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1. Introduction 

1.1. Epigenetics history 

 

The ancient world was already highly interested in development and 

inheritance mechanisms. Philosophers as Anaxagoras or Hippocrates hold 

the preformation theory and preached the homunculus (Latin for little human) 

as origin of all life. One hundred years later, Aristoteles challenged this maxim 

with his thesis of epigenesis (Greek for subsequent development). He thought 

that embryonic development was characterized by permanent formation of 

new structures. This idea was revived by Wiliam Harvey in 1651 and proved 

by Caspar Friederich in 1796 (Wolff 1759). Both showed that the human being 

is developed from one fertilized egg cell. This discovery motivated 

embryologists as well as developmental biologists to decrypt developmental 

embryonic processes with microsurgical and chemical methods. Remarkably, 

genetics was ignored until rediscovery of Mendel’s laws in the 20th century. 

However, at that time, genetic knowledge was insufficient to explain the link 

between genotype and phenotype since the main focus was on genes 

behavior (Hortshemke 2005). 

The British scientist Conrad Hal Waddington brought about a rebound by 

accentuating the importance of genetics in all domains of biological research 

and thus juggling genetics and developmental biology (Waddington 1942). He 

described inheritance and development as a discussion between the genetic 

information and environment. According to him, the one-dimensional 

interpretation of genes was insufficient to explain development. Thus, it must 

exist something ‘epi’, over or upon genes (genea, greek for descent, race). 

From his point of view, the zygote possesses preformed characteristics that 

interact during early development to form through epigenesis an adult life form 

(Haig 2004). Therefore, Waddington joined the terms epigenesis and genetic 

to coin epigenetic. Hence, he defined for the first time the department of 

science that analyses the causal interaction between genes (genotype) and 

their products (phenotype) (Waddington 1942; Moch 2004). Attention should 

be paid to the fact that Waddington established this revolutionary idea without 
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the knowledge that genes encode proteins. Not until three years later, the 

paradigm of one gene-one enzyme was published (Beadle and Tatum 1941). 

To illustrate his concept of epigenetics, Waddington published in 1957 

the famous epigenetic map, showing a ball rolling down a plain. This ball 

represents an embryonic cell, curling irrevocably down the slope of 

development. The different channels, present on the surface, mark different 

developmental fates (Figure 1) (Burbano 2006). 

 

 

Figure 1: Conrad Hal Waddington’s classical epigenetic landscape. 
The ball is a metaphor for an embryonic cell in the process of differentiation. The 
inclined plan represents the different possible developmental possibilities, whereas 
canalizations stand for irrepealably developmental decisions, which were taken by 
the cell (Goldberg, Allis et al. 2007). 

 

The term of DNA methylation was first mentioned in 1969 in a 

publication about long-term memory (Griffith and Mahler 1969). The 

association between DNA methylation, gene regulation and X-chromosome 

inactivation was established in 1975 (Holliday and Pugh 1975; Riggs 1975; 

Sager and Kitchin 1975). However, the word “epigenetic” did not appear in 

any of these publications (Haig 2004).  

At the beginning of the nineties, epigenetic was defined as the study of 

modifications in gene expression occurring in differentiated cells, as well as 

the mitotic inheritance of this expression pattern. Then, it was referred to 

nucleus-mediated and DNA sequence-independent inheritance. Both 

definitions were not complete but complement each other (Holliday 2006). 

Afterwards, the scientist Hall combined both definitions and defined epigenetic 
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as the sum of genetic and not genetic factors that control gene expression 

and therefore, the phenotypic complexity during development (Hall 1992). 

Medawar and Medawar formulated epigenetic in 1988 as “Genetics proposes, 

epigenetics disposes”. Nowadays, molecular biologists define epigenetic as 

the study of mitotically and/or meiotically heritable changes that occur without 

DNA sequence changes (Berger, Kouzarides et al. 2009). In contrast, 

functional morphologists define epigenetic as a general series of interactions 

among cells and their products, resulting in differentiation and morphogenesis 

(Haig 2004). 

 

1.2. Epigenetics  

 

Epigenetic events are crucial in the control of both normal and defective 

(e.g. cancer-associated) cellular processes (Vaissiere, Sawan et al. 2008). 

The flexible and heritable epigenetic events include, at protein level, a 

bewildering array of post-translational modifications (PTMs) of histone 

proteins, at DNA level, a process in which enzymes add methyl groups onto 

cytosines (DNA methylation) or, at RNA level, an RNA-mediated gene 

silencing in form of RNA interference. To cope with their tasks such as gene 

regulation or transposon silencing, epigenetic mechanisms are interconnected 

and act in self-reinforcement.  

 

1.2.1. Histone modifications 

 

In the nucleus, eukaryotic genome is packed as chromatin, present 

under various levels of condensation from the lightly condensed and actively 

transcribed euchromatin to the compact and silenced heterochromatin. The 

nucleosome core particle forms the ‘heart’ of the chromatin structure. This 

nucleoprotein complex is composed of a histone octamer, consisting of two 

copies of each highly conserved core histone proteins H2A, H2B, H3, and H4 

around which 146bp DNA are wrapped to form a superhelix (Figure 2) 

(Kornberg and Lorch 1999). Together these proteins form a globular domain 



  Introduction 

 4 

whereby their unstructured amino termini protrude flexibly on the surface of 

the chromatin polymer. Initially thought as a static and non-participating 

structural chromatin element, it became clear that histones are a dynamic and 

indispensable component of the gene regulation machinery.  

The N-terminal histone tails comprise 25-30% of the mass of individual 

histones and are the sites of numerous PTMs (Figure 2) (Allfrey and Mirsky 

1964; Wolffe and Hayes 1999).  

 

 

Figure 2: Schematic representation of post-translational modifications within 
N-terminal tail domains of the core histone octamer. 
Colored dots over modified amino acids (K: lysine, R: arginine, S: serine) indicate the 
nature of post-translational modifications (i.e. acetylation, methylation, 
phosphorylation or ubiquitylation). Numbers refer to the positions on histone proteins 
(Strahl, Grant et al. 2002).  

 

The panel of histone PTMs including acetylation, methylation, 

phosphorylation, ubiquitylation, deamination, proline isomerization, 

sumoylation or ADP-ribosylation codes for epigenetically relevant information 

at defined genetic loci (Figure 2) (Neff and Armstrong 2009). Indeed, one type 

of PTM can be applied on several amino acids in different histone tail 

positions and interacts with other PTMs. Moreover, in the case of methylation, 

lysine and arginine residues can be mono, di- or tri-methylated, adding 

another layer of complexity to the histone code. Hence, spatial distribution of 
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histone modifications allows to affect synergistically chromatin-interacting 

enzymes (Kurdistani, Tavazoie et al. 2004).  

Functional consequences of histone modifications may be first the 

establishment of a specific global chromatin environment and second the 

orchestration of DNA-based biological tasks (Kouzarides 2007). Considering 

only electrostatic requirements for the chromatin polymer folding, histone 

acetylation and phosphorylation could synergistically unravel the negatively 

charged chromatin fiber by neutralizing positive and adding negative charges, 

respectively (Kouzarides 2007). However, effects of the myriad of histone 

PTMs are more complex, affecting the interaction of histones, DNA and the 

adjacent nucleosomes as well as the inter-nucleosomal contacts. Accordingly, 

gene promoter accessibility is changed and gene expression activated or 

silenced (Leone, D'Alo et al. 2008). The remarkable diversity and biological 

specificity of histone modifications coupled with distinct patterns of covalent 

histone marks let assume that a histone ‘language’ which may be encoded on 

these tail domains is far more complex than the genetic code. 

For example, acetylation (ac) of specific lysines (K) in the N-terminal tail 

of the core histones H3 and H4 (e.g. H3K9ac, H3K4ac or H4K12ac) is a well-

known histone modification, which plays a fundamental role in transcriptional 

activation (Figure 2) (Lennartsson and Ekwall 2009). In addition to their role in 

regulation of gene expression, histone PTMs partition genome into different 

distinct domains, associated with very local functions such as gene 

transcription and DNA repair, or to more genome-wide functions including 

DNA replication or chromosome condensation. For instance, during 

replication, histones are rapidly synthesized and assembled into newly 

synthesized DNA. In this process, pre-acetylated H3 and H4 are brought to 

replicating chromatin and become erased after complete replication and 

chromatin maturation (Turner and O'Neill 1995). Furthermore, phosphorylation 

of histone H3 on serine 10 (H3S10P) and the presence of the linker histone 

H1 have long been implicated in chromosome condensation during mitosis 

(Bradbury 1992; Koshland and Strunnikov 1996). Moreover, H3S10P 

correlates with the induction of early immediate response genes such as c-

jun, c-fos and c-myc (Zippo, Serafini et al. 2009). Regarding lysine 

methylation, consequences depend on the position within histone tails. For 
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example, di- and tri-methylation of H3K4 and H3K26 are associated with open 

transcriptional active chromatin. In contrast, trimethylation of H3K9, H3K27 or 

H4K20 appears to be largely localized on promoters of repressed genes (Pan, 

Tian et al. 2007). In any case, these generalizations must be treated with 

care, since some modifications can exert different transcriptional outcomes 

depending on the surrounding microenvironment, the specific time point and 

the combination with other PTMs (Bernstein, Mikkelsen et al. 2006; Guenther, 

Levine et al. 2007). 

Non-histone protein complexes with unique biological properties are in 

charge of reading histone modification patterns to mediate the recruitment of 

further docking proteins or complexes (e.g. NuRD, SIN3) leading to 

transcriptional activation or repression. For example, the repressive chromatin 

mark H3K9me3 is bound by the non-histone heterochromatin protein (HP) 1, 

forming a recruitment platform for histone methyltransferases (e.g. Suv familly 

proteins), which is involved in chromatin condensation (Campos and Reinberg 

2009). In addition, non-histone multiprotein complexes are composed of 

proteins involved in chromatin remodeling and formation of repressed 

chromatin structure such as histone deacetylases (HDACs), histone-binding 

proteins (e.g. RbAp48) as well as methylation-binding (MBDs) proteins and 

DNA methyltransferases (DNMTs) (Ahringer 2000). The dynamic modulation 

of chromatin structure is mainly realized by remodeling enzymes, i.e. histone 

methyltransferases (HMTs), histone acetyltransferases (HATs) and HDACs. 

HMTs and HATs generate particular arrays of methylation and acetylation 

marks on histones, respectively (Vaissiere, Sawan et al. 2008). Histone 

deacetylation is catalyzed by HDACs, which are classified in 4 classes 

depending on their sequence similarity, cellular localization, substrate 

specificity and zinc or NAD+ dependency (Minucci and Pelicci 2006; Ouaissi 

and Ouaissi 2006). Acetylation of histones is catalyzed by HATs, which are 

classified in three major families: general control non-derepressible 5 (Gcn5)-

related N-acetyltransferase, p300/ CREB binding protein (CBP) and MYST 

proteins (Yang and Seto 2007). Furthermore, HATs and HDACs affect 

indirectly gene expression by modifying a growing list of non-histone 

substrates (Minucci and Pelicci 2006). Indeed, acetylation of specific lysine 

residues on transcription factors (e.g. p53 or STAT) affects their cellular 
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localization, stability, DNA binding activity and protein-protein interactions 

(Bruserud, Stapnes et al. 2006).  

HMTs can be classified by their target specificity (Suv39h1 (H3K9), 

SET8 (H4K20), MLL1 (H3K4)) into three main groups that catalyze the 

transfer of a methylgroup from the methyl donor S-adenosylmethionine (SAM) 

to the !-nitrogen in lysine or the guanidinium nitrogen in arginine. HMTs form 

large, multiprotein complexes that typically contain other histone modifier 

enzymes (HATs, HDACs), DNMTs, chromatin-binding subunits (chromo-like 

domains) or transcription factors recruiting epigenetic machinery to specific 

target promoters (Esteller 2006).  

Similarly to protein kinases and phosphatases, short preferred 

consensus motifs are likely to exist, leading individual HATs and HDACs to 

their targets and thus helping to establish the final histone code (Kimura and 

Horikoshi 1998). Moreover, these histone modifying enzymes are tethered to 

their targets by cell-specific transcription factors, MBDs, chromatin-binding 

subunits or can even bind directly to DNA (e.g. activating transcription factor 

2) and work in large multiprotein complexes (Cress and Seto 2000; Kawasaki, 

Schiltz et al. 2000). 

 

1.2.2. DNA modifications 

 

Enzymatic methylation of the cytosine base is an essential component of 

mammalian genome that neither influences the Watson-Crick base pairing nor 

the DNA polymerase processing during replication. Hence, DNA methylation 

has no impact on DNA sequence and the pattern is stably propagated during 

mitosis from the parent to daughter cells (Jeltsch 2002). 

In eukaryotic cells, DNA methylation usually occurs within the context of 

the palindromic CpG dinucleotide at the fifth carbon atom of the cytosine ring, 

resulting in gene silencing (Gardiner-Garden and Frommer 1987; Hopkins, 

Burns et al. 2007). Over evolutionary time scale, spontaneous hydrolytic 

deamination of methylated cytosines has been responsible for cytosine to 

thymine transitional mutation. This genetic alteration leads to the under-

representation of CpG dinucleotides with only about one quarter of the 
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expected general frequency in the human genome (Schulz and Goering 

2011). Remaining CpGs are unequally distributed across the genome with 

long CpG-free or -poor DNA stretches separated by short CpG-rich regions. 

CpG islands (CGis) are clusters that contain high frequency of CpG 

dinucleotides and overlap with 76% of putative human promoter regions. 

Marino-Ramirez et al. defined typical CGis as a 500-bp long sequence with a 

GC percentage of over 50% and a ratio of CpG observed/expected that is 

greater than or equal to 0.6 (Marino-Ramirez, Spouge et al. 2004). Although 

many of the approximately 30000 CGis are located in the 5’-untranslated 

region, spanning the transcription start site (TSS) and the first exon of genes, 

certain CGis may occasionally be found within the coding sequence or the 3’ 

region of a gene (Ball, Li et al. 2009). CGis in these “atypical” coding 

sequence locations are more prone to methylation; however, the RNA 

transcription machinery can pass over without any interference (Jones 1999; 

Nguyen, Liang et al. 2001). Furthermore, some publications revealed the 

presence of extensive DNA methylation at CGi ‘shores’, which are regions of 

relatively low CpG density located close to CGis (Meissner, Mikkelsen et al. 

2008; Doi, Park et al. 2009). Recently, the existence of 5-

hydroxymethylcytosine (5-hmc) was described in embryonic stem cells and 

Purkinje neurons. 5-methylcytosine can be converted into 5-hmc by the 

oxoglutarate- and Fe (II)-dependent oxygenases TET1, TET2 and TET3. 

These enzymes are probably involved in the active demethylation associated 

with embryonic epigenetic reprogramming (Wossidlo, Nakamura et al. 2011). 

Nevertheless, the role of this cytosine modification in mature cells as well as 

its possible role in carcinogenesis has still to be elucidated (Rodriguez-

Paredes and Esteller 2011). 

Under physiological conditions, most CGis are never methylated in 

eukaryotic cells (Schulz and Goering 2011). However, some CGis become 

hypermethylated during aging, inflammation or preneoplasia, albeit not as 

dramatically as in cancer cells (Teschendorff, Menon et al. 2010). The main 

role of DNA methylation is to specialize groups of cells to perform specific 

functions during embryonic development and cell differentiation of 

multicellular systems. Furthermore, DNA methylation protects genomic 

stability through permanent suppression of transcription and homologous 
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recombination of ‘selfish’ repetitive sequences originated from ancient 

parasitical (e.g. human endogenous retrovirus HERV) or simple parasitical 

retroelements (e.g. short or long interspersed elements, SINEs or LINEs, 

respectively) (Smit and Riggs 1996; Bird 2002; Jones and Baylin 2007; 

Vaissiere, Sawan et al. 2008). In addition to repetitive elements, selective 

single copy genes, which are involved in cellular pluripotency, can be 

methylated in normal cells (Reik 2007). Indeed, DNA methylation is implicated 

in genomic imprinting, leading to a mono-allelic gene expression (e.g. H19 

expression from the maternal chromosome) (Reik and Walter 2001). 

Moreover, DNA methylation is involved in gonosomal X-chromosome 

inactivation (Panning and Jaenisch 1996). Finally, DNA methylation can 

induce gene expression. Indeed, methylation of the IGF2 Silencer element 

region inhibits the binding of the repressor protein and thus activates IGF2 

expression (Eden, Constancia et al. 2001; Murrell, Heeson et al. 2001). 

Noteworthy, opinions differ about the mechanisms associated with DNA 

methylation-mediated gene silencing (Figure 3). 

 

 

Figure 3: Possible mechanisms of DNA methylation-mediated gene silencing.  
Several mechanisms can block transcription factor binding to the gene promoter 
region leading to gene silencing. (A) Direct inhibition by blocking the access of a 
transcription factor (TF) to its binding site. (B) Chromatin condensation by DNA 
methylation and histone deacetylation prevent the access for TFs. (C) Indirect 
silencing through the binding of methyl-binding proteins (e.g. MeCP2) and the 
formation of a repressor complex (e.g. HDACs, DNMTs), which prevents the binding 
of TFs (Vaissiere, Sawan et al. 2008). 
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DNA methylation can directly block binding of transcription factors to 

promoters, interfering with RNA polymerase II elongation or loading on DNA 

template to prevent transcription (Figure 3-A). Alternatively, the combination 

of DNA methylation and histone deacetylation leads to chromatin 

condensation. The resulting heterochromatin constricts the access to 

transcription factor binding sites inhibiting gene expression (Figure 3-B). 

Indirect repression may also involve proteins such as MBDs (e.g. MeCP2, 

MBD2) specifically bind to methylated DNA via their methyl CpG-binding 

domains. Subsequently, MBDs recruit HDAC activity to the methylated DNA 

region. This mechanism includes histone deacetylation and results in a 

condensed and repressive chromatin structure (Figure 3-C) (Vaissiere, Sawan 

et al. 2008). 

Nevertheless, DNA methylation is not a static modification since it has to 

be modified during developmental and differentiation processes in order to 

adjust gene access rights (Haaf 2006). Indeed, remodeling of epigenetic 

marks happens first in primordial germ cells followed by a second wave during 

embryogenesis (Reik and Walter 2001). The final methylation signature 

should be maintained during lifetime; however, this pattern gets apparently 

altered in the course of life (Jones and Baylin 2007). 

A family of DNMTs catalyzes the reaction of cytosine methylation (Chen, 

MacMillan et al. 1991) (Figure 4). 
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Figure 4: Schematic representation of the DNA methyltransferase-catalyzed 
endocyclic cytosine methylation. 
DNA methyltransferases (DNMTs) catalyze the transfer of a methyl group from the 
methyl donor S-adenosylmethionine (SAM) on the fifth carbon atom of the cytosine 
pyrimidine ring. SAH: S-adenosylhomocysteine. 

 

DNMT enzymes recognize specific sites on the DNA sequence and 

transfer a methyl group from the methyl group donor SAM to the cytosine 

within CpG dinucleotides. In a first step, base flipping fold out cytosine from 

the DNA helix. The subsequent nucleophilic attack of a cysteine HS-group 

from the DNMT’s catalytic region on the carbon in position 6 of the cytosine 

leads to a covalent binding between the DNMT and target cytosine. This 

conformation activates the C5-position of the cytosine ring, which interacts 

with the methyl group of SAM. The complex is disrupted after the binding of 

the methyl group to the cytosine (Figure 4) (Wu and Santi 1987; Jeltsch 

2002). 

The de novo DNA methyltransferases DNMT3A and 3B are responsible 

for the establishment of the primary methylation pattern during 

embryogenesis, for the methylation of newly integrated retroviral elements 

and to respond to gene expression changes (Oswald, Engemann et al. 2000; 

Fatemi, Hermann et al. 2002). Enzymes of the DNMT3 class have no 

preference for un- or hemi-methylated CpG sites (Okano, Xie et al. 1998; 

Siedlecki and Zielenkiewicz 2006). However, knock out (KO) experiments 

showed that, in mammalian cells, DNMT3A and 3B were not redundant in 

their function but possess respective region specificities. DNMT3B 
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preferentially methylate repetitive elements (e.g. centromeric satellites or 

retroviral elements) (Okano, Bell et al. 1999). In contrast, DNMT3A plays an 

important role in methylation of differentially methylated regions (DMR), which 

are regulatory elements involved in the control of gene expression (e.g. DMR1 

regulates H19 expression). Moreover, immunodeficiency syndrome, 

centromeric instability and facial abnormalities are linked to mutations in 

human DNMT3A gene (Hansen, Wijmenga et al. 1999; Okano, Bell et al. 

1999). The third DNMT3 homolog DNMT3-L (DNMT3-like) has no 

methyltransferase activity but acts as a regulator for DNMT3A and 3B during 

de novo DNA methylation in germ cells (Bourc'his, Xu et al. 2001; Suetake, 

Shinozaki et al. 2004). 

In contrast, DNMT1 methylates preferentially hemi-methylated CpGs 5- 

to 30-fold better than unmethylated sites. DNMT1 is associated with 

replication foci and is responsible for the post-replicative maintenance of 

genomic methylation patterns between cell generations. Thus, this enzyme is 

called the ‘maintenance methyltransferase’, which propagates the methylation 

pattern with an extreme fidelity from the mother cell to daughter cells 

(Siedlecki and Zielenkiewicz 2006; Vaissiere, Sawan et al. 2008). Lethality of 

DNMT1 KO mice underlines the importance of this enzyme during early 

embryogenesis (Li, Bestor et al. 1992; Jaenisch and Bird 2003). 

 

1.2.3. RNA-mediated gene regulation 

 

Britten and Davidson already postulated in 1969 that RNA is involved in 

gene regulation. However, the first ribo-regulator gene in animals was only 

described 24 years later in studies about the regulative potential of the small 

RNA lin-4 on the target mRNA lin-14 during the postembryonic development 

of C.elegans (Lee, Feinbaum et al. 1993; Wightman, Ha et al. 1993). Several 

years later, Reinhart et al. characterized another regulatory non-coding RNA 

let-7 (Reinhart, Slack et al. 2000). Apart from tRNA and rRNA, most widely 

known non-protein-coding RNAs are the 19- to 24- nucleotides short 

microRNAs (miRNAs), which regulate mRNA function between the post-

transcriptional and translational level (He and Hannon 2004; Bhagavathi and 
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Czader 2010). The highly conserved miRNAs are involved in many fine-tuned 

biological processes, such as development, tissue differentiation, cell 

metabolism, cell cycle, apoptosis, senescence, autophagy and metastasis 

(Sassen, Miska et al. 2008; Ruan, Fang et al. 2009). 

Genes encoding for miRNAs are located either in intergenic regions or in 

defined transcription units. Around 50% of the miRNA genes are found in 

introns or exons of both protein-coding and long non-coding transcripts and 

are consequently co-transcribed with the gene in which they reside 

(Rodriguez, Griffiths-Jones et al. 2004; Weber 2005; Kim and Nam 2006).  

MiRNA genes are usually transcribed by RNA polymerase (Pol) II into 

polycistronic primary transcripts (pri-miRNAs) with a length of about 1kb up to 

several kbs, except miRNAs located in Alu repeats that are transcribed by 

RNA pol lII (Figure 5) (Lee, Jeon et al. 2002; Lee, Kim et al. 2004; Borchert, 

Lanier et al. 2006). Pri-miRNAs are further characterized by a 5’ methyl cap 

structure, a 3’-end poly A-tail and at least one-hairpin structure of 

approximately 70 nucleotides. During the canonical miRNA pathway, a 

complex consisting of the double strand-specific endoribonuclease III Drosha, 

the binding protein Pasha and the DiGeorge syndrome critical region 8 protein 

(DGCR8), processes pri-miRNA into 70- to 100-nucleotide size range pre-

miRNAs (Figure 5). Besides a stem-loop structure, pre-miRNAs bear a 3'-

dinucleotide overhang (Kwak, Iwasaki et al. 2010). An alternative way of pri-

miRNA processing consists in the mirtron pathway, whereby the nuclear 

splicing machinery takes over the tasks of Drosha and provides the pre-

miRNA from introns, described as mirtrons (Figure 5) (Winter, Jung et al. 

2009). 
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Figure 5: MicroRNA biogenesis. 
MicroRNA (miRNA) biogenesis begins with the synthesis of a pri-miRNA. The 
following maturation of miRNA either happens by the canonical miRNA pathway or 
by the alternative mirtron pathway. In the first case, Drosha processes pri-miRNA in 
complex with DGCR8 into a pre-miRNA. As an alternative, pri-miRNA processing is 
undertaken by spliceosome. Nuclear export protein Exportin-5 together with Ran-
GTPase carries pre-miRNA through nuclear pores. In cytoplasm, pre-miRNA is 
cleaved by the DICER/TRBP complex, resulting in the mature miRNA/miRNA* (* 
passenger strand) duplex. In the assembly process, miRNA is loaded into the RNA-
induced silencing complex (RISC) complex where it is responsible for the sequence-
specific targeting. DGCR8: DiGeorge critical region 8, TRBP: trans-activation-
responsive RNA-binding protein, PACT: protein kinase R activating protein, RISC: 
RNA-induced silencing complex, Ago: Argonaute (Kwak, Iwasaki et al. 2010).  

 

Exportin 5 / Ran-GTPase heterocomplex transports pre-miRNA from 

nucleus to cytoplasm where it undergoes further maturation (Figure 5). 

Indeed, the pre-miRNA is subsequently processed by Dicer III into a 19- to 

24-nucleotide length double stranded miRNA/miRNA* (* passenger strand) 

duplex with 3’ dinucleotide overhangs. Thus, Dicer is associated with the 

trans-activator RNA binding protein (TRBP) or the dsRNA-dependent 

serine/threonine protein kinase R (PKR) activating protein (PACT) (Kwak, 

Iwasaki et al. 2010) (Figure 5). 

MiRNAs are on their own unable to induce silencing of targeted genes. 

Therefore, the mature miRNA require assembly into the multi-protein effector 

RNA-induced silencing complex (RISC). The essential core components of 

RISC are members of the Argonaute 1 to 4 (Ago 1-4) subfamily proteins. 

Noteworthy, the slicer protein Ago 2 is the only family member with an 

endonuclease activity (Liu, Carmell et al. 2004). 
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RISC assembly is initialized by the ATP-dependent incorporation of the 

miRNA/miRNA* duplex into the Ago complex (RISC loading) (Kawamata, 

Seitz et al. 2009; Yoda, Kawamata et al. 2010). Subsequently, the miRNA 

duplex get unwound and the miRNA passenger strand is discarded from the 

RISC complex either by a slicer Ago 2-dependent mechanism or a slicer-

independent unwinding (Kwak, Iwasaki et al. 2010). The remaining mature 

miRNA strand determines the RISC complex specificity, interacting with the 3’ 

untranslated region (UTR) of the target mRNA (Bhagavathi and Czader 2010). 

Noteworthy, RISC target recognition is primarily determined by base pairing of 

nucleotides in the ‘seed’ region and is enhanced by additional interactions in 

the middle of the 3’ region (Parasramka, Ho et al. 2011). 

How miRNAs induce translational repression is still an ongoing debate. It 

is known that perfect complementarity between miRNA and 3’UTR as well as 

the presence of Ago 2 in the RISC complex are prerequisites for targeted 

mRNA cleavage (Figure 5). Prevention of mRNA circularization by the RISC 

complex and thus translational inhibition or induction of mRNA degradation 

could possibly explain post-transcriptional gene silencing. Furthermore, RISC-

mediated inhibition may occur at the stage of translational initiation or by 

blocking the late initiation step. It is postulated that RISC complex could also 

act on post-initiation steps by reducing the elongation rate of ribosomal 

machinery or inducing the proteolysis of the newly synthesized peptide. 

Finally, RISC complexes associated with their target mRNAs are found in 

processing or parking bodies (p-bodies) where mRNA undergoes degradation 

or becomes recycled after leaving the p-bodies (Kwak, Iwasaki et al. 2010). 

In conclusion, interference of miRNAs with protein synthesis allows high 

flexibility in translational activity, fast response to changes, prevention of high 

levels of potentially harmful proteins (i.e. proteins involved in apoptosis), 

avoiding imbalances in gene expression. Thus, short non-coding RNAs 

provide “canalization” for the development of particular cell types via a strictly 

determined pathway (Cohen, Brennecke et al. 2006; Hornstein and Shomron 

2006). 
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1.2.4. Cross talk of epigenetic modifications 

 

The initiating event in epigenetic gene silencing remains unclear. DNA 

methylation may be the primary mark for gene silencing, triggering events that 

lead to non-permissive chromatin state. Another scenario proposes that the 

loss of histone acetylation may serve as the initial event for gene silencing, 

followed by DNMT targeting, leading to local hypermethylation (Tamaru and 

Selker 2001; Vaissiere, Sawan et al. 2008). Independently of this discussion, 

it is particularly important to stress that epigenetic modifications do not act 

independently, but are intimately interwoven and work together to establish, 

maintain, and modify global and local chromatin structures of a cell for life 

(Figure 6). 
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Figure 6: Schematic view of transcriptionally active and epigenetically silenced 
chromatin regions. 
Epigenetic modifications and protein complexes modulate the formation of an active 
(A) and repressive (B) gene promoter state. Me: methylation. White circles: 
unmethylated CpG dinucleotides, black circles: methylated CpG dinucleotides, Ac: 
acetylation, TF: transcriptional factor, RNAPolII: RNA polymerase II, DNMTs: DNA 
methyltransferases; HDACs: Histone deacetylases; MBDs: Methyl-CpG binding 
proteins; RC: transcriptional repressive complex (Leone, D'Alo et al. 2008). 

 

For example, histone H3 acetylation on lysine 9, 14, 18 and 56 are 

associated with unmethylated CGis, representative for open chromatin 

configuration, allowing transcription factor recruitment and gene transcription 

by RNA polymerase II. In contrast, histone H3 methylation on lysine 9 and 27 

and HDAC-induced depletion of H3 acetylation are associated with 

hypermethylated CGis, recruiting MBDs and DNMTs, leading to chromatin 

(A) Active chromatin 

(B) Silenced chromatin 
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condensation and transcriptional repression (Figure 6) (Leone, D'Alo et al. 

2008). 

 

1.3. Normal and malignant hematopoiesis 

 

Since functional mature blood cells have a limited lifetime in peripheral 

blood, they need to be continuously replaced. The pluripotent self-renewable 

CD34+ and lin- hematopoietic stem cells (HSCs) located in bone marrow can 

differentiate into different highly specialized mature blood cell types (Figure 7) 

(Okuno, Iwasaki et al. 2002). Mature hematopoietic cells are traditionally 

categorized into distinct lymphoid and myeloid lineages (Iwasaki and Akashi 

2007). During differentiation process, the various lymphoid and myeloid 

lineages develop independently out of the common lymphoid and myeloid 

progenitors stem cells (CLP and CMP, respectively) raised from the HSCs 

(Kondo, Weissman et al. 1997; Akashi, Traver et al. 2000). During 

downstream hematopoietic differentiation, mature cells lose stepwise 

developmental potential and self-renewable capacities, resulting in fully 

differentiated and functional blood cells (Warner, Wang et al. 2004). The 

lymphoid lineage consists of T, B and natural killer cells, while the myeloid 

lineage includes a number of morphologically, phenotypically and functionally 

distinct cell types including granulocytes (i.e. neutrophils, eosinophils and 

basophils), monocytes-macrophages and erythrocytes (Figure 7) (Iwasaki and 

Akashi 2007). The hematopoiesis process is tightly regulated by extrinsic (e.g. 

growth factors and cytokines) and intrinsic factors (e.g. lineage-specific 

transcription factors and epigenetic markers) (Rice, Hormaeche et al. 2007). 
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Figure 7: Hematopoiesis in adult mammalian organisms.  
Hematopoietic stem cells (HSC) give rise to the myeloid (CMP) and the lymphoid 
progenitor cells (CLP). Mast cells, platelets, erythrocytes, eosinophils and neutrophils 
as well as monocytes emerge from the myeloid pathway. Cells of the immune system 
such as B and T-cells emerge from the lymphoid progenitor (modified from © 2008 
Terese Winslow). 

 

The German pathologist Rudolf Virchow introduced in 1856 the term 

“leukemia” (Greek for white blood) to describe excessive clonal proliferation of 

white blood cells in cancer patients. This symptom is caused by a malignant 

neoplasm of blood forming organs with the clinical manifestation of an 

inappropriate expansion of hematopoietic progenitor cells, often due to a 

blockage of cell maturation at early stages (Altucci, Clarke et al. 2005).  

Hematological malignancies comprise all clinically, morphologically, 

immunophenotypically and pathologically heterogeneous neoplastic disorders 

of bone marrow and are first classified by the affected cell lineage (myeloid or 

lymphoid) and second by differentiation state or disease progression (acute or 

chronic). Abnormal white blood cells, consisting of primarily granulocytes or 

monocytes, are indicative for a myeloid disorder. In contrast, if abnormal 

blood cells arise form bone marrow lymphocytes, the cancer belongs to the 

class of lymphocytic disorders. The acute form of malignant hematopoiesis is 

characterized by very immature cells called blasts, which rapidly increase in 



  Introduction 

 20 

number in bone marrow and, in most cases, also in peripheral blood, leading 

to death within weeks without treatment. In contrast, the chronic form is 

characterized by an excessive accumulation of relatively mature but still 

abnormal and immunologically incompetent white blood cells. Without 

treatment, the relatively slow-growing chronic form is fatal within years after 

diagnosis (Figure 8). 

Hematological  
malignancies 

Lympoid disorders 
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Chronic lymphoid 
leukemia 

Myeloma 
Acute lymphocytic 

leukemia 

Myeloid disorders 

Chronic 
myeloproliferative 
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Chronic myelogenous 
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Acute myeloid 
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Proliferation 
Differentiation 

 

Figure 8: Classification of hematological malignancies. 
Hematological malignancies (leukemia and lymphoma) are categorized by their 
lineage state (lymphoid (yellow) or myeloid (blue)) and functional differentiation state 
(acute or chronic). Highly proliferative acute myeloid and lymphoid leukemia cells are 
derived from cells in the early myeloid or lymphoid differentiation cascade, 
respectively. Chronic myeloid or lymphoid leukemia cells, myelodysplastic 
syndromes, myeloma and lymphoma are more differentiated but less proliferative 
and present therefore a reduced developmental potency compared to acute leukemia 
cells (modified from E. Attar; Leukemia Review: Types, Diagnostics, Treatments; 
www.calgb.org).  

 

By considering whether they are acute or chronic, and whether they are 

myelogenous or lymphocytic, leukemia can be divided in four major types: 

acute myeloid leukemia (AML), acute lymphoid leukemia (ALL), chronic 

myeloid leukemia (CML) and chronic lymphoid leukemia (CLL). ALL is primary 

a pediatric disease and occurs more commonly in children, whereas AML and 

chronic leukemia types mostly affect adults, but can appear theoretically in 

any age group. In leukemia, accumulation of leukemic immature and 

inoperable blood cells as well as suppression of the normal residual 
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hematopoiesis are responsible for crowding out other normal blood cells from 

bone marrow and bloodstream (Druker, Tamura et al. 1996; Deininger 2005). 

In consequence, normal blood cell features including immune defense or 

oxygen transport are disturbed, causing the characteristic blood cancer 

symptoms (e.g. anemia, thromobocytopenia and leukopenia). Noteworthy, 

lymphoma (i.e. Hodgkin’s disease and Non-Hodgkin’s lymphoma) and 

myeloma are further lymphoproliferative hematological malignancies, 

associated to a clonal proliferation of lymphoid cells. Myelodysplastic 

syndromes (MDS) are a clonal group of hematopoietic stem cell diseases 

characterized by hypercellular dysplasia and ineffective hematopoiesis by 

perturbed iron metabolism in one or more of the major myeloid cell lineages. 

 Leukemia appears to depend on a small population of leukemia stem 

cells (LSCs), characterized by their continuous growth and propagation. This 

assumption is supported by results showing that a highly proliferate clone of 

immature leukemic blast cells can lead to leukemogenesis (Kennedy and 

Barabe 2008). Nevertheless, the origin of LSC development is controversial 

(Passegue, Jamieson et al. 2003; Huntly and Gilliland 2005). Increased 

proliferation and differentiation capacities, telomere maintenance, uncoupling 

of self-renewal as well as decreased apoptosis rate lead to the development 

potential of blood cancer cells (Warner, Wang et al. 2004; Kennedy and 

Barabe 2008). Molecularly, leukemia are a heterogeneous disease entity with 

dysregulations of gene expression and pathways playing important functions 

in cellular growth, differentiation and cell death, resulting from different 

structural rearrangements or numerical chromosome aberrations. The 

presence of such specific genetic alterations allows the development of anti-

cancer therapies. For example, the BCR/ABL1 chimeric protein, resulting from 

a translocation between chromosome 9 and 22 and leading to the 

Philadelphia chromosome, is now targeted with imatinib mesylate in CML 

patients (Druker, Tamura et al. 1996; Deininger 2005). Moreover, clinical tests 

analyze the use of fms-related tyrosine kinase (FLT) 3 inhibitors for AML 

patients (Fiedler, Serve et al. 2005; Stone, DeAngelo et al. 2005). The 

receptor tyrosine kinase, which is involved in regulation of multiple 

cytoplasmic effector molecules in pathways of apoptosis, proliferation and 

hematopoietic differentiation, is commonly altered and leads to a constitutive 
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activation in AML and ALL. Indeed, up to 264 different gene fusions were 

found in hematological malignancies. Finally, it is now well accepted that 

epigenetic alterations play a key role in the abnormal developmental program 

of blood cancer cells (Mitelman, Johansson et al. 2007; Kennedy and Barabe 

2008).  

 

1.4. Epigenetic alterations in hematological malignancies 

 

In industrialized countries, cancer is ranked among the most prominent 

causes of death next to coronary heart disease and diabetes. Nutrition, 

environment, genetic background (predisposition) and previous anamnesis 

are important risk factors for cancer development. Malignant cells possess six 

characteristic hallmarks: (i) unlimited potential for cell division, (ii) invasion 

and metastasis potential, (iii) resistance to anti-growth signaling, (iv) self-

sufficient growth, (v) evasion of apoptosis, and (vi) sustained angiogenesis 

(Balch, Montgomery et al. 2005). Astonishingly, ubiquitous alterations in the 

elaborated DNA methylation pattern may be a causative factor as significant 

as genetic alterations for progression of a normal to a cancerous cell (Baylin 

and Bestor 2002; Hopkins, Burns et al. 2007). Genome-wide DNA 

hypomethylation was the first epigenetic abnormality that was identified in 

human tumors (Feinberg and Vogelstein 1983; Feinberg and Vogelstein 

1983). Several years later, opposite results claimed increased CGi 

methylation in human tumors (Baylin, Hoppener et al. 1986). The promoter 

region of the tumor suppressor gene (TSG) Retinoblastoma (Rb) was 

identified as the first hypermethylation hotspot that is unmethylated in normal 

cells (Greger, Passarge et al. 1989). Nowadays, it is well accepted that 

cancer cells are subjected to genome-wide loss of methylation and gene-

specific hypermethylation (Figure 9) (Sincic and Herceg 2011). Indeed, benign 

neoplasis or cancer cells in early developmental stages already possess the 

typical cancer-specific features of global hypomethylation and local 

hypermethylation, leading to the hypothesis that early epigenetic deregulation 

may precede genetic aberrations (Feinberg 2005). 
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Figure 9: Consequences of cancer-specific methylation alterations in tumor 
development. 
(a) Increase of CpG island promoter methylation can inactivate tumor suppressor 
genes and DNA repair genes. (b) Reduced global methylation might lead to 
chromosome instability, reactivation of transposons and activation of oncogenes 
(Strathdee and Brown 2002). 

 

The overall genomic methylcytosine content of approximately 4% 

(compared to total cytosines) in normal cells is decreased to 2-3% in cancer 

tissues. Even if loss of genome-wide methylation is a common feature of 

cancer cells, the degree of global hypomethylation varies among cancer 

subtypes. For example, undifferentiated germ cell tumors are hypomethylated, 

whereas their more differentiated counterparts show higher levels of global 

methylation. Testicular germ cells seminoma exhibit particularly high degrees 

of global hypomethylation (Wild and Flanagan 2010; Sincic and Herceg 2011). 

These observations emphasize that overall DNA hypomethylation may 

differentially play an essential role in disease onset or progression, and 

increased tumor frequency and malignancy (Wilson, Power et al. 2007).  

Hypomethylation mostly affects both intra- and extra-genic repetitive 

sequences, i.e. centromeric and pericentromeric regions (Figure 9). Indeed, 

failure of transcriptional repression of these satellite repeats may provoke 

DNA double-strand breaks, promoting aneuploidy formation. In the same way, 

global loss of methylation induces the reactivation of retrotransposons, 
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increasing the probability of translocations to other genomic regions and 

favoring chromosome instability (Strathdee and Brown 2002). Remarkably, 

transcriptional activation of LINE1 by promoter hypomethylation is an 

important feature of CML (Roman-Gomez, Jimenez-Velasco et al. 2005). In 

contrast, the SINE Alu appears to be resistant to demethylation and is rarely 

reported to be hypomethylated in cancer (Wild and Flanagan 2010). 

Moreover, single gene-specific DNA hypomethylation can achieve aberrant 

gene expression of proto-oncogenes, which mainly promote cell proliferation 

(Figure 9) (Strathdee and Brown 2002; Galm, Herman et al. 2006). Indeed, 

DNA hypomethylation and derepression of the oncogenes Harvey rat 

sarcoma viral oncogene homolog (H-RAS) and T-cell leukemia/lymphoma 1 

(TCL-1) were reported in CLL patients (Melki and Clark 2002). Furthermore, in 

vitro and in vivo studies described the activation of genes associated with 

tumor invasion and metastasis by the loss of DNA methylation (Ateeq, 

Unterberger et al. 2008). Finally, cancer-induced loss of imprinting leads to 

the biallelic expression of IGF-2 and thus stimulation of cancer cell 

proliferation (e.g. Wilms’ tumor) (Jirtle 1999).  

Partial or complete abrogation of DNMT expression and function might 

lead to the passive loss of DNA methylation in malignant cells. However, this 

is unlikely since it was shown that DNMT1, DNMT3A and DNMT3B were 

overexpressed in AML and CML patients (Mizuno, Chijiwa et al. 2001). 

Moreover, latest results reported that abnormal methylcytosine content in 

AML cells was independent of somatic mutations in DNMT3A gene (Ley, Ding 

et al. 2010). Furthermore, cancer cell-specific deficiency of the DNMT cofactor 

SAM could initiate similar effects. DNMTs have the property to bind with high 

affinity to DNA damages, leading to site-directed neglection of DNA 

methylation maintenance and subsequent DNA demethylation. Likewise, 

alterations in DNA repair mechanisms are probably responsible for active 

DNA demethylation of cancer methylomes (Wild and Flanagan 2010).  

Mainly ‘bona fide’ TSGs, implicated in all six aforementioned hallmarks 

of cancer, are repressed through hypermethylation of their promoter CGis 

(Jones and Baylin 2002; Herman and Baylin 2003; Hopkins, Burns et al. 

2007). Target genes of aberrant DNA hypermethylation play major roles for 

the physiological cell existence including DNA repair, cell cycle regulation, cell 



  Introduction 

 25 

invasion and adhesion, apoptosis, detoxification and hormonal response 

(Figure 9) (Esteller and Herman 2002; Galm, Herman et al. 2006). DNA 

hypermethylation-associated silencing of TSGs occurs in various 

hematological neoplasia and thereby may contribute to early carcinogenesis. 

Table 1 gives an overview of genes that are found frequently hypermethylated 

in hematological malignancies. 

 

Table 1: Genes found frequently hypermethylated in hematopoietic 
malignancies. 

