated as a porous body. This porous compact is 

then densified by regular powder metallurgy routes. Since it was first reported, it has been 

successfully applied to different metallic and ceramic matrices such as: aluminium [61], nickel 

[62], copper [63], alumina [64], etc.    

Another wet chemical route is the heteroaggregation of powders. It is a well known process in 

the ceramic-materials field and consists in the formation of aggregates by the cohesion of 

particles of different materials [65]. In the case of Me-CNT composites, it would consist in 

blending the metallic powder with a stable dispersion of CNTs (functionalised or not), and the 

subsequent drying of the mixture to obtain composite powders. The mechanisms governing the 

interaction between the metal and the CNTs in this type of aggregation are still unclear. The 
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most accepted model is based on the DLVO (Derjaguin, Landau, Verwey and Overbeek) theory 

of interaction in colloidal suspensions [66].    

II.4.2. Interfacial phenomena in Me-CNT composites 

An important aspect to consider during solid state processing of metal-CNT composites is the 

interfacial reactions which could lead to structural decomposition of the nanotube [38].  These 

interfacial interactions are of critical importance, they are preponderant in the generation of a 

synergetic effect between matrix and reinforcement. In particular, the strength of a composite 

material strongly depends on the stress transfer from the matrix to the reinforcement at the 

interface [14]. Carbon nanotubes are known for their chemical stability throughout a wide range 

of temperatures, but in a defect-free state. In practice, this is extremely uncommon, since a great 

amount of defects can be induced in many stages of the processing (i.e. dispersion, mixing, 

etc.). sp3 sites can also be found which may induce the formation of side-contact carbides. A 

typical type of crystallographic defects in sp2 hybridised carbons are the Stone-Wales defects 

[67,68].  

 

Figure II-12 - Stone-Wales defects in sp2 carbons [26]. 

These are produced by the rotation of the C-C bonds reshaping the electronic configuration and 

the morphology of the graphitic structure (Figure II-12).  This reconfiguration provides new 

reactive sites for chemical interaction. 
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The most significant effect that can appear is the formation of carbides according to the 

following chemical reaction: 

𝑥

𝑦
𝑀 + 𝐶 →

1

𝑦
𝑀𝑥𝐶𝑦     (Equation II.5) 

The formation of carbides implies a chemical dissociation that may be detrimental to the 

intrinsic physical properties of the CNTs. By decomposing an sp2 bond into an sp3, the 

scattering probability of an electron or a phonon within the conduction path is significantly 

increased, leading to a change in the conduction mechanism from ballistic (scatter-free) to 

quasi-ballistic. On the other hand, the beneficial side of this particularity is that the interfacial 

strength is increased and therefore the load transfer could eventually be promoted [69]. The 

most studied example of Me-CNT composites is the Al/CNT system. A stable carbide (Al4C3) 

is formed by direct reaction at locations where an amorphous carbon coating, defect sites and 

open ends of the CNTs are present  [55–57,70–73].  

 

Figure II-13 - (a) Probable reaction sites between metals and CNTs. (b) Gibbs free energy of formation for 

several metal carbides in a wide temperature range [53]. 

When working with metals that would form stable carbides (i.e. Al, Cr, Mg) (Figure II-13b), it 

is recommendable to analyse the thermodynamics of the carbide reaction in advance so as to 

tailor the amount and influence of these phases in the performance of the composite. 

Furthermore, depending on the processing method, the reactivity between CNTs and metals can 

be enhanced and generate either end or side-contacts (Figure II-13a).  

The compromise between the improvement of the interfacial interaction and the degradation of 

the CNT structure should be settled based on the implications on the remaining physical 

properties.    
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II.4.3. Synergetic effects in Me-CNT composites 

Once a basic understanding of the physical properties and characteristics of CNTs was 

developed, the aim of the scientific research was shifted towards the improvement of the 

physical behaviour in composites. Among the studies which could be found in the literature, 

the focus was made on the enhancement of the mechanical, thermal and/or electrical properties 

in particular. In the following, a brief summary of some of the reports is showed. 

Mechanical properties 

The enhancement of the mechanical properties is the most studied phenomenon in Me-CNT 

composites. Probably, this is due to the straightforward interpretation of the phenomena based 

on the analysis of results, by the correlation to a well-developed stack of previous studies with 

other reinforcing phases. Within the reported improvements, the most studied property is the 

tensile strength. Several different metallic matrices have been reported to exhibit grain 

boundary strengthening due to microstructural refinement [74–76]. This particularity will be 

thoroughly explained and discussed in chapter VII of the present work. Another reported 

strengthening mechanism is the Orowan looping [58], which hinders the dislocation mobility 

by adding obstacles to their path.  In general, improvements in hardness and yield strength are 

observed, generated by the presence of second phase entities (i. e. CNTs).  

As mentioned before, in all cases dispersion plays a fundamental role. It is only possible to 

exploit the reinforcing effect of the CNTs to its maximum by effectively dispersing them within 

the metallic matrix. This would not only take advantage of the outstanding intrinsic physical 

properties of the CNTs, but would help to improve the interfacial contact with the matrix. 

Thermal properties 

Metals hinder the improvement of their thermal properties. It is well known that metals have 

high thermal properties (although not as high as the CNTs). However, with the aid of a proper 

dispersion, the CNTs would be able to enhance the thermal conductivity of metals up to one 

order of magnitude.  

The most studied CNT/metal system regarding its thermal properties is that with Cu matrix due 

to its potential application in electronics. The overall thermal conductivity was generally 

decreased due to a variety of problems such as porosity, poor interfacial contact, CNT 

agglomeration, etc. Edtmaier et al. reported a fivefold decrease in the thermal conductivity of 

CNT/Cu compared to that of sintered Cu [77]. The given explanation for this decrease is the 
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poor interfacial connection between reinforcement and matrix. However, as expected, they 

mention that by improving the dispersion, the thermal conductivity would be expected to 

significantly improve. Chu also reports a decrease in the thermal properties of CNT/Cu bulk 

composites [63]. However, in this case the decrease is significantly lower as that reported in 

reference [77]. From the presented SEM and TEM figures, it is clearly noticeable that the 

dispersion of CNTs within the matrix is more homogeneous than the one of Edtmaier. The only 

report showing an improvement of the thermal conductivity in CNT/Cu composites, to date, 

was published by Cho et al [78]. They measured an improvement in the thermal properties for 

low CNT volume fractions (up to 3 vol.%). Already at 5 vol.% the conductivity of the composite 

is below that of pure Cu. Furthermore, they expanded their studies to functionalized MWCNTs 

in order to improve the dispersion and distribution in the Cu matrix, finding in this case, that a 

4-5 nm interfacial amorphous layer hindered the expected improvement of the thermal 

properties [79]. In a previous work by Kim et al., the thermal conductance of a MWCNT/metal 

junction was approximately 0.5 W/m.K [8]. In comparison to the conductivities of Cu and 

CNTs, it becomes clear why they have a detrimental effect. 

Electrodeposited MWCNT/Ni thin layers produced by a Watts bath showed a maximum value 

of 109 W/m.K at 0.7 wt.% CNTs, a very promising result. This value was 80% higher than that 

of a pure Ni film deposited under the same conditions (60 W/m.K), and even 20% higher than 

the theoretical value for Ni (90.9 W/m.K). They report that beyond this concentration, the 

conductivity was lowered due to void formation and discontinuous interfaces [80].   

Laser near-net shape melting processing of MWCNT/Ni composites showed a thermal 

conductivity decrease of more than 50% compared to pure Ni, mainly due to the presence of a 

large amount of porosity and CNT degradation into carbides [81]. Bulk composites produced 

by spark plasma sintering presented an anisotropic increase in the thermal conductivity in two 

different directions up to 3 and 4 vol.% [82]. After these concentrations, the conductivity is 

constantly decreased, with values always below pure Ni. The authors state agglomeration, CNT 

winding and interfacial reactions as the greatest causes. In all cases, the researchers tried to 

predict the thermal behaviour of the composites, to no avail, because the different tested models 

(Eshelby equivalent model, rule of mixtures, etc.) do not consider the interfacial features as 

well as the very low probability of having optimally dispersed CNTs (individual tubes) 

throughout the matrix. These are very promising results that encourage further research in this 

direction.   



Chapter II – Theoretical background and state of the art 

 

Sebastián Suárez Vallejo  27 

 

Electrical properties 

The improvement of the electrical conductivity in a CNT-reinforced metal matrix composite is 

a non-trivial goal to achieve. Some years ago, an envisioning paper from Hjortstam et al. [83] 

explored the possibility of achieving an ultra-low resistivity composite material by integrating 

CNTs as reinforcements. The theoretical analysis shows promising results, but certain 

conditions must be satisfied to obtain the predicted results. They state that in order to produce 

a highly conductive Cu/CNT composite three main challenges are to be overcome, namely: (i) 

high quality CNTs must be produced in industrial quantities, (ii) a method for producing the 

composites with well integrated and finely dispersed CNTs must be developed, and finally (iii) 

the manufacturing costs should be reduced so as to allow the CNT usage in mainstream 

applications. The challenges (i) and (iii) have been at least partially overcome in the years 

following the publication of the paper, whereas regarding the item (ii), despite progress in the 

past years, several problems are yet to be solved. The predicted improvement is based on the 

fact that defect-free CNTs present ballistic conduction and the integration to the matrix is 

seamless. In the practice, this has not yet been achieved, observing an increased amount of 

defects in the dispersion stage and a low interfacial integration of the CNTs in the matrix. 

Moreover, there is still a wide discrepancy regarding the interaction between tubes in the 

electric conduction. For example, among the proposed mechanisms, some authors report that 

there is a Fano resonance effect between the tubes [84,85]. Another hypothesis is the resonant 

tunnelling coupling between tubes for electrical charge transfer [86,87]. All these effects are 

sources of energy loss and were not considered in the aforementioned theoretical preview 

published by Hjortstam. 

II.4.4. CNT-reinforced composites: issues to be considered 

As a general rule, the experience gathered from the extensive literature published on this topic 

defines certain important issues to be addressed in order to obtain an optimal functional 

composite, namely:  

 Dispersion and distribution of the CNTs within the matrix. 

 Functionalisation (covalent or non-covalent) as an efficient route towards optimal 

reinforcement.  

 Powder blending depends strongly on the final densification route.   

 CNT/Metal interfaces define the transfer properties. 

 



III. Materials and methods 
 

III.1. Materials 

III.1.1. Matrix material 

The selected matrix material for this work was Nickel (Ni) dendritic powder, provided by Alfa 

Aeasar GmbH & Co KG (Figure III-1). The powder purity is 99.8% and the mean particle size 

is 44 µm (mesh -325). Table III-1 summarises the physical properties of Ni. 

Table III-1 – Physical properties of Nickel. 

Property Density  
Melt. 

temp.  

Enth. of 

fusion  

Spec. heat 

cap.  

Thermal 

cond.  

Electrical 

cond.  

Coeff. of 

therm. exp.  

Symbol ρ Tm ΔHf Cp λ σ CTE 

Units g/cm3 °C kJ/mol kJ/kg.K W/m.K 106 S/m 10-6/°C 

Value 8.9 1453 17.48 0.4186 90.9 14.4 16.3 

 

The concept behind using a dendritic-type metallic powder for this study is to take advantage 

of the larger specific area for the improvement of the deposition of the MWCNTs on its surface 

and a better sinterability.   

 

Figure III-1 – SEM pictures of the Ni dendritic powder. 

The Ni powder was initially studied by X-ray diffraction so as to assess whether the powder 

showed significant native oxidation. The only observed diffraction reflections were those 

typical of pure Ni (see Figure III-2). 
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Figure III-2 – XRD spectrum of the starting Ni powder. 

 

III.1.2. Reinforcing material 

Multiwall carbon nanotubes produced via catalytic chemical vapour deposition (CCVD) were 

used as reinforcements (Baytubes C150P, Bayer Materials Science). The as-received powder is 

in the form of agglomerates of several MWCNTs, making their handling easier as compared to 

colloidal solutions. The characteristics of the MWCNTs are summarised in Table III-2. 

Table III-2 – Characteristics of the used MWCNT (Baytubes C150P). 

Property Unit Value 

C-Purity % > 95 

Free amorphous carbon % undetectable 

Number of walls - 3−15 

Outer mean diameter nm 13−16 

Outer diameter distribution nm 5−20 

Inner mean diameter nm 4 

Inner diameter distribution nm 2−6 

Length µm 1−10(+) 

Loose agglomerate size mm 0.1−1 

Bulk density g/cm3 0.14−0.16 

MWCNT density g/cm3 1.3 

 

Electron microscopy analysis revealed that the agglomerates are about 500 µm in average and 

tightly packed (Figure III-3a). Further TEM analysis revealed that the agglomerates consist of 

a mixture of morphologies, the nested-tube type being the most predominant, followed by the 

herringbone type (Figure III-3b).  
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Figure III-3 – (a) scanning electron micrograph of an as-received MWCNT bundle, (b) transmission electron 

micrograph of the Baytubes C150P used in this work. 

The XRD spectrum of the MWCNT powder showed the typical graphitic reflections (Figure 

III-4a). The reflections of higher intensity correspond to the basal plane family {001}. 

 

Figure III-4 – XRD and Raman spectra of the starting MWCNTs. 

The Raman spectrum of the initial MWCNT agglomerates shows the three characteristic bands 

of CNTs (Figure III-4b). The Raman signal is quite noisy and with broad peaks, depicting low-

crystallinity bundles.  The initial ratios that indicate the defect and purity state are the ID/IG 

(quality-related) and IG’/ID (purity-related) respectively. Initial measurements gave 0.683 and 

0.343, respectively. 
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III.2. Precursors processing methods 

III.2.1. Carbon nanotubes processing: Dispersion, characterisation, powder 

blending 

As already mentioned in the theoretical part, one of the fundamental aspects to be considered 

when working with CNTs as reinforcing phases is their dispersion throughout the matrix. For 

that, a proper dispersion and blending method must be either chosen from the literature or 

developed. In the case of this work, the utilised method is an adaptation of a well established 

blending method called colloidal processing [88]. This method consists of a series of steps to 

ensure the proper integration of the CNTs in the metallic powder.  

The first step consists in the dispersion in an ultrasound bath of a determined quantity of CNT 

agglomerates in an organic solvent. The first selected organic solvent was 

N,N−dimethylformamide (DMF) based on a previous study performed by Inam et al. [89] for 

ceramic composites. Since DMF is considered hazardous for the health, several other solvents 

were tested within this work in order to find a replacement [90]. After experimental 

investigations, it was determined that ethylene glycol (EG) would be a suitable replacement for 

DMF and the CNT concentration was fixed in both, EG and DMF, at 0.2mg/mL [90].  

 

Figure III-5 – Electron images of the MWCNTs dispersed in EG and dried onto Si substrates. 

Figure III-5 shows results of the dispersion of MWCNTs in EG. Small volumes were taken 

from the suspension and were subsequently dried on top of a Si substrate, achieving outstanding 

dispersion without significantly shortening the CNTs. This is important since their reinforcing 

effect depends strongly on their length. Moreover, very good dispersion stability was achieved 

with EG, reaching up to few days without observable coagulation. It is believed that this 
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extended dispersion stability is due to a chemical solvation by the solvent molecules [90]. The 

dispersion time was fixed at 10 minutes. An extended discussion on the selection of the time is 

provided in chapter IV.    

The second step is the addition of the metallic powder to the stable MWCNT dispersion and 

the successive ultrasonic mixing. The different MWCNT/Ni weight ratios were 1.0, 2.0, 3.0 

and 5.0 wt.% (6.5, 12.3, 17.5 and 26.5 vol.%, respectively) and are indicated in Table III-3. The 

blending time was set to 5 minutes [90]. 

Table III-3 – Partial fractions of CNTs and Ni for the manufactured samples. 

CNT weight fraction [%] CNT volume fraction [%] CNT weight [mg] Ni weight [mg] 

1.0 6.47 8 792 

2.0 12.26 16 784 

3.0 17.47 24 776 

5.0 26.48 40 760 

 

The last step is the drying and grinding of the powder. The reagent glasses with the colloidal 

suspensions are placed in a ventilated furnace at 150 °C and are evaporated for a period of 4-5 

hours. After the blend is dry, the powders are scrapped out of the glasses and lightly grounded 

in an agate mortar. The resulting product consists of CNTs coating the surface of the metallic 

powder as shown in Figure III-6. 

 

Figure III-6 – Ni dendritic particle coated with dispersed MWCNTs. This is the typically obtained product of the 

colloidal mixing process. 
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III.2.2. Consolidation and Sintering 

The selected manufacturing methods for this work were two: pressureless sintering (CPS) and 

hot uniaxial pressing (HUP). For both processes, the powder mixtures were previously 

consolidated into green pellets with a diameter of 8 mm and variable height ranging from 1 to 

5 mm. The consolidation of the powders was performed in a hydraulic press at room 

temperature. The applied pressure was 990 MPa for 5 minutes. The relative densities of the 

green pellets were about 68-70 %.  

Pressureless sintering was done in a tube furnace under following conditions. 

 Working vacuum: 10-5 mbar 

 Temperature: 950 °C 

 Dwell time: 2.5 h 

 Heating rate: 1 °C/min 

The heating rate was limited by the thermal expansion/contraction rate of the Al2O3 furnace 

tube that could induce stress cracking leading to vacuum leakage. 

