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Abbreviations 
 

 Abbreviations 
 

Symbols: 
CDW  Cell dry weight;  
CTAB  Cetyl trimethylammonium bromide;  

TE  Toluene-ethanol mixture; 

MALDI-TOF MS           Matrix-assisted laser desorption/ionization time-of –flight 

mass spectrometry;  

[U-13C6] G6P             [U-13C ] Glucose-6-phosphate;  6

EP                                          Eppendorf tube;  

DHB                                       2, 5-dihydroxybenzoic acid;  

CHCA                                   α-Cyano-4-hydroxycinnamic acid; 
GC-C-IRMS     Gas chromatography combustion isotope ratio mass 

spectrometry; 

GC-MS                           Gas chromatography mass spectrometry; 

MFA                                      Metabolic flux analysis; 

KIE                                Kinetic isotope effect; 

9AA                                       9-aminoacridine; 

PPP                                        Pentose phosphate pathway; 

TCA                                       Tricarboxylic acid; 

MBDSTFA   N-methyl-N-t-butyldimethylsilyl-trifluoroacetamide; 

 

Metabolites: 
 
G6P Glucose-6-phosphate;  

NADPP

 Nicotinamide adenine dinucleotide phosphate;  

NADPH Nicotinamide adenine dinucleotide phosphate reduced form;  

F6P Fructose-6-phosphate;  

F16BP    Fructose-1, 6-biphosphate;  

DHAP Dihydroxyacetone phosphate;  

GADP    Glyceraldehydes 3-phosphate;  

3PG    3-phosphoglycerate;  

2PG    2-phosphoglycerate;  

PEP    Phosphoenolpyruvate;  
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Abbreviations 
 
PYR    Pyruvate;  

6PG    6-phosphogluconate;  

P5P Ribulose 5-phosphate/Ribose 5-phosphate/Xylulose 5-

phosphate;  

S7P    Sedoheptulose 7-phosphate;  

13BP    1, 3-bisphosphoglycerate;  

E4P    Erythrose 4-phosphate;  

ATP    Adenosine-5'-triphosphate;  

ADP    Adenosine diphosphate;  

OAA    Oxaloacetate; 

 

 
 

Enzymes : 
 
G6PDH Glucose-6-phosphate dehydrogenase;  

IDH Isocitrate dehydrogenase;  

ME Malic enzyme;  

PGI Glucose-6-phosphate isomerase;  

6PGDH 6-phosphogluconate dehydrogenase;  

HK    Hexokinase; 
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Abstract 
 

Abstract  
Innovative methods were developed for metabolic network activity characterization using 

mass spectrometry. Metabolic flux analysis (MFA) and kinetics of metabolic networks 

were developed and applied to Corynebacterium glutamicum. A protocol to determine 

metabolic fluxes at low degree of labelling using gas chromatography-combustion-isotope 

ratio mass spectrometry (GC-C-IRMS) by the measurement of 13C enrichment in 

proteinogenic amino acid hydrolyzates was described. Kinetic isotope effects played an 

increasing role at low degree of labeling but could be corrected. From these corrected 13C 

enrichments In vivo fluxes in the central metabolism were determined by numerical 

optimization. The GC-C-IRMS-based method involving low labeling degree of expensive 

tracer substrate, e.g. 1%, is therefore promising for larger laboratory and industrial pilot 

scale fermentations. 

 

Permeabilization of Corynebacterium glutamicum cells was investigated and optimized. 

Permeabilized cells are considered closer to the in-vivo situation than purified enzyme(s) 

for the study of kinetics. A novel strategy was developed for the determination of in-situ 

enzymatic network kinetics combining permeabilization and matrix-assisted laser 

desorption/ionization time-of–flight mass spectrometry (MALDI-TOF-MS) quantification. 

Quantification of small molecular mass metabolites in glycolysis and pentose-phosphate 

pathway using MALDI-TOF-MS with [U-13C6] glucose-6-phosphate as single internal 

standard was established. Signal suppression during MALDI analysis could be 

compensated by applying the standard addition method. Adding selected substrates and 

cofactors, kinetics of glycolysis and pentose-phosphate pathways were be characterized 

using this method.  
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Abstract 
 

Abstract (German version) 

Im Rahmen dieser Arbeit wurden neue Massenspektrometrie-basierte Methoden zur 

Charakterisierung der Aktivität metabolischer Netzwerke entwickelt, die zur Flussanalyse 

in metabolischen Netzwerken sowie zur Analyse der Kinetik metabolischer Netzwerke 

angewendet wurden.  
13Die Methode zur Bestimmung metabolischer Flüsse basiert auf der Messung der C-

Anreicherung in Aminosäuren von Proteinhydrolysaten mit Hilfe von GC-C-IRMS (gas-

chromatography-combustion-isotope ratio mass spectrometry). Der Vorteil dieser Methode 

besteht darin, dass die Bestimmung metabolischer Flüsse auch bei sehr geringen Mengen 

an 13C-markiertem Substrat möglich ist. Durch Messung der 13C-Anreicherung in 

Aminosäuren und Korrektur von Isotopen-Effekten sowie durch Anpassung der 

korrigierten Daten mit Hilfe numerischer Optimierungen, konnten in vivo 

Flussverteilungen im Zentralstoffwechsel bestimmt werden. Da bei der GC-C-IRMS 

basierten Methode nur sehr geringe Mengen an relativ teurem 13C markiertem Substrat 

benötigt werden (~1%), ist diese Methodik insbesondere für die Anwendung in größerem 

Maßstab geeignet. 

 

Des Weiteren wurden Techniken zur Permeabiliserung von Corynebacterium glutamicum 

untersucht und optimiert. Generell sind permeabilisierte Zellen zur Bestimmung von in 

vivo Enzymkinetiken besser geeignet als isolierte und gereinigte Enzyme. Zur in situ 

Bestimmung von Kinetiken in enzymatischen Netzwerken wurde in dieser Arbeit eine 

Methode entwickelt, bei der die Enzymaktivität in permeabilisierten Zellen bestimmt wird 

und des Weiteren eine MALDI-TOF-MS-basierte Quantifizierung von intrazellulären 

Metaboliten erfolgt. Die Quantifizierung von Metaboliten der Glykolyse und des 

Pentosephosphat-Wegs mittels MALDI-TOF-MS erfolgte mit Hilfe von [U-13C6] Glukose-

6-Phosphat als internem Standard. Die bei der MALDI-Messung auftretenden Signal-

Unterdrückungen konnten durch Zugabe des Standards korrigiert werden. Durch Messung 

der entsprechenden Metabolite sowie durch Bestimmung von intrazellulären 

Enyzmaktivitäten mit Hilfe geeigneter Substrate und Kofaktoren, konnten die Kinetiken 

von Glykolyse sowie des Pentose-Phosphatweg erfolgreich charakterisiert werden. 
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General Introduction 
 

Chapter1  
General Introduction 

 

Biotechnology has been greatly developed in the last decades and is applied for the 

production of many useful compounds in industry (Becker et al. 2008a; Biwer et al. 2005; 

Kromer et al. 2005). Cost-effectiveness and environmental concerns are major reasons for 

the development and the application of bioprocesses. Besides primary metabolites, fine 

chemicals, organic acids, vitamins, food additives and alcohols, some secondary 

metabolites as pharmaceuticals are also produced by fermentations. The increasing 

demand in industry requires powerful techniques that can improve the performance of the 

producing strains. Metabolic engineering, which was used to optimize industrial 

microorganisms in a rational way, is now playing an ever increasing role for the 

development of biotechnological production processes (Iwatani et al. 2008; Liebermeister 

and Klipp 2006a; Liebermeister and Klipp 2006b; Sauer 2006; Wittmann 2007; Zamboni 

et al. 2009; Zamboni and Sauer 2009).  

Metabolic networks  

A metabolic network is the set and topology of metabolic biochemical reactions within a 

cell (Grüning et al. 2010). A metabolic network comprises both chemical reactions of 

metabolism and the regulatory interactions that control these reactions. Newly developed 

metabolic engineering processes allow the reconstruction of the network to improve the 

desired characteristics of biochemical systems (Schomburg 2009; Stelling et al. 2002). 

Since in vivo metabolic flux analysis and in situ network kinetic modeling are regarded as 

critical techniques for quantitative studies of metabolic networks, these were investigated 

in detail in this study. 

1.1 Metabolic flux analysis 
 

For rational engineering of a strain it is critical to quantify intracellular reaction rates in a 

metabolic network. A method termed metabolic flux analysis (MFA) is applied for 

quantitative analyze of carbon fluxes in-vivo. Therefore, MFA is the core of metabolic 

engineering attracting great interest from biologists (Iwatani et al. 2008; Sauer 2006; 

Wittmann 2007).  

 8



General Introduction 
 
 

Conventional metabolic flux analysis contains only mass balances which are constructed 

based on data from extracellular measurements such as specific substrate uptake and 

production formation rates (Vallino and Stephanopoulos 1993). This mass balance-based 

approach provides only limited information of the intracellular network, and it was further 

developed by introducing 13C labeling information for the calculation of intracellular 

fluxes. Labeling pattern information from proteinogenic amino acids at steady state can be 

provided by nuclear magnetic resonance (NMR), gas chromatography mass spectrometry 

(GC-MS) (Bolten et al. 2009; Michael Dauner 2000) and MALDI-TOF MS (Hollemeyer et 

al. 2007; Wittmann and Heinzle 2001a). Compared to NMR method, GC-MS method was 

more widely used for flux analysis owing to its much lower amount of the sample 

requirement and higher sensitivity. Conventional mass balance combining with data from 

GC-MS labeling measurement has been regarded as a key technique in biotechnology 

(Wittmann 2007).  

 

1.1.1 Gas chromatography combustion isotope ratio mass 

spectrometry (GC-C-IRMS) 

Gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS) is an 

analytical mass spectroscopic technique used for the determination of the relative ratio of 

stable isotopes of carbon (13C/12C), hydrogen (2 1H/ H), nitrogen (15 14N/ N) or oxygen 

(18 16O/ O) in individual compounds separated from complex samples (Meier-Augenstein 

1999a). Different from radioactive tracers which are harmful, these above mentioned 

stable isotopes do not cause any adverse physiological effects (Koletzko et al. 1997). 

Isotopic fractionation during physical, chemical and biological processes causes the 

relative ratio of isotopes in natural materials to vary slightly. Thus, relative isotopic ratios 

of specific compounds can be applied for diagnosis of special environmental processes. 

Furthermore, utilization of artificially synthesized isotope labeled substrates can help in 

the understanding of some highly complex and obscure biogeochemical pathways. Like 

GC-MS, the primary prerequisite of GC-C-IRMS is that the sample mixture is amenable to 

GC, i.e. it is suitably volatile and thermally stable. Therefore, chemical modification 

(derivatization) is necessary for polar compounds. This requires to account for stable 

isotope ratio of the derivatization agent in the analysis (Godin et al. 2007b).  
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Figure 1 depicts the scheme of a typical GC-C-IRMS instrument (based on a 

ThermoElectron Delta XP instrument). The IRMS instrument is coupled to a gas 

chromatography (GC) via a combustion interface (C). Generally, the GC is equipped with 

an auto sampler and all sample solutions are automatically injected into the GC inlet 

following a pre-set program. Samples are then vaporized and swept onto a 

chromatographic column by the carrier gas (usually helium). Compounds in a sample are 

separated according to various chemical properties causing different retention times in the 

whole column. Compounds then pass through a combustion reactor (alumina tube 

containing Ni/Cu/Pt wires maintained at 980 ºC) and combusted to e.g. CO2. A reduction 

reactor (an alumina tube containing three Cu wires maintained at 640 ºC) is followed to 

reduce any nitrogen oxides to nitrogen. Water is then removed in a water separator by 

passing the gas stream through a tube constructed from a water permeable nafion 

membrane. The gas stream containing the combustion products then flows into the MS by 

an open split interface for analysis. 

Mass spectrometry identifies compounds by the mass of the analyte molecule. Ionization 

of the analyte gases (CO , H2 2, N2 or CO) is achieved using electron impact ionization (EI), 

the principle is the same as has already been described elsewhere (Wittmann and Heinzle 

1999b). An array of Faraday cups, e.g. CO2 can be set to m/z 44, 45 and 46 to detect 

separated ionized gases and used to calculate the final stable isotope ratio. Reference CO2 

of known isotopic composition is introduced directly into the ion source at the beginning 

and at the end of every run. 13C/12C values are calculated by integrating the m/z 44, 45, and 

46 ion currents. The compound-specific isotope values (δ13C) are calculated as follows: 

[ ]13  1000A S

S

R RC
R

δ
⎛ ⎞−

= ×⎜ ⎟
⎝ ⎠

‰  

S
S

A RRCR +
⋅

=
1000

13δ
 

Where RA is the ratio of 13C/12C in the sample and RS is the corresponding ratio measured 

for the used international standard (For carbon, RS = 0.0112372). For metabolic 

investigation, the atom fraction, namely atom percent (AP or A %), is used as described in 

the following formula: 
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The APE is another general variable calculated which is defined as an absolute 

measurement of the isotopic enrichment.  

                                               APE= AP (sample) - AP (background)

APE can be then transformed in molar percent excess (MPE) using following formula: 

                                               MPE = APE × (Ctotal / C ) labeled

Where C is the total number of carbon in the molecule and Ctotal labeled is the number of 

labeled carbon in the molecule.  

 
 

Figure 1. Scheme of a typical GC-C-IRMS instrument.  

1.1.2 Application of GC-C-IRMS to metabolic flux analysis 

Techniques combining 13C tracer experiments and GC-MS analysis have been developed 

to high standards and successfully applied to metabolic flux analysis for recent years 

(Wittmann and Heinzle 1999b; Zamboni et al. 2009). But this strategy can not be used for 
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all cases especially for those where isotope enrichment is lower than 0.5 atom % excess 

(APE) due to the limited accuracy and precision of isotope ratio measurement by GC-MS 

even in the SIM mode (Preston and Slater 1994; Rennie et al. 1996). In contrast, GC-C-

IRMS has the ability to measure samples with very low isotope enrichment close to the 

natural abundance level. Therefore, it has potential to be applied to these cases (Corr et al. 

2007; Meier-Augenstein 1999b).  

 

A state-of-art metabolic flux analysis using GC-C-IRMS can be performed in three steps: 

tracer experiment, GC-C-IRMS analysis and final flux computational estimation (Figure 2).  

First, specially labeled substrates, mostly 13C labeled, should be carefully designed based 

not only on the metabolic network of the organism of interest but also on the spectrum of 

active paths and their approximative activities. Different from the GC-MS method, the 

position of the labeled stable isotope is not important for GC-C-IRMS-based metabolic 

flux analysis because all of compounds separated from GC are burnt to CO2. Therefore, 

only the mass isotopomers of CO will be obtained from MS subsequently. CO2 2 has only 

one carbon atom, and then corresponding mass isotopomer fractions are referred to only m 

and m+1. Therefore, the final results can not reflect carbon positional transition 

information of the intermediates. The procedure of tracer experiment for microorganism 

cultivation and sampling is the same as with the GC-MS based experiment. But the 

derivatization procedure for GC-C-IRMS measurement is more restricting, e.g. agents 

involved must be extremely water-free, to ensure a subsequent good separation by GC due 

to the lack of MS spectrum for each compound.   
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Figure 2.   Schematic of strategy for GC-C-IRMS based metabolic flux analysis.  

 
1.1.3 Kinetic isotope effect (KIE)    
KIE is a variation in the reaction rate of a chemical reaction when an atom in one of the 

reactants is replaced by one of its isotopes. It is also called "isotope fractionation" and can 

be represented as: 
 

heavy

light

K
K

=KIE  

 

Where Klight is reaction rate constant of the light atom and Kheavy is the reaction rate 

constant of the heavy isotope. Primary isotope effect and secondary isotope effect are two 
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main types of KIE. The former is caused by the isotopic replacement which happens in a 

chemical bond breaking or forming in a rate limiting step (Rieley 1994). The later is 

caused in cases that isotopic substitution is remote from the bond being broken. KIE can 

be utilized for some enzyme mechanisms study (Adams et al. 1990; Anderson et al. 1994; 

Axelsson et al. 1992), but causes reaction rate variation and makes the metabolic flux 

calculation more complex. 13C labeled substrates are the major labeling used for metabolic 

study. By the measurement of both the rapidly removed product and the conversion to an 

isotopically stable form, as well as isotope ratio analysis, the isotope effect on hydration 

and dehydration is k12/k13  = 1.0069 ± 0.0003 and 1.0147 ± 0.0007, respectively (Marlier 

and Oleary 1984). For GC-MS based tracer experiments which normally use high degree 

of labeling e.g. 100% [13C] glucose (generally 1% impurity), the involved 12C is about only 

1%, therefore the kinetic isotope effect is very small and can be neglected. However, for 

cases using low degree of labeling e.g. 1% [1-13C] glucose which is very close to natural 

abundance level, KIE should be considered and corrected while designing the experiment 

(Corr et al. 2007).   

 

1.2 Kinetic modeling 
 

Kinetic network models describe the complete dynamics of the network or usually only 

sub-networks of a cell, and have been proven useful for optimization and control over the 

network. The complexity of this task increases with the size of the network considered, 

and the estimation of parameters is critical for the creation of a reliable kinetic model 

(Domingues et al. 2010; Hadlich et al. 2009; Theobald et al. 1997; Visser et al. 2004). 

Generally, the construction of a mathematical model comprises three steps: (1) 

participating metabolites identification by experimental measurement, (2) assignment of 

rate laws, (3) parameter estimation (Drager et al. 2009). In this study, the focus is on the 

first two steps. Instead of using directly the complex in vivo system, the in situ system is 

very promising for this kinetic study owe to its ease of experimental operation and the 

similarity to in vivo. For identification and quantification of low molecular mass 

metabolites, MALDI-TOF MS has the potential to be applied for measurement of a large 

number of samples. 

 

1.2.1 Permeabilization for enzyme characterization 

 14



General Introduction 
 
Enzymes have been applied in industry for the production of chemicals and drugs for more 

than one century. The increasing interests force a deep understanding of potentially 

applicable enzymes. For a long time purified enzymes and cell extracts are utilized for 

characterizing enzymes in vitro. Unfortunately, obtained parameters from in-vitro 

condition can not entirely explain how enzymes fulfill their functions in a living cell due to 

the difference between an artificial reaction condition and original environment (Minton 

2006). Permeabilized cells has been shown to be a better material for enzyme 

characterization (Felix 1982; Miranda et al. 2006; Serrano et al. 1973).  The process of 

permeabilization of cells is relative easy and rapid. Some physical methods or chemical 

detergents or drugs can gently penetrate the cell membrane and make pores to allow low 

molecular weight compounds or metabolites diffuse into and out of the cell and keep big 

molecular weight proteins inside the cell. Figure 3 shows the pictures of stained cells before 

and after permeabilization. Before permeabilization the dye molecules are not able to enter 

the cells, in contrast, after permeabilization the cells are completely stained. Since 

enzymes are still at their original positions in the cell, this in-situ condition is regarded 

closer to in-vivo than the in-vitro. Permeabilized cells combine the original nature of 

experiments in-vivo with much of the control possibility in experiments in-vitro. Because 

of its suitability for enzyme study, different approaches have been tested and applied for a 

number of organism permeabilization. Chemicals and drugs such as DMSO (Mowshowitz 

1976), ethanol (Somkuti et al. 1998), Triton X-100 (Christova et al. 1996; Galabova et al. 

1996), toluene and ethanol mixture (TE) (Chelico and Khachatourians 2003; Sorol et al. 

2001), cetyl-trimethyl ammonium bromide (CTAB) (Bindu et al. 1998), digitonin 

(Cordeiro and Freire 1995; Martins et al. 2001c), and chloroform/SDS mixture (Griffith 

and Wolf 2002) were mostly utilized agents. Recently, rather than chemical methods, other 

approaches were also developed. A lpp gene (encoding Braun’s lipoprotein) deletion was 

tested for permeabilization (Kiefer et al. 2007). Pulsed electric field was also tested to 

permeate Corynebacterium glutamicum and the results are satisfying (Tryfona and Bustard 

2008a). It seems permeabilization has a wide application range on various organisms, not 

only on a number of bacteria, but also on baker’s yeast (Abraham and Bhat 2008), fungal 

conidia on surfaces (Filion et al. 2009), Red blood cells (Schneiker et al. 2007) etc.  
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Before After 

 
 

Figure 3.  Staining of cells with methylene bule before and after Triton X-100 

permeabilization. 

 

1.2.2 MALDI-TOF MS 
 

MALDI-TOF MS was firstly introduced by Karas et al. (Karas et al. 1987; Karas and 

Hillenkamp 1988). Instead of conventional ionization methods, it allows the soft ionization 

and sensitive analysis of biomolecules (biopolymers such as proteins, peptides and sugars) 

and large organic molecules (such as polymers and other macromolecules). A scheme of a 

MALDI-TOF MS instrument is shown in Figure 4. A matrix material (normally an organic 

solvent) is mixed with the sample to form absorbs applying laser light and then produces 

charged ionic species and a crystalline lattice with the surface molecules of the analyte. 

This crystalline lattice facilitates desorption and ionization of the analytes. The analyte 

ions are accelerated by a high voltage (15-25 KV) and then travel in a field-free flight tube. 

The ions with the lower mass to charge ratio (m/z) will travel at a greater velocity and 

reach the detector faster than the larger m/z ions. Analyte ions are separated and detected 

as an electrical signal by MS. Several specific advantages, including simplicity of sample 

preparation, high mass measurement range, high sensitivity, little sample consumption and 

fast measurement, make MALDI-TOF MS an excellent analysis technique for enzyme 

activity screening and dynamic study.  

 

An appropriate matrix is essential for MALDI-TOF MS analysis. It must be dissolvable in 

the solvent together with analytes to get a proper molar ratio, and should not react with 

analytes. 2, 5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (CHCA) 

are very common matrices for protein or peptide analysis (Lasaosa et al. 2009a; Lasaosa et 
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al. 2009b; Zabet-Moghaddam et al. 2004b). Recently, MALDI-TOF MS was also applied 

to quantify some low molecular weight compounds. This new approach was applied for 

enzyme activity measurement (Bungert et al. 2004a; Bungert et al. 2004b) and metabolic 

flux analysis (Hollemeyer et al. 2007; Wittmann and Heinzle 2001a). New matrices, 

namely 9-aminoacridine (9AA) and DMAN (1,8-bis(dimethylamino)naphthalene) were 

successfully employed for low molecular mass metabolites measurement. They were 

proven to be suitable for low mass weight molecule measurement with little noisy 

background (Edwards and Kennedy 2005; Rachal L. Vermillion-Salsbury 2002; Rohit and 

Alescaron 2009; Shroff et al. 2007; Shroff et al. 2009; Vaidyanathan and Goodacre 2007). 

The structures of these two compounds are shown in Figure 5.  

 

For a long time, MALDI-TOF MS was applied only for identification of large 

biomolecules. Generally the sample is ionized and then directly analyzed by MS without 

any additional separation. A problem limiting quantification is signal suppression. Some 

analytes, especially having similar structures, can interfere with each other (Sojo et al. 

2003; Wu et al. 2004). Nowadays, with the development of more powerful MALDI 

instrument as well as the application of internal standards (Duncan et al. 2008), these 

limitations can be mostly overcome. In this study, the investigation of MALDI-TOF MS 

focuses on small molecular mass metabolites quantification. The detailed introduction and 

the application of the matrix 9 AA are described in Chapter 5.  
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Figure 4. Representation of the principle of MALDI-TOF MS operating in the negative 
mode. The smaller ions (low m/z ratio) will travel faster than the larger masses (high m/z 
ratios). 
 

 

 

            
 

Figure 5. Chemical structures of two newly developed matrices: 9-aminoacridine (A) 

(Rachal L. Vermillion-Salsbury 2002) and 1,8-bis(dimethylamino)naphthalene (B) (Shroff 

et al. 2009). 
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1.2.3 Intracellular metabolites sampling and quantification 
 

An appropriate sampling is essential for intracellular metabolism study. This is due to the 

extremely small size of the intermediate pools and short turnover time of intermediates. 

Sampling in a microbial experiment is so far a big challenge and limiting step. Quenching 

of the cells in the sub second time scale to stop all the reactions in living cells is generally 

employed and proved an effective method for yeast (Bolten and Wittmann 2008; Canelas 

et al. 2008) as well as different bacteria (Bolten et al. 2007; Moritz et al. 2000a; Zhu and 

Shimizu 2004). A method applicable for both yeast and bacteria was also reported (Spura 

et al. 2009). Generally, samples are directly put into cold methanol/water mixture which is 

pre-cold and kept in a dry ice/acetone mixture (-80 oC), followed by a centrifugation with 

pre-cooled contrifugator (-20 oC). The temperature is kept always lower than -20 oC during 

the whole procedure. Quenching method is performed under the assumption that all 

metabolites are kept in the cell over the whole process, but in practice, metabolites can 

leak from the cells to some extent and result in an underestimation of intracellular 

metabolites. Canelas et al. developed a leakage-free method for yeast (Canelas et al. 2008), 

but for bacteria this leakage is still a problem. A new strategy is highly desirable to 

improve this quenching method or avoid using quenching method for metabolism study in 

bacteria.  

