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Abstract 

 

Inflammatory actions in the pathophysiology of atherosclerosis are characterized by 

an activation of the endothelium as well as an increased expression of Toll-like 

receptor (TLR) 2. Aim of this work was to decipher the roles of glucocorticoid-induced 

leucine zipper (GILZ) and p38 mitogen-activated protein kinase (MAPK) in 

endothelial TLR expression. A pronounced constitutive expression of the anti-

inflammatory mediator GILZ was found in human umbilical vein endothelial cells 

(HUVEC), which was downregulated under inflammatory conditions. This GILZ 

downregulation paralleled by TLR2 upregulation was confirmed in human 

atherosclerotic vessels. Mechanistic examinations showed that GILZ decay led to a 

nuclear translocation and activation of the transcription factor NF-қB resulting in 

upregulation of TLR2 expression. Pharmacological inhibition of p38 MAPK as well as 

overexpression of dominant negative p38α MAPK showed a positive involvement of 

p38 MAPK in inflammatory TLR2 expression. This p38 MAPK-mediated action, 

however, was independent of GILZ. Taken together, this work provides evidence for 

a role of GILZ and p38 MAPK in the regulation of inflammatory TLR expression in 

human endothelial cells and provides insides for a better understanding of 

inflammatory actions in atherosclerosis.  

 

 

Die Pathophysiologie der chronisch entzündlichen Erkrankung Arteriosklerose ist 

durch eine Aktivierung des Endothels sowie durch eine erhöhte Expression des Toll-

like Rezeptors (TLR) 2 charakterisiert. Ziel dieser Arbeit war, eine mögliche 

Beteiligung des Glucocorticoid-induzierten Leucin Zippers (GILZ) sowie der p38 

Mitogen-aktivierten Proteinkinase (MAPK) bezüglich der Regulation der 

endothelialen TLR Expression zu untersuchen. In Endothelzellen, isoliert aus 

humanen Nabelschnurvenen (human umbilical vein endothelial cells, HUVEC), 

wurde eine konstitutive Expression des anti-inflammatorischen Mediators GILZ 

nachgewiesen, die durch inflammatorischen Stimulus erniedrigt wurde. Diese 

verringerte GILZ Expression bei gleichzeitiger Induktion von TLR2 konnte in 

humanen arteriosklerotischen Gefäßen bestätigt werden. Mechanistische 

Untersuchungen zeigten, dass die Abwesenheit von GILZ zu einer nukleären 
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Translokation sowie zu einer Aktivierung des Transkriptionsfaktors NF-қB führt, die 

wiederum eine Erhöhung der TLR2 Expression zur Folge hat. Für p38 MAPK wurde 

durch pharmakologische Inhibierung sowie Überexpression dominant negativer p38α 

MAPK ebenfalls eine Beteiligung an der Expression von TLR2 gezeigt, die zudem 

unabhängig von GILZ war. Zusammenfassend zeigt diese Arbeit, dass sowohl GILZ 

als auch p38 MAPK eine Rolle in der Expression von TLR2 humanen Endothelzellen 

spielen und trägt daher zu einem besseren Verständnis der entzündlichen Prozesse 

in der Arteriosklerose bei. 
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1. Introduction 
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1.1 Atherosclerosis 

1.1.1 Overview 

Atherosclerosis is an inflammatory cardiovascular disease, which can lead to 

myocardial infarctions or strokes. To date, cardiovascular diseases are the main 

cause of morbidity and death in the Western world (Klingenberg & Hansson, 2009). 

Atherosclerosis is known to be a complex alteration of medium and large size 

arteries, which is characterized by endothelial dysfunction and accumulation of lipids 

and inflammatory cells in the vascular wall (Roy et al., 2009). Herein, the 

inflammatory activation of endothelial cells plays a central role (Erridge, 2008). 

Identified risk factors are environmental factors, such as Western high-fat diet, 

smoking and lack of exercise, but also factors with a genetic component, such as 

elevated levels of low-density lipoproteins (LDL), elevated blood pressure, diabetes, 

or obesity (Lusis, 2000). 

 

1.1.2 Constitution of vessels 

The inner cell layer in all vessels is represented by endothelial cells forming a semi-

permeable barrier. Medium and large size arterial vessels are in general composed 

of further three layers: tunica intima, tunica media, and tunica adventitia (dela Paz & 

D'Amore, 2009). The first layer, the tunica intima, is formed by connective tissue. The 

tunica media as the second layer consists of smooth muscle cells and connective 

tissue. The third layer, the tunica adventitia, is formed by connective tissue again. In 

contrast to veins, arteries exhibit two additional laminae: one between tunica interna 

and media, which is termed internal elastic lamina, and another one between tunica 

media and tunica adventitia, which is termed external elastic lamina.  

 

1.1.3 Development of atherosclerotic lesions 

The activation of arterial endothelial cells probably via oxidized low density 

lipoproteins (LDL) is suggested as on of the first steps of an atherosclerotic plaque 

development (Hansson, 2009). This endothelial activation leads to the expression of 

adhesions molecules, chemokines and cytokines, which results in recruitment of 

monocytes and to a lesser extent T-cells and their transmigration into the 
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subendothelial intima (Erridge, 2009; Bevilacqua, 1993) (Figure 1). The monocytes 

differentiate into macrophages, which take up lipids and cholesterol and become 

foam cells (Ross, 1993). These foam cells are less able than monocytes or 

macrophages to move away from the intima. The lesion stage, at which no plaque 

extends into the vessel wall yet, is termed fatty streak. Over many years, more and 

more monocytes are recruited, which also become foam cells. Because of their high 

lipid uptake, they become necrotic and leave crystalline cholesterol and cell debris. In 

this fashion, the plaque increases and extends into the vessel wall. Smooth muscle 

cells migrate into the intima and form a protective cap over the lesion (Ross, 1993). 

At this stage, the plaque is also stabilized by emplacement of collagen and calcium. 

By that the plaque can keep on growing, which either leads to stenosis or clinical 

silenence for many years. A further inflammatory event can rupture a vulnerable 

plaque, which results in formation of a thrombus. This thrombus, in turn, causes 

myocardial infarctions or strokes (Hansson, 2005). 

 

 

 

Figure 1: Development of an atherosclerotic plaque. Adapted from Erridge, 2009.   
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1.2 Toll-like receptors 

1.2.1 History 

The protein Toll was first described in 1984 as an essential receptor controlling the 

dorso-ventral polarization in Drosophila melanogaster during embryogenesis 

(Anderson & Nüsslein-Volhard, 1984). Twelve years later, it was found that the Toll 

receptor also functions in immune responses of the fruit fly (Lemaitre et al., 1996). In 

1997, a human homologue of the Drosophila Toll protein was identified and termed 

Toll-like receptor (Medzhitov et al., 1997). Actually, ten human and thirteen mouse 

TLRs have as yet been identified, which recognize a broad spectrum of ligands 

(Lundberg & Hansson, 2010). TLRs are extra- and intracellularly expressed in e.g. 

macrophages, dendritic, epithelial, and endothelial cells. These pattern recognition 

receptors represent an important system, which alerts the host to numerous 

pathogens and regulate the activation of both innate and adaptive immunity.  

 

1.2.2 Ligands  

As shown in Figure 2, human TLRs recognize a broad spectrum of pathogen-

associated molecular patterns (PAMPs), which are characteristic for bacterial and 

viral pathogens as well as for fungi and protozoa (den Dekker et al., 2010). While 

TLRs 1, 2, 4, 5, 6 and 10 are located in the outer cell membrane, TLRs 3, 7, 8, 9 

function in membranes of endosomal compartments. All TLRs operate as 

homodimers except for TLR2, which also forms heterodimeric complexes with TLR1 

or TLR6 (Lundberg & Hansson, 2010; Kawai & Akira, 2006).  
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Figure 2: Overview about TLR localisation and ligands. Abbreviations: ds=double stranded, 
LPS=lipopolysaccharide, ss=single stranded, TLR=toll like receptor. 

 

 

TLRs 1, 2 and 6 

In co-operation with TLR1, TLR2 recognizes triacylated bacterial lipoproteins from 

Gram-negative bacteria or mycobacteria, as well as the synthetic compound 

Pam3CSK4. In co-operation with TLR6 diacyl-lipopeptides from Gram-positive 

bacteria, zymosan from yeast or diacylated mycoplasmal lipopeptides, termed 

macrophage-activating lipopeptide 2 kDa (MALP-2), are recognized by TLR2 

(Lundberg & Hansson, 2010; Kawai & Akira, 2006; Takeuchi et al., 2002). These 

TLR2 heterodimerisations allow the recognition of the largest number of pathogen 

structures compared to other TLRs, but do not necessarily lead to a different 

intracellular signalling (Farhat et al., 2007). TLR2 heterodimers already exist before 

they recognize ligands, which is in contrast to the ligand-induced heterotypic 

assembling of TLR2/TLR6 with the scavenger receptor CD36 (Triantafilou et al., 

2006). Additionally, a homodimerisation of TLR2 for recognition of lipoteichoic acid 
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(LTA) has also been described (Beutler, 2004). Because of its large spectrum of 

ligands, TLR2 plays an especially important role in the defence of pathogens. 

 

TLR4 

TLR4 is the receptor for lipopolysaccharide (LPS) from Gram-negative bacteria, but 

also for other bacterial toxins or viral structures (Lundberg & Hansson, 2010; 

Björkbacka, 2006). Recently, it has been demonstrated that TLR4 can be part of a 

heterotrimeric complex containing TLR4, TLR6 and CD36, when oxidized LDL and 

amyloid-β peptide derived from the proteolytic cleavage of the amyloid precursor 

protein are recognized by CD36 (Stewart et al., 2010). Besides the recognition of 

exogenous ligands, TLR4 as well as TLR2 are also suggested to recognize 

endogenous ligands, which can be found at sites of inflammation, such as stress-

inducible heat shock proteins or components of the extracellular matrix (Lundberg & 

Hansson, 2010). 

 

TLRs 3, 5, 7, 8, 9 and 10 

In contrast to TLR2 and TLR4, all other TLRs recognize only one type of pathogen 

structure. Ligand for TLR3 is viral double-stranded RNA (dsRNA) and for TLR7 as 

well as TLR8 viral single-stranded RNA (ssRNA). Bacterial flagellin is recognized by 

TLR5, while hypomethylated CpG motifs of microbial DNA are ligands for TLR9 

(Lundberg & Hansson, 2010). For TLR10 no ligand has as yet been identified.  

 

1.2.3 TLR signalling 

The recognition and binding of ligands triggers a signal transduction finally leading to 

an inflammatory reaction including expression of inflammatory cytokines, such as 

tumor necrosis factor α (TNF-α), interleukins (IL) and interferons (IFN). TLRs 

represent type 1 transmembrane receptors. The extracellular part consists of leucine 

rich repeats (LRR), which are responsible for the pattern recognition. In contrast, the 

intracellular part exhibits a Toll/IL-1 receptor (TIR) signalling domain, which is 

required for the recruitment of adaptor proteins also containing a TIR domain 

(Beutler, 2004). The key mediator in TLR-signalling is an adapter molecule termed 

myeloid differentiation factor 88 (MyD88). TLR signal transduction can be 

distinguished between MyD88-dependent and -independent. As shown in Figure 3, 
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all TLRs with the exception of TLR3 share MyD88-dependent signalling, while TLR4 

can also signal MyD88-independent (Mitchell et al., 2007; Kawai & Akira, 2006).  

 

 

 

Figure 3: Overview about MyD88-dependent and -independent TLR-signalling. Modified after 
Jenkins & Mansell, 2010. Abbreviations: IFN=interferon, IқB=inhibitory protein kappa B, IKK= 
inhibitor kappa B kinase, IRAK=interleukin 1 receptor associated kinase, IRF=interferon-
regulatory factor, Mal=MyD88-adapter-like, MyD88=myeloid differentiation factor 88, 
MD-2=myeloid differentiation factor, NF-қB=nuclear factor kappa B, RIP=receptor-interacting 
protein, SRAM=sterile alpha and Toll/interleukin 1 receptor motif containing, TAK=transforming 
growth factor-beta activated kinase, TBK=TRAF family member-associated NF-қB activator 
binding kinase, TLR=toll-like receptor, TRAF=tumor necrosis factor associated receptor, 
TRAM=TRIF-related adapter protein, TRIF=Toll/interleukin 1 receptor domain-containing 
adapter inducing IFN-β. 

 

 

MyD88-dependent signalling 

As shown in Figure 3, TLRs 5, 7, 8 and 9 associate directly with MyD88, while in 

TLR2 and TLR4 signalling MyD88-adapter-like (Mal, also known as Toll/IL-1 domain-

containing adaptor protein (TIRAP)) is necessary for MyD88 recruitment. Through 

binding to MyD88, members of the IL-1 receptor associated kinase (IRAK) family are 

recruited. IRAK1 is phosphorylated by IRAK4 and associates subsequently with 
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tumor necrosis factor receptor associated factor 6 (TRAF6). TRAF6 is ubiquitinylated 

by itself, which results in the activation of the inhibitor қB kinase (IKK) complex 

consisting of the IKKs α, β and γ. This leads to the phosphorylation and ubiquitin-

mediated degradation of the NF-қB inhibitor IқB, and NF-қB can translocate into the 

nucleus and induce inflammatory gene expression. Once activated, TRAF6 can also 

activate a transcription factor termed interferon-regulatory factor 5 (IRF-5), which also 

induces inflammatory gene expression (Jenkins & Mansell, 2010).  

Besides this signalling cascade, the mitogen activated protein kinase (MAPK) 

cascades can be induced by transforming growth factor (TGF)-beta activated kinase 

1 (TAK1), which in turn is activated by TRAF6. Phosphorylation of p38 MAPK and 

c-Jun NH2-terminal kinase (JNK) via TAK1 leads to the activation of the transcription 

factor activator protein 1 (AP-1) and inflammatory gene expression (Hong-Geller et 

al., 2008; Kawai & Akira, 2006). 

In plasmacytoid dendritic cells, TLRs 7, 8 and 9 signalling has been described to 

activate IRF-7 downstream to TRAF6 leading to IRF-7 nuclear translocation and 

expression of IFN-γ (Jenkins & Mansell, 2010). 

 

MyD88-independent signalling 

MyD88-independent signalling shares the TIR domain-containing adapter inducing 

IFN-β (TRIF) (Figure 3). In contrast to TLR3 signalling, TLR4 signalling additionally 

needs the TRIF-related adapter protein (TRAM) as well as the association of TLR4 

with the myeloid differentiation protein 2 (MD-2). After ligand recognition, two 

different TRIF-dependent pathways are known. One pathway leads to TRIF/TRAF6 

and/or TRIF/receptor-interacting protein 1 (RIP1) interaction, which results in the 

activation and nuclear translocation of NF-қB via the IKK complex. In addition, 

TRIF/TRAF6 can further activate IRF-5. The second pathway activates the TRAF 

family member-associated NF-қB activator (TANK)-binding kinase 1 (TBK1), which 

interacts with IKK-i. This kinase phosphorylates the transcription factor IRF-3 leading 

to nuclear translocation and activation of IFN-β transcription (Jenkins & Mansell, 

2010).  

A negative regulation of TLR3 signalling is facilitated by the adapter molecule sterile 

alpha and TIR motif containing (SARM) via inhibition of TRIF (Jenkins & Mansell, 

2010).  
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1.3 TLRs and atherosclerosis 

TLRs seem to play an important role in the development of atherosclerosis (Erridge, 

2008; Björkbacka, 2006; Michelsen & Arditi, 2006). Mainly TLR2 and TLR4 are 

overexpressed in human atherosclerotic lesions of carotid arteries when compared to 

normal internal mammary arteries (Edfeldt et al., 2002). This TLR overexpression 

was prevalently observed in endothelial cells and macrophages. In addition, TLR2 

and TLR4 overexpression was correlated with nuclear translocation of the NF-қB 

subunit p65 in the same cells. These results were confirmed by mouse models 

showing that deletion of TLR2 led to a diminished progression of atherosclerotic 

lesions (Madan & Amar, 2008; Tobias & Curtiss, 2008; Liu et al., 2008; Mullick et al., 

2005), while blood concentrations of the inflammation marker monocyte 

chemoattractant protein 1 (MCP-1) were diminished (Liu et al., 2008). Similarly, 

deletion of MyD88, which is necessary for TLR2 signalling, and deletion of TLR4 led 

to diminished atherosclerosis (Björkbacka et al., 2004; Michelsen et al., 2004). 

Inversely, stimulation with the TLR2 ligand Pam3CSK4 increased the development of 

atherosclerotic lesions (Schoneveld et al., 2005; Mullick et al., 2005).  

As described above, the development of atherosclerosis is dependent on endothelial 

activation. In mouse models, the absence of TLR2 in both non-bone marrow cells 

(vascular cells) and bone marrow cells (non-vascular cells) has been observed to 

contribute to lesion progression (Mullick et al., 2005).  

 

 

1.4 Importance of the endothelium in inflammatory actions 

Under physiological conditions the endothelium exerts many important functions, 

which are pivotal for biological homeostasis (Sima et al., 2009; Aird, 2007). Besides 

functions in vascular tone regulation, endothelial cells are involved in anti-

inflammatory as well as in anti-coagulative actions. Herein, the expression of surface 

molecules is limited at a minimum to allow an unobstructed blood flow. Due to its 

direct contact to the blood, the endothelium represents an important target for 

numerous inflammatory stimuli and is therefore involved in defence mechanisms. As 

mentioned above, recognition of pathogens by TLRs leads to a signal cascade 

inducing the expression of pro-inflammatory cytokines, such as TNF-α, IL-1β and 
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IFN-γ as well as of other inflammatory mediators (Beutler, 2004). This endothelial cell 

activation leads to an increased permeability of the endothelium, which allows 

subendothelial migration of leukocytes.  

The endothelium is also involved in the regulation of cholesterol and lipid 

homeostasis. Under pathophysiological conditions, such as hyperlipidaemia and 

hyperglycemia, alterations of endothelial functions precede the development of 

atherosclerotic lesions and manifestation of this inflammatory disease (Sima et al., 

2009). 

 

 

1.5 Tumor necrosis factor α (TNF-α) 

1.5.1 Overview 

Tumor necrosis factor α (TNF-α) is a potent cytokine expressed mainly by 

macrophages and monocytes, but also by lymphocytes, fibroblasts, keratinocytes, 

endothelial and neuronal cells (Wajant et al., 2003; Baud & Karin, 2001). It belongs to 

a family of peptide mediators consisting of 19 cytokines, such as CD40 or Fas ligand. 

TNF-α has been characterized to be produced after cell stimulation by pathogen 

recognition or other inflammatory signals and to exert a large spectrum of 

bioactivities. Thus, TNF-α influences innate and adaptive immunity, cell proliferation 

and apoptosis in different cell types such as endothelial cells, monocytes, and 

smooth muscle cells (Pugin et al., 1995; Heller & Kronke, 1994; Popa et al., 2007). 

 

1.5.2 TNF-α signalling 

There are two structurally distinct receptors responsible for the biological activities of 

TNF-α: TNFR1 and TNFR2. With exception of erythrocytes, all cell types carry these 

receptors in their membrane (Popa et al., 2007). Binding of TNF-α to TNFR1 results 

in TNFR1 association with the TNF receptor-associated death domain protein 

(TRADD). This binding can either result in apoptotic signalling via the Fas-associated 

death domain (FADD) or in pro-inflammatory signalling via TRAF2 and RIP, which 

finally leads to an activation of the transcription factors AP-1 and NF-κB (Popa et al., 

2007; Aggarwal, 2003; Karin et al., 1997; Barnes & Karin, 1997). In contrast, TNFR2 

is only involved in pro-inflammatory actions via TRAF2 (Popa et al., 2007). It has 
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been supposed, however, that crosstalk of both receptors is important for complete 

cell response after TNF-α stimulation (Aggarwal, 2003).  