The other densification process was hot uniaxial pressing (HUP), which consists in placing the 

green pellet within a graphite sleeve, between two alumina pistons. An axial pressure is applied 

and induction heating is generated by eddy currents circulating in the external heat-resistant 

steel mould. During the process, the chamber is under vacuum (10-6 mbar) to avoid oxidation 

of the metallic components. The experimental parameters for HUP were: 

 Working vacuum: 10-6 mbar 

 Temperature: 750 °C 

 Dwell time: 2.5 h 

 Heating rate: 15 °C/min 
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Figure III-7 – Temperature and sample pressure evolution through the sintering process. 

The maximum treatment temperature is limited by the heating circuit capabilities After the 

heating and isothermal steps are finished, the cooling stage is limited up to temperatures about 

120-150 °C, mainly due to difficulties in the heat dissipation under vacuum. The temperature 

and pressure evolution are schematically depicted in Figure III-7.  

III.2.3. Post-processing characterisation 

Due to the difficulties in the preparation of the MWCNTs for their characterisation, the sample 

preparation protocols suggested by Decker and co-workers were adopted in this work, 

particularly for electron microscopy [91].    

Scanning electron microscopy/ Focused ion beam 

The electron microscopy characterisation was performed in two different dual beam systems 

(Helios NanoLab 600 and Strata DB 235) from FEI. The electron column was operated in both 

cases at 5 kV. Both microscopes are equipped with secondary electrons, through-the-lens 

(TLD), backscattered electrons and energy dispersive X-ray spectroscopy (EDS) detectors.  

Electron Backscattered Diffraction (EBSD) 

Grain size distributions of the composites were studied by means of electron backscattered 

diffraction (EBSD) (EDAX TSL®) within the Helios NanoLab 600. The analysis consists in an 

automatic scan of a determined surface recorded by means of a DigiView camera system. The 
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resulting Kikuchi patterns are compared in real time to known phases (in this case, nickel) and 

indexed (see Figure III-8).  

 

Figure III-8 – Kikuchi diffraction patterns for an FCC metal and the indexed planes. 

Finally, a crystallographic orientation map is produced, from which several studies could be 

performed, namely: orientation distribution, grain boundary reconstruction, neighbouring 

grains misorientation, phase recognition, etc. Additionally, it is possible to perform a 

quantitative analysis of the scanned area by determining the grain size distribution, 

misorientation distribution, etc. The acquisition as well as the post-processing of the data is 

made using the OIM Software (TSL). The results are presented either in the form of inverse 

pole figure maps (IPF), with the corresponding pole figures (PF), as single-grain colour maps 

or as image quality (IQ) grey scale maps. 

 

Figure III-9 – IPF + IQ map of a MWCNT/Ni composite. Each colour represents a different crystallographic 

orientation. 

EBSD was performed using a voltage of 20 kV, a current of 22 nA, and a step size of 500 nm. 

A grain was defined as at least two adjacent points with maximum 5° misorientation. The raw 
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data was cleaned using confidence index standardisation within each grain. Points with a 

confidence index smaller than 0.1 were dismissed. An example of a processed image for a 

MWCNT/Ni 1.0 wt.% sample is shown in Figure III-9.  

Transmission Electron Microscopy (TEM) 

The interface between the Ni matrix and MWCNTs as well as the morphology of the MWCNTs 

was evaluated by high resolution transmission electron microscopy (HRTEM) on a Philips CM 

200 at 200 kV acceleration and a point resolution of 0.19 nm. Further analyses were carried out 

on a JEOL JEM2011 also at 200 kV and a point resolution of 0.18 nm. Both TEMs have a LaB6 

electron source and are equipped with EDS detectors. The TEM samples were prepared in the 

Helios Nanolab 600 dual beam microscope, using a lift-out technique. The prepared TEM foils 

were transferred to Cu semicircular grids 3 mm in diameter.  

Raman spectroscopy 

Raman spectra were acquired with an inViaTM Raman microscope (Renishaw), working with 

a Nd:YAG laser with excitation wavelength 532 nm and a 2400 l/mm grid. Reported spectra 

are averaged from three in same spot. A cosmic rays removal filter was also applied to the 

measurements. 

For random distributions of nanotubes, the intensity of the characteristic G, D and G’ bands is 

proportional to the amount of nanotubes within the measured volume. Provided that their 

intensities are sensitive to the beam focalisation, it is usual and accepted in Raman experiments 

to normalise the measured intensities to an internal reference, such as the most intense band 

[92]. Then by normalizing the spectra, the comparisons between samples are made by 

comparing relative intensity ratios and not individual band intensities.    

X-Ray Diffraction (XRD) 

XRD was used for the crystallographic analysis and the grain growth evolution study of the 

composites. All the XRD measurements in this work were performed in a X’Pert MPD X-ray 

diffractometer in a θ-θ geometry configuration (Figure III-10). The samples were irradiated by 

a Cu source with a CuKα wavelength of 0.15406 nm. The Bragg angle range was determined 

specifically for each study.  

The diffractometer has the possibility to attach a high temperature chamber (Anton Paar HTK 

1200 HT) to perform heat treatments or sintering processes and analyse the phase and grain size 

evolution in-situ. The chamber has the capability to work under vacuum and heating up to 1100 
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°C with heating rates up to 20 °C/min. Grain growth evolution during sintering and the lattice 

thermal expansion of the composites were measured in vacuum (10-6 mbar).  

 

Figure III-10 – Schematic distribution of the high temperature chamber configuration within the X-ray 

diffractometer. The depicted configuration is for a Bragg-Brentano measurement type. 

The incident and diffracted optical geometries were parallel and the diffraction angle (2θ) was 

varied from 40º to 130° with a step size of 0.0131° and a 0.5 s/step rate and the irradiated area 

ranged from 11.7 mm2 for the (220) reflection to 19.2 mm2 for the (111) reflection.  

 

Figure III-11 – Temperature evolution through the HT-XRD process. 

The applied voltage and current were 40 kV and 40 mA, respectively. For the HT-XRD 

measurements, the samples were heated from 50º to 950° C at 10 °C/min and the diffractograms 

were obtained every 25 °C after 15 minutes of thermal stabilisation (Figure III-11). The 
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temperature distribution in the sample was thus homogenised and errors due to temperature 

gradients were reduced. 

Mechanical properties: micro indentation 

The mechanical properties were tested in a Vickers microhardness indenter (Struers DuraScan 

50/70/80). The measurement principle consists in a pyramidal diamond indenter penetrating 

with a certain applied load for a defined period of time and is based on the international norm 

ASTM E-384. After the indentation, the indentation diagonals are measured and the hardness 

is determined by HV = 0.1891F/d2, with d the mean value of the two measured diagonals. The 

indentation column has a Z-axis resolution of 5 nm. The post-processing is made with the ecos 

Workflow software.  

The selected indentation force was 980.7 mN (0.1 Kgf) and the indentation time was 15 

seconds. The results are expressed as HV0.1, which represents the hardness values for a testing 

load of 0.1 Kgf. The main advantage of this test is that very accurate readings can be made, 

using only one type of indenter for all types of metals and surface treatments. Moreover, it is 

possible to directly correlate the yield strength of materials to their Vickers hardness.  

Thermomechanical properties 

The thermal expansion data were collected in a Dilatronics II differential and vertical Theta 

industries Inc high resolution dilatometer (Figure III-12) at a constant heating rate of 5 °C/min 

under Ar(4.6) flow. The device has an accuracy of 0.5% in the expansion measurement and can 

work from room temperature up to 1700 °C. It has a dual push-rod for the differential sensing 

of the dimensional changes during the thermal cycling. The apparatus is linked to a data logger 

were the expansion data is plotted in real time. The measurements were previously calibrated 

with silica glasses of the same thicknesses as the tested samples. 
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Figure III-12 – Linear differential dilatometer. 

Tribological behaviour 

The tribological tests were performed with a nanotribometer using a ball on disc configuration 

in a linear reciprocating sliding mode (CSM Instruments, Figure III-13) with a stroke length of 

0.6 mm and a total sliding length of 60 mm. The normal force was set to four different loads, 

namely, 50, 100, 200 and 300 mN and the linear sliding speed to 1 mm/s. The counterbody 

consisted of an Al2O3 ball with a diameter of 3 mm. Temperature and relative humidity were 

kept constant at 20 ± 2 °C and 4 ± 1%. Subsequently, the wear volume was determined by 

means of white light interferometry (WLI).  

 

Figure III-13 – Overview of the tribometer constituents. 
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Electrical properties: electrical conductivity (4 point probe method).  

The electrical properties were measured with a standard 4-point probe method (Figure III-14). 

The sample is placed and fixed from opposite sides with bronze screws. Under the samples are 

placed two parallel high-purity Ag wires separated by a fixed distance, which will probe the 

voltage drop in this section. The electrical resistance (R) of the sample region is measured by 

taking a set of points and fitting a linear function to the experimental data. The specific 

resistivity is obtained by ρ = R.A/l; A is the cross-sectional area and l is the distance between 

the Ag wires. 

 

Figure III-14 – Schematic representation of the 4 point probe measurement device. In the inset, the current flow 

and the voltage drop are highlighted. 

 



IV. Precursor processing and MWCNT 

degradation analysis 

 

IV.1. Introduction 

CNTs might be suitable candidates as reinforcing phases in composites due to their remarkable 

set of physical properties. However, there are several issues to address regarding their 

processing [53,93]. The main drawback of these reinforcements is their strong agglomeration 

due to van der Waals interactions which may hinder an adequate distribution and a consequent 

property enhancement [89]. A great amount of research has been devoted to this topic, mainly 

focusing on achieving  stable CNT dispersions by covalent functionalisation of the tube surface 

[94]. However, this presents an important concern regarding the loss or decay of intrinsic 

properties [95]. When the reinforced material is a metal with already acceptable physical 

properties, this loss becomes of unavoidable importance, since the lowered reinforcing effect 

of the CNTs might be rendered marginal or even detrimental to the composite. Therefore, an 

approach without CNT modification is crucial for a proper enhancement of the composite 

properties.  

Another issue is the matrix/reinforcement interfaces. It has been observed that the CNTs can 

chemically react with the metallic matrix through side contacts or open ends with dangling 

carbon bonds [53,96]. This would further translate into CNT degradation, with subsequent 

property decrease. CNTs tend to interact in different ways with the metallic matrices. The most 

representative case is observed in CNT/Al, in which an interfacial Al4C3 layer is created by the 

application of pressure and temperature [71]. This carbide layer improves the adhesion but 

decomposes the tube, being detrimental to e.g. the thermal properties. Differing reports 

regarding the formed interfaces in CNT/Ni systems can be found. Yamanaka et al. [82] reported 

a sharp interface with no byproducts obtained by spark plasma sintered MWCNT/Ni blends. 

On the other hand, Hwang and co-workers [96] were able to synthesise and stabilise Ni3C 

nanocrystals by using the CNTs as feedstock. They have recently found that this phase is 

observed on the interface in CNT/Ni composites produced by spark plasma sintering [62], 

contradicting the report of Yamanaka. Other reported routes to produce this carbide are based 

on non-equilibrium highly energetic procedures such as mechanical alloying [97].       
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The purpose of this chapter is to report a straightforward blending process based on the colloidal 

mixing of the CNTs with a metallic powder. The condition of the CNTs after the colloidal 

processing and throughout the consolidation and sintering process of the metal matrix 

composites by powder metallurgy is spectroscopically analysed. Moreover, the phase evolution 

and reaction within the sintering process was analysed with the aid of high temperature X-ray 

diffraction and thermodynamic simulation. 

IV.2. Results and discussion 

IV.2.1. Dispersion and blending 

Throughout the processing and subsequent sintering, the CNTs are subjected to strong thermal 

and thermomechanical loads that may modify their structure. During dispersion, a strong load 

is exerted by the ultrasound on the agglomerates with the aim of breaking them up. This 

interaction is well identified and also shortens the tubes improving the dispersability [95]. 

However, this change in the aspect ratio might as well represent a decrease in the load transfer 

efficiency of the composite [98,99]. 

 

Figure IV-1 - Raman spectra of a MWCNT/EG dispersion measured at different exposure times. 

In order to determine the optimal dispersion time without significant process-induced  defects, 

Raman spectroscopy studies were performed by taking aliquots after 1, 2, 5, 10 and 20 minutes 

of ultrasound processing (Figure IV-1). The evaluation of the structural status of MWCNT can 

be additionally analysed by observing not only the traditional ID/IG ratio, but also the evolution 

of the IG’/ID [100]. Both intensity ratios depict the amount of defects and the carbonaceous 
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purity of the samples, respectively [101]. Furthermore, by analysing the coherent length of the 

nanotubes it is possible to determine how defective the MWCNTs are. This length (La) depicts 

the distance that separates two consecutive structural defects on the structure. This relationship 

is inversely proportional to ID/IG and is related particularly to the excitation wavelength (λ) 

utilised in the Raman spectrometer, as described by following equation [102]: 

𝐿𝑎 = (2.4𝑥10−10)𝜆𝑙𝑎𝑠𝑒𝑟
4 (

𝐼𝐷

𝐼𝐺
)
−1

  (Equation IV.1) 

The resulting La values are summarised in Table IV-1. 

Table IV-1 – Normalised intensity values and ratios for the three most important bands of MWCNTs (D, G and 

G’ bands).  

Time ID IG IG' ID/IG IG'/ID La (nm) State 

0 0.683 1 0.234 0.68 0.34 28.1 

Non-dispersed 
1 1 0.917 0.296 1.09 0.30 17.6 

2 0.704 1 0.225 0.70 0.32 27.5 

5 1 0.990 0.291 1.01 0.29 19.0 

10 1 0.778 0.336 1.29 0.34 14.9 
Dispersed 

20 1 0.761 0.357 1.31 0.36 14.7 

 

The selected MWCNTs present very defective initial structures. Even though the quality and 

purity parameters are better for exposure times lower than 10 minutes, the fact that the CNTs 

are not properly dispersed makes them unsuitable for the blending. The first clear observation 

of a proper dispersion is noticed at 10 minutes of ultrasound, with insignificant modification in 

the following 10 minutes (see Figure IV-2 a-f). Interestingly, the quality (ID/IG) and purity 

(IG’/ID) markers as well as the inter-defect distance do not considerably change between 10 and 

20 minutes of ultrasound. Therefore, after Raman evaluation, the chosen dispersion time was 

fixed at 10 minutes of ultrasound bath. This processing time allows a quick disentanglement of 

the CNT bundles and provides a time window of 10 minutes were the blending can be 

performed without further modification of the CNTs. 
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Figure IV-2 – Different stages of the MWCNT dispersion in ethylene glycol. (a) initial state, (b) after 1 min, (c) 

after 2 min, (d) after 5 min, (e) after 10 min and (f) after 20 min. The dispersion is unacceptable up to 5 minutes 

of ultrasound due to the visual detection of large MWCNT agglomerates. 

Figure IV-3 presents the results obtained for the dispersion in Ethylene Glycol (EG) after 10 

minutes of ultrasound analysed with electron microscopy. For the evaluation, the dispersion 

was dried onto a Si wafer and observed in SEM. It is interesting to note that the MWCNTs are 

finely dispersed with no large agglomerates observable.  

 

Figure IV-3 – SEM micrographs of: (a) dried MWCNT dispersion, (b) MWCNT/EG colloid after dispersion in 

ultrasound. 

The next evaluation step is to observe the MWCNT/Ni system after the colloidal blending 

process and the distribution of the nanotubes within the metallic particles. Figure IV-4 shows 
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the initial state of the MWCNTs as agglomerates (Figure IV-4a), the starting Ni dendritic 

powder (Figure IV-4b) and the final product after the evaporation of EG (Figure IV-4c). In the 

latter, it is observed that the dispersed MWCNTs tend to coat the surface of the Ni particle. 

Interestingly, despite being distributed over the metallic powder surface, the sintering and final 

density of the composites was not significantly affected, achieving, in some cases, (i.e. 1 wt%) 

almost full densification (approx. 99%).  

 

Figure IV-4 – SEM micrographs of: (a) as-received MWCNT agglomerate particle, (b) starting dendritic Ni 

particles and (c) MWCNT-coated Ni dendritic powder after solvent evaporation. 

 

IV.2.2. CNT degradation analysis 

CNT structural integrity assessment 

As a reference for the following analysis, the Raman spectrum of the initial state of the 

agglomerates is shown in Figure IV-5a. The amount of defects and impurities is studied by 

comparing the relative intensities of the characteristic D, G and G’ bands [100,101]. The first 

intermediate state is studied after 10 minutes of dispersion in an ultrasound bath as illustrated 

in Figure IV-5b. In comparison with the initial state, an increment in the intensity of the D and 

G’ bands is noticeable, demonstrating, to some extent, the rise in the amount of defects. This is 

an expected result due to the aforementioned issues related to ultrasonic dispersion, however, 

it must be avoided, since defects in CNTs act as nucleation sites for fracture propagation [103]. 
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Figure IV-5 – Raman spectra of: (a) Starting MWCNT agglomerates and (b) MWCNT dispersion after 10 

minutes of ultrasonication. The characteristic D, G and G’ bands are identified. 

The next step in the structural evaluation is to analyse the evolution of defects and impurities 

of the CNTs after the sintering process (Figure IV-6). Here, the CNTs are subjected to high 

temperatures (850 °C) in vacuum and are in direct contact with the matrix.  

