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.

Optical communication and information processes will further influence the lives of
people in the decades to come. Dialogue and information transfer, from person to

person, from people to people, are important, nay essential, for mankind.

—Nicolaas Bloembergen (“Nobel Banquet Speech”, December 10, 1981) [1]
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Abstract

In this work, we experimentally study quantum frequency conversion of single photons
from the visible spectral range (input) to a wavelength that lies in one of the low-loss
telecom wavelength bands around 1.3µm or 1.55µm (output). To this end, we use
difference frequency generation (DFG) in nonlinear optical waveguides made of period-
ically poled LiNbO3. The DFG process is driven by a strong coherent light field that
is delivered by a home-built 532-nm-pumped continuous-wave optical parametric oscil-
lator based on bulk periodically poled LiTaO3. We demonstrate two efficient schemes:
frequency down-conversion from 738 nm to 1560 nm and from 711 nm to 1310 nm. In
the first case, we have employed faint laser pulses to emulate single photons at 738 nm
and extensively investigate noise effects. An external (internal) conversion efficiency of
8 % (73 %) was achieved and spontaneous Raman scattering was identified as a main
noise source. In the second case, we used true single photons from an InP quantum dot.
Here the external (internal) efficiency was 32 % (≥ 64 %). We demonstrate the preser-
vation of the photon lifetime and of nonclassical intensity correlations under frequency
down-conversion. Compared with the first process, a much better signal-to-noise ratio
was observed in the second process. The results hold great promise with regard to
the implementation of on-demand telecom single-photon sources and future quantum
networks.

Zusammenfassung

In dieser Arbeit wird die Quantenfrequenzkonversion einzelner Photonen aus dem sicht-
baren Spektralbereich (Eingang) zu einer Wellenlänge in einem der verlustarmen Te-
lekombänder um 1.3µm oder 1.55µm (Ausgang) experimentell untersucht. Dazu wird
Differenzfrequenzmischung (DFG) in optisch nichtlinearen Wellenleitern aus periodisch
gepoltem LiNbO3 benutzt. Der DFG-Prozess wird von einem intensiven, kohärenten
Lichtfeld getrieben, welches von einem 532-nm-gepumpten optisch parametrischen Os-
zillator basierend auf periodisch gepoltem LiTaO3 geliefert wird. Zwei effiziente Prozesse
werden demonstriert: Frequenz-Abwärtskonversion von 738 nm nach 1560 nm und von
711 nm nach 1310 nm. Im ersten Fall wurden abgeschwächte Laserpulse benutzt, um
einzelne Photonen bei 738 nm zu simulieren und Rauscheffekte zu untersuchen. Eine
externe (interne) Konversionseffizienz von 8 % (73 %) wurde erreicht und spontane
Ramanstreuung als Haupt-Rauschquelle identifiziert. Im zweiten Fall wurden echte
Einzelphotonen von einem InP-Quantenpunkt benutzt. Hierbei lag die externe (interne)
Konversionseffizienz bei 32 % (≥ 64 %). Die Erhaltung von Photonenlebensdauer und
nichtklassischen Intensitätskorrelationen wurden demonstriert. Im Vergleich zum er-
sten Prozess konnte beim zweiten Prozess ein viel besseres Signal-zu-Rausch-Verhältnis
beobachtet werden. Die Ergebnisse sind vielversprechend im Hinblick auf die Reali-
sierung von Telekom-Einzelphotonenquellen und zukünftigen Quanten-Netzwerken.
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Chapter 1

Introduction

In 1984, inspired by an idea originally developed in the 1970’s [2], Bennett and Brassard
published their famous proposal for quantum key distribution (QKD) [3], now known
as the BB84 protocol. In principle, it provides a method for secure communication
guaranteed by the fundamental laws of quantum physics. A couple of years later,
Bennett, Brassard, and co-workers managed to experimentally demonstrate QKD over
a 32-cm distance in air [4]. This experiment may be considered one of the first technical
applications that exploits the potential of quantum physics for data communication.
Individual photons were used as information carriers.
It is fair to say that, since the first experimental demonstration of QKD, a scientific
revolution has taken place. Today, quantum optics is no longer only a testbed for
fundamental physics but is also more and more becoming a technological discipline.
Many researchers around the world strive to exploit the nature of quantum correlations
as a resource to build practical devices such as QKD systems or quantum computers—
machines that have the potential to solve certain computational problems (e.g., integer
factorization of large numbers) much more efficient than any classical computer [5, 6].
It is a vision that some day QKD will be possible between two far apart cities or that
quantum computers on different continents get connected (‘the quantum internet’ [7]).
However, the exchange of quantum information (QI) over large distances remains an
unsolved problem so far and currently is subject to intensive research. In the following,
we briefly outline the challenges associated with long-distance quantum communication
(QC) and the approaches to overcome them. We start by briefly recalling some basic
concepts in QC and QI.

1.1 Qubits, Photons, and Quantum Communication

Stationary vs. Flying Qubits

The quantum bit (qubit) [8] is a fundamental concept in QC and QI. In classical digital
data processing, a bit is either in state ‘0’ or ‘1’. These states can be represented, for
example, by two different voltage levels. In contrast to that, a qubit is generally in a
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2 Chapter 1. Introduction

coherent superposition of two quantum states, say |0〉 and |1〉, represented by

|ψ〉 = α |0〉+ β |1〉. (1.1)

As usual, α and β are two complex numbers with the property |α|2+|β|2 = 1. Compared
with classical bits which can be stored on a hard drive for many years, qubits are very
fragile due to decoherence effects. An illustrative representation of the state |ψ〉 is often
given by a vector pointing to a point on the surface of a unit sphere, the Bloch sphere.
To this end, the eigenstates of the two-level system |1〉 and |0〉 are chosen to lie on the
north and southpole of this sphere (or vice versa), respectively, and the coefficients α
and β are identified with α = cos(θ/2) and β = eiφ sin(θ/2). The parameters θ and
φ are the polar and the azimuthal angle in a spherical coordinate system. Another
essential resource in QI science are entangled states, that is, quantum correlated states
of two or more qubits. In the case of two qubits labeled A and B, Bell states of the
form

|Ψ±〉 =
1√
2

(|0〉A|1〉B ± |1〉A|0〉B) (1.2)

or |Φ±〉 =
1√
2

(|0〉A|0〉B ± |1〉A|1〉B) (1.3)

are examples of such entangled states. These states cannot be written as a product
of two single qubit states—this is in fact the definition of entanglement. Suppose the
combined system of A and B is in the |Ψ+〉 state. A measurement on one qubit, say
A, which yields the result that A is in state |0〉A (|1〉A) is equivalent to a projection
onto the state |0〉A|1〉B (|1〉A|0〉B). Thus, with a probability of one, system B will be
instantaneously in state |1〉B (|0〉B) in the same moment as we perform a measurement
on A. This strange behavior has no counterpart in classical physics and is a powerful
resource for applications. Entanglement between two particles is usually tested by a
violation of Bell’s inequality [9] (mostly in the CHSH formulation of Clauser, Horne,
Shimony, and Holt [10]). Quantum state tomography [11] can also be applied to prove
entanglement. This method is experimentally more involved but has the advantage of
yielding the reconstruction of the complete density matrix. It thus reveals the maxi-
mally possible information about the two-particle system. If the density matrix of the
system is known, a number of entanglement measures [12] can be calculated to analyze
the quality of the entangled state. We emphasize that the particles A and B need not
to be identical to get entangled in some way.
In principle, qubits can be represented by any quantum two-level system. A great va-
riety of systems are being considered to locally manipulate and store QI (‘stationary
qubits’). For example, electronic states of trapped atoms, nuclear spins in molecules in
liquid solutions, single spins in semiconductor quantum dots (QDs), single spins of de-
fect centers in diamond, superconducting qubits, and others have been investigated [6].
A general difficulty with all these systems is scalability. For example, the number of ion
qubits that can be faithfully controlled in an ion trap is very limited; 14 ions seems to
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be the current record [13]. However, for realistic computational tasks much more qubits
are needed (e.g., factorization of a large number with N = 1024 bits requires a num-
ber of physical qubits which is on the order of 103–104 [14]). In a visionary paper from
1997, Cirac et al. [15] therefore proposed a quantum network formed by quantum nodes
(i.e., units containing one or a few stationary qubits) that are connected via quantum
channels (optical fibers). In the original paper, the quantum nodes are thought of as
atoms in optical cavities but they could also be implemented by solid-state qubits, such
as single spins in semiconductor QDs or similar. Sending photons, the ‘flying qubits’,
through these channels allows for the exchange of QI between distant nodes. In anal-
ogy to stationary matter qubits, several degrees of freedom can be used to encode a
qubit on a photon, for example, the polarization or the phase of the photons. In po-
larization coding, two orthogonal polarization states, say vertical polarization |V 〉 and
horizontal polarization |H〉, are chosen to represent the states |0〉 and |1〉 in Eq. (1.1)
and (1.2), (1.3). In this case, the Bloch sphere is mapped to the Poincaré sphere [16]
commonly used to describe arbitrary polarization states of light (see [11] for a detailed
discussion). Polarization coding was actually used by Bennett et al. in the first QKD
experiment described in the beginning. Polarization-entangled photon pairs can also
be used in QKD as in the scheme proposed by Ekert [17].

Generation of Nonclassical Light States

In a quantum network, QI is transferred from a stationary qubit to a flying qubit
in a coherent process. The generation of photons and the encoding of QI onto these
photons happens simultaneously in a single step. In other applications, like in QKD
or in some quantum repeater protocols (see next section), single photons are generated
in a first step and QI is encoded onto them in a second step. Information encoding
can be performed, for example, by manipulating the polarization of the photons with
polarizers or by creating an entangled state between a previously generated photon and
a matter qubit. The generation of single photons is not as easy as it seems since LEDs
or lasers are not suitable to produce the kind of photons that are required for many
QC and QI tasks. Instead, nonclassical light states are often needed, that is, single-
photon states or entangled photon states (we will leave squeezed states [18] aside). For
experimentalists, a single-photon state means a light field composed of pulses arriving
equally spaced in time and containing exactly one photon each. Such states can be
generated by pulsed excitation of an optical transition between two energy levels in a
single quantum system, such as a QD [19] or a single atom [20]. Single-photon sources of
this type are called triggered or on-demand single-photon sources [21]. In the ideal case,
each excitation pulse will be followed by the emission of a photon from the quantum
system. The quality of a triggered single-photon source is usually characterized by
measuring a function known as the degree of second-order coherence g(2)(τ) [18], where
0 ≤ g(2)(0) < 1/2 for single quantum emitters (g(2)(0) = 0 for a perfect source). A
classical coherent light source has a constant g(2)(τ) = 1 and the dip at g(2)(0) observed
for nonclassical sources is called photon antibunching [22].
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A second type of single-photon sources are so-called heralded single-photon sources
[21]. This usually refers to photon pairs generated via spontaneous parametric down-
conversion (SPDC) in nonlinear crystals or fibers. In this process, the nonlinear material
is pumped with a laser beam and, with a small probability, pump photons spontaneously
split up into two photons called signal and idler photons. Energy conservation must
be fulfilled such that ωp = ωs + ωi, where ωp, ωs, ωi are the angular frequencies of
pump, signal, and idler field, respectively. As the photons are always produced in
pairs, detection of one of them can be used to herald the other. This technique enjoys
great popularity since the experimental effort is moderate and it allows for the creation
of entangled photon states of the type given by Eq. (1.2) or (1.3).
It was long believed that single-photon states or entangled photon states are a must
for QKD. However, nowadays the conviction is growing that this is actually not the
case [21]. Based on the original BB84 protocol, more sophisticated protocols have
been developed (e.g., the decoy state protocol [23]) which use attenuated laser pulses
but nevertheless guarantee a high level of security. QKD systems relying on such
protocols have been developed and are commercially available. The laser pulses have to
be attenuated such that each pulse contains less than one photon per pulse on average.
Typically, an average number of 0.1 photons per pulse is chosen which means that 9
of 10 pulses contain no photon at all. This, however, can be compensated by the high
repetition rate (up to 1 GHz) of the lasers employed in QKD systems. As a consequence,
QKD systems based on faint laser pulses currently outperform implemenations based
on triggered single-photon sources or sources of entangled photon pairs. However, in a
recent paper [21] Sangouard and Zbinden come to the conclusion that single photons
are by no means useless since they are needed in future technologies such as device-
independent QKD [21,24] or quantum repeaters. Device-independent QKD means that
the security of a QKD system does not depend on any assumptions about the devices
used (which may have been the original intention of the inventors). The concept of
quantum repeaters is explained in the next paragraph.

Technical Challenges for Long-Distance Quantum Communication

So far, we have recalled what qubits are, how they can be encoded to photons, and how
single photons or entangled pairs of photons are created in practice. We now address
the question what actually limits long-distance (distances longer than ∼100 km) fiber-
based QC. In fact, polarization coding may be suitable for free-space transmission of
optical qubits but it is unsuitable for long-haul transmission through an optical fiber
channel. It is technically quite involved to maintain the polarization state of the pho-
tons while they propagate through a long non-polarization-maintaining telecom fiber.
However, alternative techniques which are more compatible with optical fibers were
invented and have been successfully applied, like phase or frequency coding [25]. The
destruction of polarization states in fibers can thus be circumvented. A second more se-
vere technical problem in terms of long-haul fiber transmission of optical qubits is fiber
attenuation. To understand the heart of this problem, we recall the working principle
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of classical fiber-optic communication. To send information available as a sequence of
classical bits, this sequence is converted to an optical pulse pattern—‘pulse’ represents
a ‘1’, ‘no pulse’ represents a ‘0’—and sent through a fiber channel. Each pulse contains
a large number of photons and the quantum state of an individual photon is completely
irrelevant in this classical method. Optical communication fibers are made of SiO2 with
the lowest attenuation coefficient around the so-called telecommunications wavelengths
at 1310 nm (zero dispersion and local attenuation minimum) and at 1550 nm (absolute
attenuation minimum).1 But even if a wavelength around 1550 nm is chosen as the car-
rier wavelength, 99 % of the inserted power is lost after 100 km due to fiber attenuation
(typically 0.2 dB/km). This attenuation in conjunction with dispersion effects is respon-
sible for the degradation of the pulse pattern during transmission. As a consequence,
the distance after which the message can be reliably reconstructed is limited. For this
reason, repeaters are incorporated into optical transmission lines every 50–100 km to
recover, amplify, and re-transmit the incoming optical signals. Every optical signal that
is sent through a submarine fiber cable, say from Europe to the U.S., is thus amplified
many times. Unfortunately, this method cannot be applied to optical qubits because it
is impossible, that means, forbidden by the laws of quantum physics, to faithfully pro-
duce a copy of any quantum system (such as the quantum state of a photon). This was
proven by Wootters and Zurek and is known as the ‘quantum no-cloning theorem’ [26].
In view of this situation, Briegel et al. devised the idea of a ‘quantum repeater’ in
1998 [27]. Three years later, Duan, Lukin, Cirac, and Zoller came up with a proposal
for an experimental implementation of such quantum repeaters, called the DLCZ proto-
col [28]. In these proposals, a large distance L between two remote quantum memories
(devices capable of storing QI) at locations A and B is bridged by concatenating N
elementary fiber links of length L/N . A quantum state carried by a photon can be
‘written’ to a quantum memory by the absorption of a photon, stored for a certain
time (e.g., as a collective excitation in an ensemble of atoms [28]), and retrieved from
it in a controllable way by the emission of a photon. Two or more quantum memories
can be entangled in the sense that their quantum state is described by a non-separable
state as in Eq. (1.2) or (1.3). Reference [29] gives an overview on physical systems that
are currently investigated as candidates for quantum memories. In the DLCZ protocol,
the remote systems at A and B eventually become entangled by successive so-called
entanglement swapping operations between neighboring quantum memories. These en-
tanglement swapping operations rely on the exchange and detection of single photons.
Once A and B are entangled in some way, quantum information can be transferred by
quantum teleportation [30]. It turns out that quantum repeater protocols, in principle,
could offer a more efficient transfer of QI than direct transmission of photons. The
trick is that photons only have to travel a maximum distance of L/N (the length of one
elementary link) instead of the whole distance L. Meanwhile, a number of variations
and improvements of the DLCZ protocol have been proposed. Some of them suggest

1These wavelength bands are termed O-band (1260–1360 nm) and C-band (1530–1565 nm) and are
perhaps best known. Further wavelength bands in fiber-optic communication are: E-band (1360–
1460 nm), S-band (1460–1530 nm), L-band (1565–1625 nm), and U-band (1625–1675 nm).
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to use photon pair sources or on-demand single-photon sources in combination with
quantum memories. A detailed explanation of possible implementations of quantum
repeater schemes and how they work is far beyond the scope of this introduction. An
instructive and detailed review can be found in [31].
The quantum repeater concept is an ingenious idea which perfectly works on paper so
far. Some first experimental steps have also been taken. However, to make this idea
really work in practice a number of technical issues must be tackled. One difficulty,
among several others, is that the individual components to establish a quantum re-
peatered connection simply work at different wavelengths. On the one hand, the most
efficient single-photon detectors and also many implementations of quantum memories
operate at wavelengths shorter than 1.0µm. On the other hand, the length of an ele-
mentary fiber link is estimated to be on the order of 100 km in realistic scenarios [31].
Therefore, photons at telecommunications wavelengths should be used to minimize
losses due to fiber attenuation. Photon pair sources, as employed in some quantum
repeater protocols [32], are capable of producing telecom photons. Yet, there is also a
proposal for an implementation with on-demand single-photon sources [33] which would
be very promising if these sources had better performance at telecom wavelengths.

1.2 Quantum Frequency Conversion

The aforementioned mismatch of wavelengths was the starting point for this thesis.
We experimentally investigate a technique called quantum frequency conversion (QFC)
which has the potential to become a remedy to the described wavelength compatability
problems. Simply put, QFC describes methods by which the wavelength of photons is
changed without destroying their quantum state. More precisely, in a QFC device, the
quantum state of an input photon at wavelength λa is transferred to an output photon
at λb, whereby the photon at λa is annihilated and the photon at λb is created (in
compliance with the no-cloning theorem). To this end, intrinsic optical nonlinearities
in solid-state crystals, highly nonlinear optical fibers or atomic ensembles are utilized.
The conversion process has to be pumped by one (three-wave mixing) or two (four-
wave mixing) strong pump lasers. We refer to frequency down-conversion if the input
wavelength is shorter than the output wavelength (λa < λb) and to frequency up-
conversion if the opposite is true. It should be emphasized that quantum frequency
down-conversion and SPDC are two different things.
Before we come to the concrete aim and outline of this work, we give an overview on
important literature that has been published on QFC so far. This overview, while not
exhaustive, should allow for a classification of the present thesis within the scientific
work performed by others in the field.

Quantum Frequency Conversion—State of the Art

QFC was first proposed by Prem Kumar in 1990 [34] and experimentally demonstrated
two years later by Huang and Kumar at Northwestern University [35]. In Ref. [35] twin
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beams at λa = 1064 nm with nonclassical intensity correlations (squeezed state) were
generated in a KTiOPO4 (KTP) crystal and one of them was mixed with pulsed laser
light at λp = 1064 nm in a second KTP crystal to generate light at λb = 532 nm via
sum frequency generation (SFG, ωb = ωa + ωp). The authors could show nonclassical
intensity correlations between the non-converted 1064-nm beam and the up-converted
532-nm beam, that is, the initial correlations between the twin beams at 1064 nm had
been preserved.
In a paper from 2003, Giorgi et al. (De Martini group, Sapienza University of Rome)
demonstrated a dual-color Mach–Zehnder interferometer (MZI) at the single-photon
level [36]. This MZI uses three beamsplitters instead of two. Photons at λa = 876.1 nm
from an attenuated continuous-wave (cw) diode laser were sent into the interferometer
and split into two beams by the first beamsplitter. Then, part of the photons in both
beams were frequency up-converted to λb = 416.8 nm by SFG in a bulk LiIO3 crystal
producing a total of four beams. A 795-nm femtosecond Ti:sapphire laser was used to
pump the process. The two beams containing the non-converted IR photons were over-
lapped on a second beamsplitter and the beams containing the up-converted UV photons
were overlapped on a third beamsplitter. By changing the optical pathlength in one
arm of the MZI, the authors observed interference fringes at both wavelengths, thereby
showing that first-order coherence was preserved under frequency up-conversion. Re-
markably, the authors already anticipated the great potential of QFC for ‘a QI network
made of heterogeneous components’ [36].
Soon thereafter, other groups (Kwiat group at University of Illinois, Wong group at
MIT, Fejer group at Stanford University) investigated frequency up-conversion as a
means to overcome the problem of noisy and inefficient single-photon detectors at tele-
com wavelengths [37–39]. The idea of up-conversion detectors had long been around
in another context [40]. However, only with the advent of periodically poled lithium
niobate (PPLN) as a nonlinear material, frequency conversion could be made efficient
enough such that investigation of single-photon up-conversion detectors seemed worth-
while. In all three experiments, a weak input signal (µW level) at a telecom wavelength
(λa = 1550 nm [37, 38], λa = 1340 nm [39]) was up-converted to an output wavelength
in the red spectral range where efficient low-noise silicon detectors can be employed
for detection. Frequency up-conversion was accomplished by SFG in a PPLN crystal.
Different pump schemes were adopted by the three groups. Since bulk crystals were
used in [37,38], they had to apply a relatively high pump power which was accomplished
by using a pulsed 1064-nm pump laser (13 kW pulse peak power [37]) or by resonant
enhancement in a ring cavity (23 W cw power [38]). In Ref. [39] a cw pump power
of 88 mW at 1550 nm was sufficient to reach maximum conversion efficiency because a
PPLN waveguide (WG) was used. Waveguides provide a remarkable increase in con-
version efficiency at relatively low pump powers due to strong spatial confinement of
the interacting light fields. The first up-conversion experiments in PPLN showed that
frequency conversion can be made very efficient (∼ 90 % internal efficiency) but that
the amount of noise generated by the strong pump field had to be reduced to make
QFC a useful technique for applications in quantum technology.
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In 2005, Tanzilli et al. (Gisin group, University of Geneva) [41] reported an experi-
ment in which they demonstrated that energy-time entanglement between two photonic
qubits was preserved in frequency up-conversion. In this pioneering work, two PPLN
WGs were employed. The first WG was pumped with 712-nm light to create energy-
time entangled photon pairs (one signal photon at λa = 1312 nm and one idler photon
at 1555 nm) via SPDC. In the next step, the 1312-nm photons were sent to the sec-
ond PPLN WG in which they were up-converted to λb = 712 nm. Using Franson-type
interferometers [42], the authors could prove entanglement between the up-converted
712-nm and the 1555-nm photons. Thus, the initial entanglement between the 1312-nm
and 1555-nm photons was not corrupted by the up-conversion process.
In a theoretical paper in 2008, Ou pointed out that complementary to frequency up-
conversion, ‘efficient frequency down-conversion is essential in a quantum network for
converting photons emitted by atoms (∼ 0.8µm) to photons transmitted in optical
fibers (∼ 1.56µm)’ [43]. Thus far, only up-conversion had been investigated. This
was probably due to the fact that nonlinear frequency down-conversion was considered
to be too noisy to be useful for QFC. Yet, in a seminal experiment by Radnaev et
al. (Kuzmich group, Georgia Tech) from 2010, both quantum frequency down- and
up-conversion were investigated [44]. The experiment described in [44] is special in
several ways. The authors have combined an atomic spin-wave quantum memory with
telecom-wavelength conversion. For the implementation of QFC, they do not use a
nonlinear crystal but employ four-wave mixing (FWM) in a cold 87Rb ensemble that
was prepared in a magneto-optical trap. Using the natural diamond-type level scheme
of Rb, photons at λa = 795 nm (retrieved from the quantum memory) are converted
to photons at λb = 1367 nm (λb = 1530 nm was also tested) in this process. Two
pump lasers are required to drive the FWM process, one at λp1 = 780 nm and one
at λp2 = 1324 nm (ωa + ωp2 = ωb + ωp1). Internal conversion efficiencies (down- and
subsequent up-conversion: 795 nm → 1367 nm/1530 nm → 795 nm) of 54 % (30 %) are
demonstrated for wavelength translation from 795 nm to 1367 nm (1530 nm) and back.
Furthermore, quantum correlations between the memory and the telecom light field
were measured (explicit violation of the CHSH Bell inequality was reported in a follow-
up paper [45]). Detection at telecom wavelengths is avoided by using the two-step
sequence of down- and up-conversion. The work of Radnaev et al. is pathbreaking as
it introduces a method to efficiently interface a Rb-based quantum memory with tele-
com light. Although their technique seems attractive, there are also some downsides
compared to a solid-state implementation (QFC in nonlinear crystals or fibers). For ex-
ample, the experimental setup is rather complex and the accessible telecom wavelength
is constrained by the inherent energy level configuration of Rb.
In 2010/2011, a number of down-conversion experiments in PPLN WGs have also been
reported [46–49] from authors at NTT Corp., Stanford University, University of Geneva,
and our group. These experiments were similar to the early up-conversion experiments
in PPLN but with reversed input and output wavelengths, that is, difference frequency
generation is used according to ωa−ωp = ωb (ωa lies in the visible spectral range, ωb is a
telecom frequency). In all experiments, attenuated laser pulses were used to emulate sin-
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gle photons. The preservation of first-order coherence under frequency down-conversion
was demonstrated in [46,48] while noise issues were mainly studied in [47,49]. In anal-
ogy to up-conversion, it turned out that down-conversion in a PPLN WG can be very
efficient but, as expected, a large amount of noise photons was generated by SPDC [47]
or Raman scattering [49] induced by the strong pump field.
Concerning quantum frequency up-conversion, further remarkable progress was re-
ported in 2010 [50, 51]. In Ref. [50] a collaboration of researchers from the University
of Oregon, Bell Labs, and UCSD exploit four-wave mixing in a highly nonlinear pho-
tonic crystal fiber (PCF) to implement single-photon up-conversion. Initially, photon
pairs were generated in a first PCF, each pair consisting of one photon at λa = 683 nm
and one at 989 nm. The 683-nm photons were then up-converted to λb = 659 nm via
FWM in a second PCF. The wavelengths of the two pump lasers were at λp1 = 808 nm
and at λp2 = 845 nm; energy conservation in this FWM process is thus expressed by
ωp1 + ωa = ωp2 + ωb. The 989-nm photons created in the first process were used as a
herald to trigger single-photon detection of the input and output photons in Hanbury-
Brown–Twiss (HBT) interferometers. In this way, they determined the value of g(2)(0)

for the fields at λa and λb (g
(2)
a (0) = 0.21± 0.02 before and g

(2)
b (0) = 0.19± 0.05 after

conversion) and could thus demonstrate the preservation of photon antibunching under
frequency up-conversion. The conversion efficiency in this experiment was ∼29 %.
In Ref. [51] Rakher and co-workers (NIST, Gaithersburg, MD) report telecom-to-visible
up-conversion from 1.3µm to 710 nm in a PPLN WG (λp ≈ 1557 nm). In contrast to all
other experiments before, photons from a triggered single-photon source (an InAs QD)
were used as the input to the frequency converter. Employing pulsed optical excitation
of the QD, the authors recorded the full second-order intensity correlation function
(instead of merely g(2)(0)) for the up-converted field at 710 nm. This was the first time
that such a measurement was performed with converted photons and it unambiguously
proved that the single-photon character had been preserved during up-conversion. The
NIST group achieved an over-all conversion efficiency of 21 % including detection and
a signal-to-noise ratio of 7:1 at the converted wavelength. As a side effect, the authors
also show that up-conversion detection can be used to improve the sensitivity in pho-
toluminescence lifetime measurements. This is due to the better performance of silicon
avalanche photodiodes (APDs) compared to direct detection of telecom photons from
the QD with an InGaAs/InP APD. Unfortunately, Ref. [51] contains no comparison of
the g(2)(τ) functions before and after conversion.
In a recent paper by Ikuta et al. [52] (Imoto group, Osaka University), the authors
demonstrate the preservation of photon antibunching and of polarization entanglement
in a down-conversion experiment. This work can be regarded as a significantly advanced
down-conversion variant of the pioneering experiment by Tanzilli et al. [41]. The in-
put wavelength is tailored to quantum memories based on Rb: wavelength-degenerate
polarization-entangled twin photons at λa = 780 nm are created in a BBO crystal by
SPDC. One half of them is combined with a strong pump field at λp = 1600 nm in a
PPLN WG. The target wavelength is λb = 1522 nm in this case with an internal con-
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version efficiency of 62 %. The value of the intensity correlation g(2)(0) is determined
by sending the 1522-nm photons into a fiber-based HBT setup with gated InGaAs/InP

detectors (g
(2)
b (0) = 0.17 ± 0.04 after conversion). These detectors are triggered by

detection events of a free running silicon APD which are caused by the other uncon-
verted half of 780-nm photons. To investigate the entanglement conservation, a method
was applied that transforms polarization entanglement into time-bin entanglement and
vice versa [53–55]. One half of the original photons is sent through a MZI prior to
conversion. This transforms the polarization-entangled state into a kind of hybrid
polarization/time-bin entangled state. After conversion, the 1522-nm photons are sent
through a MZI for a second time to restore the polarization entanglement. This smart
technique avoids the problem that the PPLN WG can only convert one polarization in a
single pass. A quantum state tomography was performed to reconstruct the density ma-
trix for the two-photon state consisting of one original and one down-converted photon.
By comparison to the density matrix of the original two-photon state, the authors prove
the conservation of polarization entanglement under frequency down-conversion. The
calculated fidelity with respect to the |Φ+〉 Bell state, however, drops from 0.95± 0.01
before to 0.75 ± 0.06 after conversion which is attributed to anti-Stokes Raman scat-
tering induced by the strong pump at 1600 nm. The work of the Japanese group is
outstanding in the sense that it is the first QFC experiment in which quantum state
tomography was applied. A similar experiment was performed later by Ramelow et al.
(Zeilinger group, Vienna) using up-conversion from 810 nm to 532 nm [56]. Ramelow
and co-workers used two bulk periodically poled KTP (PPKTP) crystals rotated by
90◦ against each other to convert both horizontal and vertical polarizations.
The latest results on single-photon QFC from the groups at NIST [57] and at Stanford
University [58,59] are not included in this introduction. These results will be discussed
at the end in Chap. 7. This seems more appropriate because it allows for comparison
with the achievements presented in this thesis.

1.3 Aim and Outline of this Thesis

The main goal of this thesis was to achieve visible-to-telecom frequency conversion of
photons emitted by an on-demand solid-state single-photon source and to show that
photon antibunching is preserved in this process—apparently from the above litera-
ture review this had not been demonstrated so far. To this end, we have studied
difference frequency mixing in PPLN WGs according to (1/λa − 1/λp)−1 = λb. Two
different schemes were investigated: (i) down-conversion from λa = 738 nm (emission
wavelength of SiV centers in diamond [60]) to the telecom C-band (λb = 1557 nm)
and (ii) down-conversion from λa = 711 nm (emission wavelength of InP QDs) to the
telecom O-band (λb = 1313 nm). The wavelengths needed to pump these processes lie
around 1400 nm (i) and 1550 nm (ii). Currently, to our knowledge, there is no tunable
laser on the market which covers both of these wavelengths and provides enough power
(some 100 mW). To perform this task, we have thus built and tested two continuous-
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wave optical parametric oscillators (OPOs). The pump sources are always indispensable
components in frequency conversion setups and some interesting results could be ob-
tained with these OPOs which are also discussed in detail.
The present thesis is organized as follows. Chapters 2 and 3 are theoretical while exper-
imental work is presented in Chap. 4, 5, and 6. In Chap. 2 we start with the theoretical
concepts of nonlinear optics (Sect. 2.1) and quantum states of light (Sect. 2.2). In
Sect. 3.1 we then proceed by discussing material properties of the nonlinear crystals
that are used in this work, namely periodically poled LiNbO3 and LiTaO3. In Sect. 3.2
we discuss the principles of two devices that are based on these materials and that are
important in our experiments: OPOs and WG-based frequency converters. In Chap. 4
the results obtained with the OPOs are presented and compared. Two devices were
investigated, one OPO based on MgO:PPLN (Sect. 4.1) and one based on MgO:PPSLT
(Sect. 4.2). Chapters 5 and 6 are devoted to the frequency down-conversion exper-
iments. In Chap. 5 we investigate process (i). First, in Sect. 5.1, we introduce the
setup employed for frequency down-conversion and the WG chip used to implement
process (i). The results obtained with this setup are presented in Sect. 5.2 with a par-
ticular focus on noise issues and conversion efficiency. Further, in Sect. 5.3, we briefly
discuss a two-step frequency conversion process, that is, down-conversion and subse-
quent up-conversion. This scheme might be helpful for down-conversion of arbitrary
polarization states using a single WG crystal. In the experiments described in Chap. 5,
attenuated laser pulses were used to emulate single photons at 738 nm. In contrast,
we use true single photons from a semiconductor QD in the experiments presented in
Chap. 6 in which we study process (ii). In Sect. 6.1 we first review general proper-
ties of semiconductor QDs as single-photon sources and discuss the fabrication of the
particular InP QD sample that we have employed. After that, we describe the exper-
imental setup and investigate the performance of the second WG chip used to realize
process (ii) (Sect. 6.2). In Sect. 6.2 we also explain how single QDs can be selected
and how their emission wavelength can be tuned. Then, in Sect. 6.3, we present the
most important experiments and results of this thesis: single photons from a QD are
frequency down-converted to a telecom wavelength while preserving their nonclassical
properties. Finally, in Chap. 7, a summary of the thesis is given and future prospects
are discussed.
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Chapter 2

Theoretical Background

This chapter provides the theoretical basis for the experiments presented in this work.
Since the topic of this thesis is at the interface of nonlinear optics and quantum optics,
a brief introduction into the relevant concepts of both realms is given. Section 2.1 deals
with nonlinear optics while Sect. 2.2 is about the quantum properties of light fields. An
extensive treatment on nonlinear optics can be found, for example, in the textbook of
Boyd [61]. The quantum optics section is inspired by the book of Loudon [18].

2.1 Fundamentals of Nonlinear Optics

2.1.1 Nonlinear Polarization

If an external electric field E is applied to a dielectric medium, a polarization P is
induced. In general, the connection between the i-th Cartesian component of P and
the components of E is established by the power series

Pi = ε0χ
(1)
ij Ej︸ ︷︷ ︸
P

(1)
i

+ ε0χ
(2)
ijkEjEk︸ ︷︷ ︸
P

(2)
i

+ ε0χ
(3)
ijklEjEkEl︸ ︷︷ ︸
P

(3)
i

+ ... , (2.1)

where ε0 is the permittivity of free space and the χ(n)
... are tensors of rank n+ 1 which

are called the nth-order susceptibilities. Note that the Einstein summation convention
is used in Eq. (2.1). We now write E as an expansion of plane waves with angular
frequencies ωn

E =
∑
n

An e
i(kn·r−ωnt) + c.c. , (2.2)

where An is the amplitude and kn is the wavevector associated with each frequency
component ωn. Equation (2.2) is a general way of writing the electric field and we do
not make any specific assumptions on the angular frequencies ωn at this point. The
index n takes the positive integer values 1, 2, 3, ... and ‘c.c.’ denotes the complex
conjugate. Defining

E(ωn) ≡ An e
ikn·r (2.3)

13
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and extending the range of indices to negative integers n = ±1,±2,±3, ... (with the
convention ω−n = −ωn) allows to write Eq. (2.2) in the more convenient form

E =
∑
n

E(ωn) e−iωnt. (2.4)

When we insert (2.4) into (2.1), the first two polarization terms read:

P
(1)
i = ε0

∑
j

∑
n

χ
(1)
ij (ωn)Ej(ωn)e−iωnt, (2.5)

P
(2)
i = ε0

∑
jk

∑
nm

χ
(2)
ijk(ωn + ωm;ωn, ωm)Ej(ωn)Ek(ωm)e−i(ωn+ωm)t. (2.6)

The linear polarization P
(1)
i contains only terms that oscillate at the same angular

frequencies ωn as the original components of the electric field. If the higher-order

terms P
(2)
i , P

(3)
i , ... are small compared to the linear term P

(1)
i , they can be neglected

and the polarization is given by Eq. (2.5). This is the regime of linear optics. When
electric fields and/or higher-order susceptibilities become large, the nonlinear terms

P
(NL)
i ≡ P

(2)
i + P

(3)
i + ... come into play. Then, nonlinear optical effects can be ob-

served. In this thesis, we will particularly investigate second-order nonlinear effects. In
the following, we thus ignore terms of order n > 2. Obviously, the second-order non-
linear polarization given by Eq. (2.6) is responsible for three-wave mixing processes.
Working out the sum in (2.6) for the simple case of two frequencies ω1 and ω2 produces
terms proportional to e±i2ω1t (second harmonic generation of ω1, SHG), e±i2ω2t (sec-
ond harmonic generation of ω2, SHG), e±i(ω1+ω2)t (sum frequency generation, SFG),
e±i(ω1−ω2)t (difference frequency generation DFG), and e0 (optical rectification, OR).

The notation χ
(2)
ijk(ωn + ωm;ωn, ωm) in expression (2.6) indicates that each of the sus-

ceptibilities depends on three frequencies. This represents the most general case. For
simplicity, we now assume that the χijk are frequency independent. Instead of the

second-order nonlinear susceptibility (χ
(2)
ijk), it is common to use the nonlinear coef-

ficient d ≡ (dijk) given by the relation dijk = χ
(2)
ijk/2. At first sight, the number of

independent tensor elements dijk is 3× 3× 3 = 27. This number can be reduced to 10
by using Kleinman’s symmetry [62]

dijk = dikj = dkij = dkji = djki = djik. (2.7)

If the d tensor is contracted according to the scheme suggested by Table 2.1 [63], it can
be conveniently written in form of a 3 × 6 matrix with 10 independent elements. The
three components of the second-order nonlinear polarization in (2.6) are then obtained
by the multiplication of a 3× 6 matrix with a 6-component column vector [62,64]. For
instance, when we write the polarization in the same way as the electric field in (2.4),

P =
∑
n

P(ωn) e−iωnt, (2.8)
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Table 2.1: Scheme for the contraction of indices.

jk 11 22 33 23, 32 31, 13 12, 21

l 1 2 3 4 5 6

the frequency component of the nonlinear polarization at ω3 = ω1 + ω2 is given by [64]

P(2)(ω3) = 4ε0

d11 d12 d13 d14 d15 d16

d16 d22 d23 d24 d14 d12

d15 d24 d33 d23 d13 d14




Ex(ω1)Ex(ω2)
Ey(ω1)Ey(ω2)
Ez(ω1)Ez(ω2)

Ey(ω1)Ez(ω2) + Ez(ω1)Ey(ω2)
Ex(ω1)Ez(ω2) + Ez(ω1)Ex(ω2)
Ex(ω1)Ey(ω2) + Ey(ω1)Ex(ω2)

 .

(2.9)
The relation (2.9) is convenient for practical purposes.