 

The next task following sampling and sample preparation is intracellular metabolites 

identification and quantification. Enzymatic assay (Schaefer et al. 1999) and NMR (Neves 

et al. 1999) methods have been in the forefront of this task but limited by the requirement 

of big sample volume. Recently, quantitative measurement based on LC-ESI-MS 

(Mashego et al. 2004; van Dam et al. 2002; Wunschel et al. 1997) and GC-MS (Kramer et 

al. 2006; Kromer et al. 2005) were described. Some limitations of LC-MS and GC-MS 

methods were also reported. For the LC-ESI-MS method, e.g., non linear response caused 

by the ion suppression of electrospray ionization (Shi 2003) and the influence of the 

sample matrix from various microbial cultures (Mashego et al. 2004) were reported. GC-

MS method is usually applied for metabolites that are volatile or that can be modified to be 

volatile by an additional derivatization step. However, this derivatization can truly impede 

quantification. Some special instruments were developed which allow an automatic 

derivatization to decrease this influence on quantification. In general, by the use of internal 

standard, above drawbacks can be fully or partly overcome (Mashego et al. 2004).  
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Quantification of small molecular mass metabolites was also investigated using MALDI-

TOF MS (Szajli et al. 2008). Some preliminary efforts have been done on amino acids 

(Rohit Shroff 2007; Vaidyanathan and Goodacre 2007; Wittmann and Heinzle 2001a; 

Wittmann and Heinzle 2001c),  cyanobacterial toxins (Howard et al. 2006) and bile acids 

(Mims and Hercules 2004; Simion et al. 1983). In this thesis, some details about small 

molecule metabolite quantification were investigated.  

 

 

 

 

 

 

 

 

 

 

 

 

Aim and outline of this thesis 

 

The aim of this thesis is to develop and apply novel experimental and analytical tools for 

metabolic network characterization. The developed tools are expected to be useful for 

engineering of applicable microbial or mammalian strains.  

 

Metabolic flux analysis is a critical tool in metabolic engineering. Isotope labeled 

substrates, normally 13C labeled, are applied in MFA and the isotope mass distributions of 

the metabolites can be observed by GC-MS measurement. Generally, high degrees of 

labeled substrates are used for a tracer experiment in order to obtain satisfactory isotopic 

enrichment that can be detected by GC-MS. The high cost of isotopic traces has however 

restricted this MFA to laboratory scales. Unfortunately, small-scale fermentation can not 

be directly scaled up to a large-scale industrial fermentation. Therefore, a method 

performing MFA in large-scale fermentation is urgently needed. In Chapter 2, GC-C-

IRMS was investigated in depth for the measurement of extremely low isotopic 
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enrichments of amino acids. The high precision of this analysis allows the use of low 

degree of labeled substrates for trace experiments. Kinetic isotope effect plays a role in 

metabolic reactions using low degree of labeling. A simple and effective method was 

developed and applied to correct for the KIE. In chapter 3, a novel strategy was 

successfully developed combining a low labeling tracer experiment and GC-C-IRMS 

analysis for metabolic flux analysis.  

 

Enzyme activity plays a major role in metabolic networks. Enzyme kinetics are mainly 

studied experimentally using purified enzymes or cell extracts which are so called in-vitro 

conditions. But identified parameters are proved not fully applicable in a living cell 

because of differences between in-vitro and in-vivo conditions. The permeabilized cell in-

situ, is regarded as closer to in-vivo condtion and a better material for the enzyme kinetic 

study. In chapter 4, permeabilization in Corynebacterium glutamicum was attentively 

studied to obtain optimized conditions. Enzyme properties of in-vitro and in-situ 

conditions were compared. Quantification of intracellular metabolites is critical in 

metabolic system study. Enzymatic assays need relatively large volumes and are limited to 

certain metabolites and reactions. Nowadays, LC-MS and GC-MS methods are mostly 

applied for intracellular metabolites quantification but have limited sensitivity and are 

time-consuming. In metabolic system experiments, due to the extremely low 

concentrations of the metabolites and large number of samples, a new method with higher 

sensitivity and much shorter analysis time is desirable. In chapter 5, a novel strategy 

combining permeabilization and MALDI-TOF MS analysis was developed to meet this 

requirement. The successful quantification of metabolites makes it possible to obtain 

kinetics of glycolysis and the pentose-phosphate pathway. A scheme of this new strategy is 

demonstrated in Figure 6.  

 

 
 

Figure 6. Schematic of strategy for MALDI-TOF MS quantification based kinetic study.  
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At the end, chapter 7 discusses the challenges and outlook of these developed strategies in 

metabolic system analysis.  

 

Chapter 2 has been published as : Heinzle E*, Yuan Y, Kumar S, Wittmann C, Gehre M, 

Richnow HH, Wehrung P, Adam P, Albrecht P. 2008. Analysis of C-13 labeling 

enrichment in microbial culture applying metabolic tracer experiments using gas 

chromatography-combustion-isotope ratio mass spectrometry. Analytical Biochemistry 

380(2):202-210. 

 

Chapter 3 has been published as : Yuan Y, Yang TH, Heinzle E. 2010. C-13 metabolic 

flux analysis for larger scale cultivation using gas chromatography-combustion-isotope 

ratio mass spectrometry. Metabolic Engineering 12(4):392-400. 

 

Chapter 4 has been published as : Yuan  Y, Heinzle E. 2009. Permeabilization of 

Corynebacterium glutamicum for NAD(P)H-dependent intracellular enzyme activity 

measurement. Comptes Rendus Chimie 12(10-11):1154-1162. 

 

Chapter 5 has been submitted as : Yuan Y, Heinzle E. 2010. in-situ multi-enzyme network 

kinetics study using MALDI-TOF MS. submitted to Analytical Biochemistry. 

 

Chapter 6 is under preparation as : Yuan Y, Heinzle E. 2010. Kinetic modeling of in-situ 

enzymatic system. 
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Chapter 2 
Analysis of 13C Labeling Enrichment in 

Microbial Culture Applying Metabolic Tracer 

Experiments Using GC-C-IRMS 
 

 

Abstract 
 

The applicability of isotope ratio monitoring gas chromatography-mass spectrometry (GC-

C-IRMS) for the quantification of 13C enrichment of proteinogenic amino acids in 

metabolic tracer experiments was evaluated. Measurement of the 13C enrichment of 

proteinogenic amino acids from cell hydrolysates of Corynebacterium glutamicum 

growing on different mixtures containing between 0.5 % and 10 % [1-13C] glucose shows 

the significance of kinetic isotope effects in metabolic flux studies at low degree of 

labeling. Assuming that only reacting carbon atoms are subjected to kinetic isotope effects, 

we developed a method to calculate the 13C enrichment. The approach to correct for these 

effects in metabolic flux studies using δ13C measurement by GC-C-IRMS uses two parallel 

experiments applying substrate with natural abundance and 13C enriched tracer substrate, 

respectively. The fractional enrichment obtained in natural substrate is subtracted from that 

of the enriched one. Tracer studies with C. glutamicum resulted in a statistically identical 

relative fractional enrichment of 13C in proteinogenic amino acids over the whole range of 

applied concentrations of [1-13C] glucose. The present findings indicate a great potential of 

GC-C-IRMS for labeling quantification in 13C metabolic flux analysis with low labeling 

degree of tracer substrate directly in larger scale bioreactors. 

 

 

This chapter has been published as : Heinzle E*, Yuan Y, Kumar S, Wittmann C, Gehre M, 
Richnow HH, Wehrung P, Adam P, Albrecht P. 2008. Analysis of C-13 labeling 
enrichment in microbial culture applying metabolic tracer experiments using gas 
chromatography-combustion-isotope ratio mass spectrometry. Analytical Biochemistry 
380(2):202-210. 

 31



Analysis of 13C enrichment using GC-C-IRMS 
 

2.1 Introduction 
 

In recent years, 13C metabolic flux analysis has gained momentum as a powerful tool for 

quantitative studies of in vivo activities of pathways (G.N.Stephanopoulos 1998; Wittmann 

2002). It is based on the use of 13C-labeled compounds as tracer for biological system 

studies. In such tracer studies the labeled carbon atoms are distributed among the 

metabolic network. After reaching an isotopic steady-state, the isotopic enrichment in 

different intracellular or extracellular metabolite pools can be measured by NMR 

(Maaheimo et al. 2001; Sauer et al. 1997), GC-MS (Christensen and Nielsen 1999; 

Michael Dauner 2000; Wittmann and Heinzle 2002b) or MALDI-TOF MS (Wittmann and 

Heinzle 2001a). The calculation of metabolic fluxes from the 13C labeling data is then 

based on the network topology of the studied system including knowledge on carbon 

transfer in the underlying reactions. Often amino acids contained in the cell protein are 

analyzed for this purpose, because they provide valuable information for the calculation of 

metabolic fluxes (Christensen and Nielsen 1999; Michael Dauner 2000). Resulting mass 

isotopomer ratios or fractional carbon labeling can be directly used for metabolic flux 

calculation (Wittmann and Heinzle 1999b; Yang et al. 2008). 

 

Typically, isotopic tracer substrates are applied at high 13C enrichment such as 100 % [1-
13C] glucose, mixtures of [1-13C] glucose and glucose with a natural carbon isotope 

abundance (50:50), or mixtures of [13C6] glucose and glucose with a natural carbon isotope 

abundance (90:10, 80:20, and 60:40), respectively, to get an isotopic enrichment in the 

metabolites of interest that can be satisfactorily detected with standard MS or NMR 

methods (Kelleher 2001) In few cases, such as medium demanding chemostat cultivations, 

a lower 13C enrichment of the substrate is applied, which however results in a loss in 

accuracy (Fiaux et al. 2003). The high 13C enrichment required and the high costs of 

isotopic tracer substrates have restricted 13C metabolic flux analysis to small scale (Kumar 

et al. 2004). Studies at larger-scale bioreactors have therefore not been realized (Wittmann 

C 2008). Investigations at large scale are inevitable since it is well known that conditions 

in small-scale often cannot accurately predict the events in the large-scale fermentation 

and in many cases scale-up is a major bottleneck in bioprocess development (Bourne et al. 

1992; K. van't Riet 1991; S. Aiba 1973). Recent approaches to assess metabolic flux at 

large scale rely on identical performance of the large scale reactor to be characterized and 

a small scale reactor run in parallel for the 13C-based metabolic flux analysis and are 
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limited by high experimental effort and highly sophisticated instrumentation to integrate, 

control and run the two processes in parallel (El Massaoudi et al. 2003). Therefore, 

solutions for direct metabolic flux analysis of large-scale biotechnological processes are 

highly desirable. In this context GC-C-IRMS exhibits a high-precision (0.0002 atom %) 

and accuracy for measurement of low isotopic enrichment compared to GC-MS (0.05 atom 

%) (Brand 1996; Godin et al. 2007c; Meier-Augenstein 1999a). It therefore appears 

interesting to be used in the field of metabolic flux analysis by overcoming the limitations 

of present approaches at large scale. GC-C-IRMS has been applied for stable isotope 

analysis in archaeology (Stott and Evershed 1996), environmental chemistry (Ishiwatari et 

al.; Schmidt et al. 2004), geochemistry (Behrens et al. 2000; Derrien et al. 2003), nutrition 

and medically oriented metabolic research (Aguilera et al. 2000; Meier-Augenstein 1999b). 

Biological studies included the determination the incorporation of 13C into glutamine by 

infusion of 13 13C labeled acetate in humans (Menand et al. 1997) or of [1- C] valine into 

muscle protein in piglets (Reijngoud et al. 1998b) or of 13C into fatty acid of human 

retinoblastoma cells (Huang et al. 2000). However, GC-C-IRMS has not yet been 

considered for 13C metabolic flux analysis. 
 

Here, we present an experimental protocol to measure 13C fractional enrichment in 

proteinogenic amino acids by GC-C-IRMS. The applicability of GC-C-IRMS for 

metabolic flux analysis is investigated by different tracer substrates employing low levels 

of 13C-labeled substrate. The experiments are based on biosynthetically directed fractional 
13C labeling of the proteinogenic amino acids, which is achieved by feeding a mixture of 

[1-13C] glucose and glucose with a natural carbon isotope abundance and subsequent 

measurement of 13C fractional enrichment by GC-C-IRMS. The studied microorganism 

Corynebacterium glutamicum is intensively used for the industrial production of amino 

acids such as glutamate and lysine (P.A. Lessard 1999; Wittmann and Becker 2007b) and 

thus is a potential candidate for metabolic flux analysis at large scale.  

 

2.2 Materials and methods 
 

Reagents  

[1-13C] glucose (99 % atom 13C) was purchased from Cambridge Isotope Laboratories Inc. 

(Andover, USA). L- [1-13C] alanine (99 % atom 13C) was purchased from Euriso-top (Gif-

sur-Yvette, France). Yeast extract and tryptone used for LB5G medium were from Difco 

Laboratories (Becton Dickinson, France S.A., France). All other chemicals were from 
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Sigma-Aldrich (St. Louis, USA). For all experiments the same batch of chemicals was 

used.  

 

Growth and labeling of C. glutamicum 

Stock cultures of C. glutamicum ATCC 13032 were stored at -70 °C in complex LB5G 

medium supplemented with 10 % (v/v) glycerol (Vallino and Stephanopoulos 1993). For 

cultivation a mineral medium containing 110 mM glucose as carbon source was applied 

(Yang et al. 2003). For first pre-cultivation, a single colony was inoculated from a 2 day 

grown LB5G agar plate into 50 mL LB5G medium in a 500 mL baffled shake flask and 

incubated for 12 hours on a rotary shaker at 250 rpm (Multitron; Infors AG, Bottmingen, 

Switzerland). For second pre-cultivation, cells were transferred into mineral medium with 

a starting cell concentration (OD660) of 0.05, and grown overnight as described above. 

Subsequently, cells were washed twice with mineral medium by centrifugation at 10,000 g 

(Biofuge® fresco; Heraeus, Kendro Laboratory Products, Hanau, Germany) and used as 

inoculum for the main cultures. Tracer experiments were carried out in 25 ml baffled shake 

flasks containing 5 ml mineral medium. Hereby mixtures of (i) 0.5 % (w/w) [1-13C] 

glucose and 99.5 % (w/w) glucose with a natural carbon isotope abundance, (ii) 1.0 % 

(w/w) [1-13C] glucose and 99.0 % (w/w) glucose with a natural carbon isotope abundance, 

(iii) 2.0 % (w/w) [1-13C] glucose and 98.0 % (w/w) glucose with a natural carbon isotope 

abundance and (iv) 10.0 % (w/w) [1-13C] glucose and 90.0 % (w/w) glucose with a natural 

carbon isotope abundance were applied, respectively.  

 

All flasks were incubated in parallel at 30 °C and 250 rpm on a rotary shaker (Multitron; 

Infors AG, Bottmingen, Switzerland). It can be expected that cellular components will 

reach an isotopic steady state during the balanced exponential growth. Growth was 

monitored by measurement of optical density. At the mid of exponential phase, samples 

were taken from all the five flasks. Cell concentration (OD660) was determined and 

biomass and supernatant was collected for purpose of analysis. 

 

Sample preparation for labeling analysis  

For GC-C-IRMS analysis of proteinogenic amino acids, mid exponential culture biomass 

(2 mg) was harvested. The pellet was washed twice with deionized water, mixed with 0.5 

ml of 6 M HCl and incubated for 24 h at 110 °C for hydrolysis. The hydrolysis was 

complete after 24 hours of reaction and is not associated with measurable isotope effects 
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on the δ　13C isotope composition of amino acids (Jim et al. 2003). After cooling down to 

room temperature, the hydrolyzate was filtered through a 0.22 μm membrane (Ultrafree®, 

Millipore, USA). 50 µl of the hydrolyzate was lyophilized. The amino acids in the 

lyophilisate were converted into t-butyl-dimethylsilyl (t-BDMS) derivates by addition of 

100 µl of N-methyl-N-t-butyldimethylsilyl-trifluoroacetamide (MBDSTFA, Macherey-

Nagel GmbH & Co., Düren, Germany). This corresponds to more than 200-fold molar 

excess of MBDSTFA ensuring complete conversion of the amino acids. The mixture was 

allowed to react for 60 min at 80 °C. After cooling down to room temperature, derivatized 

samples were filtered through 0.22 µm membranes (Ultrafree®, Millipore, USA) and then 

directly used for GC-C-IRMS analysis. 

 

Analytical procedures for GC-C-IRMS analysis 

 13C-labeling measurements were performed on an GC-C-IRMS instrument comprising a 

HP6890 gas chromatograph (Agilent 6890; Agilent Technologies, Palo Alto, USA), a 

standard GC/C III interface with a Ni/Cu/Pt combustion reactor set at 940 °C (Thermo 

Fisher Scientific, Bremen, Germany) and a MAT 253 gas isotope mass spectrometer 

(Thermo Fischer Scientific MAT, Bremen, Germany). Electron ionization voltage was 77 

eV, electron current was1.5 mA and three Faraday cup collectors for m/z 44, 45 and 46 

were used for detection of CO2. The GC was equipped with a split/splitless injector and a 

DB-1 column (60 m x 0.25 mm, 0.1 µm film thickness, J&W). Helium was used as carrier 

gas with a constant flow of 1.5 ml/min. H2O generated in the combustion interface was 

removed by passage of the combustion products through a water trap cooled to 3 °C.  

(Nafion: 50 cm x 0.3 mm i.d.; 15 ml min-1 helium flow rate). δ13C determinations were 

carried out with the faraday cup set to measure m/z 44, 45 and 46. Isotope ratios were 

calculated from the relative abundances of these mass traces. For analysis 1 µl of sample 

was injected in split mode (split 1:10) using an autosampler (CTC Combipal, Chromtech, 

Idstein, Germany). The split/splitless injector was set to 270 °C. The GC temperature 

parameters were set as follows. The initial temperature of 120 °C was kept for 5 minutes. 

Subsequently the temperature was increased by 5 °C/min to 280 °C and then by 20 °C/ min 

to 310 °C and kept isotherm for 5 min. Isotope ratios were calibrated against reference 

CO2 of known isotopic composition introduced directly into the ion source three times at 

the beginning and at the end of every run. δ13C values were calculated by integrating the 

m/z 44, 45, and 46 ion currents. The compound-specific isotope values (δ13C) were 

calculated relative to calibrated reference gas (CO2). The reference gas was calibrated 
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against Vienna Peedee Belemnite (VPDB) scale (Coplen et al. 2006). Each measurement 

was performed at least in triplicate. 

 

2.3 Theoretical background 
 

Calculation of fractional 13 13C enrichment. The C enrichment, expressed as δ13C in units 

of ‰, is defined as the relative difference between a sample isotope ratio and the isotope 

ratio of the standard PDB (Eq. 1). δ units are therefore relative units and not a measure of 

absolute isotope concentration (Slater et al. 2001).  
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Hereby, RA is the measured isotope ratio (13C/12C) of the sample analyte. RS is the known 

isotope ratio for the PDB international standard (0.0112372) respectively. This results in: 
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Correction for kinetic isotope effects  

Kinetic isotope effects are the result from the lower activation energies needed to break 

chemical bonds formed by light (e.g. 16 12 1O, C, H) compared to heavy (e.g. 18 13 2O, C, H) 

isotopes. Light isotopes form weaker bonds and thus react faster than the heavy isotopes, 

leading to depletion in the product and an enrichment of heavy isotopes in the not yet 

degraded residual fraction. Thus, the reactive center of the reacting molecule is mostly 
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responsible whereas more remote atoms are less contributing to this effect. If we assume as 

a first approximation that isotope effects are only concerned with the reacting carbon atom, 

we can directly calculate the expected effect for this single carbon atom. For doing that we 

look at a simple linear reaction network 

 

CA B Dkk k kA B C D E⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→    (5) 

 

If we assume that the concentration of A is constant and that B and C are at metabolic 

steady-state, the corresponding material balances for B and C are 

 

0
0
0

A A B

B B C C

C C D D

k C k C
k C k C
k C k C

= −

= −

= −

B

                  (6) 

 

where k  are reaction rate constants and C  are concentrations. Then we directly get,  i i

 

A A Dk C k C= D       (7) 

 

and for the labeled species with modified rate constants 

 
* * * *
A A D D
k C k C=      (8) 

 

If we calculate the fractional labeling of D as function of the fractional labeling of A for 

carbon atom j of the product reacting along path i we obtain, 
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We can see that the resulting labeling ratio of this carbon atom is always proportional to 

the input labeling. At a given set of flux distribution, each carbon atom of the substrate 

applied will statistically have its characteristic path and therefore its corresponding k' value 

as defined in equation (9). We can now sum all possible paths, m, of one substrate carbon 

atom ending up in any of n product carbon atoms 
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Similarly this can be done for all naturally labeled carbon atoms with the exception of the 

labeled one. We can define, 
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here r indicates the residual carbon atoms. Now the total fractional labeling of a metabolite 

measured will be the sum of the traced atom and all others yielding 

 
13 13 13 ' 13 ' 13

, ,D tot D D r A r A rF F F k F k= + = +    (12) 

 

Here tot indicates the total labeling as measured by GC-C-IRMS. Plotting the fractional 

enrichment versus the applied fractional enrichmenttotDF ,
13

AF13
, i.e. the fraction of applied 

labeled glucose, should yield a straight line which generally has an intercept different from 

zero. The values of  and 'k '
rk  are different for each carbon atom and each path this carbon 

atom has experienced during metabolism. However, at identical flux distributions these 

parameters should remain constant. If we compare the measured fractional labeling of two 

metabolites at identical carbon paths and metabolic flux distributions we get, 

 
13 ' 13 ' 13
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If <<' 13
, ,r i A rk F 13 13

, ,1 , ,2D tot D totF FAi Fk 13'
, the measured ratio  should be constant with varying 

substrate labeling . However, if we want to apply substrate labelingAF13
 comparable to 

natural labeling, this will not be the case. If we now subtract the residual labeling, 13  as ,D rF

 38



Analysis of 13C enrichment using GC-C-IRMS 
 
measured in an experiment with only naturally labeled substrate, from the measured total 

labeling, 13  
,D totF we get the labeling originating from the labeled carbon atom. 

 
13 ' 13 ' 13 13

,D A r A rF k F k F= + − ,D rF    (14) 

 

Using equation (14) we can compare the fractional labeling of two metabolites calculating 

their ratio. 
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If added substrate labeling  approaches zero in equation (12), we 

get 13 ,

AF13

13 ' 13
, ,D tot D r r A rF F k= = 13 13

, , 0A r D rF F− =therefore the difference . This further means 

that the ratio 13 13
,1 ,2D DF F  should be constant at constant flux distributions but varying 

degree of substrate labeling. 

 

In the present work this approach was applied to the correction of kinetic isotope effects in 

metabolic tracer studies. In the case of growing Corynebacterium glutamicum, the 

corrected 13C enrichment of the analyte A was defined as 

 

     (16)  natitotii FFF ,
13

,
1313 −=

 

Where natiF ,
13 is the observed fractional abundance of 13

 C of component ‘i’ in the sample 

that was grown on naturally labeled carbon source and serves as reference.  is the 

measured fractional abundance of the sample that was grown on labeled carbon source. 

  can be converted into atom percent excess, APE (APE=100×

totiF ,
13

13
iF13 Fi). If kinetic isotope 

effects are identical in both samples, this effect is corrected for by equation (16). If kinetic 

effects are more complex, e.g. in multiple labeled substrates, corresponding errors will 

remain. If the labeling degree is very small,  will have a large error because both, 

 and , are corrupted with errors and these errors will be amplified while 

calculating the difference, since 

iF13

totiF ,
13

natiF ,
13
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Using equation (15) and (16), we define a ratio of true corrected 13C fractional enrichment 

of two compounds ‘i’ and ‘j’ as mentioned in equation (18). We can expect that this ratio 

of two compounds, e.g., amino acids, will be identical in cultures grown under identical 

conditions but with different concentrations of labeled substrate applied. 
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The magnitude of error amplification is estimated by Gaussian law of error propagation 

using equation (19) 
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Correction of the data for contribution of 13C from derivatization agent  

The derivatization has an effect on the 13C content in the entire analyte. The contribution 

of derivative carbon must therefore be taken into account when only the fractional 13C 

value of the analyte is required (Docherty et al. 2001). Additional 13C fraction from carbon 

atoms introduced during the derivatization reaction can be corrected by using a correction 

factor. This factor can be determined by measuring the δ13C value of an underivatized 

molecule and of the same molecule after derivatization by GC-C-IRMS, respectively. 

Kinetic effects caused by the analyte can be neglected because it is completely converted. 

This is not the case for the derivative agent, which is supplied in large excess. However, as 

the silylation reaction does not involve any direct carbon bond formation, it does not lead 

to any primary kinetic isotope effect, which may occur with other derivatization agents 

(Rieley 1994). Due to this, the contribution of 13C from the derivatization agent can be 

corrected by using simple mass balance (Brenna et al. 1997).  

 

                                 = +                                                               (20) DA
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DA
LCarN - Number of labeled carbon atoms in derivatized analyte; - Number of labeled 

carbon atoms in analyte; - Number of labeled carbon atoms in derivatization agent.  

A
LCarN

D
LCarN

 

Hereby we assumed in a first approximation that the 13C contribution from the 

derivatization reagent is natural with an abundance of 0.011078 (K.J.R. Rosman 1997). 

