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Abbreviations 

 
ABC ATP binding cassette 
a.u. Arbitrary unit 
AM Acetoxymethyl 
BCECF     2', 7’-bis-(2-carboxyethyl)-5-(and-6)- 

carboxyfluorescein 
Caco-2 Human colon carcinoma cells clone-2 

Ca2+
i Intracellular calcium concentration 

Cs A Cyclosporin A 
CCD Charged couple devices 
DMSO Dimethylsulfoxide 
ED Ethylene diamine  
EGTA Ethylene glycol tetra acetate 
ETC Easy To Clean 
FCS Fluorescence correlation spectroscopy 
GPTS Glycidoxypropyltrimethoxysilane 
HIS High ionic strength  
LIS Low ionic strength  
MEM Minimal Eagle medium 
NSVDC Non selective voltage dependent cation 

channel 
PGA Polyglucolic acid 
P-gp P-glycoprotein 
pHi Intracellular pH 
PLA Polylactic acid 
PLGA Polylactic-co-glycolic acid 
PLL Poly-L-lysine 
PMMA Polymethylmethacrylate 
PMT Photomultiplier tube 
RBC Red blood cell 
R18 Octadecyl rhodamine B chloride 
TAU Taurine coated surface 
WGA Wheat germ agglutinin 
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The present work is aimed at understanding and addressing the following problems 

which are investigated in detail.  

A. Effect of transmembrane potential on the lateral diffusion of Na+/H+ exchanger 

of human RBCs. 

B. Mechanism behind the Ca2+ loss of single Caco-2 cells. 

C. Influence of nano-structured surfaces and nano-particles on the physiological 

processes of human RBCs and Caco-2 cells.                    

The Na+/H+ exchanger is an ubiquitous plasma membrane protein which transports 

Na+ (some also K+) across cell membranes in exchange for H+ (Muerer  et al., 1976; 

Richter et al., 1997). Existing in few copies per cell, their presence has been identified in 

almost all cell types (Grinstein et al., 1984; Tse et al., 1993; Rindler et al., 1981). The 

exchanger has a critical role in maintaining the intracellular pH (Deitmer and Ellis, 1980; 

Aickin et al., 1977) and cell volume (Siebens et al., 1985; Lew et al., 1986). 

Very little is known about the effect of the transmembrane potential and volume 

change on the lateral diffusion of integral membrane proteins and lipids. Lateral motion 

of membrane constituents has many physiological significances in a biological system 

(Axelrod et al., 1983; McCloskey et al., 1984). We have investigated the influence of 

transmembrane potential on the lateral diffusion of Na+/H+ exchanger labeled with 

Bodipy-FL amiloride and the cell permeant lipid probe β-Bodipy-FL-C12-HPC in RBCs. 

Therefore, we altered the ionic strength of the extracellular solution by changing the 

transmembrane potential, took into account the volume change, and analysed the 

diffusion constants of Na+/H+ exchanger using the fluorescence correlation spectroscopy 

(FCS).  

In the second part of the thesis, we have investigated the mechanism behind the 

Ca2+ loss of single Caco-2 cells in physiological conditions. Ca2+ is the most abundant ion 

in the human body which is responsible for many cellular processes. Ca2+ acts as a 

universal intracellular messenger which regulates neurotransmission, muscle contraction, 

etc. Cells regulate the intra- and extra-cellular Ca2+ levels very precisely, which is 

important for the cell growth, differentiation and apoptosis (Santella et al., 1998; 

Nicotera et al., 1998). 
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Dramatic Ca2+ loss has been observed when the Caco-2 cells are in physiological 

conditions and without any external Ca2+ source in the environment with the aid of 

fluorescence microscope. Specifically, the objective of this study is to find the pathway 

behind the Ca2+ loss and the conditions responsible for it. Different inhibitors which 

specifically inhibit Ca2+ channels and Ca2+ pumps have been applied in these 

investigations.  

In the present thesis, we have also made an attempt to study the effect of important 

physiological processes like Ca2+ transport and pH changes of RBCs and Caco-2 cells 

during their interactions with various nano-structured surfaces and nano-particles. The 

changes in intracellular pH and Ca2+ content give important information about the cell 

homeostasis and proper function of cell metabolism. 

Nano-structured surfaces and nano-particles have a revolutionary impact in the 

present decade. The architecture and features of nano-structures at the contact of cell 

surface may induce some changes in the migration, growth and differentiation of certain 

cell types. The nano structured surfaces can be defined as structures ranging few 

nanometers (1-100 nm) and offer high surface to volume ratio which is characteristic 

feature of these materials (Alivisatos et al., 2004; West et al., 2000). Fundamental 

understanding of these interactions at the substrate level would certainly help in the 

manufacture of better materials. The investigated surfaces differ in the composition and 

texture of the material, physically and chemically. The membrane crossing ability of 

nano-particles and their influence on cell morphology has been studied using single cell 

fluorescence imaging system. Thus, we made an attempt to study the effect of various 

surfaces obtained from different sources on the Ca2+ transport and pH changes of both 

RBCs and Caco-2 cells. 

The present work has been carried out under the supervision of Prof. Dr. Ingolf 

Bernhardt in the Laboratory of Biophysics, University of Saarland. 
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2.1 Biological membrane and dynamics of membrane constituents 

The cell membrane functions like a barrier between cell entity and the 

surrounding environment. According to the fluid mosaic model proposed by Singer and 

Nicolson (1972) the proteins “float in the lipid sea” and the lateral diffusion of proteins 

and lipids is allowed in the plane of membrane. This model considers the bilayer as a 

two-dimensional fluid in which lipids and proteins are free to diffuse. In recent years, 

considerable evidence has accumulated demonstrating that biological membranes are 

highly dynamic structures in which all components can undergo Brownian motion. 

However, the fluid mosaic model couldn’t predict the influence of cytoskeleton and the 

diversity in the free diffusion of membrane components at that time. The arrangement 

and lateral distribution of proteins and lipids is essential for many cellular processes like 

transport, signal transduction and cell-cell recognition to occur (Kathleen, 2007). The 

asymmetry of a biological membrane is preserved and is necessary for the cell survival 

(Zwaal et al., 1997). The three-dimensional view of a cell membrane structure is shown 

in Fig. 1. 

 

 

   

 

 

 

 

 

 

Fig. 1: Three-dimensional view of cell membrane structure (Image taken from the 
website: http://cellbiology.med.unsw.edu.au/units/images/Cell_membrane.png). 
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The mobility of a membrane constituent depends on the size of the molecule, lipid 

composition, its interactions with other molecules and temperature. Measuring the lateral 

diffusion of the diffusing component in membranes yields the information about the 

mobility rates which are related to cell physiological functions and the dynamic view of 

the surrounding environment. The fluidity of membrane depends on cholesterol content, 

temperature, configuration and composition of fatty acid chains. The distance covered by 

membrane lipids and proteins can be calculated using the Eq. (1): 

                                    

                                          X2 = 2Dt  or  X = )2( Dt                       (1) 
 

where X is the distance, D is the diffusion coefficient and t is the time. Thus, the 

characteristic diffusion constant (D) obtained for a lipid in the fluid-crystalline state or 

protein surrounded by lipid in fluid-crystalline state is 10-8 cm2/s and diffuses a distance 

of 1 μm in 1 s. In case of lipids, the lateral (in-plane) diffusion is relatively rapid at rates   

10-10 cm2/s in crystalline state and 10-8 cm2/s in fluid-crystalline state. The rotational 

mobility of lipids is rapid at rates of 10-9_10-10 s in fluid-crystalline state. The transverse 

or flip_flop movement of phospholipids is very rare and unspecific with half-times in the 

order of hours or even days (Zachowski et al., 1993). On the contrary, the energy (ATP) 

dependent transport of aminophospholipids (PS and PE) from exoplasmic to cytoplasmic 

side is quick and highly specific (Seigneuret and Devaux, 1984). Specific proteins called 

translocases or flippases mediate such transport and are also involved in the origin of 

transmembrane asymmetry. The lateral and flip_flop movement of lipids in membrane is 

shown in Fig. 2. 

 

 

 

 

 

 

 

 Fig. 2: Lipid movement in membrane. A) Lateral diffusion, and B) Flip-flop diffusion. 

 (B)  (A) 
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The lateral mobility of lipids in the outer membrane layer is greater compared to 

the inner membrane lipids. The restricted mobility of inner membrane lipids is attributed 

to the interactions of phospholipids with the cytoskeleton. Protein mobility varies to a 

greater extent. It has been observed that some proteins are free to move and others are 

attached to structures in the cytoplasm or extracellular spaces, thus restricting their 

movement. Various reports have established and confirmed the role of cytoskeletal 

matrix controlling the lateral mobility of proteins (Dennis et al., 1981; Sundqvist et al., 

1976). The lateral diffusion of proteins found to be in the order of 10-8_10-10 cm2/s and 

depends on the state of lipid environment. The rotational mobility of proteins is very 

rapid in the order of 20_500 μs. Proteins, in contrast to lipids, do not exhibit flip-flop 

movement in membranes. Some models used to analyze possible rotational and 

translational motion of membrane constituents within membranes are shown in Fig. 3.   

 

 

 

 

 

 

 

 

 

 

 
I 

 

Fig. 3: Some models used to analyze rotational and translational motion within membranes.        
I) Isotropic rotation of a spherical molecule within the hydrophobic core of the membrane.          
II) Wobbling-in-cone model for a “rod-like” molecule tethered at the surface and able to move 
rapidly within a cone-shaped region defined by an angle with respect to the bilayer normal. III) 
Wobbling-in-cone model for rod-like molecule within the hydrophobic core. IV) Rotation of a 
cylindrical transmembrane protein. V) Lateral motion of lipids within the bulk (left side) and 
exchanging between bulk lipid and lipid adjacent to protein (right side). VI) Lateral motion of a 
cylindrical transmembrane protein. 

 

 (I)  (II)  (III) 

 (IV)  (V)  (VI) 
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The human RBC membrane has been served as a favourite model for studying the  

structural and mechanical properties of membrane for quite a long time. Advantages like 

availability, lack of nucleus, lack of intracellular organelles and the relatively 

homogeneous structure makes it suitable to investigate many properties related to 

membrane structure and dynamics. The lateral motion of lipids and proteins depends on 

the conditions like low ionic strength or high temperature that effects directly or 

indirectly the submembraneous spectrin-actin protein matrix of the membrane (Koppel et 

al., 1981). Human RBCs with lacking spectrin association also increase the diffusion rate 

of the integral proteins, whereas the lateral diffusion rates of membrane lipids are largely 

unaffected. 

2.2 The transmembrane potential, surface potential and the electric field in the 

membrane 

The transmembrane potential plays an important role in many physiological 

processes of cells (Cone, 1971; Sundelacruz et al., 2008). The disparity and the 

permeability coefficients of the different ions between the outer and inner sides of a 

biological membrane give rise to transmembrane potential. The transmembrane potential 

can be calculated only for the conditions where the sum of all partial ion fluxes is zero 

(for steady-state conditions only!). Thus, Σ ZiFJi = 0, where Ji are the electrodiffusive 

fluxes of the ion species and F is the Faraday constant. Considering only K+, Na+, and 

Cl,- the transmembrane potential can be calculated using the Goldman-Hodgkin-Katz 

equation:                                     

                Cl
o

ClNa
i

NaK
i

K

Cl
i

ClNa
o

NaK
o

K

cPcPcP
cPcPcP

F
RT

++

++
=∆ lnψ

            

The expression for the transmembrane potential of RBCs is derived from the 

following considerations (Eq. 3 and Eq. 4). The electric transmembrane potential (Δψ) 

can be expressed as a diffusion potential of K+ and Na+. Because, under physiological 

conditions, the net ion movement of K+ and Na+ compared to Cl- across the RBC 

membrane is very low. So, the electric transmembrane potential can be described as a 

diffusion potential of K+
  and Na+ only:                      

 (2) 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Cone%20CD%20Jr%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Sundelacruz%20S%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
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Which is identical to Nernst potential for chloride ions and protons: 

                                                                                                                                                  
 
 

In Eqs. (3) and (4), PK, cK, PNa, cNa, PCl, cCl, PH, cH are the permeability coefficients 

and concentrations for K+, Na+, Cl-, and H+, respectively. Symbols o and i represent the 

outside and inside of the membrane. R is the gas constant, F is the Faraday constant, and 

T is the absolute temperature.  

In the present thesis, we made an attempt to study the effect of transmembrane 

potential and the volume changes of the cell on the diffusion constant of                  

Na+/H+ exchanger of human RBCs under isotonic conditions. In physiological conditions 

RBCs maintain a negative membrane potential of -8 to -10 mV (Jay and Burton, 1969; 

Freedman and Hoffman, 1979; Deutsch et al., 1979). Altering the ionic strength of the 

solution surrounding the RBCs causes several changes in the electric potential profile of 

the cell and leads to structural changes in the glycoproteins and glycolipids. In low ionic 

strength (LIS) conditions, considerable alterations in the physical characteristics like 

density profile and thickness of the membrane glycocalyx can be observed. 

Electrophoretic measurements of human RBCs suspended in LIS solution of 10 mM 

NaCl have shown that the glycocalyx of the cells increased in thickness from 5.5 (in HIS 

solution) to 12 nm (Bernhardt, 1994). Increase in the electric potential under LIS 

conditions is attributed to the mutual intra- and inter-molecular attraction and repulsion of 

the charged ionic groups. Membrane electric field inside a biological membrane can 

influence membrane constituents significantly. The electric field inside a cell membrane 

is determined by the gradient of the electric potential in all three dimensions. The electric 

field in the direction perpendicular to the cell membrane is given by the difference 

between the actual electric potentials on both sides of the cell membrane divided by the 

membrane thickness (assuming zero charge density inside). Thus it is clear that the 

 (3) 

 (4) 

Na
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o
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transmembrane potential as well as the inner and outer surface potential is of importance 

for determining the electric field inside a cell membrane. The electric field strength in a 

RBC membrane under physiological conditions is assumed to be in the order of 106 V/m. 

