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Abstract 
A dynamic respiration assay based on luminescence decay time detection of oxygen for 

high throughput toxicological assessment is presented. The method applies 24-well plates 

(OxoDishes). Dissolved oxygen concentration is measured by a SensorDishReader 

reading the oxygen sensor optodes immobilized in the centre of each well. This method 

allows LC50 calculations and recording of toxicokinetic profiles. Adherent primary rat 

hepatocytes and Hep G2 cell line were exposed to known toxic compounds. The novel 

assay showed to be robust, flexible and an improvement to current methods. 

Three human embryonic stem cell (hESC) lines, which have been directed towards 

hepatocyte-like cells were characterized and compared to Hep G2 cells and primary 

human hepatocytes for evaluation of their application for predictive toxicity testing and 

drug metabolism studies. In multi-well plate formats, repeatedly cells were identified to 

be hepatocyte-like by morphologic evaluation. Gene expression of liver specific genes 

and hepatic lineage markers were evaluated. The cells showed functional hepatic 

characteristics, such as albumin secretion, glycogen storage and urea synthesis. Phase I 

and phase II metabolism of midazolam, phenacetin and diclofenac was detected for the 

respective metabolites and the toxicity to diclofenac was confirmed by a toxicodynamics 

study. The characterization results described here provide a unique overview of the 

functionality of hESC derived hepatocytes. 

Multiple physiological and 13C-labeling studies on hESC derived hepatocytes-like cells 

and primary human hepatocytes, exposed to sub-toxic diclofenac concentrations were 

performed to identify metabolic pathways. In addition, their response to drug treatment 

was evaluated. Glycolysis, TCA cycle, amino acid degradation, albumin synthesis and 

pyruvate (re)cycling were considered for a stoichiometric metabolic flux model. MFA 

analysis revealed influence of sub-toxic diclofenac concentrations on the oxidative 

phosphorylation pathway. 
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Zusammenfassung 

Eine dynamische Hochdurchsatz-Methode zur Bestimmung von Toxizität mittels 

Messung der Respiration via Lumineszenz-Abklingzeit wurde in dieser Arbeit 

präsentiert. Hierfür wurden 24-well Platten (OxoDishes) verwendet, die mit Hilfe eines 

SensorDishReaders die Messung der Gelöst-Sauerstoffkonzentrationen in Kulturmedium 

mittels immobilisierten Sensoroptoden ermöglichen. Hierdurch konnten LC50-Werte 

errechnet und toxikokinetische Profile erstellt werden. Es wurde gezeigt, dass diese neue 

Methode robust, flexibel und eine Verbesserung zu derzeitigen Methoden darstellt. 

Drei von humanen embryonalen Stammzellen (hESC) abgeleitete Hepatozyt-ähnliche 

Zellenlinien wurden charakterisiert und mit Hep G2 Zellen und primären 

Humanhepatozyten verglichen. Diese Studie wurde durchgeführt um die Anwendung 

dieser Zellen für prädiktive Toxizitäts- und Metabolismusstudien zu evaluieren. 

Hepatozyt-ähnliche Zellen konnten anhand ihrer Morphologie wiederholt identifiziert 

werden. Leberspezifische Genexpression und typische hepatische Charakteristika wie 

Albuminsynthese, Glykogenspeicherung und Harnstoffsynthese wurden identifiziert. 

Funktionelle Biotransformation der Medikamente Midazolam, Phenacetin und Diclofenac 

wurde anhand ihrer Metaboliten gezeigt und Diclofenactoxizität wurde zudem durch eine 

toxikodynamische Studie belegt. Die Ergebnisse der hier gezeigten 

Charakterisierungsstudie bieten einen Überblick über die Funktionalität der von 

Stammzellen abgleitenden Hepatozyten. 

Physiologische und 13C-Markierungsstudien wurden an hESC abgeleiteten Hepatozyt-

ähnlichen Zellen und primären Humanhepatozyten durchgeführt, die subtoxischen 

Konzentrationen von Diclofenac ausgesetzt waren, um metabolische Stoffwechselwege 

und deren Störung in Erwiderung zur Medikamentierung zu identifizieren. Glykolyse, 

TCA-Zyklus, Aminosäureabbau, Albuminsynthese und Pyruvatzyklen wurden für ein 

stoichiometrisches metabolisches Flussmodel verwendet. Mittels metabolischer 

Flussanalyse konnte der Einfluss von subtoxischen Diclofenac-Konzentrationen auf die 

Atmungskette gezeigt werden. 
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1 Introduction 

__________________________________ 

1.1 General Introduction 

Pharmaceutical companies invest up to $ 800 million prior to approval for each new drug 

developed (DiMasi et al., 2003). The high costs arise from the tedious development 

process and the high failure/attrition rate of chemical and biopharmaceutical entities in 

late clinical trial phases (DiMasi et al., 2003; Li, 2005). This high attrition rate results 

from a lack of both efficiency (about 30% of failure) as well as toxicological and clinical 

safety (accounting for further 30% of failure) (Kola and Landis, 2004). Drugs can also 

cause liver injuries, at which 20-40 % of all drug induced reported cases lead to fulminant 

hepatic failure. In this connection 75 % of idiosyncratic reactions lead to liver 

transplantation or death (Mehta et al., 2008). Since most pre-clinical test models used for 

predictability of drugs are of non-human origin, adverse effects of compounds in man are 

not revealed until late stage clinical phases or even after entering the market (Jensen et 

al., 2009). Some drugs, such as bromfenac and troglitazone, which caused idiosyncratic 

injuries, had to be withdrawn from the market after new drug application (NDA) 

approval. They caused liver injuries to patients and major losses to the companies due to 

loss of momentum in research after investments in late clinical phases (Alden et al., 2003; 

Jensen et al., 2009). Hence, there is a high demand for predictive pre-clinical in vitro 

tools and models that can reduce late-stage attritions as well as hinder potentially harming 

molecules from entering clinical phase studies (Jensen et al., 2009). Current in vitro 

models do not completely mimic the complexity of the liver. Even primary human 

hepatocytes are not the optimal in vitro model, since they lose their metabolic activity 

within days, are donor specific and their availability is scarce (Ek et al., 2007; O'Brien et 

al., 2006; Rodriguez-Antona et al., 2002). Hence, primary animal hepatocytes are used 

but they provide only limited predictability, are expensive and raise ethical issues. 

Recently, human embryonic stem cells have been targeted intensively as a promising 

source, since they are pluripotent and possess the capability of potential differentiation 

into any cell type in the human body. Thus they could be developed as source of 

functional human hepatocytes (Chiao et al., 2008; Duan et al., 2007; Ek et al., 2007; 
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Jensen et al., 2009; Sancho-Bru et al., 2009). A readily available and unlimited source of 

human embryonic stem cell (hESC) derived hepatocytes could revolutionize and shorten 

the early stages of the drug discovery process, by studying human hepatic metabolism of 

xenobiotics and drug-induced hepatotoxicity, and contribute to the development of stem-

cell-based clinical trials (Ek et al., 2007; Soto-Gutierrez et al., 2008). Hence, for effective 

large-scale application of these cells, the demand exists for high-throughput method 

developments which provide dynamic information to get overall insight into pathological, 

physiological and metabolism based changes related to mechanism of toxicity (O'Brien et 

al., 2006; Xing et al., 2005). 

1.2 Objectives and Contribution 

1.2.1  Objectives of the VITROCELLOMICS project 

The work presented in this thesis is part of the VITROCELLOMICS project. 

VITROCELLOMICS is a Specific Targeted Research Project (STREP, EU-Project No 

018940) which started January 1st 2006 with duration of 36 months. The 

VITROCELLOMICS group addresses three major problems in current preclinical lead 

development; (1) the extensive use of animals, which is considered unethical; (2) the poor 

clinical relevance of the present in vitro drug metabolism studies; and (3) the time-

consuming, unpredictable and laborious pre-validation protocols in vivo. Thus the 

objectives of VITROCELLOMICS are to establish clinically relevant and stable 

hepatocyte cell lines from human embryonic stem cells (hESC) that reliably mimic 

human hepatocytes. Instead of animal experimentations for selection and optimization of 

lead compounds before entering clinical phases, these in vitro cell models could be used 

in the pharmaceutical industry. In addition, human drug metabolism, uptake and efflux 

properties of compounds in the drug discovery and development processes could be 

tested and evaluated. To reach this goal a system involving 3D-hepatic cell culture and 

co-culture methods, which allow for maximal metabolic capacity and control of 

differentiation and growth conditions, is being developed for use in predictive studies of 

drug metabolism. In addition, a high-throughput micro-cultivation monitoring system for 

in vitro screening using an integrated optical oxygen sensing method was developed and 

evaluated. Genomic and metabolomic characteristics were studied and compared with 

established in vitro models, so that the new models and methods can be validated. 
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Successful completion can result in a new efficient in vitro pre-validation model, which 

significantly reduces the use of animal experimentation for prediction of human drug 

metabolism and disposition by an expected 60-80 %. Further, candidates chosen for later 

stages of the drug-discovery and development process can be assessed with increased 

safety and quality.  

The members of the VITROCELLOMICS project are nine participants from four nations 

(Germany, Italy, Portugal and Sweden) within the European Union (EU). 

VITROCELLOMICS has the full title: Reducing animal experimentation in preclinical 

predictive drug testing by human hepatic in vitro models derived from embryonic stem 

cells. Research contributions are made by Linköping University, Saarland University, 

Karolinska Institute, Instituto de Biologia Experimental e Technológia, Charité 

University Hospital, Cellartis AB, Pharmacelsus GmbH, AstraZeneca R&D, and the 

European Centre for the Validation of Alternative Methods (ECVAM). 

1.2.2 Contribution and objectives of this thesis 

The objective of this thesis is three-fold. First, to establish a new high-throughput 

screening platform for drug candidates and initially determine culture conditions for cells 

using well known hepatic in vitro models (Hep G2 cells, primary rat hepatocytes), so that 

later validation of new models and methods can be performed. The high-throughput 

screening application is achieved by using 24-well SensorDishes® incorporated with 

oxygen sensors, up to 10 of which can be connected in series. Hence up to 240 samples 

can be monitored simultaneously.  

Second, hepatocyte cultures from human embryonic stem cells (hESC) will be 

characterized and evaluated based on their morphology, their ability to secrete liver 

specific proteins, such as albumin, and their display of biotransformation function, as e.g. 

phase I and II biotransformation. In addition, toxicity studies on these cells will be 

performed and compared to current in vitro models. These results will be combined and 

discussed with achievements from other cooperation partners to gain an overall 

characterization of hESC derived hepatocytes and to judge if these cells can be used for 

preclinical drug testing studies.  
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Third, physiological and 13C-labeling studies on cells exposed to sub-toxic concentrations 

of diclofenac will be performed to identify metabolic changes in hESC derived 

hepatocytes-like cells and primary human hepatocytes to evaluate subtle disturbances in 

biochemical pathways in response to drug treatment. Even in the absence of visible 

phenotype changes, metabolic changes, assessed using stable isotopic tracer studies, can 

possibly be directly related to the manifestation of toxicity. Therefore, hepatotoxicity, in 

case of hepatic cells, can be possibly identified by measuring these subtle changes. To 

measure these changes in the in vitro model developed, known techniques for quantitative 

physiological studies are adapted and implemented in the field of metabolic flux analysis 

(MFA).    

1.3 Thesis Structure  

The thesis is organized in three major parts. The central focus of the first chapter is the 

application of a high-throughput, non-invasive, dynamic toxicity platform with integrated 

optical sensors for oxygen measurement. The system is shown to be applicable for 

respiration monitoring and dynamic in vitro cytotoxicity testing. The second chapter 

deals with the characterization and application of embryonic stem cell derived 

hepatocytes, and evaluation of their metabolic and morphological competence. The third 

chapter addresses comparative, quantitative and qualitative physiological studies for 

primary human hepatocytes and hESC derived hepatocyte-like cells in response to sub-

toxic diclofenac treatment. 
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2.1 Introduction 

Billions of dollars are invested by hospitals and research institutes each year to combat 

adverse drug effects (Bennett et al., 2007). Moreover, newly synthesized drugs or 

therapeutic agents need to be tested for potential side effects on patients. In particular, 

these potential drugs must be tested for their hepatotoxicity, as the liver is the principal 

organ of biotransformation and elimination of xenobiotics (Guillouzo, 1998b). Due to 

safety regulations, clinical testing is only feasible if the safety of the compound has been 

demonstrated in both in vitro and in vivo animal toxicological studies. However, testing 

of substances to detect low incidence idiosyncratic toxicity requires large-scale animal 

studies which is difficult, expensive and evokes ethical issues. Moreover, in vivo studies 

have additional shortcomings, like difficulties to distinguish primary effects from 

secondary effects and species-specific responses (Uehara et al., 2008). Therefore, in vitro 

liver models, such as primary hepatocytes from animal origin and human 

hepatoblastoma-derived cell lines (e.g. Hep G2, Hep 3B, HepaRG) have been established 

to mimic human hepatocytes, which availability is scarce. Hep G2 cells, in particular, 

were established from liver tumor biopsies of a 15-year-old caucasian male (Argentina, 

1975) and since being introduced by Aden et al. (1979) have raised hopes that they 

represent a suitable model (Javitt, 1990). Hep G2 cells are easy to cultivate and deliver 

reproducible results. These cells have been used as liver systems for organ-specific 

toxicity screening of compounds and for the investigation of drug metabolism as well as 

cytotoxic potential (Bort et al., 1999b; Brandon et al., 2005; Castell et al., 1997; Gomez-

Lechon et al., 2001; Guo et al., 2006; Javitt, 1990; Nussler et al., 2001; Tirmenstein et al., 

2002; Toyoda et al., 2001; Wang et al., 2002). However, it has been lately shown that 

Hep G2 cells have generally only very low cytochrome P450 activities and are thus not 

well suited for metabolism related toxicity studies (Kanebratt and Andersson, 2008b; 

Noor et al., 2009). Although there are permanent rat cell lines available (HTC, BRL 

3A…), they are rarely used for toxicity testing, since they do not express the same 

cytochrome P450’s as humans. Nevertheless, primary rat hepatocytes (PRH) are often 

compared to Hep G2 cells in toxicity studies (Bort et al., 1999b; McCarthy et al., 2004; 

Wang et al., 2002). Human primary hepatocytes are most relevant and often used, 

however contrary to primary rat hepatocytes; they show a much larger individual, donor 

specific drug response and are thus not as useful to test the new method. Their supply is 
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limited and costs are very high. PRH are readily available, very reproducible, display a 

higher metabolic competence and are thus used in addition to Hep G2 cells for method 

development. However, the trend towards cell-based screening assays requires not only 

adequate quantities of cells from primary and immortalized sources, but also demands 

parallel processing of multiple batches. Hence, parameters such as scale, flexibility, 

reproducibility, simplicity and costs are of significance (Slater, 2001). Thus, new 

powerful high throughput screening (HTS) tests combined with better cell lines promise a 

significant improvement. However, for further reduction of cell procurement and 

maintenance costs, high content screening (HCS) (Slater, 2001) using non-invasive pre-

clinical toxicity assays is envisioned. Nevertheless, screening in HTS mode still requires 

improvement. Eventually, a whole set of tests should be analyzed together to cover the 

whole system response to an applied test compound adequately to get a more robust 

prediction of human in vivo toxicity (Dambach et al., 2005). 

2.2 Motivation and Theoretical Background 

Today, cell culture is a well known laboratory technique and regarded as core expertise in 

biological and medical science applications (Doyle and Griffiths, 1997; Ryan, 2008). 

Even though the method to grow animal cells outside the body had been established 

1907-1910 by Ross Granville Harrison, it was not until the middle of the last century that 

cell culture was an easy available tool for scientists (Ryan, 2008; Schmitz, 2007). Pitfalls 

as bacterial contaminations, inadequate subculture techniques for continuous growth of 

cell lines and undefined media formulations had to be solved first (Ryan, 2008; Schmitz, 

2007). Cell culture techniques were since advanced further and virus growth in cell 

culture systems and their purification allowed the first polio vaccine mass-production in 

the 1950’s. Since the 80’s mammalian cell culture is fundamental for production of many 

biological products by the recombinant DNA (rDNA) technology such as hormones, 

blood factors, interferons, monoclonal antibodies (MAb) and therapeutic enzymes. 

Today, therapeutic proteins are mainly produced in mammalian cell culture systems, 

since they possess correct conformation and post-translational modifications as 

demanded. In particular cell lines which keep their characteristics (liver, heart etc.) are in 

recent years used in the pharmaceutical industry to test for toxicity of chemicals and 

drugs and their adverse effects. This testing is nowadays mostly done by powerful high 

throughput screening (HTS) tests, a technique which was also implemented for lead 
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component screening in 1986 (Pereira and Williams, 2007). The HTS method is mostly 

performed in miniature reactors or microtiter plates, which offer the user high similarity 

between cultures. Thus, if a culture is disturbed, e.g. by supplemented drugs, growth 

parameter changes can be easily detected (Kumar et al., 2004). Only in the 80’s of last 

century, HTS ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) 

concepts for chemical entities and lead target identification were introduced (Pereira and 

Williams, 2007). The applied methods used, were mostly colorimetric cytotoxicity 

assays, which are tetrazolium based (MTT, XTT and WST-1) and relay on the ability of 

living cells to reduce the tetrazolium to formazan crystals, or viability assays such as 

Sulfurhodamine B. These assays are used to determine end-points of these HTS ADMET 

experiments (Pauwels et al., 2003; Rubinstein et al., 1990). However, growth parameter 

such as oxygen, can give further valuable information about the cell viability, their 

mitochondrial function and their response to foreign chemicals (Hynes et al., 2003). 

Thus, electrochemical and later optical sensors have been developed to monitor these 

parameters (Schrenkhammer, 2008; Schröder, 2006). For oxygen determination in 

aqueous solutions the Clark electrode is often used. In the Clark electrode, two merged 

electrodes (platinum and silver in KCl solution) are separated from the sample solution 

by an oxygen permeable membrane. The polarized electric current flow between the 

electrodes is proportional to the oxygen partial pressure (pO2) in the sample. 

Disadvantages of the Clark electrode however are, that membrane fouling and electronic 

inferences can occur and that the electrode consumes oxygen, thus inducing measurement 

errors. In addition, miniaturization to microplate format is difficult. Neither of these 

disadvantages is known for optical sensors, which have the further advantage that they 

can be easily miniaturized to HTS systems (Schrenkhammer, 2008; Schröder, 2006). 

2.2.1 End-point high-throughput cytotoxicity assays 

In vitro cytotoxicity assays rely on a number of end-points, such as cell component 

staining, release of constitutive cellular components and subsequent measurement of 

enzyme activity, as well as measurement of cellular metabolic functions. The assays 

function mainly by measurement of absorbtion and fluorescence (Slater, 2001). For HTS 

application, further, the use of cell culture robots is necessary. 
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2.2.1.1 Colorimetric assays 

Cellular metabolic activity of viable cells can be measured by tetrazolium salt assays, 

such as MTT, XTT and WST-1. These assays are based on the principle that proliferating 

cells are more active than resting cells and thus can reduce more tetrazolium salts to blue 

colored formazans dye by their higher mitochondrial activity. Another common 

colorimetric assay is the lactate dehydrogenase (LDH) assay, in which the damage to the 

plasma membrane is quantified by release of the cytoplasmic protein LDH into the cell 

culture supernatant. The sulforhodamine B (SRB) assay, however, is based on cell 

density determination via proportional cellular protein content staining (Vichai and 

Kirtikara, 2006). All these assays can be measured in regular absorbance readers, 

however, for HTS screening, they are not well applicable, since they are either not 

considered to be homogeneous, or require multiple wash-steps and incubation steps, 

which is therefore not robot-friendly (Slater, 2001). 

2.2.1.2 Fluorescence/Luminescent based assays 

Compared to colorimetric assays, fluorescent or luminescent based cytotoxicity assays 

have the advantage to be simpler and more convenient in the procedure and to have 

higher sensitivities, due to light-emitting chemistries (Slater, 2001). A common 

fluorescent end-point assay is the quantification of adenosine 5'-triphosphate (ATP), 

which is regenerated from ADP if biosynthesis occurs and thus is a marker for cell 

proliferation. The detection of ATP is done by luciferase-driven bioluminescence which 

can be correlated to cell viability. Resazurin (trade name: Alamar Blue) is another 

fluorescent compound used for fluorescent based cytotoxicity assays. Blue colored 

Alamar Blue, which is a non-toxic metabolic indicator of viable cells, upon mitochondrial 

reduction changes its color to pink and also shifts in its fluorescence. Thus, having the 

advantage of being quantified either colorimetrically or fluorimetrically (Nociari et al., 

1998). Many more fluorescent probes, such as ethidium homodimer-1, propidium iodide 

or ethidium bromide, have been widely used for membrane integrity based cytotoxicity 

assays (King, 2000). However, King (2000) pointed out, that while it is possible that a 

cell is mortally wounded, the cell membrane integrity can still be intact for relatively long 

time. 
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2.2.1.3 Dynamic high-throughput cytotoxicity assays 

Due to the drawbacks of end-point assays, high-throughput systems based on oxygen as a 

growth parameter have been developed. These methods, using non-toxic fluorescent 

biosensors, measure the fluorescence of the dyes which are quenched in the presence of 

oxygen (Slater, 2001). By using fluorescence reader linked to computers, the dissolved 

oxygen concentration (DO) can be measured continuously in the culture supernatant and 

recorded online over the test period. Changes in dissolved oxygen concentrations can be 

correlated to exposed cytotoxic drug concentrations, and thus, these methods provide a 

rapid and dynamic cytotoxicity assay.  

Several different biosensor and detection methods have been published over the last 

decade. Wodnicka et al. (2000) presented a novel fluorescence based method using one 

fluorescent dye (ruthenium based), immobilized within an oxygen-permeable silicone 

matrix, and measuring the fluorescence intensity over a certain time period. They could 

show a correlation in cell numbers between MTT assay and their method and further 

presented dose-response curves and IC50 values for bacteria exposed to antibacterial 

drugs. Deshpande et al. (2005) and Deshpande and Heinzle (2004) used microplates with 

integrated oxygen sensors (indicator and reference dye) for testing of oxygen uptake rate 

and culture viability measurement of Chinese Hamster Ovary (CHO) cells by 

measurement of the indicator fluorescence intensity that is quenched in the presence of 

oxygen and the non-oxygen-quenchable reference dye. In addition, Noor et al. (2009) 

showed the cytotoxicity application for adherent mammalian cells. Hynes et al. (2003; 

2006) showed comparable applications using a phosphorescent porphyrin, water-soluble 

probe and measuring the time-resolved phosphorescence in microtiter plates over time.  

In this part of the thesis a new SensorDish® reader (SDR) system (PreSens Precision 

Sensing GmbH, Regensburg, Germany) was used for the application of dynamic drug 

screening, thus it is explained more extensively.   

The SensorDish® Reader (SDR) system, obtained from PreSens Precision Sensing GmbH 

(Regensburg, Germany), can be used in any commercially available humidified 

incubator. The system consists of three components: the central unit (splitter), the water 

proof 24-channel reader and the 24-well SensorDishes® with incorporated oxygen sensors 

(Figure 2.2.1). Up to ten reader modules, each comprising of 24 luminescence read-out 
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where [O2] is the concentration of oxygen, I and I0 are the quenched and unquenched 

luminescence intensities, τ0 and τ are the luminescence decay times in absence or 

presence of oxygen and KSV is the Stern-Volmer constant.  

To evaluate the luminescence decay time, the sensor SensorDish® Reader system uses the 

phase-modulation technique, where the sensor is excited with a sinusoidal intensity 

modulated light and the decay time for an oxygen deprived system causes a delay in the 

emitted and measured signal. The sinusoidal reference signal and the decay induced 

phase shift (Ф) between the indicator (m) and the reference luminophore (m0) are 

depicted in Figure 2.2.2.  

  

Figure 2.2.2:  Sinusoidal reference signal and decay induced phase shift (Ф), based on Bùrki 
(2008). The reference sinus signal (ref), the quenched indicator (m), and the 
reference luminophore (m0) are denoted. 

 

This delay is called the phase angle (Ф) and its tangent is correlated to the decay time τ, 

where fmod is the modulation frequency of the excitation light. The relationship between 

the parameters is shown by solving equation [2.2].  

 



HIGH-TROUGHPUT, NON-INVASIVE AND DYNAMIC CYTOTOXICITY TESTING 

13 

 

          τ ൌ ୲ୟ୬Ф
ଶ·ౣౚ

                   [Eq. 2.2] 

 

Collisional or dynamic quenching of the luminescence of the dye in the OxoDish® shows 

a distinct non-linearity in the Stern-Volmer plot but can be described with a modified 

Stern-Volmer equation [2.3] 

 

 ୲ୟ୬Фబ
୲ୟ୬Ф

ൌ தబ
த
ൌ ቀ భ

ଵାKSVభൈሾOమሿ
 ଵିభ

ଵାKSVమൈሾOమሿ
ቁ
ିଵ
     [Eq. 2.3] 

 

where KSV1 and KSV2 are the two quenching constants and f1 is the weighting factor 

(Carraway, 1991; Klimant and Wolfbeis, 1995). This model is based on the assumption 

that the indicator is distributed in the polymer matrix at two different sites and each 

fraction (f1, 1-f1) shows a different quenching constant (KSV1, KSV2). Assuming one 

fraction of the indicator to be non-quenchable (KSV2=0), equation [2.3] simplifies to  

            

୲ୟ୬Фబ
୲ୟ୬Ф

ൌ ቆ భ
ଵାKSVభൈሾOమሿ

 ሺ1 െ fଵሻቇ
ିଵ

             [Eq. 2.4] 

The two parameters KSV1 and f1 are obtained by calibration of the sensors which is 

carried out by the manufacturer for each production batch. All data are recorded online by 

a computer using PreSens SDR_v36 software. Dissolved oxygen concentration (% DO) 

in each well is automatically calculated based on equation [2.4] with additional 

modification for temperature compensation. 
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2.2.2 Objectives 

The objective was to develop an application to monitor respiration changes online, caused 

by drugs. For this purpose, an optical sensor system, which measures the dissolved 

oxygen concentrations (DO) parallel in 24-well plates is applied (SensorDish® reader 

(SDR) system, PreSens Precision Sensing GmbH, Regensburg, Germany).  

Since drug exposure was tested on adherent hepatic cell lines/types, first the necessary 

seeding and culture conditions have to be evaluated.  

Second, the solvent influence of dimethyl sulfoxide (DMSO), in which the tested 

compounds are dissolved, on cell viability is tested. 

Third, toxicity responses are monitored dynamically and drug-time dependencies for the 

cultured cells analyzed. The dynamic effects are also compared in regard to the cell types 

used. 

Fourth, the reproducibility and the robustness of the respiration assay are tested and 

compared to (i) a sensitive in vitro toxicology assay (Sulforhodamine B) and (ii) to 

literature data. 
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2.3 Materials and Methods 

2.3.1 Cell lines and culture conditions 

2.3.1.1 Hep G2 cells 

The human hepatoblastoma cell line Hep G2 was obtained from the German collection of 

microorganism and cell cultures (DSMZ, Braunschweig, Germany). Cells were routinely 

cultured in Williams Medium E (PAN Biotech GmbH, Aidenbach, Germany) 

supplemented with 100 U/ml penicillin, 100 µg/ml streptomycin and 2.5 % Panexin D 

(v/v) (PAN Biotech). The cells were maintained in 75 cm2
 culture flasks (Greiner Bio-

One GmbH, Frickenhausen, Germany) at 37°C in an incubator (Memmert GmbH, 

Schwabach, Germany) with 95 % relative humidity in a 5 % CO2 atmosphere. The 

medium was changed every 48 hours and cells were subcultured at 90 % confluency with 

a 1:4 split ratio. Cell density and viability were determined routinely during cell 

maintenance using the trypan blue exclusion method (Morris 1997) using a 

hemocytometer. Hep G2 cells were seeded in 24-well-OxoDishes at a density of 

1.3 x 105cells/well and incubated for 30 hours prior to drug application. 

2.3.1.2 Primary rat hepatocytes 

Rat hepatocytes were provided by Pharmacelsus GmbH (Saarbrücken, Germany). In 

brief, hepatocytes were isolated from heparinised male Wistar rats (weighing > 250 g, 

purchased from Janvier, Le Genest-St-Isle, France) by the two-step collagenase perfusion 

method (Seglen, 1976). After the perfusion, the liver was transferred to WME I (Williams 

Medium E with 10% fetal calf serum (FCS) and 31.15 µg/ml Gentamycin) and the 

hepatocytes were unhinged from the connective-vascular tissue by hackling and shaking 

the liver. The cell suspension was filtered through sterile gauze (mesh width 280 µm) and 

washed three times at 50 × g (4°C, 5 min) in order to dilute out collagenase and to 

remove the non-parenchymal cells. Finally the pellet was resuspended and centrifuged at 

150 × g (room temperature, 20 min) over a 40 % percoll gradient. The supernatant 

containing the dead cells was aspirated off and the pellet resuspended in WME II 

(Williams Medium E supplemented with 10 % FCS, 100 µg/ml streptomycin, 100 U/ml 

penicillin, 50 µg/ml gentamycin, 2 mM L-glutamine, 15 mM HEPES, 1 µM insulin and 

1.4 µM hydrocortisone). The viability of the cells was determined by trypan blue 

exclusion. The primary hepatocytes were seeded in clear collagen-coated 24-well-
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OxoDishes at a density of 1.25 × 105 cells/well and incubated for 20 hours prior to drug 

application. 

2.3.1.3 Maintenance of cells in OxoDishes.  

Approximately 1.3 × 105 Hep G2 cells per well were seeded in OxoDishes (PreSens 

Precision Sensing GmbH, Regensburg, Germany). The cells were allowed to adhere for 

30 hours, after which the culture medium was replaced by fresh medium containing the 

tested chemical (drugs) at different concentrations. Measurements were continuously 

performed by the SDR reader every 15 min for 48 hours.  For experiments with primary 

rat hepatocytes, OxoDishes were coated with 10 µg/cm2 type I collagen solution (Sigma-

Aldrich) and incubated overnight at 30°C. The excess fluid was then removed and the 

plates were allowed to dry at 30°C. Plates were rinsed with sterile tissue culture grade 

water before cell seeding. Isolated primary rat hepatocytes were seeded onto the prepared 

OxoDishes, allowed adhering and spreading for 20 hours. The morphology of primary rat 

hepatocytes was monitored during the cell attachment phase using an Olympus IX70 

microscope connected to an Olympus CC12 Soft Imaging System (Münster, Germany). 

Pictures were recorded at the initial time point (t=0) and after 20 hours of seeding (t=0 

drug) prior to drug application. The respiration measurements were performed as 

described for Hep G2 cells. Primary rat hepatocytes were treated with test compound in 

medium containing all supplements except FCS whereas Hep G2 cells were incubated in 

the presence of 2.5 % Panexin D supplement. 

2.3.2 Cell viability assays  

Cell density and viability were determined routinely during cell maintenance using the 

trypan blue exclusion method (Morris et al., 1997)  using a Neubauer hemocytometer. 

Cell viability was also assessed using the Sulforhodamine B in vitro toxicology assay kit 

(Sigma-Aldrich, Taufkirchen, Germany), directly in OxoDishes after respiration 

measurements, according to the standard protocol with minor changes to adapt the assay 

to the 24-well plate format. The assay is based on proportional binding of 

Sulforhodamine B (SRB) dye to cellular proteins which is correlated to the total cell 

number (Skehan et al., 1990).  
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Figure 2.3.1:  Linear relationship between SRB signal and cell numbers. The squares are the 

average values derived from the wells (n=4) for each cell number. The standard 
deviation is displayed as error bar. The R2 is 0.995 (P<0.0001) and the equation 
results in: SRB[A530-A492] = 3.2 x 10-6 (Hep G2 cells) + 0.001. It was found to be 
linear till a cell density of 5.2 x 105 cells well-1 or the related seeding density of 3 
x 105 cells cm-1. 

In brief, culture medium was aspirated off and cells were washed twice with serum and 

supplement free medium. One ml of protein-free medium was added to each well and the 

cells were fixed with 250 µl of 50 % trichloroacetic acid (TCA) solution. The plates were 

incubated for 1 hour at 4 °C, at the end of which the fixative was removed and after 

washing, 250 µl of 0.4 % (w/v) Sulforhodamine B solution was added. The cells were 

stained for 30 min followed by five washing steps with 1 % (v/v) acetic acid. The dye 

was solubilized in 500 µl of 10 mM Tris Base (Sigma) and transferred to a 96-well plate. 

Absorbance was measured at 565 nm against a background absorbance at 690 nm using 

an iEMS reader MF (Labsystems, Helsinki, Finland). Cell enumerations were performed 

by correlation of the signal of the protein binding dye Sulforhodamine B with defined cell 

numbers, e.g. five cell numbers ranging from 0 to 5.2 x 105 cells/well were seeded in 

multiple (n ≥ 4) and the average and standard deviation for each seeding cell number was 

calculated. The relationship between SRB signal and cell number is displayed in Figure 

2.3.1. The linear regression plot resulted in a coefficient of determination > 0.99. For Hep 

G2 cells linearity was not ensured for cell numbers higher than 5.2 x 105 cells/well. It 

could be observed, by microscopic evaluation, that cell numbers higher than 5.2 x 105 

cells/well resulted in confluency of approximately 100 %. 
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2.3.3 Hepatotoxic compounds   

Test compounds were chosen based on their known hepatotoxicity and different 

mechanisms of hepatotoxic actions or their partly known drug metabolism, as described 

in the literature (Bort et al., 1999b; Deshpande et al., 2005; Guo et al., 2006; McCarthy et 

al., 2004; Thibault et al., 1992; Tirmenstein et al., 2002; Viau et al., 1993; Wang et al., 

2002). The toxicity and its kinetics on cellular systems upon exposure to amiodarone, 

clozapine, diclofenac, glycerol, methotrexate (MTX), rifampicin, tacrine, troglitazone and 

verapamil were studied in order to obtain a better insight into the dynamic behavior of the 

cellular viability when exposed to these hepatotoxic agents. Additionally, data obtained 

using this new dynamic method was compared with the Sulforhodamine B assay for four 

test compounds (namely, diclofenac, MTX, sodium dodecyl sulphate (SDS) and 

troglitazone)  and with those obtained by established cytotoxicity assay results taken from 

the literature. 

All test compounds were dissolved in dimethyl sulfoxide (DMSO) (Sigma) except for 

glycerol and SDS, which were dissolved in growth medium. Stock solutions prepared in 

DMSO were diluted with William’s medium E with or without Panexin D supplement for 

primary rat hepatocytes or Hep G2 cells, respectively, to yield the desired final 

concentrations of the test compounds. Final concentrations did not exceed 1 % DMSO 

(v/v) for all drug concentrations and controls. Control experiment were: (i) Medium 

containing no drug, (ii) medium containing the highest applied drug concentration (i.e. 

1 mM), (iii) cells in medium containing no drug (untreated control) and (iv) cells in 

medium containing 1% DMSO. Eight or more concentrations of each compound were 

prepared and applied in triplicates to the cells in a volume of 1 ml per well. 

2.3.4 LC50 determination 

LC50 (lethal dose at which 50 % of subjects will die) was determined using a four-

parameter sigmoidal concentration-response curve (OriginPro version 7.5G): 

)(HillSlope x X)LC(LOG 101

Bottom)(TopBottomY
50 −+

−
+=   [Eq. 2.5] 

where X is the logarithm of the applied substance concentration and Y is the response, 

i.e. dissolved oxygen concentration (DO) at selected time. Top is the maximum response 
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value, characterized by zero viability of cells. Bottom is the minimum response at 

maximum viability. The four parameters and the 95 % confidence intervals were 

computed with Origin Pro version 7.5G (OriginLabCorporation, Northampton, MA) 

using the Levenberg-Marquardt method. 

2.3.5 Chemicals 

All cell culture reagents were purchased from Sigma-Aldrich (Taufkirchen, Germany), 

except Williams medium E and Panexin D, which were obtained from PAN Biotech 

GmbH (Aidenbach, Germany) and FCS from PAA Laboratories GmbH (Pasching, 

Austria). 
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2.4 Results and Discussion 

2.4.1 High-throughput dynamic respiration measurement  

High throughput screening (HTS) systems have made assays cost and time efficient. 

Microtiter plates (MTP) provide a large number of parallel and miniaturized bioreactors 

with identical shape and fluid dynamics characteristics (Kumar et al., 2004) and have 

been widely used in the pharmaceutical industry. In aerobic prokaryotic and eukaryotic 

cells, oxygen is essential for central metabolic activity and indicates cell viability and 

mitochondrial function (Deshpande et al., 2004; Zitova et al., 2009). Thus, respiration can 

be considered as a useful parameter in in vitro cytotoxicity screening. 96-Well microtiter 

plates (MPTs) equipped with oxygen sensors have been shown to be an effective tool for 

cytotoxicity testing (Deshpande et al., 2005; Noor et al., 2009; Wodnicka et al., 2000). 

Recently, a phosphorescent porphyrin, water-soluble probe was applied for various 

toxicity experiments for up to 150 min. This method allows the detection of oxygen 

consumption, by reading the fluorescence intensities in a commercial fluorescence reader, 

even miniaturized to a 384-well microplate format (Hynes et al., 2003; Hynes et al., 

2006; O'Riordan et al., 2000; Papkovsky et al., 2006). However, limitations of the current 

methods are that they require an external buffering system for long-term cultures and/or 

the transfer of the plates out of the incubator into the reader for measurement what may 

result in inaccurate results. Although it is technically feasible to maintain the pH outside a 

CO2 incubator with HEPES as a buffer system, this system has not yet been shown to be 

as beneficial for long term experiments as the commonly applied bicarbonate buffer 

system. In addition, not all cell lines adapt to bicarbonate-free medium (Bonarius et al., 

1995). 

Sensor Dish readers (SDR), developed by PreSens Precisions Sensing GmbH 

(Regensburg, Germany), offer the possibility of monitoring the respiration of suspended 

and adherent cells on-line. This system is non-invasive, fully computerized and water-

proof and hence can be used in humidified incubators. SDRs can also be adapted to a 

high throughput platform. The cells are grown in 24-well OxoDishes that are placed onto 

the SDR device. The dissolved oxygen in the well is measured with an oxygen sensor 

optode immobilized at the bottom of each well (Kocincova et al., 2008). Dissolved 

oxygen concentration can be correlated to the cell viability as described previously 

(Deshpande and Heinzle, 2004). This reported system is based on the measurement of 
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fluorescence intensity that is quenched in the presence of oxygen. The method showed 

high robustness and reliability, characterized by a Z’ factor (“screening window 

coefficient”, which compares the assay’s dynamic range to data variation, hereby a Z`-

factor equal to 1 indicates a perfect assay and > 0.5 for cell culture systems) of 0.74 

indicating an excellent assay. 

Using the SDR system, the luminescence lifetime instead of the luminescence intensity is 

measured. This is advantageous, since luminophores are intrinsically referenced and are 

therefore independent of fluctuations in light intensities due to variations in the optical 

properties of the samples including turbidity, color or refractive index (Huber et al., 

2001). The intrinsic fluorescence of complex biological matrices (e.g. media and 

supplements) do not interfere with the luminescence decay time measurements for 

oxygen since fluorescence of biological materials usually decays within 100 ns (Kensy et 

al., 2005). Besides providing a controlled incubation environment, another major 

advantage of this system is that 24-well plates provide larger analyte samples than 96-

well plates for additional analyses.  

In the present study using the SDR system, the human hepatoblastoma cell line Hep G2 

and freshly isolated primary rat hepatocytes were employed. 

2.4.1.1 Seeding density optimization 

Formation of a monolayer is one of the major preconditions for hepatocytes to maintain 

respiratory and metabolic activity in 2D cultures (Arnheiter, 1980; Deshpande et al., 

2005; Wanson et al., 1977). Therefore it is essential for drug testing to identify optimal 

seeding concentrations of the non-dividing primary rat hepatocytes. This was done by 

recording dissolved oxygen concentration in the culture and by examining cell 

morphology. 

Cell densities tested in triplicates ranged from 2.5 × 104 to 4.5 × 105 cells per well. The 

suspended rat hepatocytes settled quickly after seeding and adhered. Initially, cells were 

spherical in shape (Figure 2.4.1 A) but after approximately 12 to 16 hours the cells 

formed a monolayer of flat polygonal cells (Figure 2.4.1 B). 
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Figure 2.4.1:  Morphology of primary rat hepatocytes. A) displays adhering primary rat 

hepatocytes five hours after seeding at a magnification of 40x. The scale bar of 
each figure measures 50 µm. B) is recorded 20 hours after seeding and 
immediately before drug addition. 

This morphological transformation was observed under the light microscope and was 

consistent with results earlier described by Wang et al. (2004b). Moreover, binucleated 

cells were observed (Figure 2.4.1 A) in the primary rat hepatocyte cultures. After 

approximately 16 hours of cultivation the demarcation of hepatocytes was clear as 

displayed in Figure 2.4.1 B, showing also the formation and participation of bile 

canaliculi.  

As depicted in Figure 2.4.2, dissolved oxygen concentration for primary rat hepatocyte 

cell densities from 105 to 2 × 105 cells/well decreased with increasing cell seeding 

density. Up to 2 × 105 cells/well, the signals were very similar. At cell densities above 2 × 

105 cells/well, dissolved oxygen concentration increased with time indicating that the 

cells viability was decreasing with time probably due to oxygen and nutrition limitation. 

Cell densities of 1 × 105 and 1.25 × 105 cells/well reached a steady-state, indicating stable 

respiration for 48 hours. A cell density of 2.5 × 104 cells/well resulted in a stable 

respiration rate but DO difference of only 20 % compared to medium control. This 

difference is too small to allow an accurate estimation of LC50 since the accuracy of 

dissolved oxygen concentration is in the range of ± 5 percentage points. Hence 1.25 × 105 

cells/well, corresponding to a cellular density of 0.74 × 105 cells/cm2, were chosen for 

further experiments. 
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2.4.1.2 Solvent influence 

Since many drugs do not dissolve well in water, dimethyl sulfoxide (DMSO) is 

frequently added as a solvent for toxicity studies. The use of DMSO is mainly due to its 

polar aprotic characteristics and the low toxicity and environmental impact (Mortensen 

and Arukwe, 2006). However, Miret et al. (2006)  have shown that if DMSO is cytotoxic 

to Hep G2 cells after 24 hours of incubation when applied at high concentrations (> 3 %, 

v/v). 

 
Figure 2.4.4:  Solvent influence on cell viability of Hep G2 cells. Cells were seeded on 

24-well OxoDishes. Medium was aspirated off after 30 hours  and replaced 
with medium without FCS but supplemented as described in Materials and 
Methods. The LC50 value of DMSO was determined after 48 hours of 
incubation with DMSO according to Eq. 2.5 using the SRB assay. 

Hence, since a maximum of 1 % DMSO was applied for later drug studies, it had to be 

ensured, that no significant influence on viability and respiration is induced for the test 

period of 48 hours. 

Therefore, Hep G2 cells were tested for the influence of DMSO on their viability and 

adhesion to the culturing surface by applying the Sulforhodamine B assay. As depicted in 

Figure 2.4.4, after 48 hours of DMSO exposure the LC50-value resulted in approximately 

2.2 % DMSO (depicted as arrow in Figure 2.4.4). However, no significant influence on 

viability and cell adhesion could be detected if 1 % DMSO was applied. Similar results 
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2.4.1.3 Concluding remarks 

It is essential to use an optimal seeding cell density to get a low dissolved oxygen 

concentration resulting eventually in reliable LC50 values, so that consistent data can be 

achieved in high throughput cytotoxicity studies.  

For Hep G2 cells lower cell densities (2.5 × 104 cells/well) did not show a drop in 

dissolved oxygen probably due to slower growth, as the cells need a certain minimum 

density for growth support and cell-to-cell contact. Very high cell densities lead to 

oxygen and nutrition limitation resulting most probably in cell death as shown by an 

increase in the dissolved oxygen after 45 hours of culture (Figure 2.4.3). For Hep G2 

cells it might be deduced that the observed DO drop at higher cell densities (≥ 2 x 105 

cells/well) starting at about 30 % air saturation is related to stress due to oxygen 

depletion, nutrition or space limitations and the associated increased oxygen 

consumption. Thus, for Hep G2 cells 1.3 × 105 cells/well, corresponding to an optimal 

seeding density of 0.76 × 105 cells/cm2 was determined. 

For primary rat hepatocytes, comparable responses could be observed (Figure 2.4.2). 

Very high or low cell seeding densities resulted in an increase in DO due to either 

nutrition or oxygen depletion or due to a lack of the required cell-to-cell contact. Hence 

1.25 × 105 cells/well, corresponding to a cellular density of 0.74 × 105 cells/cm2, were 

chosen for subsequent experiments for primary rat hepatocytes. 

For toxicity studies, it has been shown that the solvent concentration of 1 % DMSO 

showed no influence on respiration and proliferation for Hep G2 cells and thus will be 

used for subsequent toxicity studies.  

Further, it could be demonstrated that the introduced system can be adapted to any 

available, adherent cell line or cell type. 
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2.4.2 High-throughput cytotoxicity studies 

The speed of screening new molecular targets and novel compounds for new drug-

discovery and development has increased enormously due to the presence of high-

throughput screening methods. The further a drug moves down the drug-discovery 

pipeline, the costs and challenges associated with its failure increase tremendously for the 

pharmaceutical industry (Slater, 2001). Hence, enormous efforts are taken to reduce 

identification failures and to discover toxicity by using high-throughput cell based assays. 

Widely used commercial viability and proliferation assays include membrane integrity 

assays (e.g. trypan blue exclusion) and assays based on metabolic markers such as (3-

(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 2,3-bis(2-methoxy-

4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carbox-anilide (XTT) or 4-[3-(4-Iodophenyl)-2-

(4-nitrophenyl)- 2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1). Proportional binding 

of Sulforhodamine B (SRB) dye to cellular protein, which is correlated to the total cell 

number, is also a common assay for viability testing. According to literature the SRB 

assay seems to be the most sensitive, robust and reproducible method with a large linear 

range with respect to cell number. Further, in contrast to the MTT assay, chemical 

compound interferences are rarely known in the SRB assay (Brandon et al., 2005; Hynes 

et al., 2003; Martin and Clynes, 1993; Rubinstein et al., 1990; Vichai and Kirtikara, 

2006). Though these assays are easy to perform, they detect only highly specific changes, 

usually one cellular or metabolic parameter at a selected time point. Furthermore, since 

most of the current cytotoxicity assays are endpoint assays, they do not provide any 

dynamic information on the cell response during exposure to the applied substance unless 

multiple parallel experiments are carried out. However, dynamic information is 

mandatory to get overall insight into physiological and pathophysiological changes 

related to mechanism of toxicity (O'Brien et al., 2006; Xing et al., 2005) and thus, using a 

system as the SDR reader system, that monitors the behavior of cell-cultures exposed to 

test compounds in real-time is highly advantageous. 

For the present cytotoxicity study, using the SDR system, the human hepatoblastoma cell 

line Hep G2 and freshly isolated primary rat hepatocytes were employed. Test 

compounds were chosen based on their known hepatotoxicity and different mechanisms 

of hepatotoxic actions or their partly known drug metabolism, as described in the 

literature (Bort et al., 1999b; Deshpande et al., 2005; Guo et al., 2006; McCarthy et al., 
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2004; Thibault et al., 1992; Tirmenstein et al., 2002; Viau et al., 1993; Wang et al., 2002). 

The toxicity and its kinetics on cellular systems upon exposure to amiodarone, clozapine, 

diclofenac, glycerol, methotrexate (MTX), rifampicin, tacrine, troglitazone and verapamil 

was studied in order to obtain a better insight into the dynamic behaviour and  viability of 

these cells after exposure to the hepatotoxic agents mentioned before. Additionally, 

toxicity data obtained using this new dynamic method was compared with the 

Sulforhodamine B assay for four drugs and from literature data obtained by established 

cytotoxicity assays for the others. 

2.4.2.1 Dynamic toxicity measurement applying the SDR system 

Previously published in vitro cytotoxicity studies have mainly applied ready-to-use 

endpoint assays, but provide only limited information on the tested cellular parameter. 

For the determination of a dynamic drug response, several identical assays have to be 

performed in parallel. Thus, using a system that monitors the behavior of cell-cultures 

exposed to test compounds in real-time is highly advantageous. In this part of the thesis 

the previously introduced 24-well respiration measurement system was used to monitor 

the toxicity of compounds in real-time for a defined seeding cell number. 

The tested compounds were chosen due to their potential to induce hepatotoxicity by 

different mechanisms. The respiration profiles for primary rat hepatocytes and Hep G2 

cells are depicted in Figure 2.4.6. Subplots A and B are showing concentration-dependent 

reaction to drug exposure, in this case diclofenac. Within three hours of incubation in 

presence of the drug, the dissolved oxygen in the media reaches a minimum or 

approaches a stationary state. This can be explained by means of the stationary liquid 

phase O2 balance for cellular processes, which is shown in equation 2.6. Here, DO and 

DO* denote the dissolved oxygen concentrations in the liquid phase and in equilibrium 

with the gas phase, respectively, and kLa is the volumetric liquid phase mass transfer 

coefficient. The specific oxygen uptake rate and the viable cell number are denoted by 

qO2 and X, respectively.  

 ௗ ை
ௗ௧

ൌ  ݇ܽ · ሺכܱܦ െ ሻܱܦ െ ைమݍ · ܺ                                      [2.6] 

On the right hand side of the equation, the first term describes the transfer of oxygen into 

the medium, whereas the second term describes the oxygen uptake in cellular systems.  
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Since the media, in which diclofenac was dissolved, was fresh, it was oxygen-saturated in 

the initial incubation phase. It took 3 hours time until the DO reached a steady state. In 

this system, any time point after 3 hours can be chosen for LC50 calculations.  

LC50 values for all tested drugs were calculated using the four-parameter sigmoidal 

concentration–response curve for Hep G2 cells and primary rat hepatocytes (Figure 2.4.6 

C and D) at chosen time points. Addition of 1 % DMSO did not influence the respiration 

significantly for Hep G2 cells and primary rat hepatocytes as can be seen in Figure 2.4.6 

A and B, respectively. With all drugs tested no significant impact on dissolved oxygen 

concentrations was observed if the drugs (e.g. in 1 mM concentration) were applied to the 

medium without cells, as depicted for diclofenac in Figure 2.4.6 A and B.  

