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Abstract 
The insulin-like growth factor 2 mRNA binding protein p62/IGF2BP2-2 is 

overexpressed in human cirrhotic nodules and in up to two thirds of hepatocellular 

carcinoma (HCC) tissue. Liver-specific overexpression of p62 induces steatosis. Aim 

of this study was to investigate the pathophysiological role of p62 in non-alcoholic 

steatohepatitis (NASH) and NASH-induced liver fibrosis.  

MCD-induced steatosis was more pronounced in transgenic compared to wild-type 

animals and characterized by elevated levels of monounsaturated fatty acids and free 

cholesterol. p62 induced the expression of lipogenic regulators, most likely via 

elevated iron deposition. Despite no effect of p62 overexpression on transaminase 

levels, transgenic mice exhibited an aggravated inflammatory response as indicated 

by elevated leukocyte recruitment and lipid peroxidation. Also the activation of NFKB 

and the gene expression of its inflammatory downstream target cytokines were 

increased in hepatocytes of transgenic animals. We also observed an elevated 

activation of the inflammasome. Fibrosis development was accelerated with 

increased procollagen 1 mRNA expression and confirmed by histological analyses. A 

TGF-beta-independent upregulation of collagen 1 is suggested due to upregulated 

Ctgf mRNA and serum IL-13. Most notably, a pronounced ductular reaction was 

observed in transgenic animals. 

In summary, our data provide evidence that p62 acts as an active promotor in the 

progression of NASH and fibrosis. 
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Zusammenfassung 
Die Expression des IGF2 mRNA bindenden Proteins p62/IGF2BP2-2 ist in 

menschlichen Leberzirrhosen und -tumoren erhöht. Die Überexpression von p62 in 

Mäuselebern induziert eine Steatose. Ziel dieser Studie war es, die 

pathophysiologische Rolle von p62 in der nicht-alkoholischen Steatohepatitis und der 

dadurch induzierten Fibrose zu untersuchen. 

In p62 transgenen Tieren war die durch eine MCD-Diät induzierte Fettleber stärker 

ausgeprägt als im Wildtyp und durch erhöhte Spiegel einfach ungesättigter 

Fettsäuren und freiem Cholesterin gekennzeichnet. p62 induzierte die 

Genexpression lipogener Regulatoren, die im Zusammenhang mit einer erhöhten 

Eisen-Akkumulation steht. Obwohl keine erhöhten Leberwerte in den Transgenen 

gemessen wurden, zeigten diese eine verstärkte Entzündungsreaktion. Dies wurde 

durch eine gesteigerte Lipidperoxidation sowie eine lobuläre Entzündung bestätigt. 

Zudem wurde eine Aktivierung des Transkriptionsfaktors NFKB, die verstärkte 

Expression seiner Targetgene sowie eine Aktivierung des Inflammasoms beobachtet. 

Histologische Untersuchungen belegten die beschleunigte Entwicklung einer Fibrose. 

Hier ist aufgrund erhöhter Ctgf mRNA und IL-13 Spiegel von einer TGF-beta-

unabhängigen Erhöhung der Kollagen-Produktion auszugehen. Besonders 

festzuhalten ist eine verstärkte duktuläre Reaktion in den p62 transgenen Tieren. 

Zusammenfassend zeigen diese Daten, dass p62 als aktiver Promotor in der 

Progression der Fettleberentzündung und der dadurch induzierten Fibrose agiert. 
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 Non-Alcoholic Fatty Liver Disease (NAFLD) 1.1
 

33 years ago Ludwig and colleagues described non-alcoholic steatohepatitis (NASH) 

in individuals whose liver biopsies showed findings similar to alcoholic hepatitis in the 

absence of significant alcohol intake (Ludwig et al., 1980). The broad term non-

alcoholic fatty liver disease (NAFLD) has been adopted to cover the full spectrum of 

metabolic fatty liver disorders (Angulo, 2002). NAFLD encompasses a spectrum of 

conditions from simple steatosis to steatohepatitis, advanced fibrosis, and cirrhosis 

(Angulo, 2002). In addition, evidence suggests NASH as a reason for a large 

proportion of “cryptogenic” cirrhosis (cirrhosis without known origin) due to the fact 

that typical histological findings of NASH may be lost in the progression from NASH 

to cirrhosis (Bugianesi, 2007; Caldwell et al., 1999; Hashimoto & Tokushige, 2012; 

Powell et al., 1990; Struben et al., 2000; Van Der Poorten et al., 2012). Furthermore, 

NAFLD may progress to end-stage liver diseases such as hepatocellular carcinoma 

(HCC) or liver failure (Starley et al., 2010) (Figure 1-1).  

For the general population in Western countries the prevalence of NAFLD was 

estimated as 6-33% with a median of 20% (Angulo, 2002; Vernon et al., 2011) and 

2-12% for NASH (Bedogni et al., 2005; Neuschwander-Tetri & Caldwell, 2003; 

Vernon et al., 2011). The prevalence among obese patients (with BMI >30 kg/m2) is 

referred to 70-95% for steatosis, 9-30% for NASH, and 7-16% for cirrhosis (Clark, 

2006). A study about indications for liver transplantation in the United States 

revealed NASH as the third most common indication behind hepatitis C and alcoholic 

liver disease. Most importantly, it is the only indication with rising incidence (Charlton 

et al., 2011).  

Many studies highlighted the association of features of the metabolic syndrome with 

NAFLD, some of them proposing NAFLD as hepatic manifestation of the metabolic 

syndrome (Gaggini et al., 2013). The metabolic syndrome is characterized by obesity 

(BMI >30 kg/m2), hyperinsulinemia, peripheral insulin resistance, diabetes, 

hypertriglyceridemia (>150 mg/dL), and hypertension (systolic blood pressure >130 

mmHg), from which three or more features need to be present (Marchesini et al., 

2003; Milić & Stimac, 2012). 
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Figure 1-1: Spectrum of non-alcoholic fatty liver disease. (A) Progression of NAFLD. Triglycerides 
accumulation within lipid droplets in hepatocytes causes steatosis. Steatosis associated with 
inflammation leads to NASH, which can then progress to fibrosis and cirrhosis. Patients with cirrhosis 
have an increased risk to develop hepatocellular carcinoma. (B) Histological sections from normal 
liver, steatosis, NASH, and cirrhosis. Collagen fibers are stained blue with Massons´s trichrome stain. 
PT portal triad; CV central vein (Cohen et al., 2011). 

 

Nevertheless, NAFLD/NASH is also diagnosed in patients without obesity or 

symptoms of the metabolic syndrome and was recently demonstrated as an 

independent manifestation of the metabolic syndrome (Smits, 2013). In this context, 

a recently published review suggested to reconsider the spectrum of NAFLD into 

simple steatosis and NASH as two independent conditions (Yilmaz, 2012). 

However, the pathogenesis of NAFLD and in particular NASH was proposed in 1998 

as so-called “two-hit” model (Day & James, 1998). Steatosis as first hit sensitizes the 

liver to the second hit, which leads to hepatocyte injury, inflammation, and 

subsequent fibrotic changes (Day, 2002; Day & James, 1998).  
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 Steatosis 1.1.1

Steatosis without inflammatory changes is a very slow progressing disease. Several 

longitudinal studies have shown that patients with benign steatosis have a low risk 

for the development of more severe diseases (Dam-Larsen et al., 2004; Teli et al., 

1995). Steatosis is defined as macrovesicular steatosis in more than 5% of 

hepatocytes in the absence of significant inflammation or fibrosis (Kleiner et al., 

2005). Disruption of the normal mechanisms for synthesis, transport, and removal of 

fatty acids and triglycerides are the basis for the development of steatosis (Anstee & 

Goldin, 2006). In particular, fat accumulates within hepatocytes when the rate of 

import or fatty acid synthesis exceeds their degradation or export (Koteish & Diehl, 

2001). The rate of fatty acid uptake can be increased due to excess dietary intake or 

release from adipose tissue (Day, 2002), whereas increased de novo hepatic fatty 

acid and triglyceride synthesis is due to impaired glucose and insulin sensitivity 

(Anstee & Goldin, 2006). 

De novo lipogenesis is regulated by insulin and glucose through activation of the 

transcription factors sterol regulatory element binding transcription factor SREBF1 

and carbohydrate responsive element binding protein (CHREBP), respectively 

(Cohen et al., 2011) (Figure 1-2). Either activation leads to the upregulation of 

lipogenic genes, whereby SREBF1 is activated by insulin and CHREBP by glucose 

(Cohen et al., 2011; Kawano & Cohen, 2013). Upon activation of de novo 

lipogenesis the following steps proceed: the first building block of lipogenesis is 

acetyl-CoA, which is catalyzed from glucose and then further converted to malonyl-

CoA.  Palmitic acid (C16) is generated by fatty acid synthase (FASN) through 

assembling of acetyl-CoA with 7 malonyl-CoAs. The long chain fatty acid elongase 

(ELOVL) 6 elongates and stearoyl-CoA desaturase (SCD) 1 desaturates saturated 

fatty acids as palmitic acid to form monounsaturated fatty acids, the major 

components of triglycerides (Kawano & Cohen, 2013). 

Hepatic triglycerides are exported into the blood as very low-density lipoproteins 

(VLDL). Failure of VLDL synthesis is responsible for decreased fat elimination and is 

a cause of hepatic steatosis (Anstee & Goldin, 2006). In addition to export, hepatic 

triglyceride levels are controlled by mitochondrial and peroxisomal β-oxidation or 

microsomal ω-oxidation in hepatocytes. The activity of the carnitine 



Introduction 

~ 5 ~ 
 

palmitoyltransferase (CPT) 1a, which is located in the outer mitochondrial 

membrane, is critical for the mitochondrial β-oxidation. CPT1a is responsible for the 

translocation of long-chain fatty acids across the mitochondrial membrane, and its 

activation provides substrates for the subsequent β-oxidation (Eaton et al., 1996). 

Increased levels of glucose as in the postprandial state lead to suppression of β-

oxidation due to formation of Malonyl-CoA as inhibitor of CPT1a during lipogenesis 

(Sidossis et al., 1996). Another important mediator in catabolism is the transcription 

factor peroxisome proliferator-activated receptor (PPAR) alpha. PPARA regulates a 

range of genes related to fatty acid oxidation in mitochondria, peroxisomes, and 

microsomes (Fruchart, 2009) (Figure 1-2). Beside the regulation of lipid 

homeostasis, PPARA is further involved in a wide array of pathways, such as 

inflammation or gluconeogenesis, through regulation of different target genes or its 

regulation by other genes (Mandard et al., 2004). Impairment of mitochondrial 

activity is suggested to be the source for oxidative stress within the liver and to 

contribute to the progression towards NASH (Kawano & Cohen, 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2: Hepatic fatty acid metabolism. Free fatty acids (FFA) can either be taken up by the liver 
or synthesized in response to insulin or glucose via the transcriptional regulation of SREBF1 and 
CHREBP. FFA can then be metabolized by β-oxidation in the mitochondria, esterified, and stored as 
triglycerides in lipid droplets, or packed and secreted as VLDL into the blood stream (adapted from 
(Cohen et al., 2011)). 
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 Inflammation 1.1.2

The fatty liver is predisposed to the “second-hit”, which can involve oxidative stress  

(Farrell & Larter, 2006). Impaired mitochondrial β-oxidation is a hallmark for reactive 

oxygen species (ROS)-formation (Pessayre et al., 2001). In addition, excessive iron 

accumulation in the liver of NASH patients is recognized as further source for ROS. 

Thereby, the underlying reaction is the formation of hydroxyl radicals by ferrous iron 

(Fe2+) in the presence of hydrogen peroxide known as Fenton´s reaction (a) (Fujita 

et al., 2009).  

  (a) 2 Fe2+ + H2O2  2 Fe3+ + OH- + OH· 

ROS in turn trigger steatohepatitis via different mechanisms, among them lipid 

peroxidation and the induction of cytokines. Lipid peroxidation releases 

malondialdehyde and 4-hydroxynonenal, which both can crosslink proteins and 

therefore might be involved in the formation of Mallory Denk bodies, which contain 

cross-linked cytokeratin monomers (Pessayre et al., 2001). These events lead to 

cellular damage and hepatocyte stress inducing a pro-inflammatory state. The 

activation of several pro-inflammatory pathways leads to the production of an array 

of cytokines, which in turn promote the accumulation of immune cells within the liver. 

The activation of nuclear factor kappa light polypeptide gene enhancer in B-cells 

(NFKB) and the inflammasome pathway, both important regulators of genes involved 

in immunity and inflammatory response, are in the focus of this study and will 

therefore be discussed in more detail. 

 

1.1.2.1 NFKB 

NFKB is a family of dimeric transcription factors consisting of the five Rel subunits 

with the heterodimer of p65 and p50 being the most abundant of them. NFKB is 

found in all cell types in the uninitiated phase in the cytoplasm bound to the inhibitory 

protein inhibitor of kappa light polypeptide gene enhancer in B-cells (IκB). Upon 

stimuli, such as tumor necrosis factor (TNF) alpha or interleukin-1beta, IκB is 

degraded by phosphorylation by the catalytical activity of IκB kinase complex (IKK), 

leading to the nuclear translocation of the NFKB heterodimers, such as p65/p50, and 

their binding to the DNA. Here, it facilitates the transcription of an array of pro-
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inflammatory cytokines such as TNF, IL-1beta, and others (He & Karin, 2011; Barnes 

& Karin, 1997; Robinson & Mann, 2010) (Figure 1-3). 

 

Figure 1-3: Pathway of NFKB activation. TNF (tumor necrosis factor) or toll-like receptor-mediated 

transduction of extracellular signals leads to activation of IKK (IκB kinase kinases complex) and thus, 

phosphorylation of IκB (inhibitor of NFKB). Ubiquitination of IκB and subsequent degradation by 

proteosome activity leads to liberation of NFKB from IκB and its nuclear translocation with subsequent 

NFKB targeted gene transcription.  

 

1.1.2.2 Inflammasome 
The role of inflammasomes and their product IL-1beta is obtaining rising attention in 

NASH (Szabo & Csak, 2012). Inflammasome activation was shown in NASH, but not 

in steatosis. Saturated fatty acids as well as ROS are a potential inducer for 

inflammasome activation (Csak et al., 2011; Tschopp & Schroder, 2010). The 

inflammasome is a multiprotein complex, which activates caspase-1 in response to 

cellular danger signals, and subsequently cleaves pro-IL-1beta into its mature form 
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(Szabo & Csak, 2012). Different subtypes of inflammasomes are known with the 

NLRP3-inflammasome as characterized member, containing the NLR family, pyrin 

domain containing (NLRP) 3, the PYD and CARD domain containing (PYCARD / 

ASC), and the effector molecule pro-caspase-1 (Szabo & Csak, 2012). IL-1beta 

production is transcriptionally regulated by NFKB and post-transcriptionally by 

NLRP3 inflammasome activation to facilitate the cleavage of pro-IL-1beta (Figure 1-
4) (Bauernfeind et al., 2009).  

 

 

 

 

 

 

 

 

 

Figure 1-4: Inflammasome pathway. NFKB activation leads to transcriptional upregulation of pro-IL-
1beta. Activation of the inflammasome complex facilitates the cleavage of pro-IL-1beta into its mature 
form and results in subsequent secretion into the blood stream (adapted from www.Invitrogen.com). 

 

 Fibrosis 1.1.3

Liver fibrosis represents a further progression of chronic liver diseases as one third 

of NASH patients progresses to fibrosis (Argo et al., 2009; Farrell & Larter, 2006). In 

NASH oxidative stress, chronic inflammation, and hepatocyte death are responsible 

for the activation of hepatic stellate cells (HSC) (Brenner, 2009). Activated HSCs are 

the major source for the production of collagen and the subsequent deposition of 

extracellular matrix leads to fibrosis (Rombouts & Marra, 2010). The profibrogenic 

transforming growth factor (TGF)-beta is considered to be the pivotal cytokine 

leading to fibrosis, as it triggers the transdifferentiation of HSCs and directly induces 

collagen I expression and alpha-smooth muscle actin stress fiber organization 
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(Gressner et al., 2002). However, numerous pathways are responsible for the 

initiation and perpetuation of HSC action (Friedman, 2008). Connective tissue growth 

factor (CTGF) is regarded as another important modulator of hepatic fibrogenesis as 

it is a downstream target gene of TGF-beta (Grotendorst, 1997). Interestingly, recent 

data demonstrate that CTGF is not uniquely induced by TGF-beta, but rather in a 

TGF-beta-independent pathway via interleukin 13, a T-cell-derived cytokine with 

profibrogenic actions (Gressner et al., 2007; Liu et al., 2011b; McKenzie et al., 1993; 

Weng et al., 2009; Wynn, 2004). Generally, lobular activation of HSCs causes 

perisinusoidal and zone 3 fibrosis as an early stage in NASH patients (Kleiner et al., 

2005). Progression of the disease leads to portal fibrosis in stage 2, with increasing 

septal formations and bridging in the higher stages (Kleiner et al., 2005). A possible 

explanation for portal fibrosis is the activation of hepatic progenitor cells (HPC) 

(Roskams et al., 2003; Yang et al., 2004). These cells are the source for 

regenerating liver tissue, and as bipotential cells are located in the periportal area. 

They can differentiate into hepatocytes, cholangiocytes, and draining ductules 

(Libbrecht & Roskams, 2002). Misleading activation of HPC can result in a ductular 

reaction, which is a reactive lesion in the portal tract built from small biliary ductules 

and is accompanied by a complex stroma and inflammatory cells. Studies have 

shown that these ductular reactions can induce proinflammatory and profibrogenic 

mediators and that high NASH stages correlate with their occurrence in human 

samples (Richardson et al., 2007). Longstanding NASH and fibrosis can finally 

progress to cirrhosis, whereby fat deposition and inflammation can disappear 

(Rosmorduc & Fartoux, 2012). Cryptogenic cirrhosis accounts for around 10% of 

cirrhosis cases and the majority is probably related to NASH progression (Caldwell 

et al., 1999). 

 

 HCC as a Complication of NAFLD 1.2

Hepatocellular carcinoma (HCC) is the predominant primary liver cancer with rising 

incidence (Figure 1-5). HCC is considered the sixth most common malignancy 

worldwide and represents the third leading cause of cancer-related deaths (El-Serag, 

2011; Mittal & El-Serag, 2013). Besides exposure to toxins as direct carcinogens and 

the infection with hepatitis B and C virus, the incidence of HCC is rising due to non-
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viral causes (Van Thiel & Ramadori, 2011). HCC exhibits an interesting distribution 

pattern as it is associated with chronic liver diseases, geographic and ethnic 

variations, and gender differences (Hashimoto & Tokushige, 2012).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           Figure 1-5: Incidence of liver cancer in Germany (Krebsregister Saarland) 

 

Since cirrhosis is the main risk factor for HCC, and 15-50% of HCC cases occur in a 

context of cryptogenic cirrhosis, HCC represents a rare but severe complication of 

end-stage NAFLD (Stickel & Hellerbrand, 2010). Interestingly, the incidence of HCC 

is decreasing in high-prevalence areas, whereas its incidence in low-prevalence 

regions as Europe and United States has almost doubled (Stickel & Hellerbrand, 

2010). This decrease of virus-associated HCC might be due to large-scale 

vaccination against HBV and the latter increase might attribute to the rising incidence 

of NAFLD, in particular NASH (Stickel & Hellerbrand, 2010).  

During chronic hepatitis, liver cell proliferation is increased, whereas a decreased 

proliferation is detectable in the cirrhotic stage, indicating that the regenerative 

capacity of the liver is exhausted (Delhaye et al., 1996; El-Serag & Rudolph, 2007). 

Further features of chronic liver diseases, such as insulin resistance, oxidative 
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stress, inflammatory cytokines, and autophagy have a carcinogenic potential 

(Hashimoto & Tokushige, 2012). The deregulation of different oncogenic pathways, 

such as PI3K/Akt (Hu et al., 2003), m-TOR (Villanueva et al., 2008), Wnt/β-catenin 

(Chan et al., 2006; Micsenyi et al., 2004), Ras/Raf/AP-1/ERK (Mitsui et al., 2001), 

JNK (Czaja, 2010), or PTEN/Akt (Chen et al., 2009) are also associated with the 

development of NASH or hepatic carcinogenesis. However, the exact mechanisms 

leading to development of HCC in patients with NASH remain unclear.  