 

1.5.3 TNF-α in atherosclerosis 

The production and secretion of TNF-α by activated monocytes and macrophages 

represents an early event in the development of atherosclerosis, which in turn leads 

to the activation of endothelial cells. Activated endothelial cells also express TNF-α 

resulting in the amplification of inflammatory actions. The plasma levels of TNF-α are 

associated with the degree of early atherosclerosis (Skoog et al., 2002). Therefore, 

the blockade of TNF-α has been discussed as an emerging therapy for the treatment 

of atherosclerosis (Klingenberg & Hansson, 2009). This discussion is supported by 

findings that blockade of TNF-α by monoclonal antibodies led to increased high 

density lipoprotein (HDL) plasma concentrations, while atherogenic indices were 

decreased (Popa et al., 2007). 

 

 

1.6 Glucocorticoid-induced leucine zipper (GILZ) 

1.6.1 Overview 

The glucocorticoid–induced leucine zipper (GILZ, synonymous TSC22D3) was first 

described in 1997 as an anti-inflammatory protein inducible by glucocorticoids 

(D'Adamio et al., 1997). The human GILZ gene encodes a 135 amino acids (aa) 

protein with a molecular weight of 15 kDa (Cannarile et al., 2001). Because of its 

heptad repeat of leucine residues in the central leucine zipper (LZ) domain (aa 76-

97), GILZ belongs to the leucine zipper family (Landschulz et al., 1988; Alber, 1992). 

The repeats are necessary to promote homodimerisation of GILZ proteins, by which 

GILZ becomes functionally active (Figure 4). The N-terminal domain (NTD, aa 1-75) 

exhibits no obvious DNA-binding sequence, which is in contrast to other leucin zipper 

family members (Busch & Sassone-Corsi, 1990; Vinson et al., 1989). The C-terminal 

domain (aa 98-137) offers a region rich in proline (P) and glutamic acid (E; PER). 

Other GILZ isoforms have been found in murine cells and rat tissues (Bruscoli et al., 

2010; Soundararajan et al., 2007). However, the existence of GILZ isoforms has as 

yet not been confirmed in human tissues. 
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Figure 4: Correlation of GILZ protein sequence and GILZ protein dimerisation. Adapted from Di 
Marco et al., 2007. Abbreviations: NTD=N-terminal domain, LZ=leucine zipper, PER=proline (P) 
and glutamic acid (E) region. 

 

 

1.6.2 GILZ in inflammation 

Expression of GILZ has been described in different cell types, such as in human 

macrophages, T-cells, dendritic cells, mast cells, and human airway epithelial cells 

(Ayroldi & Riccardi, 2009). However, there are no data for basal expression in 

endothelial cells as yet. As mentioned above, GILZ induction by glucocorticoids leads 

to its binding to and inhibition of the transcription factor NF-қB, which subsequently 

results in a diminished transcription of cytokines (Ayroldi & Riccardi, 2009; Di Marco 

et al., 2007). The GILZ homodimer additionally interferes with the AP-1 components 

c-Jun and c-Fos and prevents their binding to DNA (Mittelstadt & Ashwell, 2001). 

GILZ mRNA as well as protein levels are attenuated by cytokines in cultured 

epithelial cells (Eddleston et al., 2007). This is confirmed by findings that GILZ is 

downregulated or even absent in inflammatory diseases, such as chronic 

rhinosinusitis, Crohn disease, or tuberculosis (Zhang et al., 2009; Berrebi et al., 

2003). 
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1.7 p38 mitogen-activated protein kinase (p38 MAPK) 

1.7.1 Overview 

The p38 mitogen-activated protein kinase (p38 MAPK) is a member of the MAPK 

family and exhibits a molecular weight of 38 kDa. MAPKs are expressed in most 

tissues and are involved in cell proliferation, differentiation, and apoptosis. Four 

isoforms of p38 MAPK have been identified, which partially exhibit different functions 

(Zhou et al., 2008; Pramanik et al., 2003): p38α (also known as SAPK2a, RK, 

CSBPs, Mxi2, Mpk2) (Lee et al., 1994), p38β (SAPK2b) (Jiang et al., 1996; Stein et 

al., 1997), p38γ (SAPK3) (Li et al., 1996) and p38δ (SAPK4) (Jiang et al., 1997; 

Wang et al., 1997). The expression levels of the single isoforms are different in 

monocytes, macrophages, neutrophils, and endothelial cells. The most abundant 

isoforms in umbilical vein endothelial cells are p38α and p38β (Hale et al., 1999).  

 

1.7.2 Activation of p38 MAPK 

All p38 MAPK isoforms share a high sequence homology and the specific 

phosphorylation motif threonine-glycine-tyrosine (TGY) in the kinase subdomain VIII 

(Raingeaud et al., 1995). p38 MAPK is phosphorylated by DNA damage, heat, and 

osmotic shock, as well as by pro-inflammatory stimuli, such as bacterial LPS or 

cytokines (Kiemer et al., 2002b; Takada & Aggarwal, 2004; Raingeaud et al., 1995; 

Lee et al., 1994; Weber et al., 2003; Hashimoto et al., 2001). The dual 

phosphorylation of threonine 180 and tyrosine 182 by pro-inflammatory cytokines, 

such as TNF-α or IL-1, is performed by upstream kinases termed MAPK-kinases 

(MKK). MKKs themselfs are phosphorylated by MKK-kinases (MKKK), which are 

activated by extracellular stimuli (Chen et al., 2001; Herlaar & Brown, 1999). 

Downstream targets of phosphorylated p38 MAPK are other members of the MAPK 

family or transcription factors, such as AP-1 resulting in altered gene expression 

(Chen et al., 2001; Herlaar & Brown, 1999).  

 

1.7.3 Role in inflammation 

Members of the MAPK family function in many physiological and pathophysiological 

processes (Pearson et al., 2001). The p38 MAPK pathway especially has been 

described as a central regulator of inflammatory actions (Zhang et al., 2007). The 
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induction of important inflammatory mediators, such as the pro-inflammatory 

cytokines TNF-α, IL-1β, IL-6 and IL-8, the chemokine MCP-1, the adhesion 

molecules vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion 

molecule 1 (ICAM-1), as well as cyclooxygenase 2 (COX-2) has been shown to be 

dependent on p38 MAPK signalling (Zhang et al., 2007). Therefore, inhibition of p38 

MAPK represents a pharmacological target in inflammatory diseases (Kumar et al., 

2003; Lee et al., 1999)  

Over the last years it has become obvious that p38 MAPK regulates the expression 

of inflammatory proteins also on posttranscriptional level (Khabar, 2005; Kracht & 

Saklatvala, 2002).  

 

 

1.8 Monocyte chemoattractant protein 1 (MCP-1) 

1.8.1 Overview 

Monocyte chemoattractant protein 1 (MCP-1, synonymous CCL2) is a key chemokine 

regulating the recruitment and migration of monocytes. To date, more than fifty 

human chemokines and twenty chemokine receptors have been identified 

(Deshmane et al., 2009). Based on the number and location of the cysteine (C) 

residues at the N-terminus of the molecules, chemokines can be classified into four 

subfamilies. MCP-1 is a member of the CC-family and functions as an inflammatory 

chemokine (Robinson et al., 1989). The expression of chemokine is induced by pro-

inflammatory cytokines. Chemokines bind to specific cell surface transmembrane 

receptors, which are coupled with heterotrimeric G-proteins. The receptor for MCP-1, 

CCR2, is expressed on macrophages, immature dendritic cells, and lymphocytes 

(Ruffini et al., 2007). Its presence on endothelial cells has also been described 

(Gupta et al., 1998). MCP-1 itself is produced by many cell types, e.g. fibroblasts, 

epithelial cells, monocytes, macrophages, and endothelial cells (Deshmane et al., 

2009). 

 

1.8.2 MCP-1 in inflammation 

By inflammatory stimulus, such as treatment with TNF-α, MCP-1 is highly 

upregulated in endothelial cells (Weber et al., 2003; Rollins et al., 1990). Moreover, 
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MCP-1 expression has been suggested to be a general marker for inflammatory 

activation of endothelial cells (Szmitko et al., 2003). In addition, there is strong 

evidence that MCP-1 is overexpressed in atherosclerotic plaques and increased in 

plasma levels of patients with cardiovascular diseases suggesting an important role 

of MCP-1 in the development and progression of atherosclerosis (Sima et al., 2009; 

Niu & Kolattukudy, 2009; Liu et al., 2008; Ikeda et al., 2002). 
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1.9 Aim of this work 

The pathophysiology of the chronic disease atherosclerosis is characterized by 

increased expression of the pattern recognition receptors TLR2 and TLR4. The 

mechanisms, however, determining the expression of these TLRs have as yet been 

unknown. Moreover, there are no data in the literature how the expression of the 

TLR2 co-receptors TLR1 and TLR6 is regulated.  

 

Due to their physiological character and localisation, endothelial cells are significantly 

involved in inflammatory processes. The vascular endothelium forms a barrier 

between the blood as a carrier of circulating pathogens and the interstitium. 

Therefore, endothelial cells have to be able to recognize pathogens and to trigger a 

signalling leading to pathogen elimination. To date, the best available model to 

understand the development and progression of atherosclerosis are endothelial cells 

isolated from human umbilical vein (HUVEC). They have been characterized to be 

highly comparable to the in vivo situation and are available in sufficient quantity. 

 

Aim of this work was to clarify, whether the anti-inflammatory mediator GILZ as well 

as the immunoregulatory p38 MAPK are involved in the regulation of endothelial TLR 

expression.  

 

 

Concerning the role of these two proteins the following questions had to be 

answered: 

 

1. Role of GILZ in inflammatory TLR expression 

a) Is GILZ expressed in endothelial cells? 

b) Is GILZ expression regulated under inflammatory conditions? 

c) Does GILZ affect endothelial TLR expression? 

d) Can a link between GILZ and TLR2 be observed in atherosclerotic vessels? 

e) What are the mechanisms involved in GILZ-dependent regulation of TLR 

expression? 
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2. Role of p38 MAPK in inflammatory TLR expression 

a) Is p38 MAPK involved in TLR expression? 

b) Which p38 MAPK isoform regulates TLR expression? 

c) Are p38 MAPK-mediated actions connected to GILZ expression? 
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2. Materials and Methods 
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2.1 Materials 

Endothelial cell growth medium was purchased from Promocell (Heidelberg, 

Germany), Earle’s Medium 199, Ham’s 12, fetal calf serum gold (FCS), glutamine, 

penicilline/streptomycine and trypsine were from (PAA, Cölbe, Germany). 

Kanamycine, ampicilline, tumor necrosis factor α (TNF-α), dexamethasone, atrial 

natriuretic peptide (ANP), poly(deoxyinodinic-deoxycytidylic) acid sodium salt 

(poly(dIdC)), phosphatase inhibitor cockatil I and II were purchased from Sigma 

(Taufkirchen, Germany). SB203580 was from Jena Bioscience (Jena, Germany), and 

protease inhibitor was purchased from Roche (Mannheim, Germany). H2O and TE 

buffer for molecular biology were obtained from Applichem (Darmstadt, Germany). 

The antibody against von Willebrand factor was purchased from AbD Serotec 

(Wiesbaden, Germany). For Western blot analysis and immunofluorescence anti-

GILZ, anti-p65, anti-p50, anti-IқBα, anti-p38 MAPK, and anti-TLR6 antibodies were 

purchased from SantaCruz (Heidelberg, Germany), anti-cRel, anti-p38 MAPK and 

anti-p-p38 MAPK antibodies were from CellSignaling (Frankfurt/Main, Germany). The 

IRdye-labeled secondary antibodies were purchased from LI-COR Biosciences (Bad 

Homburg, Germany). Alexa Fluor®-labeled secondary antibodies were from 

Molecular Probes (Invitrogen, Karlsruhe, Germany). Used for flow cytometry anti-

TLR1, anti-TLR2, anti-TLR4 antibodies were obtained from eBioscience (San Diego, 

California, USA). Corresponding isotype controls were from eBioscience (San Diego, 

California, USA), BD Biosciences (Heidelberg, Germany) and from SantaCruz 

(Heidelberg, Germany). Biotin and anti-biotin streptavidin were from Jackson 

ImmunoResearch (Camebridgeshire, UK). The R-PE-labeled secondary antibody 

was purchased from Rockland (Gilbertsville, USA).  

All primers, probes and oligonucleotides were purchased from MWG (Ebersfeld, 

Germany). siGILZ (siGENOME SMARTpool) and siControl (siGenome) were 

obtained from Dharmacon (Nidderau, Germany). The plasmid pCR3.1-huGILZ-ORF 

was a gift from Prof. Dr. Carlo Riccardi, University of Perugia, Italy (Di Marco et al., 

2007). pGL4.32[luc2P/NF-қB-RE/Hygro] was from Promega (Heidelberg, Germany). 

pcDNA3-p38α-dn and pcDNA3-p38β2-dn were a gift from Prof. Dr. Jian-Dong Li, 

University of Rochester Medical Center, USA (Shuto et al., 2001). pcDNA3-huTLR2-

YFP was from Prof. Dr. Douglas Golenbock, University of Massachusetts Medical 

School, USA (Latz et al., 2002). 
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All other materials were purchased from Sigma (Taufkirchen, Heidelberg), Roth 

(Karlsruhe, Germany), MP Biomedicals (Heidelberg, Germany), and Merck 

(Darmstadt, Germany). 

 

 

2.2 Cell culture 

2.2.1 Solutions 

PBS (phosphate buffered saline) pH 7.4 PBS (phosphate buffered saline)+ 

NaCl 123.2 mM NaCl  137 mM 

Na2HPO4   10.4 mM Na2HPO4   8.1 mM 

KH2PO4   3.16 mM KH2PO4 1.47 mM 

in H20  KCl 2.68 mM 

  MgCl2 x 6 H2O   0.5 mM 

  CaCl2 0.68 mM 

  in H20  

 

2.2.2 Human umbilical vein endothelial cells (HUVEC) 

Human umbilical vein endothelial cells (HUVEC) were obtained by isolation of 

endothelial cells from human umbilical veins supplied by the Klinikum Saarbrücken 

and the Städtisches Klinikum Neunkirchen, Germany. Umbilical cords were 

postnatally transferred into PBS+ containing 1% [v/v] penicilline 

(100 U/ml)/streptomycine (100 µg/ml) and 1% [v/v] kanamycine and stored at 4°C up 

to 10 days prior to isolation.  

 

2.2.3 Isolation of HUVEC 

HUVEC were prepared by digestion of umbilical veins with 0.1 g/L collagenase 

(Roche, Mannheim, Germany) as described in Jaffe et al. (Jaffe et al., 1973). After 

digestion, cells were suspended in Earle’s Medium 199 containing 10% [v/v] fetal calf 

serum gold and 1% [v/v] penicilline (100 U/ml)/streptomycine (100 µg/ml) and 

subsequently centrifuged (10 min, 200xg). The cells were resuspended in endothelial 
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cell growth-medium containing 10% [v/v] fetal calf serum gold, 1% [v/v] penicilline 

(100 U/ml)/streptomycine (100 µg/ml) and 1% [v/v] kanamycine and cultivated at 

37°C and 5% CO2 in a 25 cm2 cell culture flask. On the following day the adherent 

cells were washed three times with PBS and cultured until confluence. 

 

2.2.4 Cultivation of HUVEC 

Experiments were performed with cells of passage three or four only. Upon reaching 

confluence cells were split 1:3 or 1:4 in 75 cm2 cell culture flasks or seeded out in 

6 well plates, 20 cm2 dishes or on glass slides. For passaging, cells were washed 

three times with PBS before adding 2 ml trypsin to a 75 cm2 cell culture flask. After 

incubation for 2 min at 37°C, the digestion was stopped with Earle’s Medium 199 

containing 10% [v/v] fetal calf serum gold and 1% [v/v] penicilline 

(100 U/ml)/streptomycine (100 µg/ml). The suspension was centrifuged (10 min, 

200xg) and resuspended in endothelial cell growth-medium containing 10% [v/v] fetal 

calf serum gold, 1% [v/v] penicilline (100 U/ml)/streptomycine (100 µg/ml) and 

1% [v/v] kanamycine. For siRNA transfection media without antibiotics were used. 

 

2.2.5 Freezing and thawing of HUVEC 

For freezing, confluent cells in passage one were used only. After washing three 

times with PBS, HUVEC were trypsinized and resuspended in Earle’s Medium 199 

containing 10% [v/v] fetal calf serum gold and 1% [v/v] penicilline 

(100 U/ml)/streptomycine (100 µg/ml). The suspension was centrifuged (10 min, 

200xg), and cells obtained from one 75 cm2 cell culture flask were resuspended in 

1.5 ml ice cold freezing medium containing endothelial cell growth medium with 10% 

[v/v] fetal calf serum gold, 1% [v/v] penicilline (100 U/ml)/streptomycine (100 µg/ml) 

and 1% [v/v] kanamycine supplemented with 10% [v/v] DMSO. After transferring into 

cryovials, cells were gradually frozen for one day at -20°C, one week at -80°C, and 

afterwards transferred into liquid nitrogen at -196°C.  

To minimize the cytotoxicity of DMSO, the cells were rapidly thawed for 2 or 3 min at 

37°C and directly transferred into Earle’s Medium 199 containing 10% [v/v] fetal calf 

serum gold and 1% [v/v] penicilline (100 U/ml)/streptomycine (100 µg/ml). The 

suspension was centrifuged (10 min, 200xg), and the pellet was resuspended in 
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endothelial cell growth medium containing 10% [v/v] fetal calf serum gold, 10% [v/v] 

penicilline (100 U/ml)/streptomycine (100 µg/ml) and 1% [v/v] kanamycine. Cells 

were cultivated as described in 2.2.4. 

 

2.2.6 Characterisation of HUVEC 

In order to characterize HUVEC and to exclude an isolation of other cells types such 

as smooth muscle cells or fibroblasts, immunostaining of von Willebrand factor 

followed by flow cytometric analysis was performed (Kiemer et al., 2003). Von 

Willebrand factor is a multimeric protein, which plays a role in blood coagulation 

(Ruggeri & Ware, 1993). In contrast to endothelial cells, von Willebrand factor is not 

expressed in smooth muscle cells and fibroblasts.  

 

von Willebrand factor staining was performed in HUVEC upon reaching confluence. 