 

Figure IV-6 – Raman spectra of sintered MWCNT/Ni bulk composites with different MWCNT weight fractions. 

The characteristic D, G and G’ bands are identified. 

The first observable peak corresponds to the D band, generated by the presence of defects and 

impurities (i.e. remaining catalysts, etc.) in the CNT structure [101]. Close to 1600 cm-1 the G 

band is observed, and is attributed to carbons with sp2 hybridisation. A shoulder positioned 

towards higher wavenumbers is noticed in all the samples. According to Zhao et al. [104], this 

splitting of the G band is attributed to the different resonance types of the inner and outermost 

of the MWCNTs. Finally, the G’ band is observed at approximately 2700 cm-1, and corresponds 
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to an overtone of the defect-related band, but with lower sensitivity than the first order band 

[101]. 

DiLeo and co-workers reported  that the defect level estimation becomes non-trivial for 

MWCNTs [100]. The usually studied ID/IG ratio, shows a poor correlation to the purity level 

compared to the IG’/ID ratio. This ratio is shown to provide the smallest deviation to the average 

purity values.  

Table IV-2 summarises the intensity ratios for the MWCNTs at different stages of the process, 

including different partial concentrations in the matrix. Comparing the starting agglomerates 

and ultrasound dispersed MWCNTs, it is observed that the impurity level is similar but the 

amount of defects is increased. When analysing the composites, the high-MWCNT content 

samples (5.0 wt.%) show lower purity and a greater amount of defects compared to the samples 

with lower MWCNT content.  

Table IV-2 - Raman intensity ratios and full width at half maximum of the G band for the different stages of the 

processing. 

Sample ID/IG IG’/ID ΓG [cm-1] 

Starting powder 0.68 0.34 89.7 

10 min US dispersion 1.29 0.34 66.9 

MWCNT/Ni HUP 1.0 wt% 0.68 0.62 25.3 

MWCNT/Ni HUP 2.0 wt% 0.79 0.54 28.8 

MWCNT/Ni HUP 3.0 wt% 0.89 0.52 25.3 

MWCNT/Ni HUP 5.0 wt% 1.61 0.24 60.7 

 

Interestingly, between the starting MWCNTs and the 1 wt% sample there is no difference in 

the defect state of the samples but the purity is increased for the composite. This may be due to 

the burning or removal of impurities during the sintering process. In the case of the 5 wt% 

samples, even though all the intensity ratios described in Table IV-2 show a deterioration 

compared to those of the dispersed state, the MWCNTs remain as such, showing all the 

characteristic bands.  

Another interesting morphological parameter that could be analysed with Raman spectroscopy 

is the crystallinity. The crystallinity of a graphitic structure can be qualitatively assessed by 

analysing the full width at half maximum (Γ) of the G band (Figure IV-7). The analysis is based 

on the uncertainty principle.  
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∆𝐸. ∆𝑡 ≥
ℏ

2
   (Equation IV.2) 

Considering the graphitic lattice as a harmonic resonator, the attenuation half-time could be 

correlated to the amount of defects present in the lattice. That means, the higher the attenuation 

half-time, the lower the amount of defects. Then, from equation IV.2 it can be concluded that 

when the energy difference is large, the time period is shorter, representing a highly defective 

structure. Relating it to a Raman spectrum where the Raman shift represents an energy 

difference, obtaining thinner peaks would represent a higher crystallinity of the CNT. Such 

Raman peak features are shown in Figure IV-7. 

 

Figure IV-7 – Example of a typical Raman spectrum of MWCNTs. The FWHM of the G band indicates the 

qualitative crystallinity of the sample. 

The peak widths (Γ) are shown in Table IV-2. Comparing the dispersed colloid to the initial 

state, there is a reduction in the peak width. This might be due to the debundling of the 

MWCNTs instead of an improvement in crystallinity, which allows them to resonate more 

freely. Comparing the sintered samples to the dispersed state, there is a significant improvement 

after processing up to the 3 wt.% sample. As the MWCNTs are better dispersed throughout the 

matrix, it would be simpler to correct defects by annealing at the process temperature, whereas 

for the 5 wt% sample, no evident improvement is observed. Considering the partial volume 

fraction for this concentration (about 26%), a strong reagglomeration of the MWCNTs in the 

matrix and a poor resonant response are expected.   
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IV.2.3. Nickel carbide formation and interfacial characterisation 

The C-Ni system consists of a simple eutectic with a limited solubility of C in Ni. The maximum 

solubility of graphitic C in fcc Ni is 2.7 at.%C (0.56 wt.%) at 1600 K [105]. The existence of a 

carbide (Ni3C) is predicted at approximately 25 at.%C (4.7 wt.%) as shown in Figure IV-8. 

 

Figure IV-8 – Ni-C (graphite) phase diagram [105]. 

Thermodynamic simulations were performed with the Thermo-CalcTM software based on the 

CALPHAD method (Calculations of phase diagrams) [106]. Calculations were made for a Ni-

C system with three different C weight fractions (1.0, 2.0 and 5.0 wt.%) for a range from room 

temperature to 1600 °C. The simulations were based on the thermodynamic SSOL5 database 

[107]. The simulation results for different partial carbon concentrations (Figure IV-9) show a 

positive Gibbs free energy of carbide formation from room temperature to above the Ni melting 

point, thus demonstrating the metastability of the phase.  
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Figure IV-9 – Gibbs free energy plots for the formation of Ni3C. The curves are simulated for three different 

weight fractions of C (1.0, 2.0 and 5.0 wt.%). 

The formation of Ni3C has been thoroughly studied in the literature. Particularly, the reactivity 

in the MWCNT/Ni system has been analysed and the stabilisation of the Ni3C phase was 

achieved up to crystal sizes of 20 nm [96]. This phase is usually detected when non-equilibrium 

synthesis processes such as energetic ball milling are employed [97]. It is believed that Ni3C is 

formed by the diffusion of C atoms from the CNT towards the initial face-centred cubic (fcc) 

Ni lattice [96], generating an allotropic shift towards a Ni3C hexagonal close-packed (hcp) 

phase. Furthermore, after this modification, the remaining Ni cells can be stabilised into an 

atypical hcp Ni lattice. Thus, from a crystallographic point of view, the hcp lattice would be an 

indicator of a metastable phase existence. Moreover, since there are no reliable diffraction 

patterns available comprising the nickel carbide phase, it could be useful to analyse the Ni itself 

and its crystallographic status throughout the sintering process. In that sense, the acquisition of 

the diffraction patterns of the MWCNT/Ni system at different temperatures is a useful tool for 

the identification and monitoring of the presence of Ni3C. Figure IV-10 shows the phase 

evolution for different temperatures. The selected example represents the highest partial carbon 

concentration in the samples (approx. 26.5 vol.%), which would be more favourable for the Ni-

C reaction.  
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Figure IV-10 – HT-XRD spectra for the MWCNT/Ni 5wt% subjected to a temperature range from 50 to 850 °C. 

The observed (111), (200) and (220) reflections are typical of fcc Ni. 

 

Figure IV-11 – HRTEM of the interface between the Ni matrix and a MWCNT cluster. The interface is clearly 

noticeable. The inset is a SAED pattern of the Ni matrix, showing a face-centred cubic structure. 

Three of the Ni fcc reflections are observable in the scanned range, whereas neither carbide nor 

hcp Ni diffraction peaks are detected. This indicates that the nanotube dangling bonds did not 
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react with the nickel by forming end-contact or side-contact carbides. HRTEM was performed 

so as to study the interface between a cluster of MWCNT and the Ni matrix (Figure IV-11). 

The interface is clearly defined and no diffusion or phase formation is observable. Selected area 

electron diffraction (SAED) of the adjacent Ni grain further confirms the presence of a face 

centred cubic Ni phase. 

Hence, it can be stated that no CNT degradation or carbide formation is expected even for high 

MWCNT/Ni ratios. Thus, one could take advantage of the outstanding physical properties by 

coherently integrating them into a matrix without modifying the MWCNTs morphology. 

Moreover, although no functionalisation is carried out for the dispersion and integration of the 

MWCNTs to the composite, they present a uniform and seamless interface with the metal.  

IV.3. Summary 

A straightforward processing method for producing MWCNT/Ni blends as precursors for 

powder metallurgy bulks is presented. The optimal dispersion time was set to 10 minutes, after 

a morphological assessment of the MWCNT throughout the processing. Additionally, it was 

seen that after solvent evaporation, a coating of Ni dendritic powders with dispersed MWCNTs 

was achieved.  

The structural stability of the MWCNTs after the processing was confirmed by spectroscopic 

means, showing that up to a partial MWCNT concentration of 3.0 wt.% (17.5 vol.%), they are 

structurally improved probably due to a thermal annealing during the sintering process. Despite 

the fact that the highest studied concentration (5.0 wt.%) shows Raman intensity ratios that are 

indeed lower than those of the dispersed state, the MWCNTs remain as such, showing all the 

characteristic bands. 

The chemical structure stability of MWCNTs was confirmed despite pressure, temperature, 

shortening and dangling bonds generated by sintering and ultrasound. Nickel carbide is not 

detected and a clear interface between matrix and reinforcement is identified on HRTEM. 

Moreover, SAED confirmed the cubic nature of the Ni matrix, demonstrating that no dissolution 

of C occurred during processing. 

 



V. The role of MWCNT in the grain 

growth: microstructural analysis 
 

V.1. Introduction 

The microstructure control plays a fundamental role in the design of a material for a specific 

application. A widespread technique for microstructural tailoring is the second phase particle 

pinning [108–110]. Structural composite materials, for instance, rely heavily on the 

reinforcement to stabilise the grain size at a wide temperature range. When sintering, the grain 

growth of the matrix is usually characterised by a starting or inflection point at which the 

activity begins, and then the growth saturates due to Zener pinning [110,111]. This results in 

grain refinement compared to the unreinforced material, and translates to microstructural 

tailoring of the composite and its properties. This effect has been previously observed in 

different biphasic systems. These systems include a wide span of potential pinning phases such 

as precipitates, compounds, particles and/or fibres. For example, Rios et al. [112] reported the 

grain boundary pinning produced by Al6Mn precipitates in an Al alloy during annealing. 

Humphreys observed the same effect in copper composites reinforced with Al2O3 particles 

[113].  Grain boundary pinning was also identified by the effect of carbides in high performance 

alloys during thermal treatments [114]. 

For CNT-reinforced metal matrix composites, the grain refinement strengthening has been 

identified in several different matrices such as: spark plasma sintered copper [115], liquid-state 

processed magnesium [116], hot-rolled aluminium [74] and electrodeposited nickel [117]. It 

was observed that the increment in the relative MWCNT volume represented an improvement 

in the mechanical properties (hardness and/or yield strength) due to microstructural refinement. 

Recently, Bakshi et al. studied the influence of the addition of CNTs in the strengthening of Al-

based composites [118]. They point out that the interfacial interaction of the CNTs with the 

matrix plays a fundamental role in the strengthening, up to 10 vol.% of CNTs. Nevertheless, 

they state that this limit might be pushed up by the development of a proper dispersion within 

the matrix. Despite all the reports that could be found in the literature, and to the best of our 

knowledge, there is no information available regarding the influence of the amount and 

distribution of CNTs in the grain growth and the final microstructure. 
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This chapter focuses on the study of the grain growth evolution of the MWCNT/Ni composite 

system produced by a pressureless sintering process. The grain growth evolution was 

investigated by means of high-temperature x-ray diffraction (HT-XRD) and electron 

backscattered diffraction (EBSD). The influence of the MWCNTs on the grain growth of the 

Ni matrix was studied by varying the amount of MWCNTs in the Ni matrix. 

V.2. Results and discussion 

V.2.1. HT-XRD analysis – growth rates 

As showed in Figure V-1a, the following Ni diffraction reflections were detected: 111 

(44.505º), 200 (51.844º), 220 (76.366º) [PDF file 04-0850], observing no other additional 

peaks. All the reflections showed an accentuated peak contraction between 200 and 250 °C 

(Figure V-1b), which corresponds to the starting point of the grain coalescence in the Ni matrix. 

This starting point was not significantly influenced by the presence of CNTs. 

 

Figure V-1 – (a) Diffractograms of MWCNT/Ni 1.0 wt. % as a function of the temperature (in ° C). (b) Evolution 

of the Ni (111) peak through the process. A clear contraction of the peak is observed and the shift towards lower 

angles depicts the thermal expansion of the matrix. 

The grain growth was quantified using calculations based on the work published by Thompson 

and co-workers [119]. They state that the widths of the diffraction peaks contain information 

about the grain size and strain effects, mathematically described by a Voigt profile, which is 

the convolution of a Lorentzian (grain size related) and a Gaussian (strain related) peak. A 

deconvolution of each peak was performed and the grain size at each temperature was 

calculated using the full width at half maximum (Γ) of the Lorentzian peak in the Scherrer 

equation (equation V.1).  

𝐷 =
0.9∗𝜆

𝛤 ∗cos𝜃
  (Equation V.1) 
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Another important issue to consider is the existence of a systematic instrumental broadening of 

the peak, which was extracted from the equipment software and corroborated using LaB6 

powder. This feature limits the capability of the technique to determine the grain size, allowing 

the calculation of the grain size up to few microns.  

 

Figure V-2 –Thermal evolution of the grain size estimated from all the observed Ni reflections. The grain size 

estimation is limited by the instrumental peak broadening in the diffraction patterns. 

The mean grain size estimated from all the observed Ni reflections as a function of the 

temperature in a reduced range (up to the aforementioned detection limit) is shown in Figure 

V-2. It can be observed that the tendency remains similar for all the samples. During the first 

stage, the grain growth is not yet activated and can be correlated to the initial stage sintering 

where grain growth is significantly slow due to the pinning action of the porosity [20]. Pores 

migrate to grain boundaries and act as mobility barriers reducing total grain boundary area and 

the surface energy.  

Afterwards, a sharp positive slope is observed with the onset temperature starting close to 250 

°C, which corresponds to the beginning of the grain coalescence. After this temperature, once 

the grain growth is activated, it evolves at different rates for each sample. Past this inflection 

point in the curves, begins a competition between the pinning and thermal conductivity 

energies. Considering the grain growth in Ni as the reference, the grains in the 1.0 and 2.0 wt.% 

samples grow at a faster rate, whereas the 3.0 and 5.0 wt.% samples are slightly slower. The 
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increase in the growth rate has already been reported for CNT-containing composites produced 

via powder metallurgy [120]. It is well established that grain growth is a specifically thermally-

driven process [18]. The growth acceleration is a direct consequence of the high thermal 

conductivity of the CNTs (where the thermal energy is preferentially transported), generating a 

local temperature increase, thus favouring grain growth [120]. In the case of this study, the 

grains of the 1.0 and 2.0 wt.% samples grow faster due to a combination of a lower amount of 

agglomerates and porosity, which results in higher thermal conductivity. In the case of the 3.0 

and 5.0 wt.% samples, significantly more agglomeration and porosity is observed, decreasing 

the overall thermal conductivity and, as a consequence, the growth rate. Figure V-3 shows the 

polished surfaces of the different samples. The increment in the agglomeration related to the 

CNT concentration is observable, reaching tens of microns in certain spots of the 3.0 and 5.0 

wt. %. For the 1.0 and 2.0 wt. % the clustering is always in the micron to submicron range. 

Yamanaka and co-workers explained the densification difficulties with pressureless sintering 

of CNT-reinforced composites [82]. They state that the densification is severely hindered by 

the presence of CNTs with concentrations above 10 vol. % (approx. 2 wt.%). Reagglomeration 

into clusters is observed and these are believed to obstruct the densification, interposing 

themselves between Ni particles. Since sintering is a mass transport phenomenon, the porosity 

closure will bring together the CNT facilitating their reagglomeration. For lower concentrations 

(up to 10 vol. %), grain growth inhibition is seen and ascribed to a stagnation of the grain 

boundary mobility generated by the CNTs. The same limit was observed for MWCNT/Ag bulk 

composites, densified by pressureless sintering [121]. Above this concentration, 

reagglomeration occurs, reducing the hardness and electrical conductivity of the composites. 
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Figure V-3 –SEM micrographs of the samples. (a) Pure Ni, (b) MWCNT/Ni 1.0 wt.%, (c) MWCNT/Ni 2.0 wt.%, 

(d) MWCNT/Ni 3.0 wt.%, and (e) MWCNT/Ni 5.0 wt.%. The increase in the reagglomeration activity as well as 

the void formation is noticeable. The dark spots correspond to the reagglomerated CNTs and the regions with 

bright edges are the voids. 

 

V.2.2. EBSD analysis – microstructural final state 

The grain size distribution was determined by means of EBSD after sintering. Figure V-4 shows 

(500 x 500) µm2 grain size maps of pure Ni, and MWCNT/Ni 1.0, 2.0, 3.0 and 5.0 wt.%. The 

parameters and procedures for data acquisition and processing were identical. The white zones 

within the Ni grains correspond to low-EBSD signal regions, which could be either due to 

porosity or voids in which the CNT fillers are located. As the percentage of CNT increases, the 

Ni grain size decreases and the void fraction increases. These voids generate free surface, which 

may also modify the grain growth kinetics [122]. Indeed, this effect can be observed in the grain 

size distributions estimated from the EBSD data and presented in Figure V-5. The resulting 

mean grain sizes are summarised in Table V-1.   
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Figure V-4 – Grain size maps obtained by EBSD for the sintered samples. (a) Pure Ni, (b) MWCNT/Ni 1.0 wt.%, 

(c) MWCNT/Ni 2.0 wt.%, (d) MWCNT/Ni 3.0 wt.%, and (e) MWCNT/Ni 5.0 wt.% 

The equivalent diameter of a circumference having the same measured area as the grain was 

chosen to calculate the grain size distribution (Figure V-5). The diameter distribution for the 

CNT-containing composites as well as the pure Ni resembles a Log-Normal distribution, in 

agreement to what is reported in the literature [123].  

