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1. Introduction 
 

From stem cells in bone marrow, human erythroid cells are differentiated through a process 

named erythropoiesis to become mature erythrocytes or red blood cells (RBCs). The 

lifespan of the cells in circulation is about 100 – 120 days. RBCs are relative simple cells 

due to the lack of organelles and nucleus. The main duty of them is to transport oxygen and 

carbon dioxide. Although RBCs have been intensively studied for many years, many 

questions concerning these cells are still not fully answered. For example, what is the role 

of RBCs in blood clot formation, how do RBCs become old, what is the role of Ca2+ in the 

ageing process or is there an apoptosis of RBCs? Another open question is how are RBCs 

removed from blood circulation? The mechanisms of these processes are still unclear 

because it seems that they involve many factors, which are mostly located in the cell 

membrane.  

With the development of microscopes and other techniques as well as newly developed 

fluorescent dyes for labelling, the answers for such questions have gradually become 

clearer at the molecular level. For instance, in blood clot formation, so far medical 

textbooks have mentioned that when an injury happens, RBCs are merely “trapped” into a 

fibrin network, and thus they prevent the blood from continuously bleeding. However, 

some recent findings suggest that together with platelets and other factors, RBCs play an 

active role in the process of blood clot formation.  

Although the apoptosis of RBCs is still under consideration, it is gradually accepted that 

they undergo a type of determined cell death called eryptosis. The reason is that some 

common apoptotic signals have been observed such as the exposure of phosphatidylserine 

(PS) on the outer leaflet of the membrane, membrane blebbing, and vesicle formation. The 

PS exposure is an important signal not only for the recognition and phagocytosis by 

macrophages, but also for the adhesion of RBCs to endothelium in some diseases such as 

sickle cell anaemia, malaria, and diabetes. The increase of the intracellular Ca2+ level is one 

of the most important factors leading to PS exposure because it activates the phospholipid 

scramblase (PLSCR). Currently, the mechanisms involving PS exposure in RBCs still 

awaits a full understanding.  
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The difference between young and old RBCs is also a problem of concern because it relates 

to the process of ageing and removing of old RBCs out of the blood circulation. Regarding 

young and old RBCs, it has been speculated that the intracellular Ca2+ level in old RBCs is 

higher than in the young ones but so far there is not enough evidence to support this idea. 

By means of fluorescent dyes, fluorescence microscopy, flow cytometry and other modern 

techniques, the main work of this thesis has been focused on the relation of intracellular 

Ca2+ and PS exposure in RBCs. Factors related to the PS exposure and the relations 

between the ageing of RBCs and eryptosis have been also examined. The experiments have 

been carried out for two main purposes. The first reason is to clarify the role of Ca2+ in the 

PS exposure process in RBCs to contribute to our understanding of the mechanisms of this 

process. The second reason is to give some support to the idea that RBCs play an active 

role in blood clot formation. 

The presented work has been done in Saarland University in the laboratory of biophysics 

under the leadership of Prof. Ingolf Bernhardt. 
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2. Theoretical background 
 

2.1. Red blood cell membrane 
 

2.1.1. Membrane lipids 

 

The human RBC (RBC) membrane consists of lipids (41%), proteins (52%), and 

carbohydrates (7%) [1, 2]. In average, there are about 5.2 mg membrane lipids per ml of 

packed RBCs or approximately 5.2 × 10-13 g/cell. Membrane lipids can be classified into 

three classes: neutral lipids (25.2%), phospholipids (62.7%) and glycosphingolipids 

(about 12%). Neutral lipids of human RBCs represent cholesterol almost exclusively [3, 

4]. The ratio of cholesterol to phospholipid is about 0.8 [5]. Phospholipids consist of 

sphingomyelin (SM, 26%), and glycerophospholipids. Glycerophospholipids can be 

divided into 3 main fractions: phosphatidylcholine (PC, 30%), phosphatidylethanolamine 

(PE, 27%), and phosphatidylserine, (PS, 13%), and several minor fractions phosphatidic 

acid, lyso PC, phosphatidylinositol (PI), mono and disphosphates PI [3, 5, 6]. 

RBCs of various species differ in their fatty acid and phospholipid compositions. For 

example, RBCs from rat and mouse have a high content of PC (42 – 45%) and a low 

content of SM (12%) [3]. The low content of PC in ruminant RBCs results from an 

endogenous phospholipase A2, which is present at the outside of the membrane and 

cleaves PC [7, 8]. 

The lipid composition of RBC membrane is rather stable and only alters with diet to a 

limited extent [9, 10]. This is due to the lack of de novo synthesis of phospholipids in the 

mature RBC. Limited alterations of the fatty acid composition by diet result from the 

exchange of phospholipids, primarily PC, between plasma lipoproteins and the cell 

membrane, as well as the exchange of fatty acids [11, 12]. 

The phospholipids in the plasma membrane of RBCs, platelets, lymphocytes and many 

other cells are asymmetrically distributed [13]. The two leaflets of the plasma membrane 

differ in their phospholipid composition. In RBCs, the best established cell system for 

lipid distribution investigation, SM and PC are found predominantly in the outer 

membrane leaflet of the bilayer while the amino phospholipids, PS and PE, are located 

predominantly in the inner bilayer leaflet [14]. Fig. 1 shows the distribution of the major 

phospholipids between the outer and inner membrane. 
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Fig. 1: Distribution of the major phospholipids between the outer and inner 
membrane leaflets (taken from [1]). The analysis data are from human [15], rat [16], 
mouse [17], monkey [18], and cow [8]). PS data for rat and cow include PI. 
 

The transbilayer lipid distribution is under the control of three major players: (i) an 

inward-directed pump, a “flippase”, specific for PS and PE, also known as 

aminophospholipid translocase (APTL), (ii) an outward-directed pump referred to as 

“floppase”, and (iii) a lipid scramblase, promoting unspecific bidirectional redistribution 

across the bilayer [19]. A significant and sustained increase of cytosolic Ca2+ 

accompanying cell stimulation may lead to the collapse of the membrane lipid asymmetry 

by stimulating scramblase and floppase activities and concomitantly inhibiting the 

flippase. The most prominent change in lipid distribution is surface exposure of PS, 

followed by microvesicle release due to the cytoskeleton degradation by Ca2+-dependent 

proteolysis [20]. 
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2.1.2. Membrane proteins 

 

The RBC membranes contain more than ten major proteins known, and probably hundreds 
of minor proteins. In almost all protocols, membrane proteins are isolated from cell ghosts. 
In general, the RBC ghosts are prepared by haemolysis of RBCs in hypotonic solution.  
The proteins from RBC ghosts are extracted by using mild detergents and analyzed by 
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). However, with 
these procedures or other similar methods, there are still some peripheral proteins, which 
can be lost when the cell membrane fragments of the ghosts are washed [2, 21].  
According to Fairbanks [22], the individual protein fractions are separated and named 
according to their electrophoresis mobility in the SDS-PAGE. The slowest migrating band 
is band 1 (on top); the next band is band 2 protein, and so on. Sub-bands are designated 
with decimals, that is, protein 4.1 and protein 4.2, which are two sub-bands constituting a 
region at the position of the fourth migrating band. The protein bands are named logically 
from 1 to 7 [22]. The major membrane proteins are summarized in Table 1 [21]. Although 
numerous membrane proteins are identified as protein bands based on SDS-PAGE, there 
are some proteins such as glycophorins only can be detected by the staining method using 
Periodic acid Schiff (see Fig. 2) [21].  
Based on the binding with lipids, membrane proteins are classified into two groups. 
Peripheral proteins locate only at one side, exterior or interior of the membrane, and are 
more loosely associated. These proteins can be easily removed by high or low salt or high 
pH extraction. Integral proteins are embedded tightly into or through the lipid bilayer by 
hydrophobic domains within their amino acid sequences. They can be extracted by harsh 
reagents (chaotropic solvents or detergents).  
In the membrane ultra structure, based on the functional properties, membrane proteins of 

RBCs can be classified into three categories. Cytoskeletal proteins (α and β spectrins, 
protein 4.1, actin), these proteins located just beneath the lipid bilayer. Integral proteins 
(band 3 and glycophorins) are strongly embedded into the lipid bilayer. Anchoring proteins 
(ankyrin and protein 4.2) connect with the cytoskeletal network as well as integral proteins. 
The functions of the membrane proteins are mostly regulated by the state of 
phosphorylation, methylation, glycosylation, or lipid modification (myristylation, 
palmitylation, or farnesylation) [21, 23]. Expression of membrane proteins is also under the 
control of genetic and epigenetic (gene phosphorylation, acetylation, methylation, and 
others) modification of membrane protein genes. Table 1 shows the molecular 
characteristic of major membrane proteins in human RBCs. Fig. 2 shows RBC ghost 
proteins analyzed by SDS-PAGE by the methods of Fairbanks and Steck, and Laemmli. 
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Table 1: Molecular characteristics of major membrane proteins in human RBCs 
(taken from [21]). 
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Fig. 2: A schematic demonstration of the findings of RBC ghost proteins analyzed by 
SDS-PAGE (taken from [21]). Left: methods of Fairbanks and Steck, right: method of 
Laemmli. CS: Coomasie blue staining, PAS: periodic acid Schiff staining, M: membrane 
fraction, S: soluble fraction, GP (A, B, C) glycophorins, G3PD: Glyceraldehyde-3-
phosphate dedydrogenase. 
 

2.1.3. Membrane transport 

 

Ion transport through biological membranes can be divided into 4 principal mechanisms: 

pump, carrier, channel, and residual transport (also called “leak” transport). Various 

techniques are available to determine transport rates including radioactive tracers (flux 

measurements) and fluorescent dyes. Alternatively, electrophysiological methodology 

including the patch-clamp technique is applicable to electrogenic transport. 

(1) Pumps (active transport)  

Active transport is characterized by one or more ions moving against the 

electrochemical potential(s) through direct coupling to the consumption of ATP. 

ATPases, which hydrolyse ATP, often need co-substrates, e.g. Na+ and K+ for the 

Na+,K+-ATPase (or Na+/K+ pump), Ca2+ and H+ for the Ca2+-ATPase (or Ca2+ pump). 

During transport, the energy released from ATP hydrolysis is used to change the 
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conformation of the pump protein. There are 4 different types of ATPases in biological 

membranes: P-type ATPases, V-type ATPases, F-type ATPases, and ABC transporters 

[24]. 

a) P-type ATPases (P stands for phosphorylation) have a phophorylated aspartate residue 

as an intermediate product during the reaction cycle. The prototype ATPase first 

discovered was the Na+/K+-ATPase by Skou J. C. et al. in 1957 [25]. This Na+/K+ pump 

is able to maintain a 10-fold gradient for Na+ and K+ across the biological membrane. 

For each molecule of ATP hydrolysed, three Na+ are transported out of the cell and two 

K+ inwards [26, 27]. Nearly all cells contain a Na+/K+ pump in their membrane, except 

RBCs of carnivores including cats and dogs [27, 28]. Ca2+ pumps also belong to P-type 

ATPase family, they are responsible for Ca2+ homeostasis in cells [29].  

b) V-type ATPases (V stands for vacuole) transport exclusively H+ and are therefore, 

termed H+-ATPases. V-type ATPases are membrane-bound multiprotein complexes that 

are localized in the endomembrane systems of eukaryotic cells and in the plasma 

membranes of some specialized cells. They couple ATP hydrolysis with the transport of 

protons across membranes. They also occur in vacuoles of fungi, yeast, and higher 

plants but are also found in the secretory vesicles of animal cells [30]. The V-type 

ATPase is much larger than the P-type ATPase and consists of many subunits. It is 

neither phosphorylated nor dephosphorylated. V-type ATPases contain an integral 

membrane domain (V0), which acts as an H+ channel and a peripheral domain (V1) with 

the ATP binding site. The mechanism of the coupling of ATP hydrolysis and H+ 

transport is still unknown. Through analysis of structure and transport function, it is 

apparent that the V-type ATPase is closely related to the F-type ATPase [30-32]. 

c) F-type ATPases (F stands for factors participating in energy coupling) like the V-type 

ATPases and F-type ATPases catalyze ATP hydrolysis and the transport of H+ through 

the membrane against its electrochemical gradient. However, in contrast to the V-type 

ATPases, the F-type ATPases are able to synthesize ATP from ADP and inorganic 

phosphate by using dissipative H+ movement down its electrochemical gradient (inverse 

reaction). In this mode, they are called ATP-synthases. F-type ATPases contain an 

integral membrane domain (F0) acting as H+ channel and a peripheral domain (F1), 

which is of importance for both ATP-synthase and ATPase activity. This type of 

ATPases plays a central role in energy conserving reactions in mitochondria, bacteria, 

and chloroplasts [33, 34].  

 



2. Theoretical background    9

d) ABC transporters (ABC stands for ATP binding cassette) represent for a large protein 

super family from prokaryotes to humans. They use energy from ATP hydrolysis to 

change their conformation to transport a large variety of substances actively across the 

cell membrane (both import and export). Typical functions of different ABC transporters 

include, for example, cholesterol and phospholipid transport out of eukaryotic cells, or 

the uptake of the substances such as amino acids, saccharides, peptides, and vitamins 

into prokaryotic cells. ABC transporters are also involved in multidrug resistance, which 

can cause many problems in clinical treatments. Some proteins functioning as ion 

channels are also belong to the ABC transporters. These channels are regulated by ATP 

but do not carry out an active transport [35]. 

(2) Carrier mediated transport 

Proteins acting as carriers mediate the transport of ions or other substrates by making 

use of a periodic repeated conformational change of the protein. By this means, it 

becomes possible for the transported substrate to gain access to its binding site at both 

the inner or outer membrane surface. In general, a carrier mediated transport can be 

divided into two different mechanisms: uniport and cotransport. A uniport mediates the 

transport of a single ion or other substrate “downhill” the concentration or 

electrochemical gradient. Cotransporters can be divided in symporters and antiporters. A 

symporter binds the ions and/or substances (two or more substrates) and transports them 

together in one step in the same direction through the membrane. Movement of one 

substrate down its chemical or, in most cases, its electrochemical gradient is used to 

power the “uphill” transport of the cotransported substrate(s), i.e. against their chemical 

or electrochemical gradients. Examples are the glucose-Na+-symporter, present in the 

membrane of epithelial cells, and the lactose-permease, a lactose-H+-symporter, in the 

membrane of bacteria. The AE1 protein (band 3) which mediates the Cl-/HCO3
- 

exchange, crucial gas transport by RBCs is an example for an antiporter. In cardiac 

muscle cells, Na+-linked antiporter exports Ca2+ out of these cells [24].  

(3) Transport through channels 

Ion channels are groups of proteins, which can form pore structures. The pore structures 

establish and monitor the ion going through the plasma membrane. In general, the ion 

channels allow the flow of ions down their electrochemical gradient [36, 37]. Ion 
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channels are relatively easy to investigate using the patch-clamp technique. They are 

closely packed by multi-subunits to form a specifically selective pore [37, 38]. All 

channels display two general features, they possess a mechanism for opening and 

closing, and they have a selectivity filter. The high-frequency switch between the open 

and closed state of the channel is termed gating, and the duration of opening is called 

open time. The selectivity filter is responsible for the more-or-less specific transport of 

one or several ion species. Gating can be divided into 4 categories by modality:  

1. Change of the electrical membrane potential, i.e. change of the electrical field 

strength in the membrane, 

2. Binding of a regulatory substance (including Ca2+) or ligands, 

3. Mechanical forces (membrane “stretch” or cell volume changes), 

4. Light. 

Recently, Agre et al. [39] discovered the aquaporin or so called “water channel”. 

Aquaporins are integral membrane proteins belonging to a larger family of major 

intrinsic proteins that form pores in the membrane of biological cells. The three-

dimensional structure of aquaporin 1 and the pathway by which water is transported 

through the channel (but not other small solutes) were described by Agre. 

(4) Residual (“leak”) transport 

The residual or “leak” transport of an ion or a substance is a general term used to define 

a transport through a membrane which does not involve a specific transport pathway. 

Such residual transport would remain when all transporters including pumps, carriers, 

and channels are blocked [40]. There are several possible explanations for residual 

transport:  

1. Diffusion through fluctuations in the lipid bilayer (existence of non-bilayer 

structures, kinks, interfaces of lipids in different states, and rafts),  

2. Diffusion at the protein-lipid interface,  

3. Diffusion through structures formed in the interior of protein aggregates or on 

protein subunits. 

The mechanisms of ion transport pathways through biological membranes are 

summarized in Fig. 3. An overview of the principal transport pathways for Na+ and K+ in 

the human RBC membrane is shown in Fig. 4. 
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Fig. 3: Schematic illustration of the mechanisms of the ion transport through 
biological membranes (taken from [24]). 1, 2: active transport; 3: transport through 
channels; 4 – 8: carrier-mediated transport (4: uniport realized by an integral membrane 
protein, 5: symport realized by an integral membrane protein, 6: antiport realized by an 
integral membrane protein, 7: ionophore acting as antiporter, 8: ionophore-mediated 
uniport: 9: leak transport. 
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Fig. 4: Overview of the principal transport pathways for Na+ and K+ in human RBC 
membrane (taken from [40]). The following transport mechanisms are shown: Na+/K+ 
pump; Na+-K+-2Cl- symporter; K+-Cl- symporter; Na+ dependent amino acid (aa) 
transport (several discrete transporters); Na+(Mn+)/Mg2+ antiporter; Na+/Li+ antiporter; 
Na+/H+ antiporter; NaCO3

-/Cl- exchange (via the protein band 3); K+(Na+)/H+ antiporter; 
non-selective voltage dependent cation (NSVDC) channel; Ca2+-activated K+ channel 
(Gardos channel).  
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2.2. Movement of membrane phospholipids  
 

2.2.1. Flippase, floppase, and scramblase 

 

In artificial liposomes, lipids form symmetrical and stable bilayers with a random 

spontaneous transbilayer lipid diffusion (or flip-flop) between both leaflets [41]. 

However, lipids in biological membranes are asymmetrically distributed across the 

bilayer. The choline-containing lipids, phosphatidylcholine (PC) and sphingomyelin 

(SM), are enriched primarily on the external leaflet of the plasma membrane. In contrast, 

the amine-containing 

glycerophospholipids, phosphatidylethanolamine (PE) and phosphatidylserine (PS), are 

located preferentially on the cytoplasmic leaflet. The maintenance of transbilayer lipid 

asymmetry is essential for normal membrane function, and disruption of this asymmetry 

is associated with inducing or pathologic conditions. Lipid asymmetry is generated 

primarily by selective synthesis of lipids on one side of the membrane. Because passive 

lipid transbilayer diffusion is slow, a number of proteins are involved in either 

breakdown or maintain this lipid gradient. These proteins fall into three classes [41-43]: 

1) Cytofacially-directed, ATP-dependent transporters (“flippases”); 

2) Exofacially-directed, ATP-dependent transporters (“floppases”);  

3) Bidirectional, ATP-independent transporters (“scramblases”). 

Flippases 

Flippase or aminophospholipid translocase (APTL) activity was first reported by Devaux 

and co-workers who measured the ATP-dependent uptake of spin-labelled lipid 

analogues in human RBCs [42, 44]. Phospholipids labelled with fluorescent fatty acids, 

particularly 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) derivatives, have also been used 

extensively to study this transporter [42, 45, 46]. The flippase is a 130 kDa integral 

membrane protein which is a member of the Mg2+ dependent P-glycoprotein ATPases 

[21]. It is responsible for translocation of phospholipids from one side of a membrane to 

the other against their gradients of concentration. Transport catalyzed by flippase is 

coupled with an ATPase; transport activity requires ATP and Mg2+ [46] and is inhibited 

by vanadate [44]. Flippase activity is also inhibited by Ca2+ [47, 48], indicating that the 

activity of this enzyme may be regulated in stimulated cells. The flippase is widely 

distributed and is present in most plasma membranes including RBCs, platelets, 
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lymphocytes, aortic endothelial cells, fibroblasts, pheochromacytoma cells, hepatocytes, 

and spermatozoa [49-53]. 

In principle, the transbilayer diffusion of phospholipids also occurs at a low speed, 

associated with very long residence time of lipids in each monolayer (several hours for 

long chain phospholipids) [54, 55]. Therefore, in the absence of flippase, gradually, the 

plasma membrane composition would eventually be randomized by the transbilayer lipid 

diffusion. Thereby flippases take part in maintenance of a transmembrane asymmetrical 

lipid distribution [41].  

Flippase is responsible for localization of PS and PE in the inner leaflet by rapidly 

translocating them from the outer to the inner leaflet against the concentration gradient. 

The aminophospholipid flippase is perhaps the most selective of the lipid transporters. It 

prefers PS over other lipids [42, 44]  and the specificity for PS is defined by each of the 

functional groups of the lipid in which the amine group is absolutely required [42]. When 

phosphatidyl hydroxypropionate, a PS analogue without an amino group has been used, it 

is not transported by flippase [56]. The enzyme can tolerate mono-methylation of PS and 

to a lesser extent, PE [57]. Recent data have shown that PC can be transported by an 

ATP-dependent flippase in mammalian cells and yeast [41, 58, 59]. However, progressive 

methylation of PE reduces transport significantly [57]. The carboxyl group is not 

essential (PE is also a transport substrate), but its absence lowers the rate of transport 

approximately 10-fold [60], and methyl esterification of the carboxyl group reduces 

transport activity significantly [57]. In contrast to other PS-specific proteins, such as 

protein kinase C [61] and the macrophage PS receptor [62, 63], the stereochemistry of the 

L-serine head group is unimportant for recognition by the flippase; both the D- and L-

serine isomers are transported equally well [56, 57, 64]. So far, the best strategies to 

identify the function of flippases is using knock-out cells or natural mutants depleted of 

specific ATPases [42]. However, the mechanisms as well as the relation of flippase to 

Ca2+, ATPase and protein kinase C is still under discussion. Nevertheless, the asymmetry 

of membrane lipids appears to depend on the activity of flippase, which actively 

translocates PS and PE to the inner leaflet [21, 65, 66]. 

Floppase 

The second class of ATP-dependent lipid transporters are the exofacially-directed 

floppases. Early studies in RBCs revealed a nonspecific outward flux pathway for NBD- 

and spin-labelled lipids [21, 42, 67, 68]. It was recognized subsequently that not all but 
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some members of the ABC transporter super family are also capable of transporting lipids 

[42, 69, 70].  

According to Borst et al. [69], ABC transporters are a diverse group of proteins that are 

responsible for the export of amphipathic compounds, a part of them is coupled with ATP 

consumption. Some of them are multidrug resistance proteins, which export cytotoxic 

xenobiotics. The most well characterized lipid floppase activities are those catalyzed by 

ABCA1, ABCB1, ABCB4, and ABCC1. The ABC transporter ABCA1 (ABC1) has been 

shown to transport cholesterol out of cells. This transporter may act as a floppase for both 

cholesterol and PS. Whether there exist a connection between cholesterol and PS 

transport is unclear, but this protein likely serves an efflux function, and is not involved 

in the maintenance of lipid asymmetry [69].  

Scramblase 

Daleke et al. [42] reported that rather than assist in the maintenance of lipid asymmetry, 

scramblases degrade the transbilayer phospholipid gradients by bidirectional transport 

without consuming ATP. Three scramblase activities have been reported; two are 

involved in dissipating lipid gradients in biogenic membranes and the third is activated 

by Ca2+ in the plasma membrane of induced cells. The scramblases are supposed to be 

ATP-independent transmembrane proteins, which are triggered by the presence of 

cytosolic Ca2+ in human RBCs [71-73] 

The scramblases facilitate the flip-flop of lipids in a non-selective fashion. In the 

presence of Ca2+, the scramblases behave like a channel for lipids allowing them to 

diffuse from one monolayer to the other according solely to the concentration gradient 

[41]. Recently, Wiedmer and colleague reported that phospholipid scramblase, a 35 kDa 

protein, mediates Ca2+-induced bidirectional transbilayer movement of plasma membrane 

phospholipids in induced, injured, or apoptotic cells [74]. Furthermore, three additional 

novel cDNAs encoding proteins with high homology to HuPLSCR1 have been 

discovered. The fifth PLSCR was discovered by Strausberg et al [75]. PLSCR1, 

PLSCR2, and PLSCR4 are closely clustered on the short arm of chromosome 3 (3q23), 

PLSCR5 is located at 3q25 of chromosome 3, and PLSCR3 clustered on the long arm of 

chromosome 17 (17p13). 

In 2008, Sahu et al. [76] reported that hPLSCR1 is activated when cytosolic Ca2+ levels 

rise by 1,000-fold and it scrambles phospholipids across the plasma membrane. Lopez-

Montero et al. [77] reported that a Ca2+ dependent soluble sphingomyelinase (SMase) can 
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trigger scrambling of lipids by destabilizing the plasma membrane via conversion of the 

inner leaflet sphingomyelin to ceramide, a lipid with a very small polar head group. The 

change in the area occupied by this lipid in one leaflet can form temporary pores going 

along with lipid flip-flop would be facilitated. 

 

2.2.2. Maintenance of plasma membrane lipid asymmetry 

 

Once lipid asymmetry has been established, it is maintained by a combination of slow 

transbilayer diffusion, protein-lipid interactions, and protein-mediated transport [78]. 

Normal circulating RBCs exhibit an asymmetric distribution of phospholipids in the 

membrane where PS and PE reside in the inner leaflet and PC and SM are enriched on the 

outer leaflet [78]. Under physiological conditions, phospholipid asymmetry in the RBC 

membrane is relatively stable with slow exchange of phospholipids between the bilayer. 

Escape of PS or PE to the outer leaflet is quickly corrected by the action of an APTL that 

selectively transports aminophospholipids such as PS, and to a lesser extent PE, from the 

outer leaflet back to the inner leaflet [78, 79]. 

Experiments using several model membrane systems have given evidence supporting the 

direct interactions of the membrane skeleton and PS. Studies with liposomes and 

monolayer lipid films have demonstrated that the major cytoskeletal components, 

spectrin and band 4.1 specifically interact with PS. These data suggested that both 

spectrin and band 4.1 contribute to the maintenance of phospholipid asymmetry, by their 

capacity to “fix” PS to the inner leaflet. It becomes evident that considerable interaction 

between cytoskeletal proteins and aminophospholipids could occur in the cell [79].  

