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Abstract

The cytoskeleton is the ensemble of linear protein chains and a

number of regulatory molecules in living cells. Together, they form

a highly active physical network that provides mechanical stability

to the cell and is involved in a number of vital processes such as cell

locomotion, intracellular transport, and cell division. The length of

the filaments is a key parameter for the proper functioning of the

cytoskeleton and must therefore be tightly regulated by the cell.

In this work, different models for the length dynamics of active

polar filaments are investigated and quantified. Such filaments are

able to treadmill, that is, to accumulate subunits at one end and

loose them at the other. It is shown that the same properties that

lead to treadmilling provide a means to regulate filament length.

Length regulation becomes much more efficient when the action of

filament destabilizing molecular motors is considered. The analysis

of a driven lattice gas model predicts robust length control in a

large range of parameters. Finally, the turnover dynamics of the

actin cortex, a thin polymer shell underneath the eukaryotic cell

membrane, is investigated theoretically and results are compared

to experimental findings.

The presented analysis shows that filament length control is possi-

ble under diverse biological conditions. The underlying mechanisms

provide insights into the turnover dynamics of the cell’s actin cor-

tex.





Zusammenfassung

Das Zytoskelett lebender Zellen besteht aus linearen Proteinketten

und einer Vielzahl an regulierenden Molekülen. Zusammen bilden

sie ein äußerst dynamisches Netzwerk, das der Zelle mechanische

Stabilität verleiht und an vielen vitalen Prozessen wie der Zellbe-

wegung, dem intrazellulären Transport und der Zellteilung beteiligt

ist. Um das Funktionieren des Zytoskeletts sicher zu stellen, muss

die Zelle insbesondere die Länge der Filamente regulieren.

In dieser Arbeit werden verschiedene Modelle für die Längen-

dynamik aktiver polarer Filamente untersucht und quantifiziert.

Solche Filamente können eine Laufbanddynamik zeigen, d.h. Un-

tereinheiten an einem Ende anlagern und am anderen verlieren. Es

wird gezeigt, dass die gleichen Eigenschaften, die zur Laufbanddy-

namik führen, zur Regulation der Filamentlänge genutzt werden

können. Längenregulation wird effizienter, wenn destabilisierende

molekulare Motoren hinzu treten. Die Analyse eines angetriebe-

nen Gittergasmodells zeigt eine robuste Längenregulation für einen

breiten Parameterbereich. Anschließend wird die Dynamik im Ak-

tinkortex, einer dünnen Polymerschicht unter der eukaryotischen

Zellmembran, untersucht und die Ergebnisse mit experimentellen

Befunden verglichen.

Die vorliegende Studie zeigt, dass die Kontrolle der Filamentlänge

unter unterschiedlichen biologischen Bedingungen zu finden ist. Die

zugrunde liegenden Vorgänge erlauben Einblicke in die Dynamik

des Aktinkortex der Zelle.
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1 Introduction

It is to a large extent unknown what determines the size of biological structures. This state-

ment holds for structures on all length scales from population sizes or the size of individual

organisms down to the size of cellular structures or of single molecules. While singular

historic events might play an important role for determining, for example, the length of a

genome, physics can help to understand the size of other structures, for example, the max-

imal size of a tree or the necessary size of wings for flying. In this work, possible physical

mechanism of size regulation of microtubules and actin filaments are studied, which are

important biopolymers present in almost all eukaryotic cells [1].

The cytoskeleton mainly consists of two types of biopolymers, microtubules and actin

filaments. This network of filamentous proteins is involved in numerous vital processes

and forms important structures [1]: During cell division it builds the mitotic spindle, a

microtubule-based structure which segregates the two copies of the genetic material onto

the future daughter cell. In later stages of cell division, actin filaments form a ring that

cleaves the mother cell upon constriction. Microtubules and actin filaments also form cellular

protrusions notably involved in cell locomotion. The sizes of these structures and/or their

mechanical properties are often determined by the lengths of the cytoskeletal filaments [2].

Microtubules and actin filaments are linear assemblies of non-covalently linked protein

subunits. The two ends of these cytoskeletal filaments are structurally different, which

endows them with a structural polarity that is exploited by cells in various ways. As one

consequence of this polarity, the kinetics of subunit addition and removal is in general distinct

at both ends. Furthermore, in contrast to conventional polymers, the assembly of cytoskeletal

filaments is a dissipative process as it depends on the hydrolysis of nucleotide-tri-phosphates.

Together, these properties can lead to the so-called treadmilling dynamics [3–5]. In such

situations, filaments show net grow at one end, the “plus end” of microtubules or the “barbed

end” of actin filaments, and net shrinkage at the opposite end, the “minus end” or “pointed

end”. In other circumstances, filaments can show a ”dynamic instability” [6], where one end

is inert and the other switches stochastically between phases of growth and shrinkage.

One important determinant of the filament length distribution is the subunit concentra-

tion. Its influence on filament assembly has been studied in great detail both for passive
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1 Introduction

polymers [7], where assembly is not driven by a ligand associated with the subunits, and for

active polymers like microtubules and actin filaments [8–11]. For the latter, it was in partic-

ular studied how accessory molecules like capping proteins that inhibit addition of further

subunits or severing proteins that cut filaments affect the length distribution [12–15]. More

recently, also molecular motors have been considered in this context [16–21].

In this introductory chapter, the molecules involved in the assembly of actin and mi-

crotubules are presented and the theoretical concepts that are applied in the subsequent

analysis are introduced. In Chapter 2, the dynamics of active polymerization is investigated

theoretically. The results of these considerations are then applied to the polymerization of

actin filaments, modeling the in vitro situation. Chapter 3 treats filament length control by

the action of directionally moving molecular motors. The effect of this second active process

is an increase in regulation effectivity. In Chapter 4, the situation of a finite ensemble of

filaments and accessory proteins is studied. Experiments probing the dynamics of the actin

cortex are discussed and results are explained with analytical considerations and stochastic

simulations. Different models are presented that can equally account for particular proper-

ties of the cortex. A brief summary concludes the work and points to emerging questions

for future research.

The individual chapters are mostly self-contained and can be read independently of one

another. Each chapter starts with a short introduction to the discussed topics and closes with

a summary of the main results. Chapter 4 relies in parts on the results of Chapter 2 since

the models for filament polymerization are identical but considered in different contexts. For

briefness, I refrained from repeating the model definition in Chapter 4.

Parts of this work were already published [14, 20, 22, 23], or are in preparation for publi-

cation.

1.1 Biopolymers

Polymers are aggregates of identical or similar subunits that cluster into regular structures,

typically linear chains. Plastics and rubbers such as Polyethylen (PE) or PDMS are widely

known examples for technically relevant polymers. The subunits or monomers can be very

small (Ethylen) or complex molecules (biopolymers). Polymers usually grow by spontaneous

monomer addition to a preformed nucleus until the monomer pool is exhausted [24].

The structures of polymers can differ widely. They can consist of identical (homopolymers)

or different types of monomers (heteropolymers) which then might be arranged randomly
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1.1 Biopolymers

(statistic copolymers) or in blocks (block- copolymers) with side-chains of differing length

or cross-links to adjacent polymers. The physical properties like the viscosity or the elastic

modulus of polymer melts depends critically on the structure and typical length of the

constituent polymers [25]. Interactions between the polymers are dominated by entanglement

and reptation [26]. In this context, “entanglement” describes the mutual restriction of

movement of densely packed and interwoven polymers while “reptation” denotes the thermal

one-dimensional movement of polymers in a tube along their long axis.

In biological systems, a large variety of polymers can be found. The subunits of these

biopolymers can be linked covalently or by weaker hydrogen bonds or Van-der-Vaals inter-

actions [27]. DNA, for example, is a heteropolymer of four different nucleotides that are

covalently connected. Every subunit consists of a sugar molecule, a phosphate group and

one out of the four nucleobases guanine, adenine, thymine, and cytosine. The sequence of

these subunits stores the genetic information of all known living cells. Proteins are also

covalent polymers that are built from 26 different amino acids by covalent peptide bonds.

Their sequence determines the protein’s shape and function.

Some proteins are able to form polymeric supramolecular structures themselves. Identical

or similar proteins aggregate by non-covalent interactions into larger structures, forming long

linear chains or tubes. Examples for such proteins are actin, tubulin, vimentin, myosin, or

flagellin [2, 7, 27]. Also viral capsides can be viewed as protein polymers but form areal

structures from a limited number of subunits. Due to the small binding energies between in-

dividual subunits, the protein polymers can be highly dynamic. In living cells, they perform

a number of vital tasks such as shape control, cargo transport, or locomotion. Their aggre-

gation and structure is controlled by a large number of regulatory binding partners [1, 27].

This study is focused on active polar biopolymers, such as actin filaments and micro-

tubules. They form linear aggregates with chemically distinct properties at both ends. Their

ability to dissipate chemical energy during polymerization makes them examples for out-of-

equilibrium systems which are of particular interest in physics. Their complex dynamics are

used by living cells in various ways. To differentiate them from polymeric structures such

as DNA and proteins, they are called linear filaments in the following. Both filament types

and their most important binding molecules are now discussed in turn.

1.1.1 Actin

Actin is a 42kDa heavy protein that is roughly globular with an average diameter of 5.4nm

formed by a single peptide chain. Monomeric actin proteins (G-actin) can polymerize into

filamentous aggregates (F-actin) that are often referred to as microfilaments. Monomers
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1 Introduction

Figure 1.1: a) Structure of actin filaments. Schematic representation of an actin monomer. An
ATP molecule is bound in the cleft between the two subparts of the protein (left). Two helical
protofilaments form a twisted actin filament with a pitch of 37 nm (right) c©2008 from [27], 5th
Edition by Alberts et al. Reproduced by permission of Garland Science/Taylor & Francis LLC.
The regular structure of an actin filament can also be seen in electronmicrographs From [28].
c©Rockefeller University Press.

have an internal orientation and aggregate in a head-to-tail fashion into protofilaments.

Actin filaments consist of two parallel protofilaments that are helically wound around each

other with a pitch of 37nm, see Figure 1.1. The addition of a single subunit thus leads to a

net length increment of 2.7nm. The more dynamic end is called the ’barbed end’, while the

other one is the ’pointed end’.

Actin monomers consist of two domains that form a deep cleft in which an adenosin-

phosphate and a divalent cation can bind. The potential of actin monomers to polymerize

depend sensitively on its binding factors. It polymerizes most readily if bound to Ca2+ and

the energy rich adenosin-tri-phosphate (ATP), but can also polymerize in presence of Mg2+

and adenosin-di- or -mono-phosphates (ADP and AMP) [7].

Under physiological conditions, monomers are typically associated with Ca2+ and are

either bound to ATP or ADP. The metabolism of living cells ensures that the ADP molecule
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1.1 Biopolymers

on G-actin is readily replaced by ATP which keeps the actin filament out of thermodynamic

equilibrium. F-actin is a kinase which dephosphorylates the adenosine, thereby dissipating

energy. The phosphate release of the nucleotide leads to conformational changes in the

monomer and modifies its polymerization properties. When the third phosphate group

(the γ- phosphate) of the ATP is hydrolyzed, it remains bound to the actin for some time

before it is released into the cytosol (ADP-Pi). The affinity of an actin monomer to the

filament depends on the binding state of the adenosine. Polymerisation rates could be

determined experimentally for the three mentioned states [3, 4, 7, 29, 30]. Together with

filament polarity, the energetically driven character of actin polymerization can lead to the

simultaneous addition of monomers at one filament end and monomer loss at the other.

This dynamical state of filaments is called ’treadmilling’ and plays an important role in the

present study.

The formation of new actin filaments is a highly concentration dependent process [7, 31].

Due to the helical structure and the two protofilaments, at least three monomers have to come

together to form a new helical nucleus which is then able to further accumulate monomers.

Since the intermediate states are highly unstable [31, 32] the rate of nucleus formation is

very low, leading to a lag phase at early stages of polymerization [7, 27]. Once a nucleus

is formed, the addition of further monomers occurs at a much higher rate. This behavior

gave rise to the notion of a crystallization-like dynamics of filament formation [7]. In vivo,

however, a large number of proteins facilitates and controls the formation of actin filaments.

Actin polymers have a persistence length of about 17 µm [33]. Since the persistence length

is of the same order as typical cell sizes, actin filaments are called semi-flexible. In living

cells, actin filaments form a multitude of different structures such as the cell cortex, filament

bundles, or stress fibers. The actin cortex is a highly dynamic network of actin polymers

underneath the plasma membrane in living cells. Since the membrane itself is very fragile,

the cortex gives the cell its mechanical stability. It reorganizes constantly, allowing the cell

to deform on short timescales. The actin cortex also gives the cell the ability to exert forces

on its environment and to translocate on substrates [34].

Proteins like α-actinin cluster the filaments into parallel bundles, which are able to with-

stand tensile stress. In combination with molecular motor molecules of the myosin family,

actin is observed to form stress fibers in which antiparallel bundles of actin are intercon-

nected by myosin clusters. These fibers are able to exert forces to the entire cell and play

an important role during embryonic development [35]. Alternating groups of actin bundles

and myosin filaments also form sarcomeres, the force producing units in muscle cells. Actin

filaments are thus a key element to the movement of all animal cells.

Actin is expressed in virtually all eurkaryotic cell types and its amino acid sequence is
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1 Introduction

highly conserved among species. Actin from yeast is to 90% identical to the human form.

In procaryotes, the actin homologue MreB was found which is also able to polymerize into

linear aggregates but is much less active [36]. However, the results on polymerization of

MreB remain controversial [37]. Actin monomers and filaments interact with a large number

of accessory proteins to perform their multiple tasks. This might be the reason for the

high equivalence of actin sequences among species. Since every alteration might impair a

multitude of interactions, it may lead to a breakdown of actin control and, as a consequence,

mutations are rapidly eliminated.

1.1.2 Microtubules

Tubulin is a 55 kDa large protein that is expressed in eukaryotic cells in three different

isoforms, the α, β, and γ tubulin. α and β tubulin form heterodimers that polymerize

into hollow tubes, the microtubuli [27]. These filaments are built from typically 13 straight

protofilaments, each of which is a linear array of tubulin dimers that are arranged in a

head-to-tail fashion, see Figure 1.2. The protofilaments in a microtubulus are not perfectly

aligned but are shifted by 3/13 tubulin lengths. Thus, the microtubules have a seam at

which a α-tubulin of one protofilament is adjacent to a β-tubulin molecule in the neighboring

protofilament [1].

The outer diameter of a microtubulus is about 25 nm, while the individual tubulin sub-

units have a diameter of 6 nm. Due to their cylindrical structure, microtubuli have an

extraordinary large persistence length of more than 1 mm [40, 41]. In vivo, microtubuli

reach sizes up to 25 µm.

Microtubules are nucleated by γ-tubulin that concentrates at the microtubules organising

center (MTOC) close to the cell nucleus. There, it forms rings on which α-β-tubulin dimers

polymerize. The dynamic ’plus ends’ of microtubuli extend into the cytosol exposing the

β-tubulins of the protofilaments.

Similar to actin, each tubulin is able to bind a nucleotide. In contrast to actin, tubulin

binds guanosin-di- phosphates (GDP) and -tri-phosphates (GTP). A GTP bound to the

α-subunit is enclosed in a pocket between the two subunits of the dimer and is neither de-

phosphorylated nor released. The nucleotide bound to the β- tubulin, on the other hand, is

cleaved by the kinase activity of tubulin. The loss of the γ phosphate induces a conforma-

tional change in the tubulin dimer: GTP bound tubulin dimers form straight protofilaments

that easily aggregate into microtubules, while the GDP-tubulin prefers a curved conformation

storing mechanical strain energy in the tubular lattice. As long as a cap of GTP-tubulins

protects the ends of the microtubulus, the mechanical tension cannot be released. If, by

6



1.1 Biopolymers

Figure 1.2: Structure of microtubuli. a) Schematic representation of the tubulin dimer bound
to two red GTP molecules. The heterodimers consist of an α- and a β-tubulin and assem-
ble in a head-to-tail fashion into linear protofilaments. 13 protofilaments form the hollow
microtubulus. c©2008 from [27], 5th Edition by Alberts et al. Reproduced by permission
of Garland Science/Taylor & Francis LLC. b) Electronmicrographs show a microtubule from
the side (bottom, From [38]. c©Rockefeller University Press. ) and in a cross-section (top,
Reprinted from [39] c©(1990), with permission from Elsevier. )

7



1 Introduction

a) c)

d)

b)

Figure 1.3: The shapes of selected accessory proteins. a) Electronmicrographs of stabilized (left)
and depolymerizing (right) microtubules. The reeling of GDP-bound tubulin protofilaments is
visible in the right image. From [38]. c©Rockefeller University Press. b) Different sections
from an electron micrograph of the lamellipodium, an actin filled protrusion at the leading
edge of migrating amoeboid cells. The branching of actin filaments is due to the nucleation
of new filaments by the arp2/3 complex alongside existing filaments. From [45]. c©Rockefeller
University Press. c) Electron micrograph of α-actinin molecules. The actin binding sites
appear thicker than the linker domain. Reprinted from [46] c©1986 Wiley-Liss, Inc. d) A
schematic representation of a myosin II motor. The heavy chain is colored in green, the light
chains in blue. c©2008 from [27], 5th Edition by Alberts et al. Reproduced by permission of
Garland Science/Taylor & Francis LLC.

stochastic fluctuations or because the filament grew against an obstacle, the GTP cap is lost

and the curved protofilaments rip the microtubulus apart, see Figure 1.3 a). The process

of rapid growth by GTP-tubulin followed by rapid disassembly of GDP rich microtubules

that was found in vivo is called ’dynamic instability’. Even though microtubules were also

observed to display treadmilling [5], there is strong evidence that the growth of microtubules

is dominated by dynamic instabilities [6, 42–44].

Microtubules perform a number of vital tasks in living cells. During cell division, they

form the mitotic spindle that is responsible for the segregation of the genetic material and

its correct distribution to the daughter cells. They also serve as transport tracks for cellular

cargo such as vesicles or mitochondria. In neurons, the tubulin structures span the whole

axon which can reach sizes of meters. For example, vesicles filled with neurotransmitters

are transported along the microtubules from the cell body to the synaptic cleft, where the

transmitters are released upon stimulation of the nerve cell. If the transport of vesicles was

dependent on diffusion, it would take years for the cargo to reach its destination [27].

Just as actin, the tubulins are evolutionarily very old proteins. They share genetic and
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1.2 Accessory Proteins

functional similarities with the procaryotic protein FtsZ which also polymerizes into filaments

but only appears to be a single protofilament. Recently, tubulin related proteins, BtubA

and BtubB, were found in bacteria. These proteins form microtubuli-like structures of 5

protofilaments [47] and are assumed to be derived from the same ancestral protein as tubulin.

For sake of completeness, a third type of biopolymer should be mentioned at this point

as well. In eucaryotic cells, so called intermediate filaments can be found. These filaments

are build of non-polar tetramers of 10 nm sized proteins. Intermediate filaments exist in

a variety of types which share common genetic features. They play an important role in

maintaining the structural integrity of the cell as they provide strong shear resistance, for

example in the neurons of vertebrates. In contrast to actin and microtubules, however,

they are neither polar nor active. Since they do not bind energy rich nucleotides, their

polymerization dynamics differs fundamentally from the models discussed here and they are

not considered in the remainder of this work [27, 48].

1.2 Accessory Proteins

The cell has a large number of regulatory proteins at its disposal to influence the dynamics

and structure of the cytoskeletal filaments. Here, the accessory proteins that are most

important in the context of the present work shall briefly be introduced. Their characteristic

effects become relevant when experimental findings are discussed or when these effects are

included in some of the analyzed models. These proteins can loosely be put into the following

categories.

1.2.1 Sequestering Proteins

Profilin is a small protein of 14-16 kDa weight which is expressed in most eucaryotic cell

types. It binds actin monomers and fosters the replacement of an ADP by an ATP molecule.

Profilin-actin dimers are able to bind to barbed ends of actin filaments but not to pointed

ends. The reason is an overlap of the bound profilin molecule with the pointed end binding

site of actin monomers. Polymerisation from profilin-actin at barbed ends proceeds at a

slightly lower rate than from pure actin [49]. When the barbed end is bound by a protein

called formin, profilin accelerates polymerization by up to a 20-fold [50]. Profilin bound actin

monomers display a much lower tendency to nucleate spontaneously, but are easily nucleated

by formins [51]. It was shown recently that profilin increases the rate of phosphate release
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at the barbed ends of filaments [52].

β-thymosin The extremely small 5 kDa β-thymosins are found in large quantities in the

cell. They sequester the G-actin for almost all reactions. The binding affinity of β-thymosin

to actin is, however, smaller than that of profilin. Thus, profilin can liberate the actin

monomers from the large pool of β-thymosin bound monomers and can make them available

for polymerization [53]. It is assumed that most of the cell’s G-actin is bound to β-thymosin

and is thus not available for immediate polymerization.

1.2.2 Nucleators

Formins are a class of proteins that are associated with actin filament nucleation and

elongation [54]. The amino-acid sequences of all formins contain two characteristic domains,

the so-called formin-homology domains (FH1 and FH2). While the FH1 domain binds

to proteins like profilin, the FH2 domain is required for the dimerization of formins. In

the dimeric form, formins are able to nucleate new filaments. They remain bound to the

filament’s barbed end and progressively add actin monomers from profilin- actin. In absence

of profilin, formins can switch from an ’open’ to a ’closed’ state. While monomer addition is

possible in the open state, it is blocked in the closed state. The efficiency of polymerization

varies among the different types of formin. The formin Cdc12 for example is mostly in the

closed conformation and polymerizes filaments much slower than mDia1 that is known for

its fast polymerization velocity [55].

Arp2/3 is a protein complex containing the two subunits, arp2 and arp3 that are closely

related to actin. The complex is activated by nucleation promoting factors (NPFs) like

WAVE/Scar complex or WASp (Wiskott-Aldrich-Syndrome protein). Arp2/3 binds to the

side of an existing actin filament, the mother filament, and nucleates a new filament, the

daughter filament. The pointed end of the daughter filament remains anchored in the arp2/3

complex while the barbed end accumulates monomers from the cytosol. The branches form a

characteristic 70 degree angle with the mother filament, see Figure 1.3 b). In migrating cells,

the arp2/3 complex nucleates filaments at the leading edge of the lamellipod and causes a

large number of free barbed ends to push simultaneously against the cell membrane [56].

The stability of the arp2/3 complex seems to depend on the phosphorylation state of the

monomer in the mother filament. The bond is most stable in the ATP- or ADP-Pi bound

actin state and is weakened by the dephosphorylation of the mother filament[57].
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γ-Tubulins are microtubuli nucleating proteins. Besides α- and β-tubulin, which form

the actual microtubules, they constitute a third tubulin isoform. γ-tubulin is mainly found

at the microtubules organizing center (MTOC), where it forms ringlike structures. These

structures mimic the plus end of microtubuli to which further α-β-tubulin dimers can add.

From the MTOC, the plus ends of microtubules project outwards into the cytosol. The

de novo formation of microtubuli essentially relies on the presence of γ-tubulins since the

concentrations of α and β tubulin in vivo are much too low to efficiently nucleate microtubuli

from a pure solution.

The γ-tubulin and the arp2/3 complex not only nucleate new filaments, they also inactivate

the filament’s minus or pointed end, respectively, and suppress monomer addition or removal.

There are other proteins that are specialized to exclusively cap filament ends.

1.2.3 Capping Proteins

CapZ is a heterodimeric protein that binds to the barbed ends of actin filaments, where

it prevents addition and removal of actin monomers. It consists of an α (36 kDa) and a β

(32 kDa) subunit that have no similarity to actin itself. CapZ binds strongly to filament

ends and influences the structure of the polymeric network already at low copy numbers,

KD < 0.5nM [58]. It is found for example in the Z-band of muscle cells, where it is

responsible for the extraordinary stability of actin filaments in sarcomeres.

Tropomodulin binds to the pointed ends of actin filaments that are decorated with tropomyosin.

Like capZ, it is found in sarcomeres, where it prevents the depolymerization of actin filaments.

It was first isolated from red blood cells [59]. In presence of tropomyosin, it binds the pointed

end of F-actin strongly preventing any addition or removal of monomers (KD < 1nM). With-

out tropomyosin, it becomes a ’leaky’ cap that hinders monomer addition and removal but

does not block it completely (KD = 0.1 − 0.4µM). It approximately doubles the critical

concentration of the pointed end but has no influence on the barbed end polymerization of

actin.

1.2.4 Cross-Linkers and Bundling Proteins

Cross-linkers and bundling proteins interconnect filaments. They have typically two binding

sites for the filament and establish mechanically robust links between different filaments.

Bundling proteins such as α-actinin, fimbrin, or fascin cluster filaments into tight parallel

bundles. Gel-forming cross linkers like filamin favor crossings of filaments, thus generating

gel-like networks. In this analysis, the effect of only one cross-linker will be of interest.

11



1 Introduction

α-Actinins are single polypeptide chains consisting of a F-actin binding site and a linker

region. α-actinin forms homodimers that cluster actin filaments into loosely packed parallel

bundles. The linker connects the two subunits and acts as a spacer, keeping actin filaments

30 nm apart, see Figure 1.3 c). This allows the heads of myosin clusters to penetrate

the filament bundle where they can interact with the F-actin. This arrangement is found

particularly in sarcomeres where the acto-myosin interactions generate contraction forces.

α-actinin is also found in the actin cortex and at focal contacts where the cell attaches to

the substrate.

The affinity of α-actinin to actin filaments is given by an equilibrium constant of K =

0.4−2.7µM [60]. Binding is typically fast with rates of the order of 1 (s µM)−1. The release

rates depend on the α-actinin isoform and were determined to range from 0.32 s−1 [61] to

5.2 s−1 [62].

1.2.5 Severing Proteins

Cofilin The actin depolymerizating factor (ADF) or cofilin is an abundant 15 kDa large

protein that binds to G- and F-actin [63]. In cells, it is present at a 1:1 stoichiometry with

actin monomers. It destabilizes the filament by un-twisting its helical structure, thereby

destabilizing the actin- actin interactions. In concert with formin and profilin, it was found

to increase the turnover rate of actin filaments in vitro by a factor of 25 [64]. In filaments,

it binds with a higher affinity to ADP- than to ATP-bound subunits, suggesting that an

increase in treadmilling velocity is responsible for the faster turnover.

Cofilin fosters the phosphate release of adjacent subunits in the filament lattice. Due to

its ADP-actin specificity, it can form clusters along the filaments. Severing was observed to

preferentially occur at the edges of such clusters [65]. The rate of filament severing is further

increased by the proteins coronin and aip1.

Katanins are microtubule severing proteins. Katanins are heterodimers that aggregate

into rings around the microtubule. They break the 13 longitudinal bonds in the microtubule

under consumption of chemical energy via the hydrolysis of ATP. Katanins are localized

at the centrosome where they are assumed to be responsible for microtubule release. The

release of microtubules is an important step for the spindle formation prior to cell division.

Free microtubules were observed to treadmill in the cytosol [5, 66].
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1.2.6 Molecular Motors

Molecular motors are proteins which can move directionally along filaments. The movement

is connected to the consumption of chemical energy. The function of motor stepping was

explained by a brownian ratchet model that relies on the alternating forces the motor feels

when cycling through an energy rich and an energy poor state [67]

Myosins are motor proteins that bind to actin filaments. Today, a large number of different

myosin motors is known, all of them having a similar characteristic motor domain. Myosins

typically move towards the barbed ends of actin filaments, but members of the myosin VI

family are known to move towards the pointed ends [27]. The myosin II motor molecules

are the force generating components in muscle cells. Each of these motors consists of two

long proteins (heavy chains) and four small proteins (light chains). The heavy chains, for

their part, consists of a motor head that binds to the actin filament and a long tail region

that is responsible for heavy chain dimerization, see Figure 1.3. Myosin II aggregates into

thick bipolar bundles that overlap with the actin bundles in sarcomers. When the motors

move along the actin filaments, they contract the muscle. As already mentioned, myosins

are kinases and their action is coupled to the hydrolysis of ATP molecules. An individual

myosin motor can thereby exert forces up to 4 pN [68].

Kinesins are microtubule binding motors that are structurally similar to myosins. They

are composed of two heavy chains and two light chains. The heavy chain contains a motor

head region that binds to the micotubules and a long tail that fosters dimerisation of the

heavy chains and binds to cell organelles. Kinesins typically move towards the microtubule

plus end by ’walking’ along a single protofilament in a hand-over-hand fashion [69]. Like for

myosins, their movement is coupled to the hydrolysis of ATP.

Kinesins organize the transport of vesicles along microtubules and are involved in spindle

formation during cell division. Some kinesins were observed to depolymerize microtubules,

some of them in a length dependent manner [16]. The kinesins are a member of the kinesin

superfamily that comprises ten different families of motor proteins. They all share the motor

domain but otherwise vary widely in structure. Some of these kinesin related proteins are

known to move towards the minus end of microtubules.

Dyneins also bind to microtubules but move, in contrast to most kinesins, towards the

minus end. Together with kinesins they organize the transport of vesicles along the axons

of neuronal cells by a ’tug-of-war’ mechanism [70–72]. Dyneins play an important role

during spindle formation where they are responsible for the formation of spindle poles and
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the regulation of spindle length [73, 74]. In contrast to kinesins, dyneins rather stabilize

microtubules [75] and evidence was provided that dyneins can also foster the nucleation of

microtubules [76].

1.3 Models and Methods

1.3.1 Lattice Models and Stochastic Simulations

In this work, the length dynamics of filaments is studied with help of lattice models. In

general, lattice models describe a system on a discrete and regularly arranged set of states.

Here, filaments are represented by a one-dimensional lattice in which every lattice site rep-

resents a filament subunit. The values associated with the lattice sites represent the subunit

state in the filament.

Such lattice models were successfully applied to investigate the dynamics of filament sys-

tems in the past, e.g. in [10, 14, 52, 77–81]. The length of the lattice can be fixed [77, 78, 81]

or dynamic [10, 52, 79]. These models were formulated for single one-dimensional fila-

ments [52, 77, 79, 81, 82] or several arrays representing interacting filaments [80, 83]. Lattice

models for filament systems are in contrast to continuous models which can be applied

when the system’s behavior is analyzed on length-scales much larger than the constituent

filaments [84–86].

The state of the filament is unequivocally given by the length and the sequence of subunit

states of the lattice. Every change of the filament length or the state sequence is given by a

constant transition rate. Hence, the evolution of the filament can be described by a Markov

Chain. For such systems, a Master Equation can be given which describes the evolution of

the system in terms of probabilities.

If every monomer can be in either of N states, a filament of length L is in one of NL

possible configurations. In the systems that are to be analyzed, filaments easily reach sizes of

several hundred monomers. Even for N = 2, it exceeds the capacity of today’s commercially

available computers to store and process information about the probabilities of all possible

microstates. Thus, to analyze the dynamics of such models, one has to resort to stochastic

Monte-Carlo methods. In this approach, stochastic realizations of a single instance of the

system are determined numerically. Relevant information is then extracted by averaging

over an ensemble of such realizations.

The application of stochastic methods is no serious drawback of the presented approach

since the major interest lies in characteristic properties of the system rather than the fate of

individual microstates. Values of interest are for example the mean filament length or the
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typical distribution of monomer states along the filament.

Create initial State S
t = 0

determine rates �� for all 
possible transitions:

 i

� (i)T : S         S'i
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(1)T : S         S'1
� 1

(N)T : S         S'N
� N

determine j such that

(j)T : S = S'j
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End

::::
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Figure 1.4: Flowchart of a simulation using the
Gillespie scheme for well-mixed solutions [87].
E(x) denotes an exponential distribution of
random numbers with average x, U([x1, x2])
denotes a uniform distribution on the interval
from x1 to x2.

In the simulations carried out for this

work, the Gillespie scheme was used to

update the filament’s state [87]. It al-

lows an exact and efficient determina-

tion of the system’s stochastic evolu-

tion, keeping track of the elapsed time.

It was first developed for the compu-

tation of the dynamics of well-mixed

chemical reactions but is easily gen-

eralized to more complex situations if

a Master Equation can be formulated.

Figure 1.3.1 sketches the general idea of

the Gillespie algorithm in a flowchart.

Note at this point that stochastic

models have to be defined carefully

when physical systems are described.

To reach an equilibrium state, for ex-

ample, the reaction rates have to be

chosen such that detailed balance is

fulfilled. Only then, the system com-

plies with the physical condition of en-

ergy conservation. The filaments that

are described within the present anal-

ysis are constantly driven out of ther-

modynamic equilibrium and rates are

chosen to break detailed balance on

purpose. From a physical point of

view, it is still important to define the

transitions rigorously which provide the

energy to drive the system’s dynam-

ics.
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1.3.2 Analytical Methods

When analytical calculations are carried out, the evolution of system parameters is formu-

lated in the form of rate equations. Such equations connect the time derivative of a state’s

probability to the probability fluxes through state space. If transition rates only depend on

the current state of the system but not on time or the system’s history, the dynamics complies

with the Markov Condition. The dynamics of the system then constitutes a Markov Chain

and can be described by a Master Equation [88–90]. As mentioned above, such systems can

be simulated by Monte Carlo methods using the Gillespie algorithm.

