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Short summary 

 

 
Silica nanoparticles show promising characteristics as oral drug delivery carriers. This 

application implies a close contact with biological systems, therefore it is essential to 

investigate the cellular binding, uptake and transport properties of nanoparticles. Furthermore, 

their oxidative and cytotoxic potential has to be evaluated. A novel non-invasive assay for the 

combined determination of cytotoxicity and oxidative stress exhibited that unmodified 

nanoparticles with a size up to 84 nm caused a size-, time- and concentration-dependent 

cytotoxic effect in Caco-2 cells. In contrast, larger and poly ethylene glycol-modified 

nanoparticles provoked no deleterious effects. However, none of these particles showed an 

oxidative potential. Cytotoxicity studies correlated with cell association, uptake and transport 

experiments: Nanoparticles, which demonstrated a cytotoxic effect, were also in a strong 

association with Caco-2 cells or were even internalized. Thereby, the novel labelling of 

nanoparticles with propidium iodide (PI) allowed a clear distinction between adsorbed and 

internalized nanoparticles in a quantitative way which facilitated the identification of cellular 

mechanisms involved in the uptake of nanoparticles. Furthermore, silica nanoparticles could 

function as drug carriers for the membrane-impermeable compound PI. Free PI molecules 

were not able to enter Caco-2 cells, whereas nanoparticle bound PI was internalized time-

dependently.  

 

  



Kurzzusammenfassung 

 

 
Silika-Nanopartikel zeigen vielversprechende Eigenschaften als orale Arzneistoffcarrier. 

Diese Anwendung impliziert einen engen Kontakt zwischen Partikeln und biologischen 

Systemen. Daher ist es unerlässlich die Assoziierung und Aufnahme von Partikeln zu 

untersuchen sowie ihr zytotoxisches und oxidatives Potential zu bewerten. Eine innovative 

Methode zur kombinierten Detektion von Zytotoxizität und oxidativem Stress zeigte, dass 

unmodifizierte Nanopartikel bis zu einer Größe von 84 nm einen größen-, zeit- und 

konzentrationsabhängigen zytotoxischen Effekt auf Caco-2 Zellen aufwiesen. Größere sowie 

Polyethylenglykol-modifizierte Partikel hatten dagegen keine zellschädigende Wirkung. Ein 

oxidatives Potential konnte von keinem der Partikel verzeichnet werden. Diese 

Toxizitätsstudien korrelierten mit zellulären Assoziierungs- und Aufnahmeexperimenten. 

Nanopartikel, die einen zytotoxischen Effekt zeigten, demonstrierten auch eine starke 

Assoziierung mit Caco-2-Zellen oder wurden sogar in diese aufgenommen. Die Markierung 

der Partikel mit Propidiumiodid (PI) ermöglichte dabei eine deutliche Unterscheidung 

zwischen adsorbierten und aufgenommenen Nanopartikeln. Die Identifizierung der zellulären 

Mechanismen, die in der partikulären Aufnahme involviert sind, wurde dadurch erleichtert. 

Silika-Nanopartikel fungierten zudem als Carrier für das membran-impermeable PI. Freies PI 

wurde nicht in Caco-2-Zellen aufgenommen, wohingegen partikelgebundenes PI zeitabhängig 

internalisiert wurde. 

 



 
 

1 
General introduction 

 

 
1.1 SILICA NANOPARTICLES AS NOVEL DRUG CARRIERS 

 

The intensive research and discovery of novel drugs such as peptides, proteins, plasmids, 

antibodies and nucleic acids require new drug delivery technologies. Thereby, the usage of 

nanomaterials allows various creative applications. They can improve the bioavailability of 

poorly water-soluble drugs, prolong the half-life of drug systemic circulation, release drugs at 

a sustained rate, deliver drugs in a targeted manner and therefore, minimize side effects. 

Furthermore, this new technology allows the administration of two or more drugs with e.g. 

different water solubilities simultaneously in combinatory therapy and thus suppresses drug 

resistance. In addition, nanoparticles as drug carrier offer the usage of more effective and 

convenient routes of administration (e.g. the oral route), minimize therapeutic toxicity, extend 

the product life cycle and reduce health-care costs (Zhang et al., 2008). Numerous 

nanoparticle-based drug formulations and diagnostic agents had been already developed, e.g. 

for the treatment of cancer, diabetes, pain, asthma, allergy and infections (Brannon-Peppas & 

Blanchette, 2004; Kawasaki & Player, 2005). Besides therapy, nanomaterials can be also used 

as diagnostic tools. They allow the detection of disease markers in the molecular scale and 

identify abnormalities such as virus fragments or cancerous cells (Zhang et al., 2008). All 

these applications can be summarized in the term nanomedicine (Figure 1.1). Thereby, 

nanoparticles show various therapeutic potentials in different medical fields such as oncology 

or immunology (Farokhzad & Langer, 2006). Hitherto, about 20 nanoparticle-based 

formulations are in clinical use referring to the promising properties of these novel materials 

(Danson et al., 2004; Gabizon et al., 2006; Gradishar, 2006; Valle et al., 2010). Therefore, 

nanomedicine is expected to become a well-established term in modern medicine.  
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Figure 1.1: Applications and research aims in nanomedicine (modified from Liu et al., 2007).  

 

In this regard, silica nanoparticles exhibit various advantages and show a great promise in 

many medical and pharmaceutical applications. Silica is a non-toxic compound which is 

already used as food additive or as carrier material in tablets (Barbé et al., 2004). Silica 

nanoparticles can be easily surface modified with several molecules to improve and target the 

cellular uptake over surface chemistry (Chung et al., 2007; Kneuer et al., 2000; Kneuer et al., 

2000). A surface modification of nanoparticles, e.g. with poly ethylene glycol (PEG) extends 

the residence time of these carriers in the blood. Thereby, the effect of PEG is based on the 

defilade of nanoparticles over surface chemistry, hence avoiding a clearance by the 

phagocytic system (Owens & Peppas, 2006; Roberts et al., 2002). Furthermore, PEG shows 

stabilizing properties on the nanoparticle surface due to a steric barrier formed by PEG chains 

(Behrens et al., 2002; Tobio et al., 2000). Further advantages of silica nanoparticles are their 

high hydrophilicity and insensitivity to microbial attack. In addition, they do not show any 

swelling or porosity changes within alteration in pH which becomes very important with 

regard to an oral application (Jain et al., 1998). Silica nanoparticles can be easily labelled with 

fluorescence dyes, which is essential for the investigation of their behaviour in cell culture 

systems. Dye-doped silica nanoparticles can be prepared by two general synthetic routes: the 

Stöber and microemulsion process. The Stöber synthesis was introduced in 1968 by Stöber 

and Fink. It is a one-pot synthesis that is performed under alkaline conditions in an 

ethanol/water mixture. Therefore, potentially toxic organic solvents or surfactants can be 

avoided (Rossi et al., 2005; Stöber & Fink, 1968). The method allows a controlled generation 

of spherical silica particles with uniform sizes ranging from 50 to 2000 nm in diameter. 

During microemulsion preparation, silica nanoparticles were prepared using a water in oil 

emulsion system that employs a water-soluble amine as catalyst and tetraethylorthosilicate 

(TEOS) as a silica source.  
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In recent years various studies proved the properties of silica nanoparticles as oral drug or 

gene carrier (Bharali et al., 2005; Fuller et al., 2008; Gemeinhart et al., 2005; Manzano et al., 

2009; Moulari et al., 2008; Simovic et al., 2010; Slowing et al., 2008; Tan et al., 2010). 

Hollow mesoporous silica nanoparticles had been used as drug carriers for fluorescein 

isothiocyanate (FITC), which served as a model substance. FITC encapsulated in silica 

nanocapsules was released more slowly than free FITC indicative for a controlled release of 

the dye (Liu et al., 2007). Further studies showed that silica nanoparticles are also useful as 

gene carriers. Plasmids bound to amino-functionalized silica nanoparticles were completely 

protected from enzymatic digestion in human epithelial cancer cells (Kneuer et al., 2000; Roy 

et al., 2005). Furthermore, it was shown that organically modified silica nanoparticles can be 

effectively used to introduce genes into neuronal cells in vivo (Bharali et al., 2005). Silica 

nanoparticles could also serve as carriers for anticancer drugs such as doxorubicin. It was 

reported, that mesoporous silica nanoparticles (MSN) release the drug over a period of 

20 days in a constant rate (Barbé et al., 2004). Furthermore, MSN were able to enhance the 

delivery of the hydrophobic anticancer drug paclitaxel to pancreatic cancer cells (Xia et al., 

2009) and allowed a target delivery of the chemotherapeutic agent methotrexate (MTX). Free 

MTX caused apoptosis in cancer cells as well as in healthy cells. In contrast, MTX bound to 

nanoparticles induces cell death only in cancer cells but not in normal tissue (Rosenholm et 

al., 2010).  

 

To evaluate silica nanoparticles as oral drug delivery system, it is important to determine their 

cellular uptake and localization. Especially, their distribution within the cell is an essential 

indication for the future application spectrum. Unmodified silica nanoparticles sized between 

40 and 5000 nm were able to enter human epithelial cells in a size-dependent way. The 

qualitative analysis via confocal laser scanning microscopy (CLSM) demonstrated a clear 

penetration into the cytoplasm. For silica nanoparticles sized between 40 and 70 nm a nuclear 

localization was observed as well (Chen & Mikecz von, 2005). In the field of gene delivery 

the uptake of nanoparticles into the cell nucleus becomes very important because the cell 

nucleus contains the gene expression machinery and monitors the genetic material of a cell. 

Thus, it represents the target for delivered genetic material such as plasmids or antisense 

oligonucleotides (Bharali et al., 2005; Gemeinhart et al., 2005; Slowing et al., 2008). These 

results in fundamental research underline the high potential of silica nanoparticles as oral drug 

or gene carrier.  
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Another frequently discussed topic is the application of nanoparticles to inflamed tissue in 

inflammatory bowel disease (IBD) (Lamprecht et al., 2001; Lamprecht et al., 2005; Moulari et 

al., 2008; Nakase et al., 2000; Nakase et al., 2001). Most drugs which are used for the 

treatment of IBD are delivered also to non-inflamed tissue. A targeted delivery exclusively to 

the inflamed tissue would decrease side effects and improve the therapeutic success. 

Polystyrene micro- and nanoparticulate carrier were shown to accumulate size-dependently in 

inflamed colonic mucosa (Lamprecht et al., 2001). Also silica nanoparticles exhibit a sixfold 

higher accumulation in inflamed tissue than in the healthy control tissue. The successful 

delivery of a drug to inflamed colonic cells could be demonstrated using 5-Amino salicylic 

acid (5ASA) loaded silica nanoparticles. 5ASA is used to treat inflammation in ulcerative 

colitis and Crohn’s disease. 5ASA-loaded silica nanoparticles with a concentration of 

25 and 50 mg/kg caused a higher decrease in inflammatory than free 5ASA at a concentration 

of 100 mg/kg (Moulari et al., 2008).  

 

The design of silica nanoparticles as drug or gene carriers has to follow several requirements. 

The composition of the particles must be biodegradable, biocompatible and nontoxic, so that 

they can be used in human therapy. The particle size must be suitable for the administration 

via different routes to enter the body and reach the biological target site. Furthermore, also the 

biodistribution should adjust to the therapeutic application. Finally, silica nanoparticles must 

be loaded with drug molecules, whereby the drug should be released in a controlled manner 

once it reaches the target organ e.g. a tumour (Vauthier & Couvreur, 2007; Zhang et al., 

2008). Further developments lead to more complex oral delivery systems such as silica-lipid 

hybrid (SLH) microcapsules for the improved delivery of poorly soluble drugs. The system 

combined the solubilising effect of lipids with the stabilising effect of silica nanoparticles. 

This novel drug carrier was able to increase the oral availability of the model drug celecoxib 

from 62% to 93-100% when bound to SLH microcapsules (Tan et al., 2009). In this context 

various other silica-based formulations exist to control and facilitate drug dissolution 

(Sanganwar & Gupta, 2008). Table 1.1 summarizes the composition of silica nanoparticles as 

drug carriers.  
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Table 1.1: Summary of different types of nanoparticulate drug carriers (modified from Vauthier & Couvreur, 

2007; Liu et al., 2007; Tan et al., 2009).  

Nanoparticulate drug 

carrier 

Definition Schematic 

illustration 

Carrier nanoparticles  Drug molecules are adsorbed to the surface of 

the nanoparticles.  

 

 

Oil-containing 

nanocapsules 

Nanoparticles with an encapsulated oil droplet 

surrounded by a silica shell. 

 

 

Water-containing 

nanocapsules 

Nanoparticles with an encapsulated water 

droplet surrounded by a silica shell. 

 

 

Mesoporous 

nanocapsules 

Hollow mesoporous nanocapsules with 

encapsulated drugs. 

 

 

Silica-lipid hybrid 

microcapsules 

Silica-lipid hybrid microcapsules with an 

internal porous matrix structure with 

encapsulated drugs. 

 

 

Stealth carriers Modification of the nanoparticle surface with 

e.g. PEG will reduce recognition by the 

immune system and increase plasma stability.  

 

 

Targeted carriers Drug-targeted system with a targeting ligand 

(e.g. antibodies) on the nanoparticle surface. 

 

 

 

 

 

1.2 OVERCOMING THE INTESTINAL BARRIER 

 

Oral drug delivery is the most convenient route for the administration of drugs because it has 

the advantage of avoiding discomfort, pain and infections which can be caused by injectable 

dosage forms. However, most drugs are difficult or unable to be delivered orally because of 

their low bioavailability due to their poor stability in the gastrointestinal tract and their low 
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membrane permeation over the intestinal barrier. For systemic absorption it is indispensable 

that drug molecules resist the acid (~pH 3) and enzymatic environment of the stomach and 

finally cross the intestinal epithelial cells to reach the general circulation and the target sites 

(Figure 1.2).  

 

 
Figure 1.2: Biological barriers that influence oral bioavailability. Orally administered drugs have to be soluble 

and stable in the acid and enzymatic environment of the stomach (1) and have to cross the epithelium of the 

small intestine via an active or passive uptake to reach the blood circulation (2). Thereby efflux systems such as 

P-gp and enzymes (CYPs) hinder the passage. The first pass mechanism of the liver that eliminates xenobiotic 

substances is another critical obstacle (3). Figure was modified from Dave Carlson Illustration, Colorado, USA.  

 

This process, however, is limited by various physical and biochemical barriers which 

normally protect the organism from toxins, antigens and microorganisms. The membrane of 

the intestinal epithelium builds a tight physical barrier which is composed of a single layer of 

columnar cells that are connected by tight junctions to form a tight membrane. Drug 

molecules or drug carriers such as nanoparticles can cross the gastrointestinal barrier via 

different pathways using paracellular passage and endocytotic or lymphatic uptake. The 

uptake between intestinal epithelial cells is mostly the preferred way of very small 

nanoparticles of up to 50 nm. Larger particles of sizes up to 500 nm are absorbed by intestinal 

enterocytes through endocytosis whereas microparticles (<5 µm) are taken up by M cells of 

the Peyer’s patches (Florence, 2005; Hamman et al., 2005; LeFevre et al., 1978; Liu et al., 
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2007; Sanders & Ashworth, 1961; Venkatesan et al., 2005) (Figure 1.3). Efflux systems such 

as the P-glycoprotein (P-gp) demonstrate a further barrier function. P-gp is localized in the 

apical membrane and pumps compounds from within the cell back into the intestinal lumen. 

Substrates of P-gp are various chemical molecules such as cytostatics, HIV protease 

inhibitors, immunsuppressors and antibiotics (Gottesman et al., 2002; Hunter et al., 1993). 

 

 

Figure 1.3: Uptake of nanoparticles at the intestinal epithelium. This epithelium consists of specialised antigen 

sampling M cells which possess a reduced number of microvilli and a pocket staying in contact with 

lymphocytes and macrophages. Nanoparticles are largely prevented from passing between epithelial cells by 

tight junctions. After the adherence to the apical membrane of M cells, nanoparticles cross the apical membrane 

and are delivered into the cells and subsequently are disseminated by the lymphatics (modified from Clark et al., 

2001).  

 

In recent years, the term “chemotherapy at home” presents a new concept of chemotherapy 

and purpose for the development of orally bioavailable cytostatics. This innovation would 

improve the life quality of cancer patients remarkably (Ajani & Takiuchi, 1999; Bottomley, 

2002; DeMario et al., 1999; Feng, 2004). The difficulties are that most anticancer drugs are 

orally not or just minimally bioavailable, e.g. the oral bioavailability of the cytostatic 

paclitaxel is less than 1% of the administered concentration. This low absorption in the 

gastrointestinal tract is based on the first-pass elimination by the cytochrome P450 and the 

high affinity of paclitaxel to P-gp. The role of P-gp in that context was demonstrated in a 

study using wild-type and P-gp knockout mice. As a result, an increased oral uptake of 

paclitaxel could be observed in mice lacking P-gp (Sparreboom et al., 1997). The additional 

application of the P-gp inhibitor cyclosporine resulted in a 10-fold higher oral absorption of 

paclitaxel (Meerum Terwogt et al., 1999). In this context, further experiments showed that 
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doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by 

inhibiting P-gp (Dong et al., 2009). The application of TPGS, a water soluble vitamin E 

derivative, which is able to inhibit the P-gp mediated drug transport, represented a further 

improvement of drug delivery into intestinal cells (Collnot et al., 2006; Win & Feng, 2005). 

These findings exhibit the high demand of new strategies for the oral delivery of various drug 

molecules with low stability and bioavailability. However, the delivery of anticancer drugs to 

tumours is still a challenge. In this context, silica nanoparticles provide innovative and 

promising characteristics as drug carriers and present an attractive drug delivery system. 

Tumours contain a high density of abnormal blood vessels that are poorly differentiated with 

an aberrant branching. Furthermore, these tissues have an enhanced permeability and 

retention effect due to a decreased rate of clearance caused by the lack of functional lymphatic 

vessels in the tumour. Therefore, an increased accumulation of macromolecules as well as 

nanoparticles could be demonstrated (Allen & Cullis, 2004; Conti et al., 2006).  

 

A widespread in vitro model for the investigation of oral bioavailability is the human colon 

adenocarcinoma cell line Caco-2. These cells form a polarized monolayer with an apical 

brush border morphologically comparable to that of the human small intestinal epithelium. 

Caco-2 cell express tight junctions, microvilli and a number of enzymes and transporters that 

are characteristic for enterocytes (e.g. P-gp). When cultured on permeable filter membranes, 

Caco-2 cells form a polarized epithelial cell monolayer that provides a physical and 

biochemical barrier to the passage of ions and small molecules. Caco-2 cells are widely used 

as an in vitro model to predict the absorption of orally administered drugs. The in vitro/in vivo 

correlation is well established and shows a high accordance (Artursson et al., 1997; Artursson 

et al., 2001; Chen et al., 2002; Hidalgo et al., 1989; Hughes et al., 1987). 

 

 

 

1.3 CYTOTOXICITY AND OXIDATIVE STRESS CAUSED BY 

NANOPARTICLES 

 

Silica-based materials with defined structures and surface properties are known to be 

biocompatible. Silica is used to enhance the biocompatibility of various drug delivery systems 

such as magnetic nanoparticles, biopolymers and micelles (Allouche et al., 2006; Arruebo et 

al., 2006; Huo et al., 2006). Microscopic analysis showed normal cell morphology after an 
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uptake of mesoporous silica nanoparticles. Furthermore, growth rates of cells exposed to 

silica nanoparticles demonstrated no difference to the ones of control cells grown in the 

absence of silica nanoparticles (Slowing et al., 2006; Slowing et al., 2008). A long-term 

biocompatibility study exhibited that silica implants caused no toxic effects within a period of 

42 days (Kortesuo et al., 1999). 

 

However, the growing biomedical and pharmacological applications of silica nanoparticles 

call for the importance to investigate their influence on cells as their uptake implies a close 

contact between nanoparticles and the biological systems. Therefore, a detailed evaluation of 

the cytotoxic potential of nanomaterials is required. In this course, nanotoxicology is a rising 

sector in nanotechnology. Institutions such as the European Commission or the European 

Food Safety Authority published scientific opinions about the potential risk of nanomaterials 

in cosmetics or food which suggest treating nanomaterials as new chemicals from a risk-point 

of view  (EFSA, 2009; SCCP, 2007).  

 

Hitherto, the molecular mechanism of nanoparticulate induced cytotoxicity is not fully 

understood. It is assumed that cytotoxicity is caused by cellular injuries through a variety of 

mechanism such as membrane peroxidation, glutathione depletion, mitochondrial dysfunction 

and DNA damage (Tao et al., 2009). Especially nanoparticulate induced oxidative stress 

raises suspicion affecting all types of biological molecules including lipids, proteins, 

carbohydrates and nucleic acids. Therefore, oxidative stress is one of the most important 

toxicity mechanism related to the exposure of nanoparticles (Eom & Choi, 2009; Green & 

Howman, 2005; Shvedova et al., 2003). 

 

In various studies an increase in reactive oxygen species (ROS) could be detected 

simultaneously with a decrease in cell viability after incubation with silica nanoparticles (Eom 

& Choi, 2009; Park et al., 2008; Wang et al., 2009). A rising amount of ROS is often 

associated with a decrease in glutathione and an enhanced activity of antioxidant enzymes 

such as superoxide dismutase or heme oxygenase-1, which indicated an oxidative potential of 

silica nanoparticles. Inflammation signal and apoptosis markers can be increased as well. 

Further studies supposed that the acute cytotoxicity is primarily originated from the cellular 

internalization of nanoparticles rather than physical damage on cellular membranes (Yang et 

al., 2009). Furthermore, it is expected that the smaller the size, the stronger the observed 

toxicity is (Oberdorster et al., 2005). In a study of Wang et al., nanoparticles with a size of 
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20 nm showed a higher decrease in cellular viability than 50 nm particles with a 

simultaneously higher increase of ROS in human embryonic kidney cells (Wang et al., 2009). 

However the relationship between the physico-chemical properties of nanoparticles and their 

toxicities seems to be much more complicated than just a matter of their size and surface area 

(i.e. shape, charge, concentration, etc), but the debate is still ongoing (Hussain et al., 2005; 

Sayes et al., 2005). 

 

 

 

1.4 AIM OF THE THESIS 

 

The aim of this thesis was to investigate the interaction between silica nanoparticles and the 

human intestinal epithelial cell line Caco-2. Thereby, the cytotoxic and the oxidative potential 

as well as the uptake and transport characteristics of these particles should be explored.  

 

One focus was stressed on the establishment of novel alternatives to standardized method for 

the detection of oxidative stress and cytotoxicity in vitro. The measurement principles of the 

standardized techniques often interfere with nanoparticles and prohibited their usage for these 

applications. In their role as potential drug carriers, silica nanoparticles are supposed to come 

into close contact with biological systems, thus it is essential to have a dependable assay to 

evaluate the toxicity of nanoparticles.  

 

Another aim of this thesis was to allow a quantification of the cellular uptake of nanoparticles. 

Hitherto, the nanoparticulate uptake was mostly determined via microscopic techniques such 

as confocal laser scanning microscopy or transmission electron microscopy, which makes a 

comparison between single studies very difficult. Therefore, a quantitative assay for the 

determination of the quantification of nanoparticles should be established.  

 

Based on this novel experimental design, the uptake behaviour of silica nanoparticles with 

different sizes and surface modifications should be explored. Furthermore, the endocytotic 

mechanisms involved in the uptake of these nanoparticles should be identified (Figure 1.4). 
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Figure 1.4: Working flow chart of the present thesis.  

  



 
 

2 
Characterization of fluorescently-labelled 

silica nanoparticles in physiological buffers 

and cell culture media 

 

 
Fluorescently-labelled silica nanoparticles were prepared by the Leibniz Institute of New 

Materials (INM, Saarbrücken, Germany) and were stored highly concentrated in an aqueous 

solution stabilized with acetic acid to a pH of ~5. For their use in in vitro cell culture 

experiments, these nanoparticles had to be dispersed in physiological buffers or cell culture 

media. The tendency of nanoparticles to agglomerate is sensitive to ingredients such as 

bivalent ions (e.g. Ca2+ or Mg2+). Therefore, the dispersion of nanoparticles in these isotonic 

solutions as well as their stability had to be explored before performing in vitro experiments. 

The alteration in size and ζ potential of a nanoparticle gives information about the 

nanoparticulate behaviour in physiological media and were determined via dynamic light 

scattering or electrophoretic light scattering using the Zetasizer Nano Zs (Malvern 

Instruments, Herrenberg, Germany).  

