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Summary

Model order reduction methods provide a powerful means for the broadband simulation
of passive microwave devices. In particular projection-based moment matching methods
are well-suited for the reduction of sparse finite element systems. However, for real-world
problems, where high-dimensional systems of linear equations are assembled and a large
number of excitations is considered in the right-hand side, the projection matrix may fill the
main memory and render the process inefficient. In this thesis, techniques were developed
which, as a result of reduced memory requirements, make model order reduction applicable
to a large set of real-world problem simulations.

A new adaptive multi-point reduction method is introduced whose core is an incre-
mental error measure. For the proposed single-point method, which is based on the well-
conditioned asymptotic waveform evaluation, memory requirements are reduced by means
of a block algorithm, whose moment matching properties are proven in this thesis. Mem-
ory swapping mechanisms for both approaches keep the main memory requirements for the
projection matrix at a constant low level during the computations.

This thesis also includes an adaptive multi-point method for the broadband finite ele-
ment simulation of waveguide problems and a broadband sensitivity analysis technique.
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Kurzfassung

Verfahren der Modellordnungsreduktion stellen einen leistungsfihigen Ansatz fiir die breit-
bandige Simulation passiver Mikrowellenkomponenten dar. Insbesondere projektionsba-
sierte, momentenabgleichende Methoden eignen sich fiir die Reduktion der schwach be-
setzten Finite-Elemente Systeme. In praxisrelevanten Problemstellungen hingegen, bei
denen hochdimensionale Gleichungssysteme assembliert werden und eine grofe Anzahl
Anregungen in der rechten Seite beriicksichtigt werden, kann die Projektionsmatrix den
Arbeitsspeicher fiillen und der Prozess ineffizient werden. In dieser Dissertation werden
Algorithmen entwickelt, die aufgrund des reduzierten Speicherbedarfs Reduktionsverfahren
auf eine grofe Auswahl praxisrelevanter Simulationen anwendbar machen.

Ein neues Mehrpunktverfahren wird eingefiihrt, dessen Kern ein inkrementelles Fehler-
maf ist. Fiir das entwickelte Einpunktverfahren, welches auf der Well-Conditioned Asymp-
totic Waveform Evaluation basiert, wurde der Speicheraufwand mit Hilfe eines Blockalgo-
rithmus reduziert, dessen momentenabgleichenden Eigenschaften in dieser Dissertation be-
wiesen werden. Datenauslagerungsmechanismen fiir beide Ansétze halten den Arbeits-
speicherbedarf fiir die Projektionsmatrix wihrend der Berechnung konstant niedrig.

Diese Arbeit beinhaltet des Weiteren ein adaptives Mehrpunktverfahren fiir die breit-
bandige Finite-Elemente-Simulation von Wellenleiterproblemen und ein Verfahren zur breit-
bandigen Sensitivitdtsanalyse.
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Chapter 1

Introduction

1.1 Preliminary Words

Numerical simulation and computer-aided design processes enjoy an ever increasing area of
application. This trend is driven by the more and more complex design of electronic devices.
Hence, higher frequencies and coupling issues make the design process more challenging
and the usage of electromagnetic field simulation demanding. Numerical field simulation
techniques provide reliable solutions for electromagnetic problems, even for very complex
structures. Circuit simulators are often employed in a subsequent process and may utilize
extracted parameters from numerical field simulations.

Although the numerical computations in electromagnetics do exhibit high memory re-
quirements as well as high computational costs, progress in hardware development allows
field simulations to be run on a standard personal computer. However, for extended ap-
plications, e.g. parameter studies or optimization processes, the simulation methods often
struggle with limited system resources. At the same time, the simulation of more and
more complex electromagnetic devices is requested. The numerical simulation of com-
plete structures such as printed circuit boards, integrated circuit packages or full machine
wirings is the challenge of today’s techniques. To fulfill these requirements, significant
effort is devoted to both hardware development and improvement of numerical methods.



1.2 Numerical Simulation

The Finite Element Method

Among numerical simulation techniques for electromagnetic problems, the finite element
(FE) method has become popular due to its flexibility in modeling geometry and material
properties. FE simulation provides a numerical solution for electromagnetic boundary value
problems, which may be derived from electromagnetic field theory. The focus of this thesis
is on the simulation of passive microwave structures, where particularly driven problems [1],
[2], [3] and waveguide problems [4], [5] are considered. The numerical simulation process
using the FE method typically results in a large-scale sparse system of equations or an
algebraic eigenvalue problem, respectively. The system of linear equations is assembled and
solved for a fixed configuration. To simulate the frequency characteristics of a microwave
component, e.g. a microwave filter, the solution process needs to be performed for a large
number of evaluation points. This broadband simulation, however, may result in a time-
consuming process. Parameterizing the frequency in the system of linear equation results
in a problem well-suited for model order reduction (MORe) approaches.

Model Order Reduction

The main goal of MORe is to find a reduced order model (ROM), which approximates the
large-scale system in a certain parameter range. The most common MORe approaches,
which arise from the field of circuit simulation and control theory, may be categorized into
singular value decomposition-based methods [6] and moment matching methods as the
Asymptotic Waveform Evaluation (AWE) [7]. The focus of this thesis is on the moment
matching approaches, which are more convenient for the considered large-scale FE systems.
While early methods, as the AWE technique, suffered from a deficit in numerical stability,
the later projection-based methods [8] resolved this numerical shortcoming. A numerically
stable process for polynomial parameterized systems is provided by the Well-Conditioned
Asymptotic Waveform Evaluation (WCAWE) [9]. Multi-point methods, which were origi-
nally developed to overcome the numerical instabilities of early single-point methods [10],
are very general approaches and enjoy popularity due to their flexibility, see e.g. [11]. The
generality of multi-point methods also supports MORe for polynomially parameterized
system.
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1.3 Problem Definition and Scientific Contribution

Problem Definition

The FE simulation of very complex structures, in which a system matrix of very large di-
mension is assembled, finds its limitation in the available system resources. This situation
becomes worse if MORe techniques are employed for broadband simulations. While the
FE system matrix as well as the right-hand side vectors are sparse, the computed projec-
tion matrix for the MORe process is a dense matrix, which may fill the main memory.
Particularly for simulations in which a large number of moments need to be matched,
the projection matrix memory requirements may become a limiting factor. Furthermore,
devices with a large number of excitations result in systems with many right-hand sides,
which also let the projection matrix dimension increase.

The Aim of This Thesis

The purpose of this thesis is to find MORe techniques suitable for the broadband FE
simulation of complex real-world structures. Specifically, this means making projection-
based MORe methods, which are actually very suitable for the FE simulation, accessible
to high-dimensional systems with a large number of right-hand sides.

Scientific Contribution

An incremental error measure is introduced in Section 3.3, which offers a very efficient and
reliable alternative to residual computations or error-bound evaluations [12]. This error
measure is used in the bisection method-based adaptive multi-point algorithm developed
in Section 3.5. Furthermore, the error measure is used as a termination criterion in an
iterative WCAWE process, see Section 3.4. Numerical results indicate that the proposed
adaptive multi-point algorithm requires fewer iterations to reach a given error limit than
the single-point method, even if the WCAWE process is started at the optimum expansion
frequency. Hence, the projection matrix in the multi-point MORe process is smaller and
requires less memory.

To reduce the main memory requirements of the MORe process, out-of-core reduction
algorithms are developed in Chapter 4. While in-core algorithms fill the system require-
ments in each iteration with the increasing projection matrix, the proposed algorithms
keep the main memory requirements for the projection matrix constant on the level of the
first iteration. Particularly for highly resonant structures, where the MORe process runs
a large number of iterations, this technique is beneficial. In this framework of out-of-core
techniques, this thesis gives a detailed proof that the extension of the WCAWE method to
a block algorithm, provided in [13], does match moments.

An additional result of this thesis is a bisection-based adaptive multi-point MORe
algorithm for waveguide problems in Chapter 5. Furthermore, in Chapter 6 a broadband
sensitivity analysis theory is proposed and discussed in detail on computed numerical
experiments.



Available Infrastructure and Implementation Work

For this thesis, a complete c++ FE code was available. Furthermore, an extensive mathe-
matical library, including linkage to the Intel Math Kernel Library, was used.

During this thesis, a comprehensive framework for MORe was implemented, which in-
cludes single-point as well as multi-point methods. In particular, the adaptive methods in
combination with the error measures as a termination criterion were implemented. Fur-
thermore, a binary data-swapping process was coded for the out-of-core approaches. The
code also includes an automatic parameterization for the FE system.



Chapter 2

Simulation of Electromagnetic
Structures

The purpose of this second chapter is to provide an overview of the physical and math-
ematical tools for the FE simulation of passive microwave components. This chapter
begins with a introduction to basic electromagnetics, which allows us to define a suitable
boundary value problem for the considered field analysis. Applying the FE method to the
electromagnetic boundary value problem results in a system of linear equations. The FE
discretization allows us to assemble the system matrices parameterized in the frequency,
which provides the basis for the later introduced MORe techniques.

2.1 Maxwell’s Equations

Electric and magnetic macroscopic phenomena in classical electromagnetics are described
by the Maxwell equations

oB

_ 2.1

V x & o (2.1)
oD

_ 9z 2.2

VxH=J+ (2.2)

V.-D =y, (2.3)

V-B=0,

which are Faraday’s law of induction, Ampére’s circuit law, Gauss’s law and Gauss’s law
for magnetism, respectively. The constitutive equations

D = gpe, & = €€, (2.5)
B = poprH = pH, :
J =o€, (2.7)

which define material properties, complete the physical description for the electromagnetic
fields. The material properties in this thesis are considered to be symmetric, linear and
time invariant. Table 2.1 gives the definition of used physical quantities including their
units.



Table 2.1: Symbols of electromagnetic quantities.

Symbol Definition Unit
& Electric field intensity V/m
D Electric displacement field C/m?
H Magnetic field intensity A/m
B Magnetic flux density T =Vs/m?
J Electric current density A/m?
p Electric charge density C/m?
€0 Free space permittivity As/(Vm)
Er Relative permittivity —
Lo Free space permeability Vs/(Am)
s Relative permeability —
o Electric conductivity A/(Vm)
t Time s
w Angular frequency rad/s

However, for the investigation of time harmonic settings, Maxwell’s equations may be
written in the frequency domain

V x E = —jwB, (2.8)
V x H=J+ jwD, (2.9)
V-D=p, (2.10)
V-B=0, (2.11)

where the time dependent physical quantities become the phasors E, 5, H , é, J and
p- As the purpose of this thesis is to employ MORe techniques for the evaluation of fast
frequency sweeps, the focus is on the frequency domain.

The introduced physical quantities fit into a mathematical framework of functional
spaces. The space of square integrable scalar fields on the domain @ C R? is defined as

L2(Q) = {u(z)| [u(z)]| 2 < oo}, (2.12)

where the norm ||-||; 2 is induced by the inner product

(u,v)2 = /QuH(x)v(x)dQ, u,veCr. (2.13)
Furthermore, the functional spaces

HY(Q) := {u € L(Q)|Vu € [L2(Q)]*}, (2.14)

H(curl; Q) := {u € [L*(Q)]|V x u € [L2(Q)]*}, (2.15)

H(div; Q) := {u € [L*(Q)]*|V - u e L*(Q)}, (2.16)

are introduced, which together with the associated scalar products
(u,v)1 = (Vu, Vo)r2 + (u,v);2, (2.17)

(W, V)eurt = (Vxu, VXV)2+ (u,v) e, (2.18)
(W, V)gin = (V-u, V-v)2+ (u,v) 2, (2.19)
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are Hilbert spaces. Since we have the inclusions

VHY(Q) c H(curl;Q), (2.20)
V x H(curl; Q) C H(div; ), (2.21)
V x H(div; Q) c L?(Q), (2.22)

the introduced Hilbert spaces form the sequence

H(Q) % H(curl;Q) -5 H(div;Q) ——» L%(Q). (2.23)

The sequence is called exact, if
V x H(curl; Q) = ker(div) :={u € H(div;Q)|V -u =0}, (2.24)
VHY(Q) = ker(curl) :={u € H(curl; Q)|V x u = 0}, (2.25)

as we have for the Euclidean space E3. However, the exactness property is lost for domains
of non-trivial topology, which is explained in detail in textbooks as [14] and [15].

Maxwell’s equations naturally fit in this framework of functional spaces. The electric
field intensity E and the magnetic field intensity H belong to the space H(curl; )

E,H € H(curl; Q). (2.26)

The space H(div; () is associated with the magnetic flux density é, the displacement field
D and the current density J

B,D,J € H(div; Q). (2.27)

Thus, the following diagram shows how Maxwell’s equations, with the help of constitutive
equations, fit into the framework of functional spaces:
oo BB P58 T g
elo wl . (2.28)
p -~ D,J <& H Z oo
In the diagram above, the electric scalar potential ¢, and the magnetic scalar potential
©m are added into the framework.



2.2 Boundary Value Problem Definition

The boundary value problem is based on an electric field formulation. Therefore, the
magnetic field intensity H in Maxwell’s equations is eliminated, which results in the vector
Helmholtz equation

Vxp 'V x E—w?E = —jwl]. (2.29)

Furthermore, assuming the source free domain 2, with the non-overlapping boundaries
I'=TgpUl'gUl'gUTIz, the boundary value problem yields

Vxpu 'VxE—weE=0 in Q, (2.30a)
énxE=0 on I'g, (2.30b)
énx H=0 on Ty, (2.30c)
H x é, = Hro x é, on e, (2.30d)
Hxé,= Zién x (E x é,) on Tz, (2.30e)

S

where ¢é,, denotes the outward directed normal unit vector on the boundary. I'p and 'y
represent the electric walls and magnetic walls, respectively. I'z is the impedance boundary
with the impedance parameter Z; and Hre stands for the impressed tangential magnetic
field strength on the wave port region I'g.

The weak form of the boundary value problem above is obtained by weighting (2.30a)
with ; and integrating over the domain )

/ @i -V x p 'V x EdQ — w? / @ - eEdQ) = 0, (2.31)
Q Q

where

W; € H(cur; Q,T'g) := {i € [L*()]*|@ x V € [L*(Q)]* and é, x 1=0onTg}.

(2.32)
Employing Gauss’ theorem and the vector identity
V-(@xu)=u-(Vxv)—-9-(Vxad), (2.33)
we can write
/vai-ulv xEdQ—&/@-aEdQ—j{(@ X 'V x E) - é,dl = 0.
N ! ' (2.34)
Plugging Faraday’s law of induction into the boundary integral results in
/Qv X Wi - p~ IV x EdQ — w? /Qwi - eEd$) +jw7§(wi x H) - éndl' = 0. (2.35)

We rewrite the boundary integral as

jw}[...dr:jw/ ...dP+jw/ ...dF+jw/ ...dP+jw/ ...dl,  (2.36)
I FE FH F@ I1Z
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and look on each boundary separated. On I'g, we have
w/(@xm@mnqw H - (¢, x ;)dl = 0, (2.37a)
I'g I'g

as w; € H(curl; 2,T'g). On the boundary 'y we have by definition
w/(@xﬁy%ﬂz—W/)@(%xmﬂEQ (2.37h)
FH I1H
The integral on I'g results in
w/(ﬁxﬁy@ﬂ:w/)@(ﬁx@MF
T'e Fe
:jw/ W - (Hpe x é,)dr, (2.37c)
e
and will be moved to the right-hand side. On the boundary I'z the integral yields

»)dD

>

W/(@xﬁy%J:W/’@(ﬁx
I'z Iz
1 .
ﬂ%/wf—%x@x%w“
Ty A
1 B
:p/(%mmm—@xmﬂ. (2.37d)
Ty Z

Thus, the weak form of the boundary value problem reads

. 1 .
/ V X W - IV x EdQ+jw/ (én X W) + (=€, X E)dD
Q r Z

VA s

- w2/ U_})z . EEdQ = jw/ U_jz . (én X ﬁT@)dF, VIEZ € H(curl; Q,FE) (238)
Q T'e

2.2.1 Impedance Boundary Condition

In some electromagnetic configurations, solids with highly conductive material properties,
lumped network elements or unbounded domains need to be considered. To model these
physical effects, the impedance boundary condition (2.30e) may be used.

First we turn to the modeling of solids with highly conductive material properties, as
for instance metals exhibit. Due to the skin effect, alternating currents have the tendency
to flow mostly near the surface of conductors. The skin depth

5=, (2.39)
wo

defines the depth under the surface where the field components have dropped by a factor e.
Hence, in case of large geometrical dimensions of the conductive solid, compared to the
skin depth, the solid may be removed and modeled with impedance boundary conditions
on its surfaces. The impedance parameter is then set to

Zo=(1+4)) /2, (2.40)
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as evaluated in [16].
In the free space, the electromagnetic field components of a plane wave satisfy
exE= MF (2.41)
where é denotes the propagation direction. This property is used to model infinite com-

putational domains with absorbing boundary conditions [17]. Thus, the parameter Zs in
the impedance boundary condition is set to

Z, = 2. (2.42)
€0

Unlike the impedance boundaries above, sheets associated with lumped elements are
allowed to be defined in the interior of the computational domain. The tangential compo-
nents of the magnetic field intensity in (2.30e) are therefore rather H x &, = (Ho— H1) X éy,
the difference of the fields on both sides of the sheet. Ampére’s circuit law allows us to
write

f{ (Hy — Hy) X é,d5 = Kb, (2.43)
o'y

where K and b are the surface current density and the width of the sheet, respectively.
Furthermore, we have an electric voltage along the sheet of length [. With these results,
we can derive the impedance parameter in (2.30e) from Ohm’s law as

Zs=1 ?, (2.44)
where Z is the impedance of the lumped element.

2.2.2 Excitation on the Wave Port Region
Waveguide Modes

For the field analysis on the boundary I'g, the surface is subdivided into

Ny
Lo = Ty, (2.45)
¥=1

where each I'y is defined to be the transverse plane of an axially uniform waveguide, which
is connected to the device. For each waveguide a local coordinate system is defined, where
the z-axis is set as the uniform axis of the waveguide and the transverse plane I'y is at
z = 0. Hence, the normal vector é,, on I'y in the global coordinates is equivalent to the
local unit vector é, of each waveguide.