So, it is quite obvious that a reduction in the ionic strength of the extracellular solution 

results in a change of the electric field inside the membrane due to alterations of the 

transmembrane potential and also the outer surface potential. The situation is clearly 

explained in Fig. 4. The electric potential profile across the cell membrane is not linear 

because of electrically charged and polarizable groups are present around and are located 

in different positions relative to both sides of the membrane surface. This concerns not 

only the head groups of the membrane phospholipids which contribute with a dipole 

potential of about 100 mV to the overall potential profile in the membrane but also 

regions of charged membrane proteins. Additionally, a change of the electric potential 

gradient leads to significant alterations of the mechanical tension inside the cell 

membrane, as given by the Maxwell stress, Pe:                                                                                           

                                                                                                                                     

 

 

where ε is the permittivity, εo is the dielectric constant and dψ/dx is the electric potential 

gradient in the membrane.        

 

 
 

 
 

 
 

 
 

 
Fig. 4: Electric membrane potential profile across the RBC membrane: Ψm transmembrane 
(diffusion) potential, Ψo outer surface potential, Ψi inner surface potential,   A physiological ionic 
strength solution, e.g. NaCl solution, B solution with reduced Cl- concentration but constant ionic 
strength (compared to A), e.g. sodium tartrate solution, C solution of low ionic strength (LIS), 
e.g. sucrose solution (Taken from Bernhardt and Weiss, 2003).  

(5) 
2

)/( 2dxd
P o

e
ψεε

=
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The electric field in the cell membrane in the direction of the plane of the cell 

membrane depends on the present localization of the membrane constituents (proteins 

and lipids). Specifically, the distribution of charged and polarized membrane constituents 

as well as their lateral movement is important (McLaughlin and Poo, 1981). Additionally, 

electrogenic pumps and electrodiffusive pathways contribute to the actual electric field in 

the membrane also (Fromherz, 1988).  It has been reported that the electric field inside a 

biological membrane influences the mobility and the position of the hydrocarbon chains 

of the phospholipids as well as the phase transition temperature of the membrane 

phospholipids (Träuble and Eibl, 1974; Jähnig, 1976; Forsyth et al., 1977). The electric 

field strength is also known to affect the head groups of the phospholipids. Membrane 

electric field can influence membrane proteins either directly or indirectly via changes in 

the phospholipids environment of the proteins, thereby affecting the lipid-protein 

interaction. 

2.3 Red blood cell morphology 

Human RBC is a biconcave disc in shape with 8-10 µm in diameter, 2 µm of 

thickness and with a volume of 90 µm3. This characteristic shape is maintained by cell’s 

active metabolism. The primary function of a RBC is to distribute oxygen to the body 

cells and dispose CO2 and protons generated during tissue metabolism. The average life 

span of a RBC is about 120 days. During this period, it travels around 500 km making 

about 170,000 circuits (Lux, 1979) through heart and small penetrations in capillaries for 

numerous times. This discocyte shape is advantageous as it offers a high surface to 

volume ratio to facilitate gas exchange. The normal human RBC can have discocytic 

(discoid), stomatocytic (cup) or echinocytic (crenated) shapes (Fig. 5).  

 

 

 

 

 
 
Fig. 5: Shapes of human RBCs: A) Discocyte B) Stomatocyte and C) Echinocyte. 

 (A)  (B)  (C) 
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2.4 Red blood cell membrane proteins 

Human RBC membrane is constituted by three major components: 

a) Integral membrane proteins (e.g., anion exchanger (AE 1), glycophorin, membrane 

transport proteins)   

b) Skeletal proteins (e.g., spectrin, protein 4.1 and actin) 

c) Anchoring proteins (e.g., ankyrin, protein 4.2) 

A schematic diagram representing the organization of the major RBC proteins and 

their interactions with various proteins of the cytoskeleton is shown in Fig. 6.  

 

 

 

 

 

 

 
 
 
 
 
Fig. 6: Schematic diagram representing the organization of the major RBC proteins and their 
interactions with different proteins of the cytoskeleton (Taken from the website: 
http://bioweb.wku.edu/courses/Biol22000/27Actin/Fig.html). 

2.4.1 Integral membrane proteins 
Band 3 protein or anion exchanger 

It is a major and most abundant (with approx. one million copies per cell) integral 

transmembrane protein of the human RBC plasma membrane (Fairbanks et al., 1971; 

Steck, 1978). It occupies about 25% of the total membrane protein weight with a 

molecular weight of 100 KDa. It exists mainly as a dimer and participates in the efficient 

transport of bicarbonate across the RBC membrane in exchange for Cl- ion. The N-

terminal of band 3 protein anchors to the membrane skeleton by associating with ankyrin 

http://bioweb.wku.edu/courses/Biol22000/27Actin/Fig.html�
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and protein 4.1. Additionally, it also binds to glycolytic enzymes, haemoglobin and other 

proteins including protein 4.2. The cytoplasmic domain can be cleaved from the 

membrane without altering the band 3-catalyzed anion transport. The C-terminal 

membrane spanning domain is heterogeneously glycosylated with a molecular mass of 52 

KDa. The membrane hydrophobic C-terminal participates in the Cl-/HCO3
- anion 

transport of the RBC (Fujinag et al., 1999).  

Glycophorins  

Most of the negetive surface charge (60%) of the RBC is imparted by the 

glycophorins. Each RBC membrane contains approximately 200,000 copies of 

glycophorins accounting for 1.5% of the membrane weight. The transmembrane protein 

glycophorin is composed of three distinct domains: 

a) Hydrophilic amino terminal located external to the membrane with oligosaccharide 

side chains 

b) Hydrophobic region inside the lipid bilayer 

c) Hydrophilic region rich with charged amino acids inside the cytosol  

The oligosaccharides are O-glycosylated to serine or threonine (except one N-

glycosilated). Glycophorins along with the protein 4.1 take part in the RBC integrity and 

shape. Additionally, the glycophorins also contain antigens for M and N blood groups. 

Membrane transport proteins 

Membrane transport proteins are involved in the movement of ions, small 

molecules, or macromolecules across the RBC membrane. These are integral membrane 

proteins, with alpha helices, which exist within and span across the membrane and 

transport substances by three principle transport mechanisms like passive or gradient 

diffusion, facilitated diffusion, and active transport. A detailed description to different 

membrane proteins participating in RBC membrane transport and their function are 

explained in the section 2.6. 

http://en.wikipedia.org/wiki/Ion�
http://en.wikipedia.org/wiki/Molecule�
http://en.wikipedia.org/wiki/Macromolecule�
http://en.wikipedia.org/wiki/Biological_membrane�
http://en.wikipedia.org/wiki/Integral_membrane_protein�
http://en.wikipedia.org/wiki/Integral_membrane_protein�
http://science.jrank.org/pages/2068/Diffusion.html�
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2.4.2 Skeletal proteins 

The major peripheral proteins include spectrin, ankyrin, proteins 4.1, 4.2 and 

actin. These proteins play an important role in the structure of human RBC cytoskeleton 

and integration. 

Spectrin (bands 1-2)  

Spectrin constitutes most of the RBC membrane skeleton mass with 200,000 

molecules per cell (Steck, 1974) located on the cytoplasmic surface. It is composed of 

two subunits namely α (280 KDa) and β (246 KDa) which are structurally distinct and 

encoded by different genes. Both subunits form heterodimers (αβ) by winding around 

each other and self assemble head to head to form heterotetramers (α2β2). These tetramers 

at the tail end linked with actin and are attached to band 4.1. The head end with ß-chains 

attach to ankyrin which is further connected to band 3. This interaction is enhanced by 

band 4.1. Spectrin plays a vital role in maintaining the structure and visco-elastic 

properties of human RBCs. It also provides support to the lipid bilayer and thereby is 

involved in the lateral mobility of integral membrane proteins. 

Actin (band 5)  

In human RBCs, actin (β-actin) is believed to exist in non-filamentous form with 

400-500×103 copies per cell (Tilney et al., 1975). It exists as a short, double helical        

F-actin with 12 to 13 monomers of 35 nm in length. It gives stability to the RBC 

membrane by interacting with spectrin, protein 4.1 and tropomyosin. It is assumed that in 

human RBCs actin along with spectrin restrict the lateral movement of membrane-

penetrating particles and thereby controlling RBCs shape and deformability. 

2.4.3 Anchoring proteins 
Ankyrin (band 2.1-2.3) 

Ankyrin serves as a cross linker between the membrane skeleton via spectrin 

binding and the lipid bilayer via band 3 binding. This association is important in 

maintaining the membrane stability. Abnormalities in ankyrin result in typical heriditary 

spherocytosis (HS). 
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Protein 4.1 and protein 4.2 

In human RBCs, these proteins regulate the physical properties of mechanical 

stability of the membrane. They stabilise the spectrin-actin network and maintain the 

membrane skeleton integrity. They also enhance the interaction between spectrin to the 

lipid bilayer through their association with transmembrane proteins band 3 and 

glycophorin. Protein 4.1 contains two polypeptides referred to as 4.1a and 4.1b which 

differ in molecular weight by 2 KDa. The primary role of protein 4.2 is to stabilize the 

association of spectrin, actin and ankyrin complex with band 3. It is also involved in 

protecting the membrane skeleton from premature ageing. Protein 4.1 is an important 

structural protein with a molecular mass of 78-80 KDa. 

2.5 Red blood cell membrane lipids  

Lipids occupy approximately half of the membrane area in human RBCs. The 

major lipids include phospholipids, glycolipids and cholesterol. The phospholipids 

phosphatidylserine (13%), phosphatidylethanolamine (27%) and phosphatidylinositol (2-

5%) are distributed mainly in the inner or cytoplasmic leaflet of the membrane, whereas 

sphingomyelin (26%) and phosphatidylcholine (28%) are in the outer leaflet. Lipids can 

form all-trans (saturated) or kinks (unsaturated) configuration of fatty acids.  For each 

type of phosholipid, a characteristic phase transition temperature exists. Below the phase 

transition temperature fatty acyl chains are in crystalline state and above this temperature 

they are in fluid-crystalline state. Glycolipids are membrane components composed of 

lipids that are covalently bonded to mono- or polysaccharides. Human RBCs also contain 

certain amount of cholesterol in unesterified form with a primary role to maintain 

membrane fluidity. Thus the membrane asymmetry is maintained, which is crucial for the 

cell survival. Flippases are the enzymes which participate in the translocation of 

phosphatidylserine and phosphatidylethanolamine to the inner leaflets using ATP.  

2.6 Red blood cell membrane transport  

The procees of ion transport through biological membranes can be classified into 

four principal mechanisms: pumps, carriers, channels and residual transport. Various 

techniques are available to determine transport rates include radioactive tracers and 

fluorescence-labeled dyes (flux measurements). Alternatively, electrophysiological 
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methodology including the patch-clamp is applicable to electrogenic transport. An 

overview of various transport systems for Na+ and K+ of human RBCs is illustrated in 

Fig. 7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Overview of various transport systems for Na+ and K+ of human red blood cells. The 
transport mechanisms shown: Na+/K+ pump; Na+/K+/2Cl- symporter; K+-Cl- symporter; Na+-
dependent amino acid transport; NaCO3

-/Cl- exchange; Na+(Mn+)/Mg2+ antiporter; Na+/Li+ 
antiporter Na+/H+ antiporter; nonseclective voltage-dependent cation channel (NSVDC); 
K+(Na)+/H+ antiporter and Ca2+-activated K+ channel (Gardos channel) (Taken from Bernhardt 
and Weiss, 2003). 

2.6.1 Pumps 

Pump action is mediated by active transport (or primary active transport) 

characterized by one or more ions moving against the electrochemical potential(s) 

through direct coupling to metabolic energy (ATP). The enzymes which hydrolyze ATP 

to harness energy for solute movement are termed ATPases. They often need 

cosubstrates, for example, Na+ and K+ for the Na+ K+-ATPase, Ca2+ and H+ for the Ca2+-

ATPase. In functional terminology, they are called pumps, for example, Na+/K+ pump or 

Ca2+ pump. During the transport, there is a conformational change of the pump protein, 

driven by energy released during ATP hydrolysis. Human RBCs containing important 

pumps are described below.  
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Na+/K+ pump  

Human RBCs played an important role in identification and characterization of 

the Na+/K+ pump. This pump is responsible for maintaining the high internal K+ 

concentration and low internal Na+ concentration (Sarkadi and Tosteson, 1979).  The 

pump extrudes Na+ in exchange for K+ in 3:2 stoichiometry using 1 ATP molecule as 

energy source. The Na+/K+ pump is known to be present in nearly all animal cell types 

(except in RBCs of carnivora). It utilizes up to 70% of the total cellular ATP of a cell. 

The gradient established by the Na+/K+ pump is used by different transpoters like K+/Cl-, 

Na+/K+/2Cl- and the Na+/H+ exchanger. The ion gradients generated by this pump serves 

as an energy source for the coupled transport of other ions.  The Na+/K+ pump consists of 

two subunits α (catalytic site) and β (glycosylated site) with molecular weights of ~100 

KDa and 55 KDa, respectively. Another subunit termed γ (10 KDa) has also been 

identified in purified preparations of the enzyme. This pump can be specifically inhibited 

by ouabain. The subunit α contains the binding sites for ATP and ouabain and takes part 

in most of the functions of the Na+/K+ pump. This subunit also has a pivotal role during 

the conformational changes, which accompany occlusion, and translocation of ions in the 

Na+/K+ transport cycle (Jorgensen et al., 1982). The smaller β subunit is involved in the 

activity of the complex. It also facilitates the plasma membrane localization and 

activation of the α subunit.                                        

Ca2+ pump 

Human RBCs maitain low intracellular Ca2+ levels in the range of 0.01-0.1 µM. It 

is strictly regulated by a Ca2+-activated, Mg2+-dependent Ca2+ pump. Ca2+ pump was first 

described by Schatzmann (1975). It consists of a single polypeptide chain of 138 KDa. 