Figure 2.4.6 C and D show three concentration-response curves for primary rat 

hepatocytes and Hep G2, respectively, the calculated LC50 shifts from high to low over 

time thus indicating a toxicokinetic effect of diclofenac. By using several time points, 

toxicity dynamic for a given time-frame can be obtained (Figure 2.4.6 E and F). These 

dynamics combined with other cellular assays can provide more insight into the modes of 

toxicity. 
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Figure 2.4.6:  Kinetic effects of diclofenac on the respiration of primary rat hepatocytes (A, C, 
E) and Hep G2 cells (B, D, F). Dissolved oxygen concentration profiles (A & B). 
Diclofenac concentrations A: 0 mM (▲), 0.1 mM (Δ), 0.25 mM (■), 0.5 mM (�), 
0.75 mM (●), 1 mM (○) and controls; medium without cells but 1 mM diclofenac 
( ), medium without cells with 1 % DMSO (►) and cells with medium and 1 % 
DMSO (◊). B: 0 mM (▲), 0.1 mM (Δ), 0.5 mM (■), 0.75 mM (�), 1 mM (●), 1.5 
mM (○), medium without cells ( ), medium with 1 mM diclofenac without cells 
(►)  and cells with medium and 1 % DMSO (◊). C: Concentration-response 
curves of primary rat hepatocytes calculated at different time points: 10 h (▲), 24 
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h (Δ), 48 h (■) using Eq. [2.5]. D: Concentration-response curves of Hep G2 cells 
calculated at different time points 10 h (▲), 24 h (Δ), 48 h (■) using Eq. 2.5. All 
measurements were carried out in triplicate. Corresponding mean values and 
standard deviations are displayed in A to D. LC50 values were determined using a 
four-parameter sigmoid concentration–response curve. E and F depict the LC50 
time dependency for primary rat hepatocytes (○) and Hep G2 cells (■), 
respectively, calculated from the LC50 diclofenac dissolved oxygen concentration. 
The error bars represent the coefficient of variance calculated from the standard 
error of the log estimate. 

2.4.2.2 Dynamic effect of hepatotoxic drugs on different cell types 

The SDR system was used to study the toxicodynamics of hepatotoxic drugs. As depicted 

in Figure 2.4.6, the death of cells with diclofenac, a commonly prescribed non-steroidal 

anti-inflammatory drug (NSAID), follows nearly first order kinetics. In Figure 2.4.6 E, 

the LC50 dynamics are shown for primary rat hepatocytes treated with diclofenac. 

Diclofenac toxicity is dependent on multiple factors such as a direct effect on the 

mitochondrial permeability transition (Lim et al., 2006; Masubuchi et al., 2000) as well as 

effects of the formed metabolites (Bort et al., 1999b; Tang et al., 1999). In case of 

primary rat hepatocytes the toxic effect, shown in Figure 2.4.6 C and Figure 2.4.6 E, is 

about twice as high as the effect on Hep G2 cells, shown in Figure 2.4.6 D and Figure 

2.4.6 F. This may at least be due to the expected higher conversion into toxic metabolites 

due to higher expression of CYP 450 or glucuronation followed by protein adduct 

formation (Bailey and Dickinson, 1996; King et al., 2001; Poon et al., 2001). The curves 

seem to follow more or less a first order kinetics of reduction in LC50 values.  

Comparison of the two cell types after treatment with diclofenac (Figure 2.4.6) and 

troglitazone (Figure 2.4.7) shows a higher LC50 at any specific time point for the human 

hepatoblastoma cell line Hep G2 than for the primary rat hepatocytes.  
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2.4.2.3 Reproducibility and robustness of the respiration assay 

To test the reproducibility and robustness of this assay, some drugs were tested using 

different cell preparations from different rats at different time points or two Hep G2 

cultivations.  

 
Figure 2.4.9:  LC50-values of two separate preparations of rat hepatocytes from two rats 

(A) and two separate Hep G2 seeding (B) after application of diclofenac. 
LC50-values were determined using a four-parameter sigmoid concentration–
response curve (Eq. 2.5). LC50 time dependency for primary rat hepatocytes 
and Hep G2 cells prepared at an interval of half a year, date 1 (■) and date 2 
(□), for diclofenac incubation, respectively, calculated from dissolved 
oxygen concentration. Error bars indicate the error of the log estimates. 

The time dependency for all applied test compounds was calculated in the same way as 

shown in Figure 2.4.6 for diclofenac. As depicted in Figure 2.4.9, the LC50 time 
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dependency derived from the respiration assay for primary rat hepatocytes (Figure 

2.4.9 A) and Hep G2 cells (Figure 2.4.9 B), exposed to diclofenac, resulted in highly 

reproducible results. 

Table 2.4.1:  Time dependency of toxicity for all tested compounds. The compounds were 
tested in the respiration assay at concentrations up to 1 mM, except for diclofenac 
for which the highest tested concentration was 2.5 mM (n=3). Each LC50 value 
[µM] was determined from non-linear regression. 

Compound 
 4h 16h 24h 48h 

Hep G2 PRH Hep G2 PRH Hep G2 PRH Hep G2 PRH 

Amiodarone 53 > 1000 14 67 12 50 12 28 
Clozapine 281 336 115 138 101 86 18 50 

Diclofenac 1137 728 772 363 646 278 242 161 

Glycerol > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 

Methotrexate > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 653 

Rifampicine > 1000 > 1000 > 1000 963 971 375 495 223 

SDS 68 62 22 45 21 38 5 25 

Tacrine 933 > 1000 393 > 1000 238 650 143 225 

Troglitazone 590 50 105 32 81 28 60 22 

Verapamil  311 464 321 219 299 160 100 105 
 

Table 2.4.1 shows the toxicity of the compounds at drug exposure periods which are 

commonly used for assessing in vitro toxicity. All LC50 values in this study are calculated 

from a single run for each drug. For all the tested compounds the results were in good 

accordance with previously reported values. The time-dependency of toxicity was 

calculated similar to that of diclofenac, where three time points are shown in Figure 2.4.6 

C and D. 

2.4.2.4 Comparison of SDR system with literature data 

The dynamic system allows calculation and comparison of LC50 values with literature 

data, without forcing of defined endpoints based on previously published time points. For 

example, Deshpande et al. (2005) calculated the LC50 for primary rat hepatocytes after 6 

hours of treatment with diclofenac and clozapine using Oxoplates being 646 µM and 174 

µM and testing via MTT assay to be 537 µM and 211 µM, respectively. Similar results 

were obtained here resulting in LC50 values of 632 (610-658) µM for diclofenac and 197 

(153-253) µM for clozapine treatment, calculated after 6 hours of drug exposure for 
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primary rat hepatocytes. Bort et al. (1999) and Wang et al. (2002) published for Hep G2 

cells and primary rat hepatocytes the LC50 values after 24 hours of diclofenac treatment. 

Bort et al. (1998) obtained LC50-values of 762 ± 61 and 392 ± 43 µM, and Wang 

obtained as 50% lethal concentrations 399 ± 64 and 263 ± 43 µM for Hep G2 cells and 

primary rat hepatocytes, respectively. In this thesis, the 24 hour LC50 values (Table 2.4.1) 

match these published results. 

Troglitazone, an anti-diabetic drug is associated with an idiosyncratic reaction leading to 

drug-induced hepatic injury in patients (Kostrubsky et al., 2000; Tirmenstein et al., 2002). 

Guo et al. (2006) estimated the LC50 for primary rat hepatocytes to be 217 and 54 µM 

after 2 and 16 hours drug exposure. Toyoda et al. (2001) calculated an LC50 value of 15 

µM for 20 hour exposure. The SDR system is used to generate the dynamic 

concentration-response curves, observed average LC50 values for 2, 16 and 20 h were 113 

(72-179) µM, 32 (26-38) µM to 30 (25-36) µM, respectively. Although the role of 

reactive metabolites contributing to troglitazone hepatotoxicity is controversial (Hewitt et 

al., 2002; Kostrubsky et al., 2000), troglitazone is reported to directly interfere with 

mitochondrial function (Bova et al., 2005; Masubuchi, 2006). Troglitazone also shows 

high serum protein binding (>99 %) (Loi et al., 1999). In the here presented system, 

primary rat hepatocytes were more sensitive to troglitazone exposure compared to 

Hep G2 cells, probably due to the fact that primary rat hepatocytes were treated in the 

absence of serum while the Hep G2 experiments were performed in presence of Panexin 

D, a defined serum replacement containing albumin, thus can bind to drugs. Therefore, 

the free troglitazone concentration was higher in the primary rat hepatocytes system 

leading to lower LC50 values. 

Previous reports  have indicated a concentration-dependent toxicity of amiodarone on the 

respiratory chain and on β-oxidation in Hep G2 cells and rat hepatocytes (Kaufmann et 

al., 2005; Spaniol et al., 2001). Hep G2 cells express phase I enzymes (Cytochrome 

P450) significantly less than primary human hepatocytes (Kanebratt and Andersson, 

2008a) and are almost metabolically incompetent. Therefore they are likely to experience 

a direct cytotoxic effect due to mitochondrial interference (Waldhauser et al., 2006). As 

shown in Figure 2.4.8 and Table 2.4.1, Hep G2 cells are more sensitive towards 

amiodarone treatment in this system whereas primary hepatocytes, expressing higher 
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levels of metabolizing enzymes, might be able to detoxify the toxic parent compound by 

formation of less toxic metabolites. 

2.4.2.5 Comparison of SDR system with Sulforhodamine B assay 

For Hep G2 cells the dissolved oxygen method for determining drug toxicity was 

compared with the Sulforhodamine B assay for diclofenac, methotrexate, SDS and 

troglitazone (Table 2.4.2). The Sulforhodamine B (SRB) assay quantifies the protein 

content and was shown by Brandon et al. (2005) to be a sensitive and reproducible 

method compared to WST-1 and LDH release, at a specific endpoint. Hep G2 cells were 

exposed to the four compounds at eight different concentrations ranging from 0 to 1 mM. 

LC50 values were calculated after 48 hours using both methods described and are shown 

in Table 2.4.2.   

Table 2.4.2: The 50 % lethal concentration (LC50) values given in µM for reference 
compounds obtained in respiration and SRB assays on the human hepatoblastoma 
cell line Hep G2 after 48 hours of drug incubation. Data were determined using 
triplicate measurements for each drug concentration. The standard deviation was 
found to be < 10 % and the ranges were calculated from the standard error of the 
log estimate. 

Compound LC50 Hep G2 (OxoDish) LC50 Hep G2 (SRB) 

Diclofenac 242 (189-311) 239 (177-323) 

Methotrexate > 1000 > 1000 

SDS 5 (4-7) 34 (30-39) 

Troglitazone 60 (47-76) 70 (62-79) 
 

LC50 values determined by the different methods were found to be comparable except for 

SDS. This difference is possibly caused by membrane or protein interference of SDS 

inhibiting respiration but keeping the integrity of the cells intact. 

2.4.2.6 Concluding remarks 

In this study, two different cell types from two species, primary rat hepatocytes and 

Hep G2 cells, were compared regarding their toxic effects using SensorDishes®.  

The results showed that the assay can be used for any cell type over a period longer than 

48 hours.  
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A comparison of the respiratory data results with those obtained with the SRB endpoint 

assay for four test compounds showed a good accordance.  

Using diclofenac as the model drug, the reproducibility and robustness of this assay was 

tested for different cell preparations from different rats and for Hep G2 cells seeded at 

different time points. As shown for the LC50 time dependency, the system resulted in 

highly reproducible results.  

2.5 Conclusions 

In conclusion, these results prove that the dynamic respiration assay presented here 

provides sensitive data in response to drug treatment. Using the ready-made, 

precalibrated 24-well SensorDishes® the experimental procedure is very simple, requiring 

considerably less manipulations compared to conventional assays.  

It has been shown that it is of importance to acquire an optimal seeding density for 

adherent cell lines/types to test the system over a defined time period and, in addition, to 

test for solvent influence.  

Further, for the here presented assay, reproducibility, robustness and comparability to 

other assays have been demonstrated. 

In addition, for future drug development, the kinetic nature of online respiration 

monitoring is promising for providing an insight into toxicokinetics e.g. formation of 

toxic metabolites as from diclofenac or detoxification as for amiodarone. To obtain 

dynamics using conventional assays requires multiple parallel experiments, with 

associated higher cell and material requirements and therefore higher costs.   

The new system has several further advantages; (i) it ensures complete online monitoring 

in a humidified CO2 incubator (ii) the assay is non-invasive and therefore cells can be 

processed further (iii) no additional reagents are required (iv) by using 24-well plates it 

provides increased sample size for additional analyses compared to 96-well plates (v) for 

dynamic measurements less cell material has to be used compared to parallel 

experiments.  
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3.1 Introduction 

Hepatocytes are of interest as in vitro models for predictive drug toxicity testing and drug 

metabolism studies. Currently, primary liver cells from animal origin or human 

immortalized liver cell lines are commonly used in preclinical in vitro drug toxicity 

studies. However, due to their origin or immortalization they usually do not reflect human 

hepatocytes in vivo since they lack the presence and distribution of biotransforming 

systems needed for the biotransformation of drugs into toxic and reactive metabolites (Ek 

et al., 2007). Primary human hepatocytes are metabolically competent and naturally 

represent the human liver most suitably which makes them the most preferred model for 

drug metabolism and toxicity studies. However, they represent several drawbacks; 1) they 

exhibit donor–specific responses which can vary depending on the donor genotype; 2) 

their high pricing and limited availability; 3) despite high competence, the hepatocytes 

are jaded since the tissue is mostly derived from operations or from non-transplantable 

liver (physical damaged, pre-existing liver diseases, high fat content, high age etc. (Li, 

2007)); 4), the drug detoxification capacity decreases over time and several transporter 

functions are either rapidly lost and/or altered when primary hepatocytes are in culture 

(Ek et al., 2007; Rodriguez-Antona et al., 2002); 5) it’s difficult to stabilize the phenotype 

and avoid dedifferentiation which complicates high-throughput toxicity studies (O'Brien 

et al., 2006). As a result, human hepatoma cell lines, either from tumoral origin, or 

obtained by immortalization (i.e. Hep G2 cells), are often used. However, they lack 

expression of many liver-specific enzymes, especially cytochrome P450s (CYPs), 

important in phase I metabolism of xenobiotics (Kanebratt and Andersson, 2008a; 

Wilkening et al., 2003). Due to these reasons and despite the low concordance between 

animal and man, primary hepatocytes of animal origin are currently used for assessing the 

drug candidate’s metabolism and safety  (Ek et al., 2007; Jensen et al., 2009). This is 

suboptimal. Although primary animal hepatocytes are metabolically competent, they do 

not express the same P450’s (CYP’s) as human primary hepatocytes. In addition, to get 

statistically valid results a large number of animals must be used, which raises ethical 

issues. To conclude, no available cell type mirrors the complexity or the function of the 

human liver (Jensen et al., 2009). Hence, companies are investing in development of new 

hepatic cell types, which might overcome the before mentioned drawbacks of the current 

pre-clinical drug testing. Lately, human embryonic stem cells have been targeted 
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intensively as a source for hepatic cells. They are pluripotent and have the potential 

capability of differentiating into any cell type in the human body. Thus they can be 

developed, expanded and used as a source of functional human hepatocytes (Chiao et al., 

2008; Duan et al., 2007; Ek et al., 2007; Jensen et al., 2009; Sancho-Bru et al., 2009). 

Having an available and unlimited source of human embryonic stem cell (hESC) derived 

hepatocytes could change the identification process of potentially liable drugs early in the 

drug discovery and development stage. By studying hepatic metabolism of xenobiotics 

and drug-induced hepatotoxicity in these cells as test systems, it could further lead to the 

development of stem-cell-based clinical trials (Ek et al., 2007; Soto-Gutierrez et al., 

2008).  Having hepatocyte-like cell lines from human origin, donor variability caused by 

homogeneous sourcing together with animal experiments, could be reduced. Also, a 

variety of different genotypes derived from multiple hESC cell lines could be used in 

order to mimic the variations among individuals in drug metabolism and distribution 

(Jensen et al., 2009). 

In order to use hESC derived hepatocytes for compound testing or other in vitro pre-

clinical studies, it has to be ensured that they display hepatocyte characteristics (Duan et 

al., 2007). The demand for characterization standards is increasingly requiring that hESC 

be tested for their ability to express and synthesize hepatocyte genes and proteins; satisfy 

in ultrastructural evaluation and display functional, secretory, storage and metabolism 

markers of the human liver (Sancho-Bru et al., 2009; Snykers et al., 2009). In addition, 

for future application, engraftment, differentiation and proliferation in vivo must also be 

tested (Sancho-Bru et al., 2009). In brief, they should be metabolically and 

morphologically competent. There are a few characterization studies on hESC-derived 

hepatocyte-like cells which address such metabolic markers, however, they have mostly 

focused on one or two criteria such as gene expression  and phase I induction (Brolen et 

al., 2010; Cai et al., 2007; Ek et al., 2007; Lavon et al., 2004), protein expression (Cai et 

al., 2007; Soderdahl et al., 2007) or liver marker identification in combination with 

functional analysis (Baharvand et al., 2006; Li et al., 2008; Touboul et al., 2010). 

However, very little attention has been paid to the xenobiotic biotransformation activity 

of these cells. While phase I and II metabolism have been shown by PCR based methods 

(Brolen et al., 2010; Ek et al., 2007), phase II metabolism on the protein level was only 

addressed so far by Soderdahl et al. (2007). Only recently, complete characterization 

including drug metabolites and transport of pharmaceutical compounds in hESC derived 
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hepatocytes were shown by Duan et al. (2010). They were the first to show phase I and II 

biotransformation of bufuralol and phase I biotransformation for the three drugs 

diclofenac, midazolam and phenacetin in hESC derived hepatocytes. 

The focus of this study was to characterize three human hESC cell lines which have been 

directed towards hepatocyte-like cells at Cellartis AB (Gothenburg, Sweden). This effort 

required a new culture protocol for reliable and reproducible differentiation, as well as 

characterization of these cell lines for their metabolic competence and morphological 

characteristics. For the characterization, several methods were applied and performed in 

cooperating partner labs. The Cytochrome P450 activity assay was performed at Saarland 

University. However, the analytics were carried out at Astra Zeneca (Gothenburg, 

Sweden) and Pharmacelsus GmbH (Saarbrücken, Germany). Gene expression 

identification via TaqMan low density array (LDA) cards was performed at Karolinska 

Institute (Stockholm, Sweden) and a quantitative Real-Time PCR (qRT-PCR) study  at 

Cellartis AB. Fluorescence imaging (immunochemistry) for protein expression was 

performed at Cellartis AB. Cells from the same batches were seeded at Cellartis AB and 

shipped to Saarland University (Saarbrücken, Germany). Microscopic evaluation, enzyme 

activity assays, metabolic profiling and application as well as testing of the hESC derived 

hepatocytes for an in vitro, non-invasive toxicity assay were performed at Saarland 

University. This data provides a unique overview of characteristics of hepatic cells by 

comparing three hESC derived hepatic cell lines to freshly plated primary human 

hepatocytes and the human hepatoma cell line Hep G2. 

3.2 Motivation and Theoretical Background 

3.2.1 The liver 

The liver is the second largest organ (weighting between 1.2 and 1.6 kg) in humans and 

the largest gland. It is situated beneath the diaphragm on the right side of the upper 

abdominal cavity. It is anatomically divided into two lobes, the left and the right lobe. 

The hepatic artery (20-25 % oxygenated blood) and the portal vein (75-80 % blood) 

supply the liver with blood (approx. 1500 mL/min) at the right lobe. The hepatic portal 

vein supplies the liver with metabolic substrates from the spleen, pancreas and small 

intestines, which are processed by the liver before reaching the systemic circulation. Both 

blood supply vessels subdivide into capillaries which lead to lobules. These lobules, 
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which are made up of thousands of hepatocytes, are structured as polyhedrons 

(pentagonal or hexagonal), in which hepatocytes are organized into unicellular plates, 

approximately 20 each separated by vascular, blood filled channels, the sinusoids 

(Alberts et al., 2002; Tzanakakis et al., 2000). The blood which flows through the 

sinusoids empties into the central vein of each lobule. The human liver consists of 

approximately 500.000 of those unicellular plates. The sinusoids have a fenestrated 

epithelial lining, lack a basement membrane and allow exchange of materials between the 

circulation and the space of Disse, where they have access to the hepatocytes (Tzanakakis 

et al., 2000). A schematic diagram of the structure of the liver is depicted in Figure 3.2.1. The 

central veins drain into the inferior vena cava, posterior from the liver. 

 

 

Figure 3.2.1: Schematic diagram of the structure of the liver based on Alberts et al. 
(2002). The hepatocytes are separated from small blood vessels 
(sinusoids) by a single thin layer of endothelial cells with interspersed 
Kupffer cells. Small holes in the capilla wall, called fenestrae, allow 
diffusion of molecules and small particles between the hepatocytes and 
the bloodstream. In the lobules, in opposite direction of the bloodstream, 
a system of bile canaliculi into which the hepatocytes secrete bile, is 
formed. Bile is released into the gut via the bile ducts. 
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Bile is produced by hepatocytes in the liver and flows via the biliary tree into the 

duodenum (Tzanakakis et al., 2000). In short, bile from the hepatocytes enters the 

common hepatic duct. This duct joins with the cystic duct from the gall bladder and 

forms the common bile duct. The bile duct combines with the pancreatic duct and drains 

into the duodenum. 

The liver itself ranges from 2 % to 4 % of the body weight, and hepatocytes comprise 

approximately 70-80 % (approx. 2 billion hepatocytes) of the liver mass. Other cells 

which represent the liver cell population include endothelial cells, stellate (Ito cells), 

Kupffer cells and bile duct cells (Berg et al., 2003; Thews and Vaupel, 1999; Tzanakakis 

et al., 2000). 

Since the liver is placed in-between the digestion tract and the systemic circulation, 

causing the so called “first-pass effect”, it occupies a central role in major functions 

(Guillouzo, 1998a). The functions can be divided into four basic categories:  

- Synthesis, regulation and secretion of blood clotting factors, transporter proteins, 

cholesterol, and bile components, which are of importance for maintenance of the 

body's normal state 

- Uptake of nutrients (carbohydrates, amino acids, minerals) from systemic and 

portal blood. 

- Storage of nutrients such as glucose in form of glycogen, fat soluble vitamins and 

minerals, such as copper and iron. 

- Purification, transformation, metabolism and clearance of harmful substances 

such as ammonia, drugs, and toxins. 

Disease or traumatic injury can greatly reduce the liver's ability to carry out these normal 

activities. Thus, most of the clinical manifestations of liver dysfunction are caused by cell 

damage and impairment of the normal liver capacities.  

3.2.2 Drug metabolism 

Drug metabolism, or biotransformation, is the metabolism of drugs and other foreign 

compounds (xenobiotics) by biochemical modification or degradation through specialized 

enzymatic systems to their metabolites. The liver is a major site of biotransformation and 

phase I reactions involve cytochrome P450 (CYP450) enzymes, which are localized in 
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the smooth endoplasmic reticulum of hepatocytes (Tzanakakis et al., 2000).  However 

metabolizing enzymes are also present in other tissues, such as gut, kidney and brain. 

Drug metabolism often renders lipophilic and non-polar chemical compounds into more 

readily excreted polar and less lipid soluble products via oxidation, dealkylation and 

conjugation (Giron et al., 2008). Biotransformation is divided into two series of reactions 

(phase I and phase II), which mostly but not always occur sequentially.  

3.2.2.1 Phase I 

Phase I metabolic reactions convert substrates to more polar metabolites, so they can be 

readily excreted. This is done by either introducing or unmasking a functional group 

using catabolic reactions such as oxidation, reduction, hydrolysis, cyclization, or 

decyclization reactions and are mediated by either cytochrome P450, flavin-containing 

monoogygenase (FMO), esterases or amidases (Giron et al., 2008). The metabolites are 

sometimes more toxic than the parent drug, since they may be more chemically reactive 

(Giron et al., 2008). Cytochrome enzymes are bound to membranes of the smooth 

endoplasmatic reticulum. The cytochrome P450 (CYP) superfamily of enzymes are the 

major catalysts for phase I biotransformation reactions of xenobiotics and endobiotics. 

For drug metabolism the key human phase I CYP isoforms are CYP1A2, CYP2A6, 

CYP2E1, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4. However, almost 50% 

of all known pharmaceuticals are oxidized by CYP3A4 (Li, 2001). 

3.2.2.2 Phase II 

Phase II reactions (non-cytochrome P450 mediated) are anabolic and since they conjugate 

with endogenous substrates such as glucuronic acid, sulfonates, glutathione or amino 

acids, known as conjugation reactions (Giron et al., 2008). The conjugates are usually 

detoxifying in nature and involve interactions of the polar functional groups of phase I 

metabolites. Sites on drugs where conjugation reactions occur include amino (NH2), 

carboxyl (-COOH), hydroxyl (-OH), and sulfhydryl (-SH) groups. Key phase II enzymes 

and their multiple isoforms include UDP (Uridine 5'-diphospho)-dependent glucuronosyl 

transferase (UGT), phenol sulfotransferase (PST), estrogen sulfotransferase (EST) and 

gluthathione-S-transferase (GST) (Cantelli-Forti et al., 1998; Li, 2001). 
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3.2.2.3 Drugs transformed by phase I and phase II enzymes 

After oral administration of a drug, it is absorbed by the digestive system and enters the 

hepatic portal system. In the liver the bioavailability of a drug is altered by metabolism 

(phase I and phase II biotransformation) before it enters the systemic circulation. This 

effect is called first-pass effect. 

Diclofenac metabolism in hepatocytes 

Diclofenac, a common non-steroidal anti-inflammatory drug (NSAID) with anti-

inflammatory, antipyretic, and analgesic action, in humans undergoes an extensive 

hepatic metabolism involving two major biotransformation pathways, namely 

glucuronidation of the carboxylic acid group and aromatic hydroxylation (Bort et al., 

1999a; Bort et al., 1999b; Ngui et al., 2000; Park et al., 2005).  

Oxidative metabolites of diclofenac identified in humans include 4’-hydroxydiclofenac, 

5’-hydroxydiclofenac, 4’, 5’-di hydroxydiclofenac, 3’-hydroxydiclofenac and 3’-

hydroxy-4’methoxy-diclofenac. However, they vary in their abundance (Bort et al., 

1999a) and their cytochrome P450 (CYP) enzyme activities. In addition 4’- and 5-

hydroxydiclofenac have been shown to be further metabolized via phase II, by formation 

of benzoquinone imine intermediates that react further with glutathione or microsomal 

proteins (Ngui et al., 2000). The main P450 (CYP) enzyme responsible for the 4’-

hydroxylation and 3’-hydroxylation of diclofenac appears to be the cytochrome P450 

(CYP) 2C9 enzyme, whereas the 5’-hydroxylation seems to be mediated by CYP2C and 

CYP3A4 enzymes (Hynninen et al., 2007). 

Another phase II metabolite, which binds to hepatic protein and is thus recognized as 

foreign and reactive, is diclofenac glucuronide, conjugated directly by human UGT2B7 

without being hydroxylated (King et al., 2001). This glucuronide can bind covalently to 

proteins (adduct formation) and is potentially the cause for the idiosyncratic toxicity of 

diclofenac (Bailey and Dickinson, 1996). 
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Figure 3.2.2:  Schematic hepatic biotransformation of diclofenac based on Ngui et al. 

(2000), Boelsterli (2003) and Park et al. (2005). GSH = Glutathione 
catalyzed by glutathione S-transferase (GST) 

Phenacetin metabolism in hepatocytes 

Phenacetin is an antipyretic and analgesic drug which is metabolized in the liver by 

Cytochrome P4501A2 (CYP1A2) and hence phenacetin represents a suitable chemical 

entity for the assessment of human CYP1A2 activity in vitro. The major primary 

metabolite of phenacetin is the O-deethylated derivative acetaminophen (Polasek et al., 

2006). 

UGT2B7 
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Figure 3.2.3:  Schematic hepatic phenacetin metabolism in hepatocytes. Phenacetin is 

majorly metabolized to its acetaminophen derivative via CYP1A2. 
Bioactivation of acetaminophen undergoes further conversion to the 
chemically reactive species N-acetyl-p-benzoquinoneimine (NAPQI), which 
can oxidize and covalently modify proteins if glutathione depletion occurs. 
Figure based on Park et al. (2005) and Goldfrank's Toxicologic Emergencies - 
8th Ed. (2006). UGT = UDP-Glucuronosyl transferase, NAC = N-
acetylcysteine, PST = Phenol sulfotransferase  

Acetaminophen (paracetamol), applied at therapeutic doses, is however, deactivated by 

glucuronylation (40-67 %) and sulphation (20-46 %) to metabolites, which are rapidly 

excreted in urine. Approximately 5% of the parent drug is excreted renally without being 

metabolized. Approximately 5-15 % of the drug undergoes bioactivation to N-acetyl-p-

benzoquinoneimine (NAPQI) by P450 isoenzymes, namely: CYP2E1, CYP1A2, and 

CYP3A4 (minor contribution) (Park et al., 2005). 
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As explained above, acetaminophen applied in therapeutic doses is partly metabolized to 

NAPQI and rapidly quenched by a spontaneous reaction with hepatic glutathione. 

However, after a toxic dose, glutathione depletion results in NAPQI accumulation.  Only 

then, NAPQI can covalently bind to proteins and nucleic acids. In consequence, 

accumulated NAPQI causes toxicity (Park et al., 2005). Formation of NAPQI is a marker 

for the isoenzymes cytochrome P450 activities and therefore a hepatic marker. 

Midazolam metabolism in hepatocytes 

Midazolam is a benzodiazepine derivative and has relaxant and sedative properties. It is 

extensively metabolized by CYP3A4 and CYP3A5, to 1’-hydroxymidazolam (40-100%) 

and 4-hydroxymidazolam, respectively. Since a large number of current and future drugs 

are metabolized via CYP3A subfamily, studies for inhibition and induction of CYP3A4 

are of great scientific and clinical relevance (Klieber et al., 2008). 

 
Figure 3.2.4:  Metabolism of midazolam in human hepatocytes. The figure based on Hyland et 

al. (2009) and Klieber et al. (2008). UGT = uridine diphosphate glucuronosyl 
transferases 
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The hydroxylated metabolites can be further metabolized and conjugated, specially 

glucoronidation involving UGTs has been reported. (Hyland et al., 2009; Klieber et al., 

2008). Recently it was found that the hydroxylated metabolites are mostly mediated by 

UGT2B4 and UGT2B7 (Hyland et al., 2009; Zhu et al., 2008). The hydroxylated 

metabolites are excreted by the liver as glucuronoconjugates (Klieber et al., 2008). N-

glucuronation, however, can also occur directly from the parent compound and is 

mediated by phase II UGT1A4 (Hyland et al., 2009; Zhu et al., 2008). The assumed 

midazolam metabolism in human hepatocytes is depicted in Figure 3.2.4. 

3.2.3 hESC derived hepatocytes/hepatocyte like cells  

3.2.3.1 Stem cells 

Stem cells have the ability to generate identical copies of themselves (“self-renewal”) and 

to differentiate into several cell types (“stemness”). They can be classified into two major 

categories; embryonic stem (ES) cells and adult stem cells (ASCs), which include 

mesenchymal stem cells (MSCs) and multipotent adult progenitor cells (MAPCs) (Davila 

et al., 2004). ES cells are totipotent cells, which were first isolated by Thomson and 

colleagues (1998) from the inner cell mass (ICM) of a human blastocysts in 1998.  

It has been shown that they differentiate into embryoid bodies (EBs) comprising all three 

germ layers and into somatic or somatic-like functional cells such as neurons, 

hepatocytes, cardiomyocytes and others and that they possess unlimited proliferation 

capability (Davila et al., 2004; Gepstein, 2002; Itskovitz-Eldor et al., 2000; Thomson et 

al., 1998).  A schematic figure for the differentiation procedure towards functional cells is 

shown in Figure 3.2.5 A. Figure 3.2.5 B-E depicts the differentiation towards hepatocyte-

like cells. ASCs can be found in several tissues as adipose tissue, liver and brain 

(Haridass et al., 2008). Unlike ES, they are specialized cells with the task for tissue 

homeostasis and repair (Davila et al., 2004). In addition, they are multipotent precursor 

cells which can be differentiated into several, however, not all cell types. 
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Figure 3.2.5:  Mammalian development and derivation of the ES cell lines. A) Schematic 

development based on Gepstein (2002). After fertilization the blastocyst stage 
with ICM is formed. The figure depicts the three germ cell layers (ectoderm, 
mesoderm, and endoderm) formed within the inner cell mass. From the ICM all 
tissue types in the embryo are formed. ES cell lines are generated from the ICM 
and in general plated on mouse embryonic fibroblast (MEFs) feeder layers, on 
which they can be expanded. ES cells can differentiate into specialized cells, as 
shown above. B) Blastocyst at day 4 after fertilization C) hESC colony D) 
definite endoderm and E) hESC derived hepatocyte-like cells. Scale bar in C) and 
D) equals 100 µM, in E) 50 µm. Pictures B-D are courtesy of Cellartis AB. 
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3.2.3.2 Hepatogenic differentiation in ES cell culture 

The inner cell mass of blastocysts can differentiate into all three germ layers, namely 

endoderm (internal layer), mesoderm (middle layer) and ectoderm (external layer). 

Several strategies are currently established and applied simultaneously for the 

purification of the endoderm and later differentiation from embryonic stem cells to ES 

cell-derived hepatocytes/hepatic progenitors. They include addition of soluble medium 

factors, reconstruction of in vivo cell-matrix, cell-cell interactions and genetic 

modifications (Snykers et al., 2009).  

Activin A supplementation enriches ES cells for endodermal/definite endoderm 

populations. Fibroblast growth factors (FGFs) seem to mediate early hepatic 

differentiation and if hepatocyte growth factor (HGF) is supplemented, mid-late hepatic 

phenotypes have been reported. However, functional maturation is only achieved if a 

stepwise mixture of insulin-transferin-sodium selenite (ITS), dexamethasone and 

oncostatin M (OSM) are supplemented and the culture is coexposed to serum. However, 

serum-free conditions, e.g. the use of serum-replacement factors, is lately becoming a 

trend (Snykers et al., 2009). 

For imitation of the in vivo cell-matrix, reconstruction of the ontogenic scaffold 

(collagen, matrigel…etc.) and cell-cell interactions by coculture with hepatic and non-

hepatic cell types is the current method. Maintenance of hESCs is usually done on mouse 

embryonic fibroblast (MEFs) feeder layers (Lee et al., 2005). However, coculture with 

animal cells can result in cell-fusion and is associated with risks such as pathogen 

transmission and viral infection. Hence, MEF-conditioned culture media (MEF-CM) or 

feeder-free culture systems were introduced recently (Lee et al., 2005; Snykers et al., 

2009).  

Genetic modifications of ES cells, in form of HNF3β transfection and recombinant 

expression of E-cadherin have been shown to be an effective approach for acquisition of 

a hepatic phenotype, gene expression and functionality (Anouska et al., 2005; Tanaka et 

al., 2003). However, unintended gene upregulation is a major drawback. Hence 

epigenetic modification of the local chromatin structure by supplementation of the culture 

medium with 0.5-1 mM sodium butyrate has been introduced for enrichment. In 

combination with activin A it has been successfully shown to enrich cultures to the point 

of 70-90% purity (Gareth et al., 2009; Li et al., 2008; Snykers et al., 2009).  
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However, there are up till now, no reports of complete differentiation of stem cells 

towards adult human hepatocytes which show complete functional hepatic behavior 

(morphological, RNA expression, protein expression and activity levels) as human 

hepatocytes. Thus, to further obtain more information and increase the input of 

information, standardization of characterization protocols is required (Davila et al., 2004; 

Sancho-Bru et al., 2009; Snykers et al., 2009). 
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3.2.4 Objectives 

Since stem cells are a readily available source of human cells; have the ability to 

proliferate unlimitedly and are totipotent so that all cell types important to toxicology 

testing can be generated, increased research effort has been put into developing stem cell-

based systems recently. However, challenges remain in stem cell characterization, since 

they are poorly characterized. 

Thus, in this part of the thesis, three hepatocyte cultures (hES-HEPTM SA002, hES-

HEPTM SA167 and hES-HEPTM SA461), which have been directed towards hepatocyte-

like cells via definitive endoderm, are systematically characterized. Further, to evaluate 

their application, these cells are compared to the human hepatoma cell line Hep G2 and 

primary human hepatocytes. 

First, the phenotype of the hESC derived hepatocyte-like cells will be evaluated by their 

microscopic appearance. 

Second,  gene expression of late stage maturation genes (AFP, ALB, G6P and A1AT), 

liver specific genes, as well as the expression of UDP-glucuronosyltransferases (UGTs), 

transporter and transcription factors and synthesis of hepatic lineage markers, including 

albumin, α-1-antitrypsin (A1AT), cytokeratin 8 (CK8) and cytokeratin 18 (CK18), as 

well as FoxA2 are evaluated. This part of the work is performed in collaboration with 

VITROCELLOMICS partners. 

Third, functional hepatic characteristics, such as albumin secretion, glycogen storage and 

urea synthesis are quantified. 

Fourth, phase I and phase II metabolism of midazolam, phenacetin and diclofenac is 

detected for the respective metabolites.  

Fifth, these results will be combined with dynamic toxicity data and discussed with 

regard to future hESC derived hepatocyte-like cells applications. 
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3.3 Materials and Methods  

3.3.1 Cell lines and culture conditions 

3.3.1.1 Primary human hepatocytes 

Primary human hepatocytes were plated and provided by Cellartis AB. For toxicity 

assessment cells were seeded in 24-well OxoDishes® (PreSens, Regensburg, Germany) 

on collagen I (Sigma Aldrich). Seeding cell density in collagen I pre-coated 24-well 

OxoDishes® was 1.7 x 105 cell/well. The seeded plates were shipped overnight in 

William’s Medium E (Sigma Aldrich) medium supplemented with 10 % Fetal Calf 

Serum (FCS) (v/v), 100 U/mL penicillin and 100 µg/mL streptomycin. After arrival, 

medium was immediately replaced and cells were maintained at 37°C in an incubator 

(Memmert GmbH, Schwabach, Germany) with 95 % relative humidity in a 5 % CO2 

atmosphere for two days to adjust. For activity and toxicity experiments medium was 

switched to hES-HEPTM culture medium (Cellartis AB. Gothenburg, Sweden) 

supplemented with hES-HEPTM additive (Cellartis).   

3.3.1.2 Human embryonic stem cells derived hepatocytes 

Human embryonic stem cells (hESCs) were seeded and differentiated at Cellartis AB 

(Gothenburg, Sweden) towards hepatocyte-like cells (hES-HEPTM, Cellartis). In brief, 

human embryonic stem cells were grown on mouse embryonic fibroblasts (MEFs) as 

feeder cells whose proliferation was arrested by Mitomycin C treatment. At day five of 

the differentiation protocol the hESCs were passaged to feeder-free, collagen I-coated 24-

well OxoDishes® (for cell line and cell seeding density see Table 3.3.1).   

Table 3.3.1:  Cell lines and seeding cell numbers for the characterization of hESC 
derived hepatocytes and toxicity screening applying OxoDishes. 

hESC 
Cell Line 

Seeding Cell 
Number x 103 cm-2 

SA002 250 
SA461 250 
SA002 250 
SA002 250 
SA461 160 
SA461 170 
SA461 170 
SA167 200 
SA002 250 
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The fraction of the feeder cells was reduced compared to the starting material during 

further differentiation, as the MEF were growth arrested. Due to cell death and 

proliferation, estimated cell numbers were approximately 2 x 105 cells/well at day 25 of 

the proliferation. hES-HEPTM cell lines chosen for the characterization and OxoDish 

study were SA002, SA167 and SA461 cells (which are derived from different donors). 

On day 21-22 the seeded 24-well OxoDishes® were shipped overnight in MEF 

preconditioned hES-HEPTM culture medium (Cellartis) supplemented with hES-HEPTM 

additive (Cellartis). 

Shortly after arrival, cells were treated with MEF conditioned medium supplemented 

with hormones (not disclosed). The cells were maintained at 37°C in an incubator 

(Memmert GmbH, Schwabach, Germany) with 95 % relative humidity in a 5 % CO2 

atmosphere for one day to adjust. Growth-factor reduced Matrigel, phenol red free 

overlay was performed on day 23-24. Matrigel was kept at 8°C until shortly before 

overlay. It was supplemented to cold pre-supplemented medium in a concentration of 

0.250 mg/mL. Immediately 1 mL of cold, well-mixed matrigel-containing-medium was 

distributed onto the plates with pre-cooled pipettes and pipette tips. Shortly after overlay 

treatment, cells were returned to the incubator. For the experiments, on day 25-26, 

medium was switched to serum-free conditions, but supplemented with specific 

concentrations of DMSO, hormones and growth factors such as human hepatocyte 

growth factor (hHGF), Oncostatin M (OSM), basic fibroblast growth factor (bFGF), 

however, without albumin and fatty acids. 

3.3.1.3 Hep G2 cells 

Hep G2 cells were seeded and maintained as explained previously (chapter 2). Seeding 

cell density in 24-well OxoDishes® (PreSens, Regensburg, Germany, surface area is 1.7 

cm2 w/o sensor spot) was 1.3 x 105 cells/well.   

However, for the characterization study cells were cultured in serum-free conditions, 

supplemented as hESC derived hepatocytes. 
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3.3.2 Media preparation 

3.3.2.1 Culture medium 

MEF preconditioned hES-HEPTM culture medium (Cellartis AB, Gothenburg, Sweden) 

was supplemented with hES-HEPTM additive (depicted in Table 3.3.2) before application 

to stem cell derived hepatocytes. In addition hES-HEPTM culture medium was further 

supplemented with other additives. Other medium supplement factors are completely 

defined, however, due to an ongoing patenting process are not disclosed. 

Table 3.3.2:  hES-HEPTM additives supplied by Cellartis AB (Gothenburg, Sweden). 
Additives are supplemented in given concentrations to the media (Cellartis 
AB) 

Additive Concentration Supplier 
Order 

number 

Oncostatin M 10 ng/mL Promocell C-65020 

Basic fibroblast growth 
factor (bFGF) 2  ng/mL Preprotech C-100-18B 

Human hepatocyte 
growth factor (hHGF) 10ng/ml Promocell C-64530 

Dimethyl Sulfoxide 
(DMSO) 0.5 % Sigma 

Aldrich D2650 

 

3.3.2.2 OxoDish experiment 

For the OxoDish experiment completely defined medium and supplements were used as 

described for hESC derived hepatocyte-like cells. However, WME was not pre-

conditioned, contained no phenol red and albumin was not supplemented. DMSO 

concentrations remained at 0.5 % (v/v) throughout the whole experiment. 

3.3.2.3 Activity assay 

Williams Medium E (w/o phenol red, w/o glutamine) was chosen as medium for substrate 

solution and it was supplemented with 0.1% Penicillin-Streptomycin, 2 mM glutamine 

and 25 mM HEPES Buffer (Pan Biotech, Aidenbach, Germany). Substrates chosen for 

CYP activity assay were phenacetin (CYP1A2), diclofenac (CYP2C9) and midazolam 

(CYP3A4) in final concentrations of 26, 9 and 3 µM, respectively. 
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3.3.3 Chemicals 

All chemicals are described. Additional purchased additives and chemicals are depicted 

in Table 3.3.3: 

Table 3.3.3:  Additional chemicals and supplements used for cell culture, 
characterization and hepatotoxicity studies. 

Chemical Supplier Order number 

HEPES Buffer Pan Biotech P05-01100 
Penicillin-Streptomycin Sigma-Aldrich P4333 
L-Glutamine Sigma-Aldrich G8540 
L-Glutamine solution (200 
mM) 

Sigma-Aldrich G7513 

Matrigel, phenol red free BD Biosciences 356231 
Diclofenac sodium salt Sigma-Aldrich D6899 
Midazolam hydrochloride Sigma-Aldrich UC429 
Phenacetin Sigma-Aldrich 77440 

 

3.3.4 Microscopic analysis 

3.3.4.1 Ultrastructural analysis 

The morphology of the cells (seeded on collagen) at arrival and before and after matrigel 

overlay was monitored and recorded previous and afterwards to the activity, drug 

metabolism and toxicity studies using an Olympus IX70 microscope connected to an 

Olympus CC12 Soft Imaging System (Münster, Germany).   

3.3.4.2 Immunocytochemistry for protein expression 

Immunocytochemistry (ICC)-staining was performed in Cellartis AB (Gothenburg, 

Sweden). Differentiated hESC cultures were washed with PBS and fixed in 4 % (w/v) 

phosphate buffered paraformaldehyde (PFA) for 15 min at room temperature (RT). The 

cells were washed twice, permeabilised using PBS with 0.2 % Triton X-100 (PBST) and 

blocked by applying 5 % bovine serum albumin (BSA) for 30 min at room temperature. 

Primary antibodies against human AFP (mouse, Sigma-Aldrich, St Louis, MO), Foxa2 

(goat) and CK 8 (mouse, both from Santa Cruz Biotech, Santa Cruz, CA), α-1-AT 

(rabbit), CK 18 (mouse), albumin (rabbit, all three from DAKO, Dako, Glostrup, 

Denmark), and Phalloidin (Alexa 488 conjugated, Invitrogen, Eugene, USA) and 
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Albumin (FITC conjugated, Bethyl Laboratories) were diluted 1:200 - 1:1000 in PBST 

with 1 % FCS and incubated with fixed samples overnight at 4°C. Secondary antibodies 

directed against mouse, rabbit or goat were conjugated with Alexa Fluor 488 (Molecular 

Probes, Eugene, OR, USA) and were incubated with the preparations for 2 hours at room 

temperature in a dark room. The nuclei were visualized by DAPI staining (Sigma 

Diagnostics, Stockholm, Sweden). DAKOCytomation Fluorescent Mounting Media 

(DAKO, Glostrup, Denmark) was used for mounting the specimens. Human primary 

hepatocytes were stained as controls. Stained samples were examined and recorded using 

a Nikon Eclipse TE2000-U fluorescence microscope and Nikon Act-1C for DXM1 200C 

software. 

3.3.4.3 Periodic acid-Schiff (PAS) staining for glycogen storage 

Glycols treated with periodic acid are oxidized to aldehydes. Addition of a mixture 

composed of pararosaniline and sodium metabisulfite (Schiff’s Reagent), oxidized 

glycols (pararosaniline adducts) are stained pink to red. Differentiated hepatocyte-like 

hESC cultures (SA002 and SA461) were fixed for 15 min at room temperature (RT) in 

4 % (w/v) PFA and subsequently washed three times with PBS. Negative control cultures 

were treated with α-amylase (human saliva) for 20 min at RT and subsequently also 

washed three times with PBS. 1 mL/well of periodic acid (PAS-kit, Sigma-Aldrich, St 

Louis, MO) was added to both treated and untreated cultures for 5 min at RT and 

immediately washed thrice. Consecutively, cultures were incubated in Schiff’s reagent 

for 15 min resulting in a bright pink staining of the glycogen-containing cells. After 

repeatedly washing in PBS cells were counter-stained with haematoxylin for 90 s at RT 

and once again washed in PBS prior to mounting in mounting media (DAKO, Glostrup, 

Denmark). The protocol and the images for the PAS staining for glycogen storage were 

conducted at Cellartis AB. 

3.3.5 TaqMan Low Density Array (LDA) gene expression analysis 

Gene expression analysis was performed at Karolinska Institute (Stockholm, Sweden). 

Total RNA was extracted using RNeasy Midi Kit, including DNase treatment (Qiagen, 

Valencia, CA), according to the manufacturer’s instructions. Quantity and purity of the 

RNA was determined, measuring the 260/280 ratio using a Varian Cary 400 Bio UV/Vis 

spectrophotometer (Agilent Technologies, Santa Clara, CA). Reverse transcription was 
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performed from 0.5 µg of total RNA in a final volume of 10 µl, using an oligo-dT primer 

and the M-MLV RT enzyme (Invitrogen, Carlsbad, CA). 

The expression levels of 48 selected genes related to hepatic gene expression was 

analyzed using a custom made TaqMan Low Density Array (LDA; Applied Biosystems, 

Foster City, CA) as previously described (Ek et al., 2007). Three individual samples of 

undifferentiated SA002, differentiated hES-HEPTM SA002, undifferentiated SA461 and 

differentiated hES-HEPTM SA461 cells respectively were analyzed. Human primary 

hepatocytes (PHH, mix of 3) and HepG2 cells (mix of 3) were analyzed as control 

samples. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as 

housekeeping gene. The relative gene expression values in comparison to expression 

levels in the HepG2 (relative expression value set to 1) were defined by the 2-ΔΔCT 

method as described by Livak and Schmittgen (2001). 

3.3.6 Drug metabolism assays 

After collection of supernatants from the OxoDish® experiment, cells which had not been 

exposed to any drug (controls) were carefully washed twice with phosphate buffered 

saline (PBS). 220 µL of activity assay medium (see chapter 3.3.2.3), supplemented with 

phenacetin (26 µM), diclofenac (9 µM) and midazolam (3 µM) was added to the three 

control wells in the 24-well OxoDishes®. Cells were incubated with the activity assay 

medium for 16 hours. After the incubation, 200 µL of the activity assay medium was 

supplemented with 20 µL acetonitrile, transferred to a 0.5 mL Eppendorf tube and 

centrifuged at approx. 10.000 x g for 20 minutes at 4°C. 120 µL of the supernatant was 

transferred to a coned 96-well plate. Wells were sealed with tape and lid and the samples 

were stored at -20°C until shipment to Cellartis AB (Gothenburg, Sweden) and 

Pharmacelsus GmbH (Saarbrücken, Germany). Samples for subsequent measurements 

were transferred from Cellartis AB to Astra Zeneca (Gothenburg, Sweden). 

3.3.6.1 Phase I metabolism -Cytochrome P450 activity assay  

Subsequent sample preparation and liquid chromatography/mass spectrometry (LC/MS) 

HPLC detection were performed at Astra Zeneca according to recent publications 

(Kanebratt and Andersson, 2008a; Kanebratt and Andersson, 2008b). Samples were 

analyzed for their phase I metabolite formation as described by Kanebratt and Anderson 

(2008a) for the CYP1A2 metabolite acetaminophen, the CYP2C9 metabolite 4’-
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hydroxydiclofenac, and the CYP3A4 metabolite 1’-hydroxymidazolam. The samples 

were analyzed by means of liquid chromatography/ mass spectrometry (LC/MS) HPLC. 

The multiple reaction monitoring (MRM) transitions chosen are displayed in Table 3.3.4: 

Table 3.3.4:  Cytochrome P450 activity measurement for phase I enzymes CYP2C9, 
CYP3A4 and CYP1A2, based on Kanebratt and Andersson (2008a; 2008b) 
and analyzed at Astra Zeneca (Gothenburg, Sweden). 

