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Abstract

In the first part, the B3LYP/6-31+G(d,p) method was used to study the properties

of tautomers and isomers of substituted pyrrolidines and phospholanes in the gas

phase and aqueous phase. For the aqueous phase, we used two different models:

(1) the pure PCM and (2) Discrete/PCM. We were particularly interested in the

relative energies, molecular geometries in gas phase, and how these properties

change when the molecule undergoes solvation. Solvation influences both relative

energies and the order of stability of tautomers and isomers. Moreover, moderate

change in the molecular geometry parameters was found when the results from the

gas phase were compared to solution results.

In the second part, we investigated the energetic and structural properties of

isolated and deposited potassium clusters. The global minima of potassium clus-

ters were studied by using the density functional tight binding method combined

with the genetic algorithm. The most stable clusters correspond to sizes 8, 18,

and 20, in agreement with results obtained from experiments and jellium model.

Moreover, we studied the structural similarity. The overall shape of clusters and

the radial distribution of atoms were also investigated.

As a result of deposition both the energetic and structural properties changed.

The similarity function was used to compare the isolated and deposited clusters.

The difference in energies between the deposited and isolated clusters was calcu-

lated.
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Zusammenfassung

Im ersten Teil die B3LYP/6-31+G(d,p) Methode, um die Eigenschaften Tautomere

und Isomere von Pyrrolidin- und Phospholanderivaten in Gas-und wässriger Phase

zu untersuchen. Das Lösungsmittel Wasser wurde zum einen implizitüber ein po-

larisierbares Kontinuumsmodell und zum anderen über die explizite Beschreibung

von Wassermolekülen mit einem zusätzlichen Kontinuumsmodell beschrieben. Ziel

dieser Studien waren ein Vergleich der relativen Energien und Molekülgeometrien

der Derivate in der Gasphase und im Solvens Wasser. In dieser Arbeit konnte

gezeigt werden, dass die Solvatisierung nicht nur die relative Stabilität der Iso-

mere beeinflusst, sondern auch zuÄnderungenen in der molekularen Geometrie

führt.

Der zweite Teil beschäftigt sich mit den elektronischen und strukturellen Eigen-

schaften von Kaliumclustern in der Gasphase und unter Wechselwirkung mit Kali-

umoberflächen. Mithilfe eines genetischen Algorithmus und der DFTB Methode

wurden die jeweiligen globalen Minimumsstrukturen ermittelt, das Cluster mit

einer Grösse von 8, 18 und 20 Atomen die grösste Stabilität besitzen, was sich eben-

falls mit Beobachtungen aus Experimenten und mittels Vergleich mit dem Jellium

Modell bestätigt hat. In dieser Arbeit wurden nicht nur die Änderungen in der

Geometrie beim Uebergang von Clustern in der Gasphase, zu auf der Oberfläche

adsorbierten Clustern mithilfe von Ähnlichkeitsfunktionen gezeigt, sondern auch

Veränderungen in der elektronischen Struktur berechnet und interpretiert.
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Summary of Work

Although most theoretical modeling methods investigate the behavior of systems

in gas phase, in which it is assumed that the system is isolated and there is no

interaction with surroundings, chemistry laboratories have to consider the effects of

the surrounding media. For instance, a wide variety of chemical processes including

chemical synthesis, solvent extraction, and measurement of physical properties take

place in solution.

The importance of the chemical surrounding has led to increasing research efforts

to gain insight into the behavior and properties of chemical systems including the

effects of the surrounding media. Therefore there is no doubt that the surrounding

medium plays an important role in influencing the properties of chemical materials

and biochemical systems due to the interactions between the surroundings and the

system.

The first part of the present work investigates the properties of substituted

pyrrolidines and phospholanes in both gas phase and aqueous phase. It is worth

mentioning that the passage from the theoretical study of molecules within the

gas phase to molecules interacting with solvent represents a significant step in the

development of theoretical chemistry. Furthermore, there is a variety of theoretical

methods developed to study the effect of solvent on the properties and behavior

of molecules. To this end, in this thesis we studied the properties of all possible

tautomers and isomers of substituted pyrrolidines and phospholanes in gas phase

and aqueous phase by using the DFT method. For the sake of simplicity, we

classified our systems into four main groups.

In Group[1], we investigated the methylamino and phenylamino-substituted

cyclic imdazolines, oxazolines, and thiazolines. Group[2] contains all possible tau-

tomers and isomers of methylphosphino and phenylphosphino-substituted cyclic

imdazolines, oxazolines, and thiazolines. Group[3] includes the methylamino and

phenylamino-substituted cyclic azaphospholines, oxaphospholines, and thiaphos-

pholines. Finally Group[4] contains the methylphosphino and phenylphosphino-
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Summary of Work

substituted cyclic azaphospholines, oxaphospholines, and thiaphospholines. We

labeled our systems according to substitutions regardless of which group they be-

longed to; thus there are six molecules: Me-NH, Me-O, Me-S, Ph-NH, Ph-O, and

Ph-S in each group. For each molecule we considered four iso- and tautomers,

two structures possessing indocyclic double bonds (i.e., the A and B conformers),

and two structures with exocyclic double bonds (i.e., the E and Z isomers). All

calculations were performed with the Gaussian 03 program package and with the

Becke three parameter Lee-Yang-Parr (B3LYP) functional and the 6-31+G(d,p)

basis set. In both gas phase and aqueous phase calculations, all stationary points

were characterized as minima with no imaginary frequency.

The solute-solvent interactions were described using two different approaches,

the pure Polarized Continuum and the Discrete/Continuum models. Two expres-

sions were used to describe such a model, Microsolvated/SCRF or Discrete/SCRF.

In the polarized continuum model (PCM), the solute was immersed into a cavity,

that had a shape related to that of the solute molecule, whereas the solvent was

treated as a continuous dielectric that became polarized due to the presence of

the solute molecule. We used water as solvent with a dielectric constant of 78.39.

In the Discrete/Continuum (explicit/implicit) model, three water molecules were

distributed and placed near the hydrophilic regions of solute as the first solva-

tion shell; those water molecules were treated quantum mechanically as the solute

molecule, whereas the rest of the solvent molecules were represented through the

continuum model. In both solvation models, the Integral Equation Formalism

(IEF) version of the Polarized Continuum Model (PCM) of Self Consistent Reac-

tion Field (SCRF) was used. The molecular cavity was created by using the united

atomic topological model (UAO). By using such a model, the molecular cavity was

constructed using interlocking spheres centered on heavy (that is, non-hydrogen)

atoms. The radius of each sphere was obtained by scaling the corresponding van

der Waals radius by a factor of 1.2. In the case of Discrete/Continuum calculations

the values of OFac and RMin parameters of the GEPOL algorithm were changed

to 0.8 and 0.5 from 0.89 and 0.2 respectively.

We particularly focused on the relative energies, molecular geometries, and

dipole moment in gas phase and how these properties change when the molecule

is being solvated in water. Moreover, we also studied solvation energies.

The stability of Group[1] in gas phase and PCM can be explained as being

due to the intramolecular hydrogen bonds. In the gas phase, the amino forms
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are more stable except in the case of Ph-NH, where the imino tautomer of form

E is more stable relative to the other isomers. The PCM calculations showed

that amino forms are more soluble, the exception being Ph-S, where the imino

tautomer is more soluble. In the Discrete/Continuum, stability is attributed to

the intermolecular hydrogen bonds between the water molecules and the solute

molecule. According to this model, the amino tautomers are more stable in the

cases of Me-NH and Ph-NH; however, for Me-O, Me-S, Ph-O, and Ph-S, the imino

forms are more stable species.

The calculations for the isomers and tautomers of compounds belonging to

Group[2] showed a large preference for the phosphino tautomers of methyl substi-

tution in gas phase, pure PCM, and Discrete/PCM calculations. For the phenyl

substitutions, the phosphino forms were more stable in gas phase relative to phos-

phinidene ones. In the PCM calculations, the phosphinidene form is more stable

for Ph-NH, whereas the phosphino forms are more preferred for Ph-O, and Ph-S.

The most stable isomers are characterized by the presence of intramolecular hy-

drogen bonds, which are less than the sum of the van der Waals radii of atoms.

The calculations including the three water molecules showed that the Ph-NH and

Ph-S are more stable in the phosphinidene forms, whereas the phosphino form is

preferred for the Ph-O.

For Group[3], we found a strong preference for the imino tautomers in gas phase

relative to the amino ones, with the exception of Me-O and Ph-O for which the

amino forms are more stable. In the aqueous phase, the amino forms are more

soluble species except for Me-S and Ph-NH for which the imino forms are more

stable according to the pure PCM. In the explicit/implicit calculations, the only

exception found was for Me-NH and Ph-NH.

The gas phase and pure PCM calculations of Group[4] showed that the phos-

phino forms of the methyl substitutions are more stable except for Me-NH, where

the phosphinidene is more stable. On the other hand, in the explicit/implicit

model, the phosphino forms are more preferred than the phosphinidenes. For the

phenyl substitutions, the phosphino forms are the preferred species for Ph-NH and

Ph-O, whereas the phosphinidene are more preferred for Ph-S independent of the

model adopted.

For all molecules, we found without expection that the relative energies and

the order of stability of isomers and tautomers of the studied species change in

the presence of aqueous media. The dipole moment of the studied species in-
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Summary of Work

crease when the molecule is being solvated, and this is due to an increase in the

stabilizing electrostatic interaction between the solvent and solute. For all the

optimized structures, the symmetry is low, i.e. C1, and the rings adopt a non-

planar configuration. Only moderate changes in the geometric parameters were

found when comparing gas phase and solution results. We defined two solvation

energies, i.e. �Esol,1 and �Esol,2 corresponding to each solvation model. In gen-

eral we found that there is hardly correlation between the relative energies and

the dipole moment in gas phase and in the PCM approach; nevertheless there is a

clear correlation between the solvation energy and the dipole moment.

Furthermore, we compared the properties of nitrogen-containing molecules and

their phosphorus analogs in both gas phase and aqueous phase in order to ob-

tain systematic understanding of the effects of substituting the nitrogen atoms

in compound containing the amidine group -NH-C(R)=N- by phosphorus atoms

-PH-C(R)=N-, -NH-C(R)=P-, -PH-C(R)=P- irrespective of being in gas phase or

in solution. We focused on the change in bond length, relative energies, dipole mo-

ment, and solvation energies due to the substitutions. We found in both gas phase

and pure PCM that the intramolecular hydrogen bonds are responsible for the sta-

bility of isomers. The formation of hydrogen bonds were affected by the presence

of phosphorus atoms so that compounds containing nitrogen atoms become more

stable compared to their phosphorus analogs. The N → P substitution also affects

the relative stability and the order of stability of the tautomers and isomers. When

the explicit treatment of water molecules was considered, we found strong inter-

molecular hydrogen bonds between the nitrogen-containing compounds and the

water molecules; such an effect is less pronounced for the phosphorus-containing

compounds. In all cases the inclusion of water molecules led to larger changes in

the energy of the compounds compared to the pure PCM approach. Moreover, the

changes due to the replacement of both N atoms with P atoms are not simply the

superposition of changes of individual substitutions. Finally the solvation energies

suggest that the P-containing systems sometimes are not soluble in water.

In the second part of this thesis we studied the energetic and structural proper-

ties of isolated potassium clusters up to 20 atoms as well as such clusters deposited

on the surface of potassium crystal.

The bottleneck and the challenge in investigating clusters is to find the global

minima structures of the clusters due to the complexity of their energy landscape.

The global minima structures of potassium clusters were determined by combining

10



the Density Functional Tight Binding method with the genetic algorithm.

To include the effect of surface, we considered the clusters when being deposited

on K(100) and K(110) surfaces. We were interested in the changes of both energetic

and structural properties due to the adsorption of potassium clusters on potassium

surfaces. For the deposited clusters, the structures were optimized by using the

Density Functional Tight Binding method (DFTB). From the stability function of

isolated clusters, we found that potassium clusters have an even-odd oscillatory

pattern, and the more pronounced peaks correspond to sizes 8, 18, and 20, which

is in agreement with the results obtained from the spherical jellium model and

experiments of mass spectra of potassium clusters beams. For the structural prop-

erties of isolated potassium clusters, we considered the similarity function, radial

distance, and the overall shape of the clusters. The similarity function showed that

there is a tendency for the smaller clusters to pairwise possess similar structures.

This is the case for the clusters with 4 and 5 atoms, with 6 and 7 atoms, with 8

and 9 atoms, etc.

When the potassium clusters are deposited on a potassium surface, both the

energetic and the structural properties change. The deposition energy separates

into two structural reorganization energies (for the surface and the cluster, respec-

tively), and an interaction energies, we found that the interaction energy is the

dominating one, although the restructuring energy of the clusters occasionally is

fairly large. We have compared the structures of clusters before and after depo-

sition as well as the structures of the clusters on two different surfaces by using

the similarity function, and we found that the structures are changed significantly

from the gas phase structures. Moreover, the clusters with the same size have

different structures on the two surfaces. From the analysis of the index of epitaxy

as a function of cluster size, we found that the cluster atoms did not show any

tendency toward an epitaxial growth of the crystal and the surface structures relax

significantly compared to the crystal structure.

This thesis is organized as follows: in Chapter 1 we give a short introduction

of substituted pyrrolidines and phospholanes and illustrate the theoretical method

and solvation models we used in our calculations; Chapter 2 is devoted to the

clusters, clusters on surfaces, the DFTB method, and the genetic algorithm; Paper

I describes the effect of solvation, substitution, and structure on the properties

of imidazolines, oxazolines, and thiazolines; Paper II contains the results from

the study of tautomerization and isomerization of methylamino and phenylamino-

11
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substituted cyclic azaphospholines, oxaphospholines, and thiaphospholines in gas

phase and aqueous phase; Paper III represents the results of the properties of

substituted pyrrolidines and phospholanes in gas and in aqueous phase; and finally

Paper IV includes the results of the energetic and structural properties of isolated

and deposited potassium clusters.
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Preface

This thesis consists of the following papers:

I. S. Abdalla and M. Springborg: Theoretical Study of the Effect of Solvation,

Substitution, and Structure on the Properties of Imidazolines, Oxazolines, and Thi-

azolines. J. Phys. Chem. A 114 (2010) 5823-5829. Reprinted with the permission

from J. Phys. Chem. A. Copyright 2010, American Chemical Society.

II. S. Abdalla and M. Springborg: Theoretical Study of Tautomerization and

Isomerization of Methylamino and Phenylamino Substituted Cyclic Aazaphospho-

line, Oxaphospholine, and Thiaphospholines in Gas Phase and Aqueous Phase. J.

Mol. Struct. THEOCHEM 962 (2010) 101-107. Reprinted with the permission

from J. Mol. Struct (THEOCHEM). Copyright 2010, Elsevier. License Number:

287415083545.

III. S. Abdalla and M. Springborg: A DFT Study of the Properties of Substituted

Pyrrolidines and Phospholanes in Gas and in Aqueous Phase. Compu. Theor.

Chem. 978 (2011) 143-151. Reprinted with the permission from Compu. Theor.

Chem. Copyright 2011, Elsevier. License Number: 2874151201110.

IV. S. Abdalla, M. Springborg, and Yi Dong: Isolated and Deposited Potassium

Clusters: Energetic and Structural Properties. Submitted.

The first three papers contain the studies of the properties of substituted pyrro-

lidines and phospholanes in both gas phase and aqueous phase. The last paper

investigates the change in the energetics and structural properties due to the de-

position of potassium clusters on both K(100) and K(110) surfaces.

The code for the genetic algorithm used in the last paper has been provided by

Dr. Yi Dong. The ASE, similarity, and epitaxy codes used to analysis the struc-

tures of potassium clusters has been provided by Prof. Dr. Michael Springborg.
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1 Pyrrolidines and Phospholanes

1.1 Introduction

The compounds contained in the amidine group -NH-C(R)=N- are strong monoacid

bases and can be created through the treatment of the imidic ester hydrochlorides

with an ethanolic solution of ammonia.

R

NH.HCl

O R1

+ 2NH3
Ethanol

R

NH

NH2

+ NH4Cl + R1OH

Figure 1.1: Formation of amidine compounds from the imidic esters.

The strength of amidine compounds may be explained through resonance. Since

resonance structures are equivalent, the ions will also be stable [1]. Figure 1.2

shows the canonical forms of the amidine compounds. The special conjugation,

tautomerism in compounds containing the amidine group, is difficult to study

using the current physicochemical methods, because the proton transfer from the

amino to the imino nitrogen is very fast, and the separation of the individual

tautomers is impossible [2, 3]. In several recent studies, the tautomerism and

isomerism of systems containing the amidine group -NH-C(R)=N- were examined

[4, 5, 6, 7, 8, 9, 10, 11].

As a natural extension of those we investigated the isoelectronic systems con-

taining the phosphorus atoms; those groups are -PH-C(R)=N-, -NH-C(R)=P-, and

-PH-C(R)=P-. Phosphorus compounds have been investigated as relevant materi-

als for a large number of different applications, including lubricants, oil additives,

water treatment cleaners, flame-retardants, fertilizers, plasticizers, and pesticides

[12, 13]. Phosphorus and organo-phosphorus compounds were also recognized to

have important biological functions; e.g. that they are essential constituents of the
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1 Pyrrolidines and Phospholanes

R

NH2

NH

Neutral Molecule

R

N-H

N+H2

Ion

R

NH2

N+H2

R

N+H2

NH2

Figure 1.2: The canonical forms of the amidines.

protoplasm [14].

The proton transfer between nitrogen and phosphorus, which is related to this

work, was investigated by Kolodiazhnyi et al. [15], who concluded that tautomeric

equilibrium depends both on the nature of the solvent and the substituents at these

atoms.

The tautomeric equilibrium in heterocyclic systems has for a long time been of

significant interest and importance [16], and accordingly it has also been studied

theoretically, using many different theoretical methods ranging from semiempirical

methods [17, 18] to more sophisticated calculations that may include electron

correlation [19, 20].

In this work, we report a systematic theoretical examination of all possible

tautomers and isomers of five-membered ring heterocyclic compounds containing

-NH-C(R)=N-, -PH-C(R)=N-, -NH-C(R)=P-, and -PH-C(R)=P- groups in both

gas phase and aqueous phase. It is worth mentioning that compounds contain-

ing -NH-C(R)=N- group have been studied in gas phase by Remko et al. [11].

Due to the absence of theoretical and experimental data for compounds contain-

ing phosphorus atoms, we shall compare them to their nitrogen analogs (-NH-

C(R)=N-) [4, 5, 6, 7, 8, 9, 10, 11]. In order to simplify the distinctions between

studied molecules, we divided our systems into four groups: Group[1], Group[2],

Group[3], and Group[4], corresponding to molecules containing -NH-C(R)=N-, -

PH-C(R)=N-, -NH-C(R)=P-, and -PH-C(R)=P-, respectively. For all groups the

16



1.1 Introduction

substitution at position 1 is either NH, O, or S; and at position 6 it is either methyl

or phenyl; therefore we can simply label our systems according to the substitutions

at positions 1 and 6, regardless of which group they belong to, since each group

has six different molecules: Me-NH, Me-O, Me-S, Ph-NH, Ph-O, and Ph-S. For

each molecule, we considered two conformers (i.e., the A and B conformers) with

indocyclic double bonds and two geometrical isomers (i.e., the E and Z isomers)

with exocyclic double bonds. The molecular structures of our molecules of interest

are depicted in detail in Figure 2.3, 2.4, 2.5, and 2.6. We were particularly inter-

ested in relative energies, molecular geometries, and dipole moment of tautomers

and isomers in gas phase and how these properties change upon solvation.

The effect of solvation on the tautomeric equilibrium of five-membered ring het-

erocyclic systems has been the subject of many studies [17, 21, 22, 23]. Through

studies of tautomerism in different environments, it has been found that the envi-

ronment is important for the relative stability of various tautomers.

17



1 Pyrrolidines and Phospholanes

X1

5 4

N
2

N6

H R7

X N

N
R

X N

N
H R

X NH

N
R

H

X NH

N
R

Amino Imino

X NH

N
R

A Conformer B Conformer

 Z-Isomer

R=CH3, Ph               X= O , S

    E-Isomer

3

R=CH3, Ph
X=NH, O , S

Figure 1.3: Group[1]: Structure and atom numbering of the tautomers and isomers
of methylamino and phenylamino-substituted cyclic imidazolines, oxa-
zolines, and thiazolines.
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1.1 Introduction

X1

5 4

N

2

P6

H R7

X N

P
R

X N

P
H R

X NH

P
R

H

X NH

P
R

Phosphino Phosphinidene

X NH

P
R

A Conformer B Conformer

  E-Isomer

R=CH3, Ph               X=NH, O , S

     Z-Isomer

3

Figure 1.4: Group[2]: Structure and atom numbering of the tautomers and isomers
of methylphosphino and phenylphosphino-substituted cyclic imidazo-
lines, oxazolines, and thiazolines.

19



1 Pyrrolidines and Phospholanes

X P

2

N
H R

A Conformer

X P

N
R H
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X=NH, O, S
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X PH
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X=S

Figure 1.5: Group[3]: Structure and atom numbering of the tautomers and isomers
of methylamino and phenylamino-substituted cyclic azaphospholines,
oxaphospholines, and thiaphospholines.
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Figure 1.6: Group[4]: Structure and atom numbering of the tautomers and isomers
of methylphosphino and phenylphosphino-substituted cyclic azaphos-
pholines, oxaphospholines, and thiaphospholines.
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1 Pyrrolidines and Phospholanes

1.2 Theory

1.2.1 Density Functional Theory (DFT)

The main problem in quantum chemistry is to find an approximate solution to the

time-independent, non-relativistic Schrödinger equation, which cannot be solved

exactly except for hydrogen atom. The Schrödinger equation including coordinates

of electrons and nuclei of the system can be written as below.

Ĥψi = Eiψi( �X1, �X2.... �XN , �R1, �R2, .... �RM) (1.1)

Ei =

∫
ψ∗

i Ĥψiδτ∫
ψ∗

i ψiδτ
(1.2)

The Hamiltonian operater is divided into two parts: the first is the kinetic

part of both electrons and nuclei, and the second part refers to the potential

interaction. The potential includes the nucleus-electron potential, the electron-

electron potential, and the nucleus-nucleus potential. When considering a system

that is composed of N electrons and M nuclei, the Hamiltonian (in atomic units)

can be represented in the following form.

Ĥ = −1

2

N∑
i=1

�2
i −

1

2

M∑
A=1

1

MA

�2
i −

N∑
i=1

M∑
A=1

ZA

riA

+
N∑

i=1

N∑
j>i

1

rij

+
M∑

A=1

M∑
B>A

ZAZB

RAB

(1.3)

It is impossible to find an exact solution for multi-electron systems without approx-

imations. In 1927, Born and Oppenheimer argued that the nuclei in the system

move much more slowly than the electrons because they are more massive. From

this, they assumed that the nuclei in the system are fixed, allowing their kinetic

energy to be disregarded and the nuclear-nuclear repulsion term to be constant

and therefore added later. After applying the Born-Oppenheimer approximation,

the resulting equation is referred to the electronic Schrödinger equation.

Ĥeleψe = εeψe (1.4)

ψe = ψe(χ1, χ2, χ3, .........χN) (1.5)

where ψe represent the electronic wave function, depending on all electronic de-

grees of freedom, e.g., three position-space (ri = xi, yi, zi), and one spin coordinate
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σi for each electron i [χi = (ri, σi) = (xi, yi, zi, σi)].

Ĥelec = −1

2

N∑
i=1

�2
i −

N∑
i=1

M∑
A=1

ZA

riA

+
N∑

i=1

N∑
j>i

1

rij

= T + ˆVNe + V̂ee (1.6)

In 1964, Hohenberg and Kohn [24] developed a new theory for calculating the

ground state properties of the systems by the knowledge of electron density ρ(r)

only, which is called the Density Functional Theory (DFT). Kohn received the

Nobel prize in chemistry in 1998 for his development of the density functional

theory, shared with John A. Pople. The DFT is based on determining the electron

density rather than the wave function. According to the density functional method,

the energy is given as a unique functional of the electron density, E[ρ]. The kinetic

energy T, the potential energies corresponding to nucleus-electron interaction ENe,

and electron-electron interaction Eee are directly transformed into a functional of

the density.

E[ρ] = T [ρ] + ENe[ρ] + Eee[ρ] (1.7)

In DFT methods, the kinetic energy T is replaced by the kinetic energy of a

non-interacting reference system Ts[ρ], which is a functional of the electron density,

introduced by Kohn and Sham [25]. It has the same density as the real interacting

system. The potential energy of electron-electron interaction Eee[ρ] is divided into

the Coulomb interaction of electron-electron J [ρ] and the exchange-correlation

energy Exc[ρ].

EDFT [ρ] = Ts[ρ] + ENe[ρ] + J [ρ] + Exc[ρ] (1.8)

By equating EDFT [ρ] to the exact energy, this expression is taken as a definition

of Exc[ρ]; it is the part that remains after substraction of the non-interacting kinetic

energy and ENe[ρ] and J [ρ] potential energy terms.

Exc[ρ] = (T [ρ] − Ts[ρ]) + (Eee[ρ] − J [ρ]) (1.9)

The first parenthesis in equation (1.9) is the kinetic correlation energy, while the

second contains both exchange and potential correlation energy.
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1.2.2 The Local Density Approximation

The exchange-correlation functional is generally written as the sum of two com-

ponents, an exchange part and a correlation part.

Exc[ρ] = Ex[ρ] + Ec[ρ] =

∫
ρ(r)εx[ρ]dr +

∫
ρ(r)εc[ρ]dr (1.10)

The exchange energy is the sum of contribution from α and β spin densities.

Ex[ρ] = Eα
x [ρα] + Eβ

x [ρβ] (1.11)

The Local Density Approximation (LDA) assumes that the density can be treated

as uniform electron gas. The exchange energy for uniform electron gas is given by

the Dirac formula.

ELDA
x [ρ] = −Cx

∫
ρ

4
3 (r)dr (1.12)

εLDA
x [ρ] = −Cxρ

1
3 (1.13)

In case that electron densities for α and β are not equal, the LDA is extended

and replaced by the Local Spin-Density Approximation (LSDA). In the LSDA,

the density is written as a sum of α and β densities.

ELSDA
x [ρ] = −2

1
3 Cx

∫
[ρ

4
3
α + ρ

4
3
β (r)]dr (1.14)

The local correlation functionals were developed by Vosko, Wilk, and Nusair and

involve numbers of terms and empirical factors [26]. The most popular versions are

VWN and VWN5. An example of the local exchange functional is the Slater-Dirac

exchange energy (S). One of the most popular combination of the local exchange

and correlation functionals is the SVWN method.

1.2.3 Generalized Gradient Approximation (GGA)

To make improvement over the LSDA, one assumes that the density is not uniform.