Function Gene Hematological 
malignancy 

Literature 

Cell cycle control CDKN2B (p15INK5B) NHL, AML, ALL, CML, 
CLL, MDS  

(Herman, Jen et al. 1996; Herman, Civin et al. 
1997; Drexler 1998; Baur, Shaw et al. 1999; 
Rush and Plass 2002; Esteller 2003; Galm, 
Wilop et al. 2005; Galm, Herman et al. 2006) 

 CDKN2A (p16INK4A) ML, MM, AML, ALL, 
CLL 

(Melki and Clark 2002; Boultwood and 
Wainscoat 2007; Esteller 2008) 

 CDKN1C 
(p57KIP2) 

ML, MM, ALL, CLL (Li, Nagai et al. 2002) 

 TP73 ML, MM, ALL, AML (Kawano, Miller et al. 1999; Ekmekci, 
Gutierrez et al. 2004; Ropero, Setien et al. 
2004) 

Biosynthesis 
enzyme 

EXT1 ALL (Ropero, Setien et al. 2004) 

DNA damage 
repair 

MGMT NHL, ALL, AML (Esteller, Hamilton et al. 1999; Esteller, 
Gaidano et al. 2002; Margison, Povey et al. 
2003) 

Apoptosis DAPK1 ML, MM, ALL, AML, 
CLL 

(Ekmekci, Gutierrez et al. 2004; Rossi, 
Capello et al. 2004; Raval, Lucas et al. 2005) 

 RASSF1A Hodgkin’s lymphoma (Murray, Qiu et al. 2004) 

Cell adhesion CDH1 MM, ALL, AML, CLL, 
MDS 

(Melki and Clark 2002; Aggerholm, Holm et al. 
2006; Garcia-Manero, Yang et al. 2009) 

Growth regulation 
 

HIC1 NHL, ALL, AML, CML, 
MDS 

(Issa, Zehnbauer et al. 1997; Melki, Vincent et 
al. 1999; Aggerholm, Holm et al. 2006; 
Deneberg, Grovdal et al. 2010) 

Cytokine signaling SOCS1 MM, AML (Ekmekci, Gutierrez et al. 2004; Galm, Wilop 
et al. 2005) 

Nuclear matrix LMNA NHL, ALL (Agrelo, Setien et al. 2005) 

Hormone receptor 
 

RARB2 NHL, AML (Esteller, Guo et al. 2002; Ekmekci, Gutierrez 
et al. 2004; Galm, Wilop et al. 2005; 
Rethmeier, Aggerholm et al. 2006) 

 ESR1 ALL, AML, CML, MDS (Issa, Baylin et al. 1997; Melki, Vincent et al. 
1999; Galm, Wilop et al. 2005; Aggerholm, 
Holm et al. 2006; Yao, Huang et al. 2009) 

 AR NHL (McDonald, Gascoyne et al. 2000) 

Transporter 
(Importer) 
 

CRBP1 NHL, AML (Esteller, Guo et al. 2002; Takahashi, 
Shivapurkar et al. 2004) 

Transporter 
(Exporter) 
 

ABCB1 AML, ALL (Toyota, Kopecky et al. 2001; Garcia-Manero, 
Daniel et al. 2002; Taylor, Pena-Hernandez et 
al. 2007) 

Tyrosine kinase 
 

EPHA7 NHL (Dawson, Hong et al. 2007) 

 ABL1 ALL, CML (Asimakopoulos, Shteper et al. 1999; 
Asimakopoulos, Shteper et al. 1999; Shteper, 
Siegfried et al. 2001) 

Tyrosine SHP1 ML (Koyama, Oka et al. 2003) 
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Function Gene Hematological 
malignancy 

Literature 

phosphatase 
Differentiation MYOD1 AML, ALL (Toyota, Kopecky et al. 2001; Garcia-Manero, 

Yang et al. 2009) 

 PITX2 AML (Toyota, Kopecky et al. 2001) 

 ID4 ML, AML (Hagiwara, Nagai et al. 2007; Uhm, Lee et al. 
2009) 

Receptor SDC4 AML (Toyota, Kopecky et al. 2001) 

Homeostasis CEBP AML (Agrawal, Hofmann et al. 2007) 

Calcium 
metabolism 

CALCA AML, ALL, CLL (Nelkin, Przepiorka et al. 1991; Melki and 
Clark 2002; Paixao, Vidal et al. 2006; Ismail, 
El-Mogy et al. 2011) 

Purine metabolism FHIT AML, MDS (Iwai, Kiyoi et al. 2005) 

Detoxification AHR ALL (Mulero-Navarro, Carvajal-Gonzalez et al. 
2006) 

Cell adhesion THBS1 AML; ALL (Toyota, Kopecky et al. 2001; Garcia-Manero, 
Daniel et al. 2002) 

ABCB1: ATP-binding cassette, sub-family B (MDR/TAP), ABL1: c-Abelson oncogene 1 non-receptor 
tyrosine kinase, AHR: aryl hydrocarbon receptor, ALL: acute lymphoid leukemia, AML: acute myeloid 
leukemia, AR: androgen receptor, CALCA: calcitonin A, CDH1: E-cadherin, CDKN2A: cyclin-dependent 
kinase (CDK) inhibitor 2A, CDKN2B: CDK inhibitor 2B, CDKN1C: CDK inhibitor 1C, CEBP: 
CCAAT/enhancer binding protein, CLL: chronic lymphoid leukemia, CML: chronic myeloid leukemia, 
CRBP1: cellular retinol-binding protein 1, DAPK1: death-associated protein kinase 1, ER: estrogen 
receptor, EPHA7: EPH receptor A7, EXT: exostosin 1, FHIT: fragile histidine triad gene, HIC1: 
hypermethylated in cancer 1, ID4: inhibitor of DNA binding 4, INK: kinase inhibitor, KIP: kinase inhibitor 
protein, LMNA: lamin A/C, MGMT: O-6-methylguanine-DNA methyltransferase, ML: multiple lymphoma, 
MM: multiple myeloma, MDS: myelodysplastic syndrome, MYOD1: myogenic differentiation 1, NHL: Non 
Hodgkin’s lymphoma, PITX2: paired-like homeodomain 2, RARB2: retinoic acid receptor beta 2, 
RASSF1: Ras association domain family protein 1, SDC4: syndecan 4, SHP1: Protein-tyrosine 
phosphatase SHP-1, SOCS1: suppressor of cytokine signaling 1, THBS1: thrombospondin 1, TP73: 
tumor protein p73. 
 

Noteworthy, late stage AML patients who relapsed after a chemotherapy-

induced remission showed abnormal methylation of hypermethylated in 

cancer 1 (HIC1) gene (Issa, Zehnbauer et al. 1997; Deneberg, Grovdal et al. 

2010). The transcriptional repressor HIC1 is involved in regulation of genes 

involved in proliferation, tumor growth and angiogenesis. Validated 

transcriptionally repressed targets of HIC1 are silent mating type information 

regulation 2 homolog 1 (SIRT1) HDAC, fibroblast growth factor binding protein 

(FGFBP1), patched (ptch) 1 tumor suppressor, scavenger chemokine 

receptor 7 (CXCR7), ephrin-A1 (EFNA1), E2F1 and T-cell-specific 

transcription factor 4 (TCF4) (Jenal, Britschgi et al. 2010). As shown in 

xenograft tumor assays, constitutive expression of FGFBP1 results in highly 

angiogenic tumors (Jenal, Britschgi et al. 2010). Moreover, bidirectional 

ehrin/eph-signaling has been implicated in many aspects of malignancy, such 

as tumor growth, invasion, metastasis and angiogenesis (Pasquale 2010). In 

consequence, epigenetic inactivation of the transcriptional repressor HIC1 

plays an important role in leukemogenesis. Furthermore, simultaneous cyclin-
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dependent kinase (CDK) inhibitor 2B and CDK inhibitor 1C hypermethylation, 

which leads to dysregulation of the cell cycle, has been reported in ALL cells 

(Garcia-Manero, Yang et al. 2009). Moreover, hypermethylation of the c-

Abelson oncogene 1 (ABL1) promoter region repressing the expression of the 

oncogenic fusion gene BCR/ABL is found in CML samples (Asimakopoulos, 

Shteper et al. 1999). Since intragenic hypermethylation of the enhancer-

blocking transcription factor CTCF binding region prevents silencing of the 

oncogene B-cell CLL/lymphoma (BCL) 6 in B-cell lymphoma, consequences 

of DNA hypermethylation appears to be region-specific (Lai, Fatemi et al. 

2010). Noteworthy, a recent study on colon cancer cells showed that aberrant 

methylation is not only limited to CGis, but also appears in highly conserved 

CpG island shores (Irizarry, Ladd-Acosta et al. 2009). Recently, methylation 

along the CGi borders was also described in human B-cells in transition to 

lymphoma (Conerly, Teves et al. 2010). However, the importance of 

differential methylation in these regions requires further studies.  

Cancer-associated TSG hypermethylation is probably established 

progressively in several waves of aberrant methylation. As previously 

mentioned, methylation pattern is not stable and changes arise in normal 

cellular processes such as aging, which is one of the strongest risk factors for 

cancer (Teschendorff, Menon et al. 2010). In addition, recent publications 

linked environmental and lifestyle factors to the acquisition of inappropriate 

DNA methylation of various genes (Marsit, Houseman et al. 2007; 

Christensen, Houseman et al. 2009). In both cases, initial abnormal DNA 

methylation acts as a seed and promotes further methylation (Song, Stirzaker 

et al. 2002). Another theory postulates that hypermethylation may spread from 

normally methylated genomic element (e.g. transposons) over to usually 

unmethylated genes (Graff, Herman et al. 1997). In addition, disruptions of the 

epigenetic machinery, for instance by genetic mutations, could lead to 

increase transcription rate and aberrant enzymatic activity of any of its 

component. Hence this could be attributed to abnormal epigenetic events in 

hematological cancers (Robertson, Uzvolgyi et al. 1999; Baylin, Esteller et al. 

2001; Mizuno, Chijiwa et al. 2001). For example, the AML-associated 

translocation t(15:17) leads to the expression of the oncogenic promyelocytic 

leukemia (PML) / retinoic acid receptor beta (RARB) fusion protein. The 
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chimeric transcription factor recruits DNMTs to target promoters and induce 

abnormal methylation (e.g. RARB2) (Di Croce, Raker et al. 2002). Moreover, 

substantial alterations were detected in apparently normal cells of individuals 

with infections. Indeed, virus-encoded proteins could affect DNMT activity. For 

example, DNMT expression gets upregulated by the hepatitis B virus specific 

protein X (Herceg and Paliwal 2011). Alternatively, a recent publication 

reported that Heliobacter pilori infection is associated with aberrant 

methylation (Niwa, Tsukamoto et al. 2010). 

Taking together, these data lead to the following question: why CGis of 

certain genes become hypermethylated and others remain unmethylated in 

cancer cells? Manuel Esteller is in favor of the Darwinian idea (natural 

selection) that a certain pattern of hypermethylated genes confers a selective 

survival or growth advantage of a particular cell and may play a pivotal role in 

the stepwise progression towards carcinogenesis (Esteller 2002). On 

average, 5% of genes of an individual tumor exhibit a hypermethylated 

promoter region. These alterations appear to be a far more drastic change in 

the cellular metabolism than genomic point mutations (Jones and Baylin 2002; 

Hirst and Marra 2009). However, since these epimutations can silence the 

remaining active allele of a previously mutated TSG, accordingly to Knudson’s 

two-hits hypothesis, they may provide the second hit for cancer initiation 

(Knudson 1971; Rodriguez-Paredes and Esteller 2011). Alternatively, the 

“Barker hypothesis” states that placental exposure or early life energy 

restriction cause errors in fetal reprogramming that persist into adulthood and 

may contribute to enhance risk for cancer development (Barker, Eriksson et 

al. 2002; Hughes, van den Brandt et al. 2009). 

Another layer of epigenetic modifications was added with the discovery 

of 5-hmc. Even if the knowledge about the relationship between 5-hmc and 

cancer is still at the beginning, it is already well known that TET genes, 

involved in methylcytosine metabolization, are often subject to somatic 

mutations such as fusion genes, homozygous null mutations or deletions in 

hematological malignancies (Burmeister, Meyer et al. 2009; Delhommeau, 

Dupont et al. 2009; Meyer, Kowarz et al. 2009; Ko, Huang et al. 2010). These 

observations lead to the assumption that 5-hmc may play a role in 

carcinogenesis.  
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Besides alterations in DNA methylation patterns, disruptions of covalent 

histone modifications are further hallmark of cancer. For example, repressive 

marks, i.e. loss of acetylation of H4K16 and increased methylation of H4K20, 

were found at hypomethylated repetitive sequences (e.g. pericentromeric 

repeats) in many primary tumors compared with normal tissues (Fraga, 

Ballestar et al. 2005). Alterations in histone modification patterns are the 

results of abnormal expression, activity or recruitment of histone-modifying 

enzymes and histone code-reading proteins, induced by genetic or epigenetic 

alterations (Cress and Seto 2000; Mahlknecht and Hoelzer 2000; Ellis, Atadja 

et al. 2009). Thus, H4K20 was correlated to hematological malignancy by a 

recent report about MMSET, a gene coding for a H4K20 histone trimethylase, 

which is overexpressed in an aggressive subset of multiple myeloma carrying 

the t(4;14) translocation (Schotta, Lachner et al. 2004). Moreover, AML is 

associated with the t(8;21) chromosomal translocation that is responsible for 

the AML1-ETO fusion protein. This chimeric protein is a potent dominant 

transcriptional repressor that recruits HDAC activity, inducing alterations in 

histone modification landscape and gene expression profiles (Wang, Hoshino 

et al. 1998; Wang, Saunthararajah et al. 1999). Other leukemia fusion 

proteins, such as PML-RAR or PLZF-RAR, have similar HDAC recruiting 

features (Minucci, Nervi et al. 2001). 

Finally, alterations in miRNA processing and expression profiles play a 

major role in carcinogenesis. The link between miRNAs and cancer 

pathogenesis has emerged from the discovery that miRNA expressing genes 

are frequently located in cancer-associated genomic regions (CAGR). Indeed, 

about 50% of all annotated human miRNA genes are located in minimal 

regions of amplifications, common breakpoint regions in or near oncogenes, 

TSGs and chromosomal fragile sites (Calin, Sevignani et al. 2004; Sevignani, 

Calin et al. 2007; Melo and Esteller 2010). Since miRNAs are frequently 

expressed as polycistronic transcripts, deregulation of one member of the 

cluster is accompanied by a deregulation of other cluster members. 

Obviously, the miRNome varies between normal and pathological tissue 

as well as between different cancer types. Expression of miRNAs seems to be 

generally downregulated in cancer cells excepting a few cancer type-specific 

miRNA genes, whose increased expression is associated with carcinogenesis 
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(Deng, Calin et al. 2008; Zhang, Li et al. 2010). Rather than a change of a 

single miRNA gene that regulates one oncogene or TSG, miRNome-wide 

alterations contribute to carcinogenesis. Thus, miRNAs with a protective or 

tumor suppressive role, called anti-oncomirs, are commonly silenced in 

cancer cells. Calin et al. reported for the first time abnormal expression of 

miR-15a and miR-16-1, a cluster often downregulated in CLL, which is 

involved in the regulation of human genes such as BCL-2 (Melo and Esteller 

2010; Zheng, Wang et al. 2010). Both miRNA genes are located at 

chromosomal position 13q14.3, which is frequently deleted in CLL and 

lymphoma (Chiorazzi, Rai et al. 2005). In contrast, the oncomir subclass 

regroups miRNAs that are mostly overexpressed in cancer cells and 

responsible for TSG silencing. Hence, the polycistron miR-17"92, which is 

often upregulated in lymphoma and CLL samples, suppresses the expression 

of both the pro-apoptotic gene Bim and the TSG PTEN, leading to enhanced 

cell survival and proliferation rate (Ota, Tagawa et al. 2004; Xiao, Srinivasan 

et al. 2008). In addition, some miRNAs such as miR-328 may even have a 

dual oncogenic and tumor-suppressive role in cancer, depending on cell type 

and gene expression pattern (Eiring, Harb et al. 2010; Melo and Esteller 

2010).  

In analogy with protein-coding genes, miRNA functions are also 

influenced by point mutations. Nevertheless, site restricted errors in the 

sequence of mature miRNA seed region seem to be rare (He, Jazdzewski et 

al. 2005; Diederichs and Haber 2006; Yang, Zhou et al. 2008). Nevertheless, 

point mutations in the 3’ UTR of the miRNA target mRNA can reduce or 

induce the loss of miRNA target sensitivity, specificity, and response to 

miRNA target recognition (Visone and Croce 2009). Genetic aberrations can 

also affect RISC complex assembly and compromise miRNA-mediated 

silencing (Kwak, Iwasaki et al. 2010). Furthermore, tumor-specific mutations 

in miRNA sequences influence the stability of precursor as well as mature 

miRNA, and play on miRNA expression level (Diederichs and Haber 2006). 

Moreover, alterations in the expression of miRNA regulating transcription 

factors induce aberrant transcription of pri-miRNAs. Finally, impairments in 

the miRNA processing step can change miRNA expression pattern in cancer 
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cells (Kwak, Iwasaki et al. 2010). Remarkably, since approximately half of all 

miRNA genes contain CGis, aberrant DNA hypermethylation-mediated 

silencing can also affect miRNA network (Calin and Croce 2006; Esquela-

Kerscher and Slack 2006; Deng, Calin et al. 2008). Thus, the miR-203 locus 

frequently undergoes DNA methylation in T-cell lymphoma compared to 

normal T-lymphocytes (Bueno, Perez de Castro et al. 2008). Additional 

miRNAs are targets for DNA hypermethylation, such as miR-9-1, miR124a, 

miR-127 and let-7 family in breast, colorectal, bladder or epithelial ovarian 

cancer, respectively (Lujambio, Ropero et al. 2007; Lehmann, Hasemeier et 

al. 2008; Guil and Esteller 2009).  

These observations clearly demonstrate that miRNA expression is often 

deregulated in cancer cells, with numerous miRNAs being overexpressed in 

one type of cancer and downregulated in another. Therefore, cancer-specific 

miRNA expression signature could be used as a cancer diagnosis or 

therapeutic tool. 

 

1.5. DNA methylation in the management of blood cancer 
 

Current knowledge indicates that the development of malignancies is 

based on a mixture of genetic and epigenetic defects (Issa and Kantarjian 

2009). Cytogenetic alterations in AML and multiple myeloma at diagnosis are 

considered to be valuable prognostic determinants (Grimwade, Walker et al. 

1998; Hideshima, Bergsagel et al. 2004). Nevertheless, genomic aberrations, 

leading to misexpression or appearance of a truncated gene form can occur in 

multiple sites of a gene such as the promoter or the gene body. This feature 

limits the effective use of somatic mutations as cancer biomarker. In contrast, 

hypermethylation occurs mainly in the regulatory gene promoter region. 

Moreover, aberrant hypermethylation of cancer cells is detectable in the 

background of hypomethylated normal cells, whereas tumor-associated loss 

of heterozygosity and homozygous deletions disappear in a healthy 

heterozygote background. Furthermore, DNA molecules per se as well as 

methylation at the 5’ position of cytosine are chemically stable and can only 

be modified by specific enzymes. Under most conditions turnover of 
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methylcytosine in slow. In consequence, DNA methylation changes can be 

robustly and specifically analyzed in a large variety of fresh or archived 

biological samples (e.g. biopsies or body fluids). The development of new 

highly sensitive analysis techniques (e.g. high throughput deep sequencing) 

allows the specific detection of hypermethylation signatures in small DNA 

amounts (Schulz and Goering 2011). Accordingly, four major clinical oncology 

areas could potentially benefit from the identification of methylation 

signatures. Powerful epigenetic biomarkers can be applied for cancer 

diagnosis (early detection and prevention), prognosis (tumor behavior), 

pharmacogenetics (drug response to follow efficacy of treatment) and as 

target for epigenetic drugs (Figure 10) (Esteller 2011). 

Analysis of the methylation signatures allow to distinguish normal 

surrounding tissues from cancer cells. Moreover, stratification of the different 

cancer types and stages by mapping of the CGi methylation pattern could 

improve early detection of tumor cells (Figure 10). For example, 

hypermethylation of O-6-methylguanine-DNA methyltransferase (MGMT) or 

CDKN2A can be observed up to three years prior to classical cancer 

diagnosis by medical check-up in squamous cell lung carcinoma. Moreover, 

hypermethylation of HIC1 is a poor prognosis marker in lung cancer (Hayashi, 

Tokuchi et al. 2001). Thus, the early presence of hypermethylated TSGs does 

not necessarily indicate an invasive cancer, as premalignant or cancer 

precursor lesions can also carry these epigenetic signatures. Hence, these 

signatures could be used for early cancer detection in individuals with genetic 

predispositions or exposed to carcinogens. Moreover, many tumors ‘shed’ 

DNA into the serum or other easily accessible body fluids (e.g. blood, 

bronchoalveolar lavage, lymph nodes, sputum, urine, semen, ductal lavage or 

saliva) simplifying epimutation detection in an early tumorigenesis stage 

(Ahrendt, Chow et al. 1999; Sanchez-Cespedes, Esteller et al. 1999; Goessl, 

Krause et al. 2000; Palmisano, Divine et al. 2000; Cairns, Esteller et al. 2001; 

Evron, Dooley et al. 2001; Rosas, Koch et al. 2001). Noteworthy, the gold 

standard epigenetic biomarker for prostate cancer is the hypermethylated 

status of the detoxification enzyme GSTP1, since neoplastic prostate cancer 

cells are hypermethylated in up to 90% of patients (Lee, Morton et al. 1994; 

Esteller, Corn et al. 1998).  
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As previously mentioned, these epigenetic markers could be used in 

cancer risk assessment, ‘cancer prevention’ and identification of 

predispositions that act epigenetically as a cause of cancer (Sincic and 

Herceg 2011). However, a clear definition about minimal genetic, epigenetic 

and phenotypic characteristics associated with tumor initiation and 

progression (i.e. from a benign to a malignant cell) of cancer cells is still 

pending. 

 

 

Figure 10: Application range for CpG island hypermethylation in cancer 
diagnostic and treatment routine.  
Possible biological samples used for the detection of hypermethylation as well as the 
possible application fields (prognosis, diagnosis, treatment). MGMT: O-6-
methylguanine-DNA methyltransferase (Esteller 2002).  

 

In addition, screening of the unique DNA methylation signature may 

reveal biomarkers with clinical potential, providing information about tumor 

behavior (Rodriguez-Paredes and Esteller 2011, Esteller, 2002 #145). For 

example, hypermethylation of CDKN2B and HOXA4 genes was considered to 

be a negative prognostic marker for AML (Wong, Ng et al. 2000; Chim, Liang 

et al. 2001; Strathdee, Holyoake et al. 2007). Furthermore, calcitonin A 

(CALCA) gene is frequently hypermethylated in ALL and is associated with 

enhanced risk of relapse (Roman, Castillejo et al. 2001). 

Mapping of DNA hypermethylation could further provide information 

about drug pharmacodynamics. Common chemotherapeutic agents target 

uncontrolled rapidly dividing cancer cells and induce DNA damages. 
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Consequently, genes involved in DNA repair (e.g. MGMT, mutL homolog 

(MLH) 1 or breast cancer (BRCA) 1) are promising epigenetic candidates to 

predict pharmacoepigenetic response. The methylation status of MGMT gene, 

which repairs alkylated guanines, is used to predict glioma tumor response to 

the alkylating drugs carmustine and temozolomide (Hegi, Liu et al. 2008). The 

MGMT gene was one of the first genes, where functionality and methylation 

status were commercially analyzed for the prediction of progression-free and 

overall cancer survival (www.oncomethylome.com) (Costa 2010). 

Hypermethylation-associated silencing of MGMT prevents repair of 

chemotherapy-induced DNA lesions, finally resulting in programmed cell 

death. Moreover, MGMT hypermethylation, in tumor samples from diffuse 

large B-cell lymphoma (DLBCL) patients receiving cyclophosphamide-based 

chemotherapy, was associated with a significant increase of overall survival 

(Esteller, Gaidano et al. 2002). Likewise, methylation status of genes involved 

in cell cycle regulation, drug transport and metabolization may have a 

predictive potential value for drug response or chemoresistance (Rodriguez-

Paredes and Esteller 2011). Accordingly, epigenetic silencing of organic 

solute carrier partner 1 (OSCP1), which is involved in drug transport, is 

associated with CML resistance to imatinib (Jelinek, Gharibyan et al. 2011). 

Since the aim of most cancer treatments is to induce cell death, 

chemotherapy sensitivity may also depend on the apoptotic potential of the 

targeted cancer cells. In accordance, cells with hypomethylated prosurvival 

genes (e.g. XIAP, BCL-2) as well as hypermethylated and repressed 

proapoptotic genes (e.g. PTEN, APAF-1) are highly resistant to cell death 

induction (Balch, Montgomery et al. 2005). 

In addition to classical epigenetic cancer markers, current research is 

dedicated to detect new candidate genes with abnormal methylation pattern 

for their translation into biomarkers. First indications for an epigenetically 

silenced gene are the loss of expression in tumors, the absence of genomic 

mutations in the gene of interest as well as the presence of a promoter CGi. 

The next step consists in the analysis of the CGi methylation status by 

bisulfite conversion and non-bisulfite methods in cancer cell lines and patient 

samples. To compare hypermethylation and transcriptional silencing, 

treatment with a demethylating agent should restore gene functionality. 
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Finally, it should be demonstrated that the epigenetic silencing of the gene of 

interest contributes to human tumorigenesis (Esteller 2002).  

Since every cancer type has its unique and complex epigenetic 

signature, it is unlikely that a single biomarker will be enough to predict the 

outcome of a cancer. For example, CDKN2A, CDKN1C and TP73 genes are 

found commonly methylated in cancer. When analyzed individually, none of 

these genes showed clear prognostic value. Nonetheless, patients with 

concomitant methylation of at least two of this triad had a lower median 

survival than patients either with methylation of only one these 3 genes or 

without methylation (Garcia-Manero, Yang et al. 2009). Assaying multiple 

methylation markers is mandatory in cancer management in order to cover 

the biological heterogeneity, arising during cancer progression and 

histological subtypes, to increase sensitivity and to discriminate age-related 

background noise (Schulz and Goering 2011). 

Similarly to DNA hypermethylation, global DNA hypomethylation may 

also be used in the future as an epigenetic marker for cancer diagnosis. In 

accordance, loss of LINE hypermethylation occurs with the progression of the 

hematological malignancy and could be used for cancer detection and 

prognosis (Roman-Gomez, Jimenez-Velasco et al. 2005). In addition, 

genome-wide analysis showed that AML cells are hypomethylated compared 

to isolated normal B- and T-lymphocytes. However, comparison of the global 

methylation level between malignant AML and benign bone marrow cells 

showed no significant differences (Giotopoulos, McCormick et al. 2006). Thus, 

the application of hypomethylation pattern for cancer management is still at its 

beginning. Establishment of appropriate control samples will help to get a 

clear view of leukemogenesis-associated global hypomethylation signatures 

and evaluate their prevalence and clinical relevance. 

 

1.6. DNA methylation as a therapeutic target  
 

During early embryogenesis as well as gametogenesis, cells are 

reprogrammed by undergoing a massive genome-wide DNA demethylation. 

This epigenetic remodeling also arises in adult cells after nuclear 
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transplantation (Rideout, Eggan et al. 2001). In the same way, this approach 

seems to reverse the malignant phenotype of cancer cells, even in a 

background of somatic mutations (Hochedlinger, Blelloch et al. 2004). DNA 

methylation is reversible, thus representing an attractive target for anticancer 

therapeutic intervention.  

In the early 1960s, Sorm et al. first synthesized the common cytosine 

analogue azacytidine (AZA) (Piimi 1964; Pískala 1965). The nucleoside 

analogue AZA is an S phase-specific prodrug, which is incorporated into RNA 

and during replication into DNA. In contrast, its derivate 5-aza-2'-

deoxycytidine (DAC, decitabine) is only incorporated into DNA (Figure 11). 

Initially designed as cytotoxic agents, their DNMT inhibiting and DNA 

demethylating activities were discovered by pure chance (Issa and Kantarjian 

2009).  

After its cellular uptake, DAC is successively phosphorylated to mono, di 

and triphosphate forms. The latter is incorporated into nascent daughter 

strands of replicating DNA (Figure 11-A) (Momparler and Derse 1979; Glover, 

Leyland-Jones et al. 1987). The azacytidine ring, which protrudes out from the 

DNA double strand, subsequently catches and covalently binds DNMTs. The 

following polyubiquitylation targets DNMTs for their subsequent proteasomic 

degradation (Figure 11-B) (Ghoshal, Datta et al. 2005). The resulting cellular 

depletion of DNMTs makes it impossible to maintain the methylation during 

replication and thus provokes a passive loss of DNA methylation (Figure 11-

B). Paradoxically, trapping of DNMTs onto DNA creates bulky adducts that 

can inhibit DNA synthesis and eventually result in cell death by cytotoxicity 

(Juttermann, Li et al. 1994). Dose-response analysis showed that optimal 

biological effects on DNA demethylation and gene expression induction are 

obtained at relatively low DAC concentrations (<5µM), whereas DNA 

synthesis and replication are blocked at higher doses (>50µM) impairing the 

DNA demethylation effect (Qin, Jelinek et al. 2009). Once a hypomethylation 

pattern has been induced, it can be carried over through subsequent cell 

divisions, resulting in prolonged alterations of gene expression. Unfortunately, 

cells show a tendency to remethylate DNA sequences that have been 
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demethylated by drug treatment, resulting in a gradual blunting of the cellular 

response (Bender, Gonzalgo et al. 1999). 

As previously described, nucleoside analog DNA methylation inhibitors 

(DNMTi) require incorporation into DNA to be effective. In consequence, they 

have no measurable effects on non-cycling cells, which constitute the vast 

majority of the human body cells. Since cancer cells tend to scavenge more 

effectively nucleosides than normal cells, they integrate more drugs into their 

DNA (Cheng, Yoo et al. 2004).  

 

  

Figure 11: Intracellular metabolic pathways of azacytidine and 5-aza-2’-
deoxycytidine. 
(A) After cellular uptake, both drugs require phosphorylation to triphosphate 
derivatives to be incorporated into newly synthesized RNA and DNA. 5-azacytidine 
diphosphate is also reduced by ribonucleotide reductase to 5-aza-2’-deoxycytidine 
diphosphate, which is furthermore phosphorylated and incorporated into DNA. 
Elevated expression of the cytidine deaminase can mediate a 5-azacytidine 
resistance. (B) The incorporated 5-azacytosine ring bind covalently DNA 
methyltransferase (DNMT) 1. Resulting adducts induce loss of DNA methylation 
through DNMT1 depletion by ubiquitylation-mediated proteasomal degradation. 
Adapted from (Leone, D'Alo et al. 2008; Stresemann and Lyko 2008). 

 

At the beginning, DNMTi were exclusively used in cell culture as tools to 

induce genomic demethylation, restore gene expression and trigger cell 

differentiation (Jones, Taylor et al. 1982; Jones 1985). Even though DAC is 

(A) (B) 



  Introduction 

 38 

one of the most effective DNA demethylating drugs, downstream effects of 

DNMTi-mediated DNA demethylation are quite unspecific and thereby 

complicate clinical application (Villar-Garea and Esteller 2003; Issa and 

Kantarjian 2009). Indeed, it must be taken into account that DAC-mediated 

demethylation, even at low doses, will affect a broad range of usually silenced 

pathways implicated in cell proliferation, differentiation, apoptosis, invasion 

(upregulation of motility genes) and angiogenesis (through angiogenesis 

inhibitors). Furthermore, DAC-induced demethylation can achieve detrimental 

effects such as the restoration of epigenetically silenced oncogenes, 

awakening of transposable elements, and activation of the deleterious 

expression of the X-chromosome or imprinted genes (Issa and Kantarjian 

2009). Similarly, non-coding RNAs such as miRNAs (i.e. oncomirs) that are 

often repressed by DNA methylation are inducible by DNA demethylating 

drugs (Saito, Liang et al. 2006). In consequence, effects of DNA methylation 

inhibition are probably cell-specific and it is likely that a mixture of effects 

reflecting the total sum of pathways activated is the reality in most cases.  

Early clinical trials have tested high doses of DAC for its cytotoxicity on 

cancer cells. DAC at 1500 to 2500 mg/m2 were administered for relatively 

short exposure time. However, disappointing results concerning efficacy and 

toxicity were largely unfavorable and the use of nucleoside analogs was 

abandoned by the U.S. Food and Drug administration (FDA) (Rivard, 

Momparler et al. 1981; Momparler, Rivard et al. 1985). Hypomethylating 

nucleoside analogs came back to life over the past decade through the 

persistence of a few investigators (Wijermans, Lubbert et al. 2000). Zagonel 

et al. explored low dose schedules of DAC (i.e. 45mg/m2/day over 4h for 3 

days and 50mg/m2/day by continuous daily infusion for 3 days) in 10 MDS 

patients. An overall response rate of 50% was obtained in these studies. 

Accordingly, a European clinical phase II trial was initiated in the early 90s, 

exploring this low-dose DAC schedule delivery. The overall response rate was 

around 50% in MDS and AML patients (Schwartsmann, Fernandes et al. 

1997; Wijermans, Krulder et al. 1997). Final phase III studies further 

confirmed DAC-mediated responses but failed to demonstrate substantial 

effects on survival, probably due to the limited numbers of treatment cycles 

(Kantarjian, Issa et al. 2006). In contrast, the use of an open-end approach for 
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DAC treatment resulted in a very high response and survival rate superior to 

what was observed with cytotoxic chemotherapy. Furthermore, treatments 

with hypomethylating agents improve disease burden and quality of life as 

well as the side effect profile, which is more favorable as compared with 

classical anti-cancer therapy (e.g. no hair loss or renal failure) (Issa and 

Kantarjian 2009). DAC is the first epigenetic drug specifically approved by the 

FDA in 2006 for MDS treatment. The fact that no standard of care exists for 

MDS was probably in favor for DAC application. Nevertheless, there is no 

special reason why MDS should be the only epigenetically responsive 

disease. Today, DAC is also tested in clinical trials for CML treatment (Altucci, 

Clarke et al. 2005). These interesting and promising results encourage 

research to further develop more effective and selective DNA demethylating 

agents.  

As mentioned above, demethylating drugs can restore apoptotic 

potential and thereby chemosensitized tumor cells. Therefore, successive 

first-line therapy with DNA demethylating agents followed by a conventional 

second-line therapy could resensitize tumor cells and induce cancer 

regression (Balch, Montgomery et al. 2005). Accordingly, combination of 

DNMTis with other epigenetic drugs such as HDAC inhibitors (HDACi) can 

improve cancer therapy (Altucci, Clarke et al. 2005). HDACi are inducing 

hyperacetylation of lysine residues in the histone tails, leading to chromatin 

decondensation and transcriptional activation. HDACi are categorized 

according to their structure into five categories: short fatty acids (sodium 

butyrate, valproic acid), hydroxamin acid derivate (trichostatin A (TSA), 

suberoylanilide hydroxamic acid (SAHA)), benzamides or cyclic peptides 

(Miller, Witter et al. 2003). In addition, many molecules with a potential 

inhibitory activity against HDACs but a chemical structure different than the 

first five were identified. HDAC inhibition induces diverse cell- and compound-

specific outcomes including inhibition of cell cycle and cell growth, induction of 

differentiation and apoptosis. Due to aberrant histone acetylation patterns in 

cancer, HDACs are novel targets for cancer therapy (Glaser, Staver et al. 

2003; Mitsiades, Mitsiades et al. 2004; Peart, Smyth et al. 2005). For 

example, combination of DAC and TSA acts synergistically in activation of 

PTGS2, hMLH1, TIMP3, CDKN2B and CDKN1C expression in colorectal 
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cancer cell lines (Cameron, Bachman et al. 1999; Suzuki, Gabrielson et al. 

2002). Similarly, the combined treatment leaded to the activation of ESR1 

gene in breast cancer cell lines (Yang, Phillips et al. 2001). 

 

1.7. Glutathione S-transferase P1 
 

As previously described, analysis of the cancer epigenome revealed 

useful diagnostic, prognostic and treatment response biomarkers. DNA 

methylation-mediated epigenetic silencing of the glutathione S-transferase 

(GST) P1 is considered to be a molecular hallmark and diagnostic marker for 

human prostate cancers (Lee, Morton et al. 1994; Lee, Isaacs et al. 1997). 

GST multi-gene superfamily is coding for homo- or heterodimeric 

metabolic enzymes, which represent the major group of multifunctional phase 

II detoxification enzymes. GSTs catalyze the conjugation of the tripeptide 

gamma-glutamyl-cysteinyl-glycine (glutathione, GSH) to genotoxic xenobiotics 

occurring from extracellular environment or intracellular phase I metabolism 

(Figure 12). In consequence, neutralization of the electrophilic site reduces 

genotoxic activity, improves water solubility and favors the cellular export of 

GS-X through ATP-dependent pumps (Eaton and Bammler 1999). This 

biotransformation-mediated detoxification of exogenic and endogenic 

molecules protects cellular macromolecules from damage and guarantees cell 

integrity. 

GS-X!

GSH!

X!

GST!

ADP + Pi 
GS-X!

MRP 

Reactivity ! 
Solubility  " 

ATP 

 

Figure 12: Schematic representation of GST-mediated cellular detoxification.  
GSTs catalyze the neutralization of the electrophilic compound (X) by conjugation 
with glutathione (GSH), reducing the reactivity, improving water solubility and 
promoting compound export by MRP/GS-X pumps in an ATP-dependent manner. 
GST: glutathione S-transferase, ATP: adenosine triphosphate, ADP: adenosine 
diphosphate, Pi: phosphate, MRP: multidrug resistance protein. 
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GSTP1 is the major isoform of the GST multi-gene superfamily and is 

implicated in oxidative stress response, proliferation and chemotoxic 

resistance. In accordance, GSTP1 interacts with c-Jun NH2-terminal kinase 

(JNK) and tumor necrosis factor receptor-associated factor 2 (TRAF2), and 

suppresses the induction of apoptosis (Ruscoe, Rosario et al. 2001; Wu, Fan 

et al. 2006). GSTP1 gene is located on chromosome 11 from position 

67,351,066 to 67,354,123 and is preceded by a high density of CGIs. The 

largest CGi, upstream of the transcription start site, is divided by a long 

ATAAA repetitive stretch (Figure 13). It is assumed that this repetitive element 

acts as an insulator to separate different epigenetic states (Millar, Paul et al. 

2000). GSTP1 transcription is controlled by the transcription factors AP-1, SP-

1 and NF-#B (Figure 13) (Duvoix, Schnekenburger et al. 2004; Morceau, 

Duvoix et al. 2004). Moreover, GSTP1 is a downstream transcriptional target 

of the tumor suppressor p53 (Lo, Stephenson et al. 2008).  

 

 

Figure 13: Organization of GSTP1 gene promoter in human. 
Map of GSTP1 promoter region that is located on chromosome 11. Transcription 
factors and their binding sites as well as untranslated region (UTR) and coding 
sequences (CDS) are indicated related to the transcription start site. NF-"B: nuclear 
factor-"B, SP-1: specificity protein 1, TRE: TPA response element. 

 
GSTP1 is expressed in normal epithelial tissues and cells of the urinary, 

digestive and respiratory tracts, and is increased after exposure to 

carcinogens (Sawaki, Enomoto et al. 1990; Terrier, Townsend et al. 1990; 

Zhang, Sun et al. 2011). In addition, GSTP1 null allele mice have a higher 

mutation risk after carcinogen exposure. This result suggests that even the 

lack of one single GST isoform could increase susceptibility to cancer 

(Ketterer 1998).  

Overexpression of GSTP1 gene may lead to an enhance detoxification 

activity and may protect human cells against cytotoxic drugs. Increased 
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expression of GSTP1 was detected in multiple cancers (e.g. ovary, bladder, 

pancreas, head and neck cancers) (Green, Robertson et al. 1993; Bentz, 

Haines et al. 2000; Trachte, Suthers et al. 2002; Simic, Mimic-Oka et al. 

2005). Consequently, electrophilic cytostatics are inactivated through 

conjugation with GSH or reduction of toxicity by GSH-dependent denitrosation 

(e.g. nitrosocaramide). Moreover, upregulation of GSTP1 peroxidase activity 

leads to enhanced elimination of DNA adducts (e.g. cisplatin) (Goto, Iida et al. 

1999). In contrast, genetic (e.g. deletions, polymorphism) or epigenetic 

alterations (e.g. DNA methylation-mediated silencing) may reduce the 

occurrence, function or activity of GSTP1. Accordingly, detoxification 

efficiency is attenuated leading to an increased sensitivity to environmental 

toxins and to subsequent higher risk for mutations and cancer development 

(Coughlin and Hall 2002; Coughlin and Hall 2002).  

Hypermethylation of the regulatory promoter region near the GSTP1 

gene has been associated with gene silencing in prostate, breast and kidney 

cancers (Dulaimi, Ibanez de Caceres et al. 2004; Hopkins, Burns et al. 2007; 

Lasabova, Tilandyova et al. 2010). GSTP1 hypermethylation is best 

investigated in prostate cancer, including prostatic intraepithelial neoplasia 

(PIN), adenocarcinoma biopsies and body fluids (i.e. plasma, serum, ejaculate 

and urine) of patients, whereas GSTP1 promoter is unmethylated in benign 

prostatic epithelium (Lee, Isaacs et al. 1997; Jeronimo, Usadel et al. 2002; 

Gonzalgo, Nakayama et al. 2004; Hopkins, Burns et al. 2007; Cao and Yao 

2010). GSTP1 silencing by DNA hypermethylation was detected in 90% of all 

prostate tumors and in 70% of the high-grade PIN (Nakayama, Bennett et al. 

2003; Henrique and Jeronimo 2004). Moreover, comparative analysis showed 

lower GSTP1 expression in correlation with hypermethylated promoter region 

in invasive than in non-invasive pituitary tumors, providing predictive 

information about pituitary tumor aggressiveness (Yuan, Qian et al. 2008). 

Interestingly, Lin et al. linked GSTP1 silencing in MCF-7 cells to promoter 

hypermethylation and enrichment of MBDs and DNMT1 in this region (Lin and 

Nelson 2003). Similar analysis of prostate cancer cell lines revealed that 

GSTP1 gene is hypermethylated in expressing LNCaP but hypomethylated in 

non-expressing DU145 cells (Song, Stirzaker et al. 2002). As previously 

shown, DAC treatment of LNCaP cells is associated with GSTP1 
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demethylation and induction of GSTP1 expression (Chiam, Centenera et al. 

2011). In addition, GSTP1 promoter hypermethylation was associated with a 

repressive histone modification pattern in LNCaP cells. The HDAC inhibitor 

depsipeptide reversed GSTP1 epigenetic silencing and induced its expression 

(Stirzaker, Song et al. 2004; Hauptstock, Kuriakose et al. 2011). Studies 

performed with a xenograft model and human prostate cancer LNCaP cells 

showed that hypermethylation and repression of GSTP1 was reversed in vivo 

after treatment with the nucleoside analog procainamide (Cairns, Esteller et 

al. 2001). Alternatively, recent results showed that natural products such as 

green tea polyphenols reactivate GSTP1 expression in prostate cancer cell 

lines (Pandey, Shukla et al. 2010). 

The significance of GSTP1 silencing in prostate cancer is still unclear. 

Nevertheless, heterogeneous distribution of methylation-mediated GSTP1 

repression leads to the assumption that this could be one of the initiating 

events in prostate carcinogenesis. Indeed, since GSTP1 acts as a ‘caretaker’ 

gene, its inactivation reduces cellular detoxification ability and therefore cells 

get more vulnerable to somatic alterations upon exposure to mutagens 

(Meiers, Shanks et al. 2007).  

In conclusion, these data reveal that a balanced and tightly regulated 

expression of GSTP1 is of major importance for cell integrity in order to avoid 

on the one hand drug resistance and on the other hand genetic damages. 

A previous work of the laboratory on the regulation of GSTP1 expression 

in blood cancer cell lines identified GSTP1 positive (e.g. K-562, U-937 and 

JURKAT) and the GSTP1 non-expressing RAJI lymphoma cell line. In 

addition, in vitro methylation of the GSTP1 minimal promoter had a 

transcriptional inhibitory effect. However, in vivo methylation analysis failed to 

correlate GSTP1 promoter methylation and expression (Borde-Chiche, 

Diederich et al. 2001).  

 

1.8. Prostaglandin-endoperoxide synthase 2  
 

In analogy to GSTP1 promoter aberrant methylation, prostaglandin-

endoperoxide synthase (PTGS) 2 represent another hotspot for epimutations 
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in various cancer types (Toyota, Shen et al. 2000; Wang, Guo et al. 2005; 

Meng, Zhu et al. 2010). 

The pro-inflammatory PTGS, also known as cyclooxygenase, genes are 

rate-limiting enzymes, which catalyze the conversion of arachidonic acid into 

the intermediate prostaglandins (PG) H2, from which prostaglandins, 

prostacyclines and thromboxanes are derived. PTGS1 is constitutively 

expressed in many tissues and is responsible for the maintenance of various 

cell physiological functions. In contrast, PTGS2 isoform is an immediate early 

response gene, which is induced by inflammation-related factors, 

proinflammatory cytokines, growth factors as well as mitogenic and tumor 

promoting agents (Toyota, Shen et al. 2000; Ma, Yang et al. 2004; Wun, 

McKnight et al. 2004).  

PTGS2 gene is located on chromosome 1 from position 186,640,945 to 

186,649,559 and its expression is regulated by a number of regulatory 

elements presented in Figure 14. 

 

COX-2-derived prostanoids may also play a critical
role in maintaining renal medullary blood supply, re-
nal salt excretion, and systemic blood pressure. COX-
2-rich medullary interstitial cells span the area be-
tween the vasa rectae and medullary tubules,
including thick limbs (54). Cultured medullary inter-
stitial cells produce abundant PGE2 (29), which has
been shown to directly dilate vasa rectae, counteract-
ing the constrictor effect of angiotensin and endothelin
and thereby helping to maintain renal medullary blood
flow (84). Measurements of medullary blood flow in
intact renal papilla show that prostaglandins play an
important role in maintaining the medullary blood
supply, particularly in the setting of volume depletion
(75). Recent studies in mice suggest that SC-58236, a
COX-2-selective NSAID, significantly reduced renal
medullary blood flow, whereas SC-58560, a COX-1-
selective NSAID, had no acute effect (73).

Regulation of renal medullary blood flow has signif-
icant implications for regulating salt excretion and
systemic blood pressure (13, 14). Reduced medullary
interstitial pressure increases renal salt absorption
(14). Medullary interstitial prostaglandins may modu-
late epithelial solute and water reabsorption not only
via hemodynamic effects but also through direct effects
on epithelial sodium absorption by the thick ascending
limb and collecting duct (6). Loss of the tonic inhibitory

effect of COX-2-derived PGE2 on salt absorption by
these segments may contribute to sodium retention
seen with NSAIDs (5). Taken together, these data
suggest that COX-2 inhibition in the renal medulla
might not only enhance salt retention but also compro-
mise medullary blood flow, risking hypoxic injury to
the cellular elements in the renal medulla as well as
directly risking medullary interstitial cell viability.

Long-term use of COX-inhibiting NSAIDs has been
associated with papillary necrosis and progressive re-
nal structural and functional deterioration (2, 82).
NSAID-induced renal damage is more likely to occur in
the setting of dehydration, suggesting a critical depen-
dence of renal function on COX metabolism in this
condition (79). Increased COX-2 expression after dehy-
dration is consistent with this finding. Interestingly, in
the present experiments, only patches of apoptotic
medullary interstitial cells were seen after COX-2 in-
hibition and water deprivation, and papillary necrosis
was not detected. This result, which is consistent with
an earlier report that renal medullary interstitial cells
are an early target of injury in analgesic nephropathy
(66), also suggests that repeated injury to these cells
may be required for development of analgesic nephrop-
athy. Other roles for medullary interstitial cell COX-2-
derived prostanoids may relate to maintenance of med-
ullary blood flow. Taken together, increased COX-2

Fig. 4. Transcriptional regulation of
COX-2. A: multiple response elements
in the COX-2 promoter region. AP-2,
activator protein-2; CRE, cAMP-re-
sponsive element; NF, nuclear factor;
IL-6, interleukin-6; MEF-2, myocyte-
enhancer factor. B: activation of COX-2
expression by several of the response
elements in response to growth factors,
cytokines, serum, and hypertonicity.
Activation of COX-2 expression by hy-
pertonicity has been shown to involve
nuclear factor (NF)�B, c-Jun-NH2-ter-
minal kinase (JNK), and mitogen-acti-
vated protein or extracellular signal-
regulated kinase (ERK; MEK1). In this
sense COX-2 expression may be con-
sidered another osmotic response gene,
responding to stimuli similar to the
betaine transporter (BGT1) and aldose
reductase (left). SAPK, stress-acti-
vated kinase; SEK, SAPK/ERK kinase;
MEK, mitogens-activated protein
(MAP) or ERK kinase.
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Figure 14: Configuration of PTGS2 promoter. 
Multiple response elements are involved in the transcriptional regulation of PTGS2 
expression. AP-2: activator protein-2, CRE: cAMP-responsive element, IL-6: 
interleukin-6, MEF-2: myocyte-enhancer factor, NF-"B: nuclear factor-"B, SP1: 
specificity protein 1 (Harris and Breyer 2001). 

