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Summary 
Targeted drug delivery and controlled release are current challenges in pulmonary 

drug delivery. The deposition pattern and clearance from deposition site are two key 

parameters for drug delivery carrier design. Asymmetric particles allow an increase in 

peripheral drug delivery compared to spherical particles and furthermore, affect 

particle clearance mechanisms from the lung. Therefore, the main aim of this thesis 

was to develop new synthesis strategies to produce well-dispersible, biocompatible, 

biodegradable microfibers with a variety of aspect ratios and porosities. The 

macrophage response to the resulting microfibers was investigated. The 

aerosolization properties of the resulting microfibers were examined. From the 

obtained results it can be concluded that: 

 

1. A new template-assisted synthesis strategy to produce monodisperse 

microfibers with defined dimensions has been developed.  

 

2. The technique has been extended to various materials and process 

parameters for cell testing, drug loading and aerosolization tests. 

 

3. Microfibers were successfully taken up by macrophages, only when they were 

approached from the pointy end. 

 

4. Aerosolization studies showed good dispersion properties of microfibers with 

relatively high fine particle fractions. 

 

In summary, this new technique may allow to produce microfibers for pulmonary drug 

delivery, which will lead to a better understanding of their in vivo behaviour such as 

mucoadhesion, macrophage interaction and deposition behaviour. 
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Zusammenfassung 
Die aktuellen Herausforderungen der inhalativen Therapie sind die gezielte 

Wirkstoffdeposition und die kontrollierte Wirkstofffreisetzung in der Lunge. 

Asymmetrische Partikel haben dabei durch ihre erhöhte tiefe Lungendeposition und 

ihren Einfluss auf die Clearance-Mechanismen erhöhtes Interesse gefunden. Ziel 

dieser Arbeit war daher die Entwicklung einer neuen Herstellungsmethode, um gut 

vereinzelte, biokompatible, bioabbaubare Mikrofasern mit variablen 

Aspektverhältnissen und Porositäten zu generieren. Weiteres Ziel war die Testung 

der Makrophagen-Mikrofaser-Interaktion und des Aerosolisierungsverhaltens. Die 

gewonnenen Ergebnisse führen zu  folgenden Aussagen:  

 

1. Es wurde eine neue Methode zur Herstellung monodisperser Mikrofasern mit 

definierten Maßen entwickelt.  

 

2. Mikrofasern aus diversen Materialien wurden in späteren Versuchen für 

Zelltests, Wirkstoffbeladung und Aerosolisierungsstudien verwendet. 

 

3. Die Aufnahme von Mikrofasern durch Makrophagen zeigte eine Korrelation 

zum Faserdurchmesser, wobei diese nur vom spitzen Ende her aufgenommen 

wurden.  

 

4. Aerosolisierungsstudien zeigten eine gute Dispergierung der Mikrofasern mit 

hohen Fine-Particle-Fractions. 

 

Die entwickelte Methode kann zu einer Optimierung der pulmonalen 

Wirkstoffapplikation und einem besseren Verständnis des Verhaltens 

asymmetrischer Partikel im Körper beitragen. Die Mukoadhesion, die Makrophagen-

Interaktion und das Depositionsverhalten in der Lunge können mittels dieser Fasern 

weiter untersucht werden. 
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1.  General Introduction 

1.1. Lung Anatomy 

1.1.1. General Considerations 

Large surface area, extensive vascularisation and the ability to avoid the first pass 

effect are the main advantages for drug administration via the lung. Furthermore the 

presence of a thin epithelial barrier in the lung allows the fastest uptake of any route 

of delivery other than intravenous [1].  

 

Anatomically the lung can be divided into two main parts according to their function 

during breathing. The first 16 airway generations – conducting or proximal airways -, 

including mouth, nose, trachea and bronchiolous terminalis, mainly warm, wet and 

clean air. The airway generations 17-23 form the peripheral airways, i.e. gas 

exchanges zone, including bronchiolous respiratorus and saccus alveolaris [2]. 

 

 
Figure 1: Comparison of the lung epithelium at different sites within the lungs taken from ref. 
[3]. 
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1.1.2. Conducting Zone 

The proximal airways (tracheobronchial compartment) are covered by a layer of 

epithelial cells comprising ciliated cells, goblet cells, and a variety of other secretory 

cells, with varied cell compositions in different airway generations [4] (Figure 1). The 

basal cells are progenitor cells for the epithelium. The goblet cells produce mucus, 

which is moved by the ciliated cells, and thus gives rise to the mucociliar clearance 

[3].  

1.1.3. Gas Exchange Zone 

The epithelium of the peripheral compartment is covered by a monolayer composed 

of broad and very thin (0.1µm) type 1 cells (95%), and lung surfactant producing type 

2 cells (5%) interconnected by tight junctions. This ensures a thin barrier for gas 

exchange [5]. The clearance in the alveoli differs from the mucociliar clearance 

described above. No cilii are present in the alveoli, leaving macrophages and 

dendritic cells responsible for clearance of deposited materials [6]. 

1.2. Particle Engineering for Pulmonary Drug Delivery 

1.2.1. General Considerations 

Pulmonary drug delivery has gained significant attention during the past decade. The 

large lung surface area (~140m²) and thin epithelial barrier (0.1µm in the alveoli) 

make the lung an interesting drug delivery route due to the high drug absorption and 

the ability to circumvent the first pass effect [7, 8]. Pulmonary drug delivery can 

therefore be used to treat local diseases as cystic fibrosis, asthma and chronical 

obstructive pulmonary disease (COPD) as well as systemic diseases i.e. diabetes 

(Exubera®, Pfizer). 

 

The effectiveness of drug formulation is closely related to efficient delivery to the lung 

[9]. Till now, delivery carriers have been optimized in terms of size, morphology and 

structure. The aim of particle engineering is to obtain particles with narrow particle 

size distribution (PSD), improved dispersibility, optimum deposition pattern, sustained 

release profiles and/or specific targeting. 
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1.2.2. Particle Aerodynamic Diameter 

The aerodynamic diameter (daer) has a major impact on particle deposition in the 

lung, thus determining the site of drug release. The daer is defined as the diameter of 

a unit density sphere having the same terminal settling velocity as the particle 

sampled [6]. The daer depends on the particle properties such as geometric size, 

shape and density, and can be estimated by  
 

Equ. 1:     ρgeoaer dd =  

 

where dgeo is the geometric diameter and ρ is the particle density. To achieve the 

desired deposition pattern, the daer can be modified by the geometric diameter and 

the particle density ρ i.e. by modifying the porosity [10, 11].  

 
 
Figure 2: Schematic diagram of an Andresen Cascade Impactor taken from ref. [12]. 

 

The aerodynamic diameter can be assessed by cascade impactor testing, described 

in both European and US pharmacopeias [13, 14] (Figure 2). Particles moving in air 

at constant flow rate are subjected to a change in flow direction allowing for size 

separation of particles [15, 16]. A port of entry (preseparator) mimicking the 

oropharynx, located immediately behind the inhalation device, collects particles with 
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aerodynamic diameters ≥10 µm. Particles of progressively smaller diameters are 

collected on arranged stages with decreasing cut off diameters, as the aerosol flows 

through the instrument [16]. Particles pass through plates containing jets of defined 

size. Particles are collected on a surface located underneath the plate by deflecting 

the flow. The particle inertia causes deposition if their size exceeds a critical value, 

while smaller particles remain airborne [15, 16].  

1.2.2.1. Particle Size 

Particle size and morphology mainly influence the aerosol deposition and clearance 

during pulmonary drug delivery. Reducing the amount of deposited particles in the 

oropharyngeal region to achieve increased lung deposition requires optimum particle 

size formulation. The desired particle size to target the peripheral lung compartments 

is reported to be daer = 1-5 µm. Particles having diameters between 0.2-1 µm suffer 

the fate of being exhaled, while ultrafine particles of 0.005–0.2µm again show high 

deposition efficiencies in the deep lung area [17]. Due to limitation of the 

administered amount of drug by ultrafine particles and the absence of formulation 

technologies to process these particles, ultrafine particles are not used in pulmonary 

drug delivery nowadays. Particles with daer exceeding 10 µm will deposit in the 

extrathoracic region.  

 

Another aerosol parameter is the particles size distribution (PSD), which is described 

by the median particle diameter and its geometric standard deviation. To target best 

aerosol performance, small PSD is required [6].  

1.2.2.2. Porosity 

Edwards et al. discovered that porous particles are advantageous for pulmonary drug 

delivery, as they show small daer while having a bigger dgeo. This results in reduced 

particle-particle contact and thus fewer tendencies to aggregate. By this increased 

efficiency for deep lung deposition can be achieved [10, 11, 18]. Furthermore, large 

porous particles can escape macrophage clearance leading to increased 

bioavailability and the opportunity for sustained drug delivery [11, 19].  
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1.2.2.3. Particle Shape 

Shape engineering is still at its infancy, but during the past decade research gained 

more interest in shape as new design parameter to directly influence the particle fate 

in vivo [20]. By particle shape the pulmonary deposition pattern after inhalation can 

be optimized. Sturm and Hofmann [21] concluded that fibers show higher probability 

to deposit in the peripheral lung compared to spherical particles of the same volume. 

This can be explained, as the aerodynamic behaviour of elongated particles is mainly 

influenced by the fiber diameter. By these higher doses to treat lung diseases, for 

example tuberculosis could be administered, targeting macrophages, reducing 

systemic side effects and optimizing therapy [22-24].   

 

Pulmonary clearance mechanisms will be greatly influenced by elongated particles, 

as  macrophage uptake depends on the particle shape at the point of first contact 

[25]. Particle size additionally impacts on the success of phagocytosis or whether 

frustrated phagocytosis will occur [26]. Particle aggregation and dispersibility also 

show shape dependency [27], thus modifying the deposition pattern during 

inhalation. Particle geometry has an additional impact on the degradation behaviour 

and thereby on the release kinetics of administered drugs [28]. Therefore, new 

synthesis strategies to produce particles with well defined dimension and geometry 

are highly attractive.  

1.2.3. Aerosolization 

1.2.3.1. Fine Particle Fraction / Delivered Dose 

The efficiency of drug delivery to the lung is mainly influenced by the delivered dose 

(DD). This depends on the emitted dose (ED) from the inhaler and the fine particle 

fraction (FPF). High fractions of both, ED and FPF are desired. The FPF is 

considered to describe the amount of particles with a daer smaller than 4.7µm [16, 

29]. To optimize formulation performance, particle adhesion and cohesion both 

affecting FPF and ED due to insufficient disaggregation during inhalation, need to be 

controlled [30]. The aggregation can be minimized by increasing the dgeo, lowering 

powder bulk density, or using particles with irregular surfaces to reduce the contact 

area and forces between particles.  
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1.2.3.2. Crystallinity 

Powder dispersibility and disaggregation properties can be changed during storage, 

i.e. recrystallization, thus modifying the aerosol performance. Particle formulations for 

dry powder inhalers (DPI) therefore need to be in their most stable form, i.e. 

crystalline to avoid potential changes during storage. Amorphous forms on the other 

hand provide fast dissolution kinetics, and are sometimes the only available form of 

active ingredients, i.e. many therapeutic proteins [9]. To obtain optimum particle 

performance, crystallinity and stability during shelf-life need to be investigated. 

1.2.3.3. Outlook for Particle Formulation 

Particle engineering for pulmonary drug delivery is greatly restricted by the number of 

excipients approved for lung administration by regulatory agencies such as the 

European Medicines Agency (EMEA) and Food and Drug Administration (FDA), 

including Lactose, Lecithin, Mannitol and Polysorbat [31]. Furthermore, particle 

engineering needs high stability and good dispersibility for long shelf life. Narrow 

particle size distribution, low surface energy, high chemical and physical stability as 

well as non-spherical morphology and low density or high porosity is needed for 

optimal aerosol performance. Additionally, the new particle design paradigm asks for 

cell targeting and modified release kinetics, making particle design more complicated 

and challenging. 

1.2.4. Lung Deposition 

The pulmonary particle deposition pattern greatly influences the site of action of 

delivered drugs. The patient’s breathing pattern and the administered aerodynamic 

particle size are the main parameters. Optimal aerosol performance requires 

reduction of the amount of powder deposited in the oropharyngeal region and 

increase of the amount reaching the targeted lung area. 

 

Particles avoiding deposition in the extrathoracic region enter the lung, where inertial 

impaction is the main deposition mechanism in the first airway generations. With 

ongoing airway generation and reducing airway diameter, the flow viscosity rapidly 
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decreases, making gravitational deposition dominate the deposition in small bronchial 

airways [6] (Figure 3) 

 
Figure 3: Primary mechanisms of deposition of inhaled particles in the respiratory tract taken 
from ref. [6]. 

 

1.2.4.1. Particle Deposition 

Particles deposit inside the lung upon striking the mucus layer covering the 

conducting airways or interacting with surfactant in the alveolar region. Five main 

mechanisms determine the aerosol deposition pattern: 

 

1. Impaction is the main deposition mechanism for particles >1 µm. The 

probability increases with increasing daer and airflow velocity. It is the main 

mechanism for extrathoracic deposition (nasal and oral cavities) as well as 

deposition in the large bronchi. 

 

2. Sedimentation is important for particles with daer >0.5 µm to deposit in the 

small bronchi, bronchioles and alveoli. Deposition by sedimentation increases 
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with prolonged residence time in the airways, i.e. breath hold at the end of 

inhalation.   

 

3. Brownian motion greatly influences the deposition pattern of particles with 

daer<0.5 µm. Decrease of the geometric diameter and increase of the 

residence time result in increased deposition by Brownian motion.  

 

4. Electrostatic interactions play the dominant role for deposition of 0.1-10 µm 

charged particles and are most important for their deposition in small airways.  

 

5. Interception is most important for fiber morphology, as it requires that the 

particle diameter is a significant fraction of the airway diameter. The center of 

gravity of an elongated particle is in the gas phase while on of its ends touches 

an airway wall.  

 

The effect of particle size on the deposition pattern in the lung is shown in Figure 4. It 

is worth noting that particles with daer 0.2-1 µm can be exhaled and thereby have 

reduced deep-lung deposition [32].  