Such methods are known as Generalized Gradient Approximation (GGA). GGA

methods are sometimes refer to as non-local methods. The exchange correlation

functional in the GGA is usually divided into exchange and correlation terms. In
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this way one can treats each functional individually.

EGGA
xc = EGGA

x + EGGA
c (1.15)

Examples of some of the most efficient GGA functionals commonly used in com-

putational chemistry are the following: B is an exchange functional developed by

Becke [27]; P86 is a correlation functional developed by Perdew [28]; PW91 is a

modification of the P86 functional developed by Perdew and coworkers [29, 30]; B95

is a correlation functional developed by Becke [31]; PBE is an exchange-correlation

functional developed by Perdew, Burke, and Ernzerhof [32]; and LYP is a corre-

lation functional developed by Lee, Yang, and Parr [33]. From the previous GGA

functionals, a combination between exchange and correlation functionals is made

in order to try to describe the system completely. Some of the most common

combinations are: BLYP, BP86, and BPW91.

1.2.4 Hybrid Functionals

The exchange part is poorly described by the functional, in contrast to Hartree-

Fock (HF), where the exchange part is defined exactly. Hybrid functionals combine

exact HF exchange energy (expressed in terms of the Kohn-Sham orbitals rather

than the density functional) with exchange and correlation from LSDA. One of

the most commonly used versions is B3LYP.

In the present work we used B3LYP functional, which includes Becke’s exchange

functional [34] along with the non-local correlation functional developed by Lee,

Yang, and Parr [33]. The exchange energy actually includes LSDA exchange, the

exact exchange, and Becke’s 1988 exchange. The correlation energy includes the

LYP correlation plus the LSDA correlation.

EB3LY P
xc = (1 − a)ELSDA

x + aEHF
xc + bΔEB88

x + cELY P
c + (1 − c)ELSDA

c (1.16)

where a=0.20, b=0.72, and c=0.81 are the three empirical parameters determined

by fitting the predicted values to a set of atomization energies, ionization poten-

tials, proton affinities, and total atomic energies.
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1.2.5 Basis Set

To carry out calculations we need to specify the basis set. Basis set is a set

of functions used to create the molecular orbitals (MO), which are expanded in a

linear combination of such functions with the coefficients to be determined. Usually

these functions are atomic orbitals (AO) (LCAO-MO approximation). These basis

functions can be classified into two main types:

[1] Slater Type Orbitals (STOs).

[2] Gaussian Type Orbitals (GTOs).

The Gaussian Type Orbitals are computationally preferred compared to Slater

Type Orbitals, because the product of two GTOs centred on two different atoms is

a third one situated between them; therefore GTOs are preferred and used mostly

in electronic structure calculations.

There are hundreds of basis sets composed of GTOs. The smallest of these

are called minimal basis sets, and they are typically composed of the minimum

number of basis functions required to represent all of the electrons on each atom.

The most common minimal basis set is STO-nG, where n is an integer. This n

value represents the number of Gaussian primitive functions comprising a single

basis function. The next improvement of the basis set is the split valence basis set,

in which there are multiple basis functions corresponding to each valence atomic

orbital, called valence double-, triple-, quadruple-zeta, and so on, basis sets. The

split valence basis set is typically x-yzG. Here, x represents the number of primitive

Gaussian functions comprising each core atomic orbital basis function. The y

and z indicate that the valence orbitals are composed of two basis functions: the

first one composed of a linear combination of y primitive Gaussian functions, the

other composed of a linear combination of z primitive Gaussian functions. Further

improvement of basis functions is achieved by adding d-orbitals to all heavy (non-

hydrogen) atoms and the p-orbital to hydrogen atoms. The resulting functions

are called polarized functions, and they can be written as x-yzG(d,p) or x-yzG**.

The presence of diffuse functions is symbolized by the addition of a plus sign, +,

to the basis set.
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1.3 Solvation Models

Most of the theoretical methods investigate the behavior of systems in gas phase,

in which it is assumed that the system is isolated and there is no interaction with

surroundings. In contrast most practical chemistry takes place in solution.

Including the solvent effects is not an easy task; therefore over the years, much

effort has been devoted to the theoretical development and inclusion of solvent

effects into quantum mechanical calculations. The methods used to treat the

solvent effect can be divided to:

[1] Supermolecule model.

[2] Classical (force-field-derived) models.

[3] The hybrid QM-classical models.

[4] The Polarized Continuum Model-Self-Consistent Reaction Field (PCM-SCRF)

methods.

The most accurate method would be to treat the complete system (solute+solvent)

by using QM methods, but due to the computational demanding such method can-

not be applicable. Instead, one may applies a simple model by considering only

the closest solvation shells. This is the supermolecule approach. The advantage

of this approach is that weak interactions such as hydrogen bonds can be treated

accurately. On the other hand, including more than the solvent molecules that

are closest to the solute, the size of the system increase and the computational

resources put limitations on the applicability of the model [35].

In the classical models, both the solvent and solute are represented by classic

Hamiltonian. This can be done through using molecular dynamics (MD) simula-

tion or Monte Carlo (MC) techniques, and this method allows explicit treatment

of solvent molecules [36, 37, 38, 39, 40].

In the hybrid quantum mechanics-classical model, the solute is treated by using

the quantum mechanical level, whereas the solvent is treated at the classical level

[41, 42, 43, 44, 44, 46, 47, 48]. The interaction between the solute and solvent may

include van der Waals terms, electrostatic interactions, or any term in the force

field being used.

In the PCM-SCRF models, the solvent is characterized by its dielectric constant

and the solute (including, when convenient, some solvent molecules, the whole

being treated as supermolecule at quantum mechanics level in the case of the

Discrete/Continuum model) is placed in a cavity representing the space occupied
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by the solute in the solvent. Such models are also known as implicit solvation

models. In the PCM-SCRF model, the solvent dielectric constant interacts with

the solute charge distribution, generating a reaction field against it. The effect

of this reaction field is introduced as a perturbation part into the Hamiltonian

operater (V̂R).

(Ĥ0 + V̂R)ψ = Eψ (1.17)

where H0 is the Hamiltonian of the isolated molecule in gas phase. From the

corresponding Schrödinger equation one obtains the energy of the molecule in

vacuo.

E0 = 〈ψ0|H0|ψ0〉 (1.18)

Various SCRF models were developed based on the cavity shape [49, 50, 35].

The simplest SCRF bearing the name of the Nobel prize laureate in chemistry in

1968 (Lars Onsager) [51]. In the Onsager model, the cavity that accommodates the

solute is defined as a fixed spherical shape, whereas in the PCM model proposed by

Miertus, Scrocco, and Tomasi [52, 53], the cavity is defined as interlocking atomic

spheres.

In the continuum models, the solvation Gibbs energy Gsol is defined as a change

in the Gibbs free energy when a molecule is transfered from gas phase to solution

at constant temperature. The Gsol can thus be written as the sum of three terms.

Gsol = Gele + Gdr + Gcav (1.19)

The electrostatic interactions Gele between a solute and solvent are always negative,

i.e. attractive, and they are zero if the solute is characterized by no electrical

moments. The presence of the electrostatic field leads to increasing the dipole of

the solute. The solvent itself, seeing this increase, polarizes and moreover increases

its own orientation to oppose solute’s dipole and so on. Therefore the dipole

moment of solute molecules in solution is larger than the corresponding dipole

moments in the gas phase [54], and it has been confirmed that the dipole moment

of small organic molecules increases by up to 30% in aqueous solutions compared

to the gas phase values [55]. Indeed any property that depends on the electronic

structure will tend to have different expectation values in solution than in the gas

phase, and this depends on the strength of the solute-solvent interaction.

The non-electrostatic contributions that affect the solvation process are cavation

28
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Gcav and dispersion-repulsion Gdr energies. The cavation energy is the energy

required to create a cavity of vacuum within the solvent into which the solute will

be accommodated in the second step. After the solute is inserted into a cavity, that

has the shape of solute, it will experience favorable dispersion interactions with the

surrounding solvent. Although the nature of the dispersion energy is electrostatic,

it is always discussed separately from the solute-solvent electrostatic interaction.

The dispersion and repulsion term Gdr is computed by classical approximation

proposed by Floris and Tomasi [56].

The advantage of the PCM-SCRF method is that it provides a fast represen-

tation of solvent effects and allows one to consider polarization effects explicitly,

which are neglected or partially considered in classical and QM classical calcula-

tions. The quality of the SCRF methods depends on the definition of the reaction

field and the shape of the surface used to simulate the solute-solvent interface. The

PCM can be implemented by using different levels of theory: Density Functional

Theory (DFT) [57, 58], Hartree-Fock (HF) [59], Møller-Plesset perturbation the-

ory (MPn) [60], Multi-Configurational Self-Consistent Field (MCSCF) [61], and

Quadratic Configuration Interaction Singles and Doubles (QCISD) [62].

The use of the DFT methods within the continuum model provides a good way

to describe the solvent effects [63, 64], therefore in the current work, we performed

DFT method to describe the solvent effect by using two different solvation models:

[1] Pure Continuum Model.

[2] Discrete/Continuum Model.

1.3.1 Pure Continuum Model

Among all SCRF methods, the original PCM proposed by Miertus, Scrocco, and

Tomasi [52, 53] used the description of perterbation operator in terms of molecular

electrostatic potential, and it has proved to be a reliable tool for describing the

electrostatic interaction between the solute and solvent [65]. In the present work,

the Integral Equation Formalism (IEF) [50, 49, 66, 67, 68] version of the polarized

continuum model (PCM) [49, 52, 69] was used as a solvation model. The solute

molecule is placed into a cavity, and the water molecules were considered at 298K

with a dielectric constant of 78.39.

The most important fundamental quantity describing the interaction of a solute

with surrounding solvent is solvation energy, which refers to the change in the
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energy of a molecule leaving the gas phase and entering the aqueous phase (in the

case of water). In the pure PCM model, the relative energy of solvation Esol,1 can

be written as the difference between the energy of the molecule in the continuum

Esolute,PCM and the energy of the molecule in gas phase Esolute,g.

ΔEsol,1 = Esolute,PCM − Esolute,g (1.20)

1.3.2 Discrete/Continuum Model

One of the deficiencies of the pure continuum model is that it includes only long-

range interactions between the solvent and solute. In order to overcome such

a deficiency, we also used the Discrete/Continuum model to allow for specific

short-range interactions such as the hydrogen bonds. In this model, three water

molecules were explicity considered and distributed near the hydrophilic regions

of the solute inside the cavity and considered as the first solvation shell; those

water molecules were also treated quantum mechanically as the solute molecule,

while the remaining infinite number of solvent molecules are approximated by the

continuum model. The combination Discrete/Continuum has been used for many

years [70, 71, 72, 73, 74, 75, 76].

In the Discrete/Continuum model, we define an energy of solvation, ΔEsol,2, as

ΔEsol,2 = Ecomplex,PCM − Esolute,gas − E(H2O)3,PCM (1.21)

where E(H2O)3,PCM represents the energy of three water molecules calculated in

PCM and oriented as found for the complex of interest.

1.4 Definition of Cavity

In continuum models, the solute is placed in a cavity representing the space occu-

pied by the solute in the solvent. The cavity is the basic concept in the PCM-SCRF

method [77]. The shape and size of the cavity is differently defined in various ver-

sions of the continuum models. A very critical point in solvent calculations is the

selection of the cavity size. A cavity that is too large will underestimate the sol-

vent effect, whereas a cavity that is too small will overestimate it. The appropriate

choice of the size of the cavity should be in a way that approximately mimics the

first solvation shell [78] so that the cavity should be placed around 1.20-1.25 times
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the van der Waals radii (e.g. 1.2 for water). Such a modification contributes to

the electrostatic part of the free energy.

In the present work, the molecular cavity was build by using the United Atom

Topological model (UAO), whereby the cavity is constructed through the inter-

locking sphere centered on heavy (non-hydrogen) atoms. The radii were obtained

by scaling the corresponding van der Waals radius by factor of 1.2 [49, 78]. The

surface is smoothed by adding some other spheres, not centered on atoms, to simu-

late the solvent-excluding surface by using the GEnerating POLyhedra (GEPOL)

method [77]. Then the cavity surface is partitioned into small domains called

tesserae. The number of tesserae influences the accuracy of the results and com-

putational time. In our calculations we used the default number of initial tesserae,

60 per sphere.

1.5 Computational Details

All the calculations were performed using the Gaussian03 program package [79].

The calculations in both gas phase and aqueous phase were performed by using

the hybrid functional DFT- the B3LYP [34], including a combination of Becke’s 3-

parameter and nonlocal exchange functional with the correlation functional of Lee-

Yang-Parr [33]. The basis set 6-31+G(d,p) was used. The 6-31+G(d,p) indicates

a single basis set consisting of 6 Gaussian functions for inner electrons and two

separate basis functions, one consisting of 3 Gaussian functions, and the other

Gaussian function for valence electrons. The diffuse functions help us deal with

unshared pairs of electrons; the basis set also implies the addition of a set of p

(added to the hydrogen atoms) and d orbitals to provide polarization.

The implementation of a PCM model in Gaussian03 can be invoked using the

SCRF keyword. An additional option has been specified at the end of the input

file and read in using a read modifier of the SCRF keyword. This option corre-

sponds to scaling all radii by a factor of 1.20. In the case of Discrete/Continuum

calculations the values of OFac and RMin parameters of the GEPOL algorithm

[77] were changed to 0.8 and 0.5 from 0.89 and 0.2 respectively. In both gas phase

and aqueous phase calculations, all stationary points were characterized as minima

in the potential energy surface with no imaginary frequency.
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2.1 Introduction

Clusters are aggregates of atoms or molecules, which may contain any number of

particles from three to thousands. The clusters can be considered nanoparticles

when such aggregates reach sizes with diameters in nanometers. The clusters

could be formed from one type of atom (in the case of atomic clusters), leading to

homo-atomic clusters, or different types of atoms leading to hetero-atomic clusters.

Clusters are a new type of material and have properties different from individual

atoms and molecules or bulk matter.

Atomic clusters are formed by most of elements in the periodic table, even

including the inert gases. Clusters may be held together by different kind of

forces: ionic forces between the oppositely charged ions (as in NaCl clusters), van

der Waals attraction as in the case of rare gases (He and Ar clusters), covalent

chemical bonds (as in the Si clusters), or metallic bonds (as in Na and Cu clusters).

The interest of studying clusters is due to their size-dependent properties such as

geometric, electronic structure, and binding energy. In fact, both the geometric

shape and the energetic stability may change with the size. Moreover, clusters can

be studied isolated or in several media such as molecular beams, the vapor phase,

colloidal suspensions, and deposited in inert matrices or on surfaces [80, 81].

From a practical standpoint, the interest in studying clusters is due to the va-

riety of their applications. For instance, there has been traditional interest in the

application to catalysis because of the properties of surface/volume ratio. Nan-

oclusters have been used to build devices for variety of applications, including

electronic, optical, magnetic, and mechanical ones.

Due to their individual and unique properties, clusters have been the subject of

intensive studies from both experimental and theoretical approaches. The history

of scientific interest in studying clusters goes back to Faraday’s experiments with

colloidal golds in 1857. Interest in the theoretical study of clusters started in the
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1970s. One of the important characteristics of clusters is the variety of structures

they exhibit. The number of structures increases exponentially with the size of

the clusters, and as a result of this both physical and chemical properties change

significantly with the size [82].

The first point to understand the properties of clusters is to study their struc-

tures. One of the challenges in investigating clusters is to find the global mini-

mum structures in the potential energy surface, which is not an easy task due to

the complexity of their energy landscape. The determination of the global min-

imum structures has been a topic that has attracted considerable attention. In

order to search for the lowest minima structures, we required intelligent meth-

ods that search the structure space. Numerous approaches have been developed

for searching the global minima structures, for example but not limited to Auf-

bau/Abbau method [83, 84, 85], Basin-Hopping method [86], and Genetic algo-

rithms [87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98].

Metallic clusters from across the periodic table form a wide variety of clusters.

From these clusters, alkali metal clusters consituting any of the six chemical ele-

ments that make up Group 1 (Ia) of the periodic table, namely lithium (Li), sodium

(Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr), played an

important role in the development of clusters physics as a branch of modern physics

and chemistry. Alkali-metal clusters have been subject to different experimental

and theoretical studies. Interested readers are referred to the review article by

Balletto and Ferrando [80] and the papers cited therein.

Interest in studying of the alkali-metal clusters grew with the pioneering work of

Knight and coworkers [99, 100, 101]. They have discovered that certain clusters,

those with the magic numbers 8, 20, and 40 .. of atoms, are more stable and

consequently were found more abundantly in the mass spectra of these clusters.

The existence of the magic number cluster is attributed to the electronic shell

structures of the clusters. Many properties of alkali metal clusters can be explained

with help of the jellium model and its extensions [102, 103].

2.2 Clusters On Surfaces

There is much known about the properties of metal clusters in gas phase com-

pared to their properties when the clusters are deposited on surfaces. Clusters

deposited on surfaces play a significant role in chemical processes such as cataly-
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sis. Metal clusters deposited on surfaces have different applications, for instance,

in the growth of nanostructure materials [104] and in nano and biotechnologies

[105, 106, 107]. When clusters are deposited on surfaces, their properties might

change. Subsequently the deposited clusters may have properties different from

those obtained in gas phase.

Clusters on surfaces have been of great interest in both experimental and the-

oretical studies. Experimental information about clusters deposited on surfaces

has been acquired by several means, including scanning tunneling microscopy

[108, 109, 110], scanning transmission electron microscopy [111], and field ion

microscopy (FIM) [112]. Among these studies, Wang et al. [113] studied the prop-

erties of iridium clusters (up to 13 atoms) on Ir(111) surface by using FIM and

investigated the arrangement of iridium atoms in the clusters in relation to the

binding sites for single atom on an Ir(111) surface. Theoretically, there are many

calculations devoted to the study of clusters on surfaces by using semi-empirical

methods such as Embedded Atom Method (EAM). For example but not limited

to, the study of Nin/Ni(111) and Ptn/Pt(111) [114, 115, 116, 117]. Schwoebel et

al. studied the properties of small Pt clusters on the Pt(001) surface [118]. Both

the energetics and structural properties of Ni, Pd, and Pt on Pt(001) surface have

been investigated [119]. The structural properties of Pd and Pt clusters on Ag(110)

surface was studied by Roy et al. [120]. The primary interest of theoretical studies

has focused on the geometric structures assumed by clusters on surfaces, which

reflect fundamental aspects of adatom-adatom and adatom-substrate interaction

and offer insights into the initial stage of cluster growth.

2.3 Potassium Clusters

There was interest early on in investigating the properties of isolated potassium

clusters, and much is known about their properties in gas phase, e.g. the spherical

jellium model showed discontinuities of total energies for the isolated potassium

clusters as a function of cluster size due to the existence of the electronic shell

structure [121] such as that reported for sodium clusters, with peaks or steps for

those clusters that contain N = 2, 8, 20, and 40 atoms [99, 100]. This study has

been confirmed experimentally by the mass spectra of potassium cluster beams

[101]. Besides this study, potassium clusters have been subject to different exper-

imental studies [122, 123, 124, 125, 126, 127, 128, 129].

35



2 Clusters

Potassium clusters have been investigated by different theoretical methods. Most

of these studies were limited to small sizes; potassium clusters up to 8 atoms have

been studied by using pseudopotential calculations [130]. An ab initio study of

both neutral and ionic structures of potassium clusters was carried out by using

the configuration interaction (CI) method [131, 132]. The structures and binding

energies for cluster sizes between four and six atoms were also investigated by using

diatomics in molecules (DIM) approximation [133]. The valence-only self consis-

tent field calculations were used to study the neutral and singly ionized K clusters

with up to four atoms [134]. K9, K15, and K27 have been studied by using the

SCF Xα (LSD) SW (local spin density-scattered wave) method [135]. The potas-

sium clusters KN (N ≤ 7) have been investigated by using Hartree-Fock many-

body perturbation [136]. Florez and co-workers [137] investigated the properties of

potassium clusters up to eight atoms by applying two types of exchange-correlation

functionals. Recently Banerjee et al. [138] studied the properties of various iso-

mers of potassium clusters containing even numbers of atoms up to 20 atoms

by employing the all-electron density functional theory with a gradient-corrected,

exchange-correlation functional to calculate the binding energies, ionization po-

tential, and static polarizability with respect to the cluster size. Among the wide

theoretical studies that the potassium clusters received, it is quite surprising that

there were no attempts to find the global minima structures, considering the fact

that the experimental results for the ionization potential, static polarizability, and

photoabsorption spectra of potassium clusters as a function of cluster size was

reported very early [101, 123]. On the other hand, potassium clusters of up to

60 atoms were investigated by using Gupta potential combined with both genetic

and basin-hopping algorithms [139] to search for the global minima. Such a model

was not suitable for describing the electronic effects but rather the packing effects;

thus the particularly stable clusters were not in agreement with those obtained

from the experiments and the spherical jellium model [121, 101]. Therefore, one

needs to apply a model that takes into account the electronic degree of freedom.

In this work, the global minima structures of potassium clusters up to 20 atoms

were obtained by utilizing the Density Functional Tight Binding (DFTB) method

combined with the genetic algorithm. We analyzed both energetic and structural

properties as a function of the cluster size.

In order to study the effect of a surface on the properties of potassium clusters,

we softly deposited the clusters on K(100) and K(110) surfaces. We shall focus on
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changes in the structures due to adsorption as well as the energetics related to the

adsorption.

2.4 Theoretical Method

2.4.1 Density Functional Tight Binding Method

The Density Functional Tight Binding (DFTB) method based on the density func-

tional theory of Hohenberg and Kohn [24] in the framework of Kohn and Sham

[25] has been used to optimize the structures of potassium clusters in this work.

DFTB method has been developed by Seifert et al. [140, 141, 142, 143, 144]. In

the DFTB, the linear combination of the atomic orbital (LCAO) for Kohn-Sham

wave functions ψ(r) is written as.

ψ(r) =
∑

μ

Cμφμ(r − Rj) (2.1)

Atomic-like wave functions φμ used as basis functions are centered at the atomic

sites Rj. The LCAO leads to secular equations in the form of:

∑
μ

Cμ(hμν − εiSμν) = 0 (2.2)

These equations can be solved by diagonalization of the secular matrix. The

matrix elements of the Hamiltonian hμν and the overlap matrix elements Sμν are

defined as:

hμν = 〈φμ | ĥ | φν〉 (2.3)

Sμν = 〈φμ | φν〉 (2.4)

ĥ = t̂ + Veff (r) (2.5)

where t̂ is the operator of kinetic energy (t̂ = 1
2
�2), and Veff is the effective Kohn-

Sham potential (one particle potential), consisting of an electron-nuclear part Vext,

the mean field electron interaction contribution (Hartree potential VH), and the

exchange-correlation part Vxc in the local density approximation (LDA).

Veff = Vext + VH + Vxc (2.6)
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The effective Kohn-Sham potential Veff (r) is approximated as a sum of potentials

V 0
j of neutral atoms:

Veff (r) =
∑

j

V 0
j (| r − Rj |) (2.7)

where Rj is the position of the j th atom. Furthermore, we make tight-binding

approximation, so that:

hμν = 〈φμ | t̂ +
∑

j

V 0
j | φν〉 = 〈φμ | t̂ + V 0

jμ + (1 − δjν,jμ)V 0
jν |φν〉 (2.8)

The Kronecker-δ is included in order to assure that the potential is not double

counted for jν=jμ. Through this approximation, the two center terms (hμν =

〈φμ | ĥ | φν〉, Sμν = 〈φμ | φν〉) are calculated exactly within the Kohn-Sham basis.

Using the Kohn-Sham eigenvalues εi, the total energy (E[ρ(r)]) can be written

as:

E[ρ(r)] =
occ∑
i

εi − 1

2
[

∫
d3rVeffρ −

∫
d3rVextρ] + Exc − 1

2

∫
d3rVxcρ + EN (2.9)

The Vext is the electron-nucleus external potential; Exc is the exchange-correlation

energy; Vxc is the corresponding potential, EN is the nuclear-nuclear repulsion en-

ergy, and ρ(r) is the electron density. The electron density and potential can be

approximated in the following form.

ρ =
∑

j

ρj (2.10)

V =
∑

j

Vj (2.11)

so that the terms corresponding to equation (2.9) can be written as:

1

2

∫
d3rVeffρ =

1

2

∑
j

∑
j̀

∫
d3rVjρj̀ (2.12)

1

2

∫
d3rVextρ =

1

2

∑
j

∑
j̀

∫
d3r

Zjρj̀

rj

(2.13)

Exc − 1

2

∫
d3rVxcρ =

1

2

∑
j

∑
j̀

d3r ˜Vxcj
ρj̀ (2.14)
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EN =
1

2

∑
j

∑
j̀,j �=j̀

∫
d3r

ZjZj̀

Rjj̀

(2.15)

Rjj̀ stand for the internuclear distance: Rjj̀=| Rj −Rj̀ |. Special care is need in

the treatment of the contribution for Exc. For the representation of Vxcj
in terms

of Exc and Vxc. For the large internuclear distances, the electron-nucleus energy

strongly compensates the nuclear repulsion energy, and the two center terms with

the potential vanish also :
∫

d3rVjρj̀=0 for j �= j̀, due to screening of the potential

(Wigner-Seitz limit). Assuming additionally that
∫

d3rVxcj
ρj̀=0, and writting the

total energy as single atom Ej in the corresponding form as above, one can evaluate

the binding energy approximately by the Kohn-Sham eigenvalues and Kohn-Sham

energies εnj of the atomic orbital nj.

εB = E −
∑

j

Ej ≈
occ∑
j

εi −
∑

j

∑
nj

εnj (2.16)

Such an expression holds only more or less strictly for large interatomic distances.

The difference between εB and the binding energy from a full SCF-LDA calculation

(EB) for diatomic molecule increase with decreasing internuclear distance. Instead

of calculating the binding energy from the total energy as written in equation

(2.16), it reasonable to approximated as:

EB =
occ∑
j

εi −
∑

j

∑
n

εjn +
1

2

∑
j �=j̀

Uj �=j̀(Rj − Rj̀) (2.17)

EB = εB +
1

2

∑
j �=j̀

Uj �=j̀(Rj − Rj̀) (2.18)

where U(Rjj̀) is a set of short-ranged, repulsive pair potentials. These are obtained

by requiring that the total energy of diatomic molecules (in our case, of K2) as a

function of interatomic distance is accurately reproduced.

In the DFTB method, we considered only the valence electrons (in our case only

the 4s electron of the K atom), whereas the core electrons are treated as frozen.

The minimization of total energy is performed by using forces. The force F j

acting on atom j is divided into a nuclear part F j
n and electronic part F j

e .