 

 

 

2.1 INTRODUCTION 

 

The upcoming usage of nanostructured biomaterials in pharmaceutical or medical purposes 

requires an improved knowledge of the biological interaction of nanomaterials with cells or 

tissues. Therefore, in vitro experiments are essential. These assays require the compatibility 
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and stability of nanoparticles in physiological buffers or media. As a consequence, 

nanoparticles have to be dispersed in isotonic solutions with a pH of 7.4, where they interfere 

with bivalent ions (typically magnesium or calcium) and protein mixtures. Due to their large 

surface area/volume ratio, nanoparticles show a strong tendency to agglomerate and to adsorb 

proteins., The knowledge of protein adsorption is very important because the adsorption of 

blood proteins in vivo will affect the cellular uptake and biochemical activity (Patil et al., 

2007; Schulze et al., 2008). 

 

Recent studies already demonstrated aspects of nanoparticle dispersion and protein 

adsorption. The addition of proteins such as bovine serum albumin (BSA) to nanoparticles 

reduced the ζ potential from ~55 mV to ~18 mV indicative for a strong protein adsorption to 

the particle surface. Furthermore, a binding to proteins resulted in an accelerated clearance by 

macrophages which avoid nanoparticles from reaching their biological target sites (Patil et al., 

2007). For this purpose, besides unmodified silica nanoparticles, poly ethylene glycol (PEG)-

modified silica nanoparticles were characterized in this study as well. Thereby, it could be 

possible to increase the circulation time of nanoparticles in the blood stream by minimizing 

and eliminating protein adsorption due to the characteristics of PEG. PEG is a polyether 

compound which is known to reduce reticuloendothelial clearance, the uptake by 

macrophages, recognition by the immune system and the degradation by proteolytic enzymes. 

It shows stabilizing properties due to a steric stabilization as well (Roberts et al., 2002; 

Behrens et al., 2002; Tobio et al., 2000).  

 

 

 

2.2 AIM OF THE STUDY 

 

In the present study, fluorescently-labelled nanoparticles with different sizes and surface 

modifications were characterized concerning their behaviour in different media or buffer over 

time by investigation of their variation in size and ζ potential. The absorption of BSA as 

model protein was explored as well. For a better comprehensibility and clarity only exemplary 

results are presented, especially because nanoparticles with analogue characteristics behaved 

similarly.  
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The aim of this study was to determine the size alteration and the stability of fluorescently-

labelled silica nanoparticles in physiological buffers and cell culture media (+/- proteins). 

Furthermore, the ζ potential as well as the adsorption of BSA should be investigated. The 

characterization of the nanoparticles should help to establish a catalogue of different 

nanoparticles for various experimental approaches and questions.  

 

 

 

2.3 MATERIALS AND METHODS 

 

2.3.1 Silica nanoparticles 

Amorphous silica nanoparticles were received from the Leibniz Institute of New Materials 

(INM, Saarbrücken, Germany) where they had been prepared by Stöber synthesis. 

Synthesized nanoparticles were either unmodified or additionally surface-modified with 

amino-ethyl-3-aminopropyl-trimethoxysilan (DIAMO) or poly ethylene glycol (PEG) chains 

with a molecular weight of 750 g/mol. Transmission electron microscopy (TEM) 

measurements were performed as a visual control. Figure 2.1 shows exemplary TEM images 

of unmodified and PEG-modified silica nanoparticles with different sizes.  

 

For fluorescence detection, nanoparticles were matrix-loaded with the fluorescent dye 

rhodamine B-isothiocyanate (RITC). Thereby, the silica matrix served as a protective shell 

limiting the effect of the outer environment to the fluorescent molecules. For further 

experiments, nanoparticles were surface-loaded with propidium iodide (PI). The choice of the 

fluorescence dyes was reasoned in different experimental approaches, which will be discussed 

in detail in the different chapters (compare to chapter 4 and 5). Nanoparticle names are 

composed of the particle size in HBSS, the surface modifications (D=DIAMO or P=PEG) and 

the fluorescence dye (RITC or PI).  
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N50                  N77        N94

 
Figure 2.1: TEM micrographs of silica nanoparticles with and without PEG-modification. (A) Unmodified 

nanoparticles, N50-RITC, 50 nm. (B) PEG-modified nanoparticles, N50-P-RITC, 55 nm. (C) Unmodified 

nanoparticles, N77-RITC, 77 nm. (D) PEG-modified nanoparticles, N77-P-RITC, 87 nm. (E) Unmodified 

nanoparticles, N94-RITC, 94 nm. (F) PEG-modified nanoparticles, N94-P-RITC, 97 nm. Bars=20 nm (A, B, E 

and F) or 50 nm (C and D). 

 

 

2.3.2 Materials and buffers 

Different silica nanoparticles were dispersed in phosphate buffered saline (PBS) (Table 2.1), 

Hank’s balanced salt solution (HBSS) (Table 2.2) with and without addition of 1% bovine 

serum albumin (BSA) or in Dulbecco’s modified eagle medium (DMEM) from Gibco 

(Karlsruhe, Germany) (Table 2.3). All buffers were adjusted to pH 7.4 by means of NaOH. 

Acrylic cuvettes for the determination of particles’ sizes were purchased from Sarstedt 

(Nümbrecht, Germany). Zeta folded capillary cuvettes for the measurement of the ζ potential 

were obtained from Malvern (Herrenberg, Germany).  

  

-PEG 

 

 

 

+PEG 

A C E 

B D F 
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Table 2.1: Composition of phosphate buffered saline (PBS). PBS were adjusted to pH 7.4 by means of NaOH. 

 

 

 

Table 2.2: Composition of Hank’s balanced salt solution (HBSS). HBSS were adjusted to pH 7.4 by means of 

NaOH. 

Ingredient Concentration  

NaCl 136.90 mM 

KCl 5.40 mM 

NaHCO3 4.26 mM 

Na2HPO4*7H2O 0.34 mM 

KH2PO4 0.35 mM 

Glucose 5.50 mM 

HEPES 10.00 mM 

CaCl2 1.26 mM 

MgCl2*6H2O 0.50 mM 

MgSO4*7H2O 0.40 mM 

 

  

Ingredient Concentration 

NaCl 129.00 mM 

KCl 2.50 mM 

Na2HPO4*7H2O 7.00 mM 

KH2PO4 1.30 mM  
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Table 2.3: Composition of Dulbecco’s modified eagle medium (DMEM).  

Ingredient Concentration 

CaCl2*2H2O 1.80 mM 

Fe(NO3)3*9H2O 0.00025 mM 

MgSO4*7H2O 0.81 mM 

KCl 5.33 mM 

NaHCO3 44.05 mM 

NaCl 110.34 mM 

NaH2PO4*2H2O 0.92 mM 

D-Glucose 25.00 mM 

Phenol red 0.40 mM 

Amino acids 10.64 mM 

Vitamins 0.15 mM 

 

 

2.3.3 Measuring principle of the Zetasizer Nano ZS 

The Zetasizer Nano ZS allows the determination of the average hydrodynamic diameter by 

dynamic light scattering (DLS) and the ζ potential of nanoparticles by electrophoretic light 

scattering (ELS). DLS is a technique to characterize the diffusion of particles in solution. It 

measures Brownian motion and relates this to the size of the particles. Brownian motion is the 

random movement of particles due to forces resulted from the solvent molecules that 

surrounded them. The larger the particle, the slower is its Brownian motion because smaller 

particles move more rapidly. The size of a particle is calculated from the translational 

diffusion coefficient by using the Stokes-Einstein equation. Thereby, the measured 

hydrodynamic diameter refers to how a particle diffuses within a fluid. The principle of this 

measurement technique is based on a monochromatic laser beam that passes through a cuvette 

with a colloidal dispersion. Some of the light is uniformly scattered by the particles in all 

directions via Rayleigh scattering. The changing distances of the particles due to their 

Brownian motion causes interferences of the light scattered by neighbouring particles. The 

analysis of these occurred time-dependent fluctuations in the scattering intensity gives 

information about the speed of the particles in the solution. Using a diffusion coefficient, the 

hydrodynamic diameter of a nanoparticle could be determined (Malvern Technical Note).  
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The ζ potential is a physical property which is exhibited by any particle in suspension and is 

determined via ELS. It is the potential difference between the dispersion solution and the 

stationary layer of fluid attached to the particle, thereby it is measured at the slipping plane of 

particles. The liquid layer which surrounds a particle consists of two parts: an inner region 

(Stern layer) where the ions are strongly associated and an outer diffuse region, where ions 

are loosely bound. Within the diffuse layer there is a fictive boundary inside which the ions 

and particles form a stable unit. That would mean, if a particle moves, ions within the 

boundary move it. The potential at this boundary (=surface of hydrodynamic shear) is the 

ζ potential (Figure 2.2). The ζ potential is a measure for the degree of stability of a colloidal 

system. If all particles in suspension have a high negative or positive ζ potential, there will be 

no tendency for the particles to come together and so they repel each other. In contrast, if the 

particles have a low ζ potential, there will be no forces preventing the agglomeration of 

particles. The ELS measurement principle is based on the application of an electric field to the 

dispersed particles. By alternating the charge between the electrodes, the particles move back 

and forth between the electrodes at a velocity relative to their surface charge and the potential 

of the electrode (Malvern Technical Note).  
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Figure 2.2: Schematic illustration of the ζ potential (modified from Malvern Technical Note). 

 

 

2.3.4 Size, ζ potential and stability of nanoparticles in different buffers and media 

Stock solutions from the used fluorescently-labelled silica nanoparticles had concentrations 

ranging from 3.7 to 12.5 mg/ml. For the determination of the particles size as well as the 

ζ potential, particles were diluted in the respective dispersion buffer or media to a 

concentration of 100 µg/ml. Size measurements were performed at 37°C with an equilibration 

time of 120 seconds in disposable sizing cuvettes at the automatic mode. Every measurement 

was performed three times at different time points. For stability measurements, nanoparticle 

dispersions were stored at 37°C between the single measurements. For determination of the 

ζ potential, automatic measurements (10-100 runs) were performed at a temperature of 37°C 

and with an equilibration time of 120 seconds using the calculation model of Smoluchowski.  
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2.4 RESULTS AND DISCUSSION 

 

2.4.1 Alteration in the sizes of silica nanoparticle in different buffers and media 

Due to the alteration in the complexity of buffers and media, silica nanoparticles exhibited 

different behaviours. Thereby, unmodified RITC-labelled silica nanoparticles with different 

sizes could be dispersed in H2O as well as in PBS and HBSS. The dispersion in a cell culture 

medium e.g. DMEM with a very high complexity could be also performed without any 

agglomeration of nanoparticles (Figure 2.3).  

 

Figure 2.3: Dispersion of three unmodified RITC-labelled silica nanoparticles with different sizes (N30-RITC, 

N45-RITC and N77-RITC) in H2O, PBS, HBSS and DMEM. Bars present the mean ± SD of three 

measurements.  

 

Difficulties could be observed in the dispersion behaviour of nanoparticles with modified 

surfaces. Silica nanoparticles with adsorbed aminosilanes (DIAMO) showed a strong 

agglomeration in HBSS due to an interaction with bivalent ions in the buffer (Figure 2.4). The 

resulting aggregation was due to an electrostatic destabilization described by the Derjaguin-

Landau-Verwey-Overbeek theory (DLVO theory). This theory explains that the stability of 

colloidal systems is based on steric, electrostatic or van der Waals interactions between 

dispersed particles. A surface in an aqueous milieu is charged by dissociation of surface 

groups or by adsorption of charged molecules from the surrounding liquid. This arrangement 

results in the development of a wall surface potential which attract counterions from the 

environment and exclude ions with the same charge. Stable dispersions consist of a wall 

surface potential balanced by an equal but opposite charge of counterions. This potential can 

H2O PBS HBSS DMEM 
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be decreased via the adsorption of specific ions which results in a reduction of the interspace 

between single particles and a consequently agglomeration of the particles  (Zhang et al., 

2009). DIAMO-modified nanoparticles exhibited a positive ζ potential of 21.8 mV. The 

addition of bivalent cations such as Mg2+ and Ca2+ which are ingredients of HBSS caused a 

strong agglomeration of these particles due to an excess of positive charged molecules and a 

consequently reduced charge balance. In contrast, nanoparticles with the same size but 

without a DIAMO-modification could be dispersed in HBSS. Due to their negative ζ potential 

of -22.9 mV, unmodified silica nanoparticles were still in a balance with the surrounding 

milieu. 

 
Figure 2.4: Dispersion of RITC-labelled unmodified silica nanoparticles (N25-RITC; -22.9 mV) and DIAMO-

modified silica nanoparticles (N-25-D-RITC; +21.8 mV) in H2O and HBSS. Bars present the mean ± SD of three 

measurements.  

 

In contrast, PEG-modified nanoparticles could be dispersed in the same way as the 

corresponding unmodified nanoparticles. Thereby, the addition of PEG on the outer particle 

surface caused an increase in size of 0.7 nm to 10 nm (Figure 2.5). Furthermore, PEG-

modified nanoparticles showed no altered ζ potential.  

H2O HBSS 
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Figure 2.5: Size histograms of unmodified (black peaks) and the corresponding PEG-modified RITC-labelled 

nanoparticles (grey peaks). Particles were dispersed in HBSS buffer. (A) Unmodified nanoparticles N50-RITC, 

50 nm and PEG-modified nanoparticles N50-P-RITC, 55 nm. (B) Unmodified nanoparticles N77-RITC, 77 nm 

and PEG-modified nanoparticles N77-P-RITC, 87 nm. (C) Unmodified nanoparticles N94-RITC, 94 nm and 

PEG-modified nanoparticles N94-P-RITC, 97 nm.  

 

 

2.4.2 Stability of nanoparticles in different buffers and media 

For in vitro experiments a long-term incubation of cells with particles is sometimes necessary. 

Therefore, nanoparticles have to be dispersed in a cell-friendly milieu. Physiological buffers 

such as HBSS sustain the viability of cells for about 24 hours. If long-term experiment with 

longer incubation times should be performed, further supplements such as proteins, amino 

acids or vitamins are essential. All used RITC-labelled nanoparticles except DIAMO-

modified nanoparticles (Figure 2.4) were stable in HBSS over 24 hours (data not shown). The 

core-bound fluorescence dye RITC had no contact to the surrounding medium and therefore 

caused no interactions. In contrast, stability experiments with PI-labelled nanoparticles 

demonstrated that these nanoparticles often show no stability in HBSS over that period. PI-

labelled silica nanoparticles with different sizes (62 and 74 nm) could be dispersed in HBSS 

but showed a high agglomeration rate after a 24-hour-incubation (Figure 2.6). This 

A 

 

 

 
B 

 

 

 
C 



 
2          Characterization of silica nanoparticles  23 
 
 
agglomeration effect could be based again on the presence of bivalent ions in the buffer and 

their interaction with surface adsorbed PI molecules. Apparently, the charge balance could not 

be sustained for such a long period. However, time kinetic measurements of N21-PI, N34-PI 

and N84-PI nanoparticles demonstrated that these particles were stable for this period 

(Figure 2.6). 

 

Figure 2.6: Stability of PI-labelled unmodified nanoparticles with different sizes over 24 hours. Samples were 

measured directly after dispersion (0-h-incubation, black bars) or after an incubation of 24 hours at 37°C under 

standard cell culture conditions (24-h-incubation, grey bars). Bars present the mean ± SD of three measurements.  

 

A method for the solution of this stability problem was the application of ultrasonic which 

allows a separation of nanoparticles. Experiments showed that ultrasonic was able to separate 

agglomerated nanoparticles but did not help to stabilize these dispersions. Ultrasonic-treated 

nanoparticles even showed a higher agglomeration rate as untreated samples. The usage of 

ultrasonic with nanoparticles labelled with fluorescence dyes presents a further difficulty as 

these labellings can be released via this treatment.  

 

A further approach to stabilize nanoparticles is the stabilization via addition of bovine serum 

albumin (BSA). Various studies investigated the aspects of nanoparticle dispersion and 

protein adsorption including the binding enthalpy of proteins and the change of the ζ potential 

(Limbach et al., 2005; Patil et al., 2007; Schulze et al., 2008). The supplement of BSA to 

buffers or media resulted in a detectable size peak at ~8.4 nm which was based on BSA 

monomers (Figure 2.7, black peak). The measured diameter of nanoparticles was increased as 

well due to BSA monomers adsorbed to the particle surface creating a protein corona. 
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Unmodified N77-RITC nanoparticles exhibited a diameter of 108 nm ± 34.5 when dispersed 

in HBSS supplemented with 1% BSA (Figure 2.7, grey peak). In contrast, N77-RITC 

nanoparticles dispersed in HBSS without any addition of BSA showed a size of 

77.2 nm ± 0.53 (Figure 2.5 B). A further indication of a BSA coating was the alteration in 

ζ potential. N77-RITC nanoparticles dispersed in HBSS demonstrated a ζ potential of -28 mV. 

The addition of BSA into the medium caused a reduction of the ζ potential to -7.8 mV.  

 

 

Figure 2.7: Adsorption of BSA to the nanoparticle surface. Unmodified N77-RITC nanoparticles were dispersed 

in HBSS supplemented with 1% BSA. The grey peak demonstrated the size of N77-RITC nanoparticles coated 

with BSA. The black peak showed the size of free BSA in the solution. Bars present the mean ± SD of three 

measurements.  

 

The protein coating led to a sterical stabilization of the nanoparticle dispersions, which 

resulted in a reduction of particle agglomeration. Such a steric stabilization due to a coating 

with BSA had already been shown for gold, polymer and aluminium hydroxide nanoparticles, 

whereby these particles could be dispersed in media containing bivalent ions (Cedervall et al., 

2007; Deschaume et al., 2006; Lucocq & Baschong, 1986). The disadvantage of such a 

binding to proteins is that such particles are quickly cleared by macrophages in vivo and are 

not allowed to reach their target cells. Approaches to increase the particle circulation time, 

therefore try to eliminate protein adsorption. This approach would stay in contrast with the 

stabilization issue and lead to the point that particle stabilization via BSA or other proteins is 

not the best solution. However, an adsorption of proteins to the particle surface is not 

avoidable when nanoparticles, without a special surface modification, enter cells. As shown in 

figure 2.7 unmodified nanoparticles exhibited a strong BSA absorption which resulted in an 

increase in particle size of 30.8 nm. In contrast, nanoparticles modified with poly ethylene 

glycol (PEG) demonstrated only an increase in size of 6.15 nm (data not shown). The PEG-

modification avoids an adsorption of proteins to the outer particle surface. The characteristics 

of PEG will be discussed in depth in chapter 4. 
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2.5 COLLECTION OF USED SILICA NANOPARTICLES 

 

Table 2.4: Characterization of silica nanoparticles used in this thesis. Size was determined via dynamic light 

scattering. ζ potentials were determined via electrophoretic light scattering. Nanoparticle names are composed of 

the particle size, surface modification (P=PEG, D=DIAMO) and the fluorescence dye (RITC or PI). 

Name Design Surface 
modification 

Fluorescence 
labelling 

Size in 
HBSS (nm) 

ζ 
potential 

(mV) 
N25-RITC 

 

 
 

- RITC 25.4 ± 2.51 -22.9 

N25-D-RITC 
 

 
 

DIAMO RITC 795.9 ± 5.3 +21.8 

N30-RITC 
 

 
 

- RITC 29.8 ± 0.18 -32.0 

N37-RITC 
 

 
 

- RITC 37.2 ± 3.70 -35.0 

N45-RITC 
 

 
 

- RITC 45.3 ± 0.16 -29.0 

N50-RITC 
 

 
 

- RITC 49.7 ± 0.06 -42.7 

N50-P-RITC 
 

 
 

PEG RITC 54.6 ± 0.86 -27.5 

N62-RITC 
 

 
 

- RITC 61.6 ± 0.07 -31.4 

N77-RITC 
 

 
 

- RITC 77.2 ± 0.53 -28.0 

N77-RITC 
 

 
 

PEG RITC 87.2 ± 2.42 -25.0 

N94-RITC 
 

 
 

- RITC 93.7 ± 4.19 -37.6 
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N94-P-RITC 

 

 
 

PEG RITC 97.4 ± 3.03 -35.4 

N21-PI 
 

 
 

- PI 21.1 ± 0.48 -33 mV 

N34-PI 
 

 
 

- PI 34.0 ± 1.40 -0.17* 

N61-PI 
 

 
 

- PI 61.4 ± 0.54 -12.1* 

N74-PI 
 

 
 

- PI 73.8 ± 2.40 -0.48* 

N84-PI 
 

 
 

- PI 84.0 ± 0.21 -5.55* 

 

* The surface modification with the fluorescence dye PI caused interactions with the measurement principle for 

determination of the ζ potential.  



 
 

3 
Oxidative and cytotoxic potential of 

fluorescently-labelled silica nanoparticles 

 

 
Parts of this chapter have been submitted for publication as journal articles: 

1. A. Neumeyer, C.-M. Lehr & N. Daum. Novel method for the non-invasive determination of 

reactive oxygen species in vitro. Submitted to Toxicology In Vitro 

 

2. A. Neumeyer, M. Bukowski, M. Veith, C.-M. Lehr & N. Daum. Non-invasive determination 

of the cytotoxic effect caused by fluorescently-labelled silica nanoparticles. In preparation 

 

 

Nanomaterials are innovative tools in the field of drug delivery. Thereby, inorganic 

nanoparticles such as silica particles provide promising characteristics as novel drug carriers. 

Since silica exposure has also been associated with the generation of reactive oxygen species, 

it is essential for a thorough risk assessment to analyze the cytotoxic and oxidative potential 

of nanoparticles. Recent opinions of the Scientific Committee on Consumer Products (SCCP) 

of the European Commission and the European Food Safety Authority (EFSA) underlined this 

approach, suggesting the validation of in vitro methodologies for nanomaterials. Furthermore, 

nanoparticles often interfere with various standardized assays revealing again the importance 

for the development of alternatives for already commercially available techniques. Therefore, 

a novel method for the combined detection of oxidative stress and cytotoxicity was

established. This assay is based on the automated non-invasive online monitoring of the 

oxygen concentration in solution (SensorDish® Reader). Silica nanoparticles with different 

sizes and surface modifications were investigated with this novel method concerning their 
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oxidative and cytotoxic potential. Thereby, size, time, concentration as well as surface 

modification of nanoparticles affected cellular viability but not oxidative stress levels.  

 

 

 

3.1 INTRODUCTION 

 

Silica nanoparticles have to be investigated concerning their oxidative and cytotoxic potential, 

particularly with regard to a pharmaceutical or medical application where particles come in 

close contact with biological systems. Recent studies described that silica nanoparticles can 

cause oxidative stress (Eom & Choi, 2009; Park & Park, 2009; Wang et al., 2009) which is in 

turn associated with deleterious effects resulting in several serious diseases such as 

autoimmune diseases and cancer (Avalos et al., 2007; Gonsette, 2008; Rice-Evans & Burdon, 

1993; Sayre et al., 2008). These findings reveal that the validation of the oxidative and 

cytotoxic potential of nanomaterials is of great interest. To exclude potential harmful effects, 

these new materials have to undergo a thorough risk assessment. Referring to this, the 

European Food Safety Authority (EFSA) and the Scientific Committee on Consumer Products 

(SCCP) of the European Commission recently published opinions on the safety of 

nanomaterials in cosmetic products or food (EFSA, 2009; SCCP, 2007). It is suggested that 

nanomaterials should be treated as new chemicals from a risk point of view. For this purpose, 

various in vitro assays already exist. However, the use of standardized assays for the detection 

of oxidative stress and cytotoxicity with these new kinds of materials pose specific 

challenges. Because of their material properties, nanomaterials often cause interactions with 

many standardized assays revealing the importance for the development of useful alternatives 

for already commercially available techniques (Laaksonen et al., 2007; Ulukaya et al., 2008; 

Wahl et al., 2008; Worle-Knirsch et al., 2006).  

 

Oxidative stress arises with an imbalance of the generation and the decomposition of reactive 

oxygen species (ROS). Normally, cells are able to defend themselves against ROS damage, 

using their antioxidant defence mechanism which includes enzymes such as superoxide 

dismutases (SOD) and catalases (Johnson & Giulivi, 2005; Lavrovsky et al., 2000; Sies, 

1993). However, after exposure to oxidants the ROS levels can increase dramatically which 

results in damages affecting all types of biological molecules including lipids, proteins, 
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carbohydrates and nucleic acids. This can lead to protein oxidation and fragmentation, lipid 

peroxidation, membrane damage, mutagenesis and carcinogenesis (Sies, 1986).  

 

ROS are either free radicals, reactive anions containing oxygen atoms or molecules containing 

oxygen atoms. They can produce free radicals or are chemically activated by themselves, e.g., 

the hydroxyl radical (OH•), superoxide anion radical (O2
•-) and hydrogen peroxide (H2O2) all 

result from molecular oxygen (O2) (Figure 3.1). In vivo the main amount of ROS is generated 

in mitochondria during the aerobic respiration (Fernandez-Checa et al., 1998). In addition to 

this endogenous oxidative stress, exogenous factors including UV- or X-rays, ozone, smog 

and the exposure to chemicals such as nicotine are much more hazardous and result in an 

increased generation of ROS (Baier et al., 2007; Barr et al., 2007; Bertram & Hass, 2008; 

Rugo & Schiestl, 2004; Wang et al., 2006). A well known method for the detection of 

oxidative stress is the 2’, 7’-dichlorofluorescein diacetate (DCF-DA) assay (Rosenkranz et al., 

1992; Wang & Joseph, 1999). This method is based on a fluorescence assay first described by 

Keston and Brandt (Brandt & Keston, 1965) who employed DCF-DA to measure hydrogen 

peroxide in aqueous solution.  