Drug Metabolite Phase I enzyme MRM (m/z) 

Diclofenac 4’-hydroxydiclofenac CYP2C9 309.9 > 265.9 

Midazolam 1’-hydroxymidazolam CYP3A4/A5 342.0 > 202.7 

Phenacetin paracetamol CYP1A2 152.3 > 110.0 

 

At Pharmacelsus samples were screened for phase I and phase II metabolites by means of 

liquid chromatography/tandem mass spectrometry (LC-MS/MS) HPLC. Potential 

metabolite formations were previously depicted for diclofenac, midazolam and 

phenacetin in Figures 3.2.2 – 3.2.4. Relative quantification of metabolites in respect to 

their parent compound was performed. Specific masses, measures by mass spectrometry, 

for the targeted metabolites of phase 1 biotransformation reactions are displayed in Table 

3.3.5: 

Table 3.3.5: Cytochrome P450 activity measurement for phase I enzymes CYP2C9, 
CYP3A4 and CYP1A2, analyzed at Pharmacelsus GmbH (Saarbrücken, 
Germany). NAPQI = N-acetyl-p-benzoquinoneimine, OH = Hydroxy, 
APAP = Acetaminophen,  

Drug Metabolite Phase I enzyme m/z 

Diclofenac OH diclofenac CYP2C9/3A4 311.5 > 312.5 

Midazolam 1’-OH midazolam CYP3A4/A5 341.5 > 342.5 

Midazolam 4 -OH midazolam CYP3A4/A5 341.5 > 342.5 

Phenacetin APAP CYP1A2 151.5 > 152.5 

APAP NAPQI CYP2E1/1A2 151.5 > 152.5 
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3.3.6.2 Phase II metabolism  

As pointed out by Cantelli-Forte et al. (1998) phase II enzymes are also important for the 

detoxification and activation of many xenobiotics. Thus, samples were further analyzed at 

Pharmacelsus GmbH using liquid chromatography/tandem mass spectrometry for their 

phase II metabolites. Specific masses, measured by mass spectrometry, of targeted 

metabolites are depicted in Figures 3.2.2 – 3.2.4 and in Table 3.3.6: 

Table 3.3.6:  Cytochrome P450 activity measurement for phase II enzymes analyzed at 
Pharmacelsus GmbH (Saarbrücken, Germany). GSH = Gluthatione, GST = 
glutathione S-transferase, UGT = Uridine-5’-diphosphoglucuronosyltransferase, 
NAPQI = N-acetyl-p-benzoquinoneimine, NAC = N-acetylcysteine, PST = 
Phenolsulfotransferase 

Drug Metabolite Phase II enzyme m/z 

Diclofenac 4’ -OH diclofenac-GSH GST 616.5 > 617.5 

Diclofenac 5 -OH diclofenac-GSH GST 616.5 > 617.5 

Diclofenac Diclofenac acyl-glucuronide UGT2B7 472.5 > 473.5 

Diclofenac Diclofenac O-glucuronide UGT 487.5 > 488.5 

APAP APAP-glucuronide UGT 327.5 > 328.5 

APAP APAP-sulfate PST 231.5 > 232.5 

NAPQI APAP-GSH GST 456.5 > 457.5 

Midazolam Midazolam-N-glucuronide UGT1A4 502.5 > 503.5 

OH midazolam OH midazolam O-glucuronide UGT2B4/B7 517.5 > 518.5 

OH midazolam OH midazolam N-glucuronide UGT1A4 518.5 > 519.5 

 

 

3.3.6.3 Diclofenac metabolites after test period 

After 48 hours of cultivation with diclofenac, supernatant of samples which have been 

exposed to 50 µM diclofenac were collected after each OxoDish experiment. 200 µL of 

samples were separated and stored at -20°C until further processing. Diclofenac 

metabolites were identified. Samples were analyzed at Pharmacelsus GmbH using liquid 

chromatography/tandem mass spectrometry (LC/MS/MS). 
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3.3.7 Quantitative assays 

3.3.7.1 Urea 

Urea is one of the final degradation products of protein and amino acid metabolism of the 

liver. Catabolism of proteins breaks up the amino acids and deaminates them. Hereby 

ammonia is formed. To eliminate the excess of toxic ammonia, the liver metabolizes 

ammonia to urea, which can then be eliminated in the urine. Formation of urea is one 

important characterization factor to identify hepatocytes and their metabolic activity, 

since the liver is the sole location of urea production.  

The assay used here (Fluitest UREA col, Analyticon, Lichtenfels, Germany) is based on 

Bertholot’s indophenol assay (1859, Original Reference not available). The test principle 

is that urea, which is present in the media, is enzymatically deaminated (Urease) and 

ammonium ions are formed (see reaction 3.1). 

  CHସNଶO  HଶO  2Hା       U୰ୣୟୱୣ       
ሱۛ ۛۛ ۛۛ ۛۛ ሮۛ  2NHସା   COଶ              [Eq. 3.1] 

This formed ammonium ion reacts with the sodium salicylate and hypochloride which 

gives a green dye.  

The change in absorbance is measured at a wavelength of 590 nm at 37°C using an iEMS 

reader MF (Labsystems, Helsinki, Finland). Samples and standards were prepared 

according to the manufactures recommendations, however the assay was adapted to a 96-

well plate format and 20 µL of sample, instead of 10 µL were used to achieve higher 

absorbance changes. Urea (50 mg/dL = 8.325 mM), supplied with the kit, as well as an 

in-house compounded urea standard (range 100-0 mg/dl) served for quantification. The 

relationship between absorbance signal and urea concentration resulted in a coefficient of 

determination > 0.99. 

3.3.7.2 Albumin 

Albumin is synthesized in the liver and excreted via the kidney. Therefore, if albumin is 

synthesized and detected in the media, albumin is a further characterization factor for 

liver activity. The here used quantitative assay for albumin detection and quantification 

(Exocell Albuwell, Philadelphia, PA, USA) is an enzyme-linked immunosorbent assay 

(ELISA) following the conventional ELISA format, meaning using an antibody that 

recognizes a specific antigen (here albumin).  
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Samples and standards were prepared according to the manufactures recommendations. 

However, for the assay 20 µL of sample, instead of 10 µL were used to achieve higher 

absorbance changes. 

 

Figure 3.3.1:  Albumin quantification using ELISA assay. A: Albumin concentration [µg/mL] 
measured at 630 nm. B: Inverse log function of obtained absorbance values over 
the natural log of albumin [µg/mL]. Linear regression resulted in R2 being 0.992 
and a linear equation; e^ABS(630nm)= -1.72 x Ln(Albumin[µg/mL])+3.59 

An albumin concentration curve was obtained by recording the absorbance at 630 nm 

(Figure 3.3.1 A). By using the inverse log function the values were converted to raw 

µg/mL and linear regression was performed (Figure 3.3.2 B). The absorbance values of 

the samples were multiplied with the dilution factor (10) and albumin concentrations 

were calculated after normalization to the medium control. 

3.3.7.3 Lactate dehydrogenase and aspartate amino transferase release 

Lactate dehydrogenase (LDH) enzyme activity was measured in culture supernatants with 

a commercially available test kit (Fluitest® LDH-L, International Federation of Clinical 

Chemistry (IFCC), HITADO, Möhnesee, Germany). The assay was performed according 

to the manufacturer's instructions.  

The test principle for the determination is that lactate dehydrogenase catalyses the 

conversion from pyruvate, the final product of glycolysis to lactic acid when oxygen is 

absent or in short supply.  

Pyruvate  NADHା  Hା   
     LDH     
ርۛ ۛۛ ሮۛ  L െ Lactate  NADା            [Eq. 3.2] 
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In this step NAD+ is reduced NADH+. The rate of NADH formation is directly 

proportional to the catalytic LDH activity and can be measured as change of absorbance 

over time at a wavelength of 340 nm using an iEMS reader MF (Labsystems, Helsinki, 

Finland). The relationship between change of absorbance signal and LDH activity 

resulted in a coefficient of determination > 0.99. 

Aspartate aminotransferase (AST, glutamate-oxaloacetate-transaminase)  enzyme 

activities were measured in culture supernatants with a commercially available test kit 

(Fluitest® GOT AST, International Federation of Clinical Chemistry (IFCC), HITADO, 

Möhnesee, Germany). The assay was performed according to the manufacturer's 

instructions. 

The test principle is based on the release of AST if a cell disruption occurs. AST is 

present in the cytoplasm (mostly) and the mitochondria. Elevated levels of the aspartate 

aminotransferase can indicate tissue damage and diseases.  

α െ ketoglutarate  Aspartatic acid
    AST    
ርۛ ۛۛ ሮ  Glutamamic acid   Oxaloacetic acid 

[Eq. 3.3] 

Oxaloacetic acid increases and is measured in a subsequent indicator reaction (catalyzed 

by malate dehydrogenase, MDH) by which NADH is oxidized to NAD.  

Oxaloacetic acid  NADH  Hା  
   MDH   
ርۛ ۛۛ ሮ Malate  NADା                    [Eq. 3.4] 

The rate of NADH reduction is directly proportional to the rate of oxaloacetic acid 

(OAA) formation, and thus the AST activity. 

3.3.8 Analytics (Glucose, pyruvate and lactate quantification) 

Quantification of glucose, pyruvate and lactic acid was performed by HPLC (Kontron 

Instruments, Neufarn, Germany) equipped with  an Aminex HPX-87H column (300 × 7.8 

mm; Bio-Rad, Hercules, CA, USA) at 40°C, with 7 mM H2SO4 as the mobile phase in an 

isocratic mode and a flow rate of 1 ml min-1. Subsequent detection was performed via 

measurement of refraction indexes (RI) for sugars using an ERC-7515A detector (ERC 

Inc, Alteglofsheim-Regensburg, Germany) or UV absorption detection at 210 nm for 

organic acids (HPLC 535, Biotek, Neufahrn, Germany). Glucose (0-15 mM), lactate (0-

15 mM) and pyruvate (0-5 mM) were tested for linearity and used as standard. 
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3.4 Results and Discussion 

3.4.1 Microscopic morphology evaluation 

Hepatocytes perform major functions associated with the liver. These functions are of 

exocrine and metabolic nature and are closely related to the architecture of the cells. 

Hepatocytes in vivo show a unique cellular and cell-to-cell architecture, they show three-

dimensional, polygonal cell morphology and form aggregates of plates with regional 

polarization, which enhances polarized uptake and secretion (Arterburn et al., 1995). 

Dissociating of embryoid bodies early in the differentiation protocol (e.g. day five) and 

plating the cells as monolayer can result in multiple morphologies (Itskovitz-Eldor et al., 

2000). However, addition of soluble medium factors, reconstruction of in vivo cell-matrix 

and cell-cell interactions (Snykers et al., 2009) can result in differentiation towards the 

hepatic lineage. Arterburn et al. (1995) showed for primary hepatocytes that 

dexamethasone and DMSO supplementation of the culture media and plating on collagen 

I coated dishes resulted in cell morphology very close to hepatocytes in vivo.  

After about 20-22 days of differentiation towards hESC derived hepatocytes on collagen I 

coated plates, three batches of each SA cell line (except SA167, only once received) were 

shipped via overnight express to Saarland University, where their morphology was 

recorded immediately upon arrival. Morphology was also continuously recorded over the 

experiment time, including pictures before/after matrigel overlay (Figure 3.4.1 & 3.4.2 A-

C). Cells upon arrival showed prominent cell aggregation and distinct cell-cell contacts. 

As can be seen in Figure 3.4.1 A-C cell populations of hESC derived colonies, SA002, 

SA167, SA461, display morphology characteristics for hepatocytes: they are large (up to 

50 µm or more in diameter, Figure 3.4.1 B), they formed a monolayer of flat polygon 

shaped cells (rectangle in Figure 3.4.1 C), and were often bi-nucleated (arrows in Figure 

3.4.1 A and B). Morphological characteristics for SA002 and SA167 cells were similar to 

those previously published by Soderdahl et al. (2007). The hepatic weblike-plate structure 

was visible (dashed square in Figure 3.4.1  A) and the demarcation among hepatocytes 

was clear and bright as shown in Figure 3.4.1, indicating the formation of bile canaliculi 

as suggested by Wang et al. (2004b). hESC cells, which  were grown on collagen I gels 

were overlaid with growth factor reduced matrigel on day 25 (Figure 3.4.2 A-C). Hepatic 

characteristics could be observed after matrigel overlay (Figure 3.4.2 A-C). 
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Figure 3.4.1:  Cell lines SA002 (A), SA461 (B) and SA167 (C) after 25 days of differentiation 
towards hepatic cells on Collagen I. The magnification of the pictures is 20X. The 
scale bar of each figure measures 100 µm. Photographs are representative for 
three experiments per cell line, except SA167 (only one batch). 
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Figure 3.4.2:  Cell lines SA002 (A), SA461 (B) and SA167 (C) after 25-27 days of 

differentiation towards hepatic cells on Collagen I and matrigel overlay 
(sandwich culture). The magnification of the pictures is 20X. The scale bar of 
each figure measures 100 µm. Photographs are representative for three 
experiments per cell line, except SA167 (only one batch). 
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The functionality of hepatocytes is closely related with their morphology (Arterburn et 

al., 1995). According to the ultrastructural observations, distinctive hepatocyte-like 

phenotype features for all three hESC derived hepatocyte-like cells could be observed, 

even though their population was mixed.  

To further characterize the phenotype of the hESC-derived hepatocyte-like cell lines, 

protein expression was studied using immunofluorescence. Hepatic protein markers for 

early, mid-late and late stage of differentiation were investigated.    

 

Figure 3.4.4:  Characterization of differentiated hESC derived cells, cultured in 
sandwich culture (collagen-matrigel). Expression of Foxa2 (HNF-3β; 
endoderm and hepatocyte marker) for A) Primary human hepatocytes B) 
SA002 C) SA461 and D) SA167 derived hepatocyte-like cells, subjected 
to immunofluorescence microscopy. The scale bar of each figure 
measures 50 µm. Images are courtesy of Cellartis AB. 

As depicted in Figure 3.4.4, all tested cells (SA002, SA167, SA461 and PHHs as control) 

weakly expressed FoxA2 (HNF3β), which is a marker for the definite endoderm (yolk 

sac) as well as the fetal liver (Baharvand et al., 2006; Cai et al., 2007). The hESC-derived 

hepatocyte-like cells from the cell line SA002 and SA461 were further, as depicted in 

Figure 3.4.5, positive for the midlate/mature hepatic markers, the epithelial cytokeratins 8 

(CK8) and 18 (Cho et al., 2008). For the SA002 cell line the hepatic weblike-plate 

structure with multiple bi-nucleated hepatocyte-like cells could be in addition very clearly 

visualized and the demarcation among hepatocytes was shown to be clear and bright. 

SA461 cells and PHHs, however, did not show such an organized morphology. The 
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SA461 cells seemed to be overgrown by proliferating non-hepatic cells, shown by DAPI-

staining, which confirms previous suspicion. 

 

Figure 3.4.5:  Characterization of differentiated hESC derived cells, cultured in sandwich 
culture (collagen-matrigel). Expression of cytokeratin 8 (CK8, indicated by FITC 
conjugated antibodies, pictures A-C) and cytokeratin 18 (CK18, indicated by 
FITC conjugated antibodies, pictures D-F) for primary human hepatocytes 
(A&D), hESC derived hepatocyte-like cell lines SA002 (B&E) and SA461 
(C&F), subjected to immunofluorescence microscopy. The scale bar of each 
figure measures 50 µm. Images are courtesy of Cellartis AB. 

α-Fetoprotein (AFP) expression, which is  a very early hepatic marker expressed during 

the embryonic development (endoderm) but also expressed in the fetal stage, declines by 

proceeding down the hepatic lineage until its disappearance in adult hepatocytes. 

Albumin (ALB) on the other side is only expressed from early-midlate stage of liver 

organogenesis. However, both can be found in the yolk sac and the fetal liver (Baharvand 

et al., 2006). Therefore, based on AFP and ALB expression, a distinction between 

development stages can be performed,  but not between tissues (Brewer and Tank, 1993; 

Snykers et al., 2009).  
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Figure 3.4.6:  Characterization of differentiated hESC derived cells, cultured in sandwich 

culture (collagen-matrigel). Expression of albumin (marker for midlate 
stage of liver organogenesis), indicated by FITC conjugated antibodies 
against human albumin for A) Primary human hepatocytes B) SA002 C) 
SA461 and D) SA167 derived hepatocyte-like cells, subjected to 
immunofluorescence microscopy. The scale bar of each figure measures 
50 µm. Images are courtesy of Cellartis AB. 

For this study, α-Fetoprotein was either very weakly or not expressed (data not shown) 

for all tested cell lines/types, suggesting that the cells are in a more mature development 

stage. However, albumin was expressed, as depicted in Figure 3.4.6. While albumin 

could be prominently detected in the cytosol of primary human hepatocytes (Figure 3.4.6 

A), only few hESC derived cells showed albumin expression and localized to hepatocyte 

islands and/or closer to the nucleus (Figure 3.4.6 B-D). This might be due to two reasons. 

First, hESC derived hepatocyte-like cells are smaller than PHHs or second, the culturing 

state is responsible. While PHH were trypsinized and seeded as a monolayer, the hESC 

derived hepatocyte-like cells were cultured in these wells. Due to this, proliferation and 

differentiation could be reason for the dense hepatocyte island and possibly for multiple 

cell layers. Based on the weak AFP and localized ALB serum protein staining, it can be 

presumed that the cells show endoderm commitment, however not the tissue (yolk sac or 

liver). One enzyme, however, CYP7A1, is only expressed in the liver and is thus a 

reliable marker for distinguishing yolk sac from liver cells (Baharvand et al., 2006). The 

CYP7A1 expression was thus performed via quantitative Real-Time PCR (qRT-PCR, 
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Figure 3.4.7). In comparison to PHH and Hep G2 cells, the CYP7A1 expression in SA-

cell lines, although present, was weak, indicating in vitro liver organogenesis from 

definite endoderm for some cells in culture. 

 
Figure 3.4.7:  Relative gene expression of CYP7A1. The gene expression of Hep G2 cells 

is set as 1 and data are normalized to it. Data from SA002 and SA461 cells 
were combined from three or more experiments. 

Development towards maturation could be further detected by Alpha-1-antitrypsin 

(A1AT) staining, a glycoprotein mostly synthesized in liver cells (Coakley et al., 2001). 

As displayed in Figure 3.4.8 (sub-images A, D, G & J), A1AT was distinctively 

expressed for SA002 and SA461 cells. Interestingly, the glycoprotein synthesis was 

weaker in the PHH cells, compared to the hESC derived hepatocyte-like cells. 

Immunofluorescence positive staining for the multidrug resistance protein 2 (Mrp2; 

Abcc2) (Pfandler et al., 2004), as depicted in Figure 3.4.8 (sub-images B, E, H & K), was 

also observed for all tested cell lines/types. Mrp2 is part of the ATP-binding cassette 

(ABC) transporter superfamily and together with the bile-salt export pump (BSEP; 

ABCB11) they provide the driving force for the bile flow within the bile caniculi 

(Pfandler et al., 2004). Although intracellular immunofluorescence was expressed for all 

tested cell lines/types, indicated by green staining in Figure 3.4.8 (sub-images A, D, G & 

J), only weak canalicular Mrp2 staining could be observed. Canalicular Mrp2 satining 

usually indicates maturation and correct polarization of functional hepatocytes. Similarly, 

no functional polarization (only canalicular Mrp2 staining) could be found for PH 

hepatocytes, which might be due to the trypsinization and plating procedure. However, 

for the hESC derived cell lines mainly Mrp2 transporters were found in the cytosol and 

thus further polarization factors as BSEP and basolateral transporters should be 

investigated on the protein level as previously shown by Pfandler et al. (2004). As can be 
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further seen in Figure 3.4.8 (sub-images C, F, I & L), for the hESC derived cell lines 

SA002, SA461 and SA167 phalloidin staining of F-actin bundles could be observed in 

the lumen of the cells, thus indicating polarity (Tanimizu et al., 2007). Primary human 

hepatocytes, however, did not only show phalloidin expression in the apical membrane 

but also in the cytosol, thus suggesting once again no correct polarization. 

 
Figure 3.4.8:  Characterization of differentiated hESC derived cells, cultured in sandwich 

culture (collagen-matrigel). Expression of  alpha-1-antitrypsin (A1AT; ABcc2) is 
shown in sub-images A, D, G & J. MRP2 (ATP-binding cassette (ABC) 
transporter) expression (B, E, H & K) and  phalloidin staining of F-actin (C, F, I 
& L) are shown for primary human hepatocytes (image A-C) and hESC derived 
hepatocyte-like cell lines SA002 (D-F), SA461 (G-I) and SA167 (J-K), subjected 
to immunofluorescence microscopy. All antibodies against specific proteins are 
FITC conjugated (green) and the nuclei are depicted by DAPI staining (blue). The 
scale bar of each figure measures 50 µm. Images are courtesy of Cellartis AB. 
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Based on the combined protein expression data, it can be surmised that the cells are 

derived from definite endoderm and are presumably in the mid-late hepatic development 

phase. However, they show signs of maturation. In addition, almost all hESC derived 

cells have been shown to express the expected hepatic proteins (ALB, CK8 & CK18, 

Foxa2, Mrp2, A1AT), indicating differentiation towards functional-hepatocyte-like cells. 

However, it should be pointed out, that during liver organogenesis, the final step of 

maturation takes place after birth and only then adult liver specific genes such as 

tryptophan oxygenase (TO) and as cytochrome P450s genes are expressed (Kamiya et al., 

2002). Thus, to obtain a more detailed picture, gene expression profiling of metabolizing 

enzymes, transporters and transcription factors related to mature hepatocyte phenotype 

was performed. 

3.4.2 Gene expression profiling via Low Density arrays (LDAs) 

In this part of the characterization study the expression of late stage maturation genes 

(AFP, ALB, G6P and A1AT) and liver cell protein expressions, as well as UDP-

glucuronosyltransferases (UGTs), transporter and transcription factors were evaluated 

using TaqMan low density array (LDA) cards approach as previously published by Ek et 

al. (2007). For each cell line (PHHs, Hep G2 cells, differentiated SA002 and SA461 cells, 

and undifferentiated SA002 and SA461 cells) 45 gene expressions were gathered and 

evaluated in Karolinska Institute (Stockholm, Sweden).  

For three data sets, each, the gene expression was averaged for differentiated SA002 and 

SA461 cells and is depicted in Figure 3.4.9. The undifferentiated controls of SA002 and 

SA461 cells and Hep G2 cells were measured once. For PH hepatocytes the average of 

two data sets is depicted. A figure, including average values is attached in the appendix 

(Fig. 7.4.1). 

As can be seen in Figure 3.4.9, the gene expression from the two differentiated hESC cell 

lines (SA002 and SA461) did not vary much from each other. CYP1A1, 1B1, 2A6, 2B6, 

2C19, 2C8, 2D6, 2E1, 3A4 and 3A7 mRNA expression was detected in hepatocyte-like 

cell, whereas CYP2C9 was only expressed in SA461 cells. All cytochrome P450 genes 

which could not be detected in the SA cell lines (CYP1A2, 2C8 and 2C9) were also not 

present in Hep G2 cells, which served as the reference. Overall, the relative gene 

expression levels for the genes investigated were lower in hepatocyte-like cells from both 

lines, than in Hep G2 cells and primary human hepatocytes.  
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Figure 3.4.9:  Relative gene expression for liver related genes as measured by LDA assay for 
PH hepatocytes, Hep G2 cells and SA002 and SA461 cell in undifferentiated and 
differentiated form. All samples were run on LDA cards containing different 
genes associated with liver drug metabolism. The expression for all genes is 
normalized against the expression of the gene for hypoxanthine 
phosphoribosyltransferase (HPRT) in each sample. The expression levels in each 
sample are compared to the expression levels in Hep G2 cells, which are set to 
1.0 for all genes. UGTs: UDP-glucuronosyltransferases, N.D.: not detected, ↑: 
detected. Heat map was generated at Karolinska Institute. 
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However, more CYPs, UGTs, transcription factors and transporter were expressed in the 

hESC cell lines, compared to Hep G2 cells. Some gene expressions were even higher 

than in Hep G2 cells, such as CYP2E1 and the transcription factors RXRa and RXRb, as 

well as HNF3α and α1-antitrypsin. RXRb and HNF3α were even higher than in PH 

hepatocytes. In the undifferentiated hESC cell lines, only weak levels of liver specific 

genes were expressed. Only CYP2A6 was expressed more than in both differentiated 

hESCs. However, in general the relative gene expression levels were of the order 

undifferentiated hESC <  differentiated cells < Hep G2 and PHH cells. Nevertheless, 

more complete liver specific gene expression was detected for the differentiated hESC 

cell lines, compared to Hep G2 cells. SA461 cells in comparison to SA002 cells appeared 

to show more relative gene expression, indicating more advanced differentiation. This is 

interesting, since the phenotype analysis revealed SA002 cells to be more hepatocyte-

like.  

However, on the transcriptome level, both hESC derived cell lines showed phase I and 

phase II (here seen by UGTs expressions) metabolism, which is important for 

biotransformation of chemical entities, especially drugs (Cantelli-Forti et al., 1998; Giron 

et al., 2008; Li, 2001; Tzanakakis et al., 2000). Both derived cell lines further showed 

expression of HNF4α, C/EBPa and C/EBPb, genes which suggest hepatic, immature, 

phenotype, comparable to PH hepatocytes (Li et al., 2000; Westmacott et al., 2006). 

Compared to Hep G2 their gene expression was even lower. Genes that indicate 

maturation (ALB, A1AT and G6PDH), were also elevated for the differentiated cells, 

compared to non-differentiated cells. α-1-antitrypsin, which is solely expressed in the 

liver (Coakley et al., 2001), was expressed for SA461 cells in amounts comparable to 

Hep G2 cells. 

In conclusion, the data presented here indicate that the cell lines SA002 and SA461 

differentiated towards functional hepatocytes. It was shown that the gene expression of 

differentiated cells, compared to undifferentiated cells, was elevated for almost all liver 

specific genes. However, overall gene expression profiles in comparison to Hep G2 cells 

and PH hepatocytes suggest that these cells are not yet mature, but start to show 

biotransformation capacities and functionality.   
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3.4.3 Functional analysis 

The liver becomes a functional organ only in the terminal step of organogenesis and thus 

functional assays have to ascertain functional properties (Snykers et al., 2009) of 

hepatocytes, derived from stem cells. Functionality was tested by quantification of 

albumin secretion, urea metabolism (privileged for hepatocytes) and glycogen storage, as 

well as drug metabolism activity analyses. For all assays, cells were exposed to 

diclofenac in four different concentrations (0, 0.05, 0.10, 0.20 mM) to further determine 

drug metabolism activity and its influence onto hepatic functionality.  

3.4.3.1 Urea production 

Urea metabolism and secretion is a privileged function of hepatocytes and thus an 

important marker for hepatic metabolic function. As depicted in Figure 3.4.10, after 48 

hours of incubation with and without diclofenac exposure, all cell lines/types showed 

functional urea metabolism, and thus hepatic functionality. However, cells derived from 

ES cells, did not reach the same urea metabolism activity as primary human hepatocytes 

or Hep G2 cells.  

 

Figure 3.4.10:  Urea secretion after 48 hours of cultivation for Hep G2 cells, primary human 
hepatocytes and hESC derived hepatocytes cell lines (SA002, SA167 and 
SA461) exposed to four concentrations of diclofenac, ranging from 0-200 
µM in monolayer sandwich culture. Each column represents the mean of the 
results from three different cultures measured in duplicate. 
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Verma et al. (2007) reported that Hep G2 cells retain many liver specific functions, such 

as albumin secretion, urea synthesis, and glucose secretion. Similar results were also 

published recently (Guzzardi et al., 2009), which showed albumin secretion and urea 

synthesis for Hep G2 cells in static cultures. However, it also had been reported that Hep 

G2 have no functional urea cycle, since they lack ornithine transcarbamylase (OTC) as 

well as arginase I mRNA and protein (Mavri-Damelin et al., 2008a). However, Mavri-

Damelin et al. (2008a) detected for C3A cells, a clonal derivative of Hep G2 cells, urea in 

the media and concluded that urea is produced via an urea cycle-independent mechanism, 

namely through arginase II. Since urea was quantified in the culture supernatant using a 

commercial assay, it was not determined which mechanism underlies urea synthesis. 

However, it is known, that functional PH hepatocytes maintain long-term urea synthesis, 

even in 2D culture (Katsura et al., 2002). In addition, urea was detected by GC/MS 

measurements (data not shown) in the media for all cell lines, which supports that urea is 

produced as depicted in Figure 3.4.10. 

Li et al. (2008b) quantified urea synthesis in hESC derived hepatocytes as 70 µg/(106 

cells x 24h) with a declining trend over time. For SA002 and SA167 and Hep G2 rates of 

133, 125 and 138 µg/(106 cells x 24h), could be calculated based on approximately 2 x 

105 cells/well at day 25 of the proliferation, respectively (cell enumeration performed at 

Cellartis AB). SA167 cells even showed an urea synthesis rate of 290 µg/(106 cells x 

24h), which is half compared to primary human hepatocytes, showing 480 µg/(106 cells x 

24h) as rate. Thus, these productions rates indicate urea metabolism to be active and 

functional, and further in the same order of magnitude as Hep G2 cells. Bahavand et al. 

(2006), obtained urea secretion concentrations for hESC derived cells, cultured in 24-well 

plates, of approximately 15-20 mg/dL after 22 to 28 days of differentiation in 2D cultures 

and higher values in 3D culture and thus concluded that hESC, differentiated in 3D 

culture systems, showed higher resemblance to in vivo conditions. They cultured five 

embryoid bodies and differentiated those towards hESC derived hepatocyte-like cell, 

however failed to enumerate the cell number for their functional analysis. Since for this 

study four embryoid bodies were used per well, their presented data are approximately in 

the same order of magnitude as the here obtained values. No distinctive influence on urea 

synthesis could be found, if diclofenac was supplemented for 48 hours to the culture 

medium.  
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3.4.3.2 Albumin synthesis 

To further assess if the hESC derived hepatocyte-like cells possess liver-cell 

functionality, albumin secretion into the culture supernatant was measured after an 

incubation period of 48 hours. As depicted in Figure 3.4.11, PHHs synthesized 16.5 µg 

albumin in 48 hours if no drug was applied. Since the cell number was known, the 

albumin synthesis rate can be calculated and resulted in 47 µg/(106 cells x 24h). However 

if drug was present, the synthesized albumin concentration was reduced. Nahmias et al. 

(2006) reported an albumin synthesis rate of 35 µg/(106 cells x 24h) for PHH cells, which 

is in the same range as the values observed here.  

 

Figure 3.4.11:  Albumin synthesis after 48 hours of cultivation of Hep G2 cells, primary 
human hepatocytes (PHH) and hESC derived hepatocytes cell lines (SA002, 
SA167 and SA461) exposed to four concentrations of diclofenac, ranging 
from 0-200 µM in monolayer sandwich culture. Each column represents the 
mean of the results from three different cultures measured in duplicate. 

Hep G2 cells show synthesis of albumin (Guzzardi et al., 2009; Verma et al., 2007). 

However, the value of 6 µg/(106 cells x 24h) obtained in this study is higher than 

previously reported rates from Guzzardi et al. (1 µg/(106 cells x 24h)) and by Kinasiewicz 

et al. (2006) (2.5 µg/(106 cells x 24h)). As depicted in Figure 3.4.11, the hESC cell line 

SA002 produced approximately 2 µg/mL in 48 hours, resulting in an approximate rate of 

3.3 µg/(106 cells x 24h), without drug supplementation. SA461 cells synthesized albumin 

in a rate of 1.67 µg/(106 cells x 24h) and SA167 cells secreted albumin into the culture 

medium with a rate of 0.5 µg/(106 cells x 24h) if no drug was supplemented. These 
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values, although lower than Hep G2 cells and primary human hepatocytes, are higher or 

comparable to reported results from hESC derived hepatocyte-like cells. Li et al. (2008b) 

reported albumin synthesis values below 0.5 µg/(106 cells x 24h). Bahavand et al. (2006) 

obtained albumin secretion concentrations of 1-2 µg/mL after 24 days of differentiation 

in 2D cultures, using more starting material than in this study.  

All diclofenac concentrations induced an impaired albumin secretion for all cell types, 

indicating cells struggling with toxic effects. The impairment increased for increasing 

drug concentrations. Castell et al. (1997) showed for cultured primary rat hepatocytes that 

diclofenac concentrations of 70 µM induced a reduction of the albumin synthesis by 

approximately 50 %. These albumin responses to diclofenac exposure are similar to 

albumin production data of primary human hepatocytes, depicted in Figure 3.4.11.  

3.4.3.3 Glycogen storage 

Glycogen is stored in hepatocytes and thus assaying for glycogen is important for 

phenotype analysis. As depicted in Figure 3.4.12 most hESC derived hepatocyte-like 

cells, which also displayed hepatic morphological characteristics, showed glycogen 

accumulation, which is typical hepatic feature (Soderdahl et al., 2007), and thus 

indicating hepatic functionality. However, the intensities varied. While SA461 cells 

(Figure 3.4.12 C) showed a high glycogen storage, SA002 cells (Figure 3.4.12 B) only 

weakly showed glycogen staining, compared to control cells (Figure 3.4.12 A). Thus 

SA461 derived hepatocyte-like cells seemed to be superior and further differentiated than 

SA002 cells.  

 

Figure 3.4.12:  Periodic acid Schiff (PAS) staining for glycogen storage for A) control cells B) 
SA002 and C) SA461 cells after differentiation towards hepatocytes, subjected to 
light microscopy. The scale bar of each figure measures 50 µm. Images are 
courtesy of Cellartis AB.  
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Nevertheless, here, one cannot quantitatively compare glycogen staining, since the 

protocols were not performed at the same date and thus variability during staining might 

be the reason for the different intensities. However, both hESC cell lines showed distinct 

glycogen staining, thus indicating hepatic functionality. 

3.4.3.4 Activity of drug metabolism 

Presence of phase I and phase II drug metabolizing enzymes is a key factor for 

characterization of functional hepatocytes. Three drugs, namely diclofenac, phenacetin 

and midazolam, which are metabolized by both phases, thus were used to determine drug 

metabolism activity. Two approaches were used. After 16 hours of drug exposure the 

phase I (Astra Zeneca and Pharmacelsus) and phase II (Pharmacelsus) activities were 

determined by measurement of formed metabolites via LC-MS/MS. In another 

experiment diclofenac metabolites were measured in pooled samples (three wells per cell 

line) after 48 hours of 50 µM diclofenac exposure and biotransformation was analyzed. 

Phase I activity assay after 16 hours of drug exposure  

A drug cocktail with specific probe substrates, namely diclofenac, midazolam and 

phenacetin, was applied to all test cell lines/types to characterize phase I drug-

metabolizing enzymes in vitro.  

 
Figure 3.4.13:  P450-selective activities using phenacetin, diclofenac, and midazolam in 

primary human hepatocytes (PHH), hESC derived hepatocyte like cells 
(SA002, SA167 and SA461) and Hep G2 cells. The activity levels in each 
sample are compared to the activity levels in Hep G2 cultures, which are set 
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to 1.0 for all cytochrome P450 activities. Samples were measured at Astra 
Zeneca (Gothenburg, Sweden). 

As depicted in Figure 3.4.13, no CYP2C9 mediated diclofenac phase I metabolism 

towards 4’-hydroxydiclofenac could be detected for hESC derived cell lines, compared to 

Hep G2 (set to 1.0). Surprisingly, no 4’-hydroxydiclofenac was measured for primary 

human hepatocytes either. However, CYP2C9 metabolism for PHH is a well documented 

activity (Floby et al., 2004) and thus it can be speculated, that either a measurement 

problem existed, which is less likely, since CYP2CP activity could be found for Hep G2 

cells, or that the metabolite was destroyed during storage or freezing. Formation of 1’-

hydroxymidazolam, mediated by CYP3A4, was found for all cell lines/types. The hESC 

derived cell lines showed CYP3A4 activity comparable to Hep G2 cells; nevertheless, 

almost 10-fold less than PHHs. Based on these data activity for CYP3A4 for the hESC 

derived cell lines is relatively high. This is important, since CYP3A4 oxidizes 

approximately 50 % of all known pharmaceuticals (Li, 2001). Very little activity was 

found for CYP1A1 and CYP1A2 mediated biotransformation of phenacetin for the hESC 

derived cell lines, compared to Hep G2 or PHH cells. Thus, these data confirm the gene 

expression data, where expression of CYP1A2 was not detected and the expression of 

CYP1A1 was several fold less than Hep G2 cells (Figure 3.4.9). 

Phase I and phase II activity assay after 16 hours of drug exposure  

Diclofenac treatment has been associated with hepatocellular injury caused presumably 

by metabolic idiosyncracy and mediated by chemically reactive metabolites (Banks et al., 

1995). Two major reactive metabolites that bind to hepatic protein and are thus 

recognized as foreign and likely to cause immune responses, seem to mediate potentially 

the idiosyncratic toxic responses; Glucuranation of diclofenac, catalyzed by human 

UGT2B7 (King et al., 2001), followed by covalent protein adduct formation (Bailey and 

Dickinson, 1996) and diclofenac CYP 450-mediated hydroxylation via CYP2C9, which 

is then further oxidized to reactive benzoquinone imine intermediates and trapped as 

glutathione adducts (Grillo et al., 2003; Ngui et al., 2000; Poon et al., 2001; Tang et al., 

1999; Yan et al., 2005) are likely reasons for diclofenac-protein adduct formation and 

thus for hepatotoxicity.  
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As shown in Figure 3.4.14, diclofenac metabolites could only be detected for primary 

human hepatocytes after 16 hours of incubation in the activity assay medium. Phase I 

hydroxylation activity of CYP2C9 transformed the parent drug to its 4’-

hydroxydiclofenac metabolite. Diclofenac-O-glucuronide formation was also detected 

which implies phase II UGT2B7 activity. It has to be pointed out, that no diclofenac-

acylglucuronide formation could be detected after the culture period of 16 hours. In 

addition, no phase II glutathione adduct formation from 4’hydroxydiclofenac as 

intermediate could be observed for PHHs after the incubation period of 16 hours. 

Presumably either gluthathione S-transferase (GST), which catalyzes the conversion of 4’ 

hydroxydiclofenac to the glutathione adduct, was not expressed, or, more likely, since no 

glutathione adduct formation could be detected for PH hepatocytes, it can be surmised 

that the adduct was damaged during storage and thus could not be detected. 

 
Figure 3.4.14:  Metabolic fate of diclofenac after 16 hours of drug exposure. Tested cell 

lines/types were PHH, Hep G2 cells, and the hESC derived cell lines SA002, 
SA167 and SA461 medium. Only PHH cells showed any diclofenac 
metabolism capacity after 16 hours. Metabolites are depicted as % total 
diclofenac (9 µM). Samples were measured at Pharmacelsus GmbH 
(Saarbrücken, Germany). 

In summary, and as shown in Figure 3.4.14, only primary human hepatocytes showed 

hydroxydiclofenac and diclofenac-O-glucuronide formation after 16 hours of diclofenac 

exposure, thus having the highest drug metabolizing activity towards the even more toxic 

metabolites (Seitz and Boelsterli, 1998). Neither for Hep G2 cells nor for any of the three 

hESC derived cell lines phase I or II diclofenac metabolism could be detected. However, 

as previously shown for the complimentary liver gene expression profiling (depicted in 

Figure 3.4.9), CYP2C9 and UGT2B7 genes were distinctively less expressed in these 
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cells compared to PH hepatocytes and thus high drug metabolism activity cannot be 

expected.  

Midazolam undergoes extensive oxidative metabolism mediated by mainly CYP3A4, 

CYP3A5 and less CYP3A7 (fetal) to its equipotent 4-hydroxymidazolam and 1’-

hydroxymidazolam (40-100%), which is further glucuronide conjugated followed by 

renal excretion (Hyland et al., 2009; Klieber et al., 2008; Zhu et al., 2008). N-

glucuronation, however, can also occur directly from the parent compound and is 

mediated by phase II UDP-glucuronosyltransferase (UGT1A4). O-glucuronation from 1’-

hydroxymidazolam however is mediated by UGT2B4 and UGT2B7 (Hyland et al., 2009).  

 
Figure 3.4.15:  Metabolic fate of midazolam after 16 hours of incubation. Tested cell 

lines/types were primary human hepatocytes (PHH), Hep G2 cells, and the 
hESC derived cell lines SA002, SA167 and SA461. Metabolites are depicted 
as % total midazolam (3 µM). Samples were measured at Pharmacelsus 
GmbH (Saarbrücken, Germany). 

As depicted in Figure 3.4.15, primary human hepatocytes showed distinct phase I 

biotransformation via CYP3A4/A5 to its 1’-hydroxymidazolam form (approx. 3.5% of 

total midazolam) and further glucuronidation to hydroxy-midazolam-glucuronide 

mediated by UGT2B4 and UGT2B7. Direct glucuronation via UGT1A4 (approx. 1.5% of 

total midazolam) could also be detected. Hep G2 cells and the hESC derived cells SA002, 

SA167 and SA461 showed CYP3A4/A5 activity indicated by 1’-hydroxymidazolam 

formation in comparable concentrations. These data are in concordance with previously 

shown activity data, measured at Astra Zeneca (Sweden) and depicted in Figure 3.4.13. 

However, no further glucuronation could be detected for the differentiated cells. Thus, 
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UGT2B4, UGT2B7and UGT1A4 did not seem to be active after 16 hours of incubation 

with midazolam.  

Phenacetin is majorly metabolized via CYP1A2 to acetaminophen, which is followed by 

phase II metabolism to non-toxic metabolites APAP-sulfate, APAP-glucuronide or 

APAP-glutathione (Park et al., 2005; Polasek et al., 2006). Phase I phenacetin 

metabolism was detected by its CYP1A2 metabolite acetaminophen (APAP) for Hep G2 

and PH hepatocytes. No unconjugated APAP could be found for the hESC derived 

hepatocyte-like cell lines SA002, SA167 or SA461.  However, APAP-sulfate, which is a 

phase II metabolite of APAP, could be detected for all tested cell lines. Thus, CYP1A2 

activity must have been present in the SA cell lines to deethylate phenacetin to 

acetaminophen, followed by phase II phenolsulphotransferase (PST) activity and its 

acetaminophen-sulfate metabolite (see Figure 3.4.16). 

 
Figure 3.4.16:  Metabolic fate of phenacetin after 16 hours of incubation. Tested cell 

lines/types were primary human hepatocytes (PHH), Hep G2 cells, and the 
hESC derived cell lines SA002, SA167 and SA461. Metabolites are depicted 
as % total phenacetin (26 µM). Samples were measured at Pharmacelsus 
GmbH (Saarbrücken, Germany). 

No glutathione conjugate could be detected for any cell type. However, this was not 

unexpected, since NAPQI, the intermediate and toxic metabolite, is only approx. 5 % of 

parent drug (Park et al., 2005; Polasek et al., 2006), from which APAP-glutathione is 

mediated. However, most probably, the glutathione adduct formation could not be 

detected due to adduct damage during storage. The APAP-glucuronide, however, was 

expected to be found. While APAP-glucuronide peaks could be identified, high 

interference with the probe substrate cocktail, which served as control matrix, appeared 
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(see Appendix, Figure 7.4.3). Thus, no UGT activity could be validly confirmed here and 

for further phase II metabolism characterization studies, the measurements should be 

repeated.   

Metabolic fate of diclofenac after 48 hours of exposure 

As described previously, diclofenac is converted via two major biotransformation 

pathways, namely aromatic hydroxylation (Phase I, mainly CYP2C9) and 

glucuronidation (Phase II, mainly UGT2B7) of the carboxylic acid group (Bort et al., 

1999a; Bort et al., 1999b; Ngui et al., 2000; Park et al., 2005). Phase I metabolites can 

further form benzoquinone imines which react with glutathione (Ngui et al., 2000).  

As depicted in Figure 3.4.17, extensive phase I metabolism via diclofenac hydroxylation 

towards 4’hydroxydiclofenac (CYP2C9) could be observed for primary human 

hepatocytes. The formed 4’hydroxydiclofenac was the major metabolite with approx. 

22 % of the parent compound. Hep G2 cells, which have been shown to express CYP2C9 

very weakly compared to PH hepatocytes (see Figure 3.4.9), still hydrolyzed up to 2 % of 

diclofenac supplied towards 4’hydroxydiclofenac. On the contrary, none of the hESC 

derived hepatocytes showed CYP2C9 phase I metabolism after 48 hours.  

 

Figure 3.4.17:  Metabolic fate of diclofenac after 48 hours of drug exposure, supplemented 
to primary human hepatocytes (PHH), Hep G2 cells, and the hESC derived 
cell lines SA002, SA167 and SA461. Metabolites are depicted as % total 
diclofenac (50 µM). Samples were analyzed at Pharmacelsus GmbH 
(Saarbrücken, Germany). 

Direct phase II biotransformation of diclofenac could be observed by diclofenac 

acylglucuronide and O-glucuronide formation for PHH and Hep G2 cells. For PHH and 
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Hep G2 cells the summed concentration of glucuronation metabolites exceeded even the 

hydroxylation metabolism. hESC derived hepatocyte-like cells (SA002 and SA167) also 

showed diclofenac acylglucuronide formation. However no phase II metabolism was 

found for SA461 cells. 

Detection of excreted diclofenac glucuronide has been reported to depend on the MRP2 

transporter. Thus if the cells lack this transport protein, no diclofenac glucuronide can be 

transported outside the cells (Seitz et al., 1998). As previously shown in Figure 3.4.8 H, 

MRP2 was weaker visualized for SA461 cells using immunohistological stainings 

compared to SA002 and PHH cells. In addition, no polarization was found for SA461 

cells. Therefore, the data presented here are in consistence with Seitz’s findings. In 

addition, it has been reported by Seitz and Boelsterli (1998) that diclofenac glucuronides 

are more toxic than their free parent drug. Since they are the main metabolites (sum of 

Acyl- and O-glucoronide), it can be expected, that the toxicity should be the highest for 

cell types transforming diclofenac to its glucuronide forms. Hence, the toxic responses 

should be in the order, PH hepatocytes > Hep G2 cells > SA cell lines. In addition, it 

should be noted, that no glucuronide formation could be found for either Hep G2 or 

hESC derived cell lines after 16 hours of diclofenac exposure; however, it could be 

detected after 48 hours, indicating a delayed biotransformation activity and thus a later 

toxicity onset. Thus, the toxicodynamics responses to diclofenac treatment were tested 

(see Chapter 3.4.4) and will be addressed there more extensively.  

3.4.3.5 Energy metabolism 

As previously described, the liver has the important task to metabolize and biotransform 

energy-generating substances, such as amino acids, fatty acids, lactate, pyruvate and 

sugars (Alberts et al., 2002; Xu and Purcell, 2006). In this part of the study it was 

investigated if hESC derived hepatocyte-like cells can be used as an in vitro model to 

evaluate the status of energy metabolism under diclofenac exposure. In addition, the 

functionality after exposure to diclofenac was tested. This is based on the hypothesis that 

energy metabolic pathways, which are interrelated with mitochondria via the key 

intermediate pyruvate (which can either form acetyl-CoA to produce ATP in the 

mitochondria or is used for biosynthesis of e.g. lactate and other substances), will be 

disturbed if a test agent is supplied (Xu and Purcell, 2006). It is presumed, that with this 

screening approach response patterns or indicators for toxicity can be identified. 
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The glucose consumption and lactate production were calculated from the average 

concentration of triplicate cultures in duplicate measurement after 48 hours (Figure 3.4.18 

A and B). For all cell lines, the control (no diclofenac supplementation) glucose uptake 

and lactate secretion were set to 100 %.   

As displayed in Figure 3.4.18 A, for all cell lines and experiments the glucose 

consumption was reduced if diclofenac was supplied at a concentration of 50 µM or more 

compared to control (0 µM). Only PHH did not show any distinct responses to the 

increasing diclofenac concentrations for diclofenac exposure up to 100 µM (the 200 µM 

value was not available).   

 
Figure 3.4.18:  A) Glucose consumption and B) Lactate production after 48 hours of 

exposure to diclofenac for all cell lines/types (SA002, SA167, SA461, PHH 
and Hep G2). DMSO concentration in all samples was 0.5 %. Each column 
represents the mean of the results from three different cultures measured in 
duplicate. 

Lactate was released for all cell lines/types if the drug was present (Figure 3.4.18 B), 

however, the lactate production reduced as the diclofenac concentration increased. 
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Pyruvate uptake/release was also analyzed; however, the concentration differences after 

the culture period were not significantly different. 

Anyway, as can be seen in Figure 3.4.19, the lactate/glucose (L/G) ratio also decreased if 

the drug was present at low concentrations of 50 µM – 100 µM. Further, as in addition 

depicted in Figure 3.4.19, with increasing concentrations of diclofenac in the culture 

medium, the L/G ratio decreased somewhat for all groups.  

In addition, as observed from Figure 3.4.19, the L/G ratio for some cell lines/experiments 

neared or exceeded two. This could be explained by the “Warburg effect” (rapid glucose 

consumption, with most of glucose derived carbons secreted as lactate), which is also 

considered a marker for tumor aggressiveness. However, hepatocytes are known to be 

able to synthesize glucose, since their main function is glucose homeostasis (Klover and 

Mooney, 2004). Hence, other substrates, such as amino acids (e.g. glutamine), could be 

auxiliary responsible for the high lactate production. Nevertheless, a reduction of the L/G 

ratio could be detected if diclofenac was present in the media compared to control (0 

µM), which can be probably explained by the decreased lactate release (see 

Figure 3.4.18 B). 

 
Figure 3.4.19:  Lactate/glucose ratios for sampling time points after 48 hours exposure to 

diclofenac for all cell lines/types tested (SA002, SA167, SA461, PHH and 
Hep G2). DMSO concentration in all samples was 0.5 %. Each column 
represents the mean of the results from three different cultures measured in 
duplicate. 

The influence of diclofenac on the changes of energy metabolism was examined. It has 

been previously published that diclofenac can injure and affect mitochondria and their 

function, and thereby impairing ATP synthesis by inhibiting the rate of oxidative 
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phosphorylation in the mitochondria  (Bort et al., 1999b; Moreno-Sánchez et al., 1999; 

Xu and Purcell, 2006). This results in an immediate effect on the energy balance of cells 

(Castell et al., 1997). In concordance with reduced albumin synthesis, the changes in 

lactate and glucose suggest disturbances in hepatocyte functionality and energy 

metabolism. However, hESC derived hepatocyte-like cells did not behave distinctly 

different compared to Hep G2 or PHH cells when exposed to diclofenac. Thus, while a 

concentration dependant influence onto the energy metabolism could be observed by this 

screening, no further characterization factor could be obtained.  

3.4.3.6 LDH and AST release 

To determine cell damage and the loss of cell viability, analysis of release of intracellular 

enzymes was measured. In this set of experiments the hepatotoxic dose response effects 

of diclofenac treatment were tested. All cell lines/types were exposed to 0.05, 0.1 or 0.2 

mM diclofenac for an incubation period of 48 hours. Subsequently the LDH and AST 

leakage was measured and is depicted in Figure 3.4.20. 

An increase of cytosolic LDH release (Figure 3.4.20 A) could be observed with 

increasing drug concentration, for all cell lines/types tested, compared with untreated 

control. The data suggest that concentrations of 0.1 mM only mildly affected primary 

human hepatocytes. However, Hep G2 cells and all SA cell lines released LDH in higher 

amounts even at drug concentrations as low as 0.05 mM.  

 
Figure 3.4.20:  A) Lactate dehydrogenase (LDA) and B) aspartate amino transferase (AST) 

release for Hep G2 cells, PHH and hESC derived hepatocytes cell lines 
exposed to four concentrations of diclofenac. DMSO concentration in all 
samples was 0.5 %. Each column represents the mean of the results from 
three different cultures measured in duplicate. 
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In addition to the LDH release, aspartate amino transferase concentrations (Figure 3.4.20 

B) also increased with increasing diclofenac concentrations. These findings were 

observed for all cell types. Interestingly, Hep G2, SA167 and SA461 released no AST if 

they were not exposed to diclofenac, suggesting no mitochondrial stress during the 

culture period of 48 hours. However, primary human hepatocytes and SA002 cells, 

released AST even if no drug was present.  

