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Abstract

The present work deals with the electronic response of one-dimensional extended sys-

tems to a spatially uniform electric field. This interaction is introduced via the scalar

potential for the finite chain, but for the infinite peridic system, we use the vector

potential approach (VPA) [1], specifically, the efficient method presented by Spring-

borg and Kirtman [2, 3]. On this basis, simple models were developed to address two

fundamental issues.

We explore whether the calculations for the finite system can be used to determine

uniquely the band structure of the periodic system. For this aim, we present and

compare three methods to extract the band structure of the finite system. When the

field is included they lead to small differences, which can be ascribed to distortions of

the spatial extensions of the orbitals generated by the field. We found that, at least

with this procedure, it is not possible to determine uniquely the orbital phases, but

their main effect is not seen in the band structure but in the calculated polarization,

where the boundary condition of the phases can be used to model a quantized charge

transfer between the ends of the finite system.

The overestimation of the response properties, found with density-functional meth-

ods (DFT), is extensively analyzed in comparison with the results obtained with the

Hartree-Fock (HF) formalism. The results of the infinite periodic system are also

studied and compared. We observed that the part of the responses attributable to

the terminations in the finite system changes into delocalized current contributions in

the corresponding infinite periodic system. In all the cases, the DFT method led to

a larger electron delocalization along the whole chain increasing the response to the

electric field. Finally, it was confirmed that a range-separated functional can improve

the DFT results.
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der elektronische Antwort von eindimension-

alen ausgedehnten Systemen auf ein räumlich gleichförmiges, elektrisches Feld. Diese

Interaktion wird über das skalare Potential für die endliche Kette eingeführt, während

für das unendliche periodische System, ein Vektor Potential Ansatz (VPA) [1] verwen-

det wird. Im Besonderen, benutzen wir die effizienteste Methode, die bei Springborg

und Kirtman [2, 3] vorgestellt wurde. Auf dieser Grundlage, wurden einfache Modelle

entwickelt, um zwei wesentliche Probleme zu lösen.

Wir untersuchen, ob die Berechnungen für das endliche System helfen können, um

die Bandstruktur des unendlichen Systems einzigartig festzustellen. Für dieses Ziel,

präsentieren und vergleichen wir drei Methoden um die Bandstruktur des endlichen

Systems zu berechnen. In Anwesenheit des Feldes, führen die Methoden zu kleine

Unterschiede. Dies kann auf Verzerrungen der räumlichen Ausgedehnung der Or-

bitale durch das elektrische Feld zurückgeführt werden. Bei diesem Verfahren, war

es nicht möglich, die Orbitalphasen eindeutig zu bestimmen. Jedoch, wird der größte

Einfluss nicht in der Bandstruktur gesehen, sondern in der berechneten Polarisation,

wobei die Randbedingung der Phasen verwendet werden können, um eine quantisierten

Ladungsübertragung zwischen den Enden der endlichen System zu modellieren.

Die Überschätzungen der Antworteigenschaften, die sich mit den Dichte-funktionale

Methoden (DFT) ergeben, werden im Vergleich mit den erhaltenen Ergebnissen der

Hartree-Fock (HF) Formalismus ausführlich analysiert. Die Ergebnisse der unendlichen

periodischen Systemen werden ebenfalls untersucht und verglichen. Wir beobachteten,

dass der Teil der Eigenshaften der durch den Terminierung im endlichen System ent-

steht, sich in delokalisierten Strömungsbeiträge in dem entsprechenden unendlichen

Periodensystem verwandelt. In allen Fällen führte die DFT-Methode zu einer größeren

Elektronendelokalisierung entlang der gesamten Kette, was zu einer Erhöhung der

Reaktion auf das elektrische Feld führt. Schließlich konnte es gezeigt werden, dass

ein Bereich-getrenntes Funktional die DFT Ergebnisse verbessern kann.
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Introduction

An adequate description of the response of materials to electromagnetic fields is neces-

sary for interpretative purposes and provides, in addition, a useful tool for identifying

materials with optimal properties for applications in a large variety of disciplines. These

include spectroscopy, for material characterization; non-linear optics, for manipulating

the electromagnetic fields; piezoelectricity, where the coupling between electric and me-

chanical responses are exploited; the multiferroics, where the coupling between electric

and magnetic responses opens up interesting fundamental physical issues as well as

applications in spintronics; and conduction, where presently much attention is focused

on conduction of chain compounds and single molecules.

In all cases, a proper theoretical treatment that goes beyond that of phenomeno-

logical model requires that the quantum-mechanical behavior of the electrons in the

presence of the external electromagnetic field is determined. Moreover, when the fre-

quency of the external field is small, also the response of the nuclei / phonons / structure

to the field needs to be determined.

For finite systems the theory has been developed and applied for several decades

and most fundamental problems have been solved. Although all the systems are finite,

when the system is crystalline, it is very helpful for the study of macroscopic materials

to assume that the system is infinite and periodic. These cases include polymers,

chain compounds, films, surfaces and crystals. When studying the materials properties

in the absence of external electromagnetic fields, the use of the periodic boundary

conditions has many advantages, but when such fields are included the theory has

become surprisingly difficult and complicated. Particularly, for the response to spatially

uniform electric field, the scalar interaction potential is proportional to the operator ~r

(the electronic position), which is nonperiodic and unbounded.

For an external electrostatic field the carrier of information is, for a finite system, the

dipole moment, which for an infinite, periodic system translates into the polarization.

For this, first during the 1990s a proper definition was presented [4, 5], the so-called

9
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Modern Theory of Polarization (MTP) based on a discretized Berry phase treatment.

It took another decade before methods were presented that, in principle, allows for the

direct inclusion of external electrostatic fields in an electronic-structure calculation [6,

7], although these were numerically very demanding.

Instead of dealing with the scalar potential or the Berry phase, Kirtman et al.

[1],[8] developed the so-called Vector Potential Approach (VPA). This approach has the

virtue that it does not destroy the translational symmetry leaving the concept of band

structures meaningful even when the system is in presence of a uniform electrostatic

field. It also allows the introduction of frequency-dependent fields and can be applied

to materials extended in one, two or three dimensions. But here, we restrict ourselves

to the treatment of one-dimensional systems in electrostatic fields. Based on this

formalism, Springborg and Kirtman [2, 3] presented a numerically stable and efficient

method for calculating electronic and structural responses to electrostatic fields. The

present work is mainly based on that approach.

Here, we deal with extended regular systems, meaning that the systems contain a

reapeated set of identical units for which the regularity may be violated only at the

boundaries of the sample. Ultimately, the goal is to be able to calculate the (elec-

tronic and structural) responses of these systems to electrostatic fields using accurate,

parameter-free, electronic-structure methods. However, in order to develop, check, and

understand the theoretical methodologies outlined above, we have found it extremely

useful to apply the approach to simple model systems. By constructing the model care-

fully it is possible to simulate a realistic electronic-structure calculation and perform

many calculations both on large, finite systems and on infinite, periodic systems using

the same model. The advantage of studying a model, instead of a real system, is that

one can eliminate truncation errors due to summations in real and reciprocal spaces

and to basis set expansions. Furthermore, it becomes possible to study large finite

systems without prohibitive computational demands. Nevertheless, we emphasize that

model calculations can never provide an ultimate test of the theoretical treatment.

This work is organized in the following manner. In the first chapter the basic

methods and concepts are briefly explained, starting from the Schrödinder equation

and then, the approximations made to solve it within both the Hartree-Fock (HF)

and Density Functional Theory (DFT) methodologies. The treatment considering the

system infinite and periodic is also presented along with other important concepts as

the Bloch functions and the Born von Kármán zone. This theoretical background is

mainly based on Springborg’s book for electronic-structure calculations [9]. In chapter
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2, the dipole moment per unit as a bulk property is introduced as well as the definition

of the field-induced responses. Different expresions for polarization are assessed within

the framework of the MTP. Then, the self-consistent equations for the inclusion of

an external electrostaic field are presented for both finite and periodic systems. In the

latter case, the Vector Potential Approach is used including an efficient and numerically

stable protocol [3] to solve the resulting single-particle equations. We present our

approach and the results in the last two chapters. First, the attempt to extract the

information from the calculations for long finite systems to adequately choose the phase

factors involved in the calculations for infinite periodic systems in the presence of field

using the dipole moment per unit as the relating property. Finally, the DFT overshoot

in electronic responses is extensively analyzed with a simple model focussing on the

different treatment of the exchange interactions between HF and DFT. The models

used in chapters 3 and 4 are very similar but differ in the hopping integrals that define

the Hamiltonian.



Chapter 1

Theoretical Background

1.1 The Schrödinger Equation

In quantum mechanics, all the information of a physical system is contained or can be

extracted from the wavefunction Ψ, also called state vector. To determine it, in the

non-relativistic case, one has to solve the Schrödinger equation,

ĤΨ = ih̄
∂

∂t
Ψ, (1.1)

where Ĥ is the Hamilton operator or Hamiltonian. This is the most general time-

dependent Schrödinger equation. It predicts that the wavefunctions can form standing

waves, called stationary states, which are essential for atomic, molecular or crystal

systems. These stationary states are describe by the time-independent Schrödinger

equation,

ĤΨ = EΨ, (1.2)

obtained through a factorization of the wavefunction into time-dependent and time-

independent terms and assuming that the Hamiltonian does not depend explicitly on

time. The expression (1.2) is, in fact, an eigenvalue equation, where the wavefunction

is the eigenvector and the total energy E is eigenvalue associated to the Hamilton

operator.

Within the position-space representation, the non-relativistic Hamiltonian is writ-

ten as the sum of kinetic and potential energies for the system of interest with the

help of position and moment variables. The kinetic energy of a particle of mass m is

~p 2/2m, but here the momentum ~p is replaced by the operator −ih̄∇. For the total

12



1.1. The Schrödinger Equation 13

kinetic-energy operator of a system consisting of M nuclei and N electrons, we just

have to add all the individual contributions,

Ĥk,n + Ĥk,e = −
M∑
i

h̄2

2Mi

∇2
i −

N∑
j

h̄2

2me

∇2
j . (1.3)

where we are distinguishing between the nuclei and the electron terms. The potential

energy is calculated in the same manner as the classical electrostatic energy due to the

Coulomb interactions,

Ĥp,n−n + Ĥp,n−e + Ĥp,e−e =
1

2

M∑
i1 6=i2=1

1

4πε0

e2Zi1Zi2

|~Ri1 − ~Ri2 |
−

M∑
i=1

N∑
j=1

1

4πε0

e2Zi

|~Ri − ~rj|

+
1

2

N∑
j1 6=j2=1

1

4πε0

e2

|~rj1 − ~rj2|
, (1.4)

with eZi and ~Ri being the charge and position of the i’th nucleus, whereas e and ~rj

are the charge and position of the j’th electron. ε0 is the vacuum permitivity and the

1/2 factor is included because in the summations all the pairs are counted twice in the

first and third terms. Accordingly, we have now three terms describing each one of the

nucleus-nucleus, the nucleus-electron and the electron-electron interactions. The total

Hamiltonian is then,

Ĥ = Ĥk,n + Ĥk,e + Ĥp,n−n + Ĥp,n−e + Ĥp,e−e, (1.5)

where the first and third terms depend only on the nuclei positions ~Ri. Hereafter we

adopt the atomic units defined by setting the fundamental constants e, me, h̄ and 4πε0

equal to 1. In this way, the energies are meassured in hartrees (1 hartree = 27.21 eV)

and lengths in bohrs (1 bohr = 0.5295 Å).

Because of the sizeable difference in their masses, the nuclei move much more slowly

than the electrons and are much more localized in space. We can think that for a

given position of the nuclei, the electrons adjust their positions ‘immediatly’ to these

before the nuclei move. This is the idea behind the Born-Oppenheimer approximation,

in which the kinetic energy of the nuclei is neglected. In basic terms, within this

approximation the wavefuntion is factorized into its electronic and nuclear components
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leading to the Schrödinger equation for the electrons,

ĤeΨe = EeΨe, (1.6)

where the Hamilton operator Ĥe is composed by the second, forth and fifth terms of

equation (1.5), so the dependence of Ψe on the nuclear coordinates is only through the

electrostatic interactions between the electrons and the nuclei. This means that the

nuclei generate an ‘external’ potential, in which the electrons move. For later purposes

this potential is referred as

Vn(~r ) = −
M∑
i=1

Zi

|~Ri − ~r |
. (1.7)

In this manner, the electronic Hamiltonian can be written as

Ĥe = −
N∑
j=1

1

2
∇2
j +

N∑
j=1

Vn(~rj) +
1

2

N∑
j1 6=j2=1

1

|~rj1 − ~rj2|
. (1.8)

We observe that the first two terms are the sum of identical single-particle operators

acting on different electrons, while the last one is a sum of double-particle operators.

Finally, once the Schrödinger equation for the electrons (1.6) is solved, the total

energy is calculated adding the nucleus-nucleus potential to the electronic energy,

E = Ee +
1

2

M∑
i1 6=i2=1

Zi1Zi2

|~Ri1 − ~Ri2|
. (1.9)

If one is interested in a relaxed structure, the total energy has to be minimized varying

the nuclear coordinates.

1.2 The Hartree-Fock Method

Since the beginning of the quantum theory there have been attempts to solve the

electronic Schrödinger equation (1.6) for molecular systems, but it can not be exactly

solved whenever more than 2 particles are involved. For that reason one has to do ap-

proximations. We may apply the variational principle to find an approximate solution

Ψ′ ≈ Ψe, which minimizes the expectation value of the Hamilton operator Ĥe, i.e., find

the gound state of the electronic energy. One of the first proposals was to construct the
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many-body wavefunction Ψ′ as a multiplication of single-particle functions ψi called

orbitals. In this way, we imagine the system of N electrons as particles occupying N

different orbitals that can each accomodate one electron. In order to be consistent with

the Pauli’s exclusion principle, it was proposed not to use a simple multiplication but

rather the so-called Slater determinant ,

Ψ′(~x1, ~x2, . . . , ~xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1(~x1) ψ2(~x1) . . . ψN(~x1)

ψ1(~x2) ψ2(~x2) . . . ψN(~x2)
...

...
. . .

...

ψ1(~xN) ψ2(~xN) . . . ψN(~xN)

∣∣∣∣∣∣∣∣∣∣
(1.10)

where the components of ~xi are the generalized coordinates (position and spin) of the

ith electron and the 1/
√
N ! factor is introduced to normalize the wavefuntion. In this

sense, the Slater determinant is antisymmetric with respect to the exchange of two

electrons.

With the help of the Lagrange multipliers, one can seek to minimize 〈Ψ′|Ĥe|Ψ′〉
under the constraints that all the individual orbitals are orthonormal by considering

the quantity

F = 〈Ψ′|Ĥe|Ψ′〉 −
∑
i,j

λij[〈ψi|ψj〉 − δij], (1.11)

and imposing the condition δF = 0, where δF is the change in F upon changing any

of the orbitals ψi → ψi + δψi.

Developing these ideas one ends up to the Hartree-Fock equations ,

F̂ψj = εjψj. (1.12)

The Fock operator F̂ is defined as

F̂ = −
N∑
i=1

1

2
∇2
i +

N∑
i=1

Vn(~ri) +
N∑
i=1

(Ĵi − K̂i) (1.13)

where the operators Ĵi and K̂i arise from the electron-electron interactions,

Ĵi|ψj(~x1)〉 =

∫
|ψi(~x2)|2ψj(~x1)

|~r2 − ~r1|
d~x2

K̂i|ψj(~x1)〉 =

∫
ψ∗i (~x2)ψj(~x2)ψi(~x1)

|~r2 − ~r1|
d~x2, (1.14)
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and are known as the Coulomb and exchange operators respectively. The Coulomb

operator describes the classical electrostatic interactions between two charge distribu-

tions, whereas the exchange operators have no classical analogue and their existence

is a direct consequence of the quantum-mechanical requirement of the wavefunction

antisymmetry.

The Hartree-Fock equations (1.12) seems very similar to the Schrödinger equation,

but unlike the Hamilton operator, the Fock operator is for single electrons and not

for all the N particles. The effects of all the other electrons are included in F̂ which,

accordingly, depends on the solutions themselves through the Ĵi and K̂i operators. For

this reason, the equations can only be solved using a self-consistent procedure and the

Hartree-Fock method is also known as a self-consistence field (SCF) method.

The total electronic energy EHF ≡ 〈Ψ′|Ĥe|Ψ′〉 can be calculated from the solutions

and eigenvalues of the Hartree-Fock equations,

EHF =
N∑
j=1

εj −
1

2

N∑
j,k=1

[
〈ψjψk|ĥ2|ψjψk〉 − 〈ψjψk|ĥ2|ψkψj〉

]
, (1.15)

where ĥ2 is the two-electron operator,

ĥ2|ψjψk〉 =
ψj(~x2)ψk(~x1)

|~rj − ~rk|
. (1.16)

Thanks to the Koopmans’ theorem, the eigenvalues εj can be interpreted as orbital

energies that are related to the electronic transition energies.

Solving the Hartree-Fock equations would result in calculating the value of every

single orbital in every single point in the space. It is computationally not possible to

determine so much information. Instead, a finite variation is carried out by expanding

the orbitals in a set of fixed basis functions,

ψj(~x) =

Nb∑
p=1

cpjχp(~x), (1.17)

where the basis functions χp as well as their number Nb have been chosen in advance

and only the expansion coefficients cpj are varied. Inserting this expansion in the

Hartree-Fock equations (1.12) leads to a generalized matrix eigenvalue equation, which

can be written as

F · cj = εj O · cj, (1.18)
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where F contains the Fock matrix elements,

Fpq =
〈
χp
∣∣−1

2
∇2 + Vn(~r )

∣∣χq〉
+

N∑
j=1

Nb∑
p′,q′=1

c∗p′jcq′j

[
〈χpχp′ |ĥ2|χqχq′〉 − 〈χpχp′|ĥ2|χq′χq〉

]
, (1.19)

O is the overlap matrix,

Opq = 〈χp|χq〉. (1.20)

and the sought coefficients are arranged in column vectors,

cj =


c1j

c2j

...

cNbj

 . (1.21)

The equation (1.18) is just the matrix form of the Hartree-Fock-Roothaan equations

that have made the Hartree-Fock method so widely used. However, the quality of a

given calculation depends heavily on the quality of the basis functions and, therefore,

it is important to use basis sets that are adequate for the problem at hand.

In the restricted Hartree-Fock (RHF) approximation no spin polarizations is con-

sidered and, accordingly, it is assumed that every pair of orbitals differing only in the

spin have equivalent position dependence. In this manner the Hartree-Fock-Roothaan

equations can be simplified by performing all spin integrations halving the number of

terms in the double-particle summation, so that the Fock matrix elements become,

Fpq =
〈
χp
∣∣−1

2
∇2 + Vn(~r )

∣∣χq〉
+

N/2∑
j=1

Nb∑
p′,q′=1

c∗p′jcq′j

[
2〈χpχp′ |ĥ2|χqχq′〉 − 〈χpχp′|ĥ2|χq′χq〉

]
, (1.22)

where the basis functions χ(~r ) are now assumed to depend only on position coordinates.

In other words, there are only N/2 different orbitals ψj(~r ) each one for two electrons.

Summarizing, in addition to the Born-Oppenheimer approximation and a non-

relativistic treatment, the Hartree-Fock method is based on the assumption that the

electronic wavefunction can be approximated by a single Slater determinant containing

single-electron orbitals, which are optimized, using the variational principle, by linear
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combinations of certain set of basis functions. The electron exchange interaction is

fully accounted for and the equations have to be solve self-consistently.

1.3 Density Funtional Theory

Once the Schrödinger equation is (approximately) solved and the wavefunction Ψe

found, in principle, it is possible to calculate any physical observable, but the wavefunc-

tion is much more complicated than needed when calculating experimental observables

and the practical limitations and approximations hinder the accuracy. Instead, one al-

ternative is to solve another equation that determines directly the electron density ρ(~r ).

Although this proposal has its roots in the Thomas-Fermi model, the firm theoretical

background was given by the two Hohenberg-Kohn theorems . The first demonstrates

that the ground-state properties of a many-electron system are uniquely determined

by the electron density in position space ρ(~r ). In other words, any ground-state pro-

perty is a functional of the electron density, F [ρ(~r )], however, the explicit functional

is in most cases unknown. The second theorem states that the correct electron den-

sity minimizes the total electron energy, thus if the functional that relates them is

known, one can use the variational principle to approach the total energy by varying

an approximete electron density.

The Kohn-Sham approach provides a practical scheme to take advantage of the

Hohenberg-Kohn theorems. Although the complete electonic-energy functional F [ρ] is

unknown, there are some terms that should be present like kinetic energy T [ρ], the

contribution due to the potential generated by the nuclei Vn(~r ) and that due to the

classical Coulomb interaction between electrons VC(~r ). All further terms are included

via the exchange-correlation (xc) energy E ′xc. Therefore, in total we have

Ee = T [ρ(~r )] +

∫
Vn(~r )ρ(~r )d~r +

1

2

∫
VC(~r )ρ(~r )d~r + E ′xc[ρ(~r )], (1.23)

where the second and third terms are∫
Vn(~r )ρ(~r )d~r = −

∫ M∑
j=1

Zjρ(~r )

|~Rj − ~r |
d~r, (1.24)

1

2

∫
VC(~r )ρ(~r )d~r =

1

2

∫ ∫
ρ(~r1)ρ(~r2)

|~r1 − ~r2|
d~r1d~r2. (1.25)

The variational principle is applied over the electron energy Ee with help of a Lagrange
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multiplier λ, varying the electron density under the constraint that the total number

of electrons remains equal to N ,

δ

{
Ee[ρ(~r )]− λ

[∫
ρ(~r )d~r −N

]}
= 0. (1.26)

Thus, using the functional derivatives with respect to ρ(~r ) and substituting Ee from

equation (1.23), the requirement δEe

δρ
= 0 leads to

δT

δρ
+ Vn(~r ) + VC(~r ) +

δE ′xc

δρ
= λ. (1.27)

Now, the crucial assumption is that it is possible to construct a fictitious system of

non-interacting particles, which has the same electron density and energy as the real

system. To ensure that, these particles are assumed moving in some external potential

Veff . In this case the total-energy expression is considerably simpler,

Ee = T0[ρ(~r )] +

∫
Veff(~r )ρ(~r )d~r. (1.28)

Since these particles are different, their kinetic energy is not identical to that of equation

(1.23). Thus, similarly as above,

δT0

δρ
+ Veff(~r ) = λ. (1.29)

The effective potential Veff(~r ) can be written in the expressed terms by comparing

equations (1.27) and (1.29), but by grouping all the unknown terms in a single one,

δT

δρ
− δT0

δρ
+
δE ′xc

δρ
≡ δExc

δρ
≡ Vxc(~r ), (1.30)

the so-called exchange-correlation energy and potential are thereby defined and

Veff(~r ) = Vn(~r ) + VC(~r ) + Vxc(~r ). (1.31)

In this manner, the Hamilton operator for the model system is particularly simple,

Ĥ =
N∑
i=1

[
−1

2
∇2 + Veff(~ri)

]
≡

N∑
i=1

ĥKS(i). (1.32)
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Accordingly, there are only single-particle operators. The solution to the Schrödinger

equation for this system can, therefore, be written exactly as a single Slater determinant

composed by single-particle orbitals ψi determined by the Kohn-Sham equations ,

ĥKSψi = εiψi, (1.33)

which are very similar to the Hartree-Fock equations (1.15), but with the important

simplification that there are not two-particle operators.

Moreover, the electron density is

ρ(~r ) =
N∑
i=1

|ψi(~r )|2, (1.34)

where the summations runs over the N orbitals with the lowest eigenvalues εi, i.e.,

those which are occupied.

The Kohn-Sham equations (1.33) are also solved by expanding the solutions ψi

in a set of fixed basis functions as in equation (1.17). In that case, the Kohn-Sham

equations can be expressed in a matricial form

hKS · cj = εj O · cj, (1.35)

analogously to equation (1.18), but here the hKS contains the Kohn-Sham matrix ele-

ments,

hKS
qp = 〈χq| − 1

2
∇2 + Vn + VC + Vxc|χp〉 (1.36)

The main problem of this methodology is that we do not know the exchange-

correlation energy and potential. One of the first was suggested by Slater [10], even

before the Hohenberg-Kohn theorems, which corresponds to neglecting the correlation

effects and only including those of the exchange. He arrived to an expression propo-

tional to −ρ1/3, which was shortly later corrected as

Vx(~r ) = −
[

3

π
ρ(~r )

]1/3

. (1.37)

Of course, there has been proposed many other good approaches for many cases,

with the local - or non-local-density aproximations, but we will not discuss them here.