 
Figure 3.1: Summary of the antioxidant defence mechanism. Superoxide anion (O2

-) is scavenged by the 

antioxidant superoxide dismutase (SOD). Glutathione peroxidase (GP) uses hydrogen peroxide (H2O2) to convert 

reduced glutathione (GSH) to oxidized glutathione (GSSG). Glutathione reductase (GR) reduces GSSG to GSH 

via nicotinamide adenine dinucleotide phosphate (NADPH) oxidation, while catalase decomposed H2O2 into 

water and molecular oxygen (Maier & Chan, 2002). 
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Oxidative stress can result in cytotoxicity, wherefore the cytotoxic potential of nanoparticles 

have to be investigated as well. Assays for the detection of cytotoxicity address many cellular 

parameters as cytotoxicity can occur in nearly all parts of the cell and in every cell organelle. 

Exposure to cytotoxic molecules can result in a loss of membrane integrity, cell lysis and 

necrosis. In consequence of these damages, cell growth and division are arrested, which can 

be detected as a decrease in cellular viability. Furthermore, apoptosis can be activated, which 

is characterized by well defined events including shrinkage of the cytoplasm and nuclear 

condensation. Cytotoxicity assays detect either the damage of cell membranes (mechanical 

cytotoxicity) or the mitochondrial metabolism (metabolic cytotoxicity). One common 

measured parameter in cell death and cell lysis determination is lactate dehydrogenase (LDH) 

which is released from the cytosol of damaged cells into the supernatant. For the measurement 

of cellular proliferation and viability, MTT assay is a well known example. All these assays 

are easy to perform but they detect only high-specific alterations of one cellular or metabolic 

parameter at one selected time point and they are mostly invasive methods (Fotakis & 

Timbrell, 2006; Weyermann et al., 2005).  

 

As an alternative to standardized and commonly-used assays such as DCF-DA, LDH or MTT, 

a novel assay using the SensorDish® Reader (SDR) was established. This method allows an 

automated and combined online detection of ROS generation and cytotoxicity in vitro. This 

method was so far applied for the monitoring of cell cultivation, bacterial respiration and the 

validation of cytotoxicity caused by several drugs (Beckers et al., 2009; Kensy et al., 2005; 

Noor et al., 2009). The measurement principle is based on the automated online monitoring of 

the molecular oxygen concentration in a microtiter plate format (Kocincova et al., 2008). 

Cellular respiration is associated with a consumption of oxygen and therefore serves as an 

indicator for cytotoxicity. Cytotoxicity can be determined measuring the long-term cellular 

consumption of oxygen during cell incubation. An increase in air saturation caused by 

decreased cellular consumption of oxygen is a very early indication for cytotoxicity before 

other toxicity markers such as mitochondrial dysfunction or destruction of the cell membrane 

can be detected. The generation of ROS as an indication for oxidative stress was determined 

indirectly measuring the conversion of oxygen radicals via superoxide dismutase. 
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3.2 AIM OF THE STUDY 

 

Aim of this study was to evaluate an alternative to standardized assays for the detection of 

cytotoxicity and oxidative stress in vitro. For this purpose the SensorDish® Reader (SDR) was 

used. In this study, a first-time combined non-invasive method for the detection of ROS and 

cytotoxicity in vitro based on the cellular consumption of molecular oxygen was established. 

Therefore, the SDR assay had to be adjusted for the detection of ROS in cellular systems, as 

the method had never been used before for this application. For this establishment H2O2 

served as a model substance for the generation of ROS causing oxidative stress. The 

involvement of the SOD during exposure to H2O2 was investigated as well. Furthermore, the 

novel assay was evaluated by comparison with well known standardized assays for the 

detection of ROS (DCF-DA) and cytotoxicity (LDH and MTT).  

 

This new established assay allows the evaluation of the oxidative and cytotoxic potential of 

different silica nanoparticles with various sizes and surface modifications.  

 

 

 

3.3  MATERIALS AND METHODS 

 

3.3.1 Materials 

Dulbecco’s modified eagle medium with high glucose (4.5 g/l) and L-glutamine was obtained 

from Gibco (Karlsruhe, Germany), fetal bovine serum was purchased from PAN-Biotech 

(Aidenbach, Germany), non-essential amino acids were obtained from PAA (Cölbe, 

Germany). 2’, 7’-dichlorofluorescein diacetate (97%), 2’, 7’-dichlorofluorescein (~90%), 

sodium diethyldithiocarbamate trihydrate, hydrogen peroxide (30%), thiazolyl blue 

tetrazolium bromide, bovine serum albumin and polyethylenimine (PEI) (25 kDa) were 

purchased from Sigma (Munich, Germany). Composition of Hank’s balanced salt solution 

was as follows: 136.9 mM NaCl, 5.4 mM KCl, 4.26 mM NaHCO3, 0.35 mM KH2PO4, 

5.5 mM glucose, 10 mM HEPES, 1.26 mM CaCl2, 0.5 mM MgCl2*6H2O, 0.4 mM 

MgSO4*7H2O. Hank’s balanced salt solution was adjusted to pH 7.4 by means of NaOH. 

Cytotoxicity detection kit for lactate dehydrogenase was purchased from Roche Applied 

Science (Mannheim, Germany), OxoDish® plates were obtained from PreSens (PreSens 
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Precision Sensing GmbH, Regensburg, Germany). BreathSeal® foils were obtained from 

Greiner bio-one (Essen, Germany). 

 

 

3.3.2 Caco-2 cell culture 

The human colon adenocarcinoma cell line, Caco-2, clone C2Bbe1, was purchased from 

American Tissue Culture Collection (ATCC, Manassas, VA) and used at passages 60-80. 

Cells were cultured in Dulbecco’s modified eagle medium (DMEM) with high glucose 

(4.5 g/l) and L-glutamine, supplemented with 10% fetal calf serum (FCS) and 1% non-

essential amino acids and were maintained under standard culture conditions at a temperature 

of 37°C and in a humidified atmosphere of 5% CO2. The culture medium was changed three 

times a week. For oxygen measurements with the SensorDish® Reader (SDR), Caco-2 cells 

were cultured in 24-well OxoDish® plates at a density of 1x105 cells per well in 1 ml culture 

medium and were allowed to attach and proliferate for 96 hours. For the determination of the 

conversion of DCF-DA into DCF (DCF-DA assay), Caco-2 cells were plated into 96-well 

plates at a density of 2x104 cells per well in 0.2 ml culture medium and allowed to attach and 

proliferate for 96 hours as well. For MTT assay Caco-2 cells were cultured also in 96-well 

plates in a density of 2x104 cells per well and were cultivated for 8 days.  

 

 

3.3.3 SensorDish® Reader (SDR) 

The SensorDish® Reader (SDR) is an innovative system for the measurement of the molecular 

oxygen concentration (O2) in solution. For this purpose special 24-well plates (OxoDish® 

plates) were used. These sterile multidishes contain sensor spots on the bottom of each well, 

which consist of an oxygen-sensitive fluorescent dye embedded in a tissue compatible 

polymer (Figure 3.2). The fluorescence lifetime of this dye depends on the amount of oxygen 

in solution. The emitted sensor signal is read out non-invasively through the bottom of the 

OxoDish® plates by the SDR and is converted automatically to e.g., oxygen air saturation (%) 

or oxygen concentration (mg/L) using calibration parameters provided in the corresponding 

software (SDR_V37). A decrease in air saturation refers to an increase in oxygen 

consumption which is indicative for viable cells, whereas an increase in air saturation 

indicates a loss of cellular activity. The calculated alteration in air saturation results from the 

difference between the value for air saturation under normal culture conditions (buffer 

control) and the value of the top of an amplitude which develops e.g., after application of 
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H2O2. Measurements can be performed in user-defined time intervals. To avoid evaporation 

effects in the 24-well plates, all dishes were sealed with an air- and gas-permeable foil 

(BreathSeal® foils).  

         

A                                                                                                                   B 
Figure 3.2: Assembling of the SensorDish® Reader (SDR). (A) SDR with an OxoDish® plate on top. Sensor 

spots are immobilised at the bottom of each well. (B) Measurement principle of the SDR. The sensor is excited 

by the reader non-invasively through the transparent bottom of the OxoDish® plates. Its emission is detected 

from the bottom side as well. Images were received from PreSens (Regensburg, Germany).  

 

For the detection of oxidative stress, Caco-2 cells were cultured for 96 hours in 

OxoDish® plates. Alterations in air saturation were documented every hour during cell 

cultivation. After the cell culture medium was removed, H2O2 in different concentrations 

(75, 150, 300, 1000 and 2000 µM) diluted in DMEM was added to the cells. To analyse the 

involvement of the SOD in the course of the assay establishment, cells were pre-incubated for 

24 hours with the SOD inhibitor diethyldithiocarbamate trihydrate (DDC). This hydrophobic 

chelating agent removes Cu (II) ions from the active site and thus inactivating the SOD 

(Fridovich, 1986; Khazaei et al., 2009). Cells were treated with different concentrations 

(20, 100 and 200 µM) of DDC before 2000 µM H2O2 were applied as described before. 

MTT experiments demonstrated no cytotoxic effect of the used DDC concentrations (data not 

shown). For the evaluation of the oxidative potential of nanoparticles, cells had been 

additionally washed with HBSS, whereupon various nanoparticles in different concentrations 

(10, 50, 100, 200 and 500 µg/ml) were added to the cells. H2O2 in a concentration of 1000 µM 

served as a positive control. After addition of the test substance measurements were 

performed every minute for 1 hour.  

 

For detection of cytotoxicity, Caco-2 cells were treated as described in the paragraph above. 

Triton-X (0.000001-1%), polyethylenimine (PEI) (0.01-100 µg/ml) or different nanoparticles 
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in different concentrations (10-500 µg/ml) (dispersed in HBSS) were added to the cells. The 

consumption of molecular oxygen, indicative for the cell growth behaviour, was detected over 

24 hours every hour. Triton-X served as a positive control for cytotoxicity. To investigate, if 

the cytotoxic effects are reversible, Caco-2 cells were cultured for 48 hours as described 

before. Afterwards cells were treated for 4, 8 and 24 hours with nanoparticles dispersed in 

HBSS or with HBSS alone. After these incubation times (4, 8 and 24 hours), cells were rinsed 

with HBSS and were cultured in DMEM for further 72 hours.  

 

To exclude the detection of chemical reactions due to H2O2 or nanoparticles, all experiments 

were additionally performed in a cell-free milieu as well. Therefore, OxoDish® plates were 

incubated with DMEM under standard cell culture conditions in the absence of cells. 

Afterwards H2O2 or nanoparticles were added as described before.  

 

 

3.3.4 DCF-DA assay 

The production of intracellular ROS was measured using 2’, 7’-dichlorofluorescein diacetate 

(DCF-DA). DCF-DA is a non-ionic, non-polar and non-fluorescent fluorescein derivative 

which is able to cross cell membranes and is hydrolyzed enzymatically by intracellular 

esterases. In the presence of ROS DCF-DA is oxidized to the highly fluorescent 

dichlorofluorescein (DCF). A 10 mM DCF-DA stock solution (in dimethyl sulfoxide, DMSO) 

was diluted in Hank’s balanced salt solution (HBSS) with 1% bovine serum albumin (BSA) to 

obtain a working solution with a concentration of 20 µM. Final DMSO concentration was 

kept below 0.2%. After cell cultivation, Caco-2 cells were washed twice with HBSS 

supplemented with 1% BSA, followed by an incubation of DCF-DA at 37°C for 30 minutes. 

After that period DCF-DA was removed and H2O2 in different concentrations (75-1000 µM) 

or nanoparticle dispersions (10-500 µg/ml) were added and incubated at 37°C for 

180 minutes. This time point had been determined in previous time kinetic experiments, 

where an increase in fluorescence over time had been shown (data not shown). HBSS with 

1% BSA served as negative control. To investigate the suitability of different buffers and 

media, the above described experiment was performed with HBSS, DMEM and DMEM 

without phenol red, respectively. Emission of the developed fluorescence was analyzed with a 

fluorescence plate reader (Infinite M200, Tecan, Crailsheim, Germany) using a 

485 nm extinction filter and a 530 nm emission filter. Measurements were performed 

immediately after addition of H2O2 or after a 180-minute-incubation. 



3          Oxidative and cytotoxic potential of silica nanoparticles 35 
 
 
3.3.5 LDH assay 

The release of lactate dehydrogenase (LDH) from damaged cells was detected in a two-step 

enzymatic reaction. In the first step LDH catalyzes the conversion of lactate to pyruvate, 

which results in the reduction of NAD+ to NADH/H+. In a second step the catalyst transfers 

H/H+ from NADH/H+ to the tetrazolium salt INT which is reduced to a water-soluble 

formazan dye. The absorbance of this formazan dye was measured at an absorbance of 

492 nm (Infinite M200, Tecan, Crailsheim, Germany). Caco-2 cells were treated with 

different concentrations of triton-X (0.000001%-1%) or different nanoparticles (N50-RITC 

and N50-P-RITC) in different concentrations (100-500 µg/ml). The release of LDH into the 

supernatant was analyzed after 2, 4, 6 and 8 hours. An interference of the used nanoparticles 

with the LDH assay was excluded performing substance control tests beforehand (data not 

shown).  

 

 

3.3.6 MTT assay 

Cells were treated with N50-RITC and N50-P-RITC particles in a concentration of 200 µg/ml 

in HBSS and were incubated for 4, 8 or 24 hours. The MTT reagent was subsequently added 

for further 4 hours. Cytotoxicity was determined by measuring the reduction of the yellow 

tetrazolium salt thiazolyl blue tetrazolium bromide (MTT) to water-insoluble purple formazan 

crystals by metabolic active cells. Formazan crystals were extracted with DMSO and their 

absorbance was measured at 550 nm (Infinite M200, Tecan, Crailsheim, Germany). An 

interference of the used nanoparticles with the MTT assay was excluded performing 

substance control tests beforehand (data not shown).  
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3.4 RESULTS 

 

3.4.1 Establishment of a method for the combined determination of oxidative stress 

and cytotoxicity via SDR measurements 

 

3.4.1.1 Determination of oxidative stress via SDR 

3.4.1.1.1 Cell concentration- and H2O2 concentration-dependent increase in molecular 

oxygen 

The SDR had previously been used for the monitoring of cell cultivation and the non-invasive 

determination of cytotoxicity based on cellular O2 consumption. For its application in the 

detection of oxidative stress in human cell culture systems, a new assay had to be established. 

For this purpose, H2O2 served as a model substance to generate ROS resulting in oxidative 

stress in Caco-2 cells. After cells were cultivated for 96 hours under standard cell culture 

conditions, H2O2 in different concentrations, (75-2000 µM) diluted in cell culture medium 

(DMEM), was added to the cells. Measurements of the resulting oxygen concentration were 

performed directly after addition of H2O2. Figure 3.3 A shows exemplarily a typical SDR run 

of control cells (treated with DMEM alone) (black circles) and cells treated with 

1000 µM H2O2 (open circles). Immediately after the addition of H2O2 (Figure 3.3 A, arrow) a 

strong increase in air saturation (+55.50% ± 0.54) and consequently in the concentration of 

molecular oxygen was documented. This effect reached a maximum after 1 hour, followed by 

a short stagnation with a subsequent decrease of molecular O2. Control cells also showed a 

low increase in air saturation (+6.35% ± 0.93) due to variations in temperature. Within about 

six hours, control cells reached nearly their basic value (-3.77% ± 0.80), whereas cells which 

were incubated with 1000 µM H2O2 exhibited a great difference between the amount of air 

saturation before application of H2O2 and after the reaction (+14.34% ± 2.11) (Figure 3.3 A). 

This observed effect was associated with the amount of cells as can been shown in 

Figure 3.3 B. H2O2 in a concentration of 1000 µM was added to Caco-2 cells, which were 

cultured for 48, 72 or 96 hours. Cells which were cultured for 48 or 72 hours exhibited a 

reduced reaction to H2O2 when compared to cells cultivated for 96 hours. The air saturation 

was increased by +23.28% ± 2.53 for Caco-2 cells cultured for 48 hours and by 

+33.67% ± 2.7 for cells cultured for 72 hours (Figure 3.3 B). 
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A  

B  

Figure 3.3: Influence of H2O2 on Caco-2 cells. (A) Run of an SDR experiment to measure indirectly the 

generation of oxygen radicals in Caco-2 cells cultivated for 96 hours under standard cell culture conditions. 

Measurements were performed every minute after application of DMEM as control or H2O2 (arrow). For 

clarification not all time points were plotted. Data represent the mean ± SD of three wells. (B) Cell 

concentration-dependent increase in air saturation after application of H2O2. Caco-2 cells were cultivated for 48, 

72 and 96 hours under standard cell culture conditions. Afterwards 1000 µM H2O2 was added to the cells. 

Plotted data were calculated by subtracting the starting air saturation from the maximal occurred air saturation. 

Data represent the mean ± SD of three wells. The asterisks depict significant differences between different cell 

cultivation times (p≤0.01**, p≤0.001***). 
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The results of three independent experiments with different concentrations of H2O2 (75-

2000 µM) are presented in Figure 3.4 A, where a concentration-dependent increase of oxygen 

concentration could be detected. H2O2 in a concentration of 75 µM did not increase the air 

saturation compared to the DMEM control, while 2000 µM H2O2 resulted in a highly 

significant increase (p≤0.00058). The used concentrations of H2O2 and the resulting increase 

in air saturation exhibited a very strong correlation with a coefficient of determination of 

0.9636 (Figure 3.4 B).  
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Figure 3.4: Increase in air saturation due to the application of H2O2. (A) H2O2 in different concentrations (75-

2000 µM) was added to Caco-2 cells cultured for 96 hours. Plotted data were calculated by subtracting the 

starting air saturation from the maximal occurred air saturation. Data represent the mean ± SD of three 

independent experiments. The asterisks depict significant differences between the control and H2O2 treated cells 

(p≤0.05 *, p≤0.001 ***). (B) Correlation between H2O2 concentration and the increase in air saturation. Data 

represent the mean ± SD of three independent experiments. 

 

As the degradation product of H2O2 is O2 as well, it was necessary to investigate the 

behaviour of H2O2 in a milieu without any cells to exclude a chemical effect only. Directly 

after the addition of H2O2, this cell-free experiment showed a decrease in air saturation 
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(Figure 3.5, black bars). The rising of the oxygen concentration during the experiment was 

similar to that of control cells treated with DMEM alone (Figure 3.5, grey bars). These results 

confirmed a cellular and therefore biological answer to H2O2 and excluded a chemical 

reaction.  

 
Figure 3.5: SDR experiments in absence of cells. OxoDish® plates were incubated with DMEM under normal 

cell culture conditions but in absence of cells. H2O2 in different concentrations (150-1000 µM) was added to the 

DMEM medium. The direct effect (black bars) as well as the maximum effect during H2O2 exposure (grey bars) 

were determined. Data represent the mean ± SD of three independent experiments. 

 

 

3.4.1.1.2 Involvement of the SOD in the H2O2-induced effect 

The observed H2O2-induced effect of Caco-2 cells was supposed to be caused by the SOD. To 

prove the involvement of the SOD, an enzyme of the antioxidant defence mechanism, Caco-2 

cells were pre-incubated with DMEM or the specific SOD-inhibitor DDC (20-200 µM) for 

24 hours. After this pre-incubation cells were treated with 2000 µM H2O2. Samples which 

were not pre-incubated with DDC showed a strong increase in molecular oxygen 

(+125.99% ± 7.81) as could be detected already in previous experiments. The pre-incubation 

with 20 µM DDC caused a reduction in air saturation of 73.57% compared to control cells 

incubated with DMEM without DDC. DDC in a concentration of 100 µM exhibited a further 

reduction of the H2O2 induced effect (+2.57% ± 0.42) or even resulted in a decrease of air 

saturation when using 200 µM DDC (-15.98% ± 0.33) (Figure 3.6) which is an indication for 

a complete inhibition of the SOD. Previous MTT experiments demonstrated no cytotoxic 

effect of the used DDC concentrations (data not shown). 
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Figure 3.6: Influence of DDC on the H2O2-induced effect. Caco-2 cells were cultured for 96 hours. Cells were 

pre-incubated for 24 hours with DDC in different concentrations (20-200 µM) followed by the addition of 

2000 µM H2O2. Bars show the alteration in air saturation after H2O2 application by subtracting the starting air 

saturation from the maximal occurred air saturation. Data represent the mean ± SD of three independent 

experiments. The asterisks depict significant differences between control and DDC treated cells (p≤0.01 **). 

 

 

3.4.1.1.3 Comparison with the DCF-DA assay 

The authenticity of experiments with this novel technique was confirmed with a conventional 

fluoriometric assay for the detection of oxidative stress using 2’, 7’-dichlorofluorescein 

diacetate (DCF-DA). Furthermore, the comparability of the SDR assay with a standardized 

method should be clarified. Caco-2 cells were pre-incubated with DCF-DA followed by a 

three-hour-incubation with different concentrations of H2O2 diluted in DMEM or 

HBSS with 1% BSA. The resulting emission values, based on the conversion of DCF-DA into 

the fluorescent dichlorofluorescein (DCF), were documented every hour over a 3-hour-

incubation (data not shown). The occurred fluorescence is a parameter for the presence of 

ROS. The usage of the standard cell culture medium (DMEM) was not possible, because the 

medium interfered with the fluorescent measuring system. DMEM without addition of phenol 

red caused problems with the measurements technique as well (Figure 3.7 A). Thereupon, 

DCF-DA experiments were performed in HBSS supplemented with 1% BSA. Similar to the 

results of the SDR measurements, H2O2 caused a concentration-dependent increase in the 
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conversion of DCF-DA after three hours indicative for the generation of ROS (Figure 3.7 B). 

Thereby, the DCF-DA assay had a lower detection limit than the SDR assay. 

 

A  

B  

Figure 3.7: Standard DCF-DA assay for the detection of oxidative stress. (A) Fluorescence measurements of 

converted DCF-DA in HBSS, HBSS supplemented with 1% BSA, DMEM and DMEM without phenol red 

(DMEM*) after addition of H2O2 in different concentrations (0, 300 and 1000 µM). (B) Caco-2 cells were 

cultured for 96 hours and were pre-incubated with DCF-DA in HBSS+1% BSA for 30 minutes. Afterwards H2O2 

in different concentrations (75-1000 µM) was added to Caco-2 cells followed by a 3-hour-incubation. Data 

represent the mean ± SD of three independent experiments. The asterisks depict significant differences between 

the control and H2O2 treated cells (p≤0.001 ***). 
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Measurements were also performed directly after addition of H2O2 without a 3-hour-

incubation step. No difference between several H2O2 concentrations and the HBSS + 1% BSA 

control could be observed (data not shown) which indicates that the conversion of DCF-DA 

into DCF seems not to be an immediate process and requires a longer incubation time. 

 

 
3.4.1.2 Determination of cytotoxicity via SDR 

To prove the correlation between the amount of cells and the consumption of molecular 

oxygen, Caco-2 cells were seeded with different cell numbers (6 300 – 78 900 cells per cm2) 

in OxoDish® plates. The variation of the air saturation was measured every 30 minutes over 

16 hours. Measurements were started with a delay of 1 hour, because the system needs about 

1 hour to equilibrate (temperature and pH) after seeding the cells. Already 2 hours after 

seeding the cells a concentration-dependent decrease in air saturation was visible (Figure 3.8). 

The SDR run clarified that there is a strong correlation between the amount of seeded cells 

and the consumption of oxygen. A high cell concentration (79 000 cells per cm2) showed a 

decrease in air saturation of 12.92% ± 4.16 over 16 hours, whereas lower concentrated cells 

(6 300 cells per cm2) caused a reduction in air saturation of 5.11% ± 0.56. Cell-free samples 

showed no variation in air saturation during the whole experiment.  