There are about 1000 copies per cell. It belongs to the P-type of ATPases and is the 

largest of all known P-type ion pumps. The pump is structurally organised with ten 

transmembrane helices. The cytoplasmic domain contains three protrusion units 

consisting of antiparallel β-sheets, α-helices and parallel β-sheets. The first protrusion 

unit is located between the 2nd and 3rd transmembrane domains and permits the coupling 

of ATP hydrolysis to the transport of Ca2+ ions. The second protrusion unit is between 

transmembrane domains 4 and 5. 
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The C-terminal of this part contains the active sites of the pump for aspartyl-

phosphate formation and the binding site for ATP. It is attached to the membrane by a 

flexible 'hinge' which allows the catalytic aspartic acid to approach the bound ATP during 

the catalytic cycle. The third and last protrusion is present at transmembrane domain 10 

with the N-terminal. Calmodulin-binding domain is located next to the C-terminal region. 

The Ca2+ pump is activated by calmodulin binding (Jarrett and Penniston, 1977). 

Vanadate, a known inhibitor, acts by inhibiting the phosphorylated intermediate (an 

aspartyl-phosphate) during the catalytic cycle.      

2.6.2 Channels 

Channels often consist of several transmembrane α-helices spanning the cell 

membrane. In the inner part of the protein, several helices together can form a channel 

structure. Such structural organization allows a more-or-less specific transport of ions. 

Channels exhibit two general features include a mechanism for opening and closing and a 

selectivity filter. The high-frequency switch between the open and closed state of the 

channel is termed gating, and the duration of opening is called open time. The selectivity 

filter is responsible for the more-or-less specific transport of one or several ion species. 

Human RBCs containing important channels are described below.  

Aquaporins 

Aquaporins or water channels are the membrane proteins which mediate water 

transport across the membrane. Human RBCs adjust according to the osmolarity of the 

surrounding environment. Human aquaporin-1 channel is capable of transporting roughly 

3 billion water molecules per second. Aquaporins are first detected and localized as a 

polypeptide of 35_60 KDa by Benga in 80’s (Benga et al., 1986b; Benga et al., 1986c). 

Peter Agre and his coworkers have shown that the chip 28 protein (now named as 

aquaporins) is associated with with six membrane spanning alpha helices of human RBCs 

(Preston et al., 1991).  

Gardos channel 

The Ca2+-activated K+ channel is also called Gardos channel after its discoverer in 

ATP depleted RBCs (Gardos, 1958). This specific channel is activated with a rise of the 
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cytoplasmic Ca2+ content of the cell. The Gardos channel in human RBCs is irreversibly 

inactivated in the absence of extracellular K+ and has a low conductance in the order of 

about 20 pS (Alvarez and Garcia-Sancho, 1989). It is reported that normal RBCs contains 

approximately 150 channels per cell. Its potential role as a mediator during the sickle cell 

dehydration has been established. Specific inhibitors like chinin, chinidin, clotrimazol 

and charybdotoxin are known to inhibit the channel (Brugnara et al., 1993; De Franceschi 

et al., 1994). 

Nonselective voltage-dependent cation channel  

The existence of non selective voltage-dependent channel (NSVDC) was 

demonstrated by inside-out and whole-cell patch clamp recordings (Christophersen and 

Bennekou, 1991). Depolarizing the human RBC membrane from negative to positive 

values, the NSVDC channel starts to respond. This channel transports Na+, K+, Rb+, NH+
4 

and Ca2+,  Mg2+ and Ba2+. Based on an estimate of the patch area and the number of 

channel observations, the number of channels assumed to be 300 per RBC (Kaestner et 

al., 2000). The NSVDC channel of RBC is blocked by the inorganic substances 

ruthenium red and La3+ and inactivated by the sulfhydryl protein reagents, NEM and IAA 

(Bennekou et al., 2004). Several reports have identified an important role of this channel 

in eryptosis induced by osmotic shock, oxidative stress, and energy depletion. Eryptosis 

is the suicidal death of RBC which is characterized by cell shrinkage, membrane 

blebbing, activation of proteases and phosphatidylserine exposure at the outer membrane 

leaflet. 

2.6.3 Carriers 

Proteins acting as carriers mediate the transport of ions or other substrates by 

making use of a periodic repeated conformational change of the protein. Thus, it becomes 

possible for the transported substrate to gain access to its binding site at both the inner 

and outer membrane surface. Sometimes, an intermediate folded conformational state is 

seen. In this transitional stage, the bound substrate is denied access to the aqueous 

solutions on either side of the membrane. In general, carrier-mediated transport can be 

divided into two different mechanisms: uniport and cotransport. A uniport mediates 

transport of a single ion or other substrate. The transport via uniporters can only occur 
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‘‘downhill’’, that is, along the concentration gradient of the transported substance (or 

along its electrochemical gradient in case of charged species). It is also termed as 

facilitated diffusion. Cotransporters can be classified into symporters and antiporters. The 

term cotransport is used as synonym for symport, while an antiport function is 

synonymous to exchange or countertransport. A symporter binds ions or substances (two 

or more substrates) and transports them together in one step in the same direction through 

the membrane. Movement of one substrate down its chemical or electrochemical gradient 

is used to power the ‘‘uphill’’ transport of the cotransported substrate(s), that is, against 

their chemical or electrochemical gradients. An antiporter or countertransporter mediates 

exchange of an ion (or substance) for another ion (or substance) transporting them in 

opposite directions. The antiporter can carry out its transport process in one step similar 

to the symporter. Human RBCs containing important carriers are described below.  

K+/Cl- cotransporter  

This transporter is involved in the cotransport of K+ and Cl- in an interdependent 

manner with a 1:1 stoichiometry (Brungara et al., 1989). It is more functional in 

reticulocytes and its activity diminishes with the cell age. The major activators of     

K+/Cl- cotransporter include cell swelling, low pH, Mg2+ depletion, and thiol 

modification. In mature RBCs the transporter can be activated by various oxidant agents 

that stimulate dephosphorylation of the transporter (Brugnara, 1997). The                  

K+/Cl- cotransporter is responsible for the RBC dehydration in sickle cell anaemia 

(Brugnara, 1995). This cotransporter is sensitive to loop diuretics like bumetanide and 

furosamide (Bernhardt et al., 1988). 

Na+/Mg2+ exchanger  

Na+-dependent Mg2+ transport was first described by Günther and Vormann in 

chicken and turkey RBCs (1985). This transporter is strictly dependent on the 

extracellular Na+ concentration. Abnormalities in the Na+/Mg2+ exchanger result in the 

pathogenic diseases like primary hypertension and cystic fibrosis. Though the exchange 

stoichiometry varies between cell types and functional status of cell, but in general it is 2 

Na+ for 1 Mg2+. This transporter can be inhibited by amiloride, quinidine and imipramine. 
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Na+/Li+ antiporter 

The Na+-dependent Li+ transporter in human RBCs was first described by Duhm 

and Becker (1977). The exchanger primarily transports Na+ for Li+ and it can also accept 

Na+. The Li+ efflux occurs in the presence of external Na+ but not K+, Rb+, Cs+, choline, 

Mg2+, or Ca2+ and is insensitive to ouabain. This extrusion is inhibited by phloretin, and 

does not require any cellular ATP. However, the total Li+ influx of human RBCs is partly 

ouabain-sensitive and partly ouabain-insensitive but phloretin-sensitive. An increase in 

the activity of Na+-Li+ countertransporter (SLC) is observed in patients who have 

essential hypertension and can be regarded as the possible marker of type 2 diabetes 

(Canessa et al., 1980). 

Glucose transporter  

RBCs require glucose for metabolic needs and therefore it is supplied constantly 

by the glucose transporter. It is the most extensively characterised transport systems of 

the facilitated diffusion in human RBCs. Human RBCs contain little glucose compared to 

the blood plasma (~5 mM). Glucose enters the cell down the concentration gradient 

through glucose transporter. Glucose transporters are transmembrane proteins with 12 

membrane spanning helices and exist as a monomer. It accounts for 2% of the total 

membrane protein in the RBC. 

Na+/K+/2Cl- cotransporter 

The Na+/K+/2Cl- cotransporter was first described by Wiley and Cooper in human 

RBCs in 1970s (Wiley and Cooper, 1970). The net salt movements mediated by this 

cotransport exhibit a stoichiometry of 1Na:1K:2Cl. In human RBCs,                

Na+/K+/2Cl- cotransporter may play a role in the maintenance and regulation of cell 

volume (Duhm and Gobel, 1984). It has been reported that the depolymerization of 

cytoskeletal actin activates the Na+/K+/2Cl- cotransporter during the changes of cell 

volume. The transport can be inhibited by loop diuretics like bumetanide, benzmetanide, 

and furosemide. 
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2.6.4 Residual transport     

The residual transport can be explained as the membrane transport after all the 

known specific pathways (pumps, channels, and carriers) are inhibited. The residual K+ 

transport is insensitive to ouabain, bumetanide and EGTA. Thus the possible involvement 

of the Na+/K+ pump, the Na+/K+/2Cl- cotransport, and the Ca2+-activated K+ channel can 

be excluded. K+/Cl- cotransporter is silent in adult human RBCs and activated only under 

specific conditions (Hall and Ellory, 1986). The K+ and Na+ transport (unidirectional 

influxes and effluxes as well as net effluxes) in LIS conditions, but at isotonic osmolarity, 

are significantly increased in human RBCs (Bernhardt et al., 1991; Denner et al., 1993). 

Additionally, in solutions containing Na-gluconate or Na-glucuronate (replacing NaCl) 

does not result in a significant change of the K+ influx, although such conditions lead to 

the similar change of the transmembrane potential as compared with solutions where 

NaCl is replaced by sucrose. Thus it has been concluded that the residual transport is not 

based on a simple electrodiffusion (Bernhardt et al., 1988, 1991). 

Richter and his co-workers have shown that the transport operates under 

situations far from the physiological conditions (Richter et al., 1997). Further evidence 

came from the study of intracellular pH changes under various conditions using the 

fluorescent dye BCECF. The obtained data of H+ efflux can be correlated with the 

(ouabain + bumetanide + EGTA)-insensitive K+ efflux (Kummerow et al., 2000). The 

possible role of a proposed K+(Na+)/H+ exchanger seems to be more convincing for 

explaining the residual transport (Bernhardt et al., 2001).  
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3.1 Chemicals and sources 

The chemicals and their sources used for the present work are listed in the Table 1: 

 

Table 1: Chemicals and their sources  

 

                   
                     Chemicals  

              
            Sources 
 

 
D(+)- sucrose, N-2-hydroxyethylpipe-

razin-N’-2-ethanesulfonic acid (HEPES), 

NaOH, Dimethylsulfoxide (DMSO) 

 

 

 

Roth, Karlsruhe, Germany 

 

BCECF-AM, Bodipy-FL amiloride, 

Fluo-4 AM, Fura-2 AM, Pluronic F-127 

(20% solutions in DMSO), β-Bodipy- 

FL-C12-HPC, Octadecyl rhodamine B 

chloride (R18)  

 

 

Invitrogen, Inc., Karlsruhe, Germany 

 

 
Sodium-ortho-vanadate  

 
Alexis Biochemicals, Gruenberg, Germany 

 
 
NaCl, KCl, CaCl2, MgCl2

4-Bromo-calcium A23187, 

Ethylenglycoltetraacetate (EGTA), 

Nifidepine, Cyclosporin A 

, D(+)-glucose, 

Diltiazem-Cl, Poly-L-lysine solution 

0.1% w/v in distilled water, Nigericin,  

 

 
 

 

Sigma-Aldrich, Munich, Germany 

 
Ethanol  

 
Chemical store, University of Saarland 
 

 
Baysilone paste  

             

Bayer, Leverkusen, Germany 
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3.2 Buffers and solutions 
 
      Different buffers and solutions with their composition used in the present study 

are listed below. 

 
 
High ionic strength (HIS) solution:           
                                                                   145 mM NaCl  
                                                                   10 mM glucose  
                                                                   7.5 mM KCl  
                                                                   10 mM HEPES / NaOH, pH 7.4  
 
 
 
Low ionic strength (LIS) solution:                
                                                                   250 mM or 200 mM sucrose  
                                                                   10 mM glucose  
                                                                   7.5 mM KCl  
                                                                   10 mM HEPES / Tris or NaOH, pH 7.4  
 
 
 
Sodium tartrate solution:                           
                                                                   107 mM Na tartrate 
                                                                   10 mM glucose  
                                                                   7.5 mM KCl  
                                                                   10 mM HEPES / NaOH, pH 7.4  
 
 
                                                         
pH-calibration solution:  
                                                                    135 mM KCl  
                                                                    10 mM NaCl  
                                                                    10 mM glucose  
                                                                    10 mM HEPES / Tris,  
                                                                    with pH: 6.8, 7.1, 7.4 or 7.8    
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          The structural formulae of the most important substances used and their 
absorption and emission spectra are shown from Fig. 8_Fig. 18. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8: A) Structural formula and B) absorption (λ max= 488 nm) and emission (λ max = 510 nm) 
spectra of Bodipy-FL amiloride (Taken from www.invitrogen.com). 
 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9: Three different molecular structures of AM-Esters of BCECF (Taken from 
www.invitrogen.com). 
 

 (A) 
 (B) 

 (B)    

http://www.invitrogen.com/�
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Fig. 10: Absorption (λ max = 490 nm) and emission (λ max = 510 nm) spectra of BCECF-AM at pH 
9.0 and 5.5 (Taken from www.invitrogen.com). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11: Structural formula of Fluo-4 (A) and the AM-Ester of Fluo-4 (B) (Taken from 
www.invitrogen.com). 
 
 
 
 
 

 (B)  (A) 
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Fig. 12: Absorption (λ max = 490 nm) and emission (λ max = 530 nm) spectra of Fluo-4 AM (Taken 
from www.invitrogen.com).  
 