In the case of pure Ni, a broad diameter distribution can be observed with the highest count at 

around 50 µm. The final grain size is considerably reduced by increasing the CNT-fraction in 

the composite. The 1.0 wt. % sample peaks between 10 and 20 µm. The large grain sizes 

observed for pure Ni and 1.0 wt. % indicate abnormal grain growth. For 2.0, 3.0 and 5.0 wt.% 

a narrowed and even distribution is observed between 1 and 10 µm. Moreover, no significant 

change in the final size is observed for the 5.0 wt.% sample compared to the 2.0 and 3.0 %. 

This fact is directly related to the reagglomeration of CNTs, which can be observed in Figure 

V-3. The 5.0 wt. % corresponds to almost 26.5 vol.%, which reduces the distance between the 

MWCNTs and thus increases the probability of their reagglomeration.  
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Figure V-5 – Grain size distributions of the sintered samples obtained from the EBSD maps. The grain size is 

significantly reduced for samples with concentrations above 2.0 wt. % 

Table V-1 - Mean grain sizes of the composites after the sintering process. The values were obtained by EBSD. 

Sample MWCNT vol. % Final mean grain size  [µm] 

Pure Ni --- 47.55 ± 3.06 

MWCNT/Ni 1.0 wt.% 6.5 22.39 ± 0.97 

MWCNT/Ni 2.0 wt.% 12.3 4.93 ± 0.13 

MWCNT/Ni 3.0 wt.% 17.5 4.94 ± 0.13 

MWCNT/Ni 5.0 wt.% 26.5 5.27 ± 0.10 

 

If Zener pinning is taken into account, the resulting mean grain size is modelled with the 

following equation [124]: 

𝐷 =
𝑘∗𝑟

𝑓𝑛
  (Equation V.2) 

The term k is a proportional dimensionless constant, f is the volume fraction of the second phase 

and r is the mean reinforcement radius. Grain growth stagnation ensues from the restriction of 

grain boundary mobility caused by friction with a dispersion of second phase particles (in our 
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case the CNTs) [108]. As seen in Equation V.2, the refinement effect is proportional to the size 

of the fillers. Therefore, by increasing the amount of agglomerates, the effective size of the 

reinforcements is increased and the drag force is reduced proportionally resulting in larger final 

grain sizes. Another important requirement for the microstructural refinement is the 

interparticle distance distribution [110]. The interface energy absorption is inversely 

proportional to the distance between particles. With higher amount of CNTs the interparticle 

distance is statistically lower. However, if reagglomeration increases, so does the expected 

interparticle distance, thus reducing the refinement effect on the microstructure. Thus, one 

could say that between 2.0 and 3.0 wt%, the CNT concentration no longer reduces the grain 

size. This fact fixes, to some extent, an empirical limit for the grain size control of the 

composites beyond which no significant additional influence is noticed. Furthermore, this 

reinforcing limit was also determined by Pham and co-workers at 3 wt% (approximately 17.5 

vol.%)[125], for powder metallurgical CNT/Cu composites. For aluminium-based composites 

it was settled in a range between 3 and 5 vol.% [74]. 

V.3. Summary  

The grain growth evolution was determined by means of HTXRD. It was found that the onset 

temperature is not influenced by the presence of CNTs, whereas their kinetics are indeed 

controlled by the amount of CNTs. In this sense, grain coalescence was found to start 

approximately at 250 °C. Growth stagnation is observed in all the composites, mainly induced 

by the dispersion within the matrix material. The dispersion plays a fundamental role in two 

main aspects: enhanced thermal transport which affects the growth kinetics and proper Zener 

pinning by reduced interparticle distance. It was observed that, for lower MWCNT 

concentrations, the growth is driven mainly by a thermal conductivity-related effect, whereas 

for the higher concentrations (3.0 and 5.0 wt.%), the growth is governed by Zener grain 

boundary drag. Moreover, under these experimental conditions (pressureless sintering), an 

empirical reinforcing limit can be set between 2.0 and 3.0 wt.%, after which no further 

microstructural refinement can be achieved. This limit is followed by strong CNT 

reagglomeration during the mass transport in sintering. Concluding, based on the presented 

results, it can be stated that the presence of properly dispersed CNTs in the composite is a 

powerful tool to tailor the grain growth and thus the physical properties of the composite. 



VI. Thermomechanical behaviour: bulk 

dilatometry and lattice behaviour  
 

VI.1. Introduction 

As described in the theoretical section (Chapter II.3), CNTs possess outstanding physical 

properties which make them suitable candidates as reinforcing phases in composites. 

Particularly, it has been predicted that they could have very low or even negative intrinsic 

thermal expansion [126,127], making them the ultimate reinforcement fibres for a wide range 

of composites subjected to thermal cycling. The question would be how this property could be 

fully utilised in different materials. The hypothesis is that once an optimal dispersion of the 

CNT bundles and a proper integration into the matrix is achieved, the mechanical properties of 

the material would be improved by the increased matrix-reinforcement interfacial coherence. 

Thus the CNTs would act as anchoring points, preventing the expansion of the composite. 

However, despite the fact that the anchoring effect is mentioned in countless reports, no 

empirical demonstration has been provided.  

As it has been reported, CNTs can actually have a negative coefficient of thermal expansion 

(CTE) with a minimum at 800 K [128]. These negative expansion modes are due to a gain in 

structural and vibrational entropy, translating into a dimensional decrease [128]. Thus the 

inclusion of MWCNTs into metallic matrices is expected to increase the span of application 

fields by improving their thermomechanical performance. Several authors [129–131] have 

developed studies on the thermal expansion behaviour of certain alloys and materials, yet no 

attention has been paid to MWCNT/Ni composites. 

The aim of the work in this chapter was to achieve bulk metal matrix composites possessing 

remarkable thermal expansion behaviour. The samples were densified by pressureless sintering 

and hot uniaxial pressing both under vacuum. Thermomechanical (dilatometry) measurements 

were carried out on the samples under an inert gas atmosphere. Microstructural characterisation 

was made using x-ray diffraction (XRD) and focused ion beam/ scanning electron microscopy 

(FIB/SEM). Furthermore, since there is no definitive explanation in the literature for the so-

called “anchoring effect”, the lattice thermal expansion behaviour of the matrix lattice was 

analysed in order to understand the influence of CNTs on the thermomechanical properties. The 
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lattice parameters were measured by x-ray diffraction (XRD) in a high-temperature (HT) 

chamber under medium vacuum conditions. These novel results highlight the influence of the 

CNT distribution throughout the Ni matrix, as well as the CNT-lattice interaction under a 

thermal input. The obtained knowledge constitutes a basis for a further understanding of the 

mechanisms acting in the composites under thermal load.  

VI.2. Results and Discussion 

VI.2.1. Bulk thermal expansion behaviour  

The thermo-mechanical measurements showed very interesting results regarding the thermal 

expansion, particularly in the low temperature (50 – 400 °C) regime. The tested samples 

presented expansions and densifications which could be attributed to residual matrix-

reinforcement stresses [132].  It is noteworthy that up to about 450 °C the lowest thermal 

expansion was observed for the CPS composites.  

 

Figure VI-1 – Thermal expansion curves of the samples. As a reference, Ni expansion was plotted from [133]. 

The on-set densification temperature was observed at about 600 °C. Figure VI-1 shows the 

relative expansion (dL/L0) of sintered specimens with 1.0 wt.% of CNTs, with a clear 

densification bend of the HUP specimen at about 840 °C. During the expansion a break point 

in the slope at roughly 450°C is observed. The densification on-set might be directly related to 

the initial state in the solid state sintering [134,135].  Also, another change in the densification 
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rate at around 930°C is detected. The maxima in the densification rates are around 1050°C or 

lower, which is about 400°C below the melting point of Ni (0.7 Tm of Ni). 

The high densification rates and the low temperatures at which densification takes place 

suggests a highly pure and active Ni powder with clean (oxide-free) grain surfaces. The 

expansion coefficients (CTE) at 50-400 °C were 9.1x10-6 and 3.9x10-6 1/°C for HUP and CPS, 

respectively, a value considerably lower than that of pure Ni (16.3x10-6 1/°C [133]). The lower 

expansion may be explained by a good fibre-matrix bonding at the high temperature sintering 

stage. In that case, the lower expansion of the CNTs may exert tensile stress on the matrix [132].  

 

Figure VI-2 – SEM micrographs from FIB cross sections of (a) CPS and (b) HUP composites with 1.0 wt.% 

CNTs. 

Figure VI-2a shows the FIB cross section of the MWCNT/Ni 1.0 wt.% CPS sample, which 

presents an acceptable densification despite the observed porosity. This sample was about 6% 

less dense than the pure Ni, as presented in Table VI-1.  

Table VI-1 – Density values of the produced samples and their thermal expansion coefficient (CTE). 

Sample Rel. Density [%] CTE [x10-6 1/°C] R2 CTE % 

Pure Ni 100 16.3±0.08 0.99891 --- 

MWCNT/Ni 1.0 wt.% HUP 95.5 9.10±0.04 0.98921 -44.2 

MWCNT/Ni 1.0 wt.% CPS 93.7 3.90±0.06 0.94404 -76.1 

 

The porosity situated in the near region of the CNT clusters confirms that the cohesion between 

Ni and CNT clusters is low. This reagglomeration might be generated in the pressureless 

sintering stage of the process where the heating ramp is low and the sintering neck formation is 

delayed, leaving a pathway for the CNTs to bundle. In this type of free densification process, 

the absence of external dimensional constraints during the treatment permits the existence of 

voids where the CNTs agglomerate. This is not the only result of a lack of dimensional 

restriction; reaching full density is complex because the material is free to expand in all 
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directions. Moreover, it can be noticed that the pore size is in the submicron range. However, 

for the case of the MWCNT/Ni 1.0 wt.% HUP samples (Figure VI-2b) the pore size is 

drastically reduced  to tens of nanometres. In this case, the clusters size is smaller compared to 

the CPS sample, and most of them are located at grain borders. This type of distribution might 

be helpful for the load transfer from the matrix to the reinforcements. Contrary to the CPS 

process, HUP restricts the sample in the die, allowing only inward diffusion. Based on 

observations, it can be claimed that the apparent intergranular CNT clustering could be actually 

a grain interface distribution that was covered by the matrix and could not be differentiated by 

the FIB cross sections. The large difference between the CNT-containing samples may be 

mainly due to mass transport during the thermal input. As showed in chapter V, the on-set 

temperature for growth in these systems is found at about 250 °C (consistent with the results 

shown in chapter V).  

 

Figure VI-3 – Thermal expansion behaviour of CPS samples with different CNT amounts. The response of the 

2.0 and 5.0 wt.% samples show a break point where the expansion of the Ni reference sample is overlapped. This 

is believed to be due to a detachment of the reinforcements from the matrix. 

By focusing only on CPS samples with different CNT concentrations (Figure VI-3), interesting 

results are obtained. Samples with 1.0 and 2.0 wt.% showed lower CTE than pure Ni, however, 

the 2.0 wt.% response exceeds the Ni expansion at approximately 235 °C. The 5.0 wt.% sample 

had a CTE larger than the reference in the whole range. 
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Table VI-2 presents the CTE values, discriminated in pre and post-intercept (temperature at 

which a sample expands more than the reference). The hypothesis for the occurrence of this 

intercept in the expansion response is that the samples presented an internal pressure expansion, 

usually called “bloating”. This bloating effect is typical in materials presenting internal porosity 

where certain gases (i.e. poorly evaporated solvents, water, etc) are adsorbed during or remain 

after processing.  

Table VI-2 – CTE of the samples manufactured by CPS with different CNT concentrations. The intercept where 

the expansion of the Ni reference is met is also marked. 

Sample 
CTE [x10-6 1/°C] 

Intercept [°C] 
Pre-intercept Post-intercept 

Pure Ni 16.30±0.08 ------- ------- 

MWCNT/Ni 1.0 wt.% CPS 3.90±0.06 ------- ------- 

MWCNT/Ni 2.0 wt.% CPS 13.70±0.70 57.30±0.30 256.7 

MWCNT/Ni 5.0 wt.% CPS 17.30±0.30 82.00±1.00 236.4 

 

After the application of temperature, these gases are desorbed, finding no path to exhaust due 

to the lack of interconnected porosity. Past a certain temperature (intercept), the internal final 

pressure (Pf) exceeds the surrounding initial atmospheric pressure (Pi), thus expanding the 

matrix in excess. A model of this mechanism is depicted in Figure VI-4. 

 

Figure VI-4 – Porosity closure diagram and bloating due to internal gas pressure in sintered samples. Adapted 

from [18]. 
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VI.2.2. Ni lattice thermal expansion – HTXRD analysis and models 

The SEM micrographs in Figure VI-5 reveal the integration of the MWCNTs in the Ni matrix. 

In the pure Ni samples, a small number of pores and grain boundaries can be seen. This amount 

of porosity is normal and is mainly due to the manufacturing technique. The final densities of 

the studied composites are around 94-96%.  

 

Figure VI-5 - SEM micrographs of (a) pure Ni, and a Ni matrix with (b) 1 %, (c) 3 % and (d) 5 % MWCNTs in 

weight. The dark grey areas inside the free volumes correspond to CNTs. The gray zones observed in the Ni 

matrix with different refinements correspond to different grains. 

The composite samples present a larger free volume (voids) and MWCNTs at the grain 

boundaries. Particularly, in the 3.0 and 5.0 wt. % samples, certain pores reveal poor cohesion 

between the reinforcements and the matrix. As explained before, this is due to a higher degree 

of agglomeration of the MWCNTs, which further translates into a low adherence between the 

clusters and the matrix. However, the 1.0 wt. % sample displays a better dispersion and 
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distribution within the matrix. The reduced amount and size of the clusters improves the 

adhesion of the MWCNTs to the matrix. 

 

Figure VI-6 - Diffractograms of the tested samples as a function of the temperature (in ° C). The lower curve 

corresponds to 50°C and the last to 850°C. The measurements were made every 100 °C. The shift of the (111), 

(200) and (220) Bragg peaks towards lower 2θ angles are due to the expansion of the d-spacing between the 

corresponding planes. 

The (111), (200) and (220) Bragg reflections (Figure VI-6) were observed in all the samples 

throughout the complete temperature range. In the diffractogram measured at 50º C they were 

located at 44.51º, 51.84º and 76.37º; respectively. After heating, these peaks shifted towards 

lower 2θ angles due to the expansion of the d-spacing between the corresponding planes. The 

MWCNT/Ni samples presented similar behaviour and no other Bragg reflections were observed 

with the inclusion of the MWCNT into the matrix. The estimated values of the face-centred 

cubic lattice parameter of Ni as a function of temperature are summarised in Table VI-3. It is 

worth noting that the Bragg reflections become narrower as the temperature increases mainly 

due to grain growth and stress relaxation processes. In order to avoid systematic errors from 

misalignments and thermal expansions of the sample holder, the 2θ scan data were corrected 

using the Nelson-Riley (NR) approximation [136]. The Nelson-Riley method is an 
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extrapolation procedure where the systematic error introduced by the eccentricity of the sample 

with respect to the rotation axis in the diffractometer is corrected. This eccentricity has been 

found to be proportional to cos2(θ). For the correction, the calculated lattice parameter “a” from 

the raw data is plotted against cos2(θ)/sin(θ), which is a widely used function for cubic systems 

[137]. The obtained points are later linearly fitted and the intersection with the y-axis provides 

the corrected lattice parameter, a. 

Table VI-3 - Ni lattice parameters measured in all MWCNT/Ni samples by HT-XRD and estimated by the NR 

method. 

Temperature [°C] 
acorrected [nm] 

Pure Ni 1.0 wt.% 3.0 wt.% 5.0 wt.% 

50 0.3526(1) 0.3526(1) 0.35261(8) 0.3526(1) 

150 0.35328(9) 0.3532(1) 0.35321(6) 0.35321(8) 

250 0.35376(7) 0.35376(4) 0.35378(2) 0.35381(3) 

350 0.354361(5) 0.35437(1) 0.35439(1) 0.35440(2) 

450 0.35492(3) 0.35494(3) 0.35497(3) 0.35499(2) 

550 0.35551(1) 0.3555(6) 0.35555(3) 0.35561(3) 

650 0.35612(1) 0.356(1) 0.35621(4) 0.35634(3) 

750 0.35674(2) 0.357(1) 0.35706(4) 0.35711(4) 

850 0.35739(2) 0.358(1) 0.35792(5) 0.35796(4) 

 

The lattice thermal expansion corresponds to a temperature-gradient-induced reversible 

variation of the lattice parameter of a crystal. In the general case, the relationship between the 

lattice parameter and the temperature can be modelled by polynomial dependence [138]. The 

first-order temperature term describes a harmonic behaviour, valid for small amplitudes of 

atomic vibration (< 1%). The second-order term corresponds to the asymmetry of the mutual 

Coulomb repulsion between atoms. The third-order term corresponds to large amplitudes of 

atomic vibration that lead to energy dissipation. Non-harmonic behaviours are usually 

significant at temperatures close to absolute zero or melting points. Since the melting point of 

Ni is higher than 1400 ºC [139], harmonic first-order behaviour of the lattice expansion was 

thus assumed. 

