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Abstract 

 
Understanding the regulation of key genes involved in plant iron acquisition is important 

for breeding Fe-rich staple crops. In Arabidopsis the basic helix-loop-helix protein FER-

LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT), a central regulator 

of Fe acquisition, is regulated by Fe at the transcriptional and posttranscriptional levels. 

In this study, we investigated FIT regulation in response to Fe supply in Arabidopsis. 

The plant hormone ethylene promotes iron acquisition, but the molecular basis for this is 

largely unknown. FIT levels were reduced upon application of ethylene inhibitor 

aminoethoxyvinylglycine and in the ein3eil1 mutant. Ethylene signaling by way of 

EIN3/EIL1 required for full-level FIT accumulation. Treatment with MG132 could restore 

FIT levels. Upon ethylene signaling, FIT is less susceptible to proteasomal degradation. 

Hence, ethylene triggers Fe deficiency responses transcriptionally and 

posttranscriptionally. Besides ethylene, we identified nitric oxide (NO) as a stabilizing 

stimulus for FIT abundance. Treatment with NO inhibitors caused a decrease of FIT 

abundance and in the wild type, also a decreased FIT activity. Independent of FIT 

transcription, FIT protein stability and activity, therefore, targets of control mechanisms 

in response to Fe and NO. This decrease of FIT protein levels was reversed by the 

proteasomal inhibitor MG132, suggesting that in the presence of NO FIT protein was 

less likely to be a target of proteasomal degradation. 
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Zusammenfassung 
 

Um Nutzpflanzen mit erhöhtem Gehalt an Eisen (Fe) zu züchten, ist es notwendig, die 

Regulierungsmechanismen der Gene der Fe-Aufnahme zu verstehen. 

Ein zentraler Regulator der Fe-Aufnahme in Wurzeln von A. thaliana ist das basische 

Helix-Loop-Helix Protein FIT. Dieses wird durch diverse Signale wie z.B. Fe-Bedarf und 

Hormone auf transkriptioneller und posttranskriptioneller Ebene reguliert. In der 

vorliegenden Arbeit wurde die Regulation von FIT in Abhängigkeit von Fe und dem 

Hormon Ethylen, das die Fe-Aufnahme verstärkt, sowie die molekulare Wirkung von 

Ethylen untersucht. Der Gehalt an FIT Protein nahm bei Gabe eines Ethyleninhibitors 

sowie in der ein3eil1 Mutante ab. Der Ablauf des Ethylensignalweges über EIN3/EIL1 

ist nötig für den FIT Level. MG132 normalisierte die FIT Expression. Bei eingehendem 

Ethylensignal ist FIT gegenüber proteasomalem Abbau weniger anfällig, so dass 

Ethylen die Eisenmangelantworten transkriptionell und posttranskriptionell steuern kann. 

Zudem haben wir Stickstoffmonoxid (NO) als Stabilisator für das FIT Protein identifiziert. 

NO Inhibierung führte zu verminderter FIT Akkumulation und, im Wildtyp, verminderter 

Aktivität. Die FIT Proteinstabilität und –aktivität ist somit abhängig von durch NO und Fe 

gesteuerte Kontrollmechanismen. Die Abnahme des FIT Proteingehaltes konnte durch 

den Proteasominhibitor MG132 umgekehrt werden. Dies bedeutet möglicherweise, dass 

FIT in Anwesenheit von NO weniger dem Abbau durch das Proteasom unterliegt.  
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1. Introduction 
______________________________________________________________________ 
 
1. Introduction 
 

1.1 Importance of iron 

Iron is one of the essential micronutrients for all living organisms. In many organisms, 

Iron (Fe) serves as a cofactor in vital metabolic pathways for instance the electron 

transport chain of respiration. Plants do have an additional requirement for iron as it is 

necessary for/in photosynthesis and chlorophyll biosynthesis. Due to its significant role 

in several biological processes Fe deficiency can cause serious nutritional disorders in 

organisms. One of such wide spread and common disorders is iron deficiency anemia 

(IDA), according to WHO (World Health Organization; http://www.who.int/en) four to five 

billion people of world’s population of developed and developing nations are suffering 

from the IDA. Majority of them subsist on iron poor, plant based diets.  In plants 

insufficient iron can cause leaf chlorosis, stunted growth and ultimately effects to crop 

yield with poor nutrient quality.  

To combat with IDA it is very important to improve the efforts to increase the bio 

available Fe content in staple foods and crops. Biofortification has wide acceptance as 

sustainable way of solving this Fe nutrition disorder. Improving our knowledge in 

understanding various complex mechanisms regulating plant iron homeostasis is 

important to develop approaches and to design genetically engineered staple crops 

particularly grown on marginal soils (calcareous, alkaline soils). On the other hand over 

accumulation, and excess of iron can cause adverse effects by generating cytotoxic 

hydroxyl radicals via the fenton reaction (von Wirén et al., 1999). In spite of its 

ubiquitous and presence in generous amounts in soils Fe is not readily bio available for 

plants because it forms insoluble complexes under aerobic conditions at neutral or 

alkaline pH (Grotz and Guerinot M.L., 2006). Therefore, plants developed highly 

sensitive, sophisticated and tightly regulated mechanisms to cope with their nutritional 

requirement and to maintain the right balance inside the plant body.  
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1. Introduction 
______________________________________________________________________ 
 

The dynamic process of iron acquisition mechanisms of plants from the soil, iron 

mobilization, uptake, transport within the plant body and distribution to appropriate 

targets will be briefed in the following paragraphs.  

1.2 Iron acquisition in plants 
 

Upon sensing Fe deficiency, plants induce a set of highly sophisticated, coordinated 

responses that act in a collective manner to coup the plant to maximize Fe mobilization 

and uptake from the soil. In order to obtain sufficient iron from the surrounding 

environment, plants uses two distinct strategies. Based on these strategies plants are 

divided in two groups with respect to the strategy that they use for iron uptake. These 

strategies are mainly classified based on the mechanism that they use for the uptake of 

iron.  

1.2.1 Iron acquisition strategies in plants 

Since the uptake of Fe should be tightly regulated to maintain the essential levels plants 

evolved two distinct and specific strategies. These are known as Strategy I and strategy 

II. 

1.2.2 Strategy I Fe uptake 

Upon iron deficiency strategy I plants reduces the Fe (III) to Fe (II) prior to absorb. 

Hence, this strategy is also known as reduction based strategy. Dicots and 

nongraminaceous plants use this type of strategy to acquire iron for their needs. 

Although it has been described in many nongraminaceous species, by taking the 

advantage of various modern available tools, in the model plant Arabidopsis this 

strategy was very well investigated and characterized. 
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______________________________________________________________________ 

In general reduction based strategy plants follow a sequential three step process to 

acquire Fe from soil. First, they activate root H+- ATPase to extrude protons in order to 

acidify the soil to increase the solubility of Fe (III), next, they reduce the Fe (III) to Fe (II) 

by Fe (III)-chelate reductase, which takes place at the plasma membrane of root 

epidermal cells. In a subsequent third step, Fe (II) will be transported across the 

membrane with the help of a divalent metal transporter which acts downstream of the 

Fe (III)-chelate reductase (Eide et al., 1996; Vert et al., 2003). In Arabidopsis AtIRT1 

serves as major root transporter that is responsible for the uptake of the reduced iron.  

The major steps involved in the strategy I Fe uptake will be explained further in the 

following sections. 

1.2.3 Activation of H+ ATPase and proton extrusion 

In response to Fe starvation, H+ ATPases will be activated to extrude protons (Schmidt 

et al., 2003; Santi et al., 2005). Protons extrusion is responsible for the acidification of 

soil and root interface (Römheld and Marschner, 1986). In Arabidopsis, although H+ 

ATPases such as AHA1, AHA2, and AHA7 are induced upon Fe deficiency on root 

epidermis (Dinneny et al., 2008; Colangelo and Geurinot, 2004), AHA2 is the main root 

H+ ATPase than the other two AHAs, and only loss of AHA2 leads to fail or reduced 

rhizosphere acidification under Fe starvation, hence considered as key player in Fe 

deficiency (Santi and Schmidt, 2009). Gene expression analysis of +/-Fe grown wild 

type, fit mutant, and FITOx lines suggested that FIT is required for AHA2 induction but 

not sufficient alone to induce AHA2 in response to Fe status of the plant (Ivanov et al., 

2011). 

1.2.4 Iron-chelator reduction 

This appears to be a rate-limiting step in Fe acquisition in Strategy I plants (Connolly et 

al., 2003). Plasma membrane localized ferric chelate reductase encoding gene FRO2 

reduces Fe (III) to Fe (II).  
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______________________________________________________________________ 

 

In Arabidopsis, characterization of three allelic ferric reductase deficient mutants such 

as frd1-1, frd1-2, frd 1-3 of AtFRO2 indicated the essential role of AtFRO2 in Fe 

reduction. These mutants failed to induce ferric chelate reductase activity upon Fe 

deficiency (Yi and Guerinot, 1996).  Under Fe limiting conditions AtFRO2 is upregulated 

(Robinson et al., 1999). AtFRO2 mRNA was found in root epidermal cells. In addition to 

its transcriptional regulation, AtFRO2 also regulated at posttranscriptional level 

(Connolly et al., 2003).  AtFRO2 is one among the eight-member gene family in 

Arabidopsis.  

1.2.5 Iron transport 

The reduced ferrous iron can be transported to the root epidermal cells by the divalent 

metal transporter IRT1 (Eide et al., 1996; Vert et al., 2002), besides Fe, upon Fe 

starvation, AtIRT1 could coincidently transport Zn, Mn, Cd, Co and Ni (Eide et al., 1996). 

Similar to AtFRO2, AtIRT1 is also localized on the plasma membrane and highly 

induced in the root epidermal cells in iron limiting conditions. The function of IRT1 has 

been demonstrated by characterizing the loss of function mutant irt1. Irt1 mutants are 

defective in Fe uptake and also impaired to accumulate other metals such as Zn, Mn, 

Cd, and Co under Fe deficiency (Vert et al., 2002). Irt1 mutant exhibits chlorotic 

phenotype and has severe growth defects when grown on soil, which leads to death. 

Hence, these mutants require external iron supplement for their survival.  

In addition to its transcriptional control, AtIRT1 is also controlled at the protein level.  

AtIRT1 protein is repressed up on generous iron supply. IRT1 over expression 

(35S::AtIRT1) transgenic plants constitutively express AtIRT1 mRNA irrespective of Fe 

supply, but AtIRT1 protein accumulates only under Fe deficiency (Connolly et al., 2002). 

This additional level of regulation is to turn off the Fe uptake machinery when it is not 

needed.  
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Recent findings reported that IRT1 protein accumulation is independent of Fe nutrition 

status/supply (Barberon et al., 2011), which is contradictory to the previous reports by 

Connolly et al., 2002.  However, the authors of Barberon et al., 2011 proposed that this 

might be due to the effect of N-terminus truncated IRT1 protein expressed by Connolly 

et al., 2002, this difference might cause the misfolding, degradation and resulting only 

Fe deficiency specific accumulation of IRT1 protein.  

Previously, it was shown that IRT1-GFP fusion protein is localized to plasma membrane, 

this is in agreement with its attributed function as metal importer (Vert et al., 2002). 

Conversely, IRT2-GFP fusion protein is localized to intracellular compartments, which 

hints the possible sequential role of these two proteins in cellular iron transport.  

 

On the other hand, a recent report by Barberon et al., 2011 showed that IRT1 protein 

localized to trans-Golgi network (TGN)/early endosomes. By immunolocalization 

approach with IRT1 specific antibody they could show that TGN localization of IRT1 but 

not plasma membrane. However, in the same study, using pharmacological approach 

they could show that IRT1 cycles to the plasma membrane to perform iron and metal 

uptake at the cell surface and is sent to the vacuole for proper turnover. It was shown 

that IRT1 is monoubiquitinated on several cytosol exposed residues in vivo and that 

mutation of two putative monoubiquitination target residues in IRT1 triggers stabilization 

at the plasma membrane and leads to extreme lethality (Barberon et al., 2011). It was 

reported that ubiquitination of specific lysine residues of the loop region leads to 

internalization of ZRT1 protein which is a member of ZIP family transporters as IRT1 

(Gitan and Eide, 2000). IRT1 protein poses two lysine residues in its cytoplasmic loop 

and their mutations to arginine enhanced the IRT1 stability (Kerkeb et al., 2008). 

However, the recent findings of Barberon et al., 2011 regarding IRT1 localization 

contradicting to the previous findings of Vert et al., 2002.   
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1.2.6 Strategy II iron uptake 

This strategy is also known as chelation-based strategy. Graminaceous 

monocots/grasses use this strategy to take up iron from soil. Upon iron limited situation 

plants belongs to this class of Fe uptake, synthesize mugenic acid (MA) family 

phytosiderophores(PS) and secrets from the root epidermal cells into the rhizosphere. 

This serves to chelate with Fe(III) and solubilize,  the resulted Fe(III)-PS complexes are 

then transported into the root epidermis by yellow stripe1 (Zm YS1) transporter, which 

was identified from maize (von Wirén et al., 1999; Curie et al., 2001).  

The chelation strategy is considered more highly efficient than the reduction based 

strategy (Strategy I) since it is less sensitive to pH. Due to this reason grasses can grow 

on calcareous soils where dicots cannot grow since they rely on strategy I uptake. 

