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Abstract

This thesis describes neutron scattering experiments on the materials class of ionic liquids

(IL), which has attracted considerable research interest in the past few years due to a range of

properties, contributing to their potential as chemical, catalytic and electrochemical reaction

media. Many different techniques have been applied to investigate their structure, while there

are still plenty of open questions concerning microscopic dynamics in these materials. As a

method sensitive to the presence of hydrogen atoms, quasielastic neutron scattering (QENS)

was employed to study stochastic motions of ILs with hydrogen-rich cations on the time scale

of 0.1–100 ps.

The QENS-spectra of pyridinium-based ILs as well as one alkylammonium-based protic IL

have been investigated in a wide temperature range. To consider dynamics on the broadest

possible time scale, instruments with different instrumental resolutions were used. While

the low-temperature dynamics can be envisaged as thermally activated rotations of the end

methyl groups, two distinct dynamical processes can be resolved for higher temperatures.

They were ascribed to the unrestricted diffusion and tangled localized processes characterized

by similar relaxation times (chain and ring librations, conformational changes, rotations).

In order to evaluate their time and spatial characteristics, theoretical models, which could

satisfactorily capture this diversity, were proposed.

Furthermore, neutron scattering experiments were also carried out on partially deuterated

samples. Owing to the difference in the scattering cross-section of deuterium and hydrogen,

the deuterated parts of the ion become masked for the used method. This provided means

to disentangle the localized motions of the pyridinium-based ILs and to study the enhanced

proton dynamics in the protic ionic liquid.

A rare experiment on separation of coherent and spin-incoherent scattering in ILs was

performed. It allowed disclosing the collective nature of the diffusional process in a butyl-

pyridinium IL. The spatially restricted motions of the butyl chain and the pyridinium ring

were proved to be true single particle dynamics.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Untersuchung ausgewählter ionischen Flüssigkeiten

(IL) mittels quasielastischer Neutronenstreuung. Dank einer Reihe von Eigenschaften, die

das Potenzial dieser Substanzklasse als chemisches, katalytisches und elektrochemisches

Reaktionsmedium stärken, haben ionische Flüssigkeiten erhebliches Forschungsinteresse in

den letzten Jahren erregt. Viele verschiedene Techniken wurden zur Erforschung ihrer Struk-

tur angewendet, dennoch gibt es immer noch eine große Anzahl offener Fragen hinsichtlich

der makroskopischen Dynamik in diesen Materialen. Da quasielastische Neutronenstreuung

(QENS) gegenüber Wasserstoff empfindlich ist, wurde diese Methode zur Untersuchung von

stochastischen Bewegungen dieser Salze mit wasserstoffreichen Kationen im Zeitraum von

0.1–100 ps eingesetzt.

Die QENS Spektren von pyridiniumbasierten ILs und einer alkylammoniumbasierten pro-

tischen IL wurden in einem großen Temperaturbereich analysiert. Spektrometer mit unter-

schiedlichen zeitlichen Auflösungen wurden benutzt, um die dynamischen Prozesse auf einer

möglichst großen Zeitskala untersuchen zu können. Während die Tieftemperaturdynamik

als die thermisch aktivierte Rotation der Methyl-Endgruppen beschrieben werden kann,

wurden zwei verschiedene Prozesse bei höheren Temperaturen aufgelöst. Diese Prozesse

entsprechen zum einen der langreichweitigen Diffusion und zum zweiten miteinander gekop-

pelten lokalisierten Prozessen, die durch ungefähr gleiche Relaxationszeiten charakterisiert

sind (Libration der Alkylkette bzw. des Pyridiniumringes, Konformationsänderungen, Rota-

tion). Um ihre zeitlichen und räumlichen Charakteristika zu bestimmen, wurden theoretische

Modelle vorgeschlagen, die die Vielfalt der Prozesse erfassen.

Weiterhin wurden Neutronenstreuungsexperimente an Proben mit teil deuterierten Ka-

tionen durchgeführt. Infolge des Unterschieds der Streuquerschnitte von Deuterium und

Wasserstoff werden die deuterierten Teile des Kations bei der angewendeten Methode mask-

iert. Durch die so präparierten Proben gelang es die lokalisierten dynamischen Prozesse

aufzulösen.

Der Einsatz polarisierter Neutronen ermöglichte die experimentelle Trennung von ko-

härenten und spin-inkohärenten Streubeiträgen. Dadurch konnte gezeigt werden, dass der
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Diffusionsprozess in den pyridiniumbasierten ILs einen kollektiven Charakter besitzt. Die

räumlich beschränkten Bewegungen der Butyl-Kette und des Pyridinium-Rings erwiesen sich

als echte Ein-Teilchen-Dynamik.
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1. Introduction

1.1. General information

Ionic Liquids (ILs) or molten salts as a class of compounds have aroused a burgeoning

scientific interest in the past decades [1, 2] due to their benign properties for many present

and potential industrial applications [3]. These materials are usually defined as salts with

relatively low melting points, or as salts, which are in the liquid state at room temperature.

The class includes diverse compounds, their number being estimated to be around 106 in

comparison to 600 conventional organic solvents [3, 4]. Despite this huge number, there are

still several common properties, which mark out these neoteric materials:

• high thermal stability;

• high electrochemical stability;

• negligible vapor pressure;

• wide liquid range (melting temperatures below 100 ◦C);

• nonflammability under ambient conditions;

• glass forming ability;

• good solvents for polar solutes;

• tunable catalytic ability;

• high viscosity.

The properties of ionic liquids result from a complex interplay of intermolecular inter-

actions between ions, their geometry and charge distribution. An IL usually consists of an

organic cation of low symmetry and an organic or inorganic anion [1, p. 1–40]. Therefore

all possible universal (Coulomb, van der Waals, dipole-dipole) and specific (for example H-

bonding) intermolecular interactions can define the behaviour of ILs. Coulomb’s law governs

the long-range order in simple salts, whereas the van der Waals interaction softens electro-

static forces in ionic liquids owing to the bulky size of the ions and their asymmetric shape
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with possibly various substituents. As a result ILs exhibit less ordering; their characteris-

tic melting points fall relative to those of simple salts. In addition, ILs may also form an

amorphous glass on cooling [5–7]. In comparison with common molecular solvents ILs are

characterized by charge ordering that extends over larger distances than usual density oscilla-

tions, one could expect for a liquid, as well as mesoscopic organisation may occur [8, 9]. Thus,

exactly the above mentioned stronger interaction between charged particles leads to those

properties, which distinguish ILs from conventional organic solvents and arose a number of

research fields, where organic solvents can be substituted by ILs.

As ILs are characterized by negligible vapour pressure and considered to be nonvolatile,

it is common that ILs are often mentioned as “environmentally friendly” compounds in

connection with the concept of “green chemistry” [2, 10–12]. Non volatility is also essential for

the applicability of ILs as effective catalysts, for their recovery and reuse [13, 14]. Their polar

nature facilitates physical adsorption when used as lubricants; high thermal and electrical

conductivity being valuable properties, which promote heat dissipation during sliding [15].

Furthermore, high thermal stability is crucial for the usage of ILs as heat transfer fluids [16].

ILs can dissolve extensive quantities of lignocellulosic biomass, which is necessary for efficient

production of bioethanol and biodiesel [17, 18]. ILs have started to be exploited for separation

of CO2 from flue gas or natural gas, resulting in higher combustion efficiencies [19], for gas

storage and reversible adsorption of pollutant gases [20].

An extremely fruitful application field of ILs is electrochemistry [21], where their intrinsic

electrical conductivity is used directly. As electrolytes, these materials can be exposed to

a high potential difference without undergoing redox reactions, owing to their wide electro-

chemical windows. Here is a far from exhaustive list of possible applications of ILs: solar

cells [22–24], fuel cells [25], organic conductors and superconductors [26], batteries [27–29],

capacitors [30], transistors [31], electrochemical sensors [32, 33], electrodeposition [30, 34].

A relatively new group of ILs are room temperature magnetic ionic liquids, which exhibit

promising magnetic, photophysical/optical and electrochromic behaviour [35].

ILs have indeed proved to be multifunctional solvents. One of the reasons for this popu-

larity is a relative easiness to tune physical-chemical properties of this class of materials. A

structural variation of the cation or anion may lead to a new IL with targeted functionality.

Therefore these materials are often referred to as designer solvents or task specific ILs [1, 13].

So far, the last years have shown that these compounds are of considerable interest

for various fields. A huge number of potential cation and anion families and their many

derivatives allow the desired properties for specific application to be selected. That is why a

deeper insight into the fundamental properties of ILs is of the essence to realize the maximum

potential of ILs. Regarding the structure of ILs, there is a huge number of research papers
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published on both experimental and theoretical investigations [8, 24, 28, 36–47], which allow

access to the information about the correlation between bulk properties and morphology in

the liquid and solid state [48, 49].

However, structure knowledge is only a static snapshot of complex interactions in ILs,

whereas the majority of fields of usage mentioned above require the knowledge of their dy-

namical characteristics such as viscosity, diffusivity, conductivity. Diversity and tunability of

ILs drive search for prediction of their physicochemical properties. In this situation molec-

ular dynamics (MD) simulations have become an invaluable tool for understanding of intra-

and intermolecular processes and analysing transport properties of ILs [49–51]. This ap-

proach is crucial, because experimental investigation of even a fraction of these compounds

were infeasible, to say nothing of synthesizing all possible and potentially useful cation-anion

compositions. MD simulations give access not only to the above mentioned transport char-

acteristics, but reveal their mutual relationship with each other, predict their temperature

dependent trends, capture dynamical behaviour not only of different species (cations, an-

ions) and their collective excitations, but also of their parts (alkyl chain or ring librations). A

MD investigation of 1-N-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [52]

showed that the cations possess higher diffusivity than the anions despite their bigger size

and bulky shape. In consequence of non-uniform distribution of the counter-ions around

the imidazolium cation the direction along the plane of the ring becomes preferential for

translational motion. As it also turned out, the cations feature a broader frequency range

of dynamical processes than the anions do. In addition, the simulations predicted the ex-

istence of ion pairs characterized by the lifetime of 0.3 ps. Urahata and Ribeiro proposed

in their paper [53] that the alkyl chain of the 1-alkyl-3-methylimidazolium cation started

its fast rattling and libration on a subpicosecond scale in a temperature range below the

actual melting point of the crystal, after which much slower translational and reorientational

diffusion sets in. Their later paper [49] was devoted to collective excitations in 1-butyl-3-

methylimidazolium chloride, where the authors demonstrated that the flexible alkyl chain

damps acoustic modes along its direction.

Theoretical investigations performed on ILs so far have shown that ILs feature dynamical

heterogeneity on a broad time-scale. For example, mean squared displacement (MSD) curves

usually show up several regions, which can be attributed to a ballistic regime at short times,

an intermediate cage regime and a diffusive regime at long times [54–57]. Especially the

plateaulike behaviour at intermediate times is of great importance. It is commonly referred

to as β-relaxation and is typical for supercooled liquids and glass forming systems [58]. Del

Popolo and Voth [57] also interpreted the large difference between the relaxation rotational

times and mean collision times of velocity correlations functions as a sign of the existence
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of long-lived cages, in which ions are rattling surrounded by their counter ions. Quite a

compelling finding made by Hu and Margulis [54] is that there are subsets of more and

less mobile particles clustered in space and marked by correlated dynamics. Similarly, the

signatures of mutual diffusion (i.e., strong coupling of the motion of both the anion and the

cation) were pointed out by Habasaki and Ngai [56]. This distinguishes ILs from conventional

liquids, which are homogeneous.

No doubt, MD simulations possess tremendous predictive potential. But the basics of

any classical MD simulation is an empirical force field [59], by means of which complex

interactions between charged particles of ILs are modelled. So simulation results totally

depend on the quality and accuracy of the chosen force field. Quite often calculated dynam-

ical parameters from MD simulations are over- or underestimated. Therefore, experimental

data are required to refine force fields and validate their empirical parameters [60], although

strongly increasing power of computational resources provides means for application of more

expensive but precise methods [61]. Thus experimental methods remain of great importance.

Several techniques can provide information about dynamics in ILs: NMR, ESR, dielectric

spectroscopy, optical Kerr effect, luminescence and neutron scatterings spectroscopy [62, 63].

These methods probe various dynamical processes on different time-scales and whatever ex-

perimental approach is used, pronouncedly heterogeneous, broadly distributed dynamics of

ILs are indicated.

Pulsed gradient resonance NMR technique is an informative tool for studying diffusion

in the time-window of several milliseconds [64–66]. For example, complicated diffusional

behaviour of halogen-free boron based ILs was observed from the stimulated echo diffusion

decays [67]. At lower temperatures the cations and anions are characterized by different

diffusion coefficients, which can be related to the two liquid phases of this IL. Owing to

“hydrophobic interaction” of the hydrocarbon chains there are slower regions enriched by

the cations, while anions are included mostly to faster phases. As the temperature rises this

heterogeneity gradually disappears and the transport properties of ions are described by one

diffusion coefficient.

By means of time-resolved fluorescence spectroscopy and anisotropy measurements sol-

vation processes can be analysed on the time-scale from nanoseconds to picoseconds [68].

These data are valuable for description of diffusion limited reactions and their rates in ILs.

Fluorescence relaxation functions often show non-exponential time dependence, thus provid-

ing evidence for several relaxation pathways. Solvent modes on a time scale from sub-100-fs

to 200-ps can be investigated by optical Kerr effect (OKE) spectroscopy [9, 69–72]. The

polarization-anisotropy decay is influenced in this range by diffusive reorientation motion of

individual molecules or ion-pairs (several picoseconds and more), intermolecular librational
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motions (on a 100-fs to 1-ps time scale) and intramolecular vibrational motions (on a sub-

100-fs time scale). As a rule, ILs (in particular imidazolium based ILs) are characterized by a

broadly distributed spectrum in the wavenumber range of 0–200 cm-1 and several out-of-plane

librational modes of the ring can be detected. These non-diffusive dynamics affect chemical

reaction rates and, therefore, are an interesting object for investigation [71]. In a combined

dielectric relaxation and optical Kerr effect study Turton et al. [72] observed an intense ad-

ditional low-frequency relaxation mode (sub-α) in comparison with the fundamental single

“molecule” α-relaxation. The sub-α process implies a fluctuation in a mesoscale aggregation,

for example, in cation-stacked or micelle-like clusters. Xiao et al. [9, 69, 70] focused on the

temperature dependence of the OKE spectra of 1,3-pentylmethylimidazolium cations; the

observed temperature dependence was ascribed to the existence of density inhomogeneity

due to nanostructurally organized domains, i.e. polar and nonpolar regions.

Quasielastic neutron scattering (QENS) and inelastic neutron scattering (INS), which

have been demonstrated to be an informative tool for studying different materials [73–75],

can be applied as well to yield comprehensive information about various stochastic processes

ranging from a fraction of picoseconds to nanoseconds in ILs [76, 77]. Incoherent neutron

spectroscopy is particularly sensitive to hydrogen atoms and can be applied to unravel the

dynamics of hydrogen-rich materials. In comparison with the other above mentioned spec-

troscopic techniques, QENS and INS allow measuring both energy- and momentum transfer

of scattered neutrons and thus to simultaneously derive information about both time and

space characteristics of studied processes. The kinetic energy of cold and thermal neutrons

fits excitation energies in condensed matter, the length scales explored in an experiment be-

ing comparable with the wavelength of incident neutrons, which is of the order of interatomic

distances in solids and liquids. For X-rays with a wavelength of a few Å the energy amounts

to several keV, whereas for Raman or Brillouin light scattering the energy range corresponds

to excitation energies in condensed matter, but the wavelength is far too large. Typical

parameters, amenable to evaluation in a QENS-experiment, are vibrational displacements,

jump distances, correlation lengths, diffusion coefficients, reorientational times and so on.

Moreover, the (E,Q)-range covered in QENS and INS corresponds to the range probed in

molecular dynamic simulations, so that this experimental method can be used to prove the

accuracy of computations.

The first papers on QENS investigation of imidazolium-based IL were published in 2003 [77,

78]. The authors studied dynamics of these ILs over a broad temperature range. In the first

paper Roche et al. discussed the nature of the phase transitions at lower temperatures

and observed the effect of alkyl chain motion on the increase of anion mobility and thus

of conductivity at low temperature by means of the backscattering technique. The further
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research on [bmim][PF6] was focused on a higher temperature range, when the IL is in the

liquid state. Two different relaxation processes have been detected. The faster of the two

motions exhibited neither a Q- nor T -dependence; this fast β-process was attributed to the

motion of the molecules inside a cage. The slow α-process, on the other hand, showed a non-

Debye and non-Arrhenius behaviour. A finer resolution of the BASIS spectrometer provided

a better insight into the latter diffusional process and allowed to distinguish between its

two components (true unrestricted and spatially constrained diffusion), which are typically

approximated by a single stretched exponential α-process [76, 79]. Since the first publica-

tions a decade has passed, during which almost only neat ILs have been studied by means of

neutron scattering [76, 79–81], although some recently published papers are devoted to the

investigation of an IL in ordered mesoporous carbon [82, 83], which is used in battery and

capacitor applications. However, the number of these publications remains very limited.

1.2. Motivation and outline of the thesis

Despite the impressive activities in the field and numerous complimentary techniques

applied for studying ILs, a clear microscopic picture is still missing and thus highly de-

manded. On the other hand, QENS may provide comprehensive details on the dynamics,

being connected with the other methods as well (dielectric spectroscopy, optical Kerr spec-

troscopy, molecular dynamics simulations). Nevertheless, neutron scattering methods have

not been extensively used over the past decade and some of their advantages (deuteration

labelling, polarization analysis) have not been employed at all. This fact determined the

main objectives of this thesis.

The overall structure of the work will be as follows:

In Chapter 2 theoretical concepts of cold and thermal neutron scattering, relevant for data

interpretation, are presented and several analytical models, employed for the description of

the spectra, are outlined.

Chapter 3 provides a summary of the combination of experimental techniques used and

of corresponding technical aspects; it introduces the compounds, chosen for this work, and

some of their physicochemical properties.

As one of the main features of ILs is their decidedly heterogeneous dynamics and, hence,

theoretical models, which can be applied to describe their QENS-spectra, include a number

of parameters, a more robust approach in fitting experimental data to analytical expressions

is required. Therefore, a program module for the 2D-fitting routine was elaborated in the

framework of this thesis and is briefly presented in Chapter 4.
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Chapter 5 deals with two compounds, which represent a special class of pyridinium-based

ILs and differ by the length of the alkyl substituent in the cation. The aim of this part of

the work was to establish the influence of the alkyl chain length on the cation dynamics on

a picosecond time scale in a wide temperature range. Partial deuteration was used to attain

a better understanding of the spatially restricted processes of the alkyl-pyridinium cation.

Chapter 6 is intended to present a QENS-study on a protic ionic liquid with the focus on

the dynamics of the proton, which serves as a charge carrier and allows anhydrous conduc-

tivity, important for designing electrochemical devices.

Chapter 7 addresses the issue of collective and single-particle dynamics in ILs and demon-

strates the influence of the structure and local environment on the stochastic processes:

long-range diffusion and spatially restricted dynamics. This insight was provided by means

of experimental separation of coherent and spin-incoherent scattering.

The results obtained within the research activities and summarized in this thesis have

been fully or partially published in peer-reviewed scientific journals and conference proceed-

ings as listed below:

1. J. P. Embs, T. Burankova, E. Reichert, R. Hempelmann. Cation dynamics in the pyri-

dinium based ionic liquid 1-N-butylpyridinium bis((trifluoromethyl)sulfonyl) as seen by

quasielastic neutron scattering. The Journal of Physical Chemistry B, 116(44):13265–

13271, 2012

2. J. P. Embs, T. Burankova, E. Reichert, V. Fossog, and R. Hempelmann. QENS study

of diffusive and localized cation motions of pyridinium-based ionic liquids. Journal of

the Physical Society of Japan, 82(Suppl.A):SA003, 2013

Publications in preparation:

1. T. Burankova, E. Reichert, V. Fossog, R. Hempelmann, J. P. Embs. The Dynamics of

cations in pyridiniumbased Ionic Liquids by means of quasielastic and inelastic neutron

scattering. Journal of Molecular Liquids (accepted)

2. T. Burankova, V. Fossog, R. Hempelmann, J. P. Embs. Collective ion diffusion and

localized single particle dynamics in pyridinium-based ionic liquids

3. T. Burankova, V. Fossog, R. Hempelmann, J. P. Embs. Proton diffusivity in the

protic ionic liquid triethylammonium triflate probed by QENS





2. Theoretical principles of thermal neutron

scattering

Almost all experiments in this work were performed using neutron scattering methods

and their advantages for studying hydrogen-rich materials were shortly mentioned in the

Introduction. Many years of the successful application of this experimental technique have

led to the publication of several excellent and comprehensive textbooks [73, 74, 84, 85], as

well as some reviews [86–89], which differ by how rigorous theoretical aspects are treated

and so address a broad, multidisciplinary audience. The intention of the present chapter is

to provide reference to the relevant terms, concepts and models, which are employed for the

analysis of the acquired neutron scattering data.