 

2.2.3. Loss of phospholipid asymmetry and its consequences 

 

The appearance of PS on the surface of the cell membrane can have major physiological 

consequences, including increased cell-cell interactions. The increased adherence of PS 

exposing RBCs to endothelial cells (ECs) may be pathologically important in 

haemoglobinopathies such as sickle cell disease and thalassaemia [80].   

In several cases of RBC disorders, the passive and/or active phospholipid translocation 

processes have been found to be altered. In sickle cell anaemia and irreversibly sickled 

patients, active translocation of aminophospholipid is decreased even under aerobic 

conditions [81]. This causes a decrease of the asymmetric distribution of PS and the 
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microvesicles released from sickle cells while the PS level in the outer membrane leaflet 

of the remnant cells remains low [19]. A detailed analysis of sickle cells showed that PS 

exposure is limited to a subpopulation of the cells, varies widely among sickle cell 

patients, and takes place at several stages in the life of the sickle cell [82]. In RBCs of 

thalassaemic patients, the passive transbilayer mobility of phospholipids is enhanced 

while the active APTL mediated process is not altered. This enhanced passive 

transbilayer movement is probably responsible for the observed variable accumulation of 

PS in the outer leaflet of these cells [65, 83]. In patients with sickle cell anaemia and 

thalassaemia, exposure of PS to the outer membrane leaflet enhances adherence of cells 

to the endothelium [84], promotes phagocytosis of cells [85] and stimulates thrombotic 

events [72]. 

PS exposure on the surface of platelet membrane plays a central role in promoting blood 

coagulation, as this lipid serves as assembly site for coagulation factors, including the 

prothrombinase and tenase enzyme complexes [72, 86-88]. A defect in phospholipid 

scramblase has been found in Scott syndrome, in which activated platelets fail to expose 

PS on their surface sufficient for assembly of prothrombinase [89]. The exposure of PS is 

also a significant signal for a determined cell death called eryptosis and the remove of 

apoptotic cells by macrophages [89-95].  

 

 

2.3. Phosphatidylserine exposure and cell adhesion  
 

2.3.1. Possible mechanisms for phosphatidylserine exposure 

 

The exposure of PS on the outer leaflet of the cell membrane is a complicated process 

because it involves many factors acting in combination ways. Although the pathways for 

PS exposure are not simply classified, some of them can be noted as following. 

Ca2+ dependent pathway 

It has been mentioned in over hundreds of publications that Ca2+ plays an important role 

in activating scramblases, thereby leading to the exposure of PS to outer leaflet of the cell 

membrane. The activation of Ca2+-activated K+ channel (Gardos channel) by an increase 

of intracellular Ca2+ content also leads to several effects such as cellular KCl loss, and 
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cell shrinkage due to loss of water. These effects could contribute to the PS exposure at a 

certain extent [96].  

Osmotic shock is mediated by two distinct signalling pathways [97, 98]. First, it 

stimulates a cyclooxygenase leading to the formation of prostaglandin E2 (PGE2) and 

subsequent activation of Ca2+ permeable cation channels [99]. Second, it activates a 

phospholipase A2 leading to the release of platelet activating factor, which in turn 

activates a SMase and thus stimulates the formation of ceramide [100]. The treatment of 

RBCs with some substances such as chlorpromazine, methyldopa, gold, and bismuth 

leads to an increase of intracellular Ca2+ and subsequently PS exposure [101-104]. 

Ca2+ independent pathway 

The activity of APTL depends on the ATP level in the cells. In some reports, under 

glucose free or ATP depleted conditions or in the presence of orthovanadate, the 

exposure of PS was observed in RBCs. However, the number of cells showing PS 

exposure is very low even after long time treatment (24h - 48h) [101, 105-107].  

Recently, Quan et al. [108] reported that under high concentration of glucose (0.8 M) 

RBCs showed PS exposure (80%).  However, under this experimental conditions, caspase 

3 and caspase 8 were not activated. PS exposure also was observed under stimulated 

conditions by Zn2+, Pb+ [109]. The PS exposure was also observed when RBCs have been 

induced by Pb+ (0.1 mM). This effect was paralleled by RBC shrinkage, which was 

apparent on the basis of the decrease in forward scatter of FACS analysis [110]. Caspases 

are a family of cysteine proteinases involved in the apoptotic process. Under normal 

conditions, they exist in zymogens. In initial stage, the caspase 8 or caspase 10 is 

activated and later they activate other caspases in a cascade. This cascade eventually 

leads to the activation of the effector caspases, such as caspase 3 and caspase 6. These 

caspases are responsible for the cleavage of the key cellular proteins, such as cytoskeletal 

proteins, that lead to the typical morphological changes observed in cells undergoing 

apoptosis such as membrane blebbing, and vesicle formation. Berg et al. [111] noted that 

in vivo, human mature RBCs express caspase 3 and caspase 8 but they a lack of 

mitochondrial regulators such as Apaf-1, cytochrome c, and caspases 2, 6, 7 and 9. 

Therefore, they can not undergo an apoptosis process. However, under oxidative stress 

conditions, e.g after adding 0.1 mM tert-butyl hydroperoxide, 100% of RBCs showed PS 

exposure. Mecury and some heavy metals also lead to activation of caspase 3 and in 

consequence to PS exposure [13, 112, 113]. 
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2.3.2. Cellular microvesicle formation 
 

Microvesicles (or microparticles) are small membrane bladder structures that are released 

from cells upon activation or during apoptosis. Cellular microvesicles constitute a 

heterogeneous population, differing in cellular origin, numbers, size, antigenic composition 

and functional properties. Microvesicles support coagulation by exposure of negatively 

charged phospholipids and sometimes tissue factor, the initiator of coagulation in vivo. 

Microvesicles may transfer bioactive molecules to other cells or other microvesicles, 

thereby stimulating cells to produce cytokines, cell-adhesion molecules, growth factors and 

tissue factors, and modulate endothelial functions. Microvesicles derived from various 

cells, most notably platelets but also leucocytes, lymphocytes, RBCs and endothelial cells, 

are present in the circulation of healthy subjects [114].  

Microvesicles do not only carry accessible PS, but also membrane antigens including 

adhesion proteins, receptors and other procoagulant entities such as tissue factor. 

Membrane vesiculation in platelets may be seen as a method to increase the procoagulant 

surface for optimal spatially limited haemostasis, provided microvesicles are retained at the 

site of platelet adhesion and activation. Fig. 5 shows the multi-biological functions of 

microvesicles. 

 
 

Fig. 5: Multi-biological functions of microvesicles (taken from [114]). 

 

The mechanism for the formation of microvesicles is generally coincident with the 

transverse migration of PS and membrane blebbing. Blebs are thought to result from a 

transient overload of the outer leaflet at the expense of the inner one. When the 
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cytoskeleton is no longer able to counteract the surface tension, shedding of micro vesicles 

also takes place [114]. 

 

2.3.3. Adhesion of phosphatidylserine exposed red blood cells  

 

PS exposure on the RBC surface facilitates the adhesion of RBCs to vascular endothelium. 

Setty et al. [115] noted that in sickle RBCs the exposed PSs were seen as ligands for the 

RBC adhesion receptor CD36. Another research with sickle cell anaemia shows that under 

normal conditions the RBCs are generally considered non-adhesive for endothelial cell 

surfaces. However, the PS exposed sickle RBCs show a significant adhesion with 

endothelial cell surfaces [116]. Closse et al. [117] noted that in pathological conditions 

such as sickle cell disease, malaria and diabetes, an abnormal adherence of RBCs to 

endothelium is concomitant with loss of phospholipid asymmetry resulting in PS exposure. 

The adhesion is inhibited by PS liposomes and by annexin V giving clear evidence of the 

PS dependence of these interactions. 

In the aspect of coagulation, under stimulating conditions, cells and microvesicles carrying 

exposed PS provide a catalytic surface promoting the assembly of the characteristic 

enzyme complexes of the coagulation cascade. Microvesicles shed from activated platelets 

constitute the main circulating population. They harbour major membrane glycoproteins, 

including functional adhesive receptors, and consequently disseminate a procoagulant 

potential that can be targeted according to the nature of counterligands [118]. They can 

bind to soluble or immobilized fibrinogen and aggregate with platelets [119]. The 

procoagulant potential of exposed PS cells or microvesicles is not restricted to platelet 

microvesicles because microvesicles from monocytes, lymphocytes, RBCs or endothelial 

cells also present PS at their surface [120].  

 

2.3.4. Traditional and new concepts about red blood cells in thrombosis 

 

According to the traditional opinion, coagulation is primarily a function of endothelial 

cells, platelets, and soluble coagulation factors, in which platelets take a central role. RBCs, 

in contrast, are generally regarded as innocent bystanders, passively entrapped in a 

developing thrombus as they flow through the vasculature.  

Andrews et al. [86], in an excellent review article, summarized evidence suggesting that the 

RBCs play an important role in thrombosis. Duke et al. [121] noted that an increase of 
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haematocrit in thrombocytopenic patients showed an improvement in bleeding times after 

transfusion, even though their platelet counts remained low. Fifty years later, Hellem et al. 

[122] while examined anaemic patients with bleeding defects, they observed a decrease in 

bleeding time upon transfusion of washed RBCs. Because the platelet counts of these 

patients decreased slightly, the causal factor was again assumed to be the RBC. Blajchman 

et al. [123] reported that thrombocytopenic patients and related animal models displayed 

improved bleeding times after RBC transfusion levels [122, 123]. Evidence showed that PS 

exposure on the outer leaflet of platelets might serve as a catalytic surface for the assembly 

of coagulation factors. Therefore, platelets can initiate the coagulation cascade [118, 124]. 

Recently, Kaestner et al. [99] suggested a model cascade in thrombosis formation (see Fig. 

6). The model points out that under certain conditions (such as injury) the activation of 

platelets leads to a release of lysophosphatidic acid and prostaglandin E2. These substances 

react as mediators, which activate a non-selective voltage dependent cation (NSVDC) 

channel leading to a rapid increase of intracellular Ca2+. The increase of intracellular Ca2+ 

activates Gardos channel and scramblase. The activation of the Gardos channel leads to an 

efflux of intracellular KCl and subsequently leads to cell shrinkage. In combination with 

the activity of the scramblase, the consequences of this cascade are shrinkage and 

aggregation of RBCs. Taken all together, one can figure out that RBCs play an active role 

in clot formation. 

 

 
 

Fig. 6: Schematic cascade proposed for the aggregation of RBCs in activated 
conditions (provided by Prof. I. Bernhardt; proposed in [99]).  
 

 



2. Theoretical background    21

2.4. Biological role of Ca2+ in human red blood cells 
 

2.4.1. Ca2+ homeostasis 

 

The Ca2+ homeostasis of normal RBCs may appear deceptively simple because mature 

cells lack Ca2+ accumulation organelles and Ca2+ signalling functions (except the Ca2+-

activated K+ channel). Their total Ca2+ content and Ca2+ permeability (PCa) are extremely 

low, and they have minimal cytoplasmic Ca2+ buffering capacity compared to other cell 

types [125]. 

The Ca2+ pump was originally discovered and extensively studied in RBCs. The maximal 

Ca2+ transport capacity (Vmax) of the Ca2+ pump in human RBCs (approximately 10 mM 

[340 g Hb]-1h-1) is high compared with the normal pump-leak turnover rate of Ca2+ 

(approximately 50 µmol [340 g Hb]-1h-1) [126].  

The low intracellular Ca2+ concentration represents the balance between passive Ca2+ influx 

and active Ca2+ extrusion by the Ca2+ pump (see before). Passive Ca2+ influx is mediated 

through low capacity transport pathways with carrier properties [127, 128] and “leak”. 

Active Ca2+ extrusion is mediated by a large capacity (high Vmax) [129]. 

The concentration of intracellular Ca2+ of RBCs under physiological conditions can be 

measured by different methods such as Ca2+ chelators, and atomic absorption spectroscopy. 

Fluorescent indicators for Ca2+ such as fura-2, indol 1, fluo-3, and fluo-4 have been 

commonly used. Kaestner et al. [130] pointed out that the application of fura-2 for 

intracellular Ca2+ measurement in RBCs was problematic because its excitation and 

emission properties were influenced by haemoglobin. Therefore, the accurate value of 

intracellular Ca2+ concentration is still uncertain. Until the problems are solved, it appears 

reasonable to consider the physiological intracellular Ca2+ level in human RBCs to be 

approximately 100 nM, probably within the range of 30 to 60 nM [131, 132]. 

 

2.4.2. Influence of intracellular Ca2+ on phosphatidylserine exposure  

 

It has been shown in hundreds of publications that elevation of intracellular Ca2+ levels can 

induce rapid transbilayer redistribution of the phospholipids in human RBCs and platelets 

[133], resulting in the loss of normal phospholipid asymmetry [71, 134]. The asymmetry of 

membrane phospholipids is disturbed when RBCs are loaded with Ca2+ by using the 
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ionophore A23187. At moderate intracellular Ca2+ concentrations (50-100 μM), the effect 

appears to involve all major phospholipids in human RBCs, as shown by spin labelling and 

use of fluorescent phospholipid analogues [71, 135].  

Lysophosphatidic acid and PGE2 are important lipid mediators in various 

pathophysiological processes. They can stimulate an open of a Ca2+ channel in human 

RBCs. Therefore, in the presence of Ca2+, they stimulate PS exposure and procoagulant 

microvesicle generation in RBCs [124, 136, 137]. 

Caspases are aspartate-specific cysteine proteinases that exist as latent zymogens, but once 

activated by eryptosis signals, they promote eryptosis by specific limited proteolysis of key 

cellular substrates. Under physiological conditions, the procapscapse presents in mature 

RBCs. The overload of Ca2+ in the cells also leads to the activation of caspase, which is 

associated with impairment of aminophospholipid flippase activity leading to PS exposure 

[113, 138]. 

 

2.4.3. Influence of intracellular Ca2+ on protein kinase C  
 

Two decades ago, the discovery of protein kinase C (PKC) opened a new research field of 

signal transduction. PKC is a large family of proteins with closely related structures but 

slightly distinct properties [78, 139]. Based on the structure and properties of their 

regulatory regions, PKC isoforms are divided into three subgroups (see Table 2). 

Classical PKC enzymes or cPKC isoforms have been initially identified. The cPKCs have a 

C-2 domain binding with Ca2+, and they are activated by Ca2+, diacylglycerol or phorbol 

ester in the presence of PS. New protein kinase C isoforms or nPKCs do not possess a Ca2+ 

sensitive domain in their molecules, but they are activated by diacylglycerol. Atypical 

protein kinase C isoforms or aPKCs require PS for their activation but they do not respond 

neither to diacylglycerol and phorbol ester, nor to Ca2+ [107]. 

Recent experiments have noted that phorbol ester-mediated PKC activation stimulates RBC 

Ca2+ entry [136, 140-142] and PS exposure [143] . It has been known for a long time that 

human RBCs containing PKC mediate the phosphorylation of cytoskeletal proteins, such as 

band 4.1, 4.9, and the human Na+/H+ antiporter NHE-1 [107]. To date, PKCα, PKCι, 

PKCμ, and PKCξ have been reported to be expressed in RBCs. Upon activation, they 

influence cytoskeletal integrity and RBC functions. Although there were some reports 

about the activation of PKC leading to the apoptosis of RBCs, besides the artificial 
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activation of PKC by phorbolesters [143], no experimental data about the involvement of 

PKC activation and the exposure of PS in RBC are available [107]. 

 

Table 2: Protein kinase C isoforms in mammalian tissues (taken from [144]). 

 
Subgroup Amino acid 

residues 
Ca2+ and lipid activators Tissue expression 

cPKC  Ca2+, DAG, PS, FFAs, lyso 
PC 

 

α 622 ″ Universal 
βI 671 ″ Some tissues 
βII 671 ″ Many tissues 
γ 697  Brain only 

nPKC    
δ 673 DAG, PS Universal 
ε 737 DAG, PS, FFA, PIP3 Brain and others 
η (L) 683 DAG, PS, PIP3, cholesterol 

sulfate 
Skin, lung, heart 

θ 707 ? Muscle, T-cell etc. 
µ 912 ? NRK cells 

aPKC    
ζ 592 PS, FFA, PIP3 Universal 
λ, ι 587 ? Many tissues 

 
PKC, protein kinase C; DAG, diacylglycerol; PS, phosphatidylserine; FFA, free 
unsaturated fatty acid; lyso PC, lysophosphatidylcholine; PIP3, phosphatidylinositol-1,-
,4,5-tetrakisphosphate ([145, 146]). 
 

 

2.5. The ageing of red blood cells  
 

2.5.1. Young and old red blood cells 

 

In adult mammals, the circulating RBCs represent the product of a process of 

differentiation, which involves great biochemical and physiological changes. An 

undifferentiated stem cell in the bone marrow undergoes a series of cell divisions under the 

stimulus of the hormone erythropoietin to produce the sequential cell types: the 

erythroblast, the basophilic, polychromatophilic and orthochromatic normoblasts and the 

reticulocytes. Four mitoses occur during this transformation so that on average 16 

 



2. Theoretical background    24

reticulocytes are derived from each stem cell. During this process, the cells become 

smaller, the nucleus denser and the rate of haemoglobin synthesis increase. Finally, the 

nucleus is extruded, RNA production is ceased, and the immature RBC or reticulocyte is 

released into the circulation. Morphological changes during erythroid cell maturation are 

described also by Bessis [147]. During the differentiation process, there are alterations in 

membrane structure and function involving changes in membrane and lipid composition, 

changes in the transport of amino acids, sugars, Ca2+, Na+ and K+ [148]. 

Methods such as gradient centrifugation, filtration, have been developed to separate the 

RBCs into young and old cell population [149-151]. Some differences among young and old 

RBCs are observed including change in geometry [150], reduced activity of Gardos channel 

[151], change in some enzymes [152], and vitamins with age [153]. A study on human 

RBC galactokinase in fetus and adult RBCs has revealed that the specific activity of 

galactokinase is three times higher in the fetal RBCs than in adult cells showing a 

significant difference in the Michaelis constant toward galactose [154]. The relationship 

between RBC aging and enzyme activities in rabbit, guinea pig, hamster, rats and mice 

blood was studied. Six enzymes: glucose-6-phosphate dehydrogenase (G-6-PD), 6-

phosphogluconate dehydrogenase (6-PGD), hexokinase (Hx), glutamate oxaloacetate 

transminase (GOT), lactate dehydrogenase (LDH) and acetylcholinesterase (AChE), were 

measured in the RBCs of different ages. It was found that activities of Hx, AChE and GOT 

activities were much higher in younger RBCs than in older cells; hence the activities of 

these enzymes may be used as an indicator of age of the cells [155]. 

The membrane redox activity in young and old RBCs is also evaluated. A reduction of 

membrane redox activity relating to ageing has been described [156, 157]. 

 

2.5.2. Ca2+ content in young and old red blood cells 

 
Romero et al. [158] applied two methods using Percoll density gradients to separate light 

and dense RBCs from fresh human blood. Intracellular Ca2+ of RBCs in different 

fractions was quantitatively measured using fura-2. The results of five experiments 

showed that the free Ca2+ content was 8.4 ± 2.82 nM and 31.2 ± 13.0 nM in the 7 - 10% 

lightest and densest cells, respectively. However, it should be mentioned that concerning 

the interference of haemoglobin, fura-2 cannot be applied (Kaestner et al. [130]). 

By using atomic absorption spectrometry early studies have shown a two-fold increase in 

Ca2+ content of the dense fraction in comparison to the light fraction of human RBCs 
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(after centrifugation in Percoll gradients). These authors also reported that the heaviest 

(old) cells take up more Ca2+ after being exposed to relatively high Ca2+ levels [149]. 

These results suggest that the RBC Ca2+ rises during ageing in vivo. 

On the other hand, it is well known that a decrease of both ATP content [149] and activity 

of some key glycolytic enzymes occurs upon ageing of human RBCs. The decline in the 

concentration of phosphorylated compounds thus arising in senescent cells, would lead to a 

reduction in their Ca2+ chelating potential. Since the intracellular Ca2+ level is directly 

controlled by the activity of the ATP-dependent Ca2+ pump, it is expected that the 

decreased ATP content due to senescence may lead to an increase of the intracellular Ca2+ 

level [158]. In a concise report, Kirkpatrick et al. [159] investigated the concentration of 

adenosine triphosphate (ATP) in circulating RBCs. The result showed that the ATP level in 

the cells of the densest fraction (0.1-1% of circulating RBCs) decreased in comparison to 

unfractionated cells. However, the dense cells were also smaller, and the concentration of 

ATP in these cells was the same as in controls. Therefore, it seems unlikely that loss of 

cellular ATP is a crucial factor in removal of senescent RBCs from the circulation. 

More recently, Kaestner et al. [130] has pointed out that the absorption of haemoglobin is 

close to the excitation of fura-2. Fluo-4 turns out to be the preferable indicator for 

fluorescent measurement in RBCs because of several reasons: (i) its excitation and 

emission properties are least influenced by haemoglobin and (ii) it is the only dye for which 

excitation light does not lead to significant auto-fluorescence of the RBCs. Taken all recent 

data together, it seems that the intracellular Ca2+ content in young and old RBCs is still a 

problem of debate. 

 

2.5.3. Influence of ageing on membrane redox systems in red blood cells 

 

RBCs are highly specialized cells, they are responsible for oxygen and carbon dioxide 

transport [160]. Glycolysis and the oxidative pentose phosphate pathway generate NADH 

and NADPH to reduce methaemoglobin. Therefore, RBCs deal with many free radicals 

during their life. At the end of their life span, the human RBCs are phagocytosed [161, 

162]. 

Eukaryotic cells display a plasma membrane redox system (PMRS) that transfers electrons 

from intracellular substrates to extracellular electron acceptors. The physiological 

importance of PMRS is not fully understood, especially in RBCs [156]. However, the 
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PMRS appears to attenuate oxidative stress acting as a compensatory mechanism, lowering 

oxidative stress during the aging process [163, 164]. The PMRS accomplishes this by 

producing more NAD+ for glycolytic ATP production via transfer of electrons from 

intracellular reducing equivalents to extracellular acceptors [157]. Fig. 7 shows the key 

enzymes of the plasma membrane redox system. 

 

 
 

Fig. 7: Key enzymes of the plasma membrane redox system (taken from [165]). 
Membrane localisation and catalysed reactions for each enzyme are shown, in which CoQ 
takes the central role as an electron linker.AA: ascorbate; AFR: ascorbyl free radical; 
VDAC: voltage dependent anion selective channel or NADH: ferricyanide reductase; 
NQO1, NAD(P)H: ubiquinone, idoreductase or DT-diaphorase; NOX, NADPH oxidase; 
ECTO-NOX, NADH oxidase, CoQ: coenzyme Q. 

 

Studies on the determination of the activity of PMRS in human RBCs as a function of age 

and the correlation of the activity with total plasma antioxidant capacity have been carried 

out to understand the role of PMRS in human aging. The activity of RBC PMRS is 

estimated by following the reduction of ferricyanide. The total antioxidant capacity of the 

plasma is estimated in terms of ferric reducing the ability of plasma (FRAP) values. A 

significant correlation is observed between PMRS activity of RBCs and human age. There 

is an age dependent decrease in total plasma antioxidant capacity measured in terms of 

FRAP values [156]. 
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2.5.4. Relevance of ageing and apoptosis  

 

The ageing of RBCs leads to the binding of autologous IgG and subsequently is the 

recognition and removal through phagocytosis, mainly by Kupffer cells in the liver. This 

process is triggered by the appearance of a senescent RBC-specific antigen. The functional 

and structural characteristics of senescent RBCs strongly suggest that this antigen 

originates on band 3, probably by Ca2+ induced proteolysis [166]. Generation of vesicles 

enriched in denatured haemoglobin is an integral part of the RBC aging process. These 

vesicles showing PS exposure are also removed by Kupffer cells. Moreover, senescent 

RBC-specific antigens are present on vesicles. Thus, vesicles and senescent RBCs may be 

recognized and removed through the same signals [166]. 

In sickle cell anaemia, when sickle cells are separated by density, the lightest and densest 

fractions tend to have the highest percentages of PS exposed cells. Loss of phospholipid 

asymmetry in dense cells may be a consequence of increased sickling or of the deactivation 

of ATP dependent APTL that is responsible for returning PS from the outer to the inner 

leaflet [81]. 

However, data obtained using biotin labelled RBCs in patients with sickle cell disease 

indicate that the exposure of PS does not lead to the immediate removal of high-density 

sickle RBCs from the circulation [167]. In murine sickle cell anaemia, short survival of PS 

exposed RBCs was observed. However, most of the decreased RBC survival in this model 

appeared to be independent of PS externalization. External PS may also be involved in 

thrombogenesis. Chiu  et al. [168] showed that the dense fraction of sickle cells, which 

typically contains a high number of PS exposed cells, has procoagulant activity in vitro. 

