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Abstract

Living cells are self-sustained units of organisms. Within cells
the complex interplay of a high amount of proteins and other
molecules relies on information that is encoded in the dna. The
self-organisation of cellular constituents might play an important
role in cellular activity. There is evidence for self-organization in the
cytoskeleton of cells where small numbers of interacting proteins
create patterns of a higher order. The cytoskeleton of muscles has
been shown to exhibit cyclic behaviour and wave patterns in absence
of regulatory mechanisms. This thesis provides evidence that the
experimental results can be accounted for by the self-organization
of cytoskeletal filaments and motor proteins. A microscopic model
exposes that the dynamics is excitable. Continuous descriptions of
muscles reveal a non-hydrodynamic mode that accounts for wave
generation. The phenomenological coefficients can directly be re-
lated to microscopic parameters. For this study, the principles that
underly spontaneous muscle oscillations are used in a conceptual
design of a simple self-driven swimmer at low Reynolds number.
The swimmer’s motion can self-organize into directed movement by
dynamically breaking the swimmer’s symmetries.



Kurzfassung

Lebende Zellen sind selbständige Untereinheiten von Organismen.
Innerhalb von Zellen beruht das komplexe Wechselspiel einer großen
Menge verschiedener Proteinarten und anderern Moleküle auf In-
formationen die in der DNA kodiert sind. Dabei könnte die Selbst-
organisation der Bestandteile von Zellen eine wichtige Rolle in der
zellulären Aktivität spielen. Es gibt Hinweise auf selbstorganisierte
Prozesse im Zytoskelett von Zellen wobei wenige verschiedenartige
Proteine miteinander wechselwirken und Ordnungsstrukturen erzeu-
gen. Im Zytoskelett von Muskeln werden oszillatorische Aktivitäten
und Wellenmuster beobachtet, ohne regulatorische Mechanismen.
Diese Arbeit findet Hinweise, dass die Selbstorganisation von Fila-
menten und Motorproteinen des Zytoskeletts die experimentellen
Ergebnisse erklären kann. Ein mikroskopisches Model zeigt zudem
die Anregbarkeit der Dynamik. In Beschreibungen von Muskeln als
kontinuierliches Medium kann eine nicht hydrodynamische Mode
identifiziert werden, die für die Wellenphänomene von essentieller
Bedeutung ist. Dabei können phänomenologische Koeffizienten mi-
kroskopischen Parametern zugeordnet werden. Die Prinzipien, die
zu spontanen Muskeloszillationen führen, werden in einer Konzept-
studie eines einfachen Schwimmers bei kleinen Reynolds-Zahlen
genutzt. Die Bewegung des Schwimmers kann sich von selbst in
einen Zustand gerichteter Bewegung organisieren indem sie die
Symmetrien des Schwimmers dynamisch bricht.
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Glossary

Acronyms

adp Adenosine-5’-diphosphate. Regenerates atp via endotherm phos-
phorylation. Thereby chemical energy is absorbed.

atp Adenosine-5’-triphosphate. Carrier of chemical energy. atp hydrol-
yses into adp via an exotherm dephosphorylation, which releases
free energy.

dna Desoxyribonucleic acid. Carrier of information that allows cellular
units to harbour life.

pH Measure for the acidity or basicity of a chemical solution. It is
defined as the negative logarithm of the effective concentration of
dissolved hydrogen ions H+ in a solution.

pi Phosphate group of the atp
 adp+pi reaction.

rna Ribonucleic acid. Transfer molecule for information that is encoded
through dna.

spoc Spontaneous oscillatory contraction of sarcomeres.

Names

actin Actin is an abundant protein in eucaryotic cells, which forms polar
polymeric filaments. Actin’s polymeric form is called F-actin.

auxotonic Myofibrils are subject to an external load that increases with de-
creasing myofibril length.

cilia Hairlike extensions of eucaryotic cells. A cilium contains a bundle
of microtubules.

contraction Process of force generation in muscles. Shortening and lengthening
depends on the external mechanical conditions on the muscle.
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Glossary

cytoskeleton Network of protein filaments that are transiently cross-linked by
proteins. Eucaryotic cells owe this network shape, stability and cell
movements.

desmin Highly elastic protein in the Z-disc of sarcomeres.

dynein Family of motor proteins, which advance along microtubules using
atp hydrolysis.

eucaryote Organism whose cells have a distinct nucleus.

flagella Protrusions of cells used for swimming in fluids.

in vitro Processes are taking place outside of an intact cell or organism in
an isolated environment.

in vivo Processes are taking place inside of an intact cell or organism.

isometric The total length of myofibrils is maintained constant.

isotonic Myofibrils bear a constant external load.

kinesin Family of motor proteins, which use microtubules for advancement
and force-exertion.

M-line Disc of proteins that connects myosin filaments in their bare zone
within sarcomeres.

micro-organisms Organisms that are very small. First observed by A. van

Leeuwenhoek in 1675.

Min Min proteins presumably self-organize into patterns in Escherichia
coli bacteria.

myofibrils Chains of sarcomeres in series. Bundles of myofibrils form muscle
fibres.

myosin Family of motor proteins advancing on actin-filaments (usually)
towards the plus-end.

non-processive Molecular motors detach after each power-stroke from the bind-
ing filament.

power-stroke Step of a molecular motor. Sometimes only related to the me-
chanical work performing substep.

xii



Glossary

procaryote Organism whose cells have no distinct nucleus.

processive Molecular motors perform several steps on their binding filament
before detachment.

reciprocal Cyclic motion that consists of a forward and a backward stroke,
whereas the backward stroke is identical to the forward stroke but
time reversed and possibly faster or slower.

relaxing solution In relaxing solution muscles’ elasticities are at rest and myosin
motors are not bound to actin.

rigor solution In rigor solution muscles are stiff like in rigor mortis. The solution
is atp depleted, hence myosin motors remain bound to actin.

sarcomeres Elementary structural units in striated muscles that can contract.

sarcoplasmic reticulum Special type of an endoplasmic reticulum, which con-
tains high levels of Ca2+. During muscle contraction Ca2+ is
released and during relaxation Ca2+ is absorbed.

sliding-filament The sliding-filament theory of muscle contraction: Filaments
composed of different proteins slide along each other while exerting
contractile forces.

titin Muscle constituive giant protein, which elastically connects the
Z-discs.

Z-disc Disc of proteins that anchors the plus ends of actin filaments within
sarcomeres.

Parameters

a Microscopic length scale of the order of the step size of molecular
motors.

d Distance between adjacent motors on a motor filament.

∆µ Difference in chemical potential of the atp 
 adp+pi reaction.
∆µ = µatp − µadp − µp.

E Elastic modulus of muscles.

η Viscosity of the swimmer’s surrounding fluid.
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Glossary

ηe Friction coefficient of the gel’s surrounding fluid.

f0 Force exerted by a single unloaded motor.

f̃ext Dimensionless parameter with f̃ext = ωb fext/(kv0).

γ Dimensionless parameter with γ = f0ωb/(Kv0).

K Elasticity constant of motors.

k Elasticity constant of half-sarcomeric elements.

κ Dimensionless parameter with κ = dk/ f0.

kB T Boltzmann factor. At room temperature kB T ≈ 4 pN nm with
temperature T = 290 K and the Boltzmann constant, kB = 1.38 ·
10−23 J K−1.

L Dimensionless parameter with L = ωb(`m + `p − `0)/v0.

`0 Resting length of passive half-sarcomere elements.

L0 Dimensionless parameter with L0 = ωb`0/v0.

`p Length of actin filaments.

Lrµ atp hydrolysis rate for a given ∆µ.

`m Half of the length of bipolar myosin filaments.

M Number of non-processive motors that form an effective motor.

ω0
off Unbinding rate of single force free motors.

ωon Binding rate of single motors.

Lσv Friction coefficient accounting for a gel’s dissipative stress.

Lσµ Measure of the contribution of active elements to a gel’s stress.

R Radius of the swimmer’s spheres.

Rl Dimensionless parameter with Rl = R/`0.

v0 Velocity of unloaded motors.

ξ Effective friction coefficient in half-sarcomere elements.

ζ Dimensionless parameter with ζ = ξωb/k.
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Glossary

Symbols

Ca2+ Ionized calcium is of major importance for signalling transduction
in cellular life. Cells use the ability of Ca2+ to induce changes in
protein conformations. For review, see [6].

ı Imaginary unit.

= Imaginary part of a complex number.

< Real part of a complex number.

∗ Quantities carying a star are in steady state and not evolving in
time anymore.

Variables

H Oseen tensor.

J Jacobian.

M Mobility tensor.

Q Fraction of bound motors.

r atp hydrolysis rate per unit volume and time.

ρ Density of a gel.

σ Inner stress of a gel.

v Local velocity of the gel’s constituents.

x Length of half-sarcomeres.

y Motor spring elongation.
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Chapter 1 Introduction

At the beginning of human progress stands the satisfaction of curiosity. Life
has been a subject of human curiosity at all times. Is life only a logical con-
sequence of physical laws? Does life follow general principles? Principles
that are as yet undiscovered? There is at least one principle that nourishes
the hope of becoming a general principle of life: Self-organization—through
the interaction of a small number of distinct proteins new dynamical patterns
form spontaneously. This concept is well known from the physics of non-living
matter. There is evidence that self-organization plays an important role in living
matter. In particular the cytoskeleton of cells is believed to incorporate such
principles. The cytoskeleton is a network of protein filaments that are transiently
cross-linked by proteins and is responsible for the cellular shape, shape changes
and cell movements. Cytoskeletal structures like cilia and flagella allow cellular
organisms to swim autonomously. In muscles the cytoskeleton generates the
force through the collective interaction of filaments and motor proteins. Muscles
are activated by external signals that result in an influx of calcium into the
contractile apparatus.

Muscle cells have been found to exhibit cyclic activity that is not triggered
by external signals and that is independent of calcium. Skinned cells show
regular sustained oscillations in length in environments that contain no calcium
but provide energy for the action of the muscles’ motor proteins. Under these
conditions regular wave patterns are observed. Waves appear at random, travel
some distance and disappear.

The study at hand explores the dynamic phenomena in muscles with distinct
approaches. Can spontaneously broken symmetries through self-organized
processes of a small number of proteins with distinct properties account for the
observed oscillatory and the wave behaviour?

Dynamically broken symmetries in the cytoskeleton presumably lead to the
swimming strokes of the cilia and flagella of micro-organisms. In a conceptual
design study a simple microscopic swimmer is presented. The swimmer is self-
sustained and has structural similarities to muscle components. Its composition

1



Chapter 1 Introduction

is much simpler than the composition of cilia and flagella, yet the swimmer can
self-organize into directed motion.

This theses begins with an introduction into the concept of self-organization in
nature in chapter 2. The strong evidence for self-organization principles in the
case of the cellular cytoskeleton is worked out in chapter 3. In particular the
experimental evidence for spontaneous muscle oscillations and wave phenomena
is introduced. In chapter 4 muscle fibres are described through symmetry
considerations and conservation laws as active gels. The basic dynamics of a
microscopic model of muscle fibres in comparison with the experimental results
are analysed in chapter 5. In chapter 6 predictions for all the possible dynamics
of the microscopic model are made. Chapter 7 introduces a conceptual design
of a self-propelled microscopic swimmer.

2



Chapter 2 What is life?

Natural sciences are a marvellous foundation for the satisfaction of curiosity of
the human mind. Life has attracted human curiosity for a long time in history.
Observations about nature are already a matter in the oldest document of the
occidental culture, in Homer’s epic in which a difference between living and
non-living matter is recognized. However, it was Aristoteles who made living
matter to a subject of scientific discourse. He is regarded as the father of the
science of biology [1]. Not until 1855 the concept of spontaneous generation of
life from non-living matter is rejected by R. Virchow in the work omnis cellula e
cellula. Virchow makes a fundamental point about living matter in his work:
Life is confined to cells and cells only originate from other cells like it. Cells are
units that are irritable and have a metabolism.

This attempt to define life points to an important issue: Cells cannot have
existed for all times. Cells must have developed at sometime in history from
simple constituents. Life is a changing process. Any definition of life changes
over time. A distinction of living and non-living matter nowadays does not
necessarily account for life forms that had existed a long time ago. The time
dependence is only one part of the problem of finding a clear definition what
life is: The differentiation of living from non-living matter blurs. Physiochemical
processes that are important for life are likewise found in non-living systems. In
order to bypass these problems I will not give a definition of life but rather a set
of properties of living matter. The properties are nonexclusive, i.e. a system that
lacks a property cannot be denied containing life.

These days life is confined to cells, which form a thermodynamically open
system. Cells are self-sustained and self-organized units. They process in-
formation from the extracellular world and have a metabolism. Single cells
and multicellular organisms reproduce and adapt themselves according to the
Darwinian theory of evolution.

From a physical perspective, life self-organizes into patterns that obey a
certain function in the living system [2]. The formation of patterns corresponds
to a higher orderliness in comparison to disordered systems. For the formation

3



Chapter 2 What is life?

of patterns the orderliness of living systems has to increase at the expense of a
decreased orderliness of the environment [3]. In systems that are subject to a
flux of matter and energy and that have the ability to reproduce with a low error
rate M. Eigen showed that the imbalance of orderliness and disorder becomes
maximal [4]. In this case dissipative structures can form [5].

In essence, life self-organizes into complex patterns. Natur’s principle of self-
organization will be subject in the following part.

Self-organization in nature

Self-organization is usually defined as the emergence of stable dynamical pat-
terns out of the collective behaviour of agents. Interactions of the agents lead to
structures of higher orderliness without externally provided information or con-
trol. The behaviour and the properties of the agents does not straightforwardly
imply the emerging patterns. Self-assembly occurs in thermal equilibrium
without dissipation of energy, while self-organization dissipates energy. In
self-sustained open systems such as living organisms presumably a complex
interaction of self-assembly and self-organization processes create dynamic
patterns. Many agents such as proteins, nucleic acids and lipids interact and
form dynamical structures, which single molecule interactions cannot account
for. For review see [2, and references therein].

For example, the formation of crystals and lipid bilayers are typical self-
assembled processes at thermal equilibrium. In open systems dissipative struc-
tures emerge by the usage of energy that flows through the system. Liquids
in temperature gradients give rise for Rayleigh-Bénard rolls [7, 8]. Beyond a
critical temperature, collective cyclic motion of particles emerges. In a mixture of
four chemicals, Belousov discovered in 1900 spontaneous spiral wave patterns.
Chemical kinetics and diffusion behave nonlinear and drive the Belousov-
Zhabotinsky reaction [9, 10]. The dynamic patterns are sustained only in open
systems [11] with a continuous flux of matter and energy through the system.
Turing suggested in 1952 the same spatial–temporal pattern forming principles
for the morphogenesis of organisms [12]. On the highly complex level of cells
and organisms the genotype cannot directly be mapped to one phenotype and
vice versa. The interaction of agents derived from the genom with agents deliver-
ing environmental signals can self-organize into distinct higher level structures,
i.e. distinct phenotypes.

4



2 What is life?

In order to indentify principles of self-organization in biology it is convenient
to concentrate on small subsystems, which are composed of a tiny number
of agent types. An entire cell’s interactions of agents are far too complex
for a direct analysis. Consider for example the Min system of bacteria, which
presumably plays a role in determining the middle of E.Coli cells. At least in vitro
it was shown that three Min protein types are capable of self-organizing into
dynamical structures [13]. Within the bacterium the same organizing principles
can initiate cell division at the right location [14]. The cytoskeleton of cells
provides another subsystem. There is evidence that ensembles of filamentous
structures and motor proteins exhibit self-organized behaviour in vitro and in
vivo. Such structures will be discussed in the following chapter.

5
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Chapter 3 Self-organized filament–motor
assemblies

Cellular organization is reminiscent of small chemical plants. Understanding
their organization principles is a major challenge. In order to support the
foundations of the assumption of self-organizing principles underlying cellular
orderliness this chapter concentrates on the cytoskeleton of cells. Components of
the cytoskeleton will be introduced and experimental evidence for cytoskeletal
self-organization will be provided. In particular I will concentrate on sponta-
neous cyclic activity of muscle cells.

3.1 The cytoskeleton

Procaryotic as well as eucaryotic cells have a cytoskeleton. The cytoskeleton is a
highly preserved concept of cellular life [15, 16]. Nature established a scaffold
within cells. Intracellular transport and structures rely on this skeleton. Cells
owe the cytoskeleton shape and the ability for shape changes, including cell
division and motion of cells. Any cell motion is mediated by the cytoskele-
ton. Interaction of cells with the extracellular world is unthinkable without a
cytoskeleton. Very likely it also participates in signaling. Flexibility in compli-
ance of entirely different duties demands for a high degree of complexity. A
network of filamentous protein structures remodels ceaselessly through other
proteins, which bind to filaments. The filaments can dynamically assemble and
disassemble.

Numerous filament binding proteins have plenty of different properties and
therefore enable the cytoskeleton to form complex dynamical structures. Motor
proteins are a special class of these proteins and are able to convert chemical
energy into mechanical work along filaments. Distinct kinds of eucaryotic
filaments and some of the motor proteins will be introduced in the following
section.
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3.1.1 Filaments

Eucaryotic cells are composed of four major types of filaments. Microtubules are
hollow cylinders with a high bending rigidity. Microtubules are responsible for
rigid plant cell walls, participate in mitotic cell division and cell movements:
Cilia and flagella are composed of microtubules. Furthermore, motors transport-
ing cell organelles often use microtubules as tracks. Intermediate filaments are
composed of two antiparallel helical strands with an overall smaller bending
rigidity in comparison to microtubules. Intermediate filaments can bear tension
and participate in cell shape maintenance. Actin filaments consist of a double
helix and have a low bending rigidity, for review see [17]. These filaments resist
tension and can also maintain shape. Most prominently, actin filaments are
jointly responsible for muscular force generation. The fourth filament type is
dna. As a carrier of information dna enables cells to synthesize cell constitutive
components. Motor proteins move along dna and translate the information into
compounds of specific molecules.

3.1.2 Molecular motors

Motor proteins convert chemical energy into mechanical work. Proton gradients
induce rotations in atp-synthases. Cytoskeletal motors bind to polar filaments
and hydrolyse energy carrier such as atp to gain chemical energy. Motors use the
power to propel themselves along filaments through large scale conformational
changes. Distinct types of motors use different types of filaments for binding
and walk in varying directions with respect to the filaments’ polarities. rna-
polymerases serve as an example of the many motors that bind to dna. They
are an executive part of the central dogma1 in biology. Polymerases bind to and
move along dna, thereby initiating the transcription process. The cytoskeletal
motors dynein and kinesin are microtubule associated. Dynein motors inter alia
are responsible for the beating of cilia and flagella, while kinesin motors are
important for cell division. Both motors are important players for the transport
of cargos. Actin associated motors are summarized as myosins. In cell motility
and presumably human hearing myosin plays a role. Most prominently, the
first discovered molecular motor myosin-II provides the driving force of muscle
contraction.

Myosin-II is a plus-end directed motor. A coiled-coil tail is attached to
myosin’s two heads, see figure 3.1. The motor’s cycle is explained in figure 3.2.
In a state where the motor is bound to actin, the hydrolysis of atp changes

1All known life nowadays relies on dna, which is transcribed into rna. The rna is partially
translated into proteins.
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3.1 The cytoskeleton

(a)

(b)

Figure 3.1 Myosin-II motor proteins. (a) Scheme of a myosin motor. The coiled-coil is
composed of two light chains that form the tail, which is attached to two globular
heads. (b) Electron micrographs of myosin-II motor proteins. Taken from [15].

the motor’s conformation. This power-stroke yields to a relative displacement
of motor and filament. According to the motor’s cycle, the whole myosin-II
molecule unbinds from the filament before the next power stroke can proceed.
Such behaviour is called non-processive, opposed to processive motors, which
perform several steps on a filament before unbinding. Two-headed motors
can hand over the task alternately between each head. Processive motors can
individually work effective, while non-processive motors usually operate in
ensembles. More information on myosin motors can be found in [18].

3.1.3 Motor descriptions

Early attempts to understand how nanometer sized objects can undergo directed
motion treat molecular motors as Brownian motors. Such objects rectify their
Brownian motion, for review see [21, 22]. According to the motors’ different
states as depicted in figure 3.2 for myosin-II, motor motion is also regarded
as a multiple state process in an aligned lattice. Different states correspond to
different conformations of a motor. In a special case where many motors are
coupled to an elastic element, it was shown that the motor ensemble is able to
experience spontaneous oscillatory displacements relative to the filament [23].
Hopping models for ensembles of motors presuppose motor advancement on
filaments. The microscopic origin is out of the scope of these descriptions. It is
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Figure 3.2 Myosin-II cycle. (a) Arrows indicate the likely cycle due to the rate con-
stants of the reactions [19, 20]. Starting upper left, unbound myosin’s conformation
changes through atp hydrolysis. The complex binds to actin and loses the pi group,
which induces a conformational change while being bound to actin. This step is
referred to as the power stroke. The conformational change enables removal of
adp. When an atp molecule arrives at the bound myosin, the motor is able to un-
bind from actin. (b) Chemical bonds of the cycle in a). Notation: A—actin and
M—myosin. Edited from [19].

rather the impact of the motor’s motion that is under consideration [24, 25]. In a
further step even more of the microscopic action of molecular motors is released.
Since molecular motors operate out of thermal equilibrium, phenomenological
descriptions treat motor action only as non-equilibrium processes [26].

3.1.4 Self-organized cytoskeletal structures in vitro

Biomimetic assays contain purified proteins in solution. An assay containing
bundles of kinesin motor proteins and microtubules has been shown to spon-
taneously form patterns in the presence of atp, see figure 3.3. At low motor
concentration the distribution of filaments is isotropic. Higher concentrations
induce spontaneous formation of vortices. Asters form out of vortices for even
higher concentrations. For very high concentrations, filaments bundle.

10



3.1 The cytoskeleton

Figure 3.3 Large scale pattern formation in a filament–motor assay for increasing
kinesin concentrations. The lowest concentration is in d) and increases from a) over
b) to c). (a) Asters and vortices. (b) Irregular lattice of asters. (c) Filaments bundle.
(d) Lattice of vortices. Taken from [27].

In the skin of fish keratocyte cells are important for wound healing. Frag-
ments of keratocytes presumably self-organize into crawling motion [28]. Actin
filaments in the front and myosin aggregations in the back can account for crawl-
ing. Waves of actin can lead to cell migration in Dictyostelium discoideum [29]
and Neutrophils [30]. Actin interacts with the cells’ plasma membranes. The
actin front can become unstable and forms spirals. On theoretical grounds about
cytoskeletal pattern formation, see [31].

Living cells are self-organized objects. Subsets of cell constituents presumably
self-organize into dynamical patterns with distinct associated functions. It
is likely that distinct subsets and patterns interact with each other yielding
complex dynamical structures. In systems biology a similar situation is under
consideration: Subsets of complex networks, network motifs, have distinct func-
tions and the motifs possibly interact and form highly complex networks [32].
Despite the strong evidence for self-organized subsystems, there is no scientific
satisfying proof of this sort of organization in cells. More experiments have to
be carried out to answer this challenging question. Here I provide evidence for
another class of pattern formation in a self-organized filament–motor system:
Spontaneous muscle activity. The following sections first introduce muscles and
than summarize the experimental evidence.
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3.2 Muscle — Machina carnis

Many life-forms actively move. For thousands of years animal motion was vir-
tually tied to muscles. For thousands of years humans have been exploring [33]
the machina carnis2. Nature’s concept of a specialized force generating tissue is
highly conserved among the animal kingdom. Practically every macroscopic
motion of animals and humans is based upon muscle contraction. This section
is dedicated to introduce muscle tissue. For review see [34].