Corrections were made by using equation (21) 
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13where, 13 - C fraction of the analyte originating from labeled substrate; R- Measured AF

13C/12C ratio of the sample; - Number of carbon atoms in analyte; - Number of 

carbon atoms in derivatization agent and 13 - 

A
CarN D

CarN

13C fraction of the derivatization agent. If DF

 and -values are further used for calculation of E13
AF

13
DF A, the term containing 13  

cancels out. For an exact determination of 13

DF

,  has to be measured experimentally. 13
DFAF

 

2.4 Results and discussion 
 
13C Labeling analysis of amino acids by GC-C-IRMS  

GC-C-IRMS chromatograms of a synthetic amino acid mixture and a protein hydrolysate 

from C. glutamicum culture are shown in Figure 1.  The 13C fraction of 16 proteinogenic 

amino acids could be determined. Note that during the hydrolysis procedure cysteine and 

tryptophan are destroyed. Asparagine and glutamine are converted into aspartic acid and 

glutamic acid, respectively. The upper part of each chromatogram (Figure. 1 A, C) shows 

the m/z 45/44 ratios, and the lower part of each chromatogram (Figure. 1 B, D) depicts the 

m/z 44 ion current. It can be seen from the chromatogram that the developed method 

allowed baseline resolution of amino acids and subsequent δ13C measurement of amino 

acids in standard amino acid mixture and proteinogenic amino acids from crude biomass 

hydrolysate. High chromatographic resolution, high precision of  determination and 

accurate calibration of isotope abundances (δ values) as well as adeq　 uate correction for 

background carbon dioxide are the most important requirements for achieving this. All 
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amino acids present in the standard mixture were found satisfactorily separated without 

any co-eluting peaks (Figure. 1 A, B). The m/z 45/44 ratio tracer  

 

 

 
 

13Figure 1: GC-C-IRMS chromatogram of the δ C analysis of t-butyl-dimethylsilyl (t-

BDMS) derivatives of amino acids. A, B: Standard amino acid mixture (Sigma-Aldrich); 
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C, D: proteinogenic amino acids from biomass hydrolyzate of C. glutamicum. B and D 

show the m/z 44 ion current while A and C depicts the m/z 45/44 ratio traces of the analyte. 

Peak identities: 1-alanine; 2-glycine; 3-valine; 4-leucine; 5-isoleucine; 6-proline; 7-

methionine; 8-serine; 9-threonine; 10-phenylalanine; 11-aspartic acid; 12-glutamic acid; 

13-asparagine; 14-lysine; 15-glutamine; 16-arginine; 17-histidine; 18-tyrosine. The amino 

acids cysteine, tryptophan are oxidized during the hydrolysis process, whereas asparagine 

and glutamine are deaminated to yield aspartic acid and glutamic acid. The latter peaks are 

therefore the sum of the acid and its corresponding amide. 

 

also clearly did not show any background noise. Another prerequisite for the development 

of a robust analytical method is the efficient separation of the amino acids in crude 

biomass hydrolyzate. As can be seen in the Figure. 1 (C, D) the m/z 44 and the m/z 45/44 

ratio traces did not exhibit any interfering peaks. Excellent sensitivity of the method was 

observed considering that the peak signals yielded from 2 C-nmol of sample injected into 

the GC-C-IRMS reflect the proteinogenic amino acids from only 50 ng of biomass.  

 

The precision of the measured δ13C values from GC-C-IRMS for proteinogenic amino 

acids is shown in Table 2. These errors include also biological variation using two parallel 

cell shake-flask cultures. This relative variation in 13C fraction can be considered in the 

simulation model for calculating the fluxes.  

 

Linearity and measurement range. For the intended application of GC-C-IRMS 

measurements to metabolic flux analysis it is important to characterize the measurement 

range and to check the linearity because they are directly influencing the required degree 

of substrate labelling, the most dominant factor for the cost of such experiments. Linearity 

and measurement range were investigated using different mixtures of [1-13C] alanine and 

alanine with natural isotope abundance (range: 0 to 0.05 % [1-13C] alanine). An 

enrichment as low as 0.0001 atom % excess could be detected in the measured CO2. Figure 

2 displays the observed relation between the theoretical and the measured enrichment in 

CO2 resulting from the combustion of alanine. The linear regression analysis of the 

calibration curve indicated a statistically significant linear relationship (R2=0.9995) over 

the whole range tested.  
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Figure 2: Measurement of 13C fraction of alanine measured by GC-C-IRMS as function of         

[1-13C] alanine fraction applied.  

 
13C analysis of biomass hydrolyzate from tracer studies with varied 13C enrichment of 

tracer substrate. Corynebacterium glutamicum was cultivated in parallel with different 

fractions of [1-13C] glucose and glucose with natural carbon isotope abundance (range: 0.5 

% to 10 % [1-13C] glucose). The average initial cell concentration (OD660) of all the six 

flasks was 0.14 ± 0.01. Identical growth was observed in all the flasks with a specific 

growth rate of 0.42 h-1. Protein hydrolyzates from each flask were derivatized and 

analyzed by GC-C-IRMS. 
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Table 1: Experimental δ values of different proteinogenic amino acids from a C. glutamicum

culture grown on glucose with a natural carbon isotope abundance, its corrections for the

contribution of carbon atoms from derivatization reagent and final corrected fractional 13C of 

the analyte. 

Amino Acid δ (‰)a RA
b natiF ,

13
A
CarN D

CarN
natiF ,

13c  f 

(Uncorrected)

    d e

(Corrected) 

-25.92 0.01095 0.01083 3 12 0.00983 Alanine 

-27.86 0.01092 0.01081 2 12 0.00917 Glycine 

-25.31 0.01095 0.01083 5 12 0.01025 Valine 

-23.65 0.01097 0.01085 6 12 0.01040 Leucine 

-22.64 0.01098 0.01086 6 12 0.01043 Isoleucine 

-22.06 0.01099 0.01087 5 12 0.01037 Proline 

-25.07 0.01096 0.01084 5 12 0.01026 Methionine 

-25.21 0.01095 0.01084 3 18 0.00938 Serine 

-25.45 0.01095 0.01083 4 18 0.00973 Threonine 

-22.82 0.01098 0.01086 9 12 0.01057 Phenylalanine 

Aspartic acid -25.66 0.01095 0.01083 4 18 0.00972 

Glutamic acid -24.89 0.01096 0.01084 5 18  0.01000 

-25.16 0.01095 0.01084 6 18 0.01011 Lysine 

-27.31 0.01093 0.01081 6 18 0.01002 Arginine 

-21.67 0.01099 0.01087 6 18 0.01026 Histidine 

-24.80 0.01096 0.01084 9 18 0.01036 Tyrosine 
 

      

 
a Experimental δ values obtained from the measurements 
b 13 Calculated C/12C ratio from the experimental δ values 
c 13Uncorrected C fraction of the analyte 
d Number of carbon atoms in the amino acid 
e Number of carbon atoms from the derivatization agent 
f Corrected 13C fraction of the analyte 
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13Table 2: C fractional enrichment and standard deviation of selected proteinogenic amino acids after correction of carbon contribution 

from derivatization reagent at different fractions of [1-13C] glucose used. Measured δ13C values are listed in Table A1. 

0b 0.49a 0.99a 1.98a 9.85a[1-13C] glucose 

a fraction (%) mean sdev mean sdev Mean sdev mean sdev mean sdev 

Alanine 0.983% 5.75E-05 1.090% 3.89E-07 1.180% 1.01E-05 1.400% 1.63E-04 3.150% 2.31E-03

Glycine 0.918% 9.31E-06 0.924% 3.45E-05 0.936% 4.95E-05 0.962% 7.75E-05 1.060% 2.17E-04

Serine 0.938% 2.34E-05 1.010% 4.09E-05 1.070% 2.94E-06 1.210% 9.97E-05 2.300% 1.24E-03

Phenylalanine 1.060% 2.24E-05 1.110% 3.23E-05 1.150% 1.01E-05 1.260% 8.74E-05 2.040% 8.63E-04

Aspartic acid/Aspargine 0.972% 3.32E-05 1.060% 2.79E-05 1.130% 6.79E-06 1.310% 1.33E-04 2.680% 1.47E-03

Glutamic acid/Glutamine 0.998% 4.32E-05 1.090% 3.04E-05 1.170% 9.22E-06 1.360% 1.41E-04 2.850% 1.62E-03
 

a [1-13C] glucose used for cultivation; b Culture grown with naturally labeled carbon source. 
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13 13Table 3: C  enrichment of selected proteinogenic amino acids and standard deviation at different fractions of [1- C] glucose used after 

subtraction of carbon enrichment of glucose with a natural carbon isotope abundance using equation (16). Standard deviations were calculated 

using equation (17) 

0.49 0.99 1.98 9.85 [1-13C] glucose  

afraction (%) Mean (APE) sdev Mean (APE) Sdev Mean (APE) sdev Mean (APE) sdev 

Alanine 0.1050 5.75E-05 0.1980 5.84E-05 0.4160 1.73E-04 2.1700 2.31E-03

Glycine 0.0067 3.57E-05 0.0184 5.03E-05 0.0443 7.81E-05 0.1380 2.18E-04

Serine 0.0700 4.71E-05 0.1300 2.36E-05 0.2680 1.02E-04 1.3600 1.24E-03

Phenylalanine 0.0499 3.93E-05 0.0951 2.46E-05 0.1980 9.02E-05 0.9870 8.64E-04

Aspartic acid/Aspargine 0.0854 4.34E-05 0.1630 3.39E-05 0.3370 1.37E-04 1.7000 1.47E-03

Glutamic acid/Glutamine 0.0929 5.28E-05 0.1770 4.42E-05 0.3660 1.47E-04 1.8500 1.62E-03

 
a [1-13C] glucose used in the cultivation. 
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Figure 3: Regression analysis curves and its correlation coefficients of the corrected 13C 

enrichment ( ), of proteinogenic amino acid alanine, glycine, serine, 

phenylalanine, aspartic acid/asparagine and glutamic acid/glutamine, against fraction of 

applied [1-

natitotii FFF ,
13

,
1313 −=

13C] glucose. Measurements are from parallel cultures of C. glutamicum using 

identical inoculum. 
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Table 1 shows experimental δ13C values and calculated enrichment values, 　 13Fi, nat, from a 

culture grown on glucose with a natural carbon isotope abundance. The bias introduced by the 

derivatization agent is corrected for as given in the rightmost column. The obtained values are 

significantly different for different amino acids, which are caused by kinetic isotopic effects in 

the enzymatic reaction of the different biosynthetic pathways. 

 

For identifying the required minimum fraction of [1-13C] glucose for metabolic flux analysis, 

experiments with 0.5 % to 10 % of the labeled glucose were compared. For this purpose, six 

amino acids were selected according to their information content for flux analysis. Table 2 

lists the measured 13C fractions of selected amino acids at different fractions of tracer 

substrate corrected for the naturally labeled carbon introduced by derivatization. First, it can 

be seen from the table that the corrected fractional 13C content is increasing with increasing 

fractions of [1-13C] glucose. Secondly, the amino acids have different 13C fractional 

enrichment values. The 13C fractional enrichment of the metabolites is a function of the 

network activity distribution and also of kinetic isotope effects in the metabolic network 

investigated. Therefore it is essential for later flux estimation to dissect these two effects. 

After subtraction of the 13C fractional enrichment of the experiment with natural glucose from 

that of the labeling experiments using equation (16), mean values and standard deviations 

listed in Table 3 were obtained. From these results it is evident that statistical differences 

between the different proteinogenic amino acids can be observed. Figure 3 displays the 

dependency of these corrected mean values of 13C fractional enrichment on the fractions of [1-
13C] glucose in the glucose feed. Obviously a linear increase in measured fractional 

enrichment of various important amino acids with increase in fractions of [1-13C] labeled 

carbon source resulted in curves running through the origin. The calculated correlation factor 

of the curves was 1 for serine, phenylalanine, aspartic acid/asparagine, glutamic 

acid/glutamine ， 0.9999 for alanine and 0.9840 for glycine. Good reproducibility, 

repeatability and linearity were thus observed even at low fractions of tracer substrate used.  
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Figure 4: Ratio of fractional enrichments of proteinogenic amino acids as function of fraction 

of [1-13
totalatoti FF ,

13
,

13C] glucose fed. A-ratios ( ) of gly, ser, phe, asp/asn, leu, thr and glu/gln 

to that of ala, (uncorrected). B-ratios ( natalatotalanatitoti FFFF ,
13

,
13

,
13

,
13 −− ) after subtraction of 

enrichment in sample where only glucose with a natural carbon isotope abundance was fed, 

(corrected). 
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The importance of correcting for kinetic isotope is seen in Figure. 4A, where ratios of 13C 

enrichments for various amino acids to that of alanine are plotted. Increasing fractions of 

labeled glucose caused a significant variation of this ratio different for each amino acid. These 

results indicate that kinetic isotope effects exist certainly in experiments with fractional 

labeling below 10 % [1-13C] glucose fed. If similar ratios are calculated after subtraction of 

the 13C enrichments in natural glucose feeding experiments using equation (16), their values 

remain practically constant, irrespective of the applied [1-13C] glucose fraction in feed (Figure. 

4B). Same results are obtained when plotting ratios to other amino acids. This is a good 

indication that under these conditions kinetic isotope effects from natural carbon atoms can be 

compensated for by subtracting the fractional enrichment values of the growth experiment 

with natural glucose from those obtained from a labeled culture using equation 16. This also 

indicates that only primary kinetic isotope effects as discussed above are relevant under these 

conditions.  

 

2.5 Conclusion 
 

The obtained results show that a combination of GC-C-IRMS and correction of kinetic isotope 

effects as presented here provide a sound basis for 13C metabolic flux analysis. The reliability 

and precision of this procedure allows the detection of low enrichment of 13C in various 

metabolites. Thus, the amount of the metabolic tracer can be decreased without affecting the 

precision of the results too much down to an application of about 0.5 % [1-13C] glucose in the 

cultivation of Corynebacterium glutamicum. Correction for kinetic isotope effects can be 

made based on the measurement of 13C fractional enrichment of detected proteinogenic amino 

acids obtained in experiments with natural glucose and those of the labeling experiments. The 

developed method can be implemented for stable isotope analysis of various amino acids as 

well as for important carbohydrates employing different derivatization procedures and 

respective gas chromatography parameters. The analysis is simple and has a high precision 

even at low labeling of tracer substrates. The method can detect enrichments that are 200-300 

times lower than those routinely measured using conventional GC-MS. This cuts down the 

cost of tracer substrate used for experiments. The present developed methodology will be a 

novel technique for studying the metabolic fluxes of industrially relevant organisms directly at 

larger scale. Scale-up of fermentations is still very empirical and extrapolations to other scales 
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usually have a very low reliability. Uncertainties related to scale-up could be ruled out by 

conducting 13C metabolic flux analysis directly at the desired scale. In addition, this technique 

has a further potential application in fed-batch fermentations.  
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Appendix 
Table A1. Measured δ13C of selected proteinogenic amino acids at different fractions of [1-13C] 

glucose used. 

[1-13 aC] glucose fraction (%) 0 0.49b 0.99b 1.98b 9.85b

-25.93 -6.78 10.05 49.75 370.10Alanine 

-27.86 -27.00 -25.47 -22.11Glycine -9.95

-25.21 -16.10 -8.27 9.55 Serine 152.21

-22.82 -3.37 14.28 54.60Phenylalanine 363.41

-25.66 -11.53 1.24 30.04Aspartic acid/Aspargine 257.13

-24.89 -6.52 10.03 47.57 342.65Glutamic acid/Glutamine 

 
a [1-13C] glucose used for cultivation; b Culture grown with naturally labeled carbon source. 

 

 

 

 56



 13C metabolic flux analysis using GC-C-IRMS 
 

Chapter 3 
13C Metabolic Flux Analysis for Larger-Scale 

Cultivation Using GC-C-IRMS  
 

 

 

Abstract 
 

13C-based metabolic flux analysis (13CMFA) is limited to smaller scale experiments due to 

very high costs of labeled substrates. We measured 13C enrichment in proteinogenic amino 

acid hydrolyzates using gas chromatography-combustion-isotope ratio mass spectrometry 

(GC-C-IRMS) from a series of parallel batch cultivations of Corynebacterium glutamicum 

utilizing mixtures of natural glucose and [1-13C] glucose, containing 0, 0.5, 1, 2, and 10% [1-
13C] glucose. Decreasing the [1-13C] glucose content, kinetic isotope effects played an 

increasing role but could be corrected. From the corrected 13C enrichments in vivo fluxes in 

the central metabolism were determined by numerical optimization. The obtained flux 

distribution was very similar to those obtained from parallel labeling experiments using 

conventional high labeling GC-MS method and to published results. The GC-C-IRMS-based 

method involving low labeling degree of expensive tracer substrate, e.g. 1%, is well suited for 

larger laboratory and industrial pilot scale fermentations. 

 

 

 

 

 

 

This chapter has been published as : Yuan Y, Yang TH, Heinzle E. 2010. C-13 metabolic flux 
analysis for larger scale cultivation using gas chromatography-combustion-isotope ratio mass 
spectrometry. Metabolic Engineering 12(4):392-400. 
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3.1 Introduction  
 
The quantitative analysis of in vivo carbon fluxes in a metabolic network is regarded a 

powerful tool for the optimization of industrial organisms (Bailey 1991; Nielsen and Jewett 

2008). Developed from the previous methods using only metabolite balancing, flux estimation 

has been far advanced by supplementing the previous stoichiometry-based approach with 

isotopomer balances to overcome shortcomings of the previous method in many real-case 

situations (Antoniewicz et al. 2007; Iwatani et al. 2008; Schmidt et al. 1997; Schmidt et al. 

1998; Wiechert 2001; Wiechert and de Graaf 1996; Wittmann and Heinzle 2008). 

 

Theoretically, the most complete information would be obtained by the analysis of all 

extracellular and intracellular metabolite isotopomers. Unfortunately, it is highly challenging 

to analyze all positional isotopomers in practice, e.g., using nuclear magnetic resonance 

spectroscopy (NMR) techniques, and also the information content finally depends on 

measurement sensitivity. The much more efficient way is to determine mass isotopomers using 

mass spectrometry (MS), which outperforms NMR with respect to sensitivity, as well as 

precision (Haunschild et al. 2005; Wittmann and Heinzle 1999a).  Thus, diverse MS-based 

analytical techniques have been developed for the mass isotopomer analysis (Haunschild et al. 

2005; Yang et al. 2009). For 13C-based metabolic flux analysis (13CMFA), the mass 

isotopomers of intracellular, extracellular metabolites, and/or biomass constituents can be used. 

The analysis of intracellular metabolites is often challenging, e.g., due to low concentrations 

close to or below detection limits as well as often limited stability and short time constants of 

certain compounds such as glycolytic metabolites. Amino acids contained in cellular proteins 

reflect the labeling patterns of various central key metabolites at steady state. They can be 

easily analyzed by NMR (Maaheimo et al. 2001; Marx et al. 2003; Sauer et al. 1997), gas 

chromatography-mass spectrometry (GC-MS) (Becker et al. 2007; Becker et al. 2008b; 

Christensen and Nielsen 1999; Dauner and Sauer 2000; Hans et al. 2001; Wittmann 2007), or 

matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF 

MS) (Wittmann and Heinzle 2001a). Methods have been developed to take into account 

natural isotope abundances of the analytes (Wittmann and Heinzle 1999a; Yang et al. 2009). In 

recent years, the combination of GC-MS and parameter estimation methods using network 

simulation techniques has been well developed and most frequently applied in metabolic flux 
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analysis (Antoniewicz et al. 2007; Dauner and Sauer 2000; Nanchen et al. 2007; Schmidt et al. 

1998; Wittmann 2007; Yang et al. 2008; Yang et al. 2004). 

 
13Another challenge in C-based metabolic flux analysis is that experiments are limited to small 

scales. So far labeling experiments have been restricted to laboratory-scale fermentation, 

shake flasks, and microtiter plates (Velagapudi et al. 2007; Wittmann et al. 2004)due to the 

requirement for high degree of 13C-labeled substrate (generally 100% tracer substrate) and the 

resulting high cost. Experiments on a laboratory scale, however, cannot usually represent 

conditions on much larger scales that are industrially much more relevant. In this regard, a 

method of 13CMFA applicable to large-scale biotechnological processes is highly desired. 

Hereto, applying a small amount of isotopic tracer substrates for labeling experiments is a 

possible solution, yet it leads to extremely low 13C enrichments of labeling in proteinogenic 

amino acids and, consequently, a poor flux resolution. Since 13C isotopic enrichments in 

amino acids in proteins is usually low (0.001-0.05 atom percent excess-APE) as determined in 

protein turnover experiments (Godin et al. 2007a), the labeling patterns of metabolites cannot 

reliably be measured by GC-MS, which has a measurable range of only higher than 0.5 APE 

(Meier-Augenstein 1999b). In contrast, GC-C-IRMS is capable of measuring isotopic 

composition at low enrichment and even natural abundance level (-0.1 to +2.0 APE) with high 

precession (0.0002 APE) and accuracy (Meier-Augenstein 1999b). Thus, GC-C-IRMS has a 

great potential for the application to cases with extremely low 13C enrichments in metabolites. 

 

Since the first report of determination of the δ13C values of individual amino acid from the 

Murchison meteorite using GC-C-IRMS (Engel et al. 1990), this analytical technique has been 

widely adopted as a strategy using an identified amino acid as marker for the study of turnover 

and synthesis rates of proteins (de Sain-van der Velden et al. 1998; Reijngoud et al. 1998a) 

and other metabolic and nutritional research due to its high-precision and reliability for low 
13C enrichment detection (Meier-Augenstein 1999b; Meier-augenstein et al. 1995). In recent 

years, more efforts have been put to the optimization of derivatization procedures (Corr et al. 

2007; Godin et al. 2007a), and a new correction approach was introduced for the elimination 

of kinetic isotope effects to improve the accuracy of isotopic measurement (Heinzle et al. 

2008a). High chromatographic resolution of amino acids, high precision of isotopic 

measurement, and high reliability make this technique potentially very suitable for the 13C 
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labeling experiments involving just a small amount of 13C-tracers, e.g., in a large scale 

fermentation, where extremely low 13C labeling enrichments in metabolites are expected.  

 

To prove our concept, we implemented 13C labeling experiments using different content of 13C 

glucose mixed with non-labeled glucose. Cultivations were carried out using Corynebacterium 

glutamicum which is the most important bacterium for the production of amino acids in 

industry. In our former study (Heinzle et al. 2008a), an experimental protocol to measure 13C 

fractional enrichments in proteinogenic amino acids by GC-C-IRMS was developed, and a 

method for the correction of isotope kinetic isotopic effects was established. Based on the 

protocol, the 13C fractional enrichment data were corrected from GC-C-IRMS measurements, 

and applied to 13 13CMFA to verify the potential of GC-CIRMS for an industrial scale CMFA. 

Results were compared with those from conventional 13CMFA using 99% [1-13C]glucose and 

GC-MS as well as with literature values. 

 

3.2  Materials and Methods 
 

3.2.1 Reagents.  

[1-13C] glucose (99 atom-% 13C) was purchased from Cambridge Isotope Laboratories Inc. 

(Andover, USA). All other chemicals were from Sigma-Aldrich (St. Louis, USA). For all 

experiments the same batch of chemicals was used. 
 

3.2.2 Microorganism 

C. glutamicum ATCC 13032 wild type was purchased from the American Type Strain and 

Culture Collection (Manassas, USA). 
 

3.2.3 Growth and labeling of C. glutamicum 

C. glutamicum ATCC 13032 was cultivated in 25 ml baffled shake flasks, cultivations with 

low fractions of [1-13C] glucose from 0 to 10% were already described previously(Heinzle et 

al. 2008a). In parallel, experiments with high fractions of mixtures of [1-13C] glucose (99% 

isotope purity) and natural labeled glucose, 20, 50, 80, and 100% (w/w) [1-13C] glucose were 

also carried out for reference.  
 

 60



 13C metabolic flux analysis using GC-C-IRMS 
 
3.2.4 Sample preparation for labeling analysis 

For both GC-MS and GC-C-IRMS, the sample preparation and the derivatization procedures 

were identical as described previously elsewhere (Heinzle et al. 2008a). 
 

3.2.5 Analytics 

Mass isotopomer distributions of proteinogenic amino acids and of trehalose from the culture 

medium were measured by GC-MS. The quantitative measurements of glucose, glycerol, 

dihydroxyacetone and organic acids were performed by HPLC (Kontron Instruments, 

Neufahrn, Germany) with an Aminex HPX 87-H column (Biorad). Quantification of free 

extracellular amino acids was carried out by HPLC (Kontron Instruments, Neufahrn, Germany) 

with precolumn OPA derivatization. Cell concentration was assessed by a spectrophotometer 

at 660 nm (Pharmacia Biotech, Novaspec II, Cambridge, England) and dry weight analysis. 

The correlation factor between dry biomass and D660 was determined as 0.353 g dry biomass 

per unit at D660. Each measurement was performed at least in triplicate. 
 

3.2.6 GC-C-IRMS 
13C fractional enrichments from five samples of low [1-13C] glucose labeling cultivations were 

measured on a GC-C-IRMS instrument equipped with an HP6890 gas chromatograph (Agilent 

6890, Agilent Technologies, Palo Alto, CA, USA), a standard GC/C III interface with a 

Ni/Cu/Pt combustion reactor operated at 940 °C (Thermo Fisher Scientific, Bremen, Germany) 

and a MAT 253 gas isotope mass spectrometer (Thermo Fischer Scientific MAT, Bremen, 

Germany). Most reliable measurement is possible between 0 and 5 % carbon enrichment using 

this instrument and prevailing settings. The analytical procedure for GC-C-IRMS is the same 

as described previously (Heinzle et al. 2008a). 
 