F j = −δE/δRj = F j
e + F j

n (2.19)
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F j
n = −

∑
j �=j̀

δ

δRj̀

(
Zj̀Zj

|Rj̀ − Rj|) (2.20)

The electronic part of force can be written as a sum of orbital contributions.

F j
e =

∑
i

niF
j
i = − δ

δRj

(
∑

i

(ψi|ĥ|ψi)) (2.21)

where ni is the occupation number of orbital i. Finally, F j
i can be written as:

F j
i =

∑
μ

∑
ν

Ci
μC

i
ν(−

δHμν

δRj

+ εi
Sμν

δRj

+
δV ee

μν

δRj

) (2.22)

where V ee
μν are the matrix elements of the electron-electron interaction potential (

V ee=VH+Vxc). The nuclear repulsion force F j
n and the contribution arising from

δV ee
μν

δRj
compensate strongly so that instead LCAO basis sets are needed to calculated

the force accurately. This two terms are approximated by the repulsive term U(R).

U(R) = a(R − R1)
2 (2.23)

for R < R1 and zero for R ≥ R1. The force acting on an atom at Rj can be

calculated as:

F j = −�i Etot =
occ∑
i

∑
μ

∑
ν

Ci
μC

i
ν(−

δHμν

δRj

+ εi
δSμν

δRj

) +
1

2

∑
j �=j̀

δ

δRj

U(|Rj − Rj̀|)

(2.24)

2.4.2 2.4.2 Genetic Algorithm (GA)

The most important point in studying clusters is to find the global minima struc-

tures. The principal difficulty arises from the increase of the number of local

minima structures with the number of atoms. An example is the cluster of 13

atoms: Lennard-Jones (LJ) has at least 1,506 numbers of local minima [145, 146].

The genetic algorithm is inspired by concepts from Darwinian natural evolution

and is used as an effective tool for global geometry optimization. The main idea

of GA is based on survival of the fittest. The fittest candidates pass their genetic

characteristics on to the next generation through selective breeding and mutation.
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The genetic algorithm has been used for optimizing the cluster geometries; for in-

stance, Xiao and Williams [87] applied it to benzene, naphthalene, and anthracene

clusters. Deaven et al. [88] used the genetic algorithm to locate the global minima

of C60. Hartke has used the method to Si10 [89]. Niesse and Mayne applied the

technique to silicon clusters up to 10 atoms [90]. Morris also used the method

to find the lowest energy configration of N-point changes on a unit sphere. The

genetic algorithm has been used to optimize the morse clusters of 19-50 atoms [92].

The version of GA used in the present work has been applied to obtain the global

minimum structures of monoatomic (Au, Al, Na, Ge, Si), diatomic (SiGe, AlO),

and triatomic (HAlO) [93, 94, 95, 96, 97, 98]. Using GA, the global optimization

of isolated potassium clusters up to 20 atoms was done in the following way: first

we optimized the structures of KN cluster; from these structures we randomly

generated initial structures for KN+1 cluster by adding one atom; such structures

were called parent structures. The parent structures were relaxed near the local

minimum by using the geometry optimization method. By cutting the parents into

two parts (mating) the next set of structures was obtained; those structures were

called children structures and were also optimized. From the parent and children

structures, the structures with the lowest energies are kept and used as parent

structures for the next generation. This procedure is repeated until the lowest

energy is unchanged for large number of generations.
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[61] K. V. Mikkelsen, A. Cesar, H. Ågren, and H. J. A. Jensen, J. Chem. Phys.

103, 9010 (1995).

[62] M. W. Wong, M. J. Frisch, and K. B. Wiberg, J. Am. Chem. Soc. 113, 4776

(1991).

[63] R. J. Hall, M. M. Davidson, N. A. Burton, and I. H. Hillier, J. Phys. Chem.

99, 921 (1995).

[64] M. Namazian, J. Mol. Struct. (Theochem) 664, 273 (2003).

[65] M. Cossi, V. Barone, R. Cammi, and J. Tomasi, Chem. Phys. Lett. 255, 327

(1996).

[66] E. Cancès, B. Mennucci, and J. Tomasi, J. Chem. Phys. 107, 3032 (1997).

[67] B. Mennucci, E. Cancès, and J. Tomasi, J. Phys. Chem. B. 101 10506 (1997).

[68] E. Cancès, and B. Mennucci, J. Math. Chem. 23, 309 (1998).

[69] R. Cammi and J. Tomasi, J. Comput. Chem. 16, 1449 (1995).

[70] M. J. Huron, and P. Claverie, J. Phys. Chem. 76 2123 (1972).

46



Bibliography

[71] M. J. Huron, and P. Claverie, J. Phys. Chem. 78, 1853 (1974).

[72] M. J. Huron, and P. Claverie, J. Phys. Chem. 78 1862 (1974).

[73] G. W. Schnuelle and D. L. Beveridge, J. Phys. Chem. 79, 2566 (1975).

[74] J. H. McCreey, R. E. Christoffersen, and G. G. Hall, J. Am. Chem. Soc. 98,

7191 (1976).

[75] H. S. Rzepa and M. Y. Yi, J. Chem. Soc. Perkin Trans. 2. 1991, 531 (1991).

[76] P. Claverie, J. P. Daudey, J. Langlet, B. Pullman, D. Piazzola, and M. J.

Huron, J. Phys. Chem. 82 405 (1978).

[77] J. L. Pascual-Ahuir, E. Silla, J. Tomasi, and R. Bonaccorsi, J. Comp. Chem.

8, 778 (1987).

[78] F. J. Luque, M. J. Negre, and M. Orozco, J. Phys. Chem. 97, 4386 (1993).

[79] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.

Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant,

J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi,

G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara,

K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,

O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B.

Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,

O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala,

K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski,

S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D.

Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul,

S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.

Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng,

A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,

M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03; Revision D.01 ;

Gaussian, Inc., Wallingford, CT, 2004.

[80] F. Baletto and R. Ferrando, Rev. Mod. Phys. 77, 371 (2005).

[81] R. Ferrando, J. Jellinek, and R. L. Johnston, Chem. Rev. 108, 845 (2008).
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(1982).

[132] F. Spiegelmann and D. J. Pavolini, Chem. Phys. 89, 4954 (1988).

[133] S. C. Richtsmeier, D. A. Dixon, and J. L. Gole, J. Phys. Chem. 86, 3942

(1982).

[134] J. Flad, G. Igel, M. Dolg, H. Stoll, and H. Preuss, Chem. Phys. 75, 331

(1983).

[135] A. Pellegatti, B. N. McMaster, and D. R. Salahub, Chem. Phys. 75, 83

(1983).

[136] A. K. Ray and S. D. Altekar, Phys. Rev. B 42, 1444 (1990).

[137] E. Florez and P. Fuentealba, Int. J. Quant. Chem. 109, 1080 (2009).

[138] A. Banerjee, T. K. Ghanty, and A. Chakrabarti, J. Phys. Chem. A 112,

12303 (2008).

[139] S. K. Lai, P. J. Hsu, K. L. Wu, W. K. Liu, and M. Iwamatsu, J. Chem. Phys.

117, 10715 (2002).

[140] P. Blaudeck, Th. Frauenheim, D. Porezag, G. Seifert and E. Fromm, J. Phys:

Condens Matter 4, 6389 (1992).

50



Bibliography

[141] D. Porezag, Th. Frauenheim, Th. Köhler, G. Seifert and R. Kaschner, Phys.
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Different isomers and tautomers of methylphosphino- and phenylphosphino-substituted cyclic imidazoline,
oxazoline, and thiazoline have been investigated theoretically in gas and aqueous phases. Special emphasis
is put on the relative total energies and on the changes in the structure due to substitution or solvation. The
calculations were carried through using the B3LYP/6-31+G(d,p) method. To include the effects of the solvent,
we used the polarizable-continuum approach both without and with the inclusion of explicit water molecules.
Lacking experimental information on the systems, the results were compared with those for nitrogen-containing
compounds. In gas phase the cyclic moiety of these molecules show clear deviations from planarity. Only
moderate changes in the structure due to solvation were found. On the other hand, the solvent affects strongly
the relative stability of different tautomers and isomers. The inclusion of explicit water molecules changes
the order of stability due to the presence of intermolecular hydrogen bonds. On the basis of the Bader theory
of atoms in molecules, we identify the critical points of the hydrogen bonds as well as properties of the
electron density at those points. Thereby, we can quantify the strength of the hydrogen bonds. Finally, we
report energies of solvation for the systems of our study.

I. Introduction

The theoretical determination of tautomerization in hetero-
cyclic systems is far from trivial,1 and a number of theoretical
approaches have been applied for this purpose, ranging from
semiemprical molecular orbital methods2,3 to parameter-free
methods that may even include electron correlation.4,5 Also, the
influence of a solvent on the tautomeric equilibrium of
heterocyclic, five-membered ring systems has been the subject
of many studies.2,6-8 A comparison of the relative energies of
different tautomers in two different solvents gives direct
information on the influence of the solvent.

In several recent studies, systems containing the amidine
group -NH-C(R)dN- were examined.9-16 As a natural exten-
sion of those we shall here investigate the isoelectronic sys-
tems containing the -PH-C(R)dN- group. Phosphorus com-
pounds have been investigated as relevant materials for a large
number of different applications, including as lubricants, oil
additives, water treatment cleaners, flame-retarding agents, fer-
tilizers, plasticizers, and pesticides.17,18 Phosphorus and or-
ganophosphorus compounds were also recognized to have
important biological functions, including that they are essential
constituents of the protoplasm.19 Of direct relevance to the
present work is that proton transfer processes between nitrogen
and phosphorus were investigated by Kolodiazhnyi et al.,20 who
concluded that the tautomeric equilibrium depends both on the
nature of the solvent and on the substituents at these atoms.

The present work reports a systematic theoretical examination
of the methyl- and phenyl-substituted phosphino and phosphin-
idene tautomers of cyclic imidazoline, oxazoline, and thiazoline
(which we shall label Me-NH, Me-O, Me-S, Ph-NH, Ph-O,
and Ph-S) in gas phase and in aqueous phase. In particular,
we shall focus on the relative energies and molecular geometries
and how these properties change upon solvation. Due to the

absence of theoretical and experimental data for these com-
pounds, we shall compare them with their nitrogen analogues.

Theoretical studies of tautomerization in solution depend
critically on being able to calculate the free energy of solvation,
that is, the free-energy difference between tautomers in gas
phase and in aqueous phase. Over the years, many different
approaches have been suggested (see, e.g., refs 21 and 22). In
one class of approaches, the free energy of solvation is calculated
with the help of the self consistent reaction field (SCRF)
continuum models, which replace the microscopic description
of the solvent by a polarizable dielectric medium. Alternatively,
in particular when hydrogen bonding between the solvent and
the solute may exist, it is more realistic to use so-called explicit
models whereby a part of the solvent is treated fully quantum
mechanically, whereas the rest is treated within the polarizable
continuum model. Such a so-called discrete/SCRF approach has
been used over many years23-29 and has been found to provide
reliable estimates of the solvation energy even with a modest
numbers of solvent molecules.29 In the present work, we shall
consider both approaches, that is, the SCRF approach and the
discrete/SCRF approach.

II. Computational Details

We studied the systems shown in Figure 1. All calculations
were performed with the Gaussian03 program suite30 and with
the B3LYP31-33 density functional using a 6-31+G(d,p) basis
set. From the vibrational frequencies it was confirmed that all
obtained structures indeed correspond to stable ones.

Solvent effects were studied by using two different ap-
proaches. In one, only the solute was treated quantum-
mechanically, whereas in the other up to three water molecules
were also treated quantum-mechanically. The (rest of the)
solvent was treated using the integral equation formalism
(IEF)22,34-37 of the polarized continuum model (PCM)34,38,39 of
the SCRF, and the relative dielectric constant of water was set

* To whom correspondence should be addressed. E-mail: s.abdalla@
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equal to 78.39. The molecular cavity was constructed by using
the united atom topological model (UAO), whereby the cavity
gets the shape of interlocking spheres centered on heavy (i.e.,
non-hydrogen) atoms with radii equal to van der Waals radii
scaled by a factor of 1.20.34 In the discrete/SCRF model, the
values of the OFac and RMin parameters for the GEPOL
algorithm40 were changed to 0.8 and 0.5 from 0.89 and 0.2,
respectively.

In both treatments of the solvent, the changes in the total
energy contain more different contributions. One of those is
the change in the total energy of the solute in gas phase when
changing the structure from the optimized one to that in the
solvent. This change is, per construction, always positive.
Another is the electrostatic interaction energy between solvent
and solute which, according to the present calculations, always
is negative. The last contribution is the energy that is needed
for creating the cavity in the solvent. Also, this contribution is
always positive.

In the SCRF calculations, the energy of solvation, ΔEsol,1,
was calculated as the difference between the energy of the
molecule in the continuum and the energy of the molecule in
gas phase,

In this expression, none of the total energies includes zero-point
corrections. Thereby, we assume that the vibrational properties
of the solute change only marginally, so that ΔEsol,1 represents
the experimentally measurably solvation energy (within the
PCM).

On the other hand, in the Discrete/SCRF model, we calculate
the relative energies of solvation, ΔEsol,2, according to

where E(H2O)3, PCM represents the energy of three water molecules
in PCM oriented as found for each complex.

The strength of the intermolecular hydrogen bonds of the
complexes was studied by using the atoms in molecules (AIM)
theory of Bader41 as follows. From the electron density we
identify the bond critical point (BCP) of a hydrogen bond, rbcp.
Subsequently, we calculate F(rbcp) and ∇2F(rbcp). These two
parameters can be used in quantifying the strength of a hydrogen
bond.42 All AIM calculations were carried through using the
AIMPAC series of programs.43-45

III. Results and Discussion

Our main findings about the energetics for all the systems of
our study are collected in Table 1. These include relative
energies (at T ) 0 with the inclusion of zero point corrections),
and solvation energies.

A. Gas Phase Calculations. Previous DFT calculations on
similar systems12,16 have shown that the most stable structures
are stabilized via intramolecular hydrogen bonds (which are
identified by their lengths that are smaller than the sum of the
van der Waals radii of the atoms,46 that is, 2.75, 2.72, 3.00, and
3.00 Å for H · · ·N, H · · ·O, H · · ·P, and H · · ·S interatomic
distances, respectively; for the interatomic distances of the
present systems, see the Supporting Information). This is also
to some extent the case here.

Our DFT calculations show that the phosphino derivatives
of methyl- and phenyl-substituted cyclic imidzoline, oxazoline,
and thiazoline, respectively, may exist in two forms (conformers
A and B, cf. Figure 1). The methyl substitution in all case
stabilizes the A form over the B form by around 3.14-4.41 kJ
mol-1. Moreover, the stability of the sulfur derivative is
characterized by the presence of intramolecular hydrogen
bonding between the hydrogen atoms of the methyl group and
N(3), and the rotation of the methyl group increases the
possibility of forming hydrogen bonds via a “bifurcated”
hydrogen bond, that is, X < (C-H)2. The phenyl substitution
(X ) NH, O) stabilizes the B form by 1.83 and 5.78 kJ mol-1,
respectively, which also is due to hydrogen bonding between

Figure 1. Structures and atom numbering of the tautomers and isomers
of methylphosphino-substituted cyclic imidazoline, oxazoline, and
thiazoline (Me-NH, Me-O, Me-S) and phenylphosphino-substituted
cyclic imidazoline, oxazoline, and thiazoline (Ph-NH, Ph-O, Ph-S).

ΔEsol,1 ) Esolute,PCM - Esolute,gas (1)

ΔEsol,2 ) Ecomplex,PCM - Esolute,gas - E(H2O)3,PCM (2)

TABLE 1: Various Properties As Found in the Gas Phase
(Marked Gas), in the PCM Calculations (Marked PCM),
and in the PCM Calculations with the Inclusion of 3 Explicit
Water Molecules (Marked PCM + 3H2O)a

system isomer
ΔE

(Gas)
ΔE

(PCM)
ΔE

(PCM + 3H2O) ΔEsol,1 ΔEsol,2

Me-NH B 0.00 0.00 0.00 -17.15 3.61
A -4.42 -2.52 -3.85 -15.38 3.44
E 12.49 3.82 -1.25 -25.79 -10.82

Me-O B 0.00 0.00 0.00 -12.34 10.82
A -3.14 -1.57 2.33 -10.58 15.62
E 33.46 20.86 15.62 -24.84 -6.17
Z 31.72 21.69 20.11 -21.95 -0.72

Me-S B 0.00 0.00 0.00 -11.22 16.65
A -4.41 -2.59 6.24 -9.45 21.71
E 23.89 14.77 1.59 -20.19 -7.70
Z 21.24 13.42 3.99 -18.75 -4.77

Ph-NH B 0.00 0.00 0.00 -19.07 -11.76
A 5.78 3.21 2.40 -21.63 -15.00
E 4.01 -4.56 -12.99 -27.72 -29.64

Ph-O B 0.00 0.00 0.00 -15.70 -2.71
A 1.83 1.29 19.52 -16.67 11.94
E 20.47 10.81 12.89 -25.16 -11.94
Z 27.74 15.21 25.26 -27.88 -7.29

Ph-S B 0.00 0.00 0.00 -14.74 16.27
A -0.24 0.39 -10.49 -14.10 11.74
E 13.50 7.44 -9.55 -21.15 -3.78
Z 17.45 8.88 -12.65 -23.08 -9.74

a All quantities, except for the solvation energies, are given
relative to the B isomer. The quantities are E, the total energy at T
) 0 (with the inclusion of zero-point energy), and the two solvation
energies. Energies are given in kJ/mol. Finally, the different isomers
are shown in Figure 1.
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P(6)-H and N(3). For the phenyl phosphino of the sulfur
compound the A conformer is stabilized due to the presence of
intramolecular hydrogen bonding between P(6)-H and S, whose
length is 2.97 Å.

It is worthwhile to mention that when comparing our results
with those for the nitrogen analogues16 we find two factors that
influence the hydrogen bonding, that is, the increase of the bond
length C(2)-P(6) by about 0.5 Å as a result of replacing the
nitrogen atom by the phosphorus in position 6 and the fact that
the phosphorus atom is a weaker proton donor than nitrogen.47,48

The phosphinidene tautomers of the oxygen- and sulfur-based
compounds exist in two geometrical isomers (Z and E). Methyl
substitutions (X ) O, S) stabilize the Z isomer by around 1.74
and 2.66 kJ mol-1, respectively, whereas phenyl substitution
stabilizes the E isomer over the Z one by about 7.27 and 3.95
kJ mol-1, respectively. In the case of phenyl substitution this
stability can be explained through three-center bonds, P(6)-
C(2)-N(3). The considerable elongation (by about 0.4 Å) of
the N(3)-H · · ·S hydrogen bond in the Z isomer of Ph-S
compared to the N(3)-H · · ·O length in the X ) O compound
causes a weakening in the stability of the Z isomer for the sulfur
species.

From the relative energies in Table 1 we see that, in all cases
the phosphino form was found to be more stable than the
phosphinidene form. The stability of the endocyclic double bond
is in agreement with the results obtained by Remko et al. in
their investigation of amino T imino tautomers for the same
cyclic species.16

Our optimized structures in gas phase show that the ring
moieties adopt nonplanar configurations in agreement with
results of previous calculations on the nitrogen-based com-
pounds.16 All molecules have C1 symmetries. In Table 2 we
give the most important geometric parameters of the most stable
isomers. Small differences for the substituted phosphino and
phosphinedene tautomers are found for the C(2)-P(6) bond
length which is shorter by about 0.1 Å, confirming the
tautomerization. The 2-phosphino substituents [P(6)-H group]
are oriented so as to form intramolecular hydrogen bonds,
leading to an increased stability of these isomers. Other
geometric parameters are given in the Supporting Information.

B. Aqueous Solution Calculations. 1. SCRF Calculations.
In this subsection we shall report the results of the calculations
for which the complete solvent was treated within the PCM
approach, that is, no water molecule was treated explicitly. From
the values of the total relative energy, ΔE (see Table 1), we
find that the phosphino forms are the most stable species except
for Ph-NH, for which the phosphinidene tautomer (in the E
form) is the most stable tautomer.

When comparing with the gas phase results, we see that the
relative order of stability of isomers and tautomers in several

cases has changed. For instance, the A isomers of Ph-S are
less preferred in the solution when compared to B. This may
be explained as related to the larger dipole moment of the B
structure, which leads to an attractive interaction with the
polarized continuum. Table 3 lists the dipole moment of the
studied species in gas phase and in aqueous phase. Without
exception, the dipole moment increases when the molecule is
being solvated. The reason is that an increased stabilizing
electrostatic interaction between solvent and solute is thereby
obtained.

Unfortunately, there is no experimental information about the
tautomeric equilibrium in these compounds. Since also no
experimental information on the dipole moment for the mol-
ecules of our structures is available, it may be relevant to
compare with results of theoretical studies on smaller, organic
molecules. For those, the PCM predicts an increase of the dipole
moment by up to 30% in aqueous solution compared to gas
phase values.49

For our compounds, only moderate changes in the geometric
parameters were found when comparing gas-phase and solution
results. In Table 4 we give some of the most important geometric
parameters. Other geometric parameters are available in the
Supporting Information. To get further information about the
effects of the solvent on the solute, the Mulliken net charges50

are given in the Supporting Information. In general, the atomic
charges are only weakly affected by the aqueous media.

2. Discrete/SCRF Calculations. When including three ex-
plicit water molecules in the calculations we obtain the relative
energies listed in Table 1. The inclusion of explicit water
molecules changes the relative order of stability compared to
the results from the gas-phase and the PCM calculations. The
stability of the B form for Me-O is due to the hydrogen bonding
stabilization between the heteroatoms (oxygen and nitrogen) and
the water molecules as well as a contribution from bifurcated

TABLE 2: Selected Bond Lengths (in Å) of the Various Isomers in Gas Phasea

X ) NH X ) O X ) S

A B E E A B Z E A A Z E

bond length Me Ph Me Ph Me Ph Me Ph Me Ph Me Ph

d[X1-C2] 1.399 1.397 1.389 1.385 1.371 1.369 1.363 1.363 1.809 1.809 1.782 1.785
d[C2-N3] 1.285 1.286 1.383 1.375 1.275 1.276 1.387 1.373 1.274 1.272 1.386 1.369
d[N1-H] 1.013 1.013 1.011 1.010
d[X1-C5] 1.475 1.475 1.465 1.465 1.457 1.456 1.449 1.446 1.841 1.842 1.846 1.844
d[C4-C5] 1.550 1.550 1.535 1.537 1.549 1.547 1.529 1.531 1.546 1.547 1.528 1.529
d[N3-C4] 1.479 1.479 1.466 1.464 1.477 1.478 1.462 1.461 1.466 1.465 1.461 1.459
d[C2-P6] 1.851 1.852 1.738 1.747 1.846 1.850 1.724 1.733 1.848 1.856 1.722 1.732
d[N3-H] 1.009 1.010 1.011 1.011 1.013 1.013
d[P6-C7] 1.860 1.857 1.886 1.860 1.863 1.852 1.881 1.865 1.865 1.846 1.878 1.864
d[P6-H] 1.424 1.416 1.422 1.416 1.423 1.419

a For the atom numbering, see Figure 1.

TABLE 3: Dipole Moment (in Debye) for the Various
Structures (cf. Fig. 1) in Gas Phase and As Found in
Aqueous Solution Using the PCM

isomer gas phase (μ) PCM (μ) isomer gas phase (μ) PCM (μ)

Me-NH Ph-NH
B 2.31 3.57 B 3.79 5.09
A 1.66 3.77 A 3.09 3.91
E 4.45 6.31 E 4.77 6.76

Me-O Ph-O
B 2.14 2.65 B 2.32 2.91
A 1.58 1.94 A 1.69 2.04
E 5.21 7.29 E 5.34 7.52
Z 4.49 6.27 Z 5.09 7.04

Me-S Ph-S
B 1.87 2.09 B 1.98 2.53
A 1.53 1.89 A 1.79 2.18
E 4.86 6.85 E 4.99 7.10
Z 3.74 5.35 Z 4.18 5.83
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hydrogen bonding between the hydrogen atoms of the methyl
group and the oxygen of the water molecules. For Ph-O, there
is hydrogen bonding involving the R hydrogen of the phenyl
ring in addition to hydrogen bond between the explicit water
molecules. The fact that phosphorus has a lower tendency to

act as the proton donor in hydrogen bonding explains why the
oxygen of the water molecule prefers to form hydrogen bonding
with the hydrogen atoms of the methyl group or with R phenyl
hydrogen. Figure 2 shows the structures including hydrogen
bonding for the most stable species.

Figure 2. Molecular geometries of the most stable complexes as found in solution with the inclusion of three explicit water molecules.

TABLE 4: Selected Bond Lengths (in Å) As Found in the PCM Calculationsa

X ) NH X ) O X ) S

A B E E A B E E A B Z E

bond length Me Ph Me Ph Me Ph Me Ph Me Ph Me Ph

d[X1-C2] 1.394 1.390 1.371 1.365 1.369 1.365 1.362 1.359 1.809 1.808 1.780 1.785
d[C2-N3] 1.289 1.290 1.379 1.374 1.276 1.278 1.364 1.358 1.273 1.275 1.372 1.357
d[N1-H] 1.015 1.014 1.011 1.012
d[X1-C5] 1.477 1.476 1.469 1.469 1.461 1.461 1.454 1.456 1.842 1.842 1.847 1.846
d[C4-C5] 1.548 1.548 1.535 1.536 1.548 1.547 1.529 1.531 1.545 1.544 1.527 1.528
d[N3-C4] 1.483 1.483 1.468 1.468 1.479 1.481 1.465 1.464 1.469 1.469 1.463 1.463
d[C2-P6] 1.849 1.853 1.754 1.764 1.847 1.851 1.738 1.745 1.856 1.856 1.733 1.740
d[N3-H] 1.014 1.013 1.011 1.012 1.016 1.013
d[P6-C7] 1.863 1.852 1.885 1.858 1.861 1.849 1.884 1.861 1.846 1.848 1.879 1.861
d[P6-H] 1.424 1.417 1.421 1.417 1.419 1.418

a The numbering of the atoms is given in Figure 1.
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The hydrogen acceptor and donor distances are listed for the
most stable complexes in Table 5. Our calculations gave that
not all hydrogen bonds contribute to the stability of the
compounds, and that, instead, in some cases hydrogen bonding
between the explicit water molecules was formed. It was, on
the other hand, important that the number of explicit water
molecules is sufficiently large so that they can surround the
hydrophilic regions of the compound.