2.1.2 Coupled Mode Equations

As a starting point, we consider the wave equation in a lossless, nonmagnetic (relative
permeability µr = 1), optically nonlinear dielectric [61]

−∇2E +
εr
c2

∂2E

∂t2
= −µ0

∂2P(NL)

∂t2
, (2.10)

where µ0 is the permeability and c is the speed of light in free space. In general, the
relative permittivity εr = 1+χ(1) is a tensor. Here we will assume the special case of an
isotropic medium. Then, the relative permittivity becomes a scalar which is connected
with the refractive index via

√
εr = n. Equation (2.10) can be derived from Maxwell’s

equations using the slowly varying amplitude approximation [61]. Because of the term
containing P(NL) on the right-hand side, it is an inhomogeneous wave equation. In
the following, we will again restrict ourselves to second-order nonlinear effects, i.e., we
neglect terms with n > 2 in Eq. (2.1). For simplicity, we make an ansatz of three scalar
electric fields Em (m = 1, 2, 3),

Em(z, t) = Am(z) ei(kmz−ωmt) + c.c. , (2.11)

describing plane waves with z-dependent amplitudes Am. In practice, we will often deal
with more complex spatial field distributions (e.g., Gaussian light beams or modes in
a WG). However, the use of plane waves at this point is justified by the fact that it
illustrates the most important principles without unnecessary complexity. The effects
of spatially confined field modes in waveguided nonlinear interactions will be discussed
later in Sect. 3.2.3. The fields in Eq. (2.11) are oscillating at angular frequencies ω1,
ω2, and ω3 = ω1 + ω2 and propagate along the z axis. The medium has refractive
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indices n(ωm) ≡ nm and the dispersion relation reads c|km| = nmωm. The intensity is
proportional to |Am(z)|2 and, with our definition of the fields (2.11), is given by [61]

Im = 2ε0nmc|Am(z)|2. (2.12)

Inserting (2.11) into (2.10) we obtain, after some calculation, the coupled mode equa-
tions [61]

∂A1(z)

∂z
= −iκ1A

∗
2(z)A3(z) e−i∆k

′z, (2.13)

∂A2(z)

∂z
= −iκ2A

∗
1(z)A3(z) e−i∆k

′z, (2.14)

∂A3(z)

∂z
= −iκ3A1(z)A2(z) e+i∆k′z, (2.15)

which govern the evolution of the amplitudes Am(z) along the propagation direction.
The coupling constants κi are given by κi = 2ωideff

nic
, where we have introduced the

scalar effective nonlinear coefficient deff that can be calculated from the d tensor if the
propagation and polarization directions of all three fields are known [65]. The parameter

∆k′ = k3 − k1 − k2 (2.16)

is the so-called wavevector mismatch. Usually, for vector fields, ∆k′ is also a vector.
However, for our needs it is sufficient to assume that the km are collinear and thus ∆k′

is always a scalar. The coupled differential equations (2.13)–(2.15) are central to all
second-order nonlinear interactions. Depending on the actual value of ∆k′(k1, k2, k3)
the processes that can take place are either SHG, SFG, DFG, or OR as we shall see in
the next section.

2.1.3 Phasematching

The wavevector mismatch ∆k′ is a crucial parameter for the efficiency of nonlinear
processes, as the following example for DFG shows (analog arguments are valid for
SFG and SHG). We assume that two frequencies ω3 and ω1 are incident on a nonlinear
medium and interact to create a third frequency ω2 = ω3 − ω1 via DFG. If both
amplitudes A3 and A1 do not change significantly during this process, we can make
the approximations ∂A3/∂z ≈ 0, ∂A1/∂z ≈ 0 and treat A3 and A1 as constants. The
solution of Eq. (2.14) at z = L is then obtained by integration

A2(L) = −iκ2A
∗
1A3

∫ L

0
e−i∆k

′z dz = −iκ2A
∗
1A3

e−i∆k
′L − 1

−i∆k′
. (2.17)
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We take the squared modulus of (2.17) which is proportional to the intensity1

I2(L) ∝ (κ2|A1||A3|)2

∣∣∣∣∣e−i∆k
′L − 1

∆k′

∣∣∣∣∣
2

= (κ2|A1||A3|)2L2sinc2(∆k′L/2). (2.18)

The sinc2 function is characteristic for second-order nonlinear interactions. A plot of
this function is shown in Fig. 2.1. It attains its global maximum when the argument
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Figure 2.1: The sinc2 function which describes the efficiency of second-order nonlinear pro-
cesses as a function of the wavevector mismatch ∆k′. Arrows indicate the FWHM width of the
central peak.

vanishes. Therefore,

∆k′
!

= 0 (2.19)

is required to maximize the generated intensity I2(L). Equation (2.19) is known as the
phasematching condition. Since the linear momentum for photons is given by p = ~k,
(2.19) represents the conservation of momentum in the photon picture. Naturally, also
energy conservation must be fulfilled in nonlinear optical processes which is expressed
by the relation

ω3 = ω1 + ω2. (2.20)

In practice, it is not trivial to satisfy (2.19) and (2.20) simultaneously because of ma-
terial dispersion. With the vacuum wavelengths λm condition (2.19) reads

∆k′ = 2π

(
n(λ3)

λ3
− n(λ1)

λ1
− n(λ2)

λ2

)
, (2.21)

1We make use of the relation [61]∣∣∣∣∣e−i∆k′L − 1

∆k′

∣∣∣∣∣
2

= L2 sin2(∆k′L/2)

(∆k′L/2)2
≡ L2sinc2(∆k′L/2).



18 Chapter 2. Theoretical Background

or, using λm = 2πc/ωm,

∆k′ =
1

c
(n3ω3 − n1ω1 − n2ω2) = 0. (2.22)

Note that n3, n2, and n1 usually also depend on the temperature of the nonlinear
material. We neglect this fact for now but will come back to it later in the context
of OPOs (see Sect. 3.2.2). Inspection of (2.20) and (2.22) reveals that, in general,
conservation of energy and momentum are not satisfied simultaneously and no efficient
frequency conversion takes place. Inserting (2.20) into (2.22) yields

∆k′ =
1

c
[(n3 − n1)ω1 + (n3 − n2)ω2] . (2.23)

Under the reasonable assumption of normal dispersion, n3 > n1, n2 holds—anomalous
dispersion occurs in spectral regions with strong absorption which is not desirable in
practical devices. Thus, n3−n1 > 0 and n3−n2 > 0 which implies ∆k′ > 0. To achieve
∆k′ = 0 anyway, a number of phasematching techniques have been developed [66]. The
two methods which are most commonly applied in nonlinear optical devices are known as
birefringent phasematching (BPM) and quasi-phasematching (QPM). BPM exploits the
birefringence of many nonlinear crystals to satisfy the phasematching condition. QPM
is based on a periodic modulation of the nonlinear coefficient deff . The modulation
is specifically engineered to phasematch a desired process. Since QPM is exclusively
used throughout this thesis we will only explain this type of phasematching (see next
section). Treatments of BPM can be found, for example, in Refs. [61, 65].

2.1.4 Quasi-Phasematching

To explain the QPM technique, we follow the Fourier transform approach of the review
paper by Fejer et al. [67]. In QPM, the effective nonlinear coefficient deff is not constant
but is a periodic function in z. We take account of this fact by replacing deff by d(z) in
(2.13)–(2.15). Under the same assumptions as in the previous section, Eq. (2.17) then
becomes

A2(L) = −i κ2

deff
A∗1A3

∫ L

0
d(z) e−i∆k

′z dz (2.24)

= Γdeff

∫ L

0
g(z) e−i∆k

′z dz (2.25)

= ΓdeffLG(∆k′). (2.26)

In Eq. (2.25) we have used the definitions Γ ≡ −i κ2
deff
A∗1A3 and g(z) ≡ d(z)/deff , where

g(z) is the normalized nonlinear coefficient. In Eq. (2.26),

G(∆k′) =
1

L

∫ L

0
g(z) e−i∆k

′z dz (2.27)
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denotes the Fourier transform of g(z). Since g(z) is assumed to be periodic in z, it can
be written as a Fourier series

g(z) =
∞∑

m=−∞
Gm e

iKmz. (2.28)

The Gm are Fourier coefficients, Km = 2πm/Λ is called the mth-order grating vector,
and Λ is known as the QPM grating period. Inserting (2.28) into (2.27) yields

G(∆k′) =
1

L

∫ L

0

∞∑
m=−∞

Gm e
−i(∆k′−Km)z dz (2.29)

≈ 1

L

∫ L

0
Gm e

−i(∆k′−Km)z dz (2.30)

=
Gm
L

e−i∆kL − 1

−i∆k
. (2.31)

The approximation (2.30) is valid if only one term with ∆k′ ≈ Km significantly con-
tributes to the series which is a good assumption for many realistic cases. In the last
step, we have introduced the total wavevector mismatch for QPM:

∆k ≡ ∆k′ −Km
(2.21)

= 2π

(
n(λ3)

λ3
− n(λ1)

λ1
− n(λ2)

λ2
− m

Λ

)
. (2.32)

Finally, by combining (2.26) and (2.31), we obtain

A2(L) ≈ iΓdQ
e−i∆kL − 1

∆k
. (2.33)

The quantity dQ ≡ deffGm can be considered the effective nonlinear coefficient for mth-
order QPM. Note that expression (2.33) is identical to (2.17) when the substitutions
deff → dQ and ∆k′ → ∆k are applied. This implies that, by using these replacements,
the coupled mode equations (2.13)–(2.15) remain valid for QPM interactions. In prac-
tice, the case where g(z) is a Λ-periodic rectangular function that can take the values
±1 is particularly important. The intervals with g(z) = +1 shall have length l. This
corresponds to a periodic sign reversal of deff in the nonlinear material and is illustrated
in Fig. 2.2. Assuming that Km = ∆k′ for a specific m (which is achieved by choosing
an appropriate period Λ), the Fourier coefficient Gm is given by2

Gm =
2

πm
sin(πmD), (2.34)

2A possible representation of the function g(z), as shown in Fig. 2.2, is [68]

g(z) = −A+ 2AD +

∞∑′

m=−∞

2A

πm
sin(πmD) exp

(
i
2πm

Λ
z

)
, with A = 1.

The primed sum
∑′ means that the term with m = 0 is omitted in the summation.
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Figure 2.2: The periodic domain structure in a nonlinear material with alternating signs of
deff is described by a rectangular function g(z) with period Λ. l is the length of the intervals
with g(z) = +1.

where D = l/Λ denotes the duty cycle. The nonlinear coefficient for QPM dQ = deffGm
is maximized for sin(πmD) = 1 which, for odd m, is accomplished by D = 0.5. In
this case, the nonlinear coefficient for QPM becomes dQ = 2deff/(πm). This important
result means that, compared to a perfectly phasematched interaction, deff is reduced
by a factor of 2/(πm) for QPM. Hence, to maximize dQ, it is desirable to choose m = 1
and thus D = 0.5. This is called first-order QPM. All nonlinear devices described in
this thesis are based on it.
QPM was proposed independently by Bloembergen et al. [69] and by Franken and
Ward [63] as early as 1962. Historically, nonlinear crystals with a periodic QPM struc-
ture were first realized by stacking thin plates of the material [63] with consecutive
plates rotated by 180◦ against each other. Nowadays, given that the nonlinear crystal
is also ferroelectric, periodic poling techniques [70,71] are applied to create ferroelectric
domains in which the spontaneous polarization Ps periodically changes its direction (see
Sect. 3.1.2). This spontaneous polarization must not be confused with the polarization
P introduced in Eq. (2.1). Lithium niobate (LiNbO3), lithium tantalate (LiTaO3) or
potassium titanyl phosphate (KTiOPO4) are important examples of nonlinear crystals
where periodic poling is used to imprint QPM gratings.

Intuitive Interpretation of Phasematching and QPM

Up to now, we have only given a mathematical justification for the necessity of phase-
matching and the principles of the QPM technique. For a descriptive explanation of
phasematching, we follow the ideas outlined in Refs. [66,67] and consider the process of
SHG, as illustrated in Fig. 2.3(a) and (b). A fundamental wave at angular frequency ω
enters a nonlinear material. This fundamental wave generates a nonlinear polarization
P in the medium which oscillates at 2ω and causes the emission of second harmonic
(SH) wavelets at each point in the medium. The total SH amplitude is obtained by
a superposition of all these wavelets. In the case of perfect phasematching, the fun-
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a b

Figure 2.3: (a) Descriptive explanation of SHG in a nonlinear medium (after [66]). The
fundamental wave at ω generates wavelets with frequency 2ω. Due to material dispersion (in
the non-phasematched case), the fundamental and the SH wave travel at different velocities.
After the coherence length Lc, the first pair of wavelets has a phase shift of π and cancels out
each other (the wavelets marked with * and **). In this way, for every wavelet generated within
a coherence length we can find one in the next coherence length with a phase shift of π. Thus,
after 2Lc the SH power drops to zero again as shown by curve A in (b). (b) Evolution of
the SH intensity as a function of the interaction length for different phasematching situations
(after [67]). A: no phasematching, B: first-order QPM, C: perfect phasematching.

damental wave and the second harmonic wavelets travel with the same velocity, all
wavelets will interfere constructively, and the SH power will grow quadratically with
the propagation length z (see curve C in Fig. 2.3(b)). However, without phasematch-
ing, the refractive indices at the fundamental and at the SH frequency are not equal,
i.e., n1 ≡ n(ω) 6= n(2ω) ≡ n2. As a consequence, the waves at both frequencies travel
through the crystal with different velocities. This is the situation shown in Fig. 2.3(a).
Initially, the SH power increases. But soon, after a certain length called the coherence
length Lc, the wavelets have run out of phase and start to cancel out each other via
destructive interference. As a consequence, the SH power decreases again and is zero
at z = 2Lc. The described processes then repeat themselves giving rise to power oscil-
lations along the propagation axis as indicated by curve A in Fig. 2.3(b). For practical
cases, Lc is on the order of a few optical wavelengths and therefore the generated SH
power is at very low levels at all positions in the crystal. Although with QPM we cannot
achieve that the fundamental wave and the SH wave travel at the same velocity, it can
solve this problem. In first-order QPM, the sign of deff is periodically reversed after
every coherence length and thus Λ = 2Lc for the QPM grating period. In this way, the
wavelets cannot interfere destructively and the SH power increases with the propagation
length in the way shown by curve B in Fig. 2.3(b). The word ‘quasi’ in QPM accounts
for the fact that the phase of the interfering waves is not corrected continuously but
only at certain positions (integer multiples of Lc) in the nonlinear crystal.
At the end of our considerations on phasematching, we mention that QPM provides
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some important advantages over BPM making it a very versatile technique. To realize
a desired χ(2) process using BPM, one has to rely on a fortunate combination of po-
larization and propagation directions of the involved light fields, i.e., the potential of
BPM is limited by the dispersion and the birefringence of the chosen nonlinear crystal.
In many cases, it is not possible to exploit the largest element of the d tensor because
the required combination of polarization and propagation directions does not satisfy the
phasematching condition. Furthermore, the spectral region in which phasematching can
be achieved with BPM is often much smaller than the transparency range of the crystal.
In addition, spatial walk-off effects limit the interaction length in the crystal and thus
the efficiency of the nonlinear process. All of the aforementioned problems are avoided
using QPM since the grating period Λ can be specifically tailored to compensate for the
wavevector mismatch of a desired nonlinear interaction according to Eq. (2.32). This
introduces an additional degree of freedom compared to BPM and opens up interesting
applications. For instance, fabrication of two consecutive sections of QPM gratings with
different periods allows for the implementation of cascaded nonlinear processes such as
an OPO process (see Sect. 3.2.2) in the first section and subsequent SFG in the second
section [72,73]. Beyond that, QPM has the benefit of being compatible with integrated
photonic structures [74].

2.2 Quantum Physical Description of Light Fields

Most experiments in nonlinear optics are performed with laser light. If the lateral
intensity distribution of the laser beams is neglected, it is often sufficient to use plane
waves to model the electromagnetic fields. For example, this approximation was used
in the derivation of the coupled mode equations (2.13)–(2.15). The wave picture of
electromagnetic fields is purely classical and cannot explain all of the phenomena we
investigate in this work. In Chap. 6 we deal with single photons and, in this situation,
we have to consider the particle character of light rather than its wave-like properties.
Hence, we here provide a brief introduction into the quantum optical description of
light fields and the peculiarities of photon statistics.

2.2.1 Photon Number States

A very important concept in quantum optics is the photon number state or Fock state
|n〉 which describes a single mode of the electromagnetic field occupied by n photons. By
recognizing the analogy between the electromagnetic field energy and the Hamiltonian
of the quantum mechanical harmonic oscillator in the form

Ĥ = 1
2~ω

(
ââ† + â†â

)
= ~ω

(
â†â+ 1

2

)
, (2.35)

we can apply the complete formalism that has been developed for the quantum mechan-
ical harmonic oscillator to light fields. The operators â, â† in Eq. (2.35) are annihilation
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and creation operators for field quanta, respectively, with the properties (n ≥ 0)

â|n〉 =
√
n|n− 1〉, (2.36)

â†|n〉 =
√
n+ 1|n+ 1〉, (2.37)

[â, â†] = ââ† − â†â = 1. (2.38)

Note that the lowest state is the vacuum state |0〉 since â|0〉 = 0 by definition. Applying
the Hamiltonian (2.35) to a Fock state yields

Ĥ|n〉 = ~ω
(
â†â+ 1

2

)
|n〉 = ~ω

(
n̂+ 1

2

)
|n〉 = En|n〉, (2.39)

where we have introduced the photon number operator n̂ ≡ â†â with the property
n̂|n〉 = n|n〉. Thus, Fock states are eigenstates of the Hamilton operator as well as
of the number operator. En = ~ω(n + 1

2) is the energy of a field mode containing n
quanta.
A coherent state, i.e., a state of light that can be generated by a single-mode laser, is
constructed as a linear superposition of photon number states. It is represented by the
relation [75]

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉, (2.40)

where α is the complex amplitude of the coherent state. The expectation value for the
number operator is related to α via

〈n̂〉 = 〈α|n̂|α〉 = |α|2. (2.41)

2.2.2 Different Types of Light

When dealing with very low optical powers we employ single-photon detectors to mea-
sure the intensity of a light field. The operating mode of these detectors is different
from other devices used to measure optical intensity, e.g., from a photodiode. A single
photon that hits the detector produces a voltage pulse which is then amplified and can
be registered by an electronic counter. Single-photon detectors register events (detec-
tor clicks) similar to a Geiger tube and offer the possibility to investigate the photon
statistics in a light beam. It turns out that three different classes of light can be distin-
guished by means of the statistical properties of the intensity fluctuations. Figure 2.4
shows a representation of detector clicks that would typically occur for photons from a
thermal (or chaotic) light source, a laser, and a single-photon emitter. For simplicity,
we assume that the detector has 100 % detection efficiency, a perfect timing resolution,
and that the light intensity is sufficiently weak so that each click represents one photon
impinging on the detector. Considering the photocounts in Fig. 2.4, one recognizes
that the photons in Fig. 2.4(a) tend to form bunches of multiple photons (bunched
light), the time separations in Fig. 2.4(b) seem to be random (random light), and the
photons in Fig. 2.4(c) have more or less equal time distances (antibunched light). This
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Figure 2.4: Time sequence of photocounts on a single-photon detector for (a) bunched, (b) ran-
dom, (c) antibunched light (after [18]). The bars represent detection events.

phenomenon is formally described by probability distributions. For chaotic light one
can show that the probability Pn(T ) of finding n photons in a time interval of length
T is given by the distribution [18]

P(n) =
〈n〉n

(1 + 〈n〉)1+n
. (2.42)

This is the Planck distribution. Its variance is

(∆nPlanck)2 = 〈n〉2 + 〈n〉. (2.43)

For a coherent state described by (2.40), the photon statistics are governed by the
Poisson distribution

P(n) = |〈n|α〉|2 = e−|α|
2 |α|2n

n!
= e−〈n〉

〈n〉n

n!
, (2.44)

which is characteristic for random processes. The variance of the Poisson distribution
is

(∆nPoiss.)
2 = 〈n〉 < (∆nPlanck)2. (2.45)

It seems reasonable to consider a perfectly coherent light source with a Poissonian
photon number distribution as a reference for other light sources. With the following
scheme one then classifies the three classes of intensity fluctuations by means of the
root-mean-square deviation of their photon probability distribution:

• sub-Poissonian: ∆n <
√
〈n〉,

• Poissonian: ∆n =
√
〈n〉,

• super-Poissonian: ∆n >
√
〈n〉.

Sub-Poissonian light is also called nonclassical light as all classical light sources (light
bulbs, spectral lamps, lasers, etc.) generate light with ∆n ≥

√
〈n〉. A quantum emitter
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like a single atom or a semiconductor QD (see Sect. 6.1.1) is a source of nonclassical light,
also called a single-photon source. An ideal single-photon source generates photons that
are represented by a Fock state which has ∆n = 0. By ‘ideal’ we mean a source with the
following characteristics stated in [76]: a single photon can be emitted on-demand with
a probability of one at any time specified by the user, the probability for emission of two
or more photons at the same time is zero, and photons which are subsequently generated
should be indistinguishable. Another desirable feature would be that the repetition rate
can be made almost arbitrarily fast. In practice, the ideal case can never be completely
achieved due to technical limitations. A detailed review on single-photon sources can
be found in [76,77]. The difference between the sub-Poissonian, Poissonian, and super-
Poissonian distribution is well illustrated in Fig. 2.5. It shows histograms of the three
distributions for different average photon numbers 〈n〉. In experimental quantum optics,

a b c

Figure 2.5: Photon number distribution for (a) super-Poissonian light as emitted by a thermal
light source, (b) Poissonian light as generated by a coherent light source, (c) sub-Poissonian
(nonclassical) light from a perfect single-photon source. The histogram of each distribution is
shown for three different mean photon numbers 〈n〉 = 1, 5, 10.

coherent states and Fock states play a central role. From the histograms in Fig. 2.5
it is evident that there exists a fundamental difference between these two states. For
instance, for the Fock state |1〉, we will always (with probability 1) find exactly one
photon within a certain time interval T while this is not the case for the coherent state
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with 〈n〉 = 1. Here we will find that 36.8 % of the time intervals contain no photon,
36.8 % contain one photon, 18.4 % contain two photons, 6.1 % contain three photons,
and so on.

Degree of Second-Order Coherence

To decide wether a given light field is nonclassical, Poissonian, or super-Poissonian one
could measure the photon counting statistics as illustrated in Fig. 2.5. However, this is
technically very difficult since unavoidable photon losses distort the measured photon
number distribution always with a tendency toward a Poissonian shape (even if it is
in fact non-Poissonian). Instead, the degree of second-order coherence g(2)(τ), which is
much easier accessible in experiments, is usually measured (see the following section).3

For a stationary light field it is defined by [18]

g(2)(τ) =
〈â†(t)â†(t+ τ)â(t+ τ)â(t)〉

〈â†(t)â(t)〉2
(2.46)

and has the property 0 ≤ g(2)(τ) ≤ ∞. The classification of light by its photon statistics
that we have introduced above can also be written in terms of the value g(2)(τ = 0):

• sub-Poissonian (photon number state |n〉),

g(2)(0) =
〈n|â†â†ââ|n〉
〈n|â†â|n〉2

= 1− 1

〈n〉
(2.47)

(⇒ 0 ≤ g(2)(0) < 1 for n ≥ 1),

• Poissonian (coherent state |α〉),

g(2)(0) = g(2)(τ) =
〈α|â†â†ââ|α〉
〈α|â†â|α〉2

= 1, (2.48)

• super-Poissonian (thermal light),

g(2)(0) = 1 +
(∆n)2 − 〈n〉
〈n〉2

> 1. (2.49)

3In contrast, the degree of first-order (temporal) coherence in quantum optics is defined by

g(1)(τ) = 〈â†(t)â(t+ τ)〉/〈â†(t)â(t)〉.

In classical optics this reads g(1)(τ) = 〈E∗(t)E(t + τ)〉T /〈E∗(t)E(t)〉T , where 〈...〉T stands for the
average over a time interval T . g(1)(τ) is a measure of the temporal coherence of a light field and can
be determined using a Michelson or a Mach–Zehnder interferometer. From the degree of first-order
coherence no statement on photon statistics can be made [78].
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Relation (2.47) implies that g(2)(0) < 1 for any number state and in particular g(2)(0) =
0 for the single-photon state |1〉. In general, light sources that produce states which
satisfy

1− 1

〈n〉
≤ g(2)(0) < 1 (2.50)

are called to be nonclassical. Although not correct in a strict sense, experimentalists
often speak of a single-photon source when g(2)(0) < 0.5 is fulfilled (see [79] for a de-
tailed discussion). The situation g(2)(0) ≥ g(2)(τ 6= 0) is known as photon bunching
and g(2)(0) ≤ g(2)(τ 6= 0) is known as photon antibunching. While photon antibunch-
ing always follows from sub-Poissonian photon statistics, the reverse conclusion is not
necessarily true [80].

Measurement of the g(2)(τ) Function

In principle, it would be possible to investigate the statistical properties of a stream
of photons using only one single-photon detector. In practice, though not completely
impossible [81], this poses some technical difficulties [82]. Real-world photon counters
are often not photon-number resolving, i.e., they produce the same voltage pulse wether
one, two or more photons hit the detector at the same time. Furthermore, similar to the
Geiger tube, they always have a certain dead time. Thus, once a photon was detected
and has generated a click no other photon can be detected in a certain time interval
thereafter. To avoid these problems, the Hanbury-Brown–Twiss (HBT) intensity in-
terferometer [83], sketched in Fig. 2.6, is commonly used for determining the g(2)(τ)
autocorrelation function. To measure g(2)(τ), an incoming light beam is split up into

Figure 2.6: Schematic of the Hanbury-Brown–Twiss (HBT) intensity interferometer (after
[84]).

two beams by a 50:50 beamsplitter and the two beams are directed to the detectors
D1 and D2. The detection events are registered by special counting electronics and
correlated to yield the unnormalized intensity autocorrelation function G(2)(τ). Two
different methods are commonly applied for data acquisition, the time-tagged method
or the start-stop method [78]. For the measurements in this thesis, we have used the
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first method in which the detection events are stored in two lists, one for D1 and one for
D2, together with a time tag (absolute time at which the click occured). Software-based
correlation of the two lists can be performed during the measurement or at any time
after and yields the unnormalized G(2)(τ) function. A detailed description of the nu-
merical procedure that is used to compute the correlation function from the measured
click lists is found in [82]. The g(2)(τ) function is computed by normalization of G(2)(τ)
with respect to a Poissonian light source [78,82]:

g(2)(τ) =
G(2)(τ)

R1R2tbintint
. (2.51)

Here R1 and R2 are the average count rates of D1 and D2, respectively, tbin is the
time bin size, and tint is the total integration time. For the evaluation of G(2)(τ), the
total integration time must be divided into small time intervals of length tbin � tint.
Detection events are considered to happen simultaneously when they occur within a
time interval of tbin. This reflects the fact that the timing resolution of the electronic
counters is limited.



Chapter 3

Nonlinear Optical Materials and
Devices

In this chapter we review the nonlinear optical materials that are used in this work
and the devices that are based on these materials. Section 3.1 discusses the relevant
physical properties of lithium niobate (LiNbO3, LN) and lithium tantalate (LiTaO3,
LT) which are closely related materials. Section 3.2 is dedicated to quasi-phasematched
cw OPOs and WG-based frequency converters.

3.1 Lithium Niobate and Lithium Tantalate as Nonlinear
Optical Materials

3.1.1 Crystal Structure

A comprehensive overview on the crystal structure and physical properties of LN was
provided by Weis and Gaylord [85]. We here partly follow their explanations. LN and
LT are isomorphous crystals. They are ferroelectric at temperatures below a charac-

teristic Curie temperature Tc (T
(LN)
c = 1195 ± 15 ◦C, T

(LT)
c = 610 ± 10 ◦C [86]) and

paraelectric for temperatures above Tc. We concentrate on the ferroelectric phase since
this is of relevance for applications in nonlinear optics. A sketch of the crystal structure
in the ferroelectric phase is depicted in Fig. 3.1. The crystal consists of oxygen atom
layers in a (distorted) hexagonal close-packed arrangement. Li ions, Nb/Ta ions, and
vacancies are sited at the octahedral interstices between the oxygen sheets. As indi-
cated in Fig. 3.1, the ions and vacancies (V) are positioned in the order ... , Nb (Ta), V,
Li, Nb (Ta), V, Li, ... along the direction defined as the crystallographic c axis. Thus,
one-third of the octahedra formed by the oxygen atoms contain Li atoms, one-third Nb
(Ta) atoms, and one-third vacancies. The LN (LT) crystal shows a three-fold rotation
symmetry about the c axis and a mirror symmetry about three planes that form an
angle of 60◦. Their line of intersection coincides with the c axis. Because of these sym-
metry properties, LN (LT) can be classified into the point group 3m (trigonal crystal

29
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Figure 3.1: Crystal structure of LN and LT in the ferroelectric phase at T < Tc (after [85,87]).

system) and a hexagonal or a rhombohedral unit cell can be chosen.
It is important to note that tensorial quantities, such as the nonlinear optical coefficient
d, are not stated with respect to the crystallographic axes a1, a2, c but with respect to
Cartesian axes X,Y, Z in the literature. By convention, the Z axis is chosen to be
parallel to the c axis, the Y axis lies within one of the three mirror planes, and the X
axis then is perpendicular to that plane (see [85] for further details).

3.1.2 Ferroelectricity and Electric Field Poling

Without an external electric field, the energy of the Li+ ions as a function of their
position on the c axis is described by a double-well potential [66, 71]. Hence, there are
two possible stable positions for the ions and they can be sited either above or below
the planes defined by the oxygen triangles (in the situation sketched in Fig. 3.1, the
Li+ ions are all sited above these planes). However, at room temperature the thermal
energy of the ions is not high enough to switch from one local minimum of the double-
well potential to the other. The shift of Li+ and Nb− ions with respect to the oxygen
octahedra is the reason for the ferroelectricity in LN and LT. It causes permanent
electric dipole moments in each unit cell. If all Li+ ions are shifted in the same direction
within a certain volume of the crystal, the microscopic electric dipoles all point in the
same direction and a macroscopic spontaneous polarization Ps is observed. In analogy
to ferromagnetic materials, sections where all dipoles are oriented in the same direction
are called (ferroelectric) domains. A periodic modulation of the nonlinear coefficient
deff for QPM in LN (LT) is achieved by periodic poling techniques [70,71]. By applying
external electric fields to a single domain crystal, a periodic domain structure with
alternating directions (parallel and antiparallel to the initial +c direction) of Ps is
induced. A domain with a flipped direction of Ps is equivalent to a mirrored part of the
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crystal with respect to a fixed laboratory frame. Thus, for LN and LT, the d31 and d33

tensor elements change their sign in that region. This connection between the direction
of Ps and the sign of the tensor elements is the foundation for the fabrication of QPM
crystals via electric field poling.

3.1.3 Stoichiometry and Doping

The composition of LN and LT single crystals which are grown by the Czochralski
method is usually not perfectly stoichiometric. Instead, a small fraction of Li ions is
substituted by Nb ions such that the ratio of Li ions to Nb ions is not exactly 1 as
would be expected from the chemical formula. In the so-called congruent composition
this ratio is 0.946 [88]. Soon after the first synthesis of congruent LN (LT) single crys-
tals, it has been noticed that these materials exhibit an effect known as photorefractive
damage [89]. This term refers to optically-induced inhomogeneities in the refractive
index which are observed when the material is illuminated with strong laser radition in
the visible. Photorefractive damage describes a complex mechanism involving several
effects [85]. It is associated with the non-perfect stoichiometry of the crystals as Nb ions
on Li sites can act as traps for electrons which play an important role in the formation
of local electric fields in the crystal. These fields then lead to local fluctuations of the
refractive index via the linear electro-optic effect (Pockels effect) [85]. A more detailed
discussion of the physical processes that are responsible for photorefractive damage can
be found in [71]. Photorefractive damage can be severely detrimental in nonlinear opti-
cal processes where visible wavelengths are involved. Further adverse effects that have
been observed for LN and LT are green-induced infrared absorption (GRIIRA) [90] and
blue-induced infrared absorption (BLIIRA) [91], respectively. All of these effects are
strongly suppressed by using crystals that have been doped with MgO or ZnO [91–94]
or/and have a near-stoichiometric (often referred to as simply ‘stoichiometric’) compo-
sition. Therefore, for the nonlinear devices presented in this work, we exclusively rely
on doped crystals: congruent LN doped with MgO or ZnO and stoichiometric LT doped
with MgO. Typical MgO and ZnO doping concentrations for congruent LN are 5 mol %
and 7 mol %, respectively. A typical MgO doping concentration for stoichiometric LT
is 1 mol %.

3.1.4 Linear and Nonlinear Optical Properties

The useful transparency range of LT spans from ∼0.28–5.0µm [98] and is thus broader
than that of LN which is ∼ 0.35 to > 4µm [99, 100]. LN and LT are birefringent
materials with one optical axis (uniaxial crystals). Throughout the transparency range,
the birefringence ∆n = ne − no is negative for LN and changes its sign for LT (ne, no

are the extraordinary and ordinary refractive indices, respectively). The magnitude
of the birefringence |∆n| is much larger for LN than for LT. For this reason, LN is
suitable for both BPM and QPM while phasematching in LT is only possible via QPM.
For device design, it is crucial to know the dependence of the refractive indices ne, no
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Table 3.1: Second-order nonlinear-optical coefficients of selected crystals [pm/V].

Crystal λ∗ (µm) d33 d22 d31 Ref.

Congruent LiNbO3 (CLN) 1.313 19.5 3.2 [95]
1.064 25.2 4.6 [95]
0.852 25.7 4.8 [95]
1.064 27.2 2.1 4.4 [96]

5 % MgO-doped LiNbO3 1.313 20.3 3.4 [95]
1.064 25.0 4.4 [95]
0.852 28.4 4.9 [95]

Stoichiometric LiTaO3 (SLT) ∗∗ 12.9 1.54 0.46 [97]
1.313 10.7 0.85 [95]
1.064 13.8 [95]
0.852 15.1 [95]

∗ The given wavelengths are fundamental wavelengths in SHG experiments.
∗∗ In Ref. [97] a variety of nonlinear interactions has been used to determine the nonlinear coefficients.

on the wavelength and temperature with high accuracy. The refractive indices also
slightly depend on the doping concentration and type of dopant. Numerous Sellmeier
equations that allow to calculate ne, o(λ, T ) for doped and undoped LN and LT can be
found in the literature [97, 101–107]. The parameters published by Gayer et al. [105]
for MgO-doped LN and by Dolev et al. [97] for stoichiometric LT have been found to
match particularly well to the results obtained in our experiments. The WGs used for
the experiments described in Chap. 5 and 6 are made of ZnO-doped LN. According to
the manufacturer [108], a good approximation for the refractive indices of this material
is obtained with an equation by Jundt [101] for congruent LN. Important Sellmeier
equations and coefficients from Refs. [97, 101,105] are summarized in App. A.
Taking into account symmetry properties of the point group 3m, the matrix in (2.9)
can be further simplified for LN (LT) and then reads [65]

d =

 0 0 0 0 d31 −d22

−d22 d22 0 d31 0 0
d31 d31 d33 0 0 0

 . (3.1)

Numeric values for the three non-vanishing tensor elements d33, d22, and d31 of CLN,
5 % MgO:CLN, and SLT are compiled in Table 3.1. These values are often determined
from SHG experiments. Numbers from different references have been included to illus-
trate that these quantities are not known with perfect accuracy. The d33 coefficient is
by far the largest of the three coefficients for both crystals. It is 1.6 to 1.8 times larger
for LN compared to LT. The d33 coefficient, which is accessible only via QPM but not
via BPM, is used in all the devices described in this thesis. All three interacting light
fields are always (predominantly) polarized along the Z axis such that dQ = 2d33/π.
Note that the crystal coordinate system (X,Y, Z) is different from the laboratory frame
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(x, y, z) which we will use to refer to the direction of light propagation (the connection
between the two is illustrated in Fig. 3.2(a)). As usual in the literature, we will assume
that laser beams or modes in a WG propagate along the z direction which can be cho-
sen parallel or antiparallel to the X direction. Comparison of the numbers for undoped
CLN with those for 5 % MgO-doped CLN shows that MgO-doping has no large impact
on the values of the nonlinear coefficients. This is supposed to be true also for ZnO
doping [108]. Shoji et al. [95] have determined the coefficients employing different fun-
damental wavelengths in their SHG experiments. Their results reveal that the values of
the nonlinear coefficients actually depend on the wavelength. This is usually neglected
such that Kleinman’s symmetry condition can be applied.

3.2 Nonlinear Optical Devices

3.2.1 Parametric Amplification

In general, an analytic solution of the coupled system (2.13)–(2.15) is not possible.
However, assuming that the field E3 is much stronger than the other two and does
hardly change its amplitude (no pump depletion approximation), that is ∂A3/∂z = 0,
Eq. (2.15) can be readily integrated to yield A3(z) = const. ≡ A30. The two remaining
Eqs. (2.13) and (2.14) can then be solved analytically and we obtain [61,66,109]

A1(z) = A1(0)ei∆kz/2
[
cosh gz − i∆k

2g
sinh gz

]
+ i

κ1A30

g
A∗2(0)ei∆kz/2sinh gz, (3.2)

A2(z) = A2(0)ei∆kz/2
[
cosh gz − i∆k

2g
sinh gz

]
+ i

κ2A30

g
A∗1(0)ei∆kz/2sinh gz. (3.3)

With the parameter

Γ2 ≡ κ1κ2|A30|2, (3.4)

the gain coefficient g can be written as

g =

√
Γ2 −

(
∆k

2

)2

. (3.5)

Note that Γ here is defined differently than in Sect. 2.1.4. In the following, we assume
the initial conditions

A1(0) = A10, A2(0) = 0. (3.6)

Equations (3.2) and (3.3) describe a process called optical parametric amplification
(OPA). This term can be understood by considering the ratio of output power P1(L) ∝
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|A1(L)|2 to input power P1(0) ∝ |A1(0)|2:

P1(L)

P1(0)
=
|A1(L)|2

|A1(0)|2
(3.7)

= 1 + Γ2L2 sinh2(gL)

(gL)2
(3.8)

≡ 1 +G. (3.9)

In the last step we have defined the parametric gain G ≥ 0. For small gain coefficient,
g � ∆k

2 , G becomes [110]

G ≈ Γ2L2sinc2(∆kL/2)
∆k=0−→ (ΓL)2. (3.10)

According to our initial conditions (3.6), the light fields at ω1 and ω3 are incident on
a crystal with second-order nonlinearity. Obviously from (3.9), the power of the input
field at ω1 is amplified by a factor 1 + G during propagation through the nonlinear
medium from z = 0 to z = L. Additionally, a third field at ω2 = ω3 − ω1 is created
and its amplitude increases as well while traversing the nonlinear medium (described by
Eq. (3.3)). The energy for the amplification is provided by the strong field at ω3 which
is therefore called the pump field. Furthermore, the field at ω1 is termed the signal
field and the third field at ω2 is known as the idler field. In the context of OPOs, we
will stick to this terminology and replace the indices used to label the interacting fields
according to: 3→ p, 1→ s, and 2→ i. We here use the convention ωi < ωs < ωp. This
convention is arbitrary because the equations (3.2) and (3.3) are completely symmetric
with respect to an exchange of indices 1 ↔ 2. It is only required that ω3 = ωp is the
highest frequency. As an example, Fig. 3.2 illustrates OPA in a 4-cm-long MgO:PPLN
crystal. Figure 3.2(b) shows 1 + G = Is(z)/Is(0) for the signal field and Fig. 3.2(c)
shows the evolution of the normalized idler intensity Ii(z)/Is(0). For simplicity, we
have assumed perfect phasematching ∆k = 0 in these plots.
Note that, in principle, OPA and DFG describe one and the same physical process.
The term OPA is used for the more specific situation when the amplification of a weak
input signal by means of a strong pump field is considered. In this case, the idler wave
is actually not needed, which explains the name. However, if the main objective is to
generate a wave with a third frequency ω2 = ω3 − ω1 from two input fields at ω1 and
ω3 one speaks of DFG.