3.2.7 Central metabolic network 

In this study, the metabolic network included all major central metabolic cycles in wild type C. 

glutamicum, i.e. glycolysis, pentose phosphate pathway (PPP), and tricarboxylic acid cycle 

(TCA). All the involved reactions carried out for both GC-MS method and GC-C-IRMS 

method are listed in Appendix A. The pools of pyruvate and phosphoenolpyruvate as well as 

the pools of oxaloacetate and malate are lumped, and each flux represents the net flux of the 

reaction catalyzed by all the related enzymes. CO2 producing and consuming reactions were 

implemented in the network, the 13C labeling from CO2 into oxaloacetate/malate pool was also 
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taken into account. The fluxes for the byproduct formation (Table 1) and for the anabolic 

demand were considered as well. 
 

3.2.8 Metabolic modeling 

Metabolic network simulations for both GC-MS data and GC-IRMS data were performed 

using the MATLAB version 7.8 (Mathworks Inc., Natick, MA, USA). For the both approaches, 

the network parametrization and numerical flux estimation were implemented using the 

algorithm developed in Yang et al. (2008) and the concept of elementary metabolite units 

(Antoniewicz et al. 2007). Different from the GC-MS method, during GC-CIRMS 

measurement all derivatized amino acid are combusted into CO2 which has only one carbon 

atom. Therefore, the problem becomes simply the first level of the elementary metabolite units, 

which also corresponds to the atomic level problem described elsewhere (Zupke and 

Stephanopoulos 1994).  

 

3.3 Results 
 

3.3.1 Linearity of 13C fractional labeling 

According to theory, the fraction of carbon atom should be always proportional to the input 

labeling (Heinzle et al. 2008a). A series of experiments were designed to prove this theory 

employing a wide range of substrate labeling. The experiments were divided into two groups, 

i.e., lower fraction of 13C-substrates containing 0, 0.5, 1, 2 and 10% [1-13C] glucose, and 

higher fraction containing 20, 50, 80 and 100% [1-13C] glucose. According to the reported 

measurement ranges for GC-MS of 0.5 -100 APE and GC-C-IRMS -0.1 to +2.0 APE (Meier-

Augenstein 1999b), samples from the lower fraction group were measured by GC-C-IRMS 

due to their low 13C enrichment in amino acids (< 0.5 APE in derivatized analytes). The 

obtained δ values of individual amino acids were then converted to 13C enrichment and 

corrected for the kinetic isotope effect as described previously (Heinzle et al. 2008a). Samples 

from the higher fraction group were measured by GC-MS and then obtained mass isotopomer 

distributions of individual amino acids were converted into the fractional 13C enrichment or 

fractional labeling, FL, using the following equation: 
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Here, y is the carbon mass isotopomer fraction of an amino acid, i the mass shift by 13C 

incorporation, and x the number of carbon atoms of the amino acid. All experimental results 

are listed in Table 2. Except glycine, the squared correlation coefficients (R2) from the listed 

amino acids were close to 1 (> 0.9999) at the range from 0 to 10% of [1-13C] glucose fraction 

obtained from GC-C-IRMS data. For the whole range from 0 to 100%, R2 resulting from the 

amino acids, again except glycine, were also quite close to 1 (>0.99). The experiments were 

carried out on different days using two different mass spectrometric methods, yet the 

measurements of 13C fractional enrichments gave an excellent linearity and consistency. 

Because histidine peaks overlaid with other unknown substances in the GC-MS chromatogram, 

no satisfactory histidine values could be obtained using GC-MS. Therefore, only GC-C-IRMS 

R2 values are listed in the table. In this study, 13C enrichment of histidine was assumed to be 

linear over the whole range. The high linear correlation over the whole range tested allows us 

to predict 13C enrichment of unknown labeling (e.g. 100% [1-13C] glucose fraction) using 

extrapolation. 

 

Table 1. Biomass and metabolites yields of C. glutamicum ATCC 13032 cultured on glucose. 

All yields are given in (C-mol product)/(C-mol glucose), except the yield for biomass that is 

given in (g dry cell mass)/(mmol glucose). 
 

Biomass and metabolites Yield 
Biomass 0.095±0.004 
Lactate 0.0087±0.0007 
Trehalose 0.0083±0.0007 
2-Oxoglutarate 0.001±0.0001 
 

3.3.2 Biomass yield and extracellular metabolites 

The yield coefficients for the formation of biomass and extracellular products on glucose 

during the exponential phase are listed in Table 1. 
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3.3.3 Anabolic demand 

Precursor demands used for biomass formation in C. glutamicum are listed in Table 3. The 

values were obtained from literature (Marx et al. 2003; Yang et al. 2005). 

 
13Table 2. C fractional labeling of proteinogenic amino acids from 0 to 100% input [1-13C] 

labeled glucose. 

[1-13C]glucose fraction of feed glucose (%) 
% 

0a 0.5a 1a 2a 10a 20b 50b 80b 100b
R2   c R2    d

Ala 0.0098 0.0109 0.0118 0.0140 0.0315 0.0356 0.0723 0.1063 0.1296 0.9999 0.9957

Ser 0.0094 0.0101 0.0107 0.0121 0.0230 0.0356 0.0700 0.1030 0.1258 1.0000 0.9993

Glu 0.0100 0.0109 0.0117 0.0136 0.0285 0.0474 0.1007 0.1481 0.1848 1.0000 0.9995

His 0.0103 0.0108 0.0114 0.0127 0.0228     0.9999 0.9999

Val 0.0102 0.0111 0.0119 0.0137 0.0283 0.0373 0.0784 0.1184 0.1463 0.9999 0.9992

Thr 0.0097 0.0106 0.0114 0.0132 0.0277 0.0404 0.0853 0.1260 0.1595 1.0000 0.9993

Gly 0.0092 0.0092 0.0094 0.0096 0.0106 0.0172 0.0205 0.0228 0.0257 0.9919 0.9315

Asp 0.0097 0.0106 0.0113 0.0131 0.0268 0.0431 0.0887 0.1283 0.1615 1.0000 0.9991

Ile 0.0104 0.0113 0.0121 0.0139 0.0286 0.0591 0.1044 0.1527 0.1890 0.9999 0.9958

Leu 0.0104 0.0114 0.0122 0.0141 0.0294 0.0697 0.1181 0.1745 0.2145 1.0000 0.9935

Phe 0.0106 0.0111 0.0115 0.0126 0.0204 0.0363 0.0638 0.0919 0.1114 1.0000 0.9974

Pro 0.0104 0.0113 0.0121 0.0139 0.0285 0.0440 0.0942 0.1411 0.1772 1.0000 0.9998
 

a Measured by GC-C-IRMS. 
b Measured by GC-MS and converted to FL (Equation 1). 
c R2 values for the experiments with [1-13C] glucose fraction from 0 to 10%. 
d R2 13 values for the whole range of [1- C] glucose fraction from 0 to 100%. 
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Table 3. Anabolic demand of C. glutamicum ATCC 13032 on glucose. 

Precursor Demand  mmol/(g dry cell mass) 
Glucose-6-phosphate 0.205 
Fructose-6-phosphate 0.308 
Pentose-5-phosphate 0.879 
Erythrose-4-phosphate 0.268 
Glyceraldehyde-3-phosphate 0.129 
3-Phosphoglycerate 1.292 
Pyruvate/Phosphoenolpyruvate 3.256 
α-Ketoglutarate 1.224 
Oxaloacetate 1.682 
Acetyl CoA 3.177 
 

 

3.3.4 Correction of GC-C-IRMS data for kinetic isotope effects 

For GC-C-IRMS based method, the produced δ value for each amino acid was converted into 
13C enrichment, corrected for natural isotopes (Yang et al. 2009), and eventually for the 

kinetic isotope effect. The later was done by subtraction of the 13C fractional enrichment from 

the experiment solely using non-labeled glucose (Heinzle et al. 2008a). This correction 

method is especially important for the experiments with low 13C glucose fraction because 

kinetic isotope effects influence the results in these cases. This is clearly seen when comparing 

uncorrected and corrected fractional labeling in the amino acids at different fractions of [1-13C] 

glucose applied (Table A1 in the Appendix). After the data correction, mean values from two 

parallel experiments were calculated as listed in Table 4. Based on 13C fractional enrichments 

from three labeling experiments with 0.5%, 1% and 2% of [1-13C] glucose, the 13C fractional 

enrichments of amino acids were linearly extrapolated to 100% labeling for convenience, and 

these 13C enrichments of 100% labeling were applied directly for the numerical flux 

estimation. Errors associated with this linear extrapolation were estimated using standard 

Gaussian error propagation rules based on the assumed normal  
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Table 4. Mass isotopomer fractions of proteinogenic amino acids based on GC-MS 

measurement and GC-C-IRMS measurement during cultivation of C. glutamicum ATCC 

13032.  

Analyte GC-MS GC-C-IRMS 

  M0 M1 M2  M0 M1
Exp 0.633 0.345 0.020 Exp   Alanine (m/z 260) 
Calc 0.638 0.344 0.018 Calc   
Exp 0.342 0.431 0.192 Exp 0.814 0.186 Glutamic acid (m/z 432) 
Calc 0.359 0.436 0.177 Calc 0.816 0.184 
Exp 0.404 0.390 0.142 Exp 0.874 0.126 Histidine (m/z 440) 
Calc 0.405 0.388 0.170 Calc 0.874 0.126 
Exp 0.419 0.438 0.134 Exp   Valine (m/z 288) 
Calc 0.427 0.437 0.128 Calc   
Exp 0.481 0.415 0.099 Exp 0.819 0.181 Threonine (m/z 404) 
Calc 0.480 0.413 0.100 Calc 0.827 0.173 
Exp 0.952 0.045 0.003 Exp 0.987 0.013 Glycine (m/z 246) 
Calc 0.952 0.047 0.001 Calc 0.983 0.017 
Exp 0.479 0.416 0.100 Exp 0.829 0.171 Aspartate (m/z 418) 
Calc 0.480 0.413 0.100 Calc 0.827 0.173 
Exp    Exp 0.818 0.182 Isoleucine (m/z 200) 
Calc    Calc 0.816 0.184 
Exp    Exp 0.809 0.191 Leucine (m/z 200) 
Calc    Calc 0.810 0.190 
Exp 0.330 0.428 0.197 Exp 0.901 0.099 Phenylalanine (m/z 336) 
Calc 0.326 0.428 0.200 Calc 0.901 0.099 
Exp    Exp 0.818 0.182 Proline (m/z 286) 
Calc    Calc 0.816 0.184 
Exp 0.323 0.423 0.201 Exp   Tyrosine (m/z 466) 
Calc 0.326 0.428 0.200 Calc   
Exp 0.287 0.411 0.226 Exp   Arginine (m/z 442) 
Calc 0.300 0.423 0.219 Calc   

 

Note: Exp represents experimental data from both GC-MS and GC-C-IRMS measurement. 

Calc represents values predicted by the mathematical model corresponding to the optimized 

set of fluxes.  M0 means the amount of non-labeled mass isotopomer fraction, M1 the amount 

of singly-labeled mass isotopomer fraction and corresponding terms refer to a higher labeling.  

GC-MS experimental data were from labeling experiment using 99% [1-13C] glucose. GC-C-

IRMS experimental data were from labeling experiments using three different low fractions of 

[1-13C] glucose (0.5%, 1%, 2%) and extrapolated to 100% [1-13C] glucose as described in the 

Materials and Methods section. Empty data fields indicate that these data were not used for 

flux estimation. 
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distribution of experimental data (Desire et al. 1997). The resulting errors in slope, intercept 

and value extrapolated to 100% labeling are listed in Table 5. The latter estimated error was 

further used as input variance for Monte-Carlo simulations applied in the statistical analysis of 

the actual flux calculation. In parallel we also calculated fluxes from single labeling 

experiments both from corrected and uncorrected fractional enrichment data (Table A1) and 

compared with those from extrapolated data (Table A2). It was not possible to calculate 

physically meaningful fluxes with uncorrected labeling data from 0.5 and 1% [1-13C] glucose 

labeling (no data shown in Table A2. All other flux estimations with uncorrected data resulted 

in gross errors (Cases 4, 6, 11 and 12 in Table A2). Interestingly the data combining all four 

applied labeling data, 0.5, 1 2 and 10 % and those only applying 10% [1-13C] glucose resulted 

is slightly larger errors than those using only 1 or 2% or combining 0.5, 1 and 2% [1-13C] 

glucose. This may be caused by reaching almost the upper measurement limit of the GC-C-

IRMS instrument with applied instrument settings. Even applying only the measurements 

from the 0.5% [1-13C] glucose measurement yielded reliable data for fluxes as is also seen in 

Figure. 2 where data from 99% [1-13C] glucose and GC-MS measurement are compared with 

single labeling experiments using 0.5, 1 and 2% [1-13C] glucose and literature data (Kim et al. 

2006b). The data depicted in Figure. 1 also illustrate the high reliability of the method. 

 

3.3.5 Flux estimation in central metabolic pathways of C. glutamicum wild type 

Figure 1 shows the carbon fluxes through the central metabolic pathways of C. glutamicum 

based on the new method using GC-C-IRMS data using combined experiments with 0.5, 1 and 

2% [1-13C] glucose and the traditional method based on GC-MS data. In addition, the 

corresponding data from a previous publication are listed as well (Kim et al. 2006b). Data 

from all Generally, the estimated fluxes were very similar in all three cases. The fluxes from 

glucose 6-phosphate into the pentose phosphate pathway were about 20% relative lower than 

those into glycolysis. All central metabolic fluxes down to pyruvate had approximately double 

error in the GC-C-IRMS method compared to the GC-MS method. Largest standard 

deviations of 5 mole-% corresponding to a relative value of 11 % were found for fluxes 

leading from succinate to the oxaloacetate/malate pool. Standard deviations in the lower 

pentose phosphate pathway fluxes were about mole-0.4%, i.e. about 4% relative. In the lower 

glycolysis the error was about 1.5 mole-%, i.e. less than 1 % relative. Central metabolic fluxes 

below pyruvate were estimated slightly lower using GC-C-IRMS but again within standard 
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deviations that were about 3.5 mole-% compared to about 3.3 mole-% using GC-MS. 

Furthermore, the flux distributions obtained from GC-C-IRMS method and GC-MS method, 

respectively, were very similar to the literature values given for the wild-type of C. 

glutamicum (Kim et al. 2006b).  
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13Figure 1.  Comparison of estimated fluxes. GC/MS – flux analysis using 99% [1- C] glucose; Literature data ((Kim et al. 

2006b); GC-C-IRMS from single labeling experiment using 0.5, 1 and 2% [1-13C] glucose corrected for natural isotope abundance 

in culture with naturally labeled glucose. Detailed data are provided in Table A2 in the Appendix. 
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Table 5. Data extrapolation and error estimation of labeling experiments with four fractions of labeling using Gaussian error 

propagation (Desire et al. 1997). 
 

1-13C fraction of feeding glucose Gaussian Error 

estimation 

(100%)* 

  

Amino acids Intercept 

error* 

Slope 

error* 
 0.5% 1% 2% Slope Intercept R2 100% 

M+0 0.99907 0.99823 0.99638 -0.00180 1.00000 0.99946 0.8199 4.21E-05 5.56E-05 0.00421 
Glutamic acid 

M+1 0.00093 0.00177 0.00362 0.00180 0.00000 0.99946 0.1801 4.21E-05 5.56E-05 0.00421 

M+0 0.99943 0.99890 0.99764 -0.00120 1.00006 0.99831 0.8798 4.95E-05 6.55E-05 0.00495 
Histidine 

M+1 0.00057 0.00110 0.00236 0.00120 -0.00006 0.99831 0.1202 4.95E-05 6.55E-05 0.00495 

M+0 0.99911 0.99832 0.99655 -0.00172 1.00000 0.99925 0.8284 4.70E-05 6.22E-05 0.00470 
Threonine 

M+1 0.00089 0.00168 0.00345 0.00172 0.00000 0.99925 0.1716 4.70E-05 6.22E-05 0.00470 

M+0 0.99993 0.99982 0.99955 -0.00026 1.00007 0.99766 0.9745 1.24E-05 1.64E-05 0.00124 
Glycine 

M+1 0.00007 0.00018 0.00045 0.00026 -0.00007 0.99766 0.0255 1.24E-05 1.64E-05 0.00124 

M+0 0.99915 0.99837 0.99667 -0.00166 1.00000 0.99956 0.8340 3.46E-05 4.58E-05 0.00346 
Aspartic acid 

M+1 0.00085 0.00163 0.00333 0.00166 0.00000 0.99956 0.1660 3.46E-05 4.58E-05 0.00346 

M+0 0.99913 0.99835 0.99658 -0.00171 1.00002 0.99908 0.8290 5.20E-05 6.87E-05 0.00520 
Isoleucine 

M+1 0.00087 0.00165 0.00342 0.00171 -0.00001 0.99908 0.1710 5.20E-05 6.87E-05 0.00520 

M+0 0.99905 0.99821 0.99636 -0.00180 0.99998 0.99946 0.8198 4.21E-05 5.56E-05 0.00421 
Leucine 

M+1 0.00095 0.00179 0.00364 0.00180 0.00003 0.99946 0.1802 4.21E-05 5.56E-05 0.00421 

M+0 0.99950 0.99905 0.99804 -0.00098 1.00001 0.99923 0.9021 2.72E-05 3.60E-05 0.00272 
Phenylalanine 

M+1 0.00050 0.00095 0.00196 0.00098 0.00000 0.99923 0.0979 2.72E-05 3.60E-05 0.00272 

M+0 0.99907 0.99827 0.99651 -0.00171 0.99995 0.99947 0.8285 3.96E-05 5.24E-05 0.00396 
Proline 

M+1 0.00093 0.00173 0.00349 0.00171 0.00005 0.99947 0.1715 3.96E-05 5.24E-05 0.00396 

Slopes and intercepts were calculated using the function LINEST of Excel 2003 (Microsoft). These errors were applied for the calculation of extrapolated 

errors of 100% labeling using Gaussian error propagation. 
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Figure 2. In vivo carbon fluxes estimation in the central metabolism of C. glutamicum 

ATCC 13032. Fluxes in molar % of glucose uptake flux with estimated standard deviations 

are given in square boxes. Upper values are estimated fluxes based on GC-C-IRMS method 

using combined labeling experiments with 0.5, 1 and 2% [1-13C] glucose; middle values are 
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estimated fluxes based on GC-MS method using 99% [1-13C] glucose; bottom values are 

estimated fluxes from literature (Kim et al. 2006b). 

 

3.4 Discussion 
 
The aim of this present study was to develop a new straightforward and cost-efficient 

approach for the quantification of the in vivo flux distribution in the central metabolism of C. 

glutamicum, e.g., in industrial scale fermentation. Based on a model-based experimental 

design (Mollney et al. 1999), [1-13C] glucose was selected as the tracer substrate because of its 

commercial availability and low cost. Due to the ability for the detection of extremely low 

isotopic enrichment and high precision, GC-C-IRMS measurement of isotope enrichment was 

chosen for this study (Heinzle et al. 2008a). To our knowledge, GC-C-IRMS has not been 

applied on isotope-based in vivo flux analysis yet. Our present study opens up the door for the 

application of GC-C-IRMS to in vivo 13CMFA even at industrially relevant fermentation 

scales in situ. This is of increasing importance with increasing competition, e.g. in the 

production of biopharmaceuticals (Boghigian et al.) 

 

The theoretically expected linear relationship between input 13C labeling content and the 13C 

enrichment of metabolic products was also observed experimentally, which suggests the GC-

C-IRMS applicability for 13CMFA. As verified for the proteinogenic amino acids investigated 

herein, other metabolic products can also be applied to 13CMFA using this novel approach, 

e.g., some intracellular metabolites. With our method, it is possible to calculate 13C 

enrichment at any input 13C substrate content by extrapolation with at least two or more 

different amounts of 13C substrate in mixtures with non-labeled ones. R2 values from GC-C-

IRMS data were closer to 1, compared to those resulting from GC-MS values (Table 2). This 

is owing to the extremely high precision of GC-C-IRMS for the measurements of 13C 

enrichment as well as the absence of any effects from naturally occurring isotopes other than 

carbon and oxygen. The number of necessary labeling points needed for this extrapolation 

depends on the accuracy and precision of both experiments and measurements. Typically, we 

need at least 3 points in order to estimate the accuracy and precision by statistical method such 

as linear regression analysis. In addition, according to GC-MS results, the relative molar 
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fraction of each mass isotopomer pool of an individual proteinogenic amino acid is also linear 

with 13C input labeling (data not shown).  

Due to the high sensitivity, this new approach relies more on the accuracy of experimental 

operations and measurements, i.e., 13C-tracer preparation, sampling, GC separation, isotopic 

calibration etc. Theoretically, one labeling experiment with one low labeling tracer (e.g. 1%) 

is enough for the extrapolation considering natural substrate as the second point. In this case, 

it is more difficult to determine the statistical quality of the calculated results. Three or more 

experiments with different degrees of labeling would improve this.  

Typically, commercially available 99% [1-13C] glucose applied in 13C labeling experiment 

contains 1% 12C in the first carbon and natural abundance of isotopes of carbon and other 

elements at other positions. Additionally, elements with natural isotope abundance are 

introduced during derivatization, e.g., silicon and nitrogen. In case of GC-MS based 

estimation, the effect of all these naturally labeled atoms can be eliminated by a matrix 

correction (van Winden et al. 2002; Yang et al. 2009). The so-called correction matrix 

represents the abundance of naturally occurring isotopes other than the carbon atoms in the 

skeleton of a metabolite. Therefore, the reliability of carbon mass isotopomer distributions 

computed from measurements can be subject to the reliability of the data given for the natural 

abundance of isotopes. In contrast, all the separated derivatized analytes are combusted to CO2 

in GC-C-IRMS measurement and only CO2 is analyzed afterwards. Therefore, only carbon 

and oxygen need to be considered for the correction. In this regard, the corrected GC-C-IRMS 

data should have a higher accuracy than the corrected GC-MS data. 

 
13The new approach with the use of low degree C substrate and GC-C-IRMS measurement 

allows in vivo flux estimation in central metabolism, and the final estimated fluxes showed a 

slightly lower precision only at very low labeling input of 0.5% [1-13C] glucose compared 

with those from high degree labeling and GC-MS measurement. Additionally, many reactions 

in the central metabolism which are regarded as reversible, e.g. the transaldolase and 

transketolase reactions in the PPP; phosphoenolpyruvate carboxylase (oxaloacetate to 

phosphoenolpyruvate), malic enzyme (malate to phosphoenolpyruvate) and oxaloacetate 

decarboxylase (oxaloacetate to pyruvate) cannot be determined by the new approach with [1-
13C] glucose as only tracer substrate. Therefore, only the net fluxes were determined using 

GC-C-IRMS data in this study. The above limitation can be overcome, e.g., by a parallel 
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experimental design using tracer substrates with different positional labeling to increase 

information content as was shown by Yang et al.(Yang et al. 2006b; Yang et al. 2006c) 

measuring only CO2 labeling. In terms of information content GC-MS measurement is 

superior to GC-C-IRMS since it allows the determination of mass isotopomer distribution for 

each analyte, whereas GC-C-IRMS determines only average carbon labeling. The present 

approach has a great potential for 13CMFA at low labeling degree of substrates and, especially, 

is the most promising one for investigating in vivo fluxes in a large scale bioprocess in situ. 

 

3.5 Conclusion 
 
In this study, we introduced a novel strategy to estimate metabolic fluxes using GC-C-IRMS 

at low degree of labeling. Its applicability was demonstrated using 4 different low labeling 

fractions from 0.5 to 10% [1-13C] labeled glucose, mixed with non-labeled glucose, for the 

estimation of fluxes in the central metabolism of C. glutamicum. The reliability of obtained 

results was confirmed by checking the accordance with parallel experiments using 

conventional GC-MS method applying 99% [1-13C] glucose. Also, the flux values obtained 

from the labeling measurements were found to be well consistent with a previous report using 

the GC-MS method under the same condition(Kim et al. 2006b).  

 

The whole range of labeling degrees from 0 to 100% [1-13C] glucose was applied, and the 

mass isotopomers of proteinogenic amino acids were measured by both GC-C-IRMS and GC-

MS in their respective measurement ranges. 13C fractional labeling of each amino acid for the 

whole range of labeling was found to be proportional to the input labeling, as also expected 

theoretically. This provides the possibility to use an extremely small amount of 13C substrates 

for the estimation of in vivo fluxes in the central metabolism. The reliability of the final results 

was found to greatly depend on the reproducibility of experimental procedure and 

measurement accuracy. This novel technique can cut the cost of the tracer substrate to 100 

times or even more lower than those using conventional GC-MS method. Hence, the method 

developed in the present work is promising for the investigation of metabolic fluxes in 

industrially relevant organisms on larger scales. The method might also be successfully 

applied for dynamic metabolic flux analysis to determine very initial changes after a carbon-

isotope perturbation of previously naturally labeled substrate.  

 74



 13C metabolic flux analysis using GC-C-IRMS 
 

References: 
 

Antoniewicz MR, Kelleher JK, Stephanopoulos G. 2007. Elementary metabolite units (EMU): 

a novel framework for modeling isotopic distributions. Metab Eng 9(1):68-86. 

Bailey JE. 1991. Toward a Science of Metabolic Engineering. Science 252(5013):1668-1675. 

Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C. 2007. Metabolic flux 

engineering of L-lysine production in Corynebacterium glutamicum--over expression 

and modification of G6P dehydrogenase. J Biotechnol 132(2):99-109. 

Becker J, Klopprogge C, Wittmann C. 2008. Metabolic responses to pyruvate kinase deletion 

in lysine producing Corynebacterium glutamicum. Microb Cell Fact 7:8. 

Boghigian BA, Seth G, Kiss R, Pfeifer BA. 2009. Metabolic flux analysis and pharmaceutical 

production. Metab Eng. 

