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Abstract 

For the development of solid oral dosage forms the determination of drug release 

and permeability is of particular importance. To be close to real human conditions, 

the use of systems which combine testing of both parameters is meaningful. 

Therefore, an apparatus was developed especially for this approach which uses 

well-established Caco-2 cells as permeation barrier. Circumventing some 

drawbacks of Caco-2 cells, several non-cellular barriers were developed for 

classical transport experiments, which are known as so-called parallel artificial 

membrane permeability assays.  

In the present work a non-cellular permeation barrier was developed especially for 

the use in the combined dissolution and permeation apparatus and successfully 

characterized regarding its coatig assembly, stability and permeation properties in 

comparison to Caco-2 cell monolayers for both drug solutions and solid oral 

dosage forms. This artificial membrane presents a valuable alternative to Caco-2 

cells.  

Furthermore, the suitability of the combined apparatus to analyze effects of 

excipients, in particular P-glycoprotein inhibitors, was tested. Due to the 

construction of the apparatus the absorptive transport could only be determined 

which resulted in much smaller inhibition effects. The results obtained with drug 

solutions and tablets indicated a limited use of the combined system in this context 

necessitating further investigations. 

 

  



               

 

 

 

Zusammenfassung 

Während der Entwicklung von festen oralen Arzneiformen ist die Bestimmung der 

Wirkstofffreisetzung sowie der Permeabilität von besonderer Bedeutung. Um nah 

an menschlichen Bedingungen zu sein ist die Verwendung von Systemen, die 

beide Parameter kombinieren, sinnvoll. Daher wurde ein Gerät speziell für diesen 

Ansatz entwickelt, welches etablierte Caco-2 Zellen als Permeationsbarriere nutzt. 

Um einige Nachteile von Caco-2 Zellen zu umgehen, wurden verschiedene nicht-

zelluläre Barrieren für den Einsatz in klassischen Transportversuchen entwickelt, 

die als parallele artifizielle Membran-Permeabilitäts-Assays bekannt sind. 

In dieser Arbeit wurde eine nicht-zelluläre Barriere speziell für den Einsatz in 

einem kombinierten Freisetzungs- und Permeationsgerät entwickelt und 

erfolgreich bezüglich Coatingaufbau, Stabilität und Permeationseigenschaften im 

Vergleich zu Caco-2 Zellen sowohl mit Wirkstofflösungen als auch mit Tabletten 

charakterisiert. Diese künstliche Membran stellt eine wertvolle Alternative zu 

Caco-2 Zellen dar. 

Des Weiteren wurde der Einsatz des Gerätes zur Analyse von Hilfsstoffeffekten, 

insbesondere P-Glykoprotein Hemmer, getestet. Aufgrund des Geräteaufbaus 

konnte nur der absorptive Transport bestimmt werden, was in viel geringeren 

Transportereffekten resultierte. Die Ergebnisse, welche mit Lösungen sowie 

Tabletten erzielt wurden, weisen auf eine eingeschränkte Verwendung des 

kombinierten Gerätes in diesem Zusammenhang hin und erfordern weitere 

Untersuchungen. 
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1 Introduction 
 

For the bioavailability of orally applied drugs liberation and absorption are 

essential parameters, and as such are parameters considered by the LADME 

model. This model summarizes the five main processes involved in 

pharmacokinetics as being liberation, absorption, distribution, metabolism and 

excretion. Since liberation and absorption are of vital importance for clinical 

efficacy and may easily be optimized during drug formulation development, many 

efforts have been made to achieve standardized determination of drug release and 

permeability close to human conditions, especially in case of solid dosage forms. 

Currently, both parameters are analyzed as individual attributes using different 

standard methods.  

 

1.1 In vitro dissolution testing of orally applied drugs 

Dissolution testing is the most commonly used technique for the determination of 

drug release. Validated dissolution models are described in the European 

Pharmacopoeia (Ph. Eur.) as well as in the United States Pharmacopoeia (USP) 

and consequently have become standard methods in formulation development 

and pharmaceutical quality control. Among them, USP apparatus 1 and 2 (basket 

and paddle apparatus respectively) are widely used. In order to be close to in vivo 

conditions the test conditions such as temperature, pH or composition of the 

dissolution media have been refined. In this context, the development of simulated 

intestinal fluids by the group of Dressman et al. [1] should be particularly 

mentioned. Various groups have established different versions of FaSSIF (fasted 

state simulated intestinal fluid) and FeSSIF (fed state simulated intestinal fluid) 

and described the use of such media for dissolution as well as for permeation 

approaches [1-7]. Even the USP describes a version of simulated intestinal fluid 

[8]. The main modification between the different versions is the concentration of 

bile salts like lecithin or sodium taurocholate.   

Another apparatus used for dissolution testing is the flow through dissolution cell 

(USP apparatus 4). The technique of flow through dissolution measurement is 

advantageous especially for poorly soluble compounds, due to the better 

maintenance of sink conditions [9]. Furthermore, the continuous flow of medium 
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and the thereby constant removal of dissolved drug allows the determination of 

dissolution closer to the in vivo situation. Moreover, this device enables faster and 

easier change of dissolution media throughout the experiment and therefore the in 

vivo situation can easily be mirrored. 

While determination of drug release with apparatus 1 and 2 directly leads to 

cumulative released amounts, apparatus 4 enables the time dependent 

determination of concentration changes in a differential form. The use of apparatus 

4 therefore requires an additional conversion step of the measured released drug 

concentration in order to evaluate the total released amount.  

 

1.2 Determination of permeability 

A categorization of active pharmaceutical ingredients (APIs) with respect to 

biorelevant parameters has been described in the Biopharmaceutics Classification 

System (BCS) introduced by Amidon et al. [10]. As a guide to predict drug 

absorption after oral administration, the US Food and Drug Administration (FDA) 

accepted this system, which classifies APIs according to their intestinal 

permeability and their aqueous solubility (Table 1.1). According to the FDA an API 

is considered as highly soluble when the highest dose strength is soluble in 250 ml 

or less of aqueous media over the pH range of 1-7.5 [11]. If 90 % or more of the 

applied dose is absorbed in humans the API is considered as highly permeable 

[11].  

 

Table 1.1. Biopharmaceutics Classification System (BCS) according to Amidon et al. [10] 

Class Solubility Permeability 

I High High 

II Low High 

III High Low 

IV Low Low 

 

The measurement of intestinal permeability is more challenging compared to 

dissolution testing due to the fact that it is a more complex process. Due to its 

large surface area, resulting from villous structures and epithelial folding, the small 
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intestine is the predominant organ for drug absorption of orally administered 

dosage forms. A drug can permeate the intestinal barrier via different pathways, 

which are illustrated in Figure 1.1. In the presence of a concentration gradient 

permeation via both the transcellular and the paracellular pathway is a passive 

process (Figure 1.1 A and B), which depends on the physicochemical parameters 

of the drug substance. Paracellular transport occurs as a diffusion process in 

between the cells crossing the interconnecting tight junctions through pores. This 

pathway is preferred by hydrophilic drug substances as transcellular transport is 

hindered by the lipophilic character of the cell membrane. Lipinski´s rule of 5 

describes the limitations of transcellular transport [12]. For high transcellular 

permeability of a drug molecule to be likely to occur, at least three of the following 

criteria should be fulfilled: 

 

1. Maximum 5 H-bond donors 

2. Maximum 10 H-bond acceptors 

3. A molecular mass less than 500 Da 

4. A logP lower than 5 

 

Apart from passive transport mechanisms, intestinal absorption can also take 

place by active transport via transporter proteins. This enables the permeation of 

substances which are excluded from passive pathways due to their 

physicochemical properties. Active transport can be concentration gradient driven 

(Figure 1.1 C) but may also occur against a concentration gradient (Figure 1.1 D 

and E). In the second case, energy (e.g. ATP) is required, and may facilitate 

transport from both the luminal side to the blood (influx) as well as from inside of 

the cell to the luminal side (efflux). Further processes which may occur in 

conjunction with drug permeation include vesicular transport following transcytosis 

or endocytosis (Figure 1.1 F), and enzymatic metabolism during transcellular 

transport (Figure 1.1 G). 
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Figure 1.1. Scheme of possible permeation pathways at the intestinal barrier. Passive transcellular 

transport (A), passive paracellular transport (B), carrier-mediated transport (C), active transport (D), 

active efflux under ATP consumption (E), vesicular transport after apical endocytosis (transcytosis) 

(F), passive transcellular transport modified by enzymatic metabolism (G). 

 

Apart from in vivo studies in humans, further biological models can be used for the 

evaluation of intestinal permeation of pharmaceutical compounds. This includes in 

vivo or in situ animal models, in vitro studies using excised animal or human 

intestinal tissues, such as the everted gut sac model, as well as in vitro studies 

using monolayers of cultured epithelial cells [11]. However, non-cellular 

permeation models based on lipid-infused artificial membranes also have an 

increasing importance for the determination of permeability due to the possibility of 

automation in high throughput systems. An overview of the relevant artificial 

models can be found in Chapter 1.4. 

In vitro permeation experiments are mostly performed in 6-, 12-, 24- or 96-well 

plates in an incubator to ensure controlled conditions together with stirring or 

shaking. These conditions will be mentioned as classical static setup in the 

following chapters.  

The most commonly used way to assess and compare results obtained from 

permeability experiments is by the calculation of the apparent permeability 

coefficient (Papp) [13]. This value represents the combined effects of all pathways 

across the barrier including the cell membrane, the tight junctions as well as the 

unstirred water layer at the membrane. The Papp value is equal to the flux per 

surface area and initial drug concentration. Thereby, the flux is calculated from the 

cumulative amount of drug substance in the receiver compartment versus time 

according to Fick´s first law, under assumption of steady state. It can be 
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determined for the absorptive as well as for the secretory direction of drug 

transport. 

 

1.2.1 Caco-2 cell culture model 

One of the widely used and well-established cellular in vitro models for the small 

intestine is the Caco-2 cell monolayer [14, 15]. Caco-2 cells were first isolated 

from the colonic adenocarcinoma of a Caucasian male in 1977. They are 

characterized by their physiological similarity to the human intestinal epithelium, 

which can explain their high acceptance as a model for the human intestinal 

epithelial barrier. Under standard culture conditions Caco-2 cells are able to 

differentiate spontaneously after reaching confluence. They do not only form a 

brush border membrane but also functional tight junctions. Furthermore, they 

express efflux pumps e.g. MDR1 and BCRP as well as active transporters like 

MCT1 and PepT1. All this properties are advantageous with respect to the use of 

Caco-2 cells for transport studies, as they enable analysis of specific uptake 

mechanisms. A good correlation between human intestinal absorption and Caco-2 

cell permeability has been demonstrated in various studies [16, 17]. In contrast to 

the above mentioned advantages of this cell line, the evaluation of metabolism 

during transport in a Caco-2 cell model is limited due to the low expression of 

CYP3A4, the major enzyme for metabolism of marketed drugs. This drawback can 

be minimized by transfection of cells with the CYP3A4 gene or induction of the 

gene using vitamin D3 [18, 19]. 

 

1.2.2 Active efflux by P-glycoprotein 

P-glycoprotein (P-gp) is often described as the most important efflux protein in 

humans. It belongs to the ATP binding cassette (ABC) family of transporters. At 

several barriers in the human body, P-gp plays a significant role [20]. Due to its 

anatomical location, this efflux transporter functions to protect the body against 

toxic xenobiotics [21]. For instance, it transports compounds from intestinal 

mucosal cells into the lumen, at the blood-brain-barrier towards the blood or in the 

kidneys into the urinary system [22, 23]. Most of the substances which are P-gp 

substrates are hydrophobic in nature [21]. In the gastrointestinal tract, the 
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transporter is located on the apical surface of epithelial cells of the small and large 

intestine [20]. Consequently, the oral bioavailability of certain substances may be 

reduced by the activity of P-gp [24]. Nevertheless, the clinical effect of P-gp 

inhibition is discussed controversial. The in vivo relevance of P-gp is affected both 

by the affinity of the API to efflux systems and by the luminal concentration of API. 

For example, an increased oral bioavailability of paclitaxel was demonstrated 

when co-administered with cyclosporine A (CysA), which is known to be a potent 

P-gp inhibitor [25]. Furthermore, in healthy volunteers the same effects were 

described when CysA was given in combination with TPGS [26]. Nevertheless, 

there are also statements that the influence of P-gp is less important than the 

influence of CYP especially with regard to the occurrence of drug-protein 

interactions [21]. 

 

1.3 Rationale and state of the art of combined dissolution and permeation 

measurement 

As described above drug release and permeability are usually analyzed 

separately.  

However, permeability can be influenced by excipients and different drug release 

profiles. Analysis of the impact of drug formulations on gastrointestinal 

permeability as well as a direct correlation of dissolution and permeation is 

therefore impeded by the design of commonly employed in vitro dissolution and 

permeation tests. Thus, a combined method for simultaneous dissolution and 

permeation experiments would be highly desirable to detect potential interactions 

between drug and excipients, and to assess the impact of any such interactions. 

For this reason, different systems have been developed combining dissolution and 

permeation in one apparatus.  

The first approach was described by Ginski et al. [27]. In their continuous 

dissolution/Caco-2 system dissolution is performed in a paddle apparatus 

according to the USP (apparatus 2). Permeation takes place in a side-by-side 

diffusion cell, where a Caco-2 cell monolayer is mounted. Both parts are 

connected with a peristaltic pump for media transfer. As no drug is allowed to 

leave the system, the setup can be seen as a closed system. Therefore, the 
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generated concentration time trends have a lower in vivo relevance, and efflux or 

uptake transporters may become saturated. 

The second approach and the first open system was published by Kobayashi et al. 

[28], which also takes the change of pH during the intestinal passage of drugs into 

account. As a kind of flow through dissolution device serves a stirred glass vessel 

at pH 1. A second glass vessel connected to the first with a pump is used for pH 

adjustment to pH 6. This vessel is followed by a side-by-side diffusion chamber, 

where permeation over a Caco-2 cell monolayer takes place.  

A third approach especially designed for the investigation of poorly water soluble 

drugs was described by Kataoka et al. [29]. In this closed system dissolution and 

permeation take place in the same vessel. The device is divided by a Caco-2 cell 

monolayer into an apical and a basolateral compartment. The system was 

constructed in a downsized setup in relation to in vivo conditions; the drug was 

also applied in suspension or powder in clinical doses which were adapted 

accordingly to the setup size. Later on Kataoka et al. [6, 30, 31] published different 

applications for their system such as the investigation of food effects, formulation 

effects or efflux by P-gp. However, dissolution and permeation were not performed 

at the same time in this approach. Therefore, the author of this thesis remarks that 

the system can be understood as a combined and simultaneous setup only in 

limited form.   

Based on these three approaches a system combining dissolution and permeation 

in one apparatus (d/p-system) was developed by Motz et al [32, 33] for the 

evaluation of complete solid oral dosage forms. Having an open system and using 

dynamic flow conditions provides a closer simulation of the conditions in the 

human body. The apparatus consists of three main parts. The current construction 

of the d/p-system is schematically shown in Figure 1.2. The first part is a flow 

through dissolution cell (USP apparatus 4). It is connected inline with the second 

part, where permeation takes place. The permeation module enables the mounting 

of a Transwell® with a Caco-2 cell monolayer in a custom-made flow through 

permeation cell (FTPC). The third part includes automated sampling and detection 

devices using a sequential injection analysis (SIA). As dissolution and permeation 

requires different flow rates the dissolution and permeation modules are 

connected with each other by a stream splitter. The system was tested for its 

ability to allow for measurement of both dissolution and permeation using 
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propranolol tablets with different release kinetics and dosage strengths. The 

system was refined by Muendoerfer et al. [34]. Firstly, the system was improved to 

allow the measurement of lowly permeable compounds (BCS class III and IV). In 

particular, a second valve, pump and autosampler for basolateral sampling were 

installed, the volume of the basolateral compartment was downsized and a 

magnetic stirrer was implemented. Secondly, the system was extended by a tool 

for online measurement of the transepithelial electrical resistance (TEER) value. 

Therefore, electrodes were integrated into both sides of the FPTC, which can be 

connected to a voltohmmeter (EVOM). This new tool enables the monitoring of the 

barrier integrity throughout the dissolution and permeation process. This is of 

particular importance in such a combined system, as for example, it is well known 

that excipients can open tight junctions and thereby can enhance the passive 

permeation of drug substances. 

 

 

Figure 1.2. Scheme of the combined dissolution and permeation system according to Motz et al. 

and Muendoerfer et al. [32-34].    
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In contrast to the classical static setup, permeation experiments performed in the 

d/p-system and particularly in the FTPC are mentioned as being conducted under 

dynamic flow conditions in the following chapters.  

 

1.4 State of the art: artificial membrane / non-cellular permeation barrier 

Although Caco-2 cell monolayer has become one of the standard in vitro models 

for the determination of intestinal permeability [35], the use of cellular assays is 

associated with certain drawbacks. Long cultivation times, problems with 

contamination or incompatibility with some dissolution media should be mentioned 

as examples of such drawbacks. Due to these disadvantages, there was a strong 

need for the development of permeation models which do not utilize cells. Over 

the last years a high throughput model known as parallel artificial membrane 

permeability assay (PAMPA) has been developed [36], which has rapidly grown in 

importance. The PAMPA model can be a helpful, fast and low cost add-on to 

cellular models [37]. Artificial membranes behave in a very similar manner to 

Caco-2 cells  in passive diffusion studies [38]. In the following, some selected 

examples of PAMPA-like models are presented. 

Kansy et al. [36] were the first to describe a non-cellular model based on lipids 

solved in an organic solvent serving as the PAMPA permeation barrier. This 

original method consisted of a highly porous microfilter which was infused with a 

solution of egg lecithin (10 % w/v) dissolved in n-dodecane [36, 37]. The 

investigator chose to use phosphatidylcholine as a lipid due to its prevalence in 

mammalian membranes.  

Since 1998 the PAMPA technique has been refined and has undergone 

substantial development to a more and more versatile method for permeability 

testing. Based on the first description of PAMPA many of the following systems 

were made of phosphatidylcholine dissolved in n-dodecane. As the source of lipid 

is mostly egg lecithin, these models are often classified as egg-PAMPA [37]. In 

order to mimic the high prevalence of sterols in mammalian membranes, some of 

these assays supplement phosphatidylcholine with cholesterol [37]. 

Due to egg lecithin sourcing and extraction processes, the quality and composition 

of the lipid for egg-PAMPA can change from batch to batch. This could be 

disadvantageous with respect to the reproducibility of assay results and may also 
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lead to higher inter-laboratory variations. Therefore, a synthetic lipid could be 

advantageous with respect to these points.  

A solution of 2 % w/v of the synthetic phospholipid dioleoylphosphatidylcholine 

(DOPC) in n-dodecane was the basis for the first commercially available PAMPA 

lipid formulation [39-41]. However, it was soon replaced by the double-sink-assay 

(DS-PAMPA). This improved formulation is again based on a lecithin lipid 

combination (20 % w/v mixture of phospholipids) dissolved in n-dodecane [42, 43]. 

Furthermore, the experimental conditions were changed to a two gradient system, 

hence the name double-sink. The first sink condition is realized by a pH gradient 

between the aqueous compartments, mimicking the gastrointestinal and blood 

environment. Depending on the drug substance the pH of the donor compartment 

can be adjusted from 3 to 10, while the pH of the acceptor compartment is fixed at 

7.4. As the second sink condition surfactants in micellar form are added to the 

acceptor compartment, where they act as chemical scavengers [37, 42].  

Another approach to more closely mimic the lipid composition in biological 

membranes was described by Sugano et al. [44, 45]. In this study a mixture of 

cholesterol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine 

and phosphatidylinositol dissolved in 1,7-octadiene was used. This biomimetic 

phospholipid mixture is described as being similar to the composition of the brush 

border membrane [46].       

Additionally to PAMPA methods using diverse lipids dissolved in an organic 

solvent, Wohnsland and Faller [47] described a phospholipid-free assay using only 

an inert solvent, namely n-hexadecane (HDM-PAMPA). In comparison to other 

models this HDM-PAMPA leads to longer assay times [37]. 

Most of the published PAMPA methods utilize a hydrophobic filter membrane as 

support for the impregnated lipid solution. Although each system appears to work 

well and has shown promising correlation to human absorption, the long transport 

time and slow permeation rate in these systems in general is a disadvantage. 

Therefore, Zhu et al. [48] described a system using a hydrophilic PVDF membrane 

as support, which decreased the transport period and increased the permeation 

rate.  

In principle all these PAMPA variants are characterized by an aqueous drug 

solution and an aqueous acceptor buffer separated by a phospholipid-infused or 

organic solvent-infused filter membrane [37]. As a high throughput method 
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PAMPA experiments are mostly performed in 96-well plates in a classical static 

setup. Several problems are associated with this setup such as the maintenance 

of sink conditions or the presence of an unstirred water layer. Therefore, a 

PAMPA-like system for use under flow conditions appears meaningful. 

A model suitable for the use not only under static conditions but also under flow 

conditions was described by Corti et al. [49]. Here again, a lipid mixture (egg 

phosphatidylcholine and cholesterol) dissolved in an organic solvent (n-octanol) 

was used to impregnate a membrane [49, 50]. The impregnated membrane was 

inserted into a diffusion cell, connected to a donor and acceptor compartment by a 

peristaltic pump. The system can be seen as a closed model, since no drug is 

allowed to leave the setup. Corti et al. [50] showed that for passively absorbed 

drugs, such an artificial membrane was a good predictor of oral absorption in 

humans.  

As organic solvents employed for solvation of PAMPA lipid components are prone 

to interact with the supportive membrane, several efforts were undertaken to 

eliminate this risk. A model free of organic solvents was described for the first time 

by Flaten et al. [51]. This model was based on depositing lipids in the form of 

liposomes in order to form a permeation barrier, and was designed for use under 

classical static permeation conditions. In several studies [52-57] the authors 

showed the suitability of their artificial membrane. The barrier was stable towards 

pH changes and agitation. The use of simulated intestinal fluid as medium as well 

as the addition of tensides or co-solvents to the medium was shown to be 

possible. Furthermore, this permeation barrier could be used for melt extrudates in 

a static setup with previous dispersion of the formulation in buffer [58]. 

Nevertheless, this setup does not enable the use of undissolved formulations and 

the simultaneous investigation of drug release and permeation.    

Another PAMPA model avoiding the use of organic solvent in excess was 

described by Chen et al. [59] as a lipid/oil/lipid tri-layer system. According to the 

hypothesis of the authors, the excess of organic solvent in the current assays is an 

additional permeation barrier leading to under-prediction of highly permeable 

substances. This could be avoided by the new model leading to a better 

predictability. In comparison to conventional PAMPA methods the coating of the 

membrane of the tri-layer system does not need to be performed immediately 
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before the assay. Therefore, the authors concluded that the day-to-day variability 

of the coating can be minimized and the reproducibility can be improved [59].  

 

Originally the artificial membrane setups called PAMPA were developed for the 

investigation of gastrointestinal permeation, which was also the focus of this 

chapter. For the sake of completeness it should be mentioned that in the last years 

this approach has also been used for other permeation barriers like the blood-

brain-barrier or the skin [60, 61]. 