The Kohn-Sham operator ĥKS (as the Fock operator F̂ ) depends on the solutions and,

therefore, has to be solved with a self-consistent procedure too. The general advantages
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of the density functional theory (DFT) is that the correlation effects can be included

and that, particularly for larger systems, the calculations do not become prohibitively

involved to apply.

When comparing the results obtained within Hartree-Fock or Kohn-Sham methods,

one often finds that the energy gap separating occupied and unoccupied orbitals in

Hartree-Fock calculations is significantly overestimated and in density-functional cal-

culations significantly underestimated. Similarly, Hartree-Fock calculations have the

tendency to underestimate the binding energies, while the opposite trend is found in

the local-density calculations.

1.4 Periodicity and Band Structures

The symmetry of a system can be used to reduce or simplify the eigenvalue problem

posed by the Hartree-Fock or Kohn-Sham equations, here generically referred as single-

particle equations,

ĥψj = εjψj. (1.38)

In both cases the Hamilton-like single-particle operators possess the full symmetry of

the system. When the system is considered to be a perfect crystal, i.e., an infinite and

periodic array of atoms, the translational symmetry is fundamental for this simplifi-

cation. First of all, the potential generated by the ions is periodic and it is possible

to write the orbitals in terms of symmetry-addapted basis functions. To explain the

basics of these ideas and concepts we will consider here only the one-dimensional case,

which in turn, is the case of study throughout the present work.

Let us consider a ring molecule of K identical atoms like that of the figure 1.1. We

assumed, accordingly, that the solutions of equation (1.38) can be written as a sum of

functions centered on the different atoms. We will also assume that we have only one

function per atom. Thus, we have

ψj(~r ) =
K∑
n=1

cnjχn(~r ), (1.39)

where χn is the basis function of the nth atom. One of the symmetry elements in the

ring molucule is the CK axis passing through the center of the ring perpendicularly to

the plane of the molecule, which describes the fact that rotating the molecule any angle

defined by m(2π/K) (being m an integer) maps the molecule onto itself. Therefore,
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Figure 1.1: A ring molecule consisting of K identical atoms and the BvK zone defined
for an infinite linear chain.

the single-electron Hamiltonian does not change under this symmetry operator and

the solutions ψi can be classified according to the irreductible representations of the

symmetry-group operations. In this manner, we may construct the symmetry-addapted

basis functions as a linear combination of atomic orbitals (LCAO),

χk̃(~r ) =
1√
K

K∑
n=1

eik̃nχn(~r ). (1.40)

Here, k̃ is the label of the irreductible representation, but its values are determined by

the fact that rotating the molecule K times any allowed angle m(2π/K) the system is

mapped identically onto itself. This leads to the condition eik̃K = 1, which is satisfied

with

k̃ = 0,±2π

K
, . . . ,

{
± (K−3)π

K
,± (K−1)π

K
for K odd

± (K−2)π
K

, π for K even
(1.41)

Then, from group theory it is known that functions belonging to different repre-

sentations do not mix. In our case, it means that the overlap and Hamilton matrix

elements between them vanish,

〈χk̃1|χk̃2〉 = 0 for k̃1 6= k̃2

〈χk̃1|ĥ|χk̃2〉 = 0 for k̃1 6= k̃2. (1.42)
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Considering the definition of equation (1.40), for functions of the same representation

we have,

〈χk̃|χk̃〉 =
1

K

K∑
n,m=1

eik̃(n−m)〈χm|χn〉

=
1

K

K∑
n,m=1

eik̃(n−m)〈χ1|χn−m+1〉

=
K∑
n=1

eik̃(n−1)〈χ1|χn〉, (1.43)

where we have used that 〈χm|χn〉 = 〈χm+1|χn+1〉 = . . . Thus, considering the site

n−m+1 equivalent to K+n−m+1, the overlap depends only on the number of units

(including the sign) separating the two functions. The same is valid for the exponential,

since eik̃(n−m) = eik̃(K+n−m). As a consecuence, we can replace the double summation

over n and m by a single summation over n holding m = 1 fixed and multiply by K,

thereby, the factor 1/
√
K introduced in the expression (1.40) is justified. The Hamilton

matrix elements can be calculated similarly,

〈χk̃|ĥ|χk̃〉 =
K∑
n=1

eik̃(n−1)〈χ1|ĥ|χn〉 (1.44)

These formulae (1.42-1.44) are independent of the type of approach. These equa-

tions are the same if, instead of a ring molecule, we have an infinite chain and we

require that the symmetry-addapted orbitals map onto themselves when the system

is translated K units. Thereby, for all practical effects, the site K + 1 is identical to

the site 1 as in the ring. These are the so-called periodic boundary conditions (PBC).

Formally,

ψj(~r + ~T ) = ψj(~r ), (1.45)

with ~T being a defined lattice translation vector. In one dimension, the system consists

of an infinite succession of identical units in one direction, e.g. ẑ. Thus, if the length of

each unit is a, the lattice translation can be expressed as ~T = Kaẑ. In this sense, the

size of the ring molecule defines a fragment of the infinite linear chain. This fragment

is known as the Born-von Kármán (BvK) zone.

Instead of using the dimensionless k̃, it is custom to define k = k̃/a, which can
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be seen as the one-dimensional analogue of the reciprocal lattice vectors defined for

three-dimensional systems. k is known as the wavenumber and has the dimension of

lenght−1. The condition that the translation ~T maps the system onto itself leads to

the condition eikaK = 1. Therefore, replacing k → k + 2π/a generates no changes and

we can choose to restrict k to

− π

a
< k ≤ π

a
, (1.46)

by taking any value out of the set of K values written in the expression (1.41). The

interval (1.46) defines the first Brillouin zone (BZ), where all the information of the

system is contained. Additionally, if ψj(k, ~r ) is an eigenfunction of ĥ with the eigen-

value εj(k), then ψ∗j (k, ~r ) = ψj(−k, ~r ) is also an eigenfunction for ĥ with the same

eigenvalue,

εj(−k) = εj(k). (1.47)

This means that for the band structures we do not need εj(k) in the full interval

[−π/a, π/a] but only in [0, π/a].

In the case of real one-dimensional systems the number of basis functions per re-

peated unit may be large, but we can still construct symmetry-addapted linear com-

binations from the equivalent atom-centered ones of different units. They are called

Bloch functions or Bloch waves and can be written in a similar way as in expression

(1.40),

χp(k, ~r ) =
1√
K

K∑
n=1

eikanχpn(~r ), (1.48)

where p = 1, 2, . . . , Nb denotes the different basis function per unit (possibly centered

on different atoms) and n is the unit index. In this manner, omitting the ~r dependence,

the generalization of equations (1.42-1.44) would be

〈χp(k)|ĥ|χq(k′)〉 = δkk′
1

K

K∑
m,n=1

eika(n−m)〈χpm|ĥ|χqn〉

= δkk′
K−1∑
n=0

eikan〈χp0|ĥ|χqn〉, (1.49)

using that χp0 ≡ χpK . In the same manner the origin of the BvK zone can be set at

n = 0. This result is valid for any single-particle operator including the identity or

even the Fock or the Kohn-Sham operators.

The single-particle wavefunctions written in terms of Bloch waves become k-depen-
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dent,

ψj(k) =

Nb∑
p=1

Cpj(k)χp(k), (1.50)

which inserted in equation (1.38) lead to the also k-dependent secular equation,

h(k) · Cj(k) = εj(k)O(k) · Cj(k), (1.51)

similar to equations (1.18) and (1.35). Here, the Hamilton h(k) and overlap O(k)

matrices have the size Nb ×Nb and we make use of equations (1.49) to define them,

Opq(k) =
∑
n

eikan〈χp0|χqn〉

hpq(k) =
∑
n

eikan〈χp0|ĥ|χqn〉. (1.52)

In this way we have reduced the problem of solving the single (KNb×KNb) eigenvalue

problem for real expansion coefficients of equation (1.18) to solve K eigenvalue equa-

tions of size (Nb×Nb) for complex expansion coefficients. This reduction may have an

overwhelming effect on the required computational time.

Moreover, the eigenvalues εj(k) define in total Nb bands. For each band we have K

(the size of the BvK zone) orbitals meaning that, if we do not consider spin polarization,

each band can accommodate two electrons per unit. The set of Nb bands arisen from

plotting εj against k form the so-called band structure. In the ground state, the lowest-

energy orbitals are filled with the available electrons. The Fermi energy is the midpoint

between the energies of the so called highest occupied molecular orbital (HOMO) and

the lowest unoccupied molecular orbital (LUMO). In the semiconductors and insulators

there is an energy range, which is not crossed by any of the bands, between the HOMO

and LUMO leaving only completly filled and completly empty bands. This range of

forbidden energy is called the band gap and, in that case, the Fermi energy lies in the

middle of the gap.
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Including an External Electric Field

2.1 The Dipole Moment

The response of any system to electric fields can be described through the dipole mo-

ment , which determines linear and non-linear optical properties, as well as piezoelec-

tricity, pyroelectricity, etc. Let us discuss some of its fundamental properties.

The dipole moment of a finite molecule with M nuclei and an electron density ρ(~r )

is given through

~µ =
M∑
i=1

Zi ~Ri −
∫
~rρ(~r )d~r = ~µn + ~µe, (2.1)

where, Zi and ~Ri are the charge and position of the ith nucleus, respectively. Thereby,

the nuclear and the electronic contributions are defined too.

If the total system is neutral,

M∑
i=1

Zi −
∫
ρ(~r )d~r = 0, (2.2)

the dipole moment is independent of the choice of the origin of the coordinate system,

because by shifting it,

~Ri −→ ~Ri + ~X

~r −→~r + ~X,

26
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the ‘new’ dipole moment would be

~µ ′ =
M∑
i=1

Zi(~Ri + ~X)−
∫

(~r + ~X)ρ(~r )d~r

=

[
M∑
i=1

Zi −
∫
ρ(~r )d~r

]
~X + ~µ = ~µ.

2.1.1 A Quantized Bulk Property

The dipole moment is an extensive property, which depends on the number of units

of the system, N . However, in the termodynamic limit, we may define the intensive

dipole moment per unit for any of its (i = x, y, z) components as

µ̄i = lim
N→∞

µi(N)

N
= lim

N→∞

1

∆N
[µi(N)− µi(N −∆N)]. (2.3)

Both definitions are equivalent, but in the practice N is always finite and normally the

definition of the right-hand side converges much faster for increasing N .

Figure 2.1: Schematic representation of a long, but finite, regular chain. Each black
circule represents a building block containing one or more atoms, which is regularly
along the chain axis (z). The separation into a central and two terminal regions is
indicated by the vertical lines.

A schematic representation of a long, but finite, one-dimensional chain along the z

axis is shown in figure 2.1. It is useful to split this system into three distinct spacial

parts: a perfectly regular region in the center (C) where the electrons do not feel the

finite size of the system, and two terminal regions (L and R). The fact that such a split

can be made defines what we mean by ‘long’ chain. The units in the central region

have to be neutral because, otherwise, there would be an extra charge not localized at

the terminations that would change the charge per central unit when the chain length

is increased with fixed terminations. This conflicts with being able to identify a central

region with given properties.
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The z component of the dipole moment of the system depicted in figure 2.1 can be

written [11] as

µz =

∫
L

ρT (~r )zd~r +

∫
C

ρT (~r )zd~r +

∫
R

ρT (~r )zd~r

=NCµC +

[
ZL

∫
L

ρT (~r )d~r + ZR

∫
R

ρT (~r )d~r

]
+

[∫
L

ρT (~r )(z − ZL)d~r +

∫
R

ρT (~r )(z − ZR)d~r

]
, (2.4)

in which ρT (~r ) is the total charge density, µC is the z component of the dipole moment

of a central unit, NC is the number of units in C, while ZL and ZR are the average

of nuclear positions in the L and R regions, respectively. Assuming that the entire

system is neutral, the charge at the terminations is

QL =

∫
L

ρT (~r )d~r = −
∫
R

ρT (~r )d~r = −QR, (2.5)

then, the first term in square brackets of equation (2.4) becomes

ZL

∫
L

ρT (~r )d~r + ZR

∫
R

ρT (~r )d~r = (ZR − ZL)QR. (2.6)

For fixed terminations, increasing the chain length means that ∆N units are added in

C, hence, the total chain length and, in particular, the distance ZR−ZL are increased

by ∆Na, with a being the lattice constant in the C region. Additionally, it is important

to note that the last term in square brackets of equation (2.4) describes the local dipole

moments that arise from the charge distribution within the two terminal region. Thus,

for fixed terminations, it is the only term in this equation that does not vary when the

chain length is enlarged and, therefore, it does not contribute to the dipole moment

per unit as defined in equation (2.3). Consecuently, we have

µ̄z = µC +QR a. (2.7)

According to this expression, the dipole moment per unit depends on the charge accu-

mulated in the terminal regions, which at first glance, can vary widely. However, there

are restrictions on the these charges as Vanderbilt and King-Smith [12] have shown.

They write the electronic part of the dipole moment in terms of localized orthonor-

mal functions obtained by a unitary transformation of the occupied canonical orbitals.
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In terms of these functions, the density matrix consists of three diagonal blocks [13],

one for each region in figure 2.1, whereas the remaining elements are exponentially

vanishing. Since the complete matrix is idempotent, each of the three blocks will be

idempotent as well. This implies that the number of electrons associated with each

block can change only by an integer and, therefore, that QR can vary only by an integer.

On this basis, the dipole moment per unit is essentially a bulk property with quan-

tized values that differ from one another only by lattice vectors [11, 14]. It follows

that this property is accessible (modulo a lattice vector) through a conventional band-

structure calculation on an infinite periodic system, even though, per construction,

there are no terminations in the latter case.

2.1.2 Polarizability and Hyperpolarizabilities

When a molecule is exposed to a static (DC) field,

~E = (Ex, Ey, Ez) =
∑
i

Eiı̂, (2.8)

its electronic and structural properties may change. In the general case, we can quantify

the changes through the changes of the dipole moment, which may contain both linear

and non-linear dependences on ~E,

µi = µ0i +
∑
j

αijEj +
1

2!

∑
jk

βijkEjEk +
1

3!

∑
jkl

γijklEjEkEl + . . . (2.9)

Here, ~µ0 is the dipole moment of the system in the absence of external electrostatic

fields also called the permanent dipole moment , α is the (linear) polarizability , while β

and γ are the first and second hyperpolarizabilities .

When a neutral system has additionally the special feature of being centrosym-

metric, the replacement ~r → −~r leaves the system unchanged. For this system the

permanent dipole moment vanishes (~µ0 = 0) while turning the field on may lead to a

non-vanishing dipole moment ~µ. Thus, replacing ~E → − ~E leads to ~µ→ −~µ, which can

be fulfilled only if all the components of the first hyperpolarizability vanish, βijk = 0.

When the system is in the presence of a weak electric field ~E we can expand the

energy in terms of the field according to

E( ~E) =E(0) +
∑
i

µ0iEi +
1

2!

∑
ij

αijEiEj
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+
1

3!

∑
ijk

βijkEiEjEk +
1

4!

∑
ijkl

γijklEiEjEkEl + . . . , (2.10)

where E(0) is the energy without the electric field. Therefore, the dipole moment,

the polarizability and the hyperpolarizabilities can be also obtained thourgh energy

derivatives with respect to the field strength. However, very often the derivation entails

an approximation which is less accurate for higher orders. In this sense, it is advisable

to use the expansion (2.9) instead.

Both the nuclei and the electrons contribute to the response of the system, but

to take into account the part due to the nuclei, we have to allow the system to relax

or to analyze the vibrations. On the other hand, there are mainly two different ap-

proaches to calculate the electronic contribution. One consists of including the effects

of the extra field perturbatively. That needs third-order perturbed equations to relate

the polarizability and hyperpolarizabilities to the different terms in the pertubation

expansion.

The other approach amounts to perform different calculations for different directions

and strengths of the field ~E, and subsequently to fit the results with an expression of

the form of equation (2.9) or (2.10). This is the method used in the present work, which

in the case of a one-dimensional system in a uniform electrostatic field is drastically

simplified. Thus, placing the chain along the z direction with a uniform electrostaic

field parallel to it,
~E = (0, 0, EDC), (2.11)

the only relevant component of the response will be the z component, which from the

expansion (2.9) becomes

µz = µ0z + αzzEDC +
1

2
βzzzEDC +

1

6
γzzzzEDC + . . . . (2.12)

Hereafter we will omit the z subindices.

2.2 The Polarization

For macroscopic systems, one considers instead of the dipole moment, the polarization
~P , defined as the dipole moment per unit volume [5], thus similar to equation (2.1),

~P =
1

V

[
M∑
i=1

Zi ~Ri −
∫
~rρ(~r )d~r

]
= ~Pn + ~Pe. (2.13)
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So expressed, the polarization is not a bulk property because it depends on the shape

and truncation of the sample, but the variations of ~P are measured as bulk mate-

rial properties in several circumtances. Some macroscopic physical properties are just

derivatives of ~P with respect to suitably chosen perturbations. This is the case of

the dielectic permitivity, piezoelectricity, effective charges and pyroelectricity, which

are phenomenologically measured as bulk material tensors and, therefore, should be

accessible through calculations considering the system as being infinite and periodic.

In that case, using the periodic boundary conditions in a BvK zone of K unit cells,

the relation between the dipole moment ~µ and the polarization is

~P =
~µ

KΩ
. (2.14)

Here, Ω is the volume of the unit cell, which turns out to be the area or the length of

the unit for two-dimensional and one-dimensional periodic systems respectively. Thus,

the polarization is closely related to the dipole moment per unit ~µ/K and it can be

split into nuclear and electronic contributions as well.

In the description provided here, we concentrate on a one-dimensional periodic

system (chain) that lies parallel to the z axis and we will neglect the spin polarization.

In the absence of an external electric field, the orbitals of interest are typically written

as Bloch waves,

ψ(~r ) = ψj(k, ~r ) = eikzuj(k, ~r ), (2.15)

with j being the band index, uj(k, ~r ) a lattice-periodic function and k a continuous

variable in the BZ, i.e., in the interval (−π/a, π/a), where a is the unit cell length. In a

practical calculation one considers only a finite set of K equidistant k values separated

by

∆k =
2π

Ka
. (2.16)

Finally, we consider only systems with a gap between filled and empty bands.

Within either Hartree-Fock or Kohn-Sham theory, the Slater determinant wave

function Ψe consists of 2BK occupied (non-spin-polarized) orbitals, with 2B being

the number of electrons per unit.

When a uniform electrostatic field parallel to the chain is present (Ez = EDC), we

seek the minimum of

G = 〈Ψ|Ĥ|Ψ〉 − EDC µe −
∑
i,j

λij[〈ψi|ψj〉 − δij]. (2.17)
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The first suggestion for the definition of the z component of the electronic dipole

moment µe is

µe = (Ka)Pe ≡ −〈Ψe|Ẑ|Ψe〉, (2.18)

However, this expectation value cannot be evaluated if the wavefunctions obey the

periodic boundary conditions. In fact, Ẑ does not commute with a translation by Ka,

and therefore is not a legitimate operator in the Hilbert space of Ψe. Thus, one must

consider an alternative approach.

2.2.1 The Modern Theory of Polarization

About 20 years ago, there began to appear alternative formulations allowing for cal-

culation of the dipole moment per unit cell based on an operator that has the BvK

periodicity and approaches the position operator as the size of the BvK zone approaches

infinity. Working expressions were initialy proposed within the so-called modern theory

of polarization [4, 5, 12, 15] (MTP), based on a discretized Berry phase treatment. It

was first applied to calculate the static polarization and then extended to include the

effect of electric fields [6, 7, 16].

According to the MTP, there are at least three different ways of approching the

electronic polarization of equation (2.18) (or the electronic dipole moment per unit

µ̄e = µe/K = aPe). The original form proposed by Resta [5] is

µ̄e = µ̄R = −a
π

Im ln detS+ =
a

π
Im ln detS−, (2.19)

where the dimension of the matrices S± is equal to the number of electrons per BvK

zone (i.e., 2BK) and the elements, considering the Bloch waves of the equation (2.15),

Figure 2.2: The structure of the S± matrices in a Bloch-function representation.
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are

S±j1j2(k1, k2) = 〈ψj1(k1, ~r )|e±∆kz|ψj2(k2, ~r )〉

= δk1k2±∆k〈uj1(k1, ~r )|uj2(k2, ~r )〉. (2.20)

Upon organizing the occupied Bloch waves in order of increasing k, the S± matrices

have the simple structure shown in figure 2.2 with the shaded squares representing the

non-vanishing terms above and below the k1 = k2 diagonal and one element in the

opposite corner. Thus, the dipole moment per unit is non-diagonal in k.

Alternatively, one may consider an expression due to King-Smith and Vanderbilt

[4], which can be obtained from µ̄R by using the first-order Taylor series expansion,

uj(k ±∆k, ~r ) ' uj(k, ~r )±∆k
∂

∂k
uj(k, ~r ), (2.21)

which leads to

µ̄e = µ̄KSV=−2i

K

K∑
k=1

B∑
j=1

〈
uj(k, ~r )

∣∣∣∣ ∂∂k
∣∣∣∣uj(k, ~r )

〉

=−2i

K

K∑
k=1

B∑
j=1

〈
ψj(k, ~r )

∣∣∣∣eikz ∂∂ke−ikz
∣∣∣∣ψj(k, ~r )

〉
, (2.22)

remembering that B is the number of occupied bands and we do not consider spin

degeneracy. Finally, it can be shown [17] that equation (2.22) is equivalent to

µ̄e = µ̄W = − 2

K

K∑
n=1

B∑
j=1

〈Wjn(~r )|z|Wjn(~r )〉 (2.23)

where the Wjn’s are the localized Wannier functions transformed from the delocalized

Bloch waves according to

Wjn(~r ) =
1√
K

K∑
k=1

e−ikanψj(k, ~r). (2.24)

Here the Wannier function Wjn of the jth band is more or less localized to the nth

unit inside the BvK zone.

The equations (2.19), (2.22) and (2.23) are valid only for systems with an energy

gap between occupied and unoccupied bands. These expressions were derived [18] for
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an independent particle model and were later generalized [19] to the case of a multi-

determinant electronic wavefunction.

On the other hand, instead of the expression (2.15) for the orbitals, we may consider

the LCAO approach of equations (1.48) and (1.50), in which the single particle orbitals

are written as linear combinations of localized basis functions centered on the atoms,

ψj(k, ~r ) =

Nb∑
p=1

Cpj(k)χp(k, ~r )

χp(k, ~r ) =
1√
K

K∑
n=1

eikanχpn(~r ), (2.25)

with χpn being the pth atomic basis function of the nth unit and Nb is number of basis

functions per unit (Nb > B). Introducing this in expression (2.22) gives

µ̄e=−
2i

K2

∑
k,j

〈∑
p,m

Cpj(k)e−ik(z−ma)χpm

∣∣∣∣ ∂∂k
∣∣∣∣∑
q,n

Cqj(k)e−ik(z−na)χqn

〉

=− 2i

K2

∑
k,j

∑
p,q

∑
m,n

C∗pj(k)eika(n−m)

[
−i〈χpm|z − na|χqn〉+ 〈χpm|χqn〉

d

dk

]
Cqj(k)

=− 2

K

K−1∑
k,n=0

eikan
B∑
j=1

Nb∑
p,q=1

C∗pj(k)

[
〈χp0|z − na|χqn〉︸ ︷︷ ︸

charge

+ i〈χpm|χqn〉
d

dk︸ ︷︷ ︸
current

]
Cqj(k) (2.26)

using the relation (1.49) to reduce the summation over m in the second step. Hereby,

we have split µ̄e into so-called charge (µ̄Q) and current (µ̄I) contributions. The former

is the expectation value for a function that resembles z but is piecewise linear with the

periodicity of the lattice. If the atom-centered basis functions are orthonormal, this

equation reduces to

µ̄e = − 2

K

B∑
j=1

∑
k

∑
p

[
|Cpj(k)|2zp0 + iC∗pj(k)

dCpj(k)

dk

]
= µ̄Q + µ̄I . (2.27)

In order to complete the picture, the nuclear contribution to the z component of

the dipole moment per unit cell may be obtained simply as

µ̄n =
1

K

K−1∑
m=0

∑
p

(Zpm −ma)Qp =
∑
p

Zp0Qp, (2.28)
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with Zpm being the z component of the position of the pth nucleus in the mth unit cell

of the BvK zone and Qp is its nuclear charge. The nuclear contribution modifies only

the charge term of µ̄e.