 
Figure 4: The effect of particle size and overall inhalation maneuver on the deposition of 
aerosol particles in the human respiratory tract taken from ref. [33]. 
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1.2.4.2. Fiber Deposition 

Fibers are a special class of particles, defined by the WHO in 1985 as elongated 

objects for which the aspect ratio – the ratio of length-to-diameter - is greater than 3 

[34, 35]. The aerodynamic diameter of a fiber as main parameter for lung deposition 

is mainly determined by its geometric diameter, while the length is of minor impact 

[21, 25]. Su and Cheng [36] showed that fibers have a higher probability to reach the 

peripheral lung due to reduced deposition in the oral and nasal airways compared to 

spherical particles of the same aerodynamic diameter (Figure 5). Due to their larger 

volume, higher payloads can be administered.  

 
Figure 5: Comparison of the deposition efficiencies between fibers and spherical particles in 
human oral airway and nasal airway hold taken from ref. [36]. 

 

1.2.5. Particle Clearance 

1.2.5.1. General Considerations 

Particle clearance is defined as the movement away from the initial deposition 

location of each individual particle. During normal breathing, air, particles and 

microorganisms are inhaled. While bigger particles deposit in the upper airways 

(nose and throat), smaller particles can sediment into the lung. The mucus covered 
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cilia of the conducting airways and alveolar macrophages clear deposited particles to 

maintain in the lung a sterile environment and to protect its primary function, gas 

exchange [37]. 

1.2.5.2. Mucociliar Clearance 

The conducting airways are lined by cilia containing epithelial cells and mucus 

producing goblet cells. Particles deposited in the tracheobronchial airways interact 

with the mucus layer and are cleared by two major pathways. The major pathway 

thereby is mucociliar clearance, where the mucus is transported towards the throat 

by metachronal coordinated movement of the cilia followed by swallowing [33]. The 

second pathway is the absorption of material across the epithelium. Most particles 

deposited on mucus are cleared within 24 – 48 h after deposition [6]. 

1.2.5.3. Alveolar Clearance 

There are no cilia and no mucus in the alveoli. Alveolar macrophages (AM) are 

therefore responsible for phagocytosis of foreign material deposited inside the lung. 

Particles in the size range 0.5-2µm, with a maximum at 1µm, manifest the highest 

deposition probability in the alveolar region [38]. After phagocytosis, the 

macrophages are either removed by mucocilliar clearance or penetrate into the 

peripheral lung. Long residence times in the peripheral lung might cause diseases 

(silicosis, asbestosis). A smaller fraction of particles can be cleared by AM derived 

transport across the alveolar epithelium membrane [6].  

1.2.5.4. Outlook for Particle Formulation 

Sustained drug release in pulmonary drug delivery requires prolonged residence 

times of particles within the lung. Thus strategies to slow down mucociliar clearance 

as well as to circumvent or prolong particle uptake by alveolar macrophages are 

required. These strategies allow release kinetics determined by the dissolution 

kinetics of the carrier system. Long acting formulations with reduced clearance will 

improve patience compliance due to increased dosing interval. 
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1.2.6. Multifunctional Drug Delivery 

The recent times have seen an increase in research effort to design of multifunctional 

particles to create, improved and more complex drug delivery systems. Increased 

stability, prolonged in vivo circulation, desired biodistribution as well as targeting and 

responsive release triggered by physiological stimuli are important characteristics for 

drug delivery vehicles [39]. Four main components are most often desired to be 

incorporated (Figure 6):  

 

1. Matrix component as basis to incorporate additional components  

 

2. Active pharmaceutical ingredient (API) 

 

3. Imaging domains including organic dyes and/or semiconductor quantum dots 

(QD) [40], as well as magnetic sub-domains (Fe3O4) for magnetic resonance 

imaging [41]  

 

4. Targeting agent such as antibodies or magnetic sub-domains (Fe3O4) [42-45] 

 

These complex particles will be the next generation of drug carriers, which can be 

used as therapeutic and/or diagnostic agents, named theranostics, and offer the 

possibility of simultaneous targeted drug delivery of various agents combined with 

triggered release kinetics [46]. 

 
Figure 6: Multifunctional particle containing multiple sub-components such as API, Fe3O4 
particles, imaging probes and targeting agents (i.e. antibodies). 

 

Targeting agent 

Imaging probe 

Matrix 

API 
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1.3. Asymmetric Particles in Vivo 

 

Recently, elongated particles have been rapidly emerging in biomedical and 

biotechnological applications. Aspects about distribution and interaction pathways of 

asymmetric particles are still not clearly understood due to limited availability of 

model particles for intensive studies under controlled conditions. Increased blood 

circulation of filomicelles were reported lately [47, 48], as well as shape induced 

inhibition of phagocytosis [25]. New synthesis strategies are therefore urgently asked 

for.  

1.3.1. General Considerations 

Asbestos and carbon nanotubes (CNT) represent a group of microfibers widely used 

in material science due to their good isolation and electrical properties. Asbestos was 

extensively used in the 20th century during house construction and many other 

application fields. After the confirmation in 1970 that long term inhalation of Asbestos 

can cause malignant lung cancer (mesothelioma), the European Union banned all 

use of asbestos. CNT show dimensions comparable to Asbestos, and are therefore 

under suspicion to posses comparable health related effects. Due to the fiber 

structure and biopersistence Asbestos and CNT exhibit high lung deposition, thereby 

causing inflammation and lesions in membrane cells.  

 

Asbestos describes a group of hydrated silicate fibers and can be divided into six 

types based on their different chemical and physical properties, namely chrysolite, 

crocidolite, amosite, anthophyllite, tremolite and actinolite [49]. Asbestos as natural 

occurring silicate shows high heat resistance and has been therefore widely used for 

isolation [50]. Due to its fibrous structure it can be easily incorporated into cement 

materials, brakes, pipes and boiler insulation, making it an ideal material for large 

scale use [51]. Upon ongoing exposure a pandemic of lung diseases in the middle of 

twentieth century developed [52], resulting in a deep mistrust in fibrous particles that 

are small enough to be inhaled. During the last decade, carbon nanotubes, rolled up 

graphene sheets, gained increased attention for their use in medicine, electronics 

and aerospace industries due to its shape, electrical, mechanical and thermal 

properties [53]. CNT comprise various types of cylindrical carbon forms, differing in 



 21

shape and/or chemical composition, thereby showing different in vivo response. 

Again the toxicology and health effects of such nano-sized fibers are widely 

discussed in literature, trying to avoid another upcoming pandemic caused by fibrous 

material. 

1.3.2. Carbon-Nanotubes 

CNT are composed of a single sheet of graphite rolled up to form a cylinder, and are 

classified into two categories, multi-walled carbon nanotubes (MWCNT) and single-

walled carbon nanotubes (SWCNT). The length of CNT is determined by the 

synthesis time, while the diameters of the SWCNT are controlled by the starting 

metal nanoparticles, varying between 0.8 – 3nm for SWCNT and 10-200nm for 

MWCNT [54].  

 

The pathogenicity of fibers is influenced by various parameters, where the three Ds: 

dose, dimension and durability of fibers have the highest impact. The fiber 

dimensions show a major impact on the deposition pattern inside the lung as well as 

on the clearance kinetics. Thereby CNT bundle held together due to attractive Van 

der Waals forces will have a modified deposition pattern compared to well dispersed 

single nanotubes [55]. The higher the administered dose, the higher the fibrosis 

incidence is. Durability of fibers inside the lung is mainly influenced by the fiber 

dissolution kinetics. The higher the dissolution kinetics, the lower the toxicology 

profiles will be [56] as well as the clearance by mucociliar action or phagocytosis. 

Furthermore chemical and surface properties will influence the toxicity profile of fibers 

inside the lung. 

 

Two factors mainly contribute to the airborne fiber toxicity, namely the surface area 

and surface reactivity [57]. CNT contain impurities on the fiber surface caused by 

their synthesis strategy, metals like Co, Fe or Ni, of which some are also present in 

asbestos, contribute to their toxic effect. Due to the increased surface area per unit 

mass for nanoparticles, any intrinsic toxicity of present impurities will be emphasized 

[58].  
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1.3.3. Health Effects 

Shortness of breath and dry cough are most common symptoms of asbestosis due to 

the restrictive defects and the decrease in diffusion capacity [59]. Fibers such as 

asbestos cause fibrosis and cancer either due to the direct effects of fibers on cells or 

as a result of oxidative stress from fibers on the inflammatory response. Asbestosis 

and silicosis are both characterized by a persistent inflammatory response. The 

development of asbestosis requires a prolonged exposure to fibrous material; further 

factors governing the appearance of the disease are the fiber dose, fiber type and 

smoking. Only above a threshold concentration asbestosis will occur [60]. 

 

Inflammation and fibrogenesis caused by fibers can be linked to their surface 

chemistry as an important driving force for oxidant production and additional harmful 

reactions in the lung. Due to the length of fibrous materials, frustrated phagocytosis 

by alveolar macrophages can occur, resulting in release of proinflammatory markers 

[60]. Inflammation can result in numerous pathological processes such as fibrosis, 

airway diseases or cancer [61]. 

 

Fiber accumulation in the lung is caused by inefficient phagocytosis by alveolar 

macrophage and insufficient degradation under physiological conditions of fibers and 

thereby their clearance from the lung [54]. Further Davis and Jones [62] showed that 

longer fibers were more fibrogenic than short fibers, which can be explained by the 

slower clearance kinetics by macrophages above a threshold of ~16 µm [63], by the 

increased surface area and high aspect ratios [64]. 

 

Due to the inflammatory effect and resulting severe lung diseases (i.e. fibrosis and 

cancer), fibers of inhalable size should undergo extensive toxicological testing before 

large scale use. 

1.3.4. In Vivo Circulation 

Increased in vivo residence time is desired for prolonged drug delivery, in order to 

provide sufficient time for complete drug release. Filomicells show ten times longer 

blood circulation times compared to spherical particles [47], by this demonstrating the 

importance of the drug carrier shape. Increased mucoadhesion in the gastro 
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intestinal tract (GI) of glass beads, where the long nanowires provided the greatest 

adhesion was demonstrated by Fischer et al. [65]. This effect could be explained by 

increased Van der Waals forces in combination with increased surface area, which 

can also be found in gecko feet [66]. Mucoadhesion in the lung would result in 

decreased mucociliar clearance, by this enabling prolonged drug release in 

pulmonary delivery.  

1.3.5. Macrophage Clearance 

Target geometry plays an important role during macrophage recognition, being the 

first step in target elimination [67]. During phagocytosis, Fc receptors are responsible 

for initial recognition by binding to antibody coated targets [68]. The binding of 

ligands to the Fc receptors causes activation of intracellular signalling cascades, 

resulting in formation of an actin cup, which is essential for phagocytosis. 

Polymerization of actin into coordinated structures promotes the membrane to push 

around the particle to start and finalize phagocytosis [69]. Particle shape can affect 

the ingestion process, while particle size can influence the efficiency of uptake and 

the extent of actin organization [70, 71]. Champion et al. compared macrophage 

uptake of spherical particles with worm shaped particles, where the internalization of 

worms was up to ~20 times slower than that of spheres of the same volume [20, 25].  

 
Figure 7: Coloured scanning electron micrograph of alveolar macrophages (brown) interacting 
with PS particles (purple). Scale bar = 10µm (a) and 5µm (b,c) respectively hold taken from ref. 
[69]. 

 

Investigation of the target shape at the point of first contact with macrophages and by 

this the incidence angle between macrophage and particle determines whether 
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macrophages will only spread on the particle surface or if an actin cup for 

phagocytosis will be formed. Elongated particles were only taken up from the pointy 

edge (Figure 7). Furthermore, the particle size was found to be the predominant 

parameter to influence successfull phagocytosis when the target volume is smaller 

than the macrophage volume [72] (Figure 8).  

 
Figure 8: Role of target geometry in phagocytosis hold taken from ref. [72].  

 

1.4. Asymmetric Particle Preparation 

1.4.1. State of the Art 

To date, polymeric nano-fibers and nano-tubes for therapeutic lung targeting have 

had limited importance. Polymeric nano-fibers and nano-tubes can be manufactured 

both by methods of self organization and by means of template procedures. The 

preparation of polymeric nano-fibers and nano-tubes by template procedures permits, 

contrary to the methods of self organization the custom-made tuning of physical, 

chemical and biological characteristics of the aimed structures and thus renders a 

larger range of variation.  

 

Up to date, four methods are mainly used to synthesise nanofibers or nanotubes, as 

described below: electrospinning, co-electrospinning, TUFT process and the template 

technique.  

C 
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1.4.2. Electrospinning 

Electrospinning is an efficient technique for polymer fiber fabrication, as it allows the 

production of continuous fibers from various polymers [73]. During the 

electrospinning process, a high voltage of several kV is applied onto the spinning 

solution, where the positively charged electrode is submerged in the solution and the 

negatively charged electrode is located at the collector plate. The spinning solution 

forms a droplet at the outlet capillary due to surface tension. By applying the electric 

field, charging of the droplet occurs. Increasing the electric field leads to the 

elongation of the droplet the moment the electrostatic repulsion overcomes the 

surface tension [73], by this forming a charged jet which is ejected from the tip. 

During spinning the jet is exposed to circular bending motions causing strong 

elongation and jet thinning [74]. The solvent evaporates during the spinning process, 

and dried fibers can be collected on the collector plate (Figure 9). 

 
Figure 9: Schematic diagram for electrospinning (modified from www.dfg-nanohale.de). 

 

The main process parameters influencing the product quality are the solution 

properties, mainly viscosity, surface tension, elasticity and conductivity. For example 

Polymer solution 

Capillary tip 

Fiber formation 

Counter electrode 

High voltage 
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higher viscosity will result in larger resulting fiber diameter [75]. Additionally, the 

electric potential at the capillary tip has a major impact on the fiber diameter, as with 

higher voltage more fluid will eject from the tip. Furthermore the tip-collector distance 

determines the diameter and fiber morphology [73]. A precise parameter control is 

necessary in order to avoid bead and defect  incorporation during spinning. 

 

Continuous fibers with dimensions within the range of several micrometers down to a 

few nanometers can be obtained. Drugs can be incorporated directly into fibers by 

electrospinning [76]. The infinitely long fibers have to be cut prior to drug delivery to a 

given length by mechanical methods or by UV cutting, respectively. 

 

Co-electrospinning allows for the incorporation of nanoparticles (NPs) and functional 

polymer segments [73], by blending the spinning solution with NPs [77]. 