3. Analysis of Intermolecular Hydrogen Bond Using AIM
Theory. One geometrical parameter that can be used in
characterizing hydrogen bonds is the distance between the proton
and the acceptor atom, which should be shorter than the sum
of their van der Waals radii.46 Alternatively, one may used
parameters based on Bader’s AIM theory, according to which
properties of the electron density, that is, F(rbcp) and ∇2F(rbcp), at
the bond critical point rbcp are relevant. It has been found that
F(rbcp) and ∇2F(rbcp) should lie in the ranges 0.002-0.035 au and
0.024-0.139 au, respectively, for a hydrogen bond.42

In Table 5 we present our results for the analysis of the
intermolecular hydrogen bonds for our most stable complexes.
It is seen that the values of F(rbcp) are within the above range,
but for the case of the Laplacian ∇2F(rbcp) some values are
smaller than what is usually found, suggesting that these
interactions at most can be characterized as weak hydrogen
bonds.

4. Free Energies of SolWation. The free energies of solvation
predicted from the PCM-SCRF calculations (i.e., ΔEsol,1 and
ΔEsol,2, respectively) are listed in Table 1.

The solvation of the phosphino tautomer of the methyl
substitution is generally less favored according to the discrete/
SCRF model, whereas for the phenyl substitution the phosphino
tautomers of the sulfur species show a lower solubility when
explicit water molecules are included. The A conformer of
Ph-O is unsolvable according to the calculations with three
explicit water molecules. The results of such calculations are
strongly affected by the number of the explicit water molecules
around the solute51,52 that can form strong hydrogen bonding.
It is easy to recognize from our model that not all intermolecular
hydrogen bonding in our discrete/SCRF calculations contribute
to the stability of the complexes except for the phoshinidene
tautomer of Ph-NH. This might be attributed to the problems

related to the construction of the cavity that is not the most
appropriate approach when studying aggregation in solution.53

From extra calculations with just one explicit water molecule
placed at various positions near to the solute, we found that
not all the hydrogen bonds are stable.

IV. Conclusions

In this study we used the B3LYP/6-31+G(d,p) approach to
calculate the properties of a set of related molecules both in
gas phase and in aqueous solution. Special emphasis was put
on relative energies and solvation energies. The calculated
tautomers showed a large preference for the phosphino tautomer
in gas phase relative to phosphinidene one. In studying the
effects of the solvent we studied two different approaches, that
is, the PCM-SCRF and the discrete/SCRF method.

Our main findings concerning the energetics are summarized
in Figure 3. We see that the order of stability of the isomers
changes when comparing the gas phase with the aqueous phase.
Moreover, there are clear differences between the results of the

TABLE 5: Hydrogen Bond (HB) Distances, RH · · ·Y (in Å), As Well As the Electron Density G(rbcp) and Its Laplacian ∇2G(rbcp) at
the Hydrogen-Bond Critical Points in Atomic Unita

system isomer HB RH · · ·Y F(rbcp) ∇2F(rbcp) system isomer HB RH · · ·Y F(rbcp) ∇2F(rbcp)

Me-NH A N1 · · ·Hw 2.01 0.028 0.086 Ph-NH B N1 · · ·Hw 2.03 0.016 0.054
C7sH · · ·Ow 2.51 0.024 0.023 C8sH · · ·Ow 2.42 0.015 0.031

E N1 · · ·Hw 2.00 0.019 0.067 Ow · · ·Hw 1.79 0.029 0.056
P6 · · ·Hw 2.45 0.019 0.031 E P6 · · ·Hw 2.36 0.056 -0.001
N3sH · · ·Ow 1.96 0.021 0.081 N3sH · · ·Ow 1.98 0.029 0.066

N1sH · · ·Ow 1.91 0.026 0.077
Ow · · ·Hw 1.79 0.035 0.101
N3 · · ·Hw 1.79 0.026 0.089

Me-O B O1 · · ·Hw 1.97 0.021 0.066 Ph-O B O1 · · ·Hw 1.99 0.021 0.065
N3 · · ·Hw 1.89 0.003 0.009 N3 · · ·Hw 1.82 0.024 0.090
C7sH · · ·Ow 2.52 0.006 0.023 C8sH · · ·Ow 2.37 0.020 0.037

E O1 · · ·Hw 1.98 0.008 0.023 Ow · · ·Hw 1.79 0.032 0.099
P6 · · ·Hw 2.49 0.005 0.012 E O1 · · ·Hw 2.11 0.013 0.055
N3sH · · ·Ow 1.91 0.017 0.078 P6 · · ·Hw 2.44 0.027 0.043

N3sH · · ·Ow 1.91 0.029 0.083
Ow · · ·Hw 1.89 0.024 0.069

Me-S B S1 · · ·Hw 2.54 0.006 0.021 Ph-S A P6sH · · ·Ow 2.44 0.022 0.023
P6sH · · ·Ow 2.65 0.002 0.008 N3 · · ·Hw 1.92 0.029 0.019
N3 · · ·Hw 1.98 0.039 0.093 C8sH · · ·Ow 2.49 0.015 0.019
Ow · · ·Hw 1.92 0.033 0.096 Ow · · ·Hw 1.87 0.004 0.014

E S1 · · ·Hw 2.69 0.007 0.029 Z S1 · · ·Hw 2.56 0.019 0.028
P6 · · ·Hw 2.42 0.003 0.023 N3sH · · ·Ow 1.87 0.029 0.085
N3sH · · ·Ow 1.95 0.021 0.072 Ow · · ·Hw 1.79 0.029 0.096
Ow · · ·Hw 1.85 0.003 0.006

a The subscript “w” marks atoms from the water molecules, whereas the other atoms are numbered according to Figure 1.

Figure 3. The relative energies for the various systems as found in
gas phase, using the PCM model, and with the PCM model plus 3
explicit water molecules. The energies are given relative to the B isomer
(dark circles). Stars, white circles, and dark triangles mark the A, E,
and Z isomers, respectively.
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pure PCM calculations and those of the calculations that include
three explicit water molecules except for Ph-NH, where the
order of stability in solution is unchanged independent of the
model adopted. From additional calculations with three water
molecules in the gas phase, we found that the problem related
to the construction of the cavity is the reason behind the
unstability of the hydrogen bonds, implying that the pure PCM
approach is too inaccurate for the present type of systems. The
figure also indicates that the phosphino isomers respond
differently from the phosphinidene isomers.

Some of our results could be correlated to the dipole moment.
We demonstrate this further in Figure 4, where we show the
relative energies and the solvation energies from the PCM
calculations as functions of the dipole moment in the gas phase
and in the PCM approach. The relative free energies have no
common energy scale when comparing the different systems,
but even when just looking at one of the isomers there is hardly
a correlation between this quantity and any of the dipole
moments. This is different when looking at the energy of
solvation. Here, we clearly see a correlation between dipole
moment and stability of the system in solution, irrespectively
of whether we use the gas phase or the PCM value for the dipole
moment. When studying the molecular geometries we found
only smaller differences between gas phase and aqueous phase.
These could also be used in clearly identifying hydrogen
bonding between the solute and explicit water molecules around
the hydrophilic region of the solute. From the analysis of the
properties of the electron density at hydrogen bond critical point
we found that some intermolecular hydrogen bonds at most are
weak hydrogen bonds.

Finally, the calculations of the free energies of solvation
indicate that the selected hydrophilic regions are not the
preferred solvation sides.
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TABLE I: Selected optimized geometries of the isomer studied in gas phase. For the structures of

isomers see Fig. 1; bond lengths are in Å; X=NH, O and S mark the various species; A and B refer

to the Phosphino forms whereas E and Z refer the Phosphinidene forms.

X=NH X=O X=S

A B E E A B Z E A A Z E

Parameter Me Ph Me Ph Me Ph Me Ph Me Ph Me Ph

Θ[C2 − X1 − C5] 106.14 105.92 110.29 110.57 106.11 105.88 109.34 109.27 88.58 88.56 92.27 91.64

Θ[X1 − C5 − C4] 100.53 100.59 100.58 100.59 103.68 103.46 103.56 103.68 104.61 104.54 104.04 103.94

Θ[C2 − N1 − H] 117.69 117.39 117.27 117.94

Θ[X1 − C2 − C3] 116.20 116.49 106.43 106.53 118.53 118.51 108.19 108.49 117.32 117.41 108.79 109.14

Θ[C5 − C4 − N3] 105.65 105.56 100.57 100.56 104.93 104.73 99.09 99.21 110.11 110.05 104.43 104.62

Θ[C2 − N3 − C4] 106.42 106.21 110.75 111.13 106.75 106.44 109.19 110.33 112.79 112.73 114.84 116.74

Θ[X1 − C2 − P6] 119.59 120.15 124.21 123.21 114.87 114.69 125.44 119.55 119.48 119.88 127.44 120.89

Θ[C2 − P6 − C7] 100.43 100.65 99.21 99.47 99.77 100.84 99.68 97.83 100.39 101.69 101.16 99.08

Θ[C2 − P6 − H] 95.59 94.37 93.18 93.83 95.49 95.74

Θ[C2 − N3 − H] 118.23 118.62 117.29 118.46 116.03 117.48

Φ[C2 − X1 − C5 − C4] 20.94 21.23 −28.99 27.74 0.88 8.75 −20.78 21.75 20.44 −20.29 −23.41 27.32

Φ[C5 − C4 − N3 − C2] 13.66 14.14 −27.21 26.64 0.61 7.16 −30.91 27.36 20.50 −21.38 −41.16 34.93

Φ[X1 − C2 − N3 − C4] 0.26 −0.06 10.09 −10.28 −0.04 −1.69 19.93 −15.57 −3.62 4.65 23.14 −13.93

Φ[X1 − C5 − C4 − N3] −21.02 −21.51 32.06 −30.89 −0.91 −9.67 30.09 −28.41 −26.76 27.10 37.91 −37.45

Φ[X1 − C2 − P6 − C7] 162.79 −53.93 −179.26 178.04 154.69 −67.78 3.35 177.23 141.35 −124.49 4.23 175.06

Φ[X1 − C2 − P6 − H] 62.66 −153.25 54.42 −166.96 41.13 −25.44

Φ[C2 − P6 − C7 − C8] 114.31 −116.56 110.99 109.13 −88.67 −106.06

Φ[C5 − C4 − N3 − H] −170.33 173.76 −170.23 173.44 176.54 −172.16

Φ[N3 − C2 − N1 − H] −149.52 −149.14 153.99 −155.59

d[P6 − H...N3] 3.56 2.78 3.53 2.76 3.57 3.63

d[P6 − H...X1] 3.05 3.69 2.83 3.65 3.06 2.97

d[C7,8 −H...X1] 4.22 4.05 4.32 5.13 4.12 3.86 2.91 4.96 4.40 5.41 3.09 5.28

d[C7,8 −H...N3] 2.89 5.29 2.89 4.39 2.99 5.24 4.34 4.23 2.98 3.40 4.35 4.18

The optimized geometries of the most stable isomers in gas phase and in solution as well

as the Mulliken gross populations are collected in this part.
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TABLE II: Selected optimized geometries of the isomer studied in continuum model. The notation

is as in Table I.
X=NH X=O X=S

A B E E A B E E A B Z E

Parameter Me Ph Me Ph Me Ph Me Ph Me Ph Me Ph

Θ[C2 − X1 − C5] 106.23 106.26 111.07 111.27 106.21 106.24 109.16 109.19 88.71 88.59 92.22 91.61

Θ[X1 − C5 − C4] 100.68 100.51 100.80 100.85 103.57 103.58 103.68 103.70 104.41 104.66 104.09 103.99

Θ[C2 − N1 − H] 117.93 118.54 119.98 119.86

Θ[X1 − C2 − C3] 116.29 116.32 107.05 107.25 118.44 118.54 108.84 109.06 117.19 117.33 109.12 109.35

Θ[C5 − C4 − N3] 105.62 105.49 100.81 100.86 104.97 104.94 99.51 99.53 110.07 110.02 104.75 104.94

Θ[C2 − N3 − C4] 106.29 106.13 110.52 110.84 106.77 106.67 110.93 111.14 112.73 112.77 115.89 117.43

Θ[X1 − C2 − P6] 119.99 120.39 128.97 129.93 114.51 114.96 119.48 118.67 119.12 120.02 126.56 120.45

Θ[C2 − P6 − C7] 100.71 101.63 99.91 100.79 100.56 101.64 99.21 99.25 102.49 102.27 101.43 99.96

Θ[C2 − P6 − H] 96.09 94.59 95.32 94.14 95.44 95.14

Θ[C2 − N3 − H] 118.53 119.23 120.86 120.53 117.79 119.02

Φ[C2 − X1 − C5 − C4] 20.70 21.38 −25.15 24.51 −1.96 1.39 −21.85 −20.83 −20.69 20.54 −23.92 27.3

Φ[C5 − C4 − N3 − C2] 13.16 14.19 −27.08 25.53 −1.67 1.24 −24.67 −24.15 −21.49 20.56 −37.93 32.06

Φ[X1 − C2 − N3 − C4] 0.59 −0.06 12.36 −11.19 0.45 −0.38 12.55 12.62 4.39 −3.62 19.49 −11.01

Φ[X1 − C5 − C4 − N3] −20.54 −21.53 29.64 −28.30 2.19 −1.59 27.43 25.82 26.22 −26.83 36.44 −35.87

Φ[X1 − C2 − P6 − C7] −145.67 −52.90 1.37 0.46 −152.69 −63.15 −178.39 −178.04 −127.30 42.25 4.39 175.29

Φ[X1 − C2 − P6 − H] −45.41 −152.77 −52.19 −162.83 −27.63 142.21

Φ[C2 − P6 − C7 − C8] 114.27 −122.774 109.66 −72.83 73.44 −105.96

Φ[C5 − C4 − N3 − H] −169.99 171.18 −175.48 −176.78 173.59 −168.62

Φ[N3 − C2 − N1 − H] −149.68 −151.03 156.62 −159.38

d[P6 − H...N3] 3.59 2.79 3.54 2.78 3.63 2.84

d[P6 − H...X1] 2.89 3.68 2.81 3.64 2.96 4.03

d[C7,8 −H...X1] 4.46 4.07 2.94 4.45 4.45 3.83 4.32 4.46 4.22 4.18 3.08 5.29

d[C7,8 −H...N3] 2.99 5.31 4.35 2.94 3.06 5.24 2.99 3.27 3.88 4.13 3.34 4.20
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TABLE III: The Optimzed Atomic Coordinates in Gas Phase

Me-NH(A) X Y Z Me-O(A) X Y Z Me-S(A) X Y Z

N1 1.123628 -1.087656 0.235347 O1 1.024909 -1.113742 0.146693 S1 1.196383 -1.201328 0.253610

C2 0.114883 -0.145179 0.007399 C2 0.116317 -0.108611 -0.059564 C2 -0.101209 0.006900 -0.108427

N3 0.495525 1.077047 -0.107319 N3 0.547091 1.084605 -0.189147 N3 0.251900 1.224633 -0.232392

C4 1.967181 1.072655 0.044391 C4 2.017279 1.021885 -0.067260 C4 1.679166 1.432075 0.031818

C5 2.396025 -0.411524 -0.081811 C5 2.336437 -0.479551 0.146027 C5 2.446771 0.098504 -0.117371

P6 -1.639475 -0.708671 -0.171397 P6 -1.629730 -0.670874 -0.265459 P6 -1.827228 -0.577025 -0.416912

C7 -2.538269 0.897309 0.098195 C7 -2.524150 0.867867 0.284588 C7 -2.794740 0.759601 0.451847

Me-NH(E) X Y Z Me-O(Z) X Y Z Me-S(Z) X Y Z

N1 0.507448 1.017448 0.089658 O1 0.436702 1.017068 0.001367 S1 -0.513161 -1.247320 0.034347

C2 -0.001176 -0.262422 -0.036902 C2 0.006951 -0.274847 -0.069469 C2 0.149803 0.403267 -0.067197

N3 1.093304 -1.111606 -0.142575 N3 1.117885 -1.093792 -0.203114 N3 -0.899387 1.297903 -0.207893

C4 2.322066 -0.404260 0.224415 C4 2.305193 -0.370706 0.248632 C4 -2.188310 0.813303 0.279027

C5 1.949983 1.031387 -0.172286 C5 1.879448 1.050416 -0.124760 C5 -2.244777 -0.643792 -0.178424

P6 -1.655708 -0.793754 -0.056874 P6 -1.637781 -0.786067 -0.003348 P6 1.805927 0.871675 -0.008590

C7 -2.512206 0.879600 0.101628 C7 -2.487324 0.890175 0.069542 C7 2.655133 -0.802152 0.048273

TABLE IV: The Optimzed Atomic Coordinates in Gas Phase

Ph-NH(B) X Y Z Ph-O(B) X Y Z Ph-S(A) X Y Z

N1 -1.642777 -0.611233 -0.959029 O1 -1.742194 -0.408772 -1.055716 S1 2.707740 -0.944482 -0.473629

C2 -1.657638 0.401961 0.002739 C2 -1.656899 0.395804 0.049352 C2 1.351202 -0.077697 0.352327

N3 -2.712994 0.484323 0.732722 N3 -2.540815 0.273389 0.961652 N3 1.403575 1.192828 0.387949

C4 -3.616553 -0.593878 0.275323 C4 -3.487669 -0.758972 0.490936 C4 2.538773 1.733882 -0.364164

C5 -2.740127 -1.528475 -0.597359 C5 -2.845143 -1.323312 -0.798475 C5 3.628526 0.649447 -0.532651

P6 -0.319562 1.681852 0.026269 P6 -0.310631 1.663253 -0.019567 P6 0.023999 -1.046712 1.214645

C7 1.188467 0.600519 0.089708 C7 1.190354 0.581492 0.057838 C7 -1.500472 -0.406962 0.392903

Ph-NH(E) X Y Z Ph-O(E) X Y Z Ph-S(E) X Y Z

N1 -1.431897 -0.930159 0.234973 O1 -2.866937 0.694487 -0.081443 S1 3.018408 -0.729037 0.009344

C2 -1.555881 0.407448 -0.057120 C2 -1.540407 0.381616 -0.088037 C2 1.274450 -0.355082 -0.068944

N3 -2.911850 0.688313 -0.049598 N3 -1.411594 -0.972596 0.095938 N3 1.098326 0.995617 0.069970

C4 -3.693732 -0.550032 -0.029220 C4 -2.662925 -1.538410 0.593594 C4 2.244562 1.762069 0.548967

C5 -2.708553 -1.494530 0.677009 C5 -3.643787 -0.522240 0.001693 C5 3.459129 1.060239 -0.058363

P6 -0.330922 1.611697 -0.375766 P6 -0.367130 1.637156 -0.313373 P6 0.104298 -1.611718 -0.295326

C7 1.191411 0.563662 -0.163087 C7 1.164685 0.588954 -0.132408 C7 -1.451113 -0.597768 -0.125821
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TABLE V: Optimized Atomic Coordinates in the Polarized Continuum Model

Me-NH(A) X Y Z Me-O(A) X Y Z Me-S(A) X Y Z

N1 -1.075241 -1.118611 0.043100 O1 -1.015375 -1.108296 0.159905 S1 -1.176058 -1.201887 0.263806

C2 -0.114362 -0.123422 -0.126910 C2 -0.118063 -0.098588 -0.065379 C2 0.099808 0.020956 -0.125432

N3 -0.556473 1.079748 -0.265642 N3 -0.562597 1.089214 -0.206363 N3 -0.276121 1.231784 -0.256629

C4 -2.033804 0.992570 -0.177980 C4 -2.033633 1.014451 -0.062288 C4 -1.704605 1.418753 0.031766

C5 -2.336081 -0.423366 0.370629 C5 -2.338583 -0.487928 0.150043 C5 -2.453264 0.074532 -0.101368

P6 1.659327 -0.584025 -0.378653 P6 1.628668 -0.659196 -0.277158 P6 1.830170 -0.545034 -0.444600

C7 2.509864 0.820502 0.500678 C7 2.545034 0.853834 0.301406 C7 2.802323 0.735800 0.497575

Me-NH(E) X Y Z Me-O(E) X Y Z Me-S(Z) X Y Z

N1 0.510277 1.013025 0.081819 O1 1.024969 -1.139344 -0.077436 S1 -0.506633 -1.240601 0.057489

C2 0.011066 -0.259022 -0.035576 C2 0.008745 -0.236003 0.001011 C2 0.141479 0.414133 -0.049303

N3 1.091749 -1.109723 -0.136475 N3 0.539342 1.014397 0.124140 N3 -0.901109 1.298304 -0.171239

C4 2.334014 -0.407064 0.208774 C4 1.975933 1.004116 -0.164828 C4 -2.211650 0.802859 0.249771

C5 1.960030 1.035747 -0.157907 C5 2.288033 -0.458349 0.157258 C5 -2.239556 -0.655803 -0.202661

P6 -1.660682 -0.791166 -0.051195 P6 -1.636850 -0.794027 -0.041559 P6 1.812536 0.873140 -0.009978

C7 -2.532501 0.873636 0.092700 C7 -2.520951 0.867041 0.047685 C7 2.658409 -0.803871 0.025936

TABLE VI: Optimized Atomic Coordinates in the Polarized Continuum Model

Ph-NH(B) X Y Z Ph-O(B) X Y Z Ph-S(B) X Y Z

N1 -1.657312 -0.627658 -0.935809 O1 -1.696941 -0.604385 -0.928142 S1 1.422215 -1.228702 -0.374834

C2 -1.664920 0.395377 0.005478 C2 -1.662086 0.388324 0.008702 C2 1.479506 0.552270 -0.068557

N3 -2.732575 0.506175 0.721467 N3 -2.599363 0.443134 0.875080 N3 2.555929 1.027459 0.421422

C4 -3.648738 -0.566897 0.263929 C4 -3.522976 -0.673855 0.572760 C4 3.547961 -0.011803 0.729654

C5 -2.773901 -1.525303 -0.579849 C5 -2.889605 -1.398440 -0.638234 C5 3.238973 -1.292969 -0.075008

P6 -0.311212 1.660844 0.025544 P6 -0.307784 1.630054 -0.218862 P6 0.075019 1.634359 -0.617897

C7 1.199406 0.590847 0.085533 C7 1.200390 0.579068 -0.013298 C7 -1.402106 0.627266 -0.151611

Ph-NH(E) X Y Z Ph-O(E) X Y Z Ph-S(E) X Y Z

N1 -1.476587 -0.917112 0.279869 O1 2.864879 0.724327 -0.110386 S1 3.017510 -0.750576 0.002836

C2 -1.576185 0.401758 -0.058306 C2 1.553763 0.368397 -0.082904 C2 1.282119 -0.340628 -0.066850

N3 -2.913549 0.713556 -0.092510 N3 1.460528 -0.960099 0.181765 N3 1.127391 0.996939 0.110676

C4 -3.735262 -0.501535 -0.024429 C4 2.743252 -1.498999 0.638336 C4 2.296059 1.760020 0.552455

C5 -2.775795 -1.459567 0.698162 C5 3.687813 -0.470614 0.011448 C5 3.496144 1.032430 -0.054661

P6 -0.310042 1.584872 -0.387134 P6 0.346989 1.594710 -0.375884 P6 0.092270 -1.587120 -0.314547

C7 1.209271 0.540022 -0.161572 C7 -1.186688 0.564079 -0.153883 C7 -1.465593 -0.584359 -0.130362
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TABLE VII: Mulliken net charges of the atoms in gas phase and in aqueous phase.

System Medium Isomer X C2 C4 C5 P6 N3 C7

Me-NH Gas Phase E -0.307 -0.279 -0.176 -0.147 0.082 -0.330 -0.653

A -0.346 -0.089 -0.172 -0.241 0.367 -0.250 -0.663

PCM-SCRF E -0.292 -0.273 -0.179 -0.143 0.206 -0.327 -0.681

A -0.379 -0.003 -0.162 -0.264 0.325 -0.327 -0.646

Me-O Gas Phase Z -0.294 -0.197 -0.163 -0.048 0.222 -0.299 -0.652

A -0.319 0.017 -0.212 -0.084 0.368 -0.244 -0.655

PCM-SCRF Z -0.299 -0.184 -0.179 -0.044 0.118 -0.307 -0.629

A -0.339 0.026 -0.207 -0.085 0.349 -0.285 -0.653

Me-S Gas Phase Z 0.283 -0.619 -0.122 -0.477 0.272 -0.165 -0.688

A 0.151 -0.332 -0.226 -0.453 0.400 -0.102 -0.645

PCM-SCRF Z 0.266 -0.622 -0.132 -0.468 0.187 -0.175 -0.664

A 0.122 -0.329 -0.214 -0.444 0.377 -0.138 -0.645

Ph-NH Gas Phase E -0.255 -0.430 -0.173 -0.166 0.314 -0.255 -0.580

B -0.231 -0.352 -0.228 -0.177 0.485 -0.192 -0.415

PCM-SCRF E -0.271 -0.371 -0.172 -0.179 0.186 -0.265 -0.749

B -0.252 -0.302 -0.229 -0.168 0.446 -0.285 -0.390

Ph-O Gas Phase E -0.271 -0.296 -0.197 -0.033 0.369 -0.250 -0.472

B -0.249 -0.287 -0.289 -0.006 0.502 -0.151 -0.305

PCM-SCRF E -0.292 -0.262 -0.206 -0.035 0.246 -0.255 -0.593

B -0.269 -0.227 -0.274 -0.026 0.475 -0.226 -0.291

Ph-S Gas Phase E 0.211 -0.609 -0.196 -0.440 0.288 -0.079 -0.267

A 0.172 -0.527 -0.239 -0.469 0.552 -0.045 -0.158

PCM-SCRF E 0.156 -0.579 -0.195 -0.428 0.185 -0.081 -0.345

A 0.115 -0.529 -0.211 -0.452 0.502 -0.057 -0.143
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a b s t r a c t

Results of B3LYP/6-31+G(d,p) calculations are reported. Special emphasis is put on the effect of the envi-
ronment on relative stability and structures of different isomers and tautomers of methylamino- and
phenylamino-substituted cyclic azaphospholine, oxaphospholine and thiaphospholine in gas and aque-
ous phases. In the gas phase, the imino forms are found to be the most stable species for the cyclic aza-
phospholines and thiaphospholines, whereas for oxaphospholines, the amino species are predicted to be
more stable. The calculations in the aqueous media were done by considering two different models, i.e.,
the PCM–SCRF and the Microsolvated/SCRF model. It is found that solvation shifts the stability towards
the amino forms, except for the phenyl-substituted cyclic azaphospholine and thiaphospholine, for which
the imino forms are more stable in solution. The molecular geometries change only little when going
from the gas phase to the aqueous phase. The stability in gas phase and in PCM–SCRF is attributed to
the presence of intramolecular hydrogen bonding. In the Microsolvated/SCRF model, the presence of
intermolecular hydrogen bonds affects the relative stability of tautomers and isomers.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Tautomeric equilibrium in heterocyclic systems has for a long
time been of significant interest and importance [1], and it has
accordingly been studied also theoretically using very many differ-
ent theoretical methods ranging from semiempirical molecular
orbital methods [2,3] to more sophisticated calculations that may
include electron correlation [4,5]. As one important class of com-
pounds, the effect of solvation on the tautomeric equilibrium of
five-membered ring heterocyclic systems has been subject of many
studies [2,6–8]. Through studies of the tautomerism in different
environment it has been found that the environment is important
for the relative stability of various tautomers.

