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Summary

Model order redu
tion methods provide a powerful means for the broadband simulation

of passive mi
rowave devi
es. In parti
ular proje
tion-based moment mat
hing methods

are well-suited for the redu
tion of sparse �nite element systems. However, for real-world

problems, where high-dimensional systems of linear equations are assembled and a large

number of ex
itations is 
onsidered in the right-hand side, the proje
tion matrix may �ll the

main memory and render the pro
ess ine�
ient. In this thesis, te
hniques were developed

whi
h, as a result of redu
ed memory requirements, make model order redu
tion appli
able

to a large set of real-world problem simulations.

A new adaptive multi-point redu
tion method is introdu
ed whose 
ore is an in
re-

mental error measure. For the proposed single-point method, whi
h is based on the well-


onditioned asymptoti
 waveform evaluation, memory requirements are redu
ed by means

of a blo
k algorithm, whose moment mat
hing properties are proven in this thesis. Mem-

ory swapping me
hanisms for both approa
hes keep the main memory requirements for the

proje
tion matrix at a 
onstant low level during the 
omputations.

This thesis also in
ludes an adaptive multi-point method for the broadband �nite ele-

ment simulation of waveguide problems and a broadband sensitivity analysis te
hnique.
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Kurzfassung

Verfahren der Modellordnungsreduktion stellen einen leistungsfähigen Ansatz für die breit-

bandige Simulation passiver Mikrowellenkomponenten dar. Insbesondere projektionsba-

sierte, momentenabglei
hende Methoden eignen si
h für die Reduktion der s
hwa
h be-

setzten Finite-Elemente Systeme. In praxisrelevanten Problemstellungen hingegen, bei

denen ho
hdimensionale Glei
hungssysteme assembliert werden und eine groÿe Anzahl

Anregungen in der re
hten Seite berü
ksi
htigt werden, kann die Projektionsmatrix den

Arbeitsspei
her füllen und der Prozess ine�zient werden. In dieser Dissertation werden

Algorithmen entwi
kelt, die aufgrund des reduzierten Spei
herbedarfs Reduktionsverfahren

auf eine groÿe Auswahl praxisrelevanter Simulationen anwendbar ma
hen.

Ein neues Mehrpunktverfahren wird eingeführt, dessen Kern ein inkrementelles Fehler-

maÿ ist. Für das entwi
kelte Einpunktverfahren, wel
hes auf der Well-Conditioned Asymp-

toti
 Waveform Evaluation basiert, wurde der Spei
heraufwand mit Hilfe eines Blo
kalgo-

rithmus reduziert, dessen momentenabglei
henden Eigens
haften in dieser Dissertation be-

wiesen werden. Datenauslagerungsme
hanismen für beide Ansätze halten den Arbeits-

spei
herbedarf für die Projektionsmatrix während der Bere
hnung konstant niedrig.

Diese Arbeit beinhaltet des Weiteren ein adaptives Mehrpunktverfahren für die breit-

bandige Finite-Elemente-Simulation vonWellenleiterproblemen und ein Verfahren zur breit-

bandigen Sensitivitätsanalyse.
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Chapter 1

Introdu
tion

1.1 Preliminary Words

Numeri
al simulation and 
omputer-aided design pro
esses enjoy an ever in
reasing area of

appli
ation. This trend is driven by the more and more 
omplex design of ele
troni
 devi
es.

Hen
e, higher frequen
ies and 
oupling issues make the design pro
ess more 
hallenging

and the usage of ele
tromagneti
 �eld simulation demanding. Numeri
al �eld simulation

te
hniques provide reliable solutions for ele
tromagneti
 problems, even for very 
omplex

stru
tures. Cir
uit simulators are often employed in a subsequent pro
ess and may utilize

extra
ted parameters from numeri
al �eld simulations.

Although the numeri
al 
omputations in ele
tromagneti
s do exhibit high memory re-

quirements as well as high 
omputational 
osts, progress in hardware development allows

�eld simulations to be run on a standard personal 
omputer. However, for extended ap-

pli
ations, e.g. parameter studies or optimization pro
esses, the simulation methods often

struggle with limited system resour
es. At the same time, the simulation of more and

more 
omplex ele
tromagneti
 devi
es is requested. The numeri
al simulation of 
om-

plete stru
tures su
h as printed 
ir
uit boards, integrated 
ir
uit pa
kages or full ma
hine

wirings is the 
hallenge of today's te
hniques. To ful�ll these requirements, signi�
ant

e�ort is devoted to both hardware development and improvement of numeri
al methods.

1
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1.2 Numeri
al Simulation

The Finite Element Method

Among numeri
al simulation te
hniques for ele
tromagneti
 problems, the �nite element

(FE) method has be
ome popular due to its �exibility in modeling geometry and material

properties. FE simulation provides a numeri
al solution for ele
tromagneti
 boundary value

problems, whi
h may be derived from ele
tromagneti
 �eld theory. The fo
us of this thesis

is on the simulation of passive mi
rowave stru
tures, where parti
ularly driven problems [1℄,

[2℄, [3℄ and waveguide problems [4℄, [5℄ are 
onsidered. The numeri
al simulation pro
ess

using the FE method typi
ally results in a large-s
ale sparse system of equations or an

algebrai
 eigenvalue problem, respe
tively. The system of linear equations is assembled and

solved for a �xed 
on�guration. To simulate the frequen
y 
hara
teristi
s of a mi
rowave


omponent, e.g. a mi
rowave �lter, the solution pro
ess needs to be performed for a large

number of evaluation points. This broadband simulation, however, may result in a time-


onsuming pro
ess. Parameterizing the frequen
y in the system of linear equation results

in a problem well-suited for model order redu
tion (MORe) approa
hes.

Model Order Redu
tion

The main goal of MORe is to �nd a redu
ed order model (ROM), whi
h approximates the

large-s
ale system in a 
ertain parameter range. The most 
ommon MORe approa
hes,

whi
h arise from the �eld of 
ir
uit simulation and 
ontrol theory, may be 
ategorized into

singular value de
omposition-based methods [6℄ and moment mat
hing methods as the

Asymptoti
 Waveform Evaluation (AWE) [7℄. The fo
us of this thesis is on the moment

mat
hing approa
hes, whi
h are more 
onvenient for the 
onsidered large-s
ale FE systems.

While early methods, as the AWE te
hnique, su�ered from a de�
it in numeri
al stability,

the later proje
tion-based methods [8℄ resolved this numeri
al short
oming. A numeri
ally

stable pro
ess for polynomial parameterized systems is provided by the Well-Conditioned

Asymptoti
 Waveform Evaluation (WCAWE) [9℄. Multi-point methods, whi
h were origi-

nally developed to over
ome the numeri
al instabilities of early single-point methods [10℄,

are very general approa
hes and enjoy popularity due to their �exibility, see e.g. [11℄. The

generality of multi-point methods also supports MORe for polynomially parameterized

system.
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1.3 Problem De�nition and S
ienti�
 Contribution

Problem De�nition

The FE simulation of very 
omplex stru
tures, in whi
h a system matrix of very large di-

mension is assembled, �nds its limitation in the available system resour
es. This situation

be
omes worse if MORe te
hniques are employed for broadband simulations. While the

FE system matrix as well as the right-hand side ve
tors are sparse, the 
omputed proje
-

tion matrix for the MORe pro
ess is a dense matrix, whi
h may �ll the main memory.

Parti
ularly for simulations in whi
h a large number of moments need to be mat
hed,

the proje
tion matrix memory requirements may be
ome a limiting fa
tor. Furthermore,

devi
es with a large number of ex
itations result in systems with many right-hand sides,

whi
h also let the proje
tion matrix dimension in
rease.

The Aim of This Thesis

The purpose of this thesis is to �nd MORe te
hniques suitable for the broadband FE

simulation of 
omplex real-world stru
tures. Spe
i�
ally, this means making proje
tion-

based MORe methods, whi
h are a
tually very suitable for the FE simulation, a

essible

to high-dimensional systems with a large number of right-hand sides.

S
ienti�
 Contribution

An in
remental error measure is introdu
ed in Se
tion 3.3, whi
h o�ers a very e�
ient and

reliable alternative to residual 
omputations or error-bound evaluations [12℄. This error

measure is used in the bise
tion method-based adaptive multi-point algorithm developed

in Se
tion 3.5. Furthermore, the error measure is used as a termination 
riterion in an

iterative WCAWE pro
ess, see Se
tion 3.4. Numeri
al results indi
ate that the proposed

adaptive multi-point algorithm requires fewer iterations to rea
h a given error limit than

the single-point method, even if the WCAWE pro
ess is started at the optimum expansion

frequen
y. Hen
e, the proje
tion matrix in the multi-point MORe pro
ess is smaller and

requires less memory.

To redu
e the main memory requirements of the MORe pro
ess, out-of-
ore redu
tion

algorithms are developed in Chapter 4. While in-
ore algorithms �ll the system require-

ments in ea
h iteration with the in
reasing proje
tion matrix, the proposed algorithms

keep the main memory requirements for the proje
tion matrix 
onstant on the level of the

�rst iteration. Parti
ularly for highly resonant stru
tures, where the MORe pro
ess runs

a large number of iterations, this te
hnique is bene�
ial. In this framework of out-of-
ore

te
hniques, this thesis gives a detailed proof that the extension of the WCAWE method to

a blo
k algorithm, provided in [13℄, does mat
h moments.

An additional result of this thesis is a bise
tion-based adaptive multi-point MORe

algorithm for waveguide problems in Chapter 5. Furthermore, in Chapter 6 a broadband

sensitivity analysis theory is proposed and dis
ussed in detail on 
omputed numeri
al

experiments.
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Available Infrastru
ture and Implementation Work

For this thesis, a 
omplete 
++ FE 
ode was available. Furthermore, an extensive mathe-

mati
al library, in
luding linkage to the Intel Math Kernel Library, was used.

During this thesis, a 
omprehensive framework for MORe was implemented, whi
h in-


ludes single-point as well as multi-point methods. In parti
ular, the adaptive methods in


ombination with the error measures as a termination 
riterion were implemented. Fur-

thermore, a binary data-swapping pro
ess was 
oded for the out-of-
ore approa
hes. The


ode also in
ludes an automati
 parameterization for the FE system.



Chapter 2

Simulation of Ele
tromagneti


Stru
tures

The purpose of this se
ond 
hapter is to provide an overview of the physi
al and math-

emati
al tools for the FE simulation of passive mi
rowave 
omponents. This 
hapter

begins with a introdu
tion to basi
 ele
tromagneti
s, whi
h allows us to de�ne a suitable

boundary value problem for the 
onsidered �eld analysis. Applying the FE method to the

ele
tromagneti
 boundary value problem results in a system of linear equations. The FE

dis
retization allows us to assemble the system matri
es parameterized in the frequen
y,

whi
h provides the basis for the later introdu
ed MORe te
hniques.

2.1 Maxwell's Equations

Ele
tri
 and magneti
 ma
ros
opi
 phenomena in 
lassi
al ele
tromagneti
s are des
ribed

by the Maxwell equations

∇× E = −∂B
∂t
, (2.1)

∇×H = J +
∂D
∂t
, (2.2)

∇ · D = ̺, (2.3)

∇ · B = 0, (2.4)

whi
h are Faraday's law of indu
tion, Ampère's 
ir
uit law, Gauss's law and Gauss's law

for magnetism, respe
tively. The 
onstitutive equations

D = ε0εrE = εE , (2.5)

B = µ0µrH = µH, (2.6)

J = σE , (2.7)

whi
h de�ne material properties, 
omplete the physi
al des
ription for the ele
tromagneti


�elds. The material properties in this thesis are 
onsidered to be symmetri
, linear and

time invariant. Table 2.1 gives the de�nition of used physi
al quantities in
luding their

units.

5
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Table 2.1: Symbols of ele
tromagneti
 quantities.

Symbol De�nition Unit

E Ele
tri
 �eld intensity V/m
D Ele
tri
 displa
ement �eld C/m2

H Magneti
 �eld intensity A/m
B Magneti
 �ux density T = V s/m2

J Ele
tri
 
urrent density A/m2

ρ Ele
tri
 
harge density C/m3

ε0 Free spa
e permittivity As/(V m)
εr Relative permittivity −
µ0 Free spa
e permeability V s/(Am)
µr Relative permeability −
σ Ele
tri
 
ondu
tivity A/(V m)
t Time s
ω Angular frequen
y rad/s

However, for the investigation of time harmoni
 settings, Maxwell's equations may be

written in the frequen
y domain

∇× ~E = −jω ~B, (2.8)

∇× ~H = ~J + jω ~D, (2.9)

∇ · ~D = ρ, (2.10)

∇ · ~B = 0, (2.11)

where the time dependent physi
al quantities be
ome the phasors

~E, ~D,

~H,

~B, ~J and

ρ. As the purpose of this thesis is to employ MORe te
hniques for the evaluation of fast

frequen
y sweeps, the fo
us is on the frequen
y domain.

The introdu
ed physi
al quantities �t into a mathemati
al framework of fun
tional

spa
es. The spa
e of square integrable s
alar �elds on the domain Ω ⊂ R
3
is de�ned as

L2(Ω) := {u(x)| ‖u(x)‖L2 <∞} , (2.12)

where the norm ‖·‖L2 is indu
ed by the inner produ
t

(u,v)L2 =

∫

Ω
uH(x)v(x)dΩ, u,v ∈ C

n. (2.13)

Furthermore, the fun
tional spa
es

H1(Ω) :=
{
u ∈ L2(Ω)|∇u ∈ [L2(Ω)]3

}
, (2.14)

H(curl; Ω) :=
{
u ∈ [L2(Ω)]3|∇ × u ∈ [L2(Ω)]3

}
, (2.15)

H(div; Ω) :=
{
u ∈ [L2(Ω)]3|∇ · u ∈ L2(Ω)

}
, (2.16)

are introdu
ed, whi
h together with the asso
iated s
alar produ
ts

(u, v)1 = (∇u, ∇v)L2 + (u, v)L2 , (2.17)

(u,v)curl = (∇× u, ∇× v)L2 + (u,v)L2 , (2.18)

(u,v)div = (∇ · u, ∇ · v)L2 + (u,v)L2 , (2.19)
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are Hilbert spa
es. Sin
e we have the in
lusions

∇H1(Ω) ⊂ H(curl; Ω), (2.20)

∇×H(curl; Ω) ⊂ H(div; Ω), (2.21)

∇×H(div; Ω) ⊂ L2(Ω), (2.22)

the introdu
ed Hilbert spa
es form the sequen
e

H1(Ω)
∇−→ H(curl; Ω)

∇×−−−→ H(div; Ω)
∇·−−→ L2(Ω). (2.23)

The sequen
e is 
alled exa
t, if

∇×H(curl; Ω) = ker(div) := {u ∈ H(div; Ω)|∇ · u = 0} , (2.24)

∇H1(Ω) = ker(curl) := {u ∈ H(curl; Ω)|∇ × u = 0} , (2.25)

as we have for the Eu
lidean spa
e E
3
. However, the exa
tness property is lost for domains

of non-trivial topology, whi
h is explained in detail in textbooks as [14℄ and [15℄.

Maxwell's equations naturally �t in this framework of fun
tional spa
es. The ele
tri


�eld intensity

~E and the magneti
 �eld intensity

~H belong to the spa
e H(curl; Ω)

~E, ~H ∈H(curl; Ω). (2.26)

The spa
e H(div; Ω) is asso
iated with the magneti
 �ux density

~B, the displa
ement �eld

~D and the 
urrent density

~J

~B, ~D, ~J ∈ H(div; Ω). (2.27)

Thus, the following diagram shows how Maxwell's equations, with the help of 
onstitutive

equations, �t into the framework of fun
tional spa
es:

ϕe
∇−→ ~E

∇×−−−→ ~B
∇·−−→ 0

ε l σ µ l
ρ

∇·←−− ~D, ~J
∇×←−−− ~H

∇←− ϕm

. (2.28)

In the diagram above, the ele
tri
 s
alar potential ϕe and the magneti
 s
alar potential

ϕm are added into the framework.
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2.2 Boundary Value Problem De�nition

The boundary value problem is based on an ele
tri
 �eld formulation. Therefore, the

magneti
 �eld intensity

~H in Maxwell's equations is eliminated, whi
h results in the ve
tor

Helmholtz equation

∇× µ−1∇× ~E − ω2ε ~E = −jω ~J. (2.29)

Furthermore, assuming the sour
e free domain Ω, with the non-overlapping boundaries

Γ = ΓE ∪ ΓH ∪ ΓΘ ∪ ΓZ , the boundary value problem yields

∇× µ−1∇× ~E − ω2ε ~E = 0 in Ω, (2.30a)

ên × ~E = 0 on ΓE, (2.30b)

ên × ~H = 0 on ΓH , (2.30
)

~H × ên = ~HTΘ × ên on ΓΘ, (2.30d)

~H × ên =
1

Zs
ên × ( ~E × ên) on ΓZ , (2.30e)

where ên denotes the outward dire
ted normal unit ve
tor on the boundary. ΓE and ΓH
represent the ele
tri
 walls and magneti
 walls, respe
tively. ΓZ is the impedan
e boundary

with the impedan
e parameter Zs and ~HTΘ stands for the impressed tangential magneti


�eld strength on the wave port region ΓΘ.

The weak form of the boundary value problem above is obtained by weighting (2.30a)

with ~wi and integrating over the domain Ω
∫

Ω
~wi · ∇ × µ−1∇× ~EdΩ− ω2

∫

Ω
~wi · ε ~EdΩ = 0, (2.31)

where

~wi ∈ H(curl; Ω,ΓE) :=
{
~u ∈ [L2(Ω)]3|~u×∇ ∈ [L2(Ω)]3 and ên × ~u = 0 on ΓE

}
.

(2.32)

Employing Gauss' theorem and the ve
tor identity

∇ · (~v × ~u) = ~u · (∇× ~v)− ~v · (∇× ~u), (2.33)

we 
an write

∫

Ω
∇× ~wi · µ−1∇× ~EdΩ− ω2

∫

Ω
~wi · ε ~EdΩ−

∮

Γ
(~wi × µ−1∇× ~E) · êndΓ = 0.

(2.34)

Plugging Faraday's law of indu
tion into the boundary integral results in

∫

Ω
∇× ~wi · µ−1∇× ~EdΩ− ω2

∫

Ω
~wi · ε ~EdΩ+ jω

∮

Γ
(~wi × ~H) · êndΓ = 0. (2.35)

We rewrite the boundary integral as

jω

∮

Γ
. . . dΓ = jω

∫

ΓE

. . . dΓ + jω

∫

ΓH

. . . dΓ + jω

∫

ΓΘ

. . . dΓ + jω

∫

ΓZ

. . . dΓ, (2.36)
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and look on ea
h boundary separated. On ΓE, we have

jω

∫

ΓE

(~wi × ~H) · êndΓ = jω

∫

ΓE

~H · (ên × ~wi)dΓ = 0, (2.37a)

as ~wi ∈ H(curl; Ω,ΓE). On the boundary ΓH we have by de�nition

jω

∫

ΓH

(~wi × ~H) · êndΓ = −jω
∫

ΓH

~wi · (ên × ~H)dΓ = 0. (2.37b)

The integral on ΓΘ results in

jω

∫

ΓΘ

(~wi × ~H) · êndΓ =jω

∫

ΓΘ

~wi · ( ~H × ên)dΓ

=jω

∫

ΓΘ

~wi · ( ~HTΘ × ên)dΓ, (2.37
)

and will be moved to the right-hand side. On the boundary ΓZ the integral yields

jω

∫

ΓZ

(~wi × ~H) · êndΓ =jω

∫

ΓZ

~wi · ( ~H × ên)dΓ

=jω

∫

ΓZ

~wi ·
1

Zs
ên × ( ~E × ên)dΓ

=jω

∫

ΓZ

(ên × ~wi) · (
1

Zs
ên × ~E)dΓ. (2.37d)

Thus, the weak form of the boundary value problem reads

∫

Ω
∇× ~wi · µ−1∇× ~EdΩ+ jω

∫

ΓZ

(ên × ~wi) · (
1

Zs
ên × ~E)dΓ

− ω2

∫

Ω
~wi · ε ~EdΩ = jω

∫

ΓΘ

~wi · (ên × ~HTΘ)dΓ, ∀~wi ∈ H(curl; Ω,ΓE). (2.38)

2.2.1 Impedan
e Boundary Condition

In some ele
tromagneti
 
on�gurations, solids with highly 
ondu
tive material properties,

lumped network elements or unbounded domains need to be 
onsidered. To model these

physi
al e�e
ts, the impedan
e boundary 
ondition (2.30e) may be used.

First we turn to the modeling of solids with highly 
ondu
tive material properties, as

for instan
e metals exhibit. Due to the skin e�e
t, alternating 
urrents have the tenden
y

to �ow mostly near the surfa
e of 
ondu
tors. The skin depth

δ =

√
2

ωµσ
, (2.39)

de�nes the depth under the surfa
e where the �eld 
omponents have dropped by a fa
tor e.
Hen
e, in 
ase of large geometri
al dimensions of the 
ondu
tive solid, 
ompared to the

skin depth, the solid may be removed and modeled with impedan
e boundary 
onditions

on its surfa
es. The impedan
e parameter is then set to

Zs = (1 + j)

√
ωµ

2σ
, (2.40)
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as evaluated in [16℄.

In the free spa
e, the ele
tromagneti
 �eld 
omponents of a plane wave satisfy

ê× ~E =

√
µ0
ε0
~H, (2.41)

where ê denotes the propagation dire
tion. This property is used to model in�nite 
om-

putational domains with absorbing boundary 
onditions [17℄. Thus, the parameter Zs in
the impedan
e boundary 
ondition is set to

Zs =

√
µ0
ε0
. (2.42)

Unlike the impedan
e boundaries above, sheets asso
iated with lumped elements are

allowed to be de�ned in the interior of the 
omputational domain. The tangential 
ompo-

nents of the magneti
 �eld intensity in (2.30e) are therefore rather

~H× ên = ( ~H2− ~H1)× ên,
the di�eren
e of the �elds on both sides of the sheet. Ampère's 
ir
uit law allows us to

write

∮

∂ΓZ

( ~H2 − ~H1)× ênd~s = Kb, (2.43)

where K and b are the surfa
e 
urrent density and the width of the sheet, respe
tively.

Furthermore, we have an ele
tri
 voltage along the sheet of length l. With these results,

we 
an derive the impedan
e parameter in (2.30e) from Ohm's law as

Zs = Z
b

l
, (2.44)

where Z is the impedan
e of the lumped element.

2.2.2 Ex
itation on the Wave Port Region

Waveguide Modes

For the �eld analysis on the boundary ΓΘ, the surfa
e is subdivided into

ΓΘ =

Nϑ⋃

ϑ=1

Γϑ, (2.45)

where ea
h Γϑ is de�ned to be the transverse plane of an axially uniform waveguide, whi
h

is 
onne
ted to the devi
e. For ea
h waveguide a lo
al 
oordinate system is de�ned, where

the z-axis is set as the uniform axis of the waveguide and the transverse plane Γϑ is at

z = 0. Hen
e, the normal ve
tor ên on Γϑ in the global 
oordinates is equivalent to the

lo
al unit ve
tor êz of ea
h waveguide.

