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Abstract

In order to develop more and more resource-saving strategies for engineering
tasks, the efficient application of cellular materials, such as various open cell
foams, is of high interest in science and technology. Strongly influenced by
their underlying microtopology, cellular materials feature a complex material
behaviour. Modelling aspects to be taken into account are e. g. the deforma-
tion induced evolution of anisotropy and porosity on the one hand and the
description of size dependent stiff or soft boundary layers, activated by the
interaction close to material interfaces, on the other hand.

The present contribution is focusing on that second feature by introducing a
numerical homogenisation procedure. It allows to replace the heterogeneous
microcontinuum by a homogeneous micromorphic macrocontinuum. Doing
so, the microstructural deformation mechanisms can be geometrically inter-
preted as generalised degrees of freedom, which can be transferred on the
macroscopic level. In the context of a FE2 strategy, the macroscopic con-
stitutive equations are replaced by the computation of a nested microscopic
boundary value problem in each macroscopic material point.

The power of the proposed interpretation of the micromorphic degrees of free-
dom in combination with the numerical homogenisation approach is demon-
strated for several microstructures in various numerical experiments validated
in comparison to numerical reference calculations.





Zusammenfassung

In einer Welt immer knapper werdender Rohstoffe kommt dem ressourcen-
schonenden Einsatz von anwendungsspezifisch optimierten Materialien eine
immer höhere Bedeutung zu. Vor diesem Hintergrund werden zelluläre Ma-
terialien wie z. B. offenporige Schäume sowohl im Bereich des konstruk-
tiven Leichtbaus als auch für diverse weitere Anwendungsgebiete einge-
setzt. Aufgrund ihrer ausgeprägten Mikrotopologie zeichnen sich diese Ma-
terialien durch ein komplexes mechanisches Verhalten aus. Für die Ma-
terialmodellierung müssen dabei sowohl die Anisotropie und die Porosität
Berücksichtigung finden als auch Maßstabseffekte an Materialgrenzen, die
sich in steifen oder weichen Randschichten äußern.

Eben diese Maßstabseffekte stehen im Mittelpunkt der vorliegenden Arbeit.
Zu ihrer Modellierung wird das zu Grunde liegende heterogene Mikrokon-
tinuum durch ein homogenes mikromorphes Makrokontinuum ersetzt. Dazu
müssen die mikroskopischen Deformationsprozesse einer makroskopischen In-
terpretation als erweiterte Freiheitsgrade zugeführt werden. Dies geschieht
mit Hilfe eines numerischen Homogenisierungsverfahrens. Die Formulierung
einer makroskopischen Konstitutivbeziehung wird umgangen, indem an jeden
makroskopischen materiellen Punkt ein mikroskopisches Randwertproblem
geheftet und im jeweiligen Deformationszustand berechnet wird.

Die Leistungsfähigkeit der vorgestellten Homogenisierungstechnik wird an-
schließend am Beispiel verschiedener Mikrostrukturen und geeigneter Re-
ferenzberechnungen nachgewiesen.
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1
Mechanical modelling of cellular

materials – an introduction

1.1 Motivation and state of research

Living in times where humankind is more and more influencing and threa-
tening its natural environment, it is the main obligation of science and in-
dustry to develop strategies for all of us how to organise our way of living in
an as far as possible resource-saving manner. Within this broad subject, the
design of novel materials plays an important role. During the last decades,
the class of cellular materials has become one focal point of interest among
numerous further ones. Due to their low mass density, cellular materials,
e. g. ceramic, polymer or metal foams, are widely used for light-weight con-
structions in various fields of engineering applications. Nevertheless, cellular
materials are well-known to feature a peculiar mechanical behaviour. Mo-
delling aspects to be taken into account comprise on the one hand a distinct
anisotropy in the effective material behaviour, on the other hand pronounced
size-dependent boundary layer effects under various loading conditions. The

– 1 –



2 1. Introduction

Figure 1.1: Open-cell Aluminium foam (10 ppi, 95% porosity)

anisotropy effects material properties which depend on the orientation of
the microstructure. Furthermore, it is possible that the anisotropy deve-
lops during the deformation process due to local reorientations. By contrast,
boundary layers mainly occur close to material interfaces, where, in general,
the microstructural deformation mechanisms are more restricted than with-
out the interface, cf. [3, 5, 13, 17, 73, 82, 100, 119, 127, 128]. Altogether, one
may summarise the overall material properties to be strongly dominated by
the particular microtopology. The mechanical modelling of those materials
implies an exact knowledge of the underlying microstructure. For open-cell
polymer and metal foams, a detailed microscopic characterisation can be
found e. g. in [67].

Figure 1.2: Detail of a three-dimensional CT-reconstruction.1

1Special thanks to E. Thoma (Fraunhofer IZFP) and M. Engstler (MECS, both at
Saarland University, Germany) for the CT-scan and the reconstruction.
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For the material modelling of heterogeneous materials, mainly three different
approaches are to be found in literature. The first one deals with a micro-
scopic fidelity, resolving the entire microstructure within the Finite Element
Method (FEM). On the one hand, this first approach captures all relevant
effects due to the microtopology. On the other hand, it generates an immense
number of degrees of freedom (DOF), which results in huge equation systems
incorporating immense numerical costs from the numerical point of view, at
least when considering sufficiently large samples.

The second technique replaces the microheterogeneous material by an ap-
propriate homogeneous material incorporating extended kinematics, i. e. an
extended continuum theory. From the historical point of view, this concept
goes back to the seminal work of the brothers Cosserat [18] and was later
on generalised by Eringen and Mindlin [32, 35, 92]. Initially, the ideas of
additional degrees of freedom have found their way into application for the
formulation of beams, plates and shells. A detailed review can be found
in [2]. Without the restriction to one- or two-dimensional problems and
based on the formulations of Günther [54] and Schaefer [108], the Cosserat
theory, only assuming microscopic rotations as additional degrees of free-
dom, has been elaborated in literature e. g. with applications to crystal
plasticity, foams, layered or particle systems, making no claim to be com-
plete cf. [6, 7, 12, 20, 21, 27, 28, 30, 31, 43, 45, 95, 126]. Discussions con-
cerning the more general micromorphic continuum, taking into account mi-
crostructural shearing and stretching deformations, can be found e. g. in
[9, 24, 41, 42, 49, 52, 63, 64, 65, 75, 97, 116]. Except for a few approaches,
the microdeformation is considered to be affine, cf. [34, 49]. Special applica-
tions to the material modelling of foam structures, with or without extended
kinematics, can be found e. g. in [4, 29, 50, 53, 98, 105, 120, 124, 125]. The
second gradient continuum theory is representing a further class of extended
continuum theories, related to the micromorphic continuum theory via the
internal constraint that the microdeformation is not completely independent
from the displacement field but equals the macroscopic first deformation gra-
dient, cf. e. g. [16, 44, 47, 48, 77, 79, 93, 96, 102, 103]. Altogether, one may
point out the necessity of introducing an extended constitutive modelling
involving additional material parameters, cf. e. g. [92, 97], as the main dis-
advantage of this purely macroscopic approach, because, in general, the ex-
tended parameters are hard to interpret from the physical point of view and
furthermore hard to identify by experiments. Under certain circumstances,
the solution of the inverse problem bears a helpful alternative for the para-
meter identification e. g. making use of evolution strategies, cf. [106, 110].



4 1. Introduction

As a third strategy, one may combine both above mentioned approaches in
terms of a two-scale modelling, commonly called FE2 modelling. Based on
the idea of replacing a heterogeneous microcontinuum by a homogeneous
but extended macrocontinuum, the constitutive equations on the macroscale
governed by the unknown material parameters are substituted by a small but
finite microscale calculation in each macroscopic material point, e. g. [26,
37, 79, 84, 90, 91]. This approach will be the main issue of the following
investigations. Finally, in order to complete the considerations found in
literature, one should mention the aspect of an efficient numerical modelling
within the FE2 technique. The formulation of a consistent tangent has been
discussed e. g. in [78, 89, 90, 109].
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Figure 1.3: Schematic sketch of the three approaches for the material mod-
elling of heterogeneous materials.

In fig. 1.3, the interactions of the three proposed approaches, the microscopic,
the macroscopic as well as the mixed one are indicated. From the numerical
point of view, the microstructure fully resolved using Finite Elements and
applying for a microscopic resolution, i. e. the microscopic model, can be
treated as the numerical reference model. Consequently, this model is useful
to validate the results achieved by the two homogenisation techniques. With
a view to the purely macroscopic model, the results of the numerical reference
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experiments can be incorporated e. g. in a genetic parameter identification
algorithm. By contrast, the two-scale model requires the solution of a number
of microscopic boundary value problems on the level of the Representative
Volume Element (RVE) with microscopic resolution. The insights acquired
by the numerical homogenisation may be helpful to adjust the structure of the
effective constitutive equations within the macroscopic model. Nevertheless,
for a material modelling of realistic structures, it is common to all proposed
approaches to be verified with respect to physical experiments.

1.2 Scope of this work

The present contribution focuses on a numerical homogenisation technique
based on the underlying concept of scale separation [61, 99], also known as the
MMM-principle. For this purpose, one may distinguish between three differ-
ent scales of interest: the macro-, the meso- and the microscale. Whereas the
macroscale covers the entire sample, the mesoscale represents the level of the
microtopology, e. g. the cellular network. If one continues zooming into one
arbitrarily chosen strut of the cellular network, one reaches the microscale,
which can be e. g. interpreted as the level of atomistic interactions. In the
cases, which will be discussed in the latter, this second step can be assumed
to be very large. Thus, on the mesoscale, the application of a standard con-
tinuum theory is meaningful from the physical point of view. By contrast, the
scale separation between the macro- and the mesoscale can not be guaran-
teed, especially if one is interested in effects depending on a microstructural
length scale. Those effects come into play, if the characteristic length scale
of the mesolevel becomes comparable to that one of the macrolevel. In the
sequel, the present contribution will focus on the scale transition between the
macro- and the mesoscale. In order to simplify matters, no considerations
concerning the atomistic microscale will be included. By consequence, let us
change the above mentioned denotation and let us define the microscale the
level of the cellular network in the following investigations.

In order to investigate the micro-to-macro scale transition, a consistent nu-
merical homogenisation scheme will be elaborated replacing a heterogeneous
Cauchy microcontinuum by a homogeneous micromorphic macrocontinuum.
Introducing this two-scale approach, the following questions are of special
interest:
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1. What is the physical meaning and the geometrical interpretation of
the micromorphic degrees of freedom in terms of deformation modes
applied on the boundary of the attached microvolume?

2. Is it possible to observe the predicted deformation modes within the
real deformation behaviour of the investigated heterogeneous materials
and

3. how does an appropriate formulation of the attached microvolume look
like?

4. How can be homogenised the microscopic stress fields resulting in ef-
fective stresses and higher order stresses on the effective level?

5. Finally, does the found homogenisation methodology compare
favourably with appropriate validation tests and which limits can be
detected?

1.3 Outline

In order to answer the raised questions, the present contribution is separated
into two parts. The first one comprises the theoretical aspects, starting
with the fundamental concepts of classical continuum mechanics in chapter
2. The physical picture of the Cauchy continuum theory will be reviewed
paying special attention to the axiomatic introduction of balance laws. Re-
placing the constitutive model on the macroscopic level applying a numerical
homogenisation methodology, chapter 3 is concerned with the formulation of
the micro-to-macro transitions within the context of the Cauchy continuum
theory. By contrast, chapters 4 and 5 extend the considerations of the previ-
ous chapters in a systematical manner and in strict analogy to the classical
theory. Thus, the physical picture of the micromorphic continuum theory
will be considered as well as the extended balance laws. An appropriate ho-
mogenisation algorithm will be derived assigning the micromorphic degrees
of freedom a clear geometrical interpretation.

The second part of this work is dedicated to the application of the introduced
homogenisation technique within various numerical investigations. Whereas
chapters 6 and 7 study the basic features of the method, chapters 8 – 11
on the one hand demonstrate the power of the proposed two-scale approach
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and on the other hand try to detect the limits of the method. For that
purpose, various microstructures will be subject to appropriate numerical
experiments.

Finally, the found results will be summarised and discussed in chapter 12.
An outlook to ongoing projects will be given.

1.4 Notations

In the sequel, differential operators will be defined as follows:

divT =
∂Tkl

∂xl

ek, GradP =
∂PkK

∂XL

ek ⊗ eK ⊗ eL,

where small operators and indices refer to the spatial, capital operators and
indices to the material frame. Without loss of generality, the ek are the vec-
tors of an orthonormal basis of space making use of the associated Cartesian
coordinates. Tensor products read

A · B = AklBlmek ⊗ em, A : B = AklBkl,
3

E
...C3 = εklmCklm, C3 :̂ (A, B) = CklmAlnBmoek ⊗ en ⊗ eo.

Furthermore the following permutation and identity tensors will be used:

I = δkl ek ⊗ el, where δkl =

{
1, k = l,
0, else.

3

E= εklmek ⊗ el ⊗ em, where εklm =







1, klm = 123, 231, 312,
−1, klm = 321 213, 132,

0, else.

4

I= δklmn ek ⊗ el ⊗ em ⊗ en, where δklmn =

{
1, k = l = m = n,
0, else.

Besides the permutation tensors, tensors of grade 3 and higher are denoted
with underlined indices, e. g. C3. Further notations follow the system to be
found in [11].





I

Theoretical aspects





2
Classical continuum mechanics

Without going too much into detail, the following chapter is devoted to a
review of the classical continuum mechanics, i. e. for the so-called Cauchy
continuum, how it may be found, beyond various other publications, in [1, 8,
58, 123]. In general, the idea of continuum mechanics is up to the description
of the motion and the deformation of a physical body B, consisting of an
infinite set of material points P , which convey the physical properties of
the body, e. g. the mass density, stresses and so on. At first, the kinematic
quantities of the Cauchy continuum theory will be motivated.

2.1 Kinematics

2.1.1 The physical picture

In order to describe a motion and/or deformation of the physical body B
within the Cauchy continuum theory, one introduces the motion function

– 11 –
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x̂ which carries an arbitrary chosen material point X from the reference
configuration (undeformed state, t = t0, material frame) to the current con-
figuration (deformed state, t > t0, spatial frame). The material point is
defined by its position vector X or x, respectively, cf. fig. 2.1.

O

X
x

u
dX

dx

X

Y

X

Y

reference configuration

∂B

B

∂B

B

t > t0

t = t0

current configuration

Figure 2.1: The physical picture of the Cauchy continuum: reference and
current configuration.

The motion function of the material point X may be written as

x = x̂(X, t), X = x̂−1(x, t). (2.1)

By derivation with respect to the time t, one obtains the velocity vector in
the material frame,

v = x′ =
dx̂(X, t)

dt
. (2.2)

In the spatial frame, one finds

v = x′(x̂−1(x, t), t). (2.3)

The displacement vector u points from the reference position of the material
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point to its current position and, therefore, it is defined as1

u(X, t) = x̂(X, t) −X = x − X. (2.4)

2.1.2 Deformation and strain quantities

The derivative of the motion function x̂ with respect to the reference position
X results in the definition of the deformation gradient

F =
∂x̂(X, t)

∂X
=

∂x

∂X
= Grad x = Gradu + I. (2.5)

It projects the line element between two proximate material points from the
material to the spatial frame, i. e.

dx = F · dX. (2.6)

Moreover, one may identify the transport rules for surface and volume ele-
ments as

da = (detF)FT−1 · dA, dv = detF dV. (2.7)

The deformation gradient can be decomposed multiplicatively as the product
of a proper orthogonal and a symmetric tensor,

F = R · U = V · R, (2.8)

where

RT = R−1, detR = +1, U = UT , V = VT . (2.9)

In practise, the calculation of the stretch tensors U and V requires the solu-
tion of an eigenvalue problem which is quite complex. However, computing
the squares of the line elements, it is possible to define more manageable

1No distinction between the function and its value.
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deformation quantities,

dS2 = dX · dX, ds2 = dx · dx. (2.10)

Making use of the transport theorem eq. (2.6), one finds

ds2 = (FT · F) : (dX ⊗ dX), (2.11)

dS2 = (FT−1 · F−1) : (dx ⊗ dx) (2.12)

and one may define

C = FT · F = U2 and B = F · FT = V2 (2.13)

the right and the left Cauchy-Green deformation tensor. By definition, they
do not involve any rigid body rotation, i. e. the right as well as the left
Cauchy-Green deformation tensor can be expressed solely by the stretch ten-
sors U and V, respectively.

Finally, calculating the differences of squares of line elements, the definitions
of the Green-Lagrange and the Euler-Almansi strain tensors read

E =
1

2
(C − I) and A =

1

2
(I − B−1). (2.14)

2.1.3 Material time derivatives

So far, no variations of the deformation quantities in time have been taken
into account. To do so, the material or the total time derivative of the
expression (⋄)(x, t) is defined as

(⋄)′ =
d(⋄)
dt

=
∂(⋄)
∂t

+ grad (⋄) · x′. (2.15)

The material time derivative of the transport theorem eq. (2.6) reads

(dx)′ =
d

dt
(F · dX) = F′ · dX = F′ · F−1 · dx. (2.16)
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One distinguishes between the material velocity gradient

F′ = Grad v (2.17)

and the spatial velocity gradient

L = gradv = F′ · F−1. (2.18)

2.2 Balance equations

Besides the kinematic expressions, describing the motion or deformation of a
physical body B, the concept of continuum mechanics requires every physical
system to equilibrate itself with respect to its environment. I. e., one has to
introduce balance equations in an axiomatic way, cf. [21, 58]. In the follow-
ing, the method of virtual power will be applied to generate the underlying
balance equations for the Cauchy continuum theory. The method has been
described in detail e. g. in [48, 51, 56].

The forces acting on the body B can be distinguished into external forces,
representing the interaction with other bodies, and internal forces, involving
all effects within the body B. The principle of virtual power says:

“For any arbitrary virtual motion, the virtual power of all the internal and
external forces acting on the body B equals zero” [48].

Thus, one may write

δPi + δPe = 0, (2.19)

where δPi and δPe describe the virtual power of the internal and the external
forces. For the Cauchy continuum, the power of the internal forces is assumed
to be a linear form of the gradient of the virtual velocity,

δPi = −
∫

B

δpi dv (2.20)
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with

δpi = T : grad δv, (2.21)

T is called the Cauchy stress tensor. The principle furthermore demands
the power of the internal forces to stay constant even if the observer changes
its position, i. e. the power of the internal forces has to be invariant with
respect to a superimposed rigid body transformation within the manifold of
the Euclidean transformations. Consequently, the virtual velocity δv may be
replaced by δv + v̄ + Ω̄ · x, where v̄ is representing a rigid body translation
and Ω̄ a rigid body rotation, both constant within B. Furthermore, for Ω̄,
the orthogonality condition holds. Inserting these expressions into eq. (2.21)
and taking into account the invariance postulate, one finds

δpi − δp̄i = T : grad δv − (T : grad δv + T : Ω̄)
!
= 0. (2.22)

For an arbitrary rigid body rotation Ω̄ and considering its orthogonality, this
condition is fulfilled for the setting

T = TT , (2.23)

i. e. the Cauchy stress tensor T is symmetric in the spatial framework.

For the virtual power of the external forces, one may assume

δPe =

∫

B

ρb · δv dv +

∫

∂B

t · δv da (2.24)

with the mass density ρ, the volume force density b and the surface traction
t. After an integration in parts and after having applied the divergence
theorem, the principle of virtual power eq. (2.19) reads

∫

B

δv · (divT + ρb) dv +

∫

∂B

δv · (t −T · n) da = 0, (2.25)

which must be satisfied for any virtual motion δv. The principle of virtual
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power is satisfied, if one chooses the equilibrium condition

divT + ρb = 0 in B, (2.26)

identical to the balance of momentum, and the boundary condition

T · n = t on ∂B (2.27)

with the outer normal vector n on the surface ∂B in the spatial description.

The symmetry condition for the Cauchy stress T, eq. (2.23), can be trans-
formed into the so-called balance of moment of momentum of the Cauchy
continuum theory and reads in the notation following [11]

I × T =
3

E : TT = 0. (2.28)

Up to now, the method of virtual power has been formulated in the spa-
tial frame. Following the concept of dual variables [59] and assuming the
virtual power of the internal forces to be an objective quantity, cf. [48], the
balance laws can be written for the material frame in an analogous way.
The transport from the spatial into the material frame is making use of the
transport theorems eqs. (2.6–2.7). Thus, the material form of the balance of
momentum reads

Div P + ρ0 b = 0 (2.29)

and the material form of the balance of moment of momentum

F × P =
3

E : (F · PT ) = 0. (2.30)

Via the concept of dual quantities, one obtains

∫

B

T : L dv =

∫

B

(
(detF)T · FT−1

)
: F′ dV. (2.31)

The dual stress quantity can be identified as the 1st Piola-Kirchhoff stress
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tensor

P = (detF)T · FT−1. (2.32)

Note that, in general, the 1st Piola-Kirchhoff stress tensor is not symmetric.