Muscles generate traction based on the interaction of myosin-II and actin.
Muscle types can be divided roughly into two classes: Smooth and cross-
striated muscles. Smooth muscles are responsible for involuntary motion during
digestion and blood flow regulation. Within this work smooth muscles will be
of no concern any further. Striated muscles sub-divide into cardiac and skeletal
muscles. Both form more or less distinct fibres with a typical striated structure,
see figure 3.4.

(a) (b)

Figure 3.4 Striated muscles. Electron micrographs adapted from [15], originally a
courtesy of R. Craig. (a) Heart muscle cells. Arrows indicate typical misalignments.
(b) Skeletal muscle fibres are very regular.

Muscle fibres consist of bundles of myofibrils. Myofibrils are composed of
a regular almost crystalline arrangement of interdigitating actin and myosin
filaments. A cross section of insect fibrils in figure 3.5a reveals a hexagonal
arrangement of thin (actin) and thick (myosin) filaments. Both types of filaments
are aligned in parallel, see side view in figure 3.5b. Two dark discs composed
of many distinct proteins, the Z-discs, confine sarcomeres and account for the
cross-striation of these muscle types. Sarcomeres are the elementary structural
and force generating units of muscles. Within sarcomeres another protein disc,
the M-line, connects the thick filaments.

2Machina carnis (latin): Carnal machine.
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Figure 3.5 Myofibrillar composition. (a) Cross section of an insect myofibril. Thin (actin)
and thick (myosin) filaments are arranged in a hexagonal lattice. Adapted from [15,
35]. (b) Side view of a muscle fibre, which is composed of several myofibrils. Z-discs
correspond to the striation in figure 3.4 and confine a sarcomere. Bright regions are
composed of thin (actin) filaments, dark regions are composed of thick (myosin)
filaments and in very dark regions both filament types overlap. The M-line connects
the centres of mass of the thick filaments. Micrograph adapted from [36], originally
a courtesy of R. Craig.

A side view on a striated muscle myofibril is schematically depicted in
figure 3.6. Actin filaments’ plus ends are joint to the Z-discs. Myosin motors
form bipolar filaments with the motors on both ends heading outwards. The
motor filaments are linked together by the M-line in their bare, i.e. motor
free, middle zone. Z-discs are connected via the giant protein titin, which goes
through the myosin filament. During muscle contraction motors bind to actin
filaments advancing towards actins’ plus ends. Sarcomeres are shortened since
both filament types are relatively stiff. Filaments slide along each other giving
rise to the sliding-filament mechanism [37–40] of muscle contraction. Shortening
is restricted by the filaments’ lengths, since the protein discs are impenetrable.

What is titin’s role in muscle contraction? The titin proteins assure the
structural integrity of sarcomeres upon external forces. These can overstretch
sarcomeres so that actin and myosin filaments lose overlap, leaving the sarcom-
eres disabled. Titin provides elastic restoring forces against stretch, see figure 3.7,
which increase nonlinearly with the amount of stretch. Other proteins contribute
to the sarcomere’s elasticity: Myosin motors that are bound to actin and waiting
for an atp molecule in order to detach from the filament are strongly bound
and the myosin’s elastic tail contributes. A major source of the Z-disc’s elasticity
is provided by the protein desmin. Although actin filaments are regarded as stiff
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Figure 3.6 Sarcomere scheme. Actin filaments’ (red) plus ends are connected to the
Z-discs. Myosin motors form bipolar filaments (blue), which are connected by the
M-line. Titin (gray) belts the structure connecting both Z-discs.

in this context, the bonding to the Z-disc provides a source of elasticity for the
sarcomeres. Bending of actin during contraction is also elastic. All these elastic
components contribute to muscle’s well known elasticity [41].

Striated muscles’ structure is highly preserved among vertebrates and inver-
tebrates. Empirically, such generic structures show up in different implemen-
tations. The average sarcomere length varies roughly from 2 . . . 3 µm. Resting
lengths vary. Insect flight muscles, for example, have a huge overlap area of
actin and myosin filaments in the inactive state. Strengths of elasticities as well
as contraction speeds also vary. Nature preserves the structure but it takes the
liberty to adopt muscle properties to specific situations.

How is muscle action regulated under physiological conditions? At least
one way of regulation is well established [42, 43]: Relaxation and contraction
is triggered by free Ca2+. Either through an electrical stimulus of the muscle’s
enclosing sarcoplasmic reticulum or by mechanical stretch, muscle fibres are
flooded with Ca2+. Incoming Ca2+ binds to troponin proteins that are attached
to actin. A conformational change in troponin affects tropomyosin proteins,
which wrap actin filaments and block the myosin binding sites. Subsequently,
tropomyosin proteins free the myosin binding sites. Myosin motors can bind to
actin and the muscle starts to contract. Besides Ca2+, adp, pi and the pH value
can, at least partially, activate muscles.

In 1949 Pringle found that neural excitation and activity of insect flight
muscles are asynchronous. This response is related to muscles’ unexpected
response to stretch. Under physiological conditions a stretch can partially
activate contraction, which is temporally limited and Ca2+ independent. This
effect is barely understood. Recent works, however, suggest tension sensing
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3.2 Muscles

Figure 3.7 The force–extension curve of titin is highly nonlinear according to [36].

capacities of proteins, highlighting titin [44], which allows sarcomeres to actively
regulate their contraction. A missing link between mechanical stimulation and
chemical signaling is disclosed.

Experiments on muscles are carried out at three standard conditions. Having
isolated muscles, fibres and myofibrils yields the question of how to measure
forces or how to observe the structures under a microscope. Usually fibrils are
winded up on micro-needles and are held under either isometric, isotonic or
auxotonic conditions. Isometrically fixed fibrils are kept at a constant length,
which is not necessarily the fibril’s resting length. Applying a constant external
load to a fibril corresponds to isotonic conditions, increasing its load as a
function of the fibril’s length to auxotonic conditions. The latter condition has
the functional dependence and the initial load at the fibril’s resting length as
degrees of freedom.

Throughout this work the terminology concerning active muscles follows
the suggestions of Faulkner in [45]. Contraction will be used exclusively for
the process of force generation of muscles. These forces act on external loads.
Possibly, contraction is accompanied by length changes of muscles, depending
on the boundary conditions. The interaction between the generated force and
the external load can either shorten or lengthen muscles or end up with no length
change (isometric). Contractile forces are always directed so that muscle shortens
when external loads vanish.
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Muscles behave surprisingly different under partial activation. In the following
section a set of experiments will be presented, showing that striated muscle
fibres show spontaneous cyclic motion.

3.3 Spontaneous muscle oscillations

In 2004, the appearance of two ground-breaking works on muscle contraction
was celebrated: Half a century before, the sliding-filament mechanism of muscle
contraction [46, 47] had been established. Filaments composed of myosin and
actin that slide along each other were found to be responsible for muscular
force generation. Usually, muscle activity is either deliberately or unconsciously
controlled. At microscopic scales such controlled activity is regulated by external
stimuli of cells. In any case, muscles are found to contract without external
stimuli. In the following section such activity shall be illuminated, highlighting
spontaneous oscillatory activity. The section will close with previous attempts
to explain this behaviour.

3.3.1 Cyclic contractions and waves

Striated muscle cells show spontaneous activity in vitro. Cells contract and
relax macroscopically in a regular and repeating fashion [48–55]. The source of
energy for the activity is the hydrolysis of atp. Muscle oscillations continue on
time scales that are large compared to the cycle’s period. These periodic con-
tractions are a manifestation of intrinsic oscillations of the Ca2+ concentration.
When the Ca2+ concentration suddenly rises towards physiological levels, cells
are completely activated and contract. Full activity follows a decreasing Ca2+

concentration, which relaxes muscles due to its elastic elements. Intracellular os-
cillations of Ca2+ concentrations are well known, for review see [56]. Stochastic
behaviour of channels, which depend on the Ca2+ concentration, in combination
with Ca2+ buffers can lead to calcium oscillations [57]. Channels open at low
and close at high concentrations. Cooperative behaviour of channels rapidly
increases the concentration. Channels start to close, while the buffer absorbs
Ca2+ on larger time scales via actively pumping channels. In the experiments
mentioned above, the sarcoplasmic reticulum, which acts as a Ca2+ reservoir [58]
and shows Ca2+ dependent release of Ca2+, has not been removed. Thus peri-
odic contractions are attributed to self-organized oscillations of calcium through
the sarcoplasmic reticulum and therefor shall not be subject to this work any
further.
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Mechanically or chemically skinned muscle fibres, which certainly have lost
their sarcoplasmic reticulum, still exhibit cyclic contractions. The fibres are disas-
sembled except for the essential structural elements of the contractile apparatus
that is illustrated in figure 3.6. Experiments starting in the 1970’s on isolated
fibres find spontaneous muscle oscillations [59–75] using sub-micromolar con-
centrations of Ca2+. The amount of Ca2+ that is externally added is below
physiological levels of full activation. Importantly, during activity the mem-
brane potential and the ionic strength are constant. There is no change of free
Ca2+ concentration at all during the oscillations. Precisely the same results are
obtained under comparable calcium conditions but adding adp above physi-
ological levels [76–78]. Recently, such oscillations have been observed as well
after sudden Ca2+ removal [79–82] from myofibrils without other additives.
These experiments seem to be closely related to those experiments that use
sub-micromolar Ca2+ concentrations. Similar results are found under conditions
where no Ca2+ is present at all. Instead, non-physiological pH-values [83–85]
are used. Spontaneous oscillations are found likewise without Ca2+ but with
adp and pi concentrations above known physiological levels [68–71, 74, 86–92].
Remarkably, oscillatory activity exists even in reconstituted myofibrils [91].
Actin filaments in skinned myofibrils are dissolved including actin regulatory
proteins. Later on, actin filaments reassemble from actin monomers in bulk
solution. These reconstituted myofibrils without actin regulatory proteins show
spontaneous oscillations.

Besides the different chemical conditions used, in all experiments the chemi-
cal environment is held constant. For the duration of the experiments no change
and least of all oscillations of Ca2+ or pH can be detected. The atp, adp and pi
ratio is held constant by means of a continuous flow of a prepared solution in a
flow chamber. It is now generally accepted that all applied chemical environ-
ments lead to an intermediate level of muscle activation [68, 74]. Oscillations
are also observed in intact myofibrils, which are partially active between the
state of contraction (full activation) and relaxation.

A temporal asymmetry between the contraction and relaxation duration is
a general feature of the cyclic activity. The sarcomere length oscillates with a
typical saw-tooth like shape, see figure 3.8. Slow shortening is followed by a
rapid lengthening phase. The distinct time scales of contraction and relaxation
share similarities with the behaviour of typical relaxation oscillators. Character-
istic oscillation periods are of the order 1 . . . 10 s. Amplitudes reach values up
to 30 % of the resting length under relaxing conditions, which corresponds to
amplitudes up to 0.5 µm. Insect flight muscles show significantly lower oscilla-
tion amplitudes but much higher frequencies. Oscillations in good experimental
setups can be maintained for up to an hour.
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Time (s)

(a)

(b)

Figure 3.8 (a) Showcase recording of typical spontaneous muscle oscillations. Sarcom-
ere length is plotted versus time. The length is an average from several sarcomeres.
Adapted from [90]. (b) Oscillations of heart muscles of different mammals with
distinct frequencies and equal amplitudes [72]. Each curve is an average of three
adjacent sarcomere lengths. A set of three curves is shown in different colors.

Spontaneous muscle oscillations are a general phenomenon observed in
striated muscles. Cardiac and skeletal muscles of mammals are used for ex-
periments as well as skeletal muscles of amphibians and insect flight mus-
cles. All muscle types have in common that they are composed of chains
of sarcomeres. Indeed, oscillations are measured by analyzing in vitro the
dynamics of short myofibrils, while individual sarcomeres are periodically
contracting and relaxing. More precisely, half-sarcomeres are the elementary
oscillators [82, 86–88]. Although the elementary structural units of muscles are
sarcomeres, half-sarcomeres are the elementary functional units, which show
spontaneous oscillations.

Can oscillating half-sarcomeres that are arranged in a chain in series, see
figure 3.6, interact or synchronize so that new global phenomena emerge? On
the one hand sarcomeres are found to oscillate asynchronously [70, 86] within
myofibrils. On the other hand, spontaneous oscillations in synchrony [89, 90]
are observed. There is evidence that the different states can be triggered by
external chemical conditions and/or externally applied forces. However, the
vast majority of works that identified oscillations, also find relaxation waves:
Shortening and lengthening phases of adjacent sarcomeres are slightly shifted.
The lengthening, i.e. relaxation phase, clearly propagates along myofibrils, see
figure 3.9.
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Figure 3.9 Spontaneous relaxation wave in an isolated myofibril. In each box the length
of a sarcomere is plotted versus time, while the sarcomeres in series are labelled
from 1 to 10. Adjacent sarcomeres oscillate similarly in length but are slightly phase
shifted. A wave propagates towards adjacent sarcomeres [72].

In cells where the sarcoplasmic reticulum is still present and active, waves
are found [55, 93–95] and are understood by means of propagation of Ca2+

oscillations via sarcoplasmic reticula [96]. Calcium waves induce contraction
waves. In the experiment shown in figure 3.9 the sarcoplasmic reticulum had
been removed and the myofibril spontaneously shows wave patterns.

Spontaneous waves of contraction and relaxation are observed using sub-
micromolar concentrations of Ca2+ [61, 62, 65, 66] and with sudden removal
of Ca2+ [79–82]. The most prominent protagonist for spontaneous waves is
certainly the Ishiwata laboratory, which named the spontaneous oscillatory
contraction spoc. They find waves with sub-micromolar Ca2+ concentrations [68–
75] (Ca-spoc), as well as under high concentrations of adp and pi [68, 69, 71,
74, 86–89, 91, 92] (adp-spoc). Waves usually propagate over several adjacent
sarcomeres along myofibrils. These waves nucleate spontaneously within fibrils
at random, propagate some distance and disappear. Sometimes waves travelling
in opposite directions collide and disappear at the collision point. Waves start in
nucleation points and propagate in both directions along the fibril. Occasionally,
waves emerge at the left or right end of the myofibril and propagate through
the whole fibril. Neither the nucleation site nor a waves’ propagation direction
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Figure 3.10 Muscle relaxation waves observed in isolated myofibrils. Intensity (I) of a
phase contrast microscopy recording versus space (X) and time (T) is shown. Waves
emerge at random within the fibril and propagate in different directions. The scale
bar is 10 µm. Taken from [88].

is determined or controllable. The emergence of waves seems to be spatially
and temporally at random, while a sort of coupling allows for temporary wave
trains. A snapshot of such activity can be found in figure 3.10.

Admittedly, these waves are poorly characterized, despite the huge effort
gone to in order to observe them. Numbers about wavelengths are rare, statistics
about wave trains are not available to the best of my knowledge. Neither a quan-
tification of the location of the emergence of waves has been made. However,
wavelengths are of the order of 100 µm , which corresponds to approximately
40 sarcomere lengths [72].
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Finally, I will make a remark concerning the mechanical boundary condi-
tions of myofibrils in the experiments that observe oscillatory behaviour. In
all experimental setups myofibrils are held between micro-needles. One of the
micro-needles is stiff while the other one is chosen according to one of the
three standard experimental conditions for muscle fibre research, which were
introduced in section 3.2: Either the fibril is held at a constant overall length
(isometric) or the fibril bears a constant external load (isotonic) or the external
load depends on the fibril length (auxotonic), usually obeying Hook’s law of elas-
ticity. Although details of the results differ under distinct mechanical boundary
conditions, the major results of spontaneous oscillations and wave propagation
remain unaltered. Interestingly, intact fibrils, which are not held in place by
micro-needles, contract only once. When a relaxing solution3 is exchanged by
any partially activating solution fibrils shorten towards their minimum length,
see [86]. In this case no length oscillations are observed.

In the following section I will give a short sketch on available theoretical attempts
that try to identify mechanisms, which account for the experimental results.

3.3.2 Available models for muscle oscillations

Self-organized oscillations in cell biology are quite common [97, 98]. Examples
are circadian clocks, which are of genetic origin, or spatiotemporal protein
concentration oscillations in bacteria like the Min system. Vertebrate hair cells’
cytoskeleton can oscillate and are presumably important for hearing. In general,
ensembles of cyclically working molecular force generators, connected to elastic
elements, are capable of generating spontaneous oscillations [23]. A stationary
state’s symmetry is broken spontaneously through a Hopf-bifurcation. Such
mechanical oscillations have been proposed to account for wave generation in
flagellar and ciliary beats [99–101]. These mechanisms might play a role in
mitotic spindle oscillations during asymmetric cell divisions [25].

Based on different implementations of the cross-bridge cycle of muscle
myosin, reviewed in [19], various attempts to explain spontaneous muscle
oscillations have been made. Three-state models of the myosin cycle account
for a lot of muscles physiology, including oscillatory behaviour on the level
of isolated half-sarcomeres, see [102, and references therein]. Usually, the
results, which rely on the cross-bridge cycle, are very sensitive to the cycle’s rate
constants, which are not very well known. One study that explicitly implements

3In relaxing solution muscles are relaxed, i.e. motors are unbound. In the opposed rigor
solution, muscles are stiff. Motors are bound like in rigor mortis due to atp depletion.
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the myosin cycle in terms of ordinary differential equations finds periodic
states [103]. The states neither account for saw-tooth like oscillations nor for
wave generation in chains of oscillatory elements.

Theoretical work on the wave phenomena focuses on synchronization effects
of chains of coupled Hopf-oscillators [104]. Only a global coupling of oscillatory
elements through a mass allows for synchronization effects. Rich phase diagrams
of synchronous and asynchronous states are found. Any motivation for a
resonant inertial load in the experiments sketched in section 3.3.1 is missing.
Flexible micro-needles transmit forces only and are not in resonance with
oscillating elements, which has been counterchecked in several experimental
setups.

In a further study a spatial gradient of sarcomere tension capacity is nec-
essary for wave phenomena [105]. The gradient accounts for force creep and
delayed length activation of adjacent sarcomeres causing synchronization, which
ultimately yields coherent contraction waves. The existence of such a gradient is
currently not supported by any experiment.

Sarcomeres are able to oscillate spontaneously in length. Cyclic shortening and
lengthening of adjacent elements is phase-shifted and yields the impression of
propagating waves. This behaviour is independent of species and the type of
striated muscle. Wave phenomena are a generic capacity of striated muscles.
The chemical environment is held constant at non-physiological as well as
physiological conditions. Cyclic patterns rely on active processes driven by
the hydrolysis of atp. In summary, these experiments provide strong evidence
for self-organized behaviour, which leads to the emergence of new dynamical
structures. To date there is no consistent theory available that accounts for the
wave patterns. In order to understand the phenomenon, the following chapters
will not cover individual experiments. It will be rather general mechanisms
identified, which lead to the observed behaviour. The descriptions will pay less
attention to the microscopic differences of distinct striated muscle types, but
respect the structural similarities of all striated muscles. In a first attempt, the
following chapter provides a phenomenological description, which is based on
symmetry considerations and on conservation laws.
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Chapter 4 Phenomenological description
of muscle fibres

Generic theories, which rely on phenomenological parameters only, are enor-
mously tempting. This class of theories describe empirical observations of
natural phenomena. Very often in physics such theories form the starting point
of a deeper understanding of their origin. Examples are the Rutherford model
before quantum mechanics was thought of or the second law of thermodynam-
ics before Boltzmann and others started thinking about statistical mechanics.
The theories’ catch is that the microscopic origin of the phenomena remains
concealed. Occasionally, connections between the microscopic behaviour and the
phenomenological manifestation is found as in the Ginzburg-Landau theory of
superconductivity, which can be derived from the microscopic BCS theory.

Muscles are a complex system of many interacting molecules and proteins.
Which of all possible interactions are important for muscle action is not well un-
derstood. Whether all major molecular players are already identified is likewise
unclear. For muscle oscillations the microscopic details are less important, since
this behaviour is generic for striated muscle types. Obviously, a good start to
approach muscle oscillations is a phenomenological description, which ignores
microscopic causes to a large extend.

Life tries to escape the second law of thermodynamics by active processes.
From a thermodynamic perspective, myofibrils in the experimental setups form
an open system at constant temperature. Exchange of energy for active processes
occurs in form of a reservoir of atp, whereas no further particles are exchanged.
Consequently, the search for a phenomenological description implicates an
exploration out of thermal equilibrium.

In the following section a generic phenomenological description of active polar
gels will be sketched, following [26, 106, 107]. Explicitly for muscle fibrils such
a description will be deduced in section 4.2 yielding an equation of motion for
striated muscles as a continuous material.
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4.1 Generic description of active polar gels

Understanding the cytoskeleton of cells is a major challenge. For much simpler,
yet still complicated compositions of locally cross-linked polymers, several
advances have been made [108, 109]. Phenomenologically both systems exhibit
visco–elastic properties and therefore are denoted as gels. The cytoskeleton is a
spatially extended system consisting of protein filaments, which are transiently
cross-linked by proteins. Proteins can be active, i.e. they are out of thermal
equilibrium and dissipate energy. Most prominently, motor proteins convert
chemical energy into mechanical work. Cytoskeletal filaments are commonly
polar and alignment towards similar polarity on large length scales is possible.
Thus, gels can be polar and active. Conceivably, such gels exhibit complex and
unusual mechanical responses to stress and strain.

On large length scales and long time scales such complex materials can be
treated as a continuous medium [26, 110, 111], which is described by generic
hydrodynamic theories. These kinds of theories have been successfully applied
to complex fluids, crystals, liquid crystals and polymers and it is coherent to
expand these ideas to active polar gels. Correspondingly, the generic description
is derived following standard procedures.

In isothermal equilibrium systems the free energy F has a minimum. Without
external influences, the rate of change of the total entropy S vanishes in this
case. Non-equilibrium processes drive the system away from this state, thus
dS/dt 6= 0. In order to quantify the rate of change of the total entropy it is
necessary to define a free energy for non-equilibrium systems. The rate of
change of this free energy is often expressed through generalized fluxes jg and
forces f g. Fluxes are generated by the forces,

−T
d
dt

S ≡ −TṠ = Ḟ(ϕ1, . . . ,ϕn) =
n

∑
i=1

δF
δϕi
· ϕ̇i ≡

n

∑
i=1

f g
i · j

g
i , (4.1)

with functions ϕi defining the free energy and T as the system’s temperature.
Purely dissipative fluxes and forces do not change the sign of the product f g · jg
upon time reversal t → −t, while reversible processes implicate the opposite
sign. Restricting the description of the gel’s behavior to the linear response
regime, each flux and force can be written as a simple sum of a dissipative and
a reactive (reversible) component. Linear responses can be expected close to
thermal equilibrium. Along the line of linear response, both types of fluxes are
expanded in terms of the forces according to the Onsager theory, jgi = ∑k Lik f g

k .
The behaviour of the product of fluxes and forces upon time reversal demands
that some of the coefficients Lik vanish.
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4.1 Active polar gels

Besides the active response, the passive response of the gel is taken into
account. Further use of general conservation laws for each fluid component [112]
results in a purely phenomenological description. Finally, the system’s response
to perturbation of the equilibrium state can be analysed.

