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AABBSSTTRRAACCTT    

 

The heterogeneity of the metal content observed in Metallo-ß-Lactamases (MBLs) 

hampers the design of potential inhibitors. In the first part of the work, three 

representative members of the MBLs, namely BcII, CphA and L1 were investigated 

using mass spectrometric and spectroscopic methods. Experimental parameters for 

the detection of the metal-protein and ternary metalloprotein-inhibitor complexes 

using ESI-MS1 were evaluated and optimized. SAR1 determined in the gas phase 

were in agreement with kinetic assays performed in solution. This demonstrates the 

suitability of this technique for the screening for new inhibitors of MBLs and for the 

detection of metal:enzyme:inhibitor ratios. Competition-titrations in combination with 

ESI-MS, revealed that for different subclasses of the MBL, the inhibition by (R,S)-

thiomandelate and D-captopril is strongly influenced by the nature of the metal ion 

and the metal content of the protein.  

In the second part of the work, the metal ion dependent flexibility of different parts of 

the BcII protein was investigated using HDX-MS1. It was shown that the metal-free 

enzyme was the least ordered structure and that the high flexibility at the metal 

binding site and the domain interface region in the Cd1-enzyme might facilitate the 

transfer of the metal between the two binding sites. These findings deliver important 

parameters for future development of efficient inhibitors for these enzymes. 

 

 

 

1Abbreviations used are: ESI-MS, electrospray ionization mass spectrometry; SAR, 

structure activity relationship; HDX-MS, hydrogen deuterium exchange mass 

spectrometry  
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ZUSAMMENFASSUNG 

 

Die heterogene Metallbesetzung in Metallo-ß-Lactamasen (MBLs) ist einer der 

Hauptgründe für den bislang geringen Erfolg bei der Entwicklung effizienter 

Inhibitoren für diese Enzymklasse. Im ersten Teil der Arbeit wurden drei 

repräsentative Vertreter der MBLs (BcII, CphA und L1) mit massenspektrometrischen 

und spektroskopischen Methoden untersucht. Es wurden Methoden der „nicht 

denaturierenden“ ESI-MS1 für den Nachweis von Metall-Protein- sowie ternärer 

Metallprotein-Inhibitor-Interaktionen entwickelt. Die mittels ESI-MS in der Gasphase 

ermittelten SAR1 stimmten sehr gut mit den zuvor in Lösung ermittelten überein. 

Somit konnte gezeigt werden, dass ESI-MS eine geeignete Methode für die 

Bestimmung von Metall-Enzym-Inhibitor-Stöchiometrien und damit für die 

Identifizierung neuer effizienter Inhibitoren darstellt. Durch die Kombination von ESI-

MS Experimenten mit Konkurrenztitrationen zeigte sich, dass die Hemmung 

verschiedener MBL-Subklassen mittels (R,S)-Thiomandelsäure und D-Captopril stark 

von der Art des gebundenen Metalls sowie von der Metall-Protein-Stöchiometrie 

beeinflusst wird.  

Im zweiten Teil der Arbeit konnte mittels HDX-MS1 gezeigt werden, dass beim 

metallfreien Enzym die Sekundärstruktur am wenigsten ausgeprägt ist und dass das 

Cd1-BcII Enzym der metal-freien BcII Spezies sehr zu ähneln scheint, wenn nur das 

aktive Zentrum und die Interdomainen-Region betrachtet werden. Dies liefert ein 

tiefergehendes Verständnis der MBL sowie Grundlagen zur Entwicklung neuer 

Inhibitoren. 

 

 

1Abkürzungen: ESI-MS, Massenspektrometrie der Electrospray Ionisierung; SAR, 

Struktur Aktivitäts Beziehungen; HDX-MS, Wasserstoff Deuterium Austausch 

Massenspektrometrie  
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IINNTTRROODDUUCCTTIIOONN  

 

One of the major bacterial resistance mechanisms against ß-lactams is the 

production of metallo-ß-lactamases (MBLs); they can inactivate ß-lactams by 

hydrolysing their ß-lactam ring using zinc ions as cofactors. The emergence of MBLs 

in pathogenic bacterial strains and their low sensitivity against carbapenems, 

compounds usually administrated for the inhibition of the serine-ß-lactamases, make 

them clinically relevant. To date, not a single MBL inhibitor has been found to be 

used in clinical therapy settings. In fact, the design of potent drugs is hindered by the 

little understanding of the real metal state of MBLs in vivo (1). The importance of the 

metal requirement for catalytic activity of the three subclasses B1-B3 MBLs is still 

matter of debate.  

Although most crystal structures of subclass B1 enzymes show that both metal sites 

are occupied (1), the enzymes BcII from Bacillus cereus 569/H/9, CcrA from 

Bacteroides fragilis, BlaB from Chryseobacterium meningosepticum, and IMP-1 from 

Pseudomonas aeruginosa are active as mono- as well as di-zinc enzymes (2-5). 

Moreover, the B2 enzymes CphA from Aeromonas hydrophilia and ImiS from 

Aeromonas veronii bv. sobria are most active in their monozinc form (6, 7). For 

enzymes belonging to the subclass B3, which are generally considered as dizinc 

enzymes, it has been shown that for instance L1 from Stenotrophomonas maltophilia 

is also active as a monozinc enzyme (4). More recently, GOB from Elizabethkingia 

meningoseptica has been reported as a mono-zinc subclass B3 enzyme with a novel 

active site geometry (8). 

In presence of substrates or inhibitors, the MBLs can adopt different metal 

stoichiometries. Wommer et al., 2002 showed that the substrate imipenem induced 

negative cooperativity in metal ion binding for representative enzymes of subclasses 

B1-B3 (4). The authors proposed that the monozinc-MBLs are physiologically 

relevant species due to the fact that the free zinc concentration in the bacterial 

cytosol is only femtomolar. Binuclear zinc MBLs might be an artefact due to the high 

concentrations of zinc usually required for its production in vitro. 

Known inhibitors of MBLs have also been shown to influence the MBL metal content. 

Most of the reported data were acquired on cadmium-substituted MBLs, also 

representating catalytically active species. For the cadmium-substituted BcII enzyme 
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positive cooperativity in metal binding was observed in presence of thiomandelate, a 

known MBL broad-spectrum thiol inhibitor (9), whereas the presence of D-captopril 

(another potent in-vitro MBL thiol inhibitor) decreased the affinity for a second 

cadmium ion binding (10). Furthermore, structural data in solution and in the crystal 

state have revealed that D-captopril adopts different binding modes when bound to a 

sub-class B1, B2 or B3 MBL (1). 

Another particular feature of the MBLs is the important variation in position, number 

and type of solvent molecules required for metal coordination. The positions of the 

amino acids interacting with the metal ions can be different even within the same 

subclass. Perturbed angular correlation spectroscopy (PAC) or Nuclear magnetic 

resonance spectroscopy (NMR) have been used to provide some valuable 

information on the metal coordination geometry. The combination of PAC and NMR 

have revealed a dynamic process at the metal binding sites, demonstrating an 

intramolecular exchange of the cadmium between the two available binding sites 

(11).  

 

AIMS OF THE WORK 

In the first part of this work and in collaboration with partners from the European 

network MEBEL, it has been set to develop and apply a “non-denaturing”- 

Electrospray Ionization Mass Spectrometry (ESI-MS) method in order to detect 

potential metalloprotein-ligand complexes with the aim to identify new MBL inhibitors. 

Additionnally, the influence of the inhibitors on the metal stoichiometry in MBLs has 

been investigated using the ESI-MS approach together with competition titrations 

performed in solution.  

The second part of the work is focused on the overall protein flexibility and the 

modification of MBL active site dynamics upon metal and ligand binding using a 

hydrogen-deuterium exchange mass spectrometry (HDX-MS) method. 
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11  TTHHEEOORREETTIICCAALL  BBAACCKKGGRROOUUNNDD  

1.1 ß-Lactam resistance 

ß-lactam antibiotics are potent antimicrobial agents that inactivate the 

transpeptidases (eg. Penicillins-Binding Proteins or PBPs) involved in the bacterial 

cell wall synthesis (12). They have been administrated for over five decades for the 

treatment of community-acquired infections. However, the emergence of several 

pathogenic strains resistant to ß-lactams led to the revision of the current therapies. 

In fact, bacteria have developed different escape strategies against the antimicrobial 

drugs. The most common mechanism of resistance is the production of ß-lactamases 

which can inactivate the antibiotic by hydrolysing the amide bond of its ß-lactam ring 

(Figure 1.1). 

 

 

 

 

 

 

 

 

 

Figure 1.1: Scheme of the hydrolysis of a ß-lactam antibiotic (benzylpenicillin) by a ß-

lactamase.  

 

1.2 ß-Lactamases 

ß-lactamases have been divided into four classes (A-D) based on either their 

molecular structure or function (13). Classes A, C and D are serine-ß-lactamases 

which require an active site serine residue to catalyse the ring opening of the ß-

lactams and are mostly penicillininases or cephalosporinases. Class B enzymes, 

called metallo-ß-lactamases (MBLs), use one or two zinc ions in their active site for 

their activity and show a broader substrate profile as the serine-ß-enzymes. MBLs 

also hydrolyse carbapenems (e.g. imipenem) and penems and are not inhibited by 

the clavams commonly used to inhibit the serine-ß-lactamases (14). MBLs have now 
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become clinically extremely relevant and a lot of efforts have been put into the 

characterization of the MBLs in order to develop efficient inhibitors. 

1.3 Metallo- ß -Lactamases 

1.3.1 Emergence of MBLs 

The first MBL was isolated from Bacillus cereus 569/H/9 in 1966, where EDTA was 

shown to inhibit the cephalosporinase activity (15). As Bacillus cereus is a non-

pathogen organism and the isolate was the only example of these zinc-dependent 

enzymes, the discovery was only considered as a curiosity. In the early 80’s, an 

increased number of MBLs was isolated from many organisms even from 

pathogenes such as Stenotrophomonas maltophilia or Pseudomonas aeruginosa 

(16). More frightening was the identification of a gene coding for a MBL in Bacillus 

anthracis (17). Their fast dissemination could be explained by the location of their 

encoding genes on mobile DNA plasmids, which allow horizontal gene transfer (18). 

 

1.3.2 Characteristic of MBLs subclasses 

Combination of X-ray structure data and sequence alignments enabled the division of 

the MBLs into three subclasses (B1-B3) (19). The classification is based on both, the 

metal-ligands composition of the two binding sites, and their substrate profile. In the 

subclass B1, three His constitute the metal binding site 1 and one His, one Cys and 

one Asp form the metal binding site 2 as shown for the BcII enzyme from Bacillus 

cereus (Figure 1.2A). In subclass B2, only one His is replaced by one Asn in the site 

1, the rest of the active site residues being identical with those from subclass B1. 

Zinc-ß-lactamase CphA from Aeromonas hydrophilia is one of the representative 

MBLs of subclass B2 (Figure 1.2B). The same metal-binding residues are present in 

site 1 for subclass B3 compared to subclass B1, but the Cys from metal binding site 2 

is replaced by a His as illustrated in the case of the L1 enzyme from 

Stenotrophomonas maltophilia (Figure 1.2C). B1 and B3 enzymes generally exhibit a 

broad substrate profile, whereas the subclass B2 enzymes are carbapenem specific. 
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  A    B    C 

 

 A    B    C 

 

 

 

 

 

 

 

Figure 1.2: Active site views of Metallo-ß-lactamases BcII from Bacillus cereus (A), CphA 

from Aeromonas hydrophilia (B) and L1 from Stenotrophomonas maltophilia (C) created with 

the PyMOL program. The metal ligands are represented as stick models and the metals as 

spheres. The atom coloring scheme is blue for nitrogen, red for oxygen, orange for sulfur, 

fawn for zinc, and gray for carbon. The residue-numbering scheme is the standardized 

version from reference (20). 

 

1.3.3 The MBL fold 

Despite the low similarity of their amino acid sequences, all known MBLs revealed a 

αßßα fold composed by two central ß-sheets and five solvent-exposed α-helices 

(Figure 1.3). The N- and C- terminal domains, containing one ß-sheet and two α-

helices each, can be superimposed by a 180° turn around a central axis, suggesting 

that the structure is the result of gene duplication (21). The active site is located in a 

long channel between both domains. Residues from each binding site are distributed 

between the N- and C- terminal domains. The MBL fold together with the highly 

conserved metal binding site are the characteristics of the MBL superfamily (22, 23), 

which contains a wide range of proteins with diverse functions like glyoxylase II, aryl 

sulfatase, cAMP phosphodiesterases or CMP-N-acetyl neuraminic acid hydrolases 

(23, 24). Interestingly, an independent group within the MBL superfamily, involved in 

DNA repair (e.g. Arthemis) (25, 26), also contains the MBL fold, but its function 

remains unclear. 

 

 

  

His196 

Asn116 

His118 

Zn1 

His263 

Asp120 

Cys221 

His196 

His116 
His118 

Zn1 

Zn2 

His263 

Asp120 

Cys221 

His196 

His116 His118 

Zn1 

Zn2 

His263 

Asp120 

His221 



  CHAPTER I 

  

 19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Ribbon representation of the BcII enzyme from Bacillus cereus 569/H/9 (Protein 

Data Bank, accession number 1BVT) created with the PyMOL program. BcII is a αß-

sandwich structure with α-helices on the external faces. The N-terminal domain includes a ß-

sheet made of seven ß-strands (in blue), three α-helices (in red) and two characteristic loops 

(i.e. substrate binding loop and 56-60 loop) (in grey). The C-terminal domain includes a ß-

sheet made of five ß-strands (in blue), two α-helices (in red) and one characteristic loop (i.e. 

174-185 loop) (in grey). The metal ions are represented as spheres (in violet). 

 

1.3.4 Catalytic mechanism of MBLs 

Although the active site of subclass B1 MBL is constituted of two metal binding sites 

(1), crystal structures of these enzymes were solved in complex with one and two 

Zn(II) ions (21, 27, 28). Furthermore the catalytic activity was shown to be dependent 

on the [Metal(II)]/[E] ratio. Indeed, BcII a well know representative of subclass B1 

MBL, is active with both one and two zinc ions in its active site which implies two 

different catalytic mechanisms (2). Similar conclusions were made for the CcrA 

enzyme of Bacteroides fragilis (3), which were later contradicted by another study 

demonstrating the positive cooperativity in metal binding, leading to the conclusion 

that only the di-Zn form of CcrA is relevant for the catalysis (29). Based on structural 

and kinetic data, two different catalytic mechanisms were proposed for the zinc-

enzyme BcII. In the monozinc-form, Cys168 is proposed to act as a proton acceptor 
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for the Zn(II)-bound water; thus allowing the nucleophilic attack at the ß-lactam 

carbonyl by the hydroxide ion which eventually leads to the amide bond fission. This 

fission might be facilitated through deprotonation of the tetrahedral intermediate by 

Asp90, which by generating a dianionic tetrahedral intermediate, donates the proton 

to the amine nitrogen (Figure 1.4) (30). In the di-zinc-form of BcII, Cys168 is not 

required to catalyse the reaction. Instead, the bridging hydroxide ion between the two 

metals directly attacks the ß-lactam-ring (3, 31).  

 

 

 

Figure 1.4: Catalytic mechanism of the ß-lactam hydrolysis by the mono-Zn enzyme BcII 

from Bacillus cereus 569/H/9 (30). Possible reversible formation of the tetrahedral 

intermediate and its deprotonation by Asp90. 

 

1.3.5 Flexibility/Dynamics at the active site of MBLs 

Although the metal binding amino acids are identical among the available crystal 

structures of subclass B1, great variability in the position and type of solvent ligands 

have been detected, even for the position of the residues interacting with the metals 

(27, 28, 32-38). Consequently, several studies were carried out to investigate the 

degree of flexibility around the metal binding sites, especially focusing on the BcII 

enzyme. To provide some information on the metal coordination nature, 

spectroscopic techniques such as perturbed angular correlation (PAC) or nuclear 

magnetic resonance (NMR) can be used. In both techniques Zn(II) could not be 
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used as a spectroscopic probe and was always replaced by catalytically active Cd(II) 

(33). Previous studies using PAC spectroscopy performed on BcII indicated that at 

low [Cd(II)]/[E] ratios the single metal ion was distributed between both binding sites 

(33). Combination of PAC and NMR data revealed a dynamic process at the metal 

binding sites, due to the supposed intramolecular exchange of the cadmium ion 

between the two available binding sites (11). Later, this intramolecular exchange was 

also suggested for the zinc-enzyme (39). 

 

1.3.6 MBL inhibition 

To date, a considerable number of small organic molecules have been tested for 

inhibition of the MBLs. A recent review by Heinz et al., 2004 has reviewed the 

different classes of reported MBL inhibitors (1): tricyclic natural products, 

trifluoromethyl alcohols and ketones, hydroxamic acids, mercaptocarboxylates, 

biphenyl tetrazoles, carbapenem and penicillin derivatives, cephamycins and 

moxalactam, thiols, cysteinyl peptides, inhibitors derived from single-domain antibody 

fragment elicited in the Camelidae, thioesters derivatives, phenazines from a 

Streptomyces, succinic acid derivatives, sulphonyl hydrazones, disulfides, thiol-

substituted penicillin inhibitor, degradation products of cephalosporins, captopril, 

thiomandelic acid. Recently benzohydroxamic acids (40) and pyridine carboxylates 

(41) were also identified as potential inhibitors of MBLs.  

Potent in-vitro MBL inhibitors such as succinic acid (42) and mercaptocarboxylic acid 

derivatives (38, 43) have also been reported, displaying some inhibition constants in 

the low nanomolar range. Most of the inhibition studies were performed using the di-

Zn forms of the MBLs, at the exception of CphA which was considered as a 

monozinc-enzyme (6). In most cases, crystal structures revealed that the MBL bound 

inhibitor replaces the zinc bound-water molecules and acts as new metal ligand (1). 

For instance, it was shown that the sulphur group of thiol-containing inhibitors is 

chelated by both metal ions in binuclear enzymes (38, 44). Moreover, the same 

inhibitor can have different binding modes among the three MBL subclasses as it was 

shown for the inhibitor D-Captopril (10, 44, 45). Inhibitors can also change the affinity 

of the enzymes for the metal ions; mononuclear enzymes can be dinuclear in 

presence of an inhibitor (9) or the single metal ion can be stabilized in one binding 

site of the enzyme (10). 
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1.4 Non-covalent interactions 

Weak reversible interactions between proteins, proteins and ligands or proteins and 

metal ions are involved in most of the biological processes such as in signal 

transduction pathways (e.g. binding of extra cellular signalling molecules to 

receptors), in DNA replication, in RNA and protein synthesis and in all metabolic 

pathways (e.g. substrate recognition by the enzymes). The reversibility of the 

interactions is a prerequisite for the correct regulation of many of these processes. 

These weak binding features are also required for the proper folding of proteins. 

There are four main types of non-covalent interactions: electrostatic, hydrophobic, 

hydrogen bonding and van-der-Waals interactions. The nature of binding differs by 

their strength, geometry and specificity (46). Table 1.1 summarises the different non-

covalent interactions together with typical values of binding energies. 

 

Table 1.1: Binding energies of the non-covalent interactions compared with those of the 

covalent interactions. 

 

Non-covalent Forces Binding energy (kJ/mol) 

electrostatic 42 

hydrogen bonding 8-21 

hydrophobic 4-8 

van der Waals 4 

Covalent bonds (C-C) 300 

 

 

1.4.1 Techniques for the study of non-covalent complexes 

Conventional methods 

There are several established methods that are used for the study of non-covalent 

macromolecular interactions: native gel electrophoresis, co-immunoprecipitation and 

two hybrid-screening techniques allow the identification of binding partners of weak 

complexes; gel permeation chromatography and analytical ultracentrifugation are 

used to determine the binding stoichiometry between the two associates in solution 
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whereas nuclear magnetic resonance (NMR) and X-ray crystallography deliver 

structural informations about the molecular interactions. Binding affinities can even 

be determined using surface plasmon resonance (SPR), circular dichroism (CD) 

spectroscopy, light scattering, UV and fluorescence spectroscopy, isothermal titration 

calorimetry (ITC) or radioactive and fluorescence labelling techniques. Most of these 

techniques are often time consuming, require high amounts of proteins and/or do not 

offer sufficient resolution to detect interactions between proteins and small 

compounds. 

 

Mass spectrometry as a tool for the detection of non-covalent complexes 

Since the development of Matrix Assisted Laser Desorption Ionization (MALDI) (47, 

48) and Electrospray Ionization (ESI) (49), two soft ionisation methods, mass 

spectrometry (MS) has become an indispensable tool for protein analysis. In fact, the 

mass of a large number of macromolecules, such as peptides (50), oligonucleotides 

(51), small compounds (52) and also proteins with high molecular weight (53) can be 

determined. The speed, specificity and sensitivity (atomole amounts) of MS analysis 

are great advantages compared to conventional methods. Mass spectrometry 

techniques have first been applied for peptide sequencing (54, 55); after protein 

digestion, peptides are fragmented by collision induced dissociation (CID) and the 

experimental mass values are then compared with calculated fragment ion mass 

values which are stored in a database to enable protein identification. Later, the 

method was used for the study of protein-protein complexes in native (56) or 

denaturing gel electrophoresis by analysis of their protein digestion pattern. In 

denaturing gels, the molecules are crosslinked before they are loaded on the gel 

(57). Furthermore, to identify and determine binding constants of small compounds 

interacting with proteins, bioaffinity based liquid-chromatography-mass spectrometry 

(LC-MS) screening methods have been used (58). The binding partners are eluted 

from the chromatographic columns containing the target proteins and submitted to 

LC-MS for identification and quantification.  

When “non-denaturing” (or “native”) conditions are used, mass spectrometry can be 

used for direct detection of non-covalent complexes. The groups of Ganem (59), 

Katta and Chait (60) were the pioneers of “native” mass spectrometry, demonstrating 

that weak interactions between proteins and ligands can survive the ionization 

process. Since then, many non-covalent complexes have been characterized using 
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“native” mass spectrometry including protein-protein- (61), protein-ligand- (62), 

protein-metal- (63) or protein-DNA- interactions (64). Most of these studies were 

performed using the electrospray as ionization technique. In contrast to MALDI, in 

ESI ions are generated directly from aqueous solutions under near physiological 

conditions, facilitating the detection of weak complexes. Further, the detection of 

unspecific cluster ions in mass spectra, normally hindering the correct evaluation of 

binding stoichiometries, is a major problem in MALDI-MS. These non-specific 

interactions might be formed in the gas–phase after the desorption process (65). 