During the last two decades, results of several studies on com-
pounds containing the amidine group, –NH–C(R)@N–, have been
reported [9–16]. As a natural extension of those we have recently
started a theoretical study of the isoelectronic systems containing
the –PH–C(R)@N– group obtained by replacing a single nitrogen
atom by a phosphorous atom [17]. The present study is a continu-
ation of this work.

Organophosphorus compounds have been found to be impor-
tant in many different fields. This includes, for examples, as lubri-

cants, oil additives, water treatment cleaners, flame retarding
agents, fertilizers, plasticizers and pesticides [18,19]. Phosphorus
and organophosphorus compounds have also been recognized to
have important biological functions. For instance, they are essen-
tial constituents of the protoplasm [20].

The possibility of placing a proton either at the nitrogen or at
the phosphorus atom, an issue that has direct relevance to this
work, has earlier been investigated by Kolodiazhnyi et al. [21] for
some other, related compounds. They concluded that the tauto-
meric equilibrium depends on the nature of the solvent and on
the substituents at the nitrogen and phosphorous atoms. The tau-
tomerization process in gas phase depends on the proton affinities
of the proton donor and acceptor as well as the distances between
those. In aqueous solution the process may be influenced by the
presence of water molecules, which may provide additional proton
acceptors and donors. In the present study we shall, however, not
study proton transfer mechanisms, but instead the relative stabil-
ity between tautomers in gas phase and in solution.

We shall report results of a theoretical investigation of themeth-
ylamino- and phenylamino-substituted cyclic azaphospholine, oxa-
phospholine, and thiaphospholine and their imino tautomers, both
in gas phase and in aqueous solution. In particular we shall focus
on how the relative stability and the molecular geometries change
upon solvation. Earlier, the cyclic moieties, azaphospholine, oxa-
phospholine, and thiaphospholine, have been the studied by Cyrañ-
ski et al. [22] who focused on their aromatic properties.
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Over the years many different approaches have been suggested
for the study of solvation effects [23,24]. These methods include
the self consistent reaction field (SCRF) continuum models. These
so called implicit methods treat the effects of the solvent as those
of a polarizable continuum with a given dielectric constant and
with a cavity that is occupied by the solute. Alternatively, the
inclusion of explicit solvent molecules can be important and neces-
sary, in particular when hydrogen bonding between solvent and
solute takes place. In that case a quantum-mechanical treatment
of some few solvent molecules is useful and, in fact, such combined
Microsolvated/SCRF approaches have been used over many years
[25–31] . It has been found that they provide accurate estimates
of solvation energy even with a modest number of solvent mole-
cules [31].

In the present work we will consider both approaches, i.e., the
SCRF approach and the Microsolvated/SCRF approach. Our aim is
to explore the changes in the relative total energies and in the
structures when the compounds are solvated.

The paper is organized as follows. Section 2 outlines the compu-
tational details. In Section 3, we present our results. Finally, the
conclusions of the work are presented in Section 4.

2. Computational details

We carried gas phase, SCRF–PCM, and Microsolvated/SCRF cal-
culations for different isomers and tautomers shown in Fig. 1. For
the sake of simplicity we shall label the systems as Me–NH, Me–
O, Me–S, Ph–NH, Ph–O, and Ph–S, respectively, where Me and Ph
gives whether R in the figure is a methyl or a phenyl group, and
where NH, O, and S represent X in the figure. In the calculations
we used the Becke three parameter Lee–Yang–Parr (B3LYP) func-
tional [32–34] together with the 6-31+G(d,p) basis set. All calcula-
tions were performed with the Gaussian 03 program package [35].

For the study of the influence of the solvent we considered two
different models, i.e., the PCM–SCRF model whereby the solute is
embedded inside a cavity surrounded by a continuum representing
the water solvent, and the Microsolvated/SCRF method with which
some (i.e., 3) explicit solvent molecules are treated quantum-
mechanically. In the latter case, the three water molecules were
placed around the hydrophilic regions of the solute as a first solva-
tion shell, whereas the other solvent molecules were treated
through the continuum model. The Integral Equation Formalism
(IEF) [24,36–39] of the polarized continuum model (PCM)
[36,40,41] of the self consistent reaction field (SCRF) was used to
treat the continuum in both solvation models. For water we used
a dielectric constant of 78.39.

For the construction of the cavity we used the United Atom
Topological model (UAO) whereby the cavity is constructed
through interlocking spheres centered on the heavy (that is, non-
hydrogen) atoms. The radii were obtained by scaling the corre-
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Fig. 1. Structure and atom numbering of the tautomers and isomers of methyl-
amino-substituted cyclic azaphospholine, oxaphospholine, and thiaphospholine
(Me–NH, Me–O, and Me–S) and phenylamino-substituted cyclic azaphospholine,
oxaphospholine, and thiaphospholine (Ph–NH, Ph–O, and Ph–S).

Table 1
Energy differences (DE, in kJ/mol) as found in the gas phase (marked gas), in the PCM
calculations (marked PCM), and in the PCM calculations with the inclusion of three
explicit water molecules (marked PCMþ 3H2O) as well as the two solvation energies
(at T ¼ 0 K). All quantities, except for the solvation energies, are given relative to
those of the B isomer and include zero-point energies. Finally, the different isomers
are shown in Fig. 1.

System Isomer DE DEsol;1 DEsol;2

Gas PCM PCM + 3H2O

Me–NH B 0.00 0.00 0.00 �26.12 �9.69
A �6.60 �8.07 �16.86 �26.44 �18.51
E �9.82 �1.59 �0.18 �18.43 2.96
Z �17.10 �5.19 �19.72 �14.10 �9.98

Me–O B 0.00 0.00 0.00 �16.99 �8.59
A �8.47 �7.09 2.09 �15.86 4.12
E �3.96 0.48 23.14 �13.62 15.14
Z 2.63 2.35 20.13 �18.11 6.89

Me–S B 0.00 0.00 0.00 �15.54 �4.89
A �9.31 �8.81 �0.03 �20.09 6.91
E �3.77 �1.00 24.05 �13.46 20.27
Z �11.42 �7.12 12.87 �12.18 23.29

Ph–NH B 0.00 0.00 0.00 �24.04 �23.43
A 0.33 �5.57 �0.29 �30.29 �22.54
E �17.55 �8.15 14.47 �15.06 7.13
Z �22.27 �19.12 �14.50 �21.15 �16.60

Ph–O B 0.00 0.00 0.00 �18.59 �12.38
A �8.55 �7.44 0.34 �17.63 �5.14
E �7.89 0.39 22.52 �10.89 �16.72
Z �5.42 �3.12 3.86 �16.83 �3.74

Ph–S B 0.00 0.00 0.00 �16.67 �1.29
A �6.60 �6.99 �7.98 �17.31 �3.14
E �9.91 �5.16 15.13 �12.49 22.03
Z �13.95 �7.16 �5.53 �10.58 9.53
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sponding van der Waals radius by a factor of 1.20 [36]. In the
Microsolvated/SCRF, the calculations have problems and end with
error messages due to overlapping spheres that construct the cav-
ity around the solute. To avoid such errors the values of the OFac
and RMin parameters for the GEPOL algorithm [42] were changed
to 0.8 and 0.5 from 0.89 and 0.2, respectively. Exploratory calcula-
tions for a single solvated water molecule gave an unchanged sol-
vation energy within 1 lhartree.

In the PCM–SCRF calculations, the energy of solvation DEsol;1

was calculated as the difference between the energy of the mole-
cule in the continuum and the energy of the molecule in gas phase,

DEsol;1 ¼ Esolute;PCM � Esolute;g: ð1Þ
On the other hand, in the Microsolvated/SCRF calculations, the en-
ergy of solvation DEsol;2 was defined as

DEsol;2 ¼ Ecomplex;PCM � Esolute;g � EðH2OÞ3 ;PCM ð2Þ

where EðH2OÞ3 ;PCM represents the energy of three water molecules cal-
culated in PCM and oriented as found for the complex of interest.

3. Results and discussion

The aim of the present work is to address the influence of a sol-
vent on the structural and energetic properties of the systems of
interest. Thus, in presenting the results we will first discuss those
for the gas phase and subsequently those for the aqueous phase.

3.1. Gas phase calculations

Relative energies, DE at T ¼ 0 K with the inclusion of zero-point
energies are listed in Table 1. We have here arbitrarily chosen to
set the relative energy of the B isomers equal to 0.

We find that the most stable structures are stabilized by the
presence of intramolecular hydrogen bonds, as also is the case
for their nitrogen analogous [12,16]. The amino derivatives of the
methyl and phenyl substituted cyclic azaphopholine, oxaphospho-
line, and thiaphospholine, respectively, may exists in two different
forms (conformers A and B, cf. Fig. 1). The A forms are more stable
over the B forms by around 6.60–9.31 kJ/mol with the exception of
Ph–NH for which the B form is more stable than the A form by
about 0.33 kJ/mol.

For the methyl substitution, the amino group (N6–H) is so ori-
ented that hydrogen bonds to the heteroatom (N, O, or S) can be
formed. These hydrogen bonds have lengths of 2.48, 2.36, and
2.72 Å, respectively, i.e., significantly smaller than the sum of the
van der Waals radii of the atoms [43] (2.75, 2.72, 3.00, and
3.00 Å for H� � �N, H� � �O, H� � �P, and H� � �S, respectively).

An interesting case is that of Ph–O and Ph–S. Here, two types of
hydrogen bonds can be recognized with one type being the N6–
H� � �X (X = O or S) bond with a length of around 2.24 and 2.59 Å
for oxaphospholine and thiaphospholine, respectively. The second
type is found between the a hydrogen of the phenyl group and
the phosphorus atom in position 3 with the C8–H� � �P3 bond length

Table 2
The dipole moment (in Debye) for various structures (cf. Fig. 1) in gas phase and as
found in aqueous solution using PCM.

Isomer Gas phase PCM Isomer Gas phase PCM

Me–NH Ph–NH
B 4.34 6.40 B 3.37 5.41
A 3.65 6.08 A 3.64 5.88
E 4.18 5.56 E 4.23 5.53
Z 2.66 3.59 Z 3.81 5.11

Me–O Ph–O
B 2.45 3.69 B 1.43 2.09
A 2.24 3.25 A 2.04 3.06
E 3.38 4.54 E 3.63 4.67
Z 3.29 4.38 Z 3.77 4.94

Me–S P-h-S
B 1.80 2.80 B 0.85 1.40
A 1.59 2.46 A 1.42 2.28
E 2.97 4.04 E 3.27 4.47
Z 2.72 3.70 Z 2.97 3.86

X P

N

H R
R26     Gas                    PCM        PCM+3H2O
NH 1.369/1.378*   1.352/1.368  1.344/1.358*
O    1.352/1.378     1.344/1.359  1.333/1.348*
S     1.361/1.371     1.353/1.367  1.340*/1.357

R6H   Gas                 PCM           PCM+3H2O
NH1.012/1.009*    1.014/1.014  1.017/1.026*
O  1.011/1.009      1.014/1.017   1.026/1.029*
S   1.011/1.012      1.014/1.016   1.027*/1.029

R45         Gas                  PCM            PCM+3H2O
NH    1.531/1.533*     1.531/1.528    1.533/1.530*
O       1.523/1.533       1.523/1.521    1.521/1.521*
S        1.528/1.526       1.527/1.526    1.526*/1.524

R12      Gas          PCM                PCM+3H2O
NH1.389/ 1.373* 1.375/1.379   1.361/1.358*
O  1.359/ 1.373    1.356/1.361   1.359/1.356*
S  1.784/1.793      1.785/1.792   1.788*/1.799

R15      Gas             PCM             PCM+3H2O
NH 1.473/1.465* 1.469 /1.468   1.467/1.470*
O    1.453/1.465   1.457/1.455    1.465/1.465*
S     1.838/1.834  1.839/1.835     1.842*/1.836
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R23          Gas           PCM          PCM+3H2O
NH  1.745/1.746*1.768/1.763   1.789/1.786*
O   1.743/1.746    1.753/1.747   1.769/1.759*
S    1.735/1.733    1.744/1.739   1.763*/1.751

R67     Gas                  PCM             PCM+3H2O
NH    1.455/1.411* 1.453/1.405      1.454/1.417*
O      1.451/1.411     1.453/1.405     1.461/1.416* 
S       1.453/1.406     1.454/1.407     1.458*/1.409

R34    Gas            PCM             PCM+3H2O
NH 1.907/1.906*1.907/1.902  1.904/1.898*
O  1.905/1.906    1.904/1.899   1.898/1.895*
S  1.894/1.891    1.893/1.889   1.888*/1.888

Fig. 2. Optimized amino species as found in the gas phase, the PCM and the PCMþ 3H2O, R ¼ CH3 calculations, for R ¼ CH3, Ph and X = NH, O, and S. The bond lengths are
given in Å. The two values for each entry correspond to the A and B isomers. In all cases, except those marked with an asterisk, the B isomer is the more stable one.
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being 2.51 and 2.49 Å (X = O or S) for oxaphospholine and thia-
phospholine, respectively.

Also the imino forms may exist in two different isomers (E and
Z). Here, the Z isomers are the most stable structures for the cyclic
azaphopholine and thiaphospholine. For the oxaphospholine com-
pound, the E isomers are the more stable species.

Our finding of a stabilizing effect of the exo-cyclic double bond
in the phenylamino-substituted cyclic azaphospholine is in an
agreement with the results obtained by Remko et al. in their inves-
tigation of aminoM imino tautomers for similar species [16].

For the optimized structures in gas phase the ring moieties
adopt a nonplanar configuration, which is in an agreement with re-
sults of previous calculations on similar systems [16,17]. The mol-
ecules have a low C1 symmetry. Not surprising, upon
tautomerization we find the largest changes in the C2—N6 and
C2—P3 bond lengths that vary by about 0.1 Å for different tautom-
ers. The amino substituents ðN6—HÞ group is so oriented that intra-
molecular hydrogen bonds are formed, which leads to an
additional stabilization.

3.2. Aqueous solution calculations

3.2.1. SCRF calculations
From the relative energies (DE at T = 0 K with the inclusion of

zero-point energies), as obtained with the PCM–SCRF calculations
and given in Table 1, we see that the amino tautomers (in the A
form) are the most stable species for Me–NH, Me–O, Me–S, and
Ph–O, which can be ascribed to the presence of hydrogen bonds
N6—H � � �X (X = N, O, and S). The lengths of these hydrogen bonds
are 2.51, 2.37, and 2.72 Å for the methyl substitution. For the phe-
nyl substitution we identify two types of hydrogen bonds, i.e.,
N6—H � � �X (X = O) with lengths of 2.25 Å, and C8—H � � �P3 with
lengths of 2.50 Å. The imino forms (of the Z form) are the most sta-
ble isomers for Ph–NH and Ph–S. Here, the stability of the exo-cyc-
lic double bond for the Ph–NH is in an agreement with our earlier
results for similar systems [17].

Since the solute–solvent interactions have a strong dependence
on the dipole moment of the solute, it is worth to mention that,
although the E forms for Me–NH and Ph–NH have the larger dipole

X P

N

R

R45         Gas                      PCM            PCM+3H2O
NH    1.535/1.534      1.534/1.534        1.538/1.533
O       1.531*/1.530*  1.529/1.530        1.529/1.524
S        1.532/1.531      1.532/1.533        1.533/1.529

2

1

5 4

3

6

7

H

R67     Gas                      PCM          PCM+3H2O
NH  1.448/1.402       1.452/1.403      1.456/1.411
O     1.459*/1.408*   1.464/1.412      1.456/1.418 
S      1.455/1.408       1.459/1.411      1.459/1.419

R26     Gas                    PCM        PCM+3H2O
NH  1.274/1.281      1.279/1.288  1.344/1.358
O     1.264*/1.269*  1.269/1.271  1.333/1.348
S      1.269/1.271      1.271/1.274  1.340/1.357

R12      Gas                  PCM           PCM+3H2O

R15      Gas                   PCM          PCM+3H2O
NH 1.458/1.457      1.4462/1.460  1.459/1.461
O    1.441*/1.444*  1.449/1.449    1.451/1.455
S     1.839/1.840      1.842/1.844    1.847/1.940

R34      Gas            PCM           PCM+3H2O
NH 1.881/1.883   1.878/1.879   1.882/1.877
O  1.877*/1.876* 1.873 /1.879 1.879/1.837
S  1.872/1.871   1.868/1.875     1.876/1.867

R23          Gas                 PCM              PCM+3H2O
NH  1.904/1.901         1.903/1.901     1888/1.897
O     1.871*/1.871*     1.871/1.890     1.885/1.888
S      1.874/1.876        1.874/1.872      1.869/1.874

R3H       Gas                 PCM          PCM+3H2O
NH    1.428/1.427      1.427/1.426   1.420/1.423
O       1.429*/1.429*  1.427/1.420   1.421/1.423
S        1.429/1.428      1.427/1.421   1.419/1.425

Fig. 3. Optimized imino species as found in the gas phase, the PCM and the PCMþ 3H2O, R ¼ CH3 calculations, for R ¼ CH3, Ph and X = NH, O, and S. The bond lengths are
given in Å. The two values for each entry correspond to the E and Z isomers. In all cases, except those marked with an asterisk, the E isomer is the more stable one.

Table 3
Hydrogen bond distances (Å) for the optimized complexes. The subscript w marks atoms from the water molecules, whereas the other atoms are numbered according to Fig. 1.

Bond X = NH X = O X = S

A B Z Z B B Z Z B A Z Z
Me Ph Me Ph Me Ph Me Ph Me Ph Me Ph

X1 � � �HwOw 2.00 2.01 1.95 2.18 2.53 2.65 2.55 2.58
N6—H � � �OwHw 2.04 1.91 1.86 1.85 1.88
N6 � � �HwOw 1.72 1.77 1.97 1.88 1.86 1.96 1.95
P3 � � �HwOw 2.45 2.36 2.42 2.46 2.44 2.56
P3 � � �HwOw 2.47
P3—H � � �OwHw 2.46 2.57 2.34 2.48 2.71 2.61
N1—H � � �OwHw 2.14 2.01 1.96 1.93
C8—H � � �OwHw 2.45 2.41
Ow � � �HwOw 1.81 1.75 1.77 1.79 1.79 1.98 1.87 1.79 1.80 1.94 1.86
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moment in gas phase, the Z forms are the more stable one in the
PCM–SCRF calculations. This is due to the stabilizing effects of
the intramolecular hydrogen bond N1—H � � �N6 (length 2.52 and
2.53 Å, respectively) for the Z form.

Also for the A conformer for Ph–NH we find a stabilizing effect
due to two intramolecular hydrogen bonds, N6—H � � �N1 and
C8—H � � �P3, whose lengths are 2.40 and 2.47 Å, respectively. Simi-
larly, for the A form of Me–O the intramolecular hydrogen bond
N6—H � � �O with a length of 2.37 Å makes that form stabler than
the B form, although the latter has a higher dipole moment in
the gas phase.

Since we have based parts of this discussion on the dipole mo-
ment, it would be useful to have experimental information on
those, which, unfortunately, is not available. However, for some
smaller organic molecules PCM calculations predict an increase
of the dipole moments by up to 30% in aqueous solution compared
to gas phase values [44]. This is also found in the present study, as
can be seen in Table 2.

When comparing the geometries from the gas-phase calcula-
tions with those from the PCM–SCRF calculations we find only
small changes, i.e., changes in the bond lengths by some thou-

sandths of an angstrom and in the bond angles by around 1–2�.
An exception is the A and B forms for Ph–NH where the relative
stability is interchanged when going from gas phase to PCM, and
where the structure of the exo-cyclic part changes significantly
as is the case for the dihedral angle U½X1—C2—N6—C7� which ulti-
mately leads to the formation of two hydrogen bonds, C8—H � � �P3

and N6—H � � �N1, with lengths of 2.47 and 2.40 Å, respectively.
Important geometric parameters are given in Figs. 2 and 3 for

the amino and imino species, respectively. Other geometric param-
eters for both gas phase and PCM calculations are available in the
Supplementary data.

From the Mulliken net atomic charges [45], which is also avail-
able, we can obtain a qualitative picture of charge transfer and
polarization between different hydrogen bonded fragments. We
find that these indeed are affected by the interaction of atoms with
the aqueous medium, although no general trend can be identified.

3.2.2. Microsolvated/SCRF calculations
Since hydrogen bonds between solute and solvent may exist and

since these are only poorly described by the PCM, we performed
additional calculations with explicit consideration of three water

Fig. 4. Molecular geometries of the most stable complexes as found in solution in the calculations that include three explicit water molecules.
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molecules. From the relative energies (DE at T ¼ 0 K with the inclu-
sion of zero-point energies), given in Table 1, we see that the amino
tautomers inmost cases are themost stable species with the excep-
tion of Me–NH and Ph–NH, where the imino forms are more stable
than the amino one (of the Z form). For the Ph–NHwe could identify
an extra stabilizing hydrogen bond between the a hydrogen of the
phenyl group and one of the extra water molecules, i.e., the
C8—H � � �Ow bond with a length of 2.45 Å. As also seen in Table 3,
the inclusion of explicitwatermolecules changes the order of stabil-
ity from that obtained in the gas-phase and in the PCM–SCRF calcu-
lations,which indeed is due tohydrogenbonding. This canbe seen in
Fig. 4 that shows themolecular geometries for thewater-containing
complexes for the most stable species.

The optimized hydrogen bond distances between water mole-
cules and isomers are presented in Table 3 for the most stable spe-
cies. In most cases we found hydrogen bonds between two water
molecules although all water molecules participate in the first sol-
vation shell. Thus, not all hydrogen bonds contribute to the stabil-
ity of the compounds.

3.2.3. Free energies of solvation
The free energies of solvation as found in the PCM–SCRF and

Microsolvated/SCRF calculations, i.e., DEsol;1 and DEsol;2, respec-

tively, are listed in Table 1. From DEsol;1 � DEsol;2 one obtains infor-
mation on the hydrogen bonds between the explicit water
molecules and the solute. Here, however, one has to be cautious
since the Discrete/SCRF calculations often predict positive solva-
tion energies, DEsol;2. The reason is partly a high energy for the con-
struction of the cavity and partly an unrealistic solvation energy for
a single water molecule (our calculations gave a value of 17.83 kJ/
mol).

The results show also that the solvation of the imino tautomers
of the methyl substituted compounds in general is less favored
within the Microsolvated/SCRF model than the case for the amino
tautomers. The only exception case is the Z isomer for Me–NH. For
the phenyl substitution, the amino tautomers are well solvable. For
the Ph–NH, the Z isomer is more solvable in contrast to the E iso-
mer. This is due to bifurcated hydrogen bonds for the Z isomer be-
tween the water molecule and the P3ðP3—H � � �OwHwÞ from the one
side and with the a hydrogen of the phenyl group ðC8—H � � �OwHwÞ
from the other side, as we also found in our earlier study on related
systems [17].

Finally, from additional calculations where single water mole-
cules were added one by one to the hydrophilic region we found
that not all hydrogen bonds are stable.

4. Conclusion

In this work we have studied theoretically the energetic and
structural properties of some phosphorous analogues of some
nitrogen-containing organic molecules and how these properties
change when the molecules are solvated in water. In particular
we focused on the relative stability of different isomers and
tautomers.

In the first part we presented results for the molecules in gas
phase. We found a strong preference for the imino tautomers in
gas phase relative to amino ones with the exception of Me–O
and Ph–O for which the amino forms were more stable. In the
aqueous phase, the amino forms are more soluble species, this time
with the exception of Me–S and Ph–NH for which the imine forms
are more stable according to the PCM–SCRF calculations. In the
Microsolvated/SCRF calculations, the only exception is found for
Me–NH and Ph–NH.

The presence of water affects the relative stability and the order
of stability of tautomers and isomers. Often intramolecular hydro-
gen bonds are responsible for the higher stability of isomers in gas
phase and with the PCM–SCRF model. All our findings regarding
the relative stability are summarized in Fig. 5. Here, we see that
the order of stability change when comparing the gas phase with
the pure PCM. Furthermore, the order of stability changes when
the solvent effects are considered, independent of the model
adopted.

From additional calculations with three water molecules in gas
phase, we found that the construction of the cavity indeed the rea-
son of the fact that some hydrogen bonds are not stable and have
less contributions to the stability of the some complexes. It is
worth to mention that the B3LYP approach understimates weak
interactions, such as hydrogen bonds, which could, e.g., be im-
proved by using Grimme’s dispersion approach, B3LYP-D [46,47]
in future studies.

In Fig. 6 we show the solvation energies and the relative ener-
gies as function of dipole moment in gas phase and in the PCM–
SCRF calculations. In contrast to our earlier results on related sys-
tems [17], this figure does not show any correlation between the
dipole moment and the stability of the system in solution, irrespec-
tively of whether we use the dipole moment in gas phase or in
aqueous phase. Similarly, for the relative energies it was not possi-
ble to identify a correlation to the dipole moment.

Fig. 5. The relative energies for the various systems as found in gas phase, using the
PCM model, and with the PCM model plus three explicit water molecules. The
energies are given relative to the B isomers (dark circles). Stars, white circles, and
dark triangles mark the A, E, and Z isomers, respectively.

Fig. 6. The relative energies (lower panels; given relative to those of the B isomers)
and solvation energies from the PCM calculations (upper panels) as function of the
dipole moment in the gas phase (left panels) and the dipole moment in the PCM
calculations (right panels) for the various systems. White circles, stars, crosses, dark
circles, white triangles, and dark triangles mark Me–S, Me–O, Ph–S, Me–NH, Ph–O,
and Ph–NH, respectively.

106 S. Abdalla, M. Springborg / Journal of Molecular Structure: THEOCHEM 962 (2010) 101–107



When looking at the structural properties, only small changes
resulted from the solvation. Finally, the calculations of the energies
of solvation indicate that not all the selected hydrophilic regions
are preferred solvation sites.
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TABLE I: Selected optimized geometries of the various isomers in gas phase. For the structures

see Fig. 1; bond lengths are in Å as well as bond and dihedral angles in degrees; X=NH, O and S

mark the various species; A and B refer to the amino forms whereas E and Z refer the imino forms.