 

 The IGF2 mRNA Binding Protein p62/IGF2BP2-2  1.3
The insulin-like growth factor 2 mRNA binding protein p62/IMP2-2/IGF2BP2-2 was 

first isolated by immunscreening of a cDNA library with autoantibodies from a patient 

with hepatocellular carcinoma (Zhang et al., 1999). In a subsequent cohort study of 

HCC patients, it was found that 21% of them had autoantibodies against p62 (Zhang 

et al., 1999). Furthermore, p62 was shown to be expressed in α-fetoprotein negative 

HCC and in cirrhotic nodules, as well as in other primary gastrointestinal carcinomas 

(Liu et al., 2013; Lu et al., 2001; Qian et al., 2005; Su et al., 2005), whereas it was 

not detectable in non-malignant liver tissue (Lu et al., 2001; Zhang & Chan, 2002). In 

accordance, p62 expression was found at high levels in fetal liver but was not 

detectable in adult livers (Lu et al., 2001). De novo appearance of antibodies to p62 

in serum prior to or during the development of liver cancer indicates that auto-

antibodies may be produced in response to the transformation process from chronic 

liver disease to malignancy (Zhang & Chan, 2002; Zhang et al., 2001). The highly 

specific antigen-driven autoantibody response of the immune system can be used as 

reporter for the transition to malignancy, and therefore serve as a monitor for tumor 

development (Li et al., 2012; Liu et al., 2013; 2011a). p62 was recognized as tumor-

associated antigen (TAA), and serum autoantibodies against p62 were suggested as 

biomarkers in cancer immunodiagnostics (Li et al., 2012; Liu et al., 2013; 2011a).  

The family of insulin-like growth factor 2 mRNA binding proteins (IGF2BPs/IMPs) 

was identified by Nielsen et al. at the same time as the discovery of p62 during 

studies on isolated proteins binding to a developmentally regulated, fetally expressed 

insulin-like growth factor 2 (Igf2) mRNA (Nielsen et al., 1999). p62 belongs to the 

family of IGF2BPs together with two other IGF2BPs, i.e. IGF2BP1 and IGF2BP3/Koc 
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(Nielsen et al., 1999). p62 represents a splice variant of IGF2BP2 lacking exon 10 

with 43 amino acids between hnRNP K homology (KH) 2 and 3 (Figure 1-6) (Lu et 

al., 2001; Nielsen et al., 1999). The protein contains two types of RNA-binding 

motifs, i.e. the RNA recognition motif (RRM) and the KH motif organized in a 

characteristic arrangement (Burd & Dreyfuss, 1994; Kenan et al., 1991). In fact, 

IGF2BPs are almost exclusively observed in the cytoplasm where they form 

ribonucleoprotein complexes (mRNPs) with their target mRNA (Bell et al., 2013). 

 

 

 

 

 

 

 

 

 

 

Figure 1-6: The IGF2BP protein family. Domain structure of human IGF2BPs. RNA-binding domains 
comprising RNA recognition motifs (RRMs, blue) and hnRNP-K homology domains (KH, red). The 
following proteins are shown: IGF2BP1, the longest IGF2BP1 protein isoform; IGF2BP2-a, the longest 
IGF2BP2 protein isoform; IGF2BP2-b (p62), spliced IGF2BP-a lacking exon 10; IGF2BP3 (adapted 
from (Bell et al., 2013)).  

 

The mRNPs are “stable” protein-RNA complexes causing a long half-life, allowing 

long-distance transports as well as transient storage of the target mRNA (Bell et al., 

2013). Therefore, IGF2BPs control the target mRNA right after transcription and 

modulate the rate of its mRNA degradation, translation, or transport (Bell et al., 

2013). In particular, IGF2BP1 has beta-actin (Actb) mRNA as target transcript 

suggesting a role in controlling cytoskeletal organization, cell adhesion, and cell 

migration (Hüttelmaier et al., 2005).  
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Phosphorylation of IGF2BP2 promotes the association with the leader 3 5´-UTR of 

IGF2 leading to elevated protein synthesis of IGF2 (Dai et al., 2011). Furthermore, 

IGF2BP2 is suggested to be involved in metabolic homeostasis and response to 

nutrients and it might play a role in type 2 diabetes (Christiansen et al., 2009).  

 

 Effects of p62 on Fatty Acid Metabolism 1.4
The first characterization of a functional implication of the oncofetal protein p62 was 

recently presented in p62 transgenic mice. Histological fat staining revealed a fatty 

liver phenotype in mice overexpressing the human p62 protein specifically in the liver 

(Tybl et al., 2011). Due to the lack of spontaneous tumor formation in these 

transgenic animals, the phenotype of a fatty liver was suggested to be the benign 

“first hit“ towards the formation of NASH (Tybl et al., 2011).  

Interestingly, a downregulation of the phosphatase and tensin homolog (PTEN), a 

known tumor suppressor, was found in p62 transgenic mice (Tybl et al., 2011). 

PTEN expression was shown to be inhibited by fatty acids (Vinciguerra et al., 2009; 

2008) and is frequently mutated in different kinds of cancer (Chow & Baker, 2006; 

Stickel & Hellerbrand, 2010). PTEN knockdown in mice was further demonstrated to 

lead to steatosis and ultimately to HCC, linking metabolism with 

hepatocarcinogenesis (Horie et al., 2004; Watanabe et al., 2005). Only recently, 

PTEN knockdown was shown to modulate fatty acid metabolism resulting in an 

altered fatty acid pattern similar to human NASH and NASH-induced HCC (Muir et 

al., 2013).  

Furthermore, an activation of the pro-oncogenic extracellular signal-regulated kinase 

(ERK) pathway was seen upon p62 overexpression (Kessler et al., 2013), which was 

also upregulated in a mouse model of a high-fat diet promoted HCC (Park et al., 

2010).  
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 Methionine and Choline Deficient Diet 1.5
To investigate the effect of p62 on liver pathophysiology of NASH a 

methionine/choline-deficient (MCD) diet was fed to the p62 transgenic animals. The 

MCD diet is the most common murine model of acquired NASH induced by a specific 

dietary intervention. The diet contains higher levels of sucrose and fat compared to 

standard chow (40% sucrose and 10% fat), and lacks the two components 

methionine and choline (Fan & Qiao, 2009). Mice fed the MCD diet develop 

measurable hepatic steatosis by two weeks, which progresses to inflammation 

(Weltman et al., 1996), inducing steatohepatitis by week four (Kirsch et al., 2003), 

and, in the long term, fibrosis or even cirrhosis and HCC (Figure 1-7) (Dobosy et al., 

2008; Weltman et al., 1996). The observed histological features are comparable to 

human NASH (Wasmuth et al., 2007).  

Figure 1-7: Time elapsed upon MCD treatment. 2 weeks representing the time point with the 
highest steatosis level, followed by the manifestation of NASH after 4 weeks with the peak of 
inflammation, and reaching the highest score for fibrosis after 12 weeks on MCD.  

 

Choline is classified as an essential nutrient with roles in cell membrane integrity, 

transmembrane signalling, phosphatidylcholine synthesis, neurotransmission, and 

methyl metabolism (Anstee & Goldin, 2006). Lack of choline leads to impaired 

synthesis of phosphatidylcholine resulting in diminished VLDL assembly, secretion, 

and consequently to a reduced triglyceride (TG) clearance (Jamil et al., 1990). 

Deficiency in both choline and methionine additionally leads to an impaired 

mitochondrial β-oxidation and induction of alcohol-inducible cytochrom P450 (CYP) 

2E1 expression, which is responsible for reactive oxygen species (ROS) production 

(Weltman et al., 1996). Thus, the MCD diet exerts to an accumulation of fatty acids 

in hepatocytes due to an increased uptake, and an impaired release and degradation 
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of fatty acids. Subsequently, hepatic lipid peroxidation and the formation of ROS 

results in the formation of oxidative stress and induction of a histological 

steatohepatitis (Leclercq et al., 2000; Weltman et al., 1996). Oxidative stress induces 

inflammatory cytokines, such as Il-1beta and TNF, followed by an infiltration of 

lymphocytes and neutrophils into the liver tissue and accompanied by apoptosis of 

hepatocytes (Fan & Qiao, 2009). The fibrogenic response is accompanied by a 

necroinflammatory state and is associated with an upregulation of mRNA levels of 

e.g. collagen 1,  tissue inhibitor of metalloproteinases (TIMP) 1 / 2, and matrix 

metalloproteinase (MMP) 13 (Ip et al., 2004). NFKB activation displays an important 

link between oxidative stress, chronic inflammation, and hepatic fibrogenesis (Dela 

Peña et al., 2005). 

The MCD NASH model is one of the best established models to study the evolution 

of steatosis, oxidative stress, inflammation, and fibrogenic changes associated with 

NASH (Fan & Qiao, 2009). However, this model features two drawbacks: mice fed 

the MCD diet lose significant amounts of muscle and fat weight (up to 40-50% loss in 

12 weeks) and, unlike most human NASH cases, animals do not develop peripheral 

insulin resistance (Rinella & Green, 2004). However, NASH and peripheral insulin 

resistance as part of the metabolic syndrome are not observed in all NASH cases 

(Smits, 2013; Yilmaz, 2012). Still, despite differences to human NASH, the MCD diet 

represents one of the most important models to study steatosis-associated liver 

injury. 

 

 Doxycycline Dependent Temporal Inhibition of p62 Expression  1.6
Transgenic systems are per se an interesting tool, but have several limitations. In the 

classical binary systems, the target gene is silent or activated upon crossing with a 

recombinase or transactivator. In such a system, the expression rate is irreversible 

and cannot be varied by changing experimental conditions; here the expression is 

directly dependent on the expression of the effector molecule (Furth et al., 1994; 

Kistner et al., 1996).  

Using the tetracycline (Tet) regulatory system in the p62 transgenic animals a 

conditional gene expression was achieved (Schönig et al., 2010; Tybl et al., 2011). 

The mouse model used within this study has a liver-specific overexpression of the 
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human p62. The human p62 transgene was placed under control of the 

transrepressive responsive element cytomegaly virus (TRE-CMVmin) promotor to 

ensure that no constitutive p62 mRNA expression occurs in these animals (Figure 1-

8A). To induce the expression of the transgene, mice need to be crossed with liver 

transactivator (LT2) transgenic mice. These animals carry a liver-specific promotor, 

the liver enriched activator protein (LAP), controlling the expression of the 

tetracycline-controlled transactivator (tTA). In p62+ x LT2+ mice tTA activates the 

TRE-CMVmin promotor leading to the subsequent mRNA expression of the transgene 

(Figure 1-8B). Through this mechanism an inducible and liver-specific expression of 

human p62 is achieved.  

In the p62 transgenic mice the presence of doxycycline inactivates tTA and prevents 

its binding to the TRE-CMVmin promoter, resulting in gene silencing of p62 (Figure 1-
8C). This system is also known as Tet-off system, since doxycycline inhibits the 

expression of the gene of interest (Figure 1-8D).  

In contrast, in the Tet-on system, 4 amino acids are exchanged in the tetR moiety, 

which leads to a reverse phenotype to the repressor (rtetR). The resulting rtTA 

requires doxycycline for binding to the operator sequences (tetO) and the activation 

of transcription (Gossen et al., 1995) (Figure 1-8E).  

 

 

 

 

 

 

 

 



Introduction 

~ 17 ~ 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-8: Generation of p62 transgenic mice. (A) No expression of p62 mRNA under             
TRE-CMVmin promotor control. (B) Liver-specific expression of p62 mRNA in double positive 
p62+/LT2+ mice. (C) Application of doxycycline inhibits transgene expression. (D) Tet-off system (E) 
Tet-on system. TRE-CMVmin: transrepressor responsive element cytomegalovirus; tTA: tetracycline 
transactivator; LAP: liver enriched activator protein; tetO: operator sequences; tg: transgene 

 

 Selective Kupffer Cell Depletion 1.7
The major cell type of the liver is the hepatocyte. In addition, the liver contains 

numerous different cell types including parenchymal cells, stellate cells, sinusoidal 

endothelial cells, cholangiocytes, and Kupffer cells (Stienstra et al., 2010). Kupffer 
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cells are the liver-specific macrophages and represent the largest resident 

population of macrophages within an organ (Neyrinck et al., 2009). Recently, their 

origin as being myeloid-derived mononuclear cells has been challenged and 

updated. Now, Kupffer cells are proposed to derive from the yolk sac, whereas 

monocytes derive from the bone marrow (Wynn et al., 2013). Kupffer cells are critical 

players in the innate immune response (Gordon & Taylor, 2005; Taylor et al., 2005) 

and are located along the hepatic sinusoid where they facilitate their main functions, 

including phagocytosis as well as antigen processing and presentation (Isibasi et al., 
1983) (Figure 1-9).  

  

 

 

 

 

 

 

Figure 1-9: Hepatic microarchitecture. In the liver, blood flows from portal blood vessels through 
sinusoids to central veins. In the sinusoids endothelial cells, hepatic stellate cells, and Kupffer cells 
are located. The highly polarized hepatocytes form cords, and are lined by the sinusoidal capillaries 
that radiate towards a central vein. Hepatocytes produce bile, which is excreted into canaliculi linked 
to bile ducts (adapted from (Frevet et al., 2005)). 

 

Kupffer cells produce various inflammatory mediators, such as cytokines, 

prostaglandins, nitric oxide, and reactive oxygen species, which influence 

neighboring parenchymal cells (Bilzer et al., 2006). An implication of Kupffer cells 

has been shown in the pathogenesis of various liver diseases (Diehl, 2002). In fact, 

studies in obese and diabetic animals have suggested that Kupffer cell dysfunction 

might be involved in the pathogenesis of NASH (Diehl, 2002; Yang et al., 1997). 

Furthermore, it has been shown in various animal experiments that the adjacent 

hepatocytes may be influenced in their lipid metabolism via the release of special 

cytokines from Kupffer cells (Odegaard et al., 2008; Stienstra et al., 2010). It can 

therefore be concluded that Kupffer cells have an impact in the progression from 
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steatosis to NASH (Diehl, 2002), and even in the development and modulation of 

steatosis itself.  

An experimental approach was used within this thesis to answer the question, 

whether Kupffer cells are involved in the modulation of the fatty acid composition. A 

selective in vivo depletion of macrophages was carried out, based on a liposome-

mediated intraphagocytic delivery and accumulation of the bisphosphonate 

clodronate (Figure 1-10) (Van Rooijen et al., 1985).  

 

 

 

 

 

 

 

Figure 1-10: Macrophage “suicide”. The liposomes with encapsulated clodronate (squares) are 
ingested by Kupffer cells via endocytosis. Fusion with lysosomes (L) leads to disruption of the bilayers 
of the liposomes through the activation of phospholipases (arrowheads). The more concentric bilayers 
are disrupted, the greater is the clodronate relase within the cell. Finally, clodronate accumulation 
leads to cell apoptosis. (N = nucleus of the Kupffer cell). (Courtesy of clodronateliposomes.org) 

 

Liposomes consist of concentric phospholipid bilayers entrapping aqueous 

compartments, in which hydrophilic molecules dissolved in aqueous solution, such 

as the non-toxic bisphosphonate clodronate, can be encapsulated (van Rooijen et 

al., 1996). Clodronate is not toxic and will not pass phospholipid bilayers of cell 

membranes or liposomes. After injections, the liposomes will be ingested and the 

phospholipid bilayer of the liposomes disrupts under the influence of lysosomal 

phospholipases, and releases clodronate intracellularly with the consequence of its 

accumulation (van Rooijen et al., 1996). At a certain threshold concentration, the cell 

is irreversibly damaged and dies by apoptosis (Figure 1-10). The released free 

clodronate does not affect other cells because it cannot pass membranes, it has a 

very short half life, and it is finally removed by the renal system (van Rooijen et al., 

1996). An intraperitoneal (i.p.) injection of clodronate liposomes leads to a depletion 
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of macrophages in the abdominal cavity, the liver and the spleen. Here, liposomes 

arrive in the blood vessels via the lymphatic system or directly via the portal vein to 

the liver (Figure 1-11).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1-11: Injection scheme of intraperitoneal injections of clodronate liposomes. (Courtesy 

of clodronateliposomes.org) 

 

In order to answer the question whether Kupffer cells have an implication on lipid 

composition, we investigated the MCD-induced NASH in the absence of Kupffer cells 

depleted by administration of liposome-encapsulated clodronate.  
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 Aims and Significance 1.8

More than 25% of the population in Western countries are affected by NAFLD. 

Longstanding NAFLD can ultimately lead to hepatocellular carcinoma (Stickel & 

Hellerbrand, 2010). Understanding of the underlying pathophysiological mechanisms 

is therefore of high clinical relevance. The autoantigen p62/IGF2BP2-2, which was 

found in human HCC, induces steatosis in mice and IGF2BP2 expression was 

associated with human type 2 diabetes (Christiansen et al., 2009). We therefore 

hypothesized a putative role of p62 in the development of NASH.  

Aim of the present work was to elucidate the pathophysiological role of a liver-

specific overexpression of p62 in a murine model of non-alcoholic steatohepatitis. 

The following questions should be answered:  

1. Does p62 affect the pathogenesis of different stages of NAFLD in mice fed the 

MCD diet? To cover the full spectrum of NAFLD mice were treated for three 

different time points to evaluate steatosis, NASH, and NASH-induced fibrosis. 

 

2. Does the conditional inhibition of p62 expression prior to the MCD feeding 

have an impact on the pathology of NAFLD? 

 
3. Does p62 have an impact on the fatty acid pattern and composition when fed 

the MCD diet? 

 

4. How do Kupffer cells alter the fatty acid composition in MCD induced 

steatosis? 

 



 
 

 
 

 

 

 

 MATERIALS AND METHODS 2
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 Materials 2.1
The methionine/choline-deficient (MCD) diet (#960439) and the methionine/choline 

supplemented control (ctrl) diet (#960441) were purchased from MP Biomedicals 

(Germany). 

 
Table 2-1: Composition of the methionine/choline-deficient (MCD) diet and the 
methionine/choline supplemented control (ctrl) diet according to MP Biomedicals. 

 

Ingredients MCD 
Amount g/kg diet 

ctrl 
Amount g/kg diet 

Sucrose 455.3 455.3 

Corn Starch 203.5 203.5 

Corn Oil 100.0 100.0 

Alphacel Non-Nutritive Bulk 25.0 30.0 

AIN 76 Mineral Mix 35.0 35.0 

Amino acids and vitamins 176.2 176.2 

DL-Methionine 0 3.0 

Choline-bitatrat 0 2.0 

 

 

Clodronate liposomes (5 mg/ml) were obtained from Nico van Rooijen 

(clodronateliposomes.org; Vrije Universiteit, Netherlands) and prepared as previously 

described (Van Rooijen & Hendrikx, 2010). Clodronate was a gift from Roche 

Diagnositics GmbH (Mannheim, Germany). PCR primers and dual-labeled probes 

were obtained from Eurofins MWG Operon (Ebersberg, Germany). Taq-Polymerase 

(5 U/µl), 10 x Taq buffer, and dNTP mix (10 mM each) were from Genscript 

(Piscataway, NJ, USA), the EvaGreen® qPCR Mix was from Solis BioDyne (Tartu, 

Estonia). Antibodies for immunhistochemistry and Western blot were purchased as 

indicated in table 2-8 and table 2-6. All other chemicals were obtained from 

commercial sources like Roth, Germany and Sigma-Aldrich, Germany, unless 

indicated otherwise. 
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 Mice and Treatments 2.2
 Animal Welfare 2.2.1

All animal procedures were performed under the guidelines of the local animal 

welfare committee (permission-no.: 34/2010). Mice were maintained under 12-hour 

dark-light cycles under controlled conditions (temperature 22 ± 2°C and relative 

humidity of 55 ± 10%) with unrestricted access to food and water until the age of 

three weeks.  