How can a free energy in a non-equilibrium system be defined? Non-
equilibrium thermodynamics distinguishes between slow and fast variables.
The latter are taken to be equilibrated here, but can be incorporated as noise
terms [113]. A quasistatic change allows for the assumption of local equilibrium:
The system is subdivided into small volume elements. Each element is small
compared to the whole system, but large enough to allow for a thermodynamic
description. The single small volume elements are supposed to be in thermal
equilibrium. A free energy F of the whole out of equilibrium system is given by
the sum of the free energies of the elements. Each local equilibrium free energy
can be written as a sum of internal energy and local entropy. The rate of change
of the system’s whole entropy is given by the rate of change of the system’s
whole free energy F, since the internal energy vanishes. The assumption of local
thermal equilibrium is appropriate only in the limit of large length and long time
scales. More specifically, in the case of hydrodynamic modes [114] with the wave
number q, which relax with a characteristic time s ∝ q−2, the approximation
above is applicable. Conservation laws are associated with hydrodynamic modes.
In addition, every transition yielding a broken continuous symmetry is related
to the emergence of hydrodynamic modes [115].

Active processes are of special importance in the description. Life’s use of
atp as an energy source for active processes is remarkably conserved. The free
energy, which is transduced into mechanical work by the hydrolysis of atp into
adp and pi, can be interpreted as a chemical driving force, which powers protein
activity. Such an activity force is characterized via the difference in chemical
potential ∆µ = µatp − µadp − µp. Note that ∆µ is only a measure for the gel’s
activity if none of the reactants are chemically active with other constituents
of the gel. Myofibrillar oscillations have been observed being altered by pi,
alongside the energy transduction process, see section 3.3.1.

In its present form, the generic theory of active polar gels [26, 107] takes tem-
perature as a constant parameter. On a cellular level this may apply, but there
are exceptions on the level of tissues. Bundles of muscle fibres heat up during
contraction. Extensions to non-constant temperatures need to be performed.

The general framework of the generic theory for active polar gels will be used
to approach muscle oscillations. Since muscles have certain special properties
some adaptations to the framework will be carried out. Myofibrils are chains
that are composed of recurring half-sarcomeres with alternating alignment. The
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Chapter 4 Phenomenological description of muscle fibres

filament orientation is fixed within half-sarcomeres. Consequently, on large
length scales myofibrils form a non-polar gel. The objective of the following
section is to phenomenologically describe myofibrils as an active gel, which
extends effectively in one dimension. The gel is described as a one component1

complex fluid.

4.2 Hydrodynamic theory of muscle fibrils

First and foremost, a hydrodynamic theory has to identify its hydrodynamic
modes. Either conserved quantities or a broken continuous symmetry yield
hydrodynamic modes. Muscle fibrils are substantially one-dimensional. Within
a fibril the alignment of all filaments is fixed with respect to each other. Unlike
dynamically remodeling actin–myosin networks, in muscles there are no rear-
rangements of filaments during contraction. Filaments only actively slide along
each other. Thus, myofibrils do not exhibit any broken continuous symmetry.
Three quantities are conserved: Fibril mass, momentum and energy. Denoting a
fibril’s density of protein discs by ρ and their local velocity with v, the continuity
equation yields

∂tρ + ∂zρv = 0 , (4.2)

while z is the spatial coordinate along the myofibril. The length scale z is large
in comparison to the average half-sarcomere length. Momentum conservation
with an externally applied force density fext implies

∂tρv− ∂zσ = fext , (4.3)

in which σ denotes the inner fibril stress. Since the motion of myofibrils is highly
dampened, inertia cannot play a significant role. Consequently, in equation (4.3)
the term ∂tρv vanishes so that internal stresses are balanced by external forces.
Experiments on myofibrils are carried out in flow chambers. The continuous flow
of a prepared solution with known chemical ingredients thermodynamically
acts as a heat bath. Consequently, the fibril’s temperature T is constant and
energy conservation is not an issue.

In order to specify the gel’s equation of motion the different contributions to
the stress σ have to be identified with the help of a free energy. Non-equilibrium
states allow for a non-vanishing rate of change of the gel’s total entropy and
its free energy. Above all, active processes unbalance thermodynamic systems.

1Two or more component fluids are definitely conceivable. Here, the gel’s surrounding water is
incorporated as an external source of friction.
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4.2 Hydrodynamic theory of muscle fibrils

Assuming local thermodynamic equilibrium, the rate of change of the free
energy can be written as a sum of generalized fluxes, each multiplied with its
conjugate generalized force,

TṠ = −Ḟ =
∫

(σ ∂zv + r ∆µ) dz > 0 . (4.4)

The stress σ is chosen as one generalized flux, which is conjugate to the force
∂zv, the rate of strain. The second flux, the atp hydrolysis rate r per unit
volume and time, is conjugate to the difference in chemical potentials ∆µ.
Expression (4.4) takes the translational and rotational invariance of the gel
into account. According to the muscles’ normal regime of operation, fibrils
contract due to the relative sliding of actin and motor filaments. Free sliding
is restricted by the impenetrability of the half-sarcomeres’ delimiting protein
discs. By restricting myself to the regime of free sliding, the gel is assumed to
be compressible and its pressure vanishes.

In the linear response regime it is possible to split up Ḟ into a reversible part
and an irreversible component. Reversible means that the free energy changes
sign upon time reversal t→ −t. Consequently, the fluxes can be decomposed
into a reactive and a dissipative part, since equation (4.4) holds. Respectively,
σ = σr + σd and r = rr + rd, the superscripts r and d denote the reactive and
the dissipative component.

In order to proceed further I will expand the respective components of the
fluxes in terms of the generalized forces up to linear order. The forces’ behaviour
under time reversal is ∂zv→ −∂zv and ∆µ→ ∆µ. Dissipative components of the
fluxes have the same sign as their conjugated forces under time reversal, while
reactive components have the opposite sign. That is, the dissipative products of
fluxes and forces in expression (4.4) are invariant, while the reactive products
have the opposite sign through time reversal, yielding

σr = −Lσµ ·∆µ (4.5)

σd = Lσv · ∂zv (4.6)

rr = −Lrv · ∂zv (4.7)

rd = Lrµ ·∆µ . (4.8)

This expansion introduces phenomenological coefficients whose microscopic
origins remain concealed. Active processes through the action of molecular
motors contribute to the gel’s stress for which Lσµ defines a measure. Internal
friction accounting for dissipative stress is elucidated by Lσv. The atp-hydrolysis
rate for a given difference of the reactants’ chemical potential is quantified by
Lrµ. By symmetry, Lrv = −Lσµ, according to the Onsager relations.
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Chapter 4 Phenomenological description of muscle fibres

By means of striated muscle’s structure the overlap of actin filaments and
motor filaments depends on the tissue density. For constant ∆µ, the active stress
increases with increasing density. Consequently, Lσµ is expanded up to linear
order in ρ, yielding

Lσµ = L(0)
σµ + L(1)

σµ · ρ . (4.9)

So far, the contributions of active elements to the stress are specified so
that the equations (4.5)–(4.8) provide the constitutive equations for an active
myofibrillar gel. The passive response of the gel for ∆µ = 0 accounts only for
dissipative contributions. Muscles contain elastic elements, which maintain
the structural integrity of the sarcomeres. Elastic contribution to the overall
stress in the active fibril must not be neglected. On long time scales muscles
response predominantly elastic. On short time scales motor molecules detach
and rebind subsequently. Proteins acting in such a manner give rise for a viscous
response [116, 117] of the fibril. This internal friction is taken into account by
the expression for σd in equation (4.6).

How is the elastic contribution taken into account? Different responses on
distinct time scales can be modelled with standard rheological elements. The
Kelvin-Voigt element exhibits an elastic response on long and a predominantly
viscous behaviour on short time scales, see figure 4.1. In a Kelvin-Voigt element
a linear spring acts in parallel with a dashpot so that both stress contributions
can simply be added. Correspondingly, with an elastic stress σe, which is related
to the gel’s density by an elastic modulus E and the equilibrium density ρ∗, so
that σe = Eρ/ρ∗ − 1, the reactive stress is finally given by σr = −Lσµ ·∆µ + σe.

elastic

dissipative

G(a)

1/time

(b)

Figure 4.1 Muscle response to external stress. (a) Linear response G of muscle fibrils on
different time scales, schematically. On long time scales an elastic (black) response
dominates, while on short time scales the system’s response is mainly viscous (blue).
(b) Kelvin-Voigt element. A linear elastic element and a dashpot act in parallel. The
element’s linear response complies with the response sketched in a).
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4.2 Hydrodynamic theory of muscle fibrils

All contributions to the overall stress σ are specified. In order to obtain the
gel’s equation of motion from the momentum conservation in equation (4.3), the
fluid that surrounds the gel has to be taken into account. In a one-component
description, the surrounding fluid is treated as an external source of friction.
Without further external contribution and denoting the friction coefficient with
ηe, the fluid friction implies that ∂z fext = −ηe∂tρ/ρ∗. With the help of the
relation ∂zv = ∂tρ/ρ∗ the time evolution of deviations from the equilibrium
distribution ρ∗ finally reads

ηe∂tρ =
(

E− ρ∗ ∆µ L(1)
σµ

)
· ∂2

zρ + Lσv · ∂t∂
2
zρ . (4.10)

Analysis of the gel’s stability with the ansatz ρ(z,t) = ρ∗ exp(ıqz + st),
which contains the wavenumber q and the complex time scale s, results in the
dispersion relation

s = −q2 E− ρ∗ ∆µ L(1)
σµ

ηe + q2Lσv
. (4.11)

Any perturbation of the equilibrium state will grow iff E − ρ∗ ∆µ L(1)
σµ < 0,

leading to a high density state. For this to happen, stress generated by active
processes has to overcome the elastic stress. This holds for large2 length scales
(q→ 0). Density oscillations, however, are impossible, since s is always real3.

Why does the visco–elastic gel not oscillate? For one thing, there is no reason
to assume that the observed muscle oscillations operate in the linear response
regime, e.g. close to the thermodynamic equilibrium. The description of the
gel given above is an expansion around equilibrium states up to linear order.
Muscle oscillations can be far out of the range of validity of this approximations.
One might argue for higher order terms in other linear expansions. Any higher
order term in the expansion of the density dependence of the activity dependent
stress Lσµ in equation (4.9) leads to a nonlinear partial differential equation of
motion. This would introduce nonlinearities in an inconsistent way since the
whole theory is restricted to the linear response regime.

All hydrodynamic modes have been identified. There are no further conserved
quantities. Thus it is reasonable to associate the emergence of spontaneous waves
with the existence of essentially non-hydrodynamic modes. However, for the

2Small length scales are out of scope of this continuous description. On such scales the system
becomes independent of friction, which is unphysical.

3The continuity equation in expression (4.2) simply determines the velocity v and cannot
induce oscillations in overdampened media.
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Chapter 4 Phenomenological description of muscle fibres

time being one may only speculate about the nature of the non-hydrodynamic
modes. Still, answering this question serves as a motivation for the following
chapter. The chapter will devise a microscopic description of muscle myofibrils.
Anticipating its success in spontaneous wave generation, it may provide clues
to answering the remaining open question in section 5.4.
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Chapter 5 Microscopic description

Myofibrils are chains of half-sarcomeres, which are the force generating units.
Each unit’s contractile forces are generated collectively by ensembles of molec-
ular motors. Collective actions can lead to the emergence of self-organized
dynamical structures. The objective of this chapter is to explain spontaneous
muscle oscillations and myofibrillar wave phenomena as a consequence of the
action of many myosin-II motors. Correspondingly, microscopic details of each
motor will be less important. The model will not and cannot account for all of
the muscle’s features, since the validity is restricted to isolated myofibrils and
the corresponding conditions in the experiments.

What about a simple, inertia based description? The vanishing importance
of masses and inertia for the muscle oscillations have already been mentioned
in chapter 4. The relevance of inertia for motion that occurs within a fluid with
a certain density and viscosity is captured by the Reynolds number. Any moving
object within a fluid is associated with a certain speed and a characteristic length
(size). The fraction of relative importance of inertia forces and friction forces
defines the Reynolds number,

Re ≡ length · speed · density
viscosity

. (5.1)

At low Reynolds number friction forces dominate over inertia forces and vice
versa. The amplitudes of sarcomere oscillations reach the order of µm with
length changes up to 10 µm/s. Assuming an inner myofibrillar fluid density
comparable to water and a viscosity that is ten times higher than in water, the
Reynolds number yields Re ∼ 10−6. Advancement is dominated by friction,
any motion is highly overdampened. Thus, oscillations are not simply generated
by resonant inertia.

This chapter exposes a distinct mechanism for cyclic activity. First and foremost,
symmetry based considerations on muscular force generation shall be given.
Thereafter, a microscopic model for a half-sarcomere will be introduced. Its
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Chapter 5 Microscopic description

dynamics reveal spontaneous cyclic shortening and lengthening. A chain of half-
sarcomeres self-organizes into propagating waves. Finally, a non-hydrodynamic
mode will be identified, which allows for waves on macroscopic length scales.
No attempt will be made to quantitatively match the model to a specific experi-
ment. Rather general mechanisms shall be identified. Therfore parameter values
are chosen according to typical values for partial activation, see appendix A.1.

5.1 Simple homogeneous chain of force generators

Early muscle research provided two break-through insights. Firstly, muscular
forces are produced by myofibrils, which are composed repeatedly of contractile
subunits in a regular manner. Secondly, these subunits have a length dependent
overlap of thin (actin) filaments and thick (myosin) filaments. Current knowl-
edge about the microscopic composition of myofibrils and recent experiments
suggest that half-sarcomeres are the elementary contractile units [82, 86–88].

In a first simplistic model, myofibrils shall be represented by one-dimensional
chains, which are composed of identical force generating units. Coupling
between the elements is rigid, see figure 5.1. Each element i has a certain length
xi. The contractile forces generated within each element shall only depend on
the element’s length, so that its force can be written as f (xi). Contractile forces
are balanced by friction forces ff. In the simplest case friction hampers length
changes and is expressed as ff = −ξ ẋi with a friction coefficient ξ. Without
external forces acting on a chain of n elements, the equations of motion read,

ξ
dxi
dt
≡ ξ ẋi =


−2 f (x1) + f (x2) for i = 1
−2 f (xi) + f (xi−1) + f (xi+1) for 1 < i < n
−2 f (xn) + f (xn−1) for i = n .

(5.2)

Inertia forces can be neglected. Consequently, momentum conservation reduces
to force balance and there are no second order time derivatives in the length. A
linear stability analysis reveals at least one surprising result: Such a chain will
never contract homogeneously so that xi(t) = xj(t) for all i,j, see appendix C.1.
Any small heterogeneous perturbation of the stationary state will grow. Pertur-
bations of an element’s stationary length alter this element’s contractile force
f (x). The force of an adjacent element and therefore the rate of change of the
element’s length is different due to the length dependence of the contractile
forces. Such an initial imbalance of forces grows further.

The same can be expected to happen in relaxed muscles that undergo activa-
tion. Activating all elements of a chain of perfectly identical half-sarcomeres at
once, contraction between neighbouring elements, at least, will be asymmetric.
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5.2 Half-sarcomeres

x i -1 x i x i+1

x i -1f(     ) x i -1-f(     ) x if(   ) x i-f(   ) x i+1f(     ) x i+1-f(     )

Figure 5.1 Chain of identical subunits. Each subunit i exerts a length dependent force
f (xi) to its neighbour element.

Owing to their structure, muscles are unstable. Furthermore, the simplistic
model above with a simple length dependent contractile force cannot oscillate.
Length oscillations in muscles may rely on microscopic grounds, which are
intrinsic to half-sarcomeres. Consequently, the following section will set up a
model for half-sarcomeres, which includes the major microscopic constituents
that are responsible for muscle function and force generation.

5.2 Half-sarcomere element

Muscle contraction is a collective process of many molecular motors. Details
of a single motor’s state are only important to the extent of its contribution to
the contraction process. In this spirit, molecular motors will be treated as force
generators, neglecting the motors’ internal states according to the myosin cycle.
Consequently, motors can be in two states, either a motor is bound to an actin
filament or it is not.

The model incorporates the two major constituent filament types: A motor
filament and a polar filament interdigitate, see figure 5.2. In the overlap region
of both filaments contractile forces can be generated, which act against elastic
elements. Motors are attached to a backbone with equal spacing d between
adjacent motors. Each motor is elastically linked by a spring of stiffness K
and extension y. In the region of overlap of the motor backbone and the polar
filament, motors stochastically bind to and unbind from the polar filament with
rates ωb and ωu, respectively. Specific binding sites of the actin filaments are
neglected so that the motors can bind everywhere on the polar filament. Bound
motors unidirectionally advance with velocity v. Eventually, moving motors
pull the motor-backbone along the polar filament and act against a linear elastic
element of stiffness k. The latter elasticity accounts for the passive elasticity of
muscle tissue. Shares of this generalized elastic term come from the proteins
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Chapter 5 Microscopic description

Figure 5.2 (a) Composition of a half-sarcomere. (b) Schematic representation of the
half-sarcomere model. A filamentous backbone to which motors are linked to and
a polar filament, which motors can interact with, constitute the element. Motors
are attached elastically to the backbone with stiffness K and with equal spacing
d between adjacent motors. In regions where both filaments overlap, motors can
bind and unbind with the rates ωb and ωu, respectively. Bound motors move with
the velocity v on the polar filament. Eventually, the element’s length x changes by
moving motors, which elongate their spring extension y and thereby act against an
elastic element of stiffness k.

titin and desmin, see section 3.2. Myosin-II proteins that are bound to actin
filaments but do not move also account for muscle elasticity. For simplicity I
assume a linear elastic response of the element. Denoting the rest length of the
element’s elasticity by `0, the elastic force then reads fe = −k(x− `0), where x
is the element’s length.

While the element is submerged in a fluid and operates in the low Reynolds

number regime it is reasonable to assume that friction plays a central role in the
element’s movements. Friction in muscle tissue results from hydrodynamic fric-
tion with the surrounding fluid and from protein-protein friction. In particular,
motors can contribute to friction by means of temporal non-advancing binding
to actin filaments [116, 117]. Passive bound motors, which do not actively pro-
duce forces, hamper length changes of the element. Nonetheless, such motors
can detach and rebind. Such processes reflect currently discussed ideas for the
understanding of friction in general on a molecular level [118]. Thus, length
changes of the structure shall be accompanied by a friction force ff = −ξ ẋ,
where ξ is an effective friction coefficient. Here again, I use an expression, which
takes all sources of friction into account by one effective friction term. In general
ξ depends on the fluid’s viscosity η. Hydrodynamic interactions are excluded at
this point and will be discussed in chapter 7.
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5.2 Half-sarcomeres

5.2.1 Collective motor force

Forces produced by motors are of intrinsic stochastic nature. By describing
muscle action as a collective process of many motors acting together, it is a
reasonable approach to approximate the dynamics via continuous expressions,
which neglect fluctuations due to stochastic effects. In order to derive such
expressions for the motor force, I follow some ideas introduced in [25] for the
description of mitotic spindle oscillations.

A motor in the overlap region of the motor backbone and the polar filament
can bind to the polar filament with rate ωb and unbind with rate ωu. In general
these rates depend on the forces acting on the motors. Kramers rate theory gives
a first approximation for the fraction of both rates subject to external forces [119].
Motivated by experiments on single myosin motors [20, 120, 121] I restrict the
force dependence to the unbinding rate so that ωu ∝ ω0

u exp (| fme|a/kB T). Here,
the force fme is mediated by the spring, to which the motor is attached to, so
that fme(y) = Ky. On a microscopic length scale a, the force fme gives rise for
the performed work, which is normalized by the thermal energy kB T at room
temperature.

In order to find an expression for the motor force I first consider a single
motor i, which is bound to the polar filament. Its spring extension yi changes
due to its own velocity v on the polar filament and due to changes in the length
of the whole element ẋ so that

ẏi = v(yi) + ẋ . (5.3)

The velocity of each motor is likewise force dependent. For simplicity, but in
agreement with experiments on myosin motors [20, 122, 123], I use a linear
force–velocity relationship: v(yi) = v0 · (1− fme(yi)/ f0). Unloaded motors have
velocity v0 and heavily loaded motors have a stall force f0. The expression for
the velocity v(yi) is only well defined for processive motors, which walk for a
certain time on a filament. Given the highly non-processive nature of muscle
myosin-II, expression 5.3 can only be used for bundles of myosin-II proteins.
Bundles of non-processive motors mimic processivity of the bundle through
subsequent action of different non-processive motors, which are attached to the
bundle. Indeed, experiments measuring force–velocity curves are carried out
using bundles of myosin-II motors instead of single myosin-II proteins. Thus
from now on a motor in the model corresponds to a bundle of myosin-II motors.

Formally, the collective motor force fm is expressed as a sum over all contribu-
tions from motors, which are able to interact with the polar filament. Interaction
is possible for the N motors, which are in the overlap region of motor and polar
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Chapter 5 Microscopic description

filament. The motor force is given by

fm = −
N

∑
i=1

σi · fme(yi) = −K
N

∑
i=1

σi · yi (5.4)

with σi =
{

1 motor i is bound
0 motor i is not bound

.

In the spirit of collective processes, which should not depend on fluctuations
of single motors, a first approximation is to neglect fluctuations of the spring
extension of single motors. Therefore, I replace yi by its expected value, so that
yi → 〈yi〉. Further, I assume that all bound motors have the same expected
spring extension 〈yi〉 ≡ y for all i.

Consequently, in this mean-field description the remaining sum in the ex-
pression of the motor force, ∑i σi, equals the number of bound motors. The
fraction of bound motors Q is given by Q ≡ ∑i σi/N and the corresponding
probability density of bound motors Pb(y,t) then reads Pb = Q(t) · δ (y− yi),
see appendix B.1. The expectation value is given by 〈◦〉 ≡

∫
◦Pb(yi,t)dyi. For a

consistent use of the approximations above it is necessary to reconsider equa-
tion (5.3) in the light of averaging the yi,

〈dyi
dt
〉 = 〈v(yi)〉+ 〈ẋ〉 (5.5)∫

ẏiPb(yi,t)dyi = Q · (v(y) + ẋ) . (5.6)

The time derivative term ẏi on the left hand side cannot be evaluated by deducing
an expression for the rate of change of the averaged y. Instead, I use yet another
substitution. The differential rate of change ẏi is substituted by the elongation
yi divided by the average time that motors stay attached to the polar filament,
which is given by the unbinding rate ω−1

u , so that

y ·ωu(y) = v(y) + ẋ . (5.7)

The time evolution of the binding probability Q is derived from the ele-
ment’s associated Fokker-Planck equations, see appendix B.1. Fast relaxation
of unbound motors in comparison to rebinding times is taken into account.
Experimentally measured rebinding times exceed relaxation times of myosin
elasticity by up to five orders of magnitude [20]. Eventually, the fraction of
bound motors evolves according to

Q̇ = (1−Q) ·ωb −Q ·ωu . (5.8)
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5.2 Half-sarcomeres

The fraction of bound motors Q increases with rate ωb by binding of unbound
motors and decreases with rate ωu via unbinding of bound motors. Conse-
quently, the collective motor force reads

fm = −N(x)QKy , (5.9)

where N depends on the length x of the element. By restricting the dynamics
to states with an overlap between motor and polar filaments, x ≤ `p + `m with
the length of the polar and motor filament denoted by `p and `m, respectively,
and to element lengths that are longer then any of the concerned filaments,
x ≥ max(`p,`m), implies1

N(x) = (`p + `m − x)/d. (5.10)

After all, the active motor force fm and the elastic force fe balance with the
friction force ff and possibly by a constant external force fext,

fm + fe + ff + fext = 0 . (5.11)

Inertia forces are negligible due to the strong damping of any movement. Motion
is completely specified by the equations (5.7), (5.8) and (5.11). Yet introduction
of an average spring extension y is redundant in determining the length of the
element x from the elongation y. Only one of the two length variables is needed
to describe the element’s dynamics. Eventually, the equations of motion read,
see appendix B.2,

Q̇ = (1−Q) ·ωb −Q ·ωu (5.12)

ẏ =
g(y)(QKy− dk)2/d− Q̇Ky

[
fext − k(`p + `m − `0)− ξg(y)

]
ξ(QKy− dk)g′(y) + KQ

[
fext − k(`p + `m − `0)− ξg(y)

] , (5.13)

with g(y) = v0 [Ky/ f0 − 1] + y ·ωu(y), while the element’s length reads

x(Q,y) = `0 −
(
`p + `m − `0

)
QKy− d fext + dξg(y)

dk−QKy
. (5.14)

The latter algebraic expression for x = x(Q,y) is only valid for QKy 6= dk. In
the case QKy = dk, the element’s dynamics is independent of its length. For

1An expression for N(x), which implicitly restricts x to max(`p,`m) ≤ x ≤ `p + `m would
demand a sort of hard core potential at the minimum length and a non-continuous drop to N = 0
for the maximum length. Alternatively, the constraints on x can be modeled as hybrid dynamical
systems, which describe the system via switching realizations [124]. Both approaches are hard to
analyse according to general principles of the dynamics.
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arbitrary lengths x within the possible regime, motor forces are exactly balanced
by the elastic restoring force, so that

x(t) = x(t0) + ξ−1 ( fext − (`p + `m − `0)k
)
· t . (5.15)

Sufficiently large external forces lengthen the element otherwise it is short-
ening. Both expressions in the equations (5.14) and (5.15) are limited to
max(`p,`m) ≤ x ≤ `p + `m.