These and other data support the theory that RBC ageing is a form of apoptosis (also 

named eryptosis) that is concentrated in the cell membrane, and provide the  context for 

future studies on initiation and regulation of the RBC ageing process. The clarification of 

the normal ageing mechanism is essential for understanding the fate of RBCs in 

pathological circumstances and the survival of donor RBCs after transfusion. 
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3. Materials and Methods 
 

3.1. Materials 
 

3.1.1. Chemicals and reagents 

 

The common used substances and reagents are listed below: 

Substances Source Stock solution in solvent 

4,7-diphenyl-1,10-phenanthroline 

disulfonic acid disodium salt hydrate 

Merck  

4-bromo-calcium ionophore A23187 Sigma-Aldrich 1 mM in ethanol 

Acetic acid  VWR  

Amersham hyperfilm ECL Amersham  

Ammonium persulfate (APS) Roth 10% in H2O 

Annexin V-alexa 568 Roche  

Annexin V-FITC Invitrogen  

BC Assay: Protein quantitation kit  Uptima  

BCECF, AM Molecular Probes 1 mM in Pluronic  

Beta-mercapto ethanol Roth  

Bromophenolblue Roth  

Charybdotoxin Sigma-Aldrich 200 µM in 1 M NaCl 

Chelerythrine Sigma-Aldrich 1 mM in DMSO 

Citric acid Roth  

DMSO Roth  

Drabkin reagent Sigma-Aldrich 1 ampul in 1 l H2O 

ECL advance western blotting 

detection kit 

Amersham  

Ethanol Sigma-Aldrich  

Ethylendiamintetraacetat-Na (EDTA) Roth  

Ethylenglycoltetraacetat-Na (EGTA) Roth  

Fibrinogen Sigma-Aldrich  

Fluo-4, AM Molecular Probes 1 mM in Pluronic  

Glucose Roth  
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Glutaraldehyde Sigma-Aldrich  

Glycine Roth  

Heparin Sigma-Aldrich  

HEPES Roth  

Inorganic salts (NaCl, CaCl2, KCl, 

FeCl3…) 

Sigma-Aldrich/ 

Roth 

 

Inosine Sigma-Aldrich  

Iodoacetate Sigma-Aldrich  

K3[Fe(CN)6] Merck  

K4[Fe(CN)6] Merck  

L-polylisine Sigma-Aldrich  

Lysophosphatidic acid (LPA) Sigma-Aldrich 1 mM in H2O 

Methanol Sigma-Aldrich  

NaOH Roth  

Nigericin Sigma-Aldrich 1 mM in ethanol 

O-vanadate Sigma-Aldrich 1 mM in PBS (*) 

Percoll Sigma-Aldrich  

Phenylmethylsulfonylfluorid (PMSF) Sigma-Aldrich  

Phorbol 12-myristate 13-acetate  Sigma-Aldrich 1 mM in DMSO 

Pluronic F-127, 20% in DMSO Molecular Probes  

Poly-L-Lysin, 0,1% in H2O Sigma-Aldrich  

Prestained PAGE ladder Fermentas  

Sodium acetate Roth  

Sodium dodecylsulfate  Sigma-Aldrich 10% in H2O 

Staurosporine Sigma-Aldrich 1 mM in DMSO 

Tetramethylethylenediamine 

(TEMED) 

Roth  

Thrombin Sigma-Aldrich 148 IU in 0.9% NaCl 

Tris (hydroxymethyl) aminomethane Roth  

Triton X 100 Sigma-Aldrich  

Tween 20 Serva  

Valinomycin Sigma-Aldrich 1 mM in DMSO 

 
(*): O-vanadate is dissolved in PSB buffer. The pH 7.4 is adjusted by 0.1 M NaOH. 
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Main solutions used: 

• Physiological solution (mM): NaCl 140, KCl 7.5, HEPES 10, Glucose 10 (pH 7.4, 0.1 M 

NaOH) 

• PBS buffer (mM): NaCl 140, KCl 3.0, Na2HPO4 7.5, and KH2PO4 1.5, (pH 7.4, 0.1 M 

NaOH) 

• B-buffer (mM): NaCl 145 in PBS 10, EDTA 0.5, 0.05% Glucose, (pH 7.4, 0.1 M 

NaOH). 

• Annexin binding buffer (mM): NaCl 145, HEPES 10 CaCl2 2.5, (pH 7.4, 0.1 M NaOH) 

 

Main reagents used: 
A. Fluorescent dyes for measurement of Ca2+ and pH 

Fluo-4, AM  

Fluo-4 is a special fluorescent dye for quantifying cellular Ca2+concentrations in the 100 

nM to 1 μM range with the Kd (Ca2+) of 345 nM [169]. Fluo-4 is similar in structure and 

spectral properties to the widely used fluorescent Ca2+-indicator dye, fluo-3, but it has 

certain advantages over fluo-3. Due to its greater absorption near 488 nm and the emission 

at 520 nm fluo-4 offers substantially brighter fluorescence emission when used with 

excitation by an argon ion laser or other sources in conjunction with the standard 

fluorescein filter set. The structure and fluorescence emission spectra of fluo-4 and fluo-3 

are shown in Fig 8. 

                             
 

Fig 8: Structure and fluorescence emission spectra of fluo-4 and fluo-3. Left: molecular 
structure of fluo-4, right: fluorescence emission spectra of fluo-4 and fluo-3. The upper 
curve corresponds to fluo-4, the lower to fluo-3 for the same Ca2+ concentration. 
(http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-
Handbook/Indicators-for-Ca2-Mg2-Zn2-and-Other-Metal-Ions/Fluorescent-Ca2-
Indicators-Excited-with-Visible-Light.html). 
 

 

http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook/Indicators-for-Ca2-Mg2-Zn2-and-Other-Metal-Ions/Fluorescent-Ca2-Indicators-Excited-with-Visible-Light.html
http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook/Indicators-for-Ca2-Mg2-Zn2-and-Other-Metal-Ions/Fluorescent-Ca2-Indicators-Excited-with-Visible-Light.html
http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook/Indicators-for-Ca2-Mg2-Zn2-and-Other-Metal-Ions/Fluorescent-Ca2-Indicators-Excited-with-Visible-Light.html
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BCECF, AM 

Cell-permeable 2′, 7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl 

ester (BCECF-AM) has been introduced by Roger Tsien and co-workers since 1982. So far, 

it is the most widely used fluorescent indicator for intracellular pH measurement. The 

structure and pH-dependent fluorescence excitation spectra of BCECF are shown in Fig. 9. 

 

                 
 

Fig. 9: Structure and pH-dependent fluorescence excitation spectra of BCECF. 
(http://probes.invitrogen.com/media/pis/mp01150.pdf) 

 

For BCECF, the pKa of 7.0 is ideally matched to the normal range of cytoplasmic pH 

(~6.8–7.4). The fluorescence excitation profile is pH-dependent (Fig. 9), allowing the 

implementation of ratiometric measurement techniques. The absorption maximum of the 

base form of BCECF is very close to the 488 nm argon ion laser, making it ideally suited 

for fluorescence microscopy applications. The acetoxymethyl ester derivative is a 

membrane permeant, allowing non-invasive bulk loading of cell suspensions. BCECF, AM 

is nonfluorescent by itself. It is converted to fluorescent BCECF via the action of 

intracellular esterases. Once inside the cell, the lipophilic blocking groups are cleaved by 

nonspecific esterases, resulting in a charged form that leaks out of cells much slower than 

its AM compound.  

B. Annexin and its conjugates 

Annexin V-FITC 

Annexin V-FITC is a conjugate of annexin V with fluorescein isothiocyanate. Annexin V is 
a 35-36 kDa phospholipid binding protein with high affinity for PS in the presence of 
physiological concentrations of calcium. According to the manual instruction, the Kd for 
the binding of annexin V to PS has been estimated at 5.10-10 M. The annexin V binding 
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assay is based on the rapid and selective binding to PS found in the outer cell membrane at 
the beginning of the apoptosis process.  
Annexin V-alexa 568 
Annexin V-alexa 568 is a conjugation of annexin V with an alexa fluorescent dye. The 
excitation and emission wavelengths of Annexin V-alexa 568 are 488 - 596 nm and over 
600 nm, respectively. Like annexin V-FITC, annexin V-alexa 568 is also used to detect the 
PS exposure on the outer leaflet of the cell membrane. The structure of alexa 568 is shown 
in Fig. 10. 

 
 

Fig. 10: The structure of alexa 568. 
 
C. BD Retic-COUNT 
BD Retic-COUNT (Becton Dickinson) is a trade name for 1-methyl-4[(3-methyl-2(3(H)-
benzothiazolyli-dine) methyl]-quinolinium 4-methyl benzene sulfonate (Thiazole Orange). 
Rectic COUNT is used to determine the number of reticulocytes in a population of RBCs. 
The immature RBCs contain fragments of RNA. The thiazole orange reagent will react 
with RNA molecules to form a complex of the RNA/thiazole orange (in the ratio 1:2). This 
complex exhibits an absorption band at 475 nm and a fluorescence emission band at 530 
nm. This property makes it suitable for using with flow cytometers equipped with a 488 nm 
laser. 
 
3.1.2. Main equipments and softwares used 
 

• Fluorescence microscope: The fluorescence microscope model Eclipse TE 2000 E, 
Nikon was used to measure Ca2+ flux, intracellular Ca2+, intracellular pH and 
kinetic processes. The fluorescence microscope combines with a focus-stabilizer 
(Nikon, T-PFC) and a very sensitive CCD camera (CCD97, Photometries, Cascade 
512B) from Visitron systems. The included MetaVue software helps manipulations 
to become more feasible and precise.  
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• Flow cytometry: Intracellular Ca2+ and annexin positive cells are analysed by using 

a flow cytometer (FACScalibur 4CS E4021, Becton Dickinson and CellQuest 

software). 

• Confocal laser scanning microscope (CLSM): The confocal microscope model 

ZEISS LSM 510 Meta was also used to investigate the intracellular Ca2+ content 

and annexin positive cells. Three different channels were used: transmission light, 

channel 1 argon laser (488 nm) for fluo-4, and channel 2 HeNe1 laser 543 for Alexa 

543/568. Both single and multi channel scan were applied.   

• Spectrophotometer: UV mini 1240, UV-Vis spectrophotometer, Shimadzu 

• Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was 

carried out with BioRad Mini-Gel apparatus. The BioRad membrane transfer 

system was used for blotting. 

• Different centrifuges were used:  

o Eppendorf centrifuge, model 5415D with rotor 78838,  

o Heraeus, Biofuge Stratos, Rotor # 3407,  

o Sorvall RC-5B referigerated superspeed centrifuge, rotor SS-304, Dupont 

Instrument centrifuge 

• The osmolarity of solutions was measured using an osmometer: Osmometer 

automatic, Knauer.  

• Atomic force microscope: Bioscope IV, Veeco Instr., Santa Barbara, USA with 

Nano Scope controlling software. 

 

 

3.2. Methods 
 

3.2.1. Cell biology methods based on fluorescence microscopy and flow cytometry 

 

A. Red blood cell preparation 

Human venous blood was drawn from healthy donors. Heparin was used as anticoagulant. 

The blood samples were obtained from the Institute of Clinical Haematology and 

Transfusion Medicine of Saarland University Hospital.  

Sickle cell anaemia blood was taken from young patients in the Department of Paediatric 

Oncology and Haematology of the Saarland University Hospital. 
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Sheep and cow blood samples were obtained from the sheep farm Ernst in Blieskastel, 

Germany.  

Heparin anticoagulated rat and mouse blood samples were kindly given from the 

Department of Zoology and Physiology, and Department of Genetics, University of 

Saarland. In all experiments, antibiotics were not added to avoid possible interactions with 

the different assay systems. 

Blood was washed by centrifugation at 2.000 g for 5 min at room temperature. The plasma 

was removed by aspiration. Subsequently, the RBCs were washed 3 times in physiological 

solution to remove the buffy coat. Finally, RBCs were re-suspended in physiological 

solution and the experiment started. Washed RBCs were depleted of ATP by pre-incubation 

in physiological solution without glucose in the presence of 1 mM iodoacetate and 10 mM 

inosine at 37°C for 90 min [3, 170]. Subsequently, RBCs were washed in the same solution 

3 times by quick centrifugation (20 s, 12.000 g). Finally, RBCs were kept in physiological 

solution without glucose. 

B. Intracellular Ca2+ measurement 

In principle, the intracellular Ca2+ in the cells can be quantitatively measured using fura-2. 

Monitoring the intracellular free Ca2+ concentration in a fura-2 stained RBC population 

using a fluorescence spectrometer has been a standard method for more than a decade [171, 

172]. Nevertheless, already in 1997 Blackwood et al. reported problems associated with 

fura-2 measurements in human RBCs [173]. The problems pointed to an effect of 

haemoglobin on the spectral properties of fura-2. The maximal absorption of haemoglobin is 

in the range of 410 - 430 nm. Therefore, fura-2 can not be applied for Ca2+ measurement in 

RBCs. In all experiments with RBCs, fluo-4, AM was used to measure intracellular Ca2+.  

To measure the free cytosolic Ca2+ (intracellular Ca2+), the washed RBCs were suspended in 

physiological solution at 1% haematocrit with fluo-4, AM at 2.5 µM final concentration. 

The cell suspension was mixed by vortexing and incubated for 45 min at 37°C with 

occasionally shaking. Subsequently, the cells were washed 3 times with the physiological 

solution by quick centrifugation (20 s, 12.000 g) and re-suspended in physiological solution 

(haematocrit 0.5%).  

The intracellular Ca2+ was measured by the addition of 50 µl of fluo-4 loaded cell 

suspension to 950 ml of physiological solution on a coverslip (0.025% haematocrit). The 

fluorescence intensity of fluo-4 in the cells was measured with the fluorescence microscope 

at room temperature. The fluo-4 loaded cells were excited with 488 nm light. The emission 
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fluorescence was detected at 530/15 nm. The fluorescence signals were normalized with 

background correction.  

For the control, the fluorescence intensity of fluo-4 was measured under physiological 

condition in the presence of 2 mM extracellular Ca2+. For the experiments with LPA, 

A23187, PMA or other substances, the samples were prepared like the control. However, 

just before starting the experiment, these substances were added. Every experiment was 

carried out with at least three different bloods. The data were analysed using MetaVue 

software.  

In parallel with the fluorescence microscope, intracellular Ca2+ content was also measured 

using the flow cytometer (FACS). All parameters were adjusted using a calibration bead kit. 

The parameters for most measurements are listed below: 

 

Parameters Detector Voltage Amp Gain Mode 

P1 FSC E00 2.5 lin/log 

P2 SSC 450 1.0 lin/log 

P3 FL-1 650 1.0 log 

 

For each measurement, 30.000 RBCs were counted. At least 3 different bloods were used 

for each experiment. The data were analysed using BD Cell Quest Pro Software. 

For the calibration of the intracellular Ca2+ concentration, a series of physiological solutions 

containing different Ca2+ concentrations was used. The final concentration of A23187 to 

calibrate the fluorescence intensity depending on the Ca2+ concentration was 2 µM.  

C. Intracellular pH measurement 

According to Tsien, the intracellular pH can be monitored by using the fluorescent dye 2,7-

biscarboxyl-5(6)-carboxyfluorescein (BCECF) [174]. Washed RBCs at a haematocrit of 1% 

were loaded with cell-permeable acetoxymethyl ester of BCECF (BCECF, AM) in 

physiological solution at 5 µM final concentration for 45 min at 37°C. After incubation, the 

cells were washed 3 times with physiological solution as described above and resuspended 

in physiological solution (haematocrit 0.5%).  

The pH measurements were started by the addition of 50 µl of BCECF loaded cell 

suspension to 950 ml of physiological solution on a coverslip (haematocrit 0.025%). 

Depending on the purpose of the experiments, different substances were added before 

starting the measurement. The fluorescence of BCECF in the cells was measured with the 
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fluorescence microscope (Eclipse Tl 2000 E, Nikon) at room temperature. The BCECF 

loaded cells were alternately excited with 450 and 490 nm light. The emission wavelength 

was set at 535 nm. The ratio of the two fluorescence intensities (490/450) can be directly 

converted to pHi value using a calibration. The ratio of two wavelengths is independent of 

dye leakage, photobleaching and cellular volume changes [174].  

To convert the fluorescence ratio of BCECF loaded RBCs into intracellular pH values, a 

calibration was carried out by equalizing pHi and pHo using the K+/H+ ionophore nigericin 

(final concentration 10 µM) [175]. To calibrate the pHi, cells were suspended into high K+ 

solution (135 mM KCl, 10 mM NaCl, 10 mM glucose, 10 mM HEPES/NaOH). Different 

pH solutions (from 6 to 8.5) were used for the calibration. After adding nigericin, the cell 

suspension was kept at room temperature for 30 min to allow an exchange process of K+ and 

H+ between the cells and the outer solution until an equilibrium of distribution of K+ and H+ 

was established. The ratio of 490/450 was automatically calculated using Meta Vue Imaging 

Software with background correction. The calibration was carried out before each 

experiment. Fig. 11 shows the standard calibration curve for pHi. 

 
 

Fig. 11: Representative standard calibration curve for pHi. 

 

D. Determination of the exposure of PS on the outer leaflet of the cell membrane 

The presence of PS on the outer leaflet of the RBC membrane surface is quantified based 

on the binding of PS with annexin V-FITC. The stimulated RBCs for PS exposure were 

washed in PBS buffer by quick centrifugation (20 s, 12.000 g). Subsequently, 500µl of 

annexin binding buffer and 5 µl of annexin V-FITC were added into each sample. The 

 



3. Materials and Methods   37

samples were mixed well and incubated at room temperature for 15 min. After 

incubation, the samples were put on ice and analysed. 

The excitation and emission wavelength of annexin V-FITC are 488 and 530, 

respectively. Annexin V-FITC is excited by an argon laser; the fluorescence is detected 

using a 530/30nm band pass filter.  

For each measurement, 30.000 RBCs were counted. The annexin V positive RBCs can be 

calculated in percentage by comparison of positive and negative signal events with the 

control. Cell Quest Pro software was used for data acquisition and analysis. The principle 

of this measurement is described in Fig. 12. 
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Fig. 12: Schematic representation of the annexin V-FITC assay. Red balls: 

phosphatidylserine, blue balls: annexin V-FITC conjugate, white balls: other membrane 

phospholipid. 

 

E. Measurement of intracellular Ca2+ and PS exposure using CLSM 

To investigate the relation between intracellular Ca2+ and exposure of PS, two fluorescent 

dyes, fluo-4 and annexin V-alexa 568, were used. First, the washed RBCs were loaded 

with fluo-4 following the procedure as described above (see 3.2.1B in this part). After 

washing, the fluo-4 loaded RBCs were investigated under different experimental 

conditions. After washing, RBCs were stimulated for PS exposure. After that stimulated 

RBCs were incubated with 5 µl of annexin V-alexa 568 in annexin binding buffer for 15 

min at room temperature. Subsequently, the RBCs were washed to remove all unbound 

annexin V-alexa 568. The samples were analysed by using the confocal microscope. The 

samples were scanned by 3 different channels: transmission light, channel 1 for fluo-4, 

and channel 2 for alexa 568. 
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F. Investigation of the kinetics of PS exposure 

To investigate the kinetics of the PS exposure processes, the washed RBCs were put on a 

coverslip in physiological solution in the presence of 2 mM Ca2+ and 5 µl of annexin V-

FITC. Before starting the kinetic measurements, LPA or PMA or A23187 was added at a 

final concentration of 2.5 µM, 6 µM and 2.0 µM, respectively. The measurements were 

done by taking images after every 30 s using a very sensitive CCD camera. The kinetics 

of PS exposure was recorded up to 2.5 h with LPA and PMA. In case of A23187, the 

recording time lasted up to 4h. The results can be displayed as a continuous series of 

images or shown as a movie using MetaVue software. 

G. Measurement of reticulocytes in red blood cell suspension 

Reticulocytes are immature RBCs taking about 1% of the RBCs in the human body. Like 

mature RBCs, reticulocytes do not contain a nucleus. However, they are called 

reticulocytes because of a reticular (mesh-like) network of ribosomal RNA which can be 

observed under a microscope with certain dyes such as thiazole orange or methylene 

blue. 

Briefly, 5 µl of well mixed whole blood was added to a 5 ml tube containing 1 ml of 

Retic-COUNT reagent. The solution was mixed well and incubated at room temperature 

for 30 min in the dark. The sample was gently vortexed immediately prior to analysis. 

The FSC and SSC amplifier gains were set to log mode. The noise and debris were 

excluded by adjusting the thresholds. Analysis is restricted to the population falling 

within a forward scatter (FCS) versus side scatter (SSC) gate. Cells within this RBC gate 

are analyzed to determine the amount of bound Retic-COUNT reagent that is measured 

by the fluorescence-1 (FL-1) detector. 

Both the FL-1 fluorescence histograms of the gated data acquired from the unstained and 

stained sample were recorded. The equation for the percentage of positive reticulocytes 

result is: 

% gated stained tube - % gated unstained tube = % reticulocytes. 

The absolute reticulocyte counts can be obtained using the following equation: 

)/10(
100

% tereticulocy Absolute 12 LRBCstesreticulocy
×=  
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H. Separation of young and old RBCs using Percoll density centrifugation 

In a population of RBCs, cells are different from each other from their age. Depending on 

age, their density is also different. Young cells have a lower density in comparison to old 

cells. This makes it possible to separate them by gradient centrifugation into fractions with 

different densities according to their ages [149]. 

Percoll consists of colloidal silica particles coated with polyvinyl propylene  

(diameter 15-30 nm) and is inert for biological systems. It forms a gradient under 

centrifugation force in which the different dense RBCs distribute. 

Leukocyte free RBCs were prepared by using a micropore filter to remove the leukocytes. 

30 ml of Percoll buffer were mixed with 5 ml of washed RBCs and centrifuged at 40.000 g 

for 30 min at 4°C. The cell suspension in the centrifuge tubes was separated into 5 layers. 

These layers were individually taken and collected by washing three times with B-buffer at 

2.000 g for 5 min at 4°C to remove remaining Percoll. Finally, the RBCs were resuspended 

in physiological solution. 

 

3.2.2. Biochemistry methods 

 

A. Haematocrit determination 

The haematocrit was determined photometrically using Drabkin’s reagent. This procedure 

is based on the oxidation of haemoglobin and its derivatives (except sulfhaemoglobin) to 

methaemoglobin in the presence of alkaline potassium ferricyanide. Methaemoglobin 

reacts with potassium cyanide to form cyanmethaemoglobin, which has a maximum 

absorption at 540 nm. The color intensity measured at 540 nm is proportional to the total 

haemoglobin concentration. A volume of 100 µl of RBC suspension was added to 5 ml 

Drabkin's reagent. The RBCs were haemolyzed in Drabkin's reagent. The mixture was 

mixed well by vortexing. After 30 min incubation at room temperature, the absorption at 

540 nm was measured by using  a UV spectrometer. The blank sample contains only 

Drabkin’s reagent. The haematocrit is calculated according to Ellory [176, 177]: 

Hk
A f

CF
Drabkin s=

. '
 

where: A is the absorption of light at a wavelength of 540 nm, f  is the dilution factor Drabkin’s

of RBCs in Drabkin's reagent and CF the conversion factor. CF contains the molecular 

mass of haemoglobin, the molar extinction coefficient, the mean haemoglobin content per 

unit volume of RBCs and the thickness of the cuvette. For human RBCs and the used 

cuvette, the CF factor is 247. 
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B. Plasma membrane redox activity assay 

The plasma membrane redox system is ubiquitous, it transfers electrons from intracellular 

substrates to extracellular electron acceptors. The function of this redox system is involved 

in many biological events such as: redox state of sulfhydryl residues in membrane proteins, 

neutralization of oxidative stress outside the cells, stimulation of cell growth, cell ageing.  

The method was created by Avron and Shavit [178] and modified by Rizvi et al. [156]. The 

principle of this method is to measure the amount of reduced potassiumhexacynoferrat or 

K4[Fe(CN)6] from K3[Fe(CN)6] via the redox activity of the membrane.   

Briefly, 20 µl of washed RBCs were suspended in 1.98 ml of physiological solution 

containing 1 mM potassium ferrocyanide (K3[Fe(CN)6]) and 5 mM glucose (1% 

haematocrit). After 30 min incubation at 37°C in a shaking water bath, the suspension was 

quickly centrifuged (20 s, 12.000 g). 1 ml of the supernatant was added into the solution 

containing 0.3 ml of 100 mg 4,7-diphenyl-1,10-phenanthroline disulfonic acid disodium 

salt hydrate dissolved in 30 ml deionised water; 0.3 ml of 3 M sodium acetate pH 6.5; 0.15 

ml of 0.2 M citric acid; 0.15 ml of 3.3 mM FeCl3. The mixture was kept in the dark for 15 

min. Subsequently, deionised water was added to give a volume of 2 ml. The absorption 

was measured at 535 nm using a spectrophotometer. The reference contained the same 

components except blood.  The amount of reduced K4[Fe(CN)6] was calculated based on a 

standard calibration curve (Fig. 13). 
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Fig. 13: Standard calibration curve of potassiumhexacynoferrat. 
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C. Fibrinogen determination 

Fibrinogen is a soluble plasma glycoprotein synthesised in the liver. In the blood coagulation 

cascade, prothrombin is activated to thrombin, which is responsible for converting fibrinogen 

into fibrin. Together with other factors, the blood clots are formed in the presence of fibrin. 

The amount of fibrinogen in washed blood after a number of washes can be quantified based 

on the method of Inada et al. [179].  

Thrombin purchased from Sigma was dissolved in 0.9% NaCl solution at 148 IU/ml stock 

solution. The fibrinogen containing more than 90% of clottable protein with thrombin was 

prepared at 250 µM stock solution in tris (hydroxymethyl) ammnomethane/acid citrate-

dextrose buffer. This buffer is a mixture of 5 volume of solution A and 1 volume of solution 

B. The solutions are described below: 

• Solution A (in mM): NaCl 115, KCl 15, glucose 5, tris (hydroxymethyl) 

aminomethane (pH 7.4) 23.  

• Solution B (in mM): trisodium citrate 85, citric acid 65, glucose 2%.  

• Solution C (in mM): tris (hydroxymethyl) aminomethane (pH 7.0) 10, NaCl 40. 

Sample preparation: 5 ml of whole blood were centrifuged at 2.000 g for 5 min at room 

temperature. After collecting the plasma, the cells were washed 3 times with 5 ml of 

physiological solution. Every time after centrifugation, the supernatant was collected for 

fibrinogen measurements.  

Calibration: different fibrinogen solutions containing 0.1, 0.2, 0.5, 1, 2, 4, 6, 8, and 10 µM 

were prepared by dilution from 1 mM stock solution using buffer A. 1 ml of solution C was 

added in a 1 cm path length cuvette, and then 0.5 ml of different fibrinogen concentration 

solutions were added and mixed well by inverting the cuvette slowly to avoid making foam 

or bubbles. Subsequently, 0.1 ml of 145 IU thrombin stock solution was added in the 

cuvette. The cuvette was immediately covered with parafilm and mixed well. The 

precipitation is formed after 2 - 3 min. The turbidity is measured at 450 nm using a 

spectrophotometer. The maximal absorption was recorded (Amax). 

Likewise, for experiments, 0.5 ml of each supernatant were added in 2 ml quartz cuvette 

containing 1 ml of buffer C. Next steps were carried out as described above. The amount of 

fibrin was calculated based on the standard line drawn from the calibration curve. 
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D. Ghost cell preparation and membrane protein extraction 

Ghost cell preparation

RBC ghosts were prepared as described by Dodge et al. [2] with some modifications. Briefly, 

10 ml of whole blood were washed 3 times with physiological solution, pH 7.4 at 4°C. After 

3 times washing in physiological solution, RBCs were washed one time in 0.9% NaCl. 