Each supported modal waveform (&, Hg) in a waveguide may be separated into transver-
sal and axial field components

é% = ng + ézg, (2.46)
hg = th + hzg, (2.47)
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where the subscripts T" and z denote the transversal and normal components, respectively.
The transversal modal field patterns er¢ and h7e are normalized beyond their waveform
cut-off frequency such that

/ (€T5 X ﬁTg) . ézdl“ = 1. (2.48)
)

For the superposition of forward and backward traveling transverse field components ETg
and FITg in the waveguide, we write

Ere(z) = ulere e 6" fulepe e, (2.49)
FITg(z) = ugﬁTg e ¢” —uZﬁTg ete? (2.50)

where ¢, ug and ué’ stand for the propagation constant, and the complex amplitude of the
forward and backward traveling waves, respectively. Furthermore, the transversal fields of
two different waveforms (€, he) and (€, h¢) satisfy the orthogonality condition [18]

/ (€T5 X ETC) . ézdl“ =0. (2.51)
Ty
Hence, defining the equivalent modal voltage V¢ and equivalent modal current I¢
Ve =uf +uf, (2.52)
Ie = uf —uf, (2.53)

the electromagnetic field (Ep, Hy) on I'y, i.e. the transverse field at z = 0 in the local
waveguide coordinates, may be written as the expansion

Ne Ne

ET = ZE]’{ = Z V’géjTg, with Ng — OQ, (254)
£=1 £=1
Ne Ne

ﬁT = ZﬁT& = ZI&ET& with N5 — 00. (255)
£=1 £=1

Network Parameter Evaluation

The introduction of complex modal amplitudes of traveling waves and equivalent voltages
V¢ and currents I, allows us to determine network parameters for the modeled microwave
device [19]. The generalized impedance Z¢¢ is defined to be the quotient of V; and I¢

Zee = = : (2.56)
I1,=0,Vv#E

where only one single non-zero current is set as excitation. Thus, we have

Zn Ziz ... ZiN| L Vi
Zn  Za : I _ Ve (2.57)
ZN1 e e ZNN IN VN

N 4
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where Z denotes the generalized impedance matrix. Therefore, for the boundary value
problem only the transverse magnetic field hr¢ of one single modal waveform is employed
as excitation on I'g

Hre = hre, (2.58)

which means to plug ﬁTg into (2.38). Hence, the boundary value problem solution, i.e. the
electric field, is denoted as E(ﬁTg) and in particular, the electric field on the boundary I'g
is denoted as ET(HTg). Plugging ET(ETg) into the orthogonality relation (2.51) and using
the expansion (2.54), we have

/ (Er(hre) X hpe) - éndl = / (Er(hre) X hpe) - éndl (2.59a)
Ie Ty
Ne
_ / S Broire) | x bire | - éndr (2.59h)
Ly v=1
Ne
= ( / (ETV(HTg) X ETC) : éndr> (2.59¢)
v=1 Ly
— [ Brclline) x Fire) - endr (2.59d)
Ly

Rewriting the transverse field with its amplitude, i.e. ET((ETg) = ‘/Q“(ETg)ng, we have due
to linearity

1

Vr(hre) = Vir( 2

. 1 .
Hre) = EVTc(HTg)- (2.60)

This linearity property together with (2.48), allows us to evaluate the generalized impedance

/ (Erc(hre) X hre) - @pdl = / (Ve(hre)@re X hre) - éndl (2.61a)
Ty Ty
= Ve (hre) / (@r¢ x hr¢) - éndl (2.61b)
9
Ve (H .
= M/ (Er¢ X hye) - éndl (2.61c)
I¢ ry
H
_ Ve(Hre) (2.61d)
I
3
= ch, (2.616)

where the definition (2.56) is used.
An alternative way to describe microwave devices, which is probably even more com-
mon, are generalized scattering parameters, defined as

Sce = — : (2.62)
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Thus, we have

Su Sz SN | [ub ul
. b f
: u U

e o= (2.63)
: :
SNl SNN Un u{v

~— SN~ ——

S ub uf

where S denotes the generalized scattering matrix. Once the generalized impedance matrix
is available, the generalized scattering matrix is obtained by

u +u’ =Zu —u'), (2.64a)
(Z —T)ub = (Z + T)u’, (2.64b)
w = (Z+1)7Y(Z -1, (2.64c)
S=(Z+I)"Y(zZ-1). (2.64d)
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2.3 Finite Element Simulation

The purpose of the FE method is to approximate the solution of the boundary value
problem (2.38), i.e. the electric field E, in a finite-dimensional subspace of H(curl; Q,T'g).
For the discretization of the domain 2, a triangulation 7,(€2) into elements of polyhedral
geometry is employed, where §2 is assumed to be a bounded domain. The electric field is
thus discretized in the global FE space

W(Tr(Q)) C H(curl; Q,Tg). (2.65)
The FE shape functions in the FE space are denoted as
; € WTH(Q), (2.66)

where for all numerical calculations in this thesis the hierarchical basis functions of [20] are
used and a triangulation into elements of tetrahedral geometry is employed. In the global
FE space, basis functions which belong to the wave port are separated for further work

W(Th(2)) = Wr & We, (2.67)
where
Wr ={d e W(Th(Q)) | é, x W =0o0n Te}, (2.68a)
We = {W € W(T,(RQ)) | é, x W # 0 on T'g}. (2.68b)
Thus, the electric field intensity E is discretized in the expansion
with
Ny
Ep = uji, W; € Wr, (2.70a)
j=1
No
FEo = Zu]‘?ﬁj, ?Ifj € We, (2.70b)
j=1

where u; are the coefficients of the basis functions. Ny and Ng denote the number of degrees
of freedom associated with Wr and We, respectively. Plugging the electric field expansion
(2.69) into the weak form of the boundary value problem (2.38), the FE discretization
results in the system of linear equations

(Ag + jnokoAr — k§Az)x = —jnokob, (2.71)

where kg = w./eofto is the wavenumber in the free space and 7y = g—g The structures of

the matrices in the system of linear equations appear as

Ay = AZ“T Age ] € CNr* Ny, Al = Ay, (2.72a)
| Aér Ade

A — Aa g } € CNxNy, AT — A, (2.72b)
: 15 €
| Aer Aee
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where Ny = N; + Ng, and the matrix entries are defined with the bilinear forms

[Afrl;; = /Qv X ;- g 'V X 1;dQ, Y @;,W; € Wr, (2.73a)
[Aeli; = /Qv X Wi -y VX 5;dQ, Y @; € Wr, W; € We, (2.73b)
[Abel;; = . V X W - py 'V x 1;dT, Y @, 7; € We, (2.73¢)

47, = /FZ Zis(én <) - (60 x @)L, Y, @ € W, (2.73d)
[A7r);; = /Q W - &p0;dSY, Y @i, W; € Wr, (2.73¢)
[ATel;; = /Qu?i-erwjdﬁ, Y @; € Wr, W; € We, (2.73f)
[Aeli; = /F@ W; - ep;dl, Y @, 05 € We. (2.73g)

For the right-hand side vector b we have

b= [ Eg ] e CMs, (2.74)
with
[br]; =0, Y @; € Wr, (2.75a)
be); = /F (W x Hrg) - é,dl’, Y @; € We. (2.75b)
o

Setting the coefficients u; = mg;, for j = 1,..., Ng, such that the electric field ex-
pansion on the wave port area in (2.70b) form the transverse electric field of the modal
waveform (€, he), we have

No
Ere = ) Mg, (2.76)
j=1

and define the coefficient vector

mgT = [me1,me, ..., meng]- (2.77)
Furthermore, we define the matrix

M = [my, my,..., my,] € CVoxNe, (2.78)

where each column is associated with a modal waveform. In an approach similar to the
transfinite element method [2], the degrees of freedom on I'g in the system (2.71) are
reduced, which results in

(Ao + jkoAnr — k3 An)xar = —jkonoba, (2.79)
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where
An = M?iTéT M%i%fm ] € CNrxNr (2.80a)
Ay = Agz g } e CNrxNr (2.80b)
Ay = _ M‘?i%T Mﬁi%z[M ] € CNrxNr (2.80c)
by = ngi)@ } eCN br =0, (2.80d)

and N, = Ny + Ng.
For the network parameter evaluation only one single mode is excited on I'g, which
means to set Hre = hre in (2.38). Hence, in (2.75b) we set

[bé]i = / (wz X ﬁT&) - énpdl, vV w; € We. (2.81)

e

and denote the right-hand side excitation with
bue=| 2 | eC¥ br=o0. (2.82)
1 MTbg ’

The coefficient vector x M(ﬁTg) denotes the solution of an excitation with the modal wave-
form (é’g,ﬁg). The generalized impedance parameter evaluation is done by the output
functional

Zee == Ze(xpr(hre)) = by exar (hre). (2.83)

This can be verified by writing

bIA}CXM(ﬁTg) = bTMXM(ﬁTg) (2.848,)
= Z bTmV th (2.84b)
- © —
= Z Vy(th) < mm'/ U72 X hTC . éndF> (2.84(})
: I'e
No
_ ZV (hre) / (Z mmwz> X hy¢ - éndl (2.84d)
= Z V / eTV X hTC endF (2.846)
= Z ( Ery(hr,) X hrc - éndf) , (2.84f)

where the last line can be plugged into (2.59).
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2.4 System Parameterization

For the MORe process in this thesis the frequency is chosen as parameter, actually the
wavenumber kg, which allows us to evaluate fast frequency sweeps. The parameterization
of the linear system of equations is dependent on the considered structure. To discuss this,
the FE system together with its excitations and output functionals is denoted as

(Z s'A)X(s) = s'Bu(s), A; € CNrxNr, (2.85a)
1=0
Y(s) = BTX(s), B ¢ CNrxNe, (2.85b)

where we use s as parameter, a for the polynomial degree and ¢ is the parameter exponent
of the right-hand side. A device which is modeled without any impedance boundary I'z has
only a linear parameter dependency, a = 1, where the parameter is the substituted square
of the wavenumber, s = k%. An absorbing boundary condition causes a linear wavenumber
dependency, thus we have s = kg and a = 2. However, in case of modeled surface losses,
we need to use the square root of the wavenumber as parameter, i.e. s = /kg, and the
polynomial degree rises to a = 4.

In the FE simulation of passive microwave structures, impedance as well as scattering
formulations are commonly used. While the introduced approach is based on an impedance
formulation, the above cited original transfinite element formulation [2] was introduced in a
scattering formulation. This means, that the amplitudes ug’ are used in the excitation and

ug fill the solution vector, which directly makes the scattering parameters available. How-
ever, these approaches result in different parameterizations, which is explicitly discussed
in [21], also in context with MORe techniques.

Another issue is the modal excitation on the boundary I'g. While the exciting field on a
fixed frequency may be evaluated, analytically or numerically, the frequency dependencies
on the boundaries need to be considered for a system parameterization. As long as excita-
tions with non-varying modal field patterns are employed, i.e. TE-, TM- or TEM-Modes,
scaling approaches as [22] are suitable. If however the modal field patterns are frequency
dependent, the exciting fields need to be found on each evaluation point.
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Chapter 3

Adaptive Model Order Reduction
Methods

3.1 Preliminary Words on Model Order Reduction

The FE method is a well-established technique for solving driven time-harmonic field prob-
lems. Since FE matrices are sparse, the resulting systems of linear equations, though large
in size, can be solved very efficiently by direct or iterative methods. However, FE matrices
depend on the working frequency, and hence computing the system response over a wide
frequency range turns out to be very expensive, because it involves FE solutions at a large
number of frequency points.

To overcome this difficulty, which arises also in large-scale circuit simulations, methods
of MORe have been developed [7]. Amongst the techniques available, projection-based
MORe methods as [8], [23], [24] are particularly attractive, because they are well-suited
for large-scale systems and constitute Petrov-Galerkin methods, as the FE method itself.
The underlying idea is to restrict the FE solution to a carefully chosen subspace and apply
a (Petrov)-Galerkin method to reduce the original problem to a ROM of low dimension.
Single-point methods, such as [25], [9], construct the projection matrix or matrices from a
Krylov expansion about one frequency point. For smaller problems, single-point methods
are very attractive, because the FE matrix needs to be factorized only once: all Krylov
vectors required are generated by forward-back substitutions. However, the quality of the
ROM depends strongly on the expansion frequency, the optimal location of which is a
priori unknown. Moreover, for large-scale problems, matrix factorizations are prohibitively
expensive. Then, (semi)-iterative solvers [26] must be employed, and the cost of computing
one Krylov vector becomes comparable to that of a full FE run. In this situation, multi-
point methods [27], [28], which utilize FE solutions at multiple frequencies to build the
projection matrix, become very attractive, because they offer flexibility in choosing the
expansion frequencies and great numerical robustness.

In this chapter, the mathematical background knowledge for MORe is presented. Fur-
thermore, adaptive MORe algorithms, for both single-point and multi-point techniques are
introduced. Numerical experiments, employing some error measures, compare the adaptive
multi-point technique to single-point methods and show the following: The dimension of a
ROM to reach a given error limit, is significantly smaller, if the adaptive multi-point algo-
rithm is employed, even if the expansion frequency for the single-point method is chosen
at its optimum. Hence, the adaptive multi-point method is superior to the best possible
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single-point method with regard to memory requirements for generating the ROM.

Another argument for employing multi-point methods is the lower dimension of the
resulting ROM. There are applications that require very large numbers of ROM evaluations,
such as repetitive calls to time-domain recovery algorithms in circuit simulators, utilizing
ROMs as library elements, or stochastic optimization methods employing multi-variate
ROMs [29] for computing cost functions. For such purposes, it is very desirable to minimize
the size of the ROM because, in contrast to the original FE matrices, ROM matrices are
full, and matrix factorization costs grow proportionally to the third power of the ROM
dimension.
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3.2 Introduction to Moment Matching

Single-point methods employ one expansion point, which means that the solution of the
large-scale system is only needed at one single frequency point for the MORe process.
These methods are based on the moment matching principle, which is closely related to
Krylov subspace methods. In this section, explicit moment matching [7] as well as the
projection-based implicit moment matching [8], [23] principle is introduced. Furthermore,
MORe techniques for first-order systems will be shown and extended in the end of the
section to higher-order systems.

3.2.1 Explicit Moment Matching

For the introduction of the moment matching principle, the single-input single-output
system of first-order

(Ao + sAq1)x(s) = bu(s), Ay, A; € VXV, (3.1a)
y(s) = cT'x(s), b,c,x € CV, (3.1b)

is considered, where s is the employed parameter. The transfer function of this system
takes the form

H(s)=cT(Ag+sA;) 'b. (3.2)

By employing a Taylor expansion, at expansion point sg, we have

which allows us to define the ith moment as

~ 1d'H(s)
gl dst

(3.4)

i

S=50

In the following, the expansion point sg = 0 is employed for simplicity. However, for all
following techniques an expansion point sg # 0 can be chosen, which causes only a simple
substitution.

Assuming the matrix Ao in the system (3.1) non-singular, we can write

H(s) = c” (AT +5A5"A1) ' b=c(T+sA;'Ay) A, . (3.5)

A basic approach to make the moments u; explicitly available is to employ a Neumann
series expansion

[e.e]

(T— (—sAg"AL)) ' =) (—sA A" (3.6)

n=0

Hence, we write the transfer function as

H(s) =Y s, (3.7)
=0
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where the moments p; yield
pi =cl(—A A1) A D, (3.8)
Thus, the transfer function H(s) can be approximated by the transfer function Hy(s),
which matches in the first £ moments
=1
H(s) =~ Hy(s) = Z,uisz. (3.9)
=0
One of the main goals of this first explicit approach is to find a rational function Hy/(s),

which matches the first & moments of the transfer function H(s). Therefore, a Padé
approximation is employed to match the first £ = 2n moments of the function

15"V ap_os" 2+ - +ais+ag
bps™ +bp_18" L4+ bis+ 1

with the moments p; of the transfer function H(s). explicitly available. This is nothing
more than writing

Hay,(s) = , (3.10)

2 Misi _ anflsn_l + an725n—2 “+ -4 a8 + agp (311)
1=0

bps™ + by 18" L4+ +bis+1

and choose the coefficients in (3.10) such that they match the first 2n moments. Comparing
the coefficients for the resulting polynomials in s, the coefficients b; can be evaluated
through solving the system of linear equations

Bo B e fPned bn, Hn
p1oo o H2 . bn—1 Pnt1
S " = (3.12)
Hn—1 Hn e H2n-2 by Hon—1
and the coefficients a; follow from the recursion
ap = Mo
a1 = p1 + bipo
n—1
ap—1 = fn—1+ Z biftn—i—1. (3.13)
i=1

This explicit moment matching technique was introduced in [7] as Asymptotic Waveform
Evaluation (AWE) and employed for circuit system timing analysis. Unfortunately, the
practical application of the AWE is limited due to a numerical deficit. The recursive
computation of (A, 1A1)iAO_ 'b converges to that eigenvector of the matrix Ay YA, which
corresponds to the eigenvalue with largest absolute value. The limited precision of floating
point numbers in numerical computation leads to a loss of information during this recursive
computation, which causes the wrong convergence. Hence, only a small number of moments
are properly matched and therefore, the reduced transfer function is only accurate in a small
bandwidth around the expansion point. Extending this single-point approach to a multi-
point AWE technique was employed in [30] to overcome this difficulty. A final remark
is that the AWE technique can also be employed for polynomial parameterized system
matrices and right-hand sides [31].



Chapter 3. Adaptive Model Order Reduction Methods 23

3.2.2 Implicit Moment Matching
Krylov Subspace Methods
The explicit moment representation in (3.8) may be written as
i = Ty, (3.14)
where v; are the Krylov vectors defined as
v; = P'u, (3.15)

with P = —Ag 'Ajand u = Ay 'b. This property motivates us to employ Krylov subspace
methods to generate numerically stable moments for the MORe process.

One of the first approaches is the Padé via Lanczos process [8], where a Lanczos
algorithm-based method was introduced to improve moment matching. As the name of
the algorithm already claims, the algorithm generates a Padé approximation by employing
the Lanczos algorithm, which computes the moments numerically stable. The resulting
transfer function matches the first 2¢ moments, as the AWE process introduced in the
section above.

Another Krylov subspace-based MORe technique was introduced in [23], where instead
of the Lanczos iteration an Arnoldi algorithm, Alg. 1, was employed. As a result of the
single sided-process, only the first ¢ moments of the resulting transfer function are matched
in this process.

Algorithm 1 Arnoldi algorithm
Lovy = x/[|x]|2
2: forn=1tog—1do
33 v=Av,
// Modified Gram-Schmidt process
forj=1ton—1do
hjn = v]Hv
v =v—h;,Vv;
end for

hni1n = [Vl
9: Vn+1 = V/hn+1,n
10: end for

The Krylov vectors {vy,...,v,_1} span the gth Krylov subspace, defined as
K,(P,u) = span{u, Pu, P?u,...,P? 'u}. (3.16)

This space can be computed in a numerically stable way by the above introduced Arnoldi
algorithm. Projecting the original system (3.1) to the Krylov subspace KCy(P,u), with
q < N, results in a ROM, which implicitly matches moments. In particular, building the
projection matrix V € CN*4, which spans the gth Krylov subspace

span(V) = K4(P,u), (3.17)
allows us to compute the low-dimensional system

(Ag + sA1)x(s) = bu(s), Ay, A € CT (3.18a)

y(s) = e'x(s), b,& x € C (3.18b)
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with
Ay=VTA\V, A, =VTA, V. b=V'band ¢ = V'e.