It has been previously described, that LDH is mostly released from the cytosol and AST 

is localized in mitochondria to 80 % (Wang et al., 2004a; Washizu et al., 2005). The data 

shown in Figure 3.4.20 A thus suggest, that PHH cells show less membrane damage 

compared to the other cell types. In combination with the activity assay, it can be 

concluded that the PH hepatocytes depict higher drug metabolizing capacity and thus 

reduction of cytotoxic effects. Further, in was observed that the cells released AST into 

the culture medium after diclofenac exposure for 48 hours. Thus, one can surmise that the 

permeability of mitochondria was reduced and damaged due to diclofenac exposure. 

SA002 cells, which showed the highest purity and appeared to be non-proliferating and 

hence be affected in the same way as PH hepatocytes.  

It has been published recently, that the enzyme activity of cells is related to their energy 

metabolism (Washizu et al., 2005). As depicted in Figure 3.4.18 B (lactate synthesis) and 

3.4.20 A  (LDH release) and B (AST release), the enzyme release and the lactate 

synthesis of PHH cells seemed to behave most related in response to diclofenac exposure 

to that of the hESC derived cell line SA002. However, more energy related enzymes, 

such as hexokinase (HK), malate dehydrogenase (MDH) or pyruvate kinase (PK) should 

be tested to better localize and evaluate energy production.  

Additionally, it has to be noted that the highest drug concentration was close to the 50 % 

lethal concentration (see Table 3.4.1); hence the increase of enzyme leakage with rising 

drug concentrations was expected. However, for both enzyme assays these drug response 

effects are also used to identify drug concentrations which cause 50 % of cell population 

to die (LC50). Nevertheless, the advantage of these assays is getting hints to the 

localization of the damage (mitochondrial and membrane). Thus, the use of this assay is 

of also of interest for dynamic studies and for monitoring the viability of cells (Wang et 

al., 2004a). 
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3.4.4 Respiration toxicity assay 

To evaluate drug effects on hESC derived hepatocyte-like cells, they were exposed to 

diclofenac, while measuring their respiration in comparison to PHHs and Hep G2 cells.  

Hep G2 cells, primary human hepatocytes and hESC derived hepatocytes were exposed 

to diclofenac in seven concentrations, ranging from 0 - 1 mM (0 mM, 0.05 mM, 0.1 mM, 

0.2 mM, 0.5 mM, 0.75 mM and 1.0 mM). Each experiment was performed twice 

(different batches) to assure repeatability and each diclofenac concentration was applied 

in triplicate. Dissolved oxygen concentration (DO) was recorded online, continuously for 

48 hours in 15 min intervals and LC50 values were calculated as previously described  

(Chapter 1) and published (Beckers et al., 2010). 

 

Figure 3.4.21:  Dissolved oxygen concentration profiles of (A) SA002 cells (EXP 54) and (B) 
primary human hepatocytes. Diclofenac concentrations: 0 mM (▲), 0.05 mM (♦), 
0.1 mM (Δ), 0.2 mM (■), 0.5 mM (�), 0.75 mM (●), 1 mM (○) and medium 
without cells with 0.5 % DMSO (►). DO values of 0.1 mM (Δ) are not depicted 
in (A) due to unexpected recording errors. Dissolved oxygen concentration was 
recorded every 15 min. All measurements were carried out in triplicate and 
corresponding mean values are displayed. Every fifth data point is depicted. 

As shown in Figure 3.4.21, the hESC derived cell lines SA002 (Figure 3.4.21 A) and 

primary human hepatocytes (Figure 3.4.21 B), as well as SA167 (data not shown, 

however similar profile as SA002 cells), showed stable DO values over the time period of 

48 hours when not exposed to diclofenac. In addition, no drug influence on the cell 

respiration could be observed for concentrations below 0.1 mM diclofenac. Dissolved 

oxygen concentration values for cells which were exposed to concentrations of 0.1-0.2 
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mM diclofenac increased slowly over the test period. Cells which were exposed to higher 

diclofenac concentrations (e.g. 0.5-1 mM) showed concentration dependant DO increase 

responses, indicating cell-death.  

 
Figure 3.4.22:  DO profile of SA461 cells (EXP 42). Diclofenac concentrations: 

0 mM (▲), 0.05 mM (♦), 0.1 mM (Δ), 0.2 mM (■), 0.5 mM (�), 
0.75 mM (●), 1 mM (○) and medium without cells with 0.5 % DMSO 
(►). Dissolved oxygen concentration was recorded every 15 min. 
Measurements were carried out in triplicate and corresponding mean 
values are displayed. Every fifth data point is depicted. 

Comparable respiration and drug responses could be observed for SA461 cells. However, 

as depicted in Figure 3.4.22 (red triangular symbol), the DO values for cells, which were 

not exposed to diclofenac decreased over time. Thus, as previously described (phenotype, 

Chapter 3.4.1), the mixed SA461 cell population presumably proliferated and was 

dominated by fibroblastic shaped cells after 28 days (end of respiration assay). 

The inflection point of the non-linear regression curve (LC50) was computed for all dose-

response curves for all tested cell lines/types after 48 hours, for each experiment, with a 

95 % confidence interval and R2 being higher than 0.99 and is exemplary depicted for 

SA002 and PH hepatocytes in Figure 3.4.23 A and B. 
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Figure 3.4.23:  Diclofenac concentration-response curves of (A) hESC derived hepatocytes, 
SA002 (EXP54), and (B) primary human hepatocytes, calculated at 48 hours.  
The inflection point of the non-linear regression curve (LC50) was computed to be 
5.79 ± 0.075 and 5.38 ± 0.07 with a 95 % confidence interval and R2 being > 0.99 
for SA002 cells and PHH cells, respectively. The LC50 values are calculated using 
equation [2.5], resulting in 325 (303-353) µM diclofenac for SA002 cells and 217 
(201-236) µM diclofenac for PHH cells. 

As shown for the LC50 values after 48 hours of incubation (Table 3.4.1), the system 

resulted in reproducible results. For primary human hepatocytes only one batch was 

available for this assay. Nevertheless, for primary human hepatocytes Bort et al. (1999b) 

reported after 24 hours of diclofenac exposure LC50 values of 331 (324-338) µM and 

Castell et al. (1997) reported values of 392 (358-426) µM, respectively. These data are 

very similar to the data shown in Table 3.4.1. The higher toxic effects for Hep G2 cells 

and primary human hepatocytes may at least be due to the expected higher conversion 

into toxic metabolites due to PHH’s higher expression of CYP 450 (see chapter 3.4.2, 

“Gene expression profiling via Low Density arrays (LDAs) “) and their capability of 

higher phase II transformation into even more toxic metabolites than the parent 

compound (see chapter 3.4.3.4, “Activity of drug metabolism”).  
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Table 3.4.1:  The 50 % lethal concentration (LC50) values given in µM for diclofenac obtained 
in respiration assays on the human hepatoblastoma cell line Hep G2, primary 
human hepatocytes and hESC derived hepatocytes after 24 and 48 hours of drug 
incubation. Data were determined using triplicate measurements for each drug 
concentration. The ranges were calculated from the standard error of the log 
estimate.  

 LC50 [µM]  

Cell Line 
24 hours 48 hours 

Experiment 1 Experiment 2 Experiment 1 Experiment 2 

Hep G2 518 (464-578) 567 (493-652) 250  (224-279) 154 (140-171) 

Primary Human  

Hepatocytes 
 321 (281-365) N.A. 217 (201-236) N.A. 

hES-HEPTM  SA002 1141 (900-1520) 1236 (934-1636) 441 (351-558) 327 (303-353) 

hES-HEPTM  SA461 665 (596-742) 781 (728-837) 420 (351-503) 441 (403-483) 

 

As further shown in Figure 3.4.24, the kinetic time dependency for all hESC derived 

hepatocyte-like cells was recorded and calculated (Figure 3.4.24, SA167 (A) and SA002 

(B). This dynamic can be compared to the dynamic curves of Hep G2 cells and primary 

human hepatocytes (Figure 3.4.24 C and D). As depicted in Figure 3.4.24, cell death 

kinetics of diclofenac are nearly first order type. However, even though all cell types 

tested showed a LC50 decrease over time, the onset of toxicity is delayed for the SA cell 

lines, compared to PHH and Hep G2 cells. SA002 and SA167 cells only showed LC50 

values below 1 mM (highest tested concentration) after 20 hours. However, diclofenac 

toxicity is dependent on multiple factors such as a direct effect on the mitochondrial 

permeability transition (Lim et al., 2006; Masubuchi et al., 2000) as well as effects of the 

formed metabolites (Bort et al., 1999b; Tang et al., 1999). 

In case of primary human hepatocytes the toxic effect, shown in Figure 3.4.24 C, is 

earlier and slightly higher than the effect on Hep G2 cells, shown in Figure 3.4.24 D and 

approximately twice higher compared to the hESC cell lines SA002 and SA167 (Figure 

3.4.24 A and B) after 30 hours. Thus, according to the metabolic activity data (see 

Chapter 3.4.3.4, “Activity of drug metabolism”) and the time-dependant drug responses, 

metabolism capacity can be directly related to the cytotoxic response if exposed to 

diclofenac. Castell et al. (1997) and Bort et al. (1999b) found comparable results. They 
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found higher cytotoxicity for drug metabolizing rat and human primary cultured cells 

exposed to diclofenac compared with Hep G2, FaO cells and non-hepatic cells (MDCK), 

which they considered as nonmetabolizing. 

 

Figure 3.4.24:  LC50 time dependency for (A) SA002 cells, (B) SA167 cells, (C) PHH cells and 
(D) Hep G2 cells calculated from the LC50 diclofenac dissolved oxygen 
concentrations. The error bars represent the coefficient of variance calculated 
from the standard error of the log estimate. 

Based on the toxicity data in combination with previously presented gene expression and 

activity data, it can be assumed that SA002 and SA167 cells are capable of Phase II drug 

metabolism and according to the LDA data, show CYP activity (Phase I 

biotransformation), even if reduced in comparison  to Hep G2 and PHHs. 
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3.5 Conclusions 

To determine if the hESC derived hepatocyte-like cells can be used for future 

pharmacological and toxicological studies hepatic morphology, gene expression, protein 

expression of functional proteins, energy metabolism and drug biotransformation 

metabolism was evaluated.  

The results illustrate that the hESC cells can be repeatedly differentiated towards a 

phenotype similar to hepatocyte-like cells. In addition it was shown that these cells 

responded comparably to diclofenac exposure.  

Typical hepatocyte morphology could be demonstrated and characteristic hepatic protein 

expression of FoxA2 (HNF-3β), CK8, CK18, AFP, ALB and A1AT was observed. 

However, it has to be pointed out, that all these markers are also expressed in the late 

embryonic liver development stage.  

Hepatic functions as glycogen storage, urea metabolism and albumin secretion were 

detected for all three cell lines, thus indicating hepatic functionality.  

Even though the phase I and phase II biotransformation system was weaker compared to 

primary human hepatocytes and the human hepatoblastoma cell line Hep G2, specific 

biotransformation metabolites were detected. Confirmation for phase I and phase II 

metabolism was shown by complementing hepatic gene expression profiling.  

Hence, it can be concluded these cells are developing towards functional hepatocytes. 

Nevertheless, they do not yet show sufficient hepatic biotransformation functionality and 

thus are not yet applicable in the pharmaceutical industry for drug metabolism studies. 

Regardless, these cells show the potential to provide an alternative source of primary 

human hepatocytes for drug metabolism and toxicity studies in the future. As soon as 

these cells become fully functional, both animal studies and demand for liver donations 

can be reduced. However, as previously pointed out, the efficiency of the differentiation 

protocols, the purity of the end-culture and their functionality should be further improved 

in future research studies to finally obtain a valid hepatic in vitro model.   
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4.1 Introduction 
Currently many cellular and organism-based methods are available and widely accepted for 

assessment of acute toxicity. Though these assays are easy to perform, they detect only highly 

specific changes, such as one cellular or metabolic parameter at a selected time point. 

Furthermore, most of the current cytotoxicity assays are end point assays and do not provide 

dynamic information on the cell response after exposure to the applied substance and are  

therefore not likely to provide an overall insight into the mechanism of toxicity (O'Brien et 

al., 2006; Xing et al., 2005). Although these methods are quite sensitive, sub-toxic effects are 

difficult to identify. In this study, drug concentrations were considered as sub-toxic, if neither 

an influence on cell growth, morphology or respiration as determined by dissolved oxygen 

concentration measurements, were identified. However, serious adverse drug reactions (ADR) 

and sub-toxic effects can contribute to the later failure of the drugs due to toxicity when the 

drug already went into clinical phase and tremendous amount of money was spent (Schuster 

et al., 2005). Studies in sub-toxic range are advisable, since biological systems are considered 

robust; they have the ability to use alternative metabolic pathways, bidirectional reactions, 

isoenzymes and alternative substrates (Christensen and Nielsen, 2000; Wiechert, 2001; 

Wittmann, 2002). Further, metabolic systems might change if their biochemical pathways are 

subtly disturbed (Heinloth et al., 2004) without visible phenotype changes. In addition, there 

is the possibility that metabolic changes can be directly related to the manifestation of 

toxicity, and therefore can identify toxicity and in case of hepatic cells hepatotoxicity. Several 

different approaches have been published for identification of (predictive) toxicity using 

methods as diverse as toxicogenetics (Heinloth et al., 2004), proteomics and genomics (Craig 

et al., 2006; Ruepp et al., 2002) or tracer based metabolomics (Harrigan et al., 2006). The 

studies of metabolic network activities using metabolic flux analysis in the sub-toxic range 

can contribute to the identification and understanding of such effects. Computational 

modeling in combination with experimental measurements of hepatic metabolism is 

increasingly used to understand and control the performance of hepatocytes under adverse 

culture conditions (Yang et al., 2009). MFA analysis has been used to determine metabolic 

profiles of perfused liver systems (Lee et al., 2000) and to screen cell lines (Balcarcel and 

Clark, 2003). In addition, MFA has been applied to determine flux distributions in 

hepatocytes exposed to plasma or to amino acid supplemented plasma (Chan et al., 2003a; 

Chan et al., 2003b) and to define amino acid supplementation strategies for culturing (Yang et 

al., 2009). Using GC/MS for identification of positional tracer incorporation into metabolites 
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produced by pathways as glycolysis, pentose phosphate pathway (PPP) or tricarboxylic acid 

(TCA) cycle and then secreted into the culture medium can help to gain a more detailed 

picture of metabolism of mammalian cells. With more complex labeling studies using 13C 

isotopes, circular, reversible and alternative pathways can be identified which might be 

involved in the drug metabolism. Furthermore, anabolic and catabolic pathways of 

metabolites can be researched and also flux parameters, as split ratios, can be calculated and 

applied. Using the isotopomers to further investigate specific rates, molar enrichment (ME) or 

so called summed fractional labeling (SFL) can be used (Wittmann, 2007). Changes in 

specific uptake or production rates might be an indicator for later toxicity.  

4.2 Motivation and Theoretical Background  

4.2.1 Basic mammalian metabolism 

Metabolism enables cells to acquire and utilize energy for growth, reproduction, response to 

foreign substances and maintenance of structure. Metabolism has two major functions; 

production of energy by breakdown of substrates (catabolism) and to provide precursor 

molecules (anabolism). This energy and precursor molecules are used to synthesize complex 

components of cells for e.g. biomass formation. Energy provided through the breakdown of 

substrates (carbohydrates, amino acids, fats) is partly stored in form of adenosine-5’-

triphosphate (ATP) in the cells. This energy can be released by exergonic conversion of ATP 

to adenosine diphosphate (ADP) and is coupled to many endergonic reactions (Browne et al., 

1999) to enable them to run. In addition, during this oxidative breakdown a release of 

electrons occurs, which are stored in the reduced forms of nicotinamide adenine dinucleotide 

(NADH) and flavin adenine dinucleotide (FADH2). As reducing power the reducing 

equivalents NADH and FADH2 are used to form ATP via the respiratory chain, while 

nicotinamide adenine dinucleotide phosphate (NADPH) is mostly used for anabolic reactions 

(Browne et al., 1999). The chemical reactions for the breakdown of substrates, the energy 

transfer and biosynthesis are linked and organized into metabolic pathways. Oxidative 

breakdown of glucose or amino acids to gain useful energy, in form of e.g. ATP, usually 

involves glycolysis, PPP, pyruvate metabolism and the TCA cycle. Thus these pathways are 

referred to as central or primary metabolism. NADH and FADH2 are the main reducing 

agents, primarily synthesized in the TCA cycle and are needed for oxidative phosphorylation 

in the mitochondria of mammalian cells to form further ATP. Besides glucose, glutamine is 

considered as a major energy source in mammalian cells (Reitzer et al., 1979; Stumvoll et al., 
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1999). However, all other amino acids also interact with the central metabolism for anabolic 

or catabolic purpose (see Figure 4.2.1). In addition to this hepatocytes are responsible for 

sugar homeostasis and elimination of ammonia. In this respect the urea cycle, 

gluconeogenesis and glycogenesis are important and briefly described in the following 

chapters. 

4.2.1.1 Glycolysis and gluconeogenesis 

The transport of glucose across the plasma membrane into non-cancerous liver cells (GLUT 2 

transporter; KM = 15-20 mM (Berg et al., 2003)) is not coupled to energy-requiring 

components (Gould and Holman, 1993), however the transporter is a key rate-limiting factor 

in the metabolism of glucose (Amann et al., 2009). The glycolysis is the first pathway glucose 

enters to produce energy in form of ATP and NADH, before finally being oxidized to water 

and CO2. Glycolysis is the series of enzymatic reactions and the anaerobic catabolism of the 

6-carbon molecule glucose to the 3-carbon molecule pyruvate.  

The overall net reaction of the glycolysis is: 

glucose+ 2 NAD ++ 2 ADP + 2 Pi → 2 pyruvate + 2 NADH + 2 H+ + 2 ATP + 2 H2O 

[Eq. 4.1] 

During glycolysis, which is a series of cytosolic reactions in mammalian cells, the cells gain 2 

mol ATP per mol glucose. The control of the glycolysis is quite comparable between all other 

cell types, however, hepatocytes do not synthesize the enzyme hexokinase, but glucokinase 

(high glucose specificity and high KM-value) to ensure high glucose supply for brain and 

muscles (Rehm and Hammar, 2008). The end product of the glycolysis is pyruvate. Under 

aerobic conditions pyruvate can enter the TCA cycle for complete oxidation and production of 

CO2, ATP, NADH and FADH2. Under anaerobic conditions it can be converted to the waste 

product lactate under regeneration of NAD+, which is required for continuing glycolysis.   

pyruvate + NADH + H+ 
  ு  
ሱۛ ۛሮ  lactate + NAD+                                 [Eq. 4.2] 

In the mitochondria, pyruvate can also be carboxylated to oxaloacetate. Oxaloacetate is the 

starting point of the gluconeogenesis; however, it can also react with acetyl-CoA to form 

citrate. This depends on the ATP concentration inside the cells. Hence, if there is an ATP 

overflow and citrate excess, fructose-1,6-bisphosphatase is activated and gluconeogenesis 

initiated (Rehm and Hammar, 2008). Lactate can also be converted into pyruvate using the 
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enzyme lactate dehydrogenase and glucose can be synthesized by gluconeogenesis. This 

metabolic pathway, between e.g. muscle and liver, is referred to as Cori Cycle (Rehm and 

Hammar, 2008). Another way to maintain blood sugar homeostasis is the storage of glucose 

in form of glycogen (glycogenesis) and release of it (glycogenolysis) when the body is in a 

catabolic state. For this, a liver specific enzyme, glucose-6-phosphatase, catalyses the 

dephosphorylation of glucose 6-phosphate back to glucose, thus increasing the glucose level 

in the blood stream.  

4.2.1.2 Pentose phosphate pathway (PPP) 

The pentose phosphate pathway also takes place in the cytosol of mammalian cells and is 

closely connected to the glycolysis. The PPP is an alternative route to the glycolysis with the 

major purpose to generate reducing equivalents in form of NADPH and to produce pentose 

and erythrose carbon units for biosynthetic demands of e.g. RNA and DNA. The PPP is 

divided into two distinct phases; the oxidative phase, in which NADPH and ribulose 5-

phosphate are generated, and the non-oxidative, responsible for inter-conversion of sugars and 

connection of PPP with glycolysis. The overall net reaction for the oxidative phase is shown 

in equation 4.3 and of the non-oxidative phase in equation 4.4. 

Glucose 6-phosphate + 2 NADP+ + H2O → ribulose 5-phosphate + 2 NADPH + 2 H+ + COଶ 
[Eq. 4.3] 

3  ribose 5-phosphate →  2 fructose 6-phosphate + glyceraldehye 3-phosphate     [Eq. 4.4] 

The activity of the PPP depends strongly on the cellular demand for energy (ATP), reducing 

equivalents in form of NADPH and on biosynthetic molecules (Berg et al., 2003). However, 

the activity of the enzyme glucose 6-phosphate dehydrogenase (G6PD), the regulatory 

enzyme of the PPP, has been found to be low in mammalian cells. This is probably due to the 

small growth rates, and thus the low demand for synthesis of nucleic acids. 
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Figure 4.2.1:  Mammalian cell metabolism. The network is comprised of intracellular metabolite 

balances, extracellular fluxes (22 uptake fluxes of amino acids, pyruvate and glucose, 
indicated by green arrows), 3 fluxes which indicate secretion (red arrows)) and 20 
anabolic fluxes (albumin synthesis, dashed arrows). Arrows indicate the direction of 
reaction assumed in the model. Abbreviations used: CIT citrate, ICT isocitrate, ALB 
albumin. The amino acids have the standard 3 letter abbreviation. The subscripts “mit” 
indicate mitochondrial metabolites and “cyt” cytosolic. The subscripts “inp” and “ext” 
indicate input and export fluxes, respectively.  
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4.2.1.3 Tricarboxylic acid (TCA) cycle and oxidative phosphorylation 

The citric acid or tricarboxylic acid (TCA) cycle is a series of enzyme reactions active under 

aerobic condition. During the cycle biosynthetic precursors are produced and most of the 

reducing equivalents (NADH and FADH2) needed by oxidative phosphorylation and thus for 

ATP formation, are generated by oxidation of carbons. The overall net reaction for one turn of 

the TCA cycle is given below (Berg et al., 2003). 

Acetyl-CoA + 3 NAD ++ FAD + GDP + Pi + 2 H2O →  

CoA + 3 NADH + 2 H+ + FADH2 + GTP + 2 CO2                            [Eq. 4.5] 

Pyruvate formed during glycolysis is transported into the mitochondria after decarboxylation 

to acetyl-CoA by the pyruvate dehydrogenase complex (PDC). Acetyl-CoA reacts with 

oxaloacetate to form citrate.  

pyruvate  CoA  NAD → Acetyl‐CoA  NADH  CO2                  [Eq. 4.6] 

Acetyl െ CoA   oxaloacetate   HଶO ՜ CoA െ SH    citrate                [Eq. 4.7] 

Fatty acids, glycogen and amino acids are also converted to Acetyl-CoA and subsequent 

oxidation of these in the TCA cycle supplies the cells with energy (Berg et al., 2003). In 

addition to the macromolecules, glutamine, an important substrate for mammals, feeds into 

the TCA cycle. For mammalian cells it has been described by Reitzer et al. (1979) that 

glutamine is the major energy source, not glucose. The main task of the citric acid cycle is the 

production of NADH and FADH2. To assure that enough oxaloacetate is available for the 

condensation with acetyl-CoA, anaplerotic reactions replenish the pools of metabolic 

intermediates in the TCA cycle (Owen et al., 2002). For example, oxaloacetate can be 

generated from phosphoenolpyruvate (PEP) by use of phosphoenealpyruvate carboxykinase 

(PEPCK). Further, oxaloacetate can be directly formed from aspartate and α-ketoglutarate 

from glutamate. Malate can be formed from pyruvate in presence of PEP carboxylase and 

under oxidation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) in the 

cytosol and thus can replenish the TCA cycle. The opposite reaction by malic enzyme 

catalysis leads to complete oxidation of e.g. glutamine and provides thus efficient use of 

carbons for the production of ATP.  

The TCA cycle, which provides 3 moles of NADH and 1 mole of FADH2, generated during 

each round of the cycle, is followed by oxidative phosphorylation in the mitochondria. This 
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process extracts the energy from NADH and FADH2, oxidizing them to NAD+ and FAD and 

transfers the electrons to oxygen. Thereby, oxygen is reduced to H2O and the released energy 

is utilized to transfer protons through the inner mitochondrial membrane into the 

mitochondrial inter-membrane space, thereby generating energy in form of a pH gradient and 

an electrical potential across the membrane. Protons can flow back over the inner membrane 

into the matrix and by conversion of ADP + Pi, by the enzyme ATP synthase, ATP is 

generated. During this reaction, each mole of FADH2 results in about 1.5 moles of ATP and 

each mole of NADH in about 2.5 moles of ATP (Berg et al., 2003; Rehm and Hammar, 

2008).  

In eukaryotic cells the complete breakdown of a molecule of glucose by glycolysis, TCA 

cycle and oxidative phosphorylation provides approximately 30 ATP. However, the highest 

contribution to this total energy gain is accomplished by oxidative phosphorylation, 

generating 26 out of the 30 ATP molecules (Berg et al., 2003). 

4.2.1.4 Amino acid and nitrogen metabolism 

Mammalian cells, as opposed to plants and microorganisms, are dependent on supply of 

essential amino acids for protein synthesis and nine of the twenty amino acids are considered 

essential. However, they do possess the capability of synthesizing non-essential amino acids, 

amino acid remodeling and conversion of non-amino acid molecules into amino acids. In this 

process, derivates are generated that contain nitrogen. While the carbon backbones of amino 

acids are catabolized, ammonia, which is highly toxic to the body is formed and has to be 

eliminated. This is accomplished by transamination, amidation or urea formation. In the 

human body, the liver with its urea cycle is the major site capable of this process. The 

remaining carbon skeletons are either conserved (e.g. glycogen via gluconeogenesis) or are 

used to generate fatty acids. Thus amino acids can be categorized for their glucose precursor 

ability into three categories; glucogenic (all amino acids, except lysine and leucine, are partly 

glucogenic), ketogenic (lysine and leucine) or both (isoleucine, phenylalanine, threonine, 

tryptophan and tyrosine). The amino acid catabolism, synthesis and their interactions with 

mammalian central metabolism are well researched (Berg et al., 2003; Browne et al., 1999) 

and are briefly described.  

The synthesis of non-essential amino acids follows relative simple pathways by conversion of 

intermediates from the central metabolism. Serine can be synthesized from 3-

phosphoglycerate and can then be the precursor of glycine and cysteine. Serine itself is 
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utilized for the biosynthesis of proteins and phospholipids, glycine for proteins and nucleotide 

biosynthesis. During glycine synthesis, a methylene group from the side-chain of serine is 

transferred to tetrahydrofolate (THF), which is an important coenzyme for biosynthesis 

intermediates and a transport molecule for one carbon atoms (Berg et al., 2003). Synthesis of 

glutamine and glutamate is done by the addition of ammonia; asparagine and aspartate can be 

synthesized by direct transamination of its corresponding α-ketoacid.  Formation of alanine is 

mostly done by transamination to pyruvate using glutamate. Since this reaction is reversible, 

alanine can be also catabolized to pyruvate and further converted in metabolic pathways such 

as glycolysis, gluconeogenesis, and the TCA cycle. It acts as a transporter of amino groups to 

the liver via a pathway called the glucose-alanine-cycle (Browne et al., 1999). 

In mammalian cells most of the amino acid catabolism takes place in the liver. Here, all 

catabolic pathways converge to form only six major products (α-ketoglutarate, acetyl-CoA, 

succinyl-CoA, fumarate, oxaloacetate and partly pyruvate), all of which enter the TCA cycle 

(Browne et al., 1999). One important metabolic fuel in mammalian cells is glutamine. It is the 

major nitrogen provider and primary fuel for the TCA cycle and thus for energy production. 

The major conversion of glutamine to α-ketoglutarate takes place via the phosphate-

dependant mitochondrial enzyme glutaminase (Kovacevic and McGivan, 1983).  

Glutamine   H20
            
ሱۛ ሮۛ GlutamateNH4                        [Eq. 4.8] 

The formed glutamate is converted to α-ketoglutarate, making glutamine a glucogenic amino 

acid. α-Ketoglutarate can be formed by conversion of glutamate using several enzymes; 

Glutamate dehydrogenase:     

Glutamate + NAD(P)+ → α-Ketoglutarate + NAD(P)H + NH3               [Eq. 4.9] 
 

The ammonia produced is routed to the urea cycle. Alanine and aspartate can be formed by 

alanine or aspartate aminotransaminase reactions from glutamate with pyruvate or 

oxaloacetate, respectively. Arginine, proline and histidine can be also converted into 

glutamate, which can then produce α-ketoglutarate. Isoleucine, methionine, threonine and 

valine can be catabolized to succinyl-CoA and phenylalanine and tyrosine into fumarate. 

Asparagine and aspartate can also directly feed into the TCA cycle by conversion to 

oxaloacetate. Alanine, tryptophan, cysteine, serine, glycine and threonine can be converted to 

pyruvate, which in turn can be either converted to acetyl-CoA or oxaloacetate. Leucine, 

lysine, phenylalanine, tryptophan and tyrosine are converted to acetoacetyl-CoA and then can 
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either be transformed into acetyl-CoA or directly converted into ketone bodies. However, the 

branched-chained amino acids (leucine, valine and isoleucine) cannot be catabolized in the 

liver (Browne et al., 1999).  

As previously described, during catabolism of amino acids, toxic ammonia is formed. 

Reductive amination of α-ketoglutarate to glutamate or glutamine synthesis from glutamate 

are important pathways for the disposal of ammonia. However, pathways of ammonia 

removal have side-effects on the cells. Increased levels of glutamine, an osmolyte, triggers the 

uptake of water into the cells and causes swelling. In addition, the glutamine synthesis can 

cause glutamate and γ-aminobutyrate (GABA) depletion, which are important 

neurotransmitters required in the brain (Browne et al., 1999). Thus the ammonia formed is 

removed in animals by means of the urea cycle in the hepatocytes. In the urea cycle, 1 mol 

ammonia in the mitochondrial matrix reacts with CO2 (HCO3
-) and forms carbamoyl 

phosphate using 2 mol ATP and enters the urea cycle, where it donates its carbamoyl group to 

ornithine to form citrulline that leaves the mitochondria. Citrulline reacts with the amino 

group of aspartate to form argininosuccinate, which requires 2 equivalents of ATP, followed 

by cleavage to form fumarate (interconnection to the TCA cycle) and arginine. Arginine in 

turn is then cleaved by arginase into urea and ornithine. While ornithine is transported back 

into the mitochondria to initiate another round of the urea cycle, urea is released into the 

cytosolic pool (Browne et al., 1999; Rehm and Hammar, 2008). The hepatocytes secrete the 

urea into the blood stream, from where it is excreted by the kidneys into the urine.  

4.2.2 Metabolic flux analysis 

Since the beginning of the nineties, metabolic flux analysis (MFA) emerged as a standard tool 

for bioprocess optimization in connection with metabolite production and analysis of 

metabolism (Genolet et al., 2005; Martens, 2007; Nielsen, 1998). The aim of the MFA is to 

accurately quantify and study intracellular metabolic fluxes (reaction rates) within the central 

metabolism in the cell (Deshpande, 2007; Wahl, 2002). The central metabolism has been 

briefly explained in the previous section. By using detailed information of the pathways, a 

stoichiometric model for all the major reactions can be set up and mass balances can be 

applied around the intracellular metabolites for the calculation of the fluxes (Nielsen, 1998). 
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4.2.2.1 Metabolite balancing 

For metabolite balancing certain constraints have to be considered to generate flux 

distribution maps; the biochemistry of the desired model, a pseudo-steady-state (PSS) 

approximation for the intracellular metabolites and the measured rates of the extracellular 

metabolites (Vallino and Stephanopoulos, 1993).  

Hence, to set-up a stoichiometric model of the central metabolism, mass balances for all 

participating metabolites have to be compiled. The accumulation rate of one metabolite is 

equal to the sum of all reactions leading to the metabolite minus the sum of all reactions 

consuming that metabolite (Vallino and Stephanopoulos, 1993): 

ሻݐ௧ሺݎܽ ൌ  ∑ ሻݐ,ሺݎ,ݏ െ 
ୀଵ ∑ ሻ ݐ,௨௧ሺݎ,௨௧ݏ

ୀଵ                [Eq. 4.10] 

Where armet(t) is the accumulation rate of metabolite met, ri,in(t) is the flux towards the 

metabolite through reaction i, ro,out(t) the flux from the metabolite through reaction o, and s 

being a stoichiometric coefficient. For balancing each metabolite, linear equations for each 

biochemical reaction are compiled and thus a set of linear equations (model) can be obtained. 

After set-up of the stoichiometric model of interest, substrate uptake rates, metabolite 

secretion rates and biomass synthesis rates are typically used as input for the calculations 

(Vallino and Stephanopoulos, 1993). The fluxes through each of the reactions in the network 

are then calculated by applying matrix algebra. 

ሻݐሺݎܽ ൌ  ܣ ·  ሻ                                             [Eq. 4.11]ݐሺݔ
Where A is a m x n stoichiometric matrix, with m columns and n rows, for which m is the 

number of reactions and n the number of considered metabolites in the network, x(t) an n-

dimensional flux vector and ar(t) is the m-dimensional metabolite accumulation rate vector 

(Heinzle, 2006; Vallino and Stephanopoulos, 1993). By applying the pseudo-steady-state 

approximation (assumption that the metabolite concentrations in a cell are maintained by 

metabolic control directives of the cell in an approximate constant level) equations 4.10 and 

4.11 can be simplified to 

0 ൌ  ∑ ሻݐ,ሺݎ െ 
ୀଵ ∑ ሻ ݐ,௨௧ሺݎ

ୀଵ                           [Eq. 4.12] 

and                                              0 ൌ  ܣ ·   ሻ                                            [Eq. 4.13]ݐሺݔ

Based on this, measurable and non-measurable reactions can be separated, resulting in 

equation 4.14. 
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   0 ൌ  ܣ · ሻݐሺݔ   ܣ ·   ሻ                          [Eq. 4.14]ݐሺݔ

Where m denotes measurable and nm non-measurable reaction rates. If Anm is existent in a 

quadratic and invertible matrix form, the non-measurable rates can be estimated directly by 

reformulating equation 4.14 in equation 4.15. 

ሻݐሺݔ    ൌ ିଵܣ   ·     ሾെܣ ·  ሻሿݐሺݔ                          [Eq. 4.15]  

However, if the system is overestimated, i.e. the number of in the network considered 

metabolites is higher than the number of the computable reactions, the least square method to 

resolve the system of equations and the intracellular fluxes is applied (Heinzle, 2006; Vallino 

and Stephanopoulos, 1993), described in equation 4.16 

ሻݐሺݔ   ൌ ሺܣ் · ሻିଵܣ   · ்ܣ     · ሺെܣ · ሻሻݐሺݔ ൌ #ܣ · ሺെܣ · ሻሻݐሺݔ    
[Eq. 4.16]  

Where T is assigned to be the transpose of the matrix and # is its pseudo inverse. Thus this 

way of calculation can be applied for e.g. mammalian metabolic flux analysis, due to the 

many measurable extracellular metabolites in the culture medium (Heinzle, 2006). However, 

if the system is still underdetermined, additional co-metabolites such as ATP and NADH can 

in principle be balanced to generate additional constraints (Bonarius et al., 1998). It however 

has been shown that the ATP balance in mammalian cells can generally not be closed 

(Martens, 2007) and that redox balanced are subject to uncertainties (Christensen and Nielsen, 

2000), particularly concerning the specificity of enzymatic reactions for NADH and NADPH. 

However, electron balances are usable as an additional constraint. Nevertheless, cyclic 

metabolic pathways, reversibility and parallel reactions with similar stoichiometry can in 

addition cause linear dependency of the reaction and thus can be cause for generation of 

singular (underdetermined) metabolic networks (Bonarius et al., 1998).  

4.2.2.2 13C-Metabolic flux analysis  

To overcome the problems of the metabolite balancing approach in underdetermined systems 

(energy, redox and pathway related) additional information can be gained by applying 

isotopic-tracer techniques (Bonarius et al., 1998; Christensen and Nielsen, 2000). By 

combinational use of metabolite balancing and tracer studies, metabolic networks can be 

identified in detail, with respect to metabolite channeling, pathway identification, 

compartmentation, flux partitioning ratios and bidirectional fluxes (Christensen and Nielsen, 
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Thus by using the IMM’s and IDV’s, which also include the transfer of carbons for each of 

the reactions, created for the metabolic network in combination with the compiled mass 

balances for all participating metabolites, metabolic flux analysis can be carried out. Then 

flux values are adjusted by numerical optimization protocols minimizing the differences 

between computed and experimental mass isotopomer distributions. For the computation of 

the fluxes, random initial values are fed into the model for the free fluxes and computationally 

the dependant fluxes and labeling pattern of the metabolites of the supplied fluxes are hereby 

obtained. The best fit of the simulated and experimental data sets are obtained by further 

demanding computational tasks to supply the absolute carbon flux through the network 

(Young et al., 2008). However, as pointed out, a large amount of data sets are generated, 

which demand computer time and are complicated to solve for big metabolic networks. Thus, 

a decomposition method, which identifies the minimum amount of information demanded for 

the simulation of the labeling pattern of metabolites within the reaction network  by using the 

atomic transitions knowledge which occurs in the network was introduced by Antoniewicz et 

al. (2007b). The so called elementary metabolite unit (EMU) framework generates the EMUs 

by using the decomposition algorithm, which then are used for the generation of new systems 

equations that give the relationship between fluxes and stable isotope measurements 

(Antoniewicz et al., 2007b). By applying the EMU framework the number of equations 

needed for solving a typical 13C-labeling system is reduced by approx. one order-of-

magnitude compared to isotopomer methods and the computation time is significantly 

reduced (Antoniewicz et al., 2007b). 

4.2.2.3 13C-Metabolic flux analysis in mammalian cells 

Metabolic flux analysis (MFA) based on 13C carbon labeling experiments has been 

successfully applied for quantification of fluxes in microorganisms in vivo and emerged as a 

quantitative tool for characterization and prediction of cell types exposed to various 

substrates-production strategies, effect of genetic manipulations and in case of mammalian 

cells for medium optimization (Deshpande et al., 2009; Noh and Wiechert, 2006; Wiechert 

and Noh, 2005; Yang et al., 2009). To calculate these fluxes in central metabolic and 

biosynthesis pathways, certain requirements have to be met; 1) for cultured cells, the fluxes 

and the intracellular pool sizes have to be in a metabolic stationary state for the whole time 

period of the experiment and 2) to fulfill the demands for MFA based on 13C carbon labeling, 

isotopic steady-state of all intra-cellular intermediates and pools is required as well (Noh and 

Wiechert, 2006; Wiechert and Noh, 2005). By sampling extracellular metabolites, which are 
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closely related to the intermediates in the cells and by calculating the extracellular fluxes, 

MFA can then be applied (Goel et al., 1993; Stephanopoulos et al., 1998; Wiechert and de 

Graaf, 1997). With more complex labeling studies using 13C isotopes, circular, reversible and 

alternative pathways can be identified, based on known biochemical network and pathways. 

Using mass spectrometry (MS) or nuclear magnetic resonance (NMR) spectrometry 

measurements for identification of positional tracer information of selected metabolites and of 

amino acids from proteins, one can obtain a more detailed picture of the metabolism of 

mammalian cells. For mammalian cell cultures one cannot assume steady-state, but a pseudo-

steady state, due to very high turnover of the pools of most metabolites when cells grow with 

a constant specific growth rate (µ) (Deshpande et al., 2009; Stephanopoulos et al., 1998). 

Moreover for adherent mammalian cell lines, both the basic requirements, (1) flux and pool 

size steady state and (2) isotopic steady state, for 13C carbon based stationary MFA are 

difficult to achieve, since they mostly never reach exponential growth due to their surface 

growth, varying limitations in substrates and space. Primary hepatocytes, in addition, do not 

proliferate at all. Another drawback for using MFA with this type of cells is that for reaching 

a isotopic steady state where the precursor-product relationship is in equilibrium demands 

long culturing times, due to possible storage pools (glycogen in hepatocytes) and protein 

turnover (Wiechert and Noh, 2005). For adherent mammalian fibroblasts it has been shown 

that certain intracellular metabolites remain unlabelled after transferring to a labeled media 

even after two doubling times, indicating a very long turnover rate (Bennett et al., 2008). 

However, Deshpande et al. (2009) showed that 13C-labeling patterns of extracellular 

metabolites reached or asymptotically approached isotopic steady state for the suspension cell 

line CHO. However, for glutamate, the culturing time was longer than 60 hours, which also 

equates two doublings or more. Due to this equilibrium problem several groups have started 

to use dynamic or isotopic instationary labeling strategies (Maier 2009; Provost and Bastin, 

2004; Wiechert and Noh, 2005). However, these also enhance the computational demands, 

since the linear equations required for steady state calculations  are now replaced by high 

dimensional sets of nonlinear differential equations (Noh and Wiechert, 2006; Wiechert and 

Noh, 2005). Also for hepatocytes and hepatocyte-like cells, further additional challenges exist 

in extensive bidirectional reaction steps, recycling, gluconeogenesis (GNG) and dilution of 

the tricarboxylic acid (TCA) cycle by glyconeogenic substrates as lactate, glycerol and 

glycogenic amino acids which result in an unknown degree of isotopic exchange (Haymond 

and Sunehag, 2000). Further, these glycogenic amino acids and several other carbon sources 

besides glucose, are usually supplemented in the culture medium to assure survival/growth 
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(Deshpande et al., 2009). Moreover, growth required supplementation is often performed by 

using fetal calf serum (FCS), which is a complex mixture of  proteins and peptides, containing 

various other factors, such as hormones and attachment factors, needed for proliferation of 

cells in culture (Bai and Cederbaum, 2006; Van der Valk, 2004). The disadvantage from the 

pathway modeling view is that serum is ill-defined and therefore an ambiguous factor. In 

addition, it is known that individual batches display quantitative and qualitative variations in 

their composition (Van der Valk, 2004). Therefore there is a trend in cell culture related 

carbon based MFA experiments to change to either chemical completely defined serum 

substitutes or to serum free conditions, since characterization of metabolic changes is more 

straightforward (Deshpande et al., 2009). However, the situation is further complicated by the 

fact that non-essential amino acids, as alanine, aspartate, serine, proline and glutamate are not 

only net consumed/produced, as usually assumed using MFA, but reversibly exchanged 

between the cells and the culture medium. Therefore net rates calculated by ordinary flux 

analysis would introduce an overall mistake to the isotopomer balance. 

Despite all of these complexities, specific information regarding the pathway fluxes can still 

be obtained. Choosing specific labels which give carbon fate information about certain 

pathways and by calculating the molar enrichment (ME) of those in the synthesized 

metabolites, information can be gained. However, as pointed out by Rantanen et al. (2008) 

these fluxes or flux ratio equations depend heavily on the topology of the metabolic network, 

precise measurements and the substrate labeling distribution. 
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4.2.3 Objectives 

To identify if sub-toxic effects can contribute to the later failure of drugs due to toxicity, 

diclofenac, a commonly prescribed non-steroidal anti-inflammatory drug (NSAID) used 

for treatment of rheumatic and arthritic diseases was used. In previous studies diclofenac 

has been associated with liver injury and hepatitis. Although there are some indications 

how and where diclofenac acts, the entire mechanism of action and pathways involved 

are not known. Labeled substrates can be applied to give a more detailed picture of the 

diclofenac metabolism and its effect on glucose and amino acid metabolism. 

For this study, using a single experimental setup for each cell type, multiple analyses are 

carried out to gain an overall view of the system.  

First, since the adherent cells cannot be cultured continuously, several time points are 

chosen to follow the incorporation of carbons dynamically. Labeled substrates 

([U-13C6]glucose, [1,2-13C2]glucose or [U-13C5]glutamine) are applied onto primary 

human hepatocytes and hESC derived hepatocyte-like cells. In addition, cells are exposed 

to three sub-toxic concentrations of diclofenac. The influence of diclofenac is tested by 

comparing medium substrates and synthesized metabolites over a time period of 

48 hours.  

Second, metabolic profiles of primary human hepatocytes and hESC derived hepatocyte-

like cells are analyzed with respect to diclofenac exposure. In addition, the cell types are 

tested to be in a metabolic steady state. 

Third, a stoichiometric model is set up to determine intracellular fluxes and their possible 

changes due to diclofenac administration. The goal for this part of the thesis is that the 

results of this study can improve insight into the effect of changes in glucose and amino 

acid metabolism on diclofenac metabolism. In addition, by evaluating these metabolic 

responses to sub-toxic concentrations, prediction of toxicity might be obtained before 

these drugs enter the clinical phase. 

Fourth, analysis of fractional enrichment data is performed to elucidate activity of 

glycolysis, gluconeogenesis, pentose phosphate pathway and TCA cycle.  
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4.3 Materials and Methods 

4.3.1 Cell lines and culture conditions 

The cell line and culture conditions are similar to those described in the previous parts 

under materials and methods. The only differences were for primary human hepatocytes 

and hESC derived hepatocyte-like cells the seeding in 48-well plates instead of 24-well 

plates. Primary human hepatocytes and hESC derived hepatocyte-like cells (cell line 

SA002) were provided by Cellartis AB (Gothenburg, Sweden) and seeded on collagen I 

in 48-well plates with a cell density of 1 x 105 cells/cm2 and 2.5 x 105 cells/cm2, 

respectively. 

4.3.1.1 Primary human hepatocytes 

For the labeling study primary human hepatocytes were provided by Cellartis AB 

(Gothenburg, Sweden) and seeded on collagen I (Sigma Aldrich) in 48-well plates with a 

cell density of 1 x 105 cells/cm2. The seeded plates were shipped overnight in William’s 

Medium E (Sigma Aldrich) medium supplemented with 10% Fetal Calf Serum (FCS) 

(v/v), 100 U/ml penicillin and 100 µg/ml streptomycin. Shortly after arrival, medium was 

renewed and cells were maintained at 37°C in an incubator (Memmert GmbH, 

Schwabach, Germany) with 95 % relative humidity in a 5 % CO2 atmosphere for two 

days to adjust. For the labeling experiment medium was switched to serum-free 

conditions, however supplemented with specific concentrations of hormones, induction 

and growth factors as described for hESC derived hepatocyte-like cells in chapter 3.3.1.3. 

4.3.1.2 Human embryonic stem cells derived hepatocytes 

Human embryonic stem cells derived hepatocytes were differentiated in Cellartis AB 

(Gothenburg, Sweden) for 20 days, followed by resuspension and seeding on collagen I. 

For the 13C-labeling studies, SA002 cells were chosen as model system. The seeded 48-

well plates were shipped overnight in William’s Medium E (Sigma Aldrich) medium 

supplemented with additives (Single Quots). Shortly after arrival, medium which was 

pre-conditioned on mouse feeder cells, supplemented with hormones, was added to the 

cells. The cells were maintained at 37°C in an incubator (Memmert GmbH, Schwabach, 

Germany) with 95 % relative humidity in a 5 % CO2 atmosphere for one day to adjust. 

Matrigel overlay was performed on day 23. For the experiments on day 25-26 medium 

was switched to serum-free conditions as described previously in Chapter 3.3.1.3. 
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4.3.2 Choosing sub-toxic concentrations based on OxoDish results 

Based on the LC50 results, obtained for cryopreserved primary human hepatocytes and an 

earlier batch of hESC derived hepatocyte-like cells (both experiments performed at 

Cellartis, March 2009), sub-toxic concentrations for primary human hepatocytes and 

SA002 cells were chosen. The highest sub-toxic concentration (ST) was chosen to be 

slightly toxic (approx. LC25), meaning after 48 hour of exposure a slight respiration 

decrease could be observed. All sub-toxic diclofenac concentrations are listed in Table 

4.3.1.  

Table 4.3.1:  Sub-toxic diclofenac concentrations chosen for labeling study for 
primary human hepatocytes (PHH) and SA002 cells based on previous 
experimental results. LC50 values are given in µM and calculated 
using equation [2.5] after 48 hours of exposure to diclofenac. 

Concentration  Cryopreserved PHH SA002  (EXP 19) 

LC50 183 (170-221) 639 (580-720) 
Control (C) 0 0 
Sub-toxic 1 (ST1) 10 100 
Sub-toxic 2 (ST2) 25 200 
Sub-toxic 3 (ST3) 50 400 

 

4.3.2.1 Media and sampling 

As depicted in Figure 4.4.3, four sub-toxic concentrations of diclofenac and three labeled 

substrates were applied in combination. In addition, five time points were chosen for 

sampling. 

Williams Medium E (PAN Biotech GmbH, Aidenbach, Germany) without glucose, 

glutamine and phenol red but supplemented as described previously was used for the 

labeling study exposing the cells further to subtoxic diclofenac concentrations. [U-12C6]-, 

[U-13C6]- or [1,2 -13C2]-glucose (Cambridge Isotope Laboratories, Andover, USA) were 

added in three parallel preparations with the same molar composition as the normal 

culture medium. Total glucose concentration was 10 mM. For the fourth preparation 

4 mM glutamine [U-12C5]glutamine (PAA, Düsseldorf, Germany) or [U13C5]glutamine 

(Cambridge Isotope Laboratories, Andover, USA) was supplemented to the culture 
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preparations) and two replicates for the each labeling were assessed. Thus, for each time 

point 24 samples were collected.  

The initial samples were taken directly after the addition of the media, containing the 

labeled substrates and the diclofenac concentrations. Hence, the initial time represented 

by time “0” (T0) is after the addition of the media. For primary human hepatocytes and 

hESC derived hepatocyte-like cells extracellular samples for determination of mass 

isotopomers were collected in triplicate and samples were immediately frozen after 

collection for later analytical processing. Sample collection time points are depicted in 

Table 4.3.2: 

Table 4.3.2:  Sample collection time points for primary human hepatocytes (PHH) and 
human embryonic stem cell derived hepatocyte-like cells (SA002). 

Sample Name 
Time Point [h] 

PHH SA002

T0 0 0
T1 12 16
T2 24 24
T3 35 36
T4 48 48

 

4.3.3 Tracers used for study 

Three isotopic substrates were chosen for the labeling approach. The Williams medium E 

media used for this experiment was specially designed for this experiment and was 

neither supplemented with glucose, glutamine or phenol red (Pan Biotech, Aidenbach, 

Germany). 

[U-13C6]glucose can be used to identify all metabolites which are generated from glucose 

as carbon source. In addition, fully labeled metabolites, as alanine, serine, glycine and 

lactate can be identified derived directly via glycolysis and pentose phosphate pathway 

(PPP). Further, the minimum concentrations present in the media can be calculated. 

[1,2-13C2]glucose allows determination of the contribution of the non-oxidative and the 

oxidative pathways of the pentose phosphate cycle to obtain macromolecules (Lee et al., 

1998). 
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Besides glucose, glutamine is a major carbon source in mammalian cells and provides 

more than half of the cell energy even if glucose is present in high concentration 

(Neermann and Wagner, 1996; Reitzer et al., 1979). Therefore [U-13C5]glutamine which 

feeds into the TCA cycle can give an idea about the synthesis of metabolites as glutamate 

and aspartate, but also of gluconeogenic activities. 

4.3.4 Chemicals 

All chemicals used are similar to those described in the previous parts under materials 

and methods. The tracer substrates used were purchased from Cambridge Isotopes, Inc. 