After removing the culture medium, cells were washed three times with PBS and 

trypsinized as described above (see in 2.2.4). The cell suspension was centrifuged 

(5 min, 500xg) and washed two times with PBS. For fixation, cells were resuspended 

in 1 ml 0.25% [w/v] paraformaldehyde and incubated for 1 h at 4°C. A further 

centrifugation step was followed by permeabilisation with 1 ml 2% [v/v] Tween 20 for 

15 min at 37°C. Subsequently, cells were centrifuged and washed twice with PBS. To 

avoid unspecific antibody binding, cells were incubated with 10 µl of 20% sheep 

serum for 30 min at room temperature, followed by incubation with 2 µl anti-von 

Willebrand factor antibody for 30 min at room temperature in darkness. Prior to 

measurement, cells were washed three times with PBS and resuspended in 300 µl 

PBS. To set up the measurement parameters of the flow cytometer, cells were 

treated as described above, but without antibody staining. Flow cytometric analysis 

was performed with a FACSCalibur and the software CellQuestPro (both from Becton 

Dickinson, Heidelberg, Germany). For quantification, the mean fluorescence of 

unstained HUVEC detected in the FL1 channel of the cytometer was subtracted from 

the mean fluorescence of von Willebrand factor stained HUVEC. By setting this value 

in proportion to unstained cells, the fraction for von Willebrand factor positive cells 

was given. As shown in Figure 5, isolated cells were identified >97% pure HUVEC. 
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Figure 5: Flow cytometric detection of von Willebrand factor (vWF) protein in HUVEC. Cells 
were either left unstained (grey background) or stained with anti-vWF antibody (without 
background), and fluorescence intensities are shown as histogram. The figure shows one 
representative experiment out of three different cell isolations. 

 

2.2.7 CHO-K1 

CHO-K1 cells are epithelial cells from Cricetulus griseus (chinese hamster), derived 

from a subclone of a parental CHO-cell line. They were obtained by an ovarian 

biopsy of an adult animal (Puck, 1958). CHO-K1 cells were obtained from Prof. Dr. 

Markus Löbrich, University of Technology, Darmstadt, Germany. 

CHO-K1 cells were cultured at 37°C and 5% CO2 in Ham’s 12 containing 10% [v/v] 

fetal calf serum gold, 1% [v/v] glutamine and 1% [v/v] penicilline 

(100 U/ml)/streptomycine (100 µg/ml) in a 75 cm2 cell culture flask. Upon reaching 

confluence, cells were washed once with PBS, and 2 ml trypsin were added. After 

incubation for 5 min at 37°C, the digestion was stopped with culture medium and the 

cells were spit 1:5 into a new cell culture flask.  

 

2.2.8  Detection of mycoplasms 

To exclude contaminations with mycoplasms, HUVEC were tested using the 

Venor®GeM mycoplasm detection kit (Minerva Biolabs, Berlin) according to the 

manufacturer’s instructions. The test is based on nucleic acid amplification by a 

polymerase chain reaction with a detection limit of 1 bis 5 fg mycoplasmic DNA.  
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2.3 Vessel specimens 

Human normal aortae and intima cylinders of atherosclerotic coronary arteries as well 

as normal and atherosclerotic internal mammary arteries (IMA) were obtained from 

patients undergoing coronary bypass surgery and immediately transferred into 

RNAlater RNA stabilization reagent (Qiagen, Hildesheim, Germany). Until 

preparation, they were stored at 4°C or for long time storage at -20°C.  

The vessels were obtained from PD Dr. Hanno Huwer, SHG Klinik Völklingen, 

Germany. All samples were obtained with the consent of patients and permission has 

been given by the local ethics committee. 

 

 

2.4 Bacterial culture  

2.4.1 Solutions 

Ampicilline (amp) resistant bacteria were grown in Luria-Bertani (LB)-medium 

containing ampicilline. For selection of single clones LBamp-agar plates were used.  

 

LBamp-medium 

pH7.5 

 LBamp-agar  

tryptone   10% [w/v] agar 30% [w/v] 

yeast extract     5% [w/v] in LBamp-medium  

NaCl 171.1 mM   

in H2O    

ampicilline     100 mg/ml   

 

2.4.2 Bacterial strains 

As host organisms for plasmids the following bacterial strains were used: 

Escherichia coli (E.coli) XL1-blue, genotype: recA endA1 gyrA96 thi-1 hsdR17 

supE44 relA1 lac [F’proAB laclqZΔM15 Tn10(tetr)]; 

Escherichia coli (E.coli) Top 10, genotype: F–mcrA Δ(mrr-hsdRMS-mcrBC) 

Φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara leu) 7697 galU galK rpsL (StrR) endA1 
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nupG (obtained from Prof. Dr. Jörn Walter, Saarland University, Saarbruecken, 

Germany). 

 

2.4.3 Generation of competent bacteria  

Generation of competent bacteria was performed by the CaCl2 method. 100 ml LB-

medium were inoculated with 5 ml bacteria of an overnight culture and grown at 37°C 

and 225 rpm up to an optical density of A650nm=0.4. After incubation on ice for 30 min 

the suspension was centrifuged (5 min, 200xg, 4°C). The pellet was carefully 

resuspended in 2.5 ml ice cold CaCl2 solution containing 75 mM CaCl2 and 15% 

glycerine. Another 20 ml ice cold CaCl2 were added, and after incubation for 30 min 

on ice the suspension was centrifuged again (5 min, 2,000xg, 4°C). The pellet was 

resuspended in 2.5 ml ice cold CaCl2 solution and 100 µl aliquots were stored at 

-80°C.  

 

2.4.4 Transformation 

Transformation was performed by addition of 20 µl (50-150 ng) plasmid DNA to 

100 µl competent bacteria. After 20 min incubation on ice, the suspension was heat 

shocked for 2 min at 42°C. 900 µl of 37°C prewarmed LB-medium were immediately 

added and shook for 45 min at 37°C and 225 rpm. 100 µl of the transformed bacteria 

were plated on LBamp-agar plates and cultured overnight at 37°C and 5% CO2. 

 

2.4.5 Cultivation, freezing and thawing 

In order to cultivate transformed bacteria, single clones were picked from the 

LBamp-agar plate and LBamp-medium was inoculated. After aerob cultivation for 16 h 

at 37°C and 225 rpm, 0.5 ml of the bacterial suspension were mixed with the same 

volume glycerol, transferred into cryovials and frozen at -80°C. Remaining bacterial 

suspension was used for plasmid isolation. For recultivation 10 µl of the glycerol 

stocks were plated on LBamp-agar-plates and cultured as described above. 
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2.4.6 Plasmid isolation 

Plasmids were isolated using the QIAprep Spin Miniprep kit and the QIAprep Spin 

Midiprep kit (both from Qiagen, Hildesheim, Germany) according to the 

manufacturer’s instructions. The plasmids were solved in or eluated with TE buffer. 

 

2.4.7 Photometric measurement of DNA concentration and purity 

The determination of the DNA concentration was carried out by extinction 

measurement based on the Beer-Lambert law. Nucleic acids show a characteristic 

absorption maximum at 260 nm. An extinction of one equates to a DNA 

concentration of 50 µg/ml. The purity of DNA was measured at 280 nm, the 

characteristic absorption maximum of aromatic amino acids. The ratio between the 

absorption at 260 nm and the absorption at 280 nm should be 1.8. The 

measurements were done with a BioMate 3 UV-Vis spectrophotometer 

(ThermoElectron, Ulm, Germany).  

 

 

2.5 Agarose gel electrophoresis 

2.5.1 Solutions 

TBE buffer  6x DNA loading buffer 

Tris base 89.1 mM Ficoll Typ 400     18% [w/v]  

boric acid  89.1 mM EDTA, pH 8.0       0.5 M 

EDTA  2.21 mM 10xTBE        60 ml 

in H2O  bromphenol blue  0.25% [w/v] 

  xylencyanol  0.25% [w/v] 

  H2O ad 100 ml 

 

2.5.2 Experimental procedure 

Agarose gel electrophoresis was applied for DNA detection. Depending on DNA size, 

0.5-1.5% agarose gels were used and supplemented with 0.04% [v/v] ethidium 

bromide. After addition of a suitable volume of 6x DNA loading buffer, DNA was 
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loaded onto a gel and separated in TBE buffer at 100 V. To determine the size of the 

DNA, a 50 bp DNA ladder (Fermentas, St. Leon-Rot, Germany) or a 1 kb DNA ladder 

(Invitrogen, Karlsruhe, Germany) were used. The gel detection was carried out by an 

UV transilluminator (White Top Light Transilluminator) and the software ArgusX1 

(both from Biostep, Jahnsdorf, Germany). 

 

 

2.6 Transfection of HUVEC 

2.6.1 siRNA and plasmids 

For knockdown experiments HUVEC were grown until approximately 80% confluence 

and transfected with 100 pmol/L siGILZ or siControl using Amaxa® Nucleofection® 

Technology according to the manufacturer’s instructions (Lonza, Basel, Switzerland). 

Double-stranded (ds) mRNA is intracellularly cleaved by a dicer-enzyme-complex 

into fragments of 22 base pairs (bp). These fragments are bound by the RISC-

complex, which separates the two complementary RNA strands. The single-strand 

bound to the RISC-complex binds to complementary mRNA resulting in cleavage and 

degradation of the mRNA (Carthew & Sontheimer, 2009). Experiments were 

performed 20 h after transfection.  

For protein overexpression 2 µg pcR3.1-huGILZ-ORF or pcR3.1-empty as well as 

2 µg pcDNA3-p38α-dn or pcDNA3-empty were transfected in the same way using 

nucleofection. Experiments were performed 16 h or 24 h later.  

For luciferase assay the cells were co-transfected with 100 pmol/L siRNA and 1.5 µg 

pGL4.32[luc2P/NF-қB-RE/Hygro] using nucleofection. The luciferase plasmid 

contained five repetitive elements of the NF-қB consensus sequence GGGAATTTCC 

and the coding sequence of luciferase from the firefly Photynus pyralis. The 

luciferase catalyzes the oxidative decarboxylation of D-luciferin to oxyluciferin in 

presence of the co-factors adenosine triphosphat (ATP) and Mg2+, which results in 

emission of light with a wavelength of 562 nm (Seliger & McElroy, 1964). 

Experiments were performed 20 h after transfection.  

All plasmids were amplified and isolated using Midiprep (see in 2.4) and sterile 

filtration. The pmaxGFPTM plasmid (Lonza, Basel, Switzerland) encoding the green 
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fluorescent protein (GFP) of the crab Pontellina pliumata was used as transfection 

control. The transfection efficiency was determined via fluorescence microscope. 

 

2.6.2 Decoy oligonucleotides 

For decoy oligonucleotide transfection 0.05 µg/ml of the following decoy 

oligonucleotides were transfected using Superfect (Qiagen, Hildesheim, Germany) in 

a decoy to transfection reagent ratio of 1:20 (NF-қB) or 1:10 (AP-1): NF-қB decoy 

(5´-agttGAGGGGACTTTCCCagc-3´), NF-қB scrambled decoy 

(5´-ttcCGTACCTGACTTagcc-3´), AP-1 decoy (5´-cgctTGATGACTCAGCCggaa-3´) 

and AP-1 scrambled decoy (5´-cgctTGATGACTTGGCCggaa-3´), lower case letters 

show phosphorothionate backbones (Fürst et al., 2005). Decoys are short double 

stranded oligonucleotides. They exhibit the consensus DNA sequence, to which the 

transcription factor normally binds after activation. Transfection of cells with decoy 

oligonucleotides leads to binding of the activated transcription factor to the 

oligonucleotides resulting in a diminished transcription factor/DNA-binding and 

therefore reduced gene expression (Tomita et al., 2003). Experiments were 

performed 4 h after transfection. 

 

 

2.7 Isolation of protein extracts 

2.7.1 Solutions 

PBS     

see in 2.2.1     
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Lysis buffer for whole cell extracts    

lysis buffer A  lysis buffer B 

Tris-HCl pH 6.8         50 mM  Tris base pH 7.5     20 mM 

SDS        1% [v/v]  NaCl   120 mM 

2-mercapthoethanol        2% [v/v]  glycerol 10% [v/v] 

glycerol      10% [v/v]  EDTA, pH 8.0       2 mM 

bromphenol blue 0.004% [v/v]  Triton X-100   1% [v/v] 

freshly added before use:   freshly added before use: 

protease inhibitor            1x [v/v]  NaF     50 mM 

   phosphatase inhibitor 

cocktail I  

  1% [v/v] 

  phosphatase inhibitor 

cocktail II 

  1% [v/v] 

    

Lysis buffer for nuclear and cytosolic proteins  

hypotonic buffer A  hypertonic buffer B  

HEPES/KOH pH7.9   10 mM  HEPES/KOH pH 7.9    20 mM 

EDTA  0.1 mM  NaCl  400 mM 

KCl   10 mM  EDTA      1 mM 

EGTA  0.1 mM  EGTA      1 mM 

freshly added before use:  glycerol 25% [v/v] 

DTT (in H20)     1 mM  freshly added before use: 

PMSF (in methanol)  0.5 mM  DTT (in H20)      1 mM 

  PMSF (in methanol)   0.5 mM 

 

2.7.2 Isolation of whole cell extracts 

For Western blot analysis of GILZ, p65, IқBα and TLR6 cells were grown in 6-well 

plates or transfected as described in 2.6 and treated as indicated. After washing with 

PBS, cells were scraped and lysed in 100 µl of lysis buffer A. After 2 pulses of 

sonification followed by centrifugation (15 min, 20,000xg, 4°C) supernatant was 
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denatured for 5 min at 95°C and frozen at -80°C. Because this lysis buffer contained 

2-mercapthoethanol, a determination of protein concentrations was not possible. 

For detection of p38 and p-p38 MAPK cells were grown in 6-well plates and treated 

as indicated. They were washed with PBS, scraped and lysed in 100 µl lysis buffer B. 

After incubation for 30 min on ice followed by centrifugation (15 min, 20,000xg, 4°C), 

supernatants were denaturated for 5 min at 90°C and frozen at -80°C. Protein 

concentrations were determined by Pierce BCA protein assay (Fisher Scientific, 

Nidderau, Germany) according to the manufacturer’s instructions using a SunriseTM 

absorbance reader and the software Magellan (both from Tecan, Grödig/Salzburg, 

Austria). 

 

2.7.3 Isolation of nuclear and cytosolic extracts 

HUVEC were cultured in 20 cm2-dishes until confluence or transfected as described 

in 2.6 and treated as indicated. They were washed with PBS, scraped and 

centrifuged (5 min, 500xg, 4°C) followed by pellet resuspension in 200 µl hypotonic 

buffer A. After 15 min incubation on ice, 10% [v/v] Nonidet p-40 was added and 

immediately vortexed. After centrifugation (1 min, 14,000xg, 4°C), the supernatant 

with the cytosolic proteins was frozen at -80°C. The pellet with the nuclear fraction 

was resuspended in 20 µl hypertonic buffer B and incubated for 30 min at 4°C while 

vortexing. The extract was centrifuged (20 min, 12,000xg, 4°C), and the supernatant 

was frozen at -80°C. Protein concentrations were determined by Bradford assay (Bio-

Rad, Munich, Germany) according to the manufacturer’s instructions using the 

SunriseTM absorbance reader and the software Magellan (both from Tecan, 

Grödig/Salzburg, Austria). 

 

 

2.8 Electrophoretic mobility shift assay (EMSA) 

2.8.1 Solutions 

PBS   TBE  

see in 2.2.1  see in 2.5.1  
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7% non-denaturating polyacrylamide gel   

H2O 23.5 ml   

40% acrylamide/ 0.8% 

bisycrylamide solution  

  7.5 ml    

Tris base (1 M, pH 7.5)   7.6 ml   

glycine (1 M)  200 µl   

EDTA (0.5 M)  160 µl   

APS (10% [w/v])  200 µl   

TEMED    30 µl   

 

2.8.2 Experimental procedure 

Equal amounts of nuclear protein were incubated for 20 min at room temperature in a 

20 µl-reaction volume containing 10 mM Tris-HCL pH 7.5, 50 mM KCl, 1 mM DTT, 

2.5 mM DTT/0.25% Tween 20, 2 ng poly(dIdC) and 25 nM IRdye labeled 

oligonucleotides. For supershift analysis, 1 µg of the suitable antibody was added to 

the EMSA reaction 10 min before addition of IRdye labeled oligonucleotides. The 

oligonucleotide sequences containing a consensus binding sequence for NF-қB 

(5´-AGTTGAGGGGACTTTCCCAGGC-3´) or AP-1 (5´-CGCTTGATGACTCAGCCG 

GAA-3´) were 5´end-labeled with IRdye700 or IRdye800. Formation of double-

stranded oligonucleotides was performed by incubation for 5 min at 95°C and a slow 

cooling. Nucleoprotein-oligonucleotid-complexes were resolved by electrophoresis in 

a 7% non-denaturating polyacrylamide gel. The gels were cast and the 

electrophoresis was carried out with component parts of BioRad (Munich, Germany). 

Gel detection was performed by ODYSSEY® Infrared Imaging System (LI-COR®, LI-

COR Biosiences, Bad Homburg, Germany). Specifity of the DNA-protein complexes 

was confirmed by competition with a twofold amount of unlabeled NF-қB and AP-1 

oligonucleotides. 
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2.9 Western blot analysis of proteins 

2.9.1 Solutions  

SDS polyacrylamide gel      

resolving gel                             6% / 15% stacking gel 

H2O 10.6 ml / 4.6 ml H2O   6.8 ml 

30% acrylamide / 0.8% 

bisacrylamide solution  

    4 ml / 10 ml  30% acrylamide / 0.8% 

bisacrylamide solution 

  1.7 ml  

Tris base (1.5 M, pH 8.0)           5 ml Tris base (1.0 M, pH 6.8) 1.25 ml 

SDS (10% [w/v])       200 µl SDS (10% [w/v])  100 µl 

APS (10% [w/v])       200 µl APS (10% [w/v])  100 µl 

TEMED         20 µl TEMED    10 µl 

    
 

electrophoresis buffer transfer buffer 

Tris base    24.8 mM Tris base     24.8 mM 

glycine    1.92 mM glycine     1.92 mM 

SDS  0.1% [w/v] SDS (10%)  0.05% [w/v] 

in H2O  methanol     20% [v/v] 

  in H2O  

    

PBS  PBST  

see in 2.2.1  Tween 20 0.1% [v/v] 

  in PBS  

    

gelatine buffer    

gelatine A 0.75% [w/v]   

in PBST    
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2.9.2 Antibodies  

Table 1: Antibodies and dilutions used for Western blot analysis 

antibodies used dilution 

anti-human GILZ, goat IgG 1:200 in gelatine buffer 

anti-human p65, rabbit IgG 1:2,000 in Rockland blocking buffer 

anti-human p50, rabbit IgG 1:2,000 in Rockland blocking buffer 

anti-human cRel, rabbit IgG 1:2,000 in PBST/5% [w/v] BSA 

anti-human IқBα, rabbit IgG 1:400 in Rockland blocking buffer 

anti-human TLR6, goat IgG 1:400 in Rockland blocking buffer 

anti-human p38 MAPK, mouse IgG1 1:200 in Rockland blocking buffer 

anti-human p38 MAPK, rabbit IgG  1:1,000 in Rockland blocking buffer 

anti-human phospho-p38 MAPK, rabbit IgG 1:1,000 in Rockland blocking buffer 

IRDye® 800CW conjugated goat anti-mouse IgG 1:5,000 in Rockland blocking buffer 

IRDye® 680 conjugated goat anti-mouse IgG  1:5,000 in Rockland blocking buffer 

IRDye® 680 conjugated goat anti-rabbit IgG 1:5,000 in Rockland blocking buffer 

IRDye® 680 conjugated donkey anti-goat IgG 1:5,000 in Rockland blocking buffer 

IRDye® 680 conjugated goat anti-rat IgG 1:5,000 in Rockland blocking buffer 

 

 

2.9.3 SDS-polyacrylamide gel electrophoresis 

Protein separation was applied by denaturing SDS polyacrylamide gel 

electrophoresis (SDS-PAGE) according to Laemmli (Laemmli, 1970). The 

concentration of the acrylamide/bisacrylamide mixture in the resolving gel was 

chosen based on the molecular weight of the protein of interest. For TLR6 detection, 

6% gels were used, while all other proteins were separated on 15% gels. Addition of 

strongly negatively charched sodium dodecyl sulfate (SDS) leads to masking of the 

protein charge to a constant ratio of mass to charge (1.4 g SDS per 1 g protein). 