The lattice parameter estimated by NR was fitted with a linear regression [136]. As presented 

in Figure VI-7, the curves show a similar behaviour, but differ in their slopes. The CTE is 

defined as the fractional variation in length per unit temperature change α = (1/L0)·∂L/∂T. The 
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calculated CTE of the pure Ni samples was 16.6(2) x10-6 1/°C, which agrees with the standard 

powder value [133,140]. The values for the MWCNT/Ni composites were 18.6(7) x 10-6 1/°C 

(1.0 wt. %), 18.3(5) x 10-6 1/°C (3.0 wt. %) and 18.6(5) x 10-6 1/°C (5.0 wt. %). The composites 

showed a higher lattice CTE than that of pure Ni by around 12% for the 1.0 wt. % samples, 

while the increment in amount of MWCNTs did not significantly affect the thermal expansion 

of the composites.  

 

Figure VI-7 - Lattice parameter of the MWCNT/Ni composites estimated from the data shown in Fig. VI-6 using 

the Nelson-Riley method. Linear regression fitting was performed in order to estimate the thermal coefficient of 

expansion of the composites as a function of the percentage of MWCNTs added to the Ni matrix. The statistical 

error of the measurements is lower than the size of the data symbols. 

These results disagree with the behaviour of the thermal expansion coefficient reported in the 

previous sub-chapter measured by differential dilatometry. Regarding this, Roy et al. [141] 

mention that in materials with a very low CTE, the bulk thermal expansion is usually not 

necessarily identical to that of a single crystal from which it is composed. Indeed, this anomaly 

is produced mainly by a compensation effect resulting in an average CTE value. This difference 

was also observed by Ferrer-Anglada and co-workers in their report on the thermal expansion 

behaviour of Cu/CNT composites with large partial concentrations (30-55 wt.% Cu) [142]. 

They measured the thermal expansion of Cu by means of XRD in a narrow temperature range 

(20-260 °C), observing an increase in the CTE of approximately 7% compared to that of pure 



Chapter VI – Thermomechanical behaviour: bulk dilatometry and lattice behaviour  

 

Sebastián Suárez Vallejo  70 

 

Cu. By analysing the available research on this topic, it was found that the fundamentals of the 

interaction between the CNTs and the metallic matrix were to some extent not deeply discussed 

and described. Uddin et al. observed [143] that the addition of MWCNT to Cu and Al reduces 

the CTE up to 20% compared to that of the pure metals. The explanation given is based on the 

uniform dispersion and proper embedding of the MWCNT in the metallic matrix, restraining 

the grains, bridging and pulling the matrix together during the thermal cycling. Another work 

carried out in this direction [144] reports a reduction of about 65% in the CTE of an SWCNT/Al 

composite. This decrease is explained by powerful constraints provided by the SWCNT, 

grasping the matrix material. Deng et al. observed a decrease in the CTE of CNT/Al2024 of 

12% [145]. They justify this improvement by the formation of a proper interface between the 

CNTs and the matrix coupled with the fact that CNTs have very low intrinsic CTE [145]. 

Finally, Datsuyk et al. found that a decrease in the CTE of bulk CNT/Cu composites of up to 

75% can be achieved by the combination of the low expansion coefficient and large surface 

area of CNTs [146]. 

 

Figure VI-8 - Scheme of possible thermal expansion mechanisms of the Ni unit cells in presence of CNTs (not to 

scale). Lattice expansion between (a) porosities, (b) CNT clusters and (c) grain boundaries delimited by a single 

CNT. The lattice parameter of Ni is represented by “a”. 

In order to explain the observed behaviour of the CTEs, three main probable lattice expansion 

mechanisms that could be acting in the composites during the thermal input are suggested. Since 



Chapter VI – Thermomechanical behaviour: bulk dilatometry and lattice behaviour  

 

Sebastián Suárez Vallejo  71 

 

the expansion is measured in the Ni matrix, the lattice unit cells that are adjacent to pores or 

clusters present more free volume to expand without restraint (Figure VI-8-a and b). When a 

single CNT is in a grain border (Figure VI-8-c), the adjacent unit cells also expand more than 

the ones inside the grain since CNTs have zero or negative thermal expansion under thermal 

inputs [128]. The linear and volumetric thermal expansion behaviour and the contraction modes 

for the CNTs are shown in Figure VI-9 [128]. In the temperature range tested in this work, the 

CNTs present a volumetric contraction ranging from 2 and 4%. By analysing the variation of 

the lattice parameter with the temperature for all the samples (with and without embedded 

CNTs), a shift in the values in the 10-2 – 10-3 Å range is observed. This variation represents the 

absolute dimensional change in the lattice. When compared to the lattice parameter at room 

temperature and the CNT diameters, it is about 3 to 4 orders of magnitude lower. Despite this 

difference and considering the CTE close to zero for the CNTs [128], it can be assumed that 

the anchoring provided by the CNTs to the matrix could actually be enhanced by the absorption 

of lateral displacement by the CNTs. When studying the behaviour at a lower scale, this effect 

is observed as a partially-free expansion of the lattice within the composite. However, when 

measured macroscopically, it produces a reduction in the coefficient of thermal expansion. 

 

Figure VI-9 – Relative linear and volumetric thermal expansion of CNTs up to 1400 K. CNTs have negative 

thermal expansion in a very large temperature range. On the right hand side, the probable expansion modes 

proposed by Kwon et al are depicted [128]. 

This difference might be due to unmeasured lattice defects originated by the addition of CNTs 

into the manufacturing process. The presence of second-phase particles introduces deviations 

from the expected behaviour based on previous studies carried out with the same technique. For 
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example, in the case of Ni-based alloys [129,130], the results are in accordance with 

commercial values. The influence of second phases on the behaviour must be carefully 

determined using complementary techniques (such as in-situ high temperature TEM) in order 

to state a definitive conclusion regarding the thermomechanical behaviour of composites. In 

this regard, further experiments are required in order to either confirm or dismiss the presented 

hypotheses. 

VI.3. Summary  

The response to thermal expansion of the composites was analysed by bulk dilatometry, 

showing a decrease in the CTE for both manufacturing methods. Particularly, the CPS sample 

showed a marked reduction (approximately 76%) compared to pure Ni. This difference might 

be due to mass transport during a second sintering of the composite. The HUP sample also 

showed a significant reduction of the CTE, evidencing the interaction with the CNTs. The 

reduction in both types of composites is directly related to the anchorage given by the 

MWCNTs to the matrix preventing larger thermal expansions. A subsequent study with higher 

CNT concentrations presented interesting results regarding the interactions. The 2.0 wt.% 

sample had an intercept which separated the response in two sections. The first showed a 

decreased CTE compared to pure Ni, whereas the second exceeded it. The 5.0 wt.% sample 

exceeded throughout the whole process the reference response. Both behaviours are correlated 

to a bloating effect, produced by the impossibility of the adsorbed gases to exhaust and leave 

the remaining porosity. This behaviour should be avoided in order to obtain a useful response 

in the composites.  

In order to corroborate the widely cited anchoring effect of the CNTs, the lattice expansion 

behaviour of the Ni matrix was studied by means of HT-XRD. The lattice parameters of the Ni 

composites were determined as a function of the temperature by XRD using the Nelson-Riley 

method, thus avoiding systematic errors from the thermal expansion of the sample holder. 

Interestingly, the addition of MWCNTs as fillers increases the lattice coefficient of thermal 

expansion mainly due to the presence of free volume between the grains in the matrix produced 

by the agglomeration of nanotubes and porosity. Moreover, no significant variation of the CTE 

was observed after increasing the percentage of carbon nanotubes. From the interpretation of 

the experimental results, three different acting mechanisms are proposed which may explain 

the macroscopic response in the bulk material. The difference in the bulk CTE measured in 

previous works can be explained by the presence of dislocations, defects and voids. Moreover, 
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anchoring provided by the CNTs to the matrix could actually be enhanced by the absorption of 

lateral displacement by the CNTs. The results presented in this chapter also highlight the 

importance of stating the limitations of different techniques that measure similar physical 

properties. Other complementary techniques should be accordingly compared in order to state 

a definitive conclusion regarding the thermomechanical behaviour of Ni matrices filled with 

CNTs.  

 



VII. Mechanical properties: grain 

boundary strengthening  
 

VII.1. Introduction 

Metal matrix composites show great advances towards the improvement of the mechanical 

properties of materials with low intrinsic strength such as aluminium or copper. Particularly, 

nickel is a moderate-strength metal with a density comparable to that of copper but with a higher 

melting point, hardness and tensile strength. Many studies on the hardness and wear properties 

of nickel-based coating films focused on samples prepared by electroless [117] or 

electrochemical deposition techniques [80,147,148]. They observed that the addition of 

MWCNTs to a metallic matrix leads to a hardness increment of the samples.  

In this chapter, the work is focused on powder metallurgy bulk Ni/CNT samples. An increment 

in hardness is expected, which could be tailored by varying the amount of reinforcement. The 

addition of MWCNTs should hinder the grain growth and increase the hardness, verifying the 

Hall-Petch relationship. The composites are characterised using X-ray diffraction (XRD), 

Electron Backscattered Diffraction (EBSD) and Vickers micro hardness. The relationship 

between the hardness and the mean grain size of composites with four different MWCNT 

concentrations (1.0, 2.0, 3.0 and 5.0 wt.%) is investigated. An approach to predict the final grain 

size of the composites comparing the experimental data to the theoretical models is proposed. 

VII.2. Results and discussion 

XRD was employed with two main purposes: the first is to assess the initial grain size of the 

unsintered samples using the method described before, and the second, to analyse the possible 

formation of new phases from the reaction between the CNTs and the matrix during the 

experiment. Moreover, as a complementary evaluation of the reactions between said 

components, Raman spectroscopy was performed on the composites. 

The initial grain sizes of the composites as well as the reference sample are depicted in Table 

VII-1.  

Table VII-1– Initial and final mean grain sizes and Vickers microhardness of the studied samples. The initial grain 

size was determined by XRD measurements, whereas the final grain sized was determined by EBSD. 
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Sample 
Initial grain size 

(XRD) [nm] 

Final grain size 

(EBSD) [µm] 
Vickers Hardness [HV0.1] 

Pure Ni 27.9 ± 16.7 8.87 ± 0.47 107.1 ± 4.5 

MWCNT/Ni 1.0 wt.% 27.8 ± 12.7 7.58 ± 0.62 121.3 ± 5.1 

MWCNT/Ni 2.0 wt.% 28.4 ± 16.9 6.30 ± 0.32 123.9 ± 2.7 

MWCNT/Ni 3.0 wt.% 29.3 ± 16.7 5.11 ± 0.17 136.4 ± 6.2 

MWCNT/Ni 5.0 wt.% 27.3 ± 15.7 6.39 ± 0.21 135.1 ± 3.5 

 

All the samples start with approximately the same grain size (between 27 and 29 nm). After the 

densification process, the final grain size shows a marked tendency inversely proportional to 

the amount of CNTs in the composite up to 3.0 wt.%. The 5.0 wt.% sample does not fit into 

said tendency. The high volume fraction (approximately 27%) favours the reagglomeration of 

the CNTs, reducing the energy absorption from the moving grain boundaries (Figure VII-1), as 

already discussed in previous chapters. The reagglomeration of CNTs has been previously 

studied and described in powder metallurgical samples [82].  

 

Figure VII-1– Ion channelling contrast electron micrographs of (a)Pure Ni,(b)1.0 wt.%, (c) 2.0 wt.%, (d) 3.0 

wt.% and  (e) 5.0 wt.% samples . The darker spots observed within the Ni matrix correspond to submicron CNT- 

bundles. 
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The electron micrographs taken at a magnification of 1000x show the distribution of the 

submicron sized CNT-clusters distributed within the Ni matrix (Figure VII-1). The increase in 

the cluster concentration is noticeable for the high CNT-content composites. Furthermore, no 

significant porosity is observed on the analysed surface, depicting a proper densification in the 

samples.  

 

Figure VII-2 – (a) Scheme of the interaction forces between the grain boundary and the second-phase particles. 

(b) Theoretical model highlighting the grain growth stagnation in the presence of a particle dispersion [108]. 

In all composite cases, the final grain size is directly related to grain growth stagnation due to 

Zener pinning generated by the presence of a second phase, in this case predominantly the 

CNTs. The physical foundation of this effect is that the fillers act as pinning points reducing 

the grain boundary mobility by diminishing the interfacial energy every time a boundary passes 

through (Figure VII-2a) [108]. When the driving force of grain growth equals the restraining 

force exerted by the reinforcement, the growth is halted. This effect is already well known for 

composites with a second-phase particle dispersion, acting as a final grain size control 

mechanism during growth or recrystallisation (Figure VII-2b) [109].   

The final grain size distribution of the samples was determined by EBSD maps enabling the 

analysis of the influence of the CNTs on the microstructural growth type. Pure Ni (Figure 

VII-3a) and MWCNT/Ni 1.0 wt.% (Figure VII-3b) present an abnormal grain growth, whereas 

MWCNT/Ni 2.0 wt.% (Figure VII-3c), MWCNT/Ni 3.0 wt.% (Figure VII-3d) and 5.0 wt.% 

samples (Figure VII-3e) exhibit a refined and uniform microstructure. Abnormal growth is 

known to happen when normal grain growth is hindered by the presence of second-phase 

particles [108]. These particles might be precipitates, reinforcements or even porosity. Thus, it 

can be stated that low concentrations of CNTs (i.e. 1.0 wt.%) is not enough to produce a uniform 

refinement of the microstructure, effect clearly observed in the higher concentration samples 
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where the uniformity of the refinement was influenced by the proper dispersion and larger 

amount of CNTs.  

 

Figure VII-3– Inverse pole  figures (IPF) of the studied samples (a) Pure Ni, (b) MWCNT/Ni 1.0 wt.% , (c) 

MWCNT/Ni 2.0 wt.% , (d) MWCNT/Ni 3.0 wt.%, (e) MWCNT/Ni 5.0 wt.%. Each colour represents a 

crystallographic orientation. 

The mean grain size distribution can be described by a log-normal function [123], and is shown 

for each sample in Figure VII-4. For the case of pure Ni (Figure VII-4a) and MWCNT/Ni 1.0 

wt.% (Figure VII-4b) the span of the grain size distribution covers approximately up to 45 µm 

and 27 µm respectively. The size spread is not regular, showing misfit points on the larger grain 

size columns depicting a multimodal grain size distribution. This is a clear characteristic of 

abnormal growth. However, in the samples with higher CNT contents this is not observed, 

presenting log-normal distributions with high correlation coefficients. By comparing all the 

curves, there is a clear shift of the mean value towards lower grain sizes up to the 3.0 wt.% 

sample. Already in the 5.0 wt.% sample, there is an inversion towards larger grain sizes 

resulting in a mean grain size comparable to that of the 2.0 wt.% sample.    
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Figure VII-4– Final mean grain size distributions of the samples obtained by EBSD measurements. (a) Pure Ni, 

(b) MWCNT/Ni 1.0 wt.%, (c) MWCNT/Ni 2.0 wt.% , (d) MWCNT/Ni 3.0 wt.% and (e) MWCNT/Ni 5.0 wt.%. All 

the samples show a Log-normal type distribution of the grain sizes. 

The refined grain size should lead to a mechanical response as described by the Hall-Petch 

effect, which states that the yield strength (or hardness) is inversely proportional to the grain 

size [39]. As stated before, grain growth stagnation is promoted by the CNTs, resulting in a 

final grain size smaller than in pure metals under the same conditions. This feature increases 

the amount of grain boundaries, hindering the dislocation mobility and therefore improving the 

hardness. The Hall-Petch effect in metal matrix composites reinforced with CNTs has been 

reported in the literature for certain systems. Choi et al. [74] described the strengthening of 

MWCNT/Al composites (manufactured by hot rolling of ball milled powder) as a consequence 

of grain refinement and load transfer from matrix to reinforcement. Carpenter et al. [117] 

discussed the increase in hardness as a sum of Orowan strengthening and the Hall-Petch effect 

for electrodeposited CNT/Ni coatings. 

Hardness values are presented in Table VII-1. The CNT-reinforced samples showed hardness 

improvements of 13.2, 16.7, 27.4 and 26.1% (1.0, 2.0, 3.0 and 5.0 wt.% respectively) relative 

to the pure Ni reference.  In order to assess the influence of the Hall-Petch effect in the 

mechanical behaviour of materials, the grain size dependency of the hardness was plotted 

(Figure VII-5). 
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Figure VII-5– Hall-Petch plot of the composite hardness versus the inverse square root of the mean grain size. A 

linear fit is depicted to highlight the tendency. 