 

PTGS2 promoter include basal elements such as a TATA-box as well as 

binding domains for specific transcription factors including cAMP response 

element binding (CREB), NF-"B and SP1 (Harris and Breyer 2001). The 

precise mechanism of PTGS2 regulation remains unclear. Nevertheless, it is 

known that PTGS2 is a K-RAS target gene, which can induce PTGS2 
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transcription or mRNA stabilization by mitogen-activated protein kinase 

pathways (i.e. MEKK/SEK/JNK, Raf/MEK/ERK or PI3-K/Akt/PKB) (Sheng, 

Shao et al. 2001). Moreover, PTGS2 expression is upregulated by the 

transcription factor encoding the proto-oncogene c-MYB, whereas p53 acts as 

a PTGS2 repressor (Subbaramaiah, Altorki et al. 1999; Ramsay, Friend et al. 

2000). 

It is generally accepted that PTGS2 is often overexpressed in breast, 

gastric, colorectal, lung, liver and prostate cancer cells (Eberhart, Coffey et al. 

1994; Liu and Rose 1996; Ristimaki, Honkanen et al. 1997; Liu, Yao et al. 

1998; Wolff, Saukkonen et al. 1998). Apparently, PTGS2 overexpression 

progresses with gastric and urinary bladder carcinogenesis, inducing the 

constitutive synthesis of PGE2 and activation of APC/#-catenin/Wnt signaling 

pathway (Wadhwa, Goswami et al. 2005). #-catenin in complex with 

transcription factors leads to the expression of metalloproteinases (MMPs) 

and vascular growth factors (VEGFs) (Figure 15) (Ben-Av, Crofford et al. 

1995; Cheng, Cao et al. 1998).  

 

Proteasomal 
degradation 

PTGS2 

PTGS2 
PTGS2 

 

Figure 15: Implication of PTGS2/PGE2 signaling in the hallmarks of cancer. 
Overexpression of PTGS2 leads to PGE2 oversynthesis inducing the expression of 
genes regulating cell survival, angiogenesis, cell proliferation and apoptosis through 
activation of Wnt and Ras/Raf signaling pathways (modified from May, O 
(http://www.caymanchem.com/app/template/Article.vm/article/2136)).  
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Activation of these genes induces proteolysis of extracellular matrix and 

promotes angiogenesis, which in turn favors the transition from limited tumor 

growth to invasion and metastasis (Price, Bonovich et al. 1997; John and 

Tuszynski 2001). Furthermore, high intrinsic PTGS2 expression constitutively 

activates the survival gene BCL2 through the Ras/Raf signaling pathway and 

inhibits apoptosis (Tsujii and DuBois 1995; Tsujii, Kawano et al. 1997; Murata, 

Tsuji et al. 2004) (Figure 15). Moreover, PTGS2 overexpression and 

enhanced prostaglandin production are associated with aggressive breast 

cancer subtypes (Rolland, Martin et al. 1980; Parrett, Harris et al. 1997; 

Ristimaki, Sivula et al. 2002). Accordingly, inhibition of PTGS2 by nonsteroidal 

anti-inflammatory drugs or specific inhibitors causes cell death in cancer cells 

(Sheng, Shao et al. 1998; Elder, Halton et al. 2000). These results suggest 

that PTGS2 overexpression attenuates the apoptosis potential of 

premalignant cells and leads to their protection against cell death. In 

consequence, prolonged cell survival will lead to the accumulation of multiple 

genetic mutations, resulting ultimately in a transformed phenotype with 

continuous cell growth. 

Paradoxically, ectopic PTGS2 overexpression seems to avoid 

chemically induced skin cancer in a transgenetic mouse model, confirming a 

preventive role of PTGS2 in carcinogenesis (Bol, Rowley et al. 2002). 

Moreover, PTGS2 overexpression was reported to induce cell cycle arrest 

and cell growth inhibition in various cancer and vascular epithelial cells 

(DuBois, Shao et al. 1996; Trifan, Smith et al. 1999). Finally, in adenomatous 

polyposis coli (APC) knockout mice, lack of PTGS2 expression resulted in the 

decrease of neoplastic growth and number of tumors (Oshima, Dinchuk et al. 

1996). Nevertheless, loss of PTGS2 expression blocks inflammatory response 

and thus compromise cellular integrity.  

In analogy to GSTP1 gene, a tightly regulated expression of PTGS2 is of 

major importance to avoid cancer development. Surprisingly, a short-term 

PTGS2 overexpression may suppress cell progression, whereas a long-term 

overexpression contributes to tumor growth, invasion and metastasis 

(Fosslien 2001; Murata, Tsuji et al. 2004). Accordingly, regulation of PTGS2 

expression as well as the consequences of abnormal expression should be 



  Introduction 

 47 

explored deeper in order to better understand the mechanisms of cancer 

development. 

Toyota et al. first proposed that dense PTGS2 promoter methylation is 

associated with transcriptional silencing in colorectal cancer (Toyota, Shen et 

al. 2000). Publications about human tumors of esophageal and gastric origin 

further evinced a strong correlation between PTGS2 inactivation and promoter 

hypermethylation. Moreover, treatments with demethylating agents such as 

DAC restored PTGS2 expression in various cancer cell lines (Toyota, Shen et 

al. 2000; Wang, Guo et al. 2005; Meng, Zhu et al. 2010). Taking together, 

these data suggest that PTGS2 promoter region is a target for DNA 

hypermethylation-mediated transcriptional silencing in cancer cells.  

Regarding hematological malignancies, it was shown that CML and CLL 

as well as lymphoma were shown to be constitutively overexpressed PTGS2 

(Ladetto, Vallet et al. 2005; Ohsawa, Fukushima et al. 2006; Ryan, Pollock et 

al. 2006). Nevertheless, Hazar et al. reported in 2004 that only 24 out of 42 

non-Hodgkin lymphoma patients as well as 7 out of 10 Hodgkin lymphoma 

patients expressed PTGS2 (Hazar, Ergin et al. 2004). However, the possibility 

that aberrant cancer-related DNA hypermethylation may be involved in 

PTGS2 repression in hematological malignant cells was never evaluated.  
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2. Hypothesis and aim of this thesis 
 

 Epigenetic alterations such as DNA methylation of CpG islands, which 

leads to gene silencing, play important roles in carcinogenesis. It is now 

established that methylation of genes or methylation patterns of groups of 

genes are tumor-specific. Therefore, DNA methylation signatures can be used 

as diagnosis biomarkers to detect cancer cells, and was found to be 

associated with responses to chemotherapeutics and prognosis. In contrast to 

DNA mutations, which are passively inherited through DNA replication, 

epimutations must be actively maintained because they are reversible, 

allowing therapeutic intervention with DNA demethylating/hypomethylating 

agents.  

In the past years, it clearly appeared that during the development of 

hematological malignancies, genes that suppress growth and induce 

differentiation could be silenced by aberrant DNA methylation. Significant 

advances have been made in the elucidation of these processes as well as in 

translating this knowledge to the clinic, as in the development of new 

prognostic biomarkers or targeted therapies. Among drugs inducing DNA 

demethylation, the cytosine nucleoside analogue 5-aza-2'-deoxycytidine is 

commonly used in clinical trials for various leukemia and promotes tumor cell 

death.  

Nevertheless, the potential of DNA methylomic regarding either disease-

specific biomarker discovery or for DNA demethylation-based therapeutic 

intervention in hematological malignancies still require attention. Hence, our 

general working hypothesis is that before we are able to properly target DNA 

methylation in cancer therapy against hematological malignancies, a better 

understanding of DNA methylation patterns tightly correlated with chromatin 

structure as well as of the effect of 5-aza-2'-deoxycytidine are required to 

improve targeted therapy. 

 Despite clinical observations involving GSTP1 and PTGS2 in 

carcinogenesis, mechanisms regulating their expression are not completely 

elucidated. Although both genes are commonly silenced by promoter 

hypermethylation in various cancers, molecular mechanisms leading to their 
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silencing by DNA hypermethylation in hematopoietic malignancies and its 

relationship with pathological alterations of the chromatin structure (i.e. 

histone modifications and co-repressor/co-activator complexes) remain poorly 

understood. Furthermore, it remains to evaluate, if the aberrant methylation of 

GSTP1 and PTGS2 gene promoters is characteristic for blood cancer 

patients.  

 Thus, the aim of our work is to gain further insight into GSTP1 and 

PTGS2 epigenetic regulation in hematological malignancies and to compare 

their implication to other already identified DNA methylation cancer 

biomarkers as well as the impact of 5-aza-2'-deoxycytidine at gene-specific, 

genome-wide and cellular levels. 

 

 In our attempt to reach these aims we will investigate the following 

points: 

 

1. First, we will investigate the epigenetic regulation of the expression of 

GSTP1 and PTGS2 genes in blood cancer cells presenting various gene 

expression levels, and evaluate the involvement of GSTP1 and PTGS2 

promoter hypermethylation in patients with malignant hemopathies. 

 

2. In a next step, we propose to extend our study regarding DNA 

methylation biomarkers in hematological malignancies by comparing the 

results obtained regarding PTGS2 and GSTP1 genes to other tumor 

suppressor genes found frequently methylated in cancer.  

 

3. Finally, we will investigate the effects induced by the DNA 

demethylating agent 5-aza-2'-deoxycytidine in leukemia and lymphoma cell 

lines on (i) cell proliferation and survival, (ii) local and global DNA 

demethylation, and (iii) the relationship between 5-aza-2'-deoxycytidine-

induced DNA demethylation and cell proliferation.  
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3. Material 

3.1. Chemicals 

Table 2: List of chemical products and their suppliers. 

Chemical Supplier 
Acetone Merck, Darmstadt, Germany 
30% Acrylamide Mix/Bis solution (37.5:1) Bio Rad, Nazareth Eke, Belgium 
Agar MP biomedicals LLC, Illkirch, 

France 
Agarose Promega, Madison, USA 
A/G agarose bead (50% slurry) Upstate, Millipore, Brussels, 

Belgium 
Ampicillin Sigma, St Louis, USA 
Ammonium persulfate (APS) MP biomedicals LLC 
Ultradistilled water (ddH20) Millipore, Brussels, Belgium 
Distilled water (dH20) Millipore 
Bovine serum albumin (BSA) MP biomedicals LLC 
Boric acid (H3BO3) MP biomedicals LLC 
5-Brom-4-Chloro-3-indoyl-beta-D-
galactopyranosid (X-Gal) 

Sigma 

Bromphenol blue LKB, Bromma, Sweden 
Protease inhibitor cocktail (Complete+/-
EDTA) 

Roche, Prophac, Howald, 
Luxembourg 

Carboxyfluorescein diacetate (CFSE) Invitrogen, Carlsbad, USA 
Chloroform Sigma 
5-aza-2'-deoxycytidine (DAC) Sigma 
Deoxycholic acid Sigma-Aldrich, Bornem, Belgium 
Deoxyribonucleoside triphosphate (dNTP) Invitrogen 
Diethylpyrocarbonate (DEPC) Acros, Geel, Belgium 
Dimethyl sulfoxide (DMSO) Sigma 
Di-sodium hydrogen orthophosphate 
(Na2HPO4) 

MP biomedicals LLC 

Dithiothreitol (DTT) Roche 
Ethanol (EtOH) VWR, Darmstadt, Germany 
Ethidium bromide (EtBr) Promega 
Ethylene diamine tetra acetic acid (EDTA) MP biomedicals LLC 
Ethylene glycol tetra acetic acid (EGTA) MP biomedicals LLC 
Ficoll-Paque PREMIUM GE Healthcare, Fischer Scientific, 

Tournai, Belgium 
Formaldehyde MP biomedicals LLC 
Glycerol (C3H5(OH)3) VWR 
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Chemical Supplier 
Glycine (C2H5NO2) MP biomedicals LLC 
HEPES (4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid) 

MP biomedicals LLC 

Hydrogen chloride (HCl) VWR 
(±)-6-Hydroxy-2,5,7,8-tetramethylchromane-
2-carboxylic acid 

Sigma-Aldrich 

Hoechst 33342 Calbiochem, Darmstadt, Germany 
IGEPAL MP biomedicals LLC 
Isopropanol (2-propanol, C3H7OH) VWR 
Isopropyl-beta-D-thio-galacto-pyranosid 
(IPTG) 

Invitrogen 

Lithium cloride (LiCl) Sigma-Aldrich 
Magnesium chloride (MgCl2) MP biomedicals LLC 
Magnesium sulfate (MgSO4) MP biomedicals LLC 
$-Mercaptoethanol (C2H6OS) Merck, Darmstadt, Germany 
Methanol (MeOH) VWR 
Monopotassium phosphate (KH2PO4) VWR 
Paraformaldehyde Merck 
Phenylmethylsulfonylfluorid (PMSF) Roche 
Piperazine-1,4-bis(2-ethanesulfonic acid) 
(PIPES) 

Sigma-Aldrich 

Potassium chloride (KCl) MP biomedicals LLC 
Potassium diphosphate (K4O7P2) VWR 
Potassium hydroxide (KOH) Merck 
Protein Assay Bradford solution Bio Rad 
Propidium iodide (PI) Sigma-Aldrich 
Salmon sperm DNA Upstate 
Suberoylanilide hydroxamic acid (SAHA) Cayman, Michigan, USA 
Sodium acetate (C2H3NaO2) VWR 
Sodium bicarbonate (NaHCO3) Sigma-Aldrich 
Sodium butyrate Sigma-Aldrich 
Sodium chloride (NaCl) VWR 
Sodium dihydrogen orthophosphate 
(NaH2PO4) 

ICN, Eschwege, Germany 

Sodium disulfite Merck 
Sodium dodecyl sulfate (SDS) MP biomedicals LLC 
Sodium hydroxide (NaOH) MP biomedicals LLC 
Sodium phosphate monobasic anhydrous 
(NaH2PO4) 

ICN 

Sulfuric Acid (H2SO4) Merck 
N,N,N',N'-Tetramethylethylendiamin 
(TEMED) 

MP biomedicals LLC 
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Chemical Supplier 
Tris MP biomedicals LLC 
Triton-X100 Merck 
Trypan blue Lonza, Basel, Switzerland 
Tween® 20 Sigma 
Valproic acid (VPA) Sigma-Aldrich 
Xylene cyanol ICN 
 

3.2. Buffers and solutions 

3.2.1. General buffers 

Table 3: Common buffers and solutions. 

Name Composition 
10X Phosphate buffered saline 
buffer (PBS) 

80mM Na2HPO4, 20mM NaH2PO4, 100mM 
NaCl adjust pH at 5.7 
Autoclaved for cell culture use  

1X Phosphate buffered saline / 
Tween buffer (PBS-T) 

1X PBS, 0.1% (v/v) Tween® 20  

Tris/EDTA buffer (TE) 10mM Tris-HCl (pH 7.5), 1mM EDTA  
MACS buffer 1X PBS (pH 7.2), 0.5% BSA, 2mM EDTA 
 

3.2.2. Gel electrophoresis 

Table 4: Gel electrophoretic migration of DNA molecules. 

Name Composition 
10X Tris/Borate/EDTA Buffer (TBE) 89mM Tris, 89mM Boric acid and 2mM 

EDTA 
6X Blue/Orange Loading Dye 0.4% Orange G, 0.03% Bromophenol blue, 

0.03% Xylene cyanol FF, 15% Ficoll® 400, 
10mM Tris-HCl and 50mM EDTA  

0.8 to 1.2% TBE-agarose gel  0.8 to 1.2% agarose, 1X TBE buffer  
12% Polyacrylamide gel 12% Acryl/Bisacryl (37.5:1), 1X TBE 

buffer, 0.1% APS, 0.05% TEMED 
 

3.2.3. Western Blot 

Table 5: Buffers and solutions used for the Western Blot. 

Name Composition 
8 to 12% Separation 
gel  

8 to 12% Acryl/Bisacryl (37.5:1), 0.373M Tris-HCL 
(pH8.8), 0.1% SDS, 0.1% APS, 0.05% TEMED 
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Name Composition 
4% Stacking gel  4% Acryl/Bisacryl (37.5:1), 0.125M Tris-HCL (pH6.8), 

0.1% SDS, 0.1% APS, 0.05%TEMED 
Electrophoresis buffer 25mM Tris, 2M Glycine, 35mM SDS  
Transfer buffer I 25mM Tris, 0.2M Glycine, 5% (v/v) Methanol  
Transfer buffer II 25mM Tris, 0.2M Glycine, 5% (v/v) Methanol, 0.1% 

SDS 
2X Loading buffer 0.125M Tris-HCL (pH 6.8), 20% (v/v) Glycerol 100%, 

4% (v/v) SDS 10%, 0.005%(p/v) Bromphenol blue, 5% 
(v/v) $-Mercaptoethanol 

 

3.2.4. Nuclear extraction 

Table 6: Buffers used for the extraction of nuclear factors. 

Name Composition 
Buffer A 10mM Hepes (pH 7.9), 10mM KCl, 0.1mM EDTA (pH 8.0), 

0.1mM EGTA, 1mM DTT, 0.5mM PMSF, 1X protease 
inhibitor cocktail (Complete® plus EDTA) 

Buffer C 10mM Hepes (pH 7.9), 10mM NaCl, 0.1mM EDTA (pH 8.0), 
0.1mM EGTA, 1mM DTT, 0.5mM PMSF, 20% Glycerol, 1X 
protease inhibitor cocktail (Complete® plus EDTA) 

 

3.2.5. Acid extraction 

Table 7: Buffer used for histone isolation. 

Name Composition 
Hypotonic lysis buffer 10mM Tris-HCl (pH 8.0), 1mM KCl, 1.5mM MgCL2, 

1mM DTT, 10mM Sodium butyrate, 1X protease 
inhibitor cocktail 

 

3.2.6. Cross-linking chromatin immunoprecipitation 

Table 8: Buffers used for cross-linking chromatin immunoprecipitation (X-ChIP). 

Name Composition 
Cell lysis buffer 5 mM PIPES (pH 8.0), 85 mM KCl, 0.5% IGEPAL 
Nuclei lysis buffer 50 mM Tris-HCl (pH 8.1), 10 mM EDTA, 1% SDS, 1X 

protease inhibitor cocktail 
IP dilution buffer 0.01% SDS, 0.5% Triton X-100, 2 mM EDTA, 16.7 

mM Tris-HCl (pH 8.1), 100 mM NaCl, 1 X protease 
inhibitor cocktail 

Low salt buffer 0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM 
Tris-HCl (pH 8.1), 150 mM NaCl and 1X protease 
inhibitor cocktail 
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Name Composition 
High salt buffer 0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM 

Tris-HCl (pH 8.1), 500 mM NaCl and 1X protease 
inhibitor cocktail 

LiCL buffer 1 mM EDTA, 10 mM Tris-HCl (pH 8.1), 250 mM LiCl, 
1 % Igepal, 1% deoxycholic acid and 1X protease 
inhibitor cocktail 

Tris-EDTA buffer 1 mM EDTA (pH 8.0) and 20 mM Tris-HCl (pH 8.1) 
Elution buffer 100 mM NaHCO3 and 1% SDS 
 

3.3. Kits 

3.3.1. Extraction/Purification 

Table 9: Kits for the extraction and purification of PCR products, DNA, RNA and 
proteins. 

Designation Supplier Application 
DNeasy Blood and Tissue Kit Qiagen, Venlo, 

Netherlands 
Genomic DNA extraction 

QIAamp DNA Micro Kit Qiagen Genomic DNA extraction 
AllPrep DNA/RNA Micro Kit Qiagen DNA/RNA extraction 
AllPrep DNA/RNA Mini Kit Qiagen DNA/RNA extraction 
NucleoSpin RNAII Kit Macherey-Nagel mRNA extraction 
miRNeasy Mini Kit Qiagen Total RNA extraction 
M-Per® Mammalian protein 
extraction reagent  

Thermo scientific, 
Waltham, USA 

Protein extraction reagent 

QIAquick PCR purification Kit, 
QIAEX II gel extraction Kit 

Qiagen PCR product and DNA 
purification 

AveGene Gel PCR DNA 
fragments Extraction Kit 

AveGene, Taipei, 
Taiwan 

PCR product purification 
and Gel extraction  

 

3.3.2. Bisulfite conversion 

Epitect® Bisulfite Kit (Qiagen) was used for bisulfite conversion of genomic 

DNA. Alternatively, for deep sequencing analyses, genomic DNA was 

conversed by the bisulfite conversion protocol 4.6.14 with the following 

solutions (Table 10). 

Table 10: Solutions used for bisulfite conversion of genomic DNA for deep 
sequencing analysis on the GS FLX-platform. 

Name Composition 
Conversion solution 2M NaOH 
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Name Composition 
Scavenger solution 0.39mM (±)-6-Hydroxy-2,5,7,8-

tetramethylchromane-2-carboxylic acid in 1,4-
dioxane 

Desulphonation solution 0.3M NaOH  
 

3.3.3. Microfluidic Lab-on-a-Chip application 

Table 11: DNA and RNA capillary electrophoresis  

Name Supplier Application 
Agilent RNA 6000 Kit Agilent Technologies, Santa 

Clara, USA 
RNA Quality control 

Agilent DNA 1000 Kit Agilent Technologies CoBRA analysis 
Bio-CoBRA: Combined bisulfite restriction assay. 

 

3.3.4. DNA quantification 

Double-stranded PCR products were quantified with the Qubit® dsDNA 

HS assay Kit (Invitrogen). 
 

3.3.5. Western Blot 

Table 12: Immunodetection of blotted proteins. 

Designation Supplier Application 
ECL Plus Western Blotting 
Detection System 

Amersham Bioscience, 
Vienna, Austria 

Horse radish peroxidase 
immunodetection (Western 
Blot) 

 

3.3.6. Purification and separation of blood cells 

Separation of peripheral blood mononuclear cells by density gradient 

centrifugation was done on Ficoll-paque premium (GE Healthcare, Fisher 

Scientific, Illkirch Cedex, France). CD34 Microbead Kit (Miltenyi Biotec, 

Auburn, USA) was used for the separation of CD34+ cells from umbilical cord 

blood. 
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3.3.7. Analysis of GST activity 

GST activity was detected by the GST Fluorometric Activity Assay Kit 

(Biovision, Mountain View, USA). 

 

3.3.8. Analysis of cell proliferation 

Cell proliferation was assessed with the CellTrace™ CFSE Cell 

Proliferation Kit (Invitrogen). 

 

3.4. Media 

3.4.1. Mammalian cell culture 

Table 13: Medium and additives to culture mammalian suspension cells. 

Component Supplier 
Roswell Park Memorial Institute (RPMI-1640) Lonza 
Iscove's Modified Dulbecco's Medium (IMDM) Lonza 
Fetal bovine serum (FBS) Lonza 
Penicillin, Streptomycin, Amphotericin B Lonza 
Granulocyte macrophage colony-stimulating factor 
(GM-CSF) 

Relia Tech, Wolfenbüttel, 
Germany 

 

3.4.2. Bacterial culture 

Table 14: Medium and their additives used in bacterial culture. 

Component Supplier 
Luria-Beltani (LB) broth, Miller MP Biomedicals LLC 
Super optimal broth medium with catabolite 
repression (SOC) 

Invitrogen 

LB-Agar Miller  MP Biomedicals LLC 
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3.5. Cells 

3.5.1. Mammalian cell lines 

Table 15: Mammalian cell lines used in cell culture  
All cell lines were provided by the Deutsche Sammlung für Mikroorganismem und Zell 
linien (DSMZ, Braunschweig, Germany). 

Name Morphology Disease (Diagnosis) 
HEL Erythroblast AML 
HL-60 Lymphoblast-like AML 
JURKAT T-lymphoblast ALL 
JVM-2 Lymphoblast CLL 
K-562 Lymphoblast CML 
KBM-5 Blast-like CML 
KG-1 Myeloblast AML 
KG-1A Myeloblast AML 
MEG-01 Megakaryoblast CML 
MOLT-3 T-lymphoblast ALL 
RAJI B-lymphoblast Burkitt’s lymphoma 
TF-1 Lymphoblast AML 
THP-1 Monocyte AML 
U-937 Lymphoblast Histiocytic lymphoma 
AML: acute myeloid leukemia, ALL: acute lymphoblastic leukemia, CML: chronic myelogenous 
leukemia, CLL: chronic lymphocytic leukemia. 
 

3.5.2. Prokaryotic cells 

Table 16: Bacterial cell clones and their suppliers. 

Name Supplier 
Escherichia coli JM109 Promega 
Escherichia coli TOP10 Invitrogen 
 

3.5.3. Patient samples 

Diffuse large B-cell, mantle cell, follicular and Burkitt’s lymphoma patient 

samples as well as chronic lymphocytic and myeloid leukemia, acute 

lymphoblastic and myeloid leukemia and myelodysplastic syndrome patient 

samples were provided in an anonymized form by the “Biothèque de 

l’Université de Liège” (Belgium), “Centre Hospitalier Universitaire de Nancy” 

(France), “Institut Paoli-Calmettes” (Marseille, France) and “Centre Hospitalier 

Luxembourg”. Blood cells from supposed healthy donors were provided by the 
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Red Cross Luxembourg. Cord blood was obtained from the “Clinique privée Dr. 

E. Bohler” (Luxembourg). Informed consent was obtained from patients. 

Detailed patient information is annexed. 

 

3.6. Enzymes 

3.6.1. Endonucleases 

Table 17: Endonucleases used for restriction assays. 

Name Buffer Supplier mCpG sensitivity 
BglII 10X Buffer D 

100X BSA 
Promega No 

HpaII 10X NEBuffer 1 NEB, Ipswich, USA Yes 
MspI 10X NEBuffer 4 NEB No 
RsaI 10X Buffer C 

100X BSA 
Promega No 

temp.: temperature, mCpG: methylated CpG. 
 

3.6.2. Polymerases 

3.6.2.1  DNA-specific DNA polymerases 
Table 18: DNA-specific DNA polymerases used for various PCR applications. 

Name Buffer Supplier Application 
GoTaq 
polymerase 

5X Colorless 
GoTaq® Flexi 
Buffer 

Promega Colony PCR 

Hot Fire Pol 10X Buffer B Solis BioDyne, 
Tartu, Estonia 

Bisulfite deep sequencing 

Hot Start Taq 10X PCR 
Buffer 

Qiagen BSP, Bio-CoBRA, MSP, 
Bisulfite deep sequencing 

Platinum Taq 10X PCR 
Buffer 

Invitrogen Bisulfite deep sequencing 

Platinum Taq 
high fidelity 

10X High 
Fidelity PCR 
Buffer 

Invitrogen MSP 

Power SYBR® 
Green PCR 
Master Mix 

n.a. ABI, Foster City, 
USA 

Real-time PCR 

n.a.: information not available 
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3.6.2.2 RNA-specific DNA polymerases 
Table 19: RNA-specific DNA polymerases used for expression analysis. 

Name Buffer Supplier Application 
Superscript RT 5X RT buffer  Invitrogen Reverse transcription of 

mRNA 
miScript Reverse 
Transcriptase mix 

5X miScript 
RT Buffer 

Qiagen Polyadenylation and 
reverse transcription of 
total RNA 

 

3.6.3. Other enzymes and proteins 

Table 20: Nucleases, proteases and proteins.  

Name Supplier Application 
DNase Machery-Nagel1, Düren, 

Germany, Qiagen2 
Nucleospin1, 
miRNeasy2 

Hot Start binding 
protein 

USB, Affimetrix, Santa Clara, 
USA  

BSP for deep 
sequencing 

Proteinase K Qiagen3, Roche4 DNeasy blood and 
tissue Kit3, X-ChIP4 

RNase Roche DNeasy blood and 
tissue Kit 

 

3.7. Oligonucleotides 
Table 21: Oligonucleotides used for BSP and Bio-CoBRA analysis. 
All primers were synthetized by Eurogentec (Seraine, Belgium). * PCR was done with 
35 repetitive cycles. 

Target Sequence (5’ to 3’) Annealing 
temp. (°C) 

Amplicon 
length (bp) 

GSTP1 F: GGAAAGAGGGAAAGGTTTTTT 55 * 292 
R: ACTCTAAACCCCATCCCC 

LacZ F: GGCTCGTATGTTGTGTGGAAT 65  592 
R: GTGCTGCAAGGCGATTAAGT 

temp.: temperature. 
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Table 22: Oligonucleotides used for MSP assays. 
All primers were synthetized by Eurogentec. Unless otherwise indicated, PCRs were 
done with Platinum Taq HIFI. Alternatively, $ Hot Start Taq was used for MSP analysis. 
Unless otherwise indicated, MSPs were done with 36 repetitive cycles. Alternatively, * 
32, **40, ***42 or **** 43 repetitive cycles were done for MSP analysis. Unmethylated 
(UM) and methylated (M) behind the gene name indicate the primer specificity. 
Sequences of MGMT, CASP8, TP73 and CDKN2A (p16), RASSF1A MSP primers were 
described by (Esteller, Hamilton et al. 1999), (Hopkins-Donaldson, Ziegler et al. 2003), 
(Siu, Chan et al. 2002), (Siu, Chan et al. 2002) and (Schagdarsurengin, Gimm et al. 
2002), respectively. 

Target Sequence (5’ to 3’) Annealing 
temp. (°C) 

Amplicon 
length (bp)  

AHR-UM F: GGGGATTTGGTTGTTAGTGTTT 63 116 
R: ACATTTTCTACACCAACTTCCA 

AHR-M F: GGATTCGGTCGTTAGTGTTC 63 116 
R: GTTTTCTACACCGACTTCCG 

APAF-1-UM F: GGTGGGATTTGATTGTTTT 57 143 
R: CTACAACACCTCAAATCTTCA 

APAF-1-M F: GCGGGATTTGATTGTTTC 57 143 
R: TACGACACCTCAAATCTTCG 

APC-UM F: TTTTGTGTTTTATTGTGGAGTGT 63 101 
R: ACAAACTCCCAACAAAAATAAA 

APC-M F: TGTGTTTTATTGCGGAGTGC 63 101 
R: CGAACTCCCGACGAAAATA 

BCL2-UM F: TTTTTAATTCGGGTTAGGGAGC 64.5 * 129 
R: CTCTACACAACCCGACCGAT 

BCL2-M F: GTTTTTAATTTGGGTTAGGGAGT 64.5 * 129 
R: TCTCTACACAACCCAACCAAT 

BCL-XL-UM F: TGTTGATTTTTTGTGTTTTTT 60 138 
R: ACTCAATCACTTCCAATACCA 

BCL-XL-M F: TGATTTTTTGCGTTTTTC 56.5 ** 138 
R: CAATCACTTCCGATACCG 

CALCA-UM F: GGGAATAAGAGTAGTTGTTGGT 63 149 
R: CTCAAAACTCACCTAACAAAA 

CALCA-M F: GGAATAAGAGTAGTCGTTGGC 64 149 
R: TCGAAACTCACCTAACGAAA 

CASP7-UM F: GTTTTTTAGGGATTATGTGTGT  60 142 
R: AAAATCTCAACACTACAAAAAA  

CASP7-M F: TTTTTAGGGATTATGCGTGC 63 142 
R: AAAATCTCGACGCTACGAAA 

CASP8-UM F: TAGGGGATTTGGAGATTGTGA  59 322 
R: CCATATATCTACATTCAAAACAA  

CASP8-M F: TAGGGGATTCGGAGATTGCGA  64 322 
R: CGTATATCTACATTCGAAACGA  

CDH1-UM F: TTTAGGTTTTAGTGAGTTATTGGT 62 117 
R: TAAACACAATAACCCTCTAACC 

CDH1-M F: TAGGTTTTAGTGAGTTATCGGC 64 117 
R: TAAACGCGATAACCCTCTAA 

CDKN2A (p14)-UM F: AGGTAGATTGTAGGTTTTGGGTT 62 133 
R: AAACAAAACTCAACTCTCATCCA 

CDKN2A (p14)-M F: TAGATCGTAGGTTTCGGGTC 62 133 
R: AAACGAAACTCGACTCTCGT 
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Target Sequence (5’ to 3’) Annealing 
temp. (°C) 

Amplicon 
length (bp)  

CDKN2A(p16)-UM F: TTATTAGAGGGTGGGGTGGATTGT  58 111 
R: CAACCCCAAACCACAACCATAA  

CDKN2A (p16)-M F: TTATTAGAGGGTGGGGCGGATCGC  63 111 
R: GACCCCGAACCGCGACCGTAA  

CDKN2B (p15)-UM F: GGGGTAGTGAGGATTTTGTGAT 62 143 
R: AATCATTAACTCCAAACTTTTCC 

CDKN2B (p15)-M F: GTAGTGAGGATTTCGCGAC 62 143 
R: CGTTAACTCCGAACTTTTCC 

DAPK1-UM F: TAAGGAGTTGAGAGGTTGTTTT 62 110 
R: AAACCCTACCACTACAAATTA 

DAPK1-M F: AAGGAGTCGAGAGGTTGTTTC 62 110 
R: AACCCTACCGCTACGAATTA 

ESR1-UM F: TTGTGGTTGGTTGTGTATGTAATT 65 169 
R: TACCCCATACCAAACTCCAATAT 

ESR1-M F: TGGTTGGTTGCGTATGTAATC 64 169 
R: CCCGTACCAAACTCCGATAT 

GSTP1 MGD-U F: GTGAAGTGGGTGTGTAAGTTTT 60 106 
R: ACAAAAAAAAAACCACAACAAA 

GSTP1 MGD-M F: AAGCGGGTGTGTAAGTTTC 62 106 
R: CAAAAAAAAAACCGCAACG 

GSTP1 MGP-U F: GTGGGATTTTTTAGAAGAGT 58.9 140 
R: CACATACTCACTAATACCAAA 

GSTP1 MGP-M F: CGGGATTTTTTAGAAGAGC 63 140 
R: CGCGTACTCACTAATAACGA 

HIC-UM F: GGGATAGTTTGGTTTTTGTGT 58 $ ** 111 
R: AAATCCAAAAAAAACAACACC 

HIC-M F: GGATAGTTCGGTTTTCGTGC 60 $ 111 
R: AATCCGAAAAAAACGACACC 

LINE1-UM F: GTGATGGATGTATTTGGAAAATT 62.8 123 
R: TCCATAAACATAAAACCCTCTAA 

LINE1-M F: ACGGACGTATTTGGAAAATC 64.5 123 
R: TCCGTAAACGTAAAACCCTC 

MGMT-UM F: TTTGTGTTTTGATGTTTGTAGGTTTTTGT 61 ** 93 
R: AACTCCACACTCTTCCAAAAACAAAACA 

MGMT-M F: TTTCGACGTTCGTAGGTTTTCGC 61 ** 81 
R: GCACTCTTCCGAAAACGAAACG 

MLH1-UM F: GTAGTTGTTTTAGGGAGGGAT 64 151 
R: CCTCAATACCTCATACTCACATTCT 

MLH1-M F: GTCGTTTTAGGGAGGGAC 67 151 
R: CAATACCTCGTACTCACGTTCT 

PTGS2-UM F: GTTTTTGGATTTTAGGGTT 60 **** 130 
R: TCTTCACAATCTTTACCCA 

PTGS2-M F: TTTTCGGATTTTAGGGTC 58 130 
R: CTTCGCAATCTTTACCCG 

RARB-UM F: TTAAGTTGTTGTAAATAAAAAGGT 60 144 
R: AACCAACATTTTCTTTCCTATTT 

RARB-M F: AGTCGTCGTAAATAAAAAGGC 64 144 
R: ACCGACGTTTTCTTTCCTAT 

RASSF1A-UM F: TTTGGTTGGAGTGTGTTAATGTG  62 ** 93 
R: CAAACCCCACAAACTAAAAACAA 
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Target Sequence (5’ to 3’) Annealing 
temp. (°C) 

Amplicon 
length (bp)  

RASSF1A-M F: GTGTTAACGCGTTGCGTATC  62 ** 105 
R: AACCCCGCGAACTAAAAACGA  

Rb-UM F: TTAGATATTTTTTGTGGGGTTT 63.5 145 
R: ACCCAAACATACTTCTACCCAA 

Rb-M F: GATATTTTTTGCGGGGTTC 65 145 
R: CCCGAACGTACTTCTACCC 

SOCS-UM F: GAGAGGGAAATAGGGTTGAAGT 63 130 
R: TAAACCAACTCAAAAACAAAACT 

SOCS-M F: AGGGAAATAGGGTCGAAGC 68 *** 130 
R: TAAACCGACTCGAAAACGAA 

TIMP3-UM F: GTTTAGGTAGTGGTGTAGAGT 64 * 137 
R: AAAACTACCTCAACACTAACAC 

TIMP3-M F: TTAGGTAGCGGCGTAGAGC 70 * 137 
R: AAACTACCTCGACGCTAACG 

TMS1-UM F: AGGATTTTAAGGTTTGGGGAATT 63 $ 123 
R: CTTACACCAACAAATACAAACCA 

TMS1-M F: GATTTTAAGGTTCGGGGAATC 62 $ 123 
R: TACACCAACGAATACAAACCG 

TP73-UM F: TTAGGTTAGTTGGGATGGAT 63 ** 141  
R: CCCAACTTCAAAACTACAAACCC 

TP73-M F: AGGTTAGTCGGGACGGAC 58 ** 141 
R: CAACTTCGAAACTACGAACCC 

temp.: temperature, primer specificity: UM: unmethylated, M methylated. AHR: aryl hydrocarbon 
receptor, APAF-1: apoptotic peptidase activating factor 1, APC: adenomatous polyposis coli, 
BCL-2: B-cell CLL/lymphoma 2, BCL-XL: apoptosis regulator Bcl-X, CALCA: calcitonin-related 
polypeptide alpha, CASP: caspase, CDH1: epithelial cadherin, CDKN cyclin-dependent kinase 
inhibitor, DAPK1: death-associated protein kinase 1, ESR: estrogen receptor, GSTP1: 
glutathione S-transferase P1, HIC1: hypermethylated in cancer 1, LINE1: long interspersed 
nuclear element, MGMT: O-6-methylguanine-DNA methyltransferase, MLH1: human MutL 
protein homolog 1, PTGS2: prostaglandin-endoperoxide synthase 2, RARB: retinoic acid 
receptor beta, RASSF1A: Ras association domain family protein 1A, RB1: retinoblastoma 1, 
SOCS: suppressor of cytokine signaling, TIMP3: tissue inhibitor of metalloproteinase, TMS1: 
target of methylation-induced silencing 1, TP73: tumor protein p73. 
 
Table 23: Oligonucleotides used for bisulfite deep sequencing analysis.  
Oligonucleotide primers were synthetized by Metabion (Martinsried, Germany). Every 
forward and reverse primers were supplemented by 5’ adaptors with the following 
sequences 5’-CGTATCGCCTCCCTCGCGCCATCAGTCTCTATGCG-3’ and 5’-
CTATGCGCCTTGCCAGCCCGCTCAGTCTCTATGCG-3’, respectively. PCRs were 
done with 2.5 units of Hot Fire Pol and 42 cycles. Otherwise, + 5 units of Hot Fire Pol 
(42 cycles), ++ 3.125 units of Hot Start Taq (42 cycles), +++ 1.5 units Platinum Taq (41 
cycles) were used for PCR amplification. 

Target Sequence (5’ to 3’) Anneal. 
temp. (°C) 

Amplicon 
length (bp) 

BCL2L11 F: GGGTGTAGATTTAGAGGATTGGAGAG 55 336 
R: CACTACATTTAACTAAAACCCCCAAAA 

CALCA F: GATTTTTTAGGTTTTGGAAGTATG 54 355 
R: AAAAAAAAACATATACCTAAACCAA 

CHFR F: TGGTTTGTTTTATATAAATGGATGTTT 55 466 
R: AACTTTTACCTCAATATCTCACTTCTTAAA 
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Target Sequence (5’ to 3’) Anneal. 
temp. (°C) 

Amplicon 
length (bp) 

DAB2IPA F: AAGGTGGTTGTTTTTGTTGGGGTA 58  347 
R: CCACACCCACCTAAAAAAATCCA 

DAPK1 F: TTTTTAGAATTTAGTTAGAGGGTAGT 54 337 
R: ACCAATAAAAACCCTACAAAC 

DCR1 F: GGAGGTGTTAGGGGAGGTTATGTTTT 55 280 
R: CCCTTACATCTCTAATCAAACTCCCAAA 

DLC1 F: TTTTGGAGGAGTGATTTTTGATTATTTT 55 357 
R: AATCTAAAATATTCCCAAACAATAAACTCTCC 

ESR1 F: TTTTATATGTTTGTTTAGATTTTAAGT 54 * 493 
R: TTATCACTCAAAAACTATCTTCTTATA 

EYA4 F: GTAAATTATGATAATAGGTAGTTATT 54 * 349 
R: CAACTCTTTCCCCCTCTCTAAAACAAC  

GSTP1 F: GGAAAGAGGGAAAGGTTTTTT 56 368 
R: ACTCTAAACCCCATCCCC 

H19 CTCF6 F: GATATTAGGGGAATAATGAGGTGTT 54 407 
R: ATAAATATCCTATTCCCAAATAACCC 

HIC1 F: GGGTTGTGTGGGTAATATTTTTGTTT 54 * 526 
R: CCTCCCACCTATACCCACCTAAA 

IGSF4 F: GTATGTTATTAGTATTTTATTAGTTGTT 56 342 
R: CTCTATAACCAAAACTACTAAAATA 

KLF4 F: TTTTTTTGGTTTTTTTTTGAGGTTT 54 294 
R: TAACTCATCCAACCCTCCATCT 

LINE1 F: TTATTAGGGAGTGTTAGATAGTGGG 54 247 
R: CCTCTAAACCAAATATAAAATATAATCT 

MGMT F: TTATTATAGGTTTTGGAGGTTGTT 54 322 
R: TACCTTTTCCTATCACAAAAATAAT 

RASSF5/ 
NORE1A 

F: GAAGGAAGGGGAAATTTAATTAGAG 54 468 
R: TAAACCTTCAACCCTACCTCTTTC 

OSMR F: GGGATGATAAGTGTTTTTGTGGGAT 54 $ 376 
R: ACACTCCTAAAACCCACAAAAATTCC 

PROX1 F: AGTTGTATTTGGGAAATGAAAAA 54 249 
R: CCCACCCTACCACAACTTC 

PTGS2 F: GTTATATGGGTTTGGTTTTTAGTT 54 * 402 
R: AAATACTAAAATAAACCCAAAAAATC 

RARB F: TGTTAGATTAGTTGGGTTATTTGAAGGT 54 450 
R: CAAATAATCATTTACCATTTTCCAAACT 

THBS1 F: GGAGAGAGGAGTTTAGATTGGTT 54 423 
R: CACCAAAAAAACTAAAACCTCAA 

TIMP3 F: TGGGTTAGAGATATTTAGTGGTTT 54 237 
R: TTCAAATCCTTATAAAAAATAATACC 

TP73 F: AAATAGTGGGTGAGTTATGAAGATGT 54 354 
R: TACACCAAACCCTAACTAAAAAACC 

temp.: temperature. BCL2L11: B-cell CLL/lymphoma 2-like 11, CALCA: calcitonin A, CHFR: 
checkpoint with forkhead and ring finger domains, DAB2IBA: DAB2 interacting protein, DAPK1: 
death-associated protein kinase 1, DCR1: decoy receptor 1, DLC1: deleted in liver cancer 1, 
ESR1: estrogen receptor 1, EYA4: eyes absent homolog 4, GSTP1: glutathione S-transferase 
P1, H19-CTCF: imprinted gene, HIC1: hypermethylated in cancer 1, IGSF4: cell adhesion 
molecule 1, KLF4: krueppel-like factor 4, LINE1: long interspersed nuclear element 1, MGMT: 
O-6-methylguanine-DNA methyltransferase, RASSF5/NORE1A: Ras association (RalGDS/AF-
6) domain family 5, OSMR: oncostatin M receptor, TP73: tumor protein P73, PROX1: prospero 
homeobox 1, PTGS2: prostaglandin-endoperoxide synthase 2, RARB2: retinoic acid receptor 
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beta, THBS1: thrombospondin 1, TIMP3: tissue inhibitor of metalloproteinase, TP73: tumor 
protein p73. 
 

Table 24: Oligonucleotides used for expression analysis. 
Primers were obtained from Eurogentec and have an annealing temperature of 60°C. 

Target Sequence (5’ to 3’) Amplicon length (bp) 
$-actin F: CTCTTCCAGCCTTCCTTCCT 116 

R: AGCACTGTGTTGGCGTACAG 

DNMT1 F: TCAGCAAGATTGTGGTGGAG 104 
R: CAAGTTGAGGCCAGAAGGAG 

DNMT3a F: TGCCAAAACTGCAAGAACTG 83 
R: CAGCAGATGGTGCAGTAGGA 

DNMT3b F: TTTGGCCACCTTCAATAAGC 119 
R: GGTCCTCCAATGAGTCTCCA 

GSTP1 F: GGCAACTGAAGCCTTTTGAG 128 
R: GGCTAGGACCTCATGGATAC 

 
Table 25: Oligonucleotides used for X-ChIP analysis. 
Primers were obtained by Eurogentec and have an annealing temperature of 60°C. 

Target Sequence (5’ to 3’) Amplicon length (bp) 
CG1 F: CTCTATGGGAAGGACCAGCA 81 

R: GATGTATTTGCAGCGGAGGT 

CG2 F: CCAGTTCGAGGTAGGAGCAT 103 
R: GATAAGGGGGTTCGGATCTC 

CG3 F: GCAGCGGTCTTAGGGAATTT 131 
R: CTTTCCCTCTTTCCCAGGTC 

CG4 F: AAGTAGGCAGCAAAGCCAAA 77 
R: GTCCCTGCAAAGGACATGAT 

CG5 F: AAGCCCAGGAACCTCAAGAT 86 
R: TGATCAGCCTGTGCCTGTAG 

 
Table 26: Oligonucleotides used for miRNA expression profile analysis. 
Primers were synthetized by Qiagen and have an annealing temperature of 55°C. 