                     
  
Fig. 13: Structural formula of Fura-2 AM (Taken from www.invitrogen.com). 
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Fig. 14: Fluorescence absorption (λ max = 340 nm)  and emission (λ max = 510 nm) of Ca2+-
saturated (A) and Ca2+-free (B) Fura-2 in pH 7.2 buffer (Taken from www.invitrogen.com). 
   
 

 
   
 

 
 
 
Fig. 15: Structural formula of nifedipine (Taken from www.sigmaaldrich.com). 
                

                                             
 
 
Fig. 16: Structural formula of diltiazem-Cl (Taken from www.sigmaaldrich.com). 
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Fig. 17: Structural formula of cyclosporin A (Taken from www.sigmaaldrich.com).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 18: A) Structural formula and B) Absorption (λ max = 503 nm) emission (λ max = 510 nm) 
spectra of β-Bodipy-FL-C12-HPC (Taken from www.invitrogen.com). 
 
 
 

 (A)  (B) 
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Fig. 19: Structural formula of nigericin (Taken from www.sigmaaldrich.com).                                           
 
 

                                  
 
Fig. 20: Structural formula of octadecyl rhodamine B chloride (R18) (Taken from 

www.invitrogen.com). 
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3.3 Sample preparation for FCS measurements 

     Heparin stabilized blood samples of healthy volunteers were obtained from the 

University clinic, Homburg and the Sports Centre, Saarbruecken, Germany. The human 

RBCs were obtained after washing the blood sample by centrifuging three times at    

2000 g for 5 min in physiological (high) ionic strength (HIS) solution. After every wash 

the supernatant containing plasma and buffy coat were aspirated carefully. For labeling 

the Na+/H+ exchanger, washed RBCs (1% haematocrit) were incubated with Bodipy-FL 

amiloride (400 nM) for 30-40 min at 37°C in the dark. After incubation, the RBCs were 

quick washed in HIS solution to remove the unlabeled fluorescent dye and were re-

suspended (0.01 % haematocrit) in the same HIS solution. For experiments with low 

ionic strength (LIS) solutions (pH 7.4), contain 250 mM or 200 mM sucrose instead of 

NaCl to maintain a constant osmolarity and cell volume, respectively. We have also used 

a sodium tartrate (107 mM) solution to maintain a high ionic strength and positive 

transmembrane potential. Furthermore, two slightly changed physiological solutions (145 

mM NaCl, HIS solution), one with reduced concentration of NaCl (120 mM) and the 

other with added 30 mM sucrose (HIS Sucrose solution) are used. In both the solutions, 

the surface potential of RBCs remains similar to HIS solution but the volume is affected. 

      The measurements with LIS solutions or sodium tartrate solutions the final 

washing procedure has been carried out in the corresponding solution.  The incubation 

period in these solutions remained the same as stated above. RBCs (1% haematocrit) 

were incubated with octadecyl rhodamine B chloride (R18) (1 nM) for 30 min (Takahashi 

et al., 2003). Nonpolar β-Bodipy-FL-C12-HPC (1 µM) was incubated with washed RBCs 

(1% heamatocrit) for 30 min at 37°C. After incubation, the unbound dye has been washed 

out carefully using HIS solution, and for the measurements in LIS solutions or sodium 

tartrate solutions the last washing procedure has been carried out in the corresponding 

solution. 

3.4 Experimental setup and data analysis for FCS measurements 

       All the FCS experiments have been performed with a home built confocal setup 

based on an inverted microscope (Axiovert 2000, Zeiss). The laser light from the 

frequency-doubled diode laser (Picarro, Soliton), operating at λexc = 488 nm and a fiber 
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laser (Guided Color Technologies GmbH), operating at λexc = 546 nm were focused to the 

microscope body without using any further lenses. The incoming laser light was deflected 

by a dichroic mirror (495 DRLP, Chroma for Bodipy-FL amiloride labeled experiments 

and 555 DRLP, Omega for R18 labeled experiments) and was focussed on to a 

diffraction limited spot in the sample using a water immersion objective lens (63x NA 1.2 

WI, Zeiss). The obtained fluorescence coming out of the sample was collected by the 

same objective, passed via the same dichroic mirror and was focussed by a tube lens to a 

pinhole (50 µm diameter). A band pass filter (HQ 525/50, AHF Analysentechnik, for 

Bodipy-FL amiloride and HQ 590/70, AHF Analysentechnik, for R18) was used to 

suppress the remaining scattered light. The fluorescence was split by a beam splitter and 

detected by two sensitive avalanche photodiode modules (SPCM-14-AQR, PerkinElmer 

Optoelectronics). The collected TTL-signals were collected and processed by a hardware 

correlator (FLEX 02 D, www.correlator.com) yielding the autocorrelation function )(2 τg  

with nanosecond time resolution. The FCS set up is calibrated by a test fluorescein and 

rhodamine B solution. The obtained correlation curves were recorded with applied 

excitation intensity I in the range of 2.6-3.9 kWcm-2. The measured fluorescence 

autocorrelation functions )(2 τg  were fitted with two-component model by using 

commercial software (Origin Pro 7.5, Origin Lab, MA, USA): 
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where, N represents the number of fluorescence molecules within the detection volume, 

τd1 is the diffusion time of the fraction f, and τd2 is the diffusion time of the remaining 

fraction of labelled molecules. The diffusion time τd is the average time taken by a 

molecule to diffuse through the radial part of the observation volume of the fluorescence 

microscope. However, the diffusion time depends on the size of the observation volume, 

wavelength of laser excitation and the optical properties of the instrument. The diffusion 

(6) 



  

        37 

coefficient D is a property of a diffusing molecule in a given solvent and better suited to 

characterize experimental data than the diffusion time. The diffusion coefficient D can be 

calculated from the corresponding diffusion time according to: 

                                  Dd 4

2
0ω

τ =
                                                

where, ω0 denotes the beam waist of the detection volume, which is formed from the 

Gaussian beam profile convolved with the pinhole profile. 

      Images were obtained by TimeHarp 200 PC-board (PicoQuant GmbH, Germany) 

and the images were viewed by PicoQuant SCX View software (PicoQuant GmbH, 

Germany). The power of the laser beam entering the microscope was set to 10-15 μW for 

the FCS experiments. For better adhesion of RBC, the glass coverslips have been pre-

treated with poly-L-lysine (0.001%). The laser beam was either focused on the cell 

membrane after scanning with the piezo scanner and moving the coverslip by using 

TimeHarp 200 software or by positioning it manually. A schematic diagram representing 

the laser path is shown in Fig. 21. Dual-autocorrelation curves were taken immediately 

after positioning the laser beam on the membrane using a hardware correlator (FLEX 02 

D). 

                   

 

 

 

 

 

 

 

 

 

 

 

Fig. 21: Schematic illustration of focussing the laser path on the cell membrane.  

(7) 
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3.5 Microscope setup  

      All the investigations at the single cellular level are performed using inverted 

single cell fluorescence microscope (Eclipse TI 2000 E, Nikon). The microscope is with 

all necessary components like a continuous light source (Xenon-Lamp, UX L-75XE, 

USHIO), filters or monochromator, photo detector and software programme to perform 

fluorescence recordings and films (Fig. 22). The monochromator provides a wide 

spectrum of wavelengths between 300-600 nm. It also allows switching between any 

desired wavelengths within few milliseconds. Additionally, the microscope allows 

performing ratiometric measurements.  

               
Xenon lamp                                          Focus stabiliser           Monochromator                                                                                         
 
 
 
 

               
 
 
 
 
Computer                             CCD camera                       Inverse microscope 
 
 
Fig. 22: Fluorescence microscope with components used for single cell imaging. 
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      The microscope is equipped with an advanced and sensitive photo-detector 

(Visitron System, Puchheim, Germany). The photodetector detects the fluorescent light 

and converts it into a digital signal. The CCD (charged coupled devices) is a very 

sensitive chip integrated with cameras and allows in attaining both spatial and temporal 

resolution. At the bottom of microscope filters for different wavelengths are mounted 

which are available between the positions back and forth. The microscope is additionally 

equipped with a focus stabiliser which allows us to perform experiments for longer time 

periods. The computer is an integral part of the workstation which controls and allows 

processing of the acquired images with the Meta view software.  

3.6 Dye loading of human RBCs 

      The investigations for determining the intracellular pH and qualitative 

determination of Ca2+ content are carried out using the pH-sensitive fluorescent dye 

BCECF-AM and Fluo-4 AM, respectively. The cells were obtained after washing the 

blood 3 times in HIS solution at 2000 g. The procedures for dye loading of RBCs are 

described below. 

3.6.1 Intracellular pH measurements  

      The intracellular pH was determined by using BCECF-AM (Tsien, 1989). 

Washed RBCs at a haematocrit of 1% were suspended in a total volume of 0.5 ml of HIS 

solution. The RBCs were then incubated with the fluorescent indicator BCECF-AM (5 

μM) for 45 min at 37°C in the dark. After the incubation with the dye, RBCs were 

washed with HIS solution three times to remove the unbound fluorescent dye, and were 

re-suspended (0.015% haematocrit) in the same solution. A calibration curve of the 

fluorescence intensity is plotted depending on obtained pH, using the K+/H+ ionophore 

nigericin (Kummerow et al., 2000). Cells were loaded with 5 μM nigericin and 

suspended in the calibration buffer solutions containing (mM): KCl 135, NaCl 10, 

glucose 10 and HEPES/NaOH 10. The obtained calibration curve was linear in the pH 

range 6.8-7.8. 

      After mounting the cells over the glass surface coated with 0.001% poly-L-lysine 

(PLL). Images were taken at every 20 s (exposure time 500 ms) over a period of 30 min 

for each experiment. All the experiments were performed at ambient temperature and in a 



  

        40 

dark room. Investigations for RBCs were done using a 100×1.4 (NA) oil immersion lens. 

Approximately 10 to 15 cells were observed in the field of view for each experiment. 

3.6.2 Intracellular Ca2+ content measurements 

      RBCs (1% haematocrit) after washing in HIS solution were incubated with the 

Ca2+-sensitive fluorescent dye Fluo-4 AM at a concentration of 4 μM for 45 min at 37°C 

(Kaestner et al., 2006). The non-ionic detergent was used to assist in dispersion of the 

non-polar AM ester in aqueous media. Cells were then quick-washed in HIS solution 

(with HEPES/NaOH buffer) to remove the unbound fluorescent dye and were re-

suspended (0.015% haematocrit) in the same solution. The kinetics of trapped dye 

molecules were monitored by exciting with xenon lamp at a wavelength of 488 nm and 

the emission was collected at 520 nm. Aliquots of Fluo-4 AM were prepared with 

pluronic F-127 (20% DMSO in H2O) to give a final concentration of 1 M (stock 

solution). 

     Single cell measurements were carried out similar to the intracellular pH 

measurements with similar experimental conditions explained before. 

3.7 Caco-2 cells  

      Caco-2 cells were kindly provided by Prof. Dr. Lehr (Institute for Biopharmacy 

and Pharmaceutical Technology, University of Saarland). The cells were cultured at 37°C 

in a humidified atmosphere of 5% CO2 and were propagated in minimal essential 

medium (MEM) with 2 mM L-glutamine and Earle’s balanced salt solution adjusted to 

contain 1.5 g/L sodium bicarbonate, 0.1 mM non-essential amino acids, and 20% of fetal 

bovine serum (FBS), 80% of 1.0 mM sodium pyruvate. The medium was changed 

regularly 1-2 times per week.  

3.8 Dye loading for Caco-2 cells  

     For Caco-2 cells, intracellular Ca2+ measurements have been done both 

qualitatively and quantitatively using Fluo-4 and Fura-2 dyes, respectively. For 

intracellular pH measurements, fluorescent BCECF dye was used. All the above 

mentioned dyes are with acetoxymethyl ester which assists in traversing the cell 



  

        41 

membrane. The RPMI medium containing Caco-2 cells was removed by centrifugation 

and cells were washed three times with HIS solution before loading of the dye. 

3.8.1 Intracellular pH measurements  

       Caco-2 cells are incubated with 5 µM of BCECF dye for 30 min at 37°C in HIS 

solution and the intracellular pH was determined. Images were collected at 439 and 505 

nm excitation, and emission at 530 nm was collected using appropriate filter settings. A 

calibration curve was plotted using the ionophore nigericin by incubating BCECF-labeled 

cells in a high K+/H+ buffer at a specific pH (6.6, 7.0, 7.4, or 7.8). After mounting the 

cells over the glass surface, images were taken at every 20 s (exposure time 500 ms) over 

a time period of 30 min for each experiment. All the experiments were performed at room 

temperature and in a dark room. Investigations were done using a 63×1.4 (NA) oil 

immersion objective and approximately 10 to 15 cells were observed in the field of view 

for each experiment. 

3.8.2 Intracellular Ca2+ measurements 

       The change of intracellular Ca2+ concentration was examined by using a suitable 

dye like Fluo-4 AM. Caco-2 cells were incubated with 4 µM of Fluo-4 dye at 37°C for 30 

min. After the incubation cells were then quick-washed in HIS solution (with 

HEPES/NaOH buffer) to remove the unbound fluorescent dye and were re-suspended in 

the same buffer. The kinetics of trapped dye molecules excited at 488 nm and emission at 

505-530 nm was collected. Single cell measurements were carried out at similar 

experimental settings explained for intracellular pH measurements.  

       The intracellular Ca2+ concentration of Caco-2 cells was evaluated quantitatively 

by using the cell permeant, ratiometric fluorescent dye Fura-2 AM (Grynkiewicz et al., 

1983).  The washed cells were incubated at 37°C for 30 min with 10 mM of Fura-2 AM 

with pluronic (0.02%) in HIS solution. The dye incorporates intracellularly as its acetoxy-

methyl ester (Fura-2/AM). The unbound dye is washed out 3 times carefully and the cells 

are re-suspended again in HIS solution. The kinetics of fluorescence changes were 

measured at UV-excitation wavelengths of 340 and 380 nm with emission at 510 nm. For 

chelating the external calcium 10 mM EGTA is added to the buffer. Single cell 

measurements were carried out at similar experimental settings explained for intracellular 
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pH measurements. The fluorescence kinetics of the ratio images obtained provide the 

information of Ca2+ content of single Caco-2 cells.  