The washed RBCs were put in a 50 ml centrifuge tube. A volume of 25 ml of solution 1 (in 

mM) containing (Tris HCl 10, EDTA 1, PMSF 1, pH 8.0) was added. The centrifuge tubes 

were mixed by vigorously vortexing and put on ice for 30 min. In this solution, the RBCs 

were completely haemolysed. The supernatant was removed after centrifugation at 19.000 

rpm using the Sorvall RC-5B (refrigerated super speed centrifuge, Rotor SS-304) for 30 min 

at 4°C. The procedure was repeated 1 time by adding 25 ml of solution 1. After vortexing, 

the suspension containing cell ghosts was centrifuged again at 19.000 rpm for 10 min at 4°C. 

The supernatant was discarded. After this step 25 ml of solution 2 (Tris HCl 50, NaCl 500, 

EDTA 1, PMSF 1, pH 8.0) was added and mixed well by vortexing. The purpose of this step 

is to remove remaining haemoglobin binding to ghost cells in the high ionic strength solution. 

The suspension was centrifuged at 19.000 rpm for 10 min at 4°C. The pellet was washed to 

remove salt by solution 1 two times.  

Membrane protein extraction 

A volume of 500µl of extraction buffer (in mM) (Tris HCl 10, EDTA 1, PMSF 1, SDS 1%, 

pH 8.0) was added in the centrifuge tube containing haemoglobin free cell ghosts. The ghost 

suspension was mixed well by vortex and kept at 4°C overnight. Finally, the ghost cell 

suspension was centrifuged at 12.000 g for 30 min at 4°C. The supernatant was collected, 

aliquoted and stored at -20°C. 

For SDS-PAGE, the concentration of ghost cell protein in the samples was quantified using 

the BC Assay (protein quantitation kit, UPTIMA). The amount of protein samples was 

loaded at the same concentration (10 µg) for each well. 

E. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

Ghost cell membrane proteins were separated using SDS-PAGE as described by Laemmli 

et al. [180]. The stacking and separating gel were prepared with 12% and 4.5% acrylamide, 

respectively. From each sample, after heating at 90°C for 4 min in sample buffer, 10 µg 

protein/well was loaded into the gel. The running gel program was set up at 100 V for 30 

min and subsequently 150 V for 150 min at 4°C. Two gels were run in parallel. For 

Western blot experiments, one was used for blotting and the other for coomassie staining. 
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Buffers and solutions 

• 30% acrylamide (containing 0.8% bisacrylamide) 

• Tris HCl 1.5 M, pH 8.8 

• Tris HCl 0.5 M, pH 6.8 

• APS 10% 

• TEMED 

• 5X Sample Buffer: SDS 10%; β mercapto ethanol 10 mM; tris HCl 0.2 M, pH 6.8; 

bromophenolblue 0.05%. 

• 1X Running Buffer: tris-HCl 25 mM, glycine 200 mM, SDS 0.1%, pH 8.3. 

F. Immunoblot (Western blot) 

So far, 5 isoforms of scramblases have been identified in human. In which, the expression of 

hPLSCR2 is restricted to testis,  the hPLSCR4 has not been detected in peripheral blood 

lymphocytes [74]. Because the antibody against scramblase 5 is not available at the moment, 

only two antibodies against scramblase 1 and 3 have been used for detecting the scramblases. 

The antibody against human antigen PLSCR1 is a monoclonal antibody, which recognizes 

the N-terminus of scramblase 1 (35 kDa). The immunogenic sequence of scramblase 1 is not 

available (by Invitrogen). The antibody against human antigen PLSCR3 is a polyclonal 

antibody. The immunogenic sequence contains 295 amino acids: 

MAGYLPPKGYAPSPPPPYPVTPGYPEPALHPGPGQAPVPAQVPAPAPGFALFPSPGP

VALGSAAPFLPLPGVPSGLEFLVQIDQILIHQKAERVETFLGWETCNRYELRSGAGQP

LGQAAEESNCCARLCCGARRPLRVRLADPGDRELLRLLRPLHCGCSCCPCGLQEME

VQAPPGTTIGHVLQTWHPFLPKFSIQDADRQTVLRVVGPCWTCGCGTDTNFEVKTR

DESRSVGRISKQWGGLVREALTDADDFGLQFPLDLDVRVKAVLLGATFLIDYMFFE

KRGGAGPSAITS. 

After finishing the SDS-PAGE, the polyacrylamide gel was taken out and soaked in transfer 

buffer with a nitrocellulose membrane (BioRad) for 10 min at room temperature. The 

proteins were transferred from the polyacrylamide gel onto the membrane by using a transfer 

system. The running time was set up at 80 V for 2 h at 4°C. Subsequently, the membrane was 

washed to remove methanol and blocked in blocking solution at 4°C overnight. On the next 

day, the blocked membrane was incubated in blocking solution containing primary antibody 

with 1000 times of dilution (see Table 4). The membrane was shaken for 2 h at 25°C. After 

incubation, the membrane was washed 3 times in PBS-T buffer (see before) for 45 min. The 

membrane was incubated in blocking solution containing the secondary antibody at 25°C for 

2 h. The secondary antibody was prepared by dilution of 15.000 times in blocking solution. 
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After washing 3 times in PBS-T buffer for 45 min and 1 time with PBS for 10 min, the 

membrane was treated with ECL advance western blotting detection kit (Amersham, code: 

PRN2135) following the manual instruction. The films (Amersham hyperfilm ECL, code: 

28-9068-38) were exposed 15 to 30 s. The films were developed and fixed following the 

instruction (Amersham, Biosciences Europe GmbH, Freiburg).  

 

Table 4: Specificity, source and dilution of primary and secondary antibodies used in 

Western blot. 

Antibodies Clone, specificity Species reactivity Source Dilution  

Scramblase 1 Monoclonal (Clone 
1E9) 

Mouse anti-human 

Human Invitrogen 1:1000 

Scramblase 3 Polyclonal  

Mouse anti-human 

Human Abnova 1:1000 

Peroxidase rabbit 
anti-mouse IgG1 

Rabbit anti-mouse Mouse Sigma 1: 15000 

 

Buffers and solutions 

• 5X Transfer buffer (1 l): glycine 14.9 g, tris-base 29 g, pH 8.3 

For 1 liter working solution: 200 ml of 5X transfer buffer, 200 ml of methanol, and 

800 ml of H2O. 

• 10X PBS buffer (1 l): NaCl 80 g, KH2PO4 2.4 g, KCl 2 g, Na2HPO4 14.4 g, pH 7.4. 

• PBS-Tween (1 l): 100 ml of 10X PBS buffer, 900 ml H2O 

 

3.2.3. Atomic force microscopy method 

 

A. Basic principle 

Atomic force microscopy (AFM) is based on the feature of scanning probe microscope 

(SPM). The pivotal property is the measurement of the interaction force between the tip and 

the sample when the tip is scanned over. Depending on the distance between the tip and the 

sample, both repulsive and attractive forces are created. In AFM technique, a fine tip is 

attached to the free end of a cantilever and brought very close to a surface. The cantilever is 

attached to a scanner piezo tube. A laser beam was applied on the back side of cantilever. 
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Attractive or repulsive forces resulting from interactions between the tip and the surface will 

cause a positive or negative bending of the cantilever. The bending of the cantilever will 

change the reflection of the laser beam. The reflected laser is later collected in a split 

photodiode detector and the photon signal is converted into a current [181].  

Three modes of operation often used are contact, non-contact and tapping mode [182]. In this 

thesis, only the tapping mode is mentioned. In tapping mode, the cantilever is oscillating 

close to its resonance frequency. An electronic feedback loop ensures that the oscillation 

amplitude remains constant, such that a constant tip-sample interaction is maintained during 

scanning. Forces that act between the sample and the tip will not only cause a change in the 

oscillation amplitude, but also a change in the resonant frequency and phase of the cantilever. 

The amplitude is used for the feedback and the vertical adjustments of the piezoscanner are 

recorded as a height image. Simultaneously, the phase changes are presented in the phase 

image (topography). Except a slightly slow scanning speed, tapping mode shows many 

advantages for biological samples because it eliminates a large part of permanent shearing 

forces and causes less damage of the sample surface. High lateral resolution on most samples 

(1 nm to 5 nm) can be observed. Lateral forces are virtually eliminated, so there is no 

scraping [181]. 

B. Investigation of the surface structure of RBCs under physiological condition 

Sample preparation 

Washed RBCs of normal or sickle anaemia patients were fixed with 1% glutaraldehyde 

(final concentration) in physiological solution at room temperature for 5 min (0.1% 

haematocrit). Subsequently, RBCs were washed in physiological solution by centrifuging 

at 2.500 g for 2 min to remove glutaraldehyde. After every washing, the RBCs were 

vigorously vortexed. After the last wash, RBCs were suspended in physiological solution 

and applied on the glass slides.  Finally, the slides were rinsed quickly with deionized water 

to remove crystallized salt and kept dry at room temperature.  

Sample scanning  

The tapping mode was used to scan the cell surfaces.  The tip NSC16/NoAl from Micromash 

was used with the following characteristics: radius of curvature less than 10 nm; tip height 

15- 20 µm; full tip cone angle less than 20°; reflective side is coated with Al. Both 

topography (height mode) and viscoelastic (amplitude mode) data were recorded 

simultaneously. The images were scanned at the resolution 512 × 512 pixels, scanning size in 
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the range 500 nm up to 10 µm, scanning rate in the range 0.44 to 0.75 Hz. For analysis, two 

parameters (volume and surface area) were analysed with Nano Scope software. 

C. Investigation of the adhesion of RBCs under PS exposure conditions 

Inducing PS exposure 

Washed RBCs were stimulated for PS exposure by adding 2.5 μM LPA or 2 μM A23187 

or 6 μM PMA in physiological solution in the presence of 2 mM Ca2+. The cell suspensions 

(0.1% haematocrit) were mixed well and incubated at 37°C for 30 min. Subsequently, 

RBCs were washed and then fixed by adding glutaraldehyde at 1% final concentration. The 

following steps were carried out as described above (3.2.3.B). The control was RBCs in 

physiological solution containing 2 mM extracellular Ca2+. 

Sample scanning and observing 

The surface structures of RBCs showing PS exposure were scanned using AFM as described 

above. The morphology and adhesion of stimulated RBCs were also observed under the 

microscope. The images were taken using a CCD camera.  

 

3.2.4. Informatics tools 

 

The amino acid sequences of scramblases were taken from the gene bank database (NCBI). 

The comparison for identity of amino acid sequences was carried out online with the support 

of Basic Local Alignment Search Tool (BLAST). Multi alignment of amino acid sequences 

was done by using ClustalX (version 2.0.11). The dendogram (or phylogenetic tree) was 

drawn based on the neighbour joining method [183] by using ClustalX. The phylogenetic tree 

was displayed with the support of Treeview software (version 4.5). 

 

3.2.5. Statistics 

 

Data are displayed as arithmetic means ± SD (standard deviation). Statistical analysis was 

performed using the unpaired t-test or one-way ANOVA. Tukey’s test was used for multiple 

comparisons when ANOVA indicated statistically significant difference between or within 

groups. Differences were considered to be significant when P ≤ 0.05. 
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4. Results 
 

4.1. Investigation of Ca2+ uptake in human red blood cells 
 

4.1.1. Calibration of intracellular Ca2+ content 

 

For the calibration, physiological solutions containing different concentrations of Ca2+ from 

50 nM to 5 mM were used. The fluorescence intensity of single cells was analysed by using 

a fluorescence microscope with the background correction. Fig. 14 shows a typical control 

experiment, in which Ca2+ is not added. The fluorescence intensity in single cells is almost 

stable during 30 min and is in the range of 8 and 25 arbitrary units (a.u.). Figs. 15 A, B, C 

represent the typical uptake of Ca2+ in the presence of 2 µM ionophore A23187 and 50 nM, 

50 µM or 5 mM extracellular Ca2+, respectively.  

In the presence of 2 µM A23187, the delay time depends on the concentration of extracellular 

Ca2+. At low concentrations, the delay time extents from 15 to 20 min (Fig. 15 A). At 

concentrations from 100 µM to 5 mM extracellular Ca2+, there is no significant difference in 

both delay time and fluorescence intensity. In average, the highest fluorescence intensity 

reaches after 15 min.  
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Fig. 14: Typical experiment showing the change of fluo-4 fluorescence intensity in 
RBCs. Each single curve represents one single cell. 
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C 

Fig. 15: Uptake of Ca2+ in RBCs for 30 min. RBCs were suspended in physiological 
solutions containing different concentrations of Ca2+. The experiments were started after 
adding A23187 at 2 µM final concentration. A, B, C: physiological solution containing 
50 nM, 50 µM, and 5 mM extracellular Ca2+, respectively. Each single curve represents 
one single cell. 
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For quantitative measurement of the intracellular Ca2+ content of more cells, the fluo-4 

loaded RBCs were suspended in physiological solutions containing different 

concentrations of Ca2+ and 2 µM A23187. After 15 min incubation at room temperature, 

the fluorescence intensity was measured by using a flow cytometer. In each experiment, a 

number of 30.000 RBCs was counted and analysed. Fig. 16 shows the overlay histogram 

of the fluorescence intensity of RBCs at different concentrations of extracellular Ca2+.  

 

 
 

Fig. 16: A typical overlay histogram for Ca2+ calibration in RBCs. 1: Control in 
physiological solution; from 2 to 7: 50 nM, 500 nM, 5 µM, 50 µM, 1 mM and 2 mM Ca2+ 
added in the presence of 2 µM A23187 (FACS data analysis of 30.000 cells of one blood 
sample). 
 

The fluorescence intensity from 3 different blood samples was analysed by flow cytometry. 

The mean values of the fluorescence intensity at different concentration of Ca2+ were 

analysed and showed in Fig. 17. One can see that the fluorescence intensity increases 

correspondingly with the concentration of extracellular Ca2+. The fluorescence intensity of 

fluo-4 is not significantly different when the concentration of extracellular Ca2+ is in the 

range of 50 nM and 0.5 µM. At higher concentrations of extracellular Ca2+ (above 0.5 µM), 

the fluorescence intensity of fluo-4 increases and it saturates when the concentration of 

extracellular Ca2+ is above 100 µM.  

In parallel, the relative cell volume was also analysed by using the mean value of the forward 

scatter (FSC). The data show that the cell volume decreases proportionally with the increase 

of the intracellular Ca2+ concentration (Figs. 18, 19), i.e. at high extracellular Ca2+ 

concentrations, maximum reduction was reached at 100 µM extracellular Ca2+. Under such 

conditions, the RBCs show a spherical shape when they are observed under the microscope.  
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Fig. 17: Fluorescence intensity of fluo-4 in RBCs. The cells were incubated at different 
concentrations of extracellular Ca2+ in the presence of 2 µM A23187 after 15 min at room 
temperature. Bars show mean value of 3 different blood samples (30.000 cells of each 
blood sample were analysed). Error bars represent S.D. 
 

 
 

Fig. 18: The reduction of the cell volume. RBCs were incubated at different 
concentrations of extracellular Ca2+ in the presence of 2 µM A23187 after 15 min at room 
temperature. Bars show mean value of 3 different blood samples (30.000 cells of each 
blood sample were analysed). Error bars represent S.D. 
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Fig. 19: The reduction of the cell volume in the presence of 2 mM extracellular Ca2+ 
and 2 µM A23187 after 15 min incubation. Original FACS data showing the side scatter 
vs. forward scatter. Left: control (physiological solution containing 2 mM Ca2+), right: 
control with 2 µM A23187 after 15 min incubation at room temperature. 
 

4.1.2. Influence of lysophosphatidic acid on the uptake of Ca2+

 

The influence of LPA on the uptake of Ca2+ was investigated. A large concentration range 

of LPA from 1 µM to 20 µM was tested. The results showed that at 0.1% haematocrit, the 

concentration of LPA from 10 to 20 µM caused a strong haemolysis after 15 min 

incubation at 37°C. For Ca2+ uptake measurement with the fluorescence microscope, the 

fluo-4 loaded RBCs were suspended in the physiological solution containing 2 mM Ca2+ 

and applied on a cover slip. When the RBCs were settled down and kept in focus, 2.5 µM 

or 5 µM LPA were added and mixed gently by pipetting. The measurements were carried 

out immediately after LPA was added. The experiment was started at zero time.  

FACS analysis the uptake of Ca2+ in the presence of LPA is presented in Fig. 20. The 

results show that there is an increase of Ca2+ uptake that can be observed after 45 - 60 s 

treatment RBC suspension with 2.5 µM LPA (0.1% haematocrit). The lag time is 

approximately 45 to 60 s depending on the blood. From Fig. 19 it can be seen that the 

percentage of RBCs reacting with LPA strongly depends on both haematocrit and the 

concentration of LPA. The intracellular Ca2+ varies from cell to cell. It suggests that the 

reaction of RBCs with LPA is different at single cell level (see Fig. 20). After a 7 min 

treatment of RBCs with 5 µM LPA, most cells are haemolysed (Fig. 20A). A reduction of 

the LPA concentration from 5 µM to 2.5 µM does not extend the delay time but the number 

of haemolysed RBCs is significantly reduced (Fig. 20B).  
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LPA 2.5 µM 
B

Fig. 20: The Ca2+ uptake of RBCs in the presence of LPA. RBCs were suspended in 
physiological solutions containing 2 mM Ca2+. The experiments were started immediately 
after adding LPA. A: The Ca2+ uptake of RBCs in the presence of 5 µM LPA. B: The Ca2+ 
uptake of RBCs in the presence of 2.5 µM LPA. Each single curve represents one single 
cell.  
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Fig. 21: Kinetics of the Ca2+ uptake in RBCs in the presence of LPA. RBCs were 
suspended in physiological solutions containing 2 mM Ca2+. The kinetic experiments were 
started immediately after adding LPA. Left: 5 µM LPA, right: 2.5 µM LPA. 
 

Fig. 21 shows the kinetics of Ca2+ uptake in the presence of LPA (fluorescence microscopy 

measurement). When 5 µM of LPA is applied the volume of cells reduces faster and the 

cells become spheroid in comparison to 2.5 µM LPA. After 10 min, the process of 

haemolysis starts. In the presence of 5 µM LPA, the fluorescence intensity of RBCs are 

higher in comparison with 2.5 µM. It also means that the level of Ca2+ uptake depends on 

the concentration of LPA.  

 

4.1.3. Influence of phorbol 12-myristate 13-acetate on the uptake of Ca2+

 

The influence of PMA, an activator of PKC, on the uptake of Ca2+ was analysed under the 

same condition as described above with LPA. After adding PMA (6 µM final 

concentration) in a RBC suspension (0.1% haematocrit) containing 2 mM extracellular 

Ca2+, there is an increase of intracellular Ca2+ and the maximal fluorescence intensity was 
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reached after 20 min (Fig. 22). However, the intensity is much lower in comparison to LPA 

or A23187 (Figs. 15, 20). The summary of the Ca2+ uptake of RBCs is shown in Fig. 23. 
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Fig. 22: A typical Ca2+ uptake experiment of RBCs in the presence of PMA. RBCs 
were suspended in physiological solutions containing 2 mM Ca2+. The experiments were 
started immediately after adding 6 μM PMA. Each single curve represents one single cell. 
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Fig. 23: Summary of the Ca2+ uptake of RBCs in the presence of 2.5 μM LPA, 2 μM 
A23187 or 6 μM PMA and 2 mM extracellular Ca2+ for 30 min. Curves show the mean 
values of more than 30 RBCs from 3 different blood samples, the error bars represent 25% 
of S.D. 

 

To investigate the reaction of RBCs in the presence of A23187, LPA and PMA, the fluo-4 

loaded RBCs were suspended in physiological solution containing 2 mM Ca2+. Comparable 

experiments were carried out also with flow cytometry (FACS). After incubation with 2 µM 

A23187 or 2.5 µM LPA or 6 µM PMA for 15 min, the number of reacting cells and their 
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fluorescence intensity were analysed. Figs. 24 and 25 show the percentage of non-reacting and 

reacting RBCs in the presence of these substances as well as the fluorescence intensity, 

respectively.  
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Fig. 24: Reaction of RBCs with LPA, A23187 or PMA. Grey bar: non-reacting RBCs, 
black bar: reacting RBCs. Bars show mean value of 3 different blood samples (30.000 cells 
of each blood sample were analysed). Error bars represent S.D. 
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Fig. 25: Fluorescence intensity of non-reacting and reacting RBCs with LPA, A23187 
or PMA. Bars show mean value of 3 different blood samples (30.000 cells of each blood 
sample were analysed). Error bars represent S.D. 
 

Obviously, in the presence of A23187, almost all RBCs react (99.22%) while only 78.55% 

with LPA and 39.24% with PMA. For the reacting RBCs, the fluorescence intensity is very 

high in both LPA and A23817 treated cells. In case of PMA, the fluorescence intensity is 
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significantly lower. Fig. 26 shows a typical overlay histogram of RBCs reacting with these 

substances. The FACS data are in agreement with the data obtained from fluorescence 

microscopy investigation (cp. Fig. 23). 
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Fig. 26: Overlay histogram of the reaction of RBCs with LPA, A23187 or PMA.  
1: control in physiological solution containing 2 mM Ca2+, 2: 6 µM PMA, 3: 2.5 µM LPA, 
4: 2 µM A23187. M1 and M2 represent the number of the non-reacting and reacting RBCs. 
 

The relative cell volume was also calculated by mean values of the forward scatter. After 

30 min incubation with different substances, the RBCs showed a reduction of their volume. 

The data are presented in Fig. 27. It can be seen that the cell volume decrease is more 

pronounced in the presence of A23187 compared to LPA or PMA treatment. 
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Fig. 27: Relative cell volume of RBCs in the presence of LPA, A23187 or PMA. Data 
were calculated by using the mean value of the forward scatter of 3 different blood samples 
(30.000 cells of each blood sample were analysed). Error bars represent S.D. 
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4.1.4. Investigation of the Ca2+ content in sickle red blood cells  

 

To measure the Ca2+ content in sickle RBCs, the sickle blood samples were loaded with 

fluo-4 as described before and analysed using fluorescence microscopy. The experiments 

were carried out in physiological solutions in the absence of Ca2+. Fig. 28 shows a typical 

image of RBCs in a sickle blood on a glass surface. Fig. 29 shows the Ca2+ content in 

RBCs of a sickle blood sample over 30 min of the experiment. 

 

 
 

Fig. 28: Bright field image of a sickle blood sample on glass surface (cover slip). Red 
arows indicate sickle RBCs. 
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Fig. 29: Typical Ca2+ content of RBCs in a sickle blood sample. The red curves 
represent sickle RBCs. Other curves represent normal cells. 
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The physiological Ca2+ content in normal and sickle blood samples were also investigated 

by flow cytometry analysis. A number of 90.000 RBCs from 3 different blood samples was 

analysed. Results show that there is no significant difference in the Ca2+ content in RBCs 

of normal and sickle blood samples (Fig. 30). 

 

 
 

Fig. 30: Ca2+ content in normal and sickle blood sample. Bars show mean value of 3 
different blood samples (30.000 cells of each blood sample were analysed). Error bars 
represent S.D. T-test analysis shows that the mean values of Ca2+ content in normal and 
sickle cell blood is not statistical significant. 
 

Investigation of the surface structure of normal and sickle RBCs under physiological 

conditions 

The surface structure of normal and sickle RBCs was investigated under physiological 

conditions using the AFM technique. The tapping mode was applied using the ultra sharp 

silicon cantilever NSC16/50 from Micromasch. Fig. 31 shows an AFM image of human 

sickle cell anemia blood and Fig. 32 shows the surface plot of normal and sickle cells, 

respectively.  

The clear difference in the shape of normal and sickle RBCs can be seen by comparing the 

upper left and lower left images of Fig. 32. Upper right and lower right images show the 

height mode of normal and sickle RBCs at high resolution. Data from volume and surface 

area analysis show that there are also differences in the protein distribution of the surfaces 

(data not shown).  
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Fig. 31: AFM image of human sickle blood sample. The cells were fixed by 1% 
glutaraldehyde. Left: amplitude mode (100 × 100 μm), right: height mode (100 × 100 μm). 
The red arrows indicate sickle cells. 
 

 

   

   
 

Fig. 32: AFM image of a normal and a sickle RBC. The cells were fixed by 1% 
glutaraldehyde. Upper left: whole cell plot (15 × 15 μm) of a normal RBC, upper right: high 
resolution plot (1 × 1 μm) of the normal RBC. Lower left: whole cell plot (10 × 10 μm) of a 
sickle RBC, lower right: high resolution plot (1 × 1 μm) of the sickle RBC. 
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4.1.5. Investigation of Ca2+ uptake in sheep red blood cells  

 

The Ca2+ uptake in sheep RBCs was also investigated. Basically, the reaction of sheep 

RBCs is similar to human RBCs. In the presence of A23187, almost all cells react and 

show the highest fluorescence in comparison to LPA or PMA. Fluorescence microscopy 

investigation with LPA is shown in Fig. 33. The reaction of the cells and the fluorescence 

intensity vary from cell to cell. The delay time is longer in comparison to human RBCs. In 

addition, there is a large number of cells reacting very slowly and the fluorescence intensity 

is much lower in comparison to human RBCs.  

Figs. 33 and 34 show a typical kinetics of Ca2+ uptake measurements in the presence of 

2.5 µM LPA over 30 min at room temperature.  

0

50

100

150

0 5 10 15 20 25 30

Time (min)

Fl
uo

re
sc

en
ce

 in
te

ns
ity

 (a
.u

.)

 
Fig. 33: Ca2+ uptake of sheep RBCs in the presence of 2.5 µM LPA (fluorescence 
microscopy measurement). Each single curve represents one single cell. 
 

It can be clearly seen that the reaction of sheep RBCs is similar to human RBCs. The 

reaction with LPA is different at single cell level. In addition, the fluorescence intensity in 

sheep RBCs is much lower in comparison with human cells (cp. Fig. 20). The haemolysis 

is also observed in sheep RBCs (Fig. 34). 
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Fig. 34: Kinetics of Ca2+ uptake of sheep RBCs in the presence of 2.5 µM LPA 
(fluorescence microscopy measurement). 
 