 

Figure 1.1 Fe acquisition strategies in higher plants (Kobayashi and Nishizawa, 2012) 

Strategy I in nongraminaceous plants (left) and Strategy II in graminaceous plants (right). Ovals 
represent the transporters and enzymes that play central roles in these strategies, all of which 
are induced in response to Fe deficiency. Abbreviations: DMAS, deoxymugineic acid synthase; 
FRO, ferric-chelate reductase oxidase; HA, H+-ATPase; IRT, iron-regulated transporter; MAs, 
mugineic acid family phytosiderophores; NA, nicotianamine; NAAT, nicotianamine 
aminotransferase; NAS, nicotianamine synthase; PEZ, PHENOLICS EFFLUX ZERO; SAM, S-
adenosyl-L-methionine; TOM1, transporter of mugineic acid family phytosiderophores 1; 
YS1/YSL, YELLOW STRIPE 1/YELLOW STRIPE 1–like. 



13 
 

1. Introduction 
______________________________________________________________________ 

 

1.3 Regulation of iron uptake responses in plants 

To survive in fluctuating environmental conditions, gene regulation plays a critical role. 

In Fe deficient or sufficient conditions, plants either induce or suppress several genes 

that are related to Fe homeostasis. However, upregulation of Fe acquisition associated 

genes at limited Fe conditions is more pronounced in both strategies (I and II) and the 

central regulators of these genes were also identified. Details and recent updates of iron 

response regulation of strategy I Fe acquisition is described in the following sections 

hence the current study is mainly focused on Arabidopsis which is a strategy I plant. 

1.3.1 Regulation in strategy I plants 

Recent transcriptomic investigations have targeted to unravel novel regulatory networks 

engaged in Fe homeostasis in Arabidopsis (Dinneny et al., 2008; Buckhout et al., 2009; 

Schuler et al., 2011). However, it seems that two distinct networks are involved in Fe 

acquisition in strategy I plants (nongraminaceous). Most of the Fe acquisition 

associated components are regulated either via/by FIT regulatory network or via/by 

POPEYE regulatory network. 

1.3.2 Regulation of Fe uptake components of FIT network  

The central regulator of strategy I plants (dicot and nongraminaceous) was first 

identified in solanum lycopersicum (tomato). Map based cloning of T3238fer mutant, 

which is impaired in the Fe deficiency response revealed a gene encoding a BHLH 

transcriptional regulator FER (Ling et al., 2002). SlFER induce upon Fe deficiency and 

positively regulates Fe deficiency responsive genes such as IRT1 and NRAMP1 (Ling et 

al., 2002; Brumbarova and Bauer 2005). In Fe sufficient condition FER expression is 

repressed in roots at posttranscriptional level.  
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In Arabidopsis, FIT (FER-like iron deficiency–induced transcription factor) is the 

functional ortholog of FER and is needed for the regulation of strategy I Fe deficiency 

response (Jakoby et al., 2004; Colangelo and Guerinot 2004; Yuan et al., 2005). FIT is 

expressed upon –Fe at root epidermal cells where IRT1 and FRO2 is also induced. FIT 

loss of function mutant fit is failed to induce IRT1 and FRO2. FIT could regulate Fe 

uptake components transcriptionally and posttranscriptionally, FRO2 is transcriptionally 

controlled by FIT, whereas IRT1 is regulated at both levels. fit mutant exhibits severe 

growth retardation (Fig. 1.2) and is lethal unless excess of external Fe is supplied 

(Jakoby et al., 2004; Colangelo and Guerinot 2004). In the present study, we have 

uncovered how FIT itself is regulated. These findings were described and discussed in 

detail in results, discussion sections respectively. Moreover, few other important 

findings about regulatory components of FIT network has been discussed in closely 

related sections for instance IRT1 regulation was discussed in iron transport section as 

well. 

  

 

Figure 1.2 Phenotype of wild type Columbia-0 (left side) and fit-3 (right side) mutant plant 
Plants were grown for six weeks on soil in long day conditions. fit-3 mutant plants growth 
retarded and display severe leaf chlorosis and are unable to produce seeds unless supplied 
with external Fe. 
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Analysis of FIT overexpression transgenic lines revealed that constitutive FIT 

expression is not sufficient to induce FRO2 and IRT1(Jakoby et al., 2004; Colangelo 

and Guerinot 2004; Meiser et al., 2011), this might indicate that probably FIT may 

require an additional binding/interacting partner to form a heterodimer. This heterdimer 

formation might further leads to the target downstream responsive genes (FRO2 and 

IRT1). In fact, four bHLH genes namely bHLH38, 39, 100, 101 are induced by Fe 

deficiency (Yuan et al., 2005; Wang et al., 2007; Yuan et al., 2008). Bimolecular 

fluorescence complementation experiments showed that FIT interact with bHLH38 and 

bHLH39. In transgenic plants that overexpress both FIT and bHLH38 or bLHH39, FRO2 

and IRT1 expression was high, and these plants accumulated higher levels of Fe than 

wild type (Yuan et al., 2008). These findings support the possibility of heterodimer 

formation of FIT with bHLH38 or bHLH39. 

Another key players such as NO and planthormones that influence FIT regulatory 

network components were discussed in detail in the following corresponding sections. 

1.3.3 Regulation of Fe uptake components of POPEYE (PYE) network  

In addition to the regulatory network that is controlled and regulated by FIT, a parallel 

regulatory network that regulated by a bHLH transcription factor (bHLH047) called 

POPEYE (PYE) have gained significant attention in recent times. Cell-type specific high 

resolution expression profiling of Fe deficient Arabidopsis roots reveled the existence of 

an alternative gene regulatory network of Fe deficiency response. Interestingly, the 

members of this regulatory network is present in the stele/vasculature (Dinneny et al., 

2006), where as members of FIT regulated network mainly confined to epidermal tissue. 

From this network PYE and putative E3-ubiquitin ligase named as BRUTUS were 

further analyzed for their role in Fe deficiency response. PYE might play essential role 

in root development under –Fe condition. pye mutant shows poor growth in –Fe 

condition. PYE protein is localized to nuclei of all –Fe root cells, indicating that PYE 

spread across the all root cells after its induction at pericycle cells.  
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Microarray and ChiP-on-chip analysis indicated that PYE may negatively regulate Fe 

homeostasis associated genes FRO3, NAS4 and ZIF1. In pye-1 mutant these genes 

were highly induced and prolonged at –Fe (Long et al., 2010). BRUTUS (BTS) is 

another candidate gene that have similar expression pattern in pericycle cells as PYE. 

bts knockdown mutant showed better performance on Fe deficient medium in contrast 

to pye mutant. In Fe deficient conditions bts-1 showed increased root growth and 

increased rhizosphere acidification than wild type, suggesting that BTS might function 

as negative regulator for Fe deficiency response. bHLH proteins often forms 

heterodimers to trigger/interact their downstream targets (as FIT). Yeast-two-hybrid 

analysis reveled that PYE and BTR interact indirectly through a PYE homolog (Long et 

al., 2010). However, it is not yet clear for the biological meaning of their associative 

induction in pericylce cells, PYE negative regulation of Fe homeostasis related genes 

and PYE-BTS interaction, some these observations (interaction studies) need to be 

confirmed in planta. 

1.4 Influence of phytohormones in nutrient uptake/nutrient signaling 

ABA is considered as stress hormone that is involved in various biotic and abiotic stress 

responses. The link between ABA levels and nitrogen status in different plant species 

was well addressed (Signora et al., 2001; Yendrek et al., 2010). ABA also regulates Pi 

starvation responses and sulfur homeostasis (Ciereszko and Kleczkowski, 2002; Shin et 

al., 2006). Several findings reported the interaction between auxins and the signaling 

pathways of nutrients such as nitrogen, phosphorus, potassium, and sulfur (Franco-

Zorilla et al., 2004; Ticconi and Abel, 2004; Ashley et al., 2006; Kopriva et al., 2006). 

Cytokinins have been implicated in various aspects of plant growth and development. 

The role of Cytokinins (CKs) in the control of various nutrient signaling/homeostasis 

such as nitrogen, phosphorus, sulfur, and iron has been studied (Maruyama-Nakashita 

et al., 2004; Sakakibara et al., 2006).  
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Recently, the role of ethylene in nitrate dependant root growth and development has 

been identified (Tian et al., 2009). With regard the involvement of ethylene in Pi 

starvation, it has been identified that ethylene could mediate inhibition of primary root 

growth and root hair formation (Ma et al., 2003; Lei et al., 2011). Ethylene production is 

increased and the expression of ethylene biosynthesis genes are induced in potassium 

(K+) limiting conditions (Shin and Schachtman, 2004). Till date, little is known regarding 

the influence/role of GA in nutritional starvation responses and is limited to Phosphorus 

(Pi). It has been demonstrated that GA signaling could modulate PSR gene expression 

(Jiang et al., 2007). 

 
Knowledge pertaining to Jasmonate (JA) in nutrients signaling/homeostasis is currently 

limited to potassium and sulfur. JA positively regulates the potassium and sulfur related 

genes (Maruyama-Nakashita et al., 2003; Rubio et al., 2009). 

 

1.5. Role of plant hormones in modulating Fe deficiency responses  

Plant hormones control numerous cellular activities (division, elongation and 

differentiation), and processes including pattern formation, sex determination, 

organogenesis, and responses to several abiotic and biotic stress. Hormones are critical 

signaling molecules that coordinate all aspects of plant growth and defense. As reported 

previously by several authors that the systemic regulation is involved in the regulation of 

Fe deficiency responses. Recent studies suggested that various plant hormones 

modulate Fe deficiency responses either in positive or negative manner. 

Impact/influence and the role of various plant hormones in the context of Fe deficiency 

responses will be discussed in the following sections. To date, only influence of plant 

hormones on FIT regulatory network is known. Hence, the influence of hormones can 

be considered as the components of FIT network.  
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In addition, ethylene, auxin, and signaling molecule Nitric oxide act together in 

modulating the efficiency of FIT dependant Fe uptake components. 

 

 

 

 

Figure 1.3 Schematic presentation of regulatory effect of planthormones and Nitric oxide 
on Fe uptake (acquisition genes) in plants 
Iron acquisition associated genes are positively regulated by auxin, ethylene and nitric oxide 
(represented by green arrows). Conversely, brassinosteroids, cytokinins and jasmonic acids 
negatively regulate the Fe acquisition genes (indicated by red color bar)  
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1.5.1 Plant hormones that modulate Fe acquisition components in positive 
manner  

1.5.1.1 Auxin 

Phytohormone auxin plays critical role in iron deficiency responses in various plant 

species that belongs to strategy I Fe uptake. Early assumptions pertaining to the role of 

auxin in Fe deficiency adaptive responses mainly comes from the similarities that are 

observed from the morphological changes that appears during the exogenous 

application of auxin resembles to that of plants exposed to Fe deprivation such as 

formation of dense root hairs in order to increase the surface area to absorb the 

micronutrients such as Fe as much as possible (Cholodny 1931; Jackson 1960). Auxin 

is one of the systemic signaling molecules involved in Fe deficiency stress responses 

(Landsberg E.C. 1984). 

Exogenous application of auxin mimics the morphological responses such as enhanced 

root hair formation and induces the transfer cells in the epidermis (Landsberg E.C. 1986, 

1996). Increased auxin production has been observed in the roots of Fe deficient plants 

(sunflower/Helianthus annuus, Römheld and Marschner, 1981), and in Arabidopsis 

(Chen et al., 2010). Studies by Schikora and Schimidt in 2001 suggested that auxin may 

require in signaling pathway that mediate the root hair formation under Fe deficiency. 

External auxin supply leads to enhance Ferric Chelate Reductase (FCR) activity (Chen 

et al., 2010; Li and Li, 2004). Analysis of Arabidopsis yucca mutants that produce higher 

auxin revealed that the higher levels of endogenous auxin levels could increase root 

FCR activity and also induces FIT and FRO2 gene expression. Auxin insensitive mutant 

such as aux1-7 is failed to induce FCR activity and also to induce the full level 

expression of FIT and FRO2.  
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However, axr 1-3 another auxin insensitive mutant did not show any significant 

difference or they behaved like wild type in their FCR activity and the expression of FIT 

and FRO2.  

The only difference between these two different auxin insensitive mutants aux 1-7 and 

axr 1-3 is in aux1-7 mutant basipetal transport of auxin is blocked where as in the case 

of axr1-3 mutant although one of the components for auxin sensing is missing basipetal 

auxin transport from the shoot to root might be functioning (Lincoln et al., 1990). 

Therefore, it was concluded that the auxin may act as signaling compound that carries 

the shoot derived Fe deficiency signals to the root for the full level induction of FCR 

activity (Chen et al., 2010). Most recently findings showed that a local symplastic Fe 

gradient in lateral roots upregulates AUX1 to accumulate auxin in lateral root apices as 

a prerequisite for lateral root elongation (Giehl et al., 2012). 

1.5.1.2 Ethylene  

Ethylene is one among the five basic original phytohormones. Although ethylene has 

long been considered as the ripening hormone, in contrast to its simple chemical nature 

ethylene is known for its essential roles in various aspects of plant life that typically 

contains seed germination to seed production. Ethylene controls seed germination, root 

initiation, root hair development, flower development, sex determination, fruit ripening, 

and senescence. Besides that ethylene also plays an important role in regulating 

responses to several biotic and abiotic stresses (Lin et al., 2009).  