Ensembles of motors that act together can be described by the formalism intro-
duced above. Myosin’s attachment rates to actin and detachment rates from
actin are known from single molecule experiments. Whole ensembles of myosin
motors, however, have different binding and unbinding rates than the single
motors that form an ensemble.

5.2.2 Ensemble average

Bundles of non-processive motors form an effectively processive motor. In
sarcomeres, approximately 1000 myosin filaments act in parallel, each allocating
in average three actin filaments. Myosin motors can only bind to special binding
sites on actin filaments. The sites are evenly spread on the actin filaments.
Consider a sarcomere, which is cut into slices of thickness d. Assuming an
even distribution of myosin motors on the myosin filament, each slice contains
a limited number of motors. Each motor can bind to an actin binding site
only within a certain limited range around the motor’s equilibrium position.
The number of motors that can interact with actin in each slice reduces to
M motors, which form an bundle. A bundle of motors has different average
binding times on filaments than the single motors of the ensemble. With single
motor attachment and detachment rates ωon and ωoff respectively, the whole
bundle binds to and unbinds from a filament with rates ωb and ωu respectively,
according to [125, 126]

ωb = M ·ωon (5.16)

ωu(y) = ωb ·
[(

ωon

ωoff(y)
+ 1
)M
− 1

]−1

. (5.17)

Single motors are force dependent so that the detachment rate of a single motor
depends on y,

ωoff(y) = ω0
off · exp (|Ky|a/kB T) . (5.18)
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5.2 Half-sarcomeres

Detachment rates of single motor molecules ω0
off in the absence of external

forces are measured experimentally via the average time motors stay attached
to actin filaments. Attachment rates ωon are deduced from the time these mo-
tors stay detached from actin filaments. The fraction of time a single motor
molecule is bound to an actin filament defines the duty ratio. It is a classifica-
tion measure of a motor protein’s processivity. A bundle’s unbinding rate is
approximately an exponentially decreasing function of the force on the bundle
ωu ∝ ω0

u exp (| fme|a/kB T). Correction terms vanish for large forces.

The half-sarcomere element’s equations of motion are completely specified. The
following sections reveal the dynamics of the element including a comparison
to the experimental results.

5.2.3 Spontaneous oscillations of half-sarcomeres

What is the dynamics of the half-sarcomeric element capable of? In order to
understand the dynamics, first and foremost the static behaviour has to be
probed2. In the proximity of steady states tools like linear stability analysis can
be used. In combination with numerical solutions of the equations of motion a
picture of the possible dynamics assembles. Standard analysis tools of non-linear
dynamics can be reviewed in [127–129] and will not be introduced here.

First and foremost, the half-sarcomere element has steady states, which will
be denoted with a star (∗) attached to the corresponding variables. The binding
probability is stationary for

Q∗ =
ωb

ωb + ωu(y∗)
, (5.19)

while the motor’s average spring elongation is stationary for either Q∗Ky∗ = dk
or g (y∗) = 0. The former possibility will be discussed in chapter 6. In the latter
case the steady y∗ is implicitly given by

0 = g (y∗) = [Ky∗/ f0 − 1] · v0 + y∗ ·ωu(y∗) . (5.20)

The steady length of the element x∗ (Q∗,y∗) is obtained using the equations (5.14)
and (5.15). For certain parameter values, this length can be unphysical, so that
max(`p,`m) ≤ x∗ ≤ `p + `m is violated. These parameter values are rejected.

Astonishingly the stationary state (Q∗,y∗) is determined by the subset of
physical parameters, which are related to single effective motors: The state

2Finding an analytic solution for the equations of motion is challenging up to impossible due
to the inherent nonlinearities This is a general problem in theories about biological systems.
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depends on the binding and unbinding rate ωb and ωu, the motor’s elasticity
constant K, its velocity v0 and stall force f0, the fraction a/kB T, which scales the
force dependence of the unbinding rate, and the number M of motors forming
an ensemble. All remaining parameters, such as the lengths defining the element
(d, `p, `m and `0) as well as the element’s elasticity constant k and the external
force fext determine the element’s stationary length x∗.

What about the stability of the stationary states? The states are stable against
external perturbations but can become unstable for certain parameter values:
The element’s length can oscillate spontaneously. An oscillatory instability
occurs when two conditions are fulfilled, see appendix B.3: Q∗Ky∗ < dk and
ωb + ωu(y∗) < y∗ ω′u(y∗). On the left hand side of the former condition is the
force that one single motor exerts. On the right hand side is the change of elastic
restoring force fe when the element’s length changes by d so that x∗ → x∗ ± d.
Thus, shortening of the element by a length d gains one more motor in the
overlap region of motor and polar filament. This motor helps shortening the
element counteracting the increased restoring force. The condition demands
that the restoring force exceeds the additional motor force. Motors must be
weaker than the elastic force. The second condition highlights the importance
of the force dependence of the rates. Both conditions are necessary but not
sufficient for oscillations.
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Figure 5.3 Typical spontaneous oscillations. (a) Saw tooth like shape of slow shortening
and rapid lengthening. (b) Fraction of bound motors. (c) Elongation of the motor
spring extension.

I will try to give an intuitive picture of the process that drives the periodic
contractions. In figure 5.3a the typical saw tooth like shape of the length
oscillations is shown. A rapid lengthening phase follows a slow phase of
shortening. In an element’s state that is close to the elasticity’s resting length `0
motors are barely subject to pulling forces. Motors bind to the polar filament,
contract and eventually shorten the element. Subsequently, the element’s internal
tension rises. In a high tension state, eventually a few motors detach, while the
remaining ones bear the same overall load. Due to the exponential increase of the
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5.2 Half-sarcomeres

unbinding rate of the remaining motors, inevitably an avalanche of unbinding
events occurs, see figure 5.3b,c. The element rapidly relaxes due to the elasticity.
Motors start to rebind without immediate unbinding and the cycle restarts. Now,
the condition above is more clear: Would the motors be stronger than the elastic
restoring force, the element would simply contract to its minimum length.

Repetitively a fast lengthening phase follows a slow shortening phase, which
points to a separation of time scales. Such oscillations are generally known as
relaxation oscillations and ubiquitous in models of biological phenomena [98,
130–132].

Figures 5.4 and 5.5 provide insight to the parameter dependence of the
element’s states. Asymptotic states as a function of the element’s elasticity
constant k and an external force fext are shown in figure 5.4a: Muscles have a
nonlinear elastic response [36, 133]. Stretched muscles are stiffer than relaxed
muscles. Under experimental conditions (isometric, isotonic or auxotonic, see
section 3.2) myofibrils are stretched by an external force. The element has
stable stationary states, see figure 5.4c, where motor forces, elastic forces and
external forces balance. Beyond a critical value k = kc with kc = kc( fext), the
state becomes oscillatory, see figure 5.4b. Weak elasticities can lead to a state,
where the element is maximally shortened, see figure 5.4e. Further shortening is
prevented by the impenetrability of the element’s restricting discs against the
filaments. For large external forces the motor and polar filament can also lose
overlap, so that the element is overstretched, see figure 5.4c. The coexistence of the
latter two states is possible in the bistable regime. By approaching the border line
between the oscillatory and the maximally shortened state, oscillation become
confined by the restricted minimum elongation of the element. The constraint
destroys the periodic contractions. The singular point, where all state separation
lines meet each other, is a consequence of the simplification of a linear change of
the number of motors in the overlap region and a linear change of the element’s
elastic restoring force. Within this point all forces balances for any arbitrary
length x of the element3. Non-linear motor and elastic forces would spirit away
this singularity.

Why does bistability occur? Below the singular point the motors are stronger
than the elasticities, Q∗Ky∗ > dk. In the bistable region it is possible that
shortening towards the minimum length occurs because the increase of the
number of motors cannot be balanced by the elasticity. External forces, however,
can contribute to counteract an initially small number of motors in the overlap
region and finally overstretch the element. Note that the equations of motion

3Within the singular point I encounter an anholonomy effect, which is an example for a Berry

phase in the theory of differential equations. For review, see [134].
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Figure 5.4 Half-sarcomere states. (a) Phase diagram indicating stationary, oscillatory,
maximally shortened, overstretched and bistable regimes as functions of an external
force fext and the element’s elasticity k. (b) Oscillatory state, schematically. (c)
Stationary state, schematically. (d) Overstretched state, schematically. (e) Maximally
shortened state, schematically.

presented here are only applicable in the red (stationary and oscillatory) region
of the diagram where max(`p,`m) ≤ x ≤ `p + `m.

Another parameter space cut is shown in figure 5.5. Variations of the rate
ωon and the friction coefficient ξ can induce oscillations: The binding rate of
myosin-II depends on the pi concentration, the pH value and is most affected by
the Ca2+ concentration, see section 3.2. Friction can indirectly also be controlled
in experiments. In the flow chambers highly viscous media can be used. Besides,
the atp concentration alters the element’s friction. Myosin needs atp to detach
from actin. Low atp concentrations increase the number and the average time
myosin motors stay bound waiting for detachment. Inactive, i.e. post power-
stroke, bound motors hinder the ongoing motion of the whole motor filament.
This is nothing else than friction against length changes of the element and is an
example of general ideas about protein-protein friction [116–118]. In the state
diagram in figure 5.5, strong friction does not allow for periodic contractions.
Inevitably, high binding rates lead to maximal shortening, where low rates allow
for cyclic contractions. Experiments that vary the pi concentration find stationary
states for low binding rates and oscillatory states with increasing binding rates,
see section 3.3.1.
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Figure 5.5 Phase diagram of the element’s asymptotic states as a function of the friction
coefficient ξ and the single motor attachment rate ωon.

Experiments are nicely reconstructed through the state diagrams in the
figures 5.4 and 5.5. Stationary and overstretched states are observed for high
external stretching forces. Force free myofibrils are reported to simply shorten
to their minimum length. Subsequent stretching induces macroscopic, saw-
tooth like oscillations of sarcomeres. In theory the state diagram suggests that
oscillations in this case set in by crossing the border line between the maximally
shortened state and the oscillatory region. Borderline crossing can happen far
from the oscillatory instability and therefore can be saw-tooth like. Periodic
contractions are impeded when maximally shortened. External forces increase
the length and macroscopic oscillations set in. Bistability, however, has not been
reported so far in the experiments. On the one hand the initial conditions are
hard to control and it is possible that bistability has been overseen. On the other
hand it is not clear how much the bistable region in figure 5.4 is affected by
non-linearities that are certainly present in myofibrils.

Spontaneous muscle oscillations have been established experimentally as
an intermediate state between full activation and relaxation of muscles [68, 74].
Both theoretical state diagrams show oscillatory states sandwiched between
stationary states and maximally shortened states.

To what extend do parameter values influence the oscillations? Close to
the oscillatory instability the numerically obtained oscillations are sinusoidal
with a small amplitude and the frequency matches the critical frequency, see ap-
pendix B.4. Experimentally observed amplitudes are macroscopic and saw-tooth
like, indicating that the muscle’s state is not close to an oscillatory instability.
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Chapter 5 Microscopic description

Therefore, I numerically analyse the influence of parameter values, which can
be experimentally controlled, on the element’s state apart from the oscillatory
instability. In addition to the parameters discussed in the figures 5.4 and 5.5 the
motors’ elasticity K is varied. This elasticity has been found to be susceptible
to the pH value and the Ca2+ concentration of the surrounding medium. The
rate ω0

off depends on the atp concentration, see the motor cycle in section 3.1.2.
Ultimately, different striated muscle types have different resting lengths `0.
Amplitude and frequencies vary with the parameters as shown in table 5.6.

Parameter ↑ k fext ωon ξ K ω0
off `0

Amplitude ⇑ ↓ ⇑ ↓ ↑ ↓ ⇓
Frequency ⇑ ↑ ⇓ ↑ ↑ ↑ ⇑

Table 5.6 Change of the element’s oscillation frequency and amplitude with varying
parameter values. Upward pointing arrow corresponds to an increase while down-
ward pointing means a decrease in value. Single-lined arrows is up to a moderate
change while double-lined arrows indicates a very sensitive response. All parameter
values are increased, while the frequency and amplitudes behave as indicated. The
respective reverse holds for decreasing parameter values.

Noteworthy, the element’s oscillatory state is quite robust against variations of
parameter values. In the following section the robustness of the oscillatory state
in the presence of noise will be shown.

5.2.4 Stochastic simulations

Binding and unbinding events of motors are of intrinsic stochastic nature.
Here, I reject the mean-field approximation that neglects distributions of the
motor’s spring elongations. Consequently the binding probability Q is subject
to fluctuations. In appendix B.5 the procedure is described in detail. Here, the
main results in comparison with the mean-field theory will be discussed [135].
All parameter values are identical in the simulation and in the mean-field
description.

In figure 5.7 a typical simulation in the oscillatory regime is compared with
the corresponding mean-field solution. In both cases the elements’ lengths
oscillate with a saw-tooth like shape. The fraction of bound motors shows the
typical fast drop and its recovery. Figure 5.8 shows a histogram of the length
distribution of the spring extension of bound motors. Only a small fraction
of all available motors participate in contraction, which is general a property
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5.2 Half-sarcomeres

Figure 5.7 (a) Stochastic simulation of an oscillating half-sarcomere element. The
binding probability Q is shown in black, the element’s length x is shown in red.
(b) The same situation like in a) in the mean-field limit.

of ensembles of low duty ratio motors. The asymmetry of the the bell-shaped
distribution results from the active motion of the motors.

,

0.025

0.05
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Figure 5.8 Distribution of the spring extension y of motors. N/Ntot is the fraction of
motors participating in contraction. Asymmetry in the bell-shaped distribution is
presumably due to the motors’ active motion on the polar filament.

Oscillations are robust in the presence of noise. The ability of cyclic contractions
is intrinsic to the element due to its composition. In order to back up the rele-
vance of the model for muscle contraction two physiological effects of muscles
will be discussed: Stretch activation and shortening deactivation, see [34].
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5.2.5 Stretch activation

Stretch activation4 of muscles [78, 136] is observed in all types of striated muscles.
In heart muscle research, stretch activation accounts for the Frank-Starling

law: A sudden stretch and release of myofibrils show a typical response curve
in the myofibrils’ tension as depicted in figure 5.9. On a short time scale the
response is elastic due to the elements’ and the motors’ elasticities. Instead
of a decreasing tension due to motor unbinding events and the subsequent
loss of elements bearing elastic energy, a delayed rise in tension is observed,
which drops as expected after some time. The molecular mechanisms for stretch
activation have not been identified yet. However, it is known that motor activity
increases with fast stretching.
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Figure 5.9 (a) Stretch activation response of the half-sarcomeric element. A bell-shaped
external force during the duration indicated in yellow stretches the element. A
subsequent increase of the number of available motors by 5% for the time indicated
in red results in a typical two maxima response curve. (b) Experimental recording
of stretch activation shows the typical two maxima in the response curve. Taken
from [137].

The half-sarcomere model, in its native version, shows no (and cannot
show any) stretch activation. Stretch does not activate more motors. However,
increasing the number of available motors by hand by 5% at the time a stretch
sets in, yields a typical response curve, see figure 5.9.

4Motor activation via stretching can be induced by tension sensitive Ca2+ channels. Here, Ca2+

independent activation of the contractile apparatus is considered.
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5.2.6 Shortening deactivation

Intuitively reasoning muscular force should increase with shortening sarcomeres.
The shorter, the more motors can participate in contraction. This is observed
for fully activated muscles. Partially activated muscles are found to reach
maximal forces for longer sarcomere lengths [75, 92, 138]. Figure 5.10a shows
data of active forces plotted against sarcomere length for different levels of
muscle activation. Barely activated muscles have low active forces and are bell-
shaped. With increasing activity, the left edge of the bell becomes steeper and
eventually vanishes. The half-sarcomere element shows a comparable response
for partial activation, see figure 5.10b. Externally probing the overall force
reveals a maximum, which is not close to the element’s shortest length. The
active force of shorter elements is balanced by passive restoring forces.
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Figure 5.10 Shortening deactivation. (a) Experimental data of various concentrations
of Ca2+, i.e. distinct levels of activation. The curves represent the average course
of the data points. Blanc circles correspond to the lowest level of activation. Higher
levels of activation have higher maximal active forces. The active force is obtained
by subtracting the resting states elasticity from the active states overall force. Edited
from [75]. (b) Showcase curve from the model. Elastic forces at rest are lower than
in the active case, where motors shorten the element. Correspondingly, the tension
decreases.
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In the following section several half-sarcomere elements will be coupled to a
chain. This composition puts the model in a position for direct comparison with
the experiments that find spontaneous waves.

5.3 Chains of half-sarcomeres

x i -1 x i x i+1

Figure 5.11 Chain of half-sarcomere elements. Each element is rigidly coupled to its
neighbour to mimic a myofibrillar chain of half-sarcomeres.

Myofibrils are chains that are composed of half-sarcomeres. Leftward head-
ing motors alternate with elements with motors heading in the opposite direc-
tion. Macroscopic contractions are possible since adjacent half-sarcomeres are
rigidly coupled together. Chains of rigidly coupled half-sarcomeric elements
reflect such a composition, see figure 5.11. Correspondingly, the force balance
equations for n elements reads

0 = (1 + bd) ( f m
1 + f e

1 )− ( f m
2 + f e

2 ) + f f
1 (5.21)

0 = 2
(

f m
j + f e

j

)
−
(

f m
j−1 + f e

j−1

)
−
(

f m
j+1 + f e

j+1

)
+ f f

j (5.22)

0 = 2 ( f m
n + f e

n )−
(

f m
n−1 + f e

n−1
)
+ f f

n + (1− bd) · fext , (5.23)

where subscripts indicate the element number with 2 ≤ j ≤ n − 1. For an
unfortified chain bd = 1 and for a chain with a fixed left end bd = 0. The full
set of equations of motion for the chain’s variables Qi,yi with 1 ≤ i ≤ n and the
corresponding lengths xi can be found in appendix C.2.

5.3.1 Single sarcomere element

A chain of two elements, n = 2, corresponds to a single sarcomere. The chain is
able to oscillate spontaneously. Saw tooth like cyclic contractions for the same
parameter values as in the half-sarcomere element are found. Both halves of
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the two element chain are always in the same stationary state or oscillate with
identical frequency, amplitude and shape. Either both halves oscillate with a
phase shift of half of the oscillation period or a small, but non-vanishing phase
shift, see figure 5.12a. Since a sarcomere element is symmetric with respect
to exchange of the left and right half, (Q1,y1) ↔ (Q2,y2), swapping initial
conditions, exchanges the dynamics states of the halves. Both oscillatory modes
in the model do not coexists. Instead, variations of parameter values induces a
transition between both modes, which will be discussed in section 6.2. The low
phase shift mode is strikingly similar to the experimentally accessible5 recording
of sarcomere lengths, compare therefor figure 5.12b and 5.12c. The shortening
phase in the slightly phase shifted mode also remembers to the experimental
observation that sarcomere shortening is always asymmetric [82, 86–88], so that
there is always a slight phase shift between adjacent shortening half-sarcomeres.
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Figure 5.12 Sarcomere oscillatory mode. (a) Saw tooth like oscillations of both halves’
lengths with a small phase shift. For parameter values see appendix A.1. (b) Same
mode as in a) but the whole sarcomere length x1 + x2 is measured. (c) Experimen-
tal showcase recording of averaged sarcomere length oscillations from [90], see
section 3.3.1.

Within a chain of elements each element’s steady state decouples from its
neighbour, see appendix C.3. The stationary state of each element is identical
to a single half-sarcomeric element’s state for the same boundary conditions.
All conditions for spontaneous oscillations in a half-sarcomeric element hold
for spontaneous oscillations of a chain of two elements, see appendix B.3 with
ξ → ξ/2. Close to the oscillatory instability, the sarcomere element is always in
the mode with a phase shift of half a period, see section 6.2.

5Tracking half-sarcomere lengths is experimentally challenging and to date only reliable by
fluorescent markers, see [82]. In general however, the influence of the markers on the experiment
remains unclear.
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5.3.2 Short chains

Chains of half-sarcomere elements exhibit spontaneous relaxation waves. The
small phase shift mode between adjacent elements is also present in chains.
Elements within a short chain oscillate spontaneously with equal period and
almost equal amplitude. Only boundary elements notably differ. Figure 5.13
exemplifies a spontaneous relaxation wave of adjacent sarcomeres in comparison
to an experimental recording from [72]. In both cases a relaxation wave emerges
at one end of the chain and propagates towards the other end. Oscillations have
the same period but slightly differ in amplitude. The relative phase shift differs
by less than 10% in experiment and theory. The speed of the wave is determined
by the amount of the phase shift, whose values in theory will be discussed in
section 6.3.
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Figure 5.13 Relaxation waves in chains of sarcomeres. Adjacent sarcomere lengths
are shifted against each other for a better visualization of the wave. The wave
propagates from the upper (left end of the chain) to the lower elements (right end).
(a) Numerical solution of a chain [139]. Parameter values are like in figure 5.12.
(b) Experimentally recorded wave [72].