Ea
h supported modal waveform (~eξ,~hξ) in a waveguide may be separated into transver-

sal and axial �eld 
omponents

~eξ = ~eTξ + êzξ, (2.46)

~hξ = ~hTξ + ĥzξ, (2.47)
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where the subs
ripts T and z denote the transversal and normal 
omponents, respe
tively.

The transversal modal �eld patterns ~eTξ and ~hTξ are normalized beyond their waveform


ut-o� frequen
y su
h that

∫

Γϑ

(~eTξ × ~hTξ) · êzdΓ = 1. (2.48)

For the superposition of forward and ba
kward traveling transverse �eld 
omponents

~ETξ
and

~HTξ in the waveguide, we write

~ETξ(z) = ufξ~eTξ e
−γξz +ubξ~eTξ e

+γξz, (2.49)

~HTξ(z) = ufξ
~hTξ e

−γξz −ubξ~hTξ e+γξz, (2.50)

where γξ, u
f
ξ and u

b
ξ stand for the propagation 
onstant, and the 
omplex amplitude of the

forward and ba
kward traveling waves, respe
tively. Furthermore, the transversal �elds of

two di�erent waveforms (~eξ,~hξ) and (~eζ ,~hζ) satisfy the orthogonality 
ondition [18℄

∫

Γϑ

(~eTξ × ~hTζ) · êzdΓ = 0. (2.51)

Hen
e, de�ning the equivalent modal voltage Vξ and equivalent modal 
urrent Iξ

Vξ = ubξ + ufξ , (2.52)

Iξ = ubξ − ufξ , (2.53)

the ele
tromagneti
 �eld ( ~ET , ~HT ) on Γϑ, i.e. the transverse �eld at z = 0 in the lo
al

waveguide 
oordinates, may be written as the expansion

~ET =

Nξ∑

ξ=1

~ETξ =

Nξ∑

ξ=1

Vξ~eTξ, with Nξ →∞, (2.54)

~HT =

Nξ∑

ξ=1

~HTξ =

Nξ∑

ξ=1

Iξ~hTξ, with Nξ →∞. (2.55)

Network Parameter Evaluation

The introdu
tion of 
omplex modal amplitudes of traveling waves and equivalent voltages

Vζ and 
urrents Iξ, allows us to determine network parameters for the modeled mi
rowave

devi
e [19℄. The generalized impedan
e Zζξ is de�ned to be the quotient of Vζ and Iξ

Zζξ =
Vζ
Iξ

∣
∣
∣
∣
Iν=0, ∀ ν 6=ξ

, (2.56)

where only one single non-zero 
urrent is set as ex
itation. Thus, we have









Z11 Z12 . . . Z1N

Z21 Z22
.

.

.

.

.

.

.

.

.

.

.

.

ZN1 . . . . . . ZNN









︸ ︷︷ ︸

Z








I1
I2
.

.

.

IN







=








V1
V2
.

.

.

VN







, (2.57)
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where Z denotes the generalized impedan
e matrix. Therefore, for the boundary value

problem only the transverse magneti
 �eld

~hTξ of one single modal waveform is employed

as ex
itation on ΓΘ

~HTΘ = ~hTξ, (2.58)

whi
h means to plug

~hTξ into (2.38). Hen
e, the boundary value problem solution, i.e. the

ele
tri
 �eld, is denoted as

~E(~hTξ) and in parti
ular, the ele
tri
 �eld on the boundary ΓΘ

is denoted as

~ET (~hTξ). Plugging ~ET (~hTξ) into the orthogonality relation (2.51) and using

the expansion (2.54), we have

∫

ΓΘ

( ~ET (~hTξ)× ~hTζ) · êndΓ =

∫

Γϑ

( ~ET (~hTξ)× ~hTζ) · êndΓ (2.59a)

=

∫

Γϑ









Nξ∑

ν=1

~ETν(~hTξ)



× ~hTζ



 · êndΓ (2.59b)

=

Nξ∑

ν=1

(∫

Γϑ

(

~ETν(~hTξ)× ~hTζ
)

· êndΓ
)

(2.59
)

=

∫

Γϑ

( ~ETζ(~hTξ)× ~hTζ) · êndΓ. (2.59d)

Rewriting the transverse �eld with its amplitude, i.e.

~ETζ(~hTξ) = Vζ(~hTξ)~eTζ , we have due
to linearity

VTζ(~hTξ) = VTζ(
1

Iξ
~HTξ) =

1

Iξ
VTζ( ~HTξ). (2.60)

This linearity property together with (2.48), allows us to evaluate the generalized impedan
e

∫

Γϑ

( ~ETζ(~hTξ)× ~hTζ) · ~endΓ =

∫

Γϑ

(Vζ(~hTξ)~eTζ × ~hTζ) · êndΓ (2.61a)

= Vζ(~hTξ)

∫

Γϑ

(~eTζ × ~hTζ) · êndΓ (2.61b)

=
Vζ( ~HTξ)

Iξ

∫

Γϑ

(~eTζ × ~hTζ) · êndΓ (2.61
)

=
Vζ( ~HTξ)

Iξ
(2.61d)

= Zζξ, (2.61e)

where the de�nition (2.56) is used.

An alternative way to des
ribe mi
rowave devi
es, whi
h is probably even more 
om-

mon, are generalized s
attering parameters, de�ned as

Sζξ =
ufζ

ubξ

∣
∣
∣
∣
∣
ubν=0, ∀ ν 6=ξ

. (2.62)
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Thus, we have









S11 S12 . . . S1N

S21 S22
.

.

.

.

.

.

.

.

.

.

.

.

SN1 . . . . . . SNN









︸ ︷︷ ︸

S








ub1
ub2
.

.

.

ubN








︸ ︷︷ ︸

ub

=








uf1
uf2
.

.

.

ufN








︸ ︷︷ ︸

uf

, (2.63)

where S denotes the generalized s
attering matrix. On
e the generalized impedan
e matrix

is available, the generalized s
attering matrix is obtained by

uf + ub = Z(ub − uf ), (2.64a)

(Z− I)ub = (Z+ I)uf , (2.64b)

uf = (Z+ I)−1(Z− I)ub, (2.64
)

S = (Z+ I)−1(Z− I). (2.64d)
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2.3 Finite Element Simulation

The purpose of the FE method is to approximate the solution of the boundary value

problem (2.38), i.e. the ele
tri
 �eld

~E, in a �nite-dimensional subspa
e of H(curl; Ω,ΓE).
For the dis
retization of the domain Ω, a triangulation Th(Ω) into elements of polyhedral

geometry is employed, where Ω is assumed to be a bounded domain. The ele
tri
 �eld is

thus dis
retized in the global FE spa
e

W(Th(Ω)) ⊂ H(curl; Ω,ΓE). (2.65)

The FE shape fun
tions in the FE spa
e are denoted as

~wj ∈ W(Th(Ω)), (2.66)

where for all numeri
al 
al
ulations in this thesis the hierar
hi
al basis fun
tions of [20℄ are

used and a triangulation into elements of tetrahedral geometry is employed. In the global

FE spa
e, basis fun
tions whi
h belong to the wave port are separated for further work

W(Th(Ω)) =WT ⊕WΘ, (2.67)

where

WT := {~w ∈ W(Th(Ω)) | ên × ~w = 0 on ΓΘ}, (2.68a)

WΘ := {~w ∈ W(Th(Ω)) | ên × ~w 6= 0 on ΓΘ}. (2.68b)

Thus, the ele
tri
 �eld intensity

~E is dis
retized in the expansion

~E = ~EI + ~EΘ, (2.69)

with

~EI =

NI∑

j=1

uj ~wj, ~wj ∈ WT , (2.70a)

~EΘ =

NΘ∑

j=1

uj ~wj, ~wj ∈ WΘ, (2.70b)

where uj are the 
oe�
ients of the basis fun
tions. NI andNΘ denote the number of degrees

of freedom asso
iated with WT andWΘ, respe
tively. Plugging the ele
tri
 �eld expansion

(2.69) into the weak form of the boundary value problem (2.38), the FE dis
retization

results in the system of linear equations

(A0 + jη0k0A1 − k20A2)x = −jη0k0b, (2.71)

where k0 = ω
√
ε0µ0 is the wavenumber in the free spa
e and η0 =

√
µ0
ε0
. The stru
tures of

the matri
es in the system of linear equations appear as

A0 =

[
Aν
TT Aν

TΘ

Aν
ΘT Aν

ΘΘ

]

∈ C
Nf×Nf , AT

0 = A0, (2.72a)

A1 =

[
Az 0

0 0

]

∈ C
Nf×Nf , AT

1 = A1, (2.72b)

A2 =

[
Aε
TT Aε

TΘ

Aε
ΘT Aε

ΘΘ

]

∈ C
Nf×Nf , AT

2 = A2, (2.72
)
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where Nf = NI +NΘ, and the matrix entries are de�ned with the bilinear forms

[AνTT ]ij =

∫

Ω
∇× ~wi · µ−1

r ∇× ~wjdΩ, ∀ ~wi, ~wj ∈ WT , (2.73a)

[AνTΘ]ij =

∫

Ω
∇× ~wi · µ−1

r ∇× ~wjdΩ, ∀ ~wi ∈ WT , ~wj ∈ WΘ, (2.73b)

[AνΘΘ]ij =

∫

ΓΘ

∇× ~wi · µ−1
r ∇× ~wjdΓ, ∀ ~wi, ~wj ∈ WΘ, (2.73
)

[Az]ij =

∫

ΓZ

1

Zs
(ên × ~wi) · (ên × ~wj)dΓ, ∀ ~wi, ~wj ∈ WT , (2.73d)

[AεTT ]ij =

∫

Ω
~wi · εr ~wjdΩ, ∀ ~wi, ~wj ∈ WT , (2.73e)

[AεTΘ]ij =

∫

Ω
~wi · εr ~wjdΩ, ∀ ~wi ∈ WT , ~wj ∈ WΘ, (2.73f)

[AεΘΘ]ij =

∫

ΓΘ

~wi · εr ~wjdΓ, ∀ ~wi, ~wj ∈ WΘ. (2.73g)

For the right-hand side ve
tor b we have

b =

[
bT
bΘ

]

∈ C
Nf , (2.74)

with

[bT ]i = 0, ∀ ~wi ∈ WT , (2.75a)

[bΘ]i =

∫

ΓΘ

(~wi × ~HTΘ) · êndΓ, ∀ ~wi ∈ WΘ. (2.75b)

Setting the 
oe�
ients uj = mξj , for j = 1, . . . , NΘ, su
h that the ele
tri
 �eld ex-

pansion on the wave port area in (2.70b) form the transverse ele
tri
 �eld of the modal

waveform (~eξ,~hξ), we have

~eTξ =

NΘ∑

j=1

mξj ~wj , (2.76)

and de�ne the 
oe�
ient ve
tor

mT
ξ = [mξ1,mξ2, . . . , mξNΘ

]. (2.77)

Furthermore, we de�ne the matrix

M = [m1, m2, . . . , mNξ
] ∈ C

NΘ×Nξ , (2.78)

where ea
h 
olumn is asso
iated with a modal waveform. In an approa
h similar to the

trans�nite element method [2℄, the degrees of freedom on ΓΘ in the system (2.71) are

redu
ed, whi
h results in

(AM0 + jk0AM1 − k20AM2)xM = −jk0η0bM , (2.79)
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where

AM0 =

[
Aν
TT Aν

TΘM

MTAν
ΘT MTAν

ΘΘM

]

∈ C
Nr×Nr , (2.80a)

AM1 =

[
Aν
ZZ 0

0 0

]

∈ C
Nr×Nr , (2.80b)

AM2 =

[
Aε
TT Aε

TΘM

MTAε
ΘT MTAε

ΘΘM

]

∈ C
Nr×Nr , (2.80
)

bM =

[
bT

MTbΘ

]

∈ C
Nr ,bT = 0, (2.80d)

and Nr = NI +Nξ.

For the network parameter evaluation only one single mode is ex
ited on ΓΘ, whi
h

means to set

~HTΘ = ~hTξ in (2.38). Hen
e, in (2.75b) we set

[bξ]i =

∫

ΓΘ

(~wi × ~hTξ) · êndΓ, ∀ ~wi ∈ WΘ. (2.81)

and denote the right-hand side ex
itation with

bMξ =

[
bT

MTbξ

]

∈ C
Nr ,bT = 0. (2.82)

The 
oe�
ient ve
tor xM (~hTξ) denotes the solution of an ex
itation with the modal wave-

form (~eξ,~hξ). The generalized impedan
e parameter evaluation is done by the output

fun
tional

Zζξ := Zζ(xM (~hTξ)) = bTMζxM (~hTξ). (2.83)

This 
an be veri�ed by writing

bTMζxM (~hTξ) = bTζ MxM (~hTξ) (2.84a)

=

Nξ∑

ν=1

bTζ mνVν(~hTξ) (2.84b)

=

Nξ∑

ν=1

Vν(~hTξ)

(
NΘ∑

i=1

mνi

∫

ΓΘ

~wi × ~hTζ · êndΓ
)

(2.84
)

=

Nξ∑

ν=1

Vν(~hTξ)

∫

ΓΘ

(
NΘ∑

i=1

mνi ~wi

)

× ~hTζ · êndΓ (2.84d)

=

Nξ∑

ν=1

Vν(~hTξ)

∫

ΓΘ

~eTν × ~hTζ · êndΓ (2.84e)

=

Nξ∑

ν=1

(∫

ΓΘ

~ETν(~hTξ)× ~hTζ · êndΓ
)

, (2.84f)

where the last line 
an be plugged into (2.59).
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2.4 System Parameterization

For the MORe pro
ess in this thesis the frequen
y is 
hosen as parameter, a
tually the

wavenumber k0, whi
h allows us to evaluate fast frequen
y sweeps. The parameterization

of the linear system of equations is dependent on the 
onsidered stru
ture. To dis
uss this,

the FE system together with its ex
itations and output fun
tionals is denoted as

(
a∑

i=0

siAi)X(s) = stBu(s), Ai ∈ C
Nr×Nr , (2.85a)

Y(s) = BTX(s), B ∈ C
Nr×Nξ , (2.85b)

where we use s as parameter, a for the polynomial degree and t is the parameter exponent

of the right-hand side. A devi
e whi
h is modeled without any impedan
e boundary ΓZ has

only a linear parameter dependen
y, a = 1, where the parameter is the substituted square

of the wavenumber, s = k20 . An absorbing boundary 
ondition 
auses a linear wavenumber

dependen
y, thus we have s = k0 and a = 2. However, in 
ase of modeled surfa
e losses,

we need to use the square root of the wavenumber as parameter, i.e. s =
√
k0, and the

polynomial degree rises to a = 4.
In the FE simulation of passive mi
rowave stru
tures, impedan
e as well as s
attering

formulations are 
ommonly used. While the introdu
ed approa
h is based on an impedan
e

formulation, the above 
ited original trans�nite element formulation [2℄ was introdu
ed in a

s
attering formulation. This means, that the amplitudes ubξ are used in the ex
itation and

ufξ �ll the solution ve
tor, whi
h dire
tly makes the s
attering parameters available. How-

ever, these approa
hes result in di�erent parameterizations, whi
h is expli
itly dis
ussed

in [21℄, also in 
ontext with MORe te
hniques.

Another issue is the modal ex
itation on the boundary ΓΘ. While the ex
iting �eld on a

�xed frequen
y may be evaluated, analyti
ally or numeri
ally, the frequen
y dependen
ies

on the boundaries need to be 
onsidered for a system parameterization. As long as ex
ita-

tions with non-varying modal �eld patterns are employed, i.e. TE-, TM- or TEM-Modes,

s
aling approa
hes as [22℄ are suitable. If however the modal �eld patterns are frequen
y

dependent, the ex
iting �elds need to be found on ea
h evaluation point.
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Chapter 3

Adaptive Model Order Redu
tion

Methods

3.1 Preliminary Words on Model Order Redu
tion

The FE method is a well-established te
hnique for solving driven time-harmoni
 �eld prob-

lems. Sin
e FE matri
es are sparse, the resulting systems of linear equations, though large

in size, 
an be solved very e�
iently by dire
t or iterative methods. However, FE matri
es

depend on the working frequen
y, and hen
e 
omputing the system response over a wide

frequen
y range turns out to be very expensive, be
ause it involves FE solutions at a large

number of frequen
y points.

To over
ome this di�
ulty, whi
h arises also in large-s
ale 
ir
uit simulations, methods

of MORe have been developed [7℄. Amongst the te
hniques available, proje
tion-based

MORe methods as [8℄, [23℄, [24℄ are parti
ularly attra
tive, be
ause they are well-suited

for large-s
ale systems and 
onstitute Petrov-Galerkin methods, as the FE method itself.

The underlying idea is to restri
t the FE solution to a 
arefully 
hosen subspa
e and apply

a (Petrov)-Galerkin method to redu
e the original problem to a ROM of low dimension.

Single-point methods, su
h as [25℄, [9℄, 
onstru
t the proje
tion matrix or matri
es from a

Krylov expansion about one frequen
y point. For smaller problems, single-point methods

are very attra
tive, be
ause the FE matrix needs to be fa
torized only on
e: all Krylov

ve
tors required are generated by forward-ba
k substitutions. However, the quality of the

ROM depends strongly on the expansion frequen
y, the optimal lo
ation of whi
h is a

priori unknown. Moreover, for large-s
ale problems, matrix fa
torizations are prohibitively

expensive. Then, (semi)-iterative solvers [26℄ must be employed, and the 
ost of 
omputing

one Krylov ve
tor be
omes 
omparable to that of a full FE run. In this situation, multi-

point methods [27℄, [28℄, whi
h utilize FE solutions at multiple frequen
ies to build the

proje
tion matrix, be
ome very attra
tive, be
ause they o�er �exibility in 
hoosing the

expansion frequen
ies and great numeri
al robustness.

In this 
hapter, the mathemati
al ba
kground knowledge for MORe is presented. Fur-

thermore, adaptive MORe algorithms, for both single-point and multi-point te
hniques are

introdu
ed. Numeri
al experiments, employing some error measures, 
ompare the adaptive

multi-point te
hnique to single-point methods and show the following: The dimension of a

ROM to rea
h a given error limit, is signi�
antly smaller, if the adaptive multi-point algo-

rithm is employed, even if the expansion frequen
y for the single-point method is 
hosen

at its optimum. Hen
e, the adaptive multi-point method is superior to the best possible

19
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single-point method with regard to memory requirements for generating the ROM.

Another argument for employing multi-point methods is the lower dimension of the

resulting ROM. There are appli
ations that require very large numbers of ROM evaluations,

su
h as repetitive 
alls to time-domain re
overy algorithms in 
ir
uit simulators, utilizing

ROMs as library elements, or sto
hasti
 optimization methods employing multi-variate

ROMs [29℄ for 
omputing 
ost fun
tions. For su
h purposes, it is very desirable to minimize

the size of the ROM be
ause, in 
ontrast to the original FE matri
es, ROM matri
es are

full, and matrix fa
torization 
osts grow proportionally to the third power of the ROM

dimension.
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3.2 Introdu
tion to Moment Mat
hing

Single-point methods employ one expansion point, whi
h means that the solution of the

large-s
ale system is only needed at one single frequen
y point for the MORe pro
ess.

These methods are based on the moment mat
hing prin
iple, whi
h is 
losely related to

Krylov subspa
e methods. In this se
tion, expli
it moment mat
hing [7℄ as well as the

proje
tion-based impli
it moment mat
hing [8℄, [23℄ prin
iple is introdu
ed. Furthermore,

MORe te
hniques for �rst-order systems will be shown and extended in the end of the

se
tion to higher-order systems.

3.2.1 Expli
it Moment Mat
hing

For the introdu
tion of the moment mat
hing prin
iple, the single-input single-output

system of �rst-order

(A0 + sA1)x(s) = bu(s), A0,A1 ∈ C
N×N , (3.1a)

y(s) = cTx(s), b, c,x ∈ C
N , (3.1b)

is 
onsidered, where s is the employed parameter. The transfer fun
tion of this system

takes the form

H(s) = cT (A0 + sA1)
−1b. (3.2)

By employing a Taylor expansion, at expansion point s0, we have

H(s) =
∞∑

i=0

1

i!

d

iH(s)

dsi

∣
∣
∣
s=s0

(s− s0)i, (3.3)

whi
h allows us to de�ne the ith moment as

µi =
1

i!

d

iH(s)

dsi

∣
∣
∣
s=s0

. (3.4)

In the following, the expansion point s0 = 0 is employed for simpli
ity. However, for all

following te
hniques an expansion point s0 6= 0 
an be 
hosen, whi
h 
auses only a simple

substitution.

Assuming the matrix A0 in the system (3.1) non-singular, we 
an write

H(s) = cT
(
A0(I+ sA−1

0 A1)
)−1

b = cT (I+ sA−1
0 A1)

−1A−1
0 b. (3.5)

A basi
 approa
h to make the moments µi expli
itly available is to employ a Neumann

series expansion

(I− (−sA−1
0 A1))

−1 =

∞∑

n=0

(−sA−1
0 A1)

n. (3.6)

Hen
e, we write the transfer fun
tion as

H(s) =

∞∑

i=0

µis
i, (3.7)
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where the moments µi yield

µi = cT (−A−1
0 A1)

iA−1
0 b. (3.8)

Thus, the transfer fun
tion H(s) 
an be approximated by the transfer fun
tion Hk(s),
whi
h mat
hes in the �rst k moments

H(s) ≈ Hk(s) =
k−1∑

i=0

µis
i. (3.9)

One of the main goals of this �rst expli
it approa
h is to �nd a rational fun
tion Hk(s),
whi
h mat
hes the �rst k moments of the transfer fun
tion H(s). Therefore, a Padé

approximation is employed to mat
h the �rst k = 2n moments of the fun
tion

H2n(s) =
an−1s

n−1 + an−2s
n−2 + · · ·+ a1s+ a0

bnsn + bn−1sn−1 + · · ·+ b1s+ 1
, (3.10)

with the moments µi of the transfer fun
tion H(s). expli
itly available. This is nothing

more than writing

2n−1∑

i=0

µis
i =

an−1s
n−1 + an−2s

n−2 + · · ·+ a1s+ a0
bnsn + bn−1sn−1 + · · ·+ b1s+ 1

, (3.11)

and 
hoose the 
oe�
ients in (3.10) su
h that they mat
h the �rst 2nmoments. Comparing

the 
oe�
ients for the resulting polynomials in s, the 
oe�
ients bi 
an be evaluated

through solving the system of linear equations








µ0 µ1 . . . µn−1

µ1 µ2 . . . µn
.

.

.

.

.

.

.

.

.

.

.

.

µn−1 µn . . . µ2n−2















bn
bn−1
.

.

.

b1







=








µn
µn+1
.

.

.

µ2n−1







, (3.12)

and the 
oe�
ients ai follow from the re
ursion

a0 = µ0

a1 = µ1 + b1µ0
.

.