As the reduced system (3.18) takes the same structure as the original system (3.1), the
transfer function yields

H(s)=¢&(Ag+sA;) b, (3.19)

and its Taylor expansion is derived equivalently as

o
H(s) = jus', (3.20)
i=0
where the moments p; in the series are
fii = €T (—Ay A1) A D (3.21)
The first ¢ moments of the original system (3.1) and the ROM (3.18) match
i =pi, V0 <i<agq. (3.22)

Proof for Moment Matching

The representation above allows us to proof moment matching by induction [32]. For i = 0
we know

JrpeC?: Ay'b = Vry, (3.23)
and thus
i =c"V (VTAV) ™ Vb (3.24)
— "'V (VT AGV) ' VT (AgA; )b (3.25)
="V (VT AV) " VT Ay Vi (3.26)
=c'Vry = cTA0 b = ug. (3.27)
For i = 1 we have
Ir €C?: —A;'A1A; D = Vi, (3.28)
but we know
ro = (VI AGV) ' VTb. (3.29)
Thus,
1 =T (—A; A1)A; D (3.30)
— "V (VTAV) T (VTAV) (VT AGV) ' VTb (3.31)
= "V (VTAV) VT A, Vi (3.32)
— TV (VT AGV) " VT (AgA;A1A; D (3.33)
=TV (VIAZV) VT AV (3.34)
=c’'Vry =T (A TADAS D = py. (3.35)



Chapter 3. Adaptive Model Order Reduction Methods 25

Note that

r; = — (VIAV) " (VI A V) (VIAGV) ' Vb, (3.36)
For 2 <i < g~ 1 we have

Ir; €Cl: (—A;'A)'A D = Vi, (3.37)
Thus, with the hypothesis

v = (= (V7Av) ™ (VTA1V)>i_1 (VT AqV) ' Vb, (3.38)

the moments 2 <1¢ < ¢ — 1 of the reduced model match to the original system

[ = ( A A))A;D (3.39)

TV (= (VTAgv) (VT A1V))i(VTA0V)_1VTb (3.40)
—"V (VT AGV) ' VTA VE (3.41)

—c'Vv (VTA, V) 'VT(AAGH)AL(—AG A T A D (3.42)

="V (VT AV) " VT A Vi, (3.43)
=c'Vr; =cT (A A TTAL D = (3.44)

with

ri= (- (V7Av) " (VTA1V)>i (VTAV) ™' VTb. (3.45)

3.2.3 Systems with Polynomial Parameterized System Matrix
Higher-Order Systems

In literature, systems with a polynomial parameterized system matrix are often referred
to higher-order systems [13], [33]. Second-order systems are discussed more frequently, as
damping terms appear in modeling many classes of physical systems [34], [35]. However,
in this section, the focus is on general higher-order single-input single-output systems with
a polynomially parameterized system matrix

() Ais')x(s) = bu(s), (3.46a)
i=0
y(s) = cT'x(s), (3.46b)
where a is an arbitrary finite integer. The transfer function for this system yields
=c"()_Ais’) b, (3.47)
i=0
which can be written as

s)=cl(I- i D;s') " lu, (3.48)
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with D; = —A;'A; and u = A, 'b.
Similar to the Neumann series, the matrix inversion can be expanded around s = 0 as

(I-— Za: D;s') ! = i P;s', (3.49)
=1 =0

where
Py=1 (3.50)
min(k,a)
P, = Z P._.D.. (3.51)
i=1

This is proved in [33| and can be verified by explicitly writing the expansion. Thus, as in
the first-order system, the transfer function can be expressed by a Taylor expansion

H(s) =) c"Pius’ =) s, (3.52)
=0 =0

where the ith moment is given as

i = cI Pyu. (3.53)

Higher-Order Krylov Subspaces

(CNXN

For the sequence of matrices {D;}? ,, D; € , and the non-zero vector u € CV, the

qth Krylov subspace of ath-order is defined as

Kq({Di}i—y;u) = span{wo, w1,..., Wy 1}, (3.54)
where the recursive definition of the vectors w; yield

Wy = u, (3.55)

min(l,a)

W = Z Diwlfi- (3.56)
1=1

This definition is from [33], but is in accordance with definitions for second-order Krylov
subspaces introduced in [34], [35]. Furthermore, employing the definitions above for P;
allows an alternative recursive description for the higher-order Krylov vectors

W; = Piu. (3-57)

This approach is also in accordance with the properties introduced for higher-order systems.
Hence, the moments can now be written as

i = c"'w;, (3.58)

with the Krylov vectors w;.
Another interesting approach to higher-order Krylov subspaces is to employ the AWE
technique [29], [31]. Here, the solution vector is expanded in a Taylor series

(o]
X=> W (3.59)
=0
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and plugged into the system (3.46b). Then, by equating the coefficients, the vectors w;
yield

Wo = A, ', (3.60)
Wi = —Ay AW, (3.61)
Wo = Ay (=AW — AgWy), (3.62)
(3.63)
min(a,i)
W, = Ayl (— Z A Wiim). (3.64)
m=1

It is straightforward to see that w; = w; for D; = —AalAi and u = Ao_lb, as defined
above.

A final approach to higher-order Krylov subspaces is by rewriting the higher-order
system as an equivalent first-order system. This allows us to show the connection of the

resulting first-order Krylov subspace of the linearized system and the higher-order subspace
[24], [36].

Reducing the Higher-Order System

Employing for the reduction of the system (3.46) the projection matrix V € CV*4, which
spans the gth Krylov subspace of ath-order

span(V) = K2({Di}ei u), (3.65)

the low-dimensional system yields

(3 Aist)(s) = Bu(s), (3.66)
=0
j(s) = € x(s), (3.66b)
where
A, =VTAV, b=VTb e =V (3.67)

The transfer function for the ROM results in

H(s)=&"(>_ A;s')'b, (3.68)
=0
which is
H(s)=&"1-) Dis") 'q, (3.69)
=1

with D; = —Aj'A; and G = Ao_lf). Again the property (3.49) is employed to write

a

(I-) Dis') ' = i P;s’, (3.70)
=0

i=1
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where
Py=1, (3.71)
B min(k,a) B B
P, = Z P;_;D,. (3.72)
i=1

Thus, the transfer function expressed with moments yields

H(s) = Z cPiust = Z flis', (3.73)
=0 =0
where
i = &P, (3.74)

The first ¢ moments of the original system (3.46) and the ROM (3.66) match

fi = i, V0 <i<q. (3.75)

Proof for Moment Matching

The proof is for a fixed integer ¢ > 1. The moment matching for fig = pg and fiy = pq is
identical to Section 3.2.2, respectively, because Pg =1 and P; =D; = —AalAl.
For ¢+ = 2 we have

Iry €C?: Pou=((—A; A1) — AjTA2)A; D = Vo, (3.76)
Thus,
fiz = &7 <A51A1A51A1 - AglAQ) A;'b (3.77)
="V (= (VIAGV) " (VTAV) 1y — (VIAGV) T (VTA,V) o) (3.78)
="V (VI AGV) ! (VIALA; A1A; b — VT ALA5 D) (3.79)
="V (VIAGV) ' VI AGA; ! (A1A;'A1A; "D — AyA;'D) (3.80)
=TV (VIAGV) ' VT A, (A7 A1A;'A1A; D — A ALA; D) (3.81)
<V (VIAGV) ' VT AGPyu (3.82)
¢V (VT AV) T VT Ag Vi, (3.83)
=c'Vry = c"'Pyu = 142 (3.84)
Note that
ry = Py (3.85)

For 2 < i < q we know

Jdr; cC?: P,u= Vr;. (3.86)
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With the hypothesis
ri p =P, i, Y0 < k < min(i, a) (3.87)
we have
fi; = TP (3.88)
min(z,a) } R
= Y PiyDy|un (3.89)
k=1
min(z,a) o
=¢l D,P;_; | & (3.90)
k=1
min(z,a) ~
=c’ Z Dyri_k (3.91)
k=1
min(4,a) .
=c'V — (VIAGV)  (VIALV) 1y, (3.92)
k=1
. min(z,a)
=c'V (VIAV) VT —A,Vr_, (3.93)
k=1
. min(z,a)
=c'V (VTAV)  VTA Z —AJ'ALVE (3.94)
k=
. min(z,a)
="V (VIAV)  VIA | ) —AJ'AP | u (3.95)
k=1
="V (VTAGV) " VT A(Pu (3.96)
="V (VT AV) T VT A Vi, (3.97)
=c'vr; = c'Pu =, (3.98)
and thus

Well-Conditioned AWE

Although the AWE was shown to generate higher-order Krylov vectors, and thus span
higher-order Krylov subspaces, the technique exhibits similar numerical deficits as ex-
plained for first-order systems. This limits the numerically precise matched moments in
the reduction process to a low number. However, the WCAWE process, introduced in [24],
provides a means to span higher-order Krylov subspaces in a numerically stable way. The
iterative process is given in Alg. 2 and refers to a polynomial parameterized system of

linear equations of the form

(Z A;sHx(s) = Z b;s’.
i=0 =0

(3.100)
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The WCAWE algorithm needs the following additional definitions. The columns of the
matrix V, are the iteratively computed vectors

V, = [V1,¥2,..., 7. (3.101)

The matrix U is a non-singular upper triangular matrix which relates the matrices \7(1 and
V, by

V,U =V, UecC™, (3.102)
where
Vi, =[vi,va,..., Vgl (3.103)

In the algorithm, the correction matrix Py, (n,m), is computed as

m

Py, (n,m) HUM ettt 1] Py, (n,m) e Cr—mxn=m, (3.104)

The vectors e; are defined as unity vectors with the ith entry set to one and all others
equal to zero. The lengths of e; conforms on the matrix that operates on it.

The coefficients in the matrix U, i.e. the relation of Vq and V, is an important part of
the method. Employing the modified Gram-Schmidt process to evaluate (3.102) is claimed
to result in high accuracy [9], where the resulting columns of V, are orthonormal. The
properties of other choices for (3.102) can be found in the referred paper.

The proof for the WCAWE algorithm in [24] shows, that each new computed vector v,
is a superposition of the higher-order Krylov vectors

q—1
vy =Y Wiz, (3.105)
=0

where the coefficients x; result from the algorithm.

Algorithm 2 Well-conditioned AWE

1: v = A_ bo

2: Vo = A (blel PU1 (2, ) A1V1)

3: V3 = (blel PU1 (3, )62 + b2e1 PU1 (3 2)61 Aivy — A2V1PU2 (3, 2)61)
min(a1,q—1) min(a,q—1)

4 vy = A Z bel Py, (q,m)eq m — A1vy 1 — ZAqu,mPU2 (g, m)eq—m)
m=1

m=2
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3.3 Adaptivity and Error Measures

Projection-Based Model Order Reduction

To keep the basic idea of the introduced method as general as possible, the considered
system takes the form

aop al

O s'A)X(s) =) s'B;, A; e CVN (3.106a)
=0 =0
a2

Y = (> s'C) X(s), B; € CV*t C; e CVxe, (3.106b)
=0

where N, b and ¢ denote the number of unknowns, the number of input vectors and
output vectors, respectively. The numbers ag, a1 and as give the polynomial degrees of
the parameterization. The parameter s stands for the wavenumber &, or a substitution as
explained in Section 2.4.

The projection-based MORe methods considered in this thesis have in common that
they seek an approximation QX to the full solution X in the range of a low-dimensional
unitary matrix Q € CNV** with u <« N. Furthermore, they employ a Bubnov-Galerkin
process to reduce the original system (3.106) to the ROM of the form

aop ai
O s'A)X(s) =) _s'B;, (3.107a)
=0 =0

a2
Y = (> s'C)"X(s), (3.107b)
=0
where
A; = QTA;,Q e C¥*, (3.108)
B; = Q'B; e C¥*, (3.109)
C, = QTCc; e cvxe, (3.110)

which can be solved at very low cost.

Adaptive Process

In the following, we focus on the iterative enlargement of the projection matrix, as well
as on the corresponding enlargement of the ROM. The processes will be employed in
the adaptive algorithms introduced later. Hence, assume that the matrix Q = Q,_1
is employed to compute the ROM of the form (3.107). In the next iteration, a matrix
Voew € CV*P is generated by the MORe technique, to enlarge the subspace in which the
ROM is solved. Note that the columns of V., probably neither provide an orthonormal
basis nor do they have to be orthonormal to Q,. Therefore, the modified Gram-Schmidt
orthonormalization process is employed for

[Qn—lanew]U - [Vn—hvnew]a (3111)
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where the columns of matrix V,,_1 are the previously constructed vectors from the MORe
technique. Only the new added vectors need to be orthonormalized. However, the projec-
tion matrix will be enlarged by

Qn = [anla Qnew]- (3112)

The subspace projection can be an expensive process in the adaptive algorithm. Thus, to
improve the performance, the ROM from the previous iteration is enlarged in each adaption
step

- [ A QT_ A;Q

A — i n—1inew : 3113
' L z;ewAianl QgewAiQnew ( )

- [ B.

B, + ‘ol 3.114
' L z;ewBi:| ( )

Cie | o } (3.115)

L newCi

This results in a ROM of the form (3.107) of higher-dimension. Employing the proposed
ROM enlargement procedure above reduces the MORe process runtime by not projecting
the columns Q,_1 of the ROM, which are already available from the previous iterations.

Error Measure

The performance of the reduction methods as well as the accuracy of the generated ROMs
is an important issue in this thesis. Therefore, error measures are introduced to make the
quality of the reduced systems comparable, but are also employed in the later introduced
adaptive MORe techniques.

We define the set of L equidistant evaluation points B = {s1, s2,...,sr}, within the
bounds s1 = Spun and S;, = Smax. For this set B, a sequence of matrices
{M}z = {M(s1),M(s2),...,M(sr)} is defined. Hence, for two sequences {M}; and
{N}j, the error measure is defined as

L Ny N

Ea({M} g, {N}5) = N%N SOSCS (Mg (sa) — Nij(sn)]. (3.116)

n=1i=1 j=1

In this thesis, we chose the scattering matrix at the evaluation point s; as matrix M(s;).
Thus, the true error Ey({S}s, {Sn}5), where {S}z are the scattering parameters computed
by the full FE system and {S, }5 denotes the sweep of the ROM, allows us to evaluate the
accuracy of the ROM. The subscript n stands for the number of iterations with which the
adaptive MORe process was run. The error measure F5({S,}5,{Sn_1}5) therefore gives
the differences of ROMs of nth and (n — 1)th iteration. This definition is employed as
termination criterion in the later provided adaptive MORe algorithms. Furthermore, the
error measure Fy({S,} By {Sp_1} 5,) allows us to define an error measure on the subinterval
B, € B, which is used to find the next expansion point in the adaptive multi-point method.
The efficiency and reliability of the introduced error measure are shown in [28] and [37],
where numerical experiments in the later reference also compare the new error measure to
alternative approaches.
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For some numerical experiments, additional error measures are defined as
1 L Ny N
By (M) g, {N}g) = 5 D2 D0 IMig(sn) — NG (3.1172)
topn=1i=1 j=1
Eoo({M}B’ {N}B) = Hl]ar}L{ |Mij(8n) - Nij(sn)| . (3'117b)

3Jy
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3.4 A Basic Adaptive Single-Point Method

3.4.1 Broadband FE Simulation of Electromagnetic Structures

Several approaches exist, where MORe methods are employed for the broadband FE sim-
ulation of electromagnetic structures, based on explicit moment matching [31], [38], [39]
or implicit moment matching [25], [9]. In this section, an adaptive fast frequency sweep
technique for the simulation of passive microwave structures is provided. Therefore, the
FE system (2.85) is rewritten as
a .
) s'A)X(s) = 5B, A; e CVN A= AT (3.118a)
i=0
Y = BX(s), B e CV** B =[b!,b%...,b", (3.118b)
where N and b denote the number of unknowns and the number of input/output vectors,

respectively. A main property of the system (3.118) is its symmetry. Employing the
projection matrix Q € CN*4, the reduced system takes the form

a

O s'A)X(s) = s'B, (3.119a)
i=0
Y = BTX(s), (3.119b)
where
A =Q"™M,Q, (3.120)
B=Q'B. (3.121)
As the system is driven by b excitations, which are the columns b', b2, ..., b?, the Krylov

subspace associated to each excitation has to be computed and plugged into the projection
matrix Q. Hence, the subspace spanned by Q is

span(Q) = K({Di}yiu') UKL(D ) UL UKDt (3.122)

where v/ = Aalbj and again D; = —Ao_lAi.

Due to the symmetry of the system, it is straightforward to prove that the reduced
model (3.119) matches in the first 2¢ moments to the full system (3.118), although only a
single-sided projection is employed [40].

3.4.2 A First Adaptive Approach

Alg. 3 gives a basic adaptive single-point MORe method for the broadband FE simulation
of electromagnetic structures. For the sake of simplicity, the system matrices A;, for
1=0,...,a , represent the shifted matrices in the expansion point 5. The method employs
the WCAWE process, combined with a modified Gram-Schmidt orthonormalization. The
computed WCAWE vectors for each right-hand side have to be orthonormalized against
each other in Alg. 3, Line 5. Later in the adaptive loop, the vectors are also orthonormalized
against the columns of the previous projection matrix in Alg. 3, Line 13. This results in
the updated projection matrix Qg which spans the subspace (3.122).

The right-hand side in the system has a purely linear wavenumber dependency, which
only causes an index shift in the WCAWE process. This simplifies the WCAWE process,
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and only the correction matrices for the polynomial parametrized system matrices are
required in Alg. 3, Line 10.