 

A major drawback of electrospinning is the burst release of incorporated drugs. 

Furthermore no precise control over the fiber length is possible during the spinning 

process. 

1.4.3. Tubes by Fiber Template (TUFT) 

The TUFT process uses fibers as templates to create fibers with diameters between 

ten nanometres and a few micrometers. The crucial step is the formation of the 

template fibers, which are mainly formed by electrospinning [78]. The template fibers 

are coated by means of vapour deposition, dipping processes, spraying procedures 

or by processes involving plasma treatment [74]. Hollow fibers can be produced 

using this technique by removing the template fiber by solvent or annealing after 

desired material deposition, yielding hollow fibers (Figure 10).  

 
Figure 10: Schematic diagram of the TUFT process.  
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1.4.4. Template Technique 

The template technique is a well established method to produce nanorods and 

nanofibers of defined dimensions [79-85]. A hard membrane with straight pores is 

used as template, where the pore diameter and membrane thickness define the 

resulting microfiber dimension (Figure 11). Infiltration of the desired material with 

subsequent template decomposition yields tubes and rods with defined aspect ratios. 

Martin established the method by infiltration of monomers and subsequent oxidative 

polymerisation, before Steinhart et al. extended the infiltration procedure to polymer 

melts and solutions [79, 82-85]. Nowadays various approaches for material 

deposition onto the membrane pore are reported in literature. Wetting [83-86], 

chemical vapour deposition [87], electrodeposition [80], layer-by-layer (LbL) [88-94] 

and in situ polymerization are only few to mention. Tubes have been synthesized for 

various applications [95], such as drug delivery [96, 97], bioseparation [98], DNA 

delivery [99-101] and MRI imaging [40, 102]. Template degradation yields liberated 

nanostructures. 

 
Figure 11: Schematic diagram of the template technique.  

 

To circumvent the template decomposition and thus overcoming a bottleneck of the 

template technique, Grimm et al. [103, 104] invented a non-destructive mechanical 

release procedure allowing for later scaling-up of the template technique.  

1.4.4.1. Template Fabrication 

Template fabrication is a crucial step during fiber fabrication using the template 

technique, as the resulting fibers are negatives of the pore structure. Commonly two 

types of membrane are used, containing straight pores of cylindrical shape, namely 

track-etched polymer membranes and nanoporous anodic aluminium oxide (AAO) 

[105]. The more uniform and higher the pore density, the greater the number of well 
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structured fibers produced per template membrane [80]. Both membrane types are 

commercially available, having advantages and disadvantages for the fiber 

preparation as discussed below.  

1.4.4.1.1. Anodization 

Masuda and Fukada [106] first described the two step electrochemical etching of 

Al2O3-structures with ordered pore orientation containing straight pores with 

monodisperse diameter ranging from 20 nm-4 µm (Figure 12).  

 
Figure 12: Scanning electron micrographs of a) cross-section and b) top of a commercially 
available anodically etched alumina membrane.  

 

The electrochemical growth of aluminium oxide from aluminium metal in acidic media 

[107, 108] is a four step process as depicted in Figure 13. First a uniform barrier of 

oxide is formed on the aluminium substrate. Due to fluctuations at the Al2O3 surface, 

field-enhanced dissolution of oxides occurs in the oxide layer [109]. Pore growth 

originates from these fluctuations and the field strength focus. Thickening of the film 

at the protuberances concentrates the current. The film growth attempts to reach 

uniform film thickness in order to maintain constant field strength [110]. O2- and OH- 

ions produced by splitting of H2O at the oxide-electrolyte-interface migrate across the 

metal and react at the metal-oxide-interface with generated Al3+ ions. An equilibrium 

state of oxide formation and field-enhanced dissolution of alumina at the pore bottom 

leads to homogeneous pore growth at the pore openings, limited by the chemical 

dissolution kinetics.  

a 

  20µm 200nm 

b 
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Figure 13: Schematic configuration of pore growth: 1.) growth of barrier-oxide; 2.) formation of 
fluctuations; 3.) beginning of pore growth; 4.) stable pore growth taken from ref. [111]. 

 

For templating AAO membranes have the advantage to be heat stable and resistant 

to organic solvents allowing for material infiltration at elevated temperatures and pore 

filling of organic materials using organic solvents [105]. Commercially available AAO 

suffer from the non-uniformity of their pore-structure. Many pores are interconnected 

and do not show homogenous hexagonal orientation (Figure 12). These membranes 

are sufficient for proof of concept studies, but for more detailed structure analysis of 

prepared tubes, tailor-made membranes should be used [111]. AAO membranes 

form tubular structures during etching, comparable to microfibers produced by the 

template technique [89, 112]. The chemical identity of microfibers prepared by the 

template technique in AAO membranes should therefore be confirmed by different 

types of measurements, such as XRD, additional to SEM investigations.  

1.4.4.1.2. Track Etching 

The track etch method was first described by Fleisher et al. [113]. Nonporous sheets 

of desired material are bombarded (“tracked”) with ion beams, producing latent tracts 

within the material [105]. During bombarding new polymer chain ends and other 

chemically reactive sites are formed, as fast charged particles eject electrons from 
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atoms close to their path. Pore formation occurs during wet chemical etching of the 

produced latent cracks (Figure 14) [80]. Pore diameters down to 10nm can be 

obtained by track etching, and pore densities of up to 1010 pores per square 

centimetre, where the pore diameter and density can be varied independently. As the 

incident ion beams form an angle of up to 34° with respect to the surface normal, 

pores may intersect inside the membrane [114].  

 

Polycarbonate is mainly used as track etched membrane for template synthesis [80, 

97, 99, 115-117]. Due to interconnected pores, cross-linked particles during template 

synthesis may occur. Furthermore the use of track etched membranes is restricted by 

their limited heat resistance and instabilities in organic solvents.  

 
Figure 14: SEM images, a) cross-section and b) top of a commercially available track etched 
polycarbonate membrane.  

 

1.4.4.2. Infiltration 

A variety of strategies have been developed to deposit material inside template 

membranes in order to synthesise fibers and tubes of defined dimension. Wetting 

[83-86], electrodeposition [79, 80, 118, 119], layer by layer (LbL) [88, 89, 91-94, 120] 

and in situ polymerization are only few to mention [114]. 

 

Martin et al. [80] first described the use of AAO membrane pores as template for 

electrodeposition. By coating one side of the membrane with a metal film, a cathode 

for electroplating of metal nanowires (i.e. Au, Ni) is formed. The length of the 

resulting metal nanowires can be precisely controlled by the deposited amount, 

where the deposition time mainly influences the resulting wall thickness [80, 114]. 

a b 

20µm 200nm
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The material growth on the pore walls can thereby be explained by formation of 

polycations, resulting in solvophobic interactions between the polymer and the pore 

walls. Nowadays also conductive polymers (i.e. polyanilin and polypyrol) can be used 

to form tubes by electrodeposition [121, 122].  

 

Besides electrodeposition, polymerization can be used for material infiltration into 

membrane pores, by immersing the membrane into a monomer solution containing 

the polymerization agent. As the polymers preferentially nucleate and grow in the 

membrane pores, short deposition times result in tube formation, while increased 

deposition times yield solid fibers [121, 123].  

 

Template wetting as infiltration technique allows the infiltration of a broad range of 

materials. Up to now, it is poorly understood as many parameters influence the rod- 

or tube formation during the infiltration process. The wetting process can be 

represented by capillary wetting and precursor wetting, both being two different 

kinetic routes to the equilibrium of pore wetting, which is characterized by complete 

filling of the pores with polymer [124]. Due to wetting of a substrate with liquid, the 

surface energy of the substrate will be lowered, resulting in free energy as driving 

force of the wetting procedure [111]. Therefore the parameter determining the wetting 

mechanism is the energetic and entropic energy required to remove the polymer 

chains from the bulk reservoir and draw them into the pores.  

 

Interfacial interactions dominate the infiltration process. According to Young’s law 

 

Equ. 2:    
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θ
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with  SLγ =  interfacial tension of solid-liquid 

SVγ =  surface tension of the substrate 

LVγ =  surface tension of the liquid 

θ =  contact angle 

 

the surface energy of the substrate, the surface tension of the liquid and the liquid-

solid-interfacial energy determine the contact angle at the liquid-vapour-solid 
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interface [105]. A zero contact angle is equivalent to the spreading of the liquid, 

resulting in maximization of the liquid-solid contact area [125]. Therefore wetting 

occurs when adhesion forces acting between liquid and surface are larger than 

cohesion forces inside the liquid.  

 

 
Figure 15: Schematic diagram of a liquid drop spreading on a smooth substrate taken from ref. 
[105].  

 

Low surface energy melts spread on high surface energy substrates by the formation 

of a precursor film of nanometer thickness [84, 85, 125] (Figure 15). With ongoing 

spreading more and more liquid is transferred into the precursor film, where Van der 

Waals forces are the underlying driving force for wetting of the complete pore within 

tens of seconds [83]. The wetted state is kinetically stable, but thermodynamically 

instable. The cohesive forces needed for complete pore filling are weak and need to 

overcome the considerably strong viscous forces of the wetting fluid. 

 

If the infiltration conditions do not allow for precursor film formation, filling via 

classical capillarity proceeds [105]. As the strong adhesive forces are too weak to 

drive single molecules from the bulk reservoir to form the spreading precursor film, a 

meniscus is formed and slowly moves into the pores. A solid cylinder of the liquid but 

viscous polymer moves until the pore is entirely filled [126]. During solvent 

evaporation the polymers adsorb onto the pore walls, where the polymer 

concentration is the crucial parameter determining whether solid or hollow tubes are 

obtained [127]. Precursor wetting occurs for low molecular weight polymers, while 

capillary wetting takes place for higher molecular weight polymers [86, 105]. Solid 

polymers melt by heating well above their glass transition temperature and wet high 

surface energy pore walls via precursor wetting [124]. Besides the molecular weights 

of infiltrated polymers and infiltration temperature, the pore diameters of template 

membranes influence the structure of the resulting particle. The pores with diameters 

spreading drop 

precursor film precursor film 

Substrate 
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twice smaller than the gyration radii of the infiltrated polymers result in complete filling 

of the hollow space of the pores, thus yielding solid rods [128, 129].  

 

Tubes and rods are obtained either by cooling polymer melts below their solidification 

temperature, or via solvent evaporation, allowing processing of high performance 

polymers like PTFE [85].    

 

The layer by layer technique offers an additional method for material infiltration into 

template pores. By this technique, a nanoscopic multilayer system with precisely 

controlled layer composition can be obtained [105]. LbL offers the advantages of 

being a well established, simple, versatile and low-cost strategy technique on flat 

surfaces [117]. The assembly process details will be discussed below.  

1.4.4.3. Layer by Layer Technique 

The layer by layer (LbL) technique has been developed for fabrication of multilayers 

of tailored architecture by alternate adsorption of polyanions and polycations [130]. 

By dipping a charged substrate alternating into aqueous solutions of oppositely 

charged polyelectrolytes, the polyelectrolytes are deposited LbL onto the substrate 

[131, 132] (Figure 16). The electrostatic assembly process is driven by the gain in 

entropy due to the release of counterions [133], where electrostatic repulsion restricts 

polyelectrolyte adsorption to a single layer [111, 134]. This opens the possibility for 

oppositely charged molecules to adsorb during the next deposition step, allowing 

controlled build up of multilayers. Due to charge reversal during each adsorption 

step, the number of deposited layers can be unlimited. Film thickness can therefore 

be tuned by the number of adsorbed layers [91], each having a thickness determined 

by the deposition conditions, ranging between several angstroms and few 

nanometers [135]. As the process is solution based, the choice of the substrate is not 

limited by the surface size and/or morphology [99]. The LbL technique has been 

extended for coating spherical particles as substrates [136-138]. Nowadays spherical 

particles are widely used in preparation of hollow polyelectrolyte capsules by core 

dissolution after polyelectrolyte assembly.  
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Figure 16: Schematic diagram of the layer by layer technique taken from ref. [130]. 

 

The interactions to apply the LbL technique have been extended from electrostatic 

interactions to various kinds of interactions, including H-bonding [93], hydrophobic 

interactions and amide bonds. By this a broad range of materials including biological 

macromolecules [139], dyes [140] and nanoparticles [141] can be incorporated. The 

easily prepared multilayered films of various compositions allow control of the 

permeability and physicochemical properties of the multilayers [142, 143]. Besides 

dipping, multilayer build-up can be prepared using spraying [144] or spin coating [79], 

opening for more time-efficient assembly processes. The versatile, fast, and simple 

preparation with a broad variety of materials being used allows the application of LbL 

in various fields, such as drug delivery, implant coating and many others [117].  

1.4.4.3.1. Polyelectrolytes 

Polyelectrolytes are charged polymers. They can be divided into poylcations bearing 

positive charges and polyanions with negative charges. Polymers containing both 

positively and negatively charged segments are polyampholites. Most prominent 

natural occurring polyelectrolytes are proteins and DNA.  

 

Polyelectrolytes, although having a hydrophobic backbone, are soluble in water due 

to the gain in entropy by the release of counter ions into solution [145]. The 
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polyelectrolyte properties depend on the fraction of dissociated groups, solvent 

quality for the polymer backbone and the salt concentration. Polyelectrolytes, with 

ionization degree independent of the environmental pH are regarded as strong 

polyelectrolytes. In contrast, weak polyelectrolytes show pH dependent ionisation, 

and the ionization degree can be described by the Henderson-Hasselbalch-equation 

 

Equ. 3:   )
)(
)(lg( −+=

Ac
HAcpHpKa  

 

On account for the non cooperative interactions between neighbouring groups, an 

apparent pKa is defined, as unprotonated groups with charged neighbours have 

higher effective pKa compared to groups with non charged neighbours, resulting in 

broadened titration curves [146].  

 

Due to the electrostatic interactions, polymer conformation in solution is largely 

determined by the ionic strength of the solution. Free ions assemble onto charged 

groups, thus screening charges along the polyelectrolyte chain. The electrostatic 

repulsion along the chain decreases at high salt concentrations allowing 

polyelectrolytes to behave as uncharged polymers, leading to coil formation. At low 

ionic strength the repulsion between the charges of polycation or polyanion is large, 

thus stretching the polymer.  