2.1. Neutron cross section

During an elementary scattering event the neutron undergoes a change in momentum

and can lose or gain energy. This is the key to determine the structure and the dynamics

of the target. The basic quantity directly measured in neutron scattering experiment is the

number of neutrons scattered per second into a solid angle dΩ (dΩ = dS/r2 see Fig. 2.1)

with final energy between E and E + dE, or the double differential cross section

d2σ

dΩdE

Figure 2.1 displays the typical geometry of scattering experiment. The incident neutrons

with the wavevector ~ki (ki =|~ki|), which are described by a planar wave,

ψi = exp(ikiz) (2.1)

interact with the target and are scattered by it. As the scattering is spherically symmetric

for thermal neutrons, the wavefunction of the scattered neutrons with the wavevector ~kf in
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the direction θ, φ at the distance r from the target can be written in the form of a spherical

wave

ψsc = − b
r

exp(ikfr) (2.2)

where b denotes the scattering length and is independent of the direction, at which the

neutrons are scattered. The value of the scattering length is determined by the type of the

particular nucleus (isotope) and the spin state of the nucleus-neutron system.

r

dW

dS

incident

neutrons

f

q z

Figure 2.1. Geometry of a scattering experiment

The neutron has spin 1/2. If it is scattered by a nucleus with a non-zero spin I, then

the spin of the nucleus-neutron system is either I + 1/2 or I − 1/2 with different scattering

lengths b+ and b−, respectively. So the interaction of the neutron spin 1/2 with nuclear

spins produces two states with total spins parallel or antiparallel. This creates some kind

of distribution of scattering lengths over the whole sample. The corresponding average

scattering lengths read

〈b〉 =

(
I + 1

2I + 1

)
b+ +

(
I

2I + 1

)
b− (2.3)

〈b2〉 =

(
I + 1

2I + 1

)
(b+)2 +

(
I

2I + 1

)
(b−)2 (2.4)

It is necessary to mention that some distribution can be caused by the presence of different

isotopes as well. But as the scattering by hydrogen nuclei, characterized by the incoherent

scattering cross section 10–20 times larger than other scattering cross sections, will be in the

focus of this work, in other words, a system with only one species, the theory concerning

isotopic incoherent scattering will be omitted.

The total double differential cross section can be presented as the sum of the coherent

and incoherent contribution.
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d2σ

dΩdE
=

(
d2σ

dΩdE

)
coh

+

(
d2σ

dΩdE

)
inc

(2.5)

The summands have the following physical interpretation. The coherent scattering could

be observed from the same system, where all the particles have the same value b of the

scattering length. The deviation of the actual system from this ideal one gives the origin to

the incoherent scattering. The total double differential cross section can be also expressed

via the dynamic structure factor, or the scattering law S(Q,E) as follows

d2σ

dΩdE
= N

kf
ki

{σcoh

4π
Scoh(Q,E) +

σinc

4π
Sinc(Q,E)

}
(2.6)

where σcoh = 4π〈b〉2 and σinc = 4π(〈b2〉−〈b〉2) are the coherent and incoherent cross sections,

N is the number of nuclei in the scattering system. Henceforth E = Ef − Ei stands for the

energy transfer and ~Q = ~kf − ~ki denotes the wavevector transfer. The next expression

determines connection between the dynamic structure factor and inter-particle correlations

and their time evolution.

Scoh(Q,E) =
1

2π~
∑
jj′

∞∫
−∞

〈
e{−iQrj(0)}e{iQrj′ (t)}

〉
exp

(
−iE~ t

)
dt (2.7a)

Sinc(Q,E) =
1

2π~
∑
j

∞∫
−∞

〈
e{−iQrj(0)}e{iQrj(t)}〉 exp

(
−iE~ t

)
dt (2.7b)

Formulas 2.7a–2.7b express the both contributions in terms of the position operators of

the particles of the scatterer. One can notice that the equation for the coherent contribution

contains the double sum over j, j′ and the equation for the incoherent scattering contains

only the simple sum over j. To put it differently, the coherent scattering originates from

interference effects, as it depends on the correlations between the positions of the different

nuclei at different times including the correlation between the positions of the same nucleus

at different times. Since the incoherent scattering depends only on the correlation between

the positions of the same nucleus at different times, it has another physical interpretation

and is described as single-particle scattering.

The Van Hove correlation functions [90] allow another form of the mathematical expres-

sions 2.7a–2.7b.

Scoh(Q,E) =
1

2π~

∞∫
−∞

G(r, t) exp
(
i
(
Qr − E

~ t
))
drdt (2.8a)

Sinc(Q,E) =
1

2π~

∞∫
−∞

Gs(r, t) exp
(
i
(
Qr − E

~ t
))
drdt (2.8b)
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The coherent contribution is related to the time-dependent correlation functionG(r, t), which

provides information about the correlation between the presence of another particle or the

same particle in position r′ + r at time t′ + t and the presence of a particle in position r′

at time t′ [90]. Otherwise stated, it is the probability that, if an atom is at the origin of the

chosen reference system at time 0, an atom will also be found within unit volume at r at

time t [84]. The incoherent contribution is related to the self part of the Van Hove function

Gs(r, t), to the probability of finding at r and time t the atom that was at the origin at time

0. So the Van Hove functions have intuitively clear physical meaning and can be applied for

both classical and quantum systems.

2.2. Polarisation analysis

The only experimental way to unambiguously separate coherent and spin-incoherent con-

tributions is to make use of polarized neutrons. A time-of-flight experiment with polarization

analysis implies that one simultaneously measures the change in direction and energy of the

scattered neutrons, as well as the change in the spin state upon scattering [91–93]. The

double differential cross section for a scattering process, in which the neutron spin changes

from state si to sf , while the scattering system goes from state qi to qf reads [91]

d2σsf si

dΩdE
=
∑
qi

Pq
∑
qf

kf
ki

( mn

2π~2

)2
∣∣∣∣〈sfqf ∣∣∣∣∫ dreiQrV (r)

∣∣∣∣ siqi〉∣∣∣∣2×
× δ

(
~2

2mn

(k2
f − k2

i ) + E

) (2.9)

where Pq is the probability that the system is in the initial state qi and V (r) is the interaction

potential. Then the total double differential cross section is a sum over all possible initial

and final states of both the neutron and the nuclei. In terms of atomic scattering amplitudes

U
sf si
i the double differential cross section is given by

d2σsf si

dΩdE
=
∑
qi

Pq
∑
qf

kf
ki

∣∣∣∣∣
〈
qf

∣∣∣∣∣∑
i

eiQrU
sf si
i

∣∣∣∣∣ qi
〉∣∣∣∣∣

2

δ

(
~2

2mn

(k2
f − k2

i ) + E

)
(2.10a)

U
sf si
i = 〈sf |(bi − piS⊥i · σ +BiI i · σ)| si〉 (2.10b)

where σ is the neutron-spin operator, I is a nuclear-spin operator, B is the spin-dependent

nuclear amplitude, and p is the magnetic amplitude. S⊥ is defined in terms of the atomic-spin

operator S

mn=1,675·10−27 kg
~=1,055·10−34 m2kg/s
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S⊥ = Ŝ −
(
Ŝ · Q̂

)
Q̂ (2.11)

If the initial neutron spin states are designated as ↑ and ↓, and the final spin states are

denoted in the same way, then four atomic scattering amplitudes can be calculated using the

properties of the Pauli-spin operators

U↑↑ = 〈b〉 − pS⊥z +BIz (2.12a)

U↓↓ = 〈b〉+ pS⊥z −BIz (2.12b)

U↑↓ = −p (S⊥x + iS⊥y) +B (Ix + iIy) (2.12c)

U↓↑ = −p (S⊥x − iS⊥y) +B (Ix − iIy) (2.12d)

U↑↑ and U↓↓ do not change the neutron spin state after a scattering event and therefore are

commonly referred to as the non-spin-flip amplitudes. The U↑↓ and U↓↑ involve a change in

the spin state and are known as the spin-flip amplitudes. It is evident upon examination of

Eq. 2.12 that coherent nuclear scattering is always non-spin-flip scattering.

In the case of a nonmagnetic system (S⊥ = 0) and randomly oriented nuclear spins (Īx =

Īy = Īz = 0) the cross section per atom can be written, after the averaging procedure [92],

as follows:

Coherent scattering

dσ↑↑

dΩ
=
dσ↓↓

dΩ
= 4π〈b〉2 (2.13a)

dσ↑↓

dΩ
=
dσ↓↑

dΩ
= 0 (2.13b)

Incoherent scattering

dσ↑↑

dΩ
=
dσ↓↓

dΩ
= 4π

1

3
B2I(I + 1) (2.14a)

dσ↑↓

dΩ
=
dσ↓↑

dΩ
= 4π

2

3
B2I(I + 1) (2.14b)

As it was stated earlier, the coherent nuclear scattering is purely non-spin flip. The nu-

clear spin-incoherent scattering has both contributions: spin-flip and non-spin-flip. Neverthe-

less, the ratio between these contributions is 1 to 2, irrespective of the incident polarization

direction, which makes it feasible to perform separation of the coherent and spin-incoherent

neutron scattering on the basis of this theory.

2.3. Analysis of stochastic motions

For cold and thermal neutrons’ (5 · 10−5 ÷ 0.025 eV) energy gain or loss during a single

scattering event due to stochastic motions of the particles (diffusion or rotation) makes up a

comparable fraction of their initial kinetic energy. The method of QENS investigates these

small amounts of energy exchange with spectral distribution, centred at the elastic position
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with zero energy transfer. In the case of hydrogen rich materials the origin of this broadening

is single-particle dynamics and the nature of scattering is incoherent.

For ionic liquids one can allow for self-diffusion, rotational motion on the whole and of

different parts and vibration behaviour of the ions. Assuming no correlation between these

motions (as their energy scale differs greatly), one defines the dynamic structure factor as a

convolution of the corresponding dynamic structure factor for different types of motions.

S(Q,E) = Strans(Q,E)⊗ Srot(Q,E)⊗ Svib(Q,E) (2.15)

Vibrations and torsional vibrations are usually outside the accessible energy range of QENS

experiments; in the quasielastic region the vibrations are considered to contribute only to

the intensity through the Debye-Waller factor exp(−2W ) [73]. The elastic or quasielastic

intensity is reduced with Q due to the energy redistribution to the inelastic region. Thus,

the incoherent scattering law in the quasielastic region is a convolution of the translational

(global) and rotational (localized) dynamic structure factors, multiplied by a Debye-Waller

factor.

S(Q,E) = exp(−2W )Sglob(Q,E)⊗ Sloc(Q,E) (2.16)

In the model-independent approach the global and localized dynamics can be presented

by a Lorentzian function:

Sglob(Q,E) =
1

π

Γglob(Q)

Γ2
glob(Q) + E2

(2.17)

Sloc(Q,E) = EISF(Q)δ(E) + [1− EISF(Q)]
1

π

Γloc(Q)

Γ2
loc(Q) + E2

(2.18)

The two linewidths Γglob and Γloc describe the broadening in the energy domain caused by the

global and local dynamic processes, respectively. EISF(Q) in Eq. 2.18 stands for the elastic

incoherent structure factor of the localized motion and provides insight into the geometry of

the spatial confinement, in which the localized process occurs. This concept was introduced

by Lechner in 1971 [74, 87] and is very helpful for the extraction of structural information

on confined motions. Its physical meaning can be interpreted in terms of the self-part of the

Van Hove correlation function Gs(r, t), which can be split into the sum of its asymptotic

value in the long-time limit and a time-dependent term:

Gs(r, t) = Gs(r,∞) +G′s(r, t) (2.19)
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Gs(r,∞) equals 0 for long range diffusion or it is a finite non-zero function of r in the case

of a localized motion, whereas G′s(r, t) tends to 0 as t → ∞. After Fourier transformation

(Eq. 2.8b–2.19) the dynamic structure factor satisfies the relation:

S(Q,E) = Sel(Q)δ(E) + Sqe(Q,E) (2.20)

A closer inspection of Eq. 2.18 and 2.20 shows that the intensity of the elastic line is

directly related to the EISF. On the other hand, the elastic line is the result of the diffraction

on the particle spatial distribution taken at infinite time and averaged over all its possible

initial positions. Therefore, it is possible to derive information about spatial characteristics

of localized processes in quite a straightforward way from incoherent scattering.

The simplest form of the incoherent dynamic structure factor (Eq. 2.16–2.18) has been

successfully applied to a number of complex systems, such as macromolecules (proteins,

DNA) [94–97], or medium-chain alkanes [98, 99], or compounds with alkyl substituents [100–

102]. Hence, this model-independent approach can be considered as a good starting point

for the interpretation of QENS data on ILs.

The distribution of wavevector and energy transfers, given by the dynamic structure

factor, would be detected, when a monochromatic neutron beam is scattered by the probe. In

consequence of beam divergence, uncertainties in flight paths and, as a result, uncertainties in

wavelengths, sample and detector thickness, every spectrometer is characterized by a certain

resolution R(Q,E). Therefore, correction for resolution distortion [103] has to be carried

through. Accordingly, the following form of the scattering law, which contains a convolution

operation with the resolution function, should be used to fit experimental spectra

SI(Q,E) = I0(Q) · [S(Q,E)⊗R(Q,E)] + a+ bE (2.21)

where I0(Q) includes an intensity factor and the Debye-Waller factor; the term a + bE

represents a linear background, which accounts for processes faster than the instrument

range.

The model-independent approach provides means to estimate the number of processes

distinguishable on the time-scale of a measuring apparatus, to judge their character (unre-

stricted diffusion or confined motions), to estimate some parameters. However, it is quite

a descriptive method. For more comprehensive analysis theoretical models of stochastic

motions have to be included in the dynamic structure factor.



Theoretical principles 16

2.3.1 Self-diffusion

The small Q-range (0.1–0.5 Å−1) is favourable to explore motions occurring over “large”

distances (R = 2π/Q ∼ 10−60 Å) as, for example, self-diffusion. In this case the self-part of

the Van Hove correlation function obeys Fick’s second law with the self-diffusion coefficient

DS:

∂

∂t
GS(r, t) = DS∆GS(r, t) (2.22)

This yields the dynamic structure factor in the form of one Lorentzian curve [73, 74]:

S(Q,E) =
1

π

~DSQ
2

(~DSQ2)2 + E2
(2.23)

It is a rare case when the simple self-diffusion model satisfactorily describes long-range

dynamics in a broader Q-range [104, 105]. In practice one deals with more complicated mech-

anisms of diffusion, which require a more sophisticated theoretical treatment. Nevertheless,

the so-called Q2-law is generally valid at small Q-values.

2.3.2 Jump diffusion

The jump diffusion model proposed by Singwi and Sjölander [106] has become quite popular

for the description of global molecular motions in liquids [76, 79, 81, 107, 108]. The authors

derived the differential cross section for the case when a particle oscillates for a mean time τ0

and then diffuses continuously for a mean time τ1, repeatedly changing the type of movement.

The probabilities that the particle remains in the state of either oscillatory or diffusive

motion were presumed to decay exponentially with time. It was established that the shape

of quasielastic broadening is, in general, not a Lorentzian, but can be reduced to it for the

limiting case (τ1 � τ0). In this case the HWHM then reads:

Γ(Q) =
~DQ2

1 +DQ2τ0

(2.24)

with the actual diffusion coefficient given by

D =
R2 + l2

6(τ0 + τ1)
(2.25)

where l2 is the mean squared displacement during the time τ1 in the diffusion mode; R2 is

the mean squared radius of the fully developed thermal cloud in the oscillatory motion.

The analogous formula can be obtained from a slightly different approach based on a

modification of the Chudley–Elliott model [109], in which a particle is enclosed in a cage
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formed by other atoms or molecules and from time to time performs a jump into a neigh-

bouring cage. For liquids the jump lengths can not be determined by the lattice constant and

their distribution can be taken into account. In the particular case of Eq. 2.24 an exponential

distribution of jump lengths is assumed.

2.3.3 Three-fold jump rotation

The three-fold jump rotation model is a particular instance of the general jump model among

N sites for N = 3 [110, 111]. If the probabilities of finding a particle at all three sites located

on the circumference of a circle are identical, the dynamic structure factor for a powder

sample is

S(Q,E) =
1

3

(
1 + 2j0(QR

√
3)
)
δ(E) +

2

3

(
1− j0(QR

√
3)
) 1

π

3~/(2τ)

(3~/(2τ))2 + E2
(2.26)

where R is the circle’s radius, τ is the residence time at any site and j0(x) is the zeroth-order

spherical Bessel function.

The three-fold jump rotation model is of importance for analysing thermally activated

hopping of methyl groups over energy barriers [112–116], as it is justifiable to assume that

methyl substituents move in a three-fold potential with three equivalent energy minima.

2.3.4 Continuous rotational diffusion

Localized dynamics of methyl groups [113] or freely rotating small molecules [107, 117–119]

can be envisaged and modelled as rotational diffusion on the surface of a sphere. In other

words, the orientation vector of the particle Ω performs small-angle random rotations, the

orientation probability P (Ω, t) obeying Fick’s second law [73, 110]:

∂

∂t
P (Ω, t) = DR∆ΩP (Ω, t) (2.27)

where DR stands for the rotational diffusion coefficient and has the dimension of inverse

time. Instead of DR the relaxation time for rotation τR = 1/6DR may be used. Analytical

calculations lead to the following incoherent scattering function:

S(Q,E) =j2
0(QR)δ(E)+

+
∞∑
k=1

(2k + 1)j2
k(QR)

1

π

k(k + 1) ~
6τR(

k(k + 1) ~
6τR

)2

+ E2

(2.28)



Theoretical principles 18

where R is the rotational radius and jk(x) is the k -th order spherical Bessel function. It

should be noted that in praxis only a limited number of the summands (5–10) is used,

because the higher order terms of the series converge quickly to zero.

2.3.5 Diffusion in a sphere

The next model considers a particle diffusing in the interior of a sphere with an impermeable

surface or, in other words, in the infinite potential well of spherical symmetry [120]. This

theoretical system is realized in a number of real physical situations [76, 99, 121] and is used

to describe internal or restricted dynamics. If the radius of the sphere is denoted as a, the

diffusion coefficient of the localized motion is denoted as D, then the incoherent scattering

law reads:

S(Q,E) = A0
0δ(E) +

1

π

∑
{l,n}6={0,0}

(2l + 1)Aln(Q)
(xln)2D/a2

((xln)2D/a2)2 + E2
(2.29)

where the structure factors Aln are expressed in the following way:

Aln(Q) =
6(xln)2

(xln)2 − l(l + 1)

[
Qajl+1(Qa)− ljl(Qa)

(Qa)2 − (xln)2

]2

, Qa 6= xln, {l, n} 6= {0, 0} (2.30a)

=
3

2
j2
l (x

l
n)

(xln)2 − l(l + 1)

(xln)2
, Qa = xln, {l, n} 6= {0, 0} (2.30b)

In particular the EISF is

A0
0 =

[
3j1(Qa)

Qa

]2

, {l, n} = {0, 0} (2.31)

For Qa→∞ the analytical expression of the QENS broadening reduces to one Lorentzian

with the linewidth recovering the DQ2-behaviour. In general, the scattering law already

resembles that of unrestricted translational diffusion for Qa > π, whereas it is similar to the

rotational model for Qa < π.

The first 99 coefficients xln were numerically computed and can be found in the original

work by Volino [120]. Unfortunately, the series in Eq. 2.29 is slowly convergent and for

a proper direct fitting routine and parameter evaluation at least these 100 summands are

required. To circumvent the problem, elastic intensity and hence EISF can be determined

first, which gives access to the radius of the sphere. However, it is important to be sure in

this case that the linewidth of the resolution function is much narrower than D/a2 and the

elastic line is really well separated.
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2.3.6 Gaussian model for localized translational motion

The model for localized dynamics based on Gaussian statistics is close to the previous one,

but it considers the restricted diffusion in a confinement with a “soft” boundary. As the

analytical expression of this model is much simpler, its application may be in many cases

more advantageous in comparison with more robust calculations for the diffusion in a sphere

model. It is necessary to mention that this model has been only recently introduced by

Volino et al. [122] and it has been tested on a handful of real systems [123–125].

In contrast to the previous model, a continuous and infinitely derivable potential is

used, that corresponds to restricted dynamics in a sphere with a soft boundary. For a one-

dimensional case the displacement of a particle moving along the x -axis is assumed to be a

centred Gaussian random variable, for which the normalized equilibrium density probability

p(ux) reads:

p(ux) =
1√

2π〈u2
x〉

exp

[
− u2

x

2〈u2
x〉

]
(2.32)

Assuming that the process is stationary, the correlation function ρ(t) of this variable is given

by

〈ux(t)ux(0)〉 = σ2ρ(t) (2.33)

where σ2 = 〈u2
x〉 characterizes the size of the domain, in which the particle is diffusing. The

boundary conditions of the correlation function are ρ(0) = 1 and ρ(∞) = 0. For a three

dimensional case (〈u2
x〉 = 〈u2

y〉 = 〈u2
z〉) the intermediate scattering function I(Q, t) has the

following form:

I(Q, t) = exp
[
−Q2〈u2〉 (1− ρ(t))

]
(2.34)

Different functional expressions can be used to describe how the memory about the initial

position is lost. The simplest form is, however, exponential with the characteristic time τ0:

ρ(t) = exp

(
− t

τ0

)
(2.35)

At this point one can define the diffusion coefficient of the localized motion Dloc:

Dloc = 〈u2〉/τ0 = σ2/τ0 (2.36)

Its physical meaning becomes more clear in the limiting case of an infinite medium, in

other words, for Q2〈u2〉 � 1. It is evident upon examination of Eq. 2.34 that I(Q, t) will



Theoretical principles 20

have significant values only when ρ(t) → 1 or from Eq. 2.35 when t/τ0 � 1. Then the

intermediate scattering function in the first approximation equals:

I(Q, t) ≈ exp

[
−Q2〈u2〉 t

τ0

]
(2.37)

Equation 2.37 recovers the usual law for continuous diffusion in an infinite medium with the

diffusion coefficient expressed by Eq. 2.36.