In each adaptive iteration, the projection matrix as well as the ROM are enlarged in Alg.
3, Line 13 and 14, respectively, as described in Section 3.3. The process stops as converged,
if the error indicator in Alg. 3, Line 16 E2({S,}5, {S4_1}5) is below the threshold value
Es 101 Otherwise, if ¢ = gmqz, the algorithm aborts with status 'not converged’.
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Algorithm 3 Self-Adaptive Single-Point Model Order Reduction

1: for f=1tob do

2. Tnitial WOAWE: v/ = V¥ = A;'bP,

3:  Normalize: v? = Vf = Vf/|\7f|, Ub = |\7f|

4: end for

5: Modified Gram-Schmidt: QU = [V},..., V{]

6: Initial subspace projection: A= QTA,Qy, B = QB
7: Solve frequency sweep:

a
(Z Aisi)x = s'B, Y = BTX = Sequence {Sl}g
0

1=
8: for ¢ = 2 to ¢y, do

9: for S=1tob do
10: WCAWE process:
min(a,g—1)
\75 = Aal(—Alvqﬁ_1 - Z Ang,mPfJ2 (g,m)eq—m)
m=2
11: Modified Gram-Schmidt: [V7_;,vj]UP = [VP_ | ¥/]

12:  end for
13:  Apply modified Gram-Schmidt only to new generated vectors:
[Qq—h Qnew]U = [Vé_h oo 7VZ—17 V(lp s 7VZ] ) q = [Qq—la Qnew]
14:  Enlarge ROM:
- A T AQ ] - [ B }
A; ’ gt ner) B« :
' |: ,;rl;ewAiQ(I*l Qz:ewAiQnew Qz;ewB
15:  Solve frequency sweep:

a
(Z Aisi)x = st]:’», Y =B"X = Sequence {Sq}lg
i=0

16: if EQ({Sq}B, {Sq_l}B) < E2,tol then
17: return(converged)

18:  end if

19: end for
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3.5 An Adaptive Multi-Point Method

3.5.1 Projection-Based Model Order Reduction

In contrast to single-point approaches, multi-point methods employ system solutions at a
set of expansion points {$1,...,3} to construct the projection matrix Q. Multi-point
methods offer flexibility in choosing the expansion points and enjoy great numerical ro-
bustness. While it is possible to include higher-order Krylov vectors at each expansion
point, as in [30] and [41], the algorithm proposed in the following only employs the system
solutions themselves. This technique is called a rational Krylov method of lowest-order
[42]. Each solution X(3,,) of the considered FE system of the form

() s'A)X(s) = s'B, A, e CVN A = AT (3.123a)
=0
Y = BTX(s), B; € CV*?, (3.123b)

spans the ath Krylov subspace of first-order. Thus, employing X(3,,) as projection matrix
for the symmetric system above generates a ROM which matches in the first and second
moment. In this thesis, an orthonormal projection matrix Q, with

span (Q) = span(X(31), X(32),...,X(8rp)), (3.124)

is employed for the subspace projection, which results in the ROM

a

() s'A)X(s) = s'B, (3.125a)
B Y = BTX(s), (3.125b)
where
A; =QTAQ, (3.126)
B, = Q'B.. (3.127)

The employed projection matrix spans the first Krylov subspace at each of the M expansion
points $,,. Thus, the first and second moment of the ROM and the original system match
at each expansion point §,,.

3.5.2 Proposed Adaptive Algorithm

This thesis provides an adaptive multi-point algorithm, which employs the projection-based
approach above and is listed in Alg. 4. The general strategy of the algorithm is to divide
the bandwidth of interest, i.e. the set of evaluation points B within the bandwidth, into
subintervals B, C B. At each adaptive step, the interval of largest error B is identified
with the help of the error indicator Eg({sq}&, {Sq,l}Bi) in Line 18, which evaluates the
differences between the scattering parameters obtained from the current and the previous
ROM. The next adaptive expansion point 3, is chosen at the center of Bg, Line 9, and the
interval is separated into two new subintervals in Line 10. This procedure is repeated until
the error indicator EQ({SQ}B, {Sq—1}8)7 is below the chosen threshold value Ej ;4.
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Algorithm 4 Self-Adaptive Multi-Point Model Order Reduction

L: Solve system at §; = min(B):
Z A;s =3B, = X(5)

2: Solve system at §3 = max(B):
ZA 55)X (39) = 54B, = X(39)

3: ln1t1al modified Gram-Schmidt: QoU = [X(31), X(32)]
4: Initial subspace projection: A= QTA,Q2, B=Q2 B
5: Solve frequency sweep for s € B:

a

(Z Aisi)x = s'B, Y = BTX = Sequence {SQ}B

Szet interval of worst error: é =1
Initialize first interval: Bs = B
for ¢ = 3 to ¢ue, do
Find next expansion point: §, = arg ISI?élél ls -

min Bs+max Bs
2

10:  Split interval: By_1 = [34, max(Bg)], B + [min(B;g), 54
11: Solve system at §4:

Z Ai5,)X(3) = 3, IB, = X(3,)
12: Apply modified Gram-Schmidt only to new generated vectors:
qu 1, Qnew]U = [X(51), ... ,X(éq,l), X(éq)],
Qq qu 1 Qnewl
13:  Enlarge ROM: )
~ A Q' A;Q - B
A‘ ) q 1 1 gnew B .
s l newA Qq 1 Qz;ewAiQnew:l ’ < l ,;rl;eijl

14:  Solve frequency sweep:
a
(Z Aisi)x = StB, Y =B'X = Sequence {Sq}g

15: if EQ({Sq}B, {Sqfl}g) < E27t01 then

16: return(converged)

17 end if

18:  Find interval of worst error: é = arg _max Eg({Sq}B AS,- 1}5,)
b 7q

19: end for
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3.6 Single-Point Methods and Multi-Point Methods in Com-
parison

As a practical example for the comparison of the MORe approaches of this chapter, the
bandpass filter in Fig. 3.1 is considered, which is taken from [43]. To obtain reference
results for the frequency response of the filter at high spectral resolution, individual FE
solutions were computed at N = 2001 equidistant frequency points in the range from 4 to
12 GHz. This set of evaluation frequencies is denoted by B. The FE model is based on
basis functions of second-order, and the matrix dimension is N = 103848. Fig. 3.2 gives the
magnitudes of the reflection and transmission coefficients s1; and s1o versus frequency. As
a first numerical experiment, the true error of the adaptive multi-point method for ROMs
up to iteration ¢ = 50 is evaluated for the norms El({gq}g, {S}xn), Eg({éq}B, {S}z) and
Em({gq}lg, {S}z). Fig. 3.3 shows a steep descent around the iteration ¢ = 35 for all norms
employed. At ¢ = 37, the ROM exhibits errors lower than 10~8 in all norms, which shows
the high accuracy of the scattering parameters on the evaluation points in B, compared to
the large-scale FE model.

Next it is shown that the proposed adaptive multi-point technique needs lower di-
mension for high accuracy than single-point methods, even if the expansion point for the
moment matching process is chosen at its optimum. To find the best available expansion
frequency, which is a priori not known, ROMs with expansion frequencies in the range from
9 to 11 GHz are generated and the true error is evaluated in the same frequency range.
The results of this process are presented in Fig. 3.4 and Fig. 3.5, respectively, which show
the errors EQ({SQ}B, {S}z) and EOO({SQ}B, {S}y) for ROMs, build at iterations ¢ = 39 to
q = 51.

It can be seen that, even when the optimum expansion frequency f = 10.15 GHz is
chosen for the single-point method, a ROM build at iteration ¢ = 51 is required to yield
results of similar error as the adaptive multi-point approach. Specifically, the single-point
errors at ¢ = 51 are Ex({Sy}z, {S}5) ~ 6-107¢ and EQ({S(J}B7{S}B) ~ 5-1077; still
worse than for the adaptive multi-point method with ¢ = 37. When the iteration numbers
of the single-point and adaptive multi-point models are both taken to be ¢ = 37, the
single-point method is clearly inferior, as can be seen from the errors e;; = |§11 — s11| and
e12 = |812—s12|, which are plotted versus frequency in Fig. 3.6. In addition, Fig. 3.6 shows
the locations of the expansion frequencies for the adaptive multi-point method, indicated
by the symbol ¥. Fig. 3.7 presents different norms of the single-point error for ¢ = 37
and 401 different locations of the expansion frequency. This confirms that no single-point
method can produce a ROM of similar accuracy as the adaptive multi-point model of same
order.

Table 3.1 gives computer runtimes for ROM generation and evaluation. When ROMs
of similar quality i.e., adaptive multi-point models with ¢ = 37 and single-point models
with ¢ = 51, are compared, adaptive multi-point evaluation times are 39% shorter. On the
other hand, for original system dimensions where the matrix factorizations are efficiently
evaluated, model generation is faster with single-point methods, even for a ROM generated
at ¢ = 51.
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Table 3.1: Bandpass filter [43]: Computational data.

Generation Evaluation
MOR Number of | LU factorization L=2001
method iterations ¢ N =103 848
Single-point 37 67 s 1.1s
Single-point 51 101 s 1.8 s
Multi-point 37 694 s 11s
D4
@1.25
o8]
D117 ©
= o
~
(s}
~
1 24
8
20.45
66
N
0
g =38

ié

Figure 3.1: Bandpass filter [43]: Geometric dimensions in mm.
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Figure 3.2: Bandpass filter [43|: magnitudes of s1; and s12 versus frequency.
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Figure 3.3: Bandpass filter [43]: True errors Ej, Es and E. versus iteration number,
multi-point method.
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Figure 3.4: Bandpass filter [43]:
frequency, single-point method.
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Figure 3.5: Bandpass filter [43]:
frequency, single-point method.
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Figure 3.6: Bandpass filter [43]: True errors in scattering parameters versus frequency,
ROMs with g = 37 of single-point and multi-point method in comparison.
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Figure 3.7: Bandpass filter [43]: True errors E;, Ey and E4 versus expansion frequency
for single-point ROMs with ¢ = 37.
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Chapter 4

Out-of-Core Model Order Reduction
Methods

4.1 Systems with a Large Number of Right-Hand Sides

4.1.1 Problem Statement

Technological advances in computer hardware allow the FE simulations of more and more
complex electromagnetic structures. Today’s simulations include complete printed circuits
boards, whole integrated circuit packages, but also interconnectors with large numbers
of pins. With the increasing complexity of the simulated structures, also the number of
considered excitations became larger. This means for the numerical simulation of such
complex structures that, on one hand the systems of linear equations may result in higher
dimensions, on the other hand the systems may need to be solved for a larger number of
right-hand sides.

Linear equation systems with a large number of right-hand sides is an area of extensive
research, which also includes Krylov subspace methods for multiple starting vectors [44],
[45]. This research is closely related to the Krylov subspace methods applied for MORe
techniques which consider multiple input and output vectors, e.g. [46].

The focus of this chapter is on MORe techniques for high-dimensional systems with
a large number of right-hand sides, where the system matrices are polynomially parame-
terized in the frequency. These are the properties of a system of linear equations, which
results from the FE discretization of the considered complex electromagnetic structures.

The adaptive MORe techniques need to increase the projections matrix in each itera-
tion, which requires more and more memory capacity. Although the computer operating
system may start a swapping process to store Random Access Memory (RAM) data on the
hard disk, the complete MORe process becomes inefficient and the ROM generation may
become very slow. However, if the MORe process needs to be aborted, the projection ma-
trix does not span a sufficient subspace and the generated ROM is not accurate within the
considered bandwidth. To overcome this limitation, this thesis provides algorithms that
swap carefully chosen computation data to the hard disk. These out-of-core approaches
keep the RAM requirements for the projection matrix data on a constant low level. For
both single-point and multi-point techniques out-of-core algorithms are presented. While
the memory swapping can be accomplished easily in the multi-point algorithm, the single-
point approach needs major structural changes to remain efficient.

The operation system as well as the compiler provide highly optimized data buffering

45
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techniques. Thus, the hard disk access time for the data swapping is not transparent for
high level language programming. However, thanks to this intelligent buffering system,
the resulting data access turned out to be very fast and does not cut down the efficiency
of the MORe techniques.

As a final remark it should be added, that the complete swapping process uses binary
data. This reduces the data amount, which reduces access times and requires less hard
disk space.

4.1.2 Memory Considerations
Finite Element System

To explain the need for data swapping in the broadband FE simulation of electromagnetic
structures, we consider the system (3.118). Looking back to the theory of Section 2.3,
each column b’ of the block right-hand side B contains one entry and thus is extremely
sparse. The sparsity of the system matrices A; depends on the FE formulation, the basis
functions, the FE mesh of the considered structure as well as on the imposed boundary
conditions. Furthermore, it is worth mentioning here, that for systems considered in single-
point methods the sparsity pattern may change and the matrices may have more entries,
if the expansion point is not chosen at frequency zero.

The FE simulation of complex structures, which results in systems with high-dimensional
matrices, may struggle on the memory limitations, as the requirements for the solu-
tion/factorization of the system may need a lot of memory. Software packages as [47]
therefore provide out-of-core techniques to make the factorization of larger systems avail-
able.

The memory for the system and its solution is one major part of the used memory, but
is not subject of this thesis and is not further discussed. Nevertheless, memory requirement
for system matrices and their factorization for the simulated structures will be provided in
the numerical results.

In contrary to the full FE system, the low-dimensional ROM is irrelevant for the mem-
ory considerations. As for the reduced model itself, the memory requirements for the
solution of the ROM are negligible.
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Multi-Point Methods

The adaptive multi-point method, see Alg. 4, represents the more simple technique, also
from the memory handling point of view. For each expansion point, one block of b columns
and N rows is added, which is the matrix Qpew. This is the dimension of the block right-
hand side vector B. In contrast to the block right-hand side, the matrix Q.. is dense.
Therefore, the algorithm enlarges the projection matrix in each iteration, and the full
projection matrix Q, of dimension N x bq fills more and more the RAM, see Fig. 4.1(a).

To improve the memory performance of the adaptive multi-point algorithm, only the
matrix Qe is kept in the memory, which is the orthonormalized solution block vector
X(l%q) of the current iteration. The complete projection matrix Qq—; of the previous
iterations is swapped to the hard disk. The columns of Q1 are loaded one after another
from the hard disk to the RAM for the orthonormalization process of the new computed
block X(/%q) as well as for the subspace projection, see Fig. 4.1(b). Through this process,
the required RAM capacity for the projection matrix is constant and does not increase
with newly added expansion points. A generalization of the proposed approach is to allow
only a predefined number of columns of Qe to be kept in the memory. This number

could even be automatically adapted to available memory.
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(a) Multi-point method memory requirements.

RAM
Q1 Q2 Q1

(b) Out-of-core multi-point method memory requirements.

Figure 4.1: Multi-point method memory requirements.
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Single-Point Methods

The situation in the case of single-point methods is rather difficult. The major drawback
of the introduced adaptive single-point approach in Alg. 3 is that, for each right-hand side,
the projection data needs to be kept twice in the memory. The WCAWE process of each
right-hand side performs its own orthonormalization process. This data has to be kept in
the memory additional to the projection matrix Qg, see Fig. 4.2.

Therefore, a blocked WCAWE approach will be employed, which operates only on the
projection matrix itself. Hence, the memory requirements are reduced as Fig. 4.3(a) shows.
The blocked process generates in each iteration a non-orthonormalized block WCAWE
vector Vq = [\7}], \7(2], . ,\72]. This block vector is orthonormalized to the projection matrix
and within its columns. The orthonormalized block V| is finally added to the projection
matrix. Thus, this approach will provide the same memory usage situation as the multi-
point approach in Alg. 4.

The block algorithm is also the basis for the development of an out-of-core single-point
method. The goal is again to swap as much projection matrix data as possible to the hard
disk. This thesis provides a technique that keeps only two blocks of the dimension of B
in the RAM, see Fig. 4.3(b). One block is the newly generated block vector, on which
the algorithm operates. The second block is used as a data buffer and is needed to keep
the blocked WCAWE process efficient. Additionally one projection matrix column after
another is loaded from the hard disk to the RAM for the reduction process operations.
Hence, the memory requirements for the projection matrix in the RAM is on a constant
low level and does not increase in the iterative process. However, the single-point out-
of-core technique needs more RAM capacity to stay efficient compared to the multi-point
approach.
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Figure 4.2: Single-point method memory requirements.
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(a) Block single-point method memory requirement.

(b) Out-of-core single-point memory requirement.

Figure 4.3: New single-point method approaches memory requirements.
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4.2 Block Algorithm for Higher-Order Systems

This section is dedicated to single-point methods, in particular, to reduce their memory
usage by means of a block algorithm. This thesis provides a proof, that the simple block
vector extension of the WCAWE, provided in [13], does match moments. Therefore, the
introduced Krylov subspace theory is extended and important properties for blocking the
WCAWE techniques are discussed.

4.2.1 Block Krylov Subspaces
Definition and Verification of Higher-Order Block Krylov Subspaces

In this section, the system of the form (3.118) is considered, as the blocked algorithm is
sought for the same problem as in the previous chapter. Using the definition of the previous
chapter D; = —AalAi and extending u = Aalb to the block notation U = Ao_lB, allows
us to introduce block Krylov subspaces.

For the sequence of matrices {D;}¢_;, D; € C¥*¥ " and the block vector U € CN*?,
the gth block Krylov subspace of ath-order is defined as

ICZ({DZ};lZI’ U) = Colspan{Wo, W17 s 7Wq—1}7 (41)

where the recursive definition of the block Krylov vectors W; yield

W, =1, (4.2)
min(l,a)
W, = Z D,W,_,. (4.3)
=1

This definition is a generalization of the higher-order Krylov subspace definition of Sec-
tion 3.2.3. Plugging the Taylor expansion

X(s) =Y Wis', (4.4)
=0

into the system (3.118), allows us to write the block AWE vectors

W, = A;'B, (4.5)
W, = Aj (—A W), (4.6)
Wy = A (-A W) — Ay W), (4.7)
(4.8)
min(a,n)
Wo=A7' (= > AnW,n) (4.9)
m=1

With the definition given above, we have W, = W; and thus, the vectors from the AWE
expansion span the Krylov subspace Kg({D;}{_; U).

On each column of a block AWE vector W, where as excitation the corresponding
right-hand side column of B is employed, the same operations as for the non-blocked
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algorithm are performed. Hence, the Krylov subspace Kg({D;}{_;;U) spans the same
subspace as the projection matrix employed in (3.122) and thus satisfy
Kq({Di}13U) =g ({D )13 wi) UKG{D g u2) U .. UKG({D 5 w).
(4.10)

Extending the theory for higher-order systems to a block right-hand side excitation,
the transfer function can be written as

o o
H(s) =) C'PUs' =) p,s, (4.11)
i=0 i=0
with the matrix of moments
u; = CTP,U, (4.12)
and a definition for P; as in the previous chapter
Pop=1, (4.13)
min(k,a)
P, = Z P, .D,. (4.14)
i=1

This definition allows us, similar to the non-blocked case, to write the block Krylov vectors
as

W, = P,U. (4.15)
In the literature, e.g. [35], definitions for the first-order block Krylov subspace
K4(D1,U) = colspan{U, DiU, D?U, DU, ..., D! U}, (4.16)

and the second-order block Krylov subspace

’Cq(Dl,DQ,U) = COlSpaD{Go,Gl,... ,Gqfl}, (417)
where
Gy =T,
G = DGy, (4.18)

G; =D1G;_1 + D2G;_o,

can be found. These definitions are in accordance with the definition in this thesis for
a =1 and a = 2, respectively.