Reducing agents (dithiothreitol (DTT), 2-mercaptoethanol) cleave and denaturate the 

disulfide bridges. To quantify the molecular weight a prestained protein marker 

(Fermentas, St. Leon-Rot, Germany) was used. Cell lysates were thawed on ice and 

after addition of sample buffer (5x loading dye, Roth, Karlsruhe, Germany; except for 
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stained lysis buffer) proteins were denaturated for 5 min at 95°C or for p-p38 

detection 5 min at 90°C. Equal protein amounts were loaded onto the gel and 

separated in electrophoresis buffer. The gels were cast and the electrophoresis was 

carried out (80 V for 30 min followed by 120 V for 2 h) with component parts of 

BioRad (Munich, Germany). 

 

2.9.4 Western blot 

In order to transfer proteins onto a polyvinylidene fluoride (PVDF) membrane with a 

pore size of 0.45 µm (Immobilion-FL, Millipore), the tank blotting system was used 

after electrophoresis. The membrane was incubated for 30 sec in methanol followed 

by storage in transfer buffer before use. A sandwich containing two sponges, two 

blotting papers, the gel and the membrane was built avoiding air bubbles. All of these 

parts were equilibrated in transfer buffer before use. Blotting was carried out in 

transfer buffer (80 mA, overnight) with component parts of BioRad (Munich, 

Germany). Afterwards, the membranes were incubated for 30 min in Rockland 

blocking buffer (Rockland, Gilbertsville, USA) to block unspecific binding sites. 

 

2.9.5 Immunodetection 

The incubation with antibodies was carried out according to the antibody dilutions 

mentioned in 2.9.2. Primary antibodies were incubated under constant shaking for 

3 h at room temperature or 37°C (anti-GILZ) or overnight at 4°C (all other antibodies). 

Following three washing steps with PBST/5% [w/v] milk, PBST/5% [w/v] BSA or 

gelatine buffer, the secondary antibodies were incubated for 2 h at room 

temperature. The membranes were washed two times with PBST and PBS 

accordingly. For detection, ODYSSEY® Infrared Imaging System and the software 

Odyssey (both from LI-COR®, LI-COR Biosiences, Bad Homburg, Germany) were 

used. Image editing was performed with Adobe Photoshop 7.0 (Adobe Systems, 

Munich, Germany). 
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2.10 Detection of mRNA  

Because of the rapid degradation of RNA by RNases only chlorophorm treated 

reaction tubes as well as protective gloves were used. Tips were decontaminated by 

UV light. 

 

2.10.1 Solutions  

PBS DEPC-H2O  

see in 2.2.1 DEPC  0.1% [v/v] 

 in H2O  

 

2.10.2 RNA isolation 

HUVEC 

Cells were grown in a 6-well plate until confluence and treated as indicated. For 

isolation of total RNA they were washed once with cold PBS and lysed in 1 ml Qiazol 

(Qiagen, Hildesheim, Germany). 250 µl chloroform were added followed by vortexing 

for 15 sec. After incubation for 3 min at room temperature, the suspension was 

centrifuged (15 min, 15,000xg, 4°C). 400 µl of the clear supernatant containing the 

RNA were mixed with the same volume of 100% isopropanol. The RNA was 

precipitated overnight at -20°C followed by centrifugation (10 min, 15,000xg, 4°C). 

The pellet was washed with 750 µl 75% ethanol ([v/v] in DEPC-H2O) and after 

centrifugation (5 min, 20,000xg, 4 min), the RNA pellet was dried at 37°C. For RNA 

dissolving 20 µl DEPC-H2O were added, and the samples were incubated for 10 min 

at 55°C. 

 

Plasmid transfected cells (according to 2.6) were treated as indicated. RNA was 

isolated using RNeasy mini kit (Qiagen, Hildesheim, Germany) according to the 

manufacturer’s instructions and eluted with 30 µl DEPC-H2O. 

 

Human arteries 

Human arteries stored in RNAlater were cut into pieces of 0.3 mm edge length, 

transferred into Qiazol (Qiagen, Hildesheim, Germany), and dispersed for 2 min at 
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18,000 rpm using an Ultra-Turrax® (IKA, Staufen, Germany). Total RNA was isolated 

as described above. 

 

2.10.3 DNase digestion 

To eliminate any contaminations with genomic DNA, a DNAse digestion was 

performed using a DNA free kit (Ambion, Applied Biosystems, Darmstadt, Germany) 

according to the manufacturer’s instructions. 

 

2.10.4 Photometric measurement of RNA concentrations 

The determination of the RNA concentration was carried out by extinction 

measurement based on the Beer-Lambert law. Because of the characteristic 

aromatic ring system of the bases, RNA shows an absorption maximum at 260 nm. 

An extinction of one equates to an RNA concentration of 40 µg/ml. The 

measurements were done in a BioMate 3 UV-Vis spectrophotometer 

(ThermoElectron, Ulm, Germany).  

 

2.10.5 Determination of the RNA quality 

The quality of the RNA was determined using a RNA 6000 Nano Lab Chip kit 

(Agilent, Böblingen, Germany) according to the manufacturer’s instructions. The 

measurement was carried out in a Standard Agilent 2100 Bioanalyzer and the 

software Agilent 2001 expert (both from Agilent, Böblingen, Germany).  

 

2.10.6 Polymerase chain reaction (PCR) 

Polymerase chain reaction (PCR) means the amplification of nucleic acids by the use 

of Taq DNA polymerases and primers. Taq DNA polymerases are enzymes 

synthesizing double stranded (ds) DNA based on single stranded (ss) DNA. The 

prerequisite for this reaction is a small double stranded region, which functions as 

start point. These start points are generated by the addition of complementary 

primers for the coding (sense) and the non-coding (antisense) strand. In a first step 

of the PCR, the double stranded DNA is denatured by heat leading to primer binding 

to their target sequence on the single stranded DNA (annealing). Based from this 
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short double stranded region, in a next step the complementary strand is synthesized 

from the Taq DNA polymerase (elongation). A multiple repetition of these steps leads 

to DNA duplication per reaction cycle and thus to an exponential duplication of the 

DNA sequence flanked by the primers. 

 

2.10.7 Alu-PCR 

To investigate the success of the DNAse digestion an Alu-PCR was performed. Alu 

elements are repeats of 300 bp with similar, but not exactly identical sequence. In the 

human genome more than one million Alu repeats are located representing 15% of 

the whole genome.  

 

Primer 

For Alu-PCR the A1S primer with the sequence 

5’-TCATGTCGACGCGAGACTCCATCTCAAA-3’ was used.  

 

Experimental procedure 

The reaction mixture was assembled on ice by using a Taq polymerase from 

Thermophilus aquatius and a dNTP mix containing dATP, dCTP, dGTP, dTTP (both 

from GenScript, Piscataway, USA). 

 

10x Taq buffer  2.5 µl 

dNTPs (10 mM each)  0.5 µl 

primer (50 µM)  0.5 µl 

Taq polymerase (5U/µl)  0.5 µl 

RNA 100 ng 

H2O  ad 25 ml 

 

1 µg genomic DNA isolated from THP1 cells (provided from Nadège Ripoche, 

Saarland University, Saarbruecken, Germany) was used as positive control. The 

PCR was performed in a Thermocycler PX2 (ThermoElectron, Ulm, Germany). 
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Conditions 

denaturation 5 min 94°C 1 cycle 

denaturation 1 min 94°C 

30 cycles annealing 1 min 56°C 

elongation 2 min 72°C 

final elongation 10 min 72°C 1 cycle 

 

When no amplification product was oberserved after resolving the samples on a 

1.5% agarose gel (see in 2.5), the RNA was considered to be DNA-free and was 

subsequently used for reverse transcription. 

 

2.10.8 Reverse transcription (RT) 

Complementary DNA (cDNA) was obtained from mRNA using a High Capacity cDNA 

Reverse Transcription kit (Applied Biosystems, Darmstadt, Germany) according to 

manufacturer’s instructions. The reverse transcriptase used exhibits three different 

enzymatic activities: an RNA-dependent DNA polymerase, an RNA:DNA-hybrid 

dependent exoribonuclease (RNase H) as well as a DNA-dependent DNA 

polymerase. The result of this reverse transcription was a ss cDNA, while 

complementary RNA was degraded. 

 

Primer 

For reverse transcription an oligo-dT primer with the sequence 

5’-TTT TTT TTT TTT TTT TTT-3’ was used. 

 

Experimental procedure 

The reaction mixture was assembled on ice using of an RNase inhibitor (Invitrogen, 

Karlsruhe, Germany). After incubation of 1 µg RNA for 5 min at 65°C to destroy 

DNases, the RNA was added to the mixture as template. 
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Reaction for one sample: 

10x RT buffer        2 µl 

25x dNTPs (25 mM each)     0.8 µl 

primer (10 µM)     2.0 µl 

reverse transcriptase (4 U/µl)        1 µl 

RNaseOut (10 U/µl)   0.25 µg 

RNA        1 µg 

H2O ad 20 ml 

 

Reverse transcription was performed for 10 min at 25°C followed by 2 h at 37°C. 

Afterwards, the enzymes were inactivated for 5 sec at 85°C and the cDNA was 

stored at -20°C. A reaction mixture without reverse transcriptase, but with RNA was 

prepared as a further control for successful DNase digestion as well as to exclude 

any DNA-contamination of the reaction mixture.  

For use in real-time RT-PCR, cDNA was diluted 1:5 in H2O. 

 

2.10.9 Standard dilution series 

Determination of the real-time RT-PCR efficiency and quantification of the cDNA 

concentration was performed using plasmids, which were applied in dilution series 

from 20 attomol/µl to 2*10-6 attomol/µl in TE. The required DNA sequence, the PCR 

product of the gene of interest, was cloned into the multiple cloning site of a 

pGEM®-T Easy vector (Promega, Heidelberg, Germany). Bacterial glycerol stocks 

with the required plasmids were provided by Prof. Dr. Alexandra K. Kiemer (Saarland 

University, Saarbruecken, Germany). Plasmid isolation was carried out by Miniprep 

(see in 2.4.6). 

 

The applied amount of the plasmids was calculated as followed:  

 

c (target DNA) [attomol/µl] = c (plasmid) [µg/ml] * 1000 * 1,515 / N (bp) 

 

N (bp) = base pair number of insert and vector 
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2.10.10 Real-time RT-PCR 

Real-time RT-PCR allows the detection of RNA and the quantification of the PCR 

during the amplification. First, the RNA has to be reverse transcribed into cDNA (see 

in 2.10.8), followed by amplification based on a conventional PCR (see in 2.10.6). 

Additionally, oligonucleotides were used, which bind to a sequence within the PCR 

product and function as probes. The 5’-ends of the oligonucleotides were marked 

with the reporter dye, 6-Carboxy-Fluorescein (FAM), the 3’-ends with the quencher 

dye, Black Hole Quencher 1 (BHQ1). Because of the small distance to the quencher, 

the fluorescence is suppressed when the probe attached on the PCR product is 

excited by monochromatic light of 488 nm. This phenomen is termed fluorescence 

resonance energy transfer (FRET). With ongoing amplification, the probe is 

hydrolysed by the exonuclease activity of the Taq DNA polymerase resulting in a 

territorial separation of reporter and quencher dye. The fluorescence is not 

suppressed anymore and can be measured in real-time using specialized software. 

The fluorescence intensity is proportional to the amount of the PCR product.  

 

Primers and Probes 

All primer and probe sequences were obtained from Prof. Dr. Alexandra K. Kiemer 

(Saarland University, Saarbruecken, Germany). 

 

Table 2: Primers used for real-time RT-PCR 

mRNA primer sense 5´→3´ primer antisense 3´→5´ 

β-actin TGCGTGACATTAAGGAGAAG GTCAGGCAGCTCGTAGCTCT 

GILZ TCCTGTCTGAGCCCTGAAGAG AGCCACTTACACCGCAGAAC 

TLR1 AGCAAAGAAATAGATTACACATCA TTACCTACATCATACACTCACAAT 

TLR2 GCAAGCTGCGGAAGATAATG CGCAGCTCTCAGATTTACCC 

TLR4 ATGAAATGAGTTGCAGCAGA AGCCATCTGTGTCTCCCTAA 

TLR6 TTTACTTGGATGATGGTGAATAGT AGTTCCCCAGATGAAACATT 

MCP-1 TTGATGTTTTAAGTTTATCTTTCATGG CAGGGGTAGAACTGTGGTTCA 
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Table 3: Probes used for real-time RT-PCR 

mRNA probe  

β-actin  5´FAM-CACGGCTGCTTCCAGCTCCTC-3´-BHQ1 

GILZ 5´FAM-TCCCGAATCCCCACAAGTGCCCGA-3´-BHQ1 

TLR1 5´FAM-ATTCCTCCTGTTGTATTGCTGCTTTTG-3´-BHQ1 

TLR2 5´FAM-ATGGACGAGGCTCAGCGGGAAG-3´-BHQ1 

TLR4 5´FAM-AAGTGATGTTTGATGGACCTCTGAATCT-3´-BHQ1 

TLR6 5´FAM-GTCGTAAGTAACTGTSTGGAGGTGC-3´-BHQ1 

MCP-1 5´FAM-AGATACAGAGACTTGGGGAAATTGCTTTTC-3´-BHQ1 

 

 

Experimental procedure 

All conditions were established and obtained from Prof. Dr. Alexandra K. Kiemer or 

Nadège Ripoche (Saarland University, Saarbruecken, Germany). 

 

Taq polymerase from Thermophilus Aquatius and a dNTP mix containing dATP, 

dCTP, dGTP, dTTP (both from GenScript, Piscataway, USA) were used to prepare 

reaction mixtures. The reaction mixtures were assembled on ice and inserted into a 

96 well plate and 5 µl cDNA were added. As negative controls, 5 µl of the RT- 

reaction mixture without reverse transcriptase (see in 2.10.8) or 5 µl H2O were added 

to the real-time RT-PCR reaction mixture. 

 

Reaction mixture for one sample: 

10x Taq buffer      2.5 µl 

dNTPs (10 mM each)        x µl 

primer sense (50 µM)   0.25 µl 

primer antisense (50 µM)   0.25 µl 

MgCl2 (50 mM)        x µl 

Taq polymerase (5U/µl)     0.5 µl 

probe (1 pmol/µl)        x µl 

cDNA/template        5 µl 

H2O ad 25 ml 
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Conditions: 

Table 4: conditions for real-time PCR 

mRNA  MgCl2 dNTP probe annealing  

β-Actin 5 mM 800 µM 2.5 pmole 58°C 

GILZ 4 mM 200 µM 2.5 pmole 60°C 

TLR1 9 mM 800 µM 1.5 pmole 57°C 

TLR2 6 mM 800 µM 2.5 pmole 60°C 

TLR4 5 mM 800 µM 2.5 pmole 58°C 

TLR6 8 mM 800 µM 2.5 pmole 57°C 

MCP-1 4 mM 200 µM 1.5 pmole 59°C 

 

 

Real-time PCR was performed in an iQ5 Cycler using the software iQ5 (both from 

BioRad, Munich, Germany). All samples and standards were analysed in triplicate on 

each plate. 

 

Conditions 

denaturation 8 min 95°C 1 cycle 

denaturation 15 sec 95°C 

40 cycles annealing 15 sec 57°-60°C 

elongation 15 sec 72°C 

final elongation 30 sec 25°C 1 cycle 

 

The curves of a real-time PCR show three different phases: an early phase with 

detection of the basal fluorescence, an exponential phase, in which the detected 

fluorescence signal is proportional to the amplified PCR product as well as a final 

plateau phase. The threshold, at which the fluorescence of the PCR product is 

stronger than the basal fluorescence, is determined by the software. The number of 

the cycles needed for the threshold excess is termed threshold cycle (Ct value). For 

reliable reproducibility of the experiments, the efficiency should be between 95 and 

105%. 
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Quantification 

The starting quantity mean (SQ mean) of each triplicate was determined For 

quantification, which was calculated by the software by comparison threshold cycles 

to the standard dilution series. All SQ means were normalised to the SQ means of 

the house-keeping gene β-actin, and the mean of the control values was calculated. 

The normalized values of all other samples were compared to this control mean, 

averaged, and shown as x-fold or percentaged expression.  

 

 

2.11 Luciferase assay 

After transfection as described in 2.6, the cells were grown in white 96-well plates 

with clear bottom (PerkinElmer, Rodgau-Juedesheim, Germany) and treated as 

indicated. Equal volumes of luciferase substrate buffer (Dual-Glo Luciferase Assay 

System, Promega, Heidelberg, Germany) were added, and after incubation for 

35 min at room temperature whole luminescence was measured using a Wallac 

Victor2 multilabel counter and the software Wallac 1420 (both from 

Wallac/PerkinElmer, Rodgau-Juedesheim, Germany). In previous experiments high 

fluctuations in the expression of the standardization gene renilla were observed 

resulting in incorrect normalization. Therefore, a co-transfection with a second 

plasmid for standardization was not performed in this work. 

 

 

2.12 Immunofluorescence 

2.12.1 Solutions 

PBS  PBST   

see in 2.2.1  see in 2.6.1  
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2.12.2 Antibodies 

Table 5: Antibodies and dilutions used for immunofluorescence 

antibody used dilution absorption/emission 

anti-human p38 MAPK, mouse IgG1 1:20   

anti-human phospho-p38 MAPK, rabbit IgG 1:25   

Alexa Fluor® 488 F(ab’)2 fragment,               

goat anti-mouse IgG 

1:200       495 nm/519 nm 

Alexa Fluor® 594 F(ab’)2 fragment,                  

goat anti-rabbit IgG 

1:300       590 nm/617 nm 

 

 

2.12.3 Experimental proceduce  

HUVEC were grown until 80% confluence on coverslips with a diameter of 12 mm 

coated with 0.1% gelatine A ([w/v] in PBS) for 45 min. The cells were treated as 

indicated, washed with PBS and fixed with ice cold methanol for 20 min at -20°C. 

Before permeabilisation with 0.2% Triton X-100 ([v/v] in PBS/1% [v/v] FCS), cells 

were washed three times with PBS. After washing two times with PBS/1% FCS, 

unspecific binding sites were saturated for 1 h at 4°C with PBS/1% FCS. 

 

2.12.4 Immunodetection 

Immunofluorescence staining was performed in a wet chamber. 40 µl of the primary 

antibody dilution in PBST/1% [v/v] FCS (see in 2.12.2) were added on the coverslips 

and incubated overnight at 4°C. After washing three times with PBST/1% FCS, 70 µl 

of the secondary antibody dilution (see in 2.12.2) were added and incubated for 1 h 

at room temperature. Afterwards, the coverslips were washed twice with PBST and 

once with PBS. For nuclear staining 4’,6-diamidino-2-phenylindoldihydrochloride 

(DAPI, Sigma, Taufkirchen, Germany) was used. This dye binds strongly to AT 

cluster in the DNA and is excited by UV light (absorption at 350 nm, emission at 460 

nm). The coverslips were incubated 5 min at room temperature with 100 µl 0.1 µg/ml 

DAPI in PBS followed by three washing steps with PBS. 3 µl FluorSave (Calbiochem, 

Merck, Darmstadt, Germany) were added on a glass slide, the coverslipes were 

applied with the cell side down and dried for 24 h at 4°C. Cells stained without 
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primary antibody were used as control for unspecific bindings of the secondary 

antibody. Photographs were taken with a laser scanning microscope LSM 710 and 

the software LSM Image Browser Release 4.2. (both from Zeiss, Jena Germany). 