 

Upon ethylene or its metabolic precursor ACC treatment the so-called triple response 

phenotype (Shortened hypocotyls and roots, radial swelling of hypocotyl and roots and 

exaggerated apical hook) of etiolated dicotyledonous seedlings is the most typical and 

research focused ethylene response (Zhu and Guo 2008).  
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The mutants that show less sensitivity to ethylene or ACC treatment allowed in 

identifying the components of the ethylene and in some cases mutants that exhibits 

constitutive triple response phenotype even under normal growth condition (Guzman 

and Ecker, 1990; Zhu and Guo, 2008). Plenty of ethylene mutants collection from a 

variety of plant species and data obtained from the analysis of these mutants depicted 

the detailed role of this plant hormone. Mutant screens served as potential tool to 

identify a number of genes that are responsible for ethylene biosynthesis, signal 

transduction, and response pathways and based on epistasis analysis a linear model 

involving the ethylene components has been built. Besides this, map based cloning and 

candidate gene characterization of natural ethylene response defective mutants, 

combined with analysis of gene function, DNA-protein, protein-protein interaction 

techniques had been employed to identify new components of ethylene signaling (Lin et 

al., 2009). 
 

1.5.2. Plant hormones that modulate Fe acquisition components in negative 
manner  

1.5.2.1 Brassinosteroids 
 
Brassinosteroids (BRs), as a class of plant polyhydroxysteroids, exist in plants 

(Noguchi et al., 1999; Divi and Krishna, 2009). BRs considered as sixth class of 

planthormones. BRs play crucial roles in several developmental processes in plants, 

including seed germination, root growth, floral initiation and flowering (Sasse, 2003; Divi 

and Krishna, 2009). Recent reports demonstrated that BRs also participate in the 

response of plants to biotic and abiotic stresses (Divi and Krishna, 2009). However, the 

role of BRs in nutrient uptake is largely unknown.  

 

Most recently, BRs have been implicated in the regulation of Fe deficiency responses. 

These observations suggesting that BRs are likely to play a negative role in regulating  

http://aob.oxfordjournals.org/content/early/2012/06/08/aob.mcs126.full#ref-21�
http://aob.oxfordjournals.org/content/early/2012/06/08/aob.mcs126.full#ref-7�
http://aob.oxfordjournals.org/content/early/2012/06/08/aob.mcs126.full#ref-29�
http://aob.oxfordjournals.org/content/early/2012/06/08/aob.mcs126.full#ref-7�
http://aob.oxfordjournals.org/content/early/2012/06/08/aob.mcs126.full#ref-7�
http://aob.oxfordjournals.org/content/early/2012/06/08/aob.mcs126.full#ref-7�
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Fe-deficiency-induced FRO, expression of cucumber (Cucumis sativus) 

CsFRO1 and CsIRT1, as well as Fe translocation from roots to shoots (Wang et al., 

2012). It seems that, JA, BRs and cytokinins may negatively regulate Fe deficiency 

responsive genes. 
 
1.5.2.2 Cytokinins 
 

Other interesting phytohormones that have an impact on Fe deficiency responses are 

the cytokinins (CKs). CKs control various growth and developmental processes such as 

seed germination, cell division, stem cell maintenance, nutrient allocation, leaf 

senescence, action of auxin. Findings by Seguela et al in 2008 reported that CKs can 

negatively regulate the Fe deficiency responses.  Moreover, it appears to be only a 

subset of Fe deficiency responsive genes that are confined to the root epidermis such 

as FIT, FRO2 and IRT1 are under the control of CKs. Hence, the treatments with CKs 

causes root growth inhibition it can be implied that CKs influence the Fe uptake by 

affecting the rate of growth (Seguela et al., 2008). Interestingly, cytokinins acts 

antagonistically to auxins, the same phenomenon has been observed in the case of iron 

deficiency response regulation as well. 

 

1.5.2.3 Jasmonic acid 

Recently, the role of phytohormone Jasmonic acid (JA) has been reported in response 

to Fe deficiency responses. JA can negatively regulate Fe deficiency responses by 

repressing the induction of FRO2, and IRT1 gene expression and also partially FIT in 

Arabidopsis (Maurer et al., 2011). External application of application of the ibuprofen 

inhibitor of lipoxygenase results an upregulation of FRO2 and IRT1 gene expression.  
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Mutants impaired in JA such as the jar1-1 which is unable to transform jasmonate into 

the active jasmonate-Ile, and coi1-1 defective in jasmonate signaling the expression 

levels of IRT1 and FRO2 were higher than in wild type under Fe deficient conditions, 

where as FIT levels were not affected in these two mutants suggested that the JA 

repress FRO2 and IRT1 genes independent of FIT (Maurer et al., 2011).  

 
 
1.6 Ethylene in Fe uptake  

Several findings suggested the involvement of ethylene in Fe uptake responses in 

strategy I plants. A strong physiological connection between ethylene and iron 

deficiency responses in different dicotyledonous plants has been established. Ethylene 

production is increased under Fe deficiency in several strategy I plants (Romera et al., 

1999; Li and Li, 2004; Molassiotis et al., 2005). Treatment with ethylene precursors 

ACC, Ethophane can mimic morphological growth response of Fe deficient plants 

(Romera and Alcantara, 1994; Schmidt et al., 2000). Moreover, treatment of several 

strategy I plants with inhibitors of ethylene synthesis or action greatly decreased their 

ferric reductase activity, while treatment with precursors of ethylene synthesis enhanced 

it (Romera and Alcantara, 1994). Furthermore, addition of ethylene precursors can 

induce Fe deficiency responsive genes such as IRT1 and FRO2 (Lucena et al., 2006; 

Waters et al., 2007; Garcia et al., 2010).  Ethylene inhibitors could abolish Fe deficiency 

responses (Romera and Alcantara, 1994) and can repress FRO2 and IRT1 mRNA 

levels (Garcia et al., 2010; Lucena et al., 2006). 

ETHYLENE INSENSITIVE3 (EIN3) and ETHYLENE INSENSITIVE3- LIKE1 (EIL1) are 

two members out of a small family of plantspecific transcription factors that are activated 

through the ethylene signaling pathway (Chao et al., 1997). These two proteins that are 

highly related in their amino acid sequence then regulate a series of ethylene responses 

from the seedling stage to reproduction (Solano et al., 1998; An et al., 2010). EIN3/EIL1 

regulation is attributed essentially to posttranscriptional regulation.  
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A major mechanism to regulate EIN3/EIL1 activity acts via controlled proteolysis by the 

26S proteasome, which is mediated through recognition of EIN3/EIL1 by Skp, Cullin, F-

box–containing complexes with EIN3 BINDING F-BOX PROTEINS1 and 2 

(SCFEBF1/EBF2) complexes (Guo and Ecker, 2003; Potuschak et al., 2003; Gagne et 

al., 2004). Upon ethylene signaling, EBF1 and EBF2 function is prevented so that 

EIN3/EIL1 are stabilized for inducing downstream ethylene responses (Guo and Ecker, 

2003; Potuschak et al., 2003; Gagne et al., 2004). In addition to protein degradation, 

which seems to be the major pathway regulated by ethylene signaling, differential 

phosphorylation through a mitogen-activated protein kinase cascade has also been 

reported, although it remains unclear whether or not phosphorylation depends on the 

same signaling pathway as proteolysis (Yoo et al., 2008; An et al., 2010). EIN3 and/or 

EIL1 were shown to bind to promoters of downstream target genes involved in a 

multitude of responses ranging from biotic stress defense (Chen et al., 2009; Boutrot et 

al., 2010) and chlorophyll biosynthesis (Zhong et al., 2009) to ethylene signaling 

(Solano et al., 1998; Konishi and Yanagisawa, 2008). 

 

Although the physiological link between ethylene and Fe deficiency responses was an 

important observation, the molecular basis of this phenomenon remained elusive until 

recently. It was demonstrated that EIN3/EIL1 physically interacts with FIT, and 

contribute to full FIT downstream target gene expression (Lingam et al., 2011).  
 

Furthermore transcriptome analyses revealed that majority of the genes were 

differentially regulated in ein3 eil1 mutants vs. wild type under –Fe condition compare to 

+Fe condition. Surprisingly, several of the differentially expressed genes are implicated 

in photo-oxidative stress responses in leaves. Therefore, it was speculated that by 

enhancing Fe uptake through interaction with FIT and by re-organizing the photo-

oxidative stress responses, EIN3/EIL1 might contribute to decreasing photo-oxidative 

stress that may occur under light conditions in response to Fe deficiency (Bauer and 

Blondet 2012). 
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1.7 Nitric oxide (NO) 

In recent years, nitric oxide (NO), gained the attention of plant biologists due to its 

significant role in modulating various processes throughout the plant life. NO is known 

to reduce seed dormancy (Zheng et al., 2009), and induces the seed germination 

(Beligni and Lamattina, 2000). NO is required for the root growth and development 

(Pagnussat et al., 2002), and regulates gravitropism (Hu et al., 2005). NO regulates 

stomatal closure (Bright et al., 2005), photosynthesis (Takahashi and Yamasaki, 2002), 

affects the function of mitochondria (Zottini et al., 2002). 

 

NO plays significant role in the various aspects of plant reproductive organs, for 

instance NO has been implicated in floral regulation, by suppressing the transition to 

flowering by affecting the expression of regulatory genes in flowering pathways (He et 

al., 2004), also involves in the re orientation of pollen tube (Prado, Porterfield and Feijo, 

2004) and pollen recognition by stigma (Hiscock et al., 2007). During disease resistance, 

NO serves as signaling molecule (Delledonne et al., 1998), Probably, as part of its 

signaling mechanism, it also enhances the raised cGMP levels (Durner et al., 1998) and 

raises the level of cytosolic free Ca2+ (Durner et al., 1998; Klessig et al., 2000, Garcia-

Mata et al., 2003).  

 

NO is required for the activation of a potential mitogen-activated protein kinase (MAPK) 

(Clarke et al., 2000). In the same year, it has been showed that NO could induce the 

activation of a salicylic acid induced protein kinase (SIPK), which results the induction of 

defense responses in tobacco (Kumar and Klessig, 2000). In later years it has been 

identified that NO mediates the activation of a MAPK signaling cascade, that is 

activated during the adventitious rooting process induced by Indole Acetic acid 

(Pagnussat et al., 2004).  
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NO is produced in response to abiotic stress responses such as drought and salt (Neil 

et al., 2008), and also in biotic stress conditions that are caused by biotrophic, 

necrotropic pathogens and viruses. NO mediates a broad range of plant responses that 

comprises of defense/pathogen responsive gene regulation, and the action of hormones 

that participates in defense response and in the hypersensitive response (HR) 

development (Asai and Yoshioka, 2009; Delledonne et al., 1998 and 2005; Durner et al., 

1998). NO enhances the plant adaptive responses to drought stress (Garcia-Mata and 

Lamattina, 2001). NO is capable of regulating the multiple plant responses caused by 

biotic and abiotic stresses and mitigate some of the consequences caused by oxidative 

stresses, and delays the senescence and fruit maturation (Crawford and Guo, 2005; 

Delledonne, 2005).  

It has been reported that NO regulates plenty of genes for instance NO regulates the 

expression of genes involved in the cell cycle (Correa-Aragunde et al., 2006), genes 

that are responsible for the synthesis and responsive to Jasmonic acid (Orozco - 

Cardenas and Ryan, 2002;  Jih, Chen and Jeng, 2003). The expression profiling data 

obtained by treating Arabidopsis plants with NO donor sodium nitroprusside (SNP) 

revealed that the genes involved in the synthesis and signaling of ethylene, the 

phenylpropanoid pathway, protein antioxidation mechanisms, photosynthesis, cellular 

trafficking, cell death and other basic metabolic processes are regulated by NO 

(Wendehenne,  Durner and Klessig, 2004). 

 

1.7.1 Affect of nitric oxide on iron uptake in plants 

Recently, several reports provided evidence for the role of NO in iron homeostasis and 

iron metabolism. NO is identified as an early signaling candidate that drives the 

regulation of downstream responses of Fe deficiency signaling (Arnaud et al., 2006; 

Garcia et al., 2010, 2011; Chen et al., 2010; Graziano and Lamattina, 2007; Murgia et 

al., 2002).  
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In addition, NO could improve the internal Fe mobilization and availability (Graziano and 

Lamattina, 2002). 

 
Fe deficiency leads to a rapid and sustained accumulation of NO in the root epidermis, 

chiefly in rhizodermal cells of tomato (solanum lycopersicum) roots which correlates 

with the expression of Fe deficiency induced marker genes such as SlIRT1, SlFRO2. 

Treatment with NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-

oxyl-3-oxide (cPTIO) of Fe deficient roots results the repression of Fe deficiency 

responsive genes SlFRO1, SlIRT1, and the bHLH transcription factor AtFIT (homolog 

SlFER). Conversely, exogenous application of NO donor S-nitrosoglutathione (GSNO) 

leads to the induction of the same genes (Graziano and Lamattina, 2007). Similar 

findings were reported for Arabidopsis (Chen et al., 2010) by showing the repression 

with NO scavengers/inhibitors treatment and treatment with NO donors leads to the 

induction of FIT, FRO2. 

 

NO could enhance the expression of several Fe related genes. Treatment with NO 

donor GSNO results the high level induction of Fe deficiency related genes and ferric 

reductase activity at +Fe in Arabidopsis and in cucumber (Garcia et al., 2010, 2011). 

GSNO treatment leads to induction of genes related to Fe acquisition, transport, and 

homeostasis such as AtFIT, AtFRO2, AtIRT1, AtBHLH38, AtBHLA39, AtCCCl 1,2&3, 

AtNAS1 &2, AtMYB72 and AtFRD3 (Garcia et al., 2010). In cucumber (Cucumis 

sativus), which is also belongs to strategy I iron uptake plants, GSNO treatment results 

the high level expression of Fe acquisition genes such as CsFRO1, CsIRT1, CsHA1, 

CsHA2 (H+ -ATPase genes) (Garcia et al., 2011). 
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1.8 Nitric oxide and ethylene action in Fe deficiency responses 

In plants various processes in which hormones, signaling compounds, and phytochrome 

interact or act independently in different way to give the same response. When it comes 

to the iron, Fe deficiency responses are modulated by ethylene and also by nitric oxide 

in a similar manner (positively). Such over lapping functions led to investigate whether 

NO and ethylene interact or influence each other or share, act in a same signaling 

pathway. 