The plot contains a linear fit of the data set, confirming a predominant Hall-Petch effect that 

correlates the mechanical properties to the microstructure. It must be clarified that Hall-Petch 

is probably not the only hardness enhancing mechanism acting in the samples, a load transfer 

from the matrix to the reinforcements might also be expected. However, this is not considered 

as the prime mechanism due to the low wettability of the CNTs with metals [53], which results 

in a weakly bonded interface between the MWCNTs and the Ni matrix. 

With regard to the grain size refinement due to a second phase dispersion, several authors have 

reported prediction laws which should represent the expected final grain size [124] and are 

based on the Zener model reported by Smith [149]. The prediction is based upon an empirical 

equation which considers the size and volume fraction of the second phase. As such, it only 

predicts the final grain size for a particular system under specific conditions. For the case of the 

present study, four of the many reported models were tested based on the study of Muralidharan 

et al. [114] so as to assess the fitting to the experimental results. The considered models are 

those from: Zener and Hillert, which both consider random particle/ grain boundary 
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intersection; Anderson, which was designed from 2D growth computer simulations; and 

Anand-Gurland, which considers that all particles are placed at grain boundaries. The results 

are shown in Table VII-2. It can be clearly seen that the results differ significantly with those 

obtained by direct measurement with EBSD (Table VII-1).  

Table VII-2– Predicted final size in composite materials subjected to Zener pinning [114,124]. 

 Predicted mean final grain size [µm] 

Sample 
Vol. fraction 

MWCNT/Ni (f) 

CNT radius (r) 

[m] 

Zener Hillert Anderson Anand-Gurland 

k: 4/3; n:1 k: 8/9; n:0.93 
k: 4.5±0.8; 

n:0.31±0.02 
k: 4; n:0.5 

1% 0.0647 

7.5x10-9 

0.155 0.085 0.158 0.118 

2% 0.1226 0.082 0.047 0.129 0.086 

3% 0.1747 0.057 0.034 0.116 0.072 

5% 0.2649 0.038 0.023 0.102 0.058 

 

Since the analysed models failed to predict the final grain size, a new approach is proposed 

based on the mean grain sizes of the 1.0, 2.0 and 3.0 wt.% samples. Beyond 3.0 wt.%, there is 

no significant additional reinforcing effect of the CNTs due to reagglomeration. This statement 

is in close agreement with previously reported values for MWCNT/Cu bulk composites 

produced by powder metallurgy [125]. 
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Figure VII-6 – Classical approach for the grain boundary pinning by spherical particles [110]. 

 

The general equation predicting the grain size (Equation VII-1: D represents the mean final 

grain size, r is the second-phase radius and f is the second-phase volume fraction), is based on 

the assumption that the second phase is spherical and has a monomodal size distribution (Figure 

VII-6). These hypotheses collide with the reality, in which the particles usually have a 

randomly-shaped multimodal size distribution. In this sense, Sun et al. [150] reported an 

approach in which they consider the specific surface per unit volume (Sv) as an important factor. 

This stereological parameter approximates the model to real cases, since it does not need to 

consider the 3D particle size distribution or the assumption of spherical particles. For this study, 

the boundary drag model would be as is shown in Figure VII-7. 
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Figure VII-7 – Scheme of the grain boundary pinning by cylindrical bodies (in this case, carbon nanotubes). 

If the new parameter is considered in the general equation, it results in the following: 

𝐷 =
𝑘.𝑟

𝑓𝑛
     (Equation VII-1)                    𝐷 =

4.𝑘

𝑆𝑣.𝑓
𝑛 =

𝑘′

𝑓𝑛
         (Equation VII-2) 

For the case of CNTs, this approach was analysed by Lahiri et al. [76], observing that the 

influence of Sv is inversely proportional to the final grain size (Equation VII-2). When working 

with coarse-grained materials (as in this study), it is expected that the proportionality constant 

k reach values higher than those reported for the ideal cases. Summarising, considering the 

nature of the reinforcing phase and its high specific surface [151], the model was constructed 

starting with the modified general equation (Equation VII-2) and a confidence index of 98%. 

The following model was obtained based on the calculation of the remaining parameters (i.e. 

factor n and proportionality constant, k’) for the particular case of this study:   

𝐷 =
2560±70

𝑓0.397±0.013
   [nm]  (Equation VII- 3) 

A graphical representation of the obtained model is depicted in Figure VII-8. The experimental 

data and its standard deviation is also plotted to observe the validity of the model within the 

studied partial concentration range. The curves have a very good correlation to the experimental 

points. Since this is a first approximation to the bulk MWCNT/Ni system, it is recommended 

that further experiments with different CNT concentrations should be carried out in order to 

refine the proposed model. 
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Figure VII-8 – Plot of the proposed model with the upper and lower bounds. The inset shows in detail a reduced 

reinforcing range (up to 25 vol%) 

VII.3. Summary 

An empirical reinforcement limit has been determined for CNT reinforced MMCs at 3.0 wt.% 

(approx. 17 vol.%). No significant improvement in the mechanical properties is observed 

beyond this limit. The reduction of the reinforcing effect above this value is mainly generated 

by the reagglomeration of CNTs due to the high volume fraction (approx. 27 vol.%). 

The Hall-Petch relationship is confirmed for the composites, irrespective of the relative CNT 

amount. Despite this fact, it must be clarified that Hall-Petch is probably not the only enhancing 

mechanism acting; a load transfer from the matrix to the reinforcements might also be expected.  

A new growth modelling equation is proposed for the studied system, suitable for composites 

up to the aforementioned empirical concentration limit and independent from the second phase 

particle shape. Beyond this point, the behaviour cannot be described by Zener pinning due to 

the increment in the CNT reagglomeration. Further experiments with different CNT 

concentrations are required in order to refine the proposed model. 

 



VIII. Tribological properties: friction and 

wear behaviour  
 

VIII.1. Introduction 

One of the main factors affecting the reliability of electrical contacts is their tribological 

behaviour. This problem was partially overcome by the use of coatings, but a common 

drawback is life span [152]. The existence of high friction between to electrical contacts will 

induce severe plastic deformation and subsequent failure. Moreover, the generated wear 

particles will generate failure mechanisms (i.e. ploughing), increasing the friction and thus, 

accelerating their damage. A low-friction material is thus advantageous in the sense that it 

avoids superficial plastic deformation at the contact surface and may result in elastic sliding 

[153]. 

In the present chapter, the friction results obtained for bulk CNT-reinforced Ni composites 

manufactured by two different powder metallurgy routes are shown. These results are 

contrasted with a pure Ni reference in order to determine the influence of the CNTs on the 

friction and wear behaviour, correlated to the resulting composite microstructure. Finally, the 

conventional Archard wear model was adjusted to achieve a more suitable description of the 

microstructural influence on the wear rate.    

VIII.2. Results and discussion 

VIII.2.1. Microstructural characterisation 

Figure VIII-1 shows EBSD surface scans of the samples before the tribological tests and the 

respective grain distribution histograms. It can be observed that the size of the grains decreases 

by adding CNTs to the composite [120]. This has been already clarified in chapter VII and is 

generated by grain growth stagnation produced by the CNTs.  
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Figure VIII-1 – EBSD inverse pole figure maps of the surface prior to the tribological tests, highlighting the 

grain size distribution of (a) Pure Ni, (b) MWCNT/Ni 1.0 wt.% CPS and (c) MWCNT/Ni 1.0 wt.% HUP. The 

scale bar in (c) differs from those in (a) and (b). Figures d, e and f are the respective grain distribution 

histograms. 

The main difference between the Ni reference sample (Figure VIII-1a) and the MWCNT-

reinforced samples (Figure VIII-1 b and c) is that the grain growth in the former is only hindered 

by the porosity. During sintering, porosity migrates to grain boundaries, reducing the energy 

and slowing the growth, whereas in the CNT samples, the nanotubes provide an extra hindering 

phase which further reduces the grain boundary mobility [154]. 

The difference between the two composites is mainly due to the higher amount of agglomerates 

in the CPS sample. With this production technique, a higher degree of reagglomeration due to 

poor cohesion between the matrix and the CNTs has been observed, related to the absence of 

pressure during sintering, as already explained in previous chapters [82,140].  

This difference in the agglomeration can be noticed in Figure VIII-2, which shows fracture 

surfaces of the MWCNT/Ni 1.0 wt.% CPS (Figure VIII-2a) and HUP (Figure VIII-2b) samples. 

The agglomerates and voids in the CPS sample are highlighted with an ellipse on the figure.  
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Figure VIII-2 – Fracture surfaces of the CNT-containing samples. (a) MWCNT/Ni 1.0 wt.% CPS and (b) 

MWCNT/Ni 1.0 wt.% HUP. The CNT agglomerates, voids and dispersed CNTs are highlighted. 

Another difference between CPS and HUP is the densification temperature used during 

sintering [18]. However, this is not the only factor playing a role on the final grain size and 

density, since the applied pressure during HUP helps to improve the densification by avoiding 

the swelling (or gas bloating) of the sample. Moreover, there are other densification 

mechanisms in HUP that do not act in CPS (i.e. plastic deformation and creep). 

A summary of the mean grain size and microhardness values for the tested samples is found in 

Table VIII-1. 

Table VIII-1 - Mean grain size, Vickers microhardness and root mean square roughness of the samples 

Sample 
Mean grain size  

[µm] 

Vickers microhardness 

HV0.1 

RMS Roughness 

[nm] 

Pure Ni 47.54 ± 3.06 92.2 ± 2.6 18.8 ± 17.7 

1.0 wt.% CPS 22.39 ± 0.96 119.3 ± 5.3 26.7 ± 7.1 

1.0 wt.% HUP 7.58 ± 0.62 131.5 ± 7.0 46.9 ± 10.2 

 

VIII.2.2. Friction behaviour 

The coefficient of friction (COF) was evaluated for loads ranging from 50 to 300 mN for the 

three sample sets. Figure VIII-3 depicts the values for each load, showing a clear difference 

between the CNT-containing samples in comparison to the Ni reference. 
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Figure VIII-3 – Average coefficient of friction (COF) versus the different experimental loads under dry 

conditions. 

In the case of the 1.0 wt.% HUP sample, the maximum COF reduction is about 67%, whereas 

in the CPS sample the reduction is close to 50%, both of which are above the expected values 

reported in the literature [155,156]. This significant difference could be related to several 

isolated effects or a combination thereof.  

For the sake of the analysis, the discussion of the friction results will be separated into two 

different regions. The first one covers lower loads, i.e. 50 and 100 mN. The second group covers 

the higher tested loads (200 and 300 mN), where a non-trivial behaviour is observed particularly 

in the HUP sample.  

Region I – Lower loads 

In this load region, the evolution of the COF throughout the friction experiment is roughly the 

same for the three types of samples, showing no particular influence of the load on the friction 

behaviour (Figure VIII-4).  
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Figure VIII-4 – Mean COF evolution over the sliding cycles for lower loads. Experimental loads for each are 

shown on the upper right corner. 

The obtained mean COFs were 0.4, 0.2 and 0.1 for the pure Ni, 1% CPS and 1% HUP samples, 

respectively. The reference value is in good agreement with those reported in the literature for 

microcrystalline Ni tested against Al2O3 [157]. Equation 1 is used to calculate the Hertzian 

stresses, where P is the applied normal load, D is the counterpart diameter and C is the effective 

elastic modulus. The latter can be estimated with equation VIII-2.  

𝜎𝐻 = 0.918√
𝑃

𝐷2𝐶2

3
   (Equation VIII-1) 

𝐶 = (
1−𝜈1

2

𝐸1
) + (

1−𝜈2
2

𝐸2
)  (Equation VIII-2) 

Considering the tribological pair being tested (Ni/Al2O3) and combining equations VIII-1 and 

2 with the data available in the literature, the initial (Hertzian) elastic contact pressure between 

these materials amounts to 1.56 GPa. This value highly exceeds the estimated yield strength of 

the samples (obtained from the relationship σy ~ hardness/3), which ranges from 0.3 to 0.45 

GPa (pure Ni and 1% HUP respectively). Therefore, under equal load, the yield strength is 

lower, resulting in a greater penetration depth and a subsequently increased real contact area. 

In other words, the increase in hardness of the sample hinders the indentation depth of the 

dynamic counterpart, thus reducing the contact area during the friction test. It would then be 

reasonable to state that the main role in the friction behaviour at the mentioned loads is played 

by an indentation-induced plastic deformation mechanism. This effect was also observed in the 

work of Shafiei and co-workers [157], where they compare the tribological performance of Ni 

with different grain sizes (micro and nanocrystalline) and mechanical properties. Since all the 

mean grain sizes in this work are in the micrometre range, our assumption can be correlated to 
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said study. Nevertheless, another important factor is the presence of a distribution of individual 

CNTs as well as clusters, which are believed to act as self-lubricating materials [156,158]. As 

mentioned before, the frictional behaviour can be a combination of effects which are difficult 

to isolate. 

Region II – Higher loads 

For higher loads, the COF evolution of the reference and CPS samples remain almost 

unchanged, whereas in the case of the HUP sample, the COF increases considerably, especially 

for 300 mN, where the COF of the CPS is surpassed at about 65 cycles (Figure VIII-5).  

 

Figure VIII-5 – Mean COF evolution over the sliding cycles for higher loads. Experimental loads for each are 

shown on the upper right corner. 

It is clear that the major influence is not particularly related to the mechanical properties of the 

composites, but to an underlying effect. In order to understand the experimental findings and to 

elucidate the aforementioned effect, the chemistry of the worn surfaces was studied by Raman 

spectroscopy. Focus was put on the 300 mN tracks, believed to contain higher chemical activity. 

Figure VIII-6 depicts the analysed sectors of each track and their correspondent Raman spectra.  

There is a clear transition of the wear activity from severe (in the case of the reference sample) 

to mild wear on the hot-pressed sample. Regarding the chemistry, nickel oxide (NiO) was 

detected in all the wear tracks [159]: sporadically in the pure Ni and MWCNT/Ni 1%CPS wear 

tracks, yet continually in the 1%HUP. This may be due to the fact that the larger grains have 

lower interfacial strength leading to a grain peeling mechanism in the most superficial layers 

[160]. Moreover, the pure Ni and 1%CPS samples show spallation of the oxide layer with a 

visible amount of breakage, also resulting in oxide depleted regions.  
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It is well documented that there is a direct relationship between the microstructural 

characteristics of a polycrystalline material and its oxidation kinetics. This means that the lower 

the mean grain size, the higher the oxide layer formation rate. This is attributed to the larger 

grain boundary area which further translates to an improvement in the diffusion paths for 

oxygen [157,161]. This formed tribolayer may be both beneficial and detrimental to friction. 

The upside is that an oxide layer may provide a decrease in the friction coefficient and wear 

rates in a first stage as studied by Stott et al. [162]. These so-called glazes, when subjected to 

low speed reciprocating sliding conditions, tend to be compacted providing wear protection. 

However, due to the brittle nature of the oxide scales, the indentation of the dynamic counterpart 

will break the glaze and increase the roughness of the track, i.e. increased coefficient of friction 

[163].   Particularly for NiO [156], it has been found that it acts as a high shear strength layer 

which increases the friction coefficient. Furthermore, the quality of the CNTs can be estimated 

from the spectral data. The intensity of the D band illustrates the amount of defects and 

structural modification in the nanotubes, thus, as is widely accepted, the D to G band ratio 

accounts for the quality [156]. The ID/IG mean ratio were 0.89 (state of the CNTs prior to the 

tribological tests for both kind of samples), 1.09±0.07 for 1%CPS and 0.93±0.11 for 1%HUP. 

The higher amount of defects of the 1% CPS sample leads to infer that the CNTs were strongly 

tribomechanically active during the test as a friction interface which prevents asperity contact. 

On the other hand, in the 1%HUP sample the CNTs were not as operative throughout the 

process, being the oxide layer the main interfacial protection.  
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Figure VIII-6 – SEM micrographs of the worn surfaces and their correspondent Raman spectra. From left to right: 

Pure Ni, MWCNT/Ni 1%CPS and MWCNT/Ni 1% HUP tested at 300mN.S.D stands for sliding direction. 

As mentioned before, it is highly unlikely that only one type of friction mechanism is acting in 

the process, rather, a combination of effects is the more plausible case. Some authors relate the 

difference between CNT-reinforced bulk composites and the plain matrix to an effect 

exclusively brought on by the CNTs.  In the study carried out by Scharf et al. [156], they 

observed the formation of a graphitic film which presents low shear strength and favours 

lubrication. On the other hand, for Dong et al. [158], a decisive carbon film decreases the 

friction coefficient and retards severe wear. Another important mechanism that is frequently 

assumed in this type of friction is the enhancement of the interfacial strength between the CNTs 

and the metallic matrix [160]. It is believed that the increased interfacial strength retards the 

peeling of the matrix grains, thus reducing wear. A further hypothesis formulated in the 

literature states that during the friction tests, the CNTs are released to the surface acting as 

spacers which prevent the asperities from contacting and, to some extent, acting as a lubrication 

medium [164].  