 

1.4.2 Study of metalloproteins using “native” ESI-MS 

Metal-protein interactions 

Together with “native” ESI-MS, many other techniques can be used to study metal-

protein interactions. Atomic absorption spectroscopy (AAS) or inductively coupled 

plasma (ICP) with atomic emission spectroscopy (AES) or mass spectrometry (MS) 

detection allowed the determination of the metal content of metalloproteins. However 

they are unable to distinguish between the different metal-substituted species 

coexisting in solution. By combination of high pressure liquid chromatography (HPLC) 

using neutral pH elution conditions with ICP-MS and ESI-MS, metalloprotein isoforms 

such as metallothioneins can be separated and their metal stoichiometries can be 

determined (66). However, such techniques are mainly used for the study of 

metalloprotein isoforms already present in biological samples rather than for 

reconstituted metal-loaded species of purified proteins. The simultaneous detection 

of different metal-binding protein species can be easily performed by “native” ESI-

MS. Generally, the binding of metal ions to the corresponding protein is observed by 

monitoring the m/z shifts of the ion peaks in the ESI mass spectra of the apoprotein. 

When titrating the apoprotein (P) with increasing amounts of metal ions (L), the ion 

intensities of metal-loaded species (PLn) can be determined for each metal 

concentration. In 1990, Fenselau and coworkers were the first to apply “native” ESI-

MS to metalloproteins by investigating the metal binding mode of Zn(II) and Cd(II) 

ions to metallothioneins (67). Later, Ca(II)-calmodulin (68) and Zn(II)-peptides 

stoichiometries (69) were determined using the same approach. 
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Metalloprotein-inhibitor interactions 

“Native” ESI-MS is also a very useful tool for the direct detection of metalloprotein-

inhibitor complexes. The relative intensities between the free and the ligand-bound 

metalloprotein ions observed in the ESI spectra can be compared to determine the 

ligand binding affinity. Competitive binding experiments can be performed by adding 

equimolar amounts of several inhibitors to the target protein in solution. The relative 

abundance of a ligand-bound species measured by ESI-MS depends on the relative 

affinity between this species and all the other complexes present in solution. As 

illustrated in Figure 1.5, the relative abundance observed for inhibitor B is higher than 

the one observed for inhibitor A. It can therefore be concluded that inhibitor B has a 

higher affinity for the target protein compared to inhibitor A.  

 

 

 

 

Figure 1.5: General procedure for the determination of relative binding affinities of ligands 

(inhibitors A and B) observed by “native” ESI-MS. MP represented a metalloprotein. 

 

Cheng and coworkers applied this method for the screening of two small libraries (7 

and 18 inhibitors derived from para-substituted benzenesulfonamides) for the bovine 

carbonic anhydrase II (70) and later with larger peptide libraries (289 and 256 

compounds derived from 4-carboxybenzenesulfonamides) (71). Due to the 

complexity of the ESI mass spectrum, a high resolution ESI-mass spectrometer and 

tandem mass spectrometry (MSn) experiments were required for the correct 

identification of the inhibitors. Additionally, the relative ion intensities of the free 

m/z m/z

~ 50 %
binding

~ 100 %
binding

MP + MP +

Relative affinity      <

Inhibitor A  Inhibitor B



  THEORETICAL BACKGROUND 

 26

ligands themselves in the low m/z range allowed to determine their relative binding 

affinities in solution. In complex compound mixtures, a mass analyser with high mass 

resolution, such as Fourier Transform Ion Cyclotron Resonance (FTICR), or the 

simplification of the mixture by a pre-separation step, is essential for the correct 

identification of the different inhibitors. To provide the absolute binding constant 

values, competitive binding experiments can be performed in presence of a ligand of 

known binding affinity to the target protein (72). Direct quantification of binding 

constants is also possible by scatchard plot analysis; here, the ion abundance of the 

bound and unbound species is monitored for increasing amounts of the selected 

inhibitor (73). 

 

1.5 ESI-MS 

Electrospray ionisation (ESI) mass spectrometry (MS) is one of the most prevalent 

techniques used for the study of non-covalent complexes (61). Together with the 

technical improvement of ESI sources and analysers, the number of published 

”native” ESI-MS studies has increased considerably during the last 15 years. 

 

1.5.1 Principle 

The generation of ions by the electrospray (ES) technique was first accomplished by 

Dole in the 1970´s. In this report, a solution of high-molecular weight polystyrene was 

sprayed at atmospheric pressure. Unfortunately, the mass of the produced ions could 

not be directly determined (74, 75). Later, the Fenn group was able to observe the 

ions generated from smaller molecules with a quadrupole analyser, which provided a 

better understanding of the processes occurring during electrospray formation. In 

1984, a mass spectrometer incorporating a highly sensitive electrospray ionisation 

source was designed (76, 77).  

The ionisation by ES starts with spraying of a dilute sample solution through a strong 

electric field, which finally leads to an effective ionisation of the dissolved analytes. 

The electric field is formed by a high voltage difference between a capillary needle 

(metal), where the solution is infused, and a counter electrode. Due to the induced 

electric forces, the solution starts to nebulise and, because of the polarity of the 

capillary, the molecules are ionized with the excess of positive or negative charges. 
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Later, the ions are beaconed through the orifice of the counter electrode and led into 

the mass spectrometer, where they can be separated according to their respective 

m/z ratios. Frequently the spray is pneumatically assisted with a concentric flow of an 

inert gas such as nitrogen to provide a better nebulisation. When the repulsion of 

similarly charged ions and the attraction of the counter electrode exceed the surface 

tension of the solution, the destabilised liquid forms a cone (“Taylor cone”) as 

schematised in Figure 1.6. 

 

 

Figure 1.6: Schematic representation of the electrospray ionisation process, resulting in the 

formation of the “Taylor cone” and small offspring charged droplets. 

 

At the end of the Taylor cone, the charged droplets are then emitted (liquid filament). 

The continuous evaporation of the solvent in the droplets progressively induces a 

diminution of its size. Thus, the charge density increases by a constant charge state 

of the droplet. When the radius of the droplet reaches a certain limit (Rayleigh 

stability limit), the repulsive Coulomb-forces exceed the surface tension forces of the 

liquid, which induces the explosion of the droplet into smaller offspring droplets. Two 

models have been proposed for the theory of the ion emission into the gas phase. 

The first one stipulates that successive explosions conduct to the formation of 

droplets, where only one ion is contained. The ion is then transferred into the gas 

phase by the evaporation of the solvent (74). The second theory postulates that when 
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the size of the droplets is relatively small, the field strength at the surface of the 

droplet is sufficiently strong to directly extract the ions from the droplet into the gas 

phase (78, 79). 

 

1.5.2 ESI ion source design 

Nano-electrospray 

In many applications, nanoliter flow rates (20-50 nl/min) are required, which can be 

obtained with a nano-electrospray (nanoESI) device. Wilm and Mann demonstrated 

that the thinner the spray capillary, the smaller are the droplets and the lower are the 

flow rates (80). In nanoESI, the generated spray is not assisted by pneumatic 

nebulisation. The droplet size obtained from nanoESI is less than 200 nm, i.e their 

volume is about 100 to 1000 times smaller than the droplets generated using 

conventional ESI. Consequently, the nanoESI sources enable the analysis of 

samples in high polarity solvents such as pure water; the effect of corona discharge 

is there minimized. Lower sample consumption and higher salt concentration 

tolerance can also be achieved as with conventional ESI. In fact, the smaller size of 

the droplets in nanoESI reduces the competition between salt and analytes on the 

surface of the droplet (81). 

 

Nano-electrospray from a chip 

For high sample throughput in nanoESI experiments, a silicon chip with 10 X 10 array 

of nanoESI spray nozzles (10 um ID X 30 um OD X 75 um length) was developed 

(82). Sample solutions are supplied from a pipette tip making contact with the back of 

the chip. High voltage is applied on the electrically conducting coating of the tip. A 

robotic device called NanoMate® provides the automated infusion of samples at low 

flow rates. It also includes the ESI Chip and a software for automatic chip handling 

(Figure 1.7).  
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Figure 1.7: Nanomate® system developed by Advion Biosciences for the automatic infusion 

of MS samples (A). The 100 nozzles containing ESI chip with a close-up on a single spray 

nozzle are represented. Picture was downloaded from http://www.advion.com/images/img-

newesichip.gif (B). Schematic representation of a conductive pipette tip making contact with 

the back of the Advion chip. Reproduced from the nanomate User’s manual (C)  

 

1.5.3 Atmospheric-Vacuum Interface 

Following the ionisation process at atmospheric pressure, the ions are guided 

through an atmospheric-vacuum interface before they reach the analyzer. The 

interface consists of i) an orifice through which the ions are introduced, ii) pumping 

stages to reduce the pressure and iii) ion optics to improve the ion transmission to 

the analyser. The vacuum interface also helps to complete the desolvation of the 

ions. In this region, under a pressure of 1-3 mbar, the accelerated ions collide with 

the residual gas molecules leading to the break-up of solvent clusters. The ion 

acceleration is produced by applying a voltage (cone voltage) between the sampling 

cone and the next extraction lens (extraction cone). Increase of the accelerating 

voltage (VC), higher internal energy is communicated to the ions through collision 

with gas molecules, which induces the dissociation of the weakest binding 

interactions. This process is also called collision induced dissociation (CID) (83). The 
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effect of the accelerating voltage can be used for the study of the stability of non-

covalent complexes (84). 

 

1.5.4 Analysers 

Time of Flight analyser 

The principle of a time of flight (ToF) analyser is to measure the time of the ions to 

traverse a field-free tube (Figure 1.8). Since all ions of the same charge receive the 

same kinetic energy prior to their entrance into the flight tube, the lighter ions arrive 

earlier than heavier ones at the detector. The time of flight of an ion varies with the 

square root of its mass-to-charge ratio (m/z). 

 

 

Figure 1.8: Schematic representation illustrating the principle of the time of flight (ToF) mass 

spectrometer. After acceleration through the electric field, the ions are separated in the flight 

tube according to their m/z ratios. 

 

Resolution of a ToF mass analyser 

The resolution of a ToF mass analyser is defined by the full width at half maximum 

(FWHM) of the peaks, m/∆mFWHM. ∆mFWHM is the width of a single peak at 50 % 

height. Thus, the increase of the tube length will increase the mass precision. 

Furthermore, the resolution of the ToF analyser can also be improved with a 

reflectron installed at the end of the tube. The reflectron is composed of series of 

metal rings, where increased voltages are applied. The kinetic energy distribution of 

ions with same m/z ratios can then be corrected. In fact, ions with high kinetic energy 

can penetrate deeper into the potential gradient and take longer to turn around 

compared to ions with lower kinetic energy. 
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Hybride Q-ToF mass analyzer 

Hybride mass analyses, which combines two mass analysers, are frequently used to 

perform tandem mass spectrometry. In the study of non-covalent complexes, a 

quadrupole analyser coupled with an orthogonal ToF analyser can be used (Figure 

1.9). A continuous ion beam from the quadrupole hits the entrance of the ToF 

analyser. Packets of ions are reaccelerated into the ToF in a direction orthogonal to 

the axis of introduction. The reacceleration of ions is possible by pulsed injection via 

the pusher. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9: Schematic representation of an ESI-Q-ToF (Q-ToF II of Micromass) used for the 

analysis of non-covalent complexes. The atmospheric vacuum interface is represented 

between the sample cone and the extraction cone of the instrument. 1 and 2 are the source 

and turbomolecular pumps, respectively.  
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1.6 Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS) 

1.6.1 Development of HDX-MS 

More than 50 years ago, LinderstrØm-Lang and co-workers used hydrogen exchange 

experiments in order to prove that protein conformations protect the amide protons 

from being exchanged with hydrogens from the solvent (85). Protein structure and 

dynamics were also probed by using tritium labelling and radiation counting 

experiments (86). Ultraviolet spectroscopy and neutron diffraction have also been 

used to study the hydrogen/deuterium exchange (87, 88). At present, there are two 

main techniques used to monitor hydrogen exchanges in proteins, multi-dimensional 

nuclear magnetic resonance (NMR) (89, 90) and mass spectrometry (MS) (91). Both 

methods can provide the localisation of the exchanged amide proton and the 

determination of the exchange rates in specific regions of the protein. The NMR 

technique enables the assignment of hydrogen exchange rates to single amides in 

the protein, but the complete assignment of all amides is arduous and often not 

reached. Further, high protein amounts are required by NMR to follow correctly the 

HDX rates of the assigned amide protons.  

Alternatively, mass spectrometry can be used for the detection of deuterium uptake in 

peptides and proteins via the determination of their molecular masses. The 

advantages compared to NMR are multiple and include higher sensitivity, protein 

solubility (adapted for hydrophobic proteins) and no limitation to the size of the 

proteins. In 1991, Katta and Chait were the first to report the quantification of 

incorporated deuteriums into a protein using mass spectrometry (60). To measure 

the H/D exchange of localised regions of the target protein, the labelled 

macromolecule can be fragmented by proteolysis under isotopic quench conditions. 

Zhang and Smith combined protein fragmentation with HDX-MS using Fast-Atom-

Bombardment (FAB) as ionisation source (91). Johnson and Walsh then improved 

the amide coverage with the use of LC-ESI-MS to study the stability of the 

myoglobin-heme complex (92). Later, the major challenge facing the HDX technique 

was to prevent the back exchange of incorporated deuteriums to hydrogens during 

the sample preparation for the MS analysis (93). 

Matrix Assisted Laser Desorption Ionization (MALDI) is another ionisation technique, 

which can be used in combination with HDX. Although higher back exchange and 

lower sequence coverage is usually obtained compared to when using ESI-MS, the 
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absence of the HPLC step enables the data to be collected faster. The Komives 

group investigated the ligand binding sites in c-AMP-dependent protein kinase and in 

thrombin using HDX-MALDI-MS. Their HDX results were in good agreement with the 

X-ray data of the two proteins (94, 95). 

 

1.6.2 Theory of the H/D exchange 

The hydrogen/deuterium exchange acts on peptide amide bonds and can be both 

catalyzed by acids or bases. The rate constant for hydrogen exchange, kex can be 

expressed as the sum of the rate constants for acid (kH) and base (kOH) catalysed 

exchange, as indicated in the Equation 1.1. 

 

 

][][ −+ += OHkHkk OHHex    Equation 1.1 

    

 

Studies on H/D techniques using polyalanine as a model peptide indicated that kH 

and kOH have values of 41.7 and 1.2 × 1010 M-1 min-1 at 20 °C, respectively (96, 97). 

Isotopic exchange rates are pH and temperature dependent (97). The isotopic 

exchange rate, kex, for the model peptide polyalanine is shown in Figure 1.10 as a 

function of pH (98). The chemical exchange rate has been found to be the slowest at 

pH 2.3; further, the amide hydrogen exchange rate decreases 3-fold for each 10 °C. 

Additionally, adjacent amino acid side chains can also influence the exchange rate of 

a peptide amide proton by inductive and steric effects (97).  
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Figure 1.10: Rate constant for the isotopic exchange of hydrogen located on peptide amide 

linkages for a model polyalanine peptide presented as a function of pH (97).  

 

The presence of secondary and tertiary structures in proteins decreases considerably 

the H/D exchange rates. This structural impact can be quantified using the protection 

factor value which is defined as the ratio between the exchange rate constant of a 

specific peptide amide proton located in the unfolded protein and the exchange rate 

constant for the same proton in the folded protein. Many reports determine the H/D 

exchange rates of single amide protons for an unstructured peptide in order to obtain 

the protection factors for the same amide protons in folded peptides (99, 100). 

Secondary and tertiary structures can decrease the H/D exchange rate by seven 

orders of magnitude compared to adjacent side chains in folded proteins. 

Consequently, a large reduction in H/D exchange rate is an excellent indicator of 

conformational changes in proteins. 

Amide hydrogen exchange in folded proteins can essentially be explained by two 

different processes. The first one, described in Equation 1.2, reflects the hydrogen 

exchange on peptide bonds without the aid of structural changes, i.e for amide 

protons located on the surface or open channels within a folded protein (closed form). 

 

 



  CHAPTER I 

  

 35

 

Mcl (H)
k f →  M cl (D)   Equation 1.2 

 

 

Mcl refers to the closed form of the macromolecule (M) and H and D stand for 

hydrogen and deuterium, respectively. The rate constant for the H/D exchange by 

this process is kf. 

 

The second process of H/D exchange can be explained in combination with protein 

dynamics. In general, H/D exchange rates are slower when amide protons are 

located far from the solvent-protein interface or when the protons are involved in 

intramolecular hydrogen bonding such as in α-helices or ß-sheet conformations. 

Shielded protons can only exchange with the solvent through local reversible 

unfolding-folding processes of small regions in the protein. Different models exist to 

explain these unfolding mechanisms. The “penetration model” postulates that the 

solvent enters the protein core through transiently formed channels and cavities 

(101). In the “local unfolding model”, small regions of a protein unfold cooperatively, 

which expose them to the solvent (99, 102). In both models, the hydrogen can then 

exchange with the solvent and can therefore be described by Equation 1.3. 

 

)()()()( DMDMHMHM cl

k

op

k

op

k

cl
clchop →←→→←         Equation 1.3 

 

Mcl and Mop refer to the closed and open forms of the macromolecule (M). Rate 

constants corresponding to the closure and the opening of the folded macromolecule 

are represented by kcl and kop, respectively, and the rate constant corresponding to 

the H/D exchange itself is represented by kch. In native proteins, kop » kcl together 

with two extremes situations referred to as EX1 and EX2 exchange mechanisms are 

usually described (103, 104). 

The observed H/D exchange rate (kobs) is the deuteration level measured as a 

function of time. For most proteins at neutral pH and in absence of denaturants is kcl 

» kch, which leads to the simplified expression of kobs given by Equation 1.4. This 

extreme value of kobs is also called the EX2 exchange mechanism. 
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chclopobs kkkk ×= )/(    Equation 1.4 

 

where kop/kcl is the equilibrium between opened and closed form processes and kch is 

the exchange rate constant for the amide proton in the regions where the protein is 

unfolded (105, 106). Measuring kobs and calculating kch leads to the direct 

determination of kop/kcl which enables the access to the ∆G value for the protein 

unfolding processes for specific regions of proteins or for the entire molecule (107-

109). 

If the local unfolding events are much slower than the chemical reaction (kcl « kch), 

the kobs is only dependent on the rate of protein unfolding kop (110) as shown in 

Equation 1.5 and is referred to as the EX1 exchange mechanism. 

 

kobs = kop      Equation 1.5 

 

Generally the EX2 mechanism is preferred in native proteins, whereas the EX1 

became favoured when significant amount of chaotropic agents are present in the 

system. 

 

1.6.3 Measurement of H/D rates by mass spectrometry 

There are two main strategies to label a protein using D20, the continuous labeling or 

the pulse-labeling. In the latter method the protein is incubated for a period of time 

(usually 30 min) in presence of chaotropic reagents and a short pulse of deuterium is 

then introduced to the reaction mixture subsequently followed by a quenching step. 

This technique is often used to detect kinetic intermediates in order to elucidate 

protein folding and unfolding mechanisms (111). In the continuous labeling method, 

the native protein is exposed to deuterium at time t = 0 and the reaction is quenched 

at different times during a period of one to two hours. This labeling technique is 

required for the study of conformational properties in native proteins. In both 

methods, the isotopic exchange rates can be determined by the mass increased on 

the whole labeled protein or on specific labeled regions in the protein using mass 
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spectrometry. While mass measurements of the whole protein enable the study of 

global changes in the protein, fragment analysis can pinpoint the actual location of 

these structural changes. 

 

1.6.4 General procedure for HDX-MS experiments 

In the present study, continuous labeling was used to monitor the conformational 

changes of the protein of interest. The general procedure used for the determination 

of amide hydrogen exchange rates in intact proteins is illustrated in Figure 1.11. 

Generally, the reaction is initiated by the addition of an excess of D20 (10 fold) to the 

protein solution at physiological pH. After a number of exchange times, the reaction is 

quenched by rapidly decreasing both the temperature and the pH. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11: General procedure used for HDX exchange MS experiments. The protein is 

labeled using D2O buffer and left standing for a pre-defined period time. The H/D exchange is 

quenched by decreasing pH and temperature. For the determination of the total amount of 

incorporated deuteriums in the protein, the mass of the labeled protein is directly measured 

by MS. For the determination of incorporated deuteriums in localised regions of the protein, 

the labeled protein is fragmented by pepsin proteolysis prior to the detection of the peptic 

peptide fragment by MS. 
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At pH 2.3 and 0 °C, the rate of the H/D reaction is significantly decreased. In case of 

the detection of global changes in the protein, the labeled macromolecule is then 

directly submitted to the mass spectrometer to minimize artifactual isotopic 

exchanges. For the localisation of structural changes, the labeled protein is first 

digested with an acid-stable protease, generally pepsin, which is added to the 

labeled protein and then submitted to the mass spectrometer for analysis. 

 

1.6.5 Pepsin digestion 

High pepsin concentration is generally added to the deuterated protein sample in 

order to speed up the digestion time, which is important to minimise the isotopic 

back-exchange. The ratio of protein:pepsin is often 1:1 (w/w). Pepsin is a protease 

with low specificity and usually produces many peptide fragments. The cleavage sites 

of pepsin can not be predicted with certainty, due to the possible cleavage at different 

residues both from the N-and C-terminal sides. The generation of many peptic 

peptides is necessary for a good sequence overlap in order to obtain a high 

sequence coverage. Presence of overlapping peptides can improve the structural 

resolution of the measurements to within 3-4 amino acids (112). Additionally, the 

structural resolution can also be optimised by using multiple acid stable proteases 

with different specificity (113). The use of a non-specific protease such as pepsin 

requires the sequencing of the product peptides and accurate peptide mass 

measurements. The sequencing of peptides is generally performed by tandem mass 

spectrometry experiments, which deliver the mass of several fragments originating 

from the same parent peptides. 

 

1.6.6 Loss of deuterium during sample preparation for MS analysis 

After labeling the protein using high amounts of D2O buffer, the concentration of D2O 

has to be decreased prior to digestion and MS analysis in order to avoid artificial 

deuterium incorporation through possible structural changes. This can be highly 

detrimental to the HDX experiments and lead to a major loss of structural information 

by uncontrolled back-exchange of the viable incorporated deuteriums with protons 

from the digestion buffer. This would then prompt to misleading conclusions since the 

distinction between deuterium not incorporated during kinetic analysis and those 
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back-exchanged during sample preparation is not possible anymore. Deuteriums 

located on the amino acid residue side chains and on the N- and C- terminus back-

exchanged too rapidly to be detected. Consequently, only the deuteriums located at 

the backbone amide positions will be detected by mass spectrometry. The back-

exchange rate constant of the amide bond deuterium can be drastically reduced by 

decreasing the pH to 2.3 and the temperature to 0 °C (96). Quantification of the back-

exchange can be achieved by measuring the loss of incorporated deuteriums from 

fully labelled protein peptide fragments. 10-20 % back-exchange can usually be 

achieved by improvement of the MS protocols (93). When a LC separation is used 

prior to MS analysis, the application of a cooling and desalting system is required in 

order to minimise the back-exchange during the separation of the peptic peptide 

fragments. The use of MALDI as ionisation method, requires a fast preparation and 

an efficient target cooling techniques to further reduce the potential back-exchange 

during the sample preparation on the MALDI target (114). 