The mice were randomly divided into experimental groups at the age of 3 weeks and 

fed a MCD diet or a MCD diet supplemented with choline bitartrate (2 g/kg) and DL-

methionine (3 g/kg); the latter was designated as a control diet (ctrl). In addition, one 

group received 25 µg/ml doxycycline in drinking water from mating of the parents 

until the newborns reached an age of 18 days. Another group received 100 µl / 10 g 

body weight of a liposome suspension (2 g / 10 ml) clodronate or empty liposomes as 

control). 

 

 Generation of p62 Transgenic Mice 2.2.2

Male and female p62 transgenic mice and LT2 transgenic mice were used as 

described in (Tybl et al., 2011). p62+/LT2+ transgenic mice liver-specifically express 

the human p62 protein (Figure 1-4). p62 expression is repressed by the TRE-CMVmin 

promoter in the DBA2J p62 transgenic mice. For experiments animals were crossed 

with C57BL/6J LT2 mice, which carry a tetracycline transactivator (Kistner et al., 

1996), leading to a derepression of the promoter, thereby allowing p62 expression in 

the p62+/LT2+ offspring (Tybl et al., 2011). DBA2J and C57BL/6J wild-type animals 

were purchased from Charles River Laboratories, Germany. 

 

 Genotyping 2.2.3

An ear biopsy was taken for genotyping and incubated in 89 µl water premixed with 

10 µl 10x Taq buffer and 1 µl Proteinase K (20 mg/ml) (Roche, Germany) at 55°C for 

one hour while shaking. After heat-inactivation of Proteinase K at 95°C for 15 min,     

1 µl of the supernatant was used in the subsequent PCR reaction.  
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A single PCR reaction was performed containing 1 µl template, 2.5 U Taq-

Polymerase, 125 µM dNTPs, 2.0 µl 10 x Taq buffer, and 400 nM of forward and 

reverse primer. The final reaction mixture was made up to 20 µl with sterile water. 

Primer sequences for p62 and tTA are given in table 2-2. The thermal cycling 

conditions consisted of an initial denaturation step at 95°C for 5 min, followed by 35 

cycles consisting of denaturation at 95°C for 30 s, annealing at 57°C for 30 s, and 

extension at 72°C for 30 s and a final extension at 72°C for 5 min on a C1000 

TouchTM Thermal Cycler (Bio-Rad, Germany) 

 

Table 2-2: Primer sequences as used for genotyping PCRs. 

Target Primer sense, 5' 3' Primer antisense, 5' 3' Product size 

p62 CATCAAACAGCTGGCG GTGCCCGATAATTCTGA 450 bp 

tTa GTGCAGAGCCAGCCTT
CTTA 

CCTCGATGGTAGACCCG
TAA 

150 bp 

 

 

 Treatment 2.2.4

All animals were 3 weeks of age at the commencement of the study. The mice were 

fed one of the two diets: the MCD or the ctrl diet for 2 weeks, 4 weeks, and 12 weeks, 

respectively. In another setup, one group was fed doxycycline to inhibit p62 

expression prior to MCD diet, another group received clodronate or an empty 

liposome suspension intraperitoneal by 2 days prior to MCD or ctrl diet, respectively. 

Liposome injections were repeated every five days to ensure depletion of Kupffer 

cells throughout the experiment. Mice were given free access to food and water and 

were weighed daily for the duration of the study. At the end of the treatment period 

mice were sacrificed by cervical dislocation and blood and liver tissue were collected 

for analyses. 

 

 Serum Parameters 2.2.5

Whole blood samples were incubated for one hour at room temperature and 

subsequently centrifuged for 10 min at 13,500 x g at 4°C. The supernatant was 
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transferred into a fresh tube and diluted 1:3 with 0.9% NaCl, stored at -20°C, or 

stored at 4°C until measurement. 

Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), glucose, 

triglycerides (TG), cholesterol, and high density lipoprotein (HDL) levels were 

determined by a PPE Modular analyzer using Roche® reagents at a constant 

temperature of 37°C (Roche Diagnostics, Mannheim, Germany). Measurements 

were performed at the “Zentrallabor des Universitätsklinikums des Saarlandes” 

(Homburg, Germany). 

Interleukin 13 levels were determined by a luminex assay using a BioPlex Pro mouse 

Plex assay according to the manufacturer´s guidance (Bio-Rad, Germany). 

 

 Preparation of Liver Tissue 2.2.6

Livers were excised and weighed. Two thirds of the liver tissues were flash-frozen in 

liquid nitrogen and stored at -80°C and one third was fixed for 24 h in 4% PBS-

buffered formalin before paraffin embedding.  

 

 Bacterial Culture 2.3
The Escherichia coli (E. coli) strain TOP10 (Invitrogen, Germany) was used as host 

organism for plasmid amplification. Bacteria were grown under standard conditions in 

lysogeny broth (LB: 10% tryptone [w/v], 5% yeast extract [w/v], 5% NaCl [w/v] in H2O, 

pH 7.5) medium supplemented with ampicillin (100 µg/ml). For selection of single 

clones, LBamp agar (30% [w/v] agar in LB containing ampicillin) plates were used. 

 

 Generation of Competent E. coli by CaCl2 Method 2.3.1

An overnight culture of 100 ml (OD650 = 0.4) was incubated on ice for 30 min, 

centrifuged (3,000 x g, 5 min, 4°C),  and resuspended in 2.5 ml ice cold CaCl2 

solution containing 75 mM CaCl2 and 15% glycerol. Another 20 ml ice cold CaCl2 

were added, and the mixture was incubated on ice for 20 min. Cells were harvested 

by centrifugation (3,000 x g, 5 min, 4°C), resuspended in 2.5 ml CaCl2, aliquoted, and 

stored at -80°C. 
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 Real-Time RT-PCR Standard Plasmid Generation 2.3.2

Standards of the PCR products of the genes of interest were cloned into the pGEM®T 

Easy vector (Promega, Germany) according to the manufacturer's guidelines or were 

provided by Prof. Dr. Alexandra K. Kiemer (Saarland University, Pharmaceutical 

Biology). See table 2-3 for primer sequences. 

 

 Transformation 2.3.3

For transformations 50-150 ng plasmid DNA were added to 100 µl competent E. coli 

and were incubated on ice for 20 min. Bacteria were subsequently heat-shocked for 

90 s at 42°C and immediately returned on ice for 2 min. 900 µl SOC medium (yeast 

extract 5 g/l, tryptone 20 g/l, NaCl 0.6 g/l, KCl 0.2 g/l, MgCl2 10 mM, MgSO4 10 mM in 

water) was added to the bacteria, followed by incubation at 37°C at 170 x g for 1.5 h. 

100 µl of the bacterial suspension was plated on LBamp plates and incubated at 37°C 

over night. 

 

 Isolation of Plasmid DNA 2.3.4

Plasmid DNA was isolated from overnight cultures by using the Miniprep plasmid 

isolation kit (Qiagen, Germany) according to the manufacturer's instructions. The 

integrity and concentration of the extracted plasmid DNA was determined by UV 

spectrophotometry at wavelengths of 260 and 280 nm on a BioMate UV Vis 

spectrophotometer (ThermoElectron, Germany). An extinction of 1 equates a 

concentration of  50 µg/ml. 

 

 Sequencing of Real-Time RT-PCR Standard Plasmids 2.3.5

Sequencing reactions were performed by Eurofins MWG (Ebersberg, Germany) with 

100 ng plasmid DNA in 16 µl Milli-Q water. 
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 Agarose Gel Electrophoresis 2.4

 Detection of DNA 2.4.1

Agarose gels of 0.5-2.5% agarose in 1 x TBE (89.1 mM TrisHCl, 89.1 mM boric acid, 

2.21 mM EDTA in distilled water) containing 0.04% [v/v] ethidium bromide for DNA 

detection were used to analyze the amplified DNA. The samples were mixed with 1/6 

volume of gel loading buffer (25 mg bromophenol blue, 25 mg xylenecyanol FF, 1.5 g 

Ficoll type 400 ad 10 ml distilled water) and loaded onto the gel with 50 bp DNA 

ladder as reference (Fermentas, Lithuania). Electrophoresis was carried out at 100 V 

for approximately 45 min in 1 x TBE Buffer. The gels were viewed and analyzed 

using a UV Transilluminator (Biostep Dark Hood DH-40/50, biostep GmbH, Germany) 

and the software ArgusX1 (Biostep, Germany). 

 

 Detection of RNA 2.4.2

RNA gels containing 1% formaldehyde for RNA stabilization, MOPS buffer (0.02 M 3-

(N-morpholino)propanesulfonic acid (MOPS), 5 mM sodium acetate, 0.5 mM EDTA in 

DEPC-treated distilled water, pH 7) with 1% [w/v] agarose, were used to check RNA 

integrity. Prior to gel loading, RNA was denatured at 65°C for 5 min in an appropriate 

volume of loading buffer (10 ml form amide, 3.5 ml formaldehyde, 1.5 ml 10 x 

MOPS). Samples were separated in 1 x MOPS buffer at 100 V and detected as 

described in 2.4.1. 

 

 RNA Isolation and Reverse Transcription 2.5

 RNA Isolation 2.5.1

Total RNA was extracted in 700 µl QIAzol Lysis Reagent (#79306, Qiagen, Germany) 

using a high-performance dispenser (T25 digital ULTRATURRAX®, IKA®-Werke, 

Germany) for homogenization of snap-frozen liver tissue samples. After incubation 

for 5 min at room temperature, 175 µl of chloroform were added. The mixture was 

vortexed, incubated at room temperature for 2 min, and centrifuged (12,000 x g,      

15 min, 4°C). Supernatants were transferred into a new reaction tube and RNA was 

precipitated over night at -20°C by addition of 1 volume of ice-cold isopropanol 
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(100%). For further processing, samples were centrifuged (12,000 x g, 10 min, 4°C) 

and the resulting pellets were washed with ice-cold ethanol 75% [v/v], dried and 

dissolved in diethylpyrocarbonate (DEPC) treated water. DNA was digested after 

RNA isolation using the DNA free kit (Ambion, Germany) according to manufacturer´s 

instructions. RNA integrity was checked using agarose gel electrophoresis. 

 

 Measurement of RNA Concentration 2.5.2

Photometric determination of RNA concentrations at 260 nm was carried out using a 

BioMate UV-Vis spectrophotometer (Thermo Electron, USA). An extinction of            

1 equates a concentration of 40 µg/ml. 

 

 Reverse Transcription 2.5.3

For synthesizing complementary DNA (cDNA) from RNA, reverse transcriptions were 

performed with the High-Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems, Germany) according to the manufacturer’s instructions. Approximately 

200-1,000 ng of RNA were denatured at 65°C for 5 min and placed on ice. The 

reaction mixture containing 2 μl 10x RT Puffer, 0.8 μl 25x dNTPs (25 mM each),        

2 μl Random Primer (10 μM), 1 μl MultiScribe Reverse Transcriptase (4 U/μl),      

0.25 μg RNaseOut (10 U/μl) (Invitrogen, Germany) and water to a final volume of     

20 µl, was added to the RNA and incubated at 25°C for 10 min followed by 2 h at 

37°C and a final inactivation step at 85°C for 5 s. The resulting cDNA was diluted by 

addition of 80 µl water and used for real-time RT-PCR. 

 

 Real-time RT-PCR 2.6

A PCR based method for detection and simultaneous quantification of gene 

expression, real-time quantitative RT-PCR, was used in order to determine the 

expression of the genes of interest. The method is based on the signal of a 

fluorescent reporter, which increases in direct proportion to the amount of PCR 

product in the reaction. The fluorescence emission correlates with the initial amount 

of target template. Two different detection methods were used: a target specific 

detection method using fluorescent probes (TaqMan®) labelled with a fluorescent 
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reporter (FAM) at the 5’-end and a quencher (BHQ1) at the 3’-end, and a detection 

method with a fluorescent dye (EvaGreen®), which is able to intercalate within the 

amplified DNA.  

 

 Experimental Procedure 2.6.1

The real-time PCR reactions were performed on an iCycler iQ5 or a C1000 TouchTM 

Thermal Cycler with CFX 96TM Realtime System in emulation mode iCycler (Bio-Rad, 
Germany). Primers and probes used are given in table 2-3. Reaction mixtures (25 µl) 

for the TaqMan® system were assembled on ice, 5 µl template cDNA or standard 

plasmid solutions were added on a 96 well plate. The reaction mixture contained     

2.5 U Taq-Polymerase, 2.5 µl 10 x Taq buffer, 400 nM of each primer, 100 nM 

dNTPs, 1.5 or 2.5 pmol dual-labeled probe, and 3-5 mM MgCl2. Probe- and MgCl2-
concentrations for each target gene are listed in table 2-4. For the EvaGreen® 

system the reaction mixtures (20 ml) contained 5 µl template cDNA or plasmid 

standard solutions on a 96 well plate. The reaction mixture contained 1x HOT 

FIREPol® EvaGreen® qPCR Mix Plus and 80-250 nM of each primer. The primer 

concentrations for each gene are listed in table 2-4. The thermal cycling conditions 

for the TaqMan® system commenced with an initial denaturation step at 95°C for       

8 min, followed by 40 cycles of denaturation at 95°C for 15 s, annealing at 58-64°C 

for 15 s, elongation at 72°C for 15 s, and a final elongation at 72°C for 25 s. The 

thermal cycling conditions for the EvaGreen® system had an initial denaturation step 

at 95°C for 15 min, followed by the 40 cycles as mentioned above. At the end a 

melting curve from 65°C to 95°C was added to ensure specificity of the primers. The 

specific annealing temperatures for each gene are given in table 2-4. All samples 

were analyzed in triplicate. The starting amount of cDNA in each sample was 

calculated using the iCycler iQ5 software package (Bio-Rad, Munich, Germany). 

Absolute mRNA amounts were normalized to mRNA levels of the murine 

housekeeping gene 18S or Pipa (Cyclophilin), respectively. 
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Table 2-3: Primer and probe sequences as used for real-time RT-PCR. 

mRNA Accession 
No. primer sense, 5' 3' primer antisense, 5' 3' Probe, 5’FAM  3’BHQ1 

Pipa NM_008907.1 GGCCGATGACGAGCCC TGTCTTTGGAACTTTGTCTGC TGGGCCGCGTCTCCTTCGA 

hu p62 NM_001007225.1 GTTCCCGCATCATCACTCTTAT GAATCTCGCCAGCTGTTTGA TGTGAATCTCTTCATCCCAACCCAGGCT 

Tgfb1 NM_011577.1 ACCCTGCCCCTATATTTGGA CGGGTTGTGTTGGTTGTAGAG TGGACACACAGTACAGCAAGGTCCT 

18S NR_003278.1 GTAACCCGTTGAACCCCATT CCATCCAATCGGTAGTAGCG EvaGreen® qPCR Mix 

Ppara NM_001113418.1 CCTTCCCTGTGAACTGACG CCACAGAGCGCTAAGCTGT EvaGreen® qPCR Mix 

Col1a1 NM_007742.3 TGTGTGTTCCCTACTCAGCC TGCTCTCTCCAAACCAGACG EvaGreen® qPCR Mix 

Il1b NM_008361.3 GAGAGCCTGTGTTTTCCTCC GAGTGCTGCCTAATGTCCC EvaGreen® qPCR Mix 

Tnf NM_013693.2 CCATTCCTGAGTTCTGCAAAGG AGGTAGGAAGGCCTGAGATCTTATC EvaGreen® qPCR Mix 

Hmgcr NM_008255.2 ATCCAGGAGCGAACCAAGAGAG CAGAAGCCCCAAGCACAAAC EvaGreen® qPCR Mix 

Srebf1 NM_011480.3 GGCTCTGGAACAGACACTGG GGCCCGGGAAGTCACTGT EvaGreen® qPCR Mix 

Scd1 NM_009127.4 AGATCTCCAGTTCTTACACGACCAC CTTTCATTTCAGGACGGATGTCT EvaGreen® qPCR Mix 

Elovl6 NM_130450.2 ACAATGGACCTGTCAGCAAA GTACCAGTGCAGGAAGATCAGT EvaGreen® qPCR Mix 

Il6 NM_031168 AAGAAATGATGGATGCTACCAAACTG GTACTCCAGAAGACCAGAGGAAATT EvaGreen® qPCR Mix 

Emr1/F4//80 NM_010130 CTTTGGCTATGGGCTTCCAGTC GCAAGGAGGACAGAGTTTATCGTG EvaGreen® qPCR Mix 

Ccl2/Mcp1 NM_011333 CCACTCACCTGCTGCTACTCAT CTGCTGGTGATCCTCTTGT EvaGreen® qPCR Mix 

Mlxipl/ 
Chrebp NM_021455.4 CTGGGGACCTAAACAGGAGC GAAGCCACCCTATAGCTCCC EvaGreen® qPCR Mix 

Cpt1a NM_013495.2 CTCAGTGGGAGCGACTCTTCA GGCCTCTGTGGTACACGACAA EvaGreen® qPCR Mix 

G6pc NM_008061.3 AGGAAGGATGGAGGAAGGAA TGGAACCAGATGGGAAAGAG EvaGreen® qPCR Mix 

Nos2 NM_010927.3 CTCACTGGGACAGCACAGAA GATGTGGCCTTGTGGTGAA EvaGreen® qPCR Mix 

Ptgs2/Cox2 XM_192868 TGACCCCCAAGGCTCAAATAT TGAACCCAGGTCCTCGCTTA EvaGreen® qPCR Mix 

Socs3 NM_007707.3 GCGAGAAGATTCCGCTGGTA CCGTTGACAGTCTTCCGACA EvaGreen® qPCR Mix 

Ctgf NM_010217.2 CTCCACCCGAGTTACCAATGACAA CCAGAAAGCTCAAACTTGACAGGC EvaGreen® qPCR Mix 

Fasn NM_007988.3 GGCTGCTACAAACAGACCAT CACGGTAGAAAAGGCTCAGT EvaGreen® qPCR Mix 

Nlrp3 NM_145827.3 AGCCTTCCAGGATCCTCTTC CTTGGGCAGCAGTTTCTTTC EvaGreen® qPCR Mix 

Pycard/Asc NM_023258.4 CCAGGGTCACAGAAGTGGAC CACGAACTGCCTGGTACTGT EvaGreen® qPCR Mix 

Srebf2 NM_033218.1 ACCTAGACCTCGCCAAAGGT CGGATCACATTCCAGGAGA EvaGreen® qPCR Mix 

Tnfsf12/ 
Tweak 

NM_011614.3 CTCATCTTAAGGCTGCCCCC AAGGCCCCTCAGTGAACTTG EvaGreen® qPCR Mix 

Tfrc Nm_011638.4 TTCCTACATCATCTCGCTTAT CATAGTGTTCATCTCGCCAGA EvaGreen® qPCR Mix 

Hamp NM_032541.1 TTGCGATACCAATGCAGAAGA GATGTGGCTCTAGGCTATGTT EvaGreen® qPCR Mix 
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Table 2-4: dNTP, dual-labelled probe-, MgCl2 concentration, primer concentrations, and 
annealing temperatures as used for real-time RT-PCR. 