3.2.2 Optical Parametric Oscillators

OPA can be exploited to build an optical parametric oscillator (OPO) which is able
to generate coherent optical radiation just like a laser. One can imagine an OPO as
a resonantly enhanced OPA: the nonlinear crystal is placed inside an optical cavity to
provide resonant feedback for the signal and/or idler wave. In analogy to many lasers,
an OPO consists of three basic elements: a pump laser, a gain medium, and an optical
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Figure 3.2: Parametric amplification in a QPM crystal. (a) Schematic of the considered OPA
process: the inserted signal field is amplified with the help of the strong pump field and a
third field, the idler field, is generated. The laboratory frame is denoted by lower-case letters
(x, y, z) while capital letters (X,Y, Z) indicate the crystal coordinate system of LN or LT as
introduced in Sect. 3.1.1. (b) Relative amplification Is(L)/Is(0) = 1 +G of the signal intensity.
(c) Solid line: idler intensity normalized with respect to the input signal intensity Ii(L)/Is(0).
The generated idler intensity is smaller than the signal intensity since the number of signal
and idler photons created in OPA is equal but the idler photons have less energy (λs < λi).
Correcting the data by a factor of λi/λs results in the dashed line which shows the same course
as the function in (b). Parameters used to calculate the curves: 5 % MgO:PPLN, λp = 532 nm,
λs = 810 nm, λi = 1550 nm, np = 2.2246, ns = 2.1668, ni = 2.1307 [105], dQ = 16 pm/V,
Ip = 1 W

π×(50µm)2 .

resonator. Since the first demonstration of an OPO [111], a plethora of device designs
have been developed (see [112] for a review of QPM-based OPOs). Among the criteria
which are used for a classification of OPOs are: the type of pump laser, the type of
radiation that is emitted (cw or pulsed), the nonlinear material, the phasematching
technique (BPM, QPM, or other), and the resonator design (singly resonant, doubly
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resonant, triply resonant, or other). We here only discuss the cw singly resonant OPO
(cw SRO) based on QPM. Singly resonant means that the cavity mirrors are designed
such that the OPO cavity is resonant only for the signal (idler) wave but not for the
pump and the idler (signal) wave. A schematic of such an OPO is sketched in Fig. 3.3.

Figure 3.3: Schematic of a singly resonant OPO: a QPM crystal is placed inside an optical
resonator and pumped by a laser (green). The cavity mirrors are highly reflective only for the
signal wave (red). The pump light and the idler radiation (black) are transmitted by the cavity
mirrors (M1, M2). As opposed to a laser, gain is only generated in one direction due to the
phasematching condition ∆k = 2π(kp − ks − ki − 1/Λ) = 0 which must be fulfilled to generate
macroscopic signal and idler power.

Start Process

It is important to note that, at the very beginning when the pump laser is switched on,
the situation for an OPO is different from the initial conditions (3.6). Initially, only
the pump field is incident onto the nonlinear crystal, i.e.,

Ap(0) = Ap, As(0) = 0, Ai(0) = 0. (3.11)

Considering these initial conditions, the creation of photons at frequencies 6= ωp cannot
be explained by the classical coupled mode equations. In fact, the start process of
an OPO is based on optical parametric fluorescence (OPF) which is a pure quantum
effect (see, e.g., Ref. [113] for a mathematical treatment). This effect is also called
spontaneous parametric down-conversion (SPDC). During the first pass of the pump
beam through the crystal, a very small fraction of the pump photons spontaneously
splits up into signal and idler photons. In an SRO, the so produced signal or idler
photons are fed back by the cavity mirrors and enter the crystal again. From this point
on, OPA, as discussed in the previous section, will take place in the crystal.

Oscillation Threshold

In analogy to a laser, an OPO starts when the gain per cavity round trip equals the
cavity losses. Thus, optical parametric oscillation is observed only when the threshold
condition Pp, th < Pp is fulfilled, i.e., when the pump power Pp is larger than a certain
threshold pump power Pp, th. Cavity losses are induced by non-perfect reflectivities of
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the resonator mirrors, absorption, Fresnel reflection at interfaces, scattering, or diffrac-
tion. For simplicity, the reflectivities of all cavity mirrors at the signal (idler) frequency
are modeled by a single amplitude reflection coefficient Rs (Ri). All other losses expe-
rienced by the signal (idler) wave are included in an absorption constant αs (αi). With
l1 ≡ 1−Rse

−αsL and l2 ≡ 1−Rie
−αiL, the threshold condition reads [61,110]

cosh(gL)th = 1 +
l1l2

2− l1 − l2
. (3.12)

This relation is obtained from Eqs. (3.2), (3.3) by requiring that the signal and idler
fields reproduce themselves after each cavity round trip. It is valid both for dou-
bly resonant and singly resonant OPOs. For a small gain coefficient g, we can write
cosh(gL) ≈ 1 + 1

2g
2L2. Further, to calculate the SRO threshold, we assume low losses

for the signal frequency (l1 � 1) and no feedback at the idler frequency (l2 = 1). The
threshold condition then is

(gL)2
th = 2l1 = 2

(
1−Rse

−αsL
)
. (3.13)

From the above, we can directly derive a formula for the pump power at threshold [110]:

Pp, th = {beam area} ×
ε0ninsnpcλ

2
p

π2d2
effL

2(1− δ2)

(
1−Rse

−αsL
)
. (3.14)

The parameter δ (0 ≤ δ ≤ 1) is the degeneracy factor [110] determined by

ωs =
1

2
ωp(1 + δ), (3.15)

ωi =
1

2
ωp(1− δ). (3.16)

It indicates the distance of ωs and ωi from the point of degeneracy ωs = ωi = 1
2ωp. The

threshold pump power has a minimum for δ = 0 and increases as δ gets larger.
Equation (3.14) was derived in the plane wave approximation. In real OPO devices,
the pump beam is focused into the crystal because the parametric gain scales with the
pump intensity. In this situation, the interacting light fields must be treated as Gaussian
beams and (3.14) has to be modified. For focused Gaussian beams, the threshold pump
power is given by [110]

Pp, th =
ε0ninscλ

3
p

π2d2
effL(1− δ2)hm(B, ξ)

(
1−Rse

−αsL
)
. (3.17)

The function hm(B, ξ) is the gain reduction factor according to Boyd and Kleinman [114]
(see Fig. 3.5). It is discussed in the next section.
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Figure 3.4: Gaussian beam. In the shown example we have assumed λ = 532 nm and w0 =
100µm.

Criteria for SRO Cavity Design

A paraxial wave equation can be derived from (2.10) for each of the frequency compo-
nents ωp, ωs, ωi [61]. Thus, the theory of Gaussian beams that has been developed for
lasers [115] can also be applied to OPOs. Figure 3.4 shows the 1/e2 beam radius w(z)
of a Gaussian beam as a function of the distance z from the focus at z = z0. The plots
shown in Fig. 3.4 are given by

w(z) = ±w0

√
1 +

(
z

zR

)2

, (3.18)

with zR =
πw2

0

λ
. (3.19)

In (3.18) zR denotes the Rayleigh range, λ is the wavelength and w0 is the beam waist
at z = z0. The Rayleigh range zR is defined by the property w(±zR) =

√
2w0. Also

shown in Fig. 3.4 is the confocal parameter b = 2zR. For parametric interactions in
bulk crystals, Boyd and Kleinman have shown that maximum conversion efficiency
is achieved when the function hm(B, ξ) is maximized [114]. This function must be
calculated numerically, where ξ ≡ L/bp (L = crystal length) is the pump focusing
parameter and B accounts for double refraction (B = 0 for our purposes). Figure 3.5
shows a plot of the function hm(B = 0, ξ). This function is maximized for ξ = 2.84
with hm(0, 2.84) ≈ 1.
In order to find a (theoretically) ideal SRO cavity design, one might use the following
guidelines: for a given crystal length L the pump focusing optics are chosen such that
bp ≈ L/2.84. As seen from Fig. 3.5, the graph of hm(0, ξ) is relatively flat around the
maximum. Therefore, deviations from the ideal value can be tolerated to some extend.
Once bp is chosen, the pump beam waist w0p is fixed, too, because of (3.19). The cavity
design is calculated such that the resonator is stable and at the same time provides a



3.2. Nonlinear Optical Devices 39

10-2 10-1 100 101 102 103
10-3

10-2

10-1

100

101

 

 

h m
(0

,
)

 = 2.84

Figure 3.5: Gain reduction factor hm(0, ξ) according to Boyd and Kleinman [114].

confocal parameter bs = bp for the signal wave. In this way, maximum mode overlap of
the pump beam and the resonant signal field is ensured.

Wavelength Tuning of QPM-Based OPOs

Controlled wavelength tuning is a prerequisite for applications of OPOs in spectroscopy
(see Sect. 4.1.4) or frequency mixing experiments (see Chap. 5 and 6). A number of
possibilities exist to adjust the signal and idler wavelengths of a QPM-based OPO.
First of all, according to (2.32), the set of wavelengths {λp, λs, λi} that can be phase-
matched in an OPO process is determined by the grating period Λ of the QPM crystal.
It is common to use crystals with multiple gratings to extend the spectral range that
is accessible with a single crystal. To generate a desired signal/idler wavelength pair,
one has to choose the proper grating period within the crystal. However, this does
allow only for a very coarse wavelength selection. Further optimization of the crystal
temperature is necessary to tune the output wavelengths in finer steps. The effect of
temperature tuning is understood from relation (2.32): the refractive indices n(λ, T ) in
(2.32) are temperature dependent and thus tuning the crystal temperature alters the
phasematching condition and causes a wavelength shift of the signal and idler wave-
length. As an example, Fig. 3.6 shows wavelength tuning curves as a function of crystal
temperature for different grating periods in a MgO:PPLN crystal. Apparently, wave-
length tuning via the crystal temperature in combination with multiple QPM gratings
allows to cover a large spectral range. The maximum precision of temperature tuning,
however, is also limited since the temperature is an experimental parameter that cannot
be controlled with perfect accuracy (typically ±0.01 ◦C).
Another method of wavelength tuning can be applied when the pump laser is wavelength-
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Figure 3.6: Example of OPO wavelength tuning curves as a function of crystal temperature
for different QPM grating periods Λ = {6.95, 7.0, 7.2, 7.4, 7.6}µm in MgO:PPLN. The plots
were calculated for a pump wavelength of 0.532µm with Sellmeier coefficients from [105]. The
dashed line marks the point of degeneracy at 2λp = 1.064µm which separates the branches of
signal and idler tuning curves.

tunable. In this case, all other parameters in (2.32) are held constant while the wave-
length of the pump laser is varied. This technique enables precise wavelength control
and rapid wavelength sweeps [116].
If the pump laser is not wavelength tunable, reaching higher levels of precision requires
either the possibility to scan the cavity length in a controllable manner or a frequency-
selective intracavity element (such as an etalon or a diffraction grating). Scanning the
cavity length can be done, e.g., by use of a piezo cavity mirror. A small relative change
dL/L of the effective cavity length results in a relative frequency change of −dν/ν. The
effect of an intracavity etalon is explained in Fig. 3.7 by a typical example. In the sim-
plest case, the etalon is a thin glass plate acting as a low-finesse Fabry–Pérot resonator.
Figure 3.7(a) depicts the etalon fringes and the parametric gain profile in the nonlinear
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Figure 3.7: Effect of an OPO intracavity etalon. (a) Comparison of the normalized para-
metric gain profile (dash-dotted line) generated in the nonlinear crystal with the normalized
transmission peaks of a low-finesse intracavity etalon (solid and dotted lines). The maximum
of the parametric gain is chosen as the zero point of the frequency axis. The position of the
etalon transmission maxima can be adjusted by tilting the etalon by a small angle. The etalon
peak closest to the parametric gain maximum is marked by an asterisk. (b) Magnification of
the part framed by the box in (a). The net gain (dash-dotted line) is shown together with the
cavity modes of the OPO resonator (solid line). The OPO will run on the mode closest to the
maximum of the net gain (marked by the asterisk). The width of the parametric gain as well
as the etalon and cavity transmission fringes reflect the situation in typical experiments.

material. The etalon introduces wavelength-dependent losses in the cavity and thus
modulates the net gain profile (parametric gain × etalon transmission). By tilting the
etalon, the transmission fringes and thus the maximum of the net gain can be shifted.
Figure 3.7(b) depicts an enlarged view showing the maximum of the net gain and the
OPO cavity modes. Similar to a laser, the OPO will oscillate on the cavity mode that
experiences the highest net gain.
A more detailed survey of wavelength tuning properties of OPOs can be found in
[116,117].

3.2.3 Waveguide-Based Quasi-Phasematched Frequency Converters

Dielectric Waveguides with Rectangular Cross Section

In Sect. 2.1.2 we have introduced the coupled mode equations (2.13)–(2.15) assuming
an interaction of plane waves in a nonlinear dielectric. One possibility of enhancing the
efficiency of nonlinear processes is to apply resonant feedback as in an OPO resonator.
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Another method is to use an optical waveguide (WG), i.e., a geometric structure that
confines the light fields within a small spatial volume in two dimensions. This can be
understood from the fact that |Am(z)|2 is proportional to the field intensities. For a
given power, the intensity increases if the mode volume becomes smaller.
Optical fibers made of SiO2 are perhaps the most prominent examples of optical WGs.
They were actually not developed for nonlinear processes. However, nonlinear effects
can be observed in these fibers as well (mostly χ(3) interactions). In this thesis, we use
WGs made of Zn:PPLN with a rectangular cross section. Zn:PPLN was chosen as a
material because of its high nonlinear coefficient d33 (see Sect. 3.1) and its immunity
against photorefractive damage even at visible wavelengths and at room temperature
[118]. To derive the theoretical framework for understanding the propagation of light
modes in a rectangular WG, we consider the situation illustrated in Fig. 3.8. The
figure shows the most general case where the refractive indices for the WG core itself
and for the surrounding media on all four sides of the WG can be different (while n1

is the highest of all indices). It is not possible to find an analytic solution of Maxwell’s
equations for such a system. However, numerical solutions with high accuracy can
be performed [119]. Here we alternatively follow the approach discussed in the book
by Marcuse [120] and present an analytic approximation. The concept was originally
developed by Marcatili [121] and the approximation is valid as long as the frequencies
of the WG modes are far from the cut-off frequency. The cut-off frequency is the lowest
frequency for which a mode can propagate through the WG. In general, two types of
modes can be excited in the WG sketched in Fig. 3.8. In [120] they are termed Expq and
Eypq modes (p, q = 0, 1, 2, ...). Expq modes are polarized predominantly in the x direction
while Eypq modes are mostly polarized in the y direction. One can think of these modes
as ‘quasi TM’ and ‘quasi TE’ modes [122] although, in a strict sense, such modes do
only exist in two very specific types of WGs (planar slab WGs and fibers with circular
symmetry) [123]. Pure TM modes are characterized by Ex, Hy, Ez 6= 0 while all other
components of the electric and magnetic field vanish. Pure TE modes have Ey, Hx,
Hz 6= 0 and all other components vanish [120,123]. Maxwell’s equations for the E and
H fields in regions 1–5 are given by [120]

Ex = − i

K2
j

[
β
∂Ez
∂x

+ ωµ0
∂Hz

∂y

]
, (3.20)

Ey = − i

K2
j

[
β
∂Ez
∂y
− ωµ0

∂Hz

∂x

]
, (3.21)

Hx = − i

K2
j

[
β
∂Hz

∂x
− ωn2

jε0
∂Ez
∂y

]
, (3.22)

Hy = − i

K2
j

[
β
∂Hz

∂y
+ ωn2

jε0
∂Ez
∂x

]
, (3.23)

with Kj =
√
n2
jk

2 − β2. The nj (j = 1, ... , 5) are the refractive indices in regions

1–5. The propagation constant β is an effective wavenumber for a mode propagating
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Figure 3.8: Geometry that is considered to calculate the electromagnetic field distribution
in a dielectric WG with rectangular cross section d × b (after [120]). The direction of light
propagation in the WG is parallel to the z axis, i.e., perpendicular to the drawing plane. The
WG core material has refractive index n1 and is surrounded on four sides by regions with
refractive indices n2, n3, n4, and n5. In general, these indices are allowed to be different in the
model. The hatched regions are ignored to enable an analytic solution of the problem.

in the WG while k = ω
√
ε0µ0 = 2π/λ is the wavenumber in free space (λ = vacuum

wavelength). The effective index neff of the mode is defined by neff = β/k [123]. The
time and z dependence for all fields is given by the factor exp[i(ωt−βz)] and is omitted
in the equations (3.20)–(3.23). In Marcatili’s approximation, the solutions E(x, y) and
H(x, y) to Eqs. (3.20)–(3.23) are composed of piecewise functions that are defined for
each of the five regions in Fig. 3.8. For instance, the solution that describes an Expq
mode in region 1 (−d < x < 0, 0 < y < b), i.e., inside the core of the WG is given by

Ez = A cosκx(x+ ξ) cosκy(y + η), (3.24)

Hz = −A
√
ε0
µ0
n2

1

κy
κx

k

β
sinκx(x+ ξ) sinκy(y + η), (3.25)

Ex =
iA

κxβ
(n2

1k
2 − κ2

x) sinκx(x+ ξ) cosκy(y + η), (3.26)

Ey = −iAκy
β

cosκx(x+ ξ) sinκy(y + η), (3.27)

Hx = 0, (3.28)

Hy = iA

√
ε0
µ0
n2

1

k

κx
sinκx(x+ ξ) cosκy(y + η). (3.29)

Solutions for regions 2–5 are given in App. B. We here only concentrate on Expq modes
because this class of modes is of particular importance for the experiments presented
in Chap. 5 and 6. For Eypq modes the reader is referred to [120]. Numeric values for the
quantities κx, κy, ξ, η, β must be calculated in order to use Eqs. (3.24)–(3.29) and the
other four sets of functions (regions 2–5) for practical purposes. The parameters κx,
κy, ξ, η, β are completely determined by the refractive indices of the five regions and
the height d and width b of the WG. Using the definitions for γ2, γ3, γ4, and γ5 given
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in Table 3.2, κx and κy are obtained by numerically solving the eigenvalue equations

tanκxd = n2
1κx

n2
3γ2 + n2

2γ3

n2
3n

2
2κ

2
x − n4

1γ2γ3
(3.30)

and

tanκyb =
κy(γ4 + γ5)

κ2
y − γ4γ5

, (3.31)

respectively. In general, Eqs. (3.30) and (3.31) posess multiple solutions and each

Table 3.2: Definition of the parameters γ2, ... , γ5.

Parameter Definition

γ2

[(
n2

1 − n2
2

)
k2 − κ2

x

]1/2
γ3

[(
n2

1 − n2
3

)
k2 − κ2

x

]1/2
γ4

[(
n2

1 − n2
4

)
k2 − κ2

y

]1/2
γ5

[(
n2

1 − n2
5

)
k2 − κ2
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]1/2
solution corresponds to a different set of mode numbers pq. Once κx and κy are known,
we can calculate the parameters ξ and η using the relations

tanκxξ = −n
2
3κx
n2

1γ3
, (3.32)

tanκyη = −γ5/κy. (3.33)

(3.34)

We also obtain the propagation constant of a specific mode from

β =
√
n2

1k
2 − (κ2

x + κ2
y). (3.35)

The power that is transmitted through the WG is calculated by integrating the normal
component of the energy flux density S · n = S · ẑ = Sz (n and ẑ are unit vectors) over
the xy plane

P =

∫∫
S · ẑ dxdy =

∫∫
Sz dxdy, (3.36)

where

S =
1

2
Re(E×H∗) (3.37)

is the time averaged Poynting vector. Figures 3.9(b)–(f) show some concrete examples of
intensity distributions in the xy plane for several WG modes. To calculate these density
plots, we have considered the special case of a WG core made of LN bonded onto a LT
substrate on one side and surrounded by air on the other three sides (n3 = n4 = n5 = 1).
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a b c

d e f

Figure 3.9: (a) Schematic of the WG. The periodic poling indicated in the drawing has
no influence on the WG modes but is important for later considerations. (b)–(f) Intensity
distribution (normal component Sz of the Poynting vector) for different WG modes in a LN-
on-LT WG with d × b = 8 × 8µm2 cross section. (b) Ex00 mode for λ = 1550 nm. (c) Ex00

mode, (d) Ex10 mode, (e) Ex01 mode, and (f) Ex11 mode (all at λ = 710 nm). Bright areas
correspond to high intensity. Refractive indices: n1(1550 nm) = 2.1374, n1(710 nm) = 2.1873,
n2(1550 nm) = 2.1169, and n2(710 nm) = 2.1612.

This type of WG is used for the experiments described in this thesis (see Fig. 3.9(a)
for a schematic). The refractive indices of LN and LT can be calculated for a given
wavelength and temperature using published Sellmeier equations (see App. A). For
the plots in Fig. 3.9, we have assumed a WG with a quadratic cross section of d× b =
8×8µm2. Figures 3.10(a) and (b) show cuts Sz(x, y = b/2) and Sz(x = d/2, y) through
the centers of the Ex00 mode profiles for three different wavelengths 710 nm, 1310 nm,
and 1550 nm. All three mode profiles have been normalized so that the integrated
intensity (3.36) equals unity. Apparently, the modes are strongly confined inside the
WG core, i.e., the largest fraction of the power is concentrated in the core (> 99 % for
all three modes). Thus, for most calculations, using only the solution for region 1 and
neglecting the solutions for regions 2–5 will only introduce a small error. The asymmetry
of the refractive index distribution in the x direction leads to an asymmetric intensity
distribution, as seen from Fig. 3.10(a). The center of mass of the distribution is slightly
shifted toward the LT substrate and the integrated intensity in region 2 (LT) is higher
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than in region 3 (air). This effect is stronger for longer wavelengths and/or smaller index
contrasts ∆n = n1− n2. Owing to the symmetric index distribution in y direction, the
center of mass of the intensity distribution is not shifted and coincides with y = b/2 for
all three wavelengths. We shall see in the next section how spatial mode overlap in the
WG and nonlinear mode coupling are related.

a b

Figure 3.10: Cuts through the Ex00 mode profiles for three different wavelengths 710 nm,
1310 nm, and 1550 nm. (a) Sz(x, y = b/2) parallel to the x axis. The center of mass of the
intensity distribution is slightly shifted toward the LT substrate due to the asymmetric index
distribution (LT–LN–air). (b) Sz(x = d/2, y) parallel to the y axis. Here no spatial shift occurs
because of the symmetric index distribution (air–LN–air).

DFG in Ridge Waveguides—Classical Treatment

In Sect. 2.1.2 we have seen how a second-order optical nonlinearity leads to a coupling
of different frequency components resulting in three-wave frequency mixing. In the
preceding section, we discussed the electromagnetic field modes that can be excited
inside a rectangular dielectric WG. We now study DFG in ridge WGs made of LN. To
this end, we consider three electric field modes

Em(r, t) = Am(z)Em(x, y) ei(ωmt−βmz) + c.c. (m = 1, 2, 3) (3.38)

at frequencies ω1, ω2, and ω3 propagating in the WG. The field amplitudes are rep-
resented as a product of a scalar function Am(z) and a vector field Em(x, y). Am(z)
only depends on z and describes the evolution of power at ωm along the WG (z is the
propagation direction). For convenience, the dimension of Am(z) is chosen such that
the power in [W] is given by Pm = |Am(z)|2 [66]. The normalized transverse intensity
distribution is described by Em(x, y) and depends only on x and y. For a rectangu-
lar WG, Em(x, y) is obtained from Marcatili’s approximation Em(x, y), introduced in
Sect. 3.2.3, by multiplication with a normalization factor Cm:

Em(x, y) = CmEm(x, y), (3.39)
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with

Cm =

[
1

2

∫∫
Re(Em ×H∗m) · ẑ dxdy

]−1/2

. (3.40)

With the above definitions, the coupled mode equations governing three-wave mixing
in WGs are given by [66]

∂A1

∂z
= −α1A1 − iκ1A

∗
2A3 e

−i∆βz, (3.41)

∂A2

∂z
= −α2A2 − iκ2A

∗
1A3 e

−i∆βz, (3.42)

∂A3

∂z
= −α3A3 − iκ3A1A2 e

+i∆βz. (3.43)

These equations are very similar to the relations (2.13)–(2.15) for the interaction of
plane waves. However, note that three important changes were made. The −αmAm
terms on the right hand side of each equation were added to account for WG attenuation.
The wavevector mismatch ∆k was replaced by ∆β since we are dealing with wave
propagation in a WG now. Most importantly, the coupling constants κ1, κ2, κ3 are
different from those in (2.13)–(2.15). They depend on integrals describing the spatial
overlap of the three interacting modes and are defined by

κ1 =
ω1ε0

2

∫∫
E∗1(x, y)dQ E3(x, y)E∗2(x, y) dxdy, (3.44)

κ2 =
ω2ε0

2

∫∫
E∗2(x, y)dQ E3(x, y)E∗1(x, y) dxdy, (3.45)

κ3 =
ω3ε0

2

∫∫
E∗3(x, y)dQ E2(x, y)E1(x, y) dxdy. (3.46)

The coupling constants κ1, κ2, κ3 obey the relation [66]

κ1/ω1 = κ2/ω2 = κ∗3/ω3 ≡ κ. (3.47)

The integrals (3.44)–(3.46) are simplified for the interesting case of QPM in LN when
we assume that only the three fundamental WG modes (pq = 00) interact. For example,
Eq. (3.44) then becomes

κ1 =
ω1ε0dQ

2

∫∫
E∗1x(x, y)E3x(x, y)E∗2x(x, y) dxdy (3.48)

=
ω1ε0dQ

2
C1C2C3

∫∫
E∗1x(x, y)E3x(x, y)E∗2x(x, y) dxdy︸ ︷︷ ︸

=:I1

, (3.49)

where use has been made of (3.39) for the second equation. Analog expressions apply
for κ2 and κ3.
To investigate the influence of various parameters on the performance of a WG-based
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frequency converter like the one sketched in Fig. 3.9(a), we numerically solve (3.41)–
(3.43) for different conditions. In later experiments, we study single-photon down-
conversion via DFG. We thus assume that a weak input signal at ωa = 2πc/λa and a
strong pump field at ωp = 2πc/λp are inserted into the WG to generate a third field
at ωb = ωa − ωp. At this point, we change our notation introduced in the context of
OPA/OPO. We will now use the assignment 3 → a, 1 → p (b), 2 → b (p). In this
notation, ωa and ωp are always the angular frequencies of the fields which are inserted
into the WG. Both cases, ωb < ωp and ωb > ωp, are possible. For the solution of
the coupled mode equations plotted in Fig. 3.11(a), we have set λa = 710 nm, λb =
1310 nm, and λp = 1550 nm with initial conditions Pa(0) = |Aa(0)|2 = 1 nW, Pb(0) =
|Ab(0)|2 = 0, Pp(0) = |Ap(0)|2 = 50 mW or 150 mW. The coupling constants κm have
been calculated using equation (3.49) and analog expressions for κ2 and κ3. With

the assumed set of wavelengths, we find |Im| ≈ 0.112 × 1010 1
m

(
V
A

)3/2
for the overlap

integrals of the three fundamental modes in the LN WG with 8× 8µm2 cross section.
From Fig. 3.11(a), we recognize that the input photons at 710 nm are depleted while
propagating through the nonlinear WG and photons at 1310 nm are generated. At a
certain position in the crystal (z = 45.7 mm for Pp = 50 mW and z = 26.4 mm for
Pp = 150 mW in Fig. 3.11(a)), all power has been transferred from the ωa mode to
the ωb mode. This point is reached at shorter interaction lengths the higher the pump
power Pp is. Beyond this point, back-conversion takes place which means that the ωb

mode interacts with the strong ωp mode via SFG to generate photons at ωa again. In
the absence of any transmission losses, these processes repeat themselves and power is
mutually exchanged between modes at ωa and ωb. Because the power Pp of the pump
field is much stronger than Pa and Pb, it is practically unaffected by these processes
and remains constant for all positions z. As it is our goal to completely convert visible
photons to telecom photons, it is sufficient to choose a WG length which allows for a
quarter cycle of the oscillation shown in Fig. 3.11(a). The actual length of the WG
chips employed in the experiments is 40 mm.
Next, we study the effect of WG attenuation (or transmission losses) which cannot be
avoided in practice. To this end, we solve the system (3.41)–(3.43) for pump power
values from 0–500 mW and calculate the photon-to-photon conversion efficiency η =
λbPb/(λaPa) at the output z = L of the WG. With L = 40 mm fixed, we obtain
the curves plotted in Fig. 3.11(b) for different attenuation coefficients α (0, 0.05, 0.1,
0.2 dB/cm). At this point, it is important to mention the relation between the amplitude
loss coefficient α[1/m] with dimension [1/m] which is used in (3.41)–(3.43) and the power
loss coefficient α[dB/cm] with dimension [dB/cm]. From

P (z) = |A(z)|2 = |A(0)|2 e−2α[1/m]z, (3.50)

P (z) = P (0) 10−α[dB/m]z/10 (3.51)

it follows that

α[1/m] =
100

20 log10(e)
α[dB/cm] ≈ 11.513α[dB/cm]. (3.52)
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a b

c d

Figure 3.11: Solution of the coupled mode equations (3.41)–(3.43) under different conditions.
(a) Evolution of power at λa = 710 nm and λb = 1310 nm along the propagation direction in
the WG (no transmission losses). The pump power at λp = 1550 nm is assumed to be 50 mW
(dash-dotted lines) or 150 mW (solid lines). The point marked with an asterisk at L = 26.4 mm
corresponds to the first full conversion for Pp = 150 mW. (b), (c), (d) Conversion efficiency
as a function of pump power for (b) different WG transmission losses (fixed interaction length
and d33), (c) different interaction lengths (fixed transmission losses and d33), and (d) different
nonlinear coefficients d33 (no transmission losses, fixed interaction length).

It is apparent from Fig. 3.11(b) that the pump power needed to achieve maximum
conversion efficiency depends only little on α but the maximum conversion efficiency
decreases for increasing losses. Theoretically, the effect of losses can be alleviated by
choosing a shorter WG and increasing the pump power as illustrated in Fig. 3.11(c).
However, in practice this is not always desirable because higher pump powers can favor
other detrimental processes such as Raman scattering (see Sect. 5.2.2). We finish our
discussion on DFG in nonlinear WG devices by studying the conversion efficiency for
varying coupling constants κm. The κm depend on two quantities, dQ and Im, which
are often not exactly known in practical cases. The tensor element d33 (and thus dQ)
depends on the wavelength and the values that can be found in the literature differ
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depending on the reference (see Table 3.1). The calculation of the overlap integrals Im
can also be difficult if higher-order spatial modes are involved because then the total
power at one frequency is distributed over different spatial modes and one has to know
the fraction of power carried by each mode. For simplicity, we here only examine the
influence of different nonlinear coefficients d33. In practice, it is anyway difficult to
decide wether a reduced conversion efficiency is due to a reduced deff or a suboptimal
mode overlap. As a reference value, we have taken d33 = 25 pm/V which can be found
in the literature for congruent LN measured using SHG of 1064 nm [95]. Figure 3.11(d)
shows what happens for smaller values of d33. As might be expected, the pump power
required to yield maximum conversion efficiency at the WG output increases for smaller
d33, i.e., smaller coupling constants.
Important conclusions that can be drawn from the discussion of the plots in Fig. 3.11
are the following:

• Theoretically (in the absence of losses), a complete conversion of the visible input
field to a telecom field is possible in a LN ridge WG. The required WG length to
reach maximum conversion efficiency is on the order of several ten mm if moderate
pump powers (100 mW order of magnitude) are applied.

• The maximum conversion efficiency that is achievable is limited by transmission
losses at all three modes.

• When transmission losses are high, it might be favorable in some situations to use
a shorter WG and higher pump powers.

• For a given interaction length, the pump power required to reach maximum con-
version efficiency at the WG output is higher for smaller coupling constants.

The length of the WGs used in the experiments described in Chap. 5 and 6 is 40 mm. We
will see that a maximum internal conversion efficiency exceeding 70 % can be achieved
for pump powers between 150–250 mW (depending on actual experimental conditions).

Quantum Mechanical Model of DFG

So far, we have investigated frequency down-conversion of a weak input field from ωa

to ωb with the help of the classical equations (3.41)–(3.43). We now introduce a simple
quantum mechanical model based on the effective Hamiltonian [43]

Ĥ = i~η âb̂†A∗p − i~η∗Apb̂â
†, (3.53)

where â, b̂ and â†, b̂† are bosonic annihilation and creation operators, respectively (see
Sect. 2.2.1). Since the pump field is assumed to be a strong classical field, it can be de-
scribed by the complex amplitude Ap instead of an operator âp. The Hamiltonian (3.53)

describes the interaction of the three field modes â, b̂ and Ap coupled by the constant
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η. In order to determine the time evolution of the operators â and b̂, we follow [34] and
use the Heisenberg equation of motion [124]

dÔ

dt
=
i

~
[Ĥ, Ô], (3.54)

for an operator Ô in the Heisenberg picture which is not explicitely time dependent.
Identifying Ô = â and Ô = b̂ and inserting (3.53) into (3.54) (see App. B for a detailed
derivation) we can write down the equations of motion for the two operators:

dâ

dt
= −η∗Apb̂, (3.55)

db̂

dt
= ηA∗pâ. (3.56)

These equations are solved by

â(τ) = â(0) cos(|ηAp|τ)− e−iφp b̂(0) sin(|ηAp|τ), (3.57)

b̂(τ) = b̂(0) cos(|ηAp|τ) + e+iφp â(0) sin(|ηAp|τ), (3.58)

where τ denotes the interaction time and eiφp = ηA∗p/|ηAp|. For comparison with
classical results, we must use the expectation values of the photon number operators
n̂a(τ), n̂b(τ) which read (see App. B for a detailed derivation)

〈n̂a(τ)〉 = 〈n̂a(0)〉 cos2(|ηAp|τ) + 〈n̂b(0)〉 sin2(|ηAp|τ), (3.59)

〈n̂b(τ)〉 = 〈n̂b(0)〉 cos2(|ηAp|τ) + 〈n̂a(0)〉 sin2(|ηAp|τ). (3.60)

The expectation values are plotted as a function of |ηAp|τ in Fig. 3.12. For an interac-
tion time of τopt = π/(2 |ηAp|), complete frequency conversion is achieved. If the input
state is a single-photon Fock state |na(0), nb(0)〉 = |1, 0〉, it is converted to the state
|na(τopt), nb(τopt)〉 = |0, 1〉 after the time τopt corresponding to a complete exchange of
populations in photon states, i.e., the frequency is altered while the single-photon state
is preserved. To see the analogy of (3.55) and (3.56) with the classical coupled mode
equations, we rewrite (3.41)–(3.43) by applying the transformations

A1(z) =
B1(z)
√
ω2ω3

, A2(z) =
B2(z)
√
ω1ω3

, A3(z) =
B3(z)
√
ω1ω2

(3.61)

to obtain

∂Bp(z)

∂z
= −iκB∗b(z)Ba(z), (3.62)

∂Bb(z)

∂z
= −iκB∗p(z)Ba(z), (3.63)

∂Ba(z)

∂z
= −iκ∗Bp(z)Bb(z). (3.64)
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Figure 3.12: Evolution of the expection values 〈n̂a(τ)〉 and 〈n̂b(τ)〉 when the input is a single-
photon Fock state |na, nb〉 = |1, 0〉.

In (3.62)–(3.64) we have used the relations (3.47) and the indices 1, 2, 3 were again
replaced by p, b, a, respectively. Perfect phasematching (∆β = 0) was assumed and
WG attenuation was neglected (αm = 0). With the transformations (3.61), the three
coupling constants κ1, κ2, κ3 are replaced by the single constant κ. Given that the
pump power is much stronger than the power of the other two modes, Eq. (3.62)
can be approximated by ∂Bp/∂z ≈ 0 and integrated to yield a constant Bp. The
remaining equations (3.63) and (3.64) have the same structure as the equations for the
operators (3.55), (3.56), where η corresponds to −iκ. Using Eq. (3.60), we can define
the conversion efficiency for a QFC device by

ηQFC =
〈n̂b(τ)〉
〈n̂a(0)〉

= sin2(|η|
√
Ppτ). (3.65)

Here |Ap| was replaced by
√
Pp and we have again assumed |1, 0〉 to be the input state.

The classical result is

|Bb(L)|2

|Ba(0)|2
=
Pb(L)

~ωb

~ωa

Pa(0)
= sin2(|κ|

√
ωaωb

√
PpL). (3.66)

By defining the normalized efficiency ηnor ≡ |κ|2ωaωb and equating (3.65) and (3.66),
we find [39,125,126]

ηQFC = sin2(
√
ηnorPpL). (3.67)

A remark on the model of Ou which we have used in the above derivation is necessary
here. Although this model is very simple, Eq. (3.67) correctly describes the experimental
observations in the case of low WG attenuation and a high signal-to-noise ratio (number
of photons intentionally generated by frequency conversion vs. number of photons
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generated in unwanted noise processes). Nevertheless, this model is far from giving a
complete description of all the effects that possibly occur in WG-based QFC devices
since all quantum noise sources are neglected. A refined model that takes into account
quantum noise effects such as photon loss, Stokes and anti-Stokes Raman scattering,
and pump-induced SPDC was introduced by S. Blum and G. Morigi [127]. Their model
is based on Heisenberg–Langevin equations and allows to evaluate the influence of
quantum noise on the statistical properties of the frequency-converted photons.
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Chapter 4

Green-Pumped Continuous-Wave
Optical Parametric Oscillators

Copyright Notice:
The introduction of this chapter, Sect. 4.1, and Sect. 4.3 contain material
that was originally published in Ref. [128] (Copyright © Springer-Verlag
2009); with kind permission from Springer Science and Business Media.