 

1.6.7 Determination of hydrogen exchange rate constants 

Structural differences between proteins exposed to various conditions (addition of 

ligands, post-translational modifications, pH variation, etc…) can be detected by the 

analysis of the fragments (peptides) generated from the labeled protein at specific 

times. However several time points of the H/D exchange experiment are required to 

obtain complete information about the conformational changes in the protein. By 

fitting the time courses to mono, bi- or tri-exponential equations, a range of isotopic 

exchange rate constants at peptide bonds in one segment can be determined. 

Ideally, the exchange rate constant for every single peptide linkage in the segment 

should be determined. However in practice, the determined rate constants are often 

the averaged values of a set of real rate constants. 

 

1.6.8 HDX with MALDI-MS 

Matrix Assisted Laser Desorption Ionization (MALDI) has been shown to be a soft 

ionisation method for the mass spectrometric analysis of biomolecules such as 

proteins, peptides and oligonucleotides (50, 51). Mandel et al., 1998 have shown for 

the first time that MALDI can also be a powerful tool to monitor HDX experiments 

(115). Generally, the sample is co-crystallised with an excess of organic matrix on the 
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MALDI target and then is introduced into the high vacuum of the mass spectrometer. 

The matrix absorbs the energy of the laser light (λ = 355 nm) and then induces the 

desorption and ionisation process of the analytes. The ionised analytes are then 

accelerated through a high voltage region and separated based on their mass to 

charge ratio inside the analyser. In most cases, a time of flight analyser is coupled to 

the MALDI technique (see paragraph 1.5.4).  

In contrast to the ESI ionisation process, MALDI generates mainly single charge 

peptide ions [M+H]+, which reduces the number of peaks observed in the mass 

spectrum. Moreover, by generating multiply charged ions, ESI requires the LC 

system to be connected upstream to the mass spectrometer to reduce peak 

overlapping. Due to complex deuteration states possibly occurring in a single peptide, 

deuterated peptides show more peak overlap compared to the non-deuterated ones, 

which leads to additional complication in the peak assignments of the ESI mass 

spectra, emphasising even more the advantage of using MALDI over ESI ionization. 
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22  EEXXPPEERRIIMMEENNTTAALL  PPRROOCCEEDDUURREESS  

2.1 Materials 

2.1.1 Substrates and Inhibitors 

Imipenem was a gift from Merck Sharp and Dohme (Haar, Germany). All tested 

inhibitors were provided by Benoît M. Liénard, Group of Prof. Christopher J. 

Schofield, Organic Chemistry Department, University of Oxford, UK. 

 

2.1.2 Reagents and Chemicals 

MALDI-matrix α-cyano-4-hydroxycinnamic acid (CCA), 5,5'-dithiobis-(2-nitrobenzoic 

acid) (DTNB), chelex-100 sodium form, metal ion salts (ZnCl2, CoCl2 and CdSO4) 

diaminoethanetetraacetic acid (EDTA), cesium iodide (CsI), sodium dodecyl sulphate 

(SDS), hydroxymethylaminomethane (TRIS) and dimethylsulfoxide (DMSO) were 

purchased from Sigma-Aldrich Chemical Co. (Steinheim, Germany). Trifluoroacetic 

acid (TFA), formic acid (FA), ammonium acetate (CH3COONH4), sodium chloride 

(NaCl) and ammonium hydroxide (NH4OH) were provided by Fluka (Neu-Ulm, 

Germany). Acetonitrile (MeCN) and methanol (MeOH) were obtained from Riedel-de 

Haën (Seelze, Germany). Deuterated water (D2O) (99.9 % deuterium) and 

deuterated sodium hydroxide NaOD (40 % in D2O) were obtained from Deutero 

GmbH (Kastellaun, Germany). Pepsin immobilized on cross-linked 6 % beaded 

agarose was obtained from Pierce (Rockford, UK). Mag-fura-2 (MF) was provided by 

Molecular Probes, (Eugene, Oregon, USA). Calibration mixture containing des-Arg1-

Bradykinin, Angiotensin I, Glu1-Fibrinopeptide B, ACTH 1-17, ACTH 18-39 was 

obtained by Applied Biosystems (Darmstadt, Germany). HEPES was purchased from 

Roth (Karlsruhe, Germany). Ammonium hydrogen carbonate (NH4HCO3) was 

provided by Merk (Darmstadt, Germany). Water was purified with a Millipore 

(Bedford, MA, USA) water purification system. Organic solvents were all of HPLC 

grade. All chemicals used were of analytical grade.  

 

 

 



  CHAPTER II 

 43

2.1.3 Membranes and columns 

The dialysis tubing (16 mm Ø) was provided by Servapor, Boehringer Ingelheim 

Bioproducts, (Heidelberg, Germany). The Microcon YM-10 (cut off = 10,000 Da) 

centrifugal filters and the ZipTipC18  columns were obtained by Millipore (Bedford, MA, 

USA). 

 

2.2 Methods 

2.2.1 Production and characterization of Enzymes and Apo-Enzymes 

Metallo-Enzymes 

The metallo-ß-lactamases BcII from Bacillus cereus 569/H/9, CphA from Aeromonas 

hydrophilia AE036 and L1 from Stenotrophomonas maltophilia were produced and 

purified as described in references (2, 116) and (117) respectively. The BcII 

preparation (2) was modified as follows: cells were grown at 37 °C in M9 minimal 

medium with 10 g/l of glucose and 1 g/l of NH4Cl. Expression was induced by adding 

1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) at an absorbance at 600 nm of 

0.6. After 16 h, cells were harvested by centrifugation, resuspended in MES buffer 

(10 mM, 1 mM ZnCl2, pH 6) and broken using French Press. Cytosolic proteins were 

separated from cells debris and were loaded to purification columns (2). 

Protein concentrations were determined with the following extinction coefficients: 

ε280(BcII) = 30,500 M-1 cm-1, ε280(CphA) = 38,000 M-1 cm-1 and ε280(L1) = 55,000 M-1 cm-1 

(per monomer). 

 

Apoenzymes 

The apoenzyme of BcII was prepared by three dialysis steps of the corresponding 

enzyme (2 mg/ml) using dialysis tubing against a 250-fold excess of 15 mM HEPES, 

pH 7.0 containing 20 mM EDTA (24 h with stirring at 4 °C). EDTA was removed by 

three dialysis steps against the same buffer containing 1 M NaCl followed by two 

steps without salt. Apo-CphA and apo-L1 were obtained by three dialysis steps of the 

corresponding enzymes (2.5 mg/ml and 8.5 mg/ml respectively) against a 250-fold 

excess of 15 mM HEPES, pH 6.5 containing 20 mM EDTA and 0.15 mM NaCl. EDTA 

was removed by three dialysis steps against the same buffer containing 1M NaCl 

followed by two steps with 0.15 M NaCl and a last step without salt. All buffer 
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solutions were prepared in bidistilled water extensively stirred with Chelex in order to 

minimize zinc ion contamination. The final concentrations of apoBcII and apoCphA 

were determined using Ellman´s reagent: 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) 

quantifying the free sulfhydryl groups in the protein at an extinction coefficient of 

ε412(DTNB) = 13,600 M-1 cm-1. 

 

2.2.2 Quantitation of sulfhydryl groups using Ellman´s reagent 

Desalting procedures can affect the sulfhydryl groups (cysteins) content in proteins 

by air oxidation. Therefore it was necessary to determine the exact active apoprotein 

concentration by quantifying the free sulfhydryl groups in the protein, since the 

number of cysteine residues in the protein is known (BcII and CphA contain only one 

cyteine residue). By addition of 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) to the 

protein solution at pH 8, thiophenol anions are produced, where their concentration 

can be determined at a wavelength of 412 nm (ε412(DTNB) = 13,600 M-1 cm-1). In 

presence of an excess of DTNB, the amount of produced thiolphenol anions is 

dependent on the free sulfhydryl groups in the protein. 

The reaction mixture was composed of 300 µM of DTNB and 10-50 µM protein 

solution in denaturing buffer (0.1 M TRIS, 1mM EDTA and 1% SDS, pH 8) at 22°C. 

 

2.2.3 Determination of Metal ion Affinities 

The dissociation constants for a first and second metal ion (KD1 and KD2 respectively) 

bound to apoenzymes (E) were determined in competition titration experiments with 

the chromophoric metal(2+)-chelator Mag-fura-2 (MF). The metal-free Mag-fura-2 (MF) 

has its absorption maximum at 363 nm and the metal-loaded Mag-fura-2 (Me-MF) at 

335 nm (118). The dissociation constants of Zn-MF and Cd-MF and the absorption 

coefficient of MF at 363 nm were determined under the same conditions as in the 

competition titrations described below and resulted in KZn-MF = 9.1 nM, KCd-MF = 5.6 

nM and ε363(MF) = 28500 M-1cm-1. Their values were used to calculate the dissociation 

constants of metal ions bound to the apoenzymes.  

For the competition titrations experiments, a 1 ml solution of 3 µM of metal indicator 

and 3 µM of apoenzyme in 15 mM HEPES, pH 7 at 22 °C was titrated with a stock 

solution of 255 µM ZnCl2 or 255 µM CdSO4. In presence of inhibitors, the 1 ml 
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solution contained also 6 µM of (R,S)-thiomandelate or 100 µM of D-captopril before 

titration with the metal ions. The total absorbance at 363 nm (Atotal) corresponding to 

the sum of MF and Me-MF can be followed for each titration step (2 µl) according to 

Equation 2.1 using a Lambda 9 spectrophotometer (Perkin-Elmer instruments) 

equipped with thermostatically controlled cells. 

 

Atotal = εMF[MF]+ εMe−MF[Me − MF]            Equation 2.1 
 

 

where Atotal is a function of the added volume of a metal ion stock solution [Me]stock to 

a defined starting volume (1ml).  

 

For numerical data analysis the program Chemsim was used calculating absorbance 

values for each titration step according to equation 2.1. For these calculations the 

laws of mass action (Equations 2.2-2.4) and the equations of mass conservation are 

used. 

 

MF + Me
2+

K (Me−MF )
← →    Me − MF  KMe−MF =

[Me
2+][MF ]

[Me − MF ]
 Equation 2.2 

 

E + Me
2+

KD1
← →   Me − E    KD1 =

[Me
2+ ][E ]

[Me − E]
  Equation 2.3 

 

Me − E + Me2+

KD 2
← →   Me2 − E   KD2 =

[Me
2+][Me − E]

[Me2 − E]
 Equation 2.4 

 

 

 

For data evaluation of competition experiments εMF, KMe-MF, starting volume and 

[Me]stock were constrained. In a least squares procedure KD1, KD2, [E]start and εMe-MF 

were simultaneously fitted and determined as described in (2). 

 

The effect of the inhibitors on metal ion affinities of the different enzymes can be 

expressed in terms of variations in KD1 and KD2. In presence of inhibitors (I), two 

additional equations were taken in account, representing the formation of 1:1 
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(Equation 2.5) and 2:1 inhibitor-metal complexes (Equation 2.6) in the case of (R,S)-

thiomandelate and the formation of 1:1 complexes (Equation 2.5) in the case of D-

captopril. 

 

MeIIMe ↔++2
   

][

]][[ 2

MeI

IMe
K MeI

+

=   Equation 2.5 

 

 

2MeIIMeI ↔+    ][

]][[

2

2
MeI

MeII
KMeI =

  Equation 2.6 

 

 

In titration experiments with the inhibitors D-captopril and (R,S)-thiomandelate 

Equation 2.5 or Equations 2.5 and 2.6 were included into the binding models, 

respectively. When competition experiments were carried out with enzymes, KMeI and 

KMeI2 were fixed to the experimentally determined values. 

 

2.2.4 Determination of inhibition constants 

Inhibition constants of the inhibitors were determined assuming competitive inhibition. 

Imipenem hydrolysis was followed by monitoring the change in absorbance at 300 

nm (∆ε300= 9000 M-1 cm-1) in 15 mM HEPES, pH 7 at 24 °C using a Lambda 9 

spectrophotometer (Perkin-Elmer instruments) equipped with thermostatically 

controlled cells. The final BcII enzyme concentration was 10 nM. The substrate 

concentration (S) was 160 µM and equal to the Michaelis Menten constant value (KM) 

of the enzyme for imipenem. The inhibitors were dissolved in 4-10 % DMSO, 15 mM 

HEPES pH 7 at 1-2 mg/ml and then diluted to the final concentration (I). Two different 

inhibitor concentrations were used to determine KI values using the following 

Equation 2.7 for competitive inhibition: 
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where vo corresponds to the initial rate of hydrolysis in absence of inhibitor and vi the 

initial rate of hydrolysis in presence of inhibitor. 

 

2.2.5 Preparation of samples for “native”- ESI-MS 

Desalting procedure of enzymes 

Prior to analysis, all proteins were desalted using Microcon YM-10 (cut off = 10,000 

Da) centrifugal filters in 15 mM ammonium acetate (pH 7.5). Seven 

dilution/concentration steps were performed at 4 °C and 14,000 g. Enzymes were 

diluted in 15 mM ammonium acetate buffer to a final concentration of 15 µM. 

 

Metal binding experiments 

Zinc and cadmium enzymes were prepared at room temperature, by adding a volume 

of 1-10 µl of 100 µM ZnCl2 or of 100 µM CdSO4 to 15 µM apoenzyme BcII dissolved 

in 15mM CH3COONH4 (pH 7.5) to obtain [Me2+]:[E] ratios ranging between 0.3 and 2. 

 

Inhibitor binding experiments 

100 mM inhibitor stock solutions were prepared with ethanol. Subsequent dilutions to 

final concentration were done with 15 mM ammonium acetate and the pH was 

adjusted to 7.5. Unless otherwise stated, for the inhibitor binding experiments each 

metalloenzyme was mixed with 1.3 molar equivalents inhibitor to metalloenzyme at 

room temperature prior to mass analysis. 

 

2.2.6  “Native”-ESI-MS analysis 

All sample mixtures were analysed using an ESI-Q-TOF mass spectrometer (Q-

TOFmicro Micromass, Altrincham, UK) interfaced with a NanoMate chip-based nano-

ESI source (Advion Biosciences, Ithaca, NY, USA). Typically a spraying voltage of 

1.68 kV and a sample pressure of 0.25 psi were applied. The instrument was 

equipped with a standard Z-spray source block. Each well was loaded with 5 µl 

sample and was infused to the mass spectrometer. The estimated flow rate was ca. 

100 nL/min. Clusters of Cs(n+1)In (1mg/ml CsI in 100 % methanol) were used for 

calibration. Calibration and sample acquisitions were performed in the positive ion 

mode in the mass range of m/z 500 – 5000. Operating conditions for the Q-TOF 

mass spectrometer were as followed: sample cone voltage (varied) between 15 to 
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200 V, source temperature 20 °C. Acquisition and scan time were 2 min and 1 s, 

respectively. The pressure at the interface between the atmospheric source and the 

high vacuum region was fixed at 6.7 mbar (measured with the roughing pump Pirani 

gauge) by throttling the pumping line using an Edwards Speedivalve to provide 

collisional cooling. Data were smoothed with the Savitzky Golay method (smooth 

windows: 20, number of smooth: 4) the background subtracted and the masses 

finally calculated by centering. The standard deviation reported for all the calculated 

masses represents the precision of the mass calculation from m/z values reported 

from the ESI mass spectrum. All data were processed using MassLynx software 

versions 4.0 and 3.5. 

 

2.2.7 Preparation of samples for HDX-MS 

Metal binding experiments 

Zn1 and Zn2-BcII solutions were prepared by adding 0.7 and 2.3 equivalents of ZnCl2 

to the apoprotein, respectively. Cd1 and Cd2-BcII solutions were prepared by adding 

0.9 and 6.6 equivalents to the apoprotein, respectively. Final metal-substituted 

protein and apoprotein stock solutions were 150 µM in 15 mM HEPES pH 7. 

 

Inhibitor binding experiments 

The inhibitor was dissolved in ethanol at 60 mM, and diluted in 15 mM HEPES pH 

7.5. For all HDX experiments, 400 µM of the inhibitor were added to the protein stock 

solution. 

 

2.2.8 Pepsin digestion 

15 µM of apoenzyme in HEPES 15 mM pH 7 (10 µl) was diluted 1:11 with 0.1 % tri-

fluoro acetic acid (TFA) solution to decrease the pH to 2.3. Protein digestion was 

performed by adding 30 µl of pepsin bead slurry (Pierce, Rockford, UK) (washed 4 

times prior to use with 450 ml of 0.1 % TFA at 4°C) and incubated on ice for 10 min 

with occasional mixing. The resulting peptides were separated from the pepsin beads 

by centrifugation for 20 sec at 14.000 g at 4 °C. To desalt the sample 10 µl of 

digestion was loaded on a ZipTipC18 (Millipore Corp., Billerica, MA, USA) rinced with 

0.1 % TFA. Subsequently the peptides were eluted with 1 µl of α-cyano-4-
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hydroxycinnamic acid matrix solution (5 mg/ml CCA in acetonitrile/ethanol/TFA 

20/80/0.1) onto the MALDI plate and dried under compressed air stream. 

 

2.2.9 Assignment of peptic peptides 

Porcine pepsin is a non-specific acidic endopeptidase with broad substrate 

specificity. Therefore high mass accuracy and/or MS/MS sequencing are essential for 

the identification of pepsin-digested peptides. First, the mass of each measured 

peptide was verified using the Paws program (download free from Genomic Solutions 

Inc: http://bioinformatics.genomicsolutions.com/paws.html). Paws is a bioinformatic 

tool which permits the mapping of the measured peptides to the protein sequence of 

interest. In most of the cases, two or three theoretical peptides were found to fit with 

the mass of a detected peptide by assuming a mass accuracy of ≤ 20 ppm. In a 

second step, MS/MS was performed for each measured peptide and the resulting 

fragments were compared manually with the MS/MS fragments of the possible 

theoretical peptides to identify the peptides. 

 

2.2.10 Hydrogen deuterium exchange (HDX) experiments 

In-exchange experiments 

For H/D exchange experiments, 1µl of 150 µM apo-BcII or metal-substituted BcII 

stock solution was incubated 1: 10 with deuterated buffer (D20, 15 mM HEPES, pH 7, 

not corrected for isotope effects) at 22 °C. Deuterium labelling times varied between 

50 and 5900 sec. Each in-exchange reaction was stopped by addition of 100 µl of 0.1 

% TFA on ice decreasing the pH to 2.3. The pepsin digestion and analysis of peptic-

peptides were performed as described above for the non-deuterated digest. After 

spotting the deuterated digestion:matrix solution on the MALDI target, each 

exchange experiment was immediately measured by MALDI-MS with less than 1 min 

delay. All solutions and ZipTips were kept cold (on ice) before use. The MALDI plate 

was kept at room temperature in order to prevent condensation of water on the plate. 

All experiments were repeated in triplicate. 

 

Back-exchange control experiments 

Fully deuterated sample m(100%) was prepared by incubating 10 µl of pepsin digested 

apoBcII (15 µM) in deuterated buffer (D20, 15 mM HEPES, pH 7 not corrected for 
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isotope effects) for 72 hours at 22 °C. Quenching and sample analysis were 

performed as described above. 

 

2.2.11 Determination of deuterium content 

The centroid mass of each isotope cluster was calculated using the MagTran 

software (119) by labelling the left side of the lowest deuterated peak and the right 

side of the highest deuterated peak. The deuterium in-exchange of amide groups 

(%D) of the peptic peptides was determined for each incubation time in D20 using 

Equation 2.8. m(t) is the observed centroid mass of the deuterated peptide for each 

in-exchange time, and m(0%) corresponds to the non-deuterated mass of the 

corresponding peptide. During sample preparation and transfer to the MALDI target, 

back exchange of incorporated deuteriums to hydrogens takes usually place. 

Therefore the experimental data were corrected for this back exchange using the 

experimentally obtained centroid mass of fully deuterated peptide m(100%) after back 

exchange as the 100 % value (91). 

 

%100*
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%

%)0(%)100(

%)0()(

mm

mm
D

t

−

−
=                          Equation 2.8 

 

 

For data representation the experimentally obtained values were further processed. 

From the experimentally determined masses, the hypothetical values for 100 % D2O 

in the incubation buffer were calculated. For the mononuclear samples, metal ion 

addition corrections for apo-enzyme content were introduced. Masses for Zn1-BcII 

were calculated from the experimentally obtained centroid masses of Zn0.7-BcII and 

apo-BcII according to m(Zn1-BcII) = 1.428[m(Zn0.7-BcII) – 0.3m(apo-BcII)]. Masses 

for Cd1-BcII were obtained from m(Cd1BcII) = 1.11[m(Cd0.9-BcII) – 0.1m(apo-BcII)]. 

 

2.2.12 Evaluation of HDX kinetics 

All the deuteration versus time curves obtained can be described by mono-

exponential curves. Equation 2.11 was used for fitting. A rapid HDX phase preceded 

the kinetic traces obtained for almost all the peptide fragments investigated. Since no 
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indication for the underlying rate constants can be derived from the data used, the 

amplitude of this phase is considered as a starting value of the fitted time course 

different from zero (%D0) in Equation 2.9. Fitting of Equation 2.9. to the data resulted 

in %D0, the rate constant k, and the amplitude of the process observed (%Dt). 

 

 

%D(t) = %D0 + %Dt (1− e
−kt )             Equation 2.9 

 

 

2.2.13 MALDI-MS analysis 

Mass spectrometric analysis were performed using a 4800 MALDI TOF/TOFTM mass 

analyser (Applied Biosystems, Darmstadt, Germany) equipped with a 200-Hz 

Nd:YAG-Laser (λ = 355 nm, 3 to 7 ns pulse width). MS data were acquired in the 

positive ion reflectron mode with 470-ns delayed extraction, accumulating 500 laser 

shots using the 4000 Series ExplorerTM Remote Access Client software (version 

3.5.1). A calibration mixture (Applied Biosystems) containing des-Arg1-Bradykinin 

[m/z 904.4681], Angiotensin I [m/z 1296.6853], Glu1-Fibrinopeptide B [m/z 

1570.6774], ACTH 1-17 [m/z 2093.0867], ACTH 18-39 [m/z 2465.1989] was used for 

external calibration. Tandem mass spectrometry (post source decay with post 

acceleration) was performed for the sequencing of all detected peptic-peptides; no 

additional collision gas was used. For MS/MS measurements, the acceleration 

voltage was 8 kV, 4000 laser shots were accumulated for each MS/MS spectrum. 