2.2.2 Phase Factors and non Uniqueness

It is important to notice that each expression for the dipole moment per unit is not

unique since it may contain an unknown integer multiple of the lattice constant. In the

expression (2.19), the term Im ln detS± is just the phase of the complex number detS±,

which contains an unknown integer multiple of 2π. Thus, µ̄R is only determined up

to an integer times the lattice constant. Equivalently, in evaluating µ̄KSV of equation

(2.22) we may modify each electronic orbital by a phase factor,

ψj(k, ~r ) −→ ψj(k, ~r )eiφj(k), (2.29)

which is arbitrary except for requiring that

φj

(
−π
a

)
= φj

(π
a

)
+ 2π ñj, (2.30)

with ñj being an unknown integer. Adding the contributions from all bands, the dipole

moment per unit is changed by an amount

∆µ̄ = −a
B∑
j=1

ñj = −ñ a (2.31)

This change modifies the current, but not the charge term in equation (2.26). Finally,

since the assignment of the Wannier functions in equation (2.24) to the individual units

is not unique, the expression (2.23) also contains an unknown integer multiple of the

lattice constant.

Moreover, when the phase-modified orbitals of the expression (2.29) are inserted

in the secular equation, the orbital energies are shifted by a term proportional to the

field strength as we will see in the next chapter. Therefore, we can say that the band

structure is not unique for the system is in the presence of an electric field.
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2.3 The SCF Equations

2.3.1 For Finite Systems

When a finite system is in the presence of an electric field, the total Hamiltonian

changes according to

Ĥ −→ Ĥ − ~µ · ~E. (2.32)

In the case studied here, i.e., a one-dimensional system of repeating units along the z

axis in a uniform elestrostatic field EDC parallel to it, the second term adds simply

ĥDC = EDC z, (2.33)

to the Fock (or Kohn-Sham) operator. In ohter units system the elementary charge e

should be included, distinguishing this from the scalar potential VDC which determines

the electric field,
~E = −∇VDC = −∇(−EDC z), (2.34)

so we must be careful not to confuse them because here, they differ only in the sign.

To solve the single-particle equations,(
F̂ + EDC ẑ

)
ψj = εjψj, (2.35)

we expand the electronic orbitals in a set of atom centered basis functions considering

that we have N units and Nb basis functions per unit,

ψj =

Nb∑
p=1

N∑
m=1

cpmjχpm, (2.36)

with χpm being the pth basis function of the mth unit. Then, the equations (2.35) can

be expressed in matrix form including the term due to the field as{
F + EDC ·M

}
· cj = εj ·O · cj (2.37)

where cj is the field-dependent jth column of the matrix c, whose rows are determined

by the pm indices. In addition

Oqn
pm = 〈χpm|χqn〉
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M qn
pm = 〈χpm|z|χqn〉 (2.38)

F qn
pm = 〈χpm|F̂ |χqn〉

are the overlap, dipole moment, and Fock (or Kohn-Sham) matrix elements, respec-

tively. Here F̂ depends indirectly on the field through the orbital coefficients because

the equation (2.37) is solved self-consistently. The matrices in equation (2.37) are all

real and have a size of (NNb × NNb), but F̂ only depends on the doubly occupied

orbitals NO = NB, with 2B being the number of electrons per unit.

2.3.2 For Periodic Systems

We have seen that, in the case of finite systems, the interaction of the electrons with

the external field is introduced through the scalar potential VDC. The analogous me-

thodology for the infinite periodic system requires a different expression for the dipole

moment per unit. All the expressions (2.19), (2.22) and (2.23) for µ̄e have been used

to minimize the electric enthalpy of equation (2.17) [6, 7, 16], but those approaches are

not based on solving a standard secular equation self-consistently and some of them

lead to a computationally extensive and/or not particularly stable procedures.

Instead of dealing with the scalar potrential VDC, one can make use of the vector

potential approach (VPA), a completely different methodology recently developed [1, 8],

where the effect of the field is included by using the time-dependent vector potential
~A(~r, t), which defines the electric field through

~E(~r, t) = −1

c

∂

∂t
~A(~r, t). (2.39)

Then, in presence of this electric field, the single-particle momentum operator is re-

placed by

p̂ = p̂+
1

c
~A(~r, t), (2.40)

in the time-dependent Hartree-Fock (or Kohn-Sham) equation,(
F̂ − i ∂

∂t

)
ψj(~r, t) =

∑
i

εij(t)ψi(~r, t). (2.41)
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Using the LCAO expansion of equations (2.25),

ψj(k, ~r ) =

Nb∑
p=1

Cpj(k)χp(k, ~r )

χp(k, ~r ) =
1√
K

K∑
n=1

eikanχpn(~r ), (2.42)

and considering a uniform electric field ~E(~r, t) = E(t), we obtain

F (k, t) · C(k, t)+E(t)

[
M(k) · C(k, t) + iO(k) · ∂

∂k
C(k, t)

]
− iO(k)

∂

∂t
C(k, t)

= O(k) · C(k, t) · ε(k, t). (2.43)

Here,

Opq(k) =
∑
n

eikan〈χp0|χqn〉

Mpq(k) =
∑
n

eikan〈χp0|z − na|χqn〉 =
∑
n

e−ikan〈χpn|z|χq0〉 (2.44)

Fpq(k) =
∑
n

eikan〈χp0|F̂ |χqn〉,

are the overlap, dipole moment and Fock (or Kohn-Sham) matrices, respectively. For

the special case of an static field, E(t) = EDC, there is no time dependence. In

addition, one may choose the Lagrange multipliers so that only diagonal elements are

nonvanishing. Then, equation (2.43) becomes{
F (k) + EDC

[
M(k) + iO(k)

d

dk

]}
· Cj(k) = ε(k)O(k) · Cj(k), (2.45)

where Cj(k) is the jth column of C(k). Due to the partial derivative with respect to k,

this equation is not a standard matrix-eigenvalue problem. However, it can be recast by

multiplying the term with the derivative on the left-hand side by 1 = C†(k)·O(k)·C(k),

which gives

O(k) · d
dk
C(k) =

[
O(k) ·

(
d

dk
C(k)

)
· C†(k) ·O(k)

]
· C(k). (2.46)
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Then, the equation (2.45) takes the standard form{
F (k) + EDC

[
M(k) + iO(k) ·

(
d

dk
C(k)

)
· C†(k) ·O(k)

]}
· Cj(k) (2.47)

= ε(k)O(k) · Cj(k).

Here, the effective Hamiltonian (in curly brackets) remains Hermitian. This is the

equation that is solved self-consistently for the complex expansion coefficients.

The equation (2.47) reduces simply to equation (1.51) in absence of electric field.

Beyond resulting in a conventional eigenvalue equation, it is important to note that k

remains as a good quantum number and thus, the translational symmetry is preserved.

This equation differs fundamentally from equation (2.37) because of an additional

current term (second term in square brackets), but this term gives a crutial contribution

as we will see later on. On the other hand, for time-dependent fields, the VPA is

the natural way to proceed, since the frequency dependence can be introduced in

equation (2.43). Finally, under the considered conditions, the expression for the dipole

moment per unit within the VPA coincides with that of equation (2.26), i.e., an identical

formulation may be developed from the MTP point of view.

Having defined the dipole moment per unit in equation (2.26), we can write the

electronic energy per unit as

Ēe(EDC) = Ēe(0)− EDC µ̄e, (2.48)

where Ēe(0) is the field-free electronic energy per unit.

2.3.3 Solving the VPA Equation

Considering the VPA secular equation for infinite periodic systems in external elec-

trostatic fields, equation (2.47), the key aspect for practical computational purposes

involves differentiating the expansion coefficients {Cpj(k)} with respect to k. For the fi-

nite field case, the derivatives must be determined numerically. However, the calculated

coefficients contain an arbitrary k-dependent phase factor, so it is computationally of

enourmous advantage to smooth the coefficients to ease the differentiation. Thus, an

additional phase factor is introduced,

C̃pj(k) = Cpj(k)eiφj(k), (2.49)
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which is chosen so that the change in the coefficients from one k point to the next is

minimized. According to numerous test calculations, a numerically stable and accurate

smoothing procedure was developed [2, 3]. This multistep method starts with the field-

free expansion coefficients obtained by solving the single-particle equation (1.51). Then

we proceed as follows:

1. It is important to correctly join the band orbitals at different k points. Thus, we

first identify band crossings. Assuming that orbitals for the same band have very

similar expansion coefficients, we can identify band crossings from the relation∑
p

C∗pj(k)Cpj(k + ∆k) ≤ δ, (2.50)

for each j band and k value. If the sum is smaller than a chosen threshold, δ, the

orbitals are taken as belonging to two different crossing bands and the coefficients

Cpj(k + ∆k) and Cpj+1(k + ∆k) are interchanged.

2. When two or more band orbitals are energetically degenerate at a given k point,

we construct linear combinations that are maximally similar to those of the two

neighboring k points.

3. After the resulting coefficients {Cpj(k)} have been modified (or not) according

to steps 1 and 2, we rotate all the coefficients at k = 0 on the complex plane

by multiplying them by eiθ, so that they are all real. The multiplication by the

complex number eiθ is equivalent to a rotation on the complex plane an angle

of θ. Thus, we can take the introduction of phase factors as rotations. However

we have to stress that our coefficients are eigenvectors, so that whenever one

coefficient Cpj(k) is rotated, all the coefficients (for all p = 1, 2, ..., Nb) of the

corresponding j eigenvector have to be rotated with the same angle.

4. Starting from k = 0 and φj(0) = 0, we consider consecutive positive k points and

rotate the Nb coefficients Cpj(k + ∆k) of the j’th orbital an angle given by

φj(k + ∆k) = arg

[∑
p

C∗pj(k + ∆k)Cpj(k)

]
. (2.51)

For negative k,

Cpj(−k)eiφj(−k) = C∗pj(k)e−iφj(k). (2.52)
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This transformation is readily carried through. It leads to coefficients that are

smooth as a function of k for −π/a < k < π/a, however discontinuities may

occur at the zone boundaries.

5. In order to remove discontinuities at k = ±π/a, the quantity

Qj =
∑
k,p

|Cpj(k + ∆k)eiφj(k+∆k) − Cpj(k)eiφj(k)|2

+ λ
∑
k,p

|Cpj(k + 2∆k)eiφj(k+2∆k) − Cpj(k)eiφj(k)|2 (2.53)

is minimized for each j band under the constraint,

φj

(
−π
a

)
= φj

(π
a

)
, (2.54)

and with φj(0) fixed. The first term in equation (2.53) makes the coefficients

between neighboring k points maximally similar. However, it can be useful to

include a next-nearest neighbor term as well. This improves the numerical stabi-

lity of the derivatives with respect to k. A reasonable value for that contribution

is λ = 0.1. In this way, we arrive at a set of smooth coefficients for the field-

free case, {C̃0
pj(k)}. This is the time consuming step in the overall smoothing

procedure, which increases with the number of k points. It involves a nonlinear

optimization that is carried out using conjugate gradients explained in Appendix

A. The four preceding steps are necessary just to provide a good initial guess.

We emphasize that it is done only for zero field and, for a typical problem, will

require just a small fraction of the overall computation time.

6. The smooth coefficients are used to evaluate the dipole moment per unit according

to equation (2.26), where the numerically stable derivatives are obtained from a

finite-difference approximation,

dCpj(k)

dk
' 1

2∆k

ND∑
n=1

wn,ND

[
Cpj(k + n∆k)− Cpj(k − n∆k)

]
, (2.55)

with

Cpj

(
k +

2π

a

)
= Cpj(k). (2.56)

The most frequently used approximation is to take ND = 1, w11 = 1. However,

test calculations showed that an improved accuracy was obtained by using larger
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ND. In that event, the coefficients wn,ND
are taken from Dvornikov [20],

wn,ND
=

[
n

ND∏
m6=n

(
1− n2

m2

)]−1

. (2.57)

Typically, ND ' 5 leads to accurate results.

7. The derivatives are substituted in equation (2.45), which is solved for EDC 6= 0

and with the obtained coefficients {Cpj(k)} we repeat the steps 2 and 3 and,

then, skip to step 8 below. It is thereby assumed that the weak field EDC does

not remove band crossings by lowering the symmetry and that does not change

the orbitals significantly, as was found to be the case in all the tests.

8. The coefficients are made maximally similar to those of the field-free case, C̃0
pj(k),

by rotating them with an angle given by

φj(k) = arg

[∑
p

C∗pj(k)C̃0
pj(k)

]
, (2.58)

so we get the smooth coefficients

C̃pj(k) = Cpj(k)eiφj(k), (2.59)

which in turn are used to calculate µ̄e for EDC 6= 0 returning to step 6.

9. The equation (2.45) is solved self-consistently by repeating the steps 7 and 8 until

the convergence threshold is reached.



Chapter 3

Searching for the Correct Band

Structures

As discussed in the previous chapter, for an extended finite system, the dipole moment

per unit is defined up to an integer times the lattice constant as expressed in equation

(2.7),

µ̄ = µC +QR a, (3.1)

where the charge QR can change only by an integer. This theoretical limitation on the

terminal charge has been termed charge quatization [14].

On the other hand, for infinite periodic system, the introduction of phase factors

in the orbital expansion coefficients,

Cpj(k) −→ Cpj(k)eiφj(k), (3.2)

may lead to a change in the dipole moment per unit [13],

µ̄ −→ µ̄− ñ a, (3.3)

with ñ being the unknown integer described in equation (2.31). The arbitrariness of

the phase factors leads to an arbitrariness in the crystal-orbital energies. Thus, upon

making the substitution of equation (3.2) in equation (2.47), εj(k) changes according

to

εj(k) −→ εj(k) + EDC
d

dk
φj(k). (3.4)

Although the integral of the second term over the entire band will vanish, except for

possible contributions from the undetermined ñj in equation (2.30), the field-dependent

43
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orbital energies may vary in a somewhat arbitrary fashion as one goes across the band.

Despite appearing to be physically irrelevant, different values of ñ will lead to different

values of, for example, the piezoelectric coefficient.

A highly relevant question is whether the properties of the infinite periodic systems

and those of the large finite systems coincide. In order to address that issue we have

studied a simple model linear chain [13, 19, 21] parametrizing all the elements of the

Fock and overlap matrices as described in the next section. In those studies, it has

been found that the integer ñ can be used to reproduce the results obtained for a long

finite chain with a quantized charge transfer between the terminations.

Here, we explore the opposite problem, i.e., to determine if the results for the finite

chain can be used to avoid the arbitrariness of the phase factors and, in this sense,

obtain the ‘correct’ band structure. For this aim, first, we need to build the band

structure of the finite chain. This is a simple task in the field-free case, however, in

presence of an external field, the orbitals are distorted hindering the procedure. In

section 3.2, we present and discuss three methods to do it. Then, with both band

structures, we use the expression (3.4) to try to determine the phase factors in section

3.3. This study was published in [22].

For practical reasons we decided to use a model system. Care has been taken to

introduce the most important features that would appear in an ab initio calculation,

but other aspects, such as a more complicated band structure, could be of significance.

In the following section we shall describe the main features of the model, and the details

of how it is implemented in the program code are very similar to those exposed in the

next chapter.

3.1 Model I

We consider a simple model system schematically represented in figure 3.1. It is a

linear A-B chain with alternating bond lengths. For the infinite, periodic system,

the structure is described through the lattice constant a, and a parameter u0 that

quantifies the alternating bond lengths (a/2 − 2u0) and (a/2 + 2u0). For the infinite

periodic chain in the absence of the electrostatic field, the two structures differing in

the sign of u0 are energetically degenerate. We shall here study only the case that

u0 < 0. This corresponds to choosing the unit cell so that the shorter interatomic

bonds are between atoms of the same unit cell and the longer ones are between atoms

of neighboring unit cells.
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Figure 3.1: Schematic representation of the system used in our model studies. The
system is a linear chain with two types of atom and alternating bond lengths. The
lattice constant is denoted a, whereas u0 is a bond-length-alternation parameter. We
will denote the two types of atom as A and B.

There are 4 electrons per repeated unit and the nuclear charge on each atom is +2

a.u. We use a modified Hückel-type model for the Hartree-Fock Hamiltonian with a

basis set that consists of four orthonormal functions per unit χpm, with {χ1m, χ2m} cen-

tered on the atom A, and {χ3m, χ4m} centered on the atom B in the mth unit. Although

the field-free Hamiltonian matrix elements are parametrized, simple mathematical ex-

pressions for the basis functions are introduced to obtain a consistent treatment of the

field-dependent terms. Thus, for the atom A placed at zm = z1m = z2m we use

χ1m =

{
1√
w1

for |z − zm| ≤ w1

2

0 otherwise

χ2m =


1√
w2

for w2

4
< |z − zm| ≤ w2

2

− 1√
w2

for |z − zm| ≤ w2

4

0 otherwise

(3.5)

and similar expressions for the functions centered on atom B. The widths, w (obeying

w1 > w2), were kept sufficiently small so that functions on different atoms do not

overlap.

We write the field-free many-body Hamiltonian as a sum of one- and two-electron

operators,

Ĥe =
∑
i

ĥ1(i) +
1

2

∑
i 6=j

ĥ2(i, j). (3.6)

The one-center one-electron term 〈χpm|ĥ|χqm〉 is taken to be non-zero only if p = q,

defining the so-called on-site energies . Moreover, the two-center matrix elements are

assumed to vanish except for those between functions that have the same spin and are

located on neighboring atoms. These non-vanishing elements are taken to vary linearly
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as a function of the interatomic distance. For each of four pairs of nearest-neighbor

basis functions there are, accordingly, two parameters. Additionally, for simplicity, the

only two-electron terms retained are those where all four indices are the same, i.e.,

〈χpmχqn|ĥ|χpmχqn〉.
For the finite chain, the DC field is included in the electronic Hamiltonian through

the operator ĥDC, which modifies only the diagonal matrix elements,

〈χpm|ĥDC|χqn〉 = EDCzpm δpqδmn, (3.7)

whereas, for the infinite periodic chains the static field is introduced by means of the

VPA methodology explained in the previous chapter.

The dipole moment per unit of the infinite periodic system is calculated through

the equation (2.27). As discussed, it will lie in a certain range of length a. In order to

modify this range by an integer times a, the orbitals of one or more bands are given

additional phase factors, eikañj , with ñj being an integer. Then, the phases become

discontinuous across the boundary of the Brillouin zone, although the phase factors

remain continuous. The model assumes a restricted Hartree-Fock approximation to be

valid, so that the ñ is even and, equivalently, only an even number of electrons can be

transferred from one end to the other of the finite system. For the finite chain, the

equation (2.3) is used to determine the dipole moment per unit. In this case, to obtain

different terminations we modified the on-site energies only of the first and last atoms

of the chain. This allows us to change the charge at the chain ends by ±2 electrons.

Finally, for the purpose of having a pre-chosen minimum energy structure in the

field-free case, we include an elastic term in the potential for nuclear motion, which

contains 2nd and 4th order terms in nearest- and next-nearest-neighbor changes in the

interatomic distance. However, since in the present work, we are interested solely in

electronic properties, we do not carry out structure optimizations. In total, our model

is very similar to a standard semi-empirical electronic structure method, except that

we do not attempt to interpret the results as being those of specific systems.

3.1.1 The Periodic-System Band Structures

The band structures for two infinite periodic systems with different lattice constants,

i.e., a = 2.3 and a = 2.0 are shown in figure 3.2. We shall now discuss these band in

detail. As it can be seen in the left panel, the second and third bands are very flat

compared to the first and fourth ones, meaning that the energies along those bands
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Figure 3.2: Left: Complete field-free band structures of the infinite periodic system
with two different lattice constants. Right: Details of the valence and condution
bands.

vary very little. For the smaller lattice constant the interaction between neighbouring

atoms increases, giving wider bands, and, for our purpose, making the k assignment

for the finite system easier.

The bands are even functions of k, so that we do not obtain additional information

from the k < 0 part. Considering only the positive values of k, the first and fourth

bands are monotonic functions of k. This is also the case for the third band with

a = 2.3, which has its minimum (LUMO) at k = 0, but with a = 2.0 the minimum is

found near k = π/2a. For a = 2.3, the maximum of the second band (HOMO) lies at

k = 2π/5a, whereas it shifts to k = π/2a when the lattice constant equals 2.0. Then,

for the second band we have a situation, in which two orbitals with different k can have

the same energy. Hereafter, we refer to this energy range as the “double-k region”. In

this sense, the third band with a = 2.0 also has a double-k region. This will become

important below when the orbitals of the finite system are analyzed.

We considered both the field-free case for which the band structures are unique,

as well as different non-vanishing fields. In the latter case, the band structures are

not unique and, accordingly, it is also of fundamental interest to be able to identify a

unique set of band structures, as discussed above.

3.2 Extracting the Band Structures

The calculation for the finite chain results only in the orbital energies but not in the k

values. Thus, in order to construct the band structures from this information it is, at

first, necessary to identify k for each orbital. One may suggest several procedures for
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this purpose, and here we shall discuss three such methods.

We consider a long and finite chain that is separated into units. These units will

become the unit cells when the chain is considered as being infinite and periodic. For

the finite chain we write the jth orbital according to equation (2.36). For the long and

finite chain, also in the presence of an electrostatic field, it is possible to choose Cpnj

to be real. We will assume that this choice has been made. Therefore, for the model

system with 4 basis functions per unit, if the chain has N units, the coefficients matrix

consists of (4N × 4N) real numbers.

On the other hand, when the chain is treated as being infinite and periodic, the

orbitals are the Bloch functions of the equation (2.42). In this case the orbital expansion

coefficients are complex, so that if the size of the BvK zone is K, we have K(4 × 4)

complex matrices.

3.2.1 Method 1: Expectation Value

Starting from the expansion (2.36), the set of atom-centered basis functions may be

transformed into one of Bloch waves,

ψj(~r ) =
∑
p,m

cpmjχpm(~r ) =
∑
p

Cpj(k)χp(k, ~r ), (3.8)

where

χp(k, ~r ) =
1√
N

∑
n

eikanχpn(~r ). (3.9)

Here, we shall have exactly N equidistant k values in the range

− π

a
< k ≤ π

a
. (3.10)

Thus, including k = 0, the set of k values is

kq = ∆k q =
2π

Na
q, (3.11)

with

q = 0,±1,±2, . . . ,

{
±N−1

2
for N odd

±N−2
2
, N

2
for N even

(3.12)

We observe that the equation (3.9) is nothing but the discrete Fourier transform in
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its unitary form. Thus, considering the inverse of this transform,

χpn(~r ) =
1√
N

∑
k

e−ikanχp(k, ~r ), (3.13)

allows us to define ‘crystal-orbital’ expansion coefficients from the molecular ones,

Cpj(k) =
1√
N

∑
n

e−ikancpnj. (3.14)

If we apply the momentum operator on a pure Bloch function,

ψ(k, ~r ) = eikzu(k, ~r ), (3.15)

we obtain

p̂ |ψ(k, ~r )〉 = −i ∂
∂z

[
eikzu(k, ~r )

]
= k

[
eikzu(k, ~r )

]
− ieikz ∂

∂z
u(k, ~r )

= kψ(k, ~r )− ieikz ∂
∂z
u(k, ~r ) (3.16)

→ kψ(k, ~r )

when ignoring the second term in the second-last equation. This can also be used on

the linear combination of Bloch waves of equation (3.8), giving

p̂ |ψj(k, ~r )〉 =
∑
p

kCpj(k)χp(k, ~r ). (3.17)

Then, the expectation value for the momentum of the jth orbital is

〈ψj| p̂ |ψj〉 =
∑
k1,k2

∑
p1,p2

C∗p1j(k1)Cp2j(k2)〈χp1(k1, ~r )| p̂ |χp2(k2, ~r )〉

=
∑
k1,k2

∑
p1,p2

C∗p1j(k1)Cp2j(k2)k2 δp1p2δk1k2

=
∑
k

∑
p

|Cpj(k)|2k. (3.18)

Similarly,

〈ψj| p̂2 |ψj〉 =
∑
k

∑
p

|Cpj(k)|2k2. (3.19)
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However, in the present case, the coefficients cpmj of equation (3.14) are real, whereby

Cpj(−k) = C∗pj(k), (3.20)

and, accordingly, 〈ψj| p̂ |ψj〉 vanishes. Therefore, we instead consider

〈ψj| |p̂| |ψj〉 =
∑
k

∑
p

|Cpj(k)|2|k|, (3.21)

and then ultimately define

∆|pj| =
[
〈ψj| p̂2 |ψj〉 − 〈ψj| |p̂| |ψj〉2

]1/2
. (3.22)

Accordingly, with the help of the expression (3.21) we can ascribe the jth orbital a k

value, and with the standard daviation defined in equation (3.22) we can assess the

quality of this assignment. This procedure may work well when the band of interest is

monotonous as a function of k > 0, but if the band has a double-k region, the finite-

chain calculations may lead to orbitals that contain arbitrary linear combinations of

the energetically degenerate band orbitals with different k.