 

1.5 Aim of the work 

As known from in vivo data the addition of different excipients like P-gp inhibitors 

or solubilizers can influence the bioavailability of drug substances. This can be an 

effect of changes during the dissolution or the permeation as well as a 

combination of both. Therefore, it appears meaningful to test the d/p-system for its 

suitability to analyze such effects. The first aim of the work was to examine the 

influence of the release of excipients under dynamic flow conditions. For this, a 

suitable model substance had to be selected showing an increased absorptive 

transport under inhibition of efflux transporters. Furthermore, the effect of 

excipients on drug permeation was tested using Caco-2 cell monolayers and solid 

dosage forms containing a P-gp inhibitor. 

 

The combined dissolution and permeation system was developed for the use of 

Caco-2 cell monolayers as the permeation barrier. Due to certain drawbacks 

including cultivation time or potential for contamination, the development of an 

alternative to cellular barriers was set as a second aim. Therefore, an artificial 

membrane coated with lipid was developed, characterized and implemented in the 

FTPC and compared with Caco-2 cells. In a further step, it was evaluated whether 

the artificial membrane was also suitable for the analysis of dosage forms such as 

tablets.  
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2 Selection of a drug substance to test efflux systems 
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2.1 Introduction 

Besides the consideration of the BCS for the selection of a suitable substance for 

the evaluation of the effect of excipients with a particular focus on efflux 

transporters, the refined Biopharmaceutics Drug Disposition Classification System 

(BDDCS) should also be taken into account. This classification system was 

introduced by Wu and Benet in 2005 [62]. The BDDCS includes transporter effects 

and elimination routes in the classification of drug substances. According to this 

system, the four classes as defined in BCS are supplemented by the effect of 

transporters and the elimination (Table 2.1). Recently, a compilation of over 900 

drugs to which the BDDCS was applied has been published [63]. 

 

Table 2.1. Biopharmaceutics Drug Disposition Classification System (BDDCS) according to Wu et 

al. [62] 

Class Transporter effects Route of drug elimination 

I Minimal Metabolism 

II Efflux transport predominate Metabolism 

III Absorptive transport predominate Renal/Biliary elimination 

IV Absorptive and efflux transport 

could be important 

Renal/Biliary elimination 

 

As it is often described as the most important efflux protein in humans, P-gp 

moved into the focus of this investigation. As already described in hapter 1.2.2, 

several studies reported the effect of P-gp inhibitors on the bioavailability of drug 

substances [64, 65]. Therefore, it appeared meaningful to test the d/p-system for 

its suitability to determine effects of P-gp inhibition and any accompanying 

permeation enhancement. 

 

Prior to testing complete dosage forms, the aim of the study was to identify a 

substance which shows an increased permeation across Caco-2 cells under 

inhibition of P-gp in the established transport setups (classical static setup and 

d/p-system). According to the BDDCS, substances classified in class II or IV are of 

particular interest. For this purpose, four different substances were tested.  
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Firstly, furosemide was chosen as a potential substrate for initial tests due to the 

fact that the d/p-system has already been established for the testing of that drug 

substance. Furthermore, different studies describe the impact of P-gp on the 

absorption of furosemide [66, 67]. 

The second chosen compound was rhodamine 123. It is described as a substrate 

of P-gp and has shown increased permeation and decreased efflux in the 

presence of TPGS [68].  

Domperidone was the third substance selected for testing. It is described as a 

good substrate for P-gp, although these studies concentrate on the blood-brain 

barrier [69, 70]. 

The last potential substance selected was talinolol. According to Wu et al. [62] it is 

classified as a BDDCS class II substance and is indicated as a P-gp substrate. 

Furthermore, in vivo studies have shown an increased bioavailability of talinolol in 

combination with TPGS [71]. 

 

Besides the selection of suitable drug substances, which are described as 

substrates of efflux transporters, an inhibitor for the transporter also needed to be 

selected. As a model for this, TPGS was chosen as a potential inhibitor of P-gp. 

Several studies have demonstrated an inhibitory effect of TPGS on P-gp. For 

example, the enhancing effect of TPGS on intestinal absorption of talinolol, 

paclitaxel and HIV protease inhibitors has been described [71-73]. Furthermore, 

there are dosage forms on the market containing TPGS. For example, a soft 

gelatin capsule formulation of amprenavir with TPGS is marketed under the name 

Agenerase.  

 

2.2 Materials and methods 

2.2.1 Materials 

Furosemide (Synopharm GmbH & Co KG, Barsbuettel, Germany), rhodamine 123 

(Sigma-Aldrich, Steinheim, Germany), domperidone and domperidone maleate 

(Transo-Pharm, Siek, Germany) and talinolol (extracted from Cordanum tablets, 

AWD.pharma, Radebeul, Germany) were used as model substances. TPGS 1000 

was obtained from Sigma-Aldrich (Steinheim Germany). All buffer reagents were 
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purchased from Sigma-Aldrich (Steinheim, Germany) and were of cell culture 

tested grade. All reagents for high performance liquid chromatography (HPLC) 

quantification were obtained from Sigma-Aldrich (Steinheim, Germany) and were 

of HPLC gradient grade. High purity water was prepared by a Millipore Milli-Q 

Synthesis system (Merck Millipore, Darmstadt, Germany). 

 

2.2.2 Cell culture 

Caco-2 cells (clone C2Bbe1) were purchased from American Tissue Culture 

Collection (ATCC, Manassas, USA). Cells were grown in 75 cm² T-flasks in an 

incubator (37 °C, 5 % CO2, 85 % relative humidity) to approximately 90 % 

confluence. Cell culture medium consisted of Dulbecco´s Modified Eagle´s 

Medium (DMEM, PAA Laboratories GmbH, Pasching, Austria) supplemented with 

1 % non-essential amino acids (NeAA, PAA Laboratories GmbH, Pasching, 

Austria) and 10 % fetal calf serum (FBS, LONZA, Verviers, Belgium) and was 

changed every second day. Caco-2 cells were trypsinated after reaching targeted 

confluence and were seeded on permeable supports (Transwell® type 3460, 

Corning Inc., Acton, USA) at a density of  60,000 cells/cm². Passages 61-70 within 

21-25 days after seeding were used for experiments.  

 

2.2.3 Transepithelial electrical resistance (TEER) measurement 

Before each experiment, the transepithelial electrical resistance (TEER) of the cell 

monolayer was measured with a handheld chopstick electrode (STX-2) and an 

epithelial voltohmmeter (EVOM, World Precision Instruments, Berlin, Germany). 

Only Transwells® showing TEER values above 300 Ω*cm² were used for transport 

experiments. The TEER value was measured in the same way also after a 

classical static transport experiment. 

During a dynamic transport experiment in the d/p-system, the TEER value was 

monitored online using an EVOM connected to electrodes in the FTPC as 

described by Muendoerfer et al. [34]. Here, the TEER value was recorded every 

minute in a computer-controlled manner using LabVIEW software (Version 2009, 

National Instruments Germany GmbH, Munich, Germany). 
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2.2.4 Buffer solution 

As a donor and acceptor medium Krebs Ringer Buffer (KRB) adjusted to pH 7.4 

was used. Composition of the buffer was the following: 142.03 mM NaCl, 10.0 mM 

HEPES, 4.00 mM D-Glucose, 3.00 mM KCl, 1.41 mM CaCl2, 2.56 mM MgCl2 and 

0.44 mM K2HPO4.  

 

2.2.5 Classical static transport experiments 

Prior to transport experiments, Caco-2 cell monolayers were washed with KRB 

and pre-incubated (30 min) with KRB. Subsequently, 1.5 ml KRB was added to the 

receiver (basolateral) compartment and 0.5 ml solution of the drug to the donor 

(apical) compartment (Table 2.2). Throughout the experiment, the inserts were 

shaken using an orbital shaker (IKA®-Werke GmbH and Co KG, Staufen, 

Germany) at 150 rpm in an incubator (37 °C). Samples (100 µl) were taken at 

defined time points from the receiver compartment over 180 min. The sample 

volume was replaced with fresh KRB. All experiments were performed at least 

three times. Mass balance was checked and confirmed after the experiments. 

 

Table 2.2. Concentrations of the drugs used in classical static transport experiments and dynamic 

transport experiments.  

 

2.2.6 Dynamic transport experiments 

Dynamic transport experiments were carried out in the FTPC of the d/p-system at 

37 °C. The flow rate of drug solution was adjusted to 1.0 ml/min, which has been 

Substance Concentration 

Domperidone 23.5 µM = 10 µg/ml 

Domperidone maleate 23.5 µM = 12.7 µg/ml 

Furosemide 1209.5 µM = 400 µg/ml  

Rhodamine 123 13 µM = 4.94 µg/ml 

Talinolol 27.5 µM = 10 µg/ml 

TPGS 0.0025 %, 0.005 %, 0.01 %, 0.02 % 

(added to drug solution, 0.01 % = 66 µM) 
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described as the optimal flow rate to maintain barrier integrity in particular [32]. As 

a basis for all donor solutions (apical compartment) and as acceptor medium 

(basolateral compartment) KRB was used. Drug concentrations in the experiments 

were the same as used for classical static transport experiments, and as such are 

also summarized in Table 2.2. Prior to mounting in the FTPC Caco-2 cell 

monolayers were washed twice and were pre-incubated with KRB for 30 min. 

Samples were collected automatically at certain time points from the basolateral 

side of the permeation cell by means of Sequential Injection Analysis (SIA 

equipped with FIAlab software (FIAlab instruments, Bellevue, USA)). Therefore, 

the basolateral side of the permeation module was directly connected to a syringe 

pump and an autosampler (Cetac ASX 260, Omaha, USA). The sample volume 

was automatically replaced with fresh KRB. All experiments were performed at least 

three times. 

The program codes for the respective substance and sampling ports are given in 

Chapter 10.2 in the annexes.  

It was ensured by a constant delivery from a reservoir that during the whole 

experiment the donor concentration at the apical side of the FTPC remained 

constant. 

 

2.2.7 Quantification of drug substances 

The concentration of substance in the basolateral compartment at each sampling 

time point was determined via HPLC or fluorescence measurement in a plate 

reader. For further details of the quantification method see Chapter 10.1 in the 

annexes. 

 

2.2.8 Data treatment 

The apparent permeability (Papp) for each substance across the Caco-2 cell 

monolayer was calculated according to the following equation (eq. 1) derived from 

Fick’s law for steady state and sink conditions. 

 

       
  

  
   

 

      
    (eq. 1) 
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From the linear part of produced diagrams (increasing mass in the basolateral part 

versus time), the ratio dQ/dt [µg/s] was calculated. Furthermore, A [cm²] is the 

surface area of the cell culture insert and c0 [µg/ml] is the donor concentration at 

t = 0 h.  

Papp values were calculated for each transport experiment separately. For 

comparison of different experimental conditions the single values were averaged. 

 

For the rating of the effect of the inhibitor on the permeation an inhibition ratio was 

calculated according to the following equation (eq. 2). 

 

                   
     (              )

     (                 )
      (eq. 2) 

 

The mean Papp values were taken from transport experiments in the absorptive 

direction (AB).  

For statistical analysis t-tests (p ≤ 0.01) were performed using SigmaStat 

integrated in SigmaPlot version 11.0 (Systat Software GmbH, Erkrath, Germany). 

 

2.3 Results and discussion 

2.3.1 Monitoring of TEER value 

For both, transport experiments under classical static conditions as well as in the 

FTPC, the TEER values were above 300 Ω*cm² at the end of each experiment. 

Thus, TPGS did not show any effect on the membrane integrity and the membrane 

was intact throughout the entire experiment. 

 

2.3.2 Furosemide 

Figure 2.1 shows the permeated mass of furosemide in a classical static transport 

experiment. The respective Papp values are summarized in Table 2.3. The Papp 

values of furosemide in combination with 0.005 %, 0.01 % and 0.02 % TPGS (t-

test, p ≤ 0.01) show a significant difference from experiments without TPGS. Also, 

a significantly different amount of permeated furosemide after 180 min was found 

in the presence of 0.01 % TPGS (t-test, p ≤ 0.01).  
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For furosemide, in the classical static setup it was possible to detect an effect of 

the P-gp inhibition on the permeation of the drug substance and a significant 

difference was found in the presence of 0.01 % TPGS. Therefore, it was decided 

that subsequent experiments in the FTPC would focus on using a 0.01 % 

concentration of inhibitor. 

Table 2.3. Overview of Papp values for furosemide. Data are presented as mean ± SD (n ≥ 3). Data 

marked with * are significantly different from Papp values without TPGS (t-test, p ≤ 0.01). 

Addition of TPGS Papp classical setup [*10-6 cm/s] Papp FTPC [*10-6 cm/s] 

Without 0.26 ± 0.07 0.18 ± 0.02 

0.0025 % 0.27 ± 0.06 Not tested 

0.005 % 0.38 ± 0.01* 0.23 ± 0.06 

0.01 % 0.42 ± 0.05* 0.17 ± 0.02 

0.02 % 0.43 ± 0.02* Not tested 
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Figure 2.1. Permeated mass of furosemide in classical transport experiment. Experiments were 

performed without TPGS (○), with 0.0025 % (●), 0.005 % (▲), 0.01 % (▼) and 0.02 % (■) TPGS.  

Data are presented as mean ± SD (n ≥ 3). 
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Using the FTPC similar results were found for furosemide (Figure 2.2). The 

permeated mass of furosemide after 180 min was the same without and with 

0.01 % TPGS. However, as no significant difference was found, a second 

concentration of TPGS was tested. The addition of 0.005 % TPGS already showed 

significant differences at least for the Papp values in the classical static transport 

experiments. In the FTPC, the permeated mass was found to be slightly higher 

with 0.005 % TPGS compared to furosemide alone. In the initial stages of 

transport experiments all three curves had the same slope. After 120 minutes the 

curve for furosemide transport in the presence of 0.005 % TPGS was observed to 

become steeper but nevertheless the difference was not significant. Also the Papp 

values (Table 2.3) obtained with TPGS were not significantly different from values 

without inhibitor (t-test, p ≤ 0.01). Therefore, in the case of furosemide, the FTPC 

was not able to distinguish between non-inhibition and inhibition of P-gp by TPGS 

at the employed TPGS concentrations.    
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Figure 2.2. Permeated mass of furosemide in the FTPC. Experiments were performed without 

TPGS (○), with 0.005 % (▲) and 0.01 % (▼) TPGS.  Data are presented as mean ± SD (n ≥ 3). 
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2.3.3 Rhodamine 123 

The permeation profiles for rhodamine 123 under classical static transport 

conditions show only minor changes between the different concentrations of 

added TPGS (Figure 2.3). Looking at the Papp values (Table 2.4), a significant 

difference was only found between the experiments without TPGS and with 

0.01 % TPGS (t-test, p ≤ 0.01).  

 

Table 2.4. Overview of Papp values for rhodamine 123. Data are presented as mean ± SD (n ≥ 3). 

Data marked with * are significantly different from Papp values without TPGS (t-test, p ≤ 0.01). 

Addition of TPGS Papp classical setup [*10-6 cm/s] 

Without 1.84 ±  0.67 

0.0025 % 2.71 ± 0.52 

0.005 % 2.10 ± 0.78 

0.01 % 3.16 ± 0.54* 

0.02 % 3.14 ± 2.46 
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Figure 2.3. Permeated mass of rhodamine 123 in classical transport experiment. Experiments were 

performed without TPGS (○), with 0.0025 % (●), 0.005 % (▲), 0.01 % (▼) and 0.02 % (■) TPGS.  

Data are presented as mean ± SD (n ≥ 3). 

 



Selection of a drug substance to test efflux systems 

 

23 

 

TPGS showed less influence on the permeation behavior of rhodamine 123 

compared to furosemide. Since the FTPC was not able to show the influence of 

TPGS on furosemide permeation clearly, no further investigation of rhodamine 123 

permeation in the FTPC was carried out. 

 

2.3.4 Domperidone and domperidone maleate 

The results for furosemide and rhodamine 123 in the classical static setup showed 

the greatest and most significant difference when adding 0.01 % TPGS to the drug 

solution. Therefore, the transport experiments with domperidone and domperidone 

maleate were only performed without and with 0.01 % TPGS. 

Comparable results were obtained for domperidone and domperidone maleate in 

the classical setup and in the FTPC (Figure 2.4 and Figure 2.5).  

The Papp values for the respective conditions are summarized in Table 2.5. Both 

domperidone and domperidone maleate show significantly different Papp values in 

combination with TPGS under classical static conditions as well as in the FTPC. 

Therefore, in contrast to the situation with furosemide, the FTPC was able to 

detect an effect of P-gp inhibition for these substances. This qualifies domperidone 

and domperidone maleate for further investigations with oral dosage forms.  

 

Table 2.5. Overview of Papp values for domperidone and domperidone maleate. Data are presented 

as mean ± SD (n ≥ 3). Data marked with * are significantly different from Papp values without TPGS 

(t-test, p ≤ 0.01). 

Addition of TPGS Papp classical setup [*10-6 cm/s] Papp FTPC [*10-6 cm/s] 

Domperidone   

Without 4.21 ± 0.46 6.08 ± 0.52 

0.01 % 6.96 ± 0.72* 8.69 ± 1.38* 

 

Domperidone maleate 

Without 2.29 ± 0.62 8.11 ± 2.19 

0.01 % 7.12 ± 0.52* 12.52 ± 1.40* 
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Figure 2.4. Permeated mass of domperidone in a classical transport experiment (a) and in the 

FTPC (b). Experiments were performed without TPGS (○) and with 0.01 % (▼) TPGS. Data are 

presented as mean ± SD (n ≥ 3). 
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Figure 2.5. Permeated mass of domperidone maleate in a classical transport experiment (a) and in 

the FTPC (b). Experiments were performed without TPGS (○) and with 0.01 % (▼) TPGS. Data are 

presented as mean ± SD (n ≥ 3). 
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2.3.5 Talinolol 

As well as for domperidone, experiments with talinolol were only performed 

without and with 0.01 % TPGS. Figure 2.6 shows the permeated mass of talinolol 

under classical static and dynamic flow conditions. While for the classical setup a 

significant difference between the permeated masses after 180 min was found, 

this could not be found in the FTPC. The Papp values summarized in Table 2.6 also 

confirm this result. Therefore, for talinolol the FTPC was not able to distinguish 

between non-inhibition and inhibition of P-gp, which was possible in a classical 

static setup. In comparison to the classical static setup, the results from the FTPC 

show higher standard deviations, thus preventing the occurrence of a statistically 

significant difference. Consequently, talinolol does not qualify for further 

investigation with tablets in the d/p-system.  

 

Table 2.6 Overview of Papp values for talinolol. Data are presented as mean ± SD (n ≥ 3). Data 

marked with * are significantly different from Papp values without TPGS (t-test, p ≤ 0.01). 

Addition of TPGS Papp classical setup [*10-6 cm/s] Papp FTPC [*10-6 cm/s] 

Without 0.45 ± 0.13 1.50 ± 0.42 

0.01 % 0.92 ± 0.19* 2.08 ± 0.63 
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Figure 2.6. Permeated mass of talinolol in a classical transport experiment (a) and in the FTPC (b). 

Experiments were performed without TPGS (○) and with 0.01 % (▼) TPGS. Data are presented as 

mean ± SD (n ≥ 3). 
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2.3.6 Comparison of inhibition ratios 

Generally the influence of efflux inhibitors is calculated according to equation 3 

[21]. 

 

              
     (   )

     (   )
      (eq. 3) 

 

For the substances selected for investigation in the current work, high efflux ratios 

are described in the literature. For example, an efflux ratio of 15 to 36 has been 

described for domperidone [74].  

In light of the intended purpose of the apparatus, only data for the absorptive 

transport (AB) and not for the secretory transport (BA) are available. This 

hinders the calculation of an efflux ratio. Therefore, for a better comparison of the 

obtained results, the inhibition ratio of 0.01 % TPGS was calculated according to 

equation 2 (Chapter 2.2.8) (Table 2.7). When considering all substances, the 

inhibition ratios are in the range between 1.6 and 3.1 for the classical static setup. 

For experiments in the FTPC the ratios show less variation, but are in accordance 

with the ratios obtained in the classical setup. Furthermore, for furosemide a ratio 

of approximately 1 was found in the FTPC indicating that there is no difference in 

the Papp values. Therefore, the FTPC is less sensitive in the detection of 

permeation differences caused by inhibition of P-gp. As mentioned previously, this 

might be due to the higher standard deviations of the results. The greatest 

inhibition ratios in the FTPC were found for domperidone maleate and 

domperidone, being the only substances with a significant difference in the Papp 

values in the classical static setup as well as in the FTPC. 

  

Table 2.7. Comparison of inhibition ratio with 0.01 % TPGS. 

Substance Classical static setup FTPC 

Furosemide  1.62 0.94 

Rhodamine 123  1.71 Not tested 

Domperidone 1.65 1.43 

Domperidone maleate 3.11 1.54 

Talinolol  2.04 1.34 



Selection of a drug substance to test efflux systems 

 

29 

 

For better comparison of the obtained data with the literature, the inhibition ratios 

for results with rhodamine 123 and digoxin described in the literature [75] were 

calculated (Table 2.8). The literature ratios are within the range of the ratios found 

in this study. Especially the ratio for rhodamine 123 is comparable to the result 

from the literature confirming the found results. 

 

Table 2.8. Inhibition ratios calculated from literature data [75]. Data were obtained in a classical 

static setup (absorptive direction) with TPGS or CysA as inhibitor.  

Substance Inhibition Ratio 

Rhodamine 123, 13 µM  1.86 (with 33 µM TPGS ≙ 0.005 %) 

2.22 (with 15 µM CysA) 

Digoxin, 1 µM  1.88 (with 33 µM TPGS ≙ 0.005 %) 

2.20 (with 15 µM CysA) 

 

2.4 Conclusion 

The selection test of different P-gp substrates showed that the effect of P-gp 

inhibition could not be detected in vitro easily especially when focusing on the 

absorptive transport direction. Furthermore, the FTPC was not always able to 

detect a difference in Papp values for all tested substances even if they showed a 

difference under classical static conditions. As domperidone maleate efflux 

inhibition was obvious in the classical transport setup as well as in the d/p-system, 

it is selected for further investigation of the onset-dynamics of TPGS as a P-gp 

inhibitor, which includes the evaluation of the effects of the inhibitor and the 

formulation on drug dissolution as well as permeation. Such an investigation 

requires the manufacturing of tablets. The results of this further examination are 

described in Chapter 3.  
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3 Feasibility of determining the effect of excipients in the d/p-
system using tablets 
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3.1 Introduction 

As described in Chapter 2, the pretest of the effect of P-gp inhibitors on the 

permeation of drugs using stock solutions of API and inhibitor show small 

increases in permeation in the apical to basolateral direction. Domperidone 

maleate in combination with TPGS was chosen for further investigations as an oral 

dosage form in the d/p-system, as this drug demonstrated the greatest effect of 

TPGS-induced P-gp inhibition on permeation in both classical and dynamic 

setups. Therefore, immediate release tablets (IR tablets) with domperidone 

maleate were manufactured using direct compression.  

 

3.2 Materials and methods 

3.2.1 Materials 

Domperidone maleate was purchased from Transo-Pharm (Siek, Germany) and 

Kolliphor® TPGS was from BASF (Ludwigshafen, Germany). CapsuLac® 60 

(lactose) was a kind gift from Meggle (Wasserburg, Germany), Microcell MC-102 

(microcrystalline cellulose, MCC) was a kind gift from Lehmann & Voss & Co. 