In the present work, the filament states as well as their transitions are defined such that

they fulfill the Markov Condition. For all these systems, a Master Equation can be formu-

lated but can not be computed in most of the discussed cases. In order to derive analytic

expressions, two principal strategies are used: Under certain conditions, Master Equations

allow an equivalent description by Fokker-Planck Equations. Therefore, the evolution of

the system in the discrete state space is transformed into a partial differential equation in

continuous parameters, which might allow a simpler solution. This transformation can be

done systematically by the Ω expansion described by VanKampen [89]. The Fokker-Planck

Equations are often valid approximations of the system’s behavior, even if the conditions

under which the exact equivalence is ensured are not met.

Alternatively, the dynamics of averaged values of interest can be formulated in the form

of independent rate equations, thereby neglecting the stochastic behavior of the underlying

microstates of the system. The formulation of such equations requires particular care and a

qualitative understanding of the system’s behavior. The results of such approximations are

validated by comparison with numeric results.

Wherever appropriate, the random character of the system was considered by taking into

account the distributions of the stochastic values. In many situations, however, considering

the averages was sufficient to derive valuable expressions.

All analytic calculations are explained in detail to provide the reader with all necessary

information to reproduce the results. Numerical results were obtained by implementation

in C/C++ (stochastic simulations) or MATLAB
TM 1 scripts (fitting and data processing).

Symbolic calculations were verified with help of Mathematica
TM 2.

1The MathWorks Inc., Version 7.13 (R2011b)
2Wolfram Research, Version 8.0
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2 The Treadmilling Phenomenon

2.1 Experimental Background

Biopolymers like actin and microtubules are highly dynamic structures in living cells. They

form networks that can reorganize rapidly, providing at a time stability and plasticity to

the cell. Under physiological conditions, the growth of both polymer types consumes chem-

ical energy in form of ATP or GTP molecules, respectively. These molecules bind to the

monomers and are converted to ADP or GDP within the filament. The affinity of globular

actin to an existing filament is higher if bound to ATP than if bound to ADP [7, 30]. After

incorporation of an ATP-bound actin monomer into a filament, the rate of ATP-hydrolysis

increases by a factor of 40,000 compared to an isolated monomer [91].

Actin filaments and microtubules are both structurally polar with one typically fast grow-

ing and the other slowly growing end. The fast ends are referred to as the barbed (actin) or

the plus ends (MTs) while the slow ends are called the pointed (actin) or minus ends (MTs),

respectively. Both filament types interact with a large variety of other proteins that deter-

mine the organization and the mechanical properties of the cytoskeleton. A number of these

proteins interfere specifically with the assembly and disassembly of cytoskeletal filaments.

Due to their structural polarity and the dependence of monomer affinity on the nucleotide

bound, the assembly and disassembly dynamics of actin filaments differs markedly from

”passive” polymers, that is, polymers at equilibrium. One fascinating state of active filaments

kept out of thermodynamic equilibrium is treadmilling, in which filaments grow at the one

end and shrink at other, see Figure 2.1 for examples.

This mode of polymerization was predicted on theoretical grounds by Wegner in 1976[3],

who explained how both ends of actin filaments can start polymerization at different monomer

concentrations. In the following, treadmilling was observed for microtubules as well as for

actin in living cells [5, 66, 93]. Panda et al. recorded explicitely the filament length distri-

bution of treadmilling microtubules in vitro and found that they differ markedly from the

exponentially decreasing length distributions of equilibrium polymers [7, 82].

The length of filaments has an important influence on the mechanical properties of the

cytoskeleton, see for example Refs. [25, 94, 95]. In addition to the mechanical properties, the
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Figure 2.1: Examples of treadmilling filaments. a) Treadmilling microtubule in a living newt lung
epithelial cell. From [66]. c©Rockefeller University Press. The filament seems to move from
bottom to top while individual monomers remain at fixed positions, as can be confirmed by the
dark arrowhead that marks a defect in the fluorescence along the microtubule. b) Images of
microtubules within a fragment of a melanophore cell. The microtubule 3 that extends from the
cell center detaches and moves towards the cell periphery where it disassembles. It preserves
its length during its movement through the cytosol. From [5]. Reprinted with permission
from AAAS. c) The sarcomeres of striated muscle cells illustrate how accurately the length
of actin filaments is tuned. The light band region is mainly filled with parallel actin filaments,
while the dark band consists of myosin filaments. In an even darker region inbetween, actin
and myosin filaments overlap. Pointed ends of actin filaments in neighboring sarcomeres are
connected to the Z-disc. From [92] c©American Physiological Society.d) Actin bundles in the
stereocilia of the inner ear. Green filament parts were polymerized within the last 6 h prior
to taking the image. Stereocilia length were reported to be constant during the experiment.
The accumulation of green monomers at only one end of the filaments suggests that actin is
treadmilling within stereocilia. From [93]. c©Rockefeller University Press.
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filament lengths also determine directly the size of a number of cellular structures. Prominent

examples are filopodia and stereocilia of inner hair cells [93, 96, 97] as well as sarcomeres of

striated muscles [98], see Figure 2.1 c) and d). Importantly, in many of these structures most

of the filaments have a similar length, such that the ensuing length distribution is unimodal.

A number of mechanisms for regulating cytoskeletal filament length have been investigated

in the past. Most of these mechanisms are based on changes of the assembly and/or disas-

sembly rates with filament length. Such changes could, for example, be due to mechanical

interactions. Indeed, forces have been observed to affect the polymerization rate of actin fil-

aments [99, 100]. Also the depolymerization rate is affected by mechanical stresses [101] and

such effects may play an important role in determining the length of stereocilia [97]. Another

way to affect filament assembly rates is through regulatory proteins. For example, capping

proteins stabilize barbed ends of actin resulting in longer filaments [102]. The proteins

formin or VASP, together with the actin-sequestering protein profilin, have the same effect

since they increase the attachment rate of ATP-actin monomers to existing filaments [103].

As long as the regulation of filament assembly and disassembly occurs independently of

the filament length, however, the length distribution will in general be exponential. Con-

sequently, non-exponential distributions require regulation of the filament dynamics in a

length-dependent manner. This is the case for actin filaments in sarcomeres, where the fila-

ment length is set by the protein nebulin through an unknown mechanism [98]. Effectively

length dependent depolymerization rates have been demonstrated to act on microtubules

through depolymerization induced by the motor protein Kin-8 (Kip3p) [16]. This motor

moves directionally towards the plus end, where it induces tubulin removal. The Kin-8-

density at the plus end depends on the microtuble length as the rate of motor attachment

increases with the length, which ultimately results in an effectively length dependent depoly-

merization rate and thus to a non-exponential length distribution. In the case of treadmilling

filaments, non-motile proteins triggering subunit removal at one end can form a gradient

along a filament and thus induce a depolymerization rate that effectively increases with the

filament length [14]. Similarly, severing proteins forming a gradient along a filament will

generate a non-exponential length distribution [12, 13].

Due to their structural polarity, treadmilling actin filaments establish an intrinsic gradient:

the probability of encountering an ATP molecule decreases with the distance from the barbed

end [104]. The question is, whether this gradient can lead to a unimodal length distribution.

To answer this question, a stochastic lattice model is introduced, similar to others used in

studies of filament dynamics [8, 10, 80, 105–108].

The focus of this chapter is to understand under which conditions, linear active polymers

show treadmilling. First, a short introduction to equilibrium polymers is given, summarizing
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the recent understanding of polymer nucleation and polymerization. Then, active filaments

will be analyzed using a two-state model and a random hydrolysis scheme. Stochastic sim-

ulations are used to determine the phase diagram and reveal, notably, a phase of unimodal

length distribution. In addition, length distributions can be exponential or filaments grow

without bound. Analytical calculations of the typical filament length in the unimodal phase

and of the corresponding phase boundaries are presented. In the next step, the model is

applied to the polymerization dynamics of actin. Since a detailed view on actin was estab-

lished during the last years, the two-state model is extended to account for these additional

insights. Finally, the effects of some accessory proteins on the polymerization dynamics of

actin are analyzed within the framework of this model.

In the following the naming convention of microtubules will be adopted and the growing

end is called the plus end to illustrate its typically growing character and the shrinking end

is called the minus end. This is more intuitive than the names of barbed- and the pointed

ends that are used for actin filaments. Nonetheless, the presented principles of filament

polymerization can equally be applied to actin filaments as well as to microtubules.

2.2 A Short Introduction to Passive Equilibrium Polymers

Polymers are aggregates of identical subunits, the monomers. This definition of a polymer

comprises a large variety of supramolecular structures ranging from chemical polymers in

which small molecules are covalently bound to one another, through DNA as a chain of

ribonucleinacids and linear protein aggregates like F-actin to viral capsides that form three-

dimensional structures. The present analysis is limited to linear aggregates of proteins, which

are called filaments in the following.

The aggregates are formed spontaneously in a solution by increasing the chemical free

energy of the monomers. This can be the result of a change in pH, ionic strength, or

the monomer concentration. Depending on the microscopic structure of the filaments, a

nucleation step can precede the agglomeration or self-assembly of the polymers. After poly-

merization was initiated, the system tends to an equilibrium state described by the degree of

polymerization and the filament length distribution. Equilibrium polymers are characterized

by monomer addition and removal that satisfy detailed balance, i.e. monomers attach on

average as fast as they detach.

The strength of bonds between monomers can differ largely. Many industrial polymers

as those in rubber or plastics are linked covalently, resulting in very strong bonds. Such

polymers can be able to resist very high temperatures. For example, Teflon
TM

coatings are

stable up to temperatures of 349◦C. The rates of spontaneous removal of the monomers from
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the filaments are correspondingly small. The binding energy of C-C bonds such as in Teflon

is approximately 348kJ/mol [109], leading to a very slow turnover of such filaments in equi-

librium. The resulting relaxation times for these polymer solutions into the thermodynamic

equilibrium are extremely long and a real equilibrium state will practically never be reached.

Their filament length distribution remains ’frozen’ [110].

In the case of biological polymers such as actin or microtubules, the bonds are formed by

protein-protein interactions which rely on hydrogen-bonds and Van-der-Vaals interactions.

The binding energy of actin can be estimated from the polymerization speed of actin against

an external force in vivo to be ≈10-20 kJ/mol [7, 111]. Thus, the bonds break already at

room temperature, rendering these polymers highly dynamic as compared to polymers with

covalent bonds. Biopolymers can reach equilibrium at times accessible in experiments. Such

dynamic polymers are often referred to as ’living polymers’ where the word ’living’ rather

refers to the rapid and reversible adaption of the filament length to changes in the external

conditions [24, 110, 112, 113] than to their appearance in living organisms.

Two important key figures of polymer solutions are the number average and the weight

average filament length. The number average is taken relative to the overall number of

filaments. Its value gives the average filament size, when it is drawn from the ensemble of

all filaments present in the solution. Its formal definition reads

〈L〉n =
∞∑
i=1

iP(i),

where P(i) is the probability to find a filament of length i.

The weight average on the other hand considers the mass of the filaments. It answers

the question of the average size of the filament in which a randomly chosen monomer is

integrated. The weight average is defined as

〈L〉w =
∞∑
i=1

i2P(i).

The number and weight average length of polymer solution are thus the first and second

moment of the filament length distribution P(i). If not indicated otherwise, the average

filament length will denote the number average. The weight average then results by its

definition from the average filament length and the variance of the length distribution.

The number and weight averages of the filament length play important roles in the deter-

mination of the viscous properties of polymer melts or solutions [25]. It was shown that the

first and second moment of the length distribution can relax on very different timescales [110].
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In the following, I will briefly discuss how passive polymers are formed, how they elongate,

and how their filament length distribution equilibrates. The notion of co-polymerization is

introduced and it will be explained how different interchangeable versions of monomers can

lead to polymers that are constantly kept out of thermodynamic equilibrium.

2.2.1 Nucleation

The de novo formation of polymers can proceed in different ways. In general, for the ini-

tiation of polymerization, some sort of polymerization seed is needed, to which monomers

from the solution can add. In some systems, like the polymerization of tropomyosin [114],

every monomer has the potential to serve as a nucleator. In other systems, the number of

nuclei is determined by a chemical reactant, e.g. in the case of Poly(α-methylstyrene) [112].

Biopolymers such as actin and microtubules can nucleate spontaneously or as a result of an

enzymatic reaction. It was shown that formin or gelsolin are enzymes that foster nucleation

of actin filaments. Microtubules grow on nuclei preformed by γ-tubulin rings at the cell

center.

Consider a solution in which a chemical nucleator is present at fixed concentration n mixed

with polymerizeable monomers of total concentration ctot. Let cmon denote the concentration

of free monomers. It can be shown that the concentration of free monomers then follows

from the condition

n 〈i〉 = ctot − cmon (2.1)

with 〈i〉 being the average length of a filament. The filament length follows from the equi-

librium condition for the polymerization dynamics, see below.

For systems of linear filaments where every monomer can serve as a nucleation site, the

description changes slightly [7]. Let the concentration of monomers and nucleation sites be

c1 and the addition rate νa = ronc1. In equilibrium, it follows that

ctot = c1/ (1−Kc1)2 , (2.2)

with equilibrium constant K for monomer binding. An example for such a polymerization

scheme is the protein tropomyosin that forms aggregates in vitro [7, 114].

Actin, however, is an example for a polymer that displays a different polymerization

dynamics. Equation (2.2) predicts a slowly saturating function of the monomer concentration

c1 as a function of ctot, see Figure 2.2, a). When actin polymerization reaches the equilibrium

state, it was observed that the concentration of free actin monomers abruptly levels off at

a critical value, cc, independently of the initial amount of monomers in the system. This
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2.2 A Short Introduction to Passive Equilibrium Polymers
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Figure 2.2: Nucleation and polymerization dynamics of actin in vitro. a) Equilibrium monomer
concentration as a function of total monomer concentration for linear and helical filaments.
Parameters are K = 0.1mol−1, Kh = 1mol−1, and κ(K/Kh)2 = 10−6. The solid yellow
line indicates how monomer concentration increases if polymers are simple linear arrays. The
dashed-dotted blue line is solution of Equation (2.3) and shows a sharp kink when the critical
concentration of helical filaments is reached. The dashed red line gives the approximation by
Equation (2.4). b) The accelerating effect of sonication on the equilibration timescale of actin
polymerization. The degree of polymerization is measured by the viscosity of the solution, ηrd

as a function of time after initiation of polymerization by salts. In one experiment, actin at a
concentration of 2.8 mg/ml was polymerized in presence of 0.04 mM ADP (◦). In the other, 1 ml
of the solution of the previous experiment (◦) was sonicated after it had reached equilibrium
(•) and polymerization was observed again. This figure was published in [7] c©Academic Press
(1975) .

observation cannot be explained by a linear polymerization scheme as sketched above.

The rapid saturation of the monomer concentration can be explained by the helical struc-

ture of actin: Consider a filament that is able to form contacts to more than two neighbors.

If the monomer forms lateral contacts to two other monomers in the filament, the minimal

nucleus is a trimer, see Figure 2.3. In the parameter regime where filaments spontaneously

polymerize, they minimize their free energy by forming as many contacts as possible. Then,

the binding to a helical filament allows one monomer to form three contacts at a time, which

is more favorable than to bind a linear filament where only one contact is possible. The

binding constant Kh for binding a helical filament is thus larger than K for binding a linear

filament. Let κ denote the equilibrium constant for the transition of a linear to a helical

filament, then the total monomer concentration is connected to the concentration of free
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2 The Treadmilling Phenomenon
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Figure 2.3: Schematic representation of the linear and helical conformation of a linear polymer.
a) The helical structure of a filament made from three protofilaments. Monomer number 4
vanishes behind the other monomers; it forms contacts to other monomers instead of only to
monomers 3 and 5 as in a linear configuration. b) The linear configuration of the same filament.
c) Representation of the possible transitions of filament configurations. The polymers in the
lower line have the same number of monomers than in the upper line but are in the helical
configuration.

monomers by [7]

ctot =
cmon

(1−Kcmon)2
+ κ

(
K

Kh

)
cmon

(
1

(1−Khcmon)2
− 2Kh − 1

)
. (2.3)

It follows immediately that the monomer concentration cannot exceed cc = K−1
h . For in-

creasing amounts of ctot, 1−Khcmon tends to zero.

If the formation of a helical nucleus and addition of monomers to linear aggregates are

energetically unfavorable as compared to the addition of monomers to a helical structure,

one has κ (K/Kh)
2 � 1 and Equation (2.3) is approximated by

ctot = cmon + κ

(
K

Kh

)2
c1

(1−Khcmon)2
. (2.4)

Typical values for κ(K/Kh)
2 of helical filaments lie in the order of 10−8. In particular, this

is the case for actin where the nucleation rate at 5µM actin was estimated to be about

10−13M/s [32].

Due to the low reaction rate, the nucleation of actin filaments is typically the time limiting

step in the polymerization process. This finding is confirmed by experiments on sonicated

actin solutions. Under sonication, long acin filaments break, the number of filaments in-
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2.2 A Short Introduction to Passive Equilibrium Polymers

creases, and equilibrium is reached faster, see Figure 2.3, b).

I concentrate in the Chapters 2 and 3 on the case of a single filament in an unlimited

reservoir of monomers. A priori, this seems to be an artificial situation for two resasons.

Firstly, filaments can then in principle grow arbitrarily long without depleting the pool of

monomers. These situations are treated as unphysical since they cannot be observed in living

cells. The assumption of a constant monomer concentration, however, is not artificial itself

since cells constantly replenish the monomer pool by production of the respective proteins.

Still, the production of new proteins takes place on much longer timescales as the rapid

reactions of the cytoskeleton. Secondly, filaments of length zero are not removed from the

solution but rather persist as nuclei to which monomers can be added. Without considering

the microscopic details, it is thus assumed that the number of filaments is already equilibrated

in these situations. It will be shown later that this assumption is justified in the regime of

regulated filament length since then filaments barely shrink to zero length.

2.2.2 polymerization

Once a polymer nucleus is formed, it exchanges monomers with the solution. In dilute

solutions, the rate of monomer addition is limited by the diffusion of monomers to the

polymer’s ends. The polymerization rate νa then roughly scales linearly with the monomer

concentration, νa = roncmon. The rate at which monomers detach from the polymer, νd, is

independent of the monomer concentration in the surrounding solution and only depends on

the binding energy of the tip monomers to the rest of the polymer, νd = koff .

Consider the situation of a fixed concentration n of nucleators. Let cmon be the concen-

tration of free monomers and ci the number concentration of filaments with a nucleator that

has bound a polymer of i subunits. The mass action law then gives for the stationary state

ci = n

(
1− νa

νd

) (
νa
νd

)i
, (2.5)

satisfying
∞∑
i=0

ci = n. The concentration of free monomers then follows from the condition

∞∑
i=0

i ci = ctot − cmon. (2.6)
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2 The Treadmilling Phenomenon

The average filament length is then given by

〈i〉 =
Kc1

1−Kc1

(2.7)

with binding constant K = koff/ron. Together with Equation (2.6) or, equivalently, (2.1),

the equilibrium state is fully determined.

In the case of linear polymers, this scheme slightly changes and for the concentration of

filaments of length i, ci follows

ci = K−1 (Kc1)i . (2.8)

The concentration of monomers is then connected to the total concentration of subunits in

the system by Equation (2.2), given above. For the average filament length follows

〈i〉 =
1

1−Kc1

. (2.9)

For helical polymers, the number of nuclei depends in a non-linear fashion on the monomer

concentration. Then, in equilibrium, the length distribution of helical filaments is given by

ci = κ(K/Kh)
2K−1

h (Khcmon)i, (2.10)

using the notation introduced in the last paragraph. The average filament length then yields

〈i〉 =
1

1−Khcmon

. (2.11)

In all three cases, an exponential equilibrium length distribution is found. The only

difference lies in the number of filaments which amounts to a different form of the respective

normalization constants for the three distributions. The exponential character is a generic

result of polymers of identical subunits and originates essentially from the linear increase of

the free energy of such polymers.

The polymerization and depolymerization rates are usually not only a function of the

monomer concentration but also depend on temperature, pH, ionic conditions and possibly

other parameters [7, 115]. When polymerization is initialized by changing the external

parameters or providing nucleation factors, the value of the critical concentration drops such

that the monomer concentration becomes supercritical. The concentration then relaxes to

the new critical concentration reaching a new equilibrium state. The number of filaments

also converges to a new equilibrium value, that itself depends on the specific nucleation

mechanism [82].
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2.2 A Short Introduction to Passive Equilibrium Polymers

To summarize, the polymerization equilibrium is reached in several steps. After the nu-

cleation, filaments first grow until the equilibrium monomer concentration is reached. Only

then, on a longer timescale, monomers are redistributed among filaments until eventually

the stationary length distribution is established [7, 110].

Note that the polymerization was assumed here to occur in a dilute solution, where the ad-

dition of monomers is diffusion limited and therefore linear in the concentration of monomers.

In saturated solutions, however, the monomer addition can be rate limited and the elonga-

tion rate saturates at a maximum velocity. One would assume that, similar to enzymatic

reactions, the addition rate follows a Michaelis-Menten dynamics,

νa =
ν∞a cmon

KMM + cmon

, (2.12)

with maximum binding rate ν∞a and Michaelis-Menten constant KMM. This might be of

importance in living cells where monomer concentrations of several hundred µM were mea-

sured even though the critical concentration of actin under physiological conditions is rather

in the range of a tenth of µM [1].

2.2.3 Polarity

So far, only unpolar polymers were considered, that have the same chemical properties at

both ends. A large number of biological examples of polymers, such as single stranded DNA,

peptide chains in proteins, and particularly actin and microtubules have a polar structure.

Both ends of these filaments are chemically distinct, yielding different rates for subunit

addition and removal.

Even though the chemical properties at both ends are different, the energy gain upon

polymerization of a single subunit should be independent of whether it was added to one

or the other end since the initial and the final state of the system are identical for both

reaction ways. Let one filament end be called the ’plus’-, the other one the ’minus’-end with

the corresponding addition and removal rates r+
on, r−on, k+

off , and k−off . Then, one has

r+
onc

k+
off

= e(−∆G/kBT ) =
r−onc

k−off

, (2.13)

with ∆G denoting the energy gain upon polymerization of a single subunit and c the

monomer concentration.

Relation (2.13) has an important consequence for the critical monomer concentration cc
above which filaments start to grow. Since the polymerization velocity is a linear function
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2 The Treadmilling Phenomenon

of the monomer concentration, the filament grows if c > cc = koff/ron. As a consequence,

the critical concentration of monomers is the same at both filament ends,

c+
c = c−c . (2.14)

Thus, at fixed monomer concentration, filaments show the same qualitative behavior, growth

or shrinkage, at both ends. The rate constants for monomer addition or removal at both

ends can then differ from the values at the other end only by the same factor θ. Without

loss of generality, θ can be chosen such that θ > 1 and by convention, the end with the faster

dynamics is called the plus end,

r+
on = θr−on (2.15)

k+
off = θk−off . (2.16)

The naming convention will become clear from the analysis below. The faster plus end

is typically the end at which treadmilling filaments accumulate monomers, while monomers

are mainly lost at the minus end.

2.2.4 Activity

Up to this point, our discussion was limited to the polymerization of identical subunits. One

important result was the observation that such filaments have the same net behavior at both

ends. Treadmilling dynamics, however, cannot be explained by such models. To understand

the steady separation of polymerization and depolymerization to the two different ends of

actin filaments and microtubules, a more detailed model has to be invoked.

As mentioned in chapter 1, actin and tubulin bind nucleotides of different degrees of

phosphorylation. Strictly speaking, the resulting polymer is a co-polymer of the monomers in

different states. It was found that the phosphorylation state of the monomers has an impact

on the affinity of monomers to the filaments, leading to different critical concentrations of

the respective monomer type. Addition and removal of each kind of monomer has thus to

be treated separately.

Consider two types of monomers with different binding affinities to the filament. Let

them, in allusion to the phosphorylation state of actin and tubulin, be denoted by indices

’T’ and ’D’. With varying affinity to the polymer, their respective critical concentrations are

different. If the binding energy solely depends on the internal state of the monomer, the free

energy of the system is defined only by the number of T- and D-subunits in the solution and

in the filamentous part. Their order or whether they were added to the plus or the minus
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2.2 A Short Introduction to Passive Equilibrium Polymers

end has no influence on the energetic state of the system. The change in free energy upon

polymerization of a monomer of a specific type is then the same regardless of the end it is

added to. It follows

cT+
c = cT−c = cTc and cD+

c = cD−c = cDc . (2.17)

The monomer type with a higher affinity to the filament, the ’stable’ species, has a lower

critical monomer concentration than the ’unstable’ species. Let the T-species denote the

monomer type of higher filament affinity. The polymerization dynamics is then described

by the theory of co-polymers [7, 116, 117]. Depending on whether the individual monomer

concentrations are above or below the respective critical values, different compositions of the

equilibrium polymers are to be expected. In equilibrium, however, the monomer concentra-

tions can again never exceed their respective critical values.

If monomers can undergo transitions and switch from one state to the other, the situation

changes fundamentally. A monomer with high binding affinity can be integrated into the

filament where it switches to the state of low affinity, thereby dissipating energy. The energy

consumption makes subunits cycle between the monomeric and polymeric state. Equilibrium

is only reached when the switching rates are such that they account for the energy difference

between both states. If monomers randomly undergo state changes, independent of the

states of neighboring subunits, the conditions read

rT+
on

rD+
on

=
rT−

on

rD−
on

(2.18)

and
ωfil

TD

ωfil
DT

=
rD±

on

rT±
on

ωmon
TD

ωmon
DT

, (2.19)

with ωfil
TD (ωfil

DT) and ωmon
TD (ωmon

DT ) the rates of subunit state transitions from the T- (D-) to the

D-(T-)state in the filamentous and monomeric form, respectively. These conditions reflect

that equilibrium is only reached if the state transitions in the monomeric and polymeric part

of the solution are equilibrated.

Since the center of mass of a treadmilling filament moves through the cytosol, it is obvious

that treadmilling is an intrinsically non-equilibrium effect. It is only possible when the system

is constantly kept out of thermodynamic equilibrium, for example by enriching the amount of

stable subunits in the solution. An adequate model for treadmilling must therefore include

different critical concentrations of at least two different monomer types. The monomer

concentrations then have to be adjusted such that the plus end accumulates monomers
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2 The Treadmilling Phenomenon

while they are lost at the minus end.

The individual rate constants for the addition and removal of actin subunits in all phos-

phorylation states have been measured in vitro [30]. Within the experimental errors, critical

concentrations of the different monomer types are indeed independent of the filament end.

The deviations could indeed be explained by the the next-neighbor interactions between the

filament’s subunits. However, the data suggests that these interactions only play a minor

role for the attachment and detachment rates.

In the first part of the following analysis, I concentrate on the case that Equations (2.17)

are fulfilled and show that the sheer out-of-equilibrium of monomer concentrations can al-

ready generate the treadmilling phenomenon. In the following, the system’s behavior is

studied, using experimentally determined parameters. I use the averaged parameters from

the literature which do not exactly comply with Equations (2.17), but may effectively take

the subunit interactions into account.

The analysis starts with a model in which two different states of the subunits are con-

sidered. It will be shown that this system already shows treadmilling dynamics. Moreover,

a regime is found where the length of filaments is regulated resulting in unimodal length

distributions instead of the exponential length distribution that are typical for equilibrium

polymers. The phase boundaries as well as the average system length in the regime of uni-

modal filament length distributions are studied in detail. I will give approximations for the

average treadmilling velocity as well as an expression of the length dependent depolymeriza-

tion rate. From these expressions, the typical filament length will be inferred.

Then, the two state model is applied to the polymerization of actin filaments: First to the

binding of α- actinin to actin filaments, identifying the two subunit states in the filament

with subunits being bound or not to an α-actinin molecule. For this setup the filament

length distribution was experimentally determined as a function of time. A second applica-

tion of the two state model is based on a measurement of the molecular polymerization- and

depolymerization rates of actin assuming two different monomer states within the filament.

To match the more complex actin-system, the two state model is then extended step by step.

It is complemented by a three-state scheme, end-induced phosphate release, and capping of

filament tips. The action of profilin, formin, capping proteins, and an increased depolymer-

ization are then considered in turn. In every step, the results of the model were compared

with experimentally determined rate constants if possible. This allows us to determine the

parameter regions in which unimodal length distributions can be expected.
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Figure 2.4: A sketch of the two state model. Subunits aggregate into linear arrays of a well
defined orientation. White arrowheads stand for T-subunits (stable), while black arrowheads
are D-subunits (unstable). Both types of subunits are added to and removed from both filament
ends at constant rates. Within the filament, T-subunits are transformed into D-subunits at
rate ωde and back at rate ωre within the filament. [23] c©AIP (2013)

2.3 Theoretical Aspects of Treadmilling And Active

Polymer Dynamics

In this section, the polymerization dynamics of linear polymers out of thermodynamic

equilibrium is investigated by means of a lattice-model, taking into account two different

monomer states. The filament is represented as a linear array of variable length L with

each site representing one filament subunit, see Fig. 2.4. Sites are indexed such that the

site with i = 1 corresponds to the plus end, while the site with i = L corresponds to the

minus end. Each subunit of the array can be in either of two states, a stable and an unstable

one, corresponding to the different phosphorylation state of actin or microtubules. Here, the

stable state is associated with a nucleotide-tri-phopsphate bound subunit (the ’T’-state) and

the unstable state with binding a nucleotide-di-phosphate (the ’D’-state). Subunits of both

states are added to both filament ends at constant rates kT+
on , kD+

on , kT−
on , and kD−

on , respec-

tively. The monomers at the filament tips are removed at rates depending on the subunit’s

state, kT+
off , kD+

off , kT−
off , and kD−

off .

Subunits within a filament switch between the different states. It is assumed that these

events occur at fixed rates and are independent of the states of neighboring subunits. This

is the so-called random hydrolysis model, which is supported by several lines of evidence.

Early experimental evidence were reported in [118, 119]. Also recent experiments, in which

a microfluidic device was used to track the depolymerization of individual actin filaments,

strongly argue in favor of the random hydrolysis model [52]. Stable monomers in the filament
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can switch spontaneously to the unstable state at rate ωde and back at rate ωre, see Fig. 2.4.

In the following, I concentrate on the steady state properties of the system. Thus, only

the case of a fixed monomer concentration is considered. In a dilute solution, the addition

rate of T-subunits at the plus end, for example, is a function of the monomer concentration

of this type, kT+
on = rT+

on cT , with rT+
on being the proportionality coefficient. This corresponds

to experimental conditions in which either the state transitions of the monomeric subunits

are much faster than the polymerization and the state dynamics within the filament, or in

which a small number of filaments is immersed in a huge reservoir of monomers.

In the simulations, only one filament is considered at a time. When it shrinks to length

zero, it is treated as an empty nucleation site to which free monomers can attach and form

a new filament. This corresponds to neglecting fluctuations of the filament number in the

stationary state. The general case of dynamic nucleation of filaments is treated in Chapter 4.

Let me note here that the results do not alter qualitatively.

Stochastic simulations of filament assembly are performed following the Gillespie scheme [87].

The filament is represented as a linear array of variable length with entries ’0’ or ’1’, repre-

senting the state of the nucleotide (’T’ or ’D’) that is bound to the respective monomer in

the filament. In each simulation step, first, the total rate of changes of the system’s state,

ωtot, is determined as the sum of all possible transition rates. Then, the time increment until

the next event is drawn from an exponential distribution with an average given by 1/ωtot.

I used the Mersenne twister as a random number generator [120] throughout all numerical

analyses. A second random number is drawn from a uniform distribution to determine the

microscopic transition that has occurred.

Simulations start with a filament of length zero. The system is then evolved for 106s

simulated time to suppress any transients. The state of the system is sampled at intervals of

length tsamp. The value of tsamp needs to be large enough to avoid correlations between two

successive samples. If not indicated otherwise, a time-step of tsamp = 5/ωPD was chosen, since

ωPD is usually the smallest non-zero rate that was used. The shown results were determined

from an ensemble of at least 106 samples.

Under which conditions can the filament be expected to display treadmilling dynamics?

First, the stable type of monomers has to polymerize into filaments, that is kT+
on /k

T+
off =

kD+
on /k

D+
off > 1. At the same time, the unstable type is preferentially in the monomeric form,

kD+
on /k

D+
off = kD−

on /k
D−
off < 1. Beyond that, the plus end needs to display a net polymerization,

which can be ensured if free T-monomers are added more rapidly than the tip monomer

switches to the D-state, kT+
on � ωde. At the minus end, T-monomers have to polymerize

much slower such that the switching to D-state occurs at a significant rate, kT−
on . ωde. Only

then, monomers can effectively be removed from the minus end. This reasoning already
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Figure 2.5: Examples for treadmilling filaments. a) Stationary filament length distributions with
rates, taken from Table 2.1. For both parameter sets, unimodal filament length distributions
are found. The dashed lines give the respective typical filament length Ltyp as determined
by Equation (2.50). The inset illustrates the treadmilling dynamics of the filaments. In both
cases, the filaments elongate constantly at the plus end (closed symbols) while monomers are
lost at the minus end (empty symbols), thereby moving through space. b) The local probability
to find a T-subunit, Θi at position i along the filament. Symbols were obtained by averaging
over all filaments having at least length i. The dashed line gives the gradient as determined
from the delta-approximation, the solid line follows from the Poisson-approximation, see text.
[23] c©AIP (2013)

suggests that the probability to find a T-monomer at the plus end should be larger than the

probability to find one at the minus end.