Moment Matching

For the reduction process (3.119), the projection matrix Q, which spans the block Krylov
subspace

span(Q) = K2({Di}ey: U), (4.19)

is employed. The proof for moment matching is a simple extension of the previous proof
for non-blocked right-hand side and is not repeated. Furthermore, also the connections
of Krylov subspaces obtained from linearized higher-order systems to first-order systems
in [27] and [33], can be extended in a straightforward way to the block right-hand side
excitations.
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Deflation
In the literature, [45], [48], the definition for the N x ¢b block Krylov matrix of the form
K=[U D'U D*U D’U ... D 'U] (4.20)

can be found. The rank of this matrix may be less than ¢b, if a column DjU[i] is
linear dependent on lower-order columns, which implies that all columns DkU[i], with
j < k < q—1 are also linear dependent. This property is called deflation and allows us to
additionally define the deflated Krylov matrix

K =[U, D'U, D’U, D*U; ... D7'U, 4], (4.21)
where

U, =U, U, € CN*b py =1, (4.22a)

U;=U; 1E;,0<j<q U; € CV% b <bjy (4.22b)

with the deflated identity matrix E; € C%-1%%  which deletes the linearly dependent
columns [48]. For higher-order block Krylov subspaces, similar definitions are available,
e.g. [49].

In the block WCAWE algorithm of this thesis, deflation is not considered. Instead, the
orthonormalization process excludes numerical deficits, i.e. linear dependent columns, in
the resulting projection matrix. However, the algorithm may become more powerful by
employing deflation techniques and probably would reduce the projection matrix dimension
and thus reduce the resulting ROM size.

4.2.2 Block Well-Conditioned Asymptotic Waveform Evaluation
Notation

The block WCAWE algorithm is a simple extension of the WCAWE algorithm, where
scalar values are replaced by a block matrix of the dimension b x b. Some notations need
to be introduced for the algorithm and the proof for moment matching.

The block vectors V,,, V,, € CN*0 which are generated in the block algorithm, are
gathered in the matrices V, V, with the notation

Vi = [ViVa...V;] e CV*, (4.23)

9[1:1'] = [\71 V. Vz] e CVx¥, (4.24)
The block AWE vectors are collected in W as

Wi = [WoWi...W,_4] € b, (4.25)

Note the index shift W; = W1}, which is performed to conform with the original
WCAWE literature [24].
The matrix U is the upper triangle block matrix
U1,1 ULQ Uli
0 U272 UQZ‘

U= 3 (4.26)

0 0 .. U
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with the submatrices
U, € CP. (4.27)

All submatrices U;; on the diagonal need to be upper triangular matrices and all Uj,
with & < j need to be null matrices to make U upper triangular. The subscripts brackets
denote the block

Uy Uiiyr ... Uiy
0 Uit1i11 -+ U
u[i:k,i:k} = : : . . (4.28)
0 0 . Uk

The matrix Ej, € RM*? is defined as the block identity matrix

0] } (k—1)brows
E; = |I| }brows , (4.29)
0| }(¢g—Fk)brows

where k denotes the position of the identity matrix I € R®*®. The number ¢ is defined to
be always the number of blocks on which Ej operates on. Thus, we have M = gb.
Block Algorithm

The WCAWE block algorithm provides a means to compute block Krylov subspaces of
higher-order for the system (3.118) in a numerically stable way. The WCAWE block
vectors are recursively defined as

V) = A;'B, (4.30)

Vo= Aj(—-ALV)), (4.31)

Vi =A ' (~A1Vy — AV Py, (3,2)E;), (4.32)
(4.33)

y min(a,g—1)

Vq= Aal(_Alvqfl - Z Amv[l:qu]PU2 (q, m)E(I*m)’ (4.34)

m=2
where in each iteration the matrix equation
Viig = Vigl, (4.35)

is updated with the non-singular upper triangle matrix Y € C9*9. The correction matrix
Py, (n,m), which is employed for the computation of the next block WCAWE vector, is
defined as
m
PUw (TL, m) - H u[zzln—m—l—t—l,t:n—m-i-t—l}’ PUw (’I’L, m) € C(nim)bX(nim)b’ (436)
t=w
where w < m < n < ¢. In this thesis, a modified Gram-Schmidt process is chosen to
update the relation (4.35) in each iteration. The process orthonormalizes the columns of
the matrix 9[1:(1], which results in the matrix V[;,,. Hence, the orthonormalization of
each block vector Vq, let each block U, become an upper triangular matrix. Thus, the
process generates an upper triangular matrix ¢4 and the columns of V[y.,,] provide a highly
accurate basis for the Krylov subspace K% ({D;}¢_1;U).
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4.2.3 Proof for Moment Matching
Properties and Interpretations

This section gives a list of properties that helps us to understand better the algorithm
and its definitions. The properties are used in particular for the moment matching proof.
Detailed proofs for this properties are not given, as they either can be found in stan-
dard mathematical literature, e.g. [50], or are simple algebraic considerations. However,
mainly for properties which are essential for the proof, some interpretations are provided.
Note that some of the properties provided simplify the original proof for the non-blocked
WCAWE [24], for the constellation considered in this thesis.

PROPERTY 1: The inverse of the upper triangular matrix U, i.e. U™!, is also a upper
triangular matrix.

PROPERTY 2: The product U = U;U; of two upper triangular matrices results in an
upper triangular matrix.

PROPERTY 3: For the upper triangular matrix U € C™*" the equality
E11:]'2,j11]'2] = (U[j11j2,]'11]'2])71 holds for any integers j; and js such that 1 < j; < jo < n.

PROPERTY 4: We have: span(V|.,)) = span(V|1.p)) -

The matrix U, which connects the matrices above by (4.35), is defined to be non-
singular.

PROPERTY 5: The correction matrix Py, (n,m) is an upper triangular matrix.

The correction matrix Py, (n,m) is a product of upper triangular submatrices of U,
see Fig. 4.4(a). Hence, because of Property 2, the resulting correction matrix is upper
triangular itself.

PROPERTY 6: The equality Uﬁ}n_m 1m0 (n,m) = Py, (n,m) holds.

This is the simple multiplication of Py, (n,m) with the first upper triangular matrix.
The examples Py, (n,m) and Py, (n,m) in Fig. 4.4(b) and 4.4(c), respectively, show this
Property.

PROPERTY 7: Assume the integers «, & and ~ satisfy 1 < v < min(a,@). Then for all
integers j; and jo which satisfy 1 < j1,jo < min(a, &) — 7, the equality
E};PUl(a,*y)EjQ = E]T1 Py, (&,v)E;, holds.

Through modifying the value « to &, the dimension of the shifted matrix is changed,
whereas the number of shifts v is constant, see Fig. 4.4(d). As only upper triangular
matrices are in the products of Py, (o, ) and Py, (@, ), the resulting correction matrix
is the same, as long as the block unit vectors E;, and E;, select a block within the smaller
dimension.
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PROPERTY 8: Let U € C2*% be a non-singular upper triangular matrix, and let 8, m and
n be integers 1 <m <n < g and 1 < 8 <n — 1. Then for all integers j; and js such that
B < jlajZ <n-— m, the equa'lity E?lPUl (nam)ED - E}lfﬁJrlPUB (n7m + B - 1)Ej2*5+1
holds.

This Property is similar to the Property 7 above. Py, (n,m + 8 — 1) is the product of
upper triangular matrices which are shifted with 8 — 1 compared to Py, (n,m), where also
the dimension of the multiplied matrices is 8 — 1 smaller. This results in the same matrix
product as Py, (n,m), as long as the block unit vectors E;, and Ej, select a block within
the smaller dimension. The Property is shown in Fig. 4.4(e).

PROPERTY 9: Let U € C2*% be a non-singular upper triangular matrix, and let n, m and
B be integers such that 1 < m < n < ¢ . Then for 1 < § < n — m the equality
Py,(n—m,B —1)Py,(n,m +  — 1) = Py, (n,m + B — 1) holds.

This Property can be interpreted in Fig. 4.4(a). Py, (n—m, 5 —1) is the multiplication
of the first §—1 shifted triangular matrices. The second matrix is the product of the shifted
triangular matrices from 3 to m+ 8 —1. Thus, the result is the product of all 8 to m+8—1
shifted matrices, which is Py, (n,m + 8 — 1).
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-1 -1 -1 -1
U 1:5,1:5] u[2:6,2:6} u[3:7,3:7} Z/{[nfl,:nfl,rnznfl]
h. AN AN v p. A
N ' N hd
ut ut u' u'

Py, (n,m)
Py,(n,m) =
(c) Correction matrix Py, (n,m) for n —m = 5.
—1 —1 —1 —1
u[1:371:3] u 2:4,2:4] u[3:573:5] u[’y:&—l;y:o’z—l}
h h
Y1 M 1 . 1 M 1
u[1:5,1:5} u[2:6,2:6} u[3:7,3:7} u[‘y:afl,’y:afl]
(d) Submatrices for Py, (¢, y) and Py, (&,7) computation, « —y =5, @ — v = 3.
-1 -1 -1 -1
u[1:5,1:5} u[2:6,2:6} u[3:7,3:7} u[m:nfl,m:nfl]
P |_A . A, . A, . A
A ‘!
1 1 1 1
u[3:5,3:5] u[4:674:6] u[5:7,5:7] u[m+2:n—1,m+2:n—1}

(e) Submatrices for Py, (n,m) and Py, (n, m + 8 — 1) computation, n —m =5, 8 = 3.

Figure 4.4: Properties of the correction matrix Py, (n,m), with Y € C(r=Dox(n=1)b,
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Proof
We define the block matrix

X171 Xl,g ... X17q_1 leq
0 Xg,g ... X27q_1 X17q

X[l:q,l:q] = O O X-Lq S (ququ, (437)
0 0 ... 0 Xq,q

where each block X, ;, € C"? is defined as

E{Pu,(j2,j1 — DEj,_j41 for 2 <j; <ja <gq
Xijrja =41 for j1 =ja =1 . (4.38)

0 otherwise

Note that X is an upper triangular non-singular matrix. All diagonal values are 1.
The inductive proof shows that
Vig = WigX1g.1)- (4.39)

and thus V spans the required space for moment matching. For the induction basis we
have g =1

Vi =Wy Xy, (4.40)

and for ¢ = 2
Vo= AjH (—A V1) = Ag (-ViU) = Ag N (—A Wy Up ) (4.41)
= WU = WE[ Py, (2, )E; = Wy Xap. (4.42)

Note that X o = 0. Therefore,

span(V(1.9)) = span(W.9)). (4.43)
The induction hypothesis states

f)[1:q—1} = W[l:q—l}X[lzq—Ll:q—l}a (444)

Span(v[lzq—l]) = Span(w[lzq—l])' (445)
By induction we will see

v[hq} = W[l:q}X[lqu:q}, (446)

span(V1.g)) = span(Wi.). (4.47)
For n > 2 the algorithm is defined as

min(a,q—1)

Vq = Aal(_A1V(I*1 - Z Amv[l:qu]PUQ (g, m)EQ*m)' (4.48)

m=2
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We use (4.35) to write
V,=Aj (-A VU

[1:g—1,1:q— 1]
min(a,q—1)
o Z Amv[lzq_m]uﬁ}q—m,lzq—m}PU2 (q’ m)qum), (449)
m=2

and plug in the induction hypothesis (4.44)
Vq = Aal(_Alw[l:qfl}X[l:qfl,lzqflluﬁ}q—1,1:q—1}qul

min(a,q—1)

- Z Amw[lzqu}X[1:qu,l:qu]u[il;lq—m,lzq—m}PU2 (Qa m)E(I*m)' (450)

m=2

Use Property 6 to write
Vq = Aal(_Alw[l:qfl}X[l:qfl,lzqflluﬁ}q—1,1:q—1}qul

min(a,q—1)
- Z AmW[lzqu}X[l:qu,l:qu]PUl (Qa m)qum)- (451)
m=2
Now, we use U[l n—11m-1 = UL (n,1)
B min(a,q—1)
Vq = Aal(_ Z AmW[l:q—m}X[l:q—m,l:q—m]PUl (q’ m)EQ*m)' (452)

m=1
Now use Wi = Z W[g

q—m

mln(aqfl)
Vi=A' - DY A WEEDX 1mmig-mPu (¢ m)Eg ). (4.53)
m=1 B=1

Contract now EgX[lzn_m,lm_m] = X (3,1:n—m] to have

min(a,q—1) q—m
Vi=AG (= Y AL WX s 1m)Pu, (@, m)E; ). (4.54)
m=1 B=1

Writing X5 1.g—mPu, (¢,m)Eq_m as a sum and using the property Xg, =0 V r < j3, we
have

min(a,q—1) q—m q—m
V,=A;l (- An > Wi Y Xs,E Py, (¢,m)Eg ). (4.55)
m=1 ps=1 r=03

From the definition of X in (4.38) we can write now

min(a,q—1)

Vi=Agl(= Y, AnOVPul(@,m)E;m

m=1

q—m —-m
+> Wi Y EPu,(r,8 - DE, 51 E Py, (¢,m)Ey ), (4.56)
p=2 r=p
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where we use X1 = I and Xy, = 0 for 1 < r < ¢. Now use Property 7, with a = r,
a=q—m,y=pF—-1,71=1and jo =r — 3+ 1 to obtain

min(a,q—1)

Vy=A5' (- Z ApWnPu, (¢, m)Eg—m

qa—m qg—m
+ Z W[B] Z E{PUI (C] -m, 3 — 1)Er—6+1EzPU1 (Qa m)qum))' (457)
B=2 r=p

Now, use Property 8 with j; =7 and jo =q¢—m

min(a,q—1)

Vi=Ag'(= Y, AnOVPui(a,m)E;m
m=1

+ Z W[B] Z E{PU1 (q—m, B — 1)Er75+1Ezﬂ—B+1PU5 (g m+ 8 — 1)qum75+1))'
=2 =
(4.58)

Now, only the product ET,5+1Eg_ A1 depends on r and the sum results in the identity
matrix. Thus,

min(a,q—1)
Vq = Aal(— Z Am(W[l]PUl (q’ m)EQ*m
m=1

q—m
+ > WEE Py, (¢ —m, 8- 1)Pu,(g,m+ B8 — DEq_m_p11))- (4.59)
B—2

The next step is to employ Property 9
min(a,q—1)
Vi=Ag' (- Y AnWpPu,(¢.m)Eqm
m=1
qg—m

+ > WEE Py, (¢m+ 8- 1)Eqm p11)). (4.60)
B=2

Contracting the sum results in

Vq:Ao—l(— Z BETPuU, (¢.m+ B — 1)Eq_m_g+1). (4.61)

S

In this expression, we insert the definition of X, ;, with j; = m + 8 and jo = ¢, therefore

min(a,g—1) g—m
Vi=Ag (= D And WigXmpse)- (4.62)
m=1 B=1
This is
min(a,q—1)
Vi=A7' = Y AWy m X mi1gq)- (4.63)

m=1
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After all these algebraic modifications, the following part of the proof helps us to un-
derstand why the WCAWE algorithm matches moments. The equation (4.63) allows to
write

min(a,q—1)
Vq - ( Z _AalAmW[l:qu]X[erl:q,q}) (4-64)
m=1
q min(a,n—1)
=> (= > AJAW o Xny) (4.65)
n=2 m=1
q min(a,n—1)
- Z (- Z AT AW ) Xing (4.66)
n=2 m=1
Wi
q
= Z WX (4.67)

n=2

Therefore, we have

Vit = Wi X(im,1n]» (4.68)

span(V1.e)) = span(Wi.n))- (4.60)

and thus the induction hypothesis holds.
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4.3 Adaptive Algorithms

4.3.1 Blocking the Single-Point Algorithm

Employing the blocked WCAWE process allows us to introduce the more efficient blocked
adaptive single-point method in Alg. 5. Algorithm 5, Line 1 and Line 6, with the follow-
ing modified Gram-Schmidt orthonormalization, provide a very efficient way to compute a
stable basis for the sought Krylov subspace for a block right-hand side excitation. Com-
pared to the non-blocked Alg. 3, the blocked approach does not need separated WCAWE
processes for each excitation anymore. Furthermore, the additional orthonormalization
process to generate the projection matrix from the separated WCAWE processes is thus
dispensable.

This algorithm provides a solid basis for efficiently swapping the projection matrix to
the hard disk by some modifications in the WCAWE process, which will be explained in
the following.
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Algorithm 5 Self-Adaptive Block Single-Point Model Order Reduction

1: Initial WCAWE: V; = A;'B

2: Initial modified Gram-Schmidt: \71 =V;U

3: Initial subspace projection: A= VIA Vv, B = viB
4: Solve frequency sweep:

(Z A;s)X = 5'B, Y = B'X = Sequence {S1}5

=0
5. for ¢ = 2 to ¢y, do
Blocked WCAWE process:

min(a,q—1)

Vq = Ao_l(—Alvq—l - Z Amv[lzq—m}PU2 (q, m)Eq—m)

m=2
7. Apply Modified Gram-Schmidt to new generated block vector:
[v[lzqfl], Vq]U = [v[l:qfl}avq]
8:  Enlarge ROM:
A T )
A . A; V[l:qquZVq
Vi AiV(14- V, AV,
9:  Solve frequency sweep:

a
(Z Aisi)X = StB, Y =BTX = Sequence {Sq}lg
i=0

10: if EQ({Sq}B, {Sqfl}g) < E27t01 then
11: return(converged)

12:  end if

13: end for
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4.3.2 Adaptive Out-of-Core Algorithm for Single-Point Method

Algorithm 6 presents the adaptive out-of-core MORe single-point method. For the memory
management, additional operations need to be introduced. The operator SWAP(V;) stands
for saving the block matrix V; to hard disk and free the main memory. LOAD(V;) means
to load the previously saved block V; from the hard disk to the RAM and CLEAR(V;)
is written for free the memory used for the block V;. For a better algorithm illustration,
matrices which are swapped to the hard disk are colored in gray.

The operations in Alg. 5 where the projection matrix V;.,_) appears are of special
interested for the memory management. These are Alg. 5, Lines 6, 7 and 8. The out-of-core
operations for these lines are discussed in the following. However, to keep the WCAWE
process in the out-of-core technique efficient, two block vectors of size V, & CN*b are
needed to operate on. Otherwise a large number of read /write processes would dramatically
slow down the algorithm.

Furthermore, it is worth commenting on the WCAWE block vector generation in the
out-of-core algorithm, Alg. 6, Lines 8 to 15. In the algorithm development process, the
matrix read/write processes were expected to be very time-consuming. Thus, the first
approach to generate the WCAWE block vector was to perform all operations on a loaded
block:

1: Initialize: LOAD(V,_1) ; V,=—-A1V,1; CLEAR(V,.1);
2: forp=1toqg—2do

LOAD(V,)

for m = 2 to min(a,q — p) do

V=V — AnVyEPu,(q,m)Eqm)

end for

CLEAR(V,)
end for
V=AYV,

@

However, it turned out that for increasing ¢ the additionally performed matrix-vector
multiplications in Line 5 are more time-consuming than the chosen operations in Alg. 6.
Thanks to the highly optimized reading operation, provided by the compiler and operating
system, the time overhead of the swapping mechanism is very low as numerical results will
show.

