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                      Abstract 

ABSTRACT 
 
 

The use of yeasts as vehicle for protein antigens has been demonstrated to be a highly 
effective vaccination approach. In part, this can be attributed to the intrinsic adjuvant 
properties of yeast cell wall components. Moreover, the correct processing of 
recombinantly expressed proteins and the safety status of many yeast genera has 
encouraged the onset of preclinical and clinical trials using yeast vectors. However, the 
vast majority of such studies focused the attention on yeasts of the genus 
Saccharomyces as candidate T cell vaccine. In this work, different yeast genera were 
evaluated as potential antigen carrier in view of the development of novel yeast-based 
vaccines. For this purpose, yeasts were initially assessed for their ability to induce 
maturation and activation of human dendritic cells. Next, the internalization profile of 
selected yeasts by mammalian phagocytes was analyzed, as well as the involvement of 
pattern recognition receptors in the uptake process. Subsequently, yeasts engineered to 
express foreign proteins were assessed for their antigen delivery capacity. In vitro 
antigen presentation and ex vivo whole blood assays showed that recombinant yeast 
genera differently activate antigen-specific T cells. Furthermore, antigen localization 
played a decisive role in T cell activation. The data presented here strongly support the 
potential of recombinant yeast in the development of novel vaccine strategies in order to 
induce antigen-specific T cell responses. 
 
 
Der Einsatz von Hefen als Vehikel für Proteinantigene stellt eine vielversprechende 
Vakzinierungsstrategie dar, was u.a. auf adjuvante Eigenschaften der Hefe-
Zellwandkomponenten zurückzuführen ist. Weiterhin haben der Nachweis der korrekten 
Prozessierung rekombinanter Proteine und der unbedenkliche Status vieler 
Hefegattungen ihren Einsatz in präklinischen und klinischen Studien gefördert. Bislang 
hat sich die Mehrzahl dieser Studien auf Hefen der Gattung Saccharomyces als 
Vakzinkandidaten für zellvermittelte Immunantworten konzentriert. Im Rahmen dieser 
Arbeit wurden verschiedene Hefegattungen als potentielle Antigenvehikel zur 
Etablierung neuartiger Hefe-basierter Vakzinen untersucht. Zunächst wurden 
Ausreifung und Aktivierung von Dendritischen Zellen durch diverse Hefegattungen 
analysiert. Danach wurden sowohl die Aufnahme bestimmter Hefegattungen durch 
Säuger-Phagozyten als auch die Beteiligung spezifischer Rezeptoren in diesem Prozess 
untersucht. Anschließend wurde die Fähigkeit rekombinanter Hefen zum Antigen 
„Delivery“ evaluiert. Durch in vitro Antigenpräsentation und ex vivo Vollblut-Assays 
konnte gezeigt werden, dass verschiedene Hefegattungen Antigen-spezifische T-Zellen 
unterschiedlich aktivieren. Des Weiteren spielt die Antigenlokalisierung eine wichtige 
Rolle bei der T-Zellaktivierung. Die vorliegenden Ergebnisse unterstreichen das 
Potenzial rekombinanter Hefen bei der Entwicklung neuartiger Impfstrategien zur 
Induktion Antigen-spezifischer T-Zell-Immunantworten. 
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I. INTRODUCTION 

 

 

1. The immune system – a short overview 

The immune system consists of a set of molecules, cells, tissues, and organs that work 

together to provide protection against foreign organisms. The initial phases of the host 

defense against infection depend on the mechanisms of innate immunity. It comprises 

epithelial barriers, phagocytic cells (dendritic cells (DCs), macrophages), soluble 

factors, such as complement proteins, granulocytes (basophils, eosinophils and 

neutrophils), mast cells, natural killer cells, and cytokines that coordinate the functions 

of the cells of the innate immunity. The innate immunity is always present in all 

individuals, reacts rapidly and equally to repeated infections (without developing an 

immunologic memory with repeated exposure to a given pathogen), and is able to 

distinguish between a group of related pathogens. Adaptive immunity is a response to 

antigen mediated by CD4+ and CD8+ T lymphocytes and B lymphocytes. Adaptive 

immune responses develop more slowly and are characterized by specificity for distinct 

molecules and development of immunological memory, which is the capability of 

responding more vigorously to repeated exposure to the same antigen (Janeway et al., 

2001; Abbas et al., 2007). 

Adaptive immunity can be divided into humoral and cell-mediated immune 

responses, which have different mediators and functions. In the humoral immunity, 

antibodies produced by B lymphocytes recognize microbial antigens and contribute to 

immunity in three main mechanisms: (i) neutralization, i.e. preventing pathogens from 

entering cells; (ii) opsonization, in which antibodies coat the pathogen surface 

promoting particle phagocytosis via recognition of a portion of the antibody (Fc) by a 

Fc receptor in the phagocytic cell; and (iii) complement activation, which results in 

binding of complement proteins to the microbe, promoting either enhanced 

opsonization, recruitment of phagocytes to the site of infection, or microbe lysis via 

pore formation. Cell-mediated immunity involves the action of T lymphocytes, which 

induce destruction of pathogens residing in phagocytic cells or killing of infected cells. 

T lymphocytes comprise functionally different subpopulations such as helper T cells, 

cytotoxic T lymphocytes (CTLs) and regulatory T cells. Helper T cells, upon antigenic 

stimulation, produce cytokines that promote the proliferation and differentiation of T 

cells and activate, among other cell types, macrophages and B lymphocytes. CTLs kill 

http://www.ncbi.nlm.nih.gov/books/NBK10759/def-item/A2958/
http://www.ncbi.nlm.nih.gov/books/NBK10759/def-item/A2943/


                Introduction 
 

  13 

cells displaying foreign antigens, such as cells infected with virus or intracellular 

pathogens. Regulatory T cells are mainly involved in inhibiting immune responses 

(Janeway et al., 2001; Abbas et al., 2007). 

Protective immunity against a specific pathogen can be elicited upon exposure to 

the microbe, in a process called active immunization, or by transferring serum or 

lymphocytes from an immunized host without any contact of the recipient with the 

antigen, a process named passive immunization (Abbas et al., 2007). 

 

 

1.1. Antigen recognition and presentation to T lymphocytes 

Antigen-presenting cells 

Antigen-presenting cells (APCs) are specialized elements which take up and display 

antigens to T cells. DCs, macrophages and B cells are called professional APCs, since 

they express MHC molecules and co-stimulators. However, DCs are considered the 

most effective APCs as they are the only cell type which can stimulate naïve T cells 

and, consequently, initiate T cell responses (Abbas et al., 2007). 

DCs comprise a heterogeneous cell population derived from bone marrow 

precursors and are widely distributed, in an immature state, into lymphoid and 

nonlymphoid tissues. In peripheral tissues, immature DCs sense and capture microbes 

and other antigens. After engagement of antigens with receptors, as well as detection of 

pro-inflammatory cytokines, DCs migrate to lymph nodes and undergo maturation. 

Maturation is characterized by reduced ability in internalizing antigens but increased 

antigen presentation capacity. Furthermore, MHC class II molecules are redistributed 

from intracellular compartments to the cell surface, and the expression of costimulatory 

molecules (such as CD80, CD86), MHC class I, and T cell adhesion molecules (e.g. 

CD58) is upregulated. DCs also adjust their profile of chemokine receptors that enable 

homing to lymphoid organs. Besides, the cells show “dendritic” projections, which 

enable a large contact surface to the surroundings and may enhance the odds for T cell 

interaction. In lymphoid organs, mature DCs stimulate naïve T cells priming immune 

responses. DCs are able to elicit distinct types of T cell responses, depending on their 

lineage, maturation status and activation signals (Huang et al., 2001; Liu et al., 2001; 

Mellman and Steinman, 2001; Guermonprez et al., 2002; Reis e Sousa, 2006). 

Immature DCs and macrophages can internalize antigens by distinct 

mechanisms. Antigen capture via receptor-mediated endocytosis enables efficient 
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antigen delivery to the processing compartment. Antigens that do not associate with cell 

surface receptors can be internalized by fluid phase pinocytosis and presented by APCs, 

although with lower efficiency. Fluid phase uptake can happen through different means: 

(i) micropinocytosis, in which clathrin-coated pits invaginate to form small vesicles (< 

0.1 μm). Soluble proteins that enter the vesicles associate with receptors in the coated 

pit, being further trafficked to lysosomes and degraded; and (ii) macropinocytosis, in 

which small particles enter larger vesicles (0.5-3 μm) formed at sites of membrane 

ruffling mediated by the actin cytoskeleton. Micropinocytosis is a constitutive process 

which occurs in nearly all cells, whereas macropinocytosis is restricted to distinct cell 

types (APCs), for example macrophages and immature DCs (Sallusto et al., 1995, 

Steinman and Swanson, 1995, Lam et al., 2007). 

In phagocytosis, particles larger than 1.0 µm are internalized in a receptor 

triggered, actin-based mechanism which involves membrane extension or addition in 

order to create an intracellular acidified compartment (Morrissette et al., 1999). After 

internalization, phagosomes undergo maturation by a sequence of fission and fusion 

events with components of the endocytic pathway, resulting in mature phagolysosomes 

(Aderem and Underhill, 1999). 

A number of surface receptors has been reported to recognize pathogen-

associated molecular patterns (PAMPs) present on microorganisms. These so-called 

pattern-recognition receptors (PRRs) recognize, among others, bacterial 

liposaccharides, unmethylated CpG motifs of bacterial DNA, viral double-stranded 

RNA, β-glucans, chitin, mannans, and fungal nucleic acids. PAMPs are highly 

conserved structures, since they are indispensable for the survival of the 

microorganisms. Recognition by PRRs results in microbial ingestion and killing through 

respiratory burst, among other mechanisms. PRRs activate signaling pathways, 

stimulating several cellular responses, such as cytokine and chemokine production, and 

therefore connect innate and adaptive immunity (Figdor et al., 2002; Tsoni and Brown, 

2008; Brown, 2011; Romani, 2011). A broad variety of PRRs help in the identification 

of potential pathogens, for example Toll-like receptors (TLRs), C-type lectin receptors 

(CLRs), integrins, or scavenger receptors (Brown, 2011). The observation that 

glycosylated protein antigens are more efficiently internalized than nonglycosylated 

ones indicates that CLRs are abundantly expressed in DCs (Yokota et al., 2001; Figdor 

et al., 2002). Macropinocytosis and mannose receptor-mediated endocytosis lead to 

antigen delivery to MHC class II-containing compartments, but particles engulfed via 
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mannose receptors are considerably more effective at increasing T cell proliferation 

(Tan et al., 1997; Lam et al., 2005). 

 

Antigen processing and presentation 

Antigen peptides recognized by T cells are displayed by specialized glycoproteins that 

are encoded by genes of the major histocompatibility complex (MHC), which fall into 

two classes, I and II. MHC classes I and II molecules exhibit different structures, 

functions and distribution patterns among cells. Each MHC molecule can associate with 

a broad variety of peptide antigens, enabling the formation of diverse peptide-MHC 

complexes. Therefore, the immune system can specifically react to a large diversity of 

challenges (Madden, 1995; Klein and Sato, 2000; Janeway et al., 2001; Abbas et al., 

2007). 

Basically, MHC molecules consist of a peptide-binding groove, an IgG-like 

region, a transmembrane domain, and a cytoplasmic region (Abbas et al., 2007). MHC 

class I molecules consist of two polypeptide chains, a heavy chain (α chain) which 

spans the membrane, and the non-covalently attached β2-microglobulin (β2m; Bjorkman 

et al., 1987). These molecules are expressed by almost all nucleated cells, but the 

expression level varies according to the tissue. In contrast, MHC class II molecules are 

generally found on a subgroup of immune cells, such as DCs, macrophages, B 

lymphocytes, thymic epithelial cells (Klein and Sato, 2000). MHC class II molecules 

are composed of two transmembrane polypeptide chains, α and β, which are 

noncovalenty associated (Janeway et al., 2001). 

In order to enable proper T cell recognition, MHC molecules must be capable of 

retaining the bound peptide for a sufficient time period. Even though such interaction 

normally requires high specificity, peptide-MHC binding is both stable and 

promiscuous (Madden, 1995). 

Generally, MHC class I molecules present peptides derived from degraded 

proteins synthesized by the cell or entering the cytosol, such as tumor antigens or 

proteins encoded by intracellular pathogens. Since MHC class I is expressed by the 

majority of cells, these can be inspected by circulating CD8+ cytotoxic T cells for 

potential infection or improper protein expression. Cellular proteins are degraded in the 

cytosol, essentially by the proteasome, and the resulting peptides are translocated by 

TAP (transporter associated with antigen processing) into the lumen of the endoplasmic 

reticulum (ER), where an aminopeptidase trims the peptides down to a length of 8-10 

http://www.ncbi.nlm.nih.gov/books/n/imm/A2528/def-item/A3043/
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amino acids for association with class I molecules. After this association, the MHC 

class I molecule completes its folding and the peptide-MHC I complex leaves the ER, 

being transported via Golgi apparatus to the cell surface, where it can interact with 

CD8+ T cells (Germain and Margulies, 1993; Ackerman and Cresswell, 2004; Cresswell 

et al., 2005). 

Exogenous proteins acquired by endocytosis or from internalized plasma 

membrane proteins are degraded within acidified vesicular compartments, giving rise to 

peptides that can associate with MHC class II molecules. MHC II molecules are 

expressed mainly by B cells, DCs, and monocytes/macrophages. MHC II molecules 

assemble as αβ heterodimers in the ER and associate with an invariant chain (Ii), 

preventing the binding of ER peptides. An Ii peptide called CLIP (class II-associated 

invariant-chain peptide) occupies the peptide-binding groove. Further, in MHC class II-

containing compartments, Ii undergoes degradation and CLIP is removed afterwards so 

that a high-affinity peptide can bind (reviewed by Rocha and Neefjes, 2008). Peptide-

MHC-II complexes travel to the cell surface and interact with specific CD4+ T cells. 

Peptides generated from degradation of internalized exogenous antigens normally do 

not bind to MHC class I molecules, preventing that CTL lyse normal cells which may 

have engulfed antigens from tumor or virus-infected cells (Harding and Geuze, 1992; 

Germain and Margulies, 1993; Rodriguez et al., 1999; Ackerman and Cresswell, 2004). 

 In macrophages and DCs, exogenous antigens can escape from vacuolar 

compartments into the cytosol and enter the endogenous pathway for processing and 

presentation by MHC-I molecules (Fig. 1). This process of providing engulfed proteins 

access to proteasomes and their resulting oligopeptides entry into the MHC class I 

processing machinery is known as “cross-presentation” and constitutes a requirement 

for induction and expansion of CD8+ T cell responses (Harding and Song, 1994; 

Rodriguez et al., 1999; Ackerman et al., 2005; Wadle et al., 2006). 

Once antigens are found in phagosomes, different mechanisms can lead to MHC 

class I presentation. In the phagosome-to-cytosol pathway, the antigen escapes from the 

phagosome into the cytosol in an unknown process and is degraded by proteasomes. 

Some of the generated peptides are then transported by TAP and loaded onto MHC 

class I molecules in the ER or “ER-phagosome” vesicles. Newly synthesized MHC 

class I molecules transport peptides to the cell surface for further presentation. Several 

evidences suggest that the phagosome-to-cytosol pathway is the main one operating in 

vivo. In the vacuolar pathway, antigenic peptides are generated from internalized 
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antigens hydrolysed by proteases in the phagosome and then associate with recycling 

MHC class I molecules. A third mechanism has been proposed, the “endosome to ER 

pathway”, which would explain the cross-presentation of soluble proteins. It has been 

reported that some exogenous soluble proteins can be internalized by DCs and 

transported into the ER. Since proteins in the ER can gain access to the cytosol for 

degradation by the ER-associated degradation pathway (ERAD), this mechanism would 

elucidate the phenomenon of cross-presentation of soluble proteins (reviewed by Rock 

2003; Rock and Shen, 2005). 

The process of exogenous antigen capture by APCs, processing into the MHC 

class I presentation pathway, and subsequently priming of CTL is termed ‘cross-

priming’ (Heath and Carbone, 2001). Cross-priming is considered to be inefficient, but 

it has been postulated that dendritic cells cross-prime CD8+ T cells with more efficiency 

than other APCs. Furthermore, particulate antigens elicit, in general, more efficient 

cross-priming than their soluble counterparts. Cross-presentation is desirable in vaccine 

approaches based on proteins that aim at the generation of CD8+ T cell responses. 

Therefore, numerous attempts to enhance the effectiveness of this process have been 

made in the field of vaccine development (Maecker et al., 2001). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Antigen-processing pathways. Simplified mechanisms for presentation of 
peptides associated with MHC I or MHC II molecules are shown. From Heath and 
Carbone, 2001. 
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T lymphocytes 

Naïve T cells are inexperienced cells that have not encountered an antigen. In lymphoid 

tissues, T cells interact with APCs in a process mediated by adhesion molecules such as 

CD54 and CD58 on the APC and LFA-1 and CD2 on the T cell. This enables T cells to 

sample MHC molecules for the presence of a certain peptide. After binding of the T cell 

receptor (TCR) and the co-receptor (CD4 or CD8) to a peptide-MHC complex and co-

stimulation, the T cell becomes activated and can proliferate and differentiate. Most of 

the T cells that undergo proliferation differentiate into effector T cells, others can 

differentiate into memory cells. Among the effector T cell population, the majority of 

the cells undergo apoptosis after antigens have been cleared, while others become long-

lived memory T cells (Abbas et al., 2007; Janeway et al., 2001). 

Naïve CD4 T cells can differentiate into distinct cytokine-producing subsets 

with different immuneregulatory functions. Effector CD4+ T helper (TH) cells have been 

divided into some lineages, including TH1, TH2, and TH17 cells. Development of a 

specific TH subset is determined by various stimuli, such as the characteristic of the 

peptide-MHC ligand, the costimulatory molecules involved and cytokines. In addition 

to ligation of the TCR and costimulatory receptors (as described before), IFN-γ and IL-

12 are the main inducers of TH1-cell differentiation and IL-4 triggers TH2-cell 

differentiation. TH17 differentiation is stimulated by TGF-β, IL-6, IL-1, and possibly 

other pro-inflammatory cytokines (Janeway et al., 2001; Dong, 2006; Abbas et al., 

2007). Other TH subsets have been described in the past few years, such as TH9, TH22, 

and TFH (follicular helper T cells), but this theme is beyond the scope of the present 

work. 

Infections by intracellular bacteria and some parasites as well as by viruses 

induce reactions of the innate immune system that are involved in the production of IL-

12, IL-18 and type I interferons. IL-12 is the main cytokine involved in TH1-cell 

differentiation. TH1 cells produce characteristic cytokines, especially IL-2 and IFN-γ, 

driving the development of strong cell-mediated immunity, most notably in combating 

intracellular pathogens. IFN-γ activates macrophages, elicits intracellular killing of 

microorganisms by phagocytes and stimulates B cells to produce opsonising and 

complement-fixing IgG antibodies. Additionally, IFN-γ induces further TH1 

differentiation and inhibits TH2-cell proliferation (Janeway et al., 2001; Farrar et al., 

2002; Dong, 2006; Abbas et al., 2007). 
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TH2 differentiation is driven by chronic T cell stimulation, which can be 

triggered by allergens or helminths, for example. TH2 cells produce a set of cytokines, 

such as IL-4, IL-5, and IL-13, mediating allergic responses and humoral immunity. IL-4 

stimulates B cells to produce neutralizing antibodies; IL-4 and IL-13 induce the 

production of IgE antibodies against helminths and also activate macrophages to 

express mannose receptors (alternative macrophage activation); IL-5 activates 

eosinophils in the neighbourhood of helminths. Mast cells are activated by IgE-

opsonized helminths, leading to degranulation. IL-4 and IL-10 inhibit TH1-cell 

differentiation (Farrar et al., 2002; Dong, 2006; Abbas et al., 2007). 

TH17 cells produce IL-17, a regulator of inflammatory responses, and may be 

involved in the induction of neutrophil-rich inflammation. TH17-cell differentiation is 

induced by TGF-β in combination with IL-1 and IL-6, and inhibited by IL-4 and IFN-γ. 

IL-23 is associated with maintenance and survival of the TH17 cell subset (Dong, 2006; 

Abbas et al., 2007). 

Naïve CD8+ T cells differentiate into CTLs, wich play a crucial role in 

combating infections caused by viruses and intracellular pathogens. CTLs kill target 

cells which display the same peptide-MHC class I complex that has driven the 

proliferation and differentiation of the naïve CD8+ T cells. CTL-mediated killing of 

target cells can occur by two main mechanisms and requires direct contact between the 

effector and target cells. In one mechanism, cytotoxic proteins such as perforin (a 

membrane-disrupting molecule) and granzymes (serine-proteases) are released by 

exocytosis, inducing apoptosis of the target cell via activation of cell-death pathways. 

Another mechanism involves interaction of surface molecules on the CTLs and the 

target cells. The target-cell death receptor Fas binds to Fas ligand (FasL) on CTL, 

leading to caspase-dependent apoptosis of target cells. CTLs can also secrete cytokines 

such as IFN-γ, TNF-α, and TNF-β. IFN-γ, among other functions, restrains viral 

replication, promotes increased MHC class I expression in infected cells, recruits 

macrophages to the site of infection and can act synergistically with TNF-α or TNF-β, 

for instance, in macrophage activation (Janeway et al., 2001; Trapani and Smyth, 2002; 

Abbas et al., 2007). 

 

Memory T cells 

After clearance of an infection by means of T-cell mediated immunity, part of the 

population of T cells specific for a given antigen remains for years or for the whole life 

http://www.ncbi.nlm.nih.gov/books/n/imm/A2528/def-item/A2672/
http://www.ncbi.nlm.nih.gov/books/n/imm/A2528/def-item/A2672/
http://www.ncbi.nlm.nih.gov/books/n/imm/A2528/def-item/A2672/
http://www.ncbi.nlm.nih.gov/books/n/imm/A2528/def-item/A3315/
http://www.ncbi.nlm.nih.gov/books/n/imm/A2528/def-item/A3315/
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and ensures protection upon reinfection. These memory T cells respond quickly and in 

an amplified manner if they reencounter the same antigen. However, memory T cells 

might also be maintained in the presence of antigen, for example in some infections 

such as those caused by cytomegalovirus. In this case, the immune responses result in 

control of pathogen growth but not complete eradication (Rocha and Tanchot, 2004; 

Abbas et al., 2007; Gerlach et al., 2011). 

Memory T cells can be generated at distinct stages of T cell differentiation. Both 

maintenance and survival of memory CD4+ and CD8+ T cells depends on certain 

cytokines, such as IL-7 which promotes low-level proliferation of memory T cells. IL-

15 is also necessary for maintenance of memory CD8+ T cells (Abbas et al., 2007). 

Depending on their effector functions and homing characteristics, CD4+ and 

CD8+ memory T cells can be divided into central memory and effector memory T cells. 

Central memory T cells, which express CCR7 and CD62L, home to lymph nodes and 

proliferate quickly, expanding the effector lymphocyte population after reencountering 

an antigen. Effector memory T cells home to peripheral tissues and secrete effector 

cytokines such as IFN-γ upon antigen re-exposure, combating invading microbes at the 

site of infection. Development of vaccine approaches aiming at the induction of both 

sets of memory cells is highly desirable, particularly against persistent or chronic 

pathogens (Esser, 2003; Abbas et al., 2007). 

 

T cell activation 

Activation of naïve T cells by APCs requires distinct independent signals which further 

dictate the T cell fate. In the lymph node, the first signal for T cell activation implies 

interaction of the TCR with a specific MHC-peptide complex on the APC. It is antigen-

specific and makes the T cell enter the cell cycle; the TCR is then internalized and 

degraded. The second signal is provided by the interaction of costimulatory molecules 

on the surface of professional APCs with their ligands on T cells. A number of 

molecules on APCs have been described to provide the costimulatory signals for T-cell 

activation. For example, CD80/CD86 (B7.1/B7.2), the main costimulatory molecules, 

bind CD28 on T cells; CD54 (intercellular adhesion molecule-1, ICAM-1) on APCs 

binds to LFA-1; CD58 (leukocyte function-associated antigen-3, LFA-3) associates 

with CD2 on T cells. Interaction between CD40 on APCs and CD40L on T cells is also 

important during co-stimulation as it further activates the APC to express CD80/86. 

Signal 2 promotes the synthesis of IL-2 by the T cell which drives clonal expansion of 

http://www.ncbi.nlm.nih.gov/books/n/imm/A2528/def-item/A2910/
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antigen-specific T cells. TCR binding in the absence of co-stimulation leads to either 

apoptosis or anergy. A third step involved in T cell activation is provided by signals 

delivered by the APCs to T cells, such as cytokines (either pro- or anti-inflammatory), 

driving T cell differentiation into effector cells. According to the activation status of the 

APC, a particular cytokine profile dictates which type of T cell response is to be primed. 

This concept for T cell activation has played an important role in the elucidation of the 

mechanisms involved in discrimination between self and nonself antigens (Hodge et al., 

2000; Alegre et al., 2001; Coyle and Gutierrez-Ramos, 2001; Janeway et al., 2001; Reis 

e Sousa, 2006; Mays and Wilson, 2011). 

In situations that usually generate weak innate immune reactions, such as latent 

viral infections, tumors, and organ transplants, TH cells may be required for inducing 

complete activation of naïve CD8+ T lymphocytes and differentiation into CTLs. 

Importantly, this process is only effective if both TH and CD8+ T cells recognize antigen 

on the same APC. Activation of CD8+ T cells by TH cells can occur by distinct 

mechanisms. In one pathway, TH cells secrete specific cytokines upon antigen 

recognition that further promote CD8+ T cell differentiation, such as IL-2. Another 

mechanism implicates activation of APCs by antigen-stimulated CD4+ TH cells via 

CD40-CD40L. Activated APCs subsequently express cytokines and costimulatory 

molecules, resulting in stimulation of CTL development. CD40 signaling seems to be 

unique in the ability to induce the generation of memory CTLs (Clarke, 2000; Abbas et 

al., 2007). 

 

 

2. Recombinant yeasts in biotechnological approaches 

In the past decades, the choice of a single yeast species as host for the expression of 

recombinant proteins relied heavily on the baker’s yeast S. cerevisiae. This dependence 

is nowadays circumvented by a set of nonconventional yeasts which have become 

available as expression systems for a wide range of recombinant proteins (Gellissen and 

Hollenberg, 1997; Müller et al., 1998). The spectrum of yeasts as organisms for the 

expression of heterologous gene products includes, among others, the fission yeast 

Schizosaccharomyces pombe (Giga-Hama et al., 1994; Tohda et al., 1994), the 

methylotrophic yeast Pichia pastoris (Tschopp et al., 1987; Sreekrishna et al., 1989), 

and the budding yeast Kluyveromyces lactis (Das and Hollenberg, 1982). 
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The use of recombinant yeasts as vaccine strategy has become a very attractive 

means for the induction of robust immune responses. Yeast is a versatile eukaryotic 

microorganism as it can be easily engineered, grows rapidly to high cell densities in 

inexpensive culture media and properly performs post-translational processing of the 

expressed proteins (Valenzuela et al., 1982; Smith et al., 1985). This latter ability is 

especially advantageous in immunotherapy because the expressed antigens can be 

recognized by the host as native antigens, thus contributing to the generation of more 

efficient immune responses (Bucarey et al., 2009). 

 

Saccharomyces cerevisiae 

S. cerevisiae has been used for thousands of years for fermenting food and beverages 

and is considered a GRAS (generally recognized as safe) organism (Gellisen and 

Hollenberg, 1997; Sicard and Legras, 2011). This yeast has been extensively studied in 

the past decades, and the vast knowledge about its genetics, biochemistry, physiology, 

and fermentation properties makes this yeast species the best characterized until today 

(Gellisen and Hollenberg, 1997; Porro et al., 2005). Its genome has been completely 

sequenced, revealing almost 6,000 ORFs distributed in 16 chromosomes and 12 Mb 

(Goffeau et al., 1996). For all these reasons, S. cerevisiae has become the organism of 

choice for the expression of the majority of recombinant proteins. 

However, S. cerevisiae has been reported to have some disadvantage as host for 

recombinant protein production. Low yields of heterologous proteins, plasmid 

instability, retention of the products within the periplasmic space, and 

hyperglycosylation have been repeatedly observed (Müller et al., 1998; Porro et al., 

2005). Hyperglycosylation in S. cerevisiae can hinder protein folding. Glycoproteins 

with 50–150 mannose residues have been described in S. cerevisiae. Furthermore, this 

budding yeast adds outer α-1,3-linked mannose residues to its N-glycans, which is 

considered allergenic in humans and thus prevents the pharmaceutical use of some 

proteins expressed in S. cerevisiae (Varki et al., 2009). 

 

Kluyveromyces lactis 

K. lactis is one of the most important non-Saccharomyces yeasts in biotechnology. This 

yeast has been used as a source of lactase. Enzymes produced in K. lactis have GRAS 

status, so that they can be used in several food and feed applications (Dominguez et al., 

1998; van Ooyen et al., 2006). K. lactis can grow on media containing lactose as sole 

http://www.ncbi.nlm.nih.gov/books/n/glyco2/glossary/def-item/glossary.gl1-d132/
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energy and carbon source and, under this condition, the enzymes involved in the lactose 

utilization pathway are strongly induced. A β-galactosidase encoded by the lac4 gene 

metabolizes lactose to glucose and galactose. With the establishment of a 

transformation technique for K. lactis (Das and Hollenberg, 1982), the strong inducible 

LAC4 promoter turned out to be a widely used element in recombinant protein 

expression. K. lactis can grow to very high cell densities and a large number of proteins 

from diverse sources have been successfully expressed in this organism (Gellissen and 

Hollenberg, 1997; Colussi and Taron, 2005; van Ooyen et al., 2006). The K. lactis 

genome is 10.6 Mb in size, organized into 6 chromosomes and more than 5,300 coding 

sequences (Dujon et al., 2004). 

 

Schizosaccharomyces pombe 

The fission yeast Sz. pombe was discovered in 1893 by P. Lindner. The name “pombe” 

comes from the Swahili word for beer, since it was first isolated in millet beer from 

eastern Africa (Wixon, 2002). This rod-shaped yeast grows by increasing length but 

constant diameter and divides by medial fission, generating equal-sized daughter cells. 

Although Sz. pombe is evolutionarily distant from common ascomycetes such as S. 

cerevisiae, it is nowadays also widely used for genetic manipulations (Wixon, 2002; 

Forsburg and Rhind, 2006; Varki et al., 2009). Sz. pombe has a fully-sequenced 13.8 

Mb genome, with 3 chromosomes and approximately 4,800 ORFs (Wood et al., 2002). 

A number of plasmids containing Sz. pombe-specific elements has been developed for 

recombinant protein production (Giga-Hama et al., 1994; Tohda et al., 1994). The cell 

wall of Sz. pombe differs from the one of S. cerevisiae in terms of carbohydrate 

composition, for example due to the presence of galactomannan and alkali-soluble α-

1,3-glucan (Kopecká et al., 1995; Varki et al., 2009). 

 

Pichia pastoris 

P. pastoris is a nonpathogenic microorganism capable of utilizing methanol as sole 

carbon source. It was discovered in 1969 in a screen for yeasts able to use methanol. P. 

pastoris can grow to extremely high cell densities in minimal media (Varki et al., 2009). 

In peroxisomes, methanol is converted to formaldehyde by the alcohol oxidase (AOX) 

in a reaction in which oxygen is simultaneously reduced to hydrogen peroxide. The 

formaldehyde leaves the peroxisome and is oxidized in a series of reactions to carbon 

dioxide and water (Ellis et al., 1985). The major enzymes involved in methanol 
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metabolism can comprise up to 30% of the total intracellular protein content in cells 

cultivated in methanol-containing media. The genes coding for these enzymes are 

regulated by strong inducible promoters, which can be used for expression of 

heterologous genes, such as the methanol-inducible AOX promoter. The Pichia genome 

contains the two alcohol oxidase genes, aox1 and aox2, which are highly homologous 

(Koutz et al., 1989). 

After the establishment of transformation methods, high-yield systems were 

developed for recombinant protein production. Moreover, Pichia secretes relatively low 

levels of endogenous proteins, facilitating purification of secreted recombinant proteins. 

The fact that N-glycosylated proteins produced in P. pastoris contain only 5–15 

mannose residues and that this yeast does not add outer α-1,3-linked mannose residues 

to its N-glycans, makes P. pastoris one of the most efficient yeasts for biotechnological 

applications (Varki et al., 2009). The P. pastoris expression system has been 

extensively used for production of several recombinant proteins, impressing not only 

due to the expression levels that can be attained, but also by virtue of the bioactivity of 

the heterologous proteins (Gellissen and Hollenberg, 1997; Macauley-Patrick et al., 

2005). The genomes of some P. pastoris strains have been sequenced (De Schutter et 

al., 2009; Mattanovich et al., 2009; Küberl et al., 2011), for instance, the 9.43 Mb-

genome of the GS115 strain, with 5,313 protein-coding genes distributed in 4 

chromosomes (De Schutter et al., 2009). 

 

 

2.1. Yeasts and the immune system 

Immune recognition of fungi mostly depends on the interaction of receptors at the 

surface of the phagocytic cells with structural components of the fungal cell wall. In 

general, yeast cell walls consist of an outer layer of mannosylated proteins and an inner 

layer of β-glucans and chitin. However, β-glucans may be permanently exposed at the 

surface in specific regions, which is sufficient for Dectin-1 sensing. The cell wall 

composition in fungi is species- and morphology-dependent. In addition, the cell wall 

represents a highly dynamic structure which is considerably remodeled during the 

particular yeast life cycle (Gantner et al., 2005; Brown, 2011). 

Recognition of fungal particles relies on diverse PRRs including lectin receptors 

such as mannose receptor (MR) and Dectin-1, Toll-like receptors (TLRs), scavenger 

receptors, as well as integrins, like the complement receptor type 3 (CR3). The 

http://www.ncbi.nlm.nih.gov/bookshelf/?book=glyco2&part=glossary&rendertype=def-item&id=glossary.gl1-d80
http://www.ncbi.nlm.nih.gov/bookshelf/?book=glyco2&part=glossary&rendertype=def-item&id=glossary.gl1-d132
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distribution of these receptors for sensing of potential pathogens depends on the cell 

type (Brown, 2011). 

Many of the lectin receptors, such as MR and Dectin-1, belong to the calcium-

dependent (C-type) lectin family which is classified into two types, I and II, depending 

on their structure. Type I surface lectins contain multiple carbohydrate recognition 

domains (CRDs) on their N-termini, whereas type II surface lectins consist of a single 

CRD on their C-terminal regions, as shown in Fig. 2 (Keler et al., 2004). CRDs contain 

calcium-binding pockets that are fundamental for binding of the carbohydrate ligand. 

Although some indications suggest preferential binding of C-type lectin receptors 

(CLRs) to carbohydrates derived from pathogens, there is no further evidence for 

discrimination between self and non-self antigens (Figdor et al., 2002). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Schematic representation of the basic structures of the C-type lectin receptors 
(CLRs) mannose receptor (MR) and Dectin-1 expressed by APCs. MR is a type I CLR 
with eight carbohydrate recognition domains (CRDs), whereas Dectin-1 bears a single 
CRD, being therefore classified as type II CLR. Adapted from Keler et al., 2004. 
 
 
Dectin-1 is a small membrane-integrated type II surface CLR. Besides the extracellular 

CRD, this receptor also contains an immunoreceptor tyrosine-based activation motif 

(ITAM)-like sequence in its cytoplasmic domain (Ariizumi et al., 2000; Yokota et al., 

2001). Dectin-1 is predominantly expressed in DCs, macrophages and neutrophils, and 

recognizes diverse fungi- and plant-derived β-1,3-linked and β-1,6-linked glucans 

(Ariizumi et al., 2000; Yokota et al., 2001; Brown and Gordon, 2001; Willment et al., 

2001; Taylor et al., 2002). Dectin-1 has been demonstrated to recognize intact yeasts, 
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including Candida albicans, S. cerevisiae, and Pneumocystis carinii (Brown and 

Gordon, 2001; Steele et al., 2003; Gantner et al., 2005). 

Dectin-1 induces phagocytosis, killing via production of reactive oxygen 

species, and the expression of chemokines and cytokines including IL-1β, IL-2, IL-10, 

IL-12, and TNF-α (Brown et al., 2003; Gantner et al., 2003; Steele et al., 2003; 

Underhill et al., 2005; Brown, 2006). These events result from activation of intracellular 

signaling pathways, the Syk (spleen tyrosine kinase)-CARD9 (caspase recruitment 

domain-containing protein 9) pathway, and the Raf-1 kinase pathway. Both pathways 

act synergistically and are activated through the ITAM-like motif of Dectin-1. Also, 

Dectin-1 collaborates with TLRs to modulate cytokine production (Brown, 2011; 

Romani, 2011). Dectin-1 recognizes various types of β-1,3-linked and β-1,6-linked 

glucans as well as intact yeast cells (Brown and Gordon, 2001). 

The mannose receptor (MR, also CD206) is a type I CLR expressed, among 

others, on macrophages, DCs, subsets of endothelial cells and myeloid cells. MR 

contains eight CRDs, a fibronectin type II repeat domain, a cysteine-rich domain and a 

short cytoplasmic tail (Keler et al., 2004; Hollmig et al., 2009; Brown 2011). This 

receptor has been shown to specifically bind to mannose, fucose and N-

acetylglucosamine in many fungal species and to mediate subsequent particle 

internalization (Avraméas et al., 1996; Ezekowitz et al., 1991; Giaimis et al., 1993; 

Mansour et al., 2002). Even though classical signaling motifs are missing in the 

cytosolic region of MR, this receptor has been shown to mediate a number of cellular 

events, such as NF-κB signaling and cytokine production (e.g. GM-CSF, IL-1β, IL-6 

IL-10, IL-12). The majority of the MR molecules is located within the intracellular 

endocytic pathway (Hollmig et al., 2009; Brown, 2011). MR has been demonstrated to 

recognize several organisms, including C. albicans (Ezekowitz et al., 1990), C. 

neoformans (Syme et al., 2002), P. carinii (Ezekowitz et al., 1991), and M. furfur 

(Buentke et al., 2000). Furthermore, MR connects innate and adaptive immunity as it 

has been demonstrated that selective targeting of an antigen fused to a specific anti-MR 

antibody and uptake by the MR on DCs induced MHC-restricted antigen-specific CD4+ 

and CD8+ T cell responses (Ramakrishna et al., 2004). 

TLRs are also capable of recognizing fungal components, such as zymosan (a 

derivative of yeast cell walls), O-linked mannans, phospholipomannan and fungal DNA 

(Nakamura et al., 2008; Romani, 2011). The TLRs comprise a well-characterized 

family of PRRs which contain an extracellular domain for ligand binding and a 
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conserved cytoplasmic domain that triggers specific signaling pathways, driving 

specific patterns of gene expression and the synthesis of cytokines and chemokines that 

activate innate and adaptive immune responses (Brown, 2006; Diebold, 2009; Hollmig 

et al., 2009). TLR2, TLR4 and TLR9 are the major TLRs implicated in recognition of 

fungal elements (Romani, 2011). The influence of TLRs on phagocytosis of fungal 

particles remains unclear but seems to depend on the host cell type, the fungal species 

and morphotypes, the route of infection and receptor cooperativity. TLRs have been 

shown to facilitate the presentation of fungal-derived antigens by DCs and modulate T 

cell responses (Brown, 2006; Romani, 2011). 

The complement receptor 3 (CR3, Mac-1) has also been demonstrated to interact 

with zymosan and yeasts such as S. cerevisiae (Ross et al., 1985) and C. albicans 

(Forsyth et al., 1998). CR3 is a heterodimeric integrin of CD11b (αM) and CD18 (β2) 

subunits and recognizes β-glucan, N-acetyl-D-glucosamine, mannose-containing 

polysaccharides and glucose via a cation-independent lectin region situated C-terminal 

to the I-domain of CD11b (Thornton et al., 1996). CR3 mediates phagocytosis both in a 

complement-dependent and -independent manner and is expressed by several cell types, 

including DCs, neutrophils, monocytes and macrophages (Ross et al., 1985; Tsoni and 

Brown, 2008; van Bruggen et al., 2009). It has been shown that phagocytosis of β-

glucan-bearing particles by human neutrophils is completely CR3 dependent (van 

Bruggen et al., 2009). 

Several other PRRs have been shown to associate with fungal PAMPs, in a 

process which is dependent on the cell type involved and on fungal characteristics such 

as species and morphology. The final host immune response to a certain fungus will 

depend on distinct factors, like the relative degree of stimulation of each receptor, the 

level of receptor cooperativity and cellular localization (Romani, 2011). 

It is well established that yeast cell wall components are able to activate the 

immune system. For instance, β-1,3-D-glucan and mannan have been demonstrated to 

act as natural adjuvants (Suzuki et al., 1989, Toda et al., 1997). Fungal β-glucan has 

been shown to possess immunomodulating (acting on both innate and adaptive 

immunity) and antitumor activities, which depend on polymer structure, length and 

degree of branching. By virtue of their anti-cancer effects, β-glucans have been tested in 

pre-clinical and clinical trials (Suzuki et al., 1989; Tsoni and Brown, 2008; Chan et al., 

2009; Li et al., 2010). Fungal β-glucans comprise a group of heterogeneous glucose 

polymers consisting of a linear 1,3-β-glycosidic chain core with β-1,6-linked branches 
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of varying length and structure (Fig. 3 A and B). The branching pattern seems to be 

species-specific. Evidences indicate that higher structural complexity is associated with 

stronger immunmodulatory and antitumor effects (Akramiene et al., 2007; Chan et al., 

2009). 

Mannans are polymers of α-linked mannose residues (Fig. 3 C-F). Studies on S. 

cerevisiae mannan have revealed a highly branched polysaccharide with α-1,2- and α-

1,3-linked side chains attached to an α-1,6-linked backbone (Stewart et al., 1968; Jones 

and Ballou, 1969). Mannan has also been analyzed for its effect on the immune system. 

Toda et al. (1997) demonstrated that mannan-coated liposomes showed potent adjuvant 

activity in eliciting cell-mediated immunity and activated TH1-mediated immune 

responses in vivo, when administered in combination with a DNA vaccine (Toda et al., 

1997). Other groups have also shown that fungal mannosylated antigens enhanced 

antigen presentation and stimulated antigen-specific CD4+ and CD8+ T cell responses 

(Lam et al., 2005; Lam et al., 2007; Luong et al., 2007). 

Chitin, a polymer of β-1,4-linked N-acetylglucosamine (Fig. 3 G), forms chains 

generaly larger than 1,000 residues that are primarily found at the bud neck or septa in 

fungi (Varki et al., 2009). Contradictory data exist on the receptor(s) involved in chitin 

recognition. Chitin particles have been demonstrated to be phagocytosed by murine 

macrophages most probably via MR (Shibata et al., 1997). Recently, it has been shown 

that Dectin-1 is required for chitin recognition, however without directly binding this 

polysaccharide (Mora-Montes et al., 2011). In the past years, chitin has been shown to 

be a potent adjuvant stimulating adaptive TH1, TH2, and TH17 immune responses in 

mice (Da Silva et al., 2010). 
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Fig. 3. Schematic representation of some β-glucan, mannose (Man) and chitin 
structures. (A) Linear β-1,3-glucan; (B) β-1,3-glucan with β-1,6 branching; (C) 
Mannose; (D) Man-α-1,3-Man; (E) Man-α-1,6-Man; (F) Man-α-1,3-Man-α-1,6-Man; 
(G) chitin. Adapted from Rani et al., 1999, Tsoni and Brown, 2008; Voet et al., 2010. 
 

 

3. General concepts of vaccines 

Some of the first attempts to protect induviduals from pathogen-associated diseases date 

from ancient China where healthy people were given smallpox scabs or clothes from 

infected patients. This practice reached Europe in the 18th century. In 1796, Edward 

Jenner, performing human experimentation, showed that individuals immunized with 

the cowpox virus were protected from disease caused by the smallpox virus (Hilleman, 

2000; Esser et al., 2003). This well-succeeded vaccination (Latin vaccinus = from or of 

cows) was worldwide accepted and smallpox was declared eradicated in the early 

1980s. 

Hitherto, vaccination remains the most effective means to avoid infectious 

diseases. A number of prophylactic vaccines against bacteria and viruses have 

contributed to a significant decrease in morbidity and mortality worldwide. 

The following vaccination approaches are nowadays routinely used: live 

attenuated, inactivated, subunit, conjugate, and toxoid vaccines. More recent techniques, 

such as those employing DNA vaccines, autologous cells and recombinant vectors are 

still being evaluated. 