Recently, the relationship between NO and ethylene has been identified. Nitric oxide 

and ethylene interaction has been identified. Up on O3 (Ozone) stress NO and ET 

amplified and cooperate to stimulate Alternative oxidase (AOX) pathway (Ederli et al., 

2006). It has been reported that NO may influence ethylene biosynthesis in the 

maturation and senescence of plant tissue (Arasimowicz and Floryszak-Wieczorek, 

2007). Ethylene production is modulated by exogenous application of NO (Zhu and 

Zhou, 2007). However, some reports suggested that both gases act antagonistically. In 

Arabidopsis S-nitrosylation of methionine adenosyltransferase (MAT1) by NO leads to 

the down regulation of ethylene synthesis. Inhibition of MAT1 activity by NO, leads to 

the reduced levels of ethylene precursor S-adenosylmethionine (SAM) (Lindermayr et 

al., 2006).  

The role of NO and ethylene in the regulation of Fe deficiency responses in plants has 

been proposed by various findings (Chen et al., 2010; Graziano and Lamattina, 2007; 

Lucena et al., 2006; Garcia et al., 2010, 2011; Romera and Alcantara, 1994). Since NO 

and ET acts together and involve in regulating various plant responses, it was worth 

trying and interesting how these two candidates act together or regulate together Fe 

deficiency responses.  

Most recently, it was reported that NO could increase the expression of genes involved 

in ethylene synthesis.  



29 
 

1. Introduction 
______________________________________________________________________ 

In Arabidopsis and Cucumber roots, treatment with NO donor GSNO results the 

induction of ethylene synthesis genes such as AtSAM1, AtSAM2, AtACS4, AtACS6, 

AtACO1, AtACO2, AtMTK; CsACS2 and CsACO2. On the other hand ethylene can 

enhance NO production in the roots.  

 

Treatment with ethylene precursor ACC results the enhanced production of NO in the 

roots, whereas treatment with ethylene blockers such as STS and Co could alleviate 

NO production. Induced FCR activity caused by the ACC treatment was hindered by the 

NO scavenger cPTIO. Therefore, it has been proposed that both NO and ET influences 

the production of each other. This mutual influence might lead to the amplification of Fe 

deficiency responses including the induction of Fe deficiency responsive genes.  

 

NO and ET are produced upon low Fe signal and both influence the production of the 

other, and low Fe signal (presumably phloem Fe) is essential for the activation of NO, 

ET and to be effective. This low iron situation might attribute the specificity to the 

responses. Hence, NO and ET that are produced in other stress conditions are unable 

to mediate the induction of Fe deficiency responses (Garcia et al., 2011). 

 

It is known that posttranscriptional regulation of the transcription factors plays crucial 

role in various developmental stages of plants. For instance, several posttranslational 

modifications were well described in plants (Tootle and Rebay, 2005). Phytochrome 

interacting factors (PIFs) belonging to the bHLH family (similar to FIT) transcription 

factors can be considered as good example for such modifications, All PIFs except PIF7 

are phosphorylated and subsequently ubiquitinated prior to their degradation (Shen et 

al., 2007, 2009; Al-Sady et al., 2006). Recently, it has been reported that IRT1 is 

monoubiquitinated (Barberon et al., 2011). Furthermore, it is shown that the ethylene 

biosynthesis protein ACC synthase 2/6 was shown to be phosphorylated by MAP kinase 

MPK6, that leads to enhanced ethylene signaling (Joo et al., 2008) and in addition EIN3 

has also been shown to be regulated by MPKs (Yoo et al., 2008).  
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Involvement of MAP kinases in bHLH transcription factors are also well documented in 

the case of the bHLH protein SPEECHLESS (SPCL). SPLC is targeted by 

phosphorylation events that were transduced by MKK4/5 and MPK3 and MPK6 

(Lampard et al., 2008). Besides phosphorilation and ubiquitination, another interesting 

and relevant posttranscriptional modification for the current study is S-nitrosylation.  

 

Hormonal influence by NO often results in reversible S-nitrosylation of cysteine residues 

of target proteins (Lindermayr and Durner, 2009; Besson-Bard et al., 2009). Since there 

is NO involvement as described above in Fe deficiency responses, which might be the 

same scenario in the case of FIT. 

 

Since EIN3/EIL1 interacts with FIT (Lingam et al., 2011), this might serve as an 

example of integration of hormonal stimulus and signal transduction similar to that of 

MAP kinases in order to regulate downstream targets in upon Fe deficiency in plants. 

For instance regulation FRO2 and IRT1 may be controlled by post-transcriptional 

regulation of FIT besides its transcriptional induction upon –Fe condition. Post-

transcriptional regulation of FIT could be modulated by ethylene and signaling 

compounds such as NO. Thus, investigating the post-transcriptional regulation of FIT 

and the influence of ethylene and NO on FIT accumulation and abundance is essential 

to understand underlying mechanism of Fe sensing and uptake regulation in plants. 
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2. Scientific aims of the project 
 

The objective of the present study is to unravel the posttranscriptional regulation of an 

iron dependent transcriptional factor FIT. Previous findings reported that FIT and its 

functional homolog (FER) from tomato (Solanum lycopersicum) are regulated by the 

iron deficiency status of the plant through transcriptional and posttranscriptional 

mechanisms (Colangelo and Guerinot 2004; Jakoby et al., 2004; Brumbarova and 

Bauer, 2005). To better understand the regulation of Fe acquisition in strategy I plants, 

investigation of FIT protein regulation is essential. However, the previous studies could 

not analyze the FIT protein accumulation and abundance in response to Fe nutritional 

status. Control of FRO2 and IRT1 activity is crucial for the plant to regulate Fe uptake 

into the root. Understanding the regulatory mechanisms that act upon FIT may 

ultimately allow us to gain insight into the signals by which plants sense their 

environment and internal requirement for Fe uptake.  

 
The first goal of the current study was to generate tools to investigate endogenous FIT 

protein status in planta in response to Fe supply. To achieve this, a specific antiserum 

against FIT protein was generated with the help of in-house facilities of Saarland 

University in collaboration with Prof. Uli Müller, Department of Zoology. As a first step, 

Arabidopsis FIT gene has been cloned. After transformation, recombinant fusion protein 

was expressed in E.coli and purified. The purified recombinant fusion protein was then 

injected to animals (Mice and Rats). Later, the collected antiserum has been checked 

for its specificity. Finally, the obtained antiserum was used to investigate endogenous 

FIT protein status in plants under different Fe nutritional supply.   
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In addition to protein level regulation of FIT, the next level goal of this work was focused 

on the investigation of the factors (such as ethylene and nitric oxide) influencing 

accumulation, regulation and stability of FIT. It is known that ethylene and nitric oxide 

modulate the induction/regulation of Fe deficiency genes including FIT. Although the 

physiological link between ethylene, nitric oxide and Fe deficiency responses was an 

important observation, the molecular basis of this phenomenon remained elusive. To 

address this, corresponding mutants, overexpression lines have been analyzed. In 

parallel, appropriate pharmacological treatments were performed in order to decipher 

the involvement of ethylene and nitric oxide on FIT protein to investigate FIT stability, 

degradation and further effect on its downstream target genes such as FRO2 and IRT1.  
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3.1. Materials 
 

3.1.1. Plant material 
 

• Arabidopsis thaliana ecotype Columbia (Col-0) has been used as wild type 
 

• Arabidopsis T-DNA insertion mutant fit-3 (described in Jakoby et al., 2004) has 
been used 
 

• Seeds of ein3-1eil1-3 mutant (ein3eil1) were multiplied and verified in the triple 
response assay (Chao et al., 1997; Binder et al., 2007) 
 

• Non tagged FIT overexpression (FIT Ox) line (as described in Jakoby et al., 2004) 
was used 
 

• HA-tagged FIT over expression line (HA-FITOx) was used as described in Meiser 
et al., 2011  

 
 

3.1.2. Bacterial strains  
• NovaBlue Singles™, Tuner (DE3)pLacI competent cells (Novagen) were used 
 
3.1.3. Vectors and Plasmids 
• pETBlue2 vector (Novagen) 

 

3.1.4. Oligonucleotides 
 

• Table 3.1 list of primers used in the study  
 

 Forward primer 
 

Reverse primer 
 

FIT 
full 

 

5’- G GAA GGA AGA GTC AAC GCT 
CTG-‘3 
 

5’- ACG ACC TTC GAT AGT AAA TGA 
CTT GAT GAA TCC AAA ACC T-‘3 
 

FIT -C 
 

5’-A GCT TCT TTA AAC TCT ACT GGA 
GGG TAC-‘3 

5’- ACG ACC TTC GAT AGT AAA TGA 
CTT GAT GAA TCC AAA ACC T-‘3 
 

 pETBlueUP primer (Novagen #70604-3) 
5’-TCA CGA CGT TGT AAA ACG AC-‘3 

pETBlueDOWN primer (Novagen#70603-3) 
5’-GTT AAA TTG  CTA ACG CAG TCA-‘3 
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3.1.5. Antibodies 
 

• FIT-C polyclonal antiserum (see section 3.2.3 for details) 
 

• anti-mouse IgG conjugated with horseradish peroxidase (Sigma-Aldrich, 
USA) for the detection of anti FIT-C antibodies  

 
• Rat IgG monoclonal anti HA antibody clone 3F10 (Roche) for the detection 

of HA tagged FIT protein  
 

• Polyclonal Goat anti Rat Horseradish peroxidase secondary antibody 
(Sigma Aldrich) for the detection of anti HA antibodies  

 
• Goat-anti Rat alkaline phosphatase-conjugated secondary antibody 

(Jackson Immuno Research, Germany) for the detection of HA antibodies 
on root cross sections  

 
 

3.1.6. Softwares 
 

• PlasmaDNA was used to generate the overview of the restriction sites of 
the recombinant plasmid (pETBlue2 with FIT-C insertion) 
 

• ImageJ was used quantify the protein bands on western blots 
 

• DNAstar was used for primer design and alignment 
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3.2 Methods 
 
 
3.2.1 Plant material and growth conditions 
 
For physiological assays seeds were surface sterilized as described in Jakoby et al., 

2004. 

 

• In the 6-day growth system, surface sterilized seeds were directly germinated on 

50 µM Fe (+ Fe) or 0 µM Fe (- Fe) Hoagland agar medium and were grown at 

long-day conditions. 

 
• In the 2-week growth system, plants were grown for 14 days on square plates 

containing Hoagland agar medium (50 µM Fe) under long-day condition (at 

21°C/19°C and 16 h light, 8 h dark cycles) in plant growth chambers (CLF Plant 

Climatics). For Fe deficiency treatment, 14-days old plants were transferred to a 

fresh 0 µM Fe (- Fe) Hoagland agar plates containing 50 µM ferrozine, and grew 

for three days. 

 
The following Hoagland salt concentrations have been used for the preparation of 

Hoagland medium. 

0.1875 mM MgSO4 x 7 H2O, 0.125 mM KH2PO4, 0.3125 mM KNO3, 0.375 mM 

Ca(NO3)2, 12.5 μM KCL, 12.5 μM H3BO3, 2.5 μM MnSO4 x H2O, 0.5 μM ZnSO4 x 7 

H2O,0.375 μM CuSO4 x 5 H2O, 0.01875 μM (NH4)6Mo7O24 x 4 H2O. pH has been 

adjusted to 6.0. 
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3.2.2 Gene expression analysis 
 
• Gene expression analysis was performed by reverse transcription-quantitative real-

time PCR as described in (Wang et al., 2007; Klatte et al., 2009). Briefly, DNase-

treated RNA was used for cDNA synthesis. SYBR Green I-based real-time PCR 

analysis was performed using ExTaq RT-PCR (TaKaRa) in a “My IQ single color 

real-time PCR detection system” (Biorad, USA). For each gene, the absolute 

quantity of initial transcript was determined by standard curve analysis. Absolute 

expression data were normalized against the averaged expression values of the 

internal control gene EF1BALPHA2 (EF). Primer sequences are published in Wang 

et al., (2007). All steps of the established RT-qPCR were performed according to 

recommendations for accurate RT real-time quantitative PCR (Marco Klatte and 

Petra Bauer 2008, Methods in Molecular Biology, Issue 479). 

 
3.2.2.1 Statistical Analysis 
 

• Statistical evaluation was performed by t test using the values of biological 

replicates. For Figure 4.13, P values were obtained via t test using the GraphPad 

software at http://www.graphpad.com/welcome.htm.  

 
 
3.2.3 FIT antiserum preparation 
 

• The C-terminal part of FIT excluding the bHLH domain was amplified by PCR 

using the primer combination 5’-A GCT TCT TTA AAC TCT ACT GGA GGG 

TAC-‘3 and 5’-ACG ACC TTC GAT AGT AAA TGA CTT GAT GAA TCC AAA 

ACC T-‘3, and cloned into pETBlue-2 vector by using Perfectly Blunt® Cloning Kit, 

recombinant plasmid was transformed into NovaBlue Singles™ Competent Cells 

(Novagen, USA). After initial selection of positive colonies as per manufacturer’s 

instructions, colony PCR was performed for verification of positive recombinant 

plasmids, additional selection of positive clones has been identified by restriction 

digestion (see Fig. 3.3 (a) and (b) for the overview of restriction digestion sites).  
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After sequence verification, the recombinant plasmid was transformed into Tuner 

(DE3) pLacI cells and the recombinant protein induction was performed 

according to the manufacturer’s instructions (Novagen, USA).  