Figure 2.5 a) presents two examples of simulations that resulted in constantly treadmilling

filaments. The inset of the figure shows how plus and minus end of the filament steadily

move into the direction of the plus end. The filament length distribution is clearly unimodal

in both cases and therefore differs strongly from the exponential form of equilibrium poly-

mers. In Figure 2.5 b), the distribution of T-monomers along the filament, Θi, is displayed,

showing clearly that these monomers accumulate at the filament’s plus end. This gradient

generates a length-dependent depolymerization rate that is responsible for the unimodal

length distribution of filaments.

According to the basic assumption that the attachment and detachment rates are essen-

tially determined by the state of the monomer, the equilibrium constants were chosen to be
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Rates Figure 2.5 Figure 2.5 Figure 2.11 Ref. [29] Figure 2.14 Figure 2.14
squares circles squares circles

kT+
on 1 0.8 kT+

off · c
T 7.4 · cT 0.962 1.036

kD+
on 10−5 10−5 4 · 10−5 · cT 3.8 · cD 0 0

kT−
on 0.01 0.008 0.01 · kT+

off · c
T 0.56 · cT 0.0728 0.0784

kD−
on 2 · 10−5 2 · 10−5 8 · 10−5 · cT 0.16 · cD 0 0

kT+
off 0.5 0.25 variable 0.9 0.9 0.9

kD+
off 0.5 2.5 40 1.5 1.5 1.5

kT−
off 0.005 0.0025 0.01 · kT+

off 0.19 0.19 0.19

kD−
off 1 5 80 0.26 0.26 0.26
ωde 0.05 0.01 1 0.0068 0.0068 0.0068
ωre 10−6 10−6 0 0 0 0

cT variable 0.13µM 0.14µM
cD 0µM 0µM

Table 2.1: Values of the rate constants used for the two-state model in this section. The values
in the first two columns are examples that comply with Equations (2.20) and (2.21). The
rates in the third column were measured by Kuhn and Pollard for actin in vitro [29]. In these
experiments, the ATP-G-actin concentrations remain free parameters of the model. The rate
for ωde was determined in an independent experiment [52], the rate ωre was assigned. All rate
constants are given in s−1.

the same for both filament ends, that is,

kT+
on

kT+
off

=
kT−

on

kT−
off

(2.20)

and

kD+
on

kD+
off

=
kD−

on

kD−
off

. (2.21)

Note that Equations (2.20) and (2.21) are equivalent to conditions (2.17). As a consequence,

unimodal length distributions can emerge also in the absence of cooperative effects during

monomer binding and/or unbinding.
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Figure 2.6: The average filament length and the standard deviation of the distribution as a
function of simulated time. a) Results of simulations with parameters are as in Figure 2.5.
Solid lines represent the average filament length, the dashed lines the standard deviation of
the distribution. The fact that the standard deviation is much smaller than the average length
is an indicator of unimodal length distributions. b) The average degree of polymerization
for various concentrations of ATP-actin nucleated by 4 µM polymeric ATP-actin. ∆cf is the
increase of the concentration of polymeric actin. Initial concentrations of monomeric actin
were 4 µM (4), 8 µM (�), 12 µM (×), and 16 µM (•). The starting points were arranged so
that a superimposition of the curves were achieved. Subfigure b): Reprinted with permission
from [121]. c©1986 American Chemical Society.

2.3.1 Relaxation of the Distribution’s First and Second Moment

At this point let me briefly describe how the average and the standard deviation of the

filament length distribution approache their stationary values. Figure 2.6 displays both

values as a function of simulated time for the two parameter sets that were already used

in Figure 2.5. Initially, the average filament length grows linearly with time and saturates

when it approaches its stationary value. The standard deviation of the length distribution

shows a more complex behavior. After an initial slow increase, it speeds up at intermediate

times before it eventually saturates.

The time course of the average filament length is reminiscent of what was found for the

polymerization of actin [121–123]. Note, however, that for Figure 2.6, the time average of a

single isolated filament was recorded. It will be shown in Chapter 4, that the time course

of polymerization remains qualitatively the same when an ensemble of filaments in a finite

reservoir of monomers is considered.

The unimodal form of the distributions can already be appreciated by the observation that
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in stationary state, the average filament length is much larger than the standard deviation

σ of the distribution. For exponential distributions like the one given by Equation (2.5), one

expects σ to be of the same order as 〈L〉, since

σ =
√
〈L〉 (1 + 〈L〉) 〈L〉�1−→ 〈L〉. (2.22)

In both cases, the distribution is reasonably close to the stationary state after 10/ωde. To

avoid transients, it should therefore be appropriate to wait for 106 simulated seconds before

taking samples even if the rate ωde is as low as 10−4s−1. In the following, only the steady

state will be investigated.

2.3.2 Shape of the Distribution and Quality of Length Regulation

From a semi-log plot of the length distribution, it becomes obvious that the length distribu-

tion consists of a Gaussian and an exponential part, see Fig. 2.7, a). The shape can come

about as the result of a convolution of a Gaussian with an exponential function. In fact, the

distribution is well approximated by

P(x) = N e−x/λ
x∫

−∞

dx′ex
′/λ−(x′−µ)2/2σ2

, (2.23)

see Fig. 2.7 a). Here, N is a normalization constant such that
∫∞

0
P(x)dx = 1.

Such a distribution emerges, for example, for the sum of two independent random variables

with an exponential and a Gaussian distribution, respectively. Let u ≥ 0 be a random

variable with a probability density Pu(u) = e−u/λ/λ. Furthermore, let v ∈ R be a Gaussian

random variable independent of u with distribution Pv(v) = e−(v−µ)2/2σ2
/
√

2πσ, where λ, µ,

and σ being positive constants. Then, the probability distribution of the variable x = u+ v

is given by the convolution of Pu and Pv:

P(x) =
1√

2πσλ

∞∫
−∞

dv

∞∫
0

du e−u/λe−(v−µ)2/2σ2

δ(x− u− v)

=
e−x/λ√
2πσλ

x∫
−∞

dv ev/λ e−(v−µ)2/2σ2

.

Note, that since x is identified with the filament length, this expression is only used for
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Figure 2.7: The shape of the filament length distributions. a) The filament length distribution
as in Figure 2.5 in a semi-logarithmic plot. It is well fitted by a convolution of a gaussian with
an exponential part (solid line). b) The fitting parameter λ as a function of typical length
excursions before a phosphate release, 〈νa〉/ωde. The dashed line is given by λ = 1.64 〈νa〉/ωde.
Except for ωde, the parameters are as for the circles in Figure 2.5. [23] c©AIP (2013)

x ≥ 0.

These considerations suggest that the length distribution found numerically above results

from two processes acting on different time-scales. All processes involved in the filament

dynamics are a priori Poissonian. The fast processes among them essentially mix to the

Gaussian part of the distribution, while there must be one slow process retaining its expo-

nential characteristics. The slowest relevant processes are transitions between the T- and

the D-state, such that λ is expected to be given essentially by the net gain in filament length

during the waiting times between phosphate release at the minus end, 〈νa〉/ωde. Numerical

analysis confirms a strong correlation of λ with this expression, see Fig. 2.7 b). Consequently,

for these parameters, whenever a T-subunit is present at the pointed end, it is in general

first transformed to a D-subunit before it is eventually removed.

To gain further insight in treadmilling and unimodal filament length distributions, the

two-state model is now analyzed in detail. First, the T-state gradient along the filament

is determined as a function of the probability Θ1 of having a T-subunit at the barbed end.

Then the average growth rate is expressed in terms of Θ1 from which Θ1 can determined self-

consistently. Finally, the probability of having a T-subunit at the pointed end is determined

from which the average disassembly rate can be deduced. Having access to theses quantities,

the typical filament length can be determined by equating the average assembly rate at the

barbed end with the length-dependent average disassembly rate at the pointed end.
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2 The Treadmilling Phenomenon

2.3.3 The Stability Gradient

For treadmilling filaments such as those introduced in Figure 2.5 a), the probability to find

a subunit in the T-state is higher near the plus end than at the minus end, as expected, see

Figure 2.5 b). In order to estimate how the density of T-subunits relaxes along the filament,

a filament that elongates at the plus end with a constant velocity 〈νa〉 is considered.

After integration into the filament, a monomer changes its state at rates ωde and ωre,

respectively. The probability Θn of having a T-subunit at lattice site n ≥ 1 can now be

calculated, where n = 1 corresponds to the plus end. Recall that the subunits of a filament

are assumed to be independent from each other. The probability PT (t) to find a subunit in

the T-state a time t after its incorporation into the filament thus evolves according to

d

dt
PT = −ωdePT + ωre (1− PT ) . (2.24)

For a subunit incorporated at time t = 0, the initial condition is PT (t = 0) = Θ1. It follows

PT (t) =
ωre

ωde + ωre

+

(
Θ1 −

ωre

ωde + ωre

)
e−(ωde+ωre)t . (2.25)

From the time-dependent probability for a single subunit, the gradient of T-monomers

along the filament can be inferred. If 〈νa〉 denotes the average rate of monomer addition at

the plus end, the distance x of a monomer from the plus end at time t after incorporation

can roughly be approximated by

x = 〈νa〉t. (2.26)

The probability to find a T-monomer at site n along the filament is thus given by

Θn = PT ((n− 1)/〈νa〉). (2.27)

From Equation (2.25) one obtains the characteristic length Λ of the exponential gradient,

Λ =
〈νa〉

ωde + ωre

. (2.28)

This approximation neglects all stochastic fluctuations in the polymerization of monomers

and fluctuations by the state transitions. It will be shown below that assuming a Poisso-

nian addition of monomers to the plus end indeed only changes the gradient of T-subunits

marginally. Since the direct correlation of the subunit’s age to its distance from the plus end

by Equation (2.26) is easier to handle, it is used in the following analysis.
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2.3.4 The Plus End

The next step is to determine the average attachment rate at the plus end. It is given by

the sum of all attachment rates minus all detachment rates, that is,

〈νa〉 = kT+
on + kD+

on −Θ1k
T+
off − (1−Θ1)kD+

off . (2.29)

To determine the value of Θ1 its time evolution is considered. Employing a mean-field ansatz

to replace the joint probability of finding monomer 1 and 2 in the T-state by Θ1Θ2, one finds

d

dt
Θ1 = (kT+

on + ωre)(1−Θ1) + kD+
off Θ2(1−Θ1)− kT+

off (1−Θ2)Θ1 − (kD+
on + ωde)Θ1 . (2.30)

The first term describes addition of a T-subunit to a D-subunit as well as the transformation

of a D-subunit into a T-subunit at the plus end. The second term accounts for removal of a

D-subunit from the plus end with the new plus end being a T-subunit. The remaining terms

account for the corresponding processes that lead to a loss of a T-subunit at the plus end.

Using

Θ2 = (1− e−1/Λ)ωre/(ωde + ωre) + Θ1e−1/Λ, (2.31)

see Equation (2.25), the steady state value of Θ1 can be calculated from Equation (2.30).

In the limit of large average subunit addition rate as compared to the rate of state changes,

Λ� 1 and Θ1 ≈ Θ2. In this case, one gets an explicit expression for Θ1, namely

Θ1 =
kT+

on + ωre

kT+
on + kD+

on + ωre + ωde

(2.32)

for kD+
off = kT+

off and

Θ1 =
1

2

[
1− kD+

on + kT+
on + ωre + ωde

kD+
off − k

T+
off

+

√
1 + 2

kT+
on − kD+

on + ωre − ωde

kD+
off − k

T+
off

+
(kT+

on + kD+
on + ωre + ωde)2

(kD+
off − k

T+
off )2

]
(2.33)

otherwise. By using Equations (2.28) and (2.29), one gets explicit expressions for 〈νa〉 and

Λ.

Figure 2.8 compares the position of the plus end for both examples presented in Figure 2.5

with the expected positions determined by Equations (2.29) and (2.33). In both cases, the

analytic results give good estimates of the polymerization velocity. As expected, solving
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Figure 2.8: Comparison of treadmilling velocities to analytic predicitons. a) The position x of the
plus end as a function of time. Symbols are results of stochastic simulations. The dashed black
line shows the solution of Equations (2.29) and (2.33), the solid gray line also takes the state of
the second monomer into account, see text. b) The average depolymerization rate as a function
of the filament length for both distributions shown in Figure 2.5. Symbols represent the results
of stochastic simulations. The dashed line follows from Equation (2.40), complemented by the
effect of the cap of subunits that polymerize at the minus end. [23] c©AIP (2013)

Equations (2.28), (2.29), (2.30), and (2.31) simultaneously leads to a better approximation.

2.3.5 The Minus End

The calculation of the average detachment rate at the minus end is more involved than

the average attachment rate at the plus end. To derive approximate expressions, first the

detachment of monomers that have been added to the filament at the plus end is considered.

In a second step, the contribution of monomers that have been incorporated at the minus

end will be determined.

To calculate the average detachment rate at the minus end of monomers added to the

filament at the plus end, the case kT−
on = kD−

on = 0 is analyzed. Similar to Equation (2.29),

their average depolymerization rate ν̂d can be written as

ν̂d = kD−
off + T−(L)

(
kT−

off − k
D−
off

)
(2.34)

with T− being the probability to find a T-subunit at the minus end. In the stationary state,

this value is given by [14][
ωde + kT−

off (1−ΘL−1)
]
T−(L)−

[
ωre + kD−

off ΘL−1

]
(1− T−(L)) = 0 . (2.35)
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This equation reflects that the probability of having a T-subunit at the minus end can

change either by nucleotide exchange in the subunit at the tip or by its detachment. Using

Equation (2.27) to determine ΘL−1, this equation can be solved for T−:

T−(L) =
ωre + kD−

off ΘL−1

ωre + ωde + kD−
off ΘL−1 + kT−

off (1−ΘL−1)
. (2.36)

Note, that the value of T− is in general different from the value of ΘL. This is clearly

illustrated by considering the limit of kD−
off → ∞. In that case, T− = 1 as any D-subunit

reaching the minus end is instantly removed, while clearly ΘL < 1.

The same result can be obtained when considering the fate of the last monomer of the

filament. Its state is given by

d

dt

(
p0

p1

)
=

(
−ωde − kT−

off ωre

ωde −ωre − kD−
off

) (
p0

p1

)
, (2.37)

with the probabilities p0(t) and p1(t) for the monomer to be in the stable or unstable state,

respectively. Note that probability conservation for all times only holds if a probability px(t)

is introduced that accounts for the possibility that the monomer has been removed from the

filament prior to time t. Then, p0(t) + p1(t) + px(t) = 1 for all t.

These probabilities are connected to the current filament length L via the initial conditions.

The probabilities p0(0) and p1(0) are given by the probability to find a T-subunit at the

second to last position in the filament at the moment, when the subunit at the tip is removed.

The state of the second to last monomer is well approximated by p0(0) = ΘL−1 and p1(0) =

1−ΘL−1.

The rate at which the monomer at the minus end detaches is then given by −∂t(p0(t) +

p1(t)) and the average lifetime 〈τ〉 of a monomer at the minus end can be determined by

using

〈τ〉 =

∞∫
0

dt (p0(t) + p1(t)) . (2.38)

The effective depolymerization velocity ν̂d then follows since it is nothing else than the inverse

of the monomer’s lifetime,

ν̂d = 〈τ〉−1 . (2.39)
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An explicit expression for ν̂d(L) is easily derived,

ν̂d(L) =
(kD−

off + ωre) (kT−
off + ωde)− ωde ωre

ωde + ωre + ΘL−1k
D−
off + kT−

off (1−ΘL−1)
(2.40)

and the result agrees with Equation (2.34) when using Equation (2.36).

Consider now the case that subunits can also be added to the minus end. These subunits

form a ’cap’ with a distribution of nucleotide states that is distinct from the rest of the

filament. The cap can be treated as a factor that transiently inhibits subunit removal at

the minus end. If the probability that the minus end carries a cap is α, one obtains the

average depolymerization rate 〈νd〉 from Equation (2.40) by replacing the depolymerization

rates kD−
off and kP−

off in the calulation above by kD−
off (1−α) and kP−

off (1−α), respectively. Such

a cap appears at constant rate kP−
on + kD−

on .

In order to determine the probability α in the stationary state, the problem of filaments

with one inert and one dynamic end which is growing and shrinking is considered, see

Fig. 2.9 a). The assembly and disassembly rates of the cap are those at the minus end and

the subunits can switch between the D- and the T-state at rates ωde and ωre, respectively,

as before. The length dynamics of a cap is thus reminiscent of that of microtubuli growing

form a nucleating site [107]. In contrast to the full filament system, I find here numerically

that the effective subunit attachment and detachment rates are, on average, independent

of the cap length. This implies that the length distribution C(L) is exponential such that

C(L) = (1− α)αL.

Simulations of the cap dynamics indeed show that the length distributions C(L) are expo-

nential, C(L) = (1− α)αL, see Figure 2.10 a). Here, 0 < α < 1 is the probability of finding

a cap with length L > 0 and the average cap length 〈L〉 is obviously 〈L〉 = α/(1−α). Since

the length distribution is exponential, the steady state should be described by effective rates

of subunit addition and removal that are independent of the cap length. Consequently, the

probability T− that the tip monomer is in the T-state should be independent of the filament

length, implying that the probability of finding a cap with a T-monomer at the tip is αT−.

Furthermore, it was observed in the simulations that the probability TL,i that monomer i

of a cap of length L is in the T-state depends exponentially on i: TL,i = T−β
L−i for some

0 < β < 1 and 0 < i ≤ L.

Now consider the mean number N of T-monomers in the cap. By definition

N =
∞∑
L=1

C(L)
L∑
i=1

TL,i =
αT−

1− αβ
. (2.41)
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Figure 2.9: The monomer cap at the filament’s minus end. a) A sketch of a filament cap with
an inert end at the left and an active minus end at the right. Addition, removal, and transition
rates are defined as for the two-state model, see Figure 2.4. [23] c©AIP (2013) b) A schematic
representation of the definition of the fluxes between the three states of the cap introduced in
the text.
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Figure 2.10: Comparison of analytic results and numerical calculations for the capping proba-
bility α. a) Three examples of the cap length distribution for kT−

on = 0.15 (◦), 0.22 (♦), and
0.25 (�). Other parameters are kD−

on = 0, kT−
off = 0.2, kD−

off = 1, ωde = 0.01, and ωre = 0.
b) The probability α of finding a cap at the filament’s minus end as a function of kT−

on for
three different values of ωde = 0.01 (◦), 0.05 (�), and 0.2 (♦). Other parameters kT−

off = 0.2,

kD−
off = 10, kD−

on = 0, and ωre = 0. Solid lines are the result of the analytic approximations, see
text. [23] c©AIP (2013)
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Balancing the binding rate of T-monomers with their unbinding rate, one finds

kT−
on + ωre(〈L〉 −N) = kT−

off αT− + ωdeN . (2.42)

From these two expressions, N can be eliminated and one obtains

αT− =
(1− α)kT−

on + αωre

(1− αβ)kT−
off + ωde + ωre

1− αβ
1− α

, (2.43)

which can be seen as an expression for T− in terms of α and β. To determine their values,

consider the probabilities of a cap with a T- and with a D-monomer at the tip as well as of

having no cap, see Figure 2.9. In steady state the probability fluxes into and out of one of

these states must balance1. Let j0T denote the probability flux from the no cap situation to

one having a cap with a T-state tip and define the other fluxes analogously. Consequently,

jT0 − j0T = j0D − jD0 (2.44)

and

jT0 − j0T = jDT − jTD . (2.45)

Using

j0T = (1− α) kT−
on

j0D = (1− α) kD−
on

jT0 = αT−(1− α)kT−
off

jD0 = α(1− T−)(1− α)kD−
off ,

from Equation (2.44) follows

αT− =
kD−

on + kT−
on − αkD−

off

kT−
off − k

D−
off

, (2.46)

Replacing αT− in Equation (2.43) by (2.46), it gives α as a function of β.

The missing condition determining the value of β can be obtained from Equation (2.45).

The currents jDT and jTD involve the two-point correlation functions CTT and CTD of

monomer L − 1 being in the T-state and the tip monomer being in the T- and D-state,

1In general, these fluxes will not vanish, though, because the system is out of equilibrium.
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respectively. Explicitly

jTD(CTT) = αT−(ωde + kD−
on + kT−

off α(1− CTT/T−))

jDT(CTD) = α(1− T−)(ωre + kT−
on + kD−

off αCTD/(1− T−)) .

Normalization imposes

CTT + CTD = βT− . (2.47)

The two-point correlation function can thus be expressed in terms of β, but still one more

relation is needed to determine the value of β. One might be inclined to use a mean-field

approximation and replace the two-point correlations by a product of probabilities as was

done for the plus end. However, in the present case this is not appropriate since the rates ωde

and ωre markedly affect the correlation. Instead, consider the ratio between the currents jTD

and jDT. Replacing in the respective expression for these currents CTT/T− and CTD/(1−T−)

by an averaged correlation ξ with

ξ =
kD−

off CTD + kP−
off CTT

kP−
off T− + kD−

off (1− T−)
, (2.48)

Numerically, one finds that the value of jTD/jDT does not change. This yields the last

relation necessary to determine the values of β and thus α:

jTD(CTT)

jDT(CTD)
=
jTD(ξ)

jDT(ξ)
. (2.49)

Thus, the six Equations (2.43), (2.45), (2.46), (2.47), (2.48), and (2.49) fully determine

the system with the six unkowns α, β, T−, cTT, cTD, and ξ. These equations can be solved

simulataneously, thereby determining the fraction of time α a cap is present at the minus

end. This calculation provides an excellent approximation for large values of α but decreases

in quality when α is small, see Figure 2.10.

In Figure 2.8 b), the inverse of the average time a monomer spends at the pointed end is

displayed, that is, the effective depolymerization rate, as a function of the filament length.

The numerical results agree nicely with the length dependence that was derived analytically

from the gradient of T-monomers, shown in Figure 2.5 b). As anticipated above, the rate

increases with the filament length and thus leads to the unimodal length distribution.
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2.3.6 Approximative Determination of the Typical Filament Length

Having access to analytic expressions describing the average net polymerization rate, the

relaxation length of the T-state gradient along the filament, and the effective depolymeriza-

tion rate at the minus end as a function of filament length, the typical filament length Ltyp

in the regime of unimodal length distributions can be calculated. In steady state the average

polymerization rate 〈νa〉 must equal the average depolymerization rate 〈νd〉(L), such that

〈νa〉 = 〈νd〉(Ltyp) . (2.50)

Note that 〈νd〉 monotonically increases with L, because 〈νd〉 increases with decreasing ΘL

and ΘL decreases with increasing L. If 〈νd〉(L = 0) < 〈νa〉 < 〈νd〉(L = ∞), the above

equation implicitly determines a finite typical length Ltyp. If, however, 〈νd〉(L = 0) > 〈νa〉,
then the filaments will disassemble faster than they grow, which will result in an exponential

length distribution with typical length Ltyp = 0. Also, if 〈νa〉 > 〈νd〉(L =∞), then filaments

will grow faster than they shrink and the typical filament length will diverge.

Note furthermore that the solution of Equation (2.50), Ltyp, coincides with the most

probable filament length, that is, the position of the maximum of the length distribution,

as can be seen for the two examples shown in Figure 2.5 a). In the case of an exponential

length distribution, the typical filament length is thus zero while the filaments have still a

well-defined average length 〈L〉 > 0.

In Figure 2.11a) a phase diagram in terms of the average filament length is shown as

a function of the concentration cT of free T-monomers and of the T-subunit detachment

rate kT+
off at the barbed end. Here, it was assumed that the attachment rates, kT+

on and

kT−
on , of T-monomers at the plus and minus ends are proportional to cT , which is true for

dilute solutions. For low depolymerization speeds and low T-subunit concentrations, the

filament length is exponentially distributed (blue region). For a higher polymerization rate,

the average filament length grows and the distribution becomes unimodal. Further increase

of the polymerization activity then leads to diverging filament lengths.

In comparison, Figure 2.11 b) displays the typical filament length derived from Equa-

tion (2.50) for the same parameters. The agreement between both plots shows the overall

good agreement between stochastic and analytic results, given the number of approximations

that were applied.
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Figure 2.11: The typical filament length Ltyp as a function of the T-subunit detachment rate
kT−

off and T-monomer concentration cT . a) Numerical results, b) Approximate typical length
according to Equation (2.50). The value of the typical filament length is color coded, blue
indicates exponential distributions, Ltyp = 0, and red a diverging typical length. The white line
indicates the approximate boundary between regions of exponential distributions and length
regulation, the black line between length regulation and unbounded growth. Parameters are
given in Table 2.1. Note that the rates are chosen such that Equations (2.20) and (2.21) hold
for all parameters. [23] c©AIP (2013)

2.3.7 Age Distributions of Monomers And Applicability of

Delta-Approximation

In the above section, the time a monomer has spend within the filament was directly linked

to its distance from the plus end via the average polymerization velocity, see Equation (2.26).

Thereby, the fluctuations that arise from the stochasticity of subunit addition were neglected.

Let me comment here on why this approximation is applicable for the T-state gradient on

the filament.

If polymerization occurs with a constant rate, νa, it can be described by a Poisson process.

The number i of monomers polymerized within a fixed time t is thus a Poisson distributed

stochastic variable,

Poiss(i|νa) =
νia
i!

e−νa .

Conversely, the age t of a monomer at a fixed distance i from the plus end is distributed

following an Erlang-distribution,

Erl(t|νa, i) =
νia t

i−1

(i− 1)!
e−νat t ≥ 0. (2.51)
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Figure 2.12: The distribution of monomer age for different filament length for both example
parameter sets given in Table 2.1. Symbols represent stochastic results. The age of a monomer
at the minus end was recorded immediately after the last monomer was removed. Only subunits
that were integrated into the filament at the plus end were taken into account. The solid lines
show the Erlang distribution to the parameters νa and L for comparison.

Figure 2.12 shows that the age distribution in the filament is indeed well approximated

by the Erlang distribution. The deviation of the averages is due to the selective removal of

occupied monomers whose appearance correlates with the age of the monomer [124]. Taking

the stochasticity of polymerization into account by the Erlang distributed monomer age, the

average state of a monomer is given by

Θ̂i =

∞∫
0

dt
νia t

i−1

(i− 1)!
e−νatPT(t)

=
ωre

ωde + ωre

+

(
Θ1 −

ωre

ωde + ωre

)
νia

(νa + ωde + ωre)i
. (2.52)

The thus obtained T-state gradient is in the following called the ’Poisson-’ or the ’Erlang-

approximation’.

For the direct correlation (2.26) that was used above, the kernel of the integral in Equa-

tion (2.52), is the delta-distribution, δ (i− νat). Therefore, it is called in the present analysis

the ’delta-approximation’ of the T-state gradient. From Figure 2.5, it can be seen that the

difference between the delta- and the Poisson- approximation is negligible. It can in general

be expected that the approximation works well as long as ωde + ωre � νa, since then

νia
(νa + ωde + ωre)i

= e− ln (1+(ωde+ωre)/νa)i ≈ e−(ωde+ωre)i/νa .
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2.4 Application to Actin polymerization

This is also exactly the limit in which long filaments are to be expected. Only if Λ =

〈νa〉/(ωde + ωre) � 1, the gradient stretches over more than only a few monomers and the

length dependency of the depolymerization rate varies slowly with filament length. Since

the rate of phosphate release from actin monomers in filaments was determined to be much

slower than the monomer removal rates, this assumption should be appropriate for the actin

polymerization. In the following section, the potential of actin filaments to display intrinsic

length regulation is investigated in more detail.

2.4 Application to Actin polymerization

After the two-state model was analysed on a theoretical basis, I now want to investigate the

model’s implications for experimental findings. The analysis concentrates on experiments

that were performed on actin in vitro. In a first step, one of the few observed unimodal actin

length distributions is studied. Then, the conditions under which unimodal filament length

distributions are expected to occur are investigated. Step-by-step, the model is extended to

take into account more details of actin polymerization. Eventually, it will become clear that

the observation of unimodal filament length distributions is indeed difficult under in vitro

conditions.

2.4.1 The Effect of α-Actinin on the Actin Length Distribution

In this section, the two-state model is applied to an experimental situation in which the

cross-linking protein α-actinin was added to a solution of F-actin [14].

Biron and Moses obtained length distributions before and after adding α-actinin to an actin

solution [125]. In addition, the solution contained ATP and gelsolin to control the number of

actin filaments. The protein α-actinin is found in filopodia and lamellipodia [9, 126], where it

acts to bundle actin filaments. A few minutes after adding α-actinin, the initially exponential

distribution narrowed and became unimodal2, see Figure 2.13. While short filaments tended

to grow, long filaments shortened. Furthermore, the average filament length decreased,

indicating a higher actin turnover rate and an overall destabilizing effect of α-actinin on the

actin polymers.

The two-state model is applied to such a situation by identification of the stable state

with an empty subunit, while unstable subunits are bound to an α-actinin molecule. Actin

filaments are assumed to treadmill by constant addition of empty subunits at the plus

end at a rate kT+
on . Initially, subunits are lost at the minus end at rate kD−

off > kT+
on ,

2Measurements were made on filaments outside bundles.
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Figure 2.13: The filament length distribu-
tion as measured by Biron and Moses [125]
at different times after the addition of α-
actinin. The solid curve gives the corre-
sponding distributions obtained from the
presented model. Parameter values: kT+

on =
0.9s−1, kT−

off = 0.64s−1, kD−
off = 1s−1, ωde =

0.04s−1, ωre = 0.005s−1. [14] c©IOP (2009)

leading to a stationary exponential dis-

tribution of filament length. When α-

actinin is added, the net depolymeriza-

tion rate increases since α-actinin bound

monomers are removed from the minus

end at rate kD−
off . Binding and unbinding

of α-actinin to and from filament sub-

units occur at rates ωde and ωre, respec-

tively. For the purpose of this investiga-

tion, the removal of subunits at the plus

end as well as the addition of subunits

at the minus end are neglected, kD+
on =

kT+
off = kD+

off = 0 and kT−
on = kD−

on = 0.

Thus, kT+
on , kT−

off , and kD−
off must be con-

sidered effective rates. Figure 2.13 shows

how the the evolution of the length dis-

tribution can be fitted by a single set of

parameters for the so modified two-state

model.

Usually, α-actinin is not thought to

act as a length regulating protein, al-

though some evidence exists, that it par-

ticipates in the control of actin filament

length in striated muscle [127]. Concern-

ing the results of Biron and Moses, ex-

planations have been proposed that rely

on minimizing the equilibrium free en-

ergy of bundled polymers [128] or on the

protective effect of bundles with respect

to filament severing [129]. As shown in

Figure 2.13, the distributions at different

times can also be coherently explained by

direct subunit destabilization through binding of α-actinin.

A few remarks on the parameter values that were used are in order. The polymerization

velocity νa = 0.9s−1 is larger than expected. It corresponds to actin monomer concentrations

at which no stationary treadmilling should be obervable, as will be shown below. The
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increased density of monomers could, however, be the result of the assumed increase of the

depolymerization rate induced by α-actinin. The binding and unbindig rate constants of

α-actinin that were employed are somewhat small compared to values obtained from other

experiments [130]. This discrepancy indicates that the suggested mechanism of α- actinin

increasing the depolymerization rate at the minus end, might not be responsible for the

observed changes in the length distribution and should be reconsidered. Notwithstanding,

these results show that a mechanism effectively yielding a length dependent depolymerization

rate is able to consistently describe the time evolution of the length distribution.

2.4.2 Actin Polymerization Assuming Two Monomer States

The two-state model is also easily applied to actin filaments, making the stability of monomers

depend on the state of the bound nucleotide. The rates of subunit attachment and detach-

ment as well as for nucleotide exchange on subunits have been measured in several exper-

iments in vitro. The two-state model can now be used to infer the length distribution of

actin filaments in such setups. Kuhn and Pollard determined the rates of subunit addition

and removal at both filament ends for different phosphorylation states [29]. They measured

polymerization and depolymerization velocities in independent assays. The data was fitted

to a two- state model, taking into account a stable ATP/ADP-Pi state and an unstable

ADP-state of actin subunits in the polymer. The use of two monomer states is based on the

observation that ATP bound monomers are more stable within the filament as compared to

the ADP-Pi bound monomers. The determined removal rates of the dephosphorylated actin

subunits at the pointed end then differ significantly from the phosphorylated form. While

ADP-actin depolymerizes at 0.26s−1, ATP/ADP-Pi-actin is found to be removed from the

minus end at 0.19s−1 [29]. Since the rates at which monomers are added to the filament

depend on the concentration of free subunits, cT and cD remain free parameters of the model.

It is still under debate at which rate the phosphate is released from actin filaments. Under

the assumption of random hydrolysis, the measured dephosphorylation rates range from

ωde = 0.0026 s−1 [104] to ωde = 0.0068 s−1 [52]. Both values are much smaller than the typical

values for polymerization and depolymerization at which treadmilling is to be expected. To

be able to compare the various results in this section, a phosphate release rate of 0.0068 s−1

is used throughout. Variations of ωde in the experimentally determined range do not change

the results qualitatively. The re-phosphorylation of actin- bound ADP, on the other hand,

is negligible and is set to ωre = 0.