 

2.2.14 Circular Dichroism Spectroscopy 

Circular dichroism spectra were recorded with a Jasco J740 at 20 °C. The CD 

spectra were recorded in 5 mM HEPES pH 7.0 at a protein concentration of 5 µM in 

cuvettes with 1 mm light path. Due to a strong background signal the useful spectral 

range did not reach below 200 nm in the far UV region. Three spectral scans with a 

resolution of 1 nm were accumulated and a binary smoothing function for noise 

reduction was applied after subtraction of the blank spectrum obtained for the buffer. 
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33  MMEETTAALL  AANNDD  IINNHHIIBBIITTOORR  BBIINNDDIINNGG  SSTTUUDDIIEESS  uussiinngg  „„NNAATTIIVVEE““--EESSII--MMSS  aanndd  UUVV  

SSPPEECCTTRROOSSCCOOPPYY::  RREESSUULLTTSS  

3.1 Importance of the buffer system for the measurement of metal-protein 

complexes by ESI-MS 

The analysis of metal-protein complexes using ESI-MS requires the conservation of 

the non-covalent interactions existing in solution. Therefore, different buffer systems, 

compatible with the ionisation process by electrospray, were tested on the binuclear 

zinc enzyme BcII (Zn2-BcII). The metalloprotein was first measured in an organic 

solvent (methanol acidified with formic acid, representing denaturing conditions) used 

for routine analysis of proteins by ESI-MS and later in volatile and aqueous buffers 

such as ammonium acetate and ammonium bicarbonate at neutral pH, i.e “native” 

conditions. 

Figure 3.1A and 3.1B show the ESI mass spectra of Zn2:BcII in methanol/0.2% formic 

acid and in aqueous ammonium acetate (pH 7.5), respectively. When Zn2-BcII was 

measured in the organic solvent, the corresponding spectrum displayed a number of 

ions carrying a high number of charges ranging between + 16 and + 32 with a broad 

charge states distribution at low m/z values (m/z between 800 and 1600). The 

determination of the deconvoluted mass for BcII in denaturing conditions (24960 ± 

0.6 Da) revealed the loss of its two Zn(II) ions. In fact, the observed broad distribution 

of high charge states is typical for partially or fully unfolded proteins (120). When Zn2-

BcII was dissolved in ammonium acetate-buffer, the ions carried a lower number of 

charges ranging between + 8 and + 10 at m/z values between 2500 and 3100. A 

deconvoluted mass of 25087 ± 0.2 Da was calculated which corresponds to the fully 

zinc-loaded enzyme Zn2:BcII. The narrow distribution of low charge states is 

consistent with a “native” conformation of the protein in solution (120). Similar results 

were obtained when Zn2-BcII was dissolved in ammonium bicarbonate (pH 7.5). 

Thus, for the following metal titration experiments monitored by ESI-MS, the metal-

substituted proteins were dissolved in aqueous buffer in order to preserve the metal-

protein complex in solution. 
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Figure 3.1: Influence of the solvent on the charge state repartition of the BcII MBL. ESI mass 

spectra of the binuclear zinc enzyme BcII (15 µM) measured in methanol / 0.2 % formic acid 

(A) and in 15 mM ammonium acetate (pH 7.5) (B). Pressure at interface: 6.7 mbar, sample 

cone voltage: 100 V. The number of charges for the most relevant ions is specified in the 

figure. 

 

3.2 Metal binding studies monitored using ESI-MS 

To probe the zinc, cadmium and cobalt binding stoichiometry of the BcII enzyme, the 

addition of various concentrations of metal ions to the apoenzyme BcII was 

monitored by ESI-MS. The relative peak intensities of all the distinct protein species 

at different metal/apoenzyme ratios can then be compared. 

 

3.2.1 Detection of the metal - protein complex by ESI-MS 

In order for the results to have the potential to be biologically significant, the relative 

intensities displayed by the different protein species on the ESI mass spectra have to 

reflect exactly the distribution of these species in solution. Consequently, control 

experiments should be carried out in order to verify that certain protein structures or 

complexes are neither advantaged nor discriminated during the 

ionisation/desolvation process or later during their transfer through the interface of 

the instrument. The zinc titration of BcII was used for the validation of the method. 

ESI mass spectra (charge state z = 9 and z = 10) obtained by incubation of apo-BcII 
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with varying concentrations of ZnSO4 are shown in Figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: ESI mass spectra resulting from the incubation of apo-BcII (11.7 µM in 15 mM 

ammonium bicarbonate, pH 7) with different concentrations of Zn(II) ions (5 to 30 µM). The 

first recorded ESI mass spectrum corresponds to the apoenzyme just after the desalting 

procedure. (*) represented the salt adducts. The ions carrying the charges + 9 and + 10 are 

representated in the mass spectra. Experiments were carried out at sample cone voltage 200 

V, pressure at interface 6.7 mbar. 
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In general, for titration methods monitored with ESI-MS it is assumed that the 

concentrations in solution of protein (P), ligand (L) and complex (PL) are proportional 

to the observed intensities (I) in the mass spectrometer. This can be expressed by 

equations 3.1 and 3.2, where the proportionality constants tP and tPL represent the 

transfer coefficient of P and PL, respectively. In the present work, only the intensities 

of PL and P were investigated. 

 

PP ItP ∗=][       Equation 3.1 

 

PLPL ItPL *][ =      Equation 3.2 

 

 

To ensure that the different protein species exhibit the same ionization efficiencies, 

equal amounts of the different protein forms can be mixed together and the ratio of 

intensities of the different species can deliver the ratio of the species transfert 

coefficient. The BcII zinc titration (Figure 3.2) reveals that at low [Zn2+]/[apoprotein] 

ratios, three protein species with identical charge state can be detected with a 

respective mass difference of 63.4 Da between the successive protein species 

corresponding to the binding of one zinc ion minus two protons. In this case, it was 

not possible to prepare the stock solutions, where only one BcII protein species 

occured and consequently no relative ionization efficiencies could be determined 

independently. 

However, when L is much smaller than P (e.g. the binding of metal ion to protein) the 

transfert coefficients are close to equal and the intensity ratio of IPL/Ip is equal to the 

concentration ratio of [PL]/[L] in solution (121). Therefore, in the following titration 

experiments it was assumed that apo, Zn1 and Zn2 species exhibit the same 

ionization efficiencies. 

Furthemore the variation of the sample cone voltage (VC) can assess whether the 

protein species are abnormally represented on the mass spectrum, due to the 

possible dissociation via gas phase collisions at the atmospheric-vacuum interface 

(84). During all the titration experiments, the variation of the cone voltage from 30 to 

200 V did not change the relative intensities of the protein species detected in the 

mass spectrum (data not shown). Therefore a high cone voltage was used for the 
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titration experiments to allow efficient ion desolvation and therefore a better mass 

accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: ESI mass spectra showing the result of the incubation of apo-BcII (11.7 µM in 15 

mM ammonium bicarbonate, pH 7) with different concentrations of Cd(II) ions in solution (6 to 

45 µM). The first recorded ESI mass spectrum corresponds to the apoenzyme just after the 

desalting procedure. (*) represented the salt adducts. The ions carrying the charges + 9 and 

+ 10 are representated in the mass spectra. Experiments were carried out at sample cone 

voltage 200 V, pressure at interface 6.7 mbar. 
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3.2.2 Determination of the metal binding mode with ESI-MS 

Table 3.1 summarises the relative peak intensities of the different protein species 

extracted from the ESI mass spectra of the zinc and cadmium titrations of BcII 

(Figure 3.2 and 3.3, respectively) as well as for the cobalt titration of BcII presented in 

appendix 1.  

At low [Cd2+]/[apoprotein] ratios, only the signals for the apoenzyme and the Cd1-BcII 

species are observed. At [Cd2+]/[apoprotein] ratios > 1, the Cd2-BcII species becomes 

the major signal in the ESI mass spectra. The results indicate that the active site of 

BcII accepts sequentially two Cd(II) ions, suggesting a negative cooperativity in metal 

binding. 

Zinc and cobalt showed a different binding behaviour; Me2-BcII species are 

monitored already at low [Me2+]/[apoprotein] ratios, which can be explained by 

positive cooperativity of metal ion binding which means that the dissociation constant 

for the binding of the second metal ion is lower than the one for the binding of the first 

metal ion to the protein (KD2 (Equation 3.4) < KD1 (Equation 3.3)). 

 

E + Me
2+

KD1
← →   Me − E    KD1 =

[Me2+ ][E ]

[Me − E]
   Equation 3.3 

 

Me − E + Me2+

KD 2
← →   Me2 − E   KD2 =

[Me
2+][Me − E]

[Me2 − E]
  Equation 3.4

 

 

The absolute values of the dissociation constants could not be measured accurately 

using this technique, but the ratio of both constants could be determined from the 

relative intensities of the apoenzyme and the metal-loaded BcII species according to 

Equation 3.5, which is derived from Equations 3.3 and 3.4. 

 

[ ][ ]
[ ]2

2

2

2

1

EMe

EEMe

K

K

D

D

−

−
=     Equation 3.5 

 

 

Table 3.1 shows that at different zinc concentrations the determined KD1/KD2 values 
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are > 1, which is consistent with positive cooperativity for zinc binding to BcII. The 

ratios KD1/KD2 obtained for the cobalt titration are close to 1.  

 

Table 3.1: Relative abundances (%) (peak intensities of ions carrying the charge + 9 and + 

10) of the different BcII complex species measured by ESI-MS during zinc, cadmium and 

cobalt titrations. The KD1/KD2 ratios are calculated from the relative abundances of metal-free 

and metal-loaded enzyme species according to Equation 3.5. The apo-BcII concentration 

was estimated to be 11.7 µM. 

 

 

KD1/KD2

E Zn1-E Zn2-E

61.5 18 20.5 3.9
39 19 42 4.5
24 22 54 2.7
9.5 14.5 76 3.5
/ / 100

E Cd1-E Cd2-E CdZn-E

60 40 / /
11 89 / /
/ 70 30 /
/ 19 61.5 19.5
/ 24 57 19
/ / 75 25

E Co1-E Co2-E

56 26.5 17.5 1.4
31 28 41 1.6
26 27 47 1.7
15 22 63 1.9
5 20 95 1.2
/ / 100

Co(II)

2.5

30

5
10
15
20

18
24
30
45

30

Cd(II)

6
12

5
10
12
14

on the ESI mass spectrum (%)

Relative peak intensities 

[Me]tot (µm)

Zn(II)

 

 

 

 

 

 



  RESULTS: Metal binding studies 

 60

3.3 Inhibitor binding studies performed by ESI-MS 

3.3.1 Development/validation of the native ESI-MS technique for the screening 

of MBL inhibitors 

The affinity of a number of mercaptocarboxylate compounds (Figure 3.4) towards the 

Zn2-BcII enzyme was investigated by “native” ESI-MS and was compared with those 

previously obtained by UV spectroscopy techniques (43). The affinity of the inhibitors 

was investigated by measuring the relative abundance of the Zn2-BcII-inhibitor 

complex compared to the free-inhibitor Zn2-BcII complex in the ESI mass spectra. 

Since the inhibitors have similar molecular masses, the comparison of the inhibitor 

affinities was performed from MS spectra containing a single inhibitor. Prior to run the 

first set of experiments, instrumental parameters for the detection of the metallo-

enzyme-inhibitor complexes were first optimized. It was assumed that the different 

protein species reflect identical ionization efficiencies, as the mass of the ligand is 

much smaller than that of the protein. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Mercaptocarboxylate compounds used in the screening for MBL inhibitors by 

nano-ESI-MS: Thiosalicylic acid (1), 4-mercaptobenzoic acid (2), benzylmercaptan (3), (R,S)-

thiomandelic acid (4) and mandelic acid (5). 

 

Influence of the cone voltage on the detection of metalloprotein-inhibitor 

complexes 

Due to the possible dissociation of the non-covalent complexes in the interface of the 

instrument, the stability of the Zn2-BcII-inhibitor complexes was investigated at 
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different cone voltages by ESI-MS. Figure 3.5 shows the ESI mass spectra (charge 

state z = 10 and z = 9) obtained after incubation of Zn2-BcII with 1.3 molar 

equivalents of thiosalicylate measured at different cone voltages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Influence of the cone voltage (VC) on the stability of the Zn2-BcII-thiosalicylate 

complex as observed by ESI-MS. Zn2-BcII (15 µM) incubated with 1.3 molar equivalents of 

thiosalicylic acid at sample cone voltage  120 V (A), 70 V (B), 50 V (C) and 20 V (D). All 

experiments were performed in ammonium acetate buffer (pH 7.5) with a pressure at the 

interface of 6.7 mbar. The ions carrying the charges + 9 and + 10 are represented in the 

mass spectra. Metalloenzyme and metalloenzyme-inhibitor-complex are represented by 

circle and cresent, respectively. 

 

The binding of one molecule of thiosalicylate to Zn2-BcII led to a mass increase of 

154 Da; the charge state of the inhibited state is identical to the non-inhibited state. 

The results of the experiments indicated that the sample cone voltage dramatically 

influences the stability of the Zn2-BcII-thiosalicylate complex (Figure 3.5). By 

increasing the cone voltage from 20 to 120 V, the peak intensity of the Zn2-BcII-

inhibitor complex decreased related to the peak corresponding to the Zn2-BcII 
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complex and finally disappeared at 120 V (Figure 3.5A). Together with the solution 

data, the ESI-MS data exclude the formation of a covalent disulfide bridge between 

the inhibitor sulfhydryl group and the side chain of Cys168 present in the active site 

of the BcII enzyme (21), since a covalent interaction would not be expected to be 

disrupted by the higher collision energy induced by increase of the cone voltages. 

 

Selection of the cone voltage for the study of BcII inhibitors by ESI-MS 

In order to compare the relative affinities of different thiol inhibitors for BcII by ESI-

MS, a single sample cone voltage has to be selected where the relative abundance 

of each Zn2-BcII-inhibitor complex compared to the Zn2-BcII is optimal. The relative 

abundance of Zn2-BcII-inhibitor complexes compared to Zn2-BcII at different cone 

voltages for (R,S)-thiomandelate, thiosalicylate and 4-mercaptobenzoate is illustrated 

in Figure 3.6. The abundance of the bound and unbound species were measured 

from the peak area of the two main charge states observed for the BcII enzyme (z = 

9, z = 10). The data for the + 8 charge state were not used, due to its insignificant 

intensity. 

The relative abundance of the Zn2-BcII-thiomandelate complex compared to the Zn2-

BcII complex was constant (70.7 ± 2.5 %) from cone voltages 20 to 50 V, but 

decreased as the cone voltage was increased to 90 V, where only 20 % of the 

complex relative to that at 20 V was detected. 

A similar behavior was revealed for the Zn2:BcII:thiosalicylate and the Zn2:BcII:4-

mercaptobenzoate complexes; the effect was more apparent for 4-mercaptobenzoate 

where at 50 V only 20 % of its complex with Zn2:BcII was observed and was 

undetectable at 90 V. Due to the effect of the cone voltage on the apparent relative 

stability of the Zn2-BcII-inhibitor complexes, measurements for the comparison in the 

binding of different inhibitors to Zn2-BcII were performed at a constant cone voltage 

of 50 V, thus enabling the observation of all complexes and therefore enabling their 

comparison. Use of lower cone voltages led to an inefficient desolvation resulting in a 

significantly lowered degree of mass accuracy. 
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Figure 3.6: Relative abundance of Zn2-BcII-inhibitor complexes compared to the inhibitor –

free Zn2-BcII complex (%) based on peak area integration at different sample cone voltages 

for (R,S)-thiomandelic acid (TM), thiosalicylic acid (TC) and 4-mercaptobenzoic acid (4-

MBA). All experiments were performed in ammonium acetate buffer (pH 7.5) with a pressure 

at the interface of 6.7 mbar. 

 

Determination of the relative affinities of thiol inhibitors on BcII using ESI-MS 

Figure 3.7 shows the ESI mass spectra obtained for Zn2-BcII after incubation with 1.3 

equivalents of (R,S)-thiomandelate (Figure 3.7A), thiosalicylate (Figure 3.7B), and 4-

mercaptobenzoate (Figure 3.7C). Analysis of the spectra for the three inhibitors 

revealed that ca. 70 % of Zn2-BcII is associated with (R,S)-thiomandelate, compared 

to ca. 43 % for thiosalicylate and 27 % for 4-mercaptobenzoate. Inhibition constants 

KI were previously determined in solution (43). In those experiments, KI values of 

0.34 µM, 29 µM and 346 µM were determined for (R,S)-thiomandelic acid, 

thiosalicylic acid and 4-mercaptobenzoate, respectively. The authors explained that 

the compound affinity increased when the thiol and carboxylate groups are in close 

spatial proximity (43) which was in good agreement with the results obtained by ESI-

MS. With 1.3 molar equivalents of inhibitor relative to metalloenzyme, two further 
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molecules of 4-mercaptobenzoate were observed to bind to the Zn2-BcII complex but 

at a stepwisely decreasing abundance relative to the first one, suggesting a non-

specific binding for this inhibitor. A relative abundance of 33 % was observed for the 

Zn2-BcII-benzylmercaptan complex (Figure 3.7D), which is ca. 50 % less abundant 

than for thiomandelate acid, demonstrating that the presence of an appropriately 

positioned carboxylate group results in increased complex stability. Results 

previously obtained by spectrophotometric experiments in solution (43) are also 

consistent with the results obtained by ESI-MS in this work. A KI of 9 µM was 

obtained for benzylmercaptan. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: ESI mass spectra of Zn2-BcII (15 µM) after incubation with 1.3 molar equivalents 

of (R,S)-thiomandelic acid (MW = 168.0 Da) (A), thiosalicylic acid (MW = 154.0 Da) (B), 4-

mercaptobenzoic acid (MW = 154.0 Da) (C) and benzylmercaptan (MW = 124.0 Da) (D). 

Experiments were carried out in ammonium acetate (pH 7.5), sample cone voltage 50 V, 

pressure at interface 6.7 mbar. The ions carrying the charges + 9 and + 10 are representated 

in the mass spectra. Metalloenzyme and metalloenzyme-inhibitor-complex and represented 

by circle and cresent, respectively. 
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Replacing the thiol group of (R,S)-thiomandelate by a hydroxyl group, i.e. with 

mandelate (data not shown), resulted in a significant loss of affinity where less than 5 

% of the Zn2-BcII-inhibitor complex was formed even in the presence of 5.3 

equivalents of inhibitor. This demonstrates that the presence of the thiol group is 

crucial for retaining the affinity with Zn2-BcII, consistent with previously reported UV 

spectroscopy results (43). Thus the overall structure activity relationship (SAR) data 

obtained by mass spectrometry is consistent with SAR obtained previously in solution 

(122). 

 

Determination of the dissociation constant KD using ESI-MS 

In order to obtain quantitative dissociation constant KD data for a particular inhibitor, 

titration experiments, similar to the solution measurements, were carried out by mass 

spectrometry. The dissociation constant KD value for the Zn2-BcII-thiosalicylate 

complex was obtained by titrating the BcII metalloenzyme with different 

concentrations of the inhibitor. The calculation of the KD value was performed by 

integrating the peak areas of the free metalloenzyme [E] and the BcII-inhibitor 

complex [EI]. The resulting ratio [EI]/[E] was used for the calculation of the absolute 

concentration of both species. Figure 3.8 shows the linear correlation between 

[EI]/[E] versus [II]-[EI] from 5 to 35 µM of thiosalicylate. The slope of the curve 

corresponds to 1/ KD which was 35.3 ± 3.8 µM in this experiment. This value is in 

good agreement with the UV spectroscopy studies, where a value of 29 µM (SD ≤ 20 

%) was determined (43). 
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Figure 3.8 Graphic showing the correlation between [EI]/[E] versus [II]-[EI] obtained for the 

titration of BcII (15 µM) with thiosalicylic acid (10-35 µM). The KI value calculated from the 

slope of the linear regression curve (in black) is 35.3 ± 3.8 µM. 
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3.3.2 Screening of new inhibitors using a dynamic chemistry approach 

combined with “native” ESI-MS 

A dynamic combinatorial chemistry (DCC) approach combined with the above 

described “native”- ESI-MS technique was developed by B. M. Liénard in Oxford 

(Group of Prof. C. J. Schofield, Oxford, UK) to identify oligomers that can act as 

useful templates for MBL inhibitor discovery (123). The DCC method employs 

dithiols, derived from a selected lead inhibitor (compound A, Table 3.2), where one 

thiol group is designed to interact with the two active site zinc ions of BcII and the 

other as a tether to support the dynamic disulphide exchange with selected dynamic 

combinatorial library (DCL) members. With the use of “native”- ESI-MS and selected 

knockout experiments, two disulfides having the potential to improve the inhibition 

efficiency of the lead inhibitor were detected.  

Since the two disulfides could not be synthesized, stable carba-analogues were 

synthesised (compounds B-F; Table 3.2). Analysis of the relative abundance of each 

of the Zn2-BcII-carbaanalogue complexes compared to the Zn2-BcII complex by 

“native” ESI-MS revealed that all synthesised carba-analogues display a better 

affinity for BcII:Zn2 compared to the lead compound A, which is also in agreement 

with the inhibition constants (KI) obtained by kinetic measurements in solution (Table 

3.2).  

Calculated KI values indicated that the optimium linker chain length for mimicking the 

disulphide tether comprises two methylene groups as demonstrated by a KI value of 

6 µM for compound C, which is also ca. 30 times more potent than the lead 

compound A. The highest KI value corresponds to the analogue with the shortest 

linker chain i.e. only one methylene group (compound B, table 3.2). The small 

variation in KI values observed with longer linker chains (compounds D and F, Table 

3.2) may partly be due to the flexible nature of one of the BcII active site main loop, 

know for its participation in substrate recognition and catalysis by folding over the 

active site cavity (124). 