 

mRNA dNTPs probe MgCl2 primer annealing 
Pipa 125 µM 1.5 pmole 3 mM 400 nM 60°C 

hu p62 125 µM 1.5 pmole 5 mM 400 nM 60°C 
Tgfb1 125 µM 1.5 pmole 4 mM 400 nM 60°C 
18S EvaGreen® qPCR Mix 200 nM 58°C 

Ppara EvaGreen® qPCR Mix 250 nM 60°C 
Col1a1 EvaGreen® qPCR Mix 250 nM 60°C 

Il1b EvaGreen® qPCR Mix 250 nM 60°C 
Tnf EvaGreen® qPCR Mix 250 nM 60°C 

Hmgcr EvaGreen® qPCR Mix 250 nM 60°C 
Srebf1 EvaGreen® qPCR Mix 100 nM 60°C 
Scd1 EvaGreen® qPCR Mix 200 nM 60°C 
Elovl6 EvaGreen® qPCR Mix 100 nM 60°C 

Il6 EvaGreen® qPCR Mix 200 nM 60°C 
Emr1F4//80 EvaGreen® qPCR Mix 150 nM 60°C 
Ccl2/Mcp1 EvaGreen® qPCR Mix 250 nM 60°C 

Mlxipl/Chrebp EvaGreen® qPCR Mix 250 nM 60°C 
Cpt1a EvaGreen® qPCR Mix 250 nM 60°C 
G6pc EvaGreen® qPCR Mix 250 nM 60°C 
Nos2 EvaGreen® qPCR Mix 200 nM 61°C 

PtgsCox2 EvaGreen® qPCR Mix 250 nM 60°C 
Socs3 EvaGreen® qPCR Mix 150 nM 57°C 
Ctgf EvaGreen® qPCR Mix 200 nM 60°C 
Fasn EvaGreen® qPCR Mix 150 nM 60°C 
Nlrp3 EvaGreen® qPCR Mix 100 nM 59°C 

Pycard/Asc EvaGreen® qPCR Mix 200 nM 60°C 
Srebf2 EvaGreen® qPCR Mix 250 nM 61°C 

Tnfsf12/Tweak EvaGreen® qPCR Mix 250 nM 61°C 
Tfrc EvaGreen® qPCR Mix 250 nM 60°C 

Hamp EvaGreen® qPCR Mix 250 nM 60°C 
 

 

 Standard Dilution Series 2.6.2

Real-time RT-PCR efficiency and quantification of target mRNAs in cDNA samples 

were determined using standards from 10 to 0.0001 attomoles of the real-time RT-

PCR standard plasmid per well (2.3.2). The plasmids were diluted in TE buffer 

(AppliChem, Germany) and run alongside the samples to generate a standard curve. 

The necessary amount of plasmid DNA was calculated by the following formula: 
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 c (target-DNA) [µmol/ml] = c (plasmid) [µg/ml] / MW * l 

with MW = molecular weight of the DNA (approx. 660 g/mol) and l = length of plasmid 

and insert in bp. 

 

 Quantification 2.6.3

Quantification was done by comparing the calculated square mean values of 

transgenic samples with wild-type samples. The calculation was performed by the 

CFX Manager Software (Bio-Rad, Germany) in consideration of PCR efficiency     

(90-110%) and the R2 value (>0.990) to ensure reproducibility. Square mean values 

of both, transgenic and wild-type animals, were normalized to an appropriate 

endogenous housekeeping gene. 

 

 Western Blot Analysis 2.7

 Preparation of Protein Samples 2.7.1

Protein samples were either isolated from (A) QIAzol Lysates (2.5.1) or in (B) 

Laemmeli buffer. (A) Total protein was extracted in 700 µl QIAzol Lysis Reagent from 

the intermediate and lower phase of 2.5.1 after transferring it into a new reaction 

tube. 100% ethanol was added and subsequently vortexed. 1-bromo-3-

chloropropane and distilled water were added, samples were vortexed and 

centrifuged (12,000 x g, 5 min, 4°C). 100% ethanol was added to the intermediate 

and lower phase, vortexed, and centrifuged (12,000 x g, 5 min, 4°C). After washing 

with 100% ethanol, the pellets were dissolved in 1% SDS. Protein concentrations 

were determined by the BCA Protein Assay kit (Thermo Fischer, USA) according to 

manufacturer´s guidelines. (B) Total protein was extracted in 500 µl lysis buffer      

(50 mM TrisHCL, pH 7.4, 1 mM EDTA, 150 mM NaCl, 1% Triton-X 100, 5 mM NaF, 

0.25% Na-deoxycholate, 2 mM NaVO3 and 1 x protease inhibitor (Complete from 

Roche, Germany) in distilled water) using a homogenizer (Kontes Pellet Pestle, 

ThermoFisher, Germany). Samples were centrifuged (14,000 x g, 15 min, 4°C),     

250 µl of the supernated mixed with 750 µl 3x SDS-Sample buffer (188 mM TrisHCl, 

pH 6.8, 6% [w/v] SDS, 30% [w/v] glycerol, 0.015% [w/v] bromophenol blue and 15% 

[w/v] β-mercaptoethanol in distilled water), denatured at 95°C for 5 min, and stored at 
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-20°C. Protein concentrations were determined by the BCA Protein Assay kit 

(Thermo Fischer, USA) according to manufacturer´s guidelines using the protein 

lysates without 3x SDS-Sample buffer.  

 

 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 2.7.2

           Table 2-5: Composition of a 12% gel 

 resolving gel stacking gel 

distilled water 6.6 ml 2.1 ml 

30% acrylamide / 0.8% bisacrylamide solution 8 ml 0.5 ml 

TrisHCl (1.5 M, pH 8.0) 5 ml  

TrisHCl (1 M, pH 6.8)  0.38 ml 

SDS (10% [w/v]) 200 µl 30 µl 

APS (10% [w/v]) 200 µl 30 µl 

TEMED 20 µl 3 µl 

 

 

(A) Samples were thawed on ice and diluted with 1% SDS in order to obtain the 

same protein amount. The samples were mixed with Roti®-Load 2 loading buffer and 

denatured for 10 min at 95°C. (B) Appropriate sample volumes were loaded onto the 

gel. A prestained protein marker (#671 Fermentas, Germany) was used to estimate 

molecular masses. Marker and samples were loaded onto the gel and separated in 

electrophoresis buffer (24.8 mM TrisHCl, 1.92 mM glycine, 0.1% [w/v] SDS) for        

60 min at 80 V, followed by 2.5 h at 120 V. Gel preparation and electrophoresis were 

carried out using the BioRad Mini PROTEAN system (BioRad, Germany).  

 

 Blotting  2.7.3

Using the Mini-Transblot cell (Bio-Rad, Germany) the separated protein samples 

were transferred to a polyvinylidene fluoride (PVDF) membrane (Immobilon-FL, 

Millipore, Germany). Prior to blotting, the membrane was incubated in methanol for  

30 s. Sponges, blotting papers, gel and membrane were equilibrated in transfer 

buffer (24.8 mM TrisHCl, 1.92 mM glycin, 0.05% [w/v] SDS, 20% methanol), followed 
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by gel sandwich preparation. Blotting was carried out overnight at 80 mA. In order to 

block unspecific binding sites the membranes were incubated with Rockland Blocking 

Buffer (RBB) for near-infrared Western blotting (Rockland, USA) for 1 h at room 

temperature prior to immunodetection. 

 

 Immunodetection 2.7.4

Antibodies were either diluted in PBS-T (0.1% [v/v] Tween 20 in PBS (NaHPO4        

8.0 mmol/l, KH2PO4 1.5 mmol/l, NaCl 160 mmol/l in water)) containing 5% [m/v] dried 

milk powder (MP) or BSA or in RBB according to table 2-6. Membranes were 

incubated with primary antibodies with an incubation time and temperature as 

indicated in table 2-6. Subsequently, the membranes were washed twice with the 

primary antibody diluent, followed by two washing steps with PBST. Then, 

membranes were incubated with the labeled secondary antibody for 2 h at room 

temperature. After two washing steps with PBST followed by two washing steps with 

PBS for 5 min, blots were scanned with an Odyssey Infrared Imaging System (LI-

COR Bioscience, Germany), and relative signal intensities were determined using the 

Odyssey software. 

 

Table 2-6: Antibody dilutions, incubation time and temperature and secondary antibodies for 
immunodetection 

Antibody 
(Source) Dilution incubation secondary antibody 

hu p62 
(self made) 1:2,000 in PBST + 5% BSA 1 h at RT anti rabbit 680 1:5,000 in RBB 

1 h RT 

Tubulin 
(Sigma-Aldrich, 
Germany) 

1:1,000 in PBST + 5% MP 2 h at RT anti mouse 800 1:10,000 in RBB 
2 h RT 

FASN 
(Cell Signaling , USA) 1:1,000 in RBB 2 h at RT anti rabbit 680 1:5,000 in RBB 

2 h RT 

SREBF1 
(Abcam, USA) 

1:200 in PBST + 5% MP 2 h at RT anti mouse 800 1:10,000 in RBB 
1.5 h RT 
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Antibody 
(Source) Dilution incubation secondary antibody 

PPARA 
(Abcam, USA) 

1:1,000 in PBST + 5% MP 18 h at 4°C anti rabbit 680 1:5,000 in RBB  
1.5 h RT 

ELOVL6 
(Sigma-Aldrich, 
Germany) 

1:1,000 in PBST + 5% BSA 18 h at 4°C 
anti rabbit 680 1:5,000 in RBB  
2 h RT 

Caspase 1 
(Abcam, USA) 

1:750 in RBB 18 h at 4°C anti rabbit 680 1:5,000 in RBB  
2 h RT 

Interleukin-1 beta 
(R&D Systems, USA) 1:750 in RBB 3 h at RT anti goat 800 1:10,000 in RBB  

2h RT 

 

 

 Quantitative Determination of  2.8

Thiobarbituric Acid Reactive Substances (TBARS) 

Products of lipid peroxidation (conjugated dienes, lipid hydroperoxides, and 

thiobarbituric acid reactive substances) were measured by a fluorometric assay 

according to (Ohkawa et al., 1979). 10-20 mg liver tissues were homogenized in 1 x 

PBS (NaHPO4 8.0 mmol/l, KH2PO4 1.5 mmol/l, NaCl 160 mmol/l in water) containing 

1% phosphatase inhibitor cocktail II (Sigma, Germany) and centrifuged. For protein 

precipitation 100 µl lysate were mixed with 200 µl ice cold 10% trichloroacetic acid 

and after incubation on ice, centrifuged for 10 min at 14,000 x g. The clear 

supernatant was mixed with equal volume of TBA (0.67% [w/v] in water) and heated 

for 15 min at 100°C. After cooling down to room temperature the fluorescence 

intensity of the samples was measured in duplicate on a 96 well plate at                         

λex/em = 530 nm / 572 nm on the Wallac VictorTM. TBARS are expressed as 

malondialdehyde (MDA) equivalents as μmol per mg liver tissue. A MDA standard is 

used to create a standard curve against which unknown samples were plotted.  
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 Fatty Acid Profile Analysis 2.9

Approximately 10 mg dry weight of flash-frozen liver tissue sample were lyophilized 

to dryness, dissolved in a mixture of 500 µl methanol/toluene/sulfuric acid (50:50:2 

[v/v/v]), and incubated at 55°C overnight. Subsequently, 400 µl of a 0.5 M NH4CO3,   

2 M KCl solution were added to the sample, which was then centrifuged at room 

temperature. 100 µl of the upper phase were transferred to a gas chromatographic 

(GC) vial and measured. Fatty acid analysis was performed on an Agilent 6890N gas 

chromatograph coupled to an Agilent 5973N mass selective detector (both Agilent 

Technologies, Germany) and equipped with a non-polar J&WDB-5HT capillary 

column. Fatty acid measurements were performed by Katja Gemperlein (Saarland 

University, Pharmaceutical Biotechnology).  

 

 Liver Histology and Quantitative Scoring System 2.10

For histological examination, paraffin-embedded liver tissue specimens were cut in 

0.5 µm sections, and stained with hematoxylin-eosin (HE) for histological features of 

steatohepatitis, with Sirius Red to evaluate hepatic collagen deposition and fibrosis, 

and Prussian Blue for iron deposition. Immunhistochemistry (IHC) was performed for 

a comprehensive characterization of the murine NASH model. Two investigators 

(Assoz. Prof. Dr. Johannes Haybäck, Medical University of Graz and Dr. Sonja M. 

Kessler, Pharmaceutical Biology, Saarland University), blinded to experimental 

conditions, examined sections for steatosis, apoptosis, fibrosis, portal and lobular 

inflammation, lobular infiltration, ductular reaction, hepatocellular iron, and p65 

nuclear translocation as shown in table 2-7. 

 

Table 2-7: Scoring system for steatosis, apoptosis, fibrosis, portal and lobular inflammation, 
lobular infiltration, ductular reaction, hepatocellular iron, and p65 nuclear translocation 

scoring system assessed by 
steatosis score 0 none HE 
  score 1 <5% of parenchyma involved   
  score 2 >5-20% of parenchyma involved   

 score 3 >20% of parenchyma involved   
  score 4 >50% of parenchyma involved   
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scoring system assessed by scoring system assessed by 

apoptosis score 0 none HE and cleaved  
  score 1 <2/20x caspase 3 IHC 
  score 2 2-4/20x   
  score 3 >4/20x   
    
fibrosis score 0 none Sirius Red 
  score 0.2-0.8 mild perisinusoidal   
  score 1 perisinusoidal   
  score 2 portal/periportal and/or septal   
  score 3 portal/periportal and septal   
  score 4 cirrhosis   
  

  
  

portal  score 0 none to minimal HE 
inflammation score 1  greater than minimal   
      

lobular  score 0 none HE 

inflammation score 1 <2/20x   
  score 2 2-4/20x   
  score 3 >4/20x   
      

lobular infiltration  score 0 none HE 

with neutrophils score 1 few   
  score 2  many   
  

  
  

ductular reaction score 0 none HE and K19 IHC 
  score 1  rare-few (1-6)   
  score 2 many (>6)   
  score 3 cirrhosis with few   
  score 4 cirrhosis with many   

   
  

hepatocellular iron score 0 no granules Prussian Blue 
  score 1 zone 1, granules seen at 40x   
  score 2  granules seen at 20x   
  score 3 granules seen at 10x   
  score 4 granules seen at 10x in zone 1 and 2   
Mallory Denk  score 0 none p62/sequestosome  
bodies score 1 present IHC and Ubiquitin IHC 
      
nuclear  score 0 none NFKB IF 
translocation of score 1 1-5 positive nucleoli/20x   
p65 score 2 6-12 positive nucleoli/20x   
  score 3 >13 positive nucleoli/20x   
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 Fixation and Embedding of Liver Tissue and Preparation of Slides 2.10.1

After roughly 24 h formalin-fixed liver tissues were embedded in an automated 

Tissue-Tek VIP (Sakura Finetek, Japan), and dehydrated with 7 x 100% ethanol 

followed by 3x xylol and embedded in paraffin. With a microtome 0.5 µm slices were 

cut from paraffin-embedded liver tissues.  

 

 Staining and Embedding 2.10.2

Due to the water solubility of the staining reagents, paraffin slides were hydrated with 

a series of xylol, followed by a series of alcohol (3 x 100% ethanol) prior to the actual 

staining. For HE stain slides were incubated for 10 min in hematoxylin, followed by 

blueing with running water for 5 min, and incubation in eosin for 2 min. The cell 

nucleus is stained magenta-blue, whereas the cytoplasm appears red-pink. 

For Sirius Red stain slides were incubated with hematoxylin for 10 min followed by 

blueing for 10 min. Then, slides were incubated in Sirius Red solution (1/1,000 Direct 

Red 80 (Sigma-Aldrich, Germany) in picric acid solution 1.8% (saturated) (Sigma-

Aldrich, Germany) for 1 h. The slides were subsequently washed twice in water with 

0.5% acetic acid. Cells were stained yellow and collagen fibers red in bright field, 

collagen V appeared green and collagen I yellow-red under polarized light due to 

their birefringence. For polarization microscopy slides were put between two linear 

polarizing filters on Leica Stereomikroskop M 165 C microscope and through rotating 

one filter into a crossed position the birefringence appeared. 

The Prussian blue stain began with incubation in a solution of saturated potassium 

hexacyanoferrate in water with 10% hydrogen chloride for 10 min, followed by a 

washing step with water and 10 min staining in a nuclear fast red solution (Sigma-

Aldrich, Germany, #N069). Cells were stained pink and iron granules were stained 

blue.  

Slides were dehydrated in a series of alcohol (3 x 100% ethanol) and 4 times xylol, 

prior to embedding with Entellan® (Merck, Germany, #107961) and then covered with 

a coverslip for long-term storage. 
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 Immunohistochemistry 2.10.3

Paraffin sections were used for immunohistochemistry of cleaved caspase-3, a 

marker for apoptotic cells; alpha actin (smooth muscle), a marker for activated 

stellate cells; F4/80, a surface marker of mouse macrophages; cytokeratin 19, a 

marker for oval/progenitor cells, and cholangiocytes; ubiquitin and 

p62/sequestosome, both markers for Mallory Denk bodies, human p62/IGF2BP2-2 

and the NFKB subunit p65. Immunohistochemical staining was performed after 
demasking of the sections with the appropriate method listed in table 2-8. The 

sections were immunostained with the appropriate antibody: concentration, 

incubation time, and temperature are listed in table 2-8. Subsequently, 

immunodetection was performed using distinct detection kits as listed in table 2-8 

according to the instructions of the manufacturer´s manual. After that, counterstaining 

with hematoxylin or DAPI for immunofluorescence (IF) was performed and sections 

were dehydrated and embedded with Entellan® (Merck, Germany, #107961). As 

negative controls sections were incubated without primary antibody. 

 

 

Table 2-8: Antibody dilutions, demasking, incubation time, temperature, and immunodetection 

Antibody 
(source) demasking of antigens dilution incubation  detection system 

cleaved caspase-3 
(Cell Signaling , 
USA) 

citrate buffer pH 6.0, 95°C,          
10 min, water bath 1:1,000 18 h at 4°C 

Dako CSA II with CSA Rabbit link / 
DAB  

alpha SMA 
(Epitomics, USA) 

citrate buffer pH 6.0, 95°C,          
10 min, water bath 

1:2,000 18 h at 4°C Dako CSA II with CSA Rabbit link / 
DAB  

F4/80 
(AbD Serotec, UK) 

citrate buffer pH 6.0, 95°C,          
10 min, water bath 1:1,000 18 h at 4°C 

Vectastain Peroxidase Elite ABC kit 
/ DAB 

K 19 
(Epitomics, USA) 

Epitop retrieval solution 
(Dako), 40 s, water bath 1:500 

60 min at 
RT Dako Envision / AEC 

Ubiquitin 
(Dako, Denmark) protease block 10 min 1:300 

30 min at 
RT 

Dako RealTM detection system / 
AEC 

p62/sequestosome 
(Progen, Germany) 

citrate buffer pH 6.0, 40 s,      
microwave 1:100 

60 min at 
RT Dako Envision / AEC 

NFKB-p65 
(Neomarkers, USA) 

citrate buffer pH 6.0, 95°C,          
10 min, water bath 

1:1,000 18 h at 4°C IF with Alexa Fluor 546 (Invitrogen, 
Germany) as secondary antibody 

hu p62  
(IGF2BP2-2) 
(selfmade) 

citrate buffer pH 6.0, 40 s,      
microwave 

1:1,000 60 min at 
RT 

Dako Envision / AEC 
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 Lipid Staining and Staining for Unesterified “Free” Cholesterol  2.10.4

on Cryo Sections 

Lipid accumulation and unesterified cholesterol was measured on frozen liver tissue 

sections (5 µm), and cut on a cryostat Frigocut 2800 (Reichert Jung, Germany). 

Sections were mounted on superfrost slides (ThermoScientific, Germany) and air 

dried. For lipid staining slides were treated as follows: after 2 min fixation with 4% 

neutral buffered formalin at RT, slides were incubated for 3 min in 50% ethanol 

followed by 3 min in Scharlach Red solution (0.3% [m/v] Scharlach Red (Roth, 

Germany, #0327.1) in 1:1 acetone with 70% ethanol), rinsed in 70% ethanol and 

counterstained with hematoxylin. Slides were embedded in a glycerin-gelatin gel. For 

staining of unesterified cholesterol, liver sections were fixed for 15 min in 4% neutral 

buffered formalin, and washed with PBS, and then treated with 10% fetal calf serum 

(FCS) in PBS for 30 min. Filipin (Sigma Chemicals, Germany) was dissolved in a 

small volume of dimethylsulfoxide, then diluted to 0.25 mg/ml in 10% FCS/PBS and 

added to the tissue for 1 h at room temperature. Slides were washed with 10% 

FCS/PBS once and PBS twice. Slides were coverslipped using FluorSaveTM Reagent 

(Calbiochem, Germany), and after 24 h at 4°C slides were examined using Zeiss Cell 

Observer (Zeiss, Germany). 