(Hamburg, Germany), Kollidon CL was from BASF (Ludwigshafen, Germany), 

Aerosil 200 was from Degussa (Frankfurt, Germany) and Mg-stearate was from 

Fagron (Barsbuettel, Germany). All tablet excipients were of Ph. Eur. grade. All 

buffer reagents were purchased from Sigma-Aldrich (Steinheim, Germany) and 

were of cell culture tested grade. KRB was prepared as described in Chapter 

2.2.4. 

 

3.2.2 Cell culture 

Cell culture was performed as described in Chapter 2.2.2. 

 

3.2.3 TEER measurement 

TEER was determined as described in Chapter 2.2.3. 
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3.2.4 Preparation of tablets 

IR tablets with domperidone maleate were manufactured using direct 

compression. Ingredients were sieved (mesh size 1400 µm), blended in a turbula 

mixer (type T2C, Willy A. Bachofen AG Maschinenfabrik, Basel, Switzerland) for 

5 min (25 rpm) and subsequently compressed using a Korsch EK 0 eccentric 

tablet press (Berlin, Germany) resulting in the production of  tablets of mass 

150 mg. Table 3.1 shows the composition of the tablets. Furthermore, tablets 

containing the API and the P-gp inhibitor TPGS were prepared as follows. TPGS 

was dissolved in ethanol and then granulated with lactose via wet granulation 

using a sieve (mesh size 1400 µm). Subsequent to sieving, the wet granulate was 

dried at room temperature for one day. Shortly before compressing, the remaining 

ingredients were added freshly sieved and were blended for 5 min in a turbula 

mixer, as described previously. 

 

Table 3.1. Composition of domperidone maleate tablets 

 Without inhibitor With inhibitor 

Domperidone maleate 10 % 10 % 

TPGS - 10 % 

Lactose (CapsuLac® 60) 60 % 50 % 

MCC (Microcell MC-102) 27 % 27 % 

Kollidon CL 1 % 1 % 

Aerosil 200 1 % 1 % 

Mg-stearate 1 % 1 % 

 

3.2.5 Characterization of tablets 

Crushing strength was determined with the Erweka hardness tester type TBH 30 

(Heusenstamm, Germany) and disintegration time was measured using the Sotax 

disintegration tester type DT 2 (Basel, Switzerland). Ten or six tablets were tested 

in each of these setups, respectively. 

Content of tablets was tested by dissolving a tablet in 5.0 ml DMF by means of 

ultrasonication and filling up to 1000.0 ml with KRB followed by further ultrasonic 

treatment. Then, the solution was filtered through a cellulose acetate filter (pore 
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size 0.2 µm). The concentration was determined via HPLC. Three tablets were 

tested. 

 

3.2.6 Combined dissolution and permeation experiment in the d/p-system 

All experiments were performed with the d/p-system as it is described in Chapter 

1.3 and depicted in Figure 1.2 using two tablets.  

The dissolution module consisted of a flow through dissolution cell (USP 

apparatus 4, Sotax CE1, Sotax, Lörrach, Germany), whereas the permeation 

module consisted of a custom-made flow through permeation cell (FTPC). In the 

dissolution module the flow rate was set to 6.5 ml/min and in the permeation 

module to 1.0 ml/min. All streams were driven by membrane dosage pumps of 

type Stepdose 03® (KNF Neuberger, Freiburg, Germany) in combination with a 

pulsation absorber. The dissolution and permeation cells were submersed in a 

water bath at 37.0 °C.  

The SIA system for automatically sampling consisted of the FIALab 3500 (FIALab 

instruments, Bellevue, USA) composed of a 2.5 ml piston pump and an eight port 

valve. Furthermore, the d/p-system consisted of an autosampler (Cetac ASX 260, 

Omaha, USA), the fluorescence detector PMT-FL (FIALab instruments, Bellevue, 

USA), a D 2000 light source and an USB 2000 UV-VIS spectrometer (Ocean 

optics, Dunedin, USA) and a 0.5 ml piston pump combined with a six valve port 

(FIALab instruments, Bellevue, USA).  

Samples were collected automatically at sampling port D as indicated in Figure 1.2 

(representing the dissolution process), A (representing the amount appearing in 

the apical compartment of the FTPC) and B (representing the amount permeated 

into the basolateral compartment of the FTPC) using the SIA module.  

The system operated with FIAlab software for Windows® version 5.9.192 (FIALab 

instruments, Bellevue, USA).  

The program codes for the respective substance and sampling ports are given in 

Chapter 10.2 in the annexes.  

Prior to each experiment and mounting in the FTPC, Caco-2 cell monolayers were 

washed twice with KRB and equilibrated in KRB for 30 min in an incubator.  

KRB was used both as a dissolution and permeation medium.  
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3.2.7 Quantification of drug substances 

The concentration of substance at sampling ports D and A was determined by 

online detection using the SIA system. UV-absorbance at 285 nm was used for the 

online detection of domperidone maleate. 

The concentration of substance in the basolateral compartment at each sampling 

time point was determined via HPLC. For further details of the quantification 

method see Chapter 10.1 in the annexes. 

 

3.3 Results and Discussion 

3.3.1 Characterization of domperidone maleate tablets 

The determined properties of the tablets are summarized in Table 3.2. 

Table 3.2. Properties of domperidone maleate tablets. Data are presented as mean ± SD (n ≥ 3). 

 Without inhibitor With inhibitor 

Mass 149 ± 1 mg 150 ± 3 mg 

Crushing strength 42 ± 5 N 26 ± 4 N 

Disintegration time  14.3 ± 2.3 s 11.4 ± 3.5 min 

Content domperidone maleate 16.99 ± 0.4 mg 16.52 ± 0.4 mg 

Content TPGS - 16.97 ± 0.2 mg 

 

Although TPGS was granulated before compression for an easier handling, a 

sticking of the compounds could not be completely avoided. This resulted in a 

longer tablet disintegration time, as seen in Table 3.2. Therefore, the release of 

domperidone maleate from tablets with TPGS may be hindered and extended 

compared to tablets without TPGS.  

 

 

3.3.2 Effect of TPGS on dissolution and permeation of domperidone 

maleate 

The dissolution profiles of domperidone maleate tablets both without and with 

additional TPGS are shown in Figure 3.1. As already stated in the previous 
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chapter (3.3.1), the disintegration time of tablets with TPGS is longer than that of 

tablets not containing TPGS, which may lead to a comparatively extended release 

of TPGS-containing tablets. Indeed, tablets with TPGS show a lower maximum 

concentration and a longer release time. This does not completely confirm the 

assumption of an extended release but it is in accordance with the slower 

disintegration time.  

By using two tablets at the same time, the concentration of domperidone maleate 

at sampling port A  fitted to the dissolution data. Due to the longer release time the 

concentration at the apical side of the FTPC stays also longer at a higher level for 

TPGS containing tablets. Furthermore, there is a time shift of Cmax as well as lower 

measured concentrations at sampling port A compared to port D, which can be 

explained by the construction of the d/p-system. These effects are a result of the 

spatial separation of dissolution and permeation modules, which are connected by 

tubes and a stream splitter as described by Motz et al. [32].    

The dissolution profile of tablets with TPGS shows a wavelike pattern with small 

maximum peaks. This might be due to the hindered release of domperidone 

caused by the TPGS sticking. Furthermore, an encapsulation of API in TPGS 

micelles followed by a gradual release could possibly occur. 
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Apical compartment - Domperidone maleate tablets
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Figure 3.1. Concentration time trends for domperidone maleate tablets at sampling port D (a) and A 

(b) using 2 tablets. Closed symbols (●, ■) represent tablets without TPGS and open symbols (○, □) 

represent tablets with TPGS. For the sake of clarity, data are presented as mean values (n ≥ 3) 

without SD. 
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The permeation profiles of tablets in the absence and presence of TPGS are 

almost identical fitting with the concentrations measured at the apical side, which 

are also similar for both dosage forms (Figure 3.2). Even though the permeated 

mass after 240 min is slightly higher for the TPGS containing tablets, the 

difference is not significant (t-test, p ≤ 0.01). Therefore, the expected inhibitory 

effect as predicted from the previous experiment with donor solutions cannot be 

found. Comparing the concentrations of drug present during the experiments, a 

concentration of about 40 µg/ml was achieved utilizing tablets as compared to 

stock solutions of 10 µg/ml. It is therefore possible that the efflux transporter is 

saturated using tablets and even without inhibitor a greater amount of drug 

remains at the basolateral side. Furthermore at higher donor concentrations, the 

same secreted amount has a lower weighting. Moreover, the inhibition of P-gp 

requires a certain pre-incubation time in order for the inhibitor to develop its full 

potential [76]. The occurrence of such a pre-incubation may have been hindered in 

the current studies due to the release kinetics of TPGS from the tablets. Therefore, 

the excipient may have no influence on the permeation in this study. A further 

possible reason for the found results might be the contact time of TPGS with the 

cell monolayer. TPGS is a hydrophilic substance and therefore does not have 

such a high affinity to cells. Due to the flow in the FTPC the contact time is limited 

and might be too short for TPGS to develop the full effect especially when it is not 

present in a constant concentration as it was the case for the previous study with 

drug solutions. A reduction of the flow rate in the FTPC should be tested to verify 

this.  

Unfortunately, the release and the concentration of TPGS present cannot be 

measured within the d/p-system. Due to the SIA detection mechanism and a 

missing separation column, online detection is not possible. Different attempts 

were undertaken to determine the TPGS concentration offline by means of HPLC. 

A bottling of samples at sampling port D and A was successfully achieved. 

Nevertheless, a determination of TPGS at these sampling points was not possible. 

This might be caused by the occurrence of TPGS concentrations below the 

detection limit of the HPLC method.   
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Figure 3.2. Permeated mass of domperidone maleate in the FTPC using 2 tablets. Closed triangles 

(▼) represent tablets without TPGS and open triangles ( ) tablets with TPGS. Data are presented 

as mean ± SD (n ≥ 3). 

 

With respect to the tablets used in the current study, the presence of TPGS has an 

obvious effect on the dissolution of domperidone maleate but the effect on the 

permeation cannot be stated clearly. For that, further investigation using differing 

approaches would be valuable. Firstly, a preparation of tablets with very similar 

dissolution profiles would be necessary. Due to the physical behavior of TPGS and 

the occurrence of sticking during tablet compression, a similar dissolution profile to 

that exhibited by the TPGS-containing tablets could be achieved by the 

formulation of an extended release tablet without TPGS. The components of such 

a tablet would need to be granulated with a substance such as Eudragit® in order 

to achieve an extended release. Secondly, a formulation with an initial burst 

release of TPGS followed by a constant release of domperidone and TPGS could 

be considered as a means to provide a satisfactory pre-incubation period in which 

TPGS can interact with cells before exposure to the drug occurs. Another option 

which would not require a change in the formulation would be to add TPGS to the 

dissolution medium when using tablets without inhibitor. This approach could 

potentially resolve the release difficulties as well as the matter of contact time. 
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However, in spite of the promise of each of these described approaches, the 

identification and evaluation of an effect of TPGS on the permeation of P-gp 

substrates in the FTPC using solid oral dosage forms will be difficult due to the low 

concentration differences in the basolateral compartment of the FTPC. 

 

3.4 Conclusion 

The addition of TPGS to solid dosage forms leads to a different release profile of 

domperidone maleate. The permeation results obtained in initial work with stock 

solutions differ from those found here with the produced and tested tablets. The 

permeation of domperidone is not enhanced under inhibition of P-gp. Therefore, it 

cannot be stated clearly if the d/p-system is able to detect excipient effects on 

efflux systems such as P-gp when using solid oral dosage forms. Further 

investigations with improved formulations should be performed.  
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4 Development and characterization of a lipid-coated membrane 
for the d/p-system 
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4.1 Introduction 

As already described in Chapter 1.2, the determination of permeability is mostly 

performed using cell based in vitro assays like the Caco-2 cell monolayer. Due to 

different drawbacks of cellular models like long cultivation times or incompatibility 

with some dissolution media, non-cellular in vitro assays known as PAMPA were 

developed. These lipid-based permeation models have the potential to overcome 

some of the cell-associated disadvantages. A transfer of this approach to the d/p-

system appeared favorable to widen the field of application, especially to extend 

the time period to investigate dissolution and permeation of e. g. oral retard 

formulations. Furthermore, a transfer might contribute to a wider range of used 

dissolution and permeation media like simulated intestinal fluids (FaSSIF and 

FeSSIF). For a better comparability with Caco-2 cell monolayers, a change of the 

FTPC should be avoided. Consequently, the best opportunity seemed to be the 

coating of the same permeable support which is used for cell culture.  

 

As a first clear step in development of a lipid-based permeation model, the aim of 

this study was to find a suitable lipid and coating procedure for a lipid-coated 

membrane, which could be used not only in a classical static permeation setup but 

also under dynamic flow conditions in the FTPC. Looking at the published PAMPA 

and PAMPA-like approaches a variety of lipids can be found, including lipids of 

natural origin like lecithin, as well as synthetic lipids such as DOPC. Initially, this 

study focused on the use of DOPC. As this lipid is produced synthetically, it always 

offers the same composition independent of the batch. Therefore, it holds promise 

for facilitating the generation of highly reproducible results. As an alternative, 

Lipoid E 80 (purified yolk lecithin) was taken. A combination of this lipid with 

cholesterol dissolved in n-octanol was described by Corti et al. [49] for the use in a 

closed system under flow conditions. Furthermore, Lipoid E 80 was used by Flaten 

et al. [51] for the coating of a membrane without use of organic solvent.  

 

In a second step after defining a final coating procedure, an adequate physical 

characterization and evaluation of the lipid-coated membrane as well as the 

fabrication process was vital before starting further transport experiments.  
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The all-encompassing analysis of this model consisted of three aspects: 

1) An analysis of the blank membrane, being the supportive layer for the 

coating, was required. Thereby, a special focus was placed on the pore 

morphology as drug substances primarily pass the membrane through the 

pores during transport experiments.  

2) An extensive investigation of the physical lipid behavior on the membrane, 

including coating assembly, and within the pores was deemed necessary.   

3) An overall evaluation of coating integrity after permeation experiments or 

exposure to dissolution medium was of vital importance. For API 

permeation studies a sufficient robustness of the coating against media is 

mandatory and therefore, needed to be evaluated.  

 

For analyzing the above mentioned aspects the following techniques were used. 

1) As a first attempt to specially characterize the stability of the coating 

throughout an experiment, TEER measurement was used as a fast and 

simple method. This method is particularly used to control the integrity of 

cell monolayers. A decrease of the TEER value is associated with a loss of 

barrier integrity. Furthermore, in previous work the d/p-system was 

complemented with a tool for online TEER measurement [34], which makes 

this approach favorable for the evaluation also of the integrity of lipid-based 

artificial permeation barriers. 

2) As basic and well-established methods, light microscopy as well as 

scanning electron microscopy (SEM) were utilized for the characterization 

of the membrane and the coating. Especially SEM requires previous 

sample preparation, such as cutting the coated membrane which could lead 

to disruption of the coating integrity due to shear stress. A possibility to 

circumvent this risk is the use of confocal fluorescence microscopy. This 

technique necessitates labeling of the membrane and the lipid to 

discriminate between the two components, which could cause artifacts and 

changes in the coating. Flaten et al. has used this technique to visualize 

lipid-filled pores in an artificial membrane model [52].  

3) As optical discrimination of the lipid coating and the membrane is limited by 

nearly the same color of the two components, a non-destructive, label-free 

and chemically selective technique appeared favorable for the 
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characterization of the lipid-coated membrane. Therefore for further 

characterization, confocal Raman microscopy was selected. It is a 

complementary technique to the well-established infrared spectroscopy 

relying on light scattering. In pharmaceutical research it has a broad variety 

of applications and has already been used for the investigation of drug 

distribution, drug release in solid dosage forms and implants, as well as for 

lipid detection [77-81].  

The lipid-coated membrane shows a highly structured and rough surface 

due to the coating procedure. Therefore, the surface characterization by 

confocal Raman microscopy is hindered as spectra are recorded from the 

focal plane and the surface would crisscross numerous focal planes. 

Circumventing this limitation, optical profilometry as an additional technique 

to confocal Raman microscopy was performed. Optical profilometry is 

based on scattering of white light. The white light is focused on the sample 

by a probe, which also collects the backscattered photons. White light is 

composed of different wavelengths, each representing a unique color and a 

specific distance. Through a pinhole only the color in focus is detected. 

Therefore, exact information about the distance between sample and probe 

is given at a defined position of the sample. Subsequently, this information 

can be translated into topographic height differences leading to a 

profilometric image of the surface. This technique has already been used 

for diverse applications in surface analysis [82-84] and can be adapted for 

pharmaceutical research [85, 86]. 

The characterization using confocal Raman microscopy was performed in 

cooperation with Birthe Kann and Maike Windbergs. The experiments were 

conducted by Birthe Kann. 

 

4.2 Materials and methods 

4.2.1 Materials 

DOPC (dioleoylphopsphatidylcholine) and Lipoid E 80 (egg phospholipids with 

80 % phosphatidylcholine) were purchased from Lipoid GmbH (Ludwigshafen, 

Germany). Propranolol HCl and furosemide (Synopharm GmbH & Co KG, 
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Barsbuettel, Germany), atenolol and sodium fluorescein (Sigma-Aldrich, 

Steinheim, Germany) served as test model substances. All reagents for HPLC 

quantification were obtained from Sigma-Aldrich (Steinheim, Germany) and were 

of HPLC gradient grade. High purity water was prepared by a Millipore Milli-Q 

Synthesis system (Merck Millipore, Darmstadt, Germany). Transwells® type 3460 

were purchased from Corning Inc. (Acton, MA, USA). All buffer reagents were 

purchased from Sigma-Aldrich (Steinheim, Germany) and were of cell culture 

tested grade. KRB was prepared as decribed in Chapter 2.2.4. 

 

4.2.2 Simulated intestinal fluid 

FaSSIF and FeSSIF were prepared using Phares SIF powder (Muttenz, 

Switzerland) dissolved in the appropriate buffer. The composition of both media 

can be found in Table 4.1. 

Table 4.1. Composition of simulated intestinal fluids. 

 FaSSIF (1 l) FeSSIF (1 l) 

Buffer:   

NaOH 0.348 g 4.04 g 

NaH2PO4*H2O 3.954 g - 

NaCl 6.186 g 11.874 g 

Glacial acetic acid - 8.65 g 

   

SIF Powder 2.24 g 11.2 g 

Equals:   

    Sodium taurocholate 3 mM 15 mM 

    Lecithin 0.75 mM 3.75 mM 

   

pH 6.5 5.0 

 

4.2.3 Pretest setups for the selection of a lipid and a coating procedure 

As a first step for the development of the lipid-coated membrane, different pretests 

were performed to select a lipid, as well as a coating procedure which would lead 
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to a robust and stable coating. Therefore, the setups listed in Table 4.2 were 

tested for their suitability to obtain a dense coating which is resistant against 

media for a time period of about 18 h especially in the FTPC.  

Table 4.2. Pretest setups for the selection of a lipid and a coating procedure 

Setup Lipid 1 Lipid 2 Coating method 

1 DOPC (2 % w/v)  

dispersed in dodecane 

- A (Sedimentation) 

2 DOPC (4 % w/v)  

dispersed in water 

- A (Sedimentation) 

3 DOPC  

as liposomes 

- B (Centrifugation) 

4 - Lipoid E 80 

as liposomes 

B (Centrifugation) 

 

Two coating methods were tested: 

A: An amount of 100 µl lipid dispersion was added to the apical side of a 

Transwell®. After 30 min the dispersion was removed and the Transwell® 

was dried at 37 °C in an oven for approximately 20 min. The procedure was 

repeated several times in order to produce Transwells® with one, two, five, 

ten or 20 coating layers.  

B: An amount of 100 µl lipid dispersion was added to the apical side of a 

Transwell®. Then the Transwell® was centrifuged (Centrifuge Universal 

32R, Hettich, Tuttlingen, Germany) for four minutes at 2090 rpm (equal to 

600 g). Subsequently, the supernatant was removed and the Transwell® 

was dried at 37 °C in an oven for approximately 20 min. The procedure was 

repeated several times. At the end Transwells® with one, five or ten coating 

layers were available. 

 

4.2.4 Preparation of liposomes 

DOPC liposomes as well as liposomes made of Lipoid E 80 were prepared using 

the film method. The respective lipid (1 g) was dissolved in a mixture of methanol 

and ethyl acetate (4:1 v/v, 6 ml) in a round bottom flask (250 ml). Under reduced 
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pressure (2 h: 200 mbar, 30 min: 40 mbar) the solvent was evaporated at 55 °C 

(Rotavapor R-205, BÜCHI Labortechnik GmbH, Essen, Germany). Phosphate 

buffered saline (PBS, 6 ml; composition: 129 mM NaCl, 2.5 mM KCl, 7.07 mM 

Na2HPO4 * 7 H2O, 1.3 mM KH2PO4, pH 7.4) was used to rehydrate the 

phospholipid film. The dispersion was filtered 10 times through a polycarbonate 

filter (pore size 800 nm, Millipore) to obtain a narrow size distribution of liposomes. 

    

4.2.5 Characterization of liposomes 

Hydrodynamic diameter was measured using dynamic light scattering (DLS) 

(Zetasizer Nano ZS, Malvern Instruments, UK) and zeta potential was determined 

using laser doppler micro-electrophoresis (Zetasizer Nano ZS, Malvern 

Instruments, UK). 

 

4.2.6 TEER measurement 

TEER was determined as described in Chapter 2.2.3. 

 

4.2.7 Light microscopy 

Light microscopy images were recorded with a Zeiss Axio Vert.A1 microscope 

(Carl Zeiss AG, Oberkochen, Germany) connected with an AxioCam ERc5s 

camera running on ZEN 2011 software. The system was equipped with a 32-fold 

magnifying objective (Zeiss N.A. = 0.45). 

 

4.2.8 Scanning electron microscopy 

For characterization of the liposomes, the lipid dispersion was diluted with water 

and dried at room temperature. For characterization of the (lipid-coated) 

membrane, the membrane was cut out of the Transwell® holder. Afterwards, all 

samples were sputter coated with gold. 

Images were recorded by scanning electron microscopy (Zeiss EVO HD 15, Carl 

Zeiss AG, Oberkochen, Germany) at an accelerating voltage of 5 kV. 
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4.2.9 Raman microscopy 

A confocal Raman microscope WITec alpha 300R+ (WITec GmbH, Ulm, 

Germany) equipped with 50-fold magnifying objectives (Zeiss N.A. = 0.8; Olympus 

N.A. = 0.35) was used to collect Raman spectra at an excitation wavelength of 

532 nm (10 mW, Nd:YAG Laser) or 785 nm (diode laser, Toptica) without further 

sample preparation. The diode laser power was set to 50 mW (xz – scans) or 

65 mW (xy – scans). The respective integration times and resolutions as well as 

the directions of record are summarized in Table 4.3 for each characterization 

purpose. 