VIII.2.3. Wear behaviour 

The evolution of the removed volume follows a marked increment in all three samples, but with 

different slopes (Figure VIII-7). The wear behaviour is expected to follow the Archard model, 

which states direct proportionality to the sliding distance and load, and an inverse 

proportionality to the mechanical properties (hardness) of the tested material. The 

aforementioned slopes are represented in the equation by a proportionality constant symbolised 
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by K. For composite materials, this relationship can be further reformulated by considering the 

Hall-Petch effect generated by the different microstructural refinements brought by the 

reinforcing phases [165], leading to a modified Archard model. By combining both 

relationships, the following equation is obtained: 

𝑊 = 𝐾 (
𝐿𝑆

𝐻
) = 𝐾 [

𝐿𝑆

(𝐻0+𝑘𝑑
−0.5)

]  (Equation VIII-3) 

Where W is the wear rate per unit sliding distance, K is the wear coefficient, L is the applied 

load, S is the total sliding distance, H0 is the hardness of a defect-free single crystal of the bulk 

material, k is a proportionality constant and d is the mean grain size of the composites. From 

this equation, the influence of the microstructure on the wear rate during sliding wear can be 

directly estimated, the wear rate being proportional to the mean grain size of the material.  

 

Figure VIII-7 – 3D plot of the wear volume as a function of the applied load and mean grain size. The error is 

originated from the irregularity (wear track depth and width) of the wear tracks. 

The estimation of the wear constant K from the experimental data is presented in Table VIII-2. 

There is no unanimous agreement about what this constant physically represents, but Rigney 

has summarised the most accepted interpretations [166]. Most of these express the generation 

of third bodies and the relationship between the contact and the asperities. Another explanation 

states that this constant relates the removed to the plastically deformed volume. Since the author 

affirms that researchers should be cautious in interpreting and extrapolating the experimental 

wear rates, it would be useful to correlate this constant to a supplementary factor which might 

help to identify the wear mechanisms affecting sample response. A helpful tool for the 
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determination of the acting mechanisms in sliding friction from morphological data is provided 

by the Zum Gahr equation [167] (also named cutting efficiency fAB): 

𝑓𝐴𝐵 =
∑𝐴𝑏𝑒𝑙𝑜𝑤−∑𝐴𝑎𝑏𝑜𝑣𝑒

∑𝐴𝑏𝑒𝑙𝑜𝑤
=

𝐵−𝐴

𝐵
   (Equation VIII-4) 

Where B is the cross-sectional area of the wear groove below an arbitrary reference plane (for 

this case, the unaffected sample surface), A represents the summation of the cross-sectional 

areas of the material displaced to the sides and/or within the track as ridges. The values of fAB 

range from 0 for a ploughing mechanism (pure plastic deformation) to 1 for a cutting 

mechanism (pure abrasive effect). 

Table VIII-2 - Wear constant K and cutting efficiency fAB values calculated from the experimental data. 

Sample Wear constant K (x10-5) Cutting efficiency fAB 

Pure Ni 17.50 ± 13.00 0.60 ± 0.15 

MWCNT/Ni 1%CPS 8.75 ± 2.39 0.76 ± 0.13 

MWCNT/Ni 1%HUP 2.03 ± 0.56 0.24 ± 0.15 

 

Observing both the cutting efficiency and wear constant results (Table VIII-2), the pure Ni and 

1%CPS samples are closer to a cutting mechanism. Considering the relatively scattered values, 

this may be mainly attributed to irregularities in the analysed wear tracks. Both show a high K 

value representing more removed than plastically deformed volume. Furthermore, the fact that 

CNT agglomerates are larger in size and quantity in the CPS samples (compared to HUP 

samples) [140] makes them tend to roll over the wear surface until they are removed without 

being taken apart [168]. On the other hand, the 1%HUP sample shows a low fAB value, which 

indicates that ploughing is the dominant mechanism. This is consistent with the lower K value 

for this composite, which represents a lower amount of removed versus plastically deformed 

volume (according to the interpretation given before). These low values of K and fAB for the 

HUP samples could be related to a redeposition of broken oxide particles that are somehow 

embedded within the matrix throughout the process.  

Summarising, since an isolated interpretation of the constants is very complex (K and fAB), a 

joint interpretation may prove more useful and straightforward. For this particular case, a good 

correlation between both is observed. 
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The presented results are helpful to approach an elucidation of certain aspects of the friction 

and wear behaviour of these CNT-reinforced bulk composites. It can be concluded that the 

CNTs have two effects concerning wear ad friction:  

 Microstructural refinement: modified oxidation kinetics generates oxidation friction 

mechanisms; grain boundary strengthening increases hardness and modifies wear 

behaviour. 

 High loads possibly produce higher CNT (friction) activity (higher CPS ID/IG ratio, i.e. 

more active CNTs) as an interfacial lubricant layer.  

VIII.3. Summary 

Tribochemical studies proved the formation of an oxide layer in all samples, and of a carbon 

coating film in the CNT-containing samples. The CNTs showed activity throughout the friction 

process, acting as an interfacial layer which may act as a friction-reducing agent. The formation 

of a uniform Ni oxide layer in the HUP sample proved to be detrimental to its friction behaviour. 

This can be traced back to the reduction of the lubricating effect by keeping the CNTs away 

from the counterpart. 

Non-trivial friction behaviour is observed in the lower grain size sample which might be related 

to the enhanced oxidation kinetics and the subsequent breakage of the formed oxide layer. 

For low loads (50-100 mN), the main friction mechanism is related to the indentation depth of 

the dynamic counterpart, whereas for higher loads (200-300 mN) oxidation plus interfacial 

lubrication is more significant. 

The main influence of the CNTs in the friction and wear behaviour is related to the 

microstructural refinement, which improves both the oxidation kinetics and the mechanical 

properties of the composites.  

A modified Archard model (considering the mean grain size influence) was applied and 

complemented by a morphological analysis (cutting efficiency) in order to understand the wear 

mechanisms acting in the process. It was found that for the coarse-grained samples, grain 

peeling is preponderant, whereas redeposition arises in the refined samples. 

 



IX. Electrical properties: transport and 

coupling  
 

IX.1. Introduction 

The improvement of the electrical properties of metals is a hard task to face. Particularly, in 

electrical contact materials, composites are not intended to improve these properties as the main 

goal, but to overcome other issues related to the duty life of the component. For example, in 

low-voltage relays, Ag-based composites reinforced with ceramic particles are employed 

nowadays. However, the ceramic reinforcement plays a fundamental role in avoiding contact 

inter-welding and increased arc dissipation. These obstacles are important enough to relegate 

other physical properties to the background. It has been demonstrated that the addition of this 

type of reinforcements reduce the overall electrical and thermal conductivity [16]. Nevertheless, 

with the increasing tendency towards energy-efficient and reduced-weight materials, the search 

for a new type of functional reinforcement becomes necessary. As mentioned before, carbon 

nanotubes possess outstanding intrinsic physical properties, among which we can highlight a 

great thermal stability (up to 4000 K), chemical stability (reactivity with other components) and 

thermal conductivity. Regarding the electrical properties, the analysis of the interactions 

between metal-CNT and CNT-CNT is still unclear in the scientific community. Dissimilar 

reports regarding the electrical coupling of CNTs can be found, reporting several different 

effects that might be acting. Due to their low dimensionality, it is theoretically predicted that 

the conductivity in CNTs (both, thermal and electrical) is ruled by quantum effects [169], 

whereas from certain experimental investigations it can be inferred that the conduction 

mechanisms are governed by quasi-ballistic or diffusive mechanisms. 

Regarding the electrical properties in CNT/metal composites, the literature provides a low 

amount of starting information. Xu et al. found that the electrical resistivity was increased for 

an increasing weight fraction of CNTs (1, 4 and 10 wt.%) in CNT/Al composites up to 94.1% 

in certain cases [170]. The researchers mentioned the agglomeration of CNTs in the grain 

boundaries as well as the formation of carbides (specifically, AlC2), which increment the 

amount of electron scattering, as the reasons for the resistivity increase. In an attempt to improve 

the interface and dispersion of CNTs in an Al matrix, Nie et al. produced Mo-coated CNT/Al 

composites [171]. They observed that the inclusion of these coated CNTs was not able to 
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improve the electrical conductivity of the composites. The authors blame the low CNT and Mo 

conductivities (in comparison to Al) and the amount of porosity observed in the composite (up 

to 5%), being the latter the most probable factor. However, Uddin et al. Also based their 

explanation of the improvement of the electrical conductivity in SWCNT/bronze and 

MWCNT/bronze composites on the grain boundary distribution of the CNTs [172]. They 

measured a 20% improvement for very low CNT concentrations (0.1 wt.%). On the other hand, 

they were not able to improve Cu-matrix composites even up to 2 CNT wt.%. In electroless-

deposited MWCNT/Cu composites, the increase in the electrical resistivity was significant 

[173]. With volume fractions ranging from 10 to 40 vol.%, the electrical resistivity reached up 

to 700% of the reference value for pure Cu. Again, the justification is based on the 

agglomeration of the CNTs on grain boundaries forming an interfacial phase, which is 

detrimental for the electron transfer. In the case of MWCNT/Ag composites produced by 

powder metallurgy, the electrical resistivity was increased up to 4.5 times that of pure Ag [121]. 

For concentrations above 10 vol.%, the increased amount of CNT/metal interfaces coupled with 

a large amount of porosity (from 12 to 24%) are cited as the cause. 

In this case of study, MWCNTs were selected as reinforcements due to the statistical fact that 

they possess at least one zero-gap layer [11], as opposed to SWCNTs (which might present 

either metallic or semiconducting behaviour). Thereby, certain unwanted effects can be 

avoided, such as Schottky barriers (formed at the metal-semiconductor junctions). Also, in 

MWCNTs the adjacent walls are generally non-commensurate (possessing different chiralities) 

with a negligible interlayer electronic coupling and could alternate between metallic and 

semiconducting [174]. MWCNTs show a pseudo-gap in I-V measurements following a power 

scaling law for conductance, characteristic of a Luttinger liquid. The interlayer coupling in 

MWCNTs is comparable to graphite (approx. 10 meV) and is inversely proportional to the tube 

diameter [174]. This interlayer coupling can be easily overcome, since the available thermal 

energy at room temperature (300 K) exceeds that energy gap (kB.T = 25.8 meV). Another report 

confirms that the charge transport from an outermost layer to an inner layer is believed to be a 

tunnel transport and would not be a major issue to overcome [175]. However, several resistance-

generating effects are unavoidable in the processing of composites, where interfaces determine 

the behaviour, such as Coulomb blockades, resonant tunnelling, Fano resonances, etc. Electrical 

resistance at interfaces is thus of paramount importance, since both matrix and reinforcement 

are good electrical conductors. Therefore, a seamlessly integrated reinforcement would 
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theoretically improve the electron transfer, efficiently reducing the energetic losses in the 

applications.  

The electrical properties were studied in composites with 1.0, 2.0, 3.0 and 5.0 wt.% 

manufactured by colloidal mixing in ethylene glycol and hot uniaxially pressed. The electrical 

resistivity was determined by means of a 4 point probe device with scanning voltages from 1.0 

to 3.0 V DC. The MWCNT cluster distribution of the 1.0 wt.% sample was evaluated with 

FIB/SEM tomography and the quantitative data of the reconstructed structure was analysed 

with a commercial software (MAVI). The experimental resistivities were contrasted with well 

known models in order to assess the arrangement of the CNTs within the composite.     

IX.2. Results and discussion 

The mean values of the electrical resistivity and their correspondent standard deviation are 

shown in Table IX-1. An improvement is solely observed for the 1.0 wt.% sample, showing 

3.3% lower resistivity than the reference sample. However, for the rest of the samples set, very 

fluctuant values are observed. The 2.0 and 5.0 wt.% possess resistivities significantly larger 

than the reference, whereas the 3.0 wt.% only shows a marginal increase of 4.2%. It is worth 

noting that within the standard deviation of the measurements, samples containing 1.0, 2.0 and 

3.0 wt.% showed values lower than the reference. These values are even below the theoretical 

Ni and attest to the heterogeneity of the sample set. However, the 5.0 wt.% samples were always 

far above the theoretical Ni value. 

Table IX-1 – Experimental values of the electrical resistivity of the composites with different CNT 

concentrations. 

Sample [wt.%/vol.%] Electrical resistivity [x10-8 Ω.m] Difference to ref. [%] 

Pure Ni 8.05 ± 1.60 --- 

1.0 (6.5) 7.79 ± 3.12 -3.3 

2.0 (12.3) 9.87 ± 2.73 22.6 

3.0 (17.5) 8.39 ± 4.12 4.2 

5.0 (26.5) 16.30 ± 2.74 202.5 

 

The electrical properties of Ni are not significantly affected up to large concentrations (3.0 

wt.%). This corresponds to the empirical limit found in chapters V and VI for the 

microstructural studies and the mechanical properties.  
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As a complementary analysis, a FIB/SEM tomography on the 1.0 wt.% sample was performed. 

The objective was to quantitatively analyse the connectivity between the clusters and to assess 

the probable path an electron would take through the network (Figure IX-1). 

 

Figure IX-1 – FIB/SEM tomography of the CNT-cluster distribution in a MWCNT/Ni 1.0 wt.% composite. The 

interconnectivity between the clusters is thus clearly depicted. 

Qualitatively, the reconstructed cluster distribution tends towards a random distribution rather 

than an aligned cluster order. Due to the limitations in resolution and reconstruction in 

FIB/SEM tomographies, only clusters can be segmented and shown and not the CNTs. The 

mathematical evaluation is summarised in Table IX-2.  

Table IX-2 – Field parameters for a MWCNT/Ni 1.0 wt.% composite, reconstructed after a FIB/SEM tomography. 

Direction 
Mean geometric 

tortuosity 

Max. geometric 

tortuosity 

Min. geometric 

tortuosity 
Euler number 

X 1.00664 1.02469 1 

− 874 Y 1.01507 1.11178 1 

Z 1.02652 1.21429 1 

The focus was put on two relevant parameters for transport properties (electrical and thermal) 

such as the Euler number (which represents the interconnectivity between particles) and the 

geometrical tortuosity (which shows the minimal path an electron would take from one extreme 

to the other). The Euler number has a strong negative value, representing a strongly 

interconnected network of particles [176]. Furthermore, the mean geometric tortuosity supports 
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this assertion by showing values close to one. The combination of these features leads to the 

assumption that, when an electron is injected into the CNT network, the strong interconnectivity 

would ensure its movement throughout the system. The only factor that would govern electron 

mobility would therefore be the inter-tube coupling and the internal scattering. 

As already mentioned, the tomography can show the connectivity of the clusters but cannot 

resolve whether the CNTs are aligned or not within each cluster. Thus, it would be necessary 

to assess this feature by an alternative mean. In order to try to model and interpret in which way 

the CNTs affect the electrical properties of the composites, the electrical resistivity was 

simulated with different amounts of CNTs under different arrangements. The selected models 

were the Rule of mixtures (ROM) and an Effective Medium Approximation (EMA). ROM is 

perhaps the most widespread method to model the physical properties of a composite material 

[177]. Particularly, the axial and transversal arrangements (known as Voigt and Reuss, 

respectively) are very useful as an initial approximation by defining upper and lower limits for 

the behaviour of the composite. A schematic representation is shown in Figure IX-2. 

 

Figure IX-2 – Schematic representation of the upper and lower bounds (Voigt (a) and Reuss (b), respectively) of 

the rule of mixtures and the EMA model (Maxwell-Garnett (c)). The blue arrow represents the current flow. 

The resulting electrical resistivity with the parallel arrangement (Voigt) is calculated by: 

 𝜌𝑐 = (
𝑓

𝜌𝑓
+

1−𝑓

𝜌𝑚
)
−1

   (Equation IX-1) 

The resistivity in the transversal arrangement (Reuss) is calculated by: 

 𝜌𝑐 = 𝑓 ∗ 𝜌𝑓 + (1 − 𝑓) ∗ 𝜌𝑚   (Equation IX-2) 

Where ρc is the composite’s effective resistivity, ρf is the resistivity of the CNTs, ρm is the 

resistivity of the matrix material and f the CNT volume fraction. As an intermediate state, the 

EMA model considers completely random distribution of the second phases within the 
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composite. The most relevant feature of this model is that the small particles within a continuous 

matrix are far apart from each other in order to avoid local distortions to the transport 

characteristics. The Maxwell-Garnett (M-G) is a special case of EMA, particularly suitable for 

transport phenomena [178]. 

(
𝜌𝑐−𝜌𝑚

𝜌𝑐+2𝜌𝑚
) = 𝑓 (

𝜌𝑓−𝜌𝑚

𝜌𝑓+2𝜌𝑚
)    (Equation IX-3) 

The used resistivity values for Ni was 6.99x10-8 Ω.m [139]. Since the resistivity value of CNTs 

is still under scrutiny in the community, a theoretical value provided by Hjortstam et al. of 

0.35x10-8 Ω.m [83] as well as a mean value of those obtained by Ebbesen et al., 2.8x10-6 Ω.m, 

were considered for the modelling [179]. These values differ significantly (3 orders of 

magnitude) and the lower value is even below the more conductive metals such as Ag (1.58x10-

8 Ω.m), Cu (1.68x10-8 Ω.m) and Al (2.65x10-8 Ω.m) [139]. This value (provided by Hjortstam) 

is even two orders of magnitude lower than in-plane highly ordered pyrolytic graphite (HOPG), 

which has a resistivity of approximately 4x10-7 Ω.m [139]. Therefore, it might be quite an 

optimistic value for predictions. However, the higher considered value (from Ebbesen), was 

obtained experimentally and presents a decent correlation to other reported values for MWCNT.  

 

Figure IX-3 – First modelling approach: comparison of different models to the experimental data using the 

theoretical value for Ni and the CNT resistivity given by Hjortstam. 