In order to change to the frequency or energy domain, the intermediate scattering function

can be written in the form of a series expansion:

I(Q, t) =A0(Q) +
∞∑
n=1

An(Q)ρ(t)n =

=A0(Q) +
∞∑
n=1

An(Q) exp

(
−nt
τ0

) (2.38)

where the elastic (n = 0) and quasielastic (n > 0) incoherent structure factors An(Q) are

given by

A0(Q) = exp
[
−Q2σ2

]
(2.39a)

An(Q) = exp
[
−Q2σ2

] (Q2σ2)
2

n!
(2.39b)

After performing Fourier transform with respect to time

S(Q,E) =
1

2π~

∞∫
−∞

I(Q, t) exp
(
−iE~ t

)
dt (2.40)

and expressing τ0 through Dloc, the final formula for the incoherent scattering law can be

obtained:

S(Q,E) = e−Q
2σ2

[
δ(E) +

∞∑
n=1

(Q2σ2)n

n!

1

π

~nDloc/σ
2

(~nDloc/σ2)2 + E2

]
(2.41)

For practical issues it is necessary to truncate the series expansion, which is not an ideal

case for the high-Q region. Nevertheless, the comparison of Eq. 2.41 and 2.29–2.31 shows a

definite advantage of the Gaussian model: it involves only a single-index series, which turns

out to be better convergent as well. Moreover, it is likely to better describe real physical

systems because of the soft boundary.



3. Materials and Methods

3.1. Materials

A large number of different classes of ILs exist. Some of them have been extensively

investigated by different methods. Examples are imidazolium, pyridinium, phosphonium,

quaternary ammonium, and pyrrolidinium salts. In this work, it has been decided to focus

on those ILs, which fulfil the following requirements:

• ILs chosen for the study should be relatively well-known and some data on their most

common properties should be available in the literature;

• compounds should possess promising properties from the point of view of possible

applications;

• ILs should contain an organic cation rich with hydrogen atoms, so that one can profit

from an intense incoherent signal in a QENS-experiment; at the same time, no hydrogen

atoms should be included in the anion structure in order to simplify the analysis;

• in order to make advantage of deuterium labelling, a possibility to synthesize partially

deuterated samples should exist.

The choice has been made in favour of the compounds listed in Table 3.1. The two

first ILs belong to the class of pyridinium-based salts. Recently Docherty [126] et al. have

shown that they are generally more environmentally friendly, concerning biodegradability,

than their more popular imidazolium-based counterparts. Besides, they show some beneficial

properties for such applications as dye-sensitized solar cells [127] and ionogels, based on the

confinement of an IL in a thermally stable inorganic skeleton [128]. This family of ILs has

been also selected because the cation can be easily modified concerning the alkyl chain length.

The third compound is a representative of a sub-class of protic ionic liquids (PIL) [129],

which are produced by combining a Brønsted acid and a Brønsted base. The main advantages

of PILs arise from their anhydrous proton conductivity. A proton is transferred from the

acid to the base, leading to the presence of proton-donor and -acceptor sites and hence
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Table 3.1. List of ionic liquids investigated

compound cation structure anion structure abbreviation

1-butylpyridinum
bis(trifluoromethylsul-
fonyl)imide

N C
4
H

9
N SS

O

O

O

O

F F

F

F

F

F

[BuPy][Tf2N]

1-dodecylpyridinum
bis(trifluoromethylsul-
fonyl)imide

N C
12

H
25

N SS

O

O

O

O

F F

F

F

F

F

[C12Py][Tf2N]

trifluoromethanesul-
fonate of triethylammo-
nium

N

C
2
H

5

C
2
H

5

C
2
H

5

H
S F

F

O

O

O

F

TEA-TF

of a hydrogen-bond network. The proton conductivity of PILs is of interest for fuel cells,

dye-sensitive solar cells, or double-layer electrochemical capacitors. TEA-TF studied in this

work was reported to be applicable for high-temperature proton exchange membrane fuel

cells (HT-PEMFC) [130, 131] and for electro-catalytic oxidative cleavage of lignin [17].

Table 3.2. Physical properties of the studied ionic liquids

[BuPy][Tf2N] [C12Py][Tf2N] TEA-TF

molecular weigth
M , g/mol

416.363 528.579 252.277

mass density (25 ◦C)
ρ, g/cm3

1.4547[132]

1.4476[133]

1.4539[134]
1.2488[133] 1.2546[135]

1.41[136]

self-diffusion coefficient
(117 ◦C)
Dcation · 10−10, m2/s

2.940[134, 137] – 2.110[130]

self-diffusion coefficient
(117 ◦C)
Danion · 10−10, m2/s

2.428[134, 137] – 1.820[130, 136]

Table 3.2 summarizes recently published physical properties of the studied ILs relevant

for this work. Diffusion coefficients are measured by means of PFG–NMR and their tem-

perature dependence follows Vogel-Fulcher-Tamman equation, which is quite common for

supercooled liquids. Information on [C12Py][Tf2N] is not available, but comparing viscosity

data for pyridinium-based ILs, one can expect the diffusion coefficient to be less than that

of [BuPy][Tf2N]. Oliveira et al. [138] assumed that it can be connected with the formation

of both charged and non-polar microstructures, the latter being formed by the alkyl chains.
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In the case of TEA-TF self-diffusion coefficients were determined for three types of par-

ticles: trifluoromethanesulfonate (TF), triethylammonium (TEA) and H+. It turned out

that all three species are characterized by different mobility. The diffusion coefficients of H+

and TEA are similar but higher than that of TF. It proves that the amine mainly provides

proton transport [130, 136].

3.1.1 Synthesis and characterisation

All the samples were obtained from the research group of Professor Hempelmann, Saarland

University, Saarbrücken. They were synthesized and purified, using previously published

methods [125]. The partially deuterated ILs were prepared by the same procedure, but

with deuterated educts. The samples were stored as dry as possible in a desiccator, as the

different water content may substantially influence physicochemical properties of ILs. The

water content (< 150 ppm) was controlled by means of Karl Fischer titration, 1H NMR

spectra were used to check the purity of the samples and the quality of partial deuteration

(98.16 < %D < 99.70). The complete list of the used samples is presented below:

1. [BuPy][Tf2N] or [NC5H5–C4H9][Tf2N]

2. [BuDPy][Tf2N] or [NC5H5–C4D9][Tf2N] (chain deuterated)

3. [BuPyD][Tf2N] or [NC5D5–C4H9][Tf2N] (ring deuterated)

4. [C12Py][Tf2N] or [NC5H5–C12H25][Tf2N]

5. TEA-TF or [NH(C2H5)3][SO3CF3]

6. TEAD-TF or [NH(C2D5)3][SO3CF3] (partially deuterated)

3.1.2 Characterization by differential scanning calorimetry (DSC)

For characterization of the studied ionic liquids, determination of the temperatures of phase

transitions, DSC measurements have been carried out with a Netzsch DSC 204F1 System.

Measurements were performed on heating and cooling with a rate of 5–10 K/min using 20–

30 mg samples encapsulated in standard Al crucibles with a pinhole at the top of them. An

empty aluminium crucible was used as a reference. An argon stream served as a protective

gas during the whole experiment. The samples were dried in situ in the differential scanning

calorimeter by holding the sample at 100 ◦C for 30 minutes. It is important, because it

is often reported that the presence of water can affect the glass transitions and melting

temperatures [6, 7]. Measurements were performed on cooling the samples from 100 ◦C to -

150 ◦C, followed by heating from -150 ◦C to 100 ◦C. Melting and crystallization temperatures

were determined as the onset of the transition both at the rate of 5 ◦C/min and 10 ◦C/min.
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Table 3.3. Temperatures of crystallization (Tcr), cold-crystallization (Tcc) and melt-
ing (Tm) obtained from the DSC-curves shown in Fig. 3.1

cycle transition [◦C] 5 K/min 10 K/min literature

[BuPy][Tf2N]

cooling Tcr –37.0 –19.0 –

heating Tm 24.5 24.5 26[134]

[C12Py][Tf2N]

cooling Tcr –3.0 –5.0 –

heating Tm1 –38.0 –38.0 –
Tcc –11.5 –6.5 –
Tm2 14.0 14.0 –

TEA-TF

cooling Tcr –22.0 –26.0 –

heating Tcc –82.5 –77.5 –72.5[139]

Tm1 –45.0 –43.5 –43.5[139]

Tm2 27.5 28.5 32.0[139]

The main sources of uncertainty in the temperature measurements are inexact placement

of the sample in the furnace and instrument variability. In addition, even slight impurities in

ILs, especially traces of water, are likely to cause larger errors than any other uncertainties

and lead to non-reproductive results [6]. Furthermore, the DSC curves of all samples exhibit

distinct dependence on the temperature history and scanning rate. Both crystallization and

cold crystallization points are affected by the rate of cooling or heating. Nevertheless, the

onset points for melting peaks seem to be independent of the applied heating/cooling rate.

Table 3.3 contains the results of the measurements and the reported literature values.

The main feature common for all of the three DSC-traces (Fig. 3.1) is a huge difference

between the temperature of crystallization on cooling and the temperature of melting on

heating. Many ILs as glass forming materials can be supercooled below the melting temper-

ature by as much as 50 or even 200 ◦C [7]. However, weak glass transitions were not detected

with confidence on the obtained DSC-curves. The characteristic changes in the heat capacity

were too small to see a significant step in the traces.

Three types of thermal behaviour have been differentiated for other ILs [6, 7]. The first

group of ILs crystallizes on cooling and melts at a distinct temperature on heating. The

DSC-trace of [BuPy][Tf2N] demonstrates this behaviour under the experimental conditions
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employed. The second group of ILs does not feature any true phase transition but only

the formation of an amorphous glass. The third type of behaviour is characterized by the

presence of so-called cold-crystallization peaks on heating. At first the compound turns

from the glass to a subcooled liquid phase and then it actually crystallizes upon heating and

undergoes melting at higher temperatures. [C12Py][Tf2N] and TEA-TF can be assigned to

the last type of behaviour. Besides, TEA-TF has two melting transitions on the obtained

DSC-curves, which are usually ascribed to melting of the water-TEA-TF (∼28 ◦C) and the

pure PIL (∼–44 ◦C) domains, respectively [139, 140]. It is worth noting that comparison of

the two pyridinium-based ILs shows the same tendency observed for imidazolium based ILs:

the longer the alkyl chain, the lower the melting temperature is [66].

3.1.3 Neutron scattering cross sections of the studied ILs

The efficiency of interaction between an incident neutron and a target nucleus is represented

by means of the quantity called nuclear cross section. As the neutron can be either scattered

or absorbed by the target, the values of the scattering (σscatt) and absorption (σabs) cross

sections, respectively, are of relevance for planning a neutron scattering experiment. The

scattering cross-section can be further subdivided into coherent (σcoh) and incoherent (σinc)

scattering cross sections, which show whether collective effects or uncorrelated motions will

influence the spectrum of the scattered neutrons. Table 3.4 summarizes the above mentioned

cross sections of all the species investigated.

In order to minimize absorption effects, an annular hollow cylindrical sample holder

made of aluminium was used. It has an outer diameter of 14.00 mm and an inner diameter

of 12.60 mm, the thickness of the walls being equal 0.25 mm. That yielded the distance

between the inner and outer cylinder of 0.20 mm. Such a sample thickness guarantees that

neutron beam transmission through the sample exceeds 90 %. Thus, the effects of multiple

scattering are negligible and unwanted absorption can be considered to be suppressed.

The values in Table 3.4 indicate that single-particle dynamics of the hydrogen-bearing

cations is predominantly probed by neutrons, since hydrogen is a very strong incoherent

neutron scattering element. The anions give rise only to coherent scattering, which never-

theless remains much less intense than the incoherent one. However, one can see that the

situation can be drastically influenced by hydrogen–deuterium exchange. For that reason

the analysis of the spectra in this work is generally based on the assumption that coherent

contribution can be excluded from consideration. The cases, when it is not actually valid,

will be discussed later in Chapter 7.



Materials and Methods 26

-2

-1

0

1

2

3

4

 

[C
12

Py][Tf
2
N]

 

 

he
at

 fl
ux

 [m
W

/m
g]

exo

exo

-1

0

1

2

3

 heating 10 K/min
 heating 5 K/min
 cooling 10 K/min
 cooling 5 K/min

[BuPy][Tf
2
N]

 

 

 

he
at

 fl
ux

 [m
W

/m
g]

exo

-100 -50 0 50
-1

0

1

2 TEA-TF

 

 

he
at

 fl
ux

 [m
W

/m
g]

T [oC]

Figure 3.1. DSC traces observed on heating and cooling
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Table 3.4. Summary of the neutron scattering cross sections of the studied species.
σabs is given for neutrons with the wavelength of 5.75 Å. 1 b = 10−28 m2.

σscatt [b] σabs [b] σinc [b] σcoh [b] σinc
σscatt

[%]

[Tf2N] 65.70 9.68 0.52 65.18 0.80

[BuPy] 1209.87 21.07 1124.29 85.59 92.93
[BuPy][Tf2N] 1275.58 30.74 1124.81 150.76 88.18

[BuDPy] 540.40 11.51 420.31 120.09 77.78
[BuDPy][Tf2N] 606.10 21.19 420.83 185.27 69.43

[BuPyD] 835.89 15.76 731.14 104.75 87.47
[BuPyD][Tf2N] 901.60 25.43 731.66 169.93 81.15

[C12Py] 2566.74 38.18 2408.62 158.13 93.84
[C12Py][Tf2N] 2632.45 47.85 2409.14 223.31 91.52

TF 31.33 1.80 0.01 31.32 0.04

TEA 1357.27 23.16 1284.83 72.45 94.66
TEA-TF 1388.60 24.96 1284.84 103.77 92.53

TEAD 241.48 7.23 129.95 111.53 53.82
TEAD-TF 272.81 9.03 129.97 142.84 47.64

3.2. Neutron scattering methods and instruments

3.2.1 Time-of-flight spectrometers

Neutron time-of-flight spectroscopy is a powerful method, by means of which several points

in the (Q,E)-space can be simultaneously detected. To obtain this, many time-resolved

detectors are mounted to cover a large solid scattering angle. Energies of incident and

scattered neutrons are calculated from the times the neutron travels a known distance.

The majority of the QENS experiments in this work were performed on the cold neutron

time-of-flight spectrometer FOCUS (Fig. 3.2) at the Swiss spallation source SINQ [141–143].

Some additional measurements were carried out on the chopper time-of-flight spectrometers

IN5 [144] at ILL and TOFTOF [145] at FRM2. All of the instruments have direct geometry

and high flexibility in changing the wavelength of incident neutrons and hence the width of

the resolution function (∆εres). Figure 3.3 demonstrates the landscape of possible observa-

tion times (∼ ~/∆εres) attainable on FOCUS for different monochromators and wavelengths

of incident neutrons. Different parameters and settings of the spectrometers, which have

been applied, are briefly summarized in Table 3.5. Empty sample holder runs at different
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temperatures and vanadium runs were performed for every setting accordingly. The resolu-

tion of the spectrometers was determined either from the vanadium spectra or, when it was

possible, from the spectra of the protonated samples at very low temperatures. The latter

is more desirable, as the geometry of the experiment is completely reproduced, which is not

the case for vanadium samples.

Table 3.5. Characteristics of the TOF-spectrometers

parameter FOCUS IN5 TOFTOF

incident wavelengths λ, Å 2.0–16.0 1.80–20.0 1.4–16.0

elastic energy resolution FWHM, µeV

λ=3.20 Å 450 – 370
λ=5.00 Å 110 90 –
λ=5.75 Å 60 – –
λ=12.0 Å – – 7.5

accessible Q-range, Å-1

λ=3.20 Å 0.70–2.80 – 0.80–3.20
λ=5.00 Å 0.50–1.90 0.7–2.00 –
λ=5.75 Å 0.40–1.70 – –
λ=12.0 Å – – 0.10–0.85

energy transfer range ∆E, meV

λ=3.20 Å [-6.0;6.0] – [-6.0;6.0]
λ=5.00 Å [-2.0;2.0] [-2.0;2.0] –
λ=5.75 Å [-1.4;1.4] – –
λ=12.0 Å – – [-0.4;0.4]

3.2.2 Separation of coherent and spin-incoherent scattering by

means of polarized neutrons

An experiment on separation of the coherent and spin-incoherent neutron scattering of the

pyridinium-based ionic liquid [BuPy][Tf2N] has been performed on the cold neutron multi-

detector spectrometer with polarization analysis D7 at ILL [92, 146]. It had the option of

polarizing the incident beam and equipped with supermirror analyser detector banks over a

132◦ angular range, allowing uniaxial and XYZ polarization analysis. A magnetic guide field

of about 10–20 G (1.0–2.0 mT) is maintained along the path of the incident and scattered

neutrons everywhere within D7 to preserve the spin state of the neutron. Using a vertically

and horizontally focusing pyrolytic graphite monochromator incident neutrons of wavelength
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4.86 Å were selected. The addition of a Fermi chopper allowed us to take advantage of the

TOF-mode with longitudinal polarization analysis. The efficiency of the detectors was cal-

ibrated by measuring a vanadium sample. The vanadium spectra were also used as the

resolution function of the instrument, the corresponding energy resolution (FWHM) being

equal to 0.14 meV. For the selected wavelength of incident neutrons the dynamic range

amounted to [-2.0;2.0] meV, the wavevector transfer covering the region of 0.6–2.2 Å−1.

Figure 3.4. D7 instrument layout

As it follows from the theoretical principles of the polarization analysis considered in

Chapter 2.2, the total scattering intensities without (I↑↑, non-spin-flip intensity) and with

(I↑↓, spin-flip intensity) the change in the neutron-spin state are given by:

I↑↑ = Icoh +
1

3
Iinc (3.1a)

I↑↓ =
2

3
Iinc (3.1b)

Equations 3.1 are only valid in the ideal case; in practice the properties of the measuring

equipment and its imperfections should be taken into consideration. The quality of the

instrument is characterized by the quantity called “flipping ratio”, measured in an additional

run for each detector with a quartz standard, which is a purely coherent scatterer in theory.

Despite that, the scattering with the change in the neutron-spin state will be detected in a

real experiment. Neither the polariser, nor the analysers are perfectly polarizing, the chopper

producing additional depolarizing effect. Assuming that the quartz transmission was equal

to 0.9, the flipping ratio R = I↑/I↓ was calculated for each detector (Fig. 3.5). The detectors,

for which R-value was less than 5 were excluded from the further data reduction process. The
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high 2θ-value range was affected most of all, resulting in the reduction of the theoretically

possible Q-space, accessible for analysis.
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Figure 3.5. Flipping ratio R as a function of the scattering angle 2θ

After this the flipping ratio correction of the registered intensities can be performed as

follows [93]:

I↑↑corr = I↑↑ +
1

R− 1

[
I↑↑ − I↑↓

]
(3.2a)

I↑↓corr = I↑↓ − 1

R− 1

[
I↑↑ − I↑↓

]
(3.2b)

and the final expressions for the coherent and spin-incoherent scattering read:

Icoh = I↑↑corr −
1

2
I↑↓corr (3.3a)

Iinc =
3

2
I↑↓corr (3.3b)

3.2.3 Neutron backscattering

Backscattering techniques, applied for a wide variety of problems, provide a very good energy

resolution, typically ∆E 6 1µeV , that corresponds to the time-scale of nanoseconds.

To study dynamical processes in the ILs at low temperatures both elastic scan measure-

ments on heating and cooling and QENS-experiments at several temperatures were carried
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Figure 3.6. IN10 instrument layout

out on the IN10 backscattering spectrometer at ILL [147]. Figure 3.6 presents the instru-

ment layout. By choosing a suitable combination of monochromator and analyser crystals

(Si(111)) the wavelength of incident neutrons of λ = 6.3 Å was achieved. The energy reso-

lution FWHM equalled 0.8 µeV (time window for the elastic line ∼ 1 ns). Seven detectors,

covering the Q-range 0.5–2.0 Å-1, provided a moderate momentum transfer resolution (the

corresponding length window ∼ 1–10 Å).

In the QENS mode the energy transfers were scanned by varying the incident energy

by Doppler shifting with the frequency of 10.10 Hz. The efficiency of the detectors was

calibrated by measuring a vanadium sample. For the background subtraction empty can

runs were performed. Taking into account that the QENS signal is very weak and broad

relative to the dynamic range of the instrument, the resolution function was determined using

the protonated sample at low temperatures where all dynamics are “frozen”. Numerical

convolution of a model function with the resolution was employed for a fitting procedure.

In the elastic scan mode the temperature range of 2–320 K was covered. In the interest of

time an empty can measurement was carried out only at several temperatures; afterwards the

background contribution was estimated by interpolation using the temperature dependence

of the Debye-Waller factor for aluminium [148]; then the standard procedure for analysis of

elastic scans was applied [149].