.

an−1 = µn−1 +

n−1∑

i=1

biµn−i−1. (3.13)

This expli
it moment mat
hing te
hnique was introdu
ed in [7℄ as Asymptoti
 Waveform

Evaluation (AWE) and employed for 
ir
uit system timing analysis. Unfortunately, the

pra
ti
al appli
ation of the AWE is limited due to a numeri
al de�
it. The re
ursive


omputation of (A−1
0 A1)

iA−1
0 b 
onverges to that eigenve
tor of the matrix A−1

0 A1, whi
h


orresponds to the eigenvalue with largest absolute value. The limited pre
ision of �oating

point numbers in numeri
al 
omputation leads to a loss of information during this re
ursive


omputation, whi
h 
auses the wrong 
onvergen
e. Hen
e, only a small number of moments

are properly mat
hed and therefore, the redu
ed transfer fun
tion is only a

urate in a small

bandwidth around the expansion point. Extending this single-point approa
h to a multi-

point AWE te
hnique was employed in [30℄ to over
ome this di�
ulty. A �nal remark

is that the AWE te
hnique 
an also be employed for polynomial parameterized system

matri
es and right-hand sides [31℄.
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3.2.2 Impli
it Moment Mat
hing

Krylov Subspa
e Methods

The expli
it moment representation in (3.8) may be written as

µi = cTvi, (3.14)

where vi are the Krylov ve
tors de�ned as

vi = Piu, (3.15)

with P = −A−1
0 A1 and u = A−1

0 b. This property motivates us to employ Krylov subspa
e

methods to generate numeri
ally stable moments for the MORe pro
ess.

One of the �rst approa
hes is the Padé via Lan
zos pro
ess [8℄, where a Lan
zos

algorithm-based method was introdu
ed to improve moment mat
hing. As the name of

the algorithm already 
laims, the algorithm generates a Padé approximation by employing

the Lan
zos algorithm, whi
h 
omputes the moments numeri
ally stable. The resulting

transfer fun
tion mat
hes the �rst 2q moments, as the AWE pro
ess introdu
ed in the

se
tion above.

Another Krylov subspa
e-based MORe te
hnique was introdu
ed in [23℄, where instead

of the Lan
zos iteration an Arnoldi algorithm, Alg. 1, was employed. As a result of the

single sided-pro
ess, only the �rst q moments of the resulting transfer fun
tion are mat
hed

in this pro
ess.

Algorithm 1 Arnoldi algorithm

1: v1 = x/‖x‖2
2: for n = 1 to q − 1 do
3: v = Avn

// Modi�ed Gram-S
hmidt pro
ess

4: for j = 1 to n− 1 do
5: hj,n = vHj v

6: v = v− hj,nvj
7: end for

8: hn+1,n = ‖v‖2
9: vn+1 = v/hn+1,n

10: end for

The Krylov ve
tors {v0, . . . ,vq−1} span the qth Krylov subspa
e, de�ned as

Kq(P,u) = span{u,Pu,P2u, . . . ,Pq−1u}. (3.16)

This spa
e 
an be 
omputed in a numeri
ally stable way by the above introdu
ed Arnoldi

algorithm. Proje
ting the original system (3.1) to the Krylov subspa
e Kq(P,u), with
q ≪ N , results in a ROM, whi
h impli
itly mat
hes moments. In parti
ular, building the

proje
tion matrix V ∈ C
N×q

, whi
h spans the qth Krylov subspa
e

span(V) = Kq(P,u), (3.17)

allows us to 
ompute the low-dimensional system

(Ã0 + sÃ1)x̃(s) = b̃u(s), Ã0, Ã1 ∈ C
q×q

(3.18a)

y(s) = c̃T x̃(s), b̃, c̃, x̃ ∈ C
q

(3.18b)
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with

Ã0 = VTA0V, Ã1 = VTA1V, b̃ = VTb and c̃ = VT c.

As the redu
ed system (3.18) takes the same stru
ture as the original system (3.1), the

transfer fun
tion yields

H̃(s) = c̃T (Ã0 + sÃ1)
−1b̃, (3.19)

and its Taylor expansion is derived equivalently as

H̃(s) =

∞∑

i=0

µ̃is
i, (3.20)

where the moments µi in the series are

µ̃i = c̃T (−Ã−1
0 Ã1)

iÃ−1
0 b̃. (3.21)

The �rst q moments of the original system (3.1) and the ROM (3.18) mat
h

µ̃i = µi, ∀ 0 ≤ i < q. (3.22)

Proof for Moment Mat
hing

The representation above allows us to proof moment mat
hing by indu
tion [32℄. For i = 0
we know

∃ r0 ∈ C
q : A−1

0 b = Vr0, (3.23)

and thus

µ̃0 = cTV
(
VTA0V

)−1
VTb (3.24)

= cTV
(
VTA0V

)−1
VT (A0A

−1
0 )b (3.25)

= cTV
(
VTA0V

)−1
VTA0Vr0 (3.26)

= cTVr0 = cTA−1
0 b = µ0. (3.27)

For i = 1 we have

∃ r1 ∈ C
q : −A−1

0 A1A
−1
0 b = Vr1, (3.28)

but we know

r0 =
(
VTA0V

)−1
VTb. (3.29)

Thus,

µ̃1 = c̃T (−Ã−1
0 Ã1)Ã

−1
0 b̃ (3.30)

= −cTV
(
VTA0V

)−1 (
VTA1V

) (
VTA0V

)−1
VTb (3.31)

= −cTV
(
VTA0V

)−1
VTA1Vr0 (3.32)

= −cTV
(
VTA0V

)−1
VT (A0A

−1
0 )A1A

−1
0 b (3.33)

= cTV
(
VTA0V

)−1
VTA0Vr1 (3.34)

= cTVr1 = cT (−A−1
0 A1)A

−1
0 b = µ1. (3.35)
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Note that

r1 = −
(
VTA0V

)−1 (
VTA1V

) (
VTA0V

)−1
VTb. (3.36)

For 2 ≤ i ≤ q − 1 we have

∃ ri ∈ C
q : (−A−1

0 A1)
iA−1

0 b = Vri. (3.37)

Thus, with the hypothesis

ri−1 =
(

−
(
VTA0V

)−1 (
VTA1V

))i−1 (
VTA0V

)−1
VTb, (3.38)

the moments 2 ≤ i ≤ q − 1 of the redu
ed model mat
h to the original system

µ̃i = c̃T (−Ã−1
0 Ã1)

iÃ−1
0 b̃ (3.39)

= cTV
(

−
(
VTA0V

)−1 (
VTA1V

))i (
VTA0V

)−1
VTb (3.40)

= −cTV
(
VTA0V

)−1
VTA1Vri−1 (3.41)

= −cTV
(
VTA0V

)−1
VT (A0A

−1
0 )A1(−A−1

0 A1)
i−1A−1

0 b (3.42)

= cTV
(
VTA0V

)−1
VTA0Vri (3.43)

= cTVri = cT (−A−1
0 A1)

−1A−1
0 b = µi, (3.44)

with

ri =
(

−
(
VTA0V

)−1 (
VTA1V

))i (
VTA0V

)−1
VTb. (3.45)

3.2.3 Systems with Polynomial Parameterized System Matrix

Higher-Order Systems

In literature, systems with a polynomial parameterized system matrix are often referred

to higher-order systems [13℄, [33℄. Se
ond-order systems are dis
ussed more frequently, as

damping terms appear in modeling many 
lasses of physi
al systems [34℄, [35℄. However,

in this se
tion, the fo
us is on general higher-order single-input single-output systems with

a polynomially parameterized system matrix

(
a∑

i=0

Ais
i)x(s) = bu(s), (3.46a)

y(s) = cTx(s), (3.46b)

where a is an arbitrary �nite integer. The transfer fun
tion for this system yields

H(s) = cT (
a∑

i=0

Ais
i)−1b, (3.47)

whi
h 
an be written as

H(s) = cT (I−
a∑

i=1

Dis
i)−1u, (3.48)
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with Di = −A−1
0 Ai and u = A−1

0 b.

Similar to the Neumann series, the matrix inversion 
an be expanded around s = 0 as

(I−
a∑

i=1

Dis
i)−1 =

∞∑

i=0

Pis
i, (3.49)

where

P0 = I (3.50)

Pk =

min(k,a)
∑

i=1

Pk−iDi. (3.51)

This is proved in [33℄ and 
an be veri�ed by expli
itly writing the expansion. Thus, as in

the �rst-order system, the transfer fun
tion 
an be expressed by a Taylor expansion

H(s) =
∞∑

i=0

cTPius
i =

∞∑

i=0

µis
i, (3.52)

where the ith moment is given as

µi = cTPiu. (3.53)

Higher-Order Krylov Subspa
es

For the sequen
e of matri
es {Di}ai=1, Di ∈ C
N×N

, and the non-zero ve
tor u ∈ C
N
, the

qth Krylov subspa
e of ath-order is de�ned as

Kaq ({Di}ai=1;u) = span{w0,w1, . . . ,wq−1}, (3.54)

where the re
ursive de�nition of the ve
tors wl yield

w0 = u, (3.55)

wl =

min(l,a)
∑

i=1

Diwl−i. (3.56)

This de�nition is from [33℄, but is in a

ordan
e with de�nitions for se
ond-order Krylov

subspa
es introdu
ed in [34℄, [35℄. Furthermore, employing the de�nitions above for Pi

allows an alternative re
ursive des
ription for the higher-order Krylov ve
tors

wi = Piu. (3.57)

This approa
h is also in a

ordan
e with the properties introdu
ed for higher-order systems.

Hen
e, the moments 
an now be written as

µi = cTwi, (3.58)

with the Krylov ve
tors wi.

Another interesting approa
h to higher-order Krylov subspa
es is to employ the AWE

te
hnique [29℄, [31℄. Here, the solution ve
tor is expanded in a Taylor series

x =

∞∑

i=0

w̃is
i

(3.59)
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and plugged into the system (3.46b). Then, by equating the 
oe�
ients, the ve
tors w̃i

yield

w̃0 = A−1
0 b, (3.60)

w̃1 = −A−1
0 A1w̃0, (3.61)

w̃2 = A−1
0 (−A1w̃1 −A2w̃0), (3.62)

.

.

. (3.63)

w̃i = A−1
0 (−

min(a,i)
∑

m=1

Amw̃i−m). (3.64)

It is straightforward to see that wi = w̃i for Di = −A−1
0 Ai and u = A−1

0 b, as de�ned

above.

A �nal approa
h to higher-order Krylov subspa
es is by rewriting the higher-order

system as an equivalent �rst-order system. This allows us to show the 
onne
tion of the

resulting �rst-order Krylov subspa
e of the linearized system and the higher-order subspa
e

[24℄, [36℄.

Redu
ing the Higher-Order System

Employing for the redu
tion of the system (3.46) the proje
tion matrix V ∈ C
N×q

, whi
h

spans the qth Krylov subspa
e of ath-order

span(V) = Kaq ({Di}ai=1;u), (3.65)

the low-dimensional system yields

(
a∑

i=0

Ãis
i)x̃(s) = b̃u(s), (3.66a)

ỹ(s) = c̃T x̃(s), (3.66b)

where

Ãi = VTAiV, b̃ = VTb, c̃ = VT c. (3.67)

The transfer fun
tion for the ROM results in

H̃(s) = c̃T (

a∑

i=0

Ãis
i)−1b̃, (3.68)

whi
h is

H̃(s) = c̃T (I−
a∑

i=1

D̃is
i)−1ũ, (3.69)

with D̃i = −Ã−1
0 Ãi and ũ = Ã−1

0 b̃. Again the property (3.49) is employed to write

(I−
a∑

i=1

D̃is
i)−1 =

∞∑

i=0

P̃is
i, (3.70)
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where

P̃0 = I, (3.71)

P̃k =

min(k,a)
∑

i=1

P̃k−iD̃i. (3.72)

Thus, the transfer fun
tion expressed with moments yields

H̃(s) =

∞∑

i=0

c̃T P̃iũs
i =

∞∑

i=0

µ̃is
i, (3.73)

where

µ̃i = c̃T P̃iũ. (3.74)

The �rst q moments of the original system (3.46) and the ROM (3.66) mat
h

µ̃i = µi, ∀ 0 ≤ i < q. (3.75)

Proof for Moment Mat
hing

The proof is for a �xed integer a > 1. The moment mat
hing for µ̃0 = µ0 and µ̃1 = µ1 is
identi
al to Se
tion 3.2.2, respe
tively, be
ause P0 = I and P1 = D1 = −A−1

0 A1.

For i = 2 we have

∃ r2 ∈ C
q : P2u = ((−A−1

0 A1)
2 −A−1

0 A2)A
−1
0 b = Vr2, (3.76)

Thus,

µ̃2 = c̃T
(

Ã−1
0 Ã1Ã

−1
0 Ã1 − Ã−1

0 Ã2

)

Ã−1
0 b̃ (3.77)

= cTV
(

−
(
VTA0V

)−1 (
VTA1V

)
r1 −

(
VTA0V

)−1 (
VTA2V

)
r0

)

(3.78)

= cTV
(
VTA0V

)−1 (
VTA1A

−1
0 A1A

−1
0 b−VTA2A

−1
0 b

)
(3.79)

= cTV
(
VTA0V

)−1
VTA0A

−1
0

(
A1A

−1
0 A1A

−1
0 b−A2A

−1
0 b

)
(3.80)

= cTV
(
VTA0V

)−1
VTA0

(
A−1

0 A1A
−1
0 A1A

−1
0 b−A−1

0 A2A
−1
0 b

)
(3.81)

= cTV
(
VTA0V

)−1
VTA0P2u (3.82)

= cTV
(
VTA0V

)−1
VTA0Vr2 (3.83)

= cTVr2 = cTP2u = µ2 (3.84)

Note that

r2 = P̃2ũ. (3.85)

For 2 < i < q we know

∃ ri ∈ C
q : Piu = Vri. (3.86)
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With the hypothesis

ri−k = P̃i−kũ, ∀ 0 < k < min(i, a) (3.87)

we have

µ̃i = c̃T P̃iũ (3.88)

= c̃T





min(i,a)
∑

k=1

P̃i−kD̃k



 ũ (3.89)

= c̃T





min(i,a)
∑

k=1

D̃kP̃i−k



 ũ (3.90)

= c̃T





min(i,a)
∑

k=1

D̃kri−k




(3.91)

= cTV





min(i,a)
∑

k=1

−
(
VTA0V

)−1 (
VTAkV

)
ri−k




(3.92)

= cTV
(
VTA0V

)−1
VT





min(i,a)
∑

k=1

−AkVri−k




(3.93)

= cTV
(
VTA0V

)−1
VTA0





min(i,a)
∑

k=1

−A−1
0 AkVri−k




(3.94)

= cTV
(
VTA0V

)−1
VTA0





min(i,a)
∑

k=1

−A−1
0 AkPi−k



u (3.95)

= cTV
(
VTA0V

)−1
VTA0Piu (3.96)

= cTV
(
VTA0V

)−1
VTA0Vri (3.97)

= cTVri = cTPiu = µi, (3.98)

and thus

ri = P̃iũ. (3.99)

Well-Conditioned AWE

Although the AWE was shown to generate higher-order Krylov ve
tors, and thus span

higher-order Krylov subspa
es, the te
hnique exhibits similar numeri
al de�
its as ex-

plained for �rst-order systems. This limits the numeri
ally pre
ise mat
hed moments in

the redu
tion pro
ess to a low number. However, the WCAWE pro
ess, introdu
ed in [24℄,

provides a means to span higher-order Krylov subspa
es in a numeri
ally stable way. The

iterative pro
ess is given in Alg. 2 and refers to a polynomial parameterized system of

linear equations of the form

(

a∑

i=0

Ais
i)x(s) =

a1∑

i=0

bis
i. (3.100)
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The WCAWE algorithm needs the following additional de�nitions. The 
olumns of the

matrix Ṽq are the iteratively 
omputed ve
tors

Ṽq = [ṽ1, ṽ2, . . . , ṽq]. (3.101)

The matrix U is a non-singular upper triangular matrix whi
h relates the matri
es Ṽq and

Vq by

ṼqU
−1 = Vq, U ∈ C

q×q, (3.102)

where

Vq = [v1,v2, . . . ,vq]. (3.103)

In the algorithm, the 
orre
tion matrix PUw(n,m), is 
omputed as

PUw(n,m) =

m∏

t=w

U−1
[t:n−m+t−1,t:n−m+t−1], PUw(n,m) ∈ C

n−m×n−m. (3.104)

The ve
tors ei are de�ned as unity ve
tors with the ith entry set to one and all others

equal to zero. The lengths of ei 
onforms on the matrix that operates on it.

The 
oe�
ients in the matrix U, i.e. the relation of Ṽq and Vq , is an important part of

the method. Employing the modi�ed Gram-S
hmidt pro
ess to evaluate (3.102) is 
laimed

to result in high a

ura
y [9℄, where the resulting 
olumns of Vq are orthonormal. The

properties of other 
hoi
es for (3.102) 
an be found in the referred paper.

The proof for the WCAWE algorithm in [24℄ shows, that ea
h new 
omputed ve
tor vq
is a superposition of the higher-order Krylov ve
tors

vq =

q−1
∑

i=0

wixi, (3.105)

where the 
oe�
ients xi result from the algorithm.

Algorithm 2 Well-
onditioned AWE

1: ṽ1 = A−1
0 b0

2: ṽ2 = A−1
0 (b1e

T
1 PU1(2, 1)e1 −A1v1)

3: ṽ3 = A−1
0 (b1e

T
1 PU1(3, 1)e2 + b2e

T
1 PU1(3, 2)e1 −A1v2 −A2V1PU2(3, 2)e1)

.

.

.

4: ṽq = A−1
0 (

min(a1,q−1)
∑

m=1

bme
T
1 PU1(q,m)eq−m −A1vq−1 −

min(a,q−1)
∑

m=2

AmVq−mPU2(q,m)eq−m)
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3.3 Adaptivity and Error Measures

Proje
tion-Based Model Order Redu
tion

To keep the basi
 idea of the introdu
ed method as general as possible, the 
onsidered

system takes the form

(

a0∑

i=0

siAi)X(s) =

a1∑

i=0

siBi, Ai ∈ C
N×N , (3.106a)

Y = (

a2∑

i=0

siCi)
TX(s), Bi ∈ C

N×b,Ci ∈ C
N×c, (3.106b)

where N , b and c denote the number of unknowns, the number of input ve
tors and

output ve
tors, respe
tively. The numbers a0, a1 and a2 give the polynomial degrees of

the parameterization. The parameter s stands for the wavenumber k, or a substitution as

explained in Se
tion 2.4.

The proje
tion-based MORe methods 
onsidered in this thesis have in 
ommon that

they seek an approximation QX̃ to the full solution X in the range of a low-dimensional

unitary matrix Q ∈ C
N×u

with u ≪ N . Furthermore, they employ a Bubnov-Galerkin

pro
ess to redu
e the original system (3.106) to the ROM of the form

(

a0∑

i=0

siÃi)X̃(s) =

a1∑

i=0

siB̃i, (3.107a)

Ỹ = (

a2∑

i=0

siC̃i)
T X̃(s), (3.107b)

where

Ãi = QTAiQ ∈ C
u×u, (3.108)

B̃i = QTBi ∈ C
u×b, (3.109)

C̃i = QTCi ∈ C
u×c, (3.110)

whi
h 
an be solved at very low 
ost.

Adaptive Pro
ess

In the following, we fo
us on the iterative enlargement of the proje
tion matrix, as well

as on the 
orresponding enlargement of the ROM. The pro
esses will be employed in

the adaptive algorithms introdu
ed later. Hen
e, assume that the matrix Q = Qn−1

is employed to 
ompute the ROM of the form (3.107). In the next iteration, a matrix

Vnew ∈ C
N×b

is generated by the MORe te
hnique, to enlarge the subspa
e in whi
h the

ROM is solved. Note that the 
olumns of Vnew probably neither provide an orthonormal

basis nor do they have to be orthonormal to Qn. Therefore, the modi�ed Gram-S
hmidt

orthonormalization pro
ess is employed for

[Qn−1,Qnew]U = [Vn−1,Vnew], (3.111)
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where the 
olumns of matrix Vn−1 are the previously 
onstru
ted ve
tors from the MORe

te
hnique. Only the new added ve
tors need to be orthonormalized. However, the proje
-

tion matrix will be enlarged by

Qn = [Qn−1,Qnew]. (3.112)

The subspa
e proje
tion 
an be an expensive pro
ess in the adaptive algorithm. Thus, to

improve the performan
e, the ROM from the previous iteration is enlarged in ea
h adaption

step

Ãi ←
[

Ãi QT
n−1AiQnew

QT
newAiQn−1 QT

newAiQnew

]

, (3.113)

B̃i ←
[

B̃i

QT
newBi

]

, (3.114)

C̃i ←
[

C̃i

QT
newCi

]

. (3.115)

This results in a ROM of the form (3.107) of higher-dimension. Employing the proposed

ROM enlargement pro
edure above redu
es the MORe pro
ess runtime by not proje
ting

the 
olumns Qn−1 of the ROM, whi
h are already available from the previous iterations.

Error Measure

The performan
e of the redu
tion methods as well as the a

ura
y of the generated ROMs

is an important issue in this thesis. Therefore, error measures are introdu
ed to make the

quality of the redu
ed systems 
omparable, but are also employed in the later introdu
ed

adaptive MORe te
hniques.

We de�ne the set of L equidistant evaluation points B = {s1, s2, . . . , sL}, within the

bounds s1 = smin and sL = smax. For this set B, a sequen
e of matri
es

{M}B = {M(s1),M(s2), . . . ,M(sL)} is de�ned. Hen
e, for two sequen
es {M}B and

{N}B, the error measure is de�ned as

E2({M}B, {N}B) =

√
√
√
√

1

NfN
2
t

L∑

n=1

Nt∑

i=1

Nt∑

j=1

|Mij(sn)−Nij(sn)|2. (3.116)

In this thesis, we 
hose the s
attering matrix at the evaluation point si as matrixM(si).
Thus, the true error E2({S}B, {S̃n}B), where {S}B are the s
attering parameters 
omputed

by the full FE system and {S̃n}B denotes the sweep of the ROM, allows us to evaluate the

a

ura
y of the ROM. The subs
ript n stands for the number of iterations with whi
h the

adaptive MORe pro
ess was run. The error measure E2({S̃n}B, {S̃n−1}B) therefore gives
the di�eren
es of ROMs of nth and (n − 1)th iteration. This de�nition is employed as

termination 
riterion in the later provided adaptive MORe algorithms. Furthermore, the

error measure E2({S̃n}Bq
, {S̃n−1}Bq

) allows us to de�ne an error measure on the subinterval

Bq ⊆ B, whi
h is used to �nd the next expansion point in the adaptive multi-point method.