(Andova, MA, USA). 

4.3.5 Quantification of extracellular metabolites 

4.3.5.1 Amino acids analysis 

Amino acids in the culture media were analyzed by reversed phase high performance 

liquid chromatography (RP-HPLC) (Agilent 1100, Agilent Technologies, Waldbronn, 

Germany), utilizing a C18-Gemini column (Phenomenex, Aschaffenburg, Germany) with 

automated online derivatization (o-phtaldialdehyde (OPA) and 3-mercaptopropionic acid) 

at a flow rate of 1 ml/min, column temperature at 40 °C and fluorescence detection (340 

nm excitation, 450 nm emission). OPA only reacts with primary amines in the presence 

of thiol compounds and forms highly fluorescent isoindole products. Hence, the 

quantification of L-proline demands an additional derivatization step, since it exists as 

secondary amine. Therefore, L-proline was derivatized with N-(9-fluorenyl) 

methoxycarbonyl (FMOC) and quantified using the fluorescence detector by switching 

after 43.5 min of each run to 266 nm excitation and 305 nm emission. All samples were 

diluted 1:2 with 225 µM α-aminobutyric acid (ABU), which served as internal standard 

for the quantification. Two eluents were used and the eluent time profile is depicted in 

Table 6.6.3. Eluent A (40 mM NaH2PO4 (pH=7.8, NaOH)) for the polar phase and eluent 

B (Acetonitril-Methanol-Water (45:45:10)) as the non-polar phase. The resulting peaks 

were integrated and the quantification was computed from the known internal standard 

concentration and the dilution factor. 
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Table 4.3.3:  Eluent time profile for amino acid separation via reversed phase high 
performance liquid chromatography (RP-HPLC). Eluent A = 40 mM 
NaH2PO4 (pH=7.8, NaOH) and eluent B = (Acetonitril-Methanol-Water 
(45:45:10).  

Time 
[min] 

Eluent A 
[%]

Eluent B 
[%]

0 100 0
41.0 59 41
46.0 19 81
46.5 0 100
49.0 0 100
49.5 100 0
52.0 100 0

 

4.3.5.2 Glucose, pyruvate and lactate quantification 

Quantification of glucose, pyruvate and lactic acid was performed as described 

previously in Chapter 3.3.8. 

4.3.6 Gas chromatography-mass spectrometry analysis 

For quantification of 13C-labeling patterns, such as fractional 13C enrichment and mass 

isotopomer distribution, gas chromatography-mass spectroscopy (GC-MS) analysis was 

carried out on a Hewlett-Packard 6890 gas chromatograph (Hewlett Packard, Paolo Alto, 

CA, USA) connected to a quadrupole mass selective detector (MS 5937, Agilent 

Technologies, Waldbronn, Germany) with electron impact ionization at 70 eV, and an 

HP-5MS column (95 % dimethyl–5 % phenyl-methyl-siloxane-diphenylpolysiloxane; 

30 m × 0.251-mm × 0.25 µM, Agilent) was used with a column head pressure of 70 kPa 

and helium (0.8 mL/min) as the carrier gas. 

4.3.6.1 Amino acids and lactate 

Approximately 50 µL of cultivation supernatant from samples and controls (extracellular 

amino acids) was lyophilized. To the lyophilizate 50 µL of dimethylformamide (DMF) 

(0.1% pyridine) was added and amino acids were converted to their t-BDMS derivative 

by adding 50 µL of N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide (MBDSTFA, 

Macherey and Nagel, Düren, Germany), and one hour of incubation at 80 °C.  
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Figure 4.3.2:  Schematic depiction of glutamic acid conversion to its silyl derivative (L-

Glutamic acid, N-(tert-butyldimethylsilyl)-, bis(tert-butyldimethylsilyl) ester). 
For other metabolites, rest groups besides -OH or -NH2 can also be –COOH, 
=NH or –SH for silation.  

The derivatized samples were centrifuged in 0.5 ml Eppendorf tubes to remove debris 

and 40 µL of the supernatant was transferred to HPLC vials with inserts. The analyte 

volume for GC-MS analysis was 1 µL. The temperature program was as followed: The 

column temperature was initially kept at 100°C for 1 min, subsequently increased by 

3°C/min up to 175°C, then switched to a second ramp with 10°C/min up to 325°C and 

maintained at that temperature for 1 min. Other temperature settings were 290°C (inlet), 

280°C (interface), and 280°C (quadrupole). The total run time was 42 min. For 

identification of metabolites, based on their mass spectrum, mass spectra were analyzed 

in the range of 30-650 atom mass to charge (m/z) ratio at a rate of 90 scans/min for a run 

time of 42 min. Operation of a GC/MS in selected ion monitoring (SIM) mode allows for 

detection of specific analytes with increased sensitivity relative to full scan mode. In SIM 

mode the MS gathers data for masses of interest. Mass isotopomer distribution in SIM 

mode was always measured in duplicate. All measured metabolites exhibited high signal 

intensity for a fragment ion obtained via mass loss of m-57, due to a t-butyl group release 

from the derivatization residue. Ions corresponding to the whole carbon backbones + 1 

were monitored in SIM mode. Relevant ion clusters for SIM analysis in electron impact 

ionization (EI) mode: lactate (m/z 261), alanine (m/z 260), glycine (m/z 246), urea 

(m/z 231), proline (m/z 286), methionine (m/z 320), serine (m/z 390), aspartate (m/z 418) 

and glutamate (m/z 432).  
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For the integration of the GC/MS peaks and for the calculation of the mass isotopomer 

distribution a program for Matlab 2007B (The MathWorks, Natick, MA, USA) was used, 

which was written by E. Heinzle, T. H. Yang und N. Lakshmanaperumal and applied for 

the upper listed fragments. 

4.3.6.2 Glucose 

The aldonitrile penta–acetate derivative of glucose was assayed by GC-MS according to 

the method described by Szafranek et al. (1974). [U-13C]glucose (99 %) was purchased 

from Cambridge Isotopes (Andova, MA, USA) and naturally labeled glucose (Sigma-

Aldrich, Taufkirchen, Germany) were utilized as standards. Samples and standards were 

lyophilized as described previously. Hydroxylamine hydrochloride in pyridine solution 

(20 mg/mL pyridine) was freshly prepared and 50 µL was added to the samples. The 

mixture was incubated in a 100°C oven for 30 min. Subsequently, 50 µL of acetic 

anhydride was added and the solution was heated at 100°C for 1 hour to create aldonitrile 

penta-acetate. After cooling, samples were diluted with 50 µL ethyl acetate shortly before 

GC-MS analysis. The analyte volume for GC-MS analysis was 1 µL. The applied 

temperature program was as followes: The column temperature was initially kept at 

160°C for one minute, subsequently increased by 11.5°C/min up to a final temperature of 

320°C and maintained for 1 min. Other temperature settings were 280°C (inlet), 280°C 

(interface), and 280°C (quadrupole). The total run time was 16 min.  Relevant ion clusters 

for SIM analysis in electron impact ionization mode of the aldonitrile derivative were 

chosen based on preserving the whole carbon structure of glucose: m/z 328 cluster for the 

C1-C6 fragment. 

 

Figure 4.3.3:  Schematic depiction of glucose conversion to glucose oxime after incubation 
with hydroxylamine hydrochloride and further conversion to its aldonitrile 
penta–acetate derivative by incubation with acetic anhydride. 
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4.3.1 Metabolic flux analysis 

The estimation of intracellular fluxes was carried out using 13C-labeled substrates for the 

calculation of all determinable extracellular substrate uptake and product building rates. 

The mathematical model for the hepatocytes main metabolism included here the 

glycolysis, the citric acid cycle, anaplerotic carboxylation and all amino acid degradation 

pathways. In addition, since albumin is the major protein produced in hepatocytes and the 

cells did not proliferate, for the anabolic demand, amino acids consumption for albumin 

synthesis, was used according to Equation 4.17 (Chan et al., 2003a).  

24 ARG + 32 ASP + 61 ALA + 24 SER + 35 CYS + 57 GLU + 17 GLY + 21 TYR  
+ 33 THR + 53 LYS + 26 PHE + 25 GLN + 30 PRO + 15 HIS + 6 MET  
+ 20 ASN + TRP + 35 VAL + 13 ISO + 56 LEU + 2332 ATP             [Eq. 4.17] 
=  albumin + 2332 ADP + 2332 Pi     

By multiplication of the anabolic demand of amino acids for the albumin synthesis 

[mmolamino acid · mgAlbumin
-1] with the yield [mgAlbumin · mmolsubstrate] the values were 

normalized to the defined substrate uptake and implemented into the stoichiometric flux 

model for the estimation of specific uptake or production rates. The major substrate for 

the hESC derived hepatocyte-like cells was hereby glucose. The specific rates were 

calculated as mmol metabolite per 1 mg albumin synthesis in 24 hours and are referred to 

as r [mmolmetabolite/precursor/(mgAlbumin x 24 hours). 
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4.4 Results and Discussion 

4.4.1 Physiological studies on hepatic model systems 

The present study was performed to improve the current understanding of the mechanism 

of diclofenac hepatotoxicity and its impact on the metabolic pathways of hepatocytes 

exposed to sub-toxic concentrations of diclofenac. The influence of the non steroidal anti-

inflammatory drug (NSAID) diclofenac was tested for control cells and cells exposed to 

sub-toxic concentrations by comparing medium substrates and synthesized metabolites 

over a time period of 48 hours. Further, we aimed to characterize and deepen the 

understanding of the diclofenac mechanism of toxicity by means of flux balance analysis 

(FBA). However, to perform reliable FBA the requirement of metabolic steady state has 

to be tested and validated first. 

4.4.1.1 Metabolic characteristics in sub-toxic diclofenac range 

For any metabolic characterization, the parameters involved had to be analytically 

determined. For humans, usually 50 mg to 150 mg of diclofenac are prescribed for 

treatment of pain. The free plasma concentration after administration ranges thus from 

35 µM to 100 µM (MW 318.15 and five liter blood). It was tested for primary human 

hepatocytes (PHH) and hESC derived hepatocyte-like cells (SA002) if the changes 

occurring after exposure to sub-toxic concentrations of diclofenac would be in analytical 

detectable range in a metabolic profile over a culture period of 48 hours.  

Earlier (as shown in the previous chapter) it was determined which concentrations are 

sub-toxic using the OxoDish for an exposure period of 48 hours. For the PHH cells 

(Figure 4.4.1 A) all chosen sub-toxic concentrations were clearly below the LC50 value 

(217 µM, range 201-236 µM) and the dissolved oxygen concentrations (DOs) of the drug 

exposed samples were the same as the control. For the hESC derived hepatocyte-like 

cells the LC50 value was determined to be 441 (351-558) µM (Figure 4.4.1 B). Here, 

three concentrations were chosen to be in the sub-toxic range and one close to the LC50 

value after 48 hours of diclofenac exposure. This higher concentration was chosen based 

on previous results (see Table 4.3.1), where the estimated LC50 value was 639 (580-720) 

µM. Since the amount of cells was scarce, all sub-toxic concentrations for the 

extracellular metabolic profiles had to be chosen before the experiments. Due to an 

improvement of the differentiation protocols, the hESC derived hepatocyte-like cells 
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improved their drug metabolism compared to previous experiments and thus, the highest 

concentration applied here was chosen too high to be considered as sub-toxic. 

 
Figure 4.4.1:  Concentration‐response  curves  of  (A) PHH and (B) SA002 cells 

measured after 48 hours of exposure to diclofenac. The arrows depict the 
control sample (C = 0 µM) and chosen sub-toxic diclofenac concentrations 
(ST1-ST3) from left to right. All measurements were carried out in triplicate. 
Corresponding mean values and corresponding standard errors are give in 
(A) and (B). LC50 values were determined using a four-parameter sigmoid 
concentration–response curve using Eq. 2.5. 

The extracellular metabolic profile for primary human hepatocytes is shown in 

Figure 4.4.2. The influence of the three sub-toxic diclofenac concentrations on the 

metabolism of primary human hepatocytes had no major impact compared to the control 
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medium. Nevertheless, some interesting changes in the metabolic profile for the 

ketogenic amino acids that can give rise to ketone bodies or fatty acids (Berg et al., 2003) 

could be observed and are briefly discussed. 

 

Figure 4.4.2:  Concentrations of amino acids, glucose, pyruvate and lactate over time [h] for 
primary human hepatocytes. Sampling time points were 0, 12, 24, 35 and 48 
hours after exposure to 0 µM [control, green line], 10 µM [ST1, blue line], 25 
µM [ST2, red line] and 50 µM [ST3, magenta line] diclofenac. Measurements for 
each sample time point correspond to six parallel cultures, measured in duplicate. 
The mean values and standard deviations are given. 

The ketogenic and glucogenic aromatic amino acids, which contain a benzene ring 

(phenylalanine, tyrosine and tryptophan), can be either degraded to acetoacetate  and 

acetyl-CoA or are used for the synthesis of more complex molecules (Berg et al., 2003; 

Michal, 1999). Here, these amino acids were consumed slightly more in the presence of 

diclofenac. Since degradation of aromatic ring structures mostly occurs in the liver to 

synthesize more complex molecules by using their benzene and indole rings, it can be 
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surmised, that diclofenac exposure stimulated their uptake. This is in concordance with 

the literature.  

 
Figure 4.4.3: Concentration of tyrosine, tryptophane, phenylalanine and alanine over time [h] 

for primary human hepatocytes. Sampling time points were 0, 12, 24, 35 and 48 
hours after exposure to 0 µM [control, green line], 10 µM [ST1, blue line], 25 
µM [ST2, red line] and 50 µM [ST3, magenta line] diclofenac. Measurements for 
each sample time point correspond to six parallel cultures, measured in duplicate. 
The mean values and standard deviations are given. 

Further, an increased uptake of tryptophan was observed. Tryptophane is a precursor of 

niacin, which can be converted to the coenzymes NAD and NADP. Hence, the increased 

uptake could be further explained by the demand of the cells to generate reducing 

equivalents in form of NADPH for the detoxification (in form of reduction) of oxidized 

gluthathione (GSH) by P450-monooxygenases (Berg et al., 2003). For the increased 

tyrosine uptake, one possible explanation could be catecholamine (dopamine, 

norepinephrine and epinephrine) demand, which are derivatives of tyrosine (Michal, 

1999).  

Further, for the sole ketogenic amino acids (degradation products are acetoacetate and 

acetyl-CoA), such as leucine (involved in cholesterol synthesis) and lysine (β-oxidation), 
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a trend for the increased degradation could be detected if the cells were exposed to 

diclofenac. Further, a reduced consumption of the amino acid alanine was found for the 

primary human hepatocytes when exposed to diclofenac and compared to control cells 

(see Figure 4.4.3). This can be explained by three mechanisms: 1. In the presence of 

diclofenac, more alanine is synthesized for secretion of NH3; or 2. alanine uptake is 

reduced in presence of diclofenac;  or 3. a reduced activity of alanine aminotransferase 

(due to the diclofenac treatment) could explain the lower degradation of alanine in 

presence of diclofenac.  

The extracellular metabolic profile for the hESC derived hepatocyte-like cells (SA002) is 

shown in Figure 4.4.4. The influence of exposure to diclofenac showed a different 

response in the metabolic profiles than primary human hepatocytes. These responses can 

be attributed to the higher concentrations applied. The diclofenac exposure influenced the 

pyruvate, lactate and glucose profiles. For the glucose consumption a change in uptake 

after 24 hours of culture was observed for the control cells. While the consumption was 

high in the first 24 hours, glucose uptake was reduced when the glucose concentration in 

the culture medium was less than approximately 4 mM. The glucose concentration in 

humans, which normally ranges from about 4.4 - 6.7 mM (Berg et al., 2003), determines 

either the synthesis or release of glucose from liver. Thus, here the glucose concentration 

in the media could have been maintained by the cells by gluconeogenic activity. In 

addition to the decreased glucose uptake change, a decreased lactate and pyruvate 

production was observed before 24 hours for the control cells. In addition, pyruvate was 

completely depleted from the culture medium within the first 16 hours when diclofenac 

was present at 400 µM. 

In addition, aspartate and glutamate were completely consumed within 24 hours. 

Interestingly up to 24 hours of culture the profiles of the other amino acids were similar. 

However, after that time point, distinct differences in uptake or degradation were 

observed. Major changes were detected for the aromatic amino acids phenylalanine and 

tyrosine, the branched-chain amino acids (BCAAs) leucine, isoleucine, and valine and 

further arginine (part of the urea cycle). For all these amino acids, the control cells 

displayed a distinctly different profile than cells exposed to diclofenac, which did not 

show much variability between each other. Contrary to the PHHs, for the hESC derived 
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hepatocyte-like cells alanine was net produced and no major difference between control 

and diclofenac treated cells was observed for the alanine synthesis. 

 

Figure 4.4.4:  Concentrations of amino acids, glucose, pyruvate and lactate over time [h] for 
human embryonic stem cell derived hepatocytes (hESC cell line SA002). 
Sampling time points were 0, 16, 24, 36 and 48 hours after exposure to 0 µM 
[control, green line], 100 µM [ST1, blue line], 200 µM [ST2, red line] and 400 
µM [ST3, magenta line] diclofenac. Measurements for each sample time point 
correspond to six parallel cultures, measured in duplicate. The mean values and 
standard deviations are given. 

4.4.1.2 Testing for metabolic steady state  

As previously explained (chapter 4.4.2), in order to perform MFA for cultured cells, the 

fluxes and the intracellular pool sizes must be in a metabolic steady state or in a pseudo 

steady state. This means that all concentrations of the metabolites in the model are 

constant, i.e. change over time will be zero.  
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For primary human hepatocytes (PHH) and hESC derived hepatocyte-like cells, which 

were both cultured in serum-free conditions, no growth was observed over 48 hours and 

the DO profiles remained constant (see Figure 3.4.21). Metabolic steady state can be 

determined by examining the relationship between the extracellular metabolite 

concentrations with the main carbon sources for each of the five sample time points 

(Deshpande, 2007). For mammalian cells, glucose and glutamine are the major carbon 

substrates. Linearity between the metabolites with the major carbon substrates therefore 

indicates metabolic steady state.   

Primary Human Hepatocytes 

As shown for primary human hepatocytes (Figure 4.4.5), none of the tested metabolites 

(glutamine, pyruvate, lactate and alanine) showed a linear relationship with glucose. 

However, this was not surprising, since glucose utilization was only observed in the first 

twelve hours after supplementation with fresh media. Glutamine was however degraded 

over the culture period. It has been shown that glutamine is often the main energy 

substrate for mammalian cultures (Kovacevic et al., 1991) and thus the metabolites were 

tested for their linear relationship to glutamine degradation. However, no linear 

relationship of pyruvate, lactate or arginine to glutamine degradation is observable 

(Figure 4.4.5). Nevertheless, alanine and glutamate showed a linear relationship to the 

glutamine degradation. This is probably due to their relation at the biochemical level. 

When the glucogenic amino acid glutamine is converted by glutaminase to glutamate and 

further to α-ketoglutarate, alanine is produced from pyruvate via alanine transaminase 

(ALT). In addition, no linearity between glutamate and aspartate was seen (see Figure 

4.4.5), even though one can expect that, due to both their involvement in the malate-

aspartate shuttle. Further, serine and glycine did not correlate, even though they are 

related by the enzyme serine hydroxymethyltransferase. Asparagine and aspartate, 

further, also did not correlate. 
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Figure 4.4.5:  Selected metabolite concentrations plotted each other for primary human 
hepatocytes. Linear regression was performed for each of the metabolites. 

Since for primary human hepatocytes no direct correlation was found between the major 

carbon sources with the metabolites or the metabolites over time, it can be surmised for 

the cells that there is an extensive and varying exchange of amino acids or other 

metabolites with the surrounding media; i.e. there is no metabolic (pseudo) steady state 

existing under these conditions. 

Alanine, aspartate, glutamine and glutamate are among the amino acids involved the most  

in the central metabolism acting as both substrates and sinks (Kovacevic et al., 1991). It 
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has been reported that due to these exchanges for proliferating mammalian batch cultures 

no metabolic steady state could be found (Deshpande et al., 2009; Provost and Bastin, 

2004). Here, for the non-proliferating primary hepatocytes no metabolic (pseudo) steady 

state was detected, either. Hence, since the reaction rates cannot be assumed to be 

constant, non-stationary models should be applied for further flux calculations. In 

addition 13C substrates should be applied for these experiments. However, the 

combination of 13C-experiments with non-stationary models enhances the computational 

demands, since no longer linear equations, but high dimensional sets of nonlinear 

differential equations have to be applied (Noh and Wiechert, 2006; Wiechert and Noh, 

2005). 

hESC derived hepatocyte-like cells 

As shown for hESC derived hepatocyte-like cells in Figure 4.4.6, glutamine uptake, 

lactate production and alanine production correlated well with the glucose consumption. 

In addition, the correlation of glutamate, alanine and lactate production to glutamine 

uptake showed an acceptable metabolic steady state. Thus a metabolic (pseudo) steady 

state can be assumed. However, no linear relationship of aspartate to glutamine 

degradation could be observed. Further, for the hESC derived hepatocyte-like cells no 

correlation between glutamate and aspartate was seen. 

It has been previously shown (see Figure 4.4.4) that aspartate is completely degraded 

after 24 hours of cell culture. However, since aspartate is only consumed in small 

quantities, compared to glucose consumption, one can still assume the hESC derived 

hepatocyte-like cell culture to be in a metabolic steady state. 
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Figure 4.4.6:  Selected metabolite concentrations plotted each other for hESC derived 

hepatocyte-like cells. Linear regression was performed for each of the 
metabolites. 

4.4.1.3 Metabolic flux analysis of hESC derived hepatocyte-like cells 

Metabolic flux analysis (MFA) analysis was applied to gain further insight into the 

cellular function of hESC derived hepatocyte-like cells, exposed to sub-toxic 

concentrations of diclofenac and its metabolism. Here, experimental measurements of 

substrate inputs and product outputs were applied to a pseudo-steady-state stoichiometric 

model to determine intracellular flux distributions between metabolite pools.  

In the present study, MFA was used to characterize the effect of sub-toxic 

supplementation of diclofenac on the metabolic state of hepatocytes. First, extracellular 
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fluxes were determined based on substrate uptake and product output of each 

supplemented amino acid. Next, a model for hepatocyte metabolism was created based on 

the known stoichiometry of the hepatic metabolic network. Finally, intracellular fluxes 

were calculated using this metabolic model. 

 
Figure 4.4.7:  Mammalian cell metabolism. The network is comprised of intracellular 

metabolite balances, extracellular fluxes (19 uptake fluxes of amino acids and 
glucose, indicated by green arrows), 5 fluxes which indicate secretion (red 
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arrows)) and 20 anabolic fluxes (albumin synthesis, dashed arrows). Arrows 
indicate the direction of reaction assumed in the model. Abbreviations used: CIT 
citrate, ICT isocitrate, ALB albumin. The amino acids have the standard 3 letter 
abbreviation. The subscripts “mit” indicate mitochondrial metabolites and “cyt” 
cytosolic. The subscripts “inp” and “ext” indicate input and export fluxes, 
respectively.  

The constructed stoichiometric network was additionally based on previous observations, 

obtained from the metabolic profile, to generate a working mathematical description of 

the hepatic metabolism. Pathways included were, glycolysis, the TCA cycle, the urea 

cycle, amino acid oxidation and albumin synthesis (see Figure 4.4.7 and Appendix 7.5.2). 

Glycogen synthesis and fatty acid production were not considered, since both were not 

quantified. Since SA002 cells do not proliferate, other definitions, regarding the pseudo-

steady-state metabolic network had to be defined and are given in Appendix 7.5.1.  

Since there is no biomass formation and the cells are not proliferating, the extracellular 

fluxes were calculated as metabolite consumed/produced per milligram albumin produced 

within 24 hours using the stoichiometric model and are depicted for hESC derived 

hepatocyte-like cells in Figure 4.4.8. Interestingly, with increasing drug concentrations 

the uptake for aspartate and glutamate was increased. In addition, alanine synthesis was 

also visibly increased. Lactate, urea and pyruvate synthesis were reduced in presence of 

diclofenac and glucose uptake was also reduced. For all the other amino acids (except 

serine) the uptake was decreasing with increasing diclofenac concentrations. However, 

due to the high variability, these amino acid uptake changes are not significant. 

While the glutamine uptake was not distinctively changing with increasing diclofenac 

concentrations, aspartate and glutamate were increasingly required for presumably 

anaplerotic demand of the TCA cycle. Glucose uptake and lactate production were 

decreased in presence of diclofenac, which suggests decreased glycolysis. All the other 

amino acid uptake/release rates were decreased with increasing diclofenac 

concentrations. Hence, even sub-toxic concentrations of diclofenac (100 µM) appear to 

interfere with the metabolism of amino acids and/or with albumin synthesis. A reduced 

albumin synthesis in presence of diclofenac was previously observed in chapter 3.4.3.2. 

There, it was shown, that the presence of 50 µM of diclofenac, induced impairment of 

albumin synthesis by approximately 50 %. 
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Figure 4.4.8: Extracellular fluxes, expressed as [mmol/(mg Albumin x 24 hours)] for hESC 

derived hepatocyte-like cells, exposed to sub-toxic concentrations of diclofenac. 
The white column indicates the control [0 µM Diclofenac], the light gray column 
ST1 [100 µM Diclofenac] and the dark grey column ST2 [200 µM Diclofenac]. 
The production fluxes (efflux) are depicted as negative columns and the 
consumption fluxes as positive columns.  

In order to elucidate the mechanism by which diclofenac reduces the amino acid 

metabolism and impairs albumin synthesis (possibly to restore or maintain hepatocellular 

functions) the intracellular flux distributions was examined by MFA. For this, the 

assumption of only glycolytic activity, opposed to gluconeogenesis, was chosen. In 

addition, no fatty acid synthesis or oxidation was included, since no lipids or fatty acids 

were supplied in the culture media and no distinct fatty acid synthesis was observed in the 

GC-MS measurements. The stoichiometric balances for the intracellular metabolites were 

defined according to biochemical knowledge and are provided in the Appendix 

(Table 7.5.1). 

For hESC derived hepatocyte-like cells a decreased uptake of glucose and less lactate 

secretion was previously observed in presence of diclofenac (Figure 4.4.8). However, 

here the glycolytic fluxes (from glucose to pyruvate, r1-r4) did not change significantly. 

Further, the flux towards lactate (r46) appeared to be only slightly reduced. The pyruvate 

influx into the TCA cycle, however, was slightly enhanced for both sub-toxic diclofenac 

concentrations (see reactions r6 and r7, PYR_mit → Acetyl-CoA_mit+ OAAmit/Malatemit 

→ α-Ketoglutarate, and r13, r12 and r7, PYR → Acetyl-CoA_cyt → Acetyl-CoA_mit + 
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OAAmit/Malatemit → α-Ketoglutarate, in Figure 4.4.9). Thus, one can surmise increased 

anaplerosis for the hESC derived hepatocyte-like cells. This hypothesis is further 

confirmed by enhanced oxidation of glutamate (r25, Glutamate → α-Ketoglutarate), 

which feeds into the TCA cycle (Figure 4.4.9). However, most amino acids, which feed 

into the TCA cycle, were used to maintain the synthesis of albumin and not for 

anaplerosis if diclofenac was present. This is apparent by reduced metabolization of these 

amino acids as can be seen in reactions r30 and r35-r42. 

 
Figure 4.4.9:  Intracellular fluxes, calculated as demand of metabolite in order to produce 1 mg 

albumin in 24 hours for hESC-derived hepatocyte-like cells, exposed to sub-toxic 
concentrations of diclofenac. Depicted are the calculated fluxes of glycolysis, 
TCA and urea cycle and the amino acid degradation towards metabolism. The 
rates are depicted in Figure 4.4.7 and defined in the Appendix (S_C, chapter 
7.5.2). 



 PHYSIOLOGICAL STUDIES AT SUB-TOXIC DRUG CONCENTRATIONS 

144 

 

In addition, urea secretion (see r20 and r21, ASP_cyt + Citrulline → ARGSucc → Urea + 

Succinate/Fumarate) and the flux from Succinate/Fumarate to OAA were slightly 

increased with increasing diclofenac concentrations. Thus, removal of free ammonia was 

enhanced, which increase was probably caused by the increased flux of glutamine and 

glutamate into the TCA cycle (r25 and r27), whereby one NH4
+ is released in each 

intermediate step. However, ammonia removal by alanine synthesis was also increased 

and could also account for the produced NH4
+ (Figure 4.4.9, r32: Pyr → Alanine). 

The action of diclofenac and its toxicity are not yet completely understood. However, 

diclofenac toxicity has been associated with protein adduct formation with reactive acyl-

glucuronide or quinone imine and is linked to oxidative stress. The latter is induced via 

formation of diclofenac cation radicals or nitroxide and quinone imine associated redox 

cycling. In addition, diclofenac was found to injure mitochondria by uncoupling of 

oxidative phosphorylation (Bort et al., 1999a; Bort et al., 1999b; Masubuchi et al., 2006; 

Masubuchi et al., 1998; Masubuchi et al., 2002; O'Connor et al., 2003; Vickers, 2009). As 

reviewed by Davies et al. (2000) NSAIDs can inhibit the glycolytic and TCA cycle 

activity, which results in inhibition of oxidative phosphorylation and thus ATP depletion. 

Here, metabolic responses of hESC derived hepatocyte-like cells indicated no change of 

glycolytic activity in response to diclofenac. The TCA cycle activity appeared to be 

increased when the cells were exposed to diclofenac (see r7 and r8 in Figure 4.4.9). Thus, 

there is no indication that the oxidative phosphorylation pathway of the hESC derived 

hepatocyte-like cells is inhibited by the drug. An explanation for this could be the lower 

expression of phase I and phase II enzymes (chapter 3), compared to primary human 

hepatocytes. These metabolic products can cause an effect on mitochondria and lead to 

inhibition of oxidative phosphorylation. In addition, for the hESC derived hepatocyte-like 

cells an increased flux from pyruvate into the TCA cycle was observed, which is most 

probably due to anaplerosis or ATP demand. 

It has been reported by Niklas et al. (2009), who applied MFA analysis that the glycolysis 

is reduced after administration of the non-steroidal anti-inflammatory drug (NSAIDs) 

diclofenac to Hep G2 cells. Here, only a minor decrease or no glycolytic effect was 

observed for the hESC derived hepatocyte-like cells. It has been reported by several 

groups, that NSAIDs, containing a carboxyl group, such as diclofenac and mefenamic, 
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uncouple oxidative phosphorylation. Diclofenac, since it is weakly acidic and lipophilic 

hereby acts as a proton translocator across the inner mitochondrial membrane (Boelsterli, 

2003), leading to a collapse of the mitochondrial inner transmembrane potential (∆Ψm).  

In order to increase cytosolic ATP generation to account for the ATP loss, due to 

uncoupled oxidative phosphorylation, stimulation of glycolysis and glycogenolysis and 

reduction of gluconeogenic activities is induced by the cells (Kemmelmeier and Bracht, 

1989; Lim et al., 2006; Moreno-Sánchez et al., 1999; Petrescu and Tarba, 1997; Porter et 

al., 2000) and not the other way around. Thus, one can surmise that both Hep G2 cells 

and hESC derived hepatocyte-like cells do not respond to the diclofenac exposure as has 

been previously shown for primary human hepatocytes. 
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4.4.1.4 Concluding remarks 

From examination of the metabolic profiles of primary human hepatocytes and hESC 

derived hepatocyte-like cells common biological themes emerged. For each cell type, 

primary human hepatocytes and hESC derived hepatocyte-like cells, the influence of the 

applied sub-toxic diclofenac concentrations could be observed over the tested time period 

for all pathways involving ketogenic amino acid degradation. Here dose-dependent 

changes in the global metabolic profiles for aromatic amino acids (tryptophan, 

phenylalanine and tyrosine) seemed to be influenced the most by diclofenac exposure. 

However, observable metabolic changes for the primary human hepatocytes were subtle 

and mostly within the error range, compared to the other samples. For hESC derived 

hepatocyte-like cells, higher differences could be observed. 

In addition, it can be assumed for primary human hepatocytes that extensive exchange of 

amino acids with the surrounding culture media is present. Both steady state and pseudo 

steady state assumptions could not be verified at these conditions and thus no metabolic 

balance analysis was performed.  

For hESC derived hepatocyte-like cells, metabolic steady state could be assumed and thus 

stationary metabolic balance analysis was performed. Hereby, it was observed that 

diclofenac increases the activity of the TCA and the urea cycle even at sub-toxic 

concentrations. However, the expected increase in glycolysis to balance the ATP 

depletion due to uncoupling of the oxidative phosphorylation pathway was not observed. 

Hence, 13C labeled substrates have to be applied to further investigate a possible amino 

acid exchange of primary human hepatocytes and hESC derived hepatocyte-like cells 

with the culture medium and to obtain a better insight into the central carbon metabolism 

and to investigate whether sub-toxic concentrations of diclofenac have an influence on 

the metabolism. 



 PHYSIOLOGICAL STUDIES AT SUB-TOXIC DRUG CONCENTRATIONS 

147 

 

4.4.2 Studies of central carbon metabolism employing 13C isotopes 

Carbon isotopes offer an elegant method to investigate the central metabolism of 

microorganisms and mammalian cells. In the previous chapter it was determined that no 

stationary metabolic flux analysis is feasible for primary human hepatocytes (PHHs). 

However, 13C substrates were used to further compare both cell types (PHHs and hESC 

derived hepatocyte-like cells) and to investigate the influences of diclofenac exposure to 

the cellular physiology of the hepatocytes and the involved metabolic pathways.  

The use of 13C or 14C labeled substrates for pathway identification has been successfully 

employed by many researchers (Bonarius et al., 1998; DeBerardinis et al., 2007; Katz and 

Wood, 1960; Kelleher, 1999; Lee et al., 1998; Lu et al., 2002). They mostly used 

universally or positional labeled glucose for their research, since glucose is the primary 

substrate for the cellular metabolism. Lee et al. (1998) have used [1,2-13C2]glucose to 

quantify the oxidative pentose-phosphate activity and Sibson et al. (2001) measured 

fluxes of neurotransmitter glutamate cycling, anaplerosis and TCA cycle employing 

[2-13C]- and [5-13C]glucose. In addition to positional or fully labeled glucose, labeled 

amino acids have been shown to improve the understanding of mammalian metabolism. 

Glutamine has been shown to be the main energy source in mammalian cells. It is to be 

used by the cells for biosynthetic pathways (e.g. fatty acids synthesis) and to provide an 

anaplerotic source of oxaloacetate (DeBerardinis et al., 2007; Kovacevic et al., 1991; 

Kovacevic and McGivan, 1983; Reitzer et al., 1979; Waagepetersen et al., 2008). By 

feeding fully labeled glutamine and glutamate, Des Rosiers et al. (1994) were able to 

determine reversibility of the isocitrate dehydrogenase reaction in liver cells. Other 

carbon substrates have been used further to investigate certain aspects of metabolism; 

Sherry et al. (2004) used [2-13C]acetate and [3 -13C]- and [U -13C]propionate to 

investigate substrate oxidation, multiple pyruvate cycles and gluconeogenesis in human 

liver cells and Peuhkurinen et al. (1983) employed [1-14C]pyruvate and [1-14C]lactate to 

investigate metabolic compartmentation of pyruvate in the isolated perfused rat heart.  

Thus, these applications of 13C or 14C labeled substrates for pathway identification 

suggest that mammalian cells utilize various different substrates and that the carbon 

requirement cannot be fulfilled by a single substrate. However, in many bacteria glucose 

can be used as single substrate. In the previous chapter, it was demonstrated that no 

metabolic flux analysis was feasible for primary human hepatocytes. In this chapter, we 
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aimed for more informative insight into the uptake/production of metabolites and the 

involved metabolic pathways while the cells were exposed to sub-toxic diclofenac 

concentrations. Hence, the hepatic cells were cultured in parallel on [U-13C6]glucose, 

[1,2-13C2]glucose and [U-13C5]glutamine and simultaneously exposed to sub-toxic 

concentrations of diclofenac.  

4.4.2.1 Glucose and glutamine metabolism 

In hESC-derived hepatocytes-like cells and primary human (PH) hepatocytes the 

presence of a functional glycolysis and tricarboxylic acid (TCA) cycle was tested using 

[U-13C6]glucose and [U-13C5]glutamine as substrates. Both cell types showed uptake of 

the supplemented substrates and labeling in synthesized metabolites from the glycolysis 

(alanine, lactate and serine, glycine) and the TCA cycle (glutamate, proline and 

aspartate). A more detailed analysis for each cell type, while cultivated on isotopic 

labeled substrates and co-subcultured with sub-toxic diclofenac concentrations, is given 

below.  

Primary human hepatocytes 

As shown in Figure 4.4.10, primary human hepatocytes consumed glucose and glutamine, 

which was supplemented in the media. As can be seen in the time course, glucose was 

only consumed in the beginning of the cultivation (Figure 4.4.10 A) and glutamine was 

continuously taken up from the culture media (Figure 4.4.10 B).  

Glucose, which was supplemented (10 mmol/L) in the culture medium, was rapidly 

metabolized in the beginning of the cultivation for all four co-supplemented diclofenac 

concentrations (Control, ST1-ST3). This can be explained by the presence of insulin and 

dexamethasone in the culture medium, which promote glucose uptake and glycogen 

synthesis (Klein et al., 2002; Swagell et al., 2006). However, since only small 

concentrations of insulin and dexamethasone were supplemented, no further glucose 

metabolization took place after 12 hours.  

According to DeBerardinis et al. (2007), an increased glutamine uptake can be linked to 

an increased energy related demand, since glutamine metabolism (glutaminolysis) is a 

robust source of NADPH via malic enzyme. They also pointed out that glutamine 

degradation can be used for replenishment of TCA cycle intermediates (anaplerosis). 
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Here, however, glutamine consumption was highest for the primary human hepatocytes, 

which were not exposed to diclofenac (control) at the end of the cultivation (after 48 

hours). Nevertheless, a slightly higher glutamine uptake can be presumed for the highest 

sub-toxic concentration in the first 12 hours of cultivation (Figure 4.4.10 B), even though 

the differences are not significant.  

 

Figure 4.4.10:  Carbon uptake profile of glucose (A) and glutamine (B) for primary human 
hepatocytes exposed to diclofenac over time. Diclofenac concentrations are 
denoted by: ■ control (0 µM), ○ ST1 (10 µM), ▲ (ST2, 25 µM) and  (ST3, 50 
µM). 

Both labeled substrates could be detected by partially extensive carbon atom labeling in 

synthesized metabolites of the glycolysis and the TCA cycle (see Figure 4.4.11 and 

Figure 4.4.12). These data suggest that carbon atoms from [U-13C6]glucose were 

metabolized via glycolysis, as can be seen in the 13C-metabolites of lactate, alanine, 

serine and glycine. Further, labeled pyruvate carbons, which are the end product of 

glycolysis, entered the TCA cycle, where they were degraded or used as a precursor for 

synthesis of metabolites. The latter is apparent in the excreted 13C-metabolites glutamate, 

aspartate and proline, when the cells were cultured on [U-13C6]glucose. In addition, 

carbons from [U-13C5]glutamine were detected in the 13C-metabolites of the TCA cycle. 

Interestingly, carbon atoms from [U-13C5]glutamine were also detected in lactate, alanine, 

serine and glycine, which are generally products of glycolysis. Thus, the data suggest an 

additional (gluconeogenic) flux from the TCA cycle to glycolytic metabolites.  
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In the following text, for primary human hepatocytes the metabolites produced from 

[U-13C6]glucose and [U-13C5]glutamine are discussed, regarding the pathways involved 

and with respect to the diclofenac exposure.  

Lactate and alanine are produced from pyruvate via lactate dehydrogenase (LDH) and 

alanine transaminase (ALT), respectively. Since pyruvate is the end-product of 

glycolysis, isotopic labeled carbon atoms from [U-13C6]glucose can be found in lactate 

and alanine. However, in the lactate produced after 48 hours of cultivation (approx. 

4760 C-µmol/L), carbon atoms were not only derived from glucose (approx. 2150 

C-µmol/L), but also from glutamine (approx. 590 C-µmol/L). In addition, labeled carbon 

atoms in alanine were derived from both [U-13C6]glucose and [U-13C5]glutamine. The 

labeled carbon atoms from [U-13C5]glutamine in lactate and alanine can be explained by 

either gluconeogenesis or malic enzyme activity.  

In detail, uniformly 13C-labeled glutamine can be deaminated via glutaminase to produce 

uniformly labeled glutamate, which can further enter the TCA cycle (mitochondria) by 

conversion of glutamate to α-ketoglutarate (Bak et al., 2008) via glutamate 

dehydrogenase (GLUD). α-Ketoglutarate is then metabolized to uniformly labeled 

mitochondrial oxaloacetate (OAA). This mitochondrial OAA cannot freely diffuse to the 

cytosol. Thus, hepatic cells can use three pathways to shuttle the OAA into the cytosol: 

• conversion of OAA to phosphoenolpyruvate (PEP), which is located in the 

cytosol, via mitochondrial PEP carboxykinase (PEPCK),  

• transamination to aspartate, which can be transported to the cytosol where the 

reverse transamination occurs yielding cytosolic OAA 

• reduction to malate via malate dehydrogenase (MDH) and utilization of 

NADH 

All of these intermediate metabolites can be transported into the cytosol. If PEP is 

synthesized, it can be then converted to pyruvate by the enzyme pyruvate kinase (PK). As 

previously mentioned, pyruvate can then either be transaminated to alanine or reduced to 

lactate. Alternatively PEP can be used for gluconeogenic reactions. 

Diclofenac exposure induced a delayed lactate synthesis in a dose-dependent manner, as 

shown in Figure 4.4.11. Especially, if the cells were exposed to 50 µM diclofenac, no 
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synthesis was observed for the first 24 hours of exposure. The overall lactate synthesis 

was decreased with increasing diclofenac concentrations. Lactate synthesis from either 

[U-13C6]glucose or [U-13C5]glutamine carbons showed the same results.  

The net alanine consumption was also reduced with increasing diclofenac concentrations 

(Figure 4.4.11). Interestingly, labeled carbon atoms in extracellular alanine, originated 

both from [U-13C6]glucose and [U-13C5]glutamine carbons. Another interesting 

observation is, that the flux from the TCA cycle ([U-13C5]glutamine) to pyruvate and then 

to alanine appeared to be enhanced in presence of diclofenac.  

Glutamate, which is synthesized from α-ketoglutarate by transamination via glutamate 

dehydrogenase was also found to be extensively labeled from carbons derived from 

[U-13C6]glucose and [U-13C5]glutamine (see Figure 4.4.11). Carbons derived from 

[U-13C5]glutamine in [U-13C5]glutamate can be explained by its deamination via 

glutaminase to glutamate (Bak et al., 2008). The formation of glutamate from carbon 

atoms derived from [U-13C6]glucose also could be accounted for by carbon atoms of 

pyruvate entering the TCA cycle. Pyruvate can either be transformed to OAA via 

pyruvate carboxylase (PC) activity, which is present in very high levels in the liver 

(Hasan et al., 2008), or to acetyl-CoA via pyruvate dehydrogenase (PDH) activity. In the 

TCA cycle OAA condenses then with acetyl-CoA to form citrate which is metabolized to 

α-ketoglutarate and which in turn is aminated by glutamate dehydrogenase to glutamate. 

Proline is formed from glutamate and thus also has labeled carbon atoms from both 

universal 13C-labeled substrates (see Figure 4.4.12). Labeled aspartate is directly 

synthesized from OAA via aspartate transaminase (AST). Both labeled substrates could 

be detected in aspartate carbon atoms (Figure 4.4.12), showing hereby again the 

glycolytic influx into the TCA cycle.  

No obvious effect of diclofenac exposure was found for primary human hepatocytes for 

glutamate, proline or aspartate metabolism. 
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Figure 4.4.11:  Carbon profiles of lactate (left column), alanine (middle column) and glutamate 

(right column) for primary human hepatocytes exposed to diclofenac over time 
[h]. Diclofenac concentrations are denoted by ■ control, ○ ST1 (10 µM), 
▲ (ST2, 25 µM) and  (ST3, 50 µM).  

Serine, which is synthesized de novo from the 3-phosphoglycerate (3PG), an intermediate 

metabolite of the glycolysis, and is a precursor of glycine and cysteine, was synthesized 

(Figure 4.4.12) and excreted from the cells. Thus, carbons from [U-13C6]glucose were 

easily detected in extracellular serine and glycine. Interestingly, carbons from the 

uniformly labeled glutamine were also observed, thus gluconeogenic activity can also be 

shown here. Diclofenac treatment, however, seemed to reduce the production of serine 

and the consumption of glycine with increasing diclofenac concentrations, however, not 

significantly. 
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Figure 4.4.12: Carbon profiles of proline (left column), aspartate (middle left column), serine 
(middle right column) and glycine (right column) for primary human 
hepatocytes exposed to diclofenac over time [h]. Diclofenac concentrations are 
denoted by ■ control, ○ ST1 (10 µM), ▲ (ST2, 25 µM) and  (ST3, 50 µM). 

hESC derived hepatocyte-like cells 

The hESC derived hepatocyte-like cells displayed higher glucose consumption and less 

glutamine utilization (Figure 4.4.13 A and B), compared to primary human hepatocytes 

(Figure 4.4.10). As previously discussed (Chapter 3.4.3.5), this high glucose demand can 

be considered to be due to the Warburg effect of malignant cells. Since the phenotype 

analysis of these cells revealed that they are to some extent mixed, it could not be 

ascertained which cell type is responsible for this high utilization of glucose.  

Interestingly, the glutamine uptake was the highest for cells exposed to diclofenac. This 

can be seen in the first 24 hours of cultivation and might be induced by an energy related 

NADPH demand for the cytochrome P450 hydroxylation of diclofenac (since glutamine 
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degradation can be a source for NADPH (DeBerardinis et al., 2007) or a TCA cycle 

demand for replenishment of TCA cycle intermediates (anaplerosis). However, while the 

glutamine uptake was significantly enhanced for the hESC derived hepatocyte-like cells, 

for PHHs one could only surmise a slight trend in the first 12 hours of cultivation.  

 

Figure 4.4.13:  Carbon uptake profile of glucose (A) and glutamine (B) for human embryonic 
stem cell derived hepatocyte-like cells exposed to diclofenac over time [h]. 
Diclofenac concentrations are denoted by ■ control, ○ ST1 (100 µM), ▲ 
(ST2, 200 µM) and  (ST3, 400 µM). 

As shown in Figure 4.4.14, the lactate concentration at the end of the cultivation was 

considerably decreased with increasing diclofenac concentrations (ST1-ST3), mirroring 

the glucose uptake as shown in Figure 4.4.13. In particular the labeling from glutamine 

and glucose derived carbon atoms was drastically reduced, if diclofenac was 

supplemented close to the LC50 value for 48 hours (ST3). Thus, the carbon atoms of 

lactate did not derive from glucose. 

The alanine concentrations in the supernatant for all sub-toxic drug concentrations 

increased, as quantified by HPLC (Figure 4.4.14). Nevertheless, the labeled carbon atoms 

in alanine increased to a higher extent than the actual measured net increase in the alanine 

concentration, pointing to reversibility of alanine synthesis and degradation. Hence, this 

will be discussed further below in more detail (chapter 4.4.2.3). Also interesting was that 

the cells showed an enhanced alanine synthesis from [U-13C5]glutamine and a reduced 

synthesis from [U-13C5]glucose if diclofenac was present. This is in contrast to lactate, as 

shown in Figure 4.4.14. 
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Figure 4.4.14: Carbon profile of lactate (left column), alanine (middle column) and glutamate 

(right column) for human embryonic stem cell derived hepatocyte-like cells 
exposed to diclofenac over time [h]. Diclofenac concentrations are denoted by 
■ control, ○ ST1 (100 µM), ▲ (ST2, 200 µM) and  (ST3, 400 µM). 

Glutamate and aspartate, which feed into the TCA cycle as anaplerotic sources were 

almost completely degraded from the culture supernatant within 24 hours of cultivation 

(Figure 4.4.14 and Figure 4.4.15). Interestingly, for the highest sub-toxic concentration, 

the cells showed a slower metabolism of aspartate and glutamate for the first 24 hours of 

cultivation, however after 35 hours the cells had increased the metabolism and no 

difference for both metabolites was seen for control and drug-exposed cells. Similar to 

the overall concentrations, the labeled carbons in glutamate and aspartate from 

[U-13C6]glucose and [U-13C5]glutamine, which were synthesized in the beginning of the 

test period, were consumed at the end of the experiment. That aspartate and glutamate are 
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consumed, is opposite to previous observations for PHHs. Glutamate was produced and 

aspartate only slightly consumed by primary human hepatocytes.  

Contrary to the glutamate degradation, proline, for which glutamate is the precursor, was 

synthesized and secreted. One possible explanation could be that increased intracellular 

ornithine and arginine concentrations, resulting from the urea cycle, possibly caused 

glutamate semialdehyde accumulation and then its cyclization to proline.  

 
Figure 4.4.15:  Carbon profiles of proline (left column), aspartate (middle left column), serine 

(middle right column) and glycine (right column) for human embryonic stem 
cell derived hepatocyte-like cells exposed to diclofenac over time. Diclofenac 
concentrations are denoted by ■ control, ○ ST1 (100 µM), ▲ (ST2, 200 µM) 
and  (ST3, 400 µM). 

As can be further seen in Figure 4.4.15, glycine and serine were also degraded and only 

small amounts of labeled carbon atoms, either derived from glucose or glutamine, were 

detected. Interestingly, the net decrease in extracellular serine and glycine was here seen 

to be enhanced for the cells exposed to diclofenac for the first 35 hours of cultivation. In 
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addition, if the cells were not exposed to diclofenac, serine and glycine were produced 

from carbons of glucose, but not from glutamine. This would imply glycolytic, but not 

gluconeogenic activity for these cells. However, as previously discussed (chapter 3), not 

all of the hESC derived hepatocyte-like cells are considered to be fully mature 

hepatocytes and thus, only a small gluconeogenic activity can be expected. However, this 

will be discussed in more detail in chapter 4.4.2.7. 

4.4.2.2 Simple SFL flux model 

It has been reviewed and shown by many research groups that metabolic flux estimation 

from stable-isotopes tracer experiments provides a key to understanding cell physiology 

and regulation of metabolism (Antoniewicz et al., 2007c; Stephanopoulos, 1999; 

Wittmann, 2007; Yoo et al., 2004). A limitation for mammalian cells for the classical 

method of metabolic flux analysis (MFA) is the requirement of metabolic and isotopic 

steady state, i.e. that labeling of the substrate and measured metabolite pools are 

equilibrated. Antoniewicz et al. (2007a) stated that this condition can be only 

approximated in continuous culture experiments after five or more residence times. As 

was previously shown, for primary human hepatocytes (Figure 4.4.5), no metabolic 

steady state was achieved. While a nearly metabolic steady state was found for the hESC 

derived hepatocyte-like cells, for none of the tested cell types any of the secreted 

metabolites showed an isotopic steady state for the culturing period of 48 hours (data not 

shown).  