 

 Statistics 2.11

Data analysis and statistics were performed using Microsoft Office 2010 software and 

OriginPro 8.6G. Effect of genotype, MCD diet, and their interactions were displayed 

as mean and median values ± SEM with 9-12 animals per group. Statistical 

differences were estimated by Kruskal-Wallis-ANOVA for nonparametric samples 

followed by post-hoc-analysis with Mann-Whitney-U-test. Differences were 

considered statistically significant when p values were less than 0.05.  
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 p62 Expression  3.1
The expression of the transgene p62/IGF2BP2-2 was quantified by real-time RT-PCR 

on transcript levels and Western blot analyses for protein expression throughout the 

experiment. Immunhistochemistry was used to determine the localization of the 

protein. We detected a consistent mRNA expression in MCD and ctrl diet fed animals 
for 2 and 4 weeks (Figure 3-1A). After 12 weeks the transcript levels dropped 

(Figure 3-1A). Still, protein expression was shown for all transgenic animals even 

after 12 weeks (Figure 3-1B). Immunohistochemical analyses of p62 confirmed the 

absence of p62/IGF2BP2-2 in wild-type animals and its expression in transgenic 

animals in a heterogenic cytosolic distribution (Figure 3-1C).   

 

Figure 3-1: p62/IGF2BP2-2 expression in mice. (A) mRNA expression was determined by real-time 
RT-PCR of p62/IGF2BP2-2 and is shown as ratio against the housekeeping gene Pipa (cyclophilin). 
Data are represented as individual values and box plots with median (—) and mean (□) in a five-
number summary (n=9-12). (B) p62/IGF2BP2-2 protein expression verified by Western blot analysis. 
Representative blots from animals fed the MCD diet for 2, 4, and 12 weeks are shown. (C) 
Representative paraffin-embedded liver sections of mice fed the MCD diet for 2 weeks showed 
immunohistochemical stain for p62/IGF2BP2-2 expression (original magnification 200x).  
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 p62 Amplifies Murine NASH and NASH-Induced Fibrosis 3.2
 General Effects of the Dietary Manipulation 3.2.1

Mice of both genotypes exhibited different characteristics typical for the MCD diet. 

These comprised a loss of body and relative liver weight through feeding the MCD 

diet (Figure 3-2). All animals had a starting weight of around 10 ± 2 g and 

subsequently lost around 20-40% of body weight on the MCD diet, whereas animals 

on the ctrl diet gained weight (Table 3-1). MCD fed animals were cachectic, as seen 

in figure 3-2 compared to animals on ctrl diet after 12 weeks. Due to reduced VLDL 

from the liver (Anstee & Goldin, 2006), serum triglycerides and cholesterol were 

reduced in MCD animals, as were serum glucose levels. Elevated AST and ALT 

levels indicated liver damage induced by the MCD diet (Table 3-1).  

 

 Figure 3-2: Photograph of mice fed the MCD (left) and ctrl (right) diet for 12 weeks.



Results 

~ 45 ~ 
 

 

Table 3-1: Weight parameters, serum parameters, and lipids of p62 transgenic and wild-type mice fed the MCD diet for 2, 4, or 12 weeks. Values are 
expressed as mean ± SEM 

 2 weeks 4 weeks 12 weeks 

 Ctrl MCD ctrl MCD ctrl MCD 

 wt tg wt tg wt tg wt tg wt tg wt tg 

number animals [n] 10 10 12 12 10 10 12 12 10 9 9 11 

body weight change [%] 91.3 ± 5.7 88 ± 6.2 -19.3  ±  0.9† -18.4  ± 0.9†‡ 103.9 ± 7.0 121.2 ± 11.3 -31.3 ± 1.3† -28.5 ± 1.3†‡ 188.2 ± 11.6 205 ± 16.1 -35.3 ± 1.4† -36.7 ± 0.7†‡ 

relative liver weight        
[% of body weight] 4.8  ± 0.1 4.6 ± 0.1 3.4  ± 0.1† 4.0 ± 0.2*†‡ 4.2 ± 01 4.1 ± 0.1 3.4 ± 0.1† 3.5 ± 0.2†‡ 4.1 ± 0.3 4.1 ± 0.2 4.1 ±0.3 4.0 ± 0.3 

serum ALT [U/L] 288.9  ±  83 233  ± 20 418  ± 36† 469  ± 73†‡ 189  ± 38 222  ± 25 235  ± 40 209  ± 46 210 ± 25 114 ± 14* 131 ± 16† 149 ± 24 

serum AST [U/L] 1,568  ±  224 1,535  ± 162 2,404  ± 125† 2,544  ± 207†‡ 1,845  ± 204 1,712  ± 253 2,813  ± 286† 3,057  ± 346† 2,322 ± 385 1,171 ± 188* 2,088 ± 217 2,341 ± 202† 

serum triglycerides [mg/dl] 244  ± 19 219  ± 17 107  ± 5† 128  ± 11†‡ 211  ± 18 203  ± 21 95  ± 7† 106  ± 5†‡ 234 ± 32 204 ± 23 71 ± 6† 72 ± 5†‡ 

serum HDL [mg/dl] 93.6  ± 6 97.5  ± 4 24.4  ± 2† 20.9  ± 4†‡ 112  ± 8 119  ± 8 15  ± 2† 18  ± 2†‡ 128 ± 11 140 ± 9 10 ± 0.5† 12 ± 2†‡ 

serum glucose [mg/dl] 234  ± 27 179  ± 15 67  ± 10† 59  ± 7†‡ 193  ± 13 253  ± 36 59  ± 7† 40  ± 5*†‡ 211 ± 25 200 ± 15 58 ± 8† 64 ± 6†‡ 

serum cholesterol [mg/dl] 122  ± 6 125  ± 5 47  ± 3† 65  ± 8†‡ 135  ± 10 144  ± 5 33  ± 2† 46  ± 5*†‡ 164 ± 15 164 ± 11 22 ± 2† 26 ± 3†‡ 

liver cholesterol          
[µg/mg liver dry weight] 11.5 ± 0.7 10.5 ± 0.8 14.9 ± 1.5† 19.2 ± 1.5†‡ 12.3 ± 2.1 13.5 ± 2.1 13.9 ± 2.1 20.3± 2.1*†‡ 14.6 ± 1.3 14.0 ± 2.6 14.0 ± 2.6 17.1 ± 2.4 

Liver fatty acids        
[µg/mg liver dry weight] 106 ± 5 91 ± 8 140 ± 9† 206 ± 16*†‡ 106 ± 21 116 ± 17 158 ± 24 205 ± 24†‡ 126 ± 11 143 ± 21 233 ± 39 261 ± 41‡ 

 
*   p<0.05 in comparison to wild-type 

†   p<0.05 in comparison to control diet 

‡   p<0.05 in comparison to wild-type on control diet 
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 Steatosis 3.2.2

Macroscopic examination of the livers from MCD and control diet animals showed 

distinct alterations in p62 transgenic animals: Wild-type animals in the control diet 

showed no macroscopic abnormalities, whereas p62 transgenic livers appeared more 

yellowish and showed bright areas (Figure 3-3). Livers from animals on MCD were 

conspicuously smallish compared to livers from ctrl diet. MCD livers appeared pale 

with a visible change of the microarchitecture of the liver, which was more pronounced 

in p62 transgenic animals (Figure 3-3). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3: Representative macroscopic pictures of the livers from animals fed with the respective 
diet for 12 weeks. All pictures were taken in the same manner regarding objective and distance.  

 

Animals of both genotypes developed steatosis on the MCD diet. However, 

histological analyses showed an amplification of mediovesicular steatosis in p62 

transgenic animals compared to their wild-type littermates as early as 2 weeks 

(p=0.04) (Figure 3-4A, B). The relative liver weight was significantly increased in 
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transgenics (p=0.02) (Table 3-1) and therefore consistent with the histological 

changes.  

 

 

 

 

 

 

Figure 3-4: p62 amplifies steatosis. (A) Liver sections stained to demonstrate lipid accumulation by 
Scharlach red staining on cryo sections from animals fed with the respective diet for 2 weeks (original 
magnification 200x and 500x for inserts). (B) Steatosis score shows percentage of animals classified 
into appropriate scores (see table 2-7). 

 

In order to determine whether the p62-mediated amplification of NASH is based on the 

steatosis already present in the beginning of MCD feeding due to early p62 

expression, a temporal inhibition of p62 expression prior to feeding the MCD diet was 

performed by feeding doxycycline. Thus, p62 expression started at the same time as 

feeding the diet. Prior to the experiment a preliminary test was performed to determine 

the correct doxycycline concentration as well as the onset of p62 expression after 

withdrawal of doxycycline. Doxycycline was fed either in a concentration of 25 µg/ml 

or 50 µg/ml in drinking water. Animals were subsequently sacrificed 2, 3, 4, or 5 days 

after doxycycline withdrawal. After 2 days of doxycycline withdrawal no p62 

expression was detectable with both concentrations, whereas after 3 days p62 

expression was restored (Figure 3-5A). For the actual experiment a concentration of 

25 µg/ml doxycycline was used up until 2 days prior to feeding the MCD diet for 3 

weeks.                  

In the actual experiment p62 expression was confirmed by measuring the mRNA 

expression rate (Figure 3-5B). Histological evaluation revealed a significantly 
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increased steatosis in transgenics compared to wild-type animals without doxycycline 

(Figure 3-5C). In addition, a tendency of increased steatosis through doxycycline 

feeding was seen in wild-type animals (Figure 3-5C). Hence, p62 expression leads to 

increased steatosis irrespective of an early or simultaneous expression.  

To determine the underlying mechanistic origin of steatosis formation in p62 

transgenic animals, animals without doxycycline feeding were used. 

 

Figure 3-5: Doxycycline-dependent temporal suppression of p62 expression. (A) Preliminary test 
with single animals fed with 25 µg/ml doxycycline until 2 days or 50 µg/ml doxycycline in drinking water 
until 2, 3, 4, or 5 days prior to sacrificing the animals. p62 is shown as ratio against the housekeeping 
gene Pipa (cyclophilin). (B) Actual experiment with animals fed with 25 µg/ml doxycycline up until 2 
days prior to feeding of the MCD diet for 3 weeks. Relative mRNA expression of p62 is shown as ratio 
against the housekeeping gene Pipa. Data are represented as individual values and box plots with 
median (—) and mean (□) in a five-number summary (n=10). (C) Steatosis score with percentage of 
animals classified into appropriate scores (see table 2-7). 
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GC-MS analyses of hydrolyzed lipids revealed significantly higher levels of hepatic 

fatty acids in p62 transgenic mice (Figure 3-6A), whereas serum triglycerides were 

not found to be different from wild-type animals (Table 3-1). The hepatic fatty acid 

pattern further indicated strong alterations in p62 transgenic animals compared to their 

wild-type littermates after 2 weeks on the MCD diet (Table 3-2). In particular, a more 

pronounced accumulation of monounsaturated fatty acids compared to saturated and 

polyunsaturated fatty acids was seen in transgenic animals (Figure 3-6B-D). Both the 

elevated ratio of palmitoleic acid (C16:1) to palmitic acid (C16:0) (Figure 3-6E) and a 

very pronounced induction of oleic acid (C18:1) indicated an increased desaturase 

activity (Figure 3-6F). In fact, the desaturase stearoyl-CoA desaturase (Scd) 1, being 

responsible for the formation of C16:1 and C18:1 fatty acids, tended to be increased in 

p62 transgenic animals, despite a strong downregulation upon the MCD diet (Figure 
3-7A). After 4 and 12 weeks the increased steatosis formation due to p62 expression 

disappeared as seen histologically (Figure 3-4) and confirmed by GC-MS analyses 

(Table 3-3, 3-4).  
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Figure 3-6: p62 alters fatty acid pattern. (A-F) GC-MS fatty acid analyses of mice fed the MCD or ctrl 
diet for 2 weeks. Liver tissues were lyophilized and analyzed by GC-MS. Sum of all fatty acids (A), sum 
of saturated fatty acids (SFA) (B), sum of monounsaturated fatty acids (MUFA) (C), sum of 
polyunsaturated fatty acids (PUFA) (D), and stearic acid (C18:0), as well as oleic acid (C18:1) (E) are 
represented as individual values and box plots with median (—) and mean (□) in a five-number 
summary (n=9-12). (F) Ratios of C16:1/C16:0 and C18:1/C18:0 from animals fed the MCD diet for 2 
weeks are likewise displayed. 



Results 

~ 51 ~ 
 

Table 3-2: GC-MS fatty acid analyses of mice fed the MCD or ctrl diet for 2 weeks. Values [µg/mg 
dry liver tissue] are expressed as mean ± SEM (n=9-12). Liver tissues were lyophilized and analyzed by 
GC-MS.  

 

Fatty acid ctrl wt ctrl tg a MCD wt b MCD tg c d e 

12:0 0.004 ± 0.001 0.001 ± 0.001 0.027 n.d. 0.0009 0.003 ± 0.002 0.166 0.619 0.07 

14:0 0.25 ± 0.04 0.25 ± 0.05 0.970 0.24 ± 0.04 0.817 0.43 ± 0.04** 0.003 0.023 0.005 

15:0 0.01 ± 0.003 0.01 ± 0.003 0.113 0.02 ± 0.01 0.105 0.05 ± 0.01* 0.035 0.0007 0.002 

16:0 17.23 ± 0.79 16.08 ± 1.43 0.623 17.16 ± 1.63 0.531 23.85 ± 1.65** 0.006 0.005 0.0033 

16:1 1.69 ± 0.29 1.51 ± 0.30 0.570 0.57 ± 0.10 0.00009 1.13 ± 0.12** 0.005 0.817 0.138 

17:0 0.11 ± 0.01 0.06 ± 0.01** 0.021 0.23 ± 0.03 0.00002 0.34 ± 0.03* 0.01 0.0009 0.0001 

17:1 0.02 ± 0.01 0.01 ± 0.01 0.046 0.003 ± 0.003 0.023 0.01 ± 0.01 0.514 0.619 0.117 

18:0 12.64 ± 0.57 9.41 ± 0.81** 0.006 13.08 ± 0.97 0.817 18.15 ± 1.00** 0.0014 0.0003 0.0009 

18:1 20.13 ± 2.51 17.98 ± 2.07 0.678 24.11 ± 1.28 0.106 39.66 ± 3.27*** 0.001 0.0003 0.0009 

18:2 17.88 ± 0.87 16.42 ± 1.60 0.241 23.90 ± 2.15 0.060 36.28 ± 6.34* 0.040 0.0027 0.004 

18:3 0.23 ± 0.05 0.27 ± 0.10 0.571 1.50 ± 0.28 0.00009 2.99 ± 0.46** 0.003 0.00009 0.00009 

20:0 0.22 ± 0.05 0.10 ± 0.03 0.045 0.14 ± 0.03 0.373 0.33 ± 0.05*** 0.0007 0.00009 0.138 

20:1 0.40 ± 0.03 0.30 ± 0.04* 0.045 0.81 ± 0.14 0.023 1.99 ± 0.27** 0.002 0.00009 0.00009 

20:2 0.45 ± 0.04 0.53 ± 0.06 0.385 1.67 ± 0.17 0.00009 2.94 ± 0.25*** 0.0006 0.00009 0.00009 

20:3 1.09 ± 0.09 0.89 ± 0.14 0.186 2.87 ± 0.37 0.00009 5.15 ± 0.44*** 0.0006 0.00009 0.00009 

20:4 13.69 ± 0.58 10.37 ± 0.80** 0.011 16.49 ± 1.15 0.044 23.20 ± 1.81** 0.006 0.00009 0.00015 

22:0 0.59 ± 0.11 0.29 ± 0.07* 0.031 0.31 ± 0.03 0.093 0.50 ± 0.03*** 0.0007 0.038 0.921 

22:1 0.01 ± 0.003 0.003 ± 0.003 0.387 0.01 ± 0.01 0.933 0.04 ± 0.01 0.091 0.035 0.129 

22:4 0.57 ± 0.05 0.51 ± 0.08 0.273 4.24 ± 0.48 0.00009 6.25 ± 0.56* 0.0036 0.00009 0.00009 

22:6 4.72 ± 0.28 3.82 ± 0.29* 0.054 12.08 ± 0.90 0.00009 14.06 ± 1.05 0.214 0.00009 0.00009 

23:0 0.08 ± 0.01 0.04 ± 0.004*** 0.0003 0.08 ± 0.01 0.921 0.10 ± 0.01 0.194 0.0002 0.223 

24:0 0.42 ± 0.02 0.31 ± 0.02** 0.003 0.45 ± 0.02 0.249 0.63 ± 0.05** 0.0013 0.0001 0.0009 

 

a = p-value of comparison of ctrl wt and ctrl tg 

b = p-value of comparison of wt ctrl and wt MCD 

c = p-value of comparison of MCD wt and MCD tg 

d = p-value of comparison of tg ctrl and tg MCD 

e = p-value of comparison of wt ctrl and tg MCD  
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Table 3-3: GC-MS fatty acid analyses of mice fed the MCD or ctrl diet for 4 weeks. Values [µg/mg 
dry liver tissue] are expressed as mean ± SEM (n=9-12). Liver tissues were lyophilized and analyzed by 
GC-MS.  

 

Fatty acid ctrl wt ctrl tg a MCD wt b MCD tg c d e 

12:0 0.003 ± 00.2 0.005 ± 0.003 0.871 0.004 ± 0.004 0.543 0.003 ± 0.003 1 0.543 0.543 

14:0 0.45 ± 0.12 0.50 ± 0.14 0.734 0.44 ± 0.08 0.817 0.62 ± 0.10 0.260 0.307 0.156 

15:0 0.03 ± 0.01 0.05 ± 0.01* 0.087 0.07 ± 0.02 0.211 0.03 ± 0.02 0.095 0.053 0.318 

16:0 19.65 ± 3.98 22.88 ± 4.16 0.623 21.78 ± 3.58 0.717 29.32 ± 3.99 0.260 0.176 0.223 

16:1 2.89 ± 0.92 2.65 ± 0.91 0.970 0.74 ± 0.21 0.023 1.09 ± 0.22 0.340 0.081 0.081 

17:0 0.12 ± 0.02 0.17 ± 0.03 0.140 0.33 ± 0.06 0.019 0.34 ± 0.07 0.977 0.044 0.008 

17:1 0.05 ± 0.02 0.05 ± 0.03 0.609 n.d 0.008 n.d 1 0.053 0.008 

18:0 12.20 ± 2.07 14.08 ± 1.93 0.571 21.62 ± 2.97 0.027 28.99 ± 3.42 0.175 0.0022 0.0009 

18:1 19.47 ± 4.68 19.77 ± 3.93 0.970 25.50 ± 4.72 0.448 32.80 ± 4.92 0.403 0.060 0.044 

18:2 14.12 ± 2.63 17.35 ± 2.75 0.385 32.26 ± 4.74 0.008 43.56 ± 4.82 0.141 0.0007 0.0003 

18:3 0.18 ± 0.05 0.31 ± 0.07 0.112 2.19 ± 0.46 0.0003 2.73 ± 0.54 0.665 0.00009 0.00009 

20:0 0.33 ± 0.11 0.33 ± 0.09 0.427 0.20 ± 0.05 0.234 0.31 ± 0.08 0.619 0.869 0.765 

20:1 0.49 ± 0.10 0.63 ± 0.11 0.427 1.13 ± 0.25 0.060 1.13 ± 0.29 0.885 0.336 0.234 

20:2 0.40 ± 0.09 0.60 ± 0.08 0.064 1.83 ± 0.34 0.0027 2.30 ± 0.41 0.507 0.0005 0.0003 

20:3 1.00 ± 0.27 1.27 ± 0.25 0.273 2.82 ± 0.52 0.011 3.41 ± 0.54 0.371 0.005 0.0022 

20:4 11.65 ± 2.09 12.39 ± 1.46 0.734 20.20 ± 3.11 0.052 22.91 ± 2.91 0.707 0.005 0.009 

22:0 0.56 ± 0.15 0.54 ± 0.10 0.791 0.12 ± 0.07 0.002 0.43 ± 0.10* 0.019 0.621 0.448 

22:1 0.04 ± 0.03 0.03 ± 0.02 0.545 n.d 0.129 n.d 1 0.021 0.129 

22:4 0.37 ± 0.08 0.56 ± 0.08 0.140 3.95 ± 0.83 0.0011 3.54 ± 0.71 0.862 0.0011 0.0011 

22:5 0.04 ± 0.02 0.07 ± 0.02 0.322 0.77 ± 0.20 0.0007 0.51 ± 0.13 0.339 0.088 0.029 

22:6 2.28 ± 0.35 2.55 ± 0.32 0.791 7.47 ± 1.06 0.005 8.21 ± 1.16 0.977 0.0001 0.00009 

23:0 0.07 ± 0.01 0.09 ± 0.01 0.473 0.06 ± 0.02 0.505 0.04 ± 0.03 0.119 0.006 0.015 

24:0 0.34 ± 0.07 0.40 ± 0.05 0.571 0.50 ± 0.07 0.093 0.66 ± 0.10 0.285 0.027 0.016 

24:1 0.14 ± 0.05 0.06 ± 0.04 0.231 n.d 0.008 0.17 ± 0.06** 0.007 0.157 0.751 

sum FA 106.0 ± 20.85 115.88 ± 16.55 0.678 157.87 ± 24.11 0.156 204.74 ± 23.71 0.285 0.009 0.008 

sum SFA 33.75 ± 6.34 39.06 ± 6.09 0.521 45.12 ± 6.78 0.277 60.74 ± 7.71 0.194 0.044 0.019 

Sum MUFA 23.08 ± 5.59 23.19 ± 4.87 0.910 27.36 ± 5.15 0.621 35.19 ± 5.25 0.341 0.121 0.060 

sum PUFA 36.93 ± 7.94 40.09 ± 4.16 0.678 71.49 ± 10.48 0.023 88.47 ± 10.03 0.285 0.0009 0.0017 

 

a = p-value of comparison of ctrl wt and ctrl tg 

b = p-value of comparison of wt ctrl and wt MCD 

c = p-value of comparison of MCD wt and MCD tg 

d = p-value of comparison of tg ctrl and tg MCD 

e = p-value of comparison of wt ctrl and tg MCD 
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Table 3-4: GC-MS fatty acid analyses of mice fed the MCD or ctrl diet for 12 weeks. Values [µg/mg 
dry liver tissue] are expressed as mean ± SEM (n=9-12). Liver tissues were lyophilized and analyzed by 
GC-MS.  