1.4.4.3.2. Layer by Layer Self Assembly 

Ladam et al. [147] introduced the zone model to describe multilayer formation during 

LbL formation. Multilayered films can be divided into three zones, where the borders 

between the zones are not sharp but gradual [131] (Figure 17).  
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Figure 17: Schematic diagram of the zone model of polyelectrolyte multilayer assembly. The 
concentration profile on the right depicts the strong overlap between adjacent layers taken 
from ref. [131]. 

 

Zone I describes the precursor zone located closest to the substrate. The layer 

structure is thereby influenced by the solid substrate, resulting in slightly decreased 

layer thickness in zone I compared to the bulk film.  

 

Zone III is the outer zone being in contact with the solution. Polymer chains dangle 

into solution and excess charges determine the local zone properties [145].  

 

Zone II is referred to as the bulk phase. During polyelectrolyte adsorption only this 

layer grows after zone I and III reached their final composition. The newly deposited 

layer will be adsorbed onto the outermost layer comprising zone III, and thus the 

transition zone between II and III will move up layer by layer [147]. 

 

Multilayer thickness depends on various parameters such as the substrate 

composition, polyelectrolyte properties, and the deposition conditions. The choice of 

polyelectrolytes mainly impacts upon the growth regime, due to the impact on 

penetration depth for diffusing polyions. Exponential growth of multilayers can be 

observed during the development of zone III, where the amount of deposited 

polyelectrolytes increases with ongoing assembly. After a critical thickness is 

reached, determined by the choice of assembled polymers, the penetration depth of 
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polyions is limited, resulting in linear growth of zone II. The diffusion depth thereby 

influences the extent of layer interpeneration [131, 145]. 

 

By variation of the ionic strength [148], precise control over the layer thickness can 

be achieved. High ionic strength mainly influences the polymer coil conformation in 

solution. Due to shielding of charges, polymers arrange in low gyration radii. During 

adsorption of coiled polymers onto the substrate surface, increased layer thicknesses 

are obtained, accompanied by increase in surface roughness [149]. The 

rearrangement of chains after multilayer assembly is hindered by the kinetic stability 

of the multiple ionic bonds formed between highly interconnected polymers.  

 

The film structure can be modified by high ionic strength [150]. Rearrangement of 

polyions can be promoted by high ionic strength. Due to the screening of charges by 

small ions, smoothening and additional interdiffusion of polymer chains can be 

observed [151]. Very high ionic strength films that are not stabilized by additional 

interactions, such as hydrophobic or H-bonding, are decomposed due to loosening of 

electrostatic interactions [152].  

 

Weak polyelectrolytes can be assembled into multilayers. These films show pH 

sensitivity, since upon pH changes the ionization degree of weak polyelectrolytes is 

affected [133, 153]. The generation of electrostatic repulsions between the layers 

leads to restructuring of the film network, and thus to swelling, roughness changes or 

decomposition, making weak polyelectrolytes suitable building blocks for sacrificial 

layers [145, 154-156].  

 

Temperature also influences the internal structure of multilayer assemblies. Köhler et 

al. [157] showed that polyelectrolyte capsules shrink in aqueous environment upon 

heating. Shrinkage is accompanied by an increase of wall thickness.  

 

The responses of multilayered films to external stimuli [158] render the LbL technique 

a versatile method for drug delivery application. 
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1.4.4.3.3. Layer by Layer Infiltration 

Ai et al. [88] first reported the infiltration of PAH/PSS into pores by means of the LbL 

procedure, obtaining nanotubes whose mechanical stability mainly depend on the 

number of deposited bilayers. Proteins incorporated into tube walls show increase in 

activity after nanotube release [105]. Nanotubes prepared by LbL infiltration into 

template pores found their first application as reversible pH-induced hysteretic gating 

[159] as well as in protein analysis [160].  

 

Ai et al. [88] discovered that PAH/PSS tubes assembled in 0.2 µm AAO membranes 

yielded wall thicknesses of a magnitude larger compared to film thicknesses obtained 

on flat surfaces. The same effect was reported by Lee et al. [161]. Due to these 

findings, Alem et al. [162] investigated the growth mechanism for polyelectrolytes 

inside confined space, proposing an enrichment of polyelectrolytes inside pores, 

resulting in a dense and swollen polyelectrolyte gel filling the pores. Roy et al. [117] 

further investigated the impact of pore size, molecular weight and the ionic strength 

on the adsorbed layer thickness, the polyelectrolyte-pore wall-interaction and the 

chain diffusion rate inside the pores. Two growth regimes were observed, where the 

first comprises linear growth with a bilayer thickness comparable to flat surfaces 

including the influence of ionic strength. The second regime is slower in terms of 

kinetics resulting from interconnections between polyelectrolyte chains across the 

pores leading to a dense gel (Figure 18).  

 
Figure 18: Schematic diagram of polyelectrolyte infiltration regimes, with free polymer 
diffusion in regime 1 and decreased diffusion rate in regime 2 due to gel formation.  

 

Regime 1 Regime 2
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In the first growth regime free diffusion of the infiltrated polymer is possible, as the 

pore diameter is large enough compared to the hydrodynamical radius of the polymer 

chain. If 70% of the pore diameter is filled by assembled polyelectrolyte multilayers, 

infiltrating polymer chains establish interconnections across the pore. This 

entanglement increases with ongoing deposition cycles resulting in dense gel 

formation. The formed gel slows down the diffusion rate and therefore polyelectrolyte 

multilayer growth. Even though the influence of ionic strength and the molecular 

weight in the second growth regime could not be confirmed in the study by Roy et al. 

[117], both parameters influence the polyelectrolyte conformation and may therefore 

have an impact on the gel formation.  
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2. Aim of this Work 
Aerosolization and the deposition site are mainly influenced by the particle size and 

morphology. Additionally, pulmonary clearance mechanisms affecting the particle 

retention inside the lung and their release properties can also be modified by particle 

dimensions. Thus by optimizing the deposition pattern and circumventing the 

clearance from targeted lung areas, particle engineering aims for targeted drug 

delivery systems [9]. As particle shape may allow for drug delivery to specific cell 

types leading to targeted drug delivery, side effects due to untargeted delivery can be 

reduced.  

 

The aim of this work was to develop a new and versatile method to produce 

biodegradable, biocompatible fibers for controlled drug delivery. These fibers shall 

allow for optimized particle deposition in the peripheral lung and furthermore shall 

minimize macrophage clearance to allow for systemic and/or retarded aerosol 

therapy. 

 

 

The major aims of this thesis were: 

 

1.) To develop a new and feasible method to produce biocompatible, biodegradable 

fibers via the template technique. 

 

2.) To test the macrophage response on fiber shape and size. 

 

3.) To investigate the aerosolization behaviour of the obtained fibers. 
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3. Template assisted Polyelectrolyte Encapsulation of 
Nanoparticles into Dispersible, Hierarchically 
Nanostructured Microfibers 

 

 

 

 

 

 

 

This chapter is the pre-peer reviewed version of the following article that will be 

published in Advanced Materials: 

 

 

Kohler D., Schneider M., Krüger M., Lehr C.-M., Möhwald H., Wang D. (2011):   

Template-Assisted Polyelectrolyte Encapsulation of Nanoparticles into Dispersible, 

Hierarchically Nanostructured Microfibers.  
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3.1. Introduction 

Replication of the forms of biological organisms such as viruses can lead to 

unprecedented advanced materials and particularly transform the original, adverse, 

biological functions into the tailor-designed, favorable, material properties to 

revolutionize existing biotechnologies. The recent progres has evidenced that 

colloidal microtubules or microfibers can mimic in vivo transportation properties of 

such as viruses and flagella [47], avoid phagocytosis [20, 25], prolong in vivo 

circulation time [47], improve targeting efficiency [43, 44, 69], etc. Accordingly, there 

is much speculation about using elongated particles as innovative delivery carriers. 

The study of the biological response to the shapes of colloidal particles and the 

impact of anisotropic particles on drug delivery, however, are largely limited by the 

experimental challenge to synthesize colloidally dispersible, biocompatible, elongated 

particles with long, defined, but varied aspect ratios.  

 

Various methods have been developed to produce anisotropic particles, such as self-

assembly [47], mechanical stretching [163], electrospinning [74], and microfluidics 

[164]. Among them, using membranes with cylindrical nanopores as sacrificial 

templates for material deposition is still the most versatile and flexible to produce 

elongated particles with any diameter, length, and aspect ratio, depending on the 

geometry of the pores, from various materials [84, 165]. Template-assisted 

electrochemical deposition allows selective material deposition within the membrane 

nanopores to produce individual elongated particles after the membrane 

decomposition, which, however, is specific to conducting materials such as metals 

and conjugated polymers and thus limits its applicability in pharmaceutical 

formulation [166]. The simple and general deposition way is infiltration of materials of 

interest into template membranes, which, however, cannot avoid deposition of 

materials outside the nanopores and thus results in continuous thin films on the 

membranes. Consequently, elongated particles embedded in the nanopores, are 

connected by these thin films on template membranes and severely aggregated after 

being liberated from the template membranes. This greatly limits the success of 

template-assisted deposition strategy in technical application for instance in drug 

delivery, in which individual particles with good colloidal dispersibility are 

necessitated. In order to circumvent this technical issue we infiltrated materials of 
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interest in the form of nanoparticles (NPs) rather than single molecules into 

nanoporous membranes and then encapsulate these NPs located in the nanopores 

by polyelectrolytes [61] based on electrostatic attraction (Figure 19). The present 

protocol referred to as template-assisted PE encapsulation of NPs, leads to 

colloidally dispersible, hierarchical, nanostructured microfibers. It can directly be 

generalized for pharmaceutical formulations and the microfibers obtained can be 

used as sophisticated carriers for drug loading and delivery.  

 

 
Figure 19: Schematic depiction of template-assisted polyelectrolyte encapsulation of NPs 
without polyelectrolyte coating to produce colloidally dispersible, hierarchical, nanostructrured 
microfibers. 

 

3.2. Materials and Methods 

3.2.1. Particle Infiltration 

Despite being of theoretical interest for decades [167], packing of spheres in 

cylindrical cavities has recently been experimental implemented [168-170]. However, 

few experimental protocols developed thus far can be adapted for pharmaceutical 

formulations. Commercially available, monodisperse, spherical SiO2 nanoparticles 

with the sizes in the range of 400 – 1000 nm were used as models of drug 

aggregates in the present proof-of-concept study for the benefit of characterization. 

The major technical advantage of using NPs instead of single molecules for 

infiltration is threefold: 1) to exclusively block the NPs in the pores of the template 

membranes by placing additional membranes with pore sizes much smaller than the 

NP sizes underneath the template membranes, as shown in Scheme 1; 2) to easily 

fill the template nanopores with a maximum volume fraction of NPs by one or two 

times infiltration of dilute NP dispersions (0.1 wt%); 3) to easily wipe away NPs 
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deposited on the membranes by tissue papers, thus obviating the risk of 

interconnecting of the NP aggregates confined in the template nanopores.  

3.2.2. Microfiber Formation 

Negatively charged SiO2 NPs, loaded within the nanopores, were subsequently 

encapsulated by alternating infiltration of positively charged polyallylamine 

hydrochloride (PAH) and negatively charged poly(sodium 4-styrenesulfonate) (PSS) 

through template membranes (Figure 19). Aqueous solution of each PE (3 mg/mL in 

the presence of 0.5M NaCl) was infiltrated 3 or 4 times to efficiently encapsulate the 

SiO2 NPs in the pores but to minimize the risk of forming continuous PAH/PSS 

multilayer films on the membranes. Dye-labeled PAH was used for infiltration (at least 

once) to visualize the PE coating and its encapsulated NPs by confocal laser 

scanning microscopy (CLSM). Note that the encapsulation protocol was based on 

well-established layer-by-layer assembly and a wide spectrum of synthetic and 

naturally occurring PEs are available to improve the biocompatibility [130, 171]. 10 

μm thick polycarbonate [172] membranes with cylindrical pores of sizes in the range 

of 1 – 5 μm were used to template the infiltration of SiO2 NPs and PEs. The 

subsequent dissolution of the PC membranes in dichloromethane (DCM) yielded PE-

encapsulated SiO2 NP aggregates microfibers, denoted as SiO2NP@(PAH/PSS)n 

microfibers (n is 3 or 4, the infiltration number of each PE).  
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Figure 20: Fluorescence (a) and SEM images (b) of SiO2NP@(PAH/PSS)3 microfibers obtained 
by infiltration of 841 nm SiO2 NPs through PC membranes with 1 µm cylindrical pores. The 
microfibers are dispersed in DCM. Rhodamine-labeled PAH was infiltrated once to impart the 
microfibers with red fluorescence. The high magnification fluorescence micrograph is shown 
in the inset in Figure 20a. In Figure 20b the microfibers are supported on PTFE membranes.  

3.2.3. Microfiber Imaging 

The resulting microfibers were collected on a polytetrafluoroethylene (PTFE) 

membrane with the pore sizes smaller than the diameters of SiO2 NPs via filtration, 

washed three times by DCM to remove free PC chains derived from the membrane 

dissolution, and redispersed in DCM.   
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Figure 21: Overlay of fluorescence and transmission CLSM images of SiO2NP@(PAH/PSS)3 
microfibers obtained by infiltration of 841 nm SiO2 NPs through PC membranes with 5 µm 
cylindrical pores. The microfibers are dispersed in DCM. Rhodamine-labeled PAH was 
infiltrated for once to impart the microfibers with red fluorescence.  

3.3. Results and Discussion 

3.3.1. Microfiber Morphology 

As shown in Figure 20 and Figure 21, SiO2NP@(PAH/PSS)n microfibers are well-

dispersed in DCM and composed of non-fluorescent SiO2 NP chains encapsulated by 

fluorescent PE shells. The aspect ratios of the microfibers are comparable to those of 

the template pores. The packing structures of SiO2 NPs in the resulting microfibers 

were characterized by scanning electron microscopy (SEM), showing a clear 

dependence on the size ratio of NPs to the membrane pores (Figure 22).  