In the results presented in Figure 4.4.16, 13C contribution of either [U-13C6]glucose 

(Figure 4.4.16 A & C) or [U-13C5]glutamine (Figure 4.4.16 B & D) carbon atoms in the 

secreted metabolites alanine, lactate, proline, glutamate, aspartate and serine and glycine 

are depicted with respect to all 13C carbon atoms recovered in the secreted metabolites for 

PHHs (Figure 4.4.16 A & B) and hESC derived hepatocyte-like cells (Figure 4.4.16 

C & D) after 48 hours of cell culture. The 13C contribution of either [U-13C6]glucose or 

[U-13C5]glutamine carbon atoms in the secreted metabolites are given in the Appendix 

(Table 7.5.5 and 7.5.7) for PHHs and hESC derived hepatocyte-like cells, respectively. 

For 13C-balance calculations, the intracellular fluxes were normalized to glucose (Figure 

4.4.16 A & C) or glutamine (Figure 4.4.16 B & C) uptake fluxes (see Table 4.4.1), which 

were set to 100 %. In Figure 4.4.16 the fractions of 13C carbon contribution from either 
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[U-13C6]glucose or [U-13C5]glutamine of all carbon atoms accounted in secreted 

metabolites are depicted for primary human hepatocytes (Figure 4.4.16 A & B) and hESC 

derived hepatocyte-like cells (Figure 4.4.16 C & D), for both control cells and cells 

exposed to diclofenac. 

 
Figure 4.4.16:  Simplified model for flux calculations on primary human hepatocytes (A & B) 

and SA002 cells (hESC derived hepatocyte-like cells) (C & D) after 48 hours of 
cultivation. Intracellular fluxes are normalized to glucose (A & C) or glutamine 
(B & C) uptake fluxes (see Table 4.4.1), set to 100 %, and depicted as fraction of 
13C carbon contribution from either [U-13C6]glucose or [U-13C5]glutamine of all 
carbon atoms accounted in secreted metabolites. The upper numbers indicate 13C-
fluxes for PHHs and SA002 exposed to no drug and the lower numbers indicate 
13C-fluxes for PHHs exposed to 50 µM and for SA002 cells to 100 µM of 
diclofenac. The numbers in the rounded boxes, connected by dashed arrows, 
indicate the percentage of not recovered carbon atoms, the rectangular boxes 
show extracellular metabolites and the round boxes intracellular intermediates. 
Abbreviations used: ICT isocitrate, OAA oxaloacetate, SUC succinate, AKG α-
Ketoglutarate, Lac lactate, 3PG 3-phosphoglygerate. The amino acids have the 
standard 3 letter abbreviation.  
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As can be seen in Figure 4.4.16 A, for primary human hepatocytes, if diclofenac was 

present in the culture medium, the contribution of glucose carbon atoms to lactate and 

alanine synthesis was reduced. However, for the SA002 cells the carbon flux from 

glucose to lactate was reduced (Figure 4.4.16 C), whereas the flux to alanine was 

enhanced in presence of diclofenac. Since the hESC derived hepatocyte-like cells do not 

have a urea cycle as functional as PHHs (see chapter 3.4.3.1), the enhanced alanine 

synthesis and secretion might be an indicator of ammonia removal by the cells. While the 

PHHs displayed a relatively high flux into the TCA cycle (> 19.7 % for control and > 

17.5 % for 50 µM diclofenac exposure), the SA002 cells metabolized the glucose carbons 

mainly to lactate (Warburg effect) and only few of the carbons were metabolized in the 

TCA cycle ( > 0.9 % for control and > 1.7 % for 100 µM diclofenac exposure). 

Surprisingly, the influx into the TCA cycle, was enhanced in presence of diclofenac and 

the synthesis of glutamate and proline from glucose carbons as well (Figure 4.4.16 C).  

Table 4.4.1:  Glucose and glutamine uptake fluxes and glucose/glutamine ratio, calculated for 
primary human hepatocytes (PHH) and hESC derived hepatocyte-like cells 
(SA002) for control and diclofenac exposure after 48 hours of cultivation. 

 Glucose Flux 
[C-mol/L/(106 cells x 48 h)] 

Glutamine Flux 
[C-mol/L/(106 cells x 48 h)] 

Glucose  [C-mol] 

Glutamine [C-mol] 

PHH        (0 µM Diclofenac) 32.98 32.96 0.99 
PHH      (50 µM Diclofenac) 42.79 33.69 1.27 
SA002     (0 µM Diclofenac) 185.56 13.82 13.42 
SA002  (100 µM Diclofenac) 77.12 15.10 5.10 

 

Even though the glycolysis appeares to be decreased in primary human hepatocytes 

(Figure 4.4.16 A), from Table 4.4.1 one can deduce that the glycolysis actually increased 

if the cells are exposed to diclofenac. This is apparent from the enhanced glucose uptake 

flux for PHHs exposed to 50 µM diclofenac and compared to the control cells. For the 

hESC derived hepatocyte-like cells the glucose uptake was clearly reduced, if the cells 

were exposed to diclofenac. The increased glycolysis (or possibly glycogenolysis) of 

PHHs in response to diclofenac treatment is most probably due to ATP depletion, caused 

by diclofenac disturbance in the oxidative phosphorylation (Kemmelmeier and Bracht, 

1989; Lim et al., 2006; Moreno-Sánchez et al., 1999; Petrescu and Tarba, 1997; Porter et 

al., 2000).  
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As shown in Figure 4.4.16 B, for primary human hepatocytes the influx of glutamine 

carbons into the TCA cycle was enhanced in presence of diclofenac, while for the SA002 

cells this influx was reduced (see Figure 4.4.16 D and also the glucose/glutamine ratio in 

Table 4.4.1). Further for PHHs, the gluconeogenic flux (OAA → Pyruvate) was 

enhanced, if the cells were exposed to diclofenac, resulting in higher carbon atom 

contributions in alanine, lactate, serine and glycine. Surprisingly, even though the 

gluconeogenic flux in SA002 cells was reduced, if the cells were exposed to diclofenac, 

the glutamine contribution to alanine, serine and glycine was increased, whereas that of 

lactate was significantly decreased.  

From the enhanced carbon atom contribution from glutamine in the metabolites, one can 

surmise that diclofenac interferes directly with the albumin synthesis (see chapter 

3.4.3.2), since albumin synthesis was reduced in presence of diclofenac, or that 

diclofenac interferes with the transport of amino acids into the cells. The latter hypothesis 

is in accordance with observations by Kaur et al. (2010) who demonstrated a reduced 

amino acid uptake following treatment with a NSAID. A reduced amino acid catabolism 

in presence of diclofenac has been shown for both cell types in chapter 4.4.1.1. Both 

hypotheses would coerce the cells to synthesize these metabolites for albumin synthesis, 

instead of utilizing them from the culture medium. For future studies it would be 

interesting to analyze the contribution of synthesized and transported amino acids in 

synthesized and excreted albumin.  

4.4.2.3 Reversibility of fluxes 

As previously described, mammalian cell systems are far more complex than simple 

eukaryotes and prokaryotes, which has handicapped the application of metabolic flux 

balancing approaches. This is due to the fact that the metabolite balancing only considers 

overall (net) fluxes. However, mammalian cells have inter-compartmental exchange 

fluxes and an extensive metabolite exchange with the culture media. By applying isotope 

balancing, bidirectionality of pathways (reversibility reactions) must be included in the 

analysis, since isotope labels may be transported in the opposite direction of the net flux 

(Christensen and Nielsen, 2000). Reaction reversibility has been shown to complicate 

flux determination in certain pathways  due to label redistribution. It’s this regard may 

lead to wrong interpretation of the results and one might miss useful information on 
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metabolic phenomena, such as futile cycles (Christensen and Nielsen, 2000; Follstad et 

al., 1999; Follstad and Stephanopoulos, 1998; Wiechert and de Graaf, 1997). 

The simultaneous synthesis and degradation of various amino acids was previously 

observed in chapter 4.4.2.1. All analyzed amino acids (alanine, aspartate, glutamate, 

proline, glycine and serine) showed labeling from glutamine or glucose as source, which 

indicates their metabolic synthesis, and were simultaneously degraded by either PHHs or 

SA002 cells. Thus reversible reactions for all of these metabolites take place.  

This reversibility (Rev) is shown in Figure 4.4.17 for the metabolite alanine, which is net 

produced and secreted over time for the hESC derived hepatocyte-like cells 

(Figure 4.4.17 A). This net production is here defined as vnet. Previously, it was shown in 

chapter 4.4.2.1 (Figure 4.4.14) that 13C-carbon atoms in extracellular alanine were 

derived from either [U-13C6]glucose or [U-13C5]glutamine as substrates. Since both 

cultivations were performed in parallel, one can sum the detected 13C carbon atoms in 

alanine from [U-13C6]glucose and [U-13C5]glutamine as substrates to obtain the minimum 

production of 13C-carbon atoms in alanine (Figure 4.4.17 B). This mass isotopomer 

production can be defined as flux v1. 

The sum of the detected 13C carbons in the metabolites from [U-13C6]glucose and 

[U-13C5]glutamine is defined as the minimum production here, since the metabolite 

(alanine) can also be synthesized from carbon sources other than glucose or glutamine. 

Other carbon sources were not isotopically labeled in this experiment, and thus the 

carbons of these substrates would appear as 12C in secreted metabolite (alanine) carbon 

atoms. These, however, cannot be distinguished from the alanine supplied in the culture 

medium. Comparing the net carbon atom increase of alanine carbon atoms within 

48 hours (840 C-µmol/L, Figure 4.4.17 A) with the amount of the produced 13C carbon 

atoms in alanine (approx. 2200 C-µmol/L, Figure 4.4.17 B), it is apparent that the cells 

must have consumed alanine to account for the difference in concentration increase and 
13C production in alanine. The estimated minimum carbon consumption (here defined 

as flux v2) is given in Figure 4.4.17 C and was calculated according to equation 4.18. 

2ݒ ൌ 1ݒ െ  [Eq. 4.18]    ݐ݁݊ݒ
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From these data the reversibility (Rev) can be estimated as function of metabolite 

consumption versus 13C mass isotopomer production and is given in equation 4.19. 

ݒܴ݁ ൌ ௩ଶ
௩ଵ
ൌ ௩ଵି௩௧

௩ଵ
            [Eq. 4.19] 

 

Figure 4.4.17:  Carbon profiles of alanine for primary human hepatocytes exposed to diclofenac 
over time [h] and cultured on [U-13C6]glucose and [U-13C5]glutamine. Diclofenac 
concentrations are denoted by ■ control, ○ ST1 (10 µM), ▲ (ST3, 50 µM). A) 
depicts the alanine concentration [C-µmol/L] as quantified by HPLC (vnet). B) 
depicts the sum of produced 13C carbons in alanine from [U-13C6]glucose and 
[U-13C5]glutamine as substrate (v1). C) depicts the estimated minimum 
consumption of extracellular alanine to account for the difference in 
concentration increase and 13C production in alanine (v2). 

The minimum 13C mass isotopomer production and the minimum total consumption of 

alanine, serine, glycine, proline, aspartate and glutamate was determined as shown 

previously for alanine for primary human hepatocytes (Table 4.4.2) and the hESC derived 

hepatocyte-like cells (Table 4.4.3). In Figure 4.4.18 A and B, the direction of net 

production or consumption rate [C-µmol/L/48 hours] for each metabolite is indicated by 

big arrows and was further estimated and shown in Figure 4.4.18 A and B for PHHs and 

SA002 cells, exposed to three concentrations of diclofenac.   
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Table 4.4.2:  Carbon concentration [C-µmol/L] over time, 13C-mass isotopomer production [C-
µmol/L] from [U-13C6]glucose or [U-13C5]glutamine over time [h] and total 
metabolite consumption [C-µmol/L] over time [h] quantified by HPLC and 
analyzed by GC/MS for primary human hepatocytes exposed to diclofenac. 

PHH 
Time 

[h] 

Concentration [C-µmol/L] 

13C-mass isotopomer 
production [C-µmol/L]  

from [U-13C5]glucose and  [U-
13C5]glutamine 

Consumption  
[C-µmol/L] 

0 12 24 35 48 0 12 24 35 48 0 12 24 35 48

Alanine 
Control 3195 2985 2715 2541 2337 90 402 486 621 930 90 612 966 1275 1788

ST1 3195 3072 2967 2901 2559 90 381 519 651 915 90 504 747 945 1551
ST3 3195 3198 3042 3033 2991 90 414 474 648 1026 90 411 627 810 1230

Glutamate 
Control 2255 2325 2485 2660 2790 50 645 930 1255 1295 50 575 700 850 760

ST1 2255 2345 2355 2720 2850 50 840 1070 1255 1565 50 750 970 790 970
ST3 2255 2205 2280 2565 2585 50 795 1100 1000 1400 50 845 1075 690 1070

Proline 
Control 1750 1770 1760 1765 1715 80 345 330 370 430 80 325 320 355 465

ST1 1750 1940 1760 2015 1875 80 315 315 385 425 80 125 305 120 300
ST3 1750 1860 1880 1725 1710 80 275 300 290 345 80 165 170 315 385

Aspartate 
Control 1052 1032 1036 1032 960 24 136 132 164 172 24 156 148 184 264

ST1 1052 1068 1008 1096 1040 24 188 188 216 256 24 172 232 172 268
ST3 1052 1036 1000 1024 948 24 220 164 164 192 24 236 216 192 296

 Serine 
Control 360 384 393 408 405 6 33 51 78 108 6 9 18 30 63

ST1 360 384 375 417 405 6 30 48 66 96 6 6 33 9 51
ST3 360 354 360 387 375 6 24 33 51 81 6 30 33 24 66

Glycine 
Control 1342 1376 1320 1282 1168 32 112 108 120 136 32 78 130 180 310

ST1 1342 1368 1270 1354 1236 32 106 104 122 138 32 80 176 110 244
ST3 1342 1356 1334 1324 1252 32 110 112 128 138 32 96 120 146 228

 

Table 4.4.3:  Carbon concentration [C-µmol/L] over time, 13C-mass isotopomer production [C-
µmol/L] from [U-13C6]glucose or [U-13C5]glutamine over time [h] and total 
metabolite consumption [C-µmol/L] over time [h] quantified by HPLC and 
analyzed by GC/MS for primary human hepatocytes exposed to diclofenac. The 
‘-‘ in proline consumption indicates production from other sources than glucose 
or glutamine. 

SA002 
Time 

[h] 

Concentration [C-µmol/L] 

13C-mass isotopomer 
production [C-µmol/L]  

from [U-13C5]glucose and  [U-
13C5]glutamine 

Consumption 
[C-µmol/L] 

0 16 24 36 48 0 16 24 36 48 0 16 24 36 48

Alanine 
Control 2757 3144 3408 3375 3594 78 732 1239 1704 2199 78 345 588 1086 1362

ST1 2757 3003 3126 3231 3561 78 504 636 957 1230 78 258 267 483 426
ST2 2757 2946 3048 3249 3504 78 450 603 810 1119 78 261 312 318 372

Glutamate 
Control 1865 840 465 350 140 55 310 200 215 90 55 1335 1600 1730 1815

ST1 1865 815 265 125 115 40 385 200 90 100 40 1435 1800 1830 1850
ST2 1865 750 260 130 130 40 425 175 95 105 40 1540 1780 1830 1840

Proline 
Control 1715 1840 2055 2200 2390 70 170 235 390 495 70 45 -105 -95 -180

ST1 1715 1950 2070 2325 2280 70 165 230 375 435 70 -70 -125 -235 -130
ST2 1715 1730 1825 2045 2260 70 130 180 295 415 70 115 70 -35 -130

Aspartate 
Control 880 112 76 72 56 100 36 28 32 28 100 804 832 840 852

ST1 880 112 60 56 56 104 28 16 20 20 104 796 836 844 844
ST2 880 112 60 60 60 104 40 24 24 24 104 808 844 844 844

 Serine 
Control 330 306 303 252 252 12 45 57 60 66 12 69 84 138 144

ST1 330 270 261 243 255 12 12 18 18 21 12 72 87 105 96
ST2 330 276 258 264 273 12 12 15 18 21 12 66 87 84 78

Glycine 
Control 1226 1138 1122 1046 1038 28 38 44 52 54 28 126 148 232 242

ST1 1226 1074 1082 1062 1130 28 30 32 34 34 28 182 176 198 130
ST2 1226 1122 1090 1124 1166 28 32 30 32 38 28 136 166 134 98
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As can be seen in Figure 4.4.18 A and B, for PHHs and SA002 cells the metabolites 

serine, alanine and glutamate showed opposite net consumption/production rates. The 

metabolites glycine and aspartate were net consumed and proline net produced for both 

cell types (see Figure 4.4.18 A & B). This was previously observed for PHHs (Figure 

4.4.12) and hESC derived hepatocyte-like cells (Figure 4.4.15). Interestingly, the ratio of 
12C carbon uptake versus 13C carbon production for primary human hepatocytes was 

reduced for alanine and glycine in the extracellular medium, if diclofenac was 

supplemented. This suggests that both metabolites are distinctively produced more from 

non-labeled substrates in primary human hepatocytes, if diclofenac is present, even 

though the net uptake appears to be reduced. For the hESC derived hepatocyte-like cells 

the same trend was observed for glycine, when diclofenac was supplemented. However, 

for alanine, the net rate was here positive (production), even though the ratio of 12C 

carbon atom uptake versus 13C carbon atom production was reduced. This indicates that 

alanine is produced more from the non-labeled substrates also in the SA002 cells, if 

diclofenac is present. 

For primary human hepatocytes it can be further seen in Figure 4.4.18 A, that serine and 

glutamate were net produced. Interestingly, here the reversibility increased with 

increasing diclofenac concentrations, suggesting enhanced influx of these metabolites for 

metabolization (Figure 4.4.18 A). Similarly it can be observed, that while the net 

production of serine and aspartate decreased for the SA002 cells (Figure 4.4.18 C), the 

total efflux of both metabolites must have also decreased with increasing diclofenac 

concentrations. 

Surprisingly, for the hESC derived hepatocyte-like cells, while compared to control 

treatment the net rate of aspartate and glutamate uptake did not distinctively change due 

to diclofenac exposure (Figure 4.4.18 B), the reversibility decreased for glutamate and 

increased for aspartate. This means that glutamate was increasing its efflux (v1) and 

aspartate decreased its efflux (v1) in presence of diclofenac. 

Since it was previously shown (Chapter 4.4.1.2) that metabolic flux balancing is not 

feasible for primary human hepatocytes, non-stationary models have to be applied. For 

these, further information on inter-compartmental exchange fluxes and metabolite 

exchange fluxes with the culture media can be obtained by isotope labeling experiments. 

For isotopomer models the knowledge of reversibility of fluxes is indispensable. Here, a 
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first attempt to determine existence of reversibilities and exchange fluxes with the culture 

medium for PHHs and SA002 cells is presented.  

 
  Figure 4.4.18: Net consumption/production rates with their reversibility (Rev), depicted in the 

brackets as ratio of 12C carbon uptake (v2) versus 13C carbon production (v1) 
according to equation [4.18], of the metabolites serine, glycine, aspartate, 
alanine, proline and glutamate for (A) primary human hepatocytes (PHH) and 
(B) hESC derived hepatocyte-like cells (SA002) exposed to diclofenac in three 
concentrations. The number on top indicates the control (0 µM diclofenac), the 
middle number the ST1 of both cell types (10 µM diclofenac for PHHs, 100 µM 
diclofenac for SA002) and the lowest number indicates 50 µM diclofenac and 
200 µM diclofenac for PHHs and SA002 cells, respectively. The overall net 
direction is shown as big arrow for each metabolite in (A) and (B).  
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4.4.2.4 Glycolysis and TCA cycle  

To further investigate the interconnection of glycolysis, TCA cycle and gluconeogenesis 

or recycling, mass isotopomer fractions [%] and mass isotopomer concentrations 

[µmol/L] of the amino acids alanine, glutamate, aspartate and proline, as well as lactate 

from either [U-13C6]glucose or [U-13C5]glutamine were analyzed for primary human 

hepatocytes and hESC derived hepatocyte-like cells. In addition, possible formation of 

labeled metabolites was considered based on established biochemical pathways.  

This chapter is subdivided into two parts. The first part deals with the analysis of lactate 

and alanine, which have both pyruvate as precursor. The focus of the second part is 

directed towards the metabolites glutamate, aspartate and proline, which are synthesized 

from TCA cycle intermediates.   

 
Figure 4.4.19:  Schematic depiction of labeled (A) glucose carbons (blue, green and orange 

circles) and (B) glutamine carbons (purple circles) metabolism by glycolysis 
and TCA cycle and their possible mass increase in alanine and lactate (indicated 
by filled dots) in primary human hepatocytes and hESC derived hepatocyte-like 
cells. The blue arrow from pyruvate to acetyl-CoA (ACCoA) describes pyruvate 
dehydrogenase (PDH), the green arrow pointing to the TCA cycle intermediate 
depicts the pyruvate carboxylase (PC) and the blue arrow from malate to 
pyruvate indicates malic enzyme (ME) activity.  

As depicted in Figure 4.4.19 A, if [U-13C6]glucose is used as substrate, several mass 

isotopomers can be formed for lactate and alanine. Fully labeled mass isotopomers (m3) 

are formed, if the precursor ([U-13C3]pyruvate) is synthesized from [U-13C6]glucose via 
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glycolysis or the pentose phosphate pathway. The unlabeled pyruvate isotopomer fraction 

(m0) can only be synthesized from unlabeled substrates. m1 or m2 isotopomer fractions 

of pyruvate can only be formed, if [U-13C3]pyruvate enters the TCA cycle, either via 

pyruvate dehydrogenase (PDH) or pyruvate carboxylase (PC). If [U-13C3]pyruvate is 

transformed by PDH activity, it results in [U-13C2]acetyl-CoA. Unlabeled oxaloacetate 

(OAA) condenses then with [U-13C2]acetyl-CoA to form [4,5-13C2]citrate which is 

metabolized in the TCA cycle to [4,5-13C2]α-ketoglutarate and then, due to scrambling, to 

either [1,2-13C2]malate or [3,4-13C2]malate. If [U-13C3]pyruvate is transformed by PC 

activity, also [1,2-13C2]malate or [3,4-13C2]malate is formed (Figure 4.4.19 A). 

The flux towards pyruvate can be explained by two possible enzymes, namely conversion 

of  OAA to phosphoenolpyruvate (PEP) via mitochondrial PEP carboxykinase (PEPCK), 

transport to the cytosol followed by conversion to pyruvate via pyruvate kinase (PK) or 

oxidative decarboxylation of malate to pyruvate via malate dehydrogenase (MDH, or 

malic enzyme ME). [3-13C] or [1,2-13C2]pyruvate is hereby formed which can be 

metabolized to alanine and lactate. Both pathways are active in mammalian (and human) 

liver cells (Brown et al., 1997; Heart et al., 2009; Wimmer et al., 1990). This recycling to 

pyruvate would, due to scrambling of succinate and fumarate (Bernhard and Tompa, 

1990), result in a 50/50 ratio of m1 and m2 isotopomer fractions in alanine and lactate, 

regardless if [U-13C3]pyruvate entered the TCA cycle via PDH or PC (Figure 4.4.19 A). 

If [U-13C5]glutamine is used as a substrate, also several mass isotopomers of lactate and 

alanine can be formed (Figure 4.4.19 B). [U-13C3]pyruvate and thus [U-13C3]alanine and 

[U-13C3]lactate (both m3) would be formed by the previously explained activity of malic 

enzyme or PEP carboxykinase (PEPCK). However, if [U-13C3]pyruvate re-enters the 

TCA cycle, m1 and m2 mass isotopomer fractions and in an additional turn,  m1 mass 

fractions can be formed (see Figure 4.4.19 B). The multiple turns of the TCA cycle for 

glutamate as synthesized metabolite have been described by Bak et al. (2008).  

The measured mass isotopomer fractions and mass isotopomer concentrations of lactate 

and alanine for primary human hepatocytes and hESC derived hepatocyte-like cells, 

cultivated either on [U-13C6]glucose or on [U-13C5]glutamine as substrates are depicted in 

Table 4.4.4 and Table 4.4.5, respectively.  

As can be seen in Table 4.4.4 A, for primary human hepatocytes, cultured for 48 hours on 
[U-13C6]glucose, the enrichment in the m3 fraction of newly secreted lactate for the 
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control cells was 40.7 %. This is due to the direct synthesis of [U-13C3]pyruvate from 
[U-13C6]glucose and its further conversion to [U-13C3]lactate via LDH (see Figure 
4.4.19). Interestingly, approx. 50 % of the mass isotopomer showed no labeling (m0). 
Thus, this mass isotopomer fraction must have been synthesized from other carbon 
sources than [U-13C6]glucose, since lactate was not present in the culture medium and 
was exclusively produced. The m1 and m2 fractions were however enhanced over time, 
which suggests [U-13C3]pyruvate entering the TCA cycle and being cycled back to 
pyruvate, which was then further converted to lactate (m1 and m2 fraction). Interestingly, 
if the PHHs were exposed to diclofenac, the m1 and m2 fractions were enhanced 
compared to control. Thus one can surmise higher recycling activity of ME or PEPCK or 
increased TCA cycle activity. This latter observation can be further confirmed by the 
mass isotopomer fractions in lactate, if the PHHs were cultured on [U-13C5]glutamine. 
Here, even though the TCA flux to pyruvate, as seen in the m3 fraction, was reduced with 
increasing diclofenac concentrations, the m2 and m1 fractions increased, suggesting 
multiple turns in the TCA cycle and thus increased TCA cycling.  

For the hESC derived hepatocyte-like cells, similar trends as for PHHs were observed, 
when cultured on either [U-13C6]glucose or [U-13C5]glutamine as substrate (Table 
4.4.5 A). Interestingly, approx. 86 % of the m3 fraction of the lactate mass isotopomer 
were enriched for the control cells when cultured on [U-13C6]glucose. This means that the 
cells utilized the glucose mainly for lactate synthesis. This effect has been described as 
Warburg effect, meaning that the cells gain their energy mainly by glycolysis, even 
though it is not as effective as the TCA cycle and the oxidative phosphorylation. Here, 
only 10 % of the mass isotopomer showed no labeling (m0), which means that even 
though glucose was the main carbon source for lactate synthesis, also other carbon 
sources were utilized. The m0 fraction was increased in presence of diclofenac, which 
suggests that other carbon sources were then increasingly utilized for lactate synthesis 
and that the glycolysis was either downregulated or the flux into the TCA cycle 
upregulated. Since the m1 and m2 fractions were enhanced for diclofenac exposed cells 
compared to control, here also higher recycling activity of malic enzyme or PEPCK or 
increased TCA cycle activity can be surmised.  
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Table 4.4.4:  Time course of mass isotopomer fractions [%] and mass isotopomer 
concentrations [µmol/L] of extracellular A) lactate and B) alanine, for primary 
human hepatocytes cultivated in parallel with the isotopic substrates 
[U-13C6]glucose and [U-13C5]glutamine and exposed to diclofenac in three 
concentrations. Isotopomer distribution (m0-m3) is expressed in %.  

A 
Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C6]glucose 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C6]glucose 

0 12 24 35 48 0 12 24 35 48 

Control 
[0 µM 

Diclofenac] 

m0 96.1 59.7 58.6 56.0 50.5 0 0 307 495 801 
m1 3.3 2.9 3.4 3.7 4.0 0 0 18 33 63 
m2 0.3 2.7 3.6 3.9 4.8 0 0 19 34 76 
m3 0.2 34.7 34.4 36.4 40.7 0 0 180 322 646 

ST1 
[10 µM 

Diclofenac] 

m0 96.1 55.0 56.0 53.5 53.8 0 0 193 406 764 
m1 3.3 2.7 3.4 3.6 4.0 0 0 12 27 57 
m2 0.3 2.6 3.7 4.1 4.7 0 0 13 31 67 
m3 0.2 39.8 36.9 38.9 37.5 0 0 127 295 533 

ST3 
[50 µM 

Diclofenac] 

m0 96.1 46.1 52.0 52.5 46.8 0 0 0 402 485 
m1 3.3 2.1 2.7 3.2 4.1 0 0 0 25 43 
m2 0.3 2.3 2.8 3.6 5.7 0 0 0 28 59 
m3 0.2 49.5 42.5 40.6 43.5 0 0 0 311 451 

Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C5]glutamine 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C5]glutamine 

0 12 24 35 48 0 12 24 35 48 

Control 
[0 µM 

Diclofenac] 

m0 96.1 87.7 85.0 84.6 82.0 0 0 445 748 1301 
m1 3.3 4.4 4.9 5.1 5.5 0 0 26 45 87 
m2 0.3 4.0 5.0 5.2 5.9 0 0 26 46 94 
m3 0.2 3.9 5.1 5.2 6.5 0 0 27 46 103 

ST1 
[10 µM 

Diclofenac] 

m0 96.1 85.9 84.1 83.3 81.8 0 0 289 633 1162 
m1 3.3 4.7 5.0 5.2 5.5 0 0 17 39 78 
m2 0.3 4.9 5.3 5.4 5.8 0 0 18 41 82 
m3 0.2 4.5 5.7 6.1 6.8 0 0 20 46 97 

ST3 
[50 µM 

Diclofenac] 

m0 96.1 89.6 86.4 86.9 83.6 0 0 0 666 867 
m1 3.3 4.1 4.6 4.6 5.4 0 0 0 35 56 
m2 0.3 3.1 4.2 3.9 5.2 0 0 0 30 54 
m3 0.2 3.2 4.7 4.6 5.8 0 0 0 35 60 

 

B 
Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C6]glucose 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C6]glucose 

0 12 24 35 48 0 12 24 35 48 

Control 
[0 µM 

Diclofenac] 

m0 96.1 82.5 78.7 73.2 60.3 1023 821 712 620 470 
m1 3.5 3.6 3.6 3.8 4.1 37 36 33 32 32 
m2 0.3 12.3 12.4 13.0 16.1 3 122 112 110 125 
m3 0.0 1.5 5.2 10.0 19.5 0 15 47 85 152 

ST1 
[10 µM 

Diclofenac] 

m0 96.1 84.4 80.3 76.2 64.5 1023 865 794 737 550 
m1 3.5 3.5 3.6 3.7 4.1 37 36 36 36 35 
m2 0.3 10.8 12.0 13.0 16.8 3 111 119 126 143 
m3 0.0 1.3 4.2 7.0 14.7 0 13 42 68 125 

ST3 
[50 µM 

Diclofenac] 

m0 96.1 83.9 83.0 76.4 66.0 1023 894 842 772 658 
m1 3.5 3.4 3.5 3.7 4.1 37 36 35 37 41 
m2 0.3 11.4 10.4 13.3 14.5 3 121 105 134 145 
m3 0.0 1.3 3.1 6.7 15.5 0 14 31 68 155 

Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C5]glutamine 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C5]glutamine 

0 12 24 35 48 0 12 24 35 48 

Control 
[0 µM 

Diclofenac] 

m0 96.1 94.5 93.6 91.9 87.0 1023 940 847 779 678 
m1 3.5 4.2 4.2 4.5 5.4 37 42 38 38 42 
m2 0.3 0.6 1.1 1.8 3.6 3 6 10 15 28 
m3 0.0 0.6 1.1 1.8 4.0 0 6 10 15 31 

ST1 
[10 µM 

Diclofenac] 

m0 96.1 94.3 92.4 90.7 86.6 1023 966 914 877 738 
m1 3.5 4.1 4.4 4.6 5.3 37 42 44 44 45 
m2 0.3 0.9 1.6 2.2 3.7 3 9 16 21 32 
m3 0.0 0.8 1.7 2.5 4.3 0 8 17 24 37 

ST3 
[50 µM 

Diclofenac] 

m0 96.1 94.1 92.3 91.9 87.6 1023 1003 936 929 874 
m1 3.5 4.0 4.3 4.3 5.2 37 43 44 43 52 
m2 0.3 0.9 1.6 1.7 3.4 3 10 16 17 34 
m3 0.0 0.9 1.8 2.1 3.8 0 10 18 21 38 
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Table 4.4.5:  Time course of mass isotopomer fractions [%] and mass isotopomer 
concentrations [µmol/L] of extracellular A) lactate and B) alanine, for hESC 
derived hepatocyte-like cells, cultivated in parallel with the isotopic substrates 
[U-13C6]glucose and [U-13C5]glutamine and exposed to diclofenac in three 
concentrations. Isotopomer distribution (m0-m3) is expressed in %. 

A 
Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C6]glucose 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C6]glucose 

0 16 24 36 48 0 16 24 36 48 

Control 
[0 µM 

Diclofenac] 

m0 96.8 16.8 14.7 12.9 10.9 0 760 1210 1279 1530 
m1 2.7 1.1 1.0 1.0 0.9 0 52 81 95 132 
m2 0.1 2.1 2.1 2.3 2.5 0 97 176 228 352 
m3 0.3 79.9 82.2 83.8 85.7 0 3604 6777 8312 12085 

ST1 
[100 µM 

Diclofenac] 

m0 91.7 22.0 18.3 16.2 15.0 0 442 405 654 757 
m1 3.2 1.7 1.5 1.4 1.4 0 34 34 56 72 
m2 1.5 2.6 2.7 2.6 2.8 0 52 60 106 142 
m3 3.6 73.7 77.5 79.7 80.8 0 1480 1717 3210 4090 

ST2 
[200 µM 

Diclofenac] 

m0 91.7 26.2 20.9 19.5 17.9 0 561 689 833 938 
m1 3.2 1.7 1.6 1.6 1.6 0 37 51 68 83 
m2 1.5 2.4 2.5 2.6 2.7 0 50 82 113 143 
m3 3.6 69.7 75.0 76.2 77.8 0 1490 2470 3250 4080 

Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C5]glutamine 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C5]glutamine 

0 16 24 36 48 0 16 24 36 48 

Control 
[0 µM 

Diclofenac] 

m0 96.8 96.8 96.8 96.7 96.6 0 4369 7979 9587 13621 
m1 2.7 2.7 2.7 2.8 2.9 0 122 224 275 402 
m2 0.1 0.1 0.1 0.1 0.1 0 6 12 14 20 
m3 0.3 0.3 0.4 0.4 0.4 0 15 30 38 55 

ST1 
[100 µM 

Diclofenac] 

m0 96.8 97.0 96.8 96.7 96.5 0 1948 2146 3892 4885 
m1 2.7 2.7 2.7 2.8 2.9 0 53 60 113 148 
m2 0.1 0.1 0.1 0.2 0.2 0 1 3 6 9 
m3 0.3 0.3 0.3 0.4 0.4 0 5 8 15 20 

ST2 
[200 µM 

Diclofenac] 

m0 96.8 96.9 96.7 96.6 96.6 0 2072 3182 4117 5064 
m1 2.7 2.7 2.8 2.9 2.9 0 58 93 123 151 
m2 0.1 0.1 0.1 0.2 0.2 0 2 5 7 9 
m3 0.3 0.3 0.4 0.4 0.4 0 6 12 17 20 

 

B 
Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C6]glucose 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C6]glucose 

0 16 24 36 48 0 16 24 36 48 

Control 
[0 µM 

Diclofenac] 

m0 96.5 75.4 62.4 48.4 38.0 887 790 709 544 455 
m1 2.6 2.3 2.1 1.9 1.8 24 24 24 21 21 
m2 0.7 2.9 3.4 3.5 3.3 7 31 39 39 40 
m3 0.1 19.3 32.1 46.3 57.0 1 203 365 520 682 

ST1 
[100 µM 

Diclofenac] 

m0 96.6 81.9 78.7 69.3 64.4 887 819 820 747 765 
m1 2.7 2.8 2.7 2.7 2.7 25 28 28 29 32 
m2 0.7 2.0 1.8 2.5 2.7 6 20 19 27 32 
m3 0.1 13.3 16.7 25.5 30.2 1 133 174 275 358 

ST2 
[200 µM 

Diclofenac] 

m0 96.6 83.5 79.1 73.9 67.0 887 820 804 800 783 
m1 2.7 2.8 2.8 2.9 2.9 25 28 28 31 34 
m2 0.7 1.5 1.9 2.3 2.6 6 14 20 25 30 
m3 0.1 12.2 16.2 20.9 27.5 1 119 164 226 322 

Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C5]glutamine 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C5]glutamine 

0 16 24 36 48 0 16 24 36 48 

Control 
[0 µM 

Diclofenac] 

m0 96.5 96.6 96.6 96.6 96.6 887 1013 1097 1086 1157 
m1 2.6 3.1 3.1 3.0 3.0 24 33 35 34 36 
m2 0.7 0.1 0.1 0.1 0.1 7 1 1 1 1 
m3 0.1 0.2 0.2 0.3 0.3 1 2 3 3 4 

ST1 
[100 µM 

Diclofenac] 

m0 96.5 96.7 96.5 96.4 96.2 887 968 1006 1038 1143 
m1 2.6 3.0 2.9 2.9 3.0 24 30 30 32 36 
m2 0.7 0.1 0.3 0.3 0.2 7 1 3 3 3 
m3 0.1 0.2 0.3 0.4 0.5 1 2 3 4 6 

ST2 
[200 µM 

Diclofenac] 

m0 96.5 96.9 96.6 96.3 96.2 887 951 982 1043 1123 
m1 2.6 2.8 2.9 3.1 3.0 24 27 30 33 35 
m2 0.7 0.1 0.2 0.2 0.2 7 1 2 2 3 
m3 0.1 0.2 0.3 0.4 0.6 1 2 3 4 6 
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As can be seen in Table 4.4.4 B, for primary human hepatocytes, cultured for 48 hours on 
[U-13C6]glucose, the enrichment in the m3 fraction of alanine for the control cells was 
19.5 %. Interestingly, here the m2 fraction was 16.1 % even though the m1 fraction was 
only 4.1 % after 48 hours of cultivation. Usually one assumes scrambling of succinate 
and fumarate to result in a 50/50 ratio of m1 and m2 isotopomer fractions in alanine, 
regardless if [U-13C3]pyruvate entered the TCA cycle via PDH or PC. However, this high 
m2 fraction suggests that no scrambling occurs (see Figure 4.4.19), which would mean 
that [U-13C3]pyruvate which enters the TCA cycle by PDH complex can be only 
measured as m0 or m2 fraction in alanine. Similar, it could be seen for the SA002 control 
cells (Table 4.4.5 B), that the m1 fraction remained constant and the m2 fraction 
increased significantly over time.  

Thus, these data suggest that for primary human hepatocytes and hESC derived 

hepatocyte-like cells no (complete) randomization of the symmetric citric acid cycle 

intermediates (succinate and fumarate) occurs. Orientation conserved enzyme-to-enzyme 

channelling has been previously published for perfused rat livers (Sherry et al., 1994), 

tumoural islet cells (Malaisse et al., 1996) and yeast (Sumegi et al., 1990). 

In the second part of this chapter the metabolites glutamate, aspartate and proline, which 

are synthesized from TCA cycle intermediates, are analyzed to gain further insights into 

the pathways of primary human hepatocytes and hESC derived hepatocyte-like cells.  

As depicted in Figure 4.4.20 A, if [U-13C6]glucose was used as substrate, several mass 

isotopomers can be formed for glutamate, proline and aspartate. Proline however is not 

depicted as a separate isotopomer, since it is synthesized from glutamate and has the 

same carbon backbone as such. If [U-13C6]glucose forms [U-13C3]pyruvate via glycolysis, 

pyruvate is transformed by PDH activity to [U-13C2]acetyl-CoA. In the first turn 

unlabeled oxaloacetate (OAA) condenses then with [U-13C2]acetyl-CoA to form 

[4,5-13C2]citrate which is metabolized in the TCA cycle to [4,5-13C2]α-ketoglutarate 

(precursor of glutamate and proline) and then, due to scrambling, to either [1,2-13C2]OAA 

or [3,4-13C2]OAA (precursor of aspartate). If [U-13C3]pyruvate is transformed by PC 

activity, [1,2,3-13C3]OAA is formed, which condenses with unlabed acetyl-CoA to 

[2,3,6-13C3]citrate or with [U-13C2]acetyl-CoA to [2,3,4,5,6-13C5]citrate which is 

metabolized in the TCA cycle to [2,3-13C2]α-ketoglutarate or [2,3,4,5-13C4]α-keto-

glutarate (precursor of glutamate and proline) and then, due to scrambling, to either 
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[1,2-13C2]OAA, [3,4-13C2]OAA or [U-13C4]OAA (precursor of aspartate). From both 

reactions the flux from malate or OAA via malic enzyme or PEPCK and PK to pyruvate 

can result in m3, m2, or m1 fractional enrichment in pyruvate.  

 
Figure 4.4.20:  Schematic depiction of labeled (A) glucose carbons (blue, orange and green 

circles) and (B) glutamine carbons (purple circles) metabolism by glycolysis 
and TCA cycle and their possible mass increase in alanine, lactate, glutamate 
and aspartate (indicated by filled circles). A & B depict the TCA cycle with 
scrambling of fumarate and succinate and B & C without scrambling. The blue 
arrow from pyruvate to acetyl-CoA (ACCoA) describes pyruvate 
dehydrogenase (PDH) and the green arrow pointing to the TCA cycle 
intermediate depicts the pyruvate carboxylase (PC) and the blue arrow from 
malate to pyruvate indicates malic enzyme and PEPCK activity.  



 PHYSIOLOGICAL STUDIES AT SUB-TOXIC DRUG CONCENTRATIONS 

173 

 

The fractional enrichment in glutamate, proline and aspartate is depicted in 

Figure 4.4.20 B. [U-13C5]glutamine is deaminated to [U-13C5]glutamate and further to 

[U-13C5]α-ketoglutarate (TCA cycle) (Bak et al., 2008). This leads to [U-13C4]OAA, 

which in turn can produce [U-13C4]aspartate (m4). Oxaloacetate can then condense with 

non-labeled acetyl-CoA and form fourfold labeled citrate, which can then give rise to m3 

α-ketoglutarate and m3 glutamate and m3 proline, as well as m2 aspartate, as depicted in 

Figure 4.4.20 B & D. The multiple turns of the TCA cycle for glutamate and aspartate as 

synthesized metabolites have been described by Bak et al. (2008).   

The measured mass isotopomer fractions and mass isotopomer concentrations of 

glutamate, proline and aspartate for primary human hepatocytes and hESC derived 

hepatocyte-like cells, cultivated either on [U-13C6]glucose or on [U-13C5]glutamine as 

substrates are depicted in Table 4.4.6 and Table 4.4.7, respectively.  

As can be seen for the glutamate and proline fractions, derived from glucose, the m3 

fraction was 39 % for primary human hepatocytes (Table 4.4.6 A & B). According to 

Furch et al. (2009) and Compte et al. (1997), [U-13C3]pyruvate is carboxylated to 

[1,2,3-13C3]OAA by PC or to [1,2,3-13C3]malate via malic enzyme. Then it is further 

converted via TCA cycle to the intermediate [2,3-13C2]α-ketoglutarate and thus to 

[2,3-13C2]glutamate (m2). Keeping in mind the reversibility of the fumarase and malate 

DH reactions, [2,3,4-13C3]OAA can be formed (Sherry et al., 2004), which would then 

form [1,2,3-13C3]α-ketoglutarate and result in [1,2,3-13C3]glutamate (m3 fraction). 

However, if that would be the case, also a high m2 fraction in proline and glutamate from 

[2,3-13C2]α-ketoglutarate would be expected, which is not the case regarding the collected 

data.  
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Table 4.4.6:  Time course of mass isotopomer fractions [%] and mass isotopomer 
concentrations [µmol/L] of extracellular A) glutamate, B) proline and 
C) aspartate, for primary human hepatocytes cultivated in parallel with the 
isotopic substrates [U-13C6]glucose and [U-13C5]glutamine and exposed to 
diclofenac in three concentrations. Isotopomer distribution is expressed in %, i.e., 
the sum of the individual fractions equals 100 %. 

A 
Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C6]glucose 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C6]glucose 

0 12 24 35 48 0 12 24 35 48 

Control 
[0 µM 

Diclofenac] 

m0 95.1 61.8 51.5 41.6 53.4 429 287 256 221 298 
m1 4.4 3.5 3.1 2.8 3.2 20 16 15 15 18 
m2 0.3 2.3 3.3 4.0 3.6 1 11 16 21 20 
m3 0.1 31.6 41.2 51.1 39.0 0 147 205 272 218 
m4 0.0 1.0 0.8 0.8 0.7 0 3 4 3 3 
m5 4.4 3.5 3.1 2.8 3.2 0 0 0 1 1 

ST1 
[10 µM 

Diclofenac] 

m0 95.1 53.0 42.3 46.9 42.7 429 249 199 255 244 
m1 4.4 3.1 2.7 2.8 2.8 20 15 13 15 16 
m2 0.3 2.9 3.9 3.7 4.0 1 14 18 20 23 
m3 0.1 39.9 50.2 45.6 49.7 0 187 237 248 283 
m4 0.0 0.9 0.8 0.8 0.7 0 4 4 4 4 
m5 0.0 0.1 0.1 0.1 0.1 0 0 0 1 1 

ST3 
[50 µM 

Diclofenac] 

m0 95.1 48.4 35.6 52.4 38.1 429 214 162 269 197 
m1 4.4 2.9 2.4 3.1 2.7 20 13 11 16 14 
m2 0.3 3.4 4.2 3.0 4.5 1 15 19 15 23 
m3 0.1 44.4 56.3 41.2 54.1 0 196 257 211 279 
m4 0.0 0.7 1.4 0.3 0.7 0 3 6 2 4 
m5 0.0 0.2 0.1 0.1 0.1 0 1 0 1 1 

Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C5]glutamine 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C5]glutamine 

0 12 24 35 48 0 12 24 35 48 

Control 
[0 µM 

Diclofenac] 

m0 95.1 88.5 85.0 80.6 74.1 429 411 422 429 413 
m1 4.4 4.4 4.3 4.1 4.0 20 20 21 22 22 
m2 0.3 0.6 0.7 1.1 1.5 1 3 3 6 8 
m3 0.1 2.1 2.4 3.5 3.2 0 10 12 19 18 
m4 0.0 0.5 0.7 0.9 1.4 0 2 3 5 8 
m5 0.0 3.9 7.0 9.8 15.7 0 18 35 52 88 

ST1 
[10 µM 

Diclofenac] 

m0 95.1 83.2 80.4 76.7 69.2 429 390 379 417 395 
m1 4.4 4.5 4.5 4.3 4.2 20 21 21 23 24 
m2 0.3 5.1 3.5 4.1 5.9 1 24 16 22 34 
m3 0.1 2.4 2.7 3.0 3.5 0 11 13 16 20 
m4 0.0 0.6 0.9 1.1 1.5 0 3 4 6 9 
m5 0.0 4.3 7.9 10.8 15.7 0 20 37 59 90 

ST3 
[50 µM 

Diclofenac] 

m0 95.1 88.1 82.3 82.4 73.7 429 389 376 423 381 
m1 4.4 4.6 4.5 4.3 4.5 20 20 21 22 23 
m2 0.3 0.6 3.0 0.9 3.7 1 3 14 5 19 
m3 0.1 2.7 3.0 3.3 3.7 0 12 14 17 19 
m4 0.0 0.5 0.8 0.8 1.4 0 2 4 4 7 
m5 0.0 3.6 6.4 8.3 13.1 0 16 29 43 68 

 
B 

Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C6]glucose 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C6]glucose 

0 12 24 35 48 0 12 24 35 48 

Control 
[0 µM 

Diclofenac] 

m0 93.0 80.9 79.6 77.6 73.1 325 286 281 274 251 
m1 5.1 4.6 4.5 4.4 4.1 18 16 16 16 14 
m2 0.2 0.4 0.4 0.5 0.5 1 1 1 2 2 
m3 1.3 13.0 14.4 16.1 20.6 5 46 51 57 71 
m4 0.2 0.8 0.8 0.9 1.1 1 3 3 3 4 
m5 0.1 0.3 0.3 0.5 0.7 0 1 1 2 2 

ST1 
[10 µM 

Diclofenac] 

m0 93.0 82.8 81.7 80.6 76.1 325 321 288 325 285 
m1 5.1 4.7 4.7 4.6 4.3 18 18 17 19 16 
m2 0.2 0.4 0.4 0.4 0.5 1 2 1 2 2 
m3 1.3 11.1 12.0 13.1 17.5 5 43 42 53 66 
m4 0.2 0.8 0.8 0.8 1.0 1 3 3 3 4 
m5 0.1 0.3 0.3 0.4 0.6 0 1 1 2 2 
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ST3 
[50 µM 

Diclofenac] 

m0 93.0 84.4 84.1 82.1 78.9 325 314 316 283 270 
m1 5.1 4.8 4.6 4.6 4.4 18 18 17 16 15 
m2 0.2 0.4 0.4 0.4 0.4 1 1 2 1 1 
m3 1.3 9.6 10.0 11.9 15.0 5 36 38 41 51 
m4 0.2 0.6 0.7 0.8 0.8 1 2 3 3 3 
m5 0.1 0.2 0.2 0.3 0.5 0 1 1 1 2 

Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C5]glutamine 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C5]glutamine 

0 12 24 35 48 0 12 24 35 48 

Control 
[0 µM 

Diclofenac] 

m0 93.0 81.3 83.8 82.1 80.5 325 288 295 290 276 
m1 5.1 4.7 4.7 4.7 4.5 18 17 17 17 15 
m2 0.2 0.5 0.4 0.4 0.4 1 2 1 1 1 
m3 1.3 12.5 10.2 11.7 13.2 5 44 36 41 45 
m4 0.2 0.8 0.6 0.7 0.8 1 3 2 2 3 
m5 0.1 0.3 0.3 0.4 0.7 0 1 1 1 2 

ST1 
[10 µM 

Diclofenac] 

m0 93.0 84.3 83.0 82.2 81.6 325 327 292 332 306 
m1 5.1 4.8 4.7 4.6 4.7 18 19 17 19 18 
m2 0.2 0.4 0.4 0.4 0.4 1 2 1 2 1 
m3 1.3 9.7 10.9 11.6 11.9 5 38 38 47 45 
m4 0.2 0.6 0.6 0.7 0.7 1 2 2 3 3 
m5 0.1 0.3 0.4 0.5 0.7 0 1 1 2 3 

ST3 
[50 µM 

Diclofenac] 

m0 93.0 84.9 83.8 84.1 82.4 325 316 315 290 282 
m1 5.1 4.7 4.6 4.6 4.6 18 17 17 16 16 
m2 0.2 0.3 0.3 0.3 0.4 1 1 1 1 1 
m3 1.3 9.3 10.3 10.1 11.4 5 35 39 35 39 
m4 0.2 0.5 0.6 0.6 0.7 1 2 2 2 2 
m5 0.1 0.2 0.3 0.3 0.5 0 1 1 1 2 

 
C 

Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C6]glucose 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C6]glucose 

0 12 24 35 48 0 12 24 35 48 

Control 
[0 µM 

Diclofenac] 

m0 95.7 80.8 81.8 78.7 77.7 252 208 212 203 186 
m1 4.0 4.4 4.7 4.7 4.9 11 11 12 12 12 
m2 0.1 12.3 9.8 11.9 12.5 0 32 25 31 30 
m3 0.1 1.1 1.6 2.1 2.7 0 3 4 5 6 
m4 0.1 1.4 2.1 2.5 2.2 0 4 5 6 5 

ST1 
[10 µM 

Diclofenac] 

m0 95.7 73.3 74.5 74.2 67.3 252 196 188 204 175 
m1 4.0 4.4 4.7 4.5 4.6 11 12 12 12 12 
m2 0.1 18.9 16.4 17.1 23.1 0 51 41 47 60 
m3 0.1 1.4 1.8 1.9 2.5 0 4 5 5 6 
m4 0.1 2.0 2.6 2.3 2.5 0 5 7 6 6 

ST3 
[50 µM 

Diclofenac] 

m0 95.7 66.2 79.2 78.7 75.4 252 171 198 201 179 
m1 4.0 4.3 4.6 4.7 4.9 11 11 12 12 12 
m2 0.1 25.9 11.7 12.5 14.5 0 67 29 32 34 
m3 0.1 1.5 1.6 1.6 2.4 0 4 4 4 6 
m4 0.1 2.2 2.9 2.5 2.9 0 6 7 6 7 

Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C5]glutamine 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C5]glutamine 

0 12 24 35 48 0 12 24 35 48 

Control 
[0 µM 

Diclofenac] 

m0 95.7 92.5 92.3 90.2 88.6 252 239 239 233 212 
m1 4.0 4.6 4.4 5.2 4.7 11 12 11 13 11 
m2 0.1 0.8 0.9 1.3 1.9 0 2 2 3 5 
m3 0.1 1.1 1.2 1.7 2.5 0 3 3 4 6 
m4 0.1 1.0 1.1 1.6 2.3 0 3 3 4 6 

ST1 
[10 µM 

Diclofenac] 

m0 95.7 91.6 89.8 88.6 86.5 252 245 226 243 225 
m1 4.0 4.9 5.1 5.1 5.3 11 13 13 14 14 
m2 0.1 0.9 1.4 1.7 2.3 0 2 4 5 6 
m3 0.1 1.3 1.9 2.3 2.9 0 3 5 6 8 
m4 0.1 1.3 1.9 2.3 3.0 0 3 5 6 8 

ST3 
[50 µM 

Diclofenac] 

m0 95.7 91.6 90.2 90.1 87.2 252 237 226 230 207 
m1 4.0 4.7 5.0 4.7 5.5 11 12 13 12 13 
m2 0.1 1.0 1.3 1.3 2.0 0 3 3 3 5 
m3 0.1 1.3 1.7 1.9 2.6 0 3 4 5 6 
m4 0.1 1.3 1.8 2.0 2.7 0 3 5 5 6 
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Table 4.4.7:  Time course of mass isotopomer fractions [%] and mass isotopomer 
concentrations [µmol/L] of extracellular A) glutamate, B) proline and 
C) aspartate, for hESC derived hepatocyte-like cells, cultivated in parallel with 
the isotopic substrates [U-13C6]glucose and [U-13C5]glutamine and exposed to 
diclofenac in three concentrations. Isotopomer distribution is expressed in %, i.e., 
the sum of the individual fractions equals 100 %. 