If one replaces the virtual by real deformations, one may balance the change
of the energy stored within the body B. If one furthermore neglects acceler-
ations, heat production and thermal radiation effects, i. e. one assumes the
static and isothermal case, the balance of internal energy equals the balance
of strain energy. In the spatial frame, one writes

d

dt

∫

B

ρ ε dv =

∫

B

ρb · v dv +

∫

∂B

t · v da (2.33)

and after some conversions, using the divergence theorem and the balance
equations eqs. (2.26) and (2.28), one finds the balance of strain energy in the
local form

ρ ε′ = T : gradv. (2.34)

The transformation into the material frame results in

ρ0 ε′ = P : F′, (2.35)

where ε defines the internal energy density of the system. Further balance
laws exist for the conservation of mass and the balance of entropy, i. e. the sec-
ond law of thermodynamics. The numerical experiments within the present
work are restricted to the static case and to elastic material properties, a
potential character for the free energy of the system is assumed. Neither
the mass inertia nor entropic effects will be furthermore discussed. Details
concerning these balances may be found in the above cited literature.
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Homogenisation of Cauchy media

3.1 Two-scale modelling

As it has been emphasised in the very beginning, it is the aim of the present
work to find an efficient methodology to describe the material behaviour of
heterogeneous media, especially that one of cellular materials such as open-
cell foams. Let us start our investigations reviewing the so-called first order
FE2 approach, which has been initially introduced in the late 1990s by Feyel
et al. [37, 38], whereas the basic principles concerning the homogenisation
technique may be found earlier, e. g. [61, 87, 99]. During the past decade, the
FE2 methodology has found its way into the modelling of microstructured
materials for various applications, cf. e. g. [55, 66, 88, 90, 91, 94, 114, 115,
122]. The algorithm is based on the insight that the effective mechanical
behaviour of heterogeneous materials, i. e. the behaviour one observes on
the macroscopic level, is strictly dominated by the underlying microtopology.
Thus, the material modelling must take into account the inherent microscale.
Whereas purely macroscopic models are based on constitutive assumptions
on the effective level, the two-scale approach substitutes the constitutive
equations with a set of microscale calculations. In other words, the first order

– 19 –
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FE2 scheme replaces a heterogeneous microcontinuum by a homogeneous
macrocontinuum.1 The algorithm is sketched in fig. 3.1 in a schematic way. A
microscopic volume element comprising the characteristic length l is attached
to every macroscopic material point. From the numerical point of view, the
microvolume is attached to every macroscopic integration point. Within a
first order FE2 scheme, the microscopic volume element is assumed to be
very small compared to the macroscopic length scale (l ≪ L) and it has to
be representative for the microheterogeneity.2

BM

Bm

∂BM

∂Bm

T
M

GraduM

ū

lL

Figure 3.1: The basic principle of the FE2 method.

Considering fig. 3.1, a macroscopic boundary value problem is given and
the deformation quantities, for the Cauchy continuum theory only the dis-
placement gradient, have to be projected to the boundary of the attached
microvolume. Therewith, a microscopic Dirichlet boundary value problem
has been generated which can be solved. By formulation of an appropriate
homogenisation rule, the microscopic stress quantities have to be transferred

1By contrast, FE2 techniques using a higher order macroscopic continuum theory are
called higher order.

2One may allude that, in general, it is not a trivial task at all to determine the appro-
priate size of the microscopic volume element.
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back to the macroscale, resulting e. g. in the macroscopic Cauchy stress tensor
TM .3 Hence, instead of computing the heterogeneous material with a micro-
scopical resolution, the microscale calculations are restricted to the solution
of a number of microscopic boundary value problems. Depending on the size
and the complexity of the macroscopic boundary value problem, the method
may be still expensive in a numerical sense. But otherwise, it may become
very efficient if making use of parallel computing techniques, cf. [81, 111].

The following chapter intends to give a general overview of the well-known
first order FE2 method, i. e. the heterogeneous Cauchy microcontinuum will
be replaced by a homogeneous Cauchy macrocontinuum before the methodo-
logy will undergo a consistent extension towards a micromorphic macrotheory
in chapter 5. At first, let us derive appropriate projection and homogenisation
rules for the transition between the different scales.

To do so, one has to identify the macroscopic kinematic quantities, i. e. the
macroscopic displacement field and the macroscopic deformation gradient, in
terms of a polynomial mean field and a periodic fluctuation of the heteroge-
neous Cauchy microvolume attached to the macroscopic material point. To
simplify matters, the methodology is restricted to the two-dimensional case.
The microvolume attached to the macroscopic material point is assumed to
be a rectangular unit cell with the edge lengths a and b and capturing the
space Bm comprising the volume Vm = a b. Let XM be the volume centroid
of Bm, cf. fig. 3.2.

3.2 Averaging theorems

Let us investigate at first the scale transition properties of the microscopic
and the macroscopic displacement fields. In the sequel, quantities depicted
with (⋄)m refer to the microscale whereas quantities depicted with (⋄)M refer
to the macroscale. One may postulate the displacement field uM to char-
acterise the macrostate that best fits the microscopic displacement field um

3Vice versa, it is also possible to project the macroscopic stresses in order to generate
a microscopic Neumann boundary value problem, cf. [99]. It is very interesting to notice
this choice to influence the micro-to-macro transition of conservation laws such as the
mass conservation, cf. [121]. In order to circumvent these problems, the present work is
restricted to microscopic Dirichlet boundary value problems.
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OM

Om

XM

Xm

∆X

Bm

a

b

Figure 3.2: The microvolume of the size Vm = a b attached to the macroscopic
material point at the position XM (material frame).

in the volume average over Bm, i. e. the real displacement field observed on
the heterogeneous microscale has to be replaced by an appropriate, effective
displacement field on the homogeneous macroscale. Thus, the minimum of
the functional

F(uM) =
〈
(um − uM)2

〉
(3.1)

has to be computed, where

〈⋄〉 =
1

Vm

∫

Bm

(⋄) dV (3.2)

denotes the volume average of the quantity (⋄). By formal derivation of the
functional, one finds

dF = −2 〈um − uM 〉 !
= 0. (3.3)

Equivalently, using the identity ∆u = um − uM , one may write

〈∆u〉 = 0. (3.4)

From the physical point of view, eq. (3.4) emphasises the microscopic dis-
placement field, besides the rigid body displacement uM , to vanish in the
average over the microvolume. The microscopic displacement field can be in-
terpreted as a microscale fluctuation of a wave length, which is infinitesimally
short compared to the characteristic wave length of the macroscopic deforma-
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tion field. Thus, in the average over the microvolume, the microfluctuation
does not result in an effective displacement visible on the macroscale.

Applying the gradient operator on the particular scales, one finally may
identify the expression

duM

dXM

=

〈
dum

dXm

〉

(3.5)

or equivalently

Grad uM = 〈Gradum〉 . (3.6)

3.3 Microscopic deformation modes

So far, the relations between the macroscopic and the microscopic kinematic
quantities have been identified. Keeping in mind the FE2 algorithm depicted
above, one now has to derive a projection rule, which is admissible with
respect to the averaging rules eqs. (3.4) and (3.6).

To do so, let us assume the microscopic displacement field to be a polynomial
of grade one, i. e.

∆u = A1
M(XM , t) + B2

M(XM , t) · ∆X + ∆ũ, (3.7)

where the displacement ∆ũ is representing a fluctuation field due to mi-
crostructural periodicity. The coefficients A1

M and B2
M solely depend on

the macroscopic position XM and the time t. Hence, these quantities are
constant within the microvolume.

One now may compute uM and GraduM inserting eq. (3.7) into eqs. (3.4)
and (3.6) and one obtains the macroscopic kinematic quantities in terms of
the coefficient tensors. Solving the resulting equation system, this procedure
allows vice versa to express the coefficient tensors in terms of the macroscopic
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quantities. Doing so, one finds

A
1
M = 0, (3.8)

B2
M = Grad uM . (3.9)

From the physical point of view, eq. (3.8) ensures rigid body translations
to be excluded. Applying the canonical decomposition of the displacement
gradient,

Grad uM = Grad symuM + Grad skwuM , (3.10)

one finds the skew-symmetric part of the displacement gradient to cause a
rigid body rotation, cf. fig. 3.3 c), i. e. the skew-symmetric mode is deforma-
tion and therefore stress free. Thus, it is admissible to restrict the identity
eq. (3.9) to the symmetric part and one writes

B2
M = Grad usym

M . (3.11)

Finally, the projection rule for the first order FE2 methodology reads

∆u = Grad symuM · ∆X + ∆ũ. (3.12)

Consequently, one distinguishes three independent deformation modes, de-
pending on the three components of the symmetric displacement gradient in
the two-dimensional case, which are, besides the skew-symmetric deforma-
tion mode, depicted in fig. 3.3 a), b) and d).

3.4 Hill-Mandel condition

After the projection of the macroscopic deformation quantities to the bound-
ary of the microvolume, the microscopic boundary value problem can be
solved. Now, the microstructural stress response has to be transferred back
to the macroscale. Again, appropriate averaging rules have to be determined.
In the sequel, the fundamental assumption to derive the so-called homogeni-
sation procedure is the equivalence of the macroscopic and the microscopic
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a)

∆X1

∆X2

b)

∆X1

∆X2

c)

∆X1

∆X2

d)

∆X1

∆X2

Figure 3.3: The linear deformation modes for the first order FE2 approach,
depending on a) uM1,1, b) 1

2
(uM1,2−uM2,1), c) 1

2
(uM1,2+uM2,1) and d) TuM2,2

for a quadratic microvolume. The skew-symmetric shear mode c) describes a
rigid body rotation and is not taken into account within the first order FE2

scheme.

strain energy rate, i. e. the rate of the strain energy in the average over the
microvolume must equal the strain energy rate in the macroscopic material
point the microvolume is attached to. This correlation is commonly called
Hill-Mandel condition, cf. e. g. [61, 62, 87, 99] and reads for the static and
isothermal case and in the material frame

〈Pm : Grad ∆u′〉 = PM : Gradu′

M . (3.13)
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Integrating the left-hand side of eq. (3.13) by parts, inserting the material
form of the balance of momentum eq. (2.29) and furthermore applying the
boundary condition in the material framework, pm = Pm · N, where pm

denotes the traction vector on the referential surface and N the referential
surface normal vector, one finds

〈Pm : Grad ∆u′〉 =
1

Vm

∫

Bm

Pm : Grad ∆u′ dV

=
1

Vm

∫

Bm

Div (PT
m · ∆u′) dV

=
1

Vm

∫

∂Bm

pm · ∆u′ dA. (3.14)

Calculating the time derivative of eq. (3.12), one obtains the microscopic
velocity field to be a function of the time derivatives of the polynomial coef-
ficients,

∆u′ = Gradu′

M (XM , t) · ∆X + ∆ũ′. (3.15)

Note that according to eq. (3.14), the projection rule only has to be applied
on the boundary of the microvolume. Inserting eq. (3.15) into eq. (3.14), one
finds

〈Pm : Grad ∆u′〉 =
1

Vm

∫

∂Bm

pm · (Gradu′

M · ∆X + ∆ũ′) dA.(3.16)

By further transformations, it follows

〈Pm : Grad ∆u′〉 =
1

Vm

∫

∂Bm

(pm ⊗ ∆X) dA : Grad u′

M

+
1

Vm

∫

∂Bm

pm · ∆ũ′ dA. (3.17)



3.5. Discussion of the method 27

Comparing this result to the Hill-Mandel condition eq. (3.13), one finds

PM =
1

Vm

∫

∂Bm

(pm ⊗ ∆X) dA. (3.18)

Concerning the periodic fluctuations ∆ũ, one may establish opposite parts
of the microvolume boundary ∂B0+

m and ∂B0−
m in a way that the correlation

N+ = −N− holds for the outer normal vectors of corresponding points on
∂B0+

m and ∂B0−
m . The periodic fluctuations do not account for the strain

energy for periodic displacements and anti-periodic tractions on opposite
parts of the boundary,

∆u+ = ∆u− and p+
m = −p−

m, (3.19)

cf. e. g. [87].

3.5 Discussion of the method

Finally, the first order FE2 algorithm is complete and the effective macro-
scopic material law has successfully been substituted by a microscale calcu-
lation in combination with appropriate projection and homogenisation rules.
Thus, this approach allows for a straight-forward calculation of the effective
material behaviour.

Nevertheless, one should mention that the first order FE2 approach does not
bring into action any correlation between the size of the microvolume and
the stiffness of the effective material properties.4 I. e. the method exhibits
a strictly local character including a perfect scale separation between the
macro- and the microscale. From the physical point of view, the charac-
teristic microstructural length scale has to be very small compared to the
macroscopic length scale (l ≪ L). For the case that both length scales be-
come comparable, the microscopic length scale governs the effective material

4In fact, a too restrictive choice of the boundary conditions may pretend a size sensi-
tivity. But in that case it is not sensitive to the internal length scale, e. g. the size of the
microheterogeneities, but to the size of the too stiff boundary layer within the attached
microvolume.
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behaviour and the first order methodology will fail. This case will be inves-
tigated in detail within the numerical part of the present work.

For further discussions concerning the size of the so-called representative
microvolume, the choice of the microscopic boundary conditions etc., it may
be referred to the literature. A humble survey may be found in the above
cited publications.



4
Theory of micromorphic media

In order to enable the homogeneous macrocontinuum to exhibit the infor-
mation of a characteristic microscopic length scale in an inherent way, the
micromorphic continuum theory extends the physical understanding of the
material points. Whereas the classical continuum theory is considering the
material points to feature an infinite character, i. e. they are local, the mi-
cromorphic continuum theory affords the material points to capture a small
but finite space, i. e. it looses its strictly local character.

The following chapter is organised as a straightforward extension of the clas-
sical Cauchy continuum theory presented earlier in chapter 2. At the begin-
ning, the kinematics of the micromorphic continuum theory will be reviewed
with respect to the physical picture of the theory, the deformation measures
and their time derivatives. Afterwards, the particular balance equations will
be derived.

– 29 –
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4.1 Kinematics

The basic ideas of the so-called micromorphic continuum theory go back to
the seminal work of the brothers Cosserat in the early 20th century, cf. [18].
They associated a triad of orthogonal directors to the material point. Thus,
the material transformation of the material point comprises, besides the
translational degrees of freedom, additional rotational degrees of freedom. In
the 1960s, this concept has been generalised to the so-called micromorphic
continuum theory by Eringen [32, 33, 34]. The description of the kinematics
within this chapter is adopting the system introduced in [35].

4.1.1 Physical picture

O

X x

X̆ x̆

u

Ξ

ξ

reference configuration

B

∂B
B

∂B
t > t0

t = t0

current configuration

p(x, ξ, t)
P (X, Ξ)

Figure 4.1: The physical picture of the micromorphic continuum: reference
and current configuration.

In analogy to the classical continuum theory, the physical body B, which
we are interested in, is consisting of a set of material points. But, as it has
been emphasised before, the material points are considered to be deformable



4.1. Kinematics 31

and to capture a small but finite space. This is in contrast to the classical
Cauchy theory, where the material points are assumed to be points in the
strict mathematical meaning. In order to dissolve the ostensible contradiction
of the infinitesimal character of the material point on the one hand and its
finite dimension on the other hand, each deformable material point is replaced
by a geometrical point P and an attached triad (Ξ1, Ξ2, Ξ3). This triad
represents, in addition to the usual physical properties such as mass density
etc., the degrees of freedom arising from the deformation of the material
points. Thus, the physical picture of a micromorphic material point may be
described via its position vector X of its volume centroid and by the attached
director Ξ, cf. fig. 4.1.

An arbitrary deformation carries the system from the material to the spatial
frame and the appropriate mappings may be expressed as

x = x̂(X, t) and ξ = ξ̂(X, Ξ, t). (4.1)

Following Eringen [35], the definition for the micromorphic continuum of
grade one reads:

“A material body B is called a micromorphic continuum of grade one, if its
motions are described by

x = x̂(X, t) and ξ = ξ̂(X, Ξ, t), (4.2)

which possess continuous partial derivatives with respect to X as well as t,
and if they are invertible uniquely, i. e.

X = x̂−1(x, t) and Ξ = ξ̂
−1

(x, ξ, t)“ [35]. (4.3)

4.1.2 Deformation and strain quantities

Besides the well-known deformation gradient F, which transports line ele-
ments from the material to the spatial frame,

dx = F · dX, (4.4)
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one has to introduce a second transport theorem for the microdeformation.
For the case of a micromorphic continuum of grade one, one assumes an
affine, i. e. a linear mapping for the microdeformation and one writes

ξ = χ̄ · Ξ, (4.5)

where χ̄ is called the microdeformation tensor. The transport theorems for
surface and volume elements are valid in the common form

da = (detF)FT−1 · dA, dv = detF dV. (4.6)

Similar to the polar decomposition of the deformation gradient into a proper
orthogonal and a symmetric tensor,

F = R · U = V · R, (4.7)

where

RT = R−1, detR = +1, U = UT , V = VT , (4.8)

one may introduce a polar decomposition of the microdeformation

χ̄ = R̄ · Ū = V̄ · R̄, (4.9)

where

R̄T = R̄−1, det R̄ = +1, Ū = ŪT , V̄ = V̄T . (4.10)

Subjecting the microdeformation χ̄ to some restrictions allows for the iden-
tification of various micromorphic subcontinua.

• The most common restriction is the setting Ū = I and χ̄ = R̄. Thus,
only rigid body rotations of the material points can be displayed. This
case is called the micropolar or Cosserat continuum.

• Suppressing the microrotations, one may restrict the microdeformation
to a volumetrically dilatant deformation. One writes R̄ = I and χ̄ = ̄ I
with the scalar microdilatancy ̄. This case is called the microdilatant
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continuum.

• Allowing for any symmetric microdeformation, one obtains the micro-
strain continuum, which is defined via the identities R̄ = I and χ̄ = χ̄T .

• Combining the microdilatant and the micropolar continuum, one finds
the microstretch continuum, where χ̄ = ̄ R̄.

A general review of the various subcontinua of the micromorphic theory has
been given by Forest et al. in [41].

Again, it is not always convenient to calculate the rotation tensor R̄ and
the stretch tensors Ū and V̄. Thus, one may take into account the position
vector, cf. fig. 4.1,

x̆ = x(X, t) + ξ(X, Ξ, t) (4.11)

and its arc length

dx̆ = F · dX + χ̄ · dΞ +

(

Grad
23

T χ̄ · Ξ
)

· dX. (4.12)

The calculation of the square of the arc length is pointing out the necessity
of introducing a set of three independent deformation measures. The most
simple choice is the set (F, χ̄, Grad χ̄). These quantities represent in fact
a set of two-field quantities which are, in general, not objective. A form-
invariant set of deformation measures can be found as

F̄ = χ̄−1 · F, the microdeformation tensor, (4.13)

C̄ = χ̄T · χ̄, the right Cauchy-Green (4.14)

microdeformation tensor, and

Γ̄
3

= χ̄−1 · Grad χ̄, the wryness or curvature tensor. (4.15)

Considering the differences of squares of arc lengths, one furthermore may
identify the microstrain tensor

Ẽ = F̄ − I (4.16)
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and the Green-Lagrange microstrain tensor

Ē = C̄ − I. (4.17)

Note that all deformation and strain measures given above are completely
defined as quantities of the reference configuration. The definitions of the
appropriate quantities with respect to the current configuration may be found
in [35]. The definition of further deformation and strain tensors is possible.