 
Figure 22: SEM images of SiO2NP@(PAH/PSS)3 microfibers obtained by infiltration of 841 nm 
SiO2 NPs through PC membranes with cylindrical pores of diameters of 2 (a) and 5 µm (b), and 
by infiltration of 403 nm SiO2 NPs through PC membranes with 1 µm cylindrical pores (c). The 
scale bar is 2 µm. The non-uniformity of the resulting of SiO2NP@(PAH/PSS)3 microfibers is 
due to the fact that the nanopores of PC templates are not perfectly cylindrical .  

a b c
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SiO2NP@(PAH/PSS)n microfibers with the morphologies precisely defined by the 

pores of template membranes were counted with the aid of CLSM, suggesting a 

production yield of ~ 60%. The well-dispersibility of SiO2NP@(PAH/PSS)n microfibers 

in DCM should arise from the non-negligible contribution of the hydrophobic, 

hydrocarbon backbones of PEs to the solubility, as suggested in literature [173, 174].  

 
Figure 23: Fluorescence photographs of a plastic eppendorf tube containing water (upper 
phase) and DCM (lower phase). SiO2NP@(PAH/PSS)3 microfibers, obtained by infiltration of 
841nm SiO2 NPs through PC membranes with 1µm cylindrical pores, were initially dispersed in 
the DCM phase (left panel), but they were readily to transfer to the water phase after vigorous 
shaking (right panel). Rhodamine-labeled PAH was infiltrated once to impart the microfibers 
with red fluorescence. The photographs were shot under irradiation with a UV lamp. 

 

Intriguingly, SiO2NP@(PAH/PSS)n microfibers were readily transferred from DCM to 

water when their DCM dispersions were brought in contact with water, followed by 

vigorous shaking, which should be a result of excellent hydrophilicity of their PE 

coating (Figure 23). SiO2NP@(PAH/PSS)n microfibers remained little changed before 

and after phase transfer (Figure 24). It is worth noting that this simple process allows 

selective phase transfer of SiO2NP@(PAH/PSS)n microfibers to water from DCM 

without removal of free PC chains via filtration through PTFE membranes, allowing 

for simple sample preparation for future in vivo application. 
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Figure 24: Fluorescence CLSM image of SiO2NP@(PAH/PSS=3 microfibers obtained by 
infiltration of 841 nm SiO2 NPs through PC membranes with 5 µm cylindrical pores. The 
microfibers are dispersed in water. Rhodamine-labeled PAH was infiltrated for once to impart 
the microfibers with red fluorescence. 

3.3.2. Multifunctional Microfibers 

In the current work, SiO2 NPs were also coated with defined numbers of PAH/PSS 

multilayer shells via layer by layer assembly [136, 175], SiO2@(PAH/PSS)m NPs (m 

is the (PAH/PSS) bilayer number). Using nanoporous PC membranes to template 

subsequent infiltration of SiO2@(PAH/PSS)m NPs and PEs, followed by the 

membrane dissolution by DCM, SiO2@(PAH/PSS)m NP@(PAH/PSS)n microfibers 

were obtained (Figure 25).   

 

 
 
Figure 25: Schematic depiction of template-assisted polyelectrolyte encapsulation of NPs 
coated with polyelectrolytes to produce colloidally dispersible, hierarchical, nanostructrured 
microfibers. 

 

The (PAH/PSS)m shells coated on the SiO2 NPs and the (PAH/PSS)n on the 

microfibers were easily distinguished by CLSM microscopy by labeling one PAH layer 



 49

of them with different fluorescent dyes; the former was labeled by Rhodamine the 

latter by Fluorescein (Figure 26). This demonstrates that the present strategy is not 

only general for different types of NPs but also flexible to add multiple functions to 

microfibers by deliberately adding functional PEs or charged species on NPs before 

or after infiltration into template membranes.  

 
Figure 26: Fluorescence (a and b) and transmission (c) CLSM images of 
SiO2@(PAH/PSS)3NP@(PAH/PSS)3 microfibers, obtained by using PC membranes with 2 µm 
cylindrical pores to template infiltration of 841 nm SiO2 NPs coated with (PAH/PSS)3 shells, and 
(d) Overlay of these fluorescence and transmission images. Fluorescein-labeled PAH was 
infiltrated for once and thus the PE layers encapsulated on the NP microfibers are green 
fluorescent (a). The (PAH/PSS)3 shells on the NPs contain a layer of Rhodamine-labeled PAH 
and thus they are red fluorescent (b). The microfibers are dispersed in DCM. The scale bar is 
2 µm. 

3.3.3. Polyelectrolyte Capsule Containing Microfibers 

The present protocol was also extended to encapsulate polystyrene (PS) NPs coated 

with (PAH/PSS)m shells (Figure 27).  
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Figure 27: Schematic depiction of template-assisted polyelectrolyte encapsulation of PS NPs 
coated with polyelectrolytes to produce colloidally dispersible, hierarchical, nanostructrured 
microfibers. 

 

Because DCM dissolved both PC template membranes and PS NPs, we obtained 

dispersible microfibers with closed porous structures, invited to the packing structure 

of the original PS NPs (Figure 28 and Figure 29).  

 
Figure 28: SEM image of (PAH/PSS)5@(PAH/PSS)3 microfibers obtained by using PC 
membranes with 1 µm cylindrical pores to template infiltration of 836 nm PS NPs coated with 
(PAH/PSS)5 shells. The PS NPs were removed via dissolution in DCM. The inset is the 
fluorescence micrograph of hollow microfibers dispersed in DCM. 

 

Thanks to extensive studies of using PE microcapsules for drug loading and 

controlled release [136, 175], porous (PAH/PSS)m@(PAH/PSS)n microfibers may 

provide sophisticated multi-compartment drug delivery carriers.  
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Figure 29: SEM image of (PAH/PSS)5@(PAH/PSS)3 microfibers obtained by using PC 
membranes with 1 µm cylindrical pores to template infiltration of 428 nm PS NPs coated with 
(PAH/PSS)5 shells. The PS NPs were removed via dissolution in DCM. 

3.4. Conclusion 

 

In summary, we have successfully prepared colloidally dispersible, multifunctional, 

and multi-compartment microfibers by using nanoporous membranes as templates of 

PE encapsulation of colloidal NPs. The present protocol involves two key techniques: 

1) membrane-template infiltration of materials in the form of NPs rather than single 

molecules to avoid the severe interconnecting problem of elongated particles 

liberated after template removal; 2) alternating infiltration of differently charged PEs 

based on electrostatic attraction, which embraces all the advantages associated with 

electrostatic self-assembly of PEs, developed thus far, to diversify the structures and 

functions of the resulting microfibers. The present protocol is simple and independent 

of the chemical nature of NPs and PEs. Thanks to its good dispersibility in a wide 

range of solvents of different polarity such as water and DCM, the surface PE coating 

allows free transfer of the resulting microfibers into various aqueous and organic 

media, thus enabling the present protocol to easily adapt to different formulation 

conditions. Our ensuing project is to extend the present protocol to drug NPs of 

pharmaceutical interest. In vitro study of the macrophage response to the resulting 

microfibers and their cytotoxicity is underway. The recent theoretical study has 

suggested that as compared with isotropic ones, anisotropic particles, such as 

microfibers, show a higher chance to deposit in the deep lung [21, 36]. As such, the 

study of the aerodynamic behavior of the resulting microfibers in human oral and 

nasal airways is under exploitation.   
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3.5. Experimental Details 

PAH (Aldrich, Mw 56,000) and PSS (Aldrich, Mw 70,000) were dissolved in water at 

the concentration of 3 mg/mL in the presence of 0.5M NaCl. PAH was labelled by 

rhodamine or fluoresceine isothiocyanate (FITC) as described elsewhere [175]. SiO2 

and PS NPs were purchased from Microparticles GmbH, Berlin, Germany. They were 

coated by PAH/PSS multilayer shells according to a well-established layer-by-layer 

procedure [136, 175]. PC membranes were purchased from Whatman. 0.1 wt% 

aqueous suspensions of SiO2 or PS NPs, coated with and without PAH/PSS 

multilayer shells, were infiltrated into template PC membranes. In order to efficiently 

block the NPs in the pores of the template membranes, additional PC membranes 

with the pores much smaller than the NPs were placed underneath the template 

membranes. The NP infiltration was repeated 2 times with an ultrasound treatment 

for 5min after each step to ensure a dense loading of the NPs in the template pores. 

After drying over night at room temperature, NPs deposited on the membrane 

surfaces were wiped away with Kimtech Science® tissue. Subsequently, the NP-

loaded membranes were immersed in aqueous solutions of PAH (3mg/ml, containing 

0.5M NaCl) for 30 min, followed by 3 times washing with water. The membranes 

were consecutively immersed in aqueous solutions of PSS (3 mg/ml, containing 0.5M 

NaCl) for 30min, followed by 3 times washing with water. After 3 or 4 repetition of this 

cycle, the membranes were dissolved by DCM to liberate the NP microfibers. The 

resulting microfibers were collected on PTFE membranes with the pores smaller than 

the NPs via filtration, washed three times by DCM to remove free PC chains derived 

from the membrane dissolution, and redispersed in DCM. Upon being in contact with 

water, the microfibers were transferred from DCM to water by vigorous shaking. The 

resulting NP microfibers were visualized by SEM (Gemini LEO 1550, operated at 

3kV) and CLSM (Leica DM IRBE with a 30 W UV lamp (λ= 350 nm) as the light 

source). 
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4. Spatial Aspect Ratio Dependent Macrophage Uptake of 
Biocompatible Nanostructured Microfibers 

 

 

 

 

 

 

 

Parts of this chapter will be submitted to Langmuir: 

 

 

Kohler D., Bai S., Schneider M., Wolkenhauer M., Lehr C.-M., Möhwald H., Wang D. 

in prep.:   

Versatile loaded biocompatible microfibers studying macrophage response. 
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4.1. Introduction 

Recently asymmetric particles have gained increasing attention, as anisotropic 

particles have shown to prolong in vivo circulation times in blood [47], and increase 

mucoadhesion in the intestine [65]. Combining the prolonged mucoadhesion and the 

reduced macrophage uptake reported by Mitragotri will result in prolonged lung 

residence time [25, 72]. New interesting drug carrier systems for pulmonary drug 

delivery with retarded release kinetics can therefore be achieved. Nowadays 

investigations of the macrophage response to asymmetric particles with well defined 

geometry and aspect ratio is largely limited by the challenge to synthesize colloidal 

dispersible, biocompatible, elongated particles with long, defined, but varied aspect 

ratios. Here we fabricate biocompatible asymmetric particles with well defined aspect 

ratio by the template technique which can be loaded with hydrophilic or hydrophobic 

drugs.  

 

Hydrophobic drugs have recently provoken many challenges in formulation. As most 

new high potential drugs suffer from poor water solubility, new formulation strategies 

are asked for. Here we rely on a solvent exchange method for loading of hydrophobic 

drugs into hydrogels to meet this challenge [176]. The solvent exchange method 

allows for direct incorporation of hydrophobic nanoparticles into hydrophilic 

hydrogels. Hydrogels can be dispersed in a broad range of solvents, thereby 

transferring incorporated hydrophobic nanoparticles from water immiscible organic 

solvents to aqueous media. 

 

The present protocol combines the template assisted formation of asymmetric 

particles with the solvent exchange method to produce colloidal dispersible 

microfibers with well defined dimensions and the ability to be loaded with hydrophilic 

or hydrophobic drugs. Despite being of practical interest for drug delivery, 

biocompatible microfibers are needed to get a deeper understanding of asymmetric 

particle uptake by macrophages, being an important process in particle clearance 

from the body [177]. However, few experimental protocols developed thus far can 

produce biocompatible microfibers with defined shape and aspect ratio. The first 

results from macrophage uptake studies will be presented here. 
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Figure 30: Schematic depiction of template-assisted Agarose infiltration to produce colloidal 
dispersible microfibers. 1) Hot (100°C) aqueous Agarose solution (1.5 wt%) is placed on a glass 
slide and drawn into template pores by capillary force. 2)  Microfiber liberation by template 
decomposition in DCM. 

4.2. Materials and Methods 

4.2.1. Agarose Infiltration 

Agarose, as natural sugar with good biocompatibility, is an ideal candidate for drug 

delivery application. The hot (100°C) aqueous solution of Agarose (1.5 wt%) was 

loaded into nanopores of commercially available membranes (Figure 30). After 

cooling of the system, Agarose deposited on the membranes was wiped away by 

tissue paper, thus obviating the risk of interconnecting microfibers confined in the 

template nanopores. 10 µm thick polycarbonate membranes with cylindrical pores of 

sizes in the range of 1 – 5 µm were used to template the infiltration of Agarose. The 

subsequent dissolution of the PC membranes in dichloromethane (DCM) yielded well 

dispersed Agarose microfibers (Figure 31). The aspect ratios of the microfibers are 

comparable to those of the template pores. The resulting microfibers were washed 

three times by DCM to remove free PC chains derived from the membrane 

dissolution and visualized by confocal laser scanning microscopy (CLSM).  
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Figure 31: Transmission image of Agarose microfibers with (a) 1 µm and (b) 5 µm diameter 
obtained by infiltration of Agarose into PC membranes with 1 or 5 µm cylindrical pores 
respectively. The microfibers are dispersed in H2O. 

4.2.2. Nanoparticle Infiltration 

4.2.2.1.  Silica Particle Infiltration 

Macrophage interaction studies need fluorescent labelling for in-situ detection under 

the CLSM after macrophage uptake. Commercially available, monodisperse, 

spherical 841 nm SiO2 nanoparticles (SiO2NPs) coated with one layer Rhodamin 

labeled positively charged polyallylamine hydrochloride (PAHRh) denoted as 

SiO2NP@PAHRh were used as labels and at the same time as models of drug 

particles in the present proof-of-concept study for the benefit of characterization. The 

particle coating was done as described elsewhere [136, 178]. 

 

  

 
Figure 32: Schematic depiction of template-assisted formation of SiO2NPs@PAHRh containing 
Agarose microfibers. 

a 

b 
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The SiO2NP@PAHRh particles were infiltrated into the template membranes by 

exclusively locking the NPs in the pores by placing additional membranes with the 

pore sizes much smaller than the NP sizes underneath the template membranes, and 

by one or two times infiltration of dilute NP dispersions (0.1 wt%) a maximum volume 

fraction of NP inside template pores can be obtained (Figure 32). The NPs deposited 

on the membranes can be easily wiped away by tissue paper. Agarose was 

subsequently infiltrated into the SiO2NP@PAHRh filled nanopores, resulting in 

SiO2NP@PAHRh containing Agarose microfibers. Well dispersible microfibers with 

defined inner packing structure of infiltrated SiO2NP@PAHRh are obtained, where the 

aspect ratio is determined by the template pore dimension (Figure 33). 