Christensen B, Nielsen J. 1999. Isotopomer analysis using GC-MS. Metab Eng 1(4):282-90. 

Corr LT, Berstan R, Evershed RP. 2007. Optimisation of derivatisation procedures for the 

determination of delta13C values of amino acids by gas 

chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun Mass 

Spectrom 21(23):3759-71. 

Dauner M, Sauer U. 2000. GC-MS analysis of amino acids rapidly provides rich information 

for isotopomer balancing. Biotechnol Prog 16(4):642-9. 

de Sain-van der Velden MG, Rabelink TJ, Gadellaa MM, Elzinga H, Reijngoud DJ, Kuipers F, 

Stellaard F. 1998. In vivo determination of very-low-density lipoprotein-

apolipoprotein B100 secretion rates in humans with a low dose of l-[1-13C]valine and 

isotope ratio mass spectrometry. Anal Biochem 265(2):308-12. 

Engel MH, Macko SA, Silfer JA. 1990. Carbon Isotope Composition of Individual Amino-

Acids in the Murchison Meteorite. Nature 348(6296):47-49. 

Godin JP, Faure M, Breuille D, Hopfgartner G, Fay LB. 2007. Determination of 13C isotopic 

enrichment of valine and threonine by GC-C-IRMS after formation of the N(O,S)-

ethoxycarbonyl ethyl ester derivatives of the amino acids. Anal Bioanal Chem 

388(4):909-18. 

Hans MA, Heinzle E, Wittmann C. 2001. Quantification of intracellular amino acids in batch 

cultures of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 56(5-6):776-9. 

 75



 13C metabolic flux analysis using GC-C-IRMS 
 
Haunschild MD, Freisleben B, Takors R, Wiechert W. 2005. Investigating the dynamic 

behavior of biochemical networks using model families. Bioinformatics 21(8):1617-

1625. 

Heinzle E, Yuan Y, Kumar S, Wittmann C, Gehre M, Richnow HH, Wehrung P, Adam P, 

Albrecht P. 2008. Analysis of 13C labeling enrichment in microbial culture applying 

metabolic tracer experiments using gas chromatography-combustion-isotope ratio 

mass spectrometry. Anal Biochem 380(2):202-10. 

Iwatani S, Yamada Y, Usuda Y. 2008. Metabolic flux analysis in biotechnology processes. 

Biotechnol Lett 30(5):791-9. 

Kim HM, Heinzle E, Wittmann C. 2006. Deregulation of aspartokinase by single nucleotide 

exchange leads to global flux rearrangement in the central metabolism of 

Corynebacterium glutamicum. J Microbiol Biotechnol 16:1174-1179. 

Maaheimo H, Fiaux J, Cakar ZP, Bailey JE, Sauer U, Szyperski T. 2001. Central carbon 

metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional (13)C 

labeling of common amino acids. Eur J Biochem 268(8):2464-79. 

Marx A, de Graaf AA, Wiechert W, Eggeling L, Sahm H. 1996. Determination of the fluxes 

in the central metabolism of Corynebacterium glutamicum by nuclear magnetic 

resonance spectroscopy combined with metabolite balancing. Biotechnol Bioeng 

49(2):111-29. 

Marx A, Hans S, Mockel B, Bathe B, de Graaf AA, McCormack AC, Stapleton C, Burke K, 

O'Donohue M, Dunican LK. 2003. Metabolic phenotype of phosphoglucose isomerase 

mutants of Corynebacterium glutamicum. Journal of Biotechnology 104(1-3):185-97. 

Massart DL, Vandeginste BGM, Buydens LMC, de Jong S, Lewi PJ, Smeyers-Verbeke J. 

1997. Handbook of Chemometrics and Qualimetrics: Part A. Amsterdam: Elsevier. 

Meier-Augenstein A, Rating D, Hoffmann GF, Wendel U, Matthiesen U, Schadewaldt P. 

1995. Determination of 13C Enrichment by Conventional GC-MS and GC-(MS)-

CIRMS. Isotopes Environ. Health Stud. 31(3):261-266. 

Meier-Augenstein W. 1999. Use of gas chromatography-combustion-isotope ratio mass 

spectrometry in nutrition and metabolic research. Curr Opin Clin Nutr Metab Care 

2(6):465-70. 

 76



 13C metabolic flux analysis using GC-C-IRMS 
 
Mollney M, Wiechert W, Kownatzki D, de Graaf AA. 1999. Bidirectional reaction steps in 

metabolic networks: IV. Optimal design of isotopomer labeling experiments. 

Biotechnol Bioeng 66(2):86-103. 

Nanchen A, Fuhrer T, Sauer U. 2007. Determination of metabolic flux ratios from 13C-

experiments and gas chromatography-mass spectrometry data: protocol and principles. 

Methods in Molecular Biology 358:177-97. 

Reijngoud DJ, Hellstern G, Elzinga H, de Sain-van der Velden MG, Okken A, Stellaard F. 

1998. Determination of low isotopic enrichment of L-[1-13C]valine by gas 

chromatography/combustion/isotope ratio mass spectrometry: a robust method for 

measuring protein fractional synthetic rates in vivo. J Mass Spectrom 33(7):621-6. 

Schmidt K, Carlsen M, Nielsen J, Villadsen J. 1997. Modeling isotopomer distributions in 

biochemical networks using isotopomer mapping matrices. Biotechnol Bioeng 

55(6):831-840. 

Schmidt K, Marx A, de Graaf AA, Wiechert W, Sahm H, Nielsen J, Villadsen J. 1998. 13C 

tracer experiments and metabolite balancing for metabolic flux analysis: comparing 

two approaches. Biotechnol Bioeng 58(2-3):254-7. 

van der Werf MJ, Takors R, Smedsgaard J, Nielsen J, Ferenci T, Portais JC, Wittmann C, 

Hooks M, Tomassini A, Oldiges M and others. 2007. Standard reporting requirements 

for biological samples in metabolomics experiments: microbial and in vitro biology 

experiments. Metabolomics 3(3):189-194. 

van Winden WA, Wittmann C, Heinzle E, Heijnen JJ. 2002. Correcting mass isotopomer 

distributions for naturally occurring isotopes. Biotechnology and Bioengineering 

80(4):477-479. 

Velagapudi VR, Wittmann C, Schneider K, Heinzle E. 2007. Metabolic flux screening of 

Saccharomyces cerevisiae single knockout strains on glucose and galactose supports 

elucidation of gene function. J Biotechnol 132(4):395-404. 

Wiechert W. 2001. 13C metabolic flux analysis. Metab Eng 3(3):195-206. 

Wiechert W, de Graaf AA. 1996. In vivo stationary flux analysis by 13C labeling experiments. 

Advances in Biochemical Engineering/Biotechnology 54:109-54. 

Wittmann C. 2007. Fluxome analysis using GC-MS. Microbial Cell Factories 6:-. 

Wittmann C, Heinzle E. 1999. Mass spectrometry for metabolic flux analysis. Biotechnol 

Bioeng 62(6):739-750. 

 77



 13C metabolic flux analysis using GC-C-IRMS 
 
Wittmann C, Heinzle E. 2001. Application of MALDI-TOF MS to lysine-producing 

Corynebacterium glutamicum - A novel approach for metabolic flux analysis. 

European Journal of Biochemistry 268(8):2441-2455. 

Wittmann C, Heinzle E. 2008. Metabolic Network Analysis and Design in Corynebacterium 

glutamicum. In: Burkovski A, editor. Corynebacteria. Genomics and Molecular 

Biology. Norfolk UK: Caister Academic Press. p 79-112. 

Wittmann C, Kim HM, Heinzle E. 2004. Metabolic network analysis of lysine producing 

Corynebacterium glutamicum at a miniaturized scale. Biotechnol Bioeng 87(1):1-6. 

Yang TH, Bolten CJ, Coppi MV, Sun J, Heinzle E. 2009. Numerical bias estimation for mass 

spectrometric mass isotopomer analysis. Anal Biochem 388(2):192-203. 

Yang TH, Frick O, Heinzle E. 2008. Hybrid optimization for 13C metabolic flux analysis 

using systems parametrized by compactification. BMC Syst Biol 2:29. 

Yang TH, Heinzle E, Wittmann C. 2005. Theoretical aspects of C-13 metabolic flux analysis 

with sole quantification of carbon dioxide labeling. Computational Biology and 

Chemistry 29(2):121-133. 

Yang TH, Wittmann C, Heinzle E. 2004. Metabolic network simulation using logical loop 

algorithm and Jacobian matrix. Metabolic Engineering 6(4):256-267. 
13Yang TH, Wittmann C, Heinzle E. 2006a. Respirometric C flux analysis - Part II: in vivo 

flux estimation of lysine-producing Corynebacterium glutamicum. Metab Eng 

8(5):432-46. 

Yang TH, Wittmann C, Heinzle E. 2006b. Respirometric 13C flux analysis, Part I: design, 

construction and validation of a novel multiple reactor system using on-line membrane 

inlet mass spectrometry. Metab Eng 8(5):417-31. 

Zupke C, Stephanopoulos G. 1994. Modeling of isotope distributions and intracellular fluxes 

in metabolic networks using atom mapping matrixes. Biotechnol Prog 10(5):489-98. 

 

 78



 13C metabolic flux analysis using GC-C-IRMS 
 
 

APPENDIX 
Reactions in the central network in Figure. 1. 

V1: G6P = F6P 

V2: F6P+ATP = GADP+DAHP+ADP 

V3: DAHP = GA3P 

V4: GA3P+NAD+ADP = 3-PG+NADH+ATP 

V5: 3-PG+ADP = PYR+ATP 

V6: PYR+H-CoA+NAD = AC-CoA+NADH+CO2

V7: G6P+NADP = RIB-5P+CO2+NADPH 

V8: 2RIB-5P = S7P+GADP 

V9: S7P+GA3P = E-4P+F6P 

V10: RIB-5P+E-4P= F6P+GADP 

V11: AC-CoA+OAA = ICI+H-CoA 

V12: ICI+NADP = 2-OXO+CO +NADPH 2

V13: 2-OXO+NAD+H-CoA+ADP = SUCC+NADH+CO +ATP 2

V14: SUCC+FAD+NAD = OAA+FADH+NADH 

V15: PYR+ATP+PEP+2CO2 = 2OAA+ADP 
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TABLE A1 13C fractional enrichments and standard deviations of proteinogenic amino acids before and after correction of carbon 

contribution from derivatization  reagent at different fractions of  [1-13C] glucose used 

[1-13C] Glucose fraction (%) 

 Uncorrected  Corrected  

 0 0.5 1 2 10 0.5 1 2 10 

Mean  0.00982 0.01088 0.01180 0.01398 0.03150 0.00105 0.00198 0.00416 0.02168Alanin 
SD 5.7E-05 3.9E-07 1.0E-05 0.00014 0.00231 5.8E-05 5.8E-05 0.00015 0.00231
Mean  0.00938 0.01008 0.01068 0.01205 0.02301 0.00070 0.00130 0.00267 0.01363Serin 
SD 2.3E-05 4.1E-05 2.9E-06 8.6E-05 0.00124 4.7E-05 2.4E-05 9.0E-05 0.00124
Mean  0.00998 0.01091 0.01174 0.01364 0.02849 0.00093 0.00177 0.00366 0.01851Glutamat 
SD 4.3E-05 3.0E-05 9.2E-06 0.00012 0.00162 5.3E-05 4.4E-05 0.00013 0.00162
Mean  0.01026 0.01083 0.01137 0.01265 0.02280 0.00057 0.00110 0.00239 0.01253Histidin 
SD 7.3E-06 3.3E-05 1.2E-05 8.7E-05 0.00103 3.3E-05 1.4E-05 8.7E-05 0.00103
Mean  0.01025 0.01114 0.01190 0.01370 0.02830 0.00089 0.00165 0.00345 0.01805Valin 
SD 4.2E-05 2.9E-05 2.6E-06 0.00011 0.00185 5.1E-05 4.2E-05 0.00012 0.00185
Mean  0.00973 0.01062 0.01140 0.01322 0.02774 0.00089 0.00168 0.00349 0.01801Threonin 
SD 5.5E-05 3.5E-05 1.3E-05 0.00012 0.00160 6.5E-05 5.6E-05 0.00014 0.00160
Mean  0.00917 0.00924 0.00936 0.00962 0.01055 0.00007 0.00018 0.00044 0.00138Glycin 
SD 9.3E-06 3.5E-05 4.9E-05 6.4E-05 0.00022 3.6E-05 5.0E-05 6.4E-05 0.00022
Mean  0.00972 0.01057 0.01134 0.01308 0.02676 0.00085 0.00163 0.00337 0.01705Aspartat 
SD 3.3E-05 2.8E-05 6.8E-06 0.00012 0.00147 4.3E-05 3.4E-05 0.00012 0.00147
Mean  0.01043 0.01131 0.01209 0.01390 0.02856 0.00087 0.00165 0.00347 0.01813Isoleucin 
SD 3.7E-05 4.2E-05 1.2E-05 0.00014 0.00165 5.6E-05 3.9E-05 0.00014 0.00165
Mean  0.01040 0.01135 0.01219 0.01408 0.02944 0.00095 0.00179 0.00368 0.01904Leucin 
SD 3E-05 3.8E-05 1.7E-06 0.00012 0.00155 4.8E-05 3.0E-05 0.00012 0.00155
Mean  0.01057 0.01107 0.01152 0.01256 0.02044 0.00050 0.00095 0.00198 0.00987Phenylalanin 
SD 2.2E-05 3.2E-05 1.0E-05 7.6E-05 0.00086 3.9E-05 2.5E-05 7.9E-05 0.00086
Mean  0.01037 0.01130 0.01210 0.01391 0.02851 0.00093 0.00173 0.00354 0.01814Prolin 
SD 3.7E-05 6.2E-05 2.7E-05 0.00015 0.00164 7.2E-05 4.6E-05 0.00016 0.00164
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TABLE A2.  Flux estimation results based on trace experiments with different fractions of [1-13C] glucose. 
Case  v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 

1 GCMS1 55.53 

±3.35 

74.14 

±1.27 

74.14

±1.27

156.61

±1.6 

145.10

±1.9 

89.32

±3.34

41.05

±3.35

11.87 

±1.10 

11.87

±1.10

9.48 

±1.08

61.00

±4.13

61.00

±4.13

50.10

±4.44

50.10

±4.44

25.90

±0.75

2 
Kim 

et.al.,20062 53.80 74.00 74.00 157.10 144.60 83.80 44.10 12.80 12.80 10.30 54.30 54.30 42.60 42.60 29.00

3 
Corrected 

0.5-10 (%)3

48.49 

±7.83 

71.39 

±2.76 

71.39

±2.76

153.23

±3.0 

141.43

±3.0 

84.33

±3.10

47.81

±7.64

14.08 

±2.54 

14.08

±2.54

11.63

±2.54

55.32

±3.17

55.32

±3.17

44.15

±3.19

44.15

±3.19

26.53

±0.07

4 
Uncorrected 

0.5-10 (%)4

60.94 

±2.98 

75.39 

±0.88 

75.39

±0.88

156.98

±0.8 

144.88

±0.9 

86.28

±1.73

35.49

±3.02

9.92 

±1.03 

9.92 

±1.03

7.41 

±1.06

56.51

±2.31

56.51

±2.31

45.05

±2.54

45.05

±2.54

27.22

±0.58

5 
Corrected 

0.5-2.0(%)5

55.83 

±1.09 

73.77 

±0.53 

73.77

±0.53

155.51

±1.1 

143.51

±1.5 

85.42

±3.46

40.62

±1.09

11.65 

±0.37 

11.65

±0.37

9.16 

±0.41

55.92

±4.49

55.92

±4.49

44.55

±4.90

44.55

±4.90

26.99

±0.96

6 
Uncorrected 

0.5-2.0 (%)6

64.82 

±0.81 

76.89 

±0.43 

76.89

±0.43

158.81

±0.9 

146.94

±1.3 

89.45

±3.13

31.65

±0.81

8.68 

±0.29 

8.68 

±0.29

6.22 

±0.33

60.27

±4.09

60.27

±4.09

49.02

±4.46

49.02

±4.46

26.70

±0.88

7 
Corrected 

0.5(%)7

46.95 

±8.02 

70.53 

±2.67 

70.53

±2.67

151.81

±2.8 

139.48

±3.0 

79.80

±4.38

49.44

±8.03

14.54 

±2.69 

14.54

±2.69

11.98

±2.70

49.49

±5.33

49.49

±5.33

37.81

±5.71

37.81

±5.71

27.73

±1.04

8 
Corrected 

1.0(%)8

52.20 

±3.68 

72.56 

±1.23 

72.56

±1.23

154.27

±1.4 

142.26

±1.7 

84.08

±3.23

44.24

±3.70

12.85 

±1.24 

12.85

±1.24

10.36

±1.26

54.54

±4.13

54.54

±4.13

43.16

±4.48

43.16

±4.48

27.02

±0.88

9 
Corrected 

2.0 (%)9

53.60 

±4.86 

72.87 

±1.59 

72.87

±1.59

154.34

±1.7 

142.15

±2.0 

83.14

±3.63

42.81

±4.87

12.35 

±1.64 

12.35

±1.64

9.82 

±1.67

53.16

±4.65

53.16

±4.65

41.61

±5.05

41.61

±5.05

27.42

±1.01

10 
Corrected 

10.0(%)10

41.55 

±8.69 

68.65 

±2.89 

68.65

±2.89

149.80

±3.0 

137.38

±3.2 

77.26

±4.61

54.83

±8.73

16.32 

±2.92 

16.32

±2.92

13.74

±2.93

46.71

±5.57

46.71

±5.57

34.94

±5.95

34.94

±5.95

27.94

±1.06

11 
Uncorrected 

2.0 (%)11

95.82 

±0.07 

85.43 

±0.07 

85.43

±0.07

164.52

±0.1 

150.87

±0.1 

84.73

±0.15

0.00 

±0.00

2.15 

±0.00 

2.15 

±0.00

4.98 

±0.00

51.17

±0.15

51.17

±0.15

38.23

±0.15

38.23

±0.15

30.70

±0.00

12 
Uncorrected 

10.0 (%)12

96.43 

±0.16 

87.23 

±0.52 

87.23

±0.52

168.83

±1.3 

156.74

±1.8 

98.18

±4.32

0.00 

±0.00

1.91 

±0.08 

1.91 

±0.08

4.41 

±0.19

68.44

±5.62

68.44

±5.62

56.99

±6.12

56.99

±6.12

27.20

±1.19



 

 

 

 

Flux results are based on trace experiments with [1-13C] glucose fractions of: 

1) 99% and GCMS measurement. 

2) 99% and GDMS measurement (Kim et al., 2006).  

3) 0.5, 1, 2 and 10% and GCCIRMS measurement. 13C enrichments were corrected as described in the text.  

4) 0.5, 1, 2 and 10% and GCCIRMS measurement. 13C enrichments were not corrected. 

5) 0.5, 1 and 2% and GCCIRMS measurement. 13C enrichments were corrected as described in the text. 

6) 0.5, 1 and 2% and GCCIRMS measurement. 13C enrichments were not corrected. 

7) 0.5% and GCCIRMS measurement. 13C enrichments were corrected as described in the text. 

8) 0% and GCCIRMS measurement. 13C enrichments were corrected as described in the text. 

9) 2.0% and GCCIRMS measurement. 13C enrichments were corrected as described in the text. 

10) 0% and GCCIRMS measurement. 13C enrichments were corrected as described in the text. 

11) 2.0% and GCCIRMS measurement. 13C enrichments were not corrected. 

12) 10.0% and GCCIRMS measurement. 13C enrichments were not corrected. 
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Chapter 4 
Permeabilization of Corynebacterium 

glutamicum for NAD(P)H-dependent 

intracellular enzyme activity measurement 
 

 

Abstract  
Permeabilization of Corynebacterium glutamicum cells permits direct determination of 

enzyme activity measuring NAD(P)H after appropriate calibration and correction for cell 

density. The optimized conditions found were the treatment of 10 mg cells/ml (dry weight) 

by Triton X-100 at a final concentration of 0.05 % for 5 min at room temperature. 

Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities 

were very close to those determined in cell-free extract. In cell-free extracts malic enzyme 

activity was about double and that of isocitrate dehydrogenase about triple the values in 

permeabilized cells. Km values were similar in cell-free extract and permeabilized cell but 

larger than literature values obtained with purified enzymes.  

 

 

 

 

 

 

 

 

 

 

This chapter has been published as: Yuan  Y, Heinzle E. 2009. Permeabilization of 
Corynebacterium glutamicum for NAD(P)H-dependent intracellular enzyme activity 
measurement. Comptes Rendus Chimie 12(10-11):1154-1162. 
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4.1 Introduction 
 

Accurate enzyme kinetic parameters are highly desirable for metabolic kinetic analysis 

(Miranda et al. 2006). Usually purified enzymes are utilized to characterize their kinetic 

behavior in unnatural buffer systems. Unfortunately, these artificial conditions usually 

cannot provide correct information on how an enzyme fulfils its physiological role in the 

living cell (Wittmann et al. 2005). There is plenty of evidence that channeling, i.e. the 

preferential direct transfer of a product of an enzymatic reaction to the next enzyme, is an 

important phenomenon that cannot be studies with purified enzymes. Recent protein 

localization studies in Arabidopsis thaliana showed, e.g., that dynamic association of 

glycolytic enzymes with mitochondria is a function of mitochondrial activity thus 

supporting channeling (Graham et al. 2007a). Channeling was also shown for glycolysis 

even in bacteria (Shearer et al. 2005b). Application of cell-free extracts obtained from the 

water-soluble part of the cell lysate is the classical way for intracellular enzyme study, but 

the requirement of complete disruption of the cell integrity may result in an inactivation of 

enzymes and dissociation of enzyme complexes, especially those associated more weakly. 

In addition, the procedure for purifying enzymes or preparation of cell-free extract is 

laborious and time consuming (Miozzari et al. 1978). Permeabilization of the cellular 

membrane without complete cell disintegration promises to solve above mentioned 

problems to a certain extent. After the treatment of cells with appropriate organic solvents, 

such as ethanol (Somkuti et al. 1998), toluene-ethanol mixtures (Chelico and 

Khachatourians 2003; Choudary 1984), detergents like Triton X-100 (Galabova et al. 1996; 

Miozzari et al. 1978) and other organic chemicals (Gowda et al. 1991; Gowda et al. 1988), 

the cell membrane becomes permeable allowing small molecules to freely enter and leave 

the cell while keeping the morphology of the cell intact. This method permits keeping most 

cellular structures, protein-protein interactions, and most of intracellular enzymes in their 

original environment which is very important for metabolic processes analysis (Felix 

1982). Kinetics measured under permeabilization conditions, which is often called in situ, 

is regarded as an intermediate stage between in vivo and in vitro. Compared to in vitro 

methods, permeabilized cells still keep their macromolecular structure intact that is 

important for channeling and protein-protein interaction phenomena. 

 

Many intracellular oxidation-reduction reactions involve the inter-conversion of the 

oxidized and reduced forms of NAD(P), and for monitoring such reactions, the large 
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absorbance of  NAD(P)H at 340 nm can be measured continuously by a spectrophotometer 

(Cornish-Bowden, 2004). Normally such spectrophotometric assays need an optically clear 

reaction system for a detection linear with concentration of NAD(P)H. Therefore, 

NAD(P)H-dependent enzyme assays in a cell suspension system have not been deeply 

studied yet.  

 

Whole-cell permeabilization for enzyme activity measurement has been applied in many 

organisms until now (Alamae and Jarviste 1995; Chelico and Khachatourians 2003; Crotti 

et al. 2001; Galabova et al. 1996; Gowda et al. 1991; Somkuti et al. 1998; Vanderwerf et al. 

1995). Corynebacterium glutamicum is intensively used for the industrial production of 

amino acids such as glutamate and lysine (Kelle et al. 2005; Kimura 2005; Wittmann and 

Becker 2007a).  The mostly used method for enzyme activity measurement in such cells 

uses cell lysis (Becker et al. 2005; Kromer et al. 2006; Yokota and Lindley 2005).  In vivo 

activity of the enzyme of the entire metabolic network is determined using various 

methods of metabolic flux analysis (Becker et al. 2005; Heinzle et al. 2008a; Kiefer et al. 

2004; Krömer et al. 2004; Wittmann and de Graaf 2005; Wittmann and Heinzle 2001b; 

Wittmann and Heinzle 2002a; Wittmann and Heinzle 2008; Wittmann et al. 2004; Yang et 

al. 2006a).  

 

In this investigation, we focus on NAD(P)H-dependent enzyme assays in a cell suspension 

system, in particular on obtaining a rapid, simple permeabilization method in C. 

glutamicum for potential determination of enzymatic kinetic parameters which are 

important for metabolic pathway analysis and modeling. The effect of the nonionic 

surfactant Triton X-100, toluene-ethanol mixtures (TE), CTAB, digitonin and ethanol on 

the permeability of C. glutamicum cells was examined and four enzyme activities, glucose-

6-phosphate dehydrogenase, isocitrate dehydrogenase, 6-phosphogluconate dehydrogenase 

and malic enzyme, were analyzed as model systems. 

 

4.2 Materials and methods 
 

4.2.1 Strain 
 

Corynebacterium glutamicum ATCC 13032 was obtained from the American Type 

Culture Collection (Manassas, USA).  
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4.2.2 Chemicals 

 

Triton X-100 was purchased from Fluka (Buchs, Switzerland). Malate, NADP and 

glucose-6-phosphate were from Sigma (Steinheim, Germany). All other chemicals were 

from Sigma (St. Louis, USA), Merck (Darmstadt, Germany) or Fluka (Buchs, Switzerland) 

and of analytical grade. For all experiments the same batch of chemicals was used. 