Attenuated vaccines consist of a weakened version of the microbe through 

repeated passaging in cells which are not its natural host. Since the microbe has to adapt 

to the new environment, it will not be capable of replicating at sufficient levels in 
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humans to cause disease. Classical examples include vaccines against polio, mumps, 

measles, rubella and varicella (Cáceres and Sutter, 2001; Hanna et al., 2009). 

Inactivated vaccines are obtained by treating a certain pathogen with chemicals, 

radiation or heat. The pathogen cannot replicate but remains intact. Vaccines against 

hepatitis A and polio are examples of inactivated vaccines (Just and Berger, 1992; 

Simizu et al., 2006). 

Toxoid vaccines consist of chemically inactivated toxins which are produced by 

some bacteria. In this case, the disease is not caused by the microorganism itself but by 

the toxin it secretes. Examples are the vaccines against tetanus and diphtheria (Smith, 

1969). 

Subunit vaccines contain specific antigens from a certain pathogen instead of the 

whole microbe. This can be achieved by isolating a protein (or a portion of it) from the 

microorganism or by expressing the antigen recombinantly, such as in the case of the 

vaccines against hepatitis B virus or human papilomavirus (Poland and Jacobson, 2004; 

Barr and Tamms, 2007). 

Conjugate vaccines are a type of subunit vaccine, for instance when a 

polysaccharide from a bacterial coating is covalently linked to a more immunogenic 

proteinaceous antigen in order to elicit stronger immune responses, especially in 

immature immune systems. A classical example is the vaccine against Haemophilus 

influenzae type B (Ojo et al., 2010). 

DNA vaccines resort to plasmids containing pathogen- or tumor-associated 

antigens (and additional immunostimulatory factors) under the regulation of an 

appropriate eukaryotic promoter. Upon inoculation of the plasmid, the DNA is taken up 

by some cells and the specific proteins are synthesized in the cytosol for subsequent 

presentation to lymphocytes (Abbas et al., 2007, Eschenburg et al., 2010). 

Immunization with autologous cells is used, for example, for combating cancer. 

The classical example employs DC-based vaccines, which can be generated by genetic 

modification or by loading DCs with tumor-associated antigens or whole dead tumor 

cells (Janikashvili et al., 2010). 

“Live” vectors are a recent approach for delivering antigens. In general, 

attenuated viruses or bacteria are used as antigen carrier inducing humoral and cellular 

immune responses. Viral vectors, such as vaccinia virus and bacteria (e.g. Listeria 

monocytogenes or Yersinia enterocolitica) can be engineered to deliver recombinant 

molecules (Wiedig et al., 2005; Loeffler et al., 2006; Embry et al., 2011). In the 21th 
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century, antigen delivery strategies using whole recombinant yeasts have been 

demonstrated a promising approach (reviewed by Ardiani et al., 2010). 

 

 

3.1. Vaccines for cellular immune responses 

The major purpose of vaccines is to provide long-term immunological protection. 

Traditionally, most vaccine strategies in the 20th century have driven the attention to the 

generation of high titers of antibodies, with modest understanding of the role of the 

cellular immune responses (Kaech et al., 2002; Esser et al., 2003). Since the vast 

majority of vaccines routinely used today elicit humoral immunity, many efforts to 

promote cell-mediated immunity through vaccination have been made in the past years. 

However, combating tumors and pathogens that cause chronic or persistent 

infections implicates eliciting the mechanisms of cellular immunity. For this reason, 

development of vaccines that stimulate long-lived cellular immune responses is critical 

to fighting against a number of diseases, including those caused by cytomegalovirus, 

hepatitis C virus, human immunodeficiency virus (HIV) and Mycobacterium 

tuberculosis (Esser et al., 2003). 

Long-term protection is based on the quantity and the quality of the memory T 

cells that are produced. Ideally, vaccines should elicit the formation of a very large 

effector T-cell population, which represents a challenge (Kaech et al., 2002). 

Elimination of pathogen-infected or malignant cells by T-cell mediated immune 

responses mainly relies on cell-mediated cytotoxicity via CD8+ CTLs. However, 

vaccines must also be capable of inducing CD4+ T cell responses because they secrete 

several immunomodulatory cytokines to subsequently trigger the generation and 

proliferation of the robust CD8+ CTL responses required (Ardiani et al., 2010). 

Distinct approaches have been employed in order to increase the activation of 

CTLs specifically against affected cells. DCs have been considered an interesting target 

due to their unique ability to cross-present antigens. Therefore, strategies aiming at the 

delivery of antigens to DCs and inducing their maturation and activation are critical in 

stimulating cell-mediated responses against diseased cells. Among the different 

approaches for activating cell-mediated immunity are DNA vaccines, viral vectors, 

autologous and allogeneic cells, and delivery of molecules by virulence-attenuated 

bacterial strains and yeast (reviewed by Franzusoff et al., 2005). DNA vaccines have 

low boosting capacity; viral vectors are neutralized by antibodies after repetitive 
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applications; besides being very expensive and complex, immunotherapy with tumor 

cells is patient-specific, and cell-mediated immunity is poorly activated due to the lack 

of danger signals; bacterial vectors can cause unwanted side effects associated with the 

host-bacteria interactions (Franzusoff et al., 2005; Pálffy et al., 2006). The benefit of 

using yeast as vaccine carrier has been demonstrated in recent pre-clinical and clinical 

trials, making this approach very attractive. 

 

 

3.2. Yeast as vehicle for generating antigen-specific immune responses 

The use of recombinant yeast as vaccine strategy has become a very promising means 

for the induction of robust immune responses. The ability of yeasts to properly perform 

post-translational processing on the expressed proteins is especially advantageous in 

immunotherapy because the expressed antigens can be recognized by the host as native 

antigens, thus contributing to the generation of high-quality immune responses (Bucarey 

et al., 2009). Furthermore, antigen processing by DCs after administration of whole 

recombinant yeast carrying recombinant proteins provides a wide spectrum of epitopes 

derived from the delivered proteins, which allows the presentation of epitopes relevant 

for the MHC repertoire from a certain individual (Bui et al., 2010). 

It has been postulated that protein-based vaccines have the major disadvantage 

of insufficient immunogenicity and, as a consequence, the majority of them requires co-

administration with adjuvants to elicit protective immune responses (Petrovsky and 

Aguilar, 2004). Thus, some efforts have been made in an attempt to develop more 

effective vaccine strategies, in particular for inducing potent T cell-mediated immune 

responses needed against viral and tumor antigens. Among the different approaches, the 

use of recombinant yeast cells as antigen delivery system turned out to be an auspicious 

strategy. 

The first experiments performed in order to examine the potential use of whole 

recombinant S. cerevisiae as a vaccine to elicit antibody responses came with Schreuder 

et al. (1996a). In a cell-surface display system, an antigen bearing two major 

hydrophilic regions of the hepatitis B surface antigen (HBsAg) was fused to the C-

terminal region of α-agglutinin from S. cerevisiae and exposed on the yeast cell surface. 

Heat-killed yeasts were used to immunize mice intraperitoneally and serum immune 

responses were analyzed. Very low specific immune responses against the recombinant 
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protein were observed, in contrast to strong immune responses elicited against the yeast 

carrier itself. 

 The observations of Schreuder et al. (1996a) demonstrating the stimulation of 

the immune system by yeasts alone, combined with other reports showing the 

immunnogenic characteristics of fungal β-glucan and mannan, have encouraged the 

onset of several approaches using whole yeasts expressing recombinant antigens as 

carrier systems for generation of specific immune responses (Suzuki et al., 1989; 

Williams et al., 1992; Toda et al., 1997). Additionally, uptake of fungal particles by 

phagocytic cells has been demonstrated (Newman et al., 1990; Suzuki et al., 1998; 

Newman and Holly, 2001; Breinig et al., 2003), so that many studies have directed their 

attention to the use of yeasts carrying proteinaceous antigens in immunotherapy. 

In the first study analyzing cell-mediated immunity after vaccination of mice 

with live yeasts, Stubbs et al. (2001) showed that S. cerevisiae cells expressing Ova 

were capable of stimulating protective CD8+ T cells in vivo. Mice vaccinated with 

recombinant yeast and challenged with Ova-expressing lymphoma cells were protected 

from tumor formation. They also demonstrated that whole heat-killed yeast led to DC 

maturation and IL-12 secretion and to increased presentation of Ova to antigen-specific 

CD4+ and CD8+ T lymphocytes. When they tested a clinically relevant antigen, such as 

the envelop protein SF2-gp160 from HIV-1, they observed that cells expressing this 

protein were killed by cytotoxic T lymphocytes derived from mice vaccinated with 

yeast/SF2-gp160, but not with PBS or yeast carrying an empty vector. Proliferative 

responses of T lymphocytes specific for HIV-1-gp120 (gp160 devoid of gp41) were 

also reported for mice immunized with yeast/SF2-gp160. It was the first demonstration 

that whole recombinant yeast could induce potent cell-mediated responses (Stubbs et 

al., 2001). 

After that study, many other groups have resorted to this strategy, with different 

antigens and mouse models. For example, cellular immune responses against the 

hepatitis C virus (HCV) were examined in mice using heat-inactivated whole yeasts 

expressing NS3/Core fusion protein. In this study, Haller and colleagues (2007) 

demonstrated antigen-specific and dose dependent in vitro cytotoxicity. They have also 

shown that repeated weekly immunization did not induce neutralization or tolerance, 

and that immunized mice were protected from challenge with tumor cells expressing 

HCV NS3. Further, mice vaccinated after NS3-positive tumor cell implantation showed 

no or reduced tumor growth compared to an untreated group (Haller et al., 2007). 
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Many studies using tumor-bearing mice have analyzed the therapeutic effect of 

recombinant S. cerevisiae expressing tumor-associated antigens (TAAs), such as 

mammalian mutant Ras proteins, the carcinoembryonic antigen (CEA), and a 

melanocyte⁄melanoma antigen (MART-1), with promising results. Besides tumor 

regression, increased survival time, cytotoxicity and cytokine production, no toxicity or 

autoimmunity related to the yeast-based vaccine was observed (Lu et al., 2004; 

Wansley et al., 2008; Tanaka et al., 2011). Clinical trials of immunotherapy with yeast 

carrying Ras or CEA have been conducted with patients bearing Ras mutation+ or CEA+ 

tumors (ClinicalTrials.gov Identifiers: NCT00300950, NCT00924092; Ardiani et al., 

2010). 

The use of recombinant yeast in prophylactic vaccine approaches has also been 

investigated, for example with yeasts carrying MART-1 or BCR-ABLT315I, a mutated 

protein in drug-resistant leukemia cells. Protection against tumor challenge, in vitro 

cytotoxic activity and production of cytokines, as well as prolonged survival were 

observed (Riemann et al., 2007; Bui et al., 2010). 

A number of studies using yeasts displaying antigens on the cell surface to 

immunize animals have also been conducted, most of them aiming at the development 

of humoral immune responses (Zhu et al., 2006; Upadhyaya and Manjunath, 2009; Kim 

et al., 2010). 

Although S. cerevisiae has been used in the vast majority of studies, other well-

accepted yeast species have rarely been tested. A vaccine using live P. pastoris as 

protein delivery system was tested by Saiki and colleagues (2005). The pcd-17, an 

antigen associated with the paraneoplastic cerebellar degeneration, an autoimmune 

disease, was chosen for recombinant expression in Pichia. Lymph node cells of mice 

immunized with yeast/pcd-17 showed proliferative responses and IFN-γ production 

after peptide restimulation, in contrast to cells derived from mice receiving the wild 

type yeast only. The presence of autoantibodies in serum of vaccinated mice has also 

been confirmed. However, these responses have only been observed in one out of four 

mouse strains tested and no cytotoxicity assay was performed. In another study, heat-

treated H. polymorpha expressing cytosolic HBsAg was used to vaccinate mice. Yeasts 

led to an increase in the number of T cells and DCs in the mouse spleen and elicited DC 

maturation. Furthermore, yeasts/HBsAg induced the generation of anti-HBsAg 

antibodies in a greater extent than HBsAg alone or administered with an alum adjuvant. 

Cytotoxicity and cytokine secretion was also observed. This report confirmed the idea 
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that recombinant yeasts stimulate both cellular and humoral immunity and promote 

mixed Th1/Th2-type immune responses (Bian et al., 2010). 

Recently, an approach for delivering nucleic acids by recombinant yeast to 

antigen-presenting cells has been developed. In that work, S. cerevisiae and Sz. pombe 

were analyzed as carrier for antigen-encoding DNA and mRNA. Recombinant protein 

expression (e.g. eGFP and Ovacyt) in mammalian APCs was confirmed after yeast 

internalization, and ex vivo activation of pp65-specific memory T cells was 

demonstrated using S. cerevisiae as DNA/RNA delivery system (Walch, 2009; Walch et 

al., 2011). 

As previously described, activation of naïve T cells by APCs involves a set of 

distinct signals. Yeasts lead to augmented expression of MHC class I and II (needed for 

the first signal), as well as of the costimulatory and adhesion molecules CD40, 

CD80/CD86, CD54, CD58 (necessary for the second signal), and stimulate secretion of 

cytokines by DCs (providing the third signal). 

In sum, the use of inherently nonpathogenic yeast as antigen delivery system 

turned out to be an especially versatile technique. The main points in this issue are: (i) 

phagocytic cells, especially DCs, are able to ingest a wide variety of antigens, including 

whole yeasts; (ii) after internalization of fungal particles, DCs mature and efficiently 

process the antigens in context of MHC class I and II molecules for presentation, 

express a set of costimulatory molecules and secrete cytokines, stimulating the 

differentiation of T lymphocytes into distinct classes of effector cells, controlling the 

quality of the T cell response; (iii) upon using whole yeasts, all three signals necessary 

for T cell activation are increased, due to the natural adjuvant characteristics of the yeast 

PAMPs. This important feature facilitates the generation of robust adaptive immunity. 

Therefore, since antigen-specific, adaptive responses play a critical role in combating 

infections and tumors (Mellman et al., 2001; Heath and Carbone, 2001), the use of 

whole yeasts is a promising vaccine strategy (Fig. 4). All efforts that have been made in 

the vaccination field to target and activate DCs and consequently providing the potential 

to generate both CD4+ and CD8+ T cells immune responses are worth. 
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Fig. 4. Yeast as antigen carrier. Simplified mechanism of action. Adapted from Ardiani 
et al., 2010. 
 

 

4. Experimental systems 

As part of this work, recombinant yeasts were analyzed for their ability to deliver 

different antigen variants to antigen-presentig cells and influence the generation of 

specific T cell responses due to their adjuvant properties. 

 

4.1. Ovalbumin as model antigen 

Ova is a monomeric protein from chicken egg-white with a molecular weight of 

approximately 43 kDa. This protein contains an internal secretion signal possibly 

located between residues 21 and 47 (Nisbet et al., 1981; Huntington and Stein, 2001). 

Ova belongs to the serpin superfamily (serine protease inhibitors), but possesses no 

inibitory activity. Rather, its function has not been elucidated (Hunt and Dayhoff, 1980; 

Huntington and Stein, 2001). An immunodominant MHC class I epitop in the 

Ovalbumin sequence between amino acid residues 257 and 264 has been characterized 

(Rötzschke et al., 1991). This octamer SIINFEKL (Serine-Isoleucine-Isoleucine-

Asparagine-Phenylalanine-Glutamate-Lysine-Leucine) epitope is restricted to mouse H-

2Kb MHC class I molecules, rendering Ova a model antigen for analysis of antigen 

presentation via the MHC class I pathway, as well as generation of CD8+ T cell immune 

responses. For this reason, Ova is widely used in immunologic approaches. 
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In order to target Ova to different subcellular compartments, the following Ova 

derivatives were constructed and analyzed: i) full-length Ova which contains an internal 

signal peptide that directs the protein into the secretory pathway for secretion of the 

protein (Ova), ii) a derivative which lacks this signal, but still contains the SIINFEKL 

epitope, and that is expressed intracellularly within the yeast cytosol (Ovacyt), and iii) a 

fusion of Ovacyt with the yeast cell wall protein Sed1p which targets the protein to the 

cell surface (Ovacyt/Sed1p). To direct this fusion into the yeast secretory pathway, a 

genus-specific ER-import signal was added at the N-terminus. In another strategy, 

Ovacyt was fused to the Gag protein from the S. cerevisiae L-A virus and intracellularly 

expressed as Ovacyt-containing virus-like particles. 

The efficiency with which different Ova derivatives in different yeast genera can 

trigger antigen-specific CD8+ T cell responses was subsequently tested in vitro by 

means of IFN-γ detection. 

 

 

4.2. Pp65, a matrix protein from human cytomegalovirus, as model antigen 

The human cytomegalovirus (HCMV) is a betaherpesvirus with high prevalence in the 

population in the whole world. The virus consists of an icosahedral capsid containing a 

linear, double-stranded, 235-kb DNA genome encoding approximately 165 genes and 

surrounded by a matrix or tegument within a lipid envelope. Primary infection with 

HCMV is usually asymptomatic, but latent infection remains for the entire life, with 

eventual reactivation and shedding of virus particles from mucosal sites (Mocarski Jr 

and Courcelle, 2007; Khanna and Diamond, 2006). 

The phosphoprotein 65 (pp65, also known as lower matrix protein or UL83) 

from HCMV is the major constituent of viral particles and has been demonstrated to be 

a relevant T cell antigen (reviewed by Kalejta, 2008). This structural protein associates 

with host and viral kinases, but it is not clear whether pp65 itself possesses kinase 

activity (Mocarski Jr and Courcelle, 2007; Kalejta, 2008). It has been shown that pp65 

can be found in infected cells all times after viral infection, although pp65 is produced 

in the late phase of viral gene expression, i.e. 24 h post infection (Grefte et al., 1992). 

The recognition and lysis of HCMV-infected cells by the majority of virus-specific CTL 

without the requirement of de novo viral protein synthesis indicates that structural 

proteins are introduced into the cytoplasm of infected cells in sufficient amount to enter 

the class I pathway after viral penetration (Riddell et al., 1991; Grefte et al., 1992). 
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McLaughlin-Taylor and co-workers (1994) have shown that pp65 is a target 

antigen for HCMV-specific MHC class I-restricted CTL. In one study, when fourteen 

HCMV antigens were compared in their abilities to stimulate helper T cells in vitro, 

pp65 was by far the most reacting protein (Beninga et al., 1995). Kern and colleagues 

(2002) determined the frequencies of CD4+ and CD8+ T cell responses to pp65 in 

healthy HCMV-positive individuals. They found that 63% and 83% of the donors tested 

showed a CD4+ or a CD8+ T cell response, respectively, to pp65-derived peptides. In 

addition, the frequencies of pp65-specific T cells among responders showed a great 

variation. In another study conducted by Wills et al. (1996) it was demonstrated that, 

among all CTL which were able to recognize HCMV-infected cells, 70-90% were 

specific for pp65. They hypothesized that since this high frequency of pp65-specific 

memory CTL was maintained for 18-22 months, this structural protein is probably 

continuously expressed. This fact might indicate that either episodic reactivation or 

continual replication of the virus at low levels enables restimulation of pp65-specific 

CTL precursors and preservation of the pool of memory CTL. 

The repeated observation that a number of HCMV-seropositive donors does not 

respond to some established pp65 dominant epitopes, combined with the suggestions 

that these individuals might respond to unpredicted or subdominant peptides makes the 

use of a full-length protein more promising in terms of stimulating CTL expansion 

(Solache et al.,1999; Vaz-Santiago, 2001; Kern et al., 2002). 

Cell-mediated immunity plays a crucial role in control of latent HCMV 

infection. However, in individuals with compromised or immature immune systems, 

such as transplant recipients and neonates, HCMV is constantly associated to morbidity 

and mortality in a number of disease patterns. Despite many efforts that have been made 

in the past decades, no vaccine against HCMV is available to date. Thus, vaccine 

development is nowadays a main biomedical research concern, especially in the 

following scenarios: congenital primary infection, primary infection in 

immunosuppressed individuals and virus reactivation in immunosuppressed adults 

(Mocarski Jr and Courcelle, 2007; Schleiss, 2005; Khanna and Diamond, 2006). 

Recently, a phase I clinical trial has been performed, in which a vaccine consisting of a 

two-component alphavirus replicon vector system expressing both the pp65 fused to a 

72-kDa immediate-early protein (IE1) and the major HCMV surface glycoprotein (gB) 

was evaluated in HCMV-seronegative individuals. The vaccine elicited cytokine 

responses in CD8+ and CD4+ T cells against all three proteins and induced the 
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generation of neutralizing antibodies to HCMV, most likely against gB (Bernstein et al., 

2010). However, a vaccine with promising therapeutic potential for HCMV-positive 

individuals is still missing. 

 

 

4.3. Virus-like particles (VLP) as antigen carrier 

The S. cerevisiae L-A virus is a double-stranded RNA virus which replicates in the 

cytoplasm of yeast cells without a known phenotype. Its viral icosahedral particles are 

composed of a 76-kDa major protein (Gag) and a 180-kDa minor Gag-Pol fusion 

protein. The 4.6-kb viral genome consists of two overlapping open reading frames (gag 

and pol). A -1 ribosomal frameshift is responsible for the formation of the Gag-Pol 

fusion protein. The L-A capsid has a diameter of approximately 39 nm, comprising 118 

Gag molecules and 2 Gag-Pol molecules (Wickner, 1996). N-terminal Gag acetylation 

by the MAK3 gene product is crucial for VLP assembly (Tercero and Wickner, 1992). 

Gag alone has been demonstrated to be sufficient for the assembly of VLP, therefore 

strategies aiming at the development of biotechnologically or pharmaceutically relevant 

chimeric Gag-VLP have been employed (Fujimura et al., 1992; Wickner, 1996; 

Powilleit et al., 2007). 

VLP have been shown to function as adjuvants, eliciting the generation of innate 

and cell-mediated immune responses against both the carrier itself and the delivered 

antigen. VLP are considered a promising setting in the field of vaccine production, not 

only because of their particulate structure and size range (40-50 nm), which have been 

shown to facilitate their capture by DCs, but also because of the repetitive, high-density 

display of epitopes, which is generally efficient in stimulating robust immune responses. 

Furthermore, VLP are optimal delivery systems in prophylactic and therapeutic 

approaches by virtue of their intrinsic ability to break self-tolerance (Fifis et al., 2004; 

Grgacic and Anderson, 2006; Schumacher et al., 2007; Crisci et al., 2009). 

In the L-A virus, Pol projects into the inner side of the capsid, participating in 

replication and transcription of the viral genome (Fujimura et al., 1992). In this work, 

the interior of the capsid was modified by substituting Pol for Ovacyt or full-length pp65. 

Nonetheless, in contrast to pol, ovacyt and pp65 were cloned in frame with gag, so that 

all molecules produced are Gag/Ovacyt or Gag/pp65 fusions, respectively. For 

expression of Gag-variants, the virus-free S. cerevisiae strain S86c was chosen as host 
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(Powilleit, 2004). S86c derives from the S86 strain, which was heat-treated for 

elimination of the viral genome (Schmitt, 1995). 

 

 

5. Aim of the study 

The main objective of this work was to compare different yeast strains as carrier for 

recombinant protein antigens as well as to analyze the influence of the subcellular 

localization of the heterologous protein on activation of antigen-specific T lymphocytes 

for a possible application in vaccination approaches. 

First, the effect of distinct yeast genera, species, strains, or cell wall mutants on 

maturation and activation of human dendritic cells was investigated by analyzing 

upregulation of diverse cell surface markers and cytokines. The major components of 

the yeast cell wall, mannan and β-glucan, which are known to possess adjuvant 

properties, were examined for establishment of a potential association with the results 

observed. Further, the biotechnologically relevant yeasts Saccharomyces cerevisiae, 

Kluyveromyces lactis, Schizosaccharomyces pombe and Pichia pastoris were assessed 

for the interaction kinetics with human DCs or murine macrophages, and the 

involvement of major pattern recognition receptors MR and Dectin-1 in their 

internalization was determined. The influence of heat-treatment of yeast on phagocyte 

activation, as measured by production of reactive oxygen species in human whole 

blood, was also investigated. 

Next, the different yeasts were used for the expression of model proteins such as 

Ova and the clinically significant antigen pp65 from human cytomegalovirus, and 

activation of antigen-specific T lymphocytes was examined in vitro and ex vivo. The 

efficiency of yeast-delivered pp65 or pp65 VLP to activate pp65-specific memory CD4+ 

and CD8+ T lymphocytes was measured in blood from cytomegalovirus-seropositive 

donors by means of an ex vivo whole blood assay. In the case of Ova, in vitro antigen 

presentation assays using murine bone marrow macrophages and antigen-specific CD8+ 

T lymphocytes were used to assess the MHC I-restricted antigen presentation after 

protein delivery by the distinct yeast genera. Moreover, the influence of the subcellular 

localization of Ova on the degree of T cell activation was investigated, in which yeasts 

harbouring different antigen variants – intracellular, secreted or cell-wall anchored – 

were compared. Finally, a preliminary in vivo experiment using a selected yeast species 
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and a single antigenic variant was performed in order to obtain basic information with 

respect to the establishment of future immunization protocols in an animal model. 
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II. MATERIALS 
 

 

1. Organisms 

The organisms used within this work, as well as their respective source and 

characteristics, are listed below. Bacteria, yeasts and cell lines utilized belong to the 

culture collection of the Institute for Molecular and Cell Biology at Saarland University, 

unless otherwise stated. 

 

1.1. Escherichia coli strains 

Table 1. E. coli strains used in this work, as well as their respective genotype and 
source. 

Strain Genotype Reference or 
Source 

TOP10 
F´mcrA Δ(mrr-hsdRMS mcrBC) Φ80lacZΔM15 
ΔlacX74 recA1 araD139 Δ(ara-leu)7697 galU 
galK rpsL (StrR) endA1 nupG 

Invitrogen 
(Germany) 

DH5α 
F-, recA1, endA3, gyrA96, thi-1, hsdR17, 
supE44, relA1, deoR, Δ(argF lacZYA)U196, 
φ80dlacZΔM15 

Hanahan 
(1983) 

Nova Blue 
SinglesTM 

Competent Cells 

endA1 hsdR17 (rK12
– mK12

+) supE44 thi-1 recA1 
gyrA96 relA1 lac F′[proA+B+ 
lacIqZΔM15::Tn10] (TetR) 

Novagen 
(Germany) 

 

 

1.2. Yeast strains 

Table 2. Yeast strains used throughout this work, their respective genotype and source. 

Strain Genotype Reference or Source 
Saccharomyces 
cerevisiae S86c 

MATα ura3-2 leu2 his3 pra1 
prb2 prc1 cps1 (heat cured) Schmitt (1995) 

Saccharomyces 
cerevisiae W303-1a 

MATa leu2-3, 112 ura3-1 trp1-
1 his3-11, 15 ade2-1 can1-100 Parlati et al. (1995) 

Saccharomyces 
cerevisiae BY4742 

MATα his3Δ1 leu2Δ0 lys2Δ0 
ura3Δ0 Brachmann et al. (1998) 

Saccharomyces 
cerevisiae BY4742 

Δmnn11 

MATα his3Δ1 leu2Δ0 lys2Δ0 
ura3Δ0 YJL183w::kanMX4 

EUROSCARF 
(Germany) 

Saccharomyces 
cerevisiae BY4742 

Δost3 

MATα his3Δ1 leu2Δ0 lys2Δ0 
ura3Δ0 YOR085w::kanMX4 

EUROSCARF 
(Germany) 
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Table 2 continuation 
Strain Genotype Reference or Source 

Kluyveromyces lactis 
GG799 

No auxotrophies or genetic 
markers 

Industrial isolate. New 
England Biolabs 

(Germany) 
Pichia pastoris GS115 his4 Invitrogen (Germany) 

Pichia pastoris KM71 his4, arg4, aox1::ARG4 Invitrogen (Germany) 
Schizosaccharomyces 

pombe PW260 h-leu1.32 ura4. dl18 ade 6.210 Peter Wagner (Saarland 
University, Germany) 

Hansenula polymorpha wild type Institut Pasteur (France) 

Yarrowia lipolytica wild type 
Institut National de la 

Recherche Agronomique 
(France) 

Candida glabrata wild type National Collection of 
Yeast Cultures (UK) 

 

 

1.3. Cell lines 

IC21 murine macrophages 

This cell line is derived from C57BL/6 mouse peritoneal macrophages transformed with 

simian virus 40 (Walker and Gandour, 1980). These cells share many features with 

normal mouse macrophages, like phagocytic and cytolytic activities, and also express 

macrophage specific antigens. Cells were kindly provided by Dr. Gernot Geginat 

(Institute for Medical Microbiology and Hygiene, Faculty for Clinical Medicine 

Mannheim of the University Heidelberg, Germany). 

 

 

1.4. Mice 

OT-I mice (C57BL/6-Tg(TcraTcrb)1100Mjb) express a transgenic T-cell receptor 

(TCR) that recognizes OVA257-264 peptide (SIINFEKL) in context of MHC class I H-

2Kb (Hogquist et al., 1994). This TCR can be specifically identified with the anti-mouse 

Vα2 and Vβ5.5, 5.2 monoclonal antibodies. Experiments with OT-I mice were 

performed at the Medical Clinic for Rheumatology and Clinical Immunology (Charité, 

Berlin), in cooperation with Elisabeth Kenngott. 
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2. Culture Media and Supplements 

The chemicals for the following media and supplement stock solutions were solubilized 

in distilled water and autoclave-sterilised, unless otherwise noted. Glucose as well as 

galactose solutions were autoclaved separetely. Liquid media were generally stored at 

room temperature. Solid agar media were stored at 4°C. 

 

2.1. Bacterial culture media 

SOC Medium 

Yeast extract     0.5% w/v 

Peptone        2% w/v 

Glucose          20 mM 

Potassium chloride        2.5 mM 

Magnesium chloride         10 mM 

Magnesium sulphate         10 mM 

Sodium chloride          10 mM 

The medium was stored at 4°C. 

 
Luria Bertani (LB) 

Peptone        1% w/v 

Yeast extract     0.5% w/v 

Sodium chloride        1% w/v 

(Agar    1.5% w/v) 

 

Ampicillin 

Ampicillin      50 mg/ml 

in 50 % ethanol 

The solution was filter-sterilized and stored at -20°C. 

 

Kanamycin 

Kanamycin      25 mg/ml 

The solution was filter-sterilized and stored at -20°C. 

 

IPTG 

IPTG        100 mM 



                    Materials 
 

  45 

The solution was filter-sterilized and stored at -20°C. 

 

X-gal 

X-gal      40 mg/ml 

in dimethylformamide 

The solution was filter-sterilized and stored in the dark at -20°C. 

 

 

2.2. Yeast culture media 

 

YPD 

Yeast extract        1% w/v 

Peptone        2% w/v 

Glucose         2% w/v 

(Agar    1.5% w/v) 

 

10× Yeast nitrogen base (YNB) standard stock solution 

YNB without aminoacids           17 g/l 
and ammonium sulfate 

The solution was filter-sterilized before use. 

 

Synthetic Complete Medium (SC Medium) 

10× YNB standard stock solution       10% v/v 

Ammonium sulphate     0.5% w/v 

Glucose        2% w/v 

Bases and amino acids mix  0.087% w/v 

 

Bases and amino acids mix 

Adenine sulphate            0.2 g 

Uracil            0.2 g 

L-tryptophan            0.2 g 

L-histidin HCl            0.2 g 

L-arginin HCl            0.2 g 

L-methionin HCl            0.2 g 

L-tyrosin HCl             0.3 g 
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L-lysin            0.3 g 

L-isoleucin HCl            0.3 g 

L-phenylalanin            0.5 g 

L-leucin HCl            1.0 g 

L-valin            1.5 g 

L-threonin            2.0 g 

L-serin            4.0 g 

L-aspartic acid            6.0 g 

L-glutamic acid            6.0 g 

Powders were ground into a homogeneous mixture and stored at 4°C. In the dropout 

(d/o) media described below uracil or histidin, respectively, were omitted in the mix. 

 

 

2.2.1. S. cerevisiae media 

Ura d/o Glucose 

10× YNB standard stock solution       10% v/v 

Ammonium sulphate     0.5% w/v 

Bases and amino acids 0.087% w/v 
mix without uracil 

Glucose       2% w/v 

(Agar    1.5% w/v) 

 

 

2.2.2. P. pastoris media 

10× YNB stock for P. pastoris 

YNB           34 g/l 

Ammonium sulphate         100 g/l 

The YNB amount in this solution is twice as concentrated as the standard YNB stock 

solution. The solution was filter-sterilized before use. 

 

BMG (Buffered Minimal Glycerol) 

1 M potassium phosphate buffer       10% v/v 

10× YNB stock for P. pastoris       10% v/v 

500× Biotin stock      0.2% v/v 
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Glycerol         1% v/v 

 

BMM (Buffered Minimal Methanol) 

Potassium phosphate, pH 6.0       100 mM 

10× YNB stock for P. pastoris       10% v/v 

500× Biotin stock      0.2% v/v 

Methanol      0.5% v/v 

 

1 M Potassium Phosphate Buffer, pH 6.0 

Potassium dihydrogenphosphat      118.1 g/l 

Di-potassium hydrogenphosphat           23 g/l 

 

500× Biotin stock 

Biotin      20% w/v 

The solution was filter-sterilized and stored at 4°C 

 

His d/o Glucose 

10× YNB standard stock solution       10% v/v 

Ammonium sulphate     0.5% w/v 

Bases and amino acids mix 0.069% w/v 
without histidin 

Glucose        2% w/v 

(Agar    1.5% w/v) 

 

 

2.2.3. Sz. pombe media 

Yeast extract with supplements (YES) 

Yeast extract      0.5% w/v 

Glucose      3.0% w/v 

Agar         2% w/v 

10× supplements       10% v/v 

 

Edinburgh minimal medium (EMM) with supplements 

Potassium hydrogen phthalate      14.7 mM 
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Di-sodium hydrogenphosphate      15.5 mM 

Ammonium chloride       93.5 mM 

Glucose        2% w/v 

(Low glucose     0.5% w/v) 

50× Salt stock          2% v/v 

1,000× Vitamin stock     0.1 % v/v 

10,000× Mineral stock   0.01 % v/v 

10× Supplements       10% v/v 

(2,000× Thiamin stock   0.05% v/v) 

(Agar        2% w/v) 

 

50× Salt stock 

Calcium chloride dihydrate      4.99 mM 

Magnesium chloride hexahydrate         0.26 M 

Potassium chloride         0.67 M 

Sodium sulfate      14.1 mM 

The solution was filter-sterilized and stored at 4°C 

 

1,000× Vitamin stock 

Biotin       40.8 µM 

Inositol      55.5 mM 

Nicotinic acid      81.2 mM 

Pantothenic acid        4.2 mM 

The solution was filter-sterilized and stored at 4°C 

 

10,000× Mineral stock 

Boric acid      80.9 mM 

Citric acid monohydrate      47.6 mM 

Copper(II)-sulfate pentahydrate        1.6 mM 

Iron(III)-chloride hexahydrate        7.4 mM 

Manganese sulfate monohydrate      23.7 mM 

Molybdic acid      2.47 mM 

Potassium iodide      6.02 mM 

Zinc sulfate heptahydrate      13.9 mM 
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The solution was filter-sterilized and stored at 4°C 

 

10× Supplements 

Adenine        2.25 g/l 

L-histidine        2.25 g/l 

L-leucine        2.25 g/l 

L-lysine        2.25 g/l 

Uracil        2.25 g/l 

The solution was filter-sterilized and stored at 4°C. For preparation of EMM leu d/o 

medium, leucine was omitted. 

 

2,000× Thiamin stock 

Thiamin           10 g/l 

The solution was filter-sterilized and stored at -20°C 

 

 

2.2.4. K. lactis media 

YPGal 

Yeast extract        1% w/v 

Peptone        2% w/v 

Galactose        3% w/v 

 

YCB acetamid 

Yeast carbon base   1.17% w/v 

Acetamid         1% v/v 

Sodium phosphate buffer, pH 7.0         3% v/v 

Agar        1% w/v 

The sodium phosphate buffer was prepared separetely. The medium was cooled to 

approximately 40°C before addition of acetamide. 

 

1 M sodium phosphate buffer pH 7.0 

Sodium dihydrogen phosphate              1 M 

Di-sodium hydrogen phosphate              1 M 
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The buffer was prepared mixing 423 ml of the 1 M sodium dihydrogenphosphate 

solution with 577 ml of the 1 M di-sodium hydrogenphosphate solution. 

 

100× Acetamid stock solution 

Acetamid       500 mM 

The solution was filter-sterilized and stored in the dark at 4 °C. 

 

 

2.3. Mammalian cells culture media 

RPMI 1640 was used as the basic medium for all mammalian cells. This culture 

medium contains 2 mM L-glutamine, sodium bicarbonate, and phenol red. Fetal calf 

serum included in all media was inactivated for 10 minutes at 42°C. 

 

2.3.1. IC-21 murine macrophages 

RPMI 1640 

Fetal calf serum       10% v/v 

 

 

2.3.2. Human monocytes, dendritic cells 

RPMI 1640 

Fetal calf serum (LPS-free)        10% v/v 

Penicillin     100 U/ml 

Streptomycin    100 μg/ml 

 

 

2.3.3. Human lymphocytes 

RPMI 1640 

Fetal calf serum       10% v/v 

Penicillin     100 U/ml 

Streptomycin    100 μg/ml 

 

 

2.3.4. Freezing medium 

RPMI 1640       20% v/v 
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DMSO       10% v/v 

FCS       60% v/v 

 

 

3. Buffers and Solutions 

 

3.1. Common buffers 

10× TE 

Tris-HCl         10 mM 

EDTA (disodium)           1 mM 

pH 7.5 

 

10× Phosphate-buffered saline (PBS) 

Sodium chloride           1.5 M 

Disodium hydrogen phosphate           0.1 M 

pH 7.4 

 

Hank’s balanced salt solution (HBSS) 

• Stock 1 

Sodium chloride        8% w/v 

Potassium chloride     0.4% w/v 

• Stock 2 

Disodium hydrogen phosphate   0,36% w/v 

Potassium dihydrogen phosphate     0.6% w/v 

• Stock 3 

Calcium chloride   1.44% w/v 

• Stock 4 

Magnesium sulphate heptahydrate   2.46% w/v 

• Stock 5 

Sodium hydrogen carbonate     3.5% w/v 

 
All stock solutions were filter-sterilized and stored at 4°C. Prior to use, solutions were 

mixed as follows: 

Stock 1       10% v/v 
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Stock 2         1% v/v 

Stock 3         1% v/v 

Stock 4         1% v/v 

Stock 5         1% v/v 

 

250× Luminol solution 

Lminol       100 mM 

in DMSO 

Aliquots were stored at -20°C. 

 

Lysis buffer 

Tris         20 mM 

Magnesium chloride         10 mM 

Ammonium sulphate           0.3 M 

EDTA           1 mM 

Glycerin         5% v/v 

Dithiothreitol           1 mM 

Protease inhibitor cocktail                1× 

 

Isolation buffer 

Tris-HCl, pH 7.8         10 mM 

100× PMSF         1% v/v 

 

100× PMSF 

PMSF       100 mM 

in isopropanol 

The solution was stored at -20°C. 

 

1,000× DTT 

DTT              1 M 

in 10 mM sodium acetate, pH 5.2. 

The solution was filter-sterilized and stored at -20°C. 
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3.2. Buffers for agarose gel electrophoresis 

GLB (Gel Loading Buffer) 

Glycerol      50% w/v 

SDS        1% w/v 

EDTA       125 mM 

Bromophenol blue   0.05% w/v 

Xylenecyanol   0.05% w/v 

 

10× TBE 

Tris base         0.89 M 

Boric acid         0.89 M 

EDTA         20 mM 

 

 

3.3. Buffers for isolation of plasmid DNA 

GTE 

Glucose         50 mM 

Tris-HCl, pH 8.0         25 mM 

EDTA         10 mM 

 

5 M Potassium acetate 

Acetic acid (98%)    29.5% v/v 

pH 4.8 

 

NaOH/SDS 

NaOH       200 mM 

SDS        1% w/v 

 

 

3.4. Solutions for transformation of Sz. pombe 

10× TE 

Tris       100 mM 

EDTA         10 mM 
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pH 7.5 

 

Lithium acetate / EDTA 

Lithium acetate       100 mM 

EDTA           1 mM 

pH 4.9, filter-sterilized 

 

PEG / lithium acetate / EDTA 

Polyethylene glycol 3350      40% w/v 

EDTA           1 mM 

Lithium acetate       100 mM 

 

 

3.5. Solutions for transformation of P. pastoris 

10 × Bicin-NaOH pH 8.3 

Bicin       100 mM 

pH 8.3 

 

BEDS Buffer 

10 x Bicin-NaOH pH 8.3       10% v/v 

Ethylene glycol         3% v/v 

DMSO         3% v/v 

Sorbitol              1 M 

 

1 M Sorbitol 

Sorbitol              1 M 

The solution was filter-sterilized and stored at 4 °C. 

 

 

3.6. Solutions for transformation of S. cerevisiae 

10× lithium acetate 

Lithium acetate              1 M 

pH 7.5 

The solution was filter-sterilized and stored at room temperature. 
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10× TE 

Tris       100 mM 

EDTA         10 mM 

pH 7.5 

 

Lithium acetate / TE 

10× TE       10% v/v 

10× lithium acetate pH 7.5       10% v/v 

 

PEG solution 

10× Lithiumacetat       10% v/v 

10× TE pH 7,5       10% v/v 

PEG 4000 50% (w/v)       80% v/v 

 

 

3.7. Solutions for transformation of K. lactis 

Yeast Transformation Reagent (New England Biolabs) 

 

 

3.8. Buffers for VLP preparation 

Spheroplasting buffer 

Tris-HCl pH7.5         10 mM 

Sorbit           0.8 M 

CaCl2         10 mM 

1,000× DTT      0.2% v/v 

Zymolyase 20T    200 µg/ml 

DTT and zymolyase were added separately. 

 

PBSE(S) 

NaCl       150 mM 

Na2HPO4         10 mM 

Na2EDTA         10 mM 

(Sorbitol              1M) 

pH 7.4 
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Sucrose gradient solutions 

Sucrose                          20%, 45%, or 70% w/v 

in PBSE 

The 20-70% sucrose linear gradient was prepared with a gradient former (BioRad) 

using equal volumes of 20% sucrose and 70% sucrose solutions. 

 

 

3.9. Buffers and solutions for SDS-PAGE 

Tris-Glycin 

Tris         25 mM 

Glycin       250 mM 

SDS     0.1% w/v 

 

10× SDS gel loading buffer 

Tris-HCl pH 6.8              1 M 

SDS      10% w/v 

Bromophenol blue     0.5% w/v 

Glycerol       50% v/v 

β-Mercaptoethanol              1 M 

 

 

3.10. Buffers and solutions for western blotting 

10× TBS 

Tris              1 M 

NaCl           1.5 M 

pH 7.5 

 

Transfer buffer 

Tris-HCl, pH8.4         25 mM 

Glycine       190 mM 

Methanol       20% v/v 

SDS     0.1% w/v 
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Wash buffer 

10× TBS       10% v/v 

Tween 20    0.05% v/v 

 

Blocking buffer 

10× TBS       10% v/v 

Tween 20    0.05% v/v 

Low-fat milk        5% w/v 

 

 

3.11. Buffers and solutions for cell culture 

Erythrocyte lysing solution 

Potassium bicarbonate         0.01 M 

Ammonium chloride       0.155 M 

EDTA        0.1 mM 

The pH was adjusted to 7.5 and the solution was filter-sterilized. 

 

FACS buffer 

Fetal calf serum         5% v/v 

BSA     0.5% w/v 

Sodium azide   0.07% w/v 

in PBS 

 

FACS Fix 

Paraformaldehyde        1% w/v 

Sodium chloride          8.5 g/l 

pH 7.4 

 

MACS buffer 

BSA     0.5% w/v 

EDTA           2 mM 

in PBS 
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4. Primers 

Table 3 shows the oligonucleotide primers used in this work for PCR amplification. 

Primers were synthesized by Sigma. 

 

Table 3. Oligonucleotide primers used and their respective sequences. Restriction 
enzyme recognition sites are underlined; start and stop codons are written in bold; 
mutations are written in italics. 