The main goal of this thesis is frequency down-conversion of visible light emitted from
a single quantum emitter to a telecom wavelength in the O- or C-band. From this
objective, certain conditions for an experiment can be derived. The input wavelength
λin (= λa) is determined by the choice of a particular emitter. In this work, we focus
on two attractive solid-state systems, namely silicon-vacancy (SiV) centers in diamond
(λin ≈ 738 nm) and InP QDs (λin ≈ 710 nm). The target wavelength λout (= λb) should
lie within the telecom O-band (around 1310 nm) or C-band (around 1550 nm). Unlike
the emission spectra of atoms, the wavelength of the emission lines of SiV centers in
diamond or semiconductor QDs can vary significantly among individual centers/dots.
For example, the zero-phonon lines (optical transition between two electronic energy
levels without the involvement of phonons) of the SiV centers investigated in [60] lie
in a wavelength range of 732–748 nm and the exciton lines (see Sect. 6.1.1) of the
QDs on the sample used in this thesis are between 690 nm and 715 nm. Thus, it is
necessary to deploy a widely wavelength-tunable pump source to cover a variety of
possible wavelength combinations. Changing the pump source each time another set of
wavelengths is investigated would be an alternative. However, we decided to keep the
experimental setup as flexible as possible and to use the same pump source in all down-
conversion experiments. To evaluate the desired pump tuning range, we may consider
the following down-conversion schemes: 738 nm → 1310 nm (i), 710 nm → 1310 nm (ii),
738 nm → 1550 nm (iii), 710 nm → 1550 nm (iv). These processes require pump wave-
lengths at 1690 nm (i), 1550 nm (ii), 1409 nm (iii), and 1310 nm (iv), i.e., the pump
source has to cover a spectral range that spans from the telecom O-band to the U-band

55
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and even beyond. Furthermore, from the considerations in Sect. 3.2.3 we know that the
required pump source must deliver an output power of several hundred mW to achieve
a reasonable conversion efficiency in a realistic scenario. To the current state of the art,
there is no laser system which combines all of the requirements mentioned above. Thus,
we have chosen an alternative route and have built green-pumped cw OPOs based on
QPM as pump sources for the down-conversion process. Such devices have first been
demonstrated in 1995 [99] and are now established as versatile tunable coherent sources
particularly in the near to mid infrared spectral range [112]. Singly resonant cw OPOs
(cw SROs) are of special interest since they allow for higher output powers and fea-
ture more convenient tuning properties than doubly resonant OPOs (DROs). The
vast majority of the SROs reported to date are pumped with solid-state lasers or fiber
lasers emitting above 1µm [129–132]. Especially the combination of periodically poled
LiNbO3 and infrared pumping has turned out to be a successful concept as it unites the
advantages of a high effective nonlinear coefficient (dQ = 16 pm/V [95]) and high-power
pump lasers with excellent spectral and spatial properties. This scheme allows for gener-
ating light in the wavelength range from about 1.5µm to 4µm. However, the operation
of such devices at even shorter signal, i.e., longer idler wavelenghts, is a challenging task
as the transparency of LiNbO3 decreases at wavelenghts longer than 4µm [133, 134].
One possible solution is provided by using a shorter pump wavelength in the visible.
This naturally extends the addressable spectral range for LiNbO3-based SROs to shorter
wavelengths which is desirable in our case. It is also interesting for a number of other
applications, e.g., high-resolution spectroscopy [135] or state-insensitive optical cooling
and trapping (‘magic wavelengths’) [136]. It seems convenient to use a frequency-
doubled DPSS laser emitting at 532 nm as a pump laser. However, the development
of green-pumped cw SROs based on undoped PPLN has long been impeded by the ef-
fects of photorefractive damage and green-induced infrared absorption (GRIIRA) [137].
Although it has been demonstrated that both effects are eliminated or at least signifi-
cantly reduced when using MgO-doped PPLN (either 1 %-doped stoichiometric LN or
5 %-doped congruent LN) [93,94], the material still seems to have the reputation of be-
ing unsuitable for green-pumped OPOs. Thus, in many publications, periodically poled
MgO-doped stoichiometric LiTaO3 (MgO:PPSLT) has been preferred over MgO:PPLN
as the nonlinear material for green-pumped cw SROs [138–144]. On the one hand,
MgO:PPSLT has a higher optical damage resistance than MgO:PPLN [138]. On the
other hand, the effective nonlinear coefficient of MgO:PPSLT is by a factor of ∼ 1.6
lower compared to MgO:PPLN. Both materials were tested to find out which of them is
better suited for a green-pumped cw SRO. In this chapter we present two similar types
of cw SROs: one is based on MgO:PPLN, the other one on MgO:PPSLT. The devices
are tested with respect to their applicability as a pump source in QFC experiments.
Some interesting applications that go beyond this purpose, such as Doppler-free spec-
troscopy of cesium, frequency stabilization, and output coupling of the resonant signal
wave are presented as well.
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4.1 Green-Pumped CW SRO Based on MgO:PPLN

4.1.1 Experimental Setup

The experimental setup of the cw SRO based on MgO:PPLN is depicted in Fig. 4.1.
The SRO cavity is a symmetric four-mirror bowtie ring resonator similar to the one

Figure 4.1: (a) Setup of the cw SRO (PZT: piezo actuator, HWP: half-wave plate, PBS:
polarizing beamsplitter). The components enclosed by the dashed line are used for optional
frequency stabilization. Figure after [128] (© Springer-Verlag 2009); with kind permission from
Springer Science and Business Media. (b) Detailed sketch of the cavity design (all dimensions
in mm).

used in [145]. It consists of two plano-concave mirrors M1 and M2 (radius of cur-
vature ROC = 50 mm) and two plane mirrors M3 and M4. Each mirror is highly
reflective at the signal wavelength (reflectivity R > 99.8 % at 800–920 nm) and highly
transmittive at the pump (R < 8 % at 532 nm) and idler (R < 10 % at 1250–1580 nm)
wavelengths (mirror coatings by Laseroptik GmbH ). Mirror M3 is mounted on a piezo
actuator for scanning and controlling the cavity length. The temperature controlled
MgO:PPLN crystal (HC Photonics Corp.) with dimensions 40 mm × 8 mm × 0.5 mm
is placed at the center between mirrors M1 and M2. It contains six grating periods
Λ = 7.1, 7.2, ... , 7.6µm of which only Λ = 7.3µm is used in our experiments. Both
crystal faces are antireflection coated at pump, signal, and idler wavelengths (532 nm,
750–950 nm, 1250–1650 nm). The SRO cavity including the crystal has a free spec-
tral range (FSR) of more than 1.2 GHz. A frequency-doubled Nd:YVO4 single-mode
laser emitting at 532 nm (Coherent Verdi–V10 ) serves as the pump source. The pump
beam is focused into the nonlinear crystal by a lens with focal length f = 150 mm,
resulting in a beam waist of w0 ≈ 35µm. This corresponds to a focusing parameter
of ξ = L/b = 1.22 (see Sect. 3.2.2), where L denotes the crystal length and b is the
confocal parameter of the pump beam. In order to obtain oscillation on a particular
longitudinal mode, an uncoated glass etalon with a thickness of 30µm (FSR: ∼5 THz)
is placed inside the resonator between mirrors M3 and M4. Behind output coupler M2,
the pump, signal, and idler beams are collimated by a lens and subsequently separated
by appropriate dichroic mirrors. The residual signal radiation leaking through mir-
ror M4 is directed to a Doppler-free saturation spectroscopy setup (TEM Messtechnik
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GmbH, model CoSy) that is optionally used for spectroscopy and frequency stabiliza-
tion. It includes a glass cell filled with cesium at room temperature and optics to split
up the incident beam into counterpropagating pump and probe beam along with the
required photodetectors. A half-wave plate together with a polarizing beamsplitter al-
lows for variable power attenuation. For frequency stabilization, the cavity length is
slightly dithered by applying a 3-kHz modulation signal to the piezo. The Doppler-free
absorption signal is phase corrected and mixed with the piezo modulation signal by a
lock-in amplifier. The generated error signal is fed back to the M3 piezo actuator via a
servo amplifier.

4.1.2 Basic Properties of the MgO:PPLN-Based SRO

Threshold and Output Power

Figure 4.2 shows the idler output power Pi and idler wavelength λi of the non-stabilized
SRO as a function of the pump power Pp. Parametric oscillation occurs above a thresh-
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Figure 4.2: Idler output power (dots) and idler wavelength (triangles) vs. pump power.
The inset shows the measured normalized idler output power vs. the normalized pump power
(squares) together with the optimum theoretical curve ηopt(P̃p) · P̃p (solid line). Figure af-
ter [128] (© Springer-Verlag 2009); with kind permission from Springer Science and Business
Media.

old pump power of Pp, th ≈ 1.2 W (measured before the focusing lens). From Eq. (3.17),
we estimate that the minimal threshold power could be ∼ 388 mW under ideal condi-
tions. For this estimation, we have assumed the following parameters: ξ = 2.84 (ideal
focusing condition), dQ = 16 pm/V, 0.6 % Fresnel losses at each crystal facet (given
by the coating manufacturer), and 99.8 % reflectivity for all four cavity mirrors, i.e.,
1 − Rse

−αsL = 1 − 0.9984 × 0.9942 ≈ 0.980. The threshold pump power that was
achieved experimentally is thus about three times larger than the theoretical prediction
for ideal conditions. This can only be partly attributed to the non-ideal focusing and
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suggests that a further loss mechanism is involved which was not taken into account in
our estimation, e.g., absorption in the MgO:PPLN crystal (see discussion further be-
low). The pump-to-idler conversion efficiency of the SRO is given by η = λiPi/(λpPp).
At a pump power of 2 W, we yield a single-mode idler power of 310 mW which corre-
sponds to η = 0.41. In this case, the signal power is about 5 mW behind each cavity
mirror. It is convenient for further considerations to introduce the normalized pump
power P̃p = Pp/Pp, th and the normalized idler output power P̃i = ηP̃p. Note that the
efficiency η itself is a function of P̃p, that means, it depends on how much the pump
power exceeds the threshold pump power. For a SRO pumped by a Gaussian beam, the
optimum theoretical conversion efficiency ηopt(P̃p) can be calculated numerically using
the relation [110]

ηopt(P̃p) = 1−

[
1

P̃p

+

∫ ln P̃p

0
e−x cos2 Γ(x) dx

]
. (4.1)

Here Γ(x) is a function which satisfies the equation

sin2 Γ(x)

Γ2(x)
=
ex

P̃p

. (4.2)

The inset in Fig. 4.2 shows a plot of the normalized idler output power P̃i vs. the
normalized pump power P̃p. As can be seen, the experimental data are close to the the-
oretical prediction. Figure 4.2 further shows that the idler wavelength slightly increases
by 0.93 nm (139 GHz) when raising the pump power from Pp, th to 2 W. Such an effect
was previously observed for infrared-pumped SROs [146]. The cause was identified to
be crystal heating due to the absorption of the resonant intracavity signal radiation.
Depending on the circulating power in the cavity, which scales with the pump power, a
rise in crystal temperature of 2 ◦C (Pp = 3.6×Pp, th) up to 30 ◦C (Pp = 15×Pp,th) was
reported. Absorption-induced crystal heating, analogous to deliberate heating using
the temperature control unit, changes the output frequencies of the cw SRO since it
alters the refractive index of the nonlinear crystal and leads to thermal expansion. In
the case of a green-pumped SRO, these effects shift the maximum of the parametric
gain curve toward higher signal/lower idler frequencies (vice versa for 1-µm-pumped
SROs). A 139-GHz shift of the gain maximum corresponds to an increase of ∼ 0.8 ◦C
in crystal temperature. At the same time, the cavity resonances are shifted toward
lower frequencies because the effective length of the cavity increases. The shift of the
gain curve is more significant since it is by an order of magnitude larger than the cav-
ity frequency shift. This fact together with additional modulation of the gain curve
by the intracavity etalon and several other residual resonances (e.g., from finite mir-
ror reflectivity for pump and idler wavelength) prevent the signal/idler wavelength from
continuously following the gain maximum. This is also evident from the steps in Fig. 4.2
where the idler wavelength jumps to higher levels at certain values of the pump power.
The corresponding signal mode hops are on the order of 10 to 30 times the FSR of the
cavity.
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4.1.3 Tuning Range and Linewidths

By tuning the crystal temperature from 40.0 ◦C to 80.0 ◦C (temperature stability∼0.1 K)
an idler wavelength range of 1406–1451 nm can be accessed. This corresponds to a sig-
nal wavelength from 840–856 nm. One can see from Fig. 4.3 that the measured data
are in perfect agreement with curves calculated with Sellmeier coefficients from Gayer
et al. [105]. We also compared our data to theoretical values obtained from the often
used SNLO software [147]. Here we find a small offset of 2 ◦C. The tuning range of a
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Figure 4.3: Temperature tuning curve from 40.0 ◦C to 80.0 ◦C for the grating period Λ =
7.3µm. The experimental data are in perfect agreement with the theoretical curve calculated
with Sellmeier coefficients from [105] (solid line). Figure after [128] (© Springer-Verlag 2009);
with kind permission from Springer Science and Business Media.

green-pumped cw DRO based on the same crystal as the cw SRO presented here was
investigated for the other five grating periods of the MgO:PPLN crystal in [148]. By
utilizing all six poling periods from 7.1µm to 7.6µm and tuning the crystal tempera-
ture from 30.0 ◦C to 100.0 ◦C, a wavelength range from 800–920 nm (signal) and from
1250–1580 nm (idler) can be covered.
Single-mode operation is confirmed by monitoring the transmission of the signal wave-
length through a scanning Fabry-Pérot interferometer (FPI, Toptica FPI 100, wave-
length range: 615–885 nm, free spectral range: 1 GHz) as shown in Fig. 4.4(a). The
linewidth of the signal radiation was determined to be less than 10 MHz, which is the
resolution limit of the scanning FPI. Up to a pump power of approximately 2.1 W, reli-
able single-mode operation of the SRO is achieved. Above a pump power of 2.1 W, we
often observe multi-mode operation of the SRO very similar to the behavior described
in [131, 134]. The spectrum which was recorded during multi-mode operation with
an optical spectrum analyzer (OSA, Yokogawa AQ6370B) is shown in Fig. 4.4(b). The
characteristic spacing between two adjacent idler modes is ∼0.4 nm (165 GHz). Kreuzer
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has shown theoretically that SROs, in principle, oscillate on more than one longitudinal
mode if the pump power exceeds a certain critical value Pc [149]. To this end, he has
assumed a cw SRO in steady state operation which oscillates on a single longitudinal
signal mode with angular frequency ωs. He then investigated the stability of the steady
state solution against perturbations caused by noise in another nearby signal mode at
frequency ω′s. It is found that the parametric gain G′ at this mode is a function of
Pp/Pp, th. Numerical calculation yields a critical value of Pc ≈ 4.61Pp, th. At pump
powers exceeding this value, the parametric gain for the mode at ω′s is high enough and
this mode starts to oscillate in addition to the initial mode at ωs. Although the analysis
of Kreuzer is restricted to plane waves, it also seems to provide a good approximation
for Gaussian beams in some cases [150]. While the theoretical model developed in [149]
does not consider thermal effects, it has been reported [134] that crystal heating due to
the absorption of intracavity signal power plays a role in oscillation in multiple longitu-
dinal modes. In [134] the critical pump level for broadband oscillation was found to be
3.3 to 5 times the OPO threshold, depending on the cavity configuration. In our case,
multi-mode operation readily occurs at pump powers which are well below this value.
We hence assume that the multi-mode operation demonstrated in Fig. 4.4(b) originates

a b

Figure 4.4: (a) The SRO spectrum measured with a scanning Fabry-Pérot interferometer
clearly indicates single-mode operation at moderate pump powers. (b) Multi-mode operation
of the SRO is observed above a pump power of 2.1 W. Figures after [128] (© Springer-Verlag
2009); with kind permission from Springer Science and Business Media.

from crystal heating caused by intracavity signal absorption. Yet, we could not deter-
mine in how far residual GRIIRA contributes to this or if the cavity configuration can
favor the onset of multi-mode operation.

4.1.4 Spectroscopy of Cesium and Frequency Stabilization

Doppler-Free Spectroscopy of 133Cs

Doppler-free saturation spectroscopy, particularly in alkali metal vapors, is a widely
used technique of high-resolution spectroscopy [151]. It typically requires a tunable
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and narrowband laser source in the visible to near-infrared, e.g., a diode laser or a
Ti:sapphire laser. However, we can also use our SRO for such an application to prove
its tunability, spectral purity, and narrow linewidth. This seems appealing since the D2

line of Cs lies within the spectral window covered by the signal frequency. By stabilizing
the signal frequency to one of the narrow hyperfine lines of the D2 transition in Cs,
the idler frequency is simultaneously stabilized because of energy conservation of the
parametric conversion process. The stability of the idler frequency is only limited by
the frequency stability of the pump laser. The signal wavelength of the SRO coincides
with the cesium D2 line (centroid at 852.347 nm [152]) at a crystal temperature of
50.0 ◦C and a pump power of 1.79 W. In this case, the idler wavelength is about
1416 nm. For Doppler-free saturation spectroscopy, a signal power of 1.5 mW is used.
By scanning the cavity length over more than 1.2 GHz, we measured the absorption
spectra shown in Fig. 4.5. With a 25-Hz sweep rate applied to the piezo, it takes about
20 ms to acquire one spectrum. To scale the abscissae to frequency units, experimental
data from a precision measurement [152] were used to determine the absorption peak
frequencies. Figure 4.5(a) shows the hyperfine structure of the transition from the
6S1/2 ground state with total angular momentum F = 3 to the 6P3/2 excited states
with F ′ = {2; 3; 4}. Likewise, Fig. 4.5(b) shows the hyperfine structure of the transition
from the 6S1/2 ground state with F = 4 to the 6P3/2 excited states with F ′ = {3; 4; 5}.
In addition, we observe six crossover resonances, denoted by two quantum numbers F ′ =
{2, 3; 2, 4; 3, 4} and F ′ = {3, 4; 3, 5; 4, 5}, respectively. Crossover resonances lie exactly
midway between two resonances which share a common lower or upper level and overlap
within their Doppler width. We bridged the frequency gap of 9.2 GHz between the F = 3
and F = 4 ground levels by adjusting the angle of the intracavity etalon. The linewidths
of all resonances, which we calculated from Lorentzian fits, are given in Table 4.1.
A recent theoretical prediction for the natural linewidth is ∆ν = 5.23 ± 0.01 MHz
(FWHM) calculated from the lifetime of the 6P3/2 state τ = 30.39± 0.06 ns [153]. This
is in very good agreement with a previous precision measurement where a lifetime of
τ = 30.57 ± 0.07 ns was determined yielding ∆ν = 5.21 ± 0.01 MHz for the natural
linewidth [154]. Our measured linewidths range from 7.1 MHz to 16.5 MHz. These
deviations from the natural linewidth can be due to multiple reasons such as power
broadening, residual Doppler broadening, or magnetic fields.

Table 4.1: Linewidths of D2 hyperfine transitions determined from Lorentzian fits.

ground state: 6S1/2(F = 3)

F ′ 2 2,3 3 2,4 3,4 4
∆ν (MHz) 9.2 14.9 16.0 14.2 16.2 13.4

ground state: 6S1/2(F = 4)

F ′ 3 3,4 4 3,5 4,5 5
∆ν (MHz) 10.1 11.8 16.5 9.1 11.0 7.1
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a

b

Figure 4.5: Doppler-free saturation spectroscopy of the cesium D2 line hyperfine structure.
(a) Transitions starting from the F = 3 ground state. (b) Transitions starting from the F = 4
ground state. Traces 2 and 4 show the Doppler broadened lines with lamb dips. In traces 1 and
3, the Doppler background has been substracted. Lines labeled with two angular momentum
numbers represent crossover resonances. Figures after [128] (© Springer-Verlag 2009); with
kind permission from Springer Science and Business Media.

Frequency Stabilization

The narrow hyperfine transitions shown in Fig. 4.5 can be used as a frequency reference
for frequency stabilization of the SRO. Frequency stabilization to an external reference
was first applied to cw OPOs by Al-Tahtamouni et al. in 1998 [155]. We here achieved
locking of the signal wave frequency to the F = 3 → F ′ = 3, 4 crossover resonance in
cesium for more than 9 minutes without interrupt. To this end, we used the technique
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delineated in Sect. 4.1.1. Figure 4.6 shows the frequency fluctuations of the signal
wave recorded during this time, derived from the saturation spectroscopy error signal,
and given relative to the reference frequency of νF=3→F ′=3,4 = 351 730 801 (568) kHz
[152]. The distribution of the frequency fluctuations approximates a Gaussian (inset in
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Figure 4.6: Frequency fluctuations relative to the atomic reference frequency νF=3→F ′=3,4

recorded over a time interval of 9 minutes. The 95 % confidence interval 2σ is smaller than
6 MHz. Figure after [128] (© Springer-Verlag 2009); with kind permission from Springer Science
and Business Media.

Fig. 4.6) with a standard deviation σ of less than 1.5 MHz. This corresponds to a 95 %
confidence interval (±2σ) smaller than 6 MHz. The short-term stability is typically
0.5 MHz (1σ) over 1 ms. The average idler output power in frequency-locked operation
exceeds 170 mW with a typical stability of 2 % (rms) over 9 minutes. We also determined
the linewidth of the pump laser with a high resolution FPI (Sirah EagleEye, resolution
limit: 20 kHz) to be typically ∆νp = 1 MHz (on a time scale of 100 ms). Using this
value together with the signal frequency stability during stabilized operation, we can
estimate from

∆νi ≤ ∆νp + ∆νs (4.3)

that the idler short-term frequency stability is ≤ 2 MHz.
To analyze the properties of the stabilized SRO in more detail, we calculated the Allan
variance σ2

y(τ) [156]. For a given set of data {yk} measured at times {tk}, σ2
y(τ) is

defined as

σ2
y(τ) =

1

2(N − 1)

N−1∑
k=1

(yk+1 − yk)2. (4.4)

N is the total number of samples, τ = tk+1 − tk is the time interval between two
measurements, and yk is the frequency deviation from the reference frequency. The
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square root of the Allan variance, the so-called Allan deviation, is plotted in Fig. 4.7.
The curve is proportional to τ−1/2 which indicates that the fluctuations on the time
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Figure 4.7: Square root of the Allan variance. The data were calculated from the frequency
deviations recorded during frequency-stabilized operation of the SRO. To this end, a MATLAB
code from [157] was used. Figure after [128] (© Springer-Verlag 2009); with kind permission
from Springer Science and Business Media.

scale from 10 ms to 10 s are dominated by white frequency noise [158].

4.2 Green-Pumped CW SRO Based on MgO:PPSLT

Periodically poled MgO-doped stoichiometric LiTaO3 (MgO:PPSLT) is a nonlinear ma-
terial that was made commercially available during the time this work has been per-
formed. Accordingly, its use in high power green-pumped cw SROs was investigated
only in recent years [138–144]. Inspired by the promising results of other groups, we
decided to test MgO:PPSLT as a material in our green-pumped SRO as well. The
MgO:PPSLT-SRO was described and investigated in detail in the diploma thesis of
C. Warschburger [159]. Therefore, we will only briefly recall the basic properties of this
system in Sect. 4.2.1. After that, several new results which are not covered by [159]
are presented. These comprise output coupling of the resonant signal wave, wavelength
fine tuning by scanning the cavity length, and frequency stabilization to a wavemeter.

4.2.1 Basic Properties of the MgO:PPSLT-Based SRO

The SRO based on MgO:PPSLT was essentially build after the model of the MgO:PPLN-
based device described in Sect. 4.1. Yet, minor changes and improvements were intro-
duced. The length of the MgO:PPSLT crystal (HC Photonics Corp.) is only L = 30 mm
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since this is the maximum length that was commercially available (width × height =
6.9 mm × 0.5 mm). Moreover, the input and output facets of the crystal are not pol-
ished plano-parallel but are angle-polished at 2◦ so that the crystal has the shape of
a parallelogram. Potential residual reflections of light between the two facets of the
crystal are eliminated in this way. The heating foil originally used to control the tem-
perature of the QPM crystal was replaced by a thermoelectric Peltier module. This
allows for controlling the temperature in both ways (heating and cooling), it is faster,
and much more precise (typically better than 0.01 K for set points near room tempera-
ture). The cavity design is given in Fig. 4.8. For the MgO:PPSLT-based device, another

Figure 4.8: Cavity design of the SRO based on MgO:PPSLT. Mirrors M1 and M2 are plano-
concave mirrors with ROC = 50 mm. Mirrors M3 and M4 are plane mirrors. The angle of
incidence is 13◦ for all cavity mirrors.

set of mirrors was used (coatings by Layertec GmbH ). According to the manufacturer,
the mirrors provide a reflectivity of R > 99.9 % for the signal wave (wavelengths be-
tween 790–995 nm). Due to the angle-polished facets, the crystal has to be tilted by
an angle of ∼ 2.4◦ to ensure that the pump beam traverses the crystal parallel to the
30-mm-long edge of the crystal. A plano-convex lens with f = 150 mm (not shown
in Fig. 4.8) is used to focus the green pump beam into the nonlinear crystal. The
presented cavity design guarantees a very good spatial idler beam profile with a beam
quality factor [160] of M2

x, y = 1.2 in x and y direction [159] (as usual, the xy plane is
the plane perpendicular to the propagation direction of the beam). With this configu-
ration, idler output powers well exceeding 1 W can be reached as proven by Fig. 4.9(a).
The plot exemplarily shows the idler power characteristic as a function of the pump
power at 532 nm for a QPM grating period of Λ = 8.2µm. The threshold is reached at
a pump power of Pp, th ≈ 800 mW. The lowest threshold ever achieved with this system
was Pp, th < 700 mW with the 8.1-µm grating period. This is close to the threshold
pump power of 564 mW predicted by Eq. (3.17) for our experimental parameters and
under ideal focusing conditions. The following parameters were inserted into Eq. (3.17)
to calculate the theoretical threshold: ξ = 2.84, λs = 936.02 nm, λi = 1232.52 nm,
dQ = 8.79 pm/V, 0.1 % and 0.2 % Fresnel losses at each crystal facet (given by the
coating manufacturer), respectively, and 99.9 % reflectivity for all four cavity mirrors,



4.2. Green-Pumped CW SRO Based on MgO:PPSLT 67

a b

Figure 4.9: (a) Idler power vs. pump power (no intracavity etalon was inserted). (b) Coarse
wavelength tuning by means of the crystal temperature. Curves {1, 2, 3, 4, 5, 6} correspond to
QPM grating periods {8.1, 8.2, 8.3, 8.4, 8.5, 8.6}µm. Symbols: measured data, solid lines: fit.

i.e., 1 − Rse
−αsL = 1 − 0.9994 × 0.998 × 0.999 ≈ 0.993. The curves representing idler

power vs. pump power for the other five QPM channels look similar to the one shown
in Fig. 4.9(a), mostly differing in the threshold power (typically between 1.00 W and
1.75 W). Occasionally, we observe the same multi-mode effect as with the MgO:PPLN
device (see Fig. 4.4(b)). However, this effect can be suppressed by placing a 1-mm-thick
quartz etalon at the position of the second beam waist inside the cavity between mirrors
M3 and M4. With this intracavity etalon, long-term stable single-mode operation is
maintained up to a certain level of idler power, typically up to ∼1.0 W. At this point,
the multi-mode effect cannot be inhibited anymore. Therefore, the SRO is mostly op-
erated below this critical point in later experiments.
By tuning the crystal temperature from 23–80 ◦C, a spectral range from 806–954 nm
(signal) and from 1203–1565 nm (idler) is accessed. The temperature tuning curves for
all six QPM gratings are presented in Fig. 4.9(b). A fit using a Sellmeier equation from
Dolev et al. [97] perfectly matches the experimental data. With this large idler tuning
range, at least four telecom bands are fully covered (O-, E-, S-, and C-band). This
would be an impossible task for any conventional laser system.
In comparison to other similar green-pumped SROs based on MgO:PPSLT [139, 140,
143], our device exhibits a remarkable passive stability concerning output power and
frequency. In a 5-h measurement, a long-term power stability with peak-to-peak fluctu-
ations of ∆ppPi = 8.00 mW (1.6 %) and a standard deviation of σ = 0.69 mW (0.14 %)
could be achieved (see Fig. 4.10(a)). The average idler power was P i = 495.2 mW dur-
ing this measurement. Simultaneously, the signal frequency fluctuates within a window
of 250 MHz as seen from Fig. 4.10(b). The frequency trace, which was measured with
a wavemeter (High Finesse WS/6 200, measurement range: 350–1120 nm, absolute ac-
curacy: 200 MHz, measurement resolution: 50 MHz ), is modulated with an oscillation
period of roughly 15 min. This is mainly due to fluctuations of air humidity and pressure
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in the laboratory [159].

a

b

Figure 4.10: Simultaneous measurement of power and frequency stability over more than 5 h.
(a) Idler power stability (the inset shows a magnified view). (b) Signal frequency stability
relative to the average signal frequency of ν0 = 350.34524 THz (855.7058 nm).

4.2.2 Signal Extraction through Output Coupling

So far, we have always considered SRO ring cavities where all four mirrors are highly
reflective for the signal wavelength and highly transmittive for the idler wavelength.
This configuration ensures that a maximum of idler power is coupled out of the res-
onator. At the same time, we achieve a relatively low threshold with the singly resonant
configuration. The signal power that can be extracted from such a system is modest,
typically between several hundreds of µW and a few mW depending on the reflectivity
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of the mirrors. For certain applications, though, it is desirable to provide higher levels
of signal power. In analogy to a laser, this is accomplished by using an output coupling
mirror. As shown in Fig. 4.11, mirror M2 is replaced by an output coupler (OC) with a
transmission of ∼3 % at the signal wavelength. With this configuration, a signal (idler)

Figure 4.11: Similar resonator setup as in Fig. 4.1 but with mirror M2 replaced by a 3 %
output coupling mirror (OC) for signal extraction. At a pump power of 5.50 W, a signal (idler)
power exceeding 1.1 W (1.0 W) can be generated with this configuration.

output power Ps (Pi) exceeding 1.1 W (1.0 W) was achieved. The SRO was pumped
with a power of 5.50 W at 532 nm, a QPM grating period of Λ = 8.2µm was used,
and the crystal temperature was set to 27.90 ◦C in this case. The signal (idler) wave-
length was 907.5 nm (1286.9 nm). Signal and idler power were recorded over a time of
30 min (see Fig. 4.12) to prove that a good long-term stability can be maintained. Dur-
ing the time of 30 min, we observe periodic power fluctuations around average values
of P s = 1.109 W (standard deviation σs = 0.92 %) and P i = 1.022 W (σi = 0.89 %).
The peak-to-peak fluctuations are 4.7 % and 6.0 % for signal and idler, respectively.
A fit according to a sine function (see inset in Fig. 4.12) reveals oscillation periods of
T = 465 s and 484 s for the signal and idler power, respectively. In [159] oscillations of
air humidity and pressure in the laboratory were identified to be the cause for periodic
power fluctuations on such time scales. We put emphasis on the fact that the high
power levels were achieved while the SRO was in constant single-frequency operation.
We mention that, in our case, where we are particularly interested in a tunable telecom
wavelength source for QFC experiments, it was not the primary goal to extract a max-
imum of signal power at wavelengths below 1µm. The motivation for this experiment
was rather to perform a proof-of-principle demonstration. Nevertheless, the obtained
results on signal wave output coupling are interesting themselves. Future efforts could
be directed toward finding the optimum point of signal output coupling (i.e., the op-
timum fraction of output-coupled signal power per cavity rountrip) to maximize the
signal output power.
The threshold of the SRO with output coupling is above 3 W. Aligning the setup at such
power levels is inconvenient because optical components could be burned and damaged
(especially the MgO:PPSLT chip) when hit by a reflected beam. Usually, it is no prob-
lem to align the setup at moderate power levels and, once the alignment is optimized,
to increase the pump power then.
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Figure 4.12: Signal and idler output power vs. time for the SRO based on MgO:PPSLT with
signal wave output coupling. The inset shows a detailed view with a fit according to a sine
function.

4.2.3 Frequency Stabilization Using a Wavemeter

Spectroscopy of Cs, as discussed in Sect. 4.1.4, was performed by tuning the signal
wavelength of the SRO over an atomic resonance. This is done by scanning the SRO
cavity length by means of a moveable cavity mirror that is mounted to a PZT. The
SRO based on MgO:PPSLT offers the same possibility as seen in Fig. 4.13 which shows
the signal wavelength and frequency as a function of time when a sawtooth voltage is
applied to the PZT (frequency fscan = 100 mHz, voltage: 0 to +80 V). The wavelength
was measured with the wavemeter. We used a QPM grating period of Λ = 8.6µm, a
crystal temperature of Tc = 52.35 ◦C, and a pump power of Pp = 2.80 W when recording
the data in Fig. 4.13. This point of operation corresponds to an idler wavelength of
λi ≈ 1537 nm and an idler power of Pi = 510 mW. No output coupling was applied,
i.e., the SRO cavity consisted of four mirrors that are all highly reflecting at the signal
wavelength. For frequency tuning via the PZT, it is important that no etalon is inside
the SRO cavity so that the signal frequency can freely follow the change of the cavity
length. The maximum mode-hop-free tuning range (peak-to-peak value in Fig. 4.13)
that was achieved is ∆νs = 2.49 GHz, corresponding to ∆λs = 0.00551 nm (0.01959 nm)
at 814 nm (1536 nm). A cavity length change of ∆L is related to a frequency change
−∆ν of the resonant wave by ∆L/Leff = −∆ν/ν0, where Leff and ν0 are the absolute
(optical) length of the resonator and the absolute frequency, respectively. With Leff ≈
285 mm and ν0 = 368.1420 THz, we find that a frequency variation of ∆ν = ±2.49 GHz
corresponds to a length change of ∆L ≈ ∓1.9µm. The FSR of a ring cavity is given
by FSR = c/Leff , where c is the speed of light in vacuum. With Leff as given above,
we determine the FSR of our resonator to be ∼ 1 GHz, i.e., the mode-hop-free tuning
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Figure 4.13: Wavelength fine tuning by scanning the cavity length of the SRO. Initially, no
voltage is applied to the PZT and the signal wavelength is nearly constant. At t = 56 s, the
sawtooth voltage is switched on and the signal wavelength starts to follow the periodic change
of the cavity length. The inset shows a magnified view (frequency given relative to average
frequency ν0) proving that the tuning is mode-hop-free.

range is larger than two times the FSR of the cavity. This interesting observation
has previously been reported for a 1064-nm-pumped MgO:PPLN-SRO and is explained
by a thermal self-locking effect associated with the absorption of intracavity signal
power [134]. By scanning the cavity length, the frequency of the signal mode is shifted
with respect to the parametric gain curve. As a consequence, this mode experiences
a change in parametric gain and the intracavity power changes. This leads to a small
temperature change within the beam volume in the crystal (because more or less power
is absorbed) and thus to a shift of the parametric gain curve. Suppose that the signal
mode is initially (before scanning the cavity length) slightly red detuned from the
maximum of the parametric gain. If the cavity length is decreased (i)/increased (ii),
the effects that take place can be summarized as follows:

(i) cavity length is decreased → signal mode shifts to higher frequency → it experi-
ences a higher gain→ intracavity signal power increases→ absorbed power in the
crystal increases → increase of temperature in the beam volume → parametric
gain curve is shifted toward higher frequencies,

(ii) cavity length is increased→ signal mode shifts to lower frequency→ it experiences
a lower gain→ intracavity signal power decreases→ absorbed power in the crystal
decreases→ decrease of temperature in the beam volume→ parametric gain curve
is shifted toward lower frequencies.

The overall effect in both cases (i) and (ii) is that the maximum of the gain curve
follows the shift of the signal mode to some extent which can explain why the observed
mode-hop-free tuning range in our experiments is larger than the cavity FSR. If the
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SRO initially oscillates on a signal mode which is blue detuned from the gain maximum,
it tends to make a mode hop to the red-detuned side of the gain maximum according
to [134]. This is because, in that case, the shift of the signal mode in one direction
induces a shift of the parametric gain curve in the opposite direction. Note that the
above arguments apply to our green-pumped SRO and that the situation is reversed for
a 1-µm-pumped SRO as in [134]. In the latter case, the gain maximum has a tendency
to follow the frequency shift if the initial signal frequency is blue detuned from the gain
maximum and mode hops may occur if it is red detuned.
The method described above—cavity length scanning without an intracavity etalon—
proves to be a simple and reliable technique of fine tuning the SRO’s output frequencies
in a deterministic way. With its tuning properties, the system is predestined for wave-
length stabilization to an external reference. In Sect. 4.1.4 this was demonstrated for
the MgO:PPLN-based SRO using a Doppler-free absorption line of Cs as an absolute
frequency reference. In the present section, we study frequency stabilization to an in-
terferometric reference (i.e., a wavemeter) with the setup depicted in Fig. 4.14. The

Figure 4.14: Schematic of the setup for frequency stabilization by means of a wavemeter.

residual signal light leaking through mirror M2 and the idler radiation are split up
at a dichroic mirror and the signal light is guided to the wavemeter using a single-
mode fiber. A software-based PID controller compares the measured frequency with
a given set frequency and applies a voltage level between 0 V and +4 V to the control
output of the wavemeter. This voltage is amplified (TEM Messtechnik GmbH, model
miniPiA103, 0 ... + 300 V max.) and fed to the PZT. The wavemeter records and con-
trols the signal wavelength of the SRO simultaneously. With this technique, frequency
stabilization over more than nine hours was achieved as shown in Fig. 4.15(a). After
9 h and 12 min, the control electronics obviously could no longer compensate for the
long-term drift of the signal frequency. During frequency-stabilized operation, the av-
erage signal frequency was ν0, s = 349.6040 THz (λ0, s = 857.5200 nm), the peak-to-peak
fluctuations were ∆νpp, s = 32.6 MHz, and the standard deviation was σs = 1.3 MHz.
Assuming a constant pump wavelength of λp = 532.32 nm (in fact this wavelength
also fluctuates on the order of a few MHz), this corresponds to ν0, i = 213.5769 THz
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a

b

Figure 4.15: (a) Frequency vs. time in frequency-stabilized operation. Stabilization was
achieved for more than 9 hours. The frequency is given relative to the time-averaged signal
frequency of ν0 = 349.6040 THz (∼857.52 nm). (b) Comparison of the Allan variance achieved
in this work with that obtained from the same SRO but without active stabilization of the
cavity length. Both curves were calculated with a software by T. Udem [161].

(λ0, i = 1403.6748 nm), ∆νpp, i = ∆νpp, s and σi = σs for the idler wave. Compared to
the frequency scan measurement (Fig. 4.13), another point of operation was chosen for
the long-term frequency stabilization shown in Fig. 4.15(a). The QPM grating period
was Λ = 8.4µm at a crystal temperature of Tc = 23.4 ◦C. With the crystal temperature
slightly above room temperature and a low threshold (< 1.0 W), this operating point
was found to provide particularly stable conditions.
Long-term measurements of the signal frequency were also reported in [159] but not with
an actively-stabilized SRO cavity. During 8 h, frequency fluctuations within a 260-MHz
corridor were observed. In addition, the frequency trace was periodically modulated
with a period of roughly 15 min and peak-to-peak fluctuations of 117 MHz on average.
Comparing these results with those presented here, we find that the frequency stability
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of the system was again improved by at least one order of magnitude with the help
of a relatively simple stabilization scheme. This enhanced stability is also reflected by
the Allan variance that was calculated from the data recorded during 9 h of frequency-
stabilized operation (see Fig. 4.15(b)). The Allan variance plot from Ref. [159] is also
shown in Fig. 4.15(b). As can be seen from comparison of the two plots, active sta-
bilization to the wavemeter clearly reduces the wavelength drift on longer time scales
(1–104 s).

4.3 Summary

In this chapter, we have presented two green-pumped cw SROs with similar signal-
resonant ring cavity designs. One is based on a MgO:PPLN crystal (SRO #1), the other
on a MgO:PPSLT crystal (SRO #2). SRO #1 has a pump threshold of about 1.2 W.
It delivers a single-mode idler output power of more than 300 mW in non-stabilized
operation. In principle, by tuning the crystal temperature, a spectral range between
1250–1580 nm can be accessed with the non-resonant idler wave (corresponding signal
wavelength range: 800–920 nm) [148]. Although the device is operated at relatively low
crystal temperatures from 40.0 ◦C to 80.0 ◦C, we observe no evidence of photorefrac-
tive damage. For SRO #2, introduced in Sect. 4.2, we find an even lower threshold of
Pp < 700 mW. At first sight, this seems surprising because of the shorter crystal and
the smaller nonlinear coefficient of LiTaO3. One explanation is that, for SRO #2, the
coatings of the cavity mirrors have a higher signal reflectivity and the antireflection
coatings of the QPM crystal are better. Another reason could be that thermal effects
(absorption of green pump light), which seem to be significantly weaker in MgO:PPSLT
than in MgO:PPLN, play a role for the threshold pump power. Although multi-mode
oscillation can be observed as well with SRO #2, it occurs at much higher idler output
powers. Thus, with the help of an intracavity etalon, single-frequency operation is main-
tained up to idler power levels exceeding 1 W. The idler (signal) tuning range spans from
1203–1565 nm (806–954 nm). As an addition to the treatment of the MgO:PPSLT-SRO
in [159] we have discussed a number of further applications in this chapter. Replacing
one highly-reflective cavity mirror by a 3 % signal output coupler allows for Watt-level
single-frequency output at signal and idler wavelengths simultaneously. Frequency fine
tuning can be realized not only by tilting the intracavity etalon (see [159]) but also
by scanning the cavity length with a piezo mirror. No etalon is needed in this case.
Deterministic frequency scans over 2.5 GHz are possible with this technique.
For applications which are demanding with respect to the frequency stability (e.g., high-
resolution spectroscopy [135, 162]), the frequencies of the cw SRO can be stabilized to
an external reference. Due to energy conservation of the parametric conversion process,
frequency stabilization of the signal wave transfers to the frequency stability of the
idler wave, at least within a range limited by the bandwidth of the pump source. As
our cw SRO emits in the visible to near infrared we could use the established spectro-
scopic techniques for frequency stabilization to an atomic resonance. By scanning the
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cavity length of SRO #1 over 1.2 GHz, Doppler-free saturation spectroscopy of the ce-
sium D2 line at 852 nm was performed. Frequency stabilization of the signal frequency
to a crossover resonance was achieved. For a time of over 9 minutes, the frequency
deviation from the reference frequency was less than 1.5 MHz (1σ). The idler radia-
tion is simultaneously frequency stabilized with a short-term stability < 2 MHz. For
SRO #2, we have demonstrated frequency stabilization to an interferometric reference:
by controlling the cavity length with the piezo mirror, we achieve active stabilization
of the signal frequency to a wavemeter. Frequency-stabilized operation of the system
was possible over more than 9 hours. During this time, the standard deviation of the
frequency fluctuations was 1.3 MHz with peak-to-peak deviations of 33 MHz.
The results show the potential of the devices for applications in spectroscopy and quan-
tum optics. One goal of future efforts could be to achieve frequency stabilization to an
atomic reference for longer times. To this end, the mechanical and thermal stability
of the setup should be further improved. We have observed that mainly acoustic noise
or slight changes in ambient temperature can interrupt active frequency stabilization.
In case of SRO #1, it would also be essential to gain deeper understanding of the de-
scribed thermal effects. This might help to further optimize the resonator (with regard
to focusing parameter, output coupling etc.) to allow for a higher pumping ratio and a
higher single-mode output power.