Where within a chain do waves nucleate and in which direction do they
propagate? The chains have no preferred direction so that the nucleation site
and the wave’s propagation direction is set by inhomogeneities of the initial
conditions. The experimental boundary conditions imply inhomogeneities at
the myofibril’s ends. Thus ends can be preferred nucleation points. Figure 5.14
exemplifies the random nucleation comparing theory and experiment via ky-
mograph representations. In kymographs of movies a one to several pixel thick
curve (e.g. a straight line) of each movie frame is plotted versus time, here
using the free program ImageJ. The curve is fixed with respect to the movie
frame. Figure 5.14a shows a numerical solution of a wave nucleating within a
chain of the model. Adjacent half-sarcomere elements are plotted side by side
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5.3 Chains of half-sarcomeres

while each element’s length is color coded. A wave nucleates between element
seven and eight, while waves are propagating towards both ends of the chain.
The corresponding kymograph for this situation is shown in figure 5.14c. The
experimental kymograph in figure 5.14d is obtained from a showcase recording
of spontaneous muscle oscillations from [140], see snapshot in figure 5.14b.
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Figure 5.14 Spontaneous wave nucleation within a chain. (a) Numerical solution of
a chain. Adjacent elements are plotted versus time, while each element’s length
is color coded. Waves nucleate spontaneously within the chain between element
seven and eight. (b) Snapshot of a showcase movie of spontaneous muscle os-
cillations [140]. A myofibril under non-isometric conditions in a phase-contrast
microscope. The fibril is fixed with a stiff needle at the bottom and attached to
flexible needle at the top. Dark regions within the myofibril correspond to myosin
filaments, which have a constant length. Bright regions correspond to the change-
able inner sarcomeric space. A red arrow indicates the recording direction for the
kymograph in d). (c) Kymograph representation of the numerical solution in a). Blur
and artificial noise in the picture is used to inveigle the readers eye and mind to
regard the numerical solution as an experimental video recording. Follow the eye
guidelines for comparison with the experiment in d). At location W a rupture wave
emerges within the chain. (d) Kymograph of the movie from b). A duration of four
seconds from the whole recording is shown. The picture has been modified with a
gaussian blur to smoothen the grainy low resolution video snapshot.
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In the kymograph in figure 5.14c, first there is a drift of the whole chain due to
the contraction of each of the chain’s elements, see guideline 1. A relaxation wave
spontaneously initiates at location W within the chain. Due to the boundary
conditions, successive relaxation of elements leads to a drift of the non ruptured
parts of the chain towards the flexible needle at the top, see guideline 2. At a
certain time point one part of the chain drifts to the top, while the other part
still drifts towards the bottom through shortening of the elements. After time τ,
waves have reached the chains ends and the whole process restarts.

In a noisy homogeneous chain wave nucleation points should appear at
random. A stochastic simulation of a chain of 20 half-sarcomere elements is
shown in figure 5.15. Clearly, waves nucleate here and there and propagate over
a distance of some elements and then they disappear. Sometimes wave trains
simply collide or pass through each other. This behaviour matches quite well
the written description about the wave trains’ behaviour found in experiments,
see section 3.3.1. In the simulation in figure 5.15 the relative phase shift between
adjacent oscillatory elements is large in comparison to the element’s oscillation
period. Therefore wave trains are slower than in the mean-field description and
in the experiments.

Within the mean-field description, i.e. without noise, I also find irregular
dynamics. Periodic contractions of the elements of the chain do not form
coherent relaxation waves. Some experiments [86, 90] report such behaviour but
it remains unclear to what extend the experimental results are attributed to the
damage of the myofibrils during the isolation process.

What about the boundary conditions? Experimental papers on spontaneous
muscle oscillations collectively report on the importance of non force-free bound-
ary conditions on the myofibrils: Isometric, isotonic or auxotonic conditions are
used. Each condition exerts a prestress on fibrils. Reports agree that fibrils have
to be prestressed for spontaneous oscillations. Unfortified myofibrils simply
contract once. Beyond, the impact of different boundary conditions on the
experimental results is not clearly characterized.

So far, I have shown that spontaneous muscle oscillations can have their origin
in the coupling of elastic elements with microscopic force generators. Homoge-
neous chains self-organize into dynamic states that exhibit spontaneous wave
patterns. At this point it is appropriate to reconsider the phenomenological
approach in chapter 4. Why does the microscopic theory reveals wave patterns
but the phenomenological description does not? By putting the results from the
microscopic description in a broader context this question will be answered in
the following section.
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Figure 5.15 Random wave phenomena within a chain. (a,b) Adjacent element’s length
is color coded and plotted against time. In an unfortified chain waves spontaneously
emerge within the chain and propagate some distance. Red lines indicates ex-
amples for wave trains. Details about the stochastic simulations can be found in
appendix C.5. For parameter values see appendix A.1.
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Chapter 5 Microscopic description

5.4 Continuum limit

In order to bridge the gap between the microscopic and the phenomenological
description I will pass to the continuum limit of an infinite long chain of half-
sarcomere elements. In a first step the microscopic equations of motion are
linearized around their steady state. Introducing z as the spatial coordinate
along the chain with z� x∗ and the density of half-sarcomere elements ρ, the
time evolution of perturbations of the stationary state evolves according to the
continuous equations, see appendix C.4,

ξ∂tρ = c1∂2
zρ + c2∂t∂

2
zρ− c3∂2

zQ (5.24)

∂tQ = c4∂tρ− c5Q , (5.25)

where the coefficients are related to the microscopic parameters via

c1 = [Q∗Ky∗/d− k](x∗)2 (5.26)

c2 = −(x∗)2 · N(x∗)Q∗K/[ω′u(y∗)y∗ + ωu(y∗) + Kv0/ f0] (5.27)

c3 = −ρ∗x∗ · N(x∗)Ky∗ (5.28)

c4 = x∗ ·Q∗ω′u(y∗)/{ρ∗[ω′u(y∗)y∗ + ωu(y∗) + Kv0/ f0]} (5.29)

c5 = ωb + ωu(y∗) . (5.30)

The steady density ρ∗ is spatially homogeneous and corresponds to a state
where active and passive forces balance. Hence, the tissue is stationary but not
in thermal equilibrium. Do the continuum equations (5.24) and (5.25) allow for
oscillatory instabilities? A linear stability analysis of the homogeneous stationary
state with the ansatz ρ(z,t) = ρ∗ exp(ıqz + st) and Q(z,t) = Q∗ exp(ıqz + st)
denoting the wavenumber with q and the complex time scale with s, results in
the dispersion relation

2s = −a1 ±
√

a2
1 − 4a2 (5.31)

with a1 =
ξc5 + q2 (c1 + c2c5 − c3c4)

ξ + q2c2
, a2 =

q2c1c5

ξ + q2c2
.

In the continuum limit, a chain of half-sarcomeres can have three states: The
chain has a stable stationary state, is unstable or oscillatory. In the stable regime
<(s) ≤ 0. For <(s) ≥ 0 and =(s) = 0, i.e. for a2

1 > 4a2, small perturbations
of the stationary state will lead to a fully contracted state. For <(s) ≥ 0 and
=(s) 6= 0, the equations allow for waves with certain wavenumbers q, see
figure 5.16. The conditions recover the same necessary conditions Q∗Ky∗ <
dk and ωb + ωu(y∗) < y∗ ω′u(y∗), which appeared before in the microscopic
description.
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Figure 5.16 Dispersion relation of the continuum equations for varying d. The continu-
ous chain is stable (blue curve) for d = 0.001 and oscillatory (red shaded region) for
d = 0.0003.

In the limiting case q → 0, i.e. on large length scales, the continuous chain
is always stable, since s < 0. Spontaneous waves emerge from cooperative
microscopic effects. Consequently, waves are not found on arbitrary large length
scales. On small length scales, q→ ∞, oscillations are still possible reflecting the
oscillatory nature of the medium’s constituents, the half-sarcomeres. However,
on length scales that are smaller than the size of the constituents of a continuous
material phenomenological theories fail in general.

The continuum limit, see equations (5.24) and (5.25), can be compared
with the phenomenological result from chapter 4. In the limit of a stationary
probability density, ∂tQ = 0, the continuous equations reduce to

ξ∂tρ = c1 · ∂2
zρ +

(
c2 − c3

c4

c5

)
· ∂t∂

2
zρ , (5.32)

while the phenomenological equation (4.10) reads

ηe∂tρ =
(

E− ρ∗ ∆µ L(1)
σµ

)
· ∂2

zρ + Lσv · ∂t∂
2
zρ . (5.33)

Both equations have the same form. Macroscopic coefficients from the phe-
nomenological approach can directly be related to the microscopic param-
eters through a comparison of the coefficients. The microscopic origin of
the phenomenological description is revealed. Moreover, an essentially non-
hydrodynamic mode, namely Q, is necessary for oscillatory behaviour and wave
patterns. A chain of half-sarcomere elements in the continuum limit can contract
for ∂tQ = 0 but cannot show cyclic contractions.
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Chapter 5 Microscopic description

Within this chapter it was shown that a homogeneous chain of length depen-
dent force generating units neither contracts homogeneously nor allows for
oscillations. A microscopic mechanism for spontaneous periodic contractions of
half-sarcomere elements was suggested: Motors collectively act against elastic
elements. Wave patterns emerge in chains of such elements. The cyclically
contracting elements self-organize into states that reveal relaxation waves. In the
presence of noise waves nucleate at random within chains with undetermined
propagation direction. A continuous description of deterministic chains uncov-
ers a non-hydrodynamic mode, which allows for wave patterns on macroscopic
length scales. In the process the microscopic origin of the phenomenological
description of myofibrils is revealed. In the following chapter the microscopic
element’s dynamics that goes beyond the emergence of spontaneous oscillations
will be analyzed.
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Chapter 6 Advanced nonlinear dynamics

Half-sarcomeric elements show spontaneous oscillations that ultimately yields
wave patterns. In this chapter advanced nonlinear dynamics concepts will be
used to reveal the possible dynamics of half-sarcomere elements, which will
go beyond spontaneous oscillations. Comprehension of this chapter requires
basic knowledge on nonlinear dynamics. Wonderful introductions can be found
in the books of Strogatz [127], Wiggins [128] and Kuznetsov [129]. On the
numerical side I use self-made standard techniques and the available software
packages XPPAUT [141], Auto07p [142] and Mathematica [143].

6.1 Half-sarcomeres reloaded

For an analysis of the possible dynamics of the half-sarcomeric element I write
the equations of motion in a dimensionless form. Time is rescaled by ωb yielding
the equations of motion

dQ
dt

≡ Q̇ = (1−Q)−Q ·ω(y) (6.1)

ẏ =
g̃(y)(Qy− κ)2/κ − Q̇y( f̃ext − L− ζ g̃(y))

ζ g̃′(y)(Qy− κ) + Q( f̃ext − L− ζ g̃(y))
(6.2)

with ω(y) = ωu(y)/ωb and g̃(y) = y(γω(y) + 1) − 1. The elongation y is
rescaled by the stall length f0/K, given by the stall force and the motor’s spring
constant. The element’s length x is rescaled by the resting length `0 and is given
by

x =

{
1− LQy+κ(− f̃ext+ζ g̃(y))

L0(κ−Qy) for Qy 6= κ

x(t0) + (ζL0)−1 ( f̃ext − L
)
· t for Qy = κ .

(6.3)

The dimensionless parameters are given by κ = dk/ f0, f̃ext = ωb fext/(kv0),
L = ωb(`m + `p − `0)/v0, ζ = ξωb/k, γ = f0ωb/(Kv0) and L0 = ωb`0/v0.
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Chapter 6 Advanced nonlinear dynamics

Note that L0 is unimportant for the motor dynamics since it is not part of the
equations of motions (6.1) and (6.2). However, L0 influences the corresponding
length of the element.

In the following analysis I concentrate on changes of the parameter κ in the
absence of external forces ( f̃ext = 0). Lengths related variables such as L and L0,
as well as ζ are experimentally not easily accessible in the sense of well defined
control parameters and are therfore kept unaltered. As the variation of γ shows
the same but not all possible solutions, which occur via changes in κ, analysis
of dynamical states is performed in κ. First of all there will be a canard chasing.

6.1.1 Canard phenomenon

At least one stationary state is always found in the equations of motion (6.1)
and (6.2). This state corresponds to g̃(y∗) = 0, which can be fulfilled for any set
of parameter values. The fraction of rates ω(y∗) is approximately exponential
in y∗, so that there is always a y∗ obeying y∗ exp(y∗) + y∗ = 1. The stationary
state can be unphysical in the case where the stationary length of the element
is shorter than the longest filament within the element `0 · x∗ < max(`p,`m).
Those states are rejected as the validity of the equations of motion is restricted
to regimes with max(`p,`m) ≤ `0 · x ≤ `p + `m.

For large κ the stationary state (Q∗,y∗) is always stable. Decreasing κ below
a critical value κh destabilizes the stationary state and the dynamics ends up
with stable oscillations on a limit cycle. Linear stability analysis confirms the
existence of a Hopf-bifurcation for κ = κh. The oscillatory instability turns out
to be supercritical. The necessary but insufficient conditions for spontaneous
oscillations read in dimensionless form κ > Q∗y∗ and y∗ω′(y∗) > ω(y∗) + 1.
The oscillations close to the instability are sinusoidal and the frequency matches
the critical frequency, which is obtained from linear stability analysis.

What happens when κ is decreased further? Linearizations of the equa-
tions around the stationary state will not be sufficient anymore to account for
the system’s behaviour. Nonlinear terms become more and more important.
Amplitude equations take these nonlinearities into account and give a good
approximation for the amplitude and frequency behaviour close to supercritical
oscillatory instabilities. In the half-sarcomere case the corresponding ampli-
tude equations predict a smooth increase of amplitude and oscillation period.
Surprisingly, this is not what happens when κ is decreased. Instead a massive
deformation of the limit cycle for tiny changes of the control parameter close to
a critical value κc is observed, see figure 6.1a. Changing the distance1 from the

1Distance in parameter space from a critical value can be defined as |κ/κc − 1|.
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Figure 6.1 Canard explosion in a half-sarcomere element. (a) Bifurcation diagram for
the binding probability’s amplitude upon the variation of the control parameter κ.
For decreasing κ the stationary state Q∗ (red) becomes unstable at κ = κh yielding
small amplitude limit cycle oscillations. At κ = κc the amplitude literally explodes
and the system suddenly follows a relaxation cycle. (b,c) Q(t) and x(t) close to the
canard explosion. The red curve is for κ = 0.926 . κc and the blue curve is for
κ = 0.9265 & κc. For parameters, see appendix A.1.

oscillatory instability of the order O(10−5) induces a change of the amplitude
of the binding probability Q by 300%. The period and the shape of the oscilla-
tion also changes drastically. For κ & κc the element’s length oscillates with a
deformed sinusoidal shape, while for κ . κc the shape is saw-tooth like with a
much bigger amplitude as before, see figure 6.1b,c. There is a sudden transition
towards relaxation oscillations, which are observed far away from the oscillatory
instability, a canard explosion has occurred.

The relaxation cycle is excitable. In the oscillatory regime close to the Hopf-
instability, perturbations of the oscillatory state can lead to a huge excursion
on a relaxation cycle before returning to the limit cycle, see figure 6.2a,b. Only
perturbations through an increase of y in the upper part of the limit cycle in
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Figure 6.2 Excitability of half-sarcomere elements. (a) Excitability of a relaxation cycle
in the regime of limit cycle oscillations with κ = 0.93 in terms of the element’s
length x. (b) (Q,z) phase plane for the situation in a). For better visibility the vari-
able z = Q + y is introduced. Nullclines for Q (red) and z (blue) are highlighted.
Single arrows corresponds to slow, doubled arrow to fast dynamics. (c) Trajectories
for distinct initial conditions in the phase plane for the situation in a). Parameters
like in figure 6.1.

the phase plane in figure 6.2c leads to an excursion of the trajectory. The same
kind of excitability is observed in the non-oscillatory regime, see figure 6.3a,b.
Perturbations of the stationary state with increasing y leads to an excursion on
a relaxation cycle before returning to the stable stationary state. Note that in
both cases perturbationsthat are too small will not lead to an excursion. Local
stability is not violated.

6.1.2 Generic canard phenomenon

In 1981 the french mathematician F. Benoit and co-workers discovered a new
set of solutions, which can occur in relaxation oscillators [144]. Close to an
oscillatory instability of the Hopf type, an explosion of the oscillation amplitude
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Figure 6.3 Excitability of half-sarcomere elements in the stable regime far away from
the oscillatory instability with κ = 1. (a) A perturbation of the state leads to a huge
excursion of x(t) before returning to the stable stationary state. (b) Phase plane (Q,z)
with z = Q + y for the situation in a). Parameters are the same like in figure 6.1.

can occur. Limit cycle oscillations with small amplitudes undergo a transition
towards relaxation oscillations with large amplitudes via canard cycles. The
transition is continuous but occurs for very small variations of the control
parameter.

I will introduce the phenomenon with a textbook example [145, 146] of a
relaxation oscillator: The van der Pol oscillator. In a simple form the oscillator
reads

εẋ = y− x3

3
+ x ≡ f (x,y; a,ε) (6.4)

ẏ = a− x ≡ g(x,y; a,ε) , (6.5)

while ε is a small parameter with 0 < ε � 1 and a is a control parameter.
The dynamics of the system with decreasing a for ε = 0.01 is illustrated in
figure 6.4. The only stationary state (x∗,y∗) = (a,a3/3− a) is stable for a > 1,
see figure 6.5a, and the state becomes unstable via a Hopf-bifurcation at a = 1.
While decreasing a further the limit cycle oscillations evolve towards increasing
amplitudes, see figure 6.5c. Suddenly, the cycle’s amplitude literally explodes
during an exponentially small decrease of a. The transition from limit cycle
oscillations to relaxation oscillations is mediated continuously through stable
canard cycles. A canard explosion has occurred. Finding canard cycles is nu-
merically challenging due to the high sensitivity of the system on the value of a.
Correspondingly, the observation of these cycles is very hard in the presence
of noise and especially in experimental setups. Note, the transition is not a
bifurcation since no new solutions appear by a canard explosion.
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Figure 6.4 Canard explosion in the van der Pol oscillator. Bifurcation diagram with
the amplitude x under variation of the control parameter a. The stationary state x∗

(red) loses stability via a Hopf-bifurcation whose limit cycle oscillations explode via
canard cycles towards relaxation cycles.

What is the reason for the transition? Relaxation oscillators have a typical
separation of time scales of the dynamic. Approaching the canard phenomenon
a first step is the separation of the inherent time scales. In the system

εẋ = f (x,y; a,ε) (6.6)

ẏ = g(x,y; a,ε) , (6.7)

with ε� 1 the variable x evolves faster than the variable y. They are referred
to as the fast and the slow variable, respectively. Singular perturbation theory
separates the time scales into a fast and a slow subsystem for the limiting case
of infinitely fast and slow dynamics. While the slow subsystem (the reduced
problem) is given for ε→ 0,

0 = f (x,y; a,0) (6.8)

ẏ = g(x,y; a,0) , (6.9)

the fast subsystem (the layer problem) is revealed by switching the time scale
with τ = t/ε in the limit ε→ 0,

dx
dτ
≡ x′ = f (x,y; a,0) (6.10)

y′ = 0 (6.11)
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Figure 6.5 (a) Phase diagram with nullclines for x (blue) and y (red) within the stable
regime for a = 1.1. (b) Trajectories for distinct initial conditions in the oscillatory
regime with a = 0.999. The y nullcline is cubic shaped with an attractive branch
(solid) and an repulse branch (dashed). (c) Hopf-oscillations on a limit cycle with
a = 0.998740451246 & ac. The limit cycle partially follows the repulsive branch.
(d) Relaxation cycle oscillations with a = 0.998740451245 . ac. The repulsive
branch distracts the trajectory towards an attractive branch. (e) Relaxation cycle with
a = 0.9. (f) Here is the canard. Courtesy of J. Müller.
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Relation 6.8 defines the critical manifold S ≡ {(x,y) : f (x,y; a,0) = 0}. In the
slow subsystem the fast variable x = x(y) is given by the critical manifold
S, while the slow variable y evolves as before. In turn, in the fast subsystem
the slow variable y is constant as x evolves. Suitable recombination of the
dynamics in both subsystems reveals the dynamics of the initial problem in
equation (6.6) and (6.7). In the van der Pol case, a critical parameter value ac
for the occurrence of canard cycles close to a Hopf-bifurcation exists under the
following constraints [146]:

• The critical manifold S is cubic, i.e. S-shaped, with exactly two folds, see
figure 6.5b.

• Between the two folds, the branch is repulsive, while the other two
branches are attracting the dynamics towards the folds in the layer prob-
lem, see figure 6.5b.

• The two folds of S are generic, see [146].

Under these circumstances the system moves quickly towards one of the attract-
ing branches heading towards the folds, compare with figure 6.5b. Approaching
the fold, which forms a maximum, the dynamics quickly switches to the second
attractive branch. In the oscillatory regime, the dynamics close to the fold, which
forms a minimum, is locally attracted by a small amplitude limit cycle instead
of switching to the second attracting branch. Obeying the conditions above, the
limit cycle may follow partially the repulsive branch, which connects the two
folds. As the control parameter a decreases the oscillation amplitude grows,
thus follows a longer piece of the repulsive branch, see figure 6.5c. When the
critical value ac is approached, the repulsive nature of the non-attractive branch
takes over and pushes the dynamics towards the second attractive branch onto
a relaxation cycle, compare figure 6.5d,e.

Consequently, by the attractive and repulsive nature of the branches, re-
laxation cycles in this case can be excited. In any case, for a < ac the system
follows the relaxation cycles. For a > ac, there are initial conditions, which lead
to a huge excursion via the left attracting branch before settling down close or
at the minimum fold, compare with figure 6.5b. In particular, the system is
highly sensitive to strong perturbations below the fold, close to the minimum.
In this case, before returning to the attractor the dynamics follows at least one
relaxation cycle. The oscillatory limit cycle solution (for ac < a < 1) as well
as the stationary solution (for a > 1) are locally stable against perturbations.
However, both solutions are only locally stable within a very small region of the
phase space.
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A classical van der Pol oscillator of biological relevance in nerve fibre dy-
namics is the FitzHugh-Nagumo model [147–149]. It is a two-dimensional sim-
plification of the famous Hodgkin-Huxley model [150], which tries to explain
spike generation of action potentials and neuronal excitability. Quite recently ca-
nard phenomena have been found in different flavours of the Hodgkin-Huxley

model [151–154] and finally lead to an understanding of the reason of firing and
excitability. Before the discovery of the canard phenomenon in the model, at
least, the firing events were not well understood since there is no clearly defined
firing threshold within the Hodgkin-Huxley model. Furthermore, canard phe-
nomena are also observed within the pattern forming Belousov-Zhabotinsky

reaction [155].
Where is the canard in the phenomenon? There are two explanations, which

I am currently aware of [156]: For the occurrence of a canard transition the
critical manifold necessarily must be cubic-shaped. As depicted in 6.5f a canard
can be associated to a cubic shape. Alternatively, since canard cycles are hard to
find, the phenomenon is related to newspaper canards.

Canards in half-sarcomeres

Apparently, the half-sarcomere model has all the properties of systems exhibit-
ing the canard phenomenon: Explosions of the oscillator’s amplitude with a
jump in frequency are observed as well as excitable dynamics. However, the
equations of motion for the half-sarcomere model allow not directly for a rigor-
ous mathematical treatment of the canard phenomenon. The problem has to be
unfolded before. To meet the conditions for a mathematical treatment, such as a
standard form of a singular perturbed system, see equations (6.6) and (6.7), and
a cubic shaped critical manifold, a nonlinear transformation from the physical
variables Q and y to two new variables needs to be performed. Unfortunately
this transformation is not obvious and I have not succeeded in finding one.

Experiments on muscle oscillations never reported a Hopf-like transition
from the non-oscillatory to the oscillatory regime. This may be due to the
fact that the experiments are inherently noisy and the Hopf-bifurcation can be
blurred [157]. In addition, the excitability of relaxation cycles has interesting
consequences in noisy environments: Noise induced relaxation excitations are
not strictly periodic but are not easily distinguishable from noisy relaxation
oscillations.