Primer name Sequence (5’ – 3’) 

5’HindIII_EcoRI_Ova AAG CTT GAA TTC ATG GGC TCC ATC GGC GCA G 

3’BglII_NotI_Ova GCG GCC GC A GAT CTT TAA GGG GAA ACA CAT 
CTG CCA AAG AAG 

5’EcoRI_XhoI Ova 
(Walch, 2009) GAA TTC CTC GAG ATG GGC TCC ATC GGC GCA G 

3’SalI_BglII_Ova 
(Walch, 2009) 

GTC GAC AGA TCT TTA AGG GGA AAC ACA TCT 
GCC AAA GAA G 

5’AvrII_Sed1 
(Müller, 2008) 

CCT AGG TTT TCC AAC AGT ACA TCT GCT TCT 
TCC ACC 

3’NotI_Sed1 
(Müller, 2008) 

GCG GCC GCT TAT AAG AAT AAC ATA GCA ACA 
CCA GCC AAA CC 

3’BglII_Sed1 AGA TCT TTA TAA GAA TAA CAT AGC AAC ACC 
AGC CAA ACC 

3’Ova_AvrII_ohneStop CCT AGG AGG GGA AAC ACA TCT GCC AAA GAA 
GAG 

5’ Ovacyt_mut TAT TCA AGG AGC TTA TCA ATT CCT GGG TA 

3’ Ovacyt_mut TAC CCA GGA ATT GAT AAG CTC CTT GAA TA 

5’ XbaISacI_Ovacyt TCT AGA GAG CTC ATG GGC TCC ATC GGC GCA 
GCA 

5’pp65 
(Walch, 2009) 

GAA TTC CTC GAG GAG CTC ATG ATA TCC GTA 
CTG GGT CCC ATT TCG 

3’ pp65 
(Walch, 2009) 

TCT AGA GTC GAC TCA ACC TCG GTG CTT TTT 
GGG C 

3’BamHIpp65 
(Schumacher, 2001) GGA TCC TCA ACC TCG GTG CTT TTT GGG C 

5’SacI pp65 GAG CTC ATG ATA TCC GTA CTG GGT CCC 

5’Prepropp65 AGC AGG GCT TAG AAG AAC GTA TGA TAT CCG 
TAC TGG GT 

3’Prepropp65 ACC CAG TAC GGA TAT CAT ACG TTC TTC TAA 
GCC CTG CT 

5’pp65mutBstXI TTC GTG TTT CCC ACA AAG GAC GTG 

3’pp65 mutBstXI CAC GTC CTT TGT GGG AAA CAC GAA 
5’ K28 

(Sendzik, 2006) 
CTC GAG GAA TTC ATG GAG AGC GTT TCC TCA 
TTA TTT AAC ATT TTT TC 
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5. Antibodies 

5.1. Primary antibodies 

All primary antibodies used in this work are listed in Table 4. 

 

Table 4. Primary antibodies utilized throughout this work, their main characteristics and 
sources. 

Antigen Clone Host Isotype Conjugation Manufacturer 
Chicken Ovalbu-
min (polyclonal) - rabbit - - Sigma 

HCMV pp65 2 and 6 mouse IgG1 κ - Leica 

β-1,3-glucan  mouse IgG κ - Biosupplies 
Australia 

Mouse CD8a 53-6.7 rat IgG2a κ FITC Becton 
Dickinson 

Mouse IFN-γ XMG1.2 rat IgG1 κ PE-Cy7 Becton 
Dickinson 

Mouse Vβ5.1/5.2 MR9-4 mouse IgG1 κ PE Becton 
Dickinson 

Mouse Dectin-1 2A11 rat IgG2b - Serotec 
Mouse/human 

Mannose receptor 15-2 mouse IgG1 - Abcam 

Human Dectin-1 GE2 mouse IgG1 - Serotec 

Human IFN-γ 4S.B3 mouse IgG1 κ FITC Becton 
Dickinson 

Human CD1a NA1/34 mouse IgG2a κ FITC Dako 

Human CD3 UCHT1 mouse IgG1 FITC Beckman 
Coulter 

Human CD4 SK3 mouse IgG1 κ PerCP Becton 
Dickinson 

Human CD8 SK1 mouse IgG1 PerCP Becton 
Dickinson 

Human CD14 TÜK4 mouse IgG2a κ PE Dako 

Human CD19 J3-119 mouse IgG1 PE Beckman 
Coulter 

Human CD28 L293 mouse IgG1 - Becton 
Dickinson 

Human CD40 5C3 mouse IgG1 κ FITC Becton 
Dickinson 

Human CD49d 9F10 mouse IgG1 κ - Becton 
Dickinson 

Human CD54 HA58 mouse IgG1 κ PE Becton 
Dickinson 
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Table 4 continuation 
Antigen Clone Host Isotype Conjugation Manufacturer 

Human CD58 1C3 mouse IgG2a κ FITC Becton 
Dickinson 

Human CD69 TP1.55.3 mouse IgG2b PE Beckman 
Coulter 

Human CD80 MAB104 mouse IgG1 PE Beckman 
Coulter 

Human CD83 HB15a mouse IgG2b PE Beckman 
Coulter 

Human CD86 2331 
(FUN-1) mouse IgG1 κ FITC Becton 

Dickinson 

Human CCR7 3D12 rat IgG2a κ PE Becton 
Dickinson 

Human HLA 
A,B,C W6/32 mouse IgG2a κ PE Dako 

Human HLA DP, 
DQ, DR CR3/43 mouse IgG1 κ FITC Dako 

 

 

5.2. Secondary antibodies 

The secondary antibodies used in this work are listed in Table 5. 

 

Table 5. Secondary antibodies used in this work, their main characteristics and 
manufacturers. 

Antigen Host Conjugation Manufacturer 

Mouse IgG goat FITC Sigma 

Mouse IgG goat PE Sigma 

Mouse IgG goat horseradish peroxidase type VI Sigma 

Rabbit IgG goat FITC Sigma 

Rabbit IgG goat horseradish peroxidase type VI Sigma 

Rat IgG goat FITC Sigma 
 

 

6. Proteins and peptides 

Chicken ovalbumin, Sigma-Aldrich (Schnelldorf, Germany) 
wheat germ agglutinin-FITC 

Concanavalin A-FITC Invitrogen (Darmstadt, Germany) 

Pp65 from HCMV Miltenyi Biotec (Bergisch Gladbach, Germany) 
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SIINFEKL peptide Eurogentec (Cologne, Germany) 

 

 

7. Enzymes 

DNase-free RNase, restriction  Fermentas (St. Leon-Rot, Germany) 
enzymes, T4 DNA Ligase 

Klenow Polymerase Roche (Mannheim, Germany) 

Laminarinase Sigma-Aldrich (Schnelldorf, Germany) 

Zymolyase 20T (A. luteus) AMS Biotechnology (Abingdon, UK) 

 

 

8. Molecular weight markers 

PageRuler prestained protein ladder Fermentas (St. Leon-Rot, Germany) 

Quick-Load 1 kb DNA Ladder New England Biolabs (Frankfurt, Germany) 

Smart Ladder DNA ladder Eurogentec (Seraing, Belgium) 

 

 

9. Reagents for cell culture 

Brefeldin A, ionomycin, LPS, 
penicillin/streptomycin, PMA, 
RPMI1640 with phenol red, 
saponin, Staphylococcus 
enterotoxin B 

Sigma-Aldrich (Schnelldorf, Germany) 

HCMV lysate Virion\Serion (Würzburg, Germany) 

FACS lysing solution Becton Dickinson (Heidelberg, Germany) 
Lymphocyte separation medium, 
Fetal calf serum 

PAA (Cölbe, Germany) 

Recombinant human GM-CSF 
(rhGM-CSF) 

Berlex Laboratories (Richmond, USA) 

Recombinant human IL-4 (rhIL-4) Miltenyi Biotec (Bergisch Gladbach, Germany) 
 

 

10. Kits 

Expand High Fidelity PCR System Roche Diagnostics (Mannheim, Germany) 

E.Z.N.A. Gel Extraction Kit OMEGA bio-tek (Norcross, USA) 

K. lactis Protein Expression Kit New England Biolabs (Frankfurt, Germany) 
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MACS CD14 microbeads, sepa- 
ration columns, and separation unit 

Miltenyi Biotec (Bergisch Gladbach, Germany) 

peqGOLD Plasmid Miniprep Kit II PEQLAB Biotechnologie (Erlangen, Germany) 
pSTBlue-1 AccepTor 
Vector Giga Kit 

Novagen (Darmstadt, Germany) 

SuperSignal West Dura Substrat Thermo Scientific (Reinach, Switzerland) 
 

 

11. Other chemicals and materials 

Agar, peptone, yeast extract Marcor (New Jersey, USA) 

Agarose Biozym (Oldendorf, Germany) 

Ampicillin, bromophenolblue Sigma-Aldrich (Schnelldorf, Germany) 
Complete protease inhibitor 
cocktail, PVDF Membrane 

Roche (Mannheim, Germany) 

Dialysis filter Millipore (Schwalbach, Germany) 
Difco YNB w/o amino acids 
and ammonium sulphate 

Becton Dickinson (Heidelberg, Germany) 

Electroporation cuvette, 
extra thick blot paper 

BioRad (Munich, Germany) 

Luminol, salmon sperm DNA, 
β-mercaptoethanol 

Serva (Heidelberg, Germany) 

Vivaspin Sartorius (Goettingen, Germany) 
All other chemicals and materials Merck (Darmstadt, Germany);  

Roth (Karlsruhe, Germany) 
 

 

12. Plasmids 

The source and main characteristics of the plasmids used as PCR template or for 

cloning, subcloning, or sequencing purposes are listed in Table 6. Constructed plasmids 

used for expression of recombinant proteins in this work are listed in Table 7. 

 

Table 6: Plasmids used throughout this work and their main properties. 

Plasmid (size) Source Properties 

pSTBlue-1 
(3.8 kbp) Novagen 

Linearized vector for TA cloning, ampR, kanR, 
T7 and SP6 promoters, lacZα-reporter gene for 

blue/white screening, 
pKLAC1 
(9.0 kbp) 

New England 
Biolabs 

K. lactis integrative expression vector, LAC4 
promoter, amdS gene, α-mating factor, ampR 

pREP1 
(8.9 kbp) Maundrell, 1993

Sz. pombe episomal expression vector, nmt1 
promoter, leu2 gene, autonomous replicating 

sequence, ampR 

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=Switzerland&trestr=0x401
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Table 6 continuation 
Plasmid (size) Source Properties 

pREP-BD 
(9.0 kbp) Diehl, 2008 pREP1 vector with improved multiple cloning 

site 
pPIC3.5 
(7.8 kbp) Invitrogen P. pastoris integrative expression vector, aox1 

promoter, his4 gene, ampR 
pPIC9 

(8.0 kbp) Invitrogen P. pastoris integrative expression vector, aox1 
promoter, his4 gene, α-mating factor, ampR 

pPIC9/sed1 Müller, 2008 pPIC9 vector containing the sed1 sequence 
pPGK 

(6.1 kbp) 
Kang et al., 

1990 
S. cerevisiae episomal expression vector, pgk 

promoter, ura3 gene, 2µ origin, ampR 
pPGK-

6His/Xa/GST 
(6.7 kbp) 

Bernardy, 2006 pPGK vector containig a 6×His/Xa/GST/TGA 
gene fusion 

pPGK-M28-I 
(6.9 kbp) 

Schmitt and 
Tipper, 1995 

pPGK vector containing a K28preprotoxin 
coding sequence  

pFB2 
(6.3 kbp) Breinig, 2002 pPGK-M28-I-derived vector containing 

Kre1/HA/Cwp2 genes 

pYES/OVA 
(7.0 kbp) Walch, 2009 

S. cerevisiae expression vector pYES 
(Invitrogen), ura3 gene, GAL1 promoter, 2µ 

origin, ampR; containing the ova gene 

pYES/OVAcyt 
(6.7 kbp) Walch, 2009 

S. cerevisiae expression vector pYES 
(Invitrogen), ura3 gene, GAL1 promoter, 2µ 

origin, ampR; contains the Ovacyt coding 
sequence 

pPGK/pp65 
(7.7 kbp) 

Schumacher, 
2001 

pPGK vector containing the sequence coding 
for full-length pp65 

pG[0]G 
(8.9 kbp) Powilleit, 2004 pPGK vector containing gag/gfp gene fusion  

pG 
(8.1 kbp) Powilleit, 2004 pPGK vector containing gag gene 

YEp 352 
(5.2 kbp) Hill et al., 1986 S. cerevisiae vector, ura3 gene, 2µ origin, 

ampR 
 

 

Table 7: Plasmids constructed in this work for recombinant protein expression and their 
properties. 

Plasmid (size) Properties 
pPGK/ova 
(7.2 kbp) 

pPGK vector containing the sequence coding for full-length 
Ova 

pPGK/ovacyt 
(6.9 kbp) pPGK vector containing the Ovacyt coding sequence 

pFB2/ovacyt/sed1 
(7.9 kbp) 

pFB2 vector containing the OVAcyt/sed1 open reading frame 
downstream of the Kre1 leader sequence 

pPGK/kre1/pp65 
(7.8 kbp) 

pPGK vector containing the sequence coding for full-length 
pp65 downstream of the Kre1 leader sequence 
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Table 7 continuation 
Plasmid (size) Properties 
pG[0]G/ovacyt 

(9.0 kbp) 
pG[0]G vector containing the Ovacyt coding sequence 
downstream of the gag gene (replacing gfp) 

pG[0]G/pp65 
(9.8 kbp) 

pG[0]G vector containing the sequence coding for full-length 
pp65 downstream of the gag gene (replacing gfp) 

pREP-BD/ova 
(9.9 kbp) 

pREP-BD vector containing the sequence coding for full-length 
Ova 

pREP-BD/ovacyt 
(9.6 kbp) pREP-BD vector containing the sequence coding for Ovacyt 

pREP1/pp65 
(10.6 kbp) 

pREP1 vector containing the sequence coding for full-length 
pp65 

pREP1/prepropp65 
(10.7 kbp) 

pREP1 vector containing the sequence coding for full-length 
pp65 downstream of a K28preprotoxin leader sequence 

pPIC3.5/ova 
(8.9 kbp) 

pPIC3.5 vector containing the sequence coding for full-length 
Ova 

pPIC3.5/ovacyt 
(8.6 kbp) pPIC3.5 vector containing the sequence coding for Ovacyt 

pPIC3.5/pp65 
(9.4 kbp) 

pPIC3.5 vector containing the sequence coding for full-length 
pp65 

pPIC9/ovacyt/sed1 
(9.7 kbp) 

pPIC9 vector containing the sequence coding for Ovacyt 
downstream of the α-mating factor sequence and upstream of 
the sed1 coding sequence 

pPIC9/pp65 
(9.6 kbp) 

Contains the sequence coding for full- length pp65 downstream 
of the α-mating factor sequence 

pKLAC1/ova 
(10 kbp) 

pKLAC1 vector without the α-mating factor sequence and 
containing the sequence coding for full-lehgth OVA 

pKLAC1/ovacyt 
(9.7 kbp) 

pKLAC1 vector without the α-mating factor sequence and 
containing the Ovacyt coding sequence 

pKLAC1/ovacyt/ 
sed1 

(10.7 kbp) 

pKLAC1 vector containing the ovacyt/sed1 fusion downstream 
of the α-mating factor sequence 

pKLAC1/pp65mut 
(10.5 kbp) 

pKLAC1 vector without the α-mating factor sequence and 
containing the sequence coding for pp65 

pKLAC1/ 
secpp65mut 
(10.7 kbp) 

pKLAC1 vector containing the sequence coding for pp65 
downstream of the α-mating factor sequence 

 

 

12.1. Plasmid maps 

The maps of the plasmids used in this work for sequencing or transformation purposes 

are given below (Fig. 5). 
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Fig. 5. Schematic representation of DNA plasmids used for sequencing (A) or for 
heterologous gene expression in K. lactis (B), P. pastoris (C and D), Sz. pombe (E and 
F), and S. cerevisiae (G). The plasmid YEp352 (H) was only used as control vector in 
S. cerevisiae. 
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III. METHODS 

 

 

1. Molecular Biology Methods 

 

1.1. DNA amplification by polymerase chain reaction 

The polymerase chain reaction (PCR) allows the amplification of a specific DNA 

fragment flanked by regions of known sequence. This method relies on the selective 

replication of a certain DNA segment catalyzed in vitro by a heat-stable DNA 

polymerase in a series of cycles (Saiki et al., 1985). Two oligonucleotides which are 

complementary to the 3’ ends of the region to be amplified are used as primers. These 

can also contain additional restriction sites, in order to permit further cloning of the 

DNA fragment into specific plasmid vectors. A typical reaction mixture contains the 

template DNA, a thermostable DNA polymerase, at least two oligonucleotide primers, 

and the four deoxynucleotides in a reaction buffer containing Mg2+. First, the reaction 

mixture is heated to 94°C in order to denature the DNA, than cooled down below the 

melting temperature of the primers (40-60°C) for hybridization of these synthetic 

oligonucleotides to the complementary DNA strands (annealing). Next, when the 

optimum temperature for the DNA polymerase is reached (68-72°C), elongation occurs. 

In this step, DNA is synthesized by polymerization, starting from the oligonucleotide 

primers. The most widely used polymerase is derived from the thermophilic bacterium 

Thermus aquaticus and referred to as Taq polymerase. In order to minimize the 

occurrence of mutations, a high-fidelity DNA polymerase with proofreading activity 

was used. 

A typical 50 μl-reaction was prepared as follows: 

 

Template DNA (1:10 dilution)                      1.0 µl 

10 mM dNTP mix                      0.5 µl 

100 µM Forward primer                      0.5 µl 

100 µM Reverse primer                      0.5 µl 

Taq DNA Polimerase 5U/µl                      0.7 µl 

10× reaction buffer containing Mg2+                      5.0 µl 

Distilled water                  ad 50 µl 
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PCRs were performed in a Peqlab or an Eppendorf thermocycler. A classical reaction 

was run as follows: 

 

Initial denaturation  94ºC       3 min 

Denaturation   94ºC          30 s 

Annealing   45-65ºC         30 s        30 cycles 

Elongation   72ºC  1 min/kb 

Terminal elongation  72ºC       6 min 

 

 

SOE PCR 

The “splicing by overlap extention” (SOE) method is used to construct a DNA fragment 

encoding a fusion protein. In this technique, the sequences are fused in frame without 

the use of restriction sites. A total of four oligonucleotide primers are used, so that the 

reverse primer of the first sequence has an overlapping region with the forward primer 

of the second coding sequence. 

First, the genes to be fused are amplified in separate PCRs. Then, the PCR 

products are isolated and brought together in a reaction tube containing the forward 

primer of the first sequence and the reverse primer of the second sequence, among the 

other reagents necessary for a classical reaction, as described above. In the course of the 

reaction, the strands with the matching sequences overlap, acting as primers for each 

other and allowing extension by DNA polymerase. Therefore, the resulting molecule is 

a product of recombined genes, whose original sequences were ‘spliced’ together (Ho et 

al., 1989; Horton et al., 1989). Reactions were basically run as described above in this 

section. 

 

 

1.2. Agarose gel electrophoresis 

Agarose gel electrophoresis is a method used for determination of length and purity of 

DNA molecules that migrate in an electric field (Aaij and Borst, 1972). Double-

stranded DNA molecules pass through the gel at rates that are inversely proportional to 

the log10 of the number of base pairs. Large DNA fragments migrate through the matrix 

pores with less efficiency in comparison to smaller molecules (Sambrook et al., 1989). 

Migration patterns of DNA molecules also depend on molecular conformation and 
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agarose concentration. Since the phosphate backbone confers negative charge to nucleic 

acids, these molecules migrate toward the positive electrode under the selected buffer 

conditions (TBE, pH 8.3). 

An appropriate amount of agarose (0.8-1% w/v) was diluted in 1× TBE buffer 

and heated in a microwave oven until it was completely dissolved. After cooling to 50-

60°C, the solution was poured into a mould and allowed to gelatinize. After 

solidification, the gel was submerged in 1X TBE running buffer. The DNA samples 

were mixed with “Gel Loading Buffer” (5:1) before being loaded on the agarose gel. 

This buffer also contains glycerol, which enhances the density of the samples, rendering 

them to sink into the pockets. Electrophoresis was performed at approximately 8 V/cm. 

The electrophoretic separation was monitored by the position of dyes (bromophenol 

blue and xylene cyanol). Smart Ladder (range 200 bp – 10,000 bp, Fermentas) or Quick 

Load 100 bp DNA Ladder (range 100 bp – 1517 bp, New England Biolabs) were used 

as molecular weight markers. 

After electrophoresis, the gel was incubated for 10 minutes in a water bath 

containing 0.3 ‰ (v/v) ethidium bromide. This dye intercalates between base pairs of 

nucleic acids, generating fluorescent complexes which can be visualised under UV 

light. 

 

 

1.3. Elution of DNA fragments from agarose gels 

Reisolation of DNA fragments was performed with the “E.Z.N.A. Gel Extraction Kit” 

(Omega Biotek). This procedure relies on the melting of agarose and subsequent 

binding of the DNA to a membrane in the presence of chaotropic ions. The desired 

DNA band was excised from the ethidium bromide stained agarose gel with a scalpel 

and placed into a 2 ml tube. The gel slice was melted in 400 µl of XP2 binding buffer at 

65°C for 7 minutes. The mixture was transferred to the silica column and centrifuged at 

13,000 rpm for 1 minute. Then, the column was washed with 300 µl of XP2 binding 

buffer, followed by 700 µl of SPW wash buffer. The column was further centrifuged for 

2 min at 13,000 rpm to dry the matrix and 30 µl of sterile distilled water were added. 

After 2 minutes, the DNA was eluted by centrifugation at 13,000 rpm. 
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1.4. Restriction enzyme digestion of plasmid DNA 

Restriction enzymes are endonucleases of bacterial origin that bind to double-stranded 

DNA at specific sites, breaking phosphodiester bonds inside or beyond the recognition 

sequence. Restriction endonucleases have been divided into three groups (type I, type II, 

type III), and type II enzymes are the most routinely used in molecular cloning, since 

they digest the DNA within the recognition sequence. Some restriction endonucleases 

generate staggered cuts, leaving short, 5’ or 3’ single-stranded overhanging ends at the 

tails of the fragments, which are known as cohesive or sticky ends. Other DNA 

endonucleases generate blunt-ended fragments. The majority of the recognition 

sequences are 4-8 base pairs long and palindromic, i.e., rotationally symmetrical 

(Bigger et al., 1973; Sambrook et al., 1989). 

Restriction digestion was performed using 5 U of the specific enzyme, 0.5–2 µg 

plasmid DNA, the correspondent buffer properly diluted (10-fold or 5-fold dilutions, 

depending on the enzyme), and sterile distilled water to 20 µl. If DNA preparations 

were derived from alkaline lysis, 5 U of RNase A was added in order to degrade any 

remaining RNA in the sample. Reactions were incubated at the optimum temperature 

for each enzyme (generally 37°C) for 1.5 h, then mixed with “Gel Loading Buffer” and 

analyzed by agarose gel electrophoresis. 

 

 

1.5. Cloning of PCR products using AccepTor Vector Kit 

PCR amplification products were ligated to pSTBlue-1 vector (Novagen) for 

sequencing purposes. This linearized vector contains single 3’-dU overhangs, providing 

optimal conditions for ligation with PCR fragments generated by some thermostable 

DNA polymerases, like Taq polymerase, which add single 3’-dA to the amplified 

products. The dU residues are substituted for dT residues as the plasmid is replicated 

within bacteria. 

A typical ligation reaction of a PCR product in the pSTBlue-1 vector was 

performed as follows: 0.5 µl (25 ng) of pSTBlue-1 vector were mixed with 1 µl of the 

purified PCR product and 2.5 µl of “Clonables 2× Ligation Premix”. Water was added 

to 5 µl and the reaction tube was incubated for 1 h at 16°C. After that, the ligation 

product was used to transform “NovaBlue Singles Competent Cells” (Novagen), as 

described in section 4.1. 

http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A4876/
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Colonies were screened for the presence of insert in the pSTBlue-1 plasmid 

following the method for blue/white selection. The pSTBlue-1 plasmid contains a gene 

which codes for a lacZ α-peptide that complements the lacZ ω-fragment produced by 

the E. coli strain supplied with the kit. The resulting product, β-galactosidase, 

hydrolizes the galactoside substrate X-gal (5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside) yielding 5,5'-dibromo-4,4'-dichloro-indigo, an insoluble blue 

pigment, which confers the colony a blue phenotype. Inserts successful cloned into 

pSTBlue-1 vector interrupt the sequence encoding the α-peptide, which generates a 

white colony on X-gal/IPTG plates. 

 

 

1.6. DNA ligation 

Ligation of two DNA molecules involves the formation of a phosphodiester bond 

between the 3’-hydroxyl group at the terminus of one strand and a 5’phosphate at the 

end of another strand, in a reaction that consumes ATP. In molecular cloning, 

bacteriophage T4 DNA Ligase is the most routinely used enzyme, as it can efficiently 

link blunt-ended DNA segments under normal reaction conditions (Sambrook et al., 

1989; Nelson and Cox, 2005). 

 

Sticky-end ligation 

A previously digested and purified DNA fragment was mixed with the correspondent 

vector DNA carrying compatible cohesive ends. Normally, a threefold molar excess of 

the insert in comparison to the vector was used. For a typical 20-µl reaction, 1 U of T4 

DNA Ligase and 2 µl of 10× ligation buffer containing ATP were added. If necessary, 

sterile distilled water was added up to 20 µl. Reactions were incubated overnight at 

16°C or for 2 h at room temperature. After that, the ligation mixture was dialyzed 

against 10% glycerine on a nitrocellulose membrane (0.025 µm mean pore size, 

Millipore) at room temperature, for 1 h. 

 

Blunt-end ligation 

In order to fill recessed 3’ termini or to digest protruding 3’ ends created by digestion of 

DNA with restriction enzymes, the large fragment of DNA polymerase I (Klenow 

Fragment) was used. Klenow Fragment is a product of proteolytic cleavage of E. coli 



                     Methods 
 

  72 

DNA polymerase I which possesses polymerization and 3'→ 5' exonuclease activities, 

but no 5'→ 3' exonuclease activity (Klenow and Henningsen, 1970). Klenow was used 

to generate blunt ends by removing of 3´ overhangs or filling-in of 5´ overhangs. For 

removal of protruding 3´ ends, 2 U of Klenow enzyme were added to the digestion 

reaction after 1.5 h restriction, and the volume was brought up to 30 µl with sterile 

distilled water and restriction enzyme buffer. Samples were incubated for 1 h at 37°C 

and subsequently purified with “E.Z.N.A. Gel Extraction kit” for further digestion. For 

filling 5´ overhangs, 4 µl 10 mM dNTPs were also added to the reaction mixture. 

Ligation was performed as follows: for a 20-µl reaction, specific volumes of 

insert and vector were mixed with 1 µl of 10 mM ATP, 1 µl of 40% PEG 8000, and 1 U 

of T4 DNA Ligase. PEG 8000 is a condensing agent, which enhances macromolecular 

crowding, increasing the efficiency of ligation reactions (Zimmerman and Pheiffer, 

1983). Reactions were incubated overnight at 16°C and dialyzed on a filter membrane, 

as described previously for sticky-end ligation. 

 

 

1.7. Determination of DNA concentration and purity 

Spectrophotometric determination of DNA concentration relies on the fact that nucleic 

acids strongly absorb UV light at 260 nm. Since the aromatic amino acids 

phenylalanine, tyrosine and tryptophane absorb strongly at 280 nm, purity of DNA 

preparation can be assessed by the quotient A260/A280. An optimum A260/A280 ratio 

ranges between 1.8-2.0 for a cuvette spectrophotometer. Values under 1.8 indicate 

protein contamination, whereas values above 2.0 suggest the presence of RNA in the 

sample. 

One microliter of a DNA solution was mixed with 59 µl of sterile distilled water 

and transferred to a 1 cm-thick quarz cuvette. Water was used as reference. 

Concentrations were calculated in µg/ml. 

Alternatively, the DNA concentration was roughly estimated by comparing the 

intensity of the DNA band to a molecular marker of known concentration. Two 

microliters of DNA solution were mixed with GLB and water to a final volume of 10 

µl, applied on 1% agarose gel and allowed to migrate a certain distance, so that the 

bands of the marker would be well separated. After incubation of the gel in ethidium 

bromide bath for 30 minutes (for sufficient staining of the less concentrated bands), 

bands were visualized under UV light for direct comparison. 
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1.8. DNA sequencing 

DNA sequence analysis by the dideoxy chain termination method (Sanger, 1977) makes 

use of labeled dideoxynucleotides as chain terminating agents. A new DNA strand is 

synthesized, starting from a specific primer, and synthesis is interrupted after 

incorporation of a dideoxynucleotide. The reactions are base-specific, so that the sizes 

of the fragments are used to determine the exact positions in which a specific base 

appears. At the very end of the procedure, four sets of labeled fragments are present, 

which are then separated on a gel matrix and identified by a detector (Nelson and Cox, 

2005). 

Aliquots of miniprep-purified plasmid DNA (75 ng/µl) were subjected to 

sequence analysis to confirm the predicted nucleotide sequences. For verification of 

inserts cloned into the pSTBlue-1 vector the oligonucleotide primers T7 and SP6 were 

used. Analyzes were performed on an automated DNA sequencer (GATC Biotech, 

Konstanz, Germany). Data analysis was carried out using the softwares Chromas Lite 

(Technelysium Pty Ltd) and GeneRunner (Hastings Software, Inc.). 

 

 

1.9. Plasmid DNA extraction 

1.9.1. Alkaline lysis 

The alkaline lysis is the most routinely used method for isolation of plasmid DNA. 

Bacteria are first resuspended in the osmotic stabilizing solution GTE. EDTA 

destabilizes cell membranes by complexing with divalent cations. Then, cells are lysed 

with SDS and NaOH denatures chromosomal DNA (unlike close circular DNA, linear 

chromosomal DNA denatures upon exposure to alkaline pH). By adding potassium 

acetate, the pH is neutralized, causing chromosomal DNA to aggregate, and protein-

SDS complexes and high-molecular weight RNA to precipitate. Thus, plasmid DNA 

can be separated from the major contaminating macromolecules by centrifugation and 

subsequently concentrated by ethanol precipitation (Birnboim and Doly, 1979). 

A single bacterial colony was picked and inoculated in 5 ml of LB medium 

supplemented with the appropriate antibiotic. The culture was incubated overnight at 

37°C and 220 rpm. Solutions needed for isolation are described in Section 3.3 of 

Materials. Cells from 1.5 ml culture were centrifuged at 13,000 rpm for 30 s. The 

bacterial pellet was resuspended in 100 µl of GTE solution by vigorous vortexing. After 
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3 minutes of incubation at room temperature, 200 µl of NaOH/SDS were added. The 

contents were mixed by inverting the tube rapidly and the tube was stored on ice for 5 

min, after which 150 µl of potassium acetate were added. The tube was inverted for 10 

seconds, stored for another 5 minutes on ice and then centrifuged at 13,000 rpm for 5 

minutes at 4°C to pellet cell debris and chromosomal DNA. The supernatant was 

transferred to a fresh 1.5 ml tube. The double-stranded plasmid DNA was precipitated 

with 1 ml of ethanol at room temperature. After mixing, the mixture was incubated for 3 

minutes at room temperature and centrifuged at 13,000 rpm for 10 min at 4°C. The 

supernatant was removed and the DNA pellet was allowed to dry at 60°C for 10 

minutes. The pellet was dissolved in 20 µl of distilled water at 60°C and stored at -

20°C. For restriction endonuclease digestion purposes, residual low-molecular weight 

RNA was degraded by DNase-free RNase. 

 

 

1.9.2. Plasmid DNA isolation with Miniprep-kit 

By exploiting the selective binding of plasmid DNA to a silica membrane, this method 

allows the isolation of plasmid DNA without RNA. After a modified alkaline lysis of 

bacterial cells and removal of cellular debris by centrifugation, the supernatant is loaded 

onto a silica membrane. Chaotropic salts lead to denaturation of contaminants, which 

are washed away with wash buffers. Selectively bound circular DNA can then be eluted 

from the membrane. 

A bacterial colony grown on selective LB agar medium was inoculated in 5 ml 

of liquid LB containing the appropriate antibiotic and incubated overnight at 37°C, 

under agitation of 220 rpm. Cells from 4 ml culture were centrifuged at 13,000 rpm for 

1 minute. Supernatant was discarded and the bacterial pellet was treated with reagents 

of the “peqGOLD Plasmid Miniprep Kit II” (Peqlab) for plasmid DNA purification. 

First, the pellet was thoroughly resuspended in 500 µl Solution I containing RNase. 

Then, 500 µl of Solution II was added for lysis and the reagents were mixed by 

inversion. After a short incubation period at room temperature (~ 3 minutes), 700 µl of 

Solution III were added for neutralization. The tube was repeatedly inverted and 

centrifuged at 13,000 rpm for 10 minutes (room temperature). The clarified supernatant 

was transferred to the silica membrane and centrifuged for 1 minute at 10,000 rpm. This 

step was followed by two sequential washes, with 600 µl HB buffer and 850 µl wash 

buffer, respectively. The membrane was dried by further centrifugation at 13,000 rpm 
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for 2 minutes and the column was transferred to a 1.5 ml eppendorf tube. The plasmid 

DNA was eluted after incubation with 40 µl sterile water for 2 minutes at room 

temperature and a centrifugation step at 13,000 rpm for 2 minutes. The purified DNA 

was kept at -20°C for any downstream application. 

 

 

1.10. Isolation of genomic DNA from yeast 

For PCR amplification of sequences within yeast genomic DNA, yeast cells were 

mechanically broken and the DNA was isolated upon extraction with 

phenol/chloroform/isoamyl alcohol and ethanol precipitation. This protocol was adapted 

from Hoffman and Winston (1987). 

One mililiter from a yeast culture grown overnight was centrifuged at 11,000 

rpm for 3 minutes (room temperature), washed once with 1.5 ml distilled water and 

resuspended in 100 μl of lysis buffer. Then, approximately 0.03 g of glass beads were 

added, followed by addition of 100 μl of phenol/chloroform/isoamyl alcohol (25:24:1 

v/v/v). Yeasts were lysed by vortexing for 3 minutes. Subsequently, 100 μl of TE were 

added, briefly vortexed, and the mixture was centrifuged at 12,500 rpm for 5 minutes. 

The aqueous phase was carefully transferred to another microcentrifuge tube and 

incubated with 1 ml of 99% ethanol. The tube was kept at -20°C overnight and then 

centrifuged at 12,500 rpm for 3 minutes at 4°C. The DNA pellet was washed twice with 

70% ethanol, air-dried, dissolved in 30 μl distilled water and kept at -20°C until use. 

 

 

2. Culture conditions 

 

2.1. E. coli 

E. coli was cultured in LB medium at 37°C and 220 rpm. Plates containing LB agar 

medium were incubated overnight at 37°C. For culture of bacteria carrying recombinant 

plasmid DNA, LB medium was supplemented with 100 μg/ml ampicillin or 25 μg/ml 

kanamycin. For blue/white screening of colonies, 20 μl of X-gal stock solution (40 

mg/ml) and 20 μl of IPTG stock solution (100 mM) were spread on agar plates 

containing kanamycin. 
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2.2. Yeasts 

All yeasts were cultivated aerobically either in YPD or in complete SC medium at 30°C, 

under agitation of 220 rpm. In order to induce hyphal growth of C. albicans, a culture 

grown in YPD medium was shifted to YPD containing 10% FCS and incubated at 37°C 

and 220 rpm for 6 h. With respect to solid media, untransformed yeasts were grown in 

YPD, except for Sz. pombe, which was grown in YES medium. 

When recombinant protein production was necessary, the species S. cerevisiae, 

Sz. pombe, K. lactis and P. pastoris were cultivated as follows: 

S. cerevisiae transformants were selected on uracil-deficient (ura d/o) SC agar 

medium. Recombinant protein expression was achieved by culturing yeasts for 3 days in 

ura d/o-glucose medium at 30 °C and 220 rpm. 

For transformation purposes, Sz. pombe was grown in EMM low glucose 

medium. Transformants were selected on EMM plates containing 15μM thiamine. To 

induce expression from the nmt1 promoter, transformants were grown in EMM medium 

lacking leucine for 3 days at 30 °C and 220 rpm. 

K. lactis transformants were selected onto YCB agar medium. For expression of 

heterologous proteins cells were cultured in inducing YPGal medium at 30 °C for 72 h. 

After transformation of P. pastoris, cells were plated onto selective SC agar 

medium lacking histidine (his d/o). Colonies were cultivated in BMG medium for 3 

days. Then, cultures were centrifuged at 7,000 rpm for 5 min, resuspended in BMM 

medium and cultivated for another 3 days. Methanol (final concentration = 0.5%) was 

added every 24 h to induce recombinant protein expression. 

 

 

2.3. Mammalian cells 

All mammalian cells were cultured in tissue culture flasks at 37°C under 5% CO2 

atmosphere, unless otherwise stated. 

 

2.3.1. IC-21 mouse peritoneal macrophages 

For routine passaging of IC-21, cells were grown until approximately 80% confluence, 

then the culture medium was aspirated and cells were detached from flasks with cold 

PBS for approximately 10 minutes. Subsequently, cells were splitted 1:3 with pre-

warmed culture medium in 25 cm2 tissue culture flasks and incubated for 3-4 days. 
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2.4. Freezing and thawing cells 

 

2.4.1. Bacteria and yeasts 

Bacteria and yeast stocks were prepared by mixing equal volumes of a grown culture 

and 99% sterile glycerol. Cryogenic vials were stored at -80°C. For recovering of a 

stored microorganism, the strain was scraped with a pipette tip and streaked onto a 

proper agar plate. 

 

2.4.2. Freezing mammalian cells 

Cells were counted, centrifuged at 300× g at 4°C, and resuspended with culture medium 

in one half the volume needed to give the desired cell concentration. Subsequently, the 

same volume of 2× freezing medium was added dropwise and the suspension was 

carefully mixed. Cells were aliquoted in sterile cryogenic vials, frozen at -80°C 

overnight, and then transferred to a liquid nitrogen tank. 

 

2.4.3. Thawing mammalian cells 

Cells in a storage vial were thawed in a water bath at 37°C for 2 minutes and then 

transferred to a 15 ml tube containing 5 ml pre-warmed culture medium. After 

centrifugation at 300× g for 10 minutes at 4°C, supernatant was discarded and the pellet 

was resuspended with 5 ml culture medium. After that, cells were plated at a density of 

1×106 cells/ml in 75 cm2. 

 

 

3. Cell number determination 

 

3.1. Optical density 

The optical density of a bacterial or yeast culture in liquid medium was determined 

spectrophotometrically at the wavelength λ = 600 nm in a 1 cm-thick cuvette against 

sterile medium. 
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3.2. Determination of yeast cell number 

The total number of yeast cells in a culture was determined by light microscopy with a 

Neubauer hemacytometer (0.1 mm depth). Yeast cells were properly diluted in PBS and 

counted in 80 squares. The cell number was then calculated using the formula: yeast 

cells/ml = number of yeasts counted in 5 large squares × number of large squares in the 

entire chamber × dilution × (chamber volume)-1. The chamber volume was 10-4 ml and 

there were 5 large squares in the chamber. Therefore, yeasts/ml = number of yeasts in 5 

large squares × 5 × dilution factor × 104. 

 

 

3.3. Determination of mammalian cell number 

The total number of mammalian cells was determined using a hemacytometer 

“Neubauer improved” (0.1 mm depth). Cells were diluted in PBS as needed and clumps 

were dispersed. Cells were counted in the four corner squares and the mean value was 

determined. The total number of cells per milliliter was calculated as follows: cells/ml = 

average count per square × dilution factor × 104 (Phelan, 2007). 

 

 

4. Transformation methods 

 

4.1. E. coli transformation 

Preparation of electrocompetent bacteria 

Electrocompetent cells become permeable to nucleic acids upon exposure to high-

strength electric fields. Bacteria are grown to mid-log phase and washed thoroughly in a 

low conductivity medium such as glycerol to reduce the ionic strength of the cell 

suspension (Miller and Nickoloff, 1995). 

Six mililiters of an E.coli DH5α or TOP10 overnight culture were inoculated in 

300 ml LB medium and cultured at 37°C, 220 rpm, until OD600 = 0.6-0.8. The culture 

was placed on ice for 5 minutes, then centrifuged at 6,000 rpm for 10 minutes at 4°C 

and the pellet was washed twice with 100 ml of ice-cold 10% glycerol. Next, cells were 

resuspended in the remaining fluid and transferred to sterile 1.5 ml eppendorf tubes on 

ice. After centrifugation for 5 minutes at 8,000 rpm (4°C), the supernatant was 
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discarded, cell pellets were resuspended with the remaining fluid and stored as 40-µl 

aliquots at -80°C. 

 

Transformation of competent bacteria by electroporation 

In the electroporation process, short electric impulses of high frequency produce 

transient pores in the outer membranes of exponentially grown cells, which are then 

able to take up high molecular mass molecules, such as DNA (Calvin and Hanawalt, 

1988; Dower et al., 1988). This method allows highly efficient transformations, up to 

109-1010 cfu/µg plasmid DNA (Dower et al., 1988). 

A 40-µl aliquot of competent E. coli DH5α or TOP10 was thawed on ice and 

incubated with plasmid DNA (50-200 ng) for 5 min. If cells were incubated with the 

product of a ligation reaction, this latter had to be previously dialyzed against a 10% 

glycerol solution for 1 h in order to reduce the salt content. Too high salt or DNA 

concentrations in the electroporation cuvette result in arcing, which damages the cells. 

The mixture was then transferred to a prechilled electroporation cuvette (2 mm gap) and 

the cells were pulsed at 2,5kV/cm, 200Ω, 25 µF in an electroporator (“Gene Pulser II”, 

BioRad). Immediately after the pulse, cells were incubated with 500 µl SOC medium at 

37°C under agitation of 220 rpm for 1 h. After this period, the transformed cells were 

plated in suitable dilutions on selective LB agar plates and incubated overnight at 37°C. 

 

Transformation of Nova Blue Singles™ competent bacteria 

Nova Blue Singles™ competent bacteria were transformed with pSTBlue-1 vectors 

containing PCR-derived inserts. These chemically competent bacteria belong to the 

AccepTor™ kit. 

Competent cells were thawed on ice for 5 minutes. Then, 1 μl of the ligation 

reaction was added directly to the cells and the tube was incubated on ice for 5 minutes. 

Subsequently, tubes were heated for 30 s at 42°C in a water bath and immediately 

placed on ice. After 2 minutes, cells were given 250 μl of SOC medium at room 

temperature and shaken at 220 rpm for 45 minutes before being plated on LB agar 

medium supplemented with kanamycin, X-gal, and IPTG, as described in section 2.1 of 

Materials. Plates were incubated overnight at 37°C. 
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4.2. Transformation of S. cerevisiae 

The most common procedure for introducing plasmid DNA into S. cerevisiae cells is 

the lithium-acetate method. This technique was first described by Ito et al. (1983), who 

observed that alkali metal ions, especially Li+, are able to induce the uptake of DNA by 

yeast cells. Addition of PEG and a heat-shock by 42°C have been shown to improve 

transformation (Ito et al., 1983). Schiestl and Gietz (1989) demonstrated that adding 

heat-denatured salmon sperm DNA to LiAc competent cells led to increased 

transformation efficiency (approximately 105 transformants per µg DNA), since it 

functions as carrier DNA. Interactions between negatively charged PEG, monovalent 

cations, and the yeast cell surfaces alter membrane charges, which may lead to 

conformational changes. The effectiveness of monovalent cations might be attributed to 

a mild chaotropic effect (Kawai et al., 2010).  

A volume of 2 ml of an overnight S. cerevisiae culture grown in YPD was 

centrifuged at 7,000 rpm for 5 min. Solutions for S. cerevisiae transformation are 

described in Section 3.6. The cell pellet was washed with 500 µl of LiAc/TE solution 

and resuspended in 200 µl of this solution. To this yeast suspension 20 µl of salmon 

sperm DNA, 2 µl of plasmid DNA (from an alkaline lysis), 600 µl of PEG solution and 

50 µl of 10× LiAc were added. The cells were incubated at 30°C under agitation at 220 

rpm for 2 h and then heat-shocked at 42°C for 15 min. After that, yeasts were spun at 

13,000 rpm, washed twice with 500 µl of TE solution and resuspended in 500 µl of TE. 

Cells were plated as 250 µl aliquots on ura d/o plates and incubated at 30°C for 3 days. 

 

 

4.3. K. lactis transformation (New England Biolabs) 

Transformation of chemical competent K. lactis cells was performed using the kit “K. 

lactis Competent Cells” and “NEB Yeast Transformation Reagent” (New England 

Biolabs). A linearised pKLAC1-derived expression cassette is introduced into 

chemically competent cells and integrates at the LAC4 locus in the K. lactis genome. 