Assay name Entrez Gene Symbol 
Hs_let-7f_1 MIRLET7F1, MIRLET7F2 
Hs_miR-124a_1 MIR124-1, MIR124-2, MIR124 
Hs_miR-125a_1 MIR125A 
Hs_miR-125a-3p_1 MIR125A 
Hs_miR-133a_1 MIR133A1, MIR133A2 
Hs_miR-142-5p_1 MIR142 
Hs_miR-148b_1 MIR148B 
Hs_miR-149_1 MIR149 
Hs_miR-150_1 MIR150 
Hs_miR-185_1 MIR185 
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Assay name Entrez Gene Symbol 
Hs_miR-193_2 MIR193B 
Hs_miR-198_2 MIR198 
Hs_miR-296-3p_1 MIR296 
Hs_miR-296-5p_1 MIR296 
Hs_miR-324-3p_2 MIR324 
Hs_miR-339_1 MIR339 
Hs_miR-339-3p_1 MIR339 
Hs_miR-345_2 MIR345 
Hs_miR-346_2 MIR346 
Hs_miR-422b_1 MIR378 
Hs_miR-432_1 MIR432 
Hs_miR-484_1 MIR484 
Hs_miR-486_1 MIR486 
Hs_miR-486-3p_1 MIR486 
Hs_miR-506_2 MIR506 
Hs_miR-512-3p_1 MIR512-1 
Hs_miR-512-5p_1 MIR512-1 
Hs_miR-516a-3p_1 MIR516A1, MIR516A2 
Hs_miR-516a-5p_1 MIR516A1, MIR516A2 
Hs_miR-516b_1 MIR516B1, MIR516B2 
Hs_miR-518c_1 MIR518C 
Hs_miR-519e_3 MIR519E 
Hs_miR-526b_1 MIR526B 
Hs_miR-539_1 MIR539 
Hs_miR-572_2 MIR572 
Hs_miR-574_1 MIR574 
Hs_miR-590-3p_1 MIR590 
Hs_miR-618_1 MIR618 
Hs_miR-637_1 MIR637 
Hs_miR-650_1 MIR650 
Hs_miR-657_2 MIR657 
Hs_miR-659_2 MIR659 
Hs_miR-767-3p_1 MIR767 
Hs_RNU1A_1 n.a. 
n.a.: not available. 
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3.8. Antibodies 
Table 27: Primary antibodies used for Western Blot analysis.  
Antibody working solutions were prepared at the appropriated dilution in 1X PBS-T 
with 5% milk. 

Target 
specificity 

Membrane saturation Dilution Supplier 

AcH4 5% BSA, 1X PBS-T 1:50000  Upstate 
CBP 5% milk, 1X PBS-T 1:1000  Santa Cruz, Tebu Bio, 

Boechout, Belgium 
DNMT1 5% milk, 1XPBS-T 1:250  Active motif, Rixensart, 

Belgium 
DNMT1 5% milk, 1X PBS-T 1:250  Active motif 
DNMT3A 5% milk, 1X PBS-T 1:200  Santa Cruz 
DNMT3B 5% milk, 1X PBS-T 1:500  Abcam, Cambridge, UK 
GSTP1 5% milk, 1X PBS-T 1:10000  BD bioscience, Franklin 

Lakes, USA 
H4 5% BSA, 1X PBS-T 1:10000  Upstate 
HDAC1 5% milk, 1X PBS-T 1:10000  Upstate 
HDAC2 5% milk, 1X PBS-T 1:10000  Abcam 
MBD1 5% milk, 1X PBS-T 1:1000  Abcam 
MBD2 5% milk, 1X PBS-T 1:250  Santa Cruz 
MBD3 5% milk, 1X PBS-T 1:250  Santa Cruz 
MeCP2 5% milk, 1X PBS-T 1:2500  Upstate 
p300 5% BSA, 1X PBS-T 1:500  Upstate 
Sp1 5% milk, 1X PBS-T 1:10000  Active motif 
Sp3 5% milk, 1X PBS-T 1:2500  Santa Cruz 
$-actin 5% milk, 1X PBS-T 1:5000  Sigma 
Ac: acetylation, CBP: cAMP-response element binding protein (CREB) binding protein, DNMT: 
DNA methyltransferase, GSTP1: glutathione S-transferase P1, H4: Histone 4, HDAC: histone 
deacetylase, MBD: methyl binding protein, MeCP2: methyl CpG binding protein 2, p300: 
histone acetyltransferase, SP: specificity protein. 
 

Table 28: Antibodies used for X-Chip. 

Target specificity Supplier 
AcH3 Upstate 
AcH4 Upstate 
CBP Abcam 
DNMT1 Active motif 
DNMT3A Active motif 
DNMT3B Active motif 
H3K4Me2 Abcam 
H3K4Me3 Abcam 
H3K9Me3 Upstate 
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Target specificity Supplier 
H3K27Me3 Upstate 
HDAC1 Upstate 
HDAC2 Abcam 
MBD1 Abcam 
MBD2 Upstate 
MBD3 Abcam 
MeCP2 Upstate 
p300 Upstate 
RNA pol II Upstate 
Sp1 Active motif 
Sp3 Santa Cruz 
Ac: acetylation, CBP: cAMP-response element binding protein (CREB) binding protein, DNMT: 
DNA methyltransferase, H: Histone, HDAC: histone deacetylase, K: lysine, MBD: methyl 
biniding protein, Me: methylation, MeCP2: methyl CpG binding protein 2, p300: histone 
acetyltransferase, RNA pol II: RNA polymerase II, SP: specificity protein. 
 

Table 29: Horseradish peroxidase-conjugated secondary antibodies used for 
Western Blot analysis. 
Secondary antibodies were obtained from Tebu Bio (Boechout, Belgium). Antibody 
dilutions were prepared with 5% milk in 1X PBS-T. 

1st antibody specificity Target specificity Dilution  
AcH4 Anti-rabbit IgG 1:5000  
CBP Anti-rabbit IgG 1:2500  
DNMT1 Anti-mouse IgG 1:2500  
DNMT3A Anti-rabbit IgG 1:500  
DNMT3B Anti-rabbit IgG 1:500  
GSTP1 Anti-mouse IgG 1:10000  
H4 Anti-rabbit IgG 1:5000  
HDAC1 Anti-mouse IgG 1:5000  
HDAC2 Anti-rabbit IgG 1:5000  
MBD1 Anti-rabbit IgG 1:2500  
MBD2 Anti-goat IgG 1:1000  
MBD3 Anti-goat IgG 1:2500  
MeCP2 Anti-rabbit IgG 1:2500  
p300 Anti-mouse IgG 1:2500  
Sp1 Anti-goat IgG 1:5000  
Sp3 Anti-goat IgG 1:2500  
$-actin Anti-mouse IgG 1:10000  
 

For indirect immunofluorescence detection, GSTP1 antibody (BD bioscience) 

was used at a dilution of 1:15 in 0.5% BSA, 1X PBS. 
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Table 30: Secondary antibodies used for immunodetection by cytometry or 
microscopy analyses. 
Secondary antibodies were diluted 1:50 in 0.5% BSA, 1X PBS. 

1st antibody 
specificity 

Target 
specificity 

Label  Supplier 

GSTP1 Anti-mouse IgG Alexa Fluor® 488 Molecular probes, 
Carlsbad, USA 

GSTP1 Anti-mouse IgG Alexa Fluor® 647 Molecular probes 
 

3.9. Markers 
Table 31: DNA markers used in electrophoretic migrations. 
All DNA markers were obtained from Promega. 

Name Fragment length (bp)  
1kb DNA Ladder 
 

250, 253, 500, 750, 1000, 1500, 2000, 2500, 3000, 
4000, 5000, 6000, 8000, 10000 

Bench TOP 100bp 
Ladder 
 

100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 
1500 

25bp DNA Step Ladder 
 

25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 
300 

bp: base pairs. 

 

Table 32: Protein marker used in Western Blot. 
As a protein size marker, Precision Plus protein standards, Kaleidoscope marker from 
Biorad was used. 

 

3.10. Plasmid/control DNA 
Table 33: Plasmid vectors and modified DNA.  

Name Supplier 
pGEM®-T Easy Vector Promega 
Epitect® PCR Control DNA Qiagen 
 

3.11.  Devices and instruments  
Table 34: Devices and instruments  

Description Name Supplier 
Autoradiography 
cassettes 

Hypercassette™ Amersham Bioscience, 
Vienna, Austria 
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Description Name Supplier 
Autoradiography 
films  

Hyperfilm ECL Amersham Bioscience 

Balances Explorer Pro Ohaus, Pine Brook, USA 
Biological safety 
cabinets 

Clean Air Clean Air, Minneapolis, USA 

Gel electrophoresis 
chamber 

Horizon 11-14, Horizon 20-
25 

Gibco, Carlsbad, USA 

Cell counter Cedex XS Innovatis, Roche, Howald, 
Luxembourg 

Centrifuge 5415R1, 5415D1, 5810R1, 
54241, KR25i2, RC10102, 
Cytofuge 23 

Eppendorf1, Hamburg 
Germany; Jouan2, St-
Herblain, France; Stat spin3, 
Westwood, USA 

Cytometer Facscalibur  BD bioscience 
Film processor Curix 60 AGFA, Mortsel, Belgium 
Fluorometer Qubit® Fluorometer  Invitrogen 
Fume cupboard Astec Monair, Hants, England 
Homogenizer Qiashredder Qiagen 
Incubator IGO 159 Memmert, Jouan, Binder 
Incubator with shaker 
function 

Thermoshake Gerhardt analytical systems, 
Königswinter, Germany 

Magnetic stirrer EM-1100-T Retsch, Haan, Germany 
Microplate 
spectrofluorometer 

SpectraMaxGemini EM Molecular Devices, 
Sunnyvale, USA 

Microscope DM20001, DMIRB1, IX812 
(MT10), Eclipse E2003 

Leica1, Zaventem, Belgium; 
Olympus2, Aartselaar, 
Belgium; Nikon3, Amstelveen, 
Netherland 

Microscopy slide for 
cell counting 

Malassez slide Marienfeld, Lauda-
Königshofen, Germany 

PCR plates Real-time PCR plates  Thermo, Waltham, USA 
PCR workstation Captair bio Erlab, Val de Reuil, France 
pH meter Cyberscan 500 Eutech instruments, Nijkerk, 

Netherland 
Pipet Pipetman Gilson, Middleton, USA 
Pipet-Aid Express Falcon, VWR, Leicestershire, 

England 
Power supply Power Pac HC, Power Pac 

Basic 
Bio-Rad Laboratories  

Protein blotting cells Mini Protean Tetra cells, 
Mini Protean 3-cells 

Bio-Rad Laboratories  

Pipetting robot Qiacube Qiagen 
Real-time PCR 7300 Real-Time PCR 

System  
Applied biosystems 
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Description Name Supplier 
Refrigerated cold 
traps 

RCT60 Jouan, St-Herblain, France 

Sequencer GS-FLX titanium system Roche 
Separator Midi MACS separation unit, 

MACS multi stand 
Miltenyi 

Shaker 3015 GFL, Burgwedel, Germany 
Sonicator Bioruptor™ Diagenode, Liège, Belgium 
Spectral photometer SpectraCount1, ND-10002 Packard1, Schwadorf, 

Austria; Nanodrop2, 
Wilmington, USA 

Storage (4°C1, -
20°C2, -80°C3, -
196°C4) 

VX490 E1, Comfort2, 
VWR3, LS750 4  

Jouan1, St-Herblain, France; 
Liebherr2, Biberach an der 
Riss, Germany ; VWR3, 
Leicestershire, England ; 
Taylor Wharton4, Husum, 
Germany 

Thermocycler Mastercycler Gradient Eppendorf, Hamburg 
Germany 

Tips, tubes, etc. Plastic ware Greiner, Wemmel, Belgium 
Tube roller-mixer SRT2 Rollomatic Stuart scientific  
UV Gel 
documentation 

UV illumination in a 
Molecular Imager% Gel Doc 
XR& System,  

Bio-Rad Laboratories  

Vortexer Vortex Genie 2 Scientific Industries, 
Bohemia, USA 

Water bath 1002 GFL, Burgwedel, Germany 
Water purification Elix3, Simplicity Millipore, Billerica, USA 
Western Blot 
densitometry 

Image station 440 CF Kodak, Stuttgart, Germany 
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4. Methods 

4.1. Bioinformation 

4.1.1. Oligonucleotide design 

Oligonucleotides (Primers) for semi-quantitative real-time or 

conventional non-quantitative PCRs were designed with the online tool 

Primer3 (Rozen and Skaletsky 2000). The Methyl Primer express software 

(Applied biosytems) was used to design primers for bisulfite sequencing and 

methylation-specific PCR (MSP) (Li and Dahiya 2002). 

 

4.1.2. CpG island identification 

CpG-rich regions were identified and plotted with the Methyl Primer 

express software applying the following conditions: GC%=50%, CpG O/E=0.6, 

min. length=200bp. Further analysis were realized with the online tool 

EMBOSS CpGPlot/CpGReport/Isochore (http://www.ebi.ac.uk/Tools/emboss 

/cpgplot/index.html) applying the following conditions: calculation window 

size=100, migration step=1, CpG O/E=0.6, GC%=50%, CGi length=200bp) 

(Gardiner-Garden and Frommer 1987; Rice, Longden et al. 2000). 

 

4.1.3. Bisulfite sequencing data analysis 

Chromatogram accuracy of sequencing data was checked with the 

Codon Code aligner software (CodonCode Corporation, Dedham, USA). 

Qualitatively acceptable sequences were then imported into the CLC 

Sequence viewer software (CLC bio, Aarhus, Denmark) and reoriented with 

the reverse complement tool. To identify eventual sequencing errors, resulting 

sequences were aligned against an in silico converted “ensembl”-based DNA 

sequence (Ensembl release 50 - Jul 2008, http://www.ensembl.org/). The BIQ 

conversion software (http://biq-analyzer.bioinf.mpi-sb.mpg.de/) was used for 

in silico conversions (Bock, Reither et al. 2005). Methylation percentages of 

bisulfite sequencing results were finally determined with the methylation 

quantification analysis tool (QUMA) (http://quma.cdb.riken.jp/) as well as with 
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the BIQanalyzer software (Bock, Reither et al. 2005; Kumaki, Oda et al. 

2008). Deep sequencing analyses were processed with the BIQanalyzer HT 

software (Lutsik, Feuerbach et al. 2011). 

 

4.1.4. Image analysis 

Bright-field microscopy images were recorded with the Leica Firecam 

software and processed with the ImageJ (rsbweb.nih.gov/ij/) or the Leica 

Firecam softwares (Leica Microsystems) (Rasband 1997-2008). Cell^R 

software (Olympus) was used to acquire and process fluorescence 

microscopy pictures. Kodak 1D image analysis (Kodak) and Image J 

softwares were used for densitometry analysis. DNA gels were documented 

with the Quantity One software (Bio-Rad Laboratories).  

 

4.1.5. Heat map analysis 

MSP methylation data and real-time PCR miRNA expression results 

were analyzed by the R software environment for statistical computing and 

graphics. Data were represented on a heat map (Team 2010). Correlation 

coefficient was used to determine cluster similarity. 

 

4.1.6. Prediction of putative miRNAs targeting GSTP1 expression 

A long list of approaches, based on different algorithms, has been 

developed for putative computational miRNA target prediction. In this study, 9 

different public online tools were used to analyze the 3’UTR of GSTP1 gene 

and predict possible miRNAs targeting GSTP1 mRNA (Table 35). 

Table 35: Tools and resources for GSTP1 miRNA target prediction. 

Tool Resource References 
Human miRNA 
target 

http://diana.pcbi.upenn.edu/CGi-
bin/TargetCombo.cgi  

(Sethupathy, Corda et 
al. 2006) 

Target Scan http://www.targetscan.org/ (Lewis, Burge et al. 
2005; Grimson, Farh 
et al. 2007; Friedman, 
Farh et al. 2009) 
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Tool Resource References 
Target Gene 
Prediction at 
EMBL 

http://www.russell.embl-
heidelberg.de/miRNAs/ 

(Stark, Brennecke et 
al. 2003; Brennecke, 
Stark et al. 2005; 
Stark, Brennecke et al. 
2005) 

miRNA map http://mirnamap.mbc.nctu.edu.tw/ (Hsu, Chu et al. 2008) 
Mirtar http://mirtar.mbc.nctu.edu.tw/human/  
RefGene http://refgene.com/  
miRwalk http://www.ma.uni-

heidelberg.de/apps/zmf/mirwalk/ 
 

EiMMO http://www.mirz.unibas.ch/ElMMo3/  
mimiRNA http://mimirna.centenary.org.au/mep/for

mulaire.html 
(Ritchie, Flamant et al. 
2010) 

 

4.2. Microbiology 

4.2.1. Bacterial cell culture 

 
Culture in liquid growth medium 

A preculture of 5ml lysogeny broth miller medium (LB, Luria Bertani 

broth) supplemented with 100µg/ml ampicillin was inoculated with a bacterial 

clone and incubated under agitation (200rpm) for eight hours at 37°C. The 

main culture of 150ml LB with ampicillin (100µg/ml) was afterwards inoculated 

with 1ml preculture and incubated under agitation overnight at 37°C. 

 

Culture on solid growth medium 

Autoclaved LB-agar miller medium was melted at 400W in a microwave, 

cooled down under agitation, supplemented with 100µg/ml ampicillin, and 

poured into sterile Petri dishes. The antibiotic agent ampicillin interacts with 

bacterial wall synthesis and thereby inhibits bacterial growth. Only bacterial 

cells expressing the ampicillin resistance gene survive to the selective 

pressure.  

LB-agar-Ampicillin-IPTG-X-Gal plates with 100µg/ml ampicillin, 0.05M 

IPTG and 0.004% X-Gal were used for Blue/White colony screening. IPTG 

induces the expression of the LacZ gene encoding $-galactosidase, which 

metabolizes the lactose analogue X-Gal into a blue reaction product. 
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4.2.2. Transformation 

The procedure that induces the introduction of a foreign DNA molecule 

into any bacterial cell type is called transformation.  

For the transformation of pGEM-T easy vector into E.coli strain JM109 

high efficiency competent cells, 2µl of the ligation reaction were added to 50µl 

of chemocompetent cells. This mixture was incubated 20 minutes on ice, then 

heat shocked for 45 seconds at 42°C and stored for 2 minute on ice. During 

this process, the short-term increase of temperature to 42°C reduces the 

rigidity of the cell wall and induce DNA migration through the phospholipid 

bilayer. Cells were regenerated by adding 950µl SOC medium to the 

transformation mixture and incubated 1 hour at 37°C. SOC is a medium 

without antibiotics that allows cells to recover as well as to initiate plasmid 

replication and gene expression. Finally, cells were platted on solid growth 

medium and incubated overnight at 37°C.  

 

4.3. Cell culture 

All manipulations for cell culture were done under sterile conditions. 

 

4.3.1. Storage of eukaryotic cells 

Cell stock aliquots were prepared in regular cell culture medium 

supplemented with 10% DMSO and 10% FBS. Aliquots were slowly frozen 

until -80°C and stored in liquid nitrogen. Cells revitalized by quick thawing at 

37°C were then placed under their usual culture conditions. Cells were used 

during a limited number of passages (+/- 30) before thawing a new stock. 

 

4.3.2. Culturing of eukaryotic cells 

Cell lines were routinely maintained in RPMI 1640 medium 

supplemented with 10% FBS except KG-1a cells that require 20% FBS. 

Furthermore, growth medium for TF-1 was supplemented with 5ng/ml of GM-

CSF. KBM-5 cell lines were maintained in IMDM medium supplemented with 

15% FBS. All medium were supplemented with 1% of a mixture of antibiotic 
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and antifungal agents (Pen/Strep Amphotericin B). Cells were cultured under 

an atmosphere of 5% CO2 with 95% humidity at 37°C. Medium exchange and 

cell concentration adjustment were done regularly. Therefore, cells were 

counted and a defined volume of cells transferred into a falcon. To eliminate 

the old medium, cells were centrifuged at 350 g for 7 minutes at room 

temperature. The supernatant was discarded and cells resuspended in an 

appropriated volume of new medium at a concentration of 2.0 - 2.5 x 105 cells 

per ml.  

 

4.3.3. Trypan blue exclusion test 

Trypan blue staining is used to determine the number of viable cells. 

Live cells possess intact cell membranes that actively exclude the trypan blue 

dye. In contrast, dead cells do not exclude the dye and show a distinctively 

blue stain under the microscope. 

Cells in medium were mixed at an equal volume with trypan blue. Then 

20µl of this mix was directly transferred onto a Malassez cell counting 

chamber and stained (unviable) as well as unstained (viable) cells were 

counted separately. 

 

4.3.4. Cell line treatments 

The stock solution of 10mM 5-aza-2'-deoxycytidine (DAC) was prepared 

in DMSO, aliquoted and stored at -20°C. The stock solution of 2.3M valproic 

acid (VPA) was diluted in water, trichostatin A (TSA) (1mg/ml) and SAHA 

(10mM) were prepared in DMSO. All solutions were aliquoted and stored at -

20°C. Cells were treated in the beginning of exponential growth phase. Due to 

the reduced stability of DAC, cells were treated every day.  

 

4.3.5. Purification of peripheral blood mononuclear cells 

Peripheral blood mononuclear cells (PBMCs) were purified from whole 

blood by density gradient centrifugation on Ficoll-Paque, taking in advantage 

the different densities of blood components (Boyum 1976). Anticoagulant-
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treated whole blood is diluted with a balanced salt solution and then slowly 

layered above Ficoll-Paque. The differential sedimentation of blood cells in 

the density gradient during the following centrifugation leads to a separation 

into distinct phases (Figure 16).  

 

 

Figure 16: Sedimentation profile of whole blood cells separated by Ficoll.  
Ficoll is overlayed in a conical tube by diluted whole blood. After centrifugation, the 
following layers are visible from top to the bottom: plasma, mononuclear cells, Ficoll, 
polymorphonuclear cells and erythrocytes (www.life.umd.edu). 

 

The pellet on the bottom of the tube consists of the high-density 

erythrocytes and polymorphonuclear granulocytes that are overlayed by the 

Ficoll-Paque. With a similar density as the Ficoll, lymphocytes (mononuclear 

cells) stay in the interphase between Ficoll and the upper fraction containing 

blood plasma, monocytes and platelets (Figure 16). 

One volume of Ficoll-Paque PREMIUM (density: 1.077g/ml) was gently 

overlayed with 2 volumes of diluted blood (1:3 dilution with 1X PBS) in a 50ml 

falcon-type tube. Tube was centrifuged at 600 g without break for 30 minutes 

at room temperature. PBMCs were collected by transferring into a new tube 

the lymphocyte ring located in the interphase of Ficoll/Plasma. Collected cells 

were washed twice with 1X PBS and stored at -80°C. 

 

4.3.6. Separation of CD34+ cells from umbilical cord blood 

Umbilical cord blood is the fraction of blood that remains in placenta and 

in the attached umbilical cord after childbirth. Cord blood contains all the basic 

elements of blood such as red blood cells, white blood cells, blood platelets 

and plasma. In addition, it contains blood-forming stem cells, positive for the 
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transmembrane glycoprotein CD34 antigen. These human hematopoietic 

progenitor cells have the potential to develop into any blood cell types. 

CD34+ cells were separated from umbilical cord blood as described by 

Miltenyi Biotec’s protocol. Cord blood was collected in tubes containing 

Heparin as anticoagulant. PBMCs were purified by density gradient 

centrifugation on Ficoll-Paque (see 4.3.5). Purified PBMCs (108) were 

resuspended in 300µl MACS buffer (Table 3). Then, 100µl of FcR blocking 

reagent and 100µl of CD34 MicroBeads (anti-CD34 antibody-coupled 

magnetic beads) were added to the cell suspension. Fc fragments of 

antibodies in the blocking reagent bind to the Fc receptors of nucleated cells 

and block any non-specific binding of CD34 MicroBeads. After 30 minutes 

incubation on ice, cells were washed with 10ml of MACS buffer and gently 

resuspended in 500µl of the same buffer. Cells were passed successively 

through a pre-separation filter and a MACS LS separation column positioned 

in a MidiMACS Separation Unit on a MACS multi stand. The magnetic field, 

created by the interaction between the separation unit and the column allows 

unlabeled CD34- cells to elute through the column while positively labeled 

cells (CD34+ cells) remain in the column’s magnetic shaft. After the negative 

elution containing CD34- cells, the column was washed with 9ml of MACS 

buffer, removed from the separation unit and eluted with 5ml MACS buffer. 

The eluate containing CD34+ cells was purified an additional time on a MACS 

LS separation column to improve fraction purity. 

 

4.4. Biological chemistry 

Cells were collected and washed two times with ice-cold 1X PBS. All 

centrifugation steps were done at 4°C. 

 

4.4.1. Whole cell extracts 

A pellet of 10 X 106 cells was resuspended at a ratio of 1:10 (v/v) with 

lysis mix (25:1 M-PER / proteinase inhibitor cocktail) for 10 minutes at room 

temperature. The sample was vortexed for 10 minutes and subsequently 
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centrifuged at 15000 g for 15 minutes. The supernatant containing proteins 

was transferred into a new tube and stored at -80°C. 

 

4.4.2. Nuclear protein extraction 

A pellet of 107 cells was resuspended in 400µl buffer A (Table 6) and 

incubated for 15 minutes on ice. The cell lysate was supplemented with 25µl 

of 10% IGEPAL, vortexed for 10 seconds and centrifuged at 15000 g for 15 

minutes. The cytoplasmic protein fraction was transferred into a new tube and 

stored at -80°C. Nuclei were dissolved in 50µl buffer C (Table 6), vigorously 

vortexed at 4°C for 15 minutes and centrifuged at 10000 g for 5 minutes. The 

supernatant, containing nuclear proteins, was transferred into a new tube and 

stored at -80°C. 

 

4.4.3. Histone acid extraction 

A pellet of 5 X 106 cells was resuspended in ice-cold hypotonic lysis 

buffer (Table 7) and incubated for 30 minutes at 4ºC. Nuclei were collected by 

centrifugation at 10000 g for 10 minutes, resuspended in 0.4N H2SO4, and 

incubated for 30 minutes at 4ºC. Histones were collected by precipitation with 

25% trichloroacetic acid, incubated 30 minutes on ice, centrifuged at 15000 g 

for 10 min, washed with ice-cold 100% acetone, dissolved in water and stored 

at -80ºC.  

 

4.4.4. Protein quantification 

The Bradford Dye assay is the most common colorimetric method to 

determine the concentration of a protein solution. The maximum absorbance 

for an acidic solution of Coomassie Brilliant Blue G-250 shifts from 465 nm to 

595 nm when binding to protein occurs. Under strong acidic conditions, the 

dye is most stable as a doubly-protonated, red form. However, binding to 

protein leads to a deprotonated, blue form. The reaction depends on the 

content of aromatic and basic amino acids (Bradford 1976). 



  Methods 

 79 

The determination of protein concentration is based on the comparison 

of BSA calibration curve and sample extinction spectrum. Therefore, a dilution 

series with BSA and water was prepared with the following concentrations: 

BSA concentration 
(µg/ml) 0 1 2 2.5 5 7.5 10 12.5 15 20 

A volume of 40µl of Bio-Rad Protein assay solution was added to 160µl 

of either samples or BSA dilution series. The extinction coefficients of the 

calibration curve and samples were measured by a spectral photometer at a 

wavelength of 595nm. Data were plotted and the equation of the standard 

curve was used to calculate sample concentration.  

 

4.4.5. SDS-Page 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-Page) 

is a variant of the polyacrylamide gel electrophoresis to separate proteins in 

an electric field. The separation medium is a polyacrylamide gel consisting of 

acrylamide, bisacrylamide, APS, TEMED and SDS. Polymerization of acryl 

monomers with the cross-linking agent bisacrylamide is catalyzed and 

initiated by TEMED and APS, respectively. SDS is an anionic detergent and 

coats the proteins with its negative charge. Discontinuous gel electrophoresis 

consists of a large-pore stacking gel that concentrates proteins on one same 

starting point. The following separation gel has small pores, allowing the 

separation of proteins according to their size.  

The resolving gel (Table 5) was poured between two glass plates and 

covered by 100% ethanol. After polymerization, ethanol was removed, the 

resolving gel covered with stacking gel (Table 5) and a comb introduced to 

form wells. The electrophoresis apparatus was set up with electrophoresis 

buffer (Table 5), covering the gel in the anode and cathode chamber. Protein 

samples were diluted with 2X loading buffer (Table 5) and subsequently 

denatured for 5 minutes at 100°C. To avoid protein renaturation, samples 

were placed for 2 minutes on ice. Samples were loaded onto a gel and then 

the electrophoresis chamber was connected to a power supply under 

appropriate running conditions (migration in stacking gel: 80 Volts, migration 

in resolving gel: 160 Volts). 
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4.4.6. Western Blot 

Western blot is an analytical technique used to detect specific proteins in 

a given sample of tissue homogenate or extract. Proteins are separated on a 

SDS-page according to their molecular weight. A vertical electric field is 

applied on the SDS-page to transfer proteins from the polyacrylamide gel onto 

a high hydrophobic polyvinylidene fluoride (PVDF) membrane. Target proteins 

are analyzed by immunodetection. 

The PVDF membrane was activated by methanol and together with the 

SDS-PAGE gel pre-incubated in transfer buffer I (Table 5) for 15 minutes 

under agitation. The blotting unit was setup up, starting with a transfer buffer I-

soaked sponge on which three layers of filter paper are disposed. Next, the 

protein containing gel was added and overlaid by the PVDF membrane. This 

assembly was completed with another three filter papers and a sponge. The 

blotting unit was then introduced into the transfer chamber, which was filled 

up with transfer buffer I and blotted for 1 hour at 200mA. 

For the transfer of large proteins (>80kDa) onto the PVDF membrane, 

transfer buffer I was replaced by transfer buffer II (Table 5) and proteins 

transferred at 4°C for 15 hours at 40mA. 

After transfer, the blotting unit was disassembled and the PVDF 

membrane blocked overnight at 4°C or 30 minutes at 37°C either in a 5% milk 

or in a 5% BSA, 1X PBS solution, depending on the antibody. Afterwards, the 

membrane was incubated overnight at 4°C or 1h at room temperature with an 

appropriate dilution of primary antibody directed against the protein of interest. 

After 3 washing steps with 1X PBS-T 0.1%, the membrane was incubated 

with the secondary horseradish peroxidase-conjugated antibody for 1h at 

room temperature. Following 3 washing steps with 1X PBS-T 0.1%, the 

membrane was incubated in a mix of 4ml buffer A and 100µl buffer B of ECL 

plus Western blot reagents for 5 minutes at room temperature. The 

peroxidase coupled to the secondary antibody reacts with the luminol from the 

ECL plus reagents producing a light signal that is detected by an Amersham 

Hyperfilm. The autoradiography film was developed in a Curix 60 film 

processor. 
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4.4.7. GST activity assay 

GST Fluorometric Activity Assay Kit using monochlorobimane (MCB) 

as substrate was used to measure cellular GST activity. The free form of MCB 

is almost non-fluorescent, whereas the conjugated form with glutathione 

fluoresces in blue (ex.380/em.461nm). This reaction of MCB-glutathione 

conjugation is catalyzed by GSTs, whereby the MCB fluorescence level is 

proportional to the total amount of GST activities, present in the reaction. 

Briefly, 1 X 106 cells were collected in duplicates and subsequently 

homogenized by sonication (Diagenode Bioruptor, settings: mode high, 2 

cycles of 30sec on/30sec off) in 100µl of GST sample buffer. After 

centrifugation at 10000 g for 15min at 4°C, supernatants were collected and 

stored at -80°C. A mix constituted of 2µl of MCB solution, 98µl of GST assay 

buffer and 10µl of glutathione was incubated with supernatants. Fluorescence 

was read at ex.380/em.460nm after 1 hour of incubation at room temperature 

using a SPECTRA MAX Gemini EM. Standard calibration curve of GST 

activity was set with the GST standard. GST activity was expressed as mU of 

GST per million of cells.  

 

4.5. Cell biology 

4.5.1. Indirect immunofluorescence labeling 

Immunofluorescence is used to detect the clonal expression or the 

presence of a specific antigen in a cellular system. Indirect 

immunofluorescence labeling requires the use of two antibodies. The primary 

recognizes and binds to the antigen of interest. The fluorescence-tagged 

secondary antibody recognizes the constant fragment of the primary antibody 

allowing the localization of the antigen.  

Localization and quantification of GSTP1 expression was performed on 

paraformaldehyde-fixed cells. A pellet of 8 X 106 cells was resuspended in 

200µl of a 2% paraformaldehyde solution (in 1X PBS) (v/v) and incubated for 

15 minutes at room temperature in the dark. The reaction was diluted by 

adding 800µl of 1X PBS and then washed once with 1X PBS to remove the 

remaining paraformaldehyde. Fixed cells were subsequently permeabilized 
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with 100µl 0.1% Triton-X (in 1X PBS) (v/v) for 8 minutes at room temperature. 

This step allows antibodies to diffuse into cells and to label proteins in the 

cyto- and nucleo-plasma. This permeabilization reaction was stopped with 

900µl 1X PBS and the cells were additionally washed once with cold 1X PBS. 

The primary GSTP1 antibody was diluted with 0.5% BSA in 1X PBS. After 1h 

of incubation at room temperature, cells were washed twice with 1X PBS and 

incubated with a dilution of a fluorochrome-linked secondary antibody (Table 

30) for one hour at room temperature in the dark. After washing twice with 1X 

PBS, cells were preserved in a solution of 0.2% paraformaldehyde in 1X PBS. 

Alexa Fluor 488 and Alexa Fluor 647 fluorescences were read at 

ex.495/em.519nm and ex.650/em.668nm, respectively. 

 

4.5.2. Fluorescent nucleic acid staining 

The blue fluorescent Hoechst 33342 is a cell permeable nucleic acid 

dye, used for DNA labeling in viable cell. This bisbenzimid-azole derivative is 

a supravital minor groove-binding DNA dye that binds preferentially to A-T 

base pairs. AT-rich double stranded DNA enhance the Hoechst fluorescence 

~2-fold greater than GC-rich strands (Portugal and Waring 1988). Because of 

the lipophilic property of Hoechst 33342, cells do not require any 

permeabilization for labeling, but do require physiologic conditions since the 

dye internalization is an active transport process. Hoechst staining is analyzed 

at ex.350/em.461nm. 

The red-fluorescence dye (ex.536/em.617nm) propidium iodide (PI) is a 

DNA/RNA intercalating agent, is membrane impermeant and is excluded from 

living cells. This characteristic is taken in advantage to detect necrotic cells in 

a cell population (Moore, Donahue et al. 1998). 

Cells were incubated with Hoechst 33342 (1µg/ml) for 15 minutes at 

37°C in the dark. Then, PI was added at a final concentration of 1µg/ml and 

DNA staining was analyzed by fluorescence microscopy. 
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4.5.3. Cell trace proliferation assay 

The colorless and non-fluorescent carboxyfluorescein diacetate 

succinimidyl ester (CFSE) diffuses passively into cells where it is metabolized 

by intracellular esterases to fluorescent carboxyfluorescein succinimidyl ester. 

This degradation product reacts with intracellular amines, forming fluorescent 

conjugates that are evenly distributed between two daughter cells during 

division. This property can be used to label cells and to trace cell proliferation. 

To analyze population-based proliferation, cells were CFSE-stained 

using CellTrace™ CFSE Cell Proliferation Kit. Cells in exponential growth 

phase were resuspended in pre-warmed 1X PBS/0.1% BSA in a final 

concentration of 1 X 106 cells/ml and stained with 0.2µM CFSE for 10 minutes 

at 37°C. Dye was quenched by the addition of 5 volumes of ice-cold culture 

media. After 5 minutes of incubation on ice, cells were centrifuged and the 

pellet washed twice with fresh media. CFSE staining was analyzed using 

FACSCalibur flow cytometer with 488 nm excitation and emission filter. 

 

4.5.4. Flow cytometry 

Flow cytometry uses the principles of light scattering, light excitation and 

fluorescence emission from molecules to simultaneously analyze multi-

parameters of single cells or particles in the size range between 0.2µm to 

150µm. This technique is applied to determine the expression profile of cell 

surface and intracellular molecules, to characterize and define different cell 

types in heterogeneous cell populations, to assess the purity of isolated 

subpopulations as well as to analyze cell size, granularity and cell volume. 

The flow cytometer is composed of three main systems: fluidics, optics and 

electronics. The sample is first transported through the fluidic system where it 

is hydrodynamically focused using sheath fluid and a very small nozzle 

(Figure 17). 

 



  Methods 

 84 

 

Figure 17: Schematic representation of flow cytometry principle. 
Flow cytometer uses the technique of hydrodynamic focusing for presenting cells to a 
laser. The sample composed of unstained cells (blue bubbles) and fluorochrome-
stained cells (red bubbles) is injected into the center of a sheath flow. The combined 
flows are reduced into diameter, forcing cells into the center of the stream to pass 
through the laser beam. In line (1) and perpendicular (2) detectors with the light 
beam as well as fluorescence (3) detectors pick up the combination of scattered and 
fluorescence signals. Analyses of fluctuations in brightness and fluorescence allow to 
obtain various types of information about the physical and chemical structure of each 
individual particle (www.abcam.com/technical). 

 
In the stream of fluid, cells pass like a string of pearls, only one cell at 

the time, the laser light. Since cells intercept the light source, they scatter light 

and fluorochromes are excited. The optical part of the cytometer is constituted 

of a laser to illuminate samples in the stream as well as optical filters to direct 

the resulting light to different detectors (Figure 17). The electronic part collects 

the laser light scattered from cells and converts this information into a signal, 

processed by a computer. A detector in front of the laser light beam (Forward 

scatter, FSC) recognizes the cell size and a second perpendicular (Side 

scatter, SSC) is responsible for the density measurement that means the 

relative granularity and the internal complexity of the cell (Figure 17). 

Fluorescence detector, in the same position as the SSC detector, is used to 

measure the fluorescence intensity of cells (Figure 17).  

Based on the specific light scattering and fluorescent characteristic, it is 

possible to sort a heterogeneous mixture of cells. The FACSCalibur cytometer 

possess a mechanical device “catcher tube” to collect cells of interest. Cells 

(1) 

������
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pass through the detector system, the computer determines if cells fulfill the 

selected criteria and separate them mechanistically from the remaining 

population.  

Immunostained samples were quantitatively processed by flow 

cytometry using BD FACSCalibur& with the CellQuest Pro (BD bioscience) 

software and analyzed with FlowJo (Treestar, Ashland, USA). Results were 

expressed both as percentage of positive cells and as mean fluorescence 

intensity (MFI). Isotopic control labeling was performed in order to determine 

non-specific fluorescence and to calculate MFI ratios. To separate and collect 

cells of interest from a heterogeneous cell population, immunostained 

samples were sorted using BD FACSCalibur& with CellQuest Pro software. 

4.5.5. Fluorescence microscopy 

For the analysis of fluorescence- or immunofluorescence-labeled 

samples by microscopy, 100µl of cell suspension was precipitated on a glass 

slide with a cytofuge centrifuge system at 20 g for 4 minutes. A coverglass 

was mounted on the glass slide and cells were observed under the 

microscope. Observation and image acquisition were done with the IX81 

Olympus microscope under an UPlanFL 40X/0.75 objective. 

 

4.6. Molecular biology 

4.6.1. Electrophoretic migration 

Gel electrophoresis is a useful method to analyze DNA molecules. The 

naturally present negative charge of the DNA sugar phosphate backbone 

induces, in a direct current field, a migration of the molecule from the 

cathode (-) to the anode (+). Linear double-stranded DNA molecules migrate 

through the agarose matrix with a speed that is inversely proportional to the 

logarithm of its size. A lot of variables, such as size and form of DNA as well 

as current intensity, buffer conditions and gel concentration influence DNA 

migration speed into a gel. 

Samples were diluted with 6X loading buffer, loaded into a gel and 

migration was done in 1X TBE running buffer and 10 Volts per centimeter. A 
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DNA marker with known fragments length was simultaneously migrated to 

determine DNA sample length. The separation of short DNA fragments below 

300bp was realized in 12% TBE-polyacrylamide gels. Larger DNA fragments 

were separated in 0.8% TBE-agarose gels (Table 4). 

 

4.6.2. Ethidium bromide staining 

Ethidium bromide is a DNA/RNA intercalating agent with a detection limit 

of up to 20ng of DNA.  

TBE-polyacrylamide gels were stained in a solution of 0.5µg/ml ethidium 

bromide for 30 minutes at room temperature. Ethidium bromide was directly 

added to agarose gels in a final concentration of 0.5µg/ml. Results of 

electrophoretic migrations were documented on a UV illumination desk in a 

Molecular Imager% Gel Doc XR& System with the Quantity One® software.  

 

4.6.3. DNA extraction 

Genomic DNA extraction was performed using the DNeasy® Blood and 

Tissue Kit as proposed by the manufacturer. An additional step of RNase 

treatment was added in order to eliminate RNA in the extracted DNA. Thus, 

200µg of RNase A was added and incubated for 2 minutes at room 

temperature. Genomic DNA extraction from low number of cells (<5 X 105) 

was performed using the QIAamp® DNA micro Kit as proposed by the 

manufacturer. All genomic DNA samples were stored at 4°C. 

 

4.6.4. DNA quantification 

DNA concentration was measured using a NanoDrop ND-1000 Spectral 

photometer. The UV absorption of DNA solutions is measured at a 

wavelength of 260nm. The amount of absorbed UV-light is proportional to the 

quantity of DNA. A DNA solution with an OD of 1 at a wavelength of 260nm 

has a DNA concentration of 50µg/ml. 
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Double-stranded PCR products were quantified with the Qubit® 

fluorometer by using the Qubit® dsDNA HS assay according to the user 

manual. 

 

4.6.5. DNA precipitation 

Purification of colony PCR products by sodium acetate/ethanol 

precipitation allows optimal conditions for the following reactions. The addition 

of ethanol to the PCR batch causes a lowering of the dielectric constant (F), 

which induces the formation of ion pairs between the polyanion DNA and 

sodium cations. The neutralization of the negative charge on DNA backbone 

provokes its precipitation. 

To one volume of PCR mix, 0.1 volume of 3M Na acetate (pH 5.2) and 3 

volumes of 100% ice-cold ethanol were added. The mixture was incubated 

one hour at -80°C and DNA was precipitated by centrifugation at 15000 g for 

20 minutes at 4°C. The pellucid pellet was washed once with 70% ethanol, 

air-dried and dissolved in an adequate volume of ddH20. 

Avegene Gel PCR/DNA fragments extraction kit solutions and the 

corresponding protocol in combination with the econospin DNA columns 

(Epoch life science, Sugarland, Texas, USA) were used to purify PCR 

products for deep sequencing analysis. 

 

4.6.6. Gel extraction 

PCR products for sequencing were purified with the QIAquick® PCR 

purification Kit. PCR products for Bio-CoBRA assays were purified with the 

QIAEX® II Gel extraction Kit. Both kits were used as proposed by the 

manufacturer Qiagen.  

 

4.6.7. RNA extraction 

For mRNA expression analysis, total RNA was extracted following the 

protocol of the NucleoSpin® RNA II Kit. For miRNA expression analysis, total 
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RNA was extracted following the protocol of the miRNeasy® extraction Kit. All 

RNA samples were stored at -80°C. 

 

4.6.8. RNA quantification 

RNA concentration was measured using a NanoDrop ND-1000 

Spectral photometer. The amount of absorbed UV-light is proportional to the 

amount of RNA; a solution with an OD of 1 at a wavelength of 260nm has an 

RNA concentration of 40µg/ml. 

 

4.6.9. Determination of RNA quality 

RNA quality was verified using the Agilent chip technology (RNA 6000 

Nano Labchip®) on a Bioanalyzer 2100 following manufacturer’s protocol. 

 

4.6.10. Simultaneous RNA and DNA purification 

ALLprep® DNA/RNA Micro/Mini Kit was used to isolate both DNA and 

RNA from the same biological sample. 

Patient tissue samples fixed in OCT Tissue TEK were disrupted in 350µl 

RLT buffer supplemented with 1% #-mercapthoethanol and homogenized into 

Qiashredder spin columns. DNA and RNA were extracted from the lysate by 

following the protocol proposed by the manufacturer.  

Frozen patient samples in DMSO solution were quickly thawed at 37°C, 

transferred in 50ml of 1X PBS containing 10% FBS and centrifuge at 300 g at 

4°C for 7 minutes. Resulting pellets were disrupted as described above.  

 

4.6.11. DNA digestion 

Restriction enzymes were used to cut DNA into small and defined 

pieces. The recognition motives consist mostly in palindromic sequences of 

four to eight base pairs. Endonucleases may generate either blunt or sticky 

(overhangs) ends, where sticky ends are more suitable for a later directional 

ligation. Several enzymes are methylation sensitive and cut only 
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unmethylated sequences, a characteristic used to determine the methylation 

status of a restriction site. 

Restriction enzymes work only under defined buffer, cofactor and 

temperature conditions. Up to 1µg of genomic DNA was digested with 10 units 

of endonuclease in 1X of the corresponding buffer and 1X BSA for 3 hours at 

37°C. DNA digestion products were analyzed by gel electrophoresis. 

For methylation sensitive restriction assay (MSRA), 1µg of genomic DNA 

was incubated with 20 units of HpaII or MspI for 15 hours at 37°C. Then, 10 

additional units of each enzyme were added and incubated for 2 hours at 

37°C. Digestion products were analyzed by electrophoretic migration on a 

0.8% agarose gel. 

 

4.6.12. Cloning, ligation and Blue/White colony screening 

Cloning is a standard procedure to introduce a DNA insert into a 

vector. Both ends of the host vector possess T-overhangs, which prevent 

recircularization and allow fixation of inserts with the A-overhangs, produced 

by Taq polymerases during PCR. A T4-ligase covalently ligates PCR products 

into the pGEM®-T vector. 