Table 4.2: Comparison of the properties of the two green-pumped SROs presented in this
chapter.

SRO #1 SRO #2

Nonlinear crystal MgO:PPLN MgO:PPSLT
Crystal dimensions 40× 8× 0.5 mm3 30× 6.9× 0.5 mm3

QPM gratings 7.1, 7.2, ... , 7.6µm 8.1, 8.2, ... , 8.6µm
Cavity FSR ∼1 GHz ∼1 GHz
Threshold power 1.2 W < 700 mW
Max. idler power∗ 310 mW 1.1 W
Max. signal power∗ 5 mW 1.1 W (3 % OC)
Power stability — 0.14 % (1σ)
Idler tuning range 1250-1580 nm 1203-1565 nm
Signal tuning range 800-920 nm 806-954 nm
Frequency stabilization > 9 min∗∗ > 9 h†

∗in single-frequency operation
∗∗reference: absorption line in Cs
†reference: wavemeter

Overall, MgO:PPLN can be considered an appropriate nonlinear material for green-
pumped cw SROs in the regime of moderate pump powers. Nevertheless, compared
to MgO:PPSLT, it has some clear disadvantages when used in green-pumped OPOs.
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These handicaps have their origin in the strong thermal effects. We recognize from
direct comparison that SRO #2 outperforms SRO #1 in every aspect (see Table 4.2).
Both SROs could serve as a pump source in frequency down-conversion experiments.
Naturally, due to its superior performance, SRO #2 was selected as a pump source for
the down-conversion experiments presented in the next two chapters.



Chapter 5

Frequency Down-Conversion of
Attenuated Laser Pulses

Copyright Notice:
The introduction of this chapter, Sect. 5.1, Sect. 5.2, and Sect. 5.4 contain
material that was originally published in Ref. [49] (Copyright © 2011 Op-
tical Society of America).

Color centers in diamond have attracted great interest in recent years as solid-state
single-photon sources [163]. Unlike other single-photon emitters, like trapped atoms
and ions or QDs, they offer the possibility of room temperature operation without
the need for cryogenic or vacuum equipment. Integration of single color centers into
photonic structures [164, 165] opens the perspective of diamond-based quantum net-
works in the future [166]. Apart from these attractive properties, one drawback with
respect to long-distance fiber-based quantum communication is that color centers in
diamond seem to have no strong emission lines above 1.0µm [167]. Therefore, QFC
techniques are required for low-loss fiber transmission of photons generated by color
centers in diamond. An experimental scheme which is aimed at efficient frequency
down-conversion of single photons from a nitrogen-vacancy (NV) center (zero-phonon
line at 637 nm [163]) to the telecom C-band has been demonstrated [47, 168]. How-
ever, due to strong electron–phonon coupling, the emission spectrum of NV centers is
very broad (∼ 100 nm) compared to the acceptance bandwidth of the required DFG
process in a PPLN WG crystal which is < 0.5 nm for typical interaction lengths. Re-
cently, much progress has been made in the fabrication of single-photon sources based
on silicon-vacancy (SiV) centers in diamond emitting around 738 nm [60]. Compared
to NV centers, they feature higher emission rates and significantly narrower spectral
linewidths at room temperature (. 2 nm). Motivated by these results we investigate
the feasibility of frequency down-conversion of 738-nm photons in this chapter. To this
end, attenuated laser pulses at λa = 738 nm are mixed with a strong classical pump
field at λp = 1403 nm in a periodically poled Zn-doped LiNbO3 (Zn:PPLN) ridge WG

77
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to yield down-converted photons in the telecom C-band (λb = 1557 nm). We study the
Raman noise spectrum generated by the strong 1403-nm pump light and investigate
the conversion efficiency under realistic experimental conditions.

5.1 Experimental Design

5.1.1 Optical Setup

The optical setup is shown in Fig. 5.1(a). To simulate the single-photon source at

Figure 5.1: (a) Experimental setup for frequency down-conversion (PP: pulse picker, PC:
polarization control, HWP: half-wave plate, PBS: polarizing beamsplitter, Att.: attenuator,
AL1 and AL2: aspheric lenses, BD: beam dump, L1 and L2: plano-convex lenses, DM: dichroic
mirror, LP: longpass filter, Circ.: fiber-optic circulator, FBG: fiber Bragg grating). (b) CCD
image of the mode profile of the collimated 738-nm beam behind the WG. (c) Calculated inten-
sity distribution of the 738-nm fundamental mode inside the WG. Figures after [49] (Copyright
© 2011 Optical Society of America).

738 nm, a cw Ti:sapphire laser (Sirah GmbH, Matisse TX ; linewidth < 100 kHz) to-
gether with a pulse picker and an attenuator is used. The 738-nm light is guided to
the experiment by a single-mode optical fiber. The MgO:PPSLT-based cw SRO de-
scribed in Sect. 4.2 is used to generate the strong field at 1403 nm. Its wide tunability
from 1202–1564 nm adds an enormous flexibility to the setup: the cw SRO can also be
employed as a pump source for frequency down-conversion of light emitted by other
types of color centers in diamond (e.g., from a chromium-related color center [169]) or
from a semiconductor QD [170] as we shall see in Chap. 6. The attenuated pulses at
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738 nm and the strong pump field at 1403 nm are combined on a dichroic mirror and
coupled into a Zn:PPLN WG (NTT Electronics Corp., Japan) by a single aspheric lens.
A detailed description of the WG chip is given in Sect. 5.1.2. As the two wavelengths,
λa and λp, are spectrally separated by 665 nm it is necessary to use an additional tele-
scope in the beam line of the pump light to compensate for chromatic aberration. The
telescope consists of two plano-convex lenses L1 (Thorlabs LA1433, f = 150 mm) and
L2 (Thorlabs LA1509, f = 100 mm). The optimum distances dL1−L2 between L1 and
L2 and dL2−AL1 between L2 and AL1 can be calculated from the requirement that
the two light beams at λa and λp must have the same focus point behind AL1. For
the calculation, it can be assumed that the two collimated beams have the same di-
ameter at AL1. This diameter can be chosen such that the smallest aperture of the
system (AL1 in this case) is filled. We find optimum distances of dL1–L2 = 267 mm
and dL2–AL1 = 228 mm. In practice, the input coupling efficiency could be optimized
by choosing a slightly shorter distance of dL1−L2 = 261 mm between L1 and L2. We
tested two types of aspheric lenses for input coupling (AL1), one is uncoated (Thorlabs
A220TM ) and the other one has an antireflection coating from 650–1050 nm (Thorlabs
C220TME-B). Apart from the coating, both lenses are almost identical and have an
effective focal length of feff = 11 mm. The numerical aperture for the coated (uncoated)
asphere is NA= 0.25 (0.26). For output coupling (AL2), we use an asphere with an
antireflection coating from 1050–1620 nm for telecom wavelengths (Thorlabs C220TME-
C, feff = 11 mm, NA = 0.25). The AR coating of AL1 seems to have only a marginal
effect on the transmission through the system AL1–WG–AL2 at 738 nm: we measure
a typical value of 60 % transmission, no matter if the coated or the uncoated lens is
employed. Yet, at 1403 nm, the transmission through AL1–WG–AL2 can be improved
by using the uncoated lens for input coupling. Here we obtain 53 % with the coated
asphere compared to 65 % with the uncoated model. Since AL2 has an AR coating for
telecom wavelengths, it should add only minimal losses at 1403 nm and the stated 65 %
can be considered as the fraction of the pump power that can be coupled into the WG.
At 738 nm, we have to take into account that the transmission through AL2 is only
64.5 %, i.e., a measured throughput of 60 % through AL1–WG–AL2 corresponds to an
input coupling efficiency of 93 % into the WG.
What can be given as a conclusion after testing several lenses is that, by properly choos-
ing input and output coupling optics, the coupling losses at 738 nm are minimized at
the WG input while at the same time losses at telecom wavelengths are minimized at
the WG output. In this way, we simultaneously yield a maximum coupling efficiency of
93 % and 65 % for 738 nm and 1403 nm, respectively. No efforts were made to discrimi-
nate between Fresnel losses at the facets, input coupling losses, and propagation losses
of the WG. Propagation losses in this context refer to any losses experienced by the
light field while it is transmitted through the WG from the input to the output facet.
It includes losses that may be induced by WG imperfections (e.g., by scattering due to
finite surface roughness) or by absorption in the WG material. From the transmission
through the WG of 93 % we can quote 0.08 dB/cm as an upper bound for the propaga-
tion losses at 738 nm. The dimensions of the ridge WG are designed to support only the
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fundamental spatial mode at telecom wavelengths which usually implicates that higher
order spatial modes can be excited in the visible. This leads to a poor mode overlap
and thus reduces the conversion efficiency (see Sect. 3.2.3). Nevertheless, by carefully
optimizing the mode matching, it is possible to excite only the fundamental WG mode
at λa. This is proven by Fig. 5.1(b) which shows the mode profile of the collimated
738-nm beam after being transmitted through the WG. The image was recorded using
a CCD camera. For comparison, Fig. 5.1(c) shows the calculated intensity distribution
of the fundamental mode at 738 nm for a ridge WG with 8× 8µm2 cross section. The
calculations were performed following the method described in Sect. 3.2.3. Note that
for the measurement shown in Fig. 5.1(b) the beam was collimated with an aspheric
lens (effective focal length feff = 11 mm) and had to pass several neutral density filters
before it hit the CCD chip of the camera (measurement was performed at mW power
level). This may explain the slight distortion of the CCD image compared to the per-
fect mode profile shown in Fig. 5.1(c). After collimation behind the WG, the three
wavelengths λa, λp, and λb are spatially separated by a Pellin–Broca prism in combi-
nation with a pinhole. By rotating the prism, we can select which of the three beams
is coupled into a single-mode optical fiber to guide it to a commercial InGaAs/InP
single-photon avalanche diode (SPAD; id Quantique id201 ) or a grating spectrometer
(Princeton Instruments SP2500A with OMA V InGaAs linear array and Spec-10 CCD
camera) for spectral analysis. For detection with the SPAD, we eliminate residual pump
light after the pinhole employing a 1450-nm longpass filter and a fiber-optic circulator
together with a fiber Bragg grating (FBG; AOS GmbH, S/N: 05111002 ; center wave-
length: 1557.025 nm, −1.0 dB reflection bandwidth: 0.769 nm). Insertion losses for the
whole filtering system are 10 % (prism and two mirrors) plus 30 % (longpass filter). The
input coupling efficiency into the circulator is ∼ 50 %. All together, this results in a
total transmission coefficient of Ttot ≈ 0.3 (−5.2 dB), i.e., on the way from the WG exit
to the active area of the detector 70 % of the generated C-band photons are lost due to
spectral filtering. We estimate the suppression of pump light at λp = 1403 nm by the
filtering system to be better than 130 dB.

5.1.2 Zn:PPLN Waveguide Chip

For down-conversion from 738 nm to the telecom C-band, a Zn:PPLN WG chip from
NTT Electronics Corp., Japan, is used (WD-1550-000-A-C-C-S001, S/N 3079044 ).
It was fabricated using a technique in which a periodically poled Zn:LiNbO3 wafer
is directly bonded onto a LiTaO3 substrate. Subsequently, the Zn:LiNbO3 layer is
mechanically thinned and ridge WGs are cut with a dicing saw or fabricated via dry
etching. The LiTaO3 substrate (lower-index material) serves as a cladding layer for the
Zn:PPLN WGs (higher-index material). For further details on the fabrication process
see [118,172,173]. The chip is 40 mm long, 6 mm wide, and 0.5 mm thick. It contains a
total of 12 WGs that are arranged in six groups of two as delineated in Fig. 5.2(a) and
(b). The QPM grating periods have been tailored to cover a set of wavelengths around
738/1409/1550 nm. They are different for each group, i.e., Λ1 = 16.04,Λ2 = 16.08, ... ,
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Figure 5.2: Dimensions and layout of the Zn:PPLN sample after [171] (Copyright © 2010
NTT Electronics Corp.). (a) Top view. (b) Cross section A–B.

Λ6 = 16.24 µm, which allows for coarse wavelength tuning by choosing a certain WG.
All WGs feature antireflection coatings for the spectral windows around λa, λp, and λb

on the input and output facets. Figure 5.3(a) shows a photograph of the sample. The
converter chip is fixed to a gold-plated copper mount on top of a 5-axis fiber alignment
stage (Newport M-562F-XYZ with tilt platform M-562F-TILT) which allows for precise
positioning of the sample. The WG temperature is controlled with a Peltier module
to fulfill the QPM condition. A photograph of the sample on the stage can be seen in
Fig. 5.3(b). For the experiments described in the following sections, WG #1, group 5
(Λ5 = 16.20µm) was chosen and the temperature was set to 21.3 ◦C.
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a b

Figure 5.3: (a) Photograph of the Zn:PPLN sample. The 6 WG groups can well be recognized.
The blueish gloom on the edges of the chip is due to the antireflection coating. (b) Photograph
of the sample mounted on top of the 5-axis stage together with the aspheric lenses used for
input and output coupling.

5.2 Down-Conversion from 738 nm to the C-Band: Ex-
perimental Results

5.2.1 Performance of the Frequency Converter

Before we conducted down-conversion experiments with input at the single-photon level
we tested the performance of the WG chip at macroscopic power levels (mW regime).
In the following, we briefly discuss how SPDC can be used to determine the right
point of operation for (quasi-)phasematching a desired process. We will also investigate
the depletion of 738-nm input light by the DFG process which is a measure for the
conversion efficiency that can be expected.

Finding the Optimum Operating Point Using SPDC

In contrast to SHG or OPOs, in SFG/DFG processes two wavelength components are
inserted into the crystal to generate a third one. Thus, measurement of the phasematch-
ing curve is usually performed by keeping one input wavelength fixed and tuning the
second one. It is favorable to use a rapidly wavelength-tunable laser for this purpose,
such as an external cavity diode laser (ECDL). Unfortunately, this is not possible in
the present case. For preliminary tests and alignment, we use the Ti:sapphire laser at
738 nm and the MgO:PPSLT SRO at 1409 nm, none of which are rapidly tunable over
a wide range. Nevertheless, we can apply a method which is based on SPDC and works
with the Ti:sapphire laser alone to determine sets of parameters {λa, λb, λp,Λ, T} for
which ∆β = 0 is satisfied. In this section, we return to the ‘classical’ notation intro-
duced in the context of OPA/OPO (see Sect. 3.2.1) and denote the strongest light field
with the shortest wavelength as the pump (λ3) and the two generated fields as signal
(λ1) and idler (λ2). Substituting λ3 → λa, λ1 → λp, b, and λ2 → λb, p returns the
notation that is used within the framework of QFC. By pumping a WG with a continu-
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a b

c

Figure 5.4: (a) SPDC spectra generated by 10 mW of pump power at different wavelengths
around 738 nm. As we have used a longpass filter with a cut-on wavelength of 1450 nm, signal
wavelengths that are shorter than this are blocked and only the idler spectrum is visible. The
signal spectrum becomes clearly visible in the uppermost spectrum. The peak marked with an
asterisk hardly changes its position at ∼1476 nm and stems from second-order diffraction of the
pump light in the OSA. It marks the point of wavelength degeneracy. The WG temperature
was 21 ◦C in all measurements. (b) Calculated OPF spectra for a bulk crystal. (c) Points
with ∆β = 0 extracted from SPDC spectra. A slight variation of the input wavelength has big
leverage at signal and idler wavelengths.

ous power of 10 mW around 738 nm, we generate OPF with an intensity that is strong
enough to record the spectrum with the OSA. The spectra, obtained for different pump
wavelengths around 738 nm, are exemplarily shown in Fig. 5.4(a) for WG #1, group 5.
The Pellin–Broca prism in the experimental setup of Fig. 5.1 was removed for the mea-
surements to avoid distortion of the spectra. The 1450-nm longpass filter is sufficient
to block the 738-nm light in this case. The spectra in Fig. 5.4(a) are described by [66]

D(Γ,∆) = Γ2L2

∣∣∣∣∣sinh(L
√

Γ2 −∆2)

L
√

Γ2 −∆2

∣∣∣∣∣
2

. (5.1)

The above equation is the same as for the parametric gain in bulk crystals introduced
in (3.8). For convenience, the phase mismatch ∆ was written as

2∆ = β3 − β1 − β2 − 2π/Λ. (5.2)
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Note that, for waveguided SPDC, κ1 and κ2 in Eq. (3.4) must be calculated using (3.44)
and (3.45). Since βm = km × neff(λm, T ), m ∈ {1, 2, 3}, and we do not know the exact
function neff(λm, T ) for the WG modes, it is not possible to apply a proper curve fit to
the spectra of Fig. 5.4(a). However, to see that the results are in qualitative agreement
with theory, we consider calculated spectra for a bulk crystal in Fig. 5.4(b). Here we
can use Sellmeier equations for LN to calculate analytic functions neff(λm, T ). From
the measured and simulated curves we recognize that the central peaks of signal and
idler spectrum become broader as they approach the point of wavelength degeneracy
and eventually merge to one broad peak. For low gain (ΓL � 1), Eq. (5.1) can be
approximated by [66]

D(Γ,∆) ≈ sinh2

[
ΓL

(
sin ∆L

∆L

)2
]
, (5.3)

and for high gain (ΓL� 1) it becomes

D(Γ,∆) ≈ sinh2 ΓL exp(−(L/Γ)∆2). (5.4)

Thus, in the low gain regime the spectrum follows a sinc2 function while for high gain
the spectrum has a nearly Gaussian shape [66]. The measured and calculated spectra,
shown in 5.4(a) and (b), respectively, correspond to the case of low to intermediate
gain. The sidebands of the sinc2 function are visible in both cases. For the calculated
spectra ΓL ≈ 0.001 was assumed. Figure 5.4(c) shows the parameter field {λ3, λ1, λ2, T}
satisfying ∆ = 0 for WG #1, group 5. The data were extracted from the spectra in
Fig. 5.4(a). As can be seen, slight variations of the pump wavelength have a large
impact on signal and idler wavelength. With regard to single-photon down-conversion,
this means that the visible emission wavelength of the single-photon source must be
precisely controllable. We emphasize that the SPDC-based method that we have applied
here is not as exact as methods based on SFG or DFG with input from tunable lasers.
However, in our case it has turned out to be a fast and reliable way of finding a proper
operating point.
We recall that the curves in Fig. 5.4(a) represent the parametric gain characteristics of
the converter. If resonant feedback is provided in some way, e.g., by a reflective coating
on the WG end facets [74] or by integration of the WG structure into a fiber loop [174],
it is possible to build low-threshold and ultra-compact OPOs based on such devices.
Besides, OPF from nonlinear WGs is commonly used to generate entangled photon
pairs for quantum information and communication [175]. Apart from the applications
discussed in the remainder of this thesis, our WG device could also be used for such
applications.

Depletion of the 738-nm Input Signal

In the absence of propagation losses and competing nonlinear optical processes, the
depletion of a weak input signal at λa by DFG must be equivalent to the generated
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a b

Figure 5.5: (a) Setup for measurement of the input signal depletion (DM: dichroic mirror,
AL: aspheric lens, LP: longpass). (b) Depletion of the 738-nm input signal by DFG vs. coupled
pump power for two different pump wavelengths. Solid lines are fits to the experimental data.

power at λb. This is a direct consequence of energy conservation. By competing
nonlinear processes we mean that a significant amount of the input signal is converted
to a wavelength other than λb. This can happen if another process is also quasi-
phasematched by chance. In our case this could be excluded at least for the spectral
range from 600–1700 nm. We recorded a complete spectrum of the unfiltered WG
output with the OSA and found no further wavelength components except for the three
expected lines at λa, λp, and λb.
We measured the depletion of a 1-mW input signal at λa = 738 nm in WG #1, group 5,
as a function of the pump power in the WG. This was performed with the setup shown
in Fig. 5.5(a). A 750-nm longpass filter (Thorlabs FEL750 ) is inserted behind the
aspheric lens at the output of the WG. While 1404 nm and 1557 nm are transmitted by
this filter, the 738-nm component is reflected and directed onto a Si-based powermeter
(Coherent OP-2 VIS ). With the pump beam blocked, the power at 738 nm is adjusted
to Pa(Pp = 0) = 1 mW. Then, the pump beam is launched into the WG and the power
Pa(Pp) is recorded with the powermeter while the pump power is increased. The signal
depletion is given by

signal depletion = 1− Pa(Pp)

Pa(0)
. (5.5)

When propagation losses are neglected, Eq. (5.5) is equal to the internal conversion
efficiency ηint. The measurement was performed twice. First, with λp = 1404 nm and
λb = 1557 nm which is the wavelength combination for translation of the 738-nm signal
to the C-band. Second, with interchanged λp and λb which is possible because the
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cw SRO can be operated at both wavelengths. The result of both measurements is
shown in Fig. 5.5(b). The data are fit using

ηint(Pp) = ηmax sin2(
√
ηnorPpL), (5.6)

as derived at the end of Sect. 3.2.3. As compared with Eq. (3.67), the additional factor
ηmax was introduced to account for the non-unity efficiency. Both depletion curves in
Fig. 5.5(b) show a maximum at a certain pump power level (hardly visible for the curve
with λp = 1557 nm because of limited pump power). For values above this level the
signal depletion decreases again. This is due to back-conversion via SFG between the
fields at λp and λb and is in perfect agreement with theory. From the fits we determine
ηnor = 60.1 %/W/cm2 and ηnor = 68.5 %/W/cm2 for λp = 1404 nm and λp = 1557 nm,
respectively. Accordingly, the depletion maximum is reached at 256 mW (225 mW) with
a maximum value of 76.6 % (81.7 %). It is interesting to note that these values seem to
slightly depend on the pump wavelength. This is not expected from theory since the
coupled mode equations are symmetric with respect to λp and λb. One possible expla-
nation for this 5 % difference in signal depletion may be slightly different experimental
conditions. Between the measurements, the idler wavelength of the cw SRO had to be
set from 1404 nm to 1557 nm. This involves a translation of the PPSLT crystal inside
the OPO cavity to change the QPM grating period, a different crystal temperature, and
a re-alignment of the setup. As a result, the exact wavelengths were λa = 738.226 nm,
λp = 1403.576 nm, λb = 1557.310 nm in the first measurement and λa = 738.224 nm,
λp = 1557.016 nm, λb = 1403.804 nm in the second. In both runs, the WG temper-
ature was T = 22.4 ◦C and the wavelength of the Ti:sapphire laser was optimized for
maximum signal depletion. Visible wavelengths were measured with the wavemeter and
telecom wavelengths with the OSA. As mentioned above, the influence of the slightly
different operating points on the phasematching condition could be one reason for the
difference in signal depletion. However, this explanation is not fully satisfying because
the acceptance bandwidths (see Sect. 2.1.3) around 1404 nm and 1557 nm are broad (a
calculation yields ∼9 nm and ∼11 nm, respectively) and thus the effect should be weak.
Other explantions might be that a better spatial overlap of the WG modes was achieved
in the second measurement (λp = 1557.016 nm) or that the WG attenuation is slightly
different for 1404 nm compared to 1557 nm. A reliable test of the latter argument is
difficult in practice because it requires a careful discrimination between input coupling
losses and WG attenuation.
The results presented above indicate that the DFG process 1/λa − 1/λp = 1/λb in a
nonlinear WG can be remarkably efficient—as expected from our theoretical consider-
ations in Sect. 3.2.3. Depletion of the input signal between 77 % and 82 % is observed
due to conversion of visible light to telecom light.

Phasematching Bandwidth

As we have seen in Sect. 2.1.3, second-order nonlinear processes feature a certain phase-
matching bandwidth which follows a sinc2 law. This acceptance bandwidth can refer to



5.2. Down-Conversion from 738 nm to the C-Band: Experimental Results 87

a number of parameters which determine the phasematching condition. For instance, in
the context of QPM, the input wavelengths, crystal temperature, QPM grating period,
or angle (between light beams and domain boundaries) are parameters which have to be
within the acceptance bandwidth of a desired χ(2) process [67]. Within this bandwidth,
wavelength conversion happens efficiently and significant portions of the input power
are distributed to light fields with other frequencies. We experimentally determined
the signal wavelength acceptance bandwidth ∆λDFG for our frequency converter in the
following way: a constant pump power of 27 mW at a fixed wavelength of 1403 nm
was launched into the WG together with cw visible light from the Ti:sapphire laser.
The wavelength of the Ti:sapphire laser was tuned from 737.816 nm to 738.616 nm while
keeping the coupled power at a constant level of 0.8 mW. At the same time, we detected
the generated power around 1557 nm with an InGaAs photodiode. The result is plotted
in Fig. 5.6(a). In this figure, the data have been normalized with respect to the maxi-
mum of the central peak. From a sinc2 fit we yield a spectral acceptance bandwidth of
∆λDFG = 0.16 nm (FWHM). Note that the wavelength acceptance bandwidth for the
visible input signal is two orders of magnitude narrower than the wavelength acceptance
bandwidth for the infrared pump light. Evidently, the fit in Fig. 5.6(a) reproduces the
data quite well around the central maximum while the tails of the measured curve signif-
icantly deviate from the fit. In general, such behavior indicates that the phase mismatch
∆β is not constant (∆β = 0 in the ideal case) along the propagation direction because
of inhomogeneities (spatial fluctuations of the refractive index due to fluctuations in sto-
ichiometry or WG imperfections, temperature variations along the crystal, etc.). This
was studied for the first time by Nash et al. [176] for the case of SHG in bulk LiNbO3.
It was shown that the area under the sinc2-shaped phasematching curve divided by the
height of the central peak can be considered a figure of merit for the effective nonlinear
susceptibility of the crystal (while the phasematching curve can change its shape, the
area under the curve is constant). The relation between the shape of the phasematch-
ing curve and the conversion efficiency was also studied for quasi-phasematched SHG
in periodically poled materials [67] and has been experimentally observed for various
χ(2) processes in different types of QPM WG devices [118,177,178]. In our case, inhomo-
geneities could result, for example, from slightly imperfect WG structures or minimal
variations in WG temperature. We calculated the sinc2 curve for a 40-mm-long crystal
using Sellmeier data from [101] (see Fig. 5.6(b)). From the theoretical curve we find
a spectral acceptance bandwidth of ∆λDFG, theo = 0.11 nm which is slightly narrower
than the value determined from the measured data. In Fig. 5.6(b) we have normalized
the experimental data from Fig. 5.6(a) such that the area under the measured curve
and the area under the theoretical curve are identical. With this normalization method
the maximum of the measured data drops to 0.65. According to [176], this means that
the maximum intensity that can be generated at the target wavelength λb should be
expected to be lower by a factor of 0.65 compared with the ideal situation (perfect sinc2

function).
The temperature acceptance bandwidth ∆TDFG was measured, too. This was per-
formed by setting the two input wavelengths to fixed values and ramping the crystal
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c d
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Figure 5.6: DFG acceptance bandwidths for the 40-mm-long WG. (a) Spectral acceptance
bandwidth: measured data and sinc2 fit. The data are normalized with respect to the central
maximum. Figure after [49] (Copyright © 2011 Optical Society of America). (b) Same exper-
imental data as in (a) but with different normalization for comparison with theory. The data
are normalized such that the integrated area under the measured curve equals the area under
the perfect sinc2 curve predicted from theory (not a fit). (c) Measured temperature acceptance
bandwidth and sinc2 fit. (d) Same experimental data as in (c) but with normalization as in (b)
for comparison with theoretical curve.

temperature with ∼1.7 ◦C/min (using the voltage input of the temperature controller
for external control). The measurement was repeated several times at slightly differ-
ent operating points. In all cases, we find ∆TDFG = 2.3 ◦C from a sinc2 fit. Ex-
emplarily, Fig. 5.6(c) shows a recorded curve which attains its maximum at 26.2 ◦C
(λa = 738.473 nm, λp = 1404.726 nm). A temperature bandwidth of 2.3 ◦C is not crit-
ical for later experiments since the accuracy of the temperature controller is typically
0.01 ◦C. In analogy to the wavelength acceptance measurement in Fig. 5.6(a) and (b),
we observe a discrepancy between experiment and theory concerning the tails of the
sinc2 function. In Fig. 5.6(d) the measured data have been normalized as in Fig. 5.6(b)
for a comparison of the measured data with the ideal sinc2 function. The FWHM



5.2. Down-Conversion from 738 nm to the C-Band: Experimental Results 89

bandwidth of the theoretical function is ∆TDFG, theo = 2.2 ◦C in good agreement with
the measured value. The maximum of the central peak of the experimental data in
Fig. 5.6(d) is 0.75. This factor is higher than the value of 0.65 obtained from the mea-
surement of the wavelength acceptance bandwidth. We will comment on the reliability
of estimating the expected conversion efficiency by the method described in [176] after
we have discussed an experiment in which we have actually determined the conversion
efficiency (see Sect. 5.2.4).

5.2.2 Investigation of Raman Noise

For quantum frequency converters, it is known that noise, i.e., unwanted photons at the
target wavelength λb, can be generated by the strong driving field at λp. The reason
is either spontaneous parametric down-conversion (SPDC) [47] or spontaneous Raman
scattering [125] induced by the pump light. Figure 5.7 recalls the basic properties of
Raman scattering. Stokes Raman scattering generates red-shifted photons and thus
may be an issue in our experiment for λp < λb while anti-Stokes Raman scattering
generates blue-shifted photons and thus might cause problems for λp > λb. In the
following sections we investigate the noise properties of our frequency converter in
more detail.

Figure 5.7: Virtual energy levels for Raman scattering in the photon/phonon picture (after
[16]). (a) Stokes Raman scattering: the scattered photon has a lower frequency than the pump
photon νS < νp, i.e., the scattered light is red-shifted with respect to the pump. A phonon with
energy hνR = h(νp − νS) is created. (b) Anti-Stokes Raman scattering: opposite process as in
(a). The scattered photon has a higher frequency than the pump photon νAS > νp, i.e., the
scattered light is blue-shifted with respect to the pump. A phonon with energy hνR is destroyed
and a photon at frequency νAS = νp + νR is created.

Stokes Raman Scattering

To record the noise spectrum, we coupled Pp = 100 mW into the WG. Behind the
collimation asphere, two mirrors are used to directly couple the light into a SMF-28
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Figure 5.8: Raman spectra generated in the frequency converter by 100 mW of coupled power
at 1398.2 nm (green) and 1403.5 nm (red). The black line represents the dark count level of the
spectrometer’s InGaAs array. The yellow-shaded area indicates the telecom C-band. Lines at
1556.8 nm and 1569.3 nm are generated by DFG and are shown by way of illustration. Figure
after [49] (Copyright © 2011 Optical Society of America).

fiber which guides it to the Princeton Instruments grating spectrometer. In this case,
the whole spectral filtering system as described in Sect. 5.1.1 was bypassed to prevent
distortion of the spectrum. Instead, two longpass filters (cut-on wavelength 1450 nm)
were mounted in front of the fiber entrance to attenuate the intense light at λp. Thus,
we avoid saturation of the spectrometer’s InGaAs array and the amount of spontaneous
Raman scattering generated in the fiber [179] is kept negligibly low. We recorded the
spectra at wavelengths > 1450 nm for two different pump wavelengths, 1398.2 nm and
1403.5 nm. The results are shown in Fig. 5.8. We see that the spectra exhibit several
distinct peaks and that all spectral features shift with the pump wavelength. This is a
first indication that Raman scattering is involved. To investigate this in more detail,
Fig. 5.9 shows a comparison of the two spectra with a Raman spectrum of a bulk
MgO:LiNbO3 sample excited with laser light at 647 nm along the c axis of the crystal
(note that the effect of different dopants, Zn or Mg, can be neglected here [180]). All
three spectra were fit with a sum of N Lorentzian functions given by

I(ν) =

N∑
k=1

2Akwk
4π(ν − νc, k)2 + w2

k

, (5.7)

where I(ν) denotes the intensity as a function of the wavenumber ν, and Ak, wk, νc, k

are the amplitude, the width, and the center wavenumber of the k-th peak, respectively.
The number of peaks N was chosen so as to achieve the best correlation between the
fit and the measured data. The peak centers νc, k determined from the fits are com-
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Figure 5.9: Comparison of Stokes Raman shifts. (a), (b) Stokes Raman spectra obtained using
the Zn:PPLN WG. The excitation wavelengths are λexc = 1398.2 nm and 1403.5 nm. (c) Stokes
Raman spectrum of a bulk MgO:PPLN sample excited at λexc = 647 nm (measurement by
A. Lenhard). The offset for this spectrum is lower because it was measured with the Si CCD
camera of the spectrometer which has a lower dark count level. Raman shifts < 300 cm−1 could
not be measured for technical reasons. The center frequencies of the labeled peaks are given in
Table 5.1.

pared to measured values for a stoichiometric LiNbO3 single crystal [181] in Table 5.1.
The spectra in [181] were recorded at an excitation wavelength of λexc = 488 nm in
the X(ZZ)Y and the Z(YZ)X orientation.1 Like Raman spectra obtained from other

1The Porto notation is commonly used in Raman spectroscopy. It refers to the direction of wavevec-
tor and polarization of the excitation light and scattered light with respect to the crystallographic axis.
For example, Z(YZ)X means that the direction of the excitation beam is parallel to the Z axis and the
scattered light is observed in X direction (first and fourth letter outside brackets) while the polarization
of the excitation light is parallel to the Y axis and the polarization of the scattered light is parallel to
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crystalline materials, the Raman spectrum of LiNbO3 depends on the geometry of the
experiment, i.e., on the direction and polarization of the excitation light and of the
observed scattered light with respect to the crystallographic axes [182]. Compared to
a bulk crystal, the situation is even more complicated in the case of a WG crystal.
Here light that would otherwise exit the crystal in another direction is guided to the
WG output and we have to consider different geometries for the assignment of Raman
lines. In our measured spectra, we can clearly identify the 238, 276, 325, 371, 431,
582, and 871 cm−1 lines of Ref. [181]. Note that a deviation of ∆ν = 5 cm−1 corre-
sponds to a wavelength difference of only ∆λ ≈ 1.2 nm at 1550 nm (even smaller for
shorter wavelengths). The spectrometer was not calibrated with respect to an absolute
reference in this wavelength range. Deviations on this order of magnitude can thus be
considered as a combined effect of experimental and numerical (from the multi-peak fit)
uncertainties. In the case of excitation at 1398.2 nm and 1403.5 nm, we observe three
further lines at ∼520 cm−1, ∼560 cm−1, and around 680 cm−1 that are not reported for
the stoichiometric LiNbO3 single crystal. The 680 cm−1 peak is also found in the spec-
trum excited at 647 nm. The origin of these extra features is unclear. However, they
only have a subliminal effect on the shape of the spectra. In general, the exact shape
and intensity of spectral features in Raman spectra excited in LiNbO3 or its various
doped derivatives depend on multiple factors. For example, it can be influenced by the
composition of the crystal (congruent or stoichiometric) [183, 184], the temperature of
the sample [185], the dopants (undoped, MgO-doped, Zn-doped, ...) [184], or, obviously
from Fig. 5.9(a)–(c), by the wavelength of the excitation light. A more detailed study
is beyond the scope of this work. Nevertheless, the Stokes Raman shifts for the peaks
No. 2, 4–7, 10, 11, 13 of the measured spectra are in good agreement. This observa-
tion and the comparison with the Raman spectra reported for a stoichiometric LiNbO3

single crystal provide convincing evidence that the dominating noise source in our ex-
periment is spontaneous Stokes Raman scattering. We assume that SPDC of the pump
light [47] can be excluded as a noise source in our case since the splitting of a 1403-nm
pump photon into a 1550-nm and a 14.8-µm photon is extremely inefficient because of
the strong absorption of the crystal at wavelengths > 5µm.

Anti-Stokes Raman Scattering

So far, we have considered Stokes Raman scattering since it is the relevant noise process
for a scheme where λp < λb. This short-wavelength pumping is inevitable if we want to
perform frequency down-conversion from 738 nm to the C-band in a single conversion
step. However, it is worthwile to briefly discuss the strength of anti-Stokes Raman
scattering which can be the reason for noise in the case of long-wavelength pumping,
i.e., λp > λb [46, 48]. As shown in Fig. 5.10, anti-Stokes Raman scattering is observed
in our device as well. To obtain the spectrum of Fig. 5.10, the cw SRO was tuned to
1535.8 nm and 185 mW of excitation power were coupled into the WG at this wave-
length. The filtering system for the anti-Stokes measurement consists of a shortpass

the Z axis (second and third letter in brackets). The analogue applies for X(ZZ)Y.
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Table 5.1: Comparison of measured Stokes and anti-Stokes Raman shifts (in [cm−1]) with
values from Ref. [181].

Peak No. ↓ This work Ref. [181]

Stokes Anti-Stokes Stokes
λexc [nm]→ 1398.2 1403.5 647 1535.8 488

Waveguide Bulk Waveguide X(ZZ)Y Z(YZ)X

1 — — — 160 — 155
2 245 243 — 233 — 238
3 — 260 255 265
4 269 271 — 273 276
5 323 326 318 321 325
6 366 368 367 373 371
7 437 435 432 436 431
∗8 521 523
∗9 558 559
10 579 587 577 574 582
11 627 630 627 633
∗12 671 681 688
13 875 869 873 871

∗The origin of these peaks is unclear.

filter (cut-off wavelength: 1470 nm) and a FBG (TeraXion Inc., S/N: C098720 ; center
wavelength: 1535.822 nm, −0.5 dB reflection bandwidth: ±10 GHz) which suppress the
intense excitation light. As for the Stokes Raman spectrum, we apply function (5.7)
with N = 9 to fit the anti-Stokes spectrum. The center peak positions are found at 160,
233, 260, 273, 321, 373, 436, 574 cm−1 and are also compiled in Table 5.1. Each of the
peaks can be assigned to lines that are also reported for single crystal stoichiometric
LiNbO3 in Ref. [181]. We notice that the peak at ∼ 630 cm−1 (and also the smaller
peak at ∼870 cm−1) does not seem to exist in the anti-Stokes spectrum although it is
present in all Stokes spectra in Fig. 5.9(a)–(c) and is also reported in Ref. [181]. In
addition to what was mentioned before on the several factors that influence the exact
shape and intensity of LiNbO3 Raman spectra, there are two possible explanations for
this phenomenon. First, as the steep slope at ∼ 600 cm−1 resembles the characteristic
of an edge-pass filter, one could speculate that the peaks do exist but are not trans-
mitted due to absorption by one or more optical components in the setup. This was
carefully checked and can be excluded. A second explanation, which better fits into the
whole picture, is that the integrated intensity of the individual Raman peaks depends
on the excitation wavelength. This phenomenon is also observed in the Stokes spectra
of Fig. 5.9(a)–(c) where the relative heights of the peaks at ∼580 cm−1 and ∼630 cm−1

depend on the excitation wavelength (cf. peaks No. 10 and 11 in Fig. 5.9(a)–(c)). A
variation of the relative amplitudes of the 580 cm−1 and 630 cm−1 Raman peaks, in-
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Figure 5.10: Spectrum of the anti-Stokes Raman light behind the WG and multi-peak fit.
For excitation, a power of 185 mW at 1536 nm was inserted into the device. The inset shows a
larger spectral interval from −1178 cm−1 to −152 cm−1 corresponding to a wavelength range of
1300–1500 nm. Dark counts were subtracted.

cluding a virtual suppression of the 630 cm−1 peak, has been previously observed by
Sidorov et al. [184]. A resonance between Raman scattering and the electronic polaron
absorption band is supposed to be responsible for varying Raman line intensities [184].