Figure 2.14 a) displays two filament length distributions that were found for different T-

monomer concentrations in the solution. Using the parameters presented in Table 2.1, the
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Figure 2.14: Stationary filament length distribution and treadmilling speed for the two-state
model. a) Stationary filament length distributions of the two-state model with experimentally
determined rates, taken from [29] and [52], see Table 2.1. One parameter set shows the results
for cT = 0.12, resulting in exponentially distributed lengths (squares), while the other one
shows a peaked distribution for cT = 0.14µM (circles). In both cases cD = 0. b) Average
monomer addition rate of plus (empty diamonds) and minus end (solid squares) as a function
of ATP- actin monomer concentration cT . Positive values indicate filament elongation, negative
values monomer loss at the respective end. The dashed line is given by v = kT+

on cT − kT+
off , the

polymerization speed of a homogeneous filament of T-monomers.

simulations show that the filaments grow on average at the plus end and that they shrink at

the minus end, see Figure 2.14 a) inset. When the free monomers in solution are assumed

to always be in the T-state, the ensuing filament length distribution is exponential up to a

monomer concentration of cT = 0.1375µM . Beyond that point, the distributions cease to be

exponential but the average filament length still stays bounded. A shallow maximum in the

distribution can be observed until filaments grow unrestrictedly at cT = 0.1425µM . Note

that the range of free T-monomer concentrations compatible with filament length regulation

becomes smaller if cD increases. The treadmilling of filaments can be observed independently

of the shape of the length distribution.

Let me note that the experimentally determined rates do not comply with conditions (2.20)

and (2.21). The reason might lie in neglecting the differences between ATP and ADP-

Pi bound monomers. I discuss below that the affinity of the phosphate to the monomer

at the filament tip differs also from its affinity to bulk subunits. Neglecting this effect

might also add to the experimental error. Both critical concentrations of the T-monomers

(cT+
c = 0.12µM and cT−c = 0.34µM), however, are smaller than the critical concentrations

of the D-monomers (cD+
c = 0.39µM and cD−c = 1.63µM), indicating that the state of the
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monomer still dominates the addition and removal at the filament ends.

In Figure 2.14 b), the dependence of the polymerization velocity on the concentrations

of free actin monomers in the buffer is explicitly accounted for. Positive values indicate

monomer addition, negative ones monomer loss. By variation of the concentration of free T-

subunits, four different regimes are found. In region I and II, filament length stays bounded,

either with exponential (region I) or peaked distributions (region II). When the concentration

cT lies in region III, filaments treadmill, but depolymerization at the minus end is not able

to fully compensate the polymerization at the plus end. In region IV, filaments grow at both

ends.

In region I and II, the growth velocity at the plus and minus end have equal modulus

but opposite sign: The same amount of monomers added to the plus end is removed at

the minus end, showing that such filaments show a stationary treadmilling dynamics. The

ensuing common velocity is called the treadmilling velocity.

Even though filaments show treadmilling in regions I-III, the interesting case of length

regulation appears only in region II. As could already be seen in Figure 2.14 a), the distribu-

tions in region II are rather broad, such that fluctuations still dominate the average filament

length.

The concentration range in which length regulation is possible under in vitro conditions

is only 5nM wide and will hardly be visible in experiments. Already slight fluctuations in

monomer concentration can lead to a qualitative change of the filaments’ behavior. In the

following, more detailed models are analyzed, particularly with regard to the quality and

robustness of the mechanism of filament length regulation.

2.4.3 Actin Polymerization Assuming Three Monomer States

The analysis of the two-state model suggests that treadmilling of actin filaments should be

observable in vitro. Due to the strong fluctuations, the possible intrinsic length regulation

on the other hand will be much harder to detect. In this paragraph, the influence of a third

monomer state on the length regulation mechanism is studied. As mentioned above, the

ATP- as well as the ADP-Pi-bound actin are distinct states in the filament. The hydrolysis

rate of the ATP molecules was experimentally determined to be 0.3s−1 [131]. Since this is

comparable to typical monomer addition and removal rates of treadmilling filaments that

were found for the two-state model, it can be expected that the hydrolysis also influences

the filament dynamics. The two-state model introduced above is complemented by a third

subunit state, the ’P-state’. All three subunit types have characteristic addition and removal

rates. Transitions within the filament are only allowed from the T- to the P- and from the
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Figure 2.15: A sketch of the three-states model. Monomers of three types are added to and
removed from the plus (left) and the minus end (right). White arrowheads stand for T-, gray
arrowheads for P-, and black arrowheads for D-subunits. Within the filament, T-monomers are
transformed into the P-state at rate ωTP and back at rate ωPT; monomers in the P-state turn
into D-states at rate ωPD and back at rate ωDP. At filament ends, the transition of the P- to
the D-state is faster and occurs at rate ω̄+

PD or ω̄−PD, respectively. The system is fully described
by these 18 rates. [23] c©AIP (2013)

P- to the D-state, see Figure 2.15.

The generalization of the calculations in Section 2.3 is straightforward. Let PT , PP , and

PD be the time dependent probabilities for a monomer in the filament to be in the T-, the

P-, or the D- state, respectively. Their dynamics is then given by

d

dt

 PTPP
PD

 =

 −ωTP ωPT 0

ωTP −ωPT − ωPD ωDP

0 −ωPD −ωDP


 PTPP
PD

 . (2.53)

The state distribution along the filament can be deduced using the delta-approximation to

correlate the monomer’s age and its position. The polymerization velocity follows from

〈νa〉 = kT+
on + kP+

on + kD+
on −Θ1k

T+
off −∆1k

P+
off − Π1k

D+
off , (2.54)

with Θi, Πi, and ∆i denoting the probability to have a T-, P-, or D-monomer at distance i

from the plus end. To determine Θ1, ∆1, and Π1 (and to determine an initial condition for
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Equation (2.53)), Equation (2.30) has to be modified:

d

dt
Θ1 = (kT+

on + ωPT)(∆1 + Π1) + kD+
off ∆1Θ2 − kT+

off Θ1(∆2 + Π2)− (kD+
on + kP+

on + ωTP)Θ1

(2.55)

d

dt
∆1 = (kD+

on + ωDP)(Θ1 + Π1) + kT+
off Θ1∆2 − kD+

off ∆1(Θ2 + Π2)− (kT+
on + kP+

on + ωTP)∆1.

(2.56)

Π1 then follows from Θi + ∆i + Πi = 1 for all i. The average lifetime of a monomer at the

minus end that was added to the plus end of the filament then follows from

d

dt

 p0

p1

p2

 =

 −ωTP − kT−
off ωPT 0

ωTP −ωPD − ωPT − kP−
off ωDP

0 ωPD −ωDP − kD−
off


 p0

p1

p2

 , (2.57)

instead of Equation (2.37). The determination of the time a cap of minus end polymerized

monomers is present is again much more involved. Here, we rely on an independent stochastic

computation of the three-state version of the model sketched in Figure 2.9.

Assuming the monomers to be bound to either ATP, ADP-Pi, or ADP, Fujiwara and

Pollard determined addition and removal rates of monomers in all three states [30]. Fig-

ure 2.16 a) shows two stationary filament length distributions for different concentrations of

free T-subunits using the parameters of Fujiwara and Pollard listed in Table 2.2. For both

parameter sets, filaments display treadmilling while only for one, filament length is regu-

lated. Figure 2.16, b) displays the probabilities for having a T, P-, or D-states at position i

in the filament. The amount of T-subunits drops rapidly with increasing distance from the

plus end. At intermediate distances, the P-state dominates and drops slowly towards the

minus end where the D-state monomers accumulate.

The numerically determined gradients only agree poorly with the values estimated from

the analytic calculations. One reason might be the very low polymerization velocity of about

0.06 monomers per second. At such low addition rates, the fluctuations of filament length

become important and it is not sufficient anymore to only take into account the states of

the first two monomers at the plus end [10, 29, 132]. The numeric results suggest that the

polymerization rate is twice the value estimated by the analytic approximation.

Similar to the case of the parameter set determined by Kuhn and Pollard, in Figure 2.17

the effective addition and removal velocities at plus and minus ends are shown as a function

of the concentration of free T-subunits in solution. The same four phases of polymerization

behavior can be observed as in the two-state model. The concentration range in which
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Figure 2.16: Stationary filament length distributions and state gradients in the three-states
model. a) Two examples of stationary filament length distributions of the three-states model
with rate constants from in vitro experiments, see Table 2.2. At cT = 0.04µM , the filament
length distribution is exponential (squares) but becomes peaked for cT = 0.055µM (circles). In
both cases, filaments show treadmilling dynamics (inset). b) Gradients of the three monomer
states along the filament for cT = 0.055µM . Symbols are results of stochastic simulations,
solid lines follow from Equation (2.53). For their calculation, the polymerization velocity was
derived from simulations. The characteristic length of the simulated gradient deviates from
analytic results roughly by a factor of 2.
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Rates Fig. 2.16 Fig. 2.16 Fig. 2.17 Fig. 2.18 a) Fig. 2.18 b) Fig. 2.19 Fig. 2.19 Fig. 2.19
squares circles circles diamonds squares

kT+
on 0.464 0.638 11.6∗ · cT 11.6∗ · cT 11.6∗ · cT variable variable variable
kT−

on 0.052 0.0715 1.3∗ · cT 1.3∗ · cT 1.3∗ · cT 0.01 0.01 0.01
kP+

on 0 0 3.4∗ · cP 3.4∗ · cP 3.4∗ · cP 0 0 0
kP−

on 0 0 0.11∗ · cP 0.11∗ · cP 0.11∗ · cP 0 0 0
kD+

on 0 0 2.9∗ · cD 2.9∗ · cD 2.9∗ · cD 0 0 0
kD−

on 0 0 0.09∗ · cD 0.09∗ · cD 0.09∗ · cD 0 0 0

kT+
off 1.4∗ 1.4∗ 1.4∗ 1.4∗ 1.4∗ 1.5 1.5 1.5

kT−
off 0.8∗ 0.8∗ 0.8∗ 0.8∗ 0.8∗ 0 0 0

kP+
off 0.16† 0.16† 0.16† 0.16† 0.16† 0.2 0.2 0.2

kP−
off 0.02∗ 0.02∗ 0.02∗ 0.02∗ 0.02∗ 0 0 0

kD+
off 5.8† 5.8† 5.8† 5.8† 5.8† 5 5 5

kD−
off 0.25∗ 0.25∗ 0.25∗ 0.25∗ 0.25∗ 10 · kT+

on 10 · kT+
on 10 · kT+

on

ωTP 0.3§ 0.3§ 0.3§ 0.3§ 0.3§ 0.3 0.3 0.3
ωPD 0.0068† 0.0068† 0.0068† 0.0068† 0.0068† 0.02 0.02 0.02
ωPT 0 0 0 0 0 0 0 0
ωDP 0 0 0 0 0 0 0 0

ω̄−PD 18∗ 0 0.1 2
ω̄+

PD 1.8† 1.8† 0 1 20

cT 0.04µM 0.55µM variable variable variable
cP 0 0 0 0 0
cD 0 0 0 0 0

Table 2.2: Parameter values for polymerization and depolymerization of all three types of
monomers to plus and minus end as determined by Fujiwara et al., complemented by the
hydrolysis and phosphate release rate from independent measurements. The values labeled
with ∗ are taken from [52], † are from [30], ‡ are from [133], and § are from [131]. All rate
constants are given in s−1, all concentrations in µM .
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Figure 2.17: Polymerization velocities at both filament ends for the three-states model, employ-
ing the monomer addition and removal rates measured by Fujiwara et al.[30]. Symbols show
the rates of plus (solid squares) and minus end (open diamonds) of the same filament. The
solid lines reproduce the results of the model of Vavylonis et al. [10]. [23] c©AIP (2013)

filament length regulation is possible is again very small and extends from 0.047µM to

0.062µM of T-monomers in absence of free P- and D-monomers.

Note that in region I, a regime is found where the treadmilling velocity decreases with

increasing monomer concentration. This behavior is a consequence of the fact that P-

monomers have a lower removal rate than T-monomers. In region I, the treadmilling velocity

is governed by the depolymerization rate since for exponential length distributions, the

filament often consists only of a single monomer that can be removed either from the plus or

the minus end. With increasing T-monomer concentration in solution, the average filament

length and thus the average lifetime of a monomer within the filament increases. Thereby,

also the chance that a T-monomer turns into a P-monomer increases. Since P-monomers

are removed at a slower rate than T-monomers, the treadmilling velocity slows down.

For comparison, the velocities of isolated filament ends in a solution of T-subunits is drawn

in the same plot. These curves reproduce the results of Vavylonis et al. [10], who investigated

the growth dynamics of semi-infinite filaments of ADP-actin in a solution of free ATP-actin

monomers. Besides the non- linear behavior of the velocity curves at v± = 0, they found

increasing length fluctuations at this point. It shows that in region III and IV, both filament

ends decouple with independent net polymerization speeds. Their length dynamics is then

exclusively determined by the addition and removal rates of monomers. The influence of the

state gradient then vanishes.
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Overall, the treadmilling velocities remain very low. The removal rate of D-monomers

from the minus end of 0.25 s−1 limits the maximum treadmilling velocity. In most cases,

however, the real treadmilling velocity is even smaller since the minus end cannot release

plus end polymerized monomers for a considerable amount of time. For the example shown

in Figure 2.16, the capping time amounts to 74%, reducing the net monomer release rate to

a quarter of the value it would have without monomer addition at the minus end.

2.4.4 Induced Switching at the Filament Ends

Before engaging into an analysis of the potential effects of accessory proteins on the filament

length distribution, let me introduce another important property of actin filaments that was

uncovered recently. Fujiwara and Pollard reported in 2007 that the inorganic phosphate has

a low affinity to the filament ends [30] but were unable to determine the rate of phosphate

release. Jégou et al. observed the growth and shrinkage of the plus end of the same filament

as monomer concentration was lowered [52]. From these experiments, they were able to

deduce the removal rates at the filament’s plus end as well as the phosphate release rates at

the tip and in the filament bulk. Jégou et al. established that the phosphate release of actin

subunits at the filament’s plus end is much faster than in the filament bulk.

Figure 2.18 shows how polymerization velocities change when end-induced phosphate re-

lease is included into the three-state model. In subplot a), only phosphate release at the plus

end is implemented. It leads to an effect that one might call ’reverse treadmilling’, since be-

tween cT = 0.124µM and 0.131µM , monomers are added to the minus and removed from the

plus end, see inset. Up to cT = 0.13µM , filament length is exponentially distributed. Beyond

this value, the dynamics of plus and minus end uncouple and filament length diverges.

If phosphate is released from the plus end at a higher rate than in the bulk, there is no

fundamental reason, why it should not also have a higher release rate at the minus end.

Indeed, Fujiwara and Pollard found that the affinity of the phosphate to the minus end is by

a factor of 10 smaller as compared to the plus end. Figure 2.18 b) illustrates the effect of a

plus end induced phosphate release rate ω̄+
PD = 10 ω̄−PD. The region of reversed treadmilling

vanishes but the region of filament length regulation does not reappear.

To understand the disappearance of length regulation, note that an ADP-actin molecule at

the plus end is dephosphorylated in only 0.6 s. At a typical addition rate of 0.2 monomers/s,

the monomer at the plus end forms the tip for about 5 s. Already after 3 s, the ATP

bound to the monomer is hydrolyzed and 0.6s later, it is dephosphorylated. Consequently,

if steady polymerization takes place at the plus end at such slow rates, almost all subunits

are bound to an ADP molecule. Since no gradient can be established along the filament, the
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Figure 2.18: The assembly rates at the plus and minus ends as a function of T-actin monomer
concentration in the three-states model including induced phosphate release at one or both
ends. The end-induced phosphate release is implemented a) only at the plus end or b) at both
ends. In both cases, the regime of length control vanishes. For induced phosphate release at
the minus end only, actin filaments are expected to accumulate monomers at the minus end and
loose them at the plus end for a small range of monomer concentrations, see inset. Parameters
are given in Table 2.2. [23] c©AIP (2013)

depolymerization rate is not length-dependent and consequently length cannot be regulated.

Note the overall similarity between Figure 2.14 b) and 2.18 b). In both situations, filament

length diverges for T-monomer concentrations above∼ 0.13µM and minus ends start growing

at concentrations cT ≈ 0.35µM . This suggests that the two-states system that Kuhn et al.

investigated behaves similar to a three-states model with end-induced phosphate release.

The analytic expressions above are again easily generalized to account for end-induced

phosphate release. If ωPD is replaced by ωPD+ω̄+
PD in Equation (2.56) and by ωPD+ω̄−PD (1−α)

in Equation (2.57), approximations of the typical filament length can be derived, provided

the treadmilling velocity is sufficiently high, see Figure 2.19 a).

In the case that unimodal length distributions are generated, induced phosphate release

at the minus end reduces the length fluctuations, see Figure 2.19 b). As stated above, the

exponential tail of distributions is dominated by the slow phosphate release of the ATP/ADP-

Pi monomers at the minus end. Since phosphate release at the tips now occurs at an increased

rate, the gradient and the length fluctuations decouple, potentially leading to long filaments

and small fluctuations.

With the inclusion of fast phosphate release at filament ends, a microscopic model for the

polymerization of actin filaments is established. The analysis of experimentally determined

rates suggests that actin filaments in solution should display treadmilling dynamics. Even
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Figure 2.19: Average filament length and filament length distributions for the three-state model
with induced phosphate release. a) Comparison of the typical filament length from stochastic
(symbols) and analytic (lines) calculations. The average filament length is given by the open
symbols, the maximum of the distribution by closed symbols. The analytic expressions agree
nicely with the maximum of the distributions. Filament length is smaller with end- induced
phosphate release (♦ and ◦) than without (�). The asymmetry of the distribution can be
deduced from the difference between average and maximum position of the distribution and
is in general smaller when end-induced phosphate release is included. Parameters are listed
in Table 2.2. b) Expamles of filament length regulation with and without induced phosphate
release for kT+

on = 4 s−1. Symbols are results of stochastic simulations. The dashed line gives
the analytic estimate of the typical filament length, using stochastic results for α. Note that
no exponential tail is visible if end- induced phosphate release is included, see inset. Other
parameters are the same as for a).
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2 The Treadmilling Phenomenon

though the same processes that lead to treadmilling provide a mechanism for the intrin-

sic regulation of filament length, it is not found for parameters that correspond to actin

polymerization.

It is well known that in living cells, actin interacts with a number of proteins that have a

strong impact its polymerization dynamics. In the remainder of this chapter, the influence

of proteins such as profilin, formin, capping proteins, and depolymerizing factors like cofilin

are analyzed with respect to the robustness and quality of length regulation.

2.4.5 The Effects of Profilin and Formin

Profilin is a small peptide (12-16kDa) that binds actin monomers. In contrast to the se-

questering protein thymosin with which it competes, it only blocks monomer addition to

the F-actin’s plus ends but allows its growth at the minus ends. While profilin lowers the

addition rate to the filament’s plus end only slightly (from 11.6s−1µM−1 to 9s−1µM−1),

it blocks addition to the minus end almost completely [55]. Jégou et al. found that the

dephopsphorylation rates at the filament’s plus end increases strongly with the amount of

profilin in the solution[52].

Consider now a solution in which the actin is in binding equilibrium with profilin at

various actin and profilin concentrations. Let cT denote the concentration of free ATP-

actin monomers, cProf the concentration of free profilin, and cdim the concentration of the

actin-profilin dimer. Then

cProf =
1

2

(
cProf

0 − cT0 −KS +
√

(cProf
0 − cT0 −KS)2 + 4KS cProf

)
(2.58)

cT = cT0 /(1 + cProf/KS) (2.59)

cdim = cProf cT/KS, (2.60)

with initial T-actin concentration cT0 and profilin concentration cProf
0 . Different values for

the equilibrium constant of this reaction can be found in the literature. Experimental mea-

surements give constants ranging from 0.1µM [9] through 0.4µM [134] to 2.1µM [52]. Here,

I choose an intermediate value of KS = 0.6µM . However, its effect on the phase diagram

should be limited since profilin-actin only weakly modulates the addition rate of monomers

at the plus end.

The polymerization rate is then given as kT+
on = 11.6 cT +9 cdim. Profilin binds P-monomers

at the plus end with equilibrium constant KP = 5.9µM and D-monomers with KD =

28.1µM [52]. Applying a Michaelis-Menten dynamics, the depolymerization rate constants

read kP+
off = 0.16+(4.7−0.16) cProf/(KP +cProf) and kD+

off = 5.8+(51.6−5.8) cProf/(KD+cProf).
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Figure 2.20: The phase diagram for the dynamics of an actin filament in contact to profilin
under variation of initial T-monomer and profilin concentrations. The three-states model with
induced dephopsphorylation at filament ends was used. No regime of filament length regulation
(region II) is found.

The phosphate release occurs at a rate ω̄+
PD = 1.8 + (6.1− 1.8) ∗ cProf/(KP + cProf).

Profilin binds to the face of the actin monomer that forms contact to the filament’s minus

end. The profilin- actin dimer can thus not contribute to monomer addition to the minus

end [27, 51]. I assume that the removal rates at the minus ends are also not influenced by

the presence of profilin. It was shown that profilin has no impact on the hydrolysis of ATP

on filamentous actin [131]. Its small effect on the phosphate release was not significant at

the experimental error and is completely neglected here. The resultant parameters are listed

in Table 2.3.

Figure 2.20 shows that an increasing amount of profilin shifts the onset of filament growth

at the minus end to higher initial actin concentration. This behavior was expected since only

free T-sbunits can add to the minus end and cT decreases with increasing cProf0 at constant

cT0 . However, in the regime of investigated concentrations, profilin alone doesn’t appear to

have any influence on the emergence of filament length regulation.

In vivo, profilin interacts strongly with a protein called formin. Formin is known to

nucleate actin filaments and to stay bound to the filament’s plus end while it elongates [135].

Various types of formin proteins were found that influence the polymerization speed to

different extends. Some, such as Cdc12, tend to cap the filament, preventing further addition

from T-monomers, while others, e.g. mDia1, barely interfere with T-monomer addition[49].

When combined with profilin, all formins increase the polymerization speed of filaments. The
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2 The Treadmilling Phenomenon

Rates Fig. 2.20 Fig. 2.21 Fig. 2.22 Fig. 2.22 Fig. 2.24
Top Row Bottom Row (Fig. 2.23)

kT+
on 11.6∗ cT + 9‡ cdim 40‡ · cT 11.6∗ · cT 11.6∗ · cT 11.6∗ · cT
kT−

on 0 0 1.3∗ · cT 1.3∗ · cT 1.3∗ · cT
kP+

on 0 0 3.4∗ · cP 3.4∗ · cP 3.4∗ · cP
kP−

on 0 0 0.11∗ · cP 0.11∗ · cP 0.11∗ · cP
kD+

on 0 0 2.9∗ · cD 2.9∗ · cD 2.9∗ · cD
kD−

on 0 0 0.09∗ · cD 0.09∗ · cD 0.09∗ · cD
kT+

off 1.4∗ 1.4∗ 1.4∗ 1.4∗ 1.4∗

kT−
off 0.8∗ 0.8∗ 0.8∗ 0.8∗ 0.8∗

kP+
off 0.16∗ +

4.54∗ cProf

5.9∗ + cProf
4.7† 0.16† 0.16† 0.16†

kP−
off 0.02∗ 0.02∗ 0.02∗ 0.02∗ 0.02∗

kD+
off 5.8∗ +

45.8∗ cProf

28.1∗ + cProf
51.6∗ 5.8† 5.8† 5.8†

kD−
off 0.25∗ 0.25∗ 0.25∗ 0.25∗ variable

(2.5, 5, 9.5)

ωTP 0.3§ 0.3§ 0.3§ 0.3§ 0.3§

ωPD 0.0068† 0.0068† 0.0068† 0.0068† 0.0068†

ωPT 0 0 0 0 0
ωDP 0 0 0 0 0

ω̄−PD 18∗ 18∗ 18∗ 18∗ 18∗

ω̄+
PD 1.8∗ +

4.3∗ cProf

5.9∗ + cProf
6.1∗ 1.8† 1.8† 1.8†

η+ 0, 0.1, 1, 10 0

η̄+ η+ 1−π+
η

π+
η

0

η− 0 0, 0.1, 1, 10

η̄− 0 η−
1−π−η
π−η

π±η 0.1, 0.5, 0.9 0.1, 0.5, 0.9

cT see text variable variable variable
(0.15)

cP 0 0 0 0
cD 0 0 0 0
cProf see text
cdim see text

Table 2.3: Parameter values for the simulations of actin in presence of accessory proteins. The
values labeled with ∗ are taken from [52], † are from [30], ‡ are from [133], § are from [131], and ‡
are from [49]. Untagged rates are chosen. All rate constants are given in s−1, all concentrations
in µM .64
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Figure 2.21: a) Actin growth velocities as a function of T-monomer concentration for a formin
bound filament in a solution saturated with profilin. Rates are given in Table 2.3. b) Sketch
of the polymerization velocity as a function of T-monomer concentration to illustrate steady
state conditions.

formin mDia1 from mice was observed to polymerize at a rate of at least kT+
on = 47s−1µm−1

for actin and profilin concentrations up to several µM [55].

In Figure 2.21 a), the simulated growth velocities of plus and minus end are shown as a

function of T-actin monomer concentrations in a solution saturated with profilin. All actin

monomers in solution are assumed to be bound to profilin. Consequently, no no cap is formed

and α = 0. The depolymerization of actin at the minus end then saturates at kD−
off = 0.25s−1.

Again, filaments show treadmilling dynamics for low actin concentrations. For virtually all

monomer concentrations that lead to a stationary system, filament length is exponentially

distributed. The regime of length regulation is not found down to a precision of T-monomer

concentrations of ∆cT = 2.5 · 10−4µM .

What is the reason for the disappearance of length regulation? To find a stationary state,

the net polymerization rate needs to equal the depolymerization. The largest depolymer-

ization rate at the minus end is given by kD−
off = 0.25s−1, which limits the possible net

polymerization rate 〈νa〉 to a value smaller than that. Particularly, 〈νa〉 < kD−
off < ωTP, which

means that monomer addition is so slow that T-subunits at the plus end are typically hy-

drolyzed before a new monomer can add. The fast phosphate release at the tip then leads

to a disappearing of all gradients along the filament.

The scheme doesn’t change essentially when formin is added to the system. Formin in-

creases the efficiency of polymerization. In a situation without hydrolysis, the polymerization

velocity as a function of monomer concentration would follow a straight line, see Figure 2.21

b). Formin increases its slope and shifts the zero to smaller concentrations. The increased
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2 The Treadmilling Phenomenon

slope reduces the range of concentrations at which the system can be stationary but has no

effect on the treadmilling velocity. As soon as polymerization is faster than kD−
off , filament

length diverges.

From these arguments, it can be concluded that increasing the polymerization velocity will

not make length regulation more robust, nor does it improve its quality. In the next para-

graph, the influence of capping proteins is analysed, which decreases addition and removal

rates of monomers.

2.4.6 The Effect of Capping

Capping proteins such as capZ or tropomodulin can transiently bind to the ends of actin

filaments and prevent further attachment or detachment of monomers. The average rates of

filament growth and shrinkage are expected to decrease in presence of such proteins. Here,

their effect is investigated within the framework of the three-states model. Filaments are

capped at rates η+ and η− at the plus and minus end, respectively. Caps are removed from

either side at rates η̄+ and η̄−. If a filament is capped, the end- induced phosphate release

is assumed to be suppressed.

In well-mixed systems, the capping rate should scale linearly with the concentration of

capping proteins. The release rate of caps depends on the interactions between filament

and cap and it is thus specific to the isoform of the capping protein. The average time, a

filament end is capped can thus be easily modulated by variation of the concentration of

capping proteins in solution. The probability to find a cap at a particular end is then given

by π±η = η±

η±+η̄±
.

Instead of analyzing specific capping proteins at defined concentrations, the effect of cap-

ping is investigated systematically. In Figure 2.22, the growth rate of filaments with plus

(top row) and minus end capping (bottom row) is shown. The average occupancy of the

tip is fixed at 0.1 (left), 0.5 (middle), and 0.9 (right). It is clearly visible that the slopes

for steady polymerization are reduced in proportion to π±η . The reaction kinetics of cap

binding and unbinding has only little effect on the curves. A variation of η± by two orders

of magnitude (between 0.1 and 10) leads to no significant variation.

The effect of capping on the polymerization rate can be taken into account when reformu-

lating Equations (2.54) - (2.56) by multiplying all addition- and removal rates by a factor

1 − π+
η < 1, the fraction of time that the filament tip is not capped. At the minus end,

there is no conceptual difference between a cap formed by monomers that were added to

the minus end and a capping protein. In the expressions for the depolymerization rate, the

factor 1− α has then to be replaced by (1− α) (1− π−η ) since for the removal of monomers
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Figure 2.22: The effect of different capping ratios for the plus and minus ends. The top row
shows numeric results for the polymerization velocities of plus and minus ends as a function of
monomer concentration in presence of a plus end capping protein. The same is shown in the
bottom row for a minus end capping protein. Rates were fixed such that the caps are capped
for 10% (left), 50% (middle), or 90% (right) of the time. The capping rate is 0.1 s−1 (cyan),
(yellow) 1 s−1, or 10 s−1 (red). For comparison, the results in absence of a capping protein are
shown in blue.
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2 The Treadmilling Phenomenon

that were polymerized at the plus end, the minus end has to be void of minus end poly-

merized monomers as well as of capping proteins. The value of α itself also depends on the

capping dynamics. In its calculations, addition and removal rates have thus also be rescaled

by 1− π−η .

Capping thus leads to an effective reduction of the averages of polymerization- and de-

polymerization velocities. Since the capping and uncapping constitute an additional source

for stochasticity in the system, one expects the fluctuations of filament length to increase

systematically. The slower the binding of capping proteins at the filament end, the stronger

the variations of filament length that are expected. The quality of length regulation would

thus be impaired by slow capping.

To sum up, capping is not likely to increase the ability of actin filaments to autoregulate

their length. It was shown here that under in vitro conditions, the capping of filament ends

is not expected to have a substantial effect on the phase diagram of the system. Even strong

capping did not let show a phase of length regulation. Slow capping, however, would be

expected to rather suppress efficient length control due to an increase in length fluctuations.

2.4.7 Depolymerization by Cofilin

As was shown above, the turnover velocity of actin filaments in vitro is limited by the slow

depolymerization rate of ADP-actin from the filament’s minus ends. Carlier et al. [64]

reported that ADF1 from Arabidopsis thaliana increases the turnover rate of actin. Based

on various biochemical assays it was concluded that ADF1 targets filamentous ADP-actin

with high specificity and enhances its removal rate from the filament by a factor of 25 as

compared to ADF1-free ADP-actin subunits. It was claimed that the depolymerization

occurs without breaking the filaments, although this finding remains controversial [136].

ATP-actin, in contrast, was found to poorly bind to ADF1. In the presence of ADF/Cofilin,

treadmilling velocities of ≈ 2 subunits/s were measured [64].

More recent results indicate that cofilin severs filaments [65, 137] rather than remove

monomers in a one-by-one manner. I want to embark on a more detailed model of the effect

of cofilin later in chapter 4. Here, cofilin is assumed to specifically increase the rate at which

ADP-monomers are removed from the filament at the minus end, as suggested in [64].

Figure 2.23 a) shows three filament length distributions for different values of kD−
off at

cT = 0.25µM . It clearly shows that unimodal filament length distributions reappear for

elevated monomer concentration, if the depolymerization rate of D-monomers in the filament

is selectively increased. In Figure 2.24, the effect of an elevated depolymerization rate

on the phase diagram is investigated more systematically. Region II, in which filament
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Figure 2.23: a) Examples of filament length distributions for kD−
off = 2.5s−1 (◦), 5s−1 (♦), and

9.5s−1 (�) at monomer concentration 0.25µM . Inset: The same distributions in a semilog-
arithmic representation. Length regulation is visible for all three parameter sets. The right
flank of the distributions shows a fast drop. b) The effective length dependent depolymeriza-
tion rates as a function of filament length for the three parameter sets in a). The blue curve
corresponds to the circles, cyan to diamonds, and green to the quares in a). The presented
curves were derived analytically. They equal the polymerization velocity (black line) at the
position of the distribution’s maximum. [23] c©AIP (2013)

length regulation is observed, appears for kD−
off & 1 and broadens henceforth for increasing

depolymerization rates. The closer the parameters are to the boundary of region II to region

III, the longer filaments get, preserving their peaked character, see Figure 2.23. The average

length of roughly 400 monomers in the case of kD−
off = 2.5s−1 in this figure corresponds to a

filament length of 1µm, which is in the range of experimental findings.

The length dependent depolymerization rate that can be extracted from an analytic treat-

ment of the system is shown in Figure 2.23 b) in comparison to the constant polymerization

rate. The typical filament lengths that are deduced agree nicely to the simulation results.

The sole increasing of depolymerization of D-monomers from minus ends can thus reestablish

filament length regulation in the in vitro system. It will be shown in chapter 4 that this

effect persists even when the monomer number is limited. The protein cofilin could provide

this functionality. Experiments that record the filament length remain to be done.
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Figure 2.24: The phase diagram of actin length dynamics under variation of the depolymerization
rate kD−

off and the T-monomer concentration. For low T-monomer concentrations, filament
length is exponential independent of the monomer removal rate at the minus end. The regime
of filament length control, region II, emerges if kD−

off & 1. The border between the regime in
which filaments only grow at the plus end (region III) or at both ends (region IV) shifts rapidly
to large concentrations when kD−

off rises. Figure 2.18 can be viewed as a vertical section at

kD−
off = 0.25s−1. [23] c©AIP (2013)

2.5 Summary and Further Considerations

In this chapter, I introduced a lattice model for the polymerization dynamics of active

filaments. Using stochastic simulations and analytic derivations, I was able to show that

filaments display the experimentally observed treadmilling dynamics. Moreover, a parameter

regime was identified in which filaments are able to auto-regulate their length. It was found

in particular that the energy balance of monomer addition that are given by Equations (2.20)

and (2.21) are no principle limit neither for treadmilling nor for length regulation. A two-

state model was sufficient to generate both effects.