The Blue/White selection allows the detection of successful ligation 

between a vector and an insert after transformation. The lacZ gene in the 

multiple cloning site of pGEM®-T Easy vector encodes the $-galactosidase 

enzyme, which can metabolize the X-Gal, present in the medium, into a blue 

dye. The ligation of an insert into the multiple cloning site disrupts the lacZ 

gene leaving cells unstained, whereas vector religation without insert leads to 

$-galactosidase expression and blue-stained cells. 

The pGEM®-T Easy vector cloning system from Promega and the 

enclosed protocol was used to clone PCR products into the pGEM®-T Easy 

vector. 
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4.6.13. PCRs 

PCR (polymerase chain reaction) is an in vitro process for the selective 

isolation and amplification of a specific DNA region (Mullis, Faloona et al. 

1986; Mullis and Faloona 1987).  

The multi stages PCR reaction relies on thermal cycling, consisting of 

cycles of repeated heating and cooling of the reaction for DNA melting and 

enzymatic replication of the DNA. 

- Initialization step: this first heating step (94-98°C) is required for 

activation of chemically- or immunologically-inactivated polymerases.  

- Denaturation step: this step is the first regular cycling event and 

consists of heating the reaction to 93°-97°C, causing DNA melting and the 

separation of double-stranded DNA. 

- Annealing step: the annealing temperature is depending on 

oligonucleotides (size and composition) and buffer conditions. Single strand 

oligonucleotides hybridize on heat-denatured single strand DNA template.  

- Extension/elongation step: the temperature of this step is depending 

on the DNA polymerase (60-72°C). Polymerase catalyzes the synthesis of a 

DNA strand in direction 5’ to 3’, complementary to the DNA template strand by 

adding dNTPs to the 3’-OH oligonucleotide end. Typically, the last three steps 

are repeated in this order up to 40 times. 

Final elongation: this single step is responsible for the A-tailing of PCR 

products. 

 To check whether the PCR generated the desired DNA fragment 

(amplicon), PCR products were resolved using gel electrophoretic migration. 

 

Bisulfite sequencing PCR 

Bisulfite sequencing PCR was used to amplify a specific region of 

bisulfite converted DNA (3.3.2). Depending on the gene, an appropriated PCR 

master mix was prepared as described in Table 36 in a final volume of 50µl. 

Reactions were incubated under polymerase- and primer-specific conditions 

in a thermocycler (Table 37, Table 38, Table 39). 
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Table 36: Composition of the bisulfite sequencing and bisulfite deep 
sequencing PCR master mixture. 

Component Final concentration 
 Hot Star Taq Hot Fire Pol Platinum Taq 
10X PCR Buffer  1X 1X 1X 
MgCl2 / 2.5mM 1.5mM 
dNTPs  0.2mM each 0.2mM each 0.2mM each 
Hot Start binding protein / 2µg 2µg 
Reverse primer  0.40mM 0.16mM 0.20mM each 
Forward primer  0.40mM 0.16mM 0.20mM each 
Template  40ng 20ng 20ng 
Hot Start Taq  2.5U 2.5U 1.5U 
 
Table 37: Cycling conditions for the bisulfite sequencing PCR with the Hot 
Start Taq polymerase. 

Phase  Temperature (°C) Time (minutes) 
Initialization 95 15 
Denaturation 94 1 

Number of cycles (see 
Table 21 and Table 23) Annealing Table 21 and Table 23 1 

Extension 72 1 
Final extension 72 10 
 
Table 38: Cycling conditions for the bisulfite PCR with the Hot Fire Pol 
polymerase. 

Phase  Temperature (°C) Time (minutes) 
Initialization 95 15 
Denaturation 95 1 

42 cycles Annealing Table 23 1 
Extension 72 1.5 
Final extension 72 10 
 

Table 39: Cycling conditions for the bisulfite PCR with the Platinum Taq 
polymerase. 

Phase  Temperature (°C) Time (minutes) 
Initialization 94 2 
Denaturation 94 0.5 

42 cycles Annealing Table 23 0.5 
Extension 72 1 
 

Resulting amplicons were resolved on a 1.2% agarose gel. Acquisition 

of the ethidium bromide-stained gels was realized in the Molecular Imager® 
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Gel Doc XR& System. Selected amplicons were subsequently extracted from 

the gel and used for combined bisulfite restriction assay, cloned into an 

amplification vector for sequencing or directly used for deep sequencing. 

 

Colony PCR 

Colony PCR is an additional method to both identify clones with insert-

containing plasmids and amplify simultaneously regions of interest for 

subsequent processes. Instead of purified DNA, a whole bacterial clone is 

used as template in the PCR step. The high denaturation temperature, at the 

beginning of the PCR, lyses cells and denatures proteins responsible for DNA 

degradation. Plasmid DNA molecules enclosed in cells are liberated and used 

as template for amplification. 

A PCR master mix with a final volume of 40µl was prepared and 

inoculated with a bacterial clone. The reaction was then incubated under 

specific conditions in a thermocycler (Table 40 and Table 41). 

 

Table 40: Composition of colony PCR master mix. 

Component Final concentration 
5X GoTaq Buffer  1X 
MgCl2  1.5mM 
dNTPs  0.25mM each 
LacZ reverse primer  0.2mM 
LacZ forward Primer  0.2mM 
Platinum Taq DNA polymerase HIFI  1.5U 

 

Table 41: Cycling program for colony PCR. 

Phase  Temperature (°C) Time (minutes) 
Initialization 95 3 
Denaturation 95 0.5 

30 cycles 
 

Annealing 65 0.5 
Extension 72 1 
Final extension 72 5 
 

PCR products were analyzed on a 1% agarose gel. Colony PCR 

products were additionally precipitated and sequenced.  

 



  Methods 

 93 

Methylation-specific PCR 

MSP is a bisulfite conversion-based PCR technique that can rapidly 

assess the methylation status of almost any group of CpG sites within a CpG 

island, even in regions with high CpG density (Figure 18).  

 

Figure 18: Methylation-specific PCR principal. 
Workflow of MSP technique, illustrated with an example of fully methylated (allele M) 
or unmethylated (allele UM) genomic DNA templates. Cm: methylated cytosine. 

 

This assay consists of an initial chemical DNA modification by sodium 

bisulfite, converting all unmethylated, but not methylated, cytosines to uracils. 

For the subsequent PCR amplification, primers are designed to specifically 

amplify the methylated or the unmethylated allele as well as to discriminate 

between unmodified and bisulfite modified DNA molecules (Figure 18). To get 

the highest specificity and provide maximal sensitivity to the assay, primer 

sequences are chosen for regions containing frequent cytosines and CpG 

pairs near the 3’ end of the primers. The initial report using MSP describes 

sufficient sensitivity to detect methylation of 0.1% of alleles. In general, MSP 

and its related protocols are considered to be the most sensitive approach 

when interrogating the methylation status of a specific locus. Successful 

amplification from methylated (M) or unmethylated (U) primer pairs indicates 

the methylated or unmethylated status of the original DNA template, 

respectively (Figure 18) (Herman, Graff et al. 1996).  
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MSP conditions for a given gene locus and the corresponding primers 

set (Table 22) were optimized with fully methylated or unmethylated converted 

and unconverted DNA, provided with the EpiTect® PCR Control DNA Kit. This 

commercially available DNA was also used as positive and negative controls. 

MSPs were carried out under specific conditions (Table 42 and Table 43) with 

methylation-specific primers (Table 22) in a master mix with a final volume of 

25µl. 

Table 42: Composition of the MSP master mix.  

Component Final concentration 
10X HIFI Buffer  1X 
MgSO4  3mM 
dNTPs  0.2mM each 
Primer R  0.4mM 
Primer F  0.4mM 
Template 20ng 
Platinum Taq DNA polymerase HIFI  1.5U 

 
Table 43: Cycling conditions for methylation-specific PCR. 

Phase  Temperature (°C) Time (minutes) 
Initialization 94 2 
Denaturation 94 0.25 

Number of cycles 
(see Table 22) Annealing Table 22 0.5 

Extension 68 0.5 
 

Hot Star Taq polymerase with the corresponding PCR protocol and annealing 

temperature was alternatively used to amplify certain gene regions (Table 22). 

PCR products were resolved in a 12% polyacrylamide gel, stained with 

ethidium bromide and documented under UV illumination on Molecular 

Imager® Gel Doc XR& System. 

 

Reverse transcription of mRNA 

Reverse transcription converts single-stranded RNA into single-

stranded cDNA using a RNA-dependent DNA polymerase. This conversion 

permits the detection of variation in RNA transcription levels. All compounds 

for reverse transcription of mRNA were provided by Invitrogen. 
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One microgram of total RNA and 0.5µg Oligo(dT) primer were 

denatured at 70°C for 10 minutes and immediately cooled down at 4°C. The 

denatured RNA was reverse transcribed in the presence of the following 

components: 

- 5X First strand buffer 1X 

- dNTPs  0.5mM (each) 

- 0.1M DTT 10µM 

- Superscriptase Reverse transcriptase RNase (SSII RT)  50U 

- RNaseOUT™ Recombinant Ribonuclease Inhibitor  40U 

This mixture was incubated in a thermocycler for 90 minutes at 42°C, then 

heated up to 70°C for 15 minutes and hold at 4°C. Two Units of RNase H 

were afterwards added to the mixture and incubated for 20 minutes at 37°C. 

RNase H treatment eliminates mRNA matrix. The cDNA synthesized during 

this process was diluted with ddH2O at 40ng/µl and stored at -20°C. 

 

Reverse Transcription of miRNA 

Unlike mRNAs, miRNAs are not polyadenylated in nature. During this 

reverse transcription step, miRNAs are polyadenylated by poly(A) 

polymerase. Reverse transcriptase converts all RNAs (including precursor 

miRNAs, mature miRNAs, other small non-coding RNAs, and mRNAs) to 

cDNA using oligo(dT) and random primers. Polyadenylation and reverse 

transcription are performed sequentially in the same tube. Oligo(dT) primers 

have a universal tag sequence on the 5’ end. This universal tag allows 

amplification in the following real-time PCR step. 

Reverse transcription of 1µg of total RNA was done with the miScript® 

Reverse Transcription Kit (Qiagen) following manufacturer’s protocol and 

cDNA was diluted to 1ng/µl. 

 

Real-time PCR 

Real-time PCR enables both detection and quantification of a specific 

DNA sequence in relation to an internal calibration gene (e.g. the 

housekeeping gene $-actin). Unlike the standard PCR, the accumulation of 

amplified DNA is detected in real-time during amplification cycles by 
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fluorescence measurement. Therefore, the double strand-specific DNA 

intercalant fluorescent dye SYBR®Green is used to quantify DNA synthesis. 

In this work, real-time PCR was realized using a specific master mix 

and under stringent conditions (Table 44, Table 45). 

Table 44: Composition of the real-time PCR master mix. 

Component Final concentration 
Power SybrGreen PCR Master Mix 1X 
Primer (reverse and forward) 0.1mM each 
Diluted cDNA  8ng 

 

All real-time primers were designed for an annealing temperature of 

60°C. Melting curve analysis and electrophoretic gel migration were done to 

test primers specificity.  

Table 45: Cycling program for the real-time PCR.  

Phase  Temperature (°C) Time (minutes) 
Initialization 95 10  
Denaturation 95 0.25 

40 cycles Annealing/ Extension 60 1 
 

For mature miRNA detection, cDNA of total RNA serves as template for 

real-time PCR analysis using a miRNA specific miScript primer assay (Table 

26) in combination with the miScript SYBR®Green PCR Kit. MiRNAs are 

amplified using the miScript universal primer, which primes from the universal 

tag sequence, together with the miScript primer assay, which is specific for 

the mature miRNA under study.  

For miRNA expression analysis, real-time PCR was realized under 

stringent conditions using a specific master mix (Table 46 and Table 47). 

Table 46: Composition of the real-time PCR master mix for miRNA expression 
analysis. 

Component Final concentration 
QuantiTect SYBR®Green PCR master mix 1X 
miScript Primer Assay 1X 
miScript Universal Primer Assay 1X 
Diluted cDNA  2ng 

 



  Methods 

 97 

All real-time primers were designed for an annealing temperature of 

55°C.  

Table 47: Cycling program for the real-time PCR for miRNA expression 
analysis.  

Phase  Temperature (°C) Time (minutes) 
Initial activating step 95 15  
Denaturation 94 0.25 

40 cycles Annealing 55 0.5 
Extension 70 0.5 
Melting curve    
 

Data from real-time PCR are represented as an amplification curve, 

derived from the fluorescence intensity plotted against the number of 

amplification cycles. A threshold was set up in the log-linear range of this 

amplification curve. The threshold cycle (Ct) value is used to calculate the 

amount of starting template in each sample. This is the cycle at which the 

amplification plot crosses the threshold. The raw instrument data (i.e. Ct 

values) were normalized against a reference gene (i.e. $-actin for mRNA or 

RNU1A for miRNA), resulting in “delta Ct”. The relative expression ratio was 

finally calculated with the comparative Ct method by the arithmetic operation: 

2-delta Ct.  

 

4.6.14. Bisulfite treatment 

Methylated cytosines have nearly the same base pairing characteristics 

as unmethylated cytosines, and can therefore not be differentiated in normal 

sequencing reactions. In contrast, selective base conversion called bisulfite 

mutagenesis allows methylated DNA to be distinguished from unmethylated 

DNA (Figure 19). 
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Figure 19: Chemical process of the bisulfite-induced deamination of cytosine 
to uracil.  
Step 1: Sulphonation, Step 2: hydrolytic deamination, Step 3: alkali desulphonation 
(Hayatsu 2008). C: cytosine, U: uracil, C-SO3

-: cytosine-sulphonat, U-SO3
-: uracil 

sulphonate. 

 

Bisulfite has the property to efficiently convert cytosine bases into 

uracils, whereas methylated cytosines stay unmodified (Figure 19). The initial 

step of the bisulfite conversion is the denaturation of genomic DNA. The 

carbon atom in position 6 (C6) of the pyrimidine ring is sterically blocked in 

double-stranded DNA. Therefore, it has to be denatured to single-stranded 

DNA. The subsequent chemical process consists in sulphonation of the 

cytosine to cytosine-sulphonat (C-SO3
-) (Figure 19). A methylation-free 

cytosine possesses in its pyrimidine ring a free C5-C6 carbon bond. This free 

binding capacity of the C5 atom allows adduct formation with bisulfite ions. In 

case of a methylated cytosine, this C5 atom is blocked, which is preventing 

the chemical modification. In aqueous phase, the intermediate sulphonated 

cytosine gets deaminated and transformed to uracil sulphonate (U-SO3
-). The 

final alkaline treatment causes the desulphonation of the molecule to uracil 

(Figure 19) (Frommer, McDonald et al. 1992; Clark, Harrison et al. 1994). 

Bisulfite conversion was performed using the Epitect Bisulfite Kit as 

proposed by the manufacturer.  

For methylation analysis by deep sequencing, genomic DNA was 

converted by adding 187µl of conversion buffer and 73µl of scavenger 

solution to 500ng of genomic DNA in a final volume of 20µl. After incubation at 

the following conditions: 99°C 15min, 50°C 30min, 99°C 5min, 50°C 90min, 

99°C 5min and 50°C for 90min, the conversion mixture was diluted with 150µl 

ddH20 and loaded on a microcon centrifugal filter Ultracel YM-30 (Milipore). 

The column was centrifuged for 30 minutes at 11000 g, the flow-trough 

discarded and the column wash once with 500µl 1X TE, Then, 500µl 



  Methods 

 99 

desulphonation solution was added on the column and incubated for 10min at 

room temperature. After a centrifugation step of 10000 g for 18 minutes, the 

flow-trough was discarded and the column washed with 500µl 1X TE. Column 

was then turned over and placed on a new tube and DNA eluted with 50µl of 

50°C pre-warmed 1X TE buffer. Converted DNA was stored at 4°C.  

 

4.6.15. Bio-CoBRA 

Combined bisulfite restriction assay (CoBRA) relies on the innovation 

of Sadri and Hornsby who have shown that restriction digestion can be used 

to reveal DNA methylation-dependent sequence differences in PCR-amplified 

bisulfite-treated genomic DNA (Sadri and Hornsby 1996). Bisulfite conversion 

of genomic DNA leads to methylation-dependent formation of new restriction 

enzyme sites or retention of the pre-existing sites. After PCR amplification, 

this feature can be exploited to determine DNA methylation levels at specific 

loci, with a very high quantitative accuracy. However, bisulfite-generated 

restriction sites are preferred because they allow the simultaneous control of 

complete bisulfite conversion. It is important to stress that the restriction 

enzyme cleavage itself is not methylation-dependent because PCR products 

do not contain 5-methylcytosine. Results of restrictions are classically 

analyzed by PAGE separation or southern blot. Alternatively, the restriction 

profile can be quantitatively analyzed by capillary electrophoresis in micro 

fluidics chips (Bio-CoBRA) (Brena, Auer et al. 2006; Brena, Auer et al. 2006).  

Conversions of DNA samples as well as PCR amplification of the target 

sequence were done as previously described (see 4.6.14 and 4.6.13). PCR 

products were electrophoresed in a 1X TBE-1.5% agarose gel, visualized by 

ethidium bromide staining and purified with the Qiaex® gel extraction Kit. 

Restriction digestion of 100ng of PCR product was realized as already 

mentioned (see 4.6.11). Digested samples were next concentrated using a 

SpeedVac and 20ng were loaded on the Agilent DNA 1000 LabChip as 

proposed by the manufacturer and analyzed using the Agilent Bioanalyzer 

2100.  
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4.6.16. Crosslinked chromatin immunoprecipitation (X-ChIP) 

Crosslinked chromatin immunoprecipitation (X-ChIP) is mainly used to 

investigate the interactions between proteins (e.g. transcription factors) and 

specific DNA regions such as gene promoters or other DNA binding domains 

in cells. In addition, X-ChIP is suitable for the mapping of histone 

modifications or to detect the recruitment of histone-modifying enzymes to 

specific gene regions. By incubating cells with a crosslinking agent, in vivo 

reversible cross-linking of proteins with DNA is achieved (Figure 20). After cell 

lysis, DNA-chromatin is sheared by sonication or using micrococcal nuclease 

(Figure 20). Protein-DNA complexes are selectively isolated using a specific 

antibody against the protein of interest (POI), coupled to magnetic, agarose or 

sepharose beads (Figure 20). Bead-antibody-POI-DNA complexes are then 

collected, washed and the crosslink reversed. DNA regions associated to the 

protein are identified by conventional PCR, real-time PCR or by Chip (ChIP on 

Chip) (Figure 20). 
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Figure 20: Schematic overview of cross-linked chromatin immunoprecipitation 
procedure. 
For preservation of protein/DNA interactions, intact cells are fixed with formaldehyde 
(step 1). After cell lysis (step 2), chromatin is sheared (e.g. sonication) into small size 
uniform fragments (step 3). DNA/Protein complexes are immunoprecipitated with 
antibodies specific for the protein of interest and recovered using protein A/G 
sepharose beads (step 4). The cross-link is reversed and DNA purified and analyzed 
by PCR to determine which DNA regions were interacting with the protein of interest 
(step 5). Modified from Nelson et al. (Nelson, Denisenko et al. 2006). 
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To analyze DNA/protein interactions by X-ChIP, 107 cells were cross-

linked with 1% formaldehyde for 8 minutes at room temperature. After cross-

linking, the reaction was quenched with 0.125M of glycine for 10 minutes at 

room temperature. Cells were washed twice with ice-cold 1X PBS, pelleted by 

centrifugation at 350 g for 7 minutes at 4°C, resuspended in 1ml of cell lysis 

buffer (Table 8) and 1X protease inhibitor cocktail and incubated 30 min at 

4ºC under agitation. After centrifugation at 2500 g for 5 minutes at 4°C, nuclei 

were resuspended in 300µl nuclei lysis buffer (Table 8) and incubated for 10 

minutes on ice. Chromatin with a size range from 0.5kb to 0.9kb was prepared 

by sonication using a Bioruptor (Diagenode) at the following settings: mode 

high, 16 cycles of sonication (30 seconds on / 30 seconds off). Cell debris 

were removed by centrifugation at 15000 g for 10 minutes at 4°C. 

Supernatant was pre-cleared 1 h at 4ºC with 25µl of a 50% gel slurry of 

protein A/G-agarose beads saturated with salmon sperm DNA and bovine 

serum albumin. After centrifugation at 800 g for 3 minutes at 4°C, supernatant 

was recovered, diluted 10 times in IP dilution buffer (Table 8) and 10% was 

used as input. The diluted chromatin was incubated overnight at 4°C with 1-

2µg of the antibody of interest (Table 28) and the immune complexes were 

recovered by 1h incubation at 4ºC with 30µl of a 50% gel slurry of protein 

A/G-agarose beads (Upstate). The precipitated complexes were washed 

sequentially at 500 g for 5 minutes at 4°C with low salt buffer, high salt buffer, 

LiCl buffer and twice with 1 X TE buffer. Chromatin was eluted twice with 60µl 

of freshly prepared 67°C pre-warmed elution buffer under agitation for 15 

minutes at room temperature (Table 8). Cross-link was reversed by an 

overnight incubation of the elute at 67ºC, in presence of 0.3M NaCl and 10µg 

of RNase A (Roche). Samples were then digested with 30µg of proteinase K 

(Roche) in the presence of 40mM Tris-HCL pH 6.5 and 10mM EDTA at 45ºC 

for 1 h. DNA was purified using QIAquick PCR purification kit (Qiagen) and 

analyzed by real-time-PCR. PCRs were performed using primers that covered 

different regions of the GSTP1 promoter (Table 25). 
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4.7. Statistical analysis 

Data are presented as means ± standard deviation (SD), and analyzed 

by the Student’s t-test. p-values below 0.05 were considered as statistically 

significant.  
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5. Results 
 

Pathological alterations in the native epigenetic pattern, such as 

aberrant methylation, have great potential for clinical use as promising 

cancer-specific biomarkers. Tumor biomarkers are useful in the identification 

of individuals at increased risk of developing cancer and in the early detection 

of malignant transformations. 

The hypermethylated GSTP1 gene is already used as a promising 

DNA methylation biomarker for prostate cancer diagnosis (Duffy, Napieralski 

et al. 2009). This aberration reduces or silences GSTP1 expression, 

decreasing cell detoxification and enhancing consequently the susceptibility of 

genomic mutations (e.g. breast, prostate and hepatocellular carcinoma). In 

contrast, DNA hypomethylation leads to high level of GSTP1 expression, 

improving cell detoxification ability and mediating resistance against 

cytostatics.  

In addition, PTGS2 overexpression is nowadays well accepted as a 

major player in cancer development by activating cell survival and growth-

promoting genes. In contrast, it is now becoming clear that in certain cancer 

types (e.g. gastric, colorectal), promoter hypermethylation represses PTGS2 

expression. In consequence, in these cells both inflammation response and 

cellular defense are attenuated.  

The cases of both epimutated genes demonstrate that a balanced 

gene expression, regulated by defined epigenetic modification patterns, is 

very important to avoid for instance prostate or gastric tumor development. 

This finding may be extended to hematological malignancies but requires 

therefore further investigations.  

Moreover, simultaneous analysis of a broad range of epigenetic 

biomarker genes will enhance clinical relevance of DNA methylation profiling, 

for example in the context of individualized medicine. However, aberrant 

methylation patterns need to be researched further in blood cancer cells in 

order to pass from a pure laboratory discipline to an area of  

great bedside relevance to practicing oncologists. 
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Considering that fact that cancer has an epigenetic etiology, one of the 

tasks to be tackled in the future will be the efficient and specific modulation of 

such epigenetic alterations in hematological malignancies as well as in other 

cancer types. At the moment, nucleoside analogs AZA and DAC are the most 

effective demethylating compounds. The FDA-approved drug DAC is used for 

MDS treatment and currently under clinical investigations for treatment of 

leukemia. However, the demethylation effects seem to be unspecific, leading 

to activation of genes such as oncogenes or transposable elements. Further 

investigations are required to elucidate detailed process of DAC-mediated 

demethylation as well as cellular consequences of DAC treatment. 

 

5.1. Epigenetic regulation of GSTP1 gene expression in 
hematological malignancies 

 
Since the relationship between epigenetic modifications and GSTP1 

expression in leukemia cells remains at the moment poorly understood, the 

first part of this thesis was focused on the analysis of the epigenetic regulation 

of GSTP1 expression in leukemia and lymphoma cell lines. Furthermore this 

study was extended to samples from hematological malignant patients, in 

order to test the possibility to introduce GSTP1 as a possible cancer 

biomarker. 

 

5.1.1. Analysis of the constitutive GSTP1 expression in human 

leukemia/lymphoma cell lines 

 
First, basal GSTP1 gene expression was assessed in various leukemia 

and lymphoma cell lines. Total mRNA from a panel of 10 leukemia and 

lymphoma cell lines was reverse transcribed and GSTP1 as well as !-actin 

mRNA levels analyzed by real-time PCR (Figure 21-A). To compare GSTP1 

transcription and translation, GSTP1 protein expression was determined by 

Western Blot (Figure 21-B). 
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Figure 21: Analysis of basal GSTP1 expression in human leukemia and 
lymphoma cell lines. 

(A) Total RNA extracted from various leukemia and lymphoma cell lines was reverse 
transcribed into cDNA and analyzed by real-time PCR with primers specific for 
GSTP1. !-actin was analyzed as a cDNA quantity control. Results represent the ratio 
of GSTP1/!-actin mRNA expression. (B) Total protein extractions from the indicated 
cell lines were analyzed by Western Blot with an antibody specific for GSTP1. !-actin 
was used as loading control. Pictures are representative of 3 independent 
experiments. (C) Chemiluminescence was acquired with the Kodak image station 
440 CF, quantified with the Kodak 1D image analysis software and normalized to the 
housekeeping gene !-actin. The relative level of GSTP1 protein in various cell lines 
is expressed compared to the level in K-562 cells set to 100%. Data are the means ± 
SD of 3 independent experiments.  
 

The highest amount of GSTP1, at both mRNA and protein levels, was 

detected in the CML cell line K-562, whereas GSTP1 was undetectable in 

RAJI and MEG-01 cells. Furthermore, relatively high basal GSTP1 expression 

was detected in JURKAT, TF-1, HL-60 and U-937 cell lines, in contrast to the 

B 

C 

A 
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moderate GSTP1 expression levels detected in JVM-2, HEL and MOLT-3 cell 

lines (Figure 21). 

 

5.1.2. Effect of DAC treatment on GSTP1 expression in human 

leukemia/lymphoma cell lines 

 

 Previous results about differential levels of GSTP1 expression in blood 

cancer cell lines and the fact that hypermethylation-mediated GSTP1 

silencing is established for other cancer types leaded to the hypothesis that 

hypermethylation could be involved in leukemia-specific GSTP1 

downregulation. Therefore, we assessed the effects of the DNA demethylating 

agent DAC on GSTP1 expression. Total mRNA from K-562, RAJI, MEG-01, 

HEL, MOLT-3 and JVM-2 cells, treated for various time points and doses with 

DAC was extracted and GSTP1 as well as !-actin mRNA expression 

quantified by real-time PCR (Figure 22-A, B, C). Moreover, evolution of 

GSTP1 protein expression was analyzed by Western Blot (Figure 22-D).  
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Figure 22: Effect of DAC treatment on GSTP1 expression in 
leukemia/lymphoma cell lines. 

K-562, RAJI and MEG-01 cell lines were treated with various DAC doses at different 
time periods. Total RNA was isolated and the (A) dose- and (B) time-dependent 
effects of DAC on GSTP1 mRNA expression were assessed by real-time PCR. 
Results represent the ratio GSTP1/!-actin mRNA. (C) Cells were harvested after 
various time points of DAC treatment and analyzed by Western Blot with an antibody 
specific for GSTP1. Relative level of GSTP1 protein expression in various blood 
cancer cell lines is normalized against !-actin and expressed compared to the 
GSTP1 expression level after 6 days of DAC treatment. Pictures are representative 
for 3 independent experiments. (D) Total RNA from various untreated (-) and DAC-
treated (+) leukemia cell lines was isolated and analyzed by real-time PCR. Results 
represent the ratio GSTP1/!-actin mRNA. Data are means ± SD of 3 independent 
experiments. *p<0.05, **p<0.01 vs control. 
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Results showed that DAC treatment further increased constitutive 

GSTP1 mRNA and protein expression in a time- and concentration-dependent 

manner in K-562 cell line. Regarding RAJI cells, DAC treatment drastically 

induced GSTP1 transcription after two days whereas GSTP1 protein was 

restored one day later. Similarly, DAC affected GSTP1 expression in MEG-01 

cells; however, the induction in MEG-01 was delayed and weaker compared 

to RAJI cells. In both GSTP1 silenced cell lines, the effect of DAC was time- 

but not concentration-dependent for the tested range of concentrations 

(Figure 22-A, C). Furthermore, DAC-mediated induction of GSTP1 expression 

was delayed in MEG-01 cells compared to RAJI cells. Based on these results, 

we used 2µM DAC to analyze the mechanism of induction of GSTP1 

expression in blood cancer cell lines (Figure 22-B). In HEL, MOLT-3 and JVM-

2 cells, DAC treatment significantly enhanced the moderate constitutive 

GSTP1 mRNA expression levels (Figure 22-D). 

 Western Blot as well as real-time PCR techniques give only an overall 

of the level of GSTP1 expression in a cell population. To evaluate the 

localization and cell-specific GSTP1 expression in our models, K-562, RAJI 

and MEG-01 cells were treated for 3 days with DAC and subsequently 

immunostained with a GSTP1 antibody. Nucleus were stained with Hoechst 

and samples analyzed by fluorescence microscopy.  

 



  Results 

 110 

GSTP1 Merged Hoechst 

Control 

DAC 

MEG-01 

DAC 

RAJI 

Control 

DAC 

Control 

K-562 

 

Figure 23: Analysis of GSTP1 expression in control and DAC-treated K-562, 
RAJI and MEG-01 cells by immunofluorescence.  

GSTP1 expression in DAC-treated (2µM, 3 days) was assessed by 
immunofluorescence using primary anti-GSTP1 and secondary Alexa Fluor-488 
conjugated (green) antibodies. Hoechst 33342 (blue) was used for nuclear staining. 
Fluorescence signals were observed with the fluorescence microscope IX81 
Olympus microscope under an UPlanFL 40X/0,75 objective and data were acquired 
by using the CCD camera Olympus XM10. GSTP1 sub-localization was evaluated by 
overlay (merged). Pictures are representative for 3 independent experiments. 
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Microscopy images of GSTP1-immunostained K-562 cells showed that 

all cells express GSTP1. Moreover, DAC treatment further enhanced GSTP1 

expression in some K-562 cells (Figure 23). In contrast, untreated RAJI and 

MEG-01 cell lines did not or expressed undetectable levels of GSTP1 protein. 

However, images clearly demonstrated that GSTP1 expression is induced in a 

subpopulation of RAJI and MEG-01 cells after 3 days of DAC exposure 

(Figure 23). Finally, DAC-induced GSTP1 expression was more pronounced 

in RAJI compared to MEG-01 cells (Figure 23). 

In order to quantify cell-specific GSTP1 expression in K-562, RAJI and 

MEG-01 leukemia cell lines, GSTP1-immunostained cells were analyzed by 

flow cytometry. Hence, untreated and DAC-treated K-562, RAJI and MEG-01 

cells were fixed, permeabilized and immunostained for GSTP1 (Figure 24).  
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Figure 24: Quantification of GSTP1 expression in DAC-treated K-562, MEG-01 
and RAJI cells. 

K-562, RAJI and MEG-01 cell lines were treated with 2µM DAC for 3 days and 
GSTP1 stained with primary anti-GSTP1 and secondary Alexa Fluor-488 conjugated 
anti-mouse antibodies. Fluorescence of 105 immunostained K-562, RAJI and MEG-
01 cells was detected by flow cytometry on a FACSCalibur and analyzed by 
CellQuest Pro. (A) Upper panel: The fluorescence intensity was measured as mean 
fluorescence intensity (MFI) ratios of immunostained leukemia cells in relation to the 
IgG. Lower panel: Fold induction of GSTP1 protein expression after 3 days of DAC 
treatment. (B) One dimensional GSTP1 frequency histogram of 105 wild type (red 
line) and DAC-treated (blue line) RAJI and MEG-01 cell lines, treated for 3 or 6 days. 
Data are means ± SD of 3 independent experiments. * p<0.05, **p<0.01 vs control. 
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The highest MFI ratio, representative for the GSTP1 expression level, 

was measured in K-562 cells (MFI ratio 23.8). In contrast, low MFI ratios were 

identified in RAJI (MFI ratio: 4) and MEG-01 (MFI ratio: 4.2) cells (Figure 24-

A). Quantification of the DAC-induced GSTP1 immunostaining revealed a 

drastic and significant 4.4-fold increase of GSTP1 expression after 3 days of 

DAC treatment. In correlation with microscopy results, frequency histogram 

showed that only a subpopulation of about 65% of the DAC-treated RAJI 

population was GSTP1-positive compared to untreated cells (Figure 24-B). In 

MEG-01 cells, 3 days of DAC exposure caused a significant induction of 

GSTP1 protein expression of about 1.6-fold (Figure 24-A). Moreover, 6 days 

of DAC exposure were required to induce GSTP1 expression in 33,8% of the 

MEG-01 cell population (Figure 24-B).  

Immunostaining and Western Blot analyses showed that GSTP1 is 

highly expressed in K-562 leukemia cells and can be induced by DAC 

treatment in RAJI and MEG-01 cells. Next, we wanted to evaluate the impact 

of DAC on GST enzymatic activity. Results are presented in Figure 25. 
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Figure 25: Total glutathione S-transferase activity in DAC-treated leukemia cell 
lines. 

K-562, RAJI and MEG-01 cell lines were treated with for 3 and 6 days with DAC and 
the intracellular glutathione S-transferase (GST) activity determined by measuring 
the fluorescence level of monochlorobimane, a dye that reacts with glutathione. 
Fluorescence results were interpolated by a calibration curve to obtain GST activity 
values. (A) Constitutive cell line-specific GST activity (mU/106 cells). (B) Cell line-
specific and time-dependent increase of GST activity was expressed as a fold 
induction in treated cells vs untreated cells. Data are the means ± SD of 3 
independent experiments. * p<0.05, **p<0.01 vs control.  
 

The highest basal GST activities were measured in K-562 (88.5mU/106 

cells) and MEG-01 (74mU/106 cells) cells in contrast to the lowest GST 

activity detected in RAJI cells (9.4mU/106 cells) (Figure 25-A). Furthermore, 

DAC exposure increased GST activity in a time-dependent manner and 

reached a 3- and 12-fold induction in 3 and 6-day treated RAJI cells, 
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respectively. A slight but significant GST activity induction was observed in 

DAC-treated K-562 and MEG-01 cells (Figure 25-B). 

 

5.1.3. Effect of HDAC inhibitors on GSTP1 expression in human 

leukemia cell lines 

 

In addition to DNA methylation, histone modifications such as acetylation 

or methylation could be implicated in the epigenetic regulation of GSTP1 

transcriptional activity by modifying gene accessibility. Effects of common 

HDACis on GSTP1 expression in blood cancer cell lines were analyzed. Thus, 

K-562, RAJI, MEG-01 cells were first treated with DAC for 3 days and 

subsequently with 1mM VPA or 2µM SAHA for 16 hours. Total RNA was 

extracted and GSTP1 as well as !-actin cDNA amounts were analyzed by 

real-time PCR (Figure 26). Treatment of K-562, RAJI and MEG-01 cells with 

HDACis alone lack significant induction of GSTP1 expression. In contrast, 

sequential treatments with DAC and then HDACis caused a moderate but 

significant increase of GSTP1 expression in RAJI and MEG-01 cells, 

compared to DAC treatment alone.  

 Effectiveness of HDAC inhibition was verified by analyzing the status of 

histone H4 acetylation (Figure 26). Both HDACi increased total histone H4 

acetylation, whereas DAC alone failed to induce histone H4 acetylation. 
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Figure 26: Effects of HDAC inhibitors on GSTP1 expression in leukemia and 
lymphoma cell lines and on total histone H4 acetylation. 

Various leukemia cell lines were treated either with DAC, VPA, SAHA alone or were 
co-treated with DAC for 3 days followed by 16 hours in presence of VPA or SAHA. 
Upper panel: total RNA was extracted and GSTP1 mRNA expression assessed by 
real-time PCR. Results represent the ratio GSTP1/!-actin mRNA expression level 
and are the mean ± SD of 3 independent experiments. *p<0.05, **p<0.01 vs control; 
#p<0.05, # # p<0.01 vs DAC. Lower panel: acid extracts were analyzed by Western 
Blot with antibodies specific for histone (H4) and its acetylated form (AcH4). Pictures 
are representative for 3 independent experiments. DAC: 5-aza-2!-deoxycytidine, 
VPA: valproic acid, SAHA: suberoylanilide hydroxamic acid. 
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5.1.4. DNA methylation analysis of GSTP1 promoter region 

 

The effect of the DNA demethylating agent DAC on GSTP1 expression 

prompted us to hypothesize that methylation of the GSTP1 promoter region 

could explain the lack of GSTP1 expression in RAJI and MEG-01 cell lines. In 

silico, CpG density analysis identified 12 CGis in a region of approximately 

20000bp length 5’ upstream region of the GSTP1 gene (Figure 27-A). A long 

CGi, potentially involved in the epigenetic regulation of GSTP1, was identified 

near the GSTP1 transcription start site.  

 

 
Figure 27: CpG island analysis of the GSTP1 promoter region. 

(A) In silico CpG density analysis of the GSTP1 promoter region (-20353, +2834) 
using the Methylprimer express software. Vertical red bars represent CpG 
dinucleotides and horizontal blue bars indicate CGi positions. Position and length of 
the (ATAAA) repetitive sequence and the transcription start point (+1) are indicated. 
(B) In silico CG analysis of the GSTP1 5’ upstream (upper panel) and promoter 
(lower panel) region with the web-based tool CpGPlot. The observed vs expected 
ratio, the CG percentage and a putative CGi are represented. (C) Sequence of the 
putative CGi with the CpG dinucleotides highlighted in red. The positions of the 
binding sites for GATA-1, NF-"B, AP-1 and SP1 are framed in blue and the 
transcription start site is underlined and highlighted in green. 
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ACTAAAAGGAACGTGATCATGTCCTTTGCAGGGACATGGGTGGAGCTGGAAGCCGTTAGCCTCAGCAAACTCACACAGGAACAGAAAACCAGCGAGACCGCATGGTC
TCACTTATAAGTGGGAGCTGAACAATGAGAACACATGGTCACATGGCGGCGATCAACACACACTGGTGCCTGTTGAGCGGGGTGCTGGGGAGGGAGAGTACCAGGAA
GAATAGCTAAGGGATACTGGGCTTAATACCTGGGTGATGGGATGATCTGTACAGCAAACCATCATGGCGCACACACCTATGTAACAAACCTGCACATCCTCTACATG
TACCCCAGAACTTCAAATAAAAGTTGGACGGCCAGGCGTGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAAGCCGAGGCGTGCAGATCACCTAAGGTCAGGAGT
TCGAGACCAGCCCGGCCAACATGGTGAAACCCCGTCTCTACTAAAAATACAAAAATCAGCCAGATGTGGCACGCACCTATAATTCCACCTACTCGGGAGGCTGAAGC
AGAATTGCTTGAACCCGAGAGGCGGAGGTTGCAGTGAGCCGCCGAGATCGCGCCACTGCACTCCAGCCTGGGCCACAGCGTGAGACTACGTCATAAAATAAAATAAA
ATAACACAAAATAAAATAAAATAAAATAAAATAAAATAAAATAAAATAAAATAAAATAAAATAAAAAAATAAAATAAAATAAAATAAAATAAAGCAATTTCCTTTCC
TCTAAGCGGCCTCCACCCCTCTCCCCTGCCCTGTGAAGCGGGTGTGCAAGCTCCGGGATCGCAGCGGTCTTAGGGAATTTCCCCCCGCGATGTCCCGGCGCGCCAGT
TCGCTGCGCACACTTCGCTGCGGTCCTCTTCCTGCTGTCTGTTTACTCCCTAGGCCCCGCTGGGGACCTGGGAAAGAGGGAAAGGCTTCCCCGGCCAGCTGCGCGGC
GACTCCGGGGACTCCAGGGCGCCCCTCTGCGGCCGACGCCCGGGGTGCAGCGGCCGCCGGGGCTGGGGCCGGCGGGAGTCCGCGGGACCCTCCAGAAGAGCGGCCGG
CGCCGTGACTCAGCACTGGGGCGGAGCGGGGCGGGACCACCCTTATAAGGCTCGGAGGCCGCGAGGCCTTCGCTGGAGTTTCGCCGCCGCAGTCTTCGCCACCAGTG
AGTACGCGCGGCCCGCGTCCCCGGGGATGGGGCTCAGAGCTCCCAGCATGGGGCCAACCCGCAGCATCAGGCCCGGGCTCCCGGCAGGGCTCCTCGCCCACCTCGAG
ACCCGGGACGGGGGCCTAGGGGACCCAGGACGTCCCCAGTGCCGTTAGCGGCTTTCAGGGGGCCCGGAGCGCCTCGGGGAGGGATGGGACCCCGGGGGCGGGGAGGG
GGGGCAGACTGCGCTCACCGCGCCTTGGCATCCTCCCCCGGGCTCCAGCAAACTTTTCTTTGTTCGCTGCAGTGCCGCCCTACACCGTGGTCTATTTCCCAGTTCGA
GGTAGGAGCATGTGTCTGGCAGGGAAGGGAGGCAGGGGCTGGGGCTGCAGCCCACAGCCCCTCGCCCACCCGGAGAGATCCGAACCCCCTTATCCCTCCGTCGTGTG
GCTTTTACCCCGGGCCTCCTTCCTGTTCCCCGCCTCTCCCGCCATGCCTGCTCCCCGCCCCAGTGTTGTGTGAAATCTTCGGAGGAACCTGTTTCCCTGTTCCCTCC
CTGCACTCCTGACCCCTCCCCGGGTTGCTGCGAGGCGGAGTCGGCCCGGTCCCCACATCTCGTACTTCTCCCTCCCCGCAGGCCGCTGCGCGGCCCTGCGCATGCTG
CTGGCAGATCAGGGCCAGAGCTGGAAGGAGGAGGTGGTGACCGT  

NF-!B 

AP-1 

GATA 

SP1 SP1 

 
(Figure 27 continued) 

 

The adjacent region to the GSTP1 transcription start site was further 

analyzed with CpGPlot. The elevated ratio observed versus expected (>0,6) 

B 

C 
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and the high GC percentage indicated, consistently with the Methyl Primer 

Express software, a CGi in front of the GSTP1 transcription start site (Figure 

27-B) (Gardiner-Garden and Frommer 1987). This region includes GATA-1, 

NF-"B, AP-1 and SP1 binding sites as well as the GSTP1 transcription start 

site (Figure 27-C). 

BSP was applied to determine the methylation pattern of the CGi in 

GSTP1 promoter region (-198 to +1) in untreated K-562 and RAJI cells as well 

as in DAC-treated RAJI cells (Figure 28-A). Genomic DNA was extracted from 

leukemia cell lines and digested by the restriction enzyme BglII. After bisulfite 

conversion, the region of interest was amplified by PCR, cloned into the 

pGEM-T amplification vector and transformed into E.coli. Clones were 

selected for insert presence based on Blue/White screening and colony PCR. 

Colony PCR products were also used for subsequent sequencing. Results of 

the sequencing reaction were bioinformatically processed with QUMA and 

BIQanalyzer software (Figure 28-B, C, D).  
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Figure 28: BSP analysis of GSTP1 promoter region in K-562 and RAJI cells. 

(A) The Methylprimer express software was used to analyze in silico the CpG 
dinucleotide density of the CGi spanning from the base positions -1144 to +718. The 
physical map shows the distribution of CpG dinucleotides (vertical black bars) and 
their relative positions to the transcription start site (+1) in the 5’ regulatory area and 
the first exon region of GSTP1 gene. Arrows highlight bisulfite sequencing primer 
positions on GSTP1. The lower panel shows the sequence and CpG dinucleotide 
(gray) distribution in the analyzed GSTP1 region. Genomic DNA from untreated K-
562, untreated and DAC-treated (3 days, 2µM) RAJI were bisulfite converted, the 
specific methylation pattern was revealed by PCR amplification, subcloning and 
sequencing of the region of interest (BSP). Graphical illustration of the BSP results 
for the analysis of the GSTP1 promoter CGi methylation status in control K-562 cells 
(B), untreated (C) and DAC-treated RAJI (D) cells. Open and closed circles indicate 
unmethylated and methylated sites, respectively.  
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From the 380 analyzed CpG dinucleotides, about 0.3% were methylated in 

the GSTP1 promoter region of K-562, revealing that the analyzed GSTP1 

promoter CGi region was fully unmethylated (Figure 28-B). In contrast, BSP 

analysis of the GSTP1 promoter region in RAJI cells showed an average DNA 

methylation percentage of 96.3% (Figure 28-C). In addition, the 

hypermethylated state of GSTP1 gene in RAJI cells was decreased to 64.5% 

of methylated CpG dinucleotides. Interestingly, in our model, DAC-induced 

DNA demethylation was restricted to specific amplicons and therefore 

demethylation occurred without any CpG position preference (Figure 28-D). 

BSP results related to GSTP1 promoter methylation signature in 

untreated and DAC-treated K-562 and RAJI cells were validated using Bio-

CoBRA. Genomic DNA from untreated and DAC-treated cells was extracted, 

bisulfite converted and used as template for PCR amplification with BSP 

primers. The resulting amplicon was digested with the restriction enzyme 

RsaI, which recognizes a unique sequence appearing only in methylated and 

bisulfite-converted alleles. BioCoBRA was analyzed on the Bioanalyzer from 

Agilent (Figure 29-A-B). 
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Figure 29: Bio-CoBRA analysis of GSTP1 promoter methylation status. 