The following section describes the dynamics when κ is decreased below the
critical value where the canard explosion occurred for κ < κc where global
bifurcations affect the dynamics.
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6.1.3 Global bifurcations

Global bifurcations involve and affect large regions of the phase space in contrast
to local bifurcations, such as Hopf-bifurcations, for example. By decreasing
κ one naively would expect the relaxation cycles to continue or to vanish via
a reversed Hopf-bifurcation. This is not what happens. Close to a critical
value κhom a strong increase of the oscillation period is observed, while the
amplitude remains unaltered, see figure 6.6a. The period scales logarithmically,
see figure 6.6b. For even smaller values of κ, the dynamics becomes unbound.
Since there is no stable dynamical state anymore the limit cycle must have been
destroyed.
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Figure 6.6 (a) Oscillation period strongly increases with decreasing κ. (b) The period
scales logarithmically approaching the critical value κhom. (c) Emergence of two new
fixed points y∗1 (red, dashed) and y∗2 (blue, dash-dotted), schematically. The black
curve obeys y/ (1 + exp (y)) = κ̃.

The strong alterations of the period correlates with the emergence of two
new fixed points from nowhere, see figure 6.6c and bifurcation diagram in
figure 6.7a. Remarkably, the equations of motion, see equations (6.1) and (6.2),
allow for more than one stationary state. Besides the state that corresponds to
g̃(y∗) = 0 exists another state for Q∗y∗ − κ = 0 with Q∗ = 1/(1 + ω(y∗)). This
state corresponds to an exact balance of elastic and motor forces for arbitrary
element lengths and consequently is not present for N = const. Since ω(y) is
approximately exponential the emergence of the two new fixed points can be
schematically traced in figure 6.6c. There is a threshold value for κ at which
Q∗y∗ − κ can be zero. Beyond the threshold there are always two values y∗1 and
y∗2 , which fulfill Q∗y∗ = κ.

A linear stability analysis around the two fixed points reveals one zero eigen-
value λ1 = 0 and λ2 = y∗ω′(y∗)−ω(y∗)− 1. Treating the curve in figure 6.6c
as a function κ(y), the maximum corresponds to the point of emergence of the
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Figure 6.7 (a) Bifurcation diagram for a half-sarcomere element in κ. Decreasing κ

destabilizes the only fixed point yielding limit cycle oscillations and a subsequent
canard explosion. For κ = κhom two new fixed points emerge via a saddle (red,
dashed) - node (blue, dashed-dotted) bifurcation. The cyclic orbit is destroyed
through a homoclinic bifurcation. (b-e) Generic homoclinic bifurcation taken
from [127]. (b) A limit cycle in proximity to a saddle point (c) expands towards
the saddle (d) and eventually collides with the saddle (e) yielding homoclinic orbits.

new fixed points. At this point κ′(y) = 0 while in the y∗1 regime κ′(y∗1) > 0
and in the y∗2 regime κ′(y∗2) < 0. Since κ′(y) = λ2(y)/ (1 + ω(y)) and ω(y) > 0,
the second eigenvalue must have a different sign in the different y regimes:
sgn (λ2(y1)) 6= sgn (λ2(y2)). This confirms that the emergence of the two fixed
points above is a saddle-node bifurcation of fixed points. The flow in one
direction (λ2) changes sign between the fixed points while the flow in the other
direction is determined by nonlinear terms only as λ1 = 0. In order to obey the
index theorem [127], one node must be a saddle point while the other node is
either a stable or an unstable fixed point. Numerically I find that the second
node is unstable.

The alterations of the oscillation period of the half-sarcomere element and the
subsequent destruction of the limit cycle for small κ happens via a homoclinic
bifurcation. This bifurcation type is linked to saddle points.

Homoclinic bifurcations
A homoclinic bifurcation occurs when parts of a limit cycle approach a saddle
point [127, 128]. As shown in figure 6.7b-e, first a saddle node and a limit cycle
coexists in phase space. By variation of a control parameter value the limit cycle
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may approach the saddle point. Close to the saddle any trajectory on the limit
cycle stays much longer close to the saddle than apart from the saddle point.
Eventually, the limit cycle touches the saddle point and leaves a homoclinic orbit,
while the loop is destroyed. By means of a dimensionless measure µ, which is
zero at the bifurcation, the generic scaling law in this case are for the amplitude
O(1) and the period of the cycle scales with O(− ln µ).

In the half-sarcomere case the global fixed points emerge for κ = κhom very
close to the limit cycle, see figure 6.8a. Due to the proximity, the dynamics
is influenced by the preceding deformation of the phase space in anticipation
of the emergence of the global fixed points. For that reason the period scales
similar like for a homoclinic bifurcation at κ = κhom. However, the limit cycle
does not collide at this point with the emerging saddle point. Therefore, the
scaling of the period in figure 6.6b slabs from O (− ln (κ − κhom)). Decreasing κ
does not so much alter the limit cycle, rather the new fixed points move along
the Q nullcline, see figure 6.8b,c. The collision of the saddle and the limit cycle
may occur for κ � κhom. In any case, non of the three fixed points could escape
from the limit cycle without violating the index theorem. The theorem states
that any closed orbit must enclose fixed points whose indices sum up to +1,
while a node’s index is +1 and a saddle point’s index is −1. Should one fixed
point escape, the sum would change.

How does the system behave, when the limit cycle is destroyed? The dy-
namics follows a homoclinic orbit and becomes unbound. This corresponds
to the case where the element shortens towards its minimal length. Since the
description does not include a hard potential at the minimum length, the dy-
namics does not find an attractor at finite y. An introduction of a hard potential
would barely alter the dynamics. The equations of motion would be unchanged
for max(`p,`m) ≤ `0 · x ≤ `p + `m. The previous unstable fixed point from the
saddle-node bifurcation, would provide an attractor. In this case the emergence
of the fixed points would involve a different scaling law for the oscillation period.
A saddle node bifurcation with a saddle and stable fixed point on a limit cycle
gives rise to a sniper2 bifurcation, which scales with O(µ−1/2).

Can the homoclinic behaviour be experimentally relevant? Muscle cells
would have to fine tune parameter values to actively use the bifurcation as a
oscillation period control. However, the influence of noise on the bifurcation
is not clear. Very likely, nonlinearities play a role in half-sarcomeres, too. The
saddle-node bifurcation in the model relies on the exact balance of elastic and
motor forces for arbitrary element lengths. It is unlikely that this balance is
fulfilled in the presence of nonlinearities.

2Saddle node infinte periode
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Figure 6.8 (a) Position of fixed points in the phase plane for κ = 0.6 with z = Q + y.
Nullclines for Q (blue) and z (orange) and the corresponding relaxation cycle (black)
are shown. (b) The flux in the phase plane of the fixed points with κ = κhom,
schematically. (c) The flux for κ → 0, schematically. Global fixed points move along
the Q nullcline, eventually colliding with the relaxation cycle for κ → 0.

6.2 Sarcomeres reloaded

The coupling of two half-sarcomeric elements to a sarcomere revealed in chap-
ter 5 different oscillatory modes with distinct relative phase shifts of the two
elements. This section’s objective is to investigate these modes on a more pro-
found level. By reflection symmetry the equations of motion for a sarcomere
are Z2 symmetric, see the dimensionless equations of motion for a two element
chain in appendix C.2: Exchange of left and right (Q1,y1)↔ (Q2,y2) does not
alter the equations of motion. Any dynamical state of the left half swaps with
the state of the right half by exchange of left and right.
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The steady states of the two halves decouple from each other, see ap-
pendix C.3. Consequently, the linear stability conditions for spontaneous os-
cillations of half-sarcomeres remain valid for each element within a chain of
elements. Sarcomere elements are able to oscillate spontaneously. All conclu-
sions from the analysis of the half-sarcomere dynamics are valid for sarcomeres
as well. It turns out that there are two oscillatory modes induced by Hopf-
instabilities. One mode, denoted by O1, obeys x1(t) = x2(t + T/2) with the
oscillation period T. In the second mode O2 the two extensions x1 and x2 are in
phase, thus x1(t) = x2(t).

O1 emerges at ξ1 = 2ξ while O2 emerges at ξ2 = ξ for the ξ in the sufficient
stability condition in appendix B.3. By means of this condition, the O2 oscilla-
tions are always in the oscillatory regime of O1, see [126]. The in-phase mode
O2 is always unstable. Perturbations of the state with x1(t) = x2(t) unbalance
the forces in both halves of a sarcomere element. Due to the same mechanism
that does not allow for homogenous contractions of chains the perturbations
grow, see section 5.1.

Figure 6.9 summarizes the bifurcation scenario for the variation of ζ. For
decreasing ζ the out-of-phase mode O1 becomes unstable at a critical parameter
value ζ = ζc [158]. While the frequency and the amplitude do not change the
relative phase shift starts to deviate from half a period: x1(t) = x2(t± ϕ) with
ϕ 6= T/2. This state is denoted by Sw. The Z2 symmetry ensures the emergence
of two of these new solutions in accordance with the index theorem. The phase
shift ϕ decreases but does not vanish for small ζ, since states with ϕ = 0 cannot
be stable, see section 5.1. In figure 6.9 parameter values are chosen, where the
canard phenomenon is not present. The canard case will be discussed below.
Any parameter inducing spontaneous oscillations in half-sarcomeres leads to the
emergence of oscillations for two coupled half-sarcomeres. Within the oscillatory
regime, γ and κ can induce the phase deviation from T/2. Only ζ is observed
to induce oscillations and destabilize the out-of-phase mode.

It is tempting but wrong to regard a sarcomere as two oscillators whose
relative phase synchronizes. Classical physical synchronization is the adaptation
of the cadence of weakly interacting self-sustained oscillators [159]. Due to the
strong coupling between the half-sarcomere elements a sarcomere forms one
self-sustained oscillator. In-phase, out-of-phase and dephased oscillations are
different oscillatory modes [160] and are not a synchronization effect.

Is there a intuitive picture why the phase bifurcates? The following sections
tries to get on in explaining the bifurcation scenario in figure 6.9 in terms of
mode interactions and by a comparison to models for pulse coupled oscillators.
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Figure 6.9 Oscillatory modes of sarcomere elements. (a) Pitchfork bifurcation of the
relative phase ϕ(ζ). For ζ = ζ1 the stationary state becomes unstable yielding
stable oscillatory states O1, which are phase shifted by ϕ = T/2. For ζ = ζc, O1
becomes unstable and the phase starts to deviate from T/2. (b) Bifurcation scenario
of the amplitude of the half-sarcomere length xmax for variation of ζ. Unstable
states are dashed, stable states are continuous. For ζ > ζ1 the system has a stable
stationary state St, which destabilizes at ζ = ζ1 yielding the oscillatory state
O1. For ζ = ζ2 a mode with ϕ = 0 emerges, denoted by O2. For ζ = ζc, O1
loses stability and another stable state Sw emerges. Inset: The destabilization of
O1 and the emergence of Sw in terms of the L2 norm, which is defined by L2 =
T−1 ∫ T

0
(
Q2

1 + Q2
2 + y2

1 + y2
2
)

dt and better visualizes the cusp-like bifurcation of
cycles. Parameter values in both figures corresponds to parameter values found in
appendix A.2. For these parameters the system does not show an canard explosion.
Hydrodynamic interactions between elements are included here, see chapter 7. The
qualitative behviour is unaltered by the interactions.

6.2.1 Mode interactions

Interaction3 of modes can lead to the occurrence of new solutions [161]. Here,
the possibility of interactions between the two oscillatory modes O1 and O2 is
revealed by the isotropy lattice corresponding to the dynamics equations [162,
163]. Such a lattice describes the symmetry hierarchy of possible solutions. Let
Z2 denote the symmetry operation of exchanging left and right, x1(t)↔ x2(t),
while Tτ corresponds to a shift in time by τ, so that x1(t) = x2(t + τ). Oscillatory
modes generally obey TT . In addition, the out-of-phase mode O1 is symmetric
with respect to the combination of the symmetry operations Z2TT/2, while

3Mode interaction may not be mixed up with usual mode coupling from classical mechanics.
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the in-phase mode O2 is symmetric with respect to Z2. Correspondingly, the
isotropy lattice for increasing ζ from left to right reads

Sw : TT
↙
↖

O1 : Z2TT/2 × TT

O2 : Z2 × TT

↖
↙ St : Z2 × Tτ (6.12)

−→ ζ .

For large ζ the system is in stationary state St with x1 = x2 = x∗ and the
state is symmetric with respect to Z2 and arbitrary shifts in time τ. This
solution is the most symmetric and displays the same symmetry as the dynamic
equations. Hopf-bifurcations spontaneously break this symmetry and generate
the solutions O1 and O2 on the next hierarchy level for decreasing ζ. If mode
interaction would generate the dephased solution Sw at the next hirarchy level,
then the nonlinear coupling of the modes O1 and O2 demanded for a shared
symmetry of the two modes. The only shared symmetry is the periodicity TT .
However, mode interaction demands that the frequencies of the interacting
oscillatory modes O1 and O2 at the critical value ζ = ζc are equal. Numerically
I find that they are not equal in general. Thus, mode interaction does not create
the dephased mode Sw.

6.2.2 Pulse-coupled oscillators

Intuitively sketched, oscillations of a half-sarcomere element results from cyclic
shortening and motor detachment avalanches, see section 5.2.3. From a different
perspective the elements’ tensions cyclically vary. In an element in the relaxed
state, tension is low since weak motor forces are sufficient to balance the ele-
ment’s elasticities, which are almost at rest. Tension slowly increases due to the
ongoing action of motors against elastic elements. The increase in tension is
approximately linear since the shortening velocity is nearly constant. Reaching
a critical tension the motors have to let go and the element lengthens. The
element’s tension is released fast in comparison to the duration of the tension
build up. Consider two half-sarcomeric elements, which are coupled together to
a sarcomere. A sudden lengthening of one element is felt by the neighbour as a
mechanical pulse4, a kick. The shorter the lengthening phase, the sharper the
kick. With decreasing ζ a half-sarcomere element stretches faster and eventually
submits a shorter kick5.

4In an overdampened environment (at low Reynolds number) the mechanical puls is less a
momentum transfer than a temporal limited strong external force.

5Setting Q = 0 in the force balance equation gives an explicit expression for the element’s
response time scale in dependence of ζ.

72



6.2 Sarcomeres reloaded

The relaxation of half-sarcomeric elements is comparable to pulse-coupled
oscillators in models for integrate-and-fire neurons [164]. The membrane poten-
tial of neurons increases with a constant rate and is instantaneously reset when a
certain threshold potential is reached. Cyclic repetitions of the rising and falling
potential are a built-in feature of the models. Consider now two of such neurons
that are coupled so that upon resetting a neuron transmits an electric pulse to
the adjacent neuron. The pulse influences the neighbour’s membrane potential.
In the case described by van Vreeswiijk in [164] it is an inhibitory coupling,
which decreases the neighbour’s membrane potential. Broad pulses lead to
a state of periodically firing neurons with a relative phase shift of half of the
oscillation period. This state becomes unstable for short pulses [164, 165]. The
relative phase shift starts to deviate from half a period. Here, a phase equation
gives the critical value of the parameter, which determines the half-life of the
transmitted pulse.

What the electrical pulse for the neuron is the mechanical pulse for the
half-sarcomeres. Membrane potential on the one hand and mechanical tension
on the other hand, both reach a threshold. Shorter pulses lead to dephased
solutions in both cases.

Muscle oscillations emerge via spontaneously broken symmetries, while
membrane potential oscillations are enforced. I did not find a way to map
the sarcomere’s equations of motion directly to the simple neuronal model.
Although I currently lack a thorough understanding of the reason for the emer-
gence of the dephased solution, the similarities to pulse-coupled oscillators have
been exposed [166].

The following section expands the homoclinic behaviour of half-sarcomere
elements from section 6.1.3 to sarcomere elements.

6.2.3 Gluing-like bifurcations

Homoclinic behaviour persists in a chain of two half-sarcomeres. This not
so much a surprise since its origin from a global saddle-node bifurcation is
unaltered in a chain of elements. However, here, homoclinic behaviour comes in
a different raiment and has a very descriptive name: A gluing bifurcation. I will
now give a short introduction on gluing bifurcations.

In 1984 a group of french mathematicians discovered a new sort of bifur-
cation: The gluing of cycles [167]. Homoclinic bifurcations occur through the
collision of limit cycles with saddle points, eventually destroying the cycle. A
gluing bifurcation is quite similar. In essence, two limit cycles that both ap-
proach a saddle point, would be destroyed as in the homoclinic case. Here,
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the two partially destroyed cycles pool together, they glue together, keeping
up oscillatory behaviour. Figure 6.10 sketches the sequence. Since a gluing
bifurcation is composed of a homoclinic bifurcation (two cycles approach the
saddle node) followed by a reversed homoclinic bifurcation (one glued cycle
departs from the saddle node), the period’s scale behaviour is the same as for
homoclinic bifurcations. Gluing bifurcations have been observed experimentally,
although a loss of a perfect Z2 symmetry is unavoidable [168]. Further insight
into gluing bifurcations is reviewed in [169].

(a) (b) (c) (d)

Figure 6.10 Gluing bifurcation in a projection of a four-dimensional phase-space,
schematically. (a) Two distinct limit cycles each enclosing an unstable node (black
and green) approach a saddle point (red). (b) Collision of the cycles with the saddle.
(c) Limit cycles are destroyed through the collision. (d) Phase space is unchanged,
thus gluing of both cycle’s remaining parts can keep up oscillatory behaviour.

In sarcomere elements I find gluing-like dynamics [170]. Figure 6.11 sum-
marizes a gluing of two cycles at κ = κg in terms of the element’s length. For
κ . κg, reflection symmetry is spontaneously broken: Exchange of x1 ↔ x2
does not leave the same solution as before, see figure 6.11a. Upon an increase in
κ so that κ & κg the Z2 symmetry is spontaneously restored, see figure 6.11c.
Restoring happens via a gluing of the system’s limit cycles. A projection of
phase space in figure 6.11b shows two distinct limit cycles, which glue together
to one single cycle6, see figure 6.11d. The scale behaviour of the periods at the
bifurcation is as expected, see figure 6.12. The dynamics is reminescent of a
gluing bifurcation but it is not such a bifurcation. Generically, gluing bifurca-
tions are of codimension-2, at least two parameters have to be varied for the
dynamics to bifurcate. What is observed here is gluing-like ghost dynamics. In
nonlinear dynamics one tries to understand the dynamics of a system starting
with its stationary, fixed, points. Such points can emerge by parameter variation.
Approaching the critical parameter value also means that the dynamics possibly
behaves as if the fixed point would already have appeared. Such a situation is
sketched in figure 6.13. Although the saddle node is not present at first, the
dynamics is well aware of its approach.

6The index theorem is not violated in a gluing bifurcation. Both limit cycles share one degener-
ate unstable node.
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Figure 6.11 Gluing bifurcation in sarcomere elements with ζ = 33. (a) One possible
solution of the system for κ = 0.63. (b) Phase space of the cycle in a) in red and the
corresponding second cycle for exchange of x1 ↔ x2. (c) Both cycles glue together
for κ = 0.64. (d) Phase space of the cycle in c). Only one degenerate cycle remains.

Figure 6.12 Scale behaviour of periods of the gluing of cycles in figure 6.11. Periods
of the unglued cycles (blue) and the glued cycles (red) scale similarly like in the
homoclinic case.
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Gluing-like dynamics is observed although for the parameters in figure 6.11 no
saddle point is present. Since the emergence of the saddle node is independent
of ζ but κ > κhom, compare section 6.1.3, the saddle cannot be present. The
dynamics, however, behave like there is a saddle point.

x

x

0

(a)

x

x

0

(b)

Figure 6.13 Ghost dynamics, schematically. Arrows indicate the system’s dynamics.
Filled circle are stable, blanc circles are unstable nodes. The semi-filled circle is
a saddle. (a) Situation without a saddle point. (b) Parameter variation makes the
saddle appear. In both cases a) and b), the dynamics is similarly.

Experimental detection of a gluing transition in sarcomeres would not be
possible by specifying the sarcomere’s length through tracking of Z-discs. Before
and after the gluing-like transition the lengths of the sarcomere element x1 + x2
are indistinguishable. Detection demands half-sarcomere length recordings
via fluorescent markers of the M-line like it was demonstrated in [82]. The
spontaneous restoring of the Z2 symmetry through the gluing-like behaviour
has a dramatic effect when hydrodynamic interactions are taking into account
and will be discussed in chapter 7.

6.2.4 Period doubling and chaotic behaviour

Sarcomere elements are capable of undergoing pitchfork bifurcations of cy-
cles [126]. In terms of the half-sarcomeric element lengths, a dephased solution
of equal amplitude oscillations bifurcates into solutions with different ampli-
tudes of neighbouring elements. Hence, another symmetry is spontaneously
broken. Since a previously dephased solution has already spontaneously bro-
ken Z2 symmetry a destabilization of equal amplitude oscillations gives rise
to two new solutions since the equations are Z2 symmetric. Period doubling
bifurcations are also observed. Cascades of period doubling bifurcations occur
and intermittent chaotic behaviour is found, compare with [171]. In the chaotic
regime, the sarcomere element oscillates with a fixed frequency. The ampli-
tude of one half of the sarcomere element behaves chaotic while the other half
oscillates regularly.
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6.2.5 Generalized canard phenomenon

An equivalent to the canard phenomenon in half-sarcomere elements exists in
systems with two coupled elements: Mixed-mode oscillations. Cyclic dynam-
ics switch between small amplitude oscillations and large relaxation cycles.
Figure 6.14 shows a phase space projection of the process. Small amplitude
oscillations dynamically switch towards relaxation cycles. On the relaxation
cycle, the system undergoes a huge excursion. The relaxation cycles, drive the
system back to the basins of attraction of the small amplitude oscillations and
the whole cycle restarts.
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Figure 6.14 Mixed-mode oscillations with ζ = 63. (a) For a better visibility of mixed
mode cycles the phases space is extended by the element’s length x1 and x2. Small
amplitude oscillations alternate with relaxation cycles. (b) Element length x1 versus
time for the situation in a).

Mixed-mode oscillations are intimately linked to the canard phenomenon [153,
172] and can be interpreted as a generalization of the canard phenomenon [173].
On the experimental side mixed-mode oscillations are observed in the Belousov-
Zhabotinsky reaction.

6.3 Chain of half-sarcomeres

In chains of half-sarcomeric elements no conceptually new dynamical effects are
found. A chain’s steady state decomposes into the identical steady states of its
constitutive half-sarcomere elements. Spontaneous oscillations emerge close to
an Hopf-instability so that adjacent elements oscillate with equal amplitude and
frequency but phase shifted by T/3 [126]. The mode can destabilize leading
to a low phase shift between adjacent elements. This state corresponds to the
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relaxation waves that were introduced in section 5.3. In the homoclinic regime
chains exhibit a strong alteration of the oscillation period similar to single half-
sarcomeres. The chain is also excitable for parameter values that give rise to the
canard phenomenon in half-sarcomere elements.

Chains of half-sarcomere elements self-organize into states of spontaneous wave
patterns. Waves are a mode of chains triggered by pulse coupling. The mode
is excitable and can vary vastly in its oscillation frequency. Dynamical effects
spontaneously break the symmetries of half-sarcomere elements and chains of
elements and permit for wave dynamics. In the following chapter symmetries
that are spontaneously broken will allow a conceptual design of a microscopic
swimmer to self-organize into directed motion. The swimmer is driven by
microscopic force generators and restores its shape via elastic elements.
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Chapter 7 A simple self-organized
microscopic swimmer

Swimming within fluids is an important aspect of the life of micro-organisms.
In search for food and partners for mating, active controlled motion enhances
the chance of success. Some micro-organisms use flagella and cilia to move
within fluids. Autonomous swimming is driven by molecular motors that
act as force generators. Even though, owing to the complicated structure of
the filament–motor assemblies that are responsible for self-propelled beating
patterns, swimming of micro-organisms is not very well understood. Beside
the works of Taylor, Purcell, Shapere and Wilczek, microscopic swimmers
have only recently attracted attention. Mechanisms that generate the beating
patterns of micro-swimmers eventually leading to swimming have mostly been
disregarded.