4.1.3 Material time derivatives

Taking into account the time derivatives in the sequel, one may find at first
the definition of the velocity gradient analogous to eq. (2.16)

(dx)′ =
d

dt
(F · dX) = F′ · dX = F′ · F−1 · dx, (4.18)

with v = x′ defining the material velocity gradient

F′ = Grad v (4.19)

and the spatial velocity gradient

L = gradv = F′ · F−1. (4.20)

Similarly, calculating the time derivative of the director ξ, one finds

ξ′ = χ̄′ · Ξ = χ̄′ · χ̄−1 · ξ, (4.21)

where the microgyration tensor

ν̄ = χ̄′ · χ̄−1 (4.22)

has been introduced as the microscopic counterpart to the spatial velocity
gradient.
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4.2 Balance equations

After having defined the underlying kinematic quantities, the balance equa-
tions for the micromorphic continuum theory have to be determined. Again,
the method of virtual power comes into play which has been described in
detail in [49] for the micromorphic case. Further comments may be found in
[48, 86, 104, 118]. Thus, one assumes the sum of all internal and external
forces on the body B due to a virtual motion to vanish and one writes

δPi + δPe = 0. (4.23)

Without loss of generality, one assumes for the micromorphic continuum
the power of the internal forces to be a linear form of the gradient of the
virtual velocity, the virtual microgyration and the gradient of the virtual
microgyration,

δPi = −
∫

B

δpi dv (4.24)

with

δpi = T : grad δv + (S̆− T) : δν̄ + Q̆3 ... grad δν̄ (4.25)

and introducing two second order stress quantities T and S̆ as well as one
third order stress quantity Q̆3. Following the principle of virtual power, the
power of the internal forces has to be constant if computed in a different
frame. That means the power of the internal forces has to be invariant with
respect to a superimposed rigid body transformation within the framework of
the Euclidean transformations. Thus, δv has to be replaced by the expression
δv+ v̄+Ω̄ ·x and analogously δν̄ by δν̄ +Ω̄, where v̄ represents a rigid body
translation and Ω̄ a rigid body rotation, i. e. both are constant within B and,
furthermore, Ω̄ is orthogonal. Inserting these expressions into eq. (4.25) and
evaluating the invariance condition, one finds the identity

δp̄i − δpi = S̆ : Ω̄
!
= 0. (4.26)
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For an arbitrary rigid body rotation Ω̄, considering its orthogonality, this
condition is fulfilled for the setting

S̆T = S̆, (4.27)

i. e. the stress S̆ has to be symmetric in the spatial framework. Thus, the
virtual power of the internal forces within the whole body B reads

δPi = −
∫

B

(

T : grad δv + (S̆− T) : δν̄

+ Q̆3 ... grad δν̄

)

dv. (4.28)

For the virtual power of the external forces, a long range volumic force b
and a volumic double force c are taken into account as well as the surface
traction t and the double surface traction q̆. One writes

δPe =

∫

B

(ρb · δv + ρ c : δν̄) dv

+

∫

∂B

(t · δv + q̆ : δν̄) · da. (4.29)

From the physical point of view, the necessity of introducing, besides the
surface traction t, a double surface traction q̆, commonly called the surface
couple stress, can be illustrated having regard to fig. 4.2.

The physical body B is consisting of a set of small but finite material points.
A detail of its boundary is given on the left-hand side of fig. 4.2. We find
the microscopical surface stresses t

(i)
m fluctuating within the material points.

Nevertheless, the macroscopic continuum requires stress quantities, which
are homogenised over the material point, i. e. which are constant for every
particular macroscopic point. In fig. 4.2, the material points are denoted with
the index j. If one interprets the material points as deformable particles, it
is essential to define the surface traction tj as the resultant stress of the
microscopic surface tractions within the material point j. Analogously, the
double surface traction q̆j can be understood as the first resultant moment
of the microscopic surface stresses, cf. [30, 56].
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Figure 4.2: Geometrical interpretation of the surface tractions tj and the
double surface tractions q̆j , where j denotes the particular material point.

After integration by parts and after the application of the divergence theo-
rem, one obtains

∫

B

(

δv · (divT + ρb) + δν̄ : (div Q̆3 + T − S̆ + ρ c)
)

dv

+

∫

∂B

(

δv · (t− T · n) + δν̄ : (q̆ − Q̆3 · n)
)

da = 0. (4.30)

In the case of equilibrium, the identity (4.30) must hold for any virtual motion
(δv, δν̄) and for any subset of B. Thus, one may identify the local form of
the balance of momentum

divT + ρb = 0 (4.31)

and that one of the balance of moment of momentum

div Q̆3 + T − S̆ + ρ c = 0, (4.32)
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both formulated in the spatial frame. In the latter, the stress quantities are
called

T, the Cauchy stress tensor,

S̆, the Cauchy-type hyper stress tensor and

Q̆3, the Cauchy-type couple stress tensor.

Note that, in general, the choice T 6= TT is possible. Furthermore, one finds
the coupling between the stresses and the surface tractions,

t = T · n, q̆ = Q̆3 · n, (4.33)

both valid on ∂B. Using the transport theorems eqs. (4.4) – (4.6), one finds
the appropriate balance equations in the material description. The balance
of momentum then reads

DivP + ρb = 0 (4.34)

and the balance of moment of momentum

DivQ3 + (P − S) · FT + ρ0 c = 0. (4.35)

For that purpose, the 1st Piola-Kirchhoff stress tensor

P = (detF)T · FT−1, (4.36)

the appropriate form of the second order hyper stress tensor

S = (detF) S̆ · FT−1 (4.37)

and of the couple stress tensor

Q3 = (detF) Q̆3 · FT−1 (4.38)

have been introduced. In analogy to the 1st Piola-Kirchhoff stress tensor P,
the material form of the hyper stress tensor S and of the couple stress tensor
Q3 are two-field quantities, i. e. the first base system(s) refers to the spatial
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frame whereas the last base system refers to the material frame.

If one now considers a system under real deformations, one may balance
the change in time of the energy stored within the body B. Neglecting
accelerations and thermal effects, the balance of the internal energy in
the spatial frame reads

d

dt

∫

B

ρ ε dv =

∫

B

(ρb · v + ρ c : ν̄) dv

+

∫

∂B

(t · v + q̆ : ν̆) da. (4.39)

Inserting the balance of momentum eq. (4.31) and the balance of moment
of momentum eq. (4.32), applying the divergence theorem and assuming the
resulting condition to hold for any subset of B, one obtains the local form of
the balance of internal energy in the spatial frame,

ρ ε′ = T : gradv + (S̆− T) : ν̄ + Q̆3 ... grad ν̄. (4.40)

By transformation back to the reference configuration and after some further
calculations, one finally finds the material form of the balance of internal
energy,

ρ0 ε′ = P : F′ + ¯̄S : χ̄′ + Q̄3 ...Grad χ̄′, (4.41)

where F′ = Grad u′ and

¯̄S = (S −P) · F̄T and (4.42)

Q̄3 = Q3 :̂
(
χ̄T−1, I

)
. (4.43)

For the sake of completeness, one should state that, similar to the Cauchy
continuum theory, there exists a further balance law concerning the conser-
vation of mass. But, due to the finite dimension of the material point, its
microinertia has to be balanced separately. Finally, the set of balance laws
may be completed introducing the entropy principle.
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In the latter, the present work will focus on static analyses within an elastic
regime. Thus, no inertia or entropic effects will be taken into account. These
additional balances are discussed in detail in the literature, e. g. [35, 49].



5
Homogenisation of micromorphic media

After having reviewed the fundamental concept of the micromorphic con-
tinuum theory, it is the aim of the following chapter to derive a two-scale
approach analogous to that one presented in chapter 3. Thus, one has to
identify appropriate homogenisation rules to replace a heterogeneous Cauchy
microcontinuum, representing e. g. the underlying cellular network, by a ho-
mogeneous micromorphic macrocontinuum, involving the information of the
inherent microscopic length scale. The scheme to be applied in the present
chapter has been initially proposed by Forest et al. [39, 45] for a micropolar
macrocontinuum and has been later on worked out in detail for the more
general case of the micromorphic macrocontinuum [40, 68, 69, 71]. In the
latter, the described methodology will be subject to a further enhancement
which allows for a unique geometrical interpretation of the extended degrees
of freedom.

– 41 –
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5.1 Averaging theorems

The basic idea of the approach introduced in the sequel can be understood
as a straightforward extension of the first order methodology presented in
chapter 3. The kinematic quantities of the micromorphic macrocontinuum,
i. e. the displacement field and the deformation quantities introduced earlier,
have to be expressed in terms of a polynomial mean field and a periodic
fluctuation of the heterogeneous Cauchy microvolume attached to the mi-
cromorphic material point. To simplify matters, the methodology will be
formulated for the two-dimensional case. The attached microvolume is as-
sumed to be a rectangular unit cell with the edge lengths a and b, capturing
the microscopic body Bm with the volume Vm = a b. Let XM denote the vol-
ume centroid of Bm, cf. fig. 3.2. Again, quantities depicted with (⋄)m refer to
the microscale whereas quantities depicted with (⋄)M refer to the macroscale.

At first, let us investigate the relations between the microscopic and the
macroscopic displacement fields. Following [45, 71], one may postulate the
kinematic set (uM , χ̄M) to characterise the macrostate that best fits the
microscopic displacement field um in the average over the microvolume Vm.
Whereas the microscopic displacement field of the heterogeneous microcon-
tinuum is uniquely represented by um, the macroscopic displacement field
has to take into account the material points to be of small but finite ex-
tent. Following the argumentation of Germain [49], it is a natural choice to
apply a Taylor series extension of the macroscopic displacement field with
respect to ∆X and, due to the small extent, to stop this expansion with
the terms of degree one. Consequently, the effective displacement field reads
uM + (χ̄M − I) · ∆X. Introducing the quadratic functional

F(uM , χ̄M) =
〈
(um − uM − (χ̄M − I) · ∆X)2〉 . (5.1)

and minimising F , one calculates

dF =
∂F
∂uM

· duM +
∂F

∂χ̄M

: dχ̄M

!
= 0. (5.2)

This condition is fulfilled for the (restrictive) choice
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∂F
∂uM

!
= 0 and

∂F
∂χ̄M

!
= 0. (5.3)

After some calculations, one obtains

uM = 〈um〉 ⇔ 〈∆u〉 = 0 and (5.4)

χ̄M − I = 〈∆u⊗ ∆X〉 · G−1, (5.5)

where ∆u = um −uM . The second order geometry tensor G = 〈∆X ⊗ ∆X〉
only depends on the microvolume’s shape. For the rectangular case, the
coefficient scheme of G in the orthonormal base system reads

Gij =̂
1

12

[

a2 0

0 b2

]

. (5.6)

Eq. (5.4) corresponds to eq. (3.4) of the first order scheme. Thus, taking
into account the microdeformation to equal the identity, the averaging pro-
cedure is downwards compatible. Again, the short wave length fluctuations
of the microscale have to vanish in the average over the microvolume and
therefore they are not visible on the effective, i. e. the macroscopic level.
By contrast, the microdeformation is representing the first moment of the
microdisplacements in the volume average.

By further calculations, one may find the volume averages for the gradient
quantities by

GraduM = 〈Grad um〉 and (5.7)

Grad χ̄M = 〈Grad (∆u ⊗ ∆X)〉 :̂
(
G−1, I

)
. (5.8)

5.2 Microscopic deformation modes

After having derived the averaging relations between the kinematic quantities
of the micro- and the macroscale, the projection rule comes into play. For
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that purpose, one may assume the microscopic displacement field to be a
polynomial of grade three,

∆u = A1
M(XM , t) + B2

M(XM , t) · ∆X +
1

2
C3

M(XM , t) : (∆X ⊗ ∆X)

+
1

6
D4

M(XM , t)
... (∆X ⊗ ∆X ⊗ ∆X) + ∆ũ. (5.9)

The coefficient tensors A
1
M , B

2
M , C

3
M and D

4
M depend on the macroscopic po-

sition vector XM and the current time t. Hence, these quantities are constant
within the attached microvolume. By assumption, the cubic polynomial link
is not complete but contains only the periodic deformation modes, i. e. the
higher order forms of the linear deformation modes. This is in contrast to
Forest et al. [45], where the cubic polynomial link has assumed to be com-
plete. This second choice will be discussed in the appendix A.
Written in coefficients, the cubic link reads

∆ucub
1 =

1

6
(DM1111 ∆X3

1 + DM1222 ∆X3
2 ), (5.10)

∆ucub
2 =

1

6
(DM2111 ∆X3

1 + DM2222 ∆X3
2 ). (5.11)

The additional displacements ∆ũ represent a higher order fluctuation field
due to the microstructural periodicity. In this context, the term higher order
fluctuations means that they have to be of a order higher than the cubic one.

Following the procedure of [45], let us now compute uM , χ̄M and their gra-
dients inserting the polynomial ansatz function eq. (5.9) into eqs. (5.4) –
(5.8). Doing so, it is vice versa possible to find the coefficient tensors of
the ansatz polynomial in terms of the macroscopic quantities by backwards
identification:

A1
M = −1

2
Grad χ̄M : G, (5.12)

B2
M =

1

2

(
5 (χ̄M − I) − 3GraduM

)
, (5.13)

C3
M = Grad χ̄M , (5.14)

D4
M = −5

(
(χ̄M − I) − GraduM

)
·

4

I ·G−1. (5.15)
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Note the clear distinction between deformation modes of odd and even or-
der. Whilst the constant and the quadratic coefficient tensors depend on
the gradient of the microdeformation only, the linear and the cubic ones de-
pend on the displacement gradient and the microdeformation. Eq. (5.12)
describes the rigid body translation of the volume centroid. Obviously, the
quadratic deformation modes, depending on the gradient of the microdefor-
mation, move the volume centroid. But this motion would be in contradiction
to eq. (5.4). Hence, the constant part of the projection polynomial eliminates
the translation of the volume centroid.

Having regard to the odd polynomial links, it is remarkable the linear as
well as the cubic deformation modes to scale with both, the displacement
gradient AND the microdeformation. Due to the higher order character of
the polynomial ansatz function eq. (5.9), the downwards compatibility to the
first order choice eq. (3.9) is not obvious but it is ensured via the averaging
rules eqs. (5.4) and (3.4).

Finally, the complete projection rule reads

∆u =
1

2

(

− Grad χ̄M : G +
(
5 (χ̄M − I) − 3GraduM

)
· ∆X

+Grad χ̄M : (∆X ⊗ ∆X)

)

(5.16)

−5

6

(
(
(χ̄M − I) −Grad uM

)
·

4

I ·G−1

)
... (∆X ⊗ ∆X ⊗ ∆X).

The various deformation modes are depicted in figs. 5.1 and 5.2 for a square
microvolume. For the sake of a clear arrangement, only the deformation
modes in ∆X1-direction are plotted. Furthermore, the microcoordinates at-
tached to the constant volume centroid have not been visualised. The black
box including the dotted lines represents the undeformed state of the micro-
volume.

Let us concentrate at first on the odd deformation modes depending on
Grad uM , cf. fig. 5.1. Compared to the (linear) first order deformation
modes, cf. fig. 3.3, the superposition of linear and cubic effects is obvious.
But it is important to note that the effective deformation, i. e. the relative
motion of the left and the right boundary for the stretch mode or the relative
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motion of the top and the bottom boundary for the shear mode, accord to
this one of the first order deformation modes. To make this effect apparent,
let us insert the given macroscopic shear deformation uM1,2 = ū into the first
order projection rule eq. (3.12) for the top boundary, i. e. at the position
∆X2 = b/2. One obtains

∆u1st order
1

(

∆X2 =
b

2

)

= ū
b

2
, (5.17)

∆u1st order
2

(

∆X2 =
b

2

)

= 0. (5.18)

Inserting the identical macroscopic deformation at the same position into the
micromorphic projection rule eq. (5.16), one finds

∆u2nd order
1

(

∆X2 =
b

2

)

= −3

2
ū

b

2
+

5

6
ū

12

b2

b3

8
= ū

b

2
, (5.19)

∆u2nd order
2

(

∆X2 =
b

2

)

= 0. (5.20)

Analogously, the same check may be accomplished for the stretching defor-
mation modes. Thus, the consistency of the higher-order projection rule with
the first order projection rule can be guaranteed.

By contrast, the deformation modes depending on the microdeformation χ̄M

do not contribute to any effective deformation state. In fact, they enable the
microstructure to exhibit inner deformations, cf. fig. 5.1 c) and d). Thus,
the microdeformation allows the system to regularise its deformation state
providing a set of periodic deformations of grade three. But unlike the usual
periodic boundary conditions, the microdeformation, representing a set of
independent degrees of freedom within the extended continuum theory, can
be controlled systematically, e. g. by the formulation of appropriate boundary
conditions for χ̄M .

Let us now attend to the deformation modes depending on the microdefor-
mation gradient Grad χ̄M . Different from all other deformation modes, the
size of the microvolume comes into play, on the one hand for the rigid body
motion via the geometry tensor G and on the other hand for the quadratic
polynomial link via the expression ∆X ⊗ ∆X, cf. eq. (5.16). Consequently
both, the constant as well as the quadratic polynomial link, are of the order
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a) b)

c) d)

Figure 5.1: The odd deformation modes for the extended FE2 approach,
depending on a) uM11, b) uM12, c) χ̄M11 − 1 and d) χ̄M12 for a quadratic
microvolume.

O(a2), O(a b) or O(b2), respectively. This is in contrast to the cubic poly-
nomial link, where the inverse of the geometry tensor G−1 normalises the
microdisplacement and in contrast to the linear polynomial link, both of the
order O(a) or O(b), respectively. From the physical point of view, this size
sensibility indicates the quadratic deformation modes to describe bending
effects. This interpretation will be investigated in detail later on. In fig. 5.2,
the different deformation modes depending on Grad χ̄M are depicted. Ap-
parently, the rigid body displacement is adjusting the shifting of the volume
centroid. Thus, it remains fix during the deformation.1

At the end of this section, let us conclude with a brief review over the found

1This correction of the rigid body translation may be neglected within a quasi-static
regime without inertia effects.
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a) b)

c)

Figure 5.2: The even deformation modes for the extended FE2 approach,
depending on a) χ̄M11,1, b) χ̄M12,1, c) χ̄M12,2 for a quadratic microvolume.

results and interpretations. Firstly, by derivation and evaluation of appro-
priate averaging theorems, the consistency and the backward compatibility
of the method have been demonstrated. Secondly, it has been determined
a clear geometrical interpretation for the higher order degrees of freedom.
Whereas the microdeformation gradient has been assigned to describe bend-
ing effects on the microscale, the microdeformation itself regularises the mi-
crostructure’s deformation independently from the macroscopic displacement
gradient. Consequently, within a macroscopic experiment, one may expect
the microdeformation gradient to dominate the regions close to boundaries
of the macroscopic sample restricted by appropriate boundary conditions,
whereas the microdeformation is supposed to emerge in the volume of the
sample, i. e. in more or less homogeneous regions with smoothly varying
deformation fields.



5.3. Extension of the Hill-Mandel condition 49

5.3 Extension of the Hill-Mandel condition

Proceeding in the algorithm applied in chapter 3, one now has to motivate
homogenisation rules for the stress quantities applying an extended form of
the Hill-Mandel condition. Assuming static and isothermal conditions, the
Hill-Mandel condition for a homogeneous micromorphic macrocontinuum re-
placing a heterogeneous Cauchy microcontinuum reads in the material frame

〈Pm : Grad ∆u′〉 = PM : F′

M + ¯̄SM : χ̄′

M + Q̄3
M

...Grad χ̄′

M , (5.21)

making use of the balance of internal energy eq. (4.41). By further transfor-
mations, one finds

〈Pm : Grad ∆u′〉 = P̄M :

(
5

2
χ̄′

M − 3

2
F′

M

)

+ S̄M : (χ̄′

M − F′

M )

+Q̄3
M

...Grad χ̄′

M , (5.22)

where

P̄M = PM + ¯̄SM and (5.23)

S̄M = −5

2
PM − 3

2
¯̄SM . (5.24)

Calculating now the time derivative of eq. (5.9), one finds the microscopic
velocity field to be a function of the time derivatives of the coefficients tensors,

∆u′ =
(

B
2
M(XM , t)

)′

· ∆X +
1

2

(

C
3
M(XM , t)

)′

: (∆X ⊗ ∆X)

+
1

6

(

D4
M(XM , t)

)′ ... (∆X ⊗ ∆X ⊗ ∆X) + ∆ũ′. (5.25)

In accordance to the transformation eq. (3.14), one may insert eq. (5.25) into
eq. (5.22) and one finds
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〈Pm : Grad ∆u′〉 =
1

Vm

∫

∂Bm

(pm ⊗ ∆X) dA :
(

B
2
M

)′

+
1

2 Vm

∫

∂Bm

(pm ⊗ ∆X ⊗ ∆X) dA
...
(

C
3
M

)′

(5.26)

+
1

6 Vm

∫

∂Bm

(pm ⊗ ∆X ⊗ ∆X ⊗ ∆X) dA ::
(

D4
M

)′

.