The analysis of the relative ESI-MS affinity of compounds B-F for Zn2:BcII revealed 

that compounds with linkers comprising 2-4 methylene groups (a.k.a. C, D, F) are 

more potent than the compound B with the shortest linker chain. Moreover, in the gas 

phase the order of affinity potency is D > F > C, whereas the solution data gave C > 

F > D. Whilst the KI values determined in solution are reasonably similar, it seems 

that small differences in inhibition potency are not differentiated by ESI-MS. Besides, 
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the relative abundance of the complex Zn2BcII-E was found to be 51 % smaller than 

the compound with only one –CH2 group. Compound E has the same linker length 

than compound D, but without the second carboxylate group. It could be concluded 

that the interaction between the second carboxylate group and BcII are stronger in 

the gas phase compared to what was observed in solution. 

 

3.4 Effect of inhibitors on the metal stoichiometry of MBLs determined by 

ESI-MS 

As shown above, native ESI-MS is a suitable method for the evaluation of 

metal:enzyme:inhibitor ratios and therefore was further used to study the influence of 

two well known inhibitors (a.k.a (R,S)-thiomandelate and D-captopril: Figure 3.9) on 

the metal stoichiometry of MBLs.  
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Figure 3.9: Structures of (R,S)-thiomandelic acid (1) and D-captopril (2). 
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Table 3.2: Inhibition constants (KI) determined in solution of lead compound A for the DCC 

study and the synthesized carbaanalogue compounds (B-F) for BcII and relative abundances 

(sum of the peak intensities of ions carrying the charge + 9 and + 10) of the Zn2BcII-inhibitor 

complexes (EI %) compared to the inhibitor-free Zn2BcII monitored with ESI-MS. The final 

concentration of Zn2-BcII and of each compound was 15 µM and 45 µM, respectively in ESI-

MS. Experiments were carried out in ammonium acetate (pH 7.5), cone voltage 50 V, 

pressure at interface 6.6 mbar.  

A
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3.4.1 Binding of inhibitors to cadmium and zinc BcII enzyme 

The case of (R,S)-thiomandelate 

The binding of (R,S)-thiomandelate to Cd1-BcII was investigated using ESI-MS 

(Figure 3.10). The Cd1-BcII complex was first analysed without the presence of the 

inhibitor to assess the amount of any dinuclear species observable in the ESI mass 

spectra (Figure 3.10A). The addition of less than one molar equivalent of (R,S)-

thiomandelate to the Cd1-BcII complex led to the formation of five new peaks which 

correspond to the Cd2-BcII-thiomandelate, Cd-Zn-BcII-thiomandelate, Zn2-BcII-

thiomandelate, apoBcII-thiomandelate and Cd2-BcII complexes (Figure 3.10B). Thus, 

it seems that mainly dinuclear species have the ability to interact with (R,S)-

thiomandelic acid, which may suggest that the inhibitor increases the affinity for 

binding of a second metal ion. The presence of the zinc-protein species can be 

explained by the presence of a residual amount of zinc in the apoprotein preparation 

and the inhibitor stock solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: ESI mass spectra of the Cd1-BcII complex in absence (A) and in presence of 

(R,S)-thiomandelate (B) in ammonium acetate pH 7.5. 8 µM of (R,S)-thiomandelate is added 

to 9.8 µM apoenzyme and 9.8 µM cadmium. Sample cone voltage 50 V, pressure at interface 

6.7 mbar. The ions carrying the charges +9 and + 10 are representated in the mass spectra. 
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The binding mode of (R,S)-thiomandelate to the zinc enzyme BcII at 

[Zn2+]/[apoprotein] ratios < 1 was then investigated. Figure 3.11 show that three 

protein species, namely apo-, Zn1- and Zn2-BcII are present and coexisting when less 

than one molar equivalent of zinc ion to the protein is present in solution and in 

absence of inhibitor (Figure 3.11A). The addition of less than one molar equivalent of 

(R,S)-thiomandelate to the zinc enzyme BcII at [Zn2+]/[apoprotein] ratios < 1, resulted 

in the formation of a new peak which corresponded to the Zn2-BcII-thiomandelate 

complex, suggesting that the inhitor binds preferentially to the dinuclear species of 

BcII (Figure 3.11B). Here the increase of the sample cone voltage to a value of 200 V 

shows that the Zn2-BcII-thiomandelate is a non-covalent complex, since it is 

disrupted at this cone voltage (Figure 3.11C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: ESI mass spectra of the zinc enzyme BcII in absence (A) and in presence of 

(R,S)-thiomandelate (TM) in ammonium acetate pH 7.5 at a sample cone voltage of 50 V (B) 

and in presence of (R,S)-thiomandelate (TM) at sample cone voltage of 200 V (C). 8 µM of 

(R,S)-thiomandelate is added to 9.8 µM apoenzyme and 8.4 µM zinc. Pressure at interface 

6.7 mbar. The ions carrying the charges + 9 and + 10 are representated in the mass spectra. 
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D-Captopril versus (R,S)-thiomandelate 

Table 3.3 shows the influence of D-captopril and (R,S)-thiomandelate on the metal 

stoichiometry of the zinc and cadmium BcII-enzymes. Incubation of D-captopril with 

the Cd1-BcII complex resulted in the formation of a dinuclear protein species binding 

the inhibitor as already observed with (R,S)-thiomandelate, but with lower peak 

intensities. Thus, D-captopril also increases the affinity for the binding of a second 

cadmium ion in BcII. Incubation of D-captopril with the zinc-enzyme of BcII at 

[Zn2+]/[apoprotein] ratios < 1 led to the formation of a new peak which corresponded 

to the Zn2-BcII-captopril complex. 

 

Table 3.3: Relative peak intensities (sum of the intensities of ions carrying the charge + 9 

and + 10) of the different protein BcII species as observed in ESI-MS when the zinc and 

cadmium enzyme BcII are incubated with (R,S)-thiomandelate (TM) or D-captopril (C) in 

ammonium acetate pH 7.5. ESI-MS spectra of the zinc enzyme are obtained by adding 8 µM 

(R,S)-thiomandelate or 15 µM D-captopril to 9.8 µM apoenzyme and 8.4 µM zinc. For the 

cadmium-enzyme, 8 µM (R,S)-thiomandelate or 15 µM D-captopril is added to 9.8 µM 

apoenzyme and 9.8 µM cadmium. 
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3.4.2 Binding mode of (R,S)-thiomandelate to the CphA MBL 

The binding mode of (R,S)-thiomandelate with the Zn1-CphA complex was 

investigated (Figure 3.12). The addition of more than two molar equivalents of 

inhibitor to native mono-zinc CphA resulted in the formation of a new peak in the 

mass spectrum which could be assigned to the Zn2-CphA-thiomandelate complex. 

The monozinc complex (Zn1-CphA-thiomandelate) was not observed by ESI-MS 

under these experimental conditions. This observation suggests that the inhibitor 

induces the binding of the second metal ion. Moreover, the apo-CphA enzyme was 

not detected. Potentially, the formation of the Zn2-CphA-thiomandelate complex is 

caused by the presence of Zn(II) is likely to originate from the inhibitor stock solution. 

Furthermore the results indicate that the inhibitor changes the charge state 

distribution of the protein ions in the ESI mass spectra, which is usually a reliable 

indication of the presence of conformational changes in the protein. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: ESI mass spectra of Zn1-CphA in presence (A) and in absence (B) of 2.6 molar 

equivalents of (R,S)-thiomandelate in ammonium acetate pH 7.5. The final concentration of 

Zn1-CphA and (R,S)-thiomandelate was 15 µM and 38 µM, respectively. Sample cone 

voltage 50 V, pressure at interface 6.7 mbar. The ions carrying the charges + 9, + 10 and 

+11 are represented in the mass spectra. Metalloenzyme and metalloenzyme-inhibitor-

complex are represented by circle and cresent, respectively. 
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3.5 Effect of inhibitors on the metal ion binding mode of MBLs using UV 

spectroscopy 

In addition to ESI-MS, competition experiments with the chromophoric chelator Mag-

fura-2 were performed to determine the dissociation constants for zinc and cadmium 

ions to the metal-free enzymes BcII, CphA and L1 in presence and in absence of 

(R,S)-thiomandelate and D-captopril. Figure 3.13 represents the experimental data 

(absorbance change at 363 nm) and fitting of the Zn(II) and Cd(II) binding to the 

three enzymes in presence and in absence of the inhibitors. One-step and two- step 

binding models (as described in paragraph 2.2.3) were fitted to the data in absence 

and in presence of apoenzymes, respectively. The resulting dissociation constants 

are summarized in Table 3.4.  

The experimental data revealed that the zinc binding to the three enzymes is not 

drastically changed in presence of (R, S)-thiomandelate and D-captopril, whereas the 

cadmium binding is strongly affected. In fact, a higher concentration of Cd(II) ions is 

required for saturating the metal chelator with the inhibitors than without them. 

 

Table 3.4 summarises the apparent dissociation constants for the three zinc and 

cadmium MBLs in presence or absence of the inhibitors.  

The affinity for the binding of a second zinc ion increased slightly in presence of 

(R,S)-thiomandelate for all three zinc enzymes and is sufficient to induce positive 

cooperativity (KD2 < KD1) in zinc binding for BcII. In contrast, the addition of (R,S)-

thiomandelate to the three substituted cadmium-enzymes, led to the significant 

increase of the affinity for a second cadmium ion.  

D-captopril had a smaller effect on the zinc enzymes compared to (R,S)-

thiomandelate. The affinity recorded for the binding of a second zinc ion increased 

slightly for BcII and L1, whereas it became weaker for CphA. In contrast, D-captopril 

had a stronger effect on the Cd-enzyme L1. In the case of BcII and CphA, the 

dissociation constant for a second cadmium ion are slightly lower in presence of D-

captopril. 
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Figure 3.13: Determination of the affinity of the enzymes BcII, CphA, and L1 for Zn(II) and 

for Cd(II) in presence and in absence of (R, S)-thiomandelate and D-captopril by competition 

with Mag-fura-2 in 15 mM HEPES, pH 7 at 22 °C. The total absorbance change at 363 nm 

corresponding to the sum of metal-free Mag-fura-2 (MF) and metal-loaded Mag-fura-2 (Me-

MF) is a function of the added volume of 255 µM Zn(II) ion stock solution (left) and 255 µM 

Cd(II) ion stock solution (right) to a defined starting volume (1ml) in absence of apoenzymes 

(���� in grey), where a one-step binding model was fitted to the data (grey line) (A, B); in 

presence of apoenzymes (���� in black), where a two-step binding model was fitted to the data 

(black lines) (A, B for BcII), (C, D for CphA) and (E, F for L1). The total absorbance change 

at 363 nm in presence of the inhibitors is represented as (□) for (R, S)-thiomandelate (6 µM) 

and (∆) for D-captopril (100 µM). 
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Table 3.4: Apparent dissociation constants of Me1 and Me2 species of the three MBLs 

namely BcII, CphA and L1 in presence and in absence of (R,S)-thiomandelic acid (TM) and 

D-captopril (C). Data for Zn(II) and Cd(II) binding were obtained from competition titrations 

with Mag-fura-2 as described in Paragraph 2.2.3. KD1 and KD2 represent the dissociation 

constants of the Me-MBL and the Me2-MBL complexes, respectively. 
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3.6 DISCUSSION 

3.6.1 Validity of the ESI-MS method for the study of MBLs 

Relevance of the instrument parameters for the characterization of metallo-ß-

lactamases 

The observation of biological complexes preserved in solution by a number of weak 

interactions can be achieved using “native” ESI-MS and has been demonstrated in 

the past as well as in the present work. The stoichiometry of complexes, the mode of 

binding and the binding strength of potential ligands can be assessed by this 

technique. This has only been proven viable if the network of interactions stabilizing 

the native complex is retained in the gas phase. Indeed, inappropriate experimental 

settings of the ESI interface can translate into artefacts in the MS spectra, which may 

lead to misinterpretations of the data.  

An efficient ion desolvation usually requires the use of a counterflow of nitrogen gas, 

heat and collision induced dissociation (CID) in the atmosphere/vacuum interface. 

Variation of these parameters is known to affect the stability of complexes in the gas 

phase (84, 125, 126). In the present work, the influence of the accelerating voltage 

(VC) at the atmospheric/vacuum interface on the metal-enzyme BcII complex and the 

ternary metal-enzyme BcII-inhibitor complexes was evaluated.  

Whilst studying the zinc-enzyme BcII interactions, three protein species were 

observed in the ESI mass spectra during the zinc titration of apoBcII i.e. the apo, Zn1- 

and Zn2-BcII species. Increasing the accelerating voltage to 200 V did not alter the 

relative abundance of the three protein species indicating that none of the three BcII 

species are advantaged or discriminated during their transfer through the 

vacuum/atmospheric interface. 

In contrast, the accelerating voltage was shown to have a significant disrupting 

impact on the stability of the ternary metal-enzymes-inhibitor complexes. Progressive 

disruption of the non-covalent interactions between the inhibitor and the 

metalloenzyme were observed with increasing accelerating voltage value. Therefore, 

for comparing the binding strength of different inhibitors, this voltage value was kept 

constant throughout the study. The value of the appropriate accelerating voltage was 

determined by comparing the peak intensity corresponding to the different 

metalloprotein-inhibitor complexes at different accelerating voltages between 20 and 
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100 V. Below 30 V, low peak resolution due to inefficient ion desolvation was 

observed whereas at 90 V the peaks corresponding to a number of metalloprotein-

inhibitor complexes disappeared. Thus, a compromise should be achieved between 

efficient desolvation and non-destructive gas-phase collisions in order to detect these 

types of complexes. 

 

Specificity of the non-covalent complex: Observation of artefacts 

A number of reports about the presence of non-specific interactions in “native” ESI 

mass spectra are available (127, 128). Smith and Light Wahl suggested that non-

specific associations are rather formed in solution than in the gas phase. Aggregation 

leading to non-specific assembly through ion-ion or ion-molecule interactions in the 

gas phase is unlikely (128). During the ionization process, the ion concentrations and 

their presence in the gas phase remains relatively low; consequently, the probability 

that a charged molecule collides with a neutral molecule is very small (129). 

Furthermore, the aggregation of molecules with same polarity is not expected due to 

the coulombic repulsions (130). However, the hypothesis that non-specific 

aggregates are formed in the gas phase is not completely excluded. In fact, during 

the ionization process, the evaporation of the solvent leads to an increasing 

concentration of analytes in the small offspring droplets at the end of the Taylor cone. 

When the non-specific interactions survive the ionization process, they can be 

detected in the ESI mass spectra (128, 131). 

  To verify that the non-covalent interactions obtained in the ESI mass spectra 

are specific, a number of control experiments are required. This can be achieved by 

modifying the chemical equilibrium of the non-covalent complexes in solution. 

Variation of the experimental conditions (eg. pH, solvent, binding partners) can 

induce the formation of new signals in the ESI mass spectrum, demonstrating the 

specificity of the non-covalent complex obtained in the gas phase. In the case of the 

metal-protein interaction study, dissolving the metalloprotein in an organic solvent 

resulted in the observation of new peaks in the lower mass range corresponding to 

the metal-free species of BcII. Additionally, if the binding partner of the apoBcII is 

changed in solution as shown by replacing Zn(II) for Cd(II) ions, formation of new 

complexes such as Cd-bound species are observed in the ESI mass spectra. 

Furthermore, the saturation of apoBcII with Zn(II) ions resulted in the formation of the 
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expected metal : apoBcII binding stoichiometry only (i.e. 2:1). Any other metal-

substituted protein complexes such as Zn3-, Zn4- or Zn5-BcII were not observed.  

Control experiments were also carried out with the metalloprotein-inhibitor 

complexes. The addition of more than one molar equivalent of inhibitor to Zn2-BcII led 

to the formation of a Zn2BcII-inhibitor complex with a 1: 1 binding stoichiometry 

(except for 4-mercaptobenzoic acid, where a 1:3 binding stoichiometry was 

observed). Furthermore the addition of inhibitor to metal-free BcII did not produce any 

apoBcII-inhibitor complex (data not shown), which indicates that the inhibitor binds 

specifically to the active site metal ions. 

 

Quantification of the different protein species from the ESI mass spectra 

To determine the relative or absolute binding strength between an enzyme and a 

small molecule ligand using ESI-MS, the relative abundance of the different protein 

species observed in the mass spectra has to reflect that existent in solution. The 

distribution of the protein species in solution can be distorted during ion formation, 

ion desolvation and/or during transmission into the analyzer.  

In fact, peptides and proteins are ionized in solution by protonation of the basic 

residues or by deprotonation of the acidic residues. The charge state depends on the 

relative values between the pI of the protein and the pH of the buffer in solution. 

Enzymes bearing a global positive net charge are more likely to yield intense signals 

when the measurement is performed in the positive ion mode (132). 

During the ion desolvation, ionic interactions, hydrogen bonds and Van der Waals 

forces generally survive the ionization process but also the ionic bonds in particular 

are strengthened in the gas phase compared to the situation in solution (133). In 

contrast, hydrophobic interactions originating from the repulsion with water 

molecules, are not present in solvent-free environment. When hydrophobic 

interactions are the main forces involved in the cohesion of an enzyme-ligand 

complex, frequently no correlation is found between the binding strength in solution 

and the one observed in the gas-phase (134). In our metalloprotein-inhibitor studies, 

varying the distance between the thiol and the carboxylate groups of the 

mercaptocarboxylate compound has shown to significantly affect the binding affinity 

between the inhibitor and the enzyme as it was previously observed in solution (43). 

In the DCC-MS approach, ESI-MS data agreed reasonably well with the solution 

data, showing that a minimum of two methylene groups are required for efficient 
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inhibition of BcII. Therefore, it can be concluded that the major set of interactions 

between the metalloprotein BcII and the tested inhibitors are electrostatic forces. This 

is consistent with findings from crystal structures of MBLs with thiol-containing 

inhibitors, where both an interaction of the thiol group of the compounds with the 

metal ions in the active site of the protein (38) and an interaction of the carboxylate 

group with the side chain of a lysine residue (38) of BcII could be observed. 

One significant anomaly between the solution phase and the gas phase data sets 

was observed in case of benzylmercaptan, where the relative abundance of the peak 

corresponding to the Zn2-BcII-benzylmercaptan complex was lower compared to that 

of the Zn2-BcII-thiosalicylate complex. This is in contrast to UV-spectroscopy data in 

solution, which indicated for a higher affinity of BcII for benzylmercaptan (9 µM) than 

for thiosalicylate (29 µM). The obvious chemical structure differences between the 

two inhibitors are the presence of a carboxylate group in thiosalicylate and the 

aromatic thiol versus the benzylic thiol function. Similar contradictory results between 

gas-phase data and solution data were also found when the DCC-MS approach was 

applied; here, the relative abundance of the BcII-compound E complex was lower 

than that of the BcII-compound B complex, whereas in solution the KI values 

indicated that compound E (17 µM) is approximately six times more potent than 

compound B (102 µM). In this particular case, the chemical structure differences 

were the number of methylene groups constituting the proposed mimic arrangement 

for the disulfide bond and the presence of an additional carboxylate group on the 

second aromatic ring. One likely explanation for these discrepancies is that the 

interactions between BcII and benzylmercaptan or compound E are mainly 

hydrophobic whereas those involved between BcII and thiosalicylate or compound B 

have a more polar character. 

 

3.6.2 Metal binding to MBLs 

Despite having identical metal binding residues, namely 3-His for site 1 and DCH for 

site 2, the enzymes belonging to the B1 MBL subclass are known to have 

substantially different metal binding affinities. Indeed, the CCrA, Imp-1 and BlaB 

MBLs are known to bind tightly two Zn(II) ions (4, 135, 136), whereas very different 

affinities have been determined for the first zinc ion (KD1 = 1.8 nM) and the second 

zinc ion (KD2 = 1.8 µM), respectively, in case of BcII (4). Negative cooperativity in zinc 
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binding was therefore concluded for this enzyme. Even when using cadmium or 

cobalt in place of zinc ions in BcII, the dissociation constant for the binding of a 

second metal ion was found to be significantly higher compared to the binding of a 

first metal ion (KDCo1 = 93 nM; KDCo2 = 66.7 µM (39) and KDCd1 = 12.5 nM and KDCd2 = 

256 nM (11)).  

The present BcII metal binding study performing “native” ESI-MS revealed that two 

Zn(II) ions or two Co(II) ions bind tightly to BcII. Mag-fura-2 experiments revealed 

dissociation constants values for the binding of one and two zinc ions, which were 

found to be lower than 1 nM. The determined value KD2 was revised by a factor of 

2000 compared to that previously reported (4). This difference in metal affinities with 

BcII is surprising and could not be explained up to now. The BcII enzyme used in this 

work was isolated from E. coli BL21(DE3). For cultivation, the cells were grown in 

minimal medium, whereas in all previous studies LB medium was used. LB-produced 

BcII samples showed a pink colouration (137), which was not observed in BcII 

samples isolated from cultivations on minimal medium. One reasonable explanation 

for the presence of this pink colouration could be the presence of a pigment in the 

case of the LB-produced BcII, which potentially posseses strong affinity for zinc (or 

cobalt) ions modifying the apparent metal:protein stoichiometry. Another possible 

reason for the difference in metal affinities is the presence of a small amount of N- 

terminally truncated BcII species, which has been observed by mass spectrometry in 

the LB-produced-BcII samples (data not shown). However, the BcII enzyme used in 

the present study was shown to be free of N- terminally truncated BcII species. 

Furthermore, the analysis of the “non-denaturing” ESI mass spectra suggests that 

binding of the second Zn(II) ion to the apoenzyme BcII is positive cooperative. This 

conclusion is based on the observation that the ratio of KD1/KD2 » 1 and that the Zn1-

BcII complex was not observed as the predominant protein species during the 

titration of apoBcII monitored by ESI-MS. In constrast, both KD values obtained with 

the Mag-Fura titrations were not conclusive to determine the potential positive 

cooperativity in zinc binding to BcII. In fact, KD2 was found to be higher than KD1.  

In the ESI-MS experiments, it was assumed that the three protein forms i.e. apo, Zn1 

and Zn2-BcII displayed the same ionization efficiencies, though it could not be proved 

experimentally, due to the presence of the three protein species at low ratios of 

[Zn2+]/[apoprotein]. Therefore, these ESI-MS data have to be interpreted with care. In 

fact, a small difference in ionization effiencies of the BcII protein species will have a 
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significant impact on the pre-existent equilibrium in solution.  

Another parameter which has to be discussed is the determination of the 

concentration of the analytes in the gas phase. In fact, extensive evaporation of the 

charged droplets formed at the ESI spray tip increases the concentration of the 

analytes. A higher concentration of reactants in a droplet will shift the equilibrium of 

the reaction in solution: P + L = PL towards more PL product. Therefore it has also to 

be proved that the kinetic rate of the equilibrium shift is slower that the evaporation 

rate (121). 