This chapter tries to open a door by providing a conceptual study of a self-
propelling swimmer. Mechanisms will be suggested, which produce motion that
self-organizes into swimming states. The minimal demands for self-propelled
swimming without external influences for this conceptual swimmer will be
exposed.

Microscopic objects moving in simple fluids have a different experience of the
physical laws than humans have. Their life at low Reynolds number will initiate
this chapter. Strategies that allow for swimming under these conditions will be
discussed thereafter. A short introduction to fluid hydrodynamic of spherical
objects and geometrical implications will open the stage for a simple swimmer.
The swimmer is self-propelling and is driven by the self-organized collective
action of molecular force generators.
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7.1 Physical aspects of low Reynolds number
swimming

Life at low Reynolds number is different from human’s everyday experi-
ences [174, 175]. Swimming is also different. Swimming is a repetitive self-
generated motion, i.e. a cyclic deformation of a body, in order to propel in a
fluid by natural means. For the purpose of providing an intuitive explanation
what so different is, I recall the definition of the Reynolds number from the
beginning of chapter 5,

Re ∼ inertia forces
friction forces

. (7.1)

Humans that swim in water have Re ≈ 104, fish have Re ≈ 102 and micro-
organisms have Re ≈ 10−4. Humans can push against water and wait. Momen-
tum transfer between the water and the body is significant enough to overcome
friction, at least for a while, and a human will have propagated some distance.
Thereby, the speed and the pattern of the human’s stroke in the water accounts
for the propelled distance. Humans can even use reciprocal motion to swim.
A forward stroke is followed by the same stroke backwards, but at a different
speed. Since the fluid equations are time dependent, a complete stroke results in
a net motion. Micro-organisms can push against water and wait, too. Nothing
will happen. The motion is so weak that the organism’s momentum transfer to
the water is negligible. For humans, the swimming of micro-organisms may best
be compared with humans trying to move within quick sand or in swamp. Re-
ciprocal motion of micro-organisms would lead to a certain displacement during
the forward stroke. During the backward stroke exactly the same displacement,
but in the opposite direction, will bring the micro-organism back to its starting
point. The possibly different speeds of the strokes do not matter since the fluid
equations are independent of time in the low Reynolds number regime, which
illustrates nicely Purcell’s scallop theorem [175]: At low Reynolds number,
displacements through swimming strokes are independent of time.

How do micro-organisms swim? Overcoming both, the lack of a relevant fluid
inertia and the time invariance of displacements through swimming strokes is
possible. Nature elegantly takes possession of the friction itself, for swimming.
Thereby hydrodynamic interactions are of great importance.
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7.2 Swimming strategies

Swimming of microscopic objects in aqueous environments has to deal with
two concerns: The object’s shape has to change and a mechanism that drives
the shape changes is needed. This section concentrates on the former aspect.

Microscopic swimming relies on sequences of geometrical shape changes [174,
176]. Due to the lack of fluid inertia, swimming requires at least two degrees of
freedom for shape alterations [175]. A proposal of a simple swimmer consists of
three rods, which are connected by two hinges. Non-reciprocal changes of the
relative angle between the rods allow for swimming [175]. Another proposal
consist of two spheres that are connected by a linker, which periodically changes
its length. For swimming the pushmepullyou swimmer needs to cyclically resize
the spheres’ radius [177].

Another sphere based swimmer with constant radius of the spheres has
been proposed: The swimmer consists of three identical rigid spheres, which
are aligned along the x-axis, see figure 7.1. Adjacent spheres exert forces on
each other, which are generated within the linkers. The linkers periodically
change their length [178–181]. Correspondingly, the three-sphere swimmer is
symmetric with respect to exchange of left and right, i.e. space inversion.

Figure 7.1 Three-sphere swimmer introduced in [178]. Three rigid spheres are con-
nected by linkers. The length of the left and the right linker xl and xr, respectively,
can change periodically. For certain sequences the center of mass (x1 + x2 + x3)/3
propagates.

In addition, concepts of butterfly swimmer [182], toroidal swimmer [175,
183, 184], as well as swimmers that are driven by rotating elastic rods [185] have
been proposed, see also [186, and references therein]. Some ideas suggest to
use fluctuations on the microscale like a swimming ratchet [187]. Swimmers
performing reciprocal motion can propel as well as long as they interact with
each other [188, 189] or use their body’s inertia [190] to swim.

Micro-organisms in nature often use cilia and flagella [16, 191] for swimming.
Eucaryotic cells autonomously move through the action of molecular motors
within the cellular appendages. Attempts to incorporate mechanisms that drive
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the shape changes of conceptual designs of swimmers are restricted to cilia and
flagella [100, 101]. Currently none of the artificial swimmers introduced above
provide a driving mechanism. Experimentally realized micro-swimmers also
rely on external alternating magnetic fields [192–194].

In order to conceptually assemble a simple self-driven and self-organized swim-
mer it is necessary to have a short excursion into hydrodynamic interactions.
Starting from the Navier-Stokes equation the motion of rigid spheres, which
move in a simple newtonian fluid, will be derived. For review see [195].

7.3 Hydrodynamic interactions

The fundamental equation of fluid motion, the Navier-Stokes equation, for an
incompressible fluid with ∇ · u = 0 reads [196],

η∇2u−∇p + f = ρ [∂tu + (u · ∇) u] , (7.2)

with the fluids flow field u(r,t) at position r and time t, the pressure p(r,t) and
the force density f (r,t), while η is the fluid’s viscosity and ρ its mass density.
In the limit of low Reynolds number equation 7.2 reduces to the linear Stokes

(creeping flow) equation [197, 198],

η∇2u−∇p + f = 0 . (7.3)

A Green’s function for this problem is provided by the Oseen tensor H(r). This
tensor gives a solution for the Stokes equation in the case of a vanishing flow at
infinity, limr→∞ u(r,t) = 0, so that

u(r,t) =
∫

d3r′H(r− r′) · f (r′,t) . (7.4)

In the case of an infinitely large fluid without boundaries the Oseen tensor is
given by

H(r) =
1

8πη

(
I
r

+
rr
r3

)
, (7.5)

This Green’s function is known as a stokeslet.
In 1922, Faxén related the velocity v of a sphere with radius R to the

force f and the external flow u acting on the sphere, which is immersed in a
fluid. Assuming no slip boundary conditions1 on the spheres surface while

1No slip on the body’s surface guarantees that the body is force and torque free.
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neglecting the (counter-) flow field induced by the motion of the sphere and in
combination with the stokeslet approximation, which allows only point forces so
that f (r,t) = f (t) · δ(r), Faxéns first law [197] states that

v =
1

6πηR
· f + u +

R2

6
∇2u . (7.6)

In this case equation (7.4) reduces to u(r,t) = H(r) · f . At large distances r � R,
the last term in equation (7.6) can be ignored since the flow field appears nearly
uniform. Thus, the sphere is simply advected by the external flow for vanishing
forces on the sphere: v = u.

In a colloidal suspension the motion of a sphere is influences the other
spheres. If the fluid field that is experienced by a sphere i at position ri is
generated only by the motion of the other spheres j, which are subject to forces
f j, the sphere’s velocity is given by the force acting on the sphere and by a
superposition of the flow fields [198] so that

dri
dt
≡ ṙi = ∑

j
Mij f j . (7.7)

The mobility tensor M is symmetric, Mij = Mji, and depends on the distance
of the spheres |rij| with rij = ri − r j, the spheres’ radius R and the fluid’s
viscosity η,

Mij =

{
(6πηR)−1 · I : i = j
H ij : i 6= j

. (7.8)

Neglecting the Oseen tensor’s contribution, H ij ≡ 0, equation (7.7) corresponds
to the Stokes friction for a sphere. Including hydrodynamic interactions via H ij
gives a contribution to a sphere’s motion by the motion of other spheres. The
contribution is mediated by the fluid flow, which is generated by the movement
of other particles in the fluid. The Oseen tensor H ij for spheres emerged in a
fluid is given by [199]

H ij =
1

4πηR

[(
R
rij

+O
(

r−3
ij

))
· e‖ij +

(
1
2

R
rij

+O
(

r−3
ij

))
· e⊥ij

]
, (7.9)

with the unit vectors e‖ij along and e⊥ij perpendicular to the sphere’s distance
rij. Note that the approximations above are only valid for distances between
spheres that are large in comparison to the sphere radius, rij � R.
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Chapter 7 Self-organized microscopic swimmer

The motion of rigid spheres, which are immersed in a fluid, is governed
by equation (7.7). Forces that induce the colloids’ motion, can be externally
applied to the colloidal particles or internally generated through interaction
of the particles. A self-propelling swimmer implies forces that are internally
generated. Internal forces, per definition, balance so that ∑j f j = 0. A swimming
ensemble that is composed of identical spheres changes its center of mass like
∑i ṙi. Neglecting hydrodynamic interactions, H ij = 0, in this case cannot result
in a net motion of the ensemble, according to equation (7.7). For self-generated
motion for the purpose of swimming hydrodynamic interactions are essential.
In terms of conservation laws is swimming based on momentum conservation
between the swimmer and the surrounding fluid. The transfer of momentum
induces a fluid flow by an object’s motion. Without hydrodynamic interactions
the fluid flow is neglected.

From a different perspective this result reappears from a purely geometrical
point of view. The creeping flow, see equation (7.3), is independent of time.
A swimmer’s propagation depends only on the pattern of its shape changes.
Swimming at low Reynolds number can be reduced to a purely geometrical
problem. This idea will be clarified by means of the three-sphere swimmer in
the following section.

7.4 Geometrical aspects
of the three-sphere swimmer

Shapere and Wilczek proposed a purely geometrical analysis of swimming of
microscopic organisms [176]. Patterns of shape changes govern a swimmer’s
propulsion.

In the three-sphere swimmer, see figure 7.1, each sphere i with radius R is
located at position xi. The swimmer has two degrees of freedom, namely the
sphere’s left and right distances xl ≡ x2 − x1 and xr ≡ x3 − x2. The distances
vary cyclically with period T upon periodically varying forces fi(t) = fi(t + T)
that act on sphere i. Forces are produced internally within the linkers between
two adjacent spheres so that both attached spheres are exposed to the same
force but with different sign. Correspondingly, in the absence of external forces
on the swimmer all internal forces balance. The swimmers center of mass xs is
given by xs = (x1 + x2 + x3)/3. Under these circumstances the displacement of

84



7.4 Geometry of locomotion

the swimmer after one cycle x̄s implies

x̄s =
T∫

0

ẋs dt . (7.10)

The displacement can be rewritten, see appendix D, as an integral over the
oriented surface O encircled in the (xl,xr)-plane during one cycle of the periodic
motion, see figure 7.2,

x̄s =
∮
O

C(xl,xr) dxl ∧ dxr . (7.11)

The field C is symmetric with respect to space inversion C(xl,xr) = C(xr,xl) and
depends only on the mobility tensor Mij. C varies directly with R and scales
inversely as a square of the distance of the spheres. Finally, the swimmer’s
velocity vs is determined by the surface in the (xl,xr)-plane of the shape changes
and the oscillation period with vs = x̄s/T.

(a) (c)(b)

xl

xr

xS= 0 xl

xr

xS= 0

+

-

xl

xr

xS= 0

+

+

Figure 7.2 Schematic representation of the three-sphere swimmer’s possible motions.
(a) Reciprocal motion without net displacement. (b) Non-reciprocal motion with
a vanishing displacement after one cycle. (c) Motion that allows for swimming as
originally suggested by [178].

Exchange of the left and right sides of the swimmer, i.e. space inversion,
inverses the swimming direction x̄s → −x̄s. The orientation dependence in the
integral in equation (7.11) emerges through the property of differential forms,
which is dxl ∧dxr = −dxr ∧dxl. In the approximation (7.9) for the Oseen tensor,
the field C is independent of the fluid’s viscosity. Any viscosity dependence of
the swimmer’s speed vs is only mediated via shape changes in the (xl,xr) space
or alterations of the swimming cycle’s period T.
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Chapter 7 Self-organized microscopic swimmer

When does a sequence of shape changes lead to a net propagation? First
of all, the field C must be nonzero. Neglecting hydrodynamic interactions,
i.e. H ij = 0, yields C = 0. Any motion that considers local friction only can
not lead to a net locomotion. Yet, for C 6= 0 a swimmer’s displacement per
cycle can vanish. Figure 7.2 illustrates several situations: A trivial case is any
kind of reciprocal motion, whose path retraces itself in the (xl,xr)-plane, see
figure 7.2a. Such motion illustrates Purcell’s scallop theorem. Paths encircling
an oriented surface, which is unchanged upon space inversion so that xl and
xr exchanges, would also not lead to a net motion, compare with figure 7.2b.
This corresponds to situations in which the path is split up into two halves by
the xl = xr line while each half is a mirror image of the other. If the mirror
images have different orientations, the swimmer’s shape changes lead to net
locomotion, see figure 7.2c. Any motion that is symmetric under space inversion
in combination with time reversal (t→ −t) allows for swimming. For all paths
that are not symmetric according to space inversion only the evaluation of the
surface integral in expression (7.11) gives the amount of the net displacement
per cycle.

In summary, swimming is possible for motion that is symmetric under a com-
bined space and time inversion or for motion that breaks space inversion
symmetry. The latter case can have a vanishing displacement per cycle. That far,
the swimming motion inducing forces are imposed. Self-propulsion demands
for forces that are generated internally. Any micro-swimmer in nature and any
future microscopic man-made swimmer needs a force generating mechanism.
The following section proposes a self-propelled and self-organized swimmer.
Forces are generated locally within the linker according to mechanisms that
generate forces in muscles. Elastic elements in combination with force genera-
tors, such as molecular motors, can drive spontaneous swimming motion of the
three-sphere swimmer.

7.5 Simple swimmer driven by molecular motors

The self-propelled swimmer consists of three identical spheres and two identical
elements linking the spheres. Linkers actively change their length and thereby
exert forces on the attached spheres. Internally, a linker consists of molecu-
lar motors, which collectively act against elastic elements. The composition
of each linker is identical to the model of a half-sarcomere, which was intro-
duced in chapter 5, see figure 7.3. The structures have been shown to oscillate
spontaneously in length. This section will adapt the equations of motion from
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7.5 Simple swimmer driven by molecular motors

Figure 7.3 Self-propelled swimmer with force generating linkers, which resemble
muscle half-sarcomeres.

section 5.3 for two coupled half-sarcomeres to the swimmer case, where hydro-
dynamic interactions are taken into account. Thereupon the swimmer’s possible
dynamics will be analyzed and will be related to its swimming behaviour.

Motor and elastic forces balance through equation (7.7) with f1 = − f m
l − f e

l ,
f2 = − f1 − f3 and f3 = f m

r + f e
r . The subscripts l and r distinguish the left

and right linker, respectively. The three-sphere model swimmer is treated
one-dimensionally, hence, hydrodynamic interactions are restricted along the
swimmer’s axis. The mobility tensor reduces toMii = ξ−1 for i = 1,2,3,M12 =
(2ξ/3)−1 · R/xl, M13 = (2ξ/3)−1 · R/(xl + xr) and M23 = (2ξ/3)−1 · R/xr
with ξ = 6πηR. Finally, the dimensionless force balance equation yields

ζ ẋl,r =
{

3Rl
xl,r
− 2
}
· F(xl,r,Ql,r,yl,r) (7.12)

+
{

3Rl
2

(
1

xl + xr
− 1

xl
− 1

xr

)
+ 1
}
· F(xr,l,Qr,l,yr,l) ,

with dimensionless x, Q and y, see section 6.1, Rl = R/`0 and

F(x,Q,y) =
(

L
L0

+ 1− x
)

Q y
κ

+ x− 1 . (7.13)

In combination with equation (5.7) and (5.8) the variable reduction procedure
introduced in appendix C.2 for coupled half-sarcomeres, can be carried out
to obtain the dimensionless equation of motion for the variables Ql,r and yl,r.
Note, the equations of motion are unchanged upon exchange of left and right,
reflecting the swimmer’s intrinsic space inversion symmetry. Equation (7.12) is
identical to the equations of motion of a sarcomere for Rl → 0. In general, the
dynamics of the swimmer is similar to the dynamics of a sarcomere element.
The hydrodynamic interaction terms do not alter qualitatively the dynamic
behaviour. The implications of spontaneous symmetry breaking, however, are
much more dramatic for the swimmer.

The swimmer is able to oscillate spontaneously. Figure 7.4a summarizes
the swimmer’s states as a function of the parameter2 ζ. The same situation

2Other parameters can induce spontaneous oscillations or break space inversion symmetry
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Figure 7.4 (a) Swimming velocity as function of ζ. The swimmer’s linkers start to
oscillate for ζ = ζ1. However, the swimmer does not advance in average, compare
with b) and c). For ζ = ζc the linkers relative phase starts to deviate from half of
the oscillatory period and the swimmer starts to propagate, compare with d) and e).
(b,c) Linker length oscillations versus time and in the (xl,xr)-plane for ζ & ζc. The
state is non-swimming. (d,e) Linker length oscillatory state for ζ . ζc allows for
swimming. The swimmer speeds up to vs ≈ 1 µm/min. For parameter values see
appendix A.2.

for a sarcomere was already discussed qualitatively in section 5.3.1 and more
profound in section 6.2. The parameter ζ can be changed by varying ξ or the
binding rate ωb. Here, Rl = 0.08 that correspond to a reasonable large distance
of adjacent spheres allowing for the usage of the approximations in section 7.3
for hydrodynamic interactions.

For ζ < ζ1 the system is stationary. Decreasing ζ, the swimmer’s linkers start
to oscillate spontaneously with identical elongation but are phase shifted by half
a period. The swimmer, however, does not stir away in average. The oscillatory
state O1 is symmetric with respect to space inversion, thus non-swimming. The
encircled surface in the (xl,xr)-plane vanishes, see figure 7.4b,c. Decreasing
ζ further, for ζ < ζc the swimmer spontaneously propagates. Neither the
amplitude nor the oscillatory shape change at the critical value. The relative
phase shift ϕ between the two linkers deviates from half a period. This deviation
spontaneously breaks the motion’s space inversion symmetry and the swimmer
propagates, see figure 7.4d,e. Decreasing ζ further speeds up the swimmer due
to larger displacements per cycle.

being in the oscillatory regime. Only ζ allows for both symmetry breaking.
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7.5 Simple swimmer driven by molecular motors

There is another way that spontaneously breaks space inversion symmetry:
An anti-gluing bifurcation of cycles. In section 6.2.3 the possibility of the
gluing of cycles was examined. Figure 7.5 shows the gluing transition again.
A glued cycle is symmetric with respect to space inversion. The swimmer is
oscillating but not propagating. Anti-gluing of the cycles spontaneously breaks
this symmetry and the swimmer starts to propagate. Even though the gluing
induced swimming transition appears as a discontinuous jump in the swimmer’s
displacement x̄s, its velocity is continuously increasing. A gluing transition
is an infinite period bifurcation, where T is infinite at the transition point.
Correspondingly, the speed changes with parameter values qualitatively similar
to figure 7.4a. In section 6.2.3 it was mentioned that gluing transitions are barely
measurable in sarcomeres. In a sarcomere like swimmer a gluing transition
discriminates between swimming and not swimming, which is measurable.

0.72
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0.72 0.76 0.8

xr

xl

0.76

0.8

0.76 0.8

xr

xl

Figure 7.5 Recall of figure 6.11 in section 6.2.3. Phase space projections of the (xl,xr)-
plane of (a) glued cycles (b) non-glued cycles. The motion with glued cycles in a)
is symmetric with respect to space inversion, thus non-swimming. The two non-
glued cycles in b) allow for swimming, where each state corresponds to a different
swimming direction.

By the space inversion symmetry of the swimmer, for each motion, which
spontaneously breaks this symmetry leading to propagation in one direction
exists the space inverted motion propagating in the opposite direction. In a non
deterministic realization, the swimmer would stochastically switch swimming
direction, see figure 7.6. With spheres of radius R = 0.1 µm the predicted
swimming speed is of the order of vs ≈ 1 µm/min. Diffusion and noise is
immanent to microscopic objects. A sphere’s diffusion constant in water at
room temperature reaches D ≈ 2µm2/s. On distances comparable to the
swimmers size Ls ≈ 3 µm, diffusion dominates the swimmer’s motion, since
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Chapter 7 Self-organized microscopic swimmer

Lsvs/D = 0.025. Optimization could start in the increase of the swimmer’s
speed. This is possible by increasing the linkers’ oscillating frequencies or
amplitudes, see section 5.2.3. However, even a diffusion dominated swimmer
would exhibit diffusion constants, which are larger than for a comparable passive
system.

400 time (s)0 200

xl

0.8

0.9

1

xr

0.8

0.9

Figure 7.6 Stochastic switching of swimming states (without hydrodynamic interac-
tions). At the beginning the swimmer has a different swimming direction than at the
end of the switching process.

A swimmer that is composed of three spheres can self-organize into directed
motion by the action of molecular motors. The motors collectively exert forces
and spontaneously break the space-inversion symmetry. An experimental
realization has overcome first obstacles. In a recent experiment the three-sphere
swimmer was realized in a setup with three optical beads whose distance
variation was imposed externally [200]. Measuring the flow field approved the
predictions for the imposed motion. A next step could couple polar filaments
to the beads within a bath of motor filaments. The optical beads can provide
elastic restoring forces via feedback circuits. For myosin filaments, which cannot
flow away upon detachment, such a setup can measure properties of the self-
organized three-sphere swimmer. It is not out of reach. Far from it, such a
setup can serve as an experimental setup to understand muscle oscillations
on a (half-)sarcomere level, since the hydrodynamic interactions do not alter
qualitatively the dynamics in theory. In a further step one could examine the
interplay of several swimmers through their hydrodynamic interactions.
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Chapter 8 Conclusions and perspectives

Life is a self-sustained complex system. Different life-forms exist in spite of
the adversities of the environment. They adapt themselves to the environment
without a master plan. In order to do so cells are very likely organized in
a non-central way. There is evidence for self-organization of subsets of cell
constituents whereas the subsets interact with each other. Especially in the
cytoskeleton of cells self-organizing principles presumably play an important
role. In order to multiply the evidence for such principles two directions
of experiments are carried out. First, within biomimetic assays that contain
purified proteins in solution, situations are adjusted in vitro. Second, whole
functional structures are isolated from living cells. In this study I focused
on a set of experiments that isolated the cytoskeleton of muscle cells. For
chemical environments that correspond to a partial activation of muscles the
isolated cytoskeleton shows spontaneous oscillations in length. The cytoskeleton
cyclically shortens and lengthens with distinct time scales. Wave phenomena are
observed in homogeneous cytoskeletal structures. Waves nucleate at random
with in the cytoskeleton and travel some distance.