 

 

Figure 3.8: Alteration in air saturation correlates with the cell number. Air saturation profiles of several seeding 

densities of Caco-2 cells. Cells were seeded in different concentrations in OxoDish® plates and were cultured for 

16 hours under normal cell culture conditions. Measurements were performed every 30 minutes. Data represent 

the mean ± SD of three wells. 
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The cytotoxic potential of an added reagent is reflected by the decrease in cellular 

consumption of O2. For this purpose, triton-X served as a model substance causing 

cytotoxicity due to permeabilization of the cell membranes. Therefore, Caco-2 cells were 

treated with different concentrations of triton-X (0.000001%-1%) solved in DMEM. Samples  

incubated with the highest triton-X concentration (1%) showed a clear increase in air 

saturation directly after addition of triton-X. Air saturation values of samples with lower 

triton-X concentrations (0.0001%-0.1%) showed a concentration-dependent approximation to 

the highest triton-X concentration. However, control cells, cultivated in DMEM during the 

whole experiment, caused a decrease in air saturation over time which suggests a high 

consumption of molecular oxygen by viable cells (Figure 3.9 A). These results were proved 

with a standardized assay detecting the LDH release from damaged cells which is a 

commonly used and standardized marker for cell membrane integrity and cytotoxicity. 

Supernatants of all samples were collected simultaneously to the SDR measurements and 

analyzed concerning their LDH leakage over 8 hours. No clear concentration-dependent 

release of LDH could be detected for triton-X during the experiment. For the lower triton-X 

concentrations (0.000001%-0.01%) no increased LDH release could be detected when 

compared to the medium control, while the treatment with 0.1% and 1% triton-X showed 

already after two hours a very strong LDH release (Figure 3.9 B). In contrast to the SDR 

assay, where a clear concentration-dependent effect could be observed, the LDH assay 

exhibited either no or the maximal cytotoxic effect without any intermediate steps.  
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Figure 3.9: Air saturation correlates with occurred cytotoxicity. (A) Determination of triton-X-induced 

cytotoxicity via SDR measurements. Increase in air saturation due to the application of triton-X over time. Cells 

were incubated with different concentrations of triton-X solved in DMEM for 4, 8, 16 and 20 hours, respectively. 

(B) Determination of the triton-X-induced effect via LDH assay. Caco-2 cells were incubated with different 

concentrations of triton-X solved in DMEM. Supernatants were collected and analyzed concerning LDH leakage 

after 2, 4, 6 and 8 hours. Measurements were performed with an absorbance plate reader. Data represent the 

mean ± SD of three independent experiments. 

 

After finishing these establishment experiments, this novel assay could apply for the 

determination of oxidative stress and cytotoxicity in particulate systems such as silica 

nanoparticles.  
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3.4.3 Oxidative and cytotoxic potential of silica nanoparticles  

 

3.4.3.1 Determination of the oxidative potential of silica nanoparticles via SDR in comparison 

to DCF-DA measurements 

For determination of nanoparticulate-induced ROS generation, Caco-2 cells were plated for 

96 hours in OxoDish® plates. Nanoparticles (N50-RITC, N50-P-RITC, N94-RITC and N94-P-

RITC) were diluted in HBSS in different concentrations (10, 100, 200 and 500 µg/ml) and 

were added to the cells. H2O2 in a concentration of 1000 µM served again as a positive control 

for generation of ROS. Measurements were performed every minute after addition of 

nanoparticles. H2O2 with a concentration of 1000 µM  showed a high increase in air saturation 

of 32.16% ± 5.83 compared to the buffer control, while nanoparticles caused no significant 

increase in air saturation (Figure 3.10 A). This result could be also confirmed with a DCF-

DA assay. Caco-2 cells plated in a 96-well plate were incubated with DCF-DA for 

30 minutes, followed by addition of nanoparticles for further 180 minutes. H2O2 caused a 

conversion of DCF-DA into DCF of 3.05% ± 0.77, whereas all tested nanoparticles showed 

no increased DCF-DA conversion compared to the buffer control (0.93% ± 0.06) 

(Figure 3.10 B).  
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Figure 3.10: Determination of the oxidative potential of nanoparticles via SDR and DCF-DA measurements. 

(A) Detection of ROS generation via alteration in air saturation by SDR measurements. Different nanoparticles 

(N50-RITC, N50-P-RITC, N94-RITC and N94-P-RITC) in different concentrations (10-500 µg/ml) were added 

to Caco-2 cells plated in OxoDish® plates. H2O2 served as a positive control. (B) Detection of ROS generation 

via conversion of DCF-DA into DCF. Caco-2 cells were pre-incubated with DCF-DA for 30 minutes. 

Afterwards, different nanoparticles (N50-RITC, N50-P-RITC, N94-RITC and N94-P-RITC) in different 

concentrations (10-500 µg/ml) were added to the cells followed by a 3-hour-incubation. The buffer control 

(HBSS or HBSS + 1% BSA) is displayed by the dashed line. Data represent the mean ± SD of three independent 

experiments.
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3.4.3.2 Size-, time-, surface modification- and concentration-dependent nanoparticulate 

cytotoxicity 

Long-term determination of nanoparticulate cytotoxicity was measured on the basis of the 

consumption of oxygen over 24 hours. Caco-2 cells were plated for 96 hours in OxoDish® 

plates. For the cytotoxic evaluation of a particulate model substance, Caco-2 cells were 

incubated with PEI in different concentrations (0.01-100 µg/ml). PEI polymers are widely 

used as a transfection reagent in non-viral gene delivery. Used PEI polymers had a size of 

12.02 nm ± 0.56 when dispersed in HBSS in a concentration of 100 µg/ml. After addition of 

PEI, cells showed a time- and concentration-dependent decrease in oxygen consumption 

indicative for a cytotoxic effect of PEI. Concentrations up to 1 µg/ml caused no inhibition in 

cellular activity when compared to the buffer control. In contrast, cells treated with PEI in a 

concentration of 10 and 100 µg/ml exhibited a clear time- and concentration-dependent 

cytotoxic effect similar to that of the triton-X control (Figure 3.11). 

 

 
Figure 3.11: Cytotoxic potential of polyethylenimine (PEI) as a particulate model substance analysed via SDR. 

PEI in different concentrations (0.01-100 µg/ml) was added to Caco-2 cells cultivated for 96 hours. 

Measurements were performed every hour over 24 hours. Bars exhibit the additional consumption of O2 related 

to the HBSS control after 4, 8, 12, 16, 20 and 24 hours. Data represent the mean ± SD of three independent 

experiments.  

 

For the cytotoxic evaluation of silica nanoparticles, various nanoparticles (N50-RITC, N50-P-

RITC, N94-RITC and N94-P-RITC) were dispersed in HBSS in different concentrations 

(10, 100, 200 and 500 µg/ml) and were added to the cells. Triton-X in a concentration of 

0.01% served as positive control for cytotoxicity. Measurements were performed every hour. 
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Already after 4 hours, a clear difference between the tested nanoparticles was visible. N50-

RITC nanoparticles caused a clear increase in air saturation and consequently a reduced 

consumption of oxygen. Particularly, at higher concentrations (200-500 µg/ml) N50-

RITC particles provoked a strong effect by adjusting to the air saturation values of the triton-

X control indicative for cell death. After a 16-hour-incubation, N50 –RITC particles in a 

concentration of 500 µg/ml caused a lower cellular oxygen consumption as the one 

documented for triton-X at this time point (Figure 3.12 A). N94-RITC particles as well as 

PEG-modified nanoparticles (N50-P-RITC and N94-P-RITC) showed no alteration in air 

saturation during the experiment when compared to the buffer control (HBSS) (Figure 3.12 B-

D) and therefore did not generate cytotoxicity in Caco-2 cells. For N50-P-RITC and N94-P-

RITC particles a minor cytotoxic effect could be detected after 24 hours.  
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Figure 3.12: Determination of the cytotoxic potential of different RITC-labelled silica nanoparticles via SDR 

measurements. Nanoparticles in different concentrations (100-500 µg/ml) were added to Caco-2 cells. 

Measurements were performed every hour over 24 hours. (A) N50-RITC, unmodified nanoparticles, 50 nm, 

(B) N50-P-RITC, PEG-modified nanoparticles, 55 nm, (C) N94-RITC, unmodified nanoparticles, 94 nm, 

(D) N94-P-RITC, PEG-modified nanoparticles, 97 nm. Bars exhibit the additional consumption of O2 related to 

the HBSS control after 4, 8, 12, 16, 20 and 24 hours. Data represent the mean ± SD of three independent 

experiments. 

 

To evidence the observed cytotoxicity, the LDH release after incubation with N50-RITC and 

N50-P-RITC particles in different concentrations (100-500 µg/ml) during the first 8 hours of 

the experiment were analysed simultaneously to the SDR measurements. A clear 

concentration- and time-dependent release of LDH could be detected for N50-RITC particles, 

whereas N50-P-RITC particles showed no increased LDH release compared to the HBSS 

control (Figure 3.13). 
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Figure 3.13: Determination of the cytotoxicity of silica nanoparticles via LDH assay. Caco-2 cells were 

incubated with N50-RITC and N50-P-RITC nanoparticles. Supernatants were collected and analyzed concerning 

LDH leakage after 2, 4, 6 and 8 hours. Data represent the mean ± SD of three independent experiments. 

 

In addition, an MTT assay was performed to evaluate the metabolic viability of the cells after 

incubation with nanoparticles. This assay was not able to detect the cytotoxic effects of N50-

RITC nanoparticles which could be determined via LDH and SDR. Nanoparticles caused a 

decrease in metabolic viability over 24 hours but when compared to the HBSS control they all 

showed increased absorbance values indicative for an enhanced metabolic activity of the cells 

after nanoparticle incubation (data not shown). 

 

Furthermore, to exclude a cytotoxic effect of the fluorescent dye RITC or other ingredients of 

the nanoparticle solution, Caco-2 cells were treated with free RITC and the supernatant of 

nanoparticle dispersions as well. No alteration in cellular viability could be demonstrated for 

these samples when compared to the buffer control. (data not shown).  
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3.4.3.3 PI-labelled nanoparticles caused a size-, time-, concentration-dependent and non-

reversible cytotoxic effect in Caco-2 cells  

As described before, Caco-2 cells were plated for 96 hours in OxoDish® plates. PI-labelled 

nanoparticles (N21-PI, N34-PI and N84-PI) were diluted in HBSS in different concentrations 

(20, 100, and 500 µg/ml) and were added to the cells. Again, triton-X in a concentration of 

0.01% served as a positive control for cytotoxicity. Measurements were performed every hour 

over 24 hours. Caco-2 cells incubated with different sized nanoparticles in a concentration of 

20 µg/ml exhibited no increase in air saturation when compared to the HBSS control. In 

contrast, nanoparticles in a concentration of 100 µg/ml and 500 µg/ml caused a clear size- and 

time-dependent cytotoxic effect. N84-PI nanoparticles in a concentration of 20 and 100 µg/ml 

had no influence on cellular viability at all. In a concentration of 500 µg/ml these particles 

already showed a very strong cytotoxic effect after an incubation of 8 hours (Figure 3.14 C). 

N34-PI nanoparticles in a concentration of 100 µg/ml demonstrated a clear effect after a 16-

hour-incubation (Figure 3.14, B). Similar results could be also detected for N21-PI 

nanoparticles. They already caused cytotoxicity after a 8-hour-incubation (Figure 3.14, A) 

when applied in a concentration of 100 µg/ml. Higher concentrated (500 µg/ml) N34-PI and 

N21-PI nanoparticles exhibited a cytotoxic effect already after an incubation time of 4 hours.  
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A  

B  

C  

Figure 3.14: Determination of the cytotoxic potential of unmodified PI-labelled silica nanoparticles via SDR 

measurements. N21-PI, N34-PI and N84-PI nanoparticles in different concentrations (20, 100 and 500 µg/ml) 

were added to Caco-2 cells. Measurements were performed every hour over 24 hours. (A) N21-PI, (B) N34-PI, 

(C) N84-PI. Bars exhibit the additional consumption of O2 related to the HBSS control after 4, 8, 12, 16, 20 and 

24 hours. Data represent the mean ± SD of three independent experiments. 
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3.4.3.4 Nanoparticle-damaged Caco-2 cells do not regenerate 

To investigate, if the observed cytotoxic effect of nanoparticles is reversible, Caco-2 cells 

were cultivated for 48 hours, subsequently cells were incubated with N34-PI or N84-PI 

nanoparticles for 4, 8 and 24 hours. As a control, cells were cultured in HBSS alone for 4, 8 

and 24 hours. Figure 3.15 A shows exemplarily the SDR run of N34-PI treated cells with the 

corresponding HBSS controls, in comparison to cells cultured in DMEM (negative control) or 

in 0.01% triton-X (positive control). HBSS caused only a rather low decrease in cellular 

viability when compared to the DMEM control. In contrast, nanoparticle-treated cells 

exhibited a high increase in air saturation when compared to the DMEM control indicative for 

a decrease in cellular viability. After a 72-hour-incubation in DMEM, HBSS treated cells 

demonstrated still a consumption of oxygen indicative for metabolically active cells. In 

contrast, nanoparticle-incubated cells exhibited a size- and time-dependent decrease in oxygen 

consumption based on a cytotoxic effect of these nanoparticles. The nanoparticle induced 

cytotoxicity was not reversible within 72 hours (Figure 3.15 B).  

 

As described before for RITC-labelled nanoparticles, a cytotoxic effect of the fluorescent dye 

PI or other ingredients of the nanoparticle solutions was excluded by treating cells with free 

PI or the supernatant of nanoparticle dispersions. No alteration in cellular viability could be 

demonstrated for these samples when compared to the buffer control. (data not shown).  

 



3          Oxidative and cytotoxic potential of silica nanoparticles 55 
 
 

A  

B  

 

Figure 3.15: Reversibility of the nanoparticle induced cytotoxic effect. N34-PI and N84-PI nanoparticles in a 

concentration of 100µg/ml were added to Caco-2 cells and were incubated for 4, 8 and 24 hours. After this 

incubation time, cells were washed with HBSS and were cultivated in DMEM for further 72 hours under 

standard cell culture conditions. (A) SDR run of Caco-2 cells cultivated with N34-PI particles or HBSS for 4, 8 

and 24 hours. Arrows mark the time point, when nanoparticle incubation was finished and Caco-2 cells were 

cultivated in DMEM again. Data represent the mean ± SD of three wells. (B) Increase in air saturation related to 

the DMEM control after a 72-hour-incubation in DMEM. Triton-X in a concentration of 0.01% served as a 

positive control for cytotoxicity. Data represent the mean ± SD of three independent experiments. 
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3.5 DISCUSSION 

 

Silica nanoparticles have various advantages and characteristics which are promising tools in 

the medical and pharmaceutical field, but they are also known to cause cell damage such as 

oxidative stress or inhibition of cellular respiration (Eom & Choi, 2009; Park & Park, 2009; 

Tao et al., 2008; Wang et al., 2009). Recent publications reported the application of silica 

nanoparticles as drug and gene carrier (Bharali et al., 2005; Gemeinhart et al., 2005; Manzano 

et al., 2009; Simovic et al., 2010; Tan et al., 2010), which underline the importance to provide 

a safe method for the oxidative and cytotoxic evaluation of nanoparticles. Oxidative stress and 

cytotoxicity are two parameters which have to be analyzed, especially as these materials come 

into close contact with biological barriers, e.g., the gastrointestinal epithelium when 

administered via the oral route. 

 

In case of oxidative stress, free radicals are the molecules of action. They seem to have a 

pathologic role in a variety of diseases such as atherosclerosis and cancer (Rice-Evans & 

Burdon, 1993; Trush & Kensler, 1991). Free radicals are produced permanently as natural 

metabolism products sustaining essential functions. By the time there is an imbalance of the 

generation and the decomposition of ROS, these molecules can impair cells. Typical sources 

of damaging ROS are e.g. ultraviolet rays as well as X- and ionising radiation. However, also 

pharmaceuticals such as diazepam or clofibrate (Bogdanska et al., 2007; Qu et al., 2001) and 

innovative drug delivery tools like nanoparticles can cause uncontrolled production of free 

radicals. Many different nanoparticles were already reported to induce oxidative stress in 

different cell lines. Cerium oxide nanoparticles caused an increase in ROS, which triggered 

the activation of cytosolic caspase-3 and a chromatin activation which led on the other hand to 

cytotoxicity via an apoptotic process (Park et al., 2008). Such an increase in ROS with a 

simultaneous decrease in glutathione could be also observed in human embryonic kidney cells 

after incubation with amorphous SiO2 nanoparticles (Wang et al., 2009). In addition to the 

formation of ROS, silica nanoparticles have also been shown to induce heme-oxygenase-1, 

another antioxidative enzyme (Eom & Choi, 2009). A comparative study demonstrated that 

metallic nanoparticles caused oxidative stress eight times higher if compared to aqueous 

solutions of the same metals (Limbach et al., 2007). These findings suggest for an in-depth 

examination of these new materials with regard to the production of ROS.  
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For the detection of ROS in vitro various commercially available assays already exist using 

different markers for oxidative stress such as superoxide dismutase, glutathione or catalase. A 

well-established standard assay for the determination of ROS is the DCF-DA assay 

(Rosenkranz et al., 1992), a fluorescent based method which detects ROS generation by 

determining the conversion of DCF-DA into DCF. However, the assay exhibits several 

disadvantages as its long incubation time of at about 1 hour and particularly that it is an 

invasive and end-point assay. Furthermore, this assay shows various interactions with assay 

media or buffers. Grzelak et al. already demonstrated via DCF-DA assay a very high 

generation of ROS in many standard cell culture media such as DMEM or RPMI even without 

any addition of ROS-inducing substances (Grzelak et al., 2000; Grzelak et al., 2001). Similar 

results were obtained in a DCF-DA experiment with Caco-2 cells. In this study, it could be 

shown that pH indicators such as phenol red could cause interactions with the measurement 

principle. This common medium supplement resulted in a very high background fluorescence 

which interacted with the measuring wavelength of DCF. In contrast, experiments with 

DMEM without any addition of phenol red caused another difficulty. In these samples no 

difference in DCF-DA conversion between single H2O2 concentrations was visible. Because 

of its high complexity, cross reactions with various ingredients could not be excluded. 

Therefore, it was necessary to use special buffers coming along with an alteration in standard 

culture or experimental conditions. This again may result in stressed cells and consequently in 

an interference with experimental results. However, physiological buffers, such as HBSS, 

without any protein addition showed already in the negative control a very high conversion of 

DCF-DA into DCF causing a high background. The lack of proteins resulted in metabolically 

stressed cells. These experiments clarified the high limitation in the choice of buffers or 

media. Consequently, the DCF-DA assay is very sensitive to different cell culture buffers or 

media due to various interferences. Furthermore, new materials such as nanoparticles often 

show interactions with the measurement principles itself. This could already be demonstrated 

for standardized assays for the detection of cytotoxicity (Wahl et al., 2008; Worle-Knirsch et 

al., 2006). Therefore, it is recommended to evidence data of these techniques with at least two 

or more independent test systems (Worle-Knirsch et al., 2006). Opinions of different 

European institutions support this proposal (EFSA, 2009; SCCP, 2007). 

 

These findings clarify the high demand for the establishment of alternatives to already 

available assays. Therefore, in the present study a non-invasive assay for the combined 

detection of ROS and cytotoxicity using the SDR was established. Thereby, the intestinal 
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adenocarcinoma cell line Caco-2 served as an in vitro model with regard to the development 

of oral nanoparticulate drug delivery systems. The innovative method is based on a 

fluorescent measuring principle detecting specifically solved molecular oxygen (O2) in the 

samples (Beckers et al., 2009; Kensy et al., 2005). During the establishment for the detection 

of oxidative stress, H2O2 served as model substance for the generation of ROS in vitro. H2O2 

can diffuse freely in and out of cells and tissue. Its ability to cross biological membranes 

allows targeting a wide range of intracellular and extracellular structures. In vitro, H2O2 

oxidizes cellular ferrous iron into ferric iron, hydroxyl radical and hydroxyl anion via Fenton 

reaction by the following molecular equation: Fe2+ + H2O2 � Fe3+ + OH• + OH-. This 

reaction is a main source of oxidative stress in the cell based on the generation of hydroxyl 

radical (OH•). OH• can react with further cellular molecules, whereby the development of 

further ROS such as superoxide anion radical (O2
•-) or again H2O2 is possible. As the H2O2 

induced increase in air saturation could be inhibited via addition of an SOD inhibitor (DDC), 

the strong rise of oxygen generation during SDR measurements after addition of H2O2 is 

related to the activation of the SOD. Therefore, O2
•- seemed to be involved in the occurred 

cellular answer to H2O2 and its cellular consequences. The SOD is the first enzyme of the 

antioxidant defence mechanism and converts produced O2
•- in the following reaction: 2O2

•-

 + 2H+ + SOD � H2O2 + O2 (Maier & Chan, 2002; Marklund, 1980). Thereupon, resulting 

H2O2 is degraded to molecular oxygen and water by the enzyme catalase: 

2 H2O2 � 2 H2O + O2 (Sies, 1986). This reaction explains the increase in oxygen air 

saturation after H2O2 exposure. Different studies already described the association between 

H2O2 application and the increase in SOD activity (Bose Girigoswami et al., 2005; 

Drazkiewicz et al., 2003; Nagy et al., 1995). The reaction of the SOD is extremely fast, 

having a turnover of 2x109M-1sec-1 (Malstrom et al., 1975). This fast reaction becomes 

apparent by the rapid increase in air saturation after the addition of H2O2. However, further 

experiments would be necessary to proof the role of catalase in this reaction. 

 

As no alteration in air saturation could be detected in a cell free milieu, a chemical interaction 

with medium ingredients or the oxygen sensor caused by H2O2 or its decomposition products 

could be excluded. The H2O2-induced effect is completely absent due to the fact that 

antioxidative enzymes are not present and therefore not able to eliminate produced ROS. The 

cell concentration-dependent reaction to H2O2 is a further indication for a biological process. 

An increased amount of cells is associated with an increased O2 detection after addition of 

H2O2.  
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Besides oxidative stress, also cytotoxicity is an indispensable parameter which should be 

evaluated in vitro. Cytotoxicity can be a result of oxidative stress, as ROS can affect cell 

membranes and other molecules such as nucleic acids. For this reason cytotoxic effects are 

often accompanied with oxidative stress. Cellular response to silver (Ag) nanoparticles 

demonstrated a decrease in mitochondrial function with an increase in membrane leakage of 

LDH. Simultaneously, a significant depletion of the glutathione level and an increase of ROS 

levels could be detected. These findings hypothesized that cytotoxicity of Ag nanoparticles is 

likely mediated through oxidative stress (Hussain et al., 2005). In this context, the SDR 

allows the determination of cytotoxicity in vitro as well. The cytotoxic potential of a test 

substance or material can be determined by monitoring the cellular consumption of oxygen 

over time. Thereby, oxygen consumption is directly associated to the metabolic activity of 

cells. Consequently, the oxygen concentration in solution was decreased in the 

presence of viable cells due to the cellular consumption of oxygen. In contrast, stressed or 

dying cells caused an increase or a stagnation in O2 concentration (Beckers et al., 2009). The 

cellular consumption of oxygen is a very sensitive and early state marker for detection of 

cytotoxicity. Events such as mitochondrial dysfunction, mitochondrial permeability transition 

and apoptosis come along with a decrease in cell respiration, which is directly related to 

cellular viability (Deshpande et al., 2004).  

 

Triton-X permeabilizes cell membranes and served as a cytotoxic model reagent. Using 

different concentrations of triton-X (0.000001% to 1%) a clear concentration dependent 

increase in air saturation could be observed when compared to the medium control (DMEM) 

via SDR measurements. The SDR assay was able to detect small differences in the O2 

consumption of different triton-X concentrations in the standard cell culture medium. The 

SDR assay detected a cytotoxic potential for 0.01% triton-X in DMEM and HBSS. Thereby, 

the reduced cytotoxic effect in DMEM medium is based on the general improved growth 

conditions in a complex cell culture medium compared to a physiological buffer without 

further supplements such as proteins or amino acids. A comparative LDH assay showed no 

differences in LDH release between 0.000001% and 0.01% triton-X as well as the medium 

control. Just 0.1% and 1% triton-X caused a detectable LDH leakage. This experiment was 

performed in the standard cell culture medium containing phenol red which led to interactions 

with the LDH assay (very high background absorbance). In contrast, 0.01% triton-X diluted in 

HBSS showed a clear leakage of LDH compared to the HBSS control which demonstrated 

again the limitation in the choice of the media. Finally, the novel technique exhibited various 
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advantages over the standardized LDH assay. The SDR assay could be performed in 

physiological buffers as well as in highly complexed cell culture media. Furthermore, the 

sensitivity of the SDR assay allowed the determination of the concentration-dependent 

cytotoxicity of triton-X diluted in DMEM which was not possible via LDH. As a further 

control, Caco-2 cells were treated with PEI, which is a particulate substance that can mimic 

the cytotoxic effect of nanoparticles. Its already known cytotoxicity is based on its very strong 

absorption to the cell membrane. This results in a polymer layer on the cell surface which 

causes a perforation of cell membranes and a plasma membrane dysfunction leading to cell 

death via necrosis (Daum et al., 2009; Fischer et al., 1999).  