Image editing was performed with Adobe Photoshop 7.0 (Adobe Systems, Munich, 

Germany). 

 

 

2.13 Flow cytometric analysis 

2.13.1 Solutions 

PBS   TEN buffer  

see in 2.2.1 Tris-HCl, pH 7.5   40 mM 

  EDTA     1 mM 

  NaCl 150 mM 

  in H2O  

    

FACS buffer  saponin buffer  

BSA   0.5% [w/v] BSA   0.5% [w/v] 

azide 0.01% [v/v] azide 0.01% [v/v] 

in PBS  saponin   0.5% [w/v] 

  in PBS  
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2.13.2 Antibodies 

Table 6: Antibodies and dilutions used for flow cytometric analysis 

antibodies  used dilution concentration per 

5*105 cells 

anti-human TLR1, mouse IgG1, κ 1:100    0.05 mg/ml 

mouse IgG1, κ, isotype control 1:100    0.05 mg/ml 

anti-human TLR2, mouse IgG2a 1:10     0.4 mg/ml 

mouse IgG2a, isotype control 1:2.5      0.4 mg/ml 

anti-human TLR4, mouse IgG2a, κ 1:200  0.025 mg/ml 

mouse IgG2a, κ, isotype control 1:200  0.025 mg/ml 

biotin-SP-conjugated F(ab’)2 fragment, 

goat anti-mouse 

1:10      0.1 mg/ml 

R-PE-conjugated anti-biotin streptavidin 1:10      0.1 mg/ml 

R-PE-conjugated goat anti-mouse IgG  TLRs 1, 2: 1:10  

TLR4: 1:20  

TLRs 1, 2: 1 mg/ml 

TLR4: 0.5 mg/ml 

 

 

2.13.3 Analysis of the anti-TLR2 antibody specifity 

Plasmid 

To determine the specifity of the used anti-TLR2 antibody CHO-K1 cells were 

transfected with pcDNA3-huTLR2-YFP (Latz et al., 2002). The insert contained a 

human TLR2 cDNA sequence cloned into a vector containg the sequence of the 

yellow fluorescent protein (YFP). The result was the expression of the fusion protein 

TLR2 with YFP at the C-terminus. The plasmid was amplified and isolated using 

Midiprep (see in 2.4).  

 

Experimental procedure 

CHO-K1 cells were grown in 6-well plates until 50% confluence. Before transfection, 

the cell culture medium was substituted by fresh medium without antibiotics. 100 µl 

medium without any supplements were mixed with 2 µg pcDNA3-huTLR2-YFP 

followed by addition of 8 µl FuGENE® HD transfection reagent (Roche, Basel, 

Switzerland; equals an 8:2 ratio of FuGENE HD transfection reagent to DNA). After 
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vortexing for 2 sec and incubation for 5 min at room temperature, the mixture was 

added to the cells. The plates were carefully shaken for 30 sec and cultivated for 

46 h.  

For TLR2 antibody staining the cells were trypsinized as described above (see in 

2.2.7). Removal of the medium was followed by centrifugation (5 min, 500xg) and two 

washing steps with PBS. After fixation with 4% [v/v] formaldehyde for 15 min at room 

temperature, cells were washed once with PBS and once with saponin buffer. 2 µl 

human IgG (Jackson ImmunoResearch, Camebridgeshire, UK) were added for 

blocking of unspecific binding sites, and cells were incubated for 15 min at room 

temperature. 20 µl of the anti-TLR2 antibody or isotype control dilution in saponin 

buffer were added (see in 2.13.2), and the mixture was incubated 1 h at room 

temperature. The cells were washed three times with saponin buffer and after 

addition of 20 µl of the biotin-conjugated F(ab’)2 fragment dilution (see in 2.13.2) 

incubated for 30 min on ice. After three washing steps with saponin buffer, 20 µl of 

the R-PE-conjugated streptavidin dilution (see in 2.13.2) were added, and cells were 

incubated for 30 min at room temperature. Afterwards, cells were washed three times 

with saponin buffer and resuspended in 300 µl 0.2% [v/v] formaldehyde. 

 

Measurement  

Flow cytometric analysis was carried out by a FACSCalibur and the software 

CellQuestPro (both from Becton Dickinson, Heidelberg, Germany). The settings for 

compensation were done using only fixed cells, transfected cells, as well as 

transfected and stained cells.  

 

2.13.4 TLR-staining  

Experimental procedure 

HUVEC were grown in 6-well plates until confluence and treated as indicated. The 

culture medium was removed, and the cells were washed with ice cold PBS. 500 µl 

ice cold TEN buffer were added to the cells followed by incubation for 20 min on ice 

and scraping. After centrifugation (5 min, 500xg) cells were washed twice with ice 

cold PBS. After a further centrifugation step, the supernatant was completely 

decanted, and the cells were fixed drop wise with 1 ml ice cold 70% [v/v] ethanol 
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under constant vortexing. Until immunostaining the suspensions were frozen at 

-20°C. 

The following steps were done on ice. For removal of the ethanol, the cells were 

centrifuged (5 min, 500xg) and washed two times with PBS, once with FACS buffer 

and once with saponin buffer. 2 µl human IgG (Jackson ImmunoResearch, 

Camebridgeshire, UK) were added for blocking of unspecific binding sites, and cells 

were incubated for 15 min at room temperature. 20 µl antibody dilution (see in 2.13.2) 

were added, and the mixture was incubated for 30 min at room temperature. Cells 

were washed three times with saponin buffer and 20 µl of the secondary antibody 

dilution (see in 2.13.2) were added. After 30 min incubation on ice, the cells were 

washed once with saponin buffer and two times with FACS buffer. For cytometric 

measurement cells were resuspended in 300 µl FACS buffer. Cells stained with the 

respective isotype control were used as control for unspecific bindings. To set up the 

measurement parameters of the flow cytometer, completely unstained cells were 

used. 

 

Measurement and quantification 

For flow cytometric analysis a FACSCalibur and the software CellQuestPro were 

used (both from Becton Dickinson, Heidelberg, Germany). An intact cell population 

was gated and the fluorescence signals of 10,000 cells were detected in the FL2 

channel. The geometric mean (median) was regarded for quantification describing 

the middle signal intensity of all measured fluorescence signals. 

The raw data of the TLR cytometric measurements were quantified by forming the 

ratio of stained cells and isotype control and normalizing the treated cells to the 

corresponding control.  

 

 

2.14 Statistical analysis 

For independent experiments, HUVEC preparations of different donors were used. 

Data are shown using the software OriginPro 8.1G (OriginLab Corporation, 

Northampton, USA) and are expressed as mean ±SEM. Statistical significance was 

determined by student’s t-test (one sample) using the software Excel (Microsoft, 

Redmond, USA) and/or OriginPro 8.1G (OriginLab Corporation, Northampton, USA). 
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3. Results 
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3.1 GILZ expression in endothelial cells 

3.1.1 GILZ protein expression at baseline and after dexamethasone 

Since the presence of GILZ in untreated endothelial cells has as yet been unknown, 

GILZ expression at baseline and after dexamethasone treatment was examined by 

Western blot analysis. As shown in Figure 6, GILZ protein was constitutively 

expressed in HUVEC and as described for other cell types (Eddleston et al., 2007; 

D'Adamio et al., 1997) increased after treatment with dexamethasone.  

 

 

                           

Figure 6: GILZ expression in HUVEC at baseline and after dexamethasone (Dex). Cells were 
treated with 1 µM Dex or an equal volume of DMSO as solvent control for the indicated times. 
Equal amounts of protein were assessed by Western blot analysis using tubulin as loading 
control. Data are shown as one representative out of three independent experiments. 

 

 

When comparing GILZ mRNA expression in HUVEC to alveolar macrophages after 

normalisation on the house-keeping gene β-actin, similar GILZ levels were found 

(HUVEC: 0.007 attomol/µl, SEM±0.001, n=18; alveolar macrophages: 0.003 

attomol/µl, SEM±0.0006, n=12; Jessica Hoppstädter, unpublished data). 

 

3.1.2 GILZ expression after TNF-α 

In contrast to the dexamethasone-mediated downregulation, Western blot analysis 

showed that treatment of HUVEC with TNF-α led to a decreased protein GILZ 

expression by about 50% (Figure 7). 
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Figure 7: GILZ protein expression after TNF-α. HUVEC were either left untreated (-) or treated 
with 10 ng/ml TNF-α for the indicated times. Equal amounts of protein were assessed by 
Western blot analysis using tubulin as loading control. Data are shown as one representative 
out of four independent experiments. 

 

 

To verify if GILZ downregulation after TNF-α treatment occurred not only on protein, 

but also on mRNA level, the GILZ mRNA levels after TNF-α treatment were 

measured using real-time RT-PCR. As shown in Figure 8, GILZ expression was also 

significantly decreased on mRNA level. 

 

                                     

Figure 8: GILZ mRNA expression after TNF-α. HUVEC were either left untreated (-) or treated 
with 10 ng/ml TNF-α for the indicated times. mRNA expression was measured by real-time RT-
PCR using β-actin for normalisation. Data for untreated cells were set as one hundred percent 
and expression is shown as mean ±SEM of three independent experiments performed in 
duplicates. *p<0.05, **p<0.01, ***p<0.001 compared to untreated cells. 

 

 



RESULTS  64 
_________________________________________________________________________________________________________________ 
 

3.2 TLR mRNA expression after TNF-α 

3.2.1 TLR2 mRNA expression after TNF-α 

TNF-α has been shown to induce the expression of TLR2 as well as the expression 

of the inflammation marker MCP-1 (Satta et al., 2008; Weber et al., 2003). In order to 

confirm these data from the literature, mRNA levels were measured after TNF-α 

treatment. Using real-time RT-PCR both TLR2 and MCP-1 mRNA expression was 

significantly increased (Figure 9). 

 

 

Figure 9: TLR2 and MCP-1 mRNA expression after TNF-α. HUVEC were either left untreated (-) 
or treated with 10 ng/ml TNF-α for the indicated times. mRNA expression was measured by 
real-time RT-PCR using β-actin for normalisation. Data for untreated cells were set as one and 
x-fold expression is shown as mean ±SEM of three independent experiments performed in 
duplicates. *p<0.05, **p<0.01 compared to untreated cells. 

 

 

3.2.2 TLRs 1, 4 and 6 mRNA expression after TNF-α 

Because of the TNF-α-induced expression of TLR2, we aimed to determine the effect 

of TNF-α on the expression of the TLR2 co-receptors TLR1 and TLR6 as well as on 

TLR4 expression. Concordantly to TLR2, TLR1 mRNA was upregulated by TNF-α, 

whereas TLR4 mRNA expression was diminished (Nadège Ripoche, unpublished 

data). In contrast to the TLR2 co-receptor TLR1, TLR6 mRNA expression was 

diminished when TLR2 mRNA was maximally expressed (Figure 10). At earlier 

timepoints, however, a increased expression of TLR6 mRNA could be observed. 
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Figure 10: TLR6 mRNA expression after TNF-α. HUVEC were either left untreated (-) or treated 
with 10 ng/ml TNF-α for the indicated times. mRNA expression was measured by real-time RT-
PCR using β-actin for normalisation. Data for untreated cells were set as one and x-fold 
expression is shown as mean ±SEM of three independent experiments performed in duplicates. 
*p<0.05 compared to untreated cells. 

 

 

3.3 Effect of GILZ on TLR mRNA expression 

3.3.1 TLR mRNA expression after GILZ knockdown  

The TNF-α-mediated diminished expression of GILZ, while TLR2 and MCP-1 were 

significantly upregulated, led to the suggestion that GILZ downregulation might have 

functional implications in inflammatory activation of endothelial cells. Therefore, we 

decided to knock down GILZ by siRNA. Functionality of siRNA transfection was 

confirmed by Western blot analysis and real-time RT-PCR (Figure 11). To determine 

the effect of GILZ knockdown on TLR2 mRNA expression, we aimed to investigate 

the earliest time point when GILZ protein levels were reduced. GILZ protein was 

firstly knocked down 20 h after siRNA transfection, and 24 h after siRNA transfection 

the knockdown of GILZ protein was still evident (Figure 11 and data not shown). 
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A           B 

          

Figure 11: GILZ knockdown after siRNA transfection. HUVEC were either nucleofected in the 
absence of siRNA (-) or transfected with siControl (siCo) or siGILZ for 20 h (A, B) and 24 h (A). 
A: Equal amounts of protein were assessed by Western blot analysis using tubulin as loading 
control. Data are shown as one representative out of four independent experiments. B: mRNA 
expression was measured by real-time RT-PCR using β-actin for normalisation. Data for siCo 
transfected cells were set as one and x-fold expression is shown as mean ±SEM of three 
independent experiments performed in duplicates. ***p<0.001 compared to siCo transfected 
cells. 

 

 

After determination of the earliest time point, when GILZ protein was knocked down, 

the effect of GILZ knockdown on TLR2 mRNA expression was examined. As shown 

in Figure 12, TLR2 mRNA was significantly increased after siGILZ knockdown.  

 

 

  

Figure 12: Effect of GILZ knockdown on TLR2 mRNA expression. HUVEC were either 
nucleofected in the absence of siRNA (-) or transfected with siControl (siCo) or siGILZ for 20 h. 
mRNA expression was measured by real-time RT-PCR using β-actin for normalisation. Data for 
siCo transfected cells were set as one and x-fold expression is shown as mean ±SEM of three 
independent experiments performed in duplicates. **p<0.01 compared to siCo transfected 
cells. 
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Because of the influence of GILZ on TLR2 expression, we also measured the 

expression levels of the TLR2 co-receptors TLR1 and TLR6 as well as TLR4 after 

GILZ knockdown. Using real-time RT-PCR a significantly increased TLR6 mRNA 

expression was found after GILZ knockdown, while TLR1 and TLR4 mRNA 

expression levels were not affected (Figure 13).  

 

 

 

Figure 13: Effect of GILZ knockdown on TLRs 1, 4 and 6 mRNA expression. HUVEC were either 
nucleofected in the absence of siRNA (-) or transfected with siControl (siCo) or siGILZ for 20 h. 
mRNA expression was measured by real-time RT-PCR using β-actin for normalisation. Data for 
siCo transfected cells were set as one and x-fold expression is shown as mean ±SEM of three 
independent experiments performed in duplicates. *p<0.05 compared to siCo transfected cells. 

 

 

3.3.2 TLR mRNA expression after GILZ overexpression  

In order to clarify the inverse correlation of GILZ and TLR2 and TLR6 expression, we 

aimed to overexpress GILZ. Transfection of HUVEC with a plasmid containing a 

cDNA of human GILZ-ORF (open reading frame) as insert led to a GILZ 

overexpression on mRNA level, which was investigated by real-time PCR (Figure 

14). However, an overexpression of GILZ protein was never possible (data not 

shown). 
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Figure 14: GILZ mRNA levels after GILZ overexpression. HUVEC were either left untreated (-) or 
transfected with empty control vector (empty) or GILZ plasmid for 16 h. mRNA expression was 
measured by real-time RT-PCR using β-actin for normalisation. Data for empty vector 
transfected cells were set as one and x-fold expression is shown as mean ±SEM of one 
experiment performed in duplicates.  

 

 

Because GILZ overexpression after plasmid transfection was only possible on mRNA 

level, the cells were alternatively treated cells with dexamethasone for 8 h in order to 

induce GILZ protein (Figure 6). A significantly decreased mRNA expression for TLR2, 

both of its co-receptors TLR6 and TLR1, as well as for the inflammation marker 

MCP-1 was oberserved by real-time RT-PCR (Figure 15). 

 

 

 

Figure 15: Effect of GILZ induction by dexamethasone (Dex) on TLRs 1, 2, 4, 6 and MCP-1 
mRNA expression. HUVEC were either left untreated (-) or treated with Dex or an equal volume 



RESULTS  69 
_________________________________________________________________________________________________________________ 
 

of DMSO as solvent control for 8 h. mRNA expression was measured by real-time RT-PCR 
using β-actin for normalisation. Data for DMSO treated cells were set as one and x-fold 
expression is shown as mean ±SEM of three independent experiments preformed in duplicates. 
*p<0.05, ***p<0.001 compared to DMSO treated cells. 

 

 

Taken together, knockdown and induction studies indicated that GILZ is involved in 

regulation of TLR2 and TLR6 expression. 

 

 

3.4 GILZ mRNA expression in atherosclerotic arteries 

In order to establish the inverse expression of TLR2 and GILZ also in atherosclerotic 

lesions, samples from human atherosclerosis patients were analyzed. This 

preliminary set of experiments was performed in atherosclerotic intima cylinders of 

coronary arteries compared to healthy aortae using real-time RT-PCR. Because 

coronary arteries are originated from the ascending aorta, it was possible to compare 

both with each other. As shown in Figure 16, GILZ mRNA expression levels in 

atherosclerotic coronary arteries were diminished, while TLR2 mRNA was increased 

when comparing geometric as well as arithmetic means.  

 

 

 

 

Figure 16: GILZ and TLR2 mRNA expression in atherosclerotic coronary arteries. mRNA 
expression in normal aortae (n=4) and atherosclerotic intima cylinders of coronary arteries 
(n=4) was measured by real-time RT-PCR using β-actin for normalisation. Data are presented 
as boxes with arithmetic medians (square), 25th and 75th percentiles as boxes within 
geometric medians (line), and 10th and 90th percentiles as whiskers. 
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To confirm these findings GILZ and TLR mRNA expression levels were also 

investigated in atherosclerotic and normal internal mammary arteries (IMA) using 

real-time RT-PCR. As shown in Figure 17, GILZ expression was also downregulated 

in atherosclerotic compared to normal IMA, while for TLR2 an increased expression 

was observed.  

 

 

 

 

Figure 17: GILZ and TLR2 mRNA expression in atherosclerotic internal mammary arteries 
(IMA). mRNA expression in normal IMA (n=5) and atherosclerotic IMA (n=2) was measured by 
real-time RT-PCR using β-actin for normalisation. Data are presented as boxes with arithmetic 
medians (square), 25th and 75th percentiles as boxes within geometric medians (line), and 10th 
and 90th percentiles as whiskers. 

 

 

3.5 Role of NF-қB and AP-1 in TLR expression 

The results in atherosclerotic arteries verified the observations made in HUVEC that 

GILZ downregulation is connected to TLR2 upregulation. 

In order to clarify the mechanisms of GILZ-dependent TLR expression the role of 

transcription factors probably involved had to be determined. GILZ has been 

described to inhibit both NF-қB and AP-1 (Ayroldi & Riccardi, 2009). We therefore 

aimed to investigate the role of these transcription factors in TLR expression and to 

analyze this aspect in TNF-α-activated cells using decoy oligonucleotide transfection. 

Functionality of NF-қB and AP-1 oligonucleotide decoy transfection was confirmed by 

EMSA (Figure 18). 
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A                                                          B 

 

Figure 18: Inhibition of NF-қB and AP-1 activation after decoy oligonucleotide transfection. 
HUVEC were either left untransfected or transfected with scrambled (scram), NF-қB (A) or AP-1 
(B) decoy oligonucleotides. 4 h after transfection they were either left untreated (-) or 
additionally treated with 10 ng/ml TNF-α (+), 20 min for NF-қB activation (A) or 1 h for AP-1 
activation (B) and EMSA was performed. Functionality of the EMSA was confirmed using 
unlabeled NF-қB and AP-1 decoy oligonucleotides for control (A, B) or using anti-p65 antibody 
for NF-қB supershift (A). Data are shown as one representative out of five independent 
experiments. 