Stokes vs. Anti-Stokes Scattering

According to theory, the intensities IAS(ν) and IS(ν) of anti-Stokes and Stokes Raman
bands measured at Raman shifts ν (cm−1) are related by the Boltzmann factor [186]

exp(−hcν/kT ) =
IAS(ν)/(µ+ ν)4

IS(ν)/(µ− ν)4
, (5.8)

where µ is the frequency (cm−1) of the excitation source and T is the temperature (K) of
the sample. To experimentally check relation (5.8), it would be desirable to record the
full Raman spectrum (anti-Stokes and Stokes together) over 2000 cm−1 in a single sweep.
Unfortunately, this turns out to be an intricate task because calibration of the setup’s
transmission properties in such a wide spectral range is quite involved. Thus, we restrict
our experimental analysis to the peak around ±580 cm−1 which can be identified in both
Figs. 5.9 and 5.10. Moreover, the measurement was performed with excitation light at
735 nm because at telecom wavelengths it is not possible to achieve proper alignment
for anti-Stokes and Stokes Raman light simultaneously with the employed setup. By
comparing the integrated intensities (578–594 cm−1) of anti-Stokes and Stokes Raman
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peaks, we experimentally find IAS/IS ≈ 0.11. This is in reasonable agreement with the
theoretical prediction of IAS/IS = 0.08 calculated from relation (5.8) for T = 295 K
and µ = 13 605 cm−1 (735 nm). Assuming that similar conditions prevail for the case of
telecom wavelength excitation, we would gain one order of magnitude in signal-to-noise
ratio by interchanging λp and λb in our experiment. In the present case, this does
not seem desirable as an ultimate goal since wavelengths around 1400 nm are critical in
terms of fiber transmission losses (water peak). In general, however, we could exploit the
reduced noise on the anti-Stokes side of the Raman spectrum and use a long-wavelength
pumping scheme (see Chap. 6). In addition to that, our investigations suggest that it
is always favorable (also in the case of short-wavelength pumping) to choose a large
spectral separation between the pump and the target wavelength to suppress Raman
noise. From the measured Raman spectra one could assume that all significant Raman
peaks of LN can be found at Raman shifts below 1000 cm−1. This conjecture is proven
by a recent measurement of Pelc et al. [187] who recorded a (Stokes) Raman spectrum
of a reverse-proton-exchanged PPLN WG for shifts from 200 cm−1 up to 1700 cm−1. In
their measurement, no further Raman peaks were found beyond 1000 cm−1. In view
of this fact, it would be favorable to select 1310 nm (telecom O-band) as the target
wavelength in our experiment. With 738-nm input photons this would require a 1690-
nm pump wavelength, meaning that the spectral separation between pump and target
wavelength is > 1700 cm−1.

5.2.3 Spectral Filtering

As can be seen from Fig. 5.8, the Stokes Raman noise stretches over hundreds of nanome-
ters and no particular spectral interval, especially not in the C-band, can be identified
which is not affected by a certain noise background. It is obvious that, without any
spectral filtering, the amount of generated noise photons is not tolerable for QFC. For
experiments at the single-photon level, we thus employ the spectral filtering system
introduced in Sect. 5.1 which acts as a narrow bandpass filter. To illustrate its effect,
we recorded the spectrum of the light exiting port 2 and port 3 of the circulator–FBG
arrangement. This is shown in Fig. 5.11. The black curve represents the part of the
spectrum as ‘seen’ by a single-photon detector when connected to port 3 while the grey
curve is the part which is discarded at port 2. For this measurement, the coupled pump
power at 1403 nm was 100 mW while the signal light field at 738 nm was attenuated to
2 pW. By comparing the integrated areas under the spectra in Fig. 5.11, we infer that
a noise suppression by a factor of ∼ 110 is achieved thanks to the circulator and the
FBG. In the next section, we will investigate the influence of residual Raman noise on
the performance of the frequency converter under realistic experimental conditions.

5.2.4 Conversion Efficiency with Single-Photon-Level Input

The frequency down-conversion will be most efficient if the spectral bandwidth ∆λa of
the input photons satisfies the condition ∆λa ≤ ∆λDFG. Considering typical interaction
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Figure 5.11: Spectra of the light leaving port 2 (rejected spectrum) and port 3 (detected
spectrum) of the circulator–FBG arrangement (see optical setup in Fig. 5.1(a)). Figure after [49]
(Copyright © 2011 Optical Society of America).

lengths of 10–60 mm, we can calculate ∆λDFG to be on the order of 0.1 nm in the case
of our wavelength combination. In Sect. 5.2.1 we have measured ∆λDFG = 0.16 nm
for our 40-mm-long WG. For photons generated by a single color center in diamond at
room temperature, this is hard to achieve. Currently, the emission linewidths of the
narrowest color centers (SiV centers) are on the order of 1 nm at room temperature [60].
Consequently, the mismatch between ∆λa and ∆λDFG reduces the conversion efficiency.
One solution to this problem can readily be implemented by cooling of the diamond
sample to temperatures below 30 K where the emission linewidth of the SiV centers
becomes as narrow as 0.17 nm [60]. Another promising approach which currently is
subject to intensive research is the coupling of a color center to a cavity [164,165,188].
In the future, this may allow for much narrower emission linewidths even at room
temperature. However, these concepts are not yet satisfactorily implemented. The
emission linewidths of the bright SiV centers investigated in [60] were measured to be
0.7–2.2 nm at room temperature while count rates up to 4.8 × 106 s−1 were observed.
Assuming a Lorentzian lineshape and perfect phasematching, we can estimate that the
flux of photons lying within the measured 0.16-nm phasematching bandwidth is on the
order of a few 105 s−1. Thus, we simulate realistic experimental conditions by setting
the repetition rate of the pulse picker to νrep = 500 kHz and attenuating the 738-nm
light to an average photon number per pulse of 〈na〉 ≈ 0.76 < 1 (this corresponds to
an optical power of ∼100 fW). The temporal width of the generated pulses, limited by
the resolution of the pulse picker, was determined to be 9.4 ns (FWHM) as shown in
Fig. 5.12.
Using the setup as in Fig. 5.1(a) with the InGaAs/InP SPAD, the conversion efficiency

of the setup can be determined. We define Ndc+R as the count rate of the detector at
1557 nm when only pump light is present in the WG (signal light blocked). In this case,
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Figure 5.12: Temporal shape of the pulses at 738 nm recorded with a Si photodetector (1 ns
rise time). Figure after [49] (Copyright © 2011 Optical Society of America).

a detection event can either be caused by a detector dark count (dc) or by a Raman
photon (R) that was generated by the strong pump. We further define Ndc+R+b as the
count rate when both, pump and signal light, are coupled into the WG. In this situation,
a detection event can additionally be caused by a photon at λb which was generated
by DFG. We measured the count rates Ndc+R and Ndc+R+b as a function of the pump
power. The result is shown in Fig. 5.13(a). The number of photons Nb generated by
DFG (net count rate) is easily obtained from Nb = Ndc+R+b−Ndc+R and is also shown
in the plot. In this measurement, the parameters of the InGaAs/InP detector were set
to the following values: detection efficiency ηdet = 0.25, trigger rate νt = νrep = 500 kHz
(external from pulse picker), gate width τg = 5 ns, dead time τd = 1µs. With these
settings, the dark count rate of the detector is about Ndc = 107 s−1 corresponding to a
dark count probability of 2.14×10−4 within a gate time. From the count rates given in
Fig. 5.13(a), the maximum total conversion efficiency of our setup is readily calculated
to be

ηmax
tot =

Nb

〈na(0)〉 νrep
≈ 8 000 s−1

0.76× 500 000 s−1
≈ 0.02 (5.9)

including detection and 0.02/ηdet = 0.08 without detection. The internal conversion
efficiency is given by ηint = 〈nb(L)〉/〈na(0)〉, where 〈na(0)〉 is the average number
of signal photons per pulse coupled into the WG and 〈nb(L)〉 is the average num-
ber of converted photons per pulse exiting the WG. Since the transmission of the
attenuator is known, 〈na(0)〉 can be determined by measuring the optical power be-
fore the attenuator. 〈nb(L)〉 is calculated from the measured net count rate Nb using
〈nb(L)〉 νrep = Nb/(Ttot× ηdet×0.86×0.47), where the factor 0.86×0.47 takes into ac-
count the non-perfect extinction ratio of the pulse picker and the mismatch between the
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a

b

Figure 5.13: (a) Count rates with only pump light (open squares) and with pump + signal
light (grey dots) coupled into the WG. Filled triangles represent the net count rate. (b) Internal
conversion efficiency (open circles) and signal-to-noise ratio (open squares) of our setup vs.
pump power. Figures after [49] (Copyright © 2011 Optical Society of America).

temporal width of the signal pulses and the gate width of the detector. Figure 5.13(b)
shows ηint of our frequency converter as a function of the coupled pump power Pp. The
data are fit according to relation (5.6). A maximum of ηmax

int > 0.73 at 240 mW of pump
power is achieved with the normalized efficiency ηnor = 61 %/W/cm2. This is in good
agreement with the values of ηmax

int = 0.77 at 256 mW and ηnor = 60 %/W/cm2 which
were determined in the depletion measurement at a macroscopic signal power level (see
Sect. 5.2.1). The slight deviation between the optimum pump powers can be explained
by uncertainties in the fit function.
It is clear that the above method of measuring the internal conversion efficiency may also
be affected by several experimental uncertainties. For example, to calculate 〈nb(L)〉 we
have to multiply a number of quantities that are subject to measurement errors them-
selves. Further, we have chosen a relatively short dead time of 1µs for the InGaAs/InP
detector. This might cause additional detection events generated by the detector after-
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pulsing effect [189] which could lead to an over-estimation of the conversion efficiency.
To evaluate the potential impact of this effect, the afterpulsing probability was inde-
pendently measured by means of an autocorrelation technique [190]. The measured
probability shows a nearly exponential decay in time. For the parameters of our exper-
iment, we yield an upper limit for the afterpulsing probability of 4.4 % which could add
a maximum error of 4.4 % to the count rate Nb and thus to the calculated conversion
efficiency [190]. To further verify that our results are reliable, we additionally investi-
gated the depletion of signal photons at the single-photon level with a free running Si
SPAD (Perkin Elmer SPCM-AQR-14, ∼65 % quantum efficiency at 738 nm). Here we
get ηmax

int ≈ 0.8 at a pump power around 240 mW. All together, we find that, within
measurement accuracy, the results obtained with the InGaAs/InP SPAD are confirmed
by the depletion measurements at macroscopic power and at the single-photon level.
In the absence of any propagation losses, the internal conversion efficiency that is ex-
pected from theory (see Sect. 3.2.3) is 1, i.e., perfect conversion. We have given 7 %
as an upper limit for the propagation losses of our device assuming an input coupling
efficiency of 1 and zero Fresnel losses at the input coupling lens, at both facets of the
WG, and at the output coupling lens. These assumptions are obviously not fulfilled
in practice. Consequently, pure propagation losses will be less than 7 % and we would
theoretically expect 0.93 < ηmax

int < 1 for the maximum internal conversion efficiency. In
general, non-perfect spatial mode overlap within the WG might be a reason for reduced
conversion efficiency. However, in our case we suppose the deviations of the measured
phasematching curves from the ideal sinc2 shape to be mainly responsible for the fact
that the internal conversion efficiency is about 15–20 % less than the theoretical predic-
tion. The effect of distorted phasematching curves was already analyzed in Sect. 5.2.1
using the method of Nash et al. [176]. We can now evaluate the usefulness of this method
by comparing the results of the present section with those from Sect. 5.2.1. The fac-
tor of 0.75 obtained from the temperature acceptance curve (Fig. 5.6(d)) is in good
agreement with the measured efficiency of ∼0.73. However, the factor of 0.65 obtained
from the wavelength acceptance curve (Fig. 5.6(b)) underestimates the actual conver-
sion efficiency. There is no obvious reason why the two measurements (wavelength and
temperature acceptance bandwidth) should yield different results. Therefore, we as-
sume that the method of Nash et al. provides an idea of the conversion efficiency that
can be expected but cannot replace a more accurate measurement. Further systematic
investigations (beyond the scope of this work) would be necessary to find out under
what circumstances an accurate prediction of the conversion efficiency can be made
from a measurement of the sinc2 phasematching curves.
To complete the discussion, we consider the signal-to-noise ratio SNR = Nb/Ndc+R

which is an important figure of merit for a QFC device. The data are plotted in
Fig. 5.13(b). The SNR reaches its maximum at Pp ≈ 60 mW yielding a value of about
6:1. This is comparable to what was achieved in another frequency down-conversion
experiment using long-wavelength pumping [46]. Note that due to the linearly ris-
ing Raman background, the SNR attains its maximum before the point of maximum
conversion efficiency is reached.
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5.3 Successive DFG and SFG in a Double-Pass Configu-
ration

Figure 5.14: Setup for combined down- and up-conversion in one WG. HWP: half-wave
plate, PBS: polarizing beamsplitter, BD: beam dump, DM: dichroic mirror, BS: beamsplit-
ter, BP: bandpass filter, Att.: attenuator, PC: polarization control, SMF: single-mode fiber,
MMF: multi-mode fiber, AL: aspheric lens, LP: longpass filter, PZT: piezoelectric transducer.

From the results discussed in the previous sections we have learned that QFC from
738 nm to the C-band brings some difficulties that are mostly attributed to Raman
noise and the poor performance of the InGaAs/InP detectors. In this section, we re-
view a bi-directional scheme that might have the potential to alleviate at least the
detection problem. It is related to an idea proposed and implemented in the context
of up-conversion of arbitrarily polarized light [191, 192]. The modified experimental
setup is depicted in Fig. 5.14. The underlying principle of this configuration is that the
visible input signal is first down-converted via DFG to a telecom wavelength and then
up-converted again to the visible wavelength via SFG. In this way, we realize frequency
down-conversion and subsequent up-conversion detection using one and the same WG.
As shown in Fig. 5.14, the 738-nm input is split into two beams by a nonpolarizing
50/50 beamsplitter. One half is directed into a beam dump, the other half is sent
through the WG and is mainly converted to a telecom wavelength. Residual visible
light that has not been converted is blocked by a 750-nm longpass filter and is thus not
involved in further interactions. Converted light and pump light are reflected by a plane
mirror and traverse the frequency converter again in the opposite direction leading to
an up-conversion to λ′a (the prime indicates that this light has undergone two conver-
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sion steps albeit λ′a = λa). The plane reflector is mounted to a piezoelectric transducer
that is wobbled at a frequency of 100 Hz by applying a sawtooth voltage. In doing so,
we avoid perturbing interference effects that are otherwise observed. Pump light and
up-converted light are separated by the dichroic mirror. The up-converted light beam
is again split into two halves when it hits the 50/50 beamsplitter. The portion that is
reflected under 90◦ is coupled into a multi-mode optical fiber. We point out that the
50/50 beamsplitter is not the ideal component to separate the two counter-propagating
beams because 75 % of the photons are sacrificed. An optical isolator which allows to
use the reflected beam would be a much better choice. However, such a device was not
available and the beamsplitter is fairly sufficient for proof-of-principle experiments.
We conduct a preliminary efficiency test of the DFG–SFG setup by inserting 1.53 mW
at 738 nm (measured behind port 3 of the 50/50 BS). Initially, the 750-nm longpass filter
is removed and the pump light is blocked. When the 738-nm light travels undisturbed
back and forth through the whole optical system (starting from port 3 to the gold mirror
and back to port 3) it experiences losses of (1−0.642)×100 % ≈ 59 %, i.e., the measured
power at port 4 of the BS is 1.53 mW × 0.41/2 = 313µW. The distance between the
WG and the collimation asphere AL2 was optimized to ensure maximum transmission
at 738 nm. We now insert the longpass filter so that the power at port 4 nominally
drops to zero (in reality, faint reflections amount to ∼ 8µW). If the pump beam is
coupled into the converter, the power at port 4 increases again since 738-nm light is
generated in the consecutive DFG–SFG process. The converter is now pumped in both
directions. The transmission coefficient of the longpass filter is 0.875 at 1404 nm and
1557 nm in single pass, i.e., the filter introduces losses of ∼23 % at these wavelengths in
double pass. A measurement of the 738-nm power behind port 4 vs. the coupled pump
power at 1404 nm (measured behind AL2 after a single pass) is presented in Fig. 5.15.

The noise floor of 8µW was subtracted from the data. The highest power that was
measured is about 150µW. By comparison with the power that is transmitted without
down- and up-conversion, we find 150µW/(0.8752×313µW) ≈ 0.63 internal conversion
efficiency, where the factor of 0.8752 was introduced to correct for the transmission of
the longpass filter. Assuming that DFG and SFG are equally efficient, we calculate
ηint =

√
0.63 ≈ 0.79 for a single conversion step. This value matches the results that

were obtained in Sect. 5.2.1 and 5.2.4. Figure 5.15 also shows the external efficiency
that is about 20 % at its maximum. The data are fit with the square of function (5.6).
Since the efficiency test at the mW-power level was quite promising, we next investigate
to what extent noise photons at 738 nm are generated when the crystal is pumped in
the double-pass configuration. To this end, the laser power of the Ti:sapphire laser is
attenuated to a power of 97 fW corresponding to ∼360, 000 photons/s behind the single-
mode fiber. This power was measured directly with a Si APD. To minimize the possible
noise background, we use long-wavelength pumping and choose λp = 1557 nm. Behind
port 4 of the BS, photons at 738 nm are coupled into the multi-mode fiber connected
to a Si APD (see Fig. 5.14). Figure 5.16 shows the count rate of the Si APD with and
without the single-photon level input signal at 738 nm. Evidently, the bi-directional
pumping generates a massive number of noise photons in the 20-nm detection inter-
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Figure 5.15: Power at 738 nm as a function of coupled pump power at 1404 nm and external
efficiency of the two-step conversion process 738 nm → 1557 nm → 738 nm. Note that a factor
of 2 was introduced in the efficiency calculation to account for the 50/50 BS. The dots are the
measured data, the solid line is a fit.
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Figure 5.16: Count rate at 738 nm with and without weak signal input at 738 nm. Even when
there is no signal input we observe considerable count rates in this wavelength range. The inset
shows the SNR calculated from the measured data.

val around 740 nm given by the bandpass filter in front of the APD. From analysis
of the data, we recognize a general tendency that the count rate with signal input is
higher than without (up to 15,000 cts./s). However, the data are much too noisy to
enable a reliable interpretation. Apparently, the noise floor in the double-pass scheme
increases quadratically. This is in contrast to the results obtained in the single-pass
DFG experiment described in Sect. 5.2.4 where a linear rise was observed (as expected
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for Raman scattering). Only a poor SNR < 1:10 for relevant pump power levels is
achieved. Spectral analysis in the 730–760 nm interval reveals eight peaks at 738.2,

a

b

c

Figure 5.17: (a) Spectrum when the WG is bi-directionally pumped with a power of 100 mW
at 1557 nm and no input at 738 nm. (b) Same conditions as in (a) but with additional weak
input at 738 nm (∼4.1× 106 photons/s). (c) Detailed view of the spectrum shown in (a) with
multi-Lorentz-peak fit (solid line). (Spectra measured by A. Lenhard.)

742.3, 745.0, 746.1, 747.5, 748.0, 749.7, and 755.6 nm when only pump light is coupled
into the WG without any signal input (see Fig. 5.17). These peaks are supposed to be
generated by SFG of ASR peaks with the strong pump light at 1557 nm. This could
be understood as follows: when the strong pump field traverses the WG it generates
ASR bands at center wavelengths λAS, 1, λAS, 2, ... , λAS, N as discussed in Sect. 5.2.2.
Once a photon is created at a wavelength around λAS, j it can be up-converted by sum
frequency mixing with the 1557-nm pump light to a wavelength near 738 nm accord-
ing to 1/λAS/SFG, j = 1/λp + 1/λAS, j . The probability of this happening is doubled
for bi-directional pumping since ASR noise generated in the first pass is reflected by
the mirror and coupled into the WG again. The involvement of two processes, ASR
and subsequent SFG, would explain the observed quadratic rise of noise photons with
increasing pump power. Unlike the phasematching bandwidth around 738 nm for the
DFG process, the phasematching bandwidth is much broader for the SFG process. ASR
wavelength components generated in the 1400–1470 nm spectral region (720–380 cm−1

from 1557 nm) would lead to up-converted photons in the 737–765 nm interval.
It is clear that the current performance of the bi-directional setup is even worse than
one-step down-conversion and detection with InGaAs/InP single-photon detectors. We
have tested the configuration with long-wavelength pumping. Interchanging λp and
λb would certainly generate even more noise photons. A further improvement of the
double-pass setup is beyond the scope of this work, though. Yet, it is worthwhile to
shortly discuss to what extent the successive DFG–SFG scheme could be optimized. A
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replacement of the 730–750 nm bandpass filter by a filter with a much narrower pass
band (1-nm bulk bandpass filters are commercially available) could bring an enormous
noise reduction. Additionally, it would also be possible to apply narrowband filtering
after the first pass through the WG to prevent Raman noise from entering the converter
again. Moreover, substitution of the 50/50 BS by an optical isolator which allows to use
the reflected beam could minimize the losses at 738 nm in both directions. Finally, we
note that insertion of a dual-wavelength quarter-wave plate between AL2 and the long-
pass filter would allow for polarization-independent frequency conversion as described
in [191,192]. This is of relevance for QFC of polarization-entangled photons [52,56]. A
significant improvement of the signal-to-noise ratio in single-photon detection can also
be achieved by using the lock-in technique in data postprocessing reported by Lenhard
et al. [193].

5.4 Summary and Discussion

In this chapter, we have primarily studied frequency down-conversion from 738 nm to
the telecommunications C-band (1557 nm). This particular wavelength combination
was chosen to match the emission wavelength of the SiV center in diamond, a bright,
narrowband quantum emitter that can be operated at room temperature [60]. The
frequency conversion setup was introduced and the Zn:PPLN WG chip, as the most
important part of this setup, was described. Experimental methods to test its perfor-
mance were presented as well. To deliver the strong pump fields at ∼ 1400 nm and
around 1550 nm that are required for our experiments, we have used the home-built
cw SRO based on MgO:PPSLT described in Sect. 4.2. Since the SRO is widely tun-
able, it can serve as a pump source in a variety of frequency conversion experiments
with different input wavelengths (see also Chap. 6). We achieved a remarkably high
input coupling efficiency of 90 % at 738 nm. A single-photon source based on a dia-
mond SiV center was emulated with attenuated pulses from a Ti:sapphire laser. With
this single-photon-level input a total conversion efficiency of 2 % (including filtering
and detection) was achieved, corresponding to an internal conversion efficiency of 73 %.
Maximizing the input coupling efficiency is an important task since it dramatically in-
creases the overall efficiency of the conversion setup. The dominating noise source in
the short-wavelength-pumped frequency converter was unambiguously identified to be
spontaneous Stokes Raman scattering induced by the strong pump field at 1403 nm.
We also studied the noise spectrum that is generated by anti-Stokes Raman scatter-
ing. This is of interest for evaluation of the expected noise level in frequency down-
conversion experiments that use long-wavelength pumping. DFG processes according
to 1/795 nm − 1/1632 nm = 1/1550 nm (87Rb D1 line → C-band) as proposed in [46]
or 1/711 nm − 1/1550 nm = 1/1313 nm as presented in Chap. 6 are examples for such
schemes. Despite the strong Stokes Raman noise background in the down-conversion
from 738 nm to 1557 nm, a signal-to-noise ratio of 6:1 was achieved using temporal and
narrow spectral filtering. In principle, the lower limit for the filtering bandwidth is
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given by the frequency bandwidth ∆νb of the down-converted light. Since for SiV cen-
ters currently ∆νb ≥ ∆νDFG, the minimum filtering bandwidth is actually given by the
frequency phasematching bandwidth ∆νDFG ≈ 88 GHz corresponding to a bandwidth
of 0.7 nm at 1557 nm. If we would consider a single-photon source with a much narrower
emission linewidth, e.g., a trapped atom coupled to a high-finesse cavity [20], we could
employ even narrower spectral filtering achieving a much better signal-to-noise ratio.
At the end of this chapter, a bi-directional conversion scheme that utilizes two conver-
sion steps, namely DFG and subsequent SFG, was discussed. This configuration was
tested with the goal of employing free running Si-based single-photon detectors instead
of their InGaAs counterparts that have to be operated in gated mode. With the twofold
conversion, a considerable conversion efficiency of 0.63 could still be obtained but the
noise problem was massively aggravated by the double-pass pumping. Even though
these results seem disappointing at first sight, a number of technical improvements (as
outlined in Sect. 5.3) could certainly bring a significant noise reduction. However, ef-
forts in this direction are beyond the scope of this work.
As Ref. [47] and this work indicate, it is not the limited conversion efficiency but the
noise problems that are a major challenge in quantum frequency down-converters. Nar-
rowband spectral filtering and temporal gating can be a remedy but do not eliminate
the cause of the converter noise. Temporal gating even brings some new difficulties
as discussed further below. An alternative concept, which is attractive in the context
of SiV centers, is to choose long-wavelength pumping [46, 48]. When aiming at the
telecom O-band, i.e., λb ≈ 1310 nm, the required pump wavelength has to be around
1690 nm which could be generated, e.g., by a 1-µm-pumped SRO.2 As our measure-
ments clearly reveal, this should exclude any SPDC or (anti-Stokes) Raman noise at
the expense of only slightly higher fiber transmission losses at 1310 nm compared to
1550 nm. In situations where λa < λb/2 long-wavelength pumping is not an option.
Then, a more elaborate approach must be chosen such as the cascaded scheme which
was proposed for down-conversion [47] and demonstrated for up-conversion [194] by
Pelc et al.. In our particular case with λa = 738 nm, the cascaded scheme would consist
of two DFG processes that are both pumped with a wavelength of λp = 2.8µm. In
the first step, the input photons are down-converted to an intermediate wavelength
according to λint = (1/738 nm − 1/2.8µm)−1 ≈ 1.0µm, and in the second step, the
so-generated photons at λint are down-converted to a C-band wavelength according to
λb = (1/1.0µm − 1/2.8µm)−1 ≈ 1.56µm. Again, the 2.8-µm pump wavelength could
be generated by a 1-µm-pumped SRO.
In conclusion, we have assessed the chances of successful QFC from 738 nm to the C-
band using single-photon-level input. With a SNR of 6:1, investigation of the photon
statistics and demonstration of photon antibunching after the conversion process seem
within reach. However, we must not ignore that several conditions are idealized in the
presented experiment. In a realistic scenario, a single SiV center will emit only 2× 105

2An experiment of this kind is currently set up. However, at the time this work was performed, no
appropriate WG crystal and no pump source at 1700 nm were available. Hence, conversion from 738 nm
to the O-band using long-wavelength pumping could not be performed.
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to 3× 105 photons/s under 80-MHz pulsed excitation due to the non-perfect quantum
efficiency of the emitter [195]. This is in contrast to the record-high 6.2× 106 counts/s
that were reported for an SiV center under cw excitation [196]. The InGaAs SPADs
cannot be gated with the 80-MHz repetition rate of the excitation laser but have to be
gated at a lower rate of 0.5 MHz (corresponding to a 2-µs detector dead time) to keep the
detector dark counts at a reasonable level. Taking into account the 2 % total conversion
efficiency, we estimate that only 3×105×0.5/80×0.02 = 37.5 counts/s are detected on
average at 1550 nm when starting with an optimistic value of 3×105 input photons/s at
738 nm. In view of the noise floor generated in the converter, it would be impossible to
verify photon antibunching after the frequency conversion under such conditions. The
situation is even more complicated by the insufficiently reproducible spectral proper-
ties of the SiV center. It is difficult to find a center which shows bright and sufficiently
narrowband single-photon emission at an appropriate center wavelength. For emission
wavelengths of individual SiV centers in nanodiamonds, a broad distribution reaching
from 730–750 nm has been observed [197].
All of the aforementioned issues are overcome by the experiments presented in Chap. 6.
Here we have chosen a semiconductor QD as a single-photon source and have further
improved important details of our setup.



Chapter 6

Quantum Frequency
Down-Conversion of Single
Photons from a Quantum Dot

Copyright Notice:
Sect. 6.1, Sect. 6.2, and Sect. 6.3 of this chapter contain material that was
originally published in Ref. [198] and the accompanying supplemental ma-
terial (SM) (Copyright © 2012 by the American Physical Society).

In this chapter, we describe the experimental implementation of the central objective of
this thesis: QFC of nonclassical light from a true single-photon source from the visible
spectral range to a telecom wavelength band. We recall that QFC in this context means
that the statistical properties of a nonclassical input light field are fully mapped to the
frequency-converted output telecom light. However, the practical realization represents
a challenge since a number of technical difficulties have to be overcome simultaneously:

1. Spontaneous Raman scattering as described in Sect. 5.2.2 can generate extra
photons at the target wavelength, thus degrading the single-photon character of
the output light field.

2. The spectral acceptance bandwidth of the DFG process (see Sect. 5.2.1) is quite
narrow compared to the typical (room temperature) spectral emission bandwidth
of solid-state single-photon emitters which potentially reduces the conversion ef-
ficiency.

3. The power of the pump field has to be 12–13 orders of magnitude stronger than
the power of the quantum light field to achieve a significant conversion efficiency.
Pump light has to be massively suppressed after the frequency converter to avoid
flooding of the detectors with pump photons. At the same time, the components
employed for spectral separation of pump and converted signal photons have to
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feature a transmission that is high enough to ensure reasonable count rates at the
target wavelength.

4. Single-photon detectors based on Si APDs are technically mature devices which
are reliable and easy to handle. In contrast, single-photon detectors at telecom
wavelengths have only improved in recent years and still cannot compete with Si
APDs as they suffer from low detection efficiencies and/or high dark count rates
and/or limited count rates.

Here we demonstrate that by carefully addressing each of the above points, visible-
to-telecom QFC is practically feasible and may become an important technique for
quantum communication and information applications. Section 6.1 gives an introduc-
tion into InP/GaInP QDs which we used as single-photon emitters in our experiments.
The experimental setup and the obtained results are discussed in Sect. 6.2 and Sect. 6.3,
respectively.

6.1 InP Quantum Dots as Single-Photon Emitters

It was one of the goals in this thesis to demonstrate visible-to-telecom QFC with an
all-solid-state system. We have learned from the results discussed in Chap. 5 that the
SiV center in diamond, despite its undisputed advantages, causes some difficulties with
respect to QFC at the moment. These problems are likely to be solved in the future,
e.g., by using single-crystalline diamond as a host material and coupling of an SiV center
to a cavity [165]. These measures should allow for better spectral control and narrower
emission linewidths. However, for the time being, we choose to employ a semiconductor
QD as a solid-state single-photon source in the visible. Since the first demonstration of
single-photon emission from a QD by Michler et al. [19], these devices have attracted
wide attention as single-photon emitters and have been thoroughly investigated [78,199].
Before we discuss the characteristics of the InP/GaInP QD sample used in this thesis,
we start with a brief outline on fundamental properties of semiconductor QDs.

6.1.1 Semiconductor Quantum Dots: Fundamentals

The following treatment is inspired by the book of Michler et al. [78]. A semiconductor
QD is a three-dimensional structure which is several 10 nanometers in size and immersed
into a semiconductor material with larger bandgap. The nanostructure locally modifies
the electronic band structure of the surrounding semiconductor material and forms a
potential well with dimensions comparable to the de Broglie wavelength of an electron.
Thus, charge carriers (electrons and holes) can be spatially confined in a QD. As a
consequence, the energy of the particles inside the QD can only take discrete values.
This situation is analogous to an atom and explains why QDs are sometimes termed
‘artificial atoms’. Semiconductor QDs are fabricated by epitaxial growth, e.g., molecular
beam epitaxy (MBE) or metalorganic vapour phase epitaxy (MOVPE). During epitaxial
growth, self-organization phenomena play a vital role and QDs produced under such
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conditions are called self-assembled. The most common growth mode for optically
active semiconductor QDs based on self-organization is the Stranski–Krastanow growth
mode. In this heteroepitaxial process, a thin film of QDs consisting of a narrow bandgap
material is embedded in a material with a higher bandgap. During growth, only some
monolayers (the so-called wetting layer) of the narrow-bandgap material are deposited
on the wide-bandgap substrate before the self-organized formation of nano-islands (i.e.,
QDs) begins. The formation of the QDs is caused by the strain induced by the mismatch
of the lattice constants of the two materials. A prominent example for this kind of
fabrication are InAs QDs (bandgap energy: 0.351 eV at 297 K [200]) embedded in a
GaAs matrix (bandgap energy: 1.424 eV at 297 K [201]). As a consequence of the self-
organized growth, the individual position of single dots is random. The area density
of the QDs as well as their average size is determined by the lattice mismatch (i.e., by
the material sytem) and the growth conditions. The size of individual dots follows a
random distribution around a certain mean value.

Localized states

Delocalized states

Localized states

Delocalized states

Conduction band

Valence band

Excitation Photon emission

Capture

s-shell

s-shell

p-shell

p-shell

WL relaxation

QD relaxation

Hole

Electron

Figure 6.1: Typical energy level scheme of a semiconductor QD (after [78]). Non-resonant
excitation generates electrons (holes) in the conduction (valence) band. After relaxation via
carrier–carrier and carrier–phonon interactions, electrons and holes get trapped in the QD.
Photons are emitted in a cascaded recombination of the electron–hole pairs. The sketch exem-
plarily shows the single exciton transition which corresponds to the recombination of the last
electron–hole pair in the QD.

We can understand the generation of photons by a QD from the energy level struc-
ture depicted in Fig. 6.1. It represents a composition of both quasi-continuous (delo-
calized states in the conduction/valence band of the barrier) and discrete energy levels
(localized states in the QD). In analogy to atoms, the lowest energy level in the dot is
called s-shell and the second-lowest is called p-shell. To achieve light emission, electron–
hole pairs are created by means of optical or electrical excitation. The excitation process
can be non-resonant, quasi-resonant, or resonant. In the case of non-resonant excita-
tion, the excitation energy is larger than the barrier bandgap. Quasi-resonant excitation
takes place into one of the higher shells while resonant excitation means a direct exci-
tation into the s-shell. We here consider non-resonant excitation since this type is used
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in the experiments discussed in the following sections. After electron–hole pairs are
created in the barrier, the electrons (holes) relax to the conduction (valence) band edge
where they can get captured by a QD. Even or odd numbers of charge carriers can get
trapped to form neutral or charged complexes, respectively. Neutral complexes formed
by N electron–hole pairs are named N -excitons (X, 2X or XX, 3X, ...). Each of these
states corresponds to a certain energy EX , EXX , ... , ENX . For applications as a single-
photon source, the cases N = 1 and N = 2, i.e., the exciton (X) and the biexciton (XX)
state, respectively, are the most important ones. Photon emission occurs via recombina-
tion of electron–hole pairs in the QD. We emphasize that not all N electron–hole pairs
recombine at the same time to generate N photons. Instead, a cascaded emission takes
place in which each change in configuration NX → (N − 1)X → ... → X → 0 is associ-
ated with the emission of one photon at a time. The energy levels EX , EXX , ... , ENX
are not equally spaced because they depend on the Coulomb interaction between the
charge carriers in the QD. As a consequence, each of the individual transitions has a
slightly different energy leading to an anharmonic spectrum. In the experiment, this
allows for resolving the spectral lines corresponding to each transition of a single QD. It
is also important to note that different QDs in the same sample show different emission
wavelengths due to their varying sizes.

6.1.2 Fabrication and Layout of the InP/GaInP Quantum Dot Sample

The QD sample that is employed in all experiments described in this thesis is labeled
M4600-2 and was fabricated in the group of P. Michler at Universität Stuttgart by
performing the following procedure [202]: it was grown by metal-organic vapor-phase
epitaxy on a n-doped (100) GaAs substrate misorientated by 6◦ toward the (111)A di-
rection (the subscript A indicates that the III-V semiconductor is terminated with a
layer of Ga atoms, subscript B would stand for As). In order to enhance the col-
lection efficiency, an n-doped distributed Bragg reflector (DBR) of 10 λ/4-pairs of
Al0.50Ga0.50As/AlAs was placed below the active region. The InP QDs were grown
self-assembled in the Stranski–Krastanow growth mode and were symmetrically em-
bedded in 8.8-nm intrinsic Ga0.51In0.49P barriers surrounded by 150-nm partially doped
(Al0.55Ga0.45)0.51In0.49P cladding layers. On top, a p-doped aluminum rich oxidation
layer was grown. The structure was terminated with a GaInP and a GaAs layer. After
growth, standard processing techniques like lithography, thermal wet oxidation, and
evaporation of ohmic contacts were applied to fabricate mesas of 100µm diameter. A
ring-shaped p-contact can be used to apply a DC bias voltage and the luminescence was
collected inside a 20-µm opening window of this ring contact. A microscope image of
the sample and a schematic of its layout are shown in Fig. 6.2(a) and (b), respectively.
The sample consists of 4×8 = 32 mesas, each of them located on a rectangular contact
pad which is 250× 250µm2 in size. Due to space limitations, only three of these pads
(B2, D4, B7) are provided with bonding wires which allow for applying a voltage to the
QDs, i.e., investigation of QDs on the sample is effectively limited to three mesas. Light
is emitted through circular apertures in the center of the mesas and is directed perpen-
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dicular to the sample surface. For easier handling, the sample shown in Fig. 6.2(a) is
fixed on a larger circuit board which is mounted into a liquid helium (LHe) continuous
flow cryostat (Janis Research, Model ST-500LN, see Fig. 6.2(c)) since the QDs have to
be operated at cryogenic temperatures. The emission wavelengths of the QDs on the
sample lie in a range of 690–715 nm and can be tuned by temperature and by Stark
effect via the bias voltage. We employ a DC power supply (Agilent E3643A) to apply
an adjustable bias voltage to the sample. In the conversion experiment, single QDs
are optically addressed using a confocal microscope and an appropriate QD with an
emission line around 710 nm is selected. Wavelength tuning and selection of the QDs
are described in detail in Sect. 6.2.3.