Selection of transformants is based on growth onto acetamide-containing medium. The 

amdS gene in the pKLAC1 vector codes for acetamidase, which breaks down acetamide 

to ammonia, which in turn can be used by K. lactis as a nitrogen source. 

A tube of K. lactis GG799 Competent Cells was thawed on ice. One hundred 

and fifty five microliter of NEB Yeast Transformation Reagent was added to the cells. 

The solution was homogenized by inverting the tube. Linearized pKLAC1-DNA 
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containing the gene of interest (1 μg) was added to the cell mixture. After an incubation 

time of 30 minutes at 30°C, the cell mixture was heat-shocked by incubation at 37°C for 

1 hour in a water bath. Cells were pelleted by centrifugation at 7,000 rpm for 2 minutes 

and washed with 1 ml sterile deionized water. Cells were pelleted by centrifugation at 

7,000 rpm for 2 minutes, resuspended in 1 ml YPD medium, transferred to a sterile 

culture tube and incubated with shaking (220 rpm) at 30°C for 30 minutes. The cell 

mixture was transferred to a sterile 1.5 ml microcentrifuge tube and pelleted by 

microcentrifugation at 7,000 rpm for 2 minutes. The cell pellet was resuspended in 1 ml 

sterile deionized water. One, 10 and 50 μl of the cell suspension were removed to 

separate fresh sterile tubes each containing 50 μl of sterile deionized water. The entire 

cell mixture from each tube was spread onto separate YCB Agar Medium plates 

containing 5 mM acetamide. Plates were incubated at 30°C for 3 days. 

 

 

4.4. Sz. pombe transformation by the rapid lithium acetate method 

Of the several existing methods for transformation of Sz. pombe cells, the one that 

yields the highest transformation frequency utilizes alkali cations. Kanter-Smoler et al. 

(1994) have described for Sz. pombe an adaptation of the LiAc method developed for S. 

cerevisiae. 

Sz. pombe PW260 cells were grown in 5 ml EMM low glucose medium to a 

density of 0.5 - 1.0 x 107 cells/ml (2 - 3 days). Growth in low glucose medium has been 

shown to increase transformation efficiency for this transformation method (Kanter-

Smoler et al., 1994). The cells were then harvested at 7,000 rpm for 5 min at room 

temperature and washed twice with 1 ml of sterile water. Solutions for Sz. pombe 

transformation are described in section 3.4. The cells were washed with 200 µl of 

lithium acetate/EDTA and resuspended in 50 µl of lithium acetate/EDTA solution. After 

that, 30 µl of TE buffer containing 1 µg of plasmid DNA and 300 µl of lithium 

acetate/EDTA/PEG solution were added. Cells were incubated under agitation at 220 

rpm at 30°C, for 30 min and then heat-shocked at 42°C for 15 min. The cells were 

centrifuged at 7,000 rpm, resuspended in 1 ml of TE buffer, plated on EMM leu d/o 

thiamine solid medium as 200 µl-aliquots and incubated for 5 days at 30°C. 
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4.5. P. pastoris transformation 

Preparation of competent cells 

P. pastoris (GS115 or KM71) was inoculated in 5 ml of YPD. The culture was 

incubated at 30°C, under agitation at 220 rpm, for 16 hours. After this period, culture 

was re-inoculated in 50 ml of YPD. This culture was cultivated at 30°C, 220 rpm, until 

an O.D. of 0,8-1,0 was reached. After that, culture was centrifugated at 500 g, 5 minutes 

at room temperature. Supernatant was discarded and cells were resuspended in 9 ml of 

cold BEDS and 1 ml 1M DTT. The suspension was incubated at 30°C, under agitation 

at 100 rpm, and centrifuged again as previously. Cells were ressuspended in 1 ml of 

BEDS and frozen at -80°C as 55-µl aliquots. 

 

Transformation 

A 55 µl-aliquot of competent cells was mixed with 5 µl of linearized plasmid DNA and 

incubated on ice for 5 minutes. The mixture was transferred to a previously cooled 

electroporation cuvette (2 mm) and subjected to a pulse of 200 Ω, 25 µF, 1.5 kV/cm. 

Imediatelly after the pulse, cells were resuspended in 1 ml of cold 1M sorbitol and 0.5 

ml of YPD, transferred to a sterile 15 ml tube and incubated at 220 rpm, 30°C, for 3 

hours. After that, 750 µl of culture were plated onto his d/o agar medium. Plates were 

incubated for 3 days at 30°C. 

 

 

5. Protein Methods 

 

5.1. Protein extraction from yeast cells or from cell-free culture medium 

Mechanical shearing of yeasts by vortexing with glass beads releases their 

cytoplasmatic contents by virtue of the abrasive action of the vortexed beads. 

Protein extracts were prepared from 3×108 yeast cells collected by centrifugation (7,000 

rpm for 5 minutes), washed three times with PBS and resuspended in 200 µl of 

disruption buffer containing a cocktail of protease inhibitors (Complete, Roche). One 

volume of glass beads (0.5 mm diameter) was added and cells were disrupted using a 

Beadbeater (Retsch) for 10 min at maximum speed at 4 °C. After cell breakage, the 

soluble protein fraction was recovered by centrifugation at 13,000 rpm for 10 min at 

4°C, transferred to new microcentrifuge tubes, and precipitated as described in section 

5.3. 
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For analysis of secreted proteins, a volume of culture medium corresponding to 

3×108 cells was centrifuged at 7,000 rpm for 5 minutes to remove the cells. 

Supernatants were transferred to new microcentrifuge tubes and concentrated by 

employing one of the methods described in section 5.3. 

 

 

5.2. Protein isolation from yeast cell walls 

Glucanase extraction of proteins from yeast cell walls was performed as described by  

Schreuder et al. (1993), with minor modifications. Yeast cells grown for three days 

under inducing conditions were counted, and 3×108 cells were centrifuged and washed 

three times in ice-cold isolation buffer. Then, 3 ml of isolation buffer and 10 g of glass 

beads were added per gram of cells (fresh weight) and yeasts were lysed in a Beadbeater 

at maximum speed for 10 minutes. Cell extracts were transferred to a new tube, and 

glass beads were extensively washed. Raw cell extracts and washes were pooled and 

centrifuged for 5 minutes at 1,000 × g. Pellets were washed three times with 1 ml of 100 

mM-sodium acetate, pH 5.0, containing 1 mM PMSF, and resuspended in the same 

buffer (20 µl of buffer for 10 mg of cell walls). To this volume was added 0.5 mU of β-

1,3-glucanase (laminarinase), and the tubes were incubated for 2 h at 37°C. Then, 

another 0.5 mU of laminarinase was added and the mixtures were further incubated for 

2 h at 37°C. Afterwards, samples were centrifuged for 5 minutes at 12,000 rpm and the 

supernatant was precipitated as described in section 5.3. 

 

 

5.3. Protein precipitation 

A number of precipitation techniques has been routinely used for recovery of proteins. 

In order to concentrate proteins present in a large volume of a certain solution, 

precipitation can be induced by addition of organic solvents or by changes in the pH, for 

example. 

 

Ethanol precipitation 

Dehydration caused by ethanol makes proteins attract each other in such an extent that 

they become insoluble in ethanol-water mixtures (van Oss, 1989). One volume of 

culture supernatant was mixed with 3 volumes of 99% ethanol. Samples were kept 
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overnight at -80°C and centrifuged at 13,000 rpm for 30 min at 4°C. Pellets were 

allowed to dry and subsequently resuspended in SDS-loading buffer. 

 

Deoxycholate (DOC) and 2,2,2-trichloroacetic acid (TCA) precipitation 

TCA is one of the most efficient agents used for protein precipitation, although its 

mechanism of action has not been completely elucidated yet. Rajalingam et al. (2009) 

suggested that the tricholoroacetate ions lead to protein unfolding by disrupting 

electrostatic interactions. Partial unfolding of proteins gives rise to exposure of nonpolar 

surfaces, resulting in intermolecular coalescence of protein molecules and consequently 

precipitation. Addition of the detergent DOC improves recovery (Bensadoun and 

Weinstein, 1976). To one volume of protein solution, 0.01 volume of 2% sodium 

deoxycholate was added. Samples were vortexed and incubated for 30 minutes at 4°C. 

Then, 0.1 volume of 100% trichloroacetic acid was added, and samples were incubated 

overnight at 4°C after brief vortexing. Next, tubes were centrifuged at 15,000 rpm for 

15 minutes at 4°C and the pellets were washed twice with 1 ml of cold acetone (kept at -

20°C). Samples were centrifuged for 5 minutes at 15,000 rpm between washes, allowed 

to dry at room temperature, and resuspended in a minimal volume of SDS-loading 

buffer. 

 

 

5.4. Polyacrylamide gel electrophoresis 

Polyacrylamide gel electrophoresis (PAGE) is a method that allows protein separation 

by applying an electric field. This procedure is carried out under conditions that permit 

dissociation of the proteins into their individual subunits and minimize aggregation. 

Samples are denaturated at high temperatures with the anionic detergent sodium 

dodecyl sulfate (SDS), which interacts with the hydrophobic amino acid residues of the 

proteins, disrupting their folded structure and allowing them to adopt an extended 

conformation. Since the amount of SDS bound is proportional to the molecular weight 

of the polypeptide and independs on its sequence, SDS-polypeptide complexes migrate 

through polyacrylamide gels at rates that reflect their sizes. The denatured polypeptides 

become negatively charged and migrate towards the positive electrode (anode). A thiol 

reducing agent such as β-mercaptoethanol is often used to reduce disulfide bonds within 

or between molecules (Sambrook et al. 1989). 
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Following the classical system developed by Laemmli (1970), tris-glycine 

polyacrylamide gels (8-12%) were assembled in a “Mini-PROTEAN 3” system 

(BioRad) and run as a stacking gel bottomed by a running gel, in a discontinuous buffer 

system, according to Sambrook et al. (1989). The resolving gel (10% polyacrylamide) 

were prepared as follows (final volume = 10 ml): 

 

Distilled water          4.0 ml 

30% polyacrilamide mix          3.3 ml 

1.5 M tris pH 8.8          2.5 ml 

10% SDS          0.1 ml 

10% APS          0.1 ml 

TEMED      0.004 ml 

 

The mixture was pippeted between two assembled glass plates (1.0 or 1.5 mm 

spacer), followed by addition of 1 ml isopropanol. After polymerization, the 

isopropanol was removed, plates were carefully dried, the stacking gel was poured and 

the comb was inserted. 

The stacking gel (5% polyacrylamide) was prepared in the following manner 

(final volume = 5 ml): 

 

Distilled water          3.4 ml 

30% polyacrilamide mix        0.83 ml 

1.0 M tris pH 6.8        0.63 ml 

10% SDS        0.05 ml 

10% APS        0.05 ml 

TEMED      0.005 ml 

 

After complete polymerization, the plates were loaded into the cassette, which in turn 

was placed inside an electrophoresis chamber. Protein samples were mixed with SDS 

buffer containing β-mercaptoethanol, incubated at 100°C for 10 minutes and loaded on 

the gel. The “Page Ruler Prestained Protein Ladder” (Fermentas) was applied as a 

molecular mass standard. After applying the samples, the gel was run in tris-glycine 

buffer at a constant voltage of 150 V. 
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5.5. Western blotting 

Western blotting is a method for immunologic detection of a specific protein 

immobilized on a membrane. Proteins separated by electrophoresis are transferred to a 

membrane, such as PVDF, which is then incubated with a specific antibody that 

recognizes the protein of interest. Subsequently, the primary antibody is bound by a 

secondary antibody (anti-immunoglobulin), which is normally coupled to an enzyme. 

Addition of an appropriate substrate generates a detectable product (Towbin et al., 

1979). 

 After SDS-PAGE, the gel was incubated with transfer buffer for removal of 

salts and detergents. The PVDF membrane was previously immersed in methanol and 

then equilibrated with transfer buffer. One piece of transfer buffer-soaked Whatmann 

filter paper was placed on the lower electrode of a semi-dry transfer apparatus, followed 

by the PVDF membrane, the gel and another buffer-soaked filter paper. Transfer was 

carried out at 0.85 mA/cm2, in a “Trans Blot SD Electroforectic Transfer Cell” 

(BioRad) for 1.5 h. 

The membrane was blocked overnight at 4°C in blocking buffer in order to 

prevent nonspecific binding of the antibodies and then incubated for 1 h at room 

temperature with a properly diluted primary antibody. The membrane was washed with 

TBST for 15 min and then incubated for 1 h at room temperature with specific 

peroxidase-conjugated anti-IgG diluted in blocking buffer, under agitation. This step 

was followed by 15-min washes in TBST and TBS. The membrane was further 

incubated with reagents of an enhanced chemiluminescence detection kit consisting of 

luminol and peroxide solutions. The horseradish peroxidase coupled to the secondary 

antibody catalyzes the oxidation of luminol by peroxide. This reaction generates a 

product (3-aminophthalate) in an excited state, which emits light at 425 nm upon decay 

to a lower energy state. Luminescence was detected and recorded by a ChemiDoc XRS 

System (BioRad). 

Protein quantitation was performed by comparison of the relative intensity of the 

bands from 3×108 cells or the corresponding amount of culture medium to a standard 

curve of commercially available protein of known concentration by densitometry using 

QuantityOne software (version 4.6.2, Bio-Rad). 
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5.6. VLP preparation and transmission electron microscopy (TEM) 

The protocols for VLP isolation and preparation for TEM analysis were performed as 

described by Powilleit et al., 2004. Yeasts are treated for spheroplast formation, lysed, 

and the cell extract is submitted to two ultracentrifugation steps and dialysis before the 

electron microscopy. 

S. cerevisiae S86c transformed with pG[0]G/ovacytmut, pG[0]G/pp65, and pG 

were inoculated in 8 ml ura d/o glucose for 72 h, transferred to 400 ml ura d/o medium 

and grown to a density of 4-6×107cells/ml at 30°C, 220 rpm. Next, cells were 

centrifuged at 6,000 rpm for 5 minutes, washed with 50 ml of prechilled water and 

subsequently with the same volume of spheroplasting buffer, and resuspended in 50 ml 

spheroplasting buffer containing 2 mM DTT and 200 µg/ml zymolyase 20T. After 1.5 h 

of incubation at 120 rpm and 30°C, spheroplasts were centrifuged for 20 min at 2,200 

rpm (4°C) and washed with 50 ml of cold PBSES. Then, cells were resuspended in 10 

ml PBSE and 10 g of micro glass beads (0.25–0.50 mm diameter) were added. Cells 

were lysed by vortexing six times for 1 min, with 1 min intervals on ice. Total yeast 

extracts were supplemented with 5 ml PBSE and pelleted at 10,000 rpm for 1 h at 4°C. 

The supernatant (15 ml) was layered onto a 15-ml cushion of 45% sucrose and 

ultracentrifuged at 19,000 rpm overnight at 4°C using a Beckman SW28 rotor. In this 

step, only high molecular weight structures can pass the cushion and form a pellet. The 

cushion pellet was gently resuspended in 1 ml PBSE, layered onto a linear density 

gradient of 20–70% sucrose, and further ultracentrifuged at 20,000 rpm overnight at 

4°C. After that, the gradient was fractionated into 2-ml fractions and the gradient pellet 

was resuspended in 2 ml PBSE. Aliquots of each fraction were analyzed by SDS-PAGE 

and western blotting. For reisolation of VLP, a maximum of 6 gradient fractions was 

pooled and dialyzed against 5 l PBSE overnight (4°C) in membranes with an exclusion 

limit of 14 kDa. The dialysed solution was concentrated to 200–500 μl using a 10 kDa 

cut-off Vivaspin and examined for the presence of VLP by TEM analysis. 

For TEM analysis, samples were adsorbed to poly-L-lysine-coated cupper grids 

for 5 min. The grids were rinsed twice with distilled water, negatively stained with 2% 

uranyl acetate for 5 min, and allowed to to air-dry. Samples were imaged with diverse 

magnifications with a TECNAI 12 (FEI) transmission electron microscope at the 

Department of Anatomy and Cell Biology of Medical Faculty at the Saarland University 

(Homburg, Germany). 
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6. Cell- and immunobiology methods 

 

6.1. Immunolabelling of yeasts 

Immunostaining of yeasts was performed as follows: 100 µl of an exponentially 

growing yeast culture were pelleted, washed three times with phosphate-buffered saline 

(PBS, 10 mM potassium phosphate buffer, 150 mM sodium chloride, pH 7.4), and 

resuspended in 100 μl PBS. The cell suspension was incubated with the primary 

antibody at a dilution rate of 1:100 for 1 h at room temperature in an orbital shaker. 

After the cells had been washed three times with PBS, the second antibody (FITC- or 

PE-conjugated) was diluted to 1:100 and allowed to react with the cells at room 

temperature for 1 h in the dark. The cells were then washed three times with PBS and 

examined using either a fluorescence microscope (Keyence), or a confocal laser 

scanning microscope equipped with a 560-615 nm filter (Zeiss LSM 510 meta). 

Microscopic observations were carried out using 100× objectives. When necessary, 

cells were analyzed by flow cytometry. Data for 50,000 events were collected. 

For detection of mannose or chitin in yeast cell walls, staining was performed as 

described above, except for the incubation steps with antibodies, which were substituted 

for a one-step incubation with 200 μg/ml of Concanavalin A-FITC or wheat germ 

agglutinin-FITC, respectively, in the dark (Buck and Andrews, 1999). 

 

 

6.2. Staining cell surface antigens in mammalian cells 

Cells were centrifuged at 1,400 rpm for 6 minutes, washed with PBS containing 10% 

FCS and resuspended in 100 µl at a concentration of at least 106 cells/ml. Then, an 

appropriate volume of antibody (previously determined by titration) was added to the 

cells, and samples were vortexed and incubated on ice for 45 minutes in the dark. After 

this period, cells were washed with 3 ml PBS containing 10% FCS, fixed with 150 µl of 

FACS-Fix and kept at 4°C in the dark until flow cytometric analysis. 

 

 

6.3. Intracellular cytokine staining in mammalian cells 

Detection of intracellular molecules presupposes permeabilization of the cell membrane 

in order to allow access of the antibodies to the antigens within the cells. Cells are 



                     Methods 
 

  89 

initially stimulated in the presence of a secretion inhibitor. Brefeldin A from Penicillium 

brefeldianum destroys the structure and function of the Golgi apparatus, so that 

secretion of proteins no longer occurs. Therefore, generally secreted proteins remain in 

the cell interior and can be detected. Cells are then fixed to prevent leakage of the 

proteins, permeabilized, and incubated with a specific conjugated antibody, which 

penetrates the cell, subsequently binding to its target. Cells were made permeable upon 

incubation with saponin, a surfactant from Quillaya saponaria bark that increases the 

penetration of macromolecules through cell membranes (Jacob et al., 1991). 

Cells were incubated in FACS-buffer containing 0.5% saponin for 10 minutes at 

room temperature. Then, cells were centrifuged at 1,400 rpm for 6 minutes, supernatant 

was discarded and the antibody was added to the cells in the remaining buffer. After 

brief vortexing, cells were incubated on ice for 45 minutes in the dark, then washed with 

2 ml of FACS-buffer, fixed with 150 µl of FACS-Fix and kept at 4°C in the dark until 

flow cytometric analysis. 

When both surface and intracellular staining in the same cell population was 

necessary, stainings were carried out successively, i.e., cells were first stained for 

surface molecules (as described above) and thereafter permeabilized with saponin for 

intracellular staining. 

 

 

6.4. Flow cytometry 

Flow cytometry is a powerful method for detecting individual cells from a certain cell 

population or subset, based on their morphologic characteristics (such as size and 

granularity) and the presence of specific surface or intracellular molecules, which are 

previous stained with fluorescent substances. A mixture of cells is forced with a sheath 

fluid through a nozzle, which generates a stream of single cells. These cells pass 

through a laser beam, scattering the light, and the fluorochrome molecules are excited, 

emitting fluorescence. Photomultipliers sense fluorescence emissions and scattered 

light. The fluorescence intensity gives information on the presence of a certain molecule 

in the cell interior or on the cell surface. Scattered light is collected as forward scatter 

(FSC) and side scatter (SSC). FSC measures the light scattered in the same axis of the 

laser beam path and is proportional to the particle size. SSC is detected at approximately 

90 degrees to the laser path and is directly proportional to cell granularity (Janeway et 

al., 2001). 
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It is possible to set a gate on a FSC vs. SSC plot so that the resulting information 

refers only to the cell population inside it. For two or three colour analysis, spectral 

overlap compensation was performed. 

Cells were stained as described in section 2.29 and examined on a FACScan or a 

FACScalibur (Becton Dickinson). Data were analyzed using CELLQuest software 

(Becton Dickinson). 

 

 

6.5. Isolation of peripheral blood mononuclear cells (PBMC) 

Dendritic cells can be obtained from isolated monocytes cultured with appropriate 

cytokines. Mononuclear cells are isolated from peripheral whole blood by density 

gradient centrifugation (Ficoll-Paque, 1.077 g/ml), which is a widely used method. 

Lymphocytes and monocytes, according to their respective densities, accumulate in the 

interphase between supernatant (which contains plasma and thrombocytes) and Ficoll 

(where erythrocytes and granulocytes sediment by virtue of their higher densities). 

Sallusto and Lanzavecchia (1994) demonstrated the generation of DCs from adult 

peripheral blood in the presence of IL-4 and GM-CSF. This protocol has been widely 

used, with some minor modifications. 

Fresh human anticoagulated blood (100 ml) was obtained from the blood bank 

of the Winterberg Klinik in Saarbrücken. Human blood was carefully transferred to five 

sterile 50 ml tubes containing 15 ml PBS (Ca2+- and Mg2+-free) until a final volume of 

35 ml each, and carefully mixed. The diluted cell suspension was gently transferred to 

tubes containing 15 ml of the lymphocyte separation medium Ficoll-Paque. Tubes were 

centrifugated at 1,600 rpm for 25 minutes at room temperature without brake, in order 

to preserve the layering. Ten millilitres of plasma from each tube were discarded. The 

white blood cell ring fraction (buffy coat with PBMC) was carefully aspirated and 

transferred to new 50 ml tubes. The volume was adjusted to 50 ml per tube using PBS. 

Samples were centrifuged for 6 minutes at 1,600 rpm (brake switched on) and the 

supernatant was carefully discarded. Each pellet was resuspended in 5 ml of sterile 

water to lyse remaining erythrocytes, immediately adding enough PBS to the PBMC to 

make up 50 ml. Cells were centrifuged and this step was repeated until no red blood 

cells could be seen. Cells were then joined in one tube by pipetting PBS from tube to 

tube. Tubes were rinsed with PBS and volume was adjusted to 50 ml. After 10 minutes 

of centrifugation at 900 rpm in order to eliminate trombocytes, the pellets were 
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resuspended in PBS and cells were counted under the light microscope, as described in 

section 3.3. 

 

 

6.6. Monocytes isolation and differentiation into dendritic cells 

Monocyte isolation by adherence to plastic surfaces 

The isolated PBMC were suspended in RPMI 1640 containing 10% heat-inactivated 

FCS (LPS-free), 100 U/ml penicillin and 0.1 mg/ml streptomycin at a density of 7.5 × 

106 cells/ml, plated onto cell-culture flasks (20 ml culture for 125 cm2 area), and 

incubated for 1.5 h at 37°C. Then, the peripheral blood lymphocytes (PBL), which do 

not adhere to plastic surfaces, were harvested, centrifuged at 1,400 rpm for 6 minutes, 

resuspended in PBS, counted, and properly frozen as described in section 2.4.2. 

Adherent cells (monocytes) were gently rinsed with PBS to remove remaining 

nonadherent cells. Monocytes were cultured at 7.5 × 106 cells/ml in RPMI 1640 

containing 10% heat-inactivated FCS (LPS-free), 100 U/ml penicillin, 0.1 mg/ml 

streptomycin, 20 U/ml recombinant human IL-4, and 800 U/ml recombinant human 

GM-CSF. Immature monocyte-derived dendritic cells (MDDCs) were obtained after 

cells had been incubated at 37 °C with 5% CO2 for 7 days, and re-fed on day 3. Cells 

harvested at day 7 were analyzed by flow cytometry for typical immature DC surface 

phenotype (CD1a+, CD14low, CD80+, CD86+, HLA-I+, HLA-II+, CD83low) and 

contamination with CD3+ T cells or CD19+ B cells. 

 

Monocyte isolation by positive selection using magnetic microbeads 

Alternatively, monocytes were isolated from PBMC using magnetic microbeads 

conjugated with anti-CD14 antibody. Taking advantage of the fact that CD14 is strongly 

expressed on the surface of monocytes, these cells can be labeled with anti-CD14 micro 

beads. In the presence of a magnetic field, the cell suspension is applied onto a column, 

and the magnetically labeled cells are retained, whereas the other cells pass through. 

When the column is removed from the magnetic field, the CD14+ cells can be eluted. 

Binding of antibody to CD14 does not trigger any signal transduction. 

PBMC isolated as described in section 7.1 were counted and resuspended in 

MACS buffer (80 µl per 107 cells). For 107 cells, 20 µl of anti-CD14 micro beads were 

added, and the cell suspension was incubated for 15 minutes at 4°C. Then, 2 ml MACS 

buffer were added per 107 cells. After centrifugation for 10 minutes at 1,200 rpm, the 
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supernatant was discarded and cells were resuspended in MACS buffer (50 µl per 107 

cells). A column was placed in the magnetic field of a separator and rinsed with 3 ml of 

MACS buffer. Then, the cell suspension was applied onto the column and the cells that 

passed through were collected. The column was washed three times with 3 ml of MACS 

buffer and subsequently placed on a sterile tube. Afterwards, 5 ml of buffer was 

pipetted onto the column and the magnetically labeled cells were forced through the 

column with a plunger. Cells were then incubated in tissue culture flasks containing the 

appropriate medium to induce differentiation into DCs as described above in this 

section. 

 

 

6.7. Maturation of dendritic cells by different stimuli and analysis of cytokine 

secretion 

For maturation studies, day 7-immature dendritic cells were harvested, resuspended at 

1×106 cells/mL, plated in 24-well plates and incubated either with yeasts at a ratio of 

1:1, or with other maturation factors (250 ng/ml LPS and 32 μl/ml of a lysate of 

HCMV-infected fibroblasts), or left untreated, for 48 h, at 37°C in 5% CO2. Cells were 

then analyzed by dual-color flow cytometry for classical surface maturation markers 

using the following monoclonal antibodies: anti-HLA DP/DQ/DR FITC, anti-HLA 

A/B/C PE, anti-CD80 PE, anti-CD83 PE, anti-CD86 FITC, anti-CD58 FITC, anti-CD54 

PE, anti-CD40 FITC, anti-CCR7 PE. Cells were stained as described in section 6.2 and 

fixed with 1% paraformaldehyde before flow cytometric analysis (section 6.4). DCs 

were gated following characteristic forward/side scatter patterns. Data were collected 

from 10,000 cells and expressed as median of fluorescence intensity of all cells, or 

percentage of positive cells. 

 For quantitation of diverse cytokines secreted by stimulated DCs, supernatants 

from DCs incubated with the various stimuli were collected and stored at -80°C until 

analysis with a multiplex cytokine kit (PROGEN Biotechnik, Heidelberg, Germany). 

 

 

6.8. Incubation of immature dendritic cells with yeast vectors 

Human MDDCs were generated as described in section 6.6, collected on day 7 by 

centrifugation at 1,400 rpm for 6 minutes, counted, and aliquoted at 106 cells/ml. For 

phagocytosis of yeasts carrying pp65, 2×106 DCs from HCMV-infected individuals 
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were incubated with yeasts expressing recombinant pp65 or harbouring empty vectors 

(MOI 5) in sterile 50 ml tubes. Samples were briefly centrifuged, incubated for 2 days at 

37°C and subsequently added to autologous T lymphocytes (Methods, section 6.9). 

 

 

6.9. Stimulation of antigen-specific memory T lymphocytes by autologous dendritic 

cells 

For stimulation of antigen-specific memory T lymphocytes by autologous dendritic 

cells from HCMV-seropositive donors, a protocol based on Scheller et al. (2008) was 

used. Frozen lymphocytes obtained after monocyte isolation by adherence to plastic 

(section 6.6) were thawed, washed twice with medium, and counted. Subsequently, 

2×106 cells were incubated in 15-ml tubes with 1 µg/ml of the costimulatory antibodies 

anti-CD28 and anti-CD49d and with DCs (1:1) which had been previously incubated 

with yeasts expressing pp65 or control yeasts. Samples were incubated for 2 h at 37°C, 

then 10 µg/ml Brefeldin A were added and tubes were further incubated at 37°C for 4 h. 

Subsequently, EDTA was added (final concentration = 0.4 mM), followed by 

incubation at room temperature for 15 minutes. Thereafter, samples were incubated for 

5 minutes with 0.008% EDTA in PBS. After centrifugation at 1,400 rpm for 6 minutes, 

supernatants were discarded and 300 µl of 4% paraformaldehyde were added. After 

incubation for 5 minutes at room temperature, 2 ml of FACS-buffer were added and 

samples were centrifuged for 6 minutes at 1,400 rpm. Supernatants were discarded and 

cells were stained for surface and intracellular antigens as described in sections 6.2 and 

6.3 of Methods. 

 

 

6.10. Measurement of ROS production in whole blood 

The ability of phagocytes to produce reactive oxygen species (ROS) is a critical aspect 

in host immune responses against potential pathogens. ROS play an important role as 

antimicrobial agents by killing microorganisms directly and as signaling molecules 

involved in various physiological pathways in neutrophils and macrophages (Fialkow et 

al., 2007; Kelly et al., 2010). Chemiluminescence is a low-cost method used to examine 

the respiratory burst of phagocytes. Luminol reacts with diverse ROS, such as 

superoxide, hydrogen peroxide, and hydroxyl radicals, generating aminophthalate ion in 
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an excited state, which emits light when returning to the ground state (Marquette and 

Blum, 2006). 

Production of ROS by phagocytic cells in whole blood after incubation with the 

yeasts S. cerevisiae, Sz. pombe, K. lactis and P. pastoris was examined. Yeasts were 

grown in SC medium, washed three times with HBBS, counted and aliquoted at 108 

yeasts cells/ml in HBBS. Then, yeasts were incubated at 65°C for 1 h or left at room 

temperature before the chemiluminescence assay. 

Fresh heparinised whole blood was 1:10 diluted in HBSS containing 0.1% 

gelatine. Diluted blood samples were divided into three groups: stimulated, resting and 

blank. In stimulated samples 90.5 μl diluted blood were incubated with 7.5 μl (2.5×105 

yeasts) of a yeast suspension (108 yeasts cells/ml in HBSS) and 2 μl of luminol solution 

(final concentration = 400 μM/well); in resting samples the same volume of blood was 

incubated with 7.5 μl HBSS and 400 μM luminol; in blank samples blood was 

incubated with 2.5×105 yeasts and 2 μl DMSO. All samples were plated in triplicates 

(100 μl/well) in a white Lumitrac Greiner 96-well plate. Luminescence was recorded at 

37°C over a 150-minute interval with 1s integration time, using a plate reader 

(PARADIGM, BeckmanCoulter). Data were analyzed with the software Multimode 

Analysis version 3.3.0.9 (BeckmanCoulter). 

 

 

6.11. In vitro yeast phagocytosis assays 

 

6.11.1. Determination of percent phagocytic cells and phagocytic index 

Human dendritic cells or murine IC21 macrophages were seeded in 24-well plates at a 

density of 1×105 cells/well. In the case of macrophages, cells were allowed to adhere 

overnight. Phagocytes were then incubated with yeasts at various MOI for 4 h or at 

MOI 5 for various periods of time, in 1 ml culture medium per well, at 37 °C in 5% 

CO2. Plates were briefly centrifuged to ensure that yeasts and cells were brought 

together. After incubation, samples were vigorously resuspended to detach loosely 

bound yeasts from cells. The cells were then washed with PBS and fixed in 1% 

paraformaldehyde at 4 °C. At least 100 cells were examined per well for attachment and 

uptake of yeasts by direct visual enumeration using a light microscope equipped with a 

40× objective lens (Olympus) to determine the percentage of phagocytes containing at 

least one yeast cell (% phagocytic cells) or the number of yeasts in 100 phagocytes 
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(phagocytic index). Experiments were performed in triplicate and results are shown as 

mean ± standard deviation (SD). 

 

6.11.2. Effect of blocking antibodies on yeast phagocytosis 

Immature DCs or murine IC21 macrophages (1×105cells/ml in the respective culture 

media) were pre-incubated with 25 μg/ml of the mouse monoclonal antibodies anti-

human Dectin-1, or anti-human mannose receptor, as well as with a correspondent 

isotype control antibody, in 24-well plates for 1 h at 37°C. All assays were performed in 

media supplemented with heat-inactivated serum to exclude contributions of 

complement. Yeasts were added at a 5:1 ratio and incubated for another 4 h. Mean ± SD 

of triplicate experiments is shown. Student’s t test was used to establish the statistical 

significance of differences between mean values using GraphPad Prism 4. One-sided p 

values less than 0.05 were considered statistically significant.  

 

 

6.12. Whole blood assay 

The presence of antigen-specific memory T cells in human blood can be quantified by 

means of a whole blood assay. The antigens are incubated with aliquots of whole blood 

where they are taken up by phagocytic cells, processed and presented to CD4 and CD8 

T lymphocytes in context of MHC class I and II, respectively. Activated T cells produce 

certain molecules, such as CD69 on the cell surface and secreted IFN-γ. Simultaneous 

staining of CD4 or CD8, CD69, and IFN-γ allows identification and determination of 

the frequency of antigen-specific activated T lymphocytes. Incubation of cells with 

Brefeldin A avoids secretion of IFN-γ, which remains intracellular and can be stained 

for flow cytometric analyses after cell permeabilisation with saponin. The incubation 

time of the assay (6 h) is not enough for activation of naïve T cells, so that only effector 

and memory T cells are specifically stimulated (Breinig et al., 2006). 

Whole blood assays were performed as described by Breinig et al. (2006). 

Aliquots of 450 µl heparinized human blood were incubated in 15-ml polypropylene 

tubes and mixed with 1 µg/ml of the costimulatory antibodies anti-CD28 and anti-

CD49d. As positive control, 2.5 µg/ml Staphylococcus enterotoxin B were used and 

cells incubated with costimulatory antibodies only served as negative control. A lysate 

of HCMV-infected fibroblasts (3.8 μl) was used to confirm whether donors were 

positive for this virus. 
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The polypropylene tubes were incubated at 37°C and 5% CO2. After 2 h, 10 

µg/ml of Brefeldin A were added and samples were further incubated for 4 h. After this 

period, the blood was incubated for 15 min in the presence of 2 mM EDTA and then for 

10 min with “FACS lysing solution” to lyse erythrocytes and fix leukocytes. Cells were 

washed with FACS buffer (PBS, 5% FCS, 0.5% BSA, 0.07% NaN3) and let overnight at 

4°C. Cells were then permeabilized with FACS buffer containing 0.1% saponin for 10 

min and immunostained using saturating conditions of the antibodies anti-CD4 (4 µl), 

anti-CD8 (4 µl), anti-IFNγ (5 µl, 1:10 diluted) and anti-CD69 (2 µl). 

Cells were washed with FACS buffer, fixed in 1% paraformaldehyde and 

analyzed (at least 25,000 of CD4- and CD8-positive lymphocytes each) on a FACScan 

flow cytometer (Beckton Dickinson). Antigen-specific activated T lymphocytes were 

identified and quantified as CD69 and IFN-γ double-positive cells. 

 

 

6.13. In vitro antigen presentation assay 

These experiments were performed in collaboration with Dr. Gernot Geginat at the 

Institute for Medical Microbiology and Hygiene (Faculty for Clinical Medicine 

Mannheim of the University Heidelberg). 

Bone marrow macrophages from C57BL/6 mice were plated at a density of 

1×105 cells per well (100 μl DMEM high glucose supplemented with L-glutamine, 100 

U/ml penicillin, 100 μg/ml streptomycin) in 96-well microtiter plates and loaded with 

the different yeast genera (MOIs 1.75, 3.5, and 7), as well as with synthetic OVA257–264 

peptide (SIINFEKL), or left untreated. Phagocytes and yeasts were brought together 

after centrifugation at 300 rpm for 3 min. After overnight incubation at 37°C, infected 

cells were washed twice and resuspended in culture medium supplemented with nystatin 

(200 U/ml) to kill any remaining uninternalized yeast cells. T cells specific for the H-

2Kb-restricted epitope SIINFEKL were added 16 h after infection (3×104/well). Culture 

supernatants were harvested 18 h after addition of T cells and IFN γ protein content was 

assessed using a specific enzyme-linked immunosorbent assay (ELISA) kit with a 

detection limit of 0.05 pg (Bazan et al., 2011). The ELISA was carried out as directed 

by the manufacturer. The amount of IFN-γ in individual wells was determined based on 

a supplied recombinant mouse IFN-γ standard. 
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6.14. Immunization of OT-I mice 

These experiments were carried out in cooperation with Elisabeth Kenngott at the 

Medical Clinic for Rheumatology and Clinical Immunology (Charité, Berlin). 

OT-I transgenic mice were immunized subcutaneously (s.c.) at the tail base with 

5×107 yeasts (either expressing Ovacyt or carrying empty vector), in 100 µl PBS, or with 

PBS alone. Boost injections were given 7 and 14 days after priming. On day 21, 

inguinal lymph nodes and spleens were collected for ex vivo restimulation and further 

analysis of IFN- γ production. 

 

 

6.15. Analysis of cellular immune responses in lymph nodes and spleen cells from 

immunized OT-I transgenic mice 

These experiments were performed in collaboration with Elisabeth Kenngott at the 

Medical Clinic for Rheumatology and Clinical Immunology (Charité, Berlin). 

Immunized OT-I mice were killed by cervical dislocation. Inguinal lymph nodes and 

spleens were harvested one week after the last immunization. Single cell suspensions 

were obtained by grinding the lymph nodes or spleens with a syringe plunger against 

cell strainers in RPMI 1640 containing 10% FCS. Spleen cells preparations were 

incubated with erythrocyte lysing solution for 3 minutes at 4°C. Cells were centrifuged 

at 1,200 rpm at room temperature for 8 minutes, washed with PBS and counted. 

Subsequently, 2×106 lymphoid cells in 1 ml culture medium were restimulated in sterile 

15-ml tubes with 10 µg/ml of SIINFEKL peptide or PMA/ionomycin, at 37°C under 5% 

CO2 atmosphere. After 2 h of incubation, 10 μg/ml Brefeldin A were added and 

SIINFEKL-stimulated cells were incubated for further 4 h, and PMA/ionomycin were 

incubated for further 2h. Then, cells were harvested, washed with PBS/BSA, fixed with 

2 % paraformaldehyde in PBS, washed twice with PBS/BSA and stained for the surface 

molecules CD8 and Vβ5 TCR as described in section 6.2. Samples were left overnight 

at 4°C in the dark. Afterwards, cells were centrifuged and resuspended in 100 µl PBS 

containing 0.5% saponin, 10 µg/ml rat IgG and anti-IFN-γ PECy7 (100-fold diluted) or 

PECy7-conjugated isotype control. After incubation at room temperature for 30 

minutes, cells were washed with 1 ml of saponin buffer, then with 1 ml PBS, and 

resuspended in 200 µl PBS prior to flow cytometric analyses on a FACSCanto (BD 

Biosciences). 
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For determination of the frequencies of activated (IFN-γ-producing) cells, CD8+ 

Vβ5+ lymphocytes were gated. Samples were measured using a FACSCanto flow 

cytometer equipped with a FACSDiva software (BD Biosciences) and analyzed using 

Flowjo (Tree Star, Inc). 
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IV. RESULTS 

 

 

1. Effects of different yeast genera on maturation and activation of human 

immature DCs 

Interaction of non-pathogenic as well as disease-associated yeasts with mammalian 

APCs such as DCs has been repeatedly demonstrated (Buentke et al., 2000; Newman 

and Holly, 2001; Heintel et al., 2003). Here, the expression profile of diverse cell 

surface markers and cytokines by DCs after incubation with distinct yeast genera, 

species, strains, or yeast mutants was examined and compared in an attempt to identify 

attractive antigen delivery vehicles for potential vaccination approaches. 

 

1.1. Maturation of human DCs by diverse yeast genera 

Maturation of human and murine DCs stimulated with whole yeasts or yeast 

components has been described. Among the species analyzed are the baker’s yeast S. 

cerevisiae, and the potentially pathogenic yeasts C. albicans, M. furfur and C. 

neoformans (Buentke et al., 2001; Romani et al., 2004; Stubbs et al., 2001; Pietrella et 

al., 2005). However, no study comparing several yeast strains with respect to their 

ability to stimulate DCs has so far been performed. 

Other inflammatory stimuli, such as bacteria and viruses, have also been 

demonstrated to induce DC maturation (Rescigno et al., 1998; Rudolf et al., 2001). In 

this way, DC responses to fungal, bacterial and viral stimuli were examined in the 

present work. Immature DCs derived from PBMC of four individuals were cultured for 

48 h with various yeast genera, E. coli LPS, a lysate from HCMV-infected fibroblasts, 

or left untreated. Then, phenotypic analysis of DCs was performed by flow cytometry 

using specific antibodies. The influence of each stimulus on DC maturation was 

determined by analyzing changes in the expression of 9 surface markers (CD40, CD54, 

CD58, CD80, CD83, CD86, CCR7, HLA I, and HLA II molecules). 

The expression of all these molecules is upregulated in mature DCs. The initial 

association of DCs with naïve T cells is mediated by cell-adhesion molecules, such as 

CD54 and CD58 on DC surface and LFA-1 and CD2, respectively, on the T cell. 

Costimulatory molecules, including CD80 and CD86, provide the second 

(costimulatory) signal needed for the clonal expansion of antigen-specific T cells. 

http://www.ncbi.nlm.nih.gov/books/n/imm/A2528/def-item/A2579/
http://www.ncbi.nlm.nih.gov/books/n/imm/A2528/def-item/A3278/
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Interaction between CD40 on DCs and CD40L on T cells transmits activating signals to 

the T cell and stimulates the APC to express CD80 and CD86, promoting further T cell 

proliferation. Mature DCs also produce high levels of MHC molecules for enhanced 

peptide presentation. Moreover, activated DCs express the chemokine receptor CCR7 

for sensing of lymph node-derived chemokines and migration into lymphoid tissues 

(Janeway et al., 2001; Abbas et al., 2007). 

As seen in Fig. 6, DCs showed increased expression of the surface markers 

CD80, CD86, HLA I, HLA II, CD40, CD54, CD58 and CCR7 (as median of 

fluorescence intensity levels) after 48 h of incubation with the appropriate stimulus 

compared to untreated DCs. Similarly, the percentage of CD83 positive cells also 

increased after treatment. Notably, yeast genera differently up-regulated the surface 

expression of maturation markers in human DCs. The lysate from HCMV-infected 

fibroblasts also led to an increase in MFI levels for all surface markers analyzed; LPS, 

the classical inducer of DC maturation in vitro, elicited the highest increases in median 

fluorescence of the same molecules. 
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http://www.ncbi.nlm.nih.gov/books/n/imm/A2528/def-item/A2621/
http://www.ncbi.nlm.nih.gov/books/n/imm/A2528/def-item/A3065/
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Fig. 6: Upregulation of various DC surface markers induced by fungal, bacterial and 
viral components. Human immature DCs were incubated for 48 h with diverse yeasts 
(MOI 1), E. coli LPS, a HCMV lysate, or left untreated, and subsequently stained with 
specific antibodies for flow cytometric analyses. Results are depicted as percent positive 
cells (for CD83) or median values of fluorescence intensities (for all other markers). 
Bars represent median values from four donors. Sc = S. cerevisiae. 
 
 
In order to allow comparisons based on the yeast genus tested, additional values for 

each genus were calculated for each donor from the median values relative to each 

strain (in the case of species in which two or more strains were analyzed, such as P. 

pastoris and S. cerevisiae). For practical reasons, these values are not shown in the 

graphics. 