I derived approximative expressions for key parameters of the system, such as the average

polymerization speed, and the length-dependent depolymerization rate. From these values,

the typical filament length in the case of unimodal length distributions could be deduced

in a systematic way. As a part of the calculations, the typical cap length of minus end

polymerized monomers was determined. To do so, a model for a filament with one inert end

was invoked and analyzed. It may also serve as a model to describe the dynamic instability

of microtubules.

The model was then applied to the polymerization dynamics of actin. I was able to
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successfully fit the length distribution as a function of time for an actin system after addition

of the actin-binding protein α- actinin [125]. Even though the resulting rates for the binding

dynamics of α-actinin deviate from known literature values, the present analysis constitutes

the first comprehensive fit of the evolution of the length distribution.

Based on the parameters determined by Kuhn and Pollard [29] for the polymerization of

actin, the in vitro dynamics of filament length was analysed as a function of the concentra-

tion of ATP-actin monomers. Unimodal length distributions could indeed be observed but

were limited to a narrow range of monomer concentrations. More recent experiments are

interpreted in the frame of a three-state model [30] and indicate that phosphate release at

filament ends is faster than in the bulk [30, 52]. For an accordingly extended version of the

model, the regime of unimodal length distributions vanished when induced phosphate release

was included. Even if the filament ends released phosphate at the same rate as subunits in

the bulk, the monomer concentration needed to be fine-tuned to nanomolar precision for

unimodal length distributions to appear. In the case that the monomer concentration could

be controlled to such accuracy, the resulting average filament length would still be small. I

conclude that it is unlikely that unimodal filament length distributions can be observed in

the pure actin system.

In order to check if accessory proteins interacting with actin filaments could provide a

means to establish length regulation, the effects of monomer sequestration by profilin, am-

plification of polymerization speed by formin, capping of filament ends, and increased de-

polymerization were investigated in turn. Modulation of polymerization speed at the plus

end had no perceivable effect on the phase diagram. Equally, the suppression of monomer

addition to the minus end or transiently capping could not generate unimodal filament length

distributions. Only the increase of the removal rate of D-monomers from the minus end led

to the emergence of a phase of length regulation. Filaments in this regime showed plausible

lengths in a broad range of parameters.

One protein candidate for the amplification of monomer removal is the protein cofilin. Its

precise effect is still under debate and a one-by-one monomer removal scheme as well as a

severing effect were proposed and underpinned by experimental findings [64, 65]. In general,

gradients along the filaments are expected to generate unimodal length distributions. This

expectation is supported by results obtained for other effectively length-dependent processes.

For example, severing proteins like cofilin [12, 13] or motor proteins like Kin-8 on fixed

microtubules [16, 19, 86] can show a length-dependent distribution along filaments and thus

induce unimodal distributions. Note that severing proteins have been shown to produce

unimodal length distributions also in absence of gradients if the rate of severing increases

with the filament length [138]. It would be interesting to see, how the interplay of different
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such mechanisms influences the length distribution. Notably, one might expect that by

adding active processes to the intrinsic ADP-Pi gradient, for example, by using molecular

motors, cells arrive at a tighter control of the filament length. One example of such models

is analyzed in detail in the following chapter.

Another extension of the model could include more than three monomer states. Such

a model could take into account further potential sub-states of actin [139] or binding of

additional factors like cofilin to actin monomers. More states could also mimic a more

complex binding situation of protein subunits within filaments. The generalization of the

analytic results presented here to a multi-state model are straightforward and can be done in

parallel to the transition from the two-state model to the three-state model. As long as the

monomer states follow sequentially one after the other and the depolymerization rate grows

monotonically when going through the individual states, the behavior of filament length is

similar to what was presented here [124].

In the presented model, it was assumed that the rates of ATP-hydrolysis and of phosphate

release in the filament bulk do not depend on the state of neighboring actin monomers, which

is known as random hydrolysis. Alternatively, ATP-hydrolysis and ADP-Pi phosphate re-

lease might be cooperative within actin filaments. One can construct a model in which the

rates of hydrolysis and phosphate release depend on the states of the neighboring subunits in

the filament lattice [140]. For low cooperativity, Equation (2.24) should have non-linear terms

and the exponential gradients that were found for independent monomers, are expected to

assume a sigmoidal shape. An extreme case of such a scenario is known as vectorial hydrol-

ysis [141, 142]. In this case, hydrolysis or phosphate release only occur at the boundaries of

homogenous regions on the filament. In contrast to the unimodal distributions found above,

the filament length is in this case always exponentially distributed [105]. The experimental

detection of unimodal length distributions in an in vitro assay would be a strong evidence for

a random hydrolysis scheme. However, from the analysis presented here, one would expect

such distributions only to occur if the release rate of ADP-bound monomers from the minus

end can be enhanced. These experiments remain to be done.
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Molecular Motors

Parts of the presented results were published in [20] and [22]. They were obtained in co-

operation with Denis Johann, whose bachelor thesis I supervised as a part of my regular

teaching duties in the doctoral program. He is to be credited in particular for the continu-

ous formulation of the motor flux and the dynamics of the domain wall in the case γ →∞,

ω̄ = 0.

3.1 Molecular Motors as Filament Depolymerizers

In Chapter 2 evidence was supplied that the processes leading to the treadmilling dynamics

implicitly provide a mechanism by which the length of cytoskeletal filaments could be regu-

lated. The polymerization and depolymerization rates that were determined experimentally

for actin, however, suggest that cells do not exploit this potential. One problem of the mech-

anism might be its susceptibility to fluctuations in the monomer concentration, which easily

can lead to a breakdown of the regulation mechanism. Even in combination with the effects

of known regulatory proteins, the quality of length regulation remains poor.

How would an ideal mechanism for filament length regulation look like? It would guarantee

a maximal net polymerization velocity as long as the filament is smaller than the desired

length and a maximal depolymerization, if the filament becomes longer than that, e.g. by

fluctuations. In terms of a stability gradient that is to be established along a filament, a

sudden change from stable to unstable monomers would be required. This transition needs

to occur stably at a fixed distance from, say, the plus end of the filament.

One way to generate such a gradient would be to increase the next-neighbor interactions

of monomer states within the filament. If dephosphorylation and hydrolysis depend on

the states of the neighboring subunits, one expects non-linear terms in the equation that

describes the development of the monomer states. On a treadmilling filament, the gradient

along the filament should therefore show a more sudden transition than the exponential

function found in the random hydrolysis model. Combined with measured rates for actin
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Figure 3.1: Left: A space-time plot of a fluorescently labeled microtubule in presence of the
kinesin motor Kip3p. The microtubule is colored in red while motor molecules are labelled in
green. Right: The depolymerization velocities of microtubules as in the left figure for different
motor concentrations. As a comparison, the depolymerization velocity of the MTs in presence
of the motor MCAK is shown that is moving in a diffusive manner on the lattice. Reprinted
by permission from Macmillan Publishers Ltd: Nat. Cell Biol. [16], c©2006.

polymerization, however, the system is not expected to differ substantially from the model

discussed in the previous chapter. In the limiting case of interactions dominating the internal

switching, the vectorial hydrolysis model is recovered. This model, however, is not able to

generate unimodal filament length distribution, as was shown in earlier studies [106]. Instead,

I present an alternative mechanism of length regulation in this chapter that is based on the

movement of molecular motors.

As detailed in the introduction, molecular motors are enzymes capable of moving direction-

ally along actin filaments or microtubules by transforming chemical energy into mechanical

work [1, 2]. The hydrolysis of ATP triggers conformational changes within their structure,

giving rise to a stepwise movement along the polymeric lattice of the filament they are

bound to, cf. [67, 143]. By cycling from an ATP to an ADP-bound state, they are kept out

of thermodynamic equilibrium.

In cells, molecular motors are known to perform a number of vital tasks such as cargo

transport or generation of mechanical stresses. In addition to these properties, some motors

are known to remove subunits form the end of filaments [86, 144, 145]. Experimental and

theoretical work suggests that motor molecules can lead to an effectively length dependent

subunit removal rate [16–21], see Figure 3.1. As a consequence, cells might use them to

regulate the length of cytoskeletal filaments.

Molecular motors have inspired a large class of driven diffusive systems that have been

used to study fundamental properties of physical systems out of thermodynamic equilibrium.

In this context, the Totally Asymmetric Simple Exclusion Process (TASEP) is probably the
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Figure 3.2: Left: The Phase diagram of the TASEP model with entering rate α at one end and
leaving rate β at the other end. Particles directionally move on the lattice at rate 1, provided
the target site is empty. In the original TASEP model, particles can only enter and leave the
system at the boundaries. Right: An example of the coexistence phase in the Langmuir-TASEP
model for different scaling parameters Ω. The average motor density ρ is draw as a function
of the relative position x = i/L with i the index of the site and L the system length. A low
density regime to the left is separated from a high-density regime at the right by a domain wall
or ’shock’. The particles move to the right. Parameters are system length L = Ω, entering rate
α = 0, leaving rate β = 0.5, bulk attachment rate ω = Ω−1, bulk detachment rate ω̄ = ω/3,
hopping rate γ = 1. Scaling factor Ω = 100 (dashed line), 200 (dash-dotted line), and 1000
(solid line).

best known system [146–149]. It consists of a linear lattice of fixed size and particles on

the lattice sites. Particles can hop into one direction provided that the target site is not

occupied. They enter the lattice at a constant rate at one end and leave it at the other.

Depending on the rates of particle entering and leaving the system, different phases have

been identified. If the rate at which particles enter the system, α is larger than the rate at

which they leave, β, and β < 0.5, particles accumulate in the system. If, on the other hand,

particles have a higher rate of leaving the lattice than of entering, the lattice is emptied and

the system is in the low density phase. The maximum current regime is assumed if both

rates are above 0.5 times the hopping rate. Then, the density of particles is dominated by

their mobility on the lattice and not by the boundaries, see Figure 3.2.

This behavior has led to the notion of boundary-induced phase transitions [148–150],

a phenomenon unknown for equilibrium systems. Since molecular motors in a biological

context only have a finite binding affinity to a filament, the TASEP has been extended

by attachment and detachment of particles anywhere along the lattice. The inclusion of

Langmuir kinetics for the particles has lead to the discovery of stationary domain walls [77,

151], separating a phase of low and high particle density on the same lattice.
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3 The Effect of Depolymerizing Molecular Motors

Some models have been introduced recently to study theoretically the interplay of molec-

ular motors and length dynamics of cytoskeletal filaments. In spatially extended systems

the organization of filaments into asters and waves was observed [85, 152, 153], filament

networks were found to polarize [154, 155], and contractile bundles of filaments and motors

were seen to be stabilized by filament assembly and disassembly [156]. The latter also leads

to a suppression of motor jams [79, 83]. More recently lattice models have been introduced to

study the effect of molecular motors on the filament length distribution [18, 20, 21, 157, 158].

Most of these models concentrate on the case of plus end directed motors [18, 19, 21].

In contrast, I will study in this chapter a model that is motivated by the effect of the

minus-end directed motor molecules such as Kar3p and KLP10A with microtubules. In

vitro experiments with Kar3p have shown that it increases the depolymerization rate of the

minus-ends of treadmilling microtubules [159, 160]. Experiments on the fruit fly Drosophila

melanogaster suggest that KLP10A influences the length of mitotic spindles by increasing

depolymerization [161]. Independent experiments suggest that microtubules are treadmilling

within the spindle [162].

In this chapter, I will introduce and study a lattice model for treadmilling filaments to

which molecular motors can attach. Motors bound to the filament’s minus-end can induce

the removal of subunits, while empty subunits are constantly added to the lattice at the the

plus end. The limited motor capacity of a monomer will lead to motor jams in the system

that eventually can generate a domain wall at a fixed distance from the plus end.

I start by introducing the model and show that the length distribution in steady-state can

be unimodal. The investigation of the motor distribution on a filament with stabilized minus-

end will provide a basis for the determination of estimates of the average filament length.

In some limiting cases, exact expressions for the whole filament length distributions can be

derived. I will generalize these results and show under which conditions they reproduce

the numerical findings. Finally, I will show that filament length regulation becomes more

efficient when the motor activity increases but levels off as soon as motors move essentially

at the speed of filament elongation.

3.2 A Stochastic Driven Lattice-Gas Model for Motors on

Filaments

Consider a single isolated filament in a solution of filament subunits and motor molecules at

fixed concentrations. The filament is represented by a dynamic lattice of identical subunits.

Empty lattice sites are added at one end, the plus end, at a constant rate α and are removed
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Figure 3.3: Schematic representation of the filament in contact to motor molecules. The filament
is a lattice of dynamic length. Motors are represented as particles that occupy the sites. At
the plus end sites are added at rate α. At the opposing end, the minus-end, empty (occupied)
sites are removed at rate β (β̄). Particles attach to empty sites at rate ω and detach from the
lattice at rate ω̄. Particles hop to adjacent free sites in direction of the shrinking end at rate
γ, provided that the destination subunit is empty. [20] c©APS (2012)

at the opposite end, the minus-end, at rate β̄. If the lattice only consists of a single subunit,

no more monomers are removed. At this point, the microscopic origin of the treadmilling

dynamics is neglected and the reader is referred to Chapter 2 for details.

Particles attach to empty subunits all along the filament at constant rate ω and leave the

lattice at rate ω̄. When the subunit at the minus-end is occupied by a particle, it is removed

at a rate β. In contrast to the model discussed in Chapter 2, particles can now hop towards

the minus-end at rate γ, provided that the target site is empty, see Figure 3.3. From now

on all rates are scaled by the rate of site addition α.

In Figure 3.4 a,b,c), three different types of filament behavior are shown. Filaments either

regularly shrink back to zero length (a), establish a finite stationary filament length (b), or

grow without bounds, depending on the system’s parameters. In the first case, a stationary

filament length distribution is monotonically decreasing (d) but in general not exponential.

In the third case, the filament length distribution doesn’t reach a stationary state but rather

grows at a finite constant velocity. In between these two extremes, there is a phase in which

the stationary filament length distribution assumes a unimodal form (e). The filament

length fluctuates then around a well defined typical filament length. The case of unimodal

length distributions is of special interest for the present analysis since it represents a form

of filament length regulation. In the following, the unimodal distributions are characterized

by their average, their maximum, and their standard deviation.

The filament’s behavior can easily be understood qualitatively: Since newly added monomers

are empty and the filament accumulates motors as it grows, the monomer removal rate de-

pends inherently on the filament’s length. The removal rate can vary at most between the

removal rates for empty and occupied subunits, β̄ and β. Short filaments will have a depoly-

merization rate close to β̄, while the depolymerization on long filaments will never exceed
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Figure 3.4: Motor dependent length dynamics of treadmilling filaments. The kymographs
represent the stochastic evolution of the system with blue sites being empty while red sites
are occupied. The plus end is always located at i = 1. a, d) Monotonically decreasing length
distribution; dashed line: exponential distribution with the same average as a comparison, b,e)
unimodal length distribution, c) diverging system size. f) Illustriation of the effectively length-
dependent depolymerization rate for the three cases. Parameters are a,d) β = 1.1, β̄ = 1.01,
ω = 0.01, ω̄ = 0.002, and γ = 2, b,e) β = 10, β̄ = 0, ω = 0.01, ω̄ = 0.002, and γ = 2, c)
β = 0.8, β̄ = 0, ω = 0.01, ω̄ = 0.002, and γ = 2. [22] c©APS (2012)
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β. When it is assumed that β̄ < β, the effective depolymerization rate is a monotonically

increasing function of filament length, βeff(L), see Figure 3.4 f). If the depolymerization is

smaller than the polymerization, βeff < 1 for all L, the filament will always grow. If, on the

other hand, βeff(L) is larger than the polymerization for all L, the most probable filament

length is zero and only fluctuations lead to a transient finite filament length. The ensuing

length distribution is then monotonically decreasing. Unimodal filament length distributions

emerge when βeff(1) < 1 and limL→∞βeff > 1. This can only be the case if β̄ < 1 and

β > 1. In such a situation, short filaments have a tendency to grow since on average more

monomers are added than are removed. Long filaments, on the other hand, will shrink be-

cause the depolymerization rate increases with length. The typical filament length will then

be somewhat close to the length L where βeff(L) = 1 is fulfilled.

Even though these meanfield arguments provide a good intuition for the system’s behavior,

it fails quantitatively. If the steady-state length distribution PL is known, an effective depoly-

merization rate βeff(L) can always be determined such that the distribution is reproduced.

Explicitly,

βeff(L) =
PL−1

PL

. (3.1)

However, it is not evident how to derive the functional form of βeff(L) a priori. It will

become clear below that care is needed to derive good estimates for the average length and

the amplitude of fluctuations.

Note that for a vanishing hopping rate, γ = 0, a simplified version of the two-state

model discussed in Chapter 2 is recovered. It was already found that the filament length

distribution is unimodal under certain conditions. The potential to regulate the filament

length for the two-state model was limited, though. However, with an increasing hopping

rate γ, the average filament length decreases and the fluctuations are reduced, see Figure 3.5.

The main goals of the following analysis will be to systematically determine the limits of

the mechanism and the quality of length regulation under action of depolymerizing motor

molecules.

The system can be formally described by the probability πi of site i to be occupied by the

following Master-equation:

π̇i = ω(1− πi)− ω̄πi + γπi−1,i − γπi,i+1 + απi−1 − απi (3.2)
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Figure 3.5: Unimodal system size distributions for various values of γ with ω̄ = 0 (a) and ω̄ = 0.01
(b). The length distributions considerably sharpen when the motor activity increases. Other
parameter values are β̄ = 0, β = 10, and ω = 0.01. [22] c©APS (2012)

for i = 2, . . . , L− 1 and

π̇1 = ω(1− π1)− ω̄π1 − γπ1,2 − απ1 (3.3)

π̇L = ω(1− πL)− ω̄πL + γπL−1,L + απL−1 − απL, (3.4)

where the plus end is always the site at i = 1 and where πi,i+1 denotes the probability that

site i is occupied and that site i + 1 is empty. The dynamics of the filament length can

accordingly described by

L̇ = α− βπL − β̄(1− πL). (3.5)

The difficulty is now to determine πL correctly, taking into account the correlations induced

by particle interactions and the history of the filament tip. I start the analysis with the

discussion of the semi-infinite system.

3.3 The Motor Gradient on a Semi-Infinite Lattice

In a first step, let me analyse the profile of motors on a semi-infinite filament with only

a plus end. Empty filament subunits are constantly added at this end while motors keep

moving away from it. Let ni be the occupation number of site i with ni = 0 for an empty

and ni = 1 for an occupied site. In Figure 3.6, the average occupation number ρi = 〈ni〉 ≡ πi
is shown for different values of the hopping rate γ and different particle detachment rates ω̄.

As the motors accumulate, the density asymptotically approaches the equilibrium density
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Figure 3.6: The average motor density along a semi-infinite filament. a) Motor density for
different values of the hopping rate γ: γ = 0 (◦), 0.5 (♦), 1 (�), 2 (M), 10 (×). Furthermore,
ω = 0.01 and ω̄ = 0, such that γc = 1. b) Motor density for different values of the detachment
rate ω̄: ω̄ = 0 (×), 0.001 (M), 0.002 (�), 0.005 (♦), 0.01 (◦), 0.02 (O). In addition, ω = 0.01
and γ = 2, such that γ < γc for the first three values of ω̄ and γ < γc for the last three.
Symbols are results of numeric simulations, red dashed lines are solutions of Equations (3.6)
and (3.7), and solid black lines solutions of Equation (3.17). The solid gray lines are linear
approximations of the motor density for γ ≤ 1 given by ωx/(1 + γ), where x is the distance
from the plus end, see text. [22] c©APS (2012)

ρ∞ = ω
ω+ω̄

. At the plus end, a stationary cap of low motor density is established and the

probability to find a motor increases monotonically with the distance to the plus end, see

Figure 3.6.

In the motor density gradients of Figure 3.6, two qualitatively distinct types of gradients

can be distinguished: When the stepping rate or the asymptotic motor density is low, the

density smoothly increases towards its asymptotic value. If, on the other hand, the stepping

rate is high and the motor affinity to the filament is strong, a region of a sudden increase

in the motor density, a ’shock’, emerges. This ’shock’ separates a region of high density

(ρ = ρ∞) at large distance from the end from a region of low motor density close to the

plus end, similar to the domain wall that could be observed in the Langmuir-TASEP model.

While the average motor concentration beyond the shock is constant, it increases almost

linearly with distance from the plus end in the low density region.

To calculate the average occupation profile in steady state, a mean-field approximation

can be made, leading to 〈nini+1〉 = 〈ni〉〈ni+1〉. For the TASEP, the phase diagram obtained

from the mean-field approximation equals the exact phase diagram [148, 150]. In Figure 3.7,

the correlation term 〈nini+1〉 is shown as a function of the average site occupation 〈ni〉
for different values of γ and ω̄. The mean-field approximation is numerically found to be

exact as long as γ < 1 (Figure 3.7, a). The function becomes increasingly linear as γ
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Figure 3.7: Two-point density correlation 〈nini+1〉 as a function of the mean occupation number
〈ni〉. a) The quadratic dependency turns linear when γ > 1. Parameter values are ω = 0.01,
ω̄ = 0, and γ = 0 (×), 0.5(M), 1 (�), 2 (♦), 10 (◦), 50 (O). b) The detachment rate ω̄ has a
negligible influence on the two-point correlation function. Note that beyond 〈n〉 = ρ∞, no data
points are available. Parameter values are γ=2, ω = 0.01, and ω̄ = 0 (×), 0.001 (M), 0.002 (�),
0.005 (♦), 0.01 (◦), 0.02 (O). Data points were collected at values closest to an equidistant
distribution in the interval 0 . . . 1. The solid lines are guides to the eye. [22] c©APS (2012)

increases. Variations in the motor release rate has under these conditions almost no effect

(see Figure 3.7, b).

Using the mean-field expression, the term πi,i+1 in the Master-equation (3.2) and (3.3)

turns into ρmf
i (1 − ρmf

i+1). In this form it can be used to calculate the time evolution of the

mean-field density ρmf
i . Explicitly, it is given by

ρ̇mf
i = ω(1− ρmf

i )− ω̄ρmf
i + ji−1 − ji (3.6)

for i > 1 and

ρ̇mf
1 = ω(1− ρmf

1 )− ω̄ρmf
1 − j1. (3.7)

Here, the particle current ji from site i to site i+ 1 is given by

ji = γρmf
i (1− ρmf

i+1) + ρmf
i (3.8)

for i = 1, . . . The first term accounts for particle hopping while the second term describes

the addition of subunits since the site at i = 1 is always associated with the plus end.

To calculate the stationary motor density, we can either integrate this equation into the

stationary state or solve the stationary mean-field equations (3.6) and (3.7) recursively by

noting that for ρ̇mf
i = 0 (i ≤ 1), ρmf

i can be expressed in terms of ρmf
1 for i > 1. The value
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of ρmf
1 is determined by the condition that the net flux of motors to the filament needs to

equal the stationary motor flux at infinite distance from the plus end:

∞∑
i=1

[
ω(1− ρmf

i )− ω̄ρmf
i

]
= γρ∞(1− ρ∞) + ρ∞. (3.9)

It reflects that the total net rate of particle attachment must equal the net particle flux out

of the system.

Note, however, that the discrete mean-field Equations (3.6) and (3.7) yield excellent results

for both types of gradients, the smooth increase and the shock, even though the quadratic

dependence of the correlation function on the motor density is only expected to work for low

hopping rates γ.

A deeper insight into the limit of the phase of a smooth gradient can be gained when

the continuum limit of the discrete Equations (3.6) and (3.7) is considered. Taking ρmf
i as

a function ρ(x) of a continuous parameter x and expanding ρmf
i±1 into a Taylor-series up to

first order in x, ρi±1 ' ρ(x)± dρ(x)/dx, one finds

∂tρ = ω(1− ρ)− ω̄ρ− γ∂xρ(1− ρ)− ∂xρ (3.10)

with boundary condition ρ(x = 0) = 0. In the steady state, this leads to

dρ

dx
=
ω(1− ρ)− ω̄ρ
1 + γ(1− 2ρ)

. (3.11)

Integration yields an implicit solution of the gradient,

x =
2γρ

ω + ω̄
− γ(ω̄ − ω) + (ω̄ + ω)

(ω + ω̄)2
ln

(
1− ρ

ρ∞

)
, (3.12)

that is indistinguishable from the solution of Equations (3.6) and (3.7) for the smooth gradi-

ents but differs considerably when a shock appears. A shock corresponds to a steep increase

in the gradient, that is a large value of the first derivative of ρ. In Equation (3.11), one

readily sees that the gradient diverges as ρc = (1 + γ)/2γ. A shock is thus expected when

the equilibrium density ρ∞ exceeds ρc, ρ∞ > ρc. This condition can be expressed in terms

of a critical hopping rate γc with

γc = 1 +
2ω̄

ω − ω̄
, (3.13)
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Figure 3.8: Phase diagram for a semi-infinite lattice as a function of the particle hopping rate γ
and the ratio ω̄/ω of the particle detachment and attachment rates. In the low density phase
ρ∞ = ω/(ω + ω̄) < 1/2. In the high density phase ρ∞ > 1/2 and the particle distribution is
continuous. In the mixed phase, the particle density displays a shock. [22] c©APS (2012)

such that a shock exists for γ > γc. This result is consistent with numerical findings, see

Figure 3.6.

Note, that γc diverges for ω̄ = ω. It is therefore appropriate to divide the parameter space

into three different regimes, see Figure 3.8. For low release rates ω̄ < ω, the equilibrium

motor density ρ∞ = ω
ω+ω̄

is larger than 1/2 and depending on the stepping rate γ a shock

in the density gradient can emerge. The high density phase is thus subdivided in a region

where the gradient has a smooth shape and a second region, in which shocks can form. The

low density phase is defined by a large release rate, ω̄ > ω. In this phase, a shock cannot

exist since the maximum motor density is lower than 1/2. This is similar to the behavior

of the TASEP with Langmuir kinetics, where a stationary density ρ∞ > 1/2 is a necessary

condition for the emergence of shocks [151].

In the shock region, it was already mentioned that the motor gradient is approximatively

linear. To determine the slope of the density increase, one can exploit the fact that in the

limit of small densities, the both types of gradients obey a similar dynamics. Linearizing

expression (3.12) for small ρ, one gets ρ(x) = ω
1+γ

x, which is in excellent agreement with

numerical findings, see Figure 3.6. Note that this expression is independent of the motor

release rate ω̄, as can also be seen in Figure 3.6, b).

To fully characterize the shock, its position xs remains to be determined. It can be derived

by exploiting the flux-balance condition. The sum in Equation (3.9) turns into an integral
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with respect to x and the condition for xs yields∫ ∞
0

[ω(1− ρ(x))− ω̄ρ(x)] dx =

∫ xs

0

[ω(1− ρ(x))− ω̄ρ(x)] dx (3.14)

= γρ∞(1− ρ∞) + ρ∞ , (3.15)

where xs denotes the shock position. Approximating the density for x < xs by the linear

profile given above, it follows

xs =
1 + γ

ω + ω̄

(
1−

√
1− 2

ω̄γ

(1 + γ)(ω + ω̄)
− 2

1 + γ

)
. (3.16)

Consistently with Equation (3.13), this expression implies that the shock position is defined

only for γ > γc.

The motor density in the case of shock formation can be described by a linear profile with

slope ω/(1 + γ) up to a position xs. Beyond this point, the density jumps to the equilibrium

value ρ∞. Before this section is closed, I’d like to comment on the origin of the discrepancy

between the sharp shock that follows from Equations (3.6) and (3.7) and the numerically

determined gradients.

An improved description of the average occupation profile in the case of shock formation

is obtained, if the fluctuations in the process of site addition at the plus end are accounted

for. Indeed, the time T having passed since site i has been incorporated into the system

is a stochastic variable. Let 〈ni〉T denote the average occupation number of site i at a

time T after it has been added to the system. Then one can write ρi =
∫∞

0
dT 〈ni〉Tpi(T ),

where pi(T ) is the probability that site i has been incorporated a time T ago. As site

addition is a Poisson process, the corresponding probability distribution of times T is given

by pi(T ) = T i−1e−T/(i − 1)!. If site addition occurred regularly at T = 0, 1, . . ., then one

would expect that 〈ni〉T =
∑∞

j=1 ρ
mf
j δjT , where δjk denotes the Kronecker-delta. Inserting

this expression into the formula for ρi, the expression reads

ρi =
∞∑
j=1

ρmf
j pi(j) . (3.17)

The motor profile obtained in this way is in remarkably good agreement with the simulation

results, see Figure 3.6.

I have shown that using Equations (3.6) and (3.7), the motor gradient on semi- infinite

filaments can be described to a satisfying degree. Moreover, it was found that if the motor
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density can reach values above 1/2, a motor jam (a discontinuity in the gradient) can emerge

along the filament. Its position can then be determined using a coarse-grained version of the

constituting Equations (3.6) and (3.7). Having analyzed the motor distribution on a semi-

infinite filament thus far, the case of a finite filament with two ends can be considered.

3.4 Filaments With Two Ends

Now, let us return to the original model of a filament with a growing plus and a shrinking

minus-end. As discussed above and in parallel to the model analyzed in Chapter 2, three

different types of filament dynamics are observed: unbounded filament growth without a

stationary state and stationary distributions that are either unimodal or monotonically de-

creasing. In a first step, the conditions under which the filament length diverges are studied.

Then the analysis focuses on the case of filaments of finite length to investigate the stationary

filament length distributions.

Before detailed calculations are invoked, some fundamental limits of the model shall be

considered. Be reminded that the analysis is limited to the case of destabilizing motor

proteins, which means that β̄ < β. For the sake of simplicity, β̄ = 0 in the remainder of this

chapter unless stated otherwise.

It is clear that filaments will always grow if β < 1 since depolymerization never could

compensate polymerization. Let βc denote the depolymerisation rate that is required to

limit net filament growth. In general, βc will be a function of all other parameters but

already, one can state that βc > 1 for all values of γ, ω, ω̄, and β̄.

Already at this point, it can be noted that βc ≡ 1 for ω̄ = 0, ω > 0, and γ > 0. The

reason is that the equilibrium motor density is ρ∞ = 1 in this case. Thus, on long filaments,

the depolymerization rate approaches β. For every value of β > 1, there will be a finite

length at which depolymerization becomes faster than polymerization. If filament length

stays bounded for all values of β > 1 then, by definition, βc ≡ 1.

Figure 3.9 shows how βc varies with ω̄ for different values of γ but fixed ω. As just

mentioned, one observes that all curves converge to 1 for ω̄ → 0. The value of βc increases

as ω̄ increases and diverges at some finite value ω̄c. Beyond that threshold, even for an

instantaneous removal of occupied monomers the filament length diverges. It is inferred

from this plot that ω̄c is a monotonically increasing function of γ for fixed ω.

In the following I present a series of arguments and calculations that allow an approxima-

tion of βc for arbitrary values for the hopping rate γ. To this end, note that βc is, in general,

determined by the condition 〈τ〉 = 1, where 〈τ〉 is the average lifetime of the site i = L

analogously to the function 〈τ〉 that was introduced in Chapter 2. As above, p0(t) and p1(t)

86



3.4 Filaments With Two Ends

ω

βc

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Figure 3.9: The critical value βc separating bounded from unbounded system growth as a
function of ω̄. The solid line is given by Equation (3.24) and the dashed lines by Equation (3.20).
For ω̄ → 0, the critical value βc approaches 1 independently of γ. Other parameter values are
ω = 0.01, β̄ = 0, and γ = 0 (◦), 0.5 (�), 1 (•), 2 (♦), and 5 (O). Note the logarithmic scales
on both axes. [22] c©APS (2012)

shall denote the probabilities that the site i = L is, respectively, empty or occupied at time

t after this site became the minus-end. Then, 〈τ〉 can be determined using Equation (2.38)

when the time dependency of the values of p0 and p1 is known.

The time evolution of p0 and p1 follows a modified version of Equation (2.37):

∂

∂τ

(
p0

p1

)
=

(
−ω − γc10 ω̄

ω + γc10 −ω̄ − β

)(
p0

p1

)
. (3.18)

The equation is complemented by the initial conditions p0(0) = 1 − c11 and p1(0) = c11.

Here, c10 denotes the joint probability, that site i = L − 1 is occupied and site i = L is

empty, while c11 is the joint probability for both sites being occupied. This initial condition

holds, because just prior to site removal the last and penultimate site were occupied, if site

i = L is occupied at t = 0. The steady state values of c11 and c10 are estimated and these

values are used to solve the above equation for p0(t) and p1(t).

Numerically, it was found that c10 = ρ∞ as long as β < βc. For estimating c11, the relation

ρL−1 = ρLc11 + (1− ρL)c10 (3.19)
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can be exploited, where ρi denotes the average occupation of site i in steady state. For very

long systems, the density ρi approaches the value ρ∞ with increasing i and then elongates

from this value towards the minus-end. Consequently, the value of ρL−1 is between the values

ρ∞ and ρL. For simplicity and in absence of an accurate expression for ρL−1, the density at

the second to last monomer is in the follwing approximated by ρL−1 = (ρL + ρ∞)/2. Finally,

the value of ρL obeys ρLβ = 1 as long as β ≤ βc.

Taken together, one finds that βc is approximatively given as the solution of the quadratic

equation

β2
cρ∞/2− βc (ω + (γ + 1)ρ∞ − 1/2) + ω + ω̄ + γρ∞ = 0. (3.20)

Note that this equation has only solutions for γ > 1. In the special case γ = 0, an exact

expression for βc can be derived from the results of Chapter 2. I give the explicit solution

to this case below.