An alternative could be to study the coefficients {Cpj(k)} themselves. This could

be done with the help of the quantity

QI
j (k) =

∑
p

|Cpj(k)|2, (3.23)

which simply gives the contribution of the k value to |p̂j| in equation (3.18). Then, we

may consider a k mesh defined by

kq =
π

(N + 1)a
q, with q = 1, 2, . . . , N. (3.24)

With this set of k values, the transformation of equation (3.9) is no longer unitary, but

since we do not calculate any expectation value this fact should not cause a problem.

Instead, we will seek the major contribution to the momentum, i.e., the maximum

of QI
j (kq). Often, QI

j (kq) has a narrow peak for kq close to the expectation value of

equation (3.21). However, when, for the infinite periodic system, more band orbitals

with different k are energetically degenerate, QI
j may possess more peaks. When these

peaks are of comparable height, a k assignment becomes difficult.

Our model calculations in the absence of the electrostatic field showed that the
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band structures obtained by this method agreed well with those obtained from the

periodic-system calculations, and even when a weak, non-vanishing field was included

a realistic set of band structures was obtained. However, we observed some shifts of the

assigned k values, mainly for the smallest values k → 0 which caused some differences

for the band structure between finite and infinite systems. Another problem that we

observed was that some orbitals (with different energies) were associated to the same kq

value which in particular happened for the orbitals close to the HOMO and LUMO. In

that case it was often possible to obtain smooth band structures by carefully selecting

one of the kq values, which, however, is a cumbersome and biased procedure. In other

cases, a unique identification of the k was not possible, leaving some ‘holes’ in the band

structures, which might be filled by interpolation. In total, this method was not optimal

and often not able to automatically provide a ‘good’ set of band structures. One reason

for the problems could be that some orbitals for the finite system was localized to the

terminations and, accordingly, hardly resembled periodic-system orbitals. With this in

mind we developed the method to be described in the subsequent subsection.

3.2.2 Method 2: Fitting the Contributions of the

Central Region

As an alternative to transform the results for the finite-system one may instead study

the periodic-system orbitals of equation (2.42). In this case, due to time-reversal sym-

metry, ψj(k, ~r ) and ψj(−k, ~r ) are energetically degenerate and, similarly that in equa-

tion (3.20), it is possible to choose

Cpj(−k) = C∗pj(k). (3.25)

Then, from the two energetically degenerate orbitals, we may construct new ones that

have the same energy,

ψ̃j(k, ~r ) = a1ψj(k, ~r ) + a2ψj(−k, ~r )

=
∑
p

∑
n

1√
N

[
a1Cpj(k)eikan + a2Cpj(−k)e−ikan

]
χpn(~r ). (3.26)

In equation (3.8), the orbital expansion coefficients for the finite system, cpmj, were

chosen to be real. Thus, in order to establish a relation between the finite and the

infinite system, it will be useful to require that the sum in the square brackets of
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equation (3.26) is real, too. By writing

Cpj(k)eikan = x+ iy, (3.27)

we get

a1Cpj(k)eikan + a2Cpj(−k)e−ikan = a1Cpj(k)eikan + a2

[
Cpj(k)eikan

]∗
= a1(x+ iy) + a2(x− iy)

= (a1 + a2)x+ i(a1 − a2)y. (3.28)

In this equation, n takes many different values, so that the expression can only

then be real if the complex numbers a1 and a2 fulfill that a1 + a2 is real and a1 − a2 is

imaginary, i.e., a2 = a∗1, or

a1 = aeiφ

a2 = ae−iφ. (3.29)

with a = 1/
√

2. By writing

1√
2
eiφCpj(k) ≡ C̃pj(k) ≡ 1

2

(
Akpj − iBk

pj

)
, (3.30)

the expression in Eq. (3.28) becomes

C̃pj(k)eikan + C̃∗pj(k)e−ikan = Akpj cos(kan) +Bk
pj sin(kan). (3.31)

This expression will be compared with the expression for the orbitals for the finite

system, whereby we will consider only that part of the finite system (the central region)

that is sufficiently far from the terminations. In that region, the expansion coefficients

to the orbitals are sought written as

cpmj = apm cos(kam) + bpm sin(kam). (3.32)

Our goal is to find the appropiate k for the obtained coefficients {cpmj}. We notice

that there is some arbitrariness in the choice of the unit-cell index, m. Thus, changing

m→ m+ ∆m
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Figure 3.3: QII
j (q) defined in equation (3.33) for different orbitals of the valence band

with t = 10 (left) and t = 30 (right). The system is a 100-units chain, with a = 2.3
and an applied electrostatic field of strength EDC = 0.0005 a.u.

would change the values of the quantities in equation (3.32), but would not lead to a

different k.

Accordingly, for each orbital, j, we seek that value of kq for which

QII
j (kq) =

N−t∑
m=t+1

∑
p

[cpmj − xpj(q) cos(kqam)− ypj(q) sin(kqam)]2 (3.33)

has its minimum. The set of kq values is given by equation (3.24). The t parameter

is the number of units (at each termination) whose contribution is ruled out from

the summation of equation (3.33), defining in this way a central region of N − 2t

units. The quantities xpj(q) and ypj(q) are fitting constants that for each kq shall be

adjusted in order to minimize QII
j (kq). We add that this approach can be considered

a generalization of what was presented by Pomogaeva et al. [23].

In the ideal case, QII
j (kq) will lead to a narrow and single minimum with a value

close to zero for each orbital j. In our model calculations, we did indeed find such a

case for the first and fourth bands in the absence of an external field, similar to what

we found in the previous subsection. However, the present approach becames less

easy to apply for the valence and conduction bands. Even without the electrostatic

field, the single peak of QII
j (kq) splits into two for orbitals whose energies are found

in the double-k region. Moreover, in the presence of a field, the minimum of QII
j (kq)

becomes much broader and the function shows an oscillatory behaviour. However, by

varying the size of the central region, it became possible to change the shape of the

QII
j -functions so that in most cases a single minimum could be identified.

This can be seen in figure 3.3 where QII
j for some orbitals of the second band is
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plotted with t = 10 (left) and t = 30 (right). The system consists of 100 units and is

exposed to an electrostatic field of strength 0.005 a.u. The overall effect of reducing the

central region is a general shift downward of QII
j , decreasing also the oscillations until,

eventually, the function has a well identifiable single (or double) minimum. Examples

of that are the QII
j -functions for the orbitals j = 120, j = 132 and j = 180 (red, green

and magenta lines respectively), that have a single minimum with t = 30 but not with

t = 10. In fact, the orbital j = 180 has the wavenumber of the HOMO, but there

are several orbitals with the same kq. The orbital j = 190 (cyan line) has an energy

in the double-k region, therefore its QII
j -function exhibits two similar minima with

t = 10 (left), but it vanishes for t = 30 (right). The QII
j ’s for different orbitals change

differently as a function of t, whereby for some of them one obtains rapidly a single-

or a double-minimum structure, while others, such as the orbital j = 160 (blue line),

need a higher value of t to exhibit a simple minimum. It turned out that in some cases,

a minimum of QII
j (kq) can be identified for a small t, whereas the function essentially

vanishes for larger t. However, we found that each QII
j -function has a minimum close

to zero for a certain t before the function vanishes. This gives us a reliable criterion to

assign the k value to each finite-system orbital.
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Figure 3.4: The optimized t-value as a function of orbital index. The system of left
(right) panel is a chain of N = 100 (60) units with a lattice constant a = 2.3 (a = 2.0)
in presence of an electrostatic field with a strength of EDC = 0.0005 a.u. (both cases).
The k-dependent orbitals are ordered according to increasing energy. The Fermi energy
is between the second and third band.

By letting t to be a variable that is determined for each orbital separately so that

a well-defined minimum is identified, we can uniquely determine the k value for each

orbital. The resulting t values from this automatic procedure are shown in figure 3.4.

The optimized t tends to be larger at the band edges, resulting in a smaller central

region for those orbitals. A second finding is that some of the orbitals close to the band
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edges have very widespread QII
j -functions that vanish for smaller t, without exhibiting

an identifiable minimum. These orbitals can in the figure be identified as those for

which pronounced drops occur at all the band edges in the left panel, but only at the

band gap in the right panel. These orbitals are mainly localized to the termination

regions of the finite chains, so that they hardly correspond to orbitals that can be

recovered for the infinite, periodic system, and, therefore, can be excluded from our

analysis. A third finding from figure 3.4 is that t is smaller in the middle of each band.

Finally, the problem related to orbitals with energies in the double-k region is also

manifested through the oscillating line around the band gap in the right panel.

The method of this subsection is based on the assumption that it is possible to

reproduce the orbitals of the infinite and periodic chain by fitting the orbitals of the

long but finite chain in a variable central region [equation (3.33)], which works well in

the absence of an external electrostatic field. However, the inclusion of the field leads

to some smaller but noticeable inconsistencies described in the previous paragraph,

mainly because the orbitals are distorted and become more or less localized at the

terminations. For this reason, we decided to study a third approach described below.

3.2.3 Method 3: Fourier Analysis

Given the results of the previous methods, we turned to directly analyze the spacial

distribution of the orbitals along the chain. Since the used basis functions have the

same (spherical) symmetry, the coefficients cpmj with different p of the jth orbital for

the finite chain show a very similar m-dependence. Therefore, we define for each j

orbital the discrete function,

bj(m) =
∑
p

cpmj. (3.34)

In a first study we considered a chain with 60 units and a = 2.0 in the absence of an

external field. For this, bj could be accurately fitted by

bj(m) ' A sin

(
πqm

N + 1

)
with m = 1, 2, . . . , N (3.35)

The denominator in the argument to the sine function equals N + 1 and not N so that

the function does not vanish at the first and last unit, but (hypothetically) for m = 0

and m = N + 1. Thus, the finite chain of N units gives orbitals similar to those of an

infinite periodic chain with a Born von Kármán zone of 2(N + 1) units. If some orbital

has an energy in the double-k region, we find that bj(m) resembles a superposition of
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two functions of the type of equation (3.35), i.e., sinusoidals with different frequencies.

Therefore, a more general and useful approach is to perform a Fourier analysis on the

bj-functions.

We make accordingly a discrete Fourier transform of the coefficients bj(m),

Bj(q) =
1√
N + 1

N∑
m=0

bj(m) exp

(
−i2πqm
N + 1

)
=

1√
N + 1

Aj(q) exp[iφj(q)] (3.36)

where we have included bj(0) = 0 so that the periodicity becomes N + 1. Bj is a

complex number with amplitude Aj(q) and phase φj(q). Aj(q) is the contribution of

the sinusoid with frequency qm/(N + 1) to bj(m). Therefore, that qj = q for which

the amplitude is largest can be used in assigning a k value to the orbital of interest.

Moreover, once the biggest contribution has been identified at qj, we can compare only

the corresponding sinusoid,

fj(m) = b′j cos

(
2πqjm

N + 1
+ φj(qj)

)
, (3.37)

with the bj-function of equation (3.34), and define the parameter

∆bj =

{∑
m[bj(m)− fj(m)]2

N b′j

}1/2

, (3.38)

to quantify the quality of the wavenumber assigment for each j-orbital. By defining

the amplitud b′j = max{abs[bj(m)]} in equation (3.37), we can also identify, through

the ∆bj, when the orbital is highly localized.

However, since bj(m) is real, we do not have N independent expansion coefficients,

Bj(q), but instead Bj(q) = −Bj(N + 1 − q). In order to extract more information

from the finite-system calculations we, therefore, decided to replace 2π by π in the

arguments in equations (3.36) and (3.37). Thereby the transformation of equation

(3.36) is no longer unitary which, however, for our purposes is not important. Hence,

if Aj(q) has its maximum at a certain qj and ∆bj is lower than a pre-defined cutoff

value, the wavenumber

k =
π

(N + 1)a
· qj

is assigned to the jth orbital.
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Figure 3.5: bj(m) in solid lines and fj(m) in dotted lines for the system in the absence
as well as in the presence of an electrostatic field with strength of EDC = ±3 × 10−4

a.u. for different orbitals: a) qj = j = 1 and b) qj = j = 3 belonging to the first band;
c) j = 77, qj = 1, d) j = 79, qj = 5, e) j = 118 and f) j = 120 of the second band,
both with qj = 30.

We applied this method to a 60-units chain in the absence of an external field

and found qj = j for j = 1, 2, · · · , 60 for the energetically lowest band. Similarly, for

the energetically highest (fourth) band (with j running from 181 to 240) we obtained

qj = 241− j. The orbitals of the second and third bands in the double-k region exhibit

some superposition of the functions of the type given in equation 3.35, so that the qj’s

jump back and forth when orbitals of increasing energy are considered. Nevertheless, it

was possible to assign a k value to almost all orbitals with the orbitals 120 and 121, i.e.,

the HOMO and LUMO, being the only exceptions. These were strongly localized at
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the terminations (very similar to what is shown in figure 3.5 b) and were, accordingly,

not relevant for the infinite and periodic system.

When the electric field is included, the orbitals are perturbed in different ways. This

is exemplified in figure 3.5. In the four upper panels, bj(m) and the corresponding fj(m)

are shown both without and with the inclusion of an electrostatic field. As can be seen,

the orbitals change shape with the inclusion of the electric field although their overall

structure (i.e., numbers of maxima and nodes) remains unchanged. This change in

shape is more evident for small k and it is even larger for the second (figure 3.5 a and

b) and third bands. However, the automated procedure to determine qj seems to be

adequate because fj(m) provides good approximations to bj(m). The values of qj that

are determined can be seen to correlate with the number of nodes of the dotted curves.

However, there are some deviations from this general rule. Thus, whereas it is well

fulfilled for the cases qj = 1 and qj = 3, deviations are seen in figure 3.5 d (i.e., for

the 79th orbital) where the dotted line have 5 nodes. This means that the dominating

contribution to the Fourier expansion of b79(m) in the presence of the electrostatic

field originates from q79 = 5 although b79(m) has only 3 maximals as is the case for the

orbital in the absence of the field (solid line). In cases like this, we correct by hand

the automatically identified values of qj, although we emphasize that this procedure

was necessary for only few orbitals. In figure 3.5 c and d one may also observe a trend

towards a superposition of sinusoidals with different q. This is a result that is found

for orbitals whose energies are in the double-k region. Finally, in the bottom panels,

two examples of orbitals (j = 118 and j = 120) with different degree of localization

are shown. Their corresponding fj(m)’s are both plotted for qj = 30. The HOMO

(j = 120) is practically unchanged from the field-free case, but the inclusion of the

external field leads to a localization of those orbitals that have energies close to the

band gap or the band edges.

3.2.4 The Finite-System Band Structures

Ultimately, the purpose of the present study is to reveal whether a finite-system cal-

culation can provide results that are sufficiently accurate to extract a band structure

for the infinite-system limit. As discussed above, this would ultimately mean that it

would be possible to identify an optimal set of phase factors for the infinite-system

orbitals. To this end, we used the three methods described in the previous section in

order to extract the band structures for the finite chain.

It turned out that for all three methods it was uncomplicated to extract the band
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 0  1ka/π  0  1ka/π  0  1ka/π

Method 1 Method 2

Finite  -3

Finite +3

Periodic
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Figure 3.6: The calculated band structures for the infinite, periodic system in compari-
son with those extracted from the finite-chain results. Only the second and third bands
are shown. The finite chain consists of 60 AB units with a lattice constant a = 2.0.
The field strength was set equal to EDC = ±0.0003 a.u. + and × mark finite-system
results, whereas the solid curves mark the periodic-chain results. For the latter, the
differences between the results for the two field strengths cannot be resolved in the
figure.

structures in the absence of an electrostatic field, but with its inclusion, the k assign-

ments of the different methods was non-trivial, whereby each method showed its own

complications. Nevertheless, for all methods it was advantageous to consider only weak

field strengths between -0.0003 and 0.0003 a.u. In figure 3.6 the resulting band struc-

tures are presented extracted from the results for a finite system consisting of 60 units

both in the absence and in the presence of an external electrostatic field.

The problems related to the first method are evident in the left panel: in the region

k → 0 several orbitals were ruled out from the band structure by the algorithm and the

points for the smallest values of k were shifted by a considerable amount. Moreover,

for several orbitals in the regions close to the HOMO and LUMO, the method is not

capable of identifying k. As mentioned in the previous sections, this region is the

most problematic one, and the number of ‘holes’ increases with the field strength. The

results obtained by the second method are slightly different in this region, giving lower

energies for the orbitals of the second band and higher values for those of the third

band. This difference is related to how the orbital (and its energy) is selected when two

orbitals have been assigned the same k value. It is worth to emphasize that the orbital
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energies of the finite system are the same for the three methods; the only difference

lies in how the wavenumbers are assigned and which orbital energies are ruled out from

the band structure. Often, those orbitals that are excluded are more localized than

the others, as is the case in figure 3.5 e and f. Thus, they could be located in the band

gap just between the considered HOMO and LUMO. Of the three methods, the third

method appears to be the most adequate, and the problems found for the other two

methods are here less pronounced.

3.3 The Phase Factors

As just mentioned, the ultimate goal is to obtain a unique set of band structures for an

infinite, periodic system exposed to an electrostatic field, something that is not possible

with present periodic-system approaches. Thus, once the band structures have been

extracted from the finite-system results, we compare those with those of the infinite

periodic system in the presence of an electrostatic field of the same strength,

∆εjq = ∆εj(kq) = εPj (kq)− εFj (kq). (3.39)

Here, j marks the band, the set of kq values were defined in equation (3.24), and P

and F mark the periodic and finite system, respectively. Then, according to equation

(3.4),
d

dk
φj(k) =

∆εj(k)

EDC

, (3.40)

from which we may calculate numerically φj(k),

φj(kq) ≈
q∑
i=1

∆εji
EDC

∆k =
π

(N + 1)aEDC

q∑
i=1

∆εji. (3.41)

An important quantity is the integral (sum) over the whole BZ. Using that ∆εj(kq) =

∆εj(−kq), the total phase change of one band is

Φj = 2 · φj
(π
a

)
≈ 2π

(N + 1)aEDC

N∑
q=1

∆εjq, (3.42)

which should be related to ñj of equation (2.31),

Φj = 2π · ñj. (3.43)
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Thus, in our case with two doubly filled bands, the sum of ñj over all filled bands

equals

ñ = 2(ñ1 + ñ2) =
1

π
(Φ1 + Φ2). (3.44)

As discussed elsewhere [21], this value can be interpreted as the total charge (in units

of the elementary charge) accumulated at the terminations of the finite system.
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Figure 3.7: Results for Φj/π (upper panels) and Φj · EDC/π (lower panels) calculated
by Eqs. (3.42) and (3.45) for the four bands as a function of the external field using
the second and third method in extracting the band structures. The right-most panels
show the results for a smaller range of field strengths. The straight lines in the bottom
panels represent linear fits.

The last equations above deserve some discussion. First, the numerical integral of

equation (3.41) is defined only up to a constant that is not of importance here, because

only the difference between φj(−π/a) and φj(π/a) defines Φj. Second, the problems

related to the wavenumber assignment translate into small uncertainties in the energy

differences, εjq, whereby Φj becomes more sensitive to those uncertainties when the

field is weaker. Third, the energy differences are larger at the band edges, k → 0

and k → π/a, and in the k regions of the neighborhood of the HOMO and LUMO

in the second and third band, respectively. Fourth, the difference at exactly k = π/a

is excluded in the sum in equation (3.42). For all these reasons one cannot expect to

obtain an accurate but only an approximate value for Φj.

The results of figures 3.6 and 3.7 show that the three different methods for ex-

tracting the band structures yield similar, but not identical results. This does indeed



62 Chapter 3. Searching for the Correct Band Structures

Band A B C
1st 0.895 1.031 1.030
2nd -1.024 -0.650 -0.370
3rd -0.888 -2.334 -1.046
4th -0.902 -1.053 -1.055
ñ -0.129 0.381 0.660

Table 3.1: The slopes mj of the lines plotted in bottom panels of figure 3.7 and the
sum of the first two slopes.

suggest that it is not possible to determine uniquely the band structures for an infinite,

periodic system in the presence of an electrostatic field, which is in agreement with the

formalism for calculating the band structures. This issue becomes even more clear

when attempting to determine ñ. Due to the small values of EDC, ñ tends to reach

quite large values, as can be seen in the upper panels of figure 3.7. In particular for

the smallest values of |EDC|, the calculated values of ñ are very large, supporting that

in this case, the application of equation (3.42) is connected with large numerical inac-

curacies. The large values of ñ must be considered unrealistic: ñ can be interpreted

as related to the number of elementary charges accumulated at the terminations of

the large, finite systems, and from the way the model system has been constructed we

know that this number should lie close to 0.

It turned out, however, that a higher numerical accuracy could be achieved by

considering

Φj(EDC)

π
EDC =

2

(N + 1)a

N∑
q=1

∆εjq = mj · EDC + aj. (3.45)

mj is then related to ñj and aj quantifies the inaccuracy of the approach. This quantity,

as a function of EDC is shown in figure 3.7, too. As shown in the middle and right

panels in the bottom row of this figure, in this case more stable results are found

when concentrating on weaker fields. This is clearly in contrast to what we find when

considering the equivalent panels in the upper row, and it is a promising finding that,

numerically, the results for the weaker fields are more reliable than those for the stronger

fields. We add that the values of the slopes mj’s do hardly change for different chain

lengths, and in most of the cases they did not vary much when changing the method

or the field range, whereas the y-intercept, aj, was more arbitrary.

The obtained mj slopes from the bottom panels of figure 3.7 are shown in Table

3.1. In most of the cases the value of mj is between −2 and +2, and the sum of the
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mj over the occupied bands, is close to 0. This is satisfactorily, as it implies that no

extra charge is accumulated at the terminations, in agreement with other results of the

model calculations.

3.4 Conclusions

The purpose of this chapter was to explored whether it is possible to determine uniquely

the band structures of an infinite, periodic system exposed to an electrostatic field. The

Vector Potential Approach formalism for the treatment of such a situation does not

offer a unique set of band structures but, instead, they depend on the phases of the

orbitals and, in particular, their k dependence. As an alternative, we explored whether

the results for large but finite systems exposed to the same field (for which the orbital

energies are unique) could provide the desired information.

For this aim, first we need the band structure of both systems. However, it turned

out that using the orbitals of the finite system exposed to an electrostatic field con-

stitutes a particularly difficult case for extracting band structures from finite-system

results. Therefore, we suggested and discussed three different approaches of which, at

least for the present study, the third proposal was the better one in the sense that a

larger set of finite-system orbitals could be assigned to a k value. Nevertheless, we

cannot exclude that for other cases, other approaches may be better suited which is

why we have chosen to present all three.

The constructed band structures were found to be very close to those calculated

directly for the infinite and periodic system exposed to the electrostatic field using the

Vector Potential Approach. We emphasize, however, that the changes in the finite-

system band structures upon the inclusion of the field are very small. Nevertheless,

the three approaches did not lead to identical band structures due to the distortion of

the spatial distribution of the orbitals caused by the field. Without the electrostatic

field, most of the orbitals are distributed over the complete system, but when the field

is included, the largest part of the orbitals becomes more or less localized to one or

the other end. This localization makes it difficult to assign a k value to them. On the

other hand, the total electron distribution remains regular in a larger or smaller central

region where the effects of the terminations are not felt.

The differences in the band structures extracted from the finite-system calculations

and those of the periodic counterparts are related to additional phase factors in the

periodic-system calculations. Ultimately, the total set of those additional phase factors
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can be used (with a finite-difference approximation) to estimate charges accumulated

at the terminations, and, here, we found that this approach could be numerically very

unstable because very small energy differences have substantial effect in the calcu-

lated phase factors. A reformulation of the approach could stabilize it somewhat, but

uncertainties remained.