Table 4.3. Summary of imaging settings for the different purposes  

Purpose Direction of record Integration time Resolution 

Pore morphology 

(cross section) 

x- and z-axis 0.3 s 0.5 µm 

Stacked images of 

pores 

x- and y-axis 0.15 s 0.2 µm per pixel 

0.5 µm between focal 

planes 

Coating procedure 

(entire surface) 

x- and y-axis 4 s 100 µm² per pixel 

Coating thickness 

(cross section) 

x- and z-axis 0.7 s / 0.5 s 5 µm² per pixel 

100 µm² per pixel 

(entire cross section) 

 

Interpretation and differentiation of the recorded data was done with complete 

spectra without selecting only specific peaks. Using the software WITec Project 

Plus, the recorded Raman spectra were converted into false color images. The 

lipid Lipoid E 80 is represented in blue, whereas the polyester membrane is 

depicted in red color.  

For the evaluation of pore morphology, pores were selected randomly and were 

distributed equally across the membrane. At least three individual Transwells® 

were investigated.  

 



Development and characterization of a lipid-coated membrane for the d/p-system 

 

48 

 

4.2.10 Optical profilometry 

Surface topography profiles were acquired by optical profilometry using a WITec 

alpha 300R+ without any sample preparation. The integration time was set to 

0.02 s. Topography profiles have the same geometric dimension as respective 

Raman images and a concordant image point resolution of 100 µm x 100 µm. 

 

4.2.11 Classical static transport experiments 

To test the membranes for suitability in permeation experiments, classical static 

transport experiments were done with a high permeability marker (propranolol 

100 µg/ml) and low permeability markers (furosemide 400 µg/ml, sodium 

fluorescein 5 µg/ml and atenolol 1.33 µg/ml). The general conditions for the 

classical static transport experiments were the same as described in Chapter 

2.2.5, with Caco-2 cells as permeation barrier being replaced by lipid-coated 

Transwells® without pre-incubation prior to the experiment.  

 

4.2.12 Stability test in medium 

The stability of the coating in the presence of medium was tested with KRB, 

FaSSIF or FeSSIF in the FTPC. Flow rate was adjusted to 1.0 ml/min and 

experiments were performed for 18 h or 5 h. 

  

4.2.13 Quantification of drug substances 

The concentration of substance in the basolateral compartment at each sampling 

time point was determined via HPLC or fluorescence measurement in a plate 

reader. For further details of the quantification method see Chapter 10.1 in the 

annexes. 

 

4.2.14 Data treatment 

The Papp values were calculated as described in Chapter 2.2.8. 

For statistical analysis t-tests (p < 0.05) were performed using SigmaStat 

integrated in SigmaPlot version 11.0 (Systat Software GmbH, Erkrath, Germany). 
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4.3 Results and discussion of the pretests 

4.3.1 Setup 1: Coating with DOPC dispersed in dodecane using method A 

(sedimentation) 

It was found that the estimated drying time of approximately 20 min was not 

sufficient for this setup. An extension of the drying time to 2-4 h for each coating 

step was necessary. Furthermore, it was not possible to measure the TEER value 

in the FTPC as the value was off-scale and so too high for the measuring 

instrument. Due to the long drying time and the impossibility of monitoring the 

barrier integrity the first setup was not examined further. 

 

4.3.2 Setup 2: Coating with DOPC dispersed in water using method A 

(sedimentation) 

For this setup approximately 20 min were sufficient to dry the coating. Classical 

static transport experiments were carried out with DOPC coated Transwells® using 

method A for a first estimation of the barrier properties. The permeated mass after 

three hours was nearly the same using a 10 or 20 times coated Transwell®. 

Furthermore, the change of Papp values of propranolol and sodium fluorescein was 

minimal between a 10 and 20 times coated Transwell® in comparison to the 

difference from a blank one. Therefore, coating the Transwell® ten times should be 

sufficient. As a consequence, experiments with furosemide and atenolol were 

performed only with a blank and a 10 times coated Transwell®. A decrease of 

permeated mass per area by a factor of 2.85, 25.9, 2.37 and 24.34 was reached 

for propranolol, sodium fluorescein, furosemide and atenolol, respectively with 10 

times coated Transwells® as compared to blank Transwells®. Figure 4.1 shows the 

change of the Papp value with increasing numbers of coating steps. The Papp values 

of sodium fluorescein and atenolol decrease to a greater extent with an increase in 

the number of coating steps than the values of propranolol and furosemide. In light 

of this observation, the used substances can be divided into two groups. 

Propranolol and furosemide show less of a decrease of permeated mass and Papp 

values, whereas sodium fluorescein and atenolol show a greater decrease. 

Especially for atenolol and propranolol it can be explained by the different 
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hydrophobicity. According to the logP value, especially atenolol is more hydrophilic 

and so an increasing lipid barrier leads to slower permeation. 
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Figure 4.1. Comparison of Papp values of Transwells
®
 with varying numbers of coating step in a 

classical static setup. Transwells
® 

were coated with DOPC dispersed in water using method A 

(sedimentation). Data are presented as mean ± SD (n ≥ 3).    

 

Before and after the classical static transport experiments (duration 180 min) the 

TEER of the Transwell® was measured. Table 4.4 gives an overview of the TEER 

values. The TEER value of Transwells® that were coated ten times was seen to be 

higher relative to blank Transwells® being in accordance with the Papp values. 

Surprisingly, the TEER value of 20 times coated Transwells® was lower as 

compared to 10 times coated Transwells®. One reason might be that the coating 

lost adhesion to the underlying membrane throughout the preparation. 
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Table 4.4. TEER values of coated Transwells
® 

(DOPC, method A) before and after a classical static 

transport experiment. Data are presented as mean ± SD (n = 6). 

Coating Steps TEER before experiment 

[Ω*cm²] 

TEER after experiment 

[Ω*cm²] 

0 (Blank) 162 ± 7 162 ± 7 

1 227 ± 16 220 ± 17 

2 354 ± 20 267 ± 21 

5 496 ± 95 369 ± 67 

10 774 ± 19 452 ± 25 

20 467 ± 79 327 ± 21 

 

The decrease of the TEER after 180 min is probably caused by a loss of lipid on 

the membrane. The lipid is washed away from the Transwell® membrane, which 

could also be seen in agglomeration of lipid in the middle of the Transwell® during 

the experiment (Figure 4.2). The results indicate instability of the coating against 

the used medium in a classical static setup. 

 

 

Figure 4.2. Agglomeration of lipid on a Transwell
®
 coated with DOPC (method A) after a classical 

static transport experiment (180 min). 

 

For DOPC and coating method A ten coating steps appeared to be the best 

considering the TEER values derived from the classical static experiments as well 

as the change of the Papp values. Therefore, the next step was to test the stability 

of this coating under dynamic flow conditions in the FTPC. Figure 4.3 shows the 

TEER value measured online in the FTPC. The TEER value decreased 

consistently over 9 h. Furthermore, areas without lipid coating on the membrane 

could be seen following the experiment by visual inspection. One reason for the 
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decreasing TEER value could be a slow detaching of the coating from the 

membrane as well as a washing off.  A reason for the instability of the lipid coating 

in the FTPC could be the vertical orientation of the Transwell® or the constant flow 

of media. Therefore, the experiments were repeated without media flow and with a 

horizontal orientation of the Transwell®. The course of the TEER value is depicted 

in Figure 4.4. All conditions show a comparable course of the value with a 

decrease in the first hour. Neither the flow nor the orientation had an influence on 

the TEER value or correspondingly, on the stability of the coating. Therefore, the 

coating method using sedimentation in combination with the lipid DOPC did not 

qualify for further investigations and use in the FTPC.  
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Figure 4.3. TEER value of a lipid-coated Transwell
® 

(DOPC, method A, 10 times) in the FTPC. For 

the sake of clarity, only every tenth data point is presented as mean ± SE (for the starting and end 

point, n = 5). 
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Figure 4.4. TEER value of a lipid-coated Transwell
® 

(DOPC, method A, ten times) in the FTPC with 

media flow (●) and without media flow in a vertical orientation (▼), and without flow in horizontal 

orientation (■). For the sake of clarity, only every tenth data point is presented as mean ± SE 

(n ≥ 3). 

 

4.3.3 Setup 3 and 4: Coating with DOPC or Lipoid E 80 using method B 

(centrifugation) 

Since coating method A (sedimentation) with DOPC showed stability problems in 

the FTPC, a second method and lipid was tested for its suitability. The 

centrifugation method was based on a publication by Flaten et al. [51]  and was 

performed in a simplified version.  

As a first pretest, classical static permeation experiments were performed with 

propranolol and sodium fluorescein. Comparing the Papp values of the different 

methods one can see that the values for DOPC are comparable independent from 

number of repetitions (Figure 4.5) and also in comparison to method A. As the 

values for sodium fluorescein does not differ the experiments with propranolol 

were only carried out with 5 times coated Transwells®. In comparison to 

Transwells® coated 5 times with Lipoid E 80, the Papp values for both substances, 

sodium fluorescein and propranolol, are significantly different from DOPC results 
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(t-test, p < 0.05). Especially for sodium fluorescein, the permeability coefficient is 

closer to values obtained with Caco-2 cells (Papp = 0.80 * 10-6 cm/s) using Lipoid E 

80 coating. Furthermore, the TEER value of a Transwell® coated according to 

setup 4 did not show a rapid decrease within 3 h in the FTPC as it was found for 

setup 2 and 3. Therefore for the next experiments the lipid Lipoid E 80 and the 

coating procedure of 5 times centrifugation should be used. 
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Figure 4.5. Comparison of Papp values of sodium fluorescein (black bars) and propranolol (grey 

bars) using different coated Transwells
®
 in a classical static setup. Data presented as mean ± SD 

(n ≥ 3). Bars marked with * are significantly different from Papp values without TPGS (t-test, 

p ≤ 0.05). 

 

In conclusion, the fourth setup using Lipoid E 80 centrifuged on the Transwell® 

membrane was favored as the best setup as a result of the performed pretests. In 

contrast to the sedimentation method, the centrifugation method is also far less 

time-consuming. 

 

4.3.4 Characterization of Lipoid E 80 liposomes 

Liposomes showed a main size peak at 656.7 ± 41.9 nm (95.6 % light scattering 

based intensity) and a second peak at 102.6 ± 88.9 nm (4.4 % light scattering 
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based intensity) measured in PBS. After dilution with water liposomes had a zeta 

potential of -18.6 ± 0.15 mV (pH 6.7). 

For further characterization of the liposomes SEM images were recorded (Figure 

4.6). In contrast to the data obtained via DLS a size range of liposomes of 

approximately 350 nm to 600 nm was found. The differences in size may be a 

direct result of the different techniques themselves. Size determination by DLS is 

partly influenced by the hydrodynamic diameter, and the hydration of the 

liposomes leads to larger particles. In contrast, the samples for SEM 

characterization are dried, thus excluding hydration effects. Furthermore, DLS is 

more sensitive to the presence of large particles resulting in a potential 

overprediction of mean size [87]. 

 

 

Figure 4.6. Scanning electron microscopic image of Lipoid E 80 liposomes. 

 

4.4 Results and discussion of the characterization of the final coating 

All the following characterization techniques were only performed with Transwells® 

which were coated with Lipoid E 80 five times using the centrifugation method. In 

the following chapters they are only called lipid-coated Transwells® or lipid-coated 

membranes without the addition of the used lipid (Lipoid E 80). 

 

4.4.1 Monitoring of TEER value 

An intact barrier layer is essential for reliable transport experiments, as changes in 

barrier properties during the study consequently lead to varying permeability data. 

It has to be guaranteed that the coating remains intact during the experiment 

despite the application of mechanical stress due to the flowing medium within the 
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FTPC. Therefore in a first attempt, the stability of the final coating under dynamic 

conditions was tested by means of TEER measurement every minute throughout 

the experiments. 

Preliminary experiments have shown that pre-incubation with KRB prior to the 

experiments could minimize a steep increase of the TEER value during the first 

hour of the experiment and shorten the time until a constant TEER value level is 

reached (Figure 4.7). This might be due to a hydration of the barrier, which was 

described in a comparable way by Kanzer et al. [58]. Therefore, Transwells® were 

pre-incubated for 30 min before every experiment to reach the TEER plateau 

faster in the following experiments. 
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Figure 4.7. Comparative TEER values under dynamic flow conditions in the FTPC. Representative 

data of lipid-coated Transwells
® 

without pre-incubation (●) and with 30 min pre-incubation (○) prior 

to the experiment. For the sake of clarity, only every fifth data point is presented as mean ± SD 

(n ≥ 3). 

 

Figure 4.8 shows an example of the TEER value of a blank uncoated Transwell® 

compared to lipid-coated Transwells® of different batches. As a consequence of 

the equilibration to the flow conditions, the TEER value still increased during the 

first 30 min after mounting the Transwell® in the FTPC. The TEER values reached 

a constant plateau roughly 1.5 h after inserting in the FTPC and were above the 
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critical values of 300 Ω*cm² [34, 88]. The five batches showed some differences in 

the absolute TEER values but the TEER values remained over 600 Ω*cm² for at 

least 18 h for all batches. Consequnetly, the coating is stable under dynamic flow 

conditions over the entire time course of a transport experiment. Therefore, the 

lipid based model is suitable for transport studies under dynamic flow conditions 

for at least 18 h. 
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Figure 4.8. Comparative TEER values under dynamic flow conditions in the FTPC. Representative 

data of blank Transwells
®
 and lipid-coated Transwells

®
 of five different batches are presented. For 

the sake of clarity, only every fifth data point is presented as mean ± SE (for 1.5 h and 18 h) 

(n ≥ 3). 

 

4.4.2 Light and scanning electron microscopy 

Light microscopy and SEM were utilized for the analysis of the lipid-coated 

membrane in comparison to a blank one. Figure 4.9 a shows an overhead view of 

the blank membrane using SEM, whereas Figure 4.9 b displays the corresponding 

light microscopy image. Random distribution of the pores over the blank 

membrane is visualized in both images. Furthermore, coated Transwells® were 

analyzed using SEM and light microscopy. Figure 4.9 c depicts a top view SEM 

image of a Transwell®, which was coated five times with liposomes. As no pores 
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can be seen, it can be inferred that the entire surface of the membrane is covered 

with lipid. However, electron microscopy does not enable a distinct chemical 

discrimination between the two materials, namely the polyester membrane of the 

Transwell® and the phospholipid of the liposomes. Similarly, the light microscopic 

image appeared to show a coating of the entire membrane (Figure 4.9 d). While 

neither technique enabled a distinction between membrane and lipid, both images 

indicated a structured surface of the lipid coating.  

 

 

Figure 4.9. Electron (a, c) and light (b, d) microscopy images of the blank membrane (a, b) showing 

pore distribution, and of the lipid-coated membrane (b, d).  

 

In summary, both techniques enabled a rough estimation of the surface and 

coating properties. A deeper investigation of the pores filled with lipid requires a 

cross section of the membrane. Due to the flexible and thin design of the 

membrane physical cutting without disruption of the sample was not possible. 

Different methods such as cryocutting or embedding in Tissue-Tek® OCT 

compound (Sakura, Staufen, Germany) were tested to obtain a cross section of 

the coated membrane. None of these techniques were successful. Therefore, 

Raman microscopy was used for further characterization.   
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4.4.3 Raman spectra  

The blank polyester membrane as well as the pure lipid was tested for its Raman 

activity. Raman spectra of both substances were recorded separately. Figure 4.10 

shows the spectra of the membrane and the lipid. The spectra show characteristic 

peaks for each substance, allowing for differentiation between membrane and 

lipid. Thus, it was deemed that Raman microscopy could be used for further 

characterization of the lipid-coated membrane. 

 

 

Figure 4.10. Raman spectra of polyester Transwell
® 

membrane (red) and lipid Lipoid E 80 (blue). 

 

4.4.4 Analysis of the blank membrane using Raman microscopy 

As a first step, the blank membrane was thoroughly examined. The recording and 

conversion of Raman spectra along the xz-axes of a pore resulted in a two 

dimensional optical cross section of the pore (Figure 4.11 a). The morphology of 

all examined pores was found to be similar. The pores are characterized by a cone 

shape at the surface of the membrane fading into a channel-like structure. This 

form can be explained by the production of the pores by means of a track-etching 

process. In the images the boundaries are sharp, straight and distinct. As it is 

possible that the pore was not struck exactly in the center, due to the manual 

setting of the focal plane, a three dimensional image would be desirable in order to 



Development and characterization of a lipid-coated membrane for the d/p-system 

 

60 

 

add a higher degree of certainty to the results. Figure 4.11 b therefore shows a 

stacked image of a pore confirming the results of the optical cross sections. 

 

 

Figure 4.11. Characterization of the blank membrane. a) False color image of pore morphology 

derived from optical Raman cross sectioning of the membrane. b) Images derived from vertically 

adjacent focal planes are stacked visualizing the entire pore morphology. 

 

4.4.5 Evaluation of coating procedure by Raman microscopy and optical 

profilometry 

To get a deeper insight in the coating mechanism, the membranes were inspected 

after each coating step. Therefore, topography profiles were recorded after each 

coating step (Figure 4.12). 

 

 

Figure 4.12. Exemplary topography profiles of a blank membrane (left) and a membrane after three 

coating steps (right) using optical profilometry. 
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Compared to the blank membrane the coated membrane shows a more structured 

surface with elevated areas in the center and at the edge of the membrane. For 

further characterization, the surface height information was used as a reference for 

subsequent guided Raman spectra acquisition of the same area. Figure 4.13 

shows the Raman images of a blank membrane and a coated membrane after 

each individual coating step. A concentric circle of lipid as well as a lipid circle at 

the outer boundaries of the membrane was deposited after the first coating step. 

The lipid-covered area on the membrane increased until a full coating was 

obtained after three coating steps. The remaining two steps only added lipid to 

stabilize the coating. 

 

 

Figure 4.13. Topography images overlaid with recorded Raman data visualizing the successive 

increase of lipid coverage on the membrane from blank membrane (a) and subsequent coating 

steps 1 to 4 (b–e) up to the final lipid-coated membrane after 5 coating steps (f). Raman spectra 

assigned to the polyester membrane are depicted in red, lipid spectra are represented in blue. 

 

The topography profiles assume that the coating thickness varies across the 

diameter of the Transwell®. Therefore, Raman cross sectioning was performed for 

each coating step (Figure 4.14) in order to verify this assumption.  
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The cross section after the first coating step shows blank membrane as well as 

areas with a thin lipid coating. Lipid is localized in the middle and at the edge of 

the membrane. After the second step, the coating can be seen to spread over the 

membrane in a thin layer, a confluent layer is achieved after five coating steps. In 

addition, the results gained from the topography profiles (Figure 4.13) correlate 

well with the xz-images of the thickness investigation (Figure 4.14). The wavelike 

pattern of the lipid coating is a reproducible structure affirming a reproducible and 

controlled coating procedure. 

In a next step it should be clarified if the pores are also filled with lipid as they are 

the supposed pathway for drug substances across the membrane. Furthermore, a 

filling of the pores would result in an anchoring of the lipid layer in the membrane.  

 

4.4.6 Analysis of the pore morphology within the coated membrane 

Figure 4.15 a shows a representative example of the complete filling of the pores 

with lipid without any areas filled with air, which could affect the permeation.  

Again, the pore boundaries are sharp and lipid can be precisely distinguished from 

the membrane. The conical shape of the pore may facilitate the soaking of the 

pores with lipid during the coating procedure. An image stack of a lipid filled pore 

is depicted in Figure 4.15 b. In addition, separate images of the lipid filling and the 

membrane pore are displayed for a better spatial understanding. The results from 

three dimensional imaging confirm the findings noted from two dimensional 

imaging. 

 

Figure 4.15. Pore morphology within the lipid-coated membrane a) False color image of membrane 

(red) pores filled with lipid (blue) derived from Raman cross sections. b) Three dimensional image 

stack visualizing the entire filled pore. For depicting chemically selective identification of the two 

components and a better spatial understanding, the stack is split into two individual images. 
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4.4.7 Coating integrity in the classical static setup 

As the lipid coating should serve as the permeation barrier, it has to withstand 

exposure to media throughout transport experiments. If the coating is washed off 

the membrane, the barrier breaks down, falsifying the permeation results. 

Therefore, it was of vital importance to prove coating integrity after exposure to 

media under experimental circumstances. Transwells® were removed from the 

media after 6 and 24 h and were dried at room temperature. Figure 4.16 shows an 

optical Raman cross section of lipid-coated Transwells® before and after exposure 

to KRB under classical static transport conditions. Neither cross section image 

taken after 6 h nor 24 h exposure time reveals any uncovered membrane areas. 

Furthermore, the wavelike pattern remained during the exposure to media. 

Therefore, permeation experiments up to 24 h can be conducted with the lipid-

coated membrane in the classical static setup without any deficiency in the 

integrity of the coating. 

 

 

Figure 4.16. Optical Raman cross sections from edge to edge of lipid-coated Transwells
®
. Initial 

lipid layer (blue) on Transwell
®
 membrane (red) before, after 6 h and after 24 h of classical static 

experiment with medium. Due to the image size the free aspect ratio is deregulated. 

 

4.4.8 Coating integrity in the dynamic setup 

Beside the evaluation of the coating integrity under classical static transport 

conditions also the stability under dynamic flow conditions was analyzed using 

confocal Raman microscopy and optical topography. Transwells® were removed 

from the FTPC after 6 h and 18 h and were dried at room temperature. Figure 4.17 

depicts representative optical cross sections of the coated membrane before the 
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experiment and after 6 h and 18 h within the FTPC, respectively. At each 

investigated time point, the coating has a comparable wavelike pattern due to the 

coating procedure. 

 

 

Figure 4.17. Optical Raman cross sections from edge to edge of lipid-coated Transwells
®
. Initial 

lipid layer (blue) on Transwell
®
 membrane (red) before, after 6 h and after 18 h of experiment in the 

FTPC with medium. Due to the image size the free aspect ratio is deregulated. 

 

To ensure lipid coverage of the entire membrane area at every time point and 

therefore intact barrier properties, top view images were recorded in addition to the 

optical cross sections. Figure 4.18 a and b show representative topography 

profiles of the coated Transwell® before and after 18 h of experiment under 

dynamic flow conditions as well as an overlay with Raman spectra (Figure 

4.18 c, d). The surface of the coating showed structural differences indicating that 

KRB led to changes throughout the experiment. As no lipid-free areas were 

revealed, the images clarify that no defects were washed into the coating during 

the use in the FTPC. This verifies the results of the TEER measurement and the 

stability of the coating against KRB under dynamic flow conditions in the FTPC. 
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Figure 4.18. Topography profile (a, b) overlaid with Raman spectra (c, d) visualizing the complete 

lipid (blue) coverage of the Transwell
®
 membrane (red) before (a,c) and after a dynamic transport 

experiment (18 h; b,d). 

 

4.4.9 Stability against simulated intestinal fluid 

As a preliminary test for the stability of the lipid coating in the presence of 

simulated intestinal fluid, the TEER value was recorded over 5 h in the FTPC. 

Figure 4.19 shows the course of the TEER value of a membrane expose to 

simulated intestinal fluid in comparison to KRB. For both, FaSSIF and FeSSIF, the 

TEER value decreased rapidly in the first minutes. Afterwards, the value stayed at 

a constant level of about 350 Ω*cm² for FaSSIF. This is close to the limit of 

300 Ω*cm², which is the critical value for the integrity of Caco-2 cell monolayers. 