 

The SDR assay allows an online sample analysis at different time points during the 

experiment. Standardized assays for the detection of cytotoxicity are all end-point and mostly 

invasive assays. Furthermore, the measurement principle of these assays often shows 

interaction with test materials, especially with nanomaterials. First of all, the MTT assay is 

known to cause a lot of interactions with nanoparticles due to their material properties 

(Laaksonen et al., 2007; Ulukaya et al., 2008; Worle-Knirsch et al., 2006). Single-walled 

carbon nanotubes appeared to interact with the formazan salt of MTT. This interference does 

not affect the enzymatic reaction but it stabilizes the chemical structure of the produced 

formazan salts and prevents them from being solubilized (Worle-Knirsch et al., 2006). Also 

porous silica microparticles exhibited interactions with the MTT assay, through which MTT 

was reduced in a spontaneous redox reaction. These findings demonstrate that there are 

various interactions of nanoparticles with assay reagents which do therefore not allow the use 

of standardized methods. In contrast to all these conventional assays the SDR showed no 

interference with fluorescently-labelled nanoparticles. Furthermore, the measurement 

principle of the SDR caused no interaction with media containing supplements such as phenol 

red and therefore analysis could be performed in buffer as well as in complex cell culture 

media.  

 

Aim of the described evaluation was to apply this novel method for the combined 

determination of the oxidative and cytotoxic potential of silica nanoparticles. Therefore, silica 

nanoparticles with different sizes (21-94 nm) and with different surface modifications 

(unmodified and PEG-modified) were investigated with the SDR assay concerning their 

oxidative and cytotoxic capability. For the determination of the oxidative potential, these 

nanoparticles were analyzed via SDR and were compared in a DCF-DA assay. Particles in all 
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concentrations showed no increased air saturation independent of their surface modification. 

These results could be confirmed by the DCF-DA assay, where nanoparticles did not cause an 

increased conversion of DCF-DA into DCF, whereas H2O2 demonstrated a high rate of 

converted DCF after 3 hours. Thus, the tested silica nanoparticles did not generate ROS in 

Caco-2 cells. An increased generation of HO• was already described for crystalline silica 

nanoparticles. It was suggested, that Fenton reactions occurred on the particles surface which 

results in an increased ROS production. However, also amorphous silica nanoparticles were 

reported to cause oxidative stress in different cell systems such as human bronchial epithelial 

cells, macrophages and embryonic kidney cells (Eom & Choi, 2009; Park & Park, 2009; 

Wang et al., 2009). As amorphous silica nanoparticles used in this study caused no generation 

of ROS, it is suggested that the mentioned cell systems are more sensitive against oxidative 

stress than Caco-2 cells. Furthermore, the shape, size, composition and incubation time of 

nanoparticles play an essential role in these investigations. 

 

Despite the missing oxidative effect, used silica particles showed strong differences in 

cytotoxicity. In contrast to particles with a size of 94 nm (N94-RITC) and PEG-modified 

nanoparticles (N50-P-RITC and N94-P-RITC), smaller particles with sizes between 21 and 

84 nm (N50-RITC, N21-PI, N34-PI and N84-PI) exhibited a clear size-, concentration- and 

time-dependent cytotoxic reaction compared to the buffer control. These evidences suggested 

that N94-RITC particles and PEG-modified particles did not affect the cells in their viability. 

In contrast, all other particles showed a very strong reduction in the consumption of oxygen 

indicative for a decrease in cellular activity. This occurred cytotoxic effect could be also 

confirmed by an LDH assay, where N50-RITC or N50-P-RITC particles were added to the 

cells. Again, N50-RITC particles demonstrated a high LDH leakage over 8 hours comparable 

with the triton-X control. PEG-modified nanoparticles (N50-P-RITC) did not affect the cells 

and caused no increased LDH release when compared to the HBSS control. Comparison of 

the data with an MTT assay demonstrated that the evaluation of cytotoxicity via oxygen 

consumption is much more sensitive than the determination via these standard assays, because 

it was not possible to detect the cytotoxic potential of the used nanoparticles via MTT assay. 

Long-term toxicity studies demonstrated that the occurred cytotoxic effect of N34-PI and 

N84-PI nanoparticles was not reversible. Caco-2 cells which were incubated for 4, 8 or 

24 hours exhibited still after an incubation in DMEM for further 72 hours a decreased oxygen 

consumption if compared to the HBSS controls. Apparently, nanoparticles caused invasive 
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cellular damages, so that cells could not regenerate in such a short recovery phase. Which cell 

structures were affected by nanoparticles, should be investigated in further experiments.  

 

Hitherto, the molecular mechanism of nanoparticulate induced cytotoxicity is not fully 

understood and has to be investigated more detailed. It is assumed that cytotoxicity is caused 

by cellular injuries through a variety of mechanism such as membrane peroxidation, 

glutathione depletion, mitochondrial dysfunction and DNA damage (Tao et al., 2009). As it 

has been reported that nanoparticles were able to enter the cell nucleus as well, it is of 

particular importance, that also genotoxicity should become a stronger research field. Silver 

nanoparticles up-regulated DNA damage repair proteins and induced cell death. Furthermore, 

these genotoxic effects were again strong associated with the cellular uptake rate and 

intracellular localization of these particles (Ahamed et al., 2008). DNA damage was also 

caused by carbon nanotubes which were able to penetrate into the cell nucleus through 

nucleopores and caused a destruction of DNA strands (Pantarotto et al., 2004). Silica 

nanoparticles were described to enter the nucleus and thus influenced the gene expression of 

the cells as well (Chen & Mikecz von, 2005). Most likely, the size-, time-, concentration- and 

also surface modification-dependent cytotoxic effect, which could be observed in this study is 

based on the internalization of nanoparticles into the cell. It had been already suggested that 

acute cytotoxicity is primarily originated from the cellular internalization of nanoparticles 

rather than from physical damage of the cell membrane (Yang et al., 2009). 

 

The observed cytotoxicity correlates with the results of conducted cell association and uptake 

studies (compare to chapter 4 and 5) showing that smaller particles had a very strong 

association with Caco-2 cells or even were taken up into the cells. N94-RITC particles as well 

as PEG-modified nanoparticles, which did not alter the cell growth behaviour, showed no 

association with Caco-2 cells. The absence of a cytotoxic effect of PEG-modified 

nanoparticles can be explained via the characteristics of PEG. A surface modification of 

nanoparticles with PEG caused a reduction in the adhesion of opsonin proteins in the blood 

serum in vivo, which resulted in a higher biologic resistance and stability of such modified 

nanoparticles (Peracchia et al., 1999; Peracchia et al., 1999). In vitro, a similar mechanism 

could play a role in the decreased cellular association of PEG-modified nanoparticles. 

Proteins, which are involved in the docking of particles to the outer cell surface, could not 

adhere to particles modified with PEG. As a result, nanoparticles, which are not able to come 

into close contact with cells, do not influence cellular viability.  
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3.6 CONCLUSION 

 

The SDR represents a sensitive, rapid, convenient and first of all a non-invasive method for 

the simultaneous detection of ROS generation and cytotoxicity in cell culture systems. 

Furthermore, it allows long-term measurements and online documentation of the cell 

behaviour. Another advantage of this method is that no additional reagents are required. This 

is very important when evaluating the oxidative or cytotoxic effect of nanoparticles, because 

they often show interactions with these assay reagents. Furthermore, its very short assay 

duration permits the evaluation of a great number of samples in a reasonable time and 

therefore can be used in high throughput screenings. In conclusion, the SDR represents a 

potential alternative to well-known standard assays for the detection of oxidative stress and 

cytotoxicity. So far, no non-invasive assay for the long-term evaluation of oxidative stress or 

cytotoxicity exists, which make the SDR to a highly innovative and promising method in this 

research field.  

 

Used silica nanoparticles caused no generation of ROS in Caco-2 cells but exhibited a size-, 

time-, concentration- and surface modification-dependent cytotoxic effect. These findings 

were closely associated with conducted cell association and uptake studies (compare to 

chapter 4 and 5). Nanoparticles which were associated with cells or were even taken up into 

cells caused cytotoxicity as well. Therefore, it was supposed, that the cellular internalization 

of nanoparticles influences the cell viability.  



 

4 
Cellular binding, association and transport of 

rhodamine B-isothiocyanate-labelled silica 

nanoparticles 

 

 
Parts of this chapter have been submitted for publication as a journal article: 

A. Neumeyer, M. Bukowski, M. Veith, C.-M. Lehr & N. Daum. PI-labelling of nanoparticles 

as novel tool for the quantification of cellular binding and uptake. Submitted to 

Nanomedicine: Nanotechnology, Biology and Medicine 

 

 

Silica nanoparticles are promising tools in the field of oral drug delivery. The main obstacle 

of this application route is the overcoming of the intestinal barrier and the insistence against 

cells of the immune system. In the present study rhodamine B-isothiocyanate (RITC)-labelled 

silica nanoparticles with different sizes (25-94 nm) and surface modifications (+/- poly 

ethylene glycol, PEG) were investigated concerning their cellular association and uptake 

properties in Caco-2 cells. In flow cytometry studies a clear size-and time-dependent cell 

association could be detected for unmodified RITC-labelled nanoparticles with a size of 

50 and 77 nm, whereas large particles (94 nm) and PEG-modified nanoparticles showed no 

interaction with Caco-2 cells. These findings were also confirmed via confocal microscopy. 

Different cell preparation protocols gave further information about the cellular localization of 

these particles. Conducted transport experiments correlated with the association studies. Small 

and unmodified nanoparticles showed the highest transport across Caoc-2 monolayers, 

whereas PEG-modified nanoparticles were not or rather low transported.  
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4.1  INTRODUCTION 

 

Oral delivery is the most attractive route for drug application due to the high patient 

compliance. However, oral bioavailability of new macromolecular drug candidates such as 

peptides or oligonucleotides is very low because administered drugs have to overcome several 

biological obstacles. Besides degradation by pancreatic and gastric enzymes, primarily they 

have to resist the high acidity of the stomach. Furthermore, the intestinal epithelial barrier 

exhibits a metabolic as well as a physical barrier and thus prevents the uptake of 

microorganisms and other particles (Hamman et al., 2005; Mustata & Dinh, 2006; Soltero & 

Ekwuribe, 2005). The intestinal epithelium consists of a cell monolayer mostly composed of 

enterocytes which build a tight interface. Molecules which are absorbed in the intestine can be 

delivered to the hepatic portal vein and finally enter the systemic circulation (Soltero & 

Ekwuribe, 2005). In this study, the enterocyte-like Caco-2 cell line served as an in vitro model 

of the small intestine. These cells form a polarized monolayer with an apical brush border 

morphologically comparable to that of the human colon (Hidalgo et al., 1989; Hilgers et al., 

1990). In addition to the overcoming of biological barriers, the opsonization and clearance by 

macrophages is another major obstacle in drug delivery which reduces oral bioavailability 

remarkably (Gref et al., 2003; Gref et al., 1994; Owens & Peppas, 2006). 

 

An overcoming or circumvention of these barriers would lead to an enhancement in the oral 

bioavailability of new drug candidates such as peptides, proteins, plasmids, antibodies and 

nucleic acids. One delivery strategy could be based on the encapsulation into or adsorption of 

drugs and molecules to nanoparticles. Nanoparticle surface modification with 

poly ethylene glycol (PEG) extend the residence time of nanoparticles in the blood. The effect 

of PEG is based on the defilade of nanoparticles over surface chemistry, hence avoiding the 

phagocytic system (Owens & Peppas, 2006). PEG conjugation can reduce reticuloendothelial 

clearance, the uptake by macrophages, the recognition by the immune system and the 

degradation by proteolytic enzymes (Roberts et al., 2002). Furthermore, PEG shows 

stabilizing properties on the nanoparticle surface due to a steric barrier formed by the PEG 

chains (Behrens et al., 2002; Tobio et al., 2000).  

 

Hitherto, various studies demonstrate an uptake of silica nanoparticles in cells or nuclei (Chen 

& Mikecz von, 2005; Peng et al., 2006; Vallhov et al., 2007) using confocal microscopy 

(CLSM) as a qualitative visualization technique. However, there is a lack of studies 
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quantifying the amount of particles associated with cells. The quantification of 

nanoparticulate uptake is very important, especially when different materials or studies should 

be compared.  

 

  

 

4.2  AIM OF THE STUDY 

 

The aim of this study was to evaluate the cellular association of rhodamine B-isothiocyanate 

(RITC)-labelled silica nanoparticles with different sizes and surface modifications in a 

quantitative way using flow cytometry. As flow cytometry measurements can not distinguish 

between adsorbed and internalized nanoparticles, different buffers were tested to remove 

particles from the outer cell membranes.  

 

Furthermore, the transport properties of RITC-labelled silica nanoparticles across Caco-2 

monolayers were investigated.  

 

 

 

4.3  MATERIALS AND METHODS 

 

4.3.1 Materials 

Dulbecco’s modified eagle medium (DMEM) with high glucose (4.5 g/l) and L-glutamine 

was obtained from Gibco (Karlsruhe, Germany), fetal bovine serum was purchased from 

PAN-Biotech (Aidenbach, Germany), non-essential amino acids were obtained from PAA 

(Cölbe, Germany). Composition of Hank’s balanced salt solution (HBSS) was as follows: 

136.9 mM NaCl, 5.4 mM KCl, 4.26 mM NaHCO3, 0.34 mM Na2HPO4*7H2O, 

0.35 mM KH2PO4, 5.5 mM glucose, 10 mM HEPES, 1.26 mM CaCl2, 0.5 mM MgCl2*6H2O, 

and 0.4 mM MgSO4*7H2O. HBSS was adjusted to pH 7.4 by means of NaOH. Phosphate 

buffered saline (PBS) was as follows: 129 mM NaCl, 2.5 mM KCl, 7 mM Na2HPO4*7H2O 

and 1.3 mM KH2PO4. PBS was adjusted to pH 7.4 by means of NaOH, as well. The pH 5 

buffer was as follows: 28 mM C2H3NaO2, 117 mM NaCl and 2 mM EGTA. The pH 5 buffer 

was adjusted to pH 5 by means of HCl. Citric acid, tween 20 and bovine serum albumin were 

obtained from Sigma (Munich, Germany). FITC-labelled wheat germ agglutinin (WGA) was 
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purchased from Vector Laboratories (Burlingame, CA). Culture slides were obtained from BD 

Falcon (Franklin Lakes, NJ).  

 

 

4.3.2 Caco-2 cell culture 

The human colon adenocarcinoma cell line, Caco-2, clone C2Bbe1, was purchased from 

American Tissue Culture Collection (ATCC, Manassas, VA) and used at passages 60-80. 

Cells were cultured in Dulbecco’s modified eagle medium (DMEM) with high glucose 

(4.5 g/l) and L-glutamine, supplemented with 10% fetal calf serum (FCS) and 1% non-

essential amino acids and were maintained under standard culture conditions at a temperature 

of 37°C and in a humidified atmosphere of 5% CO2. The culture medium was changed three 

times a week. For flow cytometry studies, Caco-2 cells were cultured in 6-well plates at a 

seeding density of 5x105 cells per well in 2 ml culture medium and were allowed to attach and 

proliferate for 48 hours. For confocal laser scanning microscopy (CLSM) experiments, Caco-

2 cells were plated on 4 chamber glass culture slides at a seeding density of 1x105 cell per 

well in 1 ml medium and allowed to attach and proliferate for 8 to 10 days until reaching a 

confluence of 60-70%. 

 

 

4.3.3 Visualization of cellular association by confocal laser scanning microscopy 

(CLSM) 

Caco-2 cells (1x105 per well) were cultured on 4 chamber glass culture slides for 8 to 10 days 

under standard cell culture conditions. Afterwards, adherent cells were incubated with RITC-

labelled nanoparticles (N50-RITC, N50-P-RITC, N77-RITC, N77-P-RITC, N94-RITC and 

N94-P-RITC) for 4 hours under standard cell culture conditions. After incubation with these 

nanoparticles, cell membranes were stained with FITC-labelled wheat germ agglutinin 

(WGA) and cells were fixed with 4% formalin in PBS. If required, nuclei were stained with 

4’,6-diamidino-2-phenylindole (DAPI). After the staining procedure fixed cells were imaged 

via CLSM using LSM510 (Zeiss, Jena, Germany). The used objective was a water immersion 

objective 63x. Measurements were performed with Zeiss LSM510 Software.  
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4.3.4 Quantification of cellular or nuclear association by flow cytometry (FACS) 

Quantification of the cellular or nuclear association of RITC-labelled nanoparticles was 

investigated via flow cytometry using a FACSCalibur (Beckon Dickinson, Heidelberg, 

Germany). Data were analysed with the BD CellQuest Pro software and FlowJo flow 

cytometry analysis software. Control cells or nuclei which were not incubated with 

nanoparticles emitted always a weak background fluorescence (Figure 4.1 A, grey peak). In 

contrast, cells which were associated with fluorescently-labelled nanoparticles showed a shift 

to higher fluorescence intensities (Figure 4.1 A, black line). Emitted light resulting from 

RITC-labelled nanoparticles was detected by the FL2 detector. The measurement of the green 

fluorescence (e.g. FITC wavelength) served as a negative control because used cells should 

exhibit no alteration in the emission of this wavelength. To calculate the background 

fluorescence of unlabelled cells, cells without any addition of nanoparticles (HBSS treated 

cells) were carried along as a buffer control in every measurement. Quantitative analysis was 

performed by means of quadrant statistics placing a quadrant marker which divides a 2D plot 

into four quadrants. Thus, the percentage of cells in each quadrant could be calculated. The 

unlabelled cell population was placed in the lower left quadrant of the dot plot and exhibited 

cells without associated nanoparticles. In contrast, nanoparticle associated and therefore 

fluorescently-labelled cells were placed in the lower right quadrant (Figure 4.1 B-D).  

   
 

Figure 4.1: Analysis of the quantification of the cellular association of nanoparticles. (A) Histogram of Caco-2 

cells incubated in HBSS (grey peak) and associated with RITC-labelled nanoparticles (black line). (B) Division 

of a 2D dot plot in quadrants. Unlabelled cells were placed in the lower left quadrant. Cells which were 

associated with RITC-labelled nanoparticles were located in the lower right quadrant. (C) Dot plot inclusive 

quadrant statistics of unlabelled Caco-2 cells and (D) cells associated with RITC-labelled nanoparticles.  

A B 

C D 
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4.3.5 Cell preparation protocols 

Caco-2 cells in a concentration of 5x105 per well were plated in 6-well plates and cultured for 

48 hours under standard cell culture conditions. Afterwards, adherent cells were incubated for 

different times (1, 2, 4 or 8 hours) under standard cell culture conditions with unmodified 

(N50-RITC, N77-RITC, N94-RITC) or PEG-modified silica nanoparticles (N50-P-RITC, 

N77-P-RITC and N94-P-RITC). For the following flow cytometry analysis, cells were 

prepared in three different ways: (i) whole cell preparation, (ii) nucleus preparation and 

(iii) nucleus isolation. For whole cell and nuclei preparation analysis 10 000 cells or nuclei 

were counted, for nuclei isolation analysis 5 000 nuclei were counted. Size was determined 

via the forward scatter (FSC) and granularity was determined via the sideward scatter (SSC). 

 

(i) Whole cell preparation 

Caco-2 cells were harvested with trypsin and washed three times with PBS. Whole cells 

exhibited a very low granularity due to an intact cell membrane (Figure 4.2 A).  

 

(ii) Nucleus preparation 

Cells were harvested with trypsin as well, washed with PBS and fixed in 70% ethanol for 

24 hours. After this procedure fixed cells were incubated with a triton-X containing 

permeability buffer (PBS + 0.5% triton-X) and washed again with PBS supplemented with 

1% BSA. Prepared nuclei were still associated with cytoplasm, various cell organelles and 

parts of the permeabilized cell membrane which resulted in a high granularity (Figure 4.2 B).  

 

(iii) Nucleus isolation 

Adherent cells were incubated with a citric acid/tween20 buffer (H2O + 2.1% citric acid and 

0.5% tween20). Nuclei were collected and were fixed in 70% ethanol for 24 hours. After this 

fixation nuclei were washed several times in PBS containing 1% tween20 and were collected 

finally in PBS. A dot plot of these isolated nuclei showed small structures with a very low 

granularity (Figure 4.2 C).  
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          A                          B      C 

Figure 4.2: Cell or nucleus preparation and nucleus isolation. (A) Analysis of whole Caco-2 cells. Cells were 

trypsinized and washed three times with PBS. (B) Analysis of prepared cell nuclei. Cells were trypsinized, fixed 

in ethanol for 24 hours and permeabilized with a triton-X containing buffer. (C) Analysis of isolated nuclei. 

Adherent cells were incubated in a citric acid/tween20 buffer, nuclei were collected, fixed in ethanol for 24 hours 

and washed several times with PBS containing tween 20. Dot plots are the result of 10 000 measured cells or 

prepared nuclei or 5 000 isolated nuclei, respectively. Analysed cell populations are marked with a gate. 

 

 

4.3.6 Cell washing procedures 

Caco-2 cells in a concentration of 5x105 per well were plated in 6-well plates and were 

cultured for 48 hours as described before. Afterwards, adherent cells were incubated for 

1 minute with N25-RITC nanoparticles. This short incubation time excluded a real uptake into 

the cell. Afterwards cells were washed with different buffers for several times (Table 4.1). 

Whole cells were analysed via flow cytometry as described in chapter 4.3.4.  
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Table 4.1: Washing buffers to remove nanoparticles from the outer cell surface. 

Buffer Ingredients Concentrations 

pH 5 buffer Sodium acetate 

Sodium chloride 

EGTA 

28 mM 

117 mM 

2 mM 

Trypsin 50 Trypsin 

PBS 

50% 

Trypsin 10 Trypsin  

PBS 

10% 

Triton-X 0.0001 Triton-X 

PBS 

0.0001% 

Triton-X 0.001 Triton-X 

PBS 

0.001% 

Pronase 0.5 Pronase 

PBS 

0.5 mg/ml 

Pronase 1 Pronase 

PBS 

1 mg/ml 

 

 

4.3.7 Transport studies 

Caco-2 cells in a concentration of 6x104 per well were plated in 12-well Transwell® plates 

using polycarbonate membranes with a pore size of 0.4 µm. The assembling of such a 

Transwell system is presented in figure 4.3. Cells were cultured on these membranes for 21 -

28 days under standard cell culture conditions. During this cultivation, the development of the 

transepithelial electrical resistance (TEER) was determined at regular intervals to ensure 

membrane integrity of the monolayers. The TEER was measured via chopstick electrodes 

connected to an epithelial voltohmmeter (EVOM, World Precision Instruments, Sarasota, FL). 

The long-term development of the TEER of a Caco-2 cell monolayer was determined with the 

CellZscope® (nanoAnalytics, Münster, Germany) as well. The CellZscope® is an instrument 

measuring the transepithelial impedance of cell layers under physiological conditions. It is 

computer-controlled and allows automated and a long-term monitoring of cell cultures.  
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Before starting the experiment, Caco-2 cell monolayers were pre-incubated with the transport 

buffer (HBSS) for 30 minutes. Transport of nanoparticles was investigated in absorptive 

direction (apical to basolateral compartment). During the experiments, Transwell® plates were 

agitated using an orbital shaker at 150 rpm. Samples were taken after 4, 8 and 24 hours from 

the receiver compartment. After each sample collection, an equal volume of fresh transport 

buffer (pre-warmed to 37°C) was added to the receiver compartment. TEER was measured 

after pre-incubation and at the end of the experiment. 

 

Transport of RITC-labelled nanoparticles were quantified via a fluorescence plate reader 

(Infinite M200, Tecan, Crailsheim, Germany) using an excitation wavelength of 560 nm and 

an emission wavelength of 600 nm. Fluorescence of RITC was linear in a range between 0.05 

and 100 µg/ml (R2=0.9992). As a result, the amount of substance in the acceptor compartment 

as well as the apparent permeability (Papp) were calculated. The apparent permeability 

describes the permeability of a cell monolayer for a substance and the estimated membrane 

permeability (cm/sec). It was calculated according to: Papp = (∆Q/∆t)*(1/A)*(1/c0), where 

∆Q/∆t is the permeability rate (µg/min), A (cm2) is the surface area of the monolayer and c0 

(µg/ml) is the nanoparticle concentration in the donor compartment at time (t)=0.  

 

   

A          B 

Figure 4.3: Assembling of a Transwell® system. (A) Caco-2 cells were cultivated on the polycarbonate 

membrane of an insert. Thus, the monolayer separates the chamber into an upper (apical) and a lower 

(basolateral) compartment. (B) Caco-2 monolayer grown on a polycarbonate membrane. Cells were stained with 

FITC-labelled wheat germ agglutinin. Bar=12.00 µm. 
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4.4   RESULTS 

 

4.4.1 Size-, time- and surface modification-dependent association of RITC-labelled 

silica nanoparticles 

Unmodified RITC-labelled silica nanoparticles (N50-RITC, N77-RITC, N94-RITC) with 

different sizes (50, 77 and 94 nm) were dispersed in HBSS to a concentration of 100 µg/ml 

and were incubated with Caco-2 cells for 4 hours under standard cell culture conditions. Flow 

cytometry (FACS) analysis of whole cells presented a clear cell association for N50-RITC 

(85.9% ± 6.05) and N77-RITC (84.9% ± 4.07) particles, whereas N94-RITC particles 

exhibited no or a rather low cell association of 0.4% ± 0.42 (Figure 4.4 A, black bars). 