 

DC maturation caused by different S. cerevisiae strains 

All S. cerevisiae strains analyzed were able to induce, though in some cases to different 

degree, upregulation of DC surface molecules. Among the three S. cerevisiae strains 

BY4742, S86c and W303-1a, BY4742 and S86c alternated as inducers of higher 

expression levels of DC surface markers (or higher levels of CD83-positive cells). For 

example, levels of CD86, HLA I and percentage of CD83+ cells were generally higher 

after DC incubation with BY4742, whereas levels of CD40, CD54 and CCR7 were 

higher in the case of S86c. Levels of CD58, CD80 and HLA II were similar for BY4742 

and S86c, and higher than for W303-1a. Thus, in terms of DC maturation, the S. 

cerevisiae strain W303-1a exhibits some degree of drawback compared to strains S86c 

and BY4742. 
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DC maturation caused by different S. cerevisiae mutants 

In order to verify the role of the yeast cell wall composition in DC maturation, two cell-

wall mutants of S. cerevisiae BY4742 were also tested, the Δmnn11 mutant, which lacks 

an α-1,6-mannosyltransferase and cannot elongate mannan chains, and the Δost3 

mutant, in which glycoproteins show an underglycosylated pattern due to the absence of 

an oligosaccharyltransferase (Karaoglu et al., 1995; Jungmann and Munro, 1998). In 

general, the mutants were more efficient than the parental strain in terms of 

upregulation of DC maturation markers, except in the case of CCR7. Higher surface 

marker levels (or percentage of positive cells) were observed after incubation of DCs 

with Δmnn11, except for HLA II, which was detected in higher levels after stimulation 

with Δost3 (Fig. 6). This higher activation induced by cell-wall mutants compared to the 

wild-type strain indicates that the degree of maturation depends on antigen nature. Also, 

shorter mannan chains on yeast cell surface seem to affect maturation in a more explicit 

manner than the presence of underglycosylated proteins. 

 

DC maturation caused by different P. pastoris strains 

Increases in the expression of DC surface markers induced by the two P. pastoris strains 

examined (GS115 and KM71) showed similar patterns, indicating that both strains share 

similar characteristics in terms of promoting DC maturation. The median of 

fluorescence intensity for most of the markers analyzed were slightly higher in the case 

of GS115 (CD40, CD54, CD58, CD80, CD86, HLA I, HLA II and CCR7), whereas the 

percentage of CD83+ cells was a little higher when KM71 was added to DCs. However, 

these differences are not distinct enough to place one strain in a more favoured position 

than the other with respect to DC maturation. 

 

DC maturation caused by different yeast genera 

When only the yeast genera are compared, it can be assumed that there is no 

preponderance of one genus among the set of genera analyzed. For instance, the highest 

levels of CD86, HLA I and HLA II were induced by K. lactis. Y. lipolytica caused the 

strongest upregulation of CD54 and CD80, Sz. pombe of CD40 and CD58, and S. 

cerevisiae of CCR7, whereas the percentage of CD83+ cells was more elevated after 

incubation with P. pastoris. 
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Comparing the viral and bacterial stimuli with the yeast genera, LPS led to stronger 

upregulation of all markers examined. In relation to the classical DC maturation marker, 

CD83, the viral stimulus led to a higher number of positive cells than fungal stimuli. 

When the adhesion molecules CD54 and CD58 are analyzed, HCMV was similar to 

many yeast genera in promoting upregulation of CD54, whereas all fungal stimuli were 

more potent in inducing upregulation of CD58 than the viral stimulus. This latter 

finding was also true for the costimulatory molecules CD40 and CD86. For the HLA 

classes I and II, as well as for CD80 and CCR7, higher variations were observed among 

different stimuli, and no explicit pattern could be defined. 

In sum, all yeast genera were able to effectively induce DC maturation, as 

observed by the upregulation of the adhesion molecules CD54 and CD58, the 

costimulatory molecules CD40, CD80 and CD86, the chemokine receptor CCR7, the 

classical maturation marker CD83, and the HLA molecules. Based on the analyses of 

these surface markers, differences among yeast strains could be observed, and they were 

greater among the S. cerevisiae strains tested than among the P. pastoris strains. Yeasts 

bearing mutations that affect their glycan structures also differ in their abilities to 

mature DCs, and the maturation was positively modulated when the two mutants were 

compared to the wild-type counterpart. Fungal stimuli were indeed less potent than the 

bacterial stimulus LPS in eliciting upregulation of expression of these surface markers, 

but, in many situations, stronger than the viral stimulus. 

 These results suggest that some differences in the immunological responses 

might be observed after in vivo application of distinct yeast genera as antigen carriers. 

 

 

1.2. Cytokine detection in DC culture supernatants 

Besides the elevated expression of maturation markers, DCs were assessed for secretion 

of a number of cytokines that are known to be associated with their particular activation 

status. Again, the nature of antigens (fungal, bacterial and viral) on cytokine secretion 

by DCs was examined. For this purpose, immature DCs were incubated with distinct 

yeast genera, LPS, HCMV lysate, or left untreated. After 48 h incubation, culture 

supernatants were collected and assessed for the presence of the cytokines GM-CSF, 

IFNα, IFNβ, IFNγ, TNFα, IL-1α2, IL-1β, IL-6, IL-8, IL-10, IL-12 p70, IL-15, IL-23 and 

IL-27. The main functions of these cytokines are summarized and outlined below: 
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• GM-CSF is involved in the production and functional activation of 

hematopoietic cells, particularly granulocytes and monocyte/macrophages (Metcalf, 

2008; Hercus et al., 2009). GM-CSF is also crucial for the proinflammatory activity of 

TH17 cells (McGeachy, 2011). 

• IFN-α and IFN-β belong to a family of cytokines (type I IFNs) with pleiotropic 

activities on nearly all somatic cells. Secretion of IFN-α/β is mainly induced upon viral 

infection, but can also occur in response to other biological stresses. One remarkable 

function of IFN-α/β is its interference with virus replication and spread (Huber and 

Farrar, 2011). IFN-α promotes a number of biological effects, such as induction of 

apoptosis and inhibition of cell growth, as well as induction of differentiation and 

activity of host immune cells (Rizza et al., 2010). IFN-β and IFN-γ inhibit upregulation 

of CCR7 expression in mature DCs, reducing their migratory capacity. However, unlike 

IFN-γ, IFN-β significantly inhibits production of IL-12 (Szabo et al., 2000; Yen et al., 

2010). Human T cells, in contrast to mice T cells, induce TH1 development in response 

to type I IFNs (Moser and Murphy, 2000). IFN-γ is a type II IFN, whose functions play 

an essential role in immunity towards intracellular microorganisms. IFN-γ is critical for 

TH1 cells responses, inhibiting differentiation of TH2 cells. It also stimulates APCs to 

upregulate expression of MHC class I and class II as well as costimulatory molecules. 

IFN-γ activates NK cells and stimulates macrophages to kill internalized microbes 

(reviewed by Abbas et al., 2007; Miller et al., 2009). 

• IL-1 is a proinflammatory cytokine comprising IL-1α and IL-1β, which are 

products from different genes and exert distinct immunological activities, but are 

mutually inductive (Horai et al., 1998; Nakae et al., 2001a). Both IL-1α and IL-1β 

induce inflammation and activate lymphocytes. IL-1β strongly activates humoral 

immune responses, whereas IL-1α is involved in the development of antigen-specific 

memory T cells (Nakae et al., 2001a; Nakae et al., 2001b). 

• IL-6 stimulates production of neutrophils, the growth of antibody-producer B 

cells and induces the proliferation and differentiation of TH17 cells (Abbas et al., 2007). 

• IL-8, a constituent of the chemokine family, exerts various functions on 

leukocytes, especially neutrophils, playing an important role in the establishment of 

acute inflammation. Among other functions, it is involved in leukocyte chemotaxis and 

induction of neutrophils to release lysosomal enzymes (Harada et al., 1994; 

Vlahopoulos et al., 1999). 

http://www.jimmunol.org/content/179/7/4415.full#R6
http://www.jimmunol.org/search?author1=Jui-Hung+Yen&sortspec=date&submit=Submit
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• IL-10 possesses anti-inflammatory properties and targets different leukocytes. 

This cytokine functions to repress excessive inflammatory responses and to limit 

subsequent tissue damage. In phagocytes, IL-10 reduces antigen presentation and 

expression of inflammatory mediators, but enhances antigen uptake. Moreover, IL-10 is 

critical in the biology of B and T cells and contributes to induced tolerance (Sabat et al., 

2010; Ouyang et al., 2011). 

• IL-12 plays a crucial role in priming TH1 cell responses and stimulating IFN-γ 

production and cytotoxic activity by T lymphocytes and NK cells. Furthermore, it 

functions as a third signal in activation of CD8+ T cells and is involved in the 

reactivation and survival of memory CD4+ T cells (DelVecchio et al., 2007). IL-12 and 

type I IFN-α/β are important in responses against viruses due to their antimicrobial and 

immunoregulatory activities (Dalod et al., 2002). 

• IL-15 has been associated with the stimulation and survival of CD8+ memory T 

cells and NK cells (Zhang et al., 1998; Abbas et al., 2007). 

• IL-23 might expand the pool of IL-17-producing cells from activated and 

memory T-cell populations, but cannot trigger differentiation into TH17 cells from naive 

T-cell precursors (Bettelli et al., 2006). Leibundgut-Landmann and colleagues (2007) 

showed that Dectin-1 signaling in DCs through Syk kinase strongly triggers TH cell 

differentiation into TH17 cells, and also observed that Dectin-1 agonists induce TH17 

and TH1 responses in vivo. 

• IL-27 inhibits development of TH17 and TH2 cells, inducing CD4+ T cell 

differentiation into TH1 cells that produce IFN-γ (Baten et al., 2006; Yoshimoto et al., 

2007). 

• Secretion of the pluripotent cytokine TNF-α activates a cytokine cascade needed 

for proper cellular responses in the affected tissue. In monocytes, TNF-α leads to 

enhanced cytotoxic capacity and increased secretion of other inflammatory mediators, 

such as IL-1 and IL-8 (Vlahopoulos et al., 1999). 

 

As illustrated in Fig. 7, DCs incubated with yeasts up-regulated the production 

of several cytokines, in some cases even more pronounced than after LPS treatment. 

Results from four different blood donors showed great variability for a specific 

cytokine. This observation has also been described by others (Buentke et al., 2001; 

Barron et al., 2006; Remondo et al., 2009). 
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Fig. 7: Cytokine profile secreted by DCs after incubation with different stimuli. Human 
immature DCs were incubated with various yeasts (MOI 1), LPS, a lysate from HCMV-
infected fibroblasts, or left untreated. After 48 h, supernatants were collected and 
cytokine concentrations were determined using a multiplex cytokine/chemokine kit 
(PROGEN Biotechnik, Heidelberg, Germany). Graphics show cytokine concentration in 
pg/ml. Bars indicate median values from four donors. Sc = S. cerevisiae. Graphics 
identified with an asterisk (*) show values above the detection limit (47,836 pg/ml for 
GM-CSF; 20,000 pg/ml for IL-6; 12,647,444.85 pg/ml for IL-8). 
 
 
Stimuli were compared using the median values only. For comparison among single 

yeast genera, median values were calculated as described above for the surface markers. 

The high level of GM-CSF detected in supernatants of untreated DCs might have 

resulted from the presence of this cytokine in the culture medium to induce monocyte 

differentiation into immature DCs (Sallusto and Lanzavecchia, 1994). 

 

Cytokine secretion by DCs in response to different S. cerevisiae strains 

The S. cerevisiae strains S86c, BY4742 and W303-1a differently stimulated the 

secretion of cytokines by DCs, as observed for the maturation markers. Interestingly, 

the strain BY4742 led to secretion of higher levels of IFN-α, IFN-β, IFN-γ, IL-12 p70 

(TH1-driving cytokines), as well as of IL-1α2, IL-8, IL-15 and IL-27. Strain W303-1a 

elicited production of higher amounts of IL-1β, IL-6, IL-23 (TH17-driving cytokines), 

IL-10 and TNF-α. S86c, in turn, caused the highest secretion levels of GM-CSF among 

the three S. cerevisiae strains. These results show a different pattern than the findings 

related to DC maturation, in which W303-1a showed some disadvantage compared to 
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the other two strains. However, a significantly higher number of donors needs to be 

tested in order to confirm these observations. 

 

Cytokine secretion by DCs in response to S. cerevisiae BY4742 and its mutants 

Among the tested S. cerevisiae mutants, the wild-type strain BY4742 provoked superior 

secretion levels of IFN-β, IL-1α2, and IL-8 by DCs. Its isogenic Δost3 mutant induced 

higher expression levels of IL-27 only, whereas the Δmnn11 knock-out was more 

effective in inducing DC expression of GM-CSF, IFN-α, IFN-γ, TNF-α, IL-1β, IL-6, 

IL-10, IL-12 p70, IL-15 and IL-23. This bias for the Δmnn11 mutant confirms the 

results observed for DC maturation. Again, these results demonstrate a positive 

influence of shorter mannose structures within yeast cell wall components on immune 

recognition and activation in comparison to normal yeasts or yeasts carrying 

glycosylation defects. 

 

Cytokine secretion by DCs in response to the P. pastoris strains 

As observed for the DC surface maturation markers, no outstanding difference in 

cytokine production was seen after incubation of DCs with either P. pastoris GS115 or 

KM71, except for IL-8, whose levels were more than hundred fold higher in 

supernatants from DCs incubated with GS115. Levels of GM-CSF, IFN-β, IL-1α2, IL-

1β and IL-6 were very similar in supernatants from DCs incubated with either strain 

GS115 or KM71. Higher production of IL-10 and TNF-α was detected after incubation 

of DCs with KM71, whereas slightly higher levels of IFN-α, IFN-γ, IL-8, IL-12 p70, 

IL-15, IL-23 and IL-27 were measured after incubation with GS115. The much higher 

levels of IL-8 observed after incubation of DCs with strain GS115 could be 

advantageous, since IL-8 acts as chemoattractant and inflammatory mediator, and it has 

been demonstrated that its synthesis precedes upregulation of the activation marker 

CD40 (Hellman and Eriksson, 2007). 

 

Cytokine secretion by DCs in response to different yeast genera 

Comparing the single yeast genera only, a slight bias could be observed towards P. 

pastoris, which induced the highest expression levels of IL-1α2, IL-1β, IL-8, IL-10, IL-

15, IL-27 and TNF-α by DCs, while Y. lipolytica led to secretion of the highest levels of 

GM-CSF, IFN-γ and IL-23, S. cerevisiae of IFN-β, IL-6 and IL-12, and K. lactis of 



                        Results 
 

  111 

IFN-α. However, it has to be underscored that levels of IFN-β, IL-1α2, IL-23 and IL-27 

in culture supernatants were very similar for all yeast genera analyzed. Yeast genera 

upregulated the production of almost all cytokines analyzed. Secretion of IL-15 and 

IFN-β by DCs was, in some cases such as after incubation with Y. lipolytica, not 

upregulated in comparison to the median value of the untreated control. However, no 

data in the literature describing secretion of both cytokines in response to yeast could be 

found. 

 

Comparing all yeast genera with the viral and the bacterial stimuli, it could be observed 

that LPS was responsible for the highest levels of IFN-β, IL-1α2, IL-6, IL-10, IL-12, IL-

15, IL-23 and IL-27. The lysate of HCMV-infected fibroblasts provoked more GM-CSF 

secretion than any other stimulus. Besides GM-CSF, the only cytokine whose level was 

higher in response to HCMV than to LPS was IL-8. Secretion of IL-8 was markedly 

high for almost all yeasts tested, especially P. pastoris, which was by far the most 

effective stimulus, with DCs exhibiting IL-8 levels above 106 pg/ml (Fig. 7). Levels of 

IFN-α, IFN-γ, IL-1β and TNF-α, as well as the already mentioned IL-8, were higher in 

response to at least one yeast stimulus than for the viral or bacteria stimulus. IFN-γ 

levels in response to LPS and especially to HCMV were several times lower than to any 

yeast genus tested. Interestingly, lowest secretion of IFN-α was observed when DCs 

were incubated with the viral stimulus, and IFN-β levels did not significantly increase 

after DC incubation with HCMV in comparison to the untreated samples. 

 From these results it could be inferred that a wide spectrum of cytokines can be 

produced by DCs after incubation with different yeast stimuli, and that yeasts differ in 

their ability to stimulate cytokine production by DCs. Moreover, for a given set of 

cytokines, fungal stimuli can promote stronger DC activation than bacterial or viral 

antigens. 

 

 

2. Fungal cell wall staining  

The observation that distinct yeast genera lead to maturation of human DCs and 

production of a variety of cytokines, and that the composition of the fungal cell wall 

plays an important role in these events (as demonstrated previously), provided the 

rationale for investigating the variations in yeast cell wall constitution more closely. For 

this purpose, three of the major yeast cell wall components, mannan, β-glucan and 
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chitin, were examined in each one of the yeast species and strains used for DC 

maturation and activation. 

 Concanavalin A (Con A), a lectin of the jack bean (Canavalia ensiformis), has 

binding affinity for terminal α-D-glucopyranosyl, α-D-mannopyranosyl, β-D-

fructofuranosyl, or α-D-arabinofuranosyl residues. Con A does not interact with yeast 

glucan or chitin, therefore FITC-labeled Con A can be used to specifically stain α-

mannan in yeast cell walls (Goldstein and So, 1965; So and Goldstein, 1968; Tkacz et 

al., 1971). 

The mouse monoclonal anti-β-1,3-glucan antibody recognizes linear β-1,3-

oligosaccharides present in β-glucans. When an anti-mouse IgG-FITC antibody is 

subsequently used after incubation of yeasts with the primary antibody, linear cell wall 

β-1,3-glucans can be detected by fluorescence microscopy or flow cytometry. 

Wheat germ agglutinin (WGA) is a lectin from Triticum vulgaris which 

specifically interacts with β-1,4-N-acetylglucosamine oligomers, such as those found in 

fungal chitin. WGA-FITC was used in this study to stain chitin on yeast cell walls, as 

described by others (Buck and Andrews, 1999; Mora-Montes et al., 2011). 

 The cell walls of different yeast genera were analyzed both by flow cytometry 

and fluorescence microscopy with respect to the presence and distribution of mannan, β-

1,3-glucan and chitin. Among some yeast species, different strains (as for S. cerevisiae 

and P. pastoris) were analyzed, and among one S. cerevisiae strain (BY4742), two cell 

wall mutants were evaluated. As depicted in Fig. 8, mannan, β-glucan and chitin 

staining patterns varied among yeast genera, species, strains and cell-wall mutants, to 

greater or lesser extents. Unstained yeasts showed no fluorescence (data not shown). All 

yeasts could be stained for mannan and β-glucan. Both S. cerevisiae mutants, Δmnn11, 

which bears a mutation that affects mannan biosysnthesis, and Δost3, which contains 

underglycosylated glycoproteins, could also be specifically stained by Con A on their 

cell surfaces. These results were not unexpected, since the mutations do not exclude 

mannans from the cell walls. With respect to chitin, fluorescence microscopy of yeast 

cells stained with WGA-FITC revealed a higher discrepancy among the yeasts 

analyzed. Some yeast species, such as P. pastoris and Y. lipolytica, exhibited green 

fluorescence outlining the cells, whereas others showed fluorescence only in discrete 

patches (e.g. K. lactis) or almost no fluorescence (Sz. pombe). In the case of β-glucan 

staining, the budding yeasts showed the existence of restricted regions on the cell wall 

where this structure is exposed. In fission yeast, linear β-1,3-glucan is restricted to the 
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septum (Humbel et al., 2001). In contrast, mannan structures are more homogeneously 

distributed over the cell walls (Fig. 8). 
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mannan β-1,3-glucan chitin 
 

 

 

  

 

 

 

  

 

 

 

  

 

 

 

  

 

 

 

  

 
Fig. 8: Fluorescence microscopy after mannan, β-1,3-glucan and chitin staining of 
diverse yeast genera. Yeasts exponentially grown in SC medium were stained for 
mannan with Con A-FITC, β-glucan with mouse anti-β-1,3-glucan and anti-mouse IgG-
FITC, and chitin with WGA-FITC, and analyzed with a fluorescence microscope (GFP 
channel). Each column shows fluorescence (left) and the matching bright field (right) 
micrographs. 50× zoom. 
 
 
Additional flow cytometric analyses confirmed that the majority of all yeast genera, 

species, strains or mutants stained positive for mannan (i.e. O- and N-linked mannose 

residues) and β-1,3-glucan but, in some cases, not for chitin (Fig. 9). Different staining 

patterns were observed, also between strains. Among the three S. cerevisiae strains 

analyzed (S86c, BY4742 and W303-1a) mannan and β-glucan staining resulted in a 

similar number of positive cells, while chitin distribution varied dramatically (about 

37%, 72% and 98% positive cells of BY4742, S86c and W303-1a, respectively). The 

BY4742 mutants Δmnn11 and Δost3 showed a similar percentage of positive cells after 
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Con A binding (~84% and ~86%, respectively), which was not only lower than in the 

parental strain BY4742 (~93%), but also than in any other strain tested. The two P. 

pastoris strains examined showed no relevant difference in relation to β-glucan and 

chitin, whereas the percentage of KM71 cells positive for mannan was about 10% lower 

in comparison to GS115. Sz. pombe showed the lowest percentage of cells positive for 

β-glucan (28,6%) and chitin (~5%). The first observation is in agreement with the fact 

that growth by elongation, unlike budding, does not unmask β-glucan. The presence of 

chitin in Sz. pombe is controversial. Little amounts of this polymer in Sz. pombe have 

been found by some authors, whereas other investigators failed to detect this structure 

(Horisberger et al., 1978; Sietsma and Wessels, 1990). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Flow cytometric analysis of mannan, β-1,3-glucan and chitin from various yeast 
genera. Yeasts exponentially grown in SC medium were stained with Con A-FITC for 
mannan, WGA-FITC for chitin, or with anti-β-glucan and FITC-conjugated secondary 
antibody for β-1,3-glucan, and analyzed by flow cytometry. Bars indicate the 
percentage of positive cells. Values relative to unstained yeasts (negative controls) were 
subtracted. 
 
 
Thus, each yeast strain has its peculiarities in terms of cell wall composition. Evidently, 

other yeast cell wall components, like β-1,6-glucan and β-1,6-branched β-1,3-glucan, 

also play an important role in yeast recognition by the immune system. However, 
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detection of such structures was not possible in this study due to the lack of commercial 

antibodies or specific lectins. 

 In this way, the particular set of PAMPs of a specific yeast strain should be 

taken into account in terms of immune recognition and interaction with host cells. 

 

 

3. Uptake of different yeast genera by mammalian phagocytic cells 

A necessary feature of a possible antigen carrier is its interaction with cell surface 

receptors of antigen-presenting cells in order to trigger its subsequent internalization. In 

this study, the ability of murine macrophages and human DCs to phagocytose four 

representative yeast genera (S. cerevisiae, Sz. pombe, P. pastoris and K. lactis) that are 

among the most widely used expression systems in biotechnology were characterized. 

 

3.1. Uptake of whole yeast cells by IC-21 murine macrophages 

The pattern of S. cerevisiae, K. lactis, P. pastoris, and Sz. pombe uptake by IC-21 

murine macrophages was microscopically monitored using 24-well plates and a light 

microscope. First, yeasts were incubated with macrophages at MOI 5 for varying 

periods of time, following the same protocol described in the Methods section. Fig 10 A 

shows that S. cerevisiae, K. lactis, and P. pastoris were phagocytosed by IC-21 in a 

similar fashion, in which these yeasts were quickly internalized by macrophages, 

whereas recognition and engulfment of Sz. pombe occurred more slowly (for example, 

after 4 h 65% ± 4%, 65% ± 3%, 65% ± 6%, and 31% ± 5% of the macrophages had 

ingested at least one single yeast cell of S. cerevisiae, K. lactis, P. pastoris, and Sz. 

pombe). However, after 12 h of incubation, a plateau level was reached, and all yeast 

genera showed almost the same pattern of internalization (81% ± 4% for S. cerevisiae, 

82% ± 3% for K. lactis, 82% ± 3% for P. pastoris, and 79% ± 3% for Sz. pombe). Some 

macrophages ingested a high number of yeast cells, especially in the case of P. pastoris. 

The presence of several yeast cells inside a single macrophage was not due to yeast 

growth within the phagosome, as the total yeast cell number remained constant in the 

course of the experiment (data not shown). Upon microscopic visualization, only yeast 

cells which were localized inside the boundaries of the macrophage cell membrane were 

counted, ensuring that yeasts that had not been internalized were excluded (Fig. 10 B). 
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Fig. 10: (A) Uptake kinetics of yeasts by mouse macrophages. The yeasts S. cerevisiae, 
K. lactis, P. pastoris and Sz. pombe were incubated at a 5:1 ratio with mouse 
macrophages for different periods. After each time point indicated, medium was 
aspirated and macrophages were extensively washed to remove unbound yeasts. Then, 
cells were fixed and examined under light microscopy for the percentage of phagocytes 
binding at least one single yeast cell. (B) Confocal laser scanning microscopy after 4 h 
co-cultivation of IC-21 macrophages and yeasts at MOI 5. Micrographs show that S. 
cerevisiae, K. lactis, and P. pastoris are rapidly internalized, whereas many Sz. pombe 
cells are found in the neighbourhood of the macrophages. 
 
 
Next, the effect of the MOI on the uptake of different yeast genera by IC-21 

macrophages was examined. Initially, ingestion of yeast cells increased proportionally 

with the MOI (Fig. 11 A), and reached a maximum at MOI 7 for K. lactis (65% ± 1% of 

macrophages ingesting) or 9 for S. cerevisiae (69% ± 5%), P. pastoris (73% ± 3%) and 
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Sz. pombe (30% ± 4%). When the phagocytic index was determined, i.e., the number of 

internalized yeast cells in 100 macrophages, it could be seen that the average number of 

yeast cells per phagocyte enhanced continuously as MOIs increased. This observation 

was valid for all yeast species tested and, again, internalization of Sz. pombe showed to 

be less effective in comparison to the other species. In all MOIs tested, uptake of S. 

cerevisiae, K. lactis and P. pastoris by IC-21 macrophages was equivalent, and the 

difference to Sz. pombe became higher each time when MOI was increased. At MOI 11 

and after 4 h of co-incubation, there was approximately one single fission yeast cell per 

macrophage, and 3.5 yeasts/macrophage in the case of the other yeasts (Fig. 11 B). 
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Fig. 11: (A) Effect of yeast/macrophage ratio on phagocytosis. IC-21 murine 
macrophages were incubated with the yeasts S. cerevisiae, Sz. pombe, K. lactis and P. 
pastoris at varying MOIs for 4 h. After this period, cells were thoroughly washed to 
remove unbound or attached yeasts, fixed, and analyzed under a light microscope for 
assessment of percent ingestion. (B) Alternatively, the total number of yeast cells in 100 

Ph
ag

oc
yt

ic
 in

de
x 

S. cerevisiae 
K. lactis 
P. pastoris 
Sz. pombe 

Ph
ag

oc
yt

ic
 c

el
ls

 (%
) 

S. cerevisiae 
K. lactis 
P. pastoris 
Sz. pombe

0
10

20
30
40
50

60
70
80

90
100

1 3 5 7 9 11

MOI

0

50

100

150

200

250

300

350

400

450

1 3 5 7 9 11

MOI



                        Results 
 

  119 

macrophages was assessed for each MOI. Results are presented as mean values ± 
standard deviation from triplicates. 
 

 

3.1.1. Role of Dectin-1 on yeast uptake by IC-21 murine macrophages 

Since some macrophages do not bear the mannose receptor (MR) on the cell surface, 

such as resident peritoneal mouse macrophages (Taylor et al., 2002) and the J774 

murine macrophage cell line (Martinez-Pomares et al., 2003), the presence of this 

receptor in IC-21 cells was investigated. 

 Murine macrophages were incubated with rat anti-mouse MR or mouse anti-

mouse Dectin-1 and subsequently with anti-rat IgG-FITC and anti-mouse IgG-FITC, 

respectively, before being analyzed by flow cytometry. As shown in Fig. 12 A, IC-21 

macrophages do not express MR on their surface. In contrast, Dectin-1 is highly 

expressed in this cell line (Fig. 12 B).  

 

        A                                                        B 

 

 

 

 

 

 

Fig. 12. IC-21 murine macrophages were assessed for surface expression of MR (A) 
and Dectin-1 (B). Cells were first stained with monoclonal anti-MR, anti-Dectin-1, or 
an isotype control antibody, and then with a FITC-conjugated anti-IgG secondary 
antibody. Dashed lines represent cells stained with the isotype control antibody. Green 
solid lines represent cells stained for the mannose receptor and red solid lines represent 
cells stained for the Dectin-1 receptor. A total of 25,000 cells was analyzed. 
 
 
Next, the effect of Dectin-1 on yeast uptake by IC-21 was examined. Cells were 

incubated with 25 μg/ml anti-Dectin-1 for 1 h at 37°C, prior to the addition of S. 

cerevisiae, K. lactis, P. pastoris and Sz. pombe, at MOI 5. This yeast:macrophage ratio 

was chosen because it provided sufficient yeast-phagocyte interactions, and MOI values 

higher than 5 are very difficult to analyze microscopically. The appropriate antibody 

concentration was previously determined (not shown). After 4 h of incubation, cells 

were vigorously washed, fixed, and analyzed by light microscopy. As seen in Fig. 13, 

blocking of Dectin-1 caused a decrease in uptake of all yeast species tested. The 
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percentage of macrophages ingesting at least a single yeast cell decreased from 65% ± 

5% to 49% ± 4% for S. cerevisiae, 63% ± 5% to 46% ± 5% for K. lactis, 60% ± 2% to 

42% ± 2% for P. pastoris, and from 31% ± 2% to 19% ± 3% for Sz. pombe. This 

diminished internalization was statistically significant in all cases. No significant 

difference was observed between untreated cells and cells incubated with an isotype 

control antibody. 

 
 

 

 

 

 

 

 

 

 

Fig. 13: Dectin-1 in murine IC-21 macrophages recognizes the yeasts S. cerevisiae, K. 
lactis, P. pa  storis and Sz. pombe. IC-21 cells were pre-treated with anti-Dectin-1 for 1 
h, then incubated with yeasts (MOI 5) for another 4 h. After extensive washing, cells 
were fixed and analyzed by light microscopy. Results show mean values ± standard 
deviation from triplicates. Asterisks indicate significant differences compared to 
untreated macrophages (* p < 0.05, ** p < 0.01). 
 
 
In sum, recognition of the four tested yeast genera by IC-21 murine macrophages 

involves Dectin-1, but not MR. Many other PRRs are associated with yeast recognition 

by phagocytes, nevertheless analyzing the participation of each of them is a task outside 

the scope of this work. 

 

 

3.2. Uptake of whole yeast cells by human dendritic cells 

Previous studies have demonstrated that several yeast genera are effectively recognized 

and phagocytosed by immature human DCs, among them S. cerevisiae (Stubbs et al., 

2001; Barron et al., 2006), Histoplasma capsulatum (Gildea et al., 2001), Malassezia 

furfur (Buentke et al., 2000) and Candida albicans (Newman and Holly, 2001; Cambi 

et al., 2003). 
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In order to analyze and compare the internalization patterns of the four 

biotechnologically relevant yeasts S. cerevisiae, Sz. pombe, K. lactis and P. pastoris, 

immature monocyte-derived DCs were incubated with unopsonized live yeast cells at 

MOI 5 for varying time periods. As shown in Fig. 14 A, approximately 80 % of DCs 

had ingested one or more yeast cell after 2 h in the case of S. cerevisiae (80 ± 2 %) K. 

lactis (86 ± 1 %), and P. pastoris (83 ± 3 %), and the number of phagocytozing DCs 

reached a plateau level after 6 h (90 ± 1 %; 93 ± 1 %; 88 ± 2 %, respectively). In 

contrast, ingestion of Sz. pombe by DCs occurred less effective and in a more time-

dependent manner. After 2 h, the number of cells ingesting at least a single yeast cell 

was 28 ± 4 %, and increased gradually at least until 24 h after the co-incubation (56 ± 4 

%). The same was true when DCs were examined for their ability to engulf live yeasts 

at various MOIs ranging from 1 to 11 after 4 h at 37 °C. As expected, the number of 

cells engulfing at least one yeast was enhanced by increasing the MOI, reaching a 

plateau level at MOI 7 for S. cerevisiae (92 ± 1 %), K. lactis (93 ± 3 %) and P. pastoris 

(86 ± 2 %), and was maximum for Sz. pombe at MOI 9 (54 ± 1 %; Fig. 14 B). Analysis 

of phagocytic indices revealed a similar pattern as obtained with murine macrophages, 

with S. cerevisiae, K. lactis and P. pastoris being much more efficiently internalized 

than Sz. pombe (Fig. 14 C). However, human DCs appear to have a greater capacity of 

phagocytosis than murine IC-21 macrophages. When MOI 1 was examined, practically 

all yeasts had been taken up after 4 h of incubation with DCs. However, and as 

observed for IC-21, increasing MOI values implied greater differences of internalization 

between Sz. pombe and the other species. 
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Fig. 14: Uptake of different yeast genera by human dendritic cells. Immature DCs were 
incubated with S. cerevisiae, K. lactis, P. pastoris and Sz. pombe cells at MOI 5 (A) for 
varying periods of time or (B) for 4 h with varying MOIs. The data are presented as the 
percentage of phagocytic cells (i.e. percentage of DCs containing at least one ingested 
yeast cell). (C) The phagocytic indices (number of internalized yeast cells per 100 DCs) 
were determined for distinct MOIs after 4 h incubation. Uptake was verified by light 
microscopy. The data represent the mean ± standard deviation of triplicates. One 
representative experiment is shown [Bazan et al., 2011]. 
 

 

3.2.1. Involvement of Dectin-1 and mannose receptor in yeast uptake 

Next, the effect of two major receptors recognizing fungal structures (Dectin-1 and MR) 

on phagocytosis of the different yeast genera by human DCs was determined and 

compared. As shown in Fig. 15, internalization of all yeast genera was significantly 

inhibited when DCs were pre-incubated with anti-human Dectin-1 or anti-human MR 

monoclonal antibodies. No significant differences were observed relative to untreated 

cells or cells incubated with an isotype control antibody. In detail, inhibition of Dectin-1 

led to a greater reduction in yeast uptake than blockage of MR for S. cerevisiae, Sz. 

pombe, and P. pastoris. Interestingly, the opposite effect was observed for K. lactis, 
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although the cell wall composition of this yeast species does not significantly differ 

from that of S. cerevisiae or P. pastoris. Noteworthy, and in contrast to the other yeast 

genera tested, blockage of Dectin-1 dramatically impaired phagocytosis of fission yeast 

cells. After incubation of DCs with anti-MR, the percentage of DCs internalizing at 

least a single yeast cell was reduced from 84% ± 4% to 64% ± 2% for S. cerevisiae, 

76% ± 2% to 43% ± 6% for K. lactis, 75% ± 2% to 52% ± 5% for P. pastoris, and from 

32% ± 1% to 25% ± 3% for Sz. pombe. With respect to inhibition of Dectin-1, yeast 

uptake dropped to 50% ± 9% for S. cerevisiae, 57% ± 2% for K. lactis, 42% ± 6% for P. 

pastoris and 4% ± 2% for Sz. pombe. 

 

 

 

 

 

 

 

 

 

Fig. 15. Dectin-1 and mannose receptor (MR) are involved in phagocytosis of S. 
cerevisiae, K. lactis, Sz. pombe and P. pastoris by human dendritic cells. DCs were 
preincubated with anti-MR- or anti-Dectin-1-antibodies for 1 h, yeast cells were added 
at MOI 5 and the number of phagocytic DCs was determined after 4 h at 37 °C. 
Ingestion was verified by light microscopy. Results are expressed as average of 
triplicates with error bars indicating standard deviation. Asterisks indicate significant 
differences compared to untreated macrophages (* p < 0.05, ** p < 0.01, *** p < 0.001) 
[Bazan et al., 2011]. 
 
 
Taken together, these results show that both MR and Dectin-1 are involved in 

recognition of the four yeast genera analyzed, and that Sz. pombe cells, in contrast to S. 

cerevisiae, P. pastoris and K. lactis, are taken up less effectively by human DCs. 

 

 

4. Recombinant expression of model antigens in different yeast genera 

After demonstrating the abilities of several yeast genera to mature human DCs and 

induce cytokine secretion, and having shown that some selected yeast genera are 

endocytosed by mammalian phagocytic cells, the activation of antigen-specific T cells 
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after protein delivery by yeast to APCs was determined. For this purpose, the model 

antigens Ova and pp65 were used for recombinant expression in the yeasts S. cerevisiae 

S86c, Sz. pombe PW260, K. lactis GG799 and P. pastoris GS115. 

 

4.1. Heterologous expression of Ova-derivatives in yeast 

 

4.1.1. Construction of yeast expression vectors for heterologous expression of Ova 

variants 

The ova and ovacyt coding sequences were PCR-amplified from vectors pYES/Ova and 

pYES/Ovacyt using the following oligonucleotide primer pairs: 5’HindIII_EcoRI_Ova 

and 3’BglII_NotI_Ova, or 5’EcoRI_XhoI Ova and 3’SalI_BglII_Ova. Ovacyt lacks the 

internal secretion signal sequence within the ova open reading frame (Jochen Stritzker, 

University of Würzburg, Germany). For cell surface display strategies, the ovacyt-coding 

sequence without stop codon was inserted upstream of the anchor gene sed1 from S. 

cerevisiae and downstream of a genus-specific secretion signal sequence. The ovacyt 

gene without stop codon was amplified with the oligonucleotides 5’HindIII_EcoRI_Ova 

and 3’Ova_AvrII_ohneStop. The anchor DNA fragment encoding the C-terminal 319 

amino acids of Sed1p was PCR-amplified from S. cerevisiae genomic DNA using 

oligonucleotide primers 5’AvrII_Sed1 and 3’NotI_Sed1 (Müller, 2008). The amplified 

segments were inserted into the pSTBlue-1 vector for routine sequencing, as decribed 

previously. The Ova derivatives used in this work are depicted in Fig. 16. 

The glucanase-extractable cell wall protein Sed1p contains a 

glycosylphosphatidylinositol (GPI) attachment signal. Two signal sequences are present 

in the primary translation product of GPI-anchored proteins: an N-terminal sequence 

targeting the product to the ER membrane, and a C-terminal sequence directing the 

attachment of a GPI anchor. Both sequences are removed during processing, and the C-

terminal GPI sequence is replaced with GPI by a GPI transamidase in the ER. The GPI 

anchor is then partially cleaved within its glycan moiety, losing its inositol-containing 

lipid moiety. The glycosyl remnant of the GPI structure, together with the attached 

protein, becomes covalently linked to cell-wall β-1,6-glucans (Orlean and Menon, 2007; 

Varki et al., 2009). 

 

 

 

http://www.ncbi.nlm.nih.gov/bookshelf/?book=glyco2&part=glossary&rendertype=def-item&id=glossary.gl1-d180
http://www.ncbi.nlm.nih.gov/bookshelf/?book=glyco2&part=glossary&rendertype=def-item&id=glossary.gl1-d180
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Fig. 16. Schematic representation and subcellular localization of the different Ova 
derivatives used in this study. Ova is secreted due to the presence of an internal 
secretion signal (SS), which is removed for intracellular expression (Ovacyt). 
Alternatively, Ovacyt was fused to the C-terminal part of the cell wall protein Sed1p 
leading to a anchoring of the fusion within the cell wall; in this derivative, the particular 
genus-specific SS was used. The position of the epitope SIINFEKL is indicated. 
 
 
Cloning into yeast expression vectors was performed as follows: 

S. cerevisiae 

The ova and ovacyt coding sequences were digested from the cloning vector pSTBlue-1 

with XhoI and BglII for inserting into XhoI/BglII-digested S. cerevisiae pFB2 

expression vector. The resultant plasmids were named pPGK/ova and pPGK/ovacyt, 

respectively. For cell-surface display of Ovacyt, the fusion ovacyt/sed1 was excised from 

vector pPIC9/ovacyt/sed1 (described below) by digestion with NotI, end-filling with 

Klenow polymerase, and then restricting with EcoRI. This fragment was cloned into 

pFB2 digested with BglII, blunted with Klenow and finally digested with EcoRI. This 

pPGK-derived expression vector contains a KRE1 signal peptide sequence upstream of 

the cloning region. The resultant plasmid was named pFB/ovacyt/sed1. 

 

Sz. pombe 

The multiple cloning site of the thiamine-repressible expression vector pREP1 was 

modified and the plasmid is referred to as pREP-BD (Diehl, 2008). This Sz. pombe 

expression vector was XhoI and BglII digested for ligation with both full-length 

ovalbumin and ovacyt which were isolated from XhoI/BglII-digested pSTBlue-1 vector. 

The resulting plasmids were named pREP-BD/ova and pREP-BD/ovacyt, respectively. 
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K. lactis 

For cloning into the K. lactis expression vector, full-length ova was digested with 

HindIII and NotI and ligated to pKLAC1 previously digested with the same restriction 

endonucleases. The gene encoding ovacyt was restricted with HindIII/BglII and inserted 

into the HindIII and BglII sites of pKLAC1. The fusion ovacyt/sed was digested from 

pPIC9/ovacyt/sed1 with EcoRI, filled with Klenow polymerase and subsequently 

digested with NotI for cloning into pKLAC1 restricted with SalI, blunt-ended and 

digested with NotI, giving rise to pKLAC1/ovacyt/sed. The constructed vectors 

pKLAC1/ova, pKLAC1/ovacyt and pKLAC1/ovacyt/sed were linearized with SacII prior 

to integrative transformation of chemically competent K. lactis GG799. The expression 

cassette can therefore integrate into the K. lactis genome at the LAC4 locus by means of 

homologous recombination. 

 

P. pastoris 

The genes encoding ova and ovacyt were excised from pSTBlue-1 by digestion with 

EcoRI and NotI, and ligated to the EcoRI/NotI sites in pPIC3.5 vector, giving rise to 

pPIC3.5/ova and pPIC3.5/ovacyt. To link ovacyt to sed1, the sequence encoding ovacyt 

without stop codon was isolated as an EcoRI-AvrII fragment from pSTBlue-1 and 

inserted upstream of the sed1 coding sequence in vector pPIC9/sed1 previously digested 

with EcoRI and AvrII, generating pPIC9/ovacyt/sed1. The vectors were linearized with 

SalI before transformation of P. pastoris cells in order to direct genomic integration at 

the his4 locus. 

 

 

4.1.2. Analysis of recombinant expression of Ovacyt by different yeast genera 

In order to verify cytosolic expression of recombinant Ovacyt, lysates from 3×108 yeast 

cells cultured for until 72 h in the respective media were precipitated with DOC/TCA 

and applied to SDS-polyacrylamide gels. Western blots were performed using rabbit 

anti-chicken egg albumin and goat anti-rabbit IgG-peroxidase. 

After transformation of S. cerevisiae S86c with pPGK/ovacyt, some transformant 

colonies were inoculated in ura d/o medium and then analyzed for cytosolic expression 

of the recombinant protein. Foreign protein expression in S. cerevisiae was driven from 

the constitutive promoter PGK. As seen in Fig. 17 A (lane 1), a single protein band in 

the expected size of ~28 kDa could be detected by the anti-Ova antibody in cell lysates 
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of S. cerevisiae transformed with pPGK/ovacyt. This band was absent in the cell extract 

of S. cerevisiae carrying the empty vector YEp352 (Fig. 17 A, lane 2). 

Sz. pombe strain PW260 was transformed with the expression vector pREP-

BD/ovacyt, as well as with the plasmid pREP-BD containing no insert. To induce 

expression from the nmt1 promoter, transformants were grown in EMM medium 

lacking leucine. Fig 17 B shows a 28 kDa protein band specific to the cell extract of 

yeast cells transformed with pREP-BD/ovacyt (lane 2). It was observed that some lower 

molecular weight proteins present in the cell lysates of Sz. pombe containing pREP-

BD/ovacyt reacted positively with the antibody, probably being produced or created 

during recombinant protein expression, and presumably resulting from degradation of 

Ovacyt, since these bands are not present in lysates of PW260 cells carrying the empty 

vector (Fig. 17 B, lane 3). 

K. lactis GG799 transformant colonies selected on YCB agar plates were 

cultivated in YPGal medium for LAC4-driven expression of Ovacyt. As a control, K. 

lactis was also transformed with empty pKLAC1. As shown in Fig. 17 C, a 28-kDa 

protein band in total yeast extracts reacted positively with the anti-Ova antibody (lane 

2). This band was absent in cell lysates from K. lactis harbouring the empty vector 

pKLAC1 (Fig. 17 C, lane 1). Some proteins above the Ovacyt band reacted 

unspecifically with the anti-Ova antibody, as they also appeared in the negative control 

(K. lactis carrying the empty vector pKLAC1). 