The final conclusion of this chapter is that it is not possible to determine uniquely

the band structure for an infinite, periodic system exposed to an electrostatic field.

However, as it was mentioned at the beginning of this chapter, the integer ñ associated

with the phase factors can be used to simulate, in a crystal-orbital calculation, the

charge transfer between the ends of a long chain. In that case, we can say that the

correctness of ñ is confirmed if the dipole moment per unit lies in the appropiate range.



Chapter 4

Studying the DFT Overestimation

of the Responses

When focusing on responses to perturbing electric fields, the key quantity is the total

dipole moment that, together with the field-induced contributions, i.e., the linear po-

larizability and the non-linear hyperpolarizabilities, contains all relevant information.

A detailed understanding of how these properties depend on structure and composition

of the materials has not yet been obtained. Thus, when attempting to optimize some

of the responses for special purposes, one is forced to use, in part, a trial-and-error

approach that may be both time-consuming and without guarantee of success. Theo-

retical studies of various properties are often useful in identifying adequate candidate

systems and a similar approach can also be applied for the responses to electric fields.

In that context, density- functional calculations are often used for determining the

electronic properties of materials.

However, about 15 years ago, a significant overshoot of electric dipole properties

calculated by density-functional theory (DFT) for polyacetylene chains of increasing

size was found [24, 25] by comparing with the results of ab-initio calculations. This

behavior was latter found for other quasilinear systems [26], as well and attributed

to an incomplete screening of the external electric field within the DFT treatment.

It has been suggested, among other things, that the overestimates can be alleviated

by improving the exchange-energy functional [27, 28] or by including self-interaction

corrections [29].

More specific, for regular systems (large systems that consist of a regularly repeated

sequence of identical units with deviations from regularity only near the terminations)

the linear and non-linear responses per repeat unit, in the thermodynamic limit, will

65
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be independent of the system size. The DFT calculations predicted that this limit will

be reached for much larger systems than what is found by the HF method and with

much larger property values. Although the HF results are altered when correlation

effects are included, this difference is small compared to the difference between HF and

DFT calculations [30–32]. Therefore, it may be useful to completely ignore correlation

effects which is what we shall do in the present work.

In order to understand this deficiency of DFT calculations, the resulting polariza-

tion and charge transfer along the chain have been analyzed [24, 26] and systems of

higher dimension have also been studied [33]. However, accurate electronic structure

calculations for large systems are computationally demanding and one may have to

introduce approximations whose effects on the results are only approximately known.

On the other hand, for smaller systems the thermodynamic limit will not be reached

making it difficult to extract the desired information.

All of the cited studies have been carried out for finite systems, for which the

calculation of the dipole moment is straightforward even in the presence of an electro-

static field. This situation is different when considering the system as being periodic

and infinite. Although all real systems are finite, it is often of enormous advantage

to calculate their properties by assuming they are infinite and periodic, whereby the

thermodynamic limit is automatically reached. For that goal, here we use the VPA ex-

plained in the second chapter. It has been shown, through comparison with large finite

systems, that the VPA can also account for effects due to terminations [19, 21, 22].

Even though, it has been rigorously established that the dipole moment per unit is a

bulk property [12].

In this chapter we shall present results of model studies designed to obtain detailed

information on the differences between HF and DFT descriptions of the responses of

quasi-one-dimensional, extended systems (chains) to electrostatic fields. The model

that will be employed has certain appealing features. First, it is so simple that even

large (but finite) systems can be treated accurately without having to bother about

errors due to truncations of various infinite summations in direct or reciprocal space.

Second, we assume that an accurate description can be obtained when expanding

the electronic orbitals in a particularly simple set of basis functions. This set is so

constructed that gradient approximations within the DFT can be ignored. Third, with

this basis set it becomes possible to separate the responses into atom- or unit cell-

specific contributions. Finally, it is possible to use this approach within the VPA for

the infinite and periodic system. In that case, additional information on the problems
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behind the DFT overestimate can be obtained as we shall demonstrate.

4.1 Model II-A: The Finite Case

The model is very similar to that shown in figure 3.1. It describes a quasi-linear chain

with two atoms per repeated unit. The positions of the two atoms are

~Rpn = ~Rp0 + n~a, n = −N,−N + 1, . . . , N − 1, N. (4.1)

Here, n labels the unit and p the atom. ~Rp0 are the positions in the reference central

(0th) unit. Moreover, ~a is the lattice vector that is supposed to be along the z axis.

Accordingly,
N∑

n=−N

zpn =
N∑

n=−N

(zp0 + na) = (2N + 1)zp0. (4.2)

If each unit has P atoms and 2B electrons, then the nuclear charges assumed to

be,

Q = +
2B

P
, (4.3)

in order to keep the whole system neutral. Ignoring the spin polarization, we will have

NO = (2N + 1)B doubly occupied molecular orbitals for the system. In presence of

the electrostatic field ~E = (0, 0, EDC), the single particle equations can be written as

in equation (2.35), (
ĥ+ EDC ẑ

)
ψi(~r ) = εiψi(~r ), (4.4)

where ĥ is either the Fock operator,

F̂ = ĥ1 + V̂n +

NO∑
j=1

(
2Ĵj − K̂j

)
, (4.5)

or the Kohn-Sham operator,

ĥKS = ĥ1 + V̂n +

NO∑
j=1

2Ĵj − V̂x. (4.6)

In both cases ĥ1 contains the kinetic-energy operator and eventually other potentials,

whereas V̂n is the potential from the nuclei and the core electrons; Ĵj and K̂j are the

Coulomb and exchange operators from the jth orbital, respectively. Finally, V̂x is the
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exchange potential within density-functional theory.

We shall expand ψj(~r ) in a set of basis functions,

ψj(~r ) =
∑
p,n

cpnjχpn(~r ), (4.7)

where χpn(~r ) is the pth basis function of the nth unit. We shall here make a particularly

simple choice with just one basis function per atom given by

χpn(~r ) =

{ (
4π
3
R3
p

)−1/2 |~r − ~Rpn| < Rp

0 |~r − ~Rpn| ≥ Rp,
(4.8)

i.e., a constant within a sphere of radius Rp around the atom where the function is

centered and otherwise 0. Although this basis set hardly can be considered as providing

a good approximation to the true solutions to the single-particle equations, they are

so simple that the calculations can be done fast. Moreover, they have the advantage

that the density becomes piecewise constant, which may be an interesting aspect when

studying DFT approaches: there should be no contributions from gradient corrections

(except, maybe, from the surfaces of the spheres, but let us ignore those here).

With this basis set the single-particle equations can be written in matrix form,{
h+ EDC M

}
· cj = εj O · cj. (4.9)

where the elements of the overlap and dipole moment matrices in our model are simply

Oqm
pn = 〈χpn|χqm〉 = δpqδnm ≡ δqmpn

1

M qm
pn = 〈χpn|z|χqm〉 = zpn δ

qm
pn . (4.10)

Equivalently, the field can be included by an additional term in the single-particle

Hamiltonian, which contributes solely to the diagonal matrix elements,

〈χpn|ĥDC|χqm〉 = EDC z δ
qm
pn . (4.11)

1This definition is used throughout the whole document
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We shall now build the effective h matrix. First, we assume that

〈χpn|ĥ1|χqm〉 = h1
qm
pn =


sp (p, n) = (q,m)

−te−bR
qm
pn (p, n) 6= (q,m) and Rqm

pn < R0

0 otherwise.

(4.12)

Here, sp (the on-site energies), t and R0 are chosen constants, while Rqm
pn = |~Rpn− ~Rqm|.

We have chosen to have non-zero matrix elements h1
qm
pn for certain (p, n) 6= (q,m)

although the basis functions are non-ovelaping. This may be considered unrealistic

but otherwise the model would hardly be able to describe chemical bonding, at least

within the DFT.

For the two-electron integrals we have

〈χpnχp′n′ |ĥ2|χqmχq′m′〉 =

∫∫
1

|~r − ~r ′|
χ∗pn(~r )χ∗p′n′(~r

′)χqm(~r )χq′m′(~r
′)d~rd~r ′

= U(p, n, p′, n′)δqmpn δ
q′m′

p′n′ . (4.13)

We calculate the quantity U(p, n, p′, n′) by using the usual Coulomb potential of a

sphere of charge uniformly distributed,

Vpn(~r ) =

∫
χ∗pn(~r ′)χpn(~r ′)

|~r − ~r ′|
d~r ′ =


3

2Rp
− |~r−~Rpn|2

2R3
p

|~r − ~Rpn| < Rp

1

|~r−~Rpn|
|~r − ~Rpn| ≥ Rp.

(4.14)

Then, for (p, n) 6= (p′, n′)

U(p, n, p′, n′) =

∫
|~r−~Rp′n′ |≤Rp′

|χp′n′(~r )|2

|~r − ~Rpn|
d~r. (4.15)

This can be calculated by expanding the function (potential) centered at ~Rpn around
~Rp′n′ and keeping only the lowest order (spherically symmetric) term. Since χp′n′(~r ) is

spherically symmetric, this is the only term that will contribute,

1

|~r − ~Rpn|
=

1

|~Rp′n′ − ~Rpn|
+ . . . (4.16)

Then

U(p, n, p′, n′) =

{
|~Rp′n′ − ~Rpn|−1 (p, n) 6= (p′, n′)

6
5Rp

(p, n) = (p′, n′).
(4.17)
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Finally,

〈χpn|V̂n|χqm〉 = Qδqmpn
∑
p′,n′

Vn(p, n, p′, n′), (4.18)

but, substituting

Vn(p, n, p′, n′) =

{
−|~Rp′n′ − ~Rpn|−1 = −U(p, n, p′, n′) (p, n) 6= (p′, n′)

− 3
2Rp

= −
[
U(p, n, p, n) + 3

10Rp

]
(p, n) = (p′, n′),

(4.19)

we obtain,

〈χpn|V̂n|χqm〉 = −Qδqmpn

[∑
p′,n′

U(p, n, p′, n′) +
3

10Rp

]
. (4.20)

The density inside the (p, n)’th atom is

ρpn =
3

4πR3
p

NO∑
j=1

2|cpnj|2 =
3

4πR3
p

ηpn, (4.21)

where ηpn is the number of electrons of the (p, n)’th atom (the Mulliken population).

Then, within DFT

〈χpn|V̂x|χqm〉 = δqmpn Vx[ρpn], (4.22)

where Vx[ρpn] is an expresion for the exchange potential of the density ρpn.

Both within HF and within DFT, the sum over the occupied orbitals of the Coulomb

matrix elements can be written as,

NO∑
j=1

2Jj
qm
pn =

NO∑
j=1

∑
p′,n′

∑
q′,m′

2c∗p′n′jcq′m′j
[
〈χpnχp′n′ |ĥ2|χqmχq′m′〉

]
=

NO∑
j=1

∑
p′,n′

∑
q′,m′

2c∗p′n′jcq′m′j
[
U(p, n, p′, n′)δqmpn δ

q′m′

p′q′

]
= δqmpn

∑
p′,n′

NO∑
j=1

2|cp′n′j|2U(p, n, p′, n′)

= δqmpn
∑
p′,n′

ηp′n′U(p, n, p′, n′), (4.23)

using equation (4.13). On the other hand, within HF, the sum over the occupied
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orbitals of the exchange matrix elements are

NO∑
j=1

Kj
qm
pn =

NO∑
j=1

∑
p′,n′

∑
q′,m′

c∗p′n′jcq′m′j
[
〈χpnχp′n′ |ĥ2|χq′m′χqm〉

]
=

NO∑
j=1

∑
p′,n′

∑
q′,m′

c∗p′n′jcq′m′j
[
U(p, n, q,m)δpnδq′m′δp′n′δqm

]
=

NO∑
j=1

c∗qmjcpnjU(p, n, q,m)

= c̃qmpn U(p, n, q,m), (4.24)

where we have defined,

c̃qmpn =

NO∑
j=1

cpnjcqmj = c̃pnqm, (4.25)

using that, in this case, all the coefficients cpnj are real. Moreover, the Mulliken popu-

lations are the double of the diagonal elements: ηpn = 2c̃pnpn.

Summarizing, the matrix elements of the operators V̂n, ĥDC, Ĵj and V̂x are diago-

nal, while only ĥ1 and K̂j lead to symmetric matrices with non-vanishing off-diagonal

elements. In total, substituting the expressions (4.20-4.24) in equations (4.5) and (4.6)

and then in (4.9), the elements of the effective Fock matrix become

F qm
pn = δqmpn

[∑
p′n′

(ηp′n′ −Q)U(p, n, p′, n′)− 3Q

10Rp

+ EDC zpn

]
+ h1

qm
pn − c̃qmpn U(p, n, q,m),

(4.26)

whereas the elements of the effective Kohn-Sham matrix become

hKS
qm
pn = δqmpn

[∑
p′n′

(ηp′n′ −Q)U(p, n, p′, n′)− 3Q

10Rp

− Vx[ρpn] + EDC zpn

]
+h1

qm
pn . (4.27)

4.1.1 Energy and Dipole Moment

Once the eigenvalue problem (4.9) is solved self-consistently, we can calculate the total

electronic energy that, within the HF method, is given as

Ee = 2

NO∑
i=1

〈ψi|ĥ1 + V̂n + ĥDC|ψi〉+

NO∑
i,j=1

(
2〈ψiψj|ĥ2|ψiψj〉 − 〈ψjψi|ĥ2|ψiψj〉

)
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= 2

NO∑
i=1

εi −
NO∑
i,j=1

(
2〈ψiψj|ĥ2|ψiψj〉 − 〈ψjψi|ĥ2|ψiψj〉

)
, (4.28)

and within the DFT method is

Ee = 2

NO∑
i=1

〈ψi|ĥ1 + V̂n + ĥDC − V̂x|ψi〉+

NO∑
i,j=1

2〈ψiψj|ĥ2|ψiψj〉

= 2

NO∑
i=1

εi −
NO∑
i,j=1

2〈ψi|Ex − Vx|ψi〉 −
NO∑
i,j=1

2〈ψiψj|ĥ2|ψiψj〉. (4.29)

With the present model

NO∑
i,j=1

2〈ψiψj|ĥ2|ψiψj〉 =

NO∑
i,j=1

∑
p,n

∑
p′,n′

∑
q,m

∑
q′,m′

2c∗pnic
∗
p′n′jcqmicq′m′j〈χpnχp′n′|ĥ2|χqmχq′m′〉

=

NO∑
i,j=1

∑
p,n

∑
p′,n′

2c∗pnic
∗
p′n′jcpnicp′n′jU(p, n, p′, n′)

= 2
∑
p,n

∑
p′,n′

[
NO∑
i=1

|cpni|2
NO∑
j=1

|cp′n′j|2
]
U(p, n, p′, n′)

=
1

2

∑
p,n

∑
p′,n′

ηpnηp′n′U(p, n, p′, n′), (4.30)

as well as

NO∑
i,j=1

〈ψiψj|ĥ2|ψjψi〉 =

NO∑
i,j=1

∑
p,n

∑
p′,n′

∑
q,m

∑
q′,m′

c∗pnic
∗
p′n′jcq′m′jcqmi〈χpnχp′n′|ĥ2|χq′m′χqm〉

=
∑
p,n

∑
q,m

[
NO∑
i=1

c∗pnicqmi

NO∑
j=1

c∗qmjcpnj

]
U(p, n, q,m)

=
∑
p,n

∑
q,m

|c̃qmpn |2U(p, n, q,m). (4.31)

Moreover,

NO∑
i=1

2〈ψi|Ex − Vx|ψi〉 =

NO∑
i,j=1

∑
p,n

∑
q,m

2c∗ipncqmi〈χpn|Ex − Vx|χqm〉

=

NO∑
i=1

∑
p,n

∑
q,m

2c∗ipncqmi
(
Ex[ρpn]− Vx[ρpn]

)
δqmpn



4.1. Model II-A: The Finite Case 73

=
∑
p,n

NO∑
i=1

2|cpni|2
(
Ex[ρpn]− Vx[ρpn]

)
=
∑
p,n

ηpn
(
Ex[ρpn]− Vx[ρpn]

)
. (4.32)

In both cases we need to add the total energy contribution from the nuclei,

En =
Q2

2

∑
p,n

∑
q,m

(
1− δqmpn

)
U(p, n, q,m)− EDCQ

∑
p,n

zpn

=
Q2

2

[∑
p,n

∑
q,m

U(p, n, q,m)−
∑
p,n

U(p, n, p, n)

]
− EDCQ

∑
p,n

zpn

=
Q2

2

∑
p,n

∑
q,m

U(p, n, q,m)− (2N + 1)
∑
p

[
3Q2

5Rp

+ EDCQzp0

]
, (4.33)

considering the definition of U(p, n, q,m) in equation (4.17) and the expression (4.2).

By combining all terms of equations (4.28-4.33), we end up with the following total

energy within the HF method,

EHF
T = 2

NO∑
i=1

εi − (2N + 1)
∑
p

[
3Q2

5Rp

+ EDCQzp0

]
+

1

2

∑
p,n

∑
q,m

[
Q2 − ηpnηqm + 2|c̃qmpn |2

]
U(p, n, q,m), (4.34)

and within the DFT method

EKS
T = 2

NO∑
i=1

εi − (2N + 1)
∑
p

[
3Q2

5Rp

+ EDCQzp0

]
−
∑
p,n

ηpn

(
Ex[ρpn]− Vx[ρpn]

)
+

1

2

∑
p,n

∑
q,m

[
Q2 − ηpnηqm

]
U(p, n, q,m). (4.35)

In the case considered here, we use the expression (1.37) for the exchange potential

and the corresponding energy,

Vx[ρ] =

(
3

π

)1/3

ρ1/3

Ex[ρ] =
3

4

(
3

π

)1/3

ρ4/3. (4.36)
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On the other hand, we calculate the z component of the total dipole moment as

µ =

∫
zρT (~r )d~r =

∑
p,n

∫
|~r+~Rpn|<Rp

zρT (~r )d~r

=
∑
p,n

(Q− ηpn)zpn = −
∑
p,n

ηpnzpn, (4.37)

and using the expansion in the field strength of equation 2.12, we obtain

µ =
∑
p,n

µpn =
∑
p,n

(
µ0pn + αpnEDC +

1

2
βpnE

2
DC +

1

6
γpnE

3
DC + . . .

)
, (4.38)

i.e., we can define responses for the individual atoms. By comparing HF and DFT

results it may be identified which atoms are responsible for the DFT catastrophe. We

can imagine two scenarios, either the atoms in the central parts of the large chains

show different behavior when comparing HF and DFT, or those at the terminations

do. In the former case, DFT leads to a wrong charge distribution and a different (local

or non-local) function of the density may be able to solve the problems. In the latter

case, DFT again leads to a wrong charge distribution but remembering that when

passing to the infinite, periodic chain, that part of the dipole moment for the finite

chain that arises from the terminations is translated into a current contribution, it may

be suggested that a pure (local or non-local) density function is not able to solve the

problems, but instead, current contributions should be included.

4.2 Model II-B: The Periodic Case

We shall now tackle the case that the system is considered being infinite and periodic.

When the electrostactic field is non-zero, we will use the vector-potential approach

VPA (consistent with the MTP) and hence, solve the single-particle equations of the

type {
h+ EDC

[
M(k) + iO(k)

d

dk

]}
Cj(k) = εj(k)O(k)Cj(k). (4.39)

As already indicated, k is a good quantum number and we use, accordingly, a

formulation whereby the atom-centered basis functions have been transformed into

Bloch functions. We assume that we have K = 2N + 1 equidistant k points in the
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interval (−π/a, π/a),

kn = ∆k n =
2πn

a(2N + 1)
for n = −N,−N + 1, . . . , N (4.40)

and that a summation of those replaces the integration over the first Brillouin zone.

The orbitals are expanded in Bloch waves, which in turn, are formed from the atom-

centered basis functions normalized within the BvK zone,

ψj(k, ~r ) =
∑
p

Cpj(k)χp(k, ~r )

χp(k, ~r ) =
1√
K

N∑
n=−N

eikanχpn(~r ), (4.41)

with a being the lattice constant.

In order to carry through the calculations for the infinite and periodic chains, we

need to represent all quantities in terms of the Bloch waves. For the calculation of

the matrix elements for the Bloch waves we shall make use of the properties that our

atom-centered basis functions satisfy and the general equation (1.49) will help us for

simplifications. Firstly, they are orthonormal,

〈χp(k)|χq(k)〉 =
1

K

∑
n,m

eika(m−n)〈χpn|χqm〉

=
1

K

∑
n,m

eika(m−n)δpqδnm

=
1

K

∑
n

δpq = δpq. (4.42)

Thereby, considering that there are B doubly occupied bands, the electron density

becomes

ρ(~r ) = 2
∑
j

∑
k

|ψj(k, ~r )|2

=
2

K

∑
j

∑
k

∑
p,q

∑
n,m

C∗pj(k)Cqj(k)eika(m−n)χpn(~r )χqm(~r )

=
2

K

∑
j

∑
k

∑
p

∑
n

|Cpj(k)|2|χpn(~r )|2. (4.43)

According to the definition (4.8), we have non-ovelaping spheres of radius Rp around
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the (p, n)th atom, in which the electron density is constant,

ρp =
3

4πR3
p

ηp, (4.44)

defining ηp as its Mulliken population analogous to equation (4.21),

ηp =
2

K

B∑
j

K∑
k

|Cpj(k)|2 (4.45)

We have assumed that we have a gap between the occupied and unoccupied orbitals,

i.e., that we have only completely filled and completely empty bands. Only in this case

is it possible to include the external electrostatic field.

We shall now formulate the matrix elements that enter the equation (4.39) in terms

of Bloch waves. Thus, we have

〈χp(k)|ĥ1|χq(k)〉 =
1

K

∑
n,m

eika(m−n)〈χpn|ĥ1|χqm〉

=
∑
n

eikan〈χp0|ĥ1|χqn〉, (4.46)

〈χp(k)|V̂n|χq(k)〉 =
∑
n

eikan〈χp0|V̂n|χqn〉

=
∑
n

eikanδpqδ0nQ
∑
p′,n′

Vn(p, n, p′, n′)

= −Qδpq

[∑
p′,n′

U(p, 0, p′, n′) +
3

10Rp

]
, (4.47)

where we have used equations (4.18) and (4.20), remembering that Q, defined in equa-

tion (4.3), is the nuclear charge of every atom. Then, for the DFT-exchange potential

〈χp(k)|V̂x|χq(k)〉 =
∑
n

eikan〈χp0|V̂x|χqn〉

=
∑
n

eikanδpqδ0nVx[ρp]

= δpq Vx[ρp] (4.48)

with Vx[ρp] defined in equation (4.36).
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For the two-electron matrix elements we have

〈χp(k)χp′(k
′)|ĥ2|χq(k)χq′(k

′)〉 =
1

K2

∑
n,n′,m,m′

eika(m−n)eik
′a(m′−n′)〈χpnχp′n′|ĥ2|χqmχq′m′〉

=
1

K2

∑
n,n′

〈χpnχp′n′|ĥ2|χpnχp′n′〉δpqδp′q′

=
1

K

∑
n

〈χp0χp′n|ĥ2|χp0χp′n〉δpqδp′q′ , (4.49)

as well as

〈χp(k)χp′(k
′)|ĥ2|χq′(k′)χq(k)〉 =

1

K2

∑
n,n′,m,m′

eika(m−n)eik
′a(m′−n′)〈χpnχp′n′ |ĥ2|χq′m′χqm〉

=
1

K2

∑
n,m

eia(k−k′)(m−n)〈χpnχqm|ĥ2|χpnχqm〉δpq′δp′qδnm′δn′m

=
1

K

∑
n

eia(k−k′)n〈χp0χqn|ĥ2|χp0χqn〉δpq′δp′q. (4.50)

In equations (4.49) and (4.50) we have summations over the lattice characterized

by a summation variable n. In principle, these summations run over the Born von

Kármán zone and have, accordingly, the same number of terms as we have k points, i.e.

K = 2N + 1. We may, however choose to let these summations run over considerably

more unit cells, namely from −Ns to Ns. Thereby, we may be able to converge to

the infinite-chain limit for a smaller number of k points, what otherwise is required.

However, it is very important to observe that the n summations in equation (4.49)

describe the electrostatic potential felt by an electron sitting at the pth atom in the

0th unit cell arising from charges sitting regularly at the pth atom in all unit cells.