Using FeSSIF the TEER value fell below that limit reaching the same value as a 

blank Transwell® after 2 h (55 Ω*cm²).  
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Figure 4.19. Comparative TEER values under dynamic flow conditions in the FTPC. Preliminary 

data for a lipid-coated Transwell
® 

using KRB (▼), FaSSIF (●) and FeSSIF (○) as medium. For the 

sake of clarity only every fifth data point is presented (n = 1). 

 

Visual inspection of the Transwell® after 5 h showed a complete washing off of the 

lipid coating. Due to the high concentration of lecithin and sodium taurocholate the 

lipid layer was solved and washed away with the constant medium flow. These 

first results indicate the instability of the coating against FeSSIF under dynamic 

flow conditions. Therefore, the lipid-coated membrane cannot be used for 

experiments with FeSSIF and only in a limited way with FaSSIF. Nevertheless, 

these results have to be confirmed with further experiments and a change of the 

lipid composition, e.g. addition of cholesterol, could be considered as a possibility 

to stabilize the coating. 

 

4.5 Conclusion 

The pretests have shown that the use of lipid Lipoid E 80 and centrifugation (5 

times) as the coating method lead to better results compared to DOPC and 

sedimentation as coating method. The final coating was successfully characterized 

regarding its reproducibility and its stepwise buildup on the Transwell®. 

Furthermore, the stability of the coating was confirmed under classical static as 
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well as under dynamic flow conditions using KRB. Therefore, the lipid-coated 

membrane can be used for further characterization especially with respect to its 

permeation properties, which is described in the following chapter. Previous 

results showed that the use of simulated intestinal fluid especially FaSSIF is 

limited possible whereas FeSSIF cannot be used with the here described lipid-

coated membranes. Further investigations are necessary.     
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5 Comparison of a lipid-coated membrane with Caco-2 cell 
monolayers using drug solutions 
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5.1 Introduction 

 

After successful characterization of the coating process and the stability of the 

coating against KRB, the next step was to evaluate the permeation properties of 

the lipid-coated membrane as it is intended for use as permeation barrier. 

Therefore, permeation experiments were performed under classical static 

conditions as well as under dynamic flow conditions in direct comparison to the 

well-established Caco-2 cell model using drug solutions. The permeability of 

different marker substances including highly and lowly permeable substances as 

well as efflux transporter substrates was investigated.  

 

5.2 Materials and methods 

5.2.1 Materials 

Atenolol, rhodamine 123 and sodium fluorescein (Sigma-Aldrich, Steinheim, 

Germany), domperidone and domperidone maleate (Transo-Pharm, Siek, 

Germany), furosemide and propranolol HCl (Synopharm GmbH & Co KG, 

Barsbuettel, Germany) and talinolol (extracted from Cordanum tablets, 

AWD.pharma, Radebeul, Germany) served as model drugs. Lipoid E 80 (egg 

phospholipids with 80 % phosphatidylcholine) was a kind gift of Lipoid GmbH 

(Ludwigshafen, Germany). All buffer reagents were purchased from Sigma-Aldrich 

(Steinheim, Germany) and were of cell culture tested grade. All reagents for HPLC 

quantification were obtained from Sigma-Aldrich (Steinheim, Germany) and were 

of HPLC gradient grade. High purity water was prepared by a Millipore Milli-Q 

Synthesis system (Merck Millipore, Darmstadt, Germany). KRB was prepared as 

decribed in Chapter 2.2.4. 

 

5.2.2 Cell culture 

Cell culture conditions were the same as described in Chapter 2.2.2. 
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5.2.3 Coating procedure 

The coating procedure was performed as described in Chapter 4.2.3 and 4.2.4 (5 

times centrifugation of Lipoid E 80 liposomes). 

 

5.2.4 TEER measurement 

TEER was monitored as described in Chapter 2.2.3.  

 

5.2.5 Classical static transport experiments 

The general conditions for classical static transport experiments were the same as 

described in Chapter 2.2.5 with Caco-2 cell monolayers and were the same for 

lipid-coated Transwells®. Concentrations of drug solutions are listed in Table 5.1. 

  

Table 5.1. Properties and concentrations of the drugs. Molecular weight (MW) and xlogP3 value 

according to PubChem database [89]. Substances marked with 
1
 are P-gp substrates. 

 

5.2.6 Dynamic transport experiments 

Dynamic transport experiments in the FTPC were performed as described in 

Chapter 2.2.6 with Caco-2 cell monolayers and were the same for lipid-coated 

Transwells®. Concentrations of drug solutions are listed in Table 5.1.  

Substance Concentration MW [g/mol] xlogP3 Permeability 

according to 

BCS [62], [90] 

Atenolol 5 µM = 1.33 µg/ml 266.3 0.2 Low  

Domperidone
1 

Domperidone 

maleate
1
 

23.5 µM = 10 µg/ml 

23.5 µM = 12.7 µg/ml 

425.9 

542.0 

3.9 

- 

High 

High 

Furosemide
1
 1209.5 µM = 400 µg/ml  330.7 2 Low 

Propranolol HCl 385.7 µM = 100 µg/ml 259.3 3 High 

Rhodamine 123
1
 15 µM = 5.77 µg/ml 380.8 2.5 Low  

Sodium fluorescein 14 µM = 5 µg/ml 376.3 3.4 (without Na) Low 

Talinolol
1
 27.5 µM = 10 µg/ml 363.5 2.6 High 
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5.2.7 Quantification of drug substances 

The concentration of substance in the basolateral compartment at each sampling 

time point was determined via HPLC or fluorescence measurement in a plate 

reader. For further details of the quantification method see Chapter 10.1 in the 

annexes. 

 

5.2.8 Data treatment 

The Papp values were calculated as described in Chapter 2.2.8. 

For statistical analysis t-tests (p < 0.05) were performed using SigmaStat 

integrated in SigmaPlot version 11.0 (Systat Software GmbH, Erkrath, Germany). 

 

5.3 Results and Discussion 

5.3.1 Monitoring of the TEER value 

As already described in Chapter 4.4.1, the TEER value of the lipid-coated 

membrane remained over 600 Ω*cm² for 18 h. In comparison, TEER values for 

Caco-2 cell monolayers remained above 300 Ω*cm² only for about 3 h (Figure 

5.1). 

Based on the principle that high, stable measurements of electrical resistance 

indicate an intact, stable barrier, it follows that decreasing TEER values indicate a 

less dense permeation barrier. This may for instance be caused by an opening of 

tight junctions of the cell monolayer [15] which may in turn result in higher amounts 

of drug permeating across the layer and consequently in inaccurate Papp values. 

For Caco-2 cell monolayers, TEER values above 300 Ω*cm² are considered to be 

appropriate for permeation experiments [15], which was uphold for about 3 h in the 

FTPC. In contrast, the TEER values of the lipid-coated membrane do not decrease 

below 300 Ω*cm². These results highlight the long term coating stability in 

comparison to Caco-2 cell monolayers, as the breakdown of barrier integrity of the 

cellular system after 2-3 h is obvious.  

Compared to Caco-2 cells, the artificial membrane model is therefore 

advantageous regarding the possible experiment duration. Ultimately, long term 

transport studies are an option with this artificial permeation model in contrast to 
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Caco-2 cells. Therefore, the lipid-coated membrane bears the potential to analyze 

controlled release formulations.  
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Figure 5.1. Comparative TEER values under dynamic flow conditions in the FTPC. Representative 

data of blank Transwell
®
 (▼), Caco-2 cell monolayer (●) and lipid-coated Transwell

®
 (■) are 

presented. For the sake of clarity, only every fifth data point is presented as mean ± SE (for the last 

time point, n ≥ 3). 

 

5.3.2 Comparison of classical and dynamic setup 

During development the FTPC was validated with the highly permeable substance 

propranolol and the lowly permeable marker sodium fluorescein for Caco-2 cells 

[32]. These experiments showed that due to the different permeation conditions 

the obtained Papp values differed in a certain range compared to data from 

classical transport experiments. Although these differences were already known, 

comparative experiments with Caco-2 cell monolayers in the classical as well as in 

the dynamic setup were performed to gain a broader understanding of the 

permeability behavior for each examined drug. Four of the model drugs showed 

higher permeability values in the FTPC using a Caco-2 cell monolayer than in the 

classical static setup (Table 5.2).  
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Table 5.2. Overview of Papp values. Data presented as mean ± SD (n ≥ 3).  

 

In a further step, the transport experiments were repeated with the lipid-coated 

membrane. Here, higher Papp values were also found under dynamic flow 

conditions compared to the classical setup (Table 5.2) except for sodium 

fluorescein. Therefore, by comparing the two transport experiment conditions of 

classical static and dynamic flow, the same tendency of Papp values was found 

independent of the barrier employed. One essential difference between the 

classical setup and the FTPC is the fluid dynamic condition at the membrane. 

While in the classical setup the whole system is gently shaken and therefore, more 

or less similar conditions are provided at the apical and basolateral side, the 

situation in the FTPC is different. Here, at the apical side the donor solution is 

continuously moved over the membrane whereas the basolateral side is mixed 

with a stirrer. These differences result in different shear stress at the membrane, 

and therefore a different influence on the unstirred water layers (UWL) within the 

apical and basolateral compartments. As UWLs can act as additional permeation 

barriers, different influences on UWLs in classical static and dynamic flow setups 

might be the reason for observed deviations in Papp values under these two 

conditions. The transport of lipophilic substances in particular can be influenced by 

manipulation of the UWL [40]. Among the substances used in the current study, 

propranolol and domperidone have the highest lipophilicity. Therefore, the greatest 

Substance Papp Caco-2 cells 

(classical setup) 

[* 10
-6 

cm/s] 

Papp Caco-2 cells 

(dynamic setup) 

[* 10
-6 

cm/s] 

Papp lipid-coated 

membrane
 

(classical setup) 

[* 10
-6 

cm/s] 

Papp lipid-coated 

membrane
 

(dynamic setup) 

[* 10
-6 

cm/s] 

Propranolol HCl 14.6 ± 1.7 25.00 ± 5.20 [32] 1.54 ± 0.17 13.30 ± 2.40 

Domperidone 4.21 ± 0.46 6.08 ± 0.52 0.59 ± 0.09 5.18 ± 0.77 

Domperidone 

maleate 

2.28 ± 0.62 8.11 ± 2.19 0.68 ± 0.03 8.60 ± 1.30 

Rhodamine 123 1.84 ± 0.67 1.60 ± 0.23 0.65 ± 0.18 1.61 ± 0.43 

Sodium 

fluorescein 

0.80 ± 0.07 0.34 ± 0.08 0.43 ± 0.02 0.16 ± 0.07 

Talinolol 0.45 ± 0.13 1.50 ± 0.42 1.42 ± 0.36 3.72 ± 0.56 

Furosemide 0.26 ± 0.07 0.18 ± 0.02 0.84 ± 0.0001 1.41 ± 0.64 

Atenolol 0.25 ± 0.04 0.44 ± 0.20 0.28 ± 0.09 0.52 ± 0.13 
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differences between the Papp values of the classical and dynamic setup should be 

found for these substances. This can successfully be confirmed by comparing the 

results using the lipid-coated membrane. 

 

In comparison to the results of Flaten et al. [51], the Papp values of the presented 

modified lipid-coated membrane are in the same range. For example, atenolol with 

a Papp value of 0.28 * 10-6 cm/s shows reasonably similar values in the classical 

static setup compared to the result from Flaten et al. (0.22 * 10-6 cm/s) [51]. 

 

5.3.3 Permeation experiment under dynamic flow conditions – comparing 

Caco-2 cell monolayers and lipid-coated membranes 

For evaluation of the permeation properties of the lipid-coated membrane, 

transport experiments with different drugs were conducted and the Papp values 

were compared with filter grown Caco-2 cell monolayers. Permeation experiments 

with Caco-2 cell monolayers and lipid-coated Transwells® were performed in the 

FTPC for 3 h or 18 h, respectively. Donor solutions of each drug were pumped into 

the apical compartment of the permeation cell. The calculated Papp values are 

summarized in Table 5.2. It can be seen that in the FTPC the lipid-coated 

membrane provides comparable permeability data to that obtained using the 

Caco-2 cells. Furthermore, the standard deviation of such data is rather low 

indicating reliable reproducibility. Both models can distinguish between highly and 

lowly permeable substances. Compared to use in a Caco-2 cell-based setup, 

atenolol, talinolol, furosemide and domperidone maleate had Papp values which 

were higher by factors of 1.2, 2.5, 7.8 or 1.1, respectively, using lipid-coated 

Transwells®. Sodium fluorescein and propranolol showed a 0.5-fold lower Papp 

value for the lipid-coated Transwells® compared to Caco-2 cells. 

 

For better comparison, the substances were put in order according to increasing 

Papp values obtained with Caco-2 cell monolayers. The ranking of the substances 

leads to a comparable pattern when using the lipid-coated membrane (Figure 5.2). 

From low to high Papp values the ranking for Caco-2 cells is the following: 

Furosemide, sodium fluorescein, atenolol, talinolol, rhodamine 123, domperidone 

maleate and propranolol HCl. Using lipid-coated Transwells® a comparable ranking 
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was found. Only furosemide and talinolol rank at different positions with the non-

cellular model. Nevertheless, using the non-cellular model it is still possible to 

classify all the substances according to their permeability into highly, medially and 

lowly permeable substances.  

 

Figure 5.2. Ranking of apparent permeability (Papp) values for Caco-2 cell monolayers (black bars) 

and for lipid-coated membranes (grey bars) under dynamic flow conditions. Lowly permeable 

substances are indicated with L, medium with M and highly permeable with H. Data are presented 

as mean ± SD (n ≥ 3). Bars marked with * are significantly different from Caco-2 cell data (t-test, p 

≤ 0.05). 

 

As expected, the permeation data differ in a certain range between cellular and 

non-cellular models due to the individual transport pathways across the different 

barriers. Besides passive diffusion, being the only pathway possible for transport 

in the artificial membrane model, Caco-2 cells also exhibit influx and efflux 

transporters which influence drug permeation. For example, permeation of talinolol 

across Caco-2 cells is affected by the efflux transporter P-gp [62, 71]. In contrast, 

non-cellular permeation models such as the presented lipid-coated membrane do 

not possess such transporters. However, in this approach only the absorptive 

transport (apical to basolateral) can be determined, for which the ratio of transport 

rates across Caco-2 cell monolayers in absence or in presence of a p-gp inhibitor 
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(0.01 % TPGS), resp., for all the drugs studied was between 0.94 and 1.54 in the 

d/p-system (see Chapter 2.3.6). Consequently, differences between cellular and 

non-cellular systems are low. 

Even though transport proteins are missing in the non-cellular model it represents 

a suitable model for permeation studies, as passive diffusion is the main route for 

drug uptake in vivo [91]. 

 

5.3.4 Correlation of Caco-2 cell monolayer and lipid-coated membrane in 

classical and dynamic setup 

For deeper evaluation of this lipid-coated membrane as a potential surrogate for 

Caco-2 cells, log Papp values obtained in each setup were plotted together in a 

single figure. Figure 5.3 illustrates the correlation between log Papp values obtained 

using Caco-2 cell monolayers and lipid-coated membranes for the two setups. 

Under classical static transport conditions, data points deviate from the line of 

identity (y = x) to a greater extent compared to dynamic flow conditions, where 

they are closer to the line of identity. Therefore, substitution of Caco-2 cell 

monolayers by the lipid-coated membrane appears not reasonable for the classical 

transport setup. In contrast, in the FTPC, a good correlation between Caco-2 cells 

and the artificial membrane was found. The use of the developed artificial 

membrane may therefore be meaningful in this setup. 

Again, different fluid dynamic conditions in the classical setup and the FTPC can 

be found resulting in different UWLs. For PAMPA thicker UWLs were reported in 

an unstirred setup compared to Caco-2 cells [92]. Therefore, drug permeation in 

the classical static setup may be influenced by an UWL to a greater extent for this 

lipid-coated membrane than for Caco-2 cells. In contrast, Flaten et al. [53] reported 

that the importance of decreased UWLs on permeability in a lipid-coated 

membrane model is less. In the here presented dynamic flow experiments this was 

not observed.  

As already shown in the comparative ranking of Papp values, two outliers, namely 

furosemide and talinolol, were found in the correlation plot. Again, divergence of 

data points for these two substances can be explained by an additional transport 

mechanism, namely the P-gp efflux transporter, which is only present in cellular 

models.  



Comparison of a lipid-coated membrane with Caco-2 cell monolayers using drug solutions 

 

78 

 

Other reports using the classical static setup reported a good correlation between  

the permeability over a liposome-based model and the extent of absorption in 

humans [51]. A direct correlation to Caco-2 cells was not performed in that report. 

By plotting these results from Flaten et al. (marked with F in Figure 5.3, top) in a 

similar way as in Figure Figure 5.3, a comparable pattern for the classical setup 

can be found, where the currently obtained results fit completely. This supports the 

comparability of the presented modified version of the lipid-coated membrane. 

Moreover, the results and the good correlation to Caco-2 cells under dynamic flow 

conditions confirm the specific application of the presented lipid-coated membrane 

for the combined dissolution and permeation system. In contrast to others [49, 51], 

the presented lipid-coated membranes are made of commercially available 

Transwells®, which are also used for Caco-2 cell culture. The coating can be done 

without the need of freeze-thaw cycles, in a high reproducible manner, which 

distinguishes the current setup from other approaches. 
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Figure 5.3. Correlation between Caco-2 cells and lipid-coated membranes. Permeability data 

determined in classical static setup (a) and under dynamic flow conditions (b) for atenolol (●), 

domperidone (▲), domperidone maleate (▼), sodium fluorescein (*), furosemide (■), propranolol 

(+), rhodamine 123 (□) and talinolol (○). Data taken from Flaten et al. [51] are marked with F. 

Dashed line represents line of identity.  
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5.4 Conclusion 

A lipid-coated membrane for the use under dynamic flow conditions in a combined 

dissolution and permeation apparatus was successfully evaluated. The lipid 

coating is stable under the used flow conditions and the integrity of the lipid barrier 

is guaranteed. Compared to a Caco-2 cell monolayer, the lipid-coated membrane 

shows similar permeation results under constant flow and stirring. Therefore, it 

bears the potential to be implemented for the classification of new drugs according 

to their permeability. The potential influence of cellular transporter systems can of 

course not be taken into account. For further studies, an implementation of 

transporter proteins in the lipid coating could be considered. 

As an alternative for Caco-2 cells, the presented lipid-coated membrane facilitates 

fast permeation testing without the need to grow cells, yet, being close to real 

human conditions particularly enabled by the application of dynamic flow 

conditions. In addition to drug solutions, the system bears the potential to analyze 

drug formulations like tablets without previous dispersion in buffer which will be 

examined in the following chapter. Due to the high stability of the lipid-coated 

membrane over time, the experimental time frame to investigate dissolution and 

permeation simultaneously can be extended beyond the limit of Caco-2 cell 

monolayers offering the possibility to investigate extended release formulations 

over a relevant period of time.  
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6 Suitability of a lipid-coated membrane to analyze tablets 
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6.1 Introduction 

The permeation experiments with solutions of different drug substances, as 

described in Chapter 5, showed a good correlation between the Papp values of the 

lipid-coated membrane and the Caco-2 cell monolayer. Furthermore, the results 

pointed out the particular qualification of this artificial membrane for the use under 

dynamic flow conditions. Therefore, the next step was to test the suitability of the 

lipid-coated membrane for the measurement of the dissolution and permeation of 

solid oral dosage forms. In this study it was of particular interest to clarify if the 

lipid-coated membrane is applicable for the testing of tablets. 

 

6.2 Materials and methods 

6.2.1 Materials 

Domperidone maleate was purchased from Transo-Pharm (Siek, Germany) and 

Kolliphor TPGS was from BASF (Ludwigshafen, Germany). CapsuLac® 60 was a 

kind gift from Meggle (Wasserburg, Germany), Microcell MC-102 was a kind gift 

from Lehmann & Voss & Co (Hamburg, Germany), Kollidon CL was from BASF 

(Ludwigshafen, Germany), Aerosil 200 was from Degussa (Frankfurt, Germany) 

and Mg-stearate was from Fagron (Barsbuettel, Germany). All tablet excipients 

were of Ph. Eur. grade. Propranolol tablets were were prepared according to Motz 

et al. [32]. Lipoid E 80 (egg phospholipids with 80 % phosphatidylcholine) was a 

kind gift of Lipoid GmbH (Ludwigshafen, Germany). All reagents for HPLC 

quantification were obtained from Sigma-Aldrich (Steinheim, Germany) and were 

of HPLC gradient grade. High purity water was prepared by a Millipore Milli-Q 

Synthesis system (Merck Millipore, Darmstadt, Germany). All buffer reagents were 

purchased from Sigma-Aldrich (Steinheim, Germany) and were of cell culture 

tested grade. KRB was prepared as described in Chapter 2.2.4. 

 

6.2.2 Cell culture 

Cell culture conditions were the same as described in Chapter 2.2.2. 
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6.2.3 Coating procedure 

The coating procedure was performed as described in Chapter 4.2.3 and 4.2.4 (5 

times centrifugation of Lipoid E 80 liposomes). 

 

6.2.4 TEER measurement 

TEER was monitored as described in Chapter 2.2.3.  

 

6.2.5 Preparation and characterization of tablets 

Immediate release tablets (IR tablets) with 10 mg propranolol and extended 

release tablets (ER tablets) with 10 mg propranolol and 4 % Eudragit® were 

prepared according to Motz et al. [32]. Composition can be found in Table 6.1.  

Table 6.1. Composition of propranolol tablets according to Motz et al. [32] 

 Immediate release Extended release 

Propranolol 10 % 10 % 

Eudragit® NE 30 D - 4 % 

Avicel PH 102 70 % 55 % 

Lactose EP type D20 17 % 29 % 

Water - q. s. 

PVP insol. 1 % - 

Aerosil 200 1 % 1 % 

Mg-stearate 1 % 1 % 

 

The content of tablets was retested by dissolving a tablet in 100.0 ml KRB by 

means of ultrasonication. The resulting solution was filtered through a cellulose 

acetate filter (pore size 0.2 µm) and the filtrate was diluted with KRB (1:62.5). The 

concentration was determined via HPLC. For each release property, three tablets 

were tested. 

Domperidone maleate tablets with and without TPGS were prepared and 

characterized as described in Chapter 3.2.4 and 3.2.5. 
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6.2.6 Combined dissolution and permeation experiment in the d/p-system 

Combined dissolution and permeation experiments with propranolol and 

domperidone maleate tablets (2 tablets at a time) were performed in the d/p-

system as described in Chapter 3.2.6 with Caco-2 cell monolayers and were the 

same for lipid-coated membranes. 

 

6.2.7 Extraction of propranolol from lipid coating 

For the measurement of propranolol accumulation in the lipid coating during an 

experiment with tablets, Transwells® were removed from the FTPC after 1.7 h, 5 h 

and 8 h, dried at room temperature and subsequently extracted. A mixture of 

45 % (v/v) water, 22 % (v/v) acetonitrile, 33 % (v/v) methanol, 0.033 % (v/v) 

triethylamine and 0.044 % (v/v) phosphoric acid (mobile phase of HPLC method) 

was used as an extraction agent. Transwells® were shaken with 5 ml extraction 

agent on an orbital shaker for 18 h.  