It can be seen that after 5 min treatment with 2.5 µM LPA, the intracellular Ca2+ increases 

in some cells. After 15 min, almost all cells react and show high fluorescence intensity. The 

haemolysis was also observed, especially after 15 min. At the end of the experiment (after 

30 min), more than 60% of sheep RBCs were haemolysed. 

Measurement of the Ca2+ content of sheep RBCs was also carried out using FACS. Data 

analysis shows that in the presence of 2.5 µM LPA or 2 µM A23187 or 6 µM PMA, the 

numbers of cells reacting are 10.53%, 98.33% and 40.65%, respectively (Fig. 35 A). The 

fluorescence intensity increases in comparison to the control but it is much lower in 

comparison to human RBCs under the same experimental conditions (Fig. 35 B) (cp. Fig. 24).  
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Fig. 35: Reaction of sheep RBCs with 2.5 µM LPA, 2 µM A23187 and 6 µM PMA 
after 15 min incubation (FACS measurement). A: Reaction of sheep RBCs, B: 
Fluorescence intensity of reacting and non-reacting cells. Bars show mean value of 3 
different blood samples (30.000 cells of each blood sample were analysed). Error bars 
represent S.D.  
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4.2. Investigation of phosphatidylserine exposure in red blood cells 
 
4.2.1. Phosphatidylserine exposure in red blood cells under stimulated conditions 

 
The RBCs were stimulated for PS exposure by 2.5 µM LPA, 2 µM A23187 or 6 µM PMA 

in the presence of 2 mM extracellular Ca2+ for 30 min at 37°C. The PS exposure in the 

outer leaflet of the RBC membrane was analysed by flow cytometry. The results are shown 

in Fig. 36. 
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Fig. 36: PS exposure of RBCs stimulated with LPA, A23187 and PMA. Bars show 
mean value of 3 different blood samples (30.000 cells of each blood sample were 
analysed). Error bars represent S.D. 
 

Under inducing conditions, the annexin positive cells (%) are 0.31 ± 0.19, 50.78 ± 14.03, 

18.34 ± 2.01 and 85.89 ± 7.56 for control, LPA, A23187, and PMA, respectively. In case of 

LPA, the number of cells showing PS exposure varies and depends on the blood samples. 

However, RBCs treated with PMA show PS exposure in the range of 80 and 95% and no 

significant haemolysis of the RBCs can be observed. The original measurement data for PS 

exposure (histogram analysis) are presented in Fig. 37. The original measurement data for 

PS exposure and microvesicle formation (dot plot analysis) are presented in Fig. 38. 
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Fig. 37: Typical histograms for PS exposure of RBCs. A: control in physiological 
solution, B: 2.5 µM LPA, C: 2 µM A23187, and D: 6 µM PMA (cells were treated for 
30 min at 37°C in the presence of 2 mM Ca2+). 
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   Control     LPA 

        
A23187     PMA 

 

Fig. 38: Typical dot plots showing PS exposure and microvesicle formation. Upper 
left: control in physiological solution containing 2 mM Ca2+, upper right:  2.5 µM LPA. 
Lower left: 2 µM A23187, lower right: 6 µM PMA (cells were treated for 30 min at 
37°C). In each plot, upper left: microvesicles, upper right: cells showing PS exposure, 
lower left: debris or very small particles, lower right: cells with no PS exposure. 
 

Although the fluorescence intensity of fluo-4 in RBCs stimulated by PMA is much lower in 

comparison to LPA and A23187, the number of cells showing PS exposure is significantly 

higher. It suggests that the PS exposure in case of PMA treatment does not depend on the 

level of intracellular Ca2+only. 

Experiments were also done in the absence of Ca2+. After being loaded with fluo-4, RBCs 

were treated with 6 µM PMA and 1 mM EGTA in the absence of Ca2+ to remove completely 

Ca2+ in the solution. The results revealed that the intracellular Ca2+ content is the same as the 

control sample (without PMA) (Fig. 39). However, in the absence of extracellular Ca2+ the 
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number of cells showing PS exposure is only about 50% (Figs. 40, 41). This would suggest 

that the PS exposure in the case of PMA treatment involves a Ca2+ independent pathway. 

 

 
 

Fig. 39: Histogram overlay of fluo-4 fluorescence intensity of RBCs in the presence of 
PMA. White: control (without PMA), red: 2 mM Ca2+ and 6 µM PMA, green: 1 mM EGTA and 
6 µM PMA. 
 

 
 

Fig. 40: Histogram overlay for PS exposure of PMA stimulated RBCs in the presence 
and absence of extracellular Ca2+. White: control (without PMA), red: 2 mM Ca2+ and 6 
µM PMA, green: 1 mM EGTA and 6 µM PMA. 
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Fig. 41: PS exposure of RBCs stimulated by PMA (in the presence and absence of 
extracellular Ca2+). Bars show mean value of 3 different blood samples (30.000 cells of 
each blood sample were analysed). Error bars represent S.D. 
 

4.2.2. Kinetics of phosphatidylserine exposure  

 

The kinetics of PS exposure of RBCs under inducing conditions was investigated by using 

both fluorescence microscopy and flow cytometry. Fig. 42 shows the process of PS 

exposure in RBCs treated with 2 µM A23187 in the presence of 2 mM Ca2+ during 24 h.  
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Fig. 42: Kinetics of PS exposure of human RBCs (FACS measurement). White bars: in 
the absence of Ca2+, black bars: in the presence of 2 mM Ca2+. Bars show mean value of 3 
different blood samples (30.000 cells of each blood sample were analysed). Error bars 
represent S.D. 
 
It is clear that the number of cells showing PS exposure increases correspondingly with the 

incubation time. The saturation of PS exposure is reached after 12 h of incubation. The 
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haemolysis is also seen after 12 h. The details of the PS exposure process of RBCs under 

inducing conditions (A23187 and LPA treatment) are shown in Fig. 43 (recorded by using 

a fluorescence microscope). In the presence of 2 µM A23187 and 2 mM extracellular Ca2+, 

one can see the cell membrane blebbing and the formation of microvesicles after 30 min. 

The extension of blebs forms rod like structures, which can be clearly observed when they 

bind with annexin V-FITC (Fig. 43).  
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Fig. 43: Kinetics of PS exposure of RBCs treated with A23187 (fluorescence 
microscope measurement). RBCs were treated with annexin V-FITC, 2 µM A23187, and 
2 mM extracellular Ca2+. The experiments were done at room temperature. 
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The kinetics of PS exposure process in the presence of LPA is similar but it is faster than in 

the case of A23187. The formation of membrane blebbing and microvesicles can be also 

observed (Fig. 44). However, the rod like structures are not seen clearly as for A23187 

treatment.  
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Fig. 44: Kinetics of PS exposure of RBCs treated with LPA (fluorescence microscope 
experiment). RBCs were treated with Annexin V-FITC, 2.5 µM LPA, and 2 mM 
extracellular Ca2+. The experiments were done at room temperature. 
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Sickle RBCs and PS exposure 
 

Under physiological conditions, the exposure of PS on RBCs of normal and sickle blood 

samples was measured.  Washed RBCs were incubated with annexin V-FITC for 15 min at 

room temperature. The results show that the number of RBCs showing PS exposure is less 

than 0.5% in all normal blood samples. In case of sickle blood samples, the number of cells 

showing PS exposure is about 2.5% (FACS analysis, data not shown).  

Under physiological conditions, the number of RBCs showing PS exposure is very low. To 

investigate the reaction of normal and sickle RBCs of sickle cell patients under conditions 

stimulating for PS exposures, the washed RBCs were treated with 2 μM A23187 and 2 mM 

Ca2+ at 37°C for 30 min (Fig. 45). The result shows that all sickle RBCs show PS exposure 

while some normal RBCs of this patient do not (only a certain amount). This statement is 

based on investigation of about 60 sickle cells from 3 different blood samples. The 

explanation for this phenomenon is unclear. 

 

            
 
 
Fig. 45: PS exposure of RBCs in sickle blood sample. RBCs of sickle blood sample 
were treated with 2 µM A23187 in the presence of 2 mM extracellular Ca2+ for 30 min at 
37°C. Left: transmission light image, right: fluorescence image (cells stained with 
annexin V-FITC). 
 

4.2.3. Intracellular pH in phosphatidylserine exposed human red blood cells 

 

The kinetics of intracellular pH under inducing conditions with LPA, A23187 or PMA was 

investigated by using a fluorescence microscope. 2 min after addition of 2.5 µM LPA, the 
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pHi started to decrease. The lowest pHi value observed was about 6.4 after 8 min and kept 

constant for 20 min. The pHi also reduced when 2 µM A23187 was added. However, the 

delay time lasted approximately 7 min before a reduction from 7.12 to 6.20. After this, the 

pHi increased again to 6.8 and stayed in the range of 6.5 and 6.6. In case of PMA treatment, 

the pHi reduced slowly from 7.15 to 6.6 after 25 min and finally increased to be about 6.8. 

In the control, the pHi was relatively stable with a slight decline over 30 min (Fig. 46). The 

described effects shown for one blood sample were observed for 3 different bloods. The 

reduction of pHi can be explained by the loss of K+, Cl- and the uptake of H+. 
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Fig. 46: Kinetics of pHi of RBCs under different conditions. Control: physiological 
solution with 2 mM Ca2+. Experiment samples with 2.5 µM LPA or 2 µM A23187 or 6 µM 
PMA. Mean value of about 30 cells (to each curve) from one blood. 
 

4.2.4. Investigation of phosphatidylserine exposure under other conditions 

 

Influence of valinomycin on PS exposure 

To investigate the influence of K+ efflux on PS exposure, cells were treated with 

valinomycin at different concentrations. Valinomycin was added to a RBC suspension in 

physiological solution (145 mM NaCl, 7.5 mM KCl, 10 mM glucose, 10 mM HEPES, pH 

7.4). The RBC suspension (0.1% haematocrit) was incubated at 37°C. After 6, 18 and 24 h, 
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the RBCs were collected for the PS exposure measurements. The results show that the 

number of cells showing PS exposure is very low. After 24 h the PS exposure is in the range 

of 12 and 14%. There was not much difference in the number of RBCs showing PS 

exposure in dependence of the valinomycin concentrations (Fig. 47). 
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Fig. 47: Influence of the valinomycin concentrations on the PS exposure. FACS 
analysis of 30.000 cells from 1 blood sample. 
 

It is evident that a stimulation of K+ efflux by valinomycin contributes to the effect of PS 

exposure. However, this is of significance only after long time incubation and does not play 

a substantial role after 30 min. 

By removing NaCl and adding KCl instead to the physiological solution to keep the osmotic 

pressure constant, solutions containing 7.5, 75 and 150 mM KCl were prepared. RBCs were 

stimulated for PS exposure by adding 2 µM A23187 or 2.5 µM LPA (Figs. 48, 49). 

To see whether the PS exposure is somehow connected with the K+ efflux via the Ca2+ 

activated K+ channel, experiments were carried out where PS exposure was measured 

after LPA treatment in solution of different KCl concentrations. At 150 mM KCl outside, 

the opening of the Ca2+-activated K+ channel would not allow to extrude K+ from 

intracellular to extracellular. After 30 min incubation at 37°C, RBCs were collected for 

PS exposure measurement. In case of LPA, in a high KCl containing solution, the PS 

exposure is reduced in comparison to the physiological solution containing 7.5 mM KCl 

(Fig. 48). A significant difference was observed in solutions containing 7.5 and 150 mM 

KCl. 
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Fig. 48: Influence of different extracellular K+ concentrations on PS exposure of 
RBCs in the presence of 2.5 µM LPA. RBCs were stimulated for PS exposure by 2.5 µM 
LPA in the presence of 2 mM Ca2+. Bars show mean value of 3 different blood samples 
(30.000 cells of each blood sample were analysed). Error bars represent S.D. (*) T-test 
analysis shows that the mean values between the two samples are statistically significant 
different (P < 0.05). 
 

In the presence of 2 µM A23187, there is also a reduction of PS exposure in high KCl 
containing solution. In a solution containing 150 mM KCl, the reduction was about 25% in 
comparison to the physiological solution containing 7.5 mM KCl (Fig. 49). 

 
Fig. 49: Influence of different extracellular K+ concentration on PS exposure in the 
presence of 2 µM A23187. Bars show mean value of 3 different blood samples (30.000 cells 
of each blood sample were analysed). Error bars represent S.D. (*) T-test analysis shows that 
the mean values of the two samples are significant different (P < 0.05). 
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In principle, the Ca2+-activated K+ channel (Gardos channel) is activated when the 

intracellular Ca2+ increases. Charybdotoxin potently inhibits both Gardos and voltage-

activated K+ channels. To investigate the influence of Gardos channel on the PS exposure 

of RBCs, 100 and 200 nM of charybdotoxin were added to a RBC suspension (0.1% 

haematocrit) 30 min before inducing PS exposure by 4 µM A23187 for 2 h. The results 

show that when the Gardos channel is inhibited, the number of cells showing PS exposure 

is significantly reduced, approximately by 40% (Fig. 50 A, B). 

 

A 

 

B 

 

Fig. 50: Influence of charybdotoxin on PS exposure in the presence of A23187.  
A: Control, RBCs in physiological solution containing 2 mM Ca2+. Charybdotoxin at 
different concentrations 0 nM, 100 nM, and 200 nM was used. B: Histogram of FACS 
analysis shows the overlay of the control and charybdotoxin treatment. White: control (RBCs 
in physiological solution containing 2 mM Ca2+), red: 4 µM A23187, green: 100 nM 
charybdotoxin and 4 µM A23187, yellow: 200 nM charybdotoxin and 4 µM A23187. 
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Influence of osmotic pressure on PS exposure 

By removing NaCl from the physiological solution or adding sucrose to the physiological 

solution, different osmotic pressure solutions were prepared. Based on the mean value of 

the forward scatter, the cell volume change was obeseved. Fig. 51 shows the influence of 

osmolarity on the volume of the cells. The physiological solution was estimated with an 

osmolarity of 305 mOsm/kg. In low osmolarity solution, the volume of the cells 

increased.  A strong reduction of cell volume (more than 50%) was observed when 500 

mM sucrose was added to physiological solution. At 793 mOsm (physiological solution 

containing 700 mM sucrose), the cells showed haemolysis. There was no significant 

difference in the cell volume after 30 min and 24 h incubation. 
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Fig. 51: Influence of osmolarity on cell volume after 24 h. Black bars: without Ca2+, 
white bars: with 2 mM Ca2+. Bars show mean value of 3 different blood samples 
(30.000 cells of each blood sample were analysed). Error bars represent S.D. 
 

The PS exposure of RBCs under different osmotic solutions was measured after 24 h of 

incubation at 37°C. The results show that in low osmolarity solution there is also no 

significant PS exposure even after long time incubation in comparison to the control in 

physiological solution. In contrast, the number of cells showing PS exposure increases 

proportionally with the osmolarity. In the presence of 2 mM extracellular Ca2+, the PS 
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exposure is significantly enhanced (Fig. 52). It should be mentioned that after 30 min or 1 h 

of incubation, no significant PS exposure was observed in both low and high osmolarity 

solutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

174 201 243 305 427 534 655 793

Osmotic pressure (mOsm/ kg)

A
nn

ex
in

 p
os

si
tiv

e 
ce

lls
 (%

)

 

Fig. 52: Influence of osmotic pressure on PS exposure after 24 h. Black bars: without 
Ca2+, white bars: with 2 mM Ca2+. Bars show mean value of 3 different blood samples 
(30.000 cells of each blood sample were analysed). Error bars represent S.D. 
 
 
Influence of protein kinase C inhibitors on PS exposure 

Chelerythrine and staurosporine are known as potential inhibitors of protein kinase C [124, 

184]. Before inducing PS exposure of RBCs by 2.5 µM LPA or 2 µM A23187 or 6 µM 

PMA and 2 mM Ca2+ as mentioned above, the cells were pre-incubated with chelerythrine 

or staurosporine (10 µM final concentrations) at 37°C for 15 min. 

Data analysis show that both chelerythrine and staurosporine inhibit the number of cells 

showing PS exposure. At the same concentration, the inhibition activity of chelerythrine is 

higher in comparison to staurosporine. In the group experiments with PMA, the inhibition 

activity of chelerythrine and staurosporine is clearly observed. However, in the group 

experiments with LPA and A23187, the inhibition activity of staurosporine and 

chelerythrine was not statistically significant (Fig. 53). 
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Fig. 53: Influence of 10 µM chelerythrine and 10 µM staurosporine on PS exposure 
of human RBCs. RBCs are treated with 2.5 µM LPA or 2 µM A23187 or 6 µM PMA 
and 2 mM extracellular Ca2+. Bars show mean value of 3 different blood samples (30.000 
cells of each blood sample were analysed). Error bars represent S.D. Paired t-test shows 
no statistical significant difference among the mean values of the samples treated with 
LPA in the presence or absence of inhibitors. (*) Paired t-test shows a statistical 
significant difference between the mean value of the samples without and with 
chelerythrine treatment. (**) Paired t-test shows a statistical significant difference 
between the mean values of the sample without and with inhibitors. Data analysis shows 
that there is no significant difference in the inhibition activity between chelerythrine and 
staurosporine.  
 

Influence of low ionic strength, glucose free and ATP depletion solutions on PS exposure 

Low ionic strength (LIS) solution is a term to describe a physiological solution in which NaCl 

was replaced by sucrose [185]. After 24 h incubation at 37°C in LIS solution, the RBCs were 

analysed by flow cytometry. The results show that in LIS solution, the number cells showing 

PS exposure is very low. In the solution containing no glucose, approximately 5% of the cells 

showing PS exposure can be observed. The presence of 2 mM extracellular Ca2+ enhances PS 

exposure. Under ATP depleted conditions with 1 mM EGTA, the PS exposure increases up to 

9%. When 2 mM Ca2+ was added, the PS exposure increased significantly. However, under 

such condition, haemolysis can be observed (Fig. 54). After short time incubation (2 h) under 

the mentioned conditions, the number of cells showing PS exposure was not significant. 
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Fig. 54: Influence of low ionic strength, glucose free and ATP depleted solutions on PS 
exposure of human RBCs. Flow cytometry analysis after 24 h incubation. Bars show 
mean value of 3 different blood samples (30.000 cells of each blood sample were 
analysed). Error bars represent S.D. 
 

Influence of ZnCl2 and tert-butyl perhydroxide on PS exposure 

RBCs were incubated with tert-butyl hydroperoxide at a final concentration of 0.5 mM for 

2 h at 37°C. Tert-butyl hydroperoxide is known as a substance inducing oxidative stress  

[106]. In all experiments with different blood samples, the number of cells showing PS 

exposure is very high (more than 90%), no haemolysis was observed under this condition 

(Fig. 55). However, the colour of RBCs after treatment changed from red to red-grey. The 

influence of Zn2+ on PS exposure was also studied. Zn2+ is known to activate the ceramide 

formation and caspase activation [109]. After 24 h incubation at 37°C, the number of cells 

showing PS exposure increases significantly depending on the concentration of 

extracellular Zn2+ (Fig. 55). 
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Fig. 55: Influence of ZnCl2 and tert-butyl hydroperoxide on PS exposure of human 
RBCs. Bars show mean value of 3 different blood samples (30.000 cells of each blood 
sample were analysed). Error bars represent S.D. (t-BuOOH: tert-butylhydroperoxide). 
 

4.2.5. Relevance of intracellular Ca2+ for the phosphatidylserine exposure 

 

By using flow cytometry and fluorescence microscopy, the fluorescence signal of fluo-4 

and annexin V-FITC was only analysed separately because the excitation and emission 

wavelength of fluo-4 and FITC are the same range (488 nm and 520 nm, respectively). 

Therefore, the question is whether cells containing higher Ca2+ content also show more PS 

exposure. To answer this question, the RBCs were double labelled with both fluo-4 and 

annexin V-Alexa 568 (see Materials and Methods). 

After being stimulated for PS exposure by 2.5 μM LPA, 2 μM A23187 or 6 μM PMA in 

the presence of 2 mM Ca2+ for 30 min at 37°C, RBCs  were double labelled and scanned by 

using a confocal scanning fluorescence microscope as described (see 3.2.1 E). It is very 

clear that in case of A23187, almost all RBCs react and show a high fluorescence signal of 

fluo-4. It means that intracellular Ca2+ in these RBCs increases. Nevertheless, under these 

conditions, some cells with a high fluorescence signal for Ca2+ but a small or even no PS 

exposure can be observed (Fig. 56).  
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Fig. 56: Double labelled human RBCs with fluo-4 and annexin V-alexa 568 after being 
stimulated for PS exposure with A23187. RBCs are treated with 2 µM A23187 in the 
presence of 2 mM Ca2+ at 37°C for 30 min. The Ca2+ content is determined by using fluo-4 
at 488 nm, the PS exposure is determined by using annexin V alexa at 568 nm. Upper row: 
Ca2+: channel 1, green signal (488 nm), PS: channel 2, red signal (543 nm), Ca2+/PS: 
double scan channel 1 and 2. Lower row: magnification of square marked area. White 
arrows: cells showing both fluo-4 fluorescence intensity and PS exposure. Yellow arrows: 
cells showing fluo-4 fluorescence but no PS exposure. 

 

In case of LPA treatments, the statistical data of the images indicate more than 60% of 

RBCs showing PS exposure. In which, there are some RBCs showing high fluo-4 

fluorescence intensity but no PS exposure or vice versa (Fig. 57).  

The relation of Ca2+ content and PS exposure for PMA treated RBCs was also investigated. 

In the absence of Ca2+ after treating 30 min, there are about 40% of cells showing PS 

exposure although the intracellular Ca2+ content in these cells is very low (Fig. 58). The 

results are agreement with the analysis data in FACS measurements (Figs. 35, 39). 
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Fig. 57: Double labelled human RBCs with fluo-4 and annexin V-alexa 568 after being 
stimulated for PS exposure with LPA. RBCs are treated with 2.5 µM LPA in the 
presence of 2 mM Ca2+ at 37°C for 30 min. Ca2+: channel 1, green signal (488 nm), PS: 
channel 2, red signal (543 nm), Ca2+/PS: double scan channel 1 and 2. White arrows: cells 
showing fluo-4 signal but no or very less PS exposure. Yellow arrows: cells showing low 
or no fluo-4 signal but PS exposure. Most cells show both green and red signal. 
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Fig. 58: Double labelled human RBCs with fluo-4 and annexin V-alexa 568 after being 
stimulated for PS exposure with 6 μM PMA in the absence of Ca2+. Upper left: Light 
transmission; Upper right, Ca2+: channel 1 (488 nm), green signal; Lower left (PS): channel 
2 (543 nm), red signal. Lower right (Ca2+/PS):  double scan channel 1 and 2.  
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In the presence of 2 mM extracellular Ca2+, the number of RBCs showing PS exposure 

after PMA treatment increases up to more than 80%. Both RBCs with high and low fluo-4 

fluorescence show PS exposure (Fig. 59). It means that the increase of intracellular Ca2+ 

enhances the number of cells showing PS exposure (in comparison to the experiments 

without Ca2+). These results are agreement with other experiments done with normal 

fluorescence microscope and flow cytometer. 

Transmission    Ca2+

   
20 µm 

   

PS    Ca2+/PS 
 

Fig. 59: Double labelled human RBCs with fluo-4 and annexin V-alexa 568 after being 
stimulated for PS exposure with 6 μM PMA in the presence of 2 mM Ca2+. Upper left: 
light transmission; upper right (Ca2+): channel 1 (488 nm), green signal; lower left (PS): 
channel 2 (543 nm), red signal; lower right (Ca2+/PS): double scan channel 1 and 2.  
 

4.2.6. Phosphatidylserine exposure in sheep red blood cells 

 

Sheep RBCs were also investigated under conditions stimulating for PS exposure. 

Interestingly, when A23187 was applied, almost all cells reacted and showed high signals 

of fluo-4. However, only a few cells or even no cell showing PS exposure could be 

observed (Fig. 60, upper row). This phenomenon also happened under conditions 
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stimulating for PS exposure by PMA (data not shown). In case of LPA treatment, there 

were less than 10% of cells showing PS exposure (Fig. 60, lower row). 

 

     

      Ca2+        Ca2+/PS     PS 

     
 

Fig. 60: Double labelled sheep RBCs with fluo-4 and annexin V-alexa 568 after being 
stimulated for PS exposure with A23187 or LPA. Upper row: Sheep RBCs treated with 2 
µM A23187 in the presence of 2 mM extracellular Ca2+ for 30 min at 37°C. Lower row: 
Sheep RBCs treated with 2.5 µM LPA in the presence of 2 mM extracellular Ca2+ for 30 
min at 37°C. Ca2+: channel 1(488 nm), green signal; PS: channel 2 (543 nm) red signal; 
Ca2+/PS: double scan channel 1 and 2.  

20 µm 

 
 
4.3. Adhesion of phosphatidylserine exposed red blood cells  
 
4.3.1. Determination of fibrinogen concentration in washed cell suspensions 

 

Fibrinogen is converted into fibrin by the activation of thrombin. Together with platelets, 

fibrin is involved in the clotting of blood when it is polymerized to form a network of 

fibrins. Regarding the traditional opinion, the RBCs are “trapped” by this network and 

therefore they prevent bleeding. According to this opinion, it seems that RBCs play a 

passive role in blood clot formation only. However, experiment data shows that the RBCs 
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showing PS exposure on outer leaflet of the membrane can adhere together in the absence 

or at a very low concentration of fibrin (see Fig. 63). The concentration of remaining 

fibrinogen or fibrin in washed RBCs is determined (see Materials and Methods). Fig. 61 

shows the calibration curve of fibrinogen. Fig. 62 shows the results of the determined 

fibrinogen concentration of washed blood. 
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Fig. 61: The calibration curve of fibrinogen. 
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Fig. 62: Fibrinogen concentration in washed RBCs. Bars show mean value of 3 different 
experiments with 3 different blood samples. Error bars represent S.D. 
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Based on the calibration curve, the fibrinogen concentration in the third washing of RBCs 

is less than 0.15 µM. In our experiments, the haematocrit is approximately 0.1%, therefore 

the final concentration of fibrinogen in the experiment suspension is less than 0.15 nM. In 

average, the molecular weight of fibrinogen is about 340 kDa and therefore the amount of 

fibrinogen is less than 4.41×10-7 g/l. Such amount is not sufficient to be polymerized even 

in the presence of thrombin. 