When replacing zinc by cadmium ions, a sequential binding of the metal ion to BcII 

was observed by ESI-MS as well as in competition-titration experiments. These 

results were also consistent with the previously reported data using the BcII enzyme 

(4). Previous studies highlighted that the two binding sites require the same metal 

binding affinity, which led to the conclusion that the higher dissociation constant for a 

second metal ion could only be explained by negative cooperativity (39). Slow 

association rates for the formation of the Cd2-BcII enzyme determined by stopped-

flow fluorescence measurements suggested that a fast metal exchange between the 

two sites of the mononuclear enzyme was inhibiting the binding of a second metal ion 

(39). A parallel investigation on the dynamics of cadmium binding to the mononuclear 

BcII enzyme used a combination of PAC and NMR spectroscopic experiments (11). 

The results revealed that the metal quickly jumped between the two metal binding 

sites in a µs time regime and thus inhibited the binding of a second cadmium ion, 

which is responsible for negative cooperativity. In the past, metal ion interchange was 

also suggested for zinc binding to BcII (39). In the present study, using purified BcII 

enzyme from cultivation on miniminal medium, negative cooperativity for the zinc 

binding was not observed. It was therefore concluded that other parameters may be 

involved and that “zinc jumping” remains to be proven. 

 

3.6.3 Inhibition of native and cadmium-substituted MBLs 

1) D-Captopril 

Captopril, a well-known angiotensin converting enzyme-blocking agent (140), was 

previously shown to inhibit metallo-ß-lactamases (10). Kinetic studies have revealed 

that enzymes from the three MBL subclasses, loaded either partially or fully with 

metals, are inhibited by two of the captopril isomers. Furthermore, a combination of 
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several techniques including EXAFS, PAC and competition-titration experiments 

have shown that the mononuclear forms of BcII and CphA were preferentially 

inhibited by the inhibitor (10). The study demonstrated two different inhibitor binding 

modes: for the Cd1-BcII enzyme, the thiolate group of D-captopril binds to the single 

metal ion when located at the 3H site and its carboxylate group potentially interacts 

with the metal when it is located in the DCH site. Moreover, for the Cd1-CphA 

enzyme, only one binding mode was found i.e. the thiolate function of D-captopril 

coordinates the metal ion when it is located in the DCH site. CphA was also found to 

preferentially interact with the D- isomer of captopril.  

In the present study, the binding of D-captopril to the native zinc BcII and CphA 

enzymes was investigated using titration experiments with the chelating agent Mag-

fura-2 and “native”-ESI-MS. Additionally, the preference of D-captopril for the Cd1-

species of the BcII and CphA enzymes was verified. Besides, the inhibition of the 

enzyme L1, representative of subclass B3, was also investigated using Mag-Fura 

titrations.  

Similar dissociation constants for the binding of the first (KD1 = 0.9 nM) and second 

zinc ion (KD2 = 4.8 nM) were found for the L1 enzyme, consistent with previously 

published reports (4). The L1 enzyme is considered as a di-zinc enzyme. The binding 

of D-captopril to the L1 enzyme had no influence on KD values. L1 remained a Zn2-

form in presence of D-captopril. In the past, the crystal structure of the complex 

between another di-zinc enzyme of subclass B3, namely Fez-1 enzyme from 

Legionella gormanii, and D-captopril has been solved. The data revealed that the 

inihibitor is located close to the active site, but did not coordinate the two available 

zinc ions (45).  

For the cadmium-bound L1 enzyme, two different dissociation constants were found, 

i.e. 4.8 nM for the first Cd(II) ion and 40 nM for the second Cd(II) ion. In presence of 

D-captopril, the second dissociation constant decreased by 40 fold approaching the 

dissociation constant of the first one. This indicates that the mode of inhibition of D-

captopril may involve binding to the Cd2-L1 to achieve efficient inhibition. 

On the other hand, Mag-Fura titrations showed that D-captopril did not change the 

metal binding stoichiometry of the Cpha monozinc-enzyme. The strength of the 

interaction between D-captopril and Zn1-CphA is likely to be rather weak. In fact, the 

zinc-CphA-D-captopril complex could not be observed in the ESI experiments. In the 

CphA monocadmium-enzyme, D-captopril slightly decreased the dissociation 
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constant for the second metal ion from 400 nM to 110 nM. The compound may bind 

to the Cd1-CphA for efficient inhibition, which is consistent with previously reported 

EXAFS and PAC data (10). 

In the zinc BcII enzyme, the two zinc ions bind very strong to the active site. In the 

presence of D-captopril, the dissociation constant for a second zinc ion was not 

significantly lower compared to the un-inhibited enzyme. D-captopril required two zinc 

ions for efficient binding to BcII, as clearly shown by the results of the ESI 

experiments. Despite the fact that the apo, Zn1 and Zn2-BcII species were present at 

low zinc concentrations, only the Zn2-form was found to bind the inhibitor. In the 

crystal structure of the D-captopril complex with another MBL of subclass B1, namely 

BlaB enzyme from Chryseobacterium menigoseptcum, it was found that the inhibitor 

interacts with the two active site zinc ions (44). BlaB is also considered a di-zinc 

enzyme. 

Furthermore Mag-Fura titrations revealed that D-captopril did not significantly 

change the dissociation constant for a second cadmium ion in the BcII-enzyme i.e. 

210 nM without inhibitor and 170 nM with inhibitor. Previous EXAFS and PAC data 

showed that the monuclear form of BcII is the preferred target for inhibition (10). In 

contrast, the present ESI-MS analysis revealed only the presence of the dinuclear 

BcII species with bound D-captopril. One possible explanation is that the inhibitor 

exhibits two binding modes i.e. inhibition of the native Cd1-form and to a certain 

extent induction of dinuclear-forms and that only the latter one survives the transfer 

from solution into the gas phase. 

In conclusion, depending on the subclass of metallo-ß-lactamase and the nature of 

the metal ion, D-captopril adopts different binding modes to convey its inhibitory 

effect, i.e. D-captopril seems to be able to interact with both mono- and di-zinc MBL. 

Whatever the nature of the metal ion is, D-captopril seems to interact with M2-L1 only 

and Me1-CphA only, whereas in the case of BcII, the metal stoichiometry, upon 

binding of D-captopril, depends on the nature of the metal ions itself, i.e. two metals 

when incubated with zinc and one or two metals with cadmium. 

 

2) (R,S)-Thiomandelate 

The inhibition by both enantiomers of thiomandelate has been previously assessed 

on different MBLs loaded with two zinc ions (43). (R,S)-thiomandelate was shown to 

be a potent inhibitor of subclasses B1 and B3 MBLs. Inhibition constants for the 
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dizinc BcII were 90 nM and 1280 nM for the R- and S-thiomandelate, respectively. 

Structure activity relationship (SAR) data in solution (43) and in ESI-MS (122) clearly 

showed that the thiol group is essential for inhibition and that the presence of the 

carboxylate group increases the inhibitory potency. A NMR/PAC study has also been 

performed with the Cd2-BcII (9), showing that both enantiomers interact with the two 

cadmium ions via the thiol group and that the carboxylate group may interact with 

Arg91. This was observed previously for the complex between a 

mercaptocarboxylate ligand and the enzyme IMP-1 (38). In presence of one cadmium 

ion in the active site of BcII, the compound was shown to induce positive 

cooperativity in metal binding by PAC/NMR experiments (9). 

In the present study, the interaction between zinc and cadmium-bound BcII, CphA 

and L1 enzymes and (R,S)-thiomandelate was investigated using competition titration 

experiments in solution. Native ESI-MS was only used for the study of BcII and 

CphA.  

The titration-experiments revealed that the binding of (R,S)-thiomandelate to the zinc-

L1 enzyme significantly decreased KD2 and slightly increased KD1. (R,S)-

Thiomandelate required the two zinc ions for efficient inhibition in the di-zinc-L1 

enzyme. In the cadmium-bound L1 enzyme, (R,S)-thiomandelate had the same effect 

as D-captopril, i.e. it leads to a 40-fold decrease of KD2. (R,S)-thiomandelate might 

also require two cadmium ions for efficient binding in the L1 enzyme.  

The binding study carried out with (R,S)-thiomandelate and zinc-CphA monitored by 

ESI-MS indicated that the inhibitor induced the production of dinuclear zinc-species. 

The presence of the two zinc ions seems to be required for efficient binding of (R,S)-

thiomandelate. However the Mag-Fura titrations revealed only a minor variation of the 

KD2 value in the zinc-CphA enzyme. This may be explained by the low amount of 

(R,S)-thiomandelate (6 µM) added during the titrations experiments, which might not 

have been enough to inhibit the total amount of CphA enzyme present. In fact, the 

inhibition constant of (R,S)-thiomandelate for CphA has been found to be 144 µM 

(43).  

In cadmium-substituted CphA enzyme, (R,S)-thiomandelate decreased dramatically 

the dissociation constant for the binding of a second cadmium ion by 200-fold. Thus, 

this inhibitor produced the dinuclear form of CphA. 

The inhibitory effect of (R,S)-thiomandelate on the cadmium-bound BcII enzyme 

decreased the KD2 value from 210 nM to less than 0.1 nM. The inhibitor required two 
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cadmium ions for binding to BcII. This was consistent with the ESI-MS results, where 

(R,S)-thiomandelate showed to induce only the formation of inhibited dinuclear 

protein species in the Cd1-BcII enzyme. Moreover, the apparent KD values 

determined in solution did not indicate any positive cooperativity of cadmium binding 

when incubated with the compound, which is not consistent with previous reports (9).  

On the other hand, positive cooperativity of zinc binding (KD2 < KD1) was induced by 

(R,S)-thiomandelate when incubated with the zinc enzyme BcII, as determined by 

titration experiments in solution. Further on, the ESI-MS results show that (R,S)-

thiomandelate only inhibited the dinulear form of BcII at a metal: protein stoichiometry 

below 1.  

In conclusion, it was found that the MBL inhibitor (R,S)-thiomandelate binds to BcII, 

CphA and L1 enzymes with a strong preference for binding to the dizinc species. This 

metal form may be induced upon inhibitor binding like it is the case for Zn- and Cd- 

CphA, Cd-L1 and Cd-BcII enzymes or native Zn-L1 and Zn-BcII enzymes. 
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44  MMEETTAALL  AANNDD  IINNHHIIBBIITTOORR  DDEEPPEENNDDEENNTT  PPRROOTTEEIINN  FFLLEEXXIIBBIILLIITTYY::  RREESSUULLTTSS  

4.1 Circular Dichroism (CD) spectroscopy 

CD spectroscopy was used to measure the difference in secondary structure 

between the different metal-loaded species of BcII. The CD spectra of the apo, Zn1, 

Zn2, Cd1 and Cd2-BcII species are shown in Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Circular dichroism spectra of BcII species. Experimental data are represented by 

symbols, smoothed spectra by lines. (A) Spectra of apo-BcII (open circles), Zn1-BcII (open 

squares), and Zn2BcII (open triangles); (B) Difference spectra of Zn1-BcII – apo-BcII (open 

squares), Zn2-BcII – apoBcII (open triangles), and Zn2-BcII – Zn1-BcII (filled circles); (C) 

Spectra of apo-BcII (open circles), Cd1-BcII (open squares), and Cd2-BcII (open triangles); 

(D) Difference spectra of Cd1-BcII – apo-BcII  (open squares), Cd1-BcII – apo-BcII (open 

triangles), and Cd2-BcII – Cd1-BcII (filled circles). 
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A significant change in the 230-210 nm range of the spectrum was monitored when 

metals were added to the apoenzyme. Binding of two metals ions increased the 

intensities of the negative band at 220 nm compared to the metal-free enzyme, 

indicating an increase in secondary structure content. The addition of one zinc ion 

showed the same band intensity at 220 nm as for the Me2-BcII species, an additional 

shoulder at 210 nm was observed. Thus, the binding of one Zn(II) ion had a more 

pronounced effect on the secondary structure than the addition of a second Zn(II) 

ion. The addition of one cadmium ion yielded a band intensity at 220 nm, which was 

between the apoenzyme and the Me2-BcII proteins; the binding of only one Cd(II) 

might not be sufficient to reach the maximum of secundary structure elements. 

 

4.2 Hydrogen/Deuterium Exchange-Mass Spectrometry 

To follow and localize structural changes inside the BcII protein, HDX-MS combined 

with protein fragmentation was performed using the method described in paragraph 

2.2.10: In the first step, the peptides generated by digestion of BcII with pepsin were 

identified and assigned to the protein. In a second step, the H/D exchange of the 

peptic-peptides was monitored in apo, Zn1, Zn2, Cd1 and Cd2-BcII species using 

MALDI-ToF/ToF/MS. 

 

4.2.1 Assignment of the peptic-peptides to BcII protein 

The identification of the peptic-peptides of BcII and their selection for the HDX 

experiments was performed after analysis of the peptide mass fingerprint (PMF) (see 

appendix 2). 

In the PMF, 33 peptides in the mass range of m/z 800-3500 could be assigned to the 

BcII protein. A sequence coverage of 98 % was reached and all metal ligands could 

be identified. The average mass accuracy of identified peptides was 3.5 ppm. The 

amino acid sequence of all peptides was validated by tandem mass spectrometry 

using post source decay (PSD) with post-acceleration technique (see MS/MS 

spectrum in appendix 3 as an example). The same peptides could be assigned to the 

protein for all metal-substituted species namely Zn1, Zn2, Cd1 and Cd2-BcII species.  

Due to peak overlapping caused by the different number of exchangeable protons, 

the extent of deuteration could not be unambiguously analyzed for all 33 peptic-



  CHAPTER IV 

 89

peptides after incubation of the protein in deuterated buffer; only 22 peptides 

covering almost 96 % of the protein sequence (Figure 4.2, Table 4.1) were 

accessible, again containing all residues belonging to the two metal binding sites 

were amongst the interpretable sequences. The three metal ion ligands of the C-

terminal domain, namely His149, Cys168, and His210 were found in the peptide 

fragments P[139-155], P[165-188], and P[205-219], respectively. The typical MBL 

superfamily sequence motif HxHxD was found in P[82-110] from the N-terminal 

domain.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Sequence coverage of the BcII enzyme reached in PMF analysis of a 10 

minutes-pepsin-digested apoenzyme BcII. Each bar corresponds to a peptic peptide, which 

was identified by tandem mass spectrometry and further on analysed by HDX-MS. 

Secondary structures are labelled by an arrow for the β-sheets and a spring for the α-helices. 

Metal ligands for the first binding site are His86, His88, His149 (His116, His118 and His196 

in the class B ß-lactamase (BBL) numbering (20)). Metal ligands of the second binding site 

are Asp90, Cys168, His210 (BBL: Asp120, Cys221, His263). 
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4.2.2 Determination of the deuterium uptake for one in-exchange time 

In order to follow the deuterium uptake of the 22 peptic peptides for the different 

metal-substituted species, the centroid mass of each isotope cluster of the 22 

deuterated peptides was calculated for each in-exchange time (Figure 4.3). 

Subsequently their masses were subtracted from the centroid mass of the non-

deuterated one and corrected as described in Paragraph 2.2.11. In the following 

study, the data are shown for selected peptides after an incubation time of 2000 sec. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: MALDI-mass spectra of selected peptic-peptides P[220-227], m/z = 952.581; 

P[82-110], m/z = 3106.751; P[55-66], m/z = 1422.675; P[22-31], m/z = 1239.650; P[189-205], 

m/z = 2064.100; P[139-155], m/z = 1933.965 in deuterated buffer after 2000 sec for apo-, 

Cd2-, Cd1-, Zn1-, Zn2-BcII species and after a 100 % deuteration (100 %D).  
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Table 4.1: Deuterium uptake within selected peptic-peptides after 2000 sec. In column 1 and 

2, the sequence of the analysed peptides and their corresponding experimental mass are 

given. In column 3, the number of peptide amide protons in the peptide is represented. In the 

columns 4-8, the number of deuteriums incorporated in the peptide for apo, Zn1, Zn2, Cd1 and 

Cd2-BcII species are shown. 

Sequence of 

identified peptides 
[MH]+ NH 

apo-

BcII 
Zn1-BcII Zn2-BcII Cd1-BcII Cd2-BcII 

N-term. tail (β1, β2) 
1
SQKVEKTVIKNETGTISISQL

21
 

 

2303.280 

 

20 

 

17.7 ± 1.0 

 

15.1 ± 0.6 

 

15.1 ± 0.6 

 

16.6 ± 0.04 

 

15.6 ± 0.8 

β3, loop 32-39, β4, β5 
44

LVLNTSKGLVL
54

 

22
NKNVWVHTEL

31
 

32
GSFNGEAVPSNGLV- 

LNTSKGLVL
54

 

 

1156.737 

1239.650 

2273.196 

 

11 

10 

22 

 

5.8 ± 0.2 

5.1 ± 0.1 

13.5 ± 0.6 

 

4.4 ± 0.6 

3.3 ± 0.1 

9.2 ± 1.6 

 

4.8 ± 0.4 

2.4 ± 0.2 

11.5 ± 0.8 

 

5.0 ± 0.2 

3.0 ± 0.2 

11.6 ± 0.5 

 

4.9 ± 0.4 

2.5 ± 0.2 

11.9 ± 0.9 

loop 56-60 
55

VDSSWDDKLTKE
66

 

 

1422.675 

 

12 

 

8.5 ± 0.1 

 

5.9 ± 0.3 

 

3.7 ± 0.6 

 

7.1 ± 0.4 

 

5.5 ± 0.3 

αI, β6 
71

VEKKFQKRVTD
81

 

70
MVEKKFQKRVTD

81
 

 

1377.788 

1508.827 

 

11 

12 

 

7.1 ± 0.6 

7.3 ± 0.4 

 

5.9 ± 0.1 

6.2 ± 0.1 

 

6.1 ± 0.7 

6.3 ± 0.6 

 

6.5 ± 0.03 

6.4 ± 0.2 

 

5.7 ± 0.3 

5.8 ± 0.3 

αII, β7 

82
VIITHAHADRIGGIKTLKER-

GIKAHSTAL
110

 

 

3106.751 

 

29 

 

27.3 ± 1.5 

 

18.3 ± 0.3 

 

14.4 ± 1.1 

 

21.3 ± 0.9 

 

17.3 ± 0.3 

Connecting Loop, β8 
130

VTNLKFGNM
138

 

115
AKKNGYEEPLGDLQT

129
 

114
LAKKNGYEEPLGDLQTVTNL

133
 

 

1023.534 

1662.828 

2203.161 

 

9 

14 

19 

 

7.6 ± 0.2 

11.0 ± 0.7 

16.5 ± 0.7 

 

5.9 ± 0.9 

7.7 ± 0.7 

12.7 ± 1.1 

 

6.4 ± 0.7 

8.5 ± 0.9 

13.2 ± 0.5 

 

7.1 ± 0.4 

9.6 ± 0.5 

14.6 ± 0.7 

 

6.7 ± 0.3 

8.5 ± 0.8 

13.0 ± 0.5 

β9 
139

KVETFYPGKGHTEDN
153

 

139
KVETFYPGKGHTEDNIV

155
 

 

1721.815 

1933.965 

 

14 

16 

 

8.0 ± 1.0 

9.1 ± 0.7 

 

5.6 ± 0.2 

4.8 ± 0.04 

 

3.4 ± 0.4 

3.3 ± 0.5 

 

3.6 ± 0.7 

3.6 ± 0.1 

 

3.3 ± 0.3 

2.9 ± 0.2 

β10 
156

VWLPQYNIL
164

 

 

1145.637 

 

8 

 

2.5 ± 0.1 

 

1.4 ± 0.3 

 

1.8 ± 0.02 

 

1.7 ± 0.1 

 

1.8 ± 0.1 

β11, Loop 174-185 
165

VGGCLVKSTSAKD-

LGNVADAYVNE
188

 

 

2410.205 

 

24 

 

17.1 ± 1.1 

 

14.0 ± 0.2 

 

14.4 ± 1.1 

 

16.4 ± 0.3 

 

14.9 ± 0.6 

αIV 
195

NVLKRYRNIN
204

 

189
WSTSIENVLKRYRNIN

204
 

189
WSTSIENVLKRYRNINA

205 

 

1289.751 

1993.058 

2064.100 

 

10 

16 

17 

 

7.2 ± 0.8 

9.9 ± 0.7 

10.7 ± 1.1 

 

5.7 ± 0.1 

7.1 ± 0.2 

8.0 ± 0.2 

 

5.2 ± 0.4 

5.7 ± 0.4 

6.0 ± 0.3 

 

5.2 ± 0.1 

5.2 ± 0.04 

6.0 ±0.1 

 

4.7 ± 0.6 

5.1 ± 0.4 

 5.6 ± 0.7 

C-term. tail, β12, αV 
220

LHTLDLLK
227

 
205

AVVPGHGEVGDKGLL
219

 

205
AVVPGHGEVGDKGLLL

220
 

205
AVVPGHGEVGDKG-

LLLHTLDLLK
227 

 

952.581 

1447.793 

1560.880 

2381.349 

 

8 

14 

15 

22 

 

5.5 ± 0.4 

10.5 ± 0.2 

10.9 ± 1.0 

17.3 ± 0.8 

 

3.1 ± 0.3 

6.8 ± 1.5 

8.0 ± 0.8 

13.2 ± 0.1 

 

1.6 ± 0.4 

8.3 ± 0.4 

9.1 ± 0.4 

11.8 ± 0.5 

 

1.1 ± 0.2   

8.0 ± 0.3 

8.5 ± 0.7 

11.7 ± 0.2 

 

2.8 ± 0.4 

7.7 ± 0.7 

8.4 ± 0.7 

12.7 ± 0.8 
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The average back exchange for 22 peptic-peptides was around 45 %, but individual 

values for each peptide were determined and used for data correction (see appendix 

4). Depending on the total number of exchanged amide protons in a peptide the 

resulting standard deviations were highly variable, ranging between 2 and 12 %. In 

Table 4.1 a comparison of H/D exchange of apo-BcII and the metal-substituted 

species after 2000 sec is listed. The total number of exchangeable amide protons 

and the experimentally observed exchange are compared. Some sequence sections 

are found in several peptides, which is caused by the occurrence of alternative 

cleavage sites of pepsin.  

 

4.2.3 Quantification and structural interpretation of the Hydrogen/Deuterium 

Exchange kinetics 

14 peptides mapped in Figure 4.4, covering almost 96 % of the protein sequence, 

were used to probe the influence of metal and inhibitor binding on HDX kinetics 

between 50 sec and 5900 sec. After analysis of the HDX kinetics, only a part of the 

totally possible HDX was time resolved. In fact, for most peptides, the H/D exchange 

has already begun in the dead time prior to the first measurement. The crystal 

structure of the Zn2-BcII enzyme is available from the protein data bank (PDB 

accession code: 1BVT), which allows for the determination of the solvent accessibility 

of the amide protons from the 14 peptides. 216 amide protons were covered in total 

by these peptides. 