 

 

Successful NF-қB decoy oligonucleotide transfection was not only confirmed by 

EMSA for each experiment (data not shown), but also by MCP-1 mRNA 

measurement (Figure 19). MCP-1 has been known to be regulated via NF-қB in 

endothelial cells (Ishizuka et al., 2000). To determine the expression of TLRs 1, 2, 4, 

and 6 expression after NF-қB oligonucleotide decoy transfection real-time RT-PCR 

was performed. As shown in Figure 19, NF-қB was significantly involed in the TNF-α-

induced expression of TLR2, but neither in the expression of its co-receptors TLR1 

and TLR6 nor in TLR4 expression. 
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Figure 19: Involvement of NF-қB in TLRs 1, 2, 4, 6 and MCP-1 mRNA expression. HUVEC were 
either transfected with scrambled or NF-қB decoy oligonucleotides for 4 h, and were either left 
untreated (-) or treated with 10 ng/ml TNF-α for another 4 h. mRNA expression was measured 
by real-time RT-PCR using β-actin for normalisation. Data for scrambled transfected and TNF-α 
treated cells were set as one hundred percent and expression is shown as mean ±SEM of three 
independent experiments performed in duplicates. *p<0.05 compared to scrambled transfected 
and TNF-α treated cells. 

 

 

To investigate the role of AP-1 in GILZ-dependent TLR expression, AP-1 

oligonucleotide decoy transfection was confirmed for each experiment by EMSA 

(data not shown). In contrast to NF-қB, data did not indicate an involvement of AP-1 

in TNF-α-induced TLR expression (Figure 20). TNF-α-induced MCP-1 expression, 

known to be regulated in endothelial cells via AP-1 (Ishizuka et al., 2000), was 

significantly reduced in AP-1 decoy transfected cells. 
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Figure 20: Involvement of AP-1 in TLRs 1, 2, 4, 6 and MCP-1 mRNA expression. HUVEC were 
either transfected with scrambled or AP-1 decoy oligonucleotides for 4 h, and were either left 
untreated (-) or treated with 10 ng/ml TNF-α for another 4 h. mRNA expression was measured 
by real-time RT-PCR using β-actin for normalisation. Data for scrambled transfected and TNF-α 
treated cells were set as one hundred percent and percentaged expression is shown as mean 
±SEM of four independent experiments preformed in duplicates. *p<0.05 compared to 
scrambled transfected and TNF-α treated cells. 

 

 

3.6 NF-қB activation after GILZ knockdown 

3.6.1 Nuclear translocation of NF-қB after GILZ knockdown 

Since NF-қB was critical in the induction of TLR2 expression and since GILZ 

knockdown induced TLR2 expression, we hypothesized that absence of GILZ might 

release NF-қB and induce nuclear translocation. GILZ was therefore knocked down 

by siRNA transfection and nuclear translocation of the NF-қB subunits p65 and p50 

was investigated. In fact, as shown in Figure 21, a nuclear translocation of p65 and 

p50 was observed by Western blot analysis after GILZ knockdown.  
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Figure 21: Nuclear translocation of NF-қB after GILZ knockdown. Cells were either left 
untransfected (-) or transfected with siControl (siCo) or siGILZ for 20 h. Equal amounts of 
protein of nuclear and cytosolic fractions were assessed by Western blot analysis using 
tubulin as loading control. Data are shown as one representative out of three independent 
experiments. 

 

 

3.6.2 NF-қB activation after GILZ knockdown 

In order to test whether siGILZ-induced nuclear translocated NF-қB was in fact 

transcriptionally active, a luciferase reporter gene under an NF-қB promoter was 

used for promoter gene assay. Successful GILZ knockdown after additional 

transfection with the luciferase plasmid was confirmed using Western blot analysis 

(Figure 22). 

 

 

                                      

Figure 22: GILZ knockdown after additional luciferase plasmid (pLuciferase) transfection. 
HUVEC were transfected with either siControl (siCo) or siGILZ and pLuciferase for 20 h. Equal 
amounts of protein were assessed by Western blot analysis using tubulin as loading control. 
Data are shown as one representative out of five independent experiments. 

 

 

GILZ knockdown after additional luciferase plasmid transfection was performed for 

each experiment (data not shown). As shown in Figure 23, GILZ knockdown led to a 

significantly increased NF-қB activity compared to control transfected cells.  
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Figure 23: NF-қB activation after GILZ knockdown. HUVEC were transfected with either 
siControl (siCo) or siGILZ and a luciferase plasmid for 20 h. NF-қB activity was measured by 
luciferase assay. Data for siCo transfected cells were set as one and are shown as mean ±SEM 
of three independent experiments performed in quinticates. *p<0.05 compared to siCo 
transfected cells. 

 

 

Since NF-қB is known to be activated by TNF-α, functionality of the luciferase assay 

was confirmed measuring TNF-α-induced NF-қB activity (Figure 24). 

 

 

 

Figure 24: NF-қB activation after TNF-α. HUVEC were transfected with a luciferase plasmid for 
20 h, and were either left untreated (Co) or treated with 10 ng/ml TNF-α for another 5 h. NF-қB 
activity was measured by luciferase assay. Data for Co transfected cells were set as one and 
x-fold luciferase activity is shown as mean ±SEM of three independent experiments performed 
in quinticates. *p<0.05 compared to Co. 

 

3.6.3 IқB protein level after GILZ knockdown 

IқB degradation is essential for NF-қB activation (Kiemer et al., 2002c). Therefore, 

IқBα protein levels were examined after GILZ knockdown by Western blot analysis. In 
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parallel to GILZ decay and NF-қB activation, diminished IқBα protein levels were 

detected (Figure 25). 

 

 

  

Figure 25: IқBα protein level after GILZ knockdown. HUVEC were either left untransfected (-) or 
transfected with siControl (siCo) or siGILZ for the indicated times. Equal amounts of protein 
were assessed by Western blot analysis using tubulin as loading control. Data are shown as 
one representative out of three independent experiments. 

 

 

3.6.4 NF-қB translocation after GILZ knockdown and TNF-α 

For endothelial cells a desensitization after cell activation has been described (Wada 

et al., 2005), i.e. activation of NF-қB after a prior activation is suppressed. This led to 

the hypothesis that NF-қB activation of HUVEC by GILZ knockdown results in a 

reduced activation after TNF-α treatment. In cells transfected with GILZ siRNA for 

20 h, subsequent treatment with TNF-α in fact led to a diminished nuclear 

translocation of the NF-қB subunits p65, p50 and c-Rel as investigated by Western 

blot analysis (Figure 26).  
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Figure 26: Nuclear translocation of p65, p50 and cRel after GILZ knockdown und additional 
TNF-α treatment. Cells were either transfected with siControl (siCo) or siGILZ for 20 h, and 
were either left untreated or treated with 10 ng/ml TNF-α for another 20 min. Equal amounts of 
protein of nuclear and cytosolic fractions were assessed by Western blot analysis using 
tubulin as loading control. Data are shown as one representative out of three independent 
experiments. 

 

 

Interestingly, not only the nuclear translocation of the NF-қB subunits was 

diminished, but also the cytosolic protein levels in general seemed to be reduced 

after GILZ knockdown (Figure 26). In order to test whether the NF-қB protein levels 

indeed were diminished after GILZ knockdown, whole cell extracts were examined by 

Western blot analysis. As shown in Figure 27, p65 protein levels were in fact 

diminished after GILZ knockdown.  

 

 

                             

Figure 27: p65 protein level after GILZ knockdown. HUVEC were either left untransfected (-) or 
transfected with siControl (siCo) or siGILZ for the indicated times. Equal amounts of protein 
were assessed by Western blot analysis using tubulin as loading control. Data are shown as 
one representative out of three independent experiments. 
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3.6.5 NF-қB activation after GILZ knockdown and TNF-α 

In order to investigate whether reduced NF-қB translocation was correlated with 

reduced transcriptional activity, NF-қB activation after GILZ knockdown and 

additional treatment with TNF-α was investigated using luciferase assay. As shown in 

Figure 28, a significantly reduced NF-қB activity compared to siControl (siCo) 

transfected and TNF-α treated cells was observed. 

 

 

 

Figure 28: NF-қB activation in TNF-α treated cells after prior GILZ knockdown. HUVEC were 
either transfected with siControl (siCo) or siGILZ and additionally with a luciferase plasmid. 20 
h after transfection cells were either left untreated or treated with 10 ng/ml TNF- α for another 5 
h. NF-қB activity was measured by luciferase assay. Data for siCo transfected and TNF-α 
treated cells were set as one hundred percent and luciferase activity is shown as mean ±SEM 
of three independent experiments performed in quinticates. *p<0.05 compared to siCo 
transfected and TNF-α treated cells. 

 

 

These findings showed that disappearance of GILZ can liberate NF-қB and induce its 

nuclear translocation and activation of endothelial cells. 

 

 

3.7 Role of p38 MAPK in TNF-α-mediated TLR mRNA expression 

Chemical inhibitors of p38 MAPK have been shown to inhibit endothelial TLR2 

expression. However, neither effects of p38 MAPK on other TLRs nor the responsible 

p38 MAPK isoform has been described. We therefore aimed to study these aspects 

and to determine a potential role of GILZ in p38 MAPK-induced actions. Inhibition of 

p38 MAPK was accomplished by either SB203580 (4-[5-(4-fluorophenyl)-2-(4-
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methylsulfinylphenyl)-3Himidazol-4-yl]pyridine) or atrial natriuretic peptide (ANP) in 

TNF-α treated cells.  

 

3.7.1 Inhibition of p38 MAPK by SB203580 

p38 MAPK activation by TNF-α and its inhibition by SB203580 were confirmed by 

Western blot analysis (Figure 29). 

 

 

             

Figure 29: Inhibition of p38 MAPK activation by SB203580 (SB). HUVEC were either  pretreated 
with 10 ng/ml SB or an equal volume of DMSO as solvent control for 30 min and treated with 
10 ng/ml TNF-α for 20 min. Cells treated with TNF-α were also pretreated with DMSO. Equal 
amounts of protein were assessed by Western blot analysis using tubulin as loading control. 
Data are shown as one representative out of three independent experiments. 

 

 
To confirm these findings for p38 MAPK activation and inhibition and to investigate 

the cellular translocation of p38 MAPK in this context, immunofluorescence staining 

was performed. As shown in Figure 30, p38 MAPK was phosphorylated after TNF-α 

treatment, which led to p38 MAPK translocation into the nucleus, whereas SB203580 

inhibited both this activation and nuclear translocation. Interestingly, phosphorylated 

p38 MAPK was not only localized in the nucleus, but also in the cytoplasm. 
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Figure 30: Inhibition of phosphorylation and nuclear translocation of p38 MAPK by SB203580 
(SB). Cells were either pretreated with 10 ng/ml SB or an equal volume of DMSO as solvent 
control for 30 min and treated with 10 ng/ml TNF-α for 20 min. Cells treated with TNF-α were 
also pretreated with DMSO. p-p38 (A) and p38 (B) were stained using immunofluorescence and 
nuclear staining was performed using DAPI. Photographs were taken with 400-fold 
magnification. Data are shown as one representative out of three independent experiments. 

 

 

Examinations of p38 MAPK-dependent TLR expression were assessed by real-time 

RT-PCR. The inflammatory marker MCP-1 mRNA was also measured, as it is known 

to be regulated via p38 MAPK (Weber et al., 2003). 

A 
 

 
 
 
 
 
 
 
 
 
 
B 
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As shown in Figure 31, an abrogation of TNF-α-induced actions on both TLR2 and 

MCP-1 expression by SB203580 was observed. TLR4 and TLR6 were significantly 

downregulated upon TNF-α treatment, whereas TLR1 was induced. TLR6 

downregulation was significantly abrogated by p38 MAPK inhibition, whereas neither 

TLR1 nor TLR4 expression was influenced.  

 

 

 

 

Figure 31: Involvement of p38 MAPK in TLRs 1, 2, 4, 6 and MCP-1 mRNA expression by 
SB203580 (SB). HUVEC were either pretreated with 10 ng/ml SB or an equal volume of DMSO 
as solvent control for 30 min and treated with 10 ng/ml TNF-α for 4 h. Cells treated with TNF-α 
were also pretreated with DMSO. mRNA expression was measured by real-time RT-PCR using 
β-actin for normalisation. Data for DMSO treated cells were set as one and x-fold expression is 
shown as mean ±SEM of five independent experiments performed in triplicates. *p<0.05, 
**p<0.01, ***p<0.001 compared to DMSO treated cells; †p<0.05, ††p<0.01 compared to TNF-α 
treated cells. 

 

 

3.7.2 Inhibition of p38 MAPK by ANP 

ANP was applied as a second pharmacological inhibitor of p38 MAPK, which has 

been described to inhibit p38 MAPK phosphorylation (Weber et al., 2003). The 

inhibition of p38 MAPK activation was confirmed by Western blot analysis (Figure 

32). 
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Figure 32: Inhibition of p38 MAPK activation by ANP. HUVEC were either left untreated (-) or 
pretreated with 10 ng/ml ANP for 30 min and treated with 10 ng/ml TNF-α for 20 min. Equal 
amounts of protein were assessed by Western blot analysis using tubulin as loading control. 
Data are shown as one representative out of three independent experiments. 

 

 

The p38 MAPK-dependent TLR expression using ANP for p38 MAPK inhibition was 

examined by real-time RT-PCR. As shown in Figure 33, the previous observations 

were confirmed. TLR2 and MCP-1 were significantly and TLR1 slightly upregulated 

by TNF-α treatment, while TLR4 and TLR6 were downregulated. TNF-α-induced 

expression of TLR2 and TLR6 was partially abrogated by p38 MAPK inhibition, 

whereas TLR1 and TLR4 expression was not influenced.  

 

 

 

Figure 33: Involvement of p38 MAPK in TLRs 1, 2, 4, 6 and MCP-1 mRNA expression by ANP. 
HUVEC were either left untreated (-) or pretreated with 10 ng/ml ANP for 30 min and treated 
with 10 ng/ml TNF-α for 4 h. mRNA expression was measured by real-time RT-PCR using β-
actin for normalisation. Data for untreated cells were set as one and x-fold expression is shown 
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as mean ±SEM of three independent experiments preformed in duplicates. *p<0.05, **p<0.01, 
***p<0.001 compared to untreated cells; †p<0.05 compared to TNF-α treated cells. 

 

 

3.7.3 p38 MAPK isoform dependent regulation of TLR expression 

In order to determine the p38 MAPK isoform responsible for TNF-α-induced TLR 

expression, dominant negative (dn) mutants of p38α and p38β2, the major splice 

variant of p38β (Hale et al., 1999), were overexpressed using plasmid transfection. 

Western blot analysis showed that only p38α was expressed in HUVEC (Figure 34). 

 

 

           

Figure 34: Expression of p38α and p38β2 MAPK in HUVEC. Cells were transfected with either 
empty control vector (empty) or dominant negative (dn) p38α or dn p38β2 or for 24 h. Equal 
amounts of protein were assessed by Western blot analysis using tubulin as loading control. 
Data are shown as one representative out of three independent experiments. 

 

 

Therefore, the effect of p38α in TNF-α-induced TLR expression was examined by 

overexpression of dn p38α MAPK. The subsequent inhibition of phosphorylation was 

confirmed by Western blot analysis (Figure 35). 
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Figure 35: p38 MAPK phosphorylation after dominant negative (dn) p38α MAPK 
overexpression. HUVEC were either left untransfected or transfected with empty control vector 
(empty) or dn p38α for 24 h, and were either left untreated or treated with 10 ng/ml TNF-α for 
another 20 min. Equal amounts of protein were assessed by Western blot analysis using 
tubulin as loading control. Data are shown as one representative out of three independent 
experiments. 

 

 

Examinantion regarding p38α MAPK-dependent TLR expression was performed by 

real-time RT-PCR. As shown in Figure 36, a significantly diminished TNF-α-induced 

mRNA expression for TLR2 and MCP-1 was observed after dn p38α overexpression. 

Again, TLR4 and TLR6 expression was downregulated by TNF-α, whereas TLR1 

was slightly induced. The dn p38α MAPK mutant abrogated the TNF-α-induced 

tendency of TLR6 downregulation, while TLR1 and TLR4 expression was not 

affected. 
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Figure 36: TLRs 1, 2, 4, 6 and MCP-1 mRNA expression after dominant negative (dn) p38α 
MAPK overexpression. HUVEC were either transfected with empty control vector (empty) or dn 
p38α for 24 h, and were either left untreated or treated with 10 ng/ml TNF-α for another 4 h. 
mRNA expression was measured by real-time RT-PCR using β-actin for normalisation. Data for 
empty vector transfected and TNF-α treated cells were set as one hundred percent and 
expression is shown as mean ±SEM of four independent experiments preformed in duplicates. 
**p<0.01, compared to empty vector transfected and TNF-α treated cells. 

 

 

These findings demonstrated that p38α MAPK abrogates the TNF-α-mediated TLR2 

and TLR6 expression, whereas TLR1 and TLR4 expression was not affected. 

 

 

3.8 Role of p38 MAPK in TNF-α-mediated TLR protein expression 

In order to confirm our findings for p38 MAPK-dependent TLR expression on mRNA 

level, the protein levels were investigated by flow cytometric analysis.  

 

3.8.1 Specifity of the anti-TLR2 antibody 

To confirm the specific binding of the anti-TLR2 antibody used for flow cytometric 

analysis, CHO-K1 cells were used, as these cells have been described to express no 

functional TLR2 transcript (Heine et al., 1999). Human TLR2 tagged with yellow 
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fluorescent protein (YFP) was transfected into CHO-K1 and overexpressed. TLR2-

YFP protein expression was confirmed by flow cytometric analysis via YFP signal 

detection in the FL1 channel of the cytometer. As shown in Figure 37, TLR2-YFP 

was expressed in transfected CHO-K1 cells.  

 

 

                       A                                 B                 

                           

Figure 37: TLR2-YFP expression after plasmid transfection. CHO-K1 cells were either left 
untransfected (A) or transfected with plasmid containing human TLR2-YFP as insert (B). Flow 
cytometric investigations were performed 46 h after transfection by measurement of an intact 
population consisting of 10,000 cells as shown as dot plots (A, B). Data are shown as one 
representative out of two independent experiments. 

 

 

In order to examine the binding of anti-TLR2 antibody, TLR2-YFP-negative and 

-positive cells were stained with anti-TLR2 antibody or a corresponding isotype 

control. Fluorescence signals were amplified using biotine and streptavidine. 

Streptavidine was labeled with R-phycoerythrin (R-PE) and therefore detected in the 

FL2 channel of the cytometer. As shown in Figure 38 A, a small shift was detected in 

non-transfected antibody-stained cells when compared to isotype control cells. This 

shift may be explained by antibody binding to endogenous TLR2. Despite CHO-K1 

cells exhibit no functional TLR2 protein, they express a TLR2 protein consisting only 

of the extracellular domain (Heine et al., 1999). When only TLR2-YFP expressing 

cells were examined, a much clearer shift in the histogram compared to 

untransfected cells as well as a shift of the cell population shown as dot plots could 

be demonstrated (Figure 38 B, C and D).  
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Figure 38: Binding of the anti-TLR2 antibody measured by flow cytometry. Untransfected (A) or 
TLR2-YFP transfected CHO-K1 cells (B, C, D) were stained with either isotype control (A, B, C) 
or anti-TLR2 antibody (A, B, D), and cell populations consisting of 10,000 cells were measured. 
The histograms show the fluorescence intensities of anti-TLR2 antibody staining (without 
background) compared to isotype control staining (grey background) (A, B). Dot plots (C, D) 
show TLR2-YFP expressing cells and gates (C: R1, D: R2) were examined regarding their 
fluorescence intensities (B). Data are shown as one representative out of two independent 
experiments.  