The e�
ien
y and reliability of the introdu
ed error measure are shown in [28℄ and [37℄,

where numeri
al experiments in the later referen
e also 
ompare the new error measure to

alternative approa
hes.
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For some numeri
al experiments, additional error measures are de�ned as

E1({M}B, {N}B) =
1

NfN
2
t

L∑

n=1

Nt∑

i=1

Nt∑

j=1

|Mij(sn)−Nij(sn)| , (3.117a)

E∞({M}B, {N}B) = max
i,j,n
|Mij(sn)−Nij(sn)| . (3.117b)
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3.4 A Basi
 Adaptive Single-Point Method

3.4.1 Broadband FE Simulation of Ele
tromagneti
 Stru
tures

Several approa
hes exist, where MORe methods are employed for the broadband FE sim-

ulation of ele
tromagneti
 stru
tures, based on expli
it moment mat
hing [31℄, [38℄, [39℄

or impli
it moment mat
hing [25℄, [9℄. In this se
tion, an adaptive fast frequen
y sweep

te
hnique for the simulation of passive mi
rowave stru
tures is provided. Therefore, the

FE system (2.85) is rewritten as

(

a∑

i=0

siAi)X(s) = stB, Ai ∈ C
N×N ,Ai = AT

i (3.118a)

Y = BTX(s), B ∈ C
N×b,B = [b1,b2, . . . ,bb], (3.118b)

where N and b denote the number of unknowns and the number of input/output ve
tors,

respe
tively. A main property of the system (3.118) is its symmetry. Employing the

proje
tion matrix Q ∈ C
N×q

, the redu
ed system takes the form

(
a∑

i=0

siÃi)X̃(s) = stB̃, (3.119a)

Ỹ = B̃T X̃(s), (3.119b)

where

Ãi = QTMiQ, (3.120)

B̃ = QTB. (3.121)

As the system is driven by b ex
itations, whi
h are the 
olumns b1, b2, . . . , bb, the Krylov
subspa
e asso
iated to ea
h ex
itation has to be 
omputed and plugged into the proje
tion

matrix Q. Hen
e, the subspa
e spanned by Q is

span(Q) = Kaq ({Di}ai=1;u
1) ∪Kaq ({Di}ai=1;u

2) ∪ . . . ∪ Kaq ({Di}ai=1;u
b), (3.122)

where uj = A−1
0 bj and again Di = −A−1

0 Ai.

Due to the symmetry of the system, it is straightforward to prove that the redu
ed

model (3.119) mat
hes in the �rst 2q moments to the full system (3.118), although only a

single-sided proje
tion is employed [40℄.

3.4.2 A First Adaptive Approa
h

Alg. 3 gives a basi
 adaptive single-point MORe method for the broadband FE simulation

of ele
tromagneti
 stru
tures. For the sake of simpli
ity, the system matri
es Ai, for

i = 0, . . . , a , represent the shifted matri
es in the expansion point š. The method employs

the WCAWE pro
ess, 
ombined with a modi�ed Gram-S
hmidt orthonormalization. The


omputed WCAWE ve
tors for ea
h right-hand side have to be orthonormalized against

ea
h other in Alg. 3, Line 5. Later in the adaptive loop, the ve
tors are also orthonormalized

against the 
olumns of the previous proje
tion matrix in Alg. 3, Line 13. This results in

the updated proje
tion matrix Qq whi
h spans the subspa
e (3.122).

The right-hand side in the system has a purely linear wavenumber dependen
y, whi
h

only 
auses an index shift in the WCAWE pro
ess. This simpli�es the WCAWE pro
ess,
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and only the 
orre
tion matri
es for the polynomial parametrized system matri
es are

required in Alg. 3, Line 10.

In ea
h adaptive iteration, the proje
tion matrix as well as the ROM are enlarged in Alg.

3, Line 13 and 14, respe
tively, as des
ribed in Se
tion 3.3. The pro
ess stops as 
onverged,

if the error indi
ator in Alg. 3, Line 16 E2({S̃q}B, {S̃q−1}B) is below the threshold value

E2,tol. Otherwise, if q = qmax, the algorithm aborts with status 'not 
onverged'.
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Algorithm 3 Self-Adaptive Single-Point Model Order Redu
tion

1: for β = 1 to b do

2: Initial WCAWE: ṽ
β
1 = Ṽ

β
1 = A−1

0 bβ,

3: Normalize: v
β
1 = V

β
1 = Ṽ

β
1 /|Ṽ

β
1 |, Uβ = |Ṽβ

1 |
4: end for

5: Modi�ed Gram-S
hmidt: Q1U = [V1
1, . . . ,V

b
1]

6: Initial subspa
e proje
tion: Ãi = QT
1 AiQ1, B̃ = QT

1B

7: Solve frequen
y sweep:

(

a∑

i=0

Ãis
i)X̃ = stB̃, Ỹ = B̃T X̃ ⇒ Sequen
e {S̃1}B

8: for q = 2 to qmax do
9: for β = 1 to b do

10: WCAWE pro
ess:

ṽβq = A−1
0 (−A1v

β
q−1 −

min(a,q−1)
∑

m=2

AmV
β
q−mP

β
U2

(q,m)eq−m)

11: Modi�ed Gram-S
hmidt: [Vβ
q−1,v

β
q ]Uβ = [Ṽβ

q−1, ṽ
β
q ]

12: end for

13: Apply modi�ed Gram-S
hmidt only to new generated ve
tors:

[Qq−1,Qnew]U = [V1
q−1, . . . ,V

b
q−1,v

1
q , . . . ,v

b
q] , Qq = [Qq−1,Qnew]

14: Enlarge ROM:

Ãi ←
[

Ãi QT
q−1AiQnew

QT
newAiQq−1 QT

newAiQnew

]

, B̃←
[

B̃

QT
newB

]

.

15: Solve frequen
y sweep:

(
a∑

i=0

Ãis
i)X̃ = stB̃, Ỹ = B̃T X̃ ⇒ Sequen
e {S̃q}B

16: if E2({S̃q}B, {S̃q−1}B) < E2,tol then

17: return(
onverged)

18: end if

19: end for
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3.5 An Adaptive Multi-Point Method

3.5.1 Proje
tion-Based Model Order Redu
tion

In 
ontrast to single-point approa
hes, multi-point methods employ system solutions at a

set of expansion points {š1, . . . , šM} to 
onstru
t the proje
tion matrix Q. Multi-point

methods o�er �exibility in 
hoosing the expansion points and enjoy great numeri
al ro-

bustness. While it is possible to in
lude higher-order Krylov ve
tors at ea
h expansion

point, as in [30℄ and [41℄, the algorithm proposed in the following only employs the system

solutions themselves. This te
hnique is 
alled a rational Krylov method of lowest-order

[42℄. Ea
h solution X(šm) of the 
onsidered FE system of the form

(

a∑

i=0

siAi)X(s) = stB, Ai ∈ C
N×N ,Ai = AT

i (3.123a)

Y = BTX(s), Bi ∈ C
N×b, (3.123b)

spans the ath Krylov subspa
e of �rst-order. Thus, employing X(šm) as proje
tion matrix

for the symmetri
 system above generates a ROM whi
h mat
hes in the �rst and se
ond

moment. In this thesis, an orthonormal proje
tion matrix Q, with

span (Q) = span(X(š1),X(š2), . . . ,X(šM )), (3.124)

is employed for the subspa
e proje
tion, whi
h results in the ROM

(

a∑

i=0

siÃi)X̃(s) = stB̃, (3.125a)

Ỹ = B̃T X̃(s), (3.125b)

where

Ãi = QTAiQ, (3.126)

B̃i = QTBi. (3.127)

The employed proje
tion matrix spans the �rst Krylov subspa
e at ea
h of theM expansion

points šm. Thus, the �rst and se
ond moment of the ROM and the original system mat
h

at ea
h expansion point šm.

3.5.2 Proposed Adaptive Algorithm

This thesis provides an adaptive multi-point algorithm, whi
h employs the proje
tion-based

approa
h above and is listed in Alg. 4. The general strategy of the algorithm is to divide

the bandwidth of interest, i.e. the set of evaluation points B within the bandwidth, into

subintervals Bq ⊆ B. At ea
h adaptive step, the interval of largest error Bě is identi�ed
with the help of the error indi
ator E2({S̃q}Bi

, {S̃q−1}Bi
) in Line 18, whi
h evaluates the

di�eren
es between the s
attering parameters obtained from the 
urrent and the previous

ROM. The next adaptive expansion point šp is 
hosen at the 
enter of Bě, Line 9, and the

interval is separated into two new subintervals in Line 10. This pro
edure is repeated until

the error indi
ator E2({S̃q}B, {S̃q−1}B), is below the 
hosen threshold value E2,tol.
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Algorithm 4 Self-Adaptive Multi-Point Model Order Redu
tion

1: Solve system at š1 = min(B):

(

a∑

i=1

Aiš
i
1)X(š1) = št1B, ⇒ X(š1)

2: Solve system at š2 = max(B):

(

a∑

i=1

Aiš
i
2)X(š2) = št2B, ⇒ X(š2)

3: Initial modi�ed Gram-S
hmidt: Q2U = [X(š1),X(š2)]
4: Initial subspa
e proje
tion: Ãi = QT

2 AiQ2, B̃ = Q2
TB

5: Solve frequen
y sweep for s ∈ B:

(

a∑

i=0

Ãis
i)X̃ = stB̃, Ỹ = B̃T X̃ ⇒ Sequen
e {S̃2}B

6: Set interval of worst error: ě = 1
7: Initialize �rst interval: Bě = B
8: for q = 3 to qmax do
9: Find next expansion point: šq = argmin

s∈B

∣
∣s− minBě+maxBě

2

∣
∣

10: Split interval: Bq−1 = [šq,max(Bě)], Bě ← [min(Bě), šq]
11: Solve system at šq:

(

a∑

i=1

Aiš
i
q)X(šq) = štqB, ⇒ X(šq)

12: Apply modi�ed Gram-S
hmidt only to new generated ve
tors:

[Qq−1,Qnew]U = [X(š1), . . . ,X(šq−1),X(šq)],
Qq = [Qq−1,Qnew]

13: Enlarge ROM:

Ãi ←
[

Ãi QT
q−1AiQnew

QT
newAiQq−1 QT

newAiQnew

]

, B̃←
[

B̃

QT
newB

]

.

14: Solve frequen
y sweep:

(

a∑

i=0

Ãis
i)X̃ = stB̃, Ỹ = B̃T X̃ ⇒ Sequen
e {S̃q}B

15: if E2({S̃q}B, {S̃q−1}B) < E2,tol then

16: return(
onverged)

17: end if

18: Find interval of worst error: ě = arg max
i=1,...,q−1

E2({S̃q}Bi
, {S̃q−1}Bi

)

19: end for
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3.6 Single-Point Methods and Multi-Point Methods in Com-

parison

As a pra
ti
al example for the 
omparison of the MORe approa
hes of this 
hapter, the

bandpass �lter in Fig. 3.1 is 
onsidered, whi
h is taken from [43℄. To obtain referen
e

results for the frequen
y response of the �lter at high spe
tral resolution, individual FE

solutions were 
omputed at N = 2001 equidistant frequen
y points in the range from 4 to

12 GHz. This set of evaluation frequen
ies is denoted by B. The FE model is based on

basis fun
tions of se
ond-order, and the matrix dimension is N = 103848. Fig. 3.2 gives the
magnitudes of the re�e
tion and transmission 
oe�
ients s11 and s12 versus frequen
y. As
a �rst numeri
al experiment, the true error of the adaptive multi-point method for ROMs

up to iteration q = 50 is evaluated for the norms E1({S̃q}B, {S}B), E2({S̃q}B, {S}B) and
E∞({S̃q}B, {S}B). Fig. 3.3 shows a steep des
ent around the iteration q = 35 for all norms

employed. At q = 37, the ROM exhibits errors lower than 10−8
in all norms, whi
h shows

the high a

ura
y of the s
attering parameters on the evaluation points in B, 
ompared to

the large-s
ale FE model.

Next it is shown that the proposed adaptive multi-point te
hnique needs lower di-

mension for high a

ura
y than single-point methods, even if the expansion point for the

moment mat
hing pro
ess is 
hosen at its optimum. To �nd the best available expansion

frequen
y, whi
h is a priori not known, ROMs with expansion frequen
ies in the range from

9 to 11 GHz are generated and the true error is evaluated in the same frequen
y range.

The results of this pro
ess are presented in Fig. 3.4 and Fig. 3.5, respe
tively, whi
h show

the errors E2({S̃q}B, {S}B) and E∞({S̃q}B, {S}B) for ROMs, build at iterations q = 39 to

q = 51.
It 
an be seen that, even when the optimum expansion frequen
y f̌ = 10.15 GHz is


hosen for the single-point method, a ROM build at iteration q = 51 is required to yield

results of similar error as the adaptive multi-point approa
h. Spe
i�
ally, the single-point

errors at q = 51 are E∞({S̃n}B, {S}B) ≈ 6 · 10−6
and E2({S̃q}B, {S}B) ≈ 5 · 10−9

; still

worse than for the adaptive multi-point method with q = 37. When the iteration numbers

of the single-point and adaptive multi-point models are both taken to be q = 37, the
single-point method is 
learly inferior, as 
an be seen from the errors e11 = |s̃11−s11| and
e12 = |s̃12−s12|, whi
h are plotted versus frequen
y in Fig. 3.6. In addition, Fig. 3.6 shows
the lo
ations of the expansion frequen
ies for the adaptive multi-point method, indi
ated

by the symbol H. Fig. 3.7 presents di�erent norms of the single-point error for q = 37
and 401 di�erent lo
ations of the expansion frequen
y. This 
on�rms that no single-point

method 
an produ
e a ROM of similar a

ura
y as the adaptive multi-point model of same

order.

Table 3.1 gives 
omputer runtimes for ROM generation and evaluation. When ROMs

of similar quality i.e., adaptive multi-point models with q = 37 and single-point models

with q = 51, are 
ompared, adaptive multi-point evaluation times are 39% shorter. On the

other hand, for original system dimensions where the matrix fa
torizations are e�
iently

evaluated, model generation is faster with single-point methods, even for a ROM generated

at q = 51.
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Table 3.1: Bandpass �lter [43℄: Computational data.

Generation Evaluation

MOR Number of LU fa
torization L=2001

method iterations q N = 103 848

Single-point 37 67 s 1.1 s

Single-point 51 101 s 1.8 s

Multi-point 37 694 s 1.1 s

Figure 3.1: Bandpass �lter [43℄: Geometri
 dimensions in mm.
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Chapter 4

Out-of-Core Model Order Redu
tion

Methods

4.1 Systems with a Large Number of Right-Hand Sides

4.1.1 Problem Statement

Te
hnologi
al advan
es in 
omputer hardware allow the FE simulations of more and more


omplex ele
tromagneti
 stru
tures. Today's simulations in
lude 
omplete printed 
ir
uits

boards, whole integrated 
ir
uit pa
kages, but also inter
onne
tors with large numbers

of pins. With the in
reasing 
omplexity of the simulated stru
tures, also the number of


onsidered ex
itations be
ame larger. This means for the numeri
al simulation of su
h


omplex stru
tures that, on one hand the systems of linear equations may result in higher

dimensions, on the other hand the systems may need to be solved for a larger number of

right-hand sides.

Linear equation systems with a large number of right-hand sides is an area of extensive

resear
h, whi
h also in
ludes Krylov subspa
e methods for multiple starting ve
tors [44℄,

[45℄. This resear
h is 
losely related to the Krylov subspa
e methods applied for MORe

te
hniques whi
h 
onsider multiple input and output ve
tors, e.g. [46℄.

The fo
us of this 
hapter is on MORe te
hniques for high-dimensional systems with

a large number of right-hand sides, where the system matri
es are polynomially parame-

terized in the frequen
y. These are the properties of a system of linear equations, whi
h

results from the FE dis
retization of the 
onsidered 
omplex ele
tromagneti
 stru
tures.

The adaptive MORe te
hniques need to in
rease the proje
tions matrix in ea
h itera-

tion, whi
h requires more and more memory 
apa
ity. Although the 
omputer operating

system may start a swapping pro
ess to store Random A

ess Memory (RAM) data on the

hard disk, the 
omplete MORe pro
ess be
omes ine�
ient and the ROM generation may

be
ome very slow. However, if the MORe pro
ess needs to be aborted, the proje
tion ma-

trix does not span a su�
ient subspa
e and the generated ROM is not a

urate within the


onsidered bandwidth. To over
ome this limitation, this thesis provides algorithms that

swap 
arefully 
hosen 
omputation data to the hard disk. These out-of-
ore approa
hes

keep the RAM requirements for the proje
tion matrix data on a 
onstant low level. For

both single-point and multi-point te
hniques out-of-
ore algorithms are presented. While

the memory swapping 
an be a

omplished easily in the multi-point algorithm, the single-

point approa
h needs major stru
tural 
hanges to remain e�
ient.

The operation system as well as the 
ompiler provide highly optimized data bu�ering

45
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te
hniques. Thus, the hard disk a

ess time for the data swapping is not transparent for

high level language programming. However, thanks to this intelligent bu�ering system,

the resulting data a

ess turned out to be very fast and does not 
ut down the e�
ien
y

of the MORe te
hniques.

As a �nal remark it should be added, that the 
omplete swapping pro
ess uses binary

data. This redu
es the data amount, whi
h redu
es a

ess times and requires less hard

disk spa
e.

4.1.2 Memory Considerations

Finite Element System

To explain the need for data swapping in the broadband FE simulation of ele
tromagneti


stru
tures, we 
onsider the system (3.118). Looking ba
k to the theory of Se
tion 2.3,

ea
h 
olumn bi of the blo
k right-hand side B 
ontains one entry and thus is extremely

sparse. The sparsity of the system matri
es Ai depends on the FE formulation, the basis

fun
tions, the FE mesh of the 
onsidered stru
ture as well as on the imposed boundary


onditions. Furthermore, it is worth mentioning here, that for systems 
onsidered in single-

point methods the sparsity pattern may 
hange and the matri
es may have more entries,

if the expansion point is not 
hosen at frequen
y zero.

The FE simulation of 
omplex stru
tures, whi
h results in systems with high-dimensional

matri
es, may struggle on the memory limitations, as the requirements for the solu-

tion/fa
torization of the system may need a lot of memory. Software pa
kages as [47℄

therefore provide out-of-
ore te
hniques to make the fa
torization of larger systems avail-

able.

The memory for the system and its solution is one major part of the used memory, but

is not subje
t of this thesis and is not further dis
ussed. Nevertheless, memory requirement

for system matri
es and their fa
torization for the simulated stru
tures will be provided in

the numeri
al results.

In 
ontrary to the full FE system, the low-dimensional ROM is irrelevant for the mem-

ory 
onsiderations. As for the redu
ed model itself, the memory requirements for the

solution of the ROM are negligible.
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Multi-Point Methods

The adaptive multi-point method, see Alg. 4, represents the more simple te
hnique, also

from the memory handling point of view. For ea
h expansion point, one blo
k of b 
olumns

and N rows is added, whi
h is the matrix Qnew. This is the dimension of the blo
k right-

hand side ve
tor B. In 
ontrast to the blo
k right-hand side, the matrix Qnew is dense.

Therefore, the algorithm enlarges the proje
tion matrix in ea
h iteration, and the full

proje
tion matrix Qq of dimension N × bq �lls more and more the RAM, see Fig. 4.1(a).

To improve the memory performan
e of the adaptive multi-point algorithm, only the

matrix Qnew is kept in the memory, whi
h is the orthonormalized solution blo
k ve
tor

X(ǩq) of the 
urrent iteration. The 
omplete proje
tion matrix Qq−1 of the previous

iterations is swapped to the hard disk. The 
olumns of Qq−1 are loaded one after another

from the hard disk to the RAM for the orthonormalization pro
ess of the new 
omputed

blo
k X(ǩq) as well as for the subspa
e proje
tion, see Fig. 4.1(b). Through this pro
ess,

the required RAM 
apa
ity for the proje
tion matrix is 
onstant and does not in
rease

with newly added expansion points. A generalization of the proposed approa
h is to allow

only a prede�ned number of 
olumns of Qnew to be kept in the memory. This number


ould even be automati
ally adapted to available memory.
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RAM

Q1 Q2 Qq−1 Qnew ← X(ǩq)

(a) Multi-point method memory requirements.

RAM RAM

Q1 Q2 Qq−1 Qnew ← X(ǩq)

(b) Out-of-
ore multi-point method memory requirements.

Figure 4.1: Multi-point method memory requirements.
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Single-Point Methods

The situation in the 
ase of single-point methods is rather di�
ult. The major drawba
k

of the introdu
ed adaptive single-point approa
h in Alg. 3 is that, for ea
h right-hand side,

the proje
tion data needs to be kept twi
e in the memory. The WCAWE pro
ess of ea
h

right-hand side performs its own orthonormalization pro
ess. This data has to be kept in

the memory additional to the proje
tion matrix Qq, see Fig. 4.2.

Therefore, a blo
ked WCAWE approa
h will be employed, whi
h operates only on the

proje
tion matrix itself. Hen
e, the memory requirements are redu
ed as Fig. 4.3(a) shows.

The blo
ked pro
ess generates in ea
h iteration a non-orthonormalized blo
k WCAWE

ve
tor Ṽq = [ṽ1
q , ṽ

2
q , . . . , ṽ

b
q]. This blo
k ve
tor is orthonormalized to the proje
tion matrix

and within its 
olumns. The orthonormalized blo
k Vq is �nally added to the proje
tion

matrix. Thus, this approa
h will provide the same memory usage situation as the multi-

point approa
h in Alg. 4.

The blo
k algorithm is also the basis for the development of an out-of-
ore single-point

method. The goal is again to swap as mu
h proje
tion matrix data as possible to the hard

disk. This thesis provides a te
hnique that keeps only two blo
ks of the dimension of B

in the RAM, see Fig. 4.3(b). One blo
k is the newly generated blo
k ve
tor, on whi
h

the algorithm operates. The se
ond blo
k is used as a data bu�er and is needed to keep

the blo
ked WCAWE pro
ess e�
ient. Additionally one proje
tion matrix 
olumn after

another is loaded from the hard disk to the RAM for the redu
tion pro
ess operations.

Hen
e, the memory requirements for the proje
tion matrix in the RAM is on a 
onstant

low level and does not in
rease in the iterative pro
ess. However, the single-point out-

of-
ore te
hnique needs more RAM 
apa
ity to stay e�
ient 
ompared to the multi-point

approa
h.
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Qq

RAM

V1
q V2

q Vb−1
q Vb

q

v1
q v2

q

vb−1
q

vbq

Figure 4.2: Single-point method memory requirements.
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RAM

V1 V2 Vq−1 Vq ← Ṽq

(a) Blo
k single-point method memory requirement.

RAM RAM RAM

V1 V2 Vq−1 Vq ← Ṽq

(b) Out-of-
ore single-point memory requirement.

Figure 4.3: New single-point method approa
hes memory requirements.
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4.2 Blo
k Algorithm for Higher-Order Systems

This se
tion is dedi
ated to single-point methods, in parti
ular, to redu
e their memory

usage by means of a blo
k algorithm. This thesis provides a proof, that the simple blo
k

ve
tor extension of the WCAWE, provided in [13℄, does mat
h moments. Therefore, the

introdu
ed Krylov subspa
e theory is extended and important properties for blo
king the

WCAWE te
hniques are dis
ussed.