 

4.2.3 Strain cultivation 
 

The cultivation of C. glutamicum ATCC 13032 was the same as described in (Heinzle et al. 

2008a). Cells in the exponential growth phase (OD660=10) were harvested by 

centrifugation (8500 rpm, 5 min, 4 ), and then washed by Tris℃ -HCl buffer (100 mM Tris, 

200 mM KCl, pH=7.8) for twice. The pellet was weighted and appropriate volume of Tris-

HCl buffer was added and adjusted to required cell density (mg cell dry weight /ml) for the 

next cell disruption.  

 

4.2.4 Preparation of crude extract and permeabilization 
 

Permeabilization. Washed cells were resuspended to a cell density of 10 mg/ml (CDW), 1 

ml of cell suspension was transferred into a 1.5 ml Eppendorf tube and a defined amount 

of permeabilization agent was added to give a desired concentration. After 30 s swirling 

the cell suspension was incubated for a defined period of time. The final permeabilized cell 

suspension was directly used for enzyme activity measurement.  
 

Glass beads treatment. Washed cells were resuspended to a cell density of 10 

mg/ml(CDW),  400 µl cell suspension and 400 mg glass beads (≤0.25 mm in diameter) 

were mixed in a 1.5 ml Eppendorf tube and shaken for 15 min (Frequency: 30/s). The 

supernatant was transferred into another pre-cooled Eppendorf tube and centrifuged at 

13000 rpm (15500 g) for 15 min. The final supernatant was used for enzyme activity 

measurement. Samples were kept at 4 °C. 

 

4.2.5 Enzymes assays 
 

All of the following enzyme activities were measured spectrophotometrically by detecting 

the change in the absorption of NADPH at 340 nm (ε=6.223 l×mmol-1 -1×cm ) at 30 °C.  
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Malic enzyme. The 1 ml reaction system contains 890 µl Tris-HCl buffer (100 mM Tris-

HCl, 200 mM KCl, pH=7.8), 10 µl MgCl2 solution (2 mM), 10 µl NADP solution (1 mM) 

and 50 µl cell extract or permeabilized cell suspension. 40 µl of malate solution was added 

to start the reaction.  
 

Glucose-6-phosphate dehydrogenase. The 1 ml reaction system contained 880 µl Tris-

HCl buffer (100 mM Tris-HCl, 200 mM KCl, pH=7.8), 10 µl MgCl2 solution (10mM), 10 

µl NADP solution (1 mM) and 50 µl cell extract or permeabilized cell suspension. 50 µl of 

glucose-6-phosphate was added to start the reaction.  
 

Isocitrate dehydrogenase. The 1 ml reaction system contained 915 μl Tricine-KOH 

buffer (100 mM Tricine-KOH, pH=8.0), 10 µl MgCl + solution (10 mM), 5 μl NADP2  

solution (1 mM) and 50 μl cell extract or permeabilized cell suspension. 20 μl of DL-

isocitric acid solution was added to start the reaction.  
 

6-Phosphogluconate-dehydrogenase. The 1 ml reaction system contained 910 μl Tris-

HCl buffer (100 mM Tris-HCl, pH=7.5), 10 µl MgCl2 (10mM), 10 μl NADP (1mM) and 

50 µl cell extract or permeabilized cell suspension. 20 µl of 6-phosphogluconate was 

added to start the reaction.  
 

Phosphoglucose isomerase. The 1 ml reaction system contained 925 μl Tris-HCl buffer 

(100 mM Tris-HCl, pH=7.5), 10 µl MgCl2 (10mM), 5 µl NADP (0.5 mM), 1 U glucose-6-

phosphate dehydrogenase and 50 µl cell extract or permeabilized cell suspension. 10 µl of 

fructose-6-phosphate was added to start the reaction.  
 

Enzyme activity unit:  One unit of enzyme is defined as the amount of enzyme producing 

1 μmol NADPH per min under the assay conditions. Enzymatic activities are given per mg 

of dry cells unless specially defined. All absorbance measurements were carried out in a 

spectrophotometer at controlled temperature. 
 

Cell density in enzyme assay: Permeabilized cell suspension was diluted 20 times starting 

usually at 10 mg/ml and yielding 0.5 mg/ml in the reaction cuvette. 

 

4.3 Results 
 

4.3.1 NAD(P)H measurement in permeabilized cells 
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In optically clear solution the measured absorbance is usually linear with concentration 

following Lambert Beer’s law. During activity measurement with permeabilized cells, the 

absorption of NAD(P)H is measured in a cell suspension disturbing its measurement. It 

was therefore essential to study whether NAD(P)H could be measured in a permeabilized 

cell suspension. Various amounts of NADPH were mixed with permeabilized cell 

suspensions to give final concentrations from 0 to 50 μg/ml. Plots of the absorbance at 340 

nm, A340, against NADPH concentration are depicted in Figure 1. The range of linear 

correlation decreased with increasing cell concentration (Table 1). The corresponding R2-

values are listed in Table 1. A  
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Figure 1. Plot of absorbance against NADPH concentration in various permeabilized cell 

densities.   Harvested cells were washed 3 times with Tris-HCl buffer (pH=7.8) and 

centrifuged. Afterwards the suspension was diluted with the same buffer to desired cell 

densities, followed by permeabilization with Triton X-100. After permeabilization, cell 

suspensions were diluted 20 times (the same ratio as in enzyme assay) with buffer to final 

cell densities (CD) of 0 mg/ml, 0.2 mg/ml 0.5 mg/ml, 1mg/ml, 2 mg/ml, 4 mg/ml, 6 mg/ml, 

10 mg/ml. For each cell density, 8 ml diluted cell suspension was divided evenly into 8 

cuvettes and added various amount of NADPH to final concentrations of 0 μg/ml, 1 μg/ml, 

2 μg/ml, 5 μg/ml, 10 μg/ml, 20 μg/ml, 50 μg/ml. Absorbance was measured with 

spectrophotometer at 340 nm. 
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good linear relationship was obtained for a range of NADPH concentration from 1 μg/ml 

to 20 μg/ml for cell densities below 1 mg/ml (CDW). The highest A340 value in this linear 

range was 2.77. For cell densities between 1 to 6 mg/ml, the corresponding A340 values 

were linear at NADPH concentrations from 1 μg/ml to only 10 μg/ml with a highest A340 

value of 3.11. A340 values below 2.77 increased linearly with rising NADPH concentration 

at cell densities below 6 mg/ml. For cell densities higher than 6 mg/ml A340 values were 

still linear although only in a small range from 1 to 10 μg/ml. It was concluded that cell 

densities above 6 mg/ml are not suitable for enzyme activity measurement.  
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Figure 2. Plot of slopes (A) and intercepts (B) of Table 1 against cell density.  

 89



Permeabilization for intracellular enzyme activity measurement 
 
Table 1  Linear dependency of the absorbance at 340 nm, A340, on the concentration of 

NADPH, CNADPH, at various cell densities as depicted in Figure 1. 

 

Cell 

density 

(mg/ml) 

Slope, SL CNADPH, max 

µg/ml (ml/µg NADPH)
Intercept, IC R2

0 0.053 0.0162 0.9986 20 

0.2 0.0563 0.759 0.9998 20 

0.5 0.054 1.2949 0.9996 20 

1 0.0524 1.7216 0.9989 10 

2 0.0506 2.1304 0.995 10 

4 0.0427 2.5464 0.9917 10 

6 0.0371 2.7413 0.9935 10 

10 0.0171 2.9634 0.9926 10 

 

Slopes, SL, and intercepts, IC, of the linear parts of the calibration curves depicted in 

Figure 1 and listed in Table 1 depended on cell densities, XCD, in a regular way as is shown 

in Figure 2. This is described by the equation 

 

SL  =  -0.0036 XCD + 0.0568        (1) 

 

The intercept depended linearly on the logarithm of cell density as given by 

 

IC  =  0.5423 ln (XCD) + 1.746        (2) 

 

From the above relationships and equations it is possible to determine the NAD(P)H 

concentration in a cell suspension just by measurement of two different absorptions, A660 

and A340, respectively. The measurement of A660 that is linearly correlated with cell density 

directly yields slope and intercept using equations 1 and 2. Similar to Lambert-Beer’s law, 

a linear correlation exists between the absorbance at 340 nm, A340, and NADPH 

concentration, CNADPH
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A340  =  SL CNADPH  + IC        (3) 

 

Rearrangement of this equation yields 

 

340
NADPH

A IC
SL
−

=
C          (4) 

 

Measurement of A660 and A340 with time eventually allows the determination of enzyme 

activity. 

 

4.3.2 Permeabilization optimization 
 

4.3.2.1 Selection of agents for permeabilization.  

Table 2 summarizes effects of treatment using different permeabilization agents on four 

intracellular enzyme activities: glucose 6-phosphate dehydrogenase, G6PDH, malic 

enzyme, ME, isocitrate dehydrogenase, IDH, and 6-phospho-gluconate dehydrogenase, 6-

PGDH. Untreated cells (control) did not show any activity in contrast to treated cells 

which show significant variation on different treatments. Except for G6PDH higher 

activity was observed in cell-free extracts than in permeabilized cells. For G6PDH and 

6GPDH the measured activities were very similar for cell-free extract, Triton X-100 and 

TE. The activities for ME and particularly IDH were significantly higher in cell-free 

extracts than in permeabilized cells. CTAB treatment was comparable to other 

permeabilization methods for ME and 6PGDH. In this study, Triton X-100 and TE were 

investigated in more detail.  

 
4.3.2.1 Effect of cell density on permeabilization.  

Washed cells were diluted to final cell densities between 2 mg/ml and 20 mg/ml (CDW). 

Figure 3A shows that malic enzyme and G6PDH activities increased linearly in Triton X-

100 permeabilized cells with cell densities up to 10 mg/ml. The same trend was observed 

with ME activity in TE permeabilized cells as depicted in Figure 3B. It was reported that 

permeabilization depends primarily on the ratio of the permeabilization agent to cell 

number rather than its concentration (Gowda et al. 1991). This means that at higher cell 

density a higher agent concentration is required which may cause problems in following 
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analysis steps. On the other hand, a relatively high protein concentration and therefore high 

cell concentration is required for a sensitive activity measurement. 10 mg/ml was 

identified as the optimal cell density for permeabilization in this study. 
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Figure 3. Influence of cell densities on permeabilization in C. glutamicum. Enzyme 

activities in this figure were defined as mU per 1ml reaction system in a cuvette. A: 

Washed cells were resuspended in Tris-HCl buffer at various densities from 2 to 40 mg/ml 

(CDW). Triton X-100 was added to each cell density and adjusted to the same final 

concentration of 0.05 % and then incubated at room temperature for 30 min. B: Washed 

cells were resuspended in Tris-HCl buffer at different densities from 2 to 20mg/ml (CDW). 

TE was added to each cell density and adjusted to the same final concentration of 10 % 

and then incubated at room temperature for 30 min.  
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4.3.2.3 Effect of agent concentration for permeabilization.  

Figure 4A shows the effect of Triton X-100 concentration on enzyme activity. The level of 

both enzyme activities of permeabilized cells increased significantly but not linearly with 

the Triton X-100 concentration from 0.02 % to 0.05 %. Higher Triton X-100 concentration 

did not result in any further increase for both enzymes. In contrast relatively high TE 

concentration was necessary for permeabilization to get highest enzyme activities (Figure 

4B). For malic enzyme activity a concentration higher than 20 % was required for the 

highest activity, but for G6PDH, the highest activity was found at a TE concentration of 10 

% and the activity decreased at higher concentrations than 10 %.  
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Figure 4. Influence of agent concentration on permeabilization in C. glutamicum. Washed 

cells were resuspended in Tris-HCl buffer at a density of 10 mg/ml (CDW). A: Triton X-

100 was added to yield different concentrations from 0.01 % to 0.2 %. B: Triton TE was 

added to give different concentrations from 1 % to 23 %.The suspension was incubated at 

room temperature for 30 min and assayed for enzyme activity. 

 

4.3.2.4 Effect of incubation condition on permeabilization.  

Several different conditions suggested in the literature were tested and results are shown in 

Figure 5. No significant differences were found under the conditions tested with Triton X-

100 permeabilized cells, i.e. freeze/thaw cycles with -70 °C, -20 °C, dry ice bath and 

incubation at room temperature. Continuous shaking during the incubation at room 

temperature also did not affect enzyme activities. Room temperature incubation without 

shaking was found most appropriate and was further studied. For Triton X-100 treated 

cells, the effect of varying incubation time at room temperature was investigated (Figure 

6A). The activities of ME and G6PDH both reached top values after an incubation of 5 

minutes and decreased slightly with increasing time. For TE treated permeabilized cells 

(Figure 6B), a longer time was necessary for both enzymes. After 40 min incubation, ME 

reached its top activity but G6PDH activity remained constant after 40 min.  
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 5. Enzyme activity on permeabilization under different incubation conditions Figure

C. glutamicum cells were harvested during the exponential growth phase and washed twice 

with Tris-HCl buffer. The pellet was resuspended in the same buffer to 10 mg/ml (CDW) 
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and divided into several portions, subjected to further Triton X-100 treatments as indicated 

below. 

Freeze/thaw at -70 °C: Cells were frozen in -70 °C freezer for 24 h and thawed by swirling 

in a water bath at 30 °C. 

Freeze/thaw at -20 °C: Cells were frozen in -20 °C freezer for 24 h and thawed by swirling 

in a water bath at 30 °C. 

Freeze/thaw in dry ice bath: Cells were frozen in dry ice bath for 2 h and thawed by 

swirling in a water bath at 30 °C. 

Room temperature: Triton X-100 was added to a final concentration of 0.05 % and kept at 

room temperature for 30 min. 

Room temperature with shaking: Triton X-100 was added to a final concentration of 0.05 

% and the cell suspension was kept shaking at a speed of 500 rpm for 30 min. 

 

4.3.2.5 Enzyme-substrate affinity in permeabilized cells.  

 

The substrate affinity to an enzyme, usually characterized by the Michaelis-Menten kinetic 

parameter, Km, is a key characteristic of an enzyme. In this study, Km values of several 

intracellular enzymes from both cell-free extract and permeabilized cells were determined 

and compared with literature values for purified enzymes (Table 3). Km values of all four 

enzymes were similar in cell-free extracts and permeabilized cells (Gourdon et al. 2000; 

Moritz et al. 2000b; Yokota and Lindley 2005)  
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Figure 6. Influence of various incubation times on permeabilization in C. glutamicum. 

Washed cells were resuspended in Tris-HCl buffer at a density of 10mg/ml (CDW). A: 

Triton X-100 was added to a final concentration of 0.5 %. The suspension was incubated at 

room temperature for various times from 0 to 170 min and assayed for enzyme activity. B: 

TE was added to a final concentration of 10 %. The suspension was stored at room 

temperature for various times from 0 to 80 min and assayed for enzyme activity. 

 

4.3.3 Protein release 

After washing permeabilized cells, all the supernatants were collected and analyzed for 

protein secretion. Protein concentration was determined by the Bradford method, bovine 
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serum albumin was used as the standard. Analyzed protein levels in the supernatant were 

always below 2 mg/ml, i.e. less than 5 % of the total protein. (data not shown here). 

 

4.3.4 Activity analysis in fermentation broth without washing step 
 The developed method was also applied directly to fermentation broth without any 

washing. A cell suspension from a growing culture was taken, directly treated by Triton X-

100 and used for enzyme activity measurement. In these experiments linear relationships 

were also obtained between absorbance at 340nm and NADPH concentration, but the 

coefficient in equation 1 changed from -0.0036 to -0.0202. Enzyme activities under this 

condition were only about half of those obtained with a washing step (data not shown here). 
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Table 2  Activity of selected intracellular enzymes of C. glutamicum using enzyme extraction and different methods of permeabilization. All 

activities are given in mU/mg dry cells. 

TE 

permeabilized 

cells

Ethanol 

permeabilized 

cells

TritonX-100 

permeabilized 

cells

CTAB 

permeabilized 

cells

Digitonin 

permeabilized 

cells

Control Cell-free 

extract
Enzyme auntreated cells c f b d e

Malic enzyme 0 51.1 ± 5.7 20.5 ± 1.9 41.7 ± 3.6 23.7 ± 4.7 16.1±3.6 1.0±0.3 

0 G6PDH 22.6 ± 1.5 24.1 ± 2.0 22.0 ± 2.9 5.5 ± 1.8 12.1±3.1 8.8±0.9 

IDH 0 304 ± 30 109 ± 13 96.6 ± 12.4 - - - 

6PGDH 0 36.4 ± 4.4 26.5 ± 4.4 25.6 ± 5.1 24.4 ± 2.4 - - 
 

C. glutamicum cells were harvested during the exponential growth phase and washed twice with Tris-HCl buffer. The pellet was resuspended in the same buffer and 

diluted to a final cell density of 10 mg /ml (CDW), diluted cells were divided into several aliquots, and subjected to further treatment as indicated below. 
a Glass-bead treatment followed by direct analysis of enzyme activity in cell-free extract. 
b Triton X-100 was added to yield a final concentration of 0.05 % and kept at room temperature for 30 min.  
c TE was added to a final concentration of 10 % and kept at room temperature for 30 min.  
d CTAB was added to a final concentration of 0.1 % and kept at room temperature for 30 min 
e Digitonin was added to a final concentration of 0.1 % and kept at room temperature for 30 min.  
f Ethanol was added to a final concentration of 40 % and kept at room temperature for 30 min.  
b-f in all cases of permeabilization enzyme activity was directly measured in the resulting cell suspension. 
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Table 3  Km values of enzymes from cell-free extract, permeabilized cells in C. glutamicum 

and literature values of purified enzymes. 

 

Malic enzyme G6PDH PGI 
Km value (mM) +For Malate For NADP For G-6-P For F-6-P 

Cell-free extract 13.9±5.2 0.17±0.12 0.14±0.0005 0.34±0.15 

Permeabilized cells 10.7±4.0 0.23±0.03 0.092±0.017 0.42±0.12 

Data from the literature 3.8±0.6* 0.083±0.017* 0.15±0.021** 0.54*** 
 

*(Gourdon et al. 2000) 

**(Moritz et al. 2000a) 

***(Yokota and Lindley 2005) 

Cells were washed by Tris-HCl buffer three times and diluted by the same buffer to 10 mg /ml 

(CDW). Triton X-100 was added to the cell suspension to a final concentration of 0.05 %. 

After 30 seconds vortexing, suspension was incubated at room temperature for 10 min, 

activity measurements were carried out using different substrate concentrations. Measured 

initial rates were used in a Lineweaver-Burk plot to determine Km values.  

Data from three or four independent experiments (average±standard deviation) are listed. 

 

4.4 Discussion 
 

There is a ongoing discussion whether in vitro enzyme characteristics can be directly applied 

for describing the dynamics of complex metabolic networks(Reuss et al. 2007). It is very 

difficult and sometimes even not possible to directly measure intracellular enzyme activity 

and kinetic characteristics in intact whole cells due to the cell membrane permeability barrier. 

Only pulse techniques combined with appropriate measurement of intracellular metabolite 

profiles and modelling permits the in vivo kinetic analysis(Nikerel et al. 2009; Reuss et al. 

2007). For metabolic enzyme kinetic research, traditional studies using purified enzymes or 

cell-free extracts, which are called in vitro conditions, is restricted because many unknown 

interactions, e.g. between enzymes and other effecting proteins, may influence the final results 

that will then be different from in vivo conditions(Reuss et al. 2007). In addition, the 

preparation procedure is generally complex and time consuming. Enzymes in gently 
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permeabilized cells are assumed to be much closer to their in vivo condition and therefore 

more suitable to be applied in metabolic studies. In this article, permeabilization of C. 

glutamicum was investigated for potential applications for metabolic enzyme kinetic study.  

 

The influence of cell density on the absorbance at 340 nm for NADPH determination was 

investigated in detail in this study, which is very important for NAD(P)H-dependent enzyme 

activity measurement. Absorbance values of the enzymatic reaction system containing 

permeabilized cells cannot be directly used for activity calculation only after appropriate 

correction. Since NADH has an absorption spectrum very similar to NADPH, the results of 

this report are directly applicable to NADH dependant enzymes.  

 

The results using crude fermentation broth indicate the possibility of high-throughput 

screening of mutants using the permeabilization method in microtiter plates. After pipetting 

into wells, mixing with the permeabilization agent and corresponding enzyme substrates and 

incubating for appropriate time, absorbances at 660 nm and 340 nm could be read with a 

microplate reader. After correction of absorbance using equation 4, activities can be easily 

calculated and compared. In this way a large number of mutants could be screened in a short 

time. Besides to C. glutamicum, this method could be also applied to other organisms.  

 

Many agents have been applied for permeabilization in various organisms. The efficiency of 

different agents on permeabilization are different (Table 2). Triton X-100 and TE were most 

suitable for C. glutamicum for enzyme activity measurement. Compared to TE, treatment with 

Triton X-100 needs much lower concentration and shorter incubation time. If other analytical 

methods, e.g. using mass spectrometry with ion spray ionization or MALDI, are applied, it 

might be necessary to remove the permeabilizing agent. Since Triton X-100 is a detergent, it is 

very difficult to remove. However, TE could be removed easily by evaporation.  

 

The environment of enzymes in permeabilized cells (in situ) is thought to be closer to that in 

living cells (in vivo) compared to cell-free extract (in vitro). Therefore, the kinetics of 

enzymes in situ is assumed be closer to in vivo conditions than in vitro kinetics. Km value is 

regarded as a key parameter for kinetic study and values from in situ condition are assumed to 

be closer to those in vivo condition. In our experiments Km values of enzymes measured in 
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permeabilized cells were similar to those from cell-free extract, whereas other reports  

reported differences, however using different cells(Alamae and Jarviste 1995; Serrano et al. 

1973). In this study, Km values of both malic enzyme and G6PDH were clearly higher than  

those of purified enzymes reported in the literature(Gourdon et al. 2000; Moritz et al. 2000b). 

Only for PGI Km values measured here were slightly lower than those reported in the 

literature(Yokota and Lindley 2005).  

 

4.5 Conclusion  
 

NAD(P)H-dependent intracellular enzyme assays in permeabilized cell suspension were 

investigated in this study. Permeabilization of C. glutamicum cells depends on several 

variables such as agent type, cell density, agent concentration but less on the incubation 

condition. The optimized permeabilization condition in C. glutamicum by Triton X-100 was 

obtained with CDW concentration of 10 mg/ml and treatment with 0.05 % Triton X-100 at 

room temperature for only 5 minutes. TE treatment needed a concentration of 10 % and a 

much longer incubation time of more than 40 min to get the highest enzyme activity. 

Compared to cell-free extract preparation, permeabilization is a rapid, simple and mild 

technique. Using this method single enzyme activity measurements for the dehydrogenases 

G6PDH, 6PGDH and ME as well as for PGI were carried out successfully. Furthermore, 

permeabilized cells can provide intracellular enzymes whose properties are assumed to be 

more similar to those of in-vivo conditions. 
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Chapter 5 
In-situ multi-enzyme network kinetics study 

using MALDI-TOF MS 
 

 

 

 

Abstract 
 

A novel strategy was developed for the determination of in-situ enzymatic network kinetics 

combining permeabilization and matrix-assisted laser desorption/ionization time-of–flight 

mass spectrometry (MALDI-TOF-MS) quantification. Quantification of small molecular mass 

metabolites in glycolysis and pentose-phosphate pathway using MALDI-TOF-MS with [U-
13C6] glucose-6-phosphate as single internal standard was established. Signal suppression 

during MALDI analysis could be compensated by applying the standard addition method. 

Permeabilized cells are considered closer to the in-vivo situation than purified enzyme(s) for 

the study of kinetics. Adding selected substrates and cofactors, kinetics of glycolysis and 

pentose-phosphate pathways could be characterized using this method. During the experiment 

the carbon balance was nearly closed indicating quantitative analysis of all important 

substrates and products accumulated in the reaction mixture. 

 

 

 

 

 

 

 

This chapter has been submitted to Analytical Biochemistry as: Yuan Y, Heinzle E. 2010. in-
situ multi-enzyme network kinetics study using MALDI-TOF MS.  
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5.1 Introduction 
For one century, enzymologists utilize isolated enzymes for their kinetic characterization. The 

increasing involvement in describing metabolic network kinetics in a systems biological 

context uncovers limitations of this classical approach. Metabolite channeling, characterized 

by the direct transfer of intermediates from one enzyme to the next (Graham et al. 2007b), and 

macromolecular crowding effects causing modified enzyme kinetic properties (Minton 2006; 

Zhou et al. 2008) can cause differences between in-vivo and in-vitro kinetics. Therefore, 

determining enzyme kinetic parameters directly inside the living cell is highly expected to 

overcome the limitations listed above (Snoep and Rohwer 2005; van Dam et al. 2002). This is 

however experimentally limited as it requires the analysis of intracellular metabolites, which 

is a partly still unsolved problem (Bolten et al. 2007). Additionally, it allows only limited 

perturbation of the system because of the limited transport of substrate through the cell 

membrane.  Careful permeabilization of the cell keeps its morphology largely intact, and most 

of the intracellular enzymes seem to be active and stay in their original macromolecular 

environment (Felix 1982; Yuan and Heinzle 2009). This condition is called in-situ and is 

regarded as closer to the in-vivo state than commonly used in-vitro conditions. It is therefore 

promising for intracellular enzymatic network kinetic investigations (Martins et al. 2001a; 

Martins et al. 2001b; Serrano et al. 1973).  