 

4.3.2. Adhesion of red blood cells 

 

Human RBCs 

As described (see Materials and Methods), after being stimulated for PS exposure by 2.5 μM 

LPA, 2 μM A23187 or 6 μM PMA in the presence of 2 mM Ca2+ for 30 min at 37°C, RBCs 

were fixed by glutaraldehyde and put on glass slides. Under bright field microscope, it is very 

clear to see that the shapes of RBCs are different among the experiment and control samples. 

Cell shrinkage, membrane blebbing, and microvesicle formation are also observed (Fig. 63). 

It is interesting that only RBCs treated with LPA, A23187 or PMA were stuck together or 

formed structures like clots or strings (roulaux). There was no adhesion of cells in the control 

samples. It is necessary to notice that the adhesion of PS exposed RBCs occurs in the absence 

of fibrinogen or fibrin. It would suggest that PS is involved in the adhesion process.  

There are many possible questions for these observations such as why the RBCs showing 

PS exposure adhere together. How strong is the adhesion force among the cells? Is it strong 

enough to overcome the forces occurring during the vortex procedure when the cells were 

washed? Or, what is the basis of the adhesion force and which molecules are involved in 

these processes? 

The surface structures of RBCs showing PS exposure were also investigated by using 

AFM. Fig. 64 shows both height mode and phase mode of RBCs treated with 2 µM 

A23187 for 30 min in the presence of 2 mM extracellular Ca2+. It is evident to see the 

reduction of cell volume, membrane blebbing and vesicle formation in scanned cells. The 

adhesion area of two cells is also scanned (Fig. 64). 
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Fig. 63: Adhesion of human RBCs. Human RBCs are stimulated for PS exposure by 2 µM 
A23187 or 2.5 µM LPA or 6 µM PMA in the presence of 2 mM extracellular Ca2+ for 30 min 
at 37°C. The cells were fixed in physiological solution containing 1% glutaraldehyde. 
 

Sheep RBCs 

Under the same conditions applied for human RBCs, sheep RBCs also adhere together after 

treatment with 2.5 µM LPA, 2 µM A231857 or 6 µM PMA in the presence of 2 mM 

extracellular Ca2+ for 30 min at 37°C. The images of sheep RBC adhesion are shown in 

Fig. 65. In case of LPA, the number of sheep RBCs showing PS exposure was shown less 

than 10% (see Fig. 60). Therefore, the adhesion of sheep RBCs can be supposed to be the 

same as in case of human RBCs when they are treated by LPA. Interestingly and 

surprisingly, in the cases of A23187 or PMA treatments although the number of cells 

showing PS exposure is very low or even no PS exposure (Fig. 60, upper row) but they are 

still adhere together (similar to LPA treatment) (Fig. 65). There are some open questions 

for this phenomenon such as how much PS exposure on the outer leaflet of the membrane 
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is sufficient for the adhesion? Does the adhesion depend only on the PS exposure or depend 

on other unknown factor(s)? 

 

 
 

 
 

Fig. 64: AFM scanning image of human RBCs treated with 2 µM A23187 in the 
presence of 2 mM extracellular Ca2+ for 30 min. The cells were fixed in physiological 
solution containing 1% glutaraldehyde. Upper: top view of the amplitude mode, scan size 
6.5 µm, lower: the adhesion area of two RBCs (topography of the adhesion area). The blue 
arrows show membrane blebbing and vesicles. 
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Fig. 65: Adhesion of sheep RBCs. Sheep RBCs are stimulated for PS exposure by 2 µM 
A23187 or 2.5 µM LPA or 6 µM PMA in the presence of 2 mM extracellular Ca2+ for 30 min 
at 37°C. The cells were fixed in physiological solution containing 1% glutaraldehyde. 
 

 

4.4. Detection of scramblase in red blood cells 
 

4.4.1. Alignment of amino acid sequences of scramblases in human red blood cells 

 

So far, at least 5 isoforms of phospholipid scramblase (PLSCR) from different human tissues 

have been discovered [74]. The isoform 5 was identified in 2003 by Strausberg et al. [75]. The 

amino acid sequences of these isoforms were aligned by ClustalX (Fig. 66). 
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Fig. 66: Alignment of amino acid sequences of human scramblase isoforms. (*) amino 
acids are identical in all sequences in the alignment, (:) conserved substitutions, (.) semi-
conserved substitutions. The amino acid sequences of human scramblase isoforms 
PLSCR1-5 were taken from protein database under accession numbers NP_066928, 
AAH55415, NP_065093, AAF89960.1, and NP_001078889, respectively. 
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In humans, hPLSCRs constitute a family of 5 homologous proteins which are named as 

hPLSCR1 - hPLSCR5 [74]. The predicted open reading frames of hPLSCR2 (224 aa), 

hPLSCR3 (295 aa) and hPLSCR4 (329 aa) show 74%, 52% and 47% homology, 

respectively, to hPLSCR1 (Table 3). There are 5 highly conserved regions in all hPLSCRs 

(Fig. 66): the DNA binding motif comprises residues M86-E118, the nuclear localization 

signal (NLS) motif, the cysteine-palmitoylation motif, the Ca2+ binding motif, and the 

transmembrane domain [210].  

 

4.4.2. BLAST analysis of phospholipid scramblases  

 

Comparison of the amino acid sequences of hPLSCRs with the protein databases was done 

online by using Basic Local Alignment Search Tool for protein (BLASTp). 5 amino acid 

sequences of 5 hPLSCRs were used as query sequences against the protein database. The 

results are summarized in tables 3, 4, 5, 6, and 7. In each table, the species showing high 

identity with the query sequence are shown together with their proteins and their sequence 

length. The identity of amino acid sequences of the species is displayed in percent. The 

score is an indication representing how good the alignment is. Therefore, the higher score 

shows the better alignment. The expect value (E value) is an indication of the statistical 

significance of a given pairwise alignment and reflects the size of the database and the 

scoring system used. The lower the E value shows the more significant the hit is [186, 187]. 

The accession numbers of the sequences in protein database are also listed in the tables.  

The analysis results from tables 3-7 show that PLSCRs are present in a large variety of 

species. The hPLSCRs have the highest identities with the PLSCRs of monkey (P. 

troglodytes, M. mulatta), cow (B. taurus), horse (E. caballus), mouse and rat (M. cusculus, 

R. norvegicus), dog (C. familiaris) and frog (X. laevis). It should be noted that species 

belonging to monkey, cow, horse, rat, and mouse families also have 5 isoforms of PLSCRs.  

 

 



4. Results   
 

91

Table 3: BLAST analysis of the hPLSCR1 against the protein database. 

Species Protein Sequence 

length 

Identities 

(%) 

Score 

(bits) 

Expect 

value 

Gap 

(%) 

Accession 

number 

Pan troglodytes PLSCR 1 311 100 637 0.0 0 XP_001135562 

Macaca mulatta PLSCR 1 318 97 583 1e-164 0 XP_001111222 

Bos taurus PLSCR 1 293 75 486 1e-135 6 NP_001029608 

Equus caballus PLSCR 1 336 67 450 8e-125 11 XP_001492359 

Rattus norvegicus PLSCR 1 335 76 447 6e-124 6 NP_476542 

Canis familiaris PLSCR 1 356 72 447 6e-124 10 XP_854267 

Mus musculus PLSCR 1 327 74 434 6e-120 2 AAH02017 

Xenopus laevis PLSCR 2 354 63 385 1e-94 4 NP_001090508  

Homo sapiens PLSCR 2 317 74 362 3e-98 2 AAH55415 

Homo sapiens PLSCR 5 271 59 308 4e-82 2 NP_001078889 

Homo sapiens PLSCR 3 295 52 281 6e-74 5 BAG37205 

Homo sapiens PLSCR 4 329 47 259 3e-67 6 AAF89960.1 

 

Table 4: BLAST analysis of the hPLSCR2 against the protein database. 

Species Protein Sequence 
length 

Identities 

(%) 

Score 

(bits) 

Expect 

value 

Gap 

(%) 

Accession  

number 

Pan troglodytes PLSCR 2 309 98 460 6e-128 0 XP_516803 

Macaca mulatta PLSCR 2 300 96 390 8e-107 0 XP_001111255 

Bos taurus PLSCR 1 293 79 383 6e-105 0 NP_001029608 

Homo sapiens PLSCR 1 318 84 375 1e-102 0 NP_066928 

Mus musculus PLSCR 1 328 79 362 1e-98 0 BAB22897 

Rattus norvegicus PLSCR 1 335 79 360 6e-98 0 NP_476542 

Equus caballus PLSCR 1 336 73 353 6e-96 0 XP_001492359 

Mus musculus PLSCR 2 307 72 350 6e-95 0 AAH02012 

Canis familiaris PLSCR 1 356 80 337 7e-91 0 XP_854267 

Gallus gallus PLSCR 1 305 74 335 2e-90 0 XP_001231237 

Xenopus laevis PLSCR 2 354 66 333 7e-90 0 NP_001090508 

Homo sapiens PLSCR 5 271 62 296 1e-78 0 NP_001078889 

Homo sapiens PLSCR 3 295 52 259 1e-67 0 BAG37205 

 

 



4. Results   
 

92

Table 5: BLAST analysis of the hPLSCR3 against the protein database. 

Species Protein Sequence 

length 

Identities 

(%) 

Score 

(bits) 

Expect 

value 

Gap 

(%) 

Accession 

number 

Pan troglodytes PLSCR 3 473 99 592 1e-167 0 XP_001174792 

Macaca mulatta PLSCR 3 295 98 588 2e-166 0 XP_001118026 

Bos taurus PLSCR 3 303 92 522 2e-146 0 NP_001039518 

Equus caballus PLSCR 3 337 91 516 1e-144 0 XP_001503118 

Mus musculus PLSCR 3 296 93 505 2e-141 0 NP_076053 

Rattus norvegicus PLSCR 3 335 92 481 3e-134 0 NP_001012139 

Canis familiaris PLSCR 3 239 94 433 9e-120 0 XP_546589 

Xenopus laevis PLSCR 2 354 53 293 2e-77 5 NP_001090508 

Homo sapiens PLSCR 1 318 50 266 2e-69 8 NP_066928 

Homo sapiens PLSCR 5 271 50 249 3e-64 0 NP_001078889 

 

 

Table 6: BLAST analysis of the hPLSCR4 against the protein database. 

Species Protein Sequence 
length 

Identities 

(%) 

Score 

(bits) 

Expect 

value 

Gap 

(%) 

Accession 
number 

Macaca mulatta PLSCR 4 329 96 642 0 0 XP_001111439 

Pongo abelii PLSCR 4 329 97 621 3e-176 0 NP_001153278 

Pan troglodytes PLSCR 4 473 99 592 1e-167 0 XP_001174792 

Bos taurus PLSCR 4 333 81 564 9e-154 0 NP_001075201  

Canis familiaris PLSCR 4 477 84 530 6e-149 0 XP_854260 

Mus musculus PLSCR 4 326 79 528 4e-148 1 NP_848826 

Rattus norvegicus PLSCR 4 326 79 514 6e-144 1 NP_001012000 

Equus caballus PLSCR 4 471 88 503 2e-140 0 XP_001917611 

Rattus norvegicus PLSCR 2 311 47 271 5e-71 7 NP_001014116 

Bos taurus PLSCR 1 293 48 265 4e-69 10 NP_001029608 

Mus musculus PLSCR 2 307 47 263 2e-68 7 Q9DCW2 

Homo sapiens PLSCR 1 318 47 259 3e-67 6 NP_066928 

Homo sapiens PLSCR 5 271 43 208 8e-52 6 NP_001078889 

Homo sapiens PLSCR 3 295 40 198 5e-49 5 BAG37205 
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Table 7: BLAST analysis of the hPLSCR5 against the protein database. 

Species Protein Sequence  

length 

Identities 

(%) 

Score 

(bits) 

Expect 

value 

Gap 

(%) 

Accession number 

Pan troglodytes PLSCR 5 271 96 542 1e-152 0 XP_516805 

Mus musculus PLSCR 5 274 87 489 9e-137 1 XP_287936 

Equus caballus PLSCR 5 471 88 488 3e-136 2 XP_001492341 

Bos taurus PLSCR 5 270 81 411 3e-113 3 XP_599511 

Canis familiaris PLSCR 5 477 84 530 6e-149 0 XP_854280 

Rattus norvegicus PLSCR 1 318 79 388 3e-106 0 NP_001012000 

Rattus norvegicus PLSCR 2 222 90 388 3e-106 0 XP_001067563 

Bos taurus PLSCR 1 293 57 308 4e-82 1 NP_001029608 

Xenopus laevis PLSCR 2 354 55 298 4e-79 3 NP_001090508 

Homo sapiens PLSCR 2 317 54 256 1e-66 3 AAH55415 

Homo sapiens PLSCR 3 295 48 249 2e-64 2 NP_065093 

 

Based on the alignment of their amino acid sequences, the phylogenetic relationship of 

some PLSCRs in different species was analysed (Fig. 67). Multi sequence alignment was 

done by using ClustalX version 2.0.11. The dendogram (phylogram) are plotted by using 

Treeview version 4.5 (see Materials and Methods). 

The results from Fig. 67 indicate that the isoforms of PLSCRs are located in groups. For 

example, PLSCR1 from human is located within a group including PLSCR1 isoforms of 

monkey (M. mulatta), chimpanzee (P. troglodytes). This group is very close to the group 

including PLSCR1 isoforms of cow (B. taurus), dog (C. familiaris) horse (E. caballus), rat 

(R.  norvegicus), and mouse (M. musculus). 
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Fig. 67: Phylogram of the phospholipid scramblase family in some animals. 

 
4.4.3. Detection of scramblases using Western blot analysis 

 

The main purpose of the experiment is to screen for the presence of PLSCRs in sheep 

RBCs because so far no publication has mentioned the presence of these proteins in sheep. 

In addition, BLAST analysis of human PLSCR1 and PLSCR3 against sheep-specific 

protein database show no significant similarity. Therefore, the existence of PLSCR in 

sheep is still a question, especially in sheep RBCs. The results from PS exposure 

experiments with sheep RBCs (see Fig. 60) raise a question whether PLSCR(s) exist or not.  

In the frame of the thesis, only two isoforms PLSCR1 and PLSCR3 were used to screen. 

The reasons are: in 5 isoforms of scramblases have been identified in human, the 

expression of hPLSCR2 is restricted to testis, the hPLSCR4 has not been detected in 

 



4. Results   
 

95

peripheral blood lymphocytes, and the antibody against scramblase 5 is not available at the 

moment.  

The antibodies raised against human PLSCR1 and PLSCR3 were used to screen the 

PLSCR1 and PLSCR3 in different species. Therefore, analysis the identity of the amino 

acid sequences of PLSCR1 and PLSCR3 in these species is necessary.  

Alignments of amino acid sequences of PLSCR1 among human, cow, rat, and mouse are 

shown in Figs. 68. There is a high identity of amino acid sequences at the C-terminus of 

PLSCR1 in analysed species. However, the identity at N-terminus is very low.  

 
Rattus_norvegicus      MEKHGPPEHAAYPIPQADYQGSQGPYPGPQGPYPGPQGPYAGPQGPYPGPQGPYAGPQGP 60 
Mus_musculus           MENHSKQTEAPHPG---TYMPAGYPPPYPPAAFQGPSD-----HAAYPIPQAGYQGPPGP 52 
Bos_taurus             MDKQNVQMNPPHPG---TNL-------------TGPPG---------------HIG---- 25 
Homo_sapiens           MDKQNSQMNASHPE---TNLPVGYPPQYPPTAFQGPPG---------------YSG---- 38 
                       *:::.   ...:*                     ** .               : *     
 
Rattus_norvegicus      YPGPQPGYPVPPGSYAGGDPSGFPVQHQPAYN-----HPGGPGGTPWMQAPPPPLDCPPG 115 
Mus_musculus           YPGPQPGYPVPPGGYAGGGPSGFPVQNQPAYN-----HPGGPGGTPWMPAPPPPLNCPPG 107 
Bos_taurus             YPGPQAGYAVPPPGYASPGPVGFPVQHQPVT-----GHPGAPTQVPWMPAPLPPLNCPPG 80 
Homo_sapiens           YPGPQVSYPPPPAGHSGPGPAGFPVPNQPVYNQPVYNQPVGAAGVPWMPAPQPPLNCPPG 98 
                       ***** .*. ** .::. .* **** :**.       :* ..  .*** ** ***:**** 
 
Rattus_norvegicus      LEYLTQIDQILVHQQIELLEVLTGFETNNKYEIKNSLGQRVYFAVEDTDCCTRNCCGASR 175 
Mus_musculus           LEYLAQIDQLLVHQQIELLEVLTGFETNNKYEIKNSLGQRVYFAVEDTDCCTRNCCGASR 167 
Bos_taurus             LEYLTQIDQLLIHQQIELLEVLIGFETNNKYEIKNSLGQRIYFAAEDTDCCTRNCCGPSR 140 
Homo_sapiens           LEYLSQIDQILIHQQIELLEVLTGFETNNKYEIKNSFGQRVYFAAEDTDCCTRNCCGPSR 158 
                       ****:****:*:********** *************:***:***.************.** 
 
Rattus_norvegicus      PFTLRILDNMGREVMTLERPLRCSSCCFPCCLQEIEIQAPPGVPVGYVIQTWHPCLPKFT 235 
Mus_musculus           PFTLRILDNLGREVMTLERPLRCSSCCFPCCLQEIEIQAPPGVPVGYVTQTWHPCLPKFT 227 
Bos_taurus             PFTMRILDNMGREVITLERPLRCTSCCFPCCLQEIEIQAPPGVPVGYVTQTWHPCLPKFT 200 
Homo_sapiens           PFTLRIIDNMGQEVITLERPLRCSSCCCPCCLQEIEIQAPPGVPIGYVIQTWHPCLPKFT 218 
                       ***:**:**:*:**:********:*** ****************:*** *********** 
 
Rattus_norvegicus      LQNEKRQDVLKVVGPCVVCSCCSDIDFELKSLDEESVVGKISKQWSGFVREAFTDADNFG 295 
Mus_musculus           LQNEKKQDVLKVVGPCVVCSCCSDIDFELKSLDEESVVGKISKQWSGFVREAFTDADNFG 287 
Bos_taurus             IQNERREDVLRISGPCVICSCCADIDFEVKSLDDKYVVGKISKHWTGLIKELFTDVDNFG 260 
Homo_sapiens           IQNEKREDVLKISGPCVVCSCCGDVDFEIKSLDEQCVVGKISKHWTGILREAFTDADNFG 278 
                       :***:::***:: ****:****.*:***:****:: *******:*:*:::* ***.**** 
 
Rattus_norvegicus      IQFPLDLDVKMKAVMLGACFLIDFMFFERTGNEEQRSGVW 335 
Mus_musculus           IQFPLDLDVKMKAVMLGACFLIDFMFFERTGNEEQRSGVW 327 
Bos_taurus             IQFPLDLDVKMKAVMLGACFLIDFMFFEMTRGE------- 293 
Homo_sapiens           IQFPLDLDVKMKAVMIGACFLIDFMFFESTGSQEQKSGVW 318 
                       ***************:************ * .:       
 

Fig. 68: Alignment of amino acid sequences of PLSCR1 in different species. (*) amino 
acids are identical in all sequences in the alignment, (:) conserved substitutions, (.) semi-
conserved substitutions. The amino acid sequences of PLSCR1 from Rattus norvegicus 
(rat), Mus musculus (mouse), Bos taurus (cow), and Homo sapien (human) were taken 
from protein database under accession numbers NP_476542, AAH02017, NP_001029608, 
and NP_066928, respectively. 
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Figs. 69 shows the alignment of amino acid sequences of PLSCR3 among human, cow, rat, 

and mouse are shown. The result shows that there is a high identity of amino acid 

sequences at both N-terminus and C-terminus in all analysed species. 

 
Bos_taurus             MAGYLPPKGYAPSPPPPYPVTAGYPEP-ALHPGPGPGQVSGPGQAPVPVHVPAPAPGFAL 59 
Homo_sapiens           MAGYLPPKGYAPSPPPPYPVTPGYPEP-ALHPGPG--------QAPVPAQVPAPAPGFAL 51 
Rattus_norvegicus      MAGYLPPKGYAPSPPPPYPVPAGYPEAAALHPGPG--------QAPVPTQGPAPAPGFSL 52 
Mus_musculus           MAGYLPPKGYAPSPPPPYPVPSGYPEPVALHPGPG--------QAPVPTQVPAPAPGFAL 52 
                       ********************..****. *******        *****.: *******:* 
 
Bos_taurus             FPSPGPGAPGPAAPFLPLPGVPSGLEFLVQIDQILIHQKAEPVETVLGWETCNRYELRSG 119
Homo_sapiens           FPSPGPVALGSAAPFLPLPGVPSGLEFLVQIDQILIHQKAERVETFLGWETCNRYELRSG 111
Rattus_norvegicus      FPSPGPVVPGPPGPFVPLPGVPSGLEFLVQIDQILIHQKAERVETFLGWETCNRYELRSG 112
Mus_musculus           FPSPGPVAPGPPAPFVPLPGVPPGLEFLVQIDQILIHQKAERVETFLGWETCNMYELRSG 112
                       ****** . *...**:******.****************** ***.******* ****** 
 
Bos_taurus             AGQPLGQAAEESNCCARLCCGARRPLRVRLVDPGDREVLRLLRPLHCGCSCCPCGLQEME 179
Homo_sapiens           AGQPLGQAAEESDCCARLCCGARRPLRVRLADPGDREVLRLLRPLHCGCSCCPCGLQEME 171
Rattus_norvegicus      TGQQLGQAAEESNCCARLCCGARRPLRIRLADPGDREVLRLLRPLHCGCSCCPCGLQEME 172
Mus_musculus           TGQQLGQAAEESNCCARLCCGARRPFRIRLADPGDREVLRLLRPLHCGCSCCPCGLQEME 172
                       :** ********:************:*:**.***************************** 
 
Bos_taurus             VQAPPGTTIGHVLQTWHPFIPKFSIQDADRQTLLRVVGPCWTCGCGTDTNFEVKTPDESR 239
Homo_sapiens           VQAPPGTTIGHVLQTWHPFLPKFSIQDADRQTVLRVVGPCWTCGCGTDTNFEVKTRDESR 231
Rattus_norvegicus      VQAPPGTTIGHVLQTWHPFIPKFSILDADRQPVLRVVGPCCTCGCGTDTNFEVKTKDESR 232
Mus_musculus           VQAPPGTTIGHVLQTWHPFLPKFSILDADRQPVLRVVGPCWTCGCGTDTNFEVKTKDESR 232
                       *******************:***** *****.:******* ************** **** 
 
Bos_taurus             SVGRISKQWGGLLREALTDTDDFGLQFPLDLDVRVKAVLLGATFLIDYMFFEKRGGAGPS 299
Homo_sapiens           SVGRISKQWGGLVREALTDADDFGLQFPLDLDVRVKAVLLGATFLIDYMFFEKRGGAGPS 291
Rattus_norvegicus      SVGRISKQWGGLLREALTDADDFGLQFPVDLDVRVKAVLLGATFLIDYMFFEKRGGAGPS 292
Mus_musculus           SVGRISKQWGGLLREALTDADDFGLQFPVDLDVKVKAVLLGATFLIDYMFFEKRGGAGPS 292
                       ************:******:********:****:************************** 
 
Bos_taurus             AITS 303 
Homo_sapiens           AITS 295 
Rattus_norvegicus      AITS 296 
Mus_musculus           AITS 296 
                       ****  
 

Fig. 69: Alignment of amino acid sequences of PLSCR3 in different species. (∗) amino 
acids are identical in all sequences in the alignment, (:) conserved substitutions, (.) semi-
conserved substitutions. The amino acid sequences of PLSCR3 from Rattus norvegicus 
(rat), Mus musculus (mouse), Bos taurus (cow), and Homo sapien (human) were taken 
from protein database under accession numbers NP_001012139, NP_076053, 
NP_001039518, BAG37205, respectively. 
 

The Western blot analysis results are shown in Fig. 70. The antibody against PLSCR1 

reacts with ghost proteins of human only. Fig. 70 shows a clear band at 35 kDa indicating 

the presence of PLSCR1 in human RBC ghost proteins. A non-specific (cross-reaction) 

band can be also observed. This non-specific band is also pronounced in the manual 

instruction of the antibody manufacturer (Invitrogen). Although PLSCR1 is present in 

 



4. Results   
 

97

analysed species, antibody against human PLSCR1 did not react with mouse, rat, cow, and 

sheep RBC ghost membrane proteins (Fig. 70, data from cow not shown). The reason for 

the non-reaction of the antibody with other ghost membrane proteins from other species 

may be due to the low identity of amino acid sequences at the N-terminus of the proteins 

(see Fig. 68). In addition, the antibody was used to screen PLSCR1 is a monoclonal 

antibody, so it is possible that the epitope necessary for the recognition of the antibody is 

not present in the PLSCR1 of mouse, rat, sheep, and cow. Therefore, the monoclonal 

antibody raised against PLSCR1 from the clone 1E9 (see Materials and Methods) is not 

suitable for screening the PLSCR1 of other species. Further investigations for the presence 

of PLSCR1 in sheep RBCs are required. 

The antibody against PLSCR3 reacts with all ghost proteins from human, mouse, rat and 

cow (data with cow RBCs not shown). Fig. 70 shows a clear band at 58.56 kDa indicating 

that the presence of PLSCR3 can be observed. The results from Western blot analysis 

suggest that the scramblase isoform 3 is present in sheep RBCs. However, the activity of 

this enzyme as well the condition for the activation of the enzyme is not investigated. 
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Fig. 70: SDS-PAGE and Western blot analysis of PLSCR1 and PLSCR3. Left: SDS-
PAGE analysis of ghost membrane proteins of human (H), mouse (M), rat (R) and sheep 
(S). Upper right: Western blot analysis of PLSCR3, Lower right: Western blot analysis of 
PLSCR1. 
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4.5. Young and old red blood cells 
 

4.5.1. Separation of red blood cells into young and old cell fractions 

 

Fig. 71 shows a typical image of a centrifuge tube after centrifugation of RBCs in a Percoll 

gradient. Fraction 1 and 5 contain the youngest and oldest cells, respectively. Other fractions 

contain cells at various ages. 