Three types of amide protons were classified as follows: First, the amide protons 

involved in main chain - main chain (mc-mc) hydrogen bonds. They comprise 

spatially neighbouring peptide bonds found in α-helices, ß -sheets or turns (126 in 

total). They are protected against solvent and thus show generally slow HDX. The 

same might hold true for amide protons involved in hydrogen bonds to side chains 

(mc-sc) of spatially neighbouring amino acids (15 in total). Best solvent accessibility 

and highest rates of HDX are expected for amide protons not involved in hydrogen 

bonds.  

In Table 4.2, the total number of exchangeable amide protons is presented together 

with the numeric values for mc-mc and mc-sc hydrogen bonds determined from the 

crystal structure (1BVT). For the representation in Figure 4.4 these structural 

parameters are used to derive the %HDX expected when the amide protons not 
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involved in hydrogen bonds were exchanged. Generally, the percentage of non-

hydrogen-bonded amide protons correlated well with the first data points obtained of 

the HDX kinetics of Zn2BcII (Figure 4.4). Thus it might be concluded that at least all 

hydrogen-bonded amide protons are largely protected against HDX for incubation 

times < 50 s. The %D0 values resulting from data evaluation (Table 4.2) thus 

represented the non-hydrogen bonded amide protons. In fact, enzyme species 

showing considerably higher percental HDX at t = 50 s might have structures with a 

decreased number of hydrogen-bonded amide protons for the respective peptides. 

 

4.2.4 Hydrogen/Deuterium Exchange in the N-terminal domain of BcII 

Three peptides of the N-terminal domain revealed higher %D0 values for the apo and 

Me1-species than for the di-zinc form of BcII. These peptides are P[82-110], P[115-

129] and P[55-66].  

In the crystal structure of the di-zinc BcII (1BVT), P[82-110] spans the metal ion-

binding HxHxD motif and two secondary structure elements; the α-helix II and the ß-

sheet 7. In this peptide, 20 out of 29 amide protons are involved in 16 mc-mc and 4 

mc-sc interactions. Thus only 9 out of 29 amide protons (31 %) are accessible to the 

solvent, explaining the low %D0 value (i.e. 30 %) obtained from the HDX-MS data for 

the Zn2-BcII. In the case of the apoenzyme and Me1-BcII, %D0 values of 80 and 45 % 

were found for this peptide, respectively. This can only be explained by a decreased 

number of hydrogen-bonded amide protons. In the case of the apoenzyme, the 

secondary structure elements existing in this peptide should be partially unfolded. 

Similar effects of metal ion loading were observed for the peptide P[115-129]. 

In the crystal structure of the di-zinc BcII (1BVT), P[115-129] covers the loop 

connecting the N- and C-terminal domains. In this peptide, 11 out of 14 amide 

protons from P[115-129] are involved in 9 mc-mc and 2 mc-sc interactions. Thus only 

3 out of 14 amide protons (21 %) are accessible to the solvent, which is close to the 

%D0 value (i.e. 30 %) evaluated from the HDX-MS data for the Zn2-BcII. In the case 

of the apo-BcII and Me1-species, %D0 values of 63 % and 45 % were obtained, 

respectively. Here, the connecting loop is more flexible in the apo-and Me1-species 

than in the di-zinc BcII. 

In the crystal structure of di-zinc BcII (1BVT), the peptide P[55-66] contains the loop 

56-60. In this peptide, 9 of 12 amide protons are involved in 7 mc-mc and 2 mc-sc 
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interactions. Thus 3 out of 12 amide protons (20 %) are not protected against the 

solvent, which is consistent with the %D0 value of 18 % obtained from the HDX-MS 

data for the Zn2-BcII. Here also higher %D0 values were found with apo-BcII and the 

Me1-species. 

Although the %D0 values of the three peptides (P[82-110], P[115-129] and P[55-66]), 

were similar for the Me1-species, the Zn1-species showed shorter half life for the 

kinetically resolved reaction phase than the Cd1-species (Table 4.2). Furthermore, 

the number of non-exchanged amide protons (%Hend) was lower for the Cd1- than for 

the Zn1-species. In case of the Me2 species, the %Hend value was also lower for the 

Cd2-species, revealing more flexibility. 

The kinetic analysis of HDX resulted in the highest %D0 and/or %Dt values and short 

half life for most of the peptides in the N-terminal domain of apo-BcII compared to the 

other species (Table 4.2). Only one peptide was found to reflect similar exchange 

patterns in all protein forms, namely the peptide P[70-81] covering regions of the C-

terminus of α1 and the N-terminus of ß6 . 

Another peptide, P[32-54], showed longer half life in the Zn1-species (t1/2 = 37 min) 

than in the di-zinc form of BcII (t1/2 = 6 min). This peptide spans the loop 32-39 (a.k.a  

subtrate binding loop) and ß4. 

 

4.2.5 Hydrogen/Deuterium Exchange in the C-terminal domain of BcII 

Most of the peptides in the C-terminal domain revealed similar %D0 values for the 

different metal loading states, but indicated different numbers of non-exchanged 

amide protons at the end of the HDX process (%Hend). The metal-free BcII form was 

always the most solvent accessible form for these regions. Generally the resulting 

%Dt values were higher for apo-BcII. One exception was observed in case of the 

peptide P[165-188]: the %Dt value and the rate constant of the process of the H/D 

exchange were both higher in the Cd1-enzyme (%Dt = 24.8 and k = 1.52 min-1) than 

in the apoenzyme (%Dt = 14.6 and k = 0.02 min-1). This peptide covers the metal 

ligand Cys168 and the minor loop 174-185, which flanks the active site of the protein. 

Two peptides P[189-205] and P[220-227], covering the α-helices IV and V of the 

protein, respectively showed higher stability against HDX for the Cd1-form compared 

to Zn2-BcII (Figure 4.4). Similar results were found for P[139-155], which contains the 

147-152 loop and the metal ligand His149.  
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Four peptides of the C-terminal domain spanning the residues 156-219 showed more 

stability with one zinc ion than with two zinc ions. This is most pronounced for P[205-

219] containing the metal ligand His210 from the metal-binding site 2 (Figure 4.4). 
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Figure 4.4: HDX kinetics of BcII. The time courses of percentage deuterium in-exchange are 

given on a logarithmic time scale. Experimental data for the different enzyme species are 

presented as follows: apo-BcII (black circles), Zn1-BcII (half-filled red circles), Zn2-BcII (filled 

red circles), Cd1-BcII (half-filled blue squares), Cd2-BcII (filled blue squares). The theoretical 

curves are represented by lines through the data points and were obtained from fitting 

equation 2.11 to the data. The percentage of amide hydrogens not involved in main chain - 

main chain (mc-mc) hydrogen bonds is indicated by full green lines, the percentage of amide 

hydrogens involved in neither main chain - main chain nor main chain - side chain hydrogen 

bonds is represented by broken green lines. The latter data were obtained from an inspection 

of the crystal structure of Zn2-BcII (1BVT).  
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Table 4.2: Results of the kinetic analysis of HDX data from Fig. 4.4. %D, %Dt (amplitude of 

the process), and k (rate constant) result from fitting Equation 2.11 to the data; %Hend = ΣNH 

- %D0 - %Dt; t1/2 = ln2/k. Percental deuterium in-exchange is given together with the standard 

deviation resulting from the fits. The corresponding number of protons (ΣHX) is given in 

brackets. 

 

peptide 

- ΣNH 

- mc-mc H-

bonds 

- mc-sc H-

bonds 

 

 

metal 

 

 

%D0 

(ΣHX) 

 

 

%Dt (ΣHX) 

 

 

%Hend (ΣH) 

 

 

k [min
-1

] 

 

t1/2 

[min] 

approx. 

 

P[1-21] 

20 

8 

0 

0 

1Zn 

2Zn 

1Cd 

2Cd 

74.0±1.2 (16) 

63.7±1.3 (13) 

59.0±2.3 (12) 

71.9±1.3 (15) 

65.2±1.4 (14) 

12.3±1.5 (3) 

15.0±2.1 (3) 

15.9±2.5 (3) 

13.9±2.3 (3) 

14.7±1.9 (3) 

13.7 (3) 

21.3 (4) 

25.1 (5) 

14.2 (3) 

20.1 (4) 

0.190±0.080 

0.072±0.028 

0.332±0.177 

0.055±0.023 

0.104±0.041 

4 

10 

2 

13 

7 

 

P[22-31] 

10 

9 

0 

0 

1Zn 

2Zn 

1Cd 

2Cd 

24.0±1.1 (2) 

18.6±1.8 (2) 

19.0±0.7 (2) 

22.2±0.8 (2) 

19.8±1.2 (2) 

38.3±2.5 (4) 

29.5±6.6 (3) 

23.0±1.5 (2) 

30.1±24.7 (3) 

13.7±6.7 (1) 

37.2 (4) 

51.9 (5) 

58.0 (6) 

47.7 (5) 

66.5 (7) 

0.035±0.006 

0.022±0.011 

0.0083±0.0081 

0.0071±0.0081 

0.016+0.016 

20 

32 

84 

98 

43 

 

P[32-54] 

22 

13 

1 

0 

1Zn 

2Zn 

1Cd 

2Cd 

43.5±1.9 (10) 

37.7±1.5 (9) 

37.9±1.5 (9) 

45.2±0.5 (10) 

41.4±1.2 (9) 

20.1±3.0 (5) 

13.9±6.6 (3) 

12.9±2.0 (3) 

11.5±1.0 (3) 

15.7±1.9 (4) 

36.4 (8) 

48.4 (11) 

49.2 (11) 

43.3 (10) 

42.9 (10) 

0.072±0.030 

0.019±0.019 

0.117±0.058 

0.040±0.009 

0.075±0.025 

9 

37 

6 

17 

9 

 

P[55-66] 

12 

7 

2 

0 

1Zn 

2Zn 

1Cd 

2Cd 

-5.4±1.4 (0) 

27.9±2.7 (3) 

18.0±0.6 (2) 

25.8±1.7 (3) 

22.9±2.3 (3) 

76.1±1.6 (9) 

21.0±3.0 (3) 

18.3±1.1 (2) 

35.3±2.5 (4) 

32.7±4.1 (4) 

23.9 (3) 

51.1 (6) 

63.7 (8) 

38.9 (5) 

44.4 (5) 

1.351±0.067 

0.243±0.126 

0.043±0.006 

0.082±0.017 

0.054±0.018 

0.5 

3 

16 

8 

13 

 

P[70-81] 

12 

8 

1 

0 

1Zn 

2Zn 

1Cd 

2Cd 

21.4±1.2 (3) 

14.5±1.6 (2) 

15.8±1.3 (2) 

19.9±1.2 (2) 

16.5±2.1 (2) 

50.7±2.3 (6) 

48.8±3.1 (6) 

51.0±2.5 (6) 

46.8±2.7 (6) 

46.7±4.3 (6) 

27.9 (3) 

36.7 (4) 

33.2 (4) 

33.3 (4) 

36.8 (4) 

0.041±0.005 

0.047±0.007 

0.045±0.006 

0.036±0.005 

0.039±0.009 

17 

15 

15 

19 

18 

 

P[82-110] 

29 

16 

4 

0 

1Zn 

2Zn 

1Cd 

2Cd 

78.8±2.1 (23) 

41.9±2.0 (12) 

27.5±2.4 (8) 

44.5±2.8 (13) 

29.5±1.2 (9) 

18.0±3.1 (5) 

22.4±2.7 (6) 

28.8±3.6 (8) 

36.7±4.6 (11) 

35.7±2.0 (10) 

3.2 (1) 

35.7 (10) 

43.7 (13) 

18.8 (5) 

35.5 (10) 

0.092±0.047 

0.114±0.044 

0.081±0.030 

0.065±0.022 

0.066±0.010 

7 

6 

9 

10 

10 

 

P[115-129] 

14 

9 

2 

0 

1Zn 

2Zn 

1Cd 

2Cd 

62.6±2.7 (9) 

44.2±4.0 (6) 

30.1±2.4 (4) 

48.6±1.3 (7) 

34.8±3.3 (5) 

13.7±3.0 (2) 

15.3±5.6 (2) 

32.1±3.0 (4) 

22.8±2.0 (3) 

29.8±4.4 (4) 

23.7 (3) 

40.5 (6) 

37.8 (5) 

28.6 (4) 

35.4 (5) 

0.786±0.386 

0.105±0.117 

0.139±0.044 

0.076±0.019 

0.126±0.060 

0.9 

7 

5 

9 

6 

 

P[130-138] 

9 

4 

0 

0 

1Zn 

2Zn 

1Cd 

2Cd 

37.0±1.9 (3) 

48.6±4.7 (4) 

47.6±2.0 (4) 

60.4±1.8 (5) 

53.7±1.6 (5) 

45.0±2.1 (4) 

19.2±5.3 (2) 

24.3±2.3 (2) 

19.6±2.9 (2) 

24.9±2.3 (2) 

18.0 (2) 

32.2 (3) 

28.1 (3) 

20.0 (2) 

21.4 (2) 

0.901±0.096 

0.245±0.245 

0.203±0.070 

0.069±0.028 

0.091±0.025 

0.8 

3 

3 

10 

8 
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P[139-155] 

16 

10 

3 

0 

1Zn 

2Zn 

1Cd 

2Cd 

21.7±1.4 (3) 

13.6±2.4 (2) 

11.6±0.6 (2) 

14.5±0.6 (2) 

13.4±1.2 (2) 

48.1±2.9 (8) 

27.6±4.7 (4) 

19.4±2.5 (3) 

19.6±5.6 (3) 

15.6±10 (2) 

30.2 (5) 

58.8 (9) 

69.0 (11) 

65.9 (11) 

71.0 (11) 

0.0368±0.0056 

0.0429±0.0184 

0.0202±0.0061 

0.0129±0.0068 

0.0130±0.0157 

19 

16 

34 

54 

53 

 

P[156-164] 

8 

7 

0 

0 

1Zn 

2Zn 

1Cd 

2Cd 

23.3±1.1 (2) 

13.3±1.1 (1) 

15.6±0.7 (1) 

18.1±0.3 (1) 

17.6±1.2 (1) 

32.2±4.7 (3) 

n.d. (<1) 

n.d. (<1) 

n.d. (<1) 

n.d. (<1) 

44.5 (4) 

76.5 (6) 

77.0 (6) 

79.0 (6) 

74.7 (6) 

0.0188±0.0061 

n.d. 

n.d. 

n.d. 

n.d. 

37 

n.d. 

n.d. 

n.d. 

n.d. 

 

P[165-188] 

24 

9 

1 

0 

1Zn 

2Zn 

1Cd 

2Cd 

61.9±1.2 (15) 

48.8±2.5 (12) 

55.4±0.8 (13) 

45.3±0.6 (11) 

18.9±1.5 (5) 

14.6±3.9 (4) 

11.1±2.8 (3) 

7.9±1.4   (2) 

24.8±0.6 (6) 

42.8±1.7 (10) 

23.5 (6) 

40.1 (10) 

37.6 (9) 

29.9 (7) 

39.2 (9) 

0.0235±0.0152 

0.6163±0.3824 

0.0698±0.0332 

1.5200±0.0966 

1.9540±0.2255 

30 

1 

10 

0.5 

0.4 

 

P[189-205] 

17 

11 

0 

0 

1Zn 

2Zn 

1Cd 

2Cd 

27.5±1.6 (5) 

24.0±2.0 (4) 

25.2±1.1 (4) 

28.2±1.6 (5) 

26.0±1.6 (4) 

50.4±3.8 (9) 

39.3±6.5 (7) 

25.2±5.2 (4) 

9.4±3.6   (2) 

13.7±3.4 (2) 

22.1 (4) 

36.7 (6) 

49.6 (8) 

62.4 (11) 

60.3 (10) 

0.0307±0.0058 

0.0230±0.0091 

0.0186±0.0085 

0.0338±0.0324 

0.0371±0.0230 

23 

30 

37 

21 

19 

 

P[205-219] 

14 

7 

1 

0 

1Zn 

2Zn 

1Cd 

2Cd 

44.7±1.8 (6) 

32.4±1.1 (5) 

37.6±1.3 (5) 

47.4±1.7 (7) 

41.3±1.9 (6) 

34.4±2.7 (5) 

18.5±1.8 (3) 

23.2±2.0 (3) 

14.8±3.5 (2) 

18.5±3.0 (3) 

20.9 (3) 

49.1 (7) 

39.2 (5) 

37.8 (5) 

40.2 (6) 

0.0808±0.0181 

0.0641±0.0171 

0.0851±0.0210 

0.0406±0.0241 

0.0751±0.0339 

9 

11 

8 

17 

9 

 

P[220-227] 

8 

8 

0 

0 

1Zn 

2Zn 

1Cd 

2Cd 

4.8±2.2 (0) 

4.5±1.8 (0) 

4.2±1.0 (0) 

4.5±1.2 (0) 

7.8±1.3 (1) 

83.9±4.6 (7) 

63.6±9.3 (5) 

64.2±20.8 (5) 

100±200 (8) 

74.5±10.9 (6) 

11.3 (1) 

31.9 (3) 

31.6 (3) 

0 (0) 

17.7 (1) 

0.0375±0.0052 

0.0171±0.0053 

0.0084±0.0041 

0.0030±0.0073 

0.0133±0.0037 

19 

40 

83 

230 

52 

 

Σ [1-227] 

216 

126 

15 

0 

1Zn 

2Zn 

1Cd 

2Cd 

(97) 

(75) 

(68) 

(83) 

(67) 

(74) 

(49) 

(47) 

(56) 

(57) 

(50) 

(90) 

(97) 

(78) 

(90) 

 

- 
 

- 

 

 

 

4.2.6 Effect of the inhibitor thiomandelate on HDX-MS for the different BcII 

protein species 

To determine the influence of (R,S)-thiomandelate on the flexibility of the different 

regions of the metal-substituted species namely Zn1, Zn2, Cd1 and Cd2-BcII species, 

the degree of H/D exchange of the inhibitor-free protein species were compared with 

their inhibited forms (see Table 4.3). The results show that only for the Cd2-BcII form 

of BcII, the H/D exchange decreases in presence of the inhibitor for the following 

regions: the H-X-H-X-D motif of P[82-110], the loop 56-60 of P[55-66] and the α-helix 
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V of P[220-227]. For all other metal-species, (R,S)-thiomandelate increases the H/D 

exchange of the different peptides.  

 

Table 4.3: Effects of binding of (R,S)-thiomandelic acid (TM) to Cd1-, Cd2-, Zn1-, and Zn2-

BcII. Comparison of un-inhibited and inhibited enzyme species (-). Percent deuteration is 

shown for a reaction time of 2000 s. 

 

 

To determine the binding mode of (R,S)-thiomandelate with the Cd1 and Zn1-BcII-

species, the theoretical H/D exchange (calculated from Equation 4.1) of the peptides 

of the inhibited species were compared with the experimental H/D exchange. In case 

of theoretical H/D exchange, positive cooperativity in metal binding was assumed. 

 

Equation 4.1: 

[ ] )(%)(%*5.0)(%*5.0% 12 BcIIMeDBcIIapoDTMBcIIMeDD −−−+−−=  

 

Figure 4.5 shows the difference of the percentage of deuteration for Zn1- (Figure 

4.5A) and for Cd1-BcII species (Figure 4.5B) with and without the presence of the 

 % Deuteration 

Residues Cd1-BcII Cd2-BcII Zn1-BcII Zn2-BcII 

 - TM - TM - TM  TM 

1-21 83,0 86,4 77,7 81,8 75,1 84,8 75,2 83,5 

22-31 29,2 42,4 24,6 26,4 30,4 44,6 23,9 29,5 

32-54 52,7 60,3 53,7 55,4 41,8 59,3 52,2 60,7 

55-66 57,5 58,9 45,9 30,5 44,9 53,9 30,9 35,7 

70-81 53,0 59,3 47,8 53,8 49,5 60,4 53,2 59,1 

82-110 73,2 75,0 59,4 53,0 61,5 71,1 49,4 59,4 

115-129 68,1 79,5 60,5 71,0 55,2 80,6 60,7 75,6 

130-138 77,3 82,8 74,1 78,9 61,1 81,0 70,6 89,6 

139-155 22,3 42,8 18,2 21,5 29,8 46,1 20,3 27,0 

156-164 21,4 30,5 22,3 27,3 18,1 29,5 22,3 28,7 

165-188 67,9 70,1 62,0 71,3 57,0 72,0 61,0 67,6 

189-205 34,9 50,3 32,9 38,0 45,1 49,4 35,2 40,4 

205-219 57,3 66,0 55,1 59,3 48,3 66,6 59,0 64,4 

220-227 13,1 44,6 35,1 22,7 34,5 50,4 19,4 23,2 
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inhibitor respectively. The values obtained for the inhibitor-bound form were 

subtracted from those of the ligand free form of the protein, thus positive values 

indicate an increased H/D-exchange for the (R,S)-thiomandelate containing species. 

The theoretical values of the H/D exchange are similar with to experimental ones for 

both metals, revealing that (R,S)-thiomandelate might induce positive cooperativity in 

metal binding for Cd(II) and Zn(II) ions in BcII. 
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Figure 4.5: Influence of (R,S)-thiomandelic acid binding on HDX of Me1-BcII. Experimental 

(black bars) and theoretical (grey bars) HDX data for Zn1BcII (A) and Cd1BcII (B) in presence 

of excess (R,S)-thiomandelic acid are compared. Changes of the percental deuterium 

incorporation after addition of the inhibitor to the Me1-species are shown for a reaction time of 

2000 s. Theoretical data were calculated assuming that all added metal ions were finally 

bound to inhibited Me2-enzyme (see equation 4.1). 
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4.3 DISCUSSION 

4.3.1 Metal-dependent protein structure and flexibility of BcII 

4.3.1.1 Comparison of the apo-BcII and Me2-enzyme 

Differences in secondary structures between the metal-free and the Me2-species of 

BcII were observed with CD spectroscopy and HDX-MS. For the CD spectra, the 

addition of two metal ions to the apoenzyme strongly increased the intensities of the 

negative band at 220 nm, indicating an increased content of secondary structure 

within the protein. One can conclude that parts of the secondary structure are not yet 

formed or sufficiently stabilized in metal-free BcII; potentially binding of the two 

metals either contributes to the stabilization of such structures or the binding of the 

metal ions induces conformational changes bringing residues in closer proximity thus 

finally enabling the formation of secondary structures. HDX-MS of pepsin-digested 

proteins permitted to localize the structural changes. The peptide P[82-110] 

containing the metal ion-binding HxHxD motif and its surrounding α-helix II showed 

very high solvent accessibility at early time HDX measurements for the metal-free 

enzyme. Together with CD spectra it can be concluded that the α-helical part must be 

partially unfolded in the apoprotein. This destabilization of secondary structure in this 

region would have a direct impact on the solvent accessibility of the neighbouring 

peptides. Indeed this was observed for the two peptides P[55-66] and P[115-129] 

containing the buried loop 56-60 and the loop connecting the N- and C-terminal 

domains, respectively. Both peptides showed high solvent accessibility in the metal 

free enzyme. In the crystal structure of Zn2-BcII (1BVT), P[115-129] is bound to P[82-

110] via 1 mc-mc and 3 mc-sc hydrogen bonds and P[55-66] forms 3 mc-mc and 3 

sc-sc hydrogen bonds including salt bridges of the guanidinium group of Arg91 to 

Asp 90 and Asp56. A strained conformation of the main chain at position 56 is 

induced which may be relevant for the structural organization of the metal binding 

site. This structural feature is strictly conserved among the MBLs (23). P[55-66] also 

contains Trp59 which was suggested to contribute to the binding of the phenyl group 

of penicillin via formation of a hydrophobic pocket with Phe34 . 