 

6.2.8 Quantification of drug substances 

The concentration of substance at sampling ports D and A was determined by 

online detection. Fluorometric detection of propranolol was performed with the 

FIAlab fluorescence detector PMT-FL. Scan rate was adjusted to 4 Hz and 

integration time was set to 80 msec. UV absorbance at 285 nm was used for the 

online detection of domperidone maleate. 

The concentration of substance in the basolateral compartment at each sampling 

time point was determined via HPLC. For further details of the quantification 

method see Chapter 10.1 in the annexes. 

 

6.2.9 Comparison of dissolution profiles 

Dissolution profiles at sampling ports D and A were compared using classical 

equivalence parameters [93]. The area under the curve (AUC) was calculated 

using the trapezoidal rule. Furthermore, the release profiles in cumulative form 

from the setup with the Caco-2 cell monolayers (reference batch R) were 

compared to the profiles from the setup with lipid-coated membranes (test batch 
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T). Comparisons were performed by calculating the    similarity factor (eq. 4) [94] 

and by employing  the Tolerated Difference Test (TDT) [95]. 

 

              {[  
 

 
 ∑   (      )

  
   ]

    
       }       (eq. 4) 

 

Rt is the mean percent of the dissolved drug from the reference batch at time t, Tt 

is the mean percent of the drug dissolved from the test batch at time t, n is the 

number of time points and wt is a weight factor that can be used to enhance the 

influence of particular time points. If the calculation yields    ≥ 50, similarity of R 

and T is declared. 

A tolerated difference (δ) in dissolution between two tablets is the basis of TDT. At 

each time point the differences between test sample and reference are statistically 

proved for exceedance of the predetermined δ performing nReference * nTest 

comparisons. The number (Dd) of greater differences is counted (eq. 5), where Di 

is the sum of differences greater than δ at the ith time point. 

 

    
 

 
 ∑   
 
            (eq. 5) 

 

TDT can also be used to determine the critical (maximum) δ, at which the profiles 

are considered not similar and are interpreted as the typical difference in 

percentage between the two profiles. 

The main difference of both tests is that    is an empirical method and TDT is a 

statistic one. In comparison to   , TDT has the advantage of performing 

customized comparisons of different formulations and distinction of different 

similarity levels. Furthermore, because the exact distribution of the random 

variable     is known, rejection values at any specified type I error (0.05 in this 

case) can be calculated and compared with the calculated statistic using the TDT. 

 

For further statistical analysis an Anova (Holm-Sidak, p < 0.05) were performed 

using SigmaStat integrated in SigmaPlot version 11.0 (Systat Software GmbH, 

Erkrath, Germany). 
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6.3 Results and discussion 

6.3.1 Characterization of propranolol tablets 

Table 6.2 shows the results of the retest of propranolol tablets. For the IR tablets 

the retested content fits to the described content of 9.70 ± 0.25 mg by Motz et al. 

[32]. The content of the ER formulation is significantly different from the described 

content of 9.80 ± 0.35 mg. Nevertheless, the contents are still within the accepted 

limit of 90-110 %. 

 

Table 6.2. Content of propranolol tablets. Data are presented as mean ± SD (n = 3).  

 IR tablet ER tablet 

Set content 10 mg 10 mg 

Real content 9.78 ± 0.3 mg 9.16 ± 0.5 mg 

 

6.3.2 Monitoring of TEER value 

The TEER values for Caco-2 cell monolayers and for lipid-coated membranes 

were at a level indicating an intact permeation barrier.  

 

6.3.3 Assessment of dissolution and drug permeability of propranolol  

As a first step, the dissolution profiles at sampling ports D and A for each 

formulation were compared. The concentration time trends for each barrier and 

formulation are shown in Figure 6.1 and Figure 6.2. The dissolution profiles 

showed a pattern as expected for immediate and extended release, respectively. 

Compared to immediate release tablets the extended release formulation yielded a 

flattened and broader dissolution profile. As further expected aspects of this 

release kinetic, the maximum dissolution peak was lower for the extended release 

formulation and dissolution was finished at a later time. Furthermore, the 

concentration determined at the apical side of the FTPC led to the same shape of 

peak compared to the sampling port dissolution. However, the apically determined 

peak showed a small time shift and was flattened. This can be explained by the 
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setup of the d/p-system, especially by the action of the stream splitter and the 

considerable tubing length between the dissolution cell and the FTPC [32].  

 

According to the standard f2-test, the release profiles of the IR and the ER tablet 

are different (Table 6.3) as expected.  

 

Table 6.3. Similarity test of dissolution between immediate and extended release tablets for Caco-2 

cells and lipid-coated membrane. Data marked with * indicate non-similarity. 

Parameter 
Dissolution 

Caco-2 cells Lipid-coated membrane 

Original time points 19 25.3 

   24.26 27.66 

TDT (d = 5) P < 0.0005* P < 0.0005* 

TDT (d = 10) P < 0.0005* P < 0.0005* 

Critical δ  31.2 27.4 

 

Due to the spatial separation of dissolution and permeation testing in two different 

modules, the permeation barrier should have no impact on the dissolution of the 

tablet. As expected, there were no dramatic differences in dissolution between 

Caco-2 cell monolayers and lipid-coated membranes.  

A comparison of typical parameters used for the evaluation in equivalence studies 

such as the area under the curve (AUC) and the maximum drug concentration 

(Cmax) are listed in Table 6.4 for the apical compartment. The AUCs of IR tablets 

did not show a significant difference between Caco-2 cell monolayers and lipid-

coated membranes. The same was found for the ER formulation and for the 

comparison of IR and ER tablets. In contrast as expected, Cmax and tmax values 

were significantly different between the IR and the ER formulation, independent of 

the permeation barrier used. However, Cmax and tmax were not significantly different 

between the Caco-2 cell monolayer and the lipid-coated membrane for every 

individual release kinetic. These results confirm the independence of the 

dissolution from the used permeation barrier. 
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Figure 6.1. Concentration time trends for immediate release tablets at sampling port D (a) and A 

(b). Closed symbols (●, ■) represent the Caco-2 cell monolayer and open symbols (○, □) represent 

the lipid-coated membrane. For the sake of clarity, data are presented as mean (n ≥ 3) without SD.  
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b 
ER tablet (propranolol) - apical compartment
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Figure 6.2. Concentration time trends for extended release tablets at sampling port D (a) and A (b). 

Closed symbols (●, ■) represent the Caco-2 cell monolayer and open symbols (○, □) represent the 

lipid-coated membrane. For the sake of clarity, data are presented as mean (n ≥ 3) without SD.  
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Table 6.4. Comparison of equivalence parameters in the apical compartment for different release 

kinetics and permeation barriers. Data are presented as mean ± SD (n ≥ 3). Data marked with * are 

significantly different from IR formulation using the same permeation barrier (ANOVA, Holm-Sidak, 

p ≤ 0.05). 

Parameter IR tablet ER tablet 

AUC (Caco-2 cells) 2384.3 ± 187.7 2194.6 ± 640.7 

AUC (lipid-coated membrane) 2582.2 ± 305.7 2715.6 ± 354.4 

Cmax (Caco-2 cells) 104.0 ± 7.1 µg/ml 39.1 ± 13.3 µg/ml* 

Cmax (lipid-coated membrane) 115.7 ± 33.3 µg/ml 52.7 ± 7.6 µg/ml* 

tmax (Caco-2 cells) 13.2 ± 3.3 min 23.7 ± 3.1 min* 

tmax (lipid-coated membrane) 12.9 ± 2.5 min 23.0 ± 3.3 min* 

 

For further comparison, the dissolution profiles were tested for similarity using the 

   factor and the TDT. The results are summarized in Table 6.5. The profiles 

obtained at sampling port D as well as at port A show similarity between the used 

permeation barriers. For both IR and ER tablets, the    factor is greater than 50, 

indicating similarity. Furthermore, the critical δ is low. These results confirm the 

comparison using equivalence parameters. Nevertheless, the similarity values at 

sampling port D are higher than at sampling port A suggesting an influence of the 

permeation barrier on the measured concentration in the apical compartment. 

Also, using lipid-coated membranes the Cmax in the apical compartment is higher 

than with Caco-2 cell monolayers. Looking at the permeation profiles one can see 

that the permeation over Caco-2 cells is faster. Therefore, the concentration at the 

apical compartment decreases faster in this case than with lipid-coated 

membranes. Due to the construction of the FTPC and the sampling position the 

permeation of propranolol has an influence on the measured apical concentration. 

However, for propranolol it is not as serious as it is highly permeable. 
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Table 6.5. Similarity test between Caco-2 cell monolayer and lipid-coated membrane for 

propranolol tablets. Data marked with * indicate non-similarity. 

Parameter 
Dissolution Apical compartment 

IR ER IR ER 

Original time points 15 40 57 61 

   82.39 59.18 57.41 58.89 

TDT (d = 5) P = 0.045* P = 0.35 P < 0.0005* P < 0.0005* 

TDT (d = 10) P > 0.5 P > 0.5 P > 0.5 P > 0.5 

Critical δ  5 4.3 7.3 6.3 

 

As a second step, the permeation profiles of each formulation were compared. 

Surprisingly in contrast to the dissolution profiles, the permeation profiles of the 

two release kinetics show no statistically significant difference. This was observed 

for both Caco-2 cell monolayer and lipid-coated membrane (Figure 6.5). Thus, the 

differences as observed in the dissolution profiles are obviously not strong enough 

to affect the permeation data underlining the advantage of a combined dissolution 

and permeation system. 

In relation to the present concentration at the apical side of the permeation barrier, 

the permeation across the Caco-2 cell monolayer showed an appropriate profile 

for each formulation (Figure 6.3 and Figure 6.5). Although the permeated amount 

within the first 100 min did not show a significant difference at all time points 

between the two formulations, a clear trend and delay can be seen for the ER 

tablet. This is in accordance with the slower increase of drug available at the 

apical side. So, the concentration at the apical side controls the occurrence of 

propranolol at the basolateral side as is expected for a highly permeable 

compound. As both formulations showed a complete release of drug, the apical 

concentration decreased to almost zero for the IR and the ER tablet after 

approximately 100 min and 180 min, respectively. With a certain time delay the 

permeation also reached a steady-state. Correlating well with the AUCs, the 

permeated mass also did not show a significant difference between the two 

formulations at the end of the experiment.  

The permeation profile obtained with lipid-coated membranes showed a longer lag 

time until the onset of permeation in the case of both formulations (Figure 6.4 and 
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Figure 6.5). Nevertheless, the permeation profiles have a comparable course to 

those obtained using Caco-2 cell monolayers. Again the ER tablet showed a 

delayed but not significantly different permeation at the beginning and after 180 

min the curves are aligned, ending in a plateau. Here again, the permeated mass 

at the end of the experiment did not show a significant difference between IR and 

ER tablets, which fits to the AUCs. Furthermore, the total amount of propranolol 

permeated over the lipid-coated membrane is 2-fold lower than in the case of 

Caco-2 cell monolayers. 

The differences between Caco-2 cell monolayer and lipid-coated membrane 

permeation are related mainly to a delayed onset and longer duration as well as to 

the total permeated drug amount. These effects can be explained by different 

factors. Firstly, Caco-2 cell monolayers have a thickness of approximately 5 to 

10 µm, whereas the average thickness of the lipid coating goes up to 83 µm as 

can be seen in Figure 4.14 (Chapter 4.4.5). Therefore, the longer diffusion from 

the apical to the basolateral side resulted in a time shift of the permeation. 

Secondly, the lipid coating may also act as a depot, which is filled at the beginning 

and continues to empty even when the drug concentration at the apical side is 

almost zero. To verify this, the determination of the drug concentration inside the 

lipid coating at different times during the experiment appears beneficial (see 

Chapter 6.3.5). Thirdly, previous experiments with drug solutions of propranolol led 

to Papp values differing by a factor of 2 (Chapter 5.3.2 Table 5.2). As lower Papp 

values indicate less permeability, this explains the lower permeated amount when 

using lipid-coated membranes.  

Although the permeation profiles showed some differences depending on the used 

permeation barrier, the results confirm the suitability of the lipid-coated membrane 

for tablet testing in a combined dissolution and permeation system.  

The integration of a lipid-coated membrane in a combined dissolution and 

permeation system as described here enables the testing of intact tablets without 

the necessity to disintegrate the formulation prior to the experiment, as described 

previously  [58].  
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ER tablet (propranolol) - Caco-2 cells
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Figure 6.3. Concentration time trends for immediate release tablets (a) and extended release 

tablets (b) using Caco-2 cells. Circles (●) represent the apical side of the FTPC and triangles (▼) 

represent the basolateral side. Data are presented as mean ± SD (n ≥ 3). 
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ER tablet (propranolol) - lipid-coated membrane
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Figure 6.4. Concentration time trends for immediate release tablets (a) and extended release 

tablets (b) using lipid-coated membranes. Circles (○) represent the apical side of the FTPC and 

triangles ( ) represent the basolateral side. Data are presented as mean ± SD (n ≥ 3). 
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Lipid-coated membrane
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Figure 6.5. Permeated amount calculated from the drug concentration assessed at sampling port B 

for Caco-2 cell monolayers (a) and lipid-coated membranes (b). Closed symbols (●, ▲) represent 

immediate release tablets and open symbols (○, ∆) represent extended release tablets. Data are 

presented as mean ± SD (n ≥ 3). 
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6.3.4 Validation of extraction of propranolol from lipid coating 

For a deeper evaluation of the function of the lipid coating and its behavior during 

the permeation process, the amount of propranolol in the lipid coating should be 

determined. For this purpose, a suitable extraction method was essential. As an 

extraction agent the mobile phase of the HPLC method for propranolol was 

chosen. In comparison to KRB as solvent, the determined concentrations for 

different stock solutions were similar with the mobile phase as solvent. 

Furthermore, the addition of Lipoid E 80 liposomes to the stock solution did not 

cause any differences in the determined concentrations and did not result in the 

introduction of additional peaks in the HPLC chromatogram. Therefore, a 

separation of liposomes after the extraction by means of ultracentrifugation was 

not mandatory. To check the extraction potential of the mobile phase a defined 

amount of propranolol was placed on the lipid-coated membrane. Afterwards, the 

complete Transwell® was subjected to the extraction process for 18 h. The 

recovery of propranolol was 107.4 ± 5.2 % of the applied amount. Thus, the 

extraction process was suitable for further investigation of the lipid coating.  

 

6.3.5 Extraction of propranolol from lipid-coated membrane 

For both release kinetic formulations the extracted mass of propranolol from the 

lipid coating shows a decrease over the time of experiment (Figure 6.6). After 

1.7 h, the extracted mass is larger compared to the later time points. Furthermore, 

the mass found in the lipid coating when applying the IR tablet is higher than for 

the ER tablet at the first time point, but is not significantly different. This correlates 

well with the faster release and the therefore higher concentrations of propranolol 

present at the apical side of the permeation barrier. Moreover, the different 

extracted amounts reflect the differences in the permeated mass within the first 

two hours of experiments. After 5 h the extracted mass is almost similar for both 

formulations. Again, this can be linked well to the permeation profiles.   

In addition, the total amount that can be extracted from the coating after 8 h is 

relatively high compared to the permeated amount (appr. 2 µg). This can also 

explain the lower permeated amounts of propranolol in comparison to Caco-2 

cells. An extension of the experimental time may lead to higher permeated 

amounts due to an emptying of the depot. In addition, a greater back diffusion into 
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the apical compartment has also to be taken into consideration as the presence of 

a drug depot within the lipid coating leads to the creation of a concentration 

gradient in this direction. Further experiments should clarify and confirm this. 
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Figure 6.6. Extracted mass of propranolol from lipid-coated Transwells
® 

after different time points in 

the d/p-system. Black bars represent experiments with immediate release tablets and grey bars 

with extended release tablets. Data are presented as mean ± SD (n = 3). 

 

6.3.6 Assessment of dissolution and drug permeability of domperidone 

maleate 

To prove the results obtained with propranolol tablets, the combined dissolution 

and permeation experiments were done with domperidone maleate tablets with 

and without TPGS. 

As for the propranolol tablets, the dissolution profiles at sampling ports D and A for 

each formulation were first compared. The concentration time trends for each 

barrier and formulation are shown in Figure 6.7 and Figure 6.8. The apical peak is 

flatten and broadened as it was also found for propranolol tablets. 
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b 
Domp. mal. tablets without TPGS - apical compartment
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Figure 6.7. Concentration time trends for domperidone maleate tablets without TPGS at sampling 

port D (a) and A (b). Closed symbols (●, ■) represent the Caco-2 cell monolayer and open symbols 

(○, □) represent the lipid-coated membrane. For the sake of clarity, data are presented as mean (n 

≥ 3) without SD.  
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b 
Domp. mal. tablets with TPGS - apical compartment
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Figure 6.8. Concentration time trends for domperidone maleate tablets with TPGS at sampling port 

D (a) and A (b). Closed symbols (●, ■) represent the Caco-2 cell monolayer and open symbols (○, 

□) represent the lipid-coated membrane. For the sake of clarity, data are presented as mean (n ≥ 3) 

without SD. 
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Table 6.6 summarizes a comparison of typical equivalence parameters calculated 

for the apical side of the FTPC. Independent of the used permeation barrier and 

the dosage form the AUC, Cmax and tmax do not show significant differences 

(ANOVA, p ≤ 0.05) when considering each parameter. This confirms the 

independence of the dissolution from the used permeation barrier on the one hand 

and the similarity of the two formulations on the other hand. Only the AUC for 

tablets with TPGS shows a significant difference (t-test, p ≤ 0.001) between Caco-

2 cell monolayers and lipid-coated membranes. This can be also substantiated by 

the less controlled and reproducible release of domperidone maleate from tablets 

containing TPGS, as was already mentioned in Chapter 3.3.2, and associated 

differences in the total released amounts.   

 

Table 6.6. Comparison of equivalence parameters in the apical compartment for different release 

kinetics and permeation barriers. Data are presented as mean ± SD (n ≥ 3).  

Parameter Tablet without TPGS Tablet with TPGS 

AUC (Caco-2 cells) 1078.3  567.9 1424.9 ± 86.8 

AUC (lipid-coated membrane) 1804.8 ± 601.5 2199.9 ± 129.2 

Cmax (Caco-2 cells) 48.8  30.6 µg/ml 36.8 ± 6.6 µg/ml 

Cmax (lipid-coated membrane) 74.7 ± 20.3 µg/ml 59.8 ± 24.1 µg/ml 

tmax (Caco-2 cells) 13.0  5.3 min 19.2 ± 6.2 min 

tmax (lipid-coated membrane) 8.5 ± 3.4 min 12.4 ± 6.9 min 

 

For further comparison, the dissolution profiles were tested for similarity using the 

   factor and the TDT. The results are summarized in Table 6.7. The profiles 

obtained at sampling port D show similarity between the used permeation barriers. 

For both tablets without and with TPGS the    factor is greater than 50. 

Furthermore, the critical δ is low. These results confirm the comparison using 

equivalence parameters. However, the values for sampling port A indicate non-

similarity between Caco-2 cell monolayers and lipid-coated membranes. The    

factor is below 50 and the critical δ is also high. This assumes an influence of the 

permeation barrier on the measured concentration in the apical compartment.  
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Using lipid-coated membranes also the Cmax in the apical compartment is higher 

than with Caco-2 cell monolayers. Looking at the permeation profiles one can see 

that the permeation over Caco-2 cells is faster. Therefore, the concentration at the 

apical compartment decreases faster. Due to the construction of the FTPC and the 

sampling position the permeation of domperidone maleate has an influence on the 

measured apical concentration. As the lag time of the permeation using lipid-

coated membranes is quite high, the change of concentration in the apical 

compartment is lower than for Caco-2 cell monolayers as less API is permeated. 

Hence, the permeation barrier has a great impact on the apical concentration of 

domperidone maleate resulting in non-similar concentration time trends. To avoid 

this, the position of sampling port A should be changed. A sampling directly before 

the FTPC and not after appears more reasonable and should lead to similar 

curves. This has to be verified in further experiments. 

In comparison to propranolol, the lag time of the permeation is approximately two 

times higher using the lipid-coated membrane. So, the influence is more 

substantial for domperidone maleate, which is reflected in the similarity test 

results. 

 

Table 6.7. Similarity test between Caco-2 cell monolayer and lipid-coated membrane for 

domperidone maleate tablets. Data marked with * indicate non-similarity. 

Parameter 

Dissolution Apical compartment 

Without 

TPGS 
With TPGS 

Without 

TPGS 
With TPGS 

Original time points 22 34 34 34 

    68.98 58.70 48.19* 41.81* 

TDT (d = 5) P > 0.5 P < 0.0005* P < 0.0005* P < 0.0005* 

TDT (d = 10) P > 0.5 P > 0.5 0.1 P < 0.0005* 

Critical δ 2.9 5.8 9.1 12.5 

 

The permeation profiles obtained with Caco-2 cell monolayers and lipid-coated 

membranes do not show a comparable pattern (Figure 6.9). The permeation of 

domperidone maleate released from TPGS-containing tablets showed a delay and 
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smaller permeated amounts at the end of the experiments using lipid-coated 

membranes. For the lipid-coated membrane one would expect that the permeation 

profiles do not differ between both domperidone formulations. The difference may 

be caused by the retention of domperidone in the lipid coating by TPGS. 

Furthermore, the affinity of domperidone to the lipid coating could be hindered by 

an inclusion into TPGS micelles. In general, the addition of TPGS could have, 

independently from efflux transporter effects, an influence on the partition 

coefficient as well as on the diffusion coefficient and thereby an effect on the 

permeability of domperidone maleate. The impact could vary between Caco-2 cell 

monolayers and lipid-coated membranes possibly explaining the different 

permeation profiles. 

Furthermore, the permeation over the lipid-coated membrane shows a certain lag 

time at the beginning of the permeation process and a lower total permeated drug 

amount, as was the case for propranolol. Again, this can be explained by the 

thicker permeation barrier and the therefore longer diffusion pathway. In contrast 

to propranolol, the result could not be confirmed by different Papp values. In 

previous experiments with stock solutions, the permeability coefficient was almost 

the same for Caco-2 cell monolayers and lipid-coated membranes.  

 

6.4 Conclusion 

In comparison to Caco-2 cell monolayers, the lipid-coated membrane shows 

comparable results when analyzing solid oral dosage forms containing BCS class I 

substances. Differences were only detectable for the onset time of permeation, 

correlating with the thicker permeation barrier. Therefore, the lipid-coated 

membrane is suitable for analyzing tablets without previous disintegration and is a 

valuable alternative to Caco-2 cells. However, the evaluation of effects of 

excipients is not possible with the lipid-coated membrane and additional effects 

such as micellar inclusion may hamper the analysis. For deeper understanding 

and validation further investigations with different dosage forms should be carried 

out. In addition, the experiments with domperidone maleate demonstrate that the 

position of sampling port A is not optimal, which may lead to inaccurate results.  
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Figure 6.9. Permeated amount calculated from the drug concentration assessed at sampling port B 

for Caco-2 cell monolayers (a) and lipid-coated membranes (b). Closed symbols (●, ▲) represent 

tablets without TPGS and open symbols (○, ∆) represent tablets with TPGS. Data are presented as 

mean ± SD (n ≥ 3). 
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7 Mathematical modeling of the d/p-system 
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7.1 Introduction 

An in-depth understanding of the processes at the permeation barrier is missing. 