By comparison of coefficients (if ∆ũ′ = 0), it is possible to identify

P̄M =
1

Vm

∫

∂Bm

(pm ⊗ ∆X) dA, (5.27)

Q̄
3
M =

1

2 Vm

∫

∂Bm

(pm ⊗ ∆X ⊗ ∆X) dA, (5.28)

S̄
4
M =

1

6 Vm

∫

∂Bm

(pm ⊗ ∆X ⊗ ∆X ⊗ ∆X) dA. (5.29)

For the rectangular microvolume, it can easily be shown the fourth order
hyper stress tensor to be reduced to the second order hyperstress tensor via
the transformation

S̄2
M = −5 S̄4

M

...

(
4

I ·G−1

)

. (5.30)

That means that the fourth order hyper stress contributes to the internal
energy if and only if it performs the same symmetry condition as its con-
jugated deformation quantity D

4
M . Concerning the higher order periodic

fluctuations ∆ũ, one has to note that their consistent formulation is much
more complex than it is for the first order case. E. g. Kouznetsova et al. have
introduced additional constraints which enforce the shape of the boundary
to approximate the kinematically fully prescribed boundary in an integral
sense, cf. [77, 79]. In the numerical part of the present contribution it will
be shown that the equality ∆ũ = 0, which actually corresponds exactly to
the state of fully prescribed boundary conditions, leads to reasonable results
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for the given cellular microstructures. Consequently, higher order periodic
fluctuations will not be subject to further considerations within the proposed
micromorphic homogenisation approach.

5.4 Discussion of the method

Let us conclude this chapter with a brief discussion of the extended homogeni-
sation methodology. The algorithmic approach has been strictly orientated
on that one for the classical theory and has been carefully generalised apply-
ing the extended macroscopic continuum theory:

Starting with the assumption to replace a heterogeneous Cauchy microcon-
tinuum, representing the cellular network, by a homogeneous micromor-
phic macrocontinuum, appropriate averaging theorems for the kinematic
quantities have been derived. Afterwards, the kinematic quantities of the
macroscale have been identified in terms of a polynomial mean field and a pe-
riodic fluctuation of the attached microvolume. Consequently, the extended
deformation quantities could be connected to a clear geometrical interpre-
tation. Finally, evaluating the extended form of the Hill-Mandel condition,
homogenisation rules for the stress quantities have been derived.

Comparing these theoretical investigations to the first order approach, one
should mention the following remarks:

1. The higher order approach deals with a cubic projection polynomial.
Consequently, it is a priori less restrictive as the linear one, used by the
first order theory.

2. By the polynomial extension, the microdeformation can be interpreted
as the cubic order of the periodic fluctuations and therefore offers an
intrinsic regularisation of the microstructural deformation field.

3. Beyond these effects, the proposed scheme is sensitive to the microstruc-
tural length scale in terms of the quadratic deformation modes depend-
ing on the microdeformation gradient. Consequently, it can be expected
the method to describe size dependent boundary layer effects.
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At the end of these theoretical considerations the question about the sound-
ness of the micromorphic two-scale approach arises. Therefore, the metho-
dology will be subject to various numerical experiments, performed in the
second part of the present contribution.



II

Numerical investigations
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Based on the exact knowledge of the extended kinematics of the micromor-
phic continuum theory and based on the geometric interpretation of the mi-
crostructural degrees of freedom, the second part of the present work intends
to investigate in detail the properties of the given two-scale methodology by
appropriate numerical experiments. In doing so, the subsequent chapters
focus on several main issues:

1. The relevance of the higher-order deformation modes.

Does the higher order projection polynomial provide a higher accuracy
displaying the real displacement fields within microstructured mate-
rials than it does the first order approach accounting only for linear
deformation modes? I. e. do the higher order deformation modes bear
any relevance for the description of deformation mechanisms observed
in reference experiments?

2. The scale transition properties.

How does the scale transition of the microstructural length scale take
place? Which are the basic mechanisms?

3. The validation of the extended two-level approach.

For that purpose, numerical reference calculations with microscopical
resolution will be presented, i. e. the underlying structure has been dis-
cretised including all relevant microtopological details. Does the two-
scale methodology yield to reliable results compared to those reference
solutions? Which are the limits of the homogenisation technique?

In order to understand on the one hand the underlying micromechanical
processes in their complexity and on the other hand the peculiar effects
on the effective level, the following investigations are addressed to some of
the simplest possible microtopologies. Throughout this work, the numerical
experiments are subject to the following, very strong restrictions:

1. Two-dimensionality.

2. Perfect periodicity and regularity.

3. Geometrical as well as material linearity.
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The complete FE2 methodology, i. e. the macroscale as well as the microscale
calculations, have been implemented within the finite element toolbox COM-
SOL Multiphysics R©2, allowing for the coupling of an optional number of
balance equations, their weak forms, respectively, in a very comfortable way.
Throughout all numerical investigations, the microscopic material properties
are following Hooke’s law using the arbitrary chosen Lamé parameters of
steel λ = 153.2 GPa and µ = 78.95 GPa. The arbitrariness of this choice can
be easily justified having regard to the following argumentation:

It is evident the effective mechanical behaviour of a microstructured mate-
rial to be dominated by both, the material properties of the microstructural
elements as well as by the microtopology itself, i. e. the geometrical arrange-
ment of the structural elements. The present contribution will focus on the
influence of the microtopology.

From the numerical point of view, the microstructural struts have been dis-
cretised by triangular volume elements with quartic Lagrange ansatz func-
tions. The identical discretisation has been chosen for the microscale calcu-
lations within the FE2 scheme as well as for the reference calculations. On
the macrolevel, quadrilateral volume elements with quartic Lagrange ansatz
functions have been chosen for the discretisation of the displacement field
whereas the microdeformations have been discretised with cubic Lagrange
ansatz functions. To ensure an appropriate accuracy of the numerical com-
putations, the convergence of the particular discretisations in combination
with the chosen order of the ansatz functions has been checked and adapted
carefully. Further evaluations concerning the choice of the ansatz functions
have not been included in the examples presented in the sequel.

2http://www.comsol.com
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Relevance of the higher order

deformation modes

The substitution of a heterogeneous microcontinuum by a micromorphic
macrocontinuum requires the additional degrees of freedom, provided by the
extended theory, to display the real deformation mechanisms of a particular
microstructure in an adequate way. Based on the investigations accomplished
in [70], a set of four perfectly periodic microstructures is subject to several
numerical experiments with microscopic resolution, whereas the analysed
periodic unit cells are depicted in fig. 6.1. The structures are considered as
lattices of struts which are rigidly connected in vertices. The interaction be-
tween two vertices only depends on the geometry and the material properties
of the connecting struts.

Note the analogy to systems consisting of discrete particles interacting via
their boundary. Thus, one may interpret the vertices as particles and the
given microstructures as n-particle systems, cf. [107], where n describes the
number of particles included in the investigated microvolume. Hence, mi-
crostructure a) represents an 1-particle system, whereas the microstructures
b) and c) involve 2 particles, microstructure d) even 4 particles, respectively.

– 57 –
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l

l

l

ll

l

l

a) b)

c) d)

60◦

60◦

Figure 6.1: The periodic unit cells of the investigated cellular microstruc-
tures. The struts feature an aspect ratio r ≈ 1/20 for a) and d), r ≈ 1/12
for b) and c), respectively, cf. [70].

The given microstructures have been subject to several numerical experi-
ments, which are depicted in a schematic way for the single-cross microstruc-
ture a) in fig. 6.2 and which have been accomplished for the microstructures
b) – d) in an analogous way.

The displacement field at the boundary of the mentioned unit cells, embed-
ded in the microscopically resolved cellular structure, is observed at four
different positions 1© – 4©. In order to determine the sensitivity of higher
order projection polynomials for the underlying microscopic processes, sev-
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ū

1 2

3

4

a) b)

c)

Figure 6.2: Setup of the numerical experiments: a) tension test, b) inho-
mogeneous shear test, c) three-point bending test, exemplary displayed for
microstructure a), microstructures b) – d) analogously. The embedded unit
cells subject to the further investigations are denoted with 1© – 4©, cf. [70].

eral polynomials with increasing order have been fitted to the really observed
displacement fields applying the method of least squares. More precisely, the
study comprises a linear polynomial, representing the first order projection
rule, a quadratic polynomial in analogy to a second order FE2 scheme using
a second-gradient continuum on the macroscale, e. g. [76, 77], the micro-
morphic projection polynomial and finally an unrestricted cubic polynomial
as well as its quartic and quintic counterparts. Afterwards, the resulting
least-error squares have been plotted versus the number of independent de-
formation modes of the particular polynomial order, where the least-error
squares have been normalised with respect to the least-error square of the
linear projection polynomial in the particular case, cf. fig. 6.3. The relation
between the fitting polynomials and the number of independent deformation
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polynomial order 0 1 2 3 4 5 sum
linear 2 3 5
quadratic 2 4 6 12
micromorphic 2 4 6 4 16
cubic 2 4 6 8 20
quartic 2 4 6 8 10 30
quintic 2 4 6 8 10 12 42

Table 6.1: Number of independent deformation modes of the different pro-
jection rules depending of their polynomial order.

modes is given in tab. 6.1.

Note that for the fitting procedure, no periodic fluctuations have been taken
into account for any projection polynomial. Consequently, the present study
only draws a kinematical comparison and does not indicate the absolute
accuracy of FE2 schemes based on the chosen polynomials.

Considering the results displayed in fig. 6.3, one may assert an increasing
exactness in the fitting quality for all microstructures at all investigated
positions. But the characteristics of this increase seem strongly to depend
on the particular microstructure:

• Let us concentrate at first on the single-cross microstructure fig. 6.1 a).
For the more or less homogeneous stretching and shear deformation
at position 1© and 2©, one observes an abrupt error decay of up to six
orders of magnitude between the quadratic and the micromorphic poly-
nomials whereas a further increase in the polynomial order keeps the
error constant. At position 3© and 4©, the decay of the error accounts
for about three to four orders of magnitude. But a further increase in
polynomial order causes an even higher fitting accuracy.

It is remarkable that, at any investigated position, the quadratic de-
formation modes do not come into play at all. According to their
interpretation as bending modes and supposing the bending effects to
be the more dominant the closer to the boundary, cf. e. g. [22], the re-
sults indicate that, due to the slender shape of the struts, the bending
stiffness of the microstructure is very low. Thus, any bending effect
decays within one unit cell and can not be detected at the chosen po-
sitions. Further attention should be paid to the high accuracy of the
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Figure 6.3: Normalised least error square ||∆|| for the different fitting poly-
nomials at the positions a) 1©, b) 2©, c) 3© and d) 4©, where n represents the
particular number of independent deformation modes.

micromorphic fitting. Having regard to eq. (5.9), only the periodic cu-
bic expansion is included. As the full cubic polynomial does not offer
a significantly higher fitting accuracy, this result indicates the cubic
modes to describe deformations due to the microstructural periodicity.
From the physical point of view, one could interpret the action of the
cubic deformation modes as a rotation of the struts at the boundary of
the unit cell similar to the Bernoulli hypothesis of planar cross sections.
By contrast, having in mind the situation at the positions 3© and 4©,
the quartic and the quintic deformation modes seem to be activated.
But remark again the qualitative character of this first study.
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• Secondly, considering the related four-cross microstructure 6.1 d), the
results diverge strongly. The increase in the polynomial order from
linear to quartic does not bear any significant advantage. Only a further
increase to the quintic order causes the normalised least-error square
to decay by about three orders of magnitude at all observed positions.

Again, the result may be interpreted making use of the Bernoulli hy-
pothesis. Due to the chosen unit cell involving four vertices, i. e. two
connecting struts per boundary, it is not surprising that the cubic poly-
nomial is not able to feature free rotations for each strut. In this case,
the quintic polynomial is necessary to meat the same conditions as the
Bernoulli hypothesis. Having in mind the bending effects, one may
state that, obviously, no bending effects can be detected at the chosen
positions due to the low bending stiffness of the basic single-cross unit
cell.

• Finally, let us concentrate on the honeycomb unit cells. At first one
may state that there is no significant deviation visible between the two
different orientations. For both, one observes a more or less continuous
decay in the normalised least-error square with increasing polynomial
order, similar at all investigated positions.

In contrast to the single-cross microstructure, the micromorphic pro-
jection polynomial only reduces the normalised least-error square by
about 2 orders of magnitude. Furthermore, the bending effects seem
to be more dominant, especially at the rather inhomogeneous posi-
tions 3© and 4©. Following the common consideration of the honey-
comb structure to be the most realistic two-dimensional counterpart of
three-dimensional cellular structures, this result may seem somewhat
discouraging for the micromorphic projection rule. However, we will
see later on in chapter 10 that it is possible to produce reliable results
by modifying the choice of the honeycomb unit cell.

Altogether, let us state that the advantage of using the higher order projec-
tion rules seem strongly to depend on the underlying microtopology within
the investigated unit cell. In order to return to the analogy of vertices and
particles, the present study indicates that for (n > 1)-particle systems, the
microstructural degrees of freedom within the micromorphic continuum the-
ory loose their physical meaning. Similar conclusions have been drawn by
[107, 119] identifying an effective Cosserat medium. Nevertheless, the micro-
morphic kinematics is able to reproduce the periodic 1-particle microstruc-
tures in a rather exact way, i. e. the deformation modes activated by the
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extended projection rule seem to cover all essential deformation mechanisms
of this particular microstructure.

Remark again that all results within this study have taken into account only
the pure projection polynomials excluding any additional periodic fluctua-
tions. In contrast to the linear and the quadratic polynomials, the micro-
morphic as well as the cubic ones involve a priori the cubic order periodicity.
Consequently, one may conclude that for large sample sizes, i. e. pertur-
bances close to the macroscopic boundary can be neglected, even the first
order FE2 method and its linear projection rule should be able to predict
the characteristic deformation mechanisms within the real microstructure, if
enriched by periodic boundary conditions on the microscale or if the micro-
volume is chosen large enough. Concerning this correlation, a huge amount
of publications exists in literature.

At the end of this chapter, one may outline this first study to confirm the
interpretation of the microdeformation χ̄M as the cubic periodic fluctuation
which is able to regularise the microscopic deformation field. But, due to the
particular choice of the examined positions 1© – 4©, this study is not able
to predict the relevance of the bending modes, i. e. the even deformation
modes. For that purpose, the following chapter focuses on the transition of
the microscopical length scale to the macrolevel.

Finally, this study, comparing the exactness of the higher-order deformation
field relative to the linear one, does not allow for a quantitative estimate of
the exactness of a comparable FE2 calculation. Thus, the question for the
definite quality of the introduced two-scale algorithm arises and if it does
match the reference calculations.

The subsequent chapters will try to answer those questions.





7
Scale-transition by the higher order

deformation modes

The second study within the present work is up to the transition of the mi-
croscopic length scale to the macroscale. As it has already been emphasised
in chapter 5, the cubic expansion of the projection rule eq. (5.16) may be
interpreted as a prescribed periodic fluctuation, regularising the microscopic
deformation field. Furthermore, it has been supposed the quadratic defor-
mation modes to be sensitive for the size of the microscopic volume element.

In the sequel, the influence of the microstructural length scale on the effective
material behaviour will be investigated in detail. Similar investigations can
be found in literature, cf. [71, 74, 76, 84].

For that purpose, the strain energy density induced by the various deforma-
tion modes will be examined in dependence of the size l of an attached square
microvolume, i. e. the left hand side of the Hill-Mandel condition eq. (5.21)
has to be calculated and one writes

〈Pm : Grad ∆u〉 = E. (7.1)

– 65 –
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The underlying microstructures are depicted in fig. 7.1, a) a cellular and b)
a homogeneous one comprising a circular hole. For both unit cells, the edge
length l has been varied over several decades.

l

l

b

b

a) l

l

r

b)

Figure 7.1: The underlying square microvolumina with the variable edge
length l, a) a cellular microstructure whereas, b/l = 1/15, b) a homogeneous
microstructure with an embedded hole, r/l = 1/5.

It has emerged that, for any deformation mode, the principle characteristics
of the particular strain energy density are strictly independent from the un-
derlying microtopology. Thus, the cellular unit cell as well as the continuous
one feature the same relation between the strain energy density and the size
of the microvolume l. The results of this study are depicted in fig. 7.2.

On the left hand side of fig 7.2, one finds the schematic relation between the
strain energy density and the microlength for the odd deformation modes
depending on Grad uM and χ̄M . Apparently, the strain energy density E/l2

is constant for all investigated values of l. Thus, these deformation modes are
not sensitive for the size of the microvolume, a change in the microvolume
size leads to a proportional change of the internal energy stored within the
microvolume. This property is characteristic for first order approaches.

By contrast, the even deformation modes depending on the microdeforma-
tion gradient Grad χ̄M bring the size of the microvolume to the fore. On
the right hand side of fig. 7.2, the strain energy density scales with 1/l2.
This is exactly the point where the transition of the microscopic length scale
to the macrolevel comes into play. Due to bending effects, a very large mi-
crostructure stores disproportionately more of strain energy than a small one
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does. In consequence, the stimulation of the particular quadratic deformation
modes is not convenient from the energetic point of view, if the microvolume
is chosen too large. Hence, balancing the system and minimising the strain
energy within the system, the microdeformation gradient, i. e. the curvature,
governing the bending modes, will be adequately small. In the limiting case
of an infinitely large microvolume, the solution is free of curvature. However,
if the attached microvolume is chosen adequately small, the microscopic and
the macroscopic length scales may become comparable to each other. This
comparability is the precondition for size depending higher order effects such
as boundary layer effects.

l [m]a)
10−3 10−2 10−1 100 101

E l2

[
J m
2

]

l [m]b)
10−3 10−2 10−1 100 101

E l4

[
J m
4
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Figure 7.2: The schematic dependence of the strain energy density E/l2

stored in the attached microvolume of the size l2 and induced by a) the
components of the displacement gradient GraduM as well as of the mi-
crodeformation χ̄M or by b) the microdeformation gradient Grad χ̄M .

Furthermore, this correlation clarifies the question how the characteristic
microlength is defined. Within the context of a FE2 methodology, the mi-
crostructural length scale is uniquely defined by the size of the attached
volume element. For the single-cross microstructure, the size l of the mi-
crovolume equals the length of the connecting struts. Apparently, the in-
terpretation is sound. If one assumes however the four-cross microvolume,
cf. fig. 6.1 d), or even a larger unit cell, the interpretation of the microvolume
size l as the characteristic length scale is losing its physical meaning. Con-
sequently, we have met a further indication for the necessity of formulating
1-particle microvolumina, if we want to find a geometrical interpretation of
the micromorphic kinematics.

A priori, this characteristic transition of length scales depending on curva-
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ture quantities cannot be performed by first order approaches and therefore
requires the application of an appropriate extended methodology.

Note that for the present study, the size of the microvolume has been varied
whilst the absolute number of unit cells within the macroscopic sample has
been kept constant. Analogously, it is possible to perform an alternative size
effect analysis keeping the size of the microvolume constant but varying the
number of unit cells included in the investigated microvolume. An according
study has been carried out e. g. in [68] and leads to the identical conclusions.



8
Single-cross microstructures

After having verified the relevance of the higher order deformation modes and
their scale transition properties in a qualitative way, the following chapters
will apply the extended two-scale technique for several different microstruc-
tures. Whereas the material behaviour predicted by the methodology will be
characterised carefully, the results will be evaluated in comparison to appro-
priate reference computations with microscopic resolution.

8.1 Microtopology

Let us start our studies with the most simple case of the perfectly regular and
periodic single-cross microstructure, which has already been used earlier. In
fig. 8.1, three different unit cells are depicted, which differ in the aspect ratio
of the particular microstructural struts, i. e. the quotient of the thickness
and the length of the struts. From microstructure fig. 8.1 a) to c), the aspect
ratio increases from 1/15 to 1/10 and 1/5.

– 69 –
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Figure 8.1: The unit cells of the investigated regular cross-like microstruc-
tures with the constant size l2. The aspect ratio b/l of the struts increases
from a) 1/15 and b) 1/10 to c) 1/5.

8.2 Experimental setup

In order to investigate the properties of the single-cross microstructure and its
influence on the effective material behaviour, several numerical experiments
have been accomplished. In fig. 8.2, a basic geometry is sketched including
the sample size and the assignment of the boundaries.

For all the following experimental setups, the question arises, which could be,
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from the physical point of view, the appropriate formulation of the boundary
conditions for the microdeformation χ̄M .