A 
Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C6]glucose 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C6]glucose 

0 16 24 36 48 0 16 24 36 48 

Control 
[0 µM 

Diclofenac] 
 

m0 95.7 57.0 57.9 43.3 31.3 357 96 54 30 9 
m1 4.0 3.5 3.9 4.1 4.0 15 6 4 3 1 
m2 0.1 8.0 11.4 18.8 21.8 0 13 11 13 6 
m3 0.1 26.3 18.0 16.9 31.7 0 44 17 12 9 
m4 0.1 4.6 7.3 13.9 6.5 0 8 7 10 2 
m5 0.0 0.6 1.5 3.0 4.6 0 1 1 2 1 

 
ST1 

[100 µM 
Diclofenac] 

m0 95.7 34.1 18.0 9.3 8.1 357 55 9 2 2 
m1 4.0 2.3 1.8 1.4 1.4 15 4 1 0 0 
m2 0.1 6.5 9.3 8.9 8.4 0 11 5 2 2 
m3 0.1 50.5 63.3 69.9 71.2 0 82 33 17 16 
m4 0.1 6.0 6.8 9.4 9.9 0 10 4 2 2 
m5 0.0 0.6 0.8 1.2 1.0 0 1 0 0 0 

ST2 
[200 µM 

Diclofenac] 

m0 95.7 21.6 12.3 7.0 7.5 357 32 6 2 2 
m1 4.0 1.7 1.5 1.2 1.3 15 3 1 0 0 
m2 0.1 5.4 7.5 7.8 8.7 0 8 4 2 2 
m3 0.1 65.7 70.9 75.3 74.8 0 99 37 20 19 
m4 0.1 5.4 6.9 7.8 6.7 0 8 4 2 2 
m5 0.0 0.2 0.9 0.8 1.0 0 0 0 0 0 

Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C5]glutamine 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C5]glutamine 

0 16 24 36 48 0 16 24 36 48 

Control 
[0 µM 

Diclofenac] 
 

m0 95.9 81.7 69.5 37.8 57.0 358 137 65 26 16 
m1 3.1 3.9 5.6 4.9 7.1 12 7 5 3 2 
m2 0.2 1.3 6.3 44.6 15.0 1 2 6 31 4 
m3 0.7 3.3 6.2 6.6 7.1 3 5 6 5 2 
m4 0.0 1.3 2.7 2.4 3.8 0 2 3 2 1 
m5 0.0 8.6 9.8 3.7 9.9 0 14 9 3 3 

 
ST1 

[100 µM 
Diclofenac] 

m0 95.7 86.3 46.0 63.4 30.8 357 140 24 16 7 
m1 4.0 4.6 4.4 7.6 4.1 15 8 2 2 1 
m2 0.1 0.5 33.2 19.2 53.7 0 1 18 5 12 
m3 0.1 2.0 5.9 4.9 6.3 0 3 3 1 1 
m4 0.1 0.8 3.0 2.0 2.4 0 1 2 1 1 
m5 0.0 5.8 7.6 2.8 2.7 0 9 4 1 1 

ST2 
[200 µM 

Diclofenac] 

m0 95.7 85.2 79.3 69.7 49.9 357 128 41 18 13 
m1 4.0 4.4 3.5 6.4 5.4 15 7 2 2 1 
m2 0.1 0.2 1.1 2.3 26.5 0 0 1 1 7 
m3 0.1 2.1 5.2 9.5 8.4 0 3 3 2 2 
m4 0.1 0.9 2.0 3.5 2.8 0 1 1 1 1 
m5 0.0 7.1 9.0 8.6 7.1 0 11 5 2 2 

 

B 
Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C6]glucose 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C6]glucose 

0 16 24 36 48 0 16 24 36 48 

Control 
[0 µM 

Diclofenac] 

m0 93.5 87.8 85.8 80.9 78.9 321 323 353 356 378 
m1 5.1 4.7 4.8 4.8 4.8 17 17 20 21 23 
m2 0.3 4.5 5.3 7.7 8.3 1 16 22 34 40 
m3 0.7 1.7 2.3 3.0 3.2 2 6 9 13 16 
m4 0.3 0.9 1.2 2.3 2.9 1 3 5 10 14 
m5 0.1 0.5 0.7 1.4 1.8 0 2 3 6 9 

ST1 
[100 µM 

Diclofenac] 

m0 93.1 87.5 84.2 79.5 78.6 320 341 349 369 358 
m1 5.1 5.1 5.2 5.1 5.2 18 20 21 24 23 
m2 0.3 4.3 6.2 7.9 7.8 1 17 26 37 36 
m3 1.0 1.7 2.1 3.1 3.3 3 6 9 14 15 
m4 0.3 1.0 1.6 2.8 3.1 1 4 6 13 14 
m5 0.2 0.5 0.7 1.6 2.0 1 2 3 7 9 
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ST2 
[200 µM 

Diclofenac] 

m0 93.1 88.5 86.1 83.0 80.6 320 307 315 340 364 
m1 5.1 5.2 5.1 5.3 5.3 18 18 19 21 24 
m2 0.3 3.8 5.0 6.3 7.3 1 13 18 26 33 
m3 1.0 1.3 2.0 2.5 2.9 3 5 7 10 13 
m4 0.3 0.8 1.3 1.9 2.5 1 3 5 8 11 
m5 0.2 0.3 0.6 1.0 1.3 1 1 2 4 6 

Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C5]glutamine 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C5]glutamine 

0 16 24 36 48 0 16 24 36 48 

Control 
[0 µM 

Diclofenac] 

m0 93.5 90.9 89.6 85.2 82.8 321 335 368 375 396 
m1 5.1 4.9 4.9 5.4 5.8 17 18 20 24 28 
m2 0.3 0.4 0.5 1.0 1.4 1 1 2 4 7 
m3 0.7 1.5 1.7 2.8 3.3 2 6 7 12 16 
m4 0.3 0.3 0.3 0.5 0.5 1 1 1 2 3 
m5 0.1 1.9 2.9 5.2 6.2 0 7 12 23 29 

ST1 
[100 µM 

Diclofenac] 

m0 93.5 91.5 90.7 87.1 84.7 321 357 376 404 386 
m1 5.1 5.0 5.1 5.7 6.0 17 20 21 26 27 
m2 0.3 0.3 0.4 2.0 1.3 1 1 2 9 6 
m3 0.7 1.5 1.5 2.1 2.9 2 6 6 10 13 
m4 0.3 0.3 0.2 0.5 0.5 1 1 1 2 2 
m5 0.1 1.4 2.0 2.7 4.7 0 6 8 12 21 

ST2 
[200 µM 

Diclofenac] 

m0 93.5 92.0 90.9 87.3 84.0 321 319 332 357 380 
m1 5.1 5.1 5.1 5.6 6.0 17 18 19 23 27 
m2 0.3 0.3 0.5 0.9 1.3 1 1 2 4 6 
m3 0.7 1.1 1.4 2.2 2.9 2 4 5 9 13 
m4 0.3 0.2 0.3 0.4 0.5 1 1 1 2 2 
m5 0.1 1.3 1.8 3.7 5.4 0 4 7 15 24 

 

C 
Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C6]glucose 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C6]glucose 

0 16 24 36 48 0 16 24 36 48 

Control 
[0 µM 

Diclofenac] 

m0 95.7 62.3 56.9 46.1 36.2 197 18 11 8 5 
m1 4.0 9.6 8.5 5.1 7.2 9 3 2 1 1 
m2 0.1 4.2 2.9 1.9 2.6 2 1 1 0 0 
m3 0.1 16.7 27.7 44.9 51.0 2 5 5 8 7 
m4 0.1 7.2 4.0 2.0 3.1 1 2 1 0 0 

 
ST1 

[100 µM 
Diclofenac] 

m0 95.7 72.1 70.2 62.8 54.6 198 20 10 9 8 
m1 4.0 6.7 7.2 7.1 9.1 10 2 1 1 1 
m2 0.1 3.0 2.5 2.9 4.3 3 1 0 0 1 
m3 0.1 13.0 15.6 21.8 24.5 2 4 2 3 3 
m4 0.1 5.1 4.5 5.3 7.4 1 1 1 1 1 

ST2 
[200 µM 

Diclofenac] 

m0 95.7 61.8 63.8 58.9 55.0 198 17 9 9 8 
m1 4.0 10.5 8.4 9.4 10.2 10 3 1 1 2 
m2 0.1 5.2 4.9 5.5 5.5 3 1 1 1 1 
m3 0.1 11.6 14.3 16.9 20.7 2 3 2 2 3 
m4 0.1 10.9 8.6 9.4 8.6 1 3 1 1 1 

Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C5]glutamine 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C5]glutamine 

0 16 24 36 48 0 16 24 36 48 

Control 
[0 µM 

Diclofenac] 

m0 95.7 85.2 88.3 90.5 90.9 193 24 17 16 13 
m1 4.0 7.5 6.0 5.2 5.4 14 2 1 1 1 
m2 0.1 1.6 1.1 1.2 0.9 2 0 0 0 0 
m3 0.1 2.5 2.2 1.5 1.3 3 1 0 0 0 
m4 0.1 3.2 2.4 1.6 1.5 1 1 0 0 0 

 
ST1 

[100 µM 
Diclofenac] 

m0 95.7 85.2 83.3 78.0 83.4 197 24 12 11 12 
m1 4.0 6.6 8.1 9.8 8.1 9 2 1 1 1 
m2 0.1 1.6 2.2 4.2 1.4 2 0 0 1 0 
m3 0.1 3.2 3.3 3.9 4.1 2 1 0 1 1 
m4 0.1 3.4 3.1 4.1 3.1 1 1 0 1 0 

ST2 
[200 µM 

Diclofenac] 

m0 95.7 81.0 75.6 77.3 74.2 197 23 11 11 11 
m1 4.0 7.7 11.4 10.4 11.9 9 2 2 2 2 
m2 0.1 2.2 2.4 2.8 3.3 2 1 0 0 0 
m3 0.1 4.0 5.3 4.9 5.2 2 1 1 1 1 
m4 0.1 5.1 5.2 4.5 5.4 1 1 1 1 1 
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However, since PDH and PC are active in hepatocytes, and in addition pyruvate can be 

formed from OAA by malic enzyme or combined actions of PEPCK and pyruvate kinase, 

“pyruvate cycling” (OAA → pyruvate → OAA) and “pyruvate recycling” (OAA → 

pyruvate → Acetyl-CoA →  → OAA) can occur (Lu et al., 2002; Sherry et al., 2004) and 

might be the cause for the high m3 fractions observed. Pyruvate cycling and recycling are 

depicted in Figure 4.4.21.  

 

Figure 4.4.21:  “Pyruvate cycling” and “pyruvate recycling” based on Sherry et al. (2004). The 
dotted line indicates “pyruvate cycling” and the dashed line “pyruvate 
recycling”. 

With the presence of pyruvate cycling and pyruvate recycling in primary human 

hepatocytes (Sherry et al., 2004), several possibilities for this high m3 fraction in 

glutamate and proline exist and are discussed in the following (see also Figure 4.4.22), 

but with constraint for one full turn in the TCA cycle: 

 13CO2-fixation by pyruvate carboxylase (PC) 

o [U-13C3]pyruvate + 13CO2 is transformed to [U-13C4]OAA via PC, which 

would be transformed to [1,2,3-13C3]α-ketoglutarate 

 This could, however only account for approx. 17 % of the m3 

fraction, since 13CO2 was only abou 17 % (evaluated from the urea 

isotopomer mass fraction, data not shown) 
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 No scrambling of succinate and fumarate 

o [1,2-13C2]OAA (formed from pyruvate recycling via PDH) condenses 

with [U-13C2]acetyl-CoA to form [3,4,5,6-13C4]citrate and then 

[3,4,5-13C3]α-ketoglutarate 

o [3,4-13C2]OAA (formed from pyruvate recycling via PC) condenses with 

[1-13C1]acetyl-CoA, which is recycled to pyruvate. 

 One turn in TCA cycle 

o [U-13C2]acetyl-CoA (PDH) condenses with [1,2,3-13C3]OAA, which 

forms [2,3,4,5,6-13C5]citrate and then [2,3,4,5-13C4]α-ketoglutarate, which 

is transformed to [U-13C4]OAA, which than can condense with non 

labeled acetyl-CoA to [1,2,3,6-13C4]citrate and then form [1,2,3-13C3]α-

ketoglutarate 

 Reversibility of the fumarase and malate DH reaction 

o [U-13C3]pyruvate is carboxylated to [2,3,4-13C3]OAA, due to the 

reversibility of the fumarase reaction (Sherry et al., 2004), which would 

then form [1,2,3-13C3]α-ketoglutarate and result in [1,2,3-13C3]glutamate 

 

It had been shown by Sherry et. al (2004), who fed 13C-propionate as an anaplerotic 

substrate (supplies carbons to the TCA cycle via succinyl-CoA) that  pyruvate cycling is 

very active in the liver. They estimated this cycling dependant on the PC activity to be 

490 % higher than the TCA influx from pyruvate via PDH. Possibly, this can also 

explain, combined with the assumption of no scrambling of succinate and fumarate, the 

high m3 fraction in glutamate and proline. In concordance with the high PC activity 

reported by Sherry et. al (2004), the m2 fraction in asparate was also high. This can be 

explained by transformation of [1,2,3-13C3]α-ketoglutarate to [1,2-13C2]succinyl-CoA, 

which would then form [1,2-13C2]OAA and thus the m2 fraction in aspartate.  

Diclofenac treatment seemed to enhance the pyruvate cycling and thus the m3 fraction in 

glutamate increased with increasing drug concentration. However, the m3 fraction in 

proline and the m2 fraction in aspartate decreased. This can be due to the fact that 

glutamate was net produced and aspartate and proline were net consumed in presence of 

diclofenac. 
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Figure 4.4.22:  Schematic depiction of [U-13C6]glucose metabolism in hepatic cells. Labeled 

carbon atoms from [U-13C6]glucose are depicted as blue circles, labeled 
carbon atoms from [U-13C3]pyruvate in the TCA cycle (via pyruvate 
dehydrogenase (PDH) are depicted as orange circles, labeled carbon atoms 
from [U-13C3]pyruvate in the TCA cycle (via pyruvate carboxylase (PC) are 
depicted as green circles, labeled CO2 as red circles and unlabeled carbon 
atoms as white circles.  

[U-13C5]glutamate synthesis, derived from [U-13C5]glutamine via glutaminase, was 

detected over the test period. The measured m5 fraction was 15.7 % after 48 hours of 

culture. If the glutaminase is located in the mitochondria, 13C-labeled glutamine is 
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deaminated to fully labeled glutamate and further to [U-13C5]α-ketoglutarate (Bak et al., 

2008). This leads to uniformly labeled oxaloacetate, which in turn can give rise to fully 

labeled aspartate (m4). As seen in Table 4.4.6 uniformly labeled aspartate was detected 

only weakly (2.3 % after 48 hours of cultivation). This means, that this route was not 

important. [U-13C4]oxaloacetate can then condense with non-labeled acetyl-CoA and 

form fourfold labeled citrate, which can then give rise to m3 α-ketoglutarate, m3 

glutamate and m3 proline, as well as m2 aspartate. Interestingly, [U-13C5]proline was very 

weakly produced, but m3 proline very high (20.6 %, for control cells after 48 hours of 

cultivation). This would mean that the carbons of [U-13C5]glutamate are metabolized in 

the TCA cycle and only then proline was synthesized. The m3 fraction of aspartate from 

glutamine derived carbons can only be formed, if labeled malate is transferred into the 

cytosol, where it is converted to pyruvate and re-enters the TCA cycle as acetyl-CoA 

which condenses with labeled oxaloacetate. This process is discussed as pyruvate re-

cycling (Bak et al., 2007; Bak et al., 2008; Heart et al., 2009; Lu et al., 2002; Sherry et 

al., 2004; Stark et al., 2009). m3 fraction enrichment (2.5 %) of aspartate from uniformly 

labeled glutamine carbons was identified, as shown in Table 4.4.6.  

Diclofenac treatment seemed to decrease the direct synthesis of [U-13C5]glutamate from 

[U-13C5]glutamine with increasing concentration (Figure 4.4.6 A). However, the m1, m2 

and m3 fractions were increased in the mass isotopomer fraction, when exposed to 

diclofenac, indicating increased cycling in the TCA cycle. In addition, the m3 proline 

fraction was also decreased, when exposed to diclofenac. Interestingly, for the 

synthesized aspartate, increased cycling in the TCA cycle could be also found, as 

apparent in the increase in the m1, m2, m3 and m4 fractions, if the cells were exposed to 

increasing concentrations of diclofenac over time. 

For the SA002 cells the fractional enrichment of carbons derived from fully labeled 

glucose in glutamate, proline and aspartate (Table 4.4.7) resulted in multiple enrichment 

fractions due to multiple turns in the TCA cycle, pyruvate recycling and amino acids 

entering the TCA cycle, as discussed previously for primary human hepatocytes. 

 However, enrichment from [U-13C5]glutamine in these TCA cycle outputs yielded some 

interesting new insights. Proline enrichment predominantly took place in the m3 and m5 

fraction, indicating synthesis from the full TCA turn of glutamine carbons ([1,2,3-13C3]α-
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ketoglutarate) and transamination to glutamate, followed by synthesis of proline (m3) and 

direct synthesis from glutamate (m5), respectively. This is in contrast to PHHs, since the 

m5 fraction in proline was not synthesized there.  

Diclofenac treatment cannot be discussed for the glutamate and aspartate mass 

isotopomer fractions, since both metabolites were mostly depleted from the culture 

supernatant after 24 hours of culturing hESC derived hepatocyte-like cells. 

4.4.2.5 Serine and glycine metabolism 

To further investigate the interconnection of serine and glycine metabolism, their 

extracellular metabolites were analyzed for primary human hepatocytes and hESC 

derived hepatocyte-like cells, cultured on either [U-13C6]glucose or [U-13C5]glutamine, in 

form of mass isotopomer fractions [%] and mass isotopomer concentrations [µmol/L]. In 

addition, possible labeled metabolite formations were considered based on biochemistry. 

In Figure 4.4.23, a schematic depiction of the metabolic pathways for serine and glycine 

metabolism is shown. Briefly, in mammalian cells, serine is derived from the media or is 

synthesized via the glycolytic intermediate 3-phosphoglycerate (3PG), which is then 

dehydrogenated to 3-phosphopyruvate, followed by transamination to 3-phosphoserine 

and final conversion to serine. In this process, the carbon skeleton of 3PG remains 

unaltered. Serine plays a central role in intermediary metabolism for the formation of 

proteins, as well is contributor to phospholipid or sphingolipid biosynthesis. Furthermore, 

serine is the primary source of glycine (Cook, 2000), which is the precursor of 

biosynthetic pathways for creatine, purines, bile acids, hemoglobin and glutathione 

synthesis. In addition, pyruvate can be formed from serine, via the enzyme pyruvate 

dehydratase. The reversible interconversion of serine and glycine is catalyzed by serine 

hydroxymethyltransferase (SHMT). Conversion of serine to glycine results in the removal 

of the C3 of serine and the formation of 5,10-methylenetetrahydrofolate from 

tetrahydrofolate (THF), which can be used in folate-dependent one-carbon metabolism or 

oxidized to CO2 via glycine decarboxylase (Berg et al., 2003; Cook, 2000; Schlupen et 

al., 2003). In addition, glycine can also be synthesized from threonine via threonine 

aldolase and from glyoxylate via glyoxylate aminotransferase. Both glyoxylate 

aminotransferase and serine hydroxymethyltransferase are active in the human liver 

(Genolet et al., 2005; Nagata et al., 2009; Xue et al., 1999).  
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Figure 4.4.23: Schematic serine and glycine metabolic pathways of mammalian cells based on 
Deshpande (2007) and Schlupen et. al. (2003). Abbreviations used: PDGDH 
phosphoglycerate dehydrogenase, AST aminotransferase, PSP phosphoserine 
phosphatase. The subscript “ex” indicates extracellular metabolites. 

If [U-13C6]glucose or [U-13C5]glutamine are used as substrates several mass isotopomers 

can be formed for serine and glycine regarding the metabolic pathways glycolysis, TCA 

cycle, amino acid degradation and glyoxylate cycle (Figure 4.4.24 A and B). Contrary to 

the model depicted in Figure 4.4.23 for this mass isotopomer model the glycine cleavage 

system (GCS) was assumed to be unidirectional (glycine degradation to CO2 and NH3) 

for one-carbon units production and threonine degradation was considered to be 

negligible, since it has been shown by House et al. (2001) that presence of 0.3 mM 

glycine in the culture supernatant inhibits threonine oxidation. In our study the media 

contained more than 0.6 mM glycine and it was observed for primary human hepatocytes 

and hESC derived-hepatocyte-like cells that threonine was not taken up from the culture 

medium (see Figure 4.4.2 and Figure 4.4.3). 
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Figure 4.4.24:  Schematic depiction of serine and glycine metabolic pathways. Possible 
formations of isotopomers are depicted for metabolites in hepatocytes, 
incubated with A) [U-13C6]glucose (indicated by filled blue/green circles) and 
B) [U-13C5]glutamine (indicated by filled purple circles) as substrates. The 
checked circles in pyruvate indicate all possible mass isotopomers shown for 
serine and 3-PG. Abbreviations: 3-PG 3-phosphoglycerate, OAA oxaloacetate, 
AKG α-ketoglutarate, PHGDH 3-phosphoglycerate dehydrogenase, AST 
aminotransaminase, PSP 3-phospho-serine phosphatase. The subscript “ex” 
indicates extracellular metabolites.  
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As can be seen in Figure 4.4.24 A, if [U-13C6]glucose is supplied as the isotopic substrate, 

[U-13C3]serine and [U-13C2]glycine can be formed. [U-13C3]serine can also be formed, if 

[U-13C2]glycine combines with a 13C from THF which was released in the forward 

reaction of SHMT. For simplification, the reaction from serine to glycine is from here on 

designated as SHMT1 and the back reaction as SHMT2. In extracellular serine, 7.1 % and 

14.9 % could be found fully labeled (m3) for the control cultivations of primary human 

hepatocytes and hESC derived-hepatocyte-like cells, cultivated for 48 hours, respectively 

(see Table 4.4.8 and Table 4.4.9). If the cells were exposed to increasing concentrations 

of diclofenac, this mass isotopomer enrichment of the extracellular serine decreased for 

both cell types. For primary human hepatocytes and hESC derived-hepatocyte-like cells 

cultivated for 48 hours the m2 fraction in glycine was determined to be 7.2 % and 3.0 %, 

respectively. Glycine is formed from serine via SHMT1. While the m2 fraction in PHHs 

was not altered by diclofenac exposure, for the hESC derived-hepatocyte-like cells the 

m2 fraction decreased with increasing diclofenac concentrations. Thus, glycine was 

further decarboxylated.  

In extracellular serine, 7.3 % and 5.8 % could be found as m2 fraction for the control 

cultivations of primary human hepatocytes and hESC derived-hepatocyte-like cells, 

cultivated for 48 hours, respectively (see Table 4.4.8 and Table 4.4.9). This can be 

explained by SHMT2 activity from fully labeled glycine (m2), gluconeogenesis (pyruvate 

→ Acetyl-CoA → Fumarate (no scrambling) → OAA → 3-PG → serine) and glyoxylate 

metabolism, where [1-13C1]glycine condenses with 13C via SHMT2 activity. Interestingly, 

for both cell types the m2 fraction in serine was higher than the m2 fraction in glycine. 

Thus, probably gluconeogenesis was active and the cause for the m2 fraction in serine. 

However, if the cells were exposed to increasing concentrations of diclofenac, the m2 

mass isotopomer enrichment decreased for both cell types.  

On [U-13C6]glucose the m1 fraction for extracellular serine was found to be 18.9 % and 

17.6 % for the control cultivations of primary human hepatocytes and hESC derived-

hepatocyte-like cells after 48 hours. Interestingly, the m1 fraction in glycine was 

increased by only 1 % for primary human hepatocytes. This high m1 fraction in serine 

can thus be explained by pyruvate cycling and gluconeogenic activity of the cells (Figure 

4.4.24 A), whereby only [3-13C1]serine can be formed here.  
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Table 4.4.8:  Time course of mass isotopomer fractions [%] and mass isotopomer 
concentrations [µmol/L] of extracellular A) serine and B) glycine, for primary 
human hepatocytes cultivated in parallel with the isotopic substrates [U-
13C6]glucose and [U-13C5]glutamine and exposed to diclofenac in three 
concentrations. Isotopomer distribution is expressed in %, i.e., the sum of the 
individual fractions equals 100 %. 

A 
Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C6]glucose 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C6]glucose 

0 12 24 35 48 0 12 24 35 48 

Control 
[0 µM 

Diclofenac] 

m0 96.8 90.9 83.8 77.4 66.7 116 116 110 106 90 
m1 3.1 6.0 9.8 13.1 18.9 4 8 13 18 26 
m2 0.0 1.5 3.4 5.0 7.3 0 2 4 7 10 
m3 0.1 1.6 3.0 4.5 7.1 0 2 4 6 10 

ST1 
[10 µM 

Diclofenac] 

m0 96.8 91.8 85.1 81.0 69.8 116 117 106 112 94 
m1 3.1 5.4 8.8 11.1 17.4 4 7 11 15 24 
m2 0.0 1.5 3.2 4.1 6.9 0 2 4 6 9 
m3 0.1 1.3 2.9 3.9 6.0 0 2 4 5 8 

ST3 
[50 µM 

Diclofenac] 

m0 96.8 92.7 89.2 83.4 72.0 116 110 107 108 90 
m1 3.1 5.1 7.1 10.1 15.8 4 6 9 13 20 
m2 0.0 1.1 2.0 3.5 6.1 0 1 2 5 8 
m3 0.1 1.1 1.7 3.0 6.1 0 1 2 4 8 

Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C5]glutamine 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C5]glutamine 

0 12 24 35 48 0 12 24 35 48 

Control 
[0 µM 

Diclofenac] 

m0 96.8 90.9 89.8 85.9 82.2 116 116 118 117 111 
m1 3.1 6.9 7.8 10.6 13.0 4 9 10 14 18 
m2 0.0 1.0 1.5 2.4 3.2 0 1 2 3 4 
m3 0.1 1.1 0.9 1.1 1.5 0 1 1 2 2 

ST1 
[10 µM 

Diclofenac] 

m0 96.8 90.7 89.0 86.8 83.6 116 116 111 121 113 
m1 3.1 7.3 8.4 9.9 12.1 4 9 10 14 16 
m2 0.0 1.2 1.6 2.1 2.9 0 2 2 3 4 
m3 0.1 0.8 1.0 1.2 1.4 0 1 1 2 2 

ST3 
[50 µM 

Diclofenac] 

m0 96.8 92.2 90.1 89.8 85.0 116 109 108 116 106 
m1 3.1 6.5 7.8 8.0 11.3 4 8 9 10 14 
m2 0.0 0.7 1.3 1.4 2.5 0 1 2 2 3 
m3 0.1 0.6 0.8 0.9 1.2 0 1 1 1 1 

 

B 
Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C6]glucose 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C6]glucose 

0 12 24 35 48 0 12 24 35 48 

Control 
[0 µM 

Diclofenac] 

m0 97.8 92.6 92.2 91.4 89.3 656 637 609 586 521 
m1 2.1 2.7 2.8 3.0 3.5 14 19 18 19 20 
m2 0.1 4.7 5.0 5.7 7.2 1 32 33 37 42 

ST1 
[10 µM 

Diclofenac] 

m0 97.8 92.7 92.4 91.6 89.5 656 635 587 620 553 
m1 2.1 2.6 2.7 2.9 3.5 14 18 17 20 22 
m2 0.1 4.7 4.9 5.5 7.0 1 32 31 37 43 

ST3 
[50 µM 

Diclofenac] 

m0 97.8 92.2 92.1 90.8 89.6 656 625 615 601 561 
m1 2.1 2.6 2.6 3.0 3.1 14 18 17 20 19 
m2 0.1 5.2 5.3 6.2 7.2 1 35 35 41 45 

Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C5]glutamine 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C5]glutamine 

0 12 24 35 48 0 12 24 35 48 

Control 
[0 µM 

Diclofenac] 

m0 97.8 96.5 96.8 96.4 95.4 656 664 639 618 557 
m1 2.1 2.7 2.6 2.9 3.5 14 19 17 19 20 
m2 0.1 0.9 0.5 0.7 1.1 1 6 3 4 6 

ST1 
[10 µM 

Diclofenac] 

m0 97.8 96.9 96.9 96.5 95.9 656 663 616 654 593 
m1 2.1 2.6 2.6 2.8 3.2 14 18 17 19 20 
m2 0.1 0.5 0.6 0.7 0.9 1 3 4 5 6 

ST3 
[50 µM 

Diclofenac] 

m0 97.8 97.1 96.9 96.7 96.3 656 658 647 640 603 
m1 2.1 2.5 2.6 2.7 3.0 14 17 17 18 19 
m2 0.1 0.4 0.5 0.5 0.7 1 3 3 3 4 
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Table 4.4.9:  Time course of mass isotopomer fractions [%] and mass isotopomer 
concentrations [µmol/L] of extracellular A) serine and B) glycine, for hESC 
derived hepatocyte-like cells, cultivated in parallel with the isotopic substrates 
[U-13C6]glucose and [U-13C5]glutamine and exposed to diclofenac in three 
concentrations. Isotopomer distribution is expressed in %, i.e., the sum of the 
individual fractions equals 100 %. 

A 
Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C6]glucose 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C6]glucose 

0 16 24 36 48 0 16 24 36 48 

Control 
[0 µM 

Diclofenac] 

m0 95.9 81.8 75.6 66.3 61.8 106 84 76 56 52 
m1 3.1 7.6 10.2 14.2 17.6 3 8 10 12 15 
m2 0.2 2.2 3.4 4.5 5.8 0 2 3 4 5 
m3 0.7 8.4 10.8 14.9 14.9 1 9 11 13 13 

ST1 
[100 µM 

Diclofenac] 

m0 95.9 93.4 92.5 89.5 88.0 106 84 81 72 75 
m1 3.2 3.8 4.3 5.6 6.3 4 3 4 5 5 
m2 0.0 0.6 0.7 1.2 1.4 0 1 1 1 1 
m3 0.8 2.1 2.5 3.7 4.3 1 2 2 3 4 

ST2 
[200 µM 

Diclofenac] 

m0 95.9 93.4 92.6 90.9 88.7 106 86 79 80 106 
m1 3.2 4.2 4.4 5.3 6.1 4 4 4 5 4 
m2 0.0 0.7 0.8 1.0 1.4 0 1 1 1 0 
m3 0.8 1.8 2.2 2.9 3.8 1 2 2 3 1 

Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C5]glutamine 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C5]glutamine 

0 16 24 36 48 0 16 24 36 48 

Control 
[0 µM 

Diclofenac] 

m0 95.9 96.0 96.0 96.1 96.1 106 98 97 80 81 
m1 3.1 3.5 3.4 3.5 3.4 3 4 3 3 3 
m2 0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 
m3 0.7 0.3 0.4 0.2 0.3 1 0 0 0 0 

ST1 
[100 µM 

Diclofenac] 

m0 95.9 96.0 95.2 95.6 96.0 106 87 83 77 81 
m1 3.1 3.5 4.0 3.6 3.5 3 3 3 3 3 
m2 0.2 0.2 0.4 0.4 0.2 0 0 0 0 0 
m3 0.7 0.3 0.5 0.3 0.3 1 0 0 0 0 

ST2 
[200 µM 

Diclofenac] 

m0 95.9 96.0 96.3 96.0 96.1 106 88 82 84 88 
m1 3.1 3.5 3.3 3.5 3.5 3 3 3 3 3 
m2 0.2 0.2 0.1 0.2 0.2 0 0 0 0 0 
m3 0.7 0.3 0.3 0.2 0.2 1 0 0 0 0 

 

B 
Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C6]glucose 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C6]glucose 

0 16 24 36 48 0 16 24 36 48 

Control 
[0 µM 

Diclofenac] 

m0 97.9 97.1 96.6 95.3 94.9 600 553 542 499 492 
m1 2.0 1.9 2.0 2.0 2.1 12 11 11 11 11 
m2 0.2 1.0 1.5 2.6 3.0 1 6 8 14 16 

ST1 
[100 µM 

Diclofenac] 

m0 97.9 97.5 97.5 97.3 97.2 600 524 528 517 550 
m1 2.0 2.1 2.0 2.0 2.1 12 11 11 11 12 
m2 0.2 0.4 0.5 0.7 0.7 1 2 3 4 4 

ST2 
[200 µM 

Diclofenac] 

m0 97.9 97.6 97.5 97.4 97.2 600 548 532 547 567 
m1 2.0 2.0 2.0 2.0 2.0 12 11 11 11 12 
m2 0.2 0.4 0.5 0.6 0.8 1 2 3 4 5 

Time [h] 

Mass Isotopomer Fraction [%] 
from [U-13C5]glutamine 

Mass Isotopomer Concentration 
[µmol/L] from [U-13C5]glutamine 

0 16 24 36 48 0 16 24 36 48 

Control 
[0 µM 

Diclofenac] 

m0 97.9 97.6 97.6 97.7 97.9 600 556 548 511 508 
m1 2.0 2.0 2.0 2.0 1.9 12 11 11 11 10 
m2 0.2 0.4 0.3 0.3 0.3 1 2 2 2 1 

ST1 
[100 µM 

Diclofenac] 

m0 97.9 97.6 97.5 97.5 97.8 600 525 528 518 553 
m1 2.0 2.0 2.0 2.1 1.9 12 11 11 11 11 
m2 0.2 0.4 0.6 0.4 0.3 1 2 3 2 2 

ST2 
[200 µM 

Diclofenac] 

m0 97.9 97.7 97.7 97.7 97.7 600 548 532 549 570 
m1 2.0 2.0 2.0 2.0 2.0 12 11 11 11 12 
m2 0.2 0.4 0.3 0.3 0.3 1 2 2 2 2 
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Hereby, [U-13C3]pyruvate enters the TCA cycle via PC and forms with non-labeled 

acetyl-CoA [2,3,6-13C3]citrate, which is transformed to [1,2-13C2]OAA (no scrambling) 

and then to [3-13C1]3PG and finally to [3-13C1]serine and non-labeled glycine. In chapter 

4.4.2.4 it has been previously shown that pyruvate cycling is very active and that 

probably no scrambling occurs. Interestingly, if the cells were exposed to increasing 

concentrations of diclofenac, the m1 mass isotopomer enrichment decreased for both cell 

types. Thus gluconeogenesis was possibly reduced. However, other explanations for the 

high m1 fraction in serine also exist; unlabeled glycine (taken up from the media) can 

form with 13C-MTHF [3-13C1]serine or [1-13C1]glycine (from glyoxylate metabolism) 

forms with 12C-MTHF [1-13C1]serine. 

As can be seen in Figure 4.4.24 B, if [U-13C5]glutamine is supplied as the isotopic 

substrate, [U-13C3]serine and [U-13C2]glycine can be formed via gluconeogenesis. 

[U-13C2]glycine, however, can also be formed via reversible isocitrate dehydrogenase 

activity, followed by glyoxylate pathway. However, [U-13C5]glutamine resulted only in 

1.5 % m3 serine and 1.1 % m2 glycine for primary human hepatocytes and only in 0.3 % 

m3 serine and 0.3 % m2 glycine for hESC derived-hepatocyte-like cells. Interestingly, the 

m1 serine fraction for control cultures of primary human hepatocytes resulted in a 13.0 % 

fraction after 48 hours of culture. This can most likely be explained by gluconeogenesis.  

Hereby, [U-13C5]glutamine is metabolized in the TCA cycle to  [U-13C4]OAA and forms 

[1,2,3-13C3]citrate with non-labeled acetyl-CoA, which is transformed to [1,2-13C2]OAA 

(no scrambling) and then to [3-13C1]3PG. Finally, from this [3-13C1]serine (m1) and non-

labeled glycine can be formed via SHMT1. Yet, the gluconeogenic activity was here also 

reduced, if the cells were exposed to diclofenac.  

4.4.2.6 Pentose phosphate pathway 

The pentose phosphate pathway (PPP) has two major functions; it is a source for 

biosynthetic carbon skeletons (e.g. supply of ribose 5-phosphate for nucleotide synthesis) 

and contributes to the redox potential in the cells by producing reducing equivalents in 

form of NADPH (Berg et al., 2003; Browne et al., 1999).  

The reactions of the pentose phosphate pathway (Eq. 4.20 - Eq. 4.23) and the glycolysis 

(Eq. 4.24 - Eq. 4.26) with the enzymes involved can be described as followes: 
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PPP:   G6P
      
ሱሮ R5P  COଶ  [Eq. 4.20] 

TK:      2 x R5P  S7P  GAP  [Eq. 4.21] 
TA:  GAP   S7P  F6P  E4P [Eq. 4.22] 
TK2:  E4P   R5P  GAP  F6P [Eq. 4.23] 
Gly:  G6P

      
ሱሮ F6P   [Eq. 4.24] 

ALD:  F6P
      
ሱሮ 2 x GAP   [Eq. 4.25] 

PYK:  GAP
      
ሱሮ PYR   [Eq. 4.26] 

 

Lee et al. (1998) applied [1,2-13C2]glucose and calculated the PPP activity based on the 

model of Katz et al. (1966) and Katz and Rognstad (1967), who applied [1-13C]- and 

[6-13C]glucose. They proposed, that if [1,2-13C2]glucose is used as tracer, oxidative 

decarboxylation of [1,2-13C2]G6P produces [1-13C]pentose phosphate, which is then 

converted via transketolase (TK) and transaldolase (TA) reactions to singly or doubly 

labeled fructose ([1-13C]F6P, [1,3-13C] F6P) and subsequently to other singly or doubly 

labeled intermediates that contribute to m1 and m2 abundance in mass spectra. Double-

labeled [1,2-13C2]glucose would form, by the glycolytic pathway, the intermediates 

[2,3-13C2]triose phosphate, [2,3-13C2]pyruvate ([2,3-13C2]lactate and [2,3-13C2]alanine), 

and [1,2-13C2]acetyl-CoA, resulting in m2 mass peaks. Further, recycling in the pentose 

phosphate pathway can lead to additional m2 enrichment in hexoses (Figure 4.5.4 B). 

Thus, they included the major reactions of the pentose cycling and proposed the equation 

(Eq. 4.27) which can be solved for obtaining the split of the PPP from the glycolysis 

(Pcyc) (Eq. 4.28) 

ଵ
ଶ

ൌ ଷכ௬
ଵି௬

      [Eq. 4.27]         →       ܲܿݕܥ ൌ
భ
మ

ቀଷାభ
మቁ

                [Eq. 4.28] 

This method has been applied by several groups to calculate the split ratio of PPP from 

the glycolysis and is also applied here for the primary human hepatocytes and the hESC 

derived hepatocyte-like cells.  

Primary human hepatocytes and the hESC derived hepatocyte-like cells were grown in 

media containing [1,2-13C2]glucose. Table 4.4.10 shows that both cell types metabolized 

[1,2-13C2]glucose over time. Mass isotopomer fractions in lactate from [1,2-13C2]glucose 

were recorded over time and are given in Table 4.4.11. The PPP split as calculated by the 

method described above is also given in the Table 4.4.11.  
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Table 4.4.10:  Glucose uptake profile for hESC derived hepatocyte-like cells and primary 
human hepatocytes (PHH) over time [h].  

 Time 
[h] 

Concentration [C-µmol/L] Carbon uptake [C-µmol/L] 
0 12/16 24 36 48 0 12/16 24 36 48 

  PHH 
Control 64848 58026 57510 57840 59238 0 6822 7338 7008 5610 

ST1 64848 57168 57138 58830 58764 0 7680 7710 6018 6084 
ST2 64848 56934 58554 58188 56502 0 7914 6294 6660 8346 
ST3 64848 58194 58722 58494 57570 0 6654 6126 6354 7278 

 SA002 
Control 59628 40368 28284 21564 13224 0 19260 31344 38064 46404 

ST1 59628 53028 50352 42876 40332 0 6600 9276 16752 19296 
ST2 59628 45252 45480 42912 40752 0 14376 14148 16716 18876 
ST3 59628 50088 50148 48612 53640 0 9540 9480 11016 5988 

 

 

While for the hESC derived hepatocyte-like cells (SA002) the PPP split did not vary over 

time, for primary human hepatocytes an increase over time for the participation of the 

pentose cycle was detected, as shown in Table 4.4.11. Further, for the hESC derived 

hepatocyte-like cells the PPP contribution to the metabolism of glucose increased, if the 

concentration of diclofenac in the media was increased. The opposite effect was observed 

for primary human hepatocytes.  

Table 4.4.11:  Mass isotoper fractions [%] in lactate from incubation with [1,2-13C2]glucose 
over time for PHH and hESC derived hepatocyte-like cells. Isotopomer 
distribution is expressed as molar fraction in %, i.e., the sum of the 
individual fractions equals 100 %. PPP activity is expressed as % glucose 
metabolism and calculated from m1/m2 using Eq.4.28. 

 Time [h] 

Mass Isotopomer Fraction [%] in lactate  
From [U-13C6]glucose  

Primary Hepatocytes hESC derived hepatocyte-like cells 
0 12 24 35 48 0 16 24 36 48 

Control 
 

m0 96.1 66.0 70.8 71.6 72.0 96.8 60.5 57.8 56.0 55.5 
m1 3.3 3.0 3.6 3.9 4.3 2.7 2.7 2.8 3.0 3.1 
m2 0.3 30.6 25.3 24.1 23.2 0.1 36.3 38.9 40.3 40.6 
m3 0.2 0.4 0.4 0.4 0.5 0.3 0.5 0.6 0.8 0.8 

PPP [%] 3.2 4.5 5.1 5.8  2.4 2.3 2.4 2.5 

ST1 
 

m0 96.1 61.4 61.4 71.6 74.0 96.8 63.8 61.7 59.3 61.8 
m1 3.3 2.9 2.9 3.8 4.0 2.7 2.9 2.9 3.0 2.7 
m2 0.3 35.2 35.2 24.2 21.6 0.1 32.5 34.6 36.6 34.5 
m3 0.2 0.5 0.5 0.4 0.4 0.3 0.8 0.9 1.0 1.0 

PPP [%] 2.6 2.6 4.9 5.8  2.9 2.7 2.7 2.6 

ST3 (PHH) 
ST2 (SA002) 

 

m0 96.1 47.7 64.4 67.9 67.9 96.8 61.3 60.1 58.9 59.0 
m1 3.3 2.4 3.0 3.7 4.3 2.7 2.8 2.9 2.9 2.9 
m2 0.3 49.3 32.1 28.0 27.2 0.1 34.9 35.9 37.0 37.0 
m3 0.2 0.6 0.5 0.5 0.6 0.3 1.0 1.1 1.2 1.1 

PPP [%] 1.6 3.1 4.2 5.0  2.6 2.6 2.6 2.5 
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The above method of PPP split calculation is however not without its pitfalls. As Follstad 

and Stephanopoulos (1998) pointed out, that while the above mentioned conditions can 

be accurate under certain conditions, e.g. at low growth rates, they only represent the net 

fluxes through the corresponding pathways, and do not account for label redistribution 

due to reaction reversibility. In addition, they pointed out, that a fraction of the lactate 

produced, can be derived from pyruvate cycling from pyruvate via anaplerotic reactions 

into the TCA cycle and back to pyruvate (depicted in Figure 4.4.25 B). Thus, they 

concluded, one has to account for the labeling patterns in lactate due to recycling by the 

TCA cycle. 

 

Figure 4.4.25:  Schematic depiction of [1,2-13C2] labeled glucose metabolism by (A) pentose 
phosphate pathway and glycolysis and (B) pentose phosphate pathway, 
glycolysis and additionally with TCA cycling and the possible mass increases in 
lactate (indicated by filled circles).  
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It has been previously shown for primary human hepatocytes and hESC derived 

hepatocyte-like cells that recycling of pyruvate carbons, derived from [U-13C6]glucose, 

could be detected by enrichment of m1 and m2 fractions in lactate (chapter 4.4.2.4). A 

schematic depiction is presented in Figure 4.4.26 A. 

 

Figure 4.4.26: Schematic depiction of (A) [U-13C6]- and (B) [1,2-13C2]glucose metabolism by 
pentose phosphate pathway, glycolysis and TCA cycling with the possibly 
formed mass isotopomers in lactate (indicated by filled circles). Abbreviations 
used: LDH lactate dehydrogenase, GLY glycolysis, PYK pyruvate kinase, PDH 
pyruvate dehydrogenase, Malic malic enzyme and phosphoenolpyruvate-
carboxykinase, OAA oxaloacetate. 

This m1 and m2 fractions in lactate equals the flux from malate or OAA to pyruvate 

(Malic).  

One can write a general balance for pyruvate  

Pyruvate:  0 ൌ ܭܻܲ ݈ܿ݅ܽܯ െ ሺܪܦܮ   ሻ               [Eq. 4.29]ܪܦܲ
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where PYK denotes pyruvate kinase, Malic the flux from the TCA cycle to pyruvate via 

malic enzyme or phosphoenolpyruvate-carboxykinase (PEPCK), LDH lactate 

dehydrogenase and PDH the pyruvate dehydrogenase reaction. Further, one can write a 

mass balance for the m3 mass isotopomer fraction transformed by each of the reactions. 

Pyruvate_m3:      0 ൌ  ܭܻܲ ·  ݉3_   ݈ܿ݅ܽܯ ·  ݉3_ை െ ሺܪܦܮ   ሻܪܦܲ ·  ݉3_              

[Eq. 4.30] 

Since the m3 fraction in OAA was not measured, but OAA is the precursor of aspartate, 

the m3 fraction of aspartate can be used to solve the equation. However, since the m3 

fraction in secreted aspartate was very small (< 3 % for PHH and aspartate was degraded 

from the culture medium for the hESC derived hepatocyte-like cells, both cultured on 

[U-13C6]glucose as substrate), one can assume the m3 fraction of aspartate to be 

negligible and thus Malic x m3_OAA to be ≈ 0. Thus equation 4.30 simplifies to 

Pyruvate_m3:                 0 ൌ  ܭܻܲ ·  ݉3_ െ ሺܪܦܮ   ሻܪܦܲ ·  ݉3_          [Eq. 4.31] 

and can be resolved to           ሺܪܦܮ  ሻܪܦܲ ൌ ௫ ଷ_ುೊ಼
ଷ_ಽಲ

 

Now equation 4.31 can be implemented in equation 4.29, which is shown in Eq. 4.32 

0 ൌ ܭܻܲ ݈ܿ݅ܽܯ െ ௫ ଷ_ುೊ಼
ଷ_ಽಲ

                              [Eq. 4.32] 

and one can solve for the malic enzyme activity, which is shown in equation 4.33 

݈ܿ݅ܽܯ ൌ ௫ ଷ_ುೊ಼
ଷ_ಽಲ

െ  [Eq. 4.33]                                ܭܻܲ

The calculations for the malic enzyme activity are shown in Table 4.4.12, according to 

equation 4.33. Interestingly, while for PHHs the flux from the TCA cycle to pyruvate 

(Malic) and the glycolysis (PYK) increased with increasing concentrations of diclofenac, 

for the hESC derived cells these fluxes decreased. 
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Table 4.4.12: Calculation of Malic flux in [µmol/(L x 48 h) for primary human hepatocytes 
(PHH) and hESC derived hepatocyte-like cells (SA002) according to 
equation 4.33. [U-13C6]glucose was used as a substrate. 

 
Glucose 
uptake 

[µmol/(L x 48h)] 

PYK 
[µmol/(L x 48h)] 

m3 mass 
isotopomer 

production in 
lactate 

[µmol/(L x 48h)]

Malic 
[µmol/(L x 48h)] 

PHH SA002 PHH SA002 PHH SA002 PHH SA002 

Control 935 7734 1870 15468 646 12085 3543 4330 

ST1 1014 3216 2028 6432 533 4090 5688 3683 

ST3 (PHH)  1213 ------ 2426 ------ 451 ------ 10624 ------ 

ST2 (SA002) ------ 3146 ------ 6292 ------ 4080 ------ 3411 

 

If one uses now [1,2-13C2]glucose as substrate, as shown by Lee et al. (1998), and no 

malic enzyme or phosphoenolpyruvate-carboxykinase (PEPCK) activity is assumed one 

can solve equation 4.31 for any mass isotopomer, denoted by i (m1 and m2 fractions): 

PYR_mi:  0 ൌ _݅݉ ݔ ܭܻܲ െ ሺܪܦܮ              [Eq. 4.31]_݅݉ ݔ ሻܪܦܲ

However, for this, the balances around ribose-5-phosphate (R5P), fructose-6-phosphate 

(F6P), glyceraldehyde-3-phosphate (GAP) and glucose-6-phosphate (G6P) have to be 

considered and in addition, the transaldolase and the trasketolase reactions have to be 

assumed to be equally active.  