Consequently, a mathematical modeling of the permeation step appears to be a 

possibility to gain knowledge of the transport processes at the permeation barrier. 

Therefore, the dissolution step should be mathematically linked with the 

permeation step in a model. Such a model could then possibly be used to predict 

the permeation of e. g. ER formulations based on experimental data obtained from 

IR formulations. Thus, an adequate mathematical description of the system could 

also minimize the number of experiments which have to be performed. For this 

purpose in a first attempt, modeling of the dissolution as well as the permeation 

step was tested in the below described way. 

 

7.2 Methods 

Dissolution and permeation data of IR and ER tablets obtained with Caco-2 cells 

as described in Chapter 6 were used for the following fittings. 

 

As a first step, dissolution data (D) was fitted to the Weibull function [96] with scale 

parameter k1, shape parameter k2 and applied dose Minf according to equation 6 

using a nonlinear least square fit. The applied dose was considered unknown due 

to the variability of propranolol content in the tablets. 

 

 ( )  (     (      )
   )            (eq. 6) 

Afterwards, a pharmacokinetic model of the d/p-system was set up based on three 

compartments as depicted in Figure 7.1. The following processes were modeled: 

 

a) The dissolution and the flow from the dissolution cell to the sampling port D 

was the first part. 

b) The transfer from D to the apical compartment including the stream splitter 

was modeled assuming a delay of approximately 3 min. 

c) The transport from the apical to the basolateral compartment was modeled 

according to a first order kinetic with a constant rate. 
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d) Furthermore, the flow into the waste from the dissolution and the apical 

compartment was considered. 

 

 

Figure 7.1. Simple illustration of the pharmacokinetic compartment model of the d/p-system. 

 

The model resulted in the following three equations for dissolution (D, equation 5), 

the apical compartment (A, equation 6) and the basolateral compartment (B, 

equation 7). The parameters k1, k2 and Minf are the Weibull parameters determined 

as described above. The flow rates between the compartments were entered in 

the formulas with 6.5 ml/min (flow1) and 1.0 ml/min (flow2). Furthermore, the 

volume of each compartment is described with VD for the dissolution and VA for the 

apical part. The transport parameter k3 was determined by nonlinear least square 

fitting. When it comes to least squares, the basolateral masses were weighted with 

the average mass of the apical compartment for the fitting procedure to emphasize 

the impact of these data in comparison to the apical data.  

 

  

  
    

         
(    )     (      )

              
     

  
    (eq. 7) 
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         (eq. 9) 

 

This set of differential equations (eq. 7-9) was solved numerically with a Runge-

Kutta 4th order method.  

In order to get insight into the potential to predict the permeation of API released 

from an ER formulation based on experiments with IR formulations, the Weibull 

parameters from the dissolution of the ER tablets and the transfer parameter k3 of 

the IR tablets fitting were used. 

 

7.3 Results and discussion 

Fitting of the dissolution data resulted in the Weibull parameters k1 and k2 listed in 

Table 7.1. P-values for all parameters were below 0.001. As expected due to the 

different release kinetics, the scale parameter k1 differs between the IR and the ER 

tablet by a factor of approximately 3. The shape parameter and the applied dose 

were comparable. The corresponding plots of the fits and the experimental data 

are shown in Figure 7.2. 

 

Table 7.1. Overview of Weibull parameters. Data are presented as mean ± SE (n ≥ 3). 

 IR tablet ER tablet 

K1 5.722 ± 0.08 * 10-2 2.03 ± 0.02 * 10-2 

K2 1.13 ± 0.02 1.13 ± 0.01 

Minf 1.84 ± 0.004 * 104 µg 1.85 ± 0.006 * 104 µg 
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Figure 7.2. Experimental data of dissolved cumulative mass (●) for an IR formulation (a) and an ER 

formulation (b) and the corresponding fits of the Weibull function (solid lines).   
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Both experimental and fitted data matched well together for IR as well as ER 

tablets. The fitted k3 values for the IR tablet was 2.49 ± 0.31 * 10-4 and for the ER 

tablet 3.10 ± 0.22 * 10-4. As expected, only minor differences between the two k3 

values could be observed. Therefore, using k3 from experiments with the IR 

formulation showed the potential to predict the permeation of an ER formulation 

(Figure 7.3). On the one hand, as depicted in Figure 7.3 a the amount of 

substance in the apical compartment was slightly overpredicted for later time 

points. On the other hand, for late times the permeation was slightly 

underpredicted (see Figure 7.3 b). It seems meaningful to use a greater amount of 

experimental data to improve the predictive capacities of the model. Furthermore, 

diffusion processes in the tubings could be included besides the transport, which 

was only taken into consideration in this attempt.  

 

7.4 Conclusion 

In this first attempt, a mathematically modeling of the processes in the d/p-system 

was successfully performed and employment of a three compartment model was 

successfully achieved. A prediction of the permeation of API released from an ER 

formulation based on IR data was possible. However, the results should be 

confirmed and the model should be improved. This comprises further collection 

and inclusion of experimental data as well as a profound analysis of possible 

predictive capabilities. The behavior of critical points like the splitter should be 

carefully investigated from a modeling perspective. Furthermore, a variability 

analysis of the fitted parameters should be performed to estimate the predictive 

power of the model.  
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Figure 7.3. Experimental data (●) of the concentration in the apical compartment (a) and the 

permeated mass (b) for an ER formulation corresponding predictions (solid lines). Data presented 

as mean ± SD (n ≥ 3).   
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8 Summary and outlook 
 

Bioavailability of solid oral dosage forms is mainly influenced by the liberation and 

absorption of the drug. As surrogate for these in vivo parameters mostly two in 

vitro assays are performed: dissolution testing quantifying liberation of the drug, 

and in vitro permeability assays based on cell cultures, especially the cell line 

Caco-2 resembling features of the intestinal epithelium. Although these assays are 

well-established and considered as standard methods, they are conducted 

separately. Therefore, they do not allow for drawing of direct correlations between 

dissolution and permeation parameters. To overcome this problem, a system 

combining both assays was developed in our laboratory by Motz [97] and further 

improved by Muendoerfer [98]. The aim of the present work was to evaluate 

further application fields for this d/p-system.      

 

In the first part of this thesis, the suitability of the d/p-system to analyze effects of 

excipients was tested with drug solutions as well as with solid oral dosage forms. 

Here, the main focus was on the inhibition of P-gp with TPGS. Inhibiting P-gp in 

the FTPC, a trend to higher permeated amounts and Papp values was found, even 

though a significant difference could not be detected for all investigated 

substances. Considering only the absorptive transport direction, which is rather 

important for the in vivo situation, an inhibition ratio of 0.9 to 1.5 was found under 

dynamic flow conditions in comparison to a ratio of 1.6 to 3.1 under classical static 

conditions using drug solutions. The smaller ratios under dynamic conditions are 

likely resulting from greater standard deviations blurring the inhibitory effect. 

Although it was possible to detect an effect using domperidone solutions, this 

could not be found in the first attempts with tablets without and with TPGS. 

Dissolutions profiles of both formulations were different but the permeation profiles 

did not show a difference. Therefore, at that point it cannot be stated clearly if the 

d/p-system is suitable for testing of effects of excipients. These results have to be 

confirmed by additional studies modifying the dosage form and the test conditions.  

 

Even though Caco-2 cells represent a well-established and validated model for the 

performance of in vitro permeability testing, they are associated with significant 

disadvantages including long cultivation time or compatibility with dissolution 
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media like FaSSIF or FeSSIF. Therefore as the second part of this work, a non-

cellular alternative permeation barrier suitable for use in the FTPC was developed 

and characterized. For this purpose, cell culture inserts were coated with lipid 

using a centrifugation method. As suitable lipid Lipoid E 80, mainly consisting of 

egg phosphatidylcholine, was applied to the membrane as liposomes.  

The stability against permeation medium as well as the coating procedure was 

tested using different techniques such as TEER measurement, light microscopy, 

scanning electron microscopy and Raman microscopy. Constant levels of the 

TEER value were monitored online over 18 h confirming the long term stability of 

the coating under experimental conditions. Furthermore, Raman images visualize 

the complete pore filling with lipid and verified the stability of the lipid coating. 

Moreover, first experiments showed the stability of the lipid coating against 

FaSSIF but not against FeSSIF. This needs further investigation in order to 

overcome the limited ability to use simulated intestinal fluid in the developed 

model. 

After successful characterization of the lipid coating, the applicability for transport 

experiments was tested under classical static and dynamic flow conditions in direct 

comparison to Caco-2 cells with drug solutions. Both barriers were able to 

distinguish between highly, medially and lowly permeable substances. Especially 

under dynamic flow conditions, the lipid-coated membrane showed a good 

correlation to Caco-2 cells, confirming the specific suitability for this purpose. 

Furthermore, also the suitability for tablet testing was analyzed. For propranolol IR 

and ER tablets, dissolution as well as permeation profiles were comparable to 

Caco-2 cells. However, with domperidone maleate the result was not as clear as 

for propranolol requiring further investigation. The results of the applicability test of 

the artificial membrane for the assessment of tablets seemed promising as a basis 

for further studies. 

In summary, a simple and reproducible coating procedure was found which 

resulted in the production of a stable and robust lipid coating. In comparison to 

Caco-2 cell monolayers the lipid-coated membranes showed a good correlation 

with regard to the permeability using different drug solutions as well as solid oral 

dosage forms. Therefore, this non-cellular model holds the potential for versatile 

applications for solid dosage form testing in the d/p-system including extended 
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release formulations and it has some advantages over Caco-2 cell monolayers 

such as the possibility of long term studies. 

Besides the above mentioned points, dissolution and permeation experiments 

evaluating the influence of food are of interest for further studies using the lipid-

coated membrane and FaSSIF as dissolution medium.  

 

Furthermore, an in-depth understanding of the processes occuring at the 

permeation barrier is missing. Consequently, mathematical modeling of the 

permeation step appears a possibility to gain knowledge of the processes at the 

permeation barrier. In a first attempt the modeling of the d/p-system was tested 

using a three compartment model and was successfully implemented. With such a 

model prediction of permeation is possible. Further investigations such as 

increasing the number of experimental data are necessary to improve the 

predictive power of the model.  

 

For research as well as industrial applications the d/p-system with Caco-2 cells 

and lipid-coated membranes could be a valuable addition to standard methods of 

dissolution and permeation testing especially with respect to possible interactions 

of both parameters. For further rating and potentially improvement of the benefit of 

the d/p-system one of the most important parameters which has to be clarified in 

following experiments is the evaluation of an in vitro in vivo correlation. Different 

formulations having a clear effect on the permeation of the API in in vivo 

experiments should be tested in the combined system.  
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9 Zusammenfassung und Ausblick 
 

Die Bioverfügbarkeit von festen oralen Arzneiformen wird hauptsächlich durch die 

Freisetzung und die Absorption des Wirkstoffes beeinflusst. Als Surrogat für diese 

in vivo Parameter werden meist zwei in vitro Assays verwendet: Dissolutionstest in 

Bezug auf die Freisetzung des Wirkstoffes und in vitro Permeabilitätstests 

basierend auf Zellkulturen insbesondere die Caco-2 Zelllinie, welche den 

Eigenschaften des Darms ähnlich ist. Auch wenn diese Testmethoden gut etabliert 

sind und als Standardmethoden angesehen werden, werden sie separat 

durchgeführt. Um dieses Problem zu umgehen wurde in unserem Labor durch 

Motz [97] ein System entwickelt, welches beide Parameter kombiniert, und durch 

Mündörfer [98] weiter verbessert. Das Ziel dieser Arbeit war es weitere 

Anwendungsmöglichkeiten dieses d/p-Systems zu untersuchen. 

 

Im ersten Teil dieser Arbeit wurde mit Wirkstofflösungen als auch mit festen oralen 

Arzneiformen die Eignung des d/p-Systems zur Analyse von Hilfsstoffeffekten 

getestet. Dabei lag der Hauptfokus auf der Hemmung des P-Glykoproteins (P-gp) 

durch TPGS. In der FTPC kann ein Trend zu höheren permeierten Mengen und 

Papp Werten unter P-gp-Hemmung gefunden werden, auch wenn nicht für alle 

untersuchten Substanzen ein statistisch signifikanter Unterschied bestimmt 

werden konnte. Unter alleiniger Berücksichtigung der absorptiven 

Transportrichtung, welche für die in vivo Situation eher wichtig ist, wurde bei 

Verwendung von Wirkstofflösungen unter dynamischen Flussbedingungen ein 

Hemmverhältnis von 0,9 bis 1,5 gefunden im Vergleich zu einem Verhältnis von 

1,6 bis 3,1 unter klassischen statischen Bedingungen. Die geringeren Verhältnisse 

unter dynamischen Bedingungen resultieren wahrscheinlich aus den größeren 

Standardabweichungen, welche einen inhibitorischen Effekt verschleiern. Obwohl 

es mit Domperidonlösungen möglich war einen Hemmeffekt zu bestimmen, konnte 

dies in ersten Versuchen mit Tabletten, welche TPGS enthalten oder nicht 

enthalten, nicht gefunden werden. Die Freisetzungsprofile beider Formulierungen 

waren unterschiedlich, aber die Permeationsprofile zeigten keine Unterschiede. 

Daher kann an diesem Punkt nicht genau festgelegt werden, ob das d/p-System 

zur Analyse von Hilfsstoffeffekten geeignet ist. Die Ergebnisse müssen in 
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zusätzlichen Untersuchungen mit modifizierten Arzneiformen und 

Testbedingungen bestätigt werden.  

 

Obgleich Caco-2 Zellen ein gut etabliertes und validiertes Model zur Durchführung 

von in vitro Permeationstests darstellen, haben sie einige Nachteile wie lange 

Kultivierungszeiten und Verträglichkeit von Dissolutionsmedien wie FaSSIF und 

FeSSIF. Aus diesem Grund sollte im zweiten Teil dieser Arbeit eine nicht zelluläre 

Alternative, welche für den Einsatz in der FTPC geeignet ist, entwickelt und 

charakterisiert werden. Zu diesem Zweck wurden Zellkultureinsätze mit einem 

Lipid mittels Zentrifugation beschichtet. Als geeignetes Lipid wurde Lipoid E 80, 

welches hauptsächlich aus Eiphosphatidylcholin besteht, in Form von Liposomen 

auf die Membrane aufgetragen.  

Die Stabilität gegenüber Permeationsmedien wie auch das Beschichtungs-

verfahren wurde mittels verschiedener Methoden wie der TEER-Messung, Licht-, 

Elektronen- und Raman-Mikroskopie untersucht. Konstante TEER-Wert-Level 

wurden über 18 h unter experimentellen Bedingungen aufgezeichnet, welche die 

Langzeitstabilität der Beschichtung bestätigen. Weiterhin machten Raman-Bilder 

eine komplette Füllung der Membranporen mit Lipid sichtbar und verifizierten die 

Stabilität der Lipidbeschichtung. Darüber hinaus zeigten erste Versuche, dass die 

Beschichtung gegenüber FaSSIF stabil ist nicht jedoch gegenüber FeSSIF. Dies 

bedarf weiterer Untersuchungen um den eingeschränkten Einsatz von künstlichen 

Darmflüssigkeiten zu beseitigen.   

Nach erfolgreicher Charakterisierung der Lipidbeschichtung wurde die 

Anwendbarkeit für Transportversuche unter klassischen statischen und 

dynamischen Flussbedingungen im direkten Vergleich zu Caco-2 Zellen unter 

Nutzung von Wirkstofflösungen getestet. Mit beiden Barrieren war es möglich 

zwischen schnell, mittel und langsam permeierenden Substanzen zu 

unterscheiden. Insbesondere unter dynamischen Flussbedingungen zeigte die 

lipid-beschichte Membran eine gute Korrelation zu Caco-2 Zellen, welches die 

spezielle Eignung für diesen Zweck bestätigt. Des Weiteren wurde die 

Anwendbarkeit zur Analyse von Tabletten untersucht. Sowohl die Dissolutions- als 

auch die Permeationsprofile von schnell und langsam freisetzenden 

Propranololtabletten waren vergleichbar mit Caco-2 Zellen. Dieses Ergebnis war 
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jedoch bei Domperidontabletten nicht genauso eindeutig, was weitere 

Untersuchungen erfordert. 

Zusammenfassend wurde ein einfaches und reproduzierbares 

Beschichtungsverfahren gefunden, welches in stabilen und robusten 

Lipidbeschichtungen resultiert. Im Vergleich zu Caco-2-Zell Monoschichten 

zeigten die lipid-beschichteten Membranen in Bezug auf die Permeabilität eine 

gute Korrelation sowohl unter Verwendung von Wirkstofflösungen als auch von 

festen oralen Arzneiformen. Daher hat dieses nicht zellulare Model das Potential 

für eine vielseitige Anwendung in Bezug auf Analyse fester Arzneiformen im d/p-

System, darin eingeschlossen langsam freisetzende Formulierungen, und es hat 

einige Vorteile gegenüber Caco-2 Zellen wie zum Beispiel die Möglichkeit von 

Langzeituntersuchungen. 

Neben den oben genannten Punkten ist außerdem die Untersuchung des 

Einflusses von Nahrung auf die Dissolution und Permeation unter Nutzung der 

lipid-beschichteten Membrane und FaSSIF für weitere Studien von Interesse.  

 

Des Weiteren fehlen bisher tiefergehende Erkenntnisse der Prozesse an der 

Permeationsbarriere. Folglich erscheint ein mathematisches Model des 

Permeationsschrittes als eine Möglichkeit um Wissen über diesen Prozess zu 

erlangen. In einem ersten Versuch wurde die Modellierung des d/p-Systems mit 

Hilfe eines drei Kompartimenten Models getestet und erfolgreich umgesetzt. 

Mittels solch eines Models ist die Vorhersage der Permeation möglich. Weiter 

Untersuchungen wie z. B. die Erhöhung der Anzahl experimenteller Daten ist 

notwendig um die Vorhersagekraft zu verbessern. 

 

Für Forschungszwecke als auch für industrielle Anwendungen kann das d/p-

System mit Caco-2 Zellen und lipid-beschichteten Membrane eine wertvolle 

Alternative zu den standardisierten Dissolutions- und Permeationstests darstellen, 

insbesondere in Hinblick auf mögliche Interaktionen zwischen beiden Parametern. 

Um den Nutzen des d/p-systems weiter zu bewerten und möglicherweise zu 

verbessern einer der wichtigsten Parameter, der in folgenden Experimenten 

geklärt warden sollte, ist die Untersuchung von in vitro in vivo Korrelationen. 

Verschiedene Formulierungen, welche in in vivo Versuchen einen eindeutigen 
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Effekt auf die Permeation des Wirkstoffes zeigen, sollten in dem kombinierten 

System getested werden.  
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10 Annexes 

10.1 Quantification of drug substances 

Quantification of drug substances were performed according to already validated 

in-house protocols (furosemide, propranolol, rhodamine 123, sodium fluorescein) 

or were developed and validated partially based on methods described in literature 

(atenolol [99], domperidone [100], talinolol [101], TPGS [102]). 

HPLC quantification was performed with a Dionex system (Thermo Fisher GmbH, 

Idstein, Germany) consisting of a Dionex ISO-3100A pump, a Dionex WPS-3000 

TSL autosampler, a Dionex VWD-3400 variable wavelength detector, a Dionex 

TCC-3000 column compartment and a Dionex SRD-3200 solvent rack. The 

system ran on Chromeleon software version 6.80 SP2.  

 

10.1.1 Quantification of atenolol 

Quantification was performed with an RP-18 select B (LiChrospher® 60, Merck), 

5 µm, 12.5 cm column. The mobile phase was composed of 90 % (v/v) acid water, 

5 % (v/v) methanol and 5 % (v/v) acetonitrile. The oven temperature was 40 °C 

and the flow rate was set to 1.2 ml/min. Detection was performed with a 

fluorescence detector (L-2480, Merck Hitachi) at an excitation wavelength of 

231 nm and an emission wavelength of 307 nm. Linearity (R > 0.999) was given 

between 4 ng/ml and 1 µg/ml. The retention time was 5.2 ± 0.1 min. 

 

10.1.2 Quantification of domperidone (maleate) 

Domperidone and domperidone maleate were quantified with an RP-18e 

(LiChrospher® 100, Merck), 5 µm, 12.5 cm column. The mobile phase consisted of 

50 % (v/v) water and 50 % (v/v) phosphate buffer pH 2.3. The oven temperature 

was 40 °C and the flow rate was set to 1.0 ml/min. Detection was performed with 

UV at 285 nm. Linearity (R > 0.9989) was given between 20 ng/ml and 

1000 ng/ml. The retention time was 2.6 ± 0.1 min. 
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10.1.3 Quantification of furosemide 

Quantification of furosemide was performed with an RP-18 select B (LiChrospher® 

60, Merck), 5 µm, 12.5 cm column. The mobile phase was composed of 60 % (v/v) 

water, 30 % (v/v) acetonitrile, 10 % (v/v) methanol, 0.033 % (v/v) triethylamine and 

0.044 % (v/v) phosphoric acid. The oven temperature was 40 °C and the flow rate 

was set to 1.2 ml/min. Detection was performed with UV at 235 nm. Linearity (R > 

0.999) was given between 25 ng/ml and 4000 ng/ml. The retention time was 

3.0 ± 0.1 min. 

 

10.1.4 Quantification of propranolol 

Propranolol was quantified with an RP-18 (LiChrospher® 100, Merck), 5 µm, 

12.5 cm column. The mobile phase was composed of 45 % (v/v) water, 22 % (v/v) 

acetonitrile, 33 % (v/v) methanol, 0.033 % (v/v) triethylamine and 0.044 % (v/v) 

phosphoric acid. The oven temperature was 40 °C and the flow rate was set to 

1.2 ml/min. Detection was performed with UV at 215 nm. Linearity (R > 0.999) was 

given between 30 ng/ml and 100 µg/ml. The retention time was 3.0 ± 0.2 min. 

 

10.1.5 Quantification of talinolol 

Quantification of talinolol was performed with an RP-18 select B (LiChrospher® 60, 

Merck), 5 µm, 12.5 cm column. The mobile phase consisted of 77 % (v/v) 

triethylammonium phosphate (0.025 mol/l) and 23 % (v/v) acetonitrile. The oven 

temperature was 40 °C and the flow rate was set to 1.2 ml/min. Detection was 

performed with a fluorescence detector (L-2480, Merck Hitachi) (λexc= 252 nm, 

λem= 332 nm). Linearity (R > 0.999) was given between 3 ng/ml and 1000 ng/ml. 

Retention time was 5.7 ± 0.1 min.  

 

10.1.6 Quantification of TPGS 

Quantification of TPGS was performed with an RP-8 (LiChrospher® 100, Merck), 

5 µm, 12.5 cm column. The mobile phase consisted of 90 % (v/v) of a 2-

propanol/acetonitrile mixture (50:50) and 10 % (v/v) ammonium acetate (5 mM). 