This potential is no converging. Therefore, in a practical calculation we will truncate

the n summation after a larger, finite number of terms. In parallel, the potential from

the nuclei and the core electrons of equation (4.47) shall be truncated after the same

number of terms.

Both within HF and DFT, the sum over occupied orbitals of the Coulomb matrix

elements can be written as,

B∑
j=1

2Jjpq(k) =
B∑
j=1

∑
k′

∑
p′,q′

C∗p′j(k
′)Cq′j(k

′)
[
2〈χp(k)χp′(k

′)|ĥ2|χq(k)χq′(k
′)〉
]
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=
B∑
j=1

∑
k′

∑
p′,q′

C∗p′j(k
′)Cq′j(k

′)

[
2

K

∑
n

〈χp0χp′n|ĥ2|χp0χp′n〉δpqδp′q′
]

= δpq
∑
p′,n

[
2

K

B∑
j=1

∑
k′

|Cp′j(k′)|2
]
〈χp0χp′n|ĥ2|χp0χp′n〉

= δpq
∑
p′,n

ηp′U(p, 0, p′, n), (4.51)

using the expresions (4.49),(4.45) and (4.13) successively. Then, the Coulomb matrix

is diagonal and real. On the other hand, within HF, the sum over the occupied orbitals

of the exchange matrix elements is

B∑
j=1

Kjpq(k) =
B∑
j=1

∑
k′

∑
p′,q′

C∗p′j(k
′)Cq′j(k

′)
[
〈χp(k)χp′(k

′)|ĥ2|χq′(k′)χq(k)〉
]

=
B∑
j=1

∑
k′

∑
p′,q′

C∗p′j(k
′)Cq′j(k

′)

[
1

K

∑
n

eia(k−k′)n〈χp0χqn|ĥ2|χp0χqn〉δpq′δp′q

]

=
∑
n

∑
k′

[
1

K

B∑
j=1

C∗qj(k
′)Cpj(k

′)

]
eia(k−k′)n〈χp0χqn|ĥ2|χp0χqn〉

=
∑
n

∑
k′

C̃pq(k
′)eia(k−k′)nU(p, 0, q, n) ≡ Xpq(k) (4.52)

where we have defined,

C̃pq(k
′) =

1

K

B∑
j=1

C∗qj(k
′)Cpj(k

′), (4.53)

which, in fact, are real numbers and the diagonal elements are related to the Mulliken

populations, ηp = 2C̃pp.

We finally need

Mpq(k) =
∑
n

eikan〈χp0|z − na|χqn〉

=
∑
n

e−ikan〈χpn|z|χq0〉 = 〈χp0|z|χq0〉

= 〈χp0|z|χq0〉 = δpq zp0. (4.54)

We are now ready to set up the matrix h of equation (4.39). In the Hartree-Fock
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case this becomes

Fpq(k) = 〈χp(k)|ĥ1|χq(k)〉+ 〈χp(k)|V̂n|χq(k)〉+
B∑
j=1

[2Jjpq(k)−Kjpq(k)] , (4.55)

whereas in the DFT approach we have

hKS
pq (k) = 〈χp(k)|ĥ1|χq(k)〉+〈χp(k)|V̂n|χq(k)〉−〈χp(k)|V̂x|χq(k)〉+

B∑
j=1

2Jjpq(k). (4.56)

The matrix elements of the operators V̂n, Ĵj and V̂x are diagonal, while only ĥ1 and

K̂j lead to Hermitan matrices with non-vanishing off-diagonal elements. In total, sub-

stituting (4.47), (4.48), (4.51) and (4.52) in (4.55) and (4.56), we have for the Fock

operator,

Fpq(k) = δpq

[
−Q

∑
p′,n′

U(p, 0, p′, n′)− 3Q

10Rp

+
∑
p′,n

ηp′U(p, 0, p′, n)

]
+ h1pq −Xpq

= δpq

[∑
p′

(ηp′ −Q)Us(p, p
′)− 3Q

10Rp

]
+ h1pq −Xpq, (4.57)

while for the Kohn-Sham operator,

hKS
pq (k) = δpq

[
−Q

∑
p′,n

U(p, 0, p′, n)− 3Q

10Rp

+
∑
p′,n

ηp′U(p, 0, p′, n)− Vx[ρp]

]
+ h1pq

= δpq

[∑
p′

(ηp′ −Q)Us(p, p
′)− 3Q

10Rp

− Vx[ρp]

]
+ h1pq. (4.58)

In both equations we have simplified,

Ns∑
n=−Ns

U(p, 0, q, n) = Us(p, q). (4.59)

All the terms in equations (4.57) and (4.58) are real except for those due to the

kinetic energy operator, ĥ1, defined in (4.12) and (4.46), which can be split into real

and imaginary parts,

Re(h1pq) =
∑
n

cos(kan)〈χp0|ĥ1|χqn〉 (4.60)
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Im(h1pq) =
∑
n

sin(kan)〈χp0|ĥ1|χqn〉. (4.61)

In practice, we do not use the equation (4.39) because it is not a standard matrix-

eigenvalue problem. Instead, we use the expression (2.47) considering that, in our case,

the overlap matrix is just the identity matrix, O = 1. Then, it takes the form,{
h(k) + EDC

[
M(k) + i

(
d

dk
C(k)

)
· C†(k)

]}
Cj(k) = εj(k)Cj(k). (4.62)

The unit cell dipole matrix, M(k), calculated in equation (4.54), is also a real diagonal

matrix, and it will add the term EDCzp0 δpq to the expresions (4.57) and (4.58). Then, if

we separate the term with the derivative of C(k) into real and imaginary components,(
d

dk
C(k)

)
· C†(k) = A+ iB, (4.63)

the effective Hamiltonian (in curly brackets) for HF will be composed by the following

matrix elements,

heff
pq = δpq

[∑
p′

(ηp′ −Q)Us(p, p
′)− 3Q

10Rp

+ EDCzp0

]
+ Re(h1pq)−Xpq − EDCBpq + i [Im(h1pq) + EDCApq] , (4.64)

while for the DFT are

heff
pq = δpq

[∑
p′

(ηp′ −Q)Us(p, p
′)− 3Q

10Rp

+ EDCzp0 − Vx[ρp]

]
+ Re(h1pq)− EDCBpq + i [Im(h1pq) + EDCApq] . (4.65)

The equation (4.62) must to be solved for the eigenvectors self-consistently by

including the smoothing procedure for the coefficients Cpj(k) in order to be able to

calculate their derivatives. To solve the Hermitian problem of the equation (4.62) we

can convert it to real, symmetric one: Being heff = A + iB a Hermitian matrix, then

the n× n complex eigenvalue problem

(A+ iB) · (u+ iv) = λ(u+ iv)
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is equivalent to the 2n× 2n real problem,(
A −B
B A

)
·

(
u

v

)
= λ

(
u

v

)

Note that, because heff is Hermitian, this 2n×2n matrix is real and symmetric: AT = A

and BT = −B.

Corresponding to a given eigenvalue λ with eigenvector u+ iv, the vector −v+ iu is

also an eigenvector. Thus each eigenvalue λ1, λ2, . . . , λn of heff is repeated twice in the

augmented problem and the corresponding eigenvectors are pairs of the form un + ivn

and i(un + ivn).

In our case, u and v are the real and imaginary parts of the expansion coefficients

Cpj(k). Thus, it was checked if a smart selection between the two possible eigenvectors

Cpj(k) and iCpj(k) can smooth the coefficients as functions of k. It turned out that,

despite some progress, we still need the smoothing procedure and, indeed, this selection

has no effect on the smoothing procedure.

4.2.1 Energy and Polarization

Within the restricted HF method, the total electronic energy per unit is given as

1

K

∑
k

Ee(k) =
1

K

∑
k

[
2

B∑
i=1

εi(k)−
B∑

i,j=1

(
2〈ψiψj|ĥ2|ψiψj〉 − 〈ψjψi|ĥ2|ψiψj〉

)]
,

(4.66)

whereas for the DFT as

1

K

∑
k

Ee(k) =
2

K

∑
k

[
B∑
i=1

εi(k)−
B∑
i=1

〈ψi|Ex − Vx|ψi〉 −
B∑

i,j=1

〈ψiψj|ĥ2|ψiψj〉

]
, (4.67)

With the present model, using equations (4.41), (4.45), (4.49) and (4.58), we have

2

K

B∑
i,j=1

∑
k

〈ψiψj|ĥ2|ψiψj〉

=
2

K

B∑
i,j=1

∑
k,k′

∑
p,p′

∑
q,q′

C∗pi(k)C∗p′j(k
′)Cqi(k)Cq′j(k

′)
[
〈χp(k)χp′(k

′)|ĥ2|χq(k)χq′(k
′)〉
]

=
2

K

B∑
i,j=1

∑
k,k′

∑
p,p′

∑
q,q′

C∗pi(k)C∗p′j(k
′)Cqi(k)Cq′j(k

′)

[
1

K

∑
n

〈χp0χp′n|ĥ2|χp0χp′n〉δpqδp′q′
]
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=
1

2

∑
p,p′

[
2

K

B∑
i=1

∑
k

|Cpi(k)|2
][

2

K

B∑
j=1

∑
k′

|Cp′j(k′)|2
]∑

n

U(p, 0, p′, n)

=
1

2

∑
p,p′

ηpηp′Us(p, p
′), (4.68)

as well as, using equations (4.41), (4.50), (4.52), (4.53) and (4.58),

1

K

B∑
i,j=1

∑
k

〈ψjψi|ĥ2|ψiψj〉

=
1

K

B∑
i,j=1

∑
k,k′

∑
p,p′

∑
q,q′

C∗pi(k)C∗p′j(k
′)Cq′j(k

′)Cqi(k)
[
〈χp(k)χp′(k

′)|ĥ2|χq′(k′)χq(k)〉
]

=
1

K

B∑
i,j=1

∑
k,k′

∑
p,p′

∑
q,q′

C∗pi(k)C∗p′j(k
′)Cq′j(k

′)Cqi(k)

×

[
1

K

∑
n

eia(k−k′)n〈χp0χqn|ĥ2|χp0χqn〉δpq′δp′q

]

=
∑
p,q

∑
k

[
1

K

B∑
i=1

C∗pi(k)Cqi(k)

]∑
n

∑
k′

[
1

K

B∑
j=1

C∗qj(k
′)Cpj(k

′)

]
eia(k−k′)nU(p, 0, q, n)

=
∑
p,q

∑
k

C̃pq(k)Xpq(k). (4.69)

Moreover,

2

K

B∑
i=1

∑
k

〈ψi|Ex − Vx|ψi〉 =
2

K

B∑
i=1

∑
k

∑
p,q

C∗pi(k)Cqi(k)
(
Ex[ρp]− Vx[ρp]

)
δpq

=
∑
p

[
2

K

B∑
i=1

∑
k

|Cpi(k)|2
](

Ex[ρp]− Vx[ρp]
)

=
∑
p

ηp
(
Ex[ρp]− Vx[ρp]

)
. (4.70)

In both cases we need to add the total energy contribution from the nuclei,

En =
Q2

2

∑
p,q

∑
m,n

(
1− δqmpn

)
U(p, n, q,m)− EDCQ

∑
p,n

zpn. (4.71)

In the periodic case we consider that we have an infinite number of units but the

summation over m and n have to be truncated. Let say that we take into account only
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the interaction between the atoms of the first Ns neighboring units. Thus, if we consider

2Ns + 1 units with −Ns ≤ n ≤ Ns, then m takes the values −Ns + n ≤ m ≤ Ns + n.

So the summation over n gives 2Ns + 1 times the same value (for example that with

n = 0), but this factor is canceled when we divide by 2Ns + 1 to get the total energy

per unit. The same happens with the last term using equation (4.2),

1

2Ns + 1
En =

Q2

2

∑
p,q

Ns∑
m=−Ns

(
1− δqmp0

)
U(p, 0, q,m)− EDCQ

∑
p

zp0

=
Q2

2

∑
p,q

[
Ns∑

m=−Ns

U(p, 0, q,m)− δpqU(p, 0, p, 0)

]
− EDCQ

∑
p

zp0

=
Q2

2

∑
p,q

Us(p, q)−
∑
p

[
3Q2

10Rp

+ EDCQzp0

]
. (4.72)

Here we are considering the same number of units of the truncation described below

for the equations (4.47), (4.49) and (4.50). Thus, combining equations (4.66-4.72) the

total energy per unit cell within HF is

Ecell =
2

K

B∑
i=1

∑
k

εi(k) +
1

2

∑
p,q

[
Q2 − ηpηq

]
Us(p, q)

+
∑
p,q

∑
k

C̃pq(k)Xpq(k)−
∑
p

[
3Q2

10Rp

+ EDCQzp0

]
, (4.73)

whereas within the DFT it is

Ecell =
2

K

B∑
i=1

∑
k

εi(k) +
1

2

∑
p,q

[
Q2 − ηpηq

]
Us(p, q)

−
∑
p

[
3Q2

10Rp

+ EDCQzp0 + ηp

(
Ex[ρp]− Vx[ρp]

)]
. (4.74)

In the present study we do not carry out any structure relaxation and all the nuclei

have the same charge Q. This leads to
∑

pQzp0 = 0, and therefore, we can exclude the

EDC-term in equations (4.73-4.74) and (4.34-4.35).

For the electronic dipole moment per unit, we use the expression (2.27),

µ̄e = − 2

K

B∑
j=1

∑
k

∑
p

[
|Cpj(k)|2zp0 + iC∗pj(k)

dCpj(k)

dk

]



84 Chapter 4. Studying the DFT Overestimation of the Responses

= −
∑
p

ηpzp0 −
2i

K

B∑
j=1

∑
k

∑
p

C∗pj(k)
dCpj(k)

dk
(4.75)

= µ̄Q + µ̄I ,

where µ̄Q and µ̄I are the charge and the current contributions respectively.

Including the dipole moment of the nuclei, we will have

µ̄ = µ̄n + µ̄e = Q
∑
p

zp0 + µ̄e = µ̄e, (4.76)

thereby, in the systems considered here, the nuclei do not contribute to the total dipole

moment.

4.2.2 Analyzing the Effective Hamiltonian

Owing the simplicitity of our system, we can exhaustively analyze the differences be-

tween the HF and DFT expressions for the effective hamiltonian heff
pq (k), i.e., equations

(4.64) and (4.65). First, we emphasize that the only k-dependent terms are h1pq, Apq,

Bpq and Xpq, while the self-consistent and smooth coefficients affect ηp, C̃pq Apq, Bpq,

Xpq and ρp. On the other hand, only two terms are related to the truncation of the

potential due to the electron-electron and electron-nucleus interactions. As mentioned

previuosly, we consider the interactions with the 2Ns neighboring units and this sum-

mation affects only Us(p, q) and Xpq defined in equations 4.59 and 4.52 respectively.

Champagne et al. [34] have shown how to remove the importance of this issue, but here

we can calculate it analytically.

Considering, additionally, that the system is one-dimensional with two atoms per

unit cell, one atom-centered basis function per atom and two electrons per unit, the

k-dependent hamiltonian is the 2 × 2 complex matrix (p, q = 1, 2) given by equations

(4.57) and (4.58),

HF heff
pq = δpq

[∑
p′

(ηp′ −Q)Us(p, p
′)− 3Q

10Rp

]
+ h1pq −Xpq (4.77)

DFT heff
pq = δpq

[∑
p′

(ηp′ −Q)Us(p, p
′)− 3Q

10Rp

− Vx[ρp]

]
+ h1pq (4.78)

Moreover, the populations fulfill η1 +η2 = 2 and the nuclear charge is Q = 1. Then,
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the first terms of the diagonal elements are

p = 1
∑
p′

(ηp′ −Q)Us(1, p
′) = (η1 − 1)Us(1, 1) + (η2 − 1)Us(1, 2)

= (η1 − 1)[Us(1, 1)− Us(1, 2)]

= (η1 − 1)∆Us (4.79)

p = 2
∑
p′

(ηp′ −Q)Us(2, p
′) = (1− η1)∆Us.

Us(p, q) does not converge for Ns → ∞, but the difference, ∆Us = Us(1, 1)− Us(1, 2),

does as we can see in Appendix B.1. For this reason, within the present model, the

DFT hamiltonian converges for Ns →∞. In fact, Ns has not to be very high to obtain

a good approach to the infinite limit of ∆Us. The HF hamiltonian has an additional

term, Xpq, whose convergence for Ns →∞ was also confirmed.

Other term in which we truncate a summation is h1pq(k), but we also proved in

Appendix B.2 that, as it is defined, it is possible to deduce analytic formulae for the

convergence value considering an infinite number of units (or R0 →∞). It would not

be the case if the function in equation (4.12) was −t/R (as we used in preliminary

studies) instead of −te−bR.

Something similar happens with the total energy, where the term,

1

2

∑
p,q

(Q2 − ηpηq)Us(p, q) =
1

2

[
(2− η2

1 − η2
2)Us(1, 1) + 2(1− η1η2)Us(1, 2)

]
=

1

2

[
(−2η2

2 + 4η1 − 2)Us(1, 1) + (2N2
2 − 4η1 + 2)Us(1, 2)

]
= −∆Us(η1 − 1)2, (4.80)

is shared by both methods, but the HF expression has an additional one,∑
p,q

∑
k

C̃pq(k)Xpq(k) =
∑
p,q

∑
k,k′

∑
n

C̃pq(k)C̃pq(k
′)eia(k−k′)nU(p, 0, q, n), (4.81)

whose convergence for Ns →∞ is not straightforward and may be affected by trunca-

tion errors for a given Ns. Finally, after several test calculations for a fixed BvK-zone

of size K and different Ns, we observed that the HF calculations were not improved

with higher Ns. For that reason, we decided to include the inteactions with only the

unit cells of the BVK zone, i.e., K = 2Ns + 1.
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4.3 The Computer Program

A computer program for the finite model described in section 4.1 was constructed. It

turns out to be a fairly small program that easily could be checked and made to work.

Initiallly, the existing program code (dftcat) was modified and extended to include

more atoms and electrons per unit. This also allow us to treat additional parallel

chains. Later, a similar program code was made for the periodic treatment detailed in

section 4.2 including the smoothing procedure. In figure 4.1, we can see the flow chart

of this program.

First, using the atoms coordinates, the system is contructed and all the distances

are calculated. Then, as initial guess for the matrix of expansion coefficients C in the

field-free case, we use the identity matrix and run the self-consistent procedure (marked

with the blue line in figure 4.1). The C-matrix is used to calculate the populations and

the electron density. For the finite system, there is only one big effective Hamiltonian

with (2N + 1)Nb eigenvalues, whereas for the periodic system, the Hamiltonian is k-

dependent, so we have to solve the small (but complex) eigenvalue problem for each k

in the BZ. In this manner we obtain the eigenvectors which form the output C-matrix.

The new coefficients are then combined with the input coefficients by a simple linear

mixing,

C̃new
pj (k) = (1− τ)C input

pj (k) + τ Coutput
pj (k)

Cnew
pj (k) = Nj(k)C̃new

pj (k), (4.82)

with Nj(k) =

[∑
p

|C̃new
pj (k)|2

]−1/2

,

so that, the new C-matrix used in the next iteration is obtained. Due to the mixing it

is not automatically guaranteed that the orbitals are normalized, which is the reason

for including the extra normalization step above. They may still not be orthogonal, but

in the case of convergence that should be fulfilled and then also Npn = 1. Moreover, in

the first iteration the mixing parameter is set τ = 1.

The calculations are considered converged when a parameter,

W =
1

KN2
b

[∑
k

∑
p,j

|Coutput
pj (k)| − |C input

pj (k)|2
]1/2

(4.83)

is below a certain threshold value.
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Figure 4.1: Flow chart of the program for the periodic system.
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&inp alat=5.0, natom=2, nel=1, nmin0=1, nmax0=20,

t=5.16, b=0.3, r0=2000, edc0n=0.0020, dedcn=0.0002,

fdbck=1.00, conv=1.d-07, nitmax=50, ifit2=5 &end

&inpat xi0= 0.0, yi0=0.0, zi0=-1.10, ri=1.00, si=-0.5, &end

&inpat xi0= 0.0, yi0=0.0, zi0= 1.10, ri=1.00, si= 0.5, &end

Table 4.1: An input file for the program.

The first six steps of the smoothing procedure are carried out for the converged

solution in the field-free case, while in the field-containing case, the steps 7 and 8 are

inside the self-consistency, where we use as initial guess the converged solutions for

the field-free case. The loop for all the field strengths is marked with the red line

in figure 4.1. After that, the responses are obtained by fitting the dipole moment or

the polarization with a power series of the field strength. The whole algoritm is done

for both HF and DFT methods. In the finite case, we carry out the calculations for

different chain lengths in order to find the infinite-chain limit.

4.3.1 The Input File

Table I shows the input file for the program. The parameters have the following

meaning:

alat: a, the unit cell length.

natom: P , the number of atoms per unit cell.

nel: Ne, with 2Ne being the number of electrons per unit.

nmin0,nmax0: The range of N , being 2N + 1 the number of units.

t,b,r0: Parameters used in equation (4.12).

edc0n,dedcn: Maximum value of field strength, EDC, and its increment.

fdbck: τ , parameter used in the linear mixing.

conv: The threshold value for W of equation (4.83).

nitmax: Maximal number of iterations.

ifit2: Number of chain lengths used to calculate the infinite-chain limit.

xi0,yi0,zi0: The three components of the vector ~Rp0.

ri: The sphere radio Rp of equation (4.8).

si: The single-electron on-site energies of equation (4.12).

For the periodic system, nmin0, nmax0 and ifit2 are changed by:

nn: N , which defines the size of the BvK zone K = 2N + 1.
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nsum: Ns, the number of neighboring units considered in equation (4.59).

ndif: ND, used for the numerical derivatives of equation (2.55).

qlam: λ, parameter used in (2.53) to smooth the coefficients.

iw: flag, iw=1 gives additional information to test some blocks.

In the first version of dftcat, the function used to define the single-electron hopping

integrals in equation (4.12) was −t′/R, but the responses were not very stable when

varying R0, i.e., the maximum distance between basis functions which contribute to this

term. For this reason we decided to use instead the exponential function, −t exp(−bR),

with t and b chosen to obtain similar values of the hopping integrals for the nearest

and next nearest neighbors. The exponential function is also used in modelling the

effects of screening that otherwise are not included. With this definition, the solutions

converge rapidly for increasing R0 (see Appendix B.2) and the value R0 = 2000 means

that we consider the contribution from every pair of basis functions.

For the self-consistent procedure, it turned out that the simple mixing, τ = 1

was the best choice. On the other hand, for the periodic treatment, we used the

parameter λ in equation (2.53) to include the second-nearest-neighbor term to smooth

the coefficients as functions of k. This term was added to improve the numerical stablity

of the derivatives, however, in our case, it was found that this inclusion generates some

fluctuations in the coefficients near to the boundaries of the BZ. These fluctuations

affect mainly the derivatives with respect to k. On the other hand, by excluding this

contribution (by setting λ = 0), the coefficients are pretty smooth and continuous along

the whole band and its boundaries.

In the formula to calculate the derivatives numerically, equation (2.55), we use

a higher-order finite-difference approximation, considering the coefficients at the ND

previuos and subsecuent k-values. Due to its weight, defined in equation (2.57), the

contribution of the nth-nearest-neighbor term decays very fast for increasing n, while

the difference between ND = 1 and ND = 2 is small but significant. We set for all the

calculations ND = 5.

As mentioned above, in the last step of the algorithm we fit the dipole moment

or the polarization with a power series in the field strength to obtain µ0, α, β and γ

according to equation (4.38). We use both a 3rd and a 5th order expansion to estimate

truncation errors. In the ideal case, the result should hardly differ, but in some cases,

the values obtained with both fits differed substantially, specially for the higher order

responses in the periodic treatment. For example, the ratio γ(5th)/γ(3rd) was found

to be very sensitive and sometimes arbitrary to the change of some parameters, but
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it was by varying the range and the intervals of the field strength that we could get

reliable results and make the ratio γ(5th)/γ(3rd) ∼ 1.

Finally, varying the size of the BvK zone, K = 2N + 1, has a marginal effect on the

responses when N has reached an appropriate value. In our case N = 20 is enough and

allows us to make a bettter comparison between the results of the periodic system and

those of a finite chain with 2N+1 units. On the other hand, Ns, defined as the number

of nearest neighbors considered for the Coulomb interaction, should be, in principle,

equal to N , but we set it as an additional parameter trying to reach faster a converged

value. As we mention in section 4.2.2, we did not find a clear improvement of the

results by taking Ns > N . Thus, after several explorative calculations, we decided to

keep Ns = N .