 

Fatty acid ctrl wt ctrl tg a MCD wt b MCD tg c d e 

12:0 0.04 ± 0.02 0.07 ± 0.02 0.037 0.05 ± 0.01 0.128 0.07 ± 0.04 0.433 0.281 1 

14:0 0.53 ± 0.11 0.70 ± 0.09 0.153 0.84 ± 0.19 0.131 0.75 ± 0.15 0.761 0.879 0.342 

15:0 0.04 ± 0.01 0.09 ± 0.01** 0.005 0.22 ± 0.08 0.004 0.19 ± 0.06 0.790 0.323 0.077 

16:0 25.57 ± 2.96 29.00 ± 3.73 0.391 30.26 ± 4.91 0.391 33.56 ± 5.04 0.761 0.543 0.245 

16:1 2.85 ± 0.66 3.83 ± 0.58 0.131 2.13 ± 0.47 0.596 1.98 ± 0.42 0.820 0.019 0.342 

17:0 0.16 ± 0.02 0.21 ± 0.02* 0.079 0.37 ± 0.07 0.025 0.35 ± 0.05 0.649 0.095 0.01 

17:1 0.07 ± 0.03 0.11 ± 0.03 0.373 0.01 ± 0.01 0.155 n.d 0.315 0.0007 0.027 

18:0 16.12 ± 1.45 16.39 ± 2.66 0.488 26.04 ± 4.17 0.131 31.76 ± 4.80 0.494 0.028 0.018 

18:1 25.00 ± 4.01 29.00 ± 3.97 0.540 39.56 ± 7.06 0.094 45.56 ± 8.48 0.820 0.197 0.098 

18:2 17.68 ± 1.40 20.93 ± 4.50 0.653 53.26 ± 11.59 0.005 64.14 ± 11.90 0.649 0.005 0.002 

18:3 0.31 ± 0.07 0.60 ± 0.10* 0.025 4.01 ± 0.92 0.004 3.18 ± 0.71 0.543 0.0006 0.0002 

20:0 0.21 ± 0.05 0.37 ± 0.12 0.540 0.54 ± 0.13 0.037 0.40 ± 0.08 0.323 0.543 0.113 

20:1 0.65 ± 0.11 0.80 ± 0.15 0.488 1.60 ± 0.40 0.153 1.70 ± 0.38 0.879 0.081 0.038 

20:2 0.39 ± 0.04 0.72 ± 0.16* 0.155 2.69 ± 0.49 0.0038 2.48 ± 0.38 0.649 0.0011 0.0001 

20:3 1.07 ± 0.13 1.52 ± 0.28 0.307 5.22 ± 0.97 0.005 4.52 ± 0.71 0.595 0.0024 0.0002 

20:4 14.71 ± 1.49 13.33 ± 1.86 0.236 27.08 ± 4.53 0.055 24.06 ± 4.27 0.649 0.081 0.130 

22:0 0.40 ± 0.08 0.47 ± 0.11 0.967 0.39 ± 0.07 0.903 0.42 ± 0.06 1 0.939 0.504 

22:1 0.01 ± 0.01 0.05 ± 0.02* 0.092 0.13 ± 0.05 0.014 0.03 ± 0.02* 0.044 0.242 0.643 

22:4 0.52 ± 0.07 1.05 ± 0.37 0.206 7.76 ± 2.25 0.055 7.65 ± 1.35 0.939 0.0004 0.0001 

22:5 0.07 ± 0.02 0.15 ± 0.03* 0.055 1.73 ± 0.42 0.0009 1.04 ± 0.18 0.129 0.0003 0.0001 

22:6 2.73 ± 0.29 2.79 ± 0.25 0.903 8.59 ± 1.66 0.008 6.12 ± 0.80 0.171 0.004 0.003 

23:0 0.07 ± 0.01 0.06 ± 0.01 0.270 0.03 ± 0.01 0.016 0.01 ± 0.01 0.242 0.0008 0.0014 

24:0 0.23 ± 0.03 0.27 ± 0.03 0.236 0.42 ± 0.10 0.094 0.25 ± 0.05 0.128 1 0.379 

24:1 0.14 ± 0.04 0.10 ± 0.05 0.270 0.20 ± 0.09 0.967 0.28 ± 0.05 0.538 0.044 0.060 

sum FA 125.84 ± 11.47 143.28 ± 20.85 0.967 232.99 ± 39.38 0.0662 260.69 ± 41.39 0.879 0.040 0.032 

sum SFA 43.37 ± 4.24 47.93 ± 6.21 0.653 59.49 ± 9.51 0.206 67.82 ± 10.00 0.595 0.149 0.053 

sum MUFA 28.74 ± 4.76 33.89 ± 4.21 0.596 43.62 ± 7.82 0.111 49.55 ± 9.19 0.761 0.323 0.113 

sum PUFA 39.11 ± 2.90 47.47 ± 9.46 0.967 115.94 ± 21.07 0.006 126.23 ± 21.58 0.879 0.006 0.001 

 

a = p-value of comparison of ctrl wt and ctrl tg 

b = p-value of comparison of wt ctrl and wt MCD 

c = p-value of comparison of MCD wt and MCD tg 

d = p-value of comparison of tg ctrl and tg MCD 

e = p-value of comparison of wt ctrl and tg MCD 
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Due to the p62-induced amplification of hepatic lipid content the hepatic expression of 

genes involved in lipogenesis, fatty acid catabolism, as well as cholesterol and 

glucose metabolism were analyzed. An array of lipogenic genes was investigated with 

the most distinct effect of p62 on the expression of the lipogenic transcription factor 

sterol regulatory binding transcription factor (Srebf) 1, which was increased after 2 and 

4 weeks (Figure 3-7B). The lipogenic gene fatty acid synthase (Fasn) (Figure 3-7C), 

was significantly downregulated upon MCD feeding in both genotypes without 

significant alterations between the genotypes. Protein analyses of FASN confirmed 

the observed transcriptional downregulation (Figure 3-7D).  

 

Figure 3-7: Expression of lipogenic genes. The ratio of (A) Scd1, (B) Srebf1, and (C) Fasn against 
the housekeeping gene 18S is shown. Data are represented as individual values and box plots with 
median (—) and mean (□) in a five-number summary (n=9-12). (D) FASN protein expression as verified 
by Western blot analysis. Representative Western blot from animals fed the MCD and ctrl diet for 12 
weeks is shown. 
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The expression of p62 had no consistent effect on neither the mRNA expression nor 

protein levels of the lipolysis regulator peroxisome proliferator-activated receptor 

(Ppar) a (Figure 3-8A, B), and of the promotor of β-oxidation, carnitine palmitoyl-

transferase (Cpt) 1a (Figure 3-8C).  

 

Figure 3-8: Lipolytic gene and protein expression. Gene expression of (A) Ppara and (C) Cpt1a. 
The ratio against the housekeeping gene 18S is shown. Data are represented as individual values and 
box plots with median (—) and mean (□) in a five-number summary (n=9-12). (B) PPARA protein 
expression verified by Western blot analysis. Representative Western blot from animals fed the MCD 
and ctrl diet for 2 weeks is shown. 

 

The expression of the transcription factor MLX interacting protein-like (Mlxipl), also 

known as carbohydrate response element binding protein (Chrebp), as a regulator of 

glycolysis and lipogenesis was downregulated due to the MCD diet itself. This effect 
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was further amplified in p62 transgenic mice (Figure 3-9A). Concordantly, we 

observed a downregulation of serum glucose levels in the MCD fed animals with an 

even more pronounced decrease after 4 weeks in p62 transgenics (p=0.04) (Table 3-
1). The gene expression analysis of the rate-limiting enzyme for gluconeogenesis, 

glucose-6-phosphatase (G6pc), revealed a downregulation by the MCD diet with no 

effect of p62 (Figure 3-9B). 

 

Figure 3-9: Altered glucose metabolism on the MCD diet and during p62 expression. Gene 
expression of (A) Mlxip/Chrebp and (B) G6pc is displayed as ratio against the housekeeping gene 18S. 
Data are represented as individual values and box plots with median (—) and mean (□) in a five-
number summary (n=9-12). 

 

Both liver cholesterol and serum cholesterol were distinctly elevated in p62 transgenic 

mice (Figure 3-10A, B). Filipin staining for free cholesterol revealed a significant 

increase of free cholesterol in p62 transgenic animals on the MCD diet (Figure 3-10C, 
D). Accordingly, the mRNA levels of the rate-limiting enzyme for cholesterol synthesis, 

Hmg-CoA reductase (Hmgcr), were upregulated after 2 weeks (Figure 3-10E). Still, 

expression of the cholesterol metabolism-related transcription factor sterol regulatory 

element binding transcription factor (Srebf) 2 was significantly increased only after 4 

weeks (Figure 3-10F). 
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Figure 3-10: p62 expression elevates serum and liver cholesterol. (A) Hepatic and (B) serum 
cholesterol concentrations in mice fed the respective diet for 2 or 4 weeks. (C) Representative cryo 
sections stained with Filipin for hepatic free cholesterol in mice fed the MCD diet for 4 weeks (original 
magnification 400x) with (D) corresponding quantification (mean out of 5 randomly picked sections on 
the slide). (E-F) Relative hepatic mRNA expression of Hmgcr (E) and Srebf2 (F) are shown as ratio 
against 18S. Data are represented as individual values and box plots with median (—) and mean (□) in 
a five-number summary (n=9-12). 
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 Inflammation 3.2.3

Regarding NASH as an inflammatory liver disease we investigated the effect of p62 on 

inflammation in more detail. After 2 weeks on the MCD diet histological analyses of 

HE stained liver sections revealed first changes towards a steatohepatitic phenotype 

with increased inflammatory infiltrations (Figure 3-11A). p62 transgenic mice revealed 

a trend towards a higher inflammatory response throughout the experiment on MCD 

and control diet, with significant changes after 2 and 4 weeks for lymphocytic 

infiltrations (p=0.02 and p=0.01, respectively) (Figure 3-11B, C).  

 
Figure 3-11: p62 expression increases inflammation. (A) Representative HE stains of paraffin-
embedded liver sections from mice treated for 4 weeks with MCD or ctrl diet (original magnification 
200x and 500x for inserts). The green arrow indicates neutrophilic infiltration, whereas the black arrows 
show the lobular lymphocyte inflammation. Inflammation scores show percentage of animals classified 
into appropriate scores with (B) for lobular lymphocyte inflammation and (C) for lobular neutrophil 
infiltrations (table 2-7).  
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After 4 weeks steatohepatitis became manifest by the formation of Mallory Denk 
bodies detected by immunohistochemical staining of sequestosome and ubiquitin 
(Figure 3-12). 

 

 

 

 

 

 

 

Figure 3-12: NASH manifestation due to MCD diet. Immunohistochemical stain against ubiquitin (left 
panel) and sequestosome (right panel) for appearance of Mallory-Denk bodies in p62 transgenic 
animals after 4 weeks on the MCD diet (original magnification 500x). 
 

As oxidative stress is regarded as a hallmark and amplifier of hepatic inflammation 

(Yesilova et al., 2005), we assessed hepatic iron deposition and lipid peroxidation, 

both indicators of oxidative stress (Fujita et al., 2009). Both genotypes on the MCD 

diet had elevated hepatic iron deposition at all time points with a significantly higher 

iron accumulation in p62 transgenic mice (p=0.002, p=0.03, and p=0.02 for 2, 4, and 

12 weeks) (Figure 3-13A, B). An increased transcript level of the catalytic iron carrier 

transporter transferrin receptor (Tfrc) (Figure 3-13C) as well as an upregulation of the 

hormone hepcidin, also known as hepcidin antimicrobial polypeptide (Hamp), as a 

regulator of iron homeostasis was associated with this observation (Figure 3-13D). 

Since hepatocellular iron is known as a promoter of oxidative stress, we assessed lipid 

peroxidation. Here, p62 expression significantly increased lipid peroxidation as 

analyzed by TBARS assay. At 2 weeks, even control diet fed transgenics exhibited 

increased TBARS levels compared to wild-types (p=0.038) (Figure 3-13E).  
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Figure 3-13: p62 expression leads to increased iron accumulation and ROS production. (A) 
Representative paraffin-embedded liver sections stained with Prussian blue for iron accumulation from 
animals fed the respective diet for 4 weeks (original magnification 200x and 500x for inserts) with the 
corresponding hepatocellular iron score (B) for all time points (table 2-7). Relative hepatic mRNA 
expression of the iron homeostatis regulation genes (C) catalytic transferrin receptor (Tfrc) and (D)  
hepcidin antimicrobial polypeptide (Hamp) are shown as ratio against the housekeeping gene 18S. 
Data are represented as individual values and box plots with median (—) and mean (□) in a five-
number summary (n=2-12). (E) Hepatic thiobarbituric acid reactive substances (TBARS) were 
measured to indicate lipid peroxidation and represented as individual values and box plots with median 
(—) and mean (□) in a five-number summary (n=9-12).  
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The inflammatory response is mediated by transcription factors, NFKB being the most 

important one of them (He & Karin, 2011). The activation of NFKB was assessed by 

immunofluorescence and the detection of nuclear translocation of its subunit p65 

(Figure 3-14A). The p62 transgenic animals showed a strong tendency for increased 

nuclear translocation with a significant increase even in the control diet after 12 weeks 

(Figure 3-14B).  

 

 

Figure 3-14: p62 expression amplifies the activation of NFKB. (A) Immunofluorescent staining with 

anti-NFKB-p65 (red, left panel), DAPI for nuclei (blue, middle panel), and merge (right panel) shows 

activation of NFKB through translocation to the nucleus (white arrows) with the corresponding scoring 

(B). The scoring displays percentage of animals classified into appropriate scores (see table 2-7).  

 

The relative mRNA expression of some key inflammatory cytokines and chemokines 

regulated by NFKB was measured. Consistent with the histological results an elevated 

inflammatory response manifested as an inflammatory gene transcript profile with 

elevated levels of tumor necrosis factor (Tnf) and inducible nitric synthase 2 (Nos2) at 

2 and 4 weeks in p62 transgenic mice (Figure 3-15A, B). The MCD diet further led to 

an upregulation of prostaglandin-endoperoxide synthase (Ptgs/Cox) 2, and of the 

chemokine (C-C motif) ligand 2 (Ccl2/Mcp1) with a further amplification in p62 

transgenic animals (Figure 3-15C, D). The hepatic expression of interleukin 6 was in 
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general very low, but the livers from p62 transgenic mice appeared to have somewhat 

higher Il6 expression levels (Figure 3-15E). In addition, the expression of the 

suppressor of cytokine signaling (Socs) 3, which is strongly induced by a variety of 

cytokines and plays an important role in NASH (Tilg, 2010; Yoshimura et al., 2007), is 

upregulated after 2 weeks in p62 transgenic animals and tends to be further increased 

also at later time points (Figure 3-15F).  
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Figure 3-15: p62 amplifies the inflammatory response in NASH. Gene expression analysis of an 
array of cytokines and chemokines with (A) tumor necrosis factor (Tnf), (B) inducible nitric oxide 
synthase (Nos) 2, (C) prostaglandin-endoperoxid synthase (Ptgs/Cox) 2, (D) chemokine (C-C motif) 
ligand 2 (Ccl2/Mcp1), (E) interleukin (Il) 6  and, (F) suppressor of cytokine signaling (Socs) 3 from 
whole liver by quantitative real-time RT-PCR are expressed as ratio against the 18S housekeeping 
gene. Data are represented as individual values and box plots with median (—) and mean (□) in a five-
number summary (n=9-12). 
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A statistically significant upregulation of Interleukin (Il) 1b mRNA as a downstream 

target of NFKB activation was measured as early as 2 weeks in p62 transgenic mice 

(Figure 3-16A). Since protein levels of hepatic IL-1beta (2.4-fold increase with 

p=0.014) as well as the inflammasome components Nlrp3 and Asc tended to be 

increased in p62 transgenics, an elevated inflammasome activation can be assumed 

(Figure 3-16B-D). 

 

Figure 3-16: p62 leads to inflammasome activation. Gene expression analyses of (A) interleukin 
(Il)1b from whole liver by quantitative real-time RT-PCR is expressed as ratio against 18S as 
housekeeping gene. Data are represented as individual values and box plots with median (—) and 
mean (□) in a five-number summary (n=9-12). (B) IL-1beta protein expression verified by Western blot 
analysis. Representative blot from animals fed the MCD diet for 4 weeks is shown. (C, D) Gene 
expression analysis of the inflammasome components (C) NLR family, pyrin domain containing 3 Nlrp3 
and (D) PYD and CARD domain containing (Pycard/Asc) are likewise displayed. 
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 Fibrosis 3.2.4

Liver fibrosis represents a classical outcome of chronic liver diseases as one third of 

NASH patients progresses to fibrosis (Farrell & Larter, 2006). We therefore examined 

the effects of p62 in fibrosis development. In the portal tracts of livers from MCD-fed 

animals increased bile ductule formation was observed, some of them invaded into 

parenchyma (Figure 3-17A lower panel). Interestingly, p62 transgenic animals 

showed a significantly higher proportion of these ductular reactions (DR) when fed the 

MCD diet (p=0.025) (Figure 3-17B). The proliferating ductular cells were confirmed by 

keratin 19 staining (Figure 3-17A upper panel). Recently, the cytokine tumor necrosis 

factor (ligand) superfamily, member 12 or also known as TNF-like weak inducer of 

apoptosis (Tnfsf12/Tweak) was shown to induce a DR (Bird et al., 2013): a slight 

induction was detectable in p62 transgenic  animals (Figure 3-17C).  
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Figure 3-17: Ductular reaction upon p62 expression and MCD diet. (A) Representative paraffin-
embedded liver sections of mice fed the MCD diet for 4 weeks showed a prominent ductular reaction on 
HE stained slides (lower panel, original magnification 200x). Immunohistochemical stain for keratin (K) 
19 on paraffin-embedded liver sections are displayed (upper panel, original magnification 200x). (B) 
Scoring for ductular reactions demonstrated as percentage of animals classified into appropriate scores 
(table 2-7). (C) Relative hepatic mRNA expression of tumor necrosis factor (ligand) superfamily, 
member 12 (Tnfsf12/Tweak) are shown as ratio against the housekeeping gene 18S. Data are 
represented as individual values and box plots with median (—) and mean (□) in a five-number 
summary (n=9-12). 
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Sirius Red staining revealed increased collagen deposition in p62 transgenic animals 

(p=0.02) (Figure 3-18A, B) in the portal tract, around the central vein, and in the 

lobule in a perisinusoidal distribution. Under polarized light the birefringence of yellow-

red collagen I and green collagen IV could be clearly distinguished and confirmed the 

observations made by light microscopy (Figure 3-18C).  