In Figure 3.9, the dashed lines give the results of Equation (3.20). The quality is satis-

factory and at last gives a reasonable estimate of the critical value ω̄c at which βc diverges

for all values of γ ≥ 1 that were checked, see Figure 3.9. For the case γ = 0, however,

the theoretical solutions exactly reproduce the numeric results. Note furthermore, that the

above mentioned relations are only valid in the case of constantly growing filaments and

cannot in general be used to infer the average system size for β < βc.

3.4.1 The Limit of Immobile Binding Factors

The situation of resting motor molecules is identical to the two-state model that was analyzed

in Chapter 2 with a constant monomer addition rate k
(e)+
on ≡ α ≡ 1 at the plus end and

removal rates k
(e)−
off ≡ β̄, and k

(o)−
off ≡ β at the minus-end. All other rates in the two-state

model are to be set to 0. In this section, only the main results of the two-state model are

summarized. For detailed calculations, the reader is referred to Chapter 2.

For immobile motors, the occupation states of neighboring subunits in the filament become

independent of one another. The gradient of motor density thus becomes exponential,

ρ(x) =
ω

ω + ω̄

(
1− e(−(ω+ω̄)x)

)
, (3.21)

where x denotes the distance from the filament’s plus end in the continuum limit. The same

result is obtained by setting γ = 0 in expression (3.12).

Under which conditions, can one expect filament length regulation? Consider the average

lifetime of a monomer at the minus-end, 〈τ〉. The dynamics of the last monomer that
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3.4 Filaments With Two Ends

has become the filament’s tip on a filament of length L at time t = 0 is determined by

Equation (2.37). The independence of neighboring subunits now allows to use p0(0) =

1 − ρ(L) and p1(0) = ρ(L) as initial conditions. From Equation (2.38) for the lifetime of a

monomer it can be inferred

〈τ〉 =
ω + ω̄ + β + (β̄ − β)ρ(L)

ωβ + ω̄β̄ + ββ̄
. (3.22)

In this formulation, 〈τ〉 is primarily a function of the motor density ρ, which, in turn, is

a function of the filament length. The condition for a stationary filament length, 〈τ〉 = 1,

can thus be formulated as a condition for ρc, the motor density at which polymerization is

exactly balanced by depolymerization,

ρc := ρ(Ltyp)
!

=
β + ω + ω̄ − ββ̄ − ωβ − ω̄β̄

β − β̄
. (3.23)

Only if ρ assumes the value of ρc anywhere along the filament, a stationary unimodal length

distribution can form.

Since ρ(L) is a monotonically increasing function, that varies between 0 and ω/(ω + ω̄),

one can use Equation (3.23) to determine the boundaries of the regime of length regulation.

The filament length is expected to diverge if 〈τ〉 > 1 for arbitrary filament lengths. This

is the case if ρ doesn’t reach ρc anywhere along the filament, i.e. if ρ∞ < ρc. From this

condition, it can be inferred that

βc =
(ω + ω̄)2 + β̄ (ω + ω̄(ω + ω̄))

ω(ω + ω̄)− ω̄ + β̄(ω + ω̄)
. (3.24)

This relation exactly reproduces the the numerical results for βc that are presented in fig-

ure 3.9.

Equation (3.23) can also be used to derive a condition for the appearance of monotonically

decreasing filament length distributions. In analogy to what was said, this is the case if

ρ(L) > ρc for all values of L. Since the motor gradient grows from 0 at the plus end,

independently of the other parameters, the distribution becomes monotonically decreasing

if ρc < 0. Let me note at this point that such a behavior is only possible if β̄ > 0.

Since the exact dependence of ρ on L is known, Equations (3.22) or 3.23 can be used to

derive an explicit form of the typical filament length,

Ltyp =
−1

ω + ω̄
log (1− ρc/ρ∞) , (3.25)
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Figure 3.10: Mean values and variances of the steady state system size distributions. Symbols are
from stochastic simulations, dashed lines follow from the analysis in Section 3.4.1, solid lines
from the analysis in Section 3.4.3, and dotted lines represent the values of Equation (3.32)
Parameters are ω = 0.01 and γ = 0 (×), 0.5 (4), 1 (�), 2 (�), 105 (◦). In all cases ω̄ = 0 and
β̄ = 0. [22] c©APS (2012)

which coincides well with the maximum of the length distribution as was shown above.

Figure 3.10 also shows the quantitative agreement of analytic and numeric results.

A drawback of this approach lies in the fact that it doesn’t provide a way to estimate

the fluctuations of filament length about its typical value. To account for the fluctuations, I

now consider the probabilities p0(L, `, τ) and p1(L, `, τ) for the site at the minus-end of the

system, i = L, to be empty or occupied, respectively. These quantities depend on the actual

filament length L as well as on the length ` the filament had when the site first reached

the minus-end and on the time τ that has passed since this moment. Together with the

probability px(L, `, τ) that the monomer was removed from the filament prior to time τ ,

one has again p0 + p1 + px = 1. The quantities p0(t) and p1(t) can again be derived from

Equation (2.37), with initial conditions p0(0) = 1− ρ(`− 1) and p1(0) = ρ(`− 1). Thus, the

rate at which the minus-end site is removed at time τ after it has become the minus end can

be determined by ∂τpx.

The average steady state removal rate β`,L of a site from a filament of length L that had

become the minus-end when the system had length ` then reads

β`,L =

∫
dτ (∂τpx(L, `, τ))

τL−`

(L− `)!
e−τ . (3.26)

In this expression, a Poissonian distribution was used to relate the time τ that has passed

since the respective site has become the minus end to the length increase L− ` of the system

through addition of sites at the plus end. The expression for the current in steady state is
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3.4 Filaments With Two Ends

then given by

jL = PL −
L+1∑
`=1

β`,L+1P` = 0 . (3.27)

Note, that this expression for the current is only valid in steady state. Otherwise the proba-

bilities P`, ` = 1, . . . , L+1 would need to be taken at different time points and the calculation

of the rate β`,L would involve an integration of the system’s history. The steady state length

distribution is obtained by solving Equation (3.27) numerically. As shown in Figure 3.10,

the distribution now agrees well with the one obtained from simulations.

With these considerations, the complex time-dependent non-Markovian problem of fila-

ment dynamics was transformed into a non-local random walk. The analysis can be extend

even more by calculating a recursion relation for the length dependent hopping rate a classic

random walk would need to have to produce the same stationary distribution. Integrating

Equation (3.26) and reformulating Equation (3.27), the position dependent rate βeff(L) can

be given by 1

βeff(1) =
β1,1

(1− β0,1)
(3.28)

βeff(L+ 1) =
βL+1,L+1

1−
L−1∑̀
=1

β`,L+1

(
L−`∏
i=1

βeff(`+ i)

) . (3.29)

3.4.2 Flux Balance to Access the Average Filament Length

For finite motor hopping rates, γ > 0, the states of neighboring subunits start to correlate.

To account for these correlations, the correlation functions c11 and c01 have to be introduced

as was already mentioned in the paragraph on the critical depolymerization rate βc. Unfor-

tunately, a-priori no information on these functions is available. Instead, in the stationary

state, a flux-balance condition can be exploited. It reflects that the net flux of motors to the

filament has to be compensated by a net flux from the filament. In the continuum limit, the

flux-balance condition, as it is called henceforth, takes the form

j(L)− j(0) =

∫ L

0

dx (ω(1− ρ(x))− ω̄ρ(x), (3.30)

where L is the system length, j the motor current, and ρ the particle density profile in

steady state. Since sites added to the system are empty, j(0) = 0. For β̄ = 0 and in steady

1The result is easily derived from Equation (3.27) when the ansatz PL = PL−1/βeff(L) is used.

91



3 The Effect of Depolymerizing Molecular Motors

state, the effective rate of site removal at the minus-end equals the flux of particles out of

the system. At the same time it is equal to the rate of site addition. Hence, j(L) = 1. Since

the density profiles differ markedly between the high and the low density phase, both cases

shall be treated in turn. Be reminded that the analysis is limited to the case β̄ = 0.

The Low Density Phase, ω̄ > ω

The two-point correlation function 〈nini+1〉 depends quadratically on 〈ni〉 as was shown in

Figure 3.7 such that the particle current is given by the corresponding mean-field expression,

j = ρ+γρ(1−ρ). From j(L) = 1, it follows that in steady state ρ(L) = 1/γ. Equation (3.12)

then leads to

L =
2

ω + ω̄
− γ(ω̄ − ω) + ω + ω̄

(ω̄ + ω)2
ln

(
1− ω̄ + ω

γω

)
. (3.31)

A comparison to numerical results shows that this expression approximates the average

system length well as long as γ & 2, see Figure 3.11. The breakdown of relation (3.31)

for γ < 2 was expected, because in that case ρ(L) = 1/γ > 1/2, which is outside the low

density phase and the two- point correlations start to deviate from their mean-field values,

see Figure 3.7.

The High Density Phase, ω̄ < ω

In the high density phase, the particle profile is prone to form a shock and the mean-field

approximation for the current breaks down. Note, that if a shock emerges on the filament,

the average site removal rate becomes independent of L when L > xs. Consequently, the

average system size in the high-density regime must lie below the shock position xs. In this

case, the right hand side of Equation (3.30) can be used to estimate the average system

size L. For x < xs, the particle density profile can be approximated by a linear gradient

ρlin(x) = ωx/(1 +γ), see Sect. 3.3. Replacing ρ by ρlin in Equation (3.30), the integral yields

L2 − 2(1 + γ)

ω + ω̄
L+

2(1 + γ)

ω(ω + ω̄)
= 0. (3.32)

As expected, this estimate of the system size agrees well with the values obtained from

simulations for γ & 2, see Figures 3.11 and 3.12. Remarkably, for sufficiently large values of

γ the above estimate agrees rather well with the result obtained in the low density regime.

In both cases, one finds L = ω−1 for γ → ∞. Note, however, that solutions 0 ≤ L < ∞ of

Equation (3.32) only exist for γ > 1 + 2ω̄/ω.
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3.4 Filaments With Two Ends

Figure 3.11: Average system sizes as a function of the hopping rate γ. Top row: ω̄ > ω (low den-
sity regime), bottom row: ω̄ < ω (high density regime). Symbols were obtained from stochastic
simulations, dashed lines are given by Equation (3.31) and full lines by Equation (3.32). Blue
dotted lines in the top row and red dotted lines in the bottom row show the average filament
length if the correction terms from Equation (3.36) and Equation (3.35), respectively, are taken
into account. Parameter values are ω = 0.01, β̄ = 0, β = 1.1 (×), 1.5 (M), 2 (�), 5 (♦), 10 (◦),
and 100 (O). Values of ω̄ are indicated in the panels. L∞ = ω−1 is the system size in the limit
γ →∞.
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Figure 3.12: Mean values and variances of the steady state system size distributions. Symbols
are from stochastic simulations, dotted lines are given by Equation (3.32). Parameters are
γ = 2 and ω = 0.005 (O), 0.01 (◦), 0.05 (�), 0.1 (�). In all cases ω̄ = 0 and β̄ = 0. [22] c©APS
(2012)
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Correction Terms

Analytic and numeric solutions for the average filament size agree well for fast monomer

depolymerization rates. For smaller values of β, however, the quality of the approximation

decreases. Nonetheless, expressions for the error can be estimated. I present here a derivation

of correction factors that are based on heuristic arguments rather than rigorous derivations.

The improvement is therefore expected to be mainly qualitative.

Let me start with considerations of the high density phase. A fully occupied lattice that

gains monomers at rate 1 and looses them at rate β & 1 has a finite average length. The

dynamics of such a lattice can be described by a Random Walk with drift v = 1−β < 0. The

fluctuations in lattice length lead to a length distribution ∝ (1/β)L. The resulting average

filament length amounts to 〈L〉cap = 1/(β − 1).

Note furthermore that in steady state, the average motor density at the minus-end of a

stationary filament has to be 〈ρ(L)〉 = 1/β to balance polymerization. If β & 1, the motor

density close to the minus-end approaches 1 and motors easily jam in this region. For some

time, the lattice is then fully occupied, resulting in a constant depolymerization rate β.

Following to what was said above, fluctuations then lead to a cap of length 1/(β−1). If β is

only marginally larger than 1, the size of these fluctuations can become very large and their

effect on the total length distribution cannot be neglected anymore. Adding this term to the

average filament length does not account for all deviations between numeric and analytic

results.

If 1/β = 〈ρ(L)〉 > ρ∞ = ω/(ω + ω̄), there is an additional loss of motors in the jamming

region. Since the typical length of the jam region is given by 1/(β − 1) and the time

scale of motor exchange is ω + ω̄, the additional loss of monomers can be estimated to be

approximatively

jjam = (ω + ω̄) 〈L〉cap (〈ρ(L)〉 − ρ∞) . (3.33)

This additional motor current off the filament has to be balanced by motor transport into

the cap region. The flux balance condition then gains an additional contribution and the

left hand side of (3.30) then reads

j(L)− j(0) + jjam = 1 +
ω + ω̄

β − 1

(
1

β
− ω

ω + ω̄

)
. (3.34)

Using the high density approximation, the average filament length Lcorr is solution of

L2
corr −

2(1 + γ)

ω + ω̄
Lcorr +

2(1 + γ)

ω(ω + ω̄)

(
1 +

ω + ω̄

β − 1

(
1

β
− ω

ω + ω̄

))
= 0. (3.35)
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From Figure 3.11, it is found that the correction terms are in surprisingly good agreement

with numerical results. I want to conclude with the remark that both correction terms

rapidly vanish when β � 1.

The same correction terms can also be used to derive an approximation in the low density

case. The average filament length is then given by

L =
2

ω + ω̄
− γ(ω̄ − ω) + ω + ω̄

(ω̄ + ω)2
ln

(
1− ρcorr

ρ∞

)
. (3.36)

with ρcorr = 1
2 γ

(
γ + 1−

√
(γ − 1)2 − 4 γ jcap

)
and jcap = ω+ω̄

β−1

(
1
β
− ω

ω+ω̄

)
. Figures 3.10, 3.12,

and 3.11 show that the corrections capture the deviations in the low density case qualita-

tively, but are less quantitative than in the high density case.

3.4.3 The Limit of Infinitely Fast Molecular Motors

In the limit of infinite motor hopping rate, γ →∞, again analytic expressions for the average

filament length and the fluctuations can be deduced. The form of the particle distribution

is known at any time in this case: the system is divided into a region of length M starting

at site i = 1 that is void of particles and a region of length N = L −M extending to the

minus-end in which every site is occupied. This form allows an exact mapping of the length

dynamics onto a two-dimensional Random Walk. For M > 0 and N > 0, the probability

PM,N evolves according to

ṖM,N = PM−1,N − PM,N + β (PM,N+1 − PM,N)

+ ω ((M + 1)PM+1,N−1 −MPM,N)

+ ω̄ ((N + 1)PM−1,N+1 −NPM,N) (3.37)

while

ṖM,0 = PM−1,0 − PM,0 + βPM,1 − ωMPM,0 + ω̄PM−1,1 + β̄ (PM+1,0 − PM,0) for M > 1

(3.38)

Ṗ0,N = −P0,N + β (P0,N+1 − P0,N) + ωP1,N−1 − ω̄NP0,N for N > 1 (3.39)
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and

Ṗ1,0 = −P1,0 + βP1,1 − ωP1,0 + ω̄P0,1 (3.40)

Ṗ0,1 = −P0,1 + βP0,2 + ωP1,0 − ω̄P0,1 (3.41)

P0,0 = 0. (3.42)

To analyze this two-dimensional random walk, the marginal distributions P I
M =

∑∞
N=0 PM,N

and P II
N =

∑∞
M=0 PM,N are studied. Using a mean-field approximation to write

∑∞
N=0NPM,N =

〈N〉P I
M and

∑∞
M=0 MPM,N = 〈M〉P II

N from Equations (3.37)-(3.42) dynamic equations for

the marginal distributions can be derived. Here, 〈M〉 and 〈N〉 denote the expectation values

of M and N , respectively, that is, 〈M〉 =
∑∞

M=0 MP I
M and 〈N〉 =

∑∞
N=0NP

II
N Explicitly,

Ṗ I
M = jI

M − jI
M+1 (3.43)

Ṗ II
N = jII

N − jII
N+1 (3.44)

with

jI
M = P I

M−1 − ωMP I
M + ω̄〈N〉P I

M−1 − β̄P II
0 P

I
M (3.45)

jII
N = −βP II

N + ω〈M〉P II
N−1 − ω̄NP II

N (3.46)

and no-flux boundary conditions jI
0 = 0 and jII

0 = 0, respectively. Equation (3.44) thus

uncouples from Equation (3.43) and can be analyzed independently. Using P II
0 as an input

to Equation (3.43), the dynamics of the marginal distributions can be solved in turn. Their

respective solutions in stationary state can be given in the form

P I
M =

(
M∏
m=1

(1 + ω̄〈N〉)
β̄P II

0 +mω

)
P I

0 (3.47)

P II
N =

(
N∏
n=1

ω〈M〉
β + ω̄n

)
P II

0 , (3.48)

where the values P I
0 and P II

0 are determined from normalization of the marginal distributions.

For the special case β̄ = 0, the dynamic equations for the marginal distributions separate

completely and the expression for P I
M simplifies to

P I
M =

(1 + ω̄〈N〉)M

M !ωM
P I

0. (3.49)
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These results can now be used to solve Equations (3.43) and (3.44) self-consistently. While

the general result is rather cumbersome and not very revealing, it takes a simple form in the

case ω̄ = 0. Explicitly, P I
M = ω−M

M !
e(− 1

ω ) and P II
N = (β − 1) β−N+1. Hence, the mean system

size and the corresponding variance are given by

〈L〉∞ = 〈M〉+ 〈N〉 =
1

ω
+

1

β − 1
(3.50)

and

σ2
∞ =

1

ω
+

β2

(β − 1)2
, (3.51)

respectively. Comparison of these results with numerical simulations shows a good agree-

ment, see Figure 3.11.

This result can be connected to the result of the flux-balance analysis of the high density

case presented in Sect. 3.4.2. In that analysis, the system length was obtained by considering

only the region in front of the shock. In the above discussion it was shown that the region

behind the shock contributes 1/(β − 1) to the average system length. Adding this term to

the average length obtained from Equation (3.32), an excellent agreement with simulation

results is found, see Figure 3.10. Note, that this argument holds in a strict sense only in the

case ω̄ = 0 since otherwise, the density behind the shock is smaller than 1. A generalization

leads to the correction terms discussed above.

Beyond the Flux-Balance Condition

For the case γ = ∞, an expression not only for the average but also for the fluctuations of

filament length could be derived. One might expect that this description also holds in an

approximative way for large but finite values of γ. To estimate the position dynamics of the

shock, assume that it performs a biased random walk with hopping rates that depend on

the position. The shock moves to the right, whenever a monomer is added to the plus end,

thus the stepping rate of the walker to the right is 1. The effective hopping rate to the left

is given by the quotient of the motor current to the site i = M, γρ(M − 1)(1 − ρ(M)) and

the shock height 1− ρ(M). The the motor distribution in the partially occupied domain is

approximated by a linear profile and we use ρlin. Again, a mean-field assumption is applied

and the two domains are considered to be independent of each other. In first order in 1/γ

one finds a correction term for L∞ and σ∞ of 1/(γω). Assuming that correlations between
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the two regions are of the same order, one finds for ω̄ = 0 [20]

〈L〉 = 〈L〉∞ +
1

γω
(3.52)

and

σ2 = σ2
∞ +

2

γω
. (3.53)

Interestingly, the results generalize to the case of ω̄ > 0 if the hopping rate γ is sufficiently

large, as can be seen in Figures 3.14 and 3.13. The arguments used above hold best if a

pronounced shock is established, that is, if γ is large and ω̄ is small. It can be concluded that

the shock dynamics dominates the length of the system in these cases. Note that the scheme

that was employed here to determine the average filament length differs fundamentally from

the flux-balance condition that was used above. While the flux-balance-condition integrates

over the whole filament, the movement of the shock is derived from a local condition on the

motor density.

The flux-balance-condition usually determines the filament length with higher accuracy

as compared to the shock position, but it does not provide an expression for the width

of the distribution. The dynamics of the shock position on the other hand describes the

fluctuations of filament length for large γ with satisfying precision.

3.5 Results

3.5.1 The Phase Diagram

At this point of the analysis, the phase diagram of the system for β̄ = 0 can be drawn. Let

me recall that, in semi-infinite systems with β = 0, the average particle density increases

monotonically and approaches asymptotically the value ρ∞ = ω/(ω + ω̄). This suggests

the existence of a situation in which filaments grow without limits. Such a behavior was

expressed by a critical particle-induced site removal rate βc which was defined such that the

system size diverges for β < βc. A rough approximation can be given by βcρ∞ = 1. While

this estimate gives a lower limit for βc in the case γ = 0, this is no longer true for finite

hopping rates γ > 0, see Figure 3.9. The deviations simply reflect that particles can pile up

towards the minus-end as discussed above. Looking at the graph, one finds that βc increases

monotonically with an increasing particle detachment rate ω̄ and decreases monotonically

with increasing values of γ.
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Figure 3.13: The average system length as a function of β − 1. Rates for γ and ω̄ are indicated
for every graph. Symbols represent the numerical results for ω = 0.1 (�), 0.05 (♦), 0.01
(◦), and 0.005 (O). Solid lines represent the approximation by Equation (3.53), values of ω
decrease from 0.1 (lower line) to 0.005 (upper line). Data in Figure b) was already shown in
Figure 3.12,a) when compared to the results of the high-density approximation.
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Figure 3.14: The standard deviation of the stationary length distribution as a function of β−1.
Rates for γ and ω̄ are indicated for every graph. Symbols represent the numerical results
for ω = 0.1 (�), 0.05 (♦), 0.01 (◦), and 0.005 (O). Solid lines represent the approximation
by Equation (3.53), values of ω decrease from 0.1 (lower line) to 0.005 (upper line). Data in
Figure b) was already shown in Figure 3.12,b) without an analytic expression.
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Figure 3.15: Phase diagram as a function of γ and ω̄/ω in the limit β → ∞ and for β̄ = 0.
The solid line is the result of stochastic simulations, the dashed line is given by ω̄/ω = γ − 1,
see text. The dotted lines mark the domain of applicability of Equation (3.32) for the average
system length. Note, that for γ = 0 the system size diverges for ω̄ ≥ ω̄c = ω2/(1−ω) > 0. [22]
c©APS (2012)

In the case γ = 0, the explicit expression for Ltyp, Equation (3.25), can be used to estimate

βc. These values for βc agree very well with our numerical results, see Figure 3.9. In the

opposite limit γ →∞, one deduces from the expression for 〈L〉∞ that in this case βc = 1.

For values 0 < γ < ∞, no analytic expression for the average system length is available

which takes into account the dependence of the average length on the depolymerization rate.

Still, the value of βc can be estimated without an explicit expression, see Section 3.4. While

the numeric values differ for γ > 0 from the expression given in Equation (3.20), it still gives

a reasonable estimate of the critical value ω̄c at which βc diverges for all values of γ ≥ 1 that

were examined, see Figure 3.9.

In Figure 3.15, the phase diagram is displayed as a function of γ and ω̄/ω in the limit

β → ∞. One finds that the region of diverging system length persists even in this limiting

case, which can be explained by the existence of a critical ωc above which the equilibrium

motor density is not high enough to restrict filament growth. However, the phase diagram

hardly changes for values of β down to approximately 3/2.

The results of the flux-balance analysis can be used to determine the boundary between

the phases of finite and diverging system size. For ω̄ > ω, one obtains from Equation (3.31)

in the limit L → ∞ that ω̄/ω = γ − 1. This exactly gives the numerical result for ω̄ > ω

and continues to be a good approximation of the phase boundary in the high motor density
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regime. For ω̄ < ω, the solution of Equation (3.32) for the average system size exists only for

ω̄/ω < (1 + γ)/2− 1. Remarkably, in the region ω̄ < ω violating this condition, the average

system length is well approximated by Equation (3.31), see also Figure 3.11.

3.5.2 Quality of Length Regulation

In a biological context, a cell might want to tightly control the length of filaments. That is,

the width σ of the length distribution should be small compared to the average length 〈L〉.
To discuss this property, I define the relative width or the quality Q of system size regulation

as Q = σ/〈L〉. For an exponential distribution Q = 1, while unimodal distributions have

Q < 1. In Figure 3.16, Q is presented as a function of the particle-induced depolymerization

rate β and the particle hopping rate γ. Independently of the particle detachment rate ω̄,

it can be seen that the average system size is better defined with increasing γ, except in a

small region at β & 1. The value of Q saturates when γ is of the same order as the rate of

system growth at the plus end. For β̄ = 0 and ω̄ = 0, the saturating value can be obtained

by using the results of Sect. 3.4.3 and is given by Q∞ =
√
ω(1 + ω).

This expression suggests that in the limit γ → ∞ and β → ∞, the length distribution

is maximally peaked when ω ≈ 0. To understand this behavior, note, that with increasing

length of the system, the number of possible processes leading to subunit removal increases

as the attachment of a motor to any site along the system will result in immediate site

removal at the minus end. In steady state, the average site removal rate equals 1, such

that the mean filament length behaves as ∼ ω−1. The law of large numbers then implies

that the distribution of removal events has a variance of ω−1. The relative width Q∞ of the

distribution consequently goes to 0 when ω → 0.

To see why Q increases as β → 1, let us note that this limit is similar to the limit

γ → ∞. Indeed, since sites are removed from the minus-end at a very slow rate, there

exists again a region with ρ ≈ ρ∞. As I discussed in Section 3.4.3 filament length in this

region is exponentially distributed with mean (and thus variance) 1/(β − 1). The other

region should have a size of order 1/ω and its variance is 1/ω, see Section 3.4.3. Thus,

Q =
√
ω(ω + (β − 1)2)/(ω + β − 1), which approaches 1 as β → 1.

3.6 Summary and Further Considerations

Motivated by experiments on microtubules, a driven lattice gas model for the length dynam-

ics of treadmilling filaments in presence of molecular motors was analyzed in this chapter.

It included a finite binding affinity of molecular motors and a motor induced site removal
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Figure 3.16: The quality Q = σ/〈L〉 of size regulation as a function of the particle-induced site
removal rate β and the particle hopping rate γ for ω = 0.01 and a) ω̄ = 0 and b) ω̄ = 0.02.
White lines connect points of equal filament length. [22] c©APS (2012)

at the minus-end. Two phases were found, one of bounded and one of unbounded growth,

respectively. Critical values for the rate of motor-induced site removal and the detachment

rate of motors were identified that separate both phases. In the limits γ = 0 and γ → ∞,

random walks could be introduced that accurately describe the corresponding steady state

size distributions.

As was shown, mean-field arguments for the correlation of motor density gave a very

good understanding of the behavior of semi-infinite systems. The deduced expression for the

motor density gradient along filaments could explain the behavior of the full system qualita-

tively. Invoking another mean-field argument to turn this gradient into a length dependent

depolymerization rate showed substantial differences between analytic and numeric results,

in parallel to what was discussed for the two-states model in Chapter 2.

The case of vanishing hopping rate, γ = 0, was reduced to a special case of the two-states

model that was discussed in Chapter 2. In this form, it could be analyzed in depth and

expressions for the mean and variance of the stationary filament length distribution could

be derived. The complex, time dependent and non-Markovian jump process that could be

defined for the dynamics of the filament length was thus mapped to a classic random walker

in an external potential.

For the general case of 0 < γ <∞, two different descriptions of filament length dynamics

were invoked. One relies on a flux-balance condition, exploiting that the net flux of motors to

the filament is a function of filament length. The other generalized the case of infinite motor

speed, γ →∞, based on the observation that the filament length dynamics is dominated by

the position of a shock on the filament. While the first approach gives good approximations

of the filament length for most parameters, the second provided also an approximation for
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3 The Effect of Depolymerizing Molecular Motors

length fluctuations in the parameter regime where shocks are expected to form.

In Figure 3.11 it was shown that an educated guess for the influence of the depolymeriza-

tion rate β gave a correction to the results of the flux-balance condition that agrees surpris-

ingly well with the average system size in the limit of large γ. Based on heuristic arguments

and numerical investigations, correction terms could also be obtained for 0 < γ < ∞ and

ω̄ > 0 [20]. Beyond the flux-balance condition, the results in the case γ → ∞ could be

generalized to finite values of the particle hopping rate and a good estimate of the length

distribution’s variance [20] was obtained. It will be challenging to give sound derivations of

these results.

Having access to these approximations, the phase diagram of the filament system could

be specified. Besides a region of unbounded growth, three distinct types of behavior could

be identified. In the low density regime, motors are not expected to form a shock and the

flux balance condition employing a smooth motor gradient along the filament gives a good

approximation of the average filament length. In the high density regime, motors are prone

to shock formation and the system size follows the shock dynamics on the lattice. However,

both descriptions fail to explain the regime of low motor speed (γ < 1) and high motor

binding affinity (ω̄ � ω). There, filament length is restricted by motor accumulation rather

than motor movement, similar to the two-states model discussed in Chapter 2. Fluctuations

have an important influence on the filament length in this regime.

The quality of filament length regulation was quantified by a dimensionless number Q =

σ/〈L〉. Interestingly, this value proved to be robust to variations in parameters if the motor

hopping rate is larger than 1 and the depolymerization rate of occupied subunits β & 1.1.

For rates beyond these limits, Q does not substantially deviate from its saturation value

Q∞ =
√
ω (1 + ω) for large γ and β. Since ω can be assumed to be proportional to the

motor concentration in vivo, this might be relevant for microtubule length regulation in

living cells.

The results of these calculations can be tested in experiments. Treadmilling microtubules

have been exposed to the minus-end directed motor Kar3p that increases the rate of subunit

removal [159, 160]. To measure the length distribution of an individual microtubule, one

could employ a microfluidic device that on one hand traps the filament and on the other

hand allows one to control the concentration of cytosolic motors and tubulin subunits. To

this purpose a cross-flow geometry similar to the one used in Ref. [163] to study fluctuations

of actin filaments could be used.

A finding of possible biological relevance is the robustness of the quality of size regulation

to changes in the particle-induced site removal rate or the particle hopping rate. It shows

that a cell would not need to fine tune motor properties in order to achieve the filament
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length distribution with the smallest dispersion. This could be used, for example, during

early stages of development of the fruit fly D. melanogaster, when the embryo still consists of

one cell with many nuclei, the syncytium. During mitosis, the size of the spindle separating

the chromosome cannot be bounded by a cell membrane and has to be internally regulated

through the length of the constituting microtubules. Since it was shown that the average

system length is essentially set by the motor attachment rate, the embryo could regulate the

spindle size by changing the concentration of motors in the cytosol.
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4 Actin Dynamics in the Cell Cortex

Experiments reported in this section were carried out by Marco Fritzsche at the London

Center for Nanotechnology (LCN), London, UK.

4.1 Introduction to the Cell Cortex

In this chapter, I investigate different models describing the dynamics of actin polymers

within a living cell. In eucaryotic cells, filamentous actin forms a dense network underneath

the membrane. The so-called actin cortex is tethered to the cell membrane by specialized

proteins. It has a depth of 100 − 500nm and its density drops rapidly with distance from

the cell membrane [1]. The membrane itself is composed of a double layer of lipids and

proteins [27]. Since the lipid membrane is rather fragile and its size is many times the

surface of the cortex, it is the cortex that defines the shape of the cell and balances the

external forces. The control of its dynamics and its mechanical properties is thus of vital

importance for the cell.

Below, experimental results from experiments on cervical HeLa and Melanoma M2 cells

are presented. These cells have a typical volume of 1 − 5 · 103 µm3. At the surface of both

cell types, an effect called ’blebbing’ can be observed. In this process, parts of the membrane

detach from the cortex and forms bubbles or blebbs that are filled with cytosol but do not

possess a proper cortex. Subsequently, the cortex is regrown under the membrane and the

tension that builds up in the intact cortex retracts the blebb [164]. Blebbing cells therefore

constitute a model system to study the formation of the actin cortex in vivo. Here, however,

I concentrate on the stationary properties of filament systems. Experiments presented here

were thus carried out in stationary parts of the actin cortex

Note that actin and many accessory proteins are small molecules that diffuse rapidly

within the cytosol. The diffusion constant for such proteins can be estimated to be of the

order of D ≈ 50µm2/s or larger in vitro [1, 165]. In living cells, the diffusion of molecules is

obstructed but actin monomers were still measured to move with D = 25µm2/s in vivo [61]

and are found throughout the whole cell. Filamentous actin is much less mobile since it is

rapidly cross-linked in the cortex, thus fixing the positions of monomers. Filaments can still
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translocate due to their treadmilling. In a living cell, roughly half of the actin is monomeric

and half of it is bound in the cell cortex [27]. F-actin forms a dense network with a meshsize

of about 100-200 nm [166], see Figure 4.1 for examples.

The main question of this chapter is how the principles of active polymerization that were

studied in the previous chapters lead to the homeostatic cortex of living cells. In a first step,

the nucleation of filaments in a finite volume is investigated by stochastic lattice models as

introduced above. It will be shown that the results of Chapter 2 remain qualitatively correct

when the monomer number is limited and the filament number is dynamic. Then, experimen-

tal findings are presented suggesting that cortex turnover occurs on two different timescales.