The elastic intensity is proportional to the experimentally measured intensity in the

channel at E = 0, i.e. the elastic peak is integrated over the whole energy transfer range

with the resolution function R(E). As the resolution function falls to zero at higher E, for

the sake of simplicity the limited dynamical range of the instrument can be extended to an

infinite one:
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S̃(Q,E = 0) =

∞∫
−∞

R(E ′)S(Q,−E ′)dE ′ (3.4)

Next, as a first step of data evaluation, an intensity normalisation to the intensity measured

at a low temperature was performed, where no significant motion is present. Assuming that

for T ≈ 0 K S(Q,E) = I0(Q)δ(E), the normalized elastic intensity reads:

Iel(Q) =

∫∞
−∞R(E ′)S(Q,−E ′)dE ′

I0(Q)R(E = 0)
(3.5)

This procedure should be carefully carried out, allowing for a coherent contribution, which

may cause, especially at low temperatures, a sufficiently large contribution, where the static

structure factor has its maxima. The normalization may cancel this contribution only in the

case of negligible thermal expansion.

To simplify fitting of elastic scans the experimentally measured resolution function in

Eq. 3.5 can be substituted by either a Gaussian or a Lorentzian curve [150]. To some extent

a Gaussian curve might be preferred [114, 149] and it fits the resolution function of IN10

slightly better than a Lorentzian curve does. But it was decided in favour of Lorentzian with

HWHM=Γres because of its mathematical simplicity regarding convolution process. Under

the condition that the harmonic approximation may be used for the Debye-Waller factor and

in the case of one of the simplest incoherent scattering laws, given by:

S(Q,E) = EISF(Q)δ(E) + [1− EISF(Q)]L(E,Γ) (3.6)

where L(E,Γ) is a Lorentzian curve with the linewidth Γ, the dependence of the elastic

intensity on temperature reads [151]:

ln(Iel) = −CT
3
Q2 + ln

{
EISF(Q)

πΓres

+
[1− EISF(Q)]

π(Γ + Γres)

}
(3.7)

where C is the temperature coefficient of the mean squared displacement (〈u2〉 = CT ).





4. Data reduction and analysis

4.1. Raw data reduction

QENS method permits almost the direct determination of the scattering function S(E,Q),

which is also commonly referred to as the dynamical structure factor (except the neutron

spin echo technique, which measures the intermediate scattering function I(Q, t) [152, 153]).

Time-of-flight (TOF) spectrometers employed for this work (FOCUS at SINQ, Switzer-

land [141]; D7 [146], IN5 [144] and IN10 [147] at ILL, France) provide spectra, which are

2D-data sets, where intensity counts depend on the time, when a neutron is registered at a

detector, and the angle of this detector (S(t, 2θ)). For further analysis, data reduction is re-

quired, which computes the dynamic structure factor S(E,Q). This quantity is independent

of the instrument parameters such as chopper speed, the number of time channels and their

width, detector angles, or the length of the flight paths. Data reduction normally comprises

several steps:

• elimination of bad detectors;

• TOF correction (wavelength calibration);

• conversion from time to energy domain;

• self-shielding correction and background subtraction;

• detector efficiency correction, vanadium normalization;

• energy (E ) and wavevector (Q) transfer binning;

• normalization to the monitor value.

A time-of-flight raw data file from FOCUS, for example, contains the information about

the speed of the Fermi and disk choppers, the distances from the Fermi chopper to the

sample lFCtoS, from the sample to the detectors lStoD and so on, the monitor rate counts

Imon and the 2D-array of the rate counts of all the detectors Id[i, j], the vectors of their

polar angles 2θ[j] and of the time channels t[i]. The wavelength λ0 of incident neutrons

can be used as given in the data file or can be calculated from sample runs at the step of
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wavelength calibration. Let t0 = lFCtoSλ0mn/(2π~) be the time, when the neutrons reach the

sample, then tf [i] = t[i]− t0 is the time, during which a neutron travels from the sample to

a detector. Their velocities and wavevectors after the scattering event can be calculated as

vf [i] = lStoD/tf [i] and kf [i] = mnlStoD/~tf [i], respectively. The measured counts at the j-th

detector within one time channel ∆t[i] = tf [i + 1] − tf [i] are proportional to the incoming

neutron flux Φ, the double differential cross section of the sample, the solid angle ∆Ω[j],

subtended by the detector, the efficiency of the detector η and the corresponding energy

interval ∆E[i] = Ef [i+ 1]− Ef [i]:

Id[i, j]∆t[i] =
d2σ

dΩdE
ηΦ∆Ω[j]∆E[i] (4.1)

The time and energy intervals are related to each other as:

∆E[i] =
mn

2

(
v2[i+ 1]− v2[i]

)
=
mnl

2
StoD

2

(
1

t2f [i+ 1]
− 1

t2f [i]

)
≈ −mnl

2
StoD

∆t[i]

t3f [i]
(4.2)

Taking into account Eq. 2.6, the final formula for the experimentally determined scatter-

ing law reads:

σinc

4π
Sinc(2θ, E) +

σcoh

4π
Scoh(2θ, E) =

2π~t4f [i]
NηΦ∆Ω[j]m2

nl
3
StoDλ0

Id[i, j] (4.3)

The detector efficiency can be corrected by normalizing the data with the integrated

intensity of a vanadium sample with identical to the sample container scattering geometry,

because vanadium is a dominant incoherent scatterer. As the incoming neutron flux Φ may

vary in time, the count rate at the detectors should be also normalized to the rate counts of

the control monitor Imon, mounted in front of the sample.

Background subtraction is not straightforward; simple subtraction of the empty can runs

from the sample runs would produce an error. A proper treatment of the shielding effect

due to absorption and scattering should be undertaken [154]. For the annual geometry with

a hollow cylinder the intensity at the scattering angle 2θ can be written as a sum over four

regions (Fig. 4.1):

I(2θ) =
4∑

k=1

Ik(2θ), Ik(2θ) = ΦVkµk(2θ)f
m
k (2θ)∆Ω/4π (4.4)

where Vk is the illuminated volume of region k and µk is the macroscopic differential cross

section for the scattering from region k into the detector at the scattering angle 2θ. The

self-shielding factors (SSFs), denoted as fmk (2θ), depend not only on the scattering angle and

the region, but on the type of the measurement (sample or empty can runs). The sample
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container used in this work was made of aluminium (region 2 and 4); region 1 was normally

evacuated; and finally region 3 was filled with an IL.

For the empty can (EC) measurement there are contributions from regions 2 and 4:

IEC = Φ(∆Ω/4π)µAl(2θ)
[
V2f

EC
2 (2θ) + V4f

EC
4 (2θ)

]
(4.5)

whereas for the full can (Fl) measurement there are contributions from regions 2,3, and 4:

IFl = Φ(∆Ω/4π)
{
µAl(2θ)

[
V2f

Fl
2 (2θ) + V4f

Fl
4 (2θ)

]
+ µsam(2θ)V3f

Fl
3 (2θ)

}
(4.6)

After some algebraic manipulation the macroscopic differential cross section of the sample

can be written in the following form:

µsam(2θ) =
1

Φ(∆Ω/4π)V3fFl
3 (2θ)

[
IFl(2θ)− IEC(2θ)g(2θ)

]
(4.7)

where

g(2θ) =
V2f

Fl
2 + V4f

Fl
4

V2fEC
2 + V4fEC

4

(4.8)

Sometimes the latter factor is called the sample attenuation factor (SAF). In order to cal-

culate it within a constant, SSFs are needed in addition to the volumes and the measured

intensities of the two runs (Fl and EC). Software for neutron scattering data reduction usu-

ally provides means for numerical calculation of SSFs for different experimental geometries.

The software package DAVE (the Data Analysis and Visualization Environment) [155]

was used for the reduction of FOCUS spectra; data acquired on the ILL and FRM II instru-

ments were accordingly treated in LAMP (Large Array Manipulation Program) [156].

4.2. 2D-fitting routine

After data are transformed into the (Q,E)-space, spectra can be analysed via fitting

the scattering function by model functions convoluted with the resolution function of an

instrument. Model functions usually depend both on energy- (E ) and wavevector- (Q)

transfer of neutrons and the fitting procedure is performed for a selected Q-group. Thus Q

is handled as a fixed parameter. After all Q-groups are fitted, a user gets Q-dependences

of different parameters such as, for example, linewidth, intensity, radius of confinement,

relaxation time, which can be further analysed. Such an approach is used in the DAVE

package in the frame of the general-purpose curve-fitting application called PAN (for Peak

ANalysis). It is a very convenient tool, which provides means for factoring the instrumental
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Figure 4.1. Hollow cylinder (top view);
regions 2 and 4 represent the material, the
container is made of, while region 3 is to be

filled with the liquid
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Figure 4.2. (E,Q)-space, available for
probing with the wavelength of incident

neutrons of λ=5.75 Å

resolution function into the data analysis, contains a library of pre-defined functions and has

an option to define simple user-functions and save it for later use. But if a studied system

cannot be described by a simple model with a small number of adjustable parameters, the

fitting routine becomes unstable, because several local minima may exist. This can already

be the case for a two-component scattering function (an elastic line and one Lorentzian, or

two Lorentzians), to say nothing of more than two components. According to experience

it is usually impossible to obtain compatible stable fit results for all Q-groups at the same

time [73]. The way out is to use an advanced two-dimensional surface fit, when both energy

transfer and wavevector transfer are considered to be independent variables, or even a three-

dimentional fit with the temperature as an additional variable [157, 158]. An advantage of

this approach is also less stringent requirements on the statistical quality of spectra. The

RAINS module (for Refinement Application for Inelastic Neutron Scattering) within the

DAVE-package was elaborated for this kind of tasks. However, its functionality and the

number of model functions included are limited.

Therefore the program code for the 2D-fitting program module (Fig. 4.3) has been written

by means of the IDL programming language on the bases of the mpcurvefit procedure

(non-linear least squares curve fitting) [159, 160], which was used as given. The core of the

procedure is the Levenberg–Marquardt algorithm (the damped least-squares method) [161],

which allows surface fitting. The same procedure is used both in PAN and RAINS and shows
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good efficiency and convergence within reasonable computational time.

The main structure of the program module, which is initialized on starting it, is shown

below:

state = {resPtr:ptr new(/allocate heap), $

funPtr:ptr new(/allocate heap), $

maskPtr:ptr new(/allocate heap), $

errorPtr:ptr new(/allocate heap), $

xvalsFunPtr:ptr new(/allocate heap), $

xvalsResPtr:ptr new(/allocate heap), $

xvalsFitPtr:ptr new(/allocate heap),$

QvalsPtr:ptr new(/allocate heap), $

fitPtr: ptr new(/allocate heap), $

ParamPtr: ptr new(/allocate heap), $

ParamNamesPtr: ptr new(/allocate heap), $

fitfunc: ’’, $

xRegion: [-1.0,1.0], $

Qregion: IntArr(2), $

thisPath:’’, $

indexWin:0, $

indexErr:0, $

fixedParmList: ’’}

The structure contains the pointers to the 2D-arrays of the spectrum (funPtr), of the

resolution function (resPtr), and of the convolution of the fit model and the resolution

function (fitPtr). As the arrays of energy transfer may be different in all cases (different

energy binning for the resolution function and the spectrum, or E -bins are not equally

spaced), the corresponding pointers xvalsFunPtr, xvalsResPtr, xvalsFitPtr have been

included as well. The user can define energy-window for fitting, in other words, arbitrary cut

the spectrum at those E -values, where the intensity is very low and the signal is very noisy.

This user setting is stored in the structure field xRegion. The array of one more independent

variable (wavevector transfer) is pointed by QvalsPtr. The user can decrease the number

of Q-groups as well by changing the field Qregion. errorPtr pointers to the array of signal

errors. The 2D-fitting program module reads spectra saved in *.dave format [162, 163], which

is automatically created if the data reduction have been performed in DAVE. In other cases

conversion must be carried out.

The field maskPtr warrants further attention. In comparison to RAINS, which allows

working only with a rectangular region of (E,Q)- space where all histogram points are

defined, the proposed code can fit spectra for the region limited by a user on one side (via
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Figure 4.3. A screenshot of the 2D-fitting program module

xRegion) and the conservation laws on the other side (Fig. 4.2) at the same time. This

allows to increase the energy window for high Q-values, where a QENS-spectrum is usually

much broader and larger energy transfer values are required for an unambiguous analysis.

The program module finds those points, which belong to the rectangular region defined by

the user, but with the error value being equal to -1 (undefined). This information is stored

in the array mask and undefined points are not taken into account, while calculating χ2 in

the fitting routine.

The model functions were written as separate IDL-procedures, so that new ones can be

easily added on request. Functions can include build-in functions as Bessel functions or

they can be defined as series or integrals of other standard functions. The name of the

corresponding procedure is stored in the field fitfunc. ParamPtr and ParamNamesPtr are

the pointers to the arrays with the adjustable parameters and their names respectively. All

parameters can be divided in two groups. The first group (single parmnames) does not
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depend on Q-values and is usually explicitly defined in a theoretical model of the scattering

law, for example, diffusion coefficients, radii of confinement, relaxation times. The second

group (multi parmnames) contains parameters, which are different for every Q-group and

might not even have any meaningful dependence on Q, as for example, center of the line or

misalignment parameter; flat background, which contains a part of the temperature depen-

dent phonon density of states; intensity. If to consider all multiparameters as adjustable in

the fitting routine, it can unpredictably increase computation time or lead to malfunction.

Therefore, some of them can be calculated by fitting every Q-group separately in PAN, saved

as a csv-file and transferred to the 2D-fitting program module. This approach is implemented

via the reference to the csv-file in the field fixedParmList. The syntax of model functions

is shown below:

pro function name, xvals, parms, yout,$

parmnames = parmnames, $

single parmnames = single parmnames, $

multi parmnames = multi parmnames, $

Extra = extra ;

As mpcurvefit accepts only 1D-vectors as independent variables, it is necessary to con-

catenate E - and Q- vectors in xvals and pass to the model function and the fitting procedure.

The reverse extraction of the independent vectors is performed in the body of every model

function. The necessary information for this step is passed via Extra functionality. Extra

is a structure with several fields: number of E - and Q- bins, the pointer to the instrument

resolution function (The Levenberg-Marquardt algorithm requires numerous evaluations of

the fit function, so passing the array would slow down the performance), the array mask and

the array of externally determined fixed parameters as line centres or intensities. parms is a

1D-array with adjustable parameters, yout is the 2D-result of the whole procedure, or the

convolution of the model function with the instrument resolution function. The procedure

mpcurvefit implies weighted fit, when one gives less weight to the less precise measure-

ments and more weight to more precise measurements. The weights are calculated from the

experimental histogram errors as weight = 1/error2. The uncertainties in the adjustable

parameters returned by mpcurvefit are based on the curvature of the χ2 surface [162].

For handling adjustable parameters a user can call the window “initial parameters”, where

he can set an initial guess for any parameter, lower or/and upper limits of its value or fix

the parameter (Fig. 4.3). The procedure for saving and restoring adjustable parameters is

implemented as well (SaveFitPar, RestFitPar). A part of the graphical user-interface are

the procedures (drawcurves, SelectGroup), which allow a user to select a Q-group and to
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see the results of the fitting (a spectrum and residuals) in the plot window. Thus the user

can estimate the quality of the fit and the applicability of the chosen model function.

The validity of the 2D-fitting program module was tested on the generated QENS-data

with the predefined model.



5. Cation dynamics in pyridinium-based ILs

This chapter contains the results of the QENS-studies on the pyridinium based ILs

[BuPy][Tf2N] and [C12Py][Tf2N]. As introduced in Chapter 3 these compounds belong to

the class of ILs with important properties for potential electrochemical applications. Be-

sides, the demand for the physical-chemical data on these ILs is likely to increase on account

of their better biodegradability.

The goal of the study was twofold. First, fundamental understanding of the influence

of the alkyl chain on microscopic dynamics is essential for designing molten salts. Many

groups of ILs have alkyl side groups, which allow to change their physicochemical properties

(viscosity, diffusivity, density, conductivity, phase transition temperatures). This way, the

self diffusion coefficients of both the cations and the anions decrease with increase in the

number of carbon atoms in the alkyl chain of imidazolium-based ILs [60, 66]. The diffusion

of ions is governed by electrostatic forces, as well as by inductive forces. The latter are

affected by at least two factors: the size of the ion and its shape [164]. With increase in

the alkyl chain length, the role of the inductive interaction becomes much more influential,

resulting in higher viscosity values. Frictional forces between aggregates and clusters and

steric hindrance may additionally come into interplay. On the other hand, Tsuzuki et al. [165]

showed that conformational flexibility and internal rotations of alkyl side chains enhance the

microscopic dynamics. The authors also emphasized that the planar shape of aromatic

cations is usually more favourable for diffusivity in comparison with some other more bulky

ions [53].

Second, in order to unravel complex motions overlapping on the nano- and picosecond

time scale, it was decided to derive benefit from deuterium labelling. With respect to the in-

ternal dynamics of a pyridinium-based cation, one may expect to observe contributions from

the alkyl chain (torsional rotations, libration of the whole chain, methyl group rotations) and

from the pyridinium ring (out-of-plane libration and rotation). Thus, two partially deuter-

ated samples of [BuPy][Tf2N] were investigated: either the chain of the cation [BuDPy][Tf2N]

or the ring [BuPyD][Tf2N] were deuterated. To the best of our knowledge this approach has
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not been widely used for ILs so far. Hence it may shed more light on the heterogeneous

dynamics of ILs.

5.1. Low-temperature dynamics in [BuPy][Tf2N]

To disclose the nature of the low-temperature processes both elastic scan measurements

and QENS-experiments on three samples (totally protonated [BuPy][Tf2N], and partially

deuterated [BuDPy][Tf2N] and [BuPyD][Tf2N]) were performed on IN10. Figure 5.1 presents

the results of the elastic scan measurements carried out upon cooling and heating at the rate

of 0.25–0.50 K/min (lower scan rates were used for the partially deuterated samples). The

temperature range covered in the experiments was 2–320 K.

The abrupt decrease at T = 300 K and increase around 275 K of the elastic intensity

for both samples are evidently connected with the solid-liquid phase transitions, which are

also observable in DSC-curves as a melting and crystallization peak (Fig. 3.1). The position

of the latter strongly depends on the cooling rate. In Figure 5.2 the low temperature range

of the elastic scans at Q = 1.85 Å-1 is displayed. This Q-value was chosen for analysis

and fitting to minimize unwanted coherent scattering, which is substantial around structural

maxima at low temperatures observed for the other detectors. The elastic scattering intensity

from the pyridinium ring falls gradually with temperature increase. For the sample with

the protonated chain the dependence changes its inclination twice (at 100 K and 160 K).

This is an indication that a dynamical process is activated and energy exchange occurs

between the sample and the incident neutrons. The gradual drop of the elastic intensity

resembles analogous dependences of other compounds with methyl groups, which rotation

is considered to be thermally activated [112–114, 166]. The dynamic scattering law can

be described by the three-fold jump rotation model or by the rotational diffusion model

(see 2.3.3–2.3.4). Both models are characterized by a relaxation time, which follows an

Arrhenius temperature dependence, τ = τ0 exp(Ea/RT ), where Ea is the activation energy

of the corresponding processes. The value of the latter parameter can be estimated from the

temperature variations of the elastic intensity [151]. In the two limiting cases (~/τ � Γres and

~/τ � Γres) two straight almost parallel lines will be observed, whereas in the temperature

range, where ~/τ ∼ Γres, the logarithm of the elastic intensity will fall faster with temperature

increase. Assuming either the three-fold jump rotation model (Eq. 2.26) or the rotational

diffusion model (Eq. 2.28) and taking into account Eq. 3.6–3.7, the temperature dependency

of elastic intensity scans reads:
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Figure 5.1. Elastic scan measurements on the partially deuterated pyridinium-based ionic
liquids
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Figure 5.2. Elastic scan data for the partially deuterated samples at Q = 1.85 Å-1. A
solid blue line represents the result of the fit using Eq. 5.1
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Table 5.1. Fit results of the elastic intensity scans according to Eq. 5.1 and 5.2

three-fold jump rotation rotational diffusion

τ0, ps 9.0±1.6 2.0±0.4
Ea, kJ/mol 6.5±0.5 7.0±0.6

R, Å 1.10±0.03 1.12±0.04
pmob 0.37±0.02 0.33±0.02

ln Iel(T,Q) =A− CT

3
Q2 + ln

[
1− pmob + pmob ×

×
{

1

3

(
1 + 2j0(QR

√
3)
)

+
2

3

(
1− j0(QR

√
3)
) Γres

Γres + 3~/(2τ)

}] (5.1)

ln Iel(T,Q) = A− CT

3
Q2+ ln

[
1− pmob + pmob ×

×

{
j2

0(QR) +
∞∑
k=1

(2k + 1)j2
k(QR)Γres

Γres + k(k+1)~
6τ

}] (5.2)

where Γres is the half width of the resolution function, pmob is the fraction of hydrogen atoms

involved in the methyl group rotation. Our data are compatible with both models, yielding

the parameter values presented in Table 5.1. The fraction of mobile hydrogen atoms is

around 1/3. This number corresponds to the three protons at the end of the alkyl chain,

whereas the total number of protons in the butyl chain is nine. The radius of the sphere is

1.1 Å, which is in agreement with the characteristic length of the C-H bond in the methyl

group [167, p. 151].