 

MALDI-TOF MS is utilized mainly to determine the molecular weight of macro-molecules 

like peptides by detecting the time of flight to a detector in an electric field. By the use of 

appropriate matrices and internal standard, a wide range of biomolecules can be analyzed by 

MALDI-TOF MS (Lasaosa et al. 2009a; Lasaosa et al. 2009b; Simm et al. 2009; Tholey et al. 

2002). Due to its high sensitivity, good mass resolution, high speed and simplicity (Duncan et 

al. 2008; Szajli et al. 2008), recently it was also applied to quantitative determination of low 

molecular mass compounds of biological interest without analyte separation step (Zabet-

Moghaddam et al. 2004a) as well as involving appropriate analyte separation (Mims and 

Hercules 2003; Mims and Hercules 2004). There are, however, some limitations for 

quantification using MALDI-TOF MS. Suppression effects, either originating from the matrix 

or from the analytes themselves, are one of the major impediments for quantitative 

measurement (Lou et al. 2009; Vaidyanathan et al. 2006). In complex samples, some analytes 

which are more competing for the available protons can suppress other analytes. Separation 
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and clean-up operations can partly eliminate this suppression, but make the protocol much 

more complicated. Therefore this can be applied only in cases in which more accurate 

information is required. In practice, the analysis of a large number of biological samples 

requires high speed analysis without pretreatment steps, and a slight reduction of accuracy is 

acceptable.  

 
Figure 1. Schematic diagram of the metabolic network investigated in this study. 

 

The suitability for metabolome analyses using MALDI has been investigated using the 

conventional matrices DHB and CHCA and measuring in the positive ion mode 
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(Vaidyanathan et al. 2006). Several metabolites in a synthetic mixture can be detected using 

both solid and ionic liquid matrices in parallel. Another matrix, 9-aminoacridine, was more 

recently tested and regarded as more suitable for the detection of low molecular mass 

metabolites (Edwards and Kennedy 2005; Rachal L. Vermillion-Salsbury 2002), as well as for 

quantification (Mims and Hercules 2003; Mims and Hercules 2004; Vaidyanathan and 

Goodacre 2007). 

 

Internal standards are necessary for quantification to compensate for the inhomogeneous 

distribution of matrix and target molecules in samples. Selection of internal standard is critical 

for the measurement (Wilkinson et al. 1997). Stable-isotope labeled forms (isotopomers) of 

the analyte has been proven an ideal internal standard because of their highest possible 

chemical, physical, and mass similarity to the analyte (Duncan et al. 2008). Unfortunately, for 

many compounds such standards are not commercially available.  

 

The first objective of this study was to develop a sensitive and rapid method for quantitative 

measurement of low molecular mass metabolites involved in glycolysis and pentose-

phosphate pathway (Figure.1). Some pioneering investigations have already been carried out 

applying MALDI-TOF MS for enzyme activity measurement (Tholey et al. 2002) and low 

molecular mass quantification (Tholey et al. 2002; Zabet-Moghaddam et al. 2004a). In this 

study we investigated quantitative measurement of metabolites with MALDI mass 

spectrometry using 9-aminoacridine as matrix. [U-13C6] glucose-6-phosphate, enzymatically 

synthesized from [U-13C6] glucose, was tested as a single internal standard to quantify other 

metabolites of glycolysis and the pentose-phosphate pathway. Kinetics of these two pathways 

was investigated by the combination of the developed quantification method and 

permeabilization technique. 
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Table1.  Negative ion signals of metabolites used in this study as observed in MALDI-TOF 

MS.  

No. Metabolite Abbreviation [M-H]-

1 Glucose-6-phosphate / Fructose-6-phosphate  G6P/ F6P 259.30 
2 Fructose-1, 6-biphosphate  F16BP 339.36 
3 Dihydroxyacetone phosphate / Glyceraldehydes 3-phosphate DHAP/ GADP 169.16 

3-phosphoglycerate/2-phosphoglycerate  4 3PG/2PG 185.17 
5 Phosphoenolpyruvate  PEP 167.14 
6 Pyruvate PYR 87.06 
7 6-phosphogluconate  6PG 275.32 

Ribulose 5-phosphate/Ribose 5-phosphate/Xylulose 5-
phosphate  8 P5P 229.25 

9 Sedoheptulose 7-phosphate S7P 289.34 
10 1, 3-bisphosphoglycerate 13BPG 265.23 
11 Erythrose 4-phosphate  E4P 199.21 
12 [U-13C6] Glucose-6-phosphate  [U-13C ] G6P 265.33 6

 

 

5.2 Materials and methods 
 

Chemicals and enzyme 

[U-13 13C ] Glucose (99 atom % 6 C) was purchased from Cambridge Isotope Laboratories 

(Andover, MA, USA). The matrix, 9-aminoacridine (9AA), was purchased from Sigma-

Aldrich (St Louis, Mo, USA). All the commercially available metabolites listed in Table 1 

were from Sigma-Aldrich (St Louis, Mo, USA). Water was purified by a Millipore water 

purification system (Bedford, MA, USA). Hexokinase from Saccharomyces cerevisiae with an 

activity of 2285 U/mg was purchased from Sigma-Aldrich (St Louis, Mo, USA). 
 

Microorganism 

C. glutamicum ATCC 13032 wild type was purchased from the American Type Strain and 

Culture Collection (Manassas, USA). 

 

Sample preparation 

The cultivation of C. glutamicum ATCC 13032 was the same as described earlier  (Heinzle et 

al. 2008b). Cells in the exponential growth phase (OD660=10) were harvested and 

permeabilized as described before (Yuan and Heinzle 2009). Permeabilized cells were 
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subsequently washed 3 times by centrifugation (5000 rpm, 5 min, 4 °C) with ammonium 

bicarbonate buffer (100 mM NH HCO4 3, pH adjusted to 7.8 by acetic acid). Washed cells were 

diluted with the same ammonium bicarbonate buffer to a cell density of 200 mg/mL (wet 

weight).  

 

Enzyme stability comparison between in-vitro and in-situ  

Experimental procedures for cell disruption using glass beads (in-vitro) and permeabilization 

(in-situ) were applied as described earlier (Yuan and Heinzle 2009). After treatment both 

solutions containing enzymes were kept on ice in a 4°C cold room. The malic enzyme and 

glucose 6-phosphate dehydrogenase activities from above two sources were tested over 48 h. 

Activities in the supernatant (the supernatant directly harvested after Triton X-100 treatment) 

of permeabilized cells were measured as well. Detailed enzyme assays were described earlier 

(Yuan and Heinzle 2009).  

 

In-situ kinetic experiment and sampling 

15 mL Eppendorf tube (EP) containing diluted permeabilized cells was pre-warmed in a water 

bath for 2 min at 30°C. Substrates and cofactors were added to designed concentrations to 

start reaction. During the whole reaction, EP tube was shaken manually from time to time. 

Samples were collected and treated in two different ways: (A) during the first 2 min of 

incubation samples were taken and filtered through a 0.2 μm cellulose acetate membrane filter 

(VWR, USA) connected to a 5 mL syringe (Tuttlingen, Germany). The filtrate was collected 

and stored at -20°C; (B) after 2 min samples were quickly centrifuged for 1 min at 5000 rpm 

and -9 °C, supernatants were stored at -20°C.  

 

Synthesis of internal standard 

In this study, [U-13C6] glucose 6-phosphate was tested as internal standard for the quantitation 

of several metabolites.  It was synthesized using hexokinase (HK): 

ADPPGCUATPegluCU HK +−⎯→⎯+− 6][cos][ 6
13

6
13  

 

1 mL ammonium bicarbonate-acetic acid buffer reaction system (pH=7.8) containing 2 mM 

[U-13C ] glucose, 2 mM ATP and 10 mM Mg2+
6  was pre-warmed at 25°C for 2 min. 100 units 

of hexokinase was added to start the reaction. After 30 min, the enzyme was removed by 
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centrifugation using 10 kDa NMWL (Nominal Molecular Weight Limit) filter (Millipore) and 

the supernatant was stored at -20°C until used.  

 

MALDI-TOF mass spectrometry 

The experiments were carried out on a 4800 TOF/TOF Analyzer mass spectrometer (Applied 

Biosystems, Darmstadt, Germany) in negative ion reflector mode. A pulsed 200 Hz solid state 

Nd: Yag laser with a wavelength of 355 nm was utilized in the system. The laser energy was 

set from 3000 units to 5000 units for both metabolite standards and real samples. One single 

mass spectrum was formed from 25 sub-spectra per spot using 50 accepted laser shots each. 

More details were described earlier (Tholey et al. 2002). 

 

MALDI sample preparation      

The matrix 9AA was dissolved in methanol to a concentration of 9 mg/mL. All standard 

metabolites were dissolved in Milli-Q water. The dried droplet method was applied for sample 

preparation. Matrix-to-analyte ratio (M/A ratio) was set in the range of 2.5: 1 to 50: 1 and 

optimized during experiments. For mass spectrometry measurement, equal volumes of the 

analyte(s) solution and matrix solutions were mixed and 0.6 μl of this mixture was spotted on 

a stainless steel 384-well MALDI-MS target plate and dried in air for 5 min. 

 

Quantitative MALDI-TOF MS analysis 

Samples from experiments were mixed with [U-13C6] G6P internal standard at an optimized 

volume ratio and analyzed by MALDI-TOF MS. The peak height ratio of metabolite to 

internal standard was calculated. The concentrations of metabolites were subsequently 

calculated by the use of obtained calibration curves (see next section).  

 

Calibration curves  

For the test of suppression effects, the standard curves were prepared in two ways: (1) each 

individual metabolite standard was serially diluted to desired concentrations and then mixed 

with internal standard and matrix; (2) equal amounts of all metabolite standards were mixed 

and serially diluted to required concentrations and then mixed with internal standard and 

matrix. Metabolite standard, internal standard and matrix were mixed at a volume ratio of 

1:1:2, this ratio was later optimized. The peak height ratio for each individual sample, Rind, 
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which contained a single metabolite standard, and the peak height ratio for the same 

metabolite in the mixture, Rm, were calculated.  The average ratio of the peak heights was then 

plotted against the concentration of the metabolite.  

 

Estimation of metabolite concentration in kinetic experiment samples 

The matrix effects and signal suppression required an extension of the analytical procedure for 

the kinetic experiments using the standard addition method (Duncan et al. 2008). A mixture of 

15 samples form a kinetic experiment (see Table 2) was used as background for all 

measurements. To this, different concentrations of metabolite standard mixtures were added 

and measured using MALDI-TOF MS as described above. Calibration curves were created by 

plots of ratios of peak height for each metabolite standard and [U-13C6] glucose internal 

standard against the real concentrations for 6 metabolite standards. The ratio of metabolites to 

IS (RA) was calculated as given below: 

 

intensity  standard  Internal
intensiy   sMetabolite ratioIntensity =       (1) 

 

ground)ratio(backIntensity -standard)groundratio(backIntensity  R A +=   (2) 

 

For samples with higher concentrations of F16BP it was necessary to carry out the standard 

addition method for each individual sample instead of using the mixture of 15 samples. The 

calibration curve was calculated using linear regression of Microsoft Excel 2003.  

 

5.3 Results and discussion 
 

Mass spectrum of metabolites 

 

A negative-ion MALDI spectrum of metabolites and internal standard cocktail using 9AA as 

matrix is depicted in Figure. 2. The internal standard, [U-13C6] G6P, has a peak at 265.33 m/z. 

The metabolites show peaks in the range of 167.1 m/z to 339.4 m/z. Other peaks also can be 
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seen which are either from matrix or other unknown origin.  However, these unknown peaks 

did not interfere with the peaks of interest.  

 

Calibration curves and suppression 
 

The intensity obtained from MALDI-TOF MS can not be directly used for quantification 

because of its dependence on other metabolite and buffer concentrations. Therefore, internal 

standard is necessary for quantitative measurement. It is expected to compensate for 

systematic and random errors and partly eliminate influences from other compounds in the 

sample. 

 

Figure. 3 shows calibration curves by plots of ratios of peak height for each metabolite 

standard and [U-13C6] G6P internal standard against the real concentrations for 6 metabolite 

standards. For all metabolites, the resulting calibration curves, either spiked individually or in 

a mixture, show good linear relationships. Correlation coefficients (R2) are from 0.9876 to 1. 

Except for G6P/F6P, the slopes of the standard mixture are significantly different from the 

individual metabolites. The largest and smallest differences of the slopes were for 6PG and 

G6P/F6P, which differed 6.7-fold and by 8.8%, respectively. Other 4 metabolites have 

differences from 22.7% to 33.4%.  
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Figure 2. MALDI mass spectrum of the metabolite cocktail in the negative ion mode using 9AA as matrix. The mass-spectrum was 

obtained from a sample containing 1 μM of each metabolite and internal standard. Details of sample preparation are provided in the 

Materials and Methods section. 
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Generally, for quantification of low molecular mass compounds, stable isotope labeled 

isotopomers of each analyte would be the optimal internal standard (Duncan et al. 2008) but 

are not available as stated earlier. However, since calibration curves from all these 6 

metabolites depicted in Figure. 3 show very good linearity, this internal standard seems 

applicable not only for G6P, but also for the other 5 metabolites.  Measurements under the 

same condition but without internal standard were also performed. However, obtained 

calibration curves were not linear (data not shown here). These 6 metabolites in glycolysis and 

pentose-phosphate pathway have quite similar structures, especially they are all 

phosphorylated. Therefore they are expected to have chemical and physical properties, e.g. 

charge, very close to the internal standard. Systematic and random errors can be compensated 

by the use of the internal standard [U-13C6] G6P, but errors originating from signal 

suppression, which is caused by the changes of concentrations of other compounds in the 

samples, could not be compensated completely. The influence of this suppression can be seen 

from the different slopes of calibration curves in Figure. 3.  The use of internal standard and 

the optimization of the measurement parameters could significantly decrease this suppression, 

but could not completely eliminate it. Compared to the other 5 metabolites, the slope 

differences of G6P/F6P were much smaller, most likely caused by the closer similarity to the 

internal standard and analyte. Based on this finding, the ideal internal standard would consist 

of stable isotopomers of all individual metabolites.  

 

The variations of concentration of other components, e.g. buffer, can also cause analyte 

suppression. To test the degree of suppression in real samples, each metabolite standard 

sample was mixed with a real experimental sample as background which contained all these 6 

metabolites as well as the corresponding buffer. The added volume and component of this real 

experimental sample is identical for all standards (Figure. 4). Correlation coefficients (R2) of 

calibration curves are from 0.9802 to 0.9997. Differences between two slopes using standard 

mixture and those from individual metabolites are from 1% to 11.8%. These differences are 

much smaller compared to those without background subtraction. High linearity and low 

differences of the slopes made these calibration curves suitable for quantification. Based on 

above observations, the calibration curve for each metabolite was made individually using the 

same background which consisted of an equal volume of each sample from one kinetic 

experiment. 
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Determination of glycolysis and pentose-phosphate pathway kinetics applying MALDI 

quantification 

 

For a long time, kinetic studies have been investigated using purified single enzymes or small 

networks containing few purified enzymes (Ishii et al. 2007). But parameters obtained from 

these so called in-vitro conditions can not completely match in in-vivo conditions. Cells 

permeabilized using appropriate conditions do not cause the release of proteins during kinetic 

experiments and also keep most cellular structures and protein-protein interactions intact since 

intracellular enzymes remain in their original macromolecular environment which is very 

similar to their in-vivo condition (Felix 1982). Therefore in-situ kinetics is expected to be 

superior for kinetic network studies. By the addition of selected substrates and cofactors, 

metabolites are converted only within a restricted part of the network. Kinetics of glycolysis 

and pentose-phosphate pathway was determined using G6P as substrate combined with the 

addition of the cofactors ATP, ADP, NADP+ and NAD+. Samples were taken over a period of 

120 min and subsequently measured by MALDI-TOF MS using the standard addition method 

as described above. Calculating an overall carbon balance, it was found that F16BP was 

significantly over-estimated in the higher concentration range (2400 s and 3600 s) using only 

the mixture of the 15 samples as background. Using each individual sample with the standard 

addition method for the quantification of F16BP, however, provided results with a consistent 

carbon balance (data shown in brackets in Table 2). All other samples gave almost identical 

values for F16BP with both methods as depicted in Figure. 6. Differences might be caused by 

the significantly different molecular structure of F16BP compared to the applied internal 

standard [U-13C6] G6P particularly concerning the two phosphate groups in one molecule in 

combination with the changing composition of the reaction mixture. The resulting 

concentration profiles of 6 metabolites are depicted in Figure 6. G6P/F6P concentration 

decreased during the whole period from 3 mM to only 0.3 mM. F16BP concentration (full 

diamonds in Figure. 6) increased in the first 3600 s, reaching a top concentration of about 1.43 

mM and then quickly decreasing to a plateau value of 0.76 mM at the end of this experiment. 

3PG/2PG and DHAP/GADP concentrations increased initially showing a similar shape and 

after reaching a plateau at around 3600 s increased again towards the end of the experiment. 

The almost identical shape indicates that these compounds are nearly in equilibrium 

throughout the experiment. PEP appeared at 1200 s and then increased to the final 
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concentration of 0.05mM. The shape of this curve is similar to those of 3PG/2PG and 

DHAP/GADP but with a certain delay. For 6PG, the concentration jumped from 0 to 0.11 mM 

in the first 300 s, then decreased very quickly to almost zero after about 3600 s. This means 

that the rate of formation of 6PG is not proportional to the concentration of G6P/F6P alone but 

is most likely inhibited by its product NADPH (Moritz et al. 2000a) and other products 

formed during the reaction.  

 

Metabolite concentrations and total amount of carbon are listed in table 2. Detection limits of 

metabolites are specified there as well. The starting molar carbon concentration was 18 mM, 

all contained in G6P. The differences between the sum of the carbon contained in measured 

metabolites and initial carbon were lower than 17%. The total detected carbon remained 

reasonably constant during the whole period of the kinetic experiment. Deviations originate 

from: (i) other unknown and not detected metabolites, (ii) loss by decarboxylation in the 

pentose-phosphate pathway and (iii) experimental error. 
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Table 2. Concentrations of observed metabolites measured by MALDI-TOF MS and resulting total carbon concentrations. 
 

ND, not detected.  Detection limits: FBP≤0.02mM; DHAP/GADP≤0.002mM; 2PG/3PG≤0.001mM; PEP≤0.001mM; 6PG≤0.001mM; 

E4P≤0.02mM; Pyr≤0.002mM; P5P≤0.02mM. For 13BPG, Pyr and P5P, corresponding peaks at 265.23, 87.06 and 229.25 were not detected.  

Concentrations of metabolites (mM) 

 G6P 

/F6P 
F16BP 

DHAP 

/ GADP 
13BPG

3PG 

/2PG 
PEP PYR 6PG P5P S7P E4P 

Total 

carbon 
Carbon 

Recovery 
(mM) 

(%) 
 Carbon number 6 6 4 3 3 3 3 6 5 7 4 

0 3.00 ND ND ND ND ND ND ND ND ND ND 18.00 100 

15 2.69 0.021 0.0023 ND 0.0054 ND ND 0.0082 ND ND 0.030 16.48 92 

30 3.28 0.023 0.0000 ND 0.0000 ND ND 0.0090 ND ND 0.026 19.95 111 

60 3.20 0.023 0.0045 ND 0.0103 ND ND 0.0135 ND ND ND 19.44 108 

90 2.94 0.029 0.0066 ND 0.0076 ND ND 0.0256 ND ND 0.035 18.14 101 

120 2.76 0.073 0.0226 ND 0.0261 ND ND 0.0655 ND ND 0.066 17.79 99 

180 2.83 0.115 0.0590 ND 0.0455 ND ND 0.0918 ND ND 0.076 18.86 105 

300 2.63 0.143 0.1121 ND 0.0416 ND ND 0.1084 ND ND 0.065 18.02 100 

600 2.23 0.366 0.3630 ND 0.1346 ND ND 0.0687 ND ND 0.056 17.68 98 

1200 2.01 0.807 0.6118 ND 0.2269 ND ND 0.0327 ND ND 0.044 19.80 110 
#

2400 1.16 1.853

(1.20) 
1.3067 ND 0.4846 0.012 ND 0.0218 ND 0.03* 0.074 23.93# #133

(20.00) (111)
3600 0.75 2.908#

(1 43)
1.6654 ND 0.6176 0.020 ND ND ND 0.03* 0.063 29.10#

(20 25)

162#

(112)
4800 0.48 1.311 1.7079 ND 0.6334 0.024 ND ND ND 0.02* ND 17.83 99 

6000 0.35 0.805 1.9726 ND 0.7316 0.031 ND 0.0023 ND 0.02* ND 15.18 84 

Ti
m

e 
po

in
ts

 (m
in

) 

7200 0.30 0.759 2.5020 ND 0.9279 0.052 ND ND ND 0.02* 0.027 16.89 94 
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*   For S7P, corresponding peak at 289.34 was detected after 40 min, but the peaks were very small. The values in the table are the ratios of 

height of S7P peaks to the height of internal standard peaks, corresponding concentrations were expected to be lower than 0.01 mM, and they 

were not included in the carbon calculation.  

 
#   Values in brackets were corrected using another calibration curve made with a higher F16BP concentration background.   
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Figure.3. Calibration curves determination by MALDI-TOF mass spectrometry. [U-13C6] G6P was used as internal standard at a 
fixed concentration whereas the concentration of the metabolite was varied. Peak heights of internal standard and each metabolite 
were calculated and the ratios of the internal standard to metabolite heights were determined. Calibration curves were constructed 
by plotting ratios against metabolite concentrations. ■: all 6 metabolite standards were measured in a mixture; ♦: all 6 metabolite 
standards were measured individually. Details of sample preparation are provided in Materials and Methods section. 
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Figure.4. Calibration curves used for metabolite quantification by MALDI-TOF mass spectrometry. The difference of the sample 
preparation is that each standard sample was mixed with a real experimental sample ■: all 6 metabolite standards were measured in 
a mixture; ♦: all 6 metabolite standards were measured individually. Inserts indicate individually measured standards at low 
concentration. 
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Figure.5. Stability comparison between in-vitro and in-situ conditions. Malic enzyme and G6PDH were then measured as described 

in Materials and methods section. 
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Many individual enzymes in glycolysis and the pentose-phosphate pathway in permeabilized 

cells have been proven active using established assays for activity measurement (Yuan and 

Heinzle 2009). It was already shown earlier that only a very small amount of proteins was 

released during permeabilization. In this study it was shown that only activities lower than 2% 

(0.001 mU/ml) were detected in the supernatant of the permeabilized cells for the tested malic 

enzyme and G6PDH. Furthermore, all of the major metabolites were detected during the 

kinetic experiments described here indicating that all of major enzymes were still inside the 

cells and active after permeabilization. It was shown earlier that the enzymes inside the cells 

are generally more stable than purified enzymes and can thus improve kinetic experiments 

(Ishii et al. 2007). Figure 5 depicts the comparison of the stability of two enzymes in-vitro and 

in-situ. After 48 h, malic enzyme and glucose 6-phosphate dehydrogenase lost their activities 

by 43% and 60% at in-vitro conditions. Both enzyme activities exhibited much more constant 

activities in-situ.  Kinetic experiments using enzymes in permeabilized cells lasted for several 

minutes to a less than two hours. Therefore, the inactivation can be ignored since activity loss 

was not observed during this period. The degradation of G6P was also tested by keeping it in 

buffer solution under the identical conditions for 4 hours. No significant conversion of G6P 

could be detected.  

 

For each experiment, the substrates and cofactors and their concentrations should be well 

selected and designed according to the purpose of the experiment. The selection of the 

substrate(s) depends on the network to be investigated. For networks producing non-

phosphorylated metabolites the MALDI quantification method should be modified 

considering internal standards and matrices.  ATP and ADP always could be detected by 

MALDI-TOF MS with peaks at 506.57 and 426.51, respectively. But they were not 

successfully quantified using the internal standard in this study so far. NADP(H) and NAD(H) 

could not even be detected reliably by MALDI-TOF MS, probably because of their limited 

stability. Some intermediates of the network, i.e. 13BPG, PYR, P5P, S7P and E4P were either 

detected at very low concentrations or were below the detection limits as specified in Table 2. 

This means that the rates of reactions consuming these metabolites were larger than or equal 

to those of the corresponding synthesizing reactions. 
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Figure.6. Time courses of 6 metabolite concentrations. Starting concentrations:  G6P 3 mM, ATP 0.5 mM, ADP 1.5 mM, NADP+ 2 
mM, NAD+ 2 mM, Mg2+ 5 mM. Corynebacterium glutamicum cell density was 200 mg/ml (wet weight). F16BP: □-calibration 
using sample mixture; ▲- calibration using individual samples both combined with standard addition.
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5.4 Conclusion 
 

A novel strategy for enzyme network kinetic study combining permeabilization technique and 

MALDI quantitative measurement is described here. Quantitative measurement of small 

molecular mass phosphorylated metabolites using MALDI-TOF MS was tested. [U-13C6] G6P 

was proven to be a useful internal standard for 13 metabolites. Signal suppression could be 

largely eliminated by the use of this internal standard making calibration curves in a 

background consisting of a mixture of all metabolites of interest (standard addition method). 

The standard addition method had to be modified for F16BP using every single sample having 

higher concentrations as background. Reliable calibration curves could be made in this way 

and applied to the quantification of metabolites. This quantification method is applicable for 

determination of enzyme activities of pentose-phosphate pathway and glycolysis of other 

organisms. 