Alg. 6, Lines 17 to 22 introduce an approach for the orthonormalization process of the
projection matrix with low memory requirements. The modified Gram-Schmidt algorithm
is rearranged such that each column of the new block vector V is orthonormalized against
each column of a single loaded block vector V. Thus, in the loop for k =1 ... ¢ —1,
each block vector needs to be loaded only once. After this loop, the columns of the
block vector V, are orthonormalized against each other in Line 22, which completes the
orthonormalization process.

Finally, for the projection process the projection matrix data must be read again from
the hard disk. This is performed by loading each block vector V,, once and evaluate the
reduced blocks for the ROM enlargement. This is shown in Alg. 6, Lines 23 to 27.
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Algorithm 6 Self-Adaptive Out-of-Core Single-Point Model Order Reduction

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

20:
21:
22:
23:
24:
25:
26:

27:

28:
29:

30:
31:
32:
33:

Tnitial WCAWE: V; = A;'B

Initial modified Gram-Schmidt: V; = V;U

Initial subspace projection: A, = V?AiVl, B = V?B
Free memory: SWAP(V),

Solve frequency sweep:

(Z Aisi)x = s'B, Y = BTX = Sequence {Sl}g

f(Z)qu = 2 to ¢nas do
Initialize: LOAD(V,—1); Vy,=—-A1V,1; CLEAR(V,1);
for m = 2 to min(a,q — 1) do
forp=1tog—1do
LOAD(V,)
V=V, — AnVyEPu,(q,m)Eqm)
CLEAR(V,)
end for
end for
V, - A1V,
Modified Gram-Schmidt in out-of-core technique:
forp=1tog—1do

LOAD(V,)
Orthonormalize only against loaded block vector:
[VH:N 11> Vi, Vipg H]U =[..,V{
CLEAR(V,)
end for
Orthonormalize columns of current block vector: [V, 1, VU =[...

Enlarge ROM in out-of-core technique:
forp=1tog—1do
LOAD(V,); M,;=VIA;V,; CLEAR(V,);

end for ~
M, ;
- A; : - B
: . B .
i M) |0 [VqTB]
M7, M| VIAWY,

Free memory: SWAP(V,),
Solve frequency sweep:

a
(Z Aisi)x = StB, Y =BTX = Sequence {Sq}g
i=0

if EQ({Sq}B, {Sqfl}g) < E27t01 then
return(converged)
end if
end for
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4.3.3 Adaptive Out-of-Core Algorithm for Multi-Point Method

Compared to the efforts for single-point methods, swapping the projection matrix to the
hard disk is a rather simple task in the multi-point approach. Algorithm 7 shows the pro-
posed modifications, where again the notation SWAP(V;), LOAD(V;) and CLEAR(V;)
are used for the swapping operations. In contrast to the single-point method above, the
multi-point algorithm keeps only the currently generated block vector and one single col-
umn of the projection matrix in the RAM.

The out-of-core extension in the multi-point case is particularly simple, because no
data of previous expansion points are required to evaluate the block X(s,). However, the
orthonormalization process as well as the reduction of the projection matrix is performed
in exactly the same manner as for the single-point method.
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Algorithm 7 Self-Adaptive Out-of-Core Multi-Point Model Order Reduction

1: Solve system at §; = min(B):

i=1
2: Solve system at §, = max(B):

ZASQ (32) = 8B, = X(52)

3: Inltlal modified Gram-Schmidt: [X(31), X(52)] = Q1.9 U
4: Initial subspace projection: A; = Q[M}AiQ[m], B= QE‘FM}B
5: SWAP(Q[lZ])
6: Solve frequency sweep for s € B:
ZA sH)X = s'B, Y = BT'X = Sequence {Sy}5

7: Set 1nterva1 of worst error: ¢ =1
8: Initialize first interval: Bs = B
9: for ¢ = 3 to ¢nas do

10:  Find next expansion point: 3, = arg milrgl |s — minBetmax B,
sE

11:  Split interval: By_1 = [34, max(Bg)], B + [min(B;), 54
12: Solve system at §4:

ZAO (39) = 3, IB, = X(5,)

13: Modiﬁed Gram-Schmidt in out-of-core technique:

14: forp=1toqg—1do

15: LOAD(Qj,)

16: Orthonormalize only against loaded block vector:
[Q [1:p—1 7Qpanq l]U = [7X(1§Q)]

17: CLEAR(QP)

18:  end for

19:  Orthonormalize columns of current block vector: [Q,., 1, QJU =[..., Q]

20:  Enlarge ROM in out-of-core technique:

21: forp—ltoq—ldo

22: LOAD(Q,) ; =Q/AiQ,; CLEAR(Q,)
23:  end for

\Y B
24 A« A - Bi<_|:]?:|.
Mg 1] |’ QB
MT, ML QA

25:  Free memory: SWAP(Q,),
26:  Solve frequency sweep:
a

(Z A;s")X = s'B, Y = B"X = Sequence {S,}5

27: if EQ({SQ}B, {Sq_l}B) < E2,tol then

28: return(converged)

29:  end if

30:  Find interval of worst error: é = arg. _max | Eg({Sq}B AS, 1}5,)

IR}

31: end for
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4.4 Numerical Results

The numerical experiments demonstrate the computational improvements as well as the
need for the MORe approaches introduced in this thesis. Single-point methods, multi-
point methods and full FE simulation sweeps are compared in the broadband analysis of
electromagnetic structures. Furthermore, an explicit discussion of the memory usage shows
the importance of out-of-core techniques in MORe processes.

All computational work in this section is performed on a single core of an Intel Xeon
2.33 GHz quad-core processor. The computer runs on an openSUSE 11.1 operating system
with a RAM size of 16 GByte. The operating system swapping partition size is set to
38.5 GBytes. The introduced broadband simulation framework is implemented in a c++
program, which is linked to the PARDISO [47] solver project for the factorization and
solution of the FE systems.

4.4.1 Superiority of Blocking the WCAWE Process

Although the blocked WCAWE process spans the same Krylov subspaces as the non-
blocked in theory, different operations are performed in the algorithms. Slight differences
in the numerical computations of the Krylov subspaces result in a significantly improved
MORe process, using the blocked approach. ROMs which are generated from the blocked
approach have turned out to be highly accurate on a set of evaluation points B, i.e. with
a low true error Ey({S}s,{S,}5), with lower dimensions than ROMs generated from the
non-blocked method. During this thesis, no further investigations on this effect beyond
this numerical experiments were done.

Structure Definition

The considered test structure consists of a set of 8 lumped ports which, together with
perfect electric conductor (PEC) sheets and lumped elements, form a kind of chain, see
Fig. 4.5(a). The chain is surrounded by free space and a box bounds the computational
domain. On both ends of the box surface impedance boundary conditions are imposed,
which can be seen in Fig. 4.5(b), where ¢ = 5.8 - 10°4/(Vm) and u = po. All other
surfaces of the box are defined as PEC. Detailed geometric dimensions of the structure
are given in Fig. 4.6. Lumped element sheets have the values R = 10kQ2, L = 1mH and
C = 1pF. Note that defining surface impedances and lumped elements results in a system
parameterization where the frequency polynomial is of degree a = 4.

Numerical Experiments

For the test structure simulation, the set B is defined as the 1001 equidistant evaluation
points in the bandwidth from 20 GHz to 40 GHz. The simulation employs first-order FE
basis function and results in a system matrix dimension of N = 39229.

The most time-consuming process in the discrete sweep evaluation is the factorization,
whose average computation time is about 3.9s. Thus, with 1001 evaluation points, the
complete time is extrapolated to 3904s. As the dimension of the scattering matrix of this
model is 8 x 8, which makes 64 scattering parameters, the frequency sweep in Fig. 4.7
shows only the eight scattering parameters S4; to Sy as representative selection.

The MORe processes are applied to the FE discretization of the full FE run above,
with the same number of degrees of freedom. The frequency of 20 GHz is chosen as the



70

expansion point. This is not the optimal choice and will increase the iteration number,
but shows in this numerical experiment the differences between blocked and non-blocked
algorithms better.

The error indicator Ex({S,_1}5,{S;}5), which is evaluated during the adaptive MORe
process, is compared for the two approaches in Fig. 4.8(a). Until the error indicator
falls under the threshold value of Egp, = 107°, the non-blocked approach runs ¢ = 38
iterations, while the block process stops at ¢ = 25 iterations. More interesting for the
convergence, however, is the true error Fy({S}5,{S,}5), which is shown for the two runs in
Fig. 4.8(b). To get a true error with Fa({S}5,{S,}5) < 107, we need ¢ = 38 for the non-
blocked and ¢ = 24 for the blocked WCAWE. In addition to the lower iteration number for
the blocked WCAWE, the more smoothly falling error is particularly noticeable in the plots,
which may be interpreted as an indicator for improved numerical robustness. Moreover,
the error sweeps for both approaches at ¢ = 25 in Fig. 4.9, where e;;(f) = |Si;(f) —S’ij(f)|,
confirm the better convergence for the blocked WCAWE. Note that only for visualization
reasons not all scattering parameters are shown in this plot again. Unsurprisingly, the
blocked approach with a lower number of iterations results in lower computation times,
see Table 4.1.

In this numerical experiment the blocked WCAWE approach generated a ROM with
lower dimension to reach the same accuracy as the non-blocked approach. Thus, the
blocked approach is not only superior in memory requirements, but also the dimension of
the resulting ROM is smaller. The author guesses that the orthogonalization process in
the blocked approach is more stable and therefore the projection matrix spans the Krylov
subspace more properly.

Table 4.1: Port chain: Computational data.
Number of | ROM generation | ROM evaluation Sweep

iterations g time (s) time (s) | time (s)
Full FE run - - - 3904
Non-blocked WCAWE 38 420 16 436

Blocked WCAWE 25 211 6 217
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(a) Sheets: Lumped ports (blue), lumped elements (yellow) and PEC (red).

—

(b) Impedance boundary (purple).

Figure 4.5: Port chain: View of the structure.
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Figure 4.6: Port chain: Geometric dimensions in mm.
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Figure 4.7: Port chain: Scattering parameter versus frequency.
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Figure 4.8: Port chain: Error indicator and true error versus iteration number.
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(b) Non-blocked WCAWE process.

Figure 4.9: Port chain: Error in scattering parameters versus frequency for g = 25.
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4.4.2 Out-of-Core Technique Results

The second part of this section is dedicated to the out-of-core techniques. To give mean-
ingful data and results for the introduced techniques, the chosen test structure needs to
satisfy a couple of requirements. The system of linear equations, which results from the FE
simulation of the structure, needs to be of large dimension, with many right-hand sides.
The frequency parameterization should be polynomial, otherwise the WCAWE process will
reduce to an Arnoldi iteration. To increase the number of adaptive iterations in the MORe
processes, the test structure for this numerical experiment should exhibit some resonant
behavior in the evaluated bandwidth.

Test Structure Definition with Absorbing Boundaries

The considered structure is the cuboid in Fig. 4.10. The structure contains 8 port chains,
each with 8 lumped ports, in total 64 lumped ports. The ports are connected by PEC sheets
and lumped elements, which have resistance, inductance and capacitance of R = 10k(2,
L =1mH and 1pF, respectively. On the top surface of the cuboid an absorbing boundary
condition is defined, all other surface are PEC. The chains are surrounded by a vacuum.
Fig. 4.11 defines the detailed geometric dimension of the structure.

Discrete Sweep Data

The set of evaluation points B in the simulation is defined as 2001 equidistant points in the
bandwidth from 20 GHz to 30 GHz. The full FE simulation, which is used as reference,
employs second-order FE shape functions and results in a sparse system of linear equations
with 827666 degrees of freedom. The assembled system matrix counts 16119523 non-
zeros, which causes a memory requirement of 257.9 MBytes, if 8 Bytes double precision
floating point numbers are taken and all non-zero values are assumed to be complex (thus
16 Bytes per entry). The memory requirement for the block right-hand side, with 64
extremely sparse excitation vectors, may be neglected. However, the factorization of the
system matrix counts 236161487 non-zeros, which requires 3.8 GBytes. Note that the peak
memory requirement of the factorization is not considered in this analysis.

The typical factorization time for a solution of the system is 186.2s. The additional
time for each right-hand side solution is typically 4.3s, which is not negligible in this case
of 64 right-hand sides. As a numerical result, Fig. 4.12 shows the scattering parameters
S9017 to Sago4 for the evaluation points in B as a chosen selection.

Broadband Simulation Techniques

In the next numerical experiment, the scattering parameter sweep on B is performed using
the proposed MORe techniques, i.e. adaptive single-point and multi-point as in-core as
well as out-of-core methods. The MORe is applied to the original FE system above, where
in this constellation the system is parameterized in the frequency to the order a = 2.
Single-point methods use the arbitrarily chosen expansion frequency 25 GHz.

The plot of the employed error indicator Fy({S,_1}5,{S,}5) in Fig. 4.13(a) shows, that
the adaptive single-point method needs to run to the iteration ¢ = 9, where the multi-point
process needs only ¢ = 8, to satisfy the threshold value Ey({S,_1}5,{S,}5) < 107°. The
plot for the true error Fy({S}s,{S,}5) confirms this faster convergence, see Fig. 4.13(b).
For a true error below 107°, the multi-point method needs ¢ = 7 and the single-point
method ¢ = 8.
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MORe Memory Analysis

A first performance analysis is done on the plots in Fig. 4.14, which show the memory
usage versus time for the considered approaches. In the single-point memory plot, see
Fig. 4.14(a), it can be seen that the memory requirements increase at each iteration for the
in-core algorithm, which results from the projection matrix enlargement. Each enlargement
of a full block right-hand side is 64 columns, each with 827666 degrees of freedom and
complex double precision floating point numbers (16 Bytes) per degree of freedom, which
is a memory size of 848 MByte. However, the out-of-core approach does not increase the
projection matrix data for higher iterations. Note that, for each iteration, an additional
full right-hand side block is required in the out-of-core block WCAWE process for a short
time, as explained in Section 4.3.2. These are the eye-catching jumps in the memory plot
in each iteration.

Turning to the multi-point curves in Fig. 4.14(b), a similar behavior can be observed.
In each iteration the memory block of 848 MByte is allocated for the new projection matrix
columns. While the out-of-core process swaps data from previous iterations to the hard
disk and the memory requirements remain on a low level, the memory requirements in the
in-core approach increase at each iteration with the size of this block. In each iteration,
the factorization memory allocation and deallocation can be noticed, the size of which was
evaluated above to be 3.8 GBytes.

In the next experiment, a projection matrix data size is forced that exceeds the available
system main memory. For this purpose, all adaptive MORe approaches are run for ¢ = 18
iterations. The resulting in-core computations can be seen in 4.15(a), where the memory
requirements run into the limit of 16 GBytes and the operating system swapping process
starts to work. This makes the process extremely inefficient. While the single-point ap-
proach got stuck at the iteration ¢ = 11, the multi-point approach at least works at the last
iterative step, when the experiment was manually aborted after running 1.6-10%s. The out-
of-core approach, however, runs without any remarkable additional memory requirements,
see Fig. 4.15(b).

Runtime Discussion

The runtime discussion for the considered MORe techniques starts with Table 4.2. Keep-
ing in mind that the multi-point approach needs one fewer adaptive iteration than the
single-point method, i.e. ¢ = 8, to generate a ROM which is considered converged, the
computational costs are lower, as can be expected. Anyhow, the listed results in the Ta-
ble 4.2 show clearly that the out-of-core process swapping mechanism is not the limiting
operation in the performed experiments. It should also be mentioned that all MORe tech-
niques are far superior to the discrete FE sweep, which is the main purpose of MORe. The
full FE computation time only includes the factorization time and the solution of the 64
right-hand sides at each evaluation frequency.

We start the detailed timing analysis by looking at the memory plots in Fig. 4.14(a).
Particularly the last iteration of the in-core technique is investigated. This iteration starts
before the memory rises the last time (at 10206s) and ends just before the memory is
released (at 12748s), which is a time interval of 2542s. The time for this adaptive step
results from 941s for the block WCAWE process, 1333s for the subspace projection and
268s for the error measure evaluation. Detailed investigation showed that the current
implementation works on non-optimized matrix-vector product and vector-vector product
operations. This makes the computation times for the block WCAWE process as well as
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for the subspace projection rather high compared to the highly optimized operations in
the PARDISO solver [47]. This explains also why the multi-point approach is faster than
the single-point method in Table 4.2, if both computations run 9 adaptive iterations.

Table 4.2: Port cuboid: Computational data.

Number of | ROM generation | ROM evaluation | Sweep computation
iterations q time (s) time (s) time (s)
Single-point:
In-core 9 12746 267 13013
Out-of-core 9 12864 268 13132
Multi-point:
In-core 8 9337 201 9538
Out-of-core 8 9554 201 9755
In-core 9 11451 268 11719
Out-of-core 9 11656 268 11924
Full FE run: - - - 923261
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(a) Full cuboid.

¥

L

(b) Sheets: Lumped ports (blue), lumped elements (yellow) and
PEC (red).

Figure 4.10: Port cuboid: View of the structure.
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Figure 4.11: Port cuboid: Geometric dimensions in mm.
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Figure 4.12: Port cuboid: Scattering parameters versus frequency.
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Figure 4.14: Port cuboid: Memory plots for adaptive MORe techniques.
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Test Structure with Surface Impedance

For the last numerical experiment in this section the absorbing boundary condition in
the structure above is replaced by a surface impedance boundary with a conductivity of
o = 58 - 10° A/(Vm) and a permeability of 4 = po. Thus, the system matrix
is parameterized now to the order ¢ = 4 in the frequency. In both constellations the
FE simulation employs the same mesh. Therefore, the time and memory requirements in
the full FE run do not exhibit any remarkable differences to the run above. However, this
modification results in a less smooth behavior in the frequency response of the port cuboid,
as can be seen in Fig. 4.16. Both adaptive processes, single-point and multi-point methods,
run one adaptive iteration more and converge more slowly as the plots in Fig. 4.17 show.
In particular, the multi-point method runs ¢ = 9 iterations and the single-point method
needs g = 10 iterative steps.

The runtime comparison for the multi-point MORe with ¢ = 9 in Table 4.3 and Ta-
ble 4.2 shows that the model modification slowed down the MORe process. The longer
computation times can be explained by the higher polynomial degree in the frequency pa-
rameterization of the system matrices, which results from the surface impedance boundary
condition.