3.9 Nano-structured surfaces  

      Nano-structured surfaces with different patterns and modifications are described 

in more detail below. The surfaces were used to investigate their influence on 

intracellular pH and Ca2+ content of RBCs and Caco-2 cells. The following structures 

were investigated: 

 
• Micro/Nano-structured surfaces (GPTS04 and ETC01, ECT03)  

• Nano-structured PMMA surfaces  

• Glass surfaces coated with organic polymers  

• Chemically modified surfaces  
 
Micro/Nano-structured surfaces 

      Glycidoxypropyltrimethoxysilane, the precursor, used for the preparation of sol-

gel derived nanoscaled hybrid polymer GPTS04. A schematic structural view of the 

GPTS04 surface is shown in Fig. 23. The GPTS04 surfaces were obtained from the 

Institute for New Materials (INM), Saarbruecken.  

                   
                 Fig. 23: The structural view of GPTS04 polymer surface. 
 
 

The Easy To Clean (ETC) structures obtained from INM are very hydrophobic and 

lipophilic in nature. The ETC01 and 03 surfaces are coated with per-fluorinated organic 
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moieties which give them anti-adhesive property. ETC01 surface is treated thermally and 

ETC03 surface is treated by using UV radiation. Special characteristics of these ETC 

surfaces include:  

• High microbiocidal effectiveness, even at low silver concentrations  

• Long-lasting effect by slow and sustained release (controlled release)  

• Easy to clean by anti-adhesive properties 
 
Nano-stuctured surfaces 
 

The nano-stuctured surfaces obtained from the University of Kaiserslautern are 

coated with glass pattern with a height of 100 nm and fields 0.9 nm x 0.9 nm. The image 

showing the nano-structured surface is shown in Fig. 24.  
                                              
 
 
 
 
 
 
 
 
Fig. 24: Image of nano-structured surface.  
 
Poly methyl methacrylate (PMMA) surfaces  

The PMMA surfaces are 125 mm thick sheets of polymer (78 x 28 mm), which 

were rinsed with propan-2-ol and sterilized using γ radiation (25 kGy dose). The surface 

of the PMMA is slightly hydrophilic with a contact angle of 74.7° and transparent with 

surface roughness of 13 nm. There are two methyl groups which are held as methyl 

methacrylate in PMMA (Fig. 25). The methyl groups keep the material supple and non-

brittle and allow the polymer chains to slide over one another on the surface. However, 

the acrylate pieces (vinegar-like structures) are still abundant and increase the surface 

reactivity, which significantly binds down proteins on the surface. The design of the 

polymer surface structure and their micro imprints and the patterns of the polymer 

surface are shown in Fig. 26. The PMMA surfaces were obtained from the Science Park, 

Barcelona. 
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 Fig. 25: The structural formula of PMMA precursor. 
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Fig. 26: Design of the polymer surface structure and their micro imprints. A: The dimensions of 
the polymer surface, B: Structure of the micro-imprint, C: Surface with eight different patterns. 
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Polymer coated glass surfaces  
 
      The polymer coated glass surfaces were obtained from the Department of Organic 

Chemistry, University of Sofia, Bulgaria. The structural formula of organic polymers is 

shown in Fig. 27, and a short description of the polymer composition is explained below: 

• NVP/DMAEMPS= 6: Poly (N-vinil-2-pyrrolidone-co-N, N’-dimethhyl 

methacryloyloxy-   ethylpropane sulfonate). 

• AAm/DMAEMPS= 10/1: Poly (acrylamide-co-N, N’-dimethylmethacryloyl- 

oxyethylpropane sulfonate). 

• AMPS/DMAEMPS= 7/3: Poly (2-acrylamido-2-methylpropanesulfonic acid-co-

N, N’-dimethylmethacryloyl-oxyethylpropane sulfonate). 

 

        

 
 

Fig. 27: Structural formula of the organic polymers I: NVP/DMAEMPS = 6, II: AAm/ 
DMAEMPS = 10/1, III: AMPS / DMAEMPS = 7/3. 
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Chemically modified surfaces  

      The glass surfaces coated with both positively charged (ethylene diamine) and 

negatively charged (taurine) coated surfaces have been investigated. These surfaces are 

prepared in the following steps: 

1. The ordinary glass surfaces are placed for 10 min in dichloromethane, in an ultrasonic 

bath and later dried with N2. 

2. The surfaces were exposed at 80°C to hot ammonia (25%), hydrogen peroxide (35%)-

water (1:1:4 v/v/v) for 20 min. After the exposure surfaces were rinsed with deionised 

water and dried again with N2. 

3. The surfaces were later transferred to ethanol-3-aminopropyl-triethoxysilan containing 

solution and kept for 10 min at 70°C. The surfaces were rinsed with ethanol and later 

dried again with N2. 

4. The surfaces were left overnight in a cellulose containing solution [o-(2-chloro-4-

oxido-1, 3, 5-triazine-6-yl)-carboxymethylcellulose sodium salt] 21.0 mg/20 ml 

carbonate buffer with pH 8.48. Finally, the surfaces were rinsed with carbonate buffer 

and dried with N2. The procedure remains the same for both the coatings up to here. 

5. Preparation of taurine coated surface: Glass slides were suspended for 1 h in a 0.1 M-

taurine solution (125.1 mg/10 ml carbonate buffer, pH 8.48).  

6. Preparation of ethylene diamine surface:  Glass slides were suspended for 1 h in a      

0.1 M ethylene diamine solution (60.5 mg/10 ml carbonate buffer, pH 8.48). 

7. The coated surfaces were later rinsed again with carbonate buffer and dried with N2. 

3.10 Nano-particles  

      Different nano-particles used for studying the membrane crossing ability of RBCs 

and Caco-2 cells include: 

1. Fluorescent-labeled PLGA (f-PLGA+WGA) nano-particles 

2. Nano-particles containing magnetic iron oxide  

     The other f-PLGA nano-particles coupled with WGA are 520 nm in diameter. For 

better adhesion of f-PLGA to the cell, lectin like WGA has been conjugated. The 

polymeric structural formula of PGA, PLA and PLGA particles is shown in Fig. 28. The 

cells are washed in HIS solution and incubated in the same solution for 30 min. These 
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nano-particles are observed at 488 nm. The f-PLGA nano-particles are kindly provided 

by Prof. Franz Gabor (Institute of Pharmaceutical Technology and Biopharmaceutics, 

University of Vienna, Austria).                        

 
 
 
 
                                       
 
 
 
 
 
 
 
Fig. 28: Structural formula of PGA [poly (glucolic acid)], PLA [poly (lactic acid)] and PLGA 
[poly (lactic-co-glycolic acid)]. 
 
  The magnetic iron oxide nano-particles obtained from the Institute of Physics and 

Chemistry of Materials, Strassbourg are of 12 nm in diameter. These nano-particles 

contain magnetic iron oxide core to which an organic layer (dye) is grafted with a 

phosphate entity. The cells were washed 3-4 times with HIS solution and incubated with 

nano-particles for 30 min at 4°C in the same solution. All the single cell experiments with 

the nano-particles containing magnetic iron oxide were carried out at 360 nm using 

fluorescence microscope suitable for single cell imaging. 
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Chapter 4: Effect of transmembrane potential on the diffusion of 
Na+/H+ exchanger of human red blood cell 

 
 

 

 

 

 

 

 
 

 

 
 
 
 
 
 

The experiments presented in this chapter were done in collaboration with Prof. Dr. Gregor Jung 
from the Department of Biophysical Chemistry, University of Saarland. 
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4.1 Results  
      All the FCS curves were fitted by using the two component model (Eq. 5) and by 

applying the Eq. 6, and thus the diffusion constant D was calculated. The beam waist ωo 

(at λexc= 488 nm) of the laser throughout the experiment was calculated to be ~450 nm 

which indicates a minute area of ~0.6 µm2 within the RBC membrane in which the 

diffusion has been studied. The resolution in the z-direction for the measurements was 

about 7 µm. Long term exposure of laser on the cell membrane has been avoided as it 

causes photo damage to RBCs (Bloom et al., 1984; Wong et al., 2007). Confocal images 

of RBCs after labeling with Bodipy-FL amiloride, and the marked region where FCS has 

been performed are shown respectively, in Fig. 29 A and B. The amiloride is a reversible, 

selective, competitive inhibitor for the Na+ site of the Na+/H+ exchanger. 

 

                                                                          
 
Fig. 29: A) Confocal images of RBCs labeled with Bodipy-FL amiloride, B) The marked region 
where FCS is performed in HIS solution.   

4.1.1 Autocorrelation curve for the experiment  

      The obtained autocorrelation functions of the cell membrane measurements are 

well in agreement with previous reports for living cells (Politz et al., 1998; Schwille et 

al., 1999; Takahashi et al., 2003). Autocorrelation curves obtained in various solutions 

are shown in Fig. 30. More than one diffusion times were observed after the curves were 

normalized.  

X
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Fig. 30: Normalized fluorescence correlation curves of RBC membrane under different ionic 
strength solutions labeled with Bodipy-FL amiloride. Different solutions are shown with different 
colours.  

4.1.2 Diffusion of the Na+/H+ exchanger labeled with Bodipy-FL amiloride       

      The obtained results were fitted using the two component model and apparently 

two diffusion constants for corresponding experimental solutions were obtained. The 

evaluation of correlation curves resulted in fast moving fluorescent species and in slow 

moving fluorescent species. In the beginning, we believed that the fast moving species 

(with higher diffusion constant) corresponds to the free dye and the slow moving species 

(with slower diffusion constant) corresponds to the labeled exchanger. This assumption is 

valid when approximately a similar diffusion time for the free dye throughout all the 

solutions is observed. However, it was not the case in our experiments. Moreover, the 

above assumption will not be applicable when there is ~100% labelling of the dye 

molecules. After the incubation of the dye, the cells were washed carefully to get rid of 

any unlabeled excess dye. So there is a little or no possibility of dye in the measuring 

system. Otherwise, it may hinder single molecule experiments with FCS. So, it is 

appropriate to assume that the fast moving species (particles with higher diffusion 

constant) reflect the non-hindered (free) diffusion of the Na+/H+ exchanger in the 

membrane and the slow moving species (particles with low diffusion constant) reflect the 
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hindered diffusion. The hindered diffusion can be attributed to the aggregation of two or 

more exchangers (i.e., bigger particles). Other possibilities might be due to the interaction 

between the protein-protein or protein with the underlying cytoskeleton. The different 

diffusion constants observed for the Na+/H+ exchanger are the result of interactions with 

the cytoskeleton network which is responding to the external changes (membrane 

potential or volume change).  The fast and slow diffusion constants of Na+/H+ exchanger 

labeled with Bodipy-FL amiloride in different solutions are shown in Fig. 31 A and B 

respectively.   

                          
 

                             
Fig. 31: The Diffusion constants (A: fast, B: slow) of Na+/H+ exchanger labeled with Bodipy-
FL amiloride labeled in different solutions. Error bars represent the S.D. of 3-5 experiments, p < 
0.05. 

A 

B 
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4.1.3 Influence of the transmembrane potential on the diffusion constant of Na+/H+ 
exchanger 
 
      FCS has been performed at the point of marked region shown in Fig. 27B of the 

cell membrane. The diffusion constant of the slower component with a fraction rate of 

69%, obtained for the Na+/H+ exchanger in physiological solution is 1.9×10-10 cm2/s .The 

value for faster component with a fraction rate of 31% is 143×10-10 cm2/s. In low ionic 

strength solutions, LIS 250 mM, in which the transmembrane potential rises to a positive 

value of the slower component with a fraction rate of 71% and faster component with a 

fraction rate of 29% is 0.75×10-10 cm2/s and 78×10-10 cm2/s, respectively. The obtained 

values for slower component with a fraction rate of 65% and faster components with a 

fraction rate of 35% in LIS 200 mM are 4.6×10-10 cm2/s and 177×10-10 cm2/s, 

respectively. Furthermore, for sodium tartrate solution the values obtained for slower and 

faster components are 0.88×10-10 cm2/s and 59×10-10 cm2/s, respectively, and the slower 

component fraction rate is 52% while the fast moving fraction rate is 48%. 

      Thus, it can be concluded that the transmembrane potential has no significant 

effect on the lateral movement of the exchanger. The diffusion constant for Na+/H+ 

exchanger in sodium tartrate solution calculated to be 59×10-10 cm2/s which is the slowest 

but the value is close to the LIS solutions. These results can be attributed to the similar 

transmembrane potential and alkalinization of the cells which occurs in both LIS and 

tartrate solutions. It is appropriate to consider the effect of volume change in LIS 200 

solution along with the different HIS solutions. 

      The small difference between the diffusion constants of HIS and LIS 250 infer 

that the volume change has some effect on the lateral diffusion of the exchanger. The 

obtained values of slow or hindered component is found to be almost the same value in 

HIS (1.95×10-10 cm2/s), HIS solution containing 120 mM NaCl (1.06×10-10 cm2/s), LIS 

250 mM (0.74×10-10 cm2/s) and sodium tartrate (0.87×10-10 cm2/s) (Fig. 29 B). However, 

the diffusion constant in LIS 200 mM solution (4.65×10-10 cm2/s) is relatively higher than 

the diffusion constant in HIS and similar to HIS with 30 mM sucrose. In case of hindered 

diffusion of Na+/H+ exchanger the diffusion constant remains more or less similar. The 

precise mechanism behind such disparity of results for faster and slower components is 
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difficult to conclude. The influence of volume changes on the diffusion constant of 

Na+/H+ exchanger are discussed in the following section.  