Figure 6.2: (a) Microscope image of the QD sample M4600-2. Initially, as shown here, mesas
B1, D4, B7 were provided with bonding wires. After mounting the sample into the cryostat,
evacuation of the system, and liquid helium cooling, mesa B1 did not show light emission
anymore. Therefore, the B1 bonding wire was removed and a new one was bonded to the contact
pad of mesa B2 (marked with blue star). The bonding wires are connected with contacts 2,
4, and 5 as marked in (c). (b) Schematic of the sample layout. Wire-bonded contact pads
are filled yellow or blue (newly bonded). Red-filled circles are investigated mesas. (c) Sample
with electrical contacts mounted in the LHe flow cryostat. Contact 1: ground; contacts 2, 4, 5:
connected to mesas D4, B7, and B2, respectively; contacts X: not connected.

6.2 Experimental Setup and Preparatory Experiments

6.2.1 Experimental Setup

Figure 6.3 shows a detailed drawing of the complete experimental setup which is used
for generation and frequency conversion of single photons from a QD. One part of it
(Fig. 6.3(a)) consists of a confocal microscope, similar to the setup described in [82], for
investigation of the QD sample. This setup is combined with the frequency conversion
stage including the Zn:PPLN WG that, together with a spectral filtering stage, consti-
tutes the second part of the setup (Fig. 6.3(b)). The two parts are located on different
optical tables and are connected via optical fibers. An important component of the
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Figure 6.3: Schematic of the combined experimental setup. (a) Confocal microscope for in-
vestigation of the QD sample. (b) Frequency conversion setup. Positions that are important
for explanations in the text are marked by capital letters in yellow circles. λ/2: half-wave plate,
PBS: polarizing beamsplitter, SMF: single-mode fiber, MMF: multi-mode fiber, BP: band-
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division multiplexer, FBS: fiber beamsplitter, SSPD: superconducting single-photon detector,
LHe: liquid helium.
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confocal microscope consists of the cryostat containing the QD sample. The cryostat
is mounted on a xy translation stage for precise sample positioning. A bias voltage on
the order of several Volts can be applied to the QDs which are additionally optically
excited using an average power of ∼160 nW at 590 nm from a pulsed femtosecond (fs)
OPO with 80 MHz repetition rate [73]. The yellow excitation light is spatially filtered
by a single-mode fiber (SMF1) to create a perfect TEM00 beam profile. The fs OPO is
pumped by a fs Ti:sapphire laser (Spectra Physics Tsunami) at 773 nm which in turn
is pumped by a cw frequency-doubled Nd:YVO4 laser (Spectra Physics Millennia) at
532 nm. Optical excitation and collection of photoluminescence (PL) emitted by the
QDs are performed using a 100× microscope objective with numerical aperture NA =
0.8 (Olympus LMPLFLN100×) mounted on a z translation stage. The microscope ob-
jective is integrated into the cryostat such that the PL from the QDs is first collimated
by the objective and then passes through the cover glass of the cryostat. This increases
the photon yield significantly compared with a configuration where the microscope ob-
jective is outside of the cryostat and the divergent light first has to pass through the
cover glass and is then collimated by the objective. A glass substrate is used to sep-
arate excitation and PL light. The collected photons are coupled into a single-mode
fiber (SMF2) that guides them to the frequency conversion setup. A specially coated
silica etalon can be optionally inserted for narrowband filtering of the PL. Two long-
pass filters prevent residual excitation light from entering SMF2. Using a mirror in
a flip mount alternatively allows for bypassing the conversion setup and coupling the
PL directly into a multi-mode fiber (MMF1). This proves to be convenient for coarse
confocal scans and alignment of the setup. With the polarization control and the half-
wave plate at the output of SMF2, we can adjust the power at the output ports ‘H’ and
‘V’ of the polarizing beamsplitter. For frequency down-conversion, the visible photons
leaving port ‘V’ are coupled into the Zn:PPLN ridge WG together with a strong pump
beam at 1550 nm provided by the MgO:PPSLT-SRO described in Sect. 4.2. To this
end, we use an input coupling telescope similar to the one introduced in Sect. 5.1.1.
The lenses L1 and L2 are the same but, in contrast to the setup in Sect. 5.1.1, we use an
aspheric lens with a shorter effective focal length of feff = 4.51 mm (Thorlabs A230TM,
NA = 0.55, uncoated). As a consequence, the distances L1–L2 and L2–AL1 have to
be re-adjusted and become dL1–L2 ≈ 300 mm and dL2–AL1 ≈ 235 mm, respectively. The
aspheric lens with the shorter feff was used because we found that it enables a more
efficient excitation of the fundamental spatial WG mode at wavelengths around 710 nm.
The use of an aspheric lens with feff = 11 nm—which was a good choice for input wave-
lengths around 740 nm—resulted in excitation of higher-order spatial modes at 710 nm.
It is not clear if this is only due to the 30-nm wavelength difference or due to different
numerical apertures of individual WGs.
The converted photons are spatially separated from the strong pump light and from
residual visible photons by a Pellin–Broca prism and a pinhole and are coupled into
a SMF-28 standard telecom fiber. To suppress residual pump light and noise back-
ground around the target wavelength λb, we additionally use a spectral filtering setup
composed of a fiber-optic circulator (FOC), a fiber Bragg grating (FBG) centered
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at 1312.714 nm (AOS GmbH, S/N: 24040342 ; −1.0 dB/−20 dB reflection bandwidth:
0.755 nm/1.275 nm) and two 1310 nm/1550 nm wavelength division multiplexers (2×
Thorlabs WD202B-FC, WDM1 and WDM2). To analyze the spectrum of the visible
QD emission, we employ a grating spectrometer with a CCD detector (Horiba Jobin
Yvon iHR 550 ). The spectrum of the converted telecom signal can be recorded using
another grating spectrometer (Princeton Instruments SP2500A) with an InGaAs linear
array detector (OMA V ). In both devices, we select a grating with 1800 lines/mm. For
single-photon detection in the visible, we use Si APDs (Perkin Elmer SPCM-AQR-14 )
with 65 % detection efficiency around 700 nm, a dark count rate of ∼300 s−1, and 250 ps
timing jitter (standard deviation of Gaussian envelope). Infrared photons are detected
by two fiber-coupled NbN superconducting single-photon detectors (SSPDs, SCON-
TEL, Russia) [203,204]. These devices are integrated in a dip stick that is inserted into
a LHe storage dewar. In this way, operation at temperatures below 2 K is possible. The
timing jitter of the detectors is < 25 ps (standard deviation). With the optimal setting
of the bias current, the detection efficiency has been measured to be 12.2 ± 0.7 % using
an attenuated 1310-nm diode laser [205]. At the same time, we observe less than 10
dark counts per second.
Before discussing the results that were obtained in single-photon frequency conversion
(see Sect. 6.3), we first investigate the performance of the WG chip that was used in
the above-described setup and explain how an appropriate QD can be selected.

6.2.2 Performance of the Waveguide Chip

For the frequency down-conversion from 710 nm to the telecom O-band (1310 nm) an-
other Zn:PPLN WG chip from NTT Electronics Corp., Japan, is used (model WD-1550-
000-A-C-C-S002, S/N 3079045 ); it is called chip 2 in the following. Apart from the
QPM grating periods, which are specifically tailored for the 710/1310/1550 nm wave-
length set, it is very similar to the converter device described in Sect. 5.1.2. The chip
also has dimensions of length × width × height = 40 × 6 × 0.5 mm3 and its layout is
as drawn in Fig. 5.2. It contains 12 ridge WGs with 6 different QPM grating periods
Λ1 = 14.72,Λ2 = 14.76, ... , Λ6 = 14.92 µm. Before the device was employed for
experiments with single-photon input, its performance was tested with cw laser light
from a Ti:sapphire laser at the mW-level.

Depletion of a Coherent Input Signal

In Sect. 5.2.1 we have seen that the depletion of a coherent input signal is a good
estimate for the DFG conversion efficiency that can be expected. If propagation losses
are low and competing nonlinear processes can be neglected, the conversion efficiency
should be a few percent less than the signal depletion. The depletion measurement
was performed for the converter chip 2 in the same manner as described in Sect. 5.2.1.
The result is presented in Fig. 6.4. A maximum coupled pump power of 310 mW was
available in this experiment. Initially, the power of the weak 710-nm input was 543µW.
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Figure 6.4: Depletion of a coherent 710-nm input signal due to frequency down-conversion.
The exact wavelength combination was 710.3120 nm/1551.600 nm/1310.0560 nm and the WG
temperature was 21.35 ◦C (chip 2, group 5, WG1, Λ = 14.88µm). Open circles are measured
data, solid lines are fits according to Eq. (5.6). The inset shows the same plot but with an
extended pump power axis. It illustrates the expected trace of the function if the measurement
would be performed with pump powers up to 1 W.

At the point of maximum depletion, a residual power of only 55µW is observed behind
the WG corresponding to a depletion of 90 %. A fit according to Eq. (5.6) yields
ηnor = 87.5 %/W/cm2. Maximum depletion is attained at Pp = 175 mW. It should
be noted that Fig. 6.4 shows the best result of several measurements. The high 90 %
depletion was not routinely achieved because this value is very sensitive to the alignment
of the setup. However, a signal depletion of 80 % was a typical value that could be
reached on a daily basis.
Judging from the depletion measurement, the performance of chip 2 is even better than
that of chip 1 (S/N 3079044 ) investigated in Sect. 5.2.1. In the best case, the maximum
depletion is 8–13 % higher and it is reached at a pump power that is at least 50 mW
lower. This could be a hint that the coupling to the fundamental WG mode is even
more efficient at 710 nm with the feff = 4.51 mm aspheric lens than at 740 nm with
the feff = 11 mm aspheric lens. Favored by these conditions, the back-conversion effect
is observed very clearly. We recall that, considering noise issues, it is advantageous if
the pump power required for maximum conversion efficiency is as low as possible. The
cause for the discernable difference in the performance of the two converter chips is also
assumed to lie in the quality of the WGs itself. In Sect. 5.2.1 and Sect. 5.2.4 we have
discussed the influence of a deviation of the spectral acceptance curve from the perfect
sinc2 characteristic. We will see in Sect. 6.3.1 that the measured acceptance curve for
chip 2 comes closer to a sinc2 function than that of chip 1 (see Fig. 5.6(a)).
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Total Conversion Efficiency at Macroscopic Power Levels

In addition to measuring the signal depletion, we determined the total power conversion

efficiency η
(power)
total and the total photon-to-photon conversion efficiency ηtotal of our setup

at macroscopic power levels (see Fig. 6.5). We define η
(power)
total = P

(1313 nm)
out /P

(711 nm)
in ,
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Figure 6.5: Total power conversion efficiency η
(power)
total (grey data points) and total photon-

to-photon conversion efficiency ηtotal (black data points) as a function of the pump power at
1550 nm. These efficiencies refer to the complete conversion setup (from point E to point I in

Fig. 6.3(b)) including spectral filtering. ηtotal was calculated from η
(power)
total by multiplication

with a factor of 1312.668 nm/710.74 nm ≈ 1.85. The blue and the pink solid lines are least
square fits to the data according to Eq. (5.6).

where P
(1313 nm)
out is the power of the telecom light that leaves the setup at point I

and P
(711 nm)
in is the power of the visible input light at point E (see Fig. 6.3(b)). The

photon-to-photon conversion efficiency ηtotal is the ratio of the rate of telecom photons

at point I to the rate of visible photons at point E. The definition of η
(power)
total and

ηtotal is expedient as it describes the effect of the whole conversion setup as if it was a

single component in a fiber network. To determine η
(power)
total , we send a constant signal

power of P
(711 nm)
in = 1 mW at 710.74 nm into the frequency converter. This power

was measured at point E with a Si-based powermeter. The power P
(1313 nm)
out of the

converted signal at 1312.668 nm (point I) was determined by integrating the power
spectral density recorded with the OSA (the 50/50 FBS was removed and the SSPDs

were replaced by the OSA in this experiment). The ratio η
(power)
total is shown as a function

of the 1550-nm pump power in the lower plot of Fig. 6.5. The values of ηtotal (upper plot

in Fig. 6.5) can be calculated from η
(power)
total by taking into account the wavelength factor

1312.668 nm/710.74 nm ≈ 1.85. The data in Fig. 6.5 were fit according to Eq. (5.6).
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From the fit of the upper plot, we yield a maximum of η
(max)
total = 0.31 at a pump power

of Popt = 143 mW. The signal depletion at Popt was measured to be 0.8 in this case.
The deviation compared with the value Popt = 175 mW determined in the depletion
measurement is believed to be mainly due to uncertainties in the fit function. In contrast
to the measurement in Fig. 6.5, the one in Fig. 6.4 contains data points beyond 180 mW
which are taken into account in the fitting procedure.

Phasematching Curves

Individual QDs in the same sample vary in size. As a consequence, the wavelength of the
exciton or biexciton line of each of them is slightly different. Hence, it is crucial to adapt
the settings of our conversion setup to the wavelength of one particular emitter. Doing
this in a deterministic way requires knowledge of the phasematching curves of the WGs
on the chip, i.e., the set of parameters {λa, λb, λp,Λ, T} for which ∆β = 0 is satisfied. To
find a suitable point of operation, we use the OPF-based method presented in Sect. 5.2.1.
To this end, the Ti:sapphire laser is tuned to ∼ 710 nm. The phasematching curves
obtained from OPF spectra for 6 WGs are plotted in Fig. 6.6 for temperatures between
21◦C and 35◦C. The QPM grating periods are designed in such a way that the spectral
intervals of acceptable input wavelengths are overlapping, i.e., WG #1 of group 4 is
suitable for input wavelengths between 709.2–710.1 nm, WG #2, group 4 covers the
region from 709.84–710.62 nm and so on. All together, the six WGs of groups 4–6 are
suitable for input wavelengths in a spectral range from 709.20–712.52 nm. This interval
is broad enough to find a QD on the sample whose properties fulfill all requirements
for QFC: bright, narrowband, and low-background single-photon emission.

6.2.3 Preselection and Wavelength Tuning of Quantum Dots

As indicated at the end of the previous section, a solid-state system that should serve
as a single-photon emitter in a QFC experiment has to fulfill several demanding con-
ditions. The QD emission has to be bright (count rate > 100, 000 cts./s), narrowband
(< 0.1 nm) and should contain only low-noise background all at the same time. Ad-
ditionally, since fast adjustment of the phasematching condition through variation of
experimental parameters (WG temperature, pump wavelength, QPM grating period)
is limited in our experiment, the wavelength of the emitted light should lie in a certain
spectral region around 710 nm and should be slightly tunable. All three mesas of sample
M4600-2 were carefully investigated in order to identify QDs which satisfy all of the
aforementioned requirements. Figure 6.7 shows a confocal scan over the whole aperture
of mesa B2. In this mesa, an appropriate single QD could be located. This specific
emitter is used in the experiments described in the following where two methods of
tuning the PL wavelength are introduced. In order to achieve perfect phasematching
in the DFG process, one has to either optimize the operating point of the QPM WG
crystal (temperature, grating period), adapt the pump wavelength, or tune the emission
wavelength of the single emitter. In our experiment we apply the last method, i.e., we
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Figure 6.6: Phasematching curves for six different WGs at temperatures between 21◦C and
35◦C. The dashed lines mark regions where the target wavelength lies within a 1310±5 nm
interval, i.e., in the center of the O-band.

tune the exciton wavelength of the QD till we reach a maximum count rate at 1313 nm
while all other parameters are kept fixed. In the following, we discuss two techniques
how this can be performed: temperature tuning and bias voltage tuning.
It is well-known that the emission wavelenghts of a QD tune with temperature. This
is due to the temperature dependence of the bandgap energy in semiconductors. The
bandgap energy decreases if the temperature is increased. According to Varshni [206],
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Figure 6.7: Confocal scan over the aperture of mesa B2. The fluorescence was coupled into
a single-mode fiber and detected within a 710±5 nm spectral window. The marked spot (white
arrow) is fluorescence from the QD that is used in our QFC experiments.

a b

Figure 6.8: Wavelength tuning by means of the temperature. (a) Spectra of the QD at
different temperatures. X denotes the single exciton line. All spectra were recorded at a bias
voltage of 3.2 V and an excitation power of 120 nW at 590 nm. A spectrometer grating with 1800
lines/mm was used and the integration time was 10 s for each spectrum. (b) Center wavelength
of the single exciton line vs. temperature. Figures after [198], SM (Copyright © 2012 by the
American Physical Society.)

this can be explained by two effects. A shift in the relative position of the conduction
and valence bands is caused, first, by a dilatation of the crystal lattice with increasing
temperature and, second, by a temperature dependence of the interaction between elec-
trons (holes) and phonons (whereas the second effect provides the major contribution).
To investigate the temperature dependence of the emission wavelength for the QD used
in our QFC experiment, we recorded the spectra of the QD for different temperatures
between 5 K and 26 K. The measured spectra, shown in Fig. 6.8(a), consist of differ-
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ent components. The main component is attributed to the single exciton line (labeled
with X) because its intensity depends linearly on the excitation power (the intensity
of the biexciton transition would show a quadratic power dependence). Additional
lines and background can originate from biexciton and charged exciton transitions or
other nearby QDs. With increasing temperature, all spectral features shift to longer
wavelengths. The positions of the single exciton line were extracted from the spectra
and plotted as a function of temperature in Fig. 6.8(b). The data are fit using the
equation [206]

Eg(T ) = E0 − αT 2/(T + β), (6.1)

which describes the bandgap Eg in semiconductors as a function of temperature T . E0

is the energy gap at T = 0 K, α and β are constants. We obtain E0 = 1.74534± 1.9×
10−5 eV, α = −2.42162±5.7×10−5 eV/K, and β = 69.2±22.7 K from the fit. By varying
the temperature in a range of ∆T = 21 K we can tune the wavelength of the exciton line
by ∆λX = 0.679 nm. However, wavelength tuning by temperature is rather inconvenient
for our purposes since it is slow and affects the alignment of the confocal microscope
due to thermal expansion of the sample. The influence on the alignment can be seen
from Fig. 6.8(a). All spectra were recorded under the same experimental conditions.
The alignment of the confocal setup was done once before the measurement at a sample
temperature of 10 K and was not optimized during the measurement. For temperatures
above or below 10 K, the intensity of the exciton line in the spectrum decreases. Thus,
when tuning the exciton wavelength via temperature, the alignment of the setup has to
be optimized for each temperature value when maximum intensity is desired. A much

ba

Figure 6.9: Wavelength tuning using the bias voltage. (a) Spectra of the QD for different
bias voltages at T = 12 K. All other conditions are equal to those given for Fig. 6.8. (b) Center
wavelength of the single exciton line as a function of the bias voltage. Figures after [198], SM
(Copyright © 2012 by the American Physical Society.)

faster and more reliable way of tuning the exciton emission wavelength is provided by
tuning the bias voltage applied to the QD sample. Emission spectra of the QD that were
recorded at different bias voltages between 3.0 V and 4.1 V are displayed in Fig. 6.9(a).
The temperature was held fixed at T = 12 K. From Fig. 6.9(a), we see that the intensity
level of the spectra is roughly constant within a certain voltage range, i.e., tuning the
wavelength of the exciton line is possible while collecting a high rate of photons without
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performing any re-alignment of the setup. The center energy/wavelength of the exciton
line as a function of the bias voltage is shown in Fig. 6.9(b). Similar to the case of
temperature tuning, the curve follows a quadratic law. The data are well fit using the
empirical formula

E(Ub) = A+BUb + CU2
b , (6.2)

where E(Ub) denotes the energy associated with the exciton transition, Ub is the bias-
voltage, and A = 1.74002 ± 4.7 × 10−4 eV, B = 0.00396 ± 2.7 × 10−4 eV/V, and C =
7.99×10−4±0.37×10−4 eV/V2 are constants. Tuning the bias voltage by ∆Ub = 1.1 V
results in an exciton wavelength change of ∆λX = 0.783 nm.

6.3 QFC from 711 nm to 1313 nm: Experimental Results

6.3.1 Spectral Filtering

The fluorescence map shown in Fig. 6.7 was obtained by coupling the QD fluorescence
into a single-mode fiber to guide it to the Si APD. A QD density of 1.5 × 1010 cm−2

was determined in AFM measurements of InP QDs embedded in (AlxGa1−x)0.51In0.49P
(x ∈ [0, 1]) barriers grown under the same conditions as the sample used in our ex-
periments [207]. Although not all of the QDs show light emission, with such high QD
density, it is crucial to employ confocal rejection using a single-mode fiber to spatially
isolate PL from single emitters. However, this spatial filter is not sufficient to reduce
the noise background of the visible fluorescence to a tolerable level. In fact, we have to
apply narrow spectral filtering in addition. This is accomplished by inserting a coated
56-µm-thick silica etalon into the beamline of the visible fluorescence light. The etalon
(Finesse F = 42, FSR = 1.85 THz/0.0753 nm) serves as a tunable narrow bandpass
filter for the exciton line of the QD around 710.7 nm. The effect of spectral filtering
can be studied by comparing the confocal scans and the corresponding spectra shown
in Fig. 6.10(a), (c) and Fig. 6.10(b), (d), respectively. Figure 6.10(a) and Fig. 6.10(b)
were recorded without narrow spectral filtering. Several QDs can be identified on the
map in Fig. 6.10(a) and it is evident from the spectrum in Fig. 6.10(b) that a certain
amount of background is still collected through the single-mode fiber. In order to select
a single emission line from a single QD, we insert the etalon as a narrow bandpass filter
into the beamline of the visible PL light. This situation is represented in the map in
Fig. 6.10(c) and the spectrum in Fig. 6.10(d). The etalon clearly suppresses PL from
other QDs and is applied in measurements where we directly detect visible photons.
As will be explained below, etalon filtering of the visible fluorescence is not necessary
when detecting down-converted light. Nevertheless, the etalon is an indispensable com-
ponent for pre-alignment of the conversion setup: first, we identify a proper point of
operation for the QD (temperature, bias voltage, optical excitation power) that deliv-
ers bright, narrowband emission into the single exciton line. Second, the angle of the
etalon is tilted for maximum transmission of the single exciton line. We then temporar-
ily replace the QD light source by the cw Ti:sapphire laser and insert light from this
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Figure 6.10: Photoluminescence (PL) maps with corresponding spectra. (a), (c), (e) Same
6×6µm2 detail of the QD sample. Maps (a) and (c) were recorded by scanning the xy position
of the sample and directly detecting the visible PL from the QD using a Si APD, (a) without
and (c) with etalon filtering. Map (e) was obtained by scanning the same sample area but
detecting the down-converted light at 1313 nm with a SSPD. (b), (d), (f) Spectra that were
measured by setting the xy position of the sample to the point corresponding to the maximum
intensity of the central QD. (b), (d) Visible PL spectrum without and with etalon filtering. The
two prominent lines in (b), separated by 1.45 nm (3.54 meV), are attributed to exciton (X ) and
biexciton (XX ) transitions. (f) Converted spectrum illustrating the effect of spectral filtering
by a combination of DFG acceptance curve and FBG. Figures after [198] (Copyright © 2012
by the American Physical Society.)

laser into SMF2. The laser wavelength is set to match the transmission maximum of
the etalon. Thus, the visible input wavelength is given. All parameters (QPM grat-
ing period, WG temperature, pump wavelength) can now be adjusted conveniently at
macroscopic power levels to satisfy the quasi-phasematching condition. Finally, SMF2
is again connected to the confocal microscope for launching single photons into the fre-
quency converter. After the alignment procedure, the complete setup as given in Fig. 6.3
is ready for operation. Maximizing the count rate at 1313 nm can be achieved by fine
tuning the exciton wavelength via the bias voltage as described in Sect. 6.2.3. The
map in Fig. 6.10(e) was recorded by detecting converted IR light employing a SSPD.
Figure 6.10(f) shows the corresponding spectrum. In this case, no etalon filtering of the
visible input light is needed. From Fig. 6.10(f), one recognizes that no background or
further emission lines are found in the IR spectrum. The acceptance bandwidth of the
DFG process in combination with the FBG represents a narrow and efficient bandpass
filter with high sideband suppression. To get a deeper insight in this effect, we regard
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a b

c d

Figure 6.11: DFG acceptance bandwidth and FBG reflectance. (a) Spectral acceptance band-
width of the DFG process measured with an OSA for 2 mW of input power around 710.74 nm
from a tunable cw Ti:sapphire laser. Figure after [198] (Copyright © 2012 by the American
Physical Society.) (b) Transmittance and reflectance of the FBG measured by the manufac-
turer [208]. (c) The spectrum of a converted broadband visible input (inferred from the DFG
acceptance bandwidth) together with the FBG reflectance. For comparison, the curves have
been normalized and plotted on a logarithmic scale. (d) DFG acceptance bandwidth measured
with single-photon input from the QD. The wavelength of the input light was tuned by varying
the applied bias voltage. The wavelength scale shows a slight offset with respect to (a) because
the grating spectrometer used in this measurement was calibrated to another reference than the
OSA.

Fig. 6.11(a) and (b) which show the acceptance curve of the DFG process and the re-
flectance (transmittance) characteristic of the FBG, respectively. The DFG acceptance
bandwidth ∆λDFG is determined to be 0.092 nm from a sinc2 fit to the measured data.
Using ∆νIR = ∆νvis + ∆νp ≈ ∆νvis (since ∆νp � ∆νvis) this translates to a bandwidth
of ∆λIR ≈ 0.31 nm. Together with a −20 dB reflection bandwidth of 1.275 nm for the
FBG this essentially means that only IR light which lies in a spectral interval that
corresponds to the converted central peak of the acceptance curve is transmitted. The
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situation is illustrated in Fig. 6.11(c) where the inferred converted spectrum of a (hypo-
thetical) broadband visible input is presented together with the reflectance of the FBG
in one plot. As can be seen from the logarithmic plot, the sidebands of the sinc2 curve
are intrinsically one order of magnitude weaker than the central peak. Spectral filter-
ing by means of the FBG additionally leads to a sideband suppression by at least two
orders of magnitude. The above considerations are well confirmed by a measurement
of the acceptance bandwidth using single-photon input (see Fig. 6.11(d)). Comparing
Fig. 6.11(a) and 6.11(d) shows that the acceptance curve of the nonlinear interaction
is correctly described by the sinc2 function, no matter if the visible input power is on
the order of mW or fW.

6.3.2 Conversion Efficiency with Single-Photon Input

In every experiment involving classical nonlinear wavelength conversion, the conversion
efficiency is always an important parameter. This is even more true for QFC because, in
the ideal case, we aim at translating the complete information carried by visible photons
to telecom photons. Every photon that is not converted means a loss of information.
To determine the conversion efficiency of our setup as shown in Fig. 6.3(b) with single
photons, we send a constant rate of single photons from the QD into the converter. We
measure the count rate NIR at 1313 nm for different pump power levels between 0 and
230 mW. For each value of the pump power, we also determine the noise count rate
Nnoise by recording the count rate at 1313 nm without inserting any signal at 711 nm
into the converter. In this way, we obtain the data plotted in Fig. 6.12(a). At the
maximum pump power of 230 mW we find Nnoise ≈ 560 s−1. Noise counts are generated

a b

Figure 6.12: (a) Single-photon counting at 1313 nm using one SSPD. Total count rate (violet)
including ASR noise and detector dark counts, noise background (grey) due to ASR noise and
detector dark counts and SNR (orange). Each data point is a time average over 10 s. The highest
count rate that is achieved at the optimum pump power is ∼ 7600 s−1. Figure after [198], SM
(Copyright © 2012 by the American Physical Society.) (b) Total efficiency of the frequency
conversion setup calculated from the measured data in (a). Figure after [198] (Copyright © 2012
by the American Physical Society.)
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either by ASR scattering (see Sect. 5.2.2 and Refs. [49,187]) induced by the strong 1550-
nm pump field or by detector dark counts (DDC), such that Nnoise = NASR + NDDC,
where NASR and NDDC are the pure ASR and DDC rates, respectively. While the DDC
rate of the SSPD is at a constant level of NDDC ≈ 20 s−1 in this measurement, NASR

linearly scales with the pump power in the WG. The signal-to-noise ratio, given by

SNR =
count rate converted photons

count rate noise photons
=
NIR −Nnoise

Nnoise
(6.3)

is also shown in Fig. 6.12(a). We yield a maximum SNR of about 50 for 30 mW of
pump power. This value is more than eight times higher than the maximum SNR of
6 determined for the 738 nm/1403 nm/1557 nm wavelength combination in Sect. 5.2.4
where the number of photocounts per second is comparable. At a first glance, the
significant increase of the SNR seems surprising because the SSPDs are operated in
free running mode (unlike the InGaAs/InP SPADs in Sect. 5.2.4 which are operated in
gated mode) and also have a lower detection efficiency than the InGaAs/InP SPADs
(SSPD: 12 %, InGaAs/InP SPAD: 25 %). One might expect that these factors should
result in a SNR that is even worse. However, the advantages of long-wavelength pump-
ing become clearly apparent here. Since the pump wavelength is significantly larger
than the target wavelength (spectral separation > 1100 cm−1), Raman noise is dramat-
ically reduced leading to a much better SNR. For the point of maximum conversion at

P
(opt)
p ≈ 150 mW we still find SNR ≈ 21, which is sufficient to perform a measurement

of the photon statistics at 1313 nm in less than 4 hours (see next section). From the
measured data in Fig. 6.12(a), we calculate the total conversion efficiency ηtotal as de-
scribed in the following. The number of telecom photons per second Φout, IR that hit
the SSPD (position I in Fig. 6.3) is given by Φout, IR = (NIR − Nnoise)/ηSSPD where
ηSSPD = 0.122 ± 0.007 is the detection efficiency of the SSPD. To calculate ηtotal, we
need to know the photon flux Φin, vis at position E which we regard as the entrance
of our conversion setup. The (time-averaged) exciton emission of the QD is almost
completely unpolarized since the excitonic line is composed of two fine structure com-
ponents with orthogonal linear polarizations [78]. Thus, optimizing the polarization
control and the half-wave plate behind the fiber exit (position A) with the goal of
maximizing the output at port ‘V’ of the PBS is very limited: we achieve a ratio of
ηPBS = 1.15 (power leaving port ‘V’/power leaving port ‘H’). However, we exploit this
fact by coupling the 711-nm photons that leave port ‘H’ of the PBS into a multi-mode
fiber (MMF) and counting them with one of the Si APDs. In this way, we can perform
frequency conversion and monitor the count rate in the visible simultaneously. The
coupling efficiency into the MMF is ηMMF = 0.88 (transmission B → C). After the
MMF, the photons pass a 710±5 nm bandpass filter with a transmission coefficient of
ηBP = 0.66 (transmission C → D) at 711 nm and are focused onto the active area of
the Si APD by an antireflection-coated lens. The detection efficiency of the Si APD at
711 nm is ηAPD = 0.65. All together, we can deduce the photon flux Φ′in, vis at position
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E from the detected count rate Nvis in the visible via

Φ′in, vis =
ηPBSNvis

ηAPD ηBP ηMMF
. (6.4)

Note that Φ′in, vis as given by equation (6.4) is related to photons within a 10-nm interval
around 710 nm. Since the DFG acceptance bandwidth of the frequency converter is only
∆λDFG = 0.092 nm (54.6 GHz), we are solely interested in the power in this narrow
spectral interval. This power is almost completely concentrated in the single exciton
line that has a spectral width of ∼ 3.8 GHz. By measuring Nvis with and without the
etalon filter, we find that 13.9 % of the photons detected within the large 710±5 nm
interval can be assigned to the exciton line. We take account of this fact by introducing
the factor ηX = 0.139 and obtain the photon flux Φin, vis related to photons belonging
to the single exciton line of the QD:

Φin, vis = ηX Φ′in, vis ≈ 188, 400 s−1. (6.5)

Using this single-photon input, we measure the total efficiency ηtotal = Φout, IR/Φin, vis

of our frequency conversion setup as a function of the pump power Pp at 1550 nm that
is coupled into the WG (see Fig. 6.12(b)). The data are fit using Eq. (5.6), i.e.,

ηtotal(Pp) = η
(max)
total × sin2(

√
ηnorPpL). (6.6)

We find ηnor = 115 %/(W cm2) and η
(max)
total ≈ 0.32, i.e., at the point of maximum

conversion (at P
(opt)
p ≈ 150 mW), more than 30 % of the fraction of the QD emission

that can be coupled into a single-mode fiber is frequency down-converted in our setup.
This result is in very good agreement with the one that was obtained for macroscopic
power levels (see Sect. 6.2.2). In Sect. 6.2.2 we found that a total conversion efficiency
of 31 % corresponds to a signal depletion of 80 %. In case of single-photon input from
a QD, it is not possible to perform a simultaneous measurement of the conversion
efficiency and the signal depletion for technical reasons. However, as the alignment of
the setup was not changed significantly between the measurement at macroscopic power
and the one with single photons, we assume that the signal depletion was around 80 %
also for the case of single-photon input.

The maximum internal conversion efficiency η
(max)
int , that is, the fraction of photons that

is converted within the Zn:PPLN crystal (F → G), can be estimated from η
(max)
total by

taking into account the input coupling efficiency ηwg = 0.84 into the WG (point F)
and the transmission coefficient ηfilter . 0.6 of the complete filtering stage (from G

to I): η
(max)
int = η

(max)
total /(ηfilter ηwg) & 0.64. The factor ηfilter is given as the product

ηfilter = ηoptics × ηFC × ηWDM. Here ηoptics = 0.9 describes the losses that result from
the transmission through the half-wave plate and the Pellin–Broca prism and from the
reflection from two gold mirrors. The coupling efficiency into the single-mode fiber
after the pinhole is ηFC ≤ 0.7 and the coefficient ηWDM = 0.95 includes the combined
insertion loss of the system FOC–FBG–WDM1–WDM2. All coupling efficiencies and
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transmission coefficients (ηoptics, ηFC, ηWDM, ηwg) were measured independently at
macroscopic power levels using either an InGaAs photodiode or the OSA. Note that the

value of 64 % is a conservative estimate and can be regarded as a lower bound for η
(max)
int .

In our calculations of ηfilter, we have neglected the losses induced by several mechanical
fiber-to-fiber connections. These losses are estimated to amount to a few percent. The

value of η
(max)
int ≥ 64 % is also supported by another measurement of the conversion

efficiency using attenuated laser pulses (500 kHz repetition rate, 1.7 photons/pulse on
average) and an InGaAs/InP SPAD [209] analogous to the experiment described in

Sect. 5.2.4. Here η
(max)
int = 0.68 was reached at P

(opt)
p = 150 mW. The corresponding

signal depletion was 77 % measured with a macroscopic input power at 710 nm (optical
attenuation filters removed).
To summarize, we achieve an internal conversion efficiency that is slightly lower than the
one determined for the 738 nm/1403 nm/1557 nm wavelength combination in Sect. 5.2.4.
However, the total conversion efficiency (corrected for detection efficiency) could be
increased by a factor of 4 (32 % compared with 8 % in Sect. 5.2.4). This is due to
improvements of the setup. The transmission from the WG output to the detector
was enhanced by increasing the coupling efficiency into the fiber behind the pinhole
and using only fiber-optic components (FOC, FBG, WDMs) instead of bulk filters
for spectral filtering. Furthermore, we have used the free running SSPD instead of a
gated InGaAs/InP SPAD. In contrast to the InGaAs/InP detector, the SSPD has the
advantage that it does not ‘miss’ photons at arrival times that are not within an active
detection window. This was a problem in the experiment described in Sect. 5.2.4 where
the gate width was chosen to be shorter than the temporal width of the photons to
achieve a better SNR.

6.3.3 Time-Correlated Single-Photon Counting

For applications in quantum communication and information, it is essential to control
the temporal and spectral properties of single photons. One fundamental example is the
absorption of a photon by a single atom or ion in free space. In this case, the absorption
probability strongly depends on the temporal shape and the spectral bandwidth of the
single-photon wavepacket [210, 211]. With regard to QFC, it is either desirable to not
change the temporal and spectral properties of the input photons or to manipulate
them in a controllable way [212]. Under the conditions chosen in our experiment, QFC
should not have any influence on the temporal shape and width of the single-photon
wavepackets. This was checked by measuring the temporal width of the photons before
and after conversion using time-correlated single-photon counting (TCSPC) [213]. To
this end, we use a two-channel TCSPC system (PicoQuant, model PicoHarp 300). A
TTL signal synchronized with the optical pulses from the 590-nm excitation source is
inserted into channel 1. The electronic output of a single-photon detector (Si APD for
visible photons, SSPD for telecom photons) is input to channel 2. Each TTL pulse
arriving at channel 1 starts a clock which is stopped by an electronic pulse in channel 2
signalling a photon detection event from the detector. The number of counts N(t)
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Figure 6.13: (a) TCSPC trace for the original input photons at 711 nm (red: measurement,
cyan: fit). (b) Same measurement as in (a) but for converted telecom photons (violet: measure-
ment, cyan: fit). The frequency translation process obviously does not deteriorate the shape
and width of the temporal profile. Note that the histogram in (b) features a steeper rising edge
due to the much better timing jitter of the SSPD compared to the Si APD.

accumulated during a certain time interval t between start and stop events is recorded
in a histogram. These TCSPC traces for visible input photons and converted telecom
photons are presented in Fig. 6.13(a) and (b), respectively. The data are fit using a
bi-exponential function

N(t) = A1 e
−(t−t0)/τ1 +A2 e

−(t−t0)/τ2 +N0. (6.7)

A1 and A2 are the amplitudes of the two exponential functions, t0 is a time shift account-
ing for the fact that the maxima of the exponentials are not at t = 0 for experimental
reasons, and N0 is an offset. The first decay constant τ1 is associated with the lifetime
of the excited state of the QD and τ2 describes a much slower recapture process which
has been reported earlier for InP QDs [214]. Figure 6.14 delineates the processes that
can happen when the QD is optically excited and how they are related to the constants
τ1 and τ2. The model was proposed by Aichele et al. [214]. After electron–hole pairs
are created by a non-resonant optical excitation pulse, two processes can take place:
(i) electrons and holes are immediately captured by the QD to recombine and emit a
photon or (ii) they get trapped by trapping sites in the vicinity of the QD. Trapped
carriers can be released at a later time and get recaptured by the QD to recombine and
generate a photon. The first process is governed by the time constant τ1 which is the
average lifetime of the excited state in the QD. The second process is determined by
the much longer time constant τ2 which is the average lifetime of a trapped carrier. It is
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Figure 6.14: Illustration of the re-excitation process observed for InP QDs. Only the single
exciton transition is drawn in the picture because only this transition is important for our
experiments.

assumed that the recapture effect is connected to the MOVPE growth process applied
to create InP QDs. Compared with MBE, the MOVPE technique creates much more
defects in the crystal lattice which can act as trapping sites for charge carriers. This also
explains why the recapture process does not play a role for InAs QDs that are grown
by MBE. From the fits we obtain τ1, vis = 2.6 ± 0.1 ns before and τ1, IR = 2.9 ± 0.4 ns
after conversion. Taking into account the error margins, these results indicate that
the temporal width of the single-photon wavepacket remains unchanged under QFC.
For the second decay constant we find τ2, vis/IR ≈ 2.5µs for both visible and converted
photons.
As a supplement to the TCSPC results discussed above, it should be added that also
the preservation of temporal coherence has been investigated by A. Lenhard [198]. To
this end, the degree of first-order coherence g(1)(τ) was measured using a Michelson
interferometer with an adjustable pathlength difference between the two arms. From a
series of measurements with varying pathlength differences one can deduce the coher-
ence time T2. The obtained results are T2, vis = 42± 17 ps before and T2, IR = 49± 13 ps
after conversion [198], i.e., within the error margins, the coherence time of the photons
remains unchanged during QFC. This is expected from theory and can be understood
as follows. For a Lorentzian lineshape, the instantaneous linewidth ∆ν is related to the
coherence time by

T2 = 1/(π∆ν). (6.8)

Due to energy conservation, the linewidths ∆νIR, ∆νvis, and ∆νp of the converted field,
the visible input field and the pump field, respectively, must satisfy ∆νIR ≤ ∆νvis+∆νp.
On short timescales (∼100µs), the linewidth of the pump light is far below 1 MHz [159].
Thus, assuming a Lorentzian lineshape and using Eq. (6.8), it follows that the influence
of the pump light on the coherence of the converted single photons is negligible because
T2,p > 0.32µs� T2, vis.
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Table 6.1: Parameters R1, R2, tint used for normalization of the coincidence counts G(2)(τ).