 
Figure 33: Fluorescence image of SiO2NP@PAHRh containing Agarose microfibers with (a) 1 µm 
and (b) 5 µm diameter obtained by infiltration of 841 nm SiO2 NPs through PC membranes with 
1 or 5 µm cylindrical pores respectively. The microfibers are dispersed in DCM. 

4.2.2.2.  Quantum Dot Infiltration 

Thanks to good solubility in different solvents with largely varied polarity Agarose 

allows exchange of the local environment of microfibers from organic media to 

aqueous ones. This exchange may overcome the bottleneck from pharmaceutical 

industry to formulate high potent hydrophobic drugs, and as well to be suitable for 

hydrophilic components.  

 

b 

a 
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Figure 34: Schematic depiction of template-assisted formation of CdTe QD’s containing 
Agarose microfibers. 

 

Hydrophilic model drugs (CdTe Quantum Dots (QDs)) were incorporated into 

Agarose microfibers by mixing QDs and tempered Agarose prior to the loading into 

nanopores (Figure 34). After liberation of the microfibers from the template 

membrane, well dispersed fluorescent microfibers are obtained (Figure 35) 

 
Figure 35: Fluorescence image of 1 µm diameter QD containing Agarose microfibers dispersed 
in H2O.  

4.2.2.3. Fe3O4 Nanoparticle Infiltration 

Oleic acid and oleylamine coated iron oxide nanoparticles (Fe3O4 NPs) (8-9 nm) in 

DCM were used as model of hydrophobic drugs in the present proof-of-concept study 

for the benefit of characterization, while hydrophilic CdTe QDs with sizes in the range 

of 2-4 nm were used as models of hydrophilic drugs. Hydrophobic drugs were loaded 

into microfibers during the decomposition of the PC template by Fe3O4 NP containing 

DCM, where the Fe3O4 NP partition into the Agarose network (Figure 36).  
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Figure 36: Schematic depiction of template-assisted formation of Fe3O4 containing Agarose 
microfibers. 

 

By transfer of the microfibers into aqueous medium, the Fe3O4 NPs are trapped 

inside the hydrophobic surrounding of the hydrogel. By this the solvent exchange 

technique yields biocompatible microfibers loaded with hydrophobic drugs. Using 

Fe3O4 NP additionally allows introducing superparamagnetic properties, and by this 

enabling for targeted drug delivery as was reported by Dames [42] (Figure 37). 

 
Figure 37: Superparamagnetic Fe3O4 NP containing Agarose microfibers (Ø = 5 µm) in H2O after 
template decomposition and phase transfer in presence of a magnet.  
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4.3. Results and Discussion 

4.3.1. Cytotoxicity Test 

 

Cytotoxicity tests were conducted for all microfibers used for macrophage uptake 

studies. MTT test for viability testing and LDH test for cytotoxicity studies were 

performed [179]. Little toxicity was observed for all microfibers (Figure 38). Viability of 

only ~65% was found for SiO2NP@PAHRh containing Agarose microfibers. This 

finding can be explained by insufficient SiO2NP@PAHRh coating by Agarose. PAH 

being highly cytotoxic [180] can therefore interact with A549-cells, causing cell death. 

The viability of nearly 97% found for Fe3O4 NP containing 1 µm diameter Agarose 

microfibers confirms this finding. It additionally proved that incorporated Fe3O4 NPs 

are not toxic. Furthermore these data showed that microfiber purification and the 

removal of free polymer chains after template decomposition was successful. Due to 

limited microfiber amounts, and due to lack of quantification of actual microfiber 

concentration in solution, no concentration dependent cytotoxicity data were 

obtained, but only solutions used for macrophage uptake studies were investigated 

for their cytotoxicity. Further cytotoxicity studies are urgently needed, to get a deeper 

understanding on the particle shape effect on cytotoxicity.  

 
Figure 38: Cytotoxicity (LDH) and viability (MTT) data after 3h incubation for 1 and 5 µm 
diameter Agarose microfibers containing (°) SiO2NP@PAHRh or (*) Fe3O4 NP. Triton-X being the 
pos. control, whereas pure buffer describes neg. control.  
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4.3.2. Macrophage Uptake 

Mouse macrophages, MHS cells, were used as model macrophages. Microfibers with 

an aspect ratio of α = 2 and 10 were tested, where the microfiber length was fixed to 

10 µm. The direction of microfiber uptake was determined as well as the uptake 

kinetics.  

 

 
Figure 39: Schematic depiction of microfiber orientation with respect to cell orientation, with a) 
parallel alignment of the microfiber with its longitudinal side along the cell wall, b) complete 
microfiber uptake by the macrophage, c) microfiber being far apart from cells and d) partial 
uptake of the microfibers by MHS cells. 

 

 

Four orientations were distinguished (Figure 39): 

 

a) Parallel alignment of the microfiber with its longitudinal side along the 

cell wall  

 

b) Complete microfiber uptake by the macrophage 

 

c) Microfiber being far apart from cells 

 

d) Partial uptake of the microfibers by MHS cells. 

 

    
a b c d 
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Figure 40: Fluorescence images of MHS cells after 1 h, 2 h and 3 h incubation with 1 µm 
diameter SiO2NP@PAHrh containing Agarose microfibers in MHS medium at 37 °C and 5%CO2. 
The amount of particle uptake is plotted vs. the particle-cell-orientation.  

 

4.3.2.1.  Silica Nanoparticle Containing Microfiber Uptake 

1 µm diameter microfibers (α = 10) were incubated for 3 h and each 60 min 

microfiber orientation in respect to the cells was examined (Figure 40). 80% of the 

microfibers are aligned parallel or not in contact with the cells after 1h incubation, 

while only 20% are about to be phagocytosed. After 3 h incubation, all microfibers are 

in contact with cells, where 85% are at least partially phagocytosed and only 15% are 

aligned parallel to the cell surface, unable to be taken up.  

10µm 10µm 

10µm 

1h 2h

3h



 63

 
Figure 41: Fluorescence images of MHS cells after 1 h, 2 h and 3 h incubation with 5 µm 
diameter SiO2NP@PAHrh containing Agarose microfibers in MHS medium at 37 °C and 5%CO2. 
The amount of particle uptake is plotted vs. the particle-cell-orientation. 

 

5µm diameter microfibers (α = 2) show a slower phagocytosis of elongated particles 

compared to α = 10 microfibers (Figure 41). Only 30% of the microfibers are 

completely phagocytosed after 3 h incubation time for α = 2 compared to 55% for 

α = 10 microfibers, while more microfibers are partially phagocytosed for 5 µm 

diameter particles (45%) than for 1 µm diameter particles (30%). Again no free 

particle without cell contact could be found after a 3 h incubation period. No 

comparison to spherical Agarose particles could be performed, as no synthesis 

strategy is known to produce monodisperse spherical Agarose particles. 

 

For none of the particles aligned parallel to the cell membrane phagocytosis was 

observed, confirming the theory by Mitragotri [72] that elongated particles are only 

taken up from the pointy end. Hence the first contact angle theory could not be 

confirmed by our observations. Furthermore it was observed, that the smaller the 

pointy end is the faster is the rate of phagocytosis. This correlates to the finding for 

1h 2h 

3h

10µm 10µm 

10µm 
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spherical particles, where phagocytosis seems to be optimal for particles in the size 

range of 0.5 – 2 µm with a maximum at 1 µm [38].  

4.3.2.2. Fe3O4 Nanoparticle Containing Microfiber Uptake 

Macrophage uptake studies were prepared with Fe3O4 NP containing microfibers. 

Due to little substance amount and difficulties in imaging, only the cell-microfiber 

orientation was investigated. Again it was seen that particles aligned parallel with the 

longitudinal side to the cell wall were not taken up, while phagocytosis could be 

observed from the pointy side only. 

4.4. Conclusion 

In summary, we have successfully prepared the first biocompatible microfibers 

loaded with hydrophilic model drugs during preparation or hydrophobic model drugs 

by the solvent exchange method after synthesis of microfibers by using the template 

technique in combination with solvent exchange. The present protocol is simple and 

independent of the chemical nature of NPs and drugs to be used. By introducing 

Fe3O4 NPs superparamagnetic microfibers can be synthesized. Macrophage 

interaction studies with the prepared microfibers showed that microfiber orientation 

plays a dominant role in particle uptake, as well as a time dependence of microfiber 

uptake in dependence on the particle diameter. 

 

Our ensuing project is to extend the present protocol to drug NPs of pharmaceutical 

interest. In vitro study of their cytotoxicity is underway. A recent theoretical study has 

suggested that as compared with isotropic particles, microfibers, show a higher 

probability to deposit in the deep lung [36]. As such, the study of the aerodynamic 

behaviour of the resulting microfibers in human oral and nasal airways is under 

exploitation.   

4.5. Experimental Details 

 

SiO2 NP labelling: PAH (Aldrich, Mw 56,000) was dissolved in water at the 

concentration of 3 mg/mL in the presence of 0.5 M NaCl. PAH was labelled by 
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rhodamine as described elsewhere [175]. 841 nm SiO2 NPs were purchased from 

Microparticles GmbH, Berlin, Germany. They were coated by one layer PAHRh 

according to a well-established procedure [136, 175].  

 

SiO2NP@PAHRh infiltration: PC membranes were purchased from Whatman. 0.1 wt% 

aqueous suspensions of coated SiO2 NPs were infiltrated into template PC 

membranes. In order to efficiently block the NPs in the pores of the template 

membranes, additional PC membranes with the pores much smaller than the NPs 

were placed underneath the template membranes. The NP infiltration was repeated 2 

times with an ultrasound treatment for 5min after each step to ensure a dense 

loading of the NPs in the template pores. After drying over night at room temperature, 

NPs deposited on the membrane surfaces were wiped away with Kimtech Science® 

tissue.  

 

Microfiber synthesis: Capillary infiltration of 120 °C tempered 1.5% Agarose solution 

into bare or SiO2NP@PAHRh-loaded membranes was performed. After cooling down 

to room temperature, membranes were peeled of from the glass slide. Agarose 

deposited on the membrane surface was wiped away with Kimtech Science® tissue. 

SiO2NP@PAHRh-loaded membranes were dissolved by DCM to liberate the 

SiO2NP@PAHRh-loaded microfibers. Threefold washing by DCM, followed by 

threefold washing in THF and EtOH allowed for redispersion of SiO2NP@PAHRh-

loaded microfibers in water. 1/3 dilution with MHS medium is performed prior to cell 

testing. 

 

Fe3O4 NP loading: Fe3O4 NP stabilized by oleic acid and oleylamine provided by S. 

Bai were loaded into PC templates containing bare Agarose microfibers, by 

dissolving the template in  Fe3O4 NP containing DCM. After 4 h incubation Fe3O4 NP 

containing microfibers are collected by magnet application, washed three times by 

DCM to remove free PC chains derived from the membrane decomposition, and 

redispersed in water. 1/3 dilution with MHS medium (500 ml RPMI 1640 containing 

2 mM L-Glu, 5 ml Hepes 1 M, 1 mM Sodiumpyruvat, 2,25 g Glucose, 0,75 g 

Bicarbonate, 1,95 mg 2-Mercaptoethanol, 50 ml FCS) is performed prior to cell 

testing. 
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Macrophage Uptake: 20.000 MHS cells are grown on a 24 well-plate. 500 µl NP 

containing microfibers are incubated with MHS cells for 1 h, 2 h and 3 h respectively. 

For visualization cell membranes are labelled after particle incubation by 10min 

incubation at 37 °C with 0.5 ml WGA-FITC in PBS (1/40). Cells are fixed by 4% 

formalin incubation for 10 min prior to visualization by CLSM (Zeiss LSM510 META 

with a 30 W UV lamp (λ= 350 nm) as light source). 

 

MTT test: A549 cells are incubated with 200 µl NP containing microfibers (sample), 

HBSS buffer (negative control) and 1% Triton-X (positive control) in triplicates for 4 h 

at 37 °C, 5% CO2 and 90% humidity. After incubation 10 µl MTT solution (5 mg/ml 

HBSS) is added, and incubated at 37 °C, 5% CO2 and 90% humidity for 4 h. After 

supernatant is removed, 50 µl DMSO is added to solubilise the formazan crystals, 

followed by 20 min incubation under light exclusion. After 1 min shaking, UV 

absorbance is measured at 550nm. 

 

LDH test: LDH test is prepared using the Cytotoxicity Detection Kit (LDH) by Roche 

Applied Science, Mannheim, Germany. A549 cells are incubated with 200µl NP 

containing microfibers (sample), HBSS buffer (negative control) and 1% Triton-X 

(positive control) in triplicates for 4 h at 37 °C, 5% CO2 and 90% humidity. 100 µl 

supernatant of each well is transferred to a probe sampling plate. 100 µl reaction 

mixture is added to each well, followed by 5 min incubation at room temperature in 

the dark. Absorption is measured at 492 nm. 
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5. Aspect Ratio Dependent Aerosolization behaviour of 
Drug loaded Microfibers  

 

 

 

 

 

 

 

 

Parts of this chapter will be submitted to the Journal of Aerosol Science: 

 

 

Kohler D., Wolkenhauer M., Möhwald H., Wang D., Lehr C.-M. and Schneider M.,   

Generation of Biocompatible Drug Loaded Microfibers by Template Technique.  
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5.1. Abstract 

A method of producing monodisperse aerosol fibers with defined aspect ratio is 

described. This method involves the infiltration of desired material into membrane 

pores, and the subsequent decomposition of the template. Diameter and length of 

the fibers could simply be varied by choosing desired pore dimensions for fiber 

preparation. Fibers of varying diameter ranging form 1 to 5 µm were produced. It was 

found that well dispersed fibers with defined porosity can be formed. Drug loading 

was achieved during fiber formation. Further modification of the process is expected 

to allow for large scale production of fibers with uniform aspect ratio. 