 

 

 

 

 

 

 

 

 

Figure 3-18: Fibrotic action of p62. (A, B) Collagen deposition in the liver was visualized by Sirius red 
staining on paraffin-embedded liver sections with brightfield microscopy (A) and with polarization 
microscopy (B) (original magnification 200x) and the corresponding fibrosis score (C) with percentage 
of animals classified into appropriate scores (see table 2-7). 

 

Real-time RT-PCR showed an increased procollagen (Col1a) 1 mRNA expression 

already after 2 weeks in p62 transgenic animals, with a further amplification at later 

time points (Figure 3-19A). In order to determine the upstream mechanisms for 
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collagen deposition the mRNA expression of tissue growth factor (Tgf) b and 

connective tissue growth factor (Ctgf) were determined. Interestingly, Tgfb showed a 

downregulation throughout the observation period, whereas Ctgf was elevated in 

MCD-fed animals with a significant increase in p62 transgenic animals already after 2 

weeks (Figure 3-19B, C). At the same time an upregulation of serum interleukin 13 

was detectable in these animals (Figure 3-19D). Most interestingly, also transgenic 

animals on the ctrl diet revealed a pronounced upregulation of serum IL-13 (Figure 3-
19D). 

 

Figure 3-19: TGF-beta-independent collagen expression through p62. Relative mRNA expression 
of procollagen (Col1a) 1 (A), tissue growth factor (Tgf) b (B), and connective tissue growth factor (ctgf) 
(C) are shown as ratio against the housekeeping gene 18S or Pipa. Data are represented as individual 
values and box plots with median (—) and mean (□) in a five-number summary (n=9). (D) Serum levels 
of interleukin (IL) 13 measured by Luminex assay are represented as individual values and box plots 
with median (—) and mean (□) in a five-number summary (n=9-12). 
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 Kupffer Cells as Lipid Modulators in NAFLD 3.3

Liver specific macrophages, Kupffer cells (KC), play an important role in liver 

homeostasis and inflammatory response, as well as in NASH development (Leroux et 

al., 2012; Rivera et al., 2007). Little is known about the impact of Kupffer cells on lipid 

composition. To assess this issue a selective KC depletion was performed. Depletion 

of KCs was confirmed by its downregulation on mRNA level by 80% (p=0.00006) 

(Figure 3-20A). An immunohistochemical staining against the KC specific marker egf-

like module containing, mucin-like, hormone receptor-like (Emr/F4/80) 1 further 

confirmed the successful KC depletion (Figure 3-20B). 

 

 

Figure 3-20: Successful Kupffer cell depletion by clodronate liposomes. Relative mRNA 
expression of (A) egf-like module containing, mucin-like, hormone receptor-like (Emr/F4/80) 1 is shown 
as ratio against the housekeeping gene 18S. Data are represented as individual values and box plots 
with median (—) and mean (□) in a five-number summary (n=9-10). (B)  Immunohistochemical stain 
against F4/80 as KC marker in animals after 3 weeks on the MCD diet with simultaneous administration 
of clodronate (Clo) or empty (sham) liposomes (original magnification 200x). 

 

Histological evaluation of KC-depleted slides revealed a strong variability regarding 

steatosis, with low and high steatosis scores. However, the mean of the clodronate-

treated group was not significantly different compared to the sham group (Figure 3-
21A and data not shown). Still, GC-MS analyses demonstrated downregulation of 

cholesterol and fatty acid deposition (Figure 3-21B). Serum analyses of triglycerides 
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showed a downregulation in the ctrl and an upregulation in the MCD diet upon KC 

depletion (Table 3-5, Table 3-6). 

 

Figure 3-21: Steatosis formation in NAFLD without Kupffer cells. (A) Representative liver sections 
stained with HE from animals fed with the respective diet for 3 weeks with simultaneous administration 
of clodronate (Clo) or empty (sham) liposomes (original magnification 200x). (B) Liver tissues were 
lyophilized and analyzed by GC-MS.% increase of MCD fed animals compared to ctrl are displayed for 
the sum of all fatty acids as well as hepatic cholesterol (n=9-10).  

 

Table 3-5: Weight and serum parameters of mice fed the MCD or ctrl diet for 3 weeks with 
simultaneous administration of clodronate (Clo) or empty (sham) liposomes. Values are 
expressed as mean ± SEM (n=9-10). * p<0.05 to sham, † p<0.05 to ctrl diet, ‡   p<0.05 to sham on ctrl 

 3 weeks 

 Ctrl MCD 

 sham clo sham clo 

number animals [n] 10 10 9 9 

body weight change [%] 122.6 ± 6.2 90.1 ± 6.3* -17.8 ± 0.5† -19.3 ± 0.9†‡ 

relative liver weight  
[% of body weight] 

4.6 ± 0.1 4.2 ± 0.1 3.4 ± 0.1† 3.8 ± 0.1 

serum ALT [U/L] 89 ± 11 79 ± 9 108 ± 12 127 ± 12 †‡ 

serum AST [U/L] 2,208 ± 310 2,071 ± 293 2,508 ± 211 2,572 ± 509 

serum triglycerides [mg/dl] 232 ± 21 153 ± 13* 72 ± 4† 94 ± 6*†‡ 

serum HDL [mg/dl] 89 ± 6 92 ± 8 35 ± 2† 20 ± 2*†‡ 

serum glucose [mg/dl] 192 ± 15 185 ± 11 91 ± 9† 77 ± 8†‡ 

serum cholesterol [mg/dl] 120 ± 7 127 ± 8 47 ± 3† 46 ± 3†‡ 
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Table 3-6: GC-MS fatty acid analyses of mice fed the MCD or ctrl diet for 3 weeks with 
simultaneous administration of clodronate (Clo) or empty (sham) liposomes. Values [µg/mg dry 
liver tissue] are expressed as mean ± SEM (n=9-10). Liver tissues were lyophilized and analyzed by 
GC-MS. 

 

p-value of comparison of a = ctrl sham and ctrl Clo, 

    b = ctrl sham and sham MCD,  

                c = MCD sham and MCD Clo,  

    d = ctrl Clo and MCD Clo,   

    e = sham ctrl and MCD Clo 

 

Fatty acid ctrl sham ctrl Clo a MCD sham b MCD Clo c d e 

12:0 0.01 ± 0.002 0.02 ± 0.003 0.273 0.02 ± 0.001 0.005 0.02 ± 0.003 0.665 0.066 0.0017 

14:0 0.37 ± 0.07 0.39 ± 0.08 0.970 0.41 ± 0.03 0.267 0.49 ± 0.06 0.736 0.307 0.111 

15:0 0.05 ± 0.01 0.06 ± 0.01 0.678 0.11 ± 0.01 0.0009 0.11 ± 0.01 0.885 0.013 0.0009 

16:0 20.54 ± 2.19 22.33 ± 3.88 0.970 25.59 ± 2.63 0.168 24.25 ± 0.66 0.962 0.02 0.206 

16:1 2.02 ± 0.46 2.07 ± 0.44 0.970 1.22 ± 0.15 0.143 1.63 ± 0.17 0.092 0.903 0.903 

16:2 0.01 ± 0.001 0.03 ± 0.01 0.045 0.10 ± 0.01 0.0004 0.13 ± 0.02 0.597 0.001 0.0003 

17:0 0.18 ± 0.02 0.21 ± 0.03 0.212 0.47 ± 0.03 0.0004 0.40 ± 0.03 0.136 0.0038 0.0005 

17:1 0.08 ± 0.02 0.08 ± 0.02 0.970 0.04 ± 0.02 0.258 0.08 ± 0.01 0.188 0.902 0.437 

18:0 14.25 ± 1.33 16.19 ± 2.46 0.521 20.90 ± 1.61 0.007 18.29 ± 0.48 0.229 0.016 0.006 

18:1 19.67 ± 2.14 21.85 ± 3.49 0.91 31.51 ± 3.72 0.046 25.72 ± 1.48 0.268 0.03 0.066 

18:2 19.98 ± 2.94 18.71 ± 4.07 0.427 28.85 ± 3.89 0.168 16.71 ± 3.14 0.03 0.775 0.307 

18:3 0.33 ± 0.05 0.45 ± 0.11 0.970 1.83 ± 0.29 0.0004 2.12 ± 0.21 0.47 0.0003 0.0003 

20:0 0.35 ± 0.09 0.23 ± 0.04 0.85 0.31 ± 0.11 0.689 0.32 ± 0.03 0.962 0.131 0.596 

20:1 0.56 ± 0.10 0.68 ± 0.10 0.427 1.63 ± 0.17 0.0004 1.63 ± 0.15 0.81 0.0005 0.0007 

20:2 0.67 ± 0.09 0.84 ± 0.11 0.241 2.76 ± 0.28 0.0004 2.42 ± 0.19 0.470 0.0003 0.0003 

20:3 1.41 ± 0.19 1.30 ± 0.18 0.623 4.05 ± 1.99 0.0006 4.16 ± 0.37 0.885 0.0003 0.0005 

20:4 16.19 ± 1.54 18.01 ± 2.78 0.623 22.63 ± 1.99 0.011 19.18 ± 0.71 0.163 0.02 0.016 

22:0 0.90 ± 0.21 0.78 ± 0.11 0.85 0.69 ± 0.05 0.894 0.61 ± 0.03 0.163 0.488 0.775 

22:1 0.04 ± 0.01 0.03 ± 0.01 0.85 0.07 ± 0.01 0.015 0.09 ± 0.01 0.268 0.0017 0.01 

22:2 0.01 ± 0.003 0.01 ± 0.002 0.91 0.01 ± 0.005 0.011 0.04 ± 0.01 0.361 0.0007 0.002 

22:4 0.74 ± 0.11 0.84 ± 0.12 0.571 5.75 ± 0.65 0.0004 5.15 ± 0.62 0.413 0.0003 0.0003 

22:5 0.15 ± 0.02 0.17 ± 0.02 0.521 0.88 ± 0.10 0.0004 0.95 ± 0.11 0.962 0.0003 0.0003 

22:6 7.72 ± 0.84 8.90 ± 1.20 0.521 20.70 ± 2.38 0.0011 14.88 ± 0.72 0.112 0.003 0.0009 

23:0 0.15 ± 0.02 0.22 ± 0.03 0.09 0.25 ± 0.02 0.007 0.22 ± 0.01 0.312 0.596 0.025 

24:0 0.58 ± 0.08 0.66 ± 0.08 0.678 0.84 ± 0.06 0.015 0.74 ± 0.04 0.136 0.153 0.008 

ratio 16:1/16:0 0.09 ± 0.01 0.09 ± 0.01 0.791 0.01 ± 0.01 0.009 0.07 ± 0.01 0.092 0.206 0.153 

ratio 18:1/18:0 1.40 ± 0.14 1.36 ± 0.10 0.970 1.50 ± 0.14 0.625 1.41 ± 0.09 0.665 0.596 0.433 
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Interestingly, the C18:C16 fatty acid ratio was increased upon the MCD diet and 

abolished due to KC depletion (Figure 3-22), indicating a KC-facilitated alteration in 

the fatty acid metabolism. Since Elovl6 is responsible for the conversion of C16 to 

C18, its mRNA expression as well as protein levels were investigated. The transcript 

level of Elovl6 was unchanged in the MCD diet, but in the crtl diet a downregulation 

due to KC depletion was observed (Figure 3-23A). Its protein levels tended to be 

downregulated (50% downregulation without statistical difference) upon clodronate 

administration (Figure 3-23B). Fasn mRNA expression was downregulated in the 

absence of KC, whereas its protein expression was not altered due to KC depletion 

(Figure 3-23C, D). No change at transcript level was detected for Scd1 upon KC 

depletion in the MCD diet, which was in conjunction with an unmodified C16:1/C16:0 

and C18:1/C18:0 ratio (Figure 3-23E, Table 3-6), whereas MCD diet alone led to a 

Scd1 downregulation as seen before. Furthermore, a significant downregulation in the 

absence of KC in mice fed the ctrl diet was detected (Figure 3-23E). 

 

 

 

 

 

 

 

 

 

 

Figure 3-22: Altered fatty acid pattern upon KC depletion. GC-MS fatty acid analyses of mice fed 
the MCD or ctrl diet for 3 weeks with simultaneous administration of clodronate (Clo) or empty (sham) 
liposomes. Liver tissues were lyophilized and analyzed by GC-MS. Ratio of C16/C18 fatty acids are 
displayed as individual values and box plots with median (—) and mean (□) in a five-number summary 
(n=9-10). 
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Figure 3-23: Kupffer cell depletion alters gene expression of fatty acid metabolism. (A) Gene 
expression analyses of Elovl6 from whole liver by quantitative real-time RT-PCR is expressed as ratio 
against the housekeeping gene 18S. (B) ELOVL6 protein expression verified by Western blot analysis. 
Representative Western blot from animals fed the MCD diet for 3 weeks with simultaneous 
administration of clodronate (Clo) or empty (sham) liposomes is shown. Gene expression analyses of 
(C) Fasn and (D) FASN protein expression verified by Western blot analysis are shown. Gene 
expression analyses of (E) Scd1 expressed as ratio against the housekeeping gene 18S is shown. Data 
are represented as individual values and box plots with median (—) and mean (□) in a five-number 
summary (n=9-10). 
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Lipid peroxidation was not altered by KC depletion, despite an upregulation due to the 

MCD diet (Figure 3-24A). Upon KC depletion only a slight decrease was found for the 

expression of proinflammatory cytokines and chemokines, possibly due to the 

heterogeneity of the clodronate treated samples (Figure 3-24B) 

 

 
 

Figure 3-24: ROS production and cytokine profile unaltered upon Kupffer cell depletion. (A) 
Hepatic thiobarbituric acid reactive substances (TBARS) were measured to indicate lipid peroxidation 
and are represented as individual values and box plots with median (—) and mean (□) in a five-number 
summary (n=9-10). (B) Gene expression profile of cytokines and chemokines expressed as ratio 
against 18S as housekeeping gene is shown. Data are represented as individual values and box plots 
with median (—) and mean (□) in a five-number summary (n=9-10). 
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Longstanding NASH with progression to fibrosis and cirrhosis is considered as a risk 

factor for the development of HCC. p62/IGF2BP2-2 was recognized as tumor-

associated antigen (TAA) and serum autoantibodies against p62 were suggested as 

biomarkers in cancer immunodiagnostics (Liu et al., 2011a). p62 is expressed in 

cirrhotic nodules (Lu et al., 2001) and in human HCC (Zhang et al., 1999; Liu et al., 

2013), and most recent data report that p62 expression correlates with poor prognosis 

in patients with HCC (Kessler et al., 2013). Since p62 induces steatosis (Tybl et al., 

2011) and genome-wide association (GWA) studies of type 2 diabetes samples 

revealed an association with IGF2BP2 (Christiansen et al., 2009), we hypothesized an 

impact of p62 on metabolic diseases. The purpose of this study was to examine the 

role of p62 in the pathogenesis of NASH. The liver-specific overexpression of p62 

amplified and/or accelerated all stages in disease development of NAFLD. 

 

 p62 Expression and Its Heterocellular Distribution 4.1

The mRNA and protein expression of the human transgene p62 in all double positive 

p62+/LT2+ transgenic animals used for this study was confirmed by real-time RT-PCR 

and Western blot, respectively. Here, some disparities among the transgenic animals 

were detected. This phenomenon might in part be explained by the occurrence of a 

heterocellular expression pattern of the transgene as seen by immunohistochemistry.  

Heterocellular or mosaic expression has been reported in a variety of transgenic 

mouse models (Kramer et al., 2006; Serova et al., 2009; Sharif et al., 2004), but still 

the nature of this mosaicism remains unclear. Explanations for this variegated 

transgene expression have been published. A possible reason might be due to a 

transgene position effect (Festenstein et al., 1996; Henikoff, 1992). Here, a distinction 

has been made between a stable position, in particular near suppressing 

heterochromatin, where the expression is influenced by the integration site and the 

variegating position with the result of two cell populations, one expressing and one 

silenced (Martin & Whitelaw, 1996). Another approach assumes that the variegated 

silencing is due to repeated copy numbers of the integrated transgene (Garrick et al., 

1998). However, heterocellular expression was also seen in animals with a single 



Discussion 

~ 77 ~ 
 

copy of the transgene and with a location of the transgene far from heterochromatin 

regions (Ramírez et al., 2001). Furthermore, gene silencing might be a result of DNA 

methylation, but is not necessarily the cause of it (Razin & Cedar, 1991). 

Notwithstanding, as in p62 transgenic animals neither the integration site nor the copy 

number is known, one can only speculate about the occurrence of this heterocellular 

expression. 

 

 General Effects of the MCD Diet 4.2
The mechanism of steatosis formation in the MCD dietary model of NASH is based on 

the restricted availability of methionine and choline as essential precursors for 

phosphatidylcholine synthesis (Vance & Vance, 1985). Phosphatidylcholine 

represents an essential component of very low density lipoproteins (VLDL), which in 

turn facilitate the major export pathway of tryglycerides in hepatocytes (Yao & Vance, 

1988). Therefore, impaired VLDL production leads to an accumulation of triglycerides 

within hepatocytes and subsequent steatosis (Vance & Vance, 1985; Yao & Vance, 

1988). In accordance, all animals fed the MCD diet showed low serum triglycerides 

and cholesterol values as well as a distinct degree of steatosis. With these 

observations a loss of body weight in animals fed the MCD diet was associated as 

seen in other studies with this dietary model (Rinella et al., 2008; Rinella & Green, 

2004; Yamazaki et al., 2008). This weight loss might in part be a result of 

hypermetabolism (Rizki et al., 2006) during normal food intake (Rinella et al., 2008).   

Animals fed the MCD diet had elevated AST and ALT levels indicating liver damage 

as previously reported in other studies (Kirsch et al., 2003; Yamazaki et al., 2008).  

 

 p62 Amplifies Steatosis 4.3
As already shown for p62 transgenic animals on normal chow (Tybl et al., 2011), p62 

livers on MCD showed increased hepatic lipid levels and a histologically elevated 

steatosis only at early time points. To determine whether the p62-mediated 

amplification of steatosis is due to p62-induced steatosis prior to MCD feeding, a 
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temporal inhibition of p62 expression prior to MCD feeding was performed. Here, p62 

expression led to increased steatosis irrespective of an early or simultaneous start of 

p62 expression suggesting that a temporal inhibition of p62 has no effect on steatosis 

development. Therefore, all further studies were performed without doxycycline 

treatment, as tetracycline as well as doxycycline are known to modulate lipid 

metabolism (Böcker et al., 1981).  

Thin-layer chromatographic analyses of extracts from lyophilized liver tissue of mice 

treated with the MCD diet from this study revealed a 3-fold increased accumulation of 

triglycerides (Laggai et al., 2013). The same analyses revealed that the amount of 

phosphatidylethanolamin (PE) was increased and phosphatidylcholine (PC) was 

decreased (Laggai et al., 2013) as seen previously reported for the MCD model 

(Larter et al., 2008).   