Analytical calculations illustrate the experiment’s capacity to unravel microscopic details

of the polymerization process. Finally, I numerically analyze three microscopic scenarios

providing molecular scenarios compatible with experimental findings.

In the remainder of this chapter, it is assumed that monomers show rapid diffusion in

the investigated volume and no spatial gradients of monomer concentration is established.

Furthermore, mechanical properties of the filaments are not considered. In particular, no

forces or interactions between filaments are taken into account. Filaments are mobile only

by treadmilling through the cytosol.

4.2 A Finite Size Model

First, the dynamics of an ensemble of filaments will be investigated by means of stochastic

simulations. The polymerization and depolymerization occurs in the same way as described

for the two- and three-states models discussed in Chapter 2. Filament subunits exist in either

of two or three different states with characteristic polymerization- and depolymerization

rates. In contrast to the above analysis, the rates of monomer addition are not constant but

depend on the concentration of available monomers in the solution. In this chapter, the case

of a linear dependency is considered, kon = ron c. The results do not qualitatively change if

a non-linear dependency of the monomer addition rate is assumed, for example in the form

of a Michaelis-Menten dynamics. In the following, two situations are considered: First, the

evolution of a system with a fixed number of filaments is investigated. Then the de novo

nucleation and disappearance of filaments is considered.
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a) b)

c) d)

10 �m

10 �m

1 �m

1 �m

Figure 4.1: Electron micrographs of the cell cortex of HeLa (top row) and melanoma M2 (bottom
row) cells. The cortex of the cells was fixed by treatment with glutaraldehyd and the membrane
was dissolved prior to image acquisition. a) The entire cortices of two Hela cells. b) A magnified
view on the mesh of the actin filaments. The disruption of the filaments might be due to the
treatment of the cells. c) The cortex of a single melanoma M2 cell in an overview. The small
spherical structures are blebbs with regrowing actin cortex. d) A magnification of the structure
of the cell cortex outside a blebb. (Images were provided by M.Fritzsche.)
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4.2.1 A Finite Reservoir of Monomers and a Constant Number of

Filaments

In the following, an ensemble of filaments sharing a common pool of monomers is considered.

The overall number of monomers in the system is fixed. It is assumed that the solution

is well-mixed such that the monomer concentration is homogeneous. Hence, all filaments

polymerize at the same velocity. As in the analysis presented in Chapter 2, all monomers

are assumed to be in the T-state. This corresponds to a rapid exchange of ADP by ATP on

the actin monomers in the living cell which could be provided by additional proteins such

as profilin.

Simulations are carried out for a volume of 1µm3. Hence, a concentration of 1µM corre-

sponds to

1µM = 10−21 mol

µm3
≈ 600µm−3 .

Consider now a situation in which the number of nuclei is fixed to Nfil = 1000µm−3 ≈
1.66µM . Figure 4.2 shows the mean and the standard deviation of the filament length

distribution as well as the monomer concentration as a function of time.

In all three cases, the initial monomer concentration determined the stationary filament

length. The average length as well as the monomer concentration relax on a much shorter

timescale to their stationary values than the second moment of the distribution. Note the

logarithmic scale on the time axis. The average filament length and the monomer concen-

tration are connected via Equation (2.1).

For the example parameters from Chapter 2 (see Figure 2.5) and for the rates of Kuhn

et al. [29] (left and center columns), the standard deviation of the distribution does not

reach the value of the average length, indicating a unimodal filament length distribution

as was found for a single filament. The first parameter set (left) shows an increase in the

monomer concentration on the time scale of ∼ 100s, which corresponds to the timescale

on which subunits in the filament turn from the ATP- to the ADP- bound state. So the

monomer concentration after 10s is close to the value of a pure ATP-monomer system. When

monomers are in the D-state, they are readily released from the filament tip and replenish

the monomer pool again. After roughly 100s, the monomer concentration has reached its

steady state. The increase in monomer concentration is also present in the case of the Kuhn

parameters (center) but less pronounced and barely visible in the fluctuations. For the three

state model with end-induced phosphate release, the average and the standard deviation of

the stationary length distribution are very close, indicating that the corresponding length

distribution is again exponential.
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Figure 4.2: Top row: Average filament length and the distribution’s standard deviation as a
function of time. Bottom row: The monomer concentration as a function of time. Three
different parameter sets are used: For the left column, rates were used that correspond to
the two state model in Figure 2.5 (squares). The data for the center column was generated
using the rates that correspond to the experimentally determined rates of Kuhn and Pollard
for the two-states model. The right column shows the results when the rates were applied
that were found by Fujiwara et al. and Jégou et al. for the three-states model. The initial
monomer concentration increases with decreasing color saturation from cT0 = 50µM (dark
colors) through 75µM , 100µM , 125µM to 150µM (light colors). The average filament length
assumes its stationary value much earlier than the width of the distribution. The monomer
concentration reaches its stationary value on the timescale of phosphate release. Rates are
given in Table 4.1.
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Fig. 4.2 Fig. 4.2 Fig. 4.2 Fig. 4.3 Fig. 4.3 Fig. 4.3 Fig. 4.2.2 Fig. 4.2.2 Fig. 4.2.2
left center right left center right squares circles triangles

rT+
on 1 7.4 11.6 1 7.4 11.6 1 7.4 11.6
rT−

on 0.01 0.56 1.3 0.01 0.56 1.3 0.01 0.56 1.3
rP+

on 10−5 3.8 3.4 10−5 3.8 3.4 10−5 3.8 3.4
rP−

on 2 · 10−5 0.16 0.11 2 · 10−5 0.16 0.11 2 · 10−5 0.16 0.11
rD+

on 2.9 0 0 2.9 0 0 2.9
rD−

on 0.09 0 0 0.09 0 0 0.09

kT+
off 0.5 0.9 1.4 0.5 0.9 1.4 0.5 0.9 1.4

kT−
off 0.005 0.19 0.8 0.005 0.19 0.8 0.005 0.19 0.8

kP+
off 0.5 1.5 0.2 0.5 1.5 0.2 0.5 1.5 0.2

kP−
off 1 0.26 0.02 1 0.26 0.02 1 0.26 0.02

kD+
off 5.8 0 0 5.8 0 0 5.8

kD−
off 0.24 0 0 0.24 0 0 0.24

ωTP 0.05 0.0068 0.3 0.05 0.0068 0.3 0.05 0.0068 0.3
ωPD 0.0068 0 0 0.0068 0 0 0.0068
ω̄+

PD 1.8 0 0 1.8 0 0 1.8
ω̄−PD 18 0 0 18 0 0 18

Nfil 1000 1000 1000
ν 106 106 106 var var var
nmin 3 3 3 3 3 3
V 2 2 2 1 1 1 1 1 1
T 106 106 105 105 105 105 104 104 104

cT0 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 50 - 150 100 100 100

Table 4.1: Table of parameter sets used in the first section. When a two-states model was
employed, the P-state was assumed to be the unstable subunit state and the D-state was
omitted. All rates r are given in units of (s µM)−1, all rates k, ω and ν are given in s−1.
Simulation volume V is measured in µm3, maximum simulation time T in s. All concentrations
are given in µM . The constant number of filaments, Nfil, and the minimal nucleus size, nmin,
are given as integer values, see text.
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Interestingly, in all three cases the stationary monomer concentration seems to be largely

independent of the initial amount of monomers present in the simulated volume. The aver-

age filament length, on the other hand side, is directly proportional to the total monomer

number. The presented calculations show that the stationary monomer concentration is

mainly determined by the addition- and removal rates of the monomers, while the average

filament length follows from the number of filaments. Since the active nature of polymeriza-

tion plays only a minor role in the determination of the stationary monomer concentration,

this result could be expected from the discussion in Section 2.2. However, fixing the num-

ber of monomers in a solution does not obstruct the emergence of peaked filament length

distributions and length control.

4.2.2 Spontaneous Nucleation

Consider now the situation in which filaments are formed spontaneously out of nmin = 3

subunits. The rate of spontaneous filament creation can then be assumed to have the func-

tional form knucl = ν c3
mon with a nucleation rate constant ν and the monomer concentration

cmon [7]. From Figure 4.2, it follows that in the investigated parameter regime, the stationary

monomer concentrations are rather low. If filaments are not created by filament fragmen-

tation, the value of ν in units of s−1µM−3 must be large to lead to a significant number of

filaments.

Figure 4.3 displays the average filament length and the number of filaments as a function of

time for the same polymerization parameters that as are used in Figure 4.2. Qualitatively, the

stationary length distributions are the same in both situations. However, for the presented

parameters, filaments are rather short.

The average filament length now relaxes to its stationary value on the same time scale as

the standard deviation of the distribution and the filament number. Filaments are removed

from the ensemble whenever a subunit is removed from a filament of minimal size, nmin and is

thus proportional to the probability to find a filament of minimal size, Pnmin
. Thus, the rate

of filament disappearance increases with increasing width of the distribution. The number

of filaments becomes stationary only after the width of the distribution is stationary. Since

the average length depends directly on the filament number in solution, it relaxes on the

same time scale.

In Figure 4.4, the properties of stationary ensembles of the three systems are shown under

variation of the nucleation rate constant ν. As expected, the number of filaments increases

with increasing nucleation rate. At the same time, the average filament length and the

amount of free monomers decreases. Given that the rate of nucleation is varied by 5 orders
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Figure 4.3: The dynamics of the polymers with spontaneous nucleation. a) The average filament
length and the distribution’s standard deviation as a function of simulated time. b) The
number of filaments as a function of time. Average filament length relaxes on the same time
scale as the length distribution’s standard deviation and the filament number. Parameters of
polymerization and depolymerization are as in Figure 4.2; rates are summarized in Table 4.1.

of magnitude, it can be deduced that its effect on the stationary states of the systems is

limited. For very fast nucleation, all systems tend to the same state in which basically all

monomers exist within filaments of the minimum size of three subunits.

The stationary number of filaments is also a function of the filament length distribution.

Filament ensembles with exponentially distributed lengths have a higher rate of filament

removal than systems with unimodal length of the same average. In the stationary state,

the nucleation rate needs to be higher to generate the same number of filaments. This

behavior can be observed for the three state model. The respective curves in Figure 4.2.2

shows the fastest decrease of filament number with decreasing nucleation rate. Note that

for low ν, the average length reaches a size of 600 monomers while it retains its exponential

shape.

Let me note that the spontaneous nucleation itself does not destroy the unimodal character

of the length distributions found in Section 2.4.7. If the removal rate of D-monomers from

the minus end is enhanced, actin filaments can still be expected to show unimodal length

distributions. Figure 4.4 summarizes the steady state properties of the filament ensemble

employing the modified actin polymerization rates that were used to generate Figure 2.23.

For small nucleation rates, the average filament length is much larger than the length distri-

bution’s standard deviation, see Figure 4.4 d) for examples.
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Figure 4.4: The characteristics of the stationary actin system with kD−
off = 2.5 s−1 and sponta-

neous nucleation. a) Average filament length (red) and the distributions standard deviation
(blue) as a function of the nucleation rate. b) The stationary monomer concentration. c) The
number concentration of filaments in the stationary ensemble. d) Three examples of the length
distribution for ν = 103 (blue), ν = 104 (light green), and ν = 105 (red). Values were obtained
by averaging over 10 samples of the whole distribution. Except for kD−

off , all parameters were
chosen as for the triangles in Figure 4.2.2.
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Figure 4.5: Properties of a stationary ensem-
ble with spontaneous nucleation as a func-
tion of nucleation rate ν. a) Average filament
length and standard deviation of the distri-
bution for the three parameter sets from Fig-
ure 4.3, artificial parameters (�), Kuhn pa-
rameters (◦), and Fujiwara parameters (M).
b) The monomer concentration as a functin
of the nucleation rate. c) The number con-
centration of filaments.

It was shown that the ability of actin

monomers to spontaneously form a fila-

ment nucleus is very low. The concen-

tration of actin filaments in a solution of

5M of monomers was estimated to be of

the order of 10−15M [32]. Thus, it must

be concluded that if filament length is ex-

ponentially distributed, their number in

stationary state is extremely low. Then,

only very few polymers accomodate all

available monomers. Such a behavior

was indeed found for actin solutions that

were let polymerize without sonication.

Over time, the number of filaments de-

creased but their size grew [167].

In living cells, however, the number

of filaments is very large, see for exam-

ple the images of the cell cortex in Fig-

ure 4.1. Since the cells cannot safely rely

on external forces to sever the filaments,

it must resort to the action of nucleation

promoting factors. A number of such

proteins are known, for example formins,

hem-1, or the arp2/3 complex [27, 168].

These proteins typically nucleate new fil-

aments and stay bound to the filament

end for some time. Formin for example

stays bound to the barbed end of actin

filaments where it facilitates the further

addition of monomers. Together with

the actin sequestering protein profilin it

increases the polymerization speed by up

to a 100-fold [49]. The arp2/3 complex on the other hand, binds to the sides of existing fil-

aments and nucleates branches [169] connecting the pointed end of the new filament to the

existing cortex. The arp2/3 also plays an essential role in the protrusion of the lamellipodia

of migrating amoeboid cells [103]. Hem-1 is part of the Scar/WAVE complex that also con-
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tains the proteins arp2 and arp3. It is activated at the cell membrane, leading to a localized

enrichment of actin [168]. There is evidence that actin removes hem-1 from the membrane,

leading to nucleation waves in the cell cortex [168, 170]. For cells, nucleating proteins are a

simple lever to regulate the rate of filament formation.

In the next section, bleaching and photoactivation experiments are introduced. The dy-

namics of recovery or loss of fluorescence, respectively, can provide information about the

organization of the cell cortex. Different hypotheses about the structure of filaments and

their polymerization dynamics can then be tested with the help of stochastic simulations.

4.3 Bleaching and Activation Experiments

The dynamics of actin in the cortex can be investigated by Fluorescence Recovery After Pho-

tobleaching (FRAP) or Fluorescence Recovery After Photobleaching (FLAP) experiments.

In these experiments, actin monomers are labeled with a fluorescent dye that can either be

bleached or activated by a focused laser beam of a specific wavelength. In the FRAP setup,

the recovery of fluorescence is recorded as a function of time after an initial bleaching of the

dye. In a FLAP experiment, in contrast, the dye is initally activated and its loss within the

activation zone is recorded.

In a bleaching experiment, for example, the initially dark region recovers its fluorescence as

unbleached proteins from the cytosol diffuse and grow into the bleached spot, see Figure 4.6.

For linear aggregates such as the actin filaments, the rates of fluorescence accumulation ωa
or loss ωd are not equal to the rates at which monomers are added to and removed from

the filaments, kon and koff. Since monomer exchange only occurs at the filament ends, it

takes longer to replace a monomer in a long than in a short filament. In principle, it should

therefore be possible to extract information on the filament length from the recovery curves

of bleaching experiments.

If the cortex is in stationary state at the observed spot, the fluorescence gain that is

recorded in a bleaching experiment must equal the fluorescence loss in the corresponding

photoactivation experiment. The overall amount of actin in the region of interest, however,

is constant. Thus, both types of experiments should give the exact same results and can be

used interchangeably.

Besides FRAP and FLAP experiments, the investigation of fluorescent speckles can provide

useful insight into the dynamics of the cortex. Speckles appear if the expression amplitude

of labeled proteins is very low as compared to the amount of endogenous proteins in the cell.

Then, only a small number of bright proteins is found in an ensemble of dark ones. In the

microscope images, they appear as ’speckles’ that can be tracked. Instead of probing the
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Figure 4.6: Illustration of bleaching experiments of the cortex of a living cell. a) A focused
laser beam bleaches the fluorescent dye tethered to the actin monomers, leaving a dark spot
in the bright cortex. b) Fluorescence recovers as bright monomers from the cytosol replace
the bleached ones in the dark region. The rates of fluorescence exchange in the bleached spot,
ωa and ωd differ from the effective rates of monomer addition and removal, kon and koff since
monomers are only exchanged at filament ends. c) Snapshots of a FRAP experiment on cortical
actin in a HeLa cell. The region in the red circle is bleached between time t = 0 s and t = 1 s.
Fluorescence slowly recovers with time. The region within the blue circle was used to determine
the diffusion correction, the fluorescence in the region of the green circle was used to determine
the loss of fluorescence due to imaging. The scale bar represents 1µm. (Illustrations and
Figures from [61], modified c©M. Fritzsche 2012)
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Figure 4.7: The fluorescence loss after Photobleaching in the actin cortex in M2 cells. Symbols
give the fluorescence signal after the corrections for monomer diffusion and general loss of
fluorescence by the imaging were applied. The signal can be fitted by a superposition of two
exponential functions (solid red line). (Figure from [61], modified.)

whole ensemble at once, the fate of an individual protein can be observed.

4.3.1 Experimental Findings

FRAP and FLAP experiments were carried out on human Melanoma M2 cells [61]. The

actin monomers were labeled with either green fluorescent protein (GFP) for FRAP- or with

a combination of red fluorescent protein (RFP) and a photoactivatable (PA-GFP) for FLAP

experiments. After the genetic manipulation that was needed for the labeling, the cells

proliferated as usual and displayed normal phenotypes.

As predicted, bleaching and photactivation experiments showed the same behavior. In

both cases, the signal relaxed on different characteristic scales. The relaxation on a sub-

second timescale could be attributed to the diffusion of free monomers into the region of

interest and was subtracted from the curves. In order to extract the effect of the cortex

turnover, a correction was applied that accounted for the general loss of fluorescence during

the recording procedure. After that, recovery and dilution curves, respectively, showed a

relaxation of the fluorescence signal on two different timescales, see Figure 4.7. One rapid

process on the timescale of a second accounted for roughly 2/3 of the fluorescence and another

slow process relaxed the remaining 1/3 of fluorescence on a timescale of about 25 seconds.

The fluorescence signals could be fitted with high accuracy by a superposition of two
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exponentials. In the case of a FLAP experiment, it takes the form

F (t) = A1 e−τ1 t + A2 e−τ2 t .

For FLAP- and FRAP curves on wild-type M2 cells, the characteristic rates for the best fit

were τ1 = 1.4 s−1 and τ2 = 0.04 s−1. A fraction of A1/(A1 + A2) = 68% of the fluorescence

decayed on the rapid scale while the remaining 32% disappeared on the slower scale. The

two distinct timescales suggest that two subpopulations of actin filaments are present in the

cortex with monomer residence times that differ by a factor of 35.

Further investigations by mass spectrometry could show that a specific protein of the

formin class, diaph1, is present in the actin cortex of M2 cells [171]. This protein is the

human analog to the mouse protein mDia1 [172] that was already mentioned in Chapter 2.

To get a closer view on the nucleation, speckle experiments on this formin were done. The

speckles were either localized spots or blurred smears. Only the spots were considered since

they can be attributed to formins that were bound to the membrane, the actin filaments,

or both. Smears, on the other hand, were assumed to correspond to freely diffusing formins

and are not considered in the following analysis.

In two different setups, full length diaph1 (FL-diaph1) and a constitutively active diaph1

(CA-diaph1) lacking its autoinhibitory domain were analyzed. In both cases, the whole pop-

ulation of speckles could be subdivided into a group of immobile and mobile formins. Mobile

formin speckles moved directionally at a speed of roughly 300 nm/s which corresponds to a

polymerization rate of about 100 monomers / s [61], see Table 4.2. Assuming a polymeriza-

tion rate of diaph1 of about 45 mon(s µM)−1 that was reported for in vitro experiments [55],

a concentration of 2.2 µM of polymerizable actin can be deduced.

Full-length diaph1 needs to bind the membrane protein RhoA to become activated by

the signaling molecules PIP2. Only then it can nucleate and elongate actin filaments [173].

These speckles moved on average for 9 s before they disappeared. The distribution of

lifetimes was exponential, suggesting that formin release is a spontaneous process described

by a single detachment rate. CA-diaph1 was already released after 5.8 s from the barbed

end. This protein is always able to nucleate and elongate actin filaments [174]. Since the

polymerization velocities of both formins were similar, it can be concluded that the activation

step is negligible for the polymerization dynamics. The results are summarized in Table 4.2.

The same type of experiment was carried out for actin speckles. Also there, mobile and

immobile speckles were found. Analysis of the abundance of mobile and immobile speckles

upon treatment with different drugs suggest that mobile actin speckles are monomers within

filaments that are bound to immobile formins [61]. The movement is then caused by formin
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M2 HeLa

FL-formin
immobile lifetime 2.7 s
mobile lifetime 8.9 s
mobile velocity 95 ± 58 mon/s

CA-formin
immobile lifetime 2.7 s 4.3 s
mobile lifetime 5.8 s 9.3 s
mobile velocity 102 ± 51 mon/s 118 ± 50 mon/s

actin
immobile lifetime 2.2 s 6.2 s
mobile lifetime 6.8 s 7.7 s
mobile velocity 92 ± 10 mon/s 107 ± 50 mon/s

Table 4.2: Results of the speckle experiments on formin and actin.

pushing filaments through the cytosol. The lifetime of mobile actin speckles was determined

to be 6.8 s in M2 and 7.7 s in HeLa cells, see Table 4.2.

These experiments led to the idea that formin proteins localize at the membrane by binding

to the membrane protein RhoA, where they are activated by PIP2. Active formins nucleate

new actin filaments to which they add monomers at a speed of 100 mon/s, thereby pushing

the filament at a comparable speed. Formins can then either detach from the membrane or

from the filament. If it detaches from the membrane, it gets mobile while monomers in the

bound filament become immobile. As soon as a formin detaches from the actin filaments,

polymerization proceeds at a reduced velocity. Doubly detached formins are available for

another cycle of binding and nucleation [61].

4.3.2 Three Modes of Monomer Exchange

Before I engage into detailed simulations of the polymerization dynamics of the cell cor-

tex, let me briefly analyze what can be learned from FRAP- and FLAP-experiments about

the organization and dynamics of the actin network. The fluorescence signal in FLAP or

FRAP-experiments probes the residence times of, respectively, bleached or photo-activated

monomers in an filament ensemble. In linear filaments, the residence time of monomers

is a function of their relative distance to the filament’s ends, hence, the filament length.
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Figure 4.8: Illustration of the three filament assembly situations analyzed in this section. a)
monomers are added to the filament at the plus end and are removed from the minus end at
fixed rates. b) one filament end is inert while monomer exchange occurs only at the opposite
end. c) monomer exchange occurs at both filament ends at fixed rates.

Moreover it depends on the microscopic mechanism of monomer addition and removal and

on the rate of subunit exchange at the ends. In the remainder of this section, I investigate

the residence times of monomers in three different types of filaments. The different modes

of polymerization are depicted in Figure 4.8.

The situation corresponds to a FLAP-Experiment assuming photo-activation of the whole

ensemble at time t = 0. The photo-activated monomers are lost one after the other and

whenever a new monomer is added to the filament, it doesn’t show up in the FLAP-signal.

For all three cases, first, the probability is calculated that a monomer is still part of the

filament at a time t after photo-activation when it was initially at position x in a filament

of length L, P(t;x, L). Then, the fluorescence of the whole filament decays as

f(t;L) = L−
L−1∑
x=0

(1− P(t;x, L)) . (4.1)

Note that indexing starts at x = 0.

Assuming a filament length distribution C(L), the ensemble average of the fluorescence

signal will be

F (t) =
∞∑
L=0

C(L) f(t;L) . (4.2)

Here, C(L) is assumed to be exponential. As was pointed out in Chapter 2, such filament
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length distributions are found in equilibrated polymers or if depolymerization of monomers is

always faster than polymerization. The treadmilling dynamics that is depicted in Figure 4.8

a) is a result of an active polymerization process and can also have a unimodal form. Since

it was shown above that actin filaments are unlikely to have unimodal length distributions,

this case is not investigated in detail. For the further analysis, scheme b) and c) are assumed

to be passive such that exponential length distribution will emerge generically. For arbitrary

rates, filaments in case c) could also show active treadmilling. If the treadmilling rate is of

the order of the addition and removal rates, however, the results of case a) can be applied,

using effective rates.

Treadmilling

In the case of a treadmilling filament, a single monomer at position x can only leave the

filament if L − x + 1 monomers depolymerize from the minus end. As depolymerization

occurs at a constant rate koff, the probability for the removal of the monomer in a time

interval between t and t+ dt follows a Poissonian law,

p(t;x, L) dt =
(koff t)

L−x

(L− x)!
e−koff t koff dt . (4.3)

The probability for the monomer still to be integrated in the filament and still to contribute

to the fluorescence signal at time t is deduced to be

P(t;x, L) = 1−
t∫

0

p(t′;x, L) dt′ =
Γ(L− x+ 1, koff t)

(L− x)!
, (4.4)

where Γ(z, a) =
∞∫
a

tz−1 e(−t) dt is the incomplete Γ-function. The fluorescence signal of a

filament of length L is then given by

f(t;L) =
(koff t)

L+2

(L+ 1)!
e−koff t +

L+ 1− koff t

(L+ 1)!
Γ(L+ 2, koff t) . (4.5)

A stationary length distribution is only reached when koff > kon. The length distribution

in an ensemble is then C(L) =
koff − kon

koff

(
kon
koff

)L
. After a straightforward calculation, one

arrives at the simple result

F (t) =
koff

koff − kon

e−(koff−kon) t (4.6)
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Figure 4.9: The FLAP Signal as a function of time for an ensemble of purely treadmilling
filaments, i.e. monomers are attached at the plus end at rate kon = 0.18s−1µM−1 c = 0.452s−1

and are removed from the minus end at rate koff = 0.55s−1. The ensemble consisted of 104

filaments and 107 monomers. Symbols are the results of stochastic simulations, the black line
follows from the analytical treatment, see text. The deviations of both curves at long times
is due to the finite amount of activated monomers in the simulation. The fluorescence signal
saturates at the ratio of total activated monomers to total monomer number, which has a
finite value. In the calculation, an infinite reservoir of dark monomers was assumed, thus the
analytical fluorescence signal drops asymptotically to zero.

for the fluorescence signal of the whole ensemble. In Figure 4.9, the result of a stochas-

tic simulation and the analytical result are compared for parameters kon = 0.452s−1 and

koff = 0.55s−1 for an ensemble of N = 104 filaments. The average filament length then

amounts to 〈L〉 = 5.6 monomers. Numerical and analytical results show excellent agree-

ment. The fluorescence signal of a treadmilling filament thus relaxes exponentially with a

single characteristic rate τ = koff − kon.

One-sided Activity

Now, the case is considered in which monomers are only exchanged at one filament end.

They are added to the filament at rate kon and removed at rate koff, where again kon < koff.

The filament tip then performs a biased Random Walk in the discrete length-space. To be

removed from the filament, a monomer at distance m from the active tip has to wait until

the tip has traveled this distance m into the filament bulk. The lifetime distribution can then
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be formulated as the first-passage-time problem of a biased Random Walk, starting at t = 0

at position m, when the absorbing boundary is located at the origin. The Master-Equation

of the full problem then reads

d

dt
p(m)
n (t) = −(kon + koff) pn + kon pn−1 + koff pn+1 (4.7)

d

dt
p

(m)
0 (t) = −(kon + koff) p0 + koff p1, (4.8)

with

p(m)
n (t = 0) = δnm,

where p
(m)
n (t) denotes the probability that at time t, a cap of n monomers separates the

monomer in question from the tip of the filament, when initially the cap consisted of m

monomers. If the filament length is given by L, the probability that a monomer at distance

L− x from the tip survives until time t is given by

P(t;x, L) = 1−
∞∑
n=0

p(L−x)
n (t).

The Master-Equation (4.8) and (4.8) can be solved analytically by recursion. However,

one is faced with a result involving a number of non-trivial sums which seemingly have no

closed form. To simplify things, I use the Fokker-Planck approximation, that yields [90]

p(x′, t) =
1√

4πDt

(
e−(x′−x−vt)2/(4Dt) − e−vx/D e−(x′+x−vt)2/(4Dt)

)
(4.9)

for the probability p(x′, t) for a biased Random Walk with drift v = kon − koff < 0 and

diffusion coefficient D = (kon + koff)/2 to be at position x′ when initially it was at x. One

then has

P(t;x, L) =

∞∫
0

dx′ p(x′, t) =
1

2

(
1− e−vx/D

[
1 + erf

(
vt− x
2
√
Dt

)]
+ erf

(
vt+ x

2
√
Dt

))
.

The fluorescence signal of an individual filament of length L is then given by the rather
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lengthy expression

f(t;L) =

L∫
0

dxP(t;x, L)

=
L

2
+
D

2 v

[
e−vL/D − 1

]
+

√
Dt

π

[
e−(vt+L)2/(4Dt) − e−(vt)2/(4Dt)

]
−
[
vt

2
+
D

v

]
Erf

(
vt

2
√
Dt

)
+

[
vt+ L

2
+
D

2v

]
Erf

(
vt+ L

2
√
Dt

)
+
D

2v
e−vL/D Erf

(
vt− L
2
√
Dt

)
.

Here, the Error-Function Erf(x) = 2√
π

x∫
0

e−t
2

dt was used. An exponential length distribution

of filaments is assumed, which, in the Fokker-Planck limit, has the form

C(L) = − v
D

exp

(
vL

D

)
.

Note again that in the whole calculation the drift velocity is negative, v < 0. One finds

F (t) =

∞∫
0

dL C(L) f(t;L) = −
(
D

v
+
vt

2

) (
1 + Erf

(
vt

2
√
Dt

))
−
√
Dt

π
e−v

2t/4D.

In Figure 4.10 a), it is shown that this result reproduces the FLAP-curve in stochastic

simulations. Note that no kind of fitting was used. Figure 4.10 b) shows the same system

but with an infinite reservoir of unlabeled monomers. The difference is only visible in the

semilogarithmic plot, where the fluorescence drops to zero in accordance with the analytic

predictions.

Summarizing, for the single sided polymerization and depolymerization, one finds a decay

process with an exponential and a non-exponential part. This is in contrast to the tread-

milling case, where the loss of fluorescence occurred by a simple exponential decay. The

difference is no artifact of the application of the Fokker-Planck Equation as it appears also

in the simulation results, see Figure 4.10. Instead, it is an intrinsic feature of the single sided

addition and removal of monomers.

I want to note furthermore that the characteristic timescale of the exponential part in

both, treadmilling and single sided activity, is qualitatively different: the timescale in the

first case is linear in the drift velocity v = kon − koff, while in the second it is proportional
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Figure 4.10: Fluorescence signal of an ensemble of filaments that have only one active end. Here,
kon = 0.18 cmon = 0.452s−1, koff = 0.55s−1, N = 107 monomers interact with 104 filaments,
resulting in 〈L〉 ≈ 5.6. a) A fraction of 56000/107 monomers in the ensemble gets permanently
labeled, the signal asymptotically reaches 560002/107 ≈ 300 monomers. The analytic result on
the other hand tends to zero by definition. b) In this setup, all monomers loose their color as
soon as they detach from the filament, newly added monomers are always dark. No fitting was
employed, the only approximation lies in the application of the Fokker-Planck Equation.
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to v2.

Equilibrium Monomer Exchange at Both Filament Ends

In the third and last case, the subunit exchange occurs at both ends of filaments. The

rates for addition and removal are denoted by k+
on, k+

off, k−on, and k−off, respectively. In the

equilibrium case, the rates obey
k+

off

k+
on

=
k−off

k−on

, (4.10)

that is k+
off = θ k−off and k+

on = θ k−on with θ fixed. Explicitly, v+ = θ v− and D+ = θ D−, which

leads to
v+

D+
=

v−

D−
.

Since both filament ends are independent of one another, the probability P(t;x, L) that

both filaments have not yet reached a given monomer in the filament is the product of the

probabilities that neither the one nor the other has done so at a given timepoint t. Thus,

P(t;x, L) = P+(t;x, L) · P−(t;L− x, L) , (4.11)

where P±(t;x, L) are the expressions for P(t;x, L) in the case of single sided activity with

the respective v± and D± 1. As before, indexing of monomers starts at the plus end.

The integration over x leads to an integral of the form
b∫
a

ds e−s
2

erf (α + β s) , which has

no closed form. Therefore, the integral
∞∫
0

dL C(L)
L∫
0

dxP+(t;x, L)P−(t;L − x, L) is solved

numerically in the following.

Again, the numerical and the analytical curves are in good agreement, see Figure 4.11.

From the logarithmic plot, it can be inferred that for short times, the decay is again not

purely exponential. I hypothesize that the decay for long times has a characteristic time

scale of the order of (v+)2 + (v−)2.

Conclusions

Let me briefly summarize the results of the analytic treatment of fluorescence recovery at

this point. Three modes of filament assembly were investigated: treadmilling filaments and

1One can think of it as a Random Walk in the plane, where one axis gives the distance of the monomer to
the plus and the other the distance to the minus end. At the x- and the y-axis, absorbing boundaries are
applied and the RW starts at t = 0 at x+ y = L.
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Figure 4.11: Fluorescence signal of an ensemble of filaments with monomer exchange at both
ends. Here, k+

on = 0.18 css = 0.452s−1, k+
off = 0.55s−1, k−on = 0.0.036 css = 0.0904s−1,

k−off = 0.11s−1, N = 107 monomers interacted with 104 filaments, resulting in 〈L〉 ≈ 5.6,
as before. Here, the monomers loose their color as soon as they detach from the filament,
newly added monomers are always dark. No fitting was employed, the only approximation lies
in the application of the Fokker-Planck Equation.

equilibrium monomer exchange at one or both filament ends. For all three cases, analytic

expressions for the fluorescence signal for an exponential filament length distribution were

derived.