 

 

These data demonstrated that the anti-TLR2 antibody binds specific to TLR2 

antigens.  

 

 

3.8.2 p38 MAPK-dependent TLR2 protein expression 

After demonstrating that p38 MAPK abrogates TNF-α-induced TLR2 mRNA 

expression, we aimed to confirm the p38-MAPK dependency in TNF-α-induced TLR2 

upregulation on protein level by flow cytometric analysis. As shown in Figure 39, 

TNF-α induced a significant upregulation of TLR2 protein expression, whereas 
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inhibition of p38 MAPK by SB203580 led to a diminished TNF-α induced TLR2 

expression.  

 

 

  

Figure 39: Involvement of p38 MAPK in TLR2 protein expression. HUVEC were either pretreated 
with 10 ng/ml SB203580 (SB) or an equal volume of DMSO as solvent control for 30 min and 
treated with 10 ng/ml TNF-α for 8 h. Cells treated with TNF-α were also pretreated with DMSO. 
Protein expression was measured by flow cytometric analysis. Left panel: representative 
histograms out of three independent experiments with isotype control (grey background), 
DMSO treated control (black line) and SB pretreated and/or TNF-α treated cells (grey line). 
Right panel: after normalisation on isotype control values, DMSO treated control cells were set 
as one and x-fold expression is shown as mean ±SEM of three independent experiments. 
**p<0.01 compared to DMSO treated cells; †p<0.05 compared to TNF-α treated cells. 

 

 

3.8.3 p38 MAPK-dependent TLR1 protein expression 

In order to investigate the p38-MAPK dependency in TNF-α-induced TLR1 

upregulation, TLR1 protein levels were measured by flow cytometric analysis. 

As shown in Figure 40 and confirming the previous results on mRNA level, TLR1 

protein expression was slightly increased after TNF-α treatment, while pretreatment 

with SB203580 does not show an abrogation of this induction.  
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Figure 40: Involvement of p38 MAPK in TLR1 protein expression. HUVEC were either pretreated 
with 10 ng/ml SB203580 (SB) or an equal volume of DMSO as solvent control for 30 min and 
treated with 10 ng/ml TNF-α for 8 h. Cells treated with TNF-α were also pretreated with DMSO. 
Protein expression was measured by flow cytometric analysis. Left panel: representative 
histograms out of three independent experiments with isotype control (grey background), 
DMSO treated control (black line) and SB pretreated and/or TNF-α treated cells (grey line). 
Right panel: after normalisation on isotype control values, data for DMSO treated control cells 
were set as one and x-fold expression is shown as mean ±SEM of three independent 
experiments. 

 

 

3.8.4 p38 MAPK-dependent TLR4 protein expression 

In order to examine the p38-MAPK dependency in TNF-α-mediated TLR4 

downregulation, TLR4 protein levels were measured by flow cytometric analysis. As 

shown in Figure 41, the TLR4 protein expression was neither altered by TNF-α 

treatment for 8 h nor after pretreatment with SB203580.  
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Figure 41: Involvement of p38 MAPK in TLR4 protein expression. HUVEC were either pretreated 
with 10 ng/ml SB203580 (SB) or an equal volume of DMSO as solvent control for 30 min and 
treated with 10 ng/ml TNF-α for 8 h. Cells treated with TNF-α were also pretreated with DMSO. 
Protein expression was measured by flow cytometric analysis. Left panel: representative 
histograms out of three independent experiments with isotype control (grey background), 
DMSO treated control (black line) and SB and/or TNF-α treated cells (grey line). Right panel: 
after normalisation on isotype control values, data for DMSO treated control cells were set as 
one and x-fold expression is shown as mean ±SEM of three independent experiments. 

 

 

3.8.5 p38 MAPK-dependent TLR6 protein expression 

In contrast to the other TLRs examined, TLR6 protein expression was determined by 

Western blot analysis. This was caused by high unspecific bindings of the anti-TLR6 

antibody in flow cytometric investigations. As shown in Figure 42 and confirming the 

results on mRNA level, TLR6 protein expression was significantly diminished after 

TNF-α treatment, whereas an abrogation of this downregulation was observed after 

pretreatment with SB203580.  
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Figure 42: Involvement of p38 MAPK in TLR6 protein expression. HUVEC were either pretreated 
with 10 ng/ml SB203580 (SB) or an equal volume of DMSO as solvent control for 30 min and 
treated with 10 ng/ml TNF-α for 8 h. Cells treated with TNF-α were also pretreated with DMSO. 
Equal amounts of protein were assessed by Western blot analysis using tubulin as loading 
control. Left panel: one representative out of three independent experiments. Right panel: data 
for DMSO treated control cells were set as one and x-fold expression is shown as mean ±SEM 
of four independent experiments. *p<0.05 compared to DMSO treated cells; †p<0.05 compared 
to TNF-α treated cells. 

 

 

3.9 Interaction between GILZ and p38 MAPK 

Because TLR2 expression was dependent on both GILZ and p38 MAPK, we aimed 

to clarify whether GILZ is involved in the regulation of p38 MAPK, i.e. whether GILZ 

knockdown reduces p38 MAPK activation. Levels of p38 and p-p38 MAPK were 

monitored after GILZ knockdown by Western blot analysis. However, as shown in 

Figure 43, decreased GILZ levels did not activate p38 MAPK. In contrast, after 24 h 

even a slightly decreased phosphorylation of p38 MAPK was observed. These 

findings suggested no direct interaction between GILZ and p38 MAPK. 
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Figure 43: p38 MAPK after GILZ knockdown. HUVEC were either left untransfectd (-) or 
transfected with siControl (siCo) or siGILZ for the indicated times. Equal amounts of protein 
were assessed by Western blot analysis using tubulin as loading control. Data are shown as 
one representative out of three independent experiments. 
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4. Discussion 
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4.1 GILZ expression in endothelial cells 

The anti-inflammatory action of GILZ is based on the inhibition of the transcription 

factors NF-қB and AP-1, and GILZ expression has been described for many human 

cells (Ayroldi & Riccardi, 2009). For endothelial cells, however, GILZ mRNA 

expression has only been reported after IL-10 stimulation (Gleissner et al., 2007), but 

no constitutive expression has ever been shown. The present work shows for the first 

time that HUVEC express GILZ at baseline and upregulate its expression after 

dexamethasone treatment. This GILZ upregulation by glucocorticoids is in line with 

previous studies performed in murine thymocytes and lymphocytes (D'Adamio et al., 

1997). Also in human cells, such as airway epithelial cells (Eddleston et al., 2007), 

monocytes (Berrebi et al., 2003), lens epithelial cells (Gupta et al., 2007), mast cells 

(Godot et al., 2006), and dendritic cells (Cohen et al., 2006), a glucocorticoid-induced 

GILZ upregulation was observed. Glucocorticoids act via binding to glucocorticoid 

response elements (GREs) in the promoter region of the GILZ gene. Three of four 

GRE sequences in the distal 5’ region of the GILZ gene are functionally active, and 

may require additional regulatory regions and proteins (Ayroldi & Riccardi, 2009).  

 

In contrast to the dexamethasone-induced upregulation, treatment of HUVEC with 

TNF-α led to a downregulation of GILZ on mRNA and protein level. These data of a 

cytokine-dependent GILZ reduction correspond to previous results in human airway 

epithelial cells after treatment with TNF-α, IL-1β, IFN-γ, or with a mix containing all of 

them (Eddleston et al., 2007). The findings of a substantial constitutive expression of 

GILZ and its distinct downregulation under inflammatory conditions suggested that 

this anti-inflammatory mediator plays an important role in endothelial cells. 

 

 

4.2 TLR expression after TNF-α 

Recently, TLR2 expression has been shown to be upregulated in HUVEC after 

treatment with TNF-α, LPS or IFN-γ (Satta et al., 2008). Also in earlier publications 

has been described that TLR2 is highly upregulated after TNF-α or LPS treatment in 

human microvascular endothelial cells (HMEC) as well as after LPS in HUVEC 

(Faure et al., 2001). Additionally, a TLR2 upregulation has been observed in murine 
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macrophages after TNF-α or LPS treatment (Matsuguchi et al., 2000). In this work 

increased TLR2 expression after TNF-α treatment was confirmed. For the TLR2 co-

receptor TLR1 a slightly increased expression was found, whereas the expression of 

the other TLR2 co-receptor TLR6 as well as TLR4 expression was downregulated. 

These findings for TLRs 1, 4 and 6 are in accordance with Satta et al. (Satta et al., 

2008), who also observed these effects at early time points after TNF-α-treatment. 

Equally, in human monocytes a downregulation of TLR4 after TNF-α has been 

described (Tamandl et al., 2003).  

 

 

4.3 Regulation of inflammatory TLR2 expression by GILZ 

TLR-dependent activation of endothelial cells plays an important role in the 

development of atherosclerosis (Erridge, 2008). However, little is known how the 

expression of these receptors is regulated. One aim of this work was therefore to 

decipher the role of GILZ in TLR expression and to clarify the involved mechanisms. 

 

4.3.1 Effect of GILZ in TLR2 expression 

It has been shown that GILZ overexpression inhibits the LPS-induced TLR2 

expression in monocytes (Berrebi et al., 2003). Our findings that TLR2 is upregulated 

while GILZ is decreased, suggested that GILZ decay itself might induce TLR2 

expression. Concordantly, knockdown of GILZ led to an increased TLR2 mRNA 

expression in HUVEC. In order to confirm this finding, we aimed to overexpress 

GILZ. However, GILZ overexpression was only successful on mRNA, but not on 

protein level. The underlying mechanisms were not studied within this work, but an 

involvement of microRNAs (miRNA) might be suggested. microRNAs represent a 

cellular strategy for the control of gene expression. miRNAs have been characterized 

as non–coding RNAs, which are able to induce either posttranscriptional degradation 

or translational repression of their target mRNA by respective binding to the 

3’-untranslated region (3’-UTR) (Zhang, 2008; Dixon et al., 2000). In the 3’-UTR 

sequence of GILZ mRNA 142 target sites for miRNAs have been identified 

(www.microrna.org). Thus, the expression of GILZ seems highly regulated by 

microRNAs. For GILZ overexpression, however, a plasmid construct containing the 
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reverse transcribed cDNA from the open reading frame (ORF) was used. Therefore, 

a microRNA-dependent regulation via the 3’-UTR can be excluded. However, 

microRNA binding sites have recently also been discovered in the translated region 

(Qin et al., 2010; Ko et al., 2009). Indeed, in the GILZ ORF two putative microRNA 

target sites have been found: hsa-miR-129-5p and hsa-miR-1224-3p 

(www.mirbase.org). These findings suggest that GILZ expression was either 

posttranscriptionally or translationally regulated by microRNAs resulting in mRNA but 

not in protein overexpression.  

 

Nevertheless, to confirm the inverse correlation of TLR2 and GILZ, GILZ protein was 

overexpressed using dexamethasone, a synthetic glucocorticoid. Glucocorticoids 

affect many signalling pathways and act anti-inflammatory via binding to the 

glucocorticoid receptor, a ligand-dependent transcription factor (Chinenov & 

Rogatsky, 2007), and are well described inhibitors of NF-қB (Chinenov & Rogatsky, 

2007; De Bosscher et al., 2003; De Bosscher et al., 1997). Accordingly, our 

investigations showed a dexamethasone-mediated downregulation of inflammatory 

innate immune receptor TLR2. Interestingly, investigations in other cell types than 

HUVEC showed a glucocorticoid-mediated induction of TLR2 expression. Respective 

experiments were done in dendritic cells, human respiratory epithelial cells, and 

human cervix epithelial cells (HeLa cells) (Rozkova et al., 2006; Homma et al., 2004; 

Shuto et al., 2002) suggesting cell-specific regulatory actions of glucocorticoids. In 

addition, glucocorticoids can act on diverse levels of transcriptional regulation, which 

might be independent of GILZ (Chinenov & Rogatsky, 2007). 

 

4.3.2 GILZ mRNA expression in atherosclerotic arteries 

Our findings of an inverse correlation between GILZ and TLR2 exression were 

confirmed for human healthy vs. atherosclerotic vessels. An overexpression of TLR2 

in human atherosclerotic plaques has been reported a couple of years ago (Edfeldt et 

al., 2002). Additionally, in several mouse models it has been shown that TLR2 is 

involved in the development of atherosclerosis (Madan & Amar, 2008; Tobias & 

Curtiss, 2008; Liu et al., 2008; Mullick et al., 2005). In the literature, there are no data 

regarding GILZ expression in atherosclerosis. Thus, this work for the first time links 
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TLR2 overexpression to GILZ downregulation, although the data do not reach 

statistical significance because of a rather small number of donors.  

 

The vessels prepared for our investigations contained not only endothelial cells, but 

e.g. also macrophages. In addition to TNF-α-induced GILZ downregulation in 

endothelial cells, GILZ downregulation on mRNA and protein level has also been 

found in macrophages (Jessica Hoppstädter, unpublished data). Concordantly, TLR2 

overexpression in human atherosclerotic lesions of carotid arteries was observed in 

both endothelial cells and macrophages (Edfeldt et al., 2002). In the literature, a GILZ 

downregulation or even absence in inflammatory diseases, such as chronic 

rhinosinusitis, Crohn disease or tuberculosis has been reported (Zhang et al., 2009; 

Berrebi et al., 2003). Additionally, low GILZ expression in Kupffer cells is suggested 

to contribute to inflammation in alcoholic hepatitis, (Hamdi et al., 2007). These 

findings confirm our results in endothelial cells and suggest an importance of GILZ 

downregulation in inflammatory cell activation. 

 

4.3.3 Transcription factors involved in GILZ-dependent TLR2 expression 

Since a correlation between GILZ downregulation and TLR2 overexpression in 

endothelial cells as well as in atherosclerosis was shown, the underlying 

mechanisms were examined. In murine macrophages and in HeLa cells TLR2 is 

upregulated in an NF-қB dependent fashion (Musikacharoen et al., 2001; Sakai et al., 

2004; Shuto et al., 2002). Studies in HMEC also showed an NF-қB dependent TLR2 

induction after LPS treatment, which was investigated by chemical inhibitors of NF-қB 

as well as transfection with sense and anti-sense p65 oligonucleotides (Faure et al., 

2001). In HUVEC an NF-қB regulated TLR2 upregulation was only shown using the 

chemical NF-қB inhibitor BAY11-7082 (Satta et al., 2008). Since pharmacological 

compounds can have unspecific effects, we aimed to confirm a contribution of NF-қB 

to TLR expression in HUVEC by a more specific approach using NF-қB decoy 

oligonucleotides. Our finding of NF-қB involvement are in accordance with the 

literature and also with the TLR2 downregulation observed after dexamethasone 

treatment, which is a well described inhibitor for NF-қB (Chinenov & Rogatsky, 2007; 

De Bosscher et al., 2003; De Bosscher et al., 1997). 
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Since GILZ can inhibit AP-1-mediated transcription (Mittelstadt & Ashwell, 2001) and 

putative AP-1 binding sites have been suggested for the human trl1 gene (Izadi et al., 

2007), the role of AP-1 in TLR expression was also investigated using decoy 

oligonucleotides. The transcription factor AP-1 is composed of members of the five 

families Jun, Fos, activating transcription factor (ATF) or Maf, which act either as 

homo- or heterodimers. Earliest activated proteins in inflammatory response are 

members of the Jun and Fos families, which in contrast to other families are directly 

activated without transcription and translation (De Bosscher et al., 2003). GILZ can 

bind to both c-Jun and c-Fos via its N-terminal GILZ domain (Mittelstadt & Ashwell, 

2001). A role of c-Jun in endothelial TLR2 induction has already been suggested by 

employing the chemical inhibitor SP600125 (Satta et al., 2008). In contrast, our 

findings using decoy oligonucleotides showed no involvement for AP-1 in the 

regulation of TLR2 expression. This approach, however, is more specific than 

chemichal agents. In addition, the promoter analysis of tlr2 gene showed no binding 

sites for AP-1 (www.genomatix.de). 

 

4.3.4 NF-қB activation after GILZ knockdown 

The mammalian NF-қB family consists of the five members p65 (RelA), RelB, c-Rel, 

p50 (with the precursor p105, NF-қB1), and p52 (with the precursor p100, NF-қB2), 

and they all contain a C-terminal nuclear localisation sequence (NLS). In order to 

induce gene expression, they form homo- or heterodimers. The predominant 

heterodimer in all species is the p65:p50 complex (Hoffmann et al., 2002). In 

unstimulated cells the homo- or heterodimers are bound to IқB family proteins 

(Ghosh et al., 1998). An activation of the homo- or heterodimers is induced by 

degradation of IқB, which subsequently liberates the NLS and induces NF-қB 

translocation into the nucleus. Herein, NF-қB binds to promoter and enhancer 

regions, which contain қB sites with the highly conserved consensus sequence 

GGGAATTTCC (Hayden & Ghosh, 2004). Genes, which are regulated by NF-қB, are 

e.g. involved in apoptosis, cell adhesion, proliferation, innate and adaptive immune 

responses, as well as in inflammation (Perkins, 2007). GILZ binding to p65 has been 

shown to be critical for the inhibition of NF-қB-induced gene transcription (Di Marco et 

al., 2007; Berrebi et al., 2003; Ayroldi et al., 2001; Riccardi et al., 2001). Herein, this 

interaction is facilitated by the C-terminal PER domain of homodimered GILZ (Di 
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Marco et al., 2007). While aa 98-127 of the proline-rich region are important for 

functional repression of NF-қB, aa 121-123 are necessary for binding to NF-қB. The 

GILZ binding site of NF-қB, however, is still unknown. GILZ binding to NF-қB is 

independent of IқB, which was investigated in human neuronal cells (Ntera-2) lacking 

IқB expression as well as in a cell free system (Ayroldi et al., 2001; Riccardi et al., 

2001). Inversely, binding of IқB to NF-қB in vitro is also independent of GILZ (Ayroldi 

et al., 2001) suggesting that GILZ does not mask the NLS sequence like IқBs, but 

stabilizes the NF-қB:IқB complex to inhibit nuclear translocation. 

 

Interestingly, we observed in the absence of any external stimulus a nuclear 

translocation of the subunits p65 and p50 and an increased NF-қB activity after GILZ 

knockdown. Vice versa, in human airway epithelial cells, THP-1 monocytes, human 

kidney epithelial carcinoma cell line 293 (HEK-293), and murine T-cells NF-қB 

activation is diminished after GILZ overexpression (Eddleston et al., 2007; Di Marco 

et al., 2007; Cannarile et al., 2006; Berrebi et al., 2003; Ayroldi et al., 2001). 

Moreover, GILZ knockdown has been shown to activate airway epithelial cells by 

increased cytokine expression, whereby the underlying mechanisms have not been 

investigated (Eddleston et al., 2007). In contrast, lung epithelial cells with stable GILZ 

knockdown did not show increased cytokine induction compared to GILZ-expressing 

cells (Gomez et al., 2010). It has to be noted, however, that the early cellular 

response after knockdown can not be examined in stably transfected cells. Since 

NF-қB activation results in a functional feedback loop, e.g. by induction of IқB, a 

knockdown-induced NF-қB activation is expected only to be transient.  