Prepared nuclei which were still associated with cell fragments showed a decreased cellular 

particle association with a size-dependency: N50-RITC particles demonstrated a cell 

association of 84.9% ± 1.90, whereas N77-RITC particles exhibited only a cell association of 

76.1% ± 4.77 (Figure 4.4 A, white bars). Isolated nuclei demonstrated a highly significant 

reduction (p≤0.001) in particle association when compared to prepared cell nuclei. 

30.7% ± 5.97 of N50-RITC particles and 16.9% ± 7.53 of N77-RITC particles were 

associated with nuclei of Caco-2 cells (Figure 4.4 A, grey bars). The same nanoparticles but 

with an additional PEG modification (N50-P-RITC, N77-P-RITC and N94-P-RITC) showed 

no association with cells or nuclei at all (Figure 4.4 B).  
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A  

B  

Figure 4.4: Size- and surface modification-dependent association of RITC-labelled silica nanoparticles. 

Different nanoparticles were added to Caco-2 cells in a concentration of 100 µg/ml and were incubated for 

4 hours under standard cell culture conditions. HBSS served as a negative control. Whole cells as well as 

prepared and isolated nuclei were analyzed via flow cytometry. (A) Size-dependent association of unmodified 

nanoparticles (N50-RITC, N77-RITC and N94-RITC). (B) Association of PEG-modified nanoparticles (N50-P-

RITC, N77-P-RITC and N94-P-RITC). Data represent the mean ± SD of three independent experiments. The 

asterisks depict significant differences between prepared and isolated nuclei (p≤0.001 ***). 

 
The size- and surface-dependent association of RITC-labelled nanoparticles with Caco-2 cells 

was confirmed via CLSM. It could be demonstrated that N50-RITC and N77-RITC 

nanoparticles were adsorbed to the cell membranes of Caco-2 cells after a 4-hour-incubation 
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(Figure 4.5 A-B, arrows), whereas all other particles were not detectable (Figure 4.5 C-F). A 

series of images at different points along the z-axis (Z-stack) exhibited no or a rather low 

uptake of N50-RITC and N77-RITC particles into the cells (Figure 4.6).  

 

 

Figure 4.5: Size- and surface modification-dependent association of RITC-labelled silica nanoparticles with 

Caco-2 cells. Cells were plated on glass culture slides. Different RITC-labelled nanoparticles (red) were added to 

the cells and were incubated in a concentration of 100 µg/ml for 4 hours under standard cell culture conditions. 

Membranes were stained with FITC-labelled WGA (green). After fixation with 4% formalin, nuclei were stained 

with DAPI (blue). Analysis was performed via CLSM. (A) Unmodified nanoparticles N50-RITC, 50 nm. 

(B) Unmodified nanoparticles N77-RITC, 77 nm. (C) Unmodified nanoparticles N94-RITC, 94 nm. (D) PEG-

modified nanoparticles N50-P-RITC, 55 nm. (E) PEG-modified nanoparticles N77-P-RITC, 87 nm. (F) PEG-

modified nanoparticles N94-P-RITC, 97 nm. Bars=14.00 µm. 

A B C 

D E F 
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A         B 

Figure 4.6: Size-dependent association of RITC-labelled silica nanoparticles with Caco-2 cells. Cells were 

cultured on glass culture slides. Nanoparticles (red) were added to the cells and were incubated in a 

concentration of 100 µg/ml for 4 hours under standard cell culture conditions. Membranes were stained with 

FITC-labelled WGA (green). After fixation with 4% formalin, nuclei were stained with DAPI (blue). Analysis 

was performed via CLSM. (A) Unmodified nanoparticles N50-RITC, 50 nm. (B) Unmodified nanoparticles 

N77-RITC, 77 nm. Besides an XY image, XZ- and YZ-cross sections through an image stack were performed as 

well. Bars=14.00 µm.  

 

Furthermore, N50-RITC and N77-RITC particles demonstrated a time-dependent cell 

association over 8 hours. Cellular association of N50-RITC and N77-RITC particles differed 

mainly in the early stage of the experiment. After a 1-hour-incubation 78.4% ± 0.62 of the 

cells were associated with N50-RITC particles, whereas only 45.4% ± 6.81 of the cells were 

in contact with N77-RITC particles (Figure 4.7, black bars). After a 4-hour-incubation, the 

association rate of these two particles differed about 3.8% (Figure 4.7, white bars). After 

4 hours the cellular association reached a plateau. Therefore, a significant difference in the 

cellular association rate of nanoparticles was only observed after an incubation of 1 hour and 

after a 4-hour-incubation.  
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Figure 4.7: Time-dependent association of RITC-labelled silica nanoparticles with Caco-2 cells. Different 

nanoparticles (N50-RITC and N77-RITC) were added to Caco-2 cells in a concentration of 100 µg/ml and were 

incubated for 1, 4 or 8 hours. Whole cells were analyzed via flow cytometry. Data represent the mean ± SD of 

three independent experiments. The asterisks depict significant differences between cells incubated with 

nanoparticles for 1 hour and cells incubated with nanoparticles for 4 hours (p≤0.05 *). 

 

 

4.4.2 Removal of nanoparticles adsorbed to the outer cell membrane 

FACS measurements do not allow a differentiation between nanoparticles adsorbed to the 

outer cell surface and nanoparticles internalized into a cell. Thus, a measured fluorescence 

signal of a cell comprises nanoparticles which entered the cell as well as nanoparticles, which 

are only adsorbed to the outer cell membrane (Figure 4.8). Therefore, in this study, different 

buffers were used to remove particles from the outer cell membrane to consequently measure 

only cellular internalized nanoparticles. 

 

 

Figure 4.8: Flow cytometry fluorescence signals of Caco-2 cells incubated with RITC-labelled nanoparticles. 

The generated signal is independent of the cellular localization of nanoparticles.  
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Caco-2 cells showed already after a 1-minute-incubation with RITC-labelled nanoparticles a 

very high fluorescence signal. As this short incubation time excludes an uptake of the 

particles into the cell, the signal resulted from nanoparticles adsorbed to the outer cell 

membrane. Cells with adsorbed nanoparticles were washed with different buffers for several 

times. Afterwards, cells were analysed via flow cytometry. Figure 4.9 summarizes the 

removal potential of the different buffers.  

          
 

           
 

           
 

Figure 4.9: Washing experiments for the removal of nanoparticles from the outer cell membrane. Caco-2 cells 

were incubated for 1 minute with unmodified RITC-labelled nanoparticles (N25-RITC). Subsequently, cells 

were washed three times or were incubated for several times with different buffers. Unwashed cells served as 

control (dashed line). (A) pH 5 buffer. (B) trypsin. (C) 0.0001% triton-X. (D) 0.001% triton-X. 

(E) 0.5 mg/ml pronase. (F) 1 mg/ml pronase. 

A        pH 5 buffer B       Trypsin 

C        0.0001% Triton-X D      0.001% Triton-X 

E        0.5 mg/ml Pronase F      1 mg/ml Pronase 
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Trypsin and pronase buffers could not remove any particles from the cells. Triton-X could 

eliminate some particles but resulted in massive cell damage due to its permeabilization 

characteristics. The pH 5 buffer caused an incubation time-dependent removal of 

nanoparticles from the outer cell surface. However, after 90 minutes the amount of 

nanoparticle associated cells was reduced to only 70%. A longer incubation with the pH 5 

buffer to delete more particles was not possible because of its unphysiological pH causing 

deleterious effects on cells.   

 

 

4.4.3 Transport properties of RITC-labelled silica nanoparticles 

As HBSS was used as transport buffer during transport studies, the barrier function of Caco-2 

cells in HBSS had to be documented. Therefore, long-term measurements with the 

CellZscope® instrument were performed. The TEER of a Caco-2 monolayer incubated in 

HBSS was sustained for 40 hours. Afterwards the TEER declined rapidly (data not shown). 

This experiment demonstrated that Caco-2 monolayers built a tight barrier in HBSS up to an 

incubation time of 40 hours, which allows an examination of the nanoparticulate transport 

during this period. 

 

The passage of different RITC-labelled nanoparticles (N25-RITC, N37-RITC, N62-RITC, 

N50-RITC, N50-P-RITC, N94-RITC and N94-P-RITC) across a Caco-2 cell monolayer was 

investigated using Transwell® plates with a polycarbonate membrane with pore sizes of 

0.4 µm. Samples were collected from the acceptor compartment after 4, 8 and 24 hours. In a 

first experiment, the transport behaviour of unmodified RITC-labelled nanoparticles with 

different sizes (N25-RITC, N37-RITC and N62-RITC) without influence of cells was 

investigated over 8 hours. The transport across the blank filter was time- and size-dependent. 

After 8 hours, 6.26% ± 0.31 of N25-RITC particles arrived in the acceptor, the amount of 

N37-RITC particles in the acceptor was 1.69% ± 0.21. In contrast, N62-RITC showed no or a 

rather low transport rate of 0.66% ± 1.36. Furthermore, it could be demonstrated, that the 

passage across the filter started not before a 1-hour-incubation (Figure 4.10 A).  

 

With the influence of Caco-2 cells, the transport rate of the used nanoparticles was reduced 

due to the additional cellular barrier. Compared to the cell-free experiment after 8 hours, N25-

RITC particles showed a decrease in transport of 94.49% (actual transport rate 0.34% ± 0.59), 
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N37-RITC of 97.63% (actual transport rate 0.59% ± 0.04) and the transport of N62-RITC 

particles was reduced of 94.39% (actual transport rate 0.03% ± 0.06), whereby all transport 

rates were below the detection limit of 0.5%. After 24 hours, the transport experiment 

demonstrated a clear size-dependent transport rate: The amount of N25-RITC nanoparticles in 

the acceptor was 7.29% ± 1.75 of the initial particle concentration. The transport rate of N37-

RITC particles was 0.94% ± 0.08 and the one of N62-RITC nanoparticles was 0.04% ± 0.06 

which was below the detection limit (Figure 4.10 B). TEER values were stable during the 

whole experiment (data not shown). 

 

A            B 

Figure 4.10: Transport of RITC-labelled silica nanoparticles across a (A) polycarbonate membrane with pore 

sizes of 0.4 µm over 8 hours and (B) an additional Caco-2 cell monolayer over 24 hours. Caco-2 cells were 

cultured for 21 days under standard cell culture conditions. Red dashed lines indicate the detection limit of the 

used nanoparticles. Data represent the mean ± SD of three wells.  

 

Another transport experiment with unmodified RITC-labelled nanoparticles (N50-RITC and 

N94-RITC) and PEG-modified nanoparticles (N50-P-RITC and N94-P-RITC) showed again a 

size-dependent transport as well as a surface-modification-dependent effect. N50-RITC 

particles showed after 24 hours a transport rate of 1.66% ± 0.19 and N94-RITC nanoparticles 

exhibited a transport of 1.11% ± 0.13. In contrast, PEG-modified nanoparticles demonstrated 

no or a very low transport across the Caco-2 cell monolayer. After 24 hours, 0.48% ± 0.09 of 

N50-P-RITC and 0.61% ± 0.06 of N94-P-RITC particles were transported across the cells 

(Figure 4.11). These transport profiles were reflected in the Papp values as well (Table 4.2). 

TEER values were stable during the whole experiment (data not shown).  
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Figure 4.11: Transport of unmodified and PEG-modified RITC-labelled silica nanoparticles across a Caco-2 cell 

monolayer cultured for 21 days on polycarbonate membranes with pore sizes of 0.4 µm. (A) Unmodified 

nanoparticles N50-RITC, 50 nm. (B) PEG-modified nanoparticles N50-P-RITC, 55 nm. (C) Unmodified 

nanoparticles N94-RITC, 94 nm. (D) PEG-modified nanoparticles N94-P-RITC, 97 nm. Red dashed lines 

indicate the detection limit of the used nanoparticles. Data represent the mean ± SD of two wells.  

 

Table 4.2: Papp values of unmodified and PEG-modified RITC-labelled silica nanoparticles across a Caco-2 cell 

monolayer.  

Nanoparticle Papp (cm/sec) 

N50-RITC 4.26x10-8 

N50-P-RITC 2.12x10-8 

N94-RITC 3.94x10-8 

N94-P-RITC 2.06x10-8 

 

 

A      N50-RITC B       N50-P-RITC 

C      N94-RITC D     N94-P-RITC 
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4.5  DISCUSSION 

 

Nanoparticles exhibit a broad promising spectrum of potential applications in the 

pharmaceutical and medical field. Typical challenges of drug delivery such as solubility, 

diffusivity, blood circulation half-life and drug release characteristics could be influenced 

with materials in the nanoscale range. Hitherto, a number of nanoparticulate therapeutics and 

diagnostic agents have been developed, e.g. for the treatment of cancer or diabetes (Brannon-

Peppas & Blanchette, 2004; Hirsch et al., 2003; Lin et al., 2007). The advantages of these 

“nanodrugs” are their higher bioavailability and their lower therapeutic toxicity resulting in a 

reduction of side effects. Furthermore, nanoparticulate delivery systems allow a targeted 

delivery and a controlled release. Because of the improvements of all these parameters, it is 

possible to administer these drugs also via more convenient routes, e.g., the oral route. 

However, for the application in this field, the cellular binding, association, the uptake 

properties and the localization of nanoparticles within the cell have to be investigated in 

detail. Especially, the quantification of cellular uptake is a sparely explored topic but is very 

important for the comparison of different studies. However, most publications dealing with 

particle uptake utilize microscopic methods such as confocal laser scanning microscopy 

(CLSM) or transmission electron microscopy (TEM) (Behrens et al., 2002; Beisner et al., 

2009; Chen & Mikecz von, 2005; Taetz et al., 2009). Hitherto, there are a few studies using 

flow cytometry (FACS) as quantitative method (Gabor et al., 2008; Taetz et al., 2009). A 

study of Gabor et al. managed this challenge by analysing the changes in granularity via 

analysing the sideward scatter signal in flow cytometry measurements. As a result, the mean 

granularity of Caco-2 cells was increased due to the cellular association of nanoparticles 

(Gabor et al., 2008). However, this measurement parameter was not applicable for the silica 

nanoparticles used in the present study. These particles did not cause any alteration in the 

sideward scatter signal (data not shown), although they showed a clear increase in the FL2 

fluorescence signal.  

 

RITC-labelled silica nanoparticles exhibited a size- and time-dependent cellular and nuclear 

association to Caco-2 cells. Such a size dependency could be already observed for 

fluorescently-labelled silica nanoparticles sized between 40 nm and 5 µm in Hep-2 cells or 

nuclei which could be determined via CLSM (Chen & Mikecz von, 2005). Small unmodified 

nanoparticles (N50-RITC and N77-RITC) seemed to be in a strong association with cell 
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membranes, whereas larger and PEG-modified nanoparticles did not show these cellular 

interactions. These results represent one important characteristic of PEG. In vivo, PEGylation 

of nanoparticles results in a blocking of the adhesion of opsonin proteins present in the blood 

serum (Peracchia et al., 1999; Peracchia et al., 1999). A similar mechanism could play a role 

in the decreased cellular association of PEG-modified nanoparticles in vitro. Obviously 

proteins, which are involved in the docking of particles to the cell membrane, could not 

adhere to particles due to PEGylation of the particle surface. In this context, similar results 

could be observed in recent publications. PEG-modified poly lactic acid nanoparticles 

exhibited no interaction with Caco-2 cells in contrast to unmodified hydrophobic polystyrene 

nanoparticles which showed a very strong cellular association (Behrens et al., 2002). The 

coating of polystyrene nanoparticles with a poloxamer, leading to an increased hydrophilicity, 

caused a reduction in intestinal uptake as well (Hillery & Florence, 1996). These findings 

confirm the hypothesis which suggested that the association between nanoparticles and cell 

membranes are based on hydrophobic interactions (Lehr et al., 1991). Thus, surface 

modifications with hydrophilic molecules avoid the cellular association and consequently the 

uptake into the cells. This reaction is useful avoiding the elimination by macrophages but 

could be an obstruction when the uptake into other cell types is requested e.g. in the treatment 

of tumour cells. Therefore, nanoparticles need further highly specific surface modifications to 

target their cell-specific transport. 

 

Results of these cell association studies correlate with performed cytotoxicity studies. N50-

RITC particles caused a clear decrease in cellular viability over time. In contrast, 

nanoparticles which showed no association with Caco-2 cells (N50-P-RITC, N94-RITC and 

N94-P-RITC) exhibited no cytotoxic potential. The generation of a cytotoxic effect 

necessitates a close contact between nanoparticles and the biological system. Thereby, mainly 

size, time and surface modification but also the particle concentration influenced the extent of 

the cytotoxic effect (compare to chapter 3) (Gu et al., 2009; Napierska et al., 2009; Pan et al., 

2007; Win & Feng, 2005).  

 

Most research groups, which investigate cellular uptake of nanoparticles, present their data in 

a qualitative way such as CLSM. The advantage of this method is the possibility to visualize 

particle uptake using Z-stack tools. Thus, adsorbed particles can be distinguished from 

internalized particles. This distinction is not possible with flow cytometry measurements 
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using conventional fluorescence dyes such as RITC or FITC. However, for a better 

comparison between different studies it is of great interest to quantify nanoparticulate uptake 

as well. Besides the ability to quantify cellular interactions of nanoparticles, flow cytometry 

measurements show another advantage over confocal microscopy analysis regarding the 

detection limit. CLSM images of Caco-2 cells incubated with N50-RITC particles in a 

concentration of 100 µg/ml, resulted in a low number of detectable nanoparticles. N50-RITC 

particles in a concentration of 50 µg/ml could not be visualized anymore via CLSM. In 

contrast, flow cytometry studies showed no alteration in the emitted fluorescence (indication 

for cellular association), when incubating cells with N50-RITC particles in various 

concentrations (20-100 µg/ml). N50-RITC particles in a concentration of 10 µg/ml still 

exhibited a clearly detectable fluorescence signal in flow cytometry studies. As a result, flow 

cytometry measurements allow a more sensitive determination of the nanoparticulate 

association as CLSM. 

 

As mentioned before, most fluorescently-labelled nanoparticles, such as RITC-labelled 

nanoparticles, have the disadvantage that it is not possible to distinguish between internalized 

and adsorbed particles in a quantitative way (e.g. via flow cytometry). Whole cells which 

exhibit a fluorescence signal via flow cytometry can be associated with nanoparticles in two 

different ways: Either particles are adsorbed to the outer cell surface or are taken up into the 

cells. RITC-labelled nanoparticles showed already after a very short incubation time of 

1 minute a high fluorescence signal due to particles associated with the outer cell membrane. 

Thereby, the short incubation time excluded an uptake into the cell which could also be 

confirmed via CLSM. Hitherto, there are a few publications dealing with this question. In 

recent studies, the resulting fluorescence of adsorbed FITC-labelled nanoparticles was 

quenched with trypan blue which has been demonstrated to quench the fluorescence of FITC-

labelled compounds (Huang et al., 2004; Ma & Lim, 2003; Sahlin et al., 1983). However, this 

method requires an addition of a supplemental reagent which can again result in interactions 

with nanoparticles. Due to their chemical properties nanoparticles often show strong 

interactions with a lot of standardized chemicals. Therefore, it is suggested to avoid the 

application of additional reagents (Wahl et al., 2008; Worle-Knirsch et al., 2006). 

Furthermore, these methods give no information about the localization of the particles within 

the cell. The performed washing experiments for the removal of nanoparticles from the outer 

cell membrane failed. Contents of the used buffers were very aggressive and caused fatal cell 
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damages which resulted in the loss of the barrier function. However, a promising approach 

allowing a distinction between internalized and adsorbed nanoparticles will be discussed in 

chapter 5. 

 

Transport experiments correlated with conducted cell association studies since the transport 

rate of silica nanoparticles was related to their cellular association. The transport rate is as 

well size- and time-dependent, whereupon the transport of PEG-modified nanoparticles was 

very low. These results were conceivable, as particles showing no or a very low association to 

the outer cell membrane, could not be internalized and consequently could not be transported 

across a cell monolayer. The transport speed of nanoparticles was very low. Compared to the 

compound [14C]mannitol, which is a drug belonging to class 4 (drugs with low solubility and 

low permeability) of the Biopharmaceutic Classification System (BCS), a guidance for 

predicting the intestinal drug absorption, the used nanoparticles were transported even slower. 

Mannitol demonstrated a Papp of 1.77x10-7 cm/sec (Hidalgo et al., 1989), silica nanoparticles 

were in the range of 2.06x10-8 to 4.26x10-8 cm/sec.  

 

Various studies suggested that the uptake and the following transport across the intestinal 

epithelial barrier may not occur in enterocytes but in the intestinal M cells. M cells are parts 

of the follicle associated epithelium which covers the Peyer’s patches. They consist of a small 

amount of microvilli which can result in a reduced clearance of adsorbed particles. 

Furthermore, M cells are able to internalize antigens, macromolecules such as bacteria or 

viruses and also nanoparticles from the apical side in an endocytotic process (Clark et al., 

2001; Frey & Neutra, 1997). Therefore, M cells present the potential portal for oral delivery 

of nanoparticles and should be investigated in detail and should be attracted more notice in 

further studies (des Rieux et al., 2005; Kraehenbuhl & Neutra, 2000). Des Rieux et al. dealt 

with this topic and developed an in vitro model for the human intestinal follicle associated 

epithelium which could be a promising starting point for research in this area (des Rieux et 

al., 2005).  
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4.6  CONCLUSION 

 

The identification of potential drug candidates and the treatment of diseases like cancer by 

new methods such as antisense therapy assign new tasks for the pharmaceutical 

nanotechnology. Thereby, cellular binding, association, uptake, transport and localization of 

nanoparticles are important parameters in the field of nanoparticulate drug or gene delivery. 

For a better comparison of different materials and applications it is of great interest to 

quantify the uptake and the localization of these nanoparticulate carriers. The size of the 

particles as well as their surface modifications had an essential function in the association and 

transport of these novel materials. However, the differentiation between adsorbed and 

internalized nanoparticles is still a problem. Therefore, the next step in this research field was 

the finding of new approaches for a clear distinction between nanoparticles associated with 

the outer cell surface and particles, which are taken up into the cell. As the removal of 

nanoparticles by the means of different washing buffers failed, the answer to this problem was 

found in the labelling of the particles in principle (see chapter 5).



 

5 
Cellular uptake and localization of propidium 

iodide-labelled silica nanoparticles. 

 

 
Parts of this chapter have been submitted or are in preparation for publication as journal 

articles: 

1. A. Neumeyer, M. Bukowski, M. Veith, C.-M. Lehr & N. Daum. PI-labelling of nanoparticles 

as novel tool for the quantification of cellular binding and uptake. Submitted to 

Nanomedicine: Nanotechnology, Biology and Medicine 

 

2. A. Neumeyer, M. Bukowski, M. Veith, C.-M. Lehr & N. Daum. Identification of the 

endocytotic mechanisms involved in the cellular uptake of silica nanoparticles. In 

preparation. 

 

For a closer investigation of the cellular uptake and localization of nanoparticles within Caco-

2 cells, particles with adsorbed propidium iodide (PI) were prepared. These particles only give 

a fluorescence signal when associated with DNA or RNA. Consequently, particles adsorbed 

to the outer cell surface are not detected, whereas internalized particles exhibit a clear 

fluorescence signal. Flow cytometry measurements demonstrated that PI-labelled 

nanoparticles with a size of 21 nm showed a clear time-dependent uptake into the cell. Further 

experiments exhibited that a PI signal could be detected in the cytoplasm and less in the 

nucleus, what could be confirmed via confocal microscopy. Furthermore, this approach 

allowed the identification of cellular endocytosis mechanisms involved in the uptake of 

nanoparticles in a quantitative way. In addition, the carrier function of silica nanoparticles 

could be demonstrated by comparing the cellular uptake of free PI and nanoparticle-bound PI. 

Free PI was not able to enter Caco-2 cells, whereas PI bound to nanoparticles showed a clear 

internalization. In summary, the PI-labelling of nanoparticles in combination with flow 
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cytometry measurements are an innovative and promising tool for the quantification of 

nanoparticulate uptake.  

 

 

 

5.1 INTRODUCTION 

 

Nanoparticles provide innovative characteristics as drug carrier. Nanoparticle-encapsulated or 

-adsorbed drug molecules show a remarkably increased bioavailability by improving the 

overcoming of several biological barriers. In this context, silica nanoparticles show various 

advantages. They are non-toxic, can be easily surface modified, are insensitive to 

microorganisms and show high pH stability. Recent studies already demonstrated an uptake of 

silica nanoparticles in cells and nuclei using confocal microscopy (Chen & Mikecz von, 2005; 

Peng et al., 2006; Vallhov et al., 2007). However, there is a lack of studies which determine 

the nanoparticulate uptake in a quantitative way. The quantification in this field of application 

is essential, especially, when different materials or studies should be compared.  