The geometry of the localized dynamics at low temperatures was also considered by

analyzing QENS-spectra. Unfortunately, the available energy-window ([-12.5;12.5] µeV) did

not allow to obtain reliable information about the timescale of the localized motion of the

alkyl chain and the pyridinium ring, as the observed QENS-broadening was either comparable

with the energy-window or much wider and had a visible contribution only for high Q-values,

resulting in relatively high EISF-values (0.7–1.0). This can be explained by the assumption

that a certain part of hydrogen atoms is immobile in the given temperature range and,

hence, contributes to the elastic signal. We applied the rotational diffusion model to analyze

QENS-data for the two partially deuterated samples. The results of the fits are listed in

Table 5.2. At T = 290 K the localized motion of the pyridinium ring can be envisaged as

a diffusion on a sphere with a radius R = 1.5 Å and a relaxation time τ = 12 ps. The

portion of mobile atoms amounts to 0.20. The QENS-broadening of [BuDPy][Tf2N] might be

connected with out-of-plane librations of the ring and the dynamics are essentially “frozen”
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Table 5.2. Fit results of the QENS-spectra according to the rotational diffusion
model

τ , ps R, Å pmob

T =290 K

[BuDPy][Tf2N] 12 1.5 0.20
[BuPyD][Tf2N] 20 1.0 0.35

T =250 K

[BuDPy][Tf2N] 16 1.5 0.15
[BuPyD][Tf2N] ∼20 1.0 0.32

T =175 K

[BuDPy][Tf2N] ∼20 1.5 0.07
[BuPyD][Tf2N] �20 1.0 0.30

T =130 K

[BuDPy][Tf2N] – – ∼0
[BuPyD][Tf2N] �20 1.0 0.26

at the lower temperatures, as pmob does not reach high values. It is anyway clear that the

observed broadening is not a trace of a weak incoherent contribution from the deuterated

butyl chain. Otherwise the elastic scans of the two samples would look similar; the difference

would become apparent only in the size of a step connected with the thermally activated

methyl-group rotation process. With the temperature decrease pmob drops almost to zero,

while the relaxation time of the pyridinium ring libration increases. As for the sample with

the protonated butyl chain, the obtained values for the radius of confinement and the fraction

of mobile atoms are in agreement with the values evaluated from the elastic intensity scans

(R = 1.0 Å, pmob ≈ 0.3). So we may conclude that we observe the dynamics of the end

methyl-group of the alkyl chain.

From the Q-dependence of elastic temperature scans the mean squared displacement

(MSD) for single-particle motions can be calculated in Gaussian approximation.

〈u2(T )〉 = −3Q−2 ln [Iel(Q, T )/Iel(Q, T → 0)] (5.3)

Here 〈u2(T )〉 stands for a full amplitude of a variety of hydrogen motions localized inside

the instrumental length- and time-window. This empirical approach is widely applied to

study molecular flexibility and resilience of proteins [168–171]. However, it is important to

remember that the Gaussian approximation is valid only for small Q-values (〈u2(T )〉Q2 6 2).

The MSD analysis of [BuPy][Tf2N] at low temperatures was complicated by the presence
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of coherent contribution at small Q-values, which are most valuable for this kind of data

characterization (a static structure factor can not be cancelled by normalization if sufficient

thermal expansion is present and the structural maxima shift to lower Q-values with tem-

perature increase), so only the temperatures, for which the studied ionic liquids are in the

liquid state, were considered. Figure 5.3 presents the temperature dependence of MSD for all

the three studied samples. On the time-scale of 1 ns the influence not only of faster internal

motions but also of global diffusion and rotation are expected to be observable, as it follows

from both the theoretically predicted [52, 53, 172] and experimentally proved [173] results.

But it is practically impossible to disentangle all these kinds of motions just by analysing

MSD dependencies for a limited temperature range. From the comparison of MSD of the

partially deuterated samples it is evident that the flexibility of the alkyl chain contributes

more to the energy exchange between the sample and neutrons than the ring.
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Figure 5.3. Mean squared displacement for the partially deuterated and the totally
protonated pyridinium-based ionic liquid

5.2. Model independent analysis of the liquid state

For the temperatures above the melting points (Table 3.3) both the global (translational

motion and rotation of the whole cation) and internal dynamics (different internal rotations

and librations) of ILs become more diverse. As the first step, model independent fits were ap-

plied (see Chapter 2.3), which are, nevertheless, sufficient to reveal some differences between

the samples with the butyl ([BuPy]) and dodecyl ([C12Py]) substituents.
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The data sets presented and compared in this part are collected on FOCUS (λ = 5.75 Å).

Figure 5.4 demonstrates that the measured quasielastic spectra of both samples can be satis-

factorily well described as a superposition of two Lorentzian curves and a linear background

(Eq. 2.21); i.e., no elastic contribution is present in all the measured spectra.
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Figure 5.4. QENS spectrum of a completely protonated [BuPy][Tf2N] sample, measured
on FOCUS at T=300 K and Q = 0.8 Å−1 (symbols) with the fit function (black solid line).
The red and blue lines represent Lorentzian functions, which compose the total fit function.
In the lower panel the residuals between the fit function and the measured intensities are

presented.

The Q- and T -dependence of the parameters in Eq. 2.21 disclose some information about

the time-scale and nature of the observed stochastic motions (Fig. 5.5). The narrower

Lorentzian contribution Γglob(Q) tends to 0 at small Q-values (1a–1b) in the same way as

for long-range diffusional processes (see 2.3.1–2.3.2). Comparing the two pyridinium-based

cations, one can see that unrestricted motion of the heavier [C12Py] cation is slower, in agree-

ment with the tendency for other groups of ILs discussed in the introduction of this chapter.

This linewidth Γglob(Q) is visibly affected by temperature, while the broader Lorentzian

contribution Γloc(Q) (Fig. 5.5; 2a–2b) exhibits a less pronounced temperature dependent

character. The latter tends to an almost constant non-zero value at small Q-values, thus,

giving an indication of a movement in a confined region. This plateaulike behaviour can

be deduced from the “diffusion in a sphere” model or the Gaussian model (see 2.3.5–2.3.6).

The higher Q-value region, where a gradual increase in the linewidth occurs, corresponds

to shorter lengths, which are less than the size of the confinement, and the restricted diffu-

sion can be treated as long-ranged. So the more rapid increase of the [BuPy]-dependence
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for Q > 0.8 Å might point to faster localized dynamics than for [C12Py]. The confinement

might be either due to the surrounding ions, which may form a cage-like structure, or due to

the restricted geometry of the cation (chain and ring librations, conformational changes in

the chain etc.). For more details it is necessary to analyse the EISF-dependences (Fig. 5.5;

3a–3b), which turned out to be almost identical for both samples regardless of their shape

and size. This means that cage-like effects and global rotations inside this cage are likely to

be out of the scope of the length- and time-scale of the measurements in agreement with the

theoretical predictions [52]. Otherwise, the difference in the cation size would be reflected in

the EISF-dependencies. It is also typical for both samples that the decrease of EISF becomes

steeper with increasing temperature, signalizing gradual growth of the confinement size.

It is quite a common approach that, after the preliminary model-independent step has

been performed, EISF(Q) is fitted to Eq. 2.31 or any other explicit expression for EISF

of the model chosen. In this way radii of confinement can be evaluated. Nevertheless, in

this work it was decided not to follow this procedure for several reasons. First, one broad

Lorentzian curve does not really substitute all the summands in the series of the scattering

law (Eq. 2.29). For this reason EISF is not computed accurately, especially for larger Q-

values, where it becomes more obvious that two Lorentzians are a coarse approximation. For

a broader energy transfer window more Lorentzian contributions are needed to describe the

spectrum more precisely. Furthermore, the values of the fit parameters noticeably depend on

the chosen dynamic range. Second, at small Q-values the ratio of the Lorentzian linewidths

related to the two processes is of the order of 50, whereas it reaches the value of 20 for

Q > 1.5 Å−1. It means that the separation of the underlying localized and global dynamics

becomes less unambiguous. A possible solution to improve the reliability of the fitting routine

is to choose explicit models for data analysis and to use the 2-D fitting procedure described

in Chapter 4. The reasons, why and which analytical models discussed in Chapter 2.3 for

both restricted and unrestricted motions should be included in the final expression of the

scattering law, will be considered in the following part.

5.3. Dynamic structure factor models for pyridinium-

based ILs

In the case of the slower long-range process the jump-diffusion model was chosen (see 2.3.2).

It is already applicable to Γglob(Q) in the frame of the model-independent approach. The

dashed lines in Figure 5.5 (1a–1b) illustrate the validity of this assumption. Besides, the
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Figure 5.5. Left: Model-independent fit parameters for [BuPy][Tf2N] as a function of
wavevector transfer Q at different temperatures: 1 – linewidths of the slower global process
(the dashed lines are fits according to Eq. 2.24); 2 – linewidths of the faster localized
dynamics and 3 – elastic incoherent structure factor. Right: Comparison of the model-
independent fit parameters for [BuPy][Tf2N] and [C12Py][Tf2N] evaluated at temperature

T=320 K.
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jump-diffusion model was successfully applied to some similar systems [76, 79]. From the

fitting procedure of the linewidths Γglob(Q) to Eq. 2.24 it is possible to extract the diffusion

coefficients D and the residence time τ0, respectively. Both parameters are plotted as a

function of the inverse temperature in Figure 5.6–5.7. The temperature dependence of the

self-diffusion coefficient can be modelled by the Arrhenius equation:

D(T ) = D0 exp[−Ea/RT ] (5.4)

where R=8.31 J/(mol·K) denotes the gas constant and Ea is the activation energy for the

corresponding process. The unrestricted motion of [C12Py] is slower for all the considered

temperatures, as it has been shown before. However, the activation energy values (∼12.5 kJ/-

mol) are very similar despite of the chain length, as one can see from the almost identical

slopes of the dashed lines (Fig. 5.6). The solid line represents the results obtained by Tokuda

et al. [134] using NMR methods. The difference between our values of the diffusion coef-

ficient and the latter can be, most likely, explained by the different time scales, on which

the two experimental methods operate. As it was demonstrated by numerous molecular dy-

namics simulations [56], the gradient of MSD-curves changes with observation time, causing

different regimes of dynamics. With QENS one gets the short-time (on the picosecond time

scale) diffusion coefficient, whereas PFG NMR probes the long-time diffusion coefficient on

the microsecond time scale.
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Figure 5.6. Diffusion coefficient D as
a function of the inverse temperature; the
dashed lines represent fits to Eq. 5.4 and the
solid line is the results of PFG NMR mea-

surements
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Figure 5.7. Residence time τ0 as a func-
tion of the inverse temperature

The choice of an analytical model for the localized process is not straightforward. All

the three models mentioned in Chapter 2.3 are equally acceptable from the physical point of
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view. Thus, all of them were applied and Sloc(Q,E) in Eq. 2.16 was sequentially substituted

by Eq. 2.28 (continuous rotational diffusion), 2.29 (diffusion in a sphere) and 2.41 (Gaussian

model). The fitting proved that all the dynamic structure factors could fairly capture the

scattering profiles. The reason for this can be clearly seen from Figure 5.8, where the

EISF(Q) dependences of all the three models are plotted. As an example the following

radii of confinement were taken accordingly: R=0.75 Å, a=1.00 Å and σ=0.45 Å. The

corresponding EISF-curves are nearly indistinguishable in the Q-range accessible in a QENS

experiment. A slight difference shows up only for Q >2 Å−1.
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Before further discussion, a technical digression about the fitting procedure is in order.

The experimental spectra are fitted to the scattering functions, which contain a convolution

of two functions. Therefore, the choice of an analytical model for the localized process may

influence the fit parameters of the slower translational diffusion. However, it might not be

the case if the motions are relatively well separated on the time scale of the experiment.

Table 5.3 summarizes the fit parameters of the jump diffusion model calculated for the

[BuPy] cation at T=300 K, while different models were applied to render cation motion in

a confinement. The convolution with the rotational diffusion scattering function provides

the parameter values closest to the results of the model-independent fits, because the series

of this model converge quite rapidly. The diffusion in a sphere and Gaussian models with

a broader spectrum of Lorentzians in the series yield the values, which decline to a greater

extent. So, the effect of the model choice is present, luckily it does not lead to unreasonable

divergence of the results.

Although all the models give reasonable results for every Q-group independently, a diffi-

culty was encountered. All of the evaluated parameters, as radii, relaxation times or diffusion
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Table 5.3. Diffusion coefficient D and residence time τ0, derived for [BuPy] at
T=300 K from the jump diffusion model convoluted with different models for local-

ized motion

Model D ·10−10, m2/s τ0, ps

Model-independent 1.95±0.11 16±2
Rotational diffusion 2.00±0.11 18±2
Diffusion in a sphere 1.70±0.06 17±2
Gaussian model 1.95±0.05 25±1

coefficients exhibit a Q-dependence (Fig. 5.9), which is physically not correct. A possible

explanation of this effect is that we observe a superposition of dynamical processes from

all the protons within the cation, characterized by different mobility. Therefore, a distri-

bution of volume sizes, in which they can move, should be taken into account (Fig. 5.11).

Introduction of new parameters associated with distribution functions, however, compels an

improved fitting routine, namely, the 2D-approach discussed in Chapter 4. Starting from

now, if not otherwise stated, 2D-fitting is applied.

5.3.1 Dynamic structure factor for the alkyl chain and the pyri-

dinium ring

To simplify the analysis of the localized motions of the pyridinium-based cation [BuPy],

two types of partially deuterated samples were studied. This allowed extracting the contri-

butions to the faster process from different parts of the cation: either the pyridinium ring

or the alkyl chain was deuterated. The QENS-experiments were carried out on FOCUS

with the same setting of the instrument used before (λ=5.75 Å). It is necessary to keep

in mind that the coherent contribution becomes more significant with increasing degree of

deuteration. However, in our recent investigation [125] it was shown that although collective

effects can influence unrestricted jump-diffusion, the localized dynamics remain unaffected.

A broad QENS-contribution, which is related to the spatially restricted motions, appears

in the spectra of both partially deuterated samples (Fig. 5.10). If the pyridinium ring were

immobile relative to the centre of mass of the cation, the observed QENS-line resulting from

the long-range diffusion would be much narrower. Thus, it is necessary to consider both

restricted and global motions for both parts (pyridinium ring and alkyl chain) of the cation.

The local motion of the butyl chain can be envisaged as chain librations relative to the

carbon atom, where the chain is attached to the ring, as torsional rotations of the chain

backbone, or as methyl group rotations. In order to capture this diversity, a scattering law



Cation dynamics in pyridinium-based ILs 55

-1.0 -0.5 0.0 0.5 1.0

10

100

1000
 [BuPyD][Tf2N]
 [BuDPy][Tf2N]
 resolution

 

 

I [
ar

b.
 u

n.
]

E [meV]

T=320 K
Q=1.0 Å-1 

Figure 5.10. Comparison of the measured quasielastic intensity for two partially deuterated
samples at T=320 K and Q=1.0 Å−1.

based on the Gaussian model with a distribution function was used (Fig. 5.11–5.12). The

other models discussed in this work were applied as well. However, the continuous rotation

model led to non-physical temperature dependence of the relaxation time. The diffusion

in a sphere model yielded results, similar to those of the Gaussian model. The diffusion

coefficients had approximately the same values; the radius of an impermeable sphere being

∼2.25 greater than the characteristic size of a confinement with soft boundaries. So, as the

diffusion in a sphere model is computationally more expensive, it was decided in favour of

the Gaussian model for performing further computations.

The simplest distribution law used to describe the local dynamics of the alkyl groups

is a linear variation of the radii of the spherical volumes as a function of the number of

the carbon atom, to which the hydrogen atoms are bounded [121, 174]. There are some

advanced distribution functions for rigidly fixed molecules, which take into account chain

rotation about its own axis or in a cone with or without additional body fluctuations [175].

The latter approach still requires additional information about the molecule structure (bond

length and angles). As long as molecular dynamic simulations are not performed for the

studied cation, this approach remains just an approximation. Therefore, the total dynamic

structure factor for fitting the spectra of [BuPyD] was taken in the following form:

SI(Q,E) = I0(Q) · 1

π

Γglob

Γ2
glob + E2

⊗

{
3∑
i=0

pi · SG(Q,E;σi)

}
⊗R(Q,E) + a+ bE (5.5)
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where SG(Q,E;σi) is expressed by Eq. 2.41, Γglob is modelled by the jump diffusion (Eq. 2.24),

pi = {2/9, 2/9, 2/9, 3/9} is the vector of the fractions of the hydrogen atoms in the chain

moving in a confinement with the characteristic size of σi = σmin + (σmax − σmin) · i/3, i =

{0, 1, 2, 3}. The results of the fitting procedure are summarized in Table 5.4 and graphically

presented in Figure 5.13–5.14.

Table 5.4. Diffusion coefficients for the long-range and localized diffusion, D and
Dloc, residence time τ0 and characteristic radii of confinement, σmin and σmax, as
obtained from the fitting of the [BuPyD] data with Eq. 5.5 at different temperatures

T , K D · 10−10, m2/s τ0, ps Dloc · 10−10, m2/s σmin, Å σmax, Å

310.0 1.62±0.02 16.5±0.3 9.24±0.03 0.108±0.003 0.873±0.002
330.0 2.15±0.02 11.4±0.3 10.49±0.03 0.160±0.003 1.026±0.002
350.0 2.85±0.02 6.7±0.2 12.59±0.03 0.225±0.003 1.116±0.002
370.0 3.69±0.02 5.0±0.2 14.84±0.03 0.285±0.002 1.222±0.002
390.0 4.64±0.02 4.0±0.2 16.20±0.02 0.367±0.003 1.307±0.002

There are several points to discuss about the evaluated parameters. If we compare the

values of the diffusion coefficient related to the long-range diffusion, we will see that the

inclusion of the radii distribution function leads to systematically lower values of the diffusion

coefficient than in the case of the model independent fits. The reason lies in the inverse square

dependence of the Lorentzian linewidths on the confinement size in the series (Eq. 2.41). The

larger the value of the radius, the greater the number of narrower Lorentzians is in the series.

These contributions are comparable with the linewidth associated with the unrestricted

D

2s

D
loc

Figure 5.11. Sketch of different possi-
ble radii of confinement distributed along the

[BuPy] cation

Figure 5.12. Sketch of the different dy-
namic processes. The localized motion occurs
in a volume of the linear size 2σ and is char-
acterized by Dloc, while the global process is

described by the diffusion coefficient D
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motion at higher Q-values. This is a sign that the two processes can be separated on the

time scale only approximately, what has been already mentioned.

The second important question is whether it is well-grounded to use only one value of the

diffusion coefficient for an adequate characterization of the restricted dynamics. Mukhopad-

hyay et al. [175] introduced a linear distribution function for both the diffusion coefficient

and the radius, assuming that the hydrogen atoms closer to the core of the molecules might

move more slowly. Technically, the inclusion of one more parameter in the fit function ren-

ders even the 2D-fitting routine unstable. The authors of the above mentioned work avoided

this issue by performing fitting with several steps. After carrying out model independent

fits, the radii were extracted from the EISF-dependencies. They were used as fixed param-

eters for the further fits of Γloc(Q), which gave the values of the diffusion coefficients of the

localized motions. However, this approach is legitimate only if the two processes are really

distinguishable on the time scale of the experiment, which is not the case for the studied ILs

in the investigated temperature range, as it was shown before. Therefore, keeping in mind

that it is an approximation, the further analysis will be proceeded with only one “mean”

value of the diffusion coefficient characterising the localized motions.

Third, the linear distribution function has its shortcoming. It does not simulate flexibility

of the alkyl chain properly. The bond connecting the ring and the chain is rigid and rotations

of the first CH2-unit is very likely hindered. One can clearly see this from the values of σmin.

Although they increase with temperature, they remain even less than the characteristic C-H

bond length. It means that the hydrogen atoms closest to the nitrogen atom of the ring are

at least partially immobile. The volumes predicted from the linear variation for the outer

atoms might also be too large due to steric restrictions. Both σmin and σmax dependencies

are given in Figure 5.14 and exhibit steady increase within the considered temperature range

due to enhanced flexibility of the chain at elevated temperatures.

As well as in the case of the model independent approach the temperature dependencies of

all diffusion coefficients for both the global and the restricted dynamics follow the Arrhenius

equation with the parameters listed in Table 5.6.

For what concerns the pyridinium ring, its scattering law was also based on the Gaussian

model in order to have the possibility to compare the time characteristics of the localized

dynamics. For the pyridinium ring one may consider a sort of out-of-plane librations and

rotations. Although it is characterized by a “higher” symmetry, Eq. 2.41 without any mod-

ification was not sufficient to predict the profile of the QENS-spectrum. For a consistent

description it was necessary to assume that a fraction of the hydrogen atoms remains immo-

bile on the time scale of the experiment, so that the scattering law is given by [76, 176]:
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SI(Q,E) = I0(Q) · 1

π

Γglob

Γ2
glob + E2

⊗

⊗ {(1− pmob)δ(E) + pmobSG(Q,E;σ)} ⊗R(Q,E) + a+ bE

(5.6)

where pmob denotes the fraction of the mobile particles. The results of the fits are summed

up in Table 5.5 and also presented in Figure 5.13–5.14 with the already discussed results,

obtained for the sample with the protonated butyl chain.