 

Permeabilized cells were utilized as material for network kinetic studies, all enzymes were 

assumed to be at their in-situ conditions but accessible by substrates and metabolites, 

furthermore, these in-situ enzymes were more stable than those of purified enzymes.  After 

adding the selected substrates and cofactors, samples containing produced metabolites could 

be collected and analyzed. Enzymes could be simply removed to stop reactions by 

centrifugation separating cells from the supernatant. 12 metabolites, or metabolite groups were 

quantified based on the above developed MALDI quantification method and corresponding 

kinetics was obtained. Activites and kinetic interactions in both pathways could be understood 

in considerable depth.  
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Chapter 6 
Kinetic modeling of in-situ enzymatic system 

 

 

 

 

Abstract 
 

Continuing Chapter 5, six major metabolites in pentose phosphate pathway and glycolysis 

were quantified using the established MALDI-TOF MS method. A mathematical model based 

on elementary kinetic equations was constructed and applied to simulate these six major 

metabolites using Berkeley Madonna software. The results show that these simulated data 

match experimental data very well. The obtained network kinetic parameters can be used for 

further simulation study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

This part is under preparation as : Yuan Y, Heinzle E. 2010. Kinetic modeling of in-situ 

enzymatic system. 
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6.1 Introduction  
 

Kinetic reaction networks comprise a set of reactions. Modeling kinetics of a biological 

process has long been pursued to improve our understanding of the system. However, due to 

the complexity of biological systems, modeling and simulation of such a network are still 

limited (Resat et al. 2009). Generally the construction of a mathematical modeling comprises 

three steps: (1) participating metabolites identification by experimental measurement, (2) 

assignment of rate laws, and (3) parameter estimation (Drager et al. 2009). Traditionally, the 

parameter are obtained from in vitro conditions (Ishii et al. 2007), but such an artificial system 

can not represent the real conditions in a living cell, particularly considering crowding effects 

with multiple protein interactions effecting rates and control, e.g. channeling (Graham et al. 

2007b; Minton 2006; Shearer et al. 2005a; Zhou et al. 2008). Quantified dynamic of 

metabolites from in vivo conditions are ideal for the identification of metabolic network 

kinetic parameters, but this is limited by the difficulties of sampling and quantification. In the 

past, the perturbation method was normally utilized to carry out such a kinetic experiment 

(Hadlich et al. 2009; Theobald et al. 1997; Visser et al. 2004). In Chapter 5, a new strategy 

combining permeabilization and MALDI-TOF MS quantification method were established. 

The obtained experimental data of metabolites are tested in a kinetic model in this chapter.  
 

6.2 Kinetic network simplification 
Based on the six major metabolites quantified in Chapter 5, the investigated network is 

simplified as depicted in Figure 1. P5P represents metabolites with 5 carbons: RIB5P, XYL5P 

and RIBO5P are lumped together. Except the reaction between G6P and F6P, all the other 

reversible reactions were simplified to irreversible reactions, only net reaction rates were 

calculated to reduce the number of parameters in the model.  
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Figure 1.  Simplified pentose phosphate pathway and glycolysis network.   
 
 

6.3 Reactions in the network 
According to the network in Figure 1, all reactions involved in this simulation network are 

listed as following: 

 
G6P = F6P  

+ +G6P + NADP + H O = 6-P-Gluconate + NADPH+H   2
+ +6-P-Gluconate + NADP  = P5P + CO2 + NADPH+H    

2P5P =  S7P + GADP 
S7P + GADP = E4P + F6P  
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F6P + GADP = E4P + P5P  
ATP + F6P = ADP + F16BP  
F16BP = GADP + DAHP  
DAHP = GADP  

+GADP + NAD +Pi +ADP = 3PG + NADH+H+ + ATP 
2PG = PEP+H O  2

PEP + ADP = PYR + ATP  
 

6.4 Kinetic model formulation  
Since most enzyme kinetics resemble Michaelis-Menten kinetics and typical intracellular 

concentrations are in the lower range, a first order approximation is reasonably justified. For a 

general Michaelis-Menten formula, 

SK
SVr

m
m +

=                                                                     (1) 

Assume the intracellular concentrations are very low and S « Km, then the formula can be 

converted to:  

 

S
K
Vr

m

m=                                           (2) 

 

kSr =                                                                                   (3) 

 

For a generic elementary reaction: 

 

                                         mA + nB → C                               (4) 
 

The rate of this reaction is expressed as: 
 

                                                                  (5) 
nm BAkr ][][=

 

In this study, all rates were of first order with respect to each reaction. Then the formular can 

be transformed as following while m=1 and n=1: 

]][[ BAkr =                                                                       (6) 
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Based on the above assumption and formulation, the network shown in Figure 1 can be 

represented as the following set of ordinary differential equations: 

 

d[G6P]/dt =-V1-V  +V2 1r
 
d[6PG]/dt =V2-V3
 
d[F6P]/dt =V1-V1r -V +V7 6+V5
 
d[E4P]/dt =-V6+V5
 
d[S7P]/dt =-V +V5 4
 
d[P5P]/dt =-2*V +V4 3
 
d[F16BP]/dt =V7-V8
 
d[DHAP]/dt =2*V8+V -V + V6 9 4
 
d[3PG]/dt =V9-V10
 
d[PEP]/dt =V10-V11
 
d[ATP]/dt =-V7+V +V9 11
 
d[ADP]/dt =- d[ATP]/dt 
 
d[NADP]/dt =-2*V2
 
d[NADPH]/dt =- d[NADP]/dt 
 
d[NAD]/dt =-V9
 
d[NADH]/dt =- d[NAD]/dt 
 

DHAP represents the sum of DHAP and GADP. Simulations were performed using Berkeley 

Madonna (www.berkeleymadonna.com) which allows a parameter estimation using available 

integrators for stiff systems. Selection of initial guesses for the optimizer was critical to get 

optimization (Heinzle et al. 2007). All parameters (12 rate constants and 16 initial 

concentrations) were carefully assigned initial values. The experimental data of metabolite 
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concentrations were input into the software and all parameters were evaluated using the 

function of curve fit.  The detailed program is listed in Appendix.  
 

6.5 Results and conclusion 
A suitable format reduces the number of parameters and simplifies the algebraic treatment of 

models, several of these approximate kinetic formats, including Linear, Power law, Linlog and 

Generic formats, have been compared recently (Hadlich et al. 2009; Heijnen 2005). A big 

advantage of using permeabilized cells (in situ) for this kinetic experiment is that all enzymes 

are present and active while all intermediates were mostly washed away before starting the 

reactions, therefore the network can be activated from simple biochemical reactions by adding 

substrates and corresponding cofactors. Different from in vivo kinetic studies that need 

formulations more complex, reactions under in situ conditions can be described with simple 

linear kinetic formulations as well as make the number of parameters as less as possible. A 

mathematical modeling based on first order approximation was tested in this study. Besides 

the first order kinetics shown here, other more complex formulations were also applied, e.g. a 

Taylor series approximation. This, however, did not improve data fitting significantly despite 

the large number of parameters.  

 

Table 1. Estimated rate constants in equation (6).  

Reaction  Rate constant value 
V k1 3.40E-04 1
V1r  k1r 1.03E-14 
V k2 1.74E-04 2

k3 0.006728 V 3
V k4 21.9111 4
V k5 1.18E-04 5

k6 5.94E-09 V 6
V k7 0.09998 7
V k8 4.66E-04 8
V k9 1.23E-04 9
V k10 2.42E-04 10
V k11 0.003233 11

 

Using Berkeley Madonna, all 28 parameters in the model were fitted to the experimental data. 

The entire simulation running could be finished in 5 min. All estimated reaction constants are 

listed in Table 1. K1r is so small that it can be ignored, which means the flux from F6P to G6P 
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is very small during the experiment. K and K1 2 are two important parameters that, to some 

extent, represent fluxes to glycolysis and pentose phosphate pathway, respectively. K1 is about 

3 times larger than K 2 but both values are at the same order of magnitude. It can be drawn that 

G6P were simultaneously converted to both directions and the flux to glycolysis might be 

larger than that to pentose phosphate pathway. This agree with other former reports 

concerning fluxes calculation (Kim et al. 2006b; Yuan et al. 2010). K4 is the highest value 

among these parameters and much higher than others, therefore the converted P5P can be then 

converted to F6P and GADP in glycolysis.  

 

The simulated metabolite concentrations can fit the experimental data very well as shown in 

Figure 2. For G6P/F6P, DHAP/GADP, 3PG/2PG and PEP, the experimental data can be 

matched by the simulated data perfectly. G6P/F6P concentration decreased sharply in the first 

5000 s and then slowly down due to the network regulation by other productions. 

DHAP/GADP and PEP concentrations kept increasing sharply during the whole experiment. It 

indicates that the entire network is far from reaching a steady state in 7200 s. Another kinetic 

experiment with a long time could be necessary to describe the whole map from zero to the 

steady state. Simulated 3PG/2PG concentration decreased after 5400 s, but it could not be 

reflected from experimental data around that time point. The experimental data curve of 6PG 

has the same shape with the simulated ones, and both curves have top peaks at about 300 s. 

However, the simulated concentration values around this peak are lower than measured ones. 

This difference might be caused by the quantitative measurement error as discussed in Chapter 

5.  

 

As a preliminary study, a mathematical model for a in situ metabolic network of 

Corynebacterium glutamicum was established. All parameters in the model were estimated 

using Berkeley Madonna software with its curve fitting function. These simulated data can 

match experimental data very well applying the set of these parameters. All these obtained 

parameters, which represent the network enzymatic kinetic properties, can be applied for 

further simulations in the same conditions, e.g. for metabolic control analysis to identify the 

limiting steps. Furthermore, it can be deeply studied by the comparison of previous reports 

concerning single enzymatic kinetic properties (Jonges et al. 1992; Rizzi et al. 1997; Theobald 

et al. 1997). 

135 



Kinetic modeling of in-situ enzymatic system 

-1000 0 1000 2000 3000 4000 5000 6000 7000 8000

0.0

0.5

1.0

1.5

2.0

2.5

3.0
 Measured DHAP+GADP
 Simulated DHAP+GADP

C
on

ce
nt

ra
tio

n 
(m

M
)

Time (s)
-1000 0 1000 2000 3000 4000 5000 6000 7000 8000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 Measured G6P+F6P
 Simulated G6P+F6P

C
on

ce
nt

ra
tio

n 
(m

M
)

Time (s)

-1000 0 1000 2000 3000 4000 5000 6000 7000 8000

0.00

0.02

0.04

0.06

0.08

0.10

0.12

 Measured 6PG
 Simulated 6PG

C
on

ce
nt

ra
tio

n 
(m

M
)

Time (s)
-1000 0 1000 2000 3000 4000 5000 6000 7000 8000

0.0

0.2

0.4

0.6

0.8

1.0
 Measured 3PG+2PG
 Simulated 3PG+2PG

C
on

ce
nt

ra
tio

n 
(m

M
)

Time (s)

 

-1000 0 1000 2000 3000 4000 5000 6000 7000 8000
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
 Measured F16BP
 Simulated F16BP

C
on

ce
nt

ra
tio

n 
(m

M
)

Time (s)
-1000 0 1000 2000 3000 4000 5000 6000 7000 8000

0.00

0.01

0.02

0.03

0.04

0.05

0.06
 Measured PEP
 Simulated PEP

C
on

ce
nt

ra
tio

n 
(m

M
)

Time (s)

 
 
 
Figure 2. Metabolite concentrations simulated by the model compared with experimental 
data from kinetic experiments.   
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Appendix 
Berkeley Madonna Program for Intracellular Metabolite 
Concentration Simulation 
 
Berkeley Madonna program for simulation of metabolite concentration in glycolysis and 
pentose phosphate pathway 
 
METHOD RK4 
 
STARTTIME = 0 
STOPTIME=7200 
DT = 0.001 
 
#Initial concentration definition# 
 
INIT G6P=3; mM 
INIT F6P=0;  mM 
INIT P5P=0;  mM 
INIT S7P=0;  mM 
INIT ATP=0.5; mM 
INIT ADP=1.5; mM 
INIT NADP=2; mM 
INIT NAD=2;  mM 
INIT NADPH=0; mM 
INIT NADH=0; mM 
INIT F16BP=0; mM 
INIT PEP=0;  mM 
INIT DHAP=0; mM 
INIT C6PG=0; mM 
INIT C3PG=0; mM 
INIT E4P=0;  mM 
 
Rate constant pre-evaluation 
k1=1e-3;        Rate constant 
k1r=1e-3;       Rate constant 
k2=1e-3;        Rate constant 
k3=1e-3;        Rate constant 
k4=1e-3;        Rate constant 
k5=1e-3;        Rate constant 
k6=1e-3;        Rate constant 
k7=1e-3;        Rate constant 
k8=1e-3;        Rate constant 
k9=1e-3;        Rate constant 
k10=1e-3;      Rate constant 
k11=1e-3 ;     Rate constant 
 
Mass balance 
 
G6P'=-k2*G6P*NADP-k1*G6P+k1r*F6P 
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C6PG'=k2*G6P*NADP-k3*C6PG*NADP 

F6P'=k1*G6P-k1r*F6P-k7*F6P*ATP+k6*P5P*E4P+k5*S7P*DHAP 

E4P'=-k6*P5P*E4P+k5*S7P*DHAP 

S7P'=-k5*S7P*DHAP+k4*P5P^2 

P5P'=-2*k4*P5P^2+k3*C6PG*NADP 

F16BP'=k7*F6P*ATP-k8*F16BP 

DHAP'=+2*k8*FBP+k6*P5P*E4P-k9*NAD*DHAP*ADP+k4*P5P^2 

C3PG'=k9*NAD*DHAP*ADP-k10*C3PG 

PEP'=k10*C3PG-k11*PEP*ADP 

ATP'=-k7*F6P*ATP+k9*NAD*DHAP*ADP+k11*PEP*ADP 

ADP'=-ATP' 

NADP'=-k2*G6P*NADP-k2*G6P*NADP 

NADPH'=-NADP' 

NAD'=-k9*NAD*DHAP*ADP 

NADH'=-NAD' 

H6P=F6P+G6P 

 
 
limit G6P>=0 

limit F6P>=0 

limit P5P>=0 

limit S7P>=0 

limit ATP>=0 

limit ADP>=0 

limit NADP>=0 

limit NAD>=0 

limit NADPH>=0 

limit NADH>=0 

limit FBP>=0 

limit PEP>=0 

limit DHAP>=0 

limit C6PG>=0 

limit C3PG>=0 

limit E4P>=0 
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Chapter 7 
Concluding Remarks 

 
There is a large expectation that biotechnology particularly involving genetically 

engineered organisms will contribute to solve many of the problems of this word in food 

supply, supply of fuels and pharmaceuticals (Tyo et al. 2007). The complexity of organism 

metabolic systems makes it extremely difficult to understand them deeply and improve 

them (Bailey 1991). Metabolic engineering, which can provide useful tools for this study 

of metabolic network, plays an important role to improve these cellular properties for a 

further application in industry and biomedical field. The works in this thesis characterizes 

metabolic network activity by describing two novel strategies for in-vivo metabolic flux 

analysis and in-situ enzymatic network kinetic study. However, many other efforts subject 

to above two strategies, both in experimental and kinetic modeling aspects, need to be 

further investigated in the future.  

 

Application of GC-C-IRMS for metabolic flux analysis at large 

scale 
GC-C-IRMS allows only the average carbon labeling but not mass isotopomer distribution 

for each analyte. Therefore, fluxes of reversible reactions cannot be determined. 

Consequently, only the net fluxes were determined using GC-C-IRMS data in this study. 

This limitation can be overcomed, e.g., by a parallel experimental design using more tracer 

substrates with different positional labeling to increase information content, similar to 

reports (Yang et al. 2006d; Yang et al. 2006e) which measured labeling in produced CO2. 

Proteinogenic amino acids have been employed for metabolic fluxes determination at 

steady state owing to their high stability and high concentration in cells (Wittmann 2007). 

The analysis of other intracellular metabolites, e.g. F16BP and DHAP in PPP and 

glycolysis, is also promising for obtaining more labeling information content. However, 

the measurements of the intermediates were limited by their low concentrations in samples 

obtained from cell extracts. These are close to or below detection limits. Additionally, 

quenching of reactions is offen difficult. This problem might be eliminated by using GC-

C-IRMS measurement because of the high precision of labeling measurements and ability 

for application in large-scale fermentations. A relative large scale tracer fermentation can 

be carried out and followed by a quenching sampling step. Partial leakage of metabolites 
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from frozen cells can be ignored because the absolute amounts of these metabolites are not 

taken into account in this case but only their degree of labeling. Intracellular metabolites in 

the sample will be later concentrated to required concentration levels. For IRMS analysis, 

there are two possibilities: (i) develop derivatization methods for these metabolites and 

then later measure isotope enrichment by GC-C-IRMS. (ii)  measure directly by LC-IRMS 

which was started in 1990’s (Godin et al. 2007c). The finally obtained labeling enrichment 

of each metabolite can be then introduced into flux estimation program.  

 

Permeabilization of microorganism (In-situ)  
Several chemicals were tested in this work and Triton X-100 was found best for the 

permeabilization of Corynebacterium glutamicum, E.coli (tested by Weyler Christian in 

his diploma work) and mammalian CHO cell (tested by Melnyk Armin in his diploma 

work). Enzymes of interest after permeabilization are still kept inside the bacteria cells, but 

leak out of mammalian cells. Microscope pictures of the permeabilized mammalian cells 

indicate that cells still keep their spherical shape, but the created pores in cell membranes 

are too large to retain enzymes. Enzyme activities can be still measured directly from the 

permeabilized mammalian cells suspension. However, it is hard to make a kinetic 

experiment in these permeabilized mammalian cells due to the impossibility to wash away 

originally present low molecular mass metabolites. The treatment with lower concentration 

of chemicals have been shown not useful. Another possibility to control the degree of 

permeabilization is to treat cells with electric pulse which recently has been successfully 

applied on Corynebacterium glutamicum (Tryfona and Bustard 2008b). This physical 

method might be controllable to permeabilized mammalian cells and later applied for 

metabolic network kinetic studies.   

 

MALDI-TOF MS quantification of intracellular metabolites 
A new approach for quantitative measurement of intracellular metabolites with MALDI-

TOF MS was established in this study. Compared to conventional methods, e.g., enzymatic 

assay and LC-MS method, it is a simple, rapid and permits the analysis of a large number 

of samples in short time, hence, it is very suitable for analyzing samples from kinetic 

experiments. 9-aminoacridine has been proven in this study as a useful matrix for low 

molecular mass metabolites of PPP and glycolysis. However, the peaks of 9AA matrix 

itself and its derivatives are at a range of 50-400 m/z, which is also the region of the 

spectrum for most of intracellular metabolites. Although peaks of matrix can be 
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successfully separated from peaks of metabolites owing to the high resolution of the 

MALDI spectrum (a difference smaller than 0.02 can be well separated), a better matrix 

with much less or no noisy peaks is highly desirable. One possible matrix called DMAN 

(1,8-bis(dimethylamino)naphthalene) has been investigated as matrix for metabolites in 

negative mode (Rohit and Alescaron 2009; Shroff et al. 2009) and no noisy peaks were 

found in the low mass spectra area. Besides the matrix, internal standard is critical for 

quantification of metabolites by MALDI. It can compensate the competitive ionizatioin / 

ion suppression and improve the shot-to-shot reproducibility as well. [U-13C] glucose-6-

phosphate was proven a good internal standard for the metabolites, which not only contain 

phosphate group(s) but also have masses similar to the internal standard. Compared to the 

large number of metabolites in a living cells, only a small part of them can be quantified 

with this developed method, unfortunately, some very important cofactors such as ATP, 

ADP, NADP, NAD, are not included. For a deep understanding of the whole network it 

could be necessary to quantify as many metabolites and cofactors as possible. An 

isotopomer of each analyte would be the ideal internal standard. [U-13C] aspartate was also 

investigated as internal standard and proven applicable for metabolites in TCA cycle and 

methionine biosynthetic pathway. By the combination of different internal standard, the 

quantifiable metabolites can be largely expanded. On the other hand, these internal 

standards should not be limited only to stable labeled isotopomers, some other natural 

labeled compounds were also proven applicable for some groups of metabolites (Mims and 

Hercules 2003; Mims and Hercules 2004). Unlike chemically synthesized stable labeled 

isotopomer, which are difficult to obtain, natural compounds are more reachable. 

Therefore, it is promising to explore some new internal standards, which can greatly 

benefit MALDI-TOF MS quantification.  
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Summary of this thesis 
 

The works in this thesis consist of two parts, Chapter 2 and Chapter 3 focus on developing 

a novel strategy for in-vivo metabolic flux analysis using GC-C-IRMS, Chapter 4, Chapter 

5 and Chapter 6 focus on in-situ enzymatic network kinetic study. 

 

Chapter 2 shows a GC-C-IRMS based analysis that allows the detection of low enrichment 

of 13C in proteinogenic amino acids owing to its high reliability and precision. Significant 

kinetic isotope effects in metabolic flux studies at low degree of labeling were found but 

can be corrected by using two parallel experiments applying substrate with natural 

abundance and 13C enriched tracer substrate, respectively. The fractional enrichment 

obtained in natural substrate is subtracted from that of the enriched one. The new approach 

provides a strong basis for 13C metabolic flux analysis using a low degree of labeling, e.g., 

an application of about 0.5 % [1-13C] glucose in the cultivation of Corynebacterium 

glutamicum. Compared to conventional GC-MS method, the new method allows detecting 

enrichments that are 200-300 times lower without affecting the high precision. Therefore, 

the amount of expensive tracer substrate can be dramatically decreased. The developed 

methodology provides the possibility to reliably study metabolic fluxes of industrially 

relevant organisms directly at larger scale that is normally very empirical and hard to be 

extrapolated to other scales. Except various amino acids, other important carbohydrates 

can be analyzed employing different derivatization procedures and respective gas 

chromatography parameters. In addition, this technique can be potentially applied in fed-

batch fermentations.  

 

Chapter 3 introduces a novel strategy to estimate metabolic fluxes using GC-C-IRMS at 

low degree of labeling. Four different low labeling fractions in [1-13C] labeled and non-

labeled glucose mixture from 0.5 to 10% were employed for the estimation of fluxes in the 

central metabolism of C. glutamicum. The reliability of the final results was found to 

greatly depend on the reproducibility of experimental procedure and measurement 

accuracy. Parallel experiments using conventional GC-MS method applying 99% [1-13C] 

glucose were carried out at the same time. The results are very similar to these from GC-C-

IRMS. The flux values obtained from the labeling measurements using GC-C-IRMS were 

found to be also well consistent with a previous report using the GC-MS method under the 

same condition (Kim et al. 2006a).  
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The method described in Chapter 2 and Chapter 3 is promising for the investigation of 

metabolic fluxes in industrially relevant organisms on larger scales. It promises also 

potential to be successfully applied for dynamic metabolic flux analysis to determine very 

initial changes after a carbon-isotope perturbation of previously naturally labeled substrate 

and for the protein synthesis investigation using isotope tracers.  

 

Chapter 4 describes NAD(P)H-dependent intracellular enzyme assays in permeabilized 

cell suspension. Several variables such as agent type, cell density, agent concentration and 

the incubation condition were optimized for the permeabilization of C. glutamicum. Triton 

X-100 was found the most suitable agent for this procedure, and the optimized 

permeabilization condition in C. glutamicum obtained were CDW concentration of 10 

mg/ml and treatment with 0.05 % Triton X-100 at room temperature for only 5 minutes. 

TE was also found a good candidate but needed a concentration of 10 % and a much 

longer incubation time of more than 40 min to obtain the highest enzyme activity. Kinetic 

parameters of several enzymes, including the dehydrogenases G6PDH, 6PGDH and ME, 

PGI were determined in permeabilized cells. As conclusion, permeabilization, so called in-

situ condition, is a rapid, simple and mild technique and provides intracellular enzymes 

whose properties are assumed to be more similar to those of in-vivo conditions.  

 

In Chapter 5 a novel strategy for enzyme network kinetic study combining 

permeabilization technique and MALDI-TOF MS quantitative measurement is developed. 

A reliable quantitative measurement of 13 low molecular mass phosphorylated metabolites 

was successfully done using MALDI-TOF MS analysis and [U-13C6] G6P as internal 

standard. Signal suppression exists during MALDI ionization but could be largely 

compensated by the use of this internal standard. This quantification method is also 

applicable for determination of enzyme activities or the entries to pentose-phosphate 

pathway and glycolysis of other organisms. 

 

Permeabilization was introduced in details in Chapter 4. All enzymes of interest in 

permeabilized cells are assumed to be at their in-situ conditions but reachable, furthermore, 

these in-situ enzymes were more stable than those of in-vitro purified enzymes were. This 

specialty of the permeabilized cell makes it a good material for network kinetic studies. No 

inactivation needed to be considered in experiment owing to its good stability. The adding 
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of designed substrates and cofactors into permeabilized cell suspension starts reactions and 

the samples were collected subsequently. It is a big advantage that no quenching step is 

needed in this approach, and all reactions can be stopped by the isolation of enzymes from 

suspension by a simple centrifugation since all the metabolites of interest are contained in 

the supernatant but not inside the cells. Metabolites in samples are then quantified by the 

developed MALDI quantification method and kinetics curves can be drawn subsequently. 

In Chapter 6, kinetics of six metabolite were drawn and simulated using developed 

quantification method and constructed mathematical model.  
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