4.2.1 Blo
k Krylov Subspa
es

De�nition and Veri�
ation of Higher-Order Blo
k Krylov Subspa
es

In this se
tion, the system of the form (3.118) is 
onsidered, as the blo
ked algorithm is

sought for the same problem as in the previous 
hapter. Using the de�nition of the previous


hapter Di = −A−1
0 Ai and extending u = A−1

0 b to the blo
k notation U = A−1
0 B, allows

us to introdu
e blo
k Krylov subspa
es.

For the sequen
e of matri
es {Di}ai=1, Di ∈ C
N×N

, and the blo
k ve
tor U ∈ C
N×b

,

the qth blo
k Krylov subspa
e of ath-order is de�ned as

Kaq ({Di}ai=1;U) = colspan{W0,W1, . . . ,Wq−1}, (4.1)

where the re
ursive de�nition of the blo
k Krylov ve
tors Wl yield

W0 = U, (4.2)

Wl =

min(l,a)
∑

i=1

DiWl−i. (4.3)

This de�nition is a generalization of the higher-order Krylov subspa
e de�nition of Se
-

tion 3.2.3. Plugging the Taylor expansion

X(s) =

∞∑

i=0

Wis
i, (4.4)

into the system (3.118), allows us to write the blo
k AWE ve
tors

W̃0 = A−1
0 B, (4.5)

W̃1 = A−1
0 (−A1W̃0), (4.6)

W̃2 = A−1
0 (−A1W̃1 −A2W̃0), (4.7)

.

.

. (4.8)

W̃n = A−1
0 (−

min(a,n)
∑

m=1

AmW̃n−m). (4.9)

With the de�nition given above, we have W̃i = Wi and thus, the ve
tors from the AWE

expansion span the Krylov subspa
e Kaq ({Di}ai=1;U).

On ea
h 
olumn of a blo
k AWE ve
tor Wi, where as ex
itation the 
orresponding

right-hand side 
olumn of B is employed, the same operations as for the non-blo
ked
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algorithm are performed. Hen
e, the Krylov subspa
e Kaq ({Di}ai=1;U) spans the same

subspa
e as the proje
tion matrix employed in (3.122) and thus satisfy

Kaq ({Di}ai=1;U) =Kaq ({Di}ai=1;u1) ∪Kaq ({Di}ai=1;u2) ∪ . . . ∪ Kaq ({Di}ai=1;ub).

(4.10)

Extending the theory for higher-order systems to a blo
k right-hand side ex
itation,

the transfer fun
tion 
an be written as

H(s) =
∞∑

i=0

CTPiUs
i =

∞∑

i=0

µis
i, (4.11)

with the matrix of moments

µi = CTPiU, (4.12)

and a de�nition for Pi as in the previous 
hapter

P0 = I, (4.13)

Pk =

min(k,a)
∑

i=1

Pk−iDi. (4.14)

This de�nition allows us, similar to the non-blo
ked 
ase, to write the blo
k Krylov ve
tors

as

Wi = PiU. (4.15)

In the literature, e.g. [35℄, de�nitions for the �rst-order blo
k Krylov subspa
e

Kq(D1,U) = colspan{U,D1
1U,D

2
1U,D

3
1U, . . . ,D

q−1
1 U}, (4.16)

and the se
ond-order blo
k Krylov subspa
e

Kq(D1,D2,U) = colspan{G0,G1, . . . ,Gq−1}, (4.17)

where







G0 = U,

G1 = D1G0,

Gi = D1Gi−1 +D2Gi−2,

(4.18)


an be found. These de�nitions are in a

ordan
e with the de�nition in this thesis for

a = 1 and a = 2, respe
tively.

Moment Mat
hing

For the redu
tion pro
ess (3.119), the proje
tion matrix Q, whi
h spans the blo
k Krylov

subspa
e

span(Q) = Kaq ({Di}ai=1;U), (4.19)

is employed. The proof for moment mat
hing is a simple extension of the previous proof

for non-blo
ked right-hand side and is not repeated. Furthermore, also the 
onne
tions

of Krylov subspa
es obtained from linearized higher-order systems to �rst-order systems

in [27℄ and [33℄, 
an be extended in a straightforward way to the blo
k right-hand side

ex
itations.
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De�ation

In the literature, [45℄, [48℄, the de�nition for the N × qb blo
k Krylov matrix of the form

K =
[
U D1U D2U D3U . . . Dq−1U

]
(4.20)


an be found. The rank of this matrix may be less than qb, if a 
olumn DjU[i] is

linear dependent on lower-order 
olumns, whi
h implies that all 
olumns DkU[i], with

j < k ≤ q − 1 are also linear dependent. This property is 
alled de�ation and allows us to

additionally de�ne the de�ated Krylov matrix

Kdl = [U0 D1U1 D2U2 D3U3 . . . Dq−1Uq−1], (4.21)

where

U0 = U, U0 ∈ C
N×b0 , b0 = b, (4.22a)

Uj = Uj−1Ej , 0 < j < q Uj ∈ C
N×bj , bj ≤ bj−1 (4.22b)

with the de�ated identity matrix Ek ∈ C
bj−1×bj

, whi
h deletes the linearly dependent


olumns [48℄. For higher-order blo
k Krylov subspa
es, similar de�nitions are available,

e.g. [49℄.

In the blo
k WCAWE algorithm of this thesis, de�ation is not 
onsidered. Instead, the

orthonormalization pro
ess ex
ludes numeri
al de�
its, i.e. linear dependent 
olumns, in

the resulting proje
tion matrix. However, the algorithm may be
ome more powerful by

employing de�ation te
hniques and probably would redu
e the proje
tion matrix dimension

and thus redu
e the resulting ROM size.

4.2.2 Blo
k Well-Conditioned Asymptoti
 Waveform Evaluation

Notation

The blo
k WCAWE algorithm is a simple extension of the WCAWE algorithm, where

s
alar values are repla
ed by a blo
k matrix of the dimension b× b. Some notations need

to be introdu
ed for the algorithm and the proof for moment mat
hing.

The blo
k ve
tors Vn, Ṽn ∈ C
N×b

, whi
h are generated in the blo
k algorithm, are

gathered in the matri
es V , Ṽ , with the notation

V [1:i] =
[
V1 V2 . . .Vi

]
∈ C

N×bi, (4.23)

Ṽ [1:i] =
[

Ṽ1 Ṽ2 . . . Ṽi

]
∈ C

N×bi. (4.24)

The blo
k AWE ve
tors are 
olle
ted in W as

W [1:i] =
[
W0 W1 . . .Wi−1

]
∈ C

N×bi. (4.25)

Note the index shift Wi = W [i+1], whi
h is performed to 
onform with the original

WCAWE literature [24℄.

The matrix U is the upper triangle blo
k matrix

U =








U1,1 U1,2 . . . U1,i

0 U2,2 . . . U2,i
.

.

.

.

.

.

.

.

.

.

.

.

0 0 . . . Ui,i







∈ C

bi×bi, (4.26)
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with the submatri
es

Uj,k ∈ C
b×b. (4.27)

All submatri
es Uj,j on the diagonal need to be upper triangular matri
es and all Uj,k

with k < j need to be null matri
es to make U upper triangular. The subs
ripts bra
kets

denote the blo
k

U [i:k,i:k] =








Ui,i Ui,i+1 . . . Ui,k

0 Ui+1,i+1 . . . Ui+1,k
.

.

.

.

.

.

.

.

.

.

.

.

0 0 . . . Uk,k







. (4.28)

The matrix Ek ∈ R
M×b

is de�ned as the blo
k identity matrix

Ek =





0

I

0





} (k − 1)b rows
} b rows
} (q − k)b rows

, (4.29)

where k denotes the position of the identity matrix I ∈ R
b×b

. The number q is de�ned to

be always the number of blo
ks on whi
h Ek operates on. Thus, we have M = qb.

Blo
k Algorithm

The WCAWE blo
k algorithm provides a means to 
ompute blo
k Krylov subspa
es of

higher-order for the system (3.118) in a numeri
ally stable way. The WCAWE blo
k

ve
tors are re
ursively de�ned as

Ṽ1 = A−1
0 B, (4.30)

Ṽ2 = A−1
0 (−A1V1), (4.31)

Ṽ3 = A−1
0 (−A1V2 −A2V1PU2(3, 2)E1), (4.32)

.

.

. (4.33)

Ṽq = A−1
0 (−A1Vq−1 −

min(a,q−1)
∑

m=2

AmV [1:q−m]PU2(q,m)Eq−m), (4.34)

where in ea
h iteration the matrix equation

Ṽ [1:q] = V [1:q]U , (4.35)

is updated with the non-singular upper triangle matrix U ∈ C
qb×qb

. The 
orre
tion matrix

PUw(n,m), whi
h is employed for the 
omputation of the next blo
k WCAWE ve
tor, is

de�ned as

PUw(n,m) =

m∏

t=w

U
−1
[t:n−m+t−1,t:n−m+t−1], PUw(n,m) ∈ C

(n−m)b×(n−m)b, (4.36)

where w ≤ m < n < q. In this thesis, a modi�ed Gram-S
hmidt pro
ess is 
hosen to

update the relation (4.35) in ea
h iteration. The pro
ess orthonormalizes the 
olumns of

the matrix Ṽ [1:q], whi
h results in the matrix V [1:q]. Hen
e, the orthonormalization of

ea
h blo
k ve
tor Ṽq, let ea
h blo
k Uq,q be
ome an upper triangular matrix. Thus, the

pro
ess generates an upper triangular matrix U and the 
olumns of V [1:n] provide a highly

a

urate basis for the Krylov subspa
e Kan({Di}ai=1;U).
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4.2.3 Proof for Moment Mat
hing

Properties and Interpretations

This se
tion gives a list of properties that helps us to understand better the algorithm

and its de�nitions. The properties are used in parti
ular for the moment mat
hing proof.

Detailed proofs for this properties are not given, as they either 
an be found in stan-

dard mathemati
al literature, e.g. [50℄, or are simple algebrai
 
onsiderations. However,

mainly for properties whi
h are essential for the proof, some interpretations are provided.

Note that some of the properties provided simplify the original proof for the non-blo
ked

WCAWE [24℄, for the 
onstellation 
onsidered in this thesis.

Property 1: The inverse of the upper triangular matrix U, i.e. U−1
, is also a upper

triangular matrix.

Property 2: The produ
t U = U1U2 of two upper triangular matri
es results in an

upper triangular matrix.

Property 3: For the upper triangular matrix U ∈ C
n×n

, the equality

U−1
[j1:j2,j1:j2]

= (U[j1:j2,j1:j2])
−1

holds for any integers j1 and j2 su
h that 1 ≤ j1 ≤ j2 ≤ n.

Property 4: We have: span(Ṽ [1:n]) = span(V [1:n]) .

The matrix U , whi
h 
onne
ts the matri
es above by (4.35), is de�ned to be non-

singular.

Property 5: The 
orre
tion matrix PUw(n,m) is an upper triangular matrix.

The 
orre
tion matrix PUw(n,m) is a produ
t of upper triangular submatri
es of U ,

see Fig. 4.4(a). Hen
e, be
ause of Property 2, the resulting 
orre
tion matrix is upper

triangular itself.

Property 6: The equality U
−1
[1:n−m,1:n−m]PU2(n,m) = PU1(n,m) holds.

This is the simple multipli
ation of PU2(n,m) with the �rst upper triangular matrix.

The examples PU1(n,m) and PU2(n,m) in Fig. 4.4(b) and 4.4(
), respe
tively, show this

Property.

Property 7: Assume the integers α, ᾱ and γ satisfy 1 ≤ γ < min(α, ᾱ). Then for all

integers j1 and j2 whi
h satisfy 1 ≤ j1, j2 ≤ min(α, ᾱ)− γ, the equality
ET
j1
PU1(α, γ)Ej2 = ET

j1
PU1(ᾱ, γ)Ej2 holds.

Through modifying the value α to ᾱ, the dimension of the shifted matrix is 
hanged,

whereas the number of shifts γ is 
onstant, see Fig. 4.4(d). As only upper triangular

matri
es are in the produ
ts of PU1(α, γ) and PU1(ᾱ, γ), the resulting 
orre
tion matrix

is the same, as long as the blo
k unit ve
tors Ej1 and Ej2 sele
t a blo
k within the smaller

dimension.
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Property 8: Let U ∈ C
qb×qb

be a non-singular upper triangular matrix, and let β, m and

n be integers 1 ≤ m < n ≤ q and 1 ≤ β ≤ n− 1. Then for all integers j1 and j2 su
h that

β ≤ j1, j2 ≤ n −m, the equality ET
j1
PU1(n,m)Ej2 = ET

j1−β+1PUβ
(n,m + β − 1)Ej2−β+1

holds.

This Property is similar to the Property 7 above. PUβ
(n,m+ β − 1) is the produ
t of

upper triangular matri
es whi
h are shifted with β−1 
ompared to PU1(n,m), where also
the dimension of the multiplied matri
es is β − 1 smaller. This results in the same matrix

produ
t as PU1(n,m), as long as the blo
k unit ve
tors Ej1 and Ej2 sele
t a blo
k within

the smaller dimension. The Property is shown in Fig. 4.4(e).

Property 9: Let U ∈ C
qb×qb

be a non-singular upper triangular matrix, and let n, m and

β be integers su
h that 1 ≤ m < n ≤ q . Then for 1 < β ≤ n−m the equality

PU1(n−m,β − 1)PUβ
(n,m+ β − 1) = PU1(n,m+ β − 1) holds.

This Property 
an be interpreted in Fig. 4.4(a). PU1(n−m,β−1) is the multipli
ation
of the �rst β−1 shifted triangular matri
es. The se
ond matrix is the produ
t of the shifted

triangular matri
es from β to m+β−1. Thus, the result is the produ
t of all β to m+β−1
shifted matri
es, whi
h is PU1(n,m+ β − 1).
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U
−1

U
−1

U
−1

U
−1

U
−1
[1:5,1:5] U

−1
[2:6,2:6] U

−1
[3:7,3:7] U

−1
[m:n−1,m:n−1]

(a) Upper triangular matri
es in 
orre
tion matrix PUw (n,m) for n−m = 5.

PU1(n,m) =

(b) Corre
tion matrix PU1
(n,m) for n−m = 5.

PU2(n,m) =

(
) Corre
tion matrix PU2
(n,m) for n−m = 5.

U
−1
[1:3,1:3] U

−1
[2:4,2:4] U

−1
[3:5,3:5] U

−1
[γ:ᾱ−1,γ:ᾱ−1]

U
−1
[1:5,1:5] U

−1
[2:6,2:6] U

−1
[3:7,3:7] U

−1
[γ:α−1,γ:α−1]

(d) Submatri
es for PU1
(α, γ) and PU1

(ᾱ, γ) 
omputation, α− γ = 5, ᾱ− γ = 3.

U
−1
[1:5,1:5] U

−1
[2:6,2:6] U

−1
[3:7,3:7] U

−1
[m:n−1,m:n−1]

U
−1
[3:5,3:5] U

−1
[4:6,4:6] U

−1
[5:7,5:7] U

−1
[m+2:n−1,m+2:n−1]

(e) Submatri
es for PU1
(n,m) and PUβ

(n,m+ β − 1) 
omputation, n−m = 5, β = 3.

Figure 4.4: Properties of the 
orre
tion matrix PUw(n,m), with U ∈ C
(n−1)b×(n−1)b

.
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Proof

We de�ne the blo
k matrix

X [1:q,1:q] =










X1,1 X1,2 . . . X1,q−1 X1,q

0 X2,2 . . . X2,q−1 X1,q

0 0 X1,q
.

.

.

.

.

.

.

.

.

.

.

.

0 0 . . . 0 Xq,q










∈ C
bq×bq, (4.37)

where ea
h blo
k Xj1,j2 ∈ C
b×b

is de�ned as

Xj1,j2 =







ET
1PU1(j2, j1 − 1)Ej2−j1+1 for 2 ≤ j1 ≤ j2 ≤ q

I for j1 = j2 = 1

0 otherwise

. (4.38)

Note that X is an upper triangular non-singular matrix. All diagonal values are 1.

The indu
tive proof shows that

Ṽ [1:q] = W [1:q]X [1:q,1:q]. (4.39)

and thus V spans the required spa
e for moment mat
hing. For the indu
tion basis we

have q = 1

Ṽ1 = W [1]X1,1 (4.40)

and for q = 2

Ṽ2 = A−1
0 (−A1V1) = A−1

0 (−Ṽ1U
−1
1,1) = A−1

0 (−A1W [1]U
−1
1,1) (4.41)

= W [2]U
−1
1,1 = W [2]E

T
1 PU1(2, 1)E1 = W [2]X2,2. (4.42)

Note that X1,2 = 0. Therefore,

span(Ṽ [1:2]) = span(W [1:2]). (4.43)

The indu
tion hypothesis states

Ṽ [1:q−1] = W [1:q−1]X[1:q−1,1:q−1], (4.44)

span(Ṽ [1:q−1]) = span(W [1:q−1]). (4.45)

By indu
tion we will see

Ṽ [1:q] = W [1:q]X[1:q,1:q], (4.46)

span(Ṽ [1:q]) = span(W [1:q]). (4.47)

For n ≥ 2 the algorithm is de�ned as

Ṽq = A−1
0 (−A1Vq−1 −

min(a,q−1)
∑

m=2

AmV [1:q−m]PU2(q,m)Eq−m). (4.48)
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We use (4.35) to write

Ṽq = A−1
0 (−A1Ṽq−1U

−1
[1:q−1,1:q−1]Eq−1

−
min(a,q−1)
∑

m=2

AmṼ [1:q−m]U
−1
[1:q−m,1:q−m]PU2(q,m)Eq−m), (4.49)

and plug in the indu
tion hypothesis (4.44)

Ṽq = A−1
0 (−A1W [1:q−1]X [1:q−1,1:q−1]U

−1
[1:q−1,1:q−1]Eq−1

−
min(a,q−1)
∑

m=2

AmW [1:q−m]X [1:q−m,1:q−m]U
−1
[1:q−m,1:q−m]PU2(q,m)Eq−m). (4.50)

Use Property 6 to write

Ṽq = A−1
0 (−A1W [1:q−1]X [1:q−1,1:q−1]U

−1
[1:q−1,1:q−1]Eq−1

−
min(a,q−1)
∑

m=2

AmW [1:q−m]X [1:q−m,1:q−m]PU1(q,m)Eq−m). (4.51)

Now, we use U
−1
[1:n−1,1:n−1] = PU1(n, 1)

Ṽq = A−1
0 (−

min(a,q−1)
∑

m=1

AmW [1:q−m]X [1:q−m,1:q−m]PU1(q,m)Eq−m). (4.52)

Now use W [1:n−m] =

n−m∑

β=1

W [β]E
T
β

Ṽq = A−1
0 (−

min(a,q−1)
∑

m=1

Am(

q−m
∑

β=1

W [β]E
T
β )X [1:q−m,1:q−m]PU1(q,m)Eq−m). (4.53)

Contra
t now ET
βX [1:n−m,1:n−m] = X [β,1:n−m] to have

Ṽq = A−1
0 (−

min(a,q−1)
∑

m=1

Am(

q−m
∑

β=1

W [β]X [β,1:q−m])PU1(q,m)Eq−m). (4.54)

Writing X [β,1:q−m]PU1(q,m)Eq−m as a sum and using the property Xβ,r = 0 ∀ r < β, we
have

Ṽq = A−1
0 (−

min(a,q−1)
∑

m=1

Am

q−m
∑

β=1

W [β]

q−m
∑

r=β

Xβ,rE
T
r PU1(q,m)Eq−m). (4.55)

From the de�nition of X in (4.38) we 
an write now

Ṽq = A−1
0 (−

min(a,q−1)
∑

m=1

Am(W [1]PU1(q,m)Eq−m

+

q−m
∑

β=2

W [β]

q−m
∑

r=β

ET
1PU1(r, β − 1)Er−β+1E

T
r PU1(q,m)Eq−m)), (4.56)
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where we use X1,1 = I and X1,r = 0 for 1 < r < q. Now use Property 7, with α = r,
ᾱ = q −m, γ = β − 1, j1 = 1 and j2 = r − β + 1 to obtain

Ṽq = A−1
0 (−

min(a,q−1)
∑

m=1

Am(W [1]PU1(q,m)Eq−m

+

q−m
∑

β=2

W [β]

q−m
∑

r=β

ET
1 PU1(q −m,β − 1)Er−β+1E

T
r PU1(q,m)Eq−m)). (4.57)

Now, use Property 8 with j1 = r and j2 = q −m

Ṽq = A−1
0 (−

min(a,q−1)
∑

m=1

Am(W [1]PU1(q,m)Eq−m

+

q−m
∑

β=2

W [β]

q−m
∑

r=β

ET
1 PU1(q −m,β − 1)Er−β+1E

T
r−β+1PUβ

(q,m+ β − 1)Eq−m−β+1)).

(4.58)

Now, only the produ
t Er−β+1E
T
r−β+1 depends on r and the sum results in the identity

matrix. Thus,

Ṽq = A−1
0 (−

min(a,q−1)
∑

m=1

Am(W [1]PU1(q,m)Eq−m

+

q−m
∑

β=2

W [β]E
T
1 PU1(q −m,β − 1)PUβ

(q,m+ β − 1)Eq−m−β+1)). (4.59)

The next step is to employ Property 9

Ṽq = A−1
0 (−

min(a,q−1)
∑

m=1

Am(W [1]PU1(q,m)Eq−m

+

q−m
∑

β=2

W [β]E
T
1 PU1(q,m+ β − 1)Eq−m−β+1)). (4.60)

Contra
ting the sum results in

Ṽq = A−1
0 (−

min(a,q−1)
∑

m=1

Am

q−m
∑

β=1

W [β]E
T
1PU1(q,m+ β − 1)Eq−m−β+1). (4.61)

In this expression, we insert the de�nition of Xj1,j2 with j1 = m+ β and j2 = q, therefore

Ṽq = A−1
0 (−

min(a,q−1)
∑

m=1

Am

q−m
∑

β=1

W [β]Xm+β,q). (4.62)

This is

Ṽq = A−1
0 (−

min(a,q−1)
∑

m=1

AmW [1:q−m]X [m+1:q,q]). (4.63)
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After all these algebrai
 modi�
ations, the following part of the proof helps us to un-

derstand why the WCAWE algorithm mat
hes moments. The equation (4.63) allows to

write

Ṽq = (

min(a,q−1)
∑

m=1

−A−1
0 AmW [1:q−m]X [m+1:q,q]) (4.64)

=

q
∑

n=2

(−
min(a,n−1)
∑

m=1

A−1
0 AmW [n−m]Xn,q) (4.65)

=

q
∑

n=2

(−
min(a,n−1)
∑

m=1

A−1
0 AmW [n−m])

︸ ︷︷ ︸

W [n]

Xn,q (4.66)

=

q
∑

n=2

W [n]Xn,q. (4.67)

Therefore, we have

Ṽ [1:n] = W [1:n]X[1:n,1:n], (4.68)

span(Ṽ [1:n]) = span(W [1:n]). (4.69)

and thus the indu
tion hypothesis holds.
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4.3 Adaptive Algorithms

4.3.1 Blo
king the Single-Point Algorithm

Employing the blo
ked WCAWE pro
ess allows us to introdu
e the more e�
ient blo
ked

adaptive single-point method in Alg. 5. Algorithm 5, Line 1 and Line 6, with the follow-

ing modi�ed Gram-S
hmidt orthonormalization, provide a very e�
ient way to 
ompute a

stable basis for the sought Krylov subspa
e for a blo
k right-hand side ex
itation. Com-

pared to the non-blo
ked Alg. 3, the blo
ked approa
h does not need separated WCAWE

pro
esses for ea
h ex
itation anymore. Furthermore, the additional orthonormalization

pro
ess to generate the proje
tion matrix from the separated WCAWE pro
esses is thus

dispensable.