Table 5.5. Diffusion coefficients of the localized diffusion Dloc, characteristic radii
of confinement σ, and fraction of mobile particles pmob, as obtained from the fitting

of the [BuDPy] data with Eq. 5.6 at different temperatures

T , K Dloc · 10−10, m2/s σ, Å pmob

310.0 16.80±0.06 0.827±0.003 0.457±0.002
330.0 19.47±0.05 0.904±0.003 0.514±0.002
350.0 21.73±0.05 0.955±0.002 0.567±0.001
370.0 24.23±0.05 1.032±0.003 0.611±0.001
390.0 26.17±0.06 1.129±0.003 0.625±0.001

As opposed to the [BuPyD] sample, the intensity factor I0(Q) of the [BuDPy] cation has

a more pronounced broad peak around Q=1.3 Å−1. This is an indication of substantial

coherent scattering in this Q-range, which has a strong impact on the narrower linewidth

of the diffusional process. That is why Γglob was included in Eq. 5.6 without implying

any explicit analytical dependence on the wavevector transfer Q. The narrow Lorentzian

linewidths are visibly modulated at the above mentioned Q-value at all the temperatures.

It is obvious that these dependencies cannot be used for evaluation of the parameters of

the jump-diffusion model, D and τ0. Still, it is worth mentioning that the linewidths of the

narrow Lorentzian contribution for both samples are indeed consistent with each other at

all the temperatures, giving one more proof of the validity of the developed approach in the

data analysis.

The radii of confinement σ are comparable with σmax calculated for the sample with the

protonated butyl chain but feature less rapid increase with temperature. Taking into account

that σ is only a characteristic size of a confinement with “soft” boundaries, we may estimate

the radius of an impermeable sphere equivalent to that confinement. The experimentally

established ratio between the parameters of the two models R/σ ≈ 2.25 gives the value of

2.2 Å for the radius at T=350 K. It is in agreement with the distance between the centre of the

pyridinium ring and the outer hydrogen atoms (lcentre–C + lC–H = 1.400+1.084 ≈ 2.5 Å [167]).
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The pmob values different from one show that not all the particles are involved in this

type of motion, which seems to be hindered. At elevated temperatures the probability to

release these dynamics is higher and hence pmob becomes gradually greater.

A linear Arrhenius plot (Fig. 5.14) of the diffusion coefficientDloc points out to a thermally

activated process similar to the dependences obtained for [BuPyD]. Comparing the restricted

motions of the alkyl chain and the pyridinium ring, we see that they are characterized by the

values of the diffusion coefficient, which are different but of the same order of magnitude.

Moreover, the activation energy values (Table 5.6) are pretty close.

Table 5.6. Best fit parameters of the temperature dependences of the diffusion
coefficents to the Arrhenius equation (Eq. 5.4)

D0 ·10−8, m2/s Ea, kJ/mol

long-range diffusion 2.93±0.15 13.46±0.15
restricted diffusion, chain 1.57±0.02 7.34±0.04
restricted diffusion, ring 1.45±0.02 5.53±0.05

To sum up, the partially deuterated samples allow a deeper insight into the restricted

dynamics. The numerical values of σ, σmin, σmax support the view that the considered

localized dynamics do not correspond to the movement of the cation as a whole in the cage

formed by its neighbours, but to chain conformations and ring librations, in other words,

the dynamics are geometrically restricted. Global rotation of the cation is likely to be much

slower [53, 80, 172] and its contribution is implicitly included in the linewidth of the long-

range diffusion. The diffusion coefficients of the localized processes turned out to be different

for the different parts of the cation; the ring out-of-plane motions are faster than the chain

dynamics. Anyway, the characteristic times of the processes are too close on the time scale

to be resolved for the totally protonated sample.

5.3.2 Dynamic structure factor for the totally protonated pyri-

dinium-based cations

For the analysis of the totally protonated samples [BuPy][Tf2N] and [C12Py][Tf2N] a more

general radius distribution function is required to modify the scattering law based on the

Gaussian model. As we could see, the volume explored by a particle becomes greater with the

number of a carbon atom in the chain, while a fraction of hydrogen atoms in the pyridinium

ring remains immobile. Either a Gaussian distribution or a log-normal distribution can be

used to model the situation schematically represented in Figure 5.11. The main difference
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between the two (among many possible) functions is the behaviour at r = 0. The log-

normal distribution function ensures f(r = 0) = 0, whereas for the Gaussian function

f(r = 0) > 0. If the radius of confinement is equal to zero, the corresponding particle is

immobile. This feature of the Gaussian distribution could be beneficial, because, as discussed,

a certain fraction of hydrogen atoms in the alkyl chain and in the pyridinium ring could be

immobile (Fig. 5.15). However, when this fraction has quite a great value, the fitting routine

produces divergent results. Zero or small radii generate a flat contribution to the spectrum

(Dloc/a
2 → ∞) and can be indeed mixed up with faster components taken into account by

the flat background (a+bE–item) in Eq. 2.21. To describe the influence of partial immobility,

one can also introduce an additional parameter pmob (the fraction of mobile particles) in the

scattering law. But as pmob and the variance of the distribution functions are not independent

variables, the fitting routine does not provide stable results as well. To avoid this ambiguity

the log-normal distribution function was applied [177]:

f(r;µ, σlgn) =
1

σlgnr
√

2π
exp

[
− ln2(r/µ)

2σ2
lgn

]
(5.7)

where µ is the median of the distribution and σlgn stands for the standard deviation of the

variable’s natural logarithm. In the interest of brevity, further in this work the latter will be

referred to as the shape parameter, as it determines the broadness and the skewness of the

distribution. Taking into account that the mode of the lognormal distribution a (the value

that appears most often in a set of data and corresponds to the maximum of the distribution)

is related to its median µ as:

a = µ exp(−σ2
lgn) (5.8)

the lognormal distribution can be rewritten in the following way:

f(r; a, σlgn) =
1

σlgnr
√

2π
exp

[
−

(ln(r/a)− σ2
lgn)2

2σ2
lgn

]
(5.9)

Finally, the following expression has been used to fit the data:

SI(Q,E) = I0(Q) · 1

π

Γglob

Γ2
glob + E2

⊗

⊗


∞∫

0

f(rσ; a, σlgn)SG(Q,E; rσ)drσ

⊗R(Q,E) + a+ bE

(5.10)

Table 5.7 contains the final fit results for both samples. The difference in the global

diffusion dynamics, already observed in the model independent approach and discussed ear-

lier, is also present in the parameters evaluated within the proposed model, even though all
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Table 5.7. Diffusion coefficients for the long-range and localized diffusion, D and
Dloc, residence time τ0 and mode and shape parameter of the log-normal distribution,
a and σlgn, as obtained from the fitting of the [BuPy] and [C12Py] data with Eq. 5.10

at different temperatures

T , K D · 10−10, m2/s τ0, ps Dloc · 10−10, m2/s a, Å σlgn

[BuPy][Tf2N]

310.0 1.58±0.01 11.4±0.3 12.6±0.2 0.132±0.006 1.32±0.06
320.0 1.87±0.01 8.9±0.2 13.0±0.3 0.217±0.006 1.09±0.05
340.0 2.51±0.02 7.2±0.2 13.0±0.2 0.389±0.005 0.83±0.02
350.0 2.89±0.02 6.5±0.2 13.4±0.2 0.454±0.004 0.78±0.01
360.0 3.26±0.02 5.8±0.2 14.0±0.2 0.508±0.005 0.77±0.01
370.0 3.69±0.02 4.1±0.2 14.7±0.2 0.551±0.005 0.74±0.01
380.0 4.18±0.03 4.1±0.2 15.6±0.2 0.626±0.006 0.70±0.01

[C12Py][Tf2N]

320.0 1.07±0.05 10.5±0.6 14.3±0.3 0.104±0.012 1.51±0.03
340.0 1.31±0.02 6.1±0.5 14.4±0.2 0.205±0.007 1.27±0.02
380.0 2.23±0.03 0.0 19.8±0.3 0.473±0.010 0.93±0.02
420.0 3.18±0.07 0.0 23.6±0.4 0.744±0.010 0.75±0.02

the absolute values of the diffusion coefficients are slightly less than in the previous case,

owing to the introduced distribution function (Fig. 5.17). As for the localized dynamics,

superposition of different motions closely distributed on the time scale occurs and cannot be

separated. Due to the complexity of the studied dynamic picture the temperature depen-

dence of the “mean” diffusion coefficient Dloc associated with the restricted process is not

described by the Arrhenius law in contrast to the previous results. Moreover, for [BuPy]

Dloc increases insignificantly with temperature, what could be also inferred from Γloc(Q) in

the model independent approach (Fig. 5.5, 3a–b).

The other studied pyridinium-based IL [C12Py][Tf2N] has a dodecyl chain connected to

the ring. The alkyl substituent contains 25 protons, in contrast to 9 protons in the [BuPy]

cation. So, the relative contribution of the five protons of the ring to the total scattering

is less significant in the case of [C12Py][Tf2N]. Thus, one may neglect the superposition of

the chain and the ring localized motions and consider only the chain dynamics. On the

other hand, the dodecyl chain has more degrees of freedom concerning torsional rotations;

its higher flexibility complicates the analysis. In the temperature range close to the melting

points of both samples (T ∼300 K) their localized dynamics are characterized approximately

by the same value of Dloc. However, gradual increase in temperature drives conformational
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changes in the alkyl chain and it starts “melting”. As the result the localized diffusion

coefficient for [C12Py] becomes larger relatively to that of [BuPy] at higher temperatures.

Figure 5.15 displays the radius distribution functions at different temperatures for the

[C12Py] cation. With the temperature increase the distribution function gradually becomes

narrower, but in no case narrower than for the [BuPy] cation at the corresponding temper-

ature, and shifts to greater radii. The latter is illustrated in Figure 5.16 additionally, where

the temperature dependences of the mode of the distribution function and the mean values

are presented. The mode is not a very informative characteristic, it turns out to be even

less for [C12Py] than for [BuPy] despite of the higher flexibility of the dodecyl chain. The

mean spatial dimension of the confinement suits better in this case, as it takes into account

the shape parameter of the distribution function. Although a real mean value must be cal-

culated by integrating from 0 to infinity, the presented values were obtained for a physically

reasonable rσ-range, which was used during the fitting procedure as well. Quite low values

of the mode a at T=300–340 K and correspondingly high values of the shape parameter

σlgn are a sign of the partial immobility of the butyl and dodecyl chains in this temperature

range, when only its outer part undergoes conformational changes.

Thus, opposite to the slower global translational diffusion the localized dynamics of the

[C12Py] turned out to be richer and faster than for [BuPy] especially at higher temperatures.

This information could only be obtained implying a radii distribution function and remains

inaccessible for the commonly applied model independent approach.

5.4. Exploring the relaxation time landscape of the

cationic dynamics

The previously discussed spectra of the pyridinium-based ILs were measured using only

one setting of FOCUS with the wavelength of incident neutrons λ=5.75 Å, which provided

a resolution function with FWHM=60 µeV and a corresponding observation time tobs of

22 ps (Fig. 3.3). Although valuable information can be obtained from the quasielastic broad-

ening observed under these experimental conditions, some details remain undisclosed. First,

all the applied fit models include a flat contribution, which accounts for faster unresolved

processes (Eq. 5.5, 5.6). If to expand the dynamic range form the energy gain side to a value

of −4.0 – −3.0 meV, it becomes visible that this component can only roughly be presented

as a linear function and only for a limited energy window (∼ [−1.0, 1.0] meV), its linewidth

being close to the value of 1.2–1.5 meV. Second, the single Lorentzian describing the global
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diffusion is an acceptable approximation only for a coarser resolution function. This de-

scription is not valid any more for a backscattering spectrometer with finer resolution [79].

Therefore, we expanded the observation time scale by performing QENS-experiments on

the two partially deuterated samples [BuPyD] and [BuDPy] on TOFTOF at FRM II with

two complementary wavelengths of incident neutrons λ=3.00 Å (tobs ∼ 3 ps) and λ=12.0 Å

(tobs ∼ 150 ps) at the temperature of T=310 K.

Neutrons with λ=3.00 Å were intended to probe relaxation processes faster than 1 ps.

The global diffusion and localized dynamics observed in the FOCUS spectra (λ=5.75 Å) can

not be resolved in this case and were modelled by a single Lorentzian contribution without

applying any explicit analytical expression for its analysis. To prove the validity of this

approach, the best fit parameters and the corresponding fit model (Table 5.4) were used to

generate an artificial spectrum of [BuPyD] for the coarser resolution function at λ=3.00 Å.

At the Q-values of 1.4 and 1.5 Å−1 the linewidths of the narrow Lorentzian component in

the simulated spectrum equal 55 and 60 µeV; whereas for the measured Q-set of the spectra

(λ=3.00 Å) these quantities amount to 41 and 53 µeV, respectively. This demonstrates that

the long-range as well as the localized components, seen with λ=5.75 Å, are merged into

a single Lorentzian contribution for the coarser instrumental resolution. At the same time

the broader contribution is, indeed, characterized by the linewidth of 1.1 meV, close to the

estimated value in the case of λ=5.75 Å.

The narrower Lorentzian curve Γeff(Q), which substitutes more precise description of

the long-range and localized processes seen with the wavelength λ=5.75 Å, may be treated

as an indication of a diffusional process with characteristics such as “effective” diffusion

coefficient, which depends on the chosen observation time [98]. But this approach is quite

descriptive and does not allow to consider the relaxation time landscape in more detail.

Even for λ=5.75 Å the process denoted as the long-range diffusion is a superposition of

translational and rotational motions of the whole cation, occurring on a similar time scale.

Thus, introduction of an “effective” diffusion coefficient does not simplify the analysed picture

of molecular motions and the following scattering law was used for fitting the data collected

at λ=3.00 Å:

SI(Q,E) = I0(Q) · 1

π

Γeff

Γ2
eff + E2

⊗

⊗ {(1− pmob)δ(E) + pmobSG(Q,E;σfast, Dfast)} ⊗R(Q,E) + a+ bE

(5.11)

where the faster process with the linewidth of ∼ 1 meV was modelled by the Gaussian

model with the parameters Dfast and σfast; pmob is the fraction of mobile particles. The best

fit parameters for the both partially deuterated samples are listed in Table 5.8. In order not
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Table 5.8. Diffusion coefficients Dfast, confinement radius σfast and fraction of mo-
bile particles pmob for the fast localized process, as obtained from the fitting of the

[BuPyD] and [BuDPy] data with Eq. 5.11 at the temperature T=310 K

sample Dfast · 10−10, m2/s σfast, Å pmob

[BuPyD] 35.0±0.4 0.510±0.004 0.922±0.008

[BuDPy] 35.1±0.4 0.486±0.004 0.958±0.009

to place too many restrictions in the fit model, pmob was not fixed. However, the estimated

values of this adjustable parameter turned out to be anyway close to one. Surprisingly, no

distinct difference between the dynamics of the ring and chain was detected on the time scale

faster than 1 ps. This fact points out to the common character of this rattling motion. On

the other hand, the linewidths of Γeff(Q) of the ring are definitely narrower at every accessible

Q-group than those of the chain. It means that the slower dynamics of the hydrogen atoms

are defined by the part of the cation, to which they belong, as it was observed and analysed

for the FOCUS spectra (λ=5.75 Å).

In contrast to λ=5.75 Å, the wavelength of λ=12.0 Å provides quite a narrow resolution

function (FWHM = 7–8 µeV), which allows to investigate the slowest detected diffusional

process in more detail. As it turned out, the slow translational motion cannot be described

by a single relaxation time or one Lorentzian, as in the case of the FOCUS data. In the time

domain, this means, that the intermediate scattering function I(Q, t), which is a Fourier

transform of the dynamic structure factor:

I(Q, t) =

∞∫
−∞

S(Q,E) exp
(
iE~ t
)
dE (5.12)

deviates from the exponential behaviour at larger times, when the so-called α process occurs.

It succeeds the ballistic regime at shorter times, when the particles move almost freely, and

β-process at intermediate times, when the particles are trapped in the cages formed by their

neighbours [58]. The deviation of the final decay from the exponential behaviour is quiet

a common situation for polymers and glass forming materials; the intermediate scattering

function I(Q, t) is often approximated by the so-called stretched exponential function (also

known as Kohlrausch-Williams-Watts law) in this case [55, 99, 152, 178–180]:

I(Q, t) ∼ exp

[
−
(
t

τα

)β]
(5.13)

where τα is the relaxation time, which may depend on Q, and β is the stretching parameter

(0 < β 6 1). There are two possible explanations, why the time correlation function features
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Figure 5.18. Intermediate scattering function of the partially deuterated pyridinium-
based ILs obtained within different observation time ranges. The black and red symbols
represent the correlation functions of [BuPyD] and [BuDPy], respectively. The wavelengths

of incident neutrons (λ=3.00; 5.75; 12.0 Å) are displayed on each plot separately

non-exponential, or non-Debye behaviour [58]. First, the system may be characterized by a

distribution of relaxation times due to the disorder and a slightly different neighbourhood

of each particle in the system. The second interpretation implies that the disorder of the

system causes an intrinsic non-exponential behaviour of each particle. The true reason

remains a matter of debate. Mamontov et al. [79] showed that a finer resolution function

allows to extract a sub-α diffusional process in an IL, which can be linked to the clustering

or nanoscale inhomogeneity effects, as it is spatially localized on the length scale of ≈ 10 Å.

The QENS data were transformed from the (Q,E)- into (Q, t)-space by performing a

Fourier transform with the “Fourier Transform Toolkit” in DAVE. The results for different

sets of the data (wavelengths of incident neutrons λ=3.00; 5.75; 12.0 Å) and Q-groups for

both partially deuterated samples are presented in Figure 5.18. The difference in the decay
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Figure 5.19. Different Q-groups of the intermediate scattering function I(Q, t) of [BuPyD]
(solid symbols) and fits to Eq. 5.13–5.14 (dashed lines)

rates for both the chain and the ring is almost negligible for t < 1 ps even at higher Q-values,

which is in agreement with the results of the analysis in the (Q,E)-domain. The decrease

in the intermediate scattering function of the chain is more rapid at the intermediate time

(1 ps < t < 100 ps) than that of the ring, the gap between the two branches of I(Q, t)

for each part of the cation being Q-dependent. At larger times (t > 100 ps) the difference

between the two decay curves disappear again, as this time range corresponds to the motion

of the cation as a whole. However, only the Q-groups up to 0.8 Å
−1

were accessible with the

wavelength λ=12.0 Å of incident neutrons. In this case the spatial characteristics of the sub-

α diffusional process observed by Mamontov [79] could not be reliably calculated. Therefore,

a more descriptive approach based on the stretched exponential function was applied in the

time-domain. The 2D-arrays of I(Q, t) were fitted to Eq. 5.13 (40 ps < t < 250 ps, so that

the localized processes seen in the FOCUS data can be excluded), assuming that β does

not depend on the wavevector transfer Q. Moreover, because a number of investigations on

hydrogen-rich materials has shown that the slow dynamics can be characterized by a power

law dependence of the characteristic time versus Q [77, 181], the following equation was

employed as well:

τα = τα0(aQ)−ν (5.14)



Cation dynamics in pyridinium-based ILs 69

where τα0 corresponds to τα at Q=1.0 Å−1, ν is the exponent characterizing this power

dependence and a=1 Å. Table 5.9 and Figure 5.19 present the best fit results of I(Q, t) to

Eq. 5.13–5.14 for the partially deuterated samples. The calculated values illustrate once

more that the long-range process of the different parts of the cation is identical at larger

times.

Table 5.9. Characteristic relaxation time τα0, exponent ν and stretching parameter
β for the slow diffusional process, as obtained from the fitting of the [BuPyD] and

[BuDPy] data (λ=12.0 Å) with Eq. 5.13–5.14 at the temperature T=310 K

parameter [BuPyD] [BuDPy]

τα0, ps 97±9 95±8

ν 1.96±0.12 1.96±0.11

β 0.73±0.05 0.76±0.04

To sum up, the experiments on the partially deuterated pyridinium based ILs clearly

established that subdivision of the accessible time scale into three regions is reasonable. At

shorter times (< 1 ps) the rattling motions of the protons belonging to the butyl chain or

to the pyridinium ring have similar time and spatial characteristics. At the intermediate

time (5 ps < t < 50 ps) internal movements of the different parts of the cation come into

play. Consequently, a gap between the two branches of the intermediate scattering function

appears. At longer times (t > 100 ps) the correlation function is determined by the long-

range motion of the cation as a whole and features a non-Debye relaxation.

5.5. Summary

The main aim in this chapter was to consider different aspects of the picosecond dynam-

ics of two pyridinium-based ILs with the [Tf2N] anion. For this purpose the samples with

different lengths of the alkyl substituent in the cation ([BuPy], [C12Py]), as well as the par-

tially deuterated samples ([BuDPy], [BuPyD]) have been investigated in a broad temperature

range.

The low-temperature dynamics were studied by means of the backscattering technique.