 

Insoluble FIT-C His-tagged fusion protein was isolated under denaturing 

conditions with 6M Guanidin-HCL and was affinity-purified by chromatography. 

Chromatographic column filled with TALON Metal Affinity Resin (Clontech, USA). 

Column preparation including resin filling and protein purification process has 

been done as per the instructions described in the user manual provided by the 

manufacturer (Clontech, USA, manual PT1320-1 (PR993342)). Purified protein 

was injected into mice to obtain antiserum. The obtained 4 different antiserum 

(namely Sh-1, Sh-2, Sh-3 and Sh-4) were tested positive for their specificity to 

detect bacterially expressed FIT-C peptide. Due the consistency in the detection 

of desired FIT-C recombinant protein, all four antiserum were pooled together in 

the following western blot experiments.  

 

For use in Western blots with plant protein extracts anti-FIT-C antiserum was 

purified. Crude bacterial extract containing recombinant FIT-C fusion protein was 

loaded on a preparatory gel and blotted to a nitrocellulose membrane. After 

Ponceau S staining the membrane region containing the FIT-C antigen was cut 

off as a strip. The membrane was blocked for 1 hour at room temperature with 

1% BSA dissolved in PBS-T and subsequently probed with crude mouse 

antiserum at 4°C overnight. Unbound fraction was collected into a new tube. The 

membrane was washed 3 times with PBS-T, and bound antibodies were eluted 

two times with elution buffer (0.1 M glycine-HCl pH 2.7, 0.5 M NaCl). The eluted 

antibody fractions were immediately neutralized by adding 1/10 volume of 

neutralization buffer (1 M Tris-HCl pH 8.0, 1.5 M NaCl, 1 mM EDTA, 0.5% NaN3) 

and bovine serum albumin (BSA) was added at 1 mg/ml final concentration. 
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Figure 3.1 Schematic view of amplified fragments for cloning 
FIT full (a) and FIT-C terminal part (b) has been amplified. Factor Xa cleavage site was added 
to the reverse primer. In the schematic view, fragments sizes shown without Factor Xa cleavage 
site sequence of the reverse primer. 
 
   
 

 
 
 
Figure 3.2 map of pETBlue2 vector  
Overview of pETBlue2 vector map with multiple cloning sites.  
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                        (a) 

 
                     
                      (b) 

 
 

Figure 3.3 Overview of the recombinant plasmids with restriction sites 
Overview of the recombinant plasmids showing restriction sites of FIT full inserted into 
pETBlue2 vector (a), and FIT-C inserted into pETBlue2 vector (b). Overview was generated by 
plasma DNA software. 
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3.2.4 Western Immunoblot analysis 
 

• Total protein extracts were prepared from roots of 6-day-old plant seedlings 

following a described procedure (Scharf et al., 1998). Root tissue was ground in 

liquid nitrogen and 30 mg root powder was resuspended in an equal volume of 

lysis buffer (500 mM NaCl, 25 mM HEPES, 5 mM MgCl2, 1 mM Na-EDTA, 10 

mM NaF, 10% (w/v) glycerole, 0.2% Nonidet P40 and one protease inhibitor 

cocktail tablet (Roche Diagnostics, Germany) per 50 ml of buffer. After 

centrifugation at 10.000 rpm for 10 min at 4°C, supernatant was transferred to a 

new tube and protein concentrations were determined by Bradford Assay reagent 

(Sigma-Aldrich, USA). 10 μg proteins were loaded per lane on a 10 % SDS-

PAGE and subsequently blotted to a nitrocellulose membrane. Western blot 

analysis was conducted according to standard procedures.  

 
• For detection of FIT protein, freshly purified undiluted anti-FIT-C mouse 

antiserum was applied. These primary antibodies were detected with anti-mouse 

IgG conjugated with horseradish peroxidase (1:8000 dilution, Sigma-Aldrich, 

USA). 

 

• HA-FIT protein was detected by incubation with anti-HA high affinity monoclonal 

rat antibody (1:1000 clone 3F10, Roche, Germany) and as secondary antibody 

anti-rat IgG (whole molecule)-horse radish peroxidase conjugated (1:10000, 

Sigma-Aldrich, USA). Detection signals were developed by using an enhanced 

chemiluminescence detection kit (Biorad, USA) according to the manufacturer’s 

protocol. Relative quantification of protein bands detected in Western blot 

experiments was calculated using the ImageJ software (Abramoff et al., 2004) 

and normalization to the Coumassie/Ponceau S-stained bands. 
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3.2.5 Pharmacological treatments 
 
 
• Ethylene experiments (with ethylene inhibitors) were conducted using 6-day old 

seedlings. Seeds were directly germinated on 50 µM or 0 µM Fe Hoagland agar 

medium containing 10 µM aminoethoxyvinylglycine (AVG, Sigma-Aldrich, USA), 

200 µM silver thiosulfate (STS) or 20 µM  aminooxoacetic acid (AOA, Sigma-

Aldrich, USA). Samples were collected on 6th day and further processed for 

western blot analysis. For MG132 treatment, 6 day-old seedlings were treated for 4 

hours in liquid Hoagland medium containing 100 µM MG132 (Calbiochem, USA) 

and harvested for analysis.  

 
• Nitric oxide (NO) experiments were conducted using the 6-day growth assay. 5- 

day old seedlings were transferred to fresh 50 µM or 0 µM Fe Hoagland agar 

medium, containing as treatments 25 µM NO donor S-nitrosoglutathione (GSNO 

was synthesized as reported (Stamler and Loscalzo, 1992) or 1 mM cell-

permeating NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl imidazoline-1-

oxyl-3-oxide (cPTIO, Sigma-Aldrich), respectively. Same procedure was followed 

for the treatments with additional NO inhibitor such as  Tungstate, L-NAME (1mM 

final concentration was used for the both inhibitors).  After 24 hour treatments, 

roots were harvested and further processed. For MG132 treatment 6-day old 

seedlings were incubated for 2.5 hours in liquid Hoagland medium with 42 μM 

MG132 (1:1000 dilution from 42 mM stock solution diluted in DMSO) and 

subsequently quick frozen in liquid nitrogen for western blot analysis. 
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3.2.6 Immunolocalisation/Immunohistochemistry 
 

Immunohistochemistry was carried out according to Kurata et al., 2005; and 

Nakajima et al., 2001 with minor alterations. Roots were fixed in 4% 

Paraformaldehyde solution for 1 hour with vacuum infiltration and washed three 

times in PBS for 10 min.  Later, roots were carefully embedded in 1% agarose 

solution when the temperature of the solution is about 50°C.  After solidification, 

small agarose blocks were prepared by excising the agarose surrounding the 

embedded roots, the roots in agarose blocks were passed through an ethanol series 

and further embedded in tissue embedding medium Paraplast plus (Carl-Roth 

GmbH, Germany). Sections (9 μm) were sliced with microtome (Reichert-Jung, 

Germany) and placed on poly lysine coated slides to adhere the root section on the 

slide surface. After de-paraffinisation with Roti-Histoclear, root sections were 

subjected to rehydration with ethanol series (high to low percentage of ethanol 

solutions). Then, the root sections were washed in PBS and treated with 20μg/ml 

Protinase-K (Applichem) for 15 min at room temperature. Immediately, root sections 

were washed in PBS-T and subsequently blocked with blocking buffer (PBS-T plus 

2% BSA) for 5 h at room temperature. Later, the root sections were incubated with 

anti HA high affinity antibody at a 1:200 dilution for overnight at room temperature.  

After the incubation, slides were washed 5 times in PBS-T and incubated with Goat-

anti Rat alkaline phosphatase-conjugated secondary antibody at a 1:500 dilution for 

2 h at room temperature (Jackson Immuno Research, Germany). Slides were 

washed 3 times in PBS-T and twice in alkaline phosphatase buffer pH 9.5. The 

signal was developed using BCIP/NBT solutions (Carl-Roth, Germany) for 2 h at 

room temperature. After color development, sections were washed and passed 

through ethanol series and slides were dipped in Roti-Histol (Carl-Roth, Germany) 

prior to mount with Roti-Histokit (Carl-Roth, Germany). Images were obtained with 

Leica microscope (Leitz DMR B series). 
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4. Results 
 

4.1 Generation of FIT antiserum 

To achieve the first goal of the present study, i.e. to monitor Fe dependent expression, 

regulation of FIT protein in planta, it is necessary to generate antibodies that can 

specifically detect the FIT protein. Towards this, we have performed a series of 

experiments that includes cloning, transformation, heterologous expression and 

purification of recombinant protein, and immunizing/injecting the animals (Mouse) with 

purified recombinant protein to obtain the antiserum.  

 

4.1.1 Cloning and confirmation of cloned recombinant FIT plasmid 

For this purpose, we specifically amplified full length FIT (FIT full) and also a partial 

region of FIT from its C-terminal part (here after described as FIT-C; Fig. 4.1). The 

reason to select and clone the C-terminal part was to exclude the possibility of cross 

reactivity of the generated antibodies to other bHLH proteins (since FIT is a bHLH 

transcription factor protein) on western blot. Upon successful ligation and transformation, 

the obtained colonies were numbered and a colony PCR has been performed to check 

for the positive clones for the presence of recombinant plasmid. In addition, from the 

selected recombinant plasmids we have performed a colony PCR and also restriction 

digestion on the recombinant plasmid to confirm the proper orientation of the insert by 

ligation (Fig. 4.2 a&b, Fig. 4.3 a-d).   
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Figure 4.1 PCR amplification of FIT full and FIT-C                                                          
Agarose gel electrophoreses of PCR amplified FIT full length (963 bp) and FIT-C (393 bp) 
fragments. Amplified product sizes including the additional sequence of Factor Xa cleavage site 
of the reverse primer. 

 

 

 

Figure 4.2 Colony PCR of FIT full and FIT-C colonies 

Resulted colonies were tested for the presence of recombinant plasmid by colony PCR, 
colonies were numbered as 1, 2, 3…20. If the insert is in the correct orientation the expected 
size of the PCR product for FIT-full with the primer combination (FIT 5' and pETBlueDOWN) is 
1235 bp (963 bp of FIT full plus 272 bp from the pET Blue2 vector). Only colony no. 2 of FIT full 
gave a PCR product at expected size, Fig. 4.2 (a). For the controls pETBlueUP and 
pETBlueDOWN primer combination (from the pETBlue2 vector) was used.  As +ve control, 
vector ligated with check insert control of 212 bp insert (supplied with the kit components and 
used as +ve control to monitor successful ligation as well as transformation) was used. The 
expected band size for +ve control is 544 bp. As -ve control, empty vector (w/o PCR product) 
was used as template and expected PCR product is 332 bp (544-212). Fig. 4.2(b) FIT-C 5' and 
pETBlueDOWN primer (as 3') combination was used for FIT-C amplification, expected band 
size is 665bp (393 bp from FIT-C and 272 bp from the vector + factor-Xa cleavage site). Colony 
PCR was performed on 20 colonies. +ve colonies were highlighted in red color box and 
asterisks. L=ladder. Colony nos. 3, 6, 7, 10, 13,15,16,19 and 20 were positive colonies. 
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Figure 4.3 Agarose gel electrophoreses images of restriction digestion of FIT full and FIT-
C recombinant plasmids  

Double digestion with BamHI and XbaI, (a) over exposed gel image for the better visibility of the 
647 bp band of the FIT-C, (b) less exposed gel image for the better visibility of the marker. For 
FIT-C, 647 and 3399 bp bands, for FIT-full 1217 and 3399 bp bands were obtained. (c) single 
digestion with Kpn I, FIT-C recombinant plasmids obtained from colony numbers 3, 6 and 7, for 
FIT-full colony no. 2 were used. For FIT-C, 425 and 3621 bp bands, and for FIT-full 431 and 
4185 bp bands were obtained.(d) double digestion of FIT-C, FIT full with Xba I and Sal I, for FIT-
C 681 bp, and 3365 bp, for FIT-full 1251 bp and 3365 bp bands were appeared. The resulted 
bands (marked with asterisks) at expected sizes indicated the correct orientation of the cloned 
insert. See material and methods for the overview of the restriction sites of the recombinant 
plasmids.  
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4.1.2 Expression of recombinant FIT-C fusion protein in E.coli and protein 
purification 

After colony PCR, restriction digestion and sequence confirmation the selected 

recombinant plasmid (FIT-C 6) was transformed into the Tuner™ DE3 expression cells. 

Upon the successful expression of the recombinant 21 kDa FIT-C fusion protein at small 

scale level (Fig. 4.4a), a large scale expression and purification of FIT-C protein was 

performed in order to obtain sufficient FIT-C fusion protein for the immunization (Fig. 

4.5).  

 

 
 

 

Figure 4.4 SDS-PAGE analysis of heterologously expressed recombinant FIT-C fusion 
protein in E.coli 

FIT-C fusion protein expression in Tuner™ DE3 cells, Fig.(a) expression in total cell protein 
from induced culture, (b) expressed FIT-C protein accumulated as insoluble protein (inclusion 
bodies). SF means soluble fraction, ISF means insoluble fraction. Asterisks (*) indicates the ~21 
kDa size FIT-C fusion protein band (14 kDa from FIT-C terminal part of 127 amino acids plus 
6.4 kDa from the vector region that poses 6 His tags + 0.4 kDa from Factor Xa cleavage site). 
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Figure 4.5 Purification of heterologously expressed recombinant FIT-C fusion protein in 
E.coli 

(a) SDS-PAGE analysis of induced bacterial cell lysate (Lys), and flow through (1, 2 & 3) from 
the chromatographic column, (b) Washes from the TALON metal affinity resin chromatographic 
column (1, 2, 3, 4, & 5 washes), (c) Eluate (1, 2, 3, & 4,), as control (co) protein sample 
prepared from induced culture was loaded to verify the purified protein size . Asterisks (*) 
indicates the ~21 kDa size FIT-C fusion protein band. 