To answer this question, one may recall the interpretation of the deformation
modes depending on χ̄M , cf. fig. 5.1. It has been shown the microdeforma-
tion not to account for any effective deformation of the microvolume. By
contrast, it has been pointed out the induced cubic fluctuation of the bound-
ary to regularise the microscopic deformation state by rotation of the struts.
In the case of the single-cross microstructures, the struts connected to the
boundary must stay fixed. In terms of boundary conditions, the assumption
of an unrotated boundary for every single strut connected to the boundary
should be meaningful from the physical point of view.1 Consequently, the
microdeformation is chosen

χ̄M12 = χ̄M21 = 0 on ∂BD. (8.1)

I

II

III

IVXM1

XM2

h

L

Figure 8.2: Sketch of the macroscopic geometry and assignment of the bound-
aries.

The first numerical experiment assumes an infinite domain of the width
L −→ ∞ and of the variable height h under shear conditions. Introducing
periodicity conditions for the boundaries I and IV , we may restrict the nu-
merical calculations to a very slender domain (L −→ 0). Thus, one may
introduce the shear test defining the Dirichlet boundary conditions

ūII
M1 = 0, χ̄II

M12 = 0,
ūII

M2 = 0, χ̄II
M21 = 0,

(8.2)

1Throughout the numerical experiments, it has figured out that prescribing boundary
conditions for the microstrain components χ̄M11 and χ̄M22 does not influence the effective
material response, i. e. the lateral stretching of the struts is of subordinate significance for
the analysed cellular structures.



72 8. Single-cross microstructures

at boundary II and

ūIII
M1 = 0.01 · h, χ̄III

M12 = 0,
ūIII

M2 = 0, χ̄III
M21 = 0,

(8.3)

at boundary III, i. e. the overall shear deformation accounts for 1%.

The numerical tension experiment assumes again an infinite domain in XM1-
direction and a variable height h. Thus, the boundaries I and IV are kept
periodic and one defines the Dirichlet boundary value problem by

ūII
M1 = 0, χ̄II

M12 = 0,
ūII

M2 = 0, χ̄II
M21 = 0,

(8.4)

at boundary II and

ūIII
M1 = 0, χ̄III

M12 = 0,
ūIII

M2 = 0.01 · h, χ̄III
M21 = 0,

(8.5)

at boundary III, i. e. the overall stretching accounts for 1%.

To circumvent the, at least in the XM1-direction, homogeneous boundary
conditions of the preliminary numerical experiments, a three point bending
test has been investigated for several sample sizes. Introducing a symme-
try condition for boundary IV , the Dirichlet boundary conditions for the
boundary I read

ūI
M1 = 0, χ̄I

M12 = 0,
ūI

M2 = 0, χ̄I
M21 = 0,

(8.6)

and for boundary IV

ūIV
M1 = 0, χ̄IV

M12 = 0,
ūIV

M2 = 0.01 · L, χ̄IV
M21 = 0.

(8.7)

At the boundaries II and III, Neumann boundary conditions are assumed
in such a way that all fluxes equal zero, i. e. these boundaries are not loaded.
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8.3 Shear test

Let us begin the numerical investigations with the above mentioned shear
experiment. In classical continuum mechanics, the given set would be called
a homogeneous shear experiment. Nevertheless, this denotation does not hold
in our case due to boundary effects. This can be clearly observed in fig. 8.3
a), where the symmetric and the skew-symmetric parts of the microshear
deformation are plotted over the sample height (n = 15), both not constant
and therefore not homogeneous in XM2-direction.
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Figure 8.3: a) Symmetric and skew-symmetric microshear deformation over
the height of the sample within a FE2 calculation of the shear test for n = 15
and b/l = 1/15. b) The particular symmetric and skew-symmetric curva-
tures.

By contrast, the skew-symmetric microshear deformation exhibits a plateau
of about 5.2E-03 which collapses close to the boundary, following the boun-
dary condition. This may be found reflected in the microdeformation gradient
on the right hand side of fig. 8.3, where the collapse of the microdeformation
leads to a distinct increase close to the boundary involving an alternating
sign. Far away from the boundary, the microshear deformation gradient
vanishes and describes a plateau at the null level.

Compared to the skew-symmetric microshear deformation, its symmetric
counterpart seems to be negligible. Thus, this first plot indicates the chosen
microstructure to feature a Cosserat medium, where the microshear defor-
mation is chosen skew-symmetric per definition. This consideration will be
subject to further investigations in the latter.
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But prior to that, let us study the effect of the detected macroscopic microde-
formations on the microstructural unit cell. In fig. 8.4, the single-cross unit
cell is displayed, where the micromorphic projection rule has been applied.
Fig. 8.4 a) represents the macroscopic deformation state, observed at the top
boundary, b) that one observed in the center of the sample, projected on the
unit cell.

a) b)

Figure 8.4: Deformation of the microvolume at the positions a) XM1 =
0, XM2 = h/2 and b) XM1 = 0, XM2 = 0 (b/l = 1/15). To generate the
sketches, the deformation measures at the given positions of the FE2 calcu-
lations have been projected back to the boundary of the microvolume.

Obviously, the microscopic deformation states differ from a) to b). Whereas
at the boundary, the vertical strut is bent, the situation in the center is dom-
inated by the shear deformation. The layer close to the boundary is exactly
the place, where the microdeformation gradient becomes active. Thus, the
interpretation of the quadratic deformation modes as bending modes raised
earlier is backed up by this example. One may furthermore focus on the
rotation of the struts in fig. 8.4. In a), the rotation can be explained by
the characteristic bending deformation mode, cf. fig. 5.2 b), applied in XM2-
direction, and in combination with fig. 5.2 c). By contrast, the rotation of
the vertical struts at the central position solely results from the microdefor-
mation component χ̄M21, cf. fig. 5.1 b) and, applied for the XM2-direction,
fig. 5.1 d). Hence, the regularising effect of the microdeformation is appa-
rent. Allowing for periodic rearrangements, the microdeformation enables
the microstructure to relax.

In fig. 8.5, the skew-symmetric microshear deformation and the associated
curvature have been depicted varying the height h of the macroscopic sample
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from 5 over 15 to 40. One finds the central plateau to vanish if the sample
size is chosen small, the boundary layers are dominating nearly whole the
volume, whereas they become very small for the large macroscopic sample
size. Taking into account the normalised character of the height within the
given plot, one may notice the boundary layer to cover a constant size of
about two layers of unit cells, independent of the absolute size of the sample.
This is the typical boundary layer effect for cellular materials under shear
deformation which is well-documented in literature, e. g., beyond numerous
further publications, [3, 13, 22, 77, 100].
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Figure 8.5: a) Skew-symmetric part of the microdeformation over the height
of the sample within a FE2 calculation of the shear test and its development
with increasing sample size n, b/l = 15. b) The particular skew-symmetric
component of the curvatures and its development.

Let us now proceed to the quantitative comparison of the extended two-scale
results to those of first order FE2 calculations including periodic boundary
conditions on the one hand and to those of reference calculations with mi-
croscopic resolution on the other hand. For that purpose, the shear traction
observed at the macroscopic boundary III, cf. fig. 8.2, has been normalised
to that one of a very large macroscopic sample and has been plotted versus
the height of the sample, i. e. the number of unit cells in XM2-direction. In
figs. 8.6 – 8.8, the particular results are plotted for the different underlying
aspect ratios on the left hand side. On the right hand side, the error relative
to the reference solution is depicted. Note the extended FE2 algorithm here
to be applied without any further periodic boundary condition.

At first, having regard to the reference solutions, the effect of the boundary
layer effect becomes apparent. It causes a stiffening effect decaying with in-
creasing sample size and converging versus a limiting value for an infinitely
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Figure 8.6: a) Normalised traction at surface III (aspect ratio b/l = 1/15).
b) Relative error of the FE2 calculations in comparison to the reference so-
lution.

large sample. For all investigated aspect ratios, that stiff boundary effect
accounts for about 20%. Let us focus now on the first order approach. As
it has been mentioned before, the first order methodology does not involve
any transition of the microstructural length scale to the macrolevel. Conse-
quently, the solutions obtained by this technique are absolutely insensitive
for the macroscopic sample size. Thus, for small samples, the stiffening
effect can not be displayed at all, but the solution converges towards the
plateau for infinitely large sample sizes. More precisely, for a perfectly peri-
odic microstructure, the first order results themselves represent the plateau.
Analogously, the relative error of the first order results accounts for the stiff
boundary layer effect and consequently decays from about 20% to 2% for
n = 40.

By contrast, now taking into account the micromorphic extension of the two-
scale approach, one finds the distinct boundary layer effect to be modelled
in an excellent manner by the full micromorphic methodology. Especially
for the most slender aspect ratio b/l = 1/15, the relative error, even for
the smallest investigated sample n = 5, does not exceed 2%. With increas-
ing thickness of the microstructural struts, the solution predicted by the
micromorphic model becomes slightly softer than that one of the reference
calculations. Thus, for b/l = 1/5, one finds a maximum relative error of
about 6%. But already for n = 15, the error is falling below 2% and for
even larger samples, the micromorphic result is not distinguishable from the
reference result. The decay in the modelling exactness may be interpreted
as the limiting case of the given projection procedure. As it has been men-
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Figure 8.7: a) Normalised traction at surface III (aspect ratio b/l = 1/10).
b) Relative error of the FE2 calculations in comparison to the reference so-
lution.

tioned before, the polynomial expansion introduces the assumption, similar
to the Bernoulli hypothesis, that the boundary cross-sections should stay
planar during rotation. Obviously, this restriction starts to fail for too thick
microstructural struts. Analogously, the Bernoulli hypothesis is well-known
to fail if the aspect ratio of a beam excesses b/l = 1/10.
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Figure 8.8: a) Normalised traction at surface III (aspect ratio b/l = 1/5). b)
Relative error of the FE2 calculations in comparison to the reference solution.

Having regard to the skew-symmetric character of the microshear deforma-
tion, one may restrict the macroscopic continuum model to the micropolar
case, i. e. to a Cosserat continuum. Reducing the degrees of freedom of
the model and restricting the particular microstructural deformation mech-
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anisms, one should suppose the micropolar solutions to exhibit a slightly
stiffer stress response than the full micromorphic model. That is exactly
what one finds depicted in figs. 8.6 – 8.8. For all the investigated unit cells,
the micropolar response is about 2% stiffer than the micromorphic ones, in
the boundary layer as well as in the volume of the sample. In the case of the
third microstructure with b/l = 1/5, this leads to the situation that the mi-
cropolar model pretends a higher accuracy than the micromorphic model for
small sample sizes. But, off course, this effect results from the superposition
of two systematic errors. Nevertheless, the micropolar model is still gener-
ating much more precise results than it does the first order methodology,
especially for small sample sizes.

In fig. 8.9, the relative errors of both extended approaches are displayed for
the different investigated unit cells.

n [–]

∆
[–

]

a)
0

0

5 10 15 20 25 30 35 40

-0.02

-0.04

-0.06

fig. 8.1 a)

fig. 8.1 b)

fig. 8.1 c)

n [–]

∆
[–

]

b)
0

0

5 10 15 20 25 30 35 40

0.02

-0.02

-0.04

-0.06

fig. 8.1 a)

fig. 8.1 b)

fig. 8.1 c)

Figure 8.9: Combined relative errors of the FE2 calculations for the mi-
crostructures depicted in fig. 8.1. a) Micromorphic model, b) micropolar
(Cosserat) model.

8.4 Tension test

Let us now consider an infinite domain in XM1-direction with the variable
height h under stretching deformation. Due to the microtopology, the effec-
tive material behaviour is highly compressible so that this experiment does
not produce an infinitely large tensile stress. In the previous section, we
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have found the boundary stiffening to be associated with bending effects
which result from the restricted rotation of the microstructural struts at the
macroscopic boundary. For the given regular structure, no rotation must
be induced by the stretching deformation state. Consequently, there should
occur no boundary stiffening effect. This is exactly the result which can be
observed in fig. 8.10.
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Figure 8.10: Normalised tensile traction at surface III (b/l = 1/15).

8.5 Bending test

The following section now concentrates on the above described three-point
bending test, applied for the slender microstructure fig. 8.1 a). Note
that there is a fundamental difference to the previous experimental setups.
Whereas so far, the complete boundary has been defined as a Dirichlet bound-
ary ∂BD, now the boundary is a combination of a Dirichlet boundary and
a Neumann boundary, i. e. ∂B = ∂BD

⋃
∂BN , including the unloaded parts.

Thus, one has to expect a soft layer close to the unloaded boundary. By con-
trast, the underlying microscopic boundary value problems have been defined
solely implementing Dirichlet boundary conditions. It seems to be obvious
the two-scale approach, may it be the first order or the extended one, to
predict the boundary layer close to the free boundary in a too stiff manner.
In order to circumvent this failure, modified microvolumina have been in-
troduced for the upper and the lower free boundaries. The modification is
depicted in fig. 8.11, on the left hand side for the micromorphic, on the right
hand side for the linear homogenisation procedure. In both cases, one strut
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is left unloaded, depending if the particular microvolume is attached to the
top or to the bottom boundary layer. I. e. in analogy to the macroscopic
boundary conditions, one strut is loaded with the Neumann condition f = 0,
where f represents a force vector on the boundary. For the micromorphic
approach, the remaining boundaries are loaded in the usual way with the
aid of the projection rule. In the case of the first order homogenisation, the
relaxation of the struts is ensured by the use of periodic boundary conditions.
Obviously, the boundary opposite to the free one has no periodic counterpart
and the application of periodic boundary conditions is not possible. To avoid
a too stiff material response, the particular boundary conditions may be ap-
proximated by a pin-point in the center of the opposite boundary, where the
boundary conditions can be applied. The rest of the boundary has been left
unloaded, cf. fig. 8.11 b).

For the application within the FE2 procedures, the introduced modified unit
cells have been attached to the integration points within a layer of the width
l parallel to the free boundaries. I. e. the layer comprises the size of one unit
cell.

∂BD : ∆umm(∆X)

∂BD : ∆umm(∆X)

∂BN : f = 0

∆X1

∆X2

a)

∂BD : ∆u
lin(∆X) + ∆ũ

∂BD : ∆u
lin(∆X) + ∆ũ

∂BD : ∆ulin(∆X)

∂BN : f = 0

∂BN : f = 0

∆X1

∆X2

b)

pin-point

Figure 8.11: Modified microscopic boundary value problem for the macro-
scopic free Neumann boundary III in the bending test, applied a) to the
micromorphic, b) to the first order homogenisation scheme involving peri-
odic boundary conditions.

In order to study the superposition on the one hand of the mentioned softe-
ning effect induced by the unloaded boundaries and on the other hand of the
stiffening effect induced by the restricted microstructural kinematics close
to the macroscopic Dirichlet boundaries, two different macroscopic sample
geometries have been investigated. Using the notation in analogy to fig. 8.2,
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the first case assumes a sample width L = 10 l, the second one a larger
with L = 32 l. Both geometries deal with a variable sample height h = m l,
where m defines the number of unit cells in XM2-direction. In both cases, the
vertical reaction force RF IV

2 integrated over the right hand side boundary IV
and normalised to that one of an infinitely large sample has been observed
depending on the number m of vertical unit cells. The results are depicted
in figs. 8.12 and 8.13. On the right hand side of the plots, one may find the
relative error with respect to the particular reference calculations.
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Figure 8.12: Bending experiment L = 10 l and h = m l for b/l = 1/15.
a) Normalised reaction force RF IV

2 in XM2-direction, integrated over boun-
dary IV . (man.=manipulated) b) Relative error of the FE2 calculations in
comparison to the reference solution.

Regarding at first fig. 8.12, one finds the reference solution to exhibit the
predicted soft boundary layer effect of about 13%, induced by the unloaded
boundary. Note that for the given example, even the most slender macro-
scopic geometry features an aspect ratio of h/L = 2/5. Thus, the given
example is not subject to a pure bending deformation but to a superposition
of bending and shear deformations. Considering the results of the micromor-
phic methodology, one finds the pure algorithm with full Dirichlet support to
result in a soft boundary layer effect. But this one is much less pronounced
than it is that one of the reference calculation. For larger m, the result con-
verges towards the limiting case of the infinite domain, cf. fig. 8.6. However,
the manipulation of the microvolumina attached to the unloaded boundary
layer leads to a highly accurate modelling of the softening effect. Indeed,
even for m = 3, the relative error accounts for less than 2%. By contrast,
the modified methodology does not provide the micropolar (Cosserat) FE2

scheme to meat the reference results. Besides the systematical error for large
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m similar to those discussed for the shear experiment, the soft boundary layer
is modelled in a quite stiff manner, resulting in a relative error of about 14%
for m = 3. Finally, considering the first order methodology, one observes for
large m that this approach is not able to deal with the stiff boundary effect
induced by the boundaries III and IV , cf. fig. 8.6. However, for smaller m,
the soft boundary effect seems to be displayed but in a less pronounced way
than it does the reference solution. I. e. instead of 14% softening one finds
only about 8% softening.
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Figure 8.13: Bending experiment L = 32 l and h = m l for b/l = 1/15. a)
Normalised reaction force in XM2-direction, integrated over boundary IV . b)
Relative error of the FE2 calculations in comparison to the reference solution.

Focusing now on the second geometry with L = 32 l, one finds in analogy to
fig. 8.6 the stiff boundary effect to be less pronounced. Again, the modified
micromorphic approach provides the most exact result with a maximum rel-
ative error of less than 3% for m = 3, whereas the micropolar model results
in a too stiff modelling of the soft boundary layer. For the linear approach,
one finds, besides the systematic error due to the lack of the stiff boundary
layer, a too stiff description of the softening effect.

8.6 Size of the microvolume

After having demonstrated the power of the introduced two-scale approach
for the smallest possible entity on the microlevel, i. e. the single-cross unit
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cell, the question arises, if a different choice would lead to similar results.
For that reason, an enlarged unit cell consisting of four crosses (b/l = 15),
similar to fig. 6.1 d), with the edge length 2 l has been subject to the above
mentioned shear test. I. e. for the FE2 calculations, the attached microvolume
has changed whereas the reference solution has not been touched. The results
are given in fig. 8.14.
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Figure 8.14: Normalised traction at surface III. The square unit cell of the
size (2 l)2 consists of 4 single crosses (aspect ratio b/l = 1/15). The sample
height calculates as h = n l. Figure b) is depicting a detail of a).

Obviously, the four-cross unit cell predicts an effective shear stiffness which
differs more than 300%. The chosen kinematics is neither able to regularise
the periodic deformations far away from the boundary nor to describe the
bending deformation in an acceptable way. The enrichment of the extended
projection rule with higher periodic boundary conditions allows the particu-
lar struts to rotate independently. This choice leads at least to a meaningful
convergence towards the stiffness of an infinitely large sample. But again,
the stiffness of the boundary layer is overestimated by about 50%. By con-
trast, the first order methodology including periodic fluctuations is absolutely
insensitive for the change in the microvolume size.

Hence, the present study accords to the results found in chapter 6. It has
been pointed out the cubic expansion of the projection polynomial to describe
periodic deformations of an 1-particle system. Furthermore, it has been
mentioned, the microdeformation to loose its physical meaning for (n > 1)-
particle systems. That is exactly what one observes in the given investigation.
Whereas in the center of the sample, i. e. in a region free of disturbances
induced by the rigid boundary conditions, the periodic deformations can be
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displayed by free periodic fluctuations, the disproportionately high bending
stiffness of the enlarged unit cell results in a much too stiff boundary layer.

8.7 Discussion

Let us close the numerical investigations concerning the single-cross mi-
crostructure with a brief outline of the found results:

• It has been demonstrated the extended FE2-technique to describe the
deformation processes in a rather exact way under shear, stretching
and bending loading conditions. The skew-symmetric character of
the observed microdeformation, free of microstrain deformations, has
indicated to apply the micropolar (Cosserat) subcontinuum on the
macroscale. This procedure leads to qualitatively meaningful results
but predicts a slightly too stiff effective material behaviour.

• By the introduction and the appropriate attachment of modified mi-
crovolumina it has been possible to incorporate unloaded Neumann
boundary conditions. Whilst the first order methodology has been
able to display the soft boundary layer effect with a certain accuracy,
the extended scheme could produce even exacter results.

• Nevertheless, at least two limits of the micromorphic two-scale ap-
proach have been detected. The first one concerns the slenderness
of the investigated cellular structures. Because the cubic polynomial
expansion, similar to the Bernoulli hypothesis of planar intersections,
offers only restricted deformations of the Dirichlet boundaries – i. e. a
rotation of the boundary – the exactness of the method depends on the
slenderness of the cellular struts. The given study indicates an aspect
ratio of b/l ≤ 1/10 to be meaningful from the physical point of view.

• Secondly, the physical interpretation of the microdeformation and its
gradient requires the attached microvolume to be an 1-particle system.