The GC-MS analyses of free fatty acids provided a detailed picture of the fatty acid 

alterations in p62 transgenic animals. Here, the rate of MUFA was increased to a 

higher extent than the SFA and PUFA indicating alterations in the fatty acid 

metabolism as seen in both NASH and NASH-related HCC (Muir et al., 2013). 

Interestingly, increased MUFA are correlated with hypertriglyceridemia and obesity 

(Okada et al., 2005; Paillard et al., 2008), even when they are not exogenously 

ingested, but rather synthesized within the liver. Desaturases represent the rate-

limiting enzymes for the production of palmitoleic (C16:1) and oleic acid (C18:1) with 

SCD1 being the predominant form in the liver (Miyazaki et al., 2006; Ntambi & 

Miyazaki, 2004). In this study, an increase of Scd1 in p62 transgenic animals, despite 

a strong downregulation through the MCD diet, was found. This reflects the 

observations seen in the lipidomic analyses with an increased ratio of oleic to stearic 

acid and palmitoleic to palmitic acid. In human NASH-related HCC tissues an 

upregulation of SCD was found likewise (Muir et al., 2013), and its activity was related 

to hypertriglyceridemia (Attie et al., 2002). The expression of Fasn was found to be 

downregulated upon the MCD diet without differences among the genotypes, similar to 

other murine models of steatohepatitis (Glosli et al., 2005; Jones et al., 2013; 

Matsuzaka et al., 2012) and human NASH (Caballero et al., 2009).  
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Despite the downregulation of its target genes the most prominent upregulation of the 

lipogenic transcription factor Srebf1 seems to contribute to the development of 

steatosis in p62 transgenic animals. It is known that two key transcription factors are 

responsible for the regulation of lipogenesis, glycolysis, and gluconeogenesis: 

SREBF1 and CHREBP (Mlxipl). Both transcription factors share the regulation of 

lipogenic genes in a symbiotic manner (Dentin et al., 2005; Iizuka & Horikawa, 2008). 

However, it has recently been shown that Srebf1 overexpression leads to 

downregulation of Chrebp (Dubuquoy et al., 2011). We therefore suggest that p62-

induced Srebf1 is responsible for the p62-facilitated Chrebp downregulation. Our 

observation of reduced Chrebp expression is consistent with low serum glucose levels 

as seen in Chrebp k/o mice (Iizuka et al., 2004). In accordance, the MCD diet led to a 

slight downregulation of the catalytic glucose-6-phosphatase (G6pc), the key enzyme 

in hepatic glucose metabolism, which was also found in human subjects with a fatty 

liver (Konopelska et al., 2011). These results emphasize the strong interaction 

between hepatic carbohydrate and fatty acid metabolism.  

In addition to lipogenesis, steatosis might be a result of diminished lipolysis or reduced 

lipid export. Since serum lipids were not different between wild-type and p62 

transgenic animals, the latter can be excluded. Ppara, a regulator for mitochondrial 

and peroxisomal β-oxidation, and microsomal ω-oxidation, was slightly downregulated 

in p62 transgenic mice similar to findings in human NAFLD patients (Nakamuta et al., 

2007). It is also known that a lack of Ppara renders the liver more susceptible to MCD 

diet-induced steatohepatitis (Ip et al., 2003).  

Taken together, both increased lipogenesis and slightly reduced lipolysis contributed 

to the steatosis formation in p62 transgenic animals.   

 

 p62 Aggravates ROS Production by Increased Free Cholesterol 4.4
and Iron 

p62 transgenic mice fed the MCD diet showed hyperlipidemia with increased serum 

cholesterol levels. These findings are particularly interesting when bearing in mind that 

the MCD diet is known for lowered serum TG levels and in this particular respect 
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differs from human NASH (Anstee & Goldin, 2006). Thus, p62 transgenic animals 

display a more human-like lipid protein profile as also serum HDL tends to be 

downregulated as it was found in human NASH (Koruk et al., 2003). To our knowledge 

the increase in hepatic total and free cholesterol is the first time that a hepatic 

cholesterol accumulation is documented in a nutritional mouse model without 

additional cholesterol substitution. Increased dietary cholesterol intake is associated 

with risk and severity of NAFLD and is paralleled by hepatic free cholesterol 

accumulation in humans as well as in experimental settings (Musso et al., 2013). 

Besides dietary cholesterol intake cellular cholesterol accumulation might be a result 

of disturbed cholesterol homeostasis (Musso et al., 2013). Here, we report enhanced 

endogenic cholesterol biosynthesis as the transcription factor Srebf2 as well as its 

target gene, the rate-limiting enzyme Hmgcr, were upregulated in p62 transgenic 

mice. These findings are in agreement with observations made in human samples, 

where inhibition of HMGCR by statins leads to NASH resolution (Athyros et al., 2013) 

and the severity of NASH is positively correlated with the expression of these genes 

(Min et al., 2012).   

Apart from that, others reported no correlation of Srebf2 with hepatic cholesterol 

despite elevated Hmgcr (Graham et al., 2010). In the same study, cholesterol 

biosynthesis was found to be positively correlated with iron accumulation: additional 

iron intake led to deposition of free cholesterol and its upregulated biosynthesis 

(Graham et al., 2010). Furthermore, hepatocellular iron deposition was reported to be 

elevated in human NASH patients (Fujita et al., 2009) and NASH-related HCC patients 

(Sorrentino et al., 2009). In our model, iron deposition was distinctly elevated in p62 

transgenic animals. Recently, the interactions between hepatic iron and lipid 

metabolism have been reviewed (Ahmed et al., 2012), which underlined the 

interactions of both. In fact, variations in hepatic iron levels can directly lead to a 

modulation of lipogenesis, lipid storage and secretion, as iron is an integral part of 

several lipid metabolism related enzymes (Ahmed et al., 2012). In p62 transgenic 

mice, the iron accumulation might induce Scd1 expression. Moreover, Scd1 activity 

has been shown to be iron-dependent, as the protein contains iron as a cofactor 

(Pigeon, 2001).  



Discussion 

~ 81 ~ 
 

p62 transgenic animals revealed a pronounced increase in hepcidin (Hamp) mRNA 

expression, which represents an indicator of elevated iron deposition. Hepcidin is a 

master iron-regulatory protein, which is secreted by hepatocytes in response to 

elevated body iron stores (Wang et al., 2005b) and inflammation via IL-6 and IL-1 (Lee 

et al., 2005). It therefore has been suggested as a biomarker for inflammation. In 

human NAFLD patients with iron accumulation a significantly higher hepatic Hamp 

expression was found compared to NAFLD patients without iron accumulation (Aigner 

et al., 2008). Interestingly, the study also demonstrated a positive correlation with TNF 

expression (Aigner et al., 2008). The regulatory function of hepcidin on iron 

homeostasis is based on its binding to the protein ferroportin and its subsequent 

degradation leading to a diminished cellular iron export of enterocytes (Ganz & 

Nemeth, 2006; Nemeth et al., 2004). Thus, increased hepcidin leads to decreased iron 

uptake from the intestine as feedback loop in response to iron accumulation.  

Cellular uptake of iron also occurs as iron bound to transferrin via transferrin receptors 

(Tfr) and as ferrous iron via the transmembrane protein divalent metal transporter-1 

(DMT-1) (Crichton & Charloteaux-Wauters, 1987; Mims & Prchal, 2005). The 

expression of the transferrin receptor 1 (Tfrc) was not altered or even downregulated 

upon the MCD diet as it was seen in human NAFLD patients with iron accumulation 

(Aigner et al., 2008). Noteworthy, p62 transgenic animals revealed a slightly increased 

Tfrc expression. In this context, a notable sequence similarity between the promotor 

sequence of Tfrc and the IGF2 promotor was demonstrated (Wang et al., 2005a), 

indicating a possible interaction of p62. In this context, it is important to know, that p62 

expression correlates with Igf2 expression in p62 transgenic animals as well as in 

human HCC tissues (Kessler et al., 2013; Tybl et al., 2011). 

Enhanced iron accumulation is also related to enhanced lipid peroxidation (Fujita et 

al., 2009) in p62 transgenics, as iron deposits positively correlate with lipid 

peroxidation. Iron is known to catalyze the production of reactive oxygen species, 

which can then initiate cellular damage and lipid peroxidation (Philippe et al., 2007). 

Reactive oxygen species have been suggested as critical contributors to the second 

hit (Seki et al., 2002). The marked lipid peroxidation and iron deposition in p62 



Discussion 

~ 82 ~ 
 

transgenic mice fed the MCD diet is likely to play a role in the accelerated transition 

from steatosis to steatohepatitis.  

 

 p62 Aggravates Inflammation in the Pathogenesis of NASH 4.5
Progression from steatosis to steatohepatitis in NAFLD occurs via a number of 

additional steps upon the steatotic liver (Day & James, 1998). Previous work has 

demonstrated a distinct increase of cytosolic NFKB-p65 in p62 transgenic animals, 

which we hypothesized to enhance an inflammatory response upon respective stimuli 

(Tybl et al., 2011). In fact, we here observed an elevated activation of NFKB in p62 

transgenic mice accompanied by increased lymphocyte and neutrophil infiltrations. 

Hence, p62 transgenic animals are more prone to the inflammatory response in this 

model of NASH. Concordantly, gene expression of inflammatory cytokines and 

chemokines was elevated in these animals. Among these genes Mcp1/Ccl2 as 

downstream target gene of NFKB activation (Leclercq et al., 2004) was induced in 

MCD fed p62 transgenic mice. Pharmacological inhibition of MCP1 has been shown to 

ameliorate steatohepatitis in the MCD diet suggesting a detrimental role for this 

chemokine in NASH (Baeck et al., 2011).  

The cytokine Tnf mRNA was likewise increased in p62 transgenic animals fed the 

MCD diet. Interestingly, TNF is strongly related to the fatty acid metabolism as it 

negatively regulates the expression of Ppara, leading to decreased catabolism (Glosli 

et al., 2005). It was also seen in TNF receptor deficient mice on the MCD diet that 

steatosis was blunted (Tomita et al., 2006), whereas administration of TNF into mice 

and rats induced steatosis (Endo et al., 2007; Feingold et al., 1989). In human NAFLD 

patients enhanced serum levels of TNF are a strong indicator for the progression from 

steatosis to NASH (Abiru et al., 2006). Surprisingly, we detected a lower apoptosis 

rate in p62 transgenic mice by IHC of cleaved caspase-3 (supplementary data), 

contrasting the apoptosis-inducing effect of TNF (Feldstein et al., 2003). Additionally, 

p62 transgenic animals showed less liver damage as indicated by low transaminase 

levels, which is in contrast to elevated AST and ALT levels in human NASH (Albano et 
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al., 2005). Both, less apoptosis and liver damage confirm the cytoprotective properties 

of p62 (Kessler et al., 2013; Tybl et al., 2011).  

Recently, inflammasome activation has been demonstrated as a hallmark of 

steatohepatitis and free cholesterol (Csak et al., 2011; Ioannou et al., 2013). 

Furthermore, the product of inflammasome activation, IL-1beta, was reported to 

promote hepatic steatosis via suppression of Ppara (Stienstra et al., 2010). The 

inflammasome is a multiprotein complex, which cleaves pro-IL-1beta into secreted IL-

1beta (Szabo & Csak, 2012). Here, we show its activation as confirmed by 

upregulation of Nlrp3, Pycard/Asc, and pro-IL1b mRNA levels as well as increased IL-

1beta protein levels in p62 transgenic animals.  

Summarizing the effect of hepatocellular p62 expression on the progression towards 

NASH, we conclude an amplification of the inflammatory response due to the 

enhanced activation of NFKB, activation of the inflammasome, and a distinct cytokine 

profile in p62 transgenic animals on MCD.  

 

 p62 Promotes Fibrogenesis via TGF-beta-independent 4.6

Collagen Production 
In NASH inflammation activates collagen producing stellate cells leading to fibrosis 

(Rombouts & Marra, 2010). In this model increased procollagen 1 expression and 

sinusoidal fibrosis, predominantly found in a central distribution pattern similar to 

human NASH-related fibrosis (Kleiner et al., 2005), was already found at early time 

points in these animals. These findings are in concordance with reports on p62 

expression in human HCC and cirrhotic nodules (Lu et al., 2001). In conjunction with 

the accelerated fibrosis formation, a pronounced ductular reaction was observed. 

Recently, several studies indicated ductular reactions secondary to the activation of 

hepatic progenitor cells (HPC) as an additional mechanism for fibrogenesis (De Lima 

et al., 2008), which is correlated to progressive fibrosis in human NASH (Richardson 

et al., 2007).  
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Besides other stimuli, an activation of HPC to differentiate into biliary epithelial cells 

and to form ductules was demonstrated to be dependent on the Tweak/Fn14 pathway 

(Jakubowski et al., 2005). Tweak (Tnfsf12) is a growth regulator with a broad target 

spectrum, including cell survival, proliferation, or induction of cytokines and Fn14 is its 

possible TNF-like receptor (Campbell et al., 2004). In this study, Tweak expression 

was slightly induced in p62 transgenics after 4 weeks on MCD correlating with the 

most distinct appearance of DRs. However, the underlying cause of DRs formation 

needs further investigations.   

Elucidating the molecular mechanism of fibrogenesis in p62 transgenic mice on the 

MCD diet, the expression levels of Tgfb and its downstream target gene Ctgf were 

measured. Surprisingly, Tgfb levels were unchanged or rather downregulated in 

animals fed the MCD diet, whereas Ctgf expression was highly induced in animals fed 

the MCD diet, suggesting a TGF-beta independent production of collagen. In fact, Liu 

et al. demonstrated that the cytokine interleukin 13 induces Ctgf irrespective of TGF-

beta (Liu et al., 2011b). Indeed, serum IL-13 levels were increased in p62 transgenic 

mice, suggesting an IL-13 dependent Ctgf expression resulting in liver fibrosis. 

Similarly, it was reported that in human NASH patients serum IL-13 levels were 

increased and the inhibition of the IL-13 receptor in a rat model of NASH led to 

reduction in fibrosis (Shimamura et al., 2008). 

In summary, p62 expression cause a ductular reaction and increased collagen 

deposition probably via a Ctgf induced, TGF-beta independent pathway.  

 

 Kupffer Cells Modulate Fatty Acid Metabolism in NAFLD 4.7
In NAFLD a better understanding of the contribution of inflammatory cells on the 

development and diseases progression is critical. The liver resident macrophages, 

Kupffer cells (KC), have been reported to contribute to NASH development and are 

known to modulate the lipid metabolism of the adjacent hepatocytes (Stienstra et al., 

2010; Tomita et al., 2006). GC-MS analyses of hepatic free fatty acids and cholesterol 

levels confirmed a less pronounced lipid accumulation in livers of KC depleted 

animals. Histological analyses and gene expression analyses of inflammatory 
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mediators, however, did not reveal statistical differences, most likely due to a large 

inter-sample variability.  

Interestingly, a pronounced downregulation of serum triglycerides along with a 

downregulation of the lipogenic genes Elovl6, Fasn, and Scd1 was observed in KC 

depleted animals on the ctrl diet. These findings support the notion of KC being fat-

producing cells and modulators of fatty acid metabolism of adjacent hepatocytes 

(Leroux et al., 2012; Rivera et al., 2007). Furthermore, a downregulation of the 

C18:C16 ratio in the absence of KC indicated a downregulation of the elongase 

activity as confirmed by the downregulation of Elovl6 mRNA and protein expression 

level. In human NASH Elovl6 expression was likewise found to be positively correlated 

with severity of steatosis and NASH, and its knockout in mice leads to amelioration of 

NASH pathogenesis (Matsuzaka et al., 2012; Muir et al., 2013). Similar findings were 

seen in an animal study of arteriosclerosis, in which macrophage-specific Elovl6 

deficient animals ameliorated foam cell formation and progression to arteriosclerosis 

(Saito et al., 2011).  

Taken together, the presented data indicate that KCs have an implication on lipid 

metabolism due to the modulation of lipogenic genes. 
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 SUMMARY 5
 

The incidence of NAFLD has been rising in the last decades. Understanding the 

underlying mechanisms responsible for the pathogenesis of the progression from 

simple steatosis to NASH and the subsequent transition to fibrosis and HCC is 

therefore of highest clinical interest.  

In this study, we investigated the effect of the liver-specific overexpression of 

p62/IGF2BP2-2 in mice on the progression of NASH and NASH-induced fibrosis.  

p62 was originally isolated as autoantigen from a HCC patient and is overexpressed in 

HCC patients and in pre-malignant cirrhotic nodules. p62 overexpression in mice 

induces a fatty liver phenotype and increases cytosolic NFKB-p65 suggesting a 

susceptibility towards an inflammatory stimulus.  

Within this study liver-specific overexpression of p62 was shown to amplify steatosis in 

MCD diet-induced NAFLD. p62 modulates lipid metabolism by increasing lipogenesis 

and decreasing lipolysis. Despite attenuated cell damage in p62 transgenic animals, 

the mice exhibited an amplified inflammation with consecutive fibrosis.  

The aggravated transition from steatosis to NASH was mediated by increased iron 

accumulation within the parenchyma and a subsequent rise in cholesterol synthesis. 

The p62-mediated increase of free cholesterol in turn led to increased ROS and lipid 

peroxidation. These events led to an elevated inflammatory response. Here, a 

pronounced NFKB activation with corresponding inflammatory cytokine profile was 

seen in p62 transgenic animals. Accordingly, inflammasome activation was 

demonstrated in p62 livers.  
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Most interestingly, p62 induced a ductular reaction as well as an early onset of 

fibrosis. The molecular mechanism of fibrogenesis in p62 transgenic animals revealed 

an IL-13-dependent activation of CTGF irrespective of TGF-beta leading to collagen 

synthesis. 

Taken together, this study provides evidence for a pathophysiological role of p62 in 

the progression from NAFLD towards NASH and fibrosis.  
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 OUTLOOK 6
 

Since the MCD diet alone did not lead to tumorgenesis in p62 transgenic animals in 

the used treatment period further studies are needed to investigate a potential 

pathophysiological role of p62 in the transition from NASH to HCC.  

A model to assess this question would be to characterize the impact of p62 

expression in animals fed the MCD diet with simultaneous administration of a 

carcinogen, such as diethylnitrosamine (DEN).  

Another approach would be to feed a high-fat diet to the p62 transgenic animals, as 

this diet would model the NAFLD induced by obesity. Moreover, this diet might reveal 

the effect of p62 expression on fatty acid metabolism more clearly. 

At last, irrespective of the diet leading to NAFLD, liver cell isolation with subsequent 

cell type classification might provide further information on the complex interplay of 

p62 expressing hepatocytes with the other liver resident cells in the pathophysiology 

of NAFLD and HCC. 

 

 

 

 

 

 

 

 

 

 



Supplement 

~ 89 ~ 
 

 
   SUPPLEMENT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
    

 
   Suppl.: Immunohistochemistry of cleaved caspase-3.   
    (A) Representative pictures of mice fed the ctrl or     
          MCD diet for 4 weeks and      
    (B) scoring of apoptosis with n=9-10 
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unterstützt, was in ihrer Macht stand. Gemeinsam haben wir ein dunkles Kapitel 

überstanden und sind richtig dicke Freundinnen geworden.  

 Zum guten Schluss gilt mein Dank meiner großen Liebe - Pit. In den 

vergangen Jahren hast Du mir mit Deiner tollen, so unglaublich positiven Art gezeigt, 

wie das Leben leichter zu bewältigen ist. Dank Dir war jede Hürde wie eine kleine 

Bodenwelle und trotz der Fernbeziehung hat es sich angefühlt, als wärst Du immer 

bei mir gewesen. Ich danke Dir aus tiefsten Herzen für Deine Liebe und kann es nun 

kaum erwarten, den nächsten Schritt mit Dir in eine gemeinsame Zukunft zu gehen. 

Ich liebe Dich. 

 