Colonies of P. pastoris GS115 transformed with the expression vector 

pPIC3.5/ovacyt and selected onto his d/o agar medium were grown in BMG medium and 

shifted to inducing BMM medium for proper protein expression. Methanol was added 

every 24 h (final concentration = 0.5% v/v) to maintain induction. As shown in Fig. 17 

D, cell lysates of induced P. pastoris cells showed a specific 28-kDa protein band 

corresponding to Ovacyt (lane 2), which was absent in total extracts from methanol-

induced control cells (lane 3). Additional bands present in the lysates from cells 

harboring pPIC3.5/ovacyt and pPIC9 reacted unspecifically with the anti-Ova antibody. 

Another lower molecular weight protein band could be seen in the lysate from Ovacyt-

expressing cells (~15 kDa, lane 2), which might indicate degradation of the recombinant 

protein. 
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A                                      B                                  C                                D 

 

 
 

 

 
 
 
 
 
 

Fig. 17: Expression of Ovacyt by different yeast genera. Immunoblots of cell extracts 
from 3×108 yeast cells. Analyses were performed using monoclonal anti-Ova antibody. 
Commercially available Ova was used as positive control. The Ovacyt 28-kDa band is 
indicated by an arrow. (A) S. cerevisiae S86c. Lane 1, pPGK/ovacyt; lane 2, empty 
vector Yep352; lane 3, positive control. (B) Sz. pombe PW260. Lane 1, positive control; 
lane 2, pREP-BD/ovacyt; lane 3, empty vector pREP-BD. (C) K. lactis GG799. Lane 1, 
empty vector pKLAC1; lane 2, pKLAC1/ovacyt; lane 3, positive control. (D) P. pastoris 
GS115. Lane 1, positive control; lane 2, pPIC3.5/ovacyt; lane 3, empty vector pPIC9. 
The positions of the bands of the molecular weight marker (“Pre-stained protein 
ladder”) as well as their sizes in kDa are indicated. 
 
 

The amount of recombinant Ovacyt produced by each yeast strain was quantified by 

western blotting. For this purpose, protein bands from yeast lysates (3×108 cells) were 

compared to a standard curve of known concentration of Ova. Fig. 18 shows that the 

particular protein levels in cell lysates varied significantly among the yeast genera, i.e., 

the Ovacyt amount in 3×108 cells varied between 52.7 ng in S. cerevisiae, 37.1 ng in P. 

pastoris, 11.6 ng in K. lactis and 11.4 ng in Sz. pombe after 72 h of cultivation (mean 

values from experiments performed in triplicate). No secretion of Ovacyt was detected 

(data not shown). 
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Fig. 18: Amount of recombinant Ovacyt after recombinant expression by the different 
yeast genera. The values correspond to the total cell extract of 3×108 yeast cells after 72 
h cultivation. Expression levels were quantified against a standard curve of 
commercially available Ova. Bars represent mean values with standard deviations from 
triplicate determinations. 
 

 

4.1.3. Analysis of Ova secretion by different yeast genera 

For detection of secreted Ova into the culture supernatants, a medium volume 

corresponding to 3×108 yeast cells was precipitated with DOC/TCA and the resulting 

products were applied to SDS-polyacrylamide gels. Western blots were performed using 

a specific anti-Ova antibody, as described before for Ovacyt. Cultivation conditions were 

the same as above for all yeast strains. 

As seen in Fig. 19 A, Ova could be secreted in the culture medium by S. 

cerevisiae S86c transformed with pPGK/Ova (lane 2); no bands were detectable in 

culture supernatants of negative control cells (lane 1). Fig 19 B shows a ~45 kDa 

protein band in the culture supernatant of Sz. pombe transformed with pREP-BD/ova 

(lane 1), which is absent in the culture medium of Sz. pombe carrying the empty vector 

pREP-BD (lane 2). From Fig. 19 C (lane 2), it was observed that a protein band of the 

predicted size, ~45 kDa, was detected in the supernatant from K. lactis transformed with 

pKLAC1/ova. This band was not observed in culture supernatants of K. lactis carrying 

the empty vector pKLAC1 (lane 1). Fig. 19 D shows that Ova could also be detected in 

the culture supernatant of P. pastoris transformed with pPIC3.5/ova (lane 1). Culture 

medium of induced cells carrying the empty vector pPIC9 showed no reaction with the 

anti-Ova antibody (lane 2). 
 
A                                B                                C                                D 
 

 

 
 

 

 
 

 

 

Fig. 9: Secretion of full-length Ova by different yeast genera. Culture supernatants from 
3×108 cells. The ~45 kDa Ova band is indicated by an arrow. The positions of the bands 
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of the molecular weight marker (“Pre-stained protein ladder”) and their sizes in kDa are 
given. (A) S86c Lane 1, empty vector Yep352; lane 2, pPGK/ova; lane 3, positive 
control. (B) Lane 1, PW260/pREP-BD/ova; lane 2, PW260/pREP-BD; lane 3, positive 
control. (C) K. lactis GG799 Lane 1, /pKLAC1/ova; lane 2, K. lactis/pKLAC1; lane 3, 
positive control. (D) P. pastoris GS115. Lane 1, pPIC3.5/ova; lane 2, empty vector 
pPIC9, lane 3, positive control. 
 
 

As shown in Fig. 19, yeast-expressed Ova has a slightly higher molecular weight 

than the commercially available Ova (used as positive control), although both are 

derived from chicken (Gallus gallus, GenBank accession number NP_990483). Chicken 

Ova contains two putative N-glycosylation sites, and both mono- and di-glycosylated 

forms were reported to be secreted by yeast (Ito and Matsudomi, 2005). Since only one 

protein band was seen in the four yeast genera analyzed, it might represent the di-

glycosylated form, as Ova from egg white is mono-glycosylated only (Nisbet et al., 

1981; Ito et al., 2007). The two bands visualized in the positive control may be the 

result of other post-translational modifications which have been reported for this protein 

(acetylation and phosphorylation; Nisbet et al., 1981). 

 The amount of recombinant Ova secreted by each yeast strain was also 

quantified. Culture media from 3×108 yeast cells were analyzed by western blot, as 

described before. As observed for Ovacyt, the level of secreted Ova showed great 

variation among the yeast genera (Fig. 20). The amount of Ova present in the culture 

supernatant from 3×108 cells after 72 h cultivation was 857 ng for Sz. pombe, 497 ng for 

S. cerevisiae, 438 ng for P. pastoris, and 39 ng for K. lactis (mean values from three 

different experiments). 

 

 

 

 

 

 

 

 

Fig. 20: Amount of recombinant Ova secreted into the culture supernatant of 3×108 
yeast cells after 72 h cultivation. Recombinant Ova secretion by the different yeast 
genera was quantified by western blotting based on a standard curve of commercially 
available Ova. Shown are the means and standard deviation from triplicate 
determinations. 
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4.1.3.1. Ova secretion in a phagolysosome-like milieu 

Next, it was investigated whether yeasts would be able to deliver secreted Ova to 

macrophages. Lorenz and Fink (2001) demonstrated that the glyoxylate cycle, a 

metabolic pathway that allows cells to use molecules containing two carbon atoms as 

carbon source, was induced in live yeast isolated from macrophage phagolysosomes. 

Although the exact composition of the phagolysosome is not completely elucidated, this 

finding indicates the existence of simple carbon sources in this milieu. In order to 

examine whether yeasts carrying plasmid vectors containing full-length Ova would be 

able to secrete this recombinant protein inside the macrophage phagolysosomes, yeasts 

were cultivated for 72 h in the respective culture medium under inducing conditions, 

washed, then transferred to an acetate solution, and incubated for another 8 h. After that, 

supernatants corresponding to 3×108 cells were collected, precipitated with DOC/TCA, 

and analyzed by western blotting. As shown in Fig. 21 A, Ova could be detected in the 

supernatant of all yeast species after 8 h incubation, although some degree of 

degradation was observed. Again, the amount of recombinant Ova protein in the 

supernatants varied considerably among the different yeasts (Fig. 21 B). 

 
      A                                                  B 
 
 
 
 
 
 
 
 
 
 
 
Fig. 21. Secretion of Ova in acetate-containing medium. (A) Western blot analysis 
reveals Ova secretion by all yeast genera tested after 8 h incubation in a medium 
containing a two-carbon compound as C-source. Yeasts were grown for 72 h in the 
respective medium, then washed and shifted to acetate medium. A volume 
corresponding to 3×108 cells was centrifuged and precipitated prior to analysis. Lane 1, 
K. lactis pKLAC1/ova; lane 2, P. pastoris pPIC3.5/ova; lane 3, S. cerevisiae pPGK/ova; 
lane 4, Sz. pombe pREP-BD/ova; lane 5, positive control (commercial Ova). (B) 
Quantification of Ova secreted by the diverse yeast genera after 8 h in acetate-
containing medium. Ova was quantified by western blotting, in which the band 
intensities were compared to those from commercial Ova of known concentration. 
Shown are mean values and standard deviation from three different determinations 
[Bazan et al., 2011]. 
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In S. cerevisiae and, to a lesser extent, also in P. pastoris, the amount of secreted Ova in 

acetate solution corresponded roughly to the intracellular level, whereas Sz. pombe and 

K. lactis secreted significantly more Ova protein. Of note, the expression profile of 

secreted Ova after 8 h in acetate-containing medium was very similar among the yeast 

genera to that after growth in the conventional culture media after 72 h, indicating that 

expression under artificial ‘phagosomal’ conditions resembles the expression after 

optimal cultivation. 

 

 

4.1.4. Recombinant expression of Ovacyt on yeast cell walls as Sed1p-fusions 

Yeasts transformed with vectors harboring the ovacyt/sed1 fusion were cultivated in the 

respective medium for 3 days, re-inoculated (5% v/v) and allowed to grow for 

approximately 2 h. Detection of cell-surface displayed Ovacyt was carried out by indirect 

immunofluorescence using rabbit anti-chicken egg albumin and goat anti-rabbit IgG-

PE. Fluorescent labelling was measured by fluorescence microscopy and flow 

cytometry. Figure 22 (A and B) shows the fluorescence, bright field and merge 

micrographs of immunolabeled Ovacyt/Sed1p-expressing S. cerevisiae and P. pastoris 

cells, as well as the correspondent control yeasts (yeasts expressing an irrelevant Sed1p-

fusion protein). The red fluorescence of the immunostained Ovacyt/Sed1p fusion protein 

was observed on the cell surface of S. cerevisiae carrying pPGK/ovacyt/sed1 and P. 

pastoris harboring pPIC9/ovacyt/sed1. No fluorescence was observed outlining yeast 

cells harboring irrelevant Sed1p-fusion protein (Figure 10 A and B, lower panels). This 

result indicates that the fusion protein Ovacyt/Sed1p is anchored and successfully 

displayed on the cell surface of S. cerevisiae and P. pastoris. Again secretion of OVAcyt 

was not detected (data not shown). No fluorescence could be detected in K. lactis cells 

transformed with pKLAC1/ovacyt/sed1 (not shown).  

 Variation in fluorescence intensity among the cell population of yeasts 

expressing the Ovacyt/Sed1p fusion protein was observed for both genera, indicating 

differences in the amount of anchored protein. To investigate this assumption, 

expression levels of Ovacyt/Sed1p on the cell wall of S. cerevisiae and P. pastoris were 

compared using flow cytometry (Fig 22 C and D) and showed a strong variation among 

both genera, with approximately 38% in S. cerevisiae and 66% in P. pastoris. 

Comparison of mean fluorescence values of Pichia to Saccharomyces cells indicated a 

~1.3-fold higher amount of OVAcyt at the cell surface of Pichia, which is in accordance 
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with a quantification performed by western analyses after glucanase extraction of cell 

walls (Fig. 23). 
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Fig. 22: Visualization of displayed proteins on the yeast cell surface. Cells were 
immunostained with rabbit anti-Ova IgG and PE-labeled goat anti-rabbit IgG. (A and 
B) Confocal laser scanning microscopy. Fluorescence micrographs (left panels), light 
micrographs (central panels) and merge (right panels) of S. cerevisiae (A) and P. 
pastoris (B). Upper panels, cells expressing Ovacyt on the cell wall; lower panels, cells 
harboring negative control plasmids. Magnification: 63×20. (C and D) Histograms 
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showing flow cytometric analysis of S. cerevisiae (C) and P. pastoris (D). Dashed lines 
represent yeasts expressing an irrespective Sed1p fusion protein. Red solid lines show 
transformants displaying Ovacyt/Sed1p. Vertical axis represents total cell number and 
horizontal axis indicates PE fluorescence intensity. The percentage of positive cells is 
shown. A total of 50,000 cells was analyzed. 
 
 
In order to confirm that Ovacyt was anchored on the cell surfaces of S. cerevisiae and P. 

pastoris, 3×108 yeast cells expressing the fusion protein Ovacyt/Sed1p, as well as yeasts 

expressing an unrelated Sed1p-fusion protein, were lysed with glass beads, and cell 

walls were extensively washed prior to treatment with β-1,3-glucanase (laminarinase). 

Then, supernatants were concentrated by precipitation with DOC/TCA and the presence 

of Ovacyt/Sed1p was analyzed by western blotting using the monoclonal anti-Ova 

antibody. As seen in Fig. 23 A, a very faint band of approximately 64 kDa could be 

detected in cell wall extracts of S. cerevisiae carrying pPGK/ovacyt/sed1 (lane 2), but not 

in the negative control (S. cerevisiae expressing another Sed1p-fusion protein, lane 3). 

This protein band corresponds to the Ovacyt/Sed1p protein, which has a theoretical 

molecular weight of ~64 kDa. Additional low molecular weight bands could be seen in 

the blot, some of them reacted unspecifically with the anti-Ova antibody, since they are 

also present in the negative control extracts. The other bands that appear only in the cell 

wall extracts of the Ovacyt/Sed1p-producing yeast are probably degradation products of 

Ovacyt/Sed1p. In Fig. 23 B, a slight band was seen in the cell wall extract of P. pastoris 

carrying pPIC9/ovacyt/sed1 (lane 2), corresponding to the 64-kDa Ovacyt/Sed1p. This 

band was not detected in the negative control (P. pastoris expressing an irrelevant 

Sed1p-fusion protein, lane 3). 

 
                A                                                          B 

 

 

 

 

 

 

 
Fig. 23: Laminarinase extraction of Ovacyt/Sed1p from yeast cell walls. The 
Ovacyt/Sed1p bands are indicated with arrows. As positive control, commercially 
available Ova was used. (A) Lane 1, positive control; lane 2, laminarinase extracts of 
cell walls of S. cerevisiae/Ovacyt/Sed1p; lane 3, laminarinase extracts of cell walls of S. 
cerevisiae expressing an irrelevant Sed1p-fusion protein. (B) Lane 1, positive control; 
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lane 2, laminarinase extracts of P. pastoris expressing Ovacyt/Sed1p; lane 3, 
laminarinase cell wall extracts of P. pastoris expressing an irrelevant Sed1p-fusion 
protein. 
 

 

4.2. The HCMV pp65 tegument protein as model antigen 

 

4.2.1. Construction of yeast expression vectors for recombinant expression of pp65 

The sequence encoding pp65 was amplified by PCR with the oligonucleotide primers 

5’pp65 and 3’pp65 using the vector pPGK/pp65 as template. The resulting PCR product 

was cloned into pSTBlue-1 for sequencing analysis (pSTBlue-1/pp65) and subsequently 

used to clone the gene pp65 into expression vectors for S. cerevisiae, Sz. pombe, K. 

lactis and P. pastoris for intracellular, secreted, and cell-wall anchored expression. 

However, the latter approach turned out to be infeasible, since fusion of pp65 to a 

secretion signal sequence did not lead to protein secretion, as described later in this 

section. Fig. 24 shows the pp65 variants used for recombinant expression in yeast. 

 

     A 

 

     B 

 

Fig. 24. Schematic representation of pp65 variants used throughout this work. (A) Full-
length pp65 for intracellular expression. (B) The pp65 gene also fused to a secretion 
signal (SS) sequence in order to direct the protein for secretion. 
 
 
The gene encoding full-length pp65 was cloned into the yeast expression vectors as 

follows: 

S. cerevisiae 

The construct pPGK/pp65 for foreign expression in S. cerevisiae was already available 

(Schumacher, 2001). In order to drive secretion of pp65 in S. cerevisiae, the pp65 open 

reading frame was inserted downstream of the sequence encoding the KRE1 signal 

peptide. For this purpose, the gene pp65 was digested from the pSTBlue-1/pp65 vector 

with SalI, end-filled with Klenow polymerase, and subsequently digested with EcoRI. 

The expression vector pFB2 (Breinig and Schmitt, 2002) was restricted with BglII, 

blunt-ended with Klenow polymerase, and further digested with EcoRI. After ligation, 

the resulting vector, named pPGK/kre1/pp65, was used to transform S. cerevisiae S86c. 

pp65 

pp65 SS 
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Sz. pombe 

For cloning into the Sz. pombe expression vector pREP1, pp65 was digested from 

pSTBlue-1/pp65 with XhoI and BamHI for inserting into the SalI/BamHI-digested 

pREP1, generating pREP1/pp65. 

The signal peptide of the K28 preprotoxin was used to direct pp65 into the 

secretion pathway of Sz. pombe. This secretion signal has been shown to efficiently 

drive the secretion of recombinant proteins in this yeast species (Heintel et al., 2001; 

Eiden-Plach et al., 2004). Therefore, the K28 signal peptide/pp65 fusion was amplified 

by PCR using the oligonucleotide primers 5’K28, 3’Prepropp65, 3’pp65 and 

5’Prepropp65, and the plasmids pPGK-M28-I and pPIC9/pp65 as templates. The final 

PCR product, named prepropp65, was cloned into pSTBlue-1 for sequence analysis. 

Subsequently, the prepropp65 coding sequence was restricted from pSTBlue-

1/prepropp65 with XhoI and BamHI and ligated to the SalI/BamHI-linearized pREP1 

vector, giving rise to pREP1/prepropp65. 

 

K. lactis 

The K. lactis expression vector pKLAC1 requires linearization prior to transformation 

to allow integration into the yeast genome. Linearization can be performed with either 

SacII or BstXI restriction enzymes. Since both restriction sites are present in the pp65 

sequence, a site-directed mutagenesis was performed in order to eliminate one 

recognition sequence, without altering the amino acid composition of the resulting 

protein. Given that the SacII regognition sequence appears twice in the pp65 gene, the 

BstXI restriction site was chosen for the single nucleotide exchange. Using the primers 

5’pp65mutBstXI, 3’pp65XbaISalI, 5’pp65_EcoRIXhoISacI and 3’pp65mutBstXI, and 

the plasmid pSTBlue-1/pp65 as template, the pp65 gene was amplified by SOE-PCR as 

described in section 1.1 of Methods. After amplification, the final DNA fragment 

(pp65mut) was cloned into pSTBlue-1 for sequence analysis, which revealed the desired 

mutation (substitution of a cytosine for an adenine at position 540, so that codon ACC 

became ACA, but still coding for threonin). 

Intracellular protein expression in K. lactis implies digesting the pKLAC1 

expression vector with HindIII to remove the α-mating factor signal sequence. 

Therefore, for cloning into the K. lactis expression vector, pp65mut was digested from 

pSTBlue-1/pp65mut with EcoRI, blunt-ended with Klenow polymerase and then 

digested with SalI. The vector pKLAC1 was digested with HindIII, end-filled with 
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Klenow and digested with SalI. For integrative transformation of chemically competent 

K. lactis, the construct pKLAC1/pp65mut was linearized with BstXI. 

Full-length pp65 was also cloned downstream of the α-mating factor signal 

peptide for protein secretion. For this purpose, pp65 was digested from pSTBlue-1 with 

XbaI, blunt-ended with Klenow polymerase, and then restricted with XhoI. The vector 

pKLAC1 was digested with NotI, blunt-ended with Klenow polymerase, and digested 

with SalI. The ligation product, pKLAC1/secpp65mut, was used to transform competent 

K. lactis cells. 

 

P. pastoris 

Cloning of pp65 into P. pastoris expression vectors pPIC3.5 for intracellular expression 

and pPIC9 for protein secretion was performed by digesting the gene encoding pp65 

from pSTBlue-1/pp65 with EcoRI and XbaI and ligating to the EcoRI/AvrII sites in 

pPIC3.5 and pPIC9 vectors. The resulting plasmids were named pPIC3.5/pp65 and 

pPIC9/pp65. Both expression vectors were linearized with SalI before transformation of 

competent P. pastoris cells. 

 

 

4.2.2. Intracellular pp65 expression by different yeast genera 

For detection of pp65 in the cytoplasm of the tested yeast genera, lysates from 3×108 

yeast cells cultured for 72 h in the respective medium were precipitated with 

DOC/TCA, as described before. Western blots of cell extracts were performed using 

mouse monoclonal anti-pp65 antibody and goat anti-mouse IgG-peroxidase. 

Colonies of S. cerevisiae S86c transformed with pPGK/pp65 and selected based 

on uracil prototrophy were cultured in ura d/o medium for recombinant protein 

expression. Lysates from yeast cells carrying both pPGK/pp65 and the empty vector 

YEp352 were analyzed. As seen in Fig. 25 A, pp65 was detected as a ~65-kDa band in 

the total extract of S. cerevisiae carrying the expression vector pPGK/pp65 (lane 3). No 

bands were seen in the sample corresponding to S. cerevisiae harboring YEp352 vector 

(lane 2). 

Sz. pombe PW260 cells harbouring the pREP1/pp65 vector were grown in EMM 

leu d/o medium to induce pp65 expression from the nmt1 promoter. Cells of Sz. 

pombe/pREP1/pp65 and Sz. pombe/pREP-BD were subjected to expression analysis. As 

seen in Fig. 25 B, the corresponding western blot result showed a single 65-kDa protein 
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band in the lysate of Sz. pombe/pREP1/pp65 (lane 1). The band corresponds to pp65, as 

it reacted specifically with the anti-pp65 monoclonal antibody. This protein was absent 

in Sz. pombe lysates carrying the empty vector pREP-BD and cultivated under the same 

conditions (lane 2). 

After pKLAC1/pp65mut had been integrated into the K. lactis genome, cells 

were grown in YPGal medium for 72 h at 30°C, under agitation at 220 rpm. Total 

extracts from 3×108 cells were precipitated with DOC/TCA and analyzed by western 

blotting using monoclonal anti-pp65. No specific signal could be detected in K. lactis 

lysates, while the 65-kDa band of the positive control sample reacted specifically with 

the anti-pp65 antibody (data not shown). Many clones were analyzed for pp65 

expression, however without success. The genomic DNA of some K. lactis clones was 

isolated and subjected to PCR analysis using the oligonucleotide primers 5’pp65 and 

3’pp65. The presence of the pp65 gene integrated in the K. lactis genome was 

confirmed (data not shown), ruling out the possibility that the heterologous protein 

could not be detected because the recombinant DNA had not been integrated into the 

genome. This fact may indicate that the expression level of pp65 in K. lactis was below 

the detection limit, or that this protein was rapidly degraded by proteases, or even that 

pp65 is not expressed at all by this yeast strain. 

P. pastoris colonies grown on selective agar medium lacking histidine and 

cultivated in BMG medium were shifted to BMM medium in order to induce AOX1-

driven protein expression. As shown in Fig. 25 C, an immunoreactive band of pp65 

(~65 kDa) was observed in the cell lysate of P. pastoris carrying the expression vector 

pPIC3.5/pp65 (lane 1). This band was not observed in total extracts from yeast cells 

carrying the empty vector pPIC9 (lane 2). 
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Fig. 25. Intracellular expression of pp65 by distinct yeast genera. Shown are western 
blots of yeast lysates from 3×108 yeast cells probed with monoclonal anti-pp65. As 
positive control, commercial pp65 was used. The yeast-derived 65 kDa protein bands 
identified as pp65 are indicated by arrows. The positions of the bands of the molecular 
weight marker (“Prestained protein ladder”) are indicated. (A) S. cerevisiae. Lane 1, 
positive control; lane 2, lysate from cells harbouring the empty vector YEp352; lane 3, 
cell extracts from cells transformed with pPGK/pp65. (B) Sz. pombe. Lysates from cells 
carrying pREP1/pp65 (lane 1) or empty vector pREP-BD (lane 2); lane 3, positive 
control. (C) P. pastoris. Extracts from cells transformed with pPIC3.5/pp65 (lane 1) or 
empty vector pPIC9 (lane 2); lane 3, positive control. 
 

 

4.2.3. Pp65 secretion by different yeast genera 

The presence of pp65 in culture medium collected after 24, 48 or 72 h was investigated 

as follows: a volume of culture medium equivalent to 3×108 yeast cells was collected 

and concentrated with DOC/TCA prior to SDS-PAGE and western analysis using 

monoclonal anti-pp65, as mentioned in the previous section. 

 S. cerevisiae transformants carrying pPGK/kre1/pp65 were cultivated as 

described. Supernatants from a culture of S. cerevisiae carrying the empty vector 

YEp352 served as negative control; the commercially available pp65 served as positive 

control. No detectable pp65 could be seen in lanes corresponding to yeast transformants 

harboring pPGK/kre1/pp65, or in negative control cells. As expected, the positive 

control revealed a protein signal at 65 kDa, representing pp65 (data not shown). To 

determine whether pp65 was present in the cytoplasm of yeasts transformed with 

pPGK/kre1/pp65, transformants were lysed with glass beads and total cell extracts were 

analyzed by SDS-PAGE and probed with monoclonal anti-pp65. Recombinant pp65 

could be detected in the cytosolic extracts analyzed, indicating that secretion of this 

protein was for some reason impaired. 

The presence of pp65 in culture supernatants of Sz. pombe transformed with 

pREP1/prepropp65 was verified. Supernatants from a culture of Sz. pombe harbouring 

pREP-BD were used as negative control and commercial pp65 as positive control. 

Western blot revealed no pp65-specific signal (12 lanes, each representing one clone), 

whereas the positive control band promptly reacted with the antibody (data not shown). 

Sz. pombe cells transformed with PREP1/prepropp65 were then lysed with glass beads 

and analyzed for the presence of pp65 in the cytoplasm. This protein could be detected 

in the cell lysates (not shown), indicating that its absence in culture medium was not 

due to lack of expression. 
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 K. lactis transformed with pKLAC1/secpp65 was inoculated in YPGal medium 

and supernatants were assessed for the presence of pp65. After western analysis, no 

recombinant protein could be detected in the supernatant. Cell pellets (3×108 cells) were 

subjected to lysis to check if pp65 was retained in the cytoplasm but, again, no signal 

was verified after wester blotting using anti-pp65 (data not shown), as already reported 

for K. lactis carrying pKLAC1/pp65. 

 P. pastoris carrying pPIC9/pp65 induced with methanol were analyzed for pp65 

secretion. As for the other yeast strains tested, no pp65 could be detected in the culture 

supernatant, whereas the 65-kDa band appeared in the positive control lane (not shown). 

Some clones were lysed with glass beads and assessed for the presence of pp65 in the 

cytoplasm. Western analysis revealed a pp65-specific signal in all transformants 

examined, confirming that this protein was expressed in P. pastoris transformed with 

the pPIC9/pp65 vector, but not secreted (data not shown). 

 In this way it must be concluded that cell-wall anchoring of full-length pp65 

would most probably be unsuccessful, since none of the tested yeasts was able to secrete 

pp65. 

 

 

4.3. Cloning and expression of Gag-fusions in S. cerevisiae 

Delivery of antigens by virus-like particles has been considered a versatile approach. 

Since VLP are inherently highly immunogenic, strategies employing chimeric particles 

are considered very promising in immunological applications. 

Fusion of L-A Gag with a truncated version of pp65 (Δpp65) has been 

demonstrated by Powilleit and colleagues (2007). In that study, Δpp65 was fused to the 

3’ end of gag in the [0]-frame position, and the resulting Gag/Δpp65 fusion self-

assembled in vivo into VLP. In addition, purified chimeric Gag/Δpp65 VLP have been 

shown to stimulate pp65-specific memory T cells in a whole blood assay (Powilleit et 

al., 2007). 

In this work, the sequences encoding Ovacyt or full-length pp65 were cloned 

downstream of gag in the [0]-frame to prevent gag/ovacyt or gag/pp65 frameshift 

occurrence in yeast (Fig. 26). The resulting recombinant proteins were partially purified 

and assessed for correct assembly into VLP. Since Ova represents an easy applicable 

system for a number of in vitro and in vivo settings, it would be interesting to examine 

the delivery of Ovacyt by VLP in comparison to Ovacyt alone. Furthermore, yeast 
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assembled Gag/pp65 VLP were analyzed in terms of activation of pp65-specific 

memory T lymphocytes in a whole blood assay and compared to pp65 alone. 

 

A 

 

B 

 

Fig. 26: Schematic representation of gag fusions performed in this work. The sequences 
coding for ovacyt (A) and pp65 (B) were cloned in frame and downstream of the L-A 
gag sequence for recombinant expression in the virus-free yeast strain S. cerevisiae 
S86c. 
 

 

4.3.1. Cloning and expression of Gag/Ovacyt in S. cerevisiae 

To insert the ovacyt gene downstream of gag without causing frameshift formation in 

vivo, SacI restriction was used for cloning. However, given that SacI cleaves the ovacyt 

sequence at position 56, and that there was no available conventional restriction enzyme 

which would leave compatible cohesive ends, site-directed mutagenesis was performed 

in order to destroy this site in the ovacyt gene without altering the amino acid 

composition of the resulting protein. Using pPIC3.5/ovacyt as template and the 

oligonucleotide primers 5’Ovacytmut 3’BglII_NotI_Ova, 3’Ovacytmut, and 5’ 

XbaISacI_Ovacyt, the ovacytmut sequence was amplified by SOE-PCR, as described 

before. The resulting PCR product was cloned into pSTBlue-1 and subjected to 

sequence analysis to confirm the correct sequence. A silent single base mutation could 

be obtained, in which a cytosine at position 57 was replaced by a thymine. Therefore, 

the codon CTC was changed into CTT, but the correspondent amino acid, leucine, was 

still the same. 

The ovacytmut coding sequence was recovered from pSTBlue-1 by SacI and 

BglII restriction and subsequently inserted into the SacI/BamHI-digested S. cerevisiae 

pPG[0]G expression vector, yielding pPG[0]G/ovacytmut. 

After transformation of S. cerevisiae S86c with pPG[0]G/ovacytmut, some 

transformants were inoculated in ura d/o medium and cultured for 72 h for PGK-driven 

recombinant protein expression. For detection of Gag/Ovacyt in yeast cell lysates, crude 

extracts from 3×108 cells were precipitated with DOC/TCA and applied to SDS-

polyacrylamide gels. Western blots were performed using rabbit anti-Ova antibody and 

gag                                                             ovacyt 

  gag                                                          pp65 
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goat anti-rabbit IgG-peroxidase. Yeasts transformed with the pG vector (i.e., expressing 

Gag only) were used as negative control; commercial Ova served as positive control. 

As observed in Fig. 27, western analysis of total cell extracts from yeasts 

transformed with pG[0]G/ovacytmut revealed a ~103 kDa protein fusion (lane 1), which 

was absent in lysates from pG-carrying yeasts (lane 2). In lane 1, additional low-

molecular weight immunoreactive bands were detectable which probably represent 

degradation products of full-length Gag/Ovacyt. 

 

 

 

 

 

 

 

 

 
Fig. 27. Expression of Gag/Ovacyt in S. cerevisiae S86c. Total extracts from 3×108 
cells were separated by SDS-PAGE and probed with anti-Ova. Lane 1, lysates from S. 
cerevisiae carrying pG[0]G/ovacytmut; lane 2, lysates from S. cerevisiae carrying pG; 
lane 3, positive control (Ova). The fusion protein Gag/Ovacyt is indicated by an arrow. 
The positions of the bands of the molecular weight marker (“Prestained protein ladder”) 
are indicated. 
 
 
Next, the Gag/Ovacyt fusion protein expressed in S. cerevisiae was evaluated for its 

ability to assemble into VLP. For this purpose, cell lysates were applied onto a 45% 

sucrose cushion and after ultracentrifugation the resulting pellet was dissolved and 

applied onto a sucrose gradient (20-70%). A total of 18 fractions were recovered from 

the gradient after overnight ultracentrifugation. Aliquots from each fraction were 

separated by SDS-PAGE and analyzed by western blotting using an anti-Ova antibody 

(Fig. 28). Protein bands of approximately 103 kDa could be detected in all aliquots 

analyzed, showing a similar distribution pattern as previously described for Gag/GFP 

particles (Powilleit, 2004). Additional low molecular weight bands were observed in 

some fractions and in the gradient pellet, which most probably represent degradation 

products. 
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Fig. 28. Western blot analysis for the detection of Gag/Ovacyt in sucrose gradient 
fractions 1-18 and in the gradient pellet. Lanes 1-18, fractions 1-18; lane 19, gradient 
pellet. Pooled fractions are indicated with a red line. Sucrose concentrations are shown. 
 
 
Some of the Gag/Ovacyt samples that reacted positively with anti-Ova were pooled 

(fractions 3-7), dialyzed against PBSE overnight, concentrated to 200 µl with 

Vivaspin™ and analyzed by transmission electron microscopy (TEM). TEM analysis 

identified correctly assembled VLP in samples purified from S. cerevisiae 

pG[0]G/ovacytmut. Gag/Ovacyt particles appeared symmetric and homogeneous in size, 

with a diameter of approximately 40 nm (Fig. 29). These particles were not seen in cell 

extracts from S. cerevisiae carrying the empty vector YEp352 subjected to the same 

procedure (data not shown). 

 

 

 

 

 

 

 

 

 

 

Fig. 29. Transmission electron microscopy of Gag/Ovacyt chimeric particles. Electron 
micrograph of sucrose gradient-purified Gag/Ovacyt derived from S. cerevisiae. Some 
particles are indicated by arrows. Sample was negatively stained with 2% uranyl 
acetate. Magnification of 98,000×. Bar = 200 nm. 
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As seen in Fig. 29, recombinant Gag/Ovacyt VLP exhibit a conformation which closely 

resembles those from Gag/GFP particles recombinantly expressed in the same yeast 

strain (Powilleit, 2004; data not shown). In general, particles appear relatively dark, 

with a clear margin. 

 

 

4.3.2. Cloning and expression of Gag/pp65 in S. cerevisiae 

The gene encoding pp65 was PCR-amplified using the primers 5’ SacIpp65 and 

3’BamHIpp65 and plasmid pREP1/pp65 as template. After cloning into pSTBlue-1 and 

further sequencing, the mutation-free pp65 coding sequence was recovered from 

pSTBlue-1 by treatment with BamHI and SacI and subsequently inserted into 

BamHI/SacI-digested pPG[0]G, yielding the yeast expression vector pPG[0]G/pp65. 

Selected S. cerevisiae S86c transformants carrying pPG[0]G/pp65 were 

inoculated in ura d/o medium and cultured for 72 h recombinant protein expression. For 

detection of Gag/pp65 in yeast cell lysates, crude extracts from 3×108 cells were 

precipitated with DOC/TCA, separated by SDS-PAGE and probed with monoclonal 

anti-HCMV pp65. 

 Fig. 30 shows that the Gag/pp65 fusion protein was detected as a 

immunoreactive 141-kDa band in the cell lysates of S. cerevisiae carrying pG[0]G/pp65 

(lane 2). This band was not detected in cell extracts from clones lacking pp65 (S. 

cerevisiae transformed with pG, lane 3). Commercially available pp65 was used as 

positive control (lane 1). 

 
 

 

 

 

 

 

 

Fig. 30. Expression of Gag/pp65 in S. cerevisiae S86c. Total cell extracts were 
separated by SDS-PAGE and probed with monoclonal mouse anti-HCMVpp65. Lane 1, 
positive control (commercial pp65); lane 2, lysate from cells carrying pG[0]G/pp65; 
lane 3, lysate from cells harbouring pG. Positions of Gag/pp65 and pp65 are indicated. 
The positions of the bands of the molecular weight marker (“Prestained protein ladder”) 
are given. 
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VLP preparations were performed as described for Gag/Ovacyt and aliquots of the 

gradient fractions were applied to SDS-polyacrylamide gels and analyzed by western 

blotting using monoclonal anti-pp65 (Fig. 31). 

 
 

 

 

 

 

 

 

 

Fig. 31. Western analysis of Gag/pp65 in gradient fractions 1-18 and gradient pellet. 
Lanes 1-18, fractions 1-18; lane 19, gradient pellet; lane 20, positive control 
(commercial pp65). Pooled fractions are indicated with a red line. 
 
 
Recombinant Gag/pp65 shows a different sedimentation profile as Gag/Ovacyt VLP. As 

seen in Fig. 31, the fusion protein (~141 kDa) could only be detected in fractions 

containing higher sucrose concentrations, and in the gradient pellet. This fact possibly 

reflects the higher molecular weight of Gag/pp65 in comparison to Gag/Ovacyt. 

 In order to investigate whether Gag/pp65 assembled into VLP, fractions 1-6, 

which were positive for the presence of Gag/pp65, were pooled, dialyzed overnight 

against PBSE, concentrated to 200 µl and analyzed by transmission electron microscopy 

(Fig. 32). 

 
 

 

 

 

 

 

 

 
Fig. 32. TEM analysis of Gag/pp65 chimeric VLP. Electron micrograph of sucrose 
gradient-purified Gag/pp65 derived from S. cerevisiae. Particles are indicated by an 
arrow. Sample was negatively stained with 2% uranyl acetate. Magnification of 
150,000. Bar = 100 nm. 
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As shown in Fig. 32, TEM analysis revealed the presence of VLP, which appear 

heterogeneous in size (35-55 nm in diameter) and symmetry. The dark core surrounded 

by a clear margin correlates well with the previous findings for Gag/Ovacyt VLP. White 

globules that also appear in the sample may indicate the presence of other proteins, or 

even unassembled Gag/pp65 fusions. This latter possibility would explain the 

occurrence of only a limited number of assembled VLP, suggesting that Gag/pp65 

assembly efficiency is somehow limited. 

 

 

5. Activation of antigen-specific T cells after delivery of recombinant yeasts 

Having characterized the heterologous expression of model proteins in yeasts, the 

selected recombinant yeast genera were tested in vitro (Ova) or ex vivo (pp65) for 

priming of antigen-specific T lymphocytes. 

 

 

5.1. Influence of antigen localization on activation of Ova-specific CD8+ T cells 

The yeast genera expressing the Ova derivatives were tested in an in vitro antigen 

presentation assay using murine BMM as antigen-presenting cells and the activation of 

Ova (SIINFEKL)-specific CD8+ T lymphocytes as read-out system. In this well-defined 

system, the recombinant yeast cells act as protein delivery vectors that feed antigens 

into the cytosolic MHC class I-restricted antigen presentation pathway. These 

experiments were performed in collaboration with Dr. Gernot Geginat at the Faculty for 

Clinical Medicine Mannheim of the University Heidelberg (Mannheim, Germany). 

BMM were incubated with four different yeast:macrophage ratios (MOI 14, 7, 3, 

1.5) or left untreated. Uptake kinetics of the diverse yeast genera by murine 

macrophages were previously analyzed (section 4.1). 

As shown in Fig. 33, infection of mouse BMM with Ovacyt-expressing yeast led 

to the activation of T cells recognizing the Ova epitope SIINFEKL and the consequent 

production of IFN-γ. Optimal activation of Ova-specific CD8+ T cells was obtained at 

MOI 7 in the case of S. cerevisiae and P. pastoris. In contrast, K. lactis provoked only a 

slight activation, whereas Sz. pombe hardly activated any T cells, not even at the highest 

MOI 14. Interestingly, regarding the subcellular localization of the Ova antigen, the 

pattern of activation differed considerably between S. cerevisiae and P. pastoris. 

Although S. cerevisiae contained only a roughly 1.4 times higher amount of 
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intracellular Ovacyt than P. pastoris, the former activated a several times higher number 

of T lymphocytes. In contrast, and in agreement with the lower amount of cytosolic 

Ovacyt as well as (in the case of fission yeast) the diminished uptake by BMM, K. lactis 

and Sz. pombe activated only a small population of CD8+ T cells. Notably, only a minor 

activation by S. cerevisiae and P. pastoris secreting Ova was observed, although the 

amount of secreted Ova was comparable to or even higher than the intracellular Ovacyt. 

Here, K. lactis and Sz. pombe failed to induce any detectable amount of IFN-γ. In the 

case of cell-surface displayed Ovacyt, activation of antigen-specific lymphocytes was 

significantly higher using P. pastoris as carrier system in comparison to S. cerevisiae. 

Noteworthy, at all MOIs applied, P. pastoris expressing Ovacyt on the cell surface 

induced an even higher CD8+ T cell response in comparison to cytosolic Ovacyt, despite 

the considerably lower level of protein. In contrast, in S. cerevisiae, activation by 

intracellular Ovacyt exceeded the cell wall-bound form at all MOIs. As expected, yeasts 

harbouring empty vectors caused no activation of Ova-specific lymphocytes as well as 

untreated macrophages. 
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Fig. 33: Activation of Ova-specific CD8+ T lymphocytes after yeast-mediated delivery 
of Ova-derivatives by bone marrow-derived macrophages in vitro. Adherent BMM from 
C57BL/6 mice were loaded with yeast genera expressing the different Ova derivatives. 
After 16 h, CD8+ T cells specific for the MHC class I-restricted SIINFEKL epitope 
were added and incubated for another 18 h. Antigen presentation was measured by T 
cell activation which was assessed by measuring the amount of IFN-γ in culture 
supernatants by ELISA. Results are expressed as mean and SD values of three 
independent experiments [Bazan et al., 2011]. 
 
 
This assay could no longer be repeated within this work in order to test antigen delivery 

when Ovacyt VLP were recombinantly expressed in S. cerevisiae. 

In conclusion, delivery of a protein antigen by different yeast genera was able to 

activate antigen-specific CD8+ T lymphocytes. Moreover, lymphocyte activation was 

influenced by antigen localization in yeast. 

 

 

5.2. Activation of pp65-specific memory T lymphocytes from HCMV-positive 

donors in an autologous system 

To simulate a condition more closely resembling an in vivo situation, the yeast-based 

delivery system was also tested using human DCs, the most effective inducers of T cell-

mediated immunity. By means of an ex vivo T cell stimulation assay, human DCs 

loaded with distinct yeast genera expressing pp65 were assessed for efficient activation 

of antigen-specific CD4+ and CD8+ T lymphocytes. The incubation time of DCs with 

yeasts (48 h) is sufficient to induce DC maturation and activation, as previously shown 

in section 1 of Results. 

Immature DCs derived from monocytes isolated from HCMV-positive donors 

were incubated for 48 h with yeasts expressing pp65 or yeasts carrying empty vectors 

(MOI 5); as positive and negative controls a lysate from HCMV-infected fibroblasts or 

untreated cells were used, respectively. Then, autologous lymphoctes were added at a 

ratio of 1:1 (lymphocyte:DC), as well as anti-CD49d and anti-CD28. Cells were co-

cultured for 6 h, during the last 4 h in the presence of Brefeldin A to inhibit protein 

secretion. Cells were stained for the surface molecules CD4 or CD8 and CD69 and 

intracellular IFN-γ. Activation of pp65-specific CD4+ and CD8+ memory T 

lymphocytes was analyzed by flow cytometry. 

 Fig. 34 shows the frequencies of CD8+ T cells expressing CD69 and IFN-γ in 

response to pp65. Responses to yeasts delivering pp65 were higher than those obtained 
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against yeasts harbouring empty vectors, and even higher than after using a HCMV 

lysate. Some degree of unspecific responses to the yeast vectors were also observed, and 

were higher for S. cerevisiae (0.07%), followed by P. pastoris (0.06%), and Sz. pombe 

(0.02%). The percentage of activated pp65-specific memory CD8+ T cells was 0.20% 

when S. cerevisiae was used as pp65 delivery system, 0.18% when Sz. pombe was used 

as vector and 0.14% when P. pastoris delivered pp65. Remarkably, these responses 

were significantly stronger compared to the response against a HCMV lysate (0.09%). 

The value corresponding to unspecific activation caused by untreated DCs was 0.01%. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 34: Activation of antigen-specific memory CD8+ T lymphocytes in an autologous 
system, as measured by CD69 and IFN-γ expression. DCs incubated with yeasts 
producing recombinant pp65 or harbouring empty vectors for 48 h were incubated with 
autologous T lymphocytes for antigen presentation. The HCMV lysate was used as 
positive control (CMV). Sc = S. cerevisiae; PW = Sz. pombe; GS = P. pastoris. Results 
of a single experiment are shown. 
 