4.1.4 Influence of the volume change on the diffusion constant of Na+/H+ exchanger 

      In order to confirm the possible role of volume change on the diffusion constant 

of the exchanger, further investigations have been done. The HIS solution with 30 mM 

sucrose has been used to decrease the cell volume. Additionally, the 120 mM HIS 

solution has been prepared by reducing the NaCl concentration from 145 to 120 mM. 

These solutions maintain similar surface potential to the physiological solution. For HIS 

120 solution, the obtained value for slower component with a fraction rate of 62% and 

faster components with a fraction rate of 38% are 1.1×10-10 cm2/s and 213×10-10 cm2/s 

respectively. A higher value of diffusion constant with a fraction rate of 62% has   

5.1×10-10 cm2/s and the slower component with a diffusion constant of 388×10-10 cm2/s 

was observed for HIS with 30 mM sucrose solution.  

       Increase in the rate of protein diffusion comparable to that of a membrane lipid 

can be interpreted as an evidence for the destruction or uncoupling of the protein from the 

cytoskeleton. This assumption is more realistic in the case of Na+/H+ exchanger in HIS 

120 mM+30 mM solution as a decrease in volume is observed. The decrease in volume in 

physiological conditions (HIS 120 mM) causes a constriction in the bilayer along with 

cytoskeleton thereby detaching the protein contact from the cytoskeleton. It is not clear at 

the moment that a small change in the ionic strength along with volume change result in 

the uncoupling of Na+/H+ exchanger from the cytoskeleton. The resulting  diffusion 

constants D, diffusion time τ and fraction rate F of Bodipy-FL amiloride labeled Na+/H+ 

exchanger in different solutions are shown in  Table 2. 
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Table 2: The Diffusion constant D, diffusion time τ and fraction rate F of Bodipy-FL 
amiloride Na+/H+ exchanger in different solutions. 
  

4.1.5 Influence of the transmembrane potential on the diffusion of β-Bodipy-FL-
C12-HPC 
 
       Our study was also extended to understand the effect of membrane potential on 

the lateral movement of membrane labeled lipids. The suitable dye for such experiments 

was the Bodipy conjugated lipid permeant β-Bodipy-FL-C12-HPC (β-BPC). The dye was 

successfully applied for studying the protein lipid interactions and measuring the kinetics 

of DNA release from lipoplexes (Keller et al., 1995; Koynova et al., 2007). Generally, 

lipids show the same order of diffusion constants compared to proteins at fluid crystalline 

state. 

          In HIS solution, the obtained value of diffusion constant for slower component 

with a fraction rate of 54%, obtained for the β-BPC is 15.2×10-10 cm2/s. The value for 

faster component with a fraction rate of 46% is 280×10-10 cm2/s. In low ionic strength 

(LIS) solutions, LIS 250 mM, the values of slower diffusion constant with a fraction rate 

of 71% and the faster component with a fraction rate of 29% are 12.5×10-10 cm2/s and 

257×10-10 cm2/s, respectively. The obtained value for slower component with a fraction 

rate of 68.6% and faster components with a fraction rate of 31.3% in LIS 200 mM are 

60×10-10 cm2/s and 220×10-10 cm2/s respectively. Further more, for sodium tartrate 

solution, the values obtained for slower and faster components are 36×10-10 cm2/s and 

287×10-10 cm2/s, respectively. The slower component fraction rate is 42% and the fast 

moving fraction rate is 58%. The obtained diffusion constant of fast component (Fig. 30) 

Solutions τd1 
(ms) 

Da (10-10) F1 (%) τd2   
(ms) 

Db (10-10) F2 (%) 

HIS 34 143 32 2446 1.9 69 
HIS 120 mM 23 213 38 4540 1.1 62 
HIS + 30 mM 
sucrose 

11 432 23 1049 4.5 77 

LIS 250 mM 65 78 42 6458 0.75 58 
LIS 200 mM 28 177 73 1044 4.6 30 
Na Tartrate 97 59 46 5692 0.88 54 
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in all the experimental solutions with varying membrane potential were found to be 

almost similar (~250×10-10 cm2/s) and this is much higher than the expected value. The 

obtained values for slow diffusion constant are in good agreement with the previously 

published data where the characterisation of giant unilamellar vesicles was studied using 

fluorescence correlation spectroscopy (Korlach et al., 1999). The faster and slower 

diffusion constants of β-BPC in RBC membrane in different solutions are shown in     

Fig. 32. 

 

                 
Fig. 32: Diffusion constants of β-Bodipy-FL-C12-HPC in the RBC membrane. Grey bars indicate 
the fast diffusion constants and black bars indicate the slow diffusion constants, respectively. 
Error bars represent the S.D. of 3-5 experiments, p < 0.05. 
 
       The diffusion constant values obtained for the slow moving component in HIS 

and LIS 250 mM are very similar: 15×10-10 cm2/s and 12×10-10 cm2/s. On the contrary, 

the obtained values of diffusion constants for LIS 200 and sodium tartrate solutions are 

68×10-10 cm2/s and 40×10-10 cm2/s, respectively. Thus, with the obtained data it is unclear 

at the moment, which parameter is effecting the lipid diffusion and to what extent 

(transmembrane potential, surface potential, and/or cell volume). The resulting diffusion 

constants D, diffusion time τ and fraction rate F of labeled (ß-BPC) lipid in different 

solutions is shown in Table 3. 
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Table 3: The Diffusion constant D, diffusion time τ and fraction rate F of β-Bodipy-FL- 
C12-HPC labeled lipid in different solutions. 
 
Solutions τd1 

(ms) 
Da (10-10) F1 (%) τd2 

(ms) 
Db (10-10) F2 (%) 

HIS 18 280 46 334 15 54 
LIS 250 mM 20 257 29 442 12 71 

LIS 200 mM 23 220 31 442 60 68 
Na Tartrate 18 262 54 124 40 45 

 

4.2 Discussion  

 In the present work, we have studied the effect of transmembrane potential and 

volume changes on the diffusion of Na+/H+ exchanger of human RBCs using FCS. The 

fluorescence correlation curves are fitted using the two component model resulted in fast 

diffusing fluorescent species and slow diffusing fluorescent species. The fast moving 

species and slow moving species are assumed to be the non-hindered and hindered 

diffusions of Na+/H+ exchanger, respectively.  

 The diffusion constants for slow moving component of Na+/H+ exchanger in HIS 

(1.9×10-10 cm2/s), LIS 250 mM (0.75×10-10 cm2/s) and Na tartrate (0.88×10-10 cm2/s) 

solutions are relatively similar. Thus, it can be concluded that the transmembrane 

potential has no effect on the lateral diffusion of Na+/H+ exchanger. However, the 

diffusion constant value in LIS (200 mM) solution is higher than in HIS solution and 

similar to HIS containing 30 mM sucrose solution. The obtained data for the fast moving 

component is more difficult to interpret and contrasting with the slow diffusing 

component. The diffusion constant values for HIS (143×10-10 cm2/s) and LIS 200 mM 

(177×10-10 cm2/s) solutions are more or less similar. In LIS 250 mM and Na tartrate 

solutions the diffusion constants are relatively similar. The value of slow diffusing 

constant in HIS 120 mM solution (1.1×10-10 cm2/s) is similar to HIS solution though 

there is an increase in the RBC volume.   

We attribute the differences in the diffusion of Na+/H+ exchanger in different 

solutions effecting the transmembrane potential and volume changes to the association 
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and interactions of Na+/H+ exchanger with the cytoskeleton of RBCs. It is still unclear at 

the moment, what factors influence the disparity between the slow and fast diffusing 

components. 

 Additionally, we have studied the effect of transmembrane potential on the 

diffusion of membrane permeant β-Bodipy-FL-C12-HPC labeled lipid. It has been 

observed that the transmembrane potential has no influence on the diffusion of fast 

moving component. The fast diffusing component has a constant value of ~250×10-10 

cm2/s in HIS, LIS (200, 250 mM) and Na tartrate solutions. Incase of slow moving 

component, the obtained data is insufficient to conclude the parameter which is effecting 

the lipid diffusion and to what extent (transmembrane potential, surface potential, and/or 

cell volume).   
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Chapter 5: Ca2+ loss of single Caco-2 cells under physiological 
conditions 
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5.1 Results and Discussion 

          The kinetics of Ca2+ transport of single Caco-2 cells is observed when no external 

Ca2+ source is available in the surrounding medium. We have observed a loss in the Ca2+ 

content of single Caco-2 cells and determined it qualitatively using the Ca2+ sensitive, 

fluorescent indicator Fluo-4 dye. Single Caco-2 cells showing this behaviour have been 

examined just after the cells are mounted on to the cover slips, and the mechanism behind 

this Ca2+  loss has been investigated using different inhibitors and drugs for Ca2+ channels 

and pumps. The observed kinetics of a single Caco-2 cell losing Ca2+  during a time 

period of 30 min is shown in Fig. 33.   
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Fig. 33: Ca2+ transport of Caco-2 cells loaded with Fluo-4 and without any Ca2+ in the 
surrounding medium for a time period of 30 min. Each curve represents a single Caco-2 cell. 
 

The Ca2+ loss of single Caco-2 cells has been studied in detail by adding different 

Ca2+ concentrations in the extracellular medium. It has been observed that the Caco-2 

cells expel the Ca2+ in a dependent manner, i.e., the higher the external Ca2+ concentration 

the quicker the response by Caco-2 cells. Experiments are done with different external 

Ca2+ content (0, 2 and 10 mM) in the surrounding medium of Caco-2 cells (Fig. 34). 
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Fig. 34: Ca2+ transport in Caco-2 cells in physiological solution with different external Ca2+ 
concentrations. Three experiments are presented with different external Ca2+ concentrations   for a 
time period of 30 min (      10 mM Ca2+    ,      2 mM Ca2+  and        0 mM Ca2+). Each curve 
represents a single cell.  
      
      It is observed that the Ca2+ is entering the cell membrane and is pumped out by 

Caco-2 cells. The role of Ca2+ pumps is assumed, and suitable inhibitor like O-vanadate 

which inhibits most of the pump action has been used. 

      Caco-2 cells are preincubated with the fluorescent Fluo-4 dye and O-vanadate is 

added prior to the experiment. The above experiment is repeated in the presence of O-

vanadate (80 µM) with external Ca2+ concentrations of 0, 2 and 10 mM (Fig. 35). It is 

found that the Ca2+  is still able to enter the cells and is expelled. So, it can be understood 

that Ca2+ loss is not dependent on Ca2+  pumps. 
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Fig. 35: Caco-2 cells in the presence of O-vanadate (80 µM) with different external Ca2+ 
concentrations. Three experiments are presented with different external Ca2+ concentrations for a 
time period of 30 min (       10 mM Ca2+,         2 mM Ca2+     and        0 mM Ca2+). Each curve 
represents a single cell. 
 

       The role of ABC transporters cannot be neglected in this mechanism and suitable 

inhibitors like Cys A (10 µM) has been used. ABC transporters are involved in the 

expulsion of a wide variety of substances from the cell interior to extracellular space 

(Gatmaitan and Arias, 1993; Schinkel, 1997). The outcome of the experiment is not 

different even after the addition of Cys A as the Ca2+ loss was not inhibited in the 

presence of the inhibitor (Fig. 37). 

      It was necessary to estimate the Ca2+ content of a single Caco-2 cell to understand 

whether the mechanism was mediated simply by diffusion via Ca2+ channels or pumped 

out against concentration gradient in carcinoma cell line. The Ca2+ content determined by 

using fluorescent Fura-2 AM which is a ratiometric dye and excited in UV range. To 

chelate the external Ca2+, EGTA (30 mM) has been added to the buffer. It was found that 

http://jpet.aspetjournals.org/content/298/1/323.full#ref-10#ref-10�
http://jpet.aspetjournals.org/content/298/1/323.full#ref-25#ref-25�
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the intracellular Ca2+ of single Caco-2 cells is in the micromolar range of 0.5-2.5 µM 

which is similar to the intestinal epithelium (Fig. 36).                        

                                 
Fig. 36:  Quantitative estimation of Ca2+ concentration inside the Caco-2 cells determined using 
the fluorescent dye Fura-2 AM. Each curve represents a single cell. 
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Fig. 37: Ca2+ transport of Caco-2 cells incubated with p-gp inhibitor Cyclosporin A (10 µM) and 
in the presence of 2 mM of external Ca2+ for time period of 30 min. Each curve represents a 
single cell. 
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Generally, for blocking the L-type Ca2+ channels there are three types of 

antagonists available. They include phenylalkylamines, benzodiazepines, and 

dihydropyridines. These antagonists interact at the specific binding site of the channel 

protein (Godfraind et al., 1986; Striessnig et al., 1987). Nifedipine (10 µM), a 

dihydropyridine, specifically blocks L-type  Ca2+ channels is also applied for inhibiting 

the Ca2+  loss. Nifedipine is also used as an anti-anginal and anti-hypertensive agent. 

From the data, nifedipine action was insignificant to inhibit the Ca2+ loss (Fig. 38).   
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Fig. 38: Ca2+ transport of Caco-2 cells in the presence of L-type Ca2+ channel inhibitor nifedipine 
(10 µM) and with 2 mM of external Ca2+. Each curve represents a single cell. 
 

     It has been assumed that along with p-gp, some other transporters are also 

involved in the Ca2+  loss of  single Caco-2 cells. Experiments with cyclosporin A along 

with the other inhibitors of Ca2+ pump like O-vanadate and  L-type channel Ca2+ inhibitor 

nifidipine have been used (Fig. 39 and 40). It has been observed that different 

combinations of inhibitors have no influence in inhibiting the Ca2+ loss of single Caco-2 

cells. In all experiments the external Ca2+ concentration is maintained constant at 2 mM. 