 

 

 

 

 

 



48 
 

4. Results 
______________________________________________________________________ 

 

4.1.3 Immunization of Mice with FIT-C fusion protein, antiserum collection and 
specificity test of the FIT-C antiserum 

The heterologously expressed recombinant FIT-C fusion protein was affinity purified 

(Fig. 4.5a-c) and injected to mice. Immunization of mice and antiserum collection was 

kindly performed by Prof. Uli Müller and Iris Fuchs, Department of Zoology, Saarland 

University. The obtained antiserum was checked for its specificity on E.coli expressed 

FIT-C fusion protein (Fig. 4.6) and later used for monitoring internal / in planta FIT 

protein expression and accumulation/abundance. 

Hence we could detect a single band on western blot that matches to the specifically 

expressed and desired FIT-C protein, we conclude that the generated antiserum is 

specific to FIT protein.  

 

Figure 4.6 specificity of FIT-C antiserum  

Westernblot image of FIT-C antiserum specificity, control 1 was loaded with uninduced bacterial 
culture, control  2  was loaded with FIT-C induced  bacterial culture but omitted the incubation 
with FIT-C antiserum, and incubated  with secondary antibody (to cross check for the cross 
reactivity of the secondary antibody). The last lane from the right hand side is loaded with FIT-C 
induced bacterial culture and probed/incubated with FIT-C antiserum. * indicates the position of 
21 kDa FIT-C protein. 
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4.2 FIT protein expression, stability and regulation in planta 

Previous studies reported that FIT is transcriptionally regulated upon iron deficiency 

(Jakoby et al., 2004; Colangelo and Guerinot, 2004). It was then interesting to 

investigate/validate the FIT protein status in response to Fe status. In order to monitor 

FIT protein levels in planta, a polyclonal affinity-purified antiserum directed against the 

C-terminal peptide of FIT has been generated for this study. This antiserum was used to 

monitor the status of endogenous FIT protein of wild type plants and non tagged FIT 

overexpression plants. 

 

4.2.1 FIT protein accumulates under iron deficient conditions in Arabidopsis roots 
  
To elucidate whether FIT protein expression levels were regulated by Fe, we conducted 

western blot analysis. Western blot results/analysis showed that in wild type (Col-0) 

roots, FIT was detectable under - Fe conditions but not under + Fe conditions (Fig. 4.7). 

Whereas in the FIT Ox plants, strong FIT protein bands were detectable under both Fe 

supply conditions (Fig. 4.7), indicating that FIT protein was produced at + and – Fe in 

FIT Ox plants. In negative control protein extracts, samples prepared from fit loss-of-

function mutant plants, FIT protein bands were not detectable which also demonstrates 

the specificity of the generated antiserum (Fig. 4.7). Conclusively, these findings 

suggested that iron deficiency leads to FIT protein accumulation in wild type 

Arabidopsis roots. 
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Figure 4.7 Abundance of FIT protein in wild type and in FIT overexpression plants 
FIT protein was only detected at – Fe in wild type plants, while FIT was found abundant at + 
and – Fe in over-expression plants. FIT protein in roots of wild type Col-0, FIT Ox (positive 
control; Jakoby et al., 2004), fit (negative control, note specificity of the antiserum); plants were 
grown in the 14-day agar growth system; FIT protein was detected by Western blot using anti-
FIT-C polyclonal antiserum; asterisk indicates ~35-kDa size of FIT (upper image); Coomassie-
staining represents the loading control (lower image). 
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4.3 Nitric Oxide (NO) as signaling component on FIT gene expression and FIT 
protein accumulation in Arabidopsis  

 

Very recently, turnover control of FIT protein has been reported. Analysis of wild type 

and FIT over expression plants (non tagged and tagged such as GFP/FLAG/HA-FIT) 

revealed that FIT is subjected to turnover control (Meiser et al., 2011 [part of this 

dissertation]; Sivitz et al., 2011). It was then great interest to uncover which signaling 

components/molecules that might potentially affect FIT protein accumulation and 

abundance. In the present study it was also investigated that FIT stability was increased 

by ethylene signaling (Lingam et al., 2011). This prompted us to investigate whether NO 

would influence abundance and activity of FIT protein. 
 
Several findings demonstrated that, NO positively affects Fe deficiency responses in 

tomato (Solanum lycopersicum) and Arabidopsis (Graziano et al., 2002; Graziano and 

Lamattina, 2007; Besson-Bard et al., 2009; Chen et al., 2010). NO and ethylene could 

promote/influence and regulate Fe deficiency responses in a similar fashion (Lucena et 

al., 2006; García et al., 2010; Wu et al., 2011).  

 

4.3.1 Effect of NO on FIT protein accumulation and stability upon Fe deficiency 
 
However, none of the above studies could address the regulation of FIT at protein level 

in Fe deficiency. With help of tools (FIT Specific antiserum) that have been developed 

during this study, for the first time we were able to investigate the effect of NO on FIT 

expression/regulation and stability during Fe deficiency. To test the effect of NO, we 

grew wild type and FIT overexpression (HA-FIT) plants in the 6-day growth system that 

is more convenient and most suitable to perform NO pharmacological treatments with 

the widely used NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-

oxyl-3-oxide (cPTIO). 
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The reason behind for the selection of cPTIO is, it has been widely used and described 

as the most reliable common plant inhibitor for NO in the literature (Graziano and 

Lamattina, 2007; Chen et al., 2010). In our growth and treatment conditions, we were 

able to detect FIT protein in wild type control roots at –Fe (Fig. 4.8a), which was in 

accordance with our previous result (Fig. 4.7). 

 
cPTIO treatment led to a strong reduction of FIT protein to 2% at –Fe compared with 

control roots, suggesting that inhibition of NO signaling resulted in reduced FIT protein 

stability and abundance (Fig. 4.8a). Interestingly, the cPTIO treated HA-FIT plant roots, 

also showed in a decrease of HA-FIT protein levels (to 30% at –Fe and to 50% at +Fe 

versus controls; Fig. 4.8b).  

 

Wild type seedlings that grew in the presence of NO donor S-nitrosoglutathione (GSNO), 

did not show any difference on FIT accumulation and abundance at –Fe. Whereas, at 

+Fe GSNO treatment could slightly lead to FIT accumulation (Fig. 4.8a).  These 

observations supporting that NO enhanced FIT protein accumulation, whereas NO 

inhibition hindered it. Besides this, we confirmed the results by analyzing HA-FIT plants 

under the same conditions. Treatment with cPTIO showed reduced (to 50 % at + Fe, 

and to 30 % at – Fe vs controls) HA-FIT protein levels (Fig. 4.8b). 

However, GSNO treated seedlings did not show any difference at HA-FIT levels. This 

might be due to the FIT overexpression and beyond the certain threshold level GSNO 

may remain ineffective (Fig.4.8b). 
 

To further validate and support the effect of NO inhibitors on FIT protein, we have tested 

additional NO inhibitors. In plants, the two vastly studied enzymatic sources for NO are 

NO synthase (NOS)-type enzyme and nitrate reductase (NR).  
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NOS catalyzes the conversion of L-arginine to L-citrulline and NO. N-nitro-L-arginine 

methyl ester hydrochloride (L-NAME), the L-arginine analogue, was used in order to 

block NOS in various plants (Desikan et al., 2004; Graziano et al 2007). A molybdenum-

containing enzyme Nitrate reductase (NR), which catalyzes the formation of NO via 

nitrite reduction, as well as in generating nitrite from nitrate (Rockel et al., 2002). 

Tungstate, a molybdate analogue that has been previously reported to inhibit the 

formation of an active NR in vivo (Deng et al., 1989) and also reported to block NR-

dependent NO production (Bright et al., 2005). 

 
 

Our results showed that all three tested NO inhibitors led to reduced HA-FIT protein at –

Fe, namely to 40% (tungstate), 30% (L-NAME), and 50% (cPTIO) versus the controls 

(Fig. 4.9). Taken together, NO inhibition certainly diminished FIT protein accumulation. 
 

4.3.2 Influence of NO on FIT, FRO2 and IRT1 gene expression upon Fe deficiency 
  

In addition to protein expression and regulation studies, we have also investigated 

whether cPTIO treatments had affected the expression of the Fe deficiency marker 

genes in wild type plants and HA-FIT overexpression plants from the same set of 

experiment. This is mainly to verify and compare our protein analysis experimental 

system to that of published literature in other words to cross check whether we can 

reproduce the findings of the previously published work in Arabidopsis (only Chen et al., 

2010 used Arabidopsis). However, none of those studies analyzed FIT Ox lines for this 

purpose. In wild type control (w/o cPTIO) roots exposed to +Fe or –Fe, gene expression 

was as expected and in accordance to the results described in the previous sections of 

this report. FIT was induced 3-fold, whereas IRT1 and FRO2 were at least 8-fold 

induced by –Fe (Fig. 4.8c).  
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In the case of HA-FIT seedlings a similar gene expression pattern was observed, with 

the exception for FIT hence it was under constitutive promoter control compared to the 

wild type (Fig. 4.8d). cPTIO, Tungstate treatments resulted in a decreased expression 

of FIT, FRO2, and IRT1 gene expression in –Fe wild type roots compared with the –Fe 

control (Fig. 4.8c, and 4.10a). According to the literature this expression pattern was 

expected (Graziano et al., 2002; Graziano and Lamattina, 2007; Besson-Bard et al., 

2009; Chen et al., 2010). In contrast to cPTIO and Tungstate treatments, L-NAME has 

no effect on FIT, FRO2 and IRT1 gene expression (Fig. 4.10a) which is again in 

accordance to previous findings from Solanum lycopersicum. SlFER, SlFRO1 and 

SlIRT1 gene expression was not suppressed at -Fe upon L-NAME treatment (Graziano 

et al., 2007).  

 

On the other hand, cPTIO, Tungstate and L-NAME treatments had no effect on gene 

expression of FIT, FRO2 and IRT1 in HA-FIT plants (Fig. 4.8d, and Fig. 4.10b). 

Probably, the remaining small pool of HA-FIT protein in the HA-FIT overexpression 

plants might be sufficient to trigger FRO2 and IRT1 induction at -Fe. The decrease of 

HA-FIT by cPTIO shows that HA-FIT protein regulation cannot be explained merely by a 

reduced transcriptional activation due to cPTIO but that reduced NO affected HA-FIT 

also at the protein level. 
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Figure 4.8 Effect of nitric oxide (NO) on FIT protein abundance and gene expression 
cPTIO caused a reduction of FIT and HA-FIT protein levels, and a decrease of FIT, FRO2 and 
IRT1 gene expression in wild type, but not in HA-FIT roots. (a) FIT protein in roots of wild type, 
untreated (control), treated for 24 hours with 1 mM cPTIO (cPTIO) and 25 μM GSNO (GSNO); 
plants were grown in the 6-day agar system; FIT protein was detected by Western blot using 
anti-FIT-C polyclonal antiserum; * indicates the 35 kD size of FIT (upper image); Coomassie-
staining represents the loading control (lower image). (b) HA-FIT in roots of HA-FIT 9 plants, 
treated and grown as in (a); HA-FIT protein was detected by Western blot using anti-HA 
monoclonal antibodies; * indicates the 42 kD HA-FIT band (upper image, Col-0 was used as 
negative control); Coumassie-staining represents the loading control (lower image). (c) Reverse 
transcription-qPCR analysis of FIT, FRO2 and IRT1 in wild type roots treated with or without 
cPTIO as described in (a); * indicates significant change versus + Fe of respective treatment (p 
< 0.05); + indicates significant change versus control at respective Fe supply (p < 0.05); n = 2. 
(d) Reverse transcription-qPCR analysis of FIT, FRO2 and IRT1 in HA-FIT 9 roots treated with 
or without cPTIO as described in (b); * and + as in (c).  
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Figure 4.9 Abundance of HA-FIT protein in response to different NO inhibitors 
HA-FIT protein abundance in roots of – Fe HA-FIT 9 plants, untreated (control), treated with 1 
mM Tungstate (Tungs), 1 mM L-NAME (L-N) and 1 mM cPTIO (cPTIO), showing that several 
NO inhibitors caused reduction of HA-FIT protein amounts; plants were grown in the 6-day agar 
system; HA-FIT protein was detected by Western blot using anti-HA monoclonal antibodies; * 
indicates the 42 kD HA-FIT band (upper image); Ponceau S-staining represents the loading 
control (lower image).Experiment performed jointly by a co-worker Johannes Meiser, seedlings 
growth, NO treatments performed by Lingam, protein extraction and western blot analysis was 
performed by Meiser.   
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Figure 4.10 Effect of nitric oxide (NO) inhibitors on FIT gene expression 
(a) Reverse transcription-qPCR analysis of FIT, FRO2 and IRT1 in wild type roots treated with 
or without Tungstate, L-NAME as described in Fig.4.9; (b) Reverse transcription-qPCR analysis 
of FIT, FRO2 and IRT1 in HA-FIT 9 roots treated with or without as described in Tungstate, L-
NAME as described in Fig.4.9. 
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4.3.3 HA-FIT protein localization in root transverse sections in response to NO 
inhibition 
 
Since NO inhibition affected FIT protein accumulation and abundance, it was then 

interesting to monitor whether HA-FIT protein shows any differential cellular localization 

pattern in response to NO inhibition and Fe supply. To address this question, we 

performed immunolocalization on HA-FIT Ox (JM-9) root cross sections. Seedlings were 

grown and cPTIO treatments were done as described in previous sections. However, 

there is no specific difference in signal pattern was observed at cellular level. This is 

probably due to the FIT over expression since it was under constitutive promoter control. 