Both elastic scan and QENS measurements were performed and showed the presence of

thermally activated rotation of the end methyl groups. This process appears in the elastic

intensity scans of [BuPyD] as a step-like curve in the temperature range of 100-180 K, whereas

the elastic intensity of [BuDPy] falls gradually in the whole temperature range.
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For the analysis of the QENS-spectra of the ILs in the liquid state several approaches

have been applied. The most descriptive model independent fits allowed us to make out

two distinct processes occurring on picosecond time scale: spatially restricted dynamics and

unrestricted diffusion. As the next step, some analytical models and their modifications

with distribution functions were used. The long-range diffusion is satisfactorily described by

the jump-diffusion model, the diffusion coefficients changing with temperature according to

the Arrhenius equation. However, the observed long-range process is a combination of true

translational motion of the cation and its slow rotation as a whole. These processes occur

on a fairly close time scale and, hence, cannot be distinguished by QENS. The Gaussian

model proved to be the most appropriate in representing the localized motions. The usage

of the partially deuterated samples made the independent analysis of the chain and ring

dynamics feasible. The flexibility of the alkyl substituent in the cation was modelled by the

linear distribution function, whereas the volume, accessible for the protons in the ring, is

characterized by one radius. For the totally protonated samples, owing to a larger number

of tangled processes, observed at the same time, a more general distribution (log-normal)

was employed. This made it possible to compare the dynamics of the two samples with the

butyl and dodecyl chains. The influence of the substituent was detected for both processes:

the long-range dynamics are slower in the case of [C12Py], while the localized dynamics

are characterized by a broader distribution function of radii and larger diffusion coefficients

especially at elevated temperatures.

Combining experiments carried out with different wavelengths of incident neutrons and,

hence, with different linewidths of the instrumental resolution function, a careful investi-

gation of the relaxation landscape of the pyridinium-based ILs has been performed. The

representation of the spectra in the time domain allowed to see that three dynamical regions

can be considered in the time range of 0.2–200 ps; the intermediate time range (5–50 ps)

exhibits a pronounced difference between the intermediate scattering functions of the butyl

chain and the pyridinium ring. A non-Debye behaviour of the slowest process was observed

for both samples.



6. Cation dynamics in a PIL

In this chapter QENS experiments on the protic ionic liquid TEA-TF and the interpre-

tation of their results are presented. The studied PIL is formed by a proton transfer from

trifluoromethanesulfonic acid, which is considered to be one of the strongest acids, to tri-

ethylamine. A property of PILs crucial for electrochemical applications is their anhydrous

conductivity and the N-H proton is a key charge carrier in this case. The dynamics of this

species, however, have not been totally clarified yet.

For the combination of the acid and the base in TEA-TF the complete proton transfer

is expected. The PFG-NMR measurements showed that the diffusion coefficients of H+

and the amine are similar and greater than that of the anion [130]. This agrees with the

idea of a vehicular mechanism of proton transport by triethylammonium (migration of the

whole TEA cation). On the other hand, from conductivity measurements lower values of the

diffusion coefficient are predicted, because the proton transfer might be incomplete, resulting

in the neutral acid and base species, aggregation and association either of ions or uncharged

particles.

The presence of hydrogen-donor and -acceptor cites also leads to a fast fluctuating hy-

drogen bond network [41], which affects melting points, dielectric permittivity, viscosity, and

diffusivity, and may contribute to formation of widely discussed ion pairs. The hydrogen

bond between cations and anions was studied by several spectroscopic methods. A frequency

shift due to the hydrogen bond enhancing anion-cation interaction could be observed by ter-

ahertz (THz) and far-infrared (FIR) spectroscopy [182]. Stretching vibrational modes can

be investigated by IR spectroscopy in the frequency range around 3000 cm−1 [183]. From

NMR chemical shifts one can detect an exchange of proton between donor and acceptor

sites [183, 184].

Molecular dynamic simulations provide a more straightforward description of hydrogen

bond dynamics via correlation functions. For example, the accepted average hydrogen bond

lifetime in liquid water under ambient conditions is about 1 ps [185], which is also a character-

istic time for a number of dynamical processes connected with single molecule reorientations.



Cation dynamics in a PIL 72

In contrast to this the simulation data on hydrogen bond dynamics in ILs is much more scant;

the time range mentioned in these works is broader and specific to a certain IL [41, 48, 186]

and hence cannot be viewed as common. Anyway, it may match the energy and time scale

accessible in QENS-experiments. To focus on the dynamics of the N-H proton a sample with

the deuterated alkyl side chains was investigated in this work (TEAD-TF). As in this case

the incoherent signal comes from the tagged hydrogen atom mainly, it can provide insight

into the global motion of the cation and specific dynamics of the proton at the same time.

The mechanism of the proton transport was not the only interest in this chapter. To study

the cation dynamics of the totally protonated TEA-TF on different time scales both elastic

scan measurements and QENS-experiments were performed on the IN10 and IN5 spectrome-

ters at ILL and FOCUS at SINQ. The temperature range considered during the experiments

(2-440 K) encompassed the regions where the sample undergoes several phase transitions

with the corresponding changes in the global and localized dynamics of the cation. At

higher temperatures all the following types of motions contribute to the quasielastic broad-

ening: long-range ion diffusion, rotation, ethyl groups librations, etc.; they are gradually

switched off with the temperature decrease.

6.1. Low-temperature dynamics in TEA-TF

The settings for an experimental investigation of the low-temperature dynamics of TEA-

TF on IN10 were the same as in the case of the pyridinium-based IL and are given in

Chapter 5.1. The abrupt decrease of the elastic intensity on heating at T=306 K and

T=230 K (Fig. 6.1) agrees with the phase transition temperatures measured by DSC and

reported in Table 3.3. As opposed to the heating regime, the temperatures T=260 K and

T=213 K, at which the elastic intensity suddenly increases on cooling, are quite different

from those obtained by the DSC-method, because the start of the phase transition in the

IL is very sensitive to the cooling rate. To achieve a proper sample thermalisation and

satisfactory scattering statistics, the elastic scans measurements could not be carried out at

a higher rate than 0.50 K/min, which is much less than a usual experimental setting in a

DSC-measurement.

In the same way it was done for [BuPy] the temperature dependence of the elastic intensity

of TEA-TF was fitted to the three-fold jump rotation (Eq. 5.1) and rotational diffusion

(Eq. 5.2) models at Q=1.85 Å−1, where there are no intense structural maxima leading to

great coherent contributions (Fig. 6.1). The results of the fits are listed in Table 6.1. The

fraction of mobile hydrogen atoms pmob turned out to equal 0.66 and 0.58 for both models,
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Figure 6.1. Elastic scan measurements on TEA-TF on cooling and heating. The
solid line represents the result of the fit to the rotational diffusion model (Eq. 5.2)

respectively. The number of protons in the end methyl groups is nine in total. If to assume

that only their rotation causes gradual decrease of the elastic intensity in the temperature

range of 100 to 215 K, before the first melting transition occurs, then pmob would be equal to

9/16 in the ideal case, which is close to the values obtained for both models. The radii of the

spheres are also in a good agreement with the length of the C–H bond in the methyl group.

This allows concluding that the thermally activated methyl group rotation was detected in

the discussed temperature range.

Proton dynamics of TEA-TF in the temperature range between the two melting transi-

tions was analysed on the basis of the QENS-spectra collected on IN5 with the wavelength of

Table 6.1. Fit results of the elastic intensity scans in the temperature range from 2
to 215 K from TEA-TF according to Eq. 5.1 and 5.2

three-fold jump rotation rotational diffusion

τ0, ps 3.2±0.6 0.57±0.15
Ea, kJ/mol 8.7±0.3 9.5±0.4

R, Å 1.16±0.05 1.16±0.07
pmob 0.66±0.02 0.58±0.02
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Table 6.2. Fit results of the QENS spectra of TEA-TF in the temperature range
from 250 to 290 K according to Eq. 6.1

T , K R, Å pmob τR, ps

250.0 1.07±0.05 0.53±0.03 3.8±0.2
270.0 1.16±0.05 0.55±0.02 3.9±0.2
280.0 1.13±0.04 0.55±0.02 3.7±0.2
290.0 1.47±0.05 0.58±0.02 3.9±0.2

incident neutrons λ=5.00 Å. The resolution of the instrument allowed to observe a quasielas-

tic contribution, which is enough intense at T >270 K, so that the fitting procedure can be

performed. The scattering law used for the fits in the above mentioned temperature range

reads:

SI(Q,E) = I0(Q) · ((1− pmob)δ(E) + pmobSR(Q,E))⊗R(Q,E) + a+ bE (6.1)

where SR(Q,E) is defined by Eq. 2.28. The evaluated parameter values are summarized

in Table 6.2. The value pmob proved to be equal to 0.55 (≈ 9/16); the relaxation time τR

amounted to ∼ 4 ps; the radius of the sphere R increases gradually from 1.16 Å to 1.45 Å,

indicating that the carbon atoms attached to the central nitrogen atom become more mobile

and the whole alkyl chain becomes more flexible. In the same temperature range the QENS-

broadening of the partially deuterated TEA is suppressed and very weak to carry out a

fitting procedure, giving another experimental indication that the considered process arises

from the alkyl-chains (Fig. 6.2).

As it was mentioned in Chapter 3.1.2, the two successive endothermic phase transitions

are ascribed to melting of pure PIL and water-PIL domains. A trace amount of water is

present all the time in IL samples. However, the QENS experiments cannot corroborate

this statement. First, the spectra at the temperature higher than that of the first melting

transition do not exhibit enhanced unrestricted dynamics of the cation compared to the

range below the first melting point. The substantial elastic contribution proves that the

particles are immobile at least on the time scale of several picoseconds. In its turn, the

observed QENS-broadening is connected with the localized motions of the side alkyl chains.

But indeed, the relaxation time of this process becomes abruptly less than for the lower

temperatures. Second, if to compare the integrated intensities within the energy window

of [-2.0,2.0] meV, we see that the patterns resemble spectra of a solid characterized by

narrow sharp Bragg peaks. When the first melting occurs, their position changes and the
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redistribution of intensity is observed, but only with the second melting transition all the

peaks are smeared. And the integrated intensity exhibits wide maxima typical for molten

salts in the liquid state (Fig. 6.3).
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Figure 6.2. QENS spectra of the com-
pletely protonated and partially deuterated
samples of TEA-TF measured at T=280 K
and Q=1.40 Å−1 (symbols) on IN5 together

with the resolution function (solid line)
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Figure 6.3. Integrated intensity of the par-
tially deuterated sample TEAD-TF measured
on IN5 on heating at the temperatures, when

the sample is in the solid or liquid states

6.2. Dynamic structure factor for TEA-TF

The data measured both on FOCUS with λ=5.75 Å and IN5 with λ=5.00 Å at ambient

and elevated temperatures are presented here. As the linewidths of the resolution functions

differed by a factor of 1.5 (Table 3.5), the observation time available on FOCUS was 1.5

more than on IN5 and equaled 3 ps (Fig. 3.3).

In the frame of the model independent approach, the QENS-spectra of both TEA-TF and

TEAD-TF in the liquid state can be presented by two Lorentzian curves (see Chapter 2.3).

In the same way, as it was applied to the pyridinium-based ILs, the narrower Lorentzian

contribution was ascribed to the motion of the whole cation, the second broader curve

accounting for various types of localized processes.

The fact that the second broader Lorentzian contribution is necessary to describe the

entire spectrum of TEAD-TF, or [NH(C2D5)3] was surprising. As only one proton, playing a

role of a tagged particle, is present in the structure of the cation, one would expect that only

one Lorentzian related to the global diffusion is sufficient to capture the profile of the spectra.

It is important to keep in mind that the analysis of the TEAD-TF data is not straightforward
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Figure 6.4. Left: Cation structure of TEA-TF and sketch of different possible radii
of confinement. Right: Comparison of the measured quasielastic intensity for the to-
tally protonated and partially deuterated samples of TEA-TF measured at T=360 K and

Q=1.75 Å−1 on IN5.

as in the case of the totally protonated sample. The reason for this it that the spectra of

the partially deuterated IL exhibit a substantial coherent component from both the cation

and the anion (Table 3.4). The incoherent scattering from the 15 deuterium atoms is also

comparable with the contribution from one proton. If we assume that the total scattering of

the protonated sample SH(Q,E) is dominated by the incoherent scattering from the ethyl-

chains, then the incoherent contribution from the 15 deuterium atoms can be excluded from

consideration by subtracting as:

SDcorr(Q,E) = SD(Q,E)− σD

σH

SH(Q,E) (6.2)

where SD(Q,E) is the experimentally obtained dynamical structure factor of the partially

deuterated sample, σH and σD are the incoherent cross sections of the hydrogen and the deu-

terium, respectively. Unfortunately, this correction does not allow eliminating the coherent

scattering, but our recent experiment on separation of coherent and incoherent contributions

indicated that interference effects are crucial for the long-range diffusion only (see Chapter 7).

From Fig. 6.4 it is clear that the undertaken correction has not removed the broader QENS-

contribution and the N-H proton performs a sort of localized motion on the time scale of the

instrument. So, for the further analysis of stochastic motions in TEA-TF several groups of

“equivalent” hydrogen atoms can be considered (Fig. 6.4): the single N-H proton (RH), the

six proton of the ethyl chains closest to the nitrogen atom (R1) and the nine protons of the

end groups (R2).
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Taking this into account, it was decided not to include any explicit model for the slower

process in the case of TEAD-TF and to choose the Gaussian model (Eq. 2.41) for describing

the localized dynamics of the single proton. The scattering law used for the fits of the

partially deuterated sample reads:

SDcorr(Q,E) = I0(Q) · 1

π

Γglob

Γ2
glob + E2

⊗ SG(Q,E;RH, DH)⊗R(Q,E) + a+ bE (6.3)

where DH is the diffusion coefficient characterising the localized dynamics of the proton.

In the case of the totally protonated sample it was possible to perform the fitting routine

including the jump-diffusion model (Eq. 2.24) explicitly for the long-range diffusion (Γglob),

the dynamic structure factor for the localized dynamics containing components from each

group of the protons:

SI(Q,E) = I0(Q) · 1

π

Γglob

Γ2
glob + E2

⊗
{

1

16
SG(Q,E;RH, DH)+

+
6

16
SG(Q,E;R1, Dloc) +

9

16
SG(Q,E;R2, Dloc)

}
⊗R(Q,E) + a+ bE

(6.4)

The 2D-fit routine, however, does not permit to estimate all the variables in Eq. 6.4 reliably,

as the contribution of the N-H proton is much weaker than that of the other 15 hydrogen

atoms. To circumvent this, RH and DH were fixed to the values calculated from the TEAD-TF

spectra. Table 6.3 and 6.4 summarize the results of the fits according to Eq. 6.3–6.4

The linewidths of the Lorentzian curve attributed to the long-range diffusion are depicted

in Figure 6.5 as a function of Q for both spectrometers. At first glance the results look

similar. The linewidth of the protonated sample follows the Q2-law at smaller Q-values,

whereas deviation from this law is observed in the higher Q-region. The linewidth of the

partially deuterated sample features so called “de Gennes line narrowing” [73] (modulations

of the linewidth at those Q-values, where there are the maxima of the broad lines in the

I0(Q) dependence), indicating the presence of a relatively large coherent contribution. The

“depth” of this modulation depends both on the temperature and the instrumental resolution

function. The coherent contribution determines this behaviour; the shorter the observation

time-scale is, the more visible are interference effects in the long-range diffusion of the TEA

cation. Therefore, the deviation of the quantity Γprot
glob(Q)/Γdeut

glob (Q) from one is much more

pronounced at lower temperatures for the IN5 data.

For some PILs the diffusivity of the N-H proton is considerably facilitated in comparison

with that of the cation through the Grotthus mechanism (proton hopping through the hy-

drogen bond network). The interplay of the vehicular and Grotthus mechanisms has been
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Table 6.3. Temperature dependence of the radii characterizing the localized motion
of the different parts of the TEA cation

T [K] RH [Å] R1 [Å] R2 [Å]

FOCUS

310.0 0.339±0.003 0.010±0.003 0.784±0.003
330.0 0.386±0.003 0.338±0.002 0.954±0.002
350.0 0.444±0.003 0.414±0.002 1.016±0.003
370.0 0.485±0.003 0.481±0.003 1.061±0.004
390.0 0.533±0.003 0.537±0.002 1.125±0.004

IN 5

320.0 0.403±0.004 0.384±0.002 0.822±0.005
360.0 0.492±0.004 0.529±0.011 0.865±0.006
400.0 0.567±0.005 0.699±0.016 0.877±0.010
440.0 0.620±0.006 0.876±0.004 0.876±0.004

Table 6.4. Best fit parameters of the temperature dependence of the diffusion coef-
ficients characterising the TEA dynamics to the Arrhenius equation (Eq. 5.4)

D0 ·10−8, m2/s Ea, kJ/mol

FOCUS

long-range diffusion (D) 7.28±0.15 16.04±0.06

restricted motion of
the alkyl chains (Dloc)

1.81±0.02 8.04±0.03

restricted diffusion of
the N-H proton (DH)

3.25±0.04 12.18±0.04

IN5

long-range diffusion (D) 24.3±0.5 19.18±0.07

restricted motion of
the alkyl chains (Dloc)

1.45±0.01 7.20±0.02

restricted diffusion of
the N-H proton (DH)

1.50±0.03 8.90±0.05
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studied for [Im][TFSI] theoretically [187] as well as experimentally [108]. In the latter work

it was demonstrated by PGF NMR that the proton hopping is temperature dependent and

becomes less efficient with increase in temperature, because the number of hydrogen bonds

and their lifetime decrease. The authors also employed QENS to investigate this process

and proposed to use the residence time τ0 in the jump-diffusion model (Eq. 2.24) to quantify

its effectiveness. This parameter determines deviation from the Q2-law at high Q-values

corresponding to length scales smaller than the characteristic interaction distance. However,

for partially deuterated samples the estimation accuracy is very poor, owing to the presence

of coherent scattering in the most valuable for this purpose high Q-range.

In the case of TEA-TF the whole set of the Γglob(Q) dependencies for both the protonated

and partially deuterated samples does not disclose any enhanced proton dynamics. Moreover,

the “apparent” diffusion coefficient of the N-H proton is even less than for the whole cation

because of the coherent contribution. But on the other hand, the spectra of TEAD-TF exhibit

a broader Lorentzian contribution and, hence, point out to the existence of a localized process

of the N-H proton. So, this hydrogen atom is not tightly connected to the core of the cation

and has additional degrees of freedom as compared to the translational motion of the cation

as a whole. The origin of this broad component in the spectra of TEA-TF will be discussed

later.

For the broader QENS-component of the TEAD-TF spectra the Gaussian model (Eq. 6.3)

yielded the results displayed in Figure 6.6–6.7. For illustrative purposes the fit parameters

of the long-range diffusion and the localized dynamics of the ethyl chains are plotted on the

graphs as well. The diffusion coefficients depend on the instrumental resolution function,

owing to two reasons that may come into interplay. First, very narrow Lorentzian contri-

butions cannot be reliably resolved if the resolution function is much broader, or vice versa

broader contributions cannot be fitted if the available dynamical range is too narrow. Sec-

ond, the dynamics of ILs proved to be decidedly heterogeneous, as it has been stated before

in the Introduction; the relaxation processes in ILs have in principle non-Debye behaviour.

By altering the linewidth of the instrumental resolution function one adjusts the “exposi-

tion time”, during which the information about particle motions is acquired [98]. And it is

evident that one Lorentzian (or single exponential decay) for the description, for example,

of the long-range diffusion is only an approximation valid for a certain accessible time-scale.

That is why, quite often the intermediate scattering function is fitted with the stretched

exponential function in the (Q, t)-domain [55, 77].

The restricted motion of the N-H proton is found to be mostly affected by the above

mentioned factor, while the IN5 and FOCUS diffusion coefficients characterising the confined

motions of the alkyl chains are pretty similar. In the latter case the resolution effect becomes
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apparent in the temperature dependence of the confinement size (Fig. 6.7). The difference in

the radii of the inner and outer hydrogen atoms is less for the IN5 data than for FOCUS; R1

and R2 even tend to one value at elevated temperatures. The interplay of several localized

motions occurring on close but different time scales (chain librations, torsional rotations)

may lead to this sort of results. If the “exposition” is less than the mean time between

distinct conformational states of the chains then the proton is detected around more or less

the same position; while the observation time greater than the relaxation time of torsional

rotations would allow capturing the proton dynamics over a larger volume.

The temperature dependence of all the diffusion coefficients can be modelled by the

Arrhenius equation with the fit parameters summarized in Table 6.4. It is worth mentioning

that Dloc attributed to the alkyl side groups is very close to the analogous value calculated

for the butyl chain of the pyridinium-based IL (Table 5.6).

There remains an open question about the origin of the dynamical process related to

the second broad contribution in the spectra of the partially deuterated sample. Several

explanations are possible. It seems reasonable that owing to the chain librations and recoil

effect the centre of the cation performs a sort of localized motion. But there are some facts

that do not corroborate this assumption. First, the diffusion coefficients Dloc and DH are not

similar. The DH values lie even closer to D, which describes the long-range diffusion. Second,

although the radii of confinement are similar to the radii of the inner protons belonging to

the ethyl chains at room temperature, their temperature dependence is decidedly different.

Moreover, at T=300 K near to the phase transition the alkyl chains are partially “frozen”,

which is manifested by R1=0.010 Å, whereas the localized process can still be observed for the

N-H proton. The second plausible explanation would be that this spatially restricted process

and the QENS-broadening associated with it is just a remainder of the global diffusion, which

cannot be satisfactorily presented by a single Lorentzian curve and is not visible for the

totally protonated sample because of the other quasielastic contributions. This argument

can be disproved as well. The trace of the discussed broadening is detectable even at the

temperatures lower than the melting point (Fig. 6.2), when the cation is immobile as a

whole. On the other hand, dynamics of hydrogen bonds and ion pairs, proton transfer from

the cation to the anion and vice versa remain possible explanations, as their time and length

scale match nicely those of the discussed localized process.