5.2. Introduction 

Fibers are a special class of particles, defined by the WHO in 1985 as elongated 

objects for which the aspect ratio – the ratio of length of the object to its diameter- is 

greater than 3 [34, 35]. The aerodynamic diameter of a fiber as main parameter for 

lung deposition is mainly determined by its geometric diameter, where the length is of 

minor impact [21, 54]. Su et al. [36] showed that fibers have higher probability to 

reach the peripheral lung compared to spherical particles of same aerodynamic 

diameter. Furthermore Edwards et al. [11] proved, that introducing porous 

architecture and thereby reducing particle density, allows for large particle deposition 

in the peripheral lung. Therefore fibers with and without porous structure open a new 

way of accessing pulmonary drug delivery systems with high delivered doses.  

 

Particle design for optimized drug delivery gained increasing attention lately [9]. It 

was shown that asymmetric particle geometry greatly influences particle 

phagocytosis [20, 25, 163], allows for prolonged in vivo circulation time [47, 65] and 

improves targeting efficiency [43, 44, 69]. By decreasing macrophage uptake in the 

alveoli and increased mucoadhesion in the proximal lung, reduced clearance from 

lung and by thus long acting formulations aiming for improved patience compliance 

due to decreased dosing interval can be achieved. 

 

Systematic studies on the pathways of asymmetric particles are limited by the 

existence of suitable model particles. New synthesis strategies allowing for large 
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scale production of elongated particles with well defined dimensions are urgently 

asked for. We present a method, which allows for the production of biocompatible, 

biodegradable, highly monodisperse fibers with variable aspect ratio using the 

template technique.  

5.3. Template Technique 

We used the template technique based on the approach of Martin [80] to produce 

biocompatible, biodegradable microfibers. Commercially available track etched 

polycarbonate membranes (Nucleopore, Whatman Inc., Florham Park, New Jersey, 

USA) containing straight pore structures are used as template for fiber generation. 

Fiber dimensions are defined by the pore dimensions, where the membrane 

thickness and pore diameter determine fiber length and diameter, respectively. 

Material deposition is accomplished by capillary infiltration of aqueous solution of 

desired material into pores and subsequent drying (Figure 42).  

 

 
Figure 42: Schematic depiction of template-assisted formation of sugar microfibers. 

 

After template decomposition in Dichloromethane (DCM) followed by three fold 

washing to remove free polymer chains, freeze drying is performed. Well dispersible 

microfiber powders are obtained.  
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Figure 43: Microscopic images in transmission mode of lactose microfibers, obtained by using 

PC membranes with (a) 1 μm and (b) 5 µm cylindrical pores. The microfibers are freeze dried 

after template decomposition and subsequent washing. 

 

The fibers of Figure 43 are composed of lactose. Fibers of various aspect ratios were 

prepared using PC-templates of various pore diameters (1 to 5 µm), with constant 

membrane thickness of 10 µm. Aspect ratios ranging from 2 to 10 were produced. 

Further increase of the aspect ratio can easily be achieved by using smaller pore 

sizes. A 20% aqueous lactose solution was infiltrated. Drying was performed at 80°C 

for 3 h. After template dissolution in DCM and freeze drying overnight, microscopic 

pictures on a CLSM (Leica DM IRBE with a 30 W UV lamp (λ= 350 nm) as light 

source) were taken. 

5.4. Generating Drug Loaded Microfibers and Introducing 

Porosity 

Fenoterol HBr as short acting β-Sympathomimetikum used in asthma therapy was 

incorporated into Mannitol microfibers. Mannitol was used to achieve higher degree 

of crystallinity compared to Lactose microfibers. Fenoterol HBr – Mannitol–Water 

solution (1-20-100) was prepared and infiltrated into the membrane pores. After 

infiltration into membrane pores and subsequent drying monodisperse fibers 

containing drug and carrier material are obtained after template decomposition. Drug 

incorporation was confirmed by UV spectra after dissolution of the freeze dried 

powder in water.  

 

To further modify the deposition behaviour of microfibers, porosity was introduced 

into the fiber morphology. Polystyrene nanoparticles (PS NPs) are physically 

a b 
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entrapped into membrane pores prior to material infiltration. A membrane with pore 

size smaller than the infiltrated PS NPs is placed into a commercially available 

membrane holder (Sartorius Stedim Biotech GmbH, Goettingen, Germany) 

underneath the template membrane to avoid particle penetration through the pores. 

Three times PS NPs infiltration with Ultrasound treatment of 5 min between each 

infiltration step resulted in close packed PS NPs. After drying overnight material 

deposition is performed as described above. During PC template decomposition, PS 

NPs are dissolved in DCM, resulting in porous fiber structure.  

5.5. Aerosolization of Microfibers 

The aerosolization properties were tested in an Andresen Cascade Impactor (ACI). A 

four stage Anderson Cascade Impactor was used to determine the fine particle 

fraction (FPF) of prepared microfibers and reference powder. A capsule containing 

5 mg of Mannitol-Fenoterol-Microfibers, pure micronized Fenoterol or material 

blended with Mannitol (1/5) was placed in a HandiHaler®. The capsule was 

punctured and a pump simulated inspiration of 20 l/min for 12.3 sec. The powder was 

deposited on Brij 35 coated stainless steel plates or glass fiber filters depending on 

their aerodynamic diameter. Plates were washed after three capsule actuations with 

water, and fine particle fraction of particles with aerodynamic diameters below 5 µm 

determined by UV spectra quantification of Fenoterol HBr. Pure and 1/5 Mannitol 

blended microfibers of 1, 2 and 5 µm diameter as well as 1 µm microfibers containing 

836 nm pores were tested in comparison to micronized Fenoterol HBr and a 1/5 

powder blend of micronized Fenoterol / Mannitol. Due to limited powder amounts, 

each experiment was repeated twofold.  



 72

 
Figure 44: Fine particle fraction of Mannitol-Fenoterol-Microfibers (7.5% Fenoterol content) and 
pure micronized Fenoterol (100%) or material blended with Mannitol (1/5) tested in an Andresen 
Cascade Impactor at a flow rate of 20 l/min for 12.3 sec. 

5.6. Results and Discussion 

This method has proven to allow for generation of fibers consisting of various sugars. 

SEM imaging of the resulting fibers proved that particles with defined inner structure 

can be obtained by infiltration of PS NPs  

 
Figure 45: SEM images of lactose microfibers, obtained by using PC membranes with 1 μm 

cylindrical pores to template infiltration of (a) 428 nm and (b) 836 nm PS NPs. The microfibers 
are freeze dried after template decomposition and subsequent washing. 

a b 
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The effect of PS NP diameter on the inner porosity of microfibers has been 

determined, and is shown in Figure 45. The inner porous structure is determined by 

the ratio of infiltrated PS NP diameter to the pore diameter.  

 

From observations of Figure 46 it can be seen that the particle morphology is 

independent of the additional incorporation of water-soluble drugs. Well dispersible 

fibers of various aspect ratios can be obtained by using defined pore diameters. This 

observation suggests that a broad variety of materials can be blended into sugars as 

carrier material without changing microfiber dimensions. 

 
Figure 46: Microscopic images in transmission mode of Fenoterol loaded Mannitol microfibers, 
obtained by using PC membranes with (a) 1 µm and (b) 5 µm cylindrical pores. The microfibers 
are freeze dried after template decomposition and subsequent washing. 

 

The UV-spectrum of Figure 47 proved the incorporation of Fenoterol HBr into 

Mannitol fibers. After fiber purification, freeze drying and subsequent dissolution in 

water, the Fenoterol HBr peak at 276 nm is present.  

 

 

 

a b 



 74

 
Figure 47: UV-spectrum of Fenoterol loaded lactose fibers (red) after washing and subsequent 
dissolution in water in comparison to Fenoterol solution (blue).   

 

FPF determination (Figure 44) shows that fibers of various aspect ratios (2 to 10) 

provide FPF in the range of micronized Fenoterol Mannitol blends (FPF ~ 60%). 

Compared to pure micronized Fenoterol powder having FPF ~ 3.5%, improved 

particle deposition for all fibers can be observed. No conclusion can be drawn upon 

the aspect ratio effect, as insufficient data are available for statistic evidence due to 

limited availability of powder material. 1 µm porous particles showed FPF of up to 

67%, confirming the effect reported by Edwards [11], that large porous particles 

having small daer have higher FPF compared to dense particles of the same 

diameter. Due to impurities of aggregated particles and remnant polymer chains from 

template decomposition lowering the powder quality, FPF results need to be handled 

with care and further follow up investigations are needed.  

 

Fiber purification for improved aerosolization properties should allow for better 

investigation of the aspect ratio effect on the FPF, and improved evidence for the 

influence of porosity onto the deposition pattern. 

5.7. Conclusion 

In summary, we have successfully prepared the first drug loaded microfibers from 

approved excipients for pulmonary drug delivery with tailored porosity. The present 

protocol is simple and reproducible technique that allows for microfiber preparation 

with well dimensions. Aerosolization studies with prepared microfibers showed higher 
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FPF for microfibers compared to micronized Fenoterol, where porosity of microfibers 

seems to positively impact the FPF.   

 

Our ensuing project is to extend the present protocol to further drugs of 

pharmaceutical interest. Additional data on aerosolization properties are underway to 

further investigate parameters modifying microfiber deposition in human airways. 

5.8. Experimental Details 

PS infiltration: PC membranes (1, 2 and 5 µm pore diameter) were purchased from 

Whatman. 0.1 wt% aqueous suspensions of PS NPs (428 and 836 nm) purchased 

from Microparticles were infiltrated into template PC membranes. In order to 

efficiently block the NPs in the pores of the template membranes, additional PC 

membranes with the pores much smaller than the NPs were placed underneath the 

template membranes. The NP infiltration was repeated 2 times with an ultrasound 

treatment for 5 min after each step. After drying over night at room temperature, NPs 

deposited on the membrane surfaces were wiped away with Kimtech Science® 

tissue.  

 

Microfiber synthesis: Capillary infiltration of 20% sugar solution (Mannitol and 

Lactose provided by Boehringer Ingelheim) into bare or PS NP-loaded membranes 

was performed. After drying at 80°C for 3 h in the oven, membranes were peeled of 

from the glass slide. Sugar deposited on the membrane surface was wiped away with 

Kimtech Science® tissue. Membranes were dissolved by DCM to liberate the 

microfibers, and to decompose PS NPs resulting in porous microfibers. Threefold 

washing by DCM, followed by freeze drying yielded well dispersible powder. 

Microfiber-Mannitol-(1/5) blending was performed for selected samples prior to 

aerosolization studies by 30 min mixing in a Turbola Mixer. 

 

Aerosolization properties: A 5 mg capsule of Mannitol-Fenoterol-Microfibers, pure 

micronized Fenoterol or material blended with Mannitol (1/5) was placed in a 

HandiHaler®. After HandiHaler® attachment onto a four stage ACI, a pump 

simulated inspiration of 20 l/min for 12.3 sec. was performed. Brij 35 coated stainless 

steel plates of the ACI were washed after three capsule actuations with water, and 

FPF5µm determined by UV spectra Fenoterol HBr quantification at 276 nm. 
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6. Overall Conclusion and Outlook 
The European Lung Foundation assumes that in 2020 11.9 million death will be 

caused by lung diseases around the world, where COPD (4.7 million) and 

tuberculosis (2.5 million) account for half of the death rate  [181]. 102 billion euro 

expenses caused by COPD, asthma, pneumonia and tuberculosis need to be 

covered by the European health system in 2010. Improved drug therapy can help to 

lower the costs and improve patience compliance. Specific targeting and prolonged 

drug release are two major objects of drug carrier design, in order to reduce systemic 

side effects and to reduce dosing intervals. Asymmetric particles showing optimized 

deposition behaviour seem to be promising candidates for next generation drug 

delivery devices for lung application. 

 

In this context the template technique represents a valuable tool to synthesise 

promising microfibers, which will allow for deeper understanding of asymmetric 

particle–cell interaction, microfiber fate in vivo, as well as improving pulmonary drug 

delivery. A most important result from the work presented is that well dispersible, 

biocompatible microfibers of tuneable porosity and aspect ratio can be prepared. The 

finding, that macrophage uptake depends on the fiber diameter and that the 

microfiber orientation mainly impacts on the success of phagocytosis, will help in 

developing optimized carrier shape with respect to the application. Future 

experiments to test the mucoadhesive behaviour of microfibers in order to allow for 

prolonged drug release after inhalation are needed. Intense aerosolization studies in 

the future require scale up of the invented method in order to produce sufficient 

microfiber material. Microfiber release from the template pores, avoiding template 

decomposition, will therefore be one of the major challenges that need to be solved 

to allow for commercial large scale production.  

 

The new synthesis approach allows producing high quality microfibers of various 

materials with tailored properties, such as modified porosity, versatile drug loading 

approaches as well as aspect ratio dependent macrophage uptake. It allows for 

optimizing pulmonary drug delivery, and thereby fighting costs and death caused by 

lung diseases. 
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7. Annex 

7.1. Particle Aggregation 

7.1.1. General Consideration 

Microfiber aggregation is a major drawback of the template technique. Due to 

untargeted material deposition outside template pores, microfibers are severely 

interconnected after template decomposition (Figure 48).Therefore many approaches 

to arrive at a successful preparation failed. This section therefore describes and 

discusses these approaches to help future generations of scientists.  

 

 
Figure 48: Formation of particle aggregates during polymer deposition on PC templates. Bare 
membranes (a) are coated with 8bilayers PAH/PSS (b). Big particle aggregates are obtained 
after template decomposition (c) caused by untargeted material deposition outside template 
pores. 

 

Resulting microfiber aggregates will show different biological response compared to 

well separate microfibers in vivo. Various strategies to overcome untargeted material 

deposition and/or to remove the interconnecting film were tested. Plasma-Cleaning 

a b c
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was applied to etch untargeted material, while gold layer and sacrificial layer attempts 

were used to mechanically remove undesired material. All strategies aimed for the 

post-deposition removal of interconnecting material in order to obtain well dispersible 

microfibers after template decomposition. The deposition of a gold layer and their 

subsequent hydrophobization on the template surface on the other side aimed to 

avoid undesired material deposition outside template pores during microfiber 

preparation. All strategies are discussed below. 

7.1.2. Plasma Cleaning 

Plasma is a highly reactive ionized gas phase, created by using high frequency 

electric fields. The ionic, high energetic species can react with surface located 

species on the material to be cleaned by collision. Produced gaseous products can 

be removed by applied vacuum. Ions of the plasma vibrate due to the absorbed 

electrical energy followed by temperature increase used to generate the plasma, 

thereby scrubbing the surface [182].  