(A) Physical map generated with the Methylprimer software showing the distribution 
of CpG dinucleotides (vertical black bars) and the RsaI restriction site positions 
(�/�) in GSTP1 promoter. The amplicon obtained by BSP was used to analyze the 
methylation status of the RsaI restriction site in GSTP1 promoter. The localization 
and the methylation dependent RsaI cutting site in the GSTP1 BSP amplicon and the 
length of the corresponding restriction products are indicated. (B) Results of the Bio-
CoBRA assay to determine the methylation status of the RsaI restriction site in 
untreated and DAC (2µM, 3 days) treated K-562 and RAJI cell lines. Fluorescence 
units (FU) are plotted versus DNA fragment length (bp). Partitions of digested and 
undigested amplicons are indicated in percentage on electropherograms. 
Electropherograms are representative for 3 independent experiments. +1: 
transcription start site, Bio-CoBRA: Bioanalyzer combined bisulfite restriction assay, 
ML: low marker, MH: high marker. 

 

The peak at 291bp indicates that the analyzed CpG position in the 

GSTP1 promoter region of K-562 cells was unmethylated (Figure 29-C). In 

contrast, RsaI digestion of the GSTP1 amplicon from RAJI cells resulted in 

two fragments of 37bp and 255bp. RAJI restriction pattern and absence of 

undigested amplicons (292bp) confirmed that the RsaI restriction site was 

hypermethylated in RAJI cells. Decrease of fluorescence intensity peaks of 

B 

C 
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the 255bp and 37bp fragments and the appearance of a peak at 292bp 

indicated the demethylation of GSTP1 promoter in DAC-treated RAJI cells. In 

RAJI cells, the ratio between undigested and digested fluorescence intensity 

peaks identified a demethylation percentage of 36.7% after 3 days of DAC 

exposure (Figure 29-C). 

MSP technique was used to validate previous BSP and Bio-CoBRA 

results and to test the methylation status of further leukemia cell lines. MSP 

primer sets were located proximal at the transcription start site (MGP) and the 

distal at NF-"B binding site (MGD) (Figure 30-A).  
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Figure 30: MSP analysis of GSTP1 promoter methylation status in various 
leukemia and lymphoma cell lines. 

(A) Physical map generated with the Methylprimer software showing the distribution 
of CpG dinucleotides (vertical black bars) and MSP primer pair positions (MGD and 
MGP) relative to the transcription start site on the GSTP1 promoter region. (B) To 
check the primer specific for the unmethylated (U) or methylated (M) proximal (MGP) 
or distal (MGD) promoter region, MSP assays with the following control samples as 
templates has been carried out: complete bisulfite conversion procedure without 
genomic DNA (Bi), unmethylated converted DNA (UMC), methylated converted DNA 
(MC), unconverted unmethylated DNA (UC). (C) Genomic DNA was extracted from 
various leukemia cell lines, bisulfite converted and used as template for MSP. MSP 
amplicons were separated on a 12% PAA gel and stained with ethidium bromide. 
Images are representative of 3 independent experiments.  
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Empty lanes in the bisulfite conversion control (Bi) evinced that both bisulfite 

treatments and PCRs were realized without contamination that could affect 

results. Primer methylation specificity (U or M) was demonstrated by the 

amplification of GSTP1 PCR product only in presence of the correspondingly 

methylated and converted DNA template (UMC and MC). Lack of 

amplification with unconverted DNA (UC) shows that the used 

oligonucleotides are not mispriming with genomic unconverted DNA (Figure 

30-B). 

MSP results confirmed previous BSP (Figure 28) and Bio-CoBRA 

(Figure 29) results, showing that the GSTP1 promoter was unmethylated and 

methylated in K-562 and RAJI, respectively. Furthermore, MSP analysis 

revealed that GSTP1 promoter was unmethylated in JVM-2, MOLT-3 and HEL 

cell lines. Finally, MSP analysis revealed dense methylation on GSTP1 

promoter in the CML-derived GSTP1 non-expressing cell line MEG-01 (Figure 

30-C). 

In a next step, MSP was used to determine the influence of the 

demethylating agent DAC on the GSTP1 methylation pattern in various 

leukemia cell lines. Genomic DNA from K-562 and RAJI cells, treated up to 6 

days and JVM-2, MOLT-3, MEG-01 and HEL cell lines, treated up to 3 days 

with DAC, was bisulfite converted and methylation status analyzed by MSP 

(Figure 31).  
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Figure 31: Kinetic analysis of DAC-induced demethylation of GSTP1 promoter 
in various leukemia and lymphoma cell lines. 

Genomic DNA from various leukemia and lymphoma cell lines, treated with DAC 
were bisulfite converted and analyzed by MSP with primers specific for the 
unmethylated (U) and methylated (M) state of distal (MGD) (A) and proximal (MGP) 
(B) GSTP1 promoter regions. MSP amplicons were separated on a 12% PAA gel and 
stained with ethidium bromide. Images are representative of 3 independent 
experiments. DAC: 5-aza-2!-deoxycytidine. 

 
In RAJI and MEG-01 cells, DAC treatment induced a time-dependent 

demethylation of the hypermethylated GSTP1 promoter in both analyzed 

regions. GSTP1 demethylation was time-delayed in MEG-01 cells compared 

to RAJI cells. In K-562, MOLT-3, JVM-2 and HEL cell lines, promoter 

remained unmethylated (Figure 31). 
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5.1.5. Analysis of the chromatin structure of GSTP1 promoter 

 

In the next step, we performed X-ChIP analysis to determine 

repressor/activator protein complexes and histone marks associated with 

GSTP1 promoter. Enrichment of promoter fragments in X-ChIP assays using 

specific antibodies against various proteins involved in chromatin structure, 

DNA methylation, histone modifications and transcription were detected by 

PCR using two primer sets covering GSTP1 basal promoter (CG3) and, as a 

control, a non-genic 10kb upstream remote region (CG5) (Figure 32-A). The 

corresponding PCR products were resolved by gel electrophoresis (Figure 32-

B).  
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Figure 32: Characterization of GSTP1 chromatin structure in K-562, RAJI and 
MEG-01 leukemia cell lines by X-ChIP analysis. 

(A) Schematic representation of the 5’-upstream region of GSTP1 gene with the 
positions of PCR primers (CG1 to CG5) used to map the promoter in ChIP analysis. 
(B) Chromatin from K-562, RAJI and MEG-01 cell lines was immunoprecipitated with 
specific antibodies. Associated DNA was amplified using CG3 and CG5 primer pairs 
and PCR products were separated on a gel stained with ethidium bromide. Pictures 
are representative of 3 independent experiments. Me: methylation, Ac: acetylation, 
CBP: cAMP-response element binding protein (CREB) binding protein, DNMT: DNA 
methyltransferase, GSTP1: glutathione S-transferase P1, H4: Histone 4, HDAC: 
histone deacetylase, MBD: methyl binding protein, MeCP2: methyl CpG binding 
protein 2, p300: histone acetyltransferase, SP: specificity protein. 
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As shown in Figure 32, integral components of the transcriptional machinery 

(RNA pol II, SP1 and SP3) were associated with the hypomethylated and 

transcriptionally active GSTP1 promoter region in K-562 cells. Moreover, 

GSTP1 promoter in K-562 cells was highly enriched for di- and trimethylation 

of lysine K4 on histone H3, for acetylation of histone H3 and H4 as well as for 

the related HAT proteins (i.e. p300 and CBP). In addition, markers for 

transcriptionally silenced heterochromatin such as HDACs or MBDs were 

absent in K-562 cells. Concerning RAJI and MEG-01 cells, while GSTP1 

silencing was associated to hypermethylation, GSTP1 basal promoter was 

enriched for repressive histone modifications such as trimethylation of H3K9 

and H3K27. In addition, enrichment of acetylated histones H3 and H4 as well 

as the associated HATs was reduced at this position in RAJI and MEG-01 cell 

lines. Furthermore, GSTP1 promoter of RAJI and MEG-01 cells was enriched 

for DNA methylation- and heterochromatin-associated proteins (e.g. DNMTs, 

MBDs and HDACs), respectively (Figure 32). Finally, we used primers 

targeting a region 10kb upstream of the basal GSTP1 promoter as a negative 

control (CG5). As expected, this region was not enriched for proteins related 

to active transcription (Figure 32). 

 

5.1.6. Analysis of the DAC-induced acquisition of a GSTP1 

transcriptional permissive state in GSTP1 non-expressing 

cells 

 

In order to evaluate DAC-induced molecular reprogramming of the 

GSTP1 promoter complex associated to demethylation and transcriptional 

activation of GSTP1 gene, X-ChIP assay was performed. Using primers 

covering the GSTP1 promoter region (CG2 to CG4), the first coding region 

(CG1) in the gene body and a primer pair (CG5), specific for a 

transcriptionally silenced region 10kb upstream of the GSTP1 TSS, 

enrichment of DNA fragments was quantified by real-time PCR (Figure 32-A).  
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Figure 33: Analysis of the evolution of GSTP1 chromatin structure after DAC 
treatment of K-562, RAJI and MEG-01 leukemia cell lines by X-ChIP assay. 

Chromatin from untreated K-562, RAJI and MEG-01 cell lines as well as in RAJI and 
MEG-01 cells treated with 2 µM DAC for 3 days was immunoprecipitated with 
specific antibodies. The enrichment was measured by real-time PCR and results 
expressed as recovery (% of total input) = ((CtIP – CtIgG)/Ctinput). Data are the mean ± 
SD of 3 independent experiments. CBP: cAMP-response element binding protein 
(CREB) binding protein, DNMT: DNA methyltransferase, GSTP1: glutathione S-
transferase P1, H4: Histone 4, HDAC: histone deacetylase, MBD: methyl binding 
protein, MeCP2: methyl CpG binding protein 2, p300: histone acetyltransferase, SP: 
specificity protein. 
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(Figure 33 continued) 

 

Results demonstrated that DAC treatment leads to the release of both 

DNMT and MDB proteins from the analyzed region on the GSTP1 promoter. 

Furthermore, DAC exposure leaded to the enrichment of acetylated histone 

H4 and H3, the recruitment of HATs and the release of HDAC1 and 2 from 

GSTP1 promoter in RAJI and MEG-01 cells. In addition, in the same cells, 
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DAC reduced the occupancy of lysine K9 and K27 trimethylation on histone 

H3 and enhanced the presence of lysine K4 di- and tri-methylation on histone 

H3 in GSTP1 promoter (Figure 33-B). Moreover, DAC treatment increased the 

association of the transcription factors SP1 and SP3 as well as the RNA 

polymerase II on the GSTP1 promoter in non-expressing cells (Figure 33-B). 

In summary, these results showed that DAC treatment induced important 

changes in histone modification marks and protein recruitment to the GSTP1 

promoter in RAJI and MEG-01 cells, which correspond to a shift from a 

repressive to a more permissive chromatin state, close to the one observed in 

K-562 cell line. 

Lack of protein binding on DNA as well as cell line-dependent variations 

in protein expression could be responsible for low or absence of chromatin 

enrichment in X-ChIP analysis. Therefore, we assessed the constitutive 

expression of proteins analyzed by ChIP in K-562, RAJI and MEG-01 cell 

lines. Western Blot showed that lack of protein recruitment was not due to 

lack or high variance in protein expression (Figure 34).  
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Figure 34: Immunoblot detection of proteins analyzed in X-ChIP experiments. 

Total or nuclear proteins were extract from K-562, RAJI and MEG-01 cell lines and 
analyzed by Western Blot with the indicated antibodies. Pictures are representative 
for three independent experiments. CBP: cAMP-response element binding protein 
(CREB) binding protein, DNMT: DNA methyltransferase, GSTP1: glutathione S-
transferase P1, H4: Histone 4, HDAC: histone deacetylase, MBD: methyl binding 
protein, MeCP2: methyl CpG binding protein 2, p300: histone acetyltransferase, SP: 
specificity protein. 

 

5.1.7. GSTP1 promoter methylation status in leukemia patient 

samples 

 

For a transition from research to clinical application and the potential use 

of the epigenetic disruption of GSTP1 regulation and expression as a 

biomarker for hematological malignancies, patient samples have to be 

included into the study in order to evaluate the role of methylation-associated 
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GSTP1 silencing in development, progression or subsistence of malignant 

homeopathies. 

Leukemia and lymphoma patient biopsies as well as healthy PBMCs and 

CD34+ blood stem cells were used to extract genomic DNA. After bisulfite 

conversion, the methylation profile of the GSTP1 promoter region was 

determined by MSP analysis and summarized in Table 48.  

 

Table 48: Analysis of the GSTP1 methylation status in leukemia and lymphoma 
patient samples.  

Genomic DNA from 81 patients and 9 healthy donor samples was bisulfite converted 
and the GSTP1 methylation pattern analyzed by MSP. The table summarizes the 
GSTP1 methylation status. 
 
GSTP1 
Methylation 
status 
 

C
LL 

C
M

L 

A
LL 

A
M

L 

M
D

S
 

D
LB

C
L 

M
C

L 

FL 

B
L 

C
D

34+ 

P
B

M
C

 

Unmethylated 16 4 6 17 2 9 9 10 4 3 6 

Methylated 0 0 0 0 0 2 2 0 0 0 0 

! of samples 16 4 6 17 2 11 11 10 4 3 6 

ALL: acute lymphoblastic leukemia, AML: acute myeloid leukemia, BL: Burkitt’s lymphoma, 
CD34+: hematological stem cells, CLL: chronic lymphocytic leukemia, CML: chronic myeloid 
leukemia, DLBCL: diffuse large B-cell lymphoma, FL: follicular lymphoma, MCL: mantle cell 
lymphoma, MDS: myelodysplastic syndrome, PBMC: peripheral blood mononuclear cell. 
 

Almost every analyzed leukemia and lymphoma patient samples as well 

as PBMC samples from supposed healthy donors presented an unmethylated 

GSTP1 promoter (Table 48). However, out of 81 patients samples analyzed, a 

partially methylated GSTP1 promoter was identified in two mantle cell 

lymphoma (18%) and two diffuse large B-cell lymphoma (18%) samples 

(Table 48). Tumor samples were prepared without microdissection, possibly 

leading to the coexistence of methylated and unmethylated alleles.  
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5.1.8. Involvement of micro RNAs in regulation of GSTP1 

expression 

 

As mentioned in the introduction, miRNA is an additional epigenetic 

mechanism dysregulated in cancer. Moreover, we showed previously that 

certain leukemia cell lines (e.g. HEL and MOLT-3) moderately express 

GSTP1 in contrast to the highly expressing K-562 and JURKAT cell lines. It is 

reasonable to assume that overexpression of a GSTP1 targeting miRNA 

could silence GSTP1 gene expression, reducing cell detoxification and 

promoting genomic damages. In contrast, silencing of a GSTP1 repressing 

miRNA would lead to GSTP1 upregulation associated with enhanced 

detoxification potential and therefore possibly confers chemoresistance to 

cancer cells. Accordingly, the analysis of miRNA signatures in leukemia and 

normal cells could possibly contribute to the knowledge of the epigenetic 

regulation of GSTP1 expression and offer new promising approaches to 

control its expression.  

To the best of our knowledge, no published study has investigated the 

potential of miRNA-mediated post-transcriptional regulation of GSTP1 in 

leukemia cells or other cancer types. Thus, we investigated the potential of 

GSTP1 3’UTR for miRNA regulation as well as the possibility for GSTP1-

miRNA interactions using online prediction tools. Results of the screening of 

miRNA target databases are summarized in Figure 35. 

 



  Results 

 135 

0 

1 

2 

3 

4 

hs
a-

m
iR

-1
24

a 
hs

a-
m

iR
-1

25
a 

hs
a-

m
iR

-1
33

a 
hs

a-
m

iR
-1

33
b 

hs
a-

m
iR

-1
48

b 
hs

a-
m

iR
-1

49
 

hs
a-

m
iR

-1
50

 
hs

a-
m

iR
-1

85
 

hs
a-

m
iR

-1
93

b 
hs

a-
m

iR
-1

98
 

hs
a-

m
iR

-2
96

 
hs

a-
m

iR
-3

24
-3

p 
hs

a-
m

iR
-3

39
 

hs
a-

m
iR

-3
45

 
hs

a-
m

iR
-3

46
 

hs
a-

m
iR

-3
65

 
hs

a-
m

iR
-4

22
b 

hs
a-

m
iR

-4
32

 
hs

a-
m

iR
-4

84
 

hs
a-

m
iR

-4
86

 
hs

a-
m

iR
-5

06
 

hs
a-

m
iR

-5
12

-5
p 

hs
a-

m
iR

-5
15

-3
p 

hs
a-

m
iR

-5
16

-3
p 

hs
a-

m
iR

-5
16

-5
p 

hs
a-

m
iR

-5
16

a-
3p

 
hs

a-
m

iR
-5

16
a-

5p
 

hs
a-

m
iR

-5
16

b 
hs

a-
m

iR
-5

18
c 

hs
a-

m
iR

-5
19

e 
hs

a-
m

iR
-5

26
b 

hs
a-

m
iR

-5
39

 
hs

a-
m

iR
-5

72
 

hs
a-

m
iR

-5
74

 
hs

a-
m

iR
-5

74
-3

p 
hs

a-
m

iR
-5

90
-3

p 
hs

a-
m

iR
-6

18
 

hs
a-

m
iR

-6
37

 
hs

a-
m

iR
-6

50
 

hs
a-

m
iR

-6
57

 
hs

a-
m

iR
-6

59
 

hs
a-

m
iR

-7
67

-3
P 

H
its

 

human miRNA Targets Target Scan  EMBL mirRNAmap mirtar RefGene miRWalk EiMMO mimirna Total hits 

 
Figure 35: Prediction of miRNA-GSTP1 mRNA interaction. 

 Computational target prediction tools were used to screen miRNA databases and to 
assess miRNAs targeting GSTP1 mRNA. A positive hit in a database is represented 
by a colored bar and the cumulative number of prediction hits is represented by a 
black bar. hsa: homo sapiens. 

 

Using 9 different online miRNA target prediction tools, up to 42 miRNAs were 

predicted as potentially involved in the post-transcriptional regulation of 

GSTP1 expression. Considering that almost every software use a different 

prediction algorithm or method, prediction results were not homogenous, i.e. 

hsa-miR-150 was predicted by 4 prediction tools and hsa-miR-365 by only 

one (Figure 35). 

 To detect a potential negative relationship between the miRNA and 

GSTP1 expression profile, total RNA of cell lines with high (K-562, JURKAT), 

moderate (HEL, MOLT-3) and no (RAJI, MEG-01) GSTP1 expression was 

extracted. PBMC cells were also included in the analysis. After conversion by 

reverse transcription, the expression profile of miRNAs that were predicted at 

least twice by bioinformatical tools was analyzed by real-time PCR and a heat 

map represented the results (Figure 36). 



  Results 

 136 

 

Figure 36: Expression pattern of potential GSTP1 silencing miRNAs in 
leukemia cell lines with high, moderate and low GSTP1 expression levels. 

Total RNA from leukemia and lymphoma cell lines and from healthy donors cells was 
reverse transcribed and analyzed by real-time PCR with specific primers for various 
miRNAs. The small nuclear RNA RNU1A was analyzed as a quantity control in each 
reaction. The heat map summarizes the expression levels of predicted GSTP1 
targeting miRNAs in various leukemia and lymphoma cell lines. For a better 
illustration, expression levels were normalized for each miRNA, going from blue (low 
expression) to red (high expression). White bars indicate moderate expression level 
and gray bars represent missing values. Correlations were used for data clustering. 
Data are the mean ± SD of 3 independent experiments. hsa-miR: homo sapiens 
micro RNA.  

 

The heat map shows a very heterogeneous expression pattern of the 

various miRNAs analyzed in the different cell lines (Figure 36). Correlation 

analysis between the analyzed miRNAs leaded to the definition of two main 

clusters, separating miRNAs upregulated in healthy samples from miRNAs 

upregulated in blood cancer cell lines. Several miRNAs were highly expressed 
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in samples derived from healthy donors (e.g. miR-516a-5p, -148b, -484 and -

185), whereas they were repressed in blood cancer cell lines and vice versa. 

Moreover, subclustering revealed high variations in miRNA expression pattern 

between the various analyzed cell lines. For example miR-346, -149, -650, -

519e, -345 and -515-3p are highly expressed in JURKAT cell line in contrast 

to RAJI, HEL, K-562, MEG-01 and MOLT-3 (Figure 36).  

 

5.2. DNA hypermethylation as a key player in PTGS2 
expression silencing in hematological malignancies 

 
As mentioned in the introduction, it is widely recognized that various 

cancer cells are associated with PTGS2 overexpression, which contributes 

thereby to the cancer phenotype by activating prosurvival and cell proliferation 

genes. In contrast, DNA hypermethylation-mediated silencing of PTGS2 was 

already observed for esophageal, prostate or epithelial cancer.  

In the second thesis part, the possibility of DNA methylation on 

regulation of PTGS2 expression in hematological malignancies was 

evaluated. The implication of promoter hypermethylation in the regulation of 

PTGS2 expression was, to our knowledge, never reported for cell lines and 

patient samples, derived from or with hematological malignancies, 

respectively.  

 

5.2.1. PTGS2 expression in leukemia/lymphoma cell lines and 

healthy blood cells 

 

First, the constitutive PTGS2 gene expression was assessed in various 

blood cancer cell lines and compared to PBMCs from healthy donors. Total 

mRNA from various leukemia and lymphoma cell lines was reverse 

transcribed and the cDNA amount of PTGS2 and !-actin quantified by a real-

time PCR assay (Figure 37). 
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Figure 37: PTGS2 expression in various leukemia/lymphoma cell lines and in 
healthy donor blood cells. 

Total RNA was extracted from various blood cancer cell lines and PBMCs, reverse 
transcribed into cDNA and analyzed by real-time PCR with primers specific for 
PTGS2. !-actin was also analyzed as a control of cDNA quantity in each reaction. 
Results represent the ratio PTGS2/!-actin mRNA expression level in PBMCs (A) and 
leukemia and lymphoma cell lines (A, B). Data are the means +/- SD of 3 
independent experiments. ALL: acute lymphoid leukemia, AML: acute myeloid 
leukemia, BL: Burkitt’s lymphoma, CML: chronic myeloid leukemia, CLL: chronic 
lymphoid leukemia, HL: histiocytic lymphoma, U: Ct value undetermined after 45 
cycles of amplification.  

 

PTGS2 expression is significantly higher in PBMCs, compared to the 

analyzed leukemia cell lines (Figure 37-A). Among the 14 leukemia- or 

lymphoma-derived cell lines, the highest expression of PTGS2 mRNA was 

A 

B 
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observed in the HEL cell line. MEG-01, KBM-5, TF-1, THP-1, KG-1, KG-1a 

and U-937 cell lines express relatively moderate level of PTGS2 mRNA 

compared to normal PBMCs. In addition, K-562, JVM-2, JURKAT, MOLT-3, 

HL-60 and RAJI cell lines showed very low or undetectable transcriptional 

activity for the PTGS2 gene (Figure 37-B).  

 

5.2.2. CpG density analysis of PTGS2 promoter and gene body 

 

For methylation-associated silencing, a CGi is required in the promoter 

or the first exon-intron region of PTGS2. In order to determine the CpG 

dinucleotide density, PTGS2 gene body ("10000bp) as well as a promoter 

region upstream of the transcription start site ("9000bp) were bioinformatically 

analyzed with the EMBOSS CpGPlot/CpGReport online tool (Figure 38). 
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Figure 38: CpG island prediction for PTGS2 promoter region. 

(A) In silico analysis of the GC content and the CpG dinucleotide positions (red bars) 
in the PTGS2 promoter and coding region (-9985 - +8632). (B) In silico CG analysis 
of the PTGS2 promoter region (-9985 - + 984) with the web based tool CpGPlot. The 
observed vs. expected ratio, the CG percentage and the putative island are plotted 
against the base position within PTGS2 sequence. : transcription start site. 

 

A 

B 
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In silico assessment of the CG dinucleotide distribution in PTGS2 gene 

uncovered a large accumulation of CpG in the promoter region (relative 

position: 9000 to 11000bp) as well as in the coding region (relative position: 

14000 to 16000bp) (Figure 38-A). Close examination of PTGS2 promoter 

revealed a 394-bp long putative CGi with a CpG ratio of over 0.6 and a 

percentage of CG higher than 50%, satisfying the criteria of Gardiner-Garden 

for a CGi (Gardiner-Garden and Frommer 1987). The CGi starts just after the 

PTGS2 TSS and includes 34 CpG dinucleotides (Figure 38-B). 

 

5.2.3. Methylation status of PTGS2 promoter in leukemia and 

lymphoma cell lines 

 

To determine if lack of PTGS2 expression in certain leukemia and 

lymphoma cell lines was associated with PTGS2 promoter hypermethylation, 

DNA methylation profile of PTGS2 promoter was analyzed by MSP (Figure 

39). 
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Figure 39: Analysis of PTGS2 promoter methylation in leukemia and lymphoma 
cell lines. 

(A) Physical map generated with the Methylprimer software shows the distribution of 
CpG dinucleotides (vertical black bars) and MSP primer pair positions relative to the 
transcription start site ( ) on PTGS2 promoter. (B) To check primer specificity, MSP 
assays with the following control samples as templates were carried out: complete 
bisulfite conversion procedure without genomic DNA (Bi), unmethylated converted 
DNA (UMC), methylated converted DNA (MC), unconverted unmethylated DNA (UC). 
(C) Genomic DNA was extracted from various leukemia/lymphoma cell lines, bisulfite 
converted and used as templates for MSP with primers specific for the unmethylated 
(U) and methylated (M) state of PTGS2 promoter. MSP amplicons were separated on 
a 12% PAA gel and stained with ethidium bromide. Pictures are representative for 3 
independent experiments. ALL: acute lymphoid leukemia, AML: acute myeloid 
leukemia, BL: Burkitt’s lymphoma, CML: chronic myeloid leukemia, CLL: chronic 
lymphoid leukemia. 

 

MSP primers were designed to analyze the methylation profile of CG 

dinucleotides pertaining to a region 5’ upstream of the transcription start site (-

436bp/-306bp) (Figure 39-A). Control reactions showed methylation specificity 

A 

B 

C 
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of the MSP primers (Figure 39-B). Hypomethylation of the PTGS2 promoter 

region was detected for the CML-derived K-562 and MEG-01 cell lines as well 

as the AML-derived HEL, TF-1, THP-1 and KG-1 cell lines. PTGS2 promoter 

was hemi-methylated in JVM-2, MOLT-3, KBM-5, KG-1a, U-937 and HL-60 

cell lines, and hypermethylated in RAJI and JURKAT cell lines (Figure 39-C).  

 

5.2.4. Effect of DAC treatment on PTGS2 methylation and 

expression 

 
To determine the effect of the demethylating agent DAC on PTGS2 

promoter methylation status, cell lines presenting various hypermethylated 

and partially methylated PTGS2 promoters were treated with 2µM DAC. 

Genomic DNA was extracted, bisulfite converted and the methylation pattern 

of PTGS2 analyzed by MSP (Figure 40). 
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Figure 40: Kinetic analysis of the DAC-mediated demethylation of PTGS2 
promoter in leukemia and lymphoma cell lines. 

Genomic DNA from various DAC-treated leukemia and lymphoma cell lines was 
bisulfite converted and PTGS2 promoter methylation status analyzed by MSP with 
primers specific for the unmethylated (U) and methylated (M) state. MSP amplicons 
were separated on a 12% PAA gel and stained with ethidium bromide. Images are 
representative of three independent experiments. DAC: 5-aza-2'-deoxycytidine. 
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DAC treatment of KBM-5 cell line leaded to a time-dependent and 

complete demethylation of PTGS2 promoter region. Similarly, partially 

methylated JVM-2, HL-60, MOLT-3 and U-937 as well as fully methylated 

RAJI and JURKAT cell lines get demethylated by DAC exposure but not 

completely (Figure 40). 

To evaluate the consequences of DAC-induced PTGS2 promoter 

demethylation for the transcriptional activity, total mRNA from DAC-treated 

KG-1a, JVM-2, RAJI, JURKAT, HEL, MOLT-3 and KBM-5 cells was extracted. 

After reverse transcription, the cDNA amount of PTGS2 and !-actin was 

quantified by a real-time PCR assay. In addition, the effect of DAC treatment 

on the hypomethylated but silenced PTGS2 expression in K-562 was 

analyzed (Figure 41). 
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Figure 41: Kinetic analysis of PTGS2 expression after DAC treatment. 

Cell lines, derived from various hematological malignancies, were treated with 2µM 
DAC for the indicated times. Total RNA was extracted and 1µg was reverse 
transcribed into cDNA, and then analyzed by real-time PCR with primers specific for 
PTGS2. !-actin was also analyzed as a control of cDNA quantity in each reaction. 
Results represent the ratio PTGS2/!-actin mRNA expression level and are plotted for 
the various human leukemia cell lines and the time interval of DAC-treatment. Data 
are the means ± SD of 3 independent experiments. 
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Real-time PCR results demonstrated that DAC treatment reversed in a 

time-dependent manner DNA methylation-mediated silencing of PTGS2 

expression and induced transcriptional activity in most analyzed cell lines. 

Independently of the DAC exposure time, partially methylated JVM-2 and 

MOLT-3 cell lines as well as the unmethylated K-562 cell line staid repressed 

for PTGS2 expression.  

 

5.2.5. Methylation analysis of PTGS2 promoter in leukemia and 

lymphoma patient samples 

 

For a possible later clinical application of the preliminary results obtained 

in this work, the study was enlarged to blood and bone marrow samples from 

patients with hematological malignancies. Samples from leukemia patients 

(ALL, AML, CLL and CML), and lymphoma biopsies (DLBCL, FL, MCL, BL 

and MDS) as well as PBMCs from healthy donors were used for DNA 

extraction and bisulfite conversion. The methylation profile of PTGS2 was 

detected by MSP (Figure 42). 
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Figure 42: Frequency of PTGS2 promoter methylation in samples of patients 
with a hematological malignancy. 

Genomic DNAs from 81 patient samples and 9 healthy donor samples were 
extracted, bisulfite converted and PTGS2 promoter methylation patterns analyzed by 
MSP. Frequency (%) of PTGS2 promoter methylation was plotted against the type of 
hematological malignancy. ALL: acute lymphoblastic leukemia, AML: acute myeloid 
leukemia, BL: Burkitt’s lymphoma CLL: chronic lymphocytic leukemia, CML: chronic 
myeloid leukemia, DLBCL: diffuse large B-cell lymphoma, FL: follicular lymphoma, 
MCL: mantle cell lymphoma, MDS: myelodysplastic syndrome. 
 

Except CML and MDS patients samples that were completely 

unmethylated, 77% of the analyzed leukemia and lymphoma patient samples 

showed a certain percentage of PTGS2 methylation (Figure 42). The highest 

methylation frequency was detected in diffuse large B-cell, follicular and 

Burkitt’s lymphoma samples. Regarding the leukemia samples, most PTGS2 

promoter methylation was found in CLL samples. Moreover, PTGS2 

hypermethylation was not detected in healthy control PBMCs (Figure 42). 

 

5.2.6. Correlation between PTGS2 methylation and expression in 

samples from patients with hematological malignancies 

 
In complement to the PTGS2 methylation profiling, the PTGS2 

expression level in leukemia and lymphoma patient samples was determined. 
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Total RNA was extracted from leukemia/lymphoma biopsy samples and 

healthy donor PBMCs as well as CD34+ cells from cord blood. Messenger 

RNA was reverse transcribed and the cDNA amount of PTGS2 and !-actin 

quantified by real-time PCR assay (Figure 43). 
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Figure 43: Distribution of PTGS2 mRNA expression levels in blood cells from 
healthy donors and patients with hematological malignancies. 

Total RNAs from lymphoma/leukemia biopsies and blood cells from healthy control 
groups (PBMC, CD34+) were extracted and cDNA analyzed by real-time PCR with 
primers specific for PTGS2. !-actin was analyzed as a control of cDNA quantity in 
each reaction. Results represent the distribution of the ratio PTGS2/!-actin mRNA 
expression level and are plotted for the healthy control cells as well as the various 
blood cancer types. The line indicates the median, the box is the interquartile range 
and the outer whiskers represent the maximum and minimum range including 
extreme outliers. Data are the means ± SD of 3 independent experiments. ALL: acute 
lymphoblastic leukemia, AML: acute myeloid leukemia, BL: Burkitt’s lymphoma CLL: 
chronic lymphocytic leukemia, CML: chronic myeloid leukemia, DLBCL: diffuse large 
B-cell lymphoma, FL: follicular lymphoma, MCL: mantle cell lymphoma, PBMC: 
peripheral blood mononuclear cell. 

 

Distribution and median PTGS2 expression levels were similar in 

PBMCs and CD34+ cells from supposed healthy donors. Moreover, median 

PTGS2 expression in Burkitt’s lymphoma, AML and CML samples was 

comparable to healthy controls. Noteworthy, PTGS2 transcriptional activity 

was highly variable in Burkitt’s lymphoma, AML and CML samples. In 

contrast, reduced or silenced PTGS2 expression was detected in lymphoid 

lineage derived leukemia and lymphoma samples, compared to the healthy 

controls. 
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Simultaneous DNA and RNA preparations from the same patient 

samples (n=52) and subsequent PTGS2 methylation and expression analysis 

allowed assessing a possible correlation between the methylation status and 

the expression level of PTGS2. For this purpose, patient samples were 

classified by their PTGS2 promoter methylation status and plotted for their 

PTGS2 expression (Figure 44). 
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Figure 44: Analysis of PTGS2 mRNA expression in relation to the promoter 
metylation state. 

Box whisker plots show the variations of PTGS2 expression depending on the 
methylation status of the PTGS2 promoter region in leukemia and lymphoma patient 
samples. Box denotes interquartile range, line within the box denotes the median, 
and whiskers denote the maximum and the minimum range. Outliers were excluded 
from the analysis (n=52). 
 

Patient samples with hypomethylated PTGS2 promoter region had 

highly variable PTGS2 expression levels. However, samples with 

hypermethylated PTGS2 promoter configuration presented reduced PTGS2 

expression.  

 

5.3. DNA methylation fingerprint of blood cancer cells 
 

Epigenetic alterations such as DNA hypermethylation (e.g. GSTP1 and 

PTGS2), lead to aberrant gene expression and are implicated in cancer 

initiation and progression. The epigenetic hype of the past decade allowed to 

compile a long list of epimutation hotspots, including genes involved in tumor 

suppression, DNA repair, cell metabolism, apoptosis or hormonal receptor.  
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With the objective to establish a map of epigenetic signatures of 

hematological malignancies, the third part of this thesis mainly dealt with the 

DNA methylation analysis of genes. Methylation status of some of the 

selected genes were already determined independently of each other, 

whereas the methylation states of other genes were never analyzed in blood 

cancer cell lines. However, in order to improve sensitivity and specificity of 

early cancer detection, it is an existential necessity to analyze a whole range 

of epigenetic marks. Moreover, the evaluation of distinctive aberrant 

methylation pattern can deliver potentially usable clinical insights concerning 

cancer progression (e.g. metastatic potential, chemosensitivity) and 

treatment.  

 

5.3.1. Methylomic profiling of hematological malignancies 

 

In order to establish a map of DNA methylation aberrations in various 

leukemia and lymphoma cell lines, the methylation of genes already 

established as cancer biomarkers for other cancer types was analyzed by 

MSP and represented by a heat map. Moreover, methylation frequency of 

each blood cancer cell line was calculated based on the gene-specific MSP 

results (except LINE1) (Figure 45).  
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Figure 45: Unique methylation signature of leukemia and lymphoma cell lines.  

Gene-specific methylation profile of various blood cancer cell lines was determined 
by MSP. Aryl hydrocarbon receptor (AHR), apoptotic peptidase activating factor 1 
(APAF-1), adenomatous polyposis coli (APC), B-cell CLL/lymphoma 2 (BCL-2), 
apoptosis regulator Bcl-X (BCL-XL, BCL2L1), calcitonin-related polypeptide alpha 
(CALCA), caspase 7 and 8 (CASP7 and 8), epithelial cadherin (CDH1), cyclin-
dependent kinase inhibitor (CDKN) 2A (p16/14INK4a), CDKN 2B (p15INK4b), death-
associated protein kinase 1 (DAPK1), estrogen receptor (ESR1), glutathione S-
transferase P1 (GSTP1), hypermethylated in cancer 1 (HIC1), long interspersed 
repetitive element 1 (LINE1), O6-methylguanine-DNA methyltransferase (MGMT), 
human MutL protein homolog 1 (MLH1), prostaglandin-endoperoxide synthase 2 
(PTGS2), retinoic acid receptor beta (RARB), Ras association domain family protein 
1A (RASSF1A), retinoblastoma 1 (RB1), suppressor of cytokine signaling (SOCS), 
tissue inhibitor of metalloproteinase 3 (TIMP3), target of methylation-induced 
silencing 1 (TMS1) and tumor protein p73 (TP73). MSP amplicons were separated 
on a 12% PAA gel and stained with ethidium bromide. (A) Results were represented 
on a heat map with clustering, indicating the DNA methylation status (green: 

B 

A 
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unmethylated, orange: partially and red: fully methylated, white: not analyzed or 
mutated) by gene and blood cancer cell line. (B) Representation of methylation 
frequency from the most hypermethylated to the least based on the methylation of 
the analyzed genes in leukemia and lymphoma cell lines. The repetitive element 
LINE1 was excluded from this analysis. Data are the mean of 3 independent 
experiments. 

 

Methylation analysis results show that the methylation pattern is highly 

variable and is different for each blood cancer type, cell line or gene. In 

hematological malignancies-derived cell lines, promoter methylation was 

never or rarely detected in the following genes: human MutL protein homolog 

1 (MLH-1), CDKN2A (p14ARF) and retinoblastoma 1 (RB1) as well as 

caspases 7 and 8, B-cell CLL/lymphoma 2 (BCL-2), apoptotic peptidase 

activating factor 1 (APAF-1) and apoptosis regulator Bcl-X (BCL-XL). 

Furthermore, HIC1 and suppressor of cytokine signaling (SOCS2) genes 

showed no methylation in their promoter region in the analyzed blood cancer 

cell lines (Figure 45-A). In contrast, moderate methylation frequency (15-40% 

of the analyzed leukemia and lymphoma cell lines) was measured for the 

promoters of MGMT, CDKN2A (p16INK4a), estrogen receptor (ESR1), aryl 

hydrocarbon receptor (AHR), GSTP1, PTGS2, tumor protein p73 (TP73), 

death-associated protein kinase 1 (DAPK), Ras association domain family 

protein 1 (RASSF1A), adenomatous polyposis coli (APC) and tissue inhibitor 

of metalloproteinase 3 (TIMP3) (Figure 45). High methylation frequency (40%-

70%) was detected for the promoter regions of CDKN2B (p15INK4b), RARB, 

calcitonin-related polypeptide alpha (CALCA) and target of methylation-

induced silencing 1 (TMS1). Genes encoding epithelial cadherin (CDH1) as 

well as the transposable long repetitive element LINE1 had the highest 

methylation frequency and were at least hemi-methylated in all 13 leukemia 

and lymphoma cell lines (Figure 45-A). 

The AML cell lines TF-1 and THP-1 showed the weakest methylation 

frequencies for the analyzed set of genes (4% and 9%, respectively), followed 

by the AML cell line HEL (25%) and the CML cell lines K-562 (25%) and 

MEG-01 (23%). Moderate amount of methylation (30-33%) was detected in 

KBM-5 cells (CML) and in the AML-derived cells KG-1 and HL-60. Methylation 

frequency was further increased in JVM-2 (CLL, 43%), MOLT-3 (ALL, 48%) 

and JURKAT (ALL, 52%) cell lines. The highest methylation frequencies for 
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the analyzed set of genes were detected in the AML cell line KG-1a (54%) 

and the Burkitt’s lymphoma cell line RAJI (60%) (Figure 45-B). Hierarchical 

clustering of the human leukemia and lymphoma cell lines by their CGi 

hypermethylation profiles clearly clustered lymphoma cell line RAJI outside of 

the leukemia cell lines. On the next cluster level JURKAT, KG-1a, MOLT-3 

and HEL were separated from the K-562 and MEG-01. Furthermore, JVM-2, 

THP-1, TF-1 and KBM-5 cells were separately clustered from the HL-60 and 

KG-1 cell lines (Figure 45-A). 

In addition, screening of methylation pattern in cell lines derived from 

hematological malignancies pointed out that the promoter region of CDKN2B 

was mutated (no amplification with both methylated and unmethylated primer 

sets) in K562, JURKAT and HEL cell lines. JURKAT cells possessed a further 

mutation in the CDKN2A promoter region (Figure 45-A).  

 

5.4. Analysis of DAC treatment response in blood cancer 
cell lines 
 

Since epigenetic lesions are potentially reversible, epimutations are 

promising therapeutic targets for DNA demethylating drugs (e.g. DAC). The 

nucleoside analog DAC binds covalently DNMTs after integration into DNA. 

Hence, maintenance of methylation is dysregulated leading to a passive loss 

of DNA methylation. This demethylation may lead to a restoration of TSG 

functions and therefore of growth-control and apoptosis mechanisms in 

tumors. However, it is assumed that DAC-mediated DNA demethylation is 

unspecific and can further enhance global hypomethylation, activating 

hypermethylated harmful elements such as transposons. Since DNA 

methylation is a main player in gene regulation, demethylation influences a 

broad range of cellular mechanisms, leading to a complex phenotypical 

response. Therefore, a side part of this thesis was focused in the genome-

wide and regional gene-specific effects of DAC-mediated demethylation as 

well as in the characterization of the cellular response to DAC exposure in 

leukemia and lymphoma cell lines. 
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5.4.1. Effect of DAC treatment on leukemia/lymphoma cell survival  
 

To analyze the impact of DAC treatment on leukemia cell survival, K-

562, RAJI, HEL, MOLT-3, MEG-01 and JVM-2 cells were treated with different 

DAC concentrations for 3 days and cell survival evaluated with the trypan blue 

exclusion test (Figure 46). 
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Figure 46: Analysis of DAC exposure on cell viability.  

Leukemia and lymphoma cell lines K-562, RAJI, MEG-01, HEL, MOLT-3 and JVM-2 
were treated with DAC at the indicated concentrations for 3 days. Cell viability was 
determined by trypan blue exclusion test. Results indicate the percentage of cell 
death plotted against the DAC concentration. Data are the mean ± SD of 3 
independent experiments. *p<0.05, **p<0.01 vs control. DAC: 5-aza-2!-deoxycytidine. 

 
Both CML cell lines K-562 and MEG-01 had only a reduced sensitivity to 

DAC treatment and showed in average 7.9% and 8.2% of cell death, 

respectively, after 3 days. In addition, minor proportions of dead cells were 

identified in RAJI (11.4%) and JVM-2 (16.5%) cell lines after DAC treatment. 

The highest rate of DAC-induced cell death was measured for the T-cell 

leukemia cell line MOLT-3 (67.2%) and the erythroleukemia cell line HEL 

(46.4%). Nevertheless, no significant variation in cell death was detected for 

the tested DAC concentration range (Figure 46). 
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Moreover, previous results showed that 2µM DAC was sufficient to 

induce GSTP1 promoter demethylation and expression in RAJI and MEG-01 

cells. Therefore, the evolution of cell growth and cell death was followed 

during 4 days of treatment with 2µM DAC. Various blood cancer cell lines 

were treated with DAC over a defined period of time. Progress of cell viability 

was determined by trypan blue exclusion test. Growth inhibition was 

determined by comparing cell growth of untreated and DAC-treated cells 

(Figure 47).  

 

!  
Figure 47: Effect of DAC on leukemia and lymphoma cell growth and viability. 

Blood cancer cell lines were treated daily with 2µM DAC for 4 days. Cell survival was 
assessed by trypan blue exclusion test and growth inhibition was calculated by 
comparing the cellular growth of treated and untreated cells. Data are means ± SD of 
3 independent experiments. DAC: 5-aza-2!-deoxycytidine. 

 
Results demonstrated that DAC moderately decreased (<20%) cell 

viability of K-562, MEG-01, RAJI and JVM-2 cells. In contrast, DAC treatment 

robustly decreased in time-dependent manner cell viability in HEL and MOLT-

3 to reach at 4 days 19% and 12%, respectively (Figure 47). Moreover, in all 

tested blood cancer cell lines, DAC strongly induced, in a time-dependent 

manner, growth inhibition and reached for example 86% in JVM-2 cells. 
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Since DAC treatment induced cell death in various leukemia cell lines, 

we then aimed to characterize the type of cell death induced after DAC 

exposure. K-562, RAJI, JVM-2, MEG-01, HEL and MOLT-3 cell lines were 

treated with 2µM DAC for 4 days and cells stained with Hoechst and PI dyes. 

Apoptosis and necrosis were assessed by nuclear morphology analysis 

(Figure 48). 
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Figure 48: Morphology analysis of cell death in DAC-treated leukemia and 
lymphoma cell lines. 

Leukemia and lymphoma cell lines were treated with 2µM DAC for 4 days. Every 
day, cells were stained with Hoechst and PI, visualized under fluorescence 
microscopy (HEL and MOLT-3 cell lines as example, A) and apoptotic and necrotic 
cell death quantified (B). Pictures are representative of 3 independent experiments 
and data are the mean ± SD of 3 independent experiments. *p<0.05, **p<0.01 vs 
control.  

  

A 

B 
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DAC treatment of HEL and MOLT-3 cells resulted in a robust and time-

dependent increase of apoptosis and necrosis (Figure 48-A). After 4 days of 

DAC treatment, 65% of the HEL cells presented characteristic features 

(fragmented nuclei, condensed chromatin) of apoptosis and 18% of necrosis. 

In the case of MOLT-3 cells, 62% and 24% of the population was apoptotic 

and necrotic, respectively. In contrast, after 4 days of DAC treatment, only a 

slight percentage of K-562 (6%) and a moderate proportion of MEG-01 (25%) 

and RAJI (19%) cells showed apoptotic features. Moreover, DAC exposure 

leaded to a moderate increase of necrosis (19%) and slight occurrence of 

apoptotic nuclear morphologies (9%) in JVM-2 cell lines (Figure 48-B) 

In conclusion, leukemia and lymphoma cell lines presented a differential 

response to DAC exposure, from the highly sensitive (e.g. HEL) to the 

moderately sensitive (e.g. K-562) cells. Moreover, results showed that 

independently of the cell line considered, cell death was limited to a part of the 

DAC-treated cell population. 