Especially this second limitation will be subject to further investigations in
the following chapters. At first, the size of the central vertex within an
1-particle system will be discussed. In the latter, an interpretation of the
honeycomb structure as a 1-particle system will be given.



9
Modified single-cross microstructures

After having examined the regular single-cross microstructure, let us study
the influence of the size of the central vertex in the sequel. To do so, the
single-cross structure will be modified by introducing a set of four subor-
dinate vertices. After having defined the microtopology, the resulting mi-
crostrucutres will be subject to a numerical shear test.

9.1 Microtopology and experimental setup

The underlying microtopologies are depicted in figs. 9.1 and 9.2 in a schematic
manner. As it has been mentioned before, the central vertex in 9.1 a) has
been replaced by a set of four subordinate vertices with increasing distance
from 9.1 b) to 9.2 b). Finally, microstructure 9.2 c) represents again a single-
cross microstructure with the strut length l2 = l/

√
2, rotated by 90◦.

The experimental setup is identical to that one introduced in chapter 8,
cf. fig. 8.2. The height of the sample is scaled using the number n of vertical

– 85 –
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Figure 9.1: The unit cell of the modified single-cross microstructure with the
constant size l2. a) b1/l1 = 1/12, b2/l2 = 1/1, b) b1/l1 = 1/8, b2/l2 = 1/5.

unit cells.

9.2 Shear test

To simplify matters, the results of the given shear experiments are not dis-
played in detail. However, the relative error resulting from the shear stress
of the micromorphic FE2-methodology with respect to that one of the refer-
ence calculations is depicted in fig. 9.3 b). Note that microstructure 9.2 c)
features a rotated subsystem of single-crosses. Under shear deformation, the
microstructural struts are oriented parallel to the macroscopic shear defor-
mation. I. e. the local shear or bending effects must vanish. Consequently,
this particular case does not show any boundary stiffening effect, cf. 9.3 a).
Of course, both, the first order as well as the extended methodology, are able
to predict this effective material behaviour. By contrast, microstructures 9.1
a) – 9.2 b) feature a distinct boundary layer effect. Regarding the relative
error of the calculations, cf. fig. 9.3 b), we find at first, similar to the in-
vestigation in chapter 8, the micromorphic model for microstructure 9.1 a)
to underestimate the stiffening effect in a very slight manner by about -2%.
By contrast, one may observe a tendency to an overestimation of this effect
by the following microstructures, the relative error increases from +2% to
+10% and +15%. Thus, for microstructures 9.2 a) and b), the relative error
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Figure 9.2: The unit cell of the investigated modified single-cross microstruc-
ture with the constant size l2. a) b1/l1 = 1/20, b2/l2 = 1/20, b) l1/b1 = 1/10,
l2/b2 = 1/30, c) l1/b1 = 1/1, b2/l2 = 1/30.

reaches the order of magnitude of the stiffening effect itself.

9.3 Discussion

Consequently, one has detected a further limitation of the extended two-scale
algorithm. Talking about cellular structures as systems of vertices connected
via slender struts, i. e. the aspect ratio of the struts should be smaller than
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b) Combined relative error of the FE2 calculations for the microstructures
fig. 9.1 a) – 9.2 b).

1/10, one has to take into account the size of the central vertex. Due to the
qualitative character of the present study, it is not possible to limit the size of
the vertex exactly. But one may notice that the micromorphic methodology
requires the deformation behaviour of the microstructure to be dominated by
the deformation of the connecting struts and not by the kernel deformation.

From the physical point of view, the deformation should comprise on the
one hand the periodic properties provided by the cubic expansion of the pro-
jection polynomial. Obviously, this is true for all the investigated unit cells.
The convergence for large shear samples shows that the periodic deformation
of the slender struts connecting the kernels is displayed by the microscopic
deformation modes. On the other hand, the bending properties must be dis-
played at the same time. And apparently, the larger kernels feature a more
complex bending behaviour than it can be described applying the quadratic
deformation modes.

Altogether, it is an open question what happens if the kernels are closed,
i. e. if they do not perform sets of subordinate vertices but really compact
ones. Nevertheless, in the author’s opinion, the case of large and compact
vertices is not really relevant for the modelling of cellular structures and will
not be subject to further investigations here.



10
Honeycomb structure

As already mentioned in chapter 6, a further class of regular two-dimensional
foam models is the honeycomb microstructure as it is depicted in fig. 10.1.1

The deformation behaviour of the natural unit cells, i. e. the rhombic ones
displayed in fig. 6.1 b) and c), has turned out not to be covered by the
micromorphic polynomial in a very precise way. For that reason, another
definition for the unit cell will be discussed in the sequel. Afterwards, the
microstructure will be subject to different numerical experiments.

10.1 Microtopology

Following the discussion raised in the preceding chapters, a physically mean-
ingful interpretation of the micromorphic degrees of freedom can be found
assuming a system of vertices connected via deformable struts. A further
implicit assumption has been the unit cell to be centrosymmetric, i. e. the

1An analytical homogenisation scheme describing the effective properties of honeycomb
structures has been derived in detail by Gibson and Ashby [50].

– 89 –
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volume centroid equals the center of mass. Surely, for the honeycomb unit
cells depicted in fig. 6.1 b) and c), the volume centroid and the mass cen-
troid are identical. But obviously, the mass is not concentrated in the mass
centroid but in the two vertices.

To find a more adequate description for the honeycomb unit cell, let us
regard the structure in fig. 10.1. The 2-particle unit cell is replaced by a
rectangular one. This geometry change is in order to simplify the definition
of the projection polynomial. Furthermore, the unit cell is split up into two
identical parts, microvolume 1 and 2, which differ only in their orientation.

XM1

XM2

l b

microvolume 2 microvolume 1

Figure 10.1: The regular, periodic honeycomb structure. Aspect ratio of the
struts b/l ≈ 1/15.

In fig. 10.2, the two parts of the unit cell are depicted in detail. Having in
mind the property of the cubic polynomial expansion to rotate the center
of the particular boundaries, the microvolumina are constructed in a way
that the struts are cut in the center of the boundary. Additionally, the
cross-sections at the boundary are located in the center of the particular
struts. Examining the honeycomb structure within FE2 calculations, it has
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figured out that the two parts of the unit cell can be superimposed to one
microvolume. In other words: At a given macroscopic integration point, the
macroscopic deformation quantities are projected to both parts of the unit
cell at the same time. The microvolume is assumed to account for the edge
lengths

√
3 l/2 and 3 l/2. Thus, two microscopic boundary value problems

have to be solved for each macroscopic integration point. Afterwards, the
macroscopic stress quantities have to be homogenised for each part of the unit
cell separately and the effective value of the stresses can be calculated as the
arithmetic average of the particular results, cf. [23]. Note that throughout
the following examples no higher periodic boundary conditions are taken
into account for the micromorphic homogenisation scheme on the microlevel,
i. e. free microscopic periodic fluctuations are only considered for the first
order FE2-calculations.
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2 l
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∆X1

∆X2

b)

√
3
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3
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∆X1

∆X2

Figure 10.2: Detail from fig. 10.1: One pair of microvolumina featuring one
unit cell of the investigated regular honeycomb microstructure.
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10.2 Shear test

The experimental setup of the shear test is in accordance to fig. 8.2, where
L → ∞. The loading of the sample takes place in XM1-direction. In the
sequel, two orientations of the microstructure will be investigated, at first,
the orientation given in fig. 10.1, secondly the same microstructure rotated
by 90◦. Whereas the shear test for the first orientation deals with h = n l/2,
that one for the second orientation uses h = n

√
3 l, i. e. n = 1 represents

one assembly of the microvolumina 1 and 2, cf. fig. 10.2.

Let us begin with a qualitative analysis of the microdeformation observed
in a FE2 computation. In fig. 10.3, the microshear deformation components
χ̄M12 and χ̄M21 are depicted for a shear test in the unrotated configuration.

2 XM2

n 3 l
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χ̄
M
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2
,χ̄
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0-0.5 0.5

4E-03

8E-03 χ̄M12

χ̄M21

Figure 10.3: Shear test in XM1-direction. Microshear deformation compo-
nents χ̄M12 and χ̄M21 over the height of the sample (n = 8).

Both characteristics exhibit a boundary layer due to the rotations restricted
by the Dirichlet boundary condition for the microdeformation χ̄M12 =
χ̄M21 = 0 on ∂Bm

D . Apparently, the component χ̄M12 is much more pro-
nounced than it is the component χ̄M21. Thus, the micropolar restriction as-
suming a skew-symmetric microdeformation is not valid and will be skipped
in the sequel.

Featuring now a shear test for the rotated microtopology and having in mind
to illustrate the micromorphic deformation behaviour, the macroscopic de-
formation state, i. e. Grad uM , χ̄M and Grad χ̄M , predicted by the mi-
cromorphic two-scale approach and observed in the bending free center of
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the macroscopic sample, has been projected to the boundary of the attached
rotated microvolumina cf. fig. 10.2. For fig. 10.4, an assembly of 3 pairs of
microvolumina has been merged. Obviously, the particular microvolumina
can be connected periodically. The dash-dotted lines indicate the boundaries
of the deformed unit cells. On the right hand side, a corresponding detail
taken from an analogous reference computation is displayed.2

a) b)

Figure 10.4: Shear test in XM1-direction for the honeycomb microstructure
rotated by 90◦, deformation state in the bending-free center of the sample
(n = 8). a) Periodic assembly of 3 pairs of microvolumina (cf. fig. 10.1)
loaded with the observed macroscopic deformation state making use of the
projection polynomial. b) Detail taken from the corresponding reference
calculation.

In the reference solution fig.10.4 b), the main deformation processes take
place by a S-shaped bending of the horizontal struts. The same charac-
teristic is predicted by the two-scale approach fig. 10.4 a). Altogether, the
high agreement between both deformation pictures may indicate that the
micromorphic two-scale methodology, in combination with the modified set
of microvolumina, comprises the essential deformation mechanisms due to
microstructural periodicity.

So far, only qualitative investigations have been accomplished. In the se-
quel, the significance of the results predicted by the micromorphic two-scale
approach have to be verified. Thus, let us start to examine the shear test
in XM1-direction quantitatively. As it has been done for the single-cross
microstructure, the normalised surface tractions ||tIII

1 ||, observed at bound-
ary III within the micromorphic two-scale calculations, will be compared to

2A similar deformation behaviour has been predicted by Gibson and Ashby [50].
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these ones of the first order approach as well as to those ones of the reference
calculations. The microvolumina are furthermore chosen in accordance to
fig. 10.2.
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Figure 10.5: Shear test in XM1-direction for the unrotated microstructure. a)
Normalised traction at surface III. b) Relative error of the FE2 calculations
in comparison to the reference solution.

Similar to the single-cross structures discussed in chapter 8, the given mi-
crostructure exhibits a stiff boundary layer effect due to the rotations of the
struts restricted by the Dirichlet boundary conditions. For n = 4, the stiff-
ening effect accounts for about 20% and decays with an increasing sample
size. Again, the first order model is not able to describe any bending and
therewith any stiffening effect, but the first order characteristic converges
towards the reference solution with an increasing sample size and reaches an
error of about 3% for n = 40. By contrast, the micromorphic model is able
to reproduce the reference calculation rather exactly. For n = 4, it underes-
timates the exact result by about 3% whereas for larger samples, the error
is much smaller than 1%.

Subsequently, performing the shear test for the microstructure rotated by
90◦, one finds a very similar situation, cf. fig. 10.6. The reference solution
features a stiff boundary layer. For n = 4, the stiffening effect accounts for
about 30%. Thus, the effect is more pronounced than it is for the unrotated
structure. Besides the absolute values of the shear stresses, which are not
denoted here, this difference in the boundary layer effect indicates, unsur-
prisingly, the honeycomb structure to be anisotropic. More precisely, the 90◦

rotation does not activate the 120◦ symmetry of the honeycomb structure.3

3The absolute plateau value (n → ∞) of the shear stress of the unrotated structure is
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Figure 10.6: Shear test in XM1-direction for the rotated microstructure.
a) Normalised traction at surface III. b) Relative error of the FE2 cal-
culations in comparison to the reference solution.

Regarding the two-scale calculations, one observes the first order approach
not to describe the stiffening effect but converging towards the reference so-
lution for large samples. The micromorphic model now slightly overestimates
the exact result by about 2% for n = 4. With increasing sample size, this
error decays and accounts for less than 1% for n = 40.

Note that the found anisotropy corresponds to the results found in [107, 119]
responding to [27, 28]. In these contributions, it has been figured out that the
parameters of a centro-symmetric Cosserat material do depend on the micro-
topological orientation of the honeycomb structure. One may amend at this
point that the honeycomb structure, following the missing skew-symmetry
of the microdeformation tensor, does not allow for any micropolar modelling
at all, i. e. the kinematics of the Cosserat continuum theory does not satisfy
the micromechanical deformation mechanisms of the honeycomb structure.

10.3 Tension test

Let us secondly consider the uniaxial tension test. Again, we assume an
infinitely large domain L → ∞, whereas h = n l/2 or h = n

√

(3) l, respec-

about two times stiffer than it is the structure rotated by 90◦.
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tively. In fig. 10.7, the results of the two-scale calculations are compared to
the reference solution.
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Figure 10.7: Tension test in XM2-direction. Normalised tensile traction at
surface III, a) unrotated, b) rotated state.

Whereas the reference calculation exhibits a subordinate stiffening effect for
small sample sizes below 0.5%, the first order two-scale model features a scale
invariant tension stiffness, overestimated by about 2.5%. For the unrotated
situation, the micromorphic model predicts a certain stiffening effect whereas
it is nearly scale invariant for the rotated situation. But altogether, the error
is smaller than 3% and the two-scale solutions may still considered to be
rather exact.

10.4 Bending test of a sandwich structure

After the, at least in the XM1-direction, homogeneous shear and tension tests,
the honeycomb structure will now be subject to a clearly inhomogeneous ex-
periment. In the preceding experiments, it has been pointed out the structure
to undergo a significant boundary layer effect, if the macroscopic dimensions
of the sample are chosen comparable to the microscopic length scale and
if the boundary conditions restrict microstructural rotations. Besides the
shear test, a further experiment, featuring a certain technical relevance, is
the bending test of a sandwich composite consisting of at least one cellular
core and an appropriate number of thin, compact surface sheets. From the
physical point of view, the cellular kernels support the structure as spacers,



10.4. Bending test of a sandwich structure 97

which ensure two neighbouring sheets not to buckle or to come into con-
tact. With a view to light-weight construction, it is meaningful to reduce
the dimensions of the sample. A stiffening effect within slender kernels could
result in a higher effective bending stiffness with respect to the weight of the
composite structure.

Figure 10.8: Three-point bending experiment of a sandwich panel consisting
of thin Aluminium surface sheets and an open-cell Polyurethane core.

Of course, it can not be the aim of the present contribution to find an optimal
dimensioning of sandwich panels under certain loading conditions. But in the
sequel, the power of the proposed micromorphic two-scale methodology to
describe the underlying micromechanical effects will be demonstrated. For
that purpose, let us restrict to the most simple case of a sandwich structure
consisting of one cellular kernel of variable thickness, covered by two compact
sheets. The sheets are assumed to be of the same material as the cellular
struts.4

The experimental setup is given in fig. 10.9 in a schematic way. The thickness
of the surface sheets is assumed to equal d = 5 b, where b defines the thickness
of the microstructural struts, cf. fig. 10.1. Apart from the additional surface
sheets, the boundary conditions are chosen in correspondence to the defini-
tion given in fig. 8.2: Surface I is fixed (uI

M = 0, χ̄I
M12 = χ̄I

M21 = 0), surface
IV is subject to the displacement uIV

M2 = ū = 0.01 L, whereas uIV
M1 = 0 and

χ̄IV
M12 = χ̄IV

M21 = 0, i. e. one assumes symmetry condition. Surfaces II and
III are left unloaded.

From the numerical point of view, the question arises how to model the given
composite structure. On the one hand, the honeycomb kernel requires the mi-
cromorphic macromodel to be applied, on the other hand, the surface sheets
are considered to be compact, i. e. without any microscopic substructure

4Note again that the choice of the particular materials is not the matter of the present
work but the influence of the microtopology on the effective material behaviour.
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d = 5 b

Figure 10.9: Sketch of the macroscopic geometry and assignment of the
boundaries.

comparable to the size of the sheet itself. Having in mind the geometrical in-
terpretation of the extended degrees of freedom, one may model the surface
sheets via the micromorphic homogenisation procedure. But nevertheless,
it is absolutely not clear how to transfer the extended degrees of freedom
between the two materials. The interpretation of the microdeformation is
strictly coupled with the underlying microtopology, i. e. it is not comparable
for the compact sheet and the cellular kernel. However, from the physical
point of view, the microstructural rotations should be expected to be sup-
pressed at the kernel-sheet interfaces.

In order to circumvent the transition of the microdeformation components be-
tween the two materials, the numerical implementation combines the Cauchy
continuum modelling using Hooke’s law for the compact sheets and the mi-
cromorphic two-scale modelling for the cellular kernel. Introducing a formu-
lation which is dealing with a penalty multiplier λ, the microdeformation is
constrained to equal the identity within the surface sheets. Details may be
found in appendix C.

Let us start again with a qualitative comparison between the reference cal-
culations on the one hand, and the two-scale calculations on the other hand.
The underlying dimensions of the bending test are defined as follows:

L = 32
√

3 l, h = 12 l.

The observed deformation pictures of the reference solution and the micro-
morphic one are given in fig. 10.10. It may be found both results to describe
the same macroscopic deflection. Furthermore, one should notice the micro-
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a)

XM1

XM2

b)

XM1

XM2

1.5E-2uM2,1 [–]-1.5E-2

Figure 10.10: Picture of the sandwich bending test, gradient uM2,1 of the de-
flection in longitudinal direction. a) Reference calculation, b) micromorphic
two-scale calculation. Note the boundary conditions chosen for the numerical
experiment to differ from those in fig. 10.8.
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structural fluctuations within the picture of the reference calculation. Due
to local effects, there are areas of a positive and a negative value of the shear
deformation plotted in fig. 10.10. By contrast, the homogenised solution is
absolutely smooth. Here, the physical meaning of the word homogenisation
becomes apparent. It may be considered as the most important requirement
on any homogenisation method to smooth all the microstructural effects with-
out loosing the microtopological information. Obviously, the micromorphic
homogenisation scheme fulfils this condition in a much more precise way than
it does the first order homogenisation methodology. In fig. 10.11, the deflec-
tion line gradients of the reference, the micromorphic and the first order
calculation, observed within the surface sheets, are compared. Whereas the
micromorphic deflection gradient can not be distinguished from the reference,
the first order solution exhibits an absolutely different bending characteristic.
In contrast to the reference and the micromorphic solution, the deformation
process is concentrated very close to the boundary. From the physical point
of view, this result does not surprise anymore. The first order approach
does not describe the boundary stiffening due to restricted rotations. The
region close to the boundary is estimated too soft and, consequently, the
deformation process can not be displayed in an adequate manner.

n [–]

u
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2
,1

[–
]

0
0 20 40 60 80 100

-1E-02

reference

micromorphic

1st order

Figure 10.11: Deflection lines observed in a compact surface sheet in compar-
ison between the reference, the micromorphic and the first order two-scale
methodology.

In order to illustrate the inhomogeneity of the deformation state within the
above mentioned bending test of the sandwich structure, the microdefor-
mation components as well as a selection of the microdeformation gradient
components can be found displayed in figs. 10.12 – 10.14. Note that, due
to the introduction of the penalty formulation cf. appendix C, all extended
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quantities vanish within the surface sheets. Thus, the rotation of the mi-
crostructural struts is ensured to be suppressed at the interface between the
cellular kernel and the compact surface sheets.

0 0χ̄M12 [–] χ̄M21 [–]5E-3 -2E-4
a) b)

χ̄M11 − 1 [–] χ̄M22 − 1 [–]-2E-4 2E-4 1.5E-4-1.5E-4
c) d)

Figure 10.12: The four components of the microdeformation tensor χ̄M ob-
served in the sandwich three-point bending test.

Consequently both, the interfaces between the kernel and the hard bound-
aries I and IV as well as those ones between the kernel and the surface sheets,
cause boundary layers and microstructural bending effects. But one should
remark the bending mechanisms, i. e. the particular bending deformation
modes, to differ between the two types of interfaces due to their orientation
with respect to the external loading, cf. figs. 10.13 and 10.14. One should
furthermore notice that the distinct inhomogeneity of the sandwich bending
activates the microstrain components χ̄M11 and χ̄M22, cf. fig. 10.12 c) and d),
which are of the same order of magnitude as the microshear deformations,
especially close to the cross-over of the two different boundary layers. This
microstrain character is, besides the missing skew-symmetry of the microde-
formation tensor, a further hint that the modelling of honeycomb structures
applying a micropolar (Cosserat) continuum formulation must fail.