 

Three different IқBs are known, IқBα, IқBβ, and IқBε, whereby IқBα has been 

described as the primary regulator of p65:p50. In general, IқBs function by masking 

the conserved NLS of the p65 NF-қB subunit, while the NLS of p50 remains 

accessible. Stimulus-dependent phosphorylation of IKKs leads to IқB protein 

ubiquitination and degradation via the 26S proteasome (Pajonk & McBride, 2001) 

resulting in NF-қB-dependent gene expression. Our investigations after GILZ 

knockdown showed diminished IқBα levels, which most likely are responsible for 

NF-қB activation. In contrast, it has been reported that GILZ does not interfere with 

IқB in T-cells (Ayroldi et al., 2001). However, the study only focussed on GILZ 

overexpression and not on GILZ knockdown. 
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4.3.5 NF-қB expression after GILZ knockdown 

Interestingly, GILZ knockdown and additional TNF-α treatment led to a diminished 

nuclear translocation of p65, p50 and cRel and decreased NF-қB activation. 

Macrophage desensitization is known for many years (Remold-O'Donnell, 1974), and 

this phenomenon has also been described for endothelial cells. Stimulation of 

endothelial cells with TNF-α or LPS leads to a desensitization regarding NF-қB 

activation (Wada et al., 2005). Subsequent stimulation with thrombin, which also 

leads to NF-қB activation, does neither activate NF-қB nor induce its translocation 

into the nucleus. Also phosphorylation as welI as degradation of IқBα are not 

induced. Concordantly, mouse macrophages pretreated with LPS show a highly 

reduced NF-қB activation upon further LPS treatment as well as a diminished 

degradation of IқBα (Medvedev et al., 2000). These findings of desensitization 

confirm our data that GILZ decay leads to an activation of NF-қB. 

 

In addition to attenuated NF-қB activation, also the protein expression of NF-қB 

subunits in whole cell lysates was diminished after GILZ knockdown. In the literature, 

there are no data on NF-қB degradation after its activation. Therefore, we 

hypothesize that GILZ decay alters NF-қB expression levels. Few data exist in the 

literature regarding transcriptional regulation of NF-қB subunits. Although p50 and 

cRel promoters contain binding sites for NF-қB (Ueberla et al., 1993) and NF-қB 

activity was increased by GILZ decay, p50 and cRel protein levels were decreased. A 

self-regulation of p65 by transcriptional repression can be excluded because its 

promoter misses an adequate binding site (Ueberla et al., 1993). The p65 promoter, 

however, contains three GC-rich elements (GC boxes) (Ueberla et al., 1993), which 

are potential binding sites for Sp-1 (Dynan & Tjian, 1983). Concordantly, Sp1-

mediated p65 expression has been described (Gu et al., 2002). Because of the GILZ 

knockdown in our experiment, a regulation via Ras described to be inhibited by GILZ 

(Ayroldi et al., 2007) and to activate SP-1 (Zheng et al., 2001) can be excluded. 

However, it has been shown that c-Jun is able to repress transcriptional activity 

through Sp1 binding sites (Wang et al., 2000). Since c-Jun is inhibited by GILZ 

(Mittelstadt & Ashwell, 2001), GILZ decay might lead to c-Jun release and repression 

of Sp1-mediated NF-қB transcription. Contrary to diminished NF-қB protein levels we 

observed after GILZ decay, GILZ overexpression did not affect p65 protein levels in 

T-cells (Ayroldi et al., 2001). In THP-1 monocytes and peripheral leukocytes from 
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trauma patients, increased GILZ levels are correlated with decreased p65 proteins 

(Bai et al., 2007). However, in livers of p62 transgenic mice increased GILZ levels 

were paralleled by elevated NF-қB levels (Sonja Kessler, Elisabeth Tybl, unpublished 

data). Thus, the regulation of NF-қB by GILZ seems different in various cell types and 

organs. 

 

 

4.4 Regulation of inflammatory TLR2 expression by p38 MAPK 

Employment of a chemical inhibitor of p38 MAPK has been described to attenuate 

TLR2 expression in endothelial cells (Satta et al., 2008). In contrast, in human airway 

epithelial cells, in HeLa cells and in murine dendritic cells a negative effect of p38 

MAPK on TLR2 expression has been postulated (Regueiro et al., 2009; Mikami et al., 

2006; An et al., 2002). Because of these conflicting data on the role of p38 MAPK in 

TLR2 expression, we aimed to clarify its contribution to TLR2 expression using 

pharmacological inhibitors and isoform-specific overexpression. For investigations of 

TLR mRNA and protein levels, the exposure time for TNF-α treatment was chosen 

according to maximal TLR2 mRNA or protein expression levels (Nadège Ripoche, 

unpublished data). 

 

4.4.1 Abrogation of TNF-induced p38 MAPK activation by SB203580 

As described in the literature, a TNF-α-induced phosphorylation of p38 MAPK was 

observed (Kiemer et al., 2002b; Raingeaud et al., 1995; Lee et al., 1994) and the 

results for abrogated TNF-α-induced actions by SB203580 were consistent with the 

literature (Weber et al., 2003; Kiemer et al., 2002b). The pyridinyl inhibitor SB203580 

is a competitive inhibitor acting at the ATP binding site of p38 MAPK α and β (Kumar 

et al., 1997; Young et al., 1997). After activation, we observed a nuclear as well as 

cytoplasmatic localisation of p38 MAPK, while non-activated p38 MAPK was mainly 

in the cytoplasm. The cellular localisation of p38 has been discussed in the literature 

(Roux & Blenis, 2004): in p38 MAPK overexpressing monkey kidney cells (COS-1) a 

cytoplasmatic as well as a nuclear localisation for non-activated p38 MAPK has been 

observed (Raingeaud et al., 1995). In HEK-293 the arsenite-induced activation of p38 

MAPK led to a nuclear export (Ben-Levy et al., 1998). In synovial fibroblasts p-p38 
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MAPK is also present in the nucleus (Schett et al., 2000). Cellular distribution of p38 

and p-p38 MAPK therefore seems to be dependent on the cell type and maybe also 

on the examined isoform.  

 

In concordance with Satta et al. (Satta et al., 2008), TNF-α-induced TLR2 expression 

was partially abrogated by SB203580 indicating a positive involvement of p38 MAPK 

in endothelial TLR2 mRNA upregulation. The small effect herein may be explained by 

either a minor role for p38 MAPK in TLR2 expression or by unrequested actions 

through inhibition of other MAP kinases.  

 

4.4.2 Abrogation of TNF-induced p38 MAPK activation by ANP 

As a second pharmacological inhibitor ANP was used, which has been described to 

inhibit p38 MAPK activation in endothelial cells via MKP-1 induction (Kiemer et al., 

2002b). A suppression of p38-mediated activities by ANP was also published in 

macrophages (Tsukagoshi et al., 2001). ANP was first isolated by de Bold et al. (de 

Bold et al., 1981), and it has been characterized as a potent diuretic and natriuretic 

hormone expressed and secreted by atrial myocytes after local wall stretch 

(Venugopal, 2001). Furthermore, ANP was also found in lower concentrations in e.g. 

lung, brain, kidney, and thymus, and it plays an important role in the regulation of 

blood pressure. It has been shown , moreover, that ANP acts as an anti-inflammatory 

mediator, which reduces inflammatory actions in vitro (Kiemer et al., 2002a; Kiemer 

et al., 2002b) and in vivo (Ladetzki-Baehs et al., 2007). Confirming our previous 

results using the p38 MAPK inhibitor SB203580, a positive involvement of p38 MAPK 

in TLR2 mRNA upregulation was observed, which seems in contrast to cell types 

other than endothelial cells (Regueiro et al., 2009; Mikami et al., 2006; An et al., 

2002). 

 

4.4.3 Abrogation of TNF-induced p38 MAPK activation by dn p38 MAPK 

overexpression 

Since pharmacological inhibitors have often been discussed to exert unrequested 

actions (Lee et al., 1999), we aimed to confirm the previous results by 

overexpression of dn p38 MAPK. Therefore, the isoform-dependency of p38 MAPK 
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should be clarified. In mammalian cells the four different p38 MAPK isoforms, p38α, 

p38β, p38γ, p38δ (Hale et al., 1999) seem to play different physiological roles (Zhou 

et al., 2008; Pramanik et al., 2003). While HUVEC have been described to express 

mainly p38α and p38β (Hale et al., 1999), we only detected p38α MAPK. The 

overexpressed isoform p38β2 is the major splice variant of p38β (Hale et al., 1999) 

and differs from p38β by depletion of 24 nucleotides equating eight amino acids 

(Kumar et al., 1997). The expression of only p38α in our cells may be explained by 

the use of a different culture medium containing a different composition of growth 

factors and supplements. In any case, the isoform p38α seems to play a major role in 

immune responses (Kim et al., 2008; Hale et al., 1999).  

 

The p38 coding sequence of our plasmid used for overexpression contained two 

mutations in the phosphorylation site of p38α (threonine188→alanine, 

tyrosine190→phenylalanin) (Pramanik et al., 2003). Concordantly, our western blot 

anlalysis showed reduced TNF-α-induced phosphorylation of p38α MAPK after dn 

p38α overexpression. Confirming our results obtained by the use of pharmacological 

inhibitors, overexpression of dn p38α MAPK showed a significant abrogation of 

TNF-α-induced TLR2 expression investigated by Real-time RT-PCR. Taken together, 

our data indicate that TLR2 mRNA expression is enhanced by p38α MAPK in 

endothelial cells. These findings lead to the conclusion that the role of p38 MAPK in 

TLR expression is not only different between mice and humans (Haehnel et al., 

2002), but is also dependent on the cell type investigated. 

 

4.4.4 p38 MAPK-dependent TLR2 protein expression 

In the literature there are no data regarding endothelial TLR2 protein levels after p38 

MAPK abrogation. Our preliminary investigations have shown that the anti-TLR2 

antibody, which is recommended by the manufacturer for flow cytometric analysis, 

recognices TLR2 antigens.  

 

The cellular localisation of TLR2 seems different in different species. It has been 

described that in unstimulated HUVEC, TLR2, its co-receptors TLRs 1 and 6 as well 

as TLR4 are intracellularly located, and only after stimulation by pro-inflammatory 

cytokines, such as IFN-γ or IL-1, translocated into the outer cell membrane (Shuang 
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et al., 2007). This was confirmed by Satta et al. (Satta et al., 2008), who postulated 

that a large pool of TLR2 is located intracellularly. An intracellular localisation of 

TLRs 1, 2 and 6 as well as an intracellular heterotypic assembly of TLR2/TLR6 with 

CD36 has also been observed in TLR-transfected HEK-293 cells (Triantafilou et al., 

2006). After activation by its ligands the TLR2/TLR6 dimer can be found as clusters 

in the membrane (Triantafilou et al., 2006). However, these findings are in contrast to 

the observation in unstimulated murine endothelial cells, in which the mentioned 

TLRs also are located in the outer membrane (Shuang et al., 2007). In order to 

detect all cellular TLRs, either already located in the outer membrane or 

intracellularly in the Golgi, immunostaining was performed after cell permeabilisation. 

Confirming our observation on mRNA level, TNF-α-induced TLR2 protein expression 

was abrogated by p38 MAPK inhibition. We therefore conclude that p38 MAPK is an 

important positive mediator in the upregulation of TLR2 expression under 

inflammatory conditions in endothelial cells. 

 

 

4.5 Interaction between GILZ and p38 MAPK 

Because we observed that expression of TLR2 is regulated by GILZ as well as by 

p38 MAPK, we sought to clarify whether GILZ is linked to the p38 MAPK pathway. It 

has been published that glucocorticoids inhibit p38 MAPK activation via induction of 

MAPK phosphatase 1 (MKP-1) (King et al., 2009; Fürst et al., 2007). Since we 

observed a dimished phosphorylation of p38 MAPK after GILZ decay and since 

glucocorticoids induce GILZ expression, a direct GILZ-induced regulation of p38 

MAPK could be excluded. In fact, a negative interaction of NF-қB and p38 MAPK 

after TNF-α treatment has been reported earlier (Weber et al., 2003; Beyaert et al., 

1996). This seems to be in contrast to other publications, in which an LPS-induced 

and NF-қB-dependent TLR2 induction via positive p38 MAPK was observed, i.e. 

chemical inhibition of either MAPK or NF-қB abrogates LPS-induced TLR2 

upregulation (An et al., 2002). However, An et al. showed no causal coherency. 

Since p38 MAPK abrogates TNF-α-induced TLR2 expression paralleld by TLR2 

upregulation via GILZ decay and NF-қB activation, our investigations show for the 

first time that p38 MAPK and NF-қB act independently in the regulation of TLR2 

expression. These findings suggest that other transcription factors are involved in 
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p38 MAPK-dependent regulation of TLR expression. It has already been reported 

that SP-1 and STAT5 seem to play a role in TLR2 expression (Dunzendorfer et al., 

2004; Wang et al., 2001; Musikacharoen et al., 2001), and that SP-1 activation is 

dependent on p38 MAPK (Chanteux et al., 2007; Ma et al., 2001). 

 

 

4.6 Regulation of TNF-α-induced expression of TLRs 1, 4 and 6  

This work is the first report about a distinct regulation of TLR2 co-receptors TLR1 and 

TLR6 as well as for TLR4 expression. Besides an induction of TLR2 mRNA, GILZ 

knockdown also increases TLR6 mRNA expression, whereas TLR1 and TLR4 are 

not affected. Investigations of the underlying mechanism showed that in contrast to 

TLR2 neither the expression of the co-receptors TLR1 and TLR6 nor of TLR4 is 

induced via NF-қB after TNF-α treatment. In addition, a TNF-α-mediated expression 

via AP-1 was excluded. 

 

In contrast to TLR1 and TLR4, the mechanisms regulating TLR6 expression on 

mRNA as well as on protein level involved p38 MAPK. Since p38 MAPK is a major 

determinant for 3’-UTR mediated mRNA stability (Khabar, 2005), an active 

destabilisation of TLR6 mRNA might be the mechanism involved. p38 MAPK 

phosphorylates trans-acting factors, which can either act as mRNA stabilisators or 

destabilisators (Frevel et al., 2003). The 3’-UTR of TLR6 mRNA conatins no typical 

destabilizing adenine and uridine-rich elements (AREs) consisting of 50-150 bp A 

and U repeats (www.ensembl.org) (Shaw & Kamen, 1986). However, the typical 

pentamer AUUUA is found twice, which could confirm our hypothesis on TLR6 mRNA 

destabilisation. Both GILZ as well as p38 MAPK seem to suppress TLR6 expression. 

Since TNF-α treatment suppresses GILZ expression, but induces p38 MAPK 

activation, the small extent of TLR6 expression changes can be explained.  

 

TLR4 mRNA has been described to be a target for numerous microRNAs 

(http://www.microrna.org, 97 identified miRNA target sites), which might function in 

TNF-α-mediated downregulation. The lacking effect on TLR4 protein level both after 

TNF-α treatment and after pretreatment with SB203580 might be explained by the 

choice of the wrong time point. Interestingly, the TNF-α-mediated TLR4 
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downregulation, which was observed in endothelial cells by ourselves and in human 

monocytes by Tamandl et al. (Tamandl et al., 2003), is in contrast to TLR4 

upregulation in atherosclerotic plaques (Edfeldt et al., 2002). For TLR6 an 

upregulation in atherosclerotic lesions has also been described (Edfeldt et al., 2002). 

These findings lead to the suggestion that the action of a different mediator than 

TNF-α determines TLR4 and TLR6 induction in atherosclerosis.  

 

4.7 The inflammatory marker MCP-1 

MCP-1 has been described as a general marker for inflammatory activation of 

endothelial cells (Szmitko et al., 2003; Ikeda et al., 2002) and to be inducible by 

TNF-α treatment (Weber et al., 2003; Rollins et al., 1990). Interestingly, our findings 

showed that MCP-1 regulation was largely parallel to TLR2: we observed an NF-қB 

and p38 MAPK dependent upregulation, which was antagonized by GILZ. A role for 

NF-қB in endothelial MCP-1 expression has been described earlier (Ishizuka et al., 

2000), and also the involvement of p38 MAPK has been shown (Lu et al., 2009; 

Weber et al., 2003; Goebeler et al., 1999). Similar to TLR2 expression, a causal link 

between p38 MAPK and NF-қB is missing, which confirms our hypothesis that p38 

MAPK and NF-қB function independently in TLR2 and MCP-1 expression regulation. 

Interestingly, MCP-1 expression seems positively regulated by AP-1, which was 

confirmed by the literature (Sutcliffe et al., 2009; Ishizuka et al., 2000). Therefore, it 

might be speculated that MCP-1 expression by GILZ suppression involves actions on 

AP-1.  
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5. Summary and Conclusion 
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Endothelial cells represent the inner cell layer in blood vessels and are involved in 

inflammatory actions. Herein, the activation of the pattern recognition receptors plays 

an important role. TLRs have been described to be involved in the development of 

atherosclerosis, a chronic inflammatory disease characterized by endothelial 

dysfunction. Mainly TLR2 and TLR4 have been described to be overexpressed in 

atherosclerotic lesions. However, the regulation of their expression as well as the 

regulation of TLR1 and TLR6 expression, which function as co-receptors of TLR2, 

has been completely unknown. GILZ has been described as an anti-inflammatory 

mediator, but its basal expression in endothelial cells as well as its role in endothelial 

inflammation has as yet been unknown. p38 MAPK has also been described to 

function in inflammatory actions. Aim of this work was therefore to decipher the roles 

of GILZ and p38 MAPK in endothelial TLR expression. 

 

 

 

Figure 44: Schematic overview about the regulation of TLR expression by GILZ and p38 MAPK 
in human endothelial cells. Abbreviations: ANP=Atrial natriuretic peptide, GILZ=glucocorticoid-
induced leucine zipper, MAPK=mitogen activated protein kinase, NF-қB=nuclear factor 
kappa B, P=phosphorylation, TLR=toll-like receptor. 
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A pronounced constitutive expression of GILZ has been found in HUVEC, which was 

downregulated under inflammatory conditions. Mechanistic investigations showed 

that reduction of GILZ protein levels in human endothelial cells led to an induction of 

NF-қB activity (Figure 44). In detail, GILZ decay induced IқBα degradation, NF-қB 

nuclear translocation, and transcriptional activity. This NF-қB activation induced the 

expression of TLR2, as it could be observed in atherosclerotic vessels, paralleled by 

GILZ downregulation. In addition, TLR6 expression was also increased by GILZ 

decay, an effect independent of NF-қB activities. These findings suggest an 

upregulation of GILZ as a potential target for the treatment of the inflamed 

endothelium. 

 

TLR2 as well as TLR6 TNF-α-mediated expression was dependent on p38α MAPK, 

whose inhibition led to an abrogation of TNF-α-mediated actions. p38 MAPK is 

therefore a further potential target for therapeutic treatment. In contrast, TLR1 and 

TLR4 expression were neither regulated by GILZ nor by p38 MAPK. Despite of our 

findings that both TLR2 and TLR6 expression were regulated by GILZ as well as by 

p38 MAPK, the p38 MAPK mediated action was independent of GILZ. 

 

Taken together, this work provides evidence for functional implications of GILZ and 

p38 MAPK in the regulation of endothelial TLR2 and TLR6 expression in human 

endothelial cells and contributes to a better understanding of inflammatory actions in 

atherosclerosis. 
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