This effect is much more obvious for the single-point method, comparing the memory
plots Fig. 4.18(a) and Fig. 4.14(a). The origin for the massive slow down is the same as for
the multi-point method, the higher polynomial degree in the system parameterization. The
effect, however, is much more pronounced as a result of the expansion point shift, which is
performed only in single-point methods. The shift causes that all 5 system matrices have
non-zero entries, where some of them may have a much higher density as the non-shifted,
which more slows down some operations compared to the multi-point approach. For a
detailed timing analysis we choose again the 9th iteration of the in-core technique, which
is the same iteration as used in the absorbing boundary condition runtime analysis above.
Note that this is not the last adaptive iteration in this run. The interval starts at 14831s
and ends at 18712s and consists of 1372s for the block WCAWE, 2226s for the subspace
projection and 283s for the error evaluation. Thus it is the subspace projection, which
runs almost 15 min longer, that especially slows down the computation.

Table 4.3: Port cuboid with surface impedance: Computational data.

Number of | ROM generation | ROM evaluation | Sweep computation
iterations q time (s) time (s) time (s)
Single-point:
In-core 10 23112 381 23112
Out-of-core 10 23196 381 23196
Multi-point:
In-core 9 12731 268 12999
Out-of-core 9 12966 269 13235
Full FE run: - - - 923261
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Figure 4.16: Port cuboid with surface impedance: Scattering parameters versus frequency.
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Figure 4.18: Port cuboid with surface impedance: Memory plots for adaptive MORe tech-
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4.5 Conclusion

The provided adaptive MORe approaches in combination with the chosen error measure
show reliable results and work very efficiently. The memory swapping mechanisms only
slightly increase the computation times and therefore do not relevantly reduce the efficiency
of the MORe techniques. However, the employed out-of-core approaches may cause an
important performance improvement, if the projection matrix memory requirements exceed
the available main memory, as may happen in real-world problem broadband simulations.
Memory plots show the reduction of the main memory requirement due to the projection
matrix data swapping. A high number of adaptive iterations can be performed using the
out-of-core approach, without filling the main memory.

To show the practical importance of the introduced numerical techniques in this thesis,
numerical computations run on the limit of the system capacity. This showed some un-
expected results, which are mainly caused by non-optimized numerical operations in the
current implementation. Timing analysis showed that non-optimized matrix-vector and
vector-vector products mainly slow down the single-point methods. Although we have this
shortcoming in the implemented framework, which affects single-point as well as multi-
point methods, all MORe runs are far superior to discrete FE sweeps.
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Chapter 5

Broadband Finite Element
Simulation for Waveguide Problems

5.1 Model Order Reduction for Waveguide Problems

The FE method is also a very powerful technique for the modal analysis of electromagnetic
waveguides. Since it is just the waveguide cross-sections that need to be discretized, single
solutions are computationally inexpensive. In many applications, however, the character-
istics of waveguide modes are to be determined over wide frequency bands. Since modal
field patterns may be frequency-dependent and the corresponding propagation coefficients
highly dispersive, and because dispersion curves may feature bifurcations, cross-over points,
or coupled-mode sections, the broadband analysis of electromagnetic waveguides typically
requires a large number of FE computations, at different frequency points. In such cases,
computer runtime is still a limiting factor.

MORe techniques such as [51], [52] and [53], provide a means to speed up the solu-
tion times of frequency sweeps very significantly, at little additional error. This chapter
introduces a multi-point MORe method employing an adaptive point-placement scheme
for controlling the error. An incremental error indicator for the propagation coefficient is
provided to guide the adaptive process.

The considered waveguides are assumed to be bounded by electric and magnetic walls,
and to possess material properties that are scalar-valued and uniform along the waveguide
axis z but non-uniform in the transverse plane ¢. In consequence, the axial behavior of the
modal fields is given by exp (—7z), wherein v denotes the propagation coefficient.

91
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5.2 Finite-Element Formulation

For stability reasons, the chosen formulation is based on a magnetic vector potential A
and a scaled electric scalar potential ¢, as introduced in [54], [4]. Specifically, we employ
the gauge A, = 0 and decompose Ay into components of non- vanishing circulation Ac plus
the transverse gradient V; of a scalar field ). Hence we have

A= e (A(x,y) + Vib(z, 7)), (5.1)
¢ =e 7V (z,y),

and the electromagnetic fields are represented by

TV, x AS — e, x y(AS 4+ V)], (5.3)
= —jcoe e (GV) — Vi(GV) + k(A5 4+ V). (5.4)

= &

By plugging (5.1) and (5.2) into the time-harmonic Maxwell equations, we arrive at the
eigenvalue problem
Vi X 'V x AS — ke, Vy(kp — jV) — ke, A =
B~ [éz x urle, x A6 1 e, x pte, x V| (5.50)
Vi ek A7 + Vilke = V)] =76V (5.5b)
FE discretization results in the algebraic EVP

XA
(So + kS1 + k?S2)x = 72, Txy, with x,, = x| (5.6)
Xy m
wherein x4, xy, and xy denote the component vectors for fff, ¥, and (jV'), respectively,
and Sp, S1, So, and T are sparse symmetric matrices, whose structure can be found in
[4]. Note that (5.5) is satisfied not only by physical waveguide modes but also by a set of
null-field solutions, i.e. non-trivial solutions with E=0and B=0:

v =0, (5.7)
A =0, (5.8)
JV =k,

with arbitrary . In the FE context (5.6), the null-field solutions n read

7 =0, (5.10)
n = Nxy, (5.11)
0
Nk)=|1], (5.12)
kI

with arbitrary x,. Eq. (5.6) implies the generalized orthogonality equation

xI Tx, =0 for m # n. (5.13)
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Hence any superposition of physical modes p(k) satisfies
N(k)I'Tp(k) =0, (5.14)

which enables us to reconstruct p from given components p4 and py. The resulting
equation takes the form

p(k) = (Po + kPy) Eﬂ . (5.15)

The structure of the matrices Py and P can be found in [4].
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5.3 Multi-Point Model Order Reduction

The main idea behind the waveguide MORe approach is to restrict the trial and test spaces
in the FE system (5.6) to suitable subspaces whose dimension ¢ is much smaller than that
of the original system, p. For this purpose, we construct projection matrices V(k), W (k)
and apply a two-sided projection process to (5.6). The resulting reduced-order eigenvalue
problem is of the form

(So + kSt + k2S2)%m = 32 Tk, (5.16)
with

Si(k) = W(k)1S;V (k) i €4{0,1,2}, (5.17a)

T(k) = W(k)TTV(k), (5.17b)

x! (k) = V (k)& (k). (5.18)

The matrices V (k) and W (k) are constructed as follows: we first compute the dominant
M eigenpairs of (5.6) at N expansion wavenumbers k, and assemble their components in
Af and v to a matrix =E:

1 M M
= le4 Ty Xﬁ sy ) Xﬁ . (519)
X X X
Yl gy Y gy Y dky

To provide a stable basis, we next compute the QR factorization of E. In view of (5.14),
we then construct V (k) by

[

V(kj) = (Po + k‘Pl)Q. (5.20&)

Hence the trial space of the ROM, colsp V(k), contains superpositions of physical modes
only. According to (5.18), the approximate eigenvectors x/, satisfy (5.14), which assures
that the ROM will not lead to null-space solutions.

Following an idea from [55], W (k) is taken to be
0
0 | V(k). (5.20b)

By plugging (5.20) and (5.17) into (5.16) and collecting terms of equal power in k, we
arrive at the final form of the ROM:

(Sso + kSSl + k2SSQ + k?’SSg + k4SS4)§(m = ’Nygl('i'To + kTTl + k2TT2)§(m. (5.21)

Eq. (5.21) features explicit k dependence, and all matrices are in C?7*%. Since ¢ < p, the
eigenvalue problem (5.21) can be solved much more efficiently than the underlying FE
system (5.6).
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5.3.1 Homogeneous Material Properties

Waveguides with homogeneous material properties are known to support transverse electric
(TE), transverse magnetic (TM), and possibly transverse electromagnetic (TEM) modes.
They all have in common that the transverse field patterns are independent of frequency.
Eq. (5.3) implies that the modal patterns in terms of fff and 1 must be frequency-
independent, too. Since the corresponding components in V', which do depend on fre-
quency, are reconstructed via (5.15) and (5.20a), respectively, we conclude that a single
expansion point suffices in the present MORe method to fully characterize any TE, TM,
or TEM mode over an arbitrary frequency range.
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5.4 Self-Adaptive Point Placement Strategy

For practical reasons, the following algorithm is formulated in terms of the operating
frequency f rather than the wavenumber. The goal is to compute the dispersion charac-
teristics of M dominant modes on a set By of L equidistant evaluation frequencies f; within
user-defined bounds fiin and fiax-

The MORe method of Section 5.3 provides two degrees of freedom to control the error:
the number of expansion points and their respective locations; see (5.19). The adaptive
strategy we propose is based on successive bisection. It places a new expansion point in the
middle of that sub-interval By, for which the error indicator E, is worst. The procedure
is repeated until the error indicator on the whole of By falls below a user-defined threshold
Et,

Our error indicator is in terms of 2. It is of incremental type and covers all modes
and evaluation points. Specifically, we set

~2 _ ~2
- max max 30 () = - ()]

Ex(B) = ~
max |7, (fmax)|

, (5.22)

wherein the indices + and - denote the present and preceding iteration.

Algorithm 8 gives the details of the proposed technique. Line 2 and Line 8 show that the
first two expansion points are always placed at the boundaries of the frequency range. The
main loop starts at Line 10. Note that the dimension of the reduced-order EVP at Line 15
is larger than the number of sought modes, M. Hence there are two classes of eigenpairs:
close approximations to the dominant modes and higher-order solutions without any merit.
The for-loop starting at Line 16 provides a simple filter for the propagation constants of
the dominant modes. At Line 26 and Line 27, we detect the interval of worst error indicator
B; and set the new expansion point f at the evaluation frequency closest to its middle.
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Algorithm 8 Waveguide MORe with adaptive point placement

PARAMETERS: frequency range |[fmin, fmax),

e e e e e e

18:
19:
20:
21:
22:
23:
24:
25:
26:

27:

28:
29:
30:
31:
32:
33:

number of evaluation frequencies L,
max. number of expansion points jmax,
error threshold value E.

Compute Pg, P1, Bo(fmins fmax, L)
Solve (3, fiaxSi)X = TX diag 72,
Q < updateQR(Q = 0, X)
[SSi7 TTZ-] + updateROM(Q; Py, Py)
for{=1to L do
Solve (3, f{Ssi)X = (3, f{ Tr:) X diag 77, _ (1)
end for
f = fumin {Next expansion point}
B1 = By {First interval}
for j =2 to jiner do
Solve (Y2, f18:)X = TX diag 12,
Q < updateQR(Q, X)
[Ssi, T7i] < updateROM(Q; Py, P)
for/=1to Ldo _ o
Solve (32, f{Ssi)X = (3, f{Tr:)X diag 3°
for m=1to M do
Yt (f1) = argrr%/iQH(]'V — T (1))

end for
end for
for k=0toj—1do
Compute Eq, (By)
end for

if £..(By) < E' then
return converged
end if
k = arg /ﬁlfmj E(By) {Interval of worst error}

min Bl% +max ch
2

=arg min |f — {Expansion point}

/ feB;

B + [mian,f]
B; = [f,maXch]
for all m,! do

%Qn—(fl) — %%H(fl)
end for
end for
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5.5 Numerical Examples

In the following, errors in propagation constant are computed with respect to full FE so-
lutions, using the same discretization as the MORe method. The termination criterion for
the adaptive process is set to £ = 1076, An overview of all computational parameters
and results is given in Table 5.1. Note that the number of modes computed in the under-
lying FE model has chosen to be somewhat larger than that displayed in the frequency
sweep, to account for the fact that the preconditioned Arnoldi method used for solving the
FE system may sometimes produce higher-order modes first [56].

5.5.1 Shielded Microstrip Line

Fig. 5.1(a) shows a shielded microstrip line [52]. The FE model represents one half of the
structure and uses a magnetic wall for the middle plane. In our first test, the dielectric
substrate is replaced by free space, so that the resulting waveguide has homogeneous ma-
terial properties. Fig. 5.2 presents the results based on a single expansion point at 25 GHz.
(Note that the actual Algorithm 8 will always result in a minimum of two points.) As
predicted in Subsection 5.3.1, both the dominant TEM mode as well as the higher-order
TE and TM modes are perfectly represented everywhere in the range 0-25 GHz.

Dispersion curves and error plots for the first 10 modes of the inhomogeneous waveguide
can be seen in Fig. 5.3. Note the occurrence of bifurcations and complex modes. The
adaptive loop finishes after 5 expansion points. Again, the MORe solutions are in excellent
agreement with reference results from FE computations. However, Table 5.1 shows that
the MORe scheme is 53 times faster.

5.5.2 Dielectric Loaded Waveguide

Our second example is the dielectric loaded waveguide [57] of Fig. 5.1(b). We consider
the dominant 19 modes in the range 0-30 GHz. In this case, the method terminates
after 7 iterations. Fig. 5.4 presents dispersion curves and error plots for the propagation
coefficients. Note the highly non-uniform distribution of the expansion points. It can be
seen that the MORe solutions are in excellent agreement with reference results from FE
computations. This time, MORe is 12 times faster than conventional FE analysis.
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Table 5.1: Waveguide structures: Computational data'

Model A(er=1) | A (g1 = 8.875) B
Frequency (GHz) 0 to 25 0 to 25 0 to 30
Sweep Evaluation points 1001 1001 1001
Number of modes 10 10 19
Results Fig. 5.2 Fig. 5.3 Fig. 5.4
Degrees of freedom 25553 25553 12612
Order of FE basis 2 2 2
FE model | o iber of modes 11 12 23
Total runtime? (s) 4721 5045 4827
Expansion points 1 5 7
Error threshold E% - 1076 1076
ROM ROM dimension - 11 60 161
Total runtime® (s) 11 95 402

! For a single core of the Intel Core 2 Extreme 3 GHz processor.

2 Including all evaluation points.

3 Including adaptivity and all evaluation points.
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(b) Dielectric loaded waveguide

Figure 5.1: Waveguide structures. All dimensions are in mm.
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Figure 5.2: Microstrip line with homogeneous material properties (¢; = 1): Dispersion
curves and error plot.
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error plot.
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5.6 Conclusion

In this chapter, a multi-point MORe technique with a self-adaptive point placement strat-
egy for the broadband FE analysis of electromagnetic waveguides has been introduced. The
underlying MORe method employs two-sided projections with null-field orthogonalization,
and the adaptive scheme is based on successive bisection, guided by an incremental error
indicator for the propagation constant.

The numerical tests of Section 5.5 confirm that the number of expansion points required
by the adaptive scheme remains very small, even for very wide broadband applications.
In consequence, the proposed method is significantly faster than traditional FE analysis.
At the same time, errors in propagation coefficient are negligible over the whole frequency
band.
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Chapter 6

Broadband Sensitivity Analysis

6.1 Introduction

The design process of a microwave device is a complex task and depends on many pa-
rameters. Frequency responses for different parameter configurations may be evaluated
by means of numerical methods. However, the impact of a variation in the design pa-
rameters can be used to systematically improve the performance of a microwave device.
Sensitivity analysis provides a powerful means for analyzing small modifications in the
design parameters.

Based on 2D-FE methods, [58], [59] introduced automatic microwave device shape
optimizations in an iterative process, where optimization algorithms are applied. The in-
troduced techniques define cost functions and employ design sensitivity analysis to evaluate
the impact of a design variation. An optimization process founded on a 3D-FE technique,
where sensitivity analysis is employed as well, was presented in [60]. It is shown in [61] that
the design sensitivities can be evaluated from the solution used for the scattering matrix
evaluation and no additional system matrix solutions are required. An AWE technique is
employed to compute the sensitivity on a frequency range in [62], which is used in [63] to
optimize microwave devices with respect to their frequency response.

This thesis provides broadband sensitivity analysis techniques, which are based on
the previously introduced projection-based MORe methods. Particularly the adaptive
MORe schemes, developed in the previous chapters, are attractive to employ, as fully
automatic analysis runs may be performed. However, the employed WCAWE technique as
well as the multi-point approach allows us to perform the sensitivity analysis on a larger
frequency range as the AWE process applied in [62]. Hence, the provided methods allow
us to perform a reliable optimization process over a large bandwidth. Although the new
technique is applied only to material parameters in this thesis, other design parameters,
such as geometry variations, as performed in [58], may also be employed.

105



106

6.2 Theory

6.2.1 System Design Sensitivity

The FE simulation of a passive microwave structure results in a system of linear equations
and an output functional for the network parameter evaluation. For the sensitivity analysis,
a design parameter p is defined on which a perturbation is applied to. As the modal
field patterns on wave ports result from a separated analysis, design parameters must not
affect the wave port areas, which is a limitation in the current implementation. Assuming
polynomial dependency in the design parameter p and the wavenumber k, we denote the
resulting FE system as

ZZ Anp™ k") x(k, p) = kb, (6.1a)

m=0n=0

y(k,p) = cx(k,p) +d, (6.1Db)

where M and N designate the highest polynomial dependencies in the parameters. The
input vector b, the output functional c¢* and the feed through coefficient d are assumed
to be constant

b = const, (6.2a)
¢’ = const, (6.2b)
d = const . (6.2¢)

For the sensitivity analysis, the first derivative of the output with respect to p, at the
expansion point p = 0 is chosen. Hence, deriving both sides of the system (6.1) and setting
the parameter p = 0, the sensitivity system yields

(Z Ay k ) (k,p = 0) (Z AOnk”> axg; ) ‘p:o’ (6.3a)

n=0
k k,
ap lp=o  9p lp=0
The derivative of the system output at the expansion point p = 0 is denoted as
dy(k,p)
5,(k) = 7( . 6.4
o) = | (6.4)

Solving (6.3) for the derivative results in

S,(k) = —cT (Z AOnk:") (Z Ak ) (k,p=0) (6.5)
n=0
N N -1
SR (Z AOnk”> (Z Alnk”> (Z AOnk”> kb. (6.6)
n=0 n=0 n=0

The impact of a perturbation in the design parameter p is evaluated from

dy(k,p =0) = y(k,p = 0) + 6, (k) Ap, (6.7)
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where a sweep for different wavenumbers may be evaluated. It is remarkable that for a fixed
wavenumber, the system matrix at p = 0 needs to be factorized only once to evaluate the
system sensitivity [61]. Furthermore, the whole process may be performed for a parameter
vector p instead of a single design parameter, where only one system factorization is
required for the sensitivity evaluation for all parameters. The analysis process (6.7) can
be performed for any combination of parameters.