Finally, let us conclude the numerical investigations of the regular honeycomb
structure by varying the height h of the composite structure, whereas the
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χ̄M12,2 [1/mm] χ̄M21,2 [1/mm]-1E-4 1E-4 6E-4-6E-4
a) b)

Figure 10.13: The gradients of the microshear deformation components with
respect to the XM2-direction.

χ̄M12,1 [1/mm]

-1.5E-3

1.5E-3

a)

χ̄M12,1 [1/mm]

8E-5

-8E-5b)

Figure 10.14: The gradients of the microshear deformation components with
respect to the XM1-direction.

length L as well as the thickness of the surface sheets d is kept constant.
In order to point out the high effective bending stiffness of the composite
structures, a comparison to a set of compact samples has been drawn. These
compact samples consist of the same material as the surface sheets and the
microscopical struts. Their geometry is defined by the length L = 32

√
3 l,

identical to the sandwich structures. The absolute height of the compact
samples has been chosen in a way that their particular mass corresponds to
that one of the sandwich counterpart. In fig. 10.15, the reaction force in
XM2-direction, integrated over boundary IV , i. e. RF IV

M2, has been observed
and divided by that one of the appropriate compact sample, called RF ∗. On
the left hand side of fig. 10.15, the result is plotted versus the height h of the
sample. On the right hand side, the relative error of the FE2-calculation is
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given with respect to the reference solution.
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Figure 10.15: Bending test of the sandwich structure (L = 32
√

3 l, h =
n 3/2 l, d = 1/3 l). a) Reaction force in XM2-direction observed at surface
IV , normalised with respect to a compact sample of the same mass. b)
Relative error of the FE2 calculations in comparison to the reference solution.

Let us at first discuss the results of the reference calculations. For very thin
cellular core layers, we find the sandwich structure to exhibit an effective
bending stiffness about three times higher than that one of the compact
sample (n = 2). This advantage is decaying and finally, the sandwich struc-
ture becomes softer than the compact sample (n > 10). Considering now the
first order computations, one finds a qualitatively similar behaviour. Never-
theless, the relative error of the first order solutions accounts for up to 30%
for n = 2 and decreases for a larger kernel thickness. By contrast, the mi-
cromorphic two-scale approach is displaying the microstructural deformation
processes in a very exact way. Thus, even for the most slender kernel layer
(n = 2), the relative error only accounts for about 4%. For larger samples,
the predicted results converge towards a relative error of about 1.5%. Hav-
ing in mind the first order FE2 approach not to deal with microstructural
bending effects, this relative aberration between the first order and the mi-
cromorphic two-scale computations allows to estimate the influence of the
microstructural bending effects on the absolute stiffening for slender sand-
wiches. Consequently, only about 30% of the 300% stiffening (n = 2) can be
explained by microstructural boundary layer effects. Thus, different mecha-
nisms have to been taken into account to describe this particular behaviour.5

5Note that the given bending experiment has been introduced to verify the micromor-
phic two-scale methodology. The particular stiffening behaviour of the reference structure
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10.5 Discussion

Let us conclude the investigations concerning the regular honeycomb struc-
ture with a brief summery of the found results.

• Already the results found in chapter 6 have indicated the description of
the honeycomb structure as a 2-particle system to fail within the micro-
morphic homogenisation procedure. For that purpose, an alternative
formulation of the honeycomb unit cell has been developed by dividing
it into two mirrored parts. Consequently, the effective picture of the
honeycomb structure may be interpreted as the arithmetic average of
its two kinds of vertices, differing only in their orientation.

• In the following, several numerical experiments have been accom-
plished. It has been pointed out that it is insufficient from the mi-
cromechanical point of view to describe the honeycomb structure’s
deformation processes by a micropolar (Cosserat) macrotheory. The
microdeformation must be assumed neither skew-symmetric nor free of
microstrain effects.

• The extended homogenisation method has been subject to different
quantitative investigations. It has been demonstrated the methodo-
logy to describe the micromechanical deformation processes in a very
high accordance to, at least in one direction, homogeneous reference
experiments.

• A further study has been concerned to the description of composite
structures. Even for the highly inhomogeneous sandwich bending test,
it has been proofed the proposed methodology to predict the results
found by the reference computations in a quality which is, in the au-
thor’s opinion, more than acceptable.

It is maybe the most fundamental result of the preceding studies that it is
possible to reduce a system, which is commonly interpreted as a 2-particle
system, cf. [107, 119], to an 1-particle system by combination of the particular
vertices. In the future, that superposition methodology may allow for the
micromorphic modelling of realistic three-dimensional structures based on an
exact knowledge of the underlying micromechanical processes.

is not subject to further investigations within the present contribution.
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Auxetic structures

Concluding the numerical investigations within the present work, the com-
plexity of the underlying microtopologies undergoes a further increase taking
into account so-called auxetic materials. This class of materials is commonly
interpreted to exhibit a lateral expansion during stretching processes and a
contraction during compression, i. e. a negative Poisson’s ratio. Typical ex-
amples are e. g. structures with inverted cells, re-entrant or enfolded foams,
cf. [10, 15, 36, 46, 50, 83]. Thus, keeping the connectivity unchanged, the
basic symmetry of the unit cells is modified. In fig. 11.1, a folded honeycomb
structure is depicted. Alternatively, it is possible to assume the basic geom-
etry to be maintained, i. e. the position of the vertices compared to their
neighbours, but the shape of the connecting struts to feature undulations.
In fig. 11.2, the unit cell of the single-cross microstructure is depicted where
the struts exhibit an S-shape.

Apparently, one has to expect a complex microstructural deformation be-
haviour for both structures, if they undergo stretching conditions. Whereas
the enfolded honeycomb structure fig. 11.1 should show bending deforma-
tions within the connecting struts, one may predict rotations of the vertices
for the undulated single-cross fig. 11.2, depending on the bending stiffness of
the struts.

– 105 –
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Figure 11.1: The folded honeycomb structure (b/l ≈ 1/15).
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b∆X1

∆X2

Figure 11.2: The unit cell of the undulated single cross (b/l = 1/15).

In the following sections, the micromechanical deformation mechanisms and
their representation by the extended FE2-methodology will be investigated
in detail.

11.1 Folded honeycomb

In analogy to the regular honeycomb structure presented in the preceding
chapter, the folded honeycomb may also be reduced to an 1-particle system
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for the micromorphic two-scale modelling, cf. fig. 11.3.

a)

1.2 l

1.8 l

∆X1

∆X2

b)

1.2 l

1.8 l

∆X1

∆X2

Figure 11.3: Detail from fig. 11.1: One pair of microvolumina featuring one
unit cell of the investigated folded honeycomb microstructure.

In the following numerical experiment, the given structure is subject to a
tension test in XM2-direction, cf. fig. 8.2, h = n 1.2 l, L → ∞, where l
denotes the length of the microstructural struts. Instead of observing the
lateral expansion, which is suppressed due to the infinite size of the sample
in XM1-direction, the traction normal to surface IV has to be taken into
account.1 In fig. 11.4, both, the surface traction in stretching direction as
well as in lateral direction are depicted. Apparently, the auxetic character of
the structure comes into play and results in a negative lateral surface traction,
i. e. the stretching in XM2-direction causes a compression in XM1-direction.
Both surface tractions are predicted by the micromorphic homogenisation
procedure with a certain exactness.
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Figure 11.4: Tension test in XM2-direction. a) Tensile traction at surface
III. b) Tensile traction at surface IV .

1Surface IV can be interpreted as a cutting line.
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But one may notice as well that the given auxetic experiment does not ex-
hibit any boundary stiffening or softening, i. e. the surfaces do not induce any
bending effects. This observation can be clarified if one reminds the surface-
induced bending effects to depend on a restricted rotation of microstructural
struts connected to the boundary. In the given experiment, no microscopic
rotations of the vertical struts are activated. Consequently, it should be pos-
sible to display the observed effect as well by a first order two-scale approach.

11.2 Undulated single-cross

Let us now focus on the second auxetic microstructure, proposed in fig. 11.2,
the undulated single-cross. In difference to the folded honeycomb structure,
the auxetic mechanism now results from the S-shape of the connecting struts
instead of a vertex shifting. One may imagine the struts to bend and the
vertices to rotate in consequence even if the structure is subject to an axial
stretching condition. Furthermore, remembering the micromorphic degrees
of freedom exactly to describe the rotations within the connecting struts, one
may expect, apart from a very complex microscopic deformation behaviour,
certain boundary layer effects for this second auxetic microstructure.

11.2.1 Tension test

Let us start with the examination of a numerical tension test in XM2-direction
(h = n l, L → ∞). Note again the domain to be infinite in XM1-direction.
The auxeticity will be verified observing the lateral traction tM1 parallel to
surface III. At first, the character of the microdeformation field within the
sample will be studied in a qualitative way. For that purpose, the various
components of the microdeformation tensors are depicted in figs. 11.5 and
11.6. Regarding fig. 11.5, one may notice at first the microstrain deformation
components not to be of minor significance but, at least χ̄M22, to account
only for one order of magnitude smaller than the microshear deformation
components depicted in fig. 11.6. Remember that there are no boundary
conditions at all for χ̄M11 and χ̄M22 but only χ̄M12 = χ̄M21 = 0.
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Figure 11.5: Microstrain deformation components during the tension test.

Nevertheless, one may observe a distinct boundary layer for those compo-
nents featuring a constant thickness if increasing the macroscopic height h.
Consequently, the microstrain deformation components must couple in an
inherent way with the microshear components depicted in fig. 11.6. But this
inherent coupling between the microstrain and the microshear deformation
modes is not restricted to the bending dominated boundary layer but also
becomes apparent in the center of the sample.
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Figure 11.6: Microshear deformation components during the tension test.

Different from the deformation behaviour under tensile conditions of the
regular single-cross microstructure discussed in chapter 8, the S-shape of the
microstructural struts activates the microshear deformations even under the
given loading conditions. This effect can be explained taking into account
the reorientation processes during stretching, i. e. the undulated struts start
to unfold which causes a rotation of their intersections at the boundary of
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the microvolume as well as a rotation of the central vertex. But the rotation
of the intersections can only be enabled by the microshear deformations. The
rotation of the top and the bottom boundaries of the unit cell depicted in
fig. 11.2 are coupled to the microshear component χ̄M21, the rotation of the
left and the right boundary to the component χ̄M12, cf. fig. 5.1. The fact
all components of the microdeformation tensor to be activated, indicates the
system to require the full micromorphic macrocontinuum and does not allow
for any restriction of the extended kinematics.

Let us now investigate the quality of the exactness of the results predicted by
the micromorphic two-scale approach. In fig. 11.7, the traction tM2 normal
to surface III, i. e. in stretching direction, is displayed, whereas fig. 11.8
shows the traction tM1 parallel to surface III.
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Figure 11.7: Tension test in XM2-direction. a) Tensile traction at surface
III. b) Relative error of the FE2 calculations compared to the reference
solution.

Firstly taking into account the normal stress one finds, in contrast to the
undulation-free single-cross discussed earlier, a stiff boundary layer of about
6.5% for n = 4 in the reference calculation. Again, the first order solution is
not sensitive for bending effects and predicts a tensile stress constant for the
various sample sizes h. With increasing h, the first order converges towards
the reference results. By contrast, the micromorphic approach predicts a stiff
boundary layer. But the absolute values of the predicted results overestimate
the reference solution. Especially for small sample size (h = 4), the relative
error accounts for the same order of magnitude as the stiffening effect itself.
Similar to the first order approach, the micromorphic calculations converge
towards the plateau stress for large samples.



11.2. Undulated single-cross 111

Let us proceed towards the shear stress resulting from the stretching loading
conditions, cf. fig. 11.8. The auxeticity becomes apparent if one considers the
negative value of the shear stress. Furthermore, one finds the shear stress to
exhibit a soft boundary layer. For n = 4, the resulting shear stress is about
12% softer than the plateau value for very large samples. Not surprisingly,
the first order FE2 methodology is not able to predict this softening effect.
By consequence, it is meaningful to assume the softening effect to be caused
by bending effects. Regarding the micromorphic prediction, one finds the
softening effect to be overestimated with up to 9% for n = 4. Therefore one
may derive that the micromorphic two-scale approach is not able to meet the
auxetic boundary effects in a precise way although the effects are predicted
correctly in a qualitative manner.
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Figure 11.8: Tension test in XM2-direction. a) Tensile traction at surface
III. b) Relative error of the FE2 calculations compared to the reference
solution.

11.2.2 Shear test

Analogously to the investigations in chapter 8 and 10, the proposed mi-
crostructure will be subject to a shear test of the infinite domain (h =
n l, L → ∞). Prior to the quantitative evaluation of the results achieved
by the two-scale approach, let us consider the predicted microdeformation
at first. Whereas fig. 11.9 shows the microshear components of the microde-
formation tensor, fig. 11.10 concentrates on the microstrain components for
various sample sizes n. Again, the microshear deformations are suppressed
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at the top and the bottom boundaries, whereas the microstrain deformations
are left unrestricted.
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Figure 11.9: Microshear deformation components during the shear test.

Consequently, we find the boundary layer of the microshear deformations
in fig. 11.9 similar to those detected for the regular single-cross structure,
cf. fig. 8.3 a). But analogous to the tension test, no skew-symmetry can be
detected for the microshear deformation.
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Figure 11.10: Microstrain deformation components during the shear test.

Bringing now the microstrain deformations into play, one may observe that,
vice versa to the tensile loading, the macroscopic shear deformation induces a
microstrain deformation, i. e. microcompression modes of the microvolumina,
depending how close to the boundary they are. Furthermore, the character-
istic of the microstrain components over the height of the sample is very
peculiar. Whereas the usual boundary layer effects converge continuously
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towards a plateau with increasing distance from the boundary, this is not
the case for the microstrain components. By contrast, they run through an
extremum before reaching the plateau in the center of the sample. This com-
plex behaviour is solely dominated by the boundary condition for χ̄M12 as
well as for χ̄M21 and, therefore, indicates anew the inherent coupling between
shearing and stretching microdeformation modes.
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Figure 11.11: Shear test in XM1-direction. a) Shear traction at surface III.
b) Relative error of the FE2 calculations compared to the reference solution.

Skipping now the qualitative considerations, one may compare the results
computed using the two-scale algorithm in comparison to the reference as well
as to the first order FE2 calculations in a quantitative manner. In fig. 11.11,
the shear stress is displayed, i. e. the traction tM1 parallel to surface III.
The given microstructure describes a stiff boundary layer under the shear
condition and the stiffening effect accounts for about 5% for n = 4. Whereas
the first order FE2 solution results in the plateau stress for large samples
sizes h, the micromorphic two-scale calculation overestimates the stiffening
effect by about 4% for n = 4. The error decays with an increasing sample
size. Hence, for small samples, we find the error caused by the method to be
of the same order of magnitude than the boundary layer effect itself.

Evaluating the tensile stress depicted in fig. 11.12, i. e. a compressive stress,
we find very similar to the tensile experiment a soft boundary layer effect
which accounts for about 12% for n = 4. Besides the plateau stress given by
the first order approach, the micromorphic methodology results in a too soft
solution, i. e. the softening effect is overestimated by about 9% (n = 4). The
most peculiar effect is the coherence between the shear stress under tensile
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Figure 11.12: Shear test in XM1-direction. a) Shear traction at surface III.
b) Relative error of the FE2 calculations compared to the reference solution.

loading, cf. fig. 11.8, and the compressive stress under shear deformation,
cf. fig. 11.12. Apparently even for the reference solution, both characteristics
are identical. This special effect seems to be a consequence of the coupling
between the shear and the strain properties of the material. The question,
which will not be discussed furthermore, arises, if that is a special case or a
general feature of this class of auxetic materials.

11.3 Discussion

At the end of the present chapter concerning the negative Poisson’s ratio
effect, let us briefly review the found results.

• The first example has been up to the description of a honeycomb struc-
ture with inverse cell walls. Stretching the microstructure, the cell walls
are able to unfold which causes an effective expansion in lateral direc-
tion. In the presented case, the lateral expansion has been suppressed
and the compression stress has been observed. It has been pointed out
the deformation to take place by bending the lateral struts, i. e. the
struts, which are not parallel to the chosen loading direction. By con-
trast, the vertical struts and the struts connected to the boundary
conditions among those do not account for any bending process. Con-
sequently, no rotations are activated within the vertical struts and the
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suppressed rotation at the boundaries does not restrict the deforma-
tion of the system. No boundary layer effects have been observed.
Although the micromorphic two-scale approach has predicted the ref-
erence results including the auxeticity with an acceptable exactness,
it does not offer any advantage compared to the first order two-scale
methodology involving periodic boundary conditions under the given
loading conditions.

• Secondly, a single-cross microstructure has been the point of interest,
whose connecting struts have undergone a S-shape undulation. Both
numerical experiments, the tension test as well as the shear test, have
exhibited size depending boundary layer effects, besides stiffening ef-
fects in the loading direction also softening effects in the cross direction.
In comparison to the boundary effects studied in the previous chapters,
one may find the amount of the stiffening effect to be much less pro-
nounced.

• The basic microscopic deformation mechanisms result from two related
reorientation processes. On the one hand, the external deformations
cause the microstructural struts to unfold. Because they are connected
rigidly to the central vertices, the unfolding effects the vertices to rotate
and to induce a further reaction in the lateral direction at the same
time.

• Applying the micromorphic modelling, it has been shown this mutual
coupling between stretching and shear deformations to be reflected in
the components of the microdeformation tensor as well. In contrast to
the regular single-cross structure, where the microstrain deformation
quantities have not been activated in any experiment, the deforma-
tions of the undulated single-cross require those deformation modes to
become apparent. The microstrain deformation in lateral direction can
be understood as an inherent consequence of the rotation of the central
vertex. No restrictions of the micromorphic kinematics are admissible.

• If not influenced by boundary induced effects, i. e. in the center of
sufficiently large samples, the micromorphic methodology is able to
predict the deformation processes in a very exact way. Apparently, the
cubic projection polynomial within the micromorphic two-scale algo-
rithm is sufficient to reflect all essential periodic deformation processes
of the microstructure without taking into account higher order periodic
boundary conditions.
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• Nevertheless, it has been pointed out the micromorphic two-scale model
to predict the boundary layers in a qualitative manner. The particular
amount of the stiffening or softening effect has been found overesti-
mated with an error of the same order of magnitude as the stiffening
effect, softening effect, respectively. Thus, a further limitation case for
the proposed homogenisation scheme has been detected.

Obviously, the bending effects of the real microstructure can not be repro-
duced by the kinematics of a micromorphic continuum theory of grade one
taking into account an affine microdeformation. The logical consequence for
this particular case is the further extension of the micromorphic FE2 scheme
to even higher grades.

For the preceding discussion, the auxetic structures may be designated as
artificial constructions, whereas e. g. the honeycomb structure can be in-
terpreted as the two-dimensional counterpart of realistic cellular structures.
From the physical point of view, the question arises, if auxetic microstruc-
tures bear any relevance, i. e. do there exist materials with comparable mi-
croscopic properties. E. g. Lakes et al. [46, 83] have succeeded to generate
re-entrant metal or polymeric foams applying a heat treatment in combi-
nation with incremental plastic deformations. Nevertheless, it seems to be
dubious if those materials, i. e. the class of re-entrant and enfolded structures
similar to the folded honeycomb structure given above, justify further efforts
in the formulation of appropriate higher order homogenisation techniques.

A different material class seems to be more auspicious, namely the wide
field of semi-flexible biopolymer networks. The most established represen-
tants of those materials are networks of actin and various further protein
filaments which are basic elements e. g. of cell walls and other biological tis-
sues, cf. [72, 80, 85, 112, 113, 117]. Typically, they consist of long flexible
components which are linked in vertices. The chains between the links are
not free but undulated due to thermodynamical effects. From the mechanical
point of view, those materials are of special interest because they feature a
strain-stiffening effect, i. e. the strain stiffness increases disproportionately if
shearing or stretching the network. The reason can be found in the bending
to stretching transformation, cf. e. g. [14]. Whilst at the beginning of the
transformation, the chains exist in their undulated form, they are able to
unfold, making use of local bending processes until all the chains are reori-
entated parallel to the external loading.
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Against this background, the above mentioned undulated single-cross struc-
ture may be interpreted as the most simple case of such a type of network
involving a high degree of cross-linking of the chains. Similarly as for the
reorientations within the biopolymers, we have observed stretching deforma-
tions of the undulated struts to occur even under external shear loading. By
consequence, the vertices have been found to rotate. Thus, one may expect
similar boundary effects for sufficiently dense and therefore stiff networks.