The proteins from fractions were isolated from ghost cell membranes. According to Lutz et al. 

[188] the ratio of band 4.1a/4.1b was used  to distinguish the young and old cells. Young cells 

contain more band 4.1a, old cells contain more band 4.1b. 

On SDS-PAGE, human RBC protein 4.1 can be resolved into the two polypeptides 4.1a and 

4.1b which differ by 2 kDa in the C-terminal domain [189]. According to Inaba et al. [189], the 

molecular weights of band 4.1a and 4.1b are 81 and 79 kDa, respectively.  
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Fig. 71: Separation of RBCs by Percoll gradient ultracentrifugation and SDS-PAGE 
of ghost membrane proteins of the different fractions (1-5). Left: A typical image of the 
centrifuge with 5 fractions containing cells at different age from 1-5: from the lightest to 
the heaviest cells (the youngest and the oldest cells). Middle: SDS-PAGE of proteins 
isolated from ghost cell membranes of different fractions. Right: A section of SDS-PAGE 
containing band 4.1a and 4.1b. The red arrow indicates band 4.1a, the white arrow indicates 
band 4.1b. 
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4.5.2. Determination of reticulocytes in fractions of different cell age 

 

The lightest fraction contains the youngest RBCs and a certain amount of immature RBCs. 

The immature RBCs contain fragments of RNA; the thiazole orange reagent will react with 

RNA molecules to form a complex of the RNA/thiazole orange, which can be analysed by 

FACS. 

The amount of reticulocytes in different fractions was determined. Fraction 1 contains more 

reticulocytes than the other fractions (0.93 ± 0.53%), fractions 4 and 5 have a very less 

amount of reticulocyte (0.26 ± 0.14) (Fig. 71). These results suggest that centrifugation 

RBCs using Percoll gradient is a reliable method to separate RBCs depending on their 

density. 

 
 

Fig. 72: Reticulocyte content (in percent) in different fraction of RBCs separated 
using a Percoll gradient. Bars show mean value of 3 different blood samples (data 
analysis of 100.000 cells of each blood sample). Error bars represent S.D. Fraction 1 
contains the youngest cells; fraction 5 contains the oldest cells. Whole blood: washed 
RBCs before being separated into fractions. (*) T-test showed a statistically significant 
difference (P < 0.05) among fraction 1 and all others. There is no significant different 
among fraction 2, 3, 4, 5, and whole blood. 
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4.5.3. Investigation of the relative volume of young and old red blood cells  

 

Another factor related to young and old RBCs is the size of the cell. In principle, the size of 

the young RBCs is larger than of the old ones. The FSC value is an important parameter 

reflecting the size of the cells. Analysis of the mean value of FSC (in FACS measurement) 

of the fractions shows that RBCs is decreasing from fraction 1 to fraction 5 (Fig. 73). This 

result confirms that young and old RBCs are present mostly in fraction 1 and 5, 

respectively.  

 
 

Fig. 73: Relative cell volume of RBCs in different fractions. Bars show mean value of 3 
different blood samples (30.000 cells of each blood sample were analysed). Fraction 1 
contains the youngest cells; fraction 5 contains the oldest cells. Whole blood: washed 
RBCs before being separated into fractions. Error bars represent S.D.  
 

4.5.4. Determination of Ca2+ content in young and old red blood cells 

 

The leukocyte free RBCs were separated into different fractions by Percoll density 

centrifugation (see Material and Methods). The RBCs taken from different fractions were 

loaded with fluo-4 and analysed by flow cytometry and fluorescence microscopy. It seems 

very interesting that the Ca2+ content of RBCs in fraction 1 is the highest (Fig. 74). The 

Ca2+ content is slightly reduced in fractions 2, 3, 4 and lowest in fraction 5. This finding is 
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not in agreement with some previous reports showing that the old RBCs contain more Ca2+ 

than the young cells [158, 190]. However, the Ca2+ content in RBCs taken from fractions, 

which are separated directly from washed RBCs (without filter to remove leukocyte) is not 

significant different (data not shown). This result could be due to enhance of membrane 

permeability for Ca2+ under shear stress condition of filtration (the interaction of cells with 

the filter pore). 

 
 

Fig. 74: Fluorescence intensity of fluo-4 in different fractions. Bars show mean value of 
3 different blood samples (30.000 cells of each blood sample were analysed). Fraction 1 
contains the youngest cells; fraction 5 contains the oldest cells. Whole blood: The 
leukocyte free RBCs before being separated into fractions. Error bars represent S.D. One 
way ANOVA test showed that there is a significant difference (P < 0.05) among the 
fractions. T-test showed that there is a significant difference among fraction 1 and all 
others. There is no significant difference among fractions 2, 3, 4, 5 and whole blood. 
 

4.5.5. Phosphatidylserine exposure of young and old red blood cells 

 

To investigate the PS exposure of RBCs taken from different fractions, the cells are 

incubated with annexin V-FITC. The result shows that the number of cells showing PS 

exposure are highest in fraction 1 followed by fraction 5 and 4, while RBCs in fraction 3 

and 2 (middle aged cells) show lowest PS exposure (Fig. 75).  
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Under normal condition, the number of cells showing PS exposure is less than 0.3% (cp. 

Figs. 36 and 37). However, under conditions used to separate cells by age, i.e. filtering to 

remove leukocytes, the percentage of cells showing PS exposure in the whole blood as well 

as in different fractions is higher. This could be due to the shear forces applied when the 

RBCs were filtered. It may suggest that the youngest and oldest cells are more stress 

sensitive. 

 
 

Fig. 75: PS exposure of RBCs taken from different fractions. Bars show mean value of 
3 different blood samples (30.000 cells of each blood sample were analysed). Fraction 1 
contains the youngest cells; fraction 5 contains the oldest cells. Whole blood: The 
leukocyte free RBCs before being separated into fractions. Error bars represent S.D. 
ANOVA and t-test showed that there is no significant difference among different fractions.  
 

Reaction of RBCs taken from different fractions with LPA 

As shown above, in a population of RBCs, the reaction of cells with LPA was different for 

each cell (Fig. 75). Based on the hypothesis that this difference is due to the cell age, the 

reaction of RBCs in fractions 1-5 with LPA was investigated. RBCs from each fraction 

were stimulated for PS exposure with 2.5 µM LPA for 30 min at 37°C. Flow cytometry 

analysis shows that the highest amount of RBCs showing PS exposure were observed in 
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fractions 2 and 5 (Fig. 76). The result shows that the number of cells showing PS exposure 

is highest in fractions 2 and 5. It means that the reaction of cells in fractions is different. 

The explanation for this result is not clear now. 

 
 

Fig. 76: PS exposure of RBCs taken from different fractions stimulated with LPA. 
Bars show mean value of 3 different blood samples (30.000 cells of each blood sample 
were analysed). Fraction 1 contains the youngest cells; fraction 5 contains the oldest cells. 
Whole blood: washed RBCs before being separated into fractions. Error bars represent 
S.D. One way ANOVA test showed that there is a significant difference among fractions. 
Pairwise multiple comparison tests pointed out that the reaction of RBCs in fraction 1 was 
different from fractions 2, 5 and whole blood. 
 

4.5.6. Phosphatidylserine exposure of stored red blood cells 

 

The serum pH values of blood samples after different storage time at 4°C were measured. 

A reduction of pH depending on the time of the storage was observed. For fresh blood, the 

pH of serum is about 7.4 while the blood stored for 28 days, shows a pH value of about 

7.15 (Fig. 77 A). The number of cells showing PS exposure increases proportionally with 

the storage time (Fig. 77 B).  
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A 

 

B 

 

Fig. 77: PS exposure in RBCs after different storage time. Bars show mean value of 3 
different blood samples (30.000 cells of each blood sample were analysed). Error bars 
represent S.D. Fraction 1 contains the youngest cells; fraction 5 contains the oldest cells. 
A: pH of serum after different blood storage time. ANOVA analysis showed that there is 
a significant difference of pH value among samples. B: Number of cells showing PS 
exposure (%) after different blood storage time. ANOVA analysis showed that there was 
a significant difference among samples. 
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4.5.7. Membrane redox activity of young and old red blood cells 

 

The membrane redox activity in fractions and whole blood was determined. The results 

show that the redox activity reduces gradually regarding the age of RBCs separated by 

Percoll gradient centrifugation. Fraction 1 containing the youngest RBCs has the highest 

redox activity. The oldest RBCs (fraction 5) have the lowest redox activity (Fig. 78). 

 

 
 

Fig. 78: Membrane redox activity of RBCs in different fractions. Bars show mean 
value of 3 different blood samples (30.000 cells of each blood sample were analysed). 
Error bars represent S.D. Fraction 1 contains the youngest cells; fraction 5 contains the 
oldest cells. Whole blood: washed RBCs before being separated into fractions. ANOVA 
analysis shows that there is a significant difference of redox activity among fractions. 
T-test shows that there was as significant difference between fraction 1 and 5. 
 

4.5.8. Surface structure of young and old red blood cells  

 

The surface structure of young and old RBCs was also investigated by AFM technique. 

RBCs of different fractions were scanned. Analysis data of volume and surface area point 

out that in healthy people there is no significant difference in the surface structure of young 

and old RBCs (analysis data now shown). Fig. 79 shows two typical images of young and 

old RBCs taken from fractions 1 and 5, respectively.  
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Fig. 79: Surface structure of young and old RBCs. Upper: a typical RBC taken from 
fraction 1, Lower: a typical RBC taken from fraction 5. The scan size is 1 × 1 µm, the scan 
rate 0.5 Hz and the data scale at nm (height). 
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5. Discussion 
 

5.1. Role of Ca2+ in red blood cells under physiological conditions 
 

The importance of Ca2+ for biological tissues was first discovered by Sydney Ringer in the 

early 1880s [191]. By conducting experiments on isolated hearts, he observed that adding a 

small amount of Ca2+ to distilled water dramatically prolonged the time that hearts continue 

to beat. This was a milestone and led to the introduction of a famous physiological solution, 

acknowledged by generations of physiologists as “Ringer’s solution”. Later on, it was 

shown that Ca2+ acts as universal intracellular messenger for many biological processes 

such as cell proliferation, neutron signal transmission, gene transcription, ion channel 

function, and muscle contraction. To control multifunctions specifically, the distribution 

and the content of Ca2+ in the cells is highly regulated. 

RBCs are quite special because they lack a nucleus and organelles including Ca2+ 

accumulation structures. Therefore, the Ca2+ homeostasis of normal RBCs is thought to be 

relatively simple. In comparison to other cell types, the content of intracellular Ca2+ in 

RBCs is also extremely low (see below). RBCs can keep intracellular Ca2+ at such low 

levels because of the low membrane permeability and action of the powerful Ca2+ pumps.  

The study of the cytosolic free Ca2+ levels in normal and sickle RBCs based on nuclear 

magnetic resonance (NMR) technique measurement showed that the mean value of ionized 

free Ca2+ in oxygenated normal and sickle RBCs were 21 ± 2 nM and 18 ± 2 nM 

respectively. Only a slight increase of the Ca2+ permeability in sickle RBCs under 

oxygenated condition was observed [192]. However, it has been found that the total Ca2+ 

content is significantly higher in sickle RBCs in comparison to normal RBCs [192]. 

In the present work, investigating the Ca2+ content in normal and sickle RBCs under 

physiological condition using fluo-4, it could be shown that there was no significant 

difference of free intracellular Ca2+ in these cells. The average value of fluorescence intensity 

in both normal and sickle RBCs when measured with both fluorescence microscopy and flow 

cytometry is very low, about 15 arbitrary units (a.u.) (see Figs. 29, 30). In malaria patients, 

the parasites Plasmodia spend most of their asexual life cycle within the RBCs, where they 

proliferate and mature. It is clear that the absence of Ca2+ or very low Ca2+ levels inhibit 
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Plasmodia function and survival. To overcome such situations, the parasites maintain a high 

Ca2+ content (about 40 µM) within the parasitophorous vacuole, a compartment formed 

during invasion, in which the parasites grow and divide [193]. These findings suggest that 

under normal conditions RBCs probably do not need Ca2+ for their activity. 

 

5.2. Increase of intracellular Ca2+ and its consequences 

 

It is clear that treatment of RBCs with the ionophore A23187 leads to a dramatic increase 

of intracellular Ca2+ (see Fig. 15). The increase of the Ca2+ content leads to the activation of 

Gardos channel resulting in K+ efflux (followed by Cl-) and the consequent reduction of the 

RBC volume (Fig. 18). It has been described that the threshold of the Gardos channel 

activation is around 40 nM of free Ca2+ in normal cells [170]. The increase of intracellular 

Ca2+ also activates many other processes such as scramblase [14, 194, 195] and PKCα 

[143, 196]. The consequence is the exposure of PS on the outer leaflet of the cell 

membrane. The exposure of PS is also a significant signal for a determined cell death 

called eryptosis [90, 92-95, 197]. It is necessary for the recognition and engulfment of 

macrophages [85, 90, 94, 197-199]. In platelets (thrombocytes), the PS exposure is 

supposed to provide a catalytic surface promoting the assembly of the characteristic 

enzyme complexes of the coagulation cascade [86, 200, 201].  

LPA a water-soluble lipid second messenger is released from activated platelets [202], 

fibroblasts, adipocytes, and cancer cells [203]. A very fast influx of Ca2+ could be 

observed when RBCs were treated with LPA (Figs. 20, 21). According to Yang et al. 

[136], the Ca2+ influx should be due to a channel mediated transport rather than a leak 

transport. LPA is believed to bind to a G protein-coupled receptor that activates a C-type 

phospholipase [204, 205] that in turn generates diacylglycerol and 1,4,5-

inositoltrisphosphate. These substances are then believed to activate protein kinase C and 

to promote the release of Ca2+ into the cell [136]. Kaestner et al. [206-208] demonstrated 

that LPA opens the non-selective voltage dependent cation (NSVDC) channel in human 

RBCs.  

RBCs treated with PMA in the presence of 2 mM extracellular Ca2+ also show an 

increase of intracellular Ca2+ content (Fig. 22). However, the fluorescence intensity is 
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much lower compared to A23187 or LPA treatment (Figs. 15, 17, 20, 23). According to 

Andrews et al. [140] the ω-agatoxin-TK-sensitive, Cav2.1-like (P/Q-type) Ca2+ channel is 

present in the RBC membrane and it may function under the control of kinases and 

phosphatases. This Ca2+ channel is responsible for the uptake of Ca2+ into RBCs in the 

presence of PMA. However, the activity of this channel has not been fully investigated. 

In a study with rat pulmonary artery endothelial cells, when the cells were treated by 

PMA, there was also an influx of Ca2+. The data were consistent with the hypothesis that 

PMA induced the Ca2+ influx through the voltage dependent L-type Ca2+ channel in 

endothelial cells [141]. Romero et al. [142] reported that both voltage dependent L-type 

and R-type Ca2+ channels exist in young and old RBCs. These observations suggest that 

the voltage dependent L-type Ca2+ channel and the ω-agatoxin-TK-sensitive, Cav2.1-like 

(P/Q-type) Ca2+ channel are activated when RBCs were treated with PMA leading to the 

influx of Ca2+. When sheep RBCs are treated with A23187, LPA or PMA, influxes of 

Ca2+ were also observed (Figs. 33, 34). It suggests that the voltage dependent L-type Ca2+ 

channel and the non-selective voltage dependent cation (NSVDC) channel may exist in 

both human and sheep RBCs.  

Sodium orthovanadate is an inhibitor of protein tyrosine phosphatases, alkaline 

phosphatases and a number of ATPases. It has been used widely as non specific inhibitor 

for the Ca2+ pump [209]. RBCs treated with 1 mM sodium orthovanadate showed a small 

influx of Ca2+ (data now shown). Likewise, under this condition, the number of RBCs 

showing PS exposure was also very low even after long time incubation (6 h) (data not 

shown). Probably the threshold for activating the processes leading to PS exposure is not 

reached. 

 

5.3. Scramblases in red blood cells 
 

Data mining of protein database indicates that scramblases exist in almost all vertebrates. 

BLAST result reveals that PLSCRs in human have a high identity with those in monkey, 

mouse, horse, cow, and dog. Phylogenetic analysis also indicates that isoforms of PLSCRs 

in human are very close to other isoforms of PLSCRs in animals (Fig. 67). 
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In human, at least 5 isoforms of scramblases and some putative protein like scramblases 

showing a high identitiy with these 5 isoforms have been discovered. Northern blots 

revealed that the expression of hPLSCR2 is restricted to testis, whereas hPLSCR1, 3 and 4 

are expressed in most of the 16 tissues examined including heart, brain, placenta, lung, 

liver, skeleteal muscle, pancreas, spleen, thymus, prostate, testis, uterus, small intestine, 

colon, and peripheral blood [74]. Notable exceptions are hPLSCR4, which is not detected 

in peripheral blood lymphocytes, and hPLSCR1 and hPLSCR3, which are not detected in 

brain [74]. This would suggest that in human RBCs there exist the scramblase isoforms 1 

and 3.  

Two antibodies against hPLSCR1 and hLPSCR3 (raised from mouse) were used for 

Western blot analysis to dectect the presence of these isoforms in different animals 

including rat, mouse, sheep, and cow. The results show that the scramblase isoform 3 is 

present in all investigated species, including sheep. The antibody against hPLSCR1 reacted 

only with human ghost cell protein but did not react with ghost cell protein of rat, mouse, 

cow, and sheep (Fig. 70). As mentioned before, this is due to the low identity of amino acid 

sequences at N-terminus of the PLSCR1s in human, rat, mouse, and cow (Fig. 68). 

Although the antibody did not react with sheep ghost proteins, it is still not possible to state 

that the scramblase 1 is absence in sheep RBCs. The reason is that the antibody against 

hPLSCR1 is a monoclonal antibody. Therefore, it is possible that the necessary epitope 

(amino acid sequence or the structure of recognition domain) for the recognition of the 

antibody is not present in the PLSCR1s of mouse, rat, cow, and sheep. Nevertheless, the 

Western blot results show that at least there exist scramblase isoform 3 in sheep RBCs. The 

activation of this isoform may be not only depended on the intracellular Ca2+ level but also 

on other unknown factors.  

The specific activity of the scramblases is unknown. However, 4 motifs including Ca2+ 

binding motif and 1 transmembrane domain are highly conservative among these 

scramblases [210]. The Ca2+ binding motif present in all scramblase isoforms suggests that 

the activity of scramblase strongly depends on the concentration of intracellular Ca2+.  

The detailed mechanism of phospholipid scrambling and the difference of the activity 

among various PLSCRs are not fully understood. The exact threshold of the free Ca2+ 

concentration in cytoplasm for the activation of scramblases is also not precisely known 
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because different cell types have different Ca2+ concentrations. In human RBCs, 

intracellular Ca2+ concentrations above 50–100 µM have been shown to induce transbilayer 

redistribution of phospholipids [14, 71]. The experiments using A23187 at different 

concentrations of extracellular Ca2+ (from 50 nM to 1 µM) showed that the number of 

RBCs showing PS exposure is not significant after 30 min. There are two possible 

explanations for these observations. First, at low concentrations of extracellular Ca2+, the 

time needed for an influx of Ca2+ is longer (Fig. 15A). Second, the amount of free 

intracellular Ca2+ is still not enough to activate scramblases. Higher concentrations of 

extracellular Ca2+ (above 50 µM) lead to a significant influx of Ca2+ (Figs. 15B, C and 16). 

A significant PS exposure is also observed at these concentrations. There was no 

significant difference in the reaction behaviour (delay time) or the level of the intracellular 

Ca2+ (based on the mean value of fluo-4 fluorescence intensity) when the extracellular 

concentration of Ca2+ was higher than 100 µM (Fig. 17). The reason for that is probably 

due to the saturation of the fluorescence intensity. 

These data are also compatible with the data of Woon et al [14]. He reported that the 

phospholipid scrambling was found to be half-maximally activated at 63-88 µM free 

intracellular Ca2+. Such concentrations are a bit higher than the range of 20-60 µM reported 

by Bassé et al. [195] for a 37 kDa scramblase protein isolated and reconstituted from 

human RBCs. In another report, Verhoven et al. [211] showed that the concentration of 

intracellular Ca2+ within the range of 50 and 100 µM is enough to activate the scramblase 

in resealed ghosts and human RBCs. However, the presence of as little as 5-10 µM Ca2+ in 

erythrocyte ghosts resulted in a loss of the phospholipid asymmetry [212]. The possible 

reasons for these observations may be due to the different activities of scramblase isoforms 

existing in RBCs.  

 

5.4. Phosphatidylserine exposure in red blood cells 
 

As mentioned before, when the intracellular Ca2+ increases, the Gardos channel is activated 

and leads to an efflux of K+. Elevation of the intracellular Ca2+ level also activates the 

scramblases. The consequences are cell shrinkage, membrane blebbing, PS exposure, and 

the formation of microvesicles. Figs. 16, 17, 20, 21, 22, 23 and 26 show that the 

intracellular Ca2+ level increases when RBCs are treated with 2.5 µM LPA, 2 µM A23187 

 



5. Discussion    112

or 6 µM PMA in the presence of 2 mM extracellular Ca2+. The influx of Ca2+ activates 

phospholipid scramblases (PLSCR) leading to PS exposure on the outer leaflet of RBCs, 

and microvesicle formation (Figs. 36-38). Details of the kinetic process of PS exposure in 

human RBCs are presented in Figs. 43, 44, in which, cell shrinkage, membrane blebbing 

and microvesicle formation can be clearly observed.  

However, the experiments with PMA demonstrate that in the absence of Ca2+ and 1 mM 

EGTA (no influx of Ca2+, Fig. 39), more than 50 % of RBCs showing PS exposure is 

observed (Figs. 40, 41). In the presence of 2 mM Ca2+ more than 85 % of the RBCs 

showing PS exposure after PMA treatment (Figs. 40, 41). It means that the exposure of 

PS in RBCs does not only depend on the activity of scramblases but also on other 

pathway(s).  

The intensity of fluo-4 when RBCs treated with LPA or A23187 in the presence of 2 mM 

Ca2+ is very high (Fig. 23). In addition, treatment of RBCs with A23187 showed that the 

number of reacting cells as well as the fluorescence intensity of fluo-4 is higher than 

treatment of RBCs with LPA (Figs. 23, 24). However, the number of RBCs showing PS 

exposure in case of A23187 treatment is much lower (Fig. 36, 37). The results suggest 

that the PS exposure does not only depend on the intracellular Ca2+. The reason why the 

number of the RBCs showing PS exposure is higher in LPA treatments is probably due to 

the binding of LPA to the G protein-coupled receptor. This receptor activates a C-type 

phospholipase [204, 205]. C-type phospholipase in turn generates diacylglycerol and 

1,4,5-inositoltrisphosphate. Two substances are then believed to activate protein kinase C 

[136]. The activation of protein kinase causes many different effects leading to PS 

exposure (Fig. 80). 

Interestingly, the results from treatment of RBCs with LPA and A23187 in the presence of 

Ca2+ showed that one population of RBCs there exist some cells showing a high 

fluorescence intensity of fluo-4 (for Ca2+), but no or very low fluorescence intensity of 

annexin V-alexa 568 (for PS exposure) can be observed. In contrast, there are some cells 

showing PS exposure but the Ca2+ content in these cells is very low (Fig. 56, 57,). 

However, long time incubation with A23187 or LPA (more than 30 min) leads to more 

RBCs showing PS exposure but haemolysis can occur. Another study with LPA and 

A23187 also came to the conclusion that the reactions of RBCs to the substances are both 
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time and concentration dependent [124]. It suggests that the reaction of RBCs differs at the 

single cell level. 

Surprisingly, in the presence of EGTA, RBCs treated with 6 µM PMA also show PS 

exposure although the fluo-4 signal (for Ca2+ level) is very low. This result is also 

comparable with the data analysis of the flow cytometry experiment (Fig. 40). Results from 

treatment of RBCs with PMA (Figs. 58, 59), LPA and A23187 (Figs. 56, 57) give more 

evidence supporting for the hypothesis that the PS exposure does not only depend on the 

intracellular Ca2+ content but also other factor(s). Although the exact mechanism for the 

PMA induced Ca2+ influx is unclear, the Ca2+ content is high enough to create a temporary 

imbalance between the Ca2+ influx and the outward flux driven by the Ca2+ pump. 

Enhanced intracellular Ca2+ levels can induce PKC activation in the RBCs. It suggested 

that the initially enhanced Ca2+ levels could recruit more PKCs and translocate them from 

cytoplasm to the membrane as well as to induce a positive feedback [143] (also see Fig. 

80). In other words, the increase of intracellular Ca2+ in case of PMA stimulates a 

propagation signal for the activation of PKC.  

In a report, Frasch et al. [78] pointed out that protein PKCδ plays an important role in the 

activated transbilayer movement of phospholipids and surface PS exposure by directly 

enhancing the activity of phospholipid scramblase. Specific inhibition of PKCδ by rottlerin 

prevented both apoptosis and the activation of scramblase in Jurkat cells [78]. According to 

Govekar et al. [213]  so far only 4 isoforms of PKCs have been discovered in human red 

blood cells. These are PKCα, PKCµ, PKCζ and PKCι. PKCα is activated by Ca2+, FFA and 

DAG. PKCζ is activated by PIP3 and FFA. Both types of PKC are activated by PS. 

Activation of PKCµ and PKCι is unknown [144] (see Table 2) The activation of PKC 

could inhibit the activity of aminophospholipid translocases (ALPTs) and lead to enhance 

PS exposure. The data indicated that after 30 min incubation with 6 μM PMA almost all 

RBCs showed PS exposure (Figs. 40, 41). As mentioned before (see Theoretical 

background) the PS exposure stimulated by the inhibition of ALPTs is a time dependent 

process. Hence, the PS exposure in case of RBCs stimulated by PMA does not strongly 

depend on the activity of ALPTs. Experiments also show that chelerythrine significantly 

reduces the number of RBCs showing PS exposure (Fig. 53). In addition, chelerythrine 

does not inhibit the Ca2+ influx when RBCs were stimulated with PMA (data not shown). 
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Therefore, the process of PKC inducing PS exposure in RBCs does not directly depend on 

the intracellular Ca2+ level. 