X=NH X=O X=S

A B Z Z A A E E A A Z Z

Parameter Me Ph Me Ph Me Ph Me Ph Me Ph Me Ph

Θ[C2−X1−C5] 111.19 112.53 116.36 117.91 110.05 110.09 113.63 113.81 93.43 93.89 96.25 95.71

Θ[X1−C5−C4] 105.93 105.28 105.63 105.74 108.54 108.54 108.98 109.06 107.98 107.55 109.56 109.49

Θ[C2−N1−H] 115.46 120.33 114.84 116.67

Θ[X1−C2−P3] 116.68 116.16 108.35 108.85 118.85 118.81 112.25 112.19 119.26 118.20 114.17 114.08

Θ[C5−C4−P3] 105.99 105.32 106.84 106.94 104.69 104.35 105.36 105.34 109.33 109.44 110.53 110.37

Θ[C2−P3−C4] 88.02 87.89 89.28 88.87 87.12 87.25 88.23 88.38 92.92 93.51 93.51 93.95

Θ[X1−C2−N6] 116.30 119.03 121.75 121.18 112.19 115.58 124.06 125.91 114.77 111.62 125.43 127.04

Θ[C2−N6−C7] 120.60 128.11 120.59 122.48 122.22 132.86 119.53 127.81 121.72 131.58 120.24 124.93

Θ[C2−N6−H] 115.94 115.04 116.49 112.79 117.65 115.09

Θ[C2−P3−H] 93.97 94.71 94.59 94.66 94.75 94.41

Φ[C2−X1−C5−C4] 34.89 −34.44 −39.19 −34.09 31.08 −30.74 32.09 −31.42 −35.95 −36.76 −32.23 −35.39

Φ[C5−C4−P3−C2] 21.48 −24.22 −20.82 −23.07 22.37 −23.25 23.93 −23.82 −30.24 −29.89 −32.92 −30.27

Φ[X1−C2−P3−C4] −2.22 5.72 0.37 5.35 −6.27 7.53 −7.83 8.08 5.14 4.10 10.75 6.09

Φ[X1−C5−C4−P3] −34.72 36.13 35.64 34.66 −33.92 34.33 −35.69 35.18 44.74 44.89 44.48 44.73

Φ[X1−C2−N6−C7] 169.91 30.37 −175.79 179.68 −178.77 15.42 −3.34 3.39 −179.41 −170.18 2.63 −0.548

Φ[X1−C2−N6−H] 21.83 −157.54 −15.29 170.96 22.49 11.76

Φ[C2−N6−C7−C8] 31.08 −55.17 −4.84 −8.09 −1.25 −53.09

Φ[C5−C4−P3−H] 73.09 71.55 −70.49 70.69 62.23 64.62

Φ[P3−C2−N1−H] −152.53 166.27 168.49 171.67

d[P6−H...P3] 3.65 2.87 3.67 2.82 3.64 3.67

d[P6−H...X1] 2.48 3.23 2.36 3.17 2.72 2.56

d[C7,8−H...X1] 4.03 2.76 3.93 4.11 3.98 2.22 2.48 2.24 4.47 4.65 2.81 2.89

d[C7,8−H...P3] 3.01 4.21 2.69 3.08 3.03 2.51 4.61 4.65 3.01 2.49 4.46 4.59

The optimized geometries of the most stable isomers in gas phase and in solution are

collected in this part.
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TABLE II: Selected optimized geometries (in Å) of the isomer studied in continuum model. The

notation is as in Table I.
X=NH X=O X=S

A A Z Z A A E Z A A Z Z

Parameter Me Ph Me Ph Me Ph Me Ph Me Ph Me Ph

Θ[C2−X1−C5] 112.55 112.94 116.58 118.33 110.44 110.89 113.82 113.99 93.83 94.22 96.50 95.77

Θ[X1−C5−C4] 105.61 105.50 105.86 105.99 108.49 108.32 108.96 109.08 108.13 107.71 109.58 109.57

Θ[C2−N1−H] 118.17 118.02 115.83 117.93

Θ[X1−C2−P3] 115.46 114.76 108.43 108.89 118.20 117.47 112.37 111.21 118.71 117.76 114.04 113.27

Θ[C5−C4−P3] 105.59 105.59 106.76 106.86 104.62 104.69 105.36 102.72 109.39 109.46 110.37 106.67

Θ[C2−P3−C4] 87.99 88.57 89.44 89.02 87.39 88.01 88.25 87.56 93.23 93.83 93.61 93.84

Θ[X1−C2−N6] 118.01 114.67 122.08 121.52 112.88 109.70 123.45 118.26 115.33 112.02 125.19 126.59

Θ[C2−N6−C7] 122.66 131.18 120.06 122.15 122.63 130.93 118.16 120.84 122.33 131.39 119.59 124.10

Θ[C2−N6−H] 118.74 115.23 117.30 113.58 118.82 115.43

Θ[C2−P3−H] 94.11 94.89 94.67 95.66 94.95 94.80

Φ[C2−X1−C5−C4] −35.26 35.35 −37.98 −32.01 −31.47 −31.67 −30.54 −30.38 −35.59 −36.39 −31.26 −34.53

Φ[C5−C4−P3−C2] −23.16 22.75 −21.06 −23.37 −22.33 −21.55 −24.61 −31.75 −30.05 −29.72 −33.66 −38.99

Φ[X1−C2−P3−C4] 4.11 −3.62 1.25 6.78 6.02 4.97 9.34 17.70 5.26 4.25 12.17 16.43

Φ[X1−C5−C4−P3] 35.84 −35.42 35.17 33.79 33.98 33.33 35.34 40.92 44.28 44.42 44.24 49.69

Φ[X1−C2−N6−C7] −179.37 174.89 −176.40 178.75 −178.82 −174.41 3.26 178.19 −177.80 −171.52 2.70 −4.09

Φ[X1−C2−N6−H] 10.48 −2.34 10.76 4.22 15.43 9.42

Φ[C2−N6−C7−C8] 4.86 −54.19 −4.96 −68.40 −2.40 126.74

Φ[C5−C4−P3−H] 73.01 71.44 69.89 −126.18 61.74 −135.47

Φ[P3−C2−N1−H] 159.78 −159.64 167.94 172.81

d[N6−H...P3] 3.69 3.71 3.68 3.69 3.66 3.68

d[N6−H...X1] 2.51 2.40 2.37 2.25 2.72 2.59

d[C7,8−H...X1] 4.04 4.23 3.92 4.09 3.98 4.20 2.62 4.12 4.48 4.66 2.89 3.04

d[C7,8−H...P3] 3.03 2.47 2.67 3.06 3.07 2.50 4.45 3.34 3.15 2.48 4.47 4.59
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TABLE III: The optimized atomic coordinates (in Å) in gas phase. For the structures of the

isomers see Fig. 1

Me-NH(A) X Y Z Me-O(A) X Y Z Me-S(A) X Y Z

N1 -0.595120 1.329940 0.180589 O1 -0.517526 -1.348271 -0.115150 S1 0.792323 -1.444103 -0.129051

C2 0.358566 0.333451 0.019757 C2 0.353894 -0.308581 -0.031745 C2 -0.498293 -0.216724 -0.019672

P3 -0.230138 -1.306900 -0.073204 P3 -0.278382 1.312548 0.075427 P3 -0.068499 1.463856 0.031277

C4 -1.988516 -0.621249 0.199592 C4 -2.003784 0.555145 -0.206312 C4 1.770927 1.101135 -0.236435

C5 -1.933661 0.853470 -0.206627 C5 -1.859974 -0.901189 0.216570 C5 2.110477 -0.261860 0.364814

N6 1.661882 0.746295 -0.046496 N6 1.641746 -0.716889 -0.077282 N6 -1.764052 -0.718077 -0.022867

C7 2.748861 -0.220222 0.005859 C7 2.752043 0.212345 0.021183 C7 -2.929159 0.147806 0.047445

Me-NH(Z) X Y Z Me-O(E) X Y Z Me-S(Z) X Y Z

N1 -0.552900 1.359332 -0.178101 O1 -0.244650 1.127952 -0.049556 S1 0.195509 1.391811 -0.041123

C2 0.487958 0.448962 -0.055614 C2 -0.519827 -0.224533 -0.010687 C2 0.589243 -0.382925 -0.000315

P3 -0.250676 -1.305846 -0.027781 P3 1.035765 -1.263557 0.008980 P3 -0.913513 -1.501578 0.025158

C4 -1.968066 -0.560225 -0.205848 C4 2.018535 0.306591 -0.295528 C4 -2.101495 -0.106377 -0.355557

C5 -1.868123 0.900984 0.253312 C5 1.134997 1.444860 0.222151 C5 -1.608593 1.203874 0.266982

N6 1.704626 0.823363 -0.016721 N6 -1.686840 -0.710678 -0.032216 N6 1.756100 -0.877154 -0.019888

C7 2.775130 -0.151611 0.020232 C7 -2.839714 0.185031 -0.028174 C7 2.921413 -0.005174 -0.021944

Ph-NH(B) X Y Z Ph-O(A) X Y Z Ph-S(A) X Y Z

N1 1.304337 0.813381 0.693155 O1 -2.200748 -1.326058 0.100445 S1 2.356513 -1.404869 -0.196804

C2 1.221237 -0.390631 0.039145 C2 -1.235786 -0.365790 -0.003865 C2 1.010778 -0.237821 0.007302

P3 2.719527 -1.030175 -0.589450 P3 -1.742888 1.297304 -0.057949 P3 1.397241 1.449080 0.105351

C4 3.615511 0.415643 0.270575 C4 -3.518910 0.687616 0.243171 C4 3.240376 1.163991 -0.208388

C5 2.559557 1.516659 0.416971 C5 -3.507493 -0.768934 -0.196882 C5 3.641081 -0.206951 0.329779

N6 0.005569 -1.036831 -0.020474 N6 -0.011504 -0.963065 -0.034436 N6 -0.204155 -0.871442 0.058286

C7 -1.284465 -0.465541 -0.037613 C7 1.281644 -0.418411 -0.015128 C7 -1.518008 -0.373262 0.026408

Ph-NH(Z) X Y Z Ph-O(E) X Y Z Ph-S(Z) X Y Z

N1 -2.336796 1.214131 0.375574 O1 -1.258989 1.065537 0.017892 S1 -1.104335 1.306423 0.325031

C2 -1.129587 0.582253 0.184559 C2 -1.098737 -0.300789 -0.018773 C2 -0.918084 -0.434292 -0.145552

P3 -1.449436 -1.150326 -0.530114 P3 -2.736759 -1.203794 -0.047042 P3 -2.543427 -1.337045 -0.398288

C4 -3.280493 -0.724538 -0.644309 C4 -3.586265 0.453697 -0.267666 C4 -3.581011 0.205502 -0.191102

C5 -3.542854 0.396907 0.369445 C5 -2.611670 1.486820 0.301303 C5 -2.889535 1.189590 0.756523

N6 -0.021920 1.189580 0.397801 N6 0.008547 -0.919425 -0.072389 N6 0.169840 -1.069571 -0.314497

C7 1.223286 0.570187 0.218333 C7 1.305782 -0.372011 -0.040467 C7 1.456950 -0.516341 -0.172681
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TABLE IV: The optimized atomic coordinates (in Å) in PCM-SCRF. For the structures of the

isomers see Fig. 1

Me-NH(A) X Y Z Me-O(A) X Y Z Me-S(A) X Y Z

N1 -0.592930 1.322244 -0.170139 O1 0.514774 -1.346839 -0.116409 S1 0.787872 -1.445538 -0.124925

C2 0.366856 0.344547 -0.051752 C2 -0.360674 -0.315040 -0.024049 C2 -0.505447 -0.220772 -0.012449

P3 -0.244410 -1.310516 0.065924 P3 0.284091 1.311664 0.079168 P3 -0.061033 1.465004 0.036069

C4 -1.998782 -0.610042 -0.195399 C4 2.006501 0.554154 -0.211193 C4 1.775716 1.099201 -0.240270

C5 -1.925091 0.856192 0.237555 C5 1.862494 -0.901454 0.211895 C5 2.115863 -0.266059 0.353887

N6 1.664529 0.723618 -0.065615 N6 -1.643608 -0.714291 -0.052041 N6 -1.766450 -0.709947 -0.003153

C7 2.759679 -0.225425 0.038997 C7 -2.755814 0.218377 0.007659 C7 -2.935047 0.153799 0.036784

Me-NH(Z) X Y Z Me-O(E) X Y Z Me-S(Z) X Y Z

N1 -0.556992 1.361498 -0.164215 O1 0.267797 1.110359 -0.025465 S1 0.208553 1.382024 -0.025025

C2 0.485190 0.458902 -0.051956 C2 0.518625 -0.239016 -0.005918 C2 0.587415 -0.389805 0.003100

P3 -0.242328 -1.299566 -0.022155 P3 -1.051911 -1.254688 0.014409 P3 -0.926076 -1.493507 0.035764

C4 -1.962215 -0.571547 -0.214023 C4 -2.008172 0.323122 -0.310356 C4 -2.098458 -0.097267 -0.371812

C5 -1.878024 0.889288 0.245668 C5 -1.119568 1.451306 0.216948 C5 -1.605022 1.212029 0.250861

N6 1.707640 0.833120 -0.024176 N6 1.686794 -0.734023 -0.042819 N6 1.755421 -0.889724 -0.028929

C7 2.770022 -0.155616 0.016131 C7 2.826949 0.184605 -0.036340 C7 2.916710 -0.007045 -0.033916

Ph-NH(A) X Y Z Ph-O(A) X Y Z Ph-S(A) X Y Z

N1 2.286065 1.296789 -0.120223 O1 -2.203044 -1.325519 0.086926 S1 2.362455 -1.406831 -0.169644

C2 1.235164 0.408736 -0.023574 C2 -1.232082 -0.375830 -0.002562 C2 1.006586 -0.247310 0.003815

P3 1.705215 -1.290180 0.015747 P3 -1.740223 1.295083 -0.039714 P3 1.393687 1.446919 0.076329

C4 3.511067 -0.747018 -0.232059 C4 -3.518588 0.691516 0.244996 C4 3.238434 1.167629 -0.221870

C5 3.574918 0.700956 0.252763 C5 -3.510881 -0.760269 -0.209419 C5 3.643028 -0.193649 0.335667

N6 -0.002635 0.990200 0.007563 N6 -0.010897 -0.970738 -0.032704 N6 -0.205209 -0.879050 0.053003

C7 -1.290011 0.426581 0.004907 C7 1.281694 -0.420592 -0.015252 C7 -1.518602 -0.375689 0.025264

Ph-NH(Z) X Y Z Ph-O(Z) X Y Z Ph-S(Z) X Y Z

N1 2.337930 1.204218 -0.396995 O1 -2.326640 -1.182055 -0.520382 S1 1.075856 1.270582 -0.414777

C2 1.134833 0.587451 -0.194216 C2 -1.147065 -0.555702 -0.259290 C2 0.920820 -0.461855 0.072638

P3 1.444917 -1.146882 0.518807 P3 -1.431900 1.202536 0.373299 P3 2.568479 -1.334436 0.235257

C4 3.271189 -0.727512 0.659267 C4 -3.202143 0.693454 0.746262 C4 3.550373 0.261788 0.295470

C5 3.549750 0.390934 -0.352395 C5 -3.492166 -0.340272 -0.343909 C5 2.895912 1.218767 -0.707531

N6 0.020617 1.203138 -0.391930 N6 -0.068455 -1.197397 -0.457053 N6 -0.163037 -1.109674 0.239269

C7 -1.220913 0.575474 -0.212702 C7 1.186506 -0.587902 -0.240302 C7 -1.449504 -0.537249 0.144576
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TABLE V: Mulliken net charges of the atoms in gas phase (to the left of the vertical line) and in

aqueous phase (to the right of the vertical line).

System Isomer X1 C2 C4 C5 N6 P3 C7 X1 C2 C4 C5 N6 P3 C7

Me-NH E -0.333 -0.202 -0.517 -0.236 -0.17 0.486 -0.369 -0.344 -0.155 -0.512 -0.233 -0.248 0.425 -0.359

Z -0.193 -0.250 -0.467 -0.139 -0.294 0.373 -0.367 -0.224 -0.228 -0.467 -0.141 -0.351 0.349 -0.354

B -0.285 -0.249 -0.460 -0.282 -0.247 0.173 -0.307 -0.304 -0.215 -0.426 -0.274 -0.273 0.024 -0.315

A -0.233 -0.384 -0.386 -0.251 -0.295 0.207 -0.311 -0.241 -0.408 -0.360 -0.210 -0.309 0.049 -0.281

Me-O E -0.299 -0.091 -0.537 -0.084 -0.168 0.441 -0.349 -0.311 -0.054 -0.529 -0.083 -0.241 0.395 -0.341

Z -0.209 -0.129 -0.489 -0.032 -0.236 0.356 -0.342 -0.249 -0.105 -0.486 -0.033 -0.303 0.347 -0.338

B -0.299 -0.113 -0.505 -0.081 -0.282 0.153 -0.284 -0.306 -0.089 -0.478 -0.078 -0.302 0.043 -0.289

A -0.274 -0.233 -0.426 -0.077 -0.301 0.169 -0.287 -0.283 -0.229 -0.419 -0.059 -0.306 0.073 -0.286

Me-S E 0.319 -0.555 -0.550 -0.413 -0.044 0.404 -0.329 0.234 -0.497 -0.540 -0.406 -0.103 0.388 -0.325

Z 0.203 -0.545 -0.539 -0.412 -0.030 0.514 -0.374 0.181 -0.499 -0.521 -0.415 -0.093 0.458 -0.374

B 0.235 -0.505 -0.503 -0.429 -1.999 0.213 -0.306 0.229 -0.512 -0.479 -0.412 -0.208 0.118 -0.322

A 0.182 -0.562 -0.509 -0.404 -0.159 0.254 -0.300 0.172 -0.568 -0.498 -0.394 -0.165 0.169 -0.294

Ph-NH E -0.262 -0.103 -0.499 -0.259 -0.138 0.469 -0.604 -0.261 -0.060 -0.454 -0.305 -0.264 0.423 -0.497

Z -0.153 -0.239 -0.457 -0.116 -0.328 0.477 -0.360 -0.178 -0.205 -0.456 -0.122 -0.389 0.439 -0.334

B -0.267 -0.282 -0.475 -0.242 -0.287 0.321 -0.286 -0.288 -0.272 -0.464 -0.214 -0.295 0.115 -0.243

A -0.183 -0.192 -0.435 -0.223 -0.319 0.233 -0.554 -0.203 -0.198 -0.434 -0.196 -0.316 0.129 -0.471

Ph-O E -0.262 0.037 -0.563 -0.048 -0.135 0.451 -0.369 -0.269 0.109 -0.526 -0.077 -0.229 0.399 -0.322

Z -0.159 -0.104 -0.497 0.043 -0.280 0.443 -0.382 -0.214 0.017 -0.484 0.000 -0.331 0.409 -0.686

B -0.259 0.009 -0.564 -0.004 -0.299 0.197 -0.177 -0.281 -0.042 -0.564 0.025 -0.295 0.137 -0.192

A -0.233 -0.022 -0.484 -0.024 -0.348 0.208 -0.532 -0.239 -0.043 -0.482 -0.007 -0.349 0.149 -0.469

Ph-S E 0.386 -0.651 -0.538 -0.442 -0.000 0.478 -0.322 0.257 -0.364 -0.468 -0.489 -0.064 0.383 -0.615

Z 0.236 -0.491 -0.579 -0.387 0.016 0.505 -0.458 0.212 -0.374 -0.524 -0.437 -0.102 0.429 -0.455

B 0.293 -0.559 -0.535 -0.395 -0.166 0.255 -0.464 0.263 -0.592 -0.515 -0.380 -0.164 0.208 -0.472

A 0.177 -0.342 -0.550 -0.422 -0.129 0.242 -0.489 0.169 -0.389 -0.549 -0.404 -0.127 0.209 -0.439
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a b s t r a c t

Properties of nitrogen-containing organic molecules and their phosphorous analogs are studied theoret-
ically both in gas phase and in aqueous phase with the use of density functional calculations. In the aque-
ous phase calculations, both a pure continuum (PCM) and a supermolecular/continuum model was used.
Particular emphasis is put on the changes of the properties due to the systematic replacement of nitrogen
atoms by phosphorous atoms. The properties include the relative energies of different tautomers and iso-
mers, their dipole moment, and their free energy of solvation. Both from gas phase and from pure PCM
calculations, for the nitrogen-containing compounds the most stable structures are characterized by
strong intramolecular hydrogen bonds formed with the nitrogen atoms and the hydrogen atoms located
outside the ring. When replacing the nitrogen atoms by phosphorous atoms this formation of hydrogen
bonds is strongly affected which, in turn, leads to changes in the relative energies of different iso- and
tautomers. Intermolecular hydrogen bonds between the solute and (explicit) water molecules of the
solvent are responsible for the stability in the supermolecular/continuum calculations, whereby stronger
hydrogen bonds with the water molecules are formed for the nitrogen-containing molecules.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The large attention [1–8] to compounds containing the amidine
group, ANHAC(R)@NA, has recently encouraged us to study
theoretically compounds obtained by substituting parts of the
nitrogen atoms by phosphorus atoms, i.e., compounds containing
ANHAC(R)@PA or APHAC(R)@NA) groups [9,10]. A particularly
interesting issue for those compounds is that of tautomerism and
isomerism and how the stability of the different tautomers and iso-
mers is affected by solvation effects. Actually, the proton transition
involved in the tautomerization process in heterocyclic five-mem-
bered ring systems is of more general interest, [11–15] and has also
been studied theoretically using different methods ranging from
semiempirical molecular orbital methods [12,16] to more sophisti-
cated calculations that include electron correlation effects [17,18].

Phosphorus-containing compounds are of wide interest due to
various applications of organophosphorus as, e.g., lubricants, oil
additives, water treatment cleaners, flame retarding agents, fertil-
izers, plasticizers, and pesticides [19,20]. Moreover, phosphorus
and organophosphorus compounds have been recognized to have
important biological functions, so that they, e.g., are essential con-
stituents of the protoplasm [21].

The goal of the present work is to obtain a systematic under-
standing of the effects of substituting nitrogen atoms in compounds
containing the amidine group ANHAC(R)@NA (which has been
studied earlier by van Duijnen and coworkers [8]) by phosphorus
atoms. To this end we have extended the earlier studies by calcula-
tions on the two sets of compounds containing either only N atoms
or only P atoms so that we have considered all the compounds
containing the amidine group ANHAC(R)@NA as well as the
APHAC(R)@NA, ANHAC(R)@PA, and APHAC(R)@PA groups both
in gas phase and in an aqueous phase. We shall focus on bond
lengths, relative energies, dipole moment, and solvation energies.

The compounds of our study are presented in Fig. 1. In order to
distinguish between the different classes of compounds (i.e.,
whether, which, and how many N atoms have been substituted
by P atoms) we shall label those compounds that contain the amid-
ene group as group [1] compounds. These have been studied in the
gas phase by Remko et al. [8] Replacing the nitrogen atoms by
phosphorus atoms at position 6 or 3 leads to group [2] and group
[3] compounds, respectively, whereas double replacement gives
group [4] compounds. Moreover, for the sake of simplicity we shall
label our systems according to both the type of substitution, i.e.,
methyl or phenyl and to the type of the heteroatom in position
1. Thus, the compounds of our study are labeled MeANH, MeAO,
MeAS, PhANH, PhAO, and PhAS, respectively.

Since compounds like those of the present study very often are
found in solution and not in a gas phase, it is highly relevant to
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understand the effects of the solvent. To this end, a common ap-
proach for treating molecules in an aqueous solution treats the sol-
vent by using the self-consistent reaction-field method, which
allows for a quantum–mechanical description of the solute in the
solvent continuum at a computational cost only slightly higher
than that required for gas phase calculations. Although over the
years much effort has been devoted to the development of accurate
approaches for the inclusion of solvent effects into quantum calcu-
lations (see, e.g., [22,23]), some important electronic effects associ-
ated with specific solute–solvent interactions are not described
accurately by the continuum model. One possible solution to this
problem is to use a combined supermolecular/continuum model
[24–30] which has been found to offer accurate descriptions of sol-
vation processes even when including only a smaller number of
solvent molecules [30]. Within this model, some few solvent mol-
ecules placed at realistic positions are treated explicitly using
quantum-theoretical methods and are allowed to interact with
specific part(s) of the solute, whereas the remaining parts of the
solvent are treated as a polarizable continuum. Such a model pro-
vides accordingly a description of both short- and long-ranged sol-
ute–solvent interactions. In the present work we shall, accordingly,
study the effects of the aqueous solution both by using only impli-
cit model (i.e., the polarizable continuum model) and the com-
bined explicit/implicit model in order to identify the effects of
both the long- and the short-ranged solvent–solute interactions,
separately.

2. Computational details

All compounds were optimized in gas phase and in aqueous
phase using the Gaussian 03 program package [34]. We used the
B3LYP functional [31–33] and the 6-31+G (d,p) basis set. For all
structures it was checked that they correspond to local total-
energy minima and have, accordingly, no imaginary vibrational
frequencies.

As mentioned above, the solute–solvent interactions were
described using two different approaches. In the polarized contin-
uummodel (PCM), the presence of the solute creates a cavity in the

solvent, which has the shape related to that of the molecule,
whereas the solvent is treated as a continuous dielectrics that
can become polarized due to the presence of the solute. Water as
the solvent is thus characterized by its relative dielectric constant
of 78.39.

Alternatively, within the supermolecule/continuum (explicit/
implicit) model we include three water molecules. The chosen
number (3) of water molecules corresponds to the number of the
hydrophilic regions of the solute. The remaining parts of the
solvent were represented through the continuum model. Thus,
the three water molecules are positioned near the hydrophilic
regions of the solute without any distance restriction but so that
the formation of intermolecular hydrogen bonds between the
water molecules and the hydrophilic parts of the solute becomes
possible.

In both solvation models the Integral Equation Formalism (IEF)
[23,35–38] version of the polarized continuum model (PCM)
[35,39,40] of the Self Consistent Reaction Field (SCRF) were used.

The molecular cavity was created using the United Atom
topological model (UAO). In this model, the molecular cavity is
constructed by using interlocking spheres centered on heavy (that
is, non-hydrogen) atoms. The radius of each sphere was obtained
by scaling the corresponding van der Waals radius by a factor of
1.20 [35]. A smooth surface is obtained with the help of extra
spheres not centered on any atom using the GEnerating POLyhedra
(GEPOL) method [41] and leading to the solvent-excluding surface.
In the supermolecule/continuummodel, the values of the OFac and
RMin for the GEPOL algorithm were changed to 0.8 and 0.5 from
0.89 and 0.2, respectively.

In the first model we can calculate a relative energy of solvation
Esol,1 as the difference between the energy of the molecule in the
continuum and the energy of the molecule in gas phase

DEsol;1 ¼ Esolute;PCM � Esolute;g ð1Þ
In the supermolecular/continuum model, we define an energy

of solvation, DEsol,2, as

DEsol;2 ¼ Ecomplex;PCM � Esolute;gas � EðH2OÞ3 ;PCM ð2Þ

where EðH2OÞ3 ;PCM represents the energy of three water molecule cal-
culated in PCM and oriented as found for the complex of interest.