Diltiazem-Cl which is also a specific inhibitor similar to nifedipine for L-type              

Ca2+    channels has been used, and the experiments are shown in Fig. 41 and Fig. 42. It is 

http://en.wikipedia.org/wiki/Dihydropyridine�
http://en.wikipedia.org/wiki/Calcium_channel_blocker�
http://en.wikipedia.org/wiki/Antianginal�
http://en.wikipedia.org/wiki/Antihypertensive�
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found that the kinetics of fluorescence intensity of Caco-2 cells after the addition of 

Diltiazem-Cl appears to be stable for a time period of 30 min. 
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Fig. 39: Fluorescence kinetics of Ca2+ transport of Caco-2 cells in the presence of nifedipine (10 
µM) and Cyclosporin A (10 µM) in the presence of 2 mM of external Ca2+ for a time period of 30 
min. Each curve represents a single cell.          
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Fig. 40: Fluorescence kinetics of Ca2+ transport of Caco-2 cells in the presence of O-vanadate (80 
µM), Cyclosporin A (10 µM) and with 2 mM of external Ca2+ for a time period of 30 min.  Each 
curve represents a single cell.  
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Fig. 41: Ca2+ transport of Caco-2 cells in the presence of Diltiazem-Cl (1 µM) in the presence of 
2 mM of external Ca2+ for a time period of 30 min. Each curve represents a single cell.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            
Fig. 42: Ca2+ transport of Caco-2 cells in the presence of Diltiazem-Cl (1 µM) and in the presence 
of 10 mM of external Ca2+ for a time period of 30 min. Each curve represents a single cell. 
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      To our knowledge, it is the first report showing such behaviour of Ca2+ loss of a 

single Caco-2 cell and studied mechanism. We have observed that disruption of 

epithelium results in the Ca2+ release from a single Caco-2 cell. In a series of experiments 

with various inhibitors and drugs none of them could block the Ca2+ loss in physiological 

conditions except Diltiazem-Cl. Moreover, different combinations of inhibitors for 

pumps and L-type Ca2+ channels were also not able to inhibit the Ca2+ loss. Our data 

suggest that only Diltiazem-Cl is able to block slow or L-type Ca2+ channels effectively 

similar to previous findings (Kanaya et al., 1983; Lee and Tsien, 1983). Diltiazem-Cl is 

also responsible in the regulation of Ca2+ release from the intracellular stores of 

neutrophils (Rosales et al., 1992). Additionally, Diltiazem-Cl stimulates 1, 4-

dihydropyridine binding to Ca2+ channels. It also acts as a coronary vasodilator and 

increases the coronary blood flow in humans (Vrolix et al., 1991).  

      In summary, our data suggest that L-type channels are involved the Ca2+ loss of 

single Caco-2 cells. Diltiazem-Cl effectively inhibits the Ca2+ loss of single Caco-2 cells, 

detached from the epithelium, in physiological conditions. Additionally, it also inhibits 

the Ca2+  loss of single Caco-2 cells at higher external Ca2+ concentrations (10 mM) also. 

It would be interesting to study such effect with other epithelial cell types or does this 

phenomenon is limited to Caco-2 cell line only. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T1J-3V5NK4Y-C&_user=1592387&_coverDate=10%2F30%2F1998&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000053620&_version=1&_urlVersion=0&_userid=1592387&md5=80c97c54dc233b8ad3a1152109083953#b1#b1�
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Chapter 6: Effect of nano-structured surfaces and nano-particles on 
physiological processes of RBCs and Caco-2 cells 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The experiments presented in this chapter were done together with Dr. Lyubomira 
Ivanova and Melanie Zimmer. 
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6.1 Influence of nano-structures on cellular processes 

Cells respond significantly to the local nano-scale patterns of surface chemistry 

and topography (Stevens et al., 2005). Several reports have shown that osteoblasts, 

fibroblasts, smooth muscle cells, chondrocytes and endothelial cells are sensitive towards 

the differences at nanometer scale compared with conventional surface roughness (Kay et 

al., 2002; Webster et al., 2001). Surface properties of materials as well as biophysical 

constraints at the biomaterial surface are of major importance since these features will 

direct the cell responses and cell behaviour (Meyer et al., 2005). Nano-structured 

surfaces were utilised to study the actomyosin motility, osteoblasts functions improved 

on nano-structured surfaces of carbon and alumina on nano-structured surfaces (Price et 

al., 2003). There are several reports regarding the influence of nano-structured surfaces 

on cell behaviour (Von Recum et al., 1995 and Curtis et al., 2001), cell migration, cell 

adhesion (Curtis et al., 2001), and also gene expression (Dalby et al., 2002). Endothelial 

cells cultured on the extracellular matrix textured surfaces spread faster and resemble to 

the cells in their native arteries than cells grown on normal surfaces (Goodman et al., 

1996).  

Ca2+ is the most important ion in the human body which is responsible for many 

cellular processes. Ca2+ acts as a universal intracellular messenger which participates in 

neurotransmission and muscle contraction. Cells regulate the intracellular and 

extracellular Ca2+ levels very precisely. Such regulation is important for the cell growth 

differentiation and apoptosis (Santella et al., 1998 and Nicotera et al., 1998). An increase 

in intracellular pH was shown to be an essential prerequisite for many cellular processes 

like DNA synthesis, cell proliferation, and activation of glycolysis (Grinstein et al., 

1989). Rich and his co-workers have shown an increase of approximately 0.4 units of 

intracellular pH in various leukemia cell lines as compared to peripheral blood 

mononuclear cells from healthy donors (Rich et al., 2000). Besides, cell growth and 

proliferation, a wide variety of cellular processes and properties such as metabolism, cell 

volume, and tubulin polymerization are affected by intracellular pH (Busa et al., 1984; 

Lang et al., 1998). Intracellular pH is an important parameter which influences cell 

physiology and metabolism of a cell. Thus, it would be of importance to study the 
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changes in the intracellular pH of RBCs and Caco-2 cells on different surfaces and 

materials. We have chosen RBCs and Caco-2 cells a model for our experiments.    

6.2 Results  

      All the investigations have been carried out at single cellular level using 

fluorescence imaging. The kinetics of Ca2+ and H+ transport of RBCs and Caco-2 cells 

has been studied on various nano- and chemically modified surfaces. The results obtained 

are compared with the corresponding kinetics on ordinary borosilicate glass surface over 

30 min. The surfaces tested include: 

• Borosilicate glass surface  

• Micro/Nano-structured surfaces  

• Nano-structured PMMA surfaces  

• Chemically modified surfaces  

• Glass surfaces coated with organic polymer 

6.2.1 Kinetics of Ca2+ transport of RBCs 

               The RBCs are labeled with Fluo-4 marker which is suitable to study the kinetics 

of Ca2+ transport. The response of RBCs after incubation of the dye is studied on glass 

surface for a time period of 30 min are shown in Fig. 43.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 Fig. 43: Kinetics of Fluo-4 fluorescence intensity of RBCs in the presence of 2 mM external Ca2+  
on normal glass surface over a time period of 30 min. A: Fluorescence image with RBCs. Each 
curve represents a single cell. 
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All the cells show a low and stable fluorescence kinetics which is characteristic of RBCs 

under such conditions. This experiment serves as a reference for following experiments 

with different nano-structured surfaces having different patterns and textures. Similar 

conditions like incubation time of the dye and 2 mM external Ca2+ are maintained for all 

the experiments.  

Kinetics of Ca2+ transport of RBCs on Micro/Nano-structured surfaces  

              The micro- and nano-structured surfaces have been produced by modifying the 

glass surface using various methods (Chapter 3). The combined fluorescence and bright 

field images of surface texture of GPTS, ETC and nano-structured surfaces (KLN), and 

also the corresponding surfaces with RBCs respectively (Fig. 44). The artificial surfaces 

of GPTS and ETC have micro imprints on their surface and the KLN surface has nano 

patterns. A detailed description of the preparation and pattern of materials used here in 

this chapter are explained in the chapter Materials and methods. The Kinetics of Fluo-4 

fluorescence intensity of RBCs in the presence of 2 mM external Ca2+ over different 

surfaces with respect to control (glass surface) for a time period of 30 min is shown in 

Fig. 45. The kinetics of Ca2+ transport of RBCs on PMMA surfaces is dealt separately as 

a different kinetics with respect to other surfaces has been observed.  
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Fig. 44: Images A, B, C represent the combined fluorescence and bright field images of surface 
texture of GPTS, ETC and nano-structured surfaces (KLN), and A1, B1, C1 represent the 
corresponding surfaces with RBCs. 
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Fig. 45: Kinetics of Fluo-4 fluorescence intensity of RBCs in the presence of 2 mM external Ca2+   
over different surfaces for a time period of 30 min. Each curve represents the average of 3-5 cells.     
 
Kinetics of Ca2+ transport of RBCs on PMMA Surfaces  

      The surfaces obtained from Science park, Barcelona differ from the ordinary glass 

surface and other modified surfaces in the nature of material and thickness. A detailed 

description regarding the pattern of these structures is explained in Materials and methods 

(chapter 3). Combined bright field and fluorescence images of different PMMA 

structures are depicted in Fig. 46.  
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Fig. 46: Combined bright field and fluorescence images of various surface patterns of PMMA 
surfaces. 
 
      The kinetics of fluorescence intensity of Fluo-4 on the micro- and nano-structured 

surfaces has shown that the impact caused by these patterns is negligible. The 

fluorescence intensity of RBCs on PMMA surfaces (shown in Fig. 47) is unstable 

compared to glass or other modified surfaces. The results with PMMA surfaces show that 

it has some influence on Ca2+ transport of RBCs. Experiments have been done on every 

pattern of PMMA surfaces separately. It has been observed that the kinetics of 

fluorescence intensity of RBCs is unstable on every pattern. In some cases, an increase in 

the fluorescence intensity has been obsereved compared to other surfaces. The design or 

the precursor material of PMMA surfaces might have influenced the fluorescence 

kinetics of RBCs. 
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6.2.2 Kinetics of Ca2+ transport of Caco-2 cells  

 Ca2+ transport of Caco-2 cells has been studied similar to RBCs. The cells are 

labeled with Fluo-4 which is a Ca2+ indicator suitable to study the kinetics of 

fluorescence intensity on glass and various artificial surfaces for a time period of 30 min. 

Caco-2 cells show a strong fluorescence signal compared to RBCs and lose Ca2+ in 

physiological conditions as explained before in the Chapter 5. Caco-2 cells on glass 

surface with Ca2+ loss can be seen in Fig. 48, and this experiment serves as a reference 

for following modified surfaces. 
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Fig. 48: Kinetics of Fluo-4 fluorescence intensity of Caco-2 cells with 2 mM external Ca2+ over 
glass surface for 30 min. Fig. A and B represent the fluorescence image of Caco-2 cells at 0 and 
30 min of experiment, respectively. Each curve represents a single cell.   

 
Fig. 47: Kinetics of Fluo-4 fluorescence intensity of RBCs in the presence of 2 mM external 
Ca2+ over PMMA surface for 30 min. Each curve represents a single cell. 
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Kinetics of Ca2+ transport of Caco-2 cells on Micro/Nano-structured surfaces 
 
      The kinetics of fluorescence intensity of Caco-2 cells with different surfaces 

(shown in Fig. 49) follows a similar pattern with respect to glass surface. All the 

modified surfaces (GPTS, ETC and KLN) and the chemically modified surfaces (ED and 

TAU) do not differ from the control (glass surface) on the Ca2+ transport of Caco-2 cells. 

A similar pattern of fluorescence kinetics has been observed on every surface tested with 

respect to glass surface.  
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Fig. 49: Kinetics of Fluo-4 fluorescence intensity of Caco-2 cells in the presence of 2 mM 
external Ca2+ over different surfaces for 30 min. Each curve represents the average of 3-5 cells on 
different surfaces.  
 
Kinetics of Ca2+ transport of Caco-2 cells on PMMA surfaces 
 
      Significant decrease in the fluorescence intensity compared to glass surfaces has 

been observed in the case of PMMA surfaces has been observed (Fig. 50). It is also seen 

that fluorescence intensity of Caco-2 cells on these surfaces is somewhat stable except for 

few cells compared to the kinetics Fluo-4 fluorescence intensity on glass surfaces over a 

time period of 30 min. From the data obtained, it is clearly evident that none of the 
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modified surfaces (GPTS, ETC 01 and 03, ED, TAU and KLN) except PMMA surfaces 

influence the Ca2+ transport of RBCs. The pattern or the precursor material might have 

some impact on the reduced fluorescence intensity. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 50: Kinetics of Fluo-4 fluorescence intensity of Caco-2 cells in the presence of 2 mM 
external Ca2+ over PMMA surface for a time period of 30 min. Each curve represents a single 
cell. 

6.2.3 Intracellular pH measurements of RBCs 
 
      We have investigated the influence of the surface constraints on the pH of RBCs 

in physiological conditions using BCECF dye and the ionophore nigericin. A calibration 

curve is plotted at a pH range of 7 to 8 exciting the dye at 450 and 490 nm shown in Fig. 

51.  

                  
 
 
 
 
 
 
 
 
 
 
 
Fig. 51: Calibration curve plotted for intracellular pH of RBCs using BCECF dye and ionophore   
nigericin on glass surface. 
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In physiological conditions RBCs maintain a pH of 7.2-7.4 and it remains 

constant for a time period of 30 min (Fig. 52).  

 
 
 
                           
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 52: Kinetics of pH change of RBCs incubated with pH indicator, BCECF-AM, on glass 
surface for a time period of 30 min. A. Ratio image of red blood cells of two fluorescence 
wavelengths at 450/490 nm on the glass surface. Each curve represents a single cell. 
 
Intracellular pH measurements of RBCs on Micro-/ Nano-structured surfaces 

      The modified surfaces (GPTS, KLN and ETC) and the chemically modified 

surfaces (ED and TAU) did not influence the intracellular pH of RBCs (Fig. 53). The 

fluorescence intensity is stable and constant on these surfaces similar to the glass surface.            