 
With respect to activated pp65-specific CD4+ T cells, the observed difference between 

yeasts carrying pp65 and empty vectors was not significant (data not shown). Although 

the percentage of activated CD8+ T cells in response to yeast-delivered pp65 were 

above the threshold of significant T cell responses (0.05%, Breinig et al., 2006), levels 

of double positive cells were still relatively low. Many other donors were tested, but 

since the lymphocytic activation observed was not significantly better, activation of T 

cells was subsequently analyzed in whole blood assays. 
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5.3. Activation of pp65-specific T lymphocytes in whole blood assay 

It is well established that yeasts act as adjuvant and serve as efficient protein delivery 

system, stimulating potent immune responses (Stubbs et al., 2001; Ardiani et al., 2010). 

Activation of pp65-specific memory T lymphocytes using a cell lysate of Sz. pombe 

expressing recombinant pp65 in an ex vivo whole blood assay has been reported 

(Breinig et al., 2003). The same method was used here to investigate the ability of 

different yeast genera to stimulate antigen-specific memory T cells. 

S. cerevisiae S86c, Sz. pombe PW260, and P. pastoris GS115 were used in this 

ex vivo stimulation assay, and their efficiencies as delivery vectors were compared. For 

this purpose, yeasts were cultivated under the respective inducing conditions for 

expression of recombinant pp65 (also Gag/pp65 in the case of S. cerevisiae). As 

negative controls, yeasts carrying empty vectors (or a Gag-encoding vector) were used. 

For all yeast species analyzed, three different variants were tested: an ethanol-

precipitated yeast cell lysate; heat-treated yeasts (65°C, 1 h); and whole yeasts without 

receiving any treatment. Under each condition, the equivalent of 7.5×105 yeast cells was 

incubated with 450 μl blood. This optimal condition (1.7×106 yeast cells/ml) had been 

previously established by Breinig et al. (2003). 

Expression of recombinant proteins was achieved for 72 h. For protein 

precipitation purposes, yeasts were resuspended in PBS and lysed with glass beads and 

crude extracts were precipitated with ethanol, as described in the Methods section. The 

resulting pellets were then resuspended in PBS. Whole yeasts were incubated at 65°C 

for 1 h, or left untreated, before being used in the whole blood assay. The frequencies of 

activated pp65-specific T lymphocytes were determined by means of three-colour flow 

cytometric analysis. As negative control, assays using whole blood from HCMV 

seronegative donors were also performed. 

As depicted in Fig. 35, flow cytometric analyses of T cells from a HCMV 

positive donor revealed positive IFN-γ and CD69 responses against the HCMV lysate, 

in contrast to the HCMV negative donor. This latter exhibited strong T cell activation in 

response to the superantigen SEB, eliminating the possibility that the absence of 

response to HCMV antigens could result from potential experimental flaws. In both 

donors, incubation of the blood with only anti-CD28 and anti-CD49d did not cause any 

relevant effect on IFN-γ and CD69 production by T cells. 

Lysates from all yeast genera failed to induce pp65-specific responses in 

HCMV-positive donors (data not shown), contradicting previous findings (Breinig et 
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al., 2003). IFN-γ/CD69 expression in the samples incubated with yeasts harboring 

empty vectors or unmodified Gag protein alone was considerably low. In contrast, live 

or heat-treated S. cerevisiae, Sz. pombe and P. pastoris engineered to express pp65 (or 

Gag/pp65) showed the ability to activate memory CD4+ and CD8+ T lymphocytes (Fig. 

35). 

 Comparing untreated yeasts expressing pp65 derivatives, Sz. pombe expressing 

pp65 provoked the highest CD4+ T cell stimulation (2.27%), followed by S. cerevisiae 

expressing the fusion protein Gag/pp65 (2.01%) and pp65 alone (0.78%). Whole P. 

pastoris cells were less potent in stimulating antigen-specific CD4+ T lymphocytes 

(0.57%). Among the heat-treated yeasts carrying pp65, S. cerevisiae expressing 

Gag/pp65 caused the highest activation of CD4+ T lymphocytes (2.05%), followed by 

P. pastoris (1.8%), Sz. pombe/pp65 (1.59%) and S. cerevisiae/pp65 (1.26%). Thus, in 

terms of CD4+ T cell activation, heat treatment was beneficial in the case of S. 

cerevisiae and P. pastoris, but not in Sz. pombe. Unspecific T cell activation, as 

measured upon incubation with yeasts harbouring control plasmids, was not higher than 

0.32% (Fig. 35 A). 

 In relation to CD8+ T cell responses (Fig. 35 B), S. cerevisiae delivering 

Gag/pp65 induced greater frequencies of pp65-specific lymphocytes (0.7%), followed 

by Sz. pombe/pp65 (0.45%) and S. cerevisiae/pp65 (0.31%). Production of cytokines 

induced by P. pastoris carrying pp65 was very similar to the values obtained with this 

same yeast harbouring the empty vector (0.18% and 0.17%, respectively). However, 

when P. pastoris was heat-treated, this difference increased dramatically (0.39% vs. 

0.06%). This synergistic effect was not observed for the other yeasts in the case of 

CD8+ T cell activation, in which the frequency of positive cells was markedly reduced 

(Fig. 35 B). 
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(A) CD4+ T Lymphocytes 
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Fig. 35. Recombinant pp65 within whole yeasts is able to activate specific memory T 
cells in HCMV seropositive, but not seronegative, donors. Frequencies of antigen-
specific CD4+ (A) and CD8+ (B) T cell activation after stimulation by yeasts expressing 
pp65 are shown. Antigens were added to whole blood of HCMV seropositive and 
HCMV negative donors. Whole blood was stimulated for 6 h. Activated T lymphocytes 
were identified by expression of CD69 and IFN-γ using flow cytometry. Neg = negative 
control (sample incubated with costimulatory antibodies only); SEB = Staphylococcus 
enterotoxin B (positive control); CMV = sample incubated with a lysate of HCMV-
infected fibroblasts; Sc = S. cerevisiae; PW = Sz. pombe; GS = P. pastoris. Data from a 
single representative experiment are shown. 
 
 
Higher frequencies of antigen-specific memory CD4+ T cells in comparison to CD8+ T 

cells were obtained in all assays performed throughout this work. Nevertheless, in a 

whole blood assay using total extracts of Sz. pombe producing pp65 higher frequencies 

of pp65-specific CD8+ T cells related to CD4+ T cells have been described (Breinig et 

al., 2003). Unspecific responses to the yeast vehicles observed in all donors tested have 

also been described, and are directly linked to yeast cell wall components, as pointed 

out by Heintel et al. (2003). 

 Using S. cerevisiae as antigen carrier, the Gag/pp65 fusion has proven to be 

more effective in stimulating pp65-specific lymphocytes than pp65 alone. Since both 

proteins were synthesized in equivalent amounts (Fig. 36), these results support 

previous findings from Powilleit et al. (2007). 

 For comparison, expression levels of recombinant pp65 by the different yeast 

strains were quantified. After 72 h of expression, extracts from 3×108 cells were 

analyzed by western blotting. As shown in Fig. 36, P. pastoris expresses the highest 

levels of pp65 (mean value = 222.3 ng in 3×108 cells), followed by Sz. pombe (19.3 ng). 

Recombinant protein production was lower in S. cerevisiae, in which pp65 and 

Gag/pp65 were expressed at similar levels (10.8 ng and 10.6 ng in 3×108 cells, 

respectively). 
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Fig. 36. Expression levels of recombinant pp65 produced in different yeast genera. 
Quantification was performed based on a standard curve of purified recombinant pp65 
of known concentration. Shown are mean values and standard deviations from triplicate 
determinations. 
 
 
From these data it can be concluded that activation of antigen-specific memory T 

lymphocytes does not correlate with the amount of recombinant protein expressed by 

each yeast, indicating that the yeast vehicle itself can influence cell-mediated responses. 

These findings are in agreement with the results observed for delivery of cytosolic Ova. 

 

 

6. Effect of heat treatment on β-glucan exposure on yeast cell walls 

The findings from the whole blood assays, in which heat treatment of yeasts led to a 

different T cell activation profile, encouraged a deeper investigation of the basis of the 

observed effects. Gantner and colleagues (2005) have demonstrated that heat-killed C. 

albicans expose more β-glucan at the cell surface. Normally, β-glucan is hidden by the 

outer mannose layer of yeast cell walls, and becomes only apparent in surface 

deformities such as bud and birth scars. Therefore, Dectin-1 binding to living yeast cells 

is restricted to these localized patches. Upon heating, β-glucan is uniformly exposed on 

the cell wall, in a manner that it is recognized by Dectin-1. Since C. albicans hyphae do 

not expose β-glucan by virtue of their filamentous growth, host Dectin-1 is not 

activated, which plays an important role in C. albicans pathogenicity. Therefore, 

Dectin-1 activation is a necessary step in the development of immune responses such as 

cytokine and chemokine production, as well as killing mechanisms against a variety of 

microorganisms (Gantner et al., 2005). 
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Exponentially grown yeasts were incubated for 1 h at 65°C, or left untreated at 

room temperature. Afterwards, cells were incubated with a monoclonal anti-β-1,3-

glucan antibody and subsequently with a FITC-conjugated secondary antibody. Yeasts 

were analyzed by fluorescence microscopy and flow cytometry. Cells incubated with an 

isotype control antibody and FITC-coupled secondary antibody served as negative 

control (Fig. 37). 
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                                     Sz. pombe                                                P. pastoris 
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Fig. 37. Effect of heat-treatment on the exposure of β-glucan on the yeast cell surface. 
The yeasts S. cerevisiae, K. lactis, P. pastoris and Sz. pombe were incubated at 65°C for 
1 h, or left untreated, before being incubated with anti-β-glucan or an irrelevant 
antibody (isotype control). Then, cells were incubated with a FITC-coupled secondary 
antibody and analyzed by fluorescence microscopy (A) and flow cytometry (B and C). 
(A) Fluorescence micrographs (left panels) and light micrographs (right panels) of 
yeasts stained for β-glucan. (B) Histograms showing the fluorescence pattern of β-
glucan staining among the yeast genera. Dashed lines represent cells incubated with an 
isotype control antibody; blue lines represent cells incubated at room temperature and 
stained for β-glucan; green solid lines indicate heat-treated cells stained for β-glucan. 
(C) Mean fluorescence intensity from untreated (blue bars) or heat-treated (green bars) 
yeast cells incubated with anti-β-glucan antibody, or untreated cells incubated with the 
isotype control antibody (grey bars). The fold increase in fluorescence observed after 
heat treatment in comparison to no treatment is shown. Ab =  antibody. 
 
 
As shown in Fig. 37, heat-treatment significantly increased β-glucan exposure on the 

cell surface of S. cerevisiae, K. lactis and P. pastoris. In contrast, Sz. pombe cells 

showed a slight reduction in mean fluorescence after incubation at 65°C. 

In Fig. 37 A, fluorescence microscopy analyses show that β-glucan staining was 

observed in localized patches on the cell walls of untreated S. cerevisiae, K. lactis and 
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P. pastoris, such as birth and bud scars. Heat-treatment triggered an increase in 

fluorescence of cell walls of the three budding yeasts analyzed, whose entire cell walls 

became homogeneously stained. These results support earlier findings of Gantner et al. 

(2005), who demonstrated such a staining pattern for C. albicans and S. cerevisiae. 

Nonetheless, these observations are not valid for fission yeast. In the case of untreated 

Sz. pombe cells, a signal could be seen in the septum, where linear β-1,3-glucan is 

present in this species (Humbel et al., 2001). However, when this yeast was subjected to 

heating, fluorescence was not augmented and was detected only in punctuate regions. 

The microscopic examinations corroborate with the flow cytometric analyses (Fig. 37 

B). The lines depicting the heat-treated yeasts (green solid lines) show a shift to the 

right in comparison to the lines representing untreated yeasts (blue lines) in the 

histograms of S. cerevisiae, K. lactis and P. pastoris, but not Sz. pombe. As expected, no 

fluorescence was observed in cells stained with the isotype control antibody. Heat-

treated cells were also stained with the same irrelevant antibody, and also showed no 

detectable fluorescence (data not shown). Fig. 37 C shows that the greatest increase in 

mean fluorescence of heat-treated cells in comparison to untreated cells was observed 

for S. cerevisiae (112.62 vs. 26.06), followed by K. lactis (476.59 vs. 175.96) and P. 

pastoris (660.86 vs. 283.33). The opposite effect was observed for Sz. pombe (36.67 vs. 

43.28). 

In sum, heat-treatment strongly enhances β-glucan exposure on the cell wall of 

budding yeasts, but not of fission yeast.  

 

 

6.1. Production of reactive oxygen species in whole blood after incubation with 

yeasts 

The effect of heat-treatment on β-glucan exposure and its consequences were further  

analyzed. Gantner et al. (2005) showed that β-glucan sensing is a prerequisite for 

production of reactive oxygen species (ROS) by phagocytic cells in response to fungal 

stimuli. In this regard, yeasts were subjected to heating (65°C, 1 h) or left untreated and 

the production of ROS in whole blood was determined by means of a luminol 

chemiluminescence assay. 

Generation of ROS by phagocytes is a significant aspect in the response against 

fungi. ROS production by macrophages in response to the yeast form of C. albicans and 

S. cerevisiae zymosan (a preparation containing β-glucans, mannans, mannoproteins 
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and chitin) has been demonstrated (Gantner et al., 2005; Wellington et al., 2009). 

However, generation of ROS in whole blood after incubation with yeasts has not been 

described. The choice for this system was based on the fact that incubation of yeasts 

with IC-21 macrophages did not result in any detectable luminescence (data not shown). 

Furthermore, whole blood chemiluminescence exhibits some advantage in comparison 

to chemiluminescensce assays performed on isolated PBMCs, as preactivation of 

leukocytes as a consequence of the purification process is avoided. Additionally, whole 

blood chemiluminescensce assays permit evaluation of cellular responses in a 

physiologic environment that more closely resembles the in vivo situation in comparison 

to isolated cells (Kopprasch et al., 1996). 

 In this experiment, untreated and heat-treated S. cerevisiae, Sz. pombe, K. lactis, 

and P. pastoris were compared with respect to their ability to stimulate ROS production 

by blood leukocytes. Yeasts were exponentially grown in SC medium. Subsequently, 

2.5×105 yeast cells were added in each well to 10-fold diluted heparinised fresh venous 

blood previously mixed with luminol. In the blank samples, luminol was substituted for 

DMSO, and in the resting samples, yeasts were replaced by the equivalent volume of 

buffer. A series of blood dilutions was tested in this assay (undiluted, 10-, 50-, 100-, and 

500-fold), and the 10-fold dilution has proven to be the most appropriate experimental 

set-up (data not shown). The final volume was 100 μl/well. Chemiluminescence was 

continuously monitored for 150 minutes at 37°C, with 1 s integration time. 

As seen in Fig. 38 (A-C), chemiluminescensce was detectable approximately 6 

minutes after incubation with S. cerevisiae, K. lactis, and P. pastoris, reaching a 

maximum after ~30 minutes and declining thereafter. Chemiluminescence was higher 

when these three yeast species had been previously incubated at 65°C. Interestingly, in 

the case of fission yeast, untreated yeasts caused a higher ROS production by blood 

phagocytic cells then heat-treated cells (Fig. 38 D). Also, chemiluminescence signals 

occurred after approximately 20 minutes of incubation, and reached a maximum after 

45 minutes for the untreated yeasts, whereas incubation with heat-treated yeasts showed 

a different pattern, reaching a plateau after 64 minutes. Slower kinetics of Sz. pombe 

uptake by phagocytic cells was demonstrated in other experiments with human and 

murine phagocytic cells in this work, and might be the cause of the delay in ROS 

production observed. In contrast to the other yeasts examined, ROS production by blood 

phagocytic cells after incubation with heat-treated Sz. pombe was considerably lower 

than with untreated yeasts. 
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When either luminol or yeast was absent (blank or resting samples), no 

significant chemiluminescence was detected (Fig. 38). With respect to the blank 

samples, both untreated and heat-treated yeasts incubated with blood and DMSO 

resulted in the same chemiluminescence pattern (data not shown). 
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D 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 38. ROS production detected by chemiluminescence kinetics of whole blood 
depends on the extent of β-glucan exposure on yeast cell surface. Whole blood was 
incubated with heat-treated, untreated, or no yeast, in the presence of luminol. Blood 
samples incubated with yeasts and DMSO served as blank. Blood samples incubated 
with luminol without yeasts were referred to as resting. Chemiluminescence was 
recorded at 37°C over a 150-minute interval. RLU = relative luminescence units. 
Results represent mean values of triplicate determinations. 
 
 
All yeast genera analyzed are able to stimulate phagocytic cells in the blood to produce 

reactive oxygen species, a host’s defence mechanism of the innate immunity. The 

results observed in these chemiluminescence studies are in agreement with the findings 

reported for flow cytometry and fluorescence microscopy, i.e., budding yeasts expose 

more β-glucan on their cell surface after being subjected to heating, whereas fission 

yeast seems somehow to react in a different way. 

Altogether, these findings might help planning future experiments involving 

yeasts as delivery systems. The choice of a certain yeast species for specific purposes 

should take into account the manner this microorganism behaves after being subjected 

to a particular treatment. 

 

 

7. Stimulation of CD8+ transgenic cells from OT-I mice after vaccination 

It could be demonstrated that yeast is an effective vehicle for delivery of cytosolic 

recombinant antigens (Results, section 5). To investigate whether yeast delivery of 

Ovacyt would stimulate antigen-specific CD8+ T cells in an in vivo system, the S. 

cerevisiae W303-1a strain was used as protein carrier in a preliminar experiment with 

OT-I transgenic mice. This S. cerevisiae strain has been employed in various studies 

using whole yeasts in vaccination protocols (Riemann et al., 2007; Lu et al., 2004; 
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Wansley et al., 2008). Furthermore, this strain was also able to induce DC maturation 

and activation, as previously demonstrated (Results, section 1). 

 Experiments with OT-I mice were performed in collaboration with Elisabeth 

Kenngott at the Medical Clinic for Rheumatology and Clinical Immunology (Charité, 

Berlin). OT-I mice express high levels of a transgenic T-cell receptor in CD8+ T 

lymphocytes which recognizes OVA257-264 (SIINFEKL peptide) in MHC class I H-2Kb 

molecules (Hogquist et al., 1994). 

OT-I mice were given recombinant S. cerevisiae expressing Ovacyt, S. cerevisiae 

carrying an empty vector, or PBS, three times, s.c., with 1-week interval between each 

immunization. One week after the last immunization, spleens and inguinal lymph nodes 

were harvested, and single cell suspensions (2×106 cells/ml) were restimulated with 10 

μg/ml PMA/ionomycin for 4 h, or SIINFEKL peptide for 6 h (spleen cells only). PMA 

and ionomycin are frequently used in immunological approaches to stimulate cytokine 

production in a non-specific manner (Picker et al., 1995). Production of IFN-γ by 

activated lymphocytes was assessed by flow cytometry (Fig. 39). 

 
 
 

 

 

 

 

 

 
Fig. 39. Schematic representation of vaccination regimes and subsequent analysis of 
specific CD8+ T cell immune response in spleen and lymph nodes. Yeasts expressing 
recombinant Ovacyt or carrying an empty vector (5×107 cells in 100 μl PBS), or 100 μl 
PBS were injected three times s.c. in OT-I mice, with one-week intervals between 
doses. One week after the last immunization, spleens and inguinal lymph nodes were 
removed, and single-cell suspensions were restimulated with SINFEKL or 
PMA/ionomycin before being stained for CD8, Vβ5 and IFN-γ. 
 
 
Fig. 40 A shows the production of IFN-γ by Ova-specific CD8+ T cells after spleen cells 

had been incubated with 10 μg/ml SIINFEKL peptide. Mice receiving S. 

cerevisiae/Ovacyt showed an increased frequency of IFN-γ+-cells in comparison to the 

other groups (mean value = 3.34%). CD8+Vβ5+ lymphocytes isolated from spleen of 

mice receiving S. cerevisiae harbouring the empty vector also showed a certain degree 

5×107 yeasts/Ovacyt s.c. 
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of background activation (mean value of IFN-γ+ cells = 2.4%). Specific cells from mice 

receiving PBS showed a minimal IFN-γ production (mean value = 1.48%). When spleen 

cells were stimulated with PMA/ionomycyn, the frequency of IFN-γ-producing CD8+ 

cells increased substantially, but this increase was observed for all groups (Fig. 40 B). 

Mean values of the frequencies of CD8+ IFN-γ+ cells were slightly higher in the group 

receiving S. cerevisiae/Ovacyt than S. cerevisiae/empty vector (11.29% vs. 10.32%, 

respectively), whereas specific cells from mice receiving PBS only showed a frequency 

of 7.19% cells expressing IFN-γ. 

Due to the low number of cells recovered after extraction of inguinal lymph 

nodes, cell suspensions were only stimulated with PMA/ionomycin. However, no 

significant increase in the frequency of specific cells producing IFN-γ could be seen 

(data not shown). 
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Fig. 40. OT-I transgenic mice were immunized with S.cerevisiae/Ovacyt, S. 
cerevisiae/empty vector, or PBS. Then, spleens were harvested 7 days postvaccination 
and the percentage of transgenic CD8+ T cells producing IFN-γ after ex vivo 
restimulation with 10 μg/ml of SIINFEKL peptide (A) or PMA/ionomycin (B) was 
determined by flow cytometry. 
 
 
Although the differences between the Ovacyt-receiving group and the control groups 

were not statistically significant, there was a tendency for enhanced IFN-γ production 

by spleen lymphocytes from Ovacyt-vaccinated mice, especially when the cells were 

restimulated with the Ova peptide. This indicates that better results might be obtained 

by optimizing the immunization protocol. 
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V. DISCUSSION 

 

 

Vaccination approaches aiming at inducing robust cell-mediated immune responses 

have been the focus of intense research. Strategies employing yeast as antigen carrier 

have been established in the past decade. A number of in vitro studies, as well as 

preclinical and clinical trials attest the intrinsic adjuvant properties of yeasts (Franzusoff 

et al., 2005; Ardiani et al., 2010). However so far, the overwhelming majority of these 

studies are restricted to the conventional yeast S. cerevisiae. 

 Hitherto, there is no study comparing the effectiveness of different yeast genera 

as vaccine vehicles. Although such comparison is sometimes difficult due to the 

difference in expression levels of the recombinant protein among the yeasts examined, 

testing the applicability of yeasts species alternative to S. cerevisiae in the development 

of novel antigen delivery systems could be of relevance. 

 The use of yeasts as antigen delivery system provides the following benefits: (i) 

yeasts can be engineered to express one or more recombinant proteins, and correctly 

perform post-translational modifications; (ii) cost-effectivenes of the system, also in 

large-scale productions; (iii) yeast cell wall components per se activate dendritic cells 

and amplify signals required for T cell activation; (iv) antigen presentation occurs via 

both MHC class I and MHC class II pathways, eliciting antigen-specific T cell 

responses; (v) absence of yeast-induced neutralizing immune responses, enabling 

repeated administration; and (vi) heat-killed and live yeasts trigger similar protective 

immunity, reducing the risks associated with the injection of live yeasts in 

immunocompromised individuals (Ardiani et al., 2010). 

 A set of “non-conventional”, biotechnologically relevant yeast genera has been 

utilized in the past decades as alternative expression host to S. cerevisiae. Yeast species 

such as K. lactis, P. pastoris, and Sz. pombe have proven to be efficient cell factories 

and have offered some advantages over baker’s yeast, for instance with respect to 

protein glycosylation. Hyperglycosylation and addition of allergenic α-1,3-linked 

mannose residues to N-glycans have been repeatedly reported in S. cerevisiae (Porro et 

al., 2005; Varki et al., 2009). This drawback, together with other limitations, such as 

plasmid instability, can be overcome in the majority of cases with the use of the 

previously mentioned alternative yeasts. 

http://www.ncbi.nlm.nih.gov/books/n/glyco2/glossary/def-item/glossary.gl1-d132/
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 Yeast has been shown to be taken up by phagocytic cells through recognition of 

PAMPs, such as mannan and β-glucan, by pattern recognition receptors, such as Dectin-

1 and the mannose receptor (Netea et al, 2006; Brown, 2011; Romani, 2011). After 

receptor-mediated phagocytosis, yeasts are killed and processed for antigen presentation 

(Gildea et al., 2001; Newman and Holly, 2001; Syme et al., 2002; Heintel et al., 2003). 

Besides, yeasts cause dendritic cells to undergo maturation (Buentke et al., 2001; 

Stubbs et al., 2001). For all these reasons, yeasts are appropriate vectors for delivering 

vaccine antigens. 

 The aim of this work was to compare four yeast strains – S. cerevisiae, Sz. 

pombe, K. lactis, and P. pastoris – as antigen delivery vector for activating T 

lymphocytes, as well as the influence of the subcellular localization of the recombinant 

protein on this activation. For this purpose, the interaction of different yeast strains with 

phagocytes was analyzed, as well as yeast-induced DC maturation. Subsequently, the 

genes coding for the model antigen Ovalbumin or the clinically relevant HCMV protein 

pp65 were cloned in expression plasmids specific for each yeast species and 

recombinantly expressed. In the case of full-length pp65, only intracellular expression 

was achieved (except for K. lactis), whereas Ova could be secreted, intracellularly 

expressed (Ovacyt), or cell-wall anchored (Ovacyt/Sed1p). This latter variant was only 

observed in S. cerevisiae and P. pastoris. Pp65-harboring yeasts, as well as S. cerevisiae 

assembling chimeric pp65 VLP, were analyzed in an ex vivo whole blood assay for their 

ability to stimulate pp65-specific CD4+ and CD8+ T lymphocytes from HCMV-

seropositive donors. Yeasts carrying the plasmid-encoded Ova variants were analyzed 

in vitro by means of antigen-presentation assays using Ova-specific T lymphocytes. 

Finally, a preliminary in vivo experiment was performed in order to confirm the 

feasibility of the system. 

 

 

1. Yeasts induce DC maturation and cytokine secretion 

In order to efficiently stimulate T cells, DCs have to be in a mature state. Mature DCs in 

lymphoid tissues are the most powerful stimulators of naïve T cells. Maturation implies 

both functional and phenotypic changes. After antigen uptake and exposure to 

inflammatory stimuli, immature DCs in peripheral tissues are induced to migrate into 

the regional lymph nodes where, as mature cells, they express surface molecules that 

further activate T cells (Janeway et al., 2001; Lechmann et al., 2002). 

http://www.ncbi.nlm.nih.gov/books/n/imm/A2528/def-item/A3278/
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DC maturation and activation can be elicited by diverse stimuli, such as 

microbial components, cytokines and costimulatory molecules. Maturation is 

accompanied by increased expression of adhesion, costimulatory and MHC molecules, 

altered expression of chemokine receptors (such as CCR7), production of some specific 

cytokines, such as IL-lβ and IL-12, and decreased capability of antigen uptake. In the 

lymph nodes, mature DCs present antigens to naïve T cells and activate these 

lymphocytes, thus connecting innate and adaptive immunity (Verhasselt et al., 1997; 

Akira et al., 2001; Abbas et al., 2007). 

DCs are able to ingest a wide variety of antigens and efficiently process them in 

context of MHC class I and II molecules for presentation to T cells. Additionally, DCs 

express a set of costimulatory molecules that stimulate naïve T cells, and dictate the 

differentiation of naive lymphocytes into distinct classes of effectors, controlling the 

quality of the T cell response. These antigen-specific, adaptive responses play a critical 

role in combating infections and tumors (Mellman et al., 2001; Heath and Carbone, 

2001). DCs can also efficiently process and present internalized, exogenous antigens via 

MHC class I, in a process known as “cross-presentation”. Due to this remarkable 

ability, many efforts have been made in the vaccination field to target and activate DCs, 

thus providing the potential to generate both CD4+ and CD8+ immune responses. 

In this work, it could be shown that incubation of monocyte-derived human DCs 

with different yeast genera resulted in increased expression of the DC surface markers 

CD83, CD80, CD86, CD54, CD58, CD40, MHC classes I and II, and led to secretion  

of GM-CSF, IFN-α, IFN-β, IFN-γ, IL-1α2, IL-1β, IL-6, IL-8, IL-10, IL-12p70, IL-15, 

IL-23, IL-27, and TNF-α. These observations indicate that all yeasts examined are able 

to induce DC maturation and activation. Importantly, these data demonstrate that the 

yeast vehicle per se is able to augment all three signals required for T cell activation, 

since increased expression of MHC molecules (involved in signal 1), costimulatory 

molecules (which provide signal 2) and cytokines (which deliver signal 3) were 

observed. 

With respect to DC maturation, upregulation of the expression of CD83, MHC 

class I, MHC class II, CD80, CD86, CD40, CD54, and CD58 was observed after 

incubation of DCs with all yeast genera and the HCMV lysate, as well LPS, which was 

used as positive control since its effects on DC maturation have been repeatedly 

demonstrated (Bernstein et al., 2008; Huang et al., 2009). However, expression of 

CCR7 after contact with yeasts or HCMV lysate, as well as with the classical stimulator 
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LPS, did not significantly increase, in contrast to all other surface markers analyzed. A 

possible explanation for this finding might be the presence of IFN-β and IFN-γ (which 

were released into the culture medium by DCs), as they have been shown to inhibit the 

expression of this homing receptor (Yen et al., 2010). 

LPS, a component of Gram-negative bacterial outer membranes, is detected by 

TLR4 (Pålsson-McDermott and O'Neill, 2004). Maturation and cytokine production by 

DCs in response to LPS has been described. For instance, high-level secretion of IL-6, 

IL-8, IL-12 and TNF-α, and upregulation of MHC classes I and II, CD40, CD80, CD86, 

CD54 and CD58 have been shown (Sallusto et al., 1995; Verhasselt et al., 1997). In the 

present work, LPS induced higher expression levels of all surface markers and eight out 

of fourteen cytokines analyzed compared to yeast genera and the viral stimulus. 

Nevertheless, it has to be considered that yeasts and LPS, as well as viruses, stimulate 

and mature DCs through different mechanisms, i.e. different pathways are activated by 

distinct stimuli, leading to modulation of a particular set of genes (Huang et al., 2001). 

With respect to immune response against viruses, DCs generally become 

activated after antigen uptake and synthesize a number of cytokines, such as IFN-α, IL-

12 and IL-15 (Lambotin et al., 2010). However, viral infections can either stimulate or 

repress the maturation and functional activation of DCs (Moutaftsi et al., 2002). 

Responses to HCMV seem to depend on the DC subset. For example, in one study, 

HCMV did not lead to maturation of monocyte-derived DCs, as the expression of MHC 

class I, CD40 and CD80 diminished after HCMV infection (Moutaftsi et al., 2002). In 

contrast, another DC type (blood CD11c+ DC) showed an elevated expression of MHC 

molecules and CD83, as well as IL-6, IL-10 and type I IFN secretion following HCMV 

exposure (Kvale et al., 2006). In the present study, upregulation of maturation markers 

and cytokine secretion could be detected following incubation of monocyte-derived 

DCs with the viral stimulus. However, since the stimulus used here consisted of a lysate 

of HCMV-infected fibroblasts, viral protein aggregates, instead of intact viral particles, 

might have contributed to the maturation and activation profile observed. 

Yeast-dependent upregulation of surface molecules indicative of DC maturation 

has been described for both non-pathogenic and opportunistic yeast species, such as S. 

cerevisiae, C. albicans and M. furfur. Cytokine secretion by DCs in response to fungi 

has been shown to be a more complex task, varying from one fungal stimulus to another 

(d’Ostiani et al., 2000; Buentke et al., 2001; Remondo et al., 2009). In the present 

study, upregulation of DC surface markers and cytokine secretion were, as expected, 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22O'Neill%20LA%22%5BAuthor%5D
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variable among yeast genera. This observation might result from the particular 

composition of the cell wall of each yeast. This variability in DC responses might 

explain why some yeast species have been shown to induce TH1-biased responses, such 

as S. cerevisiae, whereas others, such as M. furfur, have been reported to favour the 

production of TH2-type cytokines (Buentke et al., 2001; Remondo et al, 2009). Also, 

murine DCs incubated with C. albicans yeasts have been shown to secrete IL-12 and 

prime TH1 cells, whereas C. albicans hyphae inhibited TH1 priming and led to a TH2 

response through induction of IL-4 production (d’Ostiani et al., 2000). One important 

finding of the present work was that all yeast genera analyzed led to release of IFN-γ 

and IL-12 by DCs, cytokines that drive TH1 differentiation. Such outcome is desirable 

when considering the use of yeasts as vehicles to induce CTL responses. Nonetheless, it 

is not possible to affirm whether this scenario would also occur in vivo, since the 

microenvironment or cytokine milieu in the initial DC location in peripheral tissues may 

affect the antigen presentation in secondary lymphoid organs and T cell differentiation 

into the distinct TH phenotypes (Liu et al., 1998). 

The production of many pro-inflammatory cytokines has been linked to the 

NFκB signaling pathway. Recognition of β-glucans by Dectin-1 results in signaling 

through Syk kinase and Raf-1 pathways, inducing activation of NFκB and subsequently 

production of cytokines including IL-10, IL-1β, IL-6, IL-23, and GM-CSF (Rogers et 

al., 2005; Brown, 2011). TLRs detect several mannose-containing structures and also 

other components of the yeast cell wall yet to be determined. Nonetheless, the role of 

each TLR in immunity against fungi still remains to be determined, due to the large 

amount of contradictory literature for almost every TLR and fungus (Brown, 2011). 

Stimulation of TLRs also triggers the activation of signaling pathways and leads, for 

example, to the production of TNF-α, IL-8 and IL-12 (as a result from NFκB activation 

via MyD88-Mal) and type I IFNs (Netea et al., 2008; Romani, 2011). Dectin-1 has been 

shown to augment specific TLR-mediated signaling. As a consequence, production of 

TNF-α is enhanced due to a synergistic effect between Dectin-1 and TLR2 (Gantner et 

al., 2003). In contrast, these collaborative responses mediated by Dectin-1 and TLR2 

lead to down-regulation of IL-12 expression in comparison to the levels obtained only 

by TLR ligation (Dennehy et al., 2009). 

The signaling pathway activated by MR has not been completely elucidated 

since no classical signaling motifs are present in the cytoplasmic tail of this receptor 

(Willment and Brown, 2007). However, MR has also been demonstrated to elicit NFκB 
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activation and consequent cytokine production, including IL-12, IL-1β, IL-6, IL-10, 

GM-CSF, and TNF (Pietrella et al., 2005; Brown, 2011). 

 The recognition pathway of chitin has not been intensively studied, as well as its 

function in fungal infection (Netea et al., 2008). No study showing the specific role of 

chitin in DC maturation caused by entire yeasts or hyphae could be found. Nevertheless, 

it has been suggested that the signalling pathways involved after chitin recognition 

includes NF-κB (via TLR2 and Dectin-1) for TNF production as well as Syk and MR 

for IL-10 production (via Dectin-1-dependent and TLR2-dependent and -independent 

pathways; Da Silva et al., 2009). 

The set of cytokines expressed by human DCs is based on the condition of 

activation and the cell subset (de Saint-Vis et al., 1998). Distinct DC subsets influence 

the initiation of adaptive antifungal responses. TH17 and TH2 cell responses towards 

fungi are initiated by inflammatory DCs, while tolerogenic DCs stimulate TH1 and 

regulatory T cell responses. Prevailing TH1 cell responses are associated with protective 

antifungal immunity and efficient vaccines against fungal infections. TH1 cell activation 

can result from DC responses to a combination of signals provided by fungi via CLRs 

and TLRs (Romani, 2011). 

Some studies analyzing the immune response against isolated yeast components 

have been conducted. Huang et al. (2009) showed that both particulate and soluble S. 

cerevisiae-derived β-glucans led to the production of high levels of TNF-α by DCs, 

while IL-12p70 levels were undetectable. Sheng et al. (2006) could demonstrate that 

mannan from S. cerevisiae induced maturation of murine DCs and cytokine production 

(including IL-6, IL-1β, GM-CSF and TNF-α). Production of IL-12, TNF-α and IFN-γ 

by murine spleen cells in response to chitin has been demonstrated (Shibata et al., 

1997). Another investigation reported IL-10 and TNF-α secretion by murine 

macrophages after treatment with chitin particles (Da Silva et al., 2009). Moreover, this 

latter study showed that the effects observed depend on chitin size, since distinct 

combinations of receptors (such as TLR2, Dectin-1, and MR) and, consequently, 

different signaling pathways, were activated by different-sized chitin particles. 

However, it is complicated to draw conclusions about the role of each cell wall 

component in DC stimulation since, for a given cytokine, additive, antagonistic, and 

irrelevant effects can be observed when the combination of all yeast PAMPs is 

compared to the contribution of each individual PAMP (Huang et al., 2009). Moreover, 

it is tempting to speculate that the extent of DC activation caused by each stimulus is 
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strongly linked to the DC receptors involved in recognition of the referred antigen. In 

this way, since the composition of the yeast cell wall greatly varies among the yeast 

genera, the participation of a given receptor may also differ from one case to another. 

The findings reported in this work indicate that all the yeast genera analyzed 

induce DC activation responses that in vivo would most probably lead to migration to 

secondary lymphoid organs and interaction with T lymphocytes for antigen 

presentation. Moreover, in an in vivo situation, a large spectrum of fungal PAMPs 

would be displayed in variable concentrations, leading to stimulation of several host 

PRRs. In this way, combinations of diverse ligands would result in complex patterns of 

inflammatory responses. The type of receptors stimulated in response to fungi and the 

extent of this stimulation strongly influence the nature of the immune responses (Levitz, 

2010). In sum, the results of this work support the usage of yeasts as promising delivery 

system and suggest that different yeasts might lead to distinct responses. Furthermore, 

although each PRR alone stimulates the production of a particular pattern of cytokines 

(among other responses), the mechanisms by which all this is integrated remain to be 

determined (Brown, 2011). 

 

 

2. Staining of yeast cell wall components 

Stimulation of T lymphocytes in response to fungi is credited to fungal cell wall 

components (Heintel et al., 2003). Moreover, several studies have demonstrated the 

immunomodulatory effects of mannan and β-glucan (Suzuki et al., 1989; Toda et al., 

1997). Particulate yeast β-glucan has been successfully used to stimulate robust CTL 

responses for combating tumors in animal models (Li et al., 2010; Qi et al., 2011). Li et 

al. (2010) demonstrated that yeast-derived, particulate whole glucan particles led to 

production of IL-12 and IFN-γ in the tumor environment and elicited antitumor TH1 

responses. Clinical trials combining β-glucan with antitumor therapy have also been 

conducted (ClinicalTrials.gov ID: NCT005455459). Alternatively, purified glucan 

particles from S. cerevisiae were used as vaccine delivery system, eliciting T cell 

responses, production of IFN-γ and IL-17 and secretion of antigen-specific antibodies 

(Huang et al., 2010). 

Strategies exploiting yeast mannosylation of antigens for augmented 

immunogenicity have been aimed (Lam et al., 2005; Luong et al., 2007). Antigen 

mannosylation by yeast promoted increased antigen-specific CD4+ and CD8+ T cell-
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mediated immune responses (Lam et al., 2005). Alternatively, mannan coating of a 

liposome preparation containing a DNA vaccine led to the activation of TH1 cells (Toda 

et al., 1997). 

Little has been investigated about the adjuvant effects of chitin. This component 

of the yeast cell wall has not been a focus of intense research, maybe due to the fact that 

it is a minor constituent of the fungal cell wall and has been, in some cases, not clearly 

identified in the cell wall of some yeast species (Arellano et al., 2000). However, chitin 

has been demonstrated to enhance antigen-specific T cell proliferation and to possess 

adjuvant properties in TH1, TH2 and TH17 immune responses, as well as in IgE 

production (Da Silva et al., 2010). 

Recently, S. cerevisiae has been employed as a complex antigen vaccine to 

induce cross-protection against systemic aspergillosis and coccidioidomycosis (Capilla 

et al., 2009; Stevens et al., 2011; Liu et al., 2011). Subcutaneous administration of heat-

killed yeast protected mice against lethal systemic coccidioidomycosis challenge 

(Capilla et al., 2009). This protection was conferred by adaptive immune responses, 

which were mainly mediated by CD8+ T cells and also involved production of IFN-γ, 

IL-6 and IL-17 (Liu et al., 2011). 

 Secretion and glycosylation of proteins, as well as the cell wall composition, 

differ among yeast genera. The Golgi apparatus of S. cerevisiae diverges significantly 

from those of Sz. pombe and P. pastoris, which resemble more closely the ones of 

higher eukaryotes. For instance, many S. cerevisiae glycans bear terminal α-1,3-

mannose, whereas some mannose structures contain terminal α-galactose in Sz. pombe, 

α-1,2-linked mannose in P. pastoris and N-acetylglucosamine in K. lactis (Glick, 1996; 

Varki et al., 2009). Treatment of various fungal particles with Con A-FITC followed by 

flow cytometry or microscopic analyses does not allow distinction of these diverse 

structures. 

Luong et al. (2007) showed that immunogenicity of an antigen recombinantly 

expressed by P. pastoris was enhanced by O-linked mannosylation and decreased by N-

linked mannosylation, but the mechanisms by which this occurs are still unclear. An 

interesting aspect is that N-linked glycans in Pichia have a high-mannose configuration, 

whereas O-linked glycans are short (generally 2-3 mannose residues; Trimble et al., 

2004; Luong et al., 2007). This fact might explain the observation that the S. cerevisiae 

BY4742 cell-wall mutants caused, in general, higher upregulation of DC surface 

markers and cytokine secretion in comparison to their wild-type counterpart. Since 
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Mnn11p is thought to function in outer chain elongation by adding α-1,6-mannose, the 

Δmnn11 mutant produces proteins with shortened, truncated mannan backbones (Dean, 

1999). Yeasts lacking functional OST3 gene have been described to underglycosylate 

soluble and membrane bound glycoproteins (Karaoglu et al., 1995). In this way, not 

only the type, but also the length of glycans seems to influence the host’s immune 

responses. 

Different β-glucan compositions also lead to distinct biological effects, as seen 

for zymosan, which contains 12-14% β-glucan, and purified whole glucan particles, 

composed of > 85% β-glucan (Li et al., 2010). Yeasts exposing more β-glucan should 

lead to increased Dectin-1-driven signaling. Mannan and α-1,3-glucan prevent or 

decrease β-glucan recognition via Dectin-1 (Rappleye et al., 2007; Netea et al., 2008). 

Therefore, it would be expected that yeasts bearing mutations in genes that result in 

reduction of mannan would promote different responses than yeasts containing, for 

instance, a dense mannan layer and α-1,3-glucan, such as Sz. pombe. With respect to 

chitin, it has been shown that this polymer associates with bud necks at the end of yeast 

cell division and become component of bud scars (Rodrigues et al., 2008). This fact 

might explain why chitin was poorly detected in fission yeast. The much higher 

percentage of cells positive for chitin in S. cerevisiae cell wall mutants compared to the 

parental strain might result from a compensatory mechanism to maintain cell wall 

stability, as hypothesized by Uccelletti et al. (2006). They observed increased chitin 

amounts in K. lactis mutants with reduced mannoprotein contents compared to wild-

type. 

It has to be pointed out that the yeast cell wall is a highly dynamic structure and, 

therefore, antigenically inconstant. Factors such as strain, age of cultured cells and type 

of growth medium have been described to exert influence on yeast antigenicity, i.e. on 

the display of epitopes on the cell suface (reviewed by Nelson et al., 1991). Thus, 

fluorescence detection of mannan and glucan as performed in this work may diverge 

from one experiment to another, also when attempts to keep the same experimental 

conditions are made. The different patterns of cell wall staining observed here are in 

accordance with literature data, which show that massive differences can be observed 

when the cell walls of different fungal species and also strains within a species are 

compared (Levitz et al., 2010). 

 To date, distinct molecules have been identified as receptors for mannose or β-

glucans on APCs, but information about how each receptor discriminates its ligands is 
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still missing (Qi et al., 2011). Additionally, and as stated before, glycan structures vary 

from one yeast strain to another and the simultaneous presence of several yeast PAMPs 

as in whole yeasts may lead to different responses than those observed against each 

particular PAMP separately (Huang et al., 2009). In this work, staining of yeast cell 

wall components was performed in an attempt to determine if there was a causal 

relation between the yeast cell wall and DC maturation or activation. The results 

suggest that no direct correlation could be established between the mannan, β-1,3-

glucan and chitin contents on the surface of yeast cells and the degree of stimulation of 

human DCs. This fact was not surprising by virtue of the dynamic nature of yeast cell 

walls and the consequent fluctuation in glycan contents. 

 

 

3. Interaction patterns between yeasts and mammalian phagocytic cells 

Immune recognition of fungal particles takes part mostly at the cell wall level. While 

the yeast cell wall consists of an interconnected structure of polysaccharides, 

glycoproteins and some glycolipids, mainly carbohydrate structures are involved in the 

interaction between yeast and mammalian host cells. 