In literature, further examinations have been accomplished to describe the
strain stiffening behaviour making use of micromechanical models and re-
placing the biopolymer by a network of beam elements. Doing so it has
been pointed out the reorientation process, based on local bending effects, to
feature a non-affine character, cf. [19, 25, 57, 60, 101].

Especially for this bending dominated regime, the micromorphic continuum
theory of whatever grade promises to provide a toolbox for the sound de-
scription of the complex kinematical processes.





12
Discussion of the methodology

Let us bring the present contribution to its end drawing a final recapitula-
tion of the proposed methodology. It has been the scope of this work to
describe the complex effective material behaviour of cellular structures. Spe-
cial attention has been paid to the modelling of the inherent size depending
boundary layers of those structures. For that purpose, the heterogeneous
Cauchy microcontinuum, representing the cellular network, has been substi-
tuted for a homogeneous micromorphic macrocontinuum in part I, taking
into account higher order degrees of freedom. Based on the exact know-
ledge of the microscopic deformation mechanisms, those degrees of freedom
have been expressed in terms of a cubic mean field depending on the macro-
scopic deformation measures. Hence, an exact geometrical interpretation
of the microdeformation and its gradient has been given. Evaluating an
energy criterion, i. e. an extended form of the Hill-Mandel condition balan-
cing the macroscopic and the microscopic strain energy rate, an appropriate
homogenisation scheme has been elaborated in order to transfer the local
stresses to the effective level.

By consequence, the macroscopic deformation state is defining a microscopic
Dirichlet boundary value problem on the boundary of the microvolume at-
tached to each macroscopic material point. By homogenisation of the stress

– 119 –
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response, the macroscopic constitutive modelling is a priori circumvented.
No effective material parameters have to be interpreted on the micromorphic
macroscale and the effective material modelling is strictly dominated by the
microscopic processes. It has been pointed out that the given algorithm in-
troduces a microscopic length scale in an inherent way by defining the size
of the unit cell.

In the second part, the properties of the micromorphic two-scale approach
have been subject to various numerical investigations. In chapter 6, the rele-
vance of the higher order deformation modes has been studied within several
experiments accounting for microscopic resolution. For that purpose, differ-
ent periodic unit cells of regular cellular structures have been studied. It
has been indicated the micromorphic polynomial to involve all the essential
deformation mechanisms, if the attached microvolume comprises exactly one
vertex connected to its neighbours via slender struts. In analogy to parti-
cle systems it has been mentioned the micromorphic degrees of freedom to
loose their physical meaning for (n > 1)-particle systems. This conclusion
contrasts fundamentally to the usual procedure within the first order FE2

approach. Whereas the micromorphic scheme requires the smallest possible
unit cell in order to give a meaningful interpretation of the extended degrees
of freedom, the first order technique usually requires large representative
volume elements for a correct prediction of the effective material properties.
From the numerical point of view, this restriction to very small attached mi-
crovolumina surely bears a higher grade of efficiency. But on the other hand,
the micromorphic scheme requires a high microstructural regularity.

In chapter 7, the scale transition properties have been taken into account. It
has been found the quadratic deformation modes to transfer the microstruc-
tural length scale, i. e. the size of the attached microvolume, from the micro-
to the macroscale. Again, it should be emphasised that a physically mean-
ingful interpretation of the microstructural length scale requires the size of
the microvolume to correspond to the characteristic length scale, usually
considered as the characteristic length of the connecting struts. Thus, the
quality of a result predicted by the micromorphic two-scale approach strictly
depends on the choice of the underlying microvolume size.

In the following chapters 8 – 11, the complete two-scale methodology has
been subject to various numerical experiments taking into account a single-
cross microstructure including a modification of the central vertex, a hon-
eycomb microstructure and finally two auxetic structures, accounting for a
negative effective Poisson’s ratio. For the single-cross microstructure, it has
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been found the micromorphic two-scale approach to result in a highly exact
approximation of the different loading conditions even if applying unloaded
Neumann boundary conditions, i. e. free boundaries. The accuracy of the
predicted material properties has been pointed out strictly to depend on the
aspect ratio of the connecting struts (the smaller the exacter). Similarly, it
has been mentioned that the central vertex must not be chosen too large.
Furthermore, one should notice that the observed deformation mechanisms
feature a more or less skew-symmetric character. Nevertheless, the micro-
polar restriction on the macroscale has caused a certain systematical error
within the observed results. Finally, increasing the size of the microvolume
to a 4-particle system, it has been demonstrated the micromorphic modelling
not to be meaningful from the physical point of view.

For the honeycomb modelling, the first requirement has been the formulation
of appropriate 1-particle microvolumina. This task has been accomplished
dividing the periodic unit cell into two parts, only differing in their orientation
with respect to the macroscopic base system. In the subsequent numerical
experiments, it has been demonstrated that an arithmetic superposition of
the microvolumina results in a correct description of the material properties
under the different loading conditions. Moreover, the microstructure has
undergone the highly inhomogeneous loading conditions as the core material
within a sandwich structure.

Maybe the most exciting finding within the mentioned investigations one
should remind the microdeformation to exhibit a strong asymmetry even
for the perfectly regular honeycomb structure. Having in mind even more
complex three-dimensional microstructures, the Cosserat modelling does not
seem to be the adequate choice. Consequently, the proposed methodology of-
fers a clear geometrical explanation for this failure of the Cosserat continuum
theory discussed in literature earlier, e. g. [107, 119].

In order to detect a further limitation of the present methodology, the single-
cross microstructure has been subject to a topological undulation of the
connecting struts in chapter 11. Due to local bending-driven reorientation
processes within the connecting struts, it has been shown this structure to
feature an auxetic character involving an inherent coupling between the shear
and the stretching degrees of freedom. Moreover, the bending effects due to
restricted boundary rotations have been predicted in a qualitative way. But
apparently, the absolute value of the resulting boundary stiffening and soft-
ening effects could not be reproduced. Whereas the periodic properties have
been displayed adequately exact, the description of the bending dominated
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boundary layers has failed. By consequence, the quadratic bending defor-
mation modes provided by the micromorphic projection polynomial do not
comprise all essential deformation mechanisms.

Altogether, let us conclude the introduced micromorphic two-scale approach
to offer a powerful methodology for the description of cellular materials with
comparable macroscopic and microscopic length scales and with an adequate
regular microtopology, allowing for a clear connection between microscopic
processes and extended degrees of freedom. The significance of the described
boundary layer effects, which are able to cause an effective structural stiffen-
ing up to 30%, becomes apparent having in mind light-weight constructions,
especially for layered composites such as the demonstrated sandwich struc-
ture. Nevertheless one may insist that the numerical experiments within
the present work have undergone very severe restrictions. In the future,
further efforts have to be made taking into account microstructures with su-
perimposed stochastic perturbations. The application of the methodology to
three-dimensional structures would allow for a verification in physical experi-
ments such as indicated in fig. 10.8. Furthermore, the methodology may offer
the possibility to learn more about the structure of appropriate macroscopic
micromorphic constitutive equations. With respect of the huge amount of
unknown material parameters, each reduction of the parameter set would
help to identify reliable constitutive relations applying inverse techniques.

Finally, the proposed methodology bears the potential to be extended to even
higher order micromorphic continua, e. g. with a view to the micromecha-
nical modelling of semiflexible biopolymer networks comprising reorientation
processes based on higher order bending effects. Not least in that case, the
computation of the numerical experiments within a geometrical nonlinear
regime would be of high interest.



A
Alternative choice of the micromorphic

projection polynomial

In chapter 5, the cubic projection polynomial eq. (5.9) has been introduced
including the purely macroscopic coefficient tensors A1

M , B2
M , C3

M and D4
M .

If one considers only the odd polynomial links, one may identify four linear
deformation modes as well as eight independent cubic deformation modes
(two-dimensional case). Concurrently, the averaging rules eqs. (5.4) – (5.8)
indicate the odd deformation modes to depend on the macroscopic displace-
ment gradient Grad uM and on the microdeformation χ̄M . I. e. there are
only eight macroscopic deformation components available. By consequence,
further assumptions have to be taken into account in order to reduce the num-
ber of independent deformation modes. In the present contribution, only the
periodic parts of the cubic polynomial link have been considered,

∆ucub
1 =

1

6
(DM1111 ∆X3

1 + DM1222 ∆X3
2 ), (A.1)

∆ucub
2 =

1

6
(DM2111 ∆X3

1 + DM2222 ∆X3
2 ), (A.2)
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whereas the deformation modes depending on ∆X2
1 ∆X2 and ∆X1 ∆X2

2 have
been neglected. Doing so, it has been shown in chapter 5 the microdeforma-
tion χ̄M not to contribute to any effective deformation state. By contrast,
some periodic inner deformation modes are activated resulting in a cubic
fluctuation of the boundary displacements, cf. fig. 5.1.

The proposed projection polynomial fulfils the above mentioned averaging
rules a priori. But, of course, this choice is not unique. Forest et al. [39, 45]
have introduced a different definition of the projection polynomial. In order
to identify the unknown polynomial coefficients in terms of the macroscopic
deformation quantities, the linear deformation modes have been assumed
solely to depend on the macroscopic displacement gradient Grad uM , re-
sulting in four side conditions and completing the equation system. Doing
so, the linear polynomial link reads

∆ulin
1 = uM1,1 ∆X1 + uM1,2 ∆X2, (A.3)

∆ulin
2 = uM2,1 ∆X1 + uM2,2 ∆X2 (A.4)

and the cubic one

∆ucub
1 = −10

l2

(
∗

χM11

(
∆X3

1 − 3 ∆X1 ∆X2
2

)

+
∗

χM12

(
∆X3

2 − 3 ∆X2
1 ∆X2

))

, (A.5)

∆ucub
2 = −10

l2

(
∗

χM21

(
∆X3

1 − 3 ∆X1 ∆X2
2

)

+
∗

χM22

(
∆X3

2 − 3 ∆X2
1 ∆X2

))

(A.6)

for a square unit cell of the size l2. The difference deformation defines as

∗

χM = Grad uM − (χ̄M − 1). (A.7)

A square microvolume of the edge length l, deformed depending on the hori-
zontal components of Grad uM and χ̄M , is depicted in fig. A.1.

Apparently, the coupling behaviour between the macroscopic displacement
gradient and the microdeformation is much more pronounced than it has
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a) b)

c) d)

Figure A.1: Alternative odd deformation modes proposed in [45], depending
on a) uM11, b) uM12, c) χ̄M11 − 1 and d) χ̄M12 for a quadratic microvolume.

been for the projection rule proposed in chapter 5. Let us study again the
displacement in dependence of uM1,2 = ū at position ∆X1 = 0, ∆X2 = l/2.
One finds

∆ualternative
1

(

∆X1 = 0, ∆X2 =
l

2

)

= ū
l

2
+

10

l2
l3

8
= ū

7

4
l, (A.8)

whereas the first order approach accounts for

∆u1storder
1

(

∆X1 = 0, ∆X2 =
l

2

)

= ū
l

2
. (A.9)

The microscopic deformation induced by the macroscopic displacement gra-
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dient does not equal the effective deformation on the macroscale and the dif-
ference has to be equalised by the microshear deformation. By consequence,
the decoupling of the linear deformation modes requires the microdeforma-
tions to contribute to the effective deformation and therefore induces vice
versa an inherent coupling between the macro- and the microdeformations.
From the physical point of view, at least for the geometries investigated in
the present work, this alternative choice of the projection polynomial is not
meaningful. Nevertheless, this second polynomial satisfies the averaging rules
introduced in chapter 5. Note that the curvature deformation modes are not
concerned by the different formulations.

Summing up, one may conclude that the choice of the additional restrictions
for the projection polynomial must correspond to the deformation mecha-
nisms essential for the underlying microstructure. Analogously, there is no
methodical need to establish a polynomial projection rule. If required, one
may also introduce an arbitrary function within the limits defined by the
averaging rules.



B
Downwards compatibility

By introduction of the micromorphic homogenisation technique, the question
arises if the two-scale approach coincides under certain conditions with the
first order approach. Or clearly spoken: Is the proposed scheme downwards
compatible?

For that purpose, let us reflect again the proposed projection polynomial
eq. (5.16)

∆u =
1

2

(

−Grad χ̄M : G +
(
5 (χ̄M − I) − 3GraduM

)
· ∆X

+Grad χ̄M : (∆X ⊗ ∆X)

)

(B.1)

−1

6

(

5
(
(χ̄M − I) − Grad uM

)
·

4

I ·G−1

)
... (∆X ⊗ ∆X ⊗ ∆X).

Putting the projection rule in the context of the second gradient continuum
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theory, let us furthermore establish the internal constraint

χ̄M = FM , (B.2)

i. e. the microdeformation χ̄M does not longer comprise an independent
microscopic deformation quantity but is strictly coupled to the macrodefor-
mation FM . By consequence, the projection polynomial collapses towards
the purely quadratic polynomial

∆u = GraduM · ∆X +
1

2

(

Grad FM : (∆X ⊗ ∆X −G)

)

, (B.3)

taking into account the constant rigid body translation equalising the volume
centroid’s shifting induced by the quadratic modes. The resulting expression
corresponds exactly to the kinematic projection found by Kouznetsova et al.
[77, 79] for the second gradient continuum theory on the macroscale. Appa-
rently, the cubic polynomial link, which can be interpreted as the difference
of the total microscopic deformation and the macroscopic deformation, does
not appear any more.1

If one furthermore assumes the microvolume l2 attached to the macroscopic
material point to be very small, i. e. l → 0, the quadratic polynomial link,
which is of the order O(l2) can be neglected and the projection polynomial
reduces to the linear expression

∆u = Grad uM · ∆X, (B.4)

continuously ignoring any periodic fluctuations. Thus, this second reduction
implies a perfect separation between the macroscopic length scale and the
microscopic one. Since only the first gradient of the macroscopic displace-
ment field is taken into account, this last expression describes the micro-
to-macro transition for the case of a macroscopic first gradient continuum
theory, i. e. the standard Cauchy continuum theory. The appropriate ho-
mogenisation rules for the stress quantities follow by a correct evaluation of
the particular form of the Hill-Mandel condition. Note that the analogous

1Note, that the given geometrical interpretation of the difference deformation
∗
χM=

χ̄M −FM is only valid for the small deformation regime. For the geometrically nonlinear
context, the relation ĒM = χ̄M ·F−1

M − I = (χ̄M −FM ) ·F−1
M has to be taken into account

for the geometrical interpretation, which is in fact an objective strain measure.
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reduction of the projection polynomial holds if one chooses the alternative
projection polynomial eqs. (A.5) and (A.6) following Forest et al. [39, 45].

In order to confirm the found downwards compatibility, let us consider the
homogenisation of a homogeneous microvolume. Therefore, one may com-
pute a shear experiment of a infinitely large domain, cf. fig. 8.2. For the
geometrical interpretation of the micromorphic degrees of freedom is not
clear in the case of a homogeneous microcontinuum, let us assume the mi-
crodeformation to be left unprescribed at the boundaries, i. e. no clamping
conditions. Furthermore, the microvolume is assumed to be several orders of
magnitude smaller than the macroscopic sample size h.2

Finally, one finds the shear test to prescribe a homogeneous shear deforma-
tion throughout the whole sample volume, uM1,2 = ū/h and the microshear
deformation calculates as χ̄M12 = uM1,2. The homogeneous shear stress cor-
responds to the analytical solution. Analogous results are found for different
loading states. Apparently, the homogeneous microcontinuum comprises the
choice of the internal constraint χ̄M = FM . Again, the choice of the al-
ternative projection polynomial eqs. (A.5) and (A.6) produces the identical
results. With respect to the simplicity of the result, no plot has been added
at this point.

2From the technical point of view, one also may equivalently choose the microvolume
size comparable to the macroscopic sample size while suppressing the quadratic deforma-
tion modes and neglecting the resulting couple stresses.





C
Balance equations in the weak form

The numerical investigations within the present contribution are based on
the solution of a set of coupled partial differential equations (PDE), i. e. the
balance of momentum and the balance of momentum moments, applying the
Finite Element Method (FEM), cf. e. g. [129].

Doing so, the so-called strong formulation of the balance equations has to
be transformed into the weak form. Any volume forces and volume double
forces will be neglected in the sequel. Considering the physical body B0, let
us introduce Dirichlet and Neumann boundary conditions

u = u0, χ̄ = χ̄0 on ∂BD
0 , (C.1)

P · N = p0, Q · N = q0 on ∂BN
0 , (C.2)

where

∂BD
0

⋃

∂BN
0 = ∂B0 and ∂BD

0

⋂

∂BN
0 = {}. (C.3)
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Balance of momentum

The strong formulation of the balance of momentum within the material
frame reads1

DivP = 0. (C.4)

To generate the weak formulation, the balance equation has to be multiplied
with an appropriate testing function δu, where δu = 0 on ∂BD

0 . Further-
more, the resulting expression is integrated over the volume captured by the
physical body B0,

∫

B0

δu ·Div P dV = 0, (C.5)

⇔
∫

∂BN
0

δu · p0 dA

︸ ︷︷ ︸

Neumann BC

−
∫

B0

Grad δu : P
︸ ︷︷ ︸

residualRi

dV = 0, (C.6)

where one integration by parts and the Neumann boundary condition have
been applied. For the implementation within COMSOL Multiphysics R©, the
local residuals have to be computed for each testing function δu and one
finds

R1 = δu1,1 P11 + δu1,2 P12, (C.7)

R2 = δu2,1 P21 + δu2,2 P22. (C.8)

1Besides the symmetry conditions for the Cauchy stress tensor, the balance of momen-
tum exhibits the identical structure for both, the classical Cauchy continuum as well as
for the extended micromorphic continuum.
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Balance of moments of momentum

The strong formulation of the balance of moments of momentum within the
material frame reads

DivQ3 + (P− S) · FT = 0. (C.9)

By multiplication with the testing function δχ̄, where δχ̄ = 0 on ∂BD
0 , and

by integration over the volume captured by the body B0, one finds the weak
formulation

∫

B0

δχ̄ :
(
DivQ3 + (P− S) · FT

)
dV = 0(C.10)

⇔
∫

∂BD
0

δχ̄ : q0dA

︸ ︷︷ ︸

Neumann BC

−
∫

B0

(

Grad δχ̄
...Q3 − δχ̄ : (P − S) · FT

)

︸ ︷︷ ︸

residualRi

dV = 0,(C.11)

where again one integration in parts has been applied. Furthermore, the Neu-
mann boundary condition for the surface double traction has been inserted.
The local residuals calculate as follows:

R3 = δχ̄11,1 Q111 + δχ̄11,2 Q112

−δχ̄11

(
(P11 − S11) F11 + (P12 − S12) F12

)
, (C.12)

R4 = δχ̄12,1 Q121 + δχ̄12,2 Q122

−δχ̄12

(
(P11 − S11) F21 + (P12 − S12) F22

)
, (C.13)

R5 = δχ̄21,1 Q211 + δχ̄21,2 Q212

−δχ̄21

(
(P21 − S21) F11 + (P22 − S22) F12

)
, (C.14)

R6 = δχ̄22,1 Q221 + δχ̄22,2 Q222

−δχ̄22

(
(P21 − S21) F21 + (P22 − S22) F22

)
. (C.15)
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Sandwich structure

As it has been mentioned earlier, special attention has to be paid to the
macroscale numerical implementation of the sandwich structure in chapter
10. Whereas the cellular kernel requires a micromorphic continuum formu-
lation on the macroscale, the compact surface sheets follow Hooke’s law in
the context of the classical Cauchy continuum formulation.

For the micromorphic kernel, the residuals are formulated following eqs. (C.7)
and (C.8) as well as eqs. (C.12) – (C.15). At the interface between the cellular
kernel and the surface sheets, the microdeformation χ̄ has to be restricted.
To do so, the residuals of the balance of momentum moments are modified
applying a penalty multiplier λ,

R3 = λ (χ̄11 − 1), (C.16)

R4 = λ χ̄12, (C.17)

R5 = λ χ̄21, (C.18)

R6 = λ (χ̄22 − 1). (C.19)

If the penalty multiplier λ is chosen large, the Finite Element Method cal-
culates the microdeformation χ̄ to equal the identity within the surface lay-
ers. Thus, at the interface between the kernel and the surface sheets, the
microdeformation degrees of freedom undergo the same restrictions as at a
rigid boundary.
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