 

5.4.2. Influence of DAC treatment on global DNA methylation in 
leukemia/lymphoma cells 

 

To unveil possible relationships between DAC-induced cellular response 

and genome-wide demethylation, global DNA methylation profile of various 

cell lines was determined by methylation-specific restriction assay (Figure 49).  
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Figure 49: Evaluation of global methylation in various leukemia cell lines by 
MSRA. 

Genomic DNA from various leukemia cell lines was digested by HpaII or MspI. 
Digested and undigested control DNA were separated on a 0.8% agarose gel and 
stained with ethidium bromide. The picture is representative of 3 independent 
experiments. MSRA: methylation sensitive restriction assay. 
 

Results of the methylation-sensitive restriction assay with HpaII are 

showing that the genomic DNA from RAJI, MOLT-3 and HEL cells is more 

methylated than the genomic DNA from K-562, JVM-2 and MEG-01 cells.  

In order to explain the cell line-specific variations in genome-wide 

methylation occurrence, constitutive expression of enzymes responsible for 

DNA methylation maintenance (DNMT1) and establishment (DNMT3A and 

DNMT3B) was analyzed on mRNA and protein levels. Total mRNA from K-

562, RAJI, MEG-01, HEL, MOLT-3 and JVM-2 was extracted and expression 

of DNMT1, 3A and 3B analyzed by real-time PCR assay (Figure 50-A). 

Moreover, evolution of DNMT1 protein expression after DAC exposure was 

analyzed by Western Blot (Figure 50-B).  
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Figure 50: Analysis of the effect of DAC on DNMT1 expression. 

(A) Total RNA from various human leukemia cells was analyzed by real-time PCR 
with primers specific for DNMT1, DNMT3A and DNMT3B. !-actin was analyzed as a 
control of cDNA quantity in each reaction. Results represent the ratio DNMT/!-actin 
mRNA expression levels. Data are mean ± SD of 3 independent experiments. (B) 
Proteins from untreated and DAC-treated cells were analyzed by Western Blot with 
an antibody against DNMT1. !-actin was used as loading control. Pictures are 
representative of 2 independent experiments. DNMT: DNA methyltransferase. 

 

Compared to K-562 and MEG-01 cell lines, leukemia and lymphoma cell 

lines RAJI, HEL and MOLT-3 expressed more DNMT1 mRNA and protein. 

The lowest DNMT1 mRNA level was identified in JVM-2 cells. Globally, the de 

novo DNMT3A and 3B expression rates are much lower than for DNMT1 in all 

analyzed leukemia cell lines. The highest expression for DNMT3A was 

A 

B 
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measured in K-562, MEG-01, HEL and MOLT-3 cells. For DNMT3B, the 

highest mRNA level was determined in K-562 and HEL cell lines (Figure 50-

A). Treatment of leukemia cell lines with 2µM DAC for 3 days reduced the 

DNMT1 protein amount in all analyzed cell lines except in K-562 cells. 

Following DAC exposure, the highest reduction of DNMT1 protein expression 

was observed in RAJI, HEL and MOLT-3 cell lines (Figure 50-B).  

Due to the inhibitory effect of DAC on DNMT1 protein expression, the 

influence of DAC treatment on global DNA methylation was assessed in 

various hematological malignancies. Genomic DNA from leukemia cell lines 

treated with DAC was analyzed by MSRA (Figure 51). 
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Figure 51: Kinetic analysis of the global DAC-induced DNA demethylation by 
MSRA. 

Various leukemia and lymphoma cell lines were treated for the indicated time with 
DAC, genomic DNA extracted and digested with MspI or the methylation sensitive 
HpaII enzymes. Separation profile was visualized on a 0.8% agarose gel, stained 
with ethidium bromide. Images are representative for 3 independent experiments. 
MSRA: methylation sensitive restriction assay. 
 

The high molecular band intensity in the HpaII digestion lane decreased 

and has a similar pattern as the MspI control digestion after DAC treatment, 

indicating global demethylation in all analyzed leukemia and lymphoma cell 

lines. In addition, demethylation efficiency was cell line-specific and time-

dependent (Figure 51).  
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In conclusion, amounts of DNA methylation of the various leukemia and 

lymphoma cell lines correlated with their DNMT1 expression levels. 

Depending on the blood cancer cell line, DAC treatment leaded to partial 

repression of DNMT1 protein expression and global demethylation. 

 

5.4.3. Analysis of DAC-induced growth inhibition by a single cell 
approach 

 

Previous results showed that DAC treatment leads to differential growth 

inhibition, cell death and global demethylation in various cell lines derived 

from hematological malignancies. Nevertheless, these results only provide an 

overall impression of the effects of DAC in a given population. RAJI cell line 

was selected as a cellular model in order to study the effects of DAC-

treatment on growth behavior on a single cell level. Decisive factors for this 

choice were linked to the fact that the RAJI genome is relatively high 

methylated and can be efficiently demethylated by DAC. Phenotypically, DAC 

treatment leads to growth inhibition of RAJI cells without inducing pronounced 

cell death. 

Cell division tracking using intracellular CFSE staining and flow 

cytometry analysis was used to determine the influence of DAC on 

proliferation of each single RAJI cell. During the first 24 hours of culture, cell 

proliferation patterns were similar in DAC- and mock-treated RAJI cells 

(Figure 52).  
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Figure 52: Evaluation of the influence of DAC treatment on RAJI cell 
proliferation. 

RAJI cells in exponential growth phase were stained with 0.2µM CFSE 
(CellTrace™CFSE Cell Proliferation Kit, Invitrogen) as proposed by the 
manufacturer. After a recovery phase of 24 hours, cells were treated for 72 hours 
with 2µM DAC. Cells were harvested at the indicated time points and CFSE staining 
analyzed by flow cytometry. Data were processed by FlowJo and represented as the 
mean of 3 independent experiments. 
 

After 72 hours under normal culture conditions, 42.5, 41.5 and 2.7% of 

the initial RAJI cell population had divided 4, 5 and 6 times, respectively. In 

contrast, 72 hours of DAC treatment were sufficient to consistently decrease 

cell proliferation activity in RAJI cells. Indeed, about 7.6% of the initial RAJI 

cells population stayed undivided or had divided only once during 72 hours of 

DAC treatment. The major amount of cells was found in generation 2 (20.3%) 

and generation 3 (54.9%). Generation 4 was only represented by 17.2% of 

the DAC-treated RAJI cells (Figure 52). 

In addition, the impact of DAC treatment on average RAJI cell growth 

and doubling time was compared between control and DAC-treated cells. As 

previously observed by the cell tracking method, the doubling time during the 

first 24 hours of cell culture was similar in control and DAC-treated RAJI cells 

(Figure 53). 
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Figure 53:!Effect of DAC treatment on the doubling time of RAJI cells. 

RAJI cells were treated with 2µM DAC for 72 hours and cells were counted using 
trypan blue exclusion test. Doubling time was calculated using the doubling time 
software (http://www.doubling-time.com/index.php). Data are the mean ± SD of 3 
independent experiments. 
 

However, in correlation with previous results about DAC-induced growth 

inhibition (Figure 47), doubling time of RAJI cells was moderately attenuated 

during the following day of culture and drastically affected at 72 hours. In 

contrast, the proliferation rate of untreated RAJI cells stayed constant (Figure 

53). 

 

5.4.4. Simultaneous analysis of DAC-induced GSTP1 expression 
and cell proliferation 

 

As previously shown, DAC-mediated demethylation is replication-

dependent and induces cell-specific growth arrest at different cell generations. 

These findings leads to the assumption that differential cell division may lead 

to differential gene demethylation and induction of expression, as already 

reported by the previous data about the heterogeneous induction of GSTP1 

expression in DAC-treated RAJI cells. 

In order to investigate more deeply the role of cell division in DAC-

induced demethylation and gene expression, we selected GSTP1 gene, which 

is hypermethylated in the RAJI cells as a model to analyze DAC-induced 

single cell-specific GSTP1 expression in relation to cell division. GSTP1 
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immunostaining was combined with the analysis of cell division by CFSE-

mediated cell tracking.  

At the beginning of DAC treatment, 99.8% of the control cells were 

CFSE-positive and GSTP1-negative (Figure 54-A).  
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Figure 54: Analysis of the link between cell division and GSTP1 expression in 
DAC-treated RAJI cells. 

RAJI cells were stained with CFSE and after 24 hours of recovery, treated for 72 
hours with DAC. GSTP1 expression was assessed by immunostaining using primary 
anti-GSTP1 and secondary Alexa-Fluor 647-conjugated antibodies. CFSE and 
GSTP1 fluorescence intensity were detected by flow cytometry and processed by 
FlowJo. (A) Dot plots, representative of three independent experiments, show the 
distribution of CFSE and GSTP1 fluorescence intensity relative to each cell. 
Percentages of control (blue) or DAC-treated (red) cells, present in each quadrant, 
are indicated and represent the mean of 3 independent experiments. (B) Untreated 
(black), DAC-treated GSTP1-negative (green) and GSTP1-positive (orange) cells 
were gated (left panel) and analyzed based on GSTP1 fluorescence (middle panel) 
or CFSE presence (right panel). Data are representative of 3 independent 
experiments. 
 

A 

B 



  Results 

 166 

After 72 hours of DAC treatment, 96.6% of the cell population had 

divided (represented by the sum of cells in the lower left and right quadrants) 

and about 54% of the whole RAJI cell population was presenting low 

intensities for CFSE and GSTP1 staining. In contrast, 42.6% of the DAC-

treated RAJI cells were presenting a low intensity of CFSE but were also 

positive for GSTP1 expression (Figure 54-A). To get a better overview of 

CFSE- and GSTP1-positive cell distributions, subsets of GSTP1 expressing 

(green) and non-expressing (orange) DAC-treated RAJI cells were gated and 

CFSE pattern separately analyzed. Results show that both subpopulations 

had, independently of the GSTP1 expression level, the same cell proliferation 

pattern (Figure 54-B). 

In conclusion, all RAJI cells that were exposed to DAC were still 

dividing; even tough the cell proliferation rate was slowed down. However, 

DAC-mediated induction of GSTP1 expression was heterogeneously 

distributed over the RAJI cell population. In consequence, DNA demethylation 

is cell division-dependent but cell proliferation is not sufficient to induce 

GSTP1 expression in all RAJI cells. 

 

5.4.5. Analysis of the relationship between GSTP1 expression and 

methylation pattern in DAC-treated RAJI cells 

 

As previously shown, DAC treatment induces GSTP1 expression in only 

a subpopulation of RAJI and MEG-01 cell lines. In order to study a possible 

link between DAC-mediated heterogeneous GSTP1 expression and promoter 

demethylation, RAJI cells were treated with DAC for 3 days, immunostained 

and sorted based on GSTP1 expression level (high, low and intermediate). 

Then the methylation status of each sorted cell subpopulations was analyzed 

by MSP (Figure 55). 
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Figure 55: Analysis of GSTP1 promoter methylation after cell sorting based on 
GSTP1 expression in DAC-treated RAJI cells. 

Untreated and DAC-treated (2µM, 3 days) cells were indirectly stained with primary 
anti-GSTP1 and secondary Alexa Fluor 488-conjugated antibodies. The fluorescence 
amount of 105 immunostained RAJI cells was detected by flow cytometry on a 
FACSCalibur and analyzed by CellQuest Pro. Upper panel: one-dimensional GSTP1 
frequency histogram of 105 untreated (blue) and DAC-treated RAJI cell lines (green). 
Cells were gated by their fluorescence intensity and separated by fluorescence 
assisted cell sorting. Lower panel: one-dimensional GSTP1 frequency histogram of 
105 DAC-treated and sorted RAJI cells (G1 (red): GSTP1-negative, G2 (orange) 
GSTP1 intermediate and G3 (pink): GSTP1-positive cells). Genomic DNA was 
extracted from the different fractions (G1 to G3), bisulfite converted and GSTP1 
promoter methylation status determined by MSP. A representative picture of MSP 
analysis is inserted in each corresponding histograms. Results are representative of 
3 independent experiments. DAC: 5-aza-2'-deoxycytidine, U: unmethylated, M: 
methylated. 

 

As shown in Figure 55, it was possible to separate DAC-mediated 

GSTP1 expressing (G3) from non-expressing (G1) RAJI cells as well as to 

enrich a mixed fraction (G2). MSP analysis of the GSTP1 expressing cells 
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fraction (G3) revealed a hypomethylated state of GSTP1 promoter in these 

cells. In contrast, analysis of cells from the fraction regrouping GSTP1 non-

expressing cells (G1) showed that despite DAC exposure, DNA 

hypermethylation remained unaffected in the GSTP1 promoter region. 

Accordingly, the intermediate fraction composed by GSTP1-negative and 

GSTP1-positive cells showed a mix of hypo- and hyper-methylated GSTP1 

promoters.  

In conclusion, cell-sorting results showed that methylation status 

correlates with GSTP1 promoter activity in DAC-treated RAJI cells. 

 

5.4.6. Analysis of gene-specific demethylation in DAC-treated 

RAJI cells.  

 

DAC treatment leaded to a heterogeneous RAJI cell population 

consisting of cells with differential methylated promoter region and GSTP1 

expression pattern. To analyze whether this unequal demethylation of RAJI 

cells is specific for GSTP1 gene, the study was extended on further genes for 

which methylation patterns were analyzed by deep-sequencing on a GS FLX 

Titanium platform. Based on literature and own methylation analysis, genes 

that are hypermethylated in RAJI cells were analyzed. Results of these 

experiments were represented are presented in the form of a heat map, 

showing the evolution of DAC-induced demethylation. By comparing the mean 

methylation of each analyzed gene before and after DAC treatment, the 

demethylation efficiency was assessed (Figure 56). 
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Figure 56: Methylation analysis of various genes in control and DAC-treated 
RAJI cells. 

Genomic DNA from RAJI cells, treated for 3 days with 2µM DAC was bisulfite 
converted and regions of interest amplified by PCR. Methylation pattern was 
determined by next generation sequencing on a GS FLX platform. (A) Panel shows 
the methylation pattern before and after DAC treatment of all analyzed genes in RAJI 
cells. (B) Figure indicates the demethylation efficiency for each analyzed genes, 
calculated by comparing the mean methylation before and after DAC exposure. 
Mapping of the CpG dinucleotide distribution and detailed view on the sequence 
reads of (C) PROX1, (D) GSTP1 and (E) NORE1A genes, before and after 3 days 
DAC treatment. n=1, Blue: unmethylated, red: methylated CG dinucleotide. Results 
from one experiment. BCL2L11: BCL2-like 11, CALCA: calcitonin-related polypeptide 
alpha, CHFR: checkpoint with forkhead and ring finger domains, DAB2IBA: DAB2 
interacting protein, DAPK1: death-associated protein kinase 1, DCR1: decoy receptor 
1, DLC1: deleted in liver cancer 1, GSTP1: glutathione S-transferase P1, ESR1: 
estrogen receptor 1, EYA4: eyes absent homolog 4, H19-CTCF: imprinted gene, 
HIC1: hypermethylated in cancer 1, IGSF4: cell adhesion molecule 1, KLF4: 
krueppel-like factor 4, LINE1: long interspersed nuclear element 1, MGMT: 06-
methylguanine-DNA methyltransferase, NORE1A: Ras association (RalGDS/AF-6) 
domain family 5, OSMR: oncostatin M receptor, TP73: tumor protein P73, PROX1: 
prospero homeobox 1, PTGS2: prostaglandin-endoperoxide synthase 2, RARB2: 
retinoic acid receptor beta, THBS1: thrombospondin 1, TIMP3: tissue inhibitor of 
metalloproteinase 3. 
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(Figure 56 continued) 

 

Sequencing results indicated that the analyzed genes were differentially 

methylated in RAJI cells. The bulk of the genes (e.g. DCR1, DAPK1, GSTP1) 

were hypermethylated while some genes were moderately methylated (i.e. 

BCL2L11, ESR1, HIC1 and RARB2). Average methylation decreased after 3 

days of DAC treatment whereas the unequal methylation distribution was 

maintained (Figure 56-A). Furthermore, results showed that demethylation 

efficiency was specific for each gene. For example, the highest demethylation 

efficiencies were detected for BCL2L11, NORE1A, TP73 and PROX1 genes. 

In contrast, DCR1 gene was resistant against DAC-induced DNA 

demethylation. Remaining genes were moderately demethylated by DAC 

treatment associated with a demethylation efficiency that was highly variable 

between 7 to 28 % (Figure 56-B). Furthermore, detailed mapping of PROX1, 

E 
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GSTP1 and NORE1A methylation patterns revealed that DAC-induced 

demethylation was CpG position-independent but read-specific (Figure 56-B, -

C, -D). Only a small subset of the sequencing reads was completely 

demethylated, whereas the rest remained hypermethylated. Detailed results 

of the remaining analyzed genes are summarized in the appendix. 

Taking together, these findings showed that the analyzed genes are 

individually methylated in RAJI cells and get differentially demethylated in 

response to DAC. Moreover, individual analysis of the methylation pattern 

showed that DAC induced complete demethylation of certain reads, indicating 

that demethylation was restricted in certain cells.  

 

5.4.7. Analysis of GSTP1 promoter methylation recovery after 

DAC treatment 

 

As previously shown, DAC treatment can partially reverse DNA 

hypermethylation on GSTP1 promoter in RAJI and MEG-01 cells. To 

investigate whether DAC stably demethylates GSTP1 promoter or whether 

methylation is recovered after DAC exposure, leukemia cell lines RAJI and 

MEG-01 were exposed up to 3 days with DAC, cells washed and the medium 

subsequently exchanged by drug free medium. GSTP1 promoter methylation 

status during treatment and recovery phases was investigated by MSP 

analyses (Figure 57). 
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Figure 57: Analysis of GSTP1 promoter methylation pattern after DAC 
recovery. 

RAJI and MEG-01 cells were treated for 3 days with 2µM DAC. After a washing step, 
highlighted by a dotted line, medium was replaced by fresh medium without DAC. 
Samples were collected during the treatment phase at day 0 and 3, and during the 
recovery phase at day 6 and 10. Genomic DNA was then extracted, bisulfite 
converted and used as template for MSP with primers specific for the unmethylated 
(U) and methylated (M) state of GSTP1 gene. MSP amplicons were separated on a 
12% PAA gel and stained with ethidium bromide. Pictures are representative of 2 
independent experiments. 

 

Results showed that DAC-induced GSTP1 promoter demethylation in 

RAJI and MEG-01 cells was not stopped after removal of the demethylating 

drug but even continued up to a certain degree and then remained constant. 

Noteworthy, induction of GSTP1 demethylation was delayed, compared to 

RAJI cells. 

In conclusion, remethylation of the GSTP1 promoter was not observed in 

DAC-treated RAJI and MEG-01 cells. 
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6. Discussion 
 

In 1989, Greger et al. described for the first time the association 

between DNA hypermethylation and TSG silencing in human cancer based on 

a study on Retinoblastoma gene (Greger, Passarge et al. 1989). Nowadays, 

long lists of TSGs (e.g. DNA repair or metastasis genes) are showing aberrant 

methylation and thus gene silencing in cancer cells (Esteller 2011). Analysis 

of the cancer-specific epigenetic fingerprint, based on the evaluation of 

alterations in the methylation pattern, is a promising approach for cancer 

detection, assessment of individual’s risk for post-diagnostical recurrence and 

progression as well as for cancer therapy. Epigenetic disruptions occur during 

early carcinogenesis and are often responsible for loss of gene expression. 

Accordingly, methylation-associated silencing frequently affects genes, 

involved in DNA damage repair, tumor suppression, detoxification, 

inflammation, cell cycle regulation and motility. This inventory includes the 

detoxification gene GSTP1, which is hypomethylated and widely expressed in 

benign tissues, but hypermethylated and transcriptionally silenced in prostate, 

breast and kidney cancer cells (Dulaimi, Ibanez de Caceres et al. 2004; 

Hopkins, Burns et al. 2007; Lasabova, Tilandyova et al. 2010). Moreover, 

PTGS2, a key player in inflammation, was reported to be hypermethylated in 

several cancer types (e.g. breast, colon) and is newly used as a prognostic 

marker for prostate cancer (Phe, Cussenot et al. 2010). However, to the best 

of our knowledge, methylation-associated epigenetic silencing of GSTP1 and 

PTGS2 genes have never been studied in details for hematological 

malignancies. Hence, this study will provide compelling evidences for the role 

of DNA methylation in GSTP1 and PTGS2 repression in leukemia and 

lymphoma cells and can open up new strategies to detect, evaluate and treat 

hematological malignancies. 
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Reversible epigenetic fingerprint is associated to glutathione-S-

transferase P1 gene silencing in human leukemia cell lines. 

 

In the first part of this study, we investigated GSTP1 promoter 

methylation and the contribution of chromatin structure (i.e. histone 

modifications), chromatin-modifying enzymes and transcriptional regulators in 

relation to GSTP1 expression levels. Screening of various human leukemia 

and lymphoma cell lines confirmed the constitutively high level of GSTP1 

expression in K-562 and JURKAT cells and the lack of expression in RAJI cell 

line (Shea, Kelley et al. 1988; Borde-Chiche, Diederich et al. 2001). Moreover, 

our results identified several leukemia cell lines (JVM-2, HEL, MOLT-3) with 

moderate GSTP1 expression as well as an additional GSTP1-negative CML 

cell line (MEG-01). Methylation analysis by BSP, MSP and CoBRA as well as 

time-dependent but concentration-independent induction of GSTP1 

expression after DAC treatment pointed out accordingly the hypermethylation 

of the GSTP1 regulatory region in RAJI and MEG-01 cells. However, DAC-

mediated demethylation and induction of GSTP1 expression was time-

delayed in MEG-01 cells compared to RAJI cells. Since the proliferation rate 

of RAJI cells is higher than the one of MEG-01 cells, results are confirming 

that DAC-induced demethylation is a passive and replication-dependent 

process (Jones and Taylor 1980). In contrast, GSTP1 promoter was 

hypomethylated in K-562 cells. Therefore, promoter methylation status and 

GSTP1 expression pattern are correlated in blood cancer cell lines.  

These results prompt us to assume that, in accordance to prostate 

cancer, aberrant GSTP1 methylation could be linked to early leukemogenesis. 

Regarding its ‘caretaker’ gene function, DNA methylation-mediated GSTP1 

silencing might promote susceptibility to somatic genome alterations caused 

by electrophilic or oxidative carcinogens and thus provides cancer-associated 

growth advantages (Kinzler and Vogelstein 1997; Lin, Tascilar et al. 2001). 

Therefore, reactivation of the dormant GSTP1 gene and avoidance of its 

hypermethylation are not only beneficial for cell detoxification, integrity and 

survival but also for cancer prevention. This statement is confirmed by 

enhanced cancer susceptibility, detected in GSTP1 deficient mice (Ketterer 

1998). In non-malignant cells, DNA methylation is responsible for the long-
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term silencing of harmful tumor promoting genes and repetitive non-protein-

coding DNA regions (e.g. transposable elements) (Jones and Takai 2001). 

Apparently, gene-directed DNA methylation is truncated in cancer cells but 

the mechanistic reasons have still to be elucidated.  

Previous studies discussed the possibility to detect aberrant methylation 

on cell free DNA, extracted from serum, plasma or urine of prostate, lung and 

colon cancer patients (Esteller, Sanchez-Cespedes et al. 1999; Goessl, 

Krause et al. 2000; Cairns, Esteller et al. 2001; Grady, Rajput et al. 2001). 

This idea was adopted to detect urological malignancies during a minimal 

invasive DNA-based routine screening by analyzing GSTP1 methylation 

pattern on circulating DNA (Cairns, Esteller et al. 2001; Goessl, Muller et al. 

2001). According to our results, aberrant GSTP1 methylation could also be a 

characteristic of certain leukemia cells, implying that the detection of GSTP1 

hypermethylation in serological biopsies could not only stem from prostate 

cancer but could also originate from hematological malignancies. To prevent 

misdiagnosis, we propose to use aberrant GSTP1 methylation in various body 

fluids (e.g. blood, urine, ejaculate) as a first indication for cancer development 

whereas the analysis should be completed with further cancer-specific 

biomarkers. 

Although the herein used assay was not specific for the GSTP1 isoform, 

it was shown that DAC treatment had an enhancing effect on the enzymatic 

activity of the GST superfamily members in K-562, RAJI and MEG-01 cells. 

Basal GST activity was higher in K-562 and MEG-01 than in RAJI cells 

whereas DAC-mediated induction was higher in RAJI than in K-562 and MEG-

01 cells. We assume that, in addition to GSTP1, other GST isoforms, which 

are preceded by CGis, are hypermethylated in RAJI cells (Peng, Razvi et al. 

2009). Indeed, DAC induces simultaneous demethylation of GST genes and 

leads to a massive increase of GST activity. Regarding K-562 and MEG-01 

cells, GST genes except GSTP1 are probably hypomethylated and 

expressed, leading to the observed high basal GST activity. Moderate 

increase of GST activity in DAC-treated MEG-01 cells is probably due to the 

demethylation of GSTP1.  

GSTP1 immunostaining followed by microscopy and flow cytometry 

analyses showed that DAC treatment of RAJI and MEG-01 cells led to GSTP1 
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re-expression in only a limited subpopulation of cells, resulting in an 

heterogeneous mix of GSTP1 expressing and non-expressing cells. 

Furthermore, only a limited number of entirely demethylated GSTP1 promoter 

sequences were observed in DAC-treated RAJI cells. Fluorescence-assisted 

cell sorting of GSTP1-positive and GSTP1-negative DAC-treated RAJI cells 

and analysis of their methylation pattern revealed a correlation between DAC-

induced demethylation and GSTP1 expression in the heterogeneous cell 

population. This limited demethylation could be explained by a partial genomic 

demethylation related to a low efficiency of DAC in those cells. However, 

methylation-specific restriction assay showed a strong genomic 

demethylation. Interestingly, DAC-mediated heterogeneous cell population 

was already reported in a publication from dos Santos et al. about synovial 

sarcoma X gene expression in human melanoma cell lines (dos Santos, 

Torensma et al. 2000). Currently, it remains unclear why only a part of the 

DAC-treated cells looses GSTP1 promoter methylation and thereupon re-

expresses GSTP1. We assume that the GSTP1 surrounding heterochromatin 

structure could be responsible for the delayed demethylation. Another 

hypothesis is that differential DAC-mediated demethylation and GSTP1 re-

expression are cell cycle-related. At the moment of DAC treatment, 

asynchronous cells are in different cell cycle phases. Depending on their 

progress in cell division, cells either directly incorporate DAC leading to DNA 

demethylation or have to complete cell division before incorporation of DAC at 

the following cycle, leading to delayed demethylation in these cells.  

Although DNA methylation and histone acetylation act as synergistic 

layers in tumor-associated gene silencing, we demonstrate that HDACi alone 

failed to restore GSTP1 expression in non-expressing cell lines. Our findings 

are in agreement with a former study on CDKN2A (p15) and CDKN2B (p16), 

TIMP3 and MLH1 (Cameron, Bachman et al. 1999). HDACi had only an 

impact on GSTP1 expression after pre-incubation with the demethylating 

agent DAC. However, the incapacity of HDACis to restore GSTP1 expression 

was not due to lack of inhibitory activity. Therefore, our results demonstrate 

that dense CGi methylation of GSTP1 promoter is dominant for the permanent 

transcriptional silencing of the GSTP1 loci and has to be removed before 

HDACi can affect GSTP1 expression. Nevertheless, a recent publication 
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reported that treatment of the LNCaP prostate cancer cell line with the HDACi 

depsipeptide induced HDAC inhibition, DNA demethylation and GSTP1 re-

expression. However, it was published that besides HDAC inhibition, 

depsipeptide also decreases the recruitment of DNMT1 to the 

hypermethylated CDKN2B gene, which can be the origin of the discrepancies 

between the observations (Hauptstock, Kuriakose et al. 2011).  

The two SP1 binding sites on the GSTP1 proximal promoter region are 

essential cis-elements required for basal gene activity (Jhaveri and Morrow 

1998; Morceau, Duvoix et al. 2004). Although, the binding of the SP1 

transcription factor to its recognition site has been shown to be insensitive to 

cytosine methylation, our study showed that neither SP1 nor SP3 are 

associated to hypermethylated GSTP1 promoter region of RAJI and MEG-01 

cell lines (Harrington, Jones et al. 1988; Holler, Westin et al. 1988). This 

finding is in accordance to the current hypothesis that DNA methylation can 

induce conformational changes in chromatin structure, which block the 

accessibility of SP1 to its binding site and contribute to GSTP1 transcriptional 

silencing.  

GSTP1 expression and gene methylation patterns are correlated to the 

chromatin structure of its promoter. Indeed, ChIP analysis identified typical 

proteins and histone marks associated to a transcriptional active GSTP1 

promoter in K-562 cells. In addition, the hypermethylated GSTP1 promoter 

region of RAJI and MEG-01 cells was enriched for repressive proteins and 

histone marks, correlating with the lack of GSTP1 expression. GSTP1 

expression is therefore not exclusively regulated by DNA methylation, but also 

synergistically on level of histone modifications and transcription factor 

recruitments. In addition, the effect of DAC was not limited on GSTP1 

methylation pattern. Indeed, GSTP1 demethylation is associated with drastic 

changes of GSTP1 promoter-associated proteins including MBDs, HDACs 

and DNMTs in both non-expressing RAJI and MEG-01 cell lines, which 

correlate with GSTP1 re-expression (Jones, Veenstra et al. 1998; Nan, Ng et 

al. 1998; Jones and Baylin 2002). Thus, we clearly confirmed that DAC 

treatment triggered DNA demethylation and induced a substitution of 

repressive marks by active ones on GSTP1 promoter in RAJI and MEG-01 

cells. 
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The present study described methylation-associated silencing of GSTP1 

promoter and DAC-induced release of its repression. Moreover, it was shown 

that GSTP1 silenced cells are more vulnerable to somatic mutations after 

exposure of genome-damaging stress (Kinzler and Vogelstein 1997; Lin, 

Tascilar et al. 2001; Coughlin and Hall 2002). However, GSTP1 does not 

meet all criteria of Esteller’s candidate gene approach to identify new 

biomarkers (Esteller 2002). For a later potential clinical application of GSTP1 

as an epigenetic biomarker, the aberrant GSTP1 DNA methylation pattern 

should be detected in biopsies from patients with hematological malignancies. 

Unfortunately, GSTP1 promoter hypermethylation was not detected in 

leukemia patient samples and was clearly underrepresented in lymphoma 

patient samples. These observations are in contrast with results obtained by 

Rossi et al. and Amara et al., reporting that GSTP1 hypermethylation was 

common in patient samples derived from DLBCL, hairy cell leukemia, follicular 

lymphoma, Burkitt’s lymphoma and MALT lymphoma (Rossi, Capello et al. 

2004; Amara, Trimeche et al. 2008). Extending our analyses with further 

leukemia (e.g. CML) and lymphoma patient (e.g. Burkitt’s lymphoma) samples 

could reveal the presence of GSTP1 methylation in these specific 

hematological malignancy subtypes. 

Cell lines with high (i.e. K-562, JURKAT) and moderate (i.e. HEL and 

MOLT-3) GSTP1 expression possessed a hypomethylated promoter region. 

These data demonstrate that DNA methylation is not the only mechanism 

regulating the level of GSTP expression. Publications about miRNA 

expression and target prediction postulated that GSTP1 is post-

transcriptionally regulated by miRNAs in lung and ovarian cancer (Dahiya, 

Sherman-Baust et al. 2008; Wang, Xu et al. 2009). Screening of the GSTP1 

3’UTR by several online databases and prediction tools leaded to a long list of 

potential GSTP1 regulating miRNAs. It is assumed that in normal cells, native 

miRNA expression levels lead to moderate GSTP1 expression. In contrast, 

aberrant downregulation of an aforementioned GSTP1 targeting miRNA in 

cancer cells may enhance GSTP1 expression as observed in K-562 or 

JURKAT cell lines. In consequence, detoxification potential of these cancer 

cells is improved and possibly confers chemoresistance. Nevertheless, this 

hypothesis was never tested for hematological malignancies. Mutallip et al. 
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recently reported the post-transcriptional regulation of GSTP1 by miR-133a in 

head and neck squamous cell carcinoma (HNSCC), showing that artificial 

repression or induction of miR-133a expression leads to GSTP1 up- or down-

regulation, respectively (Mutallip, Nohata et al. 2011). However, an inverse 

correlation between GSTP1 and miRNA expression levels remained 

undetected in the analyzed leukemia and lymphoma cell lines and for the 

considered miRNAs, including miR-133a. The discrepancy between our 

observations and the finding of Mutallip et al. might be explained by possible 

minor effect of miR-133a in leukemia and lymphoma cells.  

 

Aberrant epigenetic silencing and reduced expression of prostaglandin-

endoperoxide synthase 2 gene are common events in human 

hematological malignancies. 

 

In the second part of this thesis, the correlation between PTGS2 

promoter methylation and expression in leukemia and lymphoma cells was 

assessed. Results showed that PTGS2 was differentially expressed in a 

broad range of leukemia and lymphoma cell lines. Our study pointed out that 

hypermethylation of the promoter region was associated to PTGS2 

expressional silencing in RAJI cells. Accordingly, the demethylating effect of 

DAC on PTGS2 promoter region, leading to the induction of PTGS2 

expression in RAJI cells, indicates that promoter methylation plays an 

important role in PTGS2 silencing. In contrast, Toyota et al. reported, in a 

publication about colorectal cancer, a partial methylation of the first PTGS2 

exon in RAJI cells. Moreover, they showed that hypermethylation of this 

region was responsible for the PTGS2 expressional deficiency in colorectal 

cancer cell lines (Toyota, Shen et al. 2000). The different locations of the 

analyzed regions (i.e. gene-body and promoter region) are likely responsible 

for the differing methylation results. According to Mori et al., PTGS2 was 

found to be hypermethylated and transcriptionally silenced in JURKAT cells 

(Mori, Inoue et al. 2001). The identification of leukemia cell lines that are 

methylated and thus do not express PTGS2 may be a good experimental 

model to study PTGS2-independent effects of non-steroidal anti-inflammatory 

drugs. 
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PTGS2 is highly expressed in various cancer types, including breast, 

gastric, colorectal, lung, liver and prostate (Eberhart, Coffey et al. 1994; Liu 

and Rose 1996; Ristimaki, Honkanen et al. 1997; Liu, Yao et al. 1998; Wolff, 

Saukkonen et al. 1998). However, in this study we demonstrated that in 

comparison to PBMCs from healthy donors PTGS2 is downregulated in all 

blood cancer cell lines. The leukemia cell line HEL showed the highest 

expression of all leukemia and lymphoma cell lines associated with a 

hypomethylated promoter. Moreover, moderate PTGS2 expression was 

detected in blood cancer cell lines with either partially methylated (e.g. KBM-

5, HL-60) or unmethylated (e.g. MEG-01, TF-1) PTGS2 promoter. Finally, 

unmethylated and methylated PTGS2 promoters were detected in non-

expressing K-562 and MOLT-3 cells, respectively. PTGS2 silencing in K-562 

was already reported by Waskewich et al. (Waskewich, Blumenthal et al. 

2002). In contrast, previous studies showed that the CML cell line K-562 as 

well as chronic-phase CML patients were positive for PTGS2 (Giles, 

Kantarjian et al. 2002; Zhang, Liu et al. 2006). Due to these discrepancies, it 

remains to be confirmed if, despite of promoter hypomethylation, PTGS2 is 

silenced in K-562 cells. 

Independently of the methylation status, DAC exposure induced PTGS2 

promoter demethylation and leaded to increased PTGS2 transcriptional 

activity in JURKAT, RAJI, HL-60 and KBM-5 cells. It is conceivable that in 

contrast to K-562 cells, promoter regions of these cell lines are constitutively 

activated by cell line-specific overexpression of growth factors, tumor 

promoters or cytokines. Alternatively, it was reported that ALL-associated 

HTLV-1 infection might be responsible for the permanent induction of PTGS2 

expression by the viral Tax protein via CREB and NF-!B pathways. For 

instance, Mori et al. associated lack of PTGS2 expression to the absence of 

HTLV-1 in JURKAT cells (Mori, Inoue et al. 2001). However, the current study 

clearly shows that promoter methylation is causal for PTGS2 repression and 

that DAC exposure can reverse PTGS2 silencing by demethylation in HTLV-

1-negative JURKAT, RAJI and HL-60 cells (Uphoff, Denkmann et al. 2010). 

These results imply that HTLV-1 does not affect PTGS2 expression in the 

analyzed cell lines. It is possible that DAC-induced demethylation increases 

PTGS2 promoter accessibility for other regulatory factors that are either 
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constitutively expressed or DAC-induced in JURKAT, RAJI and HL-60 cells. 

Moreover, our results are consistent with the role of promoter 

hypermethylation in PTGS2 silencing.  

In contrast to DAC-mediated induction of PTGS2 expression in JURKAT, 

RAJI and HL-60, DAC exposure was not sufficient to induce PTGS2 

expression in partially methylated JVM-2 and MOLT-3 cell lines. In these cell 

lines, DNA methylation release is obviously not enough to induce PTGS2 

expression. Similarly to K-562 cells, JVM-2 and MOLT-3 cells probably 

require an additional signal to be activated even after PTGS2 promoter 

demethylation. In addition to PTGS2-regulating factors, it has been 

demonstrated that oncogenes such as H-RAS and c-MYB can positively 

regulate PTGS2 expression (Sheng, Shao et al. 1998; Ramsay, Friend et al. 

2000; Sheng, Shao et al. 2000). It is presumed that JVM-2, MOLT-3 and even 

K-562 cells do not constitutively express such PTGS2-inducing factors or 

onco-proteins.  

Incidence of PTGS2 promoter hypermethylation was high in biopsies 

derived from leukemia patients and was even higher in lymphoma patient 

samples. In accordance, malignant samples were frequently PTGS2 deficient 

or depleted compared to blood cells from healthy donors. Moreover, PTGS2 

promoter hypermethylation was correlated to PTGS2 transcriptional silencing 

in blood cancer patient samples. In comparison, patients with 

hypermethylated PTGS2 promoter showed consistently the absence of 

PTGS2 expression, whereas PTGS2 expression was highly variable in patient 

samples with unmethylated PTGS2 promoter region. Since PTGS2 

expression is highly inducible by factors for instance from the inflammatory 

processes, PTGS2 expression variations are possibly caused by population-

based differences.  

As shown in this study, PTGS2 is epigenetically silenced in leukemia 

and lymphoma cell lines and can be induced by treatment with the DNA 

demethylating agent DAC. Similarly, PTGS2 is hypermethylated and 

transcriptionally inactive in samples derived from patients with hematological 

malignancies. Hence, PTGS2 promoter region fulfills all requirements of 

Esteller’s candidate gene approach for the identification of new biomarkers 

(Esteller 2002). However, a cohort study with a large number of samples, 
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especially CML, AML and Burkitt’s lymphoma, could improve the previous 

results. Noteworthy, methylation-associated PTGS2 silencing is mainly limited 

to lymphoid lineage-derived blood cancer patient samples. If this is confirmed 

in further lymphoma and lymphoid leukemia patient samples, PTGS2 

methylation could be used as a blood cancer classification marker.  

The role of epigenetic PTGS2 silencing in tumorigenesis is still under 

discussion. It is commonly assumed that PTGS2 is overexpressed, promoting 

carcinogenesis by inducing genes such as cell survival genes (Eberhart, 

Coffey et al. 1994; Liu and Rose 1996; Ristimaki, Honkanen et al. 1997; Liu, 

Yao et al. 1998; Wolff, Saukkonen et al. 1998). Accordingly, disruption of 

PTGS2 expression decreases tumorigenicity (Oshima, Dinchuk et al. 1996). 

However, it must be taken into account that loss of PTGS2 expression 

seriously affects pathways, in which PTGS2 is involved (e.g. attenuated 

inflammation reaction). Further studies needs to clarify the biological roles of 

altered PTGS2 expression in cancer development and progression. 

Moreover, the time point of PTGS2 overexpression is debated, 

assuming that it is an early event during carcinogenesis. PTGS2 

overexpression may suppress at short-term cell progression but contribute at 

long-term to cell growth, invasion and metastasis (Fosslien 2001; Murata, 

Tsuji et al. 2004). Accordingly, epigenetic silencing of PTGS2, as reported in 

this study, could possibly be a very late event in carcinogenesis. However, 

this would exclude PTGS2 as an early epigenetic cancer biomarker. 

Nevertheless, Ma et al. reported that the metastatic potential of breast cancer 

cells is positively correlated with increased PTGS2 expression and enzymatic 

activity (Ma, Yang et al. 2004). Since PTGS2 could be used as a prognostic 

metastasis marker, analysis of the methylation pattern of hematological 

malignancies after diagnosis could help to evaluate potential cancer 

progression and invasiveness of cancer cells. Regarding PTGS2 as a 

therapeutic target, it was reported that treatment of lung and colorectal cancer 

patients with selective PTGS2 inhibitors had a strong chemoprevention 

potential and reduced cancer incidence, respectively. (Sandler, Halabi et al. 

2003; Harris, Beebe-Donk et al. 2007). Furthermore, inhibition of PTGS2 in 

prostate cancer showed delay and prevention of disease progression (Pruthi, 

Derksen et al. 2006). Consequently, the analysis of early PTGS2 methylation 
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pattern of high-risk population for blood cancer development could predict 

success of cancer prevention and cancer treatment by PTGS2 inhibitors.  

 

DNA methylation profiling of leukemia and lymphoma cell lines: 

promising results for blood cancer detection and assessment. 

 

The systematic study of DNA methylation profiles of selected genes 

unveiled a map of frequent and distinct epigenetic aberrations in DNA 

methylation, specific for each leukemia and lymphoma cell line. DNA 

hypermethylation was detected in genes involved in normal cell physiology 

such as DNA repair (e.g. MGMT), cell cycle control (e.g. CDKN2A) or cell 

detoxification (e.g. GSTP1).  

By using gene-non-specific approaches (e.g. restriction landmark 

genomic scanning) and gene-specific high-resolution studies (e.g. DNA 

methylation microarray), several studies already reported differential 

methylation amount in cancer cells (Costello, Fruhwald et al. 2000; Ehrich, 

Turner et al. 2008; Figueroa, Lugthart et al. 2010). The present study extends 

this knowledge on hematological malignant cells, showing by a gene-specific 

technique (i.e. MSP) that methylation frequency was highly variable. 

Accordingly to Paz et al. the highest gene methylation frequency was 

detected in the RAJI (BL) cells, followed by the KG-1a (AML) cell line (Paz, 

Fraga et al. 2003). Furthermore, ranking cell lines based on descending CGi 

methylation levels led to the following order: JURKAT (ALL), MOLT-3 (ALL), 

JVM-2 (CLL), KBM-5 (CML), HL-60 (AML), KG-1 (AML), HEL (AML), K-562 

(CML) and MEG-01 (CML) cell lines. The lowest methylation frequency was 

detected for the cell lines THP1 (AML) and TF-1 (AML). Although the 

candidate gene approach in our study was more extensive (26 genes) than in 

the publication of Paz et al. (15 genes) and that gene lists slightly differ 

between both studies, ranking of leukemia and lymphoma cell lines by their 

amount of methylation was in line with the results of Paz et al. Moreover, both 

studies consistently reported equal percentage of hypermethylation for K-562 

and HL-60 cell lines (Paz, Fraga et al. 2003). 

Currently, histology and cytology are still important diagnostic tools for 

cancer management, detection and staging of neoplasia. Hence, the current 
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study should evaluate if the methylation pattern could be used for blood 

cancer classification. Hierarchical clustering of blood cancer cell lines 

according to their methylation profile revealed differences between the 

analyzed blood cancer cell lines and clustered the lymphoma cell line RAJI 

outside of the leukemia cell lines. Furthermore, microarray-based study for 

DNA methylation analysis reported the promising possibility to use 

methylation to differentiate healthy from leukemia samples and to classify 

leukemia samples (Adorjan, Distler et al. 2002). However, leukemia cell lines 

were often misclassified and thus only partially grouped together in their 

theoretical cell type branches. Noteworthy, K-562 and MEG-01 CML cell lines 

were closely grouped in the same cluster, whereas KBM-5 was excluded from 

this cluster. In addition, HL-60 and KG-1 AML cell lines were clustered, 

whereas for instance HEL was located in another cluster. Strikingly, the 

candidate gene approach separately clustered the parental KG1 cell line from 

its less differentiated subline KG-1a (Furley, Reeves et al. 1986). It might be 

possible that this study uncovered a cell line for which cell type was 

incorrectly classified in literature such as for MDA-MB-435, which has long 

been believed to be a breast cancer cell line (Paz, Fraga et al. 2003). Indeed, 

while in the past, MDA-MB-435 was used as a breast cancer model, a lot of 

studies later showed that this cell line is of melanocyte nature (Lacroix 2009). 

However, the restrictive factors of the present study are, on the one hand, the 

number of the analyzed genes and on the other hand the selection of these 

genes. Thus, differences between the methylation patterns are not significant 

enough to classify the various hematological malignancies. Therefore, the use 

of additional genes in this candidate gene approach or a methylome-wide 

analysis would increase the stringency of the approach and should allow the 

classification of hematological hemopathies based on their methylation 

profiles (Adorjan, Distler et al. 2002). 

From a qualitative point of view, a broad range of genes were frequently 

hypermethylated in the analyzed leukemia and lymphoma cell lines, including 

CDH1, CALCA, LINE1, CDKN2A, CDKN2B, TMS1, MGMT and RARB. Due to 

the extensive hypermethylation of these genes in leukemia cell lines, they 

could theoretically be used as markers for blood cancer detection, even in the 

background of other cell types (i.e. tumor or normal cells). However, the 
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analysis of these genes is largely inadequate to subclassify hematological 

neoplasms, for instance based on their lineage. Another subset of genes (i.e. 

GSTP1, TIMP3, DAPK1, HIC-1, CDKN2A, APC, AHR, ESR1, RASSF1A 

TP73 and PTGS2) was occasionally methylated on various blood cancer cell 

lines. These genes are potentially good biomarkers for clinical stratification of 

blood cancer cells into their different subtypes. Finally, promoter regions of 

SOCS-1, RB1, MLH1, CASP8, CASP7, BCL2 and BCL2L11 genes were 

unmethylated in our cancer cell lines, clustering amongst others apoptosis-

related genes. Even though the methylation state of these genes indicates the 

conservation of the apoptosis potential, they are useless for an application as 

epigenetic biomarkers. Cell lines are often used in basic research without 

taking into account the epigenetic environment. However, if we want to 

analyze apoptosis, it would be worth to know the epigenetic silencing of 

apoptosis-associated genes. This study may serve as a starting point, 

extending our knowledge on the field of cancer cell lines.  