The oven temperature was 40 °C and the flow rate was set to 1.0 ml/min. 
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Detection was performed with UV at 285 nm. Linearity (R > 0.999) was given 

between 1.25 µg/ml and 400 µg/ml. Retention time was 2.4 ± 0.1 min.  

 

10.1.7 Quantification of rhodamine 123 

Quantification of rhodamine 123 was performed using a fluorescence plate reader 

(TECAN infinite M200, Tecan GmbH, Crailsheim, Germany; λexc = 480 nm, 

λem = 530 nm). Linearity (R > 0.999) was given between 4 ng/ml and 200 ng/ml. 

 

10.1.8 Quantification of sodium fluorescein 

Quantification of sodium fluorescein was performed using a fluorescence plate 

reader (TECAN infinite M200, Tecan GmbH, Crailsheim, Germany; λexc = 485 nm, 

λem = 530 nm). Linearity (R > 0.999) was given between 5 ng/ml and 1000 ng/ml. 
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10.2 Programming codes for SIA automation 

10.2.1 SIA programs for propranolol 

Main routine propranolol 

Delay (sec) 101 
Insert File C:\Programme\WINFIA 5.0\Marco\Propranolol Programme\subroutinen\Probenzug dissolution 25- neuer 
Propenzug.fia 
Insert File C:\Programme\WINFIA 5.0\Marco\Propranolol Programme\subroutinen\Probenzug apical 25- neuer 
Probenzug.fia 
Insert File C:\Programme\WINFIA 5.0\Marco\Propranolol Programme\subroutinen\Probenzug dissolution 25- neuer 
Propenzug.fia 
Insert File C:\Programme\WINFIA 5.0\Marco\Propranolol Programme\subroutinen\Probenzug apical 25- neuer 
Probenzug.fia 
Insert File C:\Programme\WINFIA 5.0\Marco\Propranolol Programme\subroutinen\Probenzug dissolution 25- neuer 
Propenzug.fia 
 
Variable Define New sampos 
sampos = 1 
Insert File C:\Programme\WINFIA 5.0\Marco\Propranolol 
Programme\subroutinen\Propranolol_basolateral_new_compartment_ new_valve.fia 
 
Loop Start (#) 22 
sampos += 1 
Insert File C:\Programme\WINFIA 5.0\Marco\Propranolol Programme\subroutinen\Probenzug dissolution 25- neuer 
Propenzug.fia 
Insert File C:\Programme\WINFIA 5.0\Marco\Propranolol Programme\subroutinen\Probenzug apical 25- neuer 
Probenzug.fia 
Insert File C:\Programme\WINFIA 5.0\Marco\Propranolol Programme\subroutinen\Probenzug dissolution 25- neuer 
Propenzug.fia 
Insert File C:\Programme\WINFIA 5.0\Marco\Propranolol Programme\subroutinen\Probenzug apical 25- neuer 
Probenzug.fia 
Insert File C:\Programme\WINFIA 5.0\Marco\Propranolol Programme\subroutinen\Probenzug dissolution 25- neuer 
Propenzug.fia 
Insert File C:\Programme\WINFIA 5.0\Marco\Propranolol Programme\subroutinen\Probenzug apical 25- neuer 
Probenzug.fia 
Insert File C:\Programme\WINFIA 5.0\Marco\Propranolol Programme\subroutinen\Propranolol_basolateral_new_ 
compartment_ new_valve.fia 
 
Loop End 
 
Loop Start (#) 10 
sampos += 1 
Delay (sec) 1325 
Insert File C:\Programme\WINFIA 5.0\Marco\Propranolol Programme\subroutinen\Probenzug dissolution 25- neuer 
Propenzug.fia 
Insert File C:\Programme\WINFIA 5.0\Marco\Propranolol Programme\subroutinen\Probenzug apical 25- neuer 
Probenzug.fia 
Insert File C:\Programme\WINFIA 5.0\Marco\Propranolol Programme\subroutinen\Probenzug dissolution 25- neuer 
Propenzug.fia 
Insert File C:\Programme\WINFIA 5.0\Marco\Propranolol Programme\subroutinen\Probenzug apical 25- neuer 
Probenzug.fia 
Insert File C:\Programme\WINFIA 5.0\Marco\Propranolol Programme\subroutinen\Probenzug dissolution 25- neuer 
Propenzug.fia 
Insert File C:\Programme\WINFIA 5.0\Marco\Propranolol Programme\subroutinen\Probenzug apical 25- neuer 
Probenzug.fia 
Insert File C:\Programme\WINFIA 5.0\Marco\Propranolol Programme\subroutinen\Propranolol_basolateral_new_ 
compartment_ new_valve.fia 
 
Loop End 

 

Subroutine for sampling port D (dissolution) 

Syringe Pump Valve In  
Syringe Pump Flowrate (microliter/sec) 250 
Syringe Pump Aspirate (microliter) 1000 

Multiposition Valve dissolution  
Syringe Pump Delay Until Done  

Syringe Pump Valve Out  
Syringe Pump Flowrate (microliter/sec) 100 
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Syringe Pump Aspirate (microliter) 50 
Syringe Pump Delay Until Done  

Multiposition Valve waste  
Syringe Pump Flowrate (microliter/sec) 200 
Syringe Pump Dispense (microliter) 100 
Syringe Pump Delay Until Done  

 
Multiposition Valve dissolution   

Syringe Pump Flowrate (microliter/sec) 25 
Syringe Pump Aspirate (microliter) 25 
Syringe Pump Delay Until Done  

 
Multiposition Valve  PMT-FL   

Syringe Pump Flowrate (microliter/sec) 50 
Syringe Pump Empty  

 
Analyte New Sample  
Analyte Name dissolution 
 
PMT Start Scans  
Syringe Pump Delay Until Done  
PMT Stop Scans 

 

Subroutine for sampling port A (apical) 

Syringe Pump Valve In  
Syringe Pump Flowrate (microliter/sec) 500 
Syringe Pump Aspirate (microliter) 1000 
Syringe Pump Delay Until Done  

Syringe Pump Valve Out  
Multiposition Valve apical  

Syringe Pump Flowrate (microliter/sec) 15 
Syringe Pump Aspirate (microliter) 100 
Syringe Pump Delay Until Done  

Multiposition Valve waste  
Syringe Pump Flowrate (microliter/sec) 200 
Syringe Pump Dispense (microliter) 200 
Syringe Pump Delay Until Done  

 
Multiposition Valve apical  

Syringe Pump Flowrate (microliter/sec) 15 
Syringe Pump Aspirate (microliter) 25 
Syringe Pump Delay Until Done  

 
Multiposition Valve  PMT-FL   

Syringe Pump Flowrate (microliter/sec) 50 
Syringe Pump Empty  

 
Analyte New Sample  
Analyte Name apical 
 
PMT Start Scans  
Syringe Pump Delay Until Done  
PMT Stop Scans 

 

Subroutine for sampling port B (basolateral) 

autosampler Command: Set Port 5 
 
Basolateral Pump Valve In  

Basolateral Pump Flowrate (microliter/sec) 50 
Basolateral Pump Aspirate (microliter) 325 
Basolateral Pump Delay Until Done  

Basolateral Pump Valve Out  
Basolateral Valve Akzeptorkompartiment  

Basolateral Pump Flowrate (microliter/sec) 10 
Basolateral Pump Aspirate (microliter) 100 
Basolateral Pump Delay Until Done  

Basolateral Valve Abfall  
Basolateral Pump Dispense (microliter) 125 
Basolateral Pump Delay Until Done  

Basolateral Valve 6  
autosampler Wash  
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Basolateral Pump Flowrate (microliter/sec) 10 
Basolateral Pump Aspirate (microliter) 25 
Basolateral Pump Delay Until Done  

 
Basolateral Valve Akzeptorkompartiment  

Basolateral Pump Aspirate (microliter) 100 
Basolateral Pump Delay Until Done  

 
Basolateral Valve 6  

Basolateral Pump Aspirate (microliter) 25 
Basolateral Pump Delay Until Done  

 
autosampler standard rack (sample #) 10 
Delay (sec) 3 
Basolateral Valve Probensammler  

Basolateral Pump Flowrate (microliter/sec) 20 
Basolateral Pump Dispense (microliter) 220 
Basolateral Pump Delay Until Done  

 
autosampler RACK 2 (sample #) = sampos 
Delay (sec) 3 

Basolateral Pump Dispense (microliter) 110 
Basolateral Pump Delay Until Done  

autosampler standard rack (sample #) 10 
Delay (sec) 3 
 
Basolateral Pump Valve In  

Basolateral Pump Flowrate (microliter/sec) 50 
Basolateral Pump Fill  
Basolateral Pump Delay Until Done 

Basolateral Pump Valve Out  
Basolateral Pump Empty  
Basolateral Pump Delay Until Done  

Basolateral Pump Valve In  
Basolateral Pump Fill  
Basolateral Pump Delay Until Done  

Basolateral Pump Valve Out  
Basolateral Pump Empty  
Basolateral Pump Delay Until Done  

autosampler Wash  

 

 

10.2.2 SIA programs for domperidone maleate 

Main routine domperidone 

Hardware Settings Wavelength 1 (nm) 286 
Hardware Settings Wavelength 2 (nm) 285 
Hardware Settings Wavelength 3 (nm) 344 
Hardware Settings Wavelength 4 (nm) 360 
 
autosampler Command: Set port 5 
 
Spectrometer Reference Scan 
 
Delay (sec) 101 
 
Insert File C:\Programme\WINFIA 5.0\Marco\Furosemid Programme\subroutinen\dissolution_flowrate 10.fia 

Spectrometer Reference Scan  
Insert File C:\Programme\WINFIA 5.0\Marco\Furosemid Programme\subroutinen\dissolution_flowrate 10.fia 

Spectrometer Reference Scan  
Insert File C:\Programme\WINFIA 5.0\Marco\Furosemid Programme\subroutinen\apical_flowrate 10.fia 

Spectrometer Reference Scan  
Insert File C:\Programme\WINFIA 5.0\Marco\Furosemid Programme\subroutinen\dissolution_flowrate 10.fia 

Spectrometer Reference Scan  
Insert File C:\Programme\WINFIA 5.0\Marco\Furosemid Programme\subroutinen\apical_flowrate 10.fia 

Spectrometer Reference Scan  
 
Variable Define New sampos 
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sampos = 1 
 
Insert File C:\Programme\WINFIA 5.0\Marco\Furosemid Programme\subroutinen\basolateral_new_compartment_ 
new_valve.fia 
 
Loop Start (#) 40 
 
sampos += 1 
 
Insert File C:\Programme\WINFIA 5.0\Marco\Furosemid Programme\subroutinen\dissolution_flowrate 10.fia 

Spectrometer Reference Scan  
Insert File C:\Programme\WINFIA 5.0\Marco\Furosemid Programme\subroutinen\apical_flowrate 10.fia 

Spectrometer Reference Scan  
Insert File C:\Programme\WINFIA 5.0\Marco\Furosemid Programme\subroutinen\dissolution_flowrate 10.fia 

Spectrometer Reference Scan  
Insert File C:\Programme\WINFIA 5.0\Marco\Furosemid Programme\subroutinen\apical_flowrate 10.fia 

Spectrometer Reference Scan  
Insert File C:\Programme\WINFIA 5.0\Marco\Furosemid Programme\subroutinen\dissolution_flowrate 10.fia 

Spectrometer Reference Scan  
Insert File C:\Programme\WINFIA 5.0\Marco\Furosemid Programme\subroutinen\apical_flowrate 10.fia 

Spectrometer Reference Scan  
Insert File C:\Programme\WINFIA 5.0\Marco\Furosemid Programme\subroutinen\dissolution_flowrate 10.fia 

Spectrometer Reference Scan  
Insert File C:\Programme\WINFIA 5.0\Marco\Furosemid Programme\subroutinen\apical_flowrate 10.fia 

Spectrometer Reference Scan  
Insert File C:\Programme\WINFIA 5.0\Marco\Furosemid Programme\subroutinen\basolateral_new_compartment_ 
new_valve.fia 
 
Loop End 

 

Subroutine for sampling port D (dissolution) 

Syringe Pump Valve In  
Syringe Pump Flowrate (microliter/sec) 500 
Syringe Pump Aspirate (microliter) 750 

Multiposition Valve  dissolution   
Syringe Pump Delay Until Done  

Syringe Pump Valve Out  
Syringe Pump Flowrate (microliter/sec) 50 
Syringe Pump Aspirate (microliter) 100 
Syringe Pump Delay Until Done  

Multiposition Valve  Waste   
Syringe Pump Flowrate (microliter/sec) 100 
Syringe Pump Dispense (microliter) 300 
Syringe Pump Delay Until Done  

Multiposition Valve  dissolution   
Syringe Pump Flowrate (microliter/sec) 10 
Syringe Pump Aspirate (microliter) 50 
Syringe Pump Delay Until Done  

 
Delay (sec) 1 
 
Multiposition Valve  UV- detector   

Syringe Pump Flowrate (microliter/sec) 10 
 
Analyte New Sample  
Analyte Name Dis 
 
Spectrometer Absorbance Scanning  
 
  Delay (sec) 1 
  Syringe Pump Dispense (microliter) 300 
  Syringe Pump Delay Until Done  
 
Spectrometer Stop Scanning  
 
  Syringe Pump Flowrate (microliter/sec) 50 
  Syringe Pump Empty 
  Syringe Pump Delay Until Done 
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Subroutine for sampling port A (apical) 

Syringe Pump Valve In  
Syringe Pump Flowrate (microliter/sec) 500 
Syringe Pump Aspirate (microliter) 800 

Multiposition Valve  apical    
Syringe Pump Delay Until Done  

Syringe Pump Valve Out  
Syringe Pump Flowrate (microliter/sec) 50 
Syringe Pump Aspirate (microliter) 150 
Syringe Pump Delay Until Done  

Multiposition Valve  Waste   
Syringe Pump Flowrate (microliter/sec) 100 
Syringe Pump Dispense (microliter) 400 
Syringe Pump Delay Until Done  

Multiposition Valve  apical    
Syringe Pump Flowrate (microliter/sec) 10 
Syringe Pump Aspirate (microliter) 50 
Syringe Pump Delay Until Done  

 
Delay (sec) 1 
 
Multiposition Valve  UV- detector   

Syringe Pump Flowrate (microliter/sec) 10 
 
Analyte New Sample  
Analyte Name Api 
 
Spectrometer Absorbance Scanning  
 
  Delay (sec) 1 
  Syringe Pump Dispense (microliter) 300 
  Syringe Pump Delay Until Done  
 
Spectrometer Stop Scanning  
 
  Syringe Pump Flowrate (microliter/sec) 50 
  Syringe Pump Empty 
  Syringe Pump Delay Until Done 

 

Subroutine for sampling port B (basolateral) 

Basolateral Pump Valve In  
Basolateral Pump Flowrate (microliter/sec) 50 
Basolateral Pump Aspirate (microliter) 325 
Basolateral Pump Delay Until Done  

Basolateral Pump Valve Out  
Basolateral Valve Akzeptorkompartiment  
Basolateral Pump Flowrate (microliter/sec) 10 
Basolateral Pump Aspirate (microliter) 100 
Basolateral Pump Delay Until Done  

Basolateral Valve Abfall  
Basolateral Pump Dispense (microliter) 125 
Basolateral Pump Delay Until Done  

Basolateral Valve 6  
autosampler Wash  

Basolateral Pump Flowrate (microliter/sec) 10 
Basolateral Pump Aspirate (microliter) 25 
Basolateral Pump Delay Until Done  

Basolateral Valve Akzeptorkompartiment  
Basolateral Pump Aspirate (microliter) 100 
Basolateral Pump Delay Until Done  

Basolateral Valve 6  
Basolateral Pump Aspirate (microliter) 25 
Basolateral Pump Delay Until Done  

 
autosampler standard rack (sample #) 10 
Delay (sec) 3 
 
Basolateral Valve Probensammler  

Basolateral Pump Flowrate (microliter/sec) 20 
Basolateral Pump Dispense (microliter) 220 
Basolateral Pump Delay Until Done  
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autosampler RACK 2 (sample #) = sampos 
Delay (sec) 3 
 
Basolateral Pump Dispense (microliter) 110 
Basolateral Pump Delay Until Done  
 
autosampler standard rack (sample #) 10 
Delay (sec) 3 
 
Basolateral Pump Valve In  

Basolateral Pump Flowrate (microliter/sec) 50 
Basolateral Pump Fill  
Basolateral Pump Delay Until Done 

Basolateral Pump Valve Out  
Basolateral Pump Empty  
Basolateral Pump Delay Until Done  

Basolateral Pump Valve In  
Basolateral Pump Fill  
Basolateral Pump Delay Until Done  

Basolateral Pump Valve Out  
Basolateral Pump Empty  
Basolateral Pump Delay Until Done  

 
autosampler Wash 

 

10.2.3 SIA program for bottling in HPLC vials 

 
Basolateral Pump Valve In  

Basolateral Pump Flowrate (microliter/sec) 50 
Basolateral Pump Aspirate (microliter) 325 
Basolateral Pump Delay Until Done  

Basolateral Pump Valve Out  
Basolateral Valve Akzeptorkompartiment  
Basolateral Pump Flowrate (microliter/sec) 10 
Basolateral Pump Aspirate (microliter) 100 
Basolateral Pump Delay Until Done  

Basolateral Valve Abfall  
Basolateral Pump Dispense (microliter) 125 
Basolateral Pump Delay Until Done  

Basolateral Valve 6  
autosampler Wash  

Basolateral Pump Flowrate (microliter/sec) 10 
Basolateral Pump Aspirate (microliter) 25 
Basolateral Pump Delay Until Done  

Basolateral Valve Akzeptorkompartiment  
Basolateral Pump Aspirate (microliter) 100 
Basolateral Pump Delay Until Done  

Basolateral Valve 6  
Basolateral Pump Aspirate (microliter) 25 
Basolateral Pump Delay Until Done  

 
autosampler standard rack (sample #) 10 
Delay (sec) 3 
 
Basolateral Valve Probensammler  

Basolateral Pump Flowrate (microliter/sec) 20 
Basolateral Pump Dispense (microliter) 220 
Basolateral Pump Delay Until Done  

 
autosampler RACK 2 (sample #) = sampos 
Delay (sec) 3 
 
Basolateral Pump Dispense (microliter) 110 
Basolateral Pump Delay Until Done  
 
autosampler standard rack (sample #) 10 
Delay (sec) 3 
 
Basolateral Pump Valve In  

Basolateral Pump Flowrate (microliter/sec) 50 
Basolateral Pump Fill  
Basolateral Pump Delay Until Done 
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Basolateral Pump Valve Out  
Basolateral Pump Empty  
Basolateral Pump Delay Until Done  

Basolateral Pump Valve In  
Basolateral Pump Fill  
Basolateral Pump Delay Until Done  

Basolateral Pump Valve Out  
Basolateral Pump Empty  
Basolateral Pump Delay Until Done  

 
autosampler Wash 

 

10.2.4 SIA program for filling in 96-well plate 

Basolateral Pump Valve In  
Basolateral Pump Flowrate (microliter/sec) 50 
Basolateral Pump Aspirate (microliter) 325 
Basolateral Pump Delay Until Done  

Basolateral Pump Valve Out  
Basolateral Valve Akzeptorkompartiment  

Basolateral Pump Flowrate (microliter/sec) 10 
Basolateral Pump Aspirate (microliter) 100 
Basolateral Pump Delay Until Done  

Basolateral Valve Abfall  
Basolateral Pump Dispense (microliter) 125 
Basolateral Pump Delay Until Done  

Basolateral Valve 6  
autosampler Wash  

Basolateral Pump Flowrate (microliter/sec) 10 
Basolateral Pump Aspirate (microliter) 25 
Basolateral Pump Delay Until Done  

Basolateral Valve Akzeptorkompartiment  
Basolateral Pump Aspirate (microliter) 100 
Basolateral Pump Delay Until Done  

Basolateral Valve 6  
Basolateral Pump Aspirate (microliter) 25 
Basolateral Pump Delay Until Done  

 
autosampler standard rack (sample #) 10 
Delay (sec) 3 
Basolateral Valve Probensammler  

Basolateral Pump Flowrate (microliter/sec) 20 
Basolateral Pump Dispense (microliter) 220 
Basolateral Pump Delay Until Done  

 
autosampler RACK 4 (sample #) = 1 
Delay (sec) 3 
Basolateral Pump Dispense (microliter) 110 
Basolateral Pump Delay Until Done  
 
autosampler standard rack (sample #) 10 
Delay (sec) 3 
 
Basolateral Pump Valve In  

Basolateral Pump Flowrate (microliter/sec) 50 
Basolateral Pump Fill  
Basolateral Pump Delay Until Done 

Basolateral Pump Valve Out  
Basolateral Pump Empty  
Basolateral Pump Delay Until Done  

Basolateral Pump Valve In  
Basolateral Pump Fill  
Basolateral Pump Delay Until Done  

Basolateral Pump Valve Out  
Basolateral Pump Empty  
Basolateral Pump Delay Until Done  

 
autosampler Wash 
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10.3 Allocation of the ports at the SIA valves 

10.3.1 8-port valve 

Port number Port appelation 

1 waste 

2 UV-detector 

3 PMT-FL 

4 dissolution 

5 apical 

6 basolateral 

7 KRB for replenishing 

8 autosampler 

 

10.3.2 6-port valve 

Port number Port appelation 

1 Müll 

2 Buffer 

3 Akzeptorkompartiment 

4 Probensammler 

5 Abfall 

6 6 
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10.4 List of abbreviations 

ABC  ATP binding cassette 

ADP  adenosine diphosphate 

AFM  atomic force microscopy 

API  active pharmaceutical ingredient 

ATP  adenosine triphosphate 

AUC  area under the curve 

BCRP  breast cancer resistance protein 

BCS  Biopharmaceutics Classification System 

BDDCS Biopharmaceutics Drug Disposition Classification System 

CYP  cytochrome P 

CysA  cyclosporine A 

DLS  dynamic light scattering 

DOPC  1,2-dioleoyl-sn-glycero-3-phosphocholine 

d/p-system combined dissolution and permeation system 

ER  extended release 

EVOM  epithelial volt ohm meter 

FaSSIF fasted state simulated intestinal fluid 

FeSSIF fed state simulated intestinal fluid 

FTPC  flow through permeation cell 

HEPES N-2-hydroxyethylpiperazine-N’-2-ethane sulfonic acid 

HPLC  high performance liquid chromatography 

IR  immediate release 

KRB  Krebs Ringer Buffer 

MCC  microcrystalline cellulose 

MCT1  monocarboxylate transporter 1 

MDR1  multidrug resistance protein 1 

MW  molecular weight 

N.A.  numerical aperture 

PAMPA parallel artificial membrane permeability assay  

Papp  apparent permeability coefficient 

PBS  phosphate buffered saline 

PepT1  peptide transporter 1 
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Ph. Eur. European Pharmacopoeia 

P-gp  P-glycoprotein 

PMT-FL photomultiplier tube for fluorescence detection 

SD  standard deviation 

SE  standard error 

SEM  scanning electron microscopy 

SIA  sequential injection analysis 

TDT  tolerated difference test 

TEER  transepithelial electrical resistance 

TPGS  d-alpha tocopheryl polyethylene glycol 1000 succinate  

USP  United States Pharmacopoeia 

UV  ultra violet light 

UWL  unstirred water layer 
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