The absence of metal ions had also shown to influence regions far from the active 

site, as observed for the two peptides P[189-205] and P[220-227] which contain the 

α-helices IV and V, respectively, in the C-terminal tail of the protein. In the crystal 
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structure of the di-zinc form of BcII, a low B-factor was determined for the α-helix V, 

meaning that the position of its atoms have been determined with high precision. This 

can be due to the crystal packing of the BcII protein; two molecules are stacked 

against each other by their C-terminal α-helices (αV) (1BVT). However, in solution 

this region can be less stable especially in absence of metal ions. For all conditions 

tested HDX-MS analysis revealed a strong correlation between the flexibility of the 

fragments covering the α-helices IV and V and the peptide P[139-155] containing the 

metal ligand His149. 

Generally most regions of metal-free BcII showed faster HDX kinetics during 50 sec 

and 5900 sec than the metal-loaded states. This higher solvent accessibility of metal-

free BcII reflects a solution structure, which appears different from the known crystal 

structure of the Zn2-form. Previous NMR studies of backbones amide resonances by 

1H-15N-HSQC-experiments already resulted in significant differences between apo- 

and metal-loaded forms of BcII (11).  

Thus it can be assumed that metal ion binding strongly contributes to the stabilization 

of the protein fold observed in the crystal structure. The metal-free enzyme in solution 

might be partly unstructured at the interface site of N- and C-terminal domain and it 

might be concluded that the metal ion binding site is not pre-formed by the protein 

fold. By comparison of the crystal structure of the di-zinc and the metal-free form it 

was observed that the metal ions fulfill not only catalytic but also structural functions 

in the B. cereus metallo-ß-lactamase (141). The main differences in the Cα-positions 

were found close to the active site: in the absence of metal, the minor loop and the N-

terminus of the α-helix II (residues 87-93) showed larger distances between each 

other. Thus, in the metal-free form the connection between both regions, which is 

formed by the interaction between Asp183 and the side chain of the metal ligand 

His86 in case of the metal enzyme was disrupted. 

Thus binding of metal ions introduces additional bonds between N- and C-terminal 

domains which might be necessary to keep the domains connected. If the metal is 

absent, the N-and C terminal domains will be separated from each other, which can 

lead to an increased flexibility of the connecting loop, finally also influencing regions 

situated far from the active site. High flexibility of the apo-enzyme might also explain 

the ease of metal ion transfer from e.g. EDTA to the protein (4).  
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4.3.1.2 Comparing Cd2-and Zn2-BcII enzymes 

The analysis of the Me2-species using CD spectroscopy did not indicate significant 

differences between the secondary structure contents of the cadmium and the zinc 

enzymes. In contrast, the HDX-MS study revealed that the regions in the interface 

domain of the protein were more flexible for the Cd2-than for the Zn2-form of BcII. In 

fact, the two structurally coupled peptides namely P[55-66] and P[82-110] showed 

higher solvent accessibilities in case of the Cd2-form.  

The X-ray structure of B. fragilis zinc-ß-lactamase, another member of the subclass 

B1 enzymes, revealed a bridging solvent molecule between the two metals, which 

was assumed to exist as a hydroxide ion (27, 36). In the structure of the Zn2-BcII at 

pH 7.5, a similar bridging water molecule was found (33). This hydroxide ion may be 

involved in the nucleophile attack to the carbonyl carbon atom of the ß-lactam ring 

(21, 27, 30). Moreover, the distance of the shared solvent molecule to the cations 

was found to be higher in the Cd2 -form compared to the Zn2 -form of the B. fragilis 

enzyme (34). A higher distance between the two cadmium ions compared to the two 

zinc ions could have an influence on the stability of surrounding regions, as observed 

for the two peptides P[55-66] and P[82-110] in the BcII enzyme. 

 

4.3.1.3 Me1-BcII enzymes 

Metal jumping/flexibility of active site in the Cd1-BcII enzyme 

Previous NMR and PAC spectroscopic experiments demonstrated a fast exchange 

(jumping) of the single Cd2+ ion between the two metal binding sites in a time regime 

between 0.1 and 10 µs (11). De Seny et al., 2001 determined the dissociation rate koff 

for cadmium at 0.22 sec-1 for the BcII enzyme by combination of the association rates 

with the corresponding dissociation constants (39). The fast exchange of the Cd2+ ion 

between the two binding sites via a dissociation/association mechanism, where the 

metal ion is first transferred to the bulk water before binding again, however, would 

require a dissociation rate constant between 7x104 s-1 and 7x106 s-1. Consequently, 

the experimental koff is by 5-7 orders of magnitude too low for such a mechanism. 

Thus an alternative explanation for the rapid transfer between both binding sites can 

be given by the movement of the N- and C-terminal domain relative to each other. In 

fact, this movement enables a site-to-site metal ion transfer without the requirement 

to break all metal-protein bonds at the same time, thus indicating an intra-molecular 
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ligand exchange reaction. This would afford a rather flexible and highly dynamic 

protein structure, especially at the metal ion binding site. The observations of a less 

structured Cd1-enzyme in the CD spectra and highly labile protein regions at the 

domain interface with peptide (P[115-129]) and metal binding site (P[82-110] and 

P[55-66]) strongly support such a mechanism.  

 

Flexibility of BcII at [Zn2+]/[apoprotein] ratio of 1 

Based on the NMR/PAC results for the Cd1-BcII enzyme, a rapid exchange of the 

Zn2+ ion was also suggested in the zinc enzyme at [Zn2+]/[apoprotein] ratio of 1 using 

stopped-flow methods (39). In the past, the BcII enzyme was considered as a native 

monozinc enzyme, due to one high affinity (KD1) (nM) and one low affinity (KD2) (µM) 

dissociation constant for the binding of metal ions. In this case, only one metal-bound 

species, the mono-zinc form, can existent at a [Zn2+]/[apoprotein] ratio of 1. In the 

present study, competition titrations revealed that the KD2 value was revised by a 

factor of 2000 in BcII and the ESI-MS data detected the presence of three protein 

species, i.e. apo, Zn1- and Zn2 forms at low [Zn2+]/[apoprotein] ratios. Therefore the 

H/D kinetics obtained for each peptide at the investigated metal binding stoichiometry 

resulted from the superposition of the three coexisting species. In fact, the H/D 

exchange into the Zn1-form can not be followed separately from that of the other two 

protein species. Thus conclusions can not be drawn to explain a possible 

intramolecular exchange of the Zn2+ ion in the Zn1-enzyme. 

When one molar equivalent of zinc was added to the apoprotein the CD spectra 

indicated a modification of secondary structures compared to the situation found with 

two molar equivalents of zinc. Furthermore, it was found that certain regions revealed 

the best protection against H/D exchange, e.g. in the fragments P[156-164], P[205-

219] and P[32-54] at [Zn2+]/[apoprotein] ratio of 1. This was most pronounced for the 

peptide P[205-219] containing the metal ligand His210. These three fragments are 

spatial neighbouring regions in the crystal structure of the Zn2-BcII. Here, the 

formation of metal ion-bridged dimers of the protein at low [Zn2+]/[apoprotein] ratios 

might be responsible for the increase of protein stability, but has to be proved in 

further investigations.  
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4.3.2 The influence of the inhibitor thiomandelate on the protein flexibility of 

BcII 

4.3.2.1 Me2-species 

HDX-MS experiments presented in this work revealed that (R,S)-thiomandelate 

stabilized the Cd2-enzyme in the metal binding site, especially in the region of the H-

X-H-D motif and the coupled segment P[55-66]. Studying the Cd2-enzyme-inhibitor 

complex by NMR experiments revealed that the inhibitor binds to the two metals via 

its sulphur donating function (9). This has an impact on the stabilization of the two 

cadmium ions in the active site, which might explain a lower percentage of 

deuteration of P[55-66] in Cd2-BcII compared to the Zn2-BcII. The fragment P[55-66] 

contains also W59, whose side chain extends toward the ß3-ß4 loop. A shift of this 

residue was found in NMR experiments for the di-Zn2-BcII enzyme after the binding 

of the inhibitor (43). It was concluded that after binding of the inhibitor to the Zn2-

enzyme, the closing of the ß3-ß4 loop might cause the shift of the tryptophane 

residue. In the present study, an increased stability of the loop after inhibitor binding 

was not observed.  

In the Zn2-BcII enzyme the HDX-MS showed that no region of the protein was 

stabilized by (R,S)-thiomandelate. Indeed, in presence of the inhibitor all regions in 

the Zn2-BcII protein present similar or higher H/D exchanges compared to the 

inhibitor-free state. One possible explanation is that the high amount of inhibitor 

added to the Zn2-BcII enzyme might induce the formation of Zn1- or apo-enzyme. The 

inhibitor is known to have strong affinity for zinc ions in solution.  

 

4.3.2.2 Me1-species 

After binding of thiomandelate to the Me1-BcII species, the percentage of deuteration 

increased for all parts of the protein. It was concluded that the formation of 

apoenzyme, due to the positive cooperativity in metal binding of thiomandelate, was 

responsible for this high level of H/D exchange. Positive cooperativity in metal 

binding was also shown for the cadmium enzyme in NMR studies (9) as well as for 

the zinc enzyme in the presented competition titrations experiments. Thus, it was not 

possible to identify the regions in the Me2- species stabilized by the inhibitor, due to 

the high level of deuteration of the produced apoenzyme.  
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55  CCOONNCCLLUUSSIIOONN  AANNDD  OOUUTTLLOOOOKK  

When combining miniaturization and automation in a nano-electrospray (nanoESI) 

device, such as the Nanomate® system, direct high-throughput screening can be 

easily reached for small-molecule protein interactions as it is the case in 

metalloenzyme-inhibitor complexes. The results obtained by ESI-MS for the binding 

of the inhibitors to the metallo-beta-lactamases via analysis of the relative abundance 

of the metalloprotein-inhibitor complexes were generally in good agreement with SAR 

data obtained in solution (43). In only one case, the order of binding strengths 

obtained in the gas phase was different from that obtained in solution. A different 

impact of non-covalent forces between inhibitors and proteins in the gas phase and 

in solution might explain the deviating results. In fact, electrostatic and hydrogen 

bonding interactions might be emphasized during ion transfer from solution into the 

gas phase, whereas the strength of hydrophobic interactions is reduced. Thus 

different equilibrium constants can be expected.  

The technique is also well suited for the rapid detection of metal:enzyme:inhibitor 

ratios, and in particular for the detection of the metal:protein stoichiometry. This 

information is often difficult to obtain by other methods, which are generally time-

consuming and demand high sample amounts. Besides that, the metal loading state 

of proteins is usually ignored in high-throughput studies on the inhibition of metallo-

enzymes. 

Competition titration experiments in combination with ESI-MS revealed that the 

inhibitor D-captopril preferentially binds to the dinuclear forms of zinc BcII and L1 

enzymes and the mononuclear form of the CphA enzyme. For (R,S)- thiomandelate 

two metal ions are required for efficient binding to BcII and L1 and unexpectedly to 

CphA, where formation of the dinuclear form was induced. In the CphA enzyme, the 

affinity for a second metal ion can only be increased by introducing a new metal 

ligand (i.e. the thiol group from (R,S)- thiomandelate. However, the increase of the 

affinity for a second metal ion might not be sufficient to inactivate the MBLs 

completely, due to the presence of catalytically active mononuclear species. One 

exception is BcII where positive cooperativity of zinc binding is induced by the 

presence of (R,S)- thiomandelate. To address the mononuclear forms of MBLs might 

be a major challenge in the design of new and clinically useful inhibitors. 
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HDX-MS was used to study the effect of metal ion binding on the flexibility of BcII, 

with special emphasis on the mononuclear forms. The data revealed a high flexibility 

at the active site and the interdomain region of the monocadmium enzyme, which 

might facilitate the known metal exchange between the two available ligand binding 

sites. This intramolecular exchange of the metal ion was also suggested for the 

mononuclear zinc enzymes. A highly flexible active site architecture of Zn1-MBLs 

might explain the difficulty to inhibit such enzymes.  
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APPENDIX 1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 1: ESI mass spectra resulting from the incubation of apo-BcII (11.7) µM in 15 mM 

ammonium bicarbonate, pH 7) with different concentrations of Co(II) ions (2.5 to 30 µM). (*) 

represented the salt adducts. The ions carrying the charges + 9 and + 10 are representated 

in the mass spectra. Experiments were carried out at sample cone voltage 200 V, pressure 

at interface 6.7 mbar. 
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APPENDIX 2: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 2: Peptide mass fingerprint (PMF) of the apoenzyme BcII digested by pepsin in 

non deuterated buffer (A) and in deuterated buffer (B) analyzed in 5 mg/ml CCA 

(acetonitrile/ethanol/TFA 20/80/0.1) using MALDI-MS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0 2 2 0 0 2 4 0 0 2 6 0 0 2 8 0 0 3 0 0 0
m / z

 8 4 0 . 4 9

 9 5 3 . 6 1

1 0 2 6 . 6 4

1 1 5 9 . 7 9

1 2 4 1 . 7 3

1 2 9 2 . 8 5

1 3 8 0 . 9 0

1 5 1 1 . 9 4

1 6 1 1 . 0 1

1 7 2 3 . 9 3

1 7 8 0 . 0 6

1 8 3 7 . 0 5

1 9 3 6 . 1 3

1 9 9 7 . 2 4

2 0 6 9 . 2 9 2 2 0 9 . 4 2

2 3 1 3 . 5 5

2 3 8 6 . 5 8

2 5 0 3 . 4 8
2 6 7 8 . 6 3

2 7 9 0 . 6 9

1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0 2 2 0 0 2 4 0 0 2 6 0 0 2 8 0 0 3 0 0 0

m / z

 8 4 7 . 6 6

 9 6 4 . 6 2

1 0 1 6 . 8 5

1 1 5 8 . 8 4

1 2 4 0 . 7 6

1 2 9 0 . 9 0

1 3 7 8 . 9 3

1 4 4 8 . 9 2

1 5 0 9 . 9 5

1 5 6 2 . 0 0

1 7 2 2 . 9 5

1 8 6 5 . 1 7

1 9 3 6 . 1 5

1 9 9 5 . 2 6

2 0 6 6 . 2 9 2 2 0 6 . 3 8

2 3 0 7 . 5 0

2 3 8 3 . 5 8

2 5 0 1 . 5 2

2 5 7 2 . 5 2

2 6 7 0 . 5 6

2 7 8 3 . 6 6

2 8 3 5 . 8 2
2 9 4 9 . 7 4

1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0 2 2 0 0 2 4 0 0 2 6 0 0 2 8 0 0 3 0 0 0
m / z

 8 4 0 . 4 9

 9 5 3 . 6 1

1 0 2 6 . 6 4

1 1 5 9 . 7 9

1 2 4 1 . 7 3

1 2 9 2 . 8 5

1 3 8 0 . 9 0

1 5 1 1 . 9 4

1 6 1 1 . 0 1

1 7 2 3 . 9 3

1 7 8 0 . 0 6

1 8 3 7 . 0 5

1 9 3 6 . 1 3

1 9 9 7 . 2 4

2 0 6 9 . 2 9 2 2 0 9 . 4 2

2 3 1 3 . 5 5

2 3 8 6 . 5 8

2 5 0 3 . 4 8
2 6 7 8 . 6 3

2 7 9 0 . 6 9

1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0 2 2 0 0 2 4 0 0 2 6 0 0 2 8 0 0 3 0 0 0

m / z

 8 4 7 . 6 6

 9 6 4 . 6 2

1 0 1 6 . 8 5

1 1 5 8 . 8 4

1 2 4 0 . 7 6

1 2 9 0 . 9 0

1 3 7 8 . 9 3

1 4 4 8 . 9 2

1 5 0 9 . 9 5

1 5 6 2 . 0 0

1 7 2 2 . 9 5

1 8 6 5 . 1 7

1 9 3 6 . 1 5

1 9 9 5 . 2 6

2 0 6 6 . 2 9 2 2 0 6 . 3 8

2 3 0 7 . 5 0

2 3 8 3 . 5 8

2 5 0 1 . 5 2

2 5 7 2 . 5 2

2 6 7 0 . 5 6

2 7 8 3 . 6 6

2 8 3 5 . 8 2
2 9 4 9 . 7 4

Mass (m/z) 

A 
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APPENDIX 3: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 3: Example of a MS/MS mass spectrum of a peptic peptide from the apoenzyme 

BcII digested with pepsin. The amino acid sequence of the peptide is NKNVWVHTEL with an 

experimental mass of m/z = 1239,650. The MS/MS fragmentation of the precursor peptide 

labeled with (*) leads mainly to the cleavage of the amide bonds, which produce b+-ions 

when the charge is retained by the amino-terminal fragment and y+-ions when it is retained 

by the carboxyl-terminal fragment. The b+-ions are consecutively labeled from the original 

amino terminus and the y+-ions from the original carboxyl terminus as represented in the inlet 

of the figure. 
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APPENDIX 4: 

 

Appendix 4: Determination of the percentage of deuterons back-exchanged (% BE) for each 

peptic peptide of the BcII enzyme during sample preparation for HDX experiments. In column 

1 and 2, the sequence of the analyzed peptides and the maximal number of observable 

deuterons (N) are given. In column 3 and 4, the experimental centroid mass of the 

undeuterated and nondeuterated peptides respectively are given. In column 5 and 6 the 

number of deuterons back exchanged and the percentage of deuterons back-exchanged is 

given respectively. % BE is calculated using the following equation:  

 

%100*1 
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Sequence of 

identified peptides 

 

Maximal 

number 

of 

deuterons 

(N)  

Centroid 

Mass 

(Mundeut) 

Centroid 

Mass 

(Mdeut) 

Mdeut-

Mundeut 
BE (%) 

N-term. tail (β1, β2)      

1SQKVEKTVIK- 
NETGTISISQL21 

20 2304.54 
 

2317.73 
 

 
13.19 

 

 
34.02 

 

β3, loop 32-39, β4, β5      

44LVLNTSKGLVL54 11 
 

1157.52 
 

 
1162.84 

 

 
5.32 

 

 
51.63 

 

22NKNVWVHTEL31 10 
 

1240.36 
 

 
1245.65 

 

 
5.29 

 

 
47.10 

 

32GSFNGEAVPS- 
NGLVLNTSKGLVL54 

22 
 

2274.96 
 

 
2285.40 

 

 
10.44 

 

 
52.54 

 

Loop 55-66      

55VDSSWDDKLTKE66 12 
 

1423.49 
 

 
1430.72 

 

 
7.23 

 

 
39.75 

 

αI, β6      

71VEKKFQKRVTD81 11 
 

1378.71 
 

 
1384.08 

 

 
5.37 

 

 
51.18 

 

70MVEKKFQKRVTD81 12 
 

1509.84 
 

 
1515.79 

 

 
5.95 

 

 
50.37 

 

αII, β7      
82VIITHAHADR- 
IGGIKTLKER- 
GIKAHSTAL110 

29 
 

3108.37 
 

 
3122.88 

 

 
14.51 

 

 
49.95 

 

Connecting Loop, β8      

130VTNLKFGNM138 9 
 

1024.09 
 

 
1028.31 

 

 
4.22 

 

 
53.11 

 

115AKKNGYEEPL- 
GDLQT129 

14 
 

1663.82 
 

 
1670.60 

 

 
6.78 

 

 
51.57 

 

114LAKKNGYEEPL- 
GDLQTVTNL133 

19 
 

2204.45 
 

 
2214.68 

 

 
10.23 

 

 
46.16 

 

β9      

139KVETFYPGKG- 
HTEDN153 

14 
 

1722.83 
 

 
1728.87 

 

 
6.04 

 

 
56.82 

 

139KVETFYPGKG- 
HTEDNIV155 

16 
 

1935.08 
 

 
1942.85 

 

 
7.77 

 

 
51.44 

 

β10      

156VWLPQYNIL164 8 
 

1146.54 
 

1152.75 
 

6.21 
 

22.37  
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156VWLPQYNIL164 8 
 

1146.54 
 

 
1152.75 

 

 
6.21 

 

 
22.37 

 

β11, Loop 174-185      
165VGGCLVKSTS- 
AKDLGNVADA- 
YVNE188 

24 
2411.74 

 
2425.76 

 
14.02 

 
41.58 

 

αIV      

195NVLKRYRNIN204 10 
 

1290.49 
 

 
1295.36 

 

 
4.87 

 

 
51.30 

 

189WSTSIENVLK- 
RYRNIN204 

16 
 

1994.21 
 

 
2003.63 

 

 
9.42 

 

 
41.09 

 

189WSTSIENVLK- 
RYRNINA205 

17 
 

2065.53 
 

 
2075.22 

 

 
9.69 

 

 
43 

 

C-term. tail, β12, αV      

220LHTLDLLK227 8 
 

953.13 
 

 
956.70 

 

 
3.57 

 

 
55.39 

 

205AVVPGHGEVG- 
DKGLL219 

14 
 

1448.67 
 

 
1455.00 

 

 
6.33 

 

 
54.78 

 

205AVVPGHGEVG- 
DKGLLL220 

15 
 

1561.77 
 

 
1569.09 

 

 
7.32 

 

 
51.16 

 
205AVVPGHGEVG- 
DKGLLLHTLD- 
LLK227 

22 
 

2381.35 
 

 
2395.01 

 

 
13.65 

 

 
37.93 

  

 