3. Results and discussion

3.1. Relative energies

3.1.1. Gas phase calculations
Relative energies DE (relative to those of the B isomers) in gas

phase at T = 0 K with the inclusion of zero point energies are pre-
sented in Fig. 2 as function of substitution at positions 3 and 6.
In all cases, the symmetry is low, i.e., C1. For all the optimized
structures the ring moieties adopt a non-planar configuration. Of
the four iso- and tautomers we considered, two structures possess
indocyclic double bonds (i.e., the A and B conformers). In general,
the replacement of the nitrogen atoms by phosphorus atoms af-
fects the order and the relative stability of isomers and tautomers
for all systems.

The stability of group [1] can be explained as being due to intra-
molecular hydrogen bonds [8]. Actually, there are three different
types of hydrogen bonds that can be recognized, of which one is
the hydrogen bond between the hydrogen atom of the amino
group and the nitrogen atom in position 3 (N6AH� � �N3), that have
slightly different lengths for the B structures of MeANH, MeAO,
PhANH, PhAO, and PhAS, i.e., 2.47, 2.51, 2.45, 2.44, and 2.44 Å,
respectively. The second type of hydrogen bond is found between
the hydrogen atom of the amino group and the heteroatom in
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5 4
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Z
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X Y

Z
HR

A conformer B conformer

X Y

Z
R

X Y

Z
R

E isomer Z isomer

R=CH3, ph        X=NH, O, S
Z=N, P               Y=N, P

6

2

HH

Fig. 1. Structures and atom numbering of the tautomers and isomers of substituted
pyrrolidines and phospholanes. Notice that for Z = N, Y = P, and X = NH or O, the Z
isomer is not stable but converts into the E isomer.

144 S. Abdalla, M. Springborg / Computational and Theoretical Chemistry 978 (2011) 143–151



position 1 (N6AH� � �X), (with X = NH, O, or S). These are found in
the A forms of MeAO, PhANH, PhAO, and PhAS and have lengths
of 2.40, 2.45, 2.31, and 2.69 Å, respectively. Finally, the last type
of hydrogen bond occurs between the hydrogen atoms of the
methyl or phenyl group and the nitrogen atom in position 3 or
the heteroatom in position 1, as in the A forms of PhANH and
PhAO (C8AH� � �N3), as well as the B form of PhAS (C8AH� � �X)
whose lengths are 2.27, 2.29, and 2.75 Å, respectively. For the B
form of MeAO and MeAS the hydrogen bond C7AH� � �X (X = O or
S) has a length of 2.51 and 2.82 Å, respectively. In the Z isomers
of MeAO and MeAS systems the hydrogen bond C7AH� � �X (again,
X = O or S) has a length of 2.42 and 2.63 Å, respectively. We empha-
size that in order to classify these bonds as being hydrogen bonds
we have used that they all have lengths that are smaller than the
sum of the van der Waal radii of the involved atoms [42].

When going from group [1] to group [2], i.e., replacing the nitro-
gen atom at position 6 by a phosphorus atom, the bond length
C2AZ increases by about 0.49 Å for the phosphino form and about
0.47 Å for the phosphinidene form. Due to this increase the forma-
tion of intramolecular hydrogen bonds becomes much more diffi-
cult. In addition, the phosphorus atom is a much weaker proton
acceptor and donor compared to nitrogen [43,44]. Despite this,
the stability of some isomers can still be interpreted as being due
to hydrogen-bond formation.

The stability of the B form of MeAS for group [1] is due to intra-
molecular hydrogen bonding (C7AH� � �S), and through a rotation of
the methyl group, ‘‘bifurcated’’ hydrogen bonds (S < (C7AH)2) are
formed. The stability of the A form of PhANH for group [2] is due
to the C8AH� � �N3 hydrogen bonding being 2.63 Å. The PhAS for
group [2], stabilized the A conformer due to P6AH� � �S hydrogen
bond with a length of 2.97 Å. The phosphinidene form for methyl
substitution (X = O or S) leads to a preference for the Z form,
whereas the E form is the most stable one for their phenyl analogs
due to the presence of three-center bonds, P6AC2AN3. The consider-
able increase in the interatomic distances by about 0.4 Å of the
N3AH� � �S bond in the Z isomer for PhAS compared to the N3AH� � �O
bond for PhAO destabilizes the Z isomer for the sulfur species.

For group [3] the C2AY bond length increases by about 0.45 Å
for the amino tautomers and 0.51 Å for the imino tautomers. In
general, the relative total energy varies less than for group [2].

The most stable structures in this group are stabilized by the pres-
ence of intramolecular hydrogen bonds, similar to what we found
for group [1]. The stability of the A form in the indocyclic double

Fig. 2. The relative energies in gas phase as function of the substitution at position 3 and 6. The energies are given relative to B (squares). Circles, triangles, and stars mark the
A, E, and Z isomers, respectively.

Fig. 3. Examples of intramolecular hydrogen bonds in the gas phase for four
different molecules.
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bond tautomers are still dominating with PhANH being an excep-
tion, where the B isomer is more stable. For the methyl substituted
compounds, the amino group (N6AH) is oriented so that hydrogen
bonds with the heteroatom (X = N, O, or S) can be formed, having
lengths of 2.48, 2.36, and 2.72 Å, respectively. For the phenyl sub-
stitution (X = O or S) two types of hydrogen bonds can be identified
of which one is N6AH� � �X with lengths of 2.24 and 2.59 Å,
respectively, and the second is found between the a hydrogen of
the phenyl group and the phosphorus atom in position 3
(C8AH� � �P3) with lengths of 2.51 and 2.49 Å for X = O and S, respec-
tively. The Z isomers are more stable for the sulfur derivative of
group [1], whereas the E isomers are more stable for the equivalent
oxygen derivatives.

For group [4] the length of the C2AY bond increases by about
0.44 Å for the phosphino tautomers and 0.48 Å for phosphinidene
tautomers. Simultaneously, the length of the C2AZ bond increases
by about 0.55 Å for the phosphino and 0.33 Å for the phosphinidene
tautomers. As for group [3], also in this case the relative total ener-
gies show a fairly small spread. The A form for MeANH is still the
most stable tautomer. For the phosphino forms of MeAO, MeAS,
PhAO, and PhAS, the B structures are the most stable species. For
the phosphinidene forms, the E isomers are more preferred for
the cyclic azaphospholine and oxaphospholine, whereas for the
cyclic thiaphospholine the Z isomers are more stable. The stability
of the E isomer for PhAO can be explained as being due to the intra-
molecular hydrogen bond between the a hydrogen of the phenyl
group and the oxygen atom (C8AH� � �O) with a length of 2.23 Å.

In order to verify that our results on the the intramolecular
hydrogen bonds are not due to our computational approach we
performed additional gas-phase calculations for the most stable
tautomers of MeANH using the B3LYP/6-311++G (d,p) and the
MP2/6-311++G (d,p) methods. We found that the lengths of the
hydrogen bonds vary by only about 0.01 Å, with the only excep-
tional case being the E isomer of the group [1] where the
C7AH� � �N3 hydrogen bond was reduced to 2.66 Å (which is now
less than the sum of the van der Waal radii of nitrogen and hydro-
gen, i.e., 2.75 Å [42]), when the MP2/6-311++G (d,p) approach was
used, compared to 2.77 Å for the B3LYP/6-31+G (d,p) and B3LYP/6-
311++G (d,p) calculations.

Finally, in Fig. 3 we show some typical examples of intramolec-
ular hydrogen bonds as found in the gas phase.

3.1.2. SCRF calculations
In the first set of calculations for the molecules in an aqueous

solution the complete solvent was treated within the polarizable
continuum model (PCM). The resulting relative total energies DE
are shown in Fig. 4. When comparing with the results for the com-
pounds in the gas phase (cf. Fig. 2) some differences are observed,
mainly with respect to the absolute values of the relative energies,
and partly to the relative ordering of the different structures, but
only to a very small extend to the prediction of which structure is
the most stable one. Thus, only for the MeANH system of group
[3], the PhANH system of group [1] and group [2], theMeAS system
of group [3], and the PhAS system of group [1] the structure that is
the most stable one has changed. This means that the finding that
the Z structure, the E structure, the B structure, the Z structure,
and the A structure, respectively, is most stable in the gas phase
is changed into that the A structure, the A structure, the E structure,
the A structure, and the Z structure, respectively, is the most stable
one in the aqueous solution. In all other cases, the two sets of calcu-
lations find the same structure to be the most stable one.

With the PCM, the only interactions between solvent and solute
are of pure electrostatic nature: the solute has a certain charge
distribution that leads to a polarization of the solvent which in turn
polarizes the solute. Thus, structures that have a particularly polar-
ized charge distribution (i.e., parts with large, positive or negative,
charges) should be energetically favored within the PCM, neglect-
ing all other effects. This effect can be partly quantified through the
dipole moment, but it turns out (see below) that it is not possible
to identify the most stable structures within the PCM as those that
have the largest dipole moment. Thus, also the polarizability as
well as the relative stability of the different structures in the gas
phase have to be taken into account.

Despite this, the fact that the gas-phase and the PCM calcula-
tions lead to similar results suggests that the discussion of the
relative stabilities in the gas phase also applies to the PCM results.
In particular, many aspects can be explained through the existence
(or absence) of intramolecular hydrogen bonding.

The changes of the lengths of the intramolecular hydrogen
bonds when passing from the gas phase to PCM are only small.
Thus, the stability of the A forms of PhANH and PhAO systems of
group [1] is due to the intramolecular hydrogen bond [C8AH� � �N3]
with lengths of 2.31 and 2.33 Å in the PCM compared to 2.27 and

Fig. 4. Similar to Fig. 2, but for the PCM calculations in which the complete aqueous solvent is treated as a polarizable continuum.
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2.29 Å in the gas phase. For the B form of PhAO of group [1], the
C8AH� � �O hydrogen bond has a length of 2.25 Å in PCM compared
to 2.21 Å in the gas phase.

3.1.3. Supermolecular/continuum calculations
Since we have found that intramolecular hydrogen bonding is

important for our compounds, intramolecular solute–solvent
hydrogen bonding may be so, too. To study this we included an ex-
plicit (quantum–mechanical) description of three water molecules
together with that of the solute, whereas the remaining parts of the
solvent were treated within the continuum approach. The posi-
tions of the three water molecules were chosen according to where
we expected that hydrogen bonding might occur. The resulting
hydrogen bonds are summarized in Table 1.

The fact that phosphorus has a lower tendency to act as the pro-
ton donor in hydrogen bonding explains why the oxygen of the
water molecule prefers to form hydrogen bonding with the hydro-
gen atoms of the methyl group or with a phenyl hydrogen. A fur-
ther result of our calculations is that not all hydrogen bonds
contribute to the stability of the compounds, and that, instead, in
some cases hydrogen bonding between the explicit water mole-
cules was formed. It was, on the other hand, important that the

number of explicit water molecules is sufficiently large so that they
can surround the hydrophilic regions of the compound.

Next we turn our attention to the total energies. The results of
the present calculations are shown in Fig. 5 in a presentation sim-
ilar to that of Figs. 2 and 4. A comparison between Figs. 2 and 5
gives that the combined effects of the solvation and of the
solvent–solute hydrogen bonding changes the relative stability
significantly with the MeANH system the only one for which
the same structure is found to be the most stable one in both sets
of calculations. This is in marked contrast to the results of Fig. 4,
supporting that hydrogen bonding indeed is important for the
present systems and implying that, for the present systems, treat-
ing the solvent with a solely implicit approach is not sufficiently
accurate. In fact, the most stable isomers are stabilized via the
intermolecular hydrogen bonds between water molecules and
the heteroatoms.

3.2. Dipole moment

3.2.1. Gas phase
A single number that quantifies the charge distribution and that

simultaneously is experimentally accessible is the dipole moment.

Table 1
Hydrogen bond (HB) distances (in Å) as obtained in the calculations with the explicit treatment of three water molecules. The subscript w marks atoms from the water molecules,
whereas the other atoms are numbered according to Fig. 1.

System HB Group [1] Group [2] Group [3] Group [4]

Isomer Distance Isomer Distance Isomer Distance Isomer Distance

MeANH N1� � �Hw A A 2.01 Z A
N1H� � �Ow 2.10 1.96 1.89
HZ6� � �Hw 2.11 1.72 2.53
Y3� � �Hw 1.84 2.50
Y3AH� � �Ow 2.46
C7AH� � �Ow 2.51 2.88
Hw� � �Ow 1.97 1.75 1.81

MeAO O1� � �Hw Z 2.00 B 1.97 B 2.00 B 1.97
HZ6� � �Hw 1.73
Z6H� � �Ow 1.86
Y3� � �Hw 1.89 2.42 2.59
Y3AH� � �Ow 1.89
C7AH� � �Ow 2.52 2.51
Hw� � �Ow 1.75 1.79

MeAS S1� � �Hw Z 2.54 B 2.54 B 2.53 A 2.54
HZ6� � �Hw 1.76 1.86
Z6H� � �Ow 2.65
Y3� � �Hw 1.98 2.44 2.62
Y3AH� � �Ow 1.90
C7AH� � �Ow 2.46
Hw� � �Ow 1.75 1.92 1.79

PhANH N1� � �Hw B E Z Z
N1H� � �Ow 2.02 1.91 1.93 1.88
HZ6� � �Hw 2.36 1.77 2.44
Z6H� � �Ow 1.92
Y3� � �Hw 1.69 1.79 2.57
Y3AH� � �Ow 1.98 2.57
C8AH� � �Ow 2.45
Hw� � �Ow 1.75 1.79 1.77 1.79

PhAO O1� � �Hw Z 2.03 B 1.99 B 2.01 B 1.98
HZ6� � �Hw 1.79
Z6H� � �Ow 1.85 2.67
Y3� � �Hw 1.82 2.46 2.59
Y3AH� � �Ow 1.87
C8AH� � �Ow 2.37 2.39
Hw� � �Ow 1.76 1.79 1.79 1.86

PhAS S1� � �Hw Z 2.53 Z 2.56 A 2.65 A 2.49
HZ6� � �Hw 1.82
Z6H� � �Ow 1.88 3.01
Y3� � �Hw 2.56 2.62
Y3AH� � �Ow 1.88 1.87
C8AH� � �Ow 2.39
Hw� � �Ow 1.77 1.79 1.90 1.84
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Therefore, we shall use this in studying the variation in the charge
distribution for our systems.

Fig. 6 shows the dipole moment of our compounds in the gas
phase. For group [1], the E isomers of the methyl substitutions
(MeANH, MeAO, and MeAS) have the largest dipole moment in
gas phase and the amino tautomers of the A form have the lowest
values. For the phenyl substitutions (PhANH, PhAO, and PhAS), the
amino tautomers of the B form have the smallest dipole moment.
For group [2], the phosphino tautomer of the forms A have the
smallest values of dipole moment, whereas the E isomers have
the largest values.

When comparing the results for the same system but differing
in the number of nitrogen atoms that have been replaced by phos-
phorous atoms (i.e., when comparing the results for the different
groups) it is at first clearly seen that the dipole moment depends
strongly on the substitutions. Thus, replacing nitrogen by phospho-

rous leads to noticeable changes in the charge distribution. More-
over, one may compare the changes when going from group [1] to
group [4] with the sum of the changes when going from group [1]
to group [2] and going from group [1] to group [3]. As can be seen
in the figure, these two sets of changes are not identical, implying
that the double N? P substitution is not simply the sum of two
single N? P substitutions, but cooperative effects show up. In fact,
from the comparison just mentioned no trend can be identified,
but each system seems to follow its own rules. Thus, the properties
of the phosphorous-containing compounds are not trivially related
to those of the nitrogen-containing compounds.

3.2.2. Aqueous phase
Here, we shall only discuss the results of the pure PCM calcula-

tions, since for those where also three water molecules are treated

Fig. 6. Similar to Fig. 2, but for the dipole moment in the gas phase.

Fig. 5. Similar to Fig. 2, but for the PCM calculations in which three water molecules are treated explicitly, whereas the remaining parts of the aqueous solvent are treated as a
polarizable continuum.
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explicitly, the dipole moment contains also contributions from
those three water molecules. The results are shown in Fig. 7.

Without exception, the dipole moment for all molecules are in-
creased when the molecule is being solvated, which can be ex-
plained as being due to the electrostatic interactions between the
solvent and the solute. Such a behavior is common to PCM calcula-
tions and it is typically found that PCM calculations lead to an in-
crease of the dipole moment of organic molecules relative to that
of the gas phase by up to 30% [45]. In addition, the overall behavior
of the dipole moment as a function of phosphorous substitution as
found in the aqueous phase (Fig. 7) is very similar to what we
found in the gas phase (Fig. 6), although details often differ be-
tween the two cases.

Finally, we observe here, what already was discussed above,
that there is no simple relation between stability (i.e., relative
total energy for the different structures) and dipole moment

either in the gas phase nor in the PCM calculations. It is also
not possible to identify a correlation between the most stable
structures in the solution and the changes in the dipole moment
upon solvation. Thus, the stability as found in the PCM calcula-
tions may depend also on properties related to the dipole mo-
ment, but not only.

3.3. Free energy of solvation

The free energy of solvation, DEsol,1, defined in Eq. (1), and DEs-
ol,2, defined in Eq. (2), are shown in Figs. 8 and 9, respectively.
According to their definitions, DEsol is negative for systems that
are found to be more stable in the solution than in the gas phase.
This is seen to be the case for all systems according to the pure
PCM calculations, whereas the inclusion of three explicit water
molecules makes DEsol,2 positive in several cases.

Fig. 8. Similar to Fig. 2, but for the free energy of solvation, DEsol,1.

Fig. 7. Similar to Fig. 6, but for the PCM calculations.
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For all systems of group [1], all isomers are well soluble in
water. This is also the case for the N? P substituted systems
according to the pure PCM calculations, but for several systems
of group [2], group [3], and group [4], the calculations with three
explicit water molecules find these to be not soluble in water. This
tendency is, in general, largest for the compounds of group [4], and
this can be attributed to less favorable hydrogen-bond formation
between the phosphorous atoms at position 3 and 6 with the water
molecules. However, the absolute values from this set of calcula-
tions may be taken with some caution, since they depend strongly
on the number of water molecules around the solute [46,47] that
can form strong hydrogen bonding. The fact that not all hydrogen
bonds in the supermolecular contribute to the stability of the iso-
mers maybe also attributed to the construction of the cavity, which
may lead to inaccuracies when studying aggregation in solution
[48].

Finally, we mention that there is a clear correlation between
DEsol,1 and the dipole moment of the solute in the gas phase. Thus,
a large dipole moment leads to a large, negative value of DEsol,1.

4. Conclusion

In this work, results of B3LYP/6-31G (d,p) calculations, both in
gas phase and in aqueous phase, were reported with special
emphasis on the changes in the properties when nitrogen atoms
are replaced by phosphorous atoms. Thereby we focused on the
relative energies of different tautomers and isomers, the dipole
moment, the free energy of solvation, as well as the changes in
the bonds lengths due to this substitution. For the study in the
aqueous phase we considered both a pure continuum description
of the complete solvent and a supermolecular/continuum model
in which three water molecules were treated explicitly and the
remaining parts of the solvent were treated as a continuum.

We found both in the gas phase and in the pure PCM calcula-
tions that intramolecular hydrogen bonds are responsible for the
stability of the isomers. The formation of the hydrogen bonds were
affected by the presence of phosphorous atoms, so that the com-
pounds containing nitrogen atoms become more stable compared
to their phosphorous analogs. The N? P substitution(s) affect also
the relative stability (including their order) of the iso- and
tautomers.

When including three water molecules in an explicit treatment,
we find in particular for the only-nitrogen compounds strong
hydrogen bonds between the solute and the water molecules, an
effect that is much less pronounced for the phosphorous-contain-
ing compounds. In all cases we find that the inclusion of the expli-
cit water molecules leads to much larger changes in the energetic
ordering of the compounds than what is found with the pure con-
tinuum approach.

We also found that the changes due to the replacement of both
N atoms with P atoms are not simply the superposition of the
changes of the individual substitutions. This was exemplified
through the dipole moment. The dipole moment itself showed also
large changes (towards larger values) when the molecules are been
solvated. Finally, the solvation energies suggested that the P-con-
taining systems in some cases are not soluble in water.
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[39] S. Miertuŝ, E. Scrocco, J. Tomasi, Electrostatic interaction of a solute with a
continuum. A direct utilizaion of ab initio molecular potentials for the
prevision of solvent effects, Chem. Phys. 55 (1981) 117–129.

[40] R. Cammi, J. Tomasi, Remarks on the use of the apparent surface charges (ASC)
methods in solvation problems: iterative versus matrix-inversion procedures
and the renormalization of the apparent charges, J. Comput. Chem. 16 (1995)
1449–1458.

[41] J.L. Pascual-Ahuir, E. Silla, J. Tomasi, R. Bonaccorsi, Electrostatic interaction of a
solute with a continuum. Improved description of the cavity and of the surface
cavity bound charge distribution, J. Comput. Chem. 8 (1987) 778–787.

[42] A. Bondi, van der Waals volumes and radii, J. Phys. Chem. 68 (1964) 441–451.
[43] W.C. Topp, L.C. Allen, Structure and properties of hydrogen bonds between of

electronegative atoms of the second and third rows, J. Am. Chem. Soc. 96
(1974) 5291–5293.

[44] V.K. Pogorelyi, Weak hydrogen bonds, Russ. Chem. Rev. 46 (1977) 316–337.
[45] G. Alagona, C. Ghio, P.I. Nagy, Int. theoretical studies on the effects of methods

and parameterization on the calculated free energy of hydration for small
molecules, J. Quantum. Chem. 99 (2004) 161–178.

[46] C. Alemân, S.E. Galembeck, Solvation of chromone using combined discrete/
SCRF models, Chem. Phys. 232 (1998) 151–159.

[47] C. Alemân, Hydration of cytosine using combined discrete/SCRF models:
influence of the number of discrete solvent molecules, Chem. Phys. 244 (1999)
151–162.

[48] J. Pitarch, V. Moliner, J.-L. Pascual-Ahuir, E. Silla, I. Tuñón, Can hydrophobic
interactions be correctly reproduced by the continuum models?, J Phys. Chem.
100 (1996) 9955–9959.

S. Abdalla, M. Springborg / Computational and Theoretical Chemistry 978 (2011) 143–151 151



Isolated and Deposited Potassium Clusters: Energetic and

Structural Properties

Sahar Abdalla∗, Michael Springborg†, and Yi Dong‡

Physical and Theoretical Chemistry,

University of Saarland, 66123 Saarbrücken, Germany

(Dated: June 26, 2012)

Abstract

We have studied the energetic and structural properties of isolated potassium clusters with up to

20 atoms as well as such clusters deposited on a potassium surface. The global total-energy-minima

structures have been determined by using the Density Functional Tight Binding method (DFTB)

combined with genetic algorithms. For the isolated clusters in the gas phase we analyze the binding

energy as well as the stability function. Moreover, structural similarity is studied using so called

similarity functions. Also the overall shape of the clusters and the radial distribution of the atoms

are studied. Subsequently, we study the changes in the structure when these clusters are deposited

on one out of two different surfaces. Also the energy related to the deposition is studied in detail.

PACS numbers: 61.46.Bc, 68.47.De, 73.22.-f

∗ Corresponding author; e-mail: s.abdalla@mx.uni-saarland.de
† e-mail: m.springborg@mx.uni-saarland.de
‡ e-mail: y.dong@mx.uni-saarland.de

1



1. Introduction

Whereas many — experimental and theoretical — studies on the properties of metal clus-

ters in gas phase exist, much less studies have been performed for clusters that are deposited

on some surface, although the properties of the clusters on surfaces are relevant, both be-

cause such systems provide one way of studying them experimentally and because of their

importance for various chemical processes, including catalysis. Furthermore, the response

of the clusters to being deposited on the surface can also provide relevant information on

the clusters themselves.

Experimentally, there are various techniques for studying the behaviour of clusters de-

posited on a surface including scanning tunneling microscopy,1–3 scanning transmission elec-

tron microscopy,4 and field ion microscopy (FIM).5 As a representative example we mention

that Wang et al.6 studied the properties of iridium clusters (with 2–13 atoms) on an Ir(111)

surface by using FIM. They investigated the arrangement of the iridium atoms in the clusters

in relation to the binding sites for a single atom on the Ir(111) surface.

Also theoretical studies have been used for clusters on surfaces. Among those, some have

been based on semi-empirical methods like the Embedded Atom Method (EAM). These

studies include some on NiN and PtN clusters on Ni(111) and Pt(111) surfaces.7–10 Also

Schwoebel et al.11 used an EAM method but for studying the properties of small Pt clusters

on the Pt(001) surface. The structures and the energies of Ni, Pd, and Pt clusters on the

Pt(001) surface have also been studied theoretically.12 The structural properties of Pd and

Pt clusters on Ag(110) were studied by Roy et al.13 Finally, using molecular-dynamics we

have studied the depostion of Ni13 and Cu13 clusters on Ni(111) and Cu(111) surfaces.14

It has been found that the deposition of clusters on a surface influences both the energetic

and the structural properties of the clusters so that the deposited clusters have properties

different from those obtained in gas phase.

The purpose of the present work is to study in detail the effects of depositing potassium

clusters on a potassium surface. To this end we, thus, need both the properties of the

isolated clusters in the gas phase and those of the clusters on the surfaces. Therefore,

the first part of this work presents results on the global total-energy-minima structures of

isolated potassium clusters. In the second part, these optimized structures were deposited

on two different potassium surfaces.
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Over the years, several studies on the properties of potassium clusters in the gas phase

have been presented. One of the simplest theoretical approaches treats the isolated potas-

sium clusters within a spherical jellium model. With this model, discontinuities in the total

energy as a function of cluster size are related to the existence of electronic shell structures,15

similar to what has been reported for sodium clusters, with peaks or steps for those clusters

which contain N = 2, 8, 20, 40, · · · atoms.16,17 Early, this prediction was confirmed ex-

perimentally through mass spectra from potassium cluster beams.18 Since then, potassium

clusters in gas phase have been of considerable experimental interest.19–26

From the theoretical point of view, potassium clusters have been investigated with dif-

ferent theoretical methods, although most of these were limited to small sizes. Thus, potas-

sium clusters with up to 8 atoms have been studied using the pseudopotential calculations.27

An ab-initio study of both neutral and ionic structures of potassium clusters were carried

through with configuration interaction (CI) methods.28,29 The structures and the binding

energies for clusters containing between four and six atoms were also investigated by using

diatomics in molecules (DIM) approximation.30 Valence-only self consistent field calculations

was used to study neutral and singly ionized K clusters with up to four atoms.31 K9, K15, and

K27 have been studied using the SCF Xα SW (local spin density-scattered wave) method.32

Potassium clusters KN (N ≤ 7) were investigated using Hartree-Fock many-body perturba-

tion calculations.33 Florez and co-workers34 investigated the properties of potassium clusters

with up to eight atoms by applying two types of exchange-correlation functionals within a

density-functional approach. Recently, Banerjee et al.35 studied the properties of various

isomers of potassium clusters containing even numbers of atoms up to 20 atoms by employ-

ing an all-electron density functional theory with a gradient corrected exchange-correlation

functional. Their results include the binding energies, ionization potentials, and static po-

larizabilities as function of the cluster size. Thus, although potassium clusters have been the

subject of several theoretical studies, it is surprising that there has been no attempt to iden-

tify the structures of the global total-energy-minima using unbiased structure-optimization

methods in combination with electronic-structure calculations.