Nevertheless, reduced FIT levels were observed in the roots that treated with NO 

scavenger cPTIO. This serves as an additional proof for the previously presented 

western blot results on FIT protein abundance. 

 
Immunolocalization with internal FIT antibody on wild type roots would be more 

interesting to investigate the differential cellular localization of FIT protein in response to 

Fe and NO. Due the limited availability of the internal FIT antibody, it was not possible 

to investigate. Since immunolocalization procedure demands/require much more 

antibodies than western blot analysis. Moreover, it is not possible to recollect and reuse 

the antibodies after immunolocalization as in the case of western blot where the 

antibodies can be recollected for multiple uses. 
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Figure 4.11 Immunolocalization of HA-FIT protein on root transverse sections 
HA-FIT protein imunolocalization on Arabidopsis root cross sections using anti HA antibody, 
roots were embedded in paraffin and cross sectioned from meristematic zone @ 8µm thickness. 
Growth conditions and cPTIO treatments were done as described in Fig.4.8. Intensity of 
blue/violet color indicates the abundance of HA-FIT protein. Wild type (Col-0) used as negative 
control. 
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4.4 FIT Protein accumulation is counteracted by NO Inhibitors and restored by 
Inhibitors of proteasomal degradation 
 

Although the above data could confirm the effect of NO inhibitors on FIT abundance, it 

is still remain unclear what kind of mechanisms may play a role in FIT protein 

degradation and stability. These observations made us curious to find out possible 

mechanisms. To address this, we incubated cPTIO grown HA-FIT seedlings (similarly 

grown as discussed in previous sections) with a widely used most common proteasome 

inhibitor MG132. cPTIO treatment led to reduced HA-FIT levels to 50% in –Fe and to 

6% in +Fe condition compared to controls (Fig. 4.12) this is in agreement with data 

obtained and presented in  Fig. 4.8b.  

Interestingly, in MG132 treated cPTIO grown HA-FIT seedlings FIT levels were restored 

in both Fe conditions (Fig.4.12). Therefore, we conclude that FIT protein was 

susceptible to proteasome mediated degradation during the inhibition of NO signaling. 

Hence, treatment with proteasome inhibitors could restore the HA-FIT protein in the 

cPTIO grown seedlings. Taken together, we conclude that NO favors FIT stability in a 

similar way to ethylene through inhibition of FIT degradation via proteasome 
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Figure 4.12 MG132 reversed the cPTIO-mediated repression of HA-FIT 
HA-FIT abundance in roots of HA-FIT 9 plants grown at – or + Fe and treated as indicated for 
24 h with 1 mM cPTIO  and four hours with 100 μM MG132 (MG), showing that MG132 
treatment reversed the cPTIO effect; plants were grown as in (a); upper and lower image as 
described in (b) except that Ponceau S was used as loading control (Experiment performed 
jointly by a co-worker Johannes Meiser, seedlings growth, NO treatments performed by Lingam, 
MG132 treatment sample collection was done by Lingam and Meiser, protein extraction and 
western blot analysis performed by Meiser).  
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4.5 Influence of ethylene on FIT mediated Fe deficiency responses 

Multiple studies proved that plant hormone ethylene is able to promote up-regulation of 

Fe acquisition. Application of ethylene precursors such as 1-aminocyclopropane-1-

carboxylic acid (ACC) or ethephon to plants could mimic morphological growth 

responses of Fe-deficient plants (Romera and Alcantara, 1994; Schmidt et al., 2000). 

ACC treatment enhanced molecular-physiological Fe deficiency responses like IRT1 

and FRO2 gene expression (Lucena et al., 2006; Waters et al., 2007; García et al., 

2010). 

4.5.1 Analysis of FIT protein levels to ethylene inhibition  

On the other hand, in contrary to the above findings, several studies reported that the 

application of ethylene synthesis inhibitor AVG suppresses Fe acquisition responses 

(Romera and Alcantara, 1994; Lucena et al., 2006; García et al., 2010). The interactions 

discovered between FIT and EIN3/EIL1 suggests that ethylene is involved in regulation 

of molecular Fe deficiency responses (work done by co-worker, published in Lingam et 

al., 2011). Hence, we asked the question whether ethylene regulates Fe acquisition 

responses via FIT protein stability. 

Therefore, we first examined whether such a suppressing effect on Fe acquisition 

responses can also be noticeable in our 6-day growth system. Seedlings were directly 

germinated in the presence or absence of AVG and Fe, respectively. Gene expression 

analysis showed that IRT1 and FRO2 were induced by –Fe in the absence and 

presence of AVG. However, expression levels were lower in the presence of AVG than 

in the control (Fig. 4.13a). Expression of FIT was also suppressed upon AVG treatment 

compared to the control at – Fe. Hence, we conclude that in our seedling growth system 

ethylene was necessary for full level up-regulation of Fe deficiency responses.   
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In order to monitor the effect of AVG on FIT protein level, we have used the wild type 

and a FIT overexpression line (2xPro-CaMV35S:FIT, named FIT Ox; Jakoby et al., 

2004). In wild type roots, FIT protein was only detectable at –Fe in the control, but not at 

+ Fe, whereas in FIT Ox roots, FIT protein was present in + and -Fe control conditions 

(Fig. 4.13b). The FIT Ox line was useful for the analysis since the constitutive FIT 

mRNA expression allowed analysis of protein expression uncoupled from FIT gene 

transcription. Upon AVG treatment, FIT protein was no longer detectable in the wild type. 

In FIT Ox roots, FIT protein levels were reduced to 30 and 40% of control levels by AVG 

application under + and –Fe conditions, respectively (Fig. 4.13b).  

 

In these plants, FIT mRNA levels were at least as high upon AVG treatment in leaves 

as in the controls (published in Lingam et al., 2011 as a co-work with Julia Mohrbacher). 

Therefore, FIT protein downregulation in AVG-treated plants was independent of 

transcriptional regulation of FIT. AVG treatment resulted in a lower gene expression 

level of IRT1 and FRO2 in the FIT Ox leaves (published in Lingam et al., 2011 as a co-

work with Julia Mohrbacher). 
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Figure 4.13 Reduced Fe deficiency gene expression and FIT abundance in response to 
AVG  
(a) Gene and protein expression analysis in response to Fe supply (+ and –Fe) and 10 mM 
AVG (co means control without AVG), showing that Fe deficiency gene expression and FIT 
protein abundance were reduced by AVG. In (a) asterisk indicates significant change versus 
+Fe (P < 0.05); + indicates significant change versus no AVG control (P < 0.05). (a) qRT-PCR 
analysis of FIT, IRT1, and FRO2 in wild type seedlings; 6-d seedling growth assay, n = 2. SD 
was calculated for two biological replicates. Gene expression analysis carried out as part of co-
work together with Julia Mohrbacher (published in Lingam et al., 2011). (b) FIT protein detection 
by immunoblot in FIT Ox and wild type (WT) seedlings with anti-FIT-C antibody (top image; 
asterisk indicates 35 kD position of FIT protein). Ponceau S-staining of the proteins on the same 
membrane is shown (bottom image). 
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As an additional support, and also to investigate whether HA-FIT shows differential 

cellular localization pattern as a result of its low abundance upon AVG treatment, we 

have performed immunolocalization on HA-FIT root cross sections. Although through 

the current approach we were unable to see the differential cellular localization of HA-

FIT, we were able to reproduce the western blot data which show that reduction in HA-

FIT levels upon AVG treatment (Fig 4.14). 

As a control, we also tested the effect of ethylene inhibition by 20 µM AOA and 200 µM 

STS on FIT protein accumulation (see also Romera and Alcantara, 1994). AOA is an 

inhibitor of ethylene synthesis, and STS is an inhibitor of ethylene perception. We 

observed that AOA and STS treatment resulted in reduced FIT protein levels (Fig. 

4.15a). In FIT Ox roots FIT protein reduced to 20 % and 50 % of those in control FIT Ox 

plants, respectively (AVG treatment caused a reduction to 60 % of the control level in 

this experiment).  

Gene expression analysis of FIT has been carried out from the same batch of samples 

that have been treated with AOA, STS and AVG for the protein analysis by western blot. 

In this experiment FIT gene expression correlates with the FIT protein abundance in 

FITOx plants. In AVG treatment, FIT was substantially repressed as in the case of 

previous observations. AOA and STS treatments also suppressed FIT gene induction 

but not as strong as in the AVG treatment (Fig. 4.15b). 

In conclusion, AVG did not only inhibit Fe deficiency response gene expression as 

reported in previous studies (Romera and Alcantara, 1994; Lucena et al., 2006; García 

et al., 2010) but also FIT protein accumulation. These findings suggest that ethylene 

regulates Fe acquisition responses also via FIT protein stability. 
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Figure 4.14 Immunolocalization of HA-FIT protein on root transverse sections 
HA-FIT protein imunolocalization on Arabidopsis root cross sections using anti HA antibody, 6 
day old roots were embedded in paraffin and cross sectioned from meristematic zone @ 8µm 
thickness. Seedling growth conditions and AVG treatments were performed similarly as 
described in previous sections. Intensity of blue/violet color indicates the abundance of HA-FIT 
protein. Wild type (Col-0) used as negative control. 
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Figure 4.15 Effect of AOA and STS ethylene inhibitors on FIT protein abundance and FIT 
gene expression  
(a) Immunoblot analysis showing that multiple ethylene inhibitors caused a reduction in FIT 
protein abundance; western blot performed with anti-FIT-C antibody (upper image,* indicates 35 
kDa position of FIT), Ponceau S-staining of proteins (lower image). (b) Reverse transcription-
qPCR analysis of FIT in FIT Ox; seedlings grown at – Fe in the control (co), in the presence of 
20 μM AOA (AOA), 200 μM STS (STS) and 10 μM AVG (AVG)  
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4.5.2 Analysis of FIT protein abundance in ein3eil1 plants 

To better understand the meaning of combined action of up-regulation of Fe deficiency 

responses by FIT and EIN3/EIL1 on one side and protein interaction between FIT and 

EIN3/EIL1 on the other side (Lingam et al., 2011; Co-work with Julia Mohrbacher) we 

tested whether FIT protein levels may be affected by EIN3/EIL1. In wild type roots, FIT 

was expressed at protein level upon – Fe but not at + Fe (Fig. 4.13b see also Fig. 4.7, 

Fig. 4.8a and Fig. 4.16). Interestingly, we found that FIT protein levels were reduced to 

8 % in the ein3eil1 mutant compared to the WT at - Fe. However, FIT gene expression 

levels were reduced by half in ein3eil1 at – Fe (performed by a co-worker J. Mohrbacher, 

Fig. 4a of Lingam et al., 2011). The reduction was only observed in wild type plants.  

 

In FIT Ox ein3 eil1 plants, the FIT protein level was not reduced compared with FIT Ox 

(in a wild type EIN3/EIL1 background), while in the same experiment, FIT protein was 

reduced to 30% in ein3 eil1 versus the wild type at –Fe. 

 

These experiments indicate that EIN3/EIL1 affect FIT accumulation in the wild type. We 

conclude that the interaction between FIT and EIN3/EIL1 may serve to enhance FIT 

protein levels  
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Figure 4.16 FIT protein regulation in ein3eil1 
FIT protein abundance in seedling roots of the wild type (WT) and ein3eil1, exposed to + or –Fe 
as indicated, showing that FIT protein abundance is reduced in the ein3 eil1 mutant. 

 
 
 

 
 
Figure 4.17 FIT protein regulation in FIT Ox ein3eil1 plants, Immunoblot analysis of 
seedlings of FIT Ox ein3eil1, FIT Ox, ein3eil1 and wild type, grown at - Fe, with anti-FIT-C 
antibody (upper image;  asterisk indicates 35-kD of FIT protein), Ponceau S-staining of proteins 
on the same membrane (lower image). FIT protein levels were reduced to 30% in ein3 eil1 
versus the wild type, but not in FIT Ox ein3 eil1 versus FIT Ox.  
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4.5.3 Treatment with MG132 restored FIT protein abundance 
 

The downregulation of FIT levels in response to AVG and in the ein3eil1 background 

suggests that perhaps FIT was destabilized and degraded by the proteasome in the 

absence of ethylene signaling. To check this possibility, we incubated wild type plants 

that grew on AVG with the proteasome inhibitor MG132. In this experiment, FIT protein 

was reduced to 30% upon AVG treatment at –Fe compared with the control (Fig. 4.18). 

Upon treatment with 100 mM MG132, FIT protein levels were restored in plants 

exposed to AVG (Fig. 4.18).  

 

 
 
 

Figure 4.18 FIT protein regulation in wild type roots upon MG132 treatment  
The effect of MG132 on FIT abundance in AVG-treated roots, showing that MG132 treatment 
restored FIT abundance upon AVG treatment. Wild type seedlings, exposed to + and –Fe, 
treated with 10 mM AVG or untreated (co, control) and treated for 4 h with or without 100 mM 
MG132 (+ or –MG132).  
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Furthermore, we also investigated the effect of MG132 on ein3eil1 seedlings. In this 

experiment, the FIT protein level was 10% in the mutant versus wild type at –Fe. Upon 

treatment with 100 mM MG132, we observed a restoration of FIT protein abundance to 

60% of the wild type at –Fe (Fig. 4.19). These findings suggest that in the absence of 

EIN3/EIL1, FIT protein was more prone to proteasome-dependent degradation than in 

their presence. 