The experiments with sheep RBCs under the same conditions (LPA, A23187 and PMA 

treatment) give additional interesting results for the relation between intracellular Ca2+ and 

PS exposure (Figs. 33-35, 60). When sheep RBCs are treated with A23187, all cells react 

and show a high signal of fluo-4 fluorescence but there are nearly no cells showing PS 

exposure (Fig. 60 upper row). The number of sheep RBCs showing PS exposure is less 

than 10 % when LPA is applied (Fig. 60 lower row). Sheep RBCs treated with PMA in the 

presence of 2 mM Ca2+ do not result in PS exposure (data not shown). Some possible 

conclusions for the PS exposure in human and sheep RBCs can be figured out. First, the PS 

exposure in RBCs depends on the level of intracellular Ca2+. However, only the elevation 

of the Ca2+ level does not seem to be enough for PS exposure in the case of sheep RBCs. It 

does not mean that the scramblase(s) in sheep RBCs is not functioning. It should be noted 

that the lipid components in the membrane of sheep RBCs are different from human RBCs 

(but similar to cow). In the outer leaflet, there is about 100 % of SM and nearly no PC 

while in the inner leaflet PS and PE are located (Fig. 1). This distribution of lipids may 

influence the lipid transport between the two membrane leaflets leading to only a small 

number of cells showing PS exposure. Second, there exists one (or more) pathway(s) 

leading to the exposure of PS independent of Ca2+, or in other words, the exposure of PS is 

not only regulated by phospholipid scramblases but also by another mechanism involving 

PKC. Third, the reaction of RBCs in a population does not follow the “all or nothing” 

manner, they reacted differently (at least some) at the single cell level. The explanation for 

that finding may come from the difference among RBCs related to their age.  

Cellular acidification in the apoptosis was mentioned by Bucky et al. [214]. They 

investigated the involvement of the Na+/H+ exchanger in the process of PS exposure during 

human platelet activation. However, the relationship between Ca2+ mobilization and NHE1 

function during platelet activation is not well established. Experiments show that under 

stimulating conditions by LPA, A23187 or PMA treatment, the pHi is reduced (Fig 46). A 

proportional decline of pHi with the increase of intracellular Ca2+ could be figured out. It 

means that the reduction of pHi is compatible with the increase of intracellular Ca2+ (see Fig. 

23). Zsembery et al. [215] reported that a raising intracellular Ca2+ concentration up to 1 µM 

leads to a parallel activation of Cl- channels and HCO3
- extrusion. Wagner et al. [216] 
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indicated that PKC activated a Cl- channel in fibrosis airway epithelial cells. Hence, there is 

a connection between the Cl- efflux and the change of pHi. Experiments using a specific 

fluorescent dye for Cl- such as MEQ (6-methoxy-N-ethylquinolinium chloride) should be 

used to investigate the fluctuation of Cl- under stimulating conditions (LPA, A23187, PMA 

treatment).  

The PS exposure has also been investigated under other conditions. It has been pointed out 

that the LIS induced cation transport is mediated by the K+(Na+)/H+ exchanger. At very 

low ionic strength, there might be an increased opening of the non-selective voltage 

dependent cation (NSVDC) channel allowing Ca2+ to go in the RBCs [217]. Based on these 

findings one could explain the low number of RBCs showing PS exposure in LIS solution 

(Fig. 54). Glucose-free solution showed a very low effect on PS exposure. This can be 

easily explained because the remaining ATP in RBCs is enough for the function of the Ca2+ 

pump and amino phospholipid translocase for at least 24 h. When all ATP is removed the 

PS exposure occurred and this process was enhanced in the presence of Ca2+. The result 

suggests that the asymmetric distribution of the membrane lipid is disturbed by the absence 

of ATP. There are two processes, which relate to ATP consumption. First, without ATP the 

Ca2+ pump can not work and the consequences are the elevation of intracellular Ca2+ and 

activation of the scramblases. Second, when the amino phospholipid translocases do not 

function because of the lack of ATP, after a certain time the PS and PE can not be 

transported back to the inner leaflet. Under these conditions, the movement of the 

phospholipids is simply based on diffusion and therefore it requires a long time.  

Valinomycin is an ionophore, which is selective for K+ ions over Na+ ions. It functions as a 

K+ specific transporter and facilitates the movement of K+ through lipid membranes 

"down" its electrochemical potential gradient. The physiological solution contains 7.5 mM 

KCl while the concentration of K+ in RBC cytoplasm is much higher, around 150 mM. An 

efflux of K+ occurs when RBCs are treated with valinomycin. This process mimics 

somehow the action of Gardos channel when the intracellular Ca2+ is elevated. A 

significant percentage of cells showing PS exposure (about 15 %) is seen after a 24 h 

treatment with valinomycin without extracellular Ca2+(Fig. 47). This means that the K+ 

efflux is one contributing factor leading to PS exposure in RBCs. It also suggests that the 

volume of the cells is critical for surviving of RBCs in terms of apoptosis. 
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An experiment in the presence of Ca2+ and the Gardos channel inhibitor charybdotoxin 

confirms the role of K+ efflux for the PS exposure (Fig. 50). The efflux of K+ induced by 

A23187 and conducted by the Gardos channel was significantly inhibited by charybdotoxin 

(Fig. 50). This effect of inhibition of PS exposure can also be seen in the solution 

containing a high KCl concentration (Fig. 49). Also in case of PS exposure stimulated by 

LPA, an inhibition of this process can be seen in a solution containing high KCl (Fig. 48). 

More than 50 % of RBCs showing PS exposure is reduced when 150 mM extracellular 

KCl. 

Osmotic pressure has also an influence on the PS exposure of RBCs [100]. When RBCs 

are suspended in hypotonic solutions, an increase of the cell volume can be observed 

(Fig. 51). In contrast, in hypertonic solutions, a dramatic reduction of cell volume can be 

seen (Fig. 51). The PS exposure occurs only in hypertonic solution, the presence of Ca2+ 

accelerates significantly the number of cells showing PS exposure (Fig. 52). It suggests 

that hypertonic solution elevates an influx of Ca2+ by activation of a non-selective cation 

channel [131].  

Chelerythrine and staurosporine are potential inhibitors for protein kinase C. Experiments 

showed that in the presence of chelerythrine the number of RBCs showing PS exposure 

was reduced. When RBCs are treated with PMA in the presence of chelerythrine, the 

number of RBCs showing PS exposure reduces at least 50 % (Fig 53). In case of LPA or 

A23187, the inhibition activity for PS exposure of chelerythrine and staurosporine is less 

pronounced (Fig 53). Hence, the PS exposure does not strongly depend on the activity of 

protein kinase C when RBCs are treated with LPA or A23187. 

Kempe et al. [110] reported that  Pb+ ions activate erythrocyte K+ channels, probably the 

Gardos channel, leading to erythrocyte shrinkage, and also activate the erythrocyte 

scramblase, leading to PS exposure.Treatment of RBCs with tert-butyl hydroperoxide also 

leads to the exposure of PS due to the oxidative activity. More than 90 % of the cells 

showing PS exposure after a treatment with 0.5 mM tert-butyl hydroperoxide for 2h min at 

37°C (Fig. 55). The presence of Zn2+ also stimulated a significant number of cells showing 

PS exposure. According to Mandal et al. [113] the exposure of PS in the presence of Zn2+ 

was due to the activation of caspases and the inhibition of flippase activity.  

Taken together, the proposed pathways involved in the process of PS exposure in RBCs 

can be summarized (Fig. 80).  
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Fig. 80: Possible pathways leading to PS exposure in RBCs. LPA or PGE2 released from 
activated platelets (possible together with G protein-coupled receptor) activates a non-
selective voltage dependent cation (NSVDC) channel. The opening of this channel leads to 
an increase of the intracellular Ca2+. The increase of intracellular Ca2+ level leads to an 
activation of phospholipid scramblase (PLSCR) and protein kinase C (PKC). The activated 
PKC moves from the cytoplasm to the membrane. Aminophospholipid translocase (APLT) 
is inhibited by high concentrations of intracellular Ca2+, PKC, and ATP depletion. PKC 
also activates and opens Cl- channels leading to an efflux of Cl-. It seems likely that the 
efflux of Cl- leads to the intracellular acidification. Under stress conditions (oxidative 
substances), ceramid is formed. Ceramide consists of sphingosine and fatty acid. Ceramide 
activates PKC. Caspases, a family of cysteine proteases, are also activated under stress 
condition. Calpains are a family of calcium-dependent, non-lysosomal cysteine proteases. 
They are also activated by Ca2+. Caspase and calpain break down the cytoskelecton by a 
proteolysis activity leading to membrane blebbing and vesicle formation. 
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5.5. Adhesion of red blood cells 
 

RBCs treated by LPA, A23187 or PMA adhere together (Figs. 63, 65). There was no 

adhesion observed in the controls. The reasons for the adhesion among RBCs are unknown. 

There are many open questions relating to this phenomenon such as why do the RBCs 

showing PS exposure adhere together, how strong is the adhesion force among the cells? 

What is the nature of the adhesion force?  Alternatively, which molecules are involved in 

these processes? To find the answers or at least explanations for that, the following 

arguments should be considered.  

 

The aspects of PS exposure 

Closse et al. [117] pointed out that under pathological conditions such as sickle cell 

disease, malaria and diabetes, an abnormal adherence of RBCs to the endothelium is 

concomitant with the loss of phospholipid asymmetry resulting in PS exposure. The 

adhesion was inhibited by PS liposomes and by annexin V giving clear evidence of the PS 

dependency of these interactions. Treatment of RBCs with the Ca2+ ionophore A23187 

showed that RBCs showing PS exposure massively adhered to human umbilical vein 

endothelial cells (HUVEC) in a Ca2+ dependent manner. This adhesion was also inhibited 

by PS liposomes and by annexin V, supporting for the PS dependency of these interactions.  

Similar investigations were carried out by Manodori et al. [80]. They studied the role of PS 

exposure in Ca2+ ionophore treated normal RBCs adhering to HUVEC monolayer. When 

the HUVEC monolayer was incubated with PS exposed RBCs, the endothelial cells (EC) 

retracted and the RBCs adhered primarily in the gaps opened between the ECs. A linear 

correlation was found between the number of PS exposing RBCs in the population and the 

number of adhering RBCs to the monolayer. Pre-treatment of RBCs with annexin V 

significantly decreased adherence by covering PS on the surface of the RBCs. Similarly, PS 

containing lipid vesicles decreased RBC binding by competing for the PS binding sites in 

the monolayer. PS exposed RBCs and PS containing lipid vesicles adhered to immobilized 

thrombospondin (TSP) and matrix TSP, respectively, and adherence of PS exposed RBCs 

to the EC monolayer was reduced by antibodies to TSP and to the receptor of ECs (avb3) 

[80]. 

In a study of phospholipid vesicle aggregation, Ohki et al. [218] showed that in the 

presence of divalent ions the aggregation of vesicles containing PS can be explained by the 
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dynamic interactions of the vesicle membrane by electrostatic forces. Nir et al. and Bentz et 

al. [219, 220] noted that the fusion of PS containing vesicles does not occurs when the 

medium contains only monovalent cations (at pH 7.4). Ca2+ is an important factor for the 

aggregation of PS containing vesicles. In a mini-review, Papahadjopoulos et al. [221] 

showed that Ca2+ could induce aggregation of phosphatidylserine containing vesicles and 

play an important role in the formation of a “bride” structure between two 

phosphatidylserines (PS---Ca2+---PS). Together with other report about PS exposure and its 

ability for adhesion with endothelia cells, it suggests that PS is one important factor for cell 

adhesion.  

 

The aspects of cell receptors 

In a very interesting report, Setty et al. [115] showed that sickle RBCs adhered with non-

activated endothelial cells. It is known that under normal conditions, there is a 

subpopulation of RBCs in sickle cell blood showing PS exposure. When sickle RBCs were 

treated with annexin V (to cover PS) or anti-CD36, there was an inhibitory effect on the 

adhesion process of 36 ± 10 % and 23 ± 8 %, respectively. In case both annexin V and anti-

CD36 were used, an additive effect was observed. Hence both exposed PS and CD36 take 

part in the adhesion with endothelium and CD36 exists at a significant amount on sickle 

RBCs [115].  

In a study on Plasmodium falciparum, van Schravendijk et al. [222] used the monoclonal 

antibodies (MoAbs) anti-CD36 to test the presence of this cluster on the human RBC 

membrane. Mature RBCs have previously been considered to be negative for CD36. 

However, using fluorescence activated cell sorter (FACS) analysis with the anti-CD36 

MoAbs 8A6, OKM5, and OKM8 they found that there exist CD36 in mature RBCs, but the 

level of expression of CD36 is low. However, there are also enough CD36-like molecules 

on the surface of normal RBCs to mediate adherence to a surface presenting suitable 

receptors, such as anti-CD36 MoAbs. It is also possible that CD36 on RBCs may act 

together with other receptors in mediating adhesion phenomena because many cell 

adhesion processes involve multiple receptors [116, 222]. 

A report by Tail et al. [223] showed that CD36 has been proposed as one receptor protein 

that recognizes PS and other anionic phospholipids. They investigated the binding of 

phospholipid vesicles to the monocytic leukaemia cell lines THP-1 and J774A.1 using 

vesicles containing 50 % PS, PI, or phosphatidylglycerol (PG), and with balance of 

phosphatidylcholine (PC). Specific, high affinity binding was observed for vesicles 
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containing PS, PI, or PG. Normal RBCs or annexin V treated vesicles showing minimal 

binding to the human monocytic leukaemia cell line (THP-1) were used as control. High 

concentration of o-phospho-l-serine (1 mM) had no effect on the binding of PS vesicles, 

indicating that high affinity binding requires a surface containing multiple phosphoserine 

groups rather than a single molecule.  

A monoclonal antibody to CD36 blocked up to 60 % of the specific binding of PS vesicles 

but had minimal or no effect on the binding of PG or PI vesicles. This antibody also 

selectively inhibited the phagocytosis of PS containing vesicles as measured by 

fluorescence microscopy, indicating that CD36 is functionally significant for phagocytosis 

of this vesicle type. In addition, collagen and thrombospondin, two other putative ligands 

of CD36, were unable to inhibit the binding of PS vesicles. These evidences suggest that 

CD36 is the primary protein responsible for the high affinity binding of PS vesicles to these 

monocyte-like cells. In addition, CD36 appears to be specific for PS among anionic 

phospholipids [223]. Other reports also pointed out that the presence of CD36, CD44, and 

VLA-4 plays an important role in cell mediating adhesion, especially in sickle cell anaemia 

to components of the extracellular matrix [116].  

Recently, the adhesion force between two RBCs which were stimulated by LPA or A23187 

treatment was measured by using atomic force microscopy. The results show that at least a 

force larger than 100 pN was measured (P. Steffen and D. Moersdorf, unpublished, private 

communication). In the control experiment, the adhesion forces were determined to be one 

order of magnitude lower. This evidence is very convincible to demonstrate the self-

adhesion ability of RBCs showing PS exposure.  

Treatment of sheep RBCs with 2.5 µM LPA in the presence of 2 mM Ca2+ results in about 

10% of cells showing PS exposure (Fig. 60, lower row). When sheep RBCs are treated with 

A23187 or PMA, there is no or very less cell showing PS exposure (Fig. 60, upper row). 

However, it is very interesting that sheep RBCs adhere together under these conditions 

(Fig. 65). An open question here is which amount of PS exposure on the outer leaflet of 

RBCs is enough to induce the adhesion? Another question is whether a few numbers of PSs 

together with other phospholipids are enough for the adhesion process? To answer these 

questions the nature of the adhesion process should be elucidated. In addition, the role of 

cell receptors should also be under consideration. 

Taken all together, the adhesion of RBCs to other tissues and to themselves is related to the 

presence of exposed PS (may be together with other anionic or zwitterionic phospholipids) 
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and the interaction of receptors on the membrane of the RBCs as well. Fig. 81 shows a 

proposed model for the adhesion of RBCs under stimulated conditions. 

 

 
 
Fig. 81: Proposed model for the process of adhesion of PS exposed RBCs under 
stimulated condition. In the proposed model, the CD36, PS-binding receptors, and other 
receptors are present on the surface of RBCs or endothelial cells. Under normal conditions, 
RBCs do not show PS exposure on the outer leaflet of the membrane. Hence, they do not 
adhere to endothelial cells and to themselves as well. Under certain conditions when RBCs 
or microvesicles show PS on the outer leaflet of the membrane, the existing receptors such 
as CD36 and PS-binding receptors bind with PS. Therefore, RBCs and microvesicles 
carrying PS exposure can adhere to together and to the endothelial cells. The RBCs 
showing PS exposure also can be adhered together by the interaction of PS-PS in the 
presence of Ca2+. These interactions forms a so called “bridge structure” that can facilitate 
the adhesion of RBCs. 
 

5.6. Role of red blood cells in the process of thrombosis 

 

As mentioned before, according to the traditional opinion, coagulation and thrombosis are 

primarily a function of endothelial cells, platelets, and soluble coagulation factors, in which 

platelets take a central role. RBCs in contrast, are generally regarded as innocent 

bystanders, passively entrapped in a developing thrombus as they flow through the 
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vasculature. However, some findings and the results of this work show the active role of 

RBCs in the process of thrombosis.  

It should be noticed that under normal conditions the concentration of PGE2 in human 

plasma is extremely low. In 1983, Smith et al. [224] reported that the concentration in 

healthy volunteers is 2.8 ± 2.0 pg/ml by using capillary gas chromatography negative ion 

chemical ionization mass spectrometry. Araujo et al [225] noted the concentration of PGE2 

is 1.057 ± 0.758 ng/ml. Wu et al. [226] showed that the concentration of PGE2 in human 

plasma varies from 7.8 to 500 pg/ml. The concentration of LPA in human plasma is about 

0.41 µM under normal conditions [227]. When platelets are activated, the concentration of 

LPA elevated to be about 20 µM in plasma [205] or even higher up to 200 µM in plasma 

and malignant ascites fluid of ovarian and cervical cancer patients [124, 228, 229].  

As mentioned before, Kaestner and Bernhardt proposed a cascade for the aggregation of 

RBCs under stimulated conditions (Fig. 6). It suggests that when platelets are activated, 

they release LPA. Subsequently, LPA activates the non-selective voltage dependent cation 

(NSVDC) channel leading to an increase of intracellular Ca2+ by the induction of an influx 

of Ca2+ through the channel. Some events involving Ca2+ such as the activation of the 

Gardos channel, scramblase, and inhibition of aminophospholipid translocase (APTL) lead 

to cell shrinkage and PS exposure. The consequences are the aggregation and adhesion of 

RBCs. In this model, the adhesion of RBCs can be explained based on the combining 

action of the PS exposed RBCs, and the microvesicles carrying exposed PS with the 

receptors existing on the cell membrane surface.  

There are some evidences supporting this opinion. In principle, the adhesion of cells is 

based on cell-cell interaction. In resting state, there is no or very less PS exposure on the 

outer leaflet of the RBC membrane. Under stimulated conditions, cells and microvesicles 

carrying exposed PS provide a catalytic surface promoting the assembly of the 

characteristic enzyme complexes of the coagulation cascade. Microvesicles shed from 

activated platelets constitute the main circulating population. They harbour major 

membrane glycoproteins, including functional adhesive receptors, and consequently 

disseminate a procoagulant potential that can be targeted according to the nature of counter 

ligands [118]. Likewise, the microvesicle containing exposured PS can bind to soluble or 

immobilized fibrinogen and aggregate with platelets [119]. Jimenez et al. [120] noted that 

the procoagulant potential of cells or microvesicles carrying PS is not restricted only to 
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platelet microvesicles. However, microvesicles from monocytes, lymphocytes, RBCs or 

endothelial cells also show PS at their outer surface. Other factors were also detected at the 

surface of circulating endothelial microvesicles, for instance the von Willebrand factor and 

E-selectin. 

According to Kawakami [230], the RBC was identified as the most active membrane surface 

among blood cells and endothelial cells in catalyzing the coagulation process. The exposure 

of PS may be necessary for assembly of contact coagulation factors because of the interaction 

of anionic phospholipids with coagulators. Exposed PS provides a procoagulant surface that 

facilitates the conversion of prothrombin into thrombin [231-233]. Other evidences about the 

role of membrane phospholipids in the activation of the conversion of pro-thrombin into 

thrombin were given by Zwaal et al. [72]. Membrane phospholipids propagate the proteolytic 

reactions that result in thrombin formation by promoting the assembly of coagulation factors 

on their surface. The most important pathway of coagulation is initiated by tissue factor (TF), 

an integral membrane protein expressed on the surface of activated or disrupted cells. 

According to Ruf et al [232], the anionic phospholipids are indispensable to promote 

membrane binding and catalytic activity of the two subsequent coagulation factor complexes 

in the cascade that leads to thrombin formation.  

Treatment of 0.1 % haematocrit RBC suspension with 100 IU of thrombin at 37°C for 30 min 

leads to more than 50 % of cells showing PS exposure (own result, data now shown). 

Therefore, it seems that the RBCs showing PS exposure on the outer leaflet can mediate the 

conversion of prothrombin to thrombin (in the presence of other factors, see Fig. 82). If 

thrombin by itself can stimulate the exposure of PS on the outer leaflet of the RBC 

membrane, RBCs are not merely bystanders but can act as mediating cells in a signal 

propagation cascade of the thrombus formation. In other words, RBCs take part in a cycle of 

signal amplification. It should be mentioned that the number of RBCs is much larger than the 

number of platelets. Therefore, when RBCs are stimulated they will play an important role in 

blood clot formation. Details of the proposed coagulation cascade are presented in Fig. 82.  
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Fig. 82: Role of RBCs in signal amplification in the thrombus formation. Under normal 
conditions, the tissue factors (TF) do not expose to the bloodstream. When an injury or 
stimulation occurs, the collagen and tissue factors are released from the endothelial cells. 
This leads to the activation of factor VII (from VII into VIIa). In a cascade, the factor VIIa 
activates factor IX to IXa. Subsequently, factor IXa activates the conversion of factor X 
(pro-thrombinase) to Xa (thrombinase). A cofactor (also called factor V) is activated, it 
helps for the conversion of factor II (pro-thrombin) to IIa (thrombin) leads to the activation 
of platelet and fibrinogen (factor I). LPA or PGE2 are released from the activated platelets, 
they act as the second messengers leading to the activation of the non-selective voltage 
dependent cation channel. The increase of the intracellular Ca2+ content in RBCs leads to 
membrane shrinkage, membrane blebbing, PS exposure, and vesicle formation. The RBCs 
showing PS exposure on the outer leaflet of their membrane can propagate the cascade 
signal by the assembly of factors VIIIa, IXa, Xa, and Va. These factors activate the 
conversion of pro-thrombin to thrombin and the cycle is continued. In addition, the RBCs 
showing PS exposure also can adhere together. This adhesion facilitates the formation of 
the blood clots in the presence of fibrin network.  
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6. Summary 
 

 

In the presented work the question about the role of Ca2+ in PS exposure process in RBCs 

has been clarified. Treatment of RBCs with LPA, A23187 and PMA in the presence of 

extracellular Ca2+ leads to an increase of the intracellular Ca2+ level, PS on the outer leaflet 

of the membrane, membrane blebbing, and microvesicle formation. These effects are 

influenced by the function of the phospholipid scramblase, flippase, protein kinase C and 

Gardos channel. It is also demonstrated that the exposure of PS does not only depend on 

the increase of the intracellular Ca2+ content but also on the function of protein kinase C. A 

model has been developed to contribute to our understanding of the mechanisms of this 

process. 

The RBCs showing PS exposure can adhere together. This may explain why RBCs adhere 

together during blood clot formation. It seems likely that the interaction of PS with its 

receptors and PS-PS in the presence of Ca2+ play a substantial role. A model to explain the 

process of cell-cell adhesion is presented. 

The hypothesis of the blood clot formation cascade developed by Kaestner and Bernhardt is 

also supported by experiments. The PS exposure on the outer leaflet of RBCs is an 

important factor for propagation the signal in clot formation process. A model in which the 

RBCs play an active role in blood clot formation is developed.  

The question about the Ca2+ content in RBCs is also answered. There is no significant 

difference of the free Ca2+ content in young and old RBCs. 
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Zusammenfassung 
 

 

In der vorliegenden Arbeit wurde die Rolle, die Ca2+ bei der PS-Exposition spielt, geklärt. 

Die Behandlung roter Blutzellen mit LPA, A23187 und PMA in Gegenwart von 

extrazellulärem Ca2+ führt zu einem Anstieg des intrazellulären Ca2+, PS-Exposition, 

„Membrane Blebbing“ und der Bildung von Mikrovesikeln. Diese Effekte werden 

beeinflusst durch die Funktion der Phospholipid Scramblase, der Flippase, der 

Proteinkinase C und des Gardos Kanal. Auch wurde gezeigt, dass die PS-Exposition nicht 

nur vom Anstieg des intrazellulären Ca2+ abhängig ist sondern auch von der Funktion der 

Proteinkinase C.  

Rote Blutzellen mit PS-Exposition können aneinander haften. Dies kann eine Erklärung 

dafür sein, weshalb rote Blutzellen bei der Bildung eines Gerinnsels adhärieren. Die 

Interaktion von PS mit seinen Rezeptoren und eine PS-PS-Interaktion in Gegenwart von 

Ca2+ übernehmen hierbei wahrscheinlich eine wichtige Rolle.  

Die vorgeschlagene Kaskade von Kaestner und Bernhardt, die eine aktive Beteiligung roter 

Blutzellen an der Thrombusentstehung beschreibt, wird durch Experimente gestützt. Die 

Exposition von PS an die Außenseite der Membran ist hierbei ein wichtiger Faktor, 

welcher der Signalweiterleitung während der Thrombusentstehung dient.  

Die Frage bezüglich des intrazellulären Ca2+-Gehalts in roten Blutzellen wurde 

beantwortet. Es gibt keinen signifikanten Unterschied im Gehalt an freiem intrazellulärem 

Ca2+ zwischen jungen und alten roten Blutzellen. 
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