4.4 Results

Our model includes several parameters whose values can affect the results. In the

present study, the most important ones are the difference in the on-site energies, ∆s,

as well as the bond-length-alternation (BLA) parameter [35], being the difference in the

nearest-neighbor bond lengths. In order to obtain numerically significant results, it is

useful to have large responses of the system to the external field. As a general rule, the

more delocalized the electrons are, the larger are the responses. The delocalization is

increased for smaller values of ∆s or the BLA parameter, but simultaneously the band

gap is reduced. A reduced band gap increases the probability for electron to tunnel

from one end of the system to the other, implying that for systems with small band gaps

only shorter chains and/or weaker fields can be treated. Weaker fields, on the other

hand, implies that the changes in the dipole moment upon the inclusion of the field

are smaller, whereby the calculation of the responses to the fields becomes numerically

unstable. Thus, due to these aspects one has to make a compromise between the

possible field strengths and the numerical accuracy of the responses.

Since our model has been developed with the aim of obtaining a phenomenological

description but not as an approximation to existing systems, the units we are using can

be considered arbitrary and may be omitted. In this sense, we used a lattice constant

of a = 5 and an intramolecular bond of d = 2.2, so that the BLA parameter along the

chain equals 0.6. Moreover, the radii of the spheres were set Rp = 1 length units.
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Figure 4.2: Band structures in absence of field for periodic (lines) and finite (crosses)
systems, calculated within both RHF and DFT methods. The left one corresponds
to a chain composed by identical atoms, while the right one belongs to a chain whose
atoms have different on-site energies.

4.4.1 Band Structure

As shown in the previous chapter, it is possible to extract band structures for infinite

periodic systems from the results for a sufficiently large finite system even in the pres-

ence of an electrostatic field although, in the latter case, only with some uncertainty.

For our model, as it turns out, the band structures are barely affected by the elec-

trostatic field, so that the field-free results contain the important information. The

field-free band structures are shown in figure 4.2 for ∆s = 0 and ∆s = 1. Of the two

bands, the lower one is filled, while the upper one is empty.

In general, the results for the periodic chains (lines) and those for the finite chains

(crosses) lie almost on top of one another for both RHF and DFT. Only near the center

of the valence band is a small difference found (the orbital energies for the finite-system

occupied orbitals are slightly lower).

When comparing the band structures of the chain with identical atoms (i.e., ∆s = 0)

to those of the chain containing a permanent dipole moment (i.e., with ∆s 6= 0) the

differences are most noticeable in the region close to the bandgap. In agreement with

expectations, the bandgap is smaller for ∆s = 0.

It worth to mention that in the finite case, the chain length does not have an

appreciable effect on the band structure, neither within the DFT nor the RHF methods,

so far the system does not become metallic due to the electric field.
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Figure 4.3: Responses divided by the number of units of a single chain as its size is
increased. The different colors correspond to different on-site energies. The HF results
are plotted in solid lines while the DFT ones in dashed lines.

4.4.2 Size Dependence

Regarding the finite system, in figure 4.3 we show the responses divided by the number

of units, R(N)/N , as functions of the chain length for three values of ∆s. The cen-

trosymmetric chain exhibits the larger α and γ, but due to the symmetry, the values for

µ0 and β vanish. The responses from the DFT calculations are larger than those from

the HF calculations, in particular for the higher-order responses. We can thus assume

that our model is capable of grasping the problems related to the DFT overestimations.

In all the cases, to a larger or smaller degree, there is a tendency to converge towards

a constant value, indicating that the infinite-chain limit can be identified. To this end,

we assume that, for large N , any response ϑ(N) can be approximated as

ϑ(N) = AN +B. (4.84)

with ϑ̄ = A being the infinite-chain limit for the response per unit. This expression

is consistent with that of equation (2.3), but instead of considering only two chain

lengths, we found more stable to fit a whole set of results for different chain lengths:

N,N−∆N,N−2∆N, . . . , N−(f−1)∆N to the expression (4.84). Here using N = 41,

∆N = 2 and f = 5 we obtained converged values.
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System Method ∆s gap |q0| µ̄0 ᾱ β̄ γ̄
RHF 1.0 1.389 0.2572 1.2483 8.4461 22.485 2989.3
RHF 0.5 1.144 0.1290 0.7417 13.084 41.138 13087

Finite RHF 0.0 1.038 0.0000 0.0000 15.927 0.0000 25124
DFT 1.0 1.025 0.2382 1.2618 10.813 44.355 8777.2
DFT 0.5 0.826 0.1414 0.7520 17.655 91.413 49175
DFT 0.0 0.740 0.0000 0.0000 22.111 0.0000 99379
RHF 1.0 1.503 0.2524 1.1324 6.9749 17.439 1766.8
RHF 0.5 1.232 0.1366 0.6484 9.9562 26.466 6400.0

Periodic RHF 0.0 1.128 0.0000 0.0000 11.566 0.0010 12038
DFT 1.0 1.090 0.2383 1.2619 10.814 44.656 8862.8
DFT 0.5 0.840 0.1290 0.7521 17.649 90.240 45676
DFT 0.0 0.744 0.0000 0.0000 22.076 0.0497 92234

Table 4.2: Results obtained for both systems and both methods varying the on-site-
energy differences, ∆s = s2 − s1. |q0| is the charge of the atoms in the central unit in
absence of field.

4.4.3 The Responses per Unit and the Unit Contributions

In table 4.2 we list the calculated responses per unit for both the periodic and the finite

systems. For the latter we used the procedure explained above, thereby the values of

the table are the converged values of the figure 4.3, whereas for the periodic system,

the dipole moment per unit is obtained through the equation (4.75) for different field

strengths and subsequently fitted to a polynomial in the field strength (equation 2.12)

similarly as we did for the finite system. In all cases we checked that, for the longest

chains, the response properties obtained using a 3rd order polynomial fit of µ in the

field strength were close to those obtained by a 5th order polynomial. For reliable values

of the response properties, we found it was important to consider field strengths that

were chosen so that the changes in the dipole moment per unit were neither too small

nor too large as discussed earlier. In general, this meant that larger field strengths were

employed for the RHF calculations because the RHF values, in general, were smaller

than the corresponding DFT results. Since the RHF bandgaps are larger as well, it

is possible to do so without having electrons tunnel from one end of the chain to the

other.

In the table, we observe very good agreement (for the most part) between the DFT

property values for the finite and the periodic system, whereas the agreement is not

as good for RHF especially for the higher order response properties. The difference

between the finite chain and infinite chain values for the gap, particularly for ∆s = 1,



94 Chapter 4. Studying the DFT Overestimation of the Responses

-2

 0

 2

 4

 6
µ

0

∆s=0.0

∆s=0.5

∆s=1.0

 0

 2

 4

 6

 8

 10

α
 /
1
0

-4

-2

 0

 2

 4

-20 -10 0 10 20

β
 /
1
0
0

Unit

 0

 5

 10

 15

 20

-20 -10 0 10 20

γ 
/1

0
0
0
0

Unit

Figure 4.4: Unit contribution to the responses along the a finite chain of 41 units. The
results for different on-site energies are plotted in different colors, RHF with solid line
and DFT with dashed line. The horizontal dotted line is the total respose per unit (or
the averange of the unit contribution), for the corresponding DFT calculation.

occurs because the energetically lowest unoccupied orbital is localized at the ends of the

finite chain and accordingly has no analogue in the infinite periodic system. This leads

to a reduction in the gap for both RHF and DFT, with the former being more strongly

affected. As an example for the behavior of the response properties we may consider

the γ values. In that case, within RHF the finite-system results are about twice those

obtained for the periodic-system, whereas the DFT calculations show a much smaller

effect. Since the two methods differ only in the treatment of exchange interactions, the

latter must be responsible for the difference. In the RHF treatment, there are long-

range exchange contributions that depend upon whether periodic boundary conditions

are applied or not. On the other hand, in DFT the exchange contributions are purely

local.

The expression (4.38) allows us to calculate the contribution from every atom of

the finite chain to each response, but that leads to a zig-zagging line along the chain.

Instead, we found the unit contribution more descriptive, which is just the sum of the

two atomic contribution in each unit, ϑn =
∑

p ϑpn. This is what we see in figure 4.4

for the longest chain (41 units) considered in the previuos subsection. In red are the
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System Method ∆s qintra µ0C αC βC γC
RHF 1.0 3.761 0.56596 1.6994 -17.745 -85.061
RHF 0.5 6.252 0.31112 2.8034 -20.893 -19.253

Finite RHF 0.0 8.007 0.00000 3.5217 0.0000 324.25
DFT 1.0 3.725 0.52411 1.7028 -25.271 -187.22
DFT 0.5 6.251 0.28375 2.8320 -32.382 -94.329
DFT 0.0 8.132 0.00000 3.5754 0.0000 682.81

∆s qintra µ̄0Q ᾱQ β̄Q γ̄Q
RHF 1.0 3.748 0.55380 1.6798 -12.301 -34.313
RHF 0.5 5.687 0.30059 2.5325 -12.293 57.112

Periodic RHF 0.0 6.860 0.00000 3.0163 0.0000 1004.2
DFT 1.0 3.424 0.52418 1.7027 -25.420 -196.88
DFT 0.5 6.256 0.28383 2.8322 -31.970 151.45
DFT 0.0 8.140 0.00000 3.5776 0.0264 2455.7

Table 4.3: For the finite system, the values correspond to the central unit contribution
of a chain with 41 units, whereas for the periodic system correspond to the charge term
contribution (µ̄Q). The qintra is the intramolecular charge transfer (multiplied by 103)
in the central unit induced by a field strength of 0.005 a.u.

results for the centrosymmetric chain, which generates the highest values for α and γ,

but vanish for µ0 and β due to its symmetry, as we confirm with their unit components

throughout the chain. There is a considerable contribution from the chain ends, but

they cancel each other, while the effect of the asymmetry of the chain with ∆s = 0.5 and

∆s = 1.0 is clearly depicted in the left panels. In this regard, we observe that a central

region, where the responses have almost a constant value, can also be identified. The

extension of this central region is smaller for higher order responses and particularly

with ∆s = 0. In order to illustrate the contribution of the terminations versus the

central region to the total DFT response, we plot with a dotted horizontal line the

average value for the DFT calculation. This shows that the major contribution to

the response values comes from the terminations. Additionally, for all field induced

responses, and for all s, the DFT terminal values exceed the RHF ones.

On the other hand, in the expression (4.75) for the periodic chain we defined the

charge (µ̄Q) and the current (µ̄I) contribution to the dipole moment. In an analogous

way, we can calculate their contributions to each response. It has been proved [19] that

the charge term corresponds to the contribution from the central part of the long finite

chain. Therefore, in table 4.3 we compare the central values of the finite system with

the charge term of the periodic system. Again, there is very good agreement between

the finite and periodic calculations for the DFT treatment (except for γ, as discussed
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Figure 4.5: µ̄Q and µ̄I as functions of EDC for infinite periodic chains calculated with
different values of ∆s using both RHF and DFT methods.

in the previous paragraphs), but larger differences are obtained for RHF. The fact that

β from the charge term in the periodic LDA calculations is not zero for s = 0 can

be ascribed to inaccuracies in fitting the responses with a third or fifth order power

series. Hence, these values can be used as estimates of the accuracy in the fitting.

Alternatively, we can use the differences between the results from the 3rd and the 5th

order fit as estimates of the inaccuracies. Those differences were found to be below 5%

(except for the vanishing µ0 and β of the centrosymmetric chain).

It is interesting to analyze µ̄Q and µ̄I for the periodic chains as functions of the

applied field. Their behavior is shown in figure 4.5 for both the RHF and the DFT cal-

culations (notice that in these curves, the field strengths are so small that the non-linear

responses can hardly be identified). µ̄I is the quantity that depends upon the phases of

the single-particle orbitals. Since it determines the effects due to the terminations of a

large finite system, µ̄I is an optimal quantity for analyzing long-range interactions. For

DFT, the dependence of this quantity on the applied field is much stronger than that of

µ̄Q, which demonstrates that the overshoot arises primarily because the approximate

DFT functional does not describe the long-range (exchange) interactions properly.

Comparing the tables 4.2 and 4.3 for the periodic system and using equation (2.27),

we can analyze the relative contributions of the charge and the current terms for dif-

ferent response properties and different values of s. Independent of the value of s, both

RHF and DFT predict that the current term is much larger than the charge term for all

responses. (Only for µ0 are they of similar magnitude.) For α the current contribution

is roughly an order of magnitude larger. β is a special case because the charge and

current contributions have opposite sign, but the latter clearly predominates. Finally,
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we observe that γ is determined almost entirely by the current term both for DFT

and for RHF in agreement with the greater weight of the terminal contributions in the

finite system.

4.4.4 Charge Transfer

Now, we consider the induced intermolecular and intramolecular charge transfer[33]

due to the presence of the external field, defined by

qinter
n = ∆q1n + ∆q2n

qintra
n =

∆q1n −∆q2n

2
, (4.85)

where ∆qpn = qpn(EDC)− qpn(0) = −∆Npn. Their values along a chain of 41 units are

plotted in figure 4.6. We observe that the charge is transferred from one end of the chain

to the other, and also that there is a central region of about 20 units with little charge

transfer between them. We add that, per definition, units in the central region have to

be neutral. In all instances the DFT calculations lead to a larger intercellular charge

transfer than RHF. As opposed to the intercellular charge transfer, the charge transfer

within the unit is largest, and almost constant, for the central region. Values calculated

for the central unit of the finite chain are shown in Table 4.3. The largest such charge

transfer occurs for the centrosymmetric case and decreases as ∆s increases. For the

intracellular charge transfer, the differences between RHF and DFT are negligible.
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Figure 4.6: RHF (solid line) and DFT (dashed line) field-induced intermolecular and
intramolecular charge transfer (multiplied by 103) for the chain of 41 units, obtained
with a field strength of EDC = 0.005 a.u. The dotted line corresponds to the calculated
charge transfer in the unit cell of the periodic chain for ∆s = 0 with the DFT method.

As in the case of the response properties, for the charge transfer within the central
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unit there is very good agreement between the finite and infinite periodic chain DFT

results (see Table 4.3). However, there are some differences for the RHF calculations, in

particular for small values of ∆s, which lead to large electron delocalization, whereby

long-range effects become more important. Thus, this suggests that for exactly this

property our system size has not reached the thermodynamic limit.

4.4.5 The System of Parallel Chains

We also studied arrays of 2, 3, and 4 parallel finite chains. The atoms of different

chains were placed in perfect alignment so that they have the same z coordinate and

the nearest neighbor interchain distance is 7 length units. Different realtive arrange-

ments were tried as well but only small variations were found for any given number of

parallel chains. Therefore, we discuss here only one set of results for each system size.

For smaller values of the interchain distance, the band gap between occupied and un-

occupied orbitals became so small that it was not possible to apply sufficiently strong

fields for extracting numerical stable values for the responses and simultaneously to

avoid an end-to-end charge transfer.

In Fig. 4.7 we show typical results for the responses per AB unit obtained for parallel

chains. In the three-chains case (M = 3), they are arranged in a equilateral triangle

with side l = 7 length units, whereas for M = 4, the tranversal section is a square with

the same side length. These results show an essentially negligible dependence on the

number of chains, with the one exception being β, in which case the magnitude increases

modestly with the number of chains. Although the band gap is strongly affected by

the number of chains (the systems ultimately become metallic for a sufficiently large

number), the responses are hardly affected within our model.

The above result is in agreement with the results of Kirtman et al. [33] who also

found that the DFT overestimate does not change substantially with dimensionality.

4.4.6 The Bond Length Alternation

Finally, we analyze the effect of varying the bond length alternation (BLA) on the

responses. In all calculations whose results were reported so far, the BLA was fixed

at ∆d = 0.6, implying alternating bond lengths of d1 = 2.2 and d2 = 2.8 (the BLA

is defined as ∆d = d2 − d1). In this subsection ∆d will be varied while keeping the

lattice constant fixed at a = 5. We shall take d1 as the length of the intra-unit-cell

bond, whereas d2 describes the bond length between atoms of neighboring unit cells.
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Figure 4.7: RHF (solid lines) and DFT (dashed lines) responses of arrays consisting
of M = 1 − 4 parallel finite chains. The lattice constant is a = 5 and the interchain
distance is l = 7. The on-site-energy difference between the A and B atoms is ∆s = 1.0.

For d1 > 2.5, the inter-unit-cell bond is shorter than the intra-unit-cell bond. For

the infinite periodic chain, this is equivalent to switching the atoms in each unit (AB

BA) and reorienting the chain in the opposite direction (due to the different on- site

energies), which is equivalent to applying an electric field with opposite sign. As a

result β will change sign, but α and γ will be left unchanged. The situation for µ0 is

slightly more complicated as will now be discussed. For the finite chain, the switch of

atoms in each unit will create a non-bonded atom at each end giving rise to a diradical

chain with dangling bonds. This will lead to an overall charge transfer from one end

of the chain to the other (see further below) and an increase in the responses (because

the electrons are more loosely bound for the diradical system). However, the effect

is localized so that, for long chains, α and γ will tend to have very similar values for

d1 = 2.5 +u and d1 = 2.5−u as can be seen in figure 4.7, where the finite-chain results

are obtained in the infinite-chain limit by the procedure explained in subsection 4.4.2.

As discussed above, upon changing d1 → 5− d1, β should change sign, while α and

γ should remain unchanged. These predictions are satisfied in most of the cases.

with the RHF calculations for the periodic system being the only exception. The
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reason for the latter discrepancy is to be found in the previously mentioned problem

with the convergence of the exchange summations. For µ0 the situation is slightly

different. Besides the change in sign, there is a charge transfer from one terminal

region to the other that leads to an additional contribution of an integer times the

lattice constant as we explained in the previous chapter. This prediction is satisfied as

well with, again, the RHF calculations for the periodic system being the only exception.

There are two instances where the periodic RHF calculations do not satisfy this rule

(d1 = 2.5 and d1 = 2.6), in particular for β and γ. These exceptions belong precisely

to cases where the electrons are most delocalized and, therefore, more sensitive to the

external field. The deviations seen for the finite DFT calculations of γ when d1 > 2.5

are due to the dangling bonds on the first and last atom of the chain as can be seen by

decomposing the response into atomic contributions (not shown). For µ0 the situation

is slightly different. Besides the change in sign, there is a charge transfer from one

terminal region to the other that leads to an additional contribution of an integer (=1)

times the lattice constant. This prediction is satisfied as well although, again, the RHF

results for the periodic chain are slightly shifted.
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4.5 Correcting the DFT Approach

Several suggestions have been proposed to reduce the DFT overshoot on the responses

of large systems to electrostatic fields. One possibility, is to include the self-interaction

correction proposed, e.g., by Pemmaraju et al. [36] and by Körzdörfer et al. [29].

Although these authors showed that it would improve the DFT results for the larger,

finite systems, these corrections vanish for the periodic system when the electrons are

occupying delocalized Bloch waves, as is the case here. Thus, this approach is not able

to remove the DFT overestimates in all cases.

Alternatively, it has been suggested to include exact-exchange in the calculations.

For instance, Mori-Sanchez et al. [37] and Champagne et al. [31] found significantly

improved results for the polarizability of some smaller, finite chains. By including

an exact description of exchange interactions, these are treated in an ultra-non-local

way, in marked contrast to the treatment within a (semi-)local approximation within

DFT. In agreement with earlier studies (see, e.g., [38]) our present results indicate

that the DFT failures are related to long-range, non-local effects, in particular for the

higher-order responses, the field-induced charge-density changes in the terminations

are overestimated, leading to overestimates of the bulk responses. The results of Mori-

Sanchez et al. [37] indicate also that the potential felt by the electrons contains an

efficient screening of the external, electrostatic field. Unfortunately, however, the sizes

of the systems in the referred studies [31, 37] are not sufficiently large to allow the

identification of the thermodynamic limit or, equivalently, of a central region. Thus,

it remains an open question whether such approaches will also be useful for infinite,

periodic systems.

Instead, long-range corrected (LRC) density functionals have also been suggested as

an useful approach for improving the DFT results for large, finite systems [39]. These

functionals separate the exchange interactions into a short- and a long-range part,

where the former is described by a DFT functional and the latter by an exact-exchange

approach [40]. By analysing those approaches we can, accordingly, get information on

the relative importance of an exact description of long- and short-ranged exchange

interactions.

Within those approaches, the operator that describes the electron-electron interac-

tions is rewritten, for the exchange terms, as

1

r12

=
1− erf(νr12)

r12

+
erf(νr12)

r12

, (4.86)
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where ν is a pre-chosen, positive parameter that determines the ratio of the partition

and erf is the standard error function. The first term gives rise to the short-range

exchange interactions. Many different formulations have been proposed, but here we

shall use the simple one of Hirao and coworkers [41, 42], i.e.,

Esr
x = G

∫
f [ρ(~r )]d~r, (4.87)

with

f [ρ(~r )] = ρ4/3

{
1− 4

3
a

[√
π erf

(
1

a

)
+ ab− a+ a3b

2

]}
. (4.88)

Here, a and b are functions of ρ,

a =
ν
√
G

3
√
πρ1/3

b = exp

(
− 1

a2

)
− 1, (4.89)

whereas G is the constant we used in expression (4.36),

G =
3

4

(
3

π

)1/3

. (4.90)

Then, we can calculate the short-range exchange potential as

V sr
x [ρ] =

δEsr
x

δρ
= Gf ′(ρ). (4.91)

Considering the expressions (4.88) and (4.89), the derivative is

f ′[ρ] =
4

3
ρ1/3

{
1− a

[√
π erf

(
1

a

)
+ ab

]}
. (4.92)

In our calculations we use the LCAO expansion of equation (4.7). Thus, due to

the characteristics of the basis functions that we use, the DFT exchange potential is

described by the diagonal matrix of the equation (4.22). Therefore, the short-range

contribution will only determine the diagonal elements,

〈χpn|V sr
x |χqm〉 = δqmpn V

sr
x [ρpn], (4.93)
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where, substituting equations (4.90) and (4.92) in equation (4.91), we have

V sr
x [ρpn] =

(
3

π

)1/3

ρ1/3

{
1− a

[√
π erf

(
1

a

)
+ ab

]}
. (4.94)

The term in curly brackets in equation (4.94) (as well that of equation (4.88)) is a

factor between 0 and 1 which takes into account the fact that part of the exchange

interactions is not described within the local density approximation.

On the other hand, the long-range contribution is given by,

Elr
x =

∑
i,j

〈
ψjψi

∣∣∣∣erf(νr12)

r12

∣∣∣∣ψiψj〉 . (4.95)

Thus, using the LCAO expansion of equation (4.7), the matrix elements defined in

equation (4.13) have to be recalculated,

W qm
pn = δq

′m′

pn δqmp′n′〈χpnχp′n′ |ĥ
′
2|χq′m′χqm〉

=

∫∫
erf(ν|~r − ~r ′|)
|~r − ~r ′|

|χpn(~r)|2|χqm(~r ′)|2d~rd~r ′. (4.96)

This is done in Appendix C following the same idea as in section 4.1. Using the

dimensionless parameter v = νRp, the result is

W pn
pn =

1√
πv5Rp

[(
3v4

5
− 9v2

20

)
e−4v2 +

3v2

4
+

3

40

(
e−4v2 − 1

)]
+

(
6

5Rp

− 3

4vRp

)
erf(2v), (4.97)

for the diagonal terms, whereas for the off-diagonal terms we considered the approxi-

mation

W qm
pn ≈

erf(νRqm
pn )

Rqm
pn

, (4.98)

which is properly justified in Appendix C. Then, according to equation (4.24), the

matrix elements of long-range exchange are

〈χpn|V lr
x |χqm〉 = c̃qmpn W

qm
pn . (4.99)

The sum of the matrices (4.93) and (4.99) forms the range-corrected exchange

matrix. The normal DFT expressions are recovered for ν → 0, whereas the pure HF
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Figure 4.9: Responses per unit calculated with the long-range correction scheme as
function of ν. The dashed line marks the HF value, whereas the DFT value is that
obtained for ν = 0.

exchange is obtained for ν →∞ (see Appendix C for more details). The program code

for the finite system was modified to implement this correction obtaining the following

results.