 

Most fluorescent labellings (such as Rhodamine B-isothiocyanate, RITC) (compare to 

chapter 4) lack the possibility to distinguish between particles internalized into the cell and 

particles adsorbed to the outer cell surface via quantitative analysis (e.g. flow cytometry). To 

allow a distinction between internalized and adsorbed particles as well as to obtain 

information about the cellular localization, propidium iodide (PI)-labelled nanoparticles were 

prepared. These nanoparticles only emit fluorescence when associated with DNA or RNA. 

Consequently, ingested nanoparticles generate a signal, whereas particles adsorbed to the 

outer cell membranes are not detected.  

 

By means of this novel staining, it is possible to explore the uptake of nanoparticles in more 

detail, receive information about the cellular localization and clarify in a quantitative way the 

cellular endocytosis mechanisms which are involved in the nanoparticulate internalization. 

For an efficient optimization of nanoparticulate carriers it is very important to profile their 

cellular uptake, because this determines their intracellular transport and fate. For the uptake of 

nanocarriers two main internalization pathways are described: either the phagocytosis or 

endocytosis pathways such as clathrin- and caveolae-mediated endocytosis. Thereby, 
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phagocytosis occurs primarily in specialized cells like macrophages, monocytes, neutrophils 

or dendritic cells. But also epithelial and endothelial cells have been described to show some 

phagocytic activity. In contrast to phagocytosis, endocytic pathways occur in all cells and can 

be divided into three groups: clathrin-mediated endocytosis, caveolae-mediated endocytosis, 

and other clathrin- and caveolae-independent pathways (Conner & Schmid, 2003; Hillaireau 

& Couvreur, 2009; Rabinovitch, 1995). With means of endocytosis inhibitors, the 

mechanisms involved in the uptake of nanoparticles could be identified. Cytochalasin D is a 

cell permeable and potent inhibitor of actin polymerization of the class of mycotoxins (May et 

al., 1998). As phagocytosis is an actin-based mechanism, cytochalasin D can inhibit the 

uptake of particles via this pathway (Lamaze & Schmid, 1995; Parton et al., 1994). The 

clathrin-dependent endocytosis can be prevented via cellular incubation with chlorpromazine. 

Chlorpromazine is a lipophilic phenothiazine derivative which easily binds with membranes 

and proteins. As a result it inhibits the clathrin-coated pit formation by reversible 

translocation of clathrin and its adapter proteins from the outer cell membrane to intracellular 

vesicles (Diaz-Moscoso et al., 2010; Wang et al., 1993). The caveolae-dependent pathway is 

obstructed via nystatin, a polyene antifungal drug which sequesters cholesterol and thus, 

causes a depletion of cholesterol. As cholesterol is needed for the maintaining of caveolae 

development, the mentioned pathway is inhibited (Lamaze & Schmid, 1995; Rothberg et al., 

1990). Monensin, a polyether ionophore antibiotic inhibits caveolae- and clathrin-independent 

mechanisms by preventing the transition of mid and late endosomes to lysosomes and 

avoiding an endosome acidification (Basu et al., 1981; Mollenhauer et al., 1990). Figure 5.1 

gives an overview of all mentioned endocytosis pathways. 
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Figure 5.1: Summary of endocytotic pathways. Large particles can be taken up by phagocytosis, which is a 

process dependent on actin-mediated remodelling of the cell membrane. Particles can be endocytosed by 

different mechanisms that are independent of the coating protein clathrin and dynamin as well (non-clathrin/non-

caveolin endocytosis). Most internalized molecules are delivered to the early endosome via clathrin- or caveolin-

coated vesicles that are derived from the cell membrane (clathrin- or caveolin-dependent endocytosis).  

 

 

 

5.2  AIM OF THE STUDY 

 

The aim of this study was to allow the differentiation between particles adsorbed to the outer 

cell membrane and particles taken up into the cell or the nucleus. Afterwards, the uptake 

properties and the involved uptake mechanisms of PI-labelled silica nanoparticles with 

different sizes and surface modifications should be evaluated in a quantitative way using flow 

cytometry.  
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5.3  MATERIALS AND METHODS 

 

5.3.1 Materials 

Dulbecco’s modified eagle medium (DMEM) with high glucose (4.5 g/l) and L-glutamine 

was obtained from Gibco (Karlsruhe, Germany), fetal bovine serum was purchased from 

PAN-Biotech (Aidenbach, Germany), non-essential amino acids were obtained from PAA 

(Cölbe, Germany). Composition of Hank’s balanced salt solution (HBSS) was as follows: 

136.9 mM NaCl, 5.4 mM KCl, 4.26 mM NaHCO3, 0.34 mM Na2HPO4*7H2O, 

0.35 mM KH2PO4, 5.5 mM glucose, 10 mM HEPES, 1.26 mM CaCl2, 0.5 mM MgCl2*6H2O, 

and 0.4 mM MgSO4*7H2O. HBSS was adjusted to pH 7.4 by means of NaOH. Phosphate 

buffered saline (PBS) was as follows: 129 mM NaCl, 2.5 mM KCl, 7 mM Na2HPO4*7H2O 

and 1.3 mM KH2PO4. PBS was adjusted to pH 7.4 by means of NaOH, as well. Citric acid, 

tween 20, thiazolyl blue tetrazolium bromide, bovine serum albumin and propidium iodide 

(PI) were obtained from Sigma (Munich, Germany). RNase A was obtained from Qiagen 

(Hilden, Germany) and FITC-labelled wheat germ agglutinin (WGA) was purchased from 

Vector Laboratories (Burlingame, CA). Culture slides were obtained from BD Falcon 

(Franklin Lakes, NJ). Centrisart® centrifugation vials were purchased from Sartorius 

(Goettingen, Germany).  

 

 

5.3.2 Caco-2 cell culture 

 The human colon adenocarcinoma cell line, Caco-2, clone C2Bbe1, was purchased from 

American Tissue Culture Collection (ATCC, Manassas, VA) and used at passages 60-80. 

Cells were cultured in Dulbecco’s modified eagle medium (DMEM) with high glucose 

(4.5 g/l) and L-glutamine, supplemented with 10% fetal calf serum (FCS) and 1% non-

essential amino acids and were maintained under standard culture conditions at a temperature 

of 37°C and in a humidified atmosphere of 5% CO2. The culture medium was changed three 

times a week. 

 

 

5.3.3 Stability of the binding between PI and silica nanoparticles 

The stability of the binding between the fluorescence dye PI and the silica nanoparticles were 

analysed dispersing PI-labelled silica nanoparticles in a concentration of 100 µg/ml in HBSS 
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with different pH values (5.0, 5.5, 6.0, 6.5, 7.0 and 7.4). Nanoparticle dispersions were 

incubated for 4 hours under standard cell culture conditions. Afterwards, they were 

centrifuged using Centrisart® centrifugation vials with a molecular weight cut off of 5 000 

Dalton. Supernatants of the different dispersions were analysed via fluorescence 

measurements with an emission filter of 617 nm and an excitation filter of 536 nm.  

 

 

5.3.4 Determination of the cellular uptake of PI-labelled nanoparticles via flow 

cytometry 

Quantification of the cellular or nuclear uptake of PI-labelled nanoparticles was determined 

via flow cytometry as described before in chapter 4 (compare 4.3.4) with the introduced cell 

preparation protocols (compare 4.3.5). Emitted light resulting from internalized PI-labelled 

nanoparticles was detected by the FL3 detector. For a distinction between active and passive 

uptake mechanisms, uptake experiments were performed at a temperature of 4°C as well.  

 

 

5.3.5 PI-labelled nanoparticles as carriers for PI 

One characteristic of PI is that it is excluded from viable cells and is not capable to cross 

intact cell membranes. Therefore, it could be used as a model substance for drugs with a low 

bioavailability and it could be tested if silica nanoparticles could improve the transport of a 

membrane impermeable compound like PI. For this purpose, Caco-2 cells were incubated 

with nanoparticle-bound PI as well as with free PI in solution. The concentration of the used 

unbound PI was equivalent to the amount of PI associated with N21-PI nanoparticles in 

respective concentrations (Table 5.1).  

 

Table 5.1: Concentrations of PI-labelled nanoparticles (N21-PI) (µg/ml) and the corresponding concentrations 

of free PI (ng/ml). 

N21-PI concentration  

(µg/ml) 

Free PI concentration  

(ng/ml) 

1 0.00727 
10 0.0727 
50 0.364 
100 0.727 
200 1.45 
500 3.64 
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5.3.6 Determination of the cellular localization of PI-labelled silica nanoparticles via 

RNase 

The binding characteristics of PI allow a distinction between nanoparticles localized in the 

nucleus and nanoparticles localized in the cytoplasm. For this purpose, cells were pre-

incubated with RNase A to enzymatically degrade the ribose backbone of the RNA and 

thereby eliminating RNA molecules. In contrast, DNA molecules were not influenced by this 

RNase treatment. As a result PI-labelled nanoparticles were not able to bind to RNA anymore 

but had the continuing ability to intercalate into DNA. DNA is predominantly located in the 

nuclei, whereas RNA is found in the form of mRNA and tRNA and furthermore in small 

quantities as pre-mRNA and snRNA in the cytoplasm (Barciszewski & Clark, 1999). Thus, a 

fluorescence signal (e.g. via flow cytometry) generated after pre-incubation with RNase was 

due to an association of PI-labelled nanoparticles with DNA indicative for an uptake into the 

nucleus (Table 5.2). 

 

Table 5.2: Dependency between PI fluorescence and localization of PI-labelled silica nanoparticles 

(with/without RNase pre-incubation). 

 without RNase with RNase 

cellular 

localization 

 

 

fluorescence signal 

 

 

no signal 

nuclear 

localization 

 

 

fluorescence signal 

 

 

fluorescence signal 

 

 

5.3.7 Determination of the cellular uptake mechanisms of silica nanoparticles 

For the clarification of the endocytosis mechanisms involved in the cellular uptake of silica 

nanoparticles, different endocytosis inhibitors (cytochalasin D, chlorpromazine, nystatin and 

monensin) were used. Stock solutions of these inhibitors were diluted to a final concentration 

of 5 mg/ml in DMSO (cytochalasin D and chlorpromazine), water (nystatin) or ethanol 
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(monensin). Table 5.3 summarizes the used endocytosis inhibitors and the corresponding 

inhibited pathways. To investigate the involved uptake mechanisms, Caco-2 cells were pre-

incubated with the mentioned endocytosis inhibitors in different concentrations (Table 5.3) 

for 2 hours. Subsequently, PI-labelled nanoparticles with different sizes (21-84 nm) were 

added to the cells. Afterwards, cells were prepared as described before (compare 4.3.5) and 

were analysed via flow cytometry. 

 

Table 5.3: Endocytosis inhibitors and their corresponding inhibited endocytosis pathways.  

Endocytosis inhibitors Inhibited endocytosis pathway Used concentrations 

Cytochalasin D Phagocytosis 1, 5 and 10 µg/ml 

Chlorpromazine Clathrin-dependent pathway 5, 10 and 20 µg/ml 

Nystatin Caveolae-dependent pathway 1, 10 and 20 µg/ml 

Monensin Caveolae- and clathrin-independent 

pathways 

5, 15 and 30 µg/ml 

 

 

 

5.4  RESULTS 

 

5.4.1 PI-labelling allows a clear distinction between adsorbed and internalized silica 

nanoparticles 

As mentioned before, most fluorescently-labelled nanoparticles, such as RITC-labelled 

nanoparticles, have the disadvantage that it is not possible to distinguish between internalized 

and adsorbed particles in a quantitative way (e.g. via flow cytometry). Whole cells which 

exhibited a fluorescence signal via flow cytometry can be associated with nanoparticles in two 

different ways: either particles are adsorbed to the outer cell surface or cells contain of 

internalized particles. The main advantage of PI is that its basic fluorescence is increased by 

20 to 30 fold if it is integrated between bases of DNA or RNA strands. As a result, 

nanoparticles which are located at the outer cell surface and which are not in any contact with 

DNA or RNA generate no fluorescence signal. In contrast, nanoparticles which have entered 

the cells and have the possibility to intercalate between DNA or RNA bases emit a 

fluorescence signal. To proof this concept, PI-labelled nanoparticles as well as RITC-labelled 
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nanoparticles with similar sizes (21 and 25 nm) were incubated with Caco-2 cells for 

1 minute. This short incubation time excluded an uptake of nanoparticles into the cells which 

could also be confirmed by CLSM (data not shown). RITC-labelled nanoparticles showed 

already after this short 1-minute-incubation a high fluorescence signal (Figure 5.2 A) due to 

particles associated with the outer cell membrane. In contrast, PI-labelled nanoparticles 

incubated for 1 minute showed no signal at all due to their localization at the outer cell 

surface, where DNA or RNA was absent (Figure 5.2 B). 

 

 

A            B 

Figure 5.2: Fluorescence signal of RITC- and PI-labelled silica nanoparticles. Nanoparticles were added to 

Caco-2 cells for 1 minute. Afterwards, cells were washed three times with PBS and were analyzed via flow 

cytometry. Histograms are the result of 10 000 analysed cells. HBSS treated cells served as a negative control 

(dashed line). (A) RITC-labelled nanoparticles (RITC-NPs) were detected with FL2 and (B) PI-labelled 

nanoparticles (PI-NPs) were detected with FL3.  

 

As the cellular uptake of nanoparticles is strongly associated with an alteration in pH, a 

further experiment investigated the stability of the binding between PI molecules and silica 

nanoparticles at different pH values. The binding between the fluorescence dye PI and the 

nanoparticles was stable for 4 hours in all pH values reaching from 5.0 to 7.4. After a 4-hour-

incubation at 37°C, 0.35% to 1.20% of the PI dye was released from the particles. Due to 

these results, it could be suggested, that the detected fluorescence signals were based on 

nanoparticle-bound PI rather than free PI, released from nanoparticles (Figure 5.3).  
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Figure 5.3: PI release from PI-labelled silica nanoparticles. PI-labelled nanoparticles were incubated for 4 hours 

in HBSS with different pH values (5.0-7.4). Afterwards, particle dispersions were centrifuged in Centrisart® 

centrifugation vials. Supernatants were analysed using an emission filter of 617 nm and an excitation filter of 

536 nm. The dashed line indicates the maximal amount of PI bound to the used silica nanoparticles.  

 

 

5.4.2 Silica nanoparticles serve as drug carriers for free PI 

A further advantage of PI is that it is excluded from viable cells and is not capable to cross 

intact cell membranes. Therefore, it was tested if silica nanoparticles could improve the 

transport of a membrane impermeable compound like PI. For this purpose Caco-2 cells were 

incubated with nanoparticle-bound PI as well as with free PI in solution. The concentration of 

the used unbound PI was equivalent to the amount of PI associated with N21-PI nanoparticles 

in respective concentrations (Table 5.1). Flow cytometry analysis demonstrated that free PI 

(0.727 ng/ml) is excluded from viable cells over time when compared to N21-PI particles in a 

concentration of 100 µg/ml (100 µg/ml N21-PI particles contain 0.727 ng/ml adsorbed PI) 

(Figure 5.4, grey bars). In contrast, N21-PI particles showed a time-dependent uptake over 

4 hours. After an incubation of 1 hour no or a rather low cellular uptake (0.33% ± 0.14) could 

be detected. After a 2-hour-incubation 2.85% ± 0.57 of the cells contained ingested particles 

12.7% ± 3.75 of the cells were positive for a PI staining after a 4-hour-incubation 

(Figure 5.4, black bars). 
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Figure 5.4: Cellular uptake of PI-labelled silica nanoparticles (N21-PI) and free PI in solution. Caco-2 cells 

were incubated with HBSS, N21-PI nanoparticles (100 µg/ml) or the corresponding concentration of free PI 

(0.727 ng/ml) for 1, 2 and 4 hours. Whole cells were analysed via flow cytometry. Results are the mean 

mean ± SD of three independent experiments.  

 

These fluorescence characteristics of PI could be rechecked via fluorescence measurements. 

Free PI as well as nanoparticle bound PI (N21-PI particles) was incubated for 30 minutes 

without cells or with intact or permeabilized Caco-2 cells. In comparison to the cell-free 

experiment, samples with intact cells showed no increase in fluorescence, whereas 

permeabilized cells demonstrated an increase in the emission. Permeabilized cells allowed a 

contact to DNA and RNA and consequently an alteration in the fluorescence signal 

(Table 5.4).  

 

Table 5.4: Fluorescence characteristics of PI. Free PI as well as PI-labelled nanoparticles (N21-PI) were 

incubated for 30 minutes with intact and triton-X-permeabilized cells. Samples were analyzed using an emission 

filter of 617 nm and an excitation filter of 536 nm.  

Sample Without 

Cells 

Intact 

Cells 

Permeabilized 

Cells 

Free PI 86 99 1072 

PI-labelled nanoparticles (N21-PI) 83 72 434 

 

 

 

 

 



 
5          Uptake and localization of silica nanoparticles 98 
 
 
5.4.3 Cellular uptake and localization of PI-labelled silica nanoparticles 

The cellular uptake and also the localization of nanoparticles within the cell are of great 

interest. Within 4 hours, PI-labelled nanoparticles were able to enter Caco-2 cells. Flow 

cytometry analysis demonstrated that 12.7% ± 3.75 of the cells and 3.6% ± 1.89 of the nuclei 

exhibited a PI signal. Triton-X permeabilized cells served as a positive control. The triton-X-

caused cell membrane damage allowed N21-PI particles free access to DNA or RNA within 

the cells. Therefore, the resulted fluorescence signal demonstrated the maximal fluorescence 

caused by PI-labelled nanoparticles (Figure 5.5).  

 

To specify if internalized nanoparticles were localized in the cytoplasm or the cell nucleus, 

cells were pre-incubated with RNase A to enzymatically degrade the ribose backbone of the 

RNA and thereby eliminating RNA molecules. In contrast, DNA molecules were not 

influenced by this RNase treatment. As a result PI-labelled nanoparticles were not able to bind 

to the RNA anymore, but had the continuing ability to intercalate into DNA. DNA is 

predominantly located in the nucleus, whereas RNA is found in the cytoplasm. Thus, a 

fluorescence signal (e.g. via flow cytometry) generated after pre-incubation with RNase must 

be due to an association of PI molecules with DNA indicative for an uptake into the nucleus. 

After a 1-hour-pre-incubation with RNase and a subsequent 4-hour-incubation with N21-PI 

nanoparticles, 5.7% ± 2.92 of Caco-2 cells were labelled with PI. In contrast, 12.7% ± 3.75 of 

the cells were positive for a PI staining without any addition of RNase. These results 

demonstrated that about 6% of the analysed cells contained PI molecules which showed an 

association with DNA indicative for a nuclear uptake. A subsequent isolation of the nuclei 

evidenced these findings. Isolated nuclei did not show a significant difference to RNase pre-

incubated whole cells. In RNase pre-incubated cells, RNA was eliminated enzymatically, 

whereas in isolated nuclei, the cytoplasm and its containing RNA-bound PI-labelled 

nanoparticles were removed mechanically. As a result, only DNA-associated and therefore 

nucleus-localized PI molecules could be detected (Figure 5.5).  



 
5          Uptake and localization of silica nanoparticles 99 
 
 

 

Figure 5.5: Cellular and nuclear uptake and localization of PI-labelled silica nanoparticles (N21-PI). Caco-2 

cells were incubated with N21-PI nanoparticles in a concentration of 100 µg/ml for 4 hours without or with pre-

incubation of RNase. Whole cells as well as isolated nuclei were analysed via flow cytometry. As a positive 

control cells had been permeabilized with triton-X prior to nanoparticle incubation. HBSS served as negative 

control. Results are the mean ± SD of three independent experiments. The asterisks depict significant differences 

between the different samples (p≤0.05 *).  

 

The significant decrease in the emitted PI signal (p≤0.02) for whole cells after pre-incubation 

with RNase could be also detected via CLSM in a qualitative way (Figure 5.6). As a positive 

control permeabilized cells were stained with free PI in solution (0.727 ng/ml) (Figure 5.6 A) 

which resulted in a clear red staining of the inner cells. As a negative control Caco-2 cells 

were incubated for 1 minute with N21-PI nanoparticles. In this experiment no red staining 

could be detected (Figure 5.6 B), because nanoparticles did not enter the cell during this short 

incubation time. Furthermore, N21-PI nanoparticles were incubated for 4 hours without 

(Figure 5.6 C) or with a previous cellular incubation with RNase for 1 hour (Figure 5.6 D). 

Figure 5.6 C clearly shows a red staining inside the green-labelled cell membranes. The red 

signal inside the cells is an indication for PI-labelled nanoparticles taken up into the cells. 

This fluorescence signal was absent in cells pre-incubated with RNase, because PI could not 

bind to RNA anymore. Obviously, after 4 hours only a low amount of particles or PI 

molecules were able to enter the nucleus, insufficient to cause a detectable fluorescence 

signal.  
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Figure 5.6: Cellular uptake and localization of PI-labelled silica nanoparticles. Caco-2 cells were plated on glass 

culture slides. Cells were incubated with (A) free PI (after fixation), (B) N21-PI particles for 1 minute, (C) N21-

PI particles for 4 hours or (D) N21-PI particles for 4 hours with a pre-incubation of RNase. Membranes were 

stained with FITC-labelled WGA (green) followed by a cell fixation with 4% formalin. Analysis was performed 

via CLSM. Bars=14.00 µm. 

 

 

5.4.4 Identification of the internalization mechanisms involved in the uptake of silica 

nanoparticles 

To proof if nanoparticles were internalized in an active or a passive process, uptake 

experiments were conducted at a temperature of 37°C and a temperature of 4°C as well. For 

this purpose, Caco-2 cells were incubated with N21-PI, N34-PI or N84-PI nanoparticles for 

4 hours under standard cell culture conditions or at a temperature of 4°C. For N21-PI and 

N34-PI particles no uptake inhibition at 4°C in comparison to the uptake rate at 37°C could be 

demonstrated. In contrast, N84-PI particles showed a significantly reduced cellular uptake of 

49.49% ± 16.6 when incubated at a temperature of 4°C (Figure 5.7).  

free PI 1 min N21-PI 

RNase + 4 h N21-PI 4 h N21-PI 

A B 

C D 
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Figure 5.7: Temperature-dependent uptake of silica nanoparticles. Caco-2 cells were incubated for 4 hours with 

different silica nanoparticles (N21-PI, N34-PI and N84-PI) at a temperature of 37°C or 4°C. Cells were analysed 

via FACS. Data show the alteration in the uptake rate compared to control cells incubated at 37°C in HBSS. 

Results are the mean mean ± SD of three independent experiments. The asterisks depict significant differences 

between cells incubated at 4°C and cells incubated at 37°C (p≤0.01 **). 

 

For the clarification of the uptake mechanisms involved in the cellular uptake of 

nanoparticles, Caco-2 cells were incubated with different endocytosis inhibitors. 

Chlorpromazine (clathrin-dependent endocytosis) and nystatin (caveolae-dependent 

endocytosis) showed no inhibition in the uptake rate when compared to cells pre-incubated in 

HBSS instead of an inhibitor (Figure 5.8 A and B). In contrast, cytochalasin D (phagocytosis) 

and monensin (clathrin- and caveolae-independent pathways) demonstrated a concentration-

dependent inhibition in the uptake of nanoparticles into Caco-2 cells (Figure 5.8 C and D).  
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A              B 

   

C              D 

Figure 5.8: Identification of the internalization mechanisms involved in the uptake of silica nanoparticles. Caco-

2 cells were pre-incubated for 2 hours with different endocytosis inhibitors: (A) Chlorpromazine, clathrin-

dependent endocytosis (B) Nystatin, caveolae-dependent endocytosis. (C)  Cytochalasin D, phagocytosis. 

(D) Monensin, caveolae- and clathrin-independent endocytosis. Afterwards, cells were incubated with N21-PI 

(only C and D), N34-PI and N84-PI nanoparticles for 4 hours. Cells were analysed via FACS. Data show the 

alteration in the uptake rate compared to control cells incubated in HBSS instead of an endocytosis inhibitor. The 

asterisks depict significant differences between inhibitor-incubated and control cells (p≤0.05 *, p≤0.01 **). 

Results are the mean mean ± SD of three or two (chlorpromazine) independent experiments.  