On the other hand, potassium clusters with up to 60 atoms were investigated using

a Gupta potential for describing the interatomic interactions combined with both genetic

and basin hopping algorithms36 to search for the global minima. However, such a model

does not include an explicit description of electronic effects, and may, in addition, tend to
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overestimate the role of packing effects, so that the particularly stable clusters are those

that are particularly closed packed and, hence, not in agreement with those obtained with

the spherical jellium model and, it turns out, experiment.15,18 This suggests that electronic

effects are important for the properties of potassium clusters.

Accordingly, in the present study, we shall include electronic degrees of freedom explicitly

for clusters with up to 20 atoms by utilizing the Density Functional Tight Binding (DFTB)

method. To search for the global minima structures we use genetic algorithms. As we

shall see, the sizes of the particularly stable clusters are found to be in agreement with

those obtained experimentally. In order to obtain further information on the properties of

the clusters, we shall use various descriptors for analyzing both energetic and structural

properties as function of the cluster size.

To include the effect of surface on the properties of potassium clusters, we have con-

sidered the clusters when being deposited very softly on K(100) and K(110) surfaces. To

our knowledge, this is the first study devoted to potassium clusters on a potassium surface.

Thereby, we shall focus on the changes in the structures due to the adsorption as well as in

the energetics related to the adsorption.

This paper is organized as follows: In section II our theoretical method is briefly de-

scribed. Subsequently, in section III, we present and discuss our results for both isolated

and deposited clusters. Finally, our results are summarized in section IV.

2. Theoretical Methods

Our theoretical method combines the Density Functional Tight Binding (DFTB) method

for the calculation of the total energy for a given structure with genetic algorithms for the

determination of the structure of the global total-energy minimum. The DFTB method is

based on the density functional theory of Hohenberg and Kohn37 in the formulation of Kohn

and Sham38 and was been developed by Seifert and coworkers.39–41 Within the DFTB, the

total energy of a given system relative to that of the isolated, non-interacting atoms is given

as

Etot =
occ∑
i

εi −
∑

j

∑
m

εjm +
1

2

∑
j �=j′

Ujj′(| Rj − Rj′ |) (1)

where εi are the single particle energies of the system of interest, εjm are those of the isolated

atoms (i.e., jth eigenvalue of the mth atom), and the last term is a pair potential, which
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describes short-range interactions. In the DFTB, only the valance electrons are considered,

whereas the other electrons are treated as a frozen core.

The orbital energies are calculated by expanding the orbital wavefunctions in a set of

atom-centered basis functions, {χjm}, where m marks the atom and j distinguishes between

different functions centered at the same atom. Moreover, we assume that the potential

experienced by the electrons can be written as a superposition of those of the isolated

atoms,

V (�r) =
∑
m

Vm(�r − �Rm). (2)

Finally, we assume that 〈χj1m1 |Vm|χj2m2〉 vanishes unless m1 = m and/or m2 = m. Then, all

information on the orbital energies can be extracted from accurate (parameter-free density-

functional) calculations on two-atomic systems, i.e., in our case on the K2 molecule, as a

function of interatomic distance.

The last (repulsive) term in Eq. (1) is determined so that the total energy as a function of

interatomic distance for the diatomics as obtained from the parameter-free density-functional

calculations is reproduced accurately. Our approach is, accordingly, based on parametrizing

results from the diatomic K2 molecule and, subsequently, using those for larger K-based

systems. In order to check whether this approach is reasonable, we calculated the lattice

constant for crystalline K using the present approach. The optimized lattice constant was

found to be a = 5.29 Å which compares well with the experimental value of a = 5.33 Å.

To determine the global minima structures, we have used genetic algorithms.42–46 The

main idea behind the genetic algorithms is to generate a larger number of structures (parent

structures) and from those to generate a new set through cutting and pasting. From the total

set of new and old structures, those with the lowest energy are kept (which then form the

next so called generation) and this process is repeated until the lowest energy is unchanged

for a larger number of generations. For the present work it is relevant to mention that the

combination of DFTB and genetic algorithms have been used before to determine the global

minima structures of sodium clusters.47,48 Finally, we used our approach for KN clusters for

N up to 21, but shall here concentrate on the properties of the clusters with N up to 20.

For the calculations of the potassium clusters deposited on a surface, we considered two

types of potassium surfaces, i.e., the (110) and (100) surface. We modeled the surface

through a film with a thickness of three layers (i.e., 3a) and with each layer containing 72
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atoms. During the surface optimization, the structure of the bottom layers was kept fixed at

the experimental crystal structure, whereas the first layer was allowed relax. Subsequently,

a potassium cluster with the structure that was optimized in the gas phase was placed in

the closest vicinity to the surface, and the resulting system was allowed to relax.

We emphasize that the goal of our work is to study what can happen when a cluster is

deposited on a surface. Thus, we have not attempted to identify the optimal orientation

and/or position of the cluster on the surface. Instead, the fact that we considered just a single

deposition geometry will for sure influence our results. Moreover, by allowing only the top-

most layer to relax, we make use of the near-sighted-ness of electronic interactions, although

further relaxation effects may exist. Nevertheless, we believe that our study provides general

information on the effects on structural and energetic properties when a cluster is deposited

on a surface.

In order to analyze the changes due to the deposition of the cluster on the energy we at

first define a deposition energy as

ED = Etot − EIS − EIC (3)

where Etot is the total energy of the complete system (cluster+surface), EIS is that of the

isolated surface, and EIC is that of the isolated cluster. ED can be considered as consisting

of three contributions, i.e., an energy related to changing the structure of the surface from

that of the isolated system to that of the cluster+surface system, a similar energy for the

cluster, and an interaction energy between the two. Whereas the first two per construction

are positive (see, however, later), the latter should be negative so that ED becomes negative.

In detail, the interaction energy between the surface and the cluster can be defined as

Eint = Etot − EDS − EDC. (4)

here, EDS is the energy of the surface in the structure it has after the deposition, and EDC

is, equivalently, the energy of the cluster in the structure after the deposition. The energy

costs related to restructuring the surface and the cluster, respectively, are then given as

ERC = EDC − EIC (5)

and

ERS = EDS − EIS. (6)
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3. Results and Discussion

3.1. Isolated Potassium Clusters

At first, we shall discuss the properties of isolated KN clusters with N up to 20. We

shall discuss their energetic and structural properties and also compare with those of NaN

clusters, as the two types of systems often are considered as being very similar.

3.1.1. Energetic Properties

The binding energy per atom, i.e., −Etot(N)/N with Etot(N) being the total energy of

Eq. (1) for the cluster with N atoms, is an overall increasing function of N , as can be seen

in the upper part of Fig. 1. However, as always found for such small systems, additional

size-dependent features are seen in the figure, suggesting that certain cluster sizes are more

stable than the neighbouring sizes.

The stability of the clusters can at best be quantified through the stability function,

S(N) = Etot(N + 1) + Etot(N − 1) − 2Etot(N). (7)

This function has maxima for particularly stable clusters and is shown in the lower panel

in Fig. 1. At first, a clear even-odd oscillatory pattern is identified, which can be related to

electronic shell-filling effects, but, in addition, more pronounced peaks are found for N = 8,

18, and 20. That these cluster sizes should be particularly stable is in agreement with what

is obtained from the simplest spherical jellium model as well as mass spectra of potassium

cluster beams.15,18

When comparing with our earlier results for NaN clusters using the same theoretical

approach47,48 we see a very close similarity. Thus, both the even-odd oscillations and the

peaks at 8, 18, and 20 are found for both systems. At first, together with the results for

the spherical jellium model this suggests that both systems can be considered as roughly

spherical clusters for which electronic-shell effects are the dominating ones. However, as we

shall see below, this is not the case and, indeed, KN and NaN clusters are less similar than

what could be suggested based on their energetic properties.
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FIG. 1: The upper panel shows the binding energy per atom for potassium clusters with up to 20

as function of the size of the clusters, whereas the lower panel shows the stability function for the

same clusters.

3.1.2. Structural Properties

The global minima structures of the potassium cluster with up to 20 atoms are shown in

2. We see that up to N = 5, the structures are planar. In the figure, also the point group

symmetries of the individual clusters are given. Comparing those with the similar results for

NaN clusters, about half-part of the clusters have the same symmetries for the two systems,

although this similarity in most cases results from a particularly low symmetry (C1 or Cs).
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(a) 3(C2v) (b) 4(D2h) (c) 5(C2v) (d) 6(C5v) (e) 7(D5h)

(f) 8(C2v) (g) 9(Cs) (h) 10 (Cs) (i) 11(C2v) (j) 12(Cs)

(k) 13(Cs) (l) 14(C1) (m) 15(C1) (n) 16(C1) (o) 17(C2)

(p) 18(C1) (q) 19(C1) (r) 20(C3)

FIG. 2: The structures of the global total-energy minima of KN (2 ≤ N ≤ 20) clusters obtained

with DFTB. Below each structure, both N and the corresponding point group are given.

In order to compare our results with those of other, previous studies, we tabulate the

structures of KN for N ≤ 8 and their corresponding point groups in Table I. There we have

also listed the results of previous theoretical studies.26,29–31,33–35,49 It is seen that our results

are in good agreement with what has been found in most other studies. There are also

deviations, although in no case our results differ from those of all other theoretical studies.

We interpret this as being in support of our theoretical approach.

For the triangular structure for K3 we find indications of a weak Jahn-Teller distortion.
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TABLE I: Comparison of the structures for KN for N ≤ 8.

KN Structure Point group References

K3 isoceles triagle C2v present, ref. [26,29,31,33]

linear D∞h ref. [34

K4 rhombus D2h present, ref.29,31,35,49]

K5 trapezoidal C2v present, ref. [29,34]

trigonal pyramidal D3h ref. [30]

deformed tetrahedral ref. [33]

K6 pentagonal pyramidal C5v present, ref. [29,35]

planar C2v ref. [34]

octahedral ref. [30]

K7 pentagonal bipyramid D5h present, in ref. [34]

K8 compact structure C2v present, in ref. [34]

(a)K4 (b)K6

FIG. 3: The structures of K4 and K6 showing the definition of the lengths a and b.

For K4 we obtained a rhombus structure with D2h symmetry. The rhombus sides have all the

same length, a, which is longer than that of the diagonal, b (see Fig. 3). We find a = 4.45 Å
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and b being 4.16 Å. A similar difference has also been reported in some earlier studies,31,35,49

whereas others studies have found a = b.28,29,33

The transition from 2D to 3D occur at K6, which is predicted to have pentagonal pyrami-

dal structure with C5v symmetry in agreement with the result obtained by Banerjeeet al.35

and in contrast with that obtained from Florez et al.34 and Richtsmeier et al.30 These found

planar and octahedral structures, respectively. For K6, the length a and b (see Fig. 3) are

found to be a = 4.48Å and b = 4.41Å. A similar difference in the lengths has been also been

found in some previous studies,31,35,49 where in other studies28,29,33 a = b was found. It is

worth noting that the transition from 2D to 3D has been also predicted for sodium clusters

to occur at Na6.
50

Low symmetric structures are found for the clusters in the size range 9 ≤ N ≤ 20,

where the most dominant point groups are C1, C2, and Cs. The structures of K9 and

K10 are characterized by a Cs symmetry similar to that obtained for sodium clusters.47,48

The structure of K11 has C2v symmetry. For the magic clusters with N = 18 and 20, the

corresponding point groups are C1 and C3, i.e., these structures are not of particularly high

symmetry. Our finding for K18 is in contrast to the C2v symmetry obtained for Na18,
47

although both studies agree that the structure for this size is of relatively low symmetry and

far from the roughly spherical symmetry assumed by the spherical jellium model.

To identify how the clusters grow and to quantify whether the cluster with N atoms can

be derive from the cluster with N − 1 atoms by simply adding one atom, we have used two

different theoretical approaches. In the first case, we have used a so called similarity that

we have found to be useful, at least for relatively compact systems.51,52 For the comparison

of two systems with P atoms, we calculate and sort the interatomic distances of the two

systems, {di} and {d′
i}, respectively. Subsequently we calculate

q =

⎡
⎣ 2

P (P − 1)

P (P−1)/2∑
i=1

(di − d′
i)

⎤
⎦

1
2

. (8)

When comparing clusters with N and N − 1 atoms, we consider all those N structures that

can be obtained from the N -atomic cluster by removing a single atom. For each of those,

the resulting structure is compared with the (N − 1)-atomic cluster, and out of all the N

different values of q, the lowest one, qmin, is chosen to define a similarity function

S =
1

1 + qmin/ul
(9)
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where ul is a length unit.

This approach is not easily applied for comparing structures with very different sizes or

that are open. We have therefore developed a new approach for the comparison of two

systems AN and BM for which we will assume that M ≥ N .53 At first, the two structures

are scaled, and subsequently the two resulting structures are placed upon each other so that

Q =
N∑

i=1

∣∣∣∣ 1

dA

�RA,i −
1

dB

�RB,i

∣∣∣∣
2

(10)

is minimized. Here, dA and dB are the two scaling factors for the two systems, �RA,i is the

position of the ith atom of the A cluster, and �RB,i is the position of that atom of the B

cluster that (after scaling) is closest to the ith atom of the A cluster (also after scaling).

From the minimum value of Q we define a similarity function similar to Eq. (9),

S =
1

1 + (Q/N)1/2
. (11)

At first, we compare the clusters with KN and KN−1 atoms. The results are shown in

Fig. 4(a), where we compare the two approaches of Eqs. (9) and (11). In the former, we

have used ul = 1Å, and in the latter we have scaled all atomic coordinates by a factor

of 4.97 Å (which is the average of the nearest and next-nearest neighbour distance in the

crystal structure). The shapes of the two curves are very similar, although the differences

in the scaling factors result in differences in the absolute values. That the two approaches

give similar results can be explained from the fact that the present clusters are fairly closed

packed. It is interesting to observe the even-odd oscillatory pattern in particular for the

smallest clusters. This suggests that the cluster with, e.g., 5 atoms has a structure very

similar to that of the 4-atomic cluster, although a new electronic orbital is being occupied.

For the 6-atomic cluster, a new structure is found, which, to a large extend, is found for the

7-atomic cluster, too. This trend continues up to N around 16, although it becomes less

pronounced for the larger values of N . The fact that the structure changes whenever two

atoms are added can be seen in Fig. 4(b) where we compare the structure of KN with that

of KN−2. Finally, a similar oscillatory pattern was also found for the NaN clusters.48

Since simple chemical reasoning may suggest that NaN and KN clusters have very similar

properties, we also applied the similarity function of Eq. (11) to compare the structures of
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FIG. 4: Different similarity functions used in quantifying the similarity between different objects.

In (a), KN and KN−1 clusters are compared with the thin curve showing the results using Eq. (9)

and the thick curve showing those for Eq. (11). In (b), KN and KN−2 clusters are compared, and

in (c), KN and NaN clusters are compared. Finally, in (d) the KN clusters after deposition on

the surfaces are compared with those in the gas phase. In this case, the thick line represents the

similarity function for the clusters on the K(100) surface, the thin line represents the similarity

function for the clusters on the K(110) surface, and the dashed-line compares the structures of the

KN clusters on the two surface. In (b), (c), and (d), only the similarity function according to Eq.

(11) is used.

the two sets of systems. For each of the two systems, we used a scaling factor being equal

to the average of the nearest and next-nearest neighbour distance in the crystal structure.

The resulting similarity function is shown in Fig. 4(c), where it can be seen that the clus-

ters become increasingly different as N grows. Thus, the two systems are not completely

13



analogous to each other.

In order to get further information on the structure, we study the so called radial dis-

tances. For each KN cluster we first define its center,

�R0 =
1

N

N∑
i=1

�Ri (12)

and subsequently for each atom its radial distance,

ri = |�ri| = |�Ri − �R0|. (13)

FIG. 5: The distribution of radial distances (in Å) for KN clusters as function of clusters size. For

each value of N , each small line represents at least one atom that has that radial distance.

The radial distances themselves are shown in Fig. 5. For some of the smallest clusters

(N = 6, 7, 8, and 11, for instance), we have only few different values of the radial distances,

which is a consequence of the high symmetry of these clusters. This is, on the other hand, not

the case for the larger clusters. Here, instead there is a tendency for developing structures

with a small core (with corresponding small values of radial distances) covered by a shell

of atoms (with larger radial distances). This tendency is most pronounced for the largest

cluster with N ≥ 15.
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FIG. 6: Properties related to the eigenvalues Iαα/N5/3. The solid line lines show the eigenvalues

themselves, whereas the dashed line shows their average. In the upper part we mark whether the

clusters have an overall spherical shape (lowest row), a lens-like shape (middle row), or cigar-like

shape (upper row).

Fig. 5 gives also some information on the overall shape of the clusters. Thus, the clusters

with 6 ≤ N ≤ 8 appear to be more compact than those of the neighbouring sizes. Further

information on the shape can be obtained as follows. For each cluster size we first define

the 3 × 3 matrix containing the elements

Ist =
1

u2
l

N∑
i=1

siti (14)

with ul being a length unit, and s and t being x, y, or z. The three eigenvalues of this matrix,

Iαα, can be used in separating the clusters into being overall spherical (if all eigenvalues are

identical), cigar-shaped (if one of the eigenvalues is large compared to the other two), or

lens-shaped (if we have two large and one small eigenvalue). Since the eigenvalues for a

spherical jellium will scale as N5/3, we show in Fig 6 the three eigenvalues, Iαα, and their

average scaled by N−5/3. The fact that no cluster has three identical values of Iαα implies

that no cluster has an overall spherical shape, which in turn suggests that the spherical

jellium model at most can be of limited success for these systems. Instead in particularly

15



the clusters for N < 15 have markedly different values for Iαα so that their structure is

significantly different from spherical, and first for N > 15 the three eigenvalues approach

each other. The fact that the smallest clusters are planar manifests itself here in that the

smallest value of Iαα equals 0.

3.2. Deposited Potassium Clusters

Next, we shall discuss the changes in the properties of the potassium clusters after they

have been deposited softly on a (100) or (110) surface of a potassium crystal.

3.2.1. Energetic properties

When the cluster is deposited on the surface, the total energy of the cluster+surface sys-

tem is lowered, and the system is stabilized, which can be seen from the negative deposition

energies in Fig. 7(b). In that figure it is also seen that the deposition energy is largely

independent of the crystal surface. The deposition energy per cluster atom [shown in Fig.

7(a)] is an overall increasing function of N since the fraction of the cluster atoms that is in

contact with the surface is an overall decreasing function of N . There are, however, certain

extra features in Fig. 7(a) of which the maximum for N = 8 and the minimum for N = 5

are the most pronounced ones. For N ≤ 5 the gas-phase clusters are planar and can, thus,

be placed on the surface so that all cluster atoms experience (attractive) interactions. This

result in the particularly low values for the deposition energies in this size range. The max-

ima for N = 8 in Fig. 7(a) might be due to the high stability of this cluster size in the gas

phase, suggesting that this cluster will not benefit much from interactions with the surface.

The fact that the deposition energy becomes increasingly negative as a function of cluster

size is consistent with the results for the energetic properties of the gas-phase clusters, Fig.

1. Thus, the K systems are increasingly more stable, the larger the systems are.

As described in Sec. , it can be useful to split the deposition energy into three different

contributions: a restructuring energy of the cluster describing the energy costs for the cluster

to change the structure from that of the gas phase to the one it has on the surface, a similar
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FIG. 7: Various energetic properties related to the deposition of the KN clusters on a K surface

as function of clusters size, N . The solid curves represent results for the K(100) surface and the

dashed curves represent those for the K(110) surface. (b) shows the deposition energy, ED, that

is split into the interaction energy, Eint [shown in (c)], and the restructuring energy of the cluster,

ERC [shown in (d)], and of the surface, ERS [shown in (e)]. (a) shows the deposition energy per

cluster atom.

energy for the surface, and the remaining part that then describes the interaction between

the cluster and the substrate. These three contributions are shown in Figs. 7(d), (e), and

(c), respectively.
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At first, it is seen that the restructuring energy of the surface, Fig. 7(e), is essentially

vanishing. In some of the calculations it takes even negative values, which we shall explain

below. The small values of the restructuring energy of the surface suggest that the changes

in the surface structures indeed are small, so that our approach based on letting only the

top-most layer relax is justified.

On the other hand, the restructuring energy of the cluster, Fig. 7(d), is clearly non-zero

and positive, although also here there are cases where it is fairly small. The largest value is

found for K11 deposited on the (100) surface, but since a smaller value is found for the same

cluster on the (110) surface, we suggest that this large value is biased by our more or less

arbitrary choice of the deposition geometry.

Compared to the total deposition energy, the two restructuring energies are accordingly

the smaller parts and, instead, the dominating part is the interaction energy between cluster

and surface. Thus, this energy, Fig. 7(c), follows close the deposition energy.

3.2.2. Structural Properties

We shall now discuss the structures that result from the deposition of the clusters on

the two surfaces. At first, we shall compare the structure of the clusters before and after

deposition as well as the structures of the clusters on the two different surfaces. To this end

we use the similarity function of Eq. (11). The results are shown in Fig. 4(d). Compared

to the other panels in that figure, the values of Fig. 4(d) are in general lower, implying that

the changes in the cluster structures are significant. Moreover, the structures on the two

different surfaces are clearly different, suggesting that deposited clusters of the same size

may not take only one structure but the resulting structure depends also on the orientation

and position of the cluster on the surface.

That the structures of the clusters change upon deposition on the surfaces can also be

recognized in Figs. 8 and 9, where we show these. It is clear that the structures differ from

those of Fig. 2, and a careful examination of the structures on the surfaces suggests that the
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FIG. 8: A top view of the structures of the KN clusters on the K(100) surface. The cluster and

the surface atoms have been given different colours.

clusters there have a structure that is partly dictated by a tendency of the cluster atoms to
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FIG. 9: A top view of the structures of the KN clusters on the K(100) surface. The cluster and

the surface atoms have been given different colours.

sit on positions on the surface where they have a large number of surface-neighbours. This
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FIG. 10: Various quantities describing the structural properties of the cluster+surface system.

The full and the dashed curve shows the results for the (100) and (110) surface, respectively. For

further details, see the text.

is the case for bridged and hole positions on the surface. One may thus suggest that there

is a certain tendency for the cluster atoms to place themselves epitaxially on the surface.

In order to quantify to which extend the surface changes structure upon the deposition

and to which extend the cluster atoms are placed epitaxially on the surface, we apply certain

so called indices that are defined as follows. At first we define an index of epitaxy, IE . Taking

the positions of the two bottom layers of atoms for the slab model that is used for the surface,

we imagine the positions of these atoms being continued virtually into those parts of space
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where the uppermost surface layer and the cluster are placed. Subsequently, we define

q2
E =

1

N

N∑
i=1

|�Ri − �RiX0|
2, (15)

where �Ri is the position of the ith atom of the cluster that has N atoms. Moreover, �RiX0

is the position of that atom of the virtual continuation of the crystal that is closest to �Ri.

Subsequently, we define

IE =
1

1 + qE/ul
. (16)

In a similar way we define an index, IC , for the surface describing whether the positions of

the atoms of the uppermost surface layer in the presence of the cluster are close to those of

the virtual continuation of the crystal. The only difference is that the summation in Eq. (15)

then runs over the 72 atoms of the upper surface layer. Finally, we compare the structure

of the surface layer without and with the cluster through a further index, IS, defined as

IS =
1

1 + qS/ul
(17)

with

q2
S =

1

72

72∑
i=1

|�RiS0 − �RiS|
2, (18)

where �RiS0 and �RiS is the position of the ith atom of the upper surface layer in the absence

and in the presence of the cluster, respectively.

These three indices are shown in Fig. 10. At first it is seen that IE takes fairly low values,

implying that the cluster atoms are not placed at positions close to those of the crystal.

However, IC is even smaller, giving that the outermost surface layer experiences strong

structural relaxations compared to the crystal. As suggested already by the results of Fig.

7(e), the structural relaxation of the surface upon deposition of the cluster is small with some

exceptions. In fact, these exceptions are closely related to those for which the restructuring

energy of the surface was particularly low. A careful inspection of the structural changes in

those case reveals that the changes are related to a single atom at the boundary of the finite

surface model. This atom changes in some cases place and lowers thereby the total energy

of the complete surface. That this is possible is not surprising: after all, the structure of the

surface model was not determined as that of the lowest total energy for the system of 216 K

atoms, but rather a local total-energy minimum. Thus, a small perturbation, for instance

the presence of a cluster, may change this structure.
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4. Conclusions

In summery, we have presented results for the structural and energetic properties of

potassium clusters with up to 20 atoms that are either isolated or deposited on a surface

of a potassium crystal. The structure optimization was performed by using a combination

of DFTB calculations for the determination of the total energy for a given structure and

genetic algorithms for the determination of the global total-energy-minima structures. From

the stability function it is clearly seen that the KN clusters show an even-odd oscillatory

pattern and that more pronounced peaks are found for the sizes 8, 18, and 20, which is

in agreement with the results obtained from the spherical jellium model and mass spectra

of potassium cluster beams. However, the structural analysis showed that these clusters

are not even approximately spherical. Moreover, the similarity function demonstrated that

there is a tendency for the smaller clusters to pairwise possess similar structures. This is

the case for the clusters with 4 and 5 atoms, with 6 and 7 atoms, with 8 and 9 atoms, etc.

When the potassium clusters are deposited softly on a potassium surface, both the en-

ergetic and the structural properties change. By separating the deposition energy into two

structural reorganization energies (for the surface and the cluster, respectively) and an in-

teraction energies, we found that the interaction energy is the dominating one, although

the restructuring energy of the clusters occasionally is fairly large. Although the deposition

energy in general becomes increasingly negative with cluster size, the deposition energy per

cluster atom is most negative for the smallest clusters. By analyzing the structures of the

clusters on the surfaces we found that these are significantly different from those of the clus-

ters in the gas phase. Moreover, the structure of the surface relaxes significantly compared

to the crystal structure, but only little upon deposition of the clusters. The cluster atoms

did not show any tendency toward an epitaxial growth of the crystal.
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