 

Oxygen plasma cleaner (Plasma Cleaner / Sterilizer PDC-32G, Harrick, Ithaka, USA) 

was used to clean membrane surfaces after LbL deposition in order to avoid 

microfiber aggregation after template decomposition. Plasma power (100, 200 and 

500 Watt) and etching time (1 to 60 min) were varied. The influence of plasma 

etching on particle morphology and membrane were studied.  

 

200 and 500 Watt resulted in complete destruction of the PC-membrane. 100 Watt 

for 5min removed the polyelectrolyte coating on the PC template surface, yielding 

well separated microfibers. The obtained results were not reproducible. Plasma 

appeared to not selectively remove surface material, but to affect template and pore 

structure, thereby modifying microfiber morphology (Figure 49).  
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Figure 49: SEM images of (PAH/PSS)8 microfibers obtained using PC membranes with 0.2 µm 
cylindrical pores. Intact aggregated (PAH/PSS)8 microfibers (a) obtained without Plasma 
treatment, (b) separated microfibers after Plasma treatment (100 Watt, 5 min) and subsequent 
template dissolution in DCM (b) and bare PC membrane with affected pore structure after 
Plasma treatment (100 Watt, 5 min). 

 

AAO templates treated at 100 Watt for 5 min showed smaller aggregates. Microfibers 

inside the AAO template pores were affected by the plasma, producing instable 

porous microfibers (Figure 50).  

 
Figure 50: SEM images of (PAH/PSS)8 microfibers obtained using AAO membranes with 0.2 µm 
cylindrical pores. Intact aggregated (PAH/PSS)8 microfibers (a) obtained without Plasma 
treatment, (b) separated microfibers after Plasma treatment (100 Watt, 5 min) and subsequent 
template dissolution in DCM (b) and magnification (c). 

 

Plasma Cleaning allows for the production of smaller aggregates, but is unsuccessful 

to yield reproducible well dispersible microfibers with intact morphology.   

7.1.3. Gold Layer 

Material adsorption outside template pores was shown to be avoided by gold 

sputtering of the membrane faces [183]. Furthermore gold layers were peeled off 

after partial template dissolution, thereby removing adsorbed material from the 

membrane surface.  

 

a b c
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25 nm gold was sputtered onto the membrane faces and 8 bilayers PAH/PSS 

deposited via the LbL technique as described previously. PC and AAO templates 

were processed differently. 

 

AAO templates were partially dissolved by 1min immersion in 1 M NaOH, 

forming a gap between the gold layer and the template, followed by peeling off 

the gold layer by tweezers, and AAO template decomposition in 1 M NaOH for 

24 h. Liberated microfibers were filtered through 0.2 µm PTFE membrane, 

washed three times with water to remove free salt, and visualized by SEM 

(Gemini LEO 1550, operated at 3 kV).  

 

PC templates were placed in a solution (0.4 mg/ml K4Fe(CN)6, 3.3 mg/ml 

K3Fe(CN)6, 19 mg/ml K2S2O3 x H2O, 56 mg/ml KOH) to decompose the gold 

layer, and thereby remove the adjacent polyelectrolyte multilayers. PC templates 

were dissolved in DCM for 2 h. Liberated microfibers were filtered through 

0.2 µm PTFE membrane, washed  three times by DCM to remove free polymer 

chains and visualized by SEM.   

 

No gap between template and gold was found for the partially etched AAO templates. 

Therefore the gold layer could not be removed, resulting in strongly aggregated 

microfibers comparable to aggregates formed without prior gold sputtering of the 

AAO template. The etching strategy to remove the gold could not be applied to the 

AAO template, as it takes place at high pH values, decomposing the AAO template. 

 
Figure 51: SEM images of (a) close up and (b) overview of aggregated (PAH/PSS)8 microfibers 
obtained by using 25 nm gold sputtered 1 µm pore size PC membranes after gold layer 
decomposition.  
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Big aggregates were found after dissolution of the gold layer and subsequent 

decomposition of the PC template (Figure 51). Unmodified gold sputtering onto PC 

template faces is insufficient to prevent polyelectrolyte adsorption, and etching of 

gold is furthermore unsuccessful to remove deposited material from the surface.  

7.1.4. Gold Layer and Hydrophobisation 

Hydrophobisation of gold sputtered membranes is promising to avoid untargeted 

material deposition outside on template faces. Preventing the formation of 

interconnecting films will allow for preparation of well dispersible microfibers.  

 

25 nm gold was sputtered onto one membrane surface, followed by 2 h 

incubation in 1 mg/ml hexadecanthiol (C16SH) solution in Toluol, and five times 

washing in EtOH, while the other template face remained untreated. Contact 

angle measurements were performed to confirm successful hydrophobisation. 

Only one membrane side was sputtered to compare bare and hydrophobised 

membrane sides after template decomposition. 

 

8 bilayers PAH/PSS were deposited via the LbL technique as described above. PC 

templates were dissolved in DCM for 2h, while AAO templates were decomposed by 

immersion in 5% H3PO4 for 24h. Liberated microfibers were filtered through 0.2 µm 

PTFE membrane, washed by DCM three times to remove free polymer and 

visualized by SEM (Gemini LEO 1550, operated at 3 kV).   

 
Figure 52: SEM images of 0.2 µm pore diameter AAO membranes sputtered with 25 nm gold 
after hydrophobisation with C16SH, before (a) and after (b) 8bilayer deposition of PAH/PSS.  
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Successful hydrophobisation of AAO and PC templates was confirmed by 

contact angle measurements showing angles >90°.  

 

AAO membranes show open pore structure after gold sputtering and subsequent 

hydrophobisation. Polyelectrolyte deposition was confirmed by membrane 

surface observations by SEM following multilayer deposition (Figure 52). The 

rough structures present on template faces prove the deposition of 

polyelectrolyte multilayers. 

 
Figure 53: SEM images of 0.2 µm pore diameter AAO membranes sputtered with 25 nm gold 
after hydrophobisation with C16SH, before (a) and after (b) 8bilayer deposition of PAH/PSS.  

 

Different multilayer structures can be observed after AAO template 

decomposition, as one template side was sputtered followed by 

hydrophobisation, while the other side remained untreated. Rough multilayer 

composition was observed for microfiber aggregates after template 

decomposition, comparable to multilayer roughness of interconnecting films on 

untreated template without gold sputtering. The other microfiber aggregation side 

was smoother (Figure 53). Therefore it can be concluded, that gold sputtering 

with subsequent hydrophobisation allows limiting multilayer formation on 

template substrates, but does not avoid adsorption completely. Therefore 

aggregation can be decreased by hydrophobisation, but not prevented. 
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Figure 54: SEM images of 0.2 µm pore diameter PC membranes sputtered with 25 nm gold after 
hydrophobisation with C16SH, before (a) and after (b) 8bilayer deposition of PAH/PSS.  

 

PC templates hydrophobised showed no polyelectrolyte adsorption after 

multilayer assembly (Figure 54). No microfibers could be observed in SEM after 

template decomposition. Gold sputtering selectively coats the template surface, 

therefore membrane pores should remain hydrophilic during surface 

hydrophobisation by C16SH. As no microfibers are formed, investigations of the 

pore walls need to be carried out, to investigate the pore environment.  

7.1.5. Sacrificial Layer 

Ono et al. [184] reported the successful application of sacrificial layers to form free-

standing polyelectrolyte films. By pH responsive decomposition of LbL assembled 

polyelectrolyte multilayers, free standing pH insensitive multilayer films were 

prepared. Therefore this strategy was tested for its ability to dismantle the surface 

polymer coatings on porous membranes.  

 

Sacrificial layer deposition was prepared as described above. Subsequently 

uncoated membranes were immersed in aqueous solutions of PAH (3 mg/ml, 

containing 0.5 M NaCl, pH = 2) for 30min, followed by 3 times washing with water. 

The membranes were consecutively immersed in aqueous solutions of polyacrylic 

acid (PAA) (3 mg/ml, containing 0.5M NaCl, pH = 2) for 30 min, followed by 3 times 

washing with water. Membranes are denoted as (PAH/PAA)n. After desired 

repetitions of this cycle, deposition of pH insensitive multilayers is performed. 
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pH insensitive multilayer deposition was prepared similar to sacrificial layer 

deposition. Subsequently, sacrificial layer coated membranes were immersed in 

aqueous solutions of PAH (3 mg/ml, containing 0.5 M NaCl, pH = 2) for 30 min, 

followed by 3 times washing with water. The membranes were consecutively 

immersed in aqueous solutions of PSS (3 mg/ml, containing 0.5 M NaCl, pH = 2) for 

30 min, followed by 3 times washing with water. After desired repetition of this cycle, 

deposition of pH insensitive multilayers is performed. (PAH/PAA)n/(PAH/PSS)m 

coated membranes are obtained.  

 

To easily distinguish sacrificial and pH insensitive multilayers by CLSM, one PAH 

layer of each was labelled with different fluorescent dyes; the former was labelled by 

FITC the latter by Rhodamine, or vice versa. All experiments were prepared using PC 

templates, as AAO templates would be degraded in acidic pH during multilayer 

assembly.  

 

Sacrificial layer decomposition was performed by immersion of 

(PAH/PAA)n/(PAH/PSS)m coated membranes into 0.5 M HCl for 24 h, followed by 

washing and subsequent immersion into 0.5 M NaOH for 15 min and additional 

washing. PC templates were dissolved in DCM for 2h. Liberated microfibers were 

filtered through 0.2 µm PTFE membrane, washed three times by DCM to remove free 

polymer and visualized by SEM (Gemini LEO 1550, operated at 3kV) and CLSM 

(Leica DM IRBE with a 30 W UV lamp (λ= 350 nm) as the light source).   

 
Figure 55: Fluorescence (a and b) and overlay (c) CLSM images of (PAH/PAA)7/(PAH/PSS)12 
microfibers, obtained by using PC membranes with 1 µm cylindrical pores. Rhodamin labelled 
PAH was infiltrated for once thus the sacrificial layer is red fluorescent, and fluorescein-labeled 
PAH was infiltrated for once during pH insensitive multilayer formation for green fluorescence. 
Sacrificial layer is decomposed by 12 h immersion in 3M NaOH. 
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Sacrificial layer was only partially decomposed at low pH, determined by CLSM 

investigations (Figure 55). Strong interpenetration during multilayer formation 

prevents complete sacrificial layer decomposition. To avoid aggregation after 

sacrificial layer decomposition, thicker sacrificial layers need to be deposited. 

Thereby gap formation during sacrificial layer decomposition accompanied by 

removal of microfiber interconnecting pH insensitive material outside of template 

pores might be achieved. Increased sacrificial layer thickness can be achieved by 

increasing multilayer numbers, or by using salt solution during washing steps. 

 

Further optimization to control sacrificial layer interpenetration and the removal of 

undesired deposited multilayer material should be carried out in future. 

7.2. Cytotoxicity Test 

7.2.1. MTT Assay 

Cytotoxicity of materials can be determined by a standard colorimetric assay. Viable 

cells have the ability to reduce the tetrazolium salt MTT by a mitrochondrial 

dehydrogenase enzyme (Figure 56). The enzyme cleaves the tetrazolium rings of 

MTT, resulting in a color change from pale yellow MTT to dark purple formazan. The 

dark purple formazan crystals accumulate in healthy cells due to their impermeability 

to cross the cell membranes. Liberation of the crystals is achieved by solubilisation of 

the cells, allowing for determination of the metabolic cell activity, as it is proportional 

to the concentration of formed crystals. The color of the formazan product can be 

quantified by colorimetric assays [179].  
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Figure 56: Principle of MTT-test: Reduction of water soluble, yellow colored 3-(4,5-
Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT)  to form water insoluble, violet 
Formazan.  

7.2.2.  LDH Assay 

Cell membrane damage can be used to quantify cytotoxicity of applied materials. Cell 

death is accompanied by cell membrane damage and irreparable loss of its integrity. 

Therefore cytoplasmic enzymes are released into cell culture supernatant. Due to this 

leakage lactate dehydrogenase (LDH) activity can be used to determine cytotoxic 

effects of administered material.  

 

LDH oxidises lactate to form pyruvate, and in parallel reduces NAD+ to NADH/H+. In 

a second step a catalyst transfers hydrogen from NADH/H+ onto the slightly yellow 

colored tetrazolium salt INT (2-[4-Iodophenyl]-3-[4-nitrophenyl]-5-

phenyltetrazoliumchloride), by thus reducing it to red colored formazan salt. The color 

of the formazan product can be quantified by colorimetric assays. The cytotoxicity is 

proportional to LDH released into the supernatant. The amount of released LDH 

correlates with the amount of formazan formed, and can therefore be used to quantify 

cytotoxicity of a defined cell number [179]. 

7.3. Chemical Structures 
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8. List of Abbreviations 
AAO:  Anodic Aluminium Oxide 

ACI:  Andresen Cascade Impactor  

API:  Active Pharmaceutical Ingredient  

AM:  Alveolar Macrophage 

CNT:  Carbon Nanotubes 

COPD: Chronical Obstructive Pulmonary Disease 

daer:  Aerodynamic Diameter 

DCM:  Dichloromethane 

dgeo:  Geometric Diameter 

DD:  Delivered Dose 

DPI:  Dry Powder Inhalers 

ED:  Emitted Dose 

EMEA: European Medicines Agency  

FDA:  Food and Drug Administration 

FITC:  Fluorescein isothiocyanate 

FPF:  Fine Particle Fraction  

GI:  Gastro Intestinal Tract 

INT:  (2-[4-Iodophenyl]-3-[4-nitrophenyl]-5-phenyltetrazoliumchloride) 

LbL:  Layer-by-Layer  

LDH:  Lactate Dehydrogenase  

MRI:  Magnetic Resonance Imaging 

MTT:  3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide   

MWCNT: Multi-walled Carbon Nanotubes  

NPs:  Nanoparticles 

PAA:  Polyacrylic Acid 

PAH:  Polyallylamine Hydrochloride  

PC:  Polycarbonate 

PEs:  Polyelectrolyte 

PS:  Polystyrene 

PSD:  Particle Size Distribution 

PSS:   Poly (sodium 4-styrenesulfonate) 

QD:  Quantum Dots 
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SEM:  Scanning Electron Micrograph 

SWCNT: Single-walled Carbon Nanotubes  
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