 

The inhibition of the nanoparticulate uptake by cytochalasin D and monensin was dependent 

on the used nanoparticle sizes. Nanoparticles with a size of 21 nm (N21-PI) were not 

influenced by these endocytosis inhibitors and exhibited no decreased uptake 

(Figure 5.8 C and D, white bars). In contrast, particles with a size of 34 nm (N34-PI) showed 
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a significantly reduced internalization after cellular pre-incubation with 5 µg/ml monensin 

(Figure 5.8 C and D, black bars). The largest used nanoparticles with a size of 84 nm 

demonstrated the strongest influence by cytochalasin D or monensin. For cytochalasin D as 

well as for monensin a concentration-dependent decrease in the cellular uptake of these 

nanoparticles was documented (Figure 5.8 C and D, grey bars).  

 

 

 

5.5  DISCUSSION 

 

In this study, silica nanoparticles with adsorbed PI served as novel tools for the quantification 

of the cellular uptake. These particles promise a clear differentiation between particles 

associated with the outer cell membrane and particles taken up into the cell. Therefore, this 

nanoparticulate staining in combination with the new established flow cytometry assay, 

demonstrates a promising tool for the quantitative investigation of cellular uptake and 

localization. Especially, the cellular localization and the involved uptake mechanisms are 

essential parameters with regard to toxicity and the future application spectrum.  

 

Silica nanoparticles present potential drug carriers for molecules with a low bioavailability or 

stability. In this study the membrane-impermeable fluorescent dye PI served as a model 

substance. It could be demonstrated that free PI molecules could not overcome intact cell 

membranes due to its chemical composition. In contrast, its binding to silica nanoparticles 

allowed a time-dependent internalization into the cells. This ability of nanoparticles could be 

very helpful in the oral application of cytostatics in cancer therapy. Most anticancer drugs are 

orally not or minimal bioavailable, e.g., the bioavailability of the cytostatic paclitaxel is less 

than 1%. Lipid based nanoparticles already improved the paclitaxel transport across Caco-2 

cells (Roger et al., 2009). In addition, an in vivo study demonstrated an enhanced oral 

bioavailability of paclitaxel via paclitaxel-loaded lipid nanocapsules (Peltier et al., 2006).  

 

As the cellular uptake of nanoparticles is strongly associated with an alteration in pH, a 

further experiment investigated the stability of the binding between PI molecules and silica 

nanoparticles in HBSS with different pH values. Hitherto, various uptake mechanisms had 
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been described as potential cell capture pathways for nanoparticles (Hillaireau & Couvreur, 

2009). All these mechanisms are associated with several specific organelles such as 

endosomes or lysosomes. These organelles are involved in the sequential cellular passage of 

particles. ATP-dependent proton pumps are responsible for the generation of an internal 

acidic environment of these organelles. Thereby, the pH can reach from 5.0 to 6.5 (Mellman 

et al., 1986; Pantarotto et al., 2004; Yamashiro & Maxfield, 1984). Conducted experiments 

investigated the strength of the binding between PI molecules and silica nanoparticles, 

demonstrated a strong association between dye and nanoparticles at different pH values. 

Therefore, it could be suggested that the generated fluorescence signal was based on 

nanoparticle bound PI. In addition, it should be mentioned that e.g., lysosomes possess a 

specific enzymatic content including esterases and cathepsins (Mellman et al., 1986). The 

impact of these enzymes to the stability of the binding between fluorescence dyes and 

particles should clearly be kept in mind. Furthermore, due to mechanic forces during the 

internalization process, there could be a release of PI during nanoparticulate transport through 

the cell as well. Visualization techniques such as scanning electron microscopy could be used 

to clarify this question.  

 

Besides the cellular uptake, also the localization of nanoparticles within the cell is of great 

interest. Especially, drug delivery to the nucleus is an increasing field as the nucleus is a 

promising target, because the cell and transcription machinery is localized there (Breunig et 

al., 2008; Tkachenko et al., 2003). Silica nanoparticles sized between 40 and 70 nm had 

already been reported to penetrate the nuclei of Hep-2 epithelial cells (Chen & Mikecz von, 

2005). Furthermore, gold nanoparticles functionalized with a TAT protein-derived peptide 

sequence could be localized in the nucleus, whereas unfunctionalized nanoparticles were just 

present in the cytoplasm and showed no translocation into the nucleus (de la Fuente & Berry, 

2005). The usage of RNase in combination with the PI-labelling of nanoparticles allowed 

more detailed insights in the cellular localization of these particles. RNase enzymatically 

eliminates RNA molecules, DNA molecules were not influenced by this RNase treatment. As 

a result, PI-labelled nanoparticles were not able to bind to RNA anymore but had the 

continuing ability to intercalate into DNA. DNA is predominantly located in the nuclei, 

whereas RNA is found in the form of mRNA and tRNA in the cytoplasm and furthermore in 

small quantities as pre-mRNA and snRNA in the nucleus (Barciszewski & Clark, 1999). 

Thus, a fluorescence signal (e.g. via flow cytometry) generated after pre-incubation with 



 
5          Uptake and localization of silica nanoparticles 105 
 
 
RNase was due to an association of PI-molecules with DNA indicative for an uptake into the 

nucleus. Results demonstrated that about 6% of the analysed cells contained PI molecules 

which showed an association with DNA indicative for a nuclear uptake. A subsequent 

isolation of the nuclei evidenced these findings. However, the main amount of these particles 

was localized in the cytoplasm. A functionalization of these particles with ligands such as 

nucleus localization signals could increase their target delivery and entry into the nucleus. 

 

Nevertheless, as used silica nanoparticles apparently were able to enter the cell nucleus, 

genotoxicity should be mentioned as well. Recent studies already demonstrated a strong 

association between genotoxic effects, the cellular uptake rate und the intracellular 

localization of silver nanoparticles (Ahamed et al., 2008). Carbon nanotubes showed the 

possibility to cause DNA damage due to their penetration into the cell nucleus (Tkachenko et 

al., 2003). Silica nanoparticles were described as well to enter the nucleus and influence the 

gene expression (Chen & Mikecz von, 2005). Silica nanoparticles with a size of 21 nm caused 

a decrease in cellular viability (compare to chapter 3). Hitherto, the reason of that cytotoxic 

effect could not be clarified. Thereby, a genotoxic effect due to the nuclear localization of 

these particles could not be excluded.  

 

Hitherto, various uptake mechanisms have been described as potential cell capture pathways 

for nanoparticles (Hillaireau & Couvreur, 2009; Luhmann et al., 2008). In general, 

nanoparticles must cross one or more biological membranes before they diffuse across the 

plasma membrane to finally enter the target organelle. Depending on the drug characteristics, 

the chosen uptake pathway as well as the intracellular fate of the drug carrier is essential for 

the efficacy of the drug. Thereby, the release of the drug into the enzymatic environment of 

the lysosomes or the direct release in the cell cytoplasm will dramatically influence the 

pharmacological activity of a drug (Hillaireau & Couvreur, 2009). Mostly, the internalization 

of nanoparticles into macrophages via phagocytosis is documented. Phagocytosis as the 

involved mechanism is described for particles sized between 250 and 3000 nm (Conner & 

Schmid, 2003; Khalil et al., 2006; Mayor & Pagano, 2007).  Whereas, nanoparticles smaller 

than 250 nm were less efficiently internalized via phagocytosis (Korn & Weisman, 1967). 

Phagocytosis is a process which occurs only in highly specialized cells such as macrophages. 

However, also for other cell types a phagocytosis-like mechanism could be demonstrated 
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during the uptake of large cationic-lipid-DNA complexes and PEI polyplexes (Kopatz et al., 

2004; Matsui et al., 1997). Such a phagocytosis-like mechanism could also play a role in the 

conducted uptake experiments in this study. Silica nanoparticles with a size of 84 nm showed 

a significant concentration-dependent uptake reduction after pre-incubation with

cytochalasin D, an inhibitor for phagocytosis. Even, if the size of the particles is not in the 

optimal range of phagocytosis, the inhibition of phagocytosis caused a clear reduction in the 

uptake of silica nanoparticles with a size of 84 nm. This uptake process starts with the 

interaction of particles with specific receptors such as opsonic receptors on the phagocyte. 

This causes an actin assembly and the formation of cell surface extensions that cover the 

particle to engulf it. Subsequently, the particle is internalized and the actin is shed from the 

phagosomes. The resulting phagosome transports the particle through the cytoplasm. 

Afterwards, a series of fusion and fission events begin, which result in the formation of 

mature phagolysosomes where internalized particles are degraded (Khalil et al., 2006). 

Phagocytosis has been traditionally referred to as “cell eating” whereas the non-phagocytic 

endocytosis pathways characterized as “cell drinking” based on their involvement in the 

uptake of fluids and solutes. However, this terminology is not relevant anymore when 

working with nanoparticles. Based on their small size, solid nanoparticles can be internalized 

via these non-phagocytotic pathways which are clathrin-dependent, caveolae-dependent and 

clathrin-/caveolae-independent endocytosis (Hillaireau & Couvreur, 2009). In general, the 

uptake of nanoparticles and the intracellular pathways are dependent on the analyzed cell type 

as well as on the particular size, shape, charge and chemistry of the particles. The uptake of 

poly-L-lysine-PEG-DNA nanocapsules (80-90 nm) in SV 40 transformed kidney cells was 

inhibited by wortmannin (inhibitor for macropinocytosis), genistein and methyl-ß-

cyclodextrin (inhibitor of caveolae-mediated endocytosis). Chlorpromazine (inhibitor of 

clathrin-dependent endocytosis) caused no reduction in the uptake of these particles 

(Luhmann et al., 2008). Thereby, various pathways seem to be involved in the uptake of one 

nanoparticle type and take place simultaneously. Via the use of different endocytosis 

inhibitors, it could be shown that, not only a single uptake pathway is involved, but various 

endocytosis processes interact. The uptake of silica nanoparticles was mediated via 

phagocytosis as well as a clathrin-/ caveolae-independent pathway as the internalization of 

nanoparticles with sizes of 34 and 84 nm were influenced by monensin, an inhibitor for this 

mechanism. A further study demonstrated strong differences in the uptake rate of polystyrene 

particles sized between 20 and 1010 nm in different cell lines. Polystyrene nanoparticles with 
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a size of 20 nm were internalized in a high amount by all used cell types. A murine squamous 

cell line took up particles with sizes of 93, 220- and 560 nm but not with a size of 1010 nm. 

Similar results could be demonstrated for human hepatocyte carcinoma cells and a mouse 

hepatoma cell line. These cells internalized the smaller particles but not the 590- and 1010-nm 

particles. In contrast, human bladder carcinoma cells and primary human umbilical vein 

endothelial cells took up all used particles (Zauner et al., 2001). However, the understanding 

of the role of endocytosis pathways in the internalization of drug delivery nanoparticles is a 

rising research field. The enzymatic content of these endocytotic organelles is a key issue for 

polymeric nanoparticles. Polymeric nanoparticles such as PLGA nanoparticles were degraded 

via a hydrolytic mechanism facilitated by low pH values (Shive & Anderson, 1997). This 

ensures a drug release and avoids a cellular accumulation of these particles which could lead 

to further toxicities (Hillaireau & Couvreur, 2009). In contrast, silica nanoparticles would 

resist such an acidic milieu, which would be important in oral drug delivery. Here, particles 

have to penetrate the intestinal barrier without damage or degradation to enter the blood 

circulation and reach their target tissues.  

 

Endocytosis can be strongly inhibited by lowering the temperature from standard cell culture 

conditions of 37°C to 4°C. At a temperature of 37°C, poly-L-lysine-PEG-DNA nanocapsules 

were found in the cytoplasm, whereas they were located at the outer cell membrane when the 

experiment were performed at 4°C (Luhmann et al., 2008). Caco-2 cells as well as a rat 

gastrointestinal tissue demonstrated a higher internalization of PLGA particles with a size of 

100 nm than for particles sized between 500 nm and 10 µm (Desai et al., 1996; Desai et al., 

1997). Furthermore, the uptake of polystyrene particles with a size of 20 nm was not reduced 

in murine squamous carcinoma cells when incubated at 4°C. In contrast, larger particles (93-

560 nm) showed a size-dependent reduction in the cellular uptake at 4°C. The uptake of 

560 nm polystyrene particles was strongly reduced at 4°C. In contrast, the internalization of 

particles with a size of 93 nm was less reduced (Zauner et al., 2001). These results correlate 

with findings in this study, where a size-dependent reduction in the uptake of nanoparticles at 

a temperature of 4°C could be observed as well. The internalization of PI-labelled silica 

nanoparticles with a size of 21 and 34 nm was not or rather low influenced by endocytosis 

inhibitors. Furthermore, the uptake of these particles was not reduced when experiments were 

performed at a temperature of 4°C in contrast to experiments at 37°C. Silica nanoparticle 
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with a size of 84 nm exhibited a strong reduction of about 50% in their transport rate at 4°C. 

The cellular pre-incubation with inhibitors for phagocytosis (cytochalasin D) and clathrin- and 

caveolae-independent endocytosis (monensin) caused a concentration-dependent increase in 

the uptake of these nanoparticles. Therefore, it is suggested, that the uptake of nanoparticles 

with small sizes (~20-40 nm) is carried out via passive pathways. Larger particles seem to use 

active internalization processes to enter a cell.  

 

 

 

5.6  CONCLUSION 

 

In conclusion, the PI-labelling of nanoparticles in combination with flow cytometry studies is 

a promising tool for the quantification of cellular uptake and localization of nanoparticles in 

vitro. It allows a clear distinction between particles internalized into cells and particles 

adsorbed to the outer cell membrane. Quantitative data allow an easy comparison between 

different studies and facilitate the experimental approach.  

 

PI-labelled nanoparticles with a size of 21 nm showed an uptake into the cell and were even 

able to generate a PI signal in the nucleus indicating a nuclear localization. This allows 

various pharmaceutical applications but should be considered critically as well, as silica 

nanoparticles localized in the nucleus could cause deleterious cellular damage. Further control 

experiments using high resolution visualization techniques such as scanning electron 

microscopy could provide further evidences for a nuclear localization of these particles. 

 

Furthermore, it could be demonstrated that particles with such a small size were internalized 

via passive pathways rather than by endocytotic processes. Active uptake mechanisms such as 

phagocytosis and clathrin- and caveolae-independent pathways seemed to play a role in the 

uptake of larger silica nanoparticles (84 nm).  

 



 
 

6 
Summary 

 

 
Nanomaterials are innovative tools in the field of oral drug delivery. The main obstacle of this 

application route is the overcoming of the intestinal barrier and the insistence against cells of 

the immune system. An overcoming or circumvention of these barriers would lead to an 

enhancement in the oral bioavailability. One delivery strategy is based on the encapsulation or 

adsorption of drugs and molecules in nanoparticles. Thereby, inorganic nanoparticles such as 

silica nanoparticles provide promising characteristics as novel drug carriers. The modification 

of the nanoparticle surface with poly ethylene glycol (PEG) could avoid a clearance via 

phagocytes and other immune cells. For the application in this field, cellular binding, 

association, uptake properties and localization of nanoparticles within the cell have to be 

investigated in detail. Especially, the quantification of cellular uptake is a sparely explored 

topic, but is very important for the comparison of different studies and materials. Therefore, 

the aim of this study was to evaluate the cellular association, uptake and transport properties 

of fluorescently-labelled silica nanoparticles with different sizes and surface modifications in 

a quantitative way using flow cytometry. Furthermore, these particles had to be evaluated for 

their oxidative and cytotoxic potential.  

 

Flow cytometry analysis demonstrated that rhodamine B-isothiocyanate (RITC)-labelled 

silica nanoparticles sized between 50 and 77 nm exhibited a clear association with Caco-2 

cells. Thereby, nanoparticles with a size of 50 nm were associated with 86% of Caco-2 cells 

and with 31% of isolated nuclei. Nanoparticles with a size of 77 nm showed an association 

rate of 85% with whole cells and 17% with isolated nuclei. In contrast, larger particles with a 

size of 94 nm and PEG-modified nanoparticles with similar sizes showed no or a rather very 

low cellular interaction. Transport experiments correlated with these association studies, as a 

size- and time-dependent transport across a Caco-2 cell monolayer could be observed. Small 
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and unmodified nanoparticles (50 nm) showed the highest transport, whereas PEG-modified 

and larger unmodified nanoparticles (94 nm) were not or rather low transported.  

 

However, the fluorescent labelling with RITC lacks the possibility to distinguish between 

particles internalized into the cell and particles adsorbed to the outer cell surface via flow 

cytometry. To allow a distinction between internalized and adsorbed particles as well as to 

obtain further information about the cellular localization, particles with adsorbed propidium 

iodide (PI) were prepared. These particles only give a fluorescence signal when associated 

with DNA or RNA. Consequently, particles adsorbed to the outer cell surface were not 

detected, whereas internalized particles exhibited a clear fluorescence signal. Flow cytometry 

measurements showed a time-dependent uptake of PI-labelled silica nanoparticles with a size 

of 21 nm. Further experiments with the additional usage of RNase exhibited that PI signals 

could be detected in the cytoplasm and less in the nucleus. RNase enzymatically eliminates 

RNA molecules which are predominantly located in the cytoplasm. As a result, PI-labelled 

nanoparticles were not able to bind to the RNA anymore but had the continuing ability to 

intercalate into DNA, predominantly located in the nuclei. Thus, a fluorescence signal 

generated after pre-incubation with RNase was due to an association of PI molecules with 

DNA indicative for an uptake into the nucleus. It could be shown that after a pre-incubation 

with RNase and a subsequent 4-hour-incubation with PI-labelled nanoparticles with a size of 

21 nm, 6% of Caco-2 cells were labelled in PI indicative for a nuclear uptake. In contrast, 

13% of the cells were positive for a PI staining without any addition of RNase.  

 

The carrier function of silica nanoparticles could be demonstrated by comparing the cellular 

uptake of free PI and nanoparticle-bound PI. Free PI was not able to enter Caco-2 cells, 

whereas PI bound to silica nanoparticles showed a clear time-dependent internalization.  

 

The nanoparticle labelling with PI further allowed the identification of the cellular 

endocytosis mechanisms involved in the uptake of nanoparticles in a quantitative way. 

Therefore, Caco-2 cells were incubated with different endocytosis inhibitors. Chlorpromazine 

(clathrin-dependent endocytosis) and nystatin (caveolae-dependent endocytosis) showed no 

inhibition in the uptake rate of nanoparticles when compared to cells pre-incubated without an 

inhibitor. Cytochalasin D (phagocytosis) and monensin (clathrin- and caveolae-independent 

pathways) demonstrated a concentration-dependent inhibition in the uptake of nanoparticles. 
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Furthermore, this inhibition was dependent on the used nanoparticle size. The uptake of silica 

nanoparticles with a size of 21 nm were not influenced by these endocytosis inhibitors, 

whereas nanoparticles with a size of 34 and 84 nm showed a strong influence by 

cytochalasin D or monensin. Uptake experiments at a temperature of 4°C further 

demonstrated, that smaller particles were internalized via passive processes, whereas particles 

with a size of 84 nm used active pathways to enter the cells.  

 

As pharmaceutical or medical used silica nanoparticles come into a close contact with 

biological systems, it is essential to evaluate their oxidative and cytotoxic potential. 

Therefore, a novel method for the combined detection of oxidative stress and cytotoxicity was 

established. This assay is based on the automated non-invasive online monitoring of the 

oxygen concentration in solution (SensorDish® Reader). Cellular respiration is associated 

with a consumption of oxygen and therefore serves as an indicator for cytotoxicity and can be 

determined measuring the long-term cellular consumption of oxygen during cell incubation. 

An increase in air saturation caused by decreased cellular consumption of oxygen is a very 

early indication for cytotoxicity. The generation of reactive oxygen species could be analysed 

via the increase in molecular oxygen due to the involvement of antioxidant defence enzymes. 

Silica nanoparticles with different sizes and surface modifications were investigated with this 

novel method concerning their oxidative and cytotoxic potential. Thereby, size, time, 

concentration as well as surface modification of nanoparticles affected the cellular viability 

but not oxidative stress levels. Results of this cytotoxicity studies correlate with performed 

cell association and uptake experiments. RITC-labelled silica nanoparticles with a size of 

50 nm caused a clear decrease in cellular viability over time and had been also described to 

enter Caco-2 cells time-dependently. In contrast, nanoparticles which showed no association 

with cells exhibited no cytotoxic potential. Similar results could be demonstrated for PI-

labelled nanoparticles, where the uptake rate showed a high correlation with the observed 

cytotoxic effect of these particles. Furthermore, it could be shown that the occurred 

cytotoxicity was not reversible within 72 hours.  

 

 



 
 
 

7 
Outlook 

 

 
Results of this thesis show that silica nanoparticles have a potential as oral drug carriers. 

Dependent on their size and surface modification, silica nanoparticles exhibit a strong 

association with epithelial cells and can be internalized and finally transported across a cell 

monolayer. Especially, the transport across a cellular barrier is essential in the oral 

administration of these carriers. Nanoparticles have to cross the intestinal epithelium to reach 

their target site somewhere else in the body. The manner of the nanoparticulate overcoming of 

such a barrier is therefore an important research topic. Hitherto, it is known, that the transport 

across the intestinal epithelial barrier is not mainly occurring in enterocytes but in the 

intestinal M cell and the follicle associated epithelium. A recent study already introduced a 

novel in vitro model for the human intestinal follicle associated epithelium which could help 

investigating the passage of nanoparticles across the intestinal barrier more detailed (des 

Rieux et al., 2005). The uptake of nanoparticles becomes important once particles have 

reached the target tissue or cells of e.g. a tumour. Thereby, it could be shown that a surface 

modification with PEG is not the best solution because nanoparticles could not bind to cells 

anymore and therefore could not be internalized. In contrast, once reaching the blood 

circulation, the characteristics of PEG are essential. A surface modification with PEG avoids a 

clearance by macrophages and other cells of the immune system and therefore, prolongs the 

retention time of nanoparticles in the blood. Thus, the improvement of the nanoparticulate 

surface modification is a necessary task. An indication could be the functionalization of the 

particle surface with markers or antibodies adequate to specialized cells. M-cells of the gut 

e.g. produce GP2 proteins as receptors on their surface that bind E. coli or salmonella bacteria 

(Terahara et al., 2008). Tumour genes are widely explored and collected in data bases. 

Prominent examples are the human epidermal growth factor receptor 2 (HER-2) in breast 

cancer and the Wilms’ tumour gene 1 (WT-1) which is overexpressed in 70-90 % of acute
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leukaemias (Olayioye, 2001; Boublikova et al., 2006). The intelligent combination of all these 

surface modifications would allow a targeted and efficient transport of nanoparticles. 

 

The loading of nanoparticles with drugs would be the next step in research. This thesis 

investigates silica nanoparticles as a carrier system loaded with fluorescence dyes. Thereby, 

these labellings were core-loaded (RITC) or adsorbed to the particle surface (PI). Drug 

molecules would be bound to nanoparticles in a similar manner. Experiments with PI-labelled 

nanoparticles already showed that silica nanoparticles served as carriers to facilitate the 

cellular uptake of the membrane-impermeable dye PI.  

 

Spherical silica nanoparticles had been already loaded with the poorly, water soluble drug 

telmisartan (Zhang et al., 2010). A further study described an oral delivery system for 

indomethicin engineered from cationic lipid emulsions and silica nanoparticles (Simovic et 

al., 2010). Mesoporous silica nanoparticles (MSN) have been demonstrated to be able to 

deliver kinds of model substances such as fluorescein, Texas Red and rhodamine B. The 

loading was in the order of hundred milligrams per gram of nanoparticles (Slowing et al., 

2008). A MSN-based system was also used to deliver genes in cells. Therefore, the delivery 

system was complexed with a plasmid DNA that encodes for an enhanced green fluorescence 

protein (GFP). Furthermore, this material allows membrane-impermeable molecules, such as 

pharmaceutical drugs and fluorescent dyes, to be encapsulated inside the MSN channels 

(Radu et al., 2004). Other studies showed a release of drugs such as ibuprofen, erythromycin 

and alendronate from MSN as well using different strategies to modify the control of drug 

release (Balas et al., 2006; Lu et al., 2004; Vallet-Regi et al., 2006). A silica-lipid hybrid 

microcapsule system was used for the encapsulation of celecoxib classified as a BCS Class 

II drug (poor solubility, high permeability) that is practically insoluble at gastrointestinal pH 

(Tan et al., 2009). More complex delivery systems allow e.g. a glucose-responsive controlled 

release of insulin and cyclic AMP (Zhao et al., 2009).  

 

The important question concerning all these applications is still, where silica nanoparticles 

remain after administration. Hitherto, there is a lack of publications dealing with the fate of 

silica nanoparticles. A study of Wu et al. described the biodegradation of amorphous silica 

shells merged with superparamagnetic iron oxide nanoparticles. After injection into mice, 

nanoparticles were cleared from the kidney within 2 hours followed by an accumulation in the 
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liver and spleen (Wu et al., 2008). However, the findings about fate and behaviour in the body 

are essential and require intensive research in the future. 
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MSN  Mesoporous silica nanoparticles 
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WT-1  Wilms’ tumour gene 1 

ζ  Zeta 
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