This algorithm provides a solid basis for e�
iently swapping the proje
tion matrix to

the hard disk by some modi�
ations in the WCAWE pro
ess, whi
h will be explained in

the following.
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Algorithm 5 Self-Adaptive Blo
k Single-Point Model Order Redu
tion

1: Initial WCAWE: Ṽ1 = A−1
0 B

2: Initial modi�ed Gram-S
hmidt: Ṽ1 = V1U

3: Initial subspa
e proje
tion: Ãi = VT
1 AiV1, B̃ = VT

1 B

4: Solve frequen
y sweep:

(

a∑

i=0

Ãis
i)X̃ = stB̃, Ỹ = B̃T X̃ ⇒ Sequen
e {S̃1}B

5: for q = 2 to qmax do
6: Blo
ked WCAWE pro
ess:

Ṽq = A−1
0 (−A1Vq−1 −

min(a,q−1)
∑

m=2

AmV [1:q−m]PU2(q,m)Eq−m)

7: Apply Modi�ed Gram-S
hmidt to new generated blo
k ve
tor:

[V [1:q−1],Vq]U = [Ṽ [1:q−1], Ṽq]
8: Enlarge ROM:

Ãi ←
[

Ãi V
T
[1:q−1]AiVq

VT
q AiV [1:q−1] VT

q AiVq

]

, B̃←
[

B̃

VT
q B

]

.

9: Solve frequen
y sweep:

(

a∑

i=0

Ãis
i)X̃ = stB̃, Ỹ = B̃T X̃ ⇒ Sequen
e {S̃q}B

10: if E2({S̃q}B, {S̃q−1}B) < E2,tol then

11: return(
onverged)

12: end if

13: end for
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4.3.2 Adaptive Out-of-Core Algorithm for Single-Point Method

Algorithm 6 presents the adaptive out-of-
ore MORe single-point method. For the memory

management, additional operations need to be introdu
ed. The operator SWAP(Vi) stands
for saving the blo
k matrix Vi to hard disk and free the main memory. LOAD(Vi) means

to load the previously saved blo
k Vi from the hard disk to the RAM and CLEAR(Vi)
is written for free the memory used for the blo
k Vi. For a better algorithm illustration,

matri
es whi
h are swapped to the hard disk are 
olored in gray.

The operations in Alg. 5 where the proje
tion matrix V [1:q−1] appears are of spe
ial

interested for the memory management. These are Alg. 5, Lines 6, 7 and 8. The out-of-
ore

operations for these lines are dis
ussed in the following. However, to keep the WCAWE

pro
ess in the out-of-
ore te
hnique e�
ient, two blo
k ve
tors of size Vq ∈ C
N×b

are

needed to operate on. Otherwise a large number of read/write pro
esses would dramati
ally

slow down the algorithm.

Furthermore, it is worth 
ommenting on the WCAWE blo
k ve
tor generation in the

out-of-
ore algorithm, Alg. 6, Lines 8 to 15. In the algorithm development pro
ess, the

matrix read/write pro
esses were expe
ted to be very time-
onsuming. Thus, the �rst

approa
h to generate the WCAWE blo
k ve
tor was to perform all operations on a loaded

blo
k:

1: Initialize: LOAD(Vq−1) ; Ṽq = −A1Vq−1 ; CLEAR(Vq−1) ;
2: for p = 1 to q − 2 do
3: LOAD(Vp)
4: for m = 2 to min(a, q − p) do
5: Ṽq = Ṽq −AmVpEpPU2(q,m)Eq−m)
6: end for

7: CLEAR(Vp)
8: end for

9: Ṽq = A−1
0 Ṽq

However, it turned out that for in
reasing q the additionally performed matrix-ve
tor

multipli
ations in Line 5 are more time-
onsuming than the 
hosen operations in Alg. 6.

Thanks to the highly optimized reading operation, provided by the 
ompiler and operating

system, the time overhead of the swapping me
hanism is very low as numeri
al results will

show.

Alg. 6, Lines 17 to 22 introdu
e an approa
h for the orthonormalization pro
ess of the

proje
tion matrix with low memory requirements. The modi�ed Gram-S
hmidt algorithm

is rearranged su
h that ea
h 
olumn of the new blo
k ve
tor Vq is orthonormalized against

ea
h 
olumn of a single loaded blo
k ve
tor Vp. Thus, in the loop for k = 1 . . . q − 1,
ea
h blo
k ve
tor needs to be loaded only on
e. After this loop, the 
olumns of the

blo
k ve
tor Vq are orthonormalized against ea
h other in Line 22, whi
h 
ompletes the

orthonormalization pro
ess.

Finally, for the proje
tion pro
ess the proje
tion matrix data must be read again from

the hard disk. This is performed by loading ea
h blo
k ve
tor Vp on
e and evaluate the

redu
ed blo
ks for the ROM enlargement. This is shown in Alg. 6, Lines 23 to 27.
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Algorithm 6 Self-Adaptive Out-of-Core Single-Point Model Order Redu
tion

1: Initial WCAWE: Ṽ1 = A−1
0 B

2: Initial modi�ed Gram-S
hmidt: Ṽ1 = V1U

3: Initial subspa
e proje
tion: Ãi = VT
1 AiV1, B̃ = VT

1 B

4: Free memory: SWAP(V1),
5: Solve frequen
y sweep:

(
a∑

i=0

Ãis
i)X̃ = stB̃, Ỹ = B̃T X̃ ⇒ Sequen
e {S̃1}B

6: for q = 2 to qmax do
7: Initialize: LOAD(Vq−1) ; Ṽq = −A1Vq−1 ; CLEAR(Vq−1) ;
8: for m = 2 to min(a, q − 1) do
9: for p = 1 to q − 1 do
10: LOAD(Vp)
11: Ṽq = Ṽq −AmVpEpPU2(q,m)Eq−m)
12: CLEAR(Vp)
13: end for

14: end for

15: Ṽq = A−1
0 Ṽq

16: Modi�ed Gram-S
hmidt in out-of-
ore te
hnique:

17: for p = 1 to q − 1 do
18: LOAD(Vp)
19: Orthonormalize only against loaded blo
k ve
tor:

[V [1:p−1],Vp,V [p:q−1]]U = [. . . , Ṽq]
20: CLEAR(Vp)
21: end for

22: Orthonormalize 
olumns of 
urrent blo
k ve
tor: [V [1:q−1],Vq]U = [. . . , Ṽq]
23: Enlarge ROM in out-of-
ore te
hnique:

24: for p = 1 to q − 1 do
25: LOAD(Vp) ; M̃p,i = VT

pAiVq ; CLEAR(Vp);
26: end for

27: Ãi ←









Ãi






M̃1,i
.

.

.

M̃q−1,i






[

M̃T
1,i . . . M̃T

q−1,i

]

VT
q AiVq









, B̃←
[

B̃

VT
q B

]

.

28: Free memory: SWAP(Vq),
29: Solve frequen
y sweep:

(

a∑

i=0

Ãis
i)X̃ = stB̃, Ỹ = B̃T X̃ ⇒ Sequen
e {S̃q}B

30: if E2({S̃q}B, {S̃q−1}B) < E2,tol then

31: return(
onverged)

32: end if

33: end for
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4.3.3 Adaptive Out-of-Core Algorithm for Multi-Point Method

Compared to the e�orts for single-point methods, swapping the proje
tion matrix to the

hard disk is a rather simple task in the multi-point approa
h. Algorithm 7 shows the pro-

posed modi�
ations, where again the notation SWAP(Vi), LOAD(Vi) and CLEAR(Vi)
are used for the swapping operations. In 
ontrast to the single-point method above, the

multi-point algorithm keeps only the 
urrently generated blo
k ve
tor and one single 
ol-

umn of the proje
tion matrix in the RAM.

The out-of-
ore extension in the multi-point 
ase is parti
ularly simple, be
ause no

data of previous expansion points are required to evaluate the blo
k X(šq). However, the
orthonormalization pro
ess as well as the redu
tion of the proje
tion matrix is performed

in exa
tly the same manner as for the single-point method.
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Algorithm 7 Self-Adaptive Out-of-Core Multi-Point Model Order Redu
tion

1: Solve system at š1 = min(B):

(
a∑

i=1

Aiš
i
1)X(š1) = št1B, ⇒ X(š1)

2: Solve system at š2 = max(B):

(
a∑

i=0

Aiš
i
2)X(š2) = št2B, ⇒ X(š2)

3: Initial modi�ed Gram-S
hmidt: [X(š1),X(š2)] = Q[1:2]U

4: Initial subspa
e proje
tion: Ãi = QT
[1:2]AiQ[1:2], B̃ = QT

[1:2]B

5: SWAP(Q[1:2])
6: Solve frequen
y sweep for s ∈ B:

(

a∑

i=0

Ãis
i)X̃ = stB̃, Ỹ = B̃T X̃ ⇒ Sequen
e {S̃2}B

7: Set interval of worst error: ě = 1
8: Initialize �rst interval: Bě = B
9: for q = 3 to qmax do
10: Find next expansion point: šq = argmin

s∈B

∣
∣s− minBě+maxBě

2

∣
∣

11: Split interval: Bq−1 = [šq,max(Bě)], Bě ← [min(Bě), šq]
12: Solve system at šq:

(
a∑

i=0

A0š
i
q)X(šq) = štqB, ⇒ X(šq)

13: Modi�ed Gram-S
hmidt in out-of-
ore te
hnique:

14: for p = 1 to q − 1 do
15: LOAD(Qp)
16: Orthonormalize only against loaded blo
k ve
tor:

[Q[1:p−1],Qp,Q[p:q−1]]U = [. . . ,X(p̌q)]
17: CLEAR(Qp)
18: end for

19: Orthonormalize 
olumns of 
urrent blo
k ve
tor: [Q[p:q−1],Qq]U = [. . . , Q̃q]
20: Enlarge ROM in out-of-
ore te
hnique:

21: for p = 1 to q − 1 do
22: LOAD(Qp) ; M̃p,i = QT

pAiQq ; CLEAR(Qp)
23: end for

24: Ãi ←









Ãi






M̃1,i
.

.

.

M̃q−1,i






[

M̃T
1,i . . . M̃T

q−1,i

]

QT
q AiQq









, B̃i ←
[

B̃

QT
q B

]

.

25: Free memory: SWAP(Qq),
26: Solve frequen
y sweep:

(

a∑

i=1

Ãis
i)X̃ = stB̃, Ỹ = B̃T X̃ ⇒ Sequen
e {S̃q}B

27: if E2({S̃q}B, {S̃q−1}B) < E2,tol then

28: return(
onverged)

29: end if

30: Find interval of worst error: ě = arg max
i=1,...,q−1

E2({S̃q}Bi
, {S̃q−1}Bi

)

31: end for
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4.4 Numeri
al Results

The numeri
al experiments demonstrate the 
omputational improvements as well as the

need for the MORe approa
hes introdu
ed in this thesis. Single-point methods, multi-

point methods and full FE simulation sweeps are 
ompared in the broadband analysis of

ele
tromagneti
 stru
tures. Furthermore, an expli
it dis
ussion of the memory usage shows

the importan
e of out-of-
ore te
hniques in MORe pro
esses.

All 
omputational work in this se
tion is performed on a single 
ore of an Intel Xeon

2.33 GHz quad-
ore pro
essor. The 
omputer runs on an openSUSE 11.1 operating system

with a RAM size of 16 GByte. The operating system swapping partition size is set to

38.5 GBytes. The introdu
ed broadband simulation framework is implemented in a 
++

program, whi
h is linked to the PARDISO [47℄ solver proje
t for the fa
torization and

solution of the FE systems.

4.4.1 Superiority of Blo
king the WCAWE Pro
ess

Although the blo
ked WCAWE pro
ess spans the same Krylov subspa
es as the non-

blo
ked in theory, di�erent operations are performed in the algorithms. Slight di�eren
es

in the numeri
al 
omputations of the Krylov subspa
es result in a signi�
antly improved

MORe pro
ess, using the blo
ked approa
h. ROMs whi
h are generated from the blo
ked

approa
h have turned out to be highly a

urate on a set of evaluation points B, i.e. with
a low true error E2({S}B, {S̃q}B), with lower dimensions than ROMs generated from the

non-blo
ked method. During this thesis, no further investigations on this e�e
t beyond

this numeri
al experiments were done.

Stru
ture De�nition

The 
onsidered test stru
ture 
onsists of a set of 8 lumped ports whi
h, together with

perfe
t ele
tri
 
ondu
tor (PEC) sheets and lumped elements, form a kind of 
hain, see

Fig. 4.5(a). The 
hain is surrounded by free spa
e and a box bounds the 
omputational

domain. On both ends of the box surfa
e impedan
e boundary 
onditions are imposed,

whi
h 
an be seen in Fig. 4.5(b), where σ = 5.8 · 105A/(V m) and µ = µ0. All other

surfa
es of the box are de�ned as PEC. Detailed geometri
 dimensions of the stru
ture

are given in Fig. 4.6. Lumped element sheets have the values R = 10kΩ, L = 1mH and

C = 1pF . Note that de�ning surfa
e impedan
es and lumped elements results in a system

parameterization where the frequen
y polynomial is of degree a = 4.

Numeri
al Experiments

For the test stru
ture simulation, the set B is de�ned as the 1001 equidistant evaluation

points in the bandwidth from 20 GHz to 40 GHz. The simulation employs �rst-order FE

basis fun
tion and results in a system matrix dimension of N = 39229.

The most time-
onsuming pro
ess in the dis
rete sweep evaluation is the fa
torization,

whose average 
omputation time is about 3.9s. Thus, with 1001 evaluation points, the


omplete time is extrapolated to 3904s. As the dimension of the s
attering matrix of this

model is 8 × 8, whi
h makes 64 s
attering parameters, the frequen
y sweep in Fig. 4.7

shows only the eight s
attering parameters S41 to S48 as representative sele
tion.

The MORe pro
esses are applied to the FE dis
retization of the full FE run above,

with the same number of degrees of freedom. The frequen
y of 20 GHz is 
hosen as the
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expansion point. This is not the optimal 
hoi
e and will in
rease the iteration number,

but shows in this numeri
al experiment the di�eren
es between blo
ked and non-blo
ked

algorithms better.

The error indi
ator E2({S̃q−1}B, {S̃q}B), whi
h is evaluated during the adaptive MORe

pro
ess, is 
ompared for the two approa
hes in Fig. 4.8(a). Until the error indi
ator

falls under the threshold value of Eabort = 10−5
, the non-blo
ked approa
h runs q = 38

iterations, while the blo
k pro
ess stops at q = 25 iterations. More interesting for the


onvergen
e, however, is the true error E2({S}B, {S̃q}B), whi
h is shown for the two runs in

Fig. 4.8(b). To get a true error with E2({S}B , {S̃q}B) < 10−5
, we need q = 38 for the non-

blo
ked and q = 24 for the blo
ked WCAWE. In addition to the lower iteration number for

the blo
ked WCAWE, the more smoothly falling error is parti
ularly noti
eable in the plots,

whi
h may be interpreted as an indi
ator for improved numeri
al robustness. Moreover,

the error sweeps for both approa
hes at q = 25 in Fig. 4.9, where eij(f) = |Sij(f)− S̃ij(f)|,

on�rm the better 
onvergen
e for the blo
ked WCAWE. Note that only for visualization

reasons not all s
attering parameters are shown in this plot again. Unsurprisingly, the

blo
ked approa
h with a lower number of iterations results in lower 
omputation times,

see Table 4.1.

In this numeri
al experiment the blo
ked WCAWE approa
h generated a ROM with

lower dimension to rea
h the same a

ura
y as the non-blo
ked approa
h. Thus, the

blo
ked approa
h is not only superior in memory requirements, but also the dimension of

the resulting ROM is smaller. The author guesses that the orthogonalization pro
ess in

the blo
ked approa
h is more stable and therefore the proje
tion matrix spans the Krylov

subspa
e more properly.

Table 4.1: Port 
hain: Computational data.

Number of ROM generation ROM evaluation Sweep

iterations q time (s) time (s) time (s)

Full FE run - - - 3904

Non-blo
ked WCAWE 38 420 16 436

Blo
ked WCAWE 25 211 6 217
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(a) Sheets: Lumped ports (blue), lumped elements (yellow) and PEC (red).

(b) Impedan
e boundary (purple).

Figure 4.5: Port 
hain: View of the stru
ture.
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Figure 4.6: Port 
hain: Geometri
 dimensions in mm.
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4.4.2 Out-of-Core Te
hnique Results

The se
ond part of this se
tion is dedi
ated to the out-of-
ore te
hniques. To give mean-

ingful data and results for the introdu
ed te
hniques, the 
hosen test stru
ture needs to

satisfy a 
ouple of requirements. The system of linear equations, whi
h results from the FE

simulation of the stru
ture, needs to be of large dimension, with many right-hand sides.

The frequen
y parameterization should be polynomial, otherwise the WCAWE pro
ess will

redu
e to an Arnoldi iteration. To in
rease the number of adaptive iterations in the MORe

pro
esses, the test stru
ture for this numeri
al experiment should exhibit some resonant

behavior in the evaluated bandwidth.

Test Stru
ture De�nition with Absorbing Boundaries

The 
onsidered stru
ture is the 
uboid in Fig. 4.10. The stru
ture 
ontains 8 port 
hains,

ea
h with 8 lumped ports, in total 64 lumped ports. The ports are 
onne
ted by PEC sheets

and lumped elements, whi
h have resistan
e, indu
tan
e and 
apa
itan
e of R = 10kΩ,
L = 1mH and 1pF , respe
tively. On the top surfa
e of the 
uboid an absorbing boundary


ondition is de�ned, all other surfa
e are PEC. The 
hains are surrounded by a va
uum.

Fig. 4.11 de�nes the detailed geometri
 dimension of the stru
ture.

Dis
rete Sweep Data

The set of evaluation points B in the simulation is de�ned as 2001 equidistant points in the

bandwidth from 20 GHz to 30 GHz. The full FE simulation, whi
h is used as referen
e,

employs se
ond-order FE shape fun
tions and results in a sparse system of linear equations

with 827666 degrees of freedom. The assembled system matrix 
ounts 16119523 non-

zeros, whi
h 
auses a memory requirement of 257.9 MBytes, if 8 Bytes double pre
ision

�oating point numbers are taken and all non-zero values are assumed to be 
omplex (thus

16 Bytes per entry). The memory requirement for the blo
k right-hand side, with 64
extremely sparse ex
itation ve
tors, may be negle
ted. However, the fa
torization of the

system matrix 
ounts 236161487 non-zeros, whi
h requires 3.8 GBytes. Note that the peak
memory requirement of the fa
torization is not 
onsidered in this analysis.

The typi
al fa
torization time for a solution of the system is 186.2s. The additional

time for ea
h right-hand side solution is typi
ally 4.3s, whi
h is not negligible in this 
ase

of 64 right-hand sides. As a numeri
al result, Fig. 4.12 shows the s
attering parameters

S20 17 to S20 24 for the evaluation points in B as a 
hosen sele
tion.

Broadband Simulation Te
hniques

In the next numeri
al experiment, the s
attering parameter sweep on B is performed using

the proposed MORe te
hniques, i.e. adaptive single-point and multi-point as in-
ore as

well as out-of-
ore methods. The MORe is applied to the original FE system above, where

in this 
onstellation the system is parameterized in the frequen
y to the order a = 2.
Single-point methods use the arbitrarily 
hosen expansion frequen
y 25 GHz.

The plot of the employed error indi
ator E2({S̃q−1}B, {S̃q}B) in Fig. 4.13(a) shows, that
the adaptive single-point method needs to run to the iteration q = 9, where the multi-point
pro
ess needs only q = 8, to satisfy the threshold value E2({S̃q−1}B, {S̃q}B) < 10−5

. The

plot for the true error E2({S}B, {S̃q}B) 
on�rms this faster 
onvergen
e, see Fig. 4.13(b).

For a true error below 10−5
, the multi-point method needs q = 7 and the single-point

method q = 8.
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MORe Memory Analysis

A �rst performan
e analysis is done on the plots in Fig. 4.14, whi
h show the memory

usage versus time for the 
onsidered approa
hes. In the single-point memory plot, see

Fig. 4.14(a), it 
an be seen that the memory requirements in
rease at ea
h iteration for the

in-
ore algorithm, whi
h results from the proje
tion matrix enlargement. Ea
h enlargement

of a full blo
k right-hand side is 64 
olumns, ea
h with 827666 degrees of freedom and


omplex double pre
ision �oating point numbers (16 Bytes) per degree of freedom, whi
h

is a memory size of 848 MByte. However, the out-of-
ore approa
h does not in
rease the

proje
tion matrix data for higher iterations. Note that, for ea
h iteration, an additional

full right-hand side blo
k is required in the out-of-
ore blo
k WCAWE pro
ess for a short

time, as explained in Se
tion 4.3.2. These are the eye-
at
hing jumps in the memory plot

in ea
h iteration.

Turning to the multi-point 
urves in Fig. 4.14(b), a similar behavior 
an be observed.

In ea
h iteration the memory blo
k of 848 MByte is allo
ated for the new proje
tion matrix


olumns. While the out-of-
ore pro
ess swaps data from previous iterations to the hard

disk and the memory requirements remain on a low level, the memory requirements in the

in-
ore approa
h in
rease at ea
h iteration with the size of this blo
k. In ea
h iteration,

the fa
torization memory allo
ation and deallo
ation 
an be noti
ed, the size of whi
h was

evaluated above to be 3.8 GBytes.

In the next experiment, a proje
tion matrix data size is for
ed that ex
eeds the available

system main memory. For this purpose, all adaptive MORe approa
hes are run for q = 18
iterations. The resulting in-
ore 
omputations 
an be seen in 4.15(a), where the memory

requirements run into the limit of 16 GBytes and the operating system swapping pro
ess

starts to work. This makes the pro
ess extremely ine�
ient. While the single-point ap-

proa
h got stu
k at the iteration q = 11, the multi-point approa
h at least works at the last

iterative step, when the experiment was manually aborted after running 1.6·105s. The out-
of-
ore approa
h, however, runs without any remarkable additional memory requirements,

see Fig. 4.15(b).