Only a few molecular dynamic simulations were reported for the family of the studied

PIL [183, 184, 188], and unfortunately no information is available for TEA-TF at all. These

works proved that interactions in PILs have strong directionality in comparison with sim-

ilar aprotic liquids due to hydrogen bonds. For the family of alkylammonium salts with

the trifluoromethanesulfonate anion it was shown that the most stable and energetically
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favourable geometry is when the anion has contact with the N-H bond. The interatomic

distances between the key particles (the oxygen atom of TF, the nitrogen atom of TEA and

the N-H proton) in the most energetically favourable configuration are R(O-H)=0.97 Å (the

proton belongs to the acid); R(N-H)=1.06 Å and R(O-H)=1.59 Å (the proton belongs to the

base) [184, 188]. The characteristic size of the confinement with a soft boundary is about

0.45 Å (T=350 K). It means that the diffusion in a sphere model would yield a value of

approximately 1.0 Å, the correlation time τ0 = R2
H/DH ≈4 ps. This estimation affirms the

assumption that the observed localized process might be connected with the proton exchange

between the ions and formation of ion pairs.

6.3. Summary

Both the low temperature dynamics and the dynamics of TEA-TF in the liquid state

have been studied and summarized in this chapter. The measurements performed on a

backscattering spectrometer showed the presence of thermally activated methyl group ro-

tation at temperatures below the first melting point. The temperature range between the

two endothermic phase transitions was investigated by means of the QENS-method. This

region was also characterized by localized motions of the end methyl groups, while the core

of the TEA cation remained “frozen”. Thus, no individual melting transitions of PIL-water

and pure PIL domains were detected. Moreover, the integrated intensity clearly displayed

two distinct diffraction patterns for the temperatures below the first and the second melting

points.

The dynamical behaviour of the totally protonated and partially deuterated samples have

been compared for the temperatures higher than the second melting phase transition. The

long-range diffusion, as well as the localized process was observed for both samples. The

spectra profiles were satisfactorily captured by the scattering law that included the jump-

diffusion model and the Gaussian model for the separate groups of the hydrogen atoms in

the cation. The most important finding in this context was the enhanced dynamics of the

N-H proton detected in the spectra of the partially deuterated sample TEAD-TF.



7. Collective and single particle dynamics

QENS analysis of stochastic motions in hydrogen-rich samples is usually started with the

assumption that the incoherent signal from hydrogen atoms determines the total scattering

intensity, while the coherent contribution is considered to be negligible. On the other hand

the structure factor of many ionic liquids features some so-called pre-peaks in the Q-range

accessible normally by QENS [9, 47, 189–191]. Thus, this assumption for such kinds of

samples is questionable.

The origin of these pre-peaks in ILs is the source of a long-lasting and extensive de-

bate [189, 192]. In this respect, the issue has been most thoroughly explored for the class of

imidazolium based ILs. At first, their pre-peaks were interpreted as a fingerprint of highly

structured domain formation on the nanometer length scale. The presence and position of

the first maximum at the lowest Q-value exhibited dependence on both the number of carbon

atoms in the side alkyl chains and temperature [9, 190]. Therefore, alkyl substituents were

considered as a driving force for this intermediate range order. Owing to the recent experi-

ments [191] this explanation has gained credence. However, the possibility that these low Q

diffraction features reflect nm-scale structural organisation has been questioned. First, the

pre-peaks or the first sharp diffraction peaks are not a peculiar or exclusive feature of ILs. It

was also highlighted that the presence of the bulky alkyl chains leads to different patterns of

ion coordination. The pre-peaks could be simply a result of this geometrical anisotropy, but

not a result of creating complex morphologies from the alkyl tails [47, 192]. Thus, the broad

peak at around 1.4 Å−1 corresponds to a spatial correlation length of 4.5 Å and points out to

intramolecular and close contact intermolecular interactions (correlations between ion pairs,

adjacent alkyl chains). The peak at around 0.8–0.9 Å−1 usually depends on the length of the

alkyl chain and is connected with cooperative effects between polar groups of the same sign.

These features can be found in the diffraction spectrum of [BuPy][Tf2N] as well (Fig. 7.1).

Consequently, the discussed correlations in structure either on the nanometer length scale

or between the nearest neighbours will be reflected in dynamics of the studied IL and in its

QENS spectra as a coherent component, which cannot be neglected.
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Figure 7.1. Intensity as a function of Q as measured on a completely deuterated
sample, [BuDPyD][Tf2N]. The experiment was performed on the thermal neutron

diffractometer HRPT at SINQ, using incident neutrons with λ=1.5 Å

For this reason the experiment on separation of coherent and spin-incoherent scattering of

[BuPy][Tf2N] was conducted on D7 at ILL (see Chapter 3.2.2). The aim of the investigation

was twofold. First, the obtained “pure” incoherent spectra would give access to the values

of the time and length characteristics that are closer to the actual values and would allow to

estimate a systematic error, to which measurements are prone, if one assumes that coherent

scattering is negligible and the total scattering is incoherent in nature. Second, the coherent

contribution is by no means a waste in this kind of experiment. It also provides information

about dynamical processes of particles with regard to their surroundings. Therefore, analysis

of the coherent component of the spectra was performed in the second part of this chapter.

7.1. Incoherent contribution

Following the method described in Chapter 3.2.2, the coherent and spin-incoherent con-

tributions of the total scattering from the [BuPy][Tf2N] sample at four different temperatures

were separated. The 2D intensity maps after data reduction are presented in Figure 7.2(a).

For illustration the integrated intensity as a function of Q and a constant Q-cut are added

as well. From the plot of the integrated intensity (Fig. 7.2(b)) we see that the incoher-

ent component decreases gradually with wave number transfer in accordance with energy
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redistribution due to the high frequency vibrations (Debye Waller factor). The coherent

integrated intensity follows the structure factor measured on the totally deuterated sample

(Fig. 7.1). Figure 7.2(c) demonstrates the spectrum of the Q-group at Q=1.3 Å−1, where

the coherent scattering is very strong with respect to the incoherent part.

Once the contributions had been separated, the analysis of both the incoherent and total

spectra were performed. At first, a model independent fit was applied in order to explore

how the systematic error connected with coherent scattering affects the time and length

characteristics of the studied processes. The previous study (see Chapter 2.3, 5.2) showed

that the incoherent scattering law for the total scattering in the quasielastic region can be

considered as a convolution of the global and localized parts. The same was assumed for the

“pure” incoherent spectra.

The linewidths attributed to the long-range diffusion were found to be prone to larger

values than those of the total spectra and effected most of all (Fig. 7.3). If the input spectra

are not corrected for the coherent scattering, the corresponding function has even a kind of

modulation following the structure factor; the linewidth Γglob(Q) is clearly narrower than that

of the incoherent spectra at Q=1.3 Å−1. These modulations are even more pronounced for

the totally deuterated sample studied in the recent work [125], when the coherent scattering

dominates. This phenomenon, often referred to as “de Gennes narrowing”, may be considered

as a structural relaxation with longer lifetimes and was observed for some other systems [193,

194].

Unlike the totally deuterated sample, for which the presence of the dominating coherent

scattering is not reflected in the linewidth of the spatially restricted dynamics, the separation

of the contributions led to broadening of Γloc(Q). As the diffusion coefficients are evaluated

from the Γ(Q) dependencies, it means that a systematic error will be encountered in esti-

mated time characteristics, the diffusion coefficients tending to lower values than the actual

ones. On the other hand, the EISF, which contains the information about the geometry

of the localized motion, remains almost unaffected; it means that spatial parameters of the

system may be estimated quite well only from spectra with unseparated components.

For the analysis of the incoherent spectra the jump-diffusion model (Eq. 2.24) for the

long-range process and the Gaussian model (Eq. 2.41) with one radius of confinement for

the localized dynamics were employed, so that the scattering law reads:

Sinc(Q,E) = I inc
0 (Q) · 1

π

Γglob

Γ2
glob + E2

⊗ SG(Q,E;Dloc)⊗R(Q,E) + a+ bE (7.1)

The fact that only one characteristic size is necessary to capture the broader quasielastic

contribution is explained by a coarser resolution function of the D7 spectrometer (FWHM
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Figure 7.3. Q-dependences of the linewidth characterising the global (a) and localized
(b) dynamics of [BuPy][Tf2N] and evaluated from the incoherent part of the spectrum as
well as from the total spectrum at T=300 K. The grey solid line is the diffraction spectrum

measured on the completely deuterated sample

= 140 µeV) than that of FOCUS (λ = 5.75 Å, FWHM=60 µeV) and, hence, by a shorter

observation time. The results of the fitting procedure are included in Table 7.1.

The diffusion coefficients of the long-range motion and localized motion differ by a factor

of five and their temperature dependence is consistent with the Arrhenius law (Eq. 5.4). The

activation energy values equal 12.3 and 8.2 kJ/mol for the global and local processes, respec-

tively, and are in agreement with the values calculated from the FOCUS spectra (Table 5.6).

The radius of confinement, in which particles are moving, increases with temperature in-

crease as well. The same calculations were performed for the spectra with unseparated

contributions. The difference in the equivalent values of the diffusion coefficients amounts to

10-20%, of the radii ∼ 1%. So, as already discussed, the coherent contribution affects time

characteristics first of all and, in this respect, should not be neglected.

Table 7.1. Diffusion coefficients of the global, D, and localized diffusion, Dloc,
characteristic radii of confinement σ and residence time τ0 as obtained from the

incoherent spectra of the [BuPy] sample with Eq. 7.1 at different temperatures

T , K D · 10−10, m2/s τ0, ps Dloc·10−10, m2/s σ, Å

300.0 2.44±0.03 7.3±0.4 9.34±0.05 0.416±0.003
320.0 3.21±0.04 5.9±0.3 10.7±0.07 0.492±0.003
340.0 4.73±0.04 5.7±0.3 14.1±0.07 0.567±0.003
360.0 5.51±0.04 4.6±0.3 15.7±0.08 0.636±0.004
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7.2. Coherent contribution

Although the coherent contribution is a source of valuable information, because it provides

insight into collective processes and interference effects, the number of works on coherent

quasielastic scattering is small. Moreover, for the objects of the investigations only diffusion

processes were of relevance, concerning the time and length scale of QENS [193, 195, 196].

The number of analytical models, which are applicable for localized dynamics, is even much

more limited [197]. Of course, all these examples are far from an ionic liquid, but some

common approaches can be applied as a rough approximation to analyse the data.

Vineyard studied the relationship between the coherent and incoherent quasielastic com-

ponent in the static approximation [198]. He started with the assumption that the time-

displaced pair distribution function can be expressed by the self part of the function and the

radial-distribution function g(r′):

G(r, t) ∼= Gs(r, t) +

∫
g(r′)Gs(r − r′, t)dr′ (7.2)

This led him to a simple formula, which connects the coherent and incoherent contributions

of a diffusion process. The linewidth should be the same as for the incoherent contribution,

only intensity is modulated:

Scoh(Q,E) = Sinc(Q,E)S(Q) (7.3)

where S(Q) is the static structure factor. Eq. 7.3 does not fulfil the second moment sum

rule [85], so it is necessary to keep in mind that it is only a rough approximation.

However, it turned out that Eq. 7.1 is not the best choice to fit the coherent part of

the spectra. The profile of the quasielastic broadening is simpler and can be presented by a

single Lorentzian. The linewidths of the Lorentzian curves are close to the values obtained

for the long-range diffusion from the incoherent contribution. Therefore, for the further data

evaluation the following function was used in the fitting routine:

Scoh(Q,E) = Icoh
0 (Q) · 1

π

Γglob

Γ2
glob + E2

⊗R(Q,E) + a+ bE (7.4)

where Γglob is expressed by Eq. 2.24 in terms of the jump diffusion model, Icoh
0 (Q) is the

intensity factor of the coherent contribution.

Figure 7.4 shows two Q-dependences of the Lorentzian linewidth at two different tem-

peratures with the function (Eq. 2.24), which fits to the experimental points satisfactorily

well. The shortcoming of this approach, however, is that the diffusion coefficients are dif-

ferent from those obtained from the incoherent contribution (Fig. 7.5) and the modulation
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of the linewidth is still observed at the Q-values corresponding to the maxima of the static

structure factor. Even if the difference between the values of the diffusion coefficients could

be explained by the fact that the source of the coherent scattering is not only the cation

but the anion as well, the modulation of the linewidths remains a problem. Vineyard’s

approximation does not explain “de Gennes narrowing” and, therefore, was criticized.

The Sköld’s ansatz can be employed as the next approximation in describing the coherent

part [193, 199]:

Scoh(Q,E) = Sinc

(
Q√
S(Q)

, E

)
S(Q) (7.5)

The substitution of Q by Q/
√
S(Q) introduced by Sköld helps to overcome the problem

with the violation of the second moments sum rule. The same result was obtained by

Leitner and Vogl [200] in their work, where they considered the diffusion of interacting

particles on a Bravais lattice in the limit of weak or short-order interactions. Qualitatively

this substitution may be understood in the following way [199]. The coherently scattered

intensity is composed of the scattering from several atoms, S(Q) being the measure of the

effective number of atoms which contribute to the intensity at wave vector Q. The recoil

energy transferred to the system is therefore S(Q) times less, the same as if the recoiling mass

were S(Q) times greater. Unfortunately, the actual static structure factor of the studied IL

has not been measured. But the intensity factor Icoh
0 (Q) is definitely connected with this

characteristic and, in the first approximation, may be considered to be proportional to S(Q).

So one more parameter, the proportionality constant α, was introduced in the fit model. It
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equals Icoh
0 (Q) at those Q-points where S(Q) = 1. The dynamic structure factor reads then:

Scoh(Q,E) = Icoh
0 (Q) · 1

π

Γ′glob

Γ′2glob + E2
⊗R(Q,E) + a+ bE (7.6)

where Γ′glob is the linewidth of the diffusional process modified according to Eq. 7.5:

Γ′glob =
~DcohQ

2 α
Icoh0 (Q)

1 +DcohQ2 α
Icoh0 (Q)

τ0

(7.7)

The fitting routing with Eq. 7.6–7.7 was carried out at temperature T=300 K, because

quite a noisy signal at elevated temperatures rendered the procedure unstable. The estimated

value of α and the intensity factor as a function of Q are shown in Figure 7.6. At the same

time the diffusion coefficient reached the corresponding value of the incoherent contribution.

So it is a good sign, but the absence of reliable results at the other temperatures does not

allow us to completely approve the validity of this approach. Besides, it definitely helps to

overcome the difficulties with the modulations of the linewidth and decrease the discrepancy

between the diffusion coefficients obtained from the coherent and incoherent parts.
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Figure 7.6. Intensity factor Icoh
0 (Q) and α derived for the coherent component of the

spectrum at T=300 K according to Eq. 7.6–7.7

7.3. Summary

To sum up, the first slower process detected for [BuPy][Tf2N] is diffusive in nature, the

linewidth of this process can be well described by the jump diffusion model. This process

shows up both in the coherent and incoherent contribution, so it is at least partially of
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collective nature. At Q-values where there are the maxima of the static structure factor the

modulation of the linewidth is observed. Indeed, maxima of S(Q) imply that the particles

prefer to build local arrangements, in which the correlated motion of neighbouring particles

is energetically favoured. It takes more energy to break such arrangements up and hence

they are longer-lived. Collective translational and rotational motion was also described in

the work by Schröder [201], where he studied the dielectric behaviour of a imidazolium-based

IL.

The second faster process is not affected by the structure and cannot be extracted from

the coherent contribution; so, chain librations and their conformational changes, associated

with this process are a true single particle process on a shorter time scale.





8. General conclusions and outlook

Knowledge about dynamical processes is a key to better understanding many fascinating

properties of ILs and, hence, important for their manifold potential future applications. In

this thesis cation dynamics in ILs have been investigated by means of QENS, primarily using

the time-of-flight technique. In particular, the representatives of two classes were studied:

pyridinium-based ILs and alkylammonium-based protic ILs. Although the studied samples

were mainly used in this work as model compounds, the evaluated data on their diffusivity

is of interest for the application fields, where they have been already tested.

For the description of the QENS-spectra of the studied ILs on the nanosecond-picosecond

time scale analytical forms of the scattering laws have been worked out on the basis of simpler

and well-known theoretical models. The tested equations gave reasonable results in a broad

temperature range and can be generalized for a larger group of ILs. However, owing to diverse

processes occurring in the ILs, the models are characterized by a sufficiently great number of

free parameters. To make the fitting routine more stable and unambiguous data evaluation

feasible, the more stringent 2D-fitting approach was applied in this thesis. Both the energy

and the wavevector transfer, the quantities which provide information about time and spatial

characteristics of the processes, respectively, were treated as independent variables. It allows

fitting to more complicated analytical expressions than the conventional approach, when

parameters are evaluated for every Q-group independently. The corresponding program

module with user-interface was written to fulfil the requirements of QENS-data analysis.

Different aspects of the cation dynamics in ILs have been studied in the present work.

The major achievements are highlighted as follows. In the low temperature range one process

mainly influences the spectra. This is the thermally activated rotation of the end methyl

groups. At elevated temperatures for all the studied compounds two major processes have

been generally established on picosecond time scale: long-range diffusion, which can be de-

scribed in terms of the jump-diffusion model, and more tangled localized motions. In contrast

to other experimental methods (in particular PFG–NMR), due to shorter times probed, the

temperature dependences of the diffusion coefficients were found to obey Arrhenius’ law. For
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the characterization of the restricted dynamics several distribution functions were proposed,

which account for different volume sizes accessible for the various groups of the hydrogen

atoms in the cations and, hence, allow for the flexibility of the alkyl substituents.

To unravel complex localized motions intrinsic to the different parts of the cation (tor-

sional rotations, libration of the whole chain, methyl group rotations, out-of-plane libration

of the pyridinium ring), the benefit of deuterium labelling was used. Thus, in the case of the

pyridinium-based ILs two partially deuterated samples of [BuPy][Tf2N] were investigated:

either the butyl chain of the cation [BuDPy][Tf2N] or the pyridinium ring [BuPyD][Tf2N]

were deuterated. The results of the analysis have shown, that the confined motion of the

flexible alkyl chain, as well as the pyridinium ring gives rise to the broadening of the elastic

line, observed from the totally protonated sample. The evaluated numerical values of the

spatial characteristics point to the motions restricted by the cation geometry, but not to the

global rotation inside the cage formed by the neighbouring ions.

A broader dynamic range was covered by using spectrometers with tuneable resolution

functions. While changing the experimental observation time, it was possible to focus either

on the long-range translational motion, which was seen as a single Lorentzian for the usually

applied instrument setting, or on very fast processes, presented by the flat background in

the used fit models. This information is even more precious, because it was acquired for the

partially deuterated samples, which made the independent analysis of the different groups of

atoms possible. As a result, different relaxation behaviour was detected in the intermediate

time range (several picoseconds) for the butyl chain and the pyridinium ring. However, our

data is yet limited to one set measured at one temperature. For a more thorough investigation

these experiments should be performed for various temperatures (close to the melting point,

below and above, for both the liquid and solid/amorphous state).

Partial deuteration was applied in the case of the protic IL TEA-TF as well. The side

ethyl chains of the cation were excluded from the consideration by substituting hydrogen

atoms with deuterium atoms; only one proton, which allows anhydrous conductivity, was

left and used as a tagged particle to trace the global dynamics of the cation. From the

comparison of the linewidths related to the long-range diffusion of both the protonated and

partially deuterated samples no long-distance hopes of the proton have been detected. On

the other hand, the N-H proton exhibits enhanced localized dynamics on a length scale of

∼1 Å and on a time scale of ∼4 ps, which might be connected with the proton exchange

between the cation and the adjacent anion.

Experimental separation of coherent and spin-incoherent scattering, which gives insight

into collective and single-particle dynamics, respectively, has been performed for the pyri-

dinium based IL [BuPy][Tf2N]. This is, to our knowledge, the first experiment of this kind
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on ILs. It showed that the localized motions of the butyl chain and the pyridinium ring

are true single-particle processes in nature; whereas the long-range dynamics are affected by

the structure of the ionic liquid. The correlations between neighbouring ions slow down the

diffusion, until these local arrangements are broken up.

QENS experiments with the polarization analysis are very promising in the case of par-

tially deuterated samples as well. Allowing the investigation of distinct groups of hydrogen

atoms, partial deuteration of the samples leads to the more intense coherent contribution at

the same time. Then, on one hand, separation of the coherent and spin-incoherent compo-

nents would provide means to study the pure single-particle dynamics of the separate groups

of the cation, and on the other hand, it would allow obtaining spectra of the coherent dy-

namic structure factor, characterized by better statistics in the case of deuterated samples.

In general a more systematic QENS study with polarized neutrons is required for the future.

As the next step, it would be important to incorporate the support of MD simulations

into the study of ILs by means of neutron scattering. This would give a direct access

to the dynamic structure factor in the same (Q,E)-range covered in the QENS method.

The computed quantities could be then compared with the experimentally obtained ones.

Moreover, for the interpretation of the coherent contribution it would be even more crucial,

as there are very few analytical models describing it.

As for the data reduction step, multiple scattering correction of raw spectra could be

undertaken for a more sophisticated data analysis and more precise evaluation of parameters.
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