Kamiya et al. [42] used the above LRC approach for some π-conjugated molecules

of various lengths and found a significantly improved description of the polarizability

and first hyperpolarizability. For computational reasons, however, this and others

studies[39, 43–45] consider systems that might be too small to provide estimates for

the performance in the thermodynamic limit, but using our simplified model it is

possible to do so.

For the case ∆s = 0.5, we varied the partition parameter ν and calculated the

infinite chain limit using the approach described in section 4.4.2. The results are shown

in figure 4.9. In the limit ν → ∞ all the responses converge towards the HF values,

but α and γ do so rapidly, whereas µ0 and β converge more slowly (they are plotted

in a different range of ν). The permanent dipole moment even shows an oscillatory

behavior. In fact, only α is strictly a monotonically decreasing function of ν, whereas

β and γ have minima around ν = 2 (not shown in the panel for γ).
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Figure 4.10: Responses divided by the number of units as functions of the chain size
for ∆s = 0.5 and ν = 1.

The behavior of the extrapolated values for the response properties shown in figure

4.9 was confirmed by plotting the responses per unit as a function of chain length

in comparison with RHF and DFT in figure 4.10. Clearly, the long-range corrected

method significantly reduces the DFT overshoot, although the value used by Kamiya

et al. [42] (ν = 0.33) seems to be too small to provide accurate results, at least for

the present study. A special case is ν = 1 or, more properly, ν = 1/Rp. This means

making the partition parameter the inverse of the radius of the sphere where the basis

functions are defined (equation 4.8). In that case all the responses calculated by the

LRC method coincide with those obtained with the HF method, as it can be seen in

figure 4.9 for ν = 1, and this remains true varying the length of the chain giving results

that if we plot them in figure 4.10 we get a line that mask the HF line. This result can

be used in determining the appropiate ν for other system and basis set.

4.6 Conclusions

The use of a simple model had several advantages. At first, it allowed to treat large,

finite systems without serious computational problems. Second, the model was so



106 Chapter 4. Studying the DFT Overestimation of the Responses

designed that the electron density becomes piecewise constant, whereby gradient cor-

rections within density-functional theory could be ignored. Third, the model allowed

for separating the (linear and non-linear) responses to an electrostatic field into those

of the individual atoms. And, finally, we could use our recently developed approach for

treating infinite and periodic systems exposed to electrostatic fields for studying these

systems, too.

Of course, a model may also suffer from limitations that occasionally can make it

useless. Therefore, it was important to demonstrate first, that it does lead to a large

overestimate of in particular the non-linear responses when using a density-functional

approach. Subsequently, we could demonstrate the existence of a central region for

systems of sufficiently large size. Inside the central region, the responses are indepen-

dent of which unit cell is being analyzed. We found that the critical size above which

the central region could be identified depends both on the order of the response that

has been considered and on the computational approach. Thus, the DFT calculations

tended to lead to larger critical sizes than the HF calculations. The above-mentioned

DFT overestimates could thereby be related to electrons being more delocalized within

that method leading to both larger responses in the terminations and in the central re-

gion. In particular the concept of intra- and intermolecular charge transfer were useful

to identify this effect.

When comparing the results for the large, finite systems with those for the infinite,

periodic systems, we found a good agreement in almost all cases when using the DFT

method. In particular, we could clearly see how the central-unit contributions to the

dipole moment per unit of the finite system corresponds to the so-called charge term

for the periodic system and, equivalently, the contribution from the terminations of

the finite system becomes the current contribution of the infinite system. For the RHF

calculations, we found some deviations between the results for the infinite and for the

finite chains which are related to the long range nature of the exchange interactions.

In some further calculations we found that the responses were only marginally

affected by the presence of parallel neighboring chains. Finally we also studied the

effects of changing the chemical composition (i.e., the differences in the on-site energies)

or the structure of our chains. Thereby, we found that the largest differences between

the RHF and the DFT values were found for systems with maximally delocalized

electrons, i.e., systems of essentially identical atoms and with a small or vanishing

bond-length alternation.

By comparing our results with other proposals to improve the performance of DFT
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calculations we found that range-separated functionals could provide an useful ap-

proach for obtaining a more accurate description of the responses of large systems to

electric fields. However, care should be taken in devising functionals that are compu-

tationally convenient and accurate for general application.



Appendix A

Steepest Descent Method

The crutial step of the smoothing procedure explained in 2.3.3 involves a minimization

of the quantity defined in equation (2.53),

Q =
∑
k

∑
p

|Cp(k + ∆k)eiφ(k+∆k) − Cp(k)eiφ(k)|2

+λ
∑
k

∑
p

|Cp(k + 2∆k)eiφ(k+2∆k) − Cp(k)eiφ(k)|2, (A.1)

(suppresing the band index j) under the constraint,

φ
(
−π
a

)
= φ

(π
a

)
. (A.2)

Here, we shall use the steepest descent method to carry out the minimization. In

our case, we consider Q as a function of Φ = (φ(k−N), φ(k−N+1), . . . , φ(kN)), so Q

descreases fastest when we go from an initial point Φ0 in the direccion of the negative

gradient of Q at Φ0. It follows that, if

Φ1 = Φ0 − τ∇Q(Φ0), (A.3)

with τ being a small enough number, then Q(Φ0) ≥ Q(Φ1). And repeating the proce-

dure m times with,

Φm = Φm−1 − τ∇Q(Φm−1), (A.4)

we may obtain, Q(Φ0) ≥ Q(Φ1) ≥ · · · ≥ Q(Φm), until ∆Qm = Q(Φm−1) − Q(Φm)

108



109

becomes below a convergence threshold. For this aim we need to calculate the gradient,

∇Q(Φ) =

(
∂Q

∂φ−N
,

∂Q

∂φ−N+1

, . . . ,
∂Q

∂φN

)
, (A.5)

where we have simplified,

φ(k) = φ(i∆k) = φ(ki) = φi with ∆k =
2π

(2N + 1)a
. (A.6)

Then, the partial derivative respect to φi is

∂Q

∂φi
=

∂

∂φi

{∑
p

[
Cp(ki)e

iφi − Cp(ki−1)eiφi−1
]2

+
∑
p

[
Cp(ki+1)eiφi+1 − Cp(ki)eiφi

]2
+λ
∑
p

[
Cp(ki)e

iφi − Cp(ki−2)eiφi−2
]2

+ λ
∑
p

[
Cp(ki+2)eiφi+2 − Cp(ki)eiφi

]2}

Every term in square braquets in this equation is the norm of a complex number. It

can be proved (done below) that if Cp(ki) = C ′p(ki) + iC ′′p (ki), with C ′p(ki) and C ′′p (ki)

real numbers, the above derivative is

∂

∂φi

∑
p

[
Cp(ki)e

iφi − Cp(ki−1)eiφi−1
]2

= ai−1 sin(φi−φi−1)− bi−1 cos(φi−φi−1), (A.7)

defining

ai−1 = 2
∑
p

[
C ′p(ki)C

′
p(ki−1) + C ′′p (ki)C

′′
p (ki−1)

]
bi−1 = 2

∑
p

[
C ′p(ki)C

′′
p (ki−1)− C ′′p (ki)C

′
p(ki−1)

]
.

Therefore, using the same notation,

∂Q

∂φi
= ai−1 sin(φi − φi−1)− bi−1 cos(φi − φi−1)

+ ai+1 sin(φi − φi+1)− bi+1 cos(φi − φi+1)

+λ
[
ai−2 sin(φi − φi−2)− bi−2 cos(φi − φi−2) (A.8)

+ ai+2 sin(φi − φi+2)− bi+2 cos(φi − φi+2)
]
,

for i = −N,−N+1, . . . , N . And this is iteratively subtituted in equation (A.4) keeping
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the constraint (A.2) in order to obtain the final phases Φm and with them we calculate

the smooth coefficients of the field-free case,

C̃0
pj(k) = Cpj(k)eiφm(k), (A.9)

for every j band.

A.1 A Complex Derivative

Let z1 and z2 be complex numbers decomposed as

z1 = x1 + iy1

z2 = x2 + iy2. (A.10)

If we multiply each number by a different phase factor, we would have

z1e
iφ1 = x1 cosφ1 − y1 sinφ1 + i(x1 sinφ1 + y1 cosφ1)

z2e
iφ2 = x2 cosφ2 − y2 sinφ2 + i(x2 sinφ2 + y2 cosφ2). (A.11)

Then, we can write,

z1e
iφ1 − z2e

iφ2 = Z = X + iY, (A.12)

with

X = x1 cosφ1 − y1 sinφ1 − x2 cosφ2 + y2 sinφ2

Y = x1 sinφ1 + y1 cosφ1 − x2 sinφ2 − y2 cosφ2 (A.13)

Now, calculating the partial derivative

∂

∂φ1

|z1e
iφ1 − z2e

iφ2 |2 =
∂

∂φ1

Z∗Z = 2

[
X
∂X

∂φ1

+ Y
∂Y

∂φ1

]
, (A.14)

where

∂X

∂φ1

= −x1 sinφ1 − y1 cosφ1

∂Y

∂φ1

= x1 cosφ1 − y1 sinφ1. (A.15)
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Substituting in (A.14), we have

1

2

∂

∂φ1

|Z|2 = x1x2 sinφ1 cosφ2 − x1y2 sinφ1 sinφ2 + y1x2 cosφ1 cosφ2

− y1y2 cosφ1 sinφ2 − x1x2 cosφ1 sinφ2 − x1y2 cosφ1 cosφ2

+ y1x2 sinφ1 sinφ2 + y1y2 sinφ1 cosφ2

= (x1x2 + y1y2)(sinφ1 cosφ2 − cosφ1 sinφ2)

− (x1y2 − x2y1)(cosφ1 cosφ2 + sinφ1 sinφ2)

= (x1x2 + y1y2) sin(φ1 − φ2)− (x1y2 − y1x2) cos(φ1 − φ2). (A.16)

Similarly,

1

2

∂

∂φ2

|Z|2 = (x1x2 + y1y2) sin(φ2 − φ1)− (y1x2 − x1y2) cos(φ2 − φ1). (A.17)



Appendix B

Some Analytic Formulae

Because of the simplicity of our linear system, it is possible to deduce analitycal for-

mulae for some terms of equation (4.57) and (4.58). The position of the atoms are

described by equation (4.1) being a the lattice constant. Then, considering just 2

atoms per unit separate each other a distance d, the distances between the pth atom

of the central unit and the qth atom of the nth unit are

|~Rqn
p0 | = |~Rqn − ~Rp0| =

{
|na| p = q

|na+ d| p 6= q
(B.1)

B.1 Regarding the Coulomb Interaction

Considering the electron-electron and electron-nucleus interactions within our model

appears the quantity Us(p, q), defined in equations (4.17) and (4.59). Here, we can

easily calculate it and find the limit when Ns →∞,

Us(1, 1) = Us(2, 2) =
3

5Rp

+ 2
Ns∑
n=1

1

na

Ns→∞−−−−→ 3

5Rp

+
2

a
[ln(Ns) + γ], (B.2)

where γ is the Gauss-Mascheroni constant γ ≈ 0.577216. Similarly,

Us(1, 2) = Us(2, 1) =
1

d
+

1

a

Ns∑
n=1

1

n+ d
a

+
1

a

Ns∑
n=1

1

n− d
a

Ns→∞−−−−→ 1

d
+

1

a
[ln(Ns) + α] +

1

a
[ln(Ns) + β]

Ns→∞−−−−→ 1

d
+

2

a
[ln(Ns) + γ′], (B.3)
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where α and β have similar definitions as γ but depend on d/a. Here, for d/a = 0.44,

we have redefined γ′ = (α + β)/2 ≈ 0.857861. The summation over n is exactly the

summation of equations (4.47), (4.49) and (4.50), which should run from −N to N , but

with Ns > N we try to obtain the infinite limit. We observe that these summations are

no converging and have to be truncated after Ns terms. However, considering together

the electron-electron and the electron-nucleus Coulomb interactions, the contribution

to the hamiltonian will depend only on the difference ∆Us, as we see in equations

(4.79), and this converges for Ns →∞,

∆Us = Us(1, 1)− Us(1, 2)
Ns→∞−−−−→ 3

5Rp

− 1

d
− 2

a
(γ′ − γ). (B.4)

B.2 Regarding the Kinetic-Energy Operator

The matrix associated with the operator ĥ1(k) can also be calcualted analytically from

the definitions (4.12) and (4.46),

h1pp(k) = sp − t
∑
n6=0

eikane−b|
~Rpn
p0 |, (B.5)

where the summation can be written as,

Ns∑
n=1

eikane−ban +
Ns∑
n=1

e−ikane−ban =
Ns∑
n=1

[
e−a(b−ika)

]n
+

Ns∑
n=1

[
e−a(b+ika)

]n
Ns→∞−−−−→ 1

1− e−a(b−ik)
+

1

1− e−a(b+ik)
− 2 =

2− e−ba(eikan + e−ikan)

1− e−ba(eikan + e−ikan) + e−2ba
− 2

= 2

(
1− e−ba cos(ka)

1− 2e−ba cos(ka) + e−2ba
− 1

)
= 2e−ba

(
cos(ka)− e−ba

1− 2e−ba cos(ka) + e−2ba

)
.

Then, defining,

ζ(k) =
2e−ba

1− 2e−ba cos(ka) + e−2ba
, (B.6)

the diagonal elements become

h1pp(k)
Ns→∞−−−−→ sp − tζ(k)

[
cos(ka)− e−ba

]
, (B.7)
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i.e., real numbers. Similarly, for the non-diagonal terms we have,

h1pq(k) = −t
Ns∑

n=−Ns

eikane−b|
~Rqn
p0 |, (B.8)

in this case, with p 6= q, the summation is

Ns∑
n=−Ns

eikane−b|
~Rqn
p0 | = e−bd +

Ns∑
n=1

eikane−b(na+d) +
Ns∑
n=1

e−ikane−b(na−d)

= e−bd + e−bd
Ns∑
n=1

[
e−a(b−ik)

]n
+ ebd

Ns∑
n=1

[
e−a(b+ik)

]n
(B.9)

Ns→∞−−−−→ e−bd + e−bd
(

1

1− e−a(b−ik)
− 1

)
+ ebd

(
1

1− e−a(b+ik)
− 1

)
,

the terms in parenthesis are

1

1− e−a(b−ik)
− 1 =

(
e−a(b−ik)

1− e−a(b−ik)

)(
1− e−a(b+ik)

1− e−a(b+ik)

)
=

e−a(b−ik) − e−2ba

1− 2e−ba cos(ka) + e−2ba

=
ζ(k)

2

[
eika − e−ba

]
=

ζ(k)

2

[
cos(ka)− e−ba + i sin(ka)

]
,

1

1− e−a(b+ik)
− 1 =

ζ(k)

2

[
cos(ka)− e−ba − i sin(ka)

]
.

Substituting in equations (B.9) and (B.8), we can separate the real and the imaginary

parts as,

Re[h112(k)]
Ns→∞−−−−→ −te−bd − t cosh(bd)ζ(k)

[
cos(ka)− e−ba

]
Im[h112(k)]

Ns→∞−−−−→ t sinh(bd)ζ(k) sin(ka). (B.10)

It can also be proved that h1(k) is an hermitian matrix, so that h112(k) = h1
∗
21(k).

In all the deductions we have used the geometric series formula,

lim
N→∞

N∑
n=0

zn = lim
N→∞

1− zN+1

1− z
=

1

1− z
. (B.11)
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In our case |z| = |e−a(b±ik)| < 1, and zNs+1 � 1 even for a not so large Ns. There-

fore, the h1(k)-matrix elements, calculated through equations (B.7) and (B.10) are the

infinite limit values.



Appendix C

The Integration of the LRC

Exchange

In the long-range correction (LRC) scheme described in section 4.5 the long-range

contribution for the exchange interaction is calculated by equation (4.95),

Elr
x =

NO∑
i,j

〈
ψjψi

∣∣∣∣erf(νr12)

r12

∣∣∣∣ψiψj〉 . (C.1)

In our model, we use the LCAO expansion of equation (4.7),

ψj(~r ) =
∑
p,n

cpnjχpn(~r ), (C.2)

where χpn is the pth basis function of the nth unit. Additionally, the basis functions

are given by equation (4.8),

χpn(~r ) =

{ (
4π
3
R3
p

)−1/2 |~r − ~Rpn| < Rp

0 |~r − ~Rpn| ≥ Rp,
(C.3)

That means that the electrons form an uniform sphere of charge with radius Rp around

the pth atom.

Now, to calculate the elements of the exchange matrix we used the expression (4.24),

〈χpn|V̂ lr
x |χqm〉 =

NO∑
j=1

∑
p′,n′

∑
q′,m′

c∗p′n′jcq′m′j
[
〈χpnχp′n′ |ĥ′2|χq′m′χqm〉

]
. (C.4)
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But here the two-electron operator is

ĥ′2 =
erf(ν|~r − ~r ′|)
|~r − ~r ′|

. (C.5)

Moreover, we keep only the elements with (p, n) = (q′,m′) and (p′, n′) = (q,m),

W qm
pn = δq

′m′

pn δqmp′n′〈χpnχp′n′ |ĥ
′
2|χq′m′χqm〉

=

∫∫
erf(ν|~r − ~r ′|)
|~r − ~r ′|

|χpn(~r)|2|χqm(~r ′)|2d~rd~r ′. (C.6)

This is a double volume integral or a sextuple integral and the presence of the er-

ror function makes it non-straightforward to calculate. The error function is already

defined as an integral,

erf(x) =
2√
π

∫ x

0

e−t
2

dt, (C.7)

so that, its derivative is
d

dx
erf(u) =

2√
π
e−u

2 du

dx
. (C.8)

It is clear that the error function is odd and erf(0) = 0. Additionally, in the derivation

below the following formulae are very useful:∫
e−c

2x2dx =

√
π

2c
erf(cx)∫

xe−c
2x2dx = − 1

2c2
e−c

2x2∫
x2e−c

2x2dx = − x

2c2
e−c

2x2 +

√
π

4c3
erf(cx)∫

x3e−c
2x2dx = − x2

2c2
e−c

2x2 − 1

2c4
e−c

2x2∫
x4e−c

2x2dx = − x3

2c2
e−c

2x2 − 3x

4c4
e−c

2x2 +
3
√
π

8c5
erf(cx)∫

x5e−c
2x2dx = − x4

2c2
e−c

2x2 − x2

c4
e−c

2x2 − 1

c6
e−c

2x2 ,

as well as, ∫
erf(u)f ′(x)dx = f(x)erf(u)− 2√

π

∫
du

dx
f(x)e−u

2

dx.

To calculate the integral of equation (C.6) we use the same strategy as in section

4.1. We calculate the screened Coulomb potential generated by the (q,m)th occupied
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orbital at the position ~r,

Vqm(~r ) =

∫
erf(ν|~r − ~r ′|)
|~r − ~r ′|

|χqm(~r ′)|2d~r ′. (C.9)

To simplify the notation, first we consider that the (q,m)th occupied orbital is a unifrom

sphere of charge (Q = 1) with radius R centered at the origin and we calculate the

potential at the position ~r = (0, 0, z) so that the distances,

|~r − ~Rqm| = z (C.10)

and

|~r − ~r ′| =
√
z2 + r′2 − 2zr′ cosφ = u(r′, φ) =

{
|z − r′| for φ = 0

|z + r′| for φ = π.
(C.11)

Subsecuently,

V (z) =
3

4πR3

∫ 2π

0

∫ π

0

∫ R

0

erf(νu)r′2 sinφ

u
dr′dφdθ

=
3

2R3

∫ π

0

∫ R

0

erf(νu)r′2 sinφ

u
dr′dφ

=
3

2R3

∫ R

0

[
r′u

z
erf(νu) +

r′√
πνz

e−ν
2u2
]φ=π

φ=0

dr′

=
3

2zR3

∫ R

0

{
r′(r′ + z)erf[ν(r′ + z)]− r′(r′ − z)erf[ν(r′ − z)]

+
r′√
πν

[
e−ν

2(r+z)2 − e−ν2(r−z)2
]}

dr′. (C.12)

And after many further steps we get,

V (z)R3 =

(
3R2

4
− z2

4
− 3

8ν2

){
erf[ν(R + z)] + erf[ν(R− z)]

}
+
R3

2z

{
erf[ν(R + z)]− erf[ν(R− z)]

}
+

1

ν
√
π

{
R

4

[
e−ν

2(R+z)2 + e−ν
2(R−z)2

]
(C.13)

+

(
R2

2z
− z

4
− 1

4ν2z

)[
e−ν

2(R+z)2 − e−ν2(R−z)2
]}

=T1 + T2 + T3 + T4.
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Figure C.1: The four terms and the their sum of the exact Coulomb attenuated po-
tential of a uniform sphere of charge, equation (C.13). The approximation (App) of
equation (C.15) and the normal Coulomb potential, equation (C.14), are also shown
for two values of the partition parameter, ν = 0.33 (left) and ν = 10 (right).

This expression is valid both inside (z < R) and outside (z > R) the sphere. In figure

C.1, every single term and the total sum are plotted as functions of z for two values of

the partition parameter ν. The first two terms, T1 and T2, are the most important. In

fact, for ν = 10 (right panel) it is clearly seen that T1 describes the potential inside,

while T2 do it outside the sphere. The reason is that inside, erf[ν(R ± z)] is always

positive, but outside it changes its sign. Thus, we confirm that,

lim
ν→∞

V (z) =

{
3

2R
− z2

2
for z < R

1
z

for z ≥ R,
(C.14)

i.e., we recover the expression for the normal Coulomb potential of equation (4.14).

This is plotted in figure C.1 with the blue dashed line.

The other limit can also be confirmed, limν→0 V (z) = 0. Additionally, we plot

the function erf(νz)/z in figure C.1 with a magenta line. One can observe that this

function fits very well with the exact potential very near outside the sphere. Therefore,

we can approximate the potential,

V (z) ≈ erf(νz)

z
for z > R. (C.15)

Even inside, the difference between these functions is not so big whenever ν remains

small. Moreover, erf(νr)/r was our starting point of the integral in equation (C.9).

The next step is to calculate the matrix elements W qm
pn of equation (C.6) by inte-
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grating the obtained potential,

W qm
pn =

∫
Vqm(~r )|χpn(~r )|2d~r. (C.16)

For (p, n) = (q,m), the integral with respect to ~r is over the same sphere of radius Rp,

so we can calculate the interaction with a spherical shell of radius z and thickness dz.

In that case, the charge of the shell would be 4πρz2dz = 3z2dz/R3
p. Thus,

W pn
pn =

3

R3
p

∫ Rp

0

z2V (z)dz. (C.17)

Substituting V (z) from equation (C.13) and using the dimensionless quantity v = νRp,

we finally obtain

W pn
pn =

1√
πv5Rp

[(
3v4

5
− 9v2

20

)
e−4v2 +

3v2

4
+

3

40

(
e−4v2 − 1

)]
+

(
6

5Rp

− 3

4vRp

)
erf(2v). (C.18)

Similarly as the expression for the potential, W pn
pn tends to the value obtained with the

normal Coulomb potential in equation (4.17),

lim
ν→∞

W pn
pn =

6

5Rp

, (C.19)

and it tends to zero for ν → 0.

As we have mentioned, our basis functions do not overlap, therefore for the off-

diagonal terms, (p, n) 6= (q,m), we use twice the approximation of expression (C.15),

W qm
pn ≈

∫
erf
(
ν|~r − ~Rqm|

)
|~r − ~Rqm|

|χpn(~r )|2d~r

≈
erf
(
ν|~Rpn − ~Rqm|

)
|~Rpn − ~Rqm|

. (C.20)

Finally, to check the limiting behavior of expressions (C.13) and (C.18) when ν → 0,

it is useful to take the series expansion of the error function,

erf(x) =
2√
π

(
x− x3

3
+
x5

10
− x7

42
+ . . .

)
. (C.21)
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[26] B. Champagne, E. A. Perpète, D. Jacquemin, S. J. A. van Gisbergen, E.-J.

Baerends, C. Soubra-Ghaoui, K. A. Robins, and B. Kirtman, The Journal of

Physical Chemistry A 104, 4755 (2000).

[27] M. van Faassen, P. L. de Boeij, R. van Leeuwen, J. A. Berger, and J. G. Snijders,

Phys. Rev. Lett. 88, 186401 (2002).

[28] F. A. Bulat, A. Toro-Labbe, B. Champagne, B. Kirtman, and W. Yang, The

Journal of Chemical Physics 123, 014319 (2005).
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