Runtime Dis
ussion

The runtime dis
ussion for the 
onsidered MORe te
hniques starts with Table 4.2. Keep-

ing in mind that the multi-point approa
h needs one fewer adaptive iteration than the

single-point method, i.e. q = 8, to generate a ROM whi
h is 
onsidered 
onverged, the


omputational 
osts are lower, as 
an be expe
ted. Anyhow, the listed results in the Ta-

ble 4.2 show 
learly that the out-of-
ore pro
ess swapping me
hanism is not the limiting

operation in the performed experiments. It should also be mentioned that all MORe te
h-

niques are far superior to the dis
rete FE sweep, whi
h is the main purpose of MORe. The

full FE 
omputation time only in
ludes the fa
torization time and the solution of the 64
right-hand sides at ea
h evaluation frequen
y.

We start the detailed timing analysis by looking at the memory plots in Fig. 4.14(a).

Parti
ularly the last iteration of the in-
ore te
hnique is investigated. This iteration starts

before the memory rises the last time (at 10206s) and ends just before the memory is

released (at 12748s), whi
h is a time interval of 2542s. The time for this adaptive step

results from 941s for the blo
k WCAWE pro
ess, 1333s for the subspa
e proje
tion and

268s for the error measure evaluation. Detailed investigation showed that the 
urrent

implementation works on non-optimized matrix-ve
tor produ
t and ve
tor-ve
tor produ
t

operations. This makes the 
omputation times for the blo
k WCAWE pro
ess as well as



78

for the subspa
e proje
tion rather high 
ompared to the highly optimized operations in

the PARDISO solver [47℄. This explains also why the multi-point approa
h is faster than

the single-point method in Table 4.2, if both 
omputations run 9 adaptive iterations.

Table 4.2: Port 
uboid: Computational data.

Number of ROM generation ROM evaluation Sweep 
omputation

iterations q time (s) time (s) time (s)

Single-point:

In-
ore 9 12746 267 13013
Out-of-
ore 9 12864 268 13132

Multi-point:

In-
ore 8 9337 201 9538
Out-of-
ore 8 9554 201 9755
In-
ore 9 11451 268 11719
Out-of-
ore 9 11656 268 11924

Full FE run: - - - 923261
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(a) Full 
uboid.

(b) Sheets: Lumped ports (blue), lumped elements (yellow) and

PEC (red).

Figure 4.10: Port 
uboid: View of the stru
ture.
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Figure 4.11: Port 
uboid: Geometri
 dimensions in mm.
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Figure 4.14: Port 
uboid: Memory plots for adaptive MORe te
hniques.
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Test Stru
ture with Surfa
e Impedan
e

For the last numeri
al experiment in this se
tion the absorbing boundary 
ondition in

the stru
ture above is repla
ed by a surfa
e impedan
e boundary with a 
ondu
tivity of

σ = 5.8 · 105 A/(V m) and a permeability of µ = µ0. Thus, the system matrix

is parameterized now to the order a = 4 in the frequen
y. In both 
onstellations the

FE simulation employs the same mesh. Therefore, the time and memory requirements in

the full FE run do not exhibit any remarkable di�eren
es to the run above. However, this

modi�
ation results in a less smooth behavior in the frequen
y response of the port 
uboid,

as 
an be seen in Fig. 4.16. Both adaptive pro
esses, single-point and multi-point methods,

run one adaptive iteration more and 
onverge more slowly as the plots in Fig. 4.17 show.

In parti
ular, the multi-point method runs q = 9 iterations and the single-point method

needs q = 10 iterative steps.

The runtime 
omparison for the multi-point MORe with q = 9 in Table 4.3 and Ta-

ble 4.2 shows that the model modi�
ation slowed down the MORe pro
ess. The longer


omputation times 
an be explained by the higher polynomial degree in the frequen
y pa-

rameterization of the system matri
es, whi
h results from the surfa
e impedan
e boundary


ondition.

This e�e
t is mu
h more obvious for the single-point method, 
omparing the memory

plots Fig. 4.18(a) and Fig. 4.14(a). The origin for the massive slow down is the same as for

the multi-point method, the higher polynomial degree in the system parameterization. The

e�e
t, however, is mu
h more pronoun
ed as a result of the expansion point shift, whi
h is

performed only in single-point methods. The shift 
auses that all 5 system matri
es have

non-zero entries, where some of them may have a mu
h higher density as the non-shifted,

whi
h more slows down some operations 
ompared to the multi-point approa
h. For a

detailed timing analysis we 
hoose again the 9th iteration of the in-
ore te
hnique, whi
h

is the same iteration as used in the absorbing boundary 
ondition runtime analysis above.

Note that this is not the last adaptive iteration in this run. The interval starts at 14831s
and ends at 18712s and 
onsists of 1372s for the blo
k WCAWE, 2226s for the subspa
e
proje
tion and 283s for the error evaluation. Thus it is the subspa
e proje
tion, whi
h

runs almost 15 min longer, that espe
ially slows down the 
omputation.

Table 4.3: Port 
uboid with surfa
e impedan
e: Computational data.

Number of ROM generation ROM evaluation Sweep 
omputation

iterations q time (s) time (s) time (s)

Single-point:

In-
ore 10 23112 381 23112
Out-of-
ore 10 23196 381 23196

Multi-point:

In-
ore 9 12731 268 12999
Out-of-
ore 9 12966 269 13235

Full FE run: - - - 923261
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4.5 Con
lusion

The provided adaptive MORe approa
hes in 
ombination with the 
hosen error measure

show reliable results and work very e�
iently. The memory swapping me
hanisms only

slightly in
rease the 
omputation times and therefore do not relevantly redu
e the e�
ien
y

of the MORe te
hniques. However, the employed out-of-
ore approa
hes may 
ause an

important performan
e improvement, if the proje
tion matrix memory requirements ex
eed

the available main memory, as may happen in real-world problem broadband simulations.

Memory plots show the redu
tion of the main memory requirement due to the proje
tion

matrix data swapping. A high number of adaptive iterations 
an be performed using the

out-of-
ore approa
h, without �lling the main memory.

To show the pra
ti
al importan
e of the introdu
ed numeri
al te
hniques in this thesis,

numeri
al 
omputations run on the limit of the system 
apa
ity. This showed some un-

expe
ted results, whi
h are mainly 
aused by non-optimized numeri
al operations in the


urrent implementation. Timing analysis showed that non-optimized matrix-ve
tor and

ve
tor-ve
tor produ
ts mainly slow down the single-point methods. Although we have this

short
oming in the implemented framework, whi
h a�e
ts single-point as well as multi-

point methods, all MORe runs are far superior to dis
rete FE sweeps.
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Chapter 5

Broadband Finite Element

Simulation for Waveguide Problems

5.1 Model Order Redu
tion for Waveguide Problems

The FE method is also a very powerful te
hnique for the modal analysis of ele
tromagneti


waveguides. Sin
e it is just the waveguide 
ross-se
tions that need to be dis
retized, single

solutions are 
omputationally inexpensive. In many appli
ations, however, the 
hara
ter-

isti
s of waveguide modes are to be determined over wide frequen
y bands. Sin
e modal

�eld patterns may be frequen
y-dependent and the 
orresponding propagation 
oe�
ients

highly dispersive, and be
ause dispersion 
urves may feature bifur
ations, 
ross-over points,

or 
oupled-mode se
tions, the broadband analysis of ele
tromagneti
 waveguides typi
ally

requires a large number of FE 
omputations, at di�erent frequen
y points. In su
h 
ases,


omputer runtime is still a limiting fa
tor.

MORe te
hniques su
h as [51℄, [52℄ and [53℄, provide a means to speed up the solu-

tion times of frequen
y sweeps very signi�
antly, at little additional error. This 
hapter

introdu
es a multi-point MORe method employing an adaptive point-pla
ement s
heme

for 
ontrolling the error. An in
remental error indi
ator for the propagation 
oe�
ient is

provided to guide the adaptive pro
ess.

The 
onsidered waveguides are assumed to be bounded by ele
tri
 and magneti
 walls,

and to possess material properties that are s
alar-valued and uniform along the waveguide

axis z but non-uniform in the transverse plane t. In 
onsequen
e, the axial behavior of the

modal �elds is given by exp (−γz), wherein γ denotes the propagation 
oe�
ient.
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5.2 Finite-Element Formulation

For stability reasons, the 
hosen formulation is based on a magneti
 ve
tor potential

~A
and a s
aled ele
tri
 s
alar potential φ, as introdu
ed in [54℄, [4℄. Spe
i�
ally, we employ

the gauge Az = 0 and de
ompose

~At into 
omponents of non-vanishing 
ir
ulation

~Act plus
the transverse gradient ∇t of a s
alar �eld ψ. Hen
e we have

~A = e−γz( ~Act(x, y) +∇tψ(x, y)), (5.1)

φ = e−γzV (x, y), (5.2)

and the ele
tromagneti
 �elds are represented by

~B = e−γz[∇t × ~Act − êz × γ( ~Act +∇tψ)], (5.3)

~E = −jc0e−γz[γêz(jV )−∇t(jV ) + k( ~Act +∇tψ)]. (5.4)

By plugging (5.1) and (5.2) into the time-harmoni
 Maxwell equations, we arrive at the

eigenvalue problem

∇t × µ−1
r ∇t × ~Act − kεr∇t(kψ − jV )− k2εr ~Act =
−γ2

[

êz × µ−1
r êz × ~Act + êz × µ−1

r êz ×∇tψ
]

, (5.5a)

∇t · ǫr[k ~Act +∇t(kψ − jV )] = γ2ǫrjV. (5.5b)

FE dis
retization results in the algebrai
 EVP

(S0 + kS1 + k2S2)xm = γ2mTxm with xm =





xA
xψ
xV





m

, (5.6)

wherein xA, xψ, and xV denote the 
omponent ve
tors for

~Act , ψ, and (jV ), respe
tively,
and S0, S1, S2, and T are sparse symmetri
 matri
es, whose stru
ture 
an be found in

[4℄. Note that (5.5) is satis�ed not only by physi
al waveguide modes but also by a set of

null-�eld solutions, i.e. non-trivial solutions with

~E = 0 and

~B = 0:

γ = 0, (5.7)

~Act = 0, (5.8)

jV = kψ, (5.9)

with arbitrary ψ. In the FE 
ontext (5.6), the null-�eld solutions n read

γ = 0, (5.10)

n = Nxψ, (5.11)

N(k) =





0

I

kI



 , (5.12)

with arbitrary xψ. Eq. (5.6) implies the generalized orthogonality equation

xTmTxn = 0 for m 6= n. (5.13)
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Hen
e any superposition of physi
al modes p(k) satis�es

N(k)TTp(k) = 0, (5.14)

whi
h enables us to re
onstru
t p from given 
omponents pA and pψ. The resulting

equation takes the form

p(k) = (P0 + kP1)

[
pA
pψ

]

. (5.15)

The stru
ture of the matri
es P0 and P1 
an be found in [4℄.
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5.3 Multi-Point Model Order Redu
tion

The main idea behind the waveguide MORe approa
h is to restri
t the trial and test spa
es

in the FE system (5.6) to suitable subspa
es whose dimension q is mu
h smaller than that

of the original system, p. For this purpose, we 
onstru
t proje
tion matri
es V(k),W(k)
and apply a two-sided proje
tion pro
ess to (5.6). The resulting redu
ed-order eigenvalue

problem is of the form

(S̃0 + kS̃1 + k2S̃2)x̃m = γ̃2mT̃x̃m (5.16)

with

S̃i(k) = W(k)HSiV(k) i ∈ {0, 1, 2}, (5.17a)

T̃(k) = W(k)HTV(k), (5.17b)

and the 
orresponding approximations x′
m to the eigenve
tors of (5.6) are given by

x′
m(k) = V(k)x̃m(k). (5.18)

The matri
es V(k) and W(k) are 
onstru
ted as follows: we �rst 
ompute the dominant

M eigenpairs of (5.6) at N expansion wavenumbers kn and assemble their 
omponents in

~Act and ψ to a matrix Ξ:

Ξ =

[[
x1
A

x1
ψ

]

k1

, · · · ,
[
xMA
xMψ

]

k1

, · · · · · · ,
[
xMA
xMψ

]

kN

]

. (5.19)

To provide a stable basis, we next 
ompute the QR fa
torization of Ξ. In view of (5.14),

we then 
onstru
t V(k) by

V(k) = (P0 + kP1)Q. (5.20a)

Hen
e the trial spa
e of the ROM, colspV(k), 
ontains superpositions of physi
al modes

only. A

ording to (5.18), the approximate eigenve
tors x′
m satisfy (5.14), whi
h assures

that the ROM will not lead to null-spa
e solutions.

Following an idea from [55℄, W(k) is taken to be

W(k) =





I 0 0

0 I 0

0 0 −I



V(k). (5.20b)

By plugging (5.20) and (5.17) into (5.16) and 
olle
ting terms of equal power in k, we
arrive at the �nal form of the ROM:

(S̃S0 + kS̃S1 + k2S̃S2 + k3S̃S3 + k4S̃S4)x̂m = γ̃2m(T̃T0 + kT̃T1 + k2T̃T2)x̂m. (5.21)

Eq. (5.21) features expli
it k dependen
e, and all matri
es are in C
q×q

. Sin
e q ≪ p, the
eigenvalue problem (5.21) 
an be solved mu
h more e�
iently than the underlying FE

system (5.6).
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5.3.1 Homogeneous Material Properties

Waveguides with homogeneous material properties are known to support transverse ele
tri


(TE), transverse magneti
 (TM), and possibly transverse ele
tromagneti
 (TEM) modes.

They all have in 
ommon that the transverse �eld patterns are independent of frequen
y.

Eq. (5.3) implies that the modal patterns in terms of

~Act and ψ must be frequen
y-

independent, too. Sin
e the 
orresponding 
omponents in V , whi
h do depend on fre-

quen
y, are re
onstru
ted via (5.15) and (5.20a), respe
tively, we 
on
lude that a single

expansion point su�
es in the present MORe method to fully 
hara
terize any TE, TM,

or TEM mode over an arbitrary frequen
y range.
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5.4 Self-Adaptive Point Pla
ement Strategy

For pra
ti
al reasons, the following algorithm is formulated in terms of the operating

frequen
y f rather than the wavenumber. The goal is to 
ompute the dispersion 
hara
-

teristi
s ofM dominant modes on a set B0 of L equidistant evaluation frequen
ies fl within
user-de�ned bounds fmin and fmax.

The MORe method of Se
tion 5.3 provides two degrees of freedom to 
ontrol the error:

the number of expansion points and their respe
tive lo
ations; see (5.19). The adaptive

strategy we propose is based on su

essive bise
tion. It pla
es a new expansion point in the

middle of that sub-interval Bn̂, for whi
h the error indi
ator E∞ is worst. The pro
edure

is repeated until the error indi
ator on the whole of B0 falls below a user-de�ned threshold

Etol∞ .

Our error indi
ator is in terms of γ̃2. It is of in
remental type and 
overs all modes

and evaluation points. Spe
i�
ally, we set

E∞(B) =
max
fl∈B

max
m=1...M

∣
∣γ̃2m+(fl)− γ̃2m−(fl)

∣
∣

max
m=1...M

|γ2m(fmax)|
, (5.22)

wherein the indi
es + and - denote the present and pre
eding iteration.

Algorithm 8 gives the details of the proposed te
hnique. Line 2 and Line 8 show that the

�rst two expansion points are always pla
ed at the boundaries of the frequen
y range. The

main loop starts at Line 10. Note that the dimension of the redu
ed-order EVP at Line 15

is larger than the number of sought modes, M . Hen
e there are two 
lasses of eigenpairs:


lose approximations to the dominant modes and higher-order solutions without any merit.

The for-loop starting at Line 16 provides a simple �lter for the propagation 
onstants of

the dominant modes. At Line 26 and Line 27, we dete
t the interval of worst error indi
ator

B
k̂
and set the new expansion point f̂ at the evaluation frequen
y 
losest to its middle.
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Algorithm 8 Waveguide MORe with adaptive point pla
ement

PARAMETERS: frequen
y range [fmin, fmax],
number of evaluation frequen
ies L,
max. number of expansion points jmax,

error threshold value Etol∞ .

1: Compute P0, P1, B0(fmin, fmax, L)
2: Solve (

∑

i f
i
maxSi)X = TXdiag γ2m

3: Q← updateQR(Q = 0,X)
4: [S̃Si, T̃T i]← updateROM(Q;P0,P1)
5: for l = 1 to L do

6: Solve (
∑

i f
i
l S̃Si)X̃ = (

∑

i f
i
l T̃T i)X̃diag γ̃2m−(fl)

7: end for

8: f̂ = fmin {Next expansion point}

9: B1 = B0 {First interval}
10: for j = 2 to jmax do
11: Solve (

∑

i f̂
iSi)X = TXdiag γ2m

12: Q← updateQR(Q,X)
13: [S̃Si, T̃T i]← updateROM(Q;P0,P1)
14: for l = 1 to L do

15: Solve (
∑

i f
i
l S̃Si)X̃ = (

∑

i f
i
l T̃T i)X̃ diag γ̃2

16: for m = 1 to M do

17: γ̃2m+(fl) = argmin
γ̃2

(|γ̃2 − γ̃2m−(fl)|)
18: end for

19: end for

20: for k = 0 to j − 1 do
21: ComputeE∞(Bk)
22: end for

23: if E∞(B0) < Etol∞ then

24: return 
onverged

25: end if

26: k̂ = arg max
k=1...j

E∞(Bk) {Interval of worst error}

27: f̂ = arg min
f∈B

k̂

∣
∣
∣f − minB

k̂
+maxB

k̂

2

∣
∣
∣ {Expansion point}

28: B
k̂
← [minB

k̂
, f̂ ]

29: Bj = [f̂ ,maxB
k̂
]

30: for all m, l do
31: γ̃2m−(fl)← γ2m+(fl)
32: end for

33: end for
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5.5 Numeri
al Examples

In the following, errors in propagation 
onstant are 
omputed with respe
t to full FE so-

lutions, using the same dis
retization as the MORe method. The termination 
riterion for

the adaptive pro
ess is set to Etol∞ = 10−6
. An overview of all 
omputational parameters

and results is given in Table 5.1. Note that the number of modes 
omputed in the under-

lying FE model has 
hosen to be somewhat larger than that displayed in the frequen
y

sweep, to a

ount for the fa
t that the pre
onditioned Arnoldi method used for solving the

FE system may sometimes produ
e higher-order modes �rst [56℄.

5.5.1 Shielded Mi
rostrip Line

Fig. 5.1(a) shows a shielded mi
rostrip line [52℄. The FE model represents one half of the

stru
ture and uses a magneti
 wall for the middle plane. In our �rst test, the diele
tri


substrate is repla
ed by free spa
e, so that the resulting waveguide has homogeneous ma-

terial properties. Fig. 5.2 presents the results based on a single expansion point at 25 GHz.

(Note that the a
tual Algorithm 8 will always result in a minimum of two points.) As

predi
ted in Subse
tion 5.3.1, both the dominant TEM mode as well as the higher-order

TE and TM modes are perfe
tly represented everywhere in the range 0-25 GHz.

Dispersion 
urves and error plots for the �rst 10 modes of the inhomogeneous waveguide


an be seen in Fig. 5.3. Note the o

urren
e of bifur
ations and 
omplex modes. The

adaptive loop �nishes after 5 expansion points. Again, the MORe solutions are in ex
ellent

agreement with referen
e results from FE 
omputations. However, Table 5.1 shows that

the MORe s
heme is 53 times faster.

5.5.2 Diele
tri
 Loaded Waveguide

Our se
ond example is the diele
tri
 loaded waveguide [57℄ of Fig. 5.1(b). We 
onsider

the dominant 19 modes in the range 0-30 GHz. In this 
ase, the method terminates

after 7 iterations. Fig. 5.4 presents dispersion 
urves and error plots for the propagation


oe�
ients. Note the highly non-uniform distribution of the expansion points. It 
an be

seen that the MORe solutions are in ex
ellent agreement with referen
e results from FE


omputations. This time, MORe is 12 times faster than 
onventional FE analysis.
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Table 5.1: Waveguide stru
tures: Computational data

1

Model A (ε1 = 1) A (ε1 = 8.875) B

Sweep

Frequen
y (GHz) 0 to 25 0 to 25 0 to 30

Evaluation points 1001 1001 1001

Number of modes 10 10 19

Results Fig. 5.2 Fig. 5.3 Fig. 5.4

FE model

Degrees of freedom 25553 25553 12612

Order of FE basis 2 2 2

Number of modes 11 12 23

Total runtime

2
(s) 4721 5045 4827

ROM

Expansion points 1 5 7

Error threshold Etol∞ � 10−6 10−6

ROM dimension 11 60 161

Total runtime

3
(s) 11 95 402

1
For a single 
ore of the Intel Core 2 Extreme 3 GHz pro
essor.

2
In
luding all evaluation points.

3
In
luding adaptivity and all evaluation points.

(a) Shielded mi
rostrip line

(b) Diele
tri
 loaded waveguide

Figure 5.1: Waveguide stru
tures. All dimensions are in mm.
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5.6 Con
lusion

In this 
hapter, a multi-point MORe te
hnique with a self-adaptive point pla
ement strat-

egy for the broadband FE analysis of ele
tromagneti
 waveguides has been introdu
ed. The

underlying MORe method employs two-sided proje
tions with null-�eld orthogonalization,

and the adaptive s
heme is based on su

essive bise
tion, guided by an in
remental error

indi
ator for the propagation 
onstant.

The numeri
al tests of Se
tion 5.5 
on�rm that the number of expansion points required

by the adaptive s
heme remains very small, even for very wide broadband appli
ations.

In 
onsequen
e, the proposed method is signi�
antly faster than traditional FE analysis.

At the same time, errors in propagation 
oe�
ient are negligible over the whole frequen
y

band.



104



Chapter 6

Broadband Sensitivity Analysis

6.1 Introdu
tion

The design pro
ess of a mi
rowave devi
e is a 
omplex task and depends on many pa-

rameters. Frequen
y responses for di�erent parameter 
on�gurations may be evaluated

by means of numeri
al methods. However, the impa
t of a variation in the design pa-

rameters 
an be used to systemati
ally improve the performan
e of a mi
rowave devi
e.

Sensitivity analysis provides a powerful means for analyzing small modi�
ations in the

design parameters.

Based on 2D-FE methods, [58℄, [59℄ introdu
ed automati
 mi
rowave devi
e shape

optimizations in an iterative pro
ess, where optimization algorithms are applied. The in-

trodu
ed te
hniques de�ne 
ost fun
tions and employ design sensitivity analysis to evaluate

the impa
t of a design variation. An optimization pro
ess founded on a 3D-FE te
hnique,

where sensitivity analysis is employed as well, was presented in [60℄. It is shown in [61℄ that

the design sensitivities 
an be evaluated from the solution used for the s
attering matrix

evaluation and no additional system matrix solutions are required. An AWE te
hnique is

employed to 
ompute the sensitivity on a frequen
y range in [62℄, whi
h is used in [63℄ to

optimize mi
rowave devi
es with respe
t to their frequen
y response.