In addition to cancer detection and diagnosis, the analysis of DNA 

methylation alterations is a valuable source for information about the 

constitution of the cancer cells. DNA methylation-associated silencing of 

GSTP1 in RAJI and MEG-01 was described in detail for the first time in the 

present study. In accordance to Paz et al., we reported TIMP3 promoter 

hypermethylation in RAJI cells (Paz, Fraga et al. 2003) and additionally in the 

KBM-5 cell line. Regarding the HL-60 cell line, TIMP3 methylation results 

were controversial (Paz, Fraga et al. 2003). In consistence with former 

studies, DAPK1 hypermethylation was detected in RAJI, HL-60 and KG-1a 

cells and hypomethylation in K-562 and KG-1 cells (Paz, Fraga et al. 2003; 

Takahashi, Shivapurkar et al. 2004; Raval, Tanner et al. 2007; Chim, Chan et 

al. 2008). Moreover, Paz et al. reported that DAPK1 promoter is 

hypermethylated in JURKAT cell line. However, our results in accordance with 

other publications reported DAPK1 hypomethylation in JURKAT cells 

(Katzenellenbogen, Baylin et al. 1999; Takahashi, Shivapurkar et al. 2004; 

Chim, Chan et al. 2008). Raval et al. showed that DAPK1 promoter is 

methylated in the gene body region, whereas the promoter remains 

unmethylated (Raval, Tanner et al. 2007). Thus, differences in the analyzed 

gene loci might be at the origin of such discrepancies between studies.  
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In accordance with an earlier study, we showed HIC1 promoter 

hypermethylation in RAJI and K-562 cell lines (Issa, Zehnbauer et al. 1997). 

Moreover, Paz et al. and Guo et al. already published HIC1 hypomethylation 

in JURKAT, K-562, KG-1a, HL-60 and RAJI cell lines (Paz, Fraga et al. 2003; 

Guo, Burger et al. 2005). In line with previous data, we reported CDKN2A 

(p14ARF) promoter hypomethylation in RAJI and HL-60 cells and 

hypermethylation in KG-1a cells (Paz, Fraga et al. 2003; Chim, Chan et al. 

2008). However, predominant methylation of this cell cycle regulator in MOLT-

3 cells was unpublished. Furthermore, lack of MSP products for K-562, HEL 

and JURKAT cells were consistent with homozygous deletion of the CDKN2A 

(p14ARF) locus. Moreover, hypermethylation of APC gene was reported for 

several solid tumor cancer cell lines, whereas its DNA methylation was mainly 

unknown in blood cancer cells. In correlation with our results, Wu et al. 

reported hypermethylation of the APC promoter in JURKAT cells (Wu, Shen 

et al. 2009). In addition, we showed APC methylation in JVM-2 and MOLT-3 

cell lines. Regarding the methylation status of APAF-1 gene, widely differing 

results were obtained. Furakawa et al. reported hypermethylation of APAF-1 

gene in RAJI and K-562 cell lines and hypomethylation in JURKAT, and HL-

60 cell lines. In contrast, our data correlate with results from Chim et al., 

showing that APAF-1 is unmethylated in RAJI, HL-60 and JURKAT cells 

(Chim, Chan et al. 2008). Hypermethylation of AHR promoter was also 

detected in RAJI and JURKAT cells in this study. In contrast, Mulero-Navarro 

et al. reported AHR promoter hypermethylation in K-562 cells (Mulero-

Navarro, Carvajal-Gonzalez et al. 2006). Moreover, hypermethylation of ESR1 

gene was extensively described in former publications (Guo, Burger et al. 

2005; Gebhard, Schwarzfischer et al. 2006; Gebhard, Schwarzfischer et al. 

2006). However, our data demonstrated in contrast to Gebhard et al., that 

ESR1 promoter was hypomethylated in THP-1 and K-562 cell lines (Gebhard, 

Schwarzfischer et al. 2006). In line with previous data published by Paz et al., 

we showed RASSF1A promoter methylation in JURKAT, K-562 and RAJI cell 

lines as well as promoter hypomethylation in KG-1a and HL-60 cells (Paz, 

Fraga et al. 2003). In accordance to results from Corn et al., we observed 

TP73 methylation in KG-1a, HL-60 and RAJI cells. However, methylation of 

TP73 in JURKAT and KBM-5 cell lines has never been mentioned before. 
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Interestingly, methylation-associated silencing of PTGS2 has never been 

considered as epigenetic mark in hematological malignancies and was 

described for the first time in this study.  

E-cadherin is one the most commonly methylated genes in 

hematological malignancies. As proven by Paz et al. and Corn et al., we 

confirmed CDH1 hypermethylation in JURKAT, K-562, KG-1a, HL-60 and 

RAJI cells (Corn, Smith et al. 2000; Paz, Fraga et al. 2003). Moreover, 

Lakshmikuttyamma et al. revealed a partial methylation and complete 

methylation of CDH1 in KG1 and KG-1a cells, respectively 

(Lakshmikuttyamma, Scott et al. 2010). We further completed the list of CDH1 

promoter methylation-positive cell lines with MOLT-3, HEL, MEG-01, JVM-2, 

THP-1, TF-1 and KBM-5. Even though, CALCA gene is found hypermetylated 

in various hematological neoplasia (Ismail, El-Mogy et al. 2011). We 

determined CALCA hypermethylation in RAJI, KG-1, HL-60, Hel, MOLT-3, 

KG1a and JURKAT cell lines. In correlation with Paz et al., the cell cycle 

regulating gene CDKN2A (p16INK4a) and CDKN2B (p15INK4a) were shown here 

to be methylated in RAJI and KG-1a cells and the promoter deleted in THP-1 

and JURKAT cells (Dodge, Munson et al. 2001; Paz, Fraga et al. 2003; Galm, 

Herman et al. 2006M; Gebhard, Schwarzfischer et al. 2006). Moreover, 

CDKN2A (p16INK4a) gene methylation was detected in JVM-2, HEL as well as 

KG-1a cells and for CDKN2B (p15INK4a), methylation was observed in KBM-5, 

JVM-2 and MOLT-3 cells. TMS1 gene is often found methylated in breast 

cancer cells (Levine, Stimson-Crider et al. 2003). However, methylation-

associated silencing in leukemia and lymphoma cell lines remained so far 

undescribed. Surprisingly, here, TMS1 promoter was hypermethylated or 

partially methylated in all analyzed blood cancer cell lines with the exception 

of THP-1 cells. In accordance with Paz et al., the present study also revealed 

the hypermethylation of MGMT promoter region in RAJI, K-562, KG-1a and 

JURKAT cells, whereas its methylation status in HL-60 was different in both 

studies. Moreover, discordant results were published for the methylation 

status of RARB in HL-60, K-562 and JURKAT cell lines (Paz, Fraga et al. 

2003). The causes for these divergences between both studies are not clear, 

but as it has already been emphasized, region specific differences may be at 

the origin of such discrepancies.  
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Determination of the methylation status of the above mentioned genes 

could provide important information about chemosensitivity, cell motility, 

inflammation, hormone response, cell cycle regulation and apoptosis of 

cancer cells, improving cancer therapy. However, DNA methylation analysis in 

leukemia and lymphoma patient samples was so far done for only several 

genes (Galm, Herman et al. 2006; Boultwood and Wainscoat 2007). 

Therefore, the expansion of DNA methylation analysis to patient samples 

could reveal new path in blood cancer treatment. 

The use of a single gene locus to discriminate malignant from benign 

cells as well as to classify cancer cells has several drawbacks. The sensitivity 

is restricted by the hypermethylation frequency at a specific CpG locus. 

Moreover, as CGi methylation is not specific for blood cancer cells, 

hypermethylation of a specific gene can also occur in non-cancerous tissue or 

in other cancer types. Indeed, methylation analysis of several genes has more 

discriminatory power for detection of a specific cancer. A combinatorial 

approach with several of often but differential hypermethylated genes in 

leukemia cell lines could improve cancer detection and treatment. For 

example, combined detection of GSTP1 and APC hypermethylation in 

prostate cancer achieved a theoretical sensitivity of 98.3% as compared to 

benign prostatic hyperplasia and had a specificity of 100% (Jeronimo, 

Henrique et al. 2004). 

Even if the methylation status of some of the genes reported in this 

study were already published, combined analysis of these genes and blood 

cancer cell lines was never reported. In addition, this study extends the 

knowledge about blood cancer-associated hypermethylation to further target 

genes. As described above, cancer-associated DNA methylation changes 

were mostly analyzed on a gene-by-gene basis, metaphorically speaking, 

from a frog perspective (Schulz and Goering 2011). However, the 

development of new techniques allows today the eagle’s view, an overview of 

the whole methylome. In conclusion, simultaneous methylation analysis of 

selected and highly informative genes or genome-wide methylation patterns 

within the scope of individualized medicine could be used as a molecular 

fingerprint of cancer cells, enabling premalignant cancer detection, prediction 

and prognosis in the same manner as mRNA expression profiling is already 
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applied in molecular cancer diagnosis. Finally, DNA hypermethylation is 

nowadays a promising target for epigenetic drugs (e.g. DAC).  

 

Demethylation efficiency and specificity of 5’-aza-2’-deoxycytidine in 

hematological malignant cells. 

 

Initially synthesized as an anticancer cytotoxic agent in 1968 by Sorm et 

al., the later use of 5’-aza-2’-deoxycytidine (DAC) at low doses revealed its 

differentiation- and DNA demethylation-inducing activities (Piimi 1964; Pískala 

1965; Jones, Taylor et al. 1982). Interestingly, DAC is used as a molecular 

demethylation tool to analyze DAC-mediated induction of gene expression. It 

is known that in cell culture, high doses of DAC trigger cell death, whereas 

low doses lead to loss of DNMT activity and DNA demethylation (Christman 

2002). In addition, multiple clinical trials underlined the promising effect of low-

dose DAC in leukemia, leading to FDA approval for the medication of MDS 

(Kantarjian, O'Brien et al. 2003; Issa, Garcia-Manero et al. 2004; Schmelz, 

Sattler et al. 2005). Even if DAC is routinely used in research and is newly 

used for MDS treatment, statements about DAC-induced molecular and 

cellular effects in hematological malignancies are still vague. Hence, the last 

part of this thesis wanted to elucidate the cellular response as well as the 

demethylation efficiency and specificity of DAC treatment in leukemia cell 

lines at clinical relevant low doses (Aparicio, Eads et al. 2003). 

The present study showed that independently of the tested DAC 

concentrations, 4 days of DAC treatment were not sufficient to induce 

pronounced cell death in K-562 and MEG-01 cells (<10%). In contrast, HEL 

cells were more sensitive to DAC exposure (>40%) than K-562 cells whereas 

MOLT-3 cells were the most sensitive (>60%). Noteworthy, other results from 

our laboratory showed delayed apoptosis in K-562 and MEG-01 cells after 

sustained DAC exposure (data not shown). This study was extended to 

further cell lines, reporting moderate cell death in the DAC-treated RAJI 

Burkitt’s lymphoma and the JVM-2 CLL cell lines. Moreover, the present study 

showed that sustained DAC exposure decreased cell proliferation and 

increased growth inhibition in a time-dependent manner. In addition, DNMT1 

expression and global DNA methylation analysis showed that K-562, JVM-2 
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and MEG-01 genomes were relatively hypomethylated, compared to the 

hypermethylated RAJI and MOLT-3 genomes. In between, HEL genome is 

moderately methylated. Globally, cell death and methylation results indicate a 

direct link between the amount of DNA methylation, the level of DNMT1 

expression and DAC-sensitivity. We assume that cells with high amount of 

methylation and DNMT1 expression are more sensitive to DAC treatment than 

cells with hypomethylated genome. Since DAC induced global demethylation 

and DNMT1 depletion, alterations in DAC metabolism, leading to DAC 

resistance, can be excluded as reasons for differential DAC response of blood 

cancer cell lines (Qin, Jelinek et al. 2009). Since DAC-mediated 

demethylation is related to cell replication, cell proliferation could be a 

decisive factor influencing DAC response. However, all cell lines divide more 

or less at the same rate, leading to a similar demethylation pattern. It is 

conceivable that, in addition to the epigenetic background, genetic differences 

are responsible for the differential response of the analyzed leukemia cell 

lines to DAC treatment.  

It is commonly accepted that DAC is incorporated into the daughter 

stand during replication, subsequently DNMT1 is trapped, ubiquitinylated and 

finally degraded. Goshal et al. reported that DAC exposure (2.5µM) of HELA 

cells led to a entire loss of DNMT1 protein after 24 hours (Ghoshal, Datta et 

al. 2005). Moreover, complete decline of DNMT1 protein expression after 24 

hours of AZA treatment was reported in K-562, HL-60 and HEL cell lines. 

Despite sustained AZA exposure, DNMT1 protein increased again during the 

next 48 hours of treatment (Stresemann, Bokelmann et al. 2008). Moreover, 

another study described complete depletion of DNMT1 protein after 48 hours 

of DAC treatment in KG-1a and THP-1 cell lines at concentrations of 0.1µM 

and 0.3µM, respectively (Hollenbach, Nguyen et al. 2010). However, we 

observed in all analyzed cell lines a partial loss of DNMT1 protein after 72 

hours of DAC treatment. Since DAC and AZA have to be metabolized and 

integrated during replication, the question arises how DAC can induce 

complete removal of DNMT1 after maximal one cell division. Our data show 

moderate DAC-induced depletion of DNMT1, which is in accordance to 

passive loss of DNA methylation. 
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Numerous studies have already discussed the cellular consequences of 

DAC treatment. DNA damage-related and DNA methylation-independent 

activation of CDKN1A (p21) via p53 as well as G1 cycle arrest were reported 

in various DAC-treated AML cell lines (Jiemjit, Fandy et al. 2008). It is 

assumed that in p53-proficient cells, DAC-mediated DNA damages induce cell 

cycle arrest, whereas they lead to cell death in p53-deficient cells (Nieto, 

Samper et al. 2004). On the basis of literature, we found out that K-562 cells 

are p53 negative and HEL cells p53 positive. However, p53 status did not 

correlated with cell survival after DAC exposure (Durland-Busbice and 

Reisman 2002). Alternatively, Tamm et al. have attributed the induction of 

DAC-mediated apoptosis in AML cell lines to the demethylation-associated 

induction of the p53 sequence homolog and apoptosis inducer TP73 (Tamm, 

Wagner et al. 2005). However, the TP73 methylation signature of the blood 

cancer cell lines used in this study did not correlate with DAC-induced cell 

death (e.g. high DAC responsive cell lines are differentially methylated in the 

TP73 locus). Furthermore, it was reported that DAC could induce G2/M cell 

cycle arrest via the p38 MAP kinase pathway (Lavelle, DeSimone et al. 2003). 

As previously described, DAC induces the expression of p53 inducible 

apoptotic proteins Puma and Noxa, leading to the activation of both the 

intrinsic mitochondrial apoptosis pathway and caspase 3 or leading to a 

caspase-independent cell death pathway (Tamm, Wagner et al. 2005; 

Brodska, Otevrelova et al. 2011). In addition, DAC-mediated demethylation 

and induction of other genes, involved in cell death signaling or cell cycle 

regulation are probably at the origin for DAC-induced cell death in our cell 

models. For example, Furukawa et al. described induction of the cell death-

associated APAF-1 gene in DAC-treated acute leukemia cells (Furukawa, 

Sutheesophon et al. 2005). However, methylation profiling of blood cancer cell 

lines showed that APAF-1 is not differentially methylated between DAC-

sensitive and less sensitive cell lines. An alternative model for DAC-mediated 

cancer cell death is related to formation of covalent DNMT-DNA adducts in 

DAC containing DNA, leading to DNA damages and cytotoxicity (Juttermann, 

Li et al. 1994). Noteworthy, it is reported that DAC-induced demethylation and 

gene expression is rather unspecific. Thus, loss of gene regulation and 

simultaneous release of gene expression probably lead to activation of 
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several pathways. Therefore, it is most likely that DAC-induced cell death 

results of a combination of effects reflecting the sum of induced genes. 

The previous part of the study provided insights into DAC-induced 

cellular effects in blood cancer cell population. Noteworthy, results revealed 

that DAC exposure initiates heterogeneously apoptosis and DNA 

demethylation in the same cell population. However, significance of the MSRA 

approach is limited to global methylation and does not allow elucidating the 

causes for heterogeneous demethylation. Therefore, the existing question is: 

Does DAC exposure induce uniform but partial demethylation in the entire cell 

population or does it affect only certain cells and initiate subsequently cell 

death in these unmethylated cell subpopulation? Moreover, it remains to 

determine whether DAC-induced DNA demethylation is gene specific. 

To investigate these issues, RAJI cell line was selected as a suitable 

model based on its relatively high global DNA methylation level and low 

sensibility to DAC-induced cell death. Moreover, GSTP1 gene that is 

hypermethylated in RAJI cells was chosen as reference gene. Since DAC-

treated cells were not synchronized in previous experiments, we assumed 

that cell cycle distribution could be responsible for the differential DAC 

response. Theoretically, cells in G1 phase can integrate DAC during the first 

replication, leading to DNA demethylation from the very beginning of the 

treatment. In contrast, demethylation of cells in G2 is delayed because they 

have first to complete their division before they can subsequently integrate 

DAC. However, results showed that even if doubling time was continuously 

increasing, only an infinitesimal part of the cell population remained undivided 

or was blocked in the first cell division after 3 days of DAC treatment. At that 

time, most of the DAC-treated RAJI cells had divided 3 times. Absence of cell 

proliferation arrest and decreased cell proliferation rate in DAC-treated RAJI 

cells are in contrast to the commonly reported DAC-induced cell cycle arrest 

(Lavelle, DeSimone et al. 2003; Tamm, Wagner et al. 2005; Jiemjit, Fandy et 

al. 2008). Differences in the genetic and epigenetic background of leukemia 

and lymphoma cell lines as well as differences in applied DAC concentrations 

could be at the origin of the differences observed in this study. Moreover, 

combination of cell proliferation assay and GSTP1 immunostaining of DAC-

treated RAJI cells showed that all treated cells were dividing, whereas 
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demethylation-associated induction of GSTP1 expression was detected only 

in a subpopulation. In conclusion, cell proliferation is necessary but not 

sufficient to induce homogeneously demethylation and transcriptional activity. 

It is presumed that DAC does not directly affect cell proliferation and DNA 

demethylation of blood cancer cells, but probably has to be first absorbed and 

metabolized. In line with this assumption, the effect that we observed in this 

study is probably just the beginning of DAC-mediated demethylation. Some 

cells are probably not yet affected by DAC and continue to proliferate, 

whereas another cell subpopulation is demethylated and GSTP1 expression 

concomitantly induced. It is also possible that GSTP1 demethylated cells 

undergo in a next step cell cycle arrest and apoptosis. 

In order to exclude that the heterogeneous demethylation, observed in 

DAC-treated RAJI cells was specificity for the GSTP1 gene locus, further 

genes were included into this study. Deep sequencing results revealed that 

the analyzed genes were differentially demethylated in presence of DAC. For 

example, DCR1 and THBS1 genes were mainly resistant to DAC-induced 

demethylation, in contrast to BCL2L11 and NORE1A genes, which were more 

efficiently demethylated. Moreover, DAC-response was independent of the 

initial gene methylation since partial methylated BCL2L11 and 

hypermethylated GSTP1 promoter regions showed similar demethylation 

efficiency. In addition, deep sequencing results were consistent to GSTP1 

promoter BSP results, showing completely hypermethylated as well as fully 

unmethylated reads, indicating that only a part of cells was demethylated. 

Post-sorting analysis confirmed this statement, showing that GSTP1 promoter 

region was only unmethylated in GSTP1 expressing cells, and accordingly 

GSTP1 was hypermethylated in non-expressing cells. By using a DNA 

methylation reporter gene assay, Si et al. also reported heterogeneous gene 

reactivation by DAC treatment (Si, Boumber et al. 2010). In line with our 

previous hypothesis about delayed and stepwise loss of DNA methylation, we 

assume that heterogeneous re-expression could be explained by the 

existence of a mixed cell population consisting of cells with fully demethylated 

and transcribed DNA and other cells with fully methylated and silenced DNA.  

Finally, the current study showed that GSTP1 methylation was not 

recovered after DAC withdrawal. However, with a similar experimental setup, 
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Qin et al. showed recovery of LINE1 methylation. Indeed, 4-days of DAC 

exposure decreased initial LINE1 methylation to 25% whereas after 10 days 

of DAC withdrawal LINE1 methylation was recovered at 75% of the initial 

density in HL-60 cells (Qin, Youssef et al. 2007). Furthermore, a publication 

about hypermethylation of DAPK1 showed complete recovery of DAPK1 

methylation in RAJI cells after 7 days of DAC exposure (0.3µM) followed by 

11 days in fresh media (Katzenellenbogen, Baylin et al. 1999). Moreover, a 

recent study that used a DNA methylation reporter gene assay to analyze 

evaluation of methylation after DAC exposure showed a time-dependent 

recovery of methylation and reporter gene silencing after DAC withdrawal (Si, 

Boumber et al. 2010). We assume that in the experimental conditions of our 

study, the level of DAC-induced DNA demethylation exceeded a certain 

threshold leading to a decrease of cell proliferation, which is impairing DNA 

remethylation. In addition, it is possible that high quantity of DAC was already 

entered into cells and/or metabolized, sustaining DNMT1 inhibition. Moreover, 

it is possible that lack of recovery is cell line- or gene-specific. In conclusion, 

further experiments are required to understand the gradual loss of DNA 

methylation and explain heterogeneous cell behavior after DAC exposure. 
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7. Conclusions and perspectives 
 

Reversible epigenetic fingerprint is associated to glutathione-S-

transferase P1 gene silencing in human leukemia cell lines. 

 

Results of this thesis part gave new insights into the regulation of 

GSTP1 gene expression by epigenetic mechanisms in leukemia. GSTP1 

promoter hypomethylation and the associated euchromatin structure correlate 

with GSTP1 transcriptional activity (e.g. K-562). In contrast, heterochromatin 

configuration and the hypermethylated state of the GSTP1 promoter region 

lead to expressional silencing (e.g. RAJI, MEG-01). Treatments with the DNA 

hypomethylating agent DAC decrease the hypermethylated state of GSTP1 

promoter, inducing chromatin decondensation of this region and thus restoring 

GSTP1 expression in a subset of GSTP1-negative leukemia cells. 

Furthermore, screening of CLL, AML, ALL and lymphoma patient samples did 

not identify any DNA hypermethylation in the GSTP1 promoter region. This 

epimutation may be CML or Burkitt’s lymphoma specific or the sample 

frequency may be too reduced. Consequently, we will try to further collect and 

enlarge our pool of leukemia patient samples. In conclusion, these data 

demonstrate that cytosine methylation can repress GSTP1 gene expression in 

leukemia and lymphoma cells. Hence, we can consider the investigation of 

GSTP1 methylation marks as a prognostic factor for hematological 

malignancies. Furthermore, these data support the concept of the dominance 

of DNA methylation over HDAC inhibitor-sensitive histone deacetylation in 

silencing genes with a high CpG density in the promoter region.  

In perspective, this study has to be completed with further leukemia and 

lymphoma patient samples to validate GSTP1 as an epigenetic biomarker. 

Moreover, the biological role of GSTP1 epigenetic silencing in early 

carcinogenesis has to be clarified. For this purpose, we suggest to analyze 

the effects of GSTP1 repression in non-cancerous cell lines. Indeed, analysis 

of GSTP1 methylation pattern could allow to anticipate for instance 

chemosensitivity or improve individualized cancer medicine on the field of 

diagnostic, optimized prevention and therapeutic care.  
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Moreover, genome-wide miRNA expression profiling may identify 

miRNAs of importance for GSTP1 gene regulation in hematological 

malignancies. If a potential GSTP1 targeting miRNA is newly identified, the 

study will be completed with an analysis, studying the effect of miRNA 

downregulation or overexpression on GSTP1 expression. 

 

Aberrant epigenetic silencing and reduced expression of prostaglandin-

endoperoxide synthase 2 gene are common events in human 

hematological malignancies. 

 

Results showed that PTGS2 expression is markedly decreased or 

absent in leukemia and lymphoma cell lines. PTGS2 downregulation is closely 

associated with DNA hypermethylation, which can be reversed by DAC to 

increase PTGS2 expression. In patients, PTGS2 promoter methylation is 

identified in numerous blood cancer patients, which significantly contributes to 

PTGS2 downregulation. Noteworthy, PTGS2 downregulation occurs mainly in 

tumors from the lymphoid lineage. In conclusion, PTGS2 promoter 

methylation represents a promising biomarker for diagnosis in hematological 

malignancies. 

In perspective, PGE2 production in DAC-treated cells presenting PTGS2 

demethylation/overexpression will be analyzed in order to determine 

functionality of the DAC-induced protein. In order to evaluate the specificity of 

PTGS2 methylation regarding blood cancer cells, other cancer types will be 

included in this study. To investigate whether DNA methylation is sufficient to 

repress PTGS2 expression, effects of HDACis alone or in combination with a 

canonical inducer of PTGS2 expression such as phorbol myristate acetate 

(PMA) will be analyzed on PTGS2 expression in PTGS2-negative cells. 

Moreover, the biological role of PTGS2 methylation-associated silencing has 

to be clarified. Therefore, PTGS2 knock-out or overexpression in 

undifferentiated blood stem cells or normal non-malignant cells will give new 

insight into the roles of PTGS2 repression in cancer development. In addition, 

we plan to analyze the effects of PTGS2-specific inhibitors on cell 

chemosensitization, which should provide important information for cancer 

treatment and management. Similarly to the experiments carried out on 
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GSTP1 promoter, chromatin structure will be analyzed in PTGS2 hyper- and 

hypo-methylated blood cancer cell lines.  

To validate PTGS2 as a an epigenetic blood cancer marker, additional 

samples (especially CML, ALL and BL) and further leukemia and lymphoma 

subtypes have to be included in this study. To analyze the evolution of PTGS2 

methylation during cancer progression, samples from different blood cancer 

progression states should be included in the study. Finally, the study should 

be extended to other cancer types (e.g. prostate, lung, breast, colon) in order 

to determine for which cancer types PTGS2 methylation is characteristic. 

 

DNA methylation profiling of leukemia and lymphoma cell lines: 

promising results for blood cancer detection and assessment. 

 

Results of this study revealed high qualitative and quantitative variations 

in the leukemia and lymphoma cell line-specific methylomes.  

In perspective, this study should be extended to further genes by using 

methods investigating the whole methylome (e.g. next generation sequencing) 

instead of MSP analyses, thereby increasing the stringency of the approach. 

In addition, methylation pattern of miRNAs, which are the main players in the 

post-transcriptional regulation of gene expression, has to be included in the 

approach. Further leukemia, lymphoma and myeloma cell lines should be 

included in this study as well as healthy cells as reference. Moreover, this 

candidate gene approach should be applied to a large set of patient samples. 

The present study only served as a starting point, extending our knowledge 

on the field of blood cancer cell lines. However, the use of such a candidate 

gene approach for individualized blood cancer medicine remains a long-term 

objective.  

 

Demethylation efficiency and specificity of 5’-aza-2’-deoxycytidine in 

hematological malignant cells. 

 

The present study pointed out the differential sensitivity of blood cancer 

cell lines to DAC exposure. Furthermore, it was shown that DAC treatment 

leads to heterogeneous induction of DNA demethylation and cell death in a 
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cell population. Moreover, this study showed that cell proliferation is 

necessary to induce DNA demethylation but is not sufficient to cause 

complete loss of methylation in a cell population. However, the precise 

mechanisms and dynamics of DAC about induction of cell death are still not 

well understood. We assume that heterogeneous cell behavior, regarding 

demethylation, gene induction and apoptosis, is due to a gradual impact of 

DAC on the cells. Our model proposes that DAC treatment induces complete 

demethylation in a part of the cell population, whereas the rest of the cells 

remain DAC-unaffected and maintain their cancer-specific methylation 

pattern. Subsequently, methylation poor cells undergo apoptosis, whereas 

methylated cells continue to proliferate. Thus, this study leaves a lot of 

questions unanswered. In consequence, further experiments may be needed 

to verify the above-mentioned presumptions. 

In perspectives, comprehensive analyses of intrinsic and DAC-induced 

expression of various cell cycle and apoptosis regulators, the epigenetic 

pattern of these genes as well as their mutation status have to be included to 

finalize this study and determine the mode of action of DAC in blood cancer 

cell lines. Moreover, kinetic analysis of DAC integration into DNA, possibly by 

HPLC analysis could provide information about DAC-induced demethylation 

dynamics. In order to validate previous demethylation results, deep-

sequencing will be repeated. To investigate whether the heterogeneous 

induction of GSTP1 expression in RAJI cells is caused by complete 

demethylation of certain cells, we will perform post-sorting methylation 

analyses of further genes in DAC-treated RAJI cells. Moreover, the minimum 

degree of hypomethylation required for gene activation is largely unknown. 

GSTP1 expression-based sorting and analysis of both DNA strands by BSP 

or the use of hairpin-bisulfite PCR should elucidate whether DAC-induced 

promoter hemimethylation is sufficient to induce GSTP1 expression. In order 

to reveal a relationship between DAC-mediated demethylation and 

subsequent cell death, induction of membrane proteins by DAC exposure, 

coded by hypermethylated genes (i.e. cadherins or interleukins) will be 

analyzed and used to immunosort cells. In the next step, target membrane 

protein-positive and -negative cells will be separately cultured. Subsequent 

analyses of cell death will provide information about the link between 
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methylation loss and apoptosis. In addition, methylome analysis of both 

fractions can provide information about the quality and quantity of DAC-

mediated demethylation that is needed to induce apoptosis. Alternatively, a 

DNA methylation reporter gene assay (green fluorescent protein (GFP) under 

the control of a methylated cytomegalovirus promoter) could be used to 

analyze DAC-mediated demethylation and induction of expression. Moreover, 

this non-destructive technique allows post-sorting cell culture and subsequent 

cell death assessment. To exclude the presence of different cell-cycle stages 

as a reason for differential demethylation, RAJI cells should be synchronized, 

treated with DAC and demethylation-associated induction of gene expression 

evaluated. Finally, in order to exclude a RAJI cell-specific effect, all 

experiments should be repeated in other leukemia and lymphoma cell lines. 
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Summary 
 

Glutathione S-transferase P (GSTP) 1 and prostaglandin-endoperoxide 

synthase (PTGS) 2 genes are commonly silenced by promoter 

hypermethylation in various cancers. However, these epimutations remain 

poorly investigated in leukemia and lymphoma. We hypothesized that DNA 

methylation-induced GSTP1 and PTGS2 silencing may be involved in 

hematological malignancies. Our results demonstrated that methylation-

associated silencing of GSTP1 and PTGS2 was found in various leukemia 

and lymphoma cell lines. A correlation was found between GSTP1 chromatin 

structure and GSTP1 transcriptional state. Interestingly, PTGS2 

hypermethylation was observed in many samples from patient with 

hematological malignancies presenting reduced PTGS2 expression levels. By 

extending our study to other epigenetically regulated genes, we observed 

differential proliferation, cell death and DNA demethylation responses of blood 

cancer cell lines to the DNA demethylating agent 5-aza-2"-deoxycytidine. In 

conclusion, we identified DNA methylation signatures that could be promising 

clinical biomarkers in hematological malignancies. Finally, our study provides 

critical data for a better understanding of the mechanism of action and effects 

of 5-aza-2"-deoxycytidine that could provide guidance to predict sensitivity and 

response for a therapeutic use of this compound against hematological 

malignancies and potentially other cancers. 
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Zusammenfassung 
 

In Krebszellen liegen die Gene Glutathion-S-transferase P1 (GSTP1) 

und Prostaglandinsynthase-2 (PTGS2) häufig methyliert vor, jedoch wurden 

diese Epimutationen in Blutkrebszellen noch kaum untersucht. Wir 

vermuteten allerdings, dass fehlerhafte Methylierungen eine wichtige Rolle 

beim Ausschalten dieser Gene in Leukämie- und Lymphomzellen spielen 

könnte. Unsere Ergebnisse bestätigten diese Annahme und zeigten, dass die 

Genexpression von GSTP1 und PTGS2 durch die Hypermethylierung der 

DNA unterdrückt wird. Weiterhin konnte ein Zusammenhang zwischen der 

GSTP1 Genexpression und Chromatinstruktur hergestellt werden. 

Interessanterweise konnte die Methylierung des PTGS2 Gens auch in Zellen 

von Blutkrebspatienten nachgewiesen werden. Die Analyse weiterer 

epigenetisch regulierter Gene und die Untersuchung der Zellteilung, des 

Zelltods und der DNA Demethylierung in Blutkrebszellen, welche mit der 

demethylierenden Substanz 5-Aza-2’-Deoxycytidin behandelt wurden, zeigte 

dass jede Zelle unterschiedlich auf den Verlust der Methylierung reagiert. 

Schlussfolgernd sind die Methylierungsmuster der hier beschriebenen Gene 

vielversprechende Blutkrebsmarker. Weiterhin ermöglichen die Ergebnisse 

dieser Studie einen Einblick in die Wirkungsweise von 5-Aza-2’-Deoxycytidin 

in Blutkrebszellen. Diese Erkenntnisse könnten nicht nur eine wichtige Rolle 

für die Diagnose sondern auch für die Behandlung von Blutkrebs oder 

anderen Krebsarten mit dieser demethylierenden Substanz spielen.  
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Appendix 1: List of patient samples used for this study.  

Anonymization Age  
(years) 

Organ Diagnosis Origin 

CLL1 57 lymph node CLL Liège 

CLL2 77 lymph node CLL Liège 

CLL3 69 lymph node CLL Liège 

CLL4 60 lymph node CLL Liège 

CLL5 73 lymph node CLL Liège 

CLL6 78 lymph node CLL Liège 

CLL7 69 lymph node CLL Liège 

CLL8 64 lymph node CLL Liège 

CLL9 88 lymph node CLL Liège 

CLL10 83 lymph node CLL Liège 

CLL11 75 lymph node CLL Liège 

CLL12 81 Parotid gland CLL Liège 

CLL13 41 lymph node CLL Liège 

CLL14 31 lymph node CLL Liège 

DLBCL1 68 lymph node DLBCL Liège 

DLBCL2 65 lymph node DLBCL Liège 

DLBCL3 40 lymph node DLBCL Liège 

DLBCL4 71 spleen DLBCL Liège 

DLBCL5 72 lymph node DLBCL Liège 

DLBCL6 42 lymph node DLBCL Liège 

DLBCL7 67 stomach DLBCL Liège 

DLBCL8 74 lymph node DLBCL Liège 

DLBCL9 78 lymph node DLBCL Liège 

DLBCL10 52 lymph node DLBCL Liège 

DLBCL11 46 lymph node DLBCL Liège 

DLBCL12 76 subcutaneous 
tissue 

DLBCL Liège 

FL1 47 lymph node FL Liège 

FL2 55 lymph node FL Liège 

FL3 64 lymph node FL Liège 

FL4 58 retroperitoneum FL Liège 

FL5 65 lymph node FL Liège 
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Anonymization Age  
(years) 

Organ Diagnosis Origin 

FL6 44 lymph node FL Liège 

FL7 65 lymph node FL Liège 

FL8 50 lymph node FL Liège 

FL9 78 lymph node FL Liège 

FL10 66 lymph node FL Liège 

FL11 40 lymph node FL Liège 

FL12 57 lymph node FL Liège 

MCL1 72 lymph node MCL Liège 

MCL2 72 lymph node MCL Liège 

MCL3 50 lymph node MCL Liège 

MCL4 47 lymph node MCL Liège 

MCL5 50 bronchus MCL Liège 

MCL6 77 tonsil MCL Liège 

MCL7 72 eye socket MCL Liège 

MCL8 78 lymph node MCL Liège 

MCL9 80 lymph node MCL Liège 

MCL10 73 lymph node MCL Liège 

MCL11 73 lymph node MCL Liège 

MCL12 53 lymph node MCL Liège 

BL1 64 lymph node BL Liège 

BL2 34 liver BL Liège 

BL3 58 lymph node BL Liège 

LP1 n.a. bone marrow ALL Nancy 

LP2 n.a. n.a. AML Nancy 

LP3 n.a. bone marrow AML Nancy 

LP4 n.a. bone marrow AML Nancy 

LP5 n.a. blood CLL Nancy 

LP6 n.a. n.a. CLL Nancy 

LP7 n.a. n.a. AML Nancy 

LP10 n.a. n.a. CLL Nancy 

LP11 n.a. bone marrow AML Nancy 

LP35 n.a. bone marrow AML Nancy 

LP37 n.a. bone marrow ALL Nancy 

LP39 n.a. bone marrow AML Nancy 

LP40 n.a. n.a. ALL Nancy 

LP41 n.a. bone marrow ALL Nancy 
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Anonymization Age  
(years) 

Organ Diagnosis Origin 

LP43 n.a. n.a. ALL Nancy 

LP46 n.a. n.a. ALL Nancy 

LP48 n.a. n.a. ALL Nancy 

LP50 n.a. bone marrow AML Nancy 

LP54 n.a. n.a. AML Nancy 

601866 n.a. blood CML Marseille 

602393 n.a. blood BL Marseille 

603112 n.a. blood AML Marseille 

701757 n.a. blood AML Marseille 

702082 n.a. blood AML Marseille 

602519 n.a. blood AML Marseille 

700711 n.a. blood AML Marseille 

600389 n.a. blood AML Marseille 

603558 n.a. blood AML Marseille 

800563 n.a. blood AML Marseille 

703142 n.a. blood AML Marseille 

703821 n.a. blood MDS Marseille 

703821 n.a. Bone marrow MDS Marseille 

CHL1 n.a. Blood CML CHL 
Luxembourg 

CHL2 n.a. Blood CML CHL 
Luxembourg 

CHL3 n.a. Blood CML CHL 
Luxembourg 

ALL: acute lymphoblastic leukemia, AML: acute myeloid leukemia, CLL: chronic lymphocytic 
leukemia, CML: chronic myeloid leukemia, DLBCL: diffuse large B-cell lymphoma, MCL: 
mantle cell lymphoma, FL: follicular lymphoma, BL: Burkitt’s lymphoma, MDS: 
myelodysplastic syndrome, n.a.: information not available. 
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Appendix 2: Genomic DNA from RAJI cells treated for 3 days with 2µM DAC was 
bisulfite converted and regions of interest amplified by PCR. Methylation pattern was 
determined by next generation sequencing on a GS FLX platform. Detailed view on 
the sequence reads of BCL2L11, CALCA, CHFR, DAB2IPA, DAPK1, DCR1, DLC1, 
ESR1, EYA4, HIC1, H19, IGSF4, KLF4, LINE1, MGMT, OSMR1, PTGS2, RARB, 
THBS1, TIMP3 and TP73. Red bars indicate methylated and blue bars unmethylated 
CpGs. 
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Basic practical trainings: genetics, microbiology, molecular biology, biochemistry, 
biophysics, developmental biology 

2003 Basic practical trainings: molecular cell biology, histology 
 

M e e t i n g s   
2011 Cell Signalomics 2011, Kirchberg, Luxembourg; CLEPSO meeting 2011, 

Homburg, Germany; Annual Mini-Symposium, Namur, Belgium 
2010 Inflammation 2010, Kirchberg, Luxembourg; Epigenetic mechanisms in health and 

disease meeting 2010, Bruxelles, Belgium; Seminaire des jeunes chercheurs 
2010, Louvain Woluwé, Belgium 

2009 First LCA Summer course 2009, Strassen, Luxembourg; Lucilinx 2009, 
Limpertsberg, Luxembourg; Chromatin: Structure and Function 2009, 
Guanacaste, Costa Rica; 4th Luxembourgish Cytometry meeting 2009, Strassen, 
Luxembourg; Seminaire des jeunes chercheurs 2009, Gembloux, Belgium 

2008 3rd Luxembourgish Cytometry meeting 2008, Strassen, Luxembourg; ImageJ User 
and Developer Conference 2008, Kirchberg, Luxembourg; Seminaire des jeunes 
chercheurs 2008, Liège, Belgium 

 

 
Publications:  
 
Reversible epigenetic fingerprint-mediated glutathione-S-transferase P1 gene 
silencing in human leukemia cell lines 
Tommy Karius, Michael Schnekenburger, Jenny Gelfi, Jörn Walter, Mario Dicato, Marc 
Diederich 
Biochemical pharmacology, 2011 Jun 1;81 (11):1329-42 
 
Targeting inflammatory cell signaling mechanisms: a promising road to new 
therapeutic agents in chemoprevention and cancer therapy 
Michael Schnekenburger, Tommy Karius, Claudia Cerella, Marc Diederich 
Journal of experimental therapeutics & oncology, 2011; 9(1):1-4. 
 
Sustained exposure to the DNA demethylating agent; 2'-deoxy-5-azacytidine; 
leads to apoptotic cell death in chronic myeloid leukemia by promoting 
differentiation; senescence; and autophagy 
Michael Schnekenburger, Cindy Grandjenette, Jenny Ghelfi, Tommy Karius, Bernard 
Foliguet, Mario Dicato, Marc Diederich 
Biochemical Pharmacology, 2011 Feb 1:81 (3):364–378 
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In vivo control of CpG and CpA methylation at repetitive elements by DNA 
methyltransferases 
Julia Arand, David Spieler, Tommy Karius, Daniela Meilinger, Alexander Meissner, Thomas 
Jenuwein, Guo-Liang Xu, Heinrich Leonhardt, Verena Wolf, Jorn Walter 
Submitted 
 
Aberrant epigenetic silencing and reduced expression of prostaglandin-
endoperoxide synthase 2 gene are common events in human hematological 
malignancies 
Tommy Karius*, Michael Schnekenburger*, Mario Dicato, Marc Diederich 
Manuscript in preparation * Contribute equally to this work 
 
Apoptosis in human leukemia cells exposed to the DNA demethylating agent 
5-aza-2’-deoxycytidine 
Michael Schnekenburger, Tommy Karius, Guillaume Yettou, Claudia Cerella, Mario Dicato, 
Marc Diederich 
Manuscript in preparation 
 
Presentations: 
 
28/11/2008 FNR Journal Club, University of Luxembourg and the 

Laboratoire de biologie moléculaire et cellulaire du cancer, 
Kirchberg, Luxembourg  
Subject: Gene silencing in cancer by histone H3 lysine 27 
trimethylation independent of promoter DNA methylation, Yutaka 
Kondo et al., Nature Genetics 06/2008; 40(6) 

13/03/2009 
29/06/2009 
27/08/2009 
19/04/2010 
07/06/2010 
11/11/2010 

Laboratory meeting, Laboratoire de biologie moléculaire et 
cellulaire du cancer, Kirchberg, Luxembourg 
Subject: Presentation of the actual research results 

27/04/2009 
27/09/2009 
05/03/2010 
20/09/2010 

Laboratory evaluation, Laboratoire de biologie moléculaire et 
cellulaire du cancer, Kirchberg, Luxembourg 
Subject: Presentation of the actual projects 

09/02/2010  
 

Project presentation (Rudy Balling, University of 
Luxembourg), Laboratoire de biologie moléculaire et cellulaire 
du cancer, Kirchberg, Luxembourg 

09/02/2010 Project presentation (Bob Phillips, Integrated Biobank 
Luxembourg), Laboratoire de biologie moléculaire et cellulaire 
du cancer, Kirchberg,Luxembourg 
 

13/09/2011 Annual Mini-symposium, Ecole Doctorale Thematique en 
cancerologie experimentale, Groupe de contact FNRS „miRNA 
and Cancer, Faculté de medecin, Namur, Belgium 
Subject: Reversible epigenetic fingerprint-mediated glutathione-S-
transferase P1 gene silencing in human leukemia cell lines 
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Poster presentations: 
 
16/11/2009-
19/11/2009 

Conference: Chromatin: Structure and Function, Guanacaste, 
Costa Rica  
Poster: Prediction of cell sensitivity and response to 5-aza-2'-
deoxycytidine in leukemia cells 

10/06/2010 Conference: Epigenetic mechanisms in health and disease 
meeting, Bruxelles, Belgium 
Poster: Reversible epigenetic fingerprint-mediated glutathione-S-
transferase P1 gene silencing in human leukemia cell lines 

07/12/2010 Conference: Séminaire des jeunes chercheurs (Télévie), 
Louvain Woluvé, Belgium  
Poster: Reversible epigenetic fingerprint-mediated glutathione-S-
transferase P1 gene silencing in human leukemia cell lines 

12/03/2011-
13/03/2011 

Conference: CLEPSO, Clinical epigenetics international 
meeting, Homburg, Germany 
Poster: Reversible epigenetic fingerprint-mediated glutathione-S-
transferase P1 gene silencing in human leukemia cell lines 

13/09/2011 Conference: Annual Mini-symposium, Ecole doctorale 
thematique en cancerologie expérimentale, Groupe de contact 
FNRS „miRNA and Cancer, Faculté de médecine, Namur, 
Belgium 
Poster: Reversible epigenetic fingerprint-mediated glutathione-S-
transferase P1 gene silencing in human leukemia cell lines 

 
Conference staff: 
 
27/01/2010-
30/01/2010 

Inflammation 2010 conference, Inflammation cell signalling 
mechanisms as therapeutic targets, Kirchberg, Luxembourg  

26/01/2011-
28/01/2011 

Cell-Signalomics 2011 conference, Integrated cellular pathology 
– Systems biology of human disease, Kirchberg, Luxembourg 

 
Internships: 
 
2010 LOUREIRO Camilo Maria Helena, Job discovery, Lycée Esch, 

Luxembourg 

2011 FRENGER Elodie, Etude des altérations du profil de méthylation de 
gènes suppresseurs de tumeur dans les leucémies: le cas des 
leucemies myeloïdes et lymphoblastiques aiguës 
MASTER « ingénierie de la santé et sciences du médicament » 
parcours « Bio-ingénierie et médicaments », Nancy-Université Henri 
Poincaré 

 
 
 