R5P:   0 ൌ ܲܲܲ െ 1ܭܶ ݔ 2 െ  [Eq. 4.33]                 2ܭܶ
  0 ൌ ܲܲܲ െ         1ܭܶ ݔ 3

   TK1ൌ 
ଷ
 
          
ሳልሰ   ܲܲܲ ൌ   1ܭܶ ݔ 3

       

FGP:   0 ൌ ܻܮܩ   ܣܶ  2ܭܶ െ  [Eq. 4.34]                ܦܮܣ
   0 ൌ ܻܮܩ   ݔ 2 

ଷ
െ     ܦܮܣ

           
          
ሳልሰ ܻܮܩ   ൌ ܦܮܣ െ                                            1ܭܶ ݔ 2

GAP:   0 ൌ 1ܭܶ െ  ܣܶ   2ܭܶ  ܦܮܣ ݔ 2 െ  [Eq. 4.35]                ܭܻܲ
   0 ൌ 

ଷ
 ܦܮܣ ݔ 2 െ     ܭܻܲ

G6P:   0 ൌ ܲܲܲ  ܻܮܩ െ 1                   [Eq. 4.36] 
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Then Lee et al. (1998) were able to solve the pentose phosphate split ratio from the 

glycolysis and find an approximation, which can be expressed as m1 and m2 fractions in 

lactate (see equation 4.28).  

However, if malic enzyme or phosphoenolpyruvate-carboxykinase (PEPCK) are active, 

additional m1 and m2 fractions are generated by pyruvate cycling and pyruvate recycling 

and have to be also considered (equation 4.37). 

PYR_mi:   0 ൌ _݉ ݔ ܭܻܲ  _ை݉ ݔ ݈ܿ݅ܽܯ  െ ሺܪܦܮ        _    [Eq. 4.37]݉ ݔ ሻܪܦܲ

For this however, one cannot compute the mass isotopomer fraction of ݔ ݈ܿ݅ܽܯ ݉_ை, 

since the fractional enrichment in oxaloacetate and/or malate is not known. Mass 

balances for all possible 13C mass positions would have to be written for oxaloacetate or 

malate. This could be done by an isotopomer model, which is however not possible here, 

since the metabolites of the cells were not in an isotopic steady state. However, by 

measuring intracellular OAA and malate mass isotopomer fractions one could learn the 

desired information.  

Table 4.4.12:  Mass isotopomer fractions of lactate for the substrate [U-13C6]glucose for 
primary human hepatocytes and hESC derived hepatocyte-like cells exposed to 
diclofenac over time [h]. Isotopomer distribution is expressed as molar fraction 
in %, i.e., the sum of the individual fractions equals 100 %.  

  Mass Isotopomer Fraction [%] in lactate 
from [U-13C6]glucose  

 
Time 

[h] 
Primary Hepatocytes hESC derived hepatocyte-like cells 

0 12 24 35 48 0 16 24 36 48 

Control 
 

m0 96.1 59.7 58.6 56.0 50.5 96.8 16.8 14.7 12.9 10.9
m1 3.3 2.9 3.4 3.7 4.0 2.7 1.1 1.0 1.0 0.9
m2 0.3 2.7 3.6 3.9 4.8 0.1 2.1 2.1 2.3 2.5
m3 0.2 34.7 34.4 36.4 40.7 0.3 79.9 82.2 83.8 85.7

ST1 
 

m0 96.1 55.0 56.0 53.5 53.8 91.7 22.0 18.3 16.2 15.0
m1 3.3 2.7 3.4 3.6 4.0 3.2 1.7 1.5 1.4 1.4
m2 0.3 2.6 3.7 4.1 4.7 1.5 2.6 2.7 2.6 2.8
m3 0.2 39.8 36.9 38.9 37.5 3.6 73.7 77.5 79.7 80.8

ST3/ST2 
 

m0 96.1 46.1 52.0 52.5 46.8 91.7 26.2 20.9 19.5 17.9
m1 3.3 2.1 2.7 3.2 4.1 3.2 1.7 1.6 1.6 1.6
m2 0.3 2.3 2.8 3.6 5.7 1.5 2.4 2.5 2.6 2.7
m3 0.2 49.5 42.5 40.6 43.5 3.6 69.7 75.0 76.2 77.8
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4.4.2.7 Gluconeogenesis 

One of the major tasks for hepatocytes is to maintain sugar homeostasis in the human 

body. To achieve this, the cells have to keep the blood sugar concentration in a range 

from 4-6 mM (mmol/L) and react to hormones (insulin and glucagon), which are released 

from the pancreas. In case of high sugar levels, insulin stimulates the conversion of 

glucose to glycogen for storage. If the concentration of glucose falls below 4 mM, 

glucagon is released from the pancreas, which promotes glucose synthesis from glycogen 

(glycogenolysis). The normal glucose levels for humans for a two day interval are 

depicted in Figure 4.4.27 B. If glycogen is depleted, or the glucose level decreases too 

fast, glucose can also be produced from lactate, glycerol or glucogenic amino acids 

(gluconeogenesis).  

 

Figure 4.4.27: Glucose levels. A) Media glucose concentration [mmol/L] for PHH (○) and hESC 
derived hepatocyte-like cells (■) over time. B) Hypothetical blood glucose 
concentrations of humans for a two day interval. The arrows indicate meals 
during the day.  

Since gluconeogenesis mostly takes place in the liver and both hormones were 

supplemented in the culture medium, it was of interest, if the hESC derived hepatocytes 

are able to synthesize new glucose and excrete it to the culture medium. For primary 

human hepatocytes the gluconeogenic activity has been shown and discussed by several 

groups (Katz and Tayek, 1999; Landau et al., 1998; Mao et al., 2002; Radziuk and Lee, 

1999). As has been previously shown (Figure 4.4.10), PHH did not utilize much glucose 

over the culture period (Figure 4.4.27 A). However, the glucose concentration in the 
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medium at the beginning of the experiment was 10 mM, and many other amino acids 

were available for degradation. The hESC derived cells, however, metabolized approx. 

8 mM glucose over a culture period of 48 hours (Figure 4.4.27 A) which would suggest 

that they either display the Warburg effect or that a fraction of the mixed culture was not 

hepatocyte-like.  

Nevertheless, as discussed previously, the cells visibly decreased their uptake as soon as 

the concentration fell below 5 mM glucose, suggesting that they might either decrease 

their metabolism (not confirmed for other supplemented amino acids) or that they might 

have produced glucose, which would further be a typical indicator for hepatic 

functionality.  

Table 4.4.14:  Isotope enrichment [%] in glucose over time for PHH and hESC derived 
hepatocyte-like cells. The substrate was [U-13C6]glucose. Isotopomer distribution 
is expressed as molar fraction in %, i.e., the sum of the individual fractions (m0-
m6) equals 100 %. SFL summed fractional labeling 

  PHH SA002 

 Time [h] 
Mass Isotopomer Fraction [%] 

[U-13C6]glucose 
Mass Isotopomer Fraction [%] 

[U-13C6]glucose 
0 12 24 35 48 0 16 24 36 48 

Glucose 

m0 1.235 1.235 1.288 1.348 1.388 1.235 2.403 4.245 5.716 8.665 
m1 0.986 0.986 1.036 0.998 1.071 0.986 2.006 3.969 5.676 10.890 
m2 0.255 0.255 0.277 0.277 0.300 0.255 0.437 0.817 1.117 2.119 
m3 1.130 1.130 1.261 1.344 1.449 1.130 2.111 3.955 5.536 10.442 
m4 0.321 0.321 0.338 0.333 0.367 0.321 0.535 0.911 1.242 2.181 
m5 4.929 4.929 4.938 4.946 5.010 4.929 5.549 5.924 6.073 6.826 
m6 91.144 91.144 90.863 90.754 90.415 91.144 86.959 80.179 74.639 58.877 

SFL [%] 96.28 96.28 96.10 96.03 95.84 96.28 93.48 88.63 84.61 73.76 

Glc new [µM] 402 360 374 383 411 370 439 536 553 578 
 

To study the synthesis of new glucose, the decrease of fully labeled glucose (m6 = 91 %) 

was measured in the culture medium. As can be seen in Table 4.5.14, only very small 

decrease of [U-13C6]glucose was observed for primary human hepatocytes over time. 

However, for the hESC derived hepatocyte-like cells the summed fractional labeling 

(SFL) of glucose decreased by more than 20 % and even more for the m6 fraction, which 

was in the beginning of the cultivation by 91 % and 59 % after 48 hours. Interestingly, 

the m0, m3 and the m1 fractions increased mostly, suggesting in case of m3 enrichment 

non-labeled and fully labeled lactate, pyruvate, serine or alanine to act as gluconeogenic 

substrates, and in case of m1 increased recycling from glucose carbons via the TCA 
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cycle. The increase of the m0 fraction can be explained by non-labeled amino acids, 

which were supplemented in the culture media, to act as gluconeogenic substrates. 

Nevertheless, this decrease in enrichment showed that hESC derived hepatocyte-like cells 

are capable of gluconeogenic activity, which further indicates hepatic functionality, as 

previously discussed (chapter 3). Here, influence of diclofenac on gluconeogenesis was 

not detected for primary human hepatocytes, since the primary cells did not show the 

activity, due to no starvation. Thus, for future studies, starved primary hepatocytes, 

supplemented with [U-13C3]alanine or [U-13C3]lactate in presence of diclofenac, might 

answer whether there is increased gluconeogenesis and glycogenolysis after diclofenac or 

acetaminophen exposure as proposed by Petrescu and Tarba (1997).  
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4.4.2.8 Concluding remarks 

By analysis of fractional enrichment data of alanine and lactate, it was shown that 

glycolysis was the major supply of pyruvate in embryonic stem cell derived hepatocyte-

like cells and was also active in primary human hepatocytes. In addition, it was shown 

that pyruvate enters the TCA cycle and that the carbon atoms from glucose could be 

detected in TCA products.  

A simple metabolic flux model was generated, based on SFL data, for hESC derived 

hepatocyte-like cells and primary human hepatocytes. The influence of diclofenac for 

glycolysis and TCA cycle activity was evaluated for both cell types. While for primary 

human hepatocytes the glycolysis and the TCA cycle activity was enhanced, for the 

hESC derived hepatocyte-like cells only the TCA cycle activity was increased in 

presence of diclofenac. 

In addition, the reversibility of synthesis and production rates was estimated and 

interpreted for control cells and diclofenac exposed cells. 

It was shown that anaplerosis to TCA cycle intermediates took place and pyruvate 

cycling and pyruvate recycling is very active in the tested hepatocytes and hepatocyte-

like cells. The flux from oxaloacetate or malate to pyruvate increased for primary human 

hepatocytes and decreased for the hESC derived hepatocyte-like cells with increasing 

drug concentrations. In addition, it was found that there is likely no scrambling of 

fumarate and succinate in the hepatocytes. 

It could be shown, that it is of importance to consider TCA recycling to pyruvate to 

calculate pentose cycle contribution to glucose metabolism from lactate. Furthermore, it 

was observed that the pentose phosphate pathway was relatively inactive (less than 2 % 

of glycolysis).  

In addition, gluconeogenesis was found to be present in hESC derived-hepatocyte-like 

cells, which supports their differentiation towards functional hepatocytes. Gluconeogenic 

activity was also detected for primary human hepatocytes, which was shown by presence 

of labeled carbon atoms from [U-13C5]glutamine in excreted serine and glycine. 
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4.5 Conclusions 
To obtain a better insight into the fate of glucose and amino acids metabolism in 

hepatocytes, metabolic profile analysis, metabolic flux analysis and 13C pathway analysis 

was used to determine the effect of diclofenac in sub-toxic concentrations on the flux 

distribution through the major pathways in hepatocytes. The used substrates were 

[U-13C6]glucose, [1,2-13C2]glucose and [U-13C5]glutamine. Using the new approach 

described above, multiple new insights of hepatic metabolism in presence of sub-toxic 

concentrations of diclofenac were found.  

First, since the adherent cells cannot be cultured continuously, several time points were 

determined for analysis. The influence of diclofenac was tested by comparing medium 

substrates and synthesized metabolites over a time period of 48 hours for both cell types. 

Here dose dependent changes in the global metabolic profiles for aromatic amino acids 

(tryptophan, phenylalanine and tyrosine) seemed to be influenced the most by diclofenac 

exposure.  

Second, for primary human hepatocytes, due to extensive exchange of amino acids with 

the surrounding culture no metabolic steady state was found. For hESC derived 

hepatocyte-like cells, metabolic steady state could be assumed and stationary metabolic 

balance analysis was performed. Here, it was observed that diclofenac increases the 

activity of the TCA and the urea cycle even at sub-toxic concentrations. However, the 

expected increase in glycolysis for balance of the ATP depletion, due to uncoupling of 

the oxidative phosphorylation pathway, was not observed. 

Third, metabolic pathway identification was performed to elucidate activity of glycolysis, 

gluconeogenesis, pentose phosphate pathway and TCA cycle. Here, it was observed that 

diclofenac exposure increased the activity of the TCA cycle for both tested cell types and 

enhanced the glycolytic activity for primary human hepatocytes. It was found that the 

pentose phosphate pathway activity was relatively inactive and it could be shown, that it 

is of importance to consider TCA recycling to pyruvate to calculate pentose cycle 

contribution to glucose metabolism from lactate.  

The observed changes could serve as indicators for hepatotoxic responses in future 

toxicity studies and by combining these toxicity fingerprints with drug metabolism data 

could help to deepen the understanding of overall toxicity. 
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5 Summary and Future Perspectives 
_______________________________________________________________ 

 

The use of hepatocytes for drug metabolism studies to obtain data on biotransformation, 

screen for toxic effects and to elucidate the drug’s mechanism of action is common in the 

pharmaceutical industry to ensure a safe release of new drugs into the market. Human 

hepatocytes are scarce and thus high-throughput toxicity assays have been developed to 

achieve a high data gain using as few cells as possible. Nevertheless, most assays are end-

point assays which give information for a specific time point after drug exposure and do 

not allow further processing of the cells and/or the culture supernatant. Thus, in the first 

part of this thesis, a new high-throughput dynamic and non-invasive method has been 

introduced. The method utilizes the dissolved oxygen concentration in the media to 

obtain respiration data, whose change can be correlated with toxic responses in cells 

exposed to drugs. The degree of respiration response correlates to the toxicity caused by 

the drugs. The assay was shown to be applicable to immortalized, proliferating hepatoma 

cells and freshly isolated and non-proliferating primary rat hepatocytes. In addition, LC50 

concentrations of the tested chemicals were in accordance with current literature data. 

Further, it was shown that another advantage of this assay is that the cells and the culture 

supernatant can also be utilized for drug metabolism studies. The assay proved to be 

robust, flexible and easy to adapt for adherent cell lines/types. Even though this assay 

decreases the demand of hepatocytes for drug studies, the demand of human hepatocytes 

for drug metabolism studies still exeeds the supply of liver cells. Thus, it would be of 

interest to further modify the microtiter plate from the current 24-well format to a 96-well 

or smaller format. In addition, multiple sensors (e.g. for glucose or lactate concentration 

in the supernatant) would improve the on-line method.  

Hepatocytes, that are employed for research are mostly rejects from liver transplantation 

due to age, medical condition or weight of the donor or obtained from surgery. Thus, 

hepatocytes, derived from stem cells could provide an unlimited supply for drug studies 

and also for liver implantations in the future. Thus, in the second part of this thesis, hESC 

derived hepatocytes-like cells, which have been differentiated towards hepatocytes, were 

evaluated for their application in toxicity and drug metabolism studies. It was shown, that 

the hESC derived cells displayed typical hepatocyte morphology, that characteristic 
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hepatic protein expressions were present and that the cells showed hepatic functionality. 

The cells did not however show hepatic biotransformation functionality as high as 

primary human hepatocytes and thus it was concluded that the cells are not yet applicable 

in the pharmaceutical industry for drug metabolism studies. However, as soon as these 

cells become fully functional, both animal studies and demand for liver donations can be 

reduced. To reach this goal the efficiency of the differentiation protocols, the purity of the 

end-culture and their functionality should be further improved in future research studies 

to finally obtain a valid hepatic in vitro model.  

In the last part of the thesis it was tested if sub-toxic concentrations of diclofenac would 

alter the metabolism of primary human hepatocytes and hESC-derived hepatocytes. This 

was done to predict possible toxicity to cells upon exposure to higher concentrations. For 

this, parallel cultures, using labeled substrates in the presence of diclofenac treatment, 

were performed and analyzed to obtain metabolic profiles. The metabolic pathways 

involved were defined and a stoichiometric model for metabolic flux analysis was 

defined. Quantification of the amino acids, pyruvate, lactate and glucose was performed 

by HPLC and the isotopic labeling was analyzed using GC-MS. It was shown, that 

diclofenac caused dose dependent changes in the global metabolic profiles for the 

aromatic amino acids (tryptophan, phenylalanine and tyrosine). The labeling analysis 

revealed that anaplerosis and pyruvate cycling and pyruvate recycling took place in the 

tested hepatocytes. This led to interesting new insights into TCA cycle influx and recycle 

capacities in regard to PC, PDH, glyoxylate shunt and isotopomer distribution in 

glutamate. However, these new insights were not used in the presented model, but work 

is currently underway for these calculations using the data generated from experiments 

performed in this thesis. It was also observed, that the pentose phosphate pathway was 

relatively inactive (less than 5 % of glucose metabolism) for the hepatocytes. It could be 

shown however, that it is important to consider pyruvate recycling via the TCA cycle for 

the pentose cycle activity split calculation in lactate, which was previously not 

considered. While common cytotoxicity assays do not imply any toxic response to the 

chosen sub-toxic diclofenac concentrations, the MFA results suggest early markers of 

potential toxicity in form of  mitochondrial impairment, most probably in form of 

uncoupling of oxidative phosphorylation caused by even sub-toxic concentrations of 

diclofenac. Thus, in the third part of this thesis the study demonstrates that metabolic flux 

analysis is a powerful methodology, which allows quantification of the central 
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metabolism of hepatocytes and is useful to elucidate hepatic metabolic changes in 

response to diclofenac treatment. However, for future perspectives, dynamic modeling for 

multiple labeled substrates in combination with exposure to sub-toxic drug concentrations 

should be performed. Further, an extended metabolite quantification and isotopomer 

analysis, as for albumin, fatty acid, glycogen, ketone bodies and citrate synthesis, should 

be included to extend and improve the above presented methodology.  
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7 Appendix 
________________________________ 

7.1 Symbols and Abbreviations 
 

A1AT alpha-1-Antitrypsin 
Phe   phenylalanine  
# pseudo inverse of a matrix 
[O2] concentration of oxygen 
2D two dimensions 
3PG 3-phosphoglycerate  
A m x n stoichiometric matrix 
AAM atom mapping matrices 
ABC ATP-binding cassette 
ABU α-aminobutyric acid  
ABU α-aminobutyric acid  
ACCoA Acetyl-CoA 
Acetyl-CoA Acetyl-Coenzyme A 
ADMET Absorption, Distribution, Metabolism, Excretion and Toxicity 
ADP adenosine diphosphate 
ADR adverse drug reactions  
AFP α-Fetoprotein 
Ala  alanine  
ALB albumin 
ALT alanine transaminase 
ar(t) m-dimensional metabolite accumulation rate vector 
Arg  arginine  
armet(t) accumulation rate of metabolite met 
ASCs adult stem cells 
Asn  asparagine  
Asp  aspartic acid (aspartate)  
AST aspartate aminotransferase  
AST aspartate transaminase 
ATP 
AUC 

adenosine-5'-triphosphate 
area under the curve 

BCAAs branched-chain amino acids 
bFGFs basic fibroblast growth factors 
BSA bovine serum albumin 
BSEP bile-salt export pump 
CIT citrate 
CK cytokeratin 
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CYP450 cytochrome P450 
Cys  cysteine  
DMF dimethylformamide 
DMSO dimethyl sulfoxide  
DNA deoxyribonucleic acid 
DO dissolved oxygen concentration 
E4P erythrose 4-phosphate 
EBs embryoid bodies 
ECVAM European Center for the Validation of Alternative Methods 
EI electron impact ionization 
ELISA enzyme-linked immunosorbent assay 
EMU elementary metabolite unit 
ES cells embryonic stem cells 
EST estrogen sulfotransferase  
f weighting factor 
F6P fructose 6-phosphate 
FADH2 flavin adenine dinucleotide 
FCS fetal calf serum 
FGF fibroblast growth factor 
FMOC N-(9-fluorenyl) methoxycarbonyl 
fmod modulation frequency of the excitation light 
G6PDH glucose-6-phosphate dehydrogenase 
GABA γ-aminobutyrate  
GAP glyceraldehyde 3-phosphate 
GC-MS gas chromatography-mass spectroscopy 
GCS glycine cleavage system 
Gln  glutamine  
Glu  glutamic acid (glutamate)  
GLUD glutamate dehydrogenase 
Gly  glycine  
GNG gluconeogenesis 
GSH glutathione 
GST gluthathione-S-transferase  
h hour 
HCS high content screening 
hESC human embryonic stem cells 
HGF hepatocyte growth factor 
His  histidine  
HK hexokinase 
HNF hepatocyte nuclear factor 
HTS high throughput screening 
HTS high troughput screening 
I quenched luminescence intensity 
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I0 unquenched luminescence intensity 
ICM inner cell mass 
ICT isocitrate 
IDV isotopomer distribution vector 
IFCC International Federation of Clinical Chemistry  
Ile  isoleucine 
IMM isotopomer mapping matrice 
IST insulin-transferin-sodium selenite 
KSV Stern-Volmer constant 
Lac lactate 
LC50 lethal concentration, 50% 
LCT liver cell transplantation 
LDA low density array 
LDH lactate dehydrogenase 
Leu  leucine  
Lys  lysine  
m measurable reaction rates 
m/z mass to charge 
MABs monoclonal antibodies 
MAPCs multipotent adult progenitor cells  
MAV metabolite activity vector 
MBDSTFA N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide 
MDH malate dehydrogenase 
MDH malate dehydrogenase, malic enzyme 
ME molar enrichment 
MEF mouse embryonic fibroblast 
MEF-CM MEF-conditioned culture media 
met metabolite 
Met methionine 
MFA metabolic flux analysis 
min minute 
mM millimolar 
MPT mitochondrial permeability transition 
MRM multiple reaction monitoring 
mRNA mitochondrial RNA 
MRP2 multidrug resistance protein 2  
MS mass spectrometry 
MSCs mesenchymal stem cells  
MTHF 5,10-methylenetetrahydrofolate 
MTP microtiter plates  

MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide 

MTX methotrexate 
NAC N-acetylcysteine 
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NADH nicotinamide adenine dinucleotide 
NADPH nicotinamide adenine dinucleotide phosphate 
NAPQI N-acetyl-p-benzoquinoneimine  
NDA new drug application 
nm non-measurable reaction rates 
NMR nuclear magnetic resonance 
ns nanosecond 
NSAID non steroidal anti inflammatory drugs 
OAA oxaloacetate 
OPA o-phtaldialdehyde  
OSM oncostatin M 
OTC ornithine transcarbamylase  
PBS phosphate buffered saline 
PBST PBS with 0.2 % Triton X-100 
PC pyruvate carboxylase 
PCR polymerase chain reaction 
Pcyc pentose cycle activity 
PDC pyruvate dehydrogenase complex 
PDH pyruvate dehydrogenase 
PEP phosphoenealpyruvate 
PEPCK phosphoenealpyruvate carboxykinase 
PFA paraformaldehyde 
PH hepatocytes primary human hepatocytes 
PHH primary human hepatocytes 
PK pyruvate kinase 
pO2 oxygen partial pressure 
PPP pentose phosphate pathway 
PRH primary rat hepatocytes 
Pro proline 
PSS pseudo-steady-state 
PST phenol sulfotransferase  
PYK pyruvate kinase 
qRT-PCR quantitative Real-Time PCR 
rDNA recombinant DNA 
RI refraction indexes 
ri,in(t) flux towards the metabolite through reaction i 
RNA ribonucleic acid 
ro,out(t) flux from the metabolite through reaction o 
ROS reactive oxygen species 
RP-HPLC reversed phase high performance liquid chromatography 
s stoichiometric coefficient 
S7P sedoheptulose 7-phospahte 
SDR SensorDish® Reader 
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SDS sodium dodecyl sulphate 
Ser  serine 
SFL summed fractional labeling  
SHMT serine hydroxymethyltransferase 
SIM selected ion monitoring 
SRB Sulforhodamine B 
SRM selected reaction monitoring  
ST sub-toxic concentration 
STREP Specific Target Research Project 
T  transpose of a matrix 
TA transaldolase 
TCA tricarboxylic acid  
TCA trichloroacetic acid 
THF tetrahydrofolate 
Thr  threonine  
TK transketolase 
TO tyrosine oxygenase 
TP triose phosphate 
Trp  tryptophan 
Tyr  tyrosine  
UDP uridine diphosphate 
UGT UDP -dependent glucuronosyl transferase  
UV ultraviolet 
Val  valine  
w/o without 
WME Williams Medium E 

WST-1 4-[3-(4-Iodophenyl)-2-(4-nitrophenyl)- 2H-5-tetrazolio]-1,3-
benzene disulfonate 

x(t) n-dimensional flux vector 

XTT 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-
carbox-anilide 

γ isotope yield 
ΔΨm mitochondrial inner transmembrane potential  
τ luminescence decay time (Oxygen present) 
τ0 luminescence decay time (Oxygen absent) 
Ф phase angle 
µ growth rate 
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7.4 Embryonic Stem Cells Derived Hepatocyte-like Cells 

7.4.1 LDA - Heat map 

 

 

Figure 7.4.1:  Relative gene expression for liver related genes as measured by LDA assay. All 
samples were run on LDA cards containing different genes associated with liver drug 
metabolism. The expression for all genes is normalized against the expression of 
HPRT in each sample. The expression levels in each sample are compared to the 
expression levels in Hep G2 cells, which are set to 1.0 for all genes. UGTs: UDP-
glucuronosyltransferases, N.D.: not detected, ↑: detected. 



 APPENDIX 

XVI 

 

7.4.2 LC-MS/MS Chromatograms 
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Figure 7.4.2:  LC-MS/MS chromatograms of diclofenac, its metabolites and controls. A) Control media 

without cells and without diclofenac, phenacetin and midazolam, B) activity assay media 
without cells, diclofenac metabolized by C) SA002 D) SA167, E) SA461, F) Hep G2 cells and 
G) Primary human hepatocytes. Chromatograms are depicted in colors, indicating metabolites, 
namely:  red = diclofenac, green = OH-diclofenac, blue = Acylglucuronide, olive = O-
glucuronide and purple = Glutathione, Retention times are indicated and Areas under the curve 
(AUC, here MA) are filled in grey.  
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c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_107

NL: 8.64E4
m/z= 311.50-312.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_107

NL: 5.16E4
m/z= 472.50-473.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_107

NL: 9.17E4
m/z= 487.50-488.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_107

NL: 9.29E4
m/z= 616.50-617.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
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nm=260.0-320.0  PDA 
Mix_MBID_106

NL: 3.27E5
m/z= 295.50-296.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_106

NL: 1.55E5
m/z= 311.50-312.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_106

NL: 5.29E4
m/z= 472.50-473.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_106

NL: 7.90E4
m/z= 487.50-488.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_106

NL: 9.15E4
m/z= 616.50-617.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_106
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7.4.2.2 Phenacetin 
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[110.000-1200.000]  MS 
Mix_MBID_101

NL: 1.61E5
m/z= 151.50-152.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_101

NL: 1.21E5
m/z= 327.50-328.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_101

NL: 1.34E5
m/z= 231.50-232.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_101

NL: 1.66E5
m/z= 456.50-457.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_101
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[110.000-1200.000]  MS 
Mix_MBID_102

NL: 1.17E5
m/z= 151.50-152.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_102

NL: 4.54E6
m/z= 327.50-328.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_102

NL: 3.11E5
m/z= 231.50-232.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_102

NL: 6.92E4
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[110.000-1200.000]  MS 
Mix_MBID_103

NL: 1.71E5
m/z= 151.50-152.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_103

NL: 2.76E6
m/z= 327.50-328.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_103

NL: 2.29E5
m/z= 231.50-232.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_103

NL: 6.77E4
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[110.000-1200.000]  MS 
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NL: 1.49E5
m/z= 151.50-152.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_104

NL: 2.61E6
m/z= 327.50-328.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_104

NL: 2.90E5
m/z= 231.50-232.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_104

NL: 6.14E4
m/z= 456.50-457.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_104
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Figure 7.4.3:  LC-MS/MS chromatograms of phenacetin, its metabolites and controls. A) Control media 

without cells and without diclofenac, phenacetin and midazolam, B) activity assay media 
without cells, phenacetin metabolized by C) SA002 D) SA167, E) SA461, F) Hep G2 cells and 
G) Primary human hepatocytes. Chromatograms are depicted in colors, indicating metabolites, 
namely:  red = phenacetin, green = Acetaminophen (APAP), blue = APAP-glucuronide, olive = 
APAP-sulfate and purple = APAP-Glutathione, Retention times are indicated and Areas under 
the curve (AUC, here MA) are filled in grey. 
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[110.000-1200.000]  MS 
Mix_MBID_105

NL: 1.23E5
m/z= 151.50-152.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_105

NL: 2.30E6
m/z= 327.50-328.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_105

NL: 2.01E5
m/z= 231.50-232.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_105
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c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_107

NL: 1.12E5
m/z= 151.50-152.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_107

NL: 3.63E6
m/z= 327.50-328.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_107

NL: 1.70E5
m/z= 231.50-232.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_107

NL: 1.30E5
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[110.000-1200.000]  MS 
Mix_MBID_106

NL: 1.08E5
m/z= 151.50-152.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_106

NL: 2.02E6
m/z= 327.50-328.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_106

NL: 2.49E5
m/z= 231.50-232.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_106

NL: 5.53E4
m/z= 456.50-457.50 F: + 
c ESI Q1MS 
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7.4.2.3 Midazolam 
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m/z= 325.50-326.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_101

NL: 1.07E5
m/z= 502.50-503.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_101

NL: 2.15E5
m/z= 341.50-342.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_101

NL: 9.99E4
m/z= 517.50-518.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_101

NL: 1.48E5
m/z= 518.50-519.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_101
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[110.000-1200.000]  MS 
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m/z= 502.50-503.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_102

NL: 6.37E4
m/z= 341.50-342.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_102

NL: 5.82E4
m/z= 517.50-518.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_102

NL: 1.04E5
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c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_103

NL: 5.47E4
m/z= 502.50-503.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_103

NL: 8.34E4
m/z= 341.50-342.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
Mix_MBID_103

NL: 4.39E4
m/z= 517.50-518.50 F: + 
c ESI Q1MS 
[110.000-1200.000]  MS 
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Figure 7.4.4:  LC-MS/MS chromatograms of midazolam, its metabolites and controls. A) Control media 

without cells and without diclofenac, phenacetin and midazolam, B) activity assay media 
without cells, midazolam metabolized by C) SA002 D) SA167, E) SA461, F) Hep G2 cells 
and G) Primary human hepatocytes. Chromatograms are depicted in colors, indicating 
metabolites, namely:  red = midazolam, green = midazolam-N-glucuronide, blue = OH-
midazolam, olive = OH-midazolam-O-glucuronide and purple = OH-midazolam-N-
glucuronide, Retention times are indicated and Areas under the curve (AUC, here MA) are 
filled in grey. 
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7.5 Physiological Studies Applying Sub-toxic Drug Concentrations  

7.5.1 Definitions for pseudo-steady-state metabolic network 

The stoichiometric network, which was constructed, was based knowledge contained in 

databases (e.g. KEGG, Roche Table…) and on previous observations, obtained from the 

metabolic profile, to obtain a working mathematical description of the hepatic metabolism. 

Thus, pathways included were, glycolysis, the TCA cycle, the urea cycle, amino acid 

oxidation and albumin synthesis. However, glycogen synthesis production was not 

considered, since it was not quantified. In addition, since SA002 cells do not proliferate, 

certain other definitions, regarding the pseudo-steady-state metabolic network were defined as 

follows: 

1) Pseudo-steady-state for the hepatic metabolic network can be assumed, since the rate of 

intracellular composition change is very small compared to their turnover rate (Marín-

Sanguino and Torres, 2000; Yang et al., 2009). To ensure this, several metabolites were 

measured over the course of experiment to evaluate the changes in the rate of uptake or 

release and were found to be constant (see Figure 4.4.6).  

2) Protein degradation as source of amino acids was neglected, since the medium was 

devoid of proteins. 

3) Albumin synthesis was used for calculations of the anabolic demand (see reaction 4.17), 

since the cells do not proliferate and albumin is the major protein product of hepatocytes 

(Chan et al., 2003a). Its release was further found to be constant over time (data not 

shown). 

4) Transport processes were included in the model to distinguish between cytosolic pools 

and mitochondrial pools; however the mechanism was not included, since active transport 

consumes energy, however, does not affect the carbons structure. The energy balance was 

not included.  

5) The non-oxidative branch of the pentose phosphate pathway was not considered. The 

demand for ribose 5-phosphate for nucleotide synthesis is negligible, since the cells do 

not proliferate (Chan et al., 2003a). However, the NADPH generating branch was also 

not considered, since it only accounts for approximately of 2-6 % of glucose metabolism 

(Magnusson et al., 1988) and may be less due to pyruvate cycling. 
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7.5.2 Stoichiometric network for metabolic flux analysis of hepatocytes 

 
Figure 7.5.1:  Mammalian cell metabolism. The network is comprised of intracellular metabolite 

balances, extracellular fluxes (22 uptake fluxes of amino acids, pyruvate and glucose, 
indicated by green arrows), 3 fluxes which indicate secretion (red arrows)) and 20 
anabolic fluxes (albumin synthesis, dashed arrows). Arrows indicate the direction of 
reaction assumed in the model. Abbreviations used: CIT citrate, ICT isocitrate, ALB 
albumin. The amino acids have the standard 3 letter abbreviation. The subscripts “mit” 
indicate mitochondrial metabolites and “cyt” cytosolic. The subscripts “inp” and “ext” 
indicate input and export fluxes, respectively.  
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The stoichiometric balances for the intracellular metabolites are defined as depicted in Table 

7.5.1: 

Table 7.5.1:  Stoichiometric balances for the intracellular metabolites of primary human 
hepatocytes and hESC derived hepatocyte-like cells. The subscripts “mit” indicate 
mitochondrial metabolites and “cyt” cytosolic. The subscripts “inp” and “ext” 
indicate input and export fluxes, respectively. The letter “L” indicates minimum 
labeled concentration of metabolites, which are excreted. 

Metabolite Balance equation 
Glucose 6-P 0 = rinp1 – r1 
Fructose 6-P 0 = r1 –  r2 
3PG 0 = 2 · r2 – r3 –r18 
PEP 0 = r3 – r4 + r17 
Pyruvate I 0 = r4 – r5 + r22 + r11 – r13 - r32 + r33 – r46 – rext2 
Pyruvatemit 0 = r5 – r6 
Acetyl-CoAmit 0 = r6 – r7 + r12 + 2 · r40 + r41 + r42 
Acetyl-CoAcyt 0 = r13 + r24 + r35 – r12 
α-Ketoglutarate 0 = r7 – r8 + r25  
Succinate/Fumarate 0 = r8 – r9 + r21 + r35 + r36 + r38 + r39 
Oxaloacetatemit/Malatemit 0 = r9 – r7 –r10  
Oxaloacetatecyt 0 = r10 – r11 – r14 – r17 
Acetoacetate 0 = r34 + r41 + r42 – r40 + r36 
Urea 0 = r21 - rext5 
Lactate 0 = r46 – rext1 
Cys 0 = rinp21 – rb20 –r33 
Ala 0 = -rext3– rb1 + r32 + r34 
Trp 0 = rinp19 – rb2 – r34 
Ile 0 = rinp18 – rb3 – r35 
Lys 0 = rinp17 – rb4 – r41 
Leu 0 = rinp16 – rb5 – r42 
Gln 0 = rinp15 – rb6 – r27 
Glu 0 = rinp13 – rb8 – r25 + r28 + r30 + r27 - r29 
His 0 = rinp14 – rb7 – r28 
Arg 0 = rinp12 – rb9 – r30 
Pro 0 = rext4 – rb10 + r29 
Phe 0 = rinp10 – rb11 – r37 
Tyr 0 = rinp9 – rb12 – r36 + r37 
Val 0 = rinp8 – rb13 – r38  
Met 0 = rinp7 – rb14 – r39 
Aspcyt 0 = rinp6 – rb15 – r20 + r26 + r14 
Argininosuccinate 0 = r20 – r21 
Urea 0 = r21 – rext5 
Asn 0 = rinp5 – rb16 – r26 
Thr 0 = rinp4 – rb17 – r24 
Gly 0 = rinp3 – rb18 + r23 + r24 
Ser 0 = rinp2 – rb19 – r22 - r23 + r18 
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Intracellular fluxes were calculated using a script, adapted from A. Strigun, using average 

yields with their standard deviation and applying Monte-Carlo-simulation. The script for use 

in Matlab® was as followed:  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Script for calculation of intracellular fluxes using average yields 
% obtained by Monte Carlo random numbers with standard deviation of input 
% data (several time point available).  
  
%please define qm (measured rates), qm_error (measured 
%standard deviations) and S_M (Measured Matrix) S_C (Calculated Matrix) 
nMonteCarlo = 10    ;                 %number of Monte-Carlo runs 
load Matrices; 
c = []; 
for i = 1: nMonteCarlo; 
  D = normrnd(qm, qm_error); 
  b = (-pinv(S_C)*S_M*D)'; 
  c = [c; b]; 
end 
qc=(mean(c)'); 
qc_error=abs(std(c)'); 
qm=qm'; 
qm_error=qm_error'; 
 

The data used in Matlab® are shown next. Hereby, S_M denotes the matrix of measured 

fluxes, S_C the matrix of calculable fluxes, qc the calculated flux vector and qc_error the 

standard deviation for each flux of qc. 

S_M = 
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S_C 

 

qm and qm_error = 

 



APPENDIX 

 XXVII 

 

Since albumin is the major protein produced in hepatocytes and the cells did not proliferate, 

for the anabolic demand, amino acids consumption for albumin synthesis, was used according 

to Chan et al. (2003a).  

24 ARG + 32 ASP + 61 ALA + 24 SER + 35 CYS + 57 GLU + 17 GLY + 21 TYR  
+ 33 THR + 53 LYS + 26 PHE + 25 GLN + 30 PRO + 15 HIS + 6 MET  
+ 20 ASN + TRP + 35 VAL + 13 ISO + 56 LEU + 2332 ATP                   
=  albumin + 2332 ADP + 2332 Pi     

By multiplication of the anabolic demand of amino acids for the albumin synthesis [mmolamino 

acid · mgAlbumin
-1] with the yield [mgAlbumin · mmolsubstrate] the values were normalized to the 

defined glucose uptake and implemented into the stoichiometric flux model (see Table 7.1.2 

and Table 7.1.3. 

Table 7.5.2:  Albumin concentration and glucose uptake after 24 hours of exposure to diclofenac for 
hESC derived hepatocyte-like cells.    

 
SA002 (24 hours) 

Control ST1 [100 µM] ST2 [100 µM] 

Albumin (g/L) 0.86 0.78 0.63 

Albumin (mmol/L) 2.61 x 10-5 2.34 x 10-5 1.89 x 10-5 

Glucose uptake (mmol/L) 3.91 1.61 1.57 

Table 7.5.3:  Anabolic demand for the production of albumin and normalized to glucose uptake for 
hESC derived hepatocyte-like cells exposed to diclofenac for 24 hours.   
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7.5.3 Studies of central carbon metabolism employing 13C isotopes 

Table 7.5.4:  [U-13C6]glucose and [U-13C5]glutamine supplemented as substrates. The 
carbon profile for primary human hepatocytes is shown over time [h]. The 
sub-toxic concentrations are abbreviated as ST1-ST3, being 10 µM, 25 µM 
and 50 µM diclofenac, respectively.  

Substrate Time [h] Concentration [C-µmol/L] Uptake [C-µmol/L] 
0 12 24 35 48 0 12 24 35 48 

Glucose 
Control 64848 58026 57510 57840 59238 0 6822 7338 7008 5610 

ST1 64848 57168 57138 58830 58764 0 7680 7710 6018 6084 
ST2 64848 56934 58554 58188 56502 0 7914 6294 6660 8346 
ST3 64848 58194 58722 58494 57570 0 6654 6126 6354 7278 

 Glutamine 
Control 21495 20155 19065 18205 15890 0 1340 2430 3290 5605 

ST1 21495 19845 18045 17340 16710 0 1650 3450 4155 4785 
ST2 21495 19610 18715 17785 16555 0 1885 2780 3710 4940 
ST3 21495 19445 18445 18300 16720 0 2050 3050 3195 4775 

 

Table 7.5.5:  Concentrations [µmol/L], carbon concentration [C-µmol/L] over time, 13C-
mass isotopomer concentration [C-µmol/L] from [U-13C6]glucose or [U-
13C5]glutamine over time [h], quantified by HPLC and analyzed by GC/MS 
for primary human hepatocytes exposed to diclofenac in four concentrations. 

Metabolite 
Time 
[h] 

Concentration [µmol/L] Concentration [C-µmol/L] 
0 12 24 35 48 0 12 24 35 48 

Lactate 

Control 0 0 523 884 1587 0 0 1569 2652 4761 
ST1 0 0 344 759 1421 0 0 1032 2277 4263 
ST2 0 0 177 816 1251 0 0 531 2448 3753 
ST3 0 0 0 766 1037 0 0 0 2298 3111 

Alanine 

Control 1065 995 905 847 779 3195 2985 2715 2541 2337 
ST1 1065 1024 989 967 853 3195 3072 2967 2901 2559 
ST2 1065 1030 963 882 862 3195 3090 2889 2646 2586 
ST3 1065 1066 1014 1011 997 3195 3198 3042 3033 2991 

Glutamate 

Control 451 465 497 532 558 2255 2325 2485 2660 2790 
ST1 451 469 471 544 570 2255 2345 2355 2720 2850 
ST2 451 458 487 507 531 2255 2290 2435 2535 2655 
ST3 451 441 456 513 517 2255 2205 2280 2565 2585 

Proline 

Control 350 354 352 353 343 1750 1770 1760 1765 1715 
ST1 350 388 352 403 375 1750 1940 1760 2015 1875 
ST2 350 369 360 359 360 1750 1845 1800 1795 1800 
ST3 350 372 376 345 342 1750 1860 1880 1725 1710 

Aspartate 

Control 263 258 259 258 240 1052 1032 1036 1032 960 
ST1 263 267 252 274 260 1052 1068 1008 1096 1040 
ST2 263 256 258 249 241 1052 1024 1032 996 964 
ST3 263 259 250 256 237 1052 1036 1000 1024 948 

 Serine 

Control 120 128 131 136 135 360 384 393 408 405 
ST1 120 128 125 139 135 360 384 375 417 405 
ST2 120 126 122 132 138 360 378 366 396 414 
ST3 120 118 120 129 125 360 354 360 387 375 

Glycine 

Control 671 688 660 641 584 1342 1376 1320 1282 1168 
ST1 671 684 635 677 618 1342 1368 1270 1354 1236 
ST2 671 693 678 653 623 1342 1386 1356 1306 1246 
ST3 671 678 667 662 626 1342 1356 1334 1324 1252 

Metabolite Time [h] 

13C-mass isotopomer concentration [C-µmol/L] 
from [U-13C6]glucose 

13C-mass isotopomer concentration [C-µmol/L] 
from [U-13C5]glutamine 

0 12 24 35 48 0 12 24 35 48 

Lactate 

Control 0 0 594 1068 2154 0 0 159 273 585 
ST1 0 0 417 975 1788 0 0 111 261 534 
ST2 0 0 213 1017 1803 0 0 48 252 423 
ST3 0 0 0 1014 1512 0 0 0 201 345 
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Alanine 

Control 45 327 399 507 738 45 75 87 114 192
ST1 45 297 396 492 696 45 84 123 159 219
ST2 45 291 384 504 753 45 93 93 126 168
ST3 45 321 342 507 792 45 93 132 141 234

Glutamate 

Control 25 490 680 885 730 25 155 250 370 565
ST1 25 625 775 820 930 25 215 295 435 635
ST2 25 545 905 680 730 25 175 250 345 440
ST3 25 645 850 690 915 25 150 250 310 485

Proline 

Control 40 175 190 210 255 40 170 140 160 175
ST1 40 165 165 200 245 40 150 150 185 180
ST2 40 140 160 200 230 40 245 150 150 150
ST3 40 140 150 155 190 40 135 150 135 155

Aspartate 

Control 12 100 96 116 112 12 36 36 48 60
ST1 12 144 136 148 176 12 44 52 68 80
ST2 12 92 132 104 120 12 56 36 40 52
ST3 12 180 112 112 124 12 40 52 52 68

 Serine 

Control 3 18 33 51 75 3 15 18 27 33
ST1 3 15 30 42 66 3 15 18 24 30
ST2 3 15 27 45 72 3 15 18 27 27
ST3 3 12 18 33 57 3 12 15 18 24

Glycine 

Control 16 82 84 92 104 16 30 24 28 32
ST1 16 82 80 94 108 16 24 24 28 30
ST2 16 88 92 102 116 16 26 26 28 28
ST3 16 88 88 102 110 16 22 24 26 28

 

Table 7.5.6:  [U-13C6]glucose and [U-13C5]glutamine supplemented as substrates. The 
carbon profile for hESC derived hepatocyte-like cells is shown over time 
[h]. The sub-toxic concentrations are abbreviated as ST1-ST3, being 100 
µM, 200 µM and 400 µM diclofenac, respectively.  

Substrate Time [h Concentration [C-µmol/L] Uptake [C-µmol/L] 
0 16 24 36 48 0 16 24 36 48 

Glucose 
Control 59628 40368 28284 21564 13224 0 19260 31344 38064 46404 

ST1 59628 53028 50352 42876 40332 0 6600 9276 16752 19296 
ST2 59628 45252 45480 42912 40752 0 14376 14148 16716 18876 
ST3 59628 50088 50148 48612 53640 0 9540 9480 11016 5988 

 Glutamine 
Control 17960 16200 15905 14685 14505 0 1765 2060 3275 3455 

ST1 17960 15720 15705 14875 14740 0 2240 2255 3085 3220 
ST2 17960 15885 15545 15125 14695 0 2080 2415 2835 3270 
ST3 17960 14910 14755 14150 14185 0 3050 3205 3810 3775 
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Table 7.5.7:  Concentrations [µmol/L], carbon concentration [C-µmol/L] over time, 13C-mass 
isotopomer concentration [C-µmol/L] from [U-13C6]glucose or [U-13C5]glutamine 
over time [h], quantified by HPLC and analyzed by GC/MS for hESC derived 
hepatocyte-like cells exposed to diclofenac in four concentrations. 

Metabolite 
Time 
[h] 

Concentration [µmol/L] Concentration [C-µmol/L] 
0 16 24 36 48 0 16 24 36 48 

Lactate 

Control 0 4512 8244 9914 14098 0 13536 24732 29742 42294 
ST1 0 2008 2216 4026 5062 0 6024 6648 12078 15186 
ST2 0 2138 3292 4264 5244 0 6414 9876 12792 15732 
ST3 0 1672 2050 2224 3754 0 5016 6150 6672 11262 

Alanine 

Control 919 1048 1136 1125 1198 2757 3144 3408 3375 3594 
ST1 919 1001 1042 1077 1187 2757 3003 3126 3231 3561 
ST2 919 982 1016 1083 1168 2757 2946 3048 3249 3504 
ST3 919 980 1017 1091 1165 2757 2940 3051 3273 3495 

Glutamate 

Control 373 168 93 70 28 1865 840 465 350 140 
ST1 373 163 53 25 23 1865 815 265 125 115 
ST2 373 150 52 26 26 1865 750 260 130 130 
ST3 373 233 210 42 30 1865 1165 1050 210 150 

Proline 

Control 343 368 411 440 478 1715 1840 2055 2200 2390 
ST1 343 390 414 465 456 1715 1950 2070 2325 2280 
ST2 343 346 365 409 452 1715 1730 1825 2045 2260 
ST3 343 353 393 388 434 1715 1765 1965 1940 2170 

Aspartate 

Control 220 28 19 18 14 880 112 76 72 56 
ST1 220 28 15 14 14 880 112 60 56 56 
ST2 220 28 15 15 15 880 112 60 60 60 
ST3 220 55 33 5 6 880 220 132 20 24 

 Serine 

Control 110 102 101 84 84 330 306 303 252 252 
ST1 110 90 87 81 85 330 270 261 243 255 
ST2 110 92 86 88 91 330 276 258 264 273 
ST3 110 89 85 84 90 330 267 255 252 270 

Glycine 

Control 613 569 561 523 519 1226 1138 1122 1046 1038 
ST1 613 537 541 531 565 1226 1074 1082 1062 1130 
ST2 613 561 545 562 583 1226 1122 1090 1124 1166 
ST3 613 531 537 547 577 1226 1062 1074 1094 1154 

Metabolite Time [h] 

13C-mass isotopomer concentration [C-µmol/L] 
from [U-13C6]glucose 

13C-mass isotopomer concentration [C-µmol/L] 
from [U-13C5]glutamine 

0 16 24 36 48 0 16 24 36 48 

Lactate 

Control 0 11055 20766 25488 37089 0 180 336 417 606 
ST1 0 4578 5307 9897 12627 0 72 87 171 228 
ST2 0 4608 7623 10044 12609 0 78 138 186 228 
ST3 0 150 135 132 213 0 78 102 132 213 

Alanine 

Control 39 693 1194 1659 2148 39 39 45 45 51 
ST1 39 468 591 906 1170 39 36 45 51 60 
ST2 39 414 561 759 1059 39 36 42 51 60 
ST3 39 237 54 72 81 39 45 54 72 81 

Glutamate 

Control 20 200 110 115 55 35 110 90 100 35 
ST1 20 315 125 70 65 20 70 75 20 35 
ST2 20 350 135 70 70 20 75 40 25 35 
ST3 20 145 190 60 55 20 145 190 60 55 

Proline 

Control 35 90 125 200 250 35 80 110 190 245 
ST1 35 95 140 230 240 35 70 90 145 195 
ST2 35 75 105 155 205 35 55 75 140 210 
ST3 35 70 120 160 210 35 70 120 160 210 

Aspartate 

Control 52 28 24 28 24 48 8 4 4 4 
ST1 52 20 12 12 16 52 8 4 8 4 
ST2 52 28 16 16 16 52 12 8 8 8 
ST3 52 48 28 4 4 52 48 28 4 4 

 Serine 

Control 6 39 51 57 63 6 6 6 3 3 
ST1 6 9 12 15 18 6 3 6 3 3 
ST2 6 9 12 15 18 6 3 3 3 3 
ST3 6 9 3 3 3 6 9 3 3 3 

Glycine 

Control 14 22 28 38 42 14 16 16 14 12 
ST1 14 16 16 18 20 14 14 16 16 14 
ST2 14 16 16 18 22 14 16 14 14 16 
ST3 14 14 14 14 14 14 14 14 14 14 
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