In order to describe these phenomena as self-organized processes I used
distinct techniques: Muscles’ cytoskeletal structures were described as active
gels, as chains of microscopic contractile units and as a continuous medium. The
description of myofibrils as an active non-polar one-component gel is based on
symmetry considerations and conservation laws. The gel cannot show wave phe-
nomena. Waves are based on a non-hydrodynamic mode that is not incorporated
within the gel’s description. A microscopic model of a half-sarcomere treated
the active components of the muscle cell’s cytoskeleton as force generators. They
exert forces on filaments and act against elastic elements. The force generators
themselves depend on the forces that act upon them. Collective action of the ac-
tive components spontaneously breaks the symmetries of the system and allows
for spontaneous oscillations in half-sarcomeric elements. Cyclic contractions and
relaxations have distinct time scales. The elements’ dynamics is remarkably sim-
ilar to the dynamics that are found in the experiments. The system is excitable
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and shows homoclinic behaviour. Chains of half-sarcomeric elements resemble
the structure of muscle myofibrils. Spontaneous waves form within the chains.
Waves are a dynamic mode of the chains, not synchronization effects. The wave
patterns are similar to the patterns found in the experiments. A continuous
description of myofibrils also allows for wave phenomena. The description
incorporated basic mechanisms that allowed for spontaneous oscillations at the
microscopic level. In the continuous description a non-hydrodynamic mode
could be identified. This mode cannot be associated with a conservation law
and is necessary for the wave phenomena in myofibrils. The coefficients of the
phenomenological description can directly be related to the microscopic’s model
parameters.

There is evidence that the wave behaviour could play a role in cyclic mus-
cle contractions under physiological conditions, especially in heart muscles.
Physiological muscle oscillations likely result from a superposition of different
mechanisms. Nature has a tendency for robust fail-safe designs, which means
that the possible weight of the microscopic mechanism that was suggested here
has to be probed. Precise experiments could reveal the physiological relevance
of the dynamical effects that are possible within the microscopic description. In
principle, the structural composition of half-sarcomeric elements can be adjusted
in vitro and the theory’s predictions could be probed experimentally.

Dynamically broken symmetries provide a way to drive microscopic swim-
mers. In this study I suggested a conceptual design of an autonomous self-
organized swimmer. It is composed of three spheres in a row that are linked by
force generating elements. The whole swimmer is symmetric with respect to
space-inversion. The collective action of force generators and elastic elements
within the linkers can spontaneously break the space inversion symmetry of
the swimmer’s shape changes. In this case the swimmer undergoes directed
movement. It would be interesting to investigate the interactions of several
autonomous swimmers. This would help to understand pattern formation
mechanisms in colonies of swimming micro-organisms. The influence of sur-
faces could be probed as well as the details of the hydrodynamic interactions.
This swimmer could be realized experimentally and provide a clearly defined
experimental environment for the study of the swimming of micro-organisms.
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Appendix A Parameter

A.1 Parameter set I

In distinct kinds of experiments the parameter values naturally differ. Instead of
concentrating to a particular experiment, I will give average parameter values,
which are related to experiments on partially activated myofibrils.

Muscle geometries differ in distinct muscle types. Typical lengths for actin
filaments are `p = 0.6 µm and for the bipolar myosin filaments 2 · `m = 1.5 µm.
Myosin filaments consists of about 300 myosin-II motors [15, 20, 201–204].
Hence, the average distance between motors is d = 5 nm. Inactive sarcomeres
have a typical resting length of 2 · `0 = 2.5 µm. Sarcomere’s elastic component
in the absence of motors is hard to measure. It is strongly non-linear [36, 41]
and depends on the initial stretch of the muscle in the experiments. However,
I choose k = 0.5 pN nm−1. Experiments on the elasticity of single myosin-II
motors suggests K = 4 pN nm−1 [20, 205]. For the motor I choose a stall force
of f0 = 4 pN and a load free velocity under partial activation of v0 = 0.4 µm/s.
Single motors are bound to actin filaments in average for 5 ms [206]. Following
the line of partial activation I choose 30 ms, which defines the load free unbinding
rate of single motors 1/ω0

off = 30 ms. With an average duty ratio of 0.09, see [20],
the binding rate is 1/ωon = 3 ms. The microscopic length scale a is unknown, but
must be of molecular dimension. Here, I choose a = 3 nm. Since experiments are
realized at room temperature kB T = 4 pN nm. The effective friction coefficient
cannot be measured either. Here I use ξ = 10 pN s µm−1, which corresponds to
a surrounding fluid with a viscosity of ten times the viscosity of water. Finally,
M has to be determined. This parameter cannot be measured directly. A
reasonable choice is M = 100, see [139].
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A.2 Parameter set II

The parameter values here slightly differ from the experimentally motivated
values given in section A.1. Unmentioned parameter are unaltered. Hence,
v0 = 2 µm/s, d = 50 nm, k = 0.01 pN nm−1, ξ = 0.5 pN s µm−1, M = 10,
ω0

off = 1/50 ms and ωon = 1/5 ms. In addition the swimmer’s sphere radius is
R = 0.1 µm. Dimensionless parameter values are derived from these values.
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Appendix B Half-sarcomere element

B.1 Fokker-Planck dynamics

Binding and unbinding dynamics of molecular motors is a stochastic process that
is subject to Brownian motion. Eventually, for a two state system this process
can be modelled by means of coupled Fokker-Planck equations. Denoting
the probability densities for the bound and unbound states Pb and Pu and the
currents by Jb and Ju, respectively, the equations reads

∂tPb + ∂y Jb = ωbPu −ωuPb (B.1)

∂tPu + ∂y Ju = −ωbPu + ωuPb . (B.2)

The distributions are normalized so that
∫ +∞
−∞ (Pb + Pu)dy = 1 while the currents

are given by

Jb = ẏPb − Db∂yPb (B.3)

Ju = −νyPu − Du∂yPu . (B.4)

The currents of motor bound on the polar filament emerge via active motion
of bound motors mediated by ẏ as well as diffusion on the polar filament,
which is characterized by its diffusion coefficient Db. Unbound motors diffuse
as well with diffusion coefficient Du and are subject to fast relaxation in its
spring potential, characterized by the relaxation rate ν. Fast relaxation means
that unbound motors are assumed to be immediately after detachment in their
equilibrium distribution, which is a Gaussian distribution in Fokker-Planck

processes, see [126]. Therefor the ansatz is used

Pu(y,t) = (1−Q(t)) · A exp
{
− Ky2

2kB T

}
(B.5)

with normalization A =
√

K/(2πkB T). Neglecting fluctuations of the motors’
spring extensions is taken into account through

Pb(y,t) = Q(t) · δ (y− yi) . (B.6)
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Integration over y of equation (B.2) and using probability conservation as well
as
∫ ∞
−∞ ∂y Judy = 0, the fraction of bound motors changes accordingly [126]

Q̇ = (1−Q) ·ωb −Q ·ωu . (B.7)

B.2 Reduced equations of motion

The equations of motion (5.7), (5.8) and (5.11) read,

ξ ẋ = x ·
(

QKy
d
− k
)
−
(
`p + `m

) QKy
d

+ k`0 + fext (B.8)

Q̇ = (1−Q) ·ωb −Q ·ωu (B.9)

ẋ = y [ωu(y) + Kv0/ f0]− v0 ≡ g(y) (B.10)

It is possible to unfold this problem into a set of equations of motion in the
variables Q and y while x is given by an algebraic expression x = x(Q,y) of the
dynamical variables. By replacing ẋ in equation (B.8) through (B.10) one obtains

dξg(y) = x · (QKy− dk)−
(
`p + `m

)
QKy + dk`0 + d fext . (B.11)

The derivative of equation (B.11) with respect to time is multiplied with the
term (QKy− dk) and the ẋ term can be replaced by equation (B.10) while
x · (QKy− dk) is replaced by equation (B.11). This procedure finally leads to the
reduced equations of motion

Q̇ = (1−Q) ·ωb −Q ·ωu (B.12)

ẏ =
g(y)(QKy− dk)2/d− Q̇Ky

[
k(`0 − `p − `m)− ξg(y) + fext

]
ξ(QKy− dk)g′(y) + KQ

[
k(`0 − `p − `m)− ξg(y) + fext

] , (B.13)

while x can be obtained from equation (B.11) in the case QKy 6= dk so that

x(Q,y) = `0 −
(
`p + `m − `0

)
QKy− d fext + dξg(y)

dk−QKy
. (B.14)

While in the case QKy = dk the equations of motions are still well defined, it
is not possible to obtain x in an algebraic way. In this situation the dynamics
of the element becomes independent of the elements length, see equation (B.8),
and therefore is obtained by directly integrating equation (B.8). For appropriate
initial conditions x(t0), x(t) reads

x(t) = x(t0) + ξ−1 ( fext − (`p + `m − `0)k
)
· t . (B.15)
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B.3 Oscillatory instability

The jacobian of the linearized system of equations of motion of the half-
sarcomeric element, see equation (5.12) and (5.13) has two conjugate-complex
eigenvalues for the stationary state. Oscillatory dynamics requires a non-
vanishing imaginary part of the eigenvalues, which lead to

0 > [ξ d (ωb + ωu(y)) + d k − Q K y

+
k(`p + `m − `0)− fext

d k − Q K y
Q K g′(y)−1 d

(
ωb + ωu(y)− y ω′u(y)

)]2

−4 [ d k − Q K y] [ωb + ωu(y)]
[
ξ d + N(x) Q K g′(y)−1 d

]
. (B.16)

with N(x) = (`p + `m− x)/d while x(Q,y) is given by equation (B.14) and (B.15).
Condition (B.16) can only be satisfied iff dk > QKy. An oscillatory instability
further requires a positive real part of the eigenvalues, which results in

0 ≥ ξ d (ωb + ωu(y)) + d k − Q K y

+
k(`p + `m − `0)− fext

d k − Q K y
Q K g′(y)−1 d

(
ωb + ωu(y)− y ω′u(y)

)
. (B.17)

This expression necessarily implies ωb + ωu(y) < y ω′u(y). In all expressions Q
and y are taken in the stationary state.

B.4 Critical frequency at the oscillatory instability

At the oscillatory instability the critical frequency fc of oscillations is given by
the imaginary part of the eigenvalues restricted to their vanishing real part, thus
leading to

fc =
1

2π

√
(ωb + ωu(y)) · (d k − Q K y)2

ξ d (d k − Q K y) +
(
k(`p + `m − `0)− fext

)
Q K g′(y)−1 d

.

(B.18)

B.5 Stochastic simulations

Binding and unbinding of molecular motors to a filament is an inherent noisy
process due to brownian motion. Here I use the Gillespie algorithm [207] to
simulate a half-sarcomere’s dynamics as a stochastic process. At each time step
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dt each bound motor i can unbind with probability ωu(yi) ·dt. Unbound motors
in the overlap region of motor and polar filament can bind with probability
ωb · dt. In the bound state the motors’ spring elongations are distributed as
shown in figure 5.8. Unbinding of motors is accompanied with fast (τ � dt)
relaxation into their equilibrium distribution. Correspondingly, during binding
a motor’s spring elongation is drawn from a Gaussian distribution with zero
mean and standard deviation

√
kB T/K. In the same time step each bound

motors actuates along the polar filament by

∆yt
i ≡ v

(
yt−dt

i

)
· dt , (B.19)

see section 5.2.1. Time is indicated with the superscript. The updated motor
induced tension in the half-sarcomeric element sums up to K ·∑N

i=1 ∆yt
i ≡ K ·Y.

Increased tension induces a change in length of the element, taking friction and
the elastic restoring force according to the force balance equation (5.11) into
account ( fext = 0 case):

−ξ
xt − xt−dt

dt
− k

(
xt − `0

)
− K ·Y = 0 . (B.20)

The collective action of motors changes the elements length to xt and alters
at the same time the individual motor spring extension, resulting in yt

i =
yt−dt

i + ∆yt
i + xt − xt−dt.
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C.1 Linear stability for a simple homogeneous
chain.

The equations of motion derived in section 5.1 read

ẋ1 = −2 f (x1) + f (x2) (C.1)

ẋj = −2 f (xi) + f (xj−1) + f (xj+1) with j = 2, . . . ,n− 1 (C.2)

ẋn = −2 f (xn) + f (xn−1) , (C.3)

while the constant friction coefficient ξ has been set to 1. There exists only one
stationary state, which is x∗ = x∗i = f−1 (0) for i = 1, . . . ,n. This corresponds to
a chain whose elements are of equal length in stationary state. The linearization
of the equations around the stationary state reads ẋ = J · x with x = (x1, . . . ,xn)
and the jacobian J,

J =


−2 f ′(x∗) f ′(x∗) 0 0 · · ·

f ′(x∗) −2 f ′(x∗) f ′(x∗) 0 · · ·
. . . . . . . . .

· · · 0 f ′(x∗) −2 f ′(x∗) f ′(x∗)
· · · 0 0 f ′(x∗) −2 f ′(x∗)

 . (C.4)

The jacobian is symmetric Jij = J ji. Thus, eigenvalues are real and no oscillations
can emerge in this simple myofibrillar model. Further, all eigenvectors are
orthogonal towards each other. The eigenvalues λj and eigenvectors νj of J are
given by

λj = −2 f ′(x∗) + 2| f ′(x∗)| cos (z) (C.5)

νj = (sin(z), sin(2z), . . . , sin(nz))T with z =
jπ

n + 1
. (C.6)

Due to the nature of the eigenvalues there are growing modes (positive λ)
beside decaying modes (negative λ) of perturbations of the stationary state.
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Perturbations evolve according to x(t) = ∑n
i=1 ci exp(λit)νi with ci = const.,

given through the initial conditions x(t = t0).

C.2 Reduced equations of motion for a chain of
half-sarcomeric elements

The equations of motion are obtained similarly as for one half-sarcomere, see
section B.2. The state of element i in a chain, which is composed of n elements,
is described by

Q̇i = (1−Qi) ·ωb −Qi ·ωu (yi) (C.7)

ẏi =
(

A−1 · (B · c + C · g/(dξ))
)

i
, (C.8)

with c = C−1 · (d + g), while the elements lengths are obtained via

xi = ci + `p + `m , (C.9)

in the case that C is invertible or otherwise

xi(t) = xi(t0)− (dξ)−1di · t . (C.10)

In the latter case ẏi = 0. The tensor components are given by

A1,1 = g′1 − (1 + bd)Q1Kc1 (C.11)

A1,2 = Q2Kc2 (C.12)

Ai,i−1 = Qi−1Kci−1 (C.13)

Ai,i = g′i − 2QiKci (C.14)

Ai,i+1 = Qi+1Kci+1 (C.15)

An,n−1 = Qn−1Kcn−1 (C.16)

An,n = g′n − 2QnKcn , (C.17)

for i = 2 . . . n− 1.

B1,1 = (1 + bd)Q̇1Ky1 (C.18)

B1,2 = −Q̇2Ky2 (C.19)

Bi,i−1 = −Q̇i−1Kyi−1 (C.20)

Bi,i = 2Q̇iKyi (C.21)

Bi,i+1 = −Q̇i+1Kyi+1 (C.22)

Bn,n−1 = −Q̇n−1Kyn−1 (C.23)

Bn,n = 2Q̇nKyn , (C.24)
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C1,1 = (1 + bd) (Q1Ky1 − dk) (C.25)

C1,2 = − (Q2Ky2 − dk) (C.26)

Ci,i−1 = − (Qi−1Kyi−1 − dk) (C.27)

Ci,i = 2 (QiKyi − dk) (C.28)

Ci,i+1 = − (Qi+1Kyi+1 − dk) (C.29)

Cn,n−1 = − (Qn−1Kyn−1 − dk) (C.30)

Cn,n = 2 (QnKyn − dk) . (C.31)

All other components vanish.

d1 = bddk(`p + `m − `0) (C.32)

di = 0 (C.33)

dn = dk(`p + `m − `0)− (1− bd)d fext , (C.34)

g1 = dξg(y1) (C.35)

gi = dξg(yi) (C.36)

gn = dξg(yn) . (C.37)

Unfortunately, the reduced equations of motion (C.7) and (C.8) for chains with
more than one element n ≥ 1 are numerically unstable. For numerical solution I
suggest to use the equations above with ci = xi − l and to obtain the elements
length via

dξ ẋi = (C · c− d)i . (C.38)

Dimensionless reduced equations of motion

The dimensionless equations of motion of a chain of half-sarcomeric elements
reads,

Q̇i = (1−Qi)−Qi ·ω (yi) (C.39)

ẏi = γ−1
(

A−1 · (B · c + C · g/(κζ))
)

i
, (C.40)

with c = C−1 · (d + g).

xi = L−1
0 (ci + L + L0) , (C.41)

in the case that C is invertible or otherwise

xi(t) = xi(t0)− (κζL0)−1di · t . (C.42)
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The tensor components are given by

A1,1 = g′1/γ− (1 + bd)Q1c1 (C.43)

A1,2 = Q2c2 (C.44)

Ai,i−1 = Qi−1ci−1 (C.45)

Ai,i = g′i/γ− 2Qici (C.46)

Ai,i+1 = Qi+1ci+1 (C.47)

An,n−1 = Qn−1cn−1 (C.48)

An,n = g′n/γ− 2Qncn , (C.49)

for i = 2 . . . n− 1.

B1,1 = (1 + bd)Q̇1y1 (C.50)

B1,2 = −Q̇2y2 (C.51)

Bi,i−1 = −Q̇i−1yi−1 (C.52)

Bi,i = 2Q̇iyi (C.53)

Bi,i+1 = −Q̇i+1yi+1 (C.54)

Bn,n−1 = −Q̇n−1yn−1 (C.55)

Bn,n = 2Q̇nyn , (C.56)

C1,1 = (1 + bd) (Q1y1 − κ) (C.57)

C1,2 = − (Q2y2 − κ) (C.58)

Ci,i−1 = − (Qi−1yi−1 − κ) (C.59)

Ci,i = 2 (Qiyi − κ) (C.60)

Ci,i+1 = − (Qi+1yi+1 − κ) (C.61)

Cn,n−1 = − (Qn−1yn−1 − κ) (C.62)

Cn,n = 2 (Qnyn − κ) . (C.63)

All other components vanish.

d1 = bdκL (C.64)

di = 0 (C.65)

dn = κL− (1− bd)κ f̃ext , (C.66)

g1 = κζ g̃(y1) (C.67)

gi = κζ g̃(yi) (C.68)

gn = κζ g̃(yn) , (C.69)

with ω(y) = ωu(y)/ωb and g̃(y) = y(γω(y) + 1)− 1.
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C.3 Stationary states of a chain

According to the equations (C.7) and (C.8) the chain is in steady state for 0 = g,
if C is invertible, since B vanishes in steady state. In steady state the chain
decouples and each element appears like one single half-sarcomere that is in
the state with g(y) = 0. For the only non-invertible case C = 0, the chain’s
steady state decouples and resembles the case QKy = dk for each element.
Correspondingly, the chains element lengths are all equal.

C.4 Continuum limit

In a force free chain of infinite many half-sarcomere elements, element j is
described by its equations of motion through equations (5.7), (5.8) and (5.21)—
(5.23). In order to obtain a continuum limit all nonlinear terms are rejected. A
linear expansion around the chain’s stationary state (x∗j ,Q∗j ,y∗j ) with xj = x∗+ xl

j,

Qj = Q∗ + Ql
j and yj = y∗ + yl

j yields

ẋl
j = yl

j ·
[
ω′u(y∗)y∗ + ωu(y∗) + Kv0/ f0

]
(C.70)

Q̇l
j = −yl

j ·Q∗ω′u(y∗)−Ql
j · (ωb + ωu(y∗)) (C.71)

ξ ẋj = N(x∗)Ky∗ · (2Ql
j −Ql

j−1 −Ql
j+1)

+N(x∗)KQ∗ · (2yl
j − yl

j−1 − yl
j+1)

+(k−Q∗Ky∗/d) · (2xl
j − xl

j−1 − xl
j+1) . (C.72)

According to section 6.3, all elements within a chain have identical stationary
states (x∗j ,Q∗j ,y∗j ) = (x∗,Q∗,y∗), ∀j. Defining a muscle tissue density ρ through
the distance of adjacent Z-discs, the elements’ lengths are related to the density
via

xj = x∗ · (1− ρ/ρ∗) ≡ x . (C.73)

I approximate 2xj− xj−1− xj+1 = − (x∗)2 ∂2
z x and replace x by the density ρ via

equation (C.73). Here, z is the coordinate along the chain. Repeating the later
limit for Q and y, but replacing y by equation (C.70) and relating any length
variables x to the tissue’s density by equation (C.73) reveal the continuous
equations

ξ∂tρ = c1∂2
zρ + c2∂t∂

2
zρ− c3∂2

zQ (C.74)

∂tQ = c4∂tρ− c5Q , (C.75)
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The coefficients are given by

c1 = [Q∗Ky∗/d− k](x∗)2 (C.76)

c2 = −(x∗)2 · N(x∗)Q∗K/[ω′u(y∗)y∗ + ωu(y∗) + Kv0/ f0] (C.77)

c3 = −ρ∗x∗ · N(x∗)Ky∗ (C.78)

c4 = x∗ ·Q∗ω′u(y∗)/{ρ∗[ω′u(y∗)y∗ + ωu(y∗) + Kv0/ f0]} (C.79)

c5 = ωb + ωu(y∗) . (C.80)

A final remark to the density definition in equation (C.73) shall be made. This
relation can be derived using the approximation zj − zj−1 ' x∗∂zx, where zj
denotes the position of the right end of element j, compare with figure 5.11.
Since the gradients in x corresponds to the strain in the chain, a chain’s density
can be linked to the expression by considering a section of length Λ of the chain.
By changing the density from its stationary value ρ∗ to ρ the density changes like∫

Λ(ρ∗ − ρ)dz. Likewise, alteration of the density changes by variations of the
distances between the elements and yields ρ∗[x(zj+Λ)− x(zj)] = ρ∗

∫
Λ ∂zx dz. A

comparison yields ∂zx = 1− ρ/ ρ∗.

C.5 Stochastic simulations

Stochastic simulations of a chain of n half-sarcomere elements extend the scheme
introduced in appendix B.5 only by one aspect. Alteration of the elements’
lengths change according to the force balance equation for a chain, see equa-
tions (5.21)—(5.23). In the force free case of an unfortified chain ( fext = 0) the
modified length of element j is given by the equations

− ξ
xt

j − xt−dt
j

dt
− 2 f j + f j−1 + f j+1 = 0 , (C.81)

with f j = k
(

xt
j − `0

)
+ K · Yj and f0 = fn+1 = 0. Fixation of the chains first

element demands for a replacement of the term 2 f1 by f1.
In the simulation in figure 5.15 a high number of motors is used. Simulations

with the same number of motors like in the mean-field description are too noisy
for the formation of wave trains. Noisy means that the distribution of oscillation
periods is not very sharp. This indicates that cooperative mechanisms of motor
binding and unbinding might be important in noisy systems.
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by distance variations

It is possible to express the forces fi as functions of ẋl and ẋr using equation (7.7)
and global force balance ∑j f j = 0. Replacing a single spheres’ velocities ẋi in
expression (7.10) with the help of equation (7.7) and the emerging forces by ẋl
and ẋr yields the expression

x̄s =
T∫

0

(A1(xl,xr)ẋl + A2(xl,xr)ẋr) dt =
∮
O

C(xl,xr) dxl ∧ dxr , (D.1)

where the Stokes relation is used for rewriting x̄s as a surface integral in the
(xl,xr)-plane with

C(xl,xr) =
∂A2

∂xl
− ∂A1

∂xr
. (D.2)

The functions Ai depend only on the mobility tensor Mij. Without hydrody-
namic interactions (Mij = 0, ∀i 6= j) the field vanishes, so that C = 0.
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