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 53: Kinetics of pH changes of RBCs incubated with pH indicator, BCECF-AM, on different 
surfaces for a time period of 30 min. Each curve represents the average of 3-5 cells over different 
surfaces. 
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Intracellular pH measurements of RBCs on PMMA surfaces 
 
       The PMMA surfaces have different material and surface texture compared to the 

other tested and ordinary glass surface. The kinetics of pH change of RBCs over PMMA 

surfaces is shown below (Fig. 54). The PMMA surfaces have shown a different 

fluorescence kinetics compared to the above mentioned surfaces. Although, the 

intracellular pH lies within the range of physiological conditions, a slight decrease in the 

pH has been observed. It is difficult to correlate this behaviour with respect to the nature 

of material.  
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Fig. 54: Kinetics of pH change of RBCs incubated with pH indicator, BCECF-AM, on PMMA 
surface for a time period of 30 min. Each curve represents a single cell. 

6.2.4 Intracellular pH measurements of Caco-2 cells 

       Changes in the intracellular pH of Caco-2 cells have been studied similar to RBCs 

using BCECF-AM dye and K+/H+ ionophore, nigericin. A calibration curve is plotted is 

shown in Fig. 55. Caco-2 cells after labeling with the dye have been studied on various 

nano- and micro- modified surfaces and chemically modified surfaces. The experiments 

on glass surface are used as a reference for the following experiments. In physiological 

conditions, Caco-2 cells maintain a constant pH of 6.8-7.2 for a time period of 30 min 

(Fig. 56). It is clearly evident from the kinetics of pH changes that single Caco-2 cells on 
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different surfaces have negligible effect (Fig. 57). In contrast, the experiments with 

PMMA surfaces, the kinetics of fluorescence intensity of Caco-2 cells is rather unstable 

with reference to glass surface. A decrease in the intracellular pH has been observed on 

PMMA surfaces over a time period of 30 min (Fig. 58). 

 
 
 
 
 
 
 
 
 
 
 
   
 
             
    
     
Fig. 55: Calibration curve plotted for intracellular pH of Caco-2 cells using BCECF dye and 
ionophore nigericin on glass surface. 
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Fig. 56: Kinetics of pH changes of Caco-2 cells incubated with pH indicator, BCECF-AM, on 
glass surface for a time period of 30 min. Each curve represents a single cell. 
 
 
 

0

50

100

150

200

250

300

350

6.6 6.8 7 7.2 7.4 7.6 7.8

Intracellular pH

R
at

io
 4

90
/4

50
 n

m



  

        79 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 57: Kinetics of pH changes of Caco-2 cells incubated with pH indicator, BCECF-AM, on 
different surfaces for a time period of 30 min. Each curve represents the average of 3-5 cells over 
different surfaces. 
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Fig. 58: Kinetics of pH changes of Caco-2 cells incubated with pH indicator, BCECF-AM on 
PMMA surface over a time period of 30min. Each curve represents a single Caco-2 cell. 
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From the data, the effect of PMMA surfaces on the kinetics of pH changes of 

single Caco-2 cells is significant compared to other modified surfaces and glass surface.  

Intracellular pH measurements of RBCs on organic polymer surfaces 

              The organic polymer surfaces I and II obtained from the Department of Organic 

Chemistry, Sofia University, Bulgaria are bipolar in nature. The cells could not settle 

down on the surface even after a time period of 1 h, which makes it difficult to carry the 

Ca2+ and pH measurements (Fig. 59-61). Cells are transformed into echinocytes with 

these surfaces and clumping of cells has been observed. The other polymer surface III is 

negatively charged, and a transformation of RBCs to echinocyte shape has been observed 

after 30 min of the experiment. Experiments with Caco-2 cells were not possible as the 

surfaces are meant for single use. 

 
 

                                       
   
Fig. 59: Bright field image of RBCs over organic polymer surface I after 5 min (A) and 30 min 
(B) of the experiment.  
 

                                      

 
Fig. 60: Bright field image of RBCs over organic polymer surface II after 5 min (A) and 30 min 
(B) of the experiment.  
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Fig. 61: Bright field image of RBCs over organic polymer surface III after 5 min (A) and 30 min 
(B) of the experiment.  

6.2.5 Interaction of Nano-particles with RBCs and Caco-2 cells 
Nano-particle based drug delivery systems are helpful for delivering the drug to 

specific locations in the human body. Nano-particles having few nanometers to few 

hundred nanometers emerged as potential applicants in the field of medicine and 

industry. Nano-particles are also used in neurosurgery. Generally, cellular uptake 

mechanisms include pinocytosis, endocytosis and receptor-mediated endocytosis. 

Encapsulation of macromolecules and DNA with nano-particles will help in avoiding the 

lysosomal degradation and specific delivery to the target. The membrane crossing ability 

of nano-particles with RBCs and Caco-2 cells and their possible physiological effects at 

single cellular level has been investigated. Nano-particles of different physical and 

chemical properties have been investigated with human RBCs and Caco-2 cells. The 

possible penetration of the particles into the cells and their distribution inside the cells has 

been investigated. A comparison of the effect on the 2 cell types is of importance since 

RBCs do not exhibit endocytosis.  

The nano-particles investigated include f-PLGA, (poly lactic-co-glycolic acid) 

coupled with WGA (wheat germ agglutinin) are of 520 nm in diameter. The properties 

like biodegradability and biocompatibility make PLGA as a suitable choice for tissue 

engineering and drug delivery. The poor bio-adhesion of PLGA can be overcome by 

conjugating it with a suitable lectin like WGA. Both human RBCs and Caco-2 cells were 

studied after the incubation with the nano-particles for 30 min at 4°C. Washed human 

RBCs were incubated with nano-particles at a concentration of 2.5 mg/ml for a time 

period of 30 min. The fluorescence and bright field images of RBCs with nano-particles 

is shown in Fig. 62. It is found that the tested nano-paricles accumulated outside the cell 
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(Fig. 62B and C) and are unable to cross the membrane. The experiments with RBCs are 

done with Caco-2 cells also. Caco-2 cells are washed carefully to remove the RPMI 

medium and re-suspended in physiological solution. Caco-2 cells with nano-particles (f-

PLGA+WGA) of 520 nm size at a concentration of 1 mg/ml are tested at 488 nm. Both 

bright field image and fluorescence images are shown in Fig. 63B and C. It has been 

observed that the nano-particles get accumulated at the cell membrane and are unable to 

cross the membrane barrier.   

 

 

                             
 
Fig. 62: RBCs with nanoparticles (f-PLGA+WGA) with a size of 520 nm at a concentration of 
2.5 mg/ml (A: Bright field image, B: Bright field and fluorescence image, and C: Fluorescence 
image). 
 
    

                              
                                                 
Fig. 63: Caco-2 cells with nano-particles (f-PLGA+WGA) of 520 nm size at a concentration of 1 
mg/ml (A: Bright filed image, B: Bright field and fluorescence image, and C: Fluorescence 
image). 
 
      The nano-particles with magnetic iron oxide core on which an organic layer (dye) 

is grafted with a phosphate entity are of 10 nm in diameter. Particularly, iron oxide 

particles are helpful in diagnosis of brain tumors and lesions in the brain using MRI 

(Mendonca et al., 1986). Precise conjugation of an antibody to a magnetic nano-particle 
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enables to label specific molecules, structures, viruses and microorganisms. For the 

uniform distribution of nano-particles, ultrasonic techniques have been used. All the 

experiments for the nano-particles with magnetic oxide core have been carried out at 340 

nm. It has been observed from the fluorescence image that the nano-particles are attached 

to the cell membrane of Caco-2 cells (Fig. 64B). 

 
   

                              
 
Fig. 64: Caco-2 cells with magnetic iron oxide particles of 12 nm sizes at 340 nm and at a 
concentration of 1 mg/ml. A: Fluorescence image of particles and B) Fluorescence image of 
Caco-2 cells with nano-particles. 

6.3 Discussion 

In this work, changes in the intracellular pH and Ca2+ transport of RBCs and 

single Caco-2 cells has been studied on various modified surfaces from various sources. 

The changes in these physiological processes imply valuable information about cell 

homeostasis and cell metabolism. Our results clearly indicate that the textures, patterns 

and modifications on the glass surface do not influence the Ca2+ transport and pH of 

RBCs and Caco-2 cells. In contrast, PMMA surfaces which are fabricated with different 

material other than borosilicate have significant influence on these physiological 

processes. In case of RBCs, PMMA surfaces influence the Ca2+ transport of RBCs by 

altering the band-3 protein conformation. As band-3 occupies most of the RBCs 

membrane structure, it would be appropriate to consider the role of band-3 protein. 

Changes in the pH of RBCs can be attributed to the effect of PMMA surface on Na+/H+ 

exchanger. The kinetics for Ca2+ transport of Caco-2 cell over PMMA surfaces is more or 

less similar (Ca2+ loss), but the fluorescence intensity decreases considerably. The 

alterations in the organisation of cytoskeletal matrix of Caco-2 cell on this surface might 

influence the Na+/H+ exchanger, thereby a decrease in the pH has been observed.  

A B   ___ 
 20μm 
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The nano-particles examined with different sizes and characteristics could not 

pass through the membranes of both RBCs and Caco-2 cells. Moreover, a conglomeration 

or accumulation of these nano-particles at the cell surface of both cell types has been 

observed. After conglomeration of the nano-particles it seems that they do not cross the 

membrane. In summary, nano-particles were unable to cross the membrane barrier 

because of their large size or chemical composition. From the cell morphology point of 

view, the nano-paricles could not induce any abnormal changes for both the cell types.  

      The investigations with the magnetic iron core nano-particles have been carried 

out in collaboration with Prof. Begin-Colin, Institute of Physics and Chemistry of 

Materials Strasbourg (IPCMS).  
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                                                        Summary 

 
      The RBC membrane differs from a simple bilayer membrane by its mechanical 

properties, shear viscoelasticity and by the long range mobility of integral membrane 

proteins. The influence of transmembrane potential of human RBCs on the lateral 

diffusion of Na+/H+ exchanger and membrane lipid analogue Bodipy-HPC has been 

studied using fluorescence correlation spectroscopy (FCS). Variable changes in the 

diffusion constants of Na+/H+ exchanger at different transmembrane potentials and 

corresponding cytoskeleton interactions have been explained. The role of volume 

changes of RBCs on the diffusion constant of Na+/H+ has been studied. The obtained data 

suggest that the transmembrane potential has no significant influence on the lateral 

diffusion of lipid analogue Bodipy-HPC. 

 

      Additionally, the mechanism behind the Ca2+ loss of a single Caco-2 cell in 

physiological conditions has been studied in detail. The mechanism behind such loss and 

the suitable inhibitor to block this loss has been studied. Different inhibitors for Ca2+ 

channels and pumps have been used to understand the responsible mechanism has been 

found out. It has been demonstrated, that the detached single Caco-2 cell, from the 

epithelium, loses Ca2+ through L-type channels.   

 

      Moreover, the influence of nano-structured surfaces and nano-particles on the 

physiological processes like Ca2+ transport and intracellular pH of RBCs and Caco-2 cells 

has been studied. Changes in the intracellular pH and Ca2+ transport on living cells have 

impact on the cell metabolism and physiology. It has been shown that most of the 

surfaces with various patterns and textures on the glass surface do not influence the Ca2+ 

transport and intracellular pH. Polymer surfaces with different precursor material other 

than glass (borosilicate) have shown to exert significant influence on both Ca2+ transport 

and pH of RBCs and Caco-2 cells. 
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                                                   Zusammenfassung 
 
 

Die Membran der roten Blutzelle (RBC) unterscheidet sich von einer einfachen Bilayer-

Membran durch ihre mechanischen Eigenschaften, viskoelastische Scherkräfte und durch 

die große Beweglichkeit von integralen Membranproteinen. Der Einfluss des 

Membranpotentials von menschlichen RBCs auf die laterale Diffusion des Na+/H+-

Austauschers und des Membranlipid-Analogons bodipy-HPC wurde mittels Fluoreszenz-

Korrelations-Spektroskopie (FCS) untersucht. Die Variation der Diffusionskonstante des 

Na+/H+ Austauschers bei verschiedenen Transmembranpotentialen und den 

korrespondierenden Cytoskelett-Interaktionen wurde erklärt. Die Rolle von 

Volumenänderungen bei RBCs auf die Diffusionskonstante von Na+/H+ wurde studiert. 

Die gewonnenen Daten deuten darauf hin, dass das Transmembranpotential keinen 

signifikanten Einfluss auf die laterale Diffusion des Lipid-Analogons bodipy-HPC hat. 

 

Zusätzlich wurde im Detail der Mechanismus hinter dem Ca2+-Verlust einer Caco-2-Zelle 

in physiologischen Bedingungen und einem geeigneten Inhibitor, um diesen Verlust zu 

blocken, untersucht. Verschiedene Inhibitoren für Ca2+-Kanäle und Pumpen wurden 

benutzt, um den verantwortlichen Mechanismus zu verstehen. Es wurde gezeigt, dass 

eine einzelne, aus Epithel isolierte, Caco-2-Zelle durch L-Typ-Kanäle Ca2+ verliert. 

 

Darüber hinaus wurde der Einfluss von nanostrukturierten Oberflächen und 

Nanopartikeln auf physiologische Prozesse wie den Ca2+-Transport und den 

intrazellulären pH von RBCs und Caco-2-Zellen betrachtet. Veränderungen im 

intrazellulären pH und dem Ca2+-Transport in lebenden Zellen haben einen Einfluss auf 

den Stoffwechsel und die Physiologie von Zellen. Es wurde gezeigt, dass die meisten 

nanostrukturierten Oberflächen mit verschiedenen Mustern und Texturen in der 

Glasoberflösche keinen Einfluss auf den Ca2+-Transport und den intrazellulären pH 

haben. Polymeroberflächen mit verschiedenen Rohstoffen als Glas (Borosilikat) zeigen 

einen signifikanten Einfluss sowohl auf den Ca2+ -Transport als auch auf den pH von 

RBCs und Caco-2-Zellen. 
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