Measurement R1 [s−1] R2 [s−1] tint [s]

visible photons 27,800 28,981 745
telecom photons 3,300 4,461 6,085
cross correlation 9,922 2,234 9,440

6.3.4 Conservation of Photon Antibunching

Their nonclassical photon statistics make single quantum emitters, like QDs or single
atoms, unique among all light sources. Therefore, it is crucial to test to what extent
these fragile properties can be conserved during QFC. To this end, we measure the de-
gree of second-order coherence g(2)(τ) (see Sect. 2.2.2) before and after the conversion
process. To determine g(2)(τ) for the light emitted directly by the QD, we use a HBT
interferometer (see Sect. 2.2.2 and Ref. [83]) consisting of a non-polarizing 50/50 beam-
splitter cube and two Si APDs. In the case of telecom light, a fiber-based HBT setup
composed of a 50/50 fiber beamsplitter and two SSPDs is applied. For measurements
of the second-order photon correlation, the TCSPC module is operated in time-tagged
mode, meaning that every detection event is stored in a list together with a time stamp.
Using these lists, software-assisted correlation of the events can be performed on a PC
during the measurement or at any later time. Each channel of the TCSPC unit features
a constant fraction discriminator (CFD). On the one hand, the output pulses of the
Si APDs associated with the detection of a photon are well adapted (concerning voltage
level and shape) for the requirements of the TCSPC electronics. On the other hand,
for the SSPD output pulses, the CFD sometimes produces irregular pulse bursts. Due
to channel crosstalk, these pulse bursts appear on both input channels and thus can
easily be identified and discarded by the data acquisition software. Figures 6.15(a)–(f)
show a comparison of the correlation measurements that have been performed: the un-
normalized coincidence counts G(2)(τ) are given in Fig. 6.15(a) and 6.15(b) for visible
input photons and converted output photons, respectively. The plot in Fig. 6.15(c) was
obtained from a cross-correlation measurement with a hybrid HBT setup, i.e., one half
of the visible photons is sent directly to a Si APD, the other half undergoes frequency
down-conversion and is then detected with a SSPD. To ensure comparability, all calcu-
lations of the unnormalized correlation functions were performed with a time binning
of tbin = 512 ps. The g(2)(τ) functions in Fig. 6.15(d)–(f) are calculated from the data
presented in Fig. 6.15(a)–(c) by making use of relation (2.51). This corresponds to a
normalization with respect to the correlation function of a perfect cw Poissonian light
source of equal average intensity. The parameters R1, R2, and tint that have been
used for normalization in all three cases are summarized in Table 6.1. We underline
that the G(2)(τ) data have been normalized as if a cw excitation was applied to the
QD albeit we have used pulsed excitation. This is justified by the fact that the data
much more resemble a cw intensity correlation function than a pulsed one (a mod-
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Figure 6.15: Conservation of photon antibunching under frequency down-conversion. (a) Co-
incidence counts vs. time delay τ for the input photons at 711 nm measured with a HBT setup
for visible light. (b) Same as (a) but for the down-converted photons at 1313 nm measured with
a fiber-integrated HBT setup for telecom light. (c) Coincidence counts measured with a hybrid
HBT setup. (d)–(f) g(2) correlation functions calculated by normalization of the data plotted
in (a)–(c). In each case, the detection events at the two individual detectors of the HBT setup
are anti-correlated and the dip in the g(2) function drops below 0.5. The black curves in (d)–(f)
were obtained from Monte Carlo simulations based on a theoretical model. No background has
been subtracted from the experimental data in all plots.

ulation with the 80-MHz periodicity of the excitation pulses is still visible, though).
This is due to the recapture effect described in the previous section and is a well-known
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phenomenon for InP/GaInP QDs [214]. Monte Carlo simulations which perfectly repro-
duce the peculiar shape of the measured intensity correlation functions were performed
by A. Lenhard [198] (see Fig. 6.15(d)–(f)). The simulations are based on the model
sketched in Fig. 6.14. Three parameters are used as input to the simulations: the time
constants τ1 and τ2 and the branching ratio r1/r2 of the two excitation paths. Here
r1 denotes the fraction of electron–hole pairs that are immediately captured by the
QD and r2 is the fraction of electron–hole pairs that are first trapped at trapping sites
before they get captured by the QD. The branching ratio is the only free parameter
in the simulations because τ1 and τ2 are known from the TCSPC measurements (see
previous section). The branching ratio is adjusted such that the ratio of peak-to-valley
values of the simulated g(2) functions match those of the measured g(2) functions (tested
by a least squares fit). It is important to stress that the filling between the peaks of
the g(2)(τ) function is a specific property of the QD and has nothing to do with the
QFC process. The authors of Ref. [214] have pointed out that re-excitation processes
can be a severe problem for applications where it is essential to generate single photons
on demand. Importantly, however, the effect does not destroy the antibunching dip at
τ = 0 and is thus irrelevant for our proof-of-principle experiment: to check wether the
down-conversion process has corrupted the quantum properties of the input light field,
we focus on the value of the intensity correlation function at zero delay g(2)(τ = 0).

The measured g
(2)
vis (0) = 0.39± 0.02 < 0.5 for the original PL of the QD clearly proves

single-photon emission from a single quantum emitter. The simulation of the emission

process reproduces the measured data very well and reveals that g
(2)
vis (0) > 0 due to the

timing jitter of the APDs and uncorrelated photon emission from background passing
the etalon filter (SNR ≈ 7:1 determined from the spectrum in Fig. 6.10(d)/Fig. 6.16).

For the down-converted light field at 1313 nm we obtain a value of g
(2)
IR (0) = 0.24±0.04.

The Monte Carlo simulation closely reproduces the measured data for SNR = 12:1 of
the light field and a smaller timing jitter of the SSPD, indicating that the sub-Poissonian
statistics of the input light field have been fully preserved or even improved. This can
be understood from the fact that the SNR of the QFC process is much higher than the
SNR of the light source, i.e., the SNR of the converted light is increased compared to
the input light thanks to the strong spectral filtering effect of the QFC setup. This is
consistent with the results from an up-conversion experiment published by Ates et al.
very recently [57]. The g(2) cross-correlation function shown in Fig. 6.15(f) of original

and converted photons exhibits a dip as well and we find g
(2)
vis/IR(τ ′) = 0.44± 0.02. The

observed anti-correlation again proves the conservation of the single particle character
of the light upon QFC. The fact that the dip occurs at τ ′ ≈ 100 ns perfectly matches
the difference of the path lengths the photons of different color have to travel to the
respective detectors.
Lastly, it should be mentioned that the minimum bin size compatible with our correla-
tion electronics is tbin,min = 4 ps. We have artificially increased this to 128× tbin,min =
512 ps to speed up data acquisiton which was inevitable since constant experimental
conditions could only be maintained over a few hours. The increase of tbin generally
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Figure 6.16: Same spectrum as in Fig. 6.10(d) but with a different scaling to better illustrate
the effect of background due to transmitted etalon sidebands. A SNR of ∼ 7 was determined
by comparing the area under the full spectrum (grey area) with the area under the exciton line
(yellow shaded). Figure after [198], SM (Copyright © 2012 by the American Physical Society).

leads to an overestimation of the g(2)(0) values. For perfect timing resolution, the mea-

sured data would correspond to g
(2)
vis (0) = 0.23 and g

(2)
IR (0) = 0.15 for the input photons

and converted photons, respectively.

6.4 Summary and Discussion

The technical challenges stated at the beginning of this chapter were met in the experi-
ments described in the previous sections. The detrimental influence of Raman scattering
was drastically reduced by using a long-wavelength pumping scheme and narrow spec-
tral filtering. The narrow acceptance bandwidth of the DFG process is a potential issue
when using broadband light emitted by solid-state systems, e.g., diamond NV centers.
This obstacle was avoided, however, by choosing a QD with a narrow single exciton line
as a single-photon emitter. This means no limitation with respect to future applica-
tions because narrowband emission of single photons is definitely a prerequisite for the
implementaion of many fundamental protocols in the context of quantum information,
e.g., the coupling of disparate quantum systems [215]. Suppression of the strong pump
light has been accomplished by almost exclusively using fiber-optic components (FOC,
FBG, WDMs). As opposed to most bulk optics, these allow to build narrow bandpass
filters while at the same time providing a high transmission level within the passband.
Finally, SSPDs were used for single-photon detection at the telecom wavelength. At
present, these devices are most suitable for photon correlation measurements at tele-
com wavelengths as they combine reasonable detection efficiency with unprecedently
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low dark count rates (even compared to Si APDs) [216, 217]. All in all, the aforemen-
tioned methods made it possible to prove that photon antibunching is conserved in our
experiment. To the best of our knowledge, within the framework of this thesis, this has
been demonstrated for the first time for visible-to-telecom QFC with single photons
from a true quantum emitter. Table 6.2 again gives an overview on the results that
have been obtained from the experiments on single-photon frequency down-conversion.

Table 6.2: Summary of the results obtained in single-photon frequency down-conversion.

before conversion after conversion

Photon flux Φ [s−1] ∼188, 400 ∼62, 300

External efficiency ηext 0.32
Internal efficiency ηint ≥ 0.64

TCSPC τ1 [ns] 2.6± 0.1 2.9± 0.4
τ2 [µs] 2.5 2.5

Coherence time T2 [ps] 42± 17 [198] 49± 13 [198]

Second-order coherence g(2)(0) 0.39∗ ± 0.02 (0.23∗∗) 0.24∗ ± 0.04 (0.15∗∗)

∗ time bin width of 512 ps
∗∗ perfect timing resolution

We close this chapter with several concluding remarks on the impact and future
perspectives of the performed experiments. The motivation that stood at the very
beginning of this thesis was to use visible-to-telecom QFC in order to minimize fiber
transmission losses. It is evident from Fig. 6.17 that this goal has been reached. Assum-
ing a realistic fiber attenuation of 3 dB/km at 711 nm and 0.3 dB/km at 1313 nm, QFC
pays off for distances larger than 1.9 km when taking into account the actual overall
efficiency of 32 % in our experiment. Note that after 16.8 km still 10 % of the telecom
photons arrive at the fiber exit while this is true only for a poor 9×10−4 % of the visible
photons. The actual performance of single-photon sources directly emitting at telecom
wavelengths [218–222] (all based on QDs) is quite modest. The photon yield of these
sources is low—at best, they produce detector count rates of a few 1000 cts./s—and
it seems uncertain if this can be improved significantly in the future. Currently, such
count rates are still comparable to those achieved with our hybrid approach consisting
of a QD (emitting in the visible to near-infrared spectral range) in combination with
quantum frequency down-conversion in a PPLN WG crystal. However, the telecom
photon rate in our experiment could be dramatically increased by using a QD with a
higher photon generation rate. Such devices already exist, e.g., Strauf et al. [223] have
achieved single-photon count rates of up to 4.0 MHz (10.1 MHz) with an InAs QD in a
high-Q microcavity under pulsed (cw) excitation. Therefore, the hybrid scheme seems
to be a promising alternative to sources directly emitting at telecom wavelengths. The
technique is very flexible as it allows for tuning the target wavelength by experimental
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parameters that are easily adjustable, such as the pump wavelength, the QPM grating
period, or the WG temperature. This paves the way for new kinds of applications, e.g.,
single-photon WDM [224]. Analogous to classical WDM techniques, two single-photon
signals of different wavelengths could be converted to the same target wavelength to
create indistinguishable photons emitted by two independent sources. Very recently,
promising results in erasing distinguishability have been obtained by up-conversion of
photons from the single exciton and the biexciton transition of the same QD [57].
Conversely, single-photon WDM could also be used to transmit photons from multiple
emitters with identical emission wavelengths through a single optical fiber by distribut-
ing them to different wavelength channels via QFC. In this way, channel capacity could
be greatly enhanced in QKD experiments with true single photons.
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Figure 6.17: Fiber attenuation vs. fiber length for the case of direct transmission at 711 nm
compared to transmission at 1313 nm with previous frequency down-conversion for 100 % (ideal
case) and 32 % total conversion efficiency (achieved experimentally in this work). Although in
our experiment 68 % of the photons are lost due to non-perfect frequency conversion and lossy
spectral filtering, QFC is beneficial for distances larger than 1.9 km.

Finally, a few technical improvements of our setup could be made in the future.
For example, as long as only C-band wavelengths are required, the cw SRO could be
replaced by a less complex laser system consisting of an 1.55-µm ECDL and an erbium-
doped fiber amplifier (EDFA). These systems are routinely used in classical fiber-optic
communication. They are rapidly tunable over the whole C-band and can deliver more
than 1 W of single-frequency output power. Furthermore, the internal conversion ef-
ficiency could be further increased to almost unity by an enhancement of the spatial
mode overlap inside the WG (e.g., by mode matching tapers [225]). Additionally, ex-
ternal losses could be reduced by using a volume Bragg grating for spectral filtering as
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in [57]. Alltogether, this would lead to an increased overall conversion efficiency. Apart
from optimizing the conversion setup, the quality of the visible single-photon source
could also be improved in future experiments. Increased photon collection efficiency
into a single-mode fiber, cavity coupling of emitters, resonant optical excitation, or all-
electrical excitation are among the points that should be addressed. Higher count rates,
smaller bandwidths (ideally Fourier-limited photons), and avoidance of detrimental ef-
fects, such as the carrier recapture process, would become possible in this way. It is also
worthwhile to consider other wavelength combinations than the one we have used here.
For instance, an interesting process would be the down-conversion from λin ≈ 900 nm
to λout ≈ 1550 nm as demonstrated by Pelc et al. in a very recent paper [59]. This
would require a pump wavelength around 2.15µm. The assets of this particular scheme
are the following: first, to generate the input photons at 900 nm one could use InAs
QDs which are probably the best QDs for quantum optics at the moment. They have
been used in a number of pathbreaking experiments, including the first demonstration
of a QD-based single-photon source [19], Hong–Ou–Mandel-type two-photon interfer-
ence [226], coupling of a single QD to nano- and microcavities [223,227], and generation
of subnatural linewidth single photons [228]. Second, with the target wavelength lying
in the C-band, ultimate low-loss fiber transmission of the converted photons is guaran-
teed (world’s lowest attenuation record is 0.1484 dB/km at 1570 nm [229]). And, third,
the pump wavelength is much longer than the target wavelength (spectral separation:
1800 cm−1) enabling noise-free QFC. The pump wavelength could be provided by a
Tm-doped fiber laser/amplifier or by a semiconductor disc laser [230].



Chapter 7

Summary and Future Prospects

In this work, we have experimentally studied quantum frequency down-conversion from
the visible spectral range to the telecommunications O- and C-band. As outlined in
the introduction, the motivation for these experiments was to implement an efficient
visible-to-telecom photonic interface for single photons emitted by solid-state quan-
tum emitters such as SiV color centers in diamond or semiconductor QDs. With the
current performance of our setup, frequency down-conversion already allows for more
efficient long-distance fiber transmission compared with a direct transmission of visible
photons. Down-conversion interfaces together with the complementary up-conversion
devices might become an important tool to connect dissimilar elements (quantum mem-
ories or processors, optical fibers, ...) of a quantum network in the future.
From the beginning, a number of experimental boundary conditions were determined
by our goal to efficiently translate visible photons to telecom photons with an all solid-
state system. We have chosen to use DFG in WG-based frequency converters made from
Zn:PPLN because of the high conversion efficiency that can be obtained with these de-
vices. Historically, nonlinear optics has mostly been a research area in which high laser
powers are employed to achieve efficient frequency conversion. However, from our anal-
ysis and the work published by others [47, 52] it is evident that the three-wave mixing
process can happen with very high efficiencies (theoretically 100 %) even if one of the
two input fields is very weak (at the single-photon level) and the other input field has a
moderate power on the order of 100 mW. Since the DFG process should be tailored to
convert light from a specific single-photon source (SiV center in diamond and InP QD
in our case), one of the input wavelengths λa is always dictated by the emission wave-
length of that source. The target wavelength λb should lie in one of the telecom bands
and thus also could not be chosen freely (although this allowed a bit more flexibility).
Since energy conservation always has to be fulfilled in DFG and we wanted to inves-
tigate different combinations of input and target wavelengths, these requirements led
to the development of two 532-nm-pumped signal-resonant cw SROs as widely tunable
pump sources. Two different nonlinear materials were tested in the SROs, a 40-mm-
long MgO:PPLN crystal and a 30-mm-long MgO:PPSLT crystal, to determine which of

137
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them is better suited for our purposes. While MgO:PPLN was well known, MgO:PPSLT
was a relatively new crystal that became commercially available during this work was
conducted. Similar to earlier publications on cw OPOs, we have chosen a bow-tie ring
cavity design for both of our devices. With the MgO:PPLN-based SRO, a minimum
pump power at threshold of 1.2 W and a maximum single-frequency idler output power
of 310 mW at 1417 nm was achieved. The demonstrated idler (signal) tuning range was
1406–1451 nm (856–840 nm) with one QPM grating period. In principle, by using all six
grating periods an idler tuning range of 1250–1580 nm (920–800 nm) would be possible.
With the MgO:PPLN-SRO, we achieved Doppler-free spectroscopy of the cesium D2

line hyperfine structure. This is believed to be the first demonstration of Doppler-free
spectroscopy using an OPO at wavelengths shorter than 1µm. In principle, it proves
that the device has the level of stability and spectral purity required for such demanding
applications. Frequency stabilization to one of the hyperfine lines was also tested but
could not be maintained for times longer than ∼10 minutes due to thermal and acoustic
noise. Better shielding of the SRO resonator from such noise could improve the stability
and should allow for frequency stabilization on longer time scales. Despite its negative
reputation in terms of green-pumped OPOs, our results show that MgO:PPLN can be
used as a nonlinear material in these devices as long as operation at low to moderate
(cw) pump powers is considered. However, even better results—both concerning output
power and stability—were obtained with the MgO:PPSLT-based SRO. For this device,
the minimum threshold pump power was below 700 mW and we achieved a maximum
single-frequency idler output power of 1.1 W. Approximately the same output power
level can be reached simultaneously for the signal radiation if one highly reflecting mir-
ror of the signal-resonant SRO cavity is replaced by a 3 % output coupling mirror. The
idler (signal) tuning range spans from 1203–1565 nm (954–806 nm). The output power
of the MgO:PPSLT-SRO was observed to be very stable with peak-to-peak fluctuations
of 1.6 % (0.14 % standard deviation) over more than 5 h of operation. By stabilization
of the signal frequency to a wavemeter, we could compensate for periodic frequency
fluctuations and long-term drifts caused by slight variations of ambient conditions in
the laboratory. Frequency stabilization to the wavemeter could be maintained over
more than 9 h without interrupt. Due to its superior performance, the SRO based on
MgO:PPSLT was eventually adopted as a pump source for our visible-to-telecom down-
conversion experiments.
We have investigated frequency down-conversion from λa = 738 nm to the C-band
(λb = 1557 nm) pumped at λp ≈ 1.4µm. From our measurements with a weak coher-
ent input signal, we found that the process was quite efficient (77 % depletion of the
red input photons). However, the amount of noise photons generated by the frequency
converter around the target wavelength gave rise to concern. A careful inspection of
the spectra that were measured behind the WG revealed that the noise photons were
produced by spontaneous Stokes Raman scattering of the strong 1.4-µm pump light.
In parallel with our findings, there were other reports about noise in PPLN frequency
converters [46,47,187]. Important conclusions are that the noise is generated either by
spontaneous Raman scattering or by SPDC. While the first phenomenon preferably oc-
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curs if pump and target wavelengths are relatively close together (as in our case 1.4µm
and 1.56µm), the second can play a role if the spectral separation between the two is
larger (e.g., λp = 1.06µm and λb = 1.56µm as in [47]). By choosing a pump wavelength
that is longer than the target wavelength, SPDC noise can be completely eliminated
because the pump photons can only decay into photons with even longer wavelengths.
Long-wavelength pumping also helps to reduce Raman noise since anti-Stokes Raman
lines are much less intense than Stokes Raman lines. This is well known in Raman
spectroscopy and was confirmed by our measurements. Nevertheless, as interchanging
λp and λb was not an option in our case (1.4µm is not the best choice for fiber-optic
communication), we applied narrow spectral and temporal filtering to get rid of the
Stokes Raman noise. In this way, we managed to perform a down-conversion exper-
iment with 738-nm input at the single-photon level (0.5 MHz repetition rate with an
average of 0.76 photons/pulse) and to discriminate the converted signal photons from
the Raman noise floor. The maximum internal (external) conversion efficiency in this
experiment was > 73 % (∼ 8 % without detection) at a pump power of 240 mW (SNR
of 4:1). The best SNR was 6:1 reached at a pump power of 60 mW. As discussed in
the summary at the end of Chap. 5, several technical difficulties prevented us from per-
forming the down-conversion experiment with true single photons from an SiV center.
With the current performance, single-photon sources based on diamond SiV centers do
not reach the required level of predictability (in terms of deterministic single-photon
emission) and reproducibility (in terms of the zero-phonon line wavelength). A second
difficulty which is also related to the performance of the SiV centers has to do with
triggered single-photon detection at telecom wavelengths. On the one hand, triggered
detection at a rate of 0.5 MHz (or less) was inevitable to keep the photocounts caused
by Raman noise at a reasonable level. On the other hand, an excitation rate of 0.5 MHz
(matching the trigger rate of the detector) is far too low to yield an input photon flux
from the SiV center such that the output flux at the telecom wavelength is sufficiently
high. Another point which makes the situation even worse, because it reduces the con-
version efficiency, is that the emission spectrum of SiV centers is usually not narrow
enough. In the best case, at cryogenic temperatures, it approximately matches the
acceptance bandwidth of the 40-mm-long frequency converter (0.16 nm) [60]. Never-
theless, it seems worthwhile to undertake further efforts in the future regarding the
down-conversion of photons emitted by single color centers in diamond. Of course,
the SiV center is not the only eligible candidate in this context. Other color centers
like the well-investigated NV center should also be reconsidered. Currently, promising
research is going on in our group to make the zero-phonon emission of diamond color
centers narrower and brighter. Research in this direction includes near-resonant and
resonant optical excitation of SiV centers for narrower emission linewidths and cou-
pling of single NV centers to fiber-based microcavities for narrower emission linewidths
and enhanced collection efficiency. In the conversion experiment with 738-nm input,
the massive amount of noise photons resulting from the short-wavelength pumping at
1.4µm could be significantly reduced by selecting an O-band wavelength as the target
wavelength. Then, long-wavelength pumping at a wavelength around 1.69µm could be
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applied. This experiment is being set up in our laboratory at the moment. For conver-
sion to the lowest-loss C-band, the cascaded scheme of Pelc et al. [47] may be an option
both for 637-nm (NV) and 738-nm (SiV) input. This requires a pump wavelength of
2.15µm (2.8µm) for an input wavelength of 637 nm (738 nm) and a PPLN WG with
two sections that feature different QPM grating periods. In the first section, photons at
637 nm (738 nm) are converted to an intermediate wavelength of 905 nm (1002 nm) by
difference frequency mixing with the pump light and in the second section, the photons
are converted from the intermediate wavelength to 1.56µm, again by DFG with the
pump light at 2.15µm (2.8µm).
Compared with SiV centers in diamond, semiconductor QDs have been investigated
longer and more intensively and are thus better understood. For our proof-of-principle
QFC experiment, we have chosen InP QDs fabricated by Peter Michler’s group at Uni-
versität Stuttgart. These QDs showed single-photon emission in a wavelength range
of 690–715 nm. A hybrid excitation scheme using combined electrical (DC bias volt-
age) and pulsed optical excitation (80 MHz at 590 nm) was applied. A particular bright
emitter at 711 nm was selected to deliver the input photons for our frequency conversion
device. The 711-nm input wavelength is perfectly suited to apply the long-wavelength
pumping scheme with a pump wavelength at 1.55µm and a target wavelength at
1313 nm. The pump light was again provided by the home-built MgO:PPSLT-SRO.
Key achievements in this experiment were an external (internal) maximum conversion
efficiency of 32 % (≥ 64 %), a SNR of 20:1 at optimum pump power (150 mW), preserva-
tion of single-photon lifetime and coherence during down-conversion, and, most impor-
tantly, the preservation of photon antibunching. The latter was proved by measuring
the second-order correlation function g(2)(τ) before and after wavelength translation
(g(2)(0) = 0.39± 0.02 before and g(2)(0) = 0.24± 0.04 after conversion). To the best of
our knowledge, this kind of measurement had not been done before for frequency down-
converted photons from a triggered single-photon source. Note that it is the reversal of
the experiment reported by the NIST group in 2010 [51]. The g(2) measurement was
greatly facilitated by using free running SSPDs. Owing to the long-wavelength pumping
scheme, the noise counts were greatly reduced and triggered single-photon detection was
obsolete. Compared to the experiments on down-conversion from 738 nm to 1557 nm,
the external conversion efficiency could be improved by using all-fiber components for
spectral filtering.
Very recently, there were other interesting reports about new achievements in QFC us-
ing PPLN WGs. Ates et al. [57] performed up-conversion of 980-nm single photons from
an InAs QD to 600 nm by SFG pumped at 1550 nm. This process is essentially noise-
less because of the large spectral separation between pump and target wavelength. The
authors demonstrated the preservation of photon antibunching by measuring the g(2)

functions before and after frequency conversion. Furthermore, they showed how QFC
can be used to achieve Hong–Ou–Mandel-type interference of photons that initially
have a different wavelength. To this end, photons generated by the recombination of
single excitons and biexcitons in the same QD were converted to a common wavelength
and subsequently interferred. Erasing distinguishability is particularly interesting for
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quantum networks based on solid-state qubits which do not emit/absorb photons at
perfectly identical wavelengths (such as QDs). In this context, the latest report of suc-
cess came from a collaboration at Stanford University [58]. They performed QFC of
910-nm single photons from an InAs QD to 1560 nm (pumped by sub-10-ps pulses at
2.2µm) and used this process as a quantum eraser [231]. In this way, they managed
to demonstrate entanglement between an InAs QD electron spin qubit and a photonic
qubit at 1560 nm. In a related paper, the authors also demonstrate the preservation of
photon antibunching under the 910 nm-to-1560 nm down-conversion [59].
QFC now seems to be a vital research area which attracts more and more interest among
researchers in the fields of nonlinear optics and quantum optics (see, e.g., the recent
coverage in the November 2012 issue of Physics Today [232]). Nearly all the neces-
sary proof-of-principle experiments (including the present work) have been performed
in recent years proving that QFC is indeed an enabling technique for long-distance
quantum networks. Now, one goal of future work could be to use QFC in order to
establish entanglement between two remote matter qubits of the same kind or of differ-
ent kinds (e.g., electronic states of a trapped atom and spin states of an electron in a
QD). The latter seems very challenging because the single-photon wavepackets emitted
by dissimilar quantum systems do not only have different color but also have a differ-
ent spectral and temporal shape [215]. However, these issues can also be tackled by
QFC [58, 59, 212, 232]. Rakher et al. [212] have demonstrated how QFC with a pulsed
1550-nm pump laser can be used to up-convert 1300-nm single photons from a QD
to 710 nm (using SFG in a PPLN WG) and simultaneously manipulate the temporal
shape of the up-converted single-photon wavepackets. The waveform of the 1550-nm
pump pulses is tailored in a desired way and ‘imprinted’ on the up-converted photons.
A similar method was also applied in [58, 59] to erase frequency distinguishablity and
create the spin–photon entanglement. These experiments suggest how entanglement
between two (possibly disparate) quantum systems at remote locations A and B could
be achieved in a future experiment. It would require two QFC devices (one at A, one
at B) which convert the emitted photons from the quantum systems to a common
telecom wavelength at each location. Then, the telecom photons can be sent through
kilometers of optical fiber cable from one location to the other (or to an intermediate
location). Entanglement between the two quantum systems can be created by the joint
detection of two photons (one coming from A, the other from B) at the output ports
of a beamsplitter [46, 233]. As this scheme relies on two-photon interference, it is cru-
cial that the photons coming from locations A and B are indistinguishable. Regarding
the creation of entanglement between disparate quantum systems, photon–phonon in-
terfaces based on cavity optomechanics (see [234] and references therein) might bring
further flexibility. These devices enable microwave-to-optical (and vice versa) as well
as optical-to-optical frequency conversion. Thus, on the one hand, they could be used
as an interface between superconducting qubits and optical photons and, on the other
hand, they are an alternative to QFC devices based on intrinsic χ(2) or χ(3) nonlinear-
ities.
Frequency down-conversion in particular, as demonstrated in this thesis, could also be
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used to build a heavily sought-after bright triggered single-photon source at telecom
wavelengths. Such sources could find application in device-independent QKD [21,24] or
in integrated quantum optical circuits for on-chip quantum information processing [235].
Again, the second application requires indistinguishable photons from two or more dif-
ferent sources and QFC could be used to overcome this difficulty. From our experiments
we anticipate that a hybrid approach, i.e., the combination of a bright single-photon
emitter in the visible with frequency down-conversion, has the potential to outperform
any current source based on direct emission of photons at telecom wavelengths.



Appendix A

Refractive Indices of Nonlinear
Materials

Sellmeier Equation for Undoped CLN and
5 % MgO-doped CLN

A temperature-dependent Sellmeier equation for the extraordinary index of refraction
ne in congruent LiNbO3 (CLN) was derived by Jundt [101]. It is given by

n2(λ, T ) = a1 + b1f +
a2 + b2f

λ2 − (a3 + b3f)2
+
a4 + b4f

λ2 − a2
5

− a6λ
2, (A.1)

with

f = (T − T0)(T + T0 + 2× 273.16) (A.2)

= (T − 24.5 ◦C)(T + 570.82). (A.3)

The Sellmeier coefficients {ai} and {bi} are given in the first column of Table A.1. The
temperature must be inserted in ◦C. Equation (A.1) is valid in a spectral range of 0.4–
5µm and for temperatures between room temperature and 250 ◦C.
Based on Eq. (A.1), Gayer et al. [105] have experimentally determined the Sellmeier
coefficients for 5 % MgO-doped CLN, both for the ordinary and the extraordinary index
of refraction. These parameters are listed in the second and third column of Table A.1.
The ne (no) equation is valid for the 0.5–4µm (0.5–1.62µm) spectral range and 20–
200 ◦C (20–100 ◦C) temperature range. The indices ne and no for MgO-doped CLN as
well as ne for undoped CLN are plotted in Fig. A.1 for T = 25 ◦C.
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Table A.1: Sellmeier coefficients for undoped CLN and 5 % MgO-doped CLN.

CLN [101] MgO-doped CLN [105]

Parameter ne ne no
a1 5.35583 5.756 5.653
a2 0.100473 0.0983 0.1185
a3 0.20692 0.2020 0.2091
a4 100 189.32 89.61
a5 11.34927 12.52 10.85
a6 1.5334× 10−2 1.32× 10−2 1.97× 10−2

b1 4.629× 10−7 2.860× 10−6 7.941× 10−7

b2 3.862× 10−8 4.700× 10−8 3.134× 10−8

b3 −0.89× 10−8 6.113× 10−8 −4.641× 10−9

b4 2.657× 10−5 1.516× 10−4 −2.188× 10−6
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Figure A.1: Refractive indices of undoped CLN (ne) and of 5 % MgO-doped CLN (ne, no)
calculated with Eq. (A.1) and the parameters given in Table A.1.

Sellmeier Equation for SLT

A modified version of Eq. (A.1) with an additional parameter b5 has been introduced
by Dolev et al. [97] for 0.5 % MgO-doped SLT. They found the relation

n2 = a1 + b1f +
a2 + b2f

λ2 − (a3 + b3f)2
+

a4 + b4f

λ2 − (a5 + b5f)2
− a6λ

2, (A.4)

with the Sellmeier coefficients given in Table A.2. Figure A.2 shows ne, o(λ, T = 25 ◦)
according to (A.4).



145

Table A.2: Sellmeier coefficients for 0.5 % MgO-doped stoichiometric LiTaO3 according to [97].

Parameter ne no
a1 4.5615 4.5082
a2 0.08488 0.084888
a3 0.1927 0.19552
a4 5.5832 1.1570
a5 8.3067 8.2517
a6 0.021696 0.0237
b1 4.782× 10−7 2.0704× 10−8

b2 3.0913× 10−8 1.4449× 10−8

b3 2.7326× 10−8 1.5978× 10−8

b4 1.4837× 10−5 4.7686× 10−6

b5 1.3647× 10−7 1.1127× 10−5
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Figure A.2: Refractive indices ne and no as a function of λ for SLT calculated with Eq. (A.4)
and parameters from Table A.2.
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Appendix B

Supplemental Equations and
Formulas

Ex
pq Modes in the Regions 2–5 According to Ref. [120,121]

Region 2:

Ez = A cosκx(ξ − d) cosκy(y + η) exp [γ2(x+ d)] (B.1)

Hz = −A
√
ε0
µ0
n2

2

κy
γ2

k

β
cosκx(ξ − d) sinκy(y + η) exp [γ2(x+ d)] (B.2)

Ex = +iA
γ2

2 + n2
2k

2

γ2β
cosκx(ξ − d) cosκy(y + η) exp [γ2(x+ d)] (B.3)

Ey ≈ 0 (B.4)

Hx = 0 (B.5)

Hy = iA

√
ε0
µ0
n2

2

k

γ2
cosκx(ξ − d) cosκy(y + η) exp [γ2(x+ d)] (B.6)

Region 3:

Ez = A cosκxξ cosκy(y + η) exp(−γ3x) (B.7)

Hz = A

√
ε0
µ0
n2

3

κy
γ3

k

β
cosκxξ sinκy(y + η) exp(−γ3x) (B.8)

Ex = −iA γ2
3 + n2

2k
2

γ3β
cosκxξ cosκy(y + η) exp(−γ3x) (B.9)

Ey ≈ 0 (B.10)

Hx = 0 (B.11)

Hy = −iA
√
ε0
µ0
n2

3

k

γ3
cosκxξ cosκy(y + η) exp(−γ3x) (B.12)
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Region 4:

Ez = A
n2

1

n2
4

cosκy(b+ η) cosκx(x+ ξ) exp [−γ4(y − b)] (B.13)

Hz = −A
√
ε0
µ0
n2

1

γ4

κx

k

β
cosκy(b+ η) sinκx(x+ ξ) exp [−γ4(y − b)] (B.14)

Ex = iA
n2

1

n2
4

n2
4k

2 − κ2
x

κxβ
cosκy(b+ η) sinκx(x+ ξ) exp [−γ4(y − b)] (B.15)

Hy = iA

√
ε0
µ0
n2

1

k

κx
cosκy(b+ η) sinκx(x+ ξ) exp [−γ4(y − b)] (B.16)

Region 5:

Ez = A
n2

1

n2
5

cosκyη cosκx(x+ ξ) exp(γ5y) (B.17)

Hz = A

√
ε0
µ0
n2

1

γ5

κx

k

β
cosκyη sinκx(x+ ξ) exp(γ5y) (B.18)

Ex = iA
n2

1

n2
5

n2
5k

2 − κ2
x

κxβ
cosκyη sinκx(x+ ξ) exp(γ5y) (B.19)

Hy = iA

√
ε0
µ0
n2

1

k

κx
cosκyη sinκx(x+ ξ) exp(γ5y) (B.20)

Equations of Motion for the Operators â and b̂

dâ

dt
=

i

~
[Ĥ, â]

=
i

~

{(
i~ ηâb̂†A∗p − i~ η∗Apb̂â

†
)
â− â

(
i~ ηâb̂†A∗p − i~ η∗Apb̂â

†
)}

=
(
−ηâb̂†A∗p + η∗Apb̂â

†
)
â− â

(
−ηâb̂†A∗p + η∗Apb̂â

†
)

= −ηâ2b̂†A∗p + η∗Apb̂â
†â+ ηâ2b̂†A∗p − η∗Apb̂ââ

†

= η∗Apb̂â
†â− η∗Apb̂ââ

†

= η∗Apb̂ [â†, â]

= −η∗Apb̂.

In the last step, the boson commutation relation [a, a†] = 1 was used.
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The derivation of the equation of motion for b̂ is analogous:

db̂

dt
=

i

~
[Ĥ, b̂]

=
i

~

{(
i~ηâb̂†A∗p − i~η∗Apb̂â

†
)
b̂− b̂

(
i~ηâb̂†A∗p − i~η∗Apb̂â

†
)}

=
(
−ηâb̂†A∗p + η∗Apb̂â

†
)
b̂− b̂

(
−ηâb̂†A∗p + η∗Apb̂â

†
)

= −ηâb̂†b̂A∗p + η∗Apb̂
2â† + ηâb̂b̂†A∗p − η∗Apb̂

2â†

= ηâb̂b̂†A∗p − ηâb̂†b̂A∗p
= ηA∗pâ [b̂, b̂†]

= ηA∗pâ.

To summarize, we have the equations of motion

dâ

dt
= −η∗Apb̂, (B.21)

db̂

dt
= ηA∗pâ. (B.22)

Expectation Values of Photon Number Operators

For comparison with classical results, we determine the expectation values of the photon

number operators n̂
(out)
a , n̂

(out)
b at the WG output. Using (3.57) and (3.58), the number

operator for the signal field (mode a) reads

n̂(out)
a = â(out)†â(out)

=
(
â†(0) cos(|ηAp|τ)− eiφp b̂†(0) sin(|ηAp|τ)

)(
â(0) cos(|ηAp|τ)− e−iφp b̂(0) sin(|ηAp|τ)

)
= â†(0)â(0) cos2(|ηAp|τ)− e−iφp â†(0)b̂(0) cos(|ηAp|τ) sin(|ηAp|τ)

− eiφp b̂†(0)â(0) sin(|ηAp|τ) cos(|ηAp|τ) + b̂†(0)b̂(0) sin2(|ηAp|τ). (B.23)

Using the relations

â |na, nb〉 =
√
na |na − 1, nb〉,

â† |na, nb〉 =
√
na + 1 |na + 1, nb〉,

b̂ |na, nb〉 =
√
nb |na, nb − 1〉,

b̂† |na, nb〉 =
√
nb + 1 |na, nb + 1〉,

we have

〈na, nb| â†â |na, nb〉 = 〈n̂a〉,
〈na, nb| â†b̂ |na, nb〉 =

√
nb(na + 1) 〈na, nb|na + 1, nb − 1〉 = 0,

〈na, nb| b̂†â |na, nb〉 =
√
na(nb + 1) 〈na, nb|na − 1, nb + 1〉 = 0,

〈na, nb| b̂†b̂ |na, nb〉 = 〈n̂b〉.
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So the mixed terms in (B.23) vanish when we calculate the expectation value and we
have

〈n̂(out)
a 〉 = 〈na, nb| n̂(out)

a |na, nb〉
= 〈n̂a(0)〉 cos2(|ηAp|τ) + 〈n̂b(0)〉 sin2(|ηAp|τ). (B.24)

The calculation for 〈n̂(out)
b 〉 is quite similar and we get the result

〈n̂(out)
b 〉 = 〈n̂b(0)〉 cos2(|ηAp|τ) + 〈n̂a(0)〉 sin2(|ηAp|τ). (B.25)
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dass er mir so viel von diesem faszinierenden Land gezeigt hat. Es war fachlich und
menschlich eine große Freude mit ihm zusammenzuarbeiten.
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aufbau. Die Teile wurden stets in kürzester Zeit und mit hoher Präzision gefertigt.
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