 

 

 

 
 
 
Figure 4.19 FIT protein regulation in ein3eil1 roots upon MG132 treatment 
The effect of MG132 on FIT abundance in ein3eil1, showing that MG132 restored FIT protein 
levels in ein3eil1 mutant. Seedlings exposed to + and –Fe, treated for 4 h with or without 100 
mM MG132 (+ or –MG132); immunoblot analysis with anti-FIT-C antibody (top image; asterisk 
indicates 35-kD position of FIT protein) and Ponceau S-staining of proteins on the same 
membrane (bottom image). 
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5. Discussion 
 
5.1 Posttranscriptional regulation of FIT 
 
Plants react in response to Fe starvation by upregulating the genes involved in the 

mobilization and subsequent uptake of Fe. In dicot plants, this regulation is controlled by 

a positive regulator FIT. Previous reports showed the FIT regulation at transcriptional 

level under Fe limiting condition (Colangelo and Guerinot, 2004; Jakoby et al., 2004; 

Yuan et al., 2005). For the first time, by developing a specific FIT polyclonal antiserum, 

we could detect endogenous FIT protein from the Fe starved wild type plant root 

extracts. Thus, we could study posttranscriptional regulation of endogenous FIT. 

Analysis of FIT Ox lines was useful for further analysis since the constitutive FIT mRNA 

expression allowed analysis of protein expression uncoupled from FIT gene 

transcription. Despite the FIT accumulation at +/-Fe in FIT Ox lines, the target genes 

exclusively induced upon –Fe situation supports the possible posttranslational 

regulation of FIT. Such possible regulatory mechanisms and the factors that can 

influence FIT activation, stability are discussed in the following paragraphs.  

 
5.2 NO is required for FIT accumulation and stability 
 

As reported previously, application of NO inhibitors such as cPTIO caused a decrease 

of Fe deficiency gene expression (Graziano et al., 2002; Graziano and Lamattina, 2007; 

Besson-Bard et al., 2009; Chen et al., 2010). Therefore, at the transcriptional level NO 

can induce FIT, IRT1, and FRO2. In addition, for the first time we demonstrated that 

application of cPTIO, L-NAME and Tungstate also caused a reduction of FIT protein. 

However, cPTIO, a scavenger of NO, caused a reduction of FIT protein levels at +Fe 

and –Fe in both wild type and FIT overexpression lines (HA-FIT). The observed 

inhibitory effect of cPTIO on FIT protein levels was not merely the result of reduced 

transcriptional activation of FIT.  
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Hence the reduced protein accumulation caused by cPTIO was also apparent in HA-FIT 

overexpression plants, where HA-FIT transcription was not regulated by nitric oxide and 

consequently not affected by cPTIO. Therefore, we deduce that NO promoted FIT 

protein levels. 

 Although principally low amounts of FIT protein are sufficient to trigger FIT downstream 

responses to the full level, this was not the case upon cPTIO treatment in the wild type. 

Perhaps the remaining levels of active FIT were too low in the wild type treated with 

cPTIO to cause downstream gene induction, the similar situation was observed in the 

wild type plants treated with Tungstate. However, L-NAME treatment did not show such 

repression on the FIT downstream responsive genes in wild type. The reason for such 

variations is probably due to their mode of action to inhibit NO upon Fe deficiency. 

Since cPTIO is a scavenger of NO, that might remove NO which is produced or 

synthesized by various pathways. Whereas, Tungstate and L-NAME can only target 

specific pathways of NO synthesis in this scenario the other or alternative source of NO 

synthesis may be still active and compensate the role or production of NO (L-NAME 

blocks NO synthase and Tunstate inhibits the formation of an active nitrate reductase). 

In HA-FIT overexpression plants treated with cPTIO, the levels of the remaining FIT 

protein were higher than in the wild type, and presumably, sufficient amounts of active 

FIT were among it. This could be the reason why in HA-FIT overexpression plants, 

cPTIO, L-NAME and Tungstate treatments did not affect downstream gene expression.  

 

However, the detailed mechanism of NO involvement in activating and stabilizing FIT is 

not clear, one could speculate a couple of possibilities. One of such possibilities could 

be the nitrosylation of Cys residues (Tada et al., 2008; Lindermayr and Durner, 2009). 

The presence of 3 cystein residues in FIT amino acid sequence hints such possibility. 

Moreover, majority of these 3 cystein residues (2 out of 3) are present in the C-terminal 

part of FIT (work done by co-worker Johannes Meiser, Johannes Meiser 2011) which 

could be the potential target for regulation.  
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Interestingly, all these three are conserved to SlFER (Solanum lycopersicum). In such 

scenario of nitrosylation of FIT in presence of NO could answer the differential 

physiological responses between the controls and cPTIO treated plants. In addition to 

FIT, NO (GSNO treatment) could induce other Fe dependant genes such as BHLH038 

and BHLH039 (García et al., 2010). Similarly, bHLH038/039 might also regulate at 

transcriptional and posttranscriptional level in response to NO just like FIT. It was 

reported that FIT interacts with bHLH038/039. Probably, the posttranslational 

modifications (nytrosylation) of these bHLHs in response to NO might facilitate such 

interaction (Yuan et al., 2008). In addition, the presence of conserved cystein residues 

in bHLH 038/039/100 (Vorwieger et al., 2007) is thought-provoking the possibility of 

nitrosylation of cysteins in response to NO. 

 

5.3 NO reduced the proteasomal degradation of FIT  

 

Another novelty of the present study is that, MG132, which acts to inhibit the 

proteasome, restored FIT protein levels upon cPTIO treatment. These observations 

suggest that inhibition of NO provoked a stronger proteasomal degradation of FIT. 

Hence, NO may act to prevent the proteasomal degradation of FIT.  

 

Sivitz et al. (2011) proposed that the activity of FIT was related to its constant turnover 

and that ubiquitination and proteasomal degradation of FIT, stimulated by –Fe, might be 

needed to maintain a turnover of FIT for its transcriptional activity at its target binding 

sites. On the other hand, we proposed that the differential FIT activity was due to the 

activation of FIT from a large inactive pool to a small active pool, both of which might be 

targeted by the proteasome (Lingam et al., 2011). Here, we showed that the activity of 

FIT was not compromised by CHX treatment (Meiser et al., 2011).  
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Obviously, low amounts of FIT protein were sufficient to trigger IRT1 and FRO2 

induction, so we assume that these low amounts contained sufficient active FIT that the 

synthesis of “fresh” FIT (Sivitz et al., 2011) was not immediately needed. 

 

By comparing the amounts of protein at +Fe and –Fe upon CHX and cPTIO treatment 

and the untreated controls (Meiser et al., 2011), we suggest that a large pool of FIT that 

was targeted by the proteasome must have been inactive FIT. Since the proteasome 

did not appear to select between active and inactive FIT, the proteasomal degradation 

may not play an important role for increasing the pool of active FIT. This leads to the 

question of what other mechanism could activate FIT. One possibility is that the active 

and inactive states differ by specific covalent modifications. If the transfer from the 

inactive state to the active state has a bottleneck, this could be achieved through 

limitation of the enzymes that may confer or remove covalent modifications to “activate” 

FIT (Meiser et al., 2011).  

 

In this study, we could show a novel degradation mechanism of root Fe uptake 

regulating transcription factor FIT and we are able to propose the reasons and 

mechanisms for the turnover and activation control of FIT. To our knowledge, this is a 

new link between FIT activity and NO that could be concluded from our work. 
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5.4 EIN3/EIL1 affect FIT abundance 
 
We present evidence that FIT abundance can be modulated in plants and that this 

modulation can be achieved by hormonal cues. We showed in two independent 

experimental assays that ethylene affected the levels of FIT. We demonstrated that the 

presence of the ethylene inhibitor AVG resulted in lower FIT amounts in plant seedlings 

than in the control. Pharmacological treatment using ethylene inhibitors is considered 

suboptimal, since the available substances have side effects. 

 

However, in combination with mutant analysis of the signaling pathway (ein3eil1), the 

pharmacological results gained significant support. We presented evidence that in the 

absence of EIN3/EIL1, namely, in ein3eil1 mutants, FIT was present at lower levels than 

in the wild type control. FIT levels were not found to be proportional to the amounts of 

measured FIT transcripts. In the wild type situation, FIT was detectable at –Fe but not at 

+Fe. On the other hand, the difference in FIT expression between + and –Fe was only 

two to threefold in the wild type. In the ein3 eil1 background, FIT levels were decreased 

in a stronger manner (reduction to 8, 10, and 30% of wild type levels in different 

experiments) than FIT mRNA levels (reduction to 30 to 50%).  

 

Two conclusions can be drawn from our results, the level of FIT is a target of regulation 

in plant cells, and ethylene signaling positively affects FIT levels. We thus propose in 

our model (Figure 5.1) that FIT is not stable in plant cells. One explanation is that 

ethylene signaling via EIN3/EIL1 results in the production of an unknown factor that is 

needed for maintaining a high level of FIT. Another explanation is that EIN3/EIL1 

themselves are the factors needed for maintaining the high level of FIT. Support for this 

latter explanation comes from the observed protein interaction between FIT and 

EIN3/EIL1 (Lingam et al., 2011).  
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In a continuation study, to understand the meaning /benefit of the identified interaction 

between FIT and EIN3/EIL1 and the importance of EIN3/EIL1 in stabilizing FIT by 

interacting with FIT, a microarray analysis of ein3/eil1 and wild type under +/-Fe have 

been performed. These analysis suggested that majority of the genes were differentially 

regulated in ein3 eil1 mutants vs. wild type upon Fe deficiency than in +Fe condition. 

Therefore it was concluded that  by enhancing Fe uptake through interaction with FIT 

and by re-organizing the photo oxidative stress responses, EIN3/EIL1 might contribute 

to decreasing photo-oxidative stress that may occur under light conditions in response 

to Fe deficiency (Lingam et al.,2011, Bauer and Blondet 2011). 

 

In the model (Figure 5.1), we propose that the physical protein interaction may thus 

serve to modulate the stability of FIT. Through the increase in FIT stability, EIN3/EIL1 

can then indirectly, in a nonsynergistic manner with FIT, contribute to full expression of 

FIT downstream target genes. The question remained as to how EIN3/EIL1 interaction 

may affect FIT protein stability. An answer was suggested from experiments with the 

proteasomal inhibitor MG132. Application of this inhibitor could alleviate the 

downregulation of FIT abundance upon AVG treatment and in the ein3 eil1 background. 

It is therefore a likely possibility that FIT is targeted by the proteasome and that the 

interaction with EIN3/EIL1 upon ethylene signaling may counteract this effect, hence 

resulting in a stronger FIT protein abundance and action. Since it was shown that 

BHLH038 and BHLH039 can interact with FIT (Yuan et al., 2008), it will be interesting to 

investigate the posttranscriptional regulation of these bHLH factors as well and perhaps 

their capacity to interact with EIN3/EIL1. 
 

Thus, FIT might play pivotal role in the FIT based Fe mobilization network in plants by 

coordinating the various signals that contribute for the successful Fe mobilization and 

uptake as per the Fe demand of the plant. The sophisticated fine tuning FIT activity may 

act as safeguard to by preventing over accumulation of Fe and subsequent Fe toxicity. 
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a) Wild type 

 

 

b) FITox 
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Figure 5.1 model explaining a summary of events that activate, control and stabilize FIT 
 
The collective summary of our findings were depicted in +/-Fe, in wild type (a) and FIT 
overexpression (b) scenarios (tagged and non tagged FITOx plants).  
Upon –Fe FIT is produced in wild type plants, where as FIT is produced independent of Fe 
supply in FIT Ox plants. The activity of FIT is tightly regulated. In response to –Fe FIT is 
activated and leads to subsequent induction of downstream targets such as FRO2 and IRT1 
expression. Based on the relative IRT1 and FRO2 expression levels and the levels of FIT 
protein, we propose that only a small pool of FIT protein is active, while a large pool remains 
inactive. Active and inactive FIT undergoes rapid constant turnover in plant cells. FIT protein 
can dimerize with bHLH038 and bHLH039 (Yuan et al., 2008) and might drive the downstream 
responses of IRT1 and FRO2. Fe deficiency leads to ethylene production (Romera et al., 1999; 
Li and Li, 2004; Zuchi et al., 2009). EIN3/ EIL1 activated in the ethylene signaling pathway 
physically interact with FIT, NO and ethylene enhances FIT accumulation by counteracting 
proteasomal degradation of FIT. According to our model, EIN3/EIL1 does not primarily 
participate in conjunction with FIT to induce IRT1 and FRO2. We favor the hypothesis that 
EIN3/EIL1 function to amplify Fe acquisition through stabilization of FIT. 
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Interestingly, the NO effect on gene expression and FIT protein regulation paralleled 

that of ethylene (Graziano et al., 2002; Lucena et al., 2006; Graziano and Lamattina, 

2007; Besson-Bard et al., 2009; Chen et al., 2010; García et al., 2010; Lingam et al., 

2011; Wu et al., 2011). Ethylene, like NO, is required for full-level upregulation of Fe 

deficiency gene expression and FIT protein abundance. This observation suggests that 

NO and ethylene act in the same way and perhaps in sequential order. It was recently 

proposed that a strictly linear relationship between NO and ethylene action may not 

exist and that they may promote or influence each other (García et al., 2010, 2011; 

Romera et al., 2011). 
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