6.2.2 Broadband Design Sensitivity Technique

Employing the projection-based MORe techniques that were introduced in the previous
chapters, the original system (6.1) is reduced to the polynomial parameterized ROM

M N
> <Amnpmk") x(k,p) = kb, (6.8a)

m=0n=0

j(k,p) = & %(k,p) + d, (6.8b)

where the the projection matrix V is employed for the reduction

A =VTAV, (6.9a)
b=VTb, (6.9b)
¢=VTe. (6.9¢)

As the reduced system (6.8) has the same structure as the original model (6.1), the
same procedure as in the large-scale sensitivity analysis is performed. Thus, equivalent to
(6.5) to (6.7), the derivative of the system output at p = 0 can be written as

N -1 /N N -1
N ag(k7p) ~T A n A n A n -
5,(k) = Tp‘pzo — & Z Aok Z Ak ZAOnk kb,
n=0 n=0 n=0
(6.10)

and the perturbation evaluation is performed through

ik, p = 0) = (k,p = 0) + 3,(k) Ap. (6.11)

The computational costs for a sensitivity sweep in the reduced case are very low com-
pared to the large-scale system, as the system matrix solutions are very cheap. However,
the extension to a parameter sweep with a sensitivity parameter vector is, as in the full
system sensitivity analysis, straightforward. Note that this approach is applicable in the-
ory to scattering as well as impedance formulation modeling. These two formulations are
explained in detail in [21].
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6.3 Numerical Experiments

The efficiency of the introduced broadband design sensitivity technique is presented by
means of some numerical examples. However, this section also discusses the drawback
of impedance formulations in combination with the sensitivity analysis. In the analyzed
electromagnetic structures, p. is chosen as design parameter, which is defined through

e = (g, + pe)eo. (6.12)

All numerical sensitivity computations in this section are based on FE simulations and the
developed MORe techniques of this thesis.

6.3.1 Parallel Plate Waveguide

The first considered structure is the parallel plate waveguide of Fig. 6.1(a), which has only
one wave port. The gray part in the waveguide represents a material with properties ¢,
and p,., whereas the white section is modeled as vacuum. The waveguide is bounded on
top and bottom by PEC and side walls are perfect magnetic conductors (PMC).

At the end of the parallel plate waveguide a PEC is attached to impose a short circuit.
In the following, the permittivity of the material in the dark colored section is chosen as
design parameter and is designated with e,.. The perturbation of this design parameter is
written as pe.

Transmission Line Model

As the propagating waves in the chosen structure are of TEM type, a transmission line
model can be obtained for the waveguide and can be analytically evaluated. In the model
of Fig. 6.1(b), the transmission line L1 represents the vacuum part, the transmission line
L2 the gray colored section and the sort-circuit at the end of the line is the PEC boundary
at the end of the waveguide. The following formulas for parallel plate waveguides and

w=20 1,=100 1,=50
d=10 I e=1,u=1 £,=4,4,=5
PEC — PMC - VWave port —

(a) Geometric dimensions in mm.

Line L1 Line L2
""" > by, 2 -' Ba, 2,
-t l - - ly -
Z:’ni:«‘ r:’nj Zm2:~‘ r!’rﬁ

(b) Transmission line model.

Figure 6.1: Parallel plate waveguide: Structure geometry and transmission line model.
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transmission line models can be found in many books on microwave theory, e.g. [19]. The
characteristic impedance of the transmission line circuit model can be found as

Zo=n—=/2=, (6.13)

which only depends on material coefficients and geometry of the waveguide. The phase
velocity in the material medium is given by

w 1
Vy == — — gy
PB T nE

and only depends on the material. The input impedance Z;, of a transmission line with
load Zj, can be evaluated from

Zr, + jZp tan(pl)
Zo+ 375 tan(ﬂl)’

(6.14)

Zin = ZO

(6.15)

where [ defines the length of the transmission line. Alternatively, the reflection coefficient
I' can be used to perform the line transformation. At the end of the line, the reflection
coefficient is given through

Z1, — 7
ro)=—-——, 6.16
0 =5 (6.16)
and can be transformed by
I(l) = [(0)e~ %P, (6.17)

to the position [ in the transmission line, which of course can be chosen as the input of the
line.

Scattering Formulation

In this section, the proposed numerical broadband sensitivity technique is compared to
the analytic solution. For the FE simulation and thus for the broadband sensitivity a
scattering formulation is employed. The analytic solution is obtained by evaluating the
reflection coefficient I';,2 and performing the line transformation in L1 through (6.17)

Zing = jZ2 tan(Balz), (6.18)
Zina — 21
T0=2"22 6.19
in2 Z@'n2 + Zl7 ( )
Si1 = Tin1 = Dipge” 200, (6.20)

Thus, the analytic solution for the derivative of the design parameter and the perturbed
scattering parameter are

_ 3S11(k,pe)
8]95 ps:0
dS11(k,pe) = S11(k, pe = 0) + 0p(k)pe. (6.22)

0= (k) : (6.21)

The numerical simulation data is given in Table 6.1. The ROM generation time in-
cludes the time for the FE matrices assembling, the projection matrix generation, and the
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subspace projection process. The evaluation time represents the time of the evaluation
for one sweep, either scattering parameters or the derivatives, as no significant differences
are measurable. These definitions are valid for all following simulation data tables in this
chapter.

Fig. 6.2 shows the evaluated scattering parameters, their derivatives as well as error
plots. The absolute value of S77 is constant in the computed bandwidth, while its derivative
0 is increasing with higher frequency. Additionally, the phases between parameter and
derivative exhibit a shift. Note that the graphs of analytic solution and ROM evaluation
are lying upon each other as a result of the low error. The errors eg1; and es. are defined
as

esn = [S11 — Sil, (6.23)
es. = |0 — 02| (6.24)

The increasing errors with higher frequency originate from the FE simulation. It is a result
of shorter wavelengths in the fields on a constant mesh.

The computed sweeps allow us to perform evaluations for a disturbed material param-
eter &, by applying (6.11) and (6.22). Sweeps for the perturbed analytic solution dgll(pe)
and the perturbed numerical evaluation dS;;(p.) are solved. The results are shown for
a perturbation of p. = 0.004 in Fig. 6.3 and for a perturbation of p. = 0.04 in Fig. 6.4.
Additionally, the analytic sweeps are solved for ¢ = €,609 and € = (&, + p:)eo as references.
While the phase shift for the small perturbation can be only noticed in the upper end of
the computed bandwidth in Fig. 6.3, the perturbation of p. = 0.04 causes a remarkable
phase shift on a broadband in the upper end of the sweep in Fig. 6.4. The absolute value
of S1; increases with frequency into non-physical results. This effect, which becomes more
significant with higher perturbation values, results from the sensitivity analysis and is not
caused through the numerical broadband approach.

In the error plots, the difference of the analytic solutions at €, + p. to analytic pertur-
bation and to the broadband sensitivity analysis is recorded. The error between perturbed
analytic solution and perturbed ROM is evaluated as well as epr. In particular these errors
are defined as

eap(k) =S (k, e, +pe) — dSui(k,pe)l, (6.25)
eAR(k) = |S11(ka6r +p€) - dgll(k,p€)|, (626)
epr(k) = |dSi1(k, pe) — dSii (k, pe). (6.27)

For the very small perturbation of p. = 0.004, the error from perturbation to analytical
formulas, i.e. e4p and e4p, is very small, see Fig. 6.3. Although the error originating from
numerical simulation is dominant at higher frequencies, it is important to notice that the
perturbation error is rising with higher frequencies. This effect becomes more pronounced
for a higher perturbation, as can be seen in Fig. 6.4, where the error due to perturbation
is dominant over the complete evaluated bandwidth (eqp and eqpr are lying upon each
other).
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Specifications:

Simulation data:

Lowest frequency in Hz
Highest frequency in Hz
Evaluation points, equidistant
FE basis function order
Multi-point method

le7
2e9
501

Original dimension
Number of iterations q
ROM generation time in s
Evaluation time in s

149787
9
15.3
0.01

Table 6.1: Parallel plate waveguide: Scattering formulation simulation data.



112

2.5

15

1S11], [Oe]

0.5

£(S11), £(6¢)

-5

Error e
=
o

L 4, ,
L I ,
- o 756 -
L 55 i
| | | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 18 2
Frequency in GHz
| | | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
Frequency in GHz
€511 I
***655 ﬂﬂ,,,,,,//
P ~
Vi
| | | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

Frequency in GHz

Figure 6.2: Parallel plate waveguide: S7; and J. versus frequency using scattering formu-

lation.



Chapter 6. Broadband Sensitivity Analysis 113

1,00010 . = !
- = = Sule)
I d€11 (Ps)
—dSu(:) |4
1,00005 - : : A T
_ Sll (E'r +P5)
)
1,00000——F—————— — — — i — - - - B -
0,99995 ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency in GHz
4
\ AN N\ [ N
\ \ \ \. (N
2% N N\ N
\ \ \ \ N\
= N\ ‘ \ ‘ \ ‘ \ :
i \ AN \
El_)/ or e N \, | n
~ AN | N\ | \ | N\
\ \ N |
-l . 9 N\ 8 \ « “ : _
A | N N A 1
-4 L L L L L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency in GHz
107 :
€AP
€AR
€PR |+
10 B
. _ — -
5 46
g 10 " by
[Sa|
10° + -
10‘10 L L L
0 0.8 1 1.2 1.4 1.6 1.8 2

Frequency in GHz

Figure 6.3: Parallel plate waveguide: Material perturbation p. = 0.004 versus frequency
using scattering formulation.



114

1.008 — — — Su (s
1.006[ | — dSi1(p.) =
— 1.004| dS11 (pe)
) .
— 1.002 S (er +pe) N
1 -
0998 | | | | | | | | |
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency in GHz
4 \
AN \s n N
2l SN ™ BN ™
N N o (AN
- . ‘ AN | ~ V ™~ : ‘
% ok N ‘ \ N | G | |
Nt - ‘ AN ‘ N I I
.\ \,\ ‘ A ‘ . I
—2r AN ‘ | - \"L«. I I
~N N N N
-4 | | | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency in GHz
©10°
—
S
=
€3}
10*10 l l l l l l l l l
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 6.4: Parallel plate waveguide:

Frequency in GHz

using scattering formulation.

Material perturbation p. = 0.04 versus frequency



Chapter 6. Broadband Sensitivity Analysis 115

Impedance Formulation

As for the scattering formulation, a set of analytically formulas for the impedance formu-
lation is provided. Instead of transforming the line L1 by (6.17), the transformation is
performed by (6.15) and thus we have

Zina = jZo tan(Bals), (6.28)
o - 22 ) o
In = Zgl”, (6.30)

5. = 6821 i (6.31)

As for the analytical solution, an impedance formulation is chosen for the numerical solution
as well. The computational data for the simulation can be found in Table 6.2.

Fig. 6.5 shows a sweep for the impedance parameter Z;; and its derivative d.. The
analyzed waveguide structure exhibits inner resonances which result in a set of singularities
in the impedance parameter sweep, in the numerical simulation as well as in the evaluated
analytical formulation. The inner resonances cause the same set of singularities in the
derivatives of the impedance parameters. The computed errors are defined as

ez11 = |21 — Zu1), (6.32)

es. = [0 — bc. (6.33)

The set of error peaks in Fig. 6.5 is a result of the singularities in the impedance parameters
and their derivatives.

In equivalence to (6.16), sweeps for the reflection coefficient Si; and the perturbed
scattering parameter d.S1; can be evaluated from the expressions

. ~ Zn(k) -1
Si1(k) = AOFE (6.34)
d5'11(/€,p5) o %ll(kj) + 6e(k)p€ -1 (6.35)

Thus, the solutions in impedance formulation allow us to perform the perturbation anal-
ysis in the scattering formulation and to evaluate scattering parameters. As in the scat-
tering formulation section, the perturbed sweeps are compared to the analytic solutions at
e =¢gre0 and € = (&, + pe)eo. Again, the perturbations are set to p. = 0.004, in Fig. 6.6,
and p. = 0.04, in Fig. 6.7. The errors are defined as above, i.e. (6.25) to (6.27).

Although non-physical resonances may occur in the impedance formulation, as reported
for constructed configurations in [21], the evaluated scattering parameters in this simulation
do not exhibit unwanted singularities. However, at the frequencies of the inner resonances,
which can be seen in Fig. 6.5, the errors e4p and e4p rise to high values in Fig. 6.6, already
for a perturbation of p. = 0.004. For a perturbation of p. = 0.04, shown in Fig. 6.7, the
non-physical resonances cause serious discontinuities in the phase for higher perturbations.
It is very important to notice that the analytical perturbation analysis exhibits exactly
the same behavior as the numerical evaluation. Therefore, this effect is a result of the
formulation and is not an outcome of the numerical simulation.
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Specifications: Simulation data:
Lowest frequency in Hz | 1e7 || Original dimension 149787
Highest frequency in Hz | 2e9 || Number of iterations q 9
Evaluation points 501 || ROM generation time in s 8.9
FE basis function order 2 Evaluation time in s 0.01
Multi-point method -

Table 6.2: Parallel plate waveguide: Impedance formulation simulation data.
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6.3.2 Dielectric Pole Structure
Structure Definition

The second considered structure is the parallel plate waveguide in Fig. 6.8, where three
dielectric poles with €, = 50 are inserted. For such kinds of structures it is rather difficult
to figure out an analytical solution and even more difficult to find the derivative for the
sensitivity analysis. Therefore, for the structure simulation and the sensitivity analysis
only numerical methods are employed, i.e. MOR techniques applied to FE simulations
and the above introduced broadband sensitivity analysis. As sensitivity parameter, the
perturbation p. of the permittivity e, of the three dielectric poles is chosen.

Simulation and Sensitivity Analysis

In a first numerical experiment, the scattering parameter evaluation and the sensitivity
analysis for the three pole structure is performed in scattering formulation. The simulation
data is given in Table 6.3, while a frequency sweep is plotted in Fig. 6.9. Because resonances
are very interesting from the sensitivity analysis point of view, the focus is on the resonance
close to 190 MHz and the set of resonances around 1 GHz. The perturbations for the
analysis are set to p. = 0.2 and p. = 1.0.

Figure 6.10 shows the frequency shift resulting from the material perturbations in the
resonance at 190 MHz. In addition to the perturbed numeric evaluation, the scattering
parameters are computed as reference solution at the shifted material parameters ¢, = 50.2
and &, = 51.0. While for p. = 0.2 the perturbed scattering parameter dSyy is in good
accordance with the shifted material parameter solution, the perturbation p. = 1.0 causes
a severe difference. This is also noticeable in the evaluated error in Fig. 6.10, which shows
the differences between sensitivity analysis and shifted material parameter solution

€p. = |gll(6r +p€) - dgll(erape)|- (636)

For the resonances at 1 GHz, already the smaller chosen perturbation of p. = 0.2 leads
to differences compared to the solution with shifted parameter 511(& = 50.2), see Fig. 6.11.
These differences can be noticed particularly in the phases of the scattering parameters.
The errors are also higher, compared to the perturbation at 190 MHz. For a perturbation
of p. = 1.0, the errors at 1 GHz resonances are rather high and the scattering parameters
evaluated from the sensitivity analysis do not represent the resonances properly. This is a
result of setting the perturbation too high, but not a limitation of the provided broadband
sensitivity analysis.

400
85 30 70 30 70 30 85

o @ ® &

PEC — PMC-- Wave ports ——

Figure 6.8: Three pole structure: Geometric dimensions in mm.
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Specifications: Simulation data:
Lowest frequency in Hz le7 Original dimension 306768
Highest frequency in Hz | 1.2e9 || Number of iterations q 8
Evaluation points 10000 || ROM generation time in s 907
FE basis function order 2 Evaluation time in s 0.3
Multi-point method -

Table 6.3: Three pole structure: Simulation data using scattering formulation.
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Impedance Formulation

In this section, results of the simulation and the broadband sensitivity analysis in the
impedance formulation are shown. Asseen in the parallel plate waveguide, inner resonances
causes high errors in the sensitivity analysis. The same effect can be seen for the dielectric
three pole structure, where already for a small perturbation of p. = 0.2 the singularities
cause high errors. This can be seen in Fig. 6.12, which shows a broadband sensitivity
analysis in impedance formulation. The simulation data can be found in Table 6.4. In
contrast to the parallel plate waveguide, the discontinuities here can even be found in the
absolute values, and not only in the phase. These discontinuities can already be seen at
low frequencies, as the extraction of the sweep in Fig. 6.13 shows.

Specifications: Simulation data:
Lowest frequency in Hz le7 Original dimension 306768
Highest frequency in Hz | 1.2e9 || Number of iterations g 8
Evaluation points 10000 || ROM generation time in s 297
FE basis function order 2 Evaluation time in s 0.3
Multi-point method -

Table 6.4: Three pole structure: Simulation data using impedance formulation.
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6.4 Conclusion

This chapter has proposed a powerful tool for analyzing the effect of perturbations in design
parameters over a large frequency range. The broadband sensitivity technique is based on
the adaptive MORe methods provided in the previous chapters. Thus, the reduction, as
well as the sensitivity analysis process runs automatically using the introduced MORe
error measures. This technique can be applied to a large set of design parameters and
evaluated in arbitrary combinations. Numerical results show the efficiency and reliability
of the theory if a scattering formulation is employed.

However, the sensitivity analysis using an impedance formulation exhibits large errors
and fails to deliver reliable results. This effect is caused by the inner resonances of the
impedance formulation, which is explained by means of analytical formulas in this chapter.
Although the scattering parameters derived from the impedance formulation do not exhibit
this non-physical behavior, the sensitivity analysis suffers from these singularities.



Chapter 7

Closing Words

This thesis provides adaptive MORe methods for the broadband FE simulation of a large
set of real-world problems. In particular, an adaptive multi-point method is proposed and
a proof for a blocked WCAWE method is given. Moreover, memory swapping algorithms
are presented that allow us to maintain the system memory requirements for the projection
matrix at a constant low level. Numerical results show the efficiency and reliability of these
techniques. A memory analysis of the simulation runs demonstrates the importance of the
swapping mechanisms.

The proposed adaptive multi-point method for broadband waveguide simulations, to-
gether with its incremental error measure, is shown to work reliably and efficiently. Addi-
tionally, some broadband sensitivity analysis techniques are developed which are based on
the introduced MORe methods.

This thesis also provides a basis for future work. The out-of-core concept probably is
very attractive for multivariate MORe, where the projection matrix size may become an
even more limiting factor. Furthermore, there are some interesting issues concerning the
blocked WCAWE algorithm. Deflation and alternative orthogonalization processes in the
block algorithm should be investigated, which may reduce the computational efforts. Fi-
nally, extending the WCAWE blocking process to more than one parameter would probably
improve the efficiency of multivariate single-point methods [40].
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List of Abbreviations

AWE
FE
MORe
PEC
PMC
RAM
ROM
TE
TEM
™
WCAWE

: Asymptotic Waveform Evaluation
: Finite Element

: Model Order Reduction

: Perfect Electric Conductor

: Perfect Magnetic Conductor

: Random Access Memory

: Reduced Order Model

: Transverse Electric

: Transverse Electromagnetic

: Transverse Magnetic

: Well-Conditioned Asymptotic Waveform Evaluation
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