In a primary evaluation with the value from Hjortstam, a large deviation of the experimental 

data from the proposed models is observed (Figure IX-3). Moreover, it is noticeable that the 
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value of pure sintered Ni has a significant deviation from the theoretical value. This is expected 

since the theoretical value is represented for highly pure, defect-free Ni. In spite of presenting 

full density, the sintered Ni might have a certain amount of internal oxidation as well as a 

considerable amount of defects. Therefore, to have a more realistic approximation by the 

models, the experimental value for pure Ni was used in a second iteration of the modelling. 

With the new model curves (Figure IX-4), the results still differ from the expected values but 

are closer to both, the lower bound of the ROM (Reuss) and the EMA model, which represent 

transversely aligned CNTs and randomly distributed CNTs, respectively. 

 

Figure IX-4 - Second modelling approach: comparison of different models to the experimental data using the 

experimental value for Ni and the CNT resistivity given by Hjortstam. 

The third approach was made using the same mathematical models but with the higher CNT 

resistivity and the experimental value for Ni (8.05x10-8 Ω.m) (Figure IX-5). In this case, the 

experimental data shows an acceptable correlation to the Voigt approximation. It is within the 

expected behaviour since the measurements were made perpendicular to the pressing direction. 

The pressing is expected to form orthogonal layers with respect to the applied force. On the 

other hand, the 5.0 wt.% sample is closer to a random distribution (represented by the M-G 

model). The significant increase in the resistivity of the 5.0 wt.% sample may be due to the poor 

wettability of agglomerates to the metallic matrix, as seen in the previous chapters. This would 

severely hinder the electron injection to the CNT network and thus, the CNT-filled voids would 

be seen as plain porosity. A good dispersion translates to a homogeneous distribution and an 

enhancement of the matrix properties facilitating the electrical and thermal transport through 
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the interface. When the material is designed to work as an electrically conductive material, it is 

desirable to have the lowest possible porosity.  

 

Figure IX-5 - Third modelling approach: comparison of different models to the experimental data using the 

experimental value for Ni and the experimental CNT resistivity given by Ebbesen. 

These models are quite limited and severely underpredict the influence of the interfaces and 

reagglomeration of the CNTs. After extensive searching in the literature, it was not possible to 

find a proper model that would adequately consider these neglected features. Furthermore, the 

actual values of the interfacial resistance between metals and CNTs are still a topic of discussion 

within the community. A review study on this topic differentiates the contact resistance between 

MWCNTs and metals in two categories: side-contact and end-contact [180].  The former ranges 

from 1.7 to 50 kΩ and the latter from 50 to 300 kΩ. A clear conclusion that can be drawn from 

these values is that electrons in CNT/metal composites would flow through side-contacts 

instead of end-contacts. 

The large resistance on side-contacts may generate a tunnelling barrier with a Coulomb 

blockade [38]. However, it is expected that in this type of composites, the interfacial area 

between CNTs and metals is sufficiently large so as to shift the resistance towards the lowest 

values [38,180].  In case of an optimal coherent contact (full coating of the CNT with metal), 

the contact resistance is expected to decrease to values that can be directly disregarded [181]. 

To achieve this, an intimate contact at the open end of each MWCNT must be generated, 

contacting all walls.   
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Concerning the MWCNT agglomerates, the literature provides very interesting information that 

was somehow disregarded in the previous studies in metal/CNT composites. As shown before, 

all the reports base their discussion in the negative effect of the agglomerates in the electrical 

conduction. Interestingly, the electrical properties of agglomerates are not as low as to generate 

such a decrease in the conductivity. For example, Aliev et al. show curves of MWCNT sheets 

measured in different directions, and their values are still acceptable compared to those of 

semiconductive, or ceramic reinforcements [47]. Even when the MWCNTs are subjected to 

highly energetic processing (such as SPS), they tend to form a percolative path through the 

network with resistivities as low as 10-5 Ω.m [182,183]. 

Contact between CNTs is believed to be governed by quantum resonant effects such as resonant 

tunnelling or the Fano effect. For a better understanding of these effects, the model can be 

represented as the electronic coupling between a quantum wire and a quantum dot (Figure 

IX-6). An electron travelling through the quantum wire can be at a certain moment coupled to 

an electron within the dot, exciting it and inducing its movement in an orthogonal direction. 

This coupling implies an energy loss in the original electron, which could be correlated to a 

diffusive energy lost in transfer.    

 

Figure IX-6 – Schematic representation of the resonant tunnelling effect in cross-linked CNTs. It is comparable 

to the electronic coupling between a quantum wire and a quantum dot. 

However, Santini et al. found that the contact resistance in a MWCNT/MWCNT contact was 

always below the MWCNT/metal contact resistance for all the different nanotube diameters 

tested, therefore showing great potential to be used as horizontal interconnects [184].  

The transfer mechanisms involved at the interface are still a topic of discussion within the 

community. Some have contacted a single CNT with metal oxides to build a transistor and 
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analyse the interfacial transport. However, an absolute interfacial resistance, strongly 

influenced by numerous factors in reported [185]. An issue that is still left to prove is the 

formation of Schottky barriers in the contact of a metal with a semiconductive graphene layer. 

Theoretically, Schottky barriers would not be an issue, since the barrier formed between a metal 

and a semiconducting CNT layer has a width of few nanometres and electrons can tunnel 

through it [38]. 

Summarizing, it can be observed that in the study of the electrical behaviour of metal/CNT 

composites, the participation of CNT agglomerates in the decreased conductivity is usually 

overestimated. The literature provides very useful information that may lead to think that the 

main factor ruling the decay in the conductivity would be the detachment of the CNTs (either 

individual or as agglomerates) from the matrix. This effect would be seen (from an electrical 

perspective) as porosity, and therefore as a detrimental factor. When working with voltages 

over a certain threshold (in the mV/V range) coupled with a proper manufacturing technique 

(high final densities), all the unfavourable effects such as: interfacial resistance, intertube 

decoupling, interlayer isolation and energy gaps can be straightforwardly overcome, resulting 

in some cases, in improved electrical conduction.  
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IX.3. Summary 

A reduction in the electrical resistivity of the composites compared to the pure Ni sample was 

achieved for a 1.0 wt.% concentration. The 2.0 and 3.0 wt.% samples showed a marginal 

increase, whereas the 5.0 wt.% sample significantly exceeded the Ni reference (approximately 

200 %). Contrary to what is reported in the literature, the MWCNT agglomeration does not play 

a fundamental role in the decrease of the conductivity as does cohesion to the matrix. This is 

observed particularly in the 5.0 wt.%  sample, where the MWCNTs do not show a proper 

contact to the matrix. The comparison to well-known models was useful to interpret how the 

MWCNTs are ordered in relationship to the electrical current flow. As expected, the 1.0, 2.0 

and 3.0 wt.% samples have MWCNT networks aligned with the current flow (orthogonal plane 

to the applied force during sintering). In the largest evaluated concentration, the most suitable 

model describes a totally random distribution, which could be correlated to unordered 

agglomerates. The presented results might be helpful as a first assessment for the future 

utilisation of such composites in electrical (contact materials) or electronic (packaging 

materials) applications.  

 



X. Concluding remarks and outlook 
 

X.1. Concluding remarks 

The present work demonstrates the possibility to successfully produce bulk MWCNT/Ni 

composites via powder metallurgy with near full final densities and enhanced mechanical, 

thermomechanical, tribological and electrical properties.  

This was achieved by the development of a straightforward production method for the 

manufacturing of the composites without the need for covalent CNT functionalisation that 

would hinder their outstanding intrinsic physical properties. Studies presented in chapter IV 

showed that after the processing and blending of the precursors, CNTs conserve their structure. 

Moreover, a chemical and structural assessment demonstrated (in contrast to what can be found 

in the literature) that there is no detectable carbide formation due to CNT degradation, despite 

the amount of initial defects.   

In chapter V, the microstructural evolution throughout sintering was simulated and evaluated 

in a high temperature chamber by performing in-situ X-ray diffraction. It was observed that the 

grain growth can be hindered by the presence of dispersed CNTs, up to a certain concentration 

(between 2.0 and 3.0 wt.%). Moreover, the porosity also plays a role in the growth hindrance 

by migration to grain boundaries during densification. Furthermore, it was possible to observe 

the influence of agglomerates on the growth kinetics, concluding that the samples with less 

CNT agglomerates present a faster growth. This is because the CNTs act during growth as fast 

heat transport paths, accelerating the growth. 

Chapter VI dealt with the thermomechanical behaviour of the composites. An improved 

performance was obtained, showing a maximal CTE reduction of about 76%, achieved with 1.0 

wt.% MWCNT samples. This improvement was also observed for other matrix materials (Cu, 

Al, etc.) and is attributed to an anchoring effect of the CNTs on the matrix. The absolute value 

of the thermal expansion is comparable to certain low-expansion materials such as Al2O3, Si or 

glass. However, the anchoring behaviour disappears at a certain temperature (approx. 450 °C) 

with higher amounts of CNTs. Over this temperature, a detachment of the MWCNT from the 

matrix is observed added to important bloating (expansion of pores due to evaporation of 

remaining solvent). For larger CNT concentrations (5.0 wt.%), bloating governs the thermal 

expansion. 
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The so-called anchoring effect together with the very low or even negative expansion 

coefficient of the CNTs have been mentioned countless times in the literature as responsible for 

the improved thermomechanical behaviour in CNT-reinforced composites. In this sense, after 

the experimental evaluation of the Ni lattice in thermal cycles, this work proposes three main 

mechanisms which may explain the anchoring effect and are based on the over-expansion of 

the lattice and the lateral displacement absorption of the CNTs.  

The influence of the CNTs on the mechanical properties of the composites was evaluated and 

discussed in chapter VII. Improved mechanical properties were observed due to microstructural 

refinement. Correlated to what was explained in chapter V, the CNTs anchor the grain 

boundaries during growth up to certain concentrations, beyond which no further refinement is 

observed. Unlike in the CPS samples studied in chapter V, the limit was found to be at 3.0 wt.%. 

This is due to differences in the mass transport during the sintering process, which tends to 

agglomerate the previously dispersed CNTs. Thus, the empirical limit for achieving a good 

distribution and therefore good properties in HUP samples was set at 3.0 wt.% (17.5 vol.%.). 

The Hall-Petch relationship is confirmed for the composites, regardless of the relative CNT 

amount. Despite this fact, it must be clarified that Hall-Petch is probably not the only enhancing 

mechanism present; a load transfer from the matrix to the reinforcements might also be 

expected. Furthermore, since the microstructure affects all the physical properties, it is 

important to find a simple way to predict the final microstructure. In this regard, a refinement 

prediction equation was proposed for the MWCNT/Ni bulk system based on a modified Zener 

drag model considering the CNT geometry. The proposed model was validated with 

experimental values.   

Another important characteristic for both, structural and functional composites is the 

tribological (wear and friction) behaviour.  In this case, improved tribological behaviour was 

observed for the composites. The presented results are helpful to approach an elucidation of 

certain aspects of the friction and wear behaviour of these CNT-reinforced bulk composites. It 

can be concluded that the influence of the CNTs has two effects:  

 Microstructural refinement modifies the oxidation kinetics, thus generating an oxidation 

wear mechanism; grain boundary strengthening increases the hardness of the material. 

Moreover, a carbon film was detected by Raman spectroscopy on the wear track, 

evidencing the intervention of the CNTs in the friction as an interfacial layer which may 

act as a friction-reducing agent. 
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 At high loads on the samples with higher CNT (friction) activity, (higher CPS ID/IG 

ratio, i.e. more active CNTs) they might act as an interfacial layer which performs as a 

lubrication medium.  

Non-trivial friction behaviour is observed in the lower grain size sample which might be related 

to the enhanced oxidation kinetics and the subsequent breakage of the formed oxide layer. For 

low loads (50-100 mN), the main friction mechanism is related to the indentation depth of the 

dynamic counterpart, whereas for higher loads (200-300 mN) oxidation plus interfacial 

lubrication is more significant. It was found that the main acting influence of the CNTs is on 

the final microstructure, affecting the mechanical properties and the tribochemistry of the 

surfaces. As it is well known in the tribology community, the friction behaviour is a 

combination of effects which cannot be analysed separately. Regarding the wear behaviour, the 

composites showed improved wear resistance as confirmed by a reduction in the wear volume. 

In order to understand the acting wear mechanisms, a modified Archard equation (considering 

the mean grain size influence) and complemented by a morphological analysis (cutting 

efficiency) was utilised for the interpretation of the obtained data. It was found that for the 

coarse-grained samples, grain peeling is preponderant, whereas redeposition arises in the 

refined samples.  

The final chapter deals with the electrical properties of the composites. The electrical properties 

show a marginal improvement compared to the Ni reference. A reduction in the electrical 

resistivity of the composites compared to the pure Ni sample was achieved for 1.0 wt.%. 

However, 2.0 and 3.0 wt.% samples showed a resistivity increase, and the 5.0 wt.% sample 

significantly exceeded the Ni reference (approximately 200 %). It was observed that MWCNT 

agglomeration does not play a fundamental role in the decrease of the conductivity, rather 

cohesion to the matrix. This is observed particularly in the 5.0 wt.%  sample, where the 

MWCNTs do not show a proper contact to the matrix. From the comparison to well-known 

models it was observed, as expected, that the 1.0, 2.0 and 3.0 wt.% samples have MWCNT 

networks aligned with the current flow (orthogonal to the applied force during sintering). In the 

5.0 wt.%, the most suitable model was Maxwell-Garnett, which describes a totally random 

distribution, correlated to unordered agglomerates. 

X.2. Outlook 

The developed knowledge and obtained results in this work may serve as a starting point for 

the further development of MWCNT/metal composites. Their potential application field is quite 
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wide ranging from contact electrodes to electronic packaging materials. For the former, there 

are still certain typical characterisation procedures that may elucidate the suitability of these 

composites, but were left outside of the scope of this thesis. Particularly, a first approach with 

the aim of determining the thermal properties of the composites was performed. The 

preliminary results showed a 21% enhancement of the thermal diffusivity values compared to 

that of pure Ni (Table X-1). It is important to remember that the higher the thermal diffusivity, 

the faster the propagation of heat through the medium is. This is of paramount importance in 

electrical contacts, since it would reduce the exposure time to the heat input during the electrical 

discharge in break operations. Furthermore, when compared to commercial electrode 

composites, it is observed that the thermal diffusivity of the MWCNT/Ni composites is within 

the same range. This was difficult to foresee, since the matrix material in commercial 

composites is Ag, which possesses a thermal diffusivity one order of magnitude larger than 

pure Ni. An extended study of this property is thus recommended, incorporating different 

MWCNT partial concentrations to the analysis. 

Table X-1 – Thermal diffusivity values of MWCNT/Ni composites, commercial electrode materials and pure 

metals determined by pulsed thermography. 

Sample Thermal diffusivity [mm2/s] 

Pure Nickel 33 ± 5 

MWCNT/Ni  1.0 % HUP 40 ± 5 

AgSnO2 88/12 SPW 45 ± 5 

AgSnO2 90/10 SP 43 ± 7 

AgSnO2 90/10 SPW 71 ± 7 

Copper (theoretical) 111 

Silver (theoretical) 166 

Iron (theoretical) 23 

 

Preliminary low voltage DC (30V) arcing tests were also performed on the composites as a first 

assessment of the interaction of the electrical arc with the electrode. Two main initial 

conclusions can be assessed:  

The MWCNTs were able to overcome the intense electrical discharge (Figure X-1). This is a 

major attribute, considering the high temperatures and aggressive atmospheres to which the 

material is subjected.  
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Figure X-1 – SEM image of the interior region in an electrically discharged surface of a MWCNT/Ni 1.0 wt.% 

composites. The MWCNTs are still noticeable. 

The crater morphology shows a shallow surface and certain carbon-containing spots are noticed 

(Figure X-2). Also, the arc wandering can be identified as an important characteristic to take 

into consideration. If the arc describes a large path during the discharge time, the energy input 

would be more efficiently distributed on the surface, reducing damage. 

 

Figure X-2 – Electrical erosion crater on a MWCNT/Ni 1.0 wt.% composite. (a) General view, (b) and (c) 

detailed view of superficial cracks and carbonaceous forms on the crater surface. 



X – Concluding remarks and outlook 

 

Sebastián Suárez Vallejo  111 

 

However, there were certain undesired effects observed within the crater. Particularly, 

superficial cracks are detected at certain spots (Figure X-2b) and sub-superficial porosity 

generated during arcing (Figure X-3). The formation of porosity during the electrical discharge 

is related to the uncontrolled diffusion of oxygen and other gases during the exposure time as 

well as desorption of gases previously present in the composite (deficient solvent evaporation 

during processing, etc.) 

 

Figure X-3 – SEM/FIB cross section of the internal region of the crater. The region of increased porosity is 

separated with a dashed line. The Pt layer on top of the cross section avoids FIB artefacts.  

These two effects may influence the response of the composite under arcing in extended make-

break operations and its consequent duty life. Deeper analysis is therefore necessary to improve 

the material design so as to overcome the presence of these two drawbacks. 

Additional studies are still missing regarding the evaluation of the contact resistance of the 

electrodes (crucial for the understanding in the molten bridge formation and energy loss 

assessment), the material transfer during arcing and Raman characterisation of the CNTs in the 

final state, among others. 
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