This thesis provides broadband sensitivity analysis te
hniques, whi
h are based on

the previously introdu
ed proje
tion-based MORe methods. Parti
ularly the adaptive

MORe s
hemes, developed in the previous 
hapters, are attra
tive to employ, as fully

automati
 analysis runs may be performed. However, the employed WCAWE te
hnique as

well as the multi-point approa
h allows us to perform the sensitivity analysis on a larger

frequen
y range as the AWE pro
ess applied in [62℄. Hen
e, the provided methods allow

us to perform a reliable optimization pro
ess over a large bandwidth. Although the new

te
hnique is applied only to material parameters in this thesis, other design parameters,

su
h as geometry variations, as performed in [58℄, may also be employed.
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6.2 Theory

6.2.1 System Design Sensitivity

The FE simulation of a passive mi
rowave stru
ture results in a system of linear equations

and an output fun
tional for the network parameter evaluation. For the sensitivity analysis,

a design parameter p is de�ned on whi
h a perturbation is applied to. As the modal

�eld patterns on wave ports result from a separated analysis, design parameters must not

a�e
t the wave port areas, whi
h is a limitation in the 
urrent implementation. Assuming

polynomial dependen
y in the design parameter p and the wavenumber k, we denote the
resulting FE system as

M∑

m=0

N∑

n=0

(Amnp
mkn)x(k, p) = kb, (6.1a)

y(k, p) = cTx(k, p) + d, (6.1b)

where M and N designate the highest polynomial dependen
ies in the parameters. The

input ve
tor b, the output fun
tional cT and the feed through 
oe�
ient d are assumed

to be 
onstant

b = const, (6.2a)

cT = const, (6.2b)

d = const . (6.2
)

For the sensitivity analysis, the �rst derivative of the output with respe
t to p, at the

expansion point p = 0 is 
hosen. Hen
e, deriving both sides of the system (6.1) and setting

the parameter p = 0, the sensitivity system yields

(
N∑

n=0

A1nk
n

)

x(k, p = 0) = −
(

N∑

n=0

A0nk
n

)

∂x(k, p)

∂p

∣
∣
∣
p=0

, (6.3a)

∂y(k, p)

∂p

∣
∣
∣
p=0

= cT
∂x(k, p)

∂p

∣
∣
∣
p=0

. (6.3b)

The derivative of the system output at the expansion point p = 0 is denoted as

δp(k) =
∂y(k, p)

∂p

∣
∣
∣
p=0

. (6.4)

Solving (6.3) for the derivative results in

δp(k) = −cT
(

N∑

n=0

A0nk
n

)−1( N∑

n=0

A1nk
n

)

x(k, p = 0) (6.5)

(6.1)

= −cT
(

N∑

n=0

A0nk
n

)−1( N∑

n=0

A1nk
n

)(
N∑

n=0

A0nk
n

)−1

kb. (6.6)

The impa
t of a perturbation in the design parameter p is evaluated from

dy(k, p = 0) = y(k, p = 0) + δp(k)∆p, (6.7)
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where a sweep for di�erent wavenumbers may be evaluated. It is remarkable that for a �xed

wavenumber, the system matrix at p = 0 needs to be fa
torized only on
e to evaluate the

system sensitivity [61℄. Furthermore, the whole pro
ess may be performed for a parameter

ve
tor p instead of a single design parameter, where only one system fa
torization is

required for the sensitivity evaluation for all parameters. The analysis pro
ess (6.7) 
an

be performed for any 
ombination of parameters.

6.2.2 Broadband Design Sensitivity Te
hnique

Employing the proje
tion-based MORe te
hniques that were introdu
ed in the previous


hapters, the original system (6.1) is redu
ed to the polynomial parameterized ROM

M∑

m=0

N∑

n=0

(

Ãmnp
mkn

)

x̃(k, p) = kb̃, (6.8a)

ỹ(k, p) = c̃T x̃(k, p) + d, (6.8b)

where the the proje
tion matrix V is employed for the redu
tion

Ã = VTAV, (6.9a)

b̃ = VTb, (6.9b)

c̃ = VT c. (6.9
)

As the redu
ed system (6.8) has the same stru
ture as the original model (6.1), the

same pro
edure as in the large-s
ale sensitivity analysis is performed. Thus, equivalent to

(6.5) to (6.7), the derivative of the system output at p = 0 
an be written as

δ̃p(k) =
∂ỹ(k, p)

∂p

∣
∣
∣
p=0

= −c̃T
(

N∑

n=0

Ã0nk
n

)−1( N∑

n=0

Ã1nk
n

)(
N∑

n=0

Ã0nk
n

)−1

kb̃,

(6.10)

and the perturbation evaluation is performed through

dỹ(k, p = 0) = ỹ(k, p = 0) + δ̃p(k)∆p. (6.11)

The 
omputational 
osts for a sensitivity sweep in the redu
ed 
ase are very low 
om-

pared to the large-s
ale system, as the system matrix solutions are very 
heap. However,

the extension to a parameter sweep with a sensitivity parameter ve
tor is, as in the full

system sensitivity analysis, straightforward. Note that this approa
h is appli
able in the-

ory to s
attering as well as impedan
e formulation modeling. These two formulations are

explained in detail in [21℄.



108

6.3 Numeri
al Experiments

The e�
ien
y of the introdu
ed broadband design sensitivity te
hnique is presented by

means of some numeri
al examples. However, this se
tion also dis
usses the drawba
k

of impedan
e formulations in 
ombination with the sensitivity analysis. In the analyzed

ele
tromagneti
 stru
tures, pε is 
hosen as design parameter, whi
h is de�ned through

ε = (εr + pε)ε0. (6.12)

All numeri
al sensitivity 
omputations in this se
tion are based on FE simulations and the

developed MORe te
hniques of this thesis.

6.3.1 Parallel Plate Waveguide

The �rst 
onsidered stru
ture is the parallel plate waveguide of Fig. 6.1(a), whi
h has only

one wave port. The gray part in the waveguide represents a material with properties εr
and µr, whereas the white se
tion is modeled as va
uum. The waveguide is bounded on

top and bottom by PEC and side walls are perfe
t magneti
 
ondu
tors (PMC).

At the end of the parallel plate waveguide a PEC is atta
hed to impose a short 
ir
uit.

In the following, the permittivity of the material in the dark 
olored se
tion is 
hosen as

design parameter and is designated with εr. The perturbation of this design parameter is

written as pε.

Transmission Line Model

As the propagating waves in the 
hosen stru
ture are of TEM type, a transmission line

model 
an be obtained for the waveguide and 
an be analyti
ally evaluated. In the model

of Fig. 6.1(b), the transmission line L1 represents the va
uum part, the transmission line

L2 the gray 
olored se
tion and the sort-
ir
uit at the end of the line is the PEC boundary

at the end of the waveguide. The following formulas for parallel plate waveguides and

(a) Geometri
 dimensions in mm.

(b) Transmission line model.

Figure 6.1: Parallel plate waveguide: Stru
ture geometry and transmission line model.
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transmission line models 
an be found in many books on mi
rowave theory, e.g. [19℄. The


hara
teristi
 impedan
e of the transmission line 
ir
uit model 
an be found as

Z0 = η
d

w
=

√
µ

ε

d

w
, (6.13)

whi
h only depends on material 
oe�
ients and geometry of the waveguide. The phase

velo
ity in the material medium is given by

vp =
ω

β
=

1√
µε
, (6.14)

and only depends on the material. The input impedan
e Zin of a transmission line with

load ZL 
an be evaluated from

Zin = Z0
ZL + jZ0 tan(βl)

Z0 + jZL tan(βl)
, (6.15)

where l de�nes the length of the transmission line. Alternatively, the re�e
tion 
oe�
ient

Γ 
an be used to perform the line transformation. At the end of the line, the re�e
tion


oe�
ient is given through

Γ(0) =
ZL − Z0

ZL + Z0
, (6.16)

and 
an be transformed by

Γ(l) = Γ(0)e−2jβl, (6.17)

to the position l in the transmission line, whi
h of 
ourse 
an be 
hosen as the input of the

line.

S
attering Formulation

In this se
tion, the proposed numeri
al broadband sensitivity te
hnique is 
ompared to

the analyti
 solution. For the FE simulation and thus for the broadband sensitivity a

s
attering formulation is employed. The analyti
 solution is obtained by evaluating the

re�e
tion 
oe�
ient Γin2 and performing the line transformation in L1 through (6.17)

Zin2 = jZ2 tan(β2l2), (6.18)

Γin2 =
Zin2 − Z1

Zin2 + Z1
, (6.19)

Ŝ11 = Γin1 = Γin2e
−2jβ1l1 . (6.20)

Thus, the analyti
 solution for the derivative of the design parameter and the perturbed

s
attering parameter are

δ̂ε(k) =
∂Ŝ11(k, pε)

∂pε

∣
∣
∣
pε=0

, (6.21)

dŜ11(k, pε) = Ŝ11(k, pε = 0) + δ̂p(k)pε. (6.22)

The numeri
al simulation data is given in Table 6.1. The ROM generation time in-


ludes the time for the FE matri
es assembling, the proje
tion matrix generation, and the
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subspa
e proje
tion pro
ess. The evaluation time represents the time of the evaluation

for one sweep, either s
attering parameters or the derivatives, as no signi�
ant di�eren
es

are measurable. These de�nitions are valid for all following simulation data tables in this


hapter.

Fig. 6.2 shows the evaluated s
attering parameters, their derivatives as well as error

plots. The absolute value of S11 is 
onstant in the 
omputed bandwidth, while its derivative

δε is in
reasing with higher frequen
y. Additionally, the phases between parameter and

derivative exhibit a shift. Note that the graphs of analyti
 solution and ROM evaluation

are lying upon ea
h other as a result of the low error. The errors eS11 and eδε are de�ned
as

eS11 = |Ŝ11 − S̃11|, (6.23)

eδε = |δ̂ε − δ̃ε|. (6.24)

The in
reasing errors with higher frequen
y originate from the FE simulation. It is a result

of shorter wavelengths in the �elds on a 
onstant mesh.

The 
omputed sweeps allow us to perform evaluations for a disturbed material param-

eter εr, by applying (6.11) and (6.22). Sweeps for the perturbed analyti
 solution dŜ11(pε)
and the perturbed numeri
al evaluation dS̃11(pε) are solved. The results are shown for

a perturbation of pε = 0.004 in Fig. 6.3 and for a perturbation of pε = 0.04 in Fig. 6.4.

Additionally, the analyti
 sweeps are solved for ε = εrε0 and ε = (εr + pε)ε0 as referen
es.
While the phase shift for the small perturbation 
an be only noti
ed in the upper end of

the 
omputed bandwidth in Fig. 6.3, the perturbation of pε = 0.04 
auses a remarkable

phase shift on a broadband in the upper end of the sweep in Fig. 6.4. The absolute value

of S11 in
reases with frequen
y into non-physi
al results. This e�e
t, whi
h be
omes more

signi�
ant with higher perturbation values, results from the sensitivity analysis and is not


aused through the numeri
al broadband approa
h.

In the error plots, the di�eren
e of the analyti
 solutions at εr + pε to analyti
 pertur-

bation and to the broadband sensitivity analysis is re
orded. The error between perturbed

analyti
 solution and perturbed ROM is evaluated as well as ePR. In parti
ular these errors
are de�ned as

eAP (k) = |Ŝ11(k, εr + pε)− dŜ11(k, pε)|, (6.25)

eAR(k) = |Ŝ11(k, εr + pε)− dS̃11(k, pε)|, (6.26)

ePR(k) = |dS̃11(k, pε)− dŜ11(k, pε)|. (6.27)

For the very small perturbation of pε = 0.004, the error from perturbation to analyti
al

formulas, i.e. eAP and eAR, is very small, see Fig. 6.3. Although the error originating from

numeri
al simulation is dominant at higher frequen
ies, it is important to noti
e that the

perturbation error is rising with higher frequen
ies. This e�e
t be
omes more pronoun
ed

for a higher perturbation, as 
an be seen in Fig. 6.4, where the error due to perturbation

is dominant over the 
omplete evaluated bandwidth (eAP and eAR are lying upon ea
h

other).
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Spe
i�
ations: Simulation data:

Lowest frequen
y in Hz 1e7 Original dimension 149787

Highest frequen
y in Hz 2e9 Number of iterations q 9

Evaluation points, equidistant 501 ROM generation time in s 15.3

FE basis fun
tion order 2 Evaluation time in s 0.01

Multi-point method -

Table 6.1: Parallel plate waveguide: S
attering formulation simulation data.
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dŜ11(pε)

dS̃11(pε)
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Impedan
e Formulation

As for the s
attering formulation, a set of analyti
ally formulas for the impedan
e formu-

lation is provided. Instead of transforming the line L1 by (6.17), the transformation is

performed by (6.15) and thus we have

Zin2 = jZ2 tan(β2l2), (6.28)

Zin1 = Z1
Zin2 + jZ1 tan(β1l1)

Z1 + jZin2 tan(β1l1)
, (6.29)

Ẑ11 =
Zin1
Z1

, (6.30)

δ̂ε =
∂Ẑ11

∂pε

∣
∣
∣
pε=0

. (6.31)

As for the analyti
al solution, an impedan
e formulation is 
hosen for the numeri
al solution

as well. The 
omputational data for the simulation 
an be found in Table 6.2.

Fig. 6.5 shows a sweep for the impedan
e parameter Z11 and its derivative δε. The

analyzed waveguide stru
ture exhibits inner resonan
es whi
h result in a set of singularities

in the impedan
e parameter sweep, in the numeri
al simulation as well as in the evaluated

analyti
al formulation. The inner resonan
es 
ause the same set of singularities in the

derivatives of the impedan
e parameters. The 
omputed errors are de�ned as

eZ11 = |Ẑ11 − Z̃11|, (6.32)

eδε = |δ̂ε − δ̃ε|. (6.33)

The set of error peaks in Fig. 6.5 is a result of the singularities in the impedan
e parameters

and their derivatives.

In equivalen
e to (6.16), sweeps for the re�e
tion 
oe�
ient S11 and the perturbed

s
attering parameter dS11 
an be evaluated from the expressions

Ŝ11(k) =
Ẑ11(k)− 1

Ẑ11(k) + 1
, (6.34)

dŜ11(k, pε) =
Ẑ11(k) + δ̂ε(k)pε − 1

Ẑ11(k) + δ̂ε(k)pε + 1
. (6.35)

Thus, the solutions in impedan
e formulation allow us to perform the perturbation anal-

ysis in the s
attering formulation and to evaluate s
attering parameters. As in the s
at-

tering formulation se
tion, the perturbed sweeps are 
ompared to the analyti
 solutions at

ε = εrε0 and ε = (εr + pε)ε0. Again, the perturbations are set to pε = 0.004, in Fig. 6.6,

and pε = 0.04, in Fig. 6.7. The errors are de�ned as above, i.e. (6.25) to (6.27).

Although non-physi
al resonan
es may o

ur in the impedan
e formulation, as reported

for 
onstru
ted 
on�gurations in [21℄, the evaluated s
attering parameters in this simulation

do not exhibit unwanted singularities. However, at the frequen
ies of the inner resonan
es,

whi
h 
an be seen in Fig. 6.5, the errors eAP and eAR rise to high values in Fig. 6.6, already

for a perturbation of pε = 0.004. For a perturbation of pε = 0.04, shown in Fig. 6.7, the

non-physi
al resonan
es 
ause serious dis
ontinuities in the phase for higher perturbations.

It is very important to noti
e that the analyti
al perturbation analysis exhibits exa
tly

the same behavior as the numeri
al evaluation. Therefore, this e�e
t is a result of the

formulation and is not an out
ome of the numeri
al simulation.
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Spe
i�
ations: Simulation data:

Lowest frequen
y in Hz 1e7 Original dimension 149787

Highest frequen
y in Hz 2e9 Number of iterations q 9

Evaluation points 501 ROM generation time in s 8.9

FE basis fun
tion order 2 Evaluation time in s 0.01

Multi-point method -

Table 6.2: Parallel plate waveguide: Impedan
e formulation simulation data.



Chapter 6. Broadband Sensitivity Analysis 117

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
0

10
5

Frequency in GHz

|Z
1
1
|,
|δ

ǫ
|

 

 

Ẑ11

Z̃11

δ̂ǫ

δ̃ǫ

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1

0

1

2

Frequency in GHz

6
(Z

1
1
),

6
(δ

ǫ
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−10

10
−5

10
0

10
5

Frequency in GHz

E
rr

o
r

e

 

 

eZ11

eδǫ

Figure 6.5: Parallel plate waveguide: Z11 and δε versus frequen
y using impedan
e formu-

lation.
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6.3.2 Diele
tri
 Pole Stru
ture

Stru
ture De�nition

The se
ond 
onsidered stru
ture is the parallel plate waveguide in Fig. 6.8, where three

diele
tri
 poles with εr = 50 are inserted. For su
h kinds of stru
tures it is rather di�
ult

to �gure out an analyti
al solution and even more di�
ult to �nd the derivative for the

sensitivity analysis. Therefore, for the stru
ture simulation and the sensitivity analysis

only numeri
al methods are employed, i.e. MOR te
hniques applied to FE simulations

and the above introdu
ed broadband sensitivity analysis. As sensitivity parameter, the

perturbation pε of the permittivity εr of the three diele
tri
 poles is 
hosen.

Simulation and Sensitivity Analysis

In a �rst numeri
al experiment, the s
attering parameter evaluation and the sensitivity

analysis for the three pole stru
ture is performed in s
attering formulation. The simulation

data is given in Table 6.3, while a frequen
y sweep is plotted in Fig. 6.9. Be
ause resonan
es

are very interesting from the sensitivity analysis point of view, the fo
us is on the resonan
e


lose to 190 MHz and the set of resonan
es around 1 GHz. The perturbations for the

analysis are set to pε = 0.2 and pε = 1.0.
Figure 6.10 shows the frequen
y shift resulting from the material perturbations in the

resonan
e at 190 MHz. In addition to the perturbed numeri
 evaluation, the s
attering

parameters are 
omputed as referen
e solution at the shifted material parameters εr = 50.2
and εr = 51.0. While for pε = 0.2 the perturbed s
attering parameter dS̃11 is in good

a

ordan
e with the shifted material parameter solution, the perturbation pε = 1.0 
auses

a severe di�eren
e. This is also noti
eable in the evaluated error in Fig. 6.10, whi
h shows

the di�eren
es between sensitivity analysis and shifted material parameter solution

epε = |S̃11(εr + pε)− dS̃11(εr, pε)|. (6.36)

For the resonan
es at 1 GHz, already the smaller 
hosen perturbation of pε = 0.2 leads
to di�eren
es 
ompared to the solution with shifted parameter S̃11(εr = 50.2), see Fig. 6.11.
These di�eren
es 
an be noti
ed parti
ularly in the phases of the s
attering parameters.

The errors are also higher, 
ompared to the perturbation at 190 MHz. For a perturbation

of pε = 1.0, the errors at 1 GHz resonan
es are rather high and the s
attering parameters

evaluated from the sensitivity analysis do not represent the resonan
es properly. This is a

result of setting the perturbation too high, but not a limitation of the provided broadband

sensitivity analysis.

Figure 6.8: Three pole stru
ture: Geometri
 dimensions in mm.
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Spe
i�
ations: Simulation data:

Lowest frequen
y in Hz 1e7 Original dimension 306768

Highest frequen
y in Hz 1.2e9 Number of iterations q 8

Evaluation points 10000 ROM generation time in s 907

FE basis fun
tion order 2 Evaluation time in s 0.3

Multi-point method -

Table 6.3: Three pole stru
ture: Simulation data using s
attering formulation.
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es around

1 GHz using s
attering formulation.
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Impedan
e Formulation

In this se
tion, results of the simulation and the broadband sensitivity analysis in the

impedan
e formulation are shown. As seen in the parallel plate waveguide, inner resonan
es


auses high errors in the sensitivity analysis. The same e�e
t 
an be seen for the diele
tri


three pole stru
ture, where already for a small perturbation of pε = 0.2 the singularities


ause high errors. This 
an be seen in Fig. 6.12, whi
h shows a broadband sensitivity

analysis in impedan
e formulation. The simulation data 
an be found in Table 6.4. In


ontrast to the parallel plate waveguide, the dis
ontinuities here 
an even be found in the

absolute values, and not only in the phase. These dis
ontinuities 
an already be seen at

low frequen
ies, as the extra
tion of the sweep in Fig. 6.13 shows.

Spe
i�
ations: Simulation data:

Lowest frequen
y in Hz 1e7 Original dimension 306768

Highest frequen
y in Hz 1.2e9 Number of iterations q 8

Evaluation points 10000 ROM generation time in s 297

FE basis fun
tion order 2 Evaluation time in s 0.3

Multi-point method -

Table 6.4: Three pole stru
ture: Simulation data using impedan
e formulation.
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6.4 Con
lusion

This 
hapter has proposed a powerful tool for analyzing the e�e
t of perturbations in design

parameters over a large frequen
y range. The broadband sensitivity te
hnique is based on

the adaptive MORe methods provided in the previous 
hapters. Thus, the redu
tion, as

well as the sensitivity analysis pro
ess runs automati
ally using the introdu
ed MORe

error measures. This te
hnique 
an be applied to a large set of design parameters and

evaluated in arbitrary 
ombinations. Numeri
al results show the e�
ien
y and reliability

of the theory if a s
attering formulation is employed.

However, the sensitivity analysis using an impedan
e formulation exhibits large errors

and fails to deliver reliable results. This e�e
t is 
aused by the inner resonan
es of the

impedan
e formulation, whi
h is explained by means of analyti
al formulas in this 
hapter.

Although the s
attering parameters derived from the impedan
e formulation do not exhibit

this non-physi
al behavior, the sensitivity analysis su�ers from these singularities.



Chapter 7

Closing Words

This thesis provides adaptive MORe methods for the broadband FE simulation of a large

set of real-world problems. In parti
ular, an adaptive multi-point method is proposed and

a proof for a blo
ked WCAWE method is given. Moreover, memory swapping algorithms

are presented that allow us to maintain the system memory requirements for the proje
tion

matrix at a 
onstant low level. Numeri
al results show the e�
ien
y and reliability of these

te
hniques. A memory analysis of the simulation runs demonstrates the importan
e of the

swapping me
hanisms.

The proposed adaptive multi-point method for broadband waveguide simulations, to-

gether with its in
remental error measure, is shown to work reliably and e�
iently. Addi-

tionally, some broadband sensitivity analysis te
hniques are developed whi
h are based on

the introdu
ed MORe methods.

This thesis also provides a basis for future work. The out-of-
ore 
on
ept probably is

very attra
tive for multivariate MORe, where the proje
tion matrix size may be
ome an

even more limiting fa
tor. Furthermore, there are some interesting issues 
on
erning the

blo
ked WCAWE algorithm. De�ation and alternative orthogonalization pro
esses in the

blo
k algorithm should be investigated, whi
h may redu
e the 
omputational e�orts. Fi-

nally, extending the WCAWE blo
king pro
ess to more than one parameter would probably

improve the e�
ien
y of multivariate single-point methods [40℄.
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