The fluorescence of a purely treadmilling filament ensemble drops exponentially at a rate,

which is given by the length drift velocity v = kon − koff < 0. In contrast, equilibrium poly-

merization at one or both filament ends is dominated by fluctuations and their fluorescence

decays on long time scales with a rate proportional to v2. If the condition of equilibrium

polymerization is released, the treadmilling state a) is a limiting case of the general scheme of

double-sided activity, c). Hence, the fluorescence signal should converge to the same shape in

the appropriate limit. If filaments of the type c) effectively display a treadmilling behavior,

one would expect furthermore that the fluorescence signal drops as e−v t rather than e−v
2 t

for large t. This should hold true as soon as the drift dominates the fluctuations in length

dynamics.

The models for one-sided and double sided activity give rise to a rapid non-exponential

decay of the fluorescence signal on short times. The effect is visible in both, the simulation

results and the analytical description. It is thus intrinsic to the mechanism of filament

renewal. Can this non-exponential rapid drop account for the first of the two time scales

observed in experiments? Two arguments are opposed to such a view: First, the drop has no
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exponential characteristics and the ensuing curve can not be fitted by a simple superposition

of two exponential decays. Second, the amount of fluorescence that recovers on each of the

two scales would be fixed by the addition and removal rates. A modification of polymerization

or depolymerization would then always affect the amplitudes and timescales of both processes

simultaneously. A specific manipulation of one of the two scales as reported in experiments

would not be possible [61].

In addition to these arguments, it appears implausible that active filaments like actin rely

on a passive mode of monomer renewal in vivo. Since the analysis in Chapter 2 revealed that

the addition and removal rates of actin are such that treadmilling is found for all monomer

concentrations, it can safely be assumed that actin filaments are also in the treadmilling

state in vivo.

In addition to the presented calculations, the analysis of other modes of active filament

renewal remains to be done. In particular, the filament length distribution of active polymers

doesn’t need to be exponential as was pointed out in Chapter 2. Unimodal distributions with

a strongly localized length could lead to non-exponential recovery curves. In the treadmilling

case, one would expect a linear decrease in fluorescence as long as filaments are not fully

renewed and a sudden drop in the signal when the dark part of the filament reaches the

filament length of all filaments at the same time. Other modes of filament recovery could also

include models for dynamic instability, vectorial hydrolysis, and fragmentation of filaments.

Further theoretical analyses suggest that activity of a filament system increases the turnover

rates rather generally [175].

4.4 Two Timescales in Cortex Simulations

In the last part of this chapter, I present stochastic calculations that reproduce the two

distinct timescales that were found in FRAP and FLAP experiments on the actin cortex of

melanoma M2 and HeLa cells. Three different scenarios are introduced and discussed.

4.4.1 The Simulation Algorithm in Detail

To simulate the cortex, stochastic simulations were used similar to those introduced above.

In the present simulations, the state of the cortex is given by the number of free monomers

and the ensemble of all filaments, including the internal states of all constituting monomers.

The overall number of monomers that are either free or bound in filaments is held constant

throughout the simulation. Their number is given by Ntot. Diffusion of free monomers is

assumed to be very fast such that the concentration of free monomers is homogeneous in the
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simulated volume.

Filaments are represented as linear arrays of monomers, each of which has an internal

state that corresponds to a monomer bound to an ATP, ADP-Pi, ADP, or a cofilin molecule.

Moreover, a color, bright or dark, is assigned to every monomer within the filaments. By

convention, all monomers that are integrated into the filament are bright. When the cortex

is bleached, the color of all filamentous subunits is set to dark. To further simplify the

simulation, it is assumed that all free monomers are in the ATP-bound form.

In all presented simulations, a fixed number of formin molecules, Nform, is included into the

simulation as nucleation factors. Free formins nucleate new filaments from a free monomer

at rate νform. As long as a formin is attached to the filament it nucleated, it adds new

monomers at a rate kform
on cmon, with cmon being the monomer concentration. The formin is

released from the barbed end at rate foff . When released, the formins undergo another cycle

of filament nucleation and monomer addition.

Free barbed and pointed ends exchange monomers with the cytosol as described for the

two- or three states model in Chapter 2. Monomers in the solution are all assumed to be

equivalent. Addition rates are chosen such that this state corresponds to the profilin bound

form of ATP-actin. Empty and formin bound barbed ends thus perceive the same monomer

concentration.

In these simulations, filament ends can also be inactivated by capping. The number of

capping proteins in the simulated volume is fixed to N+
cap and N−cap, for the barbed and

pointed end capping proteins, respectively.

As mentioned above, subunits within the filament can also bind the severing protein

cofilin. Since cofilin has a much higher binding affinity to ADP-actin than to ATP- or ADP-

Pi-actin [136, 176], its binding is treated as a fourth subunit state. Transitions from the

D-state to the cofilin bound state occur at fixed rate ωDC. This corresponds to fixing the

concentration of cofilins rather than their number. Cofilin bound subunits are the sites at

which filaments can be severed. Two alternative models for the severing of filaments are

detailed below.

Besides formin, a second nucleating protein, arp2/3, is introduced in the simulations.

Arp2/3 is a complex of several proteins that bind to the side of existing actin filaments.

Its nucleation rate in vivo is thus coupled to the presence of filamentous actin. In the

simulations, it is implemented as a pointed end capping protein that is able to nucleate new

filaments. All free arp2/3 molecules nucleate filaments at rate νarp. They detach from the

respective filament at rate aoff . As long as an arp2/3 binds the minus end of a filament, no

monomers can detach.

From the initial state without any filaments, the system is evolved into the stationary state
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following the above polymerization dynamics. After a time of the order of T > 103 s, the

system is bleached. At this moment, the color of all monomers in filaments is set to dark.

Monomers that polymerized after that moment are bright again. During the subsequent

recording of the FRAP-signal, the number of bright monomers within the filamentous part

is determined as a function of time. The FLAP-signal is then given by the number of dark

monomers in the filaments.

Before the simulation results are presented, I will provide estimates for some of the pa-

rameters in the system.

4.4.2 Model and Analytic Estimates

As pointed out above, in HeLa and melanoma M2 cells, the traveling speed of mobile formin

speckles correspond to a polymerization rate of roughly 100 monomers per second. Under the

assumption that monomers are bound to profilin, the concentration of polymerizable actin

monomers in solution must be close to 2.2µM . It is known from independent experiments

that profilin-actin polymerizes at barbed ends at a rate of about 9 monomers (s µM)−1 [55]

wich amounts in the present case to 22.5 monomers/s.

To establish a stationary cortex at these T-monomer concentrations, the net depolymer-

ization per filament has to lie between 22.5 and 100 monomers/s. Both values lie far above

the monomer removal rate of kD−
off = 0.25 s−1 that was reported for bare actin in vitro [30].

On the other hand, it was shown that addition of formin and cofilin to the in vitro solution

increased the turnover velocity of actin polymerization by a factor of 25 [64] to 150 [177, 178].

The ensuing depolymerization rate reaches the right order but it can be assumed that the

action of coronin and aip1 further speeds up the turnover in vivo [137, 179].

For treadmilling filaments, the net depolymerization speed can be estimated from the life-

time measurements of actin speckles. Consider a filament that is nucleated by a formin.

On average, this filament will grow at its barbed end for 〈t〉 = 10 s at a velocity of

〈νform
a 〉 = 100 mon/s until the formin detaches. After that, polymerization proceeds with

22.5 mon/s. Let me assume that depolymerization takes place at a constant velocity during

the whole lifetime of the filament. Since speckles are integrated at random times, the aver-

age lifetime 〈T 〉 of a monomer in such a filament can be given as a function of the average

depolymerization rate 〈νd〉,

〈T 〉 =
〈νform
a 〉 − 〈νd〉

2 〈νd〉
〈t〉, (4.12)

where 〈t〉 is the average lifetime of a formin at the barbed end 2. Note that this expression

2Consider for this calculation for example the cumulative amount of seconds that all monomers stay bound
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4.4 Two Timescales in Cortex Simulations

only depends on the polymerization rate of formin bound filaments, 〈νform
a 〉, but not on the

growth rate of empty filament ends. Equivalently,

〈νd〉 =
〈νfrom
a 〉 〈t〉

〈t〉+ 2 〈T 〉
. (4.13)

For an average lifetime of mobile actin speckles 〈T 〉 = 7 s and 〈t〉, the depolymerization is

estimated to be 42 s−1.

Based on these estimates, the emergence of the two timescales in FLAP and FRAP exper-

iment is now studied numerically. Three different scenarios are presented in the following,

all of which are able to recreate the qualitative behavior of actin cortex. They are based on,

respectively, filament capping, severing, and the existence of two distinct filament nucleators.

The parameters for the example curves are adjusted such that in a local neighborhood of

the parameters, they fit the experimentally determined results best. However, the presented

values are not necessarily the best fits in the whole parameter space.

4.4.3 The Effects of Capping Proteins

Consider first the capping of filaments. The slow recovery timescale can be the result of the

inactivation of filaments by capping proteins while the free filaments recover their fluores-

cence rapidly. Capping proteins for the barbed (plus) and pointed (minus) ends are added

to the simulation at fixed numbers N+
cap and N−cap. Filament ends are capped by free cappers

at rates η+
cap and η−cap at the barbed and pointed ends, respectively. Cappers detach from the

filament ends at rates η+
uncap and η−uncap or when the filament is completely disassembled.

Simulations of the cortex indeed show two timescales, see Figure 4.12. For the parameter

set listed in Table 4.3, roughly 2/3 of the fluorescence is lost with rate τ1 = 0.26 s−1. The re-

maining fluorescence vanishes with characteristic rate τ2 = 0.03 s−1. The length distribution

that can be extracted from the simulations is exponential with an average of 160 monomers.

The capping of filaments is thus in principle capable of explaining the two recovery rates

that were found in experiments. However, with polymerization and de-polymerization rates

as estimated above, the turnover of the fast part of the fluorescence signal is still almost an

order of magnitude slower than expected. The recovery half-time of about 4s is compatible

with the monomer release of filaments of a size of 160 subunits by depolymerization at a

speed of 40mon/s. A faster recovery is thus only obtained for higher depolymerization rates

or shorter filaments, respectively. The fact that the monomer concentration in the solution

does not reach the value that was expected from the speckling experiments is also in favor

in the filament. It is easily determined as an area in the space-time plot.
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Figure 4.12: FLAP signal and filament length distribution extracted from simulations with
capping of filament ends. The fluorescence decays on two exponential scales. Aproximately
2/3 of the fluorescence is lost by the fast relaxation (top). Filament length is exponentially
distributed (bottom).
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Parameter Units Figure 4.12 Figure 4.13 Figure 4.14 Figure 4.15

Ntot 301000 1806000 1806000 301000

kT+
on (s µM)−1 9 9 9 9

kT−
on (s µM)−1 0 0

kP+
on (s µM)−1 0 0

kP−
on (s µM)−1 0 0

kD+
on (s µM)−1 0 0

kD−
on (s µM)−1 0 0

kT+
off s−1 0 0

kT−
off s−1 40 24 24 24

kP+
off s−1 0 0

kP−
off s−1 24 24

kD+
off s−1 0 0

kD−
off s−1 24 24

kC+
off s−1 0 0

kC−
off s−1 24 24

ωTP s−1 0 0.1 0.1 0
ωPD s−1 0.05 0.05
ωDC s−1 0.05 0.05

Nform 602 15 15 15
kform

on (s µM)−1 40 40 40 40
foff s−1 0.2 0.2 0.2 0.1
νform s−1 µM−2 100 100 100 100

N+
cap 151

η+
cap s−1 µM−2 100
η+

uncap s−1 0.04
N−

cap 151
η−cap s−1 µM−2 100
η−uncap s−1 0.04

σvar
cof s−1 0.14
Lfrag monomers 5
σfixed

cof s−1 2

Narp 451
aoff s−1 2
νarp s−1 µM−2 100

Tbleach s 1000 600 3000 4000
V µm3 10 50 50 50

cssmon µM 1.7 2.65 2.65 2.1
A1/(A1 +A2) 0.65 0.82 0.93 0.19
τ1 s 0.26 0.14 0.45 1.87
A2/(A1 +A2) 0.35 0.18 0.07 0.81
τ2 s 0.03 0.04 0.1 0.04
Nfil 1400 6000 16000 2800

Table 4.3: Rate constants and results for different models of the cell cortex. 135



4 Actin Dynamics in the Cell Cortex

of a higher depolymerization velocity.

The slow recovery rate is close to the value of filament uncapping, suggesting that the

slow monomer exchange is directly influenced by the release rate of capping proteins. The

ensemble of actin filaments could therefore be divided into two subpopulations: filaments

with free or capped ends. The free filaments are responsible for the fast and capped filaments

for the slow recovery.

4.4.4 Severing of Filaments

Two filament subpopulations that turn over on distinct timescales can also be the result

of filament severing. The second model for the actin cortex is based on the idea that the

filaments in both populations have different average length. Hence, monomers have different

average lifetimes despite of identical filament removal rates.

Filaments that are nucleated by formin accumulate many monomers within a short time.

The removal of subunits occurs by two different processes, depolymerization of individual

monomers and severing of small filament pieces. The fragments that are chopped off the

mother filament form a second pool of filaments. If the average size of these fragments is

small, this pool should display a rapid turnover.

In a first attempt, the cortex dynamics is modeled by filaments that consists of subunits

in one of 4 different states, corresponding to being bound to ATP, ADP-Pi, ADP, or ADP-

cofilin. Monomers are integrated into the lattice in the T-state and sequentially change

into the P-, D-, and C-state at rates ωTP, ωPD, and ωDC, respectively. Monomers in the

C-state trigger the severing of the filament that occurs at rate σvar
cof . The fragment has now

a free barbed end and can polymerize monomers. The nucleation of filaments is mediated

by formins, as before.

The result of such a simulation is shown in Figure 4.13. See Table 4.3 for the reaction

rates. In the dilution curves, indeed, two timescales can be distinguished. However, the

characteristic times only differ by a factor of 13 instead of 35 as found in experiments. The

filament length distribution is peaked, displaying a maximum at a length of roughly 200

monomers. In the semilogarithmic plot, it becomes apparent that the distribution consists

of two parts. The majority of filaments has a peaked distribution while a second population

is responsible for the exponential tail of the distribution.

Simulation results proved to be very sensitive to changes in the parameters. Slight changes

in the severing rate already disturb the contrast of the characteristic timescales or let them

collapse. The stationary monomer concentration can easily be modulated by manipulaton

of the depolymerization rate. A concentration of 2.65µM is reached for example when all
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Figure 4.13: FLAP signal and filament length distribution extracted from simulations with
spontaneous severing by cofilin. Top: The fluorescence signal as a function of time (left: linear
scale, right: semilogarithmic scale). Simulation results are given by the blue curve, the fit
by a superposition of two exponentials given by the red line. Bottom: The filament length
distribution derived from simulations (left: linear scale, right: semilogarithmic scale).

depolymerization rates are all set to 24 s−1.

While the slow timescale τ2 = 0.04 s in the fluorescence recovery is rather close to the

experimentally determined values, the first timescale, τ1 = 0.14 s is much too slow as com-

pared to experiments. One reason might be that the fragments that were chopped off had

an average size of 120 monomers that is comparable to the size of the respective mother

filaments of 160 monomers.

To overcome this difficulty, the scheme of filament dissection is modified. In the following,

the size of the fragment that is to be cut from a filament was fixed to Lfrag. Each filament

that is larger than that has the same probability σfixed
cof to loose a fragment, provided that

there is a C-state monomer in the range of Lfrag ± 2 from the pointed end. This way, the

size of fragments in the rapidly recovering pool can be controled. Setting Lfrag to sufficiently
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Figure 4.14: FLAP signal and filament length distribution extracted from simulations with
severing of fragments of fixed size. Top: The fluorescence signal as a function of time (left:
linear scale, right: semilogarithmic scale). Simulation results are given by the blue curve, the
fit by a superposition of two exponentials given by the red line. Bottom: The filament length
distribution derived from simulations (left: linear scale, right: semilogarithmic scale).

small values is expected to increase the turnover rate of the first pool of filaments.

For Lfrag as small as 5 monomers, however, only a limited effect on the found timescales

could be observed, see Figure 4.14. The first characteristic rate τ1 = 0.45 s−1 is only by

a factor of 4 faster than the second recovery rate, τ2 = 0.1 s−1. The resulting filament

length distribution is dominated by a huge pool of tiny fragments that peak around a very

small typical length. Only in the semilogarithmic plot, a second population of long filaments

becomes visible. Consequently, 93% of the fluorescence recovers on the fast timescale, which

is in striking contrast to experimentally determined values.

As a result, the severing of filaments can only qualitatively explain the appearance of two

time scales in the fluorescence recovery experiments. The analysis here was limited to two

very simple ways of filament severing. It is known that the mechanism by which cofilin
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4.4 Two Timescales in Cortex Simulations

severs actin is much more complicated than the presented models. In contrast to what was

assumed here, cofilin was found to bind preferentially but not exclusively to ADP-bound

actin subunits of filaments [103, 180]. When bound, it increases the dephosphorylation rate

of adjacent actin monomers, thereby fostering the binding of more cofilin in the neighborhood

of the already bound molecule [176]. The capability of cofilin to form clusters in this way

was neglected here. Moreover, cofilin was found to foster severing at the edges of such

clusters [65]. Additionally proteins like coronin and aip1 increase the efficiency of filament

severing. Including these effects into the described model, however, did not qualitatively

alter the simulation results. Both of the discussed scenarios are able to account qualitatively

for the two timescales in FLAP experiments by the action of a severing protein such as

cofilin.

4.4.5 Nucleation by Arp2/3

Another way to generate two distinct populations of actin filaments is by the action of a

second nucleating protein. When cells were treated with CK666, the number of mobile actin

speckles was significantly reduced [61]. The CK666 molecule is known to impair the function

of the arp2/3 complex which nucleates new filaments as branches of existing filaments [27,

181]. It remains bound to the pointed end of the new filament and blocks further addition or

removal of monomers. From the effect of CK666, it can be concluded that arp2/3 is active

in the actin cortex.

The situation was simulated by combining the nucleation of a filament with the capping of

its pointed end. A finite numberNarp of pointed end nucleators is present in the solution. Free

nucleators form new filaments at a rate νarp ·cfil ·〈L〉, with cfil being the number concentration

of actin filaments and 〈L〉 their average length. Arp2/3 nucleators are removed from the

filament’s pointed end at rate aoff .

Figure 4.15 shows the results of such a simulation. For the given parameter set, both nu-

cleators almost instantaneously form a new filament once they are released. The dependence

of the arp2/3 complex on the amount of filaments is thus negligible. The simulated FLAP

curve is indeed similar to the one found in experiments. The initial fluorescence drops to

half its value on the timescale of less than a second, τ1 = 1.87 s−1. This drop is followed by

a slower decrease of fluorescence on a much slower timescale, τ2 = 0.04 s−1. The correspond-

ing filament length distribution shows two exponential subpopulations of average length of

about 15 and 550 monomers, respectively.

The implementation of the action of a second nucleator protein produced two relaxation

rates that differed by a factor of about 45, which is even more than observed in experiments.
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Figure 4.15: FLAP signal and filament length distribution extracted from simulations with
nucleation by arp2/3. Top: The fluorescence signal as a function of time (left: linear scale, right:
semilogarithmic scale). Simulation results are given by the blue curve, the fit by a superposition
of two exponentials given by the red line. Bottom: The filament length distribution derived
from simulations (left: linear scale, right: semilogarithmic scale).
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The reason might lie in the strict independence of the average filament length in both

subpopulations. The average length of arp2/3 nucleated filaments can be tuned by the arp2/3

detachment rate independently of all other parameters. In contrast to the models involving

filament severing, the fluorescence decay is visibly exponential. Hence, the nucleation by

arp2/3 is the model with the highest potential to fit the experimental results.

4.5 Summary and Further Considerations

In this chapter, the polymerization of active filaments in a finite volume was investigated

by stochastic simulations. In the first part, it could be shown that the limited amount of

available monomers does not alter the results of Chapter 2 qualitatively. Also, employing a

dynamic nucleation of filaments does not impair the possibility of length control of active

polymers. The average filament length, however, depends systematically on the number

of filaments and the concentration of free monomers that are present in the solution. For

polymerization parameters of actin, only an exponentially distributed filament length was

found.

In the second part, experiments on the cortex of living cells were presented which can help

to understand the details of actin polymerization in vivo. FLAP- or FRAP experiments

on melanoma M2 cells revealed that the actin cortex is rebuilt on two distinct timescales.

So far, the microscopic basis of the observed behavior is unknown. Speckle experiments on

individual formin molecules revealed the polymerization velocity of formin bound filaments

from which the monomer concentration could be derived. The average lifetime of mobile

actin speckles could be used to estimate the average depolymerization velocity on filaments.

To explore the capacity of FLAP and FRAP experiments to elucidate the polymerization

of actin, the residence time of actin monomers within filaments was determined analytically

for three different scenarios. The results were validated by numerical calculations based

on stochastic simulations of filament ensembles. The renewal of monomers in treadmilling

filaments was found to be substantially faster than in equilibrium polymers. In the former

case, the characteristic rate is proportional to the treadmilling velocity, while it is essentially

given by the square of the (small) drift parameter in the latter.

Finally, more complex simulations were established in order to reproduce the experimen-

tally determined fluorescence recovery or decay curves. Three different scenarios were an-

alyzed that were all able to qualitatively match the cortex turnover behavior. In the first

model, the slow release rate of capping molecules led to the appearance of a second, slower

recovery. Subsequently, a model was analyzed in which severing produced a pool of very

short fragments that rapidly exchanged their fluorescence. The two timescales thus emerge
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from two filament population of distinct average length. The third model relied on an alter-

native nucleation mechanism to generate a second filament population. It was inspired by

the action of the arp2/3 complex that was shown to be active in the cell cortex. Since the

third model was the only one that could generate recovery times that differ by more than an

order of magnitude, it seems to be the most plausible explanation for experimental results.

It proved difficult to exactly reproduce experimental results in all of the three situations.

Compared to the physical situation in a living cell, the models are indeed highly simplified.

The estimated parameters give thus only a coarse idea of the effective rates of the respective

processes. Without further knowledge about the microscopic details of protein interactions

in the actin cortex, the presented models remain of qualitative interest. Nonetheless, they

provide useful insights into the potential organization of actin filaments in vivo.

To learn more about the dynamics of the actin cortex, the filament system’s reaction to

the modification of individual parameters can be studied in the future. Experimentally,

this can for example be done by the genetic manipulation of expression levels of individual

proteins. Simulations of the three described scenarios can then help to validate or rule out

the underlying microscopic models.
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5.1 Summary

The regulation of the cytoskeletal filaments is of vital importance for the living cell. During

evolution, a multitude of proteins and regulatory factors developed and were shaped to

perform their specific part in the orchestra of cellular homeostasis. Only piece by piece,

the complex network of protein interactions that are necessary for the proliferation of living

organisms is uncovered.

In this work, the length dynamics of active polar filaments was investigated on theoretical

grounds. Biopolymers like actin and microtubules are generic examples for such filaments.

They polymerize under dissipation of chemical energy and are constantly kept out of ther-

modynamic equilibrium within living cells. Activity and polarity lead to a rich dynamic

behavior that is regulated by the cell through accessory proteins. One peculiar property of

these filaments is their ability to treadmill, that is to accumulate monomers at one end while

they loose monomers at the other end.

The treadmilling phenomenon was analyzed here with help of numeric simulations of lattice

gas models and stochastic jump processes. I was able to explain the treadmilling dynamics

with a lattice model taking into account two different types of subunits that can switch states

at random. I could show that the same properties that lead to filament treadmilling are also

able to produce unimodal filament length distributions. Just as the treadmilling itself, the

regulation of filament length is an inherently non-equilibrium property of these filaments. In

equilibrium, however, only exponentially distributed filaments can be found.

The only energy source for treadmilling in this model was the artificially increased chemical

potential of stable subunits in solution. Since it was assumed that subunits within the

filament lattice do not interact, addition and removal rates of both states had to satisfy

detailed balance independently. Let me note that these conditions do not constitute a

fundamental limit to treadmilling or length regulation.

The regime in which unimodal filament length distributions are found, is a subset of

parameters that lead to the treadmilling dynamics. A detailed analysis showed that the

length dependent depolymerization rate is due to an inhomogeneous distribution of states
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along the filament. The growing ’plus end’ of the filament accumulates stable monomers

which concentrate at this end of the filament. At the opposite end, the ’minus end’, subunit

addition is so slow that subunits switch to the unstable state before they are integrated in

the filament lattice. Being in the unstable state, they are readily removed from the filament

which on average looses subunits at the minus-end. By treadmilling, the conversion of stable

to unstable subunits over time is translated into spatial information along the filament.

Treadmilling is thus a prerequisite to length regulation.

I could derive approximate expressions for the net subunit accumulation rate at the plus

end as well as for the characteristic length at which the concentration of stable subunits

relaxes along the filament with distance to the plus end. Using this gradient as an input for

the average lifetime of a monomer at the minus end, an expression for the length dependent

depolymerization rate was formulated. It included the calculation of the probability that

release depolymerization was blocked by subunits that were added to the minus end. They

formed a transient cap of exponentially distributed length, which could be determined by an

independent calculation. At this point, an approximation of the typical filament length at

which length dependent depolymerization balances polymerisation was derived and validated

by numerical simulations of the filament system.

The two-states model was successfully applied by fitting the evolution of the filament

length distribution in a solution of F-actin and the actin binding protein α-actinin. To gain

further insight into the polymerization of actin filaments, I used experimentally determined

rates for actin monomer addition and removal that were determined in vitro. Using the

two-states model, unimodal length distributions could only be found in a small range of

actin monomer concentrations. At lower concentrations, the filaments were exponentially

distributed, for larger concentrations, the filament length diverged. To account for recent

experimental results, the model was extended by accounting for a third subunit state and

an increased transition rate at the filament’s ends. Including both effects in the simulations

by rates measured for actin polymerization suppressed filament length regulation for all

monomer concentrations. In accordance to experimental findings, length was exponentially

distributed in all stationary situations.

After that, I investigated the influence of selected regulatory proteins on the filament

length dynamics. Profilin suppresses the subunit addition to the minus end and increases in

combination with formin the polymerization at plus ends, but neither the effect of profilin

alone nor when combined with formin resulted in a reappearance of unimodal length dis-

tributions. The addition of capping proteins slowed the polymerization filaments ends but

had little or no effect on the phase diagram. Only the addition of cofilin that fosters the

removal of unstable subunits at the minus end could generate clearly peaked filament length
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distributions. I conclude that pure actin displays exponential filament length distribution as

a result of the low depolymerization rate of its dephosphorylated form. Consequently, uni-

modal length distributions should be observed in vitro only when a depolymerizing factor

like cofilin is added. Since such molecules are known to be present in living cells, no clear

statement on the filament length distribution in vivo can be derived from these results.

In the third chapter, the effect of destabilizing molecular motors on active filaments was

investigated. A driven lattice-gas model was invoked to study the distribution of motor

particles along the filament and how they influence the length dynamics of the system. In

this model, molecular motors were assumed to bind alongside a filament on which they can

slide. Here, I focused on the case that the filament was constantly adding monomers at the

plus end while motors moved towards the minus end. At the tip of the minus end, they

increased the rate at which the subunits were removed along with the binding motor. On

the filament, motor movement was only allowed if the destination site of the lattice was

empty, thereby introducing steric interactions between motors.

Particle interactions led to the formation of traffic jams or density shocks. The motor

distribution was analyzed on a semi-infinite lattice consisting of a plus end and arbitrarily

many lattice sites that extend into the direction of the minus end. It was found that for

sufficiently large motor binding and stepping rates, a sharp domain wall emerges that sepa-

rates a region of low motor density from a region of saturated density on the same lattice.

In the low density region, the occupation probability increases linearly with distance to the

plus end. In this case, the shock position was inferred from a flux-balance condition. If, on

the other hand, motors are too slow or leave the lattice easily, a smooth gradient of motor

density is observed.

In the full system, the formation of shocks had a strong influence on the length of the

filament. For large hopping and monomer removal rates, it was found that the system

size is dominated by the shock position on a corresponding semi-infinite lattice. Analytic

expressions could be derived for the mean and variance of the filament length distribution

in the case of infinitely fast motor movement. Interestingly, these expressions remained

approximatively valid for large but finite values of the hopping rate.

The opposite case of immobile motors could be reduced to a special case of the two-states

model that was introduced for the polymerisation of actin. In the simplified form, it allowed

a mapping to a random walk in a potential, which in turn allowed to calculate the full

filament length distribution.

At intermediate values of the motor hopping rate, two different strategies were used to

quantify the system’s size. If the motor speed is low, the flux-balance condition can be used

to access the average filament length. If, conversely, the speed is high, the case of infinitely
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fast motor hopping gives good approximations for the average filament length. The latter

also provides expressions for length fluctuations. A simple correction term could be added

by hand that accounts for large parts of the deviations for all tested parameters.

The results of the analytic treatment of the system could be condensed into a phase

diagram that distinguishes between four different regimes. For low motor speed and low

binding affinities, filament length will diverge. If motor speed is high, however, filament

length will be bounded and be either dominated by the shock position (high binding affinity)

or by the flux-balance condition (low binding affinity). For extremely high binding affinities,

filament length stays bounded even for small or vanishing motor hopping rate. In this regime,

system size is determined by the motor density rather than the motor movement.

A property of particular biological relevance is the robustness of the quality of length

control of the motor- filament system. It was shown that for hopping rates slightly larger

than the polymerization speed, the relative spread of the filament length distribution is

essentially given by the motor binding rate and remains mostly independent of the other

parameters.

In the last part of the present study, the situation of the cell cortex was investigated. In

contrast to the analyses in Chapters 2 and 3 an ensemble of filaments was considered and the

finite amount of filament subunits as well as a dynamic number of filaments were accounted

for. In order to support the validity of assumptions made in Chapter 2, calculations were

carried out using equivalent parameter sets in a finite volume. The results stayed qualita-

tively identical. It was found that filament length and monomer number relax rapidly to

their stationary values while filament number and higher moments of the length distribution

take substantially longer. To a certain degree, the stationary monomer concentration, that

was fixed in Chapter 2, can be tuned by the nucleation rate of filaments.

Since the residence time of subunits in linear aggregates depends on the aggregate size,

the turnover rate of the actin cortex can provide useful information on the length of cortical

filaments. Therefore, fluorescence recovery after photo-bleaching (FRAP) and fluorescence

loss after photo-activation (FLAP) experiments were analyzed. Analytical calculations for

three selected polymerization schemes corroborated the potential of such experiments to

provide information about the polymerization dynamics in vivo.

FRAP and FLAP experiments showed that the cortex in human M2 cells turns over on

two distinct timescales, suggesting two different populations of filaments within the cortex.

Experiments on actin and formin speckles, in which the movement of individual proteins

could be tracked, provided estimates for the monomer concentration in the cell and the release

rate of formin. To recreate the behavior found in experiments, three different simulations

were established, based on filament capping, filament severing, and filament nucleation.
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All three simulations could in principle account for the two observed timescales. Since

the presence of the nucleating protein arp2/3 in the cortex was confirmed by additional

experiments and experimental and numerical results in this case agreed best, it is most

probable that the two timescales correspond to turnover of formin and arp2/3 nucleated

filaments, respectively. These preliminary conclusions must be tested by further experiments.

5.2 Outlook

The presented work might serve as the starting point for a variety of future investigations

on active filamentous systems.

This analysis was based on lattice models to describe the length dynamics of active polar

filaments. These models are of particular interest for the understanding of biological sys-

tems since they allow a straightforward implementation of microscopic processes and can be

evaluated by stochastic means. These properties make them to versatile and efficient tools

for the further investigation of complex biological systems such as the cell cortex.

On a microscopic level, the interactions between the individual subunits in actin and mi-

crotubuli are largely unknown. Differences in binding energies of monomers to both filament

ends provide evidence for the existence of mutual influence. Molecular dynamic simulations

can help to understand some aspects but are limited by available computing capacity and

short simulation times. Long protein arrays such as actin filaments and microtubules are

still beyond the reach of these types of simulations. Taking into account effective interac-

tions between filamentous subunits in lattice models could, however, lead to predictions on

larger scales which could then be verified in experiments. The mean filament length and

the dynamics of length fluctuations could in particular be targets of such investigations. A

thorough analysis of the effect of next neighbor interactions in the filament would be needed

to understand the effect of nucleotide hydrolysis on the filament beyond the extremes of

random and vectorial hydrolysis. The mechanism of cooperative cofilin binding could then

be investigated along the same lines.

The method is not limited to investigations of filament length but can easily be extended

to account for spatial gradients, positional information, and molecular interactions. The

polarization of amoeboid cells upon external stimuli could be, for example, a promising

system to be studied within the framework of stochastic spatial lattice models.

On the grounds of the presented results, microscopic models for the polymerization of

cellular cortex can be established and predictions tested in experiments. The three schemes

presented in Chapter 4 might not be the only candidates compatible with experimental

findings. Only further experiments and their systematic reproduction in simulations can
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give information on the dominating interactions. The search for the microscopic origin of

the different turnover dynamics has just begun.

So far, only the stationary cortex was considered. The architecture of the presented

simulations, however, also permit the analysis of a de novo formin cortex, e.g. in a blebb.

The early stages of cortex formation can help to understand the robust formation and self-

organization of cellular structures.

Finally, the question concerning the filament length distribution of actin and microtubuli

in vivo is still far from being answered. Many regulatory interactions between filaments

and accessory proteins were uncovered in recent years but it still remains unclear how their

activities combine to create the variety of structures that are observed in cells.
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