The findings reported in this study show that the interactions between human 

DCs and the biotechnologically relevant yeasts S. cerevisiae, Sz. pombe, K. lactis and P. 

pastoris are mediated by both mannan and glucan. Specific blocking of MR and Dectin-

1 in DCs was able to impair, to a greater or a lesser extent, host cell binding of all yeast 

species tested. In general, yeast cell wall consists of an outer layer of mannosylated 

proteins and an inner layer of β-glucans and chitin. However, β-glucans may be 

permanently exposed at the surface in specific regions like bud and birth scars, which is 

sufficient for Dectin-1 sensing (Gantner et al., 2005). Specific blockage of Dectin-1 led 

to a greater reduction in yeast binding compared to MR blockage in three out of four 

species tested (S. cerevisiae, Sz. pombe, and P. pastoris). Interestingly, and in 

agreement with its low phylogenetic relationship to other yeast genera and its notable 

difference in cell wall architecture (Russell and Nurse, 1986), uptake of Sz. pombe by 

DCs was almost completely abrogated after anti-Dectin-1 treatment. The fission yeast 

β-D-glucan repertoire is basically composed of β-1,6-branched β-1,3- and β-1,6-

glucans, while linear β-1,3-glucan is absent in the cell wall and exclusively found in the 

primary septum (Humbel et al., 2001). However, since Dectin-1 recognizes both β-1,3- 

and β-1,6-glucans (Brown and Gordon, 2001), the lack of linear β-1,3-glucan structures 
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in Sz. pombe does obviously not confer any advantage for this microorganism in terms 

of being less recognizable by Dectin-1. With respect to MR, blocking of this receptor 

does not mean that yeast mannan is no longer recognized, since alternative mannose 

receptors are present on the surface of DCs, such as DC-SIGN (Cambi et al., 2003). 

As observed for human DCs, the kinetic pattern of Sz. pombe internalization was 

different from the other three yeast species analyzed. S. cerevisiae, K. lactis and P. 

pastoris are round-shaped yeasts, in contrast to the rod-like shape of fission yeast. It has 

been demonstrated that phagocytosis depends on both particle size and shape, and 

particles requiring only gradual actin ring expansion are more efficiently phagocytosed 

(Champion and Mitragotri, 2006). Since Sz. pombe was taken up more slowly, possibly 

the morphology of fission yeast does not favour internalization in such a rapid manner 

as for the other three yeast species analyzed. 

Since IC-21 mouse macrophages do not express the mannose receptor, only the 

effect of Dectin-1 on yeast uptake was analyzed in this work. Lack of MR in some 

murine macrophage cell lines, such as J774 and RAW264.7, as well as resident 

peritoneal mouse macrophages has been described (Taylor et al., 2002; Martinez-

Pomares et al., 2003; Lin et al., 2010). Incubation of IC-21 macrophages with anti-

Dectin-1 diminished yeast uptake, indicating that recognition of yeasts by IC-21 cells 

involves Dectin-1. This interaction was specific, since addition of an isotype control 

antibody to the cells led to similar results than those for untreated cells. The differences 

among yeast genera observed after Dectin-1 blocking might reflect the amount of 

exposed β-glucan on cell walls of each genus. 

 Uptake of S. cerevisiae and Sz. pombe in whole blood has been analyzed 

(Breinig et al., 2003), with no significant differences among both yeasts. However, 

yeasts are avidly internalized in whole blood by a great sort of phagocytic cells, 

including neutrophils and monocytes, so that the different systems cannot be directly 

compared. 

 An important characteristic of the mannose receptor is that it recycles to the cell 

surface after having released its ligand. Thus, ligands can be delivered in much larger 

amounts than the number of receptors, which provides an unlimited antigen 

accumulation capacity (Stahl et al., 1980; Sallusto et al., 1995). Antigens internalized 

by MR might, after receptor dissociation, be trafficked to lysosomes rich in MHC class 

II molecules (Tan et al., 1997; Keler et al., 2004). Moreover, it has been demonstrated 

that mannosylated peptides are more efficiently presented to antigen-specific T cells 
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than non-mannosylated proteins (Engering et al., 1997; Tan et al., 1997). In this way, 

MR targeting has become an attractive approach to increase vaccine efficacy (Keler et 

al., 2004). 

Dectin-1-mediated uptake has also been demonstrated to enhance antigen 

presentation via MHC class II and increase antigen-specific T cell activation, as well as 

cross-presentation (Xie et al., 2010; Weck et al., 2008). Other C-type lectin receptors on 

DCs, such as DC-SIGN, have also been targeted in order to improve antigen 

presentation (Adams et al., 2008) and consequently augment vaccine efficiency. 

Therefore, and according to the findings of this work, yeasts naturally target 

CLRs on phagocytes, including macrophages and DCs, so that vaccination approaches 

using whole yeasts are of significant potential. 

 

 

4. Expression and delivery of different Ova variants by yeasts 

One line of investigation in this work was to study the efficiency of different yeast 

genera as protein delivery vector, and to analyze the influence of subcellular antigen 

(Ova) localization on its processing and presentation in context of MHC class I to 

specific CD8+ T lymphocytes. An interesting question was to evaluate the antigen 

presentation efficiency of SIINFEKL epitope when Ova was located in different yeast 

compartments. In order to get basic information which system would be more 

advantageous in terms of vaccination approaches, recombinant S. cerevisiae, P. 

pastoris, Sz. pombe, and K. lactis expressing either full-length Ova, which is destined 

for secretion, and a truncated version of this protein, Ovacyt, which lacks the internal 

secretion signal and remains intracellular, were used. Given that yeast cell-surface 

display is an attractive tool in vaccine approaches, as surface-anchored epitopes are 

stably maintained due to the rigid, thick cell wall architecture (Kim et al., 2010), a cell-

wall anchoring system, in which Ovacyt is exposed on the yeast cell surface of S. 

cerevisiae and P. pastoris as Sed1p fusions was also tested. The presence of Ovacyt in 

the cell wall of K. lactis and Sz. pombe could not be detected (data not shown). No data 

was found in the literature showing the functionality of Sed1p from S. cerevisiae in K. 

lactis, and this type of anchoring system is likely to be inefficient in Sz. pombe due to its 

particular cell wall composition. K. lactis was transformed with another Sed1p-

containing fusion protein, but the presence of the recombinant protein on cell surface 

was again undetectable (data not shown), indicating that the foreign protein was not the 
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cause of the anchoring failure. Cell-surface display of a recombinant protein (α-

galactosidase) as α-agglutinin fusion has been described for K. lactis (Schreuder et al., 

1996b), but to date no other GPI-anchoring system has been reported for this species. 

Expression levels of cytosolic, secreted, and cell wall-anchored Ova varied 

drastically among the yeast genera tested in the present study. However, it is difficult to 

directly compare productivity between different yeast genera, since each expression 

system has its particularities and variations in plasmid copy number and stability, as 

well as codon bias index, influence recombinant protein levels (Buckholz and Gleeson, 

1991). 

In relation to the surface-display of Ova in S. cerevisiae and P. pastoris, it was 

observed that, although cell-surface expression could be detected by 

immunofluorescence and flow cytometric analyses, it was heterogeneously distributed 

over the cell population. This observation has been repeatedly reported for S. cerevisiae 

(Schreuder et al., 1993; Schreuder et al., 1996a; Breinig and Schmitt, 2002; Feldhaus et 

al., 2003, Kim et al., 2010). In one study, it was hypothesized that this staining pattern 

could be attributed to variations in plasmid copy number and expression levels among 

individual cells, or even to differences in cell physiology (Kim et al., 2010). Another 

reason for the observed uneven distribution of cell surface expressed proteins could be 

the polarized growth and varying morphology in yeast, so that mother cells do not 

express the fusion on their cell walls (Feldhaus et al., 2003). 

Fusion of Ovacyt to Gag led to the formation of abundant VLP which were 

homogeneous in size and shape, as confirmed by electron microscopy. Unfortunately, S. 

cerevisiae expressing Gag/Ovacyt VLP could not be analyzed in the T-cell activation 

assay so far. However, this very promising approach can be useful in future 

applications. Crisci et al. (2009) reported that VLP from rabbit hemorrhagic disease 

virus delivering the Ova SIINFEKL epitope led to the induction of specific cytotoxic 

and memory T cells responses. Moreover, mice immunized with these chimeric VLP 

could resolve infection caused by a recombinant vaccinia virus expressing Ova (Crisci 

et al. 2009). These findings reaffirm the potential of VLP in vaccination approaches. 

Activation of Ova-specific CD8+ T lymphocytes, determined by the amount of 

released IFN-γ in supernatants, was also very variable among the yeast genera used. The 

data from this work suggest that the most efficient antigen loading strategy by S. 

cerevisiae and P. pastoris is cytosolic and cell surface bound antigen delivery, 

respectively. In contrast, secreted Ova caused only a weak activation of lymphocytes in 
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S. cerevisiae and hardly any in P. pastoris. This latter finding was unanticipated, 

because in vitro activation of antigen-specific T cells after delivery of proteins secreted 

by gram-positive bacteria has been demonstrated (Ikonomidis et al., 1994; Pan et al., 

1995; Soussi et al., 2000; Loeffler et al., 2006). Furthermore, protein secretion most 

likely still occurs in macrophage phagolysosomes (as shown by western blotting after 

cultivating yeasts for 8 h in acetate-containing medium), indicating that the lack of 

lymphocyte activation observed in this case was not related to the absence of Ova in 

macrophages. A significant amount of protein, however, might be subsequently 

degraded in phagolysosomes and thus become unavailable for subsequent cytoplasmatic 

antigen processing steps. In contrast, antigen bound to the cell wall or antigen residing 

in the cytoplasm of the yeast cell might be more efficiently protected from degradation 

and thus be more efficiently cross-presented. 

Cell-surface displayed Ova caused lymphocyte activation only when P. pastoris 

cells were used in the assay, and it proved to be better than cytosolic Ova at the highest 

MOI tested in this species. This observation confirms data from Howland and Wittrup 

(2008), who compared the cross-presentation of an antigen derived from the human 

cytomegalovirus phosphoprotein pp65 displayed on the cell-surface (as Aga2-fusion) or 

intracellularly expressed in S. cerevisiae. They concluded that antigen exposed on the 

yeast external surface, more accessible to proteases, is more efficiently cross-presented 

than antigen trapped inside the yeast cell wall, after observing that cross-presentation of 

the epitope expressed in the yeast cytoplasm by DCs was half of that from surface-

anchored antigen, although the expression level of the recombinant peptide was much 

higher in the cytosol than on the cell surface. Thus, this seems also true for Pichia 

pastoris. However, the very weak T cell activation after cell-surface expression in S. 

cerevisiae, in particular compared to the intracellular derivative, is somehow surprising 

and is not consistent with the hypothesis of Howland and Wittrup. In this respect, both 

the slightly higher antigen amount in the cell wall of Pichia and the higher number of 

Ova-expressing cells within the population in comparison to S. cerevisiae could play a 

role. Alternatively, this observation may be explained by differences in the type of cell 

wall protein used for cell wall targeting. Whereas the Ovacyt/Sed1p fusion used in our 

study is covalently linked to and embedded in the cell wall, Howland and Wittrup 

anchored their antigen via disulfide bonds to the yeast cell surface allowing the antigen 

to be released under reducing conditions. 
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The differences in T cell activation seen in this study can be attributed to many 

distinct factors. For example, it might be related to the levels of recombinant protein 

expressed by each yeast clone. However, it is not clear whether higher levels of antigen 

in a specific compartment necessarily lead to an increase in antigen-specific 

lymphocytic activation. For example, S. cerevisiae expressed 1.4 fold more Ovacyt than 

P. pastoris, but the level of IFN-γ in the culture supernatant after lymphocytic activation 

was about 12.5 fold greater at MOI 7 in the case of the budding yeast, which suggests 

that other factors, like the particular composition of the yeast cell wall, might also be 

involved. MHC I-presentation of a certain CTL epitope in infected cells is affected, 

among other factors, by the degradation rate of the antigen in the cytoplasm and the 

efficiency with which the peptide is processed from the antigen by cellular proteases 

(Sijts et al., 1996). Ovalbumin contains a single disulphide bridge between Cys73 and 

Cys 120 (Nisbet et al., 1981), whose lack results in a less stable and more fluctuating 

protein conformation in comparison to intact Ova (Ishimaru et al., 2011). Given that in 

the Ovacyt coding sequence the fragment encoding amino acids 20-145 is missing, 

degradation of Ovacyt might be somehow easier, contributing to better antigen 

processing and presentation, which is in agreement with the results observed so far. This 

diminished stability of Ovacyt could also explain the lower levels quantified for this 

protein in comparison to secreted Ova after the same expression period. Lower Ovacyt 

levels in comparison to secreted Ova have been reported as being the result of its greater 

proteolysis and consequently shorter half-life (Shen and Rock, 2004; Rowe et al., 

2006). 

A multitude of studies showing the use of whole yeast as vaccine vehicles 

expressing recombinant proteins intracellularly (Stubbs et al., 2001; Lu et al., 2004; 

Barron et al., 2006; Haller et al., 2007; Riemann et al., 2007; Wansley et al., 2008; 

Remondo et al., 2009; Tanaka et al., 2011) or on the cell surface (Schreuder et al., 

1996a; Wadle et al., 2006; Zhu et al., 2006; Kim et al., 2010) have been reported. 

Nevertheless, almost all of them employ the conventional yeast S. cerevisiae as carrier 

system. In this study, all species tested proved to be appropriate for delivering 

intracellularly expressed Ova, although the efficiency of antigen presentation varied. 

Delivery of cell surface-anchored Ova was more effective in P. pastoris than in S. 

cerevisiae, and none of these yeasts showed to be efficient at delivering secreted Ova. 

Bacterial delivery has also been used in immunologic approaches. The 

microorganisms used for such strategies, including Listeria, Salmonella and Yersinia, 
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are generally attenuated or contain a suicide gene that promotes bacterial destruction 

(Husseiny and Hensel, 2005; Wiedig et al., 2005; Loeffler et al., 2006). However, 

application of bacteria into a mammal usually implies unpredictable side effects that can 

only be seriously examined in large clinical trials (Pálffy et al., 2006). The use of non-

pathogenic yeasts is therefore safer, and the benefits of using eukaryotic microbes, 

which can express a recombinant polypeptide in a manner that closely resembles the 

native protein, should also be taken into consideration. 

Until now there is no study comparing the efficiencies of different yeast genera 

routinely used in biotechnology as protein delivery vectors on the activation of antigen-

specific lymphocytes. Data from this work show that, besides S. cerevisiae, three 

additional yeast genera with biotechnological importance are able to deliver a protein 

antigen to mammalian antigen-presenting cells and to subsequently activate specific T 

cells, providing usefull basic knowledge for the design of superior yeast-based 

vaccination vectors. However, since peptide sequence per se has been described to exert 

influence on the efficiency of antigen presentation (Sijts et al., 1996), the most 

convenient approach for a specific therapeutic purpose has to be evaluated individually. 

 

 

5. Expression of pp65 by different yeast strains and activation of pp65-specific 

memory T lymphocytes in HCMV-seropositive donors 

Some advantages in choosing HCMV as model virus are that host specificity can be 

simply verified, validating the experiment (Suni et al., 1998) and that pp65-specific T 

cells are highly prevalent among HCMV-seropositive induviduals (Kern et al., 2002). 

The decision to use the entire pp65 protein instead of single CD4+ and CD8+ epitopes 

was based on the fact that some HCMV-seropositive individuals do not respond to some 

dominant epitopes, and response to subdominant or unpredicted epitopes might also 

occur (Solache et al., 1999, Kondo et al., 2004). Furthermore, immunodominant 

epitopes from viral proteins frequently undergo mutations in vivo, reducing their 

efficacy as therapeutic target (Bertoletti et al., 1994; Solache et al., 1999). Therefore, 

use of an entire polypeptide may provide a wide spectrum of epitopes deriving from the 

referred protein, increasing the odds that epitopes relevant for the MHC repertoire from 

a certain individual will be presented (Bui et al., 2010). The HCMV pp65 tegument 

protein is a good vaccine candidate, since it resembles an immunodominant antigen for 

T cells, and 70-90% of all CTL which are able to recognize HCMV-infected cells are 
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specific for pp65 (McLaughlin-Taylor et al., 1994; Beninga et al., 1995; Wills et al., 

1996; Kern et al., 2002). 

 Thus, full-length pp65 was used for recombinant expression in different yeast 

genera, which were subsequently tested for their ability to deliver pp65 in an ex vivo 

assay. Recombinant pp65 could be detected in cell lysates of Sz. pombe, P. pastoris and 

S. cerevisiae, but not in K. lactis. A number of K. lactis transformants grown in 

selective medium and positive for the presence of integrated pp65 was tested under 

varying inducing conditions, however with no success. Some protease-deficient strains 

of K. lactis were also analyzed (YCT 389, YCT390, YCT569, YCT598, New England 

Biolabs), but the presence of pp65 in cell lysates could not be detected, indicating that 

the protein was either expressed under the detection level, or rapidly degraded or not 

expressed at all (data not shown). 

The fact that pp65 could not be secreted into the culture medium by Sz. pombe, 

P. pastoris and S. cerevisiae might suggest that this protein is somehow not properly 

processed in the secretory pathway. Cytoplasmic retention of recombinant proteins that 

were engineered to be secreted has been reported (Emr et al., 1984; Chaudhuri and 

Stephan, 1995). As a consequence to this problem, cell wall-anchoring of whole pp65 

also turned out inviable. Recombinant full-length pp65 expression in yeast has only 

been demonstrated in Sz. pombe (Breinig et al., 2003). In contrast, successful expression 

of pp65 epitopes in the cytoplasm or even on the cell surface S. cerevisiae as Aga2-

fusion has recently been reported (Powilleit et al., 2007; Howland and Wittrup, 2008). 

Whole recombinant yeasts expressing the HCMV pp65 matrix protein in the 

cytosol were assessed for protein delivery efficiency in a whole blood assay. It has been 

shown that full-length pp65 expressed in fission yeast or a fragment containing the 

major pp65 epitopes alone or in combination with Gag expressed in S. cerevisiae could 

elicit specific cellular immune responses, with higher frequencies of CD8+ than CD4+ T 

cells (Breinig et al., 2003; Powilleit et al., 2007). 

 It has also been reported that yeasts are rapidly internalized by blood phagocytes 

and efficiently processed for presentation to CD4+ and CD8+ T lymphocytes (Breinig et 

al., 2003; Heintel et al., 2003). In relation to pp65, antigen-specific memory CD4+ T 

cells were stimulated by untreated and heat-treated pp65-expressing cells of S. 

cerevisiae, Sz. pombe, and P. pastoris. Significant IFN-γ expression by pp65-specific 

CD8+ T lymphocytes was detected after incubation with untreated and heat-treated Sz. 
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pombe and heat-treated P. pastoris, whereas in S. cerevisiae neither untreated nor heat-

treated cells caused any significant activation. 

 Heat treatment was particular advantageous for P. pastoris, in terms of both 

CD4+ and CD8+ T cell responses. In the case of S. cerevisiae, pp65-specific CD4+ 

responses were more pronounced after heat treatment, whereas CD8+ responses were 

lower for heat-treated yeasts, but the relation pp65/empty plasmid was higher in 

comparison to untreated cells of S. cerevisiae. For Sz. pombe, lower frequencies of 

activated lymphocytes were observed when cells expressing pp65were heat-treated, 

however the ratio pp65/empty vector was higher after heat treatment. This means that 

lower responses to the yeast vehicle were detected after heat treatment. Since T cell 

responses to yeasts is uniquely based on the recognition of epitopes derived from cell 

wall proteins (Heintel et al., 2003), mannosyl rather than glucosyl residues should play 

the most important role. Upon heat treatment, the β-glucan layer turns out to be densely 

and homogeneously exposed on yeast cell surface, possibly masking mannoproteins 

from being promptly processed and presented by APCs after yeast uptake. T cell 

activation caused by C. albicans supports this hypothesis. Heintel et al. (2003) showed 

that T cell responses to the unicellular form of C. albicans were poor, in contrast to the 

robust responses directed against the hyphal form. Since β-glucan is not functionally 

accessible on Candida filaments (Gantner et al., 2005), it is tempting to speculate that 

mannoproteins dictate the activation of memory T cells. For this reason, yeasts alone 

subjected to incubation at 65°C caused a lesser extent of lymphocyte activation than 

untreated yeasts. 

When S. cerevisiae-delivered Gag/pp65 was analyzed, significant activation of 

both CD4+ and CD8+ T lymphocytes was observed, and IFN-γ levels were much higher 

than those caused by pp65 expression in the same yeast strain, although the amount of 

delivered protein was practically the same. This observation is in agreement with other 

reports, in that particulate antigens are highly efficient in inducing robust immune 

responses (Powilleit et al., 2007; Crisci et al., 2009). This fact can be attributed to the 

repetitive occurrence of epitopes and the particulate structure of VLP, which favour 

uptake by phagocytic cells (Fifis et al., 2004; Grgacic and Anderson, 2006). It has been 

shown that internalization of yeast-derived VLP by DCs occurs via macropinocytosis 

and receptor-mediated endocytosis involving mannose-recognizing receptors, though 

not the mannose receptor (Tsunetsugu-Yokota et al., 2003). 
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Although electron microscopy of pp65 N-terminally fused to Gag revealed the 

presence of only a few particles, which were heterogeneous in size and shape (maybe 

due to the large size of pp65), the fusion protein nevertheless was more efficient in 

stimulating pp65-specific memory T lymphocytes than pp65 alone. Heat treatment was 

slightly beneficial for CD4+ responses, and exactly as observed for S. cerevisiae 

carrying unfused pp65, CD8+ responses were a little lower for the heat-treated yeasts, 

but the relation Gagpp65/Gag was higher in the heat-treated yeasts. VLP have 

repeatedly proven their potential as vector for vaccination and demonstrated to be 

powerful CTL inducers compared to adjuvants and/or live recombinant vectors (Allsopp 

et al., 1996; Crisci et al., 2009). For this reason, strategies combining whole yeasts and 

VLP as antigen carrier should be an prospective attempt. 

Responses to the HCMV lysate were notedly higher than any condition using 

yeast. However, this lysate contains all HCMV proteins and, consequently, a large 

variety of CD4+ and CD8+ T cell epitopes available for antigen presentation. 

 Frequencies of specifically activated memory T lymphocytes were higher for 

CD4+ cells than for CD8+ cells in all samples analyzed, which is consistent with 

previous observations (Suni et al., 1998; Sester et al., 2001). In the case of HCMV, the 

frequency of CD8+ T cells fluctuates significantly, whereas the frequency of the CD4+ T 

cell population is more stable. In addition, CD4+ T cells are considered more important 

than CD8+ T cells in terms of disease prediction (Sester et al., 2001). 

 The lower frequencies of CD8+ T lymphocytes observed in this work may also 

result from the presence of Brefeldin A, which has been described to inhibit MHC class 

I-restricted presentation of some protein antigens (Yewdell et al., 1989; Brossart and 

Bevan, 1997). Although contradictory effects have been observed, the pathway through 

which antigens are presented in the context of MHC class I seems to play a critical role 

in Brefeldin A sensitivity. Antigens processed by the phagosome-to-cytosol pathway are 

loaded onto newly synthesized class I MHC molecules prior to their egress from the 

trans-Golgi complex. Brefeldin A hinders vesicular exit from the ER and Golgi, 

blocking the presentation of peptide-MHC I complexes (Yewdell et al., 1989; 

Kovacsovics-Bankowski and Rock, 1995; Brossart and Bevan, 1997). The vacuolar 

pathway seems to be Brefeldin A-insensitive (Harding and Song, 1994; Pfeifer et al., 

1993), since peptides associate with recycling class I molecules in phagocytic vacuoles 

or after “regurgitation” and recapture of processed antigens (Harding and Song, 1994; 

Norbury et al., 1995). Tabi et al. (2001) showed that DCs cocultured with HCMV-
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infected fibroblasts led to CD8+ T cell responses to pp65, but CD8+ T cell stimulation 

was inhibited if DCs were pretreated with Brefeldin A, indicating a phagosome-to-

cytosol pathway. However, since the characteristics of the antigen might influence the 

pathway involved (Norbury et al., 1995), it is not possible to state whether Brefeldin A 

affected to any extent the results observed in the present work. 

 Low-level responses towards the yeast vehicle alone were sometimes observed, 

with varying extents among the donors and the yeast genera, but in all cases frequencies 

of activated lymphocytes were below 0.4%. In a study performed by Heintel et al. 

(2003), frequencies of yeast-specific memory T cells were determined using whole 

blood from five individuals. Activation of T lymphocytes was verified for most yeast 

genera, with frequencies up to 0.5% for CD4+ T cells and up to 6.4% for CD8+ T cells, 

depending on both the donor and the yeast species (Heintel et al., 2003). Despite some 

detectable response to the yeast carrier, frequencies of activated CD4+ and CD8+ cells 

were always higher for pp65-containing yeasts in the HCMV-seropositive donors, 

indicating host specificity. 

 Surprisingly, and in contrast to reports of Breinig et al. (2003), ethanol-

precipitated total yeast extracts from cells expressing pp65, including Sz. pombe, were 

not able to sufficiently activate pp65-specific memory T lymphocytes. However, since 

pp65-specific memory T cell activation shows great variability among individuals (Kern 

et al., 2002; Breinig et al., 2003; Powilleit et al., 2007), and giving that the donors 

analyzed in that study were different from those examined in this work, a direct 

comparison is not possible. 

In this work, delivery of pp65 by yeasts was also analyzed by means of an 

autologous system, i.e., a method in which DCs from HCMV-seropositive individuals 

are isolated, incubated for 48 h with yeasts and then given autologous lymphocytes. 

However, despite many attempts, only poor CD4+ and CD8+ T cell activation could be 

observed, and this method proved to be less effective than the whole blood assay. Suni 

et al. (1998) compared frequencies of antigen-specific activated T cells in whole blood 

samples and isolated PBMC in autologous plasma. Since whole blood preparations 

resulted in higher responses, they hypothesized that, within the 6 h incubation time, 

whole blood cultures form an upper band of PBMC over a layer of red cells, probably 

promoting a more physiological millieu to respond to stimuli. This sedimentation 

pattern might also provide improved cell-cell interactions within the PBMC population, 

not influenced by the lower layer of red blood cells (Suni et al., 1998). 
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Significant activation of pp65-specific memory T lymphocytes after incubation 

with pp65-expressing yeasts, determined by means of both whole blood assay and 

autologous system, could not be detected for some HCMV-seropositive individuals. 

One possible explanation for this fact is that some HCMV-seropositive persons lack 

pp65-specific memory lymphocytes, as it has been reported by others (McLaughlin-

Taylor et al., 1994; Kern et al., 2002). According to Kern et al. (2002), this lack of 

pp65-specific T lymphocytes in peripheral blood alone does not mean absence of 

protection from HCMV disease. In that study, they analyzed 40 healthy HCMV-

exposed donors and 12.5% of them had no T cell response to peptides derived from 

pp65. These individuals were not sick, and HCMV reactivation presumably occured as 

often as in other healthy individuals (Kern et al., 2002). 

 In sum, all three yeast species (S. cerevisiae, Sz. pombe, and P. pastoris) 

carrying pp65 were able to deliver the antigen, and the activation of pp65-specific 

memory lymphocytes observed indicates that recombinant pp65 probably mimics the 

native antigen in terms of recognition by the host. 

 

 

6. Effect of heat treatment of yeast on β-glucan exposure and ROS production in 

whole blood 

“ROS” include several oxygen species, such as singlet oxygen, hydroxyl radical, 

superoxide and hydrogen peroxide. In most cell types, ROS influence signaling 

pathways in different manners (Fialkow et al., 2007). Production of ROS (respiratory 

burst) by phagocytes, a process mediated through the NADPH oxidase, is considered a 

major mechanism of defense against fungi. A number of PRRs can elicit the respiratory 

burst, such as Dectin-1, TLRs and Fcγ receptors (Brown, 2011). 

According to previous studies, heat-treated C. albicans and S. cerevisiae expose 

more β-glucan at the cell surface than untreated cells (Fradin et al., 1996; Gantner et al., 

2005). Gantner et al. (2005) observed that most β-glucan in the yeast cell wall is 

inaccessible to Dectin-1 and that β-glucan is exposed only in certain subdomains such 

as birth and bud scars. Upon heat treatment, matricial cell wall components are released 

(Fradin et al., 1996), bringing β-glucan uniformly to the outer layer and consequently 

increasing the chance of phagocyte sensing through β-glucan receptors. 

The effect of heat treatment on β-glucan exposure in S. cerevisiae, K. lactis, Sz. 

pombe, and P. pastoris was analyzed by flow cytometry. All three budding yeasts 
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examined showed more than a two-fold increase in mean fluorescence after incubation 

at 65°C, indicating that heat treatment indeed enhances the amount of cell-wall exposed 

β-glucan. In contrast, this could not be observed in fission yeast, which showed even a 

slight reduction in mean fluorescence intensity. This observation was surprising, 

because although linear β-1,3-glucan is not found on the cell wall, it can be found in the 

primary septum of Sz. pombe (Humbel et al., 2001), so that at least a discrete increase in 

fluorescence would have been expected. However, the architecture of the cell wall in 

fission yeast might, for some reason, not allow significant β-glucan exposure upon heat 

treatment. 

Untreated and heat-treated yeasts were then incubated with whole blood for 

determination of ROS production. Since recognition of β-glucan by Dectin-1 leads to 

the generation of ROS (Gantner et al., 2003), it was reasonable to suppose that yeasts 

subjected to heat would be more effective in eliciting ROS production due to augmented 

ligand availability. In fact, this was true for S. cerevisiae, K. lactis and P. pastoris. 

Noteworthy, the amount of ROS was lower when blood phagocytes were incubated with 

heat-treated Sz. pombe cells in comparison to untreated cells. Again, this result was 

unexpected, since the cell surface of this yeast contains β-1,6-branched β-1,3-glucan, 

which is also a target for Dectin-1 (Humbel et al., 2001; Adams et al., 2008; this work), 

so that at least a similar kinetic pattern of ROS production would have been expected 

for untreated and heat-treated fission yeast cells. These observations indicate that heat 

treatment may alter the distribution of cell wall components in Sz. pombe in a different 

fashion than in budding yeasts. 

 A series of pre-clinical and clinical studies has resorted to the use of heat-

inactivated yeasts as protein delivery vectors, thus reducing the possible risks involved 

in using live cells, particularly in immunocompromised individuals (Lu et al., 2004; 

Franzusoff et al., 2005; Ardiani et al., 2010). Experiments employing either untreated or 

heat-treated yeasts have proven to be effective in terms of protective immunity (Stubbs 

et al., 2001; Franzusoff et al., 2005). Results from the whole blood assays performed in 

this work showed that heat treatment was beneficial in some cases, such as when P. 

pastoris was used as vector, but not always, as when Sz. pombe cells delivered the 

antigen. This fact indicates that the choice for such treatment should take into 

consideration the cell wall features of the yeast species being used in the specific 

approach. Nonetheless, a higher number of assays would have to be performed in order 

to confirm this hypothesis. 
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7. Immunization of OT-I transgenic mice with whole recombinant yeasts 

Initiation of immune responses after vaccination depends on several factors, such as 

antigen dose, form of administration, antigen access to processing pathways, co-

stimulation and cytokine milieu at the moment of antigen capture and presentation 

(Rush et al., 2002). 

 OT-I mice constitute an important model system for in vivo approaches. 

Analyses with mice bearing TCR-transgenic T cells eliminate the problem of low 

frequency of antigen-specific T cells and allow the isolation and quantitation of T cells 

as well as the determination of in vitro and in vivo antigen-specific responses 

(Miyagawa et al., 2010). In an attempt to examine CD8+ T cell responses after 

administration of yeast expressing Ovacyt to mice, an immunization protocol was 

established based on literature data, especially on Riemann et al. (2007). However, and 

in contrast to other works, yeasts were not heat-treated or frozen, but lyophilized to 

facilitate shipment. Since the majority of the studies published so far describing 

immunization approaches using yeast employ S. cerevisiae W303, this strain was also 

used for this experiment. Protocoll optimization and utilization of other yeast genera, as 

well as of a higher number of mice could no longer be performed in this work. 

 Splenic CD8+ T lymphoctes from mice vaccinated with S. cerevisiae carrying 

Ovacyt restimulated with OVA257-264 peptide were able to produce IFN-γ. Yeasts alone 

also stimulated OVA-specific CD8+ T lymphocytes, although to a lesser extent, still the 

difference between both conditions was not significant. Spleen CD8+ T lymphoctes 

restimulated with PMA/ionomycin showed the highest levels of IFN-γ, but the 

difference among the groups was even more discrete. Since PMA and ionomycin are 

potent inducers of cytokine production (Picker et al., 1995), lymphocytes were strongly 

and non-specifically activated, so that eventual subtle differences among experimental 

groups could have been masked. Inguinal lymph node cells were stimulated only with 

PMA/ionomycin due to the low number of recovered cells, and activation of CD8+ T 

lymphocytes from mice immunized with yeasts carrying Ovacyt was even lower than in 

the PBS control group. This latter result was unexpected, since most of the 

subcutaneously administered yeasts are taken up by monocyte-derived inflammatory 

DCs (or, to a lesser extent, by skin-derived DCs) and then transported to draining lymph 

nodes (Ersland et al., 2010). However, Wang et al. (2003) demonstrated that non-self 

peptides, including SIINFEKL, led to the generation of higher responses in the spleen 
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than in draining lymph nodes after s.c. immunization of mice with antigens mixed with 

adjuvant or pulsed on DCs. 

 Particulate antigens are efficiently cross-presented in vivo and are likely to 

stimulate robust CTL responses. Particles larger than 1 µm are taken up by 

phagocytosis. The higher efficiency with which particulate antigens are cross-presented 

in comparison to soluble antigen arises from the fact that (i) the amount of antigen 

internalized by phagocytosis is much greater than when soluble proteins enter APCs by 

fluid-phase pinocytosis, and (ii) antigens internalized by phagocytosis are thought to 

access the cross-presentation pathway more efficiently (reviewed by Rock and Shen, 

2005). Since yeast carrying Ovacyt is also a form of particulate antigen, cross-

presentation would be expected to occur, also when the antigen amount was not very 

high. 

 Despite the existence of several studies showing yeast as antigen carrier in 

immunization experiments, there is no data about IFN-γ production by antigen-specific 

CD8+ T lymphocytes, which might reflect the complexity of this type of analysis. 

However, the results obtained after incubation of spleen cells with Ova(257-264) peptide 

indicate that yeasts were internalized and Ovacyt-derived SIINFEKL could be processed 

for cross-presentation to CD8+ T lymphocytes. The low lymphocyte activation observed 

after restimulation of splenocytes with Ova(257-264) peptide was most probably not due to 

the presence of Brefeldin A, since it has been shown that DC treatment with this 

substance had no influence on presentation of exogenously added SIINFEKL (Brossart 

and Bevan, 1997). Western blot analysis of the yeasts used in this immunization 

protocol revealed low expression of Ovacyt (approximately 17 ng in 5×107 cells, data not 

shown), which might have difficulted the detection of more significant responses. 

Nevertheless, proliferation of CD8+ T lymphocytes in response to Ova has been 

demonstrated with as little as 0.2 ng antigen when delivered in a cell-associated form 

(Li et al., 2001). Maybe determination of the frequency of IFN-γ-producing cells is not 

a very sensitive method to detect CD8+ T cell responses when the antigen amount is 

low, so that analysis of T cell proliferation would, for example, represent an alternative 

method for such immunization experiments. 

 Nevertheless, these experiments clearly show the potential of whole, live yeast 

as antigen carrier and suggest that protocol optimization would most probably result in 

more convincing results. Moreover, the use of other yeast genera as examined 
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throughout this work could lead to the establishment of novel whole yeast-based 

vaccines. 

 

 

8. Perspectives 

Approaches using yeasts as vaccine vehicle exhibit a vast number of advantages over 

other carrier systems, and this field of research has made significant progress in the past 

decade. However, many issues remain to be explored or more profoundly investigated. 

In this work, the potential of different yeast genera as antigen carrier could be 

successfully demonstrated, as well as their ability to activate antigen-specific T cells. 

However, additional experiments, in particular involving in vivo models, are required in 

order to enable the establishment of more effective yeast-based antigen delivery 

systems. 

 With respect to the cytokines secreted by stimulated DCs, the T cell-biasing 

profile could probably be more clearly identified by analyzing a higher number of 

donors. Furthermore, the presence of IL-4 in the culture medium to induce 

differentiation of monocytes into DCs made it difficult to determine the amount of IL-4 

secreted by DCs. Consequently, it was not possible to ascertain if DC activation by 

some of the stimuli tested would result in the priming of TH2 cells. Repeated cell 

washings and resuspension in fresh medium depleted of cytokines would likely allow a 

more reliable IL-4 determination. 

 Recombinant protein expression in yeast could be optimized by altering distinct 

parameters. For example, gene optimization taking into account the codon usage bias of 

each yeast species and use of expression vectors that enable multi-copy integration into 

the yeast genome would most probably lead to higher protein yields. Additionally, 

different anchors for cell-surface expression could be tested in an attempt to identify the 

most effective anchoring system for a particular yeast species. 

 The shortcomings in the delivery of secreted Ova might have been a result of 

the extremely high stability of this protein. To test this hypothesis, ovacyt could be 

cloned downstream of a proper signal sequence for recombinant secretion in yeast. If 

antigen presentation was detected after delivery of secreted Ovacyt, a rather unstable 

Ova derivative, it would be in agreement with the assumption that highly stable proteins 

are lesser available for processing and presentation by virtue of their diminished 

degradation. In an immediate future, this finding could be helpful in terms of choosing 
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the most adequate protein variant to be delivered. However, the limited availability of T 

cell lines specific for a particular epitope restrains the applicability of such in vitro 

antigen presentation assays. 

 In relation to in vivo approaches involving recombinant yeasts, immunization 

schedules for the different yeast genera delivering all Ova derivatives (including Ova 

VLP) should be established. In this context, a higher number of yeast cells per injection 

and a higher number of mice per group, as previously suggested, should be employed. 

Furthermore, assessment of T cell proliferation would probably be a more appropriate 

method to verify T cell responses. Resorting to this technique, in which CFSE-labeled 

transgenic OT-I T cells were injected in mice which were then primed 1 day later with 

Ova, Li et al. (2001) could detect proliferation of OT-I cells in response to cell-

associated Ova even when the antigen amount was as low as 0.2 ng/mouse. Moreover, a 

number of immunization strategies should be evaluated, such as the use of different 

yeast genera, distinct subcellular antigen localizations and antigen-loaded VLP. Also, 

the results from the whole blood assays performed in this work support the use of heat-

treated yeasts in immunization approaches. One drawback is that, in the case of antigens 

designed to combating viral infections in humans, suitable animal models are frequently 

scarce, hampering the onset of several vaccination studies. 

 An ideal therapeutic vaccine should also stimulate the generation of CD4+ T 

helper responses, since TH cells can further promote the generation and proliferation of 

potent CTL responses via release of immunomodulatory cytokines (Ardiani et al., 

2010). Since different yeast species can trigger the secretion of a different set of 

modulatory cytokines, analyses of both CD4+ and CD8+ T cell responses should be 

considered in yeast-based immunization approaches. 
 



                    Summary 

  189 

VI. SUMMARY 
 

 

Yeasts represent promising vaccine vehicles and have been demonstrated to elicit robust 

innate and adaptive immune responses. Nonetheless, the vast majority of studies 

employing yeast as delivery system has so far been restricted to S. cerevisiae. 

Nowadays however, an additional set of yeast genera of biotechnological relevance is 

available which could be tested as potential antigen carrier. Therefore, in the present 

study, different yeast genera were assessed for APC activation and antigen delivery 

aiming at the stimulation of antigen-specific T cells. 

 
Distinct yeast genera, species, strains and mutants were able to induce maturation of 

human DCs, as analyzed by the upregulation of various cell-surface markers, including 

costimulatory, adhesion and MHC molecules, as well as a major chemokine receptor. In 

general, the diverse fungal stimuli differently triggered DC maturation, and to different 

extents than bacterial and viral stimuli. Yeasts also promoted cytokine secretion by 

human DCs, and cytokine levels differed among genera in most situations. As observed 

for the cell-surface molecules, the nature of the stimulus (bacterial, fungal, viral) led to 

DC activation in different ways. Importantly, all yeasts tested promoted release of TH1-

type cytokines such as IL-12 and IFN-γ, demonstrating that different yeast genera bear 

the potential to function as efficient carrier for activation of naïve T cells in antigen 

delivery approaches. 

 
Four biotechnologically relevant yeast genera (S. cerevisiae, P. pastoris, Sz. pombe and 

K. lactis) were assessed for interaction with mammalian phagocytic cells, such as 

human DCs and murine macrophages. Yeast phagocytosis was MR- and Dectin-1-

dependent in human DCs, and Dectin-1-dependent in IC-21 mouse macrophages. 

Furthermore, kinetic patterns of yeast internalization differed among budding and 

fission yeasts. 

 
In order to address the suitability of yeast as carrier for protein antigens, delivery of 

heterologously expressed Ova was investigated in a comparative study. Expression of 

recombinant Ova derivatives exhibited, in general, a great variation among yeast 

genera. S. cerevisiae, P. pastoris, Sz. pombe and K. lactis expressing full-length Ova 

(targeted to secretion) or Ovacyt (intracellular), as well as S. cerevisiae and P. pastoris 

expressing Ovacyt/Sed1p (cell-wall anchored) were assessed for antigen delivery by 
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means of an in vitro presentation assay. It could be shown that all yeasts tested varied in 

their ability to deliver protein antigens and, furthermore, that subcellular protein 

localization influenced the activation of antigen-specific CD8+ T cells. Cytosolic and 

cell-surface displayed Ovacyt were delivered by all yeast genera, albeit to different 

degrees, whereas secreted Ova led to slight lymphocyte activation in S. cerevisiae and 

P. pastoris. 

 
Yeasts were also genetically modified in order to express the clinically relevant 

tegument antigen pp65 from HCMV. Again, foreign protein expression was highly 

variable among yeast genera, and failed in K. lactis. Pp65 VLP were also recombinantly 

expressed in S. cerevisiae. Specific activation of pp65-specific memory CD4+ and CD8+ 

T cells from HCMV-seropositive individuals could be observed when heat-treated and 

untreated whole yeasts served as antigen vehicle in an ex vivo whole blood assay. T cell 

stimulation was specific, since no activation was detected in blood from HCMV-

seronegative donors and much lower responses against the yeast vectors were observed 

compared to yeasts carrying pp65. The extent of pp65-specific T-cell activation varied 

among yeast genera, and pp65 VLP were more effective than unmodified pp65 in S. 

cerevisiae. Further, heat-treatment of yeasts differently affected stimulation of T 

lymphocytes but showed, in general, a beneficial effect. The CD4+ T cell population 

exhibited a higher percentage of CD69+ IFN-γ+ cells in comparison to the population of 

CD8+ T cells in all cases analyzed. Also, detection of T cell activation by means of 

whole blood assay proved to be more advantageous than the method of T cell 

stimulation in an autologous system. 

 
Heat treatment affected the response of blood phagocytes towards S. cerevisiae, P. 

pastoris, Sz. pombe and K. lactis, as measured by the production of ROS. In the case of 

the budding yeasts, ROS production in response to heat-treated yeasts was higher than 

for untreated yeasts, but the opposite effect was observed in fission yeast. 

 
Finally, Ova-specific CD8+ T lymphocytes from OT-I transgenic mice immunized with 

S. cerevisiae carrying Ovacyt showed higher production of IFN-γ upon restimulation 

with an SIINFEKL peptide epitope than lymphocytes from mice receiving S. cerevisiae 

harbouring an empty vector or PBS only. This experimental procedure requires, 

however, further optimization. 
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	Naïve T cells are inexperienced cells that have not encountered an antigen. In lymphoid tissues, T cells interact with APCs in a process mediated by adhesion molecules such as CD54 and CD58 on the APC and LFA-1 and CD2 on the T cell. This enables T cells to sample MHC molecules for the presence of a certain peptide. After binding of the T cell receptor (TCR) and the co-receptor (CD4 or CD8) to a peptide-MHC complex and co-stimulation, the T cell becomes activated and can proliferate and differentiate. Most of the T cells that undergo proliferation differentiate into effector T cells, others can differentiate into memory cells. Among the effector T cell population, the majority of the cells undergo apoptosis after antigens have been cleared, while others become long-lived memory T cells (Abbas et